
Chapter 5

Cohomological properties of almost coherent sheaves

The main goal of this chapter is to establish that almost coherent sheaves share sim-
ilar cohomological properties to classical coherent sheaves. In particular, we prove
almost versions of the proper mapping theorem (both for schemes and nice formal
schemes), of the formal GAGA theorem, of the formal function theorem, and of the
Grothendieck duality. The formal GAGA theorem is arguably quite surprising in the
almost coherent context because almost coherent sheaves are rarely of finite type, so
none of the classical proofs of the formal GAGA theorem applies in this situation.
We resolve this issue by adapting a new approach to GAGA theorems due to J. Hall
(see [31]).

5.1 Almost proper mapping theorem

The main goal of this section is to prove the almost proper mapping theorem which
says that derived pushforward along a proper (topologically) finitely presented mor-
phism of nice (formal) schemes preserves almost coherent sheaves.

The idea of the proof is relatively easy: we approximate an almost finitely pre-
sented OX -module by a finitely presented one using Corollary 4.3.5 or Theorem 4.7.6
and then use the usual proper mapping theorem. For this, we will need a version of the
proper mapping theorem for a class of non-noetherian rings, which we review below.

Definition 5.1.1. We say that a scheme Y is universally coherent if any scheme X
that is locally of finite presentation over Y is coherent (i.e. the structure sheaf OX is
coherent).

Theorem 5.1.2 (Proper mapping theorem [25, Theorem I.8.1.3]). Let Y be a univer-
sally coherent quasi-compact scheme, and let f WX ! Y be a proper morphism of
finite presentation. Then Rf� sends D�coh.X/ to D�coh.Y / for any � 2 ¹“ ”;C;�; bº.

We want to generalize this theorem to the “almost world”. So we pick a ring R
and a fixed ideal m � R such that m2 D m and em D m ˝R m is R-flat. In this
section, we always consider almost mathematics with respect to this ideal.

Theorem 5.1.3 (Almost proper mapping theorem). Let Y be a universally coherent
quasi-compactR-scheme, and let f WX! Y be a proper, finitely presented morphism.
Then the following statements hold:

• The functor Rf� sends D�qc;acoh.X/ to D�qc;acoh.Y / for any � 2 ¹“ ”;C;�; bº.

• The functor Rf� sends D�acoh.X/
a to D�acoh.Y /

a for any � 2 ¹“ ”;C;�; bº.
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• The functor Rf� sends DCacoh.X/ to DCacoh.Y /.

• If Y has finite Krull dimension, then Rf� sends D�acoh.X/ to D�acoh.Y / for any
� 2 ¹“ ”;C;�; bº.

Lemma 5.1.4. Let Y be a quasi-compact scheme of finite Krull dimension, and let
f WX! Y be a finite type, quasi-separated morphism. ThenX has finite Krull dimen-
sion, and f� has finite cohomological dimension on ModX .

Proof. First of all, we show that X has finite Krull dimension. Indeed, the morphism
f WX ! Y is quasi-compact, therefore X is quasi-compact. So it suffices to show
that X locally has finite Krull dimension. Thus, we can assume that X D SpecB and
Y D SpecA are affine, and the map is given by a finite type morphism A! B . In
this case, we have dim Y D dimA and dimX D dimB . Thus, it is enough to show
that the Krull dimension of a finite type A-algebra is finite. This readily reduces the
question to the case of a polynomial algebra dimAŒX1; : : : ; Xn�. Now [3, Chapter 11
Exercise 6] implies that dimAŒX1; : : : ; Xn� � dimAC 2n.

Now we prove that f� has finite cohomological dimension. We note that it suffices
to show that there is an integerN such that, for any open affine U � Y , the cohomol-
ogy groups Hi .XU ;F / vanish for i � N and any OXU -module F . We recall that f
is quasi-separated, soXU is quasi-compact, quasi-separated and dimXU � dimX for
any open U �X . Therefore, it suffices to show that on any spectral spaceX , we have
Hi .X;F / D 0 for i > dimX and F 2 Ab.X/. This is proven in [57, Corollary 4.6]
(another reference is [68, Tag 0A3G]). Thus, we conclude that N D dimX does the
job.

Proof of Theorem 5.1.3. We divide the proof into several steps.

Step 0: Reduction to the case of bounded below derived categories. We note that f�
has a bounded cohomological dimension on Modqc

X . Indeed, for any quasi-compact
separated scheme X and F 2Modqc

X , we can compute Hi .X;F / via the alternating
Čech complex for some finite affine covering of X . Therefore, if X can be covered
by N affines, the functor f� restricted to Modqc

X has cohomological dimension at
most N .

Now we use [68, Tag 0D6U] (alternatively, one can use [46, Lemma 3.4]) to
reduce the question of proving the claim for any F 2 Dqc;acoh.X/ to the question
of proving the claim for all its truncations ��aF . In particular, we reduce the case
of F 2 Dqc;acoh.X/ to the case where F 2 DCqc;acoh.X/. Similarly, (using Proposi-
tion 3.5.23), we reduce the case of F a 2 Dacoh.X/

a to the case of F a 2 DCacoh.X/
a.

Using Lemma 5.1.4, a similar argument also allows us to reduce the case of
F 2 Dacoh.X/ to the case of F 2 DCacoh.Y / when Y has finite Krull dimension.

Step 1: Reduction to the case of quasi-coherent almost coherent sheaves. Using the
projection formula Lemma 3.3.5 (resp. Proposition 3.5.23), we see that, in order to

https://stacks.math.columbia.edu/tag/0A3G
https://stacks.math.columbia.edu/tag/0D6U
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show that Rf� sends DCacoh.X/ to DCacoh.Y / (resp. DCacoh.X/
a to DCacoh.Y /

a), it suf-
fices to show the analogous result for DCqc;acoh.X/. Moreover, we can use the spectral
sequence

Ep;q2 D Rpf�Hq.F /) RpCqf�.F /

to reduce the claim to the fact that higher derived pushforwards of a quasi-coherent,
almost coherent sheaf are quasi-coherent and almost coherent.

Step 2: The case of a quasi-coherent, almost coherent OX -module F . We show
that Rif�F is a quasi-coherent, almost coherent OY -module for any quasi-coherent,
almost coherent OX -module F and any i . First, we note that Rif�F is quasi-coherent,
as higher pushforwards along quasi-compact, quasi-separated morphisms preserve
quasi-coherence.

