Chapter 3

Almost mathematics on ringed sites

The main goal of this chapter is to “globalize” the results of Chapter 2. The two main
cases of interest are almost coherent sheaves on schemes and “good” formal schemes.
In order to treat those cases uniformly, we define the notion of almost sheaves in the
most general set-up of ringed sites and check their basic properties. This is the content
of Section 3.1. Sections 4.1 and 4.5 are devoted to establishing the foundations of
almost coherent sheaves on schemes and formal schemes, respectively. In particular,
we show that the notion of almost finitely generated (resp. presented, resp. coher-
ent) module globalizes well on schemes and some “good” formal schemes. Then we
discuss the derived category of almost sheaves and various functors on the derived
categories of almost sheaves. Later in Chapter 4, we use this theory to establish foun-
dations of almost coherent sheaves on schemes and formal schemes, respectively.

3.1 The category of OF -modules

We start this section by fixing a ring R with an ideal m such that m = m? and
m = m ®g m is R-flat. We always do almost mathematics with respect to this ideal.
The main goal of this section is to globalize the notion of almost mathematics to the
case of ringed R-sites.

In this section, we fix a ringed R-site (X, Ox), i.e., a ringed site (X, Ox) where
Oy is a sheaf of R-algebras on X . Note that any ringed site (X, Ox) is, in particular, a
ringed Oy (X)-site. The main goal of this section is to develop foundations of almost
mathematics on ringed R-sites.

We note that, on each open U € X, it makes sense to speak of almost Ox (U )-
modules with respect to the ideal mOyx (U); we refer to Lemma 2.1.11 for the details.
In what follows, we extend the definition of almost modules to the category of Ox-
modules.

Definition 3.1.1. Let (X, Ox) be aringed R-site, and let  be any Ox-module. Then
the sheaf of almost section M ® F is the sheafification of the presheaf defined via the
formula

U m®grF ).

Remark 3.1.2. This definition coincides with the tensor product it ® g ¥, where
m is the constant sheaf associated with the R-module m. Alternatively, we see that
mF ~ @X Roy F where@x = @@R Ox.
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We also note that flatness of the R-module @t implies that the functor — ® 1 is
exact and descends to a functor

—@m:D(X) - D(X),

where D(X) is the derived category of Qx-modules.

Definition 3.1.3. An Ox-module ¥ is almost zero if m ® ¥ is zero. We denote the
category of almost zero Qx-modules by Xy .

Remark 3.1.4. Since @i is an R-flat module, we easily see that the category of almost
zero Ox-modules is a Serre subcategory of Modp, = Mody.

Lemma 3.1.5. Let (X, Ox) be a ringed R-site, and let ¥ be an Ox-module. Suppose
that U is a base of topology on X . Then the following conditions are equivalent:

(1) ¥ ® 1 is the zero sheaf.

(2) Foranye e m, e¥ = 0.

(3) Forany U € U, the module 1l @ ¥ (U) is zero.
(4) Forany U € U, the module m ® ¥ (U) is zero.
(5) Forany U € U, the module m(F (U)) is zero.

Proof. We first show that (1) implies (2). We pick an element ¢ € m = m? and write
itase =) x; - y; for some x;, y; € m. So the multiplication by & map can be decom-
posed as
®2 X ®yi ~
7 IO oo w
where the last map is induced by the multiplication map it — R. Thenif ¥ ® mt =
0, the multiplication by ¢ map is zero for any & € m. Now (2) easily implies (5).
Further, Lemma 2.1.1 ensures that (3), (4), and (5) are equivalent. Finally, (3) clearly

implies (1). u

Lemma 3.1.6. Let (X, Ox) be a ringed R-site, and let ¥ be an almost zero Ox -
module. Then H (U, ) =% 0 for any open' U € X and anyi > 0.

Proof. If ¥ is almost zero, then ¢¥ = 0 for any ¢ € mt by Lemma 3.1.5. Since the
functors H (X, —) are R-linear, we conclude that eH! (U, ) = 0 for any open U and
any ¢ € m,i > 0. Thus Lemma 2.1.1 ensures that H (U, ) = 0. ]

Definition 3.1.7. We say that a homomorphism ¢: ¥ — § of Ox-modules is an
almost isomorphism if Ker(¢) and Coker(p) are almost zero.

'An open U € X is by definition an object U € Ob(X) of the category underlying the
site X.
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Lemma 3.1.8. A homomorphism ¢: ¥ — § of Ox-modules is an almost isomor-
phism if and only if o(U): F(U) — §(U) is an almost isomorphism of Ox (U)-
modules for any open U € X.

Proof. The < implication is clear from the definitions. We give a proof of the =
implication.

Suppose that ¢ is an almost isomorphism. We define the auxiliary Qx-modules:
K = Ker(p), F' := Im(¢), @ := Coker(p). Lemma 3.1.6 implies that the maps

FU) — F'(U) and F'(U) — €(U)

are almost isomorphisms. In particular, the composition ¥ (U) — (U ) must also be
an almost isomorphism. |

Now we discuss the notion of almost @x-modules on a ringed R-site (X, Ox).
This notion can be defined in two different ways: either as the quotient of the category
of Ox-modules by the Serre subcategory of almost zero modules or as modules over
the almost structure sheaf @F. Now we need to explain these two notions in more
detail.

Definition 3.1.9. We define the category of almost Ox -modules as the quotient cate-

gory
MOd%X = MOd@X/Ex.

Now we define the category Mod@)a( of O%-modules that we will show to be
equivalent to Mod‘(’DX. We recall that the almostification functor (—)¢ is exact and
commutes with arbitrary products. This allows us to define the almost structure sheaf:

Definition 3.1.10. The almost structure sheaf O% is the sheaf 2 of R%-modules
O%: (0Ob(X))® — Mod%

defined via the formula U +— Ox (U)%.

Definition 3.1.11. We define the category of O%-modules Modg as the category of
modules over O% € Shv(X, R) in the categorical sense. More precisely, the objects
are sheaves of R*-modules ¥ with a map ¥ ®ga O — F over R“ satisfying the
usual axioms for a module. Morphisms are defined in the evident way.

‘We now define the functor
(—)*:Modo, — Modoq

that sends a sheaf to its “almostification”, i.e., it applies the functor (—)%: Modg —
Mod% section-wise. Since the almostification functor (—)? is exact and commutes

’It is a sheaf exactly because (—)¢ is exact and commutes with arbitrary products.
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with arbitrary product, it is evident that ¥ ¢ is actually a sheaf for any Oy -module £ .
Moreover, it is clear that ¢ ~ 0 for any almost zero Ox-module ¥ . Thus, it induces
the functor
(—)“:Modp, — Modgg .

