
Chapter 1

Introduction

1.1 Motivation

The purpose of this work is two-fold. The first goal is to develop a sufficiently rich
theory of almost coherent sheaves on schemes and a class of formal schemes. The
second goal is to provide the reader with one interesting source of examples of almost
coherent sheaves. Namely, we show that the complex of p-adic nearby cycles R��.E/
has quasi-coherent, almost coherent cohomology sheaves for any admissible formal
OC -scheme X and OC

X}
=p-vector bundle E (see Definition 6.5.1).

Before we discuss the content of each chapter in detail, we explain the motivation
behind the work done in this memoir.

The first source of motivation comes from the work of P. Scholze on the finiteness
of Fp-cohomology groups of proper rigid-analytic varieties over p-adic fields (see
[59]). The second source of motivation (clearly related to the first one) is the desire to
set up a robust enough theory of almost coherent sheaves that is crucially used in our
proof of Poincaré duality for Fp-local systems on smooth and proper rigid-analytic
varieties over p-adic fields in [71].

We start with the work of P. Scholze. In [59], he showed that there is an almost
isomorphism

Hi
�
X;Fp

�
˝OC=p '

a Hi
�
X;OCXét

=p
�

for any proper rigid-analytic variety X over a p-adic algebraically closed field C .
This almost isomorphism allows us to reduce studying certain properties of Hi .X;Fp/
for a p-adic proper rigid-analytic space X to studying almost properties of the coho-
mology groups Hi .X;OCXét

=p/, or the full complex R�.X;OCXét
=p/. For instance,

Scholze shows that Hi .X;Fp/ are finite groups by deducing it from almost coherence
of Hi .X;OCXét

=p/ over OC=p.
Scholze’s argument does not involve any choice of an admissible formal model

for X and is performed entirely on the generic fiber via an elaborate study of can-
cellations in certain spectral sequences. A different natural approach to studying
R�.X;OCXét

=p/ is to rewrite this complex as

R�
�
X;OCXét

=p
�
' R�

�
X0;Rt�OCXét

=p
�

for a choice of an admissible formal OC -model X and the natural morphism of ringed
sites

t W
�
Xét;O

C

Xét
=p
�
!
�
X0;Zar;OX0

�
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with X0 the mod-p fiber of X. Then we can separately study the complex Rt�.OCXét
=p/

and the functor R�.X;�/. In order to make this strategy work, we develop the notion
of almost coherent sheaves on X and X0 and show its various properties similar to the
properties of coherent sheaves. This occupies Chapters 2–5. While Chapters 6 and 7
are devoted to showing that the complex Rt�.OCXét

=p/ has almost coherent cohomol-
ogy groups, and to generalizing these finiteness results to all OC=p-vector bundles.
Combining that with the almost proper mapping theorem (Theorem 1.2.9), we reprove
[59, Lemma 5.8 and Theorem 5.1] in a slightly greater generality (allowing arbitrary
Zariski-constructible coefficients as opposed to local systems).

Theorem 1.1.1 (Lemma 7.3.4, Lemma 7.3.7, and Lemma 6.7.10). Let C be an alge-
braically closed p-adic non-archimedean field, let X be a proper rigid-analytic vari-
ety over C , and let F be a Zariski-constructible sheaf of Fp-modules (see Defini-
tion 7.1.7). Then

(1) Hi .X;F ˝FpOCXét
=p/ is an almost finitely generated OC=p-module for i � 0;

(2) the natural morphism

Hi
�
X;F

�
˝Fp OC=p ! Hi

�
X;F ˝Fp OCXét

=p
�

is an almost isomorphism for i � 0;

(3) Hi .X;F ˝Fp OCXét
=p/ is almost zero for i > 2 dimX .

Theorem 1.1.2 (Lemma 7.3.6).1 In the notation of Theorem 1.1.1, we have

(1) Hi .X;F / is a finite group for i � 0;

(2) Hi .X;F / ' 0 for i > 2 dimX .

Now we discuss the role of this memoir in our proof of Poincaré duality in [71].
We start with the precise formulation of this result.

Theorem 1.1.3 ([71]). Let C be an algebraically closed p-adic non-archimedean
field, let X be a rigid-analytic variety over C of pure dimension d , and let L be an
Fp-local system on Xét. Then there is a canonical trace map

tX WH2d
�
X;Fp.d/

�
! Fp

such that the induced pairing

Hi .X;L/˝ H2d�i .X;L_.d//
�[�
���! H2d .X;Fp.d//

tX
�! Fp

is perfect.

