
Chapter 2

Almost commutative algebra

This chapter is devoted to the study of almost coherent modules. We recall some basic
definitions of almost mathematics in Section 2.1. Then we discuss the main proper-
ties of almost finitely generated and almost finitely presented modules in Section 2.5.
These two sections closely follow the discussion of almost mathematics in [26]. Sec-
tion 2.6 is dedicated to almost coherent modules and almost coherent rings. We show
that almost coherent modules form a weak Serre subcategory of R-modules, and they
coincide with almost finitely presented ones in the case of almost coherent rings.
We discuss base change results in Section 2.8. Finally, we develop some topological
aspects of almost finitely generated modules over “topologically universally adhesive
rings” in Section 2.12.

2.1 The category of almost modules

We begin this section by recalling basic definitions of almost mathematics from [26].
We fix a “base” ring R with an ideal m such that m2 D m and em D m˝R m is flat.
We always do almost mathematics with respect to m.

Lemma 2.1.1. Let M be an R-module. Then the following are equivalent:

(1) The module mM is the zero module.

(2) The module m˝R M is the zero module.

(3) The module em˝R M is the zero module.

(4) The module M is annihilated by " for every " 2 m.

Proof. Note that the multiplication map m˝R m!m is surjective as m2 Dm. This
implies that we have surjections

em˝RM � m˝RM � mM:

This shows that (3) implies (2), and (2) implies (1). It is clear that (2) implies (3), and
(1) is equivalent to (4). So the only thing we are left to show is that (1) implies (2).

Suppose that mM ' 0. Pick an arbitrary basic element a˝m 2 m˝R M with
a 2 m, m 2 M . Since m2 D m, there is a finite number of elements y1; : : : ; yk ,
x1; : : : ; xk 2 m such that

a D

kX
iD1

xiyi :
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Then we have an equality

a˝m D

kX
iD1

xiyi ˝m D

kX
iD1

xi ˝ yim D 0:

Definition 2.1.2. An R-moduleM is almost zero, if any of the equivalent conditions
of Lemma 2.1.1 is satisfied for M .

Lemma 2.1.3. Under the same assumption as above, the “multiplication” morphismem˝R em! em is an isomorphism.

Proof. We consider a short exact sequence

0! m! R! R=m! 0:

Note that .R=m/˝R m D m=m2 D 0, so we get a short exact sequence

0! TorR1 .R=m;m/! em! m! 0:

Since TorR1 .R=m;m/ is almost zero, Lemma 2.1.1 says that after applying the
functor �˝R em we get an isomorphismem˝R em ' m˝R em:
Since em is R-flat, we also see that m˝R em injects into em. Moreover, it maps iso-
morphically onto its image mem D em as m2 D m. Taken together, it shows thatem˝R em ' em:
It is straightforward to see that the constructed isomorphism is the “multiplication”
map.

We denote by †R the category of almost zero R-modules considered as a full
subcategory of ModR.

Corollary 2.1.4. The category †R is a Serre subcategory of ModR.1

Proof. This follows directly from criterion (3) from Lemma 2.1.1, flatness of em and
[68, Tag 02MP].

This corollary allows us to define the quotient category2 ModaR WD ModR/†R
that we call as the category of almost R-modules. Note that the localization functor

.�/aWModR !ModaR

1We refer to [68, Tag 02MN] for the discussion of (weak) Serre categories.
2We refer to [68, Tag 02MS] for the discussion of quotient categories.

https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/02MN
https://stacks.math.columbia.edu/tag/02MS
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is an exact and essentially surjective functor. We refer to elements of ModaR as almost
R-modules orRa-modules. We will usually denote them byM a to distinguish almost
R-modules from R-modules.

To simplify the exposition, we will use the notation ModaR and ModRa inter-
changeably.

Definition 2.1.5. A morphism f WM ! N is an almost isomorphism (resp. almost
injection, resp. almost surjection) if the corresponding morphism f a WM a ! N a is
an isomorphism (resp. injection, resp. surjection) in ModaR.

Remark 2.1.6. For any R-module M , the natural morphism � W em˝R M ! M is
an almost isomorphism. Indeed, it suffices to show that

em˝R Ker� ' 0 and em˝R Coker� ' 0:

Using R-flatness of em, we can reduce the question to showing that the map

em˝R � W em˝R em˝RM ! em˝R M
is an isomorphism. This follows from Lemma 2.1.3.

Definition 2.1.7. Two R-modules M and N are called almost isomorphic if M a is
isomorphic to N a in ModaR.

Lemma 2.1.8. Let f WM !N be a morphism ofR-modules, then the following hold:

(1) The morphism f is an almost injection (resp. almost surjection, resp. almost
isomorphism) if and only if Ker.f / (resp. Coker.f /, resp. both Ker.f / and
Coker.f /) is an almost zero module.

(2) We have a functorial bijection HomR.em˝R M;N/ ' HomModa
R
.M a; N a/.

(3) Modules M and N are almost isomorphic (not necessarily via the mor-
phism f ) if and only if em˝RM ' em˝R N .

Proof. (1) just follows from definition of the quotient category. (2) is discussed in
detail in [26, page 12 (2.2.4)].

Next we show that (3) follows from (1) and (2). Remark 2.1.6 implies that M
and N are almost isomorphic if em˝RM ' em˝R N .

Suppose that there is an almost isomorphism 'WM a!N a. It has a representative
f W em ˝R M ! N by (2). Now (1) together with the R-flatness of em implies thatem˝R f W em ˝R em ˝R M ! em ˝R N is an isomorphism. Lemma 2.1.3 ensures
that em˝R em ' em, so em˝R f gives an isomorphism

em˝R f W em˝RM ! em˝R N:
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We now define the functor of almost sections

.�/�WModaR !ModR

via the formula

.M a/� WD HomModa
R
.Ra;M a/ D HomR.em;M/

for any Ra-module M a with an R-module representative M . The construction is
clearly functorial in M a, so it defines the functor .�/�WModaR !ModR.

The functor of almost sections will be the right adjoint to the almostification func-
tor .�/a. Before we discuss why this is the case, we need to define the unit and counit
transformations.

We start with the unit of the adjunction. For anyR-moduleM , there is a functorial
morphism

�M;�WM ! HomR.em;M/ DM a
�

that can easily be seen to be an almost isomorphism.
This allows us to define a functorial morphism

"Na;�W .N
a
� /
a
! N a

for any Ra-module N a. Namely, the map �N;�WN ! N a
� is an almost isomorphism,

so we can invert it in the almost category and define

"Na;� WD .�
a
N;�/

�1
W .N a
� /
a
! N a:

Now we define another functor

.�/ŠWModaR !ModR

that will be a left adjoint to the almostification functor .�/a. Namely, we put

.M a/Š WD .M
a/� ˝R em �

 �M ˝R em
for any Ra-module M a with an R-module representative M . This construction is
clearly functorial inM a, so it does define a functor. Similarly to the discussion above,
for any R-module M , we define the transformation

"M;ŠW .M
a/Š D em˝RM !M

as the map induced by the natural morphism em ! R. Clearly, "M;Š is an almost
isomorphism for any M . Therefore, this actually allows us to define the morphism

�Na;ŠWN
a
! .em˝R N/a ' .N a

Š /
a

as �Na;Š D ."aN;Š/
�1. We summarize the main properties of these functors in the fol-

lowing lemma:
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Lemma 2.1.9. Let R and m be as above. Then the following hold:

(1) The functor .�/� is the right adjoint to .�/a. In particular, it is left exact.

(2) The unit of the adjunction is equal to �M;�, the counit of the adjunction is
equal to "Na;�. In particular, both are isomorphisms.

(3) The functor .�/Š is the left adjoint to the localization functor .�/a.

(4) The functor .�/ŠWModaR !ModR is exact.

(5) The unit of the adjunction is equal to �Na;Š, the counit of the adjunction is
equal to "M;Š. In particular, both are almost isomorphisms.

Proof. This is explained in [26, Proposition 2.2.13 and Proposition 2.2.21].

Corollary 2.1.10. Let R and m be as above. Then .�/aWModR !ModaR commutes
with limits and colimits. In particular, ModaR is complete and cocomplete, and filtered
colimits and (arbitrary) products are exact in ModaR.

Proof. The first claim follows from the fact that .�/a admits left and right adjoints.
The second claim follows the first claim, exactness of .�/a, and analogous exactness
properties in ModR.

The last thing we need to address in this section is how almost mathematics
interacts with base change. We want to be able to talk about preservation of vari-
ous properties of modules under a base change along a map R! S . The issue here
is to define the corresponding ideal mS as in the definition of almost mathematics. It
turns out that the most naive ideal mS WD mS does define an ideal of almost mathe-
matics in S , but this is not entirely formal and crucially uses our choice of definition
for an ideal of almost mathematics.

More precisely, if one starts with a flat ideal m � R, then the ideal mS � S is
not necessarily flat. However, we show that flatness of em implies flatness of emS . For
this reason, it is essential to not impose the stronger condition on m to be R-flat in
the foundations of almost mathematics.

Lemma 2.1.11. Let f WR ! S be a ring homomorphism, and let mS be the ideal
mS � S . Then we have the equality m2

S DmS and the S -module emS WDmS ˝S mS

is S -flat.

Proof. The equality m2
S D mS follows from the analogous assumption on m and

the construction of mS . Regarding the flatness issue, we claim that mS ˝S mS '

.m˝R S/˝S .m˝R S/. That would certainly imply the desired flatness statement.
To prove this claim, we look at the following short exact sequence:

0! m! R! R=m! 0:
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We apply �˝R S to get a short exact sequence

0! TorR1 .R=m; S/! m˝R S ! mS ! 0:

We observe that TorR1 .R=m; S/ is almost zero, so both TorR1 .R=m; S/˝S mS and
TorR1 .R=m; S/˝S .m˝R S/ are zero modules due to Lemma 2.1.1. So we use the
functors �˝S .m˝R S/ and �˝S mS to obtain isomorphisms

.m˝R S/˝S .m˝R S/ ' mS ˝R .m˝R S/ ' .mS/˝S .mS/:

Thus we get the desired equality.

Lemma 2.1.12. Let f WR! S be a ring homomorphism, and let F WModR!ModS
be anR-linear functor (resp. let F WModop

R !ModS be anR-linear functor). Then F
sends almost zero R-modules to almost zero S -modules.

Proof. Suppose thatM is an almost zero R-module, so "M D 0 for any " 2m. Then
"F.M/ D 0 because F is R-linear, so F.M/ is almost zero by Lemma 2.1.1.

Corollary 2.1.13. Let f WR ! S be a ring homomorphism, and let F WModR !
ModS be a left or right exact R-linear functor (resp. let F WModop

R !ModS be a left
or right exact R-linear functor). Then F preserves almost isomorphisms.

Proof. We only show the case of a left exact functor F WModR ! ModS , all other
cases are analogous to this one. We choose any almost isomorphism f WM 0 ! M 00

and wish to show that F.f / is an almost isomorphism. For this, we consider the
following exact sequences:

0! K !M 0 !M ! 0;

0!M !M 00 ! Q! 0:

We know that K and Q are almost zero by our assumption on f . Now, the above
short exact sequences induce the following exact sequences:

0! F.K/! F.M 0/! F.M/! R1F.K/;

0! F.M/! F.M 00/! F.Q/:

Lemma 2.1.12 guarantees thatF.K/, R1F.K/, andF.Q/ are almost zero S -modules.
Therefore, the morphisms F.M 0/! F.M/ and F.M/! F.M 00/ are both almost
isomorphisms. In particular, the composition F.M 0/! F.M 00/ is an almost isomor-
phism as well.
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2.2 Basic functors on categories of almost modules

The category of almost modules admits certain natural functors induced from the
category ofR-modules. It has two versions of the Hom-functor and the tensor product
functor. We summarize the properties of these functors in the following proposition:

Proposition 2.2.1. Let R;m be as above.

(1) We define the tensor product functor �˝Ra �WModaR �ModaR !ModaR as

.M a; N a/ 7! .M a
Š ˝R N

a
Š /
a:

Then there is a natural transformation of functors

ModR �ModR ModR

ModaR �ModaR ModaR

�˝R�

.�/a�.�/a .�/a
�

�˝Ra�

that makes the diagram .2;1/-commutative. In particular, there is a functorial
isomorphism .M ˝R N/

a 'M a ˝Ra N
a for any M;N 2ModR.

(2) There is a functorial isomorphism

HomRa.M
a; N a/ ' HomR.em˝M;N/;

for any M; N 2 ModR. In particular, there is a canonical structure of an
R-module on the group HomRa.M

a; N a/; thus it defines the functor

HomRa.�;�/WModop
Ra �ModRa !ModR:

(3) We define the functor alHomRa.�;�/WModop
Ra �ModRa ! ModRa of al-

most homomorphisms as

.M a; N a/ 7! HomRa.M
a; N a/a:

Then there is a natural transformation of functors

Modop
R �ModR ModR

Modop
Ra �ModRa ModRa

HomR.�;�/

.�/a�.�/a � .�/a

alHomRa .�;�/

that makes the diagram .2; 1/-commutative. In particular, it yields an isomor-
phism alHomRa.M

a; N a/ Ša HomR.M;N /
a for any M;N 2ModR.



Almost commutative algebra 24

Proof. (1). We define

�M;N W .M
a
Š ˝R N

a
Š /
a
! .M ˝R N/

a

to be the morphism induced by

M a
Š ' em˝R M !M and N a

Š ' em˝R N ! N:

It is clear that �M;N is functorial in both variables, so it defines a natural transforma-
tion of functors �. We also need to check that �M;N is an isomorphism for any M
and N . This follows from the following two observations: �M;N is an isomorphism if
and only if �M;N ˝R em is an isomorphism; and �M;N ˝R em is easily seen to be an
isomorphism as em˝R em! em is an isomorphism.

(2) is just a reformulation of Lemma 2.1.8 (2).
In order to show (3), we need to define a functorial morphism

�M;N WHomR.M;N /
a
! alHomRa.M

a; N a/:

We start by using the functorial identification from (2):

alHomRa.M
a; N a/ Ša HomR.em˝M;N/a:

Namely, we define �M;N as the morphism HomR.M; N /
a ! HomR.em˝M;N/a

induced by the map em˝M ! M . This is clearly functorial in both variables, so it
defines the natural transformation �.

We also need to check that �M;N is an isomorphism for any M and N . This boils
down to the fact that HomR.�; N / sends almost isomorphisms to almost isomor-
phisms. This, in turn, follows from Corollary 2.1.13.

Remark 2.2.2. It is straightforward to check that whenever N a has a structure of
an Sa-module for some R-algebra S , then the Ra-modules alHomRa.M

a; N a/ and
M a ˝Ra N

a have functorial-in-M a structures of Sa-modules. This implies that
the functors � ˝Ra N a, alHomRa.�; N

a/ naturally land in ModaS , i.e., they define
functors

�˝Ra N
a
WModaR !ModaS and alHomRa.�; N

a/WModa;opR !ModaS :

Similarly, HomRa.�; N
a/ defines a functor ModaR !ModS .

The functor of almost homomorphisms is quite important, as it turns out to be the
inner Hom functor, i.e., it is right adjoint to the tensor product.

Lemma 2.2.3. Let f WR! S be a ring homomorphism, and letM a be anRa-module
and N a; Ka be Sa-modules. Then there is a functorial S -linear isomorphism

HomSa.M
a
˝Ra N

a; Ka/ ' HomRa.M
a; alHomSa.N

a; Ka//:
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Proof. This is a consequence of the usual˝-Hom-adjunction, Proposition 2.2.1, and
the fact that em˝2 ' em. Indeed, we have the following sequence of functorial isomor-
phisms:

HomSa.M
a
˝Ra N

a; Ka/ ' HomS .em˝R M ˝R N;K/
' HomS ..em˝R M/˝R .em˝R N/;K/
' HomR.em˝R M;HomS .em˝R N;K//
' HomRa.M; alHomSa.N

a; Ka//:

The first isomomorphism follows from Proposition 2.2.1 (1), (2), the second isomor-
phism follows from the observation em˝2 ' em, the third isomorphism is just the
classical ˝-Hom-adjunction, and the last isomorphism is a consequence of Proposi-
tion 2.2.1 (2), (3).

Corollary 2.2.4. (1) Let N be an Ra-module, then the functor �˝Ra N a is left
adjoint to the functor alHomRa.N

a;�/.

(2) Let R! S be a ring homomorphism. Then the functor �˝Ra SaWModaR!
ModaS is left adjoint to the forgetful functor.

