
Chapter 3

Almost mathematics on ringed sites

The main goal of this chapter is to “globalize” the results of Chapter 2. The two main
cases of interest are almost coherent sheaves on schemes and “good” formal schemes.
In order to treat those cases uniformly, we define the notion of almost sheaves in the
most general set-up of ringed sites and check their basic properties. This is the content
of Section 3.1. Sections 4.1 and 4.5 are devoted to establishing the foundations of
almost coherent sheaves on schemes and formal schemes, respectively. In particular,
we show that the notion of almost finitely generated (resp. presented, resp. coher-
ent) module globalizes well on schemes and some “good” formal schemes. Then we
discuss the derived category of almost sheaves and various functors on the derived
categories of almost sheaves. Later in Chapter 4, we use this theory to establish foun-
dations of almost coherent sheaves on schemes and formal schemes, respectively.

3.1 The category of Oa
X

-modules

We start this section by fixing a ring R with an ideal m such that m D m2 andem Dm˝R m is R-flat. We always do almost mathematics with respect to this ideal.
The main goal of this section is to globalize the notion of almost mathematics to the
case of ringed R-sites.

In this section, we fix a ringed R-site .X;OX /, i.e., a ringed site .X;OX / where
OX is a sheaf ofR-algebras onX . Note that any ringed site .X;OX / is, in particular, a
ringed OX .X/-site. The main goal of this section is to develop foundations of almost
mathematics on ringed R-sites.

We note that, on each open U 2 X , it makes sense to speak of almost OX .U /-
modules with respect to the ideal mOX .U /; we refer to Lemma 2.1.11 for the details.
In what follows, we extend the definition of almost modules to the category of OX -
modules.

Definition 3.1.1. Let .X;OX / be a ringedR-site, and let F be any OX -module. Then
the sheaf of almost section em˝F is the sheafification of the presheaf defined via the
formula

U 7! em˝R F .U /:

Remark 3.1.2. This definition coincides with the tensor product em˝R F , whereem is the constant sheaf associated with the R-module m. Alternatively, we see thatem˝ F ' emX ˝OX F where emX D em˝R OX .
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We also note that flatness of the R-module em implies that the functor � ˝ em is
exact and descends to a functor

�˝ emWD.X/! D.X/;

where D.X/ is the derived category of OX -modules.

Definition 3.1.3. An OX -module F is almost zero if em˝ F is zero. We denote the
category of almost zero OX -modules by †X .

Remark 3.1.4. Since em is anR-flat module, we easily see that the category of almost
zero OX -modules is a Serre subcategory of ModOX DModX .

Lemma 3.1.5. Let .X;OX / be a ringedR-site, and let F be an OX -module. Suppose
that U is a base of topology on X . Then the following conditions are equivalent:

(1) F ˝ em is the zero sheaf.

(2) For any " 2 m, "F D 0.

(3) For any U 2 U, the module em˝ F .U / is zero.

(4) For any U 2 U, the module m˝ F .U / is zero.

(5) For any U 2 U, the module m
�
F .U /

�
is zero.

Proof. We first show that (1) implies (2). We pick an element " 2m Dm2 and write
it as "D

P
xi � yi for some xi ; yi 2m. So the multiplication by "map can be decom-

posed as

F
s 7!s˝

P
xi˝yi

����������! F ˝ em m
�! F ;

where the last map is induced by the multiplication map em! R. Then if F ˝ em D
0, the multiplication by " map is zero for any " 2 m. Now (2) easily implies (5).
Further, Lemma 2.1.1 ensures that (3), (4), and (5) are equivalent. Finally, (3) clearly
implies (1).

Lemma 3.1.6. Let .X;OX / be a ringed R-site, and let F be an almost zero OX -
module. Then Hi .U;F / Ša 0 for any open1 U 2 X and any i � 0.

Proof. If F is almost zero, then "F D 0 for any " 2 m by Lemma 3.1.5. Since the
functors Hi .X;�/ are R-linear, we conclude that "Hi .U;F /D 0 for any open U and
any " 2 m; i � 0. Thus Lemma 2.1.1 ensures that Hi .U;F / Ša 0.

Definition 3.1.7. We say that a homomorphism 'W F ! G of OX -modules is an
almost isomorphism if Ker.'/ and Coker.'/ are almost zero.

1An open U 2 X is by definition an object U 2 Ob.X/ of the category underlying the
site X .
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Lemma 3.1.8. A homomorphism 'W F ! G of OX -modules is an almost isomor-
phism if and only if '.U /W F .U / ! G .U / is an almost isomorphism of OX .U /-
modules for any open U 2 X .

Proof. The ( implication is clear from the definitions. We give a proof of the )
implication.

Suppose that ' is an almost isomorphism. We define the auxiliary OX -modules:
K WD Ker.'/;F 0 WD Im.'/;Q WD Coker.'/. Lemma 3.1.6 implies that the maps

F .U /! F 0.U / and F 0.U /! G .U /

are almost isomorphisms. In particular, the composition F .U /! G .U /must also be
an almost isomorphism.

Now we discuss the notion of almost OX -modules on a ringed R-site .X;OX /.
This notion can be defined in two different ways: either as the quotient of the category
of OX -modules by the Serre subcategory of almost zero modules or as modules over
the almost structure sheaf Oa

X . Now we need to explain these two notions in more
detail.

Definition 3.1.9. We define the category of almost OX -modules as the quotient cate-
gory

ModaOX WDModOX =†X :

Now we define the category ModOa
X

of Oa
X -modules that we will show to be

equivalent to ModaOX . We recall that the almostification functor .�/a is exact and
commutes with arbitrary products. This allows us to define the almost structure sheaf:

Definition 3.1.10. The almost structure sheaf Oa
X is the sheaf 2 of Ra-modules

Oa
X W .Ob.X//op

!ModaR

defined via the formula U 7! OX .U /
a.

Definition 3.1.11. We define the category of Oa
X -modules ModOa

X
as the category of

modules over Oa
X 2 Shv.X;Ra/ in the categorical sense. More precisely, the objects

are sheaves of Ra-modules F with a map F ˝Ra Oa
X ! F over Ra satisfying the

usual axioms for a module. Morphisms are defined in the evident way.

We now define the functor

.�/aWModOX !ModOa
X

that sends a sheaf to its “almostification”, i.e., it applies the functor .�/aWModR !
ModaR section-wise. Since the almostification functor .�/a is exact and commutes

2It is a sheaf exactly because .�/a is exact and commutes with arbitrary products.
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with arbitrary product, it is evident that F a is actually a sheaf for any OX -module F .
Moreover, it is clear that F a ' 0 for any almost zero OX -module F . Thus, it induces
the functor

.�/aWModaOX !ModOa
X
:

The claim is that this functor induces the equivalence of categories. The first step
towards the proof is to construct the right adjoint to .�/aWModOX ! ModOa

X
. Our

construction of the right adjoint functor will use the existence of the left adjoint func-
tor. So we slightly postpone the proof of the equivalence mentioned above and first
discuss adjoints to .�/a.

We start with the definition of the left adjoint functor. The idea is to apply the
functor .�/ŠWModOa

X
! ModOX section-wise, though this strategy does not quite

work as .�/Š does not commute with infinite products.

Definition 3.1.12. We define the desired functor in two steps.

• First, .�/p
Š
WModOa

X
!Modp

OX
as3

F 7!
�
U 7! F .U /Š

�
:

• With its help, .�/ŠWModOa
X
!ModOX as the composition .�/Š WD .�/# ı .�/

p
Š

,
where .�/# is the sheafification functor.