1Theorem 1.1.2 can also be easily deduced from the results of [7].
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The essential idea of the proof (at least for L D Fp) is to use Theorem 1.1.1 to
reduce Poincaré duality to almost duality for the complex R�.X;OCXét

=p/. We study
this complex via the isomorphism

R�.X;OCXét
=p/ ' R�.X0;Rt�OCXét

=p/:

Roughly, we separately show almost duality for the “nearby cycles functor” Rt�, and
then establish an almost version of Grothendieck duality for the OC=p-scheme X0.
Even to formulate these things precisely, one needs a good theory of almost (coherent)
sheaves that globalizes the theory of almost (coherent) modules. For this theory to
be useful, we have to establish that almost coherent sheaves share many properties
similar to classical coherent sheaves and the “nearby cycles” Rt�

�
OCXét

=p
�

are almost
coherent.

The main goal of Chapters 2–5 is to develop this general theory of almost (coher-
ent) sheaves. In Chapter 6, we study OC=p, OC, and O-vector bundles in different
topologies. Chapter 7 is devoted to verifying that “nearby cycles” are almost coher-
ent. That being said, we now discuss the content and main results of each section in
more detail.

1.2 Foundations of almost mathematics (Chapters 2–5)

Section 2.1 defines the category of almost modules and studies its main properties.
This section is very motivated by [26]. However, it seems that some results that
we need later in the memoir are not present in [26], so we give an (almost) self-
contained introduction to almost commutative algebra. We define the category of
almost modules (see the discussion after Corollary 2.1.4), the almost tensor product
functor�˝Ra � (see Proposition 2.2.1 (1)), the almost Hom functor alHomRa.�;�/

(see Proposition 2.2.1 (3)), and the notion of almost finitely generated (see Defi-
nitions 2.5.1), almost finitely presented (see Definition 2.5.2), and almost coherent
modules (see Definition 2.6.1). We show that almost coherent modules satisfy many
natural properties similar to the properties of classical coherent modules. We summa-
rize some of them in the following theorem:

Theorem 1.2.1 (Lemma 2.6.8, Propositions 2.6.18, 2.6.19, 2.6.20, Theorem 2.10.3,
and Lemma 2.10.5). Let R be a ring with an ideal m such that em WD m ˝R m is
R-flat and m2 D m.

(1) Almost coherent Ra-modules form a weak Serre subcategory of ModaR.

(2) Let R be an almost coherent ring (i.e., free rank-1 R-module is almost coher-
ent), andM a;N a two objects in D�acoh.R/

a. ThenM a ˝LRa N
a 2 D�acoh.R/

a.
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(3) Let R be an almost coherent ring, and M a 2 D�acoh.R/
a, N a 2 DCacoh.R/

a.
Then

RalHomRa.M
a; N a/ 2 DCacoh.R/

a:

(4) Let R be an almost coherent ring, M a 2 D�acoh.R/
a, N a 2 DC.R/a, and P a

an almost flat Ra-module. Then the natural map RHomRa.M
a; N a/ ˝Ra

P a ! RHomRa.M
a; N a ˝Ra P

a/ is an almost isomorphism.

(5) Descent of almost modules along an almost faithfully flat morphism R! S

is always effective.

(6) Let R ! S be an almost faithfully flat map, and let M a be an Ra-module.
Suppose that M a ˝Ra S

a is almost finitely generated (resp. almost finitely
presented, resp. almost coherent) Sa-module. Then so is M a.

IfR is I -adically adhesive for some finitely generated ideal I (in the sense of Def-
inition 2.12.1), we can show that almost finitely generatedR-modules satisfy a (weak)
version of the Artin–Rees lemma, and behave nicely with respect to the completion
functor. These results will be crucial for globalizing the theory of almost coherent
modules on formal schemes.

Lemma 1.2.2 (Lemma 2.12.6 and Lemma 2.12.7). Let R be an I -adically adhesive
ring with an ideal m such that I � m, m2 D m, and m ˝R m is R-flat (see Set-
up 2.12.3). LetM be an almost finitely generatedR-module. Then the following hold:

(1) For anyR-submoduleN �M , the induced topology onN coincides with the
I -adic topology.

(2) The natural morphism M ˝R yR!cM is an isomorphism. In particular, if R
is I -adically complete, then any almost finitely generated R-module is also
I -adically complete.

If R is a (topologically) finitely generated algebra over a perfectoid valuation
ring KC (see Definition B.2), we can say even more. In this case, it turns out that R
is almost noetherian (see Definition 2.7.1), so the theory simplifies significantly.
Another useful result is that it suffices to check that a derived complete complex
is almost coherent after taking the derived quotient by a pseudo-uniformizer $ . This
is very handy in practice because it reduces many (subtle) integral questions to the
torsion case, where there are no topological subtleties.