Proof. Part (1) follows from Lemma 2.2.3 by taking S to be equal to R. Part (2)
follows from Lemma 2.2.3 by taking N a to be equal to Sa.

Definition 2.2.5. The following types of Ra-modules will be used throughout the
memoir:

• An Ra-module M a is flat if the functor M a ˝Ra �WModaR !ModaR is exact.

• An Ra-module M a is faithfully flat if it is flat and N a ˝Ra M
a ' 0 if and only

if N a ' 0.

• An R-module M is almost flat (resp. almost faithfully flat) if an Ra-module M a

is flat (resp. faithfully flat)

• An Ra-module I a is injective if the functor HomRa.�; I
a/WModa;opR ! ModR

is exact.

• AnRa-module P a is almost projective if the functor alHomRa.P
a;�/WModaR!

ModaR is exact.

Lemma 2.2.6. The functor .�/aWModR ! ModaR sends flat (resp. faithfully flat,
resp. injective, resp. projective) R-modules to flat (resp. faithfully flat, resp. injective,
resp. almost projective) Ra-modules.

Proof. The case of flat modules is clear from Proposition 2.2.1 (1). Now suppose that
M is a faithfully flat R-module. Recall that M ˝R �WModR ! ModR is an exact
and faithful functor. Therefore, if M ˝R N is almost zero, it implies that so is N .
Thus Proposition 2.2.1 (1) ensures that M a is almost faithfully flat.
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The case of injective modules follows from the fact that .�/a admits an exact left
adjoint functor .�/Š. The case of projective modules is clear from the definition.

Lemma 2.2.7. The functor .�/ŠWModaR ! ModR sends flat Ra-modules to flat R-
modules.

Proof. This follows from the formula M a
Š
˝R N ' .M a ˝Ra N

a/Š for any Ra-
module M a and an R-module N .

Warning 2.2.8. If M a is a faithfully flat Ra-module, the R-module M a
Š

may not be
faithfully flat. For instance, Ra is a faithfully flat Ra-module, but Ra

Š
D em is not a

faithfully flat R-module. For example, em˝R R=m ' 0.

Corollary 2.2.9. Any bounded above complex C �;a 2 Comp�.Ra/ admits a resolu-
tion P �;a ! C �;a by a bounded above complex of almost projective modules.

Proof. We consider the complex C �;a
Š
2 Comp�.R/; it admits a resolution by a com-

plex of free modules pWP � ! C
�;a
Š

. Now we apply .�/a to this morphism to obtain
the maps

P �;a
pa

��! .C
�;a
Š
/a

"
 � C �;a:

The map " is an isomorphism in Comp.Ra/ by Lemma 2.1.9, and pa is a quasi-
isomorphism by construction. Thus, "�1 ı paWP �;a ! C �;a is a quasi-isomorphism
in Comp.Ra/. We conclude by noting that each term of P �;a is almost projective by
Lemma 2.2.6.

2.3 Derived category of almost modules

We define the derived category of almost modules in two different ways and show
that these definitions coincide. Later we define certain derived functors on the derived
category of almost modules. We pay some extra attention to showing that the functors
in this section are well defined on unbounded derived categories.

Definition 2.3.1. We define the derived category of almost R-modules as D.Ra/ WD
D.ModaR/.

We define the bounded version of the derived category of almost R-modules
D�.Ra/ for � 2 ¹C;�; bº as the full subcategory consisting of bounded below (resp.
bounded above, resp. bounded) complexes.

Definition 2.3.2. We define the almost derived category of R-modules as the Verdier
quotient D.R/a WD D.ModR/=D†R.ModR/.
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We recall that †R is the Serre subcategory of ModR that consists of almost zero
modules, and D†R.ModR/ is the full triangulated category of elements in D.ModR/
with almost zero cohomology modules.

We note that the functor .�/aWModR!ModaR is exact and additive. Thus, it can
be derived to the functor .�/aWD.R/!D.Ra/. Similarly, the functor .�/ŠWModaR!
ModR is additive and exact, so it can be derived to the functor .�/ŠWD.Ra/! D.R/.
The standard argument shows that .�/Š is a left adjoint functor to the functor .�/a

since this already happens on the level of abelian categories. Now we also want
to derive the functor .�/�WModaR ! ModR. In order to do this on the level of
unbounded derived categories, we need to show that D.Ra/ has enough K-injective
objects.

Definition 2.3.3. A complex of Ra-modules I �;a is K-injective if

HomK.Ra/.C �;a; I �;a/ D 0

for any acyclic complex C �;a of Ra-modules.

Remark 2.3.4. We remind the reader that K.Ra/ stands for the homotopy category
of Ra-modules.

Lemma 2.3.5. The functor .�/aW Comp.R/ ! Comp.Ra/ sends K-injective R-
complexes to K-injective Ra-complexes.

Proof. We note that .�/a admits an exact left adjoint .�/Š thus [68, Tag 08BJ] ensures
that .�/a preserves K-injective complexes.

Corollary 2.3.6. Every objectM �;a 2 Comp.Ra/ is quasi-isomorphic to aK-injec-
tive complex.

Proof. We know that the complexM � 2 Comp.R/ is quasi-isomorphic to aK-injec-
tive complex I � by [68, Tag 090Y] (or [68, Tag 079P]). Now we use Lemma 2.3.5 to
say that I �;a is a K-injective complex that is quasi-isomorphic to M �;a.

As the first application of Corollary 2.3.6, we define the functor .�/�WD.Ra/!
D.R/ as the derived functor of .�/�WModaR ! ModR. This functor exists by [68,
Tag 070K].

Lemma 2.3.7. (1) The functors

D.R/ D.Ra/
.�/a

.�/Š

are adjoint. Moreover, the unit (resp. counit) morphism

.M a/Š !M (resp. N ! .NŠ/
a)

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/070K
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is an almost isomorphism (resp. isomorphism) for anyM2D.R/,N2D.Ra/.
In particular, the functor .�/a is essentially surjective.

(2) The functors

D.R/ D.Ra/
.�/a

.�/�

are adjoint. Moreover, the unit (resp. counit) morphism

M ! .M a/� (resp. .N�/a ! N )

is an almost isomorphism (resp. isomorphism) for anyM2D.R/;N2D.Ra/.

Proof. We start the proof by showing (1). First, we note that the functors .�/Š and
.�/a are adjoint by the discussion above. Now we show that the cone of the counit
map is always in D†R.R/. As both functors .�/a and .�/Š are exact on the level
of abelian categories, it suffices to show the claim for M 2 ModaR. But then the
statement follows from Lemma 2.1.9 (5). The same argument shows that the unit
map N ! .NŠ/

a is an isomorphism for any N 2 D.Ra/.
Now we go to (2). We define the functor .�/�WD.Ra/!D.R/ as the right derived

functor of the left exact additive functor .�/�WModaR ! ModR. This functor exists
by [68, Tag 070K] and Corollary 2.3.6. The functor .�/� is right adjoint to .�/a by
[68, Tag 0DVC].

We check that the natural map M ! .M a/� is an almost isomorphism for any
M 2 D.R/. We choose some K-injective resolution M

�
�!I �. Then Lemma 2.3.5

guarantees that M a ! I �;a is a K-injective resolution of the complex M a. The map
M ! .M a/� has a representative

I � ! .I �;a/�:

This map is an almost isomorphism of complexes by Lemma 2.1.9 (2). Thus, the map
M ! .M a/� is an almost isomorphism. A similar argument shows that the counit
map .N�/a ! N is an (almost) isomorphism for any N 2 D.Ra/.

Theorem 2.3.8. The functor .�/aWD.R/! D.Ra/ induces an equivalence of trian-
gulated categories .�/aWD.R/a ! D.Ra/.

Proof. We recall that the Verdier quotient is constructed as the localization of D.R/
along the morphisms f WC ! C 0 such that cone.f / 2 D†R.R/. For instance, this is
the definition of Verdier quotient in [68, Tag 05RI]. Now we see that a morphism
f aW C a ! C 0a is invertible in D.Ra/ if and only if cone.f / 2 D†R.R/, by the
definition of †R and the exactness of .�/a. Moreover, .�/a admits a right adjoint
such that .�/a ı .�/� ! id is an isomorphism of functors. Thus, we can apply [27,
Proposition 1.3] to say that the induced functor .�/aWD.R/a ! D.Ra/ must be an
equivalence.

https://stacks.math.columbia.edu/tag/070K
https://stacks.math.columbia.edu/tag/0DVC
https://stacks.math.columbia.edu/tag/05RI
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Remark 2.3.9. Theorem 2.3.8 shows that the two notions of the derived category
of almost modules are the same. In what follows, we do not distinguish D.Ra/ and
D.R/a anymore.

2.4 Basic functors on derived categories of almost modules

Now we can “derive” certain functors constructed in the previous section. We start
by defining the derived versions of different Hom functors, after that we move to the
case of the derived tensor product functor.

Definition 2.4.1. We define the derived Hom functor

RHomRa.�;�/WD.Ra/op
� D.Ra/! D.R/

as it is done in [68, Tag 0A5W], using the fact that Comp.Ra/ has enoughK-injective
complexes.

We define Ext modules via the following formula:

ExtiRa
�
M a; N a

�
WD Hi

�
RHomRa.M

a; N a/
�
2ModR;

for M a; N a 2ModaR.

Explicitly, for any M a; N a 2 D.Ra/, the complex RHomRa.M
a; N a/ is con-

structed as follows: We choose a representative C �;a ! M a and a K-injective res-
olution N a ! I �;a. Then we set RHomRa.M

a; N a/ D Hom�Ra.C
�;a; I �;a/. This

construction is independent of the choices and is functional in both variables. We
refer to [68, Tag 0A5W] for the details.

Remark 2.4.2. We see that [68, Tag 0A64] implies a functorial isomorphism

Hi
�
RHomRa.M

a; N a/
�
' HomD.R/a

�
M a; N aŒi �

�
:

Lemma 2.4.3.

(1) There are functorial isomorphisms

HomD.R/a.M
a; N a/ ' HomD.R/.M

a
Š ; N /

and
RHomRa.M

a; N a/ ' RHomR.M
a
Š ; N /

for any M;N 2 D.R/.
(2) For any chosenM a 2ModaR, the functor RHomRa.M

a;�/WD.R/a! D.R/
is isomorphic to the (right) derived functor of HomRa.M

a;�/.

https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A5W
https://stacks.math.columbia.edu/tag/0A64
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Proof. The first claim easily follows from the fact that .�/a is a right adjoint to the
exact functor .�/Š. We leave the details to the reader.

The second claim follows from [68, Tag 070K] and Corollary 2.3.6.

Definition 2.4.4. We define the derived functor of almost homomorphisms

RalHomRa.�;�/WD.Ra/op
� D.Ra/! D.Ra/

as
RalHomRa.M

a; N a/ WD RHomRa.M
a; N a/a D RHomR.M

a
Š ; N /

a:

We define the almost Ext modules as Ra-modules defined by

alExtiRa
�
M a; N a

�
WD Hi

�
RalHomRa.M

a; N a/
�

for M a; N a 2ModaR.

Definition 2.4.5. For K�;a; L�;a 2 Comp.Ra/, we define the complex of almost
homomorphisms alHom�Ra.K

�;a; L�;a/ as follows:

alHomn
Ra.K

�;a; L�;a/ WD
Y

nDpCq

alHomRa.K
�q;a; Lp;a/

with the differentials

d.f / D dL�;a ı f � .�1/nf ı dK�;a :

Lemma 2.4.6. LetP �;a be a bounded above complex ofRa-modules with almost pro-
jective cohomology modules and let M �;a ! N �;a be an almost quasi-isomorphism
of bounded below complexes of Ra-modules. Then the natural morphism

alHom�Ra.P
�;a;M �;a/! alHom�Ra.P

�;a; N �;a/

is an almost quasi-isomorphism.

Proof. We note that as in the case of the usual Hom-complexes, there are convergent3

spectral sequences

Ei;j1 D Hj
�
alHom�Ra.P

�i;a;M �;a/
�
) HiCj

�
alHom�Ra.P

�;a;M �;a/
�

E0i;j1 D Hj
�
alHom�Ra.P

�i;a; N �;a/
�
) HiCj

�
alHom�Ra.P

�;a; N �;a/
�
:

Moreover, there is a natural morphism of spectral sequences Ei;j1 ! E0i;j1 . Thus, it
suffices to show that the associated map on the first page is an almost isomorphism

3Here we use that P �;a is bounded above, M �;a and N �;a are bounded below.

https://stacks.math.columbia.edu/tag/070K
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at each entry. For this, we use the fact that alHomRa.P
�i;a;�/ is exact to rewrite the

first page of this spectral sequence as

Ei;j1 D alHomRa
�
P�i;a;Hj .M �;a/

�
and the same for E0i;j1 . So the question boils down to showing that the natural mor-
phisms

alHomRa
�
P�i;a;Hj .M �;a/

�
! alHomRa

�
P�i;a;Hj .N �;a/

�
are almost isomorphisms. But this is clear as M �;a ! N �;a is an almost quasi-
isomorphism.

Lemma 2.4.7. Let P �;a1 ! P
�;a
2 be an almost quasi-isomorphism of bounded above

complexes with almost projective cohomology modules and let M �;a be a bounded
below complex of Ra-modules. Then the natural morphism

alHom�Ra.P
�;a
2 ;M �;a/! alHom�Ra.P

�;a
1 ;M �;a/

is an almost quasi-isomorphism.

Proof. We choose some injective resolutionM �;a! I �;a of the bounded below com-
plex M �;a. Then we have a commutative diagram

alHom�Ra.P
�;a
2 ;M �;a/ alHom�Ra.P

�;a
1 ;M �;a/

alHom�Ra.P
�;a
2 ; I �;a/ alHom�Ra.P

�;a
1 ;M �;a/:

The bottom horizontal arrow is an almost quasi-isomorphism by the standard cat-
egorical argument with injective resolutions. The vertical maps are almost quasi-
isomorphism by Lemma 2.4.6.

Proposition 2.4.8. (1) There is a natural transformation of functors

D.R/op � D.R/ D.R/

D.Ra/op � D.Ra/ D.Ra/

RHomR.�;�/

.�/a�.�/a .�/a�

RalHomRa .�;�/

that makes the diagram .2; 1/-commutative. In particular,

RalHomRa.M
a; N a/ Ša RHomR.M;N /

a

for any M;N 2 D.R/.
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(2) For any chosen M a 2 ModaR, the functor RalHomRa.M
a; �/W D.Ra/ !

D.Ra/ is isomorphic to the (right) derived functor of alHomRa.M
a;�/.

(3) For any chosen N a 2 ModaR, the functor RalHomRa.�; N
a/WD�.Ra/op !

D.Ra/ is isomorphic to the (right) derived functor of alHomRa.�; N
a/.

Proof. In order to show Part (1), we construct functorial morphisms

�M;N WRHomR.M;N /
a
! RalHomRa.M

a; N a/;

for any M;N 2 D.R/. We recall that there is a functorial identification

RalHomRa.M
a; N a/ Ša RHomR.M

a
Š ; N /

a
Š
a RHomR.em˝RM;N/a:

So we define

�M;N WRHomR.M;N /
a
! RHomR.em˝R M;N/a

as the morphism induced by the canonical map em˝RM !M . This is clearly func-
torial, so it defines the stated natural transformation of functors. The only thing we
are left to show is that �M;N is an almost isomorphism for any M;N 2 D.R/.

We recall that RHomR.M;N / is isomorphic to Hom�R.C
�; I �/ for any choice of

a K-injective resolution of N ��!I � and any resolution M �
�!C �. Since em˝R C � is a

resolution of em˝RM due to theR-flatness of em, we reduce the question to showing
that the natural map

˛WHom�R.C
�; I �/! Hom�R.em˝R C �; I �/

is an almost quasi-isomorphism of complexes. For this, it suffices to show that ˛ is
an isomorphism of complexes. Now note that the degree-n part of ˛ is the mapY

pCqDn

HomR.C
�q; Ip/!

Y
pCqDn

HomR.em˝R C�q; Ip/:
Since (infinite) products are exact in ModaR, and any (infinite) product of almost
zero modules is almost zero, it is enough that we show that each particular map
HomR.C

�q; Ip/! HomR.em˝R C�q; Ip/ is an almost isomorphism. This follows
from Proposition 2.2.1 (3).