Now we show that Rif�F is almost coherent. Note that it is sufficient to show
that Rif�F is almost finitely presented, as Y is a coherent scheme (this follows from
Lemma 4.1.15 and Lemma 4.1.16). We choose some finitely generated ideal m0 � m

and another finitely generated ideal m1 �m such that m0 �m2
1. Then we use Corol-

lary 4.3.5 to find a finitely presented OX -module G and a morphism

'WG ! F

such that Ker.'/ and Coker.'/ are annihilated by m1. We define OX -modules

K WD Ker'; M WD Im'; Q WD Coker';

so we have two short exact sequences

0!K ! G !M! 0;

0!M! F ! Q! 0

with sheaves K and Q killed by m1. This easily shows that the natural homomor-
phisms

Rif�.'/WRif�G ! Rif�F

have kernels and cokernels annihilated by m2
1. Since m0 � m2

1 we conclude that
m0.Ker Rif�.'//D 0 and m0.Coker Rif�.'//D 0. Moreover, we know that Rif�G
is a finitely presented OY -module by Theorem 5.1.2 (G is a coherent OX -module
since X is a coherent scheme). Therefore, we use Corollary 4.3.5 to conclude that
Rif�F is an almost finitely presented OY -module for any i � 0.

The next goal is to prove a version of the almost proper mapping theorem for nice
formal schemes. But before doing this, we need to establish a slightly more precise
version of the usual proper mapping theorem for formal schemes than the one in [25].
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Theorem 5.1.5 (Proper mapping theorem). Let R be as in Set-up 4.5.1, A a topolog-
ically finitely presented R-algebra, fWX! Spf A a topologically finitely presented,
proper morphism, and F a coherent OX-module. Then Hi .X;F / is a coherent A-
module and the natural morphism

Hi .X;F /� ! Rif�.F /

is an isomorphism for any i � 0.

Proof. First, we use [25, Theorem I.11.1.2] to conclude that Rf�F 2 DCcoh.Spf A/.
Therefore, Theorem 4.8.15 implies that M WD R�.Spf A;Rf�F / lies in DCacoh.A/,
and

ML�
' Rf�F :

Moreover, Lemma 4.8.13 implies that the natural map

Hi .X;F /� ' Hi .M/� ! Rif�F

is an isomorphism. Finally, we conclude that

Hi .X;F / ' H0
�
X;Hi .X;F /�

�
' H0.X;Rif�F /

must be coherent because Rif�F is coherent.

Theorem 5.1.6 (Almost proper mapping theorem). Let Y be a topologically finitely
presented formal R-scheme for R as in Set-up 4.5.1, and let fWX! Y be a proper,
topologically finitely presented morphism. Then the following assertions hold true:

• The functor Rf� sends D�qc;acoh.X/ to D�qc;acoh.Y/ for any � 2 ¹“ ”;C;�; bº.

• The functor Rf� sends D�acoh.X/
a to D�acoh.Y/

a for any � 2 ¹“ ”;C;�; bº.

• The functor Rf� sends DCacoh.X/ to DCacoh.Y/.

• If Y0 WDY�Spf R .SpecR=I/ has finite Krull dimension, then Rf� sends D�acoh.X/

to D�acoh.Y/ for any � 2 ¹“ ”;C;�; bº.

Moreover, if Y D Spf A is an affine scheme and F is an adically quasi-coherent,
almost coherent OX-module, then Hn.X;F / is almost coherent over A, and the nat-
ural map Hn.X;F /� ! Rnf�F is an isomorphism of OY-modules for n � 0.

Lemma 5.1.7. Let Y be a quasi-compact adic formal R-scheme, and let fWX !

Y be a topologically finite type, quasi-separated morphism. Suppose furthermore
that the reduction Y0 D Y �Spf R .SpecR=I/ (or, equivalently, the “special fiber”
Y D Y �Spf R SpecR=Rad.I /) is of finite Krull dimension. Then X has finite Krull
dimension, and f� is of finite cohomological dimension on ModX.

Proof. The proof is identical to that of Lemma 5.1.4 once we notice that the underly-
ing topological spaces of Y, Y0, and Y are canonically identified.
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Also, before starting the proof of Theorem 5.1.6, we need to establish the follow-
ing preliminary lemma:

Lemma 5.1.8. Let fWX ! Y D Spf A be a morphism as in Theorem 5.1.6 with
affine Y, and let F 2 ModX be an adically quasi-coherent, almost coherent sheaf.
Then Rqf�F is an adically quasi-coherent, almost coherent OY-module if

(1) the A-module Hq.X;F / is almost coherent for any q � 0, and

(2) for any g 2 A with U D Spf A¹gº, the canonical map

Hq.X;F /˝A A¹gº ! Hq.XU;F /;

is an isomorphism for any q � 0.

Proof. Consider anA-moduleM WDHq.X;F / that is almost coherent by our assump-
tion. So, Lemma 2.12.7 guarantees that M is I -adically complete, and so M� is an
adically quasi-coherent, almost coherent OX-module. Now note that Rqf�F is the
sheafification of the presheaf

U 7! Hq.XU;F /:

Thus, there is a canonical map M ! H0.Y;Rqf�F / that induces a morphism

M�
! Rqf�F :

The second assumption together with Lemma 2.8.1 and Lemma 2.12.7 ensure that
this map is an isomorphism on stalks (as the sheafification process preserves stalks).
Therefore, M� ! Rqf�F is an isomorphism of OX-modules. In particular, Rqf�F
is adically quasi-coherent and almost coherent.

Proof of Theorem 5.1.6. We use the same reductions as in the proof of Theorem 5.1.3
to reduce to the case of an adically quasi-coherent, almost coherent OX-module F .
Moreover, the statement is local on Y, so we can assume that Y D Spf A is affine.

Now we show that both conditions in Lemma 5.1.8 are satisfied in our situation.

Step 1: Hq.X;F / is almost coherent for every q � 0. Fix a finitely generated ideal
m0 � m and another finitely generated ideal m1 � m such that m0 � m2

1.
Theorem 4.7.6 guarantees that there are a coherent OX-module Gm1 and a mor-

phism �m1 WGm1 ! F such that its kernel and cokernel are annihilated by m1. Then
it is easy to see that the natural morphism

Hq.X;Gm1/! Hq.X;F /

has kernel annihilated by m2
1 and cokernel annihilated by m1. In particular, both

the kernel and cokernel are annihilated by m0. Since m0 was an arbitrary finitely
generated sub-ideal of m, it suffices to show that Hq.X;Gm1/ are coherentA-modules
for any q � 0. This follows from Theorem 5.1.5.
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Step 2: The canonical maps Hq.X;F /˝A A¹gº! Hq.XU;F / are isomorphisms for
any g 2 A, q � 0, and UD Spf A¹gº. Lemma 4.7.5 guarantees that F admits an FP-
approximation �WG ! F . Using Lemma 4.5.14, we get the short exact sequences of
adically quasi-coherent sheaves