Lemma 3.1.13. Let .X;OX / be a ringed R-site.

(1) The functor
.�/ŠWModOa

X
!ModOX

is the left adjoint to the localization functor .�/aWModOX ! ModOa
X

. In
particular, we have a functorial isomorphism

HomOa
X
.F ;G a/ ' HomOX .FŠ;G /

for any F 2ModOa
X
;G 2ModOX .

(2) The functor .�/ŠWModOa
X
!ModOX is exact.

(3) The counit morphism .F a/Š ! F is an almost isomorphism for any object
F 2ModOX . The unit morphism G ! .GŠ/

a is an isomorphism for any object
G 2ModOa

X
. In particular, the functor .�/a is essentially surjective.

Proof. (1) follows from Lemma 2.1.9 (3) and the adjunction between sheafication and
the forgetful functor. More precisely, we have the following functorial isomorphisms:

HomOa
X
.F ;G a/ ' HomModp

OX

.F
p
Š
;G / ' HomOX .FŠ;G /:

3Modp
OX

stands for the category of modules over OX in the category of presheaves.
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We show (2). It is easy to see that .�/Š is left exact from Lemma 2.1.9 (4) and
the exactness of the sheafification functor. It is also right exact since it is a left adjoint
functor to .�/a.

Now we show (3). Lemma 2.1.9 (5) ensures that the kernel and cokernel of the
counit map of presheaves .F a/

p
Š
! F are annihilated by any " 2 m. Then the same

holds after sheafification, proving that .F a/
p
Š
! F is an almost isomorphism by

Lemma 3.1.5.
We consider the unit map G! .GŠ/

a, we note that using the adjuction ..�/Š; .�/a/
section-wise, we can refine this map

G ! .G
p
Š
/a ! .GŠ/

a:

It suffices to show that both maps are isomorphisms; the first map is an isomorphism
by Lemma 2.1.9 (5). In particular, this implies that .Gp

Š
/a is already a sheaf of almost

Ra-modules, but then we see that the natural map .Gp
Š
/a ! .GŠ/

a must also be an
isomorphism as it coincides with the sheafification in the category of presheaves of
Ra-modules.

Remark 3.1.14. In what follows, we denote the objects of ModOa
X

by F a to distin-
guish OX and Oa

X -modules. This notation does not cause any confusion as .�/a is
essentially surjective.

Now we construct the right adjoint functor to .�/a. The naive idea of apply-
ing .�/� section-wise works well in this case.

Definition 3.1.15. The functor of almost sections .�/�WModOa
X
! ModOX is de-

fined as
F a
7!
�
U 7! HomR

�em;F a.U /Š
�
D HomR.em;F .U //�;

where the equality comes from Lemma 2.1.8 (2).

Remark 3.1.16. The functor .�/� is well defined, i.e., it defines a sheaf of OX -
modules. This follows from the fact that HomR.em;�/ is left exact and commutes
with arbitrary products.

Lemma 3.1.17. Let .X;OX / be a ringed R-site.

(1) The functor .�/�WModOa
X
! ModOX is the right adjoint to the exact local-

ization functor .�/aWModOX !ModOa
X

. In particular, it is left exact.

(2) The unit morphism F ! .F a/� is an almost isomorphism for any object
F 2ModOX . The counit morphism .G a� /

a ! G a is an isomorphism for any
G a 2ModOa

X
.

Proof. It is sufficient to check both claims section-wise. This, in turn, follows from
Lemma 2.1.9 (1) and Lemma 2.1.9 (2) respectively.
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Corollary 3.1.18. The functor .�/aWModOX ! ModOa
X

commutes with limits and
colimits. In particular, ModOa

X
is complete and cocomplete, and filtered colimits and

(finite) products are exact in ModOa
X

.

Proof. The first claim follows from the fact that .�/a admits left and right adjoints.
The second claim follows from the first claim, the exactness of .�/a, and analogous
exactness properties in ModR.

Corollary 3.1.19. Let .X;OX / be a ringed R-site. Then the functor

.�/aWModOX !ModOa
X

is exact.

Proof. The functor .�/a is exact as it has both left and right adjoints.

Theorem 3.1.20. Let .X;OX / be a ringed R-site. Then the functor

.�/aWModaOX !ModOa
X

is an equivalence of categories.

Proof. Lemma 3.1.17 implies that the functor .�/aWModOX ! ModOa
X

has a right
adjoint functor .�/� such that the counit morphism .�/a ı .�/� ! id is an iso-
morphism of functors. Moreover, the exactness of .�/a implies that a morphism
'WF ! G is an almost isomorphism if and only if 'aWF a! G a is an isomorphism.
Thus, [27, Proposition 1.3] guarantees that the induced functor .�/aWModaOX !
ModOa

X
is an equivalence.

Remark 3.1.21. In what follows, we do not distinguish ModOa
X

and ModaOX . More-
over, we sometimes denote both categories by ModaX or ModXa to simplify the
notation.

3.2 Basic functors on categories of Oa
X

-modules

We discuss how to define certain basic functors on ModaX . Our main functors of
interest are Hom, alHom, ˝, f �, and f� (for any map f of ringed sites). We define
their almost analogues and discuss the relation with their classical versions. As a by-
product, we give a slightly more intrinsic definition of .�/�WModaX ! ModX along
the lines of the definition of the ModaR-version of this functor. For the rest of the
section, we fix a ring R with an ideal m such that m D m2 and em D m ˝R m

is R-flat. We also fix an ringed R-site .X;OX / that we also consider as a ringed
OX .X/-site.
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Definition 3.2.1. The global and local Hom functors are defined as follows:

• The global Hom functor

HomOa
X
.�;�/WModop

Xa �ModXa !ModOX .X/

is defined as .F a;G a/ 7! HomOa
X
.F a;G a/.

• The local Hom functor

Hom Oa
X
.�;�/WModop

Xa �ModXa !ModX

is defined as .F a;G a/ 7!
�
U 7! HomOa

U
.F ajU ;G

ajU /
�
. The standard argument

shows that this functor is well defined, i.e., Hom Oa
X
.F ; G / is indeed a sheaf of

OX -modules.

Lemma 3.2.2. Let U 2 Ob.X/, and let F a; G a be Oa
X -modules. Then the natural

map
�
�
U;Hom Oa

X
.F a;G a/

�
! HomOa

U

�
F a
jU ;G

a
jU

�
is an isomorphism of OX .U /-modules.

Proof. This is evident from the definition.

Lemma 3.2.3. Let .X;OX / be a ringed R-site. Then there is a functorial isomor-
phism of OX -modules

Hom Oa
X
.F a;G a/

�
�! Hom OX ..F

a/Š;G /

for F a 2ModaX and G 2ModX .

Proof. Lemma 3.2.2 and Lemma 3.1.13 ensure that the desired isomorphism exists
section-wise. It glues to a global isomorphism of sheaves since these section-wise
isomorphisms are functorial in U .