Part (2) is similar to Part (2) of Lemma 2.4.3.
Part (3) is also similar to Part (2) of Lemma 2.4.3, but there are some subtleties

due to the fact that ModaR does not have enough projective objects. We fix this issue
by using [68, Tag 06XN] instead of [68, Tag 070K]. We apply it to the subset P of
bounded above complexes with almost projective terms. This result is indeed appli-
cable in our situation due to Corollary 2.2.9 and Lemma 2.4.7.

Now we deal with the case of the derived tensor product functor.

https://stacks.math.columbia.edu/tag/06XN
https://stacks.math.columbia.edu/tag/070K
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Definition 2.4.9. We say that a complex K�;a of Ra-modules is almost K-flat if the
naive tensor product complex C �;a ˝�Ra K

�;a is acyclic for any acyclic complex C �;a

of Ra-modules.

Lemma 2.4.10. The functor .�/aWComp.R/! Comp.Ra/ sends K-flat R-comp-
lexes to almost K-flat Ra-complexes.

Proof. Suppose that C �;a is an acyclic complex of Ra-modules and K� is a K-flat
complex. Then we see that

C �;a ˝�Ra K
�;a
Š
a .C � ˝�R K

�/a

Š
a .em˝R C � ˝�R K�/a Ša ..em˝R C �/˝�R K�/a:

The latter complex is acyclic as em˝ C � is acyclic and K� is K-flat.

Corollary 2.4.11. Every objectM �;a 2Comp.Ra/ is quasi-isomorphic to an almost
K-flat complex.

Proof. We know that the complex M � 2 Comp.R/ is quasi-isomorphic to a K-flat
complex K� by [68, Tag 06Y4]. Now we use Lemma 2.4.10 to say that K�;a is an
almost K-flat complex that is quasi-isomorphic to M �;a.

Definition 2.4.12. We define the derived tensor product functor

�˝
L
Ra � WD.R/

a
� D.R/a ! D.R/a

by the rule .M a; N a/ 7! .MŠ ˝
L
R NŠ/

a for any M a; N a 2 D.R/a.

Proposition 2.4.13. (1) There is a natural transformation of functors

D.R/ � D.R/ D.R/

D.R/a � D.R/a D.R/a

�˝L
R
�

.�/a�.�/a .�/a

�˝L
Ra
�

�

that makes the diagram .2;1/-commutative. In particular, there is a functorial
isomorphism .M ˝LR N/

a 'M a ˝LRa N
a for any M;N 2 D.R/.

(2) For any chosen M a 2 ModaR, the functor M a ˝LRa �WD.R/
a ! D.R/a is

isomorphic to the (left) derived functor of M a ˝Ra �.

Proof. The proof of Part (1) is similar to that of Proposition 2.2.1 (1). We leave the
details to the reader.

The proof of Part (2) is similar to that of Proposition 2.4.8 (2). The claim follows
by applying [68, Tag 06XN] with P being the subset of almost K-flat complexes.
This result is indeed applicable in our situation due to Corollary 2.4.11 and the almost
version of [68, Tag 064L].

https://stacks.math.columbia.edu/tag/06Y4
https://stacks.math.columbia.edu/tag/06XN
https://stacks.math.columbia.edu/tag/064L
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Lemma 2.4.14. Let M a; N a; Ka 2 D.R/a, then we have a functorial isomorphism

RHomRa.M
a
˝
L
Ra N

a; Ka/ ' RHomRa.M
a;RalHomRa.N

a; Ka//:

In particular, the functors RalHomRa.N
a;�/WD.R/a D.R/aW � ˝LRa N

a

are adjoint.

Proof. The claim follows from the following sequence of canonical identifications:

RHomRa.M
a
˝
L
Ra N

a; Ka/

' RHomR..em˝RM/˝LR .em˝R N/;K/ Lemma 2.4.3 (1)

' RHomR.em˝RM;RHomR.em˝R N;K// [68, Tag 0A5W]

' RHomRa.M
a;RHomR.em˝R N;K/a/ Lemma 2.4.3 (1)

' RHomRa.M
a;RalHomRa.N

a; Ka//: Definition 2.4.4

Definition 2.4.15. Let f W R ! S be a ring homomorphism. We define the base
change functor

�˝
L
Ra S

a
WD.R/a ! D.S/a

by the rule M a 7! .MŠ ˝
L
R S/

a for any M a 2 D.R/a.

Proposition 2.4.16. (1) There is a natural transformation of functors

D.R/ D.S/

D.R/a D.S/a

�˝L
R
S

.�/a .�/a

�˝L
Ra
Sa

�

that makes the diagram .2;1/-commutative. In particular, there is a functorial
isomorphism .M ˝LR S/

a 'M a ˝LRa S
a for any M 2 D.R/.

(2) The functor � ˝LRa S
aWD.R/a ! D.S/a is isomorphic to the (left) derived

functor of �˝LRa S
a.

Proof. The proof is identical to Proposition 2.4.13.

Lemma 2.4.17. Let R ! S be a ring homomorphism, let M a 2 D.R/a, and let
N a 2 D.S/a. Then we have a functorial isomorphism

RHomSa.M
a
˝
L
Ra S

a; N a/ ' RHomRa.M
a; N a/:

In particular, the functors ForgetWD.S/a D.R/aW � ˝LRa S
a are adjoint.

Proof. The proof is similar to that of Lemma 2.4.14.

https://stacks.math.columbia.edu/tag/0A5W
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2.5 Almost finitely generated and almost finitely presented modules

In this section, we discuss the notions of almost finitely generated and almost finitely
presented modules. Our discussion closely follows [26]. The main difference is that
we avoid any use of “uniform structures” in our treatment; we think that it simplifies
the exposition. We recall that we fixed some “base” ring R with an ideal m such
that m2 D m and em D m˝R m is flat, and we always do almost mathematics with
respect to this ideal.

Definition 2.5.1. AnR-moduleM is called almost finitely generated, if for any "2m

there are an integer n" and an R-homomorphism

Rn"
f
�!M

such that Coker.f / is killed by ".

Definition 2.5.2. An R-module M is called almost finitely presented, if for any
"; ı 2 m there are integers n";ı , m";ı and a complex

Rm";ı
g
�! Rn";ı

f
�!M

such that Coker.f / is killed by " and ı.Kerf / � Img.

Remark 2.5.3. Clearly, any almost finitely presented R-module is almost finitely
generated.

Remark 2.5.4. A typical example of an almost finitely presented module that is
not finitely generated is M D

L
n�1 OC=p

1=nOC for an algebraically closed non-
archimedean field C of mixed characteristic .0; p/.

The next few lemmas discuss basic properties of almost finitely generated and
almost finitely presented modules. For example, it is not entirely obvious that these
notions transfer across almost isomorphisms. We show that this is actually the case,
so these notions descend to ModaR. We also show that almost finitely generated and
almost finitely presented modules have many good properties that are similar to those
of usual finitely generated and finitely presented modules.

Our first main goal is to get alternative criteria for a module to be almost finitely
generated (resp. almost finitely presented) and show that this notion descends to the
category of almost modules.

Lemma 2.5.5. Let M be an R-module, then M is almost finitely generated if and
only if for any finitely generated ideal m0 � m there is a morphism Rn

f
�!M such

that m0.Cokerf / D 0.
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Proof. The “if” part is clear, so we only need to deal with the “only if” part. We
choose a set of generators ."0; : : : ; "n/ for an ideal m0. By assumption, we have
R-morphisms

fi WR
n"i !M

such that "i .Cokerfi / D 0 for all i . Then the sum of these morphisms

f WD

nM
iD1

fi WR
P
n"i !M

defines a map such that m0.Cokerf /D 0. Since m0 was an arbitrary morphism, this
finishes the proof.

Lemma 2.5.6. LetM be an almost finitely presented R-module, and let 'WRn!M

be an R-homomorphism such that m1.Coker '/ D 0 for some ideal m1 � m. Then
for every finitely generated ideal m0 � m1m there is morphism  WRm ! M such
that

Rm
 
�! Rn

'
�!M

is a three-term complex and m0.Ker'/ � Im. /.

Proof. SinceM is almost finitely presented, for any two elements "1; "2 2m, we can
find a complex

Rm2
g
�! Rm1

f
�!M

such that "1.Cokerf /D 0 and "2.Kerf /� Img. Now we choose an element ı 2m1

and wish to define morphisms

˛WRm1 ! Rn and ˇWRn ! Rm1

such that ' ı ˛ D ıf and f ı ˇ D "1'.

Rm2 Rm1 M

Rn

g f

˛ˇ
'

To achieve this goal, we define ˛ and ˇ in the following way: we fix a basis
e1; : : : ; em1 of Rm1 , a basis e01; : : : ; e

0
n of Rn, and then put ˛ and ˇ to be the unique

R-linear morphisms such that

˛.ei / D yi 2 R
n for some yi such that '.yi / D ıf .ei /;

ˇ.e0j / D xj 2 R
m1 for some xj such that f .xj / D "1'.e0j /:

It is clear that ' ı ˛ D ıf and f ı ˇ D "1' as it holds on the basis elements.
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We define the morphism  WRn ˚Rm2 ! Rn by the rule

 .x; y/ D ˛ ı ˇ.x/ � ."1ı/x C ˛ ı g.y/:

Now we show that

' ı  D 0 and "1"2ıKer' � Im :

We start by showing that ' ı  D 0: it suffices to prove that

.˛ ı g/.y/ 2 Ker' for y 2 Rm2 ; and .˛ ı ˇ/.x/ � ."1ı/x 2 Ker' for x 2 Rn:

We note that we have an equality

.' ı ˛ ı g/.y/ D ı.f ı g/.y/ D ı0 D 0;

so .˛ ı g/.y/ 2 Ker.'/. We also have an equality

.' ı .˛ ı ˇ � "1ı//.x/ D .' ı ˛ ı ˇ/.x/ � "1ı'.x/

D ı.f ı ˇ/.x/ � "1ı'.x/

D ı"1'.x/ � "1ı'.x/

D 0:

This shows that .˛ ı ˇ/.x/ � ."1ı/x 2 Ker.'/ as well.

We show that ."1"2ı/Ker ' � Im. /: we observe that for any x 2 Ker ' we have
ˇ.x/�Kerf as f ıˇD "1'. This implies that "2ˇ.x/2 Img since "2Kerf � Img.
Thus, there is y 2 Rm2 such that g.y/ D "2ˇ.x/, so .˛ ı g/.y/ D "2˛ ı ˇ.x/. This
shows that

 .�"2x; y/ D �"2.˛ ı ˇ/.x/C "1"2ıx C .˛ ı g/.y/

D �"2.˛ ı ˇ/.x/C "1"2ıx C "2.˛ ı ˇ/.x/ D "1"2ıx:

We conclude that "1"2ıx 2 Im. / for any x 2 Ker.'/.
Finally, we recall that m0 is a finitely generated ideal, and that m0 � m1m D

m1m
2 � m1. This means that we can find a finite set I , and a finite set of elements

"i;1; "i;2 2m; ıi 2m1 such that m0 is contained in the ideal J WD ."i;1"i;2ıi /i2I (the
ideal generated by all products "i;1"i;2ıi ). The previous discussion implies that for
each i 2 I , we have a map  i W Rki ! Rn such that

' ı  i D 0 and ."i;1"i;2ıi /.Ker'/ � Im i :

By passing to the homomorphism

 WD
M
i2I

 i WR
P
ki ! Rn;
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we get a map  such that ' ı D 0 and m0.Ker'/ � Im. /. Therefore,  does the
job.

Lemma 2.5.7. LetM be anR-module. Then the following conditions are equivalent:

(1) The R-module M is almost finitely presented.

(2) For any finitely generated ideal m0 � m there exist a finitely presented R-
module N and a homomorphism f WN ! M such that m0.Ker f / D 0 and
m0.Cokerf / D 0.

(3) For any finitely generated ideal m0 �m there exist integers n;m and a three-
term complex

Rm
g
�! Rn

f
�!M

such that m0.Cokerf / D 0 and m0.Kerf / � Img.

Proof. It is clear that (3) implies both (1) and (2).
We show that (1) implies (3). Since M is an almost finitely generated R-module,

Lemma 2.5.5 guarantees that, for any finitely generated ideal m0 � m, there exists a
morphism Rn

f
�!M such that m0.Cokerf / D 0.

We know that m0 �mDm2; this easily implies that there is a finitely generated
ideal m1 �m such that m0 �m1m �m1. So, using m0 Dm1, we can find a homo-
morphismRn

'
�!M such that m1.Coker'/D 0. Lemma 2.5.6 claims that we can also

find a homomorphism  WRm ! Rn such that

Rm
 
�! Rn

'
�!M

is a three-term complex and m0.Ker'/� Im . As m0 �m1 and m1.Coker'/ D 0,
we get that m0.Coker'/D 0 as well. This finishes the proof since m0 was an arbitrary
finitely generated sub-ideal of m.

Now we show that (2) implies (3). We pick an arbitrary finitely generated ideal
m0 � m, and we try to find a three-term complex

Rm
g
�! Rn

f
�!M

such that m0.Coker f / D 0 and m0.Ker f / � Im.g/. To achieve this, we use the
assumption in (2) to find a morphism hWN ! M such that N is a finitely presented
R-module, m0.Coker h/ D 0, and m0.Ker h/ D 0. Since N is finitely presented, we
can find a short exact sequence

Rm
g
�! Rn

f 0

�! N ! 0:

It is straightforward to see that a three-term complex

Rm
g
�! Rn

f WDhıf 0

������!M
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satisfies the condition that m0.Cokerf / D 0 and m0.Kerf / � Im.g/.

Lemma 2.5.8. Let M be an R-module, and suppose that for any finitely gener-
ated ideal m0 � m there exists a morphism f WN ! M such that m0.Ker f / D 0,
m0.Cokerf /D 0, andN is almost finitely generated (resp. almost finitely presented).
Then M is also almost finitely generated (resp. almost finitely presented).

Proof. We give a proof only in the almost finitely presented case; the other case is
easier. We pick an arbitrary finitely generated ideal m0 � m and another finitely
generated ideal m1 � m such that m0 � m2

1. Then we use the assumption to get a
morphism

f WN !M

such that m1.Ker f / D 0;m1.Coker f / D 0 and N is an almost finitely presented
R-module. Lemma 2.5.7 guarantees that there is a three-term complex

Rm
h
�! Rn

g
�! N

such that m1.Cokerg/D 0 and m1.Kerg/� Imh. Then we can consider a three-term
complex

Rm
h
�! Rn

f 0WDf ıg
������!M;

it is easily seen that m2
1.Coker f 0/ D 0 and m2

1.Ker f 0/ � Im.h/. Since m0 � m2
1,

we conclude that m0.Cokerf 0/ D 0 and m0.Kerf 0/ � Im.h/. This shows thatM is
almost finitely presented.

Lemma 2.5.9. Let M be an R-module and let ¹Niºi2I be a filtered diagram of
R-modules. Then

(1) the natural morphism

0M W colimI HomR.M;Ni /! HomR.M; colimI Ni /

is almost injective for an almost finitely generated M ;

(2) the natural morphism

0M W colimI HomR.M;Ni /! HomR.M; colimI Ni /

is an almost isomorphism and

1M W colim Ext1R.M;Ni /! Ext1R.M; colimNi /

is almost injective for an almost finitely presented M .

Proof. We give a proof for an almost finitely presented M ; the case of an almost
finitely generated M is similar.
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Step 1: The case of a finitely presentedM . In this case, 0M is an isomorphism and 1M
is injective due to [68, Tag 064T] and [68, Tag 0G8W].

Step 2: General case. We fix a finitely generated ideal m0�m. Since m0�mDm4,
there is a finitely generated ideal m1 such that m0 �m4

1. So we use Lemma 2.5.7 (2)
to find a finitely presented moduleM 0 and a morphism f WM 0!M such that Ker.f /
and Coker.f / are annihilated by m1. We denote the image of f byM 00 and consider
the short exact sequences

0! K !M 0 !M 00 ! 0;

0!M 00 !M ! Q! 0

with K and Q being annihilated by m1. Applying the functors colimI HomR.�; Ni /

and HomR.�; colimI Ni / and considering the associated long exact sequences, we
see that

bi W colimI ExtiR.M;Ni /! colimI ExtiR.M
0; Ni /

and
ci WExtiR.M; colimI Ni /! ExtiR.M

0; colimI Ni /

have kernels and cokernels annihilated by m2
1 for any i � 0. Now we consider a

commutative diagram

colimI ExtiR.M
0; Ni / ExtiR.M

0; colimI Ni /

colimI ExtiR.M;Ni / ExtiR.M; colimI Ni /

 i
M 0

bi

 i
M

ci

By Step 1, we know that  iM 0 is an isomorphism for i D 0 and injective for i D 1.
Moreover, we know that bi and ci have kernels and cokernels annihilated by m2

1.
Then it is easy to see that Coker.0M /, Ker.0M /, and Ker.1M / are annihilated by
m4
1. In particular, they are annihilated by m0 � m4

1. Since m0 was arbitrary finitely
generated sub-ideal m0 �m, we conclude that 0M is an almost isomorphism and 1M
is almost injective.