0!K ! G !M! 0;

0!M! F ! Q! 0;

where K and Q are annihilated by I nC1 for some n� 0. So K and Q can be identified
with quasi-coherent sheaves on Xn WD X �Spf A SpecA=I nC1. Therefore, the natural
morphisms

Hq.X;K/˝A A¹gº ' Hq.Xn;K/˝A=InC1 .A=I
nC1/g! Hq.XU;n;K/;

Hq.X;Q/˝A A¹gº ' Hq.Xn;Q/˝A=InC1 .A=I
nC1/g ! Hq.XU;n;Q/

are isomorphisms for q � 0. The morphism

Hq.X;G /˝A A¹gº ! Hq.XU;G / (5.1.1)

is an isomorphism by Theorem 5.1.5. Consequently, the five lemma and A-flatness
of A¹gº imply that the morphism

Hq.X;M/˝A A¹gº ! Hq.XU;M/

is an isomorphism for any q � 0 as well. Applying the five lemma again (and A-
flatness of A¹gº), we conclude that the morphism

Hq.X;F /˝A A¹gº ! Hq.XU;F /

must be an isomorphism for any q � 0 as well.

5.2 Characterization of quasi-coherent, almost coherent complexes

The main goal of this section is to show an almost analogue of [68, Tag 0CSI]. This
gives a useful characterization of objects in Dbqc;acoh.X/ on a separated, finitely pre-
sentedR-scheme for a universally coherentR. This will be crucially used in our proof
of the almost version of the formal GAGA theorem (see Theorem 5.3.2).

Our proof follows the proof of [68, Tag 0CSI] quite closely, but we need to make
certain adjustments to make the arguments work in the almost coherent setting.

Theorem 5.2.1. Let R be a universally coherent ring with an ideal m such that
m2 D m and em WD m˝R m is flat. Suppose that F 2 Dqc.PnR/ is an element such
that RHomPn.P ;F / 2 D�acoh.R/ for P D

Ln
iD0 O.i/. Then F 2 D�qc;acoh.P

n
R/.

https://stacks.math.columbia.edu/tag/0CSI
https://stacks.math.columbia.edu/tag/0CSI


Characterization of quasi-coherent, almost coherent complexes 157

Proof. We follow the ideas of [68, Tag 0CSG]. Denote the dg algebra RHomX .P ;P /
by S . A computation of cohomology groups of line bundles on PnR implies that S
is a “discrete” non-commutative algebra that is finite and flat over R. Now [68,
Tag 0BQU]1 guarantees that the functor

�˝
L
S P WD.S/! Dqc.PnR/

is an equivalence of categories, and its quasi-inverse is given by

RHom.P ;�/WDqc.PnR/! D.S/:

So, if we define M WD RHom.P ;F / 2 D.S/, our assumption implies that the image
of M in D.R/ lies in D�acoh.R/.

Therefore, it suffices to show that, for any N 2 D.S/ such that its image in D.R/
lies in D�acoh.R/, we have that N ˝L

S P lies in D�qc;acoh.P
n
R/.

We use the convergence spectral sequence

Ep;q2 D Hp.Hq.N /˝L
S P /) HpCq.N ˝L

S P /

to conclude that it suffices to assume thatN is just an S -module. Now we fix a finitely
generated ideal m1 � m and a finitely generated ideal m0 � m such that m1 � m2

0.
Then Lemma 2.8.4 implies that there is a finitely presented right S -module N 0 with a
morphism f WN 0! N such that Kerf and Cokerf are annihilated by m0. Then the
universal coherence of R and [68, Tag 0CSF] imply that N 0 ˝L

S P 2 D�qc;coh.P
n
R/.

Now we note that the functor

�˝
L
S P WD.S/! Dqc.PnR/

is R-linear, so the standard argument shows that the cone of the morphism

f ˝L
S P WN 0 ˝L

S P ! N ˝L
S P

has cohomology sheaves annihilated by m1 � m2
0. Since m1 � m was an arbitrary

finitely generated ideal, Lemma 2.5.7 implies thatN ˝L
S P is in D�qc;acoh.P

n
R/ and this

finishes the proof.

Lemma 5.2.2. Let R be a universally coherent ring, let X be a finitely presented
separated R-scheme, and let K 2 Dqc.X/. If R�.X; E ˝L

OX
K/ is in D�acoh.R/ for

every E 2 D�coh.X/, then K 2 D�qc;acoh.X/.

Proof. We follow the proof of [68, Tag 0CSL]. First, we note that the condition that
K 2 D�qc;acoh.X/ is local on X because X is quasi-compact. Therefore, we can prove
it locally around each point x. We use [68, Tag 0CSJ] to find

1Note that they have slightly different notations for R and S .

https://stacks.math.columbia.edu/tag/0CSG
https://stacks.math.columbia.edu/tag/0BQU
https://stacks.math.columbia.edu/tag/0CSF
https://stacks.math.columbia.edu/tag/0CSL
https://stacks.math.columbia.edu/tag/0CSJ


Cohomological properties of almost coherent sheaves 158

• an open subset U � X containing x,

• an open subset V � PnR,

• a closed subset Z � X �R PnR with a point z 2 Z lying over x,

• an object E 2 D�coh.X �R PnR/,
with a lot of properties listed in the cited lemma. Even though the notation is pretty
heavy, the only properties of these objects that we will use are that x 2 U and that

Rq�.Lp�K ˝L E/jV D R.U ! V /�.KjU /:

The last formula is proven in [68, Tag 0CSK] and we refer to this lemma for a dis-
cussion of the morphism U ! V that turns out to be a finitely presented closed
immersion.

That being said, it is sufficient to show that KjU is almost coherent for each
such U . Moreover, the formula Rq�.Lp�K ˝L E/jV D R.U ! V /�.KjU /, the fact
that U ! V is a finitely presented closed immersion, and Lemma 2.8.4 imply that it
suffices to show that R.U ! V /�.KjU / D Rq�.Lp�K ˝L E/jV lies in D�qc;acoh.V /.
In particular, it is enough to show that Rq�.Lp�K ˝L E/ 2 D�qc;acoh.P

n
R/.