The claim is that this functor induces the equivalence of categories. The first step
towards the proof is to construct the right adjoint to (—)¢: Modp, — Modgg . Our
construction of the right adjoint functor will use the existence of the left adjoint func-
tor. So we slightly postpone the proof of the equivalence mentioned above and first
discuss adjoints to (—)¢.

We start with the definition of the left adjoint functor. The idea is to apply the
functor (—);: Modpg — Modg, section-wise, though this strategy does not quite
work as (—) does not commute with infinite products.

Definition 3.1.12. We define the desired functor in two steps.
*  First, (-){:Modge — Modg, as’

F U FQO)N.

e With its help, (—)i: Modge — Modg, as the composition (=) =)o (—)!p ,
where (—)* is the sheafification functor.
Lemma 3.1.13. Let (X, Ox) be a ringed R-site.
(1) The functor
(—)!ZMOd@)a( — Modg,

is the left adjoint to the localization functor (—)*: Modg,, — Modgg. In
particular, we have a functorial isomorphism

Homgg (¥, §%) ~ Homg, (#1,9)

forany ¥ € Modyq % € Modg,, .
(2) The functor (—)1: MOd@f\J, — Modg, is exact.

(3) The counit morphism (¥%)y — F is an almost isomorphism for any object
F € Modp,, . The unit morphism § — ($)* is an isomorphism for any object
g < Modyg . In particular, the functor (—)? is essentially surjective.

Proof. (1) follows from Lemma 2.1.9 (3) and the adjunction between sheafication and
the forgetful functor. More precisely, we have the following functorial isomorphisms:

Homgg (¥, 9%) ~ HomMong (%7, 6) >~ Homgy (1, 9).

3M0d(’;X stands for the category of modules over O in the category of presheaves.
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We show (2). It is easy to see that (—); is left exact from Lemma 2.1.9 (4) and
the exactness of the sheafification functor. It is also right exact since it is a left adjoint
functor to (—)%.

Now we show (3). Lemma 2.1.9 (5) ensures that the kernel and cokernel of the
counit map of presheaves (¥ “)f’ — ¥ are annihilated by any & € m. Then the same
holds after sheafification, proving that (¥¢){ — ¥ is an almost isomorphism by
Lemma 3.1.5.

We consider the unit map § — (6))¢, we note that using the adjuction ((—)1, (—)%)
section-wise, we can refine this map

5 — ()" - (%)

It suffices to show that both maps are isomorphisms; the first map is an isomorphism
by Lemma 2.1.9 (5). In particular, this implies that (ﬁlp )¢ is already a sheaf of almost
R“-modules, but then we see that the natural map (ﬁ!p )¢ — (%)% must also be an
isomorphism as it coincides with the sheafification in the category of presheaves of
R?-modules. ]

Remark 3.1.14. In what follows, we denote the objects of Modge by F ¢ to distin-
guish Oy and OF-modules. This notation does not cause any confusion as (—)¢ is
essentially surjective.

Now we construct the right adjoint functor to (—)“. The naive idea of apply-
ing (—)« section-wise works well in this case.

Definition 3.1.15. The functor of almost sections (—)«: Modpg — Modo, is de-
fined as
F%+ (U — Homg(mt, F4(U),) = Hompg(m, T(U))),

where the equality comes from Lemma 2.1.8 (2).

Remark 3.1.16. The functor (—)s is well defined, i.e., it defines a sheaf of Ox-
modules. This follows from the fact that Homg (11, —) is left exact and commutes
with arbitrary products.

Lemma 3.1.17. Let (X, Ox) be a ringed R-site.

(1) The functor (—)x: Mod@; — Modg,, is the right adjoint to the exact local-
ization functor (—)*: Modg, — Modgg . In particular, it is left exact.

(2) The unit morphism ¥ — (¥ %)« is an almost isomorphism for any object
F € Modg,, . The counit morphism (§2)* — §% is an isomorphism for any
54 ¢ MOd@jl\/.

Proof. 1t is sufficient to check both claims section-wise. This, in turn, follows from
Lemma 2.1.9 (1) and Lemma 2.1.9 (2) respectively. ]
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Corollary 3.1.18. The functor (—)*: Modgp, — Mod(z)}a( commutes with limits and
colimits. In particular, Mod@; is complete and cocomplete, and filtered colimits and
(finite) products are exact in Mod(z)sz(.

Proof. The first claim follows from the fact that (—)¢ admits left and right adjoints.
The second claim follows from the first claim, the exactness of (—)%, and analogous
exactness properties in Mod g. ]

Corollary 3.1.19. Let (X, Ox) be a ringed R-site. Then the functor
(—)*:Modg, — Modpg
is exact.
Proof. The functor (—)“ is exact as it has both left and right adjoints. ]
Theorem 3.1.20. Let (X, Ox) be a ringed R-site. Then the functor
(—)*:Mody, — Modpg
is an equivalence of categories.

Proof. Lemma 3.1.17 implies that the functor (—)%: Modp, — Modgg has a right
adjoint functor (—)« such that the counit morphism (—)? o (—)« — id is an iso-
morphism of functors. Moreover, the exactness of (—)¢ implies that a morphism
¢: ¥ — § is an almost isomorphism if and only if p?: ¢ — §¢ is an isomorphism.
Thus, [27, Proposition 1.3] guarantees that the induced functor (—)¢: Mod‘éx —
Modgg is an equivalence. u

Remark 3.1.21. In what follows, we do not distinguish MOd(gsl( and Mod‘éx. More-
over, we sometimes denote both categories by Mod§ or Mody« to simplify the
notation.

3.2 Basic functors on categories of @F -modules

We discuss how to define certain basic functors on Mod%. Our main functors of
interest are Hom, alHom, ®, f*, and f, (for any map f of ringed sites). We define
their almost analogues and discuss the relation with their classical versions. As a by-
product, we give a slightly more intrinsic definition of (—)«: Mody — Mody along
the lines of the definition of the Mod%-version of this functor. For the rest of the
section, we fix a ring R with an ideal m such that m = m2and @ = m Qg m
is R-flat. We also fix an ringed R-site (X, Ox) that we also consider as a ringed
Ox (X)-site.
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Definition 3.2.1. The global and local Hom functors are defined as follows:

* The global Hom functor
Homga (—, —): Mody, x Modya — Modo, (x)

is defined as (¥¢,9%) Homgg (F2,9%).

* The local Hom functor
Honlgﬁ(—g—01h40d§2><h40an-—>D40dX

is defined as (F%,6%) — (U — Homgg (¥“|v. 5 |u))- The standard argument
shows that this functor is well defined, i.e., Hom g¢ (¥,9) is indeed a sheaf of
Ox-modules.

Lemma 3.2.2. Let U € Ob(X), and let ¥¢, 5% be O%-modules. Then the natural
map
I'(U, Hom 04 (F°, %)) — Homgg, (F%u. 5% v)

is an isomorphism of Ox (U)-modules.
Proof. This is evident from the definition. ]

Lemma 3.2.3. Let (X, Ox) be a ringed R-site. Then there is a functorial isomor-
phism of Ox -modules

Hom gq (%, §) = Hom o, (F)1.9)
for ¥ € Mod§ and § € Mody.