Lemma 2.5.10. Let M be an R-module.

(1) If, for any filtered diagram of R-modules ¹Niºi2I , the natural morphism

colimI HomR.M;Ni /! HomR.M; colimI Ni /

is almost injective, then M is almost finitely generated.

https://stacks.math.columbia.edu/tag/064T
https://stacks.math.columbia.edu/tag/0G8W
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(2) If, for any filtered system of R-modules ¹Niº, the natural morphism

colimI HomR.M;Ni /! HomR.M; colimI Ni /

is an almost isomorphism, then M is almost finitely presented.

Proof. (1) Note that M ' colimI Mi is a filtered colimit of its finitely generated
submodules. Therefore, we see that

colimI HomR.M;M=Mi / '
a HomR.M; colimI .M=Mi // ' 0:

Consider an element ˛ of colimI HomR.M;M=Mi / that has a representative the quo-
tient morphism M ! M=Mi (for some choice of i 2 I ). Then, for every " 2 m,
"˛ D 0 in colimI HomR.M;M=Mi /. Explicitly, this means that there is j � i such
that "M � Mj . Now we choose a surjection Rnj ! Mj to see that the composition
f WRnj ! M gives a map with ".Coker f / D 0. Now note that this property is pre-
served by replacing j with any j 0 > j . Therefore, for any m0 D ."1; : : : ; "n/, we can
find a finitely generated submoduleMi �M such that m0M �Mi . Therefore,M is
almost finitely generated.

(2) Fix any finitely generated sub-ideal m0 D ."1; : : : ; "n/ � m. We use [68,
Tag 00HA] to write M ' colimƒM� as a filtered colimit of finitely presented R-
modules. By assumption, the natural morphism

colimƒ HomR.M;M�/! HomR.M; colimƒM�/ D HomR.M;M/

is an almost isomorphism. In particular, "i idM is in the image of this map for every
i D 1; : : : ; n. This means that, for every "i , there are an element �i 2 ƒ and a mor-
phism gi WM !M�i such that

f�i ı gi D "i idM ;

where f�i WM�i !M is the natural morphism to the colimit. Note that the existence
of such a gi is preserved by replacing �i with any �0i � �i . Therefore, using that
¹M�º is a filtered diagram, we can find an index � with maps

gi WM !M�

such that f� ı gi D "i idM . We consider the morphism

Fi WD gi ı f� � "i idM� WM� !M�:

We note that Im.Fi / � Ker.f�/ because

f� ı gi ı f� � f�"i idMi D "if� � "if� D 0:

https://stacks.math.columbia.edu/tag/00HA
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We also have "i Ker.f�/ � Im.Fi / because Fi jKer.f�/ D "i id. Therefore,
P
i Im.Fi /

is a finite R-module such that

m0.Kerf�/ �
X
i

Im.Fi / � Ker.f�/:

Therefore, f WM 0 WDM�=.
P
i Im.Fi //!M is a morphism such that its source M 0

is finitely presented, m0.Ker f / D 0, and m0.Coker f / D 0. Since m0 � m was an
arbitrary finitely generated sub-ideal, we see that M is almost finitely presented.

Corollary 2.5.11. Let M be an R-module. Then

(1) M is almost finitely generated if and only if the natural morphism

colimI alHomR.M
a; N a

i /! alHomR.M
a; colimI N a

i /

is injective in ModaR, for every filtered diagram ¹N a
i ºi2I of Ra-modules;

(2) M is almost finitely presented if and only if the natural morphism

colimI alHomR.M
a; N a

i /! alHomR.M
a; colimI N a

i /

is an isomorphism in ModaR, for every filtered diagram ¹N a
i ºi2I of Ra-

modules.

Proof. It formally follows from Lemma 2.5.9, Lemma 2.5.10, Proposition 2.2.1 (3),
and Corollary 2.1.10.

Corollary 2.5.12. Let M and N be two almost isomorphic R-modules (see Defini-
tion 2.1.7). ThenM is almost finitely generated (resp. almost finitely presented) if and
only if so is N .

Proof. Corollary 2.5.11 implies that M is almost finitely generated (resp. almost
finitely presented) if and only ifM a

Š
is. SinceM a

Š
'N a

Š
, we get the desired result.

Corollary 2.5.13. Let R! S be an almost isomorphism of rings. Then the forgetful
functor Mod�Sa !Mod�Ra is an equivalence for � 2 ¹“ ”; aft; afpº.

Proof. Corollary 2.5.11 ensures that it suffices to prove the claim for � D “ ” as the
property of being almost finitely generated (resp. almost finitely presented) depends
only on the category ModRa and not on the ring R itself.

Corollary 2.2.4 (2) guarantees that the forgetful functor admits a right adjoint
�˝Ra S

aWModaR!ModaS . Therefore, it suffices to show that the natural morphisms

M a
!M a

˝Ra S
a

and
N a
˝Ra S

a
! N a
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are isomorphisms for any M 2ModaR and N 2ModaS . This is obvious from the fact
that Ra ! Sa is an isomorphism of Ra-modules.

Definition 2.5.14. We say that an Ra-module M a 2 ModaR is almost finitely gen-
erated (resp. almost finitely presented) if its representative M 2 ModR is almost
finitely generated (resp. almost finitely presented). This definition does not depend
on the choice of a representative due to Corollary 2.5.12.

We now want to establish certain good properties of almost finitely presented
modules in short exact sequences. This will be crucial later in developing a good
theory of almost coherent modules.

Lemma 2.5.15. Let 0!M 0
'
�!M

 
�!M 00! 0 be an exact sequence of R-modules.

(1) If M is almost finitely generated, then so is M 00.

(2) If M 0 and M 00 are almost finitely generated (resp. finitely presented), then so
is M .

(3) IfM is almost finitely generated andM 00 is almost finitely presented, thenM 0

is almost finitely generated.

(4) IfM is almost finitely presented andM 0 is almost finitely generated, thenM 00

is almost finitely presented.

Proof. This can be easily deduced from Lemma 2.5.9 and Lemma 2.5.10 via the five
lemma (or diagram chase). We only note that the Ext1 part of Lemma 2.5.9 (2) is
crucial to make the argument work.

Corollary 2.5.16. Let 0! M 0a
'
�! M a

 
�! M 00a ! 0 be an exact sequence of Ra-

modules. Then all conclusions of Lemma 2.5.15 still hold.

Proof. We use Lemma 2.1.9 (4), (5) to see that the sequence

0! .M 0a/Š
'Š
�! .M a/Š

 Š
�! .M 00a/Š ! 0

is exact and almost isomorphic to the original sequence. Moreover, Corollary 2.5.12
says that each of those modules N a

Š
is almost finitely generated (resp. almost finitely

presented) if and only if so is the corresponding N a. Thus, the problem is reduced to
Lemma 2.5.15.

Lemma 2.5.17. Let M a; N a be two almost finitely generated (resp. almost finitely
presented)Ra-modules, then so isM a˝Ra N

a. Similarly,M ˝R N is almost finitely
generated (resp. almost finitely presented) for any almost finitely generated (resp.
almost finitely presented) R-modules M and N .
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Proof. We show the claim only in the case of almost finitely presented modules; the
case of almost finitely generated modules is significantly easier. Moreover, we use
Proposition 2.2.1 (1) to reduce the question to showing that the tensor product of two
almost finitely presented R-modules is almost finitely presented.

Step 1: The case of finitely presented modules. If both M and N are finitely pre-
sented, then this is a standard fact proven in [17, II Section 3.6, Proposition 6].

Step 2: The case of M being finitely presented. Now we deal with the case of a
finitely presented R-module M and an almost finitely presented R-module N . We
fix a finitely generated ideal m0 � m and a finitely generated ideal m1 such that
m0 � m2

1. Now we use Lemma 2.5.7 (2) to find a finitely presented module N 0 and
a morphism f WN 0 ! N such that Ker.f / and Coker.f / are annihilated by m0. We
denote the image of f by N 00 and consider the short exact sequences

0! K ! N 0 ! N 00 ! 0;

0! N 00 ! N ! Q ! 0;

with K and Q being annihilated by m0. After applying the functor M ˝R �, we get
the following exact sequences:

M ˝R K !M ˝R N
0
!M ˝R N

00
! 0;

TorR1 .M;Q/!M ˝R N
00
!M ˝R N !M ˝R Q! 0:

We note that M ˝R K;TorR1 .M;Q/, and M ˝R Q are annihilated by m0. Now it is
straightforward to conclude that the map

M ˝R f WM ˝N
0
!M ˝N

has kernel and cokernel annihilated by m1 � m2
0. Moreover, M ˝ N 0 is a finitely

presented module by Step 1. Since m1 was an arbitrary finitely generated subideal
of m, we conclude that M ˝N is almost finitely presented due to Lemma 2.5.7 (2).

Step 3: The general case. Repeat the argument of Step 2 once again using Step 2 in
place of Step 1 at the end, and Lemma 2.5.8 in place of Lemma 2.5.7 (2).

Lemma 2.5.18. Let M be an almost finitely presented R-module, let N be any R-
module, and let P be an almost flat R-module. Then the corresponding natural map
HomR.M;N /˝R P ! HomR.M;N ˝R P / is an almost isomorphism.

Similarly, HomRa.M
a;N a/˝Ra P

a! HomRa.M
a;N a ˝Ra P

a/ is an almost
isomorphism for any almost finitely presented Ra-module M a, any Ra-module N a,
and an almost flat Ra-module P a.

Proof. Proposition 2.2.1 (1) and (3) ensure that it suffices to prove the claim for the
case of honest R-modules M , N , and P .



Almost finitely generated and almost finitely presented modules 45

Step 1: The case of a finitely presented module M . We choose a presentation of M :

Rn ! Rm !M ! 0:

Then we use that P is almost flat to get a morphism of almost exact sequences:

0 HomR.M;N /˝R P HomR.R
m; N /˝R P HomR.R

n; N /˝R P

0 HomR.M;N ˝R P / HomR.R
m; N ˝R P / HomR.R

n; N ˝R P /:

Clearly, the second and third vertical arrows are (almost) isomorphisms, so the first
vertical arrow is an almost isomorphism as well.

Step 2: The general case. The case of an almost finitely presented module M fol-
lows from the finitely presented case by approximating M by finitely presented R-
modules. This is similar to the strategy used in Lemma 2.5.17; we leave the details to
the reader.

The last ingredient we will need is the interaction between properties of an R-
module M and its “reduction” M=I for some finitely generated ideal I � m. For
example, we know that for an ideal I � rad.R/ and a finite module M , Nakayama’s
lemma states thatM=I D 0 if and only ifM D 0. Another feature is that an I -adically
complete moduleM isR-finite if and only ifM=I isR=I -finite. It turns out that both
facts have their “almost” analogues.

Lemma 2.5.19. Let I �m\ rad.R/ be a finitely generated ideal. If M is an almost
finitely generated R-module such that M=IM ' 0. Then M ' 0. If M=IM Ša 0,
then M Ša 0.

Proof. We use the definition of an almost finitely generated module to find a finite
submoduleN containing IM . IfM=IM is isomorphic to the zero module, then inclu-
sion IM � N �M implies thatN DM . ThusM is actually finitely generated, now
we use the usual Nakayama’s lemma to finish the proof.

If M=IM is merely almost isomorphic to the zero module, then we see that the
inclusion IM � M is an almost isomorphism. In particular, mM is almost isomor-
phic to IM . Using that m2 D m, we obtain an equality

mM D m2M D m.IM/ D I.mM/:

Thus we can apply the argument from above to conclude that mM D 0. This finishes
the proof as mM Ša M .
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Lemma 2.5.20. Let R be I -adically complete for some finitely generated I � m.
Then an I -adically complete R-module M is almost finitely generated if and only if
M=IM is almost finitely generated.

Proof. [26, Lemma 5.3.18]

2.6 Almost coherent modules and almost coherent rings

This section is devoted to the study of almost coherent modules which are “almost”
analogues of classical coherent modules. We show that these modules form a weak
Serre subcategory in ModR. Then we study the special case of almost coherent mod-
ules over an almost coherent ring. In this case, we show that almost coherent modules
are equivalent to almost finitely presented modules.

We recall that we fixed some “base” ring R with an ideal m such that m2 D m

and em D m˝R m is flat, and we always do almost mathematics with respect to this
ideal.

Definition 2.6.1. An (almost) R-module M is almost coherent if it is almost finitely
generated and every almost finitely generated almost submoduleN a �M a is almost
finitely presented.

Remark 2.6.2. An almost submodule f WN a ,! M a does not necessarily give rise
to a submodule N 0 �M for some .N 0/a ' N a. The most we can say is that there is
an injection fŠW .N a/Š ,! .M a/Š whose almostification is equal to the morphism f

(this follows from Lemma 2.1.8 (2)).

Lemma 2.6.3. Let R ! S be an almost isomorphism of rings. Then the forgetful
functor Modacoh

Sa !Modacoh
Ra is an equivalence.

Proof. This follows directly from Corollary 2.5.13 and Definition 2.6.1.

Lemma 2.6.4. Let M a be an almost R-module with a representative M 2 ModR.
Then the following are equivalent:

(1) The almost module M a is almost coherent.

(2) The R-module .M a/� is almost finitely generated, and any almost finitely
generated R-submodule of .M a/� is almost finitely presented.

(3) The R-module .M a/Š is almost finitely generated, and any almost finitely
generated R-submodule of .M a/Š is almost finitely presented.

Proof. First of all, we note that Corollary 2.5.12 guarantees that M is almost finitely
generated if and only if so is .M a/�. Second, Lemma 2.1.9 implies that the functor
.�/� is left exact. Therefore, any almost submodule N a �M a gives rise to an actual
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submodule .N a/� � .M
a/� that is almost isomorphic to N . In reverse, any submod-

ule N � .M a/� gives rise to an almost submodule of M a. Hence, we see that all
almost finitely generated almost submodules of M a are almost finitely presented if
and only if all actual almost finitely generated submodules of M� are almost finitely
presented (here we again use Corollary 2.5.12). This shows the equivalence of (1)
and (2). The same argument shows that (1) is equivalent to (3).

Note that it is not that clear whether a coherentR-module is almost coherent. The
issue is that in the definition of almost coherent modules we need to be able to handle
all almost finitely generated almost submodules and not only finitely generated ones.
The lemma below is a useful tool to deal with such problems; in particular, it turns
out (Corollary 2.6.7) that all coherent modules are indeed almost coherent, but we do
not know a direct way to see that.

Lemma 2.6.5. Let M be an R-module. Then M is an almost coherent module if one
of the following holds:

(1) For any finitely generated ideal m0 �m, there exist a coherent R-module N
and a morphism f WN !M such that m0.Kerf /D 0 and m0.Cokerf /D 0.

(2) For any finitely generated ideal m0 � m, there exist an almost coherent
R-module N and a morphism f WN ! M such that m0.Ker f / D 0 and
m0.Cokerf / D 0.

Proof. We start the proof by noting that M comes with the natural almost isomor-
phism M ! M a

� . Since both assumptions on M pass through this almost isomor-
phism, Lemma 2.6.4 implies that it suffices to show that M� WDM a

� is almost coher-
ent.

Lemma 2.5.7 guarantees thatM� is almost finitely generated. Thus, we only need
to check the second condition from Definition 2.6.1. So we pick an arbitrary almost
finitely generated R-submodule M1 �M� and wish to show that it is almost finitely
presented. We choose an arbitrary finitely generated ideal m0�m and another finitely
generated ideal m1 � m such that m0 � m2

1.
We use Lemma 2.5.8 to find a morphism 'WRn!M1 such that m1.Coker'/D 0.

We denote by e1; : : : ; en the standard basis of Rn and by xi WD '.ei / the image of ei
in M1. We also choose a set of generators ."1; : : : ; "m/ of the ideal m1.