Now we check this using Theorem 5.2.1. For doing so, we define a sheaf P WDLn
iD0 OPn.i/ and observe that

RHomPn
�
P ;Rq�.Lp�K ˝L E/

�
D R�

�
Pn;Rq�.Lp�K ˝L E/˝L

OPn
P_

�
D R�

�
Pn;Rq�

�
Lp�K ˝L E ˝L Lq�P_

��
D R�

�
X �R PnR;Lp

�K ˝L E ˝L Lq�P_
�

D R�
�
X;Rp�

�
Lp�K ˝L E ˝L Lq�P_

��
D R�

�
X;K ˝L

OX
Rp�

�
E ˝L Lq�P_

��
;

where the second equality and the fifth equality come from the projection formula
[68, Tag 08EU]. Now we note that the proper mapping theorem (see Theorem 5.1.2)
implies that Rp�.E ˝L Lq�P_/ 2 D�coh.X/. So our assumption on K implies that

RHomPn.P ;Rq�.Lp�K˝LE//DR�.X;K ˝L
OX

Rp�.E ˝LLq�P_// 2D�acoh.R/:

Now Theorem 5.2.1 finishes the proof.

Theorem 5.2.3. Let R be a universally coherent ring, let X be a separated, finitely
presentedR-scheme. If F 2D�qc.X/ is an object such that RHomX .P ;F /2D�acoh.R/

for any P 2 Perf.X/, then F2D�qc;acoh.X/. Analogously, if RHomX .P;F /2Dbacoh.R/

for any P 2 Perf.X/, then F 2 Dbqc;acoh.X/.

Proof. With Lemma 5.2.2 and the equality RHomX .P ;F / D R�.X;P_ ˝L
OX

F /

at hand, the first part of the theorem is absolutely analogous to [68, Tag 0CSH]. The
second part now follows directly from [68, Tag 09IS] and [4, Lemma 3.0.12].

https://stacks.math.columbia.edu/tag/0CSK
https://stacks.math.columbia.edu/tag/08EU
https://stacks.math.columbia.edu/tag/0CSH
https://stacks.math.columbia.edu/tag/09IS
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5.3 The GAGA theorem

The main goal of this section is to prove the formal GAGA theorem for almost coher-
ent sheaves. It roughly says that any adically quasi-coherent, almost coherent sheaf
on a completion of a proper, finitely presented scheme admits an essentially unique
algebraization, and the same holds for morphisms of those sheaves.

We start by recalling the statement of the classical formal GAGA theorem. We
fix an I -adically complete noetherian ring A and a proper A-scheme X . Then we
consider the I -adic completion X as a formal scheme over Spf A. It comes equipped
with the natural morphism cWX! X of locally ringed spaces that induces a functor

c�WCohX ! CohX:

The GAGA theorem says that it is an equivalence of categories. Let us say a few words
about the classical proof of this theorem. It consists of three essentially independent
steps: the first is to show that the morphism c is flat; the second is to show that the
functor c� induces an isomorphism

c�WHi .X;F/! Hi .X; c�F/

for any F 2 CohX and any integer i . The last is to prove that any coherent sheaf
G 2 CohPN admits a surjection of the form

L
i O.ni /

mi ! G . Though the first two
steps generalize to our set-up, there is no chance of having an analogue of the last
statement. The reason is easy: existence of such a surjection would automatically
imply that the sheaf G is of finite type, however, almost coherent sheaves are usually
not of finite type.

This issue suggests that we should take another approach to GAGA theorems
recently developed by J. Hall in his paper [31]. The main advantage of this approach
is that it first constructs a candidate for algebraization, and only then proves that this
candidate indeed provides an algebraization. We adapt this strategy to our almost
context.

We start with the discussion of the GAGA functor in the almost world. In what
follows, we assume that R is a ring from Set-up 4.5.1. We fix a finitely presented
R-scheme X , and we consider its I -adic completion X that is a topologically finitely
presented formal R-scheme. The formal scheme X comes equipped with the canoni-
cal morphism of locally ringed spaces

cW .X;OX/! .X;OX /

that induces the pullback functor

Lc�WD.X/! D.X/:

We now want to check that this functor preserves quasi-coherent, almost coherent
objects. This verification will be necessary even to formulate the GAGA statement.
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Lemma 5.3.1. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, and X a finitely presented A-scheme. Then the morphism c is flat, and
the funtor c�WModX ! ModX sends (quasi-coherent and) almost coherent sheaves
to (adically quasi-coherent and) almost coherent sheaves. In particular, it induces
functors

Lc�WD�qc;acoh.X/! D�qc;acoh.X/

for any � 2 ¹“ ”;C;�; bº.

Proof. The flatness assertion follows from [25, Proposition I.1.4.7 (2)]. Flatness of c
implies that it suffices to show that c�.G/ is an adically quasi-coherent, almost coher-
ent OX-module for a quasi-coherent, almost coherent OX -module G. This claim is
Zariski-local on X . Thus we can assume that X D SpecA is affine, so G 'fM for
some almost finitely presented A-module M . This case is done in Lemma 4.6.3.

Theorem 5.3.2. Let R be a ring as in Set-up 4.5.1, A a topologically finitely pre-
sented R-algebra, and X a finitely presented, proper A-scheme. Then the functor

Lc�WD�qc;acoh.X/! D�qc;acoh.X/

induces an equivalence of categories for � 2 ¹“ ”;C;�; bº.

Corollary 5.3.3. Let R, A and X be as in Theorem 5.3.2. Then the functor

Lc�WD�acoh.X/
a
! D�acoh.X/

a

induces an equivalence of categories for � 2 ¹“ ”;C;�; bº.

Corollary 5.3.4. Let R, A, and X be as in Theorem 5.3.2, and let K 2 Dqc;acoh.X/.
Then the natural map

ˇK WR�.X;K/! R�.X;Lc�K/

is an isomorphism. Moreover, ˇK is an almost isomorphism for K 2 Dacoh.X/.

Proof. Note that the case of K 2 Dacoh.X/ follows from the case of K 2 Dqc;acoh.X/

due to Lemma 3.2.17 and Proposition 3.5.23. So, it suffices to prove the claim for
K 2 Dqc;acoh.X/.

Now since we are allowed to replace K with KŒi� for any integer i , it suffices to
show that the map

H0.R�.X;K// ' HomX .OX ; K/! HomX.OX;Lc�K/ ' H0.R�.X;Lc�K//

is an isomorphism. This follows from Theorem 5.3.2 together with the observation
that OX ' Lc�OX .
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Our proof of Theorem 5.3.2 will follow Jack Hall’s proof of the GAGA theorem
very closely with some simplifications due to the flatness of the functor c�. As he
works entirely in the setting of pseudo-coherent objects, and almost coherent sheaves
may not be pseudo-coherent, we have to repeat some arguments in our setting.