Proof. Lemma 3.2.2 and Lemma 3.1.13 ensure that the desired isomorphism exists
section-wise. It glues to a global isomorphism of sheaves since these section-wise
isomorphisms are functorial in U. |

Now we move on to show a promised more intrinsic definition of the functor (—)x.
As a warm-up, we need the following result:

Lemma 3.2.4. Suppose that the ringed R-site (X, Ox) has a final object that (by
slight abuse of notation) we denote by X. Then the evaluation map

evy:Homge (0%, 9) — Homg, (x)a (0% (X). §%(X))
¢ = @(X)

is an isomorphism of Ox (X)-modules for any §* € Mody.
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Proof. As (—)¢ is essentially surjective by Lemma 3.1.13 (3), there exists some Oy -
module § with almostification being equal to §¢. Now we recall that the data of an
O%-linear homomorphism ¢: 9% — §¢ is equivalent to the data of Oy (U )“-linear
homomorphisms ¢y € Homg, ()« (9% (U), §%(U)) for each open U in X such that
the diagram

Ox(U)* 245 g(U)"

1% U
r@%‘vl l’gﬂ\y

Ox(V)* ——= §(V)°

commutes for any V' C U. Now we note that an Ox (U )?-linear homomorphism ¢
uniquely determines an Ox (V' )“-linear homomorphism ¢y in such a diagram. Indeed,
this follows from the equality

Homg, (1)« (Ox (V). §(V)?)
= Home, (v) (T ® Ox (V), (V)
= Hom@X(V)(r'rvl ® Ox(U) ®oyw) Ox(V), ;9(V))
= Homg, ) (T ® Ox(U).§(V))
= Homg, )« (Ox (U)*, §(V)?).

Now we use the assumption that X is the final object to conclude that any homomor-
phism ¢: OF — §“ is uniquely defined by ¢(X). ]

Corollary 3.2.5. Let (X, Ox) be an ringed R-site and let U € Ob(X). Then the
evaluation map

evy:Homgg (03, 917;) — Home,, )« (O (U), 94(U))
¢ = o(U)
is an isomorphism of Ox (U)-modules for any §* € Mody.

Proof. For the purpose of the proof, we can change the site X to the slicing site X/ U
of objects over U. Then U automatically becomes the final objectin X/ U, so we can
apply Lemma 3.2.4 to finish the proof. |

Now we are ready to prove a new description of the sheaf version of the func-
tor (—)«.

Lemma 3.2.6. Let (X, Ox) be a ringed R-site. Then there is a functorial isomor-
phism of Ox -modules
Hom pg (0%, F%) — 72

for ¥ € ModY.
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Proof. Lemma 3.2.2 and Corollary 3.2.5 imply the existence of an isomorphism of
Ox (U)-modules

I'(U.Hom g¢ (0% . F%)) = Home,, )« (0f (V). F(U))

that is functorial in both U and F¢. We use the functorial isomorphism of Ox (U)-
modules

Homg,, )« (Oy (U)*, F*(U)) ~ Homga (R*, F4(U)) = (F)«(U)
to construct a functorial isomorphism
I'(U,Hom g¢ (0%. F%)) = (F*)« (V).
Functoriality in U ensures that it glues to the global isomorphism of @x-modules
Hom ga (0%. ) = F2. ]
Now we discuss the functor of almost homomorphisms.

Definition 3.2.7. The global and local alHom functors are defined as follows:
e The global alHom functor

alHomgg (—, —): Mody, x Mody« — Modga
is defined as
(F,6%) — Homgg (F*,9%)* ~ Home, ((F¢),.§)".
e The local alHom functor
alHom g (—, —): Mody, x Mody« — Modxa
is defined as
(F8 > (U~ alHomeg, (Fu. 8% u)?).

Remark 3.2.8. At this point we have not checked that alHom g¢ (F4,6%) is actually
a sheaf. However, this follows from the following lemma:

Lemma 3.2.9. The natural map
Hom g, (M ® ¥,9)? — alHom 0 (¥%,8%

is an almost isomorphism of O%-modules for any ¥¢,§* € Mody. In particular,
alHom g¢ (¥¢,§%) is a sheaf of Oy -modules.
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Proof. This follows from the sequence of functorial in U isomorphisms:
Hom g, (ni ® ¥, 9)(U)* ~* Homg,, (W ® ¥ |v, §|v)*
~4 alHom@g/ (.(Fa|U, g |U)
~“ alHom ¢ (¥, §°)(U) [

In order to make Definition 3.2.7 computable, we need to show that these functors
can be computed by using any representative for ¢ and §¢.

Proposition 3.2.10. Letr (X, Ox) be a ringed R-site.

(1) There is a natural transformation of functors

Hy (_>_)
Mod? x Mody ox > Mody
x| / l(—)a
Mody, x Modya > Modya

alHom —,—
(951( ( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isomor-
phism alHomgg (¥4,9%) ~ Homg, (¥,9)" forany ¥,§ € Mody.

(2) There is a natural transformation of functors

Hom Ox (=)

Mody x Mody > Mody
(—)”x(—)”l / l(—)a
Mody, x Modya s Mody«

llH —,—
a Om@f\l/( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isomor-
phism alHom g¢ (¥, %%) >~ Hom ¢, (¥, 9)* for any ¥, § € Mody.

Proof. The proof is similar to the proof of Proposition 2.2.1 (3). The only new thing
is that we need to prove an analogue of Corollary 2.1.13, that is, that the func-
tors alHome,, (—, §), alHom ¢, (—, &) preserve almost isomorphisms. It essentially
boils down to showing that Extzgx (K,8) =* 0 and E_sz (K,8) = 0 for any
K € Xx,9 € Mody, and an integer i > 0.

Now Lemma 3.1.5 implies that e X = 0 for any ¢ € m. With that at hand, we see
that Ext’éX (K,%)and @bx (K ,¥§) are also annihilated by any ¢ € m since the func-
tors Ext’@X (—.9),Extjy (—.%) are R-linear. Thus, Ext’@X (K.9)and Exty (K. 9)
are almost zero by Lemma 2.1.1 and Lemma 3.1.5 respectively. |

Definition 3.2.11. The tensor product functor — ® ¢ — Mody x Mody — Mody
is defined as
(F9.6%) > 72 ®g, 9.
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Proposition 3.2.12. There is a natural transformation of functors

Mody x Mody > Mody

0
(—)4 X(_)al / l(_)a

Mod$ x Modj > Mody

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism
(F Qoy §)* =~ F° Roe g4

forany ¥ ,8 € Mody.
Proof. The proof is analogous to that of Propisition 2.2.1 (1). ]

The tensor product is adjoint to Hom as it happens in the case of R*-modules.
We give a proof of the local version of this statement.