By assumption, there is a morphism f WN ! M� with a(n) (almost) coherent
R-module N such that m1.Coker f / D 0 and m1.Ker f / D 0. This implies that
"ixj is in the image of f for any i D 1; : : : ; m; j D 1; : : : ; n. Let us choose some
yi;j 2 N such that f .yi;j / D "ixj , and define an R-module N 0 as the submodule
of N generated by all yi;j . By construction, N 0 is a finite R-module. Since N is a
(almost) coherent module, we conclude that N 0 is (almost) finitely presented.
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We observe that f 0 WD f jN 0 naturally lands inM1, and we have m1.Kerf 0/D 0
and m2

1.Cokerf 0/ D 0. Since m0 � m2
1, this shows that the morphism

N 0
f 0

�!M1

has kernel and cokernel killed by m0. Lemma 2.5.8 shows that M1 is almost finitely
presented.

Question 2.6.6. Does the converse of Lemma 2.6.5 hold?

Corollary 2.6.7. Any coherent R-module M is almost coherent.

The next thing we want to show is that almost coherent modules form a weak
Serre subcategory of ModR. This is an almost analogue of the corresponding state-
ment in the classical case.

Lemma 2.6.8. Let R and m be as above. Then

(1) an almost finitely generated almost submodule of an almost coherent module
is almost coherent;

(2) let 'WN a !M a be an almost homomorphism from an almost finitely gener-
ated Ra-module to an almost coherent Ra-module, then Ker ' is an almost
finitely generated Ra-module;

(3) let 'WN a ! M a be an injective almost homomorphism of almost coherent
Ra-modules, then Coker' is an almost coherent Ra-module;

(4) let 'WN a ! M a be an almost homomorphism of almost coherent Ra-mod-
ules, then Ker' and Coker' are almost coherent Ra-modules;

(5) given a short exact sequence of Ra-modules 0!M 0a !M a !M 00a ! 0,
if two out of three are almost coherent, so is the third.

Proof. (1) This is evident from the definition of an almost coherent almost module.
(2) Let us define N 00a WD Im ' and N 0a WD Ker ', then Corollary 2.5.16 implies

that N 00a is an almost finitely generated almost submodule of M a. Furthermore, it is
almost finitely presented sinceM a is almost coherent. Thus, Corollary 2.5.16 implies
that N 0 is almost finitely generated as well.

(3) We denote Coker' by M 00a, then we have a short exact sequence

0! N a
!M a

!M 00a ! 0:

Corollary 2.5.16 implies that M 00a is almost finitely generated. Let us choose any
almost finitely generated almost submodule M 00a1 � M

00a and denote its pre-image
in M a by M a

1 . Then we have a short exact sequence

0! N a
!M a

1 !M 00a1 ! 0:
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Corollary 2.5.16 guarantees thatM a
1 is an almost finitely generated almost submodule

of M a. Since M a is almost coherent, we see that M a
1 is an almost finitely presented

Ra-module. Therefore, Corollary 2.5.16 implies that M 00a1 is also almost finitely pre-
sented. Hence, the Ra-module M 00a is almost coherent.

(4) We know that N 0a WD Ker ' is almost finitely generated by (2). Since N a is
almost coherent, we conclude that N 0a is almost coherent by (1). We define N 00a WD
Im' and M 00a WD Coker', then we note that we have two short exact sequences

0! N 0a ! N a
! N 00a ! 0;

0! N 00a !M a
!M 00a ! 0:

We observe that (3) shows that N 00a is almost coherent, then we use (3) once more to
conclude that M 00a is also almost coherent.

(5) The only thing that we are left to show is that if M 0a and M 00a are almost
coherent, so is M a. It is almost finitely generated by Corollary 2.5.16. In order to
check the second condition from Definition 2.6.1, we choose an almost finitely gen-
erated almost submodule M a

1 � M
a. Let us denote by M 00a1 its image in M 00a, and

by M 0a1 the kernel of this map. So we have a short exact sequence

0!M 0a1 !M a
1 !M 00a1 ! 0:

Corollary 2.5.16 guarantees thatM 00a1 is an almost finitely generated almost submod-
ule of the almost coherent Ra-module M 00a. Hence, (1) implies that M 00a1 is almost
coherent, in particular, it is almost finitely presented. Moreover, we use (2) to see
that M 0a1 is an almost finitely generated almost submodule of M 0a. Since M 0a is
almost coherent, we conclude that M 0a1 is almost finitely presented. Finally, Corol-
lary 2.5.16 shows thatM a

1 is almost finitely presented as well. This finishes the proof
of almost coherence of the Ra-module M a.

Corollary 2.6.9. LetM a be an almost finitely presentedRa-module and letN a be an
almost coherent Ra-module. Then M a ˝Ra N

a and alHomRa.M
a; N a/ are almost

coherent.

Proof. We use Proposition 2.2.1 (1) and (3) to reduce the question to showing that
M ˝R N and HomR.M;N / are almost coherent R-modules for any almost finitely
presented R-module M and almost coherent R-module N .

Step 1: The case of a finitely presented module M . In this case, we choose a presen-
tation of M as the quotient

Rn ! Rm !M ! 0:

Then we have short exact sequences

N n
! Nm

!M ˝R N ! 0
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and
0! HomR.M;N /! Nm

! N n:

We note that Lemma 2.6.8 (5) implies that Nm and N n are almost coherent. Thus,
Lemma 2.6.8 (5) guarantees that bothM ˝R N and HomR.M;N / are almost coher-
ent as well.

Step 2: The general case. The argument is similar to the one used in Step 2 of the
proof of Lemma 2.5.17. We approximate M by finitely presented R-modules. This
gives us approximations ofM a ˝Ra N

a and alHomRa.M
a;N a/ by almost coherent

modules. Now Lemma 2.6.5 guarantees that these modules are almost coherent. We
leave the details to the interested reader.

We define Modacoh
R (resp. Modacoh

Ra ) to be the strictly full4 subcategory of ModR
(resp. ModRa ) consisting of almost coherent R-modules (resp. Ra-modules).

Corollary 2.6.10. The category Modacoh
R (resp. Modacoh

Ra ) is a weak Serre subcategory
of ModR (resp. ModRa ).

Corollary 2.6.10 and the discussion in [68, Tag 06UP] ensure that Dacoh.R/ and5

Dacoh.R/
a are strictly full saturated6 triangulated subcategories of D.R/ and D.R/a

respectively. We define DCacoh.R/ WD Dacoh.R/ \ DC.R/ and similarly for all other
bounded versions.

Lemma 2.6.11. Let M 2 D.R/ be a complex of R-modules. Then M 2 Dacoh.R/ if
one of the following holds:

(1) for every finitely generated ideal m0 � m, there are N 2 Dcoh.R/ and a
morphism f WN !M such that m0

�
Hi .cone.f //

�
D 0 for every i 2 Z;

(2) for every finitely generated ideal m0 � m, there are N 2 Dacoh.R/ and a
morphism f WN !M such that m0

�
Hi .cone.f //

�
D 0 for every i 2 Z.

Proof. This is an easy consequence of Lemma 2.6.5 applied together with the defini-
tion of Dacoh.R/.

The last part of this subsection is dedicated to the study of almost coherent rings
and almost coherent modules over almost coherent rings. Recall that coherent mod-
ules over a coherent ring coincide with finitely presented ones. Similarly, we will
show that almost coherent modules over an almost coherent ring turn out to be the
same as almost finitely presented ones.

4A strictly full subcategory is a full subcategory that is closed under isomorphisms.
5These are, respectively, full subcategories of D.R/ and D.R/a of complexes with almost

coherent cohomology modules.
6A strictly full subcategory D 0 of a triangulated category D is saturated if X ˚ Y 2 D 0

implies X; Y 2 D 0.

https://stacks.math.columbia.edu/tag/06UP


Almost coherent modules and almost coherent rings 51

Definition 2.6.12. We say that a ring R is almost coherent if the rank-1 free module
R is almost coherent as an R-module.

Lemma 2.6.13. A coherent ring R is almost coherent.

Proof. Apply Corollary 2.6.7 to the rank-1 free module R.

Lemma 2.6.14. If R is an almost coherent ring, then any almost finitely presented
R-module M is almost coherent.

Proof. Step 1: If M is finitely presented over R, then we can write it as a cokernel
of a map between free finite rank modules. A free finite rank module over an almost
coherent ring is almost coherent due to Lemma 2.6.8 (5). A cokernel of a map of
almost coherent modules is almost coherent due to Lemma 2.6.8 (4). Therefore, any
finitely presented M is almost coherent.

Step 2: Suppose thatM is merely almost finitely presented. Lemma 2.5.7 guarantees
that, for any finitely generated m0 � m, we can find a finitely presented module N
and a map f WN !M such that Kerf and Cokerf are annihilated by m0. We know
that N is almost coherent by Step 1. Therefore, Lemma 2.6.5 (2) implies that M is
almost coherent as well.

Corollary 2.6.15. Let R be an almost coherent ring. Then an R-moduleM is almost
coherent if and only if it is almost finitely presented.

Proof. The “only if” part is clear from the definition, the “if” part follows from
Lemma 2.6.14.

Our next big goal is to show that bounded above almost coherent complexes over
an almost coherent ring are exactly “almost pseudo-coherent complexes” in some
precise way. More precisely, any element M 2 D�acoh.R/ can be “approximated” up
to any small torsion by complexes of finite free modules.

Proposition 2.6.16. Let R be an almost coherent ring and let M 2 D�.R/. Then
M 2 D�acoh.R/ if and only if, for every finitely generated ideal m0 � m, there are a
complex F � of finite free R-modules, and a morphism

f WF � !M

such that m0

�
Hi .cone.f //

�
D 0 for every i 2 Z. Moreover, ifM 2 D�0coh.R/, one can

choose F � 2 Comp�0.R/.

Proof. The “if” direction is Lemma 2.6.11. So we only need to prove the “only if”
direction. For this direction, we fix a finitely generated ideal m0 � m and another
finitely generated ideal m1 � m such that m0 � m2

1.
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Without loss of generality, we may and do assume that M 2 D�0.R/, and then
we choose a complexM � 2 Comp�0.R/ that representsM . Now we prove a slightly
more precise claim:

Claim. For every n 2Z, there is a complex of finite free modules F �n with a morphism
fnWF

�
n !M � such that

(1) F �n 2 CompŒ�n;0�.R/;
(2) ���nC1F �n D F

�
n�1 and ���nC1fn D fn�1, where ��n�1 is the naive trun-

cation;

(3) kernels and cokernels of Hi .fn/ are annihilated by m1 for i � nC 1;

(4) the cokernel of Hn.fn/ is annihilated by m1.

Proof of the claim. We argue by descending induction on n. If n � 1, F � D 0 works.
Now we suppose that we can construct F �n , and wish to construct F �n�1. Consider the
morphism fn presented as a commutative diagram

0 0 F nn F nC1n � � �

M n�2 M n�1 M n M nC1 � � �

dn
F

f nn

dnC1
F

f
nC1
n

dn�2
M

dn�1
M

dn
M dnC1

M

Firstly, Ker.dnF / is almost coherent as a kernel between finitely presented modules
over an almost coherent ring. Secondly, the R-module

Bn WD Ker
�
Ker.dnF /! Hn.M/

�
is also almost coherent as a kernel between almost coherent modules. Therefore, there
are a finite free R-module F 0n�1 and a morphism

d0WF 0n�1 ! Bn

such that m1.Coker d0/ D 0. Since Hn�1.M/ is almost coherent, we can find a finite
free R-module F 00n�1 and a morphism

�WF 00n�1 ! Hn�1.M/

such that m1.Coker�/D 0. Let �WF 00n�1!Zn�1.M �/ be any lift of � to the module
of closed elements Zn�1.M �/ D Ker.dn�1M /. We define

f 00n�1WF 00n�1 !M n�1

to be the composition of � with the inclusion Zn�1.M �/!M n�1.
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Now we wish to define F �n�1 and fn�1. We start with F �n�1; we put Fmn�1 D F
m
n

if m � n, Fmn�1 D 0 if m < n � 1, F n�1n�1 D F 0n�1 ˚ F 00n�1, and define the only
non-evident differential

dn�1F WF n�1n�1 D F
0n�1
˚ F 00n�1 ! F nn

to be zero on F 00n�1 and equal to d0 on F 0n�1. It is evident that dnF ı dn�1F D 0, so
this structure defines a complex F �n�1 of finite free R-modules.

We are only left to define fn�1. We must put f mn�1 D f mn if m > n � 1 and
f mn�1 D 0 if m < n � 1, so the only question is to define f n�1n�1 . By construction, we
have f nn .d

0F 0n�1/ � dn�1M M n�1, so we can find

f 0n�1WF
0n�1
!M n�1

such that dn�1 ı f 0n�1 D f
n
n ı d0. Thus we define

f n�1n�1 WF
n�1
n�1 D F

0n�1
˚ F 00n�1 !M n�1

to be f 0n�1 on F 0n�1 and f 00n�1 on F 00n�1. Then it is evident from the construction
that f �n�1 is a morphism of complexes, i.e. , it fits the diagram

0 F n�1n�1 F nn�1 F nC1n�1 � � �

M n�2 M n�1 M n M nC1 � � �

dn�1
F

f n�1
n�1

dn
F

f n
n�1

dnC1
F

f
nC1
n�1

dn�2
M

dn�1
M

dn
M dnC1

M

By construction, the kernel and cokernel of Hn.fn�1/ are annihilated by m1, and
the cokernel of Hn�1.fn�1/ is annihilated by m1. So this finishes the proof of the
claim.

Now the morphism f WF � !M � simply comes as the colimit of fn, i.e.,

f D colimfnWF
�
WD colimF �n !M �:

It is not hard to see that the cohomology groups of cone.f / are annihilated by
m0 � m2

1.

Corollary 2.6.17. Let R be a coherent ring and M 2 Db.R/. Then M 2 Dbacoh.R/ if
and only if, for every finitely generated ideal m0�m, there is a complexN 2Dbcoh.R/

together with a morphism f WN !M such that m0.Hi .cone.f /// D 0 for all i .
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Proof. The “if” direction is Lemma 2.6.11. So we only need to deal with the “only
if” direction. Assume that M 2 Db.R/. Then Proposition 2.6.16 implies that there
are F 2 D�coh.R/ and a morphism f WF ! M such that m0.Hi .cone.f /// D 0 for
all i . Now we can replace F by F 0 WD ��aF to get the desired approximation with
F 0 2 Dbcoh.R/.

Proposition 2.6.18. Let R be an almost coherent ring, and let M a; N a be objects
in D�acoh.R/

a. Then M a ˝LRa N
a 2 D�acoh.R/

a.

Proof. Proposition 2.4.13 ensures that it suffices to show that M ˝LR N 2 D�acoh.R/

forM ,N 2D�coh.R/. Clearly, we can cohomologically shift bothM andN to assume
that they lie D�0coh.R/.

Now we fix a finitely generated ideal m1 � m and use Proposition 2.6.16 to find
an exact triangle

F � !M ! Q;

where F � 2D�0.R/ is a complex of finite free modules and Hi .Q/ are all annihilated
by m1. Then it is easy to see that the kernel and cokernel of the map

H�i .F � ˝LR N/! H�i .M ˝LR N/

are annihilated by miC1
1 . Now we note that, clearly,

F � ˝LR N ' F
�
˝
�
R N

lies in D�coh.R/ because F � is a complex of finite free modules. For each pair of an
integer i � 0 and a finitely generated ideal m0 � m D miC1, we can find another
finitely generated ideal m1 such that m0 � miC1

1 . Therefore, the map

H�i .F � ˝LR N/! H�i .M ˝LR N/

is a morphism with an almost coherent source and m0-torsion kernel and cokernel.
Therefore, Lemma 2.6.5 (2) implies the claim.

Proposition 2.6.19. Let R be an almost coherent ring, and let M a 2 D�acoh.R/
a,

N a 2 DCacoh.R/
a. Then RalHomRa.M

a; N a/ 2 DCacoh.R/
a.

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.8
and the same approximation argument to reduce to the case M D F � is a bounded
above complex of finite free modules. In this case, the claim is essentially obvious
due to the explicit construction of the Hom-complex Hom�R.F

�; N /.

Proposition 2.6.20. Let R be an almost coherent ring, let M 2 D�acoh.R/, let N 2
DC.R/, and let P be an almost flat R-module. Then the natural map

RHomR.M;N /˝R P ! RHomR.M;N ˝R P /
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is an almost isomorphism.
Similarly, RHomRa.M

a; N a/ ˝LRa P
a ! RHomRa.M

a; N a ˝LRa P
a/ is an

almost isomorphism for any M a 2 D�acoh.R/
a, N a 2 DC.R/a, and P a an almost

flat Ra-module.