Now we move on to show a promised more intrinsic definition of the functor .�/�.
As a warm-up, we need the following result:

Lemma 3.2.4. Suppose that the ringed R-site .X;OX / has a final object that (by
slight abuse of notation) we denote by X . Then the evaluation map

evX WHomOa
X

�
Oa
X ;G

a
�
! HomOX .X/a

�
Oa
X .X/;G

a.X/
�

' 7! '.X/

is an isomorphism of OX .X/-modules for any G a 2ModaX .
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Proof. As .�/a is essentially surjective by Lemma 3.1.13 (3), there exists some OX -
module G with almostification being equal to G a. Now we recall that the data of an
Oa
X -linear homomorphism 'WOa

X ! G a is equivalent to the data of OX .U /
a-linear

homomorphisms 'U 2 HomOX .U /a
�
Oa
X .U /;G

a.U /
�

for each open U in X such that
the diagram

OX .U /
a G .U /a

OX .V /
a G .V /a

'U

rOa
X
jU
V rGa j

U
V

'V

commutes for any V � U . Now we note that an OX .U /
a-linear homomorphism 'U

uniquely determines an OX .V /
a-linear homomorphism 'V in such a diagram. Indeed,

this follows from the equality

HomOX .V /a
�
OX .V /

a;G .V /a
�

D HomOX .V /

�em˝OX .V /;G .V /
�

D HomOX .V /

�em˝OX .U /˝OX .U / OX .V /;G .V /
�

D HomOX .U /

�em˝OX .U /;G .V /
�

D HomOX .U /a
�
OX .U /

a;G .V /a
�
:

Now we use the assumption that X is the final object to conclude that any homomor-
phism 'WOa

X ! G a is uniquely defined by '.X/.

Corollary 3.2.5. Let .X;OX / be an ringed R-site and let U 2 Ob.X/. Then the
evaluation map

evU WHomOa
U

�
Oa
U ;G j

a
U

�
! HomOU .U /a

�
Oa
U .U /;G

a.U /
�

' 7! '.U /

is an isomorphism of OX .U /-modules for any G a 2ModaX .

Proof. For the purpose of the proof, we can change the siteX to the slicing siteX=U
of objects over U . Then U automatically becomes the final object inX=U , so we can
apply Lemma 3.2.4 to finish the proof.

Now we are ready to prove a new description of the sheaf version of the func-
tor .�/�.

Lemma 3.2.6. Let .X;OX / be a ringed R-site. Then there is a functorial isomor-
phism of OX -modules

Hom Oa
X
.Oa
X ;F

a/! F a
�

for F a 2ModaX .
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Proof. Lemma 3.2.2 and Corollary 3.2.5 imply the existence of an isomorphism of
OX .U /-modules

�
�
U;Hom Oa

X

�
Oa
X ;F

a
�� �
�! HomOU .U /a

�
Oa
U .U /;F

a.U /
�

that is functorial in both U and F a. We use the functorial isomorphism of OX .U /-
modules

HomOU .U /a
�
OU .U /

a;F a.U /
�
' HomRa

�
Ra;F a.U /

�
D .F a/�.U /

to construct a functorial isomorphism

�
�
U;Hom Oa

X

�
Oa
X ;F

a
�� �
�! .F a/�.U /:

Functoriality in U ensures that it glues to the global isomorphism of OX -modules

Hom Oa
X

�
Oa
X ;F

a
� �
�! F a

� :

Now we discuss the functor of almost homomorphisms.

Definition 3.2.7. The global and local alHom functors are defined as follows:

• The global alHom functor

alHomOa
X
.�;�/WModop

Xa �ModXa !ModRa

is defined as�
F a;G a

�
7! HomOa

X

�
F a;G a

�a
' HomOX

��
F a

�
Š
;G
�a
:

• The local alHom functor

alHom Oa
X
.�;�/WModop

Xa �ModXa !ModXa

is defined as

.F a;G a/ 7!
�
U 7! alHomOa

U
.F a
jU ;G

a
jU /

a
�
:

Remark 3.2.8. At this point we have not checked that alHom Oa
X
.F a;G a/ is actually

a sheaf. However, this follows from the following lemma:

Lemma 3.2.9. The natural map

Hom OX .em˝ F ;G /a ! alHom Oa
X
.F a;G a/

is an almost isomorphism of Oa
X -modules for any F a; G a 2 ModaX . In particular,

alHom Oa
X
.F a;G a/ is a sheaf of Oa

X -modules.
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Proof. This follows from the sequence of functorial in U isomorphisms:

Hom OX .em˝ F ;G /.U /a 'a HomOU .em˝ F jU ;G jU /
a

'
a alHomOa

U
.F a
jU ;G

a
jU /

'
a alHom Oa

X
.F a;G a/.U /

In order to make Definition 3.2.7 computable, we need to show that these functors
can be computed by using any representative for F a and G a.

Proposition 3.2.10. Let .X;OX / be a ringed R-site.

(1) There is a natural transformation of functors

Modop
X �ModX ModX

Modop
Xa �ModXa ModXa

HomOX
.�;�/

.�/a�.�/a � .�/a

alHomOa
X
.�;�/

that makes the diagram .2; 1/-commutative. In particular, it yields an isomor-
phism alHomOa

X
.F a;G a/ ' HomOX .F ;G /

a for any F ;G 2ModX .

(2) There is a natural transformation of functors

Modop
X �ModX ModX

Modop
Xa �ModXa ModXa

Hom OX
.�;�/

.�/a�.�/a � .�/a

alHom Oa
X
.�;�/

that makes the diagram .2; 1/-commutative. In particular, it yields an isomor-
phism alHom Oa

X
.F a;G a/ ' Hom OX .F ;G /

a for any F ;G 2ModX .

Proof. The proof is similar to the proof of Proposition 2.2.1 (3). The only new thing
is that we need to prove an analogue of Corollary 2.1.13, that is, that the func-
tors alHomOX .�; G /, alHom OX .�; G / preserve almost isomorphisms. It essentially
boils down to showing that ExtiOX .K; G / Ša 0 and Ext i

OX
.K; G / Ša 0 for any

K 2 †X ;G 2ModX ; and an integer i � 0.
Now Lemma 3.1.5 implies that "K D 0 for any " 2 m. With that at hand, we see

that ExtiOX .K;G / and Ext i
OX
.K;G / are also annihilated by any "2m since the func-

tors ExtiOX .�;G /, Ext i
OX
.�;G / are R-linear. Thus, ExtiOX .K;G / and Ext i

OX
.K;G /

are almost zero by Lemma 2.1.1 and Lemma 3.1.5 respectively.

Definition 3.2.11. The tensor product functor �˝Oa
X
�WModaX �ModaX !ModaX

is defined as
.F a;G a/ 7! F a

Š ˝OX G aŠ :
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Proposition 3.2.12. There is a natural transformation of functors

ModX �ModX ModX

ModaX �ModaX ModaX

�˝OX
�

.�/a�.�/a .�/a
�

�˝Oa
X
�

that makes the diagram .2; 1/-commutative. In particular, there is a functorial iso-
morphism

.F ˝OX G /a ' F a
˝Oa

X
G a

for any F ;G 2ModX .

Proof. The proof is analogous to that of Propisition 2.2.1 (1).

The tensor product is adjoint to Hom as it happens in the case of Ra-modules.
We give a proof of the local version of this statement.

Lemma 3.2.13. Let .X;OX / be a ringedR-site, and let F a;G a;Ha be Oa
X -modules.