Lemma 3.2.13. Let (X, Ox) be aringed R-site, and let ¥, 5%, H* be Of-modules.
Then there is a functorial isomorphism

Hom oy (7 ®eg 57, #) ~ Hom og (7, alHom og (7, #)).
After passing to the global sections, this gives the isomorphism
Homgg (F¢ Roa G4, H) ~ Homgg (J’("a,M@; (4, H?)).
And after passing to the almostifications, it gives an isomorphism
alHom gy (7 ®gy 9, H*) = alHom g (7, alHom g (°, J6)).

Proof. We compute I'(U, Hom 0% (F¢ ®o4¢ g%, #?)) by using Lemma 3.2.2 and
the standard (®, Hom ) adjunction. Namely,

[ (U, Hom ga (7 ®gq §¢, #*))

~ Homge, (F“|u ®og, §°u, #*|v) Lemma 3.2.2
~ Homgg, (Flv ®0y Elv)*. Hv) Proposition 3.2.12
~ Homg,, (M ® (¥ |v ®e, Flv). X|v) Lemma 3.1.13
~ Homg,, (T ® ¥ |v) ®o, (MR F|v), H|v) m® ~ m
~ Homg,, (M ® #|v.Hom g, (M Q@ v, H|v)) (®, Hom) adjunction
:Hom(gaU(? |U,M@U(m®§|u,]€|y)) Lemma 3.1.13

~ I'(U,Hom 0 (?“,alHom(g)a( (8%, HY))). Lemma 3.2.2
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Since these identifications are functorial in U, we can glue them to a global isomor-
phism

Hom pg (F¢ ®04 g%, #?) ~ Hom 0 (¢, alHom 0 (g%, #)).
This finishes the proof. ]

Corollary 3.2.14. Let (X, Ox) be a ringed R-site, and let ¥ be an O%-module.
Then the functor — Qg ¥ @ is left adjoint to alHom 0¢ (F 4 -).

For what follows, we fix amap f: (X, Ox) — (Y, Oy) of ringed R-sites. We are
going to define the almost version of the pullback and pushforward functors.

Definition 3.2.15. The pullback functor f*:Mody — Mody is defined as
7 (7 ()"

In what follows, we will often abuse notation and simply write f* instead of f*.
This is “allowed” by Proposition 3.2.19.

As always, we want to show that this functor can be actually computed by apply-
ing f* to any representative of #“. The main ingredient is to show that f* sends
almost isomorphisms to almost isomorphisms. The following lemma shows slightly
more, and will be quite useful later on:

Lemma 3.2.16. Let f:(X,0Ox) — (Y,Oy) be a morphism of ringed R-sites. Then for
any Ox -module ¥, there is a natural isomorphism ¢¢ (¥): f*(M@ F) >m Q f*F
Sfunctorial in F .

Proof. We use Remark 3.1.2 to conclude that i ® ¥ is functorially isomorphic to
My ®@, ¥, where my = m ®g Oy. Now we note that f*(iiiy) >~ miy as can
be easily seen from the very definitions (using that mt is R-flat). Therefore, @7 (F)
comes from the fact that the pullback functor commutes with the tensor product. More
precisely, we define it as the composition

fr@®F) = f*(@iy ®oy F)— [*({Hy) oy f(F) = Ty ®oy f*(F). m

We now also show a derived version of Lemma 3.2.16 that will be used later in
the text.

Lemma 3.2.17. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
forany ¥ € D(X), there is a natural isomorphism

er(F)LffM®F) >mQLf*F

Sfunctorial in F .
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Proof. Similarly, we use Remark 3.1.2 to say that i ® ¥ is functorially isomorphic
to iy ®p, ¥, where ity '=m ®g Oy. Wenote that L f*(ity ) ~ f*(Miy) >~ miy
as m is R-flat. The rest of the proof is the same using the L f* functorially commutes
with the derived tensor product. ]

Corollary 3.2.18. Let f:(X,0x) — (Y, Oy) be a morphism of ringed R-sites, and
let o: ¥ — § be an almost isomorphism of Oy -modules. Then the homomorphism
(@) f*(F) = f*(9) is an almost isomorphism.

Proof. The question boils down to showing that the homomorphism
me fH(F) >me [F(H)

is an isomorphism. Lemma 3.2.16 ensures that it is sufficient to prove that the map
[fAey) - ff(ueY)

is an isomorphism. But this is clear because the map M ® ¥ — W ® ¢ is already an
isomorphism. |

Proposition 3.2.19. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

Mody —> Modyx

| e e

Mod§, ———— Mod}

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (f*F)* >~ fX(F¢) forany ¥ € Mody.

Proof. The proof is similar to that of Proposition 2.2.1. For any ¥ € Mody, we
define pz: f*(M @ F)? — f*(F)* as the map induced by the natural homomor-
phism m ® ¥ — F. It is clearly functorial in ¥, and it is an isomorphism by

Corollary 3.2.18. ]
Definition 3.2.20. The pushforward functor f:Mody — Mod is defined as
“ o (f(F)"

In what follows, we will often abuse the notation and simply write fy instead of f2.
This is “allowed” by Proposition 3.2.24.
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Definition 3.2.21. The global sections functor I'*(X,—):Mod§ — Mod% is defined
as

Fs (X, 79

In what follows, we will often abuse the notation and simply write I" instead of I'¢.
This is also “allowed” by Proposition 3.2.24.

Remark 3.2.22. The global section functor can be realized as the pushforward along
the map (X, Ox) — (*, R).

Lemma 3.2.23. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites, and let
©: F — § be an almost isomorphism. Then the morphism [y (¢): fx(F) — f«(§) is
an almost isomorphism.

Proof. The standard argument considering the kernel and cokernel of ¢ shows that
it is sufficient to prove that f, K =% 0, R! f, KX =% 0 for any almost zero Ox-
module K. This follows from R-linearity of f, and Lemma 3.1.5. |

Proposition 3.2.24. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-spaces.
Then there is a natural transformation of functors

Mody —> Mody

| e

Mod§ ——— Modj

that makes the diagram (2, 1)- commutative In particular, there is a functorial isomor-
phism (f«F)* ~ f2(F?) forany F € Mody. The same results hold for T'*(X, —).

Proof. We define pg: fou(fl @ F)¢ — fo(F)? as the map induced by the natural
homomorphism mt ® ¥ — ¥. It is clearly functorial in %, and it is an isomorphism
by Lemma 3.2.23. ]

Lemma 3.2.25. Let (X, Ox) be a ringed R-site, and let ', G be O%-modules. Then
the natural morphism

I'(U, alHom 0% (F°,6%) - alHomgg (Fv. €% v)
is an isomorphism of R*-modules for any U € Ob(X).