Proof. The proof is similar to that of the above lemmas.

Corollary 2.6.21. LetR be an almost coherent ring, letM abe an object in D�acoh.R/
a,

let N a be an object in DC.R/a, and let P a be an almost flat Ra-module. Then the
natural map

RalHomRa.M
a; N a/˝LRa P

a
! RalHomRa.M

a; N a
˝Ra P

a/

is an isomorphism in D.Ra/.

2.7 Almost noetherian rings

The main goal of this section is to define the almost analogue of the noetherian prop-
erty. We also verify some of its basic properties. Even though most of the basic
facts about noetherian rings carry over to the almost world, we warn the reader that
Hilbert’s Nullstellensatz seems to be more subtle in the almost world (see Warn-
ing 2.7.9); we are able to establish it only in some very particular situations in Sec-
tion 2.11.

As in the previous sections, we fix a ring R with an ideal m such that m2 D m

and em D m˝R m is flat, and we always do almost mathematics with respect to this
ideal.

Definition 2.7.1. A ringR is almost noetherian if every ideal I �R is almost finitely
generated.

The main goal is to show that every almost finitely generated module over an
almost noetherian ring is almost finitely presented. In particular, an almost noetherian
ring is almost coherent.

Lemma 2.7.2. Let R be an almost noetherian ring, and M � Rn an R-submodule.
Then M is almost finitely generated.

Proof. We argue by induction on n. The base of induction is n D 1, where the claim
follows from the definition of an almost noetherian ring.

Suppose we know the claim for n � 1, so we deduce the claim for n. Denote by
Rn�1 �Rn a freeR-module spanned by the first n� 1 standard basis elements ofRn,
and denote by M 0 WD M \ Rn�1 the intersection of M with Rn�1. Then we have a
short exact sequence

0!M 0 !M !M 00 ! 0;
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where M 00 is naturally an R-submodule of R ' Rn=Rn�1. By the induction hypoth-
esis, M 0 is almost finitely generated. Then M 00 is almost finitely generated by almost
noetherianness of R. Thus, M is almost finitely generated by Lemma 2.5.15 (2).

Lemma 2.7.3. Let R be an almost noetherian ring. Then any almost finitely gener-
ated R-module M is almost finitely presented.

Proof. Pick any finitely generated sub-ideal m0 � m. By Lemma 2.5.5, there is an
R-linear homomorphism

f WRn !M

such that m0.Cokerf / D 0. Consider N WD Ker.f /. Lemma 2.7.2 ensures that N is
also almost finitely generated, so there is an R-linear homomorphism

g0WRm ! N

such that m0.Cokerg0/ D 0. Therefore, the composition

Rm
g
�! Rn

f
�!M

is a three-term complex with m0.Coker f / D 0 and m0.Ker f / � Im.g/. Since m0

was an arbitrary finitely generated sub-ideal in m, we conclude that M is almost
finitely presented by Lemma 2.5.7 (3).

Corollary 2.7.4. A ring R is almost noetherian if and only if any almost finitely
generated R-module M is almost finitely presented.

Proof. If R is almost noetherian, then any almost finitely generated R-module is
almost finitely presented due to Lemma 2.7.3.

Now we suppose that every almost finitely generated R-module is almost finitely
presented, and we wish to show thatR is almost noetherian. Consider an ideal I �R.
Then R=I is clearly a finitely generated R-module, in particular, it is almost finitely
generated. Therefore, it is almost finitely presented by our assumption on R. Now the
short exact sequence

0! I ! R! R=I ! 0

and Lemma 2.5.15 (3) imply that I is almost finitely generated.

Corollary 2.7.5. Let R! R0 be an almost isomorphism of rings. Then R is almost
noetherian if and only if R0 is.

Corollary 2.7.6. Let R be an almost noetherian ring, and M an almost finitely gen-
erated R-module. Then any submodule N �M is almost finitely generated.
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Proof. Consider the short exact sequence

0! N !M !M=N ! 0:

By construction, M=N is almost finitely generated and, therefore, almost finitely
presented by Lemma 2.7.3. So Lemma 2.5.15 (3) implies that N is almost finitely
generated.

Corollary 2.7.7. Let R be an almost noetherian ring. Then R is almost coherent.

Proof. Lemma 2.6.4 guarantees that it suffices to show that RŠ ' em is almost finitely
generated and every finitely generated submodule of RŠ is almost finitely presented.
The first property is trivial since RŠ is almost isomorphic to R, and the second one
follows from Lemma 2.7.3.

Corollary 2.7.8. Let R be an almost noetherian ring. Then an R-module M (resp.
an Ra-module M a) is almost coherent if and only if it is almost finitely generated.

Proof. It suffices to prove the claim for an honest R-module M . Corollary 2.7.7 and
Corollary 2.6.15 imply that M is almost coherent if and only if it is almost finitely
presented. Now Lemma 2.7.3 says thatM is almost finitely presented if and only if it
is almost finitely generated. This finishes the proof.

Warning 2.7.9. Unlike the case of usual noetherian rings, Hilbert’s Nullstellensatz is
more subtle in the almost world. In particular, we do not know if a polynomial algebra
in a finite number of variables over an almost noetherian ring is almost noetherian.
However, we will show that Hilbert’s Nullstellensatz holds for perfectoid valuation
rings in Section 2.11.

Example 2.7.10. Let BI be the period ring from [22, Definition 1.6.2]. Then [69,
Corollary 8.16] implies that the rings BCI are almost noetherian for any closed interval
I � .0;1/. Another family of examples of almost noetherian rings will be con-
structed in Section 2.11.

2.8 Base change for almost modules

In this section, we discuss the behavior of almost modules with respect to base
change. Recall that, for a ring homomorphism 'WR! S , we always do almost math-
ematics on S -modules with respect to the ideal mS WD mS ; look at Lemma 2.1.11
for details.

Lemma 2.8.1. Let 'WR ! S be a ring homomorphism, and let M a be an almost
finitely generated (resp. almost finitely presented) Ra-module. Then the Sa-module
M a
S
WDM a ˝Ra S

a is almost finitely generated (resp. almost finitely presented).
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Proof. The claim follows from Lemma 2.5.7 (2) and the fact that, for any finitely
generated ideal m00 � mS , there is a finitely generated ideal m0 � m such that
m00 � m0S . We give a complete proof only in the case of finitely presented mod-
ules because the other case is an easier version of the same argument.

First, we note that it suffices to show that M ˝R S is almost finitely presented.
Now we note that, for any finitely generated ideal m00 �mS , there is a finitely gener-
ated ideal m0 �m such that m00 �m0S . Therefore, it suffices to check the condition
of Lemma 2.5.7 (2) only for ideals of the form m0S , where m0 � m is a finitely
generated sub-ideal. Then we choose some finitely generated ideal m1 �m such that
m0 � m2

1 and use Lemma 2.5.7 (2) to find a finitely presented module N and a map
f WN !M such that m1.Kerf / D m1.Cokerf / D 0. Consider an exact sequence

0! K ! N
f
�!M ! Q! 0

and denote the image of f by M 0. Then we have the following exact sequences:

K ˝R S ! N ˝R S !M 0 ˝R S ! 0;

TorR1 .Q; S/!M 0 ˝R S !M ˝R S ! Q˝R S:

Since K ˝R S , TorR1 .Q; S/ and Q ˝R S are killed by m1S , we conclude that
Coker.f ˝R S/ and Ker.f ˝R S/ are annihilated by m2

1S . In particular, they are
killed by m0S . Since N ˝R S is finitely presented over S , Lemma 2.5.7 finishes the
proof.

Corollary 2.8.2. Let R! S be a ring homomorphism of almost coherent rings, and
let M a be an object of D�acoh.R/

a. Then M a ˝LRa S
a 2 D�acoh.S/

a.

Proof. The proof is similar to that of Proposition 2.6.18. We use Proposition 2.4.16
and a similar approximation argument based on Proposition 2.6.16 to reduce to the
case M ' F �, where F � is a bounded above complex of finite free modules. In this
case, the claim is essentially obvious.

Lemma 2.8.3. Let S be an R-algebra that is finite (resp. finitely presented) as an
R-module, and letM a be an Sa-module. ThenM a is almost finitely generated (resp.
almost finitely presented) over Ra if and only if it is almost finitely generated (resp.
almost finitely presented) over Sa.

Proof. As always, we first reduce the question to the case of an honest S -moduleM .
Now we use the observation that it suffices to check the condition of Lemma 2.5.7 (2)
only for the ideals of the form m0S for some finitely generated ideal m0 � m � R.
Then the only non-trivial direction is to show that M is almost finitely presented
over S if it is almost finitely presented over R. This is proven in a more general
situation in Lemma 2.8.4.
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Lemma 2.8.4. Let S be a possibly non-commutative R-algebra that is finite as a
left (resp. right) R-module, and let M be a left (resp. right) S -module that is almost
finitely presented over R. Then M is almost finitely presented over S (i.e., for every
finitely generated ideal m0 � m, there exist a finitely presented left (resp. right) S -
module N and a map N !M such that Kerf and Cokerf are annihilated by m0).

Remark 2.8.5. This lemma will actually be used for a non-commutative ring S in
the proof of Theorem 5.2.1 that, in turn, will be used in the proof of formal GAGA
for almost coherent sheaves Theorem 5.3.2. Namely, we will apply Lemma 2.8.4 to
S D EndPN .O ˚O.1/˚ � � � ˚O.N //.

Besides this application, we will usually use Lemma 2.8.4 when R and S are
almost coherent commutative rings. In this case, the proof of Lemma 2.8.4 can be
significantly simplified.

Proof. We give a proof for left S -modules; the proof for right S -modules is the same.
We start the proof by choosing some generators x1; : : : ;xn of S as anR-module. Then
we pick a finitely generated ideal m0 � m and another finitely generated ideal m1

such that m0 � m2
1. We also choose some generators ."1; : : : ; "k/ D m1 and find a

three-term complex

Rt
g
�! Rm

f
�!M

such that m1.Coker f / D 0 and m1.Ker f / � Im g. Next we consider the images
yi WD f .ei / 2 M of the standard basis elements in Rm. Then we can find some
ˇi;j;s;r 2 R such that

"sxiyj D

mX
rD1

ˇi;j;s;r � yr with ˇi;j;s;r 2 R

for any s D 1; : : : ; kI i D 1; : : : ; nI j D 1; : : : ;m. Furthermore, we have t “relations”

mX
jD1

˛i;jyj D 0 with ˛i;j 2 R

such that for any relation
Pm
iD1 biyi D 0 with bi 2 R and any " 2 m1, we have that

the vector ¹"biºmiD1 2 R
m lives in the R-subspace generated by vectors ¹˛i;j ºmiD1 for

j D 1; : : : ; t . Or, in other words, if
Pm
jD1 ˛i;jyj D 0 then ".

Pm
jD1 ˛i;j ej / 2 Im.g/

for any " 2 m1.
Now we are finally ready to define a three-term complex

SnmkCt
 
�! Sm

'
�!M:

We define the map ' to be the unique S -linear homomorphism such that '.ei / D yi
for the standard basis in Sm. We define as the unique S -linear homomorphism such
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that

 .fi;j;s/ D "sxiej �

mX
rD1

ˇi;j;s;r � er and  .f 0l / D
mX
jD1

˛l;j ej

for the standard basis ®
fi;j;s; f

0
l

¯
i�n;j�m;s�k;l�t

2 SnmkCt :

Then we clearly have that ' ı  D 0 and that m1.Coker '/ D 0. We claim that
m2
1.Ker'/ � Im .

Let '.
Pm
iD1 ciei / D 0 for some elements ci 2 S . We can write each

ci D

nX
jD1

ri;jxj with ri;j 2 R (2.8.1)

because x1; : : : ; xn are R-module generators of S . Consequently, the condition that
'.
Pm
iD1 ciei / D 0 is equivalent to

P
i;j ri;jxjyi D 0. Now recall next that for any

s D 1; : : : ; k we have

"sxjyi D

mX
rD1

ǰ;i;s;r � yr :

Therefore, multiplying equation (2.8.1) by "s , we get an equality

0 D "s

�X
i;j

ri;jxjyi

�
D

X
i;j

ri;j

� mX
rD1

ǰ;i;s;r � yr

�
D

mX
rD1

�X
i;j

ri;j ǰ;i;s;r

�
yr :

This means that for any s0 D 1; : : : ; k, the vector
®
"s0.

P
i;j ri;j ǰ;i;s;r/

¯m
rD1
2 Rm

lives in an R-subspace generated by vectors ¹˛i;j ºmiD1. In particular, for any r and s0,
"s0.

P
i;j ri;j ǰ;i;s;rer/ is equal to  .some sum of f 0

l
/ by the definition of  .

After unwinding all definitions, we get the following:

"s0"s

� mX
iD1

ciei

�
D "s0"s

�X
i;j

ri;jxj ei

�
D "s0

�X
i;j

ri;j

�
"sxj ei �

X
r

ǰ;i;s;rer C
X
r

ǰ;i;s;rer

��
D "s0

�X
i;j

ri;j

�
"sxj ei �

X
r

ǰ;i;s;rer

��
C "s0

�X
r

�X
i;j

ri;j ǰ;i;s;r

�
er

�
D  

�
"s0
X
i;j

ri;jfj;i;s

�
C  

�
some sum of f 0l

�
:
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So we see that m2
1 Ker.'/ � Im . In particular, we have m0 Ker.'/ � Im .

Now we replace the map 'WSn !M with the induced map

'WCoker. /!M

to get a map from a finitely presented left S -module such that Ker.'/ and Coker.'/
are annihillated by m0.

2.9 Almost faithfully flat algebras

In this section, we study the almost faithfully flat morphisms of algebras. This notion
turns out to be quite subtle in the almost world due to the following two observa-
tions: The first observation is that, for an almost faithfully flat morphism R! S , the
Ra
Š

-module Sa
Š

is always flat, but not necessarily faithfully flat (see Warning 6.1.8).
Another observation is that Sa

Š
usually does not have a structure of an R-algebra.

For these reasons, it is not evident how to relate almost faithful flatness of an
R-algebra S to some classical faithful flatness. In order to make this possible, we
replace the .�/Š-functor with another functor .�/ŠŠ that takes into account the R-
algebra structure on S . This functor will send almost faithfully flat R-algebras into
faithfully flat R-algebras, however, it will not, in general, send flat R-algebras into
flat R-algebras. However, this functor will suffice for the purpose of studying almost
faithfully flat morphisms.

In this section, we follow [26] pretty closely.
For the rest of the section, we fix a ringR with an ideal of almost mathematics m.

Definition 2.9.1. A homomorphism ofR-algebrasA!B is almost flat (resp. almost
faithfully flat) if Ba is a flat (resp. faithfully flat) Aa-module (see Definition 2.2.5).

Lemma 2.9.2. Any (faithfully) flat A-algebra B is almost (faithfully) flat.

Proof. This follows directly from Lemma 2.2.6.

Lemma 2.9.3. Let A be an R-algebra and f WA! B a morphism of R-algebras.
Then B is almost faithfully flat over A if and only if Ba is a flat Aa-module and
Aa! Ba is universally injective, i.e., for any Aa-moduleM a, the natural morphism
M a !M a ˝Aa B

a is injective in ModaA.

Proof. Suppose that B is almost faithfully flat. Then Ba is a flat Aa-module by def-
inition. So we only need to show that Aa ! Ba is universally injective. Pick any
M a 2ModaA and consider the Aa-module

N a
WD Ker.M a

!M a
˝Aa B

a/:
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Flatness of Ba implies that the morphism

N a
˝Aa B

a
!M a

˝Aa B
a

is injective. Now we also note that the morphism

N a
˝Aa B

a
!M a

˝Aa B
a

is equal to zero by our choice of N a. This implies that N a ˝Aa B
a ' 0. Since Ba is

faithfully flat over Aa, we conclude that N a ' 0.
Now we suppose that Ba is a flat Aa-module and Aa ! Ba is universally injec-

tive. Thus, for any Aa-module M a, we have an injection M a ! M a ˝Aa B
a. So if

M a ˝Aa B
a ' 0, we conclude that M a ' 0. Thus Ba is faithfully flat over Aa.

Corollary 2.9.4. Let A be an R-algebra and f WA! B a morphism of R-algebras.
Then B is almost faithfully flat over A if and only if Ba and Coker.f a/ are flat Aa-
modules.