Then there is a functorial isomorphism

Hom Oa
X
.F a
˝Oa

X
G a;Ha/ ' Hom Oa

X
.F a; alHom Oa

X
.G a;Ha//:

After passing to the global sections, this gives the isomorphism

HomOa
X
.F a
˝Oa

X
G a;Ha/ ' HomOa

X
.F a; alHom Oa

X
.G a;Ha//:

And after passing to the almostifications, it gives an isomorphism

alHom Oa
X
.F a
˝Oa

X
G a;Ha/ ' alHom Oa

X
.F a; alHom Oa

X
.G a;Ha//:

Proof. We compute �.U;Hom Oa
X
.F a ˝Oa

X
G a;Ha// by using Lemma 3.2.2 and

the standard .˝;Hom / adjunction. Namely,

�
�
U;Hom Oa

X

�
F a
˝Oa

X
G a;Ha

��
' HomOa

U

�
F a
jU ˝Oa

U
G ajU ;H

a
jU

�
Lemma 3.2.2

' HomOa
U

�
.F jU ˝OU G jU /

a;Ha
jU

�
Proposition 3.2.12

' HomOU

�em˝ .F jU ˝OU G jU /;H jU
�

Lemma 3.1.13

' HomOU

�
.em˝ F jU /˝OU .em˝ G jU /;H jU

� em˝2 ' em
' HomOU

�em˝ F jU ;Hom OU

�em˝ G jU ;H jU
��

.˝;Hom/ adjunction

' HomOa
U

�
F a
jU ; alHom OU

�em˝ G jU ;H jU
��

Lemma 3.1.13

' �
�
U;Hom Oa

X

�
F a; alHom Oa

X
.G a;Ha/

��
: Lemma 3.2.2
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Since these identifications are functorial in U , we can glue them to a global isomor-
phism

Hom Oa
X
.F a
˝Oa

X
G a;Ha/ ' Hom Oa

X
.F a; alHom Oa

X
.G a;Ha//:

This finishes the proof.

Corollary 3.2.14. Let .X;OX / be a ringed R-site, and let F a be an Oa
X -module.

Then the functor �˝Oa
X

F a is left adjoint to alHom Oa
X
.F a;�/.

For what follows, we fix a map f W .X;OX /! .Y;OY / of ringed R-sites. We are
going to define the almost version of the pullback and pushforward functors.

Definition 3.2.15. The pullback functor f �a WModaY !ModaX is defined as

F a
7!
�
f �
�
F a
Š

��a
:

In what follows, we will often abuse notation and simply write f � instead of f �a .
This is “allowed” by Proposition 3.2.19.

As always, we want to show that this functor can be actually computed by apply-
ing f � to any representative of F a. The main ingredient is to show that f � sends
almost isomorphisms to almost isomorphisms. The following lemma shows slightly
more, and will be quite useful later on:

Lemma 3.2.16. Let f W .X;OX /! .Y;OY / be a morphism of ringedR-sites. Then for
any OX -module F , there is a natural isomorphism 'f .F /Wf �.em˝F /! em˝f �F
functorial in F .

Proof. We use Remark 3.1.2 to conclude that em˝ F is functorially isomorphic toemY ˝OY F , where emY WD em ˝R OY . Now we note that f �.emY / ' emX as can
be easily seen from the very definitions (using that em is R-flat). Therefore, 'f .F /
comes from the fact that the pullback functor commutes with the tensor product. More
precisely, we define it as the composition

f �.em˝F /
�
�! f �.emY ˝OY F /

�
�! f �.emY /˝OX f

�.F /
�
�! emX ˝OX f

�.F /:

We now also show a derived version of Lemma 3.2.16 that will be used later in
the text.

Lemma 3.2.17. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. Then
for any F 2 D.X/, there is a natural isomorphism

'f .F /WLf �.em˝ F /! em˝ Lf �F

functorial in F .
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Proof. Similarly, we use Remark 3.1.2 to say that em˝ F is functorially isomorphic
to emY ˝OY F , where emY WD em˝R OY . We note that Lf �.emY /' f

�.emY / ' emX

as em isR-flat. The rest of the proof is the same using the Lf � functorially commutes
with the derived tensor product.

Corollary 3.2.18. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites, and
let 'WF ! G be an almost isomorphism of OY -modules. Then the homomorphism
f �.'/Wf �.F /! f �.G / is an almost isomorphism.

Proof. The question boils down to showing that the homomorphism

em˝ f �.F /! em˝ f �.G /
is an isomorphism. Lemma 3.2.16 ensures that it is sufficient to prove that the map

f �.em˝ F /! f �.em˝ G /

is an isomorphism. But this is clear because the map em˝ F ! em˝ G is already an
isomorphism.

Proposition 3.2.19. Let f W .X;OX / ! .Y;OY / be a morphism of ringed R-sites.
Then there is a natural transformation of functors

ModY ModX

ModaY ModaX

f �

.�/a .�/a
�

f �a

that makes the diagram .2; 1/-commutative. In particular, there is a functorial iso-
morphism .f �F /a ' f �a .F

a/ for any F 2ModY .

Proof. The proof is similar to that of Proposition 2.2.1. For any F 2 ModY , we
define �F Wf

�.em˝ F /a ! f �.F /a as the map induced by the natural homomor-
phism em ˝ F ! F . It is clearly functorial in F , and it is an isomorphism by
Corollary 3.2.18.

Definition 3.2.20. The pushforward functor f a� WModaX !ModaY is defined as

F a
7!
�
f�
�
F a
Š

��a
:

In what follows, we will often abuse the notation and simply write f� instead of f a� .
This is “allowed” by Proposition 3.2.24.
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Definition 3.2.21. The global sections functor �a.X;�/WModaX !ModaR is defined
as

F a
7! �

�
X;F a

Š

�a
:

In what follows, we will often abuse the notation and simply write � instead of �a.
This is also “allowed” by Proposition 3.2.24.

Remark 3.2.22. The global section functor can be realized as the pushforward along
the map .X;OX /! .�; R/.

Lemma 3.2.23. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites, and let
'WF ! G be an almost isomorphism. Then the morphism f�.'/Wf�.F /! f�.G / is
an almost isomorphism.

Proof. The standard argument considering the kernel and cokernel of ' shows that
it is sufficient to prove that f�K Ša 0, R1f�K Ša 0 for any almost zero OX -
module K . This follows from R-linearity of f� and Lemma 3.1.5.

Proposition 3.2.24. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-spaces.
Then there is a natural transformation of functors

ModX ModY

ModaX ModaY

f�

.�/a .�/a
�

f a�

that makes the diagram .2;1/-commutative. In particular, there is a functorial isomor-
phism .f�F /

a ' f a� .F
a/ for any F 2ModX . The same results hold for �a.X;�/.

Proof. We define �F W f�.em ˝ F /a ! f�.F /
a as the map induced by the natural

homomorphism em˝ F ! F . It is clearly functorial in F , and it is an isomorphism
by Lemma 3.2.23.

Lemma 3.2.25. Let .X;OX / be a ringed R-site, and let F ;G be Oa
X -modules. Then

the natural morphism

�
�
U; alHom Oa

X
.F a;G a/

�
! alHomOa

U
.F a
jU ;G

a
jU /

is an isomorphism of Ra-modules for any U 2 Ob.X/.