Proof. The claim easily follows from Lemma 3.2.2, Proposition 3.2.10 (2), and Propo-
sition 3.2.24. ]
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Lemma 3.2.26. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites, and
let ¢ € Mody, and §% € Mod%. Then there is a functorial isomorphism of Oy -
modules

feHom gg (f*(F%), §%) ~ Hom g (7, f+(9%)).
After passing to the global sections, this gives the isomorphism of Oy (Y )-modules
Homgg (f*(F),§%) ~ Homeg (F°, f+x(§%)).
And after passing to the almostifications, it gives the isomorphism of O -modules
fralHom og (f*(F%),§) 2 alHom g (7, /+(5%)).

Proof. This is a combination of the classical ( f*, fi)-adjunction, Lemma 3.1.13,
Lemma 3.2.16, Proposition 3.2.19, and Proposition 3.2.24. Indeed we choose U €
Ob(Y) and denote its pullback by V := f~1(U). We also define ¢ := F¢|y and
Gy = §%|y. The claim follows from the sequence of functorial 1somorph1sms

F(U,HO_I’H@@ (?a, f*(ga)))

~ Homeyg, (7. f<(5)) Lemma 3.2.2
~ Homgg (¥, fx (&v)%) Proposition 3.2.24
~ Homg,, (M ® Fu. fx($v)) Lemma 3.1.13
~ Homg,, (f*(W ® Fv), 5v) (f*, f+)-adjunction
~ Homg,, (M ® f*(Fv). 5v) Lemma 3.2.16
~ Homge (f*(Fv)". %) Lemma 3.1.13
~ Homgg (/*(F5). 59) Proposition 3.2.19
~ T'(U, f*Hin(g}a((f*(?“),ﬁ")). Lemma 3.2.2

Since these identifications are functorial in U, we can glue them to a global isomor-
phism
fxHom g (f* (), §%) = Hom gg (7, fu(5°)). .

Corollary 3.2.27. Let f:(X,0x) — (Y, Oy) be a morphism of ringed R-sites. Then
the functors  fyx: Mody ——= Mod$ : f* are adjoint.

3.3 Digression: The projection formula

In this section, we show that the tensor product it ® — behaves especially well on
locally spectral spaces”*. For instance, we show that we can explicitly describe sec-

4We refer to [68, Tag 08YF] and [70, Section 3] for a comprehensive discussion of (locally)
spectral spaces.


https://stacks.math.columbia.edu/tag/08YF

Almost mathematics on ringed sites 92

tions of m ® F on a basis of opens for such spaces, and verify a version of the
projection formula for this tensor product.

Lemma 3.3.1. Let (X, Ox) be a locally spectral, locally ringed R-space. Then for
any spectral® open subset U C X, the natural morphism

mer FU) > @me F)(U)
is an isomorphism of Ox (U)-modules.

Proof. As spectral subspaces form a basis of topology on X, it suffices to show that
the functor
U—->m@r¥F )

satisfies the sheaf condition on spectral open subsets. In particular, we can assume
that X itself is spectral.

As any open spectral U is quasi-compact, we conclude that any open covering
U = J;¢; Ui admits a refinement by a finite one. Thus, it is sufficient to check the
sheaf condition for finite coverings of a spectral space by spectral open subspaces.
Thus, we need to show that, for any finite covering U = Uie ;7 Ui, the sequence

n n
0->TRr FU) - [[(@erFU))— [] (@ er FU NU)))
i=1 i,j=1
is exact. This follows from flatness of 11 and the fact that tensor product commutes
with finite direct products. ]

Now we want to show a version of the projection formula for the functor M ® —,
it will take some time to rigorously prove it. We recall that a map of locally spectral
spaces is called spectral, if the pre-image of any spectral open subset is spectral.

Lemma 3.3.2. Let (X, Ox) be a spectral locally ringed R-space. Then for any injec-
tive Ox-module I, the Ox-module @ ® I is H*(X, —)-acyclic.

Proof. We note that spectral open subspaces form a basis for the topology on X . Thus
[68, Tag O1EV] and [68, Tag 0A36] imply that it suffices to show that

m®I|U

@MRIHV)—— (R I)U)

is surjective for any inclusion of any spectral open subsets U — V. Lemma 3.3.1
says that this map rgg I|5 is identified with the map

Qrrrlly

m®RI(V)—>m®RI(U)

>We remind the reader that any quasi-compact quasi-separated open subset of a locally
spectral space is spectral. This can be easily seen from the definitions.
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But now we note that r I|5 is surjective since any injective Ox-module is flasque
by [68, Tag 01EA], and therefore the map ™ ®g r 1|[‘§ is surjective as well. ]

Corollary 3.3.3. Letr f:(X,Ox) — (Y, Oy) be a spectral morphism of locally spec-
tral, locally ringed R-spaces, and let I be an injective Ox-module. Then Tt @ I is

fx(=)-acyclic.

Proof. 1t suffices to show that for any open spectral U C Y, the higher cohomology
groups
H (Xu. (@ ® I)lx,)

vanish. This follows from Lemma 3.3.2 since Xy is spectral because both f and U
are spectral. ]

Lemma 3.3.4. Let f:(X,0Ox) — (Y, Oy) be a spectral morphism of locally spectral,
locally ringed R-spaces, and let ¥ be an Ox-module. Then there is an isomorphism

B-m® fLF - fim®F)
functorial in F .

Proof. 1t suffices to define a morphism on a basis of spectral open subspaces U C Y.
For any such U C Y, we define

Bu:(m® fiF)U) — fulti @ F)(U)

as the composition of isomorphisms

@ ® LF)U) 2L & g (fF)U) = 7 ®r F(Xy)
s (@ ® F)(Xy) = fulfi @ F)U)

with oy and ay,, being isomorphisms from Lemma 3.3.1. Since the construction
of « is functorial in U, we conclude that 8 defines a morphism of sheaves. It is an
isomorphism because B is an isomorphism on a basis of Y. ]

Lemma 3.3.5. Let f:(X,0Ox) — (Y, Oy) be a spectral morphism of locally spectral,
locally ringed R-spaces. Then for any ¥ € D(X), there is a morphism

pr(F): T RRATF — Rfu([i ® F)

Sfunctorial in F. This map is an isomorphism in either of the following cases:
* the complex F is bounded below, i.e., ¥ € DT (X), or

* the space X is locally of uniformly bounded Krull dimension and ¥ € D(X).


https://stacks.math.columbia.edu/tag/01EA
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Proof. We start the proof by constructing the map ps (F). Note that by adjunction it
suffices to construct a map

LffMQRfLF)>mRF.
We define this map as the composition

—~ A'(Rf*f) — ~® T~
L@ ORAF) L R QL RAF T Fie F,

where the first map is the isomorphism coming from Lemma 3.2.17 and the second
map comes from the counit n of the (L f*, R f,)-adjunction.