Proof. By Lemma 2.9.3, it suffices to show that f a is universally injective if and only
if Coker.f a/ is Aa-flat. Next we observe that, for any Aa-module M a, we have the
isomorphism Ker.M a !M a ˝Aa B

a/ ' H�1
�
M a ˝LAa Coker.f a/

�
. In particular,

H�1
�
M a
˝
L
Aa Coker.f a/

�
' 0

for any Aa-moduleM a if and only if the functor �˝Aa Coker.f a/WModaA!ModaA
is exact. In other words, Aa ! Ba is universally injective if and only if Coker.f a/
is flat over Aa.

Now we define the functor .�/ŠŠWAlgR ! AlgR. We start by constructing an R-
algebra structure on R˚ Aa

Š
D R˚ .em˝R A/ by defining the multiplication as

.r ˚ a/ � .r 0 ˚ a0/ D .rr 0/˚ .ra0 C r 0aC aa0/

and the summation law coordinate-wise. One easily checks that this is a well-defined
(unital, commutative) R-algebra structure on R˚Aa

Š
. We consider the R-submodule

IA of R˚ AŠ generated by elements of the form .mn;�m˝ n˝ 1A/ for m, n 2 m.

Lemma 2.9.5. The R-module IA � R˚ AaŠ is an ideal.

Proof. It suffices to show that, for any element .r; x˝ y ˝ a/ inR˚Aa
Š
, the product

.r ˚ x ˝ y ˝ a/ � .mn˚�m˝ n˝ 1A/

lies in IA for any m, n 2 m. By definition,

.r ˚ x ˝ y ˝ a/ � .mn˚�m˝ n˝ 1A/

D .rmn/˚ .�rm˝ n˝ 1A C xm˝ yn˝ a � xm˝ yn˝ a/

D r.mn˚�m˝ n˝ 1A/ 2 IA:
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Definition 2.9.6. The functor .�/ŠŠWAlgR ! AlgR is defined as

A 7! .R˚ AaŠ /=IA

with the induced R-algebra structure.

For any R-algebra A, there is a functorial R-algebra homomorphism R˚ Aa
Š
!

A defined by
r ˚ .m˝ n˝ a/ 7! r Cmna:

Clearly, this homomorphism is zero on IA, so it descends to an R-algebra homomor-
phism �WAŠŠ ! A.

Lemma 2.9.7. (1) For any R-algebra A, the natural morphism �WAŠŠ! A is an
almost isomorphism.

(2) A morphism of R-algebras f WA! B is almost injective (as a morphism of
R-modules) if and only if fŠŠWAŠŠ ! BŠŠ is injective.

(3) For any morphism of R-algebras f WA ! B , there is a canonical isomor-
phism of AŠŠ-modules Coker.fŠŠ/ ' Coker.f /Š.

(4) The functor .�/ŠŠWAlgR ! AlgR commutes with tensor products.

Proof. (1) We recall that the morphism AŠ ! A is an almost isomorphism. In par-
ticular, it is almost surjective. Thus, AŠŠ ! A is also almost surjective. Now we
check almost injectivity. Suppose �.a/ D 0 where a D r ˚

Pk
iD1 mi ˝ ni ˝ ai 2

R˚ em˝A and a 2 AŠŠ is the class of a in AŠŠ. Then the condition �.a/ D 0 implies
that there is an equality

r C

kX
iD1

miniai D 0

in A. In particular, for every " 2 m, we have "r D
Pk
iD1.�mi /."niai / in A. Thus,

we see that

"a D "r ˚

kX
iD1

mi ˝ ni ˝ "ai D

kX
iD1

.�mi /."niai /˚

kX
iD1

mi ˝ ni"ai ˝ 1A

D

kX
iD1

�
.�mi /."niai /˚mi ˝ "niai ˝ 1A

�
2 IA:

Therefore, "a D 0 for every " 2 m. In particular, � is almost injective.
(2) and (3) Consider a commutative diagram

AŠŠ BŠŠ

A B:

fŠŠ

�A �B

f
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Since �A and �B are almost isomorphisms, we see that f is almost injective if and
only if fŠŠ is almost injective. So we are left to show that fŠŠ is injective if f is almost
injective, and Coker.fŠŠ/D Coker.f /Š. For this, we consider a commutative diagram
of short exact sequences

0 IA R˚ AŠ AŠŠ 0

0 IB R˚ BŠ BŠŠ 0:

˛ id˚fŠ fŠŠ

Clearly, ˛ is surjective, Ker.id˚ fŠ/ D Ker.fŠ/ D Ker.f /Š, and Coker.id˚ fŠ/ D
Coker.fŠ/ D Coker.f /Š. Thus, the Snake lemma implies that

Ker.f /Š ! Ker.fŠŠ/

is surjective and
Coker.fŠŠ/! Coker.f /Š

is an isomorphism. Thus fŠŠ is injective if f is almost injective, and Coker.fŠŠ/ D
Coker.f /Š.

(4) This is an elementary but pretty tedious computation. We leave it to the inter-
ested reader.

Corollary 2.9.8. For any R-algebra A, the forgetful functor Mod�Aa !Mod�Aa
ŠŠ

is an
equivalence for � 2 ¹“ ”; aft; afp; acohº.

Proof. For � D “ ”, the claim follows from Lemma 2.9.7 (1), Corollary 2.5.13, and
Lemma 2.6.3.

Corollary 2.9.9. Let f WA! B be an almost faithfully flat morphism of R-algebras.
Then fŠŠWAŠŠ ! BŠŠ is faithfully flat.

Proof. Let us denote by Q the cokernel of f as an A-module. Then Lemma 2.9.3
and Lemma 2.9.7 (2), (3) ensure that fŠŠWAŠŠ ! BŠŠ is injective and Coker.fŠŠ/ D
Coker.f /Š. Now Corollary 2.9.4 and Lemma 2.2.7 applied to Aa

ŠŠ
' Aa imply that

Coker.fŠŠ/ D Coker.f /Š is a flat AŠŠ-module. This already implies that B is a flat
AŠŠ-module as an extension of two flat AŠŠ-modules. To see that it is faithfully flat, we
note that flatness of Coker.fŠŠ/ implies that

M !M ˝AŠŠ BŠŠ

is injective for any AŠŠ-moduleM . SoM ˝AŠŠ BŠŠ ' 0 if and only ifM ' 0. In other
words, BŠŠ is a faithfully flat AŠŠ-module.

Warning 2.9.10. The functor .�/ŠŠ does not send flat A-algebras to flat AŠŠ-algebras.
See [26, Remark 3.1.3].
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For future reference, we also show that the base change functor interacts espe-
cially well with the Hom-functor in the almost flat situation.

Lemma 2.9.11. Let R! S be an almost flat morphism of rings, let M be an almost
finitely presented R-module, and let N be an R-module. Then the natural map

HomR.M;N /˝R S ! HomS .M ˝R S;N ˝R S/

is an almost isomorphism.

Proof. This follows from the classical˝-Hom adjunction and Lemma 2.5.18.

Lemma 2.9.12. Let R be an almost coherent ring, let R! S be an almost flat map
of rings, and let M 2 D�acoh.R/, N 2 DC.R/. Then the natural map

RHomR.M;N /˝
L
R S ! RHomS .M ˝

L
R S;N ˝

L
R S/

is an almost isomorphism.

Proof. We recall that we always have a canonical isomorphism RHomR.K; L/ '

RHomS .K ˝
L
R S; L/ for any K 2 D�.R/ and any L 2 DC.S/. This implies that it

suffices to show that the natural map

RHomR.M;N /˝
L
R S ! RHomR.M;N ˝

L
R S/

is an almost isomorphism. This follows from Proposition 2.6.20.

2.10 Almost faithfully flat descent

The main goal of this section is to show almost faithfully flat descent for almost
modules.

For the rest of the section, we fix a ringR with an ideal of almost mathematics m.
In this section, for any morphism A! B of R-algebras, we denote the tensor

product functor �˝Aa Ba simply by

f �WModaA !ModaB :

In particular, if A! B is a morphism of R-algebras, the canonical “co-projection”
morphisms pi WB ! B ˝A B induce morphisms

p�i WModaB !ModaB˝AB

for i 2 ¹1; 2º. The same applies to the “co-projections”

p�i;j WModaB˝AB !ModaB˝AB˝AB

for i ¤ j 2 ¹1; 2; 3º.
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Definition 2.10.1. The almost descent category DescaB=A for a morphism of R-alge-
bras A! B is the category whose objects are pairs .M a; �/, where M a 2 ModaB
and

�Wp�1 .M
a/! p�2 .M

a/

in an isomorphism of .B ˝A B/a-modules such that p�1;3.�/ D p�2;3.�/ ı p
�
1;2.�/.

Morphisms between .M a; �M / and .N a; �N / are defined to be Ba-linear homomor-
phisms f WM a ! N a such that the diagram

p�1 .M
a/ p�2 .M

a/

p�1 .N
a/ p�2 .N

a/

�M

p�
1
.f / p�

2
.f /

�N

commutes.

Remark 2.10.2. Explicitly, an object of the descent category DescaB=A is a Ba-mod-
ule M a with a .B ˝A B/a-linear homomorphism �WM a ˝Aa B

a ! Ba ˝Aa M
a

satisfying the “cocycle condition”.

There is a natural functor

IndWModaA ! DescaB=A

that sendsM a to f �.M a/DM a˝Aa B
a where we make the canonical identification

�Wp�1f
�.M a/ ' p�2f

�.M a/ coming from the equality f ı p1 D f ı p2.
To define the functor in the other direction, we note that we have the natural Ba-

module morphisms �i WM a ! p�i .M
a/ for i 2 ¹1; 2º. Explicitly, they are defined as

morphisms induced by �1.m/Dm˝ 1 and �2.m/D 1˝m. Therefore, given a descent
datum .M a; �/ 2 DescaB=A, we can define an Aa-module

Ker
�
M a; �

�
WD Ker

�
M a i1��

�1i2
������!M a

˝Aa B
a
�

that is functorial in DescaB=A. Therefore, this defines a functor

KerWDescaB=A !ModaA:

We show that Ker and Ind are quasi-inverse to each other and induce an equiva-
lence between DescaB=A and ModaA for an almost faithfully flat morphism f WA! B .

Theorem 2.10.3. Let f WA! B be an almost faithfully flat morphism. Then

IndWModaA ! DescaB=A

is an equivalence, and its quasi-inverse is given by KerWDescaB=A !ModaA.
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Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fŠŠ to
assume that f is faithfully flat. Then the claim follows from the classical faithfully
flat descent (see [14, Theorem 6.1/4]) and the observation that the classical versions
of Ind and Ker carry almost isomorphisms to almost isomorphisms.

On a similar note, we show that the Amitsur complex for an almost faithfully flat
morphism is acyclic.

Lemma 2.10.4. Let f WA! B be an almost faithfully flat morphism of R-algebras,
and M 2ModaB . Then the Amitsur complex

0!M a
!M a

˝Aa B
a
!M a

˝Aa B
a
˝Aa B

a
! � � �

is an exact complex of ModaB -modules (see the discussion around [68, Tag 023K] for
the precise definition of differentials in this complex).

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fŠŠ to
assume that f is faithfully flat. Then the claim follows from [68, Tag 023M].

Now we show that some properties of Aa-modules can be verified after a faith-
fully flat base change.

Lemma 2.10.5. Let f WA! B be an almost faithfully flat morphism of R-algebras,
and let M a be an Aa-module. Then M a is an almost finitely generated (resp. almost
finitely presented) Aa-module if and only if M a ˝Aa B

a is an almost finitely gener-
ated (resp. almost finitely presented) Ba-module.

Proof. Corollary 2.9.8 and Corollary 2.9.9 imply that we may replace f with fŠŠ to
assume that f is a faithfully flat morphism. Then a standard argument reduces the
questions to the case of an honest A-module M , i.e., we show that an A-module M
is almost finitely generated (resp. almost finitely presented) if so is the B-module
M ˝A B .

We start with the almost finitely generated case. So we assume that M ˝A B is
almost finitely generated over B and wish to show thatM is almost finitely generated
over A. Our assumption implies that, for any " 2 m, we can choose a morphism
gW Bn ! M ˝A B such that ".Coker g/ D 0. Let us consider the standard basis
e1; : : : ; en of Bn, and write

g.ei / D
X
j

mi;j ˝ bi;j with mi;j 2M;bi;j 2 B:

We define the A-module F as the finite free A-module with the basis ei;j . Then we
define the morphism

hWF !M

https://stacks.math.columbia.edu/tag/023K
https://stacks.math.columbia.edu/tag/023M
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as the unique A-linear homomorphism with h.ei;j / D mi;j . It is easy to see that
".Coker.h˝A B// D 0. Since f is faithfully flat, this implies that ".Coker h/ D 0.
We conclude that M is almost finitely generated as " was an arbitrary element of m.

Now we deal with the almost finitely presented case. We pick some finitely gener-
ated ideal m0�m, and another finitely generated ideal m1�m such that m0 �m1m.
We try to find a three-term complex

Am
g
�! An

f
�!M

such that m0.Cokerf / D 0 and m0.Kerf / � Img.
The almost finitely generated case established above implies that M is almost

finitely generated. In particular, we have some morphism

An
f
�!M

such that m1.Cokerf /D 0, thus m1.Coker.f ˝A B//D 0 as well. Therefore, we can
apply Lemma 2.5.6 to find a homomorphism g0WBm ! Bn satisfying the conditions
m0.Ker.f ˝A B//� Im.g0/ and .f ˝A B/ ı g0D 0. This implies that g0 lands inside
Ker.f ˝A B/ D Ker.f /˝A B due to A-flatness of B .

Now we do the same trick as above: we write

g.ei / D
X
j

mi;j ˝ bi;j with mi;j 2 Ker.f /; bi;j 2 B;

we define an R-module F as a finite free A-module with a basis ei;j , and then we
define the morphism

gWF ! Ker.f /

as the unique A-linear morphism such that g.ei;j / D mi;j . With that, we can see
that m0.Ker.f ˝A B// � Im.g ˝A B/. Since B is faithfully flat, we conclude that
m0.Kerf / � Im.g/ as well. This shows that a three-term complex

F
g
�! An

f
�!M

does the job. Therefore, M is an almost finitely presented A-module.

Corollary 2.10.6. Let f WA!B be an almost faithfully flat morphism ofR-algebras,
and let M a be an Aa-module. Suppose that M a ˝Aa B

a is an almost coherent
Ba-module. Then so is M a.

Proof. This follows directly from Lemma 2.6.3 and Lemma 2.10.5.

Lemma 2.10.7. Let f WA! B be an almost faithfully flat morphism of R-algebras,
and let M a be an Aa-module. Then M a is a flat (resp. faithfully flat) Aa-module if
and only if M a ˝Aa B

a is a flat (resp. faithfully flat) Ba-module.
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Proof. The classical proof works verbatim in the almost world. We leave the details
to the reader.

2.11 (Topologically) Finite type K C-algebras

This section is devoted to the proof that (topologically) finite type algebras over a
perfectoid valuation ring KC are almost noetherian. We refer to Appendix B for the
relevant background on perfectoid valuation rings.

For the rest of the section, we fix a perfectoid valuation ring KC (see Defini-
tion B.2) with perfectoid fraction fieldK, associated rank-1 valuation ring OK D K

ı

(see Remark B.3), and ideal of topologically nilpotent elements m D Kıı � KC.
Lemma B.12 ensures that m is flat over KC and em ' m2 D m. Therefore, it makes
sense to do almost mathematics with respect to the pair .KC;m/. In what follows,
we always do almost mathematics on KC-modules with respect to this ideal.

Warning 2.11.1. The ideal m � KC is not the maximal ideal of KC. Instead, it is
the maximal ideal of the associated rank-1 valuation ring OK .

Lemma 2.11.2. Let KC be a perfectoid valuation ring. Then the natural inclusion
�WKC ! OK is an almost isomorphism.

Proof. Clearly, the map �WKC ! OK is injective, so it suffices to show that its co-
kernel is almost zero, i.e., annihilated by any " 2 m. Pick an element x 2 OK , then
"x 2 m � KC. Therefore, we conclude that ".Coker �/ D 0 finishing the proof.

The first main result of this section is that any (topologically) finite type algebra
over KC is almost noetherian.

Lemma 2.11.3. Let KC be a perfectoid valuation ring, and n � 0 an integer. Then
the Tate algebra KChT1; : : : ; Tni is almost noetherian.