Theorem 1.2.3 (Theorem 2.11.5, Theorem 2.11.9, Theorem 2.13.2). Let KC be a
perfectoid valuation ring with a pseudo-uniformizer $ as in Lemma B.9, and let R
be a KC-algebra. Then the following hold:

(1) R is almost noetherian if R is (topologically) finite type over KC.
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(2) Suppose R is a topologically finite type KC-algebra and M is a derived $ -
adically complete object in D.R/ such that ŒM=$� 2 DŒc;d�acoh .R=$/. Then
M 2 DŒc;d�acoh .R/.

We discuss the extension of almost mathematics to ringed sites in Chapter 3. The
main goal is to generalize all constructions from almost mathematics to a general
ringed site. We define the notion of almost OX -modules on a ringed site .X;OX / (see
Definition 3.1.9) and of Oa

X -modules (see Definition 3.1.10), and show that they are
equivalent:

Theorem 1.2.4 (Theorem 3.1.20). Let R be as in Theorem 1.2.1 and .X; OX / a
ringed R-site. Then the functor

.�/aWModaOX !ModOa
X

is an equivalence of categories.

We define the functors �˝ �, HomOa
X
.�;�/, alHomOa

X
.�;�/, Hom Oa

X
.�;�/,

alHom Oa
X
.�;�/, f�, f � too on the category of Oa

X -modules. We refer to Section 3.2
for an extensive discussion of these functors. Then we study the derived category of
Oa
X -modules and derived analogues of the functors mentioned above. This is done in

Sections 3.4 and 3.5.
We develop the theory of almost finitely presented and almost (quasi-)coherent

sheaves on schemes and on a class of formal schemes in Section 4.1. The main goal
is to show that these sheaves behave similarly to classical coherent sheaves in many
aspects.

Roughly, we define almost finitely presented Oa
X -modules as modules that, for

any finitely generated sub-ideal m0 � m, can be locally approximated by finitely
presented OX -modules up to modules annihilated by m0 (see Definition 4.1.4 for a
precise definition). Sections 4.1–4.4 are mostly concerned with local properties of
these sheaves. We summarize some of the main results below:

Theorem 1.2.5 (Corollary 4.1.12, Theorem 4.4.6, Lemmas 4.4.8, 4.4.7, 4.4.9, 4.4.10).
Let R be a ring with an ideal m such that em WD m˝R m is R-flat and m2 D m.

(1) For any R-scheme X , almost coherent Oa
X -modules form a weak Serre sub-

category of ModaOX .

(2) The functor
e.�/WD�.R/a ! Daqc;�.SpecR/a

is a t -exact equivalence of triangulated categories for � 2 ¹“ ” acohº. Its
quasi-inverse is given by R�.Spec R; �/. In particular, an almost quasi-
coherent Oa

SpecR-module F a is almost coherent if and only if F a.SpecR/
is an almost coherent Ra-module.
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(3) The natural morphism EM a ˝LRa N
a !eM a ˝LOaSpecR

fN a is an isomorphism
for any M a; N a 2 D.R/a.

(4) Letf WSpecB! SpecA be anR-morphism of affine schemes. Then Lf �.eM a/

is functorially isomorphic to DM a˝LAaB
a for any M a 2 D.A/a.

(5) Let f WX ! Y be a quasi-compact and quasi-separated morphism of R-
schemes. Suppose that Y is quasi-compact. Then Rf� carries D�aqc.X/

a to
D�aqc.Y /

a for any � 2 ¹“ ”;�;C; bº.

(6) Suppose that R is almost coherent. Then the natural maps

DRalHomRa.M
a; N a/ ! RalHom OaSpecR

.eM a; fN a/;

DRHomRa.M
a; N a/ ! RHom OaSpecR

.eM a; fN a/

are almost isomorphisms for M a 2 D�acoh.R/
a, N a 2 DC.R/a.

We also show that, for a quasi-compact and quasi-separated scheme X , any al-
most finitely presented Oa

X -module admits a global approximation by finitely pre-
sented OX -modules. This result is crucial for establishing global properties of almost
finitely presented Oa

X -modules, and it will be systematically used in Chapter 5.

Theorem 1.2.6 (Corollary 4.3.5). Let X be a quasi-compact and quasi-separated
R-scheme, and let F be an almost quasi-coherent OX -module. Then F is almost
finitely presented (resp. almost finitely generated) if and only if for any finitely gen-
erated ideal m0 � m there is a morphism f W G ! F such that m0.Ker f / D 0,
m0.Cokerf / D 0, and G is a quasi-coherent finitely presented (resp. finitely gener-
ated) OX -module.

We now discuss the content of Sections 4.5–4.9. The main goal of these sections
is to show an analogue of Theorem 1.2.5 for a class of formal schemes. To achieve
this, we restrict our attention to the class of topologically finitely presented schemes
over a topologically universally adhesive ringR (see Set-up 4.5.1). This, in particular,
includes admissible formal schemes over a mixed characteristic, p-adically complete
rank-1 valuation ring OC with algebraically closed fraction field C .