Proof. The claim easily follows from Lemma 3.2.2, Proposition 3.2.10 (2), and Propo-
sition 3.2.24.
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Lemma 3.2.26. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites, and
let F a 2 ModaY , and G a 2 ModaX . Then there is a functorial isomorphism of OY -
modules

f�Hom Oa
X
.f �.F a/;G a/ ' Hom Oa

Y
.F a; f�.G

a//:

After passing to the global sections, this gives the isomorphism of OY .Y /-modules

HomOa
X
.f �.F a/;G a/ ' HomOa

Y
.F a; f�.G

a//:

And after passing to the almostifications, it gives the isomorphism of Oa
Y -modules

f�alHom Oa
X
.f �.F a/;G a/ Ša alHom Oa

Y
.F a; f�.G

a//:

Proof. This is a combination of the classical .f �; f�/-adjunction, Lemma 3.1.13,
Lemma 3.2.16, Proposition 3.2.19, and Proposition 3.2.24. Indeed, we choose U 2
Ob.Y / and denote its pullback by V WD f �1.U /. We also define F a

U
WD F ajU and

G aV WD G ajV . The claim follows from the sequence of functorial isomorphisms

�
�
U;Hom Oa

Y
.F a; f�.G

a//
�

' HomOa
U

�
F a
U ; f�.G

a
V /
�

Lemma 3.2.2

' HomOa
U

�
F a
U ; f�.GV /

a
�

Proposition 3.2.24

' HomOU

�em˝ FU ; f�.GV /
�

Lemma 3.1.13

' HomOV

�
f �.em˝ FU /;GV

�
.f �;f�/-adjunction

' HomOV

�em˝ f �.FU /;GV � Lemma 3.2.16

' HomOa
V

�
f �.FU /

a;G aV
�

Lemma 3.1.13

' HomOa
V

�
f �.F a

U /;G
a
V

�
Proposition 3.2.19

' �
�
U; f�Hom Oa

X

�
f �.F a/;G a

��
: Lemma 3.2.2

Since these identifications are functorial in U , we can glue them to a global isomor-
phism

f�Hom Oa
X
.f �.F a/;G a/ ' Hom Oa

Y
.F a; f�.G

a//:

Corollary 3.2.27. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. Then
the functors f�W ModaX ModaY Wf � are adjoint.

3.3 Digression: The projection formula

In this section, we show that the tensor product em˝ � behaves especially well on
locally spectral spaces4. For instance, we show that we can explicitly describe sec-

4We refer to [68, Tag 08YF] and [70, Section 3] for a comprehensive discussion of (locally)
spectral spaces.

https://stacks.math.columbia.edu/tag/08YF
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tions of em ˝ F on a basis of opens for such spaces, and verify a version of the
projection formula for this tensor product.

Lemma 3.3.1. Let .X;OX / be a locally spectral, locally ringed R-space. Then for
any spectral 5 open subset U � X , the natural morphismem˝R F .U /! .em˝ F /.U /

is an isomorphism of OX .U /-modules.

Proof. As spectral subspaces form a basis of topology on X , it suffices to show that
the functor

U ! em˝R F .U /

satisfies the sheaf condition on spectral open subsets. In particular, we can assume
that X itself is spectral.

As any open spectral U is quasi-compact, we conclude that any open covering
U D

S
i2I Ui admits a refinement by a finite one. Thus, it is sufficient to check the

sheaf condition for finite coverings of a spectral space by spectral open subspaces.
Thus, we need to show that, for any finite covering U D

S
i2I Ui , the sequence

0! em˝R F .U /!

nY
iD1

�em˝R F .Ui /
�
!

nY
i;jD1

�em˝R F .Ui \ Uj /
�

is exact. This follows from flatness of em and the fact that tensor product commutes
with finite direct products.

Now we want to show a version of the projection formula for the functor em˝�,
it will take some time to rigorously prove it. We recall that a map of locally spectral
spaces is called spectral, if the pre-image of any spectral open subset is spectral.

Lemma 3.3.2. Let .X;OX / be a spectral locally ringed R-space. Then for any injec-
tive OX -module 	, the OX -module em˝ 	 is H0.X;�/-acyclic.

Proof. We note that spectral open subspaces form a basis for the topology onX . Thus
[68, Tag 01EV] and [68, Tag 0A36] imply that it suffices to show that

.em˝ 	/.V /
r zm˝	 j

V
U

�����! .em˝ 	/.U /

is surjective for any inclusion of any spectral open subsets U ,! V . Lemma 3.3.1
says that this map r zm˝	j

V
U is identified with the map

em˝R 	.V /
em˝Rr	 jVU
�������! em˝R 	.U /:

5We remind the reader that any quasi-compact quasi-separated open subset of a locally
spectral space is spectral. This can be easily seen from the definitions.

https://stacks.math.columbia.edu/tag/01EV
https://stacks.math.columbia.edu/tag/0A36
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But now we note that r	jVU is surjective since any injective OX -module is flasque
by [68, Tag 01EA], and therefore the map em˝R r	jVU is surjective as well.

Corollary 3.3.3. Let f W .X;OX /! .Y;OY / be a spectral morphism of locally spec-
tral, locally ringed R-spaces, and let 	 be an injective OX -module. Then em˝ 	 is
f�.�/-acyclic.

Proof. It suffices to show that for any open spectral U � Y , the higher cohomology
groups

Hi
�
XU ; .em˝ 	/jXU

�
vanish. This follows from Lemma 3.3.2 since XU is spectral because both f and U
are spectral.

Lemma 3.3.4. Let f W .X;OX /! .Y;OY / be a spectral morphism of locally spectral,
locally ringed R-spaces, and let F be an OX -module. Then there is an isomorphism

ˇ W em˝ f�F ! f�.em˝ F /

functorial in F .

Proof. It suffices to define a morphism on a basis of spectral open subspaces U � Y .
For any such U � Y , we define

ˇU W .em˝ f�F /.U /! f�.em˝ F /.U /

as the composition of isomorphisms

.em˝ f�F /.U / ˛�1U��! em˝R .f�F /.U / D em˝R F .XU /

˛XU
���! .em˝ F /.XU / D f�.em˝ F /.U /

with ˛U and ˛XU being isomorphisms from Lemma 3.3.1. Since the construction
of ˛ is functorial in U , we conclude that ˇ defines a morphism of sheaves. It is an
isomorphism because ˇU is an isomorphism on a basis of Y .

Lemma 3.3.5. Let f W .X;OX /! .Y;OY / be a spectral morphism of locally spectral,
locally ringed R-spaces. Then for any F 2 D.X/, there is a morphism

�f .F /W em˝ Rf�F ! Rf�.em˝ F /

functorial in F . This map is an isomorphism in either of the following cases:

• the complex F is bounded below, i.e., F 2 DC.X/, or

• the space X is locally of uniformly bounded Krull dimension and F 2 D.X/.

https://stacks.math.columbia.edu/tag/01EA
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Proof. We start the proof by constructing the map �f .F /. Note that by adjunction it
suffices to construct a map

Lf �.em˝ Rf�F /! em˝ F :

We define this map as the composition

Lf �.em˝ Rf�F /
'f .Rf�F /
�������! em˝ Lf �Rf�F

em˝�F
����! em˝ F ;

where the first map is the isomorphism coming from Lemma 3.2.17 and the second
map comes from the counit �F of the .Lf �;Rf�/-adjunction.