Now we show that ps(F) is an isomorphism for ¥ € D (X). We choose an
injective resolution ¥ — I°. In this case, we use Corollary 3.3.3 to note that § is the
natural map

m® fu(I%) > fum®I%)

that is an isomorphism by Lemma 3.3.4.

The last thing we need to show is that ps () is an isomorphism for any unbound-
ed ¥ when X is locally of uniformly bounded Krull dimension. The claim is local,
so we may and do assume that both X and Y are spectral spaces. As X is quasi-
compact (because it is spectral) and locally of finite Krull dimension, we conclude
that X has finite Krull dimension, say N := dim X. Then [57, Corollary 4.6] (or
[68, Tag 0A3G]) implies that H* (U, §) = 0 for any open spectral U C X, § € Mody,
and i > N. In particular, R! f+€ = 0 for any § € Mody, and i > N. Thus we see
that the assumptions of [68, Tag OD6U] are verified in this case (with A4 = Mody
and A" = Mody), so the natural map

HIRfF) = H R (ZTF))

is an isomorphism for any ¥ € D(X), j > N — n. As mt is R-flat, we get the com-
mutative diagram

99 ([ @ RfLF) Her) . gpi(RAF ® F))

H (T QRfu(127"F)) ———— H (Rf(T ® 127" F))

ij(Prz—njr)

with the vertical arrows being isomorphisms for j > N — n, and the bottom horizontal
map is an isomorphism as 1= % € DT (X). Thus, by choosing an appropriate n > 0,
we see that #/ (pg ) is an isomorphism for any j; so p# is an isomorphism itself. m


https://stacks.math.columbia.edu/tag/0A3G
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3.4 Derived category of Oy -modules

This section is a global analogue of Section 2.3. We give two different definitions of
the derived category of almost @x-modules and then show that they coincide.

For the rest of the section, we fix aring R with an ideal m such that m = m? and
m = m ®g m is R-flat. We also fix an ringed R-site (X, Ox).

Definition 3.4.1. By definition, the derived category of O%-modules is D(X%) =
D(Mody ).

We define the bounded version of the derived category of almost R-modules
D*(X?) for * € {4+, —, b} as the full subcategory of D(X“) consisting of bounded
below (resp. bounded above, resp. bounded) complexes.

Definition 3.4.2. We define the almost derived category of Ox-modules as the Verdier
quotient® D(X)“ := D(Mody)/Ds, (Mody).

Remark 3.4.3. We recall that Xy is the Serre subcategory of Mody that consists of
the almost zero Oy -modules.

We note that the functor (—)%: Mody — Modj is exact and additive. Thus, it can
be derived to the functor (—)%:D(X) — D(X¢). Similarly, the functor (—);: Mody —
Mody can be derived to the functor (—);: D(X?) — D(X). The standard argument
shows that (—); is a left adjoint functor to the functor (—)¢ as this already happens on
the level of abelian categories.

We also want to establish a derived version of the functor (—),. But since the
functor is only left exact, we do need to do some work to derive it. Namely, we need
to ensure that @%-modules admit enough K-injective complexes.

Definition 3.4.4. We say that a complex of O§-modules 1*“ is K-injective if the
condition HomK((gsz()(C *@ [%9) = 0 is satisfied for any acyclic complex C*“ of
R%-modules.

Remark 3.4.5. We remind the reader that K(O%) stands for the homotopy category
of O%-modules.

Lemma 3.4.6. The functor (—)“: Comp(Ox) — Comp(0O%) sends K-injective O% -
complexes to K-injective O -complexes.

Proof. We note that (—)% admits an exact left adjoint (—); thus [68, Tag 08BJ] ensures
that (—)¢ preserves K-injective complexes. [

6We refer to [68, Tag 05RA] for an extensive discussion of Verdier quotients of triangulated
categories.
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Corollary 3.4.7. Let (X, Ox) be a ringed R-site. Then every ¥*¢ € Comp(©%) is
quasi-isomorphic to a K-injective complex.

Proof. The proof of Corollary 2.3.6 works verbatim with the only exception that one
needs to use [68, Tag 079P] instead of [68, Tag 090Y]. [

Similarly to the case of R%-modules, we define the functor (—).:D(X?) — D(X)
as the derived functor of (—)«:Mod§ —Mody . This functor exists by [68, Tag 070K].

Lemma 3.4.8. Let (X, Ox) be a ringed R-site.

(1) The functors (—)*: D(X) =—= D(X?) : (=) are adjoint. Moreover, the
counit (resp. unit) morphism

(F) — F (resp. § — (§1)°)

is an almost isomorphism (resp. isomorphism) for any ¥ € D(X), 8 € D(X4).
In particular, the functor (—)¢ is essentially surjective.

(2) The functor (—)%: D(X) — D(X?%) also admits a right adjoint functor
(—)x:D(X?) — D(X). Moreover, the unit (resp. counit) morphism

F = (F (resp. (8:)* - §)
is an almost isomorphism (resp. isomorphism) for any ¥ € D(X), 8§ € D(X9).
Proof. The proof is similar to that of Lemma 2.3.7. |

Theorem 3.4.9. The functor (—)*:D(X) — D(X?) induces an equivalence of trian-
gulated categories (—)%:D(X)? — D(X?).

Proof. The proof is similar to that of Theorem 2.3.8. |
Remark 3.4.10. Theorem 3.4.9 shows that the two notions of the derived category
of almost modules are the same. In what follows, we do not distinguish D(X¢) and
D(X)* anymore.

3.5 Basic functors on derived categories of OF -modules

Now we can “derive” certain functors constructed in Section 3.2. For the rest of the

section, we fix a ringed R-site (X, Ox). The section follows the exposition of Sec-
tion 2.4 very closely.
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Definition 3.5.1. We define the derived Hom functors
RHom g¢ (—, -): DX x D(X%) — D(X),

and
RHom@; (=, =):DXYY? xD(X%) — D(R)
as it is done in [68, Tag 08DH] and [68, Tag OB6A], respectively.

Definition 3.5.2. We define the global Ext-modules as the R-modules
Extz; (79.8%) =H (RHom@g( (F9,89)

for ¥4, 8% € Mody .
Finally, we define the local Ext-sheaves as the Ox-modules Ext iga (F4,8%) :=
. X
' (RHom g (¥, 94)), for 7,6 € Mody .

Remark 3.5.3. We see that [68, Tag 0A64] implies that there is a functorial isomor-
phism
H (RHOm(gsl( (F4,6%) ~ Homp(gya (¥, §°[i])

for ¥4,8% € D(X)“.

Remark 3.5.4. The standard argument shows that there is a functorial isomorphism
RT (U, RHom 0% (?a, ga)) g RHom(gé (?a |U, g? |U)

forany open U € X, ¥%,9% € D(X)“.