One of the main difficulties in developing a good theory of almost coherent Oa
X-

modules on a formal scheme X is that there is no good abelian theory of “quasi-
coherent” on X. The theory of quasi-coherent sheaves is an important tool used in
developing the theory of almost coherent sheaves on schemes that does not have an
immediate counterpart in the world of formal schemes.

We overcome this issue in two different ways: we use the notion of adically
quasi-coherent OX-modules introduced in [25] (see Definition 4.5.2) and the notion
of derived quasi-coherent OX-modules introduced in [49] (see Definition 4.8.1). The
first notion has the advantage that every adically quasi-coherent OX-module is an
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actual OX-module. However, these modules do not form a weak Serre subcategory
inside ModOX

, so they are not always very useful in practice. The latter definition
has the advantage that derived quasi-coherent OX-modules form a triangulated sub-
category inside D.X/; it is quite convenient for certain purposes. However, derived
quasi-coherent OX-modules are merely objects of D.X/ and not actual OX-modules
in the classical sense. Therefore, we usually use adically quasi-coherent OX-modules
when needed except for Section 4.8, where the notion of derived quasi-coherent OX-
modules seems to be more useful for our purposes. In particular, it allows us to define
the functor

.�/L�WDacoh.A/
a
! Dacoh.Spf A/a

for any topologically finitely presented R-algebra A in a way that “extends” the clas-
sical functor .�/�WModacoh

A !ModOX
(see Definition 4.8.7 and Lemma 4.8.13).

Theorem 1.2.7 (Lemma 4.5.23, Corollary 4.8.16, Lemmas 4.9.4, 4.9.3, 4.9.7). LetR
be a ring with a finitely generated ideal I such that R is I -adically complete, I -
adically topologically universally adhesive, I -torsion free with an ideal m such that
I � m, m2 D m and em WD m˝R m is R-flat.

(1) For any topologically finitely presented formal R-scheme X, almost coherent
Oa

X-modules form a weak Serre subcategory of ModaOX
.

(2) The functor

R�.Spf R;�/WDacoh.Spf R/a ! Dacoh.R/
a

is a t -exact equivalence of triangulated categories.

(3) The natural morphism .M a ˝LRa N
a/L� ! .M a/L� ˝L

OaSpf R
.N a/L� is an

isomorphism for any M a; N a 2 Dacoh.R/
a.

(4) Let fW Spf B ! Spf A be a morphism of topologically finitely presented
affine formal R-schemes. Then Lf�

�
.M a/L�

�
is functorially isomorphic to

.M a ˝LAa B
a/L� for any M a 2 Dacoh.A/

a.

(5) The natural morphisms�
RalHomRa.M

a; N a/
�L�
! RalHom OaSpf R

�
.M a/L�; .N a/L�

�
;�

RHomRa.M
a; N a/

�L�
! RHom OaSpf R

�
.M a/L�; .N a/L�

�
are almost isomorphisms for M a 2 D�acoh.R/

a, N a 2 DCacoh.R/
a.

Similarly to the case of schemes, almost coherent sheaves on formal schemes
satisfy the global approximation property:

Theorem 1.2.8 (Theorem 4.7.6). Let R be as in Theorem 1.2.7, let X be a finitely
presented formal R-scheme, and let F be an almost finitely generated (resp. almost
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finitely presented) OX-module. Then, for any finitely generated ideal m0 �m, there is
an adically quasi-coherent, finitely generated (resp. finitely presented) OX-module G

together with a map �WG ! F such that m0.Coker�/ D 0 and m0.Ker�/ D 0.

We discuss the global properties of almost coherent sheaves in Chapter 5. Namely,
we generalize certain cohomological properties of classical coherent sheaves to the
case of almost coherent sheaves. We start with the almost version of the proper map-
ping theorem:

Theorem 1.2.9 (Theorem 5.1.3). Let R be a universally coherent2 ring with an
ideal m such that em WDm˝R m is R-flat and m2 Dm. Let furthermore f WX ! Y

be a proper morphism of finitely presented R-schemes with quasi-compact Y . Then
Rf� carries D�acoh.X/

a to D�acoh.Y /
a for � 2 ¹“ ”;�;C; bº.

The essential idea of the proof is to reduce Theorem 1.2.9 to the classical proper
mapping theorem over a universally coherent base [25, Theorem I.8.1.3]. The key
input to make this reduction work is Theorem 1.2.6.

We also prove a version of the almost proper mapping theorem for a morphism of
formal schemes:

Theorem 1.2.10 (Theorem 5.1.6). Let Y be a topologically finitely presented formal
R-scheme forR as in Set-up 4.5.1 and let fWX!Y be a proper, topologically finitely
presented morphism. Then Rf� carries D�acoh.X/

a to D�acoh.Y/
a for � 2 ¹“ ”;�;C; bº.