Now we show that �f .F / is an isomorphism for F 2 DC.X/. We choose an
injective resolution F ! 	�. In this case, we use Corollary 3.3.3 to note that ˇ is the
natural map em˝ f�.	�/! f�.em˝ 	�/

that is an isomorphism by Lemma 3.3.4.
The last thing we need to show is that �f .F / is an isomorphism for any unbound-

ed F when X is locally of uniformly bounded Krull dimension. The claim is local,
so we may and do assume that both X and Y are spectral spaces. As X is quasi-
compact (because it is spectral) and locally of finite Krull dimension, we conclude
that X has finite Krull dimension, say N WD dimX . Then [57, Corollary 4.6] (or
[68, Tag 0A3G]) implies that Hi .U;G /D 0 for any open spectral U �X , G 2ModX ,
and i > N . In particular, Rif�G D 0 for any G 2 ModX , and i > N . Thus we see
that the assumptions of [68, Tag 0D6U] are verified in this case (with A D ModX
and A0 DModY ), so the natural map

H j .Rf�F /! H j .Rf�.���nF //

is an isomorphism for any F 2 D.X/, j � N � n. As em is R-flat, we get the com-
mutative diagram

H j
�em˝ Rf�F

�
H j

�
Rf�.em˝ F /

�
H j

�em˝ Rf�.���nF /
�

H j
�
Rf�.em˝ ���nF /

�
Hj .�F /

� �

Hj .����nF /

with the vertical arrows being isomorphisms for j �N � n, and the bottom horizontal
map is an isomorphism as ���nF 2DC.X/. Thus, by choosing an appropriate n� 0,
we see that H j .�F / is an isomorphism for any j ; so �F is an isomorphism itself.

https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
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3.4 Derived category of Oa
X

-modules

This section is a global analogue of Section 2.3. We give two different definitions of
the derived category of almost OX -modules and then show that they coincide.

For the rest of the section, we fix a ring R with an ideal m such that mDm2 andem D m˝R m is R-flat. We also fix an ringed R-site .X;OX /.

Definition 3.4.1. By definition, the derived category of Oa
X -modules is D.Xa/ WD

D.ModaX /.

We define the bounded version of the derived category of almost R-modules
D�.Xa/ for � 2 ¹C;�; bº as the full subcategory of D.Xa/ consisting of bounded
below (resp. bounded above, resp. bounded) complexes.

Definition 3.4.2. We define the almost derived category of OX-modules as the Verdier
quotient6 D.X/a WD D.ModX /=D†X .ModX /.

Remark 3.4.3. We recall that †X is the Serre subcategory of ModX that consists of
the almost zero OX -modules.

We note that the functor .�/aWModX !ModaX is exact and additive. Thus, it can
be derived to the functor .�/aWD.X/!D.Xa/. Similarly, the functor .�/ŠWModaX !
ModX can be derived to the functor .�/ŠWD.Xa/! D.X/. The standard argument
shows that .�/Š is a left adjoint functor to the functor .�/a as this already happens on
the level of abelian categories.

We also want to establish a derived version of the functor .�/�. But since the
functor is only left exact, we do need to do some work to derive it. Namely, we need
to ensure that Oa

X -modules admit enough K-injective complexes.

Definition 3.4.4. We say that a complex of Oa
X -modules I �;a is K-injective if the

condition HomK.Oa
X
/.C
�;a; I �;a/ D 0 is satisfied for any acyclic complex C �;a of

Ra-modules.

Remark 3.4.5. We remind the reader that K.Oa
X / stands for the homotopy category

of Oa
X -modules.

Lemma 3.4.6. The functor .�/aWComp.OX /! Comp.Oa
X / sends K-injective Oa

X -
complexes to K-injective Oa

X -complexes.

Proof. We note that .�/a admits an exact left adjoint .�/Š thus [68, Tag 08BJ] ensures
that .�/a preserves K-injective complexes.

6We refer to [68, Tag 05RA] for an extensive discussion of Verdier quotients of triangulated
categories.

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/05RA
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Corollary 3.4.7. Let .X;OX / be a ringed R-site. Then every F �;a 2 Comp.Oa
X / is

quasi-isomorphic to a K-injective complex.

Proof. The proof of Corollary 2.3.6 works verbatim with the only exception that one
needs to use [68, Tag 079P] instead of [68, Tag 090Y].

Similarly to the case ofRa-modules, we define the functor .�/�WD.Xa/! D.X/
as the derived functor of .�/�WModaX!ModX . This functor exists by [68, Tag 070K].

Lemma 3.4.8. Let .X;OX / be a ringed R-site.

(1) The functors .�/aW D.X/ D.Xa/ W .�/Š are adjoint. Moreover, the
counit (resp. unit) morphism

.F a/Š ! F (resp. G ! .GŠ/
a)

is an almost isomorphism (resp. isomorphism) for any F2D.X/;G 2D.Xa/.
In particular, the functor .�/a is essentially surjective.

(2) The functor .�/a W D.X/ ! D.Xa/ also admits a right adjoint functor
.�/�WD.Xa/! D.X/. Moreover, the unit (resp. counit) morphism

F ! .F a/� (resp. .G�/a ! G )

is an almost isomorphism (resp. isomorphism) for any F2D.X/;G 2D.Xa/.

Proof. The proof is similar to that of Lemma 2.3.7.

Theorem 3.4.9. The functor .�/aWD.X/! D.Xa/ induces an equivalence of trian-
gulated categories .�/aWD.X/a ! D.Xa/.

Proof. The proof is similar to that of Theorem 2.3.8.

Remark 3.4.10. Theorem 3.4.9 shows that the two notions of the derived category
of almost modules are the same. In what follows, we do not distinguish D.Xa/ and
D.X/a anymore.

3.5 Basic functors on derived categories of Oa
X

-modules

Now we can “derive” certain functors constructed in Section 3.2. For the rest of the
section, we fix a ringed R-site .X;OX /. The section follows the exposition of Sec-
tion 2.4 very closely.

https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/090Y
https://stacks.math.columbia.edu/tag/070K
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Definition 3.5.1. We define the derived Hom functors

RHom Oa
X
.�;�/WD.Xa/op

� D.Xa/! D.X/;

and
RHomOa

X
.�;�/WD.Xa/op

� D.Xa/! D.R/

as it is done in [68, Tag 08DH] and [68, Tag 0B6A], respectively.

Definition 3.5.2. We define the global Ext-modules as the R-modules

Exti
Oa
X

�
F a;G a

�
WD Hi

�
RHomOa

X
.F a;G a/

�
for F a;G a 2ModaX .

Finally, we define the local Ext-sheaves as the OX -modules Ext i
Oa
X

.F a; G a/ WD

H i .RHom Oa
X
.F a;G a//, for F a;G a 2ModaX .

Remark 3.5.3. We see that [68, Tag 0A64] implies that there is a functorial isomor-
phism

Hi
�
RHomOa

X
.F a;G a/

�
' HomD.R/a

�
F a;G aŒi �

�
for F a;G a 2 D.X/a.

Remark 3.5.4. The standard argument shows that there is a functorial isomorphism

R�
�
U;RHom Oa

X
.F a;G a/

�
' RHomOa

U

�
F a
jU ;G

a
jU

�
for any open U 2 X , F a;G a 2 D.X/a.

Now we show a local version of the ..�/Š; .�/a/-adjunction, and relate RHom
(resp. RHom) to a certain derived functor. This goes in complete analogy with the
situation in the usual (not almost) world.

Lemma 3.5.5. Let .X;OX / be a ringed R-site.

(1) There is a functorial isomorphism

RHom Oa
X
.F a;G a/ ' RHom OX .F

a
Š ;G /

for any F a 2 D.X/a and G 2 D.X/. In particular, this isomorphism induces
functorial isomorphisms

RHomOa
X
.F a;G a/ ' RHomOX .F

a
Š ;G /

and
HomD.X/a.F

a;G a/ ' RHomD.X/.F
a
Š ;G /:

(2) For any chosen F a 2ModaX , the functor RHomOa
X
.F a;�/WD.X/a! D.R/

is isomorphic to the (right) derived functor of HomOa
X
.F a;�/.

https://stacks.math.columbia.edu/tag/08DH
https://stacks.math.columbia.edu/tag/0B6A
https://stacks.math.columbia.edu/tag/0A64
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(3) For any chosen F a 2ModaX , the functor RHom Oa
X
.F a;�/WD.X/a!D.X/

is isomorphic to the (right) derived functor of HomOa
X
.F a;�/.