Proof. First, we note that OKhT1; : : : ; Tni ' K
ChT1; : : : ; Tni ˝KC OK . Therefore,

Lemma 2.11.2 implies that the natural morphism

KChT1; : : : ; Tni ! OKhT1; : : : ; Tni

is an almost isomorphism. So Corollary 2.7.5 ensures that it suffices to show that
OKhT1; : : : ; Tni is almost noetherian.

Pick any ideal I � OKhT1; : : : ; Tni D KhT1; : : : ; Tni
ı and 0 ¤ " 2m. Now [43,

Satz 5.1] (or [11, Lemma 6.4/5]) applied toB DKhT1; : : : ;Tni,EDOKhT1; : : : ;Tni,
E 0 D I , and ˛ D j"jK guarantees that there is a finite submodule E 00 � I such that
"I � E 00. Since " was an arbitrary element of m, we conclude that I is indeed almost
finitely generated.
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Corollary 2.11.4. Let KC be a perfectoid valuation ring, $ 2 m, and n � 0 an
integer. Then the polynomial algebra .KC=$m/ŒT1; : : : ; Tn� is almost noetherian for
any m � 1.

Proof. It easily follows from Lemma 2.11.3, Corollary 2.7.4, and Lemma 2.8.3.

Theorem 2.11.5. LetKC be a perfectoid valuation ring, and A a topologically finite
type KC-algebra. Then A is almost noetherian.

Proof. Since A is topologically finite type over KC, there exists a surjection

f WKChT1; : : : ; Tni ! A! 0:

Pick an ideal I �A and consider its pre-image J D f �1.I /. Then J is almost finitely
generated over KChT1; : : : ; Tni by Lemma 2.11.3. Therefore, Lemma 2.5.15 (1)
ensures that I is almost finitely generated overKChT1; : : : ;Tni. Finally, Lemma 2.8.3
ensures that I is almost finitely generated over A.

Now we are going to show that any finite type KC-algebra is almost noetherian.
Before doing this, we need a couple of preliminary lemmas.

Lemma 2.11.6. LetR be a rank-1 valuation ring with a non-zero topologically nilpo-
tent element$ 2 R, andM a finite RŒT1; : : : ; Tn�-module. ThenMŒ$1�DMŒ$c�

for some c � 0.

Proof. The RŒT1; : : : ; Tn�-module M 0 WDM=MŒ$1� is finitely generated. Further-
more, M 0 is R-flat because it is torsion free (and R is a valuation ring). Therefore,
[68, Tag 053E] ensures that M 0 is finitely presented over RŒT1; : : : ; Tn�. Thus, we
conclude that MŒ$1� is finitely generated. In particular, MŒ$1� D MŒ$c� for
some N .

Lemma 2.11.7. LetR be a rank-1 valuation ring with a non-zero topologically nilpo-
tent element$ 2R,M a finiteRŒT1; : : : ; Tn�-module, andN �M anRŒT1; : : : ; Tn�-
submodule. Then there is a non-negative integer c such that

N \$mCcM D $m.N \$cM/

for every m � 0.

Proof. Lemma 2.11.6 ensures that there is a suitable c such that .M=N/Œ$1� D
.M=N/Œ$c�. Therefore, [25, Lemma 0.8.2.14] guarantees that, indeed,

N \$mCcM D $m.N \$cM/

for every m � 0.

https://stacks.math.columbia.edu/tag/053E
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Lemma 2.11.8. Let KC be a perfectoid valuation ring, and n � 0 an integer. Then
the polynomial algebra KCŒT1; : : : ; Tn� is almost noetherian.

Proof. Similarly to the proof of Lemma 2.11.3, it suffices to treat the caseKC D OK
a perfectoid valuation ring of rank-1 with a pseudo-uniformizer $ .

Now we fix an ideal I � A WD OK ŒT1; : : : ; Tn� and wish to show that I is almost
finitely generated. Recall that the polynomial algebra KŒT1; : : : ; Tn� is noetherian by
Hilbert’s Nullstellensatz. Therefore, the ideal

I
h 1
$

i
� KŒT1; : : : ; Tn�

is finitely generated. So we can choose a finitely generated sub-ideal J � I such that
any element of I=J is annihilated by a power of$ , i.e., .I=J /Œ$1�D I=J . Clearly
I=J is a submodule of a finite A-module A=J , so Lemma 2.11.6 easily implies that

I=J D .I=J /Œ$1� D .I=J /Œ$c�

for some c � 0. In other words, $cI � J . Now we use Lemma 2.11.7 to get an
integer c0 such that

I \$c0A � $cI � J:

We note that I=.I \$c0A/ is an ideal in A=$c0A, and therefore it is almost finitely
generated over A=$c0A by Corollary 2.11.4. Lemma 2.8.3 guarantees that it is also
almost finitely generated over A.

The inclusion I \$c0A � J implies that I=J is a quotient of an almost finitely
generated A-module I=.I \$c0A/, and so is also almost finitely generated. Finally,
the short exact sequence

0! J ! I ! I=J ! 0

and Lemma 2.5.15 (2) imply that I is almost finitely generated as well.

Theorem 2.11.9. Let KC be a perfectoid valuation ring, and A a finite type KC-
algebra. Then A is almost noetherian.

Proof. It follows from Lemma 2.11.8, similarly to how Theorem 2.11.5 follows from
Lemma 2.11.3.

2.12 Almost finitely generated modules over adhesive rings

This section discusses some basic aspects of almost finitely generated modules over
adhesive rings. The results of this section will be crucial in defining and verifying
certain good properties of adically quasi-coherent, almost coherent sheaves on “good”
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formal schemes in Section 4.5. One of the essential ingredients that we will need later
is the “weak” version of the Artin–Rees lemma (Lemma 2.12.6) and Lemma 2.12.7.
Recall that these properties are already known for finite modules over adhesive rings.
This is explained in a beautiful paper [24]. The main goal of this section is to extend
these results to the case of almost finitely generated modules.

That being said, let us introduce the set-up for this section. We start with the
definition of an adhesive ring:

Definition 2.12.1. [24, Definition 7.1.1] An adically topologized ring R endowed
with the adic topology defined by a finitely generated ideal I � R is said to be (I -
adically) adhesive if it is noetherian outside7 I and satisfies the following condition:
for any finitely generated R-module M , its I1-torsion part MŒI1� is finitely gener-
ated.

Remark 2.12.2. Following the convention of [24], we do not require a ring R with
adic topology to be either I -adically complete or separated.

Set-up 2.12.3. We fix an I -adically adhesive ringR with an ideal m such that I �m,
m2 D m and em WD m˝R m is flat. We always do almost mathematics with respect
to the ideal m.

The main example of an adhesive ring is a (topologically) finitely presented
algebra over a complete microbial valuation ring. This follows from [24, Proposi-
tion 7.2.2] and [24, Theorem 7.3.2]. For example, any topologically finitely presented
algebra over a complete rank-1 valuation ring is adhesive.

Lemma 2.12.4. Let R be as in Set-up 2.12.3, and let M be an I -torsionfree almost
finitely generated module. Then M is almost finitely presented. Similarly, any satu-
rated submodule8 of an almost finitely generated R-module is almost finitely gener-
ated.

Proof. As M is almost finitely generated, we can find a finitely generated submod-
ule N � M that contains m0M for a choice of a finitely generated ideal m0 � m.
Since N is a submodule of M , it is itself I -torsion free. Then [24, Proposition 7.1.2]
shows that N is finitely presented. Then Lemma 2.5.7 (2) implies that M is almost
finitely presented.

Now let M be an almost finitely generated R-module, and let M 0 � M be a
saturated submodule. Then M=M 0 is almost finitely generated by Lemma 2.5.15 (1)
and it is I -torsion free. Therefore, it is almost finitely presented by the argument
above. Then Lemma 2.5.15 (3) guarantees that M 0 is almost finitely generated.

7By definition, this means that the scheme SpecA n V.I / is noetherian.
8A submodule N �M is saturated if M=NŒI1� D 0.
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Lemma 2.12.5. Let R be as in Set-up 2.12.3, and let M be an almost finitely gen-
erated R-module. Then the I1-torsion module MŒI1� is bounded (i.e., there is an
integer n such that MŒI n� DMŒI1�).

Proof. Since M is almost finitely generated and the ideal I � m is finitely gener-
ated, we conclude that there exists a finitely generated submodule N �M such that
IM � N . Then I.MŒI1�/ � NŒI1�, and NŒI1� is finitely generated by adhesive-
ness of the ring R. In particular, there is an integer n such that NŒI1� is annihilated
by I n. This implies that any element of MŒI1� is annihilated by I nC1.

Lemma 2.12.6. Let R be as in Set-up 2.12.3, and let M be an almost finitely gener-
ated R-module. Suppose that N �M is a submodule of M . For any integer n, there
is an integer m such that N \ ImM � I nN . In particular, the induced topology on
the module N coincides with the I -adic one.

Proof. If M is finitely generated, then this is [24, Theorem 4.2.2]. In general, we
use the definition of almost finitely generated module to find a submodule M 0 �M
such that M 0 is finitely generated and IM � M 0. We define N 0 WD N \M 0 as the
intersection of those modules. Then the established “weak” form of the Artin–Rees
lemma for finitely generated R-modules provides us with an integer m such that
N 0 \ ImM 0 � I nN 0. In particular, we have

ImC1M \N 0 � ImM 0 \N 0 � I nN 0 � I nN:

Then we conclude that

ImC2M \N � ImC1M \M 0 \N � ImC1M \N 0 � I nN:

Since n was arbitrary, we conclude the claim.

Lemma 2.12.7. Let R be as in Set-up 2.12.3, and let M be an almost finitely gen-
erated R-module. Then the natural morphism M ˝R yR !cM is an isomorphism.
In particular, any almost finitely generated module over a complete adhesive ring is
complete.

Proof. We know that the claim holds for finitely generated modules by [24, Proposi-
tion 4.3.4]. Now we deal with the almost finitely generated case. We choose a finitely
generated submodule N � M such that IM � N . Lemma 2.12.6 implies that the
induced topology on N coincides with the I -adic topology on N . Thus the short
exact sequence

0! N !M !M=N ! 0



Almost commutative algebra 74

remains exact after completion. Since R ! yR is flat by [24, Proposition 4.3.4], we
conclude that we have a morphism of short exact sequences

0 N ˝R yR M ˝R yR .M=N/˝R yR 0

0 bN cM 1M=N 0:

'N 'M 'M=N

Note that 'N is an isomorphism asN is finitely generated, and 'M=N is isomorphism
since it is an I -torsion module so M=N ' .M=N/˝R yR ' 1M=N . The five lemma
implies that 'M is an isomorphism as well.

Corollary 2.12.8. Let R be as in Set-up 2.12.3, and let M 2 Dacoh.R/. Suppose that
R is I -adically complete. Then M is I -adically derived complete.9

Proof. First of all, we note that [68, Tag 091P] implies that M is derived complete
if and only if so are Hi .M/ for any integer i . So it suffices to show that any almost
coherent R-module is derived complete. Lemma 2.12.7 gives that any such module is
classically complete, and [68, Tag 091T] ensures that any classically complete mod-
ule is derived complete.

2.13 Modules over topologically finite type K C-algebras

The main goal of this section is to show that almost finite presentation of derived com-
plete modules over a topologically finite type KC-algebras can be checked modulo
the pseudo-uniformizer.

For the rest of the section we fix a valuation perfectoid ring KC (see Defini-
tion B.2) with perfectoid fraction fieldK, associated rank-1 valuation ring OK D K

ı

(see Remark B.3), and ideal of topologically nilpotent elements mDKıı �KC with
a pseudo-uniformizer $ 2 m as in Lemma B.9 (in particular, m D

S
n$

1=pnKC).
Lemma B.12 ensures that m is flat over KC and em ' m2 D m. Therefore, it makes
sense to do almost mathematics with respect to the pair .KC;m/. In what follows,
we always do almost mathematics on KC-modules with respect to this ideal.

Lemma 2.13.1. Let R be a topologically finite type KC-algebra, and M an R-
module that is $ -adically derived complete. Suppose that M=$M is almost coher-
ent, then M is almost coherent as well.

9Look at [68, Tag 091N] for the definition of derived completeness (or Definition A.1 in
case of a principal ideal I ).

https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091N
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Proof. Theorem 2.11.5 ensures that R is almost noetherian, and so Corollary 2.7.8
implies that it suffices to check that M is almost finitely generated. Recall that m DS
n$

1=pnKC for a pseudo-uniformizer $ as in Lemma B.9.
The assumption on M says that M=$M is almost coherent. Therefore, there is a

morphism
gW .R=$R/c !M=$M

such that $1=p.Coker g/ D 0. We denote its cokernel by Q WD Coker.g/. Now we
lift g to a morphism

gWRc !M

and denote is cokernel by Q WD Coker.g/.

Step 1:Q is annihilated by$1=p . Suppose that$1=pQ¤ 0, so there is x0 2Q such
that $1=px0 ¤ 0. Firstly, we note that Q=$ ' Q is annihilated by $1=p , so

$1=px0 D $x1 D $
1�1=p.$1=px1/:

Now we apply the same thing to x1 to get

$1=px0 D $
1�1=p.$1=px1/ D .$

1�1=p/2.$1=px2/:

Continue the process to get a sequence of elements xn 2 Q such that

$1�1=p.$1=pxn/ D $
1=pxn�1:

The sequence ¹$1=pxiº gives an element of

T 0.Q;$1�1=p/ WD lim
n
.� � �

$1�1=p

�����! Q
$1�1=p

�����! Q/

that is non-trivial because $1=px0 ¤ 0. Now we note that Rc is derived $ -adically
complete since R is classically $ -adically complete by [11, Corollary 7.3/9] and
any classically complete module is derived complete by [68, Tag 091T]. Therefore,
Q is $ -adically derived complete as a cokernel of derived complete modules (see
[68, Tag 091U]). Now [68, Tag 091S], Remark A.2, and [68, Tag 091Q] imply that
T 0.Q;$1�1=p/ must be zero leading to the contradiction.

Step 2: M is almost coherent. Note that Q ' Q=$Q and Q is $1=p-torsion, so
Q ' Q. We know that Q is almost finitely generated over R=$R because it is
a quotient of an almost finitely generated module M=$M . Therefore, Q ' Q is
almost finitely generated over R by Lemma 2.8.3. Now M is an extension of a finite
R-module Im.g/ by an almost finitely generated R-module Q, so it is also almost
finitely generated by Lemma 2.5.15 (2). In particular, it is almost coherent since R is
almost noetherian.

https://stacks.math.columbia.edu/tag/091T
https://stacks.math.columbia.edu/tag/091U
https://stacks.math.columbia.edu/tag/091S
https://stacks.math.columbia.edu/tag/091Q
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Theorem 2.13.2. Let R be a topologically finite type KC-algebra, and M 2 D.R/
a $ -adically derived complete complex. Suppose that ŒM=$� 2 DŒc;d�acoh .R=$/, then
M 2 DŒc;d�acoh .R/.

Proof. Lemma A.3 guarantees that M 2 DŒc;d�.R/, so we only need to show that
cohomology groups of M are almost coherent over R.

We argue by induction on d � c. If c D d , then Hd .M/=$ ' Hd .ŒM=$�/ is
almost coherent. Therefore, M ' Hd .M/Œ�d� is almost coherent by Lemma 2.13.1.

If d > c, we consider an exact triangle

��d�1M !M ! Hd .M/Œ�d�:

We see that both ��d�1M and Hd .M/ are derived complete by [68, Tag 091P] and
[68, Tag 091S]. Moreover, we know that Hd .M/=$ ' Hd .ŒM=$�/ is almost coher-
ent. Therefore, Hd .M/ is almost coherent by Lemma 2.13.1. Finally,

Œ��d�1M=$� ' cone
�
ŒM=$�! ŒHd .M/=$�Œ�d�

�
Œ1�

is a (shifted) cone of a morphism in Dbacoh.R=$/, therefore, Œ��d�1M=$� also lies in
Dbacoh.R=$/. By the induction hypothesis, we conclude that ��d�1M 2DŒc;d�1�acoh .R/.
So M 2 DŒc;d�acoh .R/.

Corollary 2.13.3. LetR be a topologically finite typeKC-algebra, andM 2 D.R/ a
$ -adically derived complete complex. Suppose that ŒM a=$� 2 DŒc;d�acoh .R=$/

a, then
M a 2 DŒc;d�acoh .R/

a.

Proof. Note that m˝M is derived complete by Lemma A.4. So the claim follows
from Theorem 2.13.2 applied to m˝M .

https://stacks.math.columbia.edu/tag/091P
https://stacks.math.columbia.edu/tag/091S