Then we characterize quasi-coherent, almost coherent complexes on finitely pre-
sented, separated schemes over a universally coherent base ring R. This is an almost
analogue of [68, Tag 0CSI]. We follow the same proof strategy but adjust it in certain
places to make it work in the almost setting. This result is important for us as it will
later play a crucial role in the proof of the formal GAGA theorem for almost coherent
sheaves.

Theorem 1.2.11 (Theorem 5.2.3). Let R be a universally coherent ring with an
ideal m such that em WD m ˝R m is R-flat and m2 D m. Let X be a separated,
finitely presented R-scheme, and let F 2 D�qc.X/ be an object such that

RHomX .P ;F / 2 D�acoh.R/

for any P 2 Perf.X/. Then F 2 D�qc;acoh.X/.

Theorem 1.2.12 (Corollary 5.3.3). Let R be as in Theorem 1.2.10, and let X be a
finitely presented R-scheme. Then the functor

Lc�WD�acoh.X/
a
! D�acoh.X/

a

induces an equivalence of categories for � 2 ¹“ ”;C;�; bº.

2Any finitely presented R-algebra A is coherent.

https://stacks.math.columbia.edu/tag/0CSI


OC=p, OC, and O-vector bundles (Chapter 6) 9

We note that the standard proof of the classical formal GAGA theorem via pro-
jective methods has no chance to work in the almost coherent situation (due to the
lack of “finiteness” for almost coherent sheaves). Instead, we “explicitly” construct a
pseudo-inverse to Lc� in the derived world by adapting an argument from the paper
of J. Hall [31].

The last thing we discuss in Chapter 5 is the almost version of the Grothendieck
duality. This is a crucial technical tool in our proof of Poincaré duality in [71]. So we
develop some foundations of the f Š functor in the almost world in this memoir. We
summarize the main properties of this functor below:

Theorem 1.2.13 (Theorem 5.5.8). Let R be as in Theorem 1.2.9, and FPSR be the
category of finitely presented, separated R-schemes. Then there is a well-defined
pseudo-functor .�/Š from FPSR into the 2-category of categories such that

(1) .X/Š D DCaqc.X/
a;

(2) for a smooth morphism f WX ! Y of pure relative dimension d , there is a
natural isomorphism f Š ' Lf �.�/˝LOa

X
�d
X=Y

Œd �;

(3) for a proper morphism f WX ! Y , the pseudo-functor f Š is right adjoint to
Rf�WDCacoh.X/

a ! DCacoh.Y /
a.

1.3 OC=p, OC, and O-vector bundles (Chapter 6)

The main goal of Chapter 6 is to study the categories of OC=p-vector bundles in the
étale, quasi-proétale, and v-topologies. We also show that OC=p-vector bundles can
be trivialized by some particular étale covers. These results will play a crucial role in
Chapter 7. Also, as an application of our results, we give a new proof of the theorem of
Kedlaya–Liu saying that, for a perfectoid spaceX , the categories of O-vector bundles
in the analytic and v-topologies are equivalent.

We formulate the results of this section more precisely below:

Theorem 1.3.1 (Corollary 6.6.9). Let X be a strongly sheafy adic space (see Defini-
tion C.4.1) over Spa .Qp;Zp/. Then

(1) the categories Vect.XétIO
C

Xét
=p/, Vect.X}qpIOX}qp

C =p/, and Vect.X}v IO
C

X}
=p/

are equivalent;

(2) these equivalences preserve cohomology groups;

(3) for any OC
X}
=p-vector bundle E and a point x 2 X , there exist an open

affinoid subspace x 2 Ux � X and a finite étale surjective morphism zUx !
Ux such that Ej zU}x

is a free vector bundle.
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Theorem 1.3.1 (1), (2) is essentially due to B. Heuer (see [35, Section 2] for a
similar result in a slightly different level of generality). However, Theorem 1.3.1 (3)
does not seem to follow from [35] and is crucial for our arguments in Chapter 7.

We also prove a version of Theorem 1.3.1 for OC-vector bundles:

Theorem 1.3.2 (Theorem 6.8.4, Corollary 6.8.3). Let X be a perfectoid space over
Spa .Qp;Zp/. Then

(1) the categories Vect.Xét IO
C

Xét
/, Vect.X}qp IOX}qp

C /, and Vect.X}v IO
C

X}
/ are

equivalent;

(2) these equivalences preserve cohomology groups;

(3) for any OC
X}

-vector bundle E and a point x 2 X , there exist an open affinoid
subspace x 2 Ux � X and a finite étale surjective morphism zUx ! Ux such
that Ej zU}x

is a free vector bundle.