Now we show a local version of the ((—), (—)%)-adjunction, and relate RHom
(resp. RHom) to a certain derived functor. This goes in complete analogy with the
situation in the usual (not almost) world.

Lemma 3.5.5. Let (X, Ox) be a ringed R-site.
(1) There is a functorial isomorphism

RHom ¢ (¥4, 9“) ~ RHom o, (¥,°. %)

forany ¥ € D(X)? and § € D(X). In particular, this isomorphism induces
functorial isomorphisms

RHomge (¢, 9%) >~ RHomg, (#,°, 9)

and
HOInD(X)a (37“, ga) ~ RHOII]D(X) (‘77!“ , 5).

(2) Forany chosen ¥ ¢ € Mody, the functor RHomgg¢ (F%,-):D(X)* - D(R)
is isomorphic to the (right) derived functor of Homgg (¥4, —).


https://stacks.math.columbia.edu/tag/08DH
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(3) For any chosen ¥ € Mod%, the functor RHom 0% (F4,-):D(X)? > D(X)

is isomorphic to the (right) derived functor of Homgg (¥4, —).

Proof. (1) Lemma 3.4.6 and the construction of derived homs ensure that

RHom g¢ (7, §) ~ Hom 5 (F*¢, 1)

RHom g, (7. ) ~ Hom g (F,"“, I*),
where § — I°®is a K-injective resolution. Now we recall the term-wise equalities

Hom'é;;((f""“,f"“): 1_[ Hom gq (%4, I74)
p+q=n

Homp (7,74, I°) = 1_[ Hom o, (%, *, I?).
p+a=n

Thus Lemma 3.2.3 produces term-wise isomorphisms
Kkn: Hom ’(’95,( (¥4, I%%) — Homp, ("%, I*)

that commute with the differentials by inspection, therefore defining the desired iso-
morphism of complexes.

Parts (2) and (3) are identical to Lemma 2.4.3 (2). [ ]

Definition 3.5.6. We define the derived almost Hom functors

RalHom p¢ (—, —): DX x D(X%) — D(X9),
RalHomeg (—, —): D(X*) x D(X%) — D(R?)

as

RalHom o (7¢,9%) := RHom 0 (F7,9%)% = RHom o, (7", 9)“,
RalHomgq (¢, 6“) :== RHomeg (¢, 9%)* = RHomg, (#,*,9)".

Definition 3.5.7. The global almost Ext modules are defined as the R“-modules
alExt’O)a( (¥4,8% :=H (RalHomgg (¥¢,69)) for 74,5 € Mody .

We define the local almost Ext sheaves as the O§-modules alExt ‘é)a( (74,89) .=
H'(RalHom 0% (¥4,8%) for 4,6 € Mod.
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Proposition 3.5.8. Let (X, Ox) be a ringed R-site.

(1) There is a natural transformation of functors

RHom ¢, (——)

D(X)® x D(X) s D(X)

) x(—)al 7 l(—)a

D(X9) x D(X?) y D(X)

RalH ——
a om@f\z/( )

that makes the diagram (2, 1)-commutative. In particular, it yields an isom-
prphism RalHom g¢ (7%,6%) ~ RHom g, (¥.9)" forany ¥,9 € D(X).
(2) Forany 9 € Mod%, the functor RalHom 0% (F2,—):DX)* > D(X)%is
isomorphic to the (right) derived functor of alHom g¢ (F¢,-).
(3) The analogous results hold true for the functor RalHom@; (—,—).

Proof. The proof is identical to that of Proposition 2.4.8. One only needs to use
Proposition 3.2.10 in place of Proposition 2.2.1 (3). |

Now we deal with the case of the derived tensor product functor. We will show
that our definition of the derived tensor product functor makes RalHom 0% (—,—) into
the inner Hom functor.

Definition 3.5.9. We say that a complex of O%-modules F* is almost K-flat if the

naive tensor product complex €* ®:9)a( F %% is acyclic for any acyclic complex €*¢
of O%-modules.

Lemma 3.5.10. The functor (—)*: Comp(Ox) — Comp(O%) sends K -flat Ox -com-
plexes to almost K-flat O% -complexes.

Proof. The proof Lemma 2.4.10 applies verbatim. ]

Lemma 3.5.11. Let f:(X,Ox) — (Y, Oy) be a morphism of ringed R-sites, and let
F*% € Comp(0%) be an almost K-flat complex. Then f*(F*?) € Comp(0%) is
almost K -flat.

Proof. The proof of [68, Tag 06Y W] works verbatim in this situation. ]

Corollary 3.5.12. Every object ¥*¢ € Comp(0%) is quasi-isomorphic to an almost
K-flat complex.

Proof. The proof of Corollary 2.4.11 applies verbatim with the only difference that
one needs to use [68, Tag 06 YF] in place of [68, Tag 06Y4]. [
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Definition 3.5.13. We define the derived tensor product functor
- ®(L,; —D(X)? x D(X)* — D(X)*
by the rule (¥¢,9%) — (6 ®éX 6))¢ for any 4,6 € D(X)“.

Proposition 3.5.14. (1) There is a natural transformation of functors

D(X) x D(X) Pox s D(X)

(—)ax<—)al / l(—)“

D(X)? x D(X)® - y D(X)*

that makes the diagram (2, 1)-commutative. In particular, there is a functorial
isomorphism (¥ ®éX 9)¢ ~ 74 RL, 69 forany .8 € D(X).
X
(2) For any chosen ¥* € Mody, the functor ¢ ®1L2a —D(X)* - D(X)% is
isomorphic to the (left) derived functor of ¥ ¢ Ry —

Proof. Again, the proof is identical to that of Proposition 3.5.14. The only non-trivial
input that we need is the existence of sufficiently many K-flat complexes of O%-
modules. But this is guaranteed by Corollary 3.5.12. |

Remark 3.5.15. For any ¥¢,9¢ € D(X)%, there is a canonical morphism
RalHom g¢ (79, §%) ®g, ¥° — §°

that, after the identifications from Proposition 3.5.8 and Proposition 3.5.14, is the
almostification of the canonical morphism

RHom g, (7%, 9) ®g, 5" — &
from [68, Tag 0A8V].