Proof. (1) Lemma 3.4.6 and the construction of derived homs ensure that

RHom Oa
X
.F a;G a/ ' Hom �

Oa
X
.F �;a;	�;a/

RHom OX .F
a
Š ;G / ' Hom �OX .F

�;a
Š
;	�/;

where G ! 	� is a K-injective resolution. Now we recall the term-wise equalities

Hom n
Oa
X
.F �;a;	�;a/ D

Y
pCqDn

Hom Oa
X
.F �q;a;	p;a/

Hom n
OX
.F
�;a
Š
;	�/ D

Y
pCqDn

Hom OX .F
�q;a
Š

;	p/:

Thus Lemma 3.2.3 produces term-wise isomorphisms

�nWHom n
Oa
X
.F �;a;	�;a/! Hom n

OX
.F
�;a
Š
;	�/

that commute with the differentials by inspection, therefore defining the desired iso-
morphism of complexes.

Parts (2) and (3) are identical to Lemma 2.4.3 (2).

Definition 3.5.6. We define the derived almost Hom functors

RalHom Oa
X
.�;�/WD.Xa/op

� D.Xa/! D.Xa/;

RalHomOa
X
.�;�/WD.Xa/op

� D.Xa/! D.Ra/

as

RalHom Oa
X
.F a;G a/ WD RHom Oa

X
.F a;G a/a D RHom OX .F

a
Š ;G /

a;

RalHomOa
X
.F a;G a/ WD RHomOa

X
.F a;G a/a D RHomOX .F

a
Š ;G /

a:

Definition 3.5.7. The global almost Ext modules are defined as the Ra-modules
alExti

Oa
X
.F a;G a/ WD Hi .RalHomOa

X
.F a;G a// for F a;G a 2ModaX .

We define the local almost Ext sheaves as the Oa
X -modules alExt i

Oa
X

.F a;G a/ WD

H i .RalHom Oa
X
.F a;G a// for F a;G a 2ModaX .
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Proposition 3.5.8. Let .X;OX / be a ringed R-site.

(1) There is a natural transformation of functors

D.X/op � D.X/ D.X/

D.Xa/op � D.Xa/ D.Xa/

RHom OX
.�;�/

.�/a�.�/a .�/a�

RalHom Oa
X
.�;�/

that makes the diagram .2; 1/-commutative. In particular, it yields an isom-
prphism RalHom Oa

X
.F a;G a/ ' RHom OX .F ;G /

a for any F ;G 2 D.X/.
(2) For any F a 2ModaR, the functor RalHom Oa

X
.F a;�/WD.X/a ! D.X/a is

isomorphic to the (right) derived functor of alHom Oa
X
.F a;�/.

(3) The analogous results hold true for the functor RalHomOa
X
.�;�/.

Proof. The proof is identical to that of Proposition 2.4.8. One only needs to use
Proposition 3.2.10 in place of Proposition 2.2.1 (3).

Now we deal with the case of the derived tensor product functor. We will show
that our definition of the derived tensor product functor makes RalHom Oa

X
.�;�/ into

the inner Hom functor.

Definition 3.5.9. We say that a complex of Oa
X -modules F �;a is almost K-flat if the

naive tensor product complex C�;a ˝�
Oa
X

F �;a is acyclic for any acyclic complex C�;a

of Oa
X -modules.

Lemma 3.5.10. The functor .�/aWComp.OX /!Comp.Oa
X / sendsK-flat OX -com-

plexes to almost K-flat Oa
X -complexes.

Proof. The proof Lemma 2.4.10 applies verbatim.

Lemma 3.5.11. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites, and let
F �;a 2 Comp.Oa

Y / be an almost K-flat complex. Then f �.F �;a/ 2 Comp.Oa
X / is

almost K-flat.

Proof. The proof of [68, Tag 06YW] works verbatim in this situation.

Corollary 3.5.12. Every object F �;a 2 Comp.Oa
X / is quasi-isomorphic to an almost

K-flat complex.

Proof. The proof of Corollary 2.4.11 applies verbatim with the only difference that
one needs to use [68, Tag 06YF] in place of [68, Tag 06Y4].

https://stacks.math.columbia.edu/tag/06YW
https://stacks.math.columbia.edu/tag/06YF
https://stacks.math.columbia.edu/tag/06Y4
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Definition 3.5.13. We define the derived tensor product functor

�˝
L
Oa
X
�WD.X/a � D.X/a ! D.X/a

by the rule .F a;G a/ 7! .GŠ ˝
L
OX

GŠ/
a for any F a;G a 2 D.X/a.

Proposition 3.5.14. (1) There is a natural transformation of functors

D.X/ � D.X/ D.X/

D.X/a � D.X/a D.X/a

�˝L
OX
�

.�/a�.�/a .�/a

�˝L
Oa
X

�

�

that makes the diagram .2;1/-commutative. In particular, there is a functorial
isomorphism .F ˝L

OX
G /a ' F a ˝L

Oa
X

G a for any F ;G 2 D.X/.
(2) For any chosen F a 2 ModaX , the functor F a ˝LRa �WD.X/

a ! D.X/a is
isomorphic to the (left) derived functor of F a ˝Oa

X
�.

Proof. Again, the proof is identical to that of Proposition 3.5.14. The only non-trivial
input that we need is the existence of sufficiently many K-flat complexes of Oa

X -
modules. But this is guaranteed by Corollary 3.5.12.

Remark 3.5.15. For any F a;G a 2 D.X/a, there is a canonical morphism

RalHom Oa
X
.F a;G a/˝LOX F a

! G a

that, after the identifications from Proposition 3.5.8 and Proposition 3.5.14, is the
almostification of the canonical morphism

RHom OX .F
a
Š ;G

a
Š /˝

L
OX

F a
Š ! G aŠ

from [68, Tag 0A8V].

Lemma 3.5.16. Let .X;OX / be a ringed R-site, and let F a;G a;Ha 2 D.X/a. Then
we have a functorial isomorphism

RHom Oa
X

�
F a
˝
L
Oa
X

G a;Ha
�
' RHom Oa

X

�
F a;RalHomRa.G

a;Ha/
�
:

This induces functorial isomorphisms

RHomOa
X

�
F a
˝
L
Oa
X

G a;Ha
�
' RHomOa

X

�
F a;RalHomRa.G

a;Ha/
�
;

RalHom Oa
X

�
F a
˝
L
Oa
X

G a;Ha
�
' RalHom Oa

X

�
F a;RalHomRa.G

a;Ha/
�
;

RalHomOa
X

�
F a
˝
L
Oa
X

G a;Ha
�
' RalHomOa

X

�
F a;RalHomRa.G

a;Ha/
�
:

https://stacks.math.columbia.edu/tag/0A8V
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Proof. The proof of the first isomorphism is very similar to that of Lemma 2.4.14.
We leave the details to the interested reader. The second isomorphism comes from
the fist one by applying the functor R�.X;�/. The third and the fourth isomorphisms
are obtained by applying .�/a to the first and the second isomorphisms respectively.
Here, we implicitly use Proposition 3.5.8.