We also refer to Theorem 6.8.4 for a slightly more precise statement. As an appli-
cation of our methods, we can also deduce the following theorem of Kedlaya–Liu:

Theorem 1.3.3 ([42, Theorem 3.5.8], [63, Lemma 17.1.8], [35, Theorem 4.27], The-
orem 6.8.13). Let X be a perfectoid space over Spa .Qp;Zp/.

(1) The categories Vect.Xan;OX /, Vect.XétIOXét/, Vect.X}qpIOX}qp
/, as well as

Vect.X}v IOX}/ are equivalent. Furthermore, if X D Spa .R;RC/ is an affi-
noid perfectoid, all these categories are equivalent to the category of finite
projective R-modules.

(2) These equivalences preserve cohomology groups.

We note that the proof of Theorem 1.3.3 is quite different from the proofs of
[42, Theorem 3.5.8] and [63, Lemma 17.1.8]. However, it is quite similar to the proof
of [35, Theorem 4.27] (with appropriate simplifications). We also note that [35, The-
orem 4.27] proves a stronger result that applies to G-torsors for any rigid group G.
We also show that any O-vector bundle in the v-topology admits an OC-lattice after
a very explicit étale cover:

Theorem 1.3.4 (Corollary 6.8.14). Let X denote a strongly sheafy adic space over
Spa .Qp;Zp/, and let E be an OX}-vector bundle. Then, for each x 2 X , there are
an open subspace x 2 Ux � X , a finite étale surjective morphism zUx ! Ux , and an
OC
zU}x

-vector bundle ECx such that ECx
�
1
p

�
' Ej zUx .

1.4 p-adic nearby cycles sheaves (Chapter 7)

The main goal of Chapter 7 is to give the main non-trivial example of almost coherent
sheaves: the p-adic nearby cycles sheaves.
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We fix a p-adic perfectoid field K and a rigid-analytic variety X over K with an
admissible formal OK-model X.

The rigid-analytic variety X comes with a morphism of ringed sites

�W
�
X}v ;O

C

X}

�
!
�
XZar;OX

�
and a morphism

�W
�
X}v ;O

C

X}
=p
�
!
�
X0;Zar;OX0

�
;

where X0 is the mod-p fiber of X, X}v is the v-site of the associated diamond (see
Section 6.1), and OC

X}
is its integral “untilted” structure sheaf (see Definition 6.3.1).

The main goal of Chapter 7 is to show that the nearby cycles functor R�� sends
some class of OC

X}
=p-sheaves to complexes of almost coherent OX0-modules. More

precisely, we show that, for any OC
X}
=p-vector bundle E , the complex R��E has

quasi-coherent and almost coherent cohomology sheaves. We also give a bound on
its almost cohomological dimension.

Theorem 1.4.1 (Theorem 7.1.2). Let X be an admissible formal OK-scheme with
adic generic fiber X of dimension d and mod-p fiber X0, and let E be an OC

X}
=p-

vector bundle. Then

(1) R��E 2 DCqc;acoh.X0/ and .R��E/a 2 DŒ0;2d�acoh .X0/
a;

(2) if X D Spf A is affine, then the natural map

DHi�X}v ;E�! Ri��
�
E
�

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�0
�
Ri�X;�.E/

�
! Ri�Y;�

�
EjY}

�
is an isomorphism for any i � 0;

(4) if X has an open affine covering X D
S
i2IUi such that Ej.Ui;K/} is small

(see Definition 7.1.1), then

.R��E/a 2 DŒ0;d�acoh .X0/
a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2IUi such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I of
X such that

.R�X0
i
;�E/

a
2 DŒ0;d�acoh .X

0
i;0/

a;

for each i 2 I .
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Remark 1.4.2. We note that Theorem 1.4.1 implies that the nearby cycles complex
R��E is quasi-coherent on the nose (as opposed to being almost quasi-coherent). This
is quite unexpected to the author since all previous results on the cohomology groups
of OC=p were only available in the almost category.

Remark 1.4.3. We do not know if an admissible blow-up X0! X in the formulation
of Theorem 1.4.1 is really necessary or just an artifact of the proof. More importantly,
we do not know if, for every OC

X}
=p-vector bundle E , there is an admissible formal

model X such that the “nearby cycles” sheaf R�X;�E lies in DŒ0;d�acoh .X0/
a.

The proof of Theorem 1.4.1 crucially uses Theorem 1.3.1, and especially Theo-
rem 1.3.1 (3).

Another family of sheaves for which we can establish a good behavior of “nearby
cycles” is given by sheaves of the form F ˝OC

X}
=p for a Zariski-constructible étale

sheaf of Fp-modules (see Definition 7.1.7). Namely, in this case, we can get a better
cohomological bound and show that nearby cycles almost commute with proper base
change, as this happens in algebraic geometry.