Lemma 3.5.16. Let (X, Ox) be a ringed R-site, and let F¢,8%, #% € D(X)?. Then
we have a functorial isomorphism

RHom p¢ (7 ®é§,( g9, #“) ~ RHom 0 (¢, RalHom ga (8%, #9)).
This induces functorial isomorphisms
RHomgg (37“ ®é§ g, J(“) ~ RHompg (J’7a, RalHom g« (7, %”)),
RalHom 0 (37" ®é§,( g4, J€a) ~ RalHom 0% (3‘7“, RalHom g« (9%, Jf“)),
RalHomeg (¢ ®gq . #*) =~ RalHomgg (7, RalHom ga (9%, J)).


https://stacks.math.columbia.edu/tag/0A8V
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Proof. The proof of the first isomorphism is very similar to that of Lemma 2.4.14.
We leave the details to the interested reader. The second isomorphism comes from
the fist one by applying the functor RT" (X, —). The third and the fourth isomorphisms
are obtained by applying (—)“ to the first and the second isomorphisms respectively.
Here, we implicitly use Proposition 3.5.8. ]

Corollary 3.5.17. Let (X, Ox) be a ringed R-site, and let §% € D(X)“*. Then the
Sfunctors

RalHom o (%, —): D(X)* — D(X)*: - ®L5,( g

are adjoint.

Now we discuss the almost analogues of derived pullbacks and derived pushfor-
wards. We start with the derived pullbacks:

Definition 3.5.18. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. We
define the derived pullback functor

Lf*D(Y)* — D(X)*

as the derived functor of the right exact, additive functor f*: Mody — ModY.

Remark 3.5.19. We need to explain why the desired derived functor exists and how
it can be computed. It turns out that it can be constructed by choosing K-flat res-
olutions, the argument for this is identical to [68, Tag 06YY]. We only emphasize
that three main inputs are Lemma 3.5.11, Lemma 3.5.10, and an almost analogue of
[68, Tag 06YG].

Proposition 3.5.20. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

py) —" L px)

|

D(Y)“ 0 D(X)“

that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (L f*%)* ~ L f*(£?) forany ¥ € D(Y).

Proof. We construct the natural transformation p: L f* o (=)¢ = (—=)% o L f* as fol-
lows: Pick any object ¥ € D(Y) and its K-flat representative K®, then K* is adapted
to compute the usual derived pullback L f*. Lemma 3.5.11 ensures JK*? is also
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adapted to compute the almost version of the derived pullback L f*. So we define the
morphism

py: (fF(® K*))* — fH(K®)*

as the natural morphism induced by m ® K* — K. This map is clearly functorial,
so it defines a transformation of functors p. To show that it is an isomorphism of
functors, it suffices to show that the map

frame K — 1K)

is an almost isomorphism of complexes for any K-flat complex K*°. But this is clear
as m ® K*® — K* is an almost isomorphism, and Corollary 3.2.18 ensures that f™*
preserves almost isomorphisms. ]

Definition 3.5.21. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. We
define the derived pushforward functor

Rf:D(X)? — D(Y)*

as the derived functor of the left exact, additive functor f: M0d§’( — Mod‘,’,.
We define the derived global sections functor RT' (U, —): D(X)? — D(R)% in a
similar way for any open U C X.

Remark 3.5.22. This functor exists by abstract nonsense (i.e., [68, Tag 070K]) as the
category Mod§ has enough K-injective complexes by Corollary 3.4.7.

Proposition 3.5.23. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites.
Then there is a natural transformation of functors

DY) — R py)

o

D(X)? T> D(Y)?
that makes the diagram (2, 1)-commutative. In particular, there is a functorial iso-
morphism (R f )% ~ R fi.(F?) for any F € D(X). The analogous results hold for
the functor RT (U, —).

Proof. The proof is very similar to that of Proposition 3.5.20. The main essential
ingredients are: (—)? sends K -injective complexes to K -injective complexes, and f
preserves almost isomorphisms. These two results were shown in Lemma 3.4.6 and
Lemma 3.2.23. ]


https://stacks.math.columbia.edu/tag/070K
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Lemma 3.5.24. Let (X, Ox) be a ringed R-site, let ¥ be an O%-module, and let
U € X be an open object. Then we have a canonical isomorphism

RT (U, RalHom g (¥, 9)) ~ RalHomgg (¥|v, §°|v)

Proof. This easily follows from Remark 3.5.4, Proposition 3.5.8, and finally Propo-
sition 3.5.23. ]

Lemma 3.5.25. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
there is a functorial isomorphism

R f«RHom ¢ (Lf*%%, 6% ~ RHom oe (F4 RfGY)
for F* € D(Y)4, 62 € D(X)“. This isomorphism induces isomorphisms
R f«RalHom ¢ (Lf*%%, 6% ~ RalHom ou (F4 Rf59),
RHomgg (Lf*F4, 8% ~ RHomgg (¢, R f5%),
RalHomgg (Lf*F4, 8% ~ RalHomgg (¥, R £, §9).
Proof. Tt is a standard exercise to show that the first isomorphism implies all other
isomorphisms by applying certain functors to it, so we deal only with the first one.
The proof of the first one is also quite standard and similar to Lemma 3.2.26, but

we spell it out for the reader’s convenience. The desired isomorphism comes from a
sequence of canonical identifications:

R f.RHom gg (L f*(F%). §%)

~ R f«RHom g¢ (L f* ()", ) Proposition 3.5.20
~ R f,RHom g, (W @ Lf*(F), %) Lemma 3.5.5 (1)
~ Rf,RHom g, (L/* (WM ® 7)., %) Lemma 3.2.17
~ RHom g, (T ® #,R /(%)) classical
~ RHom ga (¥, R f«(9)“) Lemma 3.5.5 (1)
~ RHom p¢ (F*RfA(ED) Proposition 3.5.23. [

Corollary 3.5.26. Let f:(X,Ox) — (Y, Oy) be a morphism of ringed R-sites. Then
the functors R fiu(—):D(X)? &= D(Y)*:Lf*(—) are adjoint.

Now we discuss the projection formula in the world of almost sheaves. Sup-
pose f:(X,0Ox) — (Y, Oy) is a morphism of ringed R-sites, ¢ € D(X)%, and
§% € D(Y)?. We wish to construct the projection morphism

o:Rf(F9) ®g¥ g — R fi(F° ®g§,( Lf*($9).
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By Corollary 3.5.26, it is equivalent to constructing a morphism
. frod L I g L
T LI (RA(F) ®ga §°) > F* ®ga L (5.
We define 7 as the composition of the natural isomorphism
L (Rf(F) ®Gg 9°) ~ Lf*(RA(F)) ®gg Lf*(57)
and the morphism

L/ (RA(F) @y L7 (5% 25 7 @b, L")

induced by the counit of the (L f*, R f;)-adjunction.

Proposition 3.5.27. Let f: (X, Ox) — (Y, Oy) be a morphism of ringed R-sites,
F?eD(X)4 and § € D(Y) a perfect complex. Then the projection morphism

o:Rf(F9) ®{;by, g — R fi(F* ®g§ Lf*($%)
is an isomorphism in D(Y)%.

Proof. The claim is local on Y, so we may assume that § is isomorphic to a bounded
complex of finite free Oy-modules. Then an easy argument with naive filtrations
reduces the question to the case when § = OF. This case is essentially obvious. m