Before we embark on the proof, we need to define the functor in the other direc-
tion. Recall that the morphism of locally ringed spaces c defines the derived pushfor-
ward functor

Rc�WD.X/! D.X/:

This functor is t -exact as cWX!X is topologically just a closed immersion. In partic-
ular, it preserves boundedness of complexes (in any direction). However, that functor
usually does not preserve (almost) coherent objects as can be seen in the example of
Rc�OX D c�OX. A way to fix it is to use the quasi-coherator functor

RQX WD.X/! Dqc.X/

that is defined as the right adjoint to the inclusion �WDqc.X/! D.X/. It exists by
[68, Tag 0CR0]. We define the functor

RcqcWD.X/! Dqc.X/

as the composition Rcqc WD RQX ı Rc�.
Combining the adjunctions .Lc�;Rc�/ and .�;RQX /, we conclude that we have

a pair of the adjoint functors:

Lc� W Dqc.X/� D.X/ WRcqc:

That gives us the unit and counit morphisms

�W id! RcqcLc� and "WLc�Rcqc ! id:

For future reference, we also note that the above adjunction and the monoidal property
of the functor Lc� define a projection morphism

�G;F WG˝L
OX

.RcqcF /! Rcqc
�
Lc�G˝L

OX
F
�

for any G2Dqc.X/ and any F 2D.X/. Before discussing the proof of Theorem 5.3.2,
we need to establish some properties of these functors.

Lemma 5.3.5. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, andX a finitely presented A-scheme. Then there is an integerN DN.X/
such that Rcqc carries D�nqc;acoh.X/ to D�nCNqc .X/ (resp. DŒa;n�qc;acoh.X/ to DŒa;nCN�qc .X/)
for any integer n. In particular, the natural map

��aRcqcF ! ��a
�
Rcqc�

�a�NF
�

is an isomorphism for any F 2 Dqc;acoh.X/ and any integer a.

https://stacks.math.columbia.edu/tag/0CR0
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Proof. We explain the proof that Rcqc carries D�nqc;acoh.X/ to D�nCNqc .X/; the case of
DŒa;n�qc;acoh.X/ is similar. We fix an object F 2 D�nqc;acoh.X/ and note that Rc�F D c�F
since c is topologically a closed immersion. Thus, [68, Tag 0CSA] implies2 that it
suffices to show that

Hi
�
R�.U;Rc�F /

�
D Hi

�
R�.U; c�F /

�
D 0

for any open affine U � X and any i � n. Therefore, we see that

Hi
�
R�.U;Rc�F /

�
D Hi

�
R�. yU ;F /

�
D Hi

�
yU ;F j yU

�
;

and thus Lemma 4.8.11 implies that Hi
�
yU ;F j yU

�
D 0 for any i � n. This finishes the

proof of the first claim in the lemma.
The second claim of the lemma follows from the first claim and the distinguished

triangle
��a�N�1F ! F ! ��a�NF ! ��a�N�1F :

Namely, we apply the exact functor Rcqc to this distinguished triangle to get that

Rcqc.�
�a�N�1F /! RcqcF ! Rcqc.�

�a�NF /! Rcqc.�
�a�N�1F Œ1�/

is a distinguished triangle in Dqc.X/ and that Rcqc.�
�a�N�1F / 2 D�a�1qc .X/. This

implies that the map

��aRcqcF ! ��aRcqc.�
�a�NF /

is an isomorphism.

Lemma 5.3.6. Let X be as in Theorem 5.3.2, F 2 D�qc;acoh.X/ and G 2 D�qc.X/.
Suppose that for each i there is some ni such that I niH i .F /D 0 and I niH i .G/D 0.
Then the natural morphisms �G and "F are isomorphisms.

Proof. We prove the claim only for F as the other claim is similar.

Reduction to the case when F 2 Dbqc;acoh.X/: First, we note that it suffices to show
that the natural map

��aF ! ��aLc�RcqcF

is an isomorphism for any integer a. Moreover, we also note that t -exactness of
Lc� and Lemma 5.3.5 imply that there is an integer N such that the natural map
��aLc�RcqcF ! ��aLc�Rcqc�

�a�NF is an isomorphism for any integer a. In par-
ticular, we have a commutative diagram

��a�NF Lc�Rcqc.�
�a�NF /

��aF ��aLc�RcqcF ' �
�aLc�Rcqc�

�a�NF ;

2We note that the proof of [68, Tag 0CSA] works well with a D �1 as well.

https://stacks.math.columbia.edu/tag/0CSA
https://stacks.math.columbia.edu/tag/0CSA
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where the vertical maps induce isomorphisms in degree � a. Therefore, it suffices to
prove the claim for ��a�NF . So we may and do assume that F is bounded.

Proof for a bounded F : The case of a bounded F easily reduces to the case of an
adically quasi-coherent, almost coherent OX-module F concentrated in degree 0. In
that situation, we have I kC1F D 0 for some k. This implies that F D ik;�Fk D

Rik;�Fk for the closed immersion ik WXk ! X. Now it is straightforward to see that
the canonical map

Rik;�Fk ! Lc�Rcqc.Rik;�Fk/

is an isomorphism. The key is flatness of c and the observation that Rc�.Rik;�Fk/ is
already quasi-coherent, so the quasi-coherator does nothing in this case.

Lemma 5.3.7. If G 2 Dqc.X/ and F 2 D.X/, then the natural projection morphism

�G;F WG˝L
OX

RcqcF ! Rcqc.Lc�G˝L
OX

F /

is an isomorphism if G is perfect.

Proof. [31, Lemma 4.3].

Now we come to the key input ingredient. Although Rcqc is quite abstract and
difficult to compute in practice, it turns out that the almost proper mapping theorem
allows us to check that this functor sends D�qc;acoh.X/ to D�qc;acoh.X/. This would give
us a candidate for an algebraization.

Lemma 5.3.8. Let R be a ring as in Set-up 4.5.1, A a topologically finitely presented
R-algebra, andX a finitely presented, properA-scheme. Then Rcqc sends D�qc;acoh.X/

to D�qc;acoh.X/ for � 2 ¹�; bº.

Proof. We prove only the bounded above case as the other one follows from this
using Lemma 5.3.5. We pick any F 2 D�qc;acoh.X/ and use Theorem 5.2.3 to say that
it is sufficient to show that RHomX .P;Rc�F / 2 D�acoh.R/ for any perfect complex
P 2 Perf.X/. For this, we consider the following sequence of isomorphisms:

RHomX .P;RcqcF / D RHomX.Lc�P;F /

D RHomX.OX;
�
Lc�P

�_
˝

L
OX

F /

D R�
�
X; .Lc�P/_ ˝L

OX
F
�
:

Then we note that P WD .Lc�P/_ is a perfect complex of OX-modules, and therefore
P˝L

OX
F lies in D�qc;acoh.X/. Thus, R�.X;P˝L

OX
F / lies in D�acoh.R/ due to the

almost proper mapping theorem (see Theorem 5.1.6).