Theorem 1.4.4 (Theorem 7.1.9 and Lemma 7.3.8). Let X be an admissible formal
OK-scheme with adic generic fiber X of dimension d and mod-p fiber X0, and let
F 2 DŒr;s�zc .X IFp/. Then

(1) there is an isomorphism Rt�.F ˝OCXét
=p/ ' R��.F ˝OC

X}
=p/;

(2) R��.F ˝OC
X}
=p/2DCqc;acoh.X0/ and R��.F ˝OC

X}
=p/a 2DŒr;sCd�acoh .X0/

a;

(3) if X D Spf A is affine, then the natural map

DHi
�
X}v ;F ˝OC

X}
=p
�
! Ri��

�
F ˝OC

X}
=p
�

is an isomorphism for every i � 0;

(4) the formation of Ri��.F ˝ OC
X}
=p/ commutes with étale base change, i.e.,

for any étale morphism fWY ! X with adic generic fiber f W Y ! X , the
natural morphism

f�0
�
Ri�X;�

�
F ˝OC

X}
=p
��
! Ri�Y;�.f

�1F ˝OC
Y}
=p
�

is an isomorphism for any i � 0;

(5) if fWX ! Y is a proper morphism of admissible formal OK-schemes with
adic generic fiber f WX ! Y , then the natural morphism

R�Y;�

�
Rf�F ˝OC

Y}
=p
�
! Rf0;�

�
R�X;�

�
F ˝OC

X}
=p
��

is an almost isomorphism.

We also show an integral version of Theorem 1.4.1:
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Theorem 1.4.5 (Theorem 7.1.11). Let X be an admissible formal OK-scheme with
adic generic fiber X of dimension d , and let E be an OC

X}
-vector bundle. Then

(1) R��E 2 DCqc;acoh.X/ and .R��E/a 2 DŒ0;2d�acoh .X/a;

(2) if X D Spf A is affine, then the natural map

Hi
�
X}v ;E

��
! Ri��

�
E
�

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�
�
Ri�X;�.E/

�
! Ri�Y;�

�
EjY}

�
is an isomorphism for any i � 0;

(4) if X has an open affine covering X D
S
i2IUi such that Ej.Ui;K/} is small

(see Definition 7.1.10), then

.R��E/a 2 DŒ0;d�acoh .X/
a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2IUi such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I of
X such that

.R�X0
i
;�E/

a
2 DŒ0;d�acoh .X

0
i /
a;

for each i 2 I .

Theorem 1.4.5 has an interesting consequence saying that v-cohomology groups
of any OC

X}
-vector bundle are almost coherent and almost vanish in degrees larger

than 2dimX . This (together with Theorem 1.1.1) indicates that there should probably
be stronger (almost) finiteness results for some bigger class OC

X}
-modules.

Theorem 1.4.6 (Theorem 7.3.3). LetK be a p-adic perfectoid field, letX be a proper
rigid-analytic K-variety of dimension d , and let be E an OC

X}
-vector bundle (resp.

OC
X}
=p-vector bundle). Then

R�.X}v ;E/ 2 DŒ0;2d�acoh .OK/
a:

We now explain the main steps of our proofs of Theorems 1.4.1 and 1.4.5 for
E D OC

X}
=p and E D OC

X}
respectively:

Proof sketch. (1) We first show that the sheaves Ri��.OCX}=p/ are quasi-coherent.
The main key input is that the cohomology groups of OC

X}
=p-vector bundles vanish

on strictly totally disconnected spaces (see Definition 6.2.5), and that each affinoid
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rigid-analytic variety admits a v-covering such that all terms of its Čech nerve are
strictly totally disconnected.

(2) The same ideas can be used to show that the formation of Ri��.OCX}=p/
commutes with étale base change.

(3) We show next that the OX0-modules Ri��
�
OC
X}
=p
�

are almost coherent for
smooth X . This is done in three steps: first, we find an admissible blow-up X0 ! X

such that X0 has an open affine covering X0 D
S
i2I Ui such that each Ui D Spf Ai

admits a finite rig-étale morphism to yAd
OK

, then we show that the cohomology groups
Hi .U}i;K;v;O

C

X}
=p/ are almost coherent over Ai=pAi , and after that we conclude

almost coherence of Ri��
�
OC
X}
=p
�
.

The first step is the combination of [15, Proposition 3.7] and Theorem D.4. The
first result allows us to choose an admissible blow-up X0!X with an open affine cov-
ering X0 D

S
i2I Ui such that each Ui admits a rig-étale morphism Ui ! yAdOK . Then

Theorem D.4 guarantees that we can change these morphisms so that they become
finite and rig-étale.