Corollary 3.5.17. Let .X;OX / be a ringed R-site, and let G a 2 D.X/a. Then the
functors

RalHom Oa
X
.G a;�/WD.X/a D.X/aW � ˝L

Oa
X

G a

are adjoint.

Now we discuss the almost analogues of derived pullbacks and derived pushfor-
wards. We start with the derived pullbacks:

Definition 3.5.18. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. We
define the derived pullback functor

Lf �WD.Y /a ! D.X/a

as the derived functor of the right exact, additive functor f �WModaY !ModaX .

Remark 3.5.19. We need to explain why the desired derived functor exists and how
it can be computed. It turns out that it can be constructed by choosing K-flat res-
olutions, the argument for this is identical to [68, Tag 06YY]. We only emphasize
that three main inputs are Lemma 3.5.11, Lemma 3.5.10, and an almost analogue of
[68, Tag 06YG].

Proposition 3.5.20. Let f W .X;OX / ! .Y;OY / be a morphism of ringed R-sites.
Then there is a natural transformation of functors

D.Y / D.X/

D.Y /a D.X/a

Lf �

.�/a .�/a

Lf �

�

that makes the diagram .2; 1/-commutative. In particular, there is a functorial iso-
morphism .Lf �F /a ' Lf �.F a/ for any F 2 D.Y /.

Proof. We construct the natural transformation �WLf � ı .�/a) .�/a ı Lf � as fol-
lows: Pick any object F 2D.Y / and itsK-flat representative K�, then K� is adapted
to compute the usual derived pullback Lf �. Lemma 3.5.11 ensures K�;a is also

https://stacks.math.columbia.edu/tag/06YY
https://stacks.math.columbia.edu/tag/06YG
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adapted to compute the almost version of the derived pullback Lf �. So we define the
morphism

�F W .f
�.em˝K�//a ! f �.K�/a

as the natural morphism induced by em˝K� ! K�. This map is clearly functorial,
so it defines a transformation of functors �. To show that it is an isomorphism of
functors, it suffices to show that the map

f �.em˝K�/! f �.K�/

is an almost isomorphism of complexes for any K-flat complex K�. But this is clear
as em˝K� ! K� is an almost isomorphism, and Corollary 3.2.18 ensures that f �

preserves almost isomorphisms.

Definition 3.5.21. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. We
define the derived pushforward functor

Rf�WD.X/a ! D.Y /a

as the derived functor of the left exact, additive functor f�WModaX !ModaY .
We define the derived global sections functor R�.U;�/WD.X/a ! D.R/a in a

similar way for any open U � X .

Remark 3.5.22. This functor exists by abstract nonsense (i.e., [68, Tag 070K]) as the
category ModaX has enough K-injective complexes by Corollary 3.4.7.

Proposition 3.5.23. Let f W .X;OX / ! .Y;OY / be a morphism of ringed R-sites.
Then there is a natural transformation of functors

D.X/ D.Y /

D.X/a D.Y /a

Rf�

.�/a .�/a

Rf�

�

that makes the diagram .2; 1/-commutative. In particular, there is a functorial iso-
morphism .Rf�F /a ' Rf�.F a/ for any F 2 D.X/. The analogous results hold for
the functor R�.U;�/.

Proof. The proof is very similar to that of Proposition 3.5.20. The main essential
ingredients are: .�/a sends K-injective complexes to K-injective complexes, and f�
preserves almost isomorphisms. These two results were shown in Lemma 3.4.6 and
Lemma 3.2.23.

https://stacks.math.columbia.edu/tag/070K
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Lemma 3.5.24. Let .X;OX / be a ringed R-site, let F be an Oa
X -module, and let

U 2 X be an open object. Then we have a canonical isomorphism

R�
�
U;RalHom Oa

X
.F a;G a/

�
' RalHomOa

U

�
F a
jU ;G

a
jU

�
Proof. This easily follows from Remark 3.5.4, Proposition 3.5.8, and finally Propo-
sition 3.5.23.

Lemma 3.5.25. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. Then
there is a functorial isomorphism

Rf�RHom Oa
X
.Lf �F a;G a/ ' RHom Oa

Y
.F a;Rf�G a/

for F a 2 D.Y /a, G a 2 D.X/a. This isomorphism induces isomorphisms

Rf�RalHom Oa
X
.Lf �F a;G a/ ' RalHom Oa

Y
.F a;Rf�G a/;

RHomOa
X
.Lf �F a;G a/ ' RHomOa

Y
.F a;Rf�G a/;

RalHomOa
X
.Lf �F a;G a/ ' RalHomOa

Y
.F a;Rf�G a/:

Proof. It is a standard exercise to show that the first isomorphism implies all other
isomorphisms by applying certain functors to it, so we deal only with the first one.
The proof of the first one is also quite standard and similar to Lemma 3.2.26, but
we spell it out for the reader’s convenience. The desired isomorphism comes from a
sequence of canonical identifications:

Rf�RHom Oa
X

�
Lf �.F a/;G a

�
' Rf�RHom Oa

X

�
Lf �.F /a;G a

�
Proposition 3.5.20

' Rf�RHom OX

�em˝ Lf �.F /;G
�

Lemma 3.5.5 (1)

' Rf�RHom OX

�
Lf �.em˝ F /;G

�
Lemma 3.2.17

' RHom OY

�em˝ F ;Rf�.G /
�

classical

' RHom Oa
Y

�
F a;Rf�.G /a

�
Lemma 3.5.5 (1)

' RHom Oa
Y

�
F a;Rf�.G a/

�
Proposition 3.5.23:

Corollary 3.5.26. Let f W .X;OX /! .Y;OY / be a morphism of ringed R-sites. Then
the functors Rf�.�/WD.X/a D.Y /aWLf �.�/ are adjoint.

Now we discuss the projection formula in the world of almost sheaves. Sup-
pose f W .X;OX / ! .Y;OY / is a morphism of ringed R-sites, F a 2 D.X/a, and
G a 2 D.Y /a. We wish to construct the projection morphism

�WRf�.F a/˝L
Oa
Y

G a ! Rf�
�
F a
˝
L
Oa
X

Lf �.G a/
�
:
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By Corollary 3.5.26, it is equivalent to constructing a morphism

� WLf �
�
Rf�.F a/˝L

Oa
Y

G a
�
! F a

˝
L
Oa
X

Lf �.G a/:

We define � as the composition of the natural isomorphism

Lf �
�
Rf�.F a/˝L

Oa
Y

G a
�
' Lf �

�
Rf�.F a/

�
˝
L
Oa
X

Lf �.G a/

and the morphism

Lf �
�
Rf�.F a/

�
˝
L
Oa
X

Lf �.G a/
"F a˝id
�����! F a

˝
L
Oa
X

Lf �.G a/

induced by the counit of the .Lf �;Rf�/-adjunction.

Proposition 3.5.27. Let f W .X;OX / ! .Y;OY / be a morphism of ringed R-sites,
F a 2 D.X/a, and G 2 D.Y / a perfect complex. Then the projection morphism

�WRf�.F a/˝L
Oa
Y

G a ! Rf�
�
F a
˝
L
Oa
X

Lf �.G a/
�

is an isomorphism in D.Y /a.

Proof. The claim is local on Y , so we may assume that G is isomorphic to a bounded
complex of finite free OY -modules. Then an easy argument with naive filtrations
reduces the question to the case when G D On

Y . This case is essentially obvious.