Finally, we are ready to give a proof of the GAGA theorem.

Proof of Theorem 5.3.2. For clarity, we divide the proof into the verification of sev-
eral claims.
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Claim 0: It suffices to show the theorem for � D �, that is, for bounded above
derived categories. Indeed, flatness of c� implies that Lc� preserves boundedness
(resp. boundedness above, resp. boundedness below), so it suffices to show that the
natural morphisms

�GWG! RcqcLc�G;
"F WLc�RcqcF ! F

are isomorphisms for any G 2 Dqc;acoh.X/ and F 2 Dqc;acoh.X/.
We fixN as in Lemma 5.3.5. Then flatness of c� and Lemma 5.3.5 guarantee that

RcqcLc���aG 2 DŒa;1�.X/;

Lc�Rcqc�
�aF 2 DŒa;1�.X/:

Therefore, we see that �G is an isomorphism on H i for i < a if and only if the
same holds for ���a�1G. Since a was arbitrary, we conclude that it suffices to show
that �G is an isomorphism for G 2D�qc;acoh.X/. Similar argument shows that it suffices
to show that "F is an isomorphism for F 2 D�qc;acoh.X/. So it suffices to prove the
theorem for � D �.

Before we formulate the next claim, we need to use the so-called “approximation
by perfect complexes” [68, Tag 08EL] to find some P 2 Perf.X/ such that ��0P '
OX=I ' OX0 and whose support is equal to X0. We note that it implies that all coho-
mology sheaves H i .P/ are killed by some power of I . We also denote its (derived)
pullback by P WD Lc�P.

Claim 1: If G 2 D�qc;acoh.X/ such that G˝L
OX

P ' 0, then we have G ' 0. Similarly,
if F 2 D�qc;acoh.X/ such that F ˝L

OX
P ' 0, then F ' 0. We choose a maximal

m (assuming that G 6' 0) such that Hm.G/ ¤ 0. Then we see that Hm.G˝L
OX

P/ '
Hm.G/˝OX OX0 DHm.G/=I . Also, .Hm.G/=I /.U /DHm.G/.U /=I ' 0 on any
open affineU . So Nakayama’s lemma (see Lemma 2.5.19) implies that Hm.G/.U /'
0 for any such U . This contradicts the choice of m. The proof in the formal set-up is
the same once we notice that H0.P / D OX=I .

Claim 2: The map �GWG! RcqcLc�G is an isomorphism for any G 2 D�qc;acoh.X/.
Claim 1 implies that it is sufficient to show that the map

"G ˝
L
OX

PWG˝L
OX

P! RcqcLc�G˝L
OX

P (5.3.1)

is an isomorphism. Recall that the cohomology sheaves of P are killed by some power
of I . This property passes to G˝L

OX
P, so we can use Lemma 5.3.6 to get that the

map
"G˝L

OX
PWG˝

L
OX

P! Rcqc
�
Lc�.G˝L

OX
P /
�

https://stacks.math.columbia.edu/tag/08EL
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is an isomorphism. Now comes the key: we fit the morphism "G˝L
OX

P into the follow-
ing commutative triangle:

G˝L
OX

P RcqcLc�G˝L
OX

P

Rcqc.Lc�.G˝L
OX

P // Rcqc.Lc�G˝L
OX

Lc�P/;

"G˝
L
OX

P

"
G˝L

OX
P �P;Lc�G

�

where the bottom horizontal arrow is the isomorphism map induced by the monoidal
structure on Lc�. Moreover, we have already established that the left vertical arrow is
an isomorphism, and the right vertical arrow is an isomorphism due to Lemma 5.3.7.
That shows that the top horizontal must also be an isomorphism.

Claim 3: The map "F WLc�RcqcF ! F is an isomorphism for any F 2 D�qc;acoh.X/.
We use Claim 1 again to say that it is sufficient to show that the map

"F ˝
L
OX

Lc�PWLc�RcqcF ˝
L
OX

Lc�P! F ˝L
OX

Lc�P

is an isomorphism. But that map fits into the commutative diagram:

Lc�RcqcF ˝
L
OX

Lc�P F ˝L
OX

Lc�P

Lc�.RcqcF ˝
L
OX

P/ Lc�Rcqc.F ˝
L
OX

Lc�P/

"F˝
L
OX

Lc�P

o

Lc�.�P;F /

"
F˝L

OX
Lc�P

where the vertical morphism on the left is the canonical isomorphism induced by the
monoidal structure on Lc�, the bottom morphism is an isomorphism by Lemma 5.3.7,
and the right vertical morphism is an isomorphism by Lemma 5.3.6. This implies that
the top horizontal morphism is an isomorphism as well. This finishes the proof.

5.4 The formal function theorem

In this section, we prove the formal function theorem for almost coherent sheaves as
a consequence of the formal GAGA theorem established in the previous section.

For the rest of the section, we fix a ring R as in Set-up 4.5.1 and a finitely pre-
sented or a topologically finitely presented R-algebra A.

Remark 5.4.1. Both A and yA are topologically universally adhesive by [25, Propo-
sition 0.8.5.19], and they are (topologically universally) coherent by [25, Proposi-
tion 0.8.5.23].
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For the next definition, we fix a finitely presented A-scheme X and an OX -
module F .

Definition 5.4.2. The natural I -filtration F�Hi .X;F / on Hi .X;F / is defined via
the formula

FnHi .X;F / WD Im
�
Hi .X; I nF /! Hi .X;F /

�
:

The natural I -topology on Hi .X;F / is the topology induced by the natural I -
filtration.

Lemma 5.4.3. Let X be a finitely presented A-scheme, F a quasi-coherent almost
finitely generated OX -module, and G � F a quasi-coherent OX -submodule of F .
Then, for any n, there is an m such that ImF \ G � I nG .

Proof. It suffices to assume that X is affine, in which case the claim follows from
Lemma 2.12.6.

Lemma 5.4.4. Let X be a finitely presented A-scheme, F and G quasi-coherent
almost finitely generated OX -modules, and 'WG ! F an OX -linear homomorphism
such that Ker.'/ and Coker.'/ are annihilated by I c for some integer c. Then, for
every i � 0, the natural I -topology on Hi .X;F / coincides with the topology induced
by the filtration

FilnG Hi .X;F / D Im
�
Hi .X; I nG /! Hi .X;F /

�
:

Proof. Consider the short exact sequences

0!K ! G ! H ! 0;

0! H ! F ! Q! 0;

where K and Q are annihilated by I c . The first short exact sequence induces the
following short exact sequence:

0!K \ ImG ! ImG ! ImH ! 0

for anym� 0. Lemma 5.4.3 implies that K \ ImG � I cKD 0 form� 0. Therefore,
the natural map ImG ! ImH is an isomorphism for m� 0. Note that H is almost
finitely generated and quasi-coherent, so we can replace G with H to assume that '
is injective.

Clearly, FilkG Hi .X;F / � FkHi .X;F / for every k. So it suffices to show that, for
any k, there ism such that FmHi .X;F /� FilkG Hi .X;F /. We consider the short exact
sequence

0! G \ ImF ! ImF ! ImQ! 0:
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Ifm� c, we get that G \ ImF D ImF because I cQ' 0. Now we use Lemma 5.4.3
to conclude there is m � c such that

ImF D G \ ImF � I kG :

Therefore, FmHi .X;F / � FilkG Hi .X;F /.

Lemma 5.4.5. Let X be a finitely presented A-scheme, F and G quasi-coherent
almost finitely generated OX -modules, and 'WG ! F an OX -linear homomorphism
such that Ker.'/ and Coker.'/ are annihilated by I c for some integer c. Suppose
that the natural I -topology on Hi .X;G / is the I -adic topology. Then the same holds
for Hi .X;F /.

Proof. Clearly, I nHi .X;F / � FnHi .X;F /. So it suffices to show that, for every n,
there is an m such that FmHi .X;F / � I nHi .X;F /.

The assumption that the natural I -topology on Hi .X; G / coincides with the I -
adic topology guarantees that FkHi .X; G / � I nHi .X; G / for large enough k. Pick
such k. Lemma 5.4.4 implies that

FmHi .X;F / � Im.Hi .X; I kG /! Hi .X;F //

for large enough m. So we get that

FmHi .X;F / � Im
�
Hi .X; I kG /! Hi .X;F /

�
� Im

�
I nHi .X;G /! Hi .X;F /

�
� I nHi .X;F /

for a large enough m.

Theorem 5.4.6. Let X be a proper, finitely presented A-scheme, and F a quasi-
coherent, almost coherent OX -module. Then the natural I -topology on Hi .X; F /
coincides with the I -adic topology for any i � 0.

Proof. Lemma 4.7.3 guarantees that there are a finitely presented OX -module G and a
morphism 'WG ! F such that I n.Ker'/D 0 and I n.Coker'/D 0 for some integer
n > 0. Lemma 5.4.5 then ensures that it suffices to prove the claim for G . In this case,
the claim follows [25, Proposition I.8.5.2 and Lemma 0.7.4.3] and Remark 5.4.1.

Now we consider a proper, finitely presented A-scheme X , and an almost coher-
ent OX -module F . We denote the I -adic completion of X by X, so we have the
following commutative diagram:

X X

Spf . yA / SpecA:

c

yf f (5.4.1)
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Then we consider four different cohomology groups

Hi .X; c�F /; 3Hi .X;F /; Hi .X;F /˝A yA; and lim
n

Hi .Xn;Fn/;

and note that they are related via the following A-linear homomorphisms:

Hi .X;F /˝A yA 3Hi .X;F /

Hi .X; c�F / limn Hi .Xn;Fn/:

˛i
F

ˇ i
F

�i
F

 i
F

(5.4.2)

We show that all these morphisms are (almost) isomorphisms:

Theorem 5.4.7. In the notation as above, all maps ˛i
F
; ˇi

F
;  i

F
; �i

F
are almost

isomorphisms for any almost coherent OX -module F . If F is quasi-coherent, almost
coherent, then these maps are isomorphisms.

Proof. Once again, we divide the proof into several (numbered) steps.

Step 0: Reduction to the case of a quasi-coherent, almost coherent sheaf F . We
observe that Lemma 3.3.1, Lemma 3.2.17 and the fact that limits of two almost iso-
morphic direct systems are almost the same, allow us to replace F with em˝ F to
assume that F is quasi-coherent and almost coherent.

Step 1: ˛i
F

is an isomorphism. This is just a consequence of Lemma 2.12.7, as we
established in Theorem 5.1.3 that Hi .X;F / is an almost coherent A-module.

Step 2: ˇi
F

is an isomorphism. We note that the assumptions onA imply that the map
A! yA is flat by [25, Proposition 0.8.218]. Thus, flat base change for quasi-coherent
cohomology groups implies that Hi .X;F /˝A yA' Hi .X yA;F yA/. Therefore, we may
and do assume thatA is I -adically complete. Then the map Hi .X;F /!Hi .X; c�F /
is an isomorphism by Theorem 5.3.2.

Step 3: ˛i
F

is injective. Theorem 5.4.6 and Corollary 5.3.4 imply that the I -adic
topology of Hi .X;F / coincides with the natural I -topology. Therefore,

3Hi .X;F / ' lim
n

Hi .X;F /
Im
�
Hi .X; I nC1F /! Hi .X;F /

� :
Clearly, we have an inclusion

Hi .X;F /
Im
�
Hi .X; I nC1F /! Hi .X;F /

� ,! Hi .Xn;Fn/:

Therefore, we conclude that ˛i
F

is injective by left exactness of the limit functor.



Almost version of Grothendieck duality 169

Step 4:  i
F

is surjective. Recall that F ' limk Fk because F is adically quasi-
coherent. Therefore, [25, Corollary 0.3.2.16] implies that it is sufficient to show that
there is a basis of opens B such that, for every U 2 B,

Hi .U;F / D 0 for i � 1;

and
H0.U;FkC1/! H0.U;Fk/ is surjective for any k � 0:

Vanishing of the higher cohomology groups of adically quasi-coherent sheaves on
affine formal schemes (see [25, Theorem I.7.1.1]) implies that one can take B to be
the basis consisting of open affine formal subschemes of X. Therefore, we get that  i

F

is indeed surjective for any i � 0.

Step 5: ˛i
F

and  i
F

are isomorphisms. This follows formally from commutativity of
Diagram (5.4.1) and the previous steps.

5.5 Almost version of Grothendieck duality

For this section, we fix a universally coherent ring R with an ideal m such thatem WD m˝R m is R-flat and m2 D m. Since R is universally coherent, there is a
good theory of a functor f Š for morphisms f between finitely presented, separated
R-schemes.3

Proposition 5.5.1. Let f WX ! Y be a morphism between separated, finitely pre-
sented R-schemes. Then f Š sends DCqc;acoh.Y / to DCqc;acoh.X/.

Proof. The only thing that we need to check here is that f Š preserves almost coher-
ence of cohomology sheaves. This statement is local, so we can assume that both X
and Y are affine. Then we can choose a closed embedding X ! AnY ! Y . So, it
suffices to prove the claim for a finitely presented closed immersion and for the mor-
phism AnY ! Y .

In the case f WX ! Y a finitely presented closed immersion, we know that for
any F 2 DCqc.Y /,

f ŠF ' RHom Y .f�OX ;F /:

Since Y is a coherent scheme and f is finitely presented, we conclude that f�OX
is an almost coherent OY -module. So, f ŠF D RHom Y .f�OX ;F / 2 Dqc;acoh.X/ by
Corollary 4.4.11.

3This theory does not seem to be addressed in the literature in this generality, however, all
arguments from [68, Tag 0DWE] can be adapted to this level of generality with little or no extra
work. See [71, Section 2.1–2.2] for more detail.

https://stacks.math.columbia.edu/tag/0DWE


Cohomological properties of almost coherent sheaves 170

Now we consider the case of a relative affine space f WX D AnY ! Y . In this
case, we have f ŠF ' Lf �F ˝LOX �

n
X=Y

Œn�. Then Lf �.F / 2 DCqc;acoh.X/ in view
of Lemma 4.4.7 (4), and so Lf �F ˝LOX �

n
X=Y

Œn� 2 DCqc;acoh.X/ because �n
X=Y

is
(non-canonically) isomorphic to OX .

Now we use Proposition 5.5.1 to define the almost version of the upper shriek
functor:

Definition 5.5.2. Let f WX ! Y be a morphism of separated, finitely presented R-
schemes. We define the almost upper shriek functor f Ša WDCaqc.Y /

a ! DCaqc.X/
a as

f Ša.F / WD .f
Š.FŠ//

a.

Remark 5.5.3. In what follows, we will usually denote the functor f Ša simply by f Š

as it will not cause any confusion.

Lemma 5.5.4. Let f WX ! Y be a morphism between separated, finitely presented
R-schemes. Then f Š carries DCacoh.Y /

a to DCacoh.X/
a.

Proof. This follows from Proposition 5.5.1.

Theorem 5.5.5. Let f WX ! Y be as above. Suppose that f is proper. Then the
functor f ŠWDCaqc.Y /

a ! DCaqc.X/
a is a right adjoint to Rf�WDCaqc.Y /

a ! DCaqc.X/
a.

We note that the theorem makes sense as Rf� carries DCaqc.X/
a into DCaqc.Y / due

to Lemma 4.4.9.

Proof. This follows from a sequence of canonical isomorphisms:

HomD.Y /a
�
Rf�F a;G a

�
' HomD.Y /

�em˝ Rf�F ;G
�

Lemma 3.1.13

' HomD.Y /
�
Rf�.em˝ F /;G

�
Lemma 3.3.5

' HomD.X/
�em˝ F ; f Š.G /

�
Grothendieck duality

' HomD.X/a
�
F a; f Š.G /a

�
: Lemma 3.1.13:

Now suppose that f WX ! Y is a proper morphism of separated, finitely pre-
sented R-schemes, F a 2 DCaqc.X/

a, and G a 2 DCaqc.Y /
a. Then we want to construct

a canonical morphism

Rf�RalHomX .F
a; f Š.G a//! RalHom Y .Rf�.F a/;G a/:

Lemma 3.5.16 says that such a map is equivalent to a map

Rf�RalHomX

�
F a; f Š.G a/

�
˝
L
OX

Rf�.F a/! G a:

We construct the latter map as the composition

Rf�RalHomX

�
F a; f Š.G a/

�
˝
L
OX

Rf�.F a/
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! Rf�
�
RalHomX .F

a; f Š.G a//˝LOX F a
�
! Rf�f ŠG a ! G a;

where the first map is induced by the relative cup product (see [68, Tag 0B68]),
the second map comes from Remark 3.5.15, and the last map is the counit of the
.Rf�; f Š/-adjunction.

Lemma 5.5.6. Let f WX ! Y be a proper morphism of separated, finitely presented
R-schemes, F a 2 D�acoh.X/

a, and G a 2 DCaqc.Y /
a. Then the map

Rf�RalHomX .F
a; f Š.G a//! RalHom Y .Rf�.F a/;G a/

is an (almost) isomorphism in DCaqc.X/
a.

Proof. We note that Rf�RalHomX .F
a; f Š.G a// lies in DCaqc.Y /

a as a consequence
of Lemma 4.4.10 (4) and Lemma 4.4.9. Likewise, RalHom Y .Rf�.F a/; G a/ lies in
DCaqc.Y /

a by Theorem 5.1.3 and Lemma 4.4.10 (4). Therefore, it suffices to show that

RHomY

�
Ha;Rf�RalHomX

�
F a; f Š.G a/

��
! RHomY

�
Ha;RalHom Y

�
Rf�.F a/;G a

��
is an isomorphism for any Ha 2 DCaqc.Y /

a. This follows from the following sequence
of isomorphisms:

RHomY

�
Ha;Rf�RalHomX

�
F a; f Š.G a/

��
' RHomX

�
Lf �Ha;RalHomX

�
F a; f Š.G a/

��
' RHomX

�
Lf �Ha

˝
L
OX

F a; f Š.G a/
�

' RHomY

�
Rf�

�
Lf �Ha

˝
L
OX

F a
�
;G a

�
' RHomY

�
Ha
˝ Rf�.F a/;G a

�
' RHomY

�
Ha;RalHom Y

�
Rf�.F a/;G a

��
:

The first isomorphism holds by Corollary 3.5.26. The second isomorphism holds by
Lemma 3.5.16. The third isomorphism holds by Theorem 5.5.5. The fourth isomor-
phism holds by Proposition 4.4.12. The fifth equality holds by Lemma 3.5.16.

Theorem 5.5.7. Let f WX! Y be as above. Suppose that f is smooth of pure dimen-
sion d . Then f Š.�/ ' Lf �.�/˝L

OX
�d
X=Y

Œd �.

Proof. It follows from the corresponding statement in the classical Grothendieck
duality.

We summarize all results of this section in the following theorem:

https://stacks.math.columbia.edu/tag/0B68
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Theorem 5.5.8. Let R be a universally coherent ring with an ideal m such thatem WD m˝R m is R-flat and m2 D m, and FPSR be the category of finitely pre-
sented, separated R-schemes. Then there is a well-defined pseudo-functor .�/Š from
FPSR into the 2-category of categories such that

(1) .X/Š D DCaqc.X/
a;

(2) for a smooth morphism f WX ! Y of pure relative dimension d , we have a
natural isomorphism f Š ' Lf �.�/˝L

Oa
X

�d
X=Y

Œd �;

(3) for a proper morphism f WX ! Y , the functor f Š is the right adjoint of
Rf�WDCaqc.X/

a ! DCaqc.Y /
a.