The second step follows the strategy presented in [59]. We construct an explicit
affinoid perfectoid cover of Ui that is a Zp.1/d -torsor. So we can reduce studying
Hi .U}i;K;v;O

C

X}
=p/ to studying cohomology groups of Zp.1/d that can be explicitly

understood via the Koszul complex.

The last step is the consequence of the almost proper mapping theorem in Theo-
rem 1.2.9 and the already obtained results.

(4) The next step is to show that Ri��
�
OC
X}
=p
�

is almost coherent for a gen-
eral X . This is done by choosing a proper hypercovering by smooth spaces X� and
then using a version of cohomological v-descent to conclude almost coherence of the
p-adic nearby cycles sheaves. As an important technical tool, we use the theory of
diamonds developed in [61].

(5) Next we show that R��
�
OC
X}
=p
�

is almost concentrated in degrees Œ0; d �.
This claim is quite subtle. The key input is the version of the purity theorem [10,
Theorem 10.11] that implies that any finite (but not necessarily étale) adic space over
an affinoid perfectoid space has a diamond that is isomorphic to a diamond of an
affinoid perfectoid space. This allows us to reduce the question of cohomological
bounds of R��

�
OC
X}
=p
�a to the question about the cohomological dimension of the

pro-finite group Zp.1/d . This can be explicitly understood via the Koszul complex
again.

(6) Finally, we show Theorem 1.4.5 by reducing it to Theorem 1.4.1. The key
input is Theorem 1.2.3 that allows us to check finiteness mod-p.
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1.5 Notation

A non-archimedean field K is always assumed to be complete. A non-archimedean
field K is called p-adic if its ring of power-bounded elements OK D K

ı is a ring of
mixed characteristic .0; p/.

We follow [68, Tag 02MN] for the definition of a (weak) Serre subcategory of an
abelian category A.

For an ringed R-site .X;OX /, an element of the derived category F 2 D.X/,
and an element $ 2 R, we denote by ŒF =$� the cone of the multiplication by $ -
morphism, i.e.,

ŒF =$� WD cone.F
$
�! F /:

Namely, we say that a non-empty full subcategory C of an abelian category A is
a Serre subcategory if, for any exact sequence A! B ! C with A;C 2 C , we have
B 2 C . We say that C is a weak Serre subcategory if, for any exact sequence

A0 ! A1 ! A2 ! A3 ! A4

withA0;A1;A3;A4 2C , we haveA2 2C . Look at [68, Tag 02MP] and [68, Tag 0754]
for an alternative way to describe (weak) Serre subcategories.

If C is a Serre subcategory of an abelian category A, we define the quotient
category as a pair .A=C ; F / of an abelian category A=C and an exact functor

F WA! A=C

such that, for any exact functorGWA!B to an abelian category B with C � KerG,
there is a factorization G D H ı F for a unique exact functor H WA=C ! B. The
quotient category always exists by [68, Tag 02MS].

If B is a full triangulated subcategory of a triangulated category D , we define the
Verdier quotient as a pair .D=B; F / of a triangulated category D=B and an exact
functor

F WD ! D=B

such that, for any exact functor GWD ! D 0 to a pre-triangulated category D 0 with
B �KerG, there is a factorizationGDH ıF for a unique exact functorH WD=B!

D 0. The Verdier quotient always exists by [68, Tag 05RJ].
We say that a diagram of categories

A B

C D

f

h g

k

˛

is .2; 1/-commutative if ˛W k ı h) g ı f is a natural isomorphism of functors.

https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
https://stacks.math.columbia.edu/tag/02MS
https://stacks.math.columbia.edu/tag/05RJ
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For an abelian group M and commuting endomorphisms f1; : : : ; fn, we define
the Koszul complex

K.M If1; : : : ; fn/ WDM !M ˝Z Zn !M ˝Z ^
2.Zn/! � � � !M ˝Z ^

n.Zn/

viewed as a chain complex in cohomological degrees 0; : : : ; n. The differential

dk WM ˝Z ^
k.Zn/ '

M
1�i1<���<ik�n

M !M ˝Z ^
iC1.Zn/ '

M
1�j1<���<jkC1�n

M

from M in spot i1 < � � � < ik to M in spot j1 < � � � < jkC1 is nonzero only if
¹i1; : : : ; ikº � ¹j1; : : : ; jkC1º, in which case it is given by .�1/m�1fjm , where m 2
¹1; : : : ; k C 1º is the unique integer such that jm … ¹i1; : : : ; ikº.

If M is an R-module and fi are elements of R, the complex K.M I f1; : : : ; fn/
is a complex of R-modules and can be identified with

M !M ˝R R
n
!M ˝R ^

2.Rn/! � � � !M ˝R ^
n.Rn/:


