
Chapter 6

OC=p-modules

The main goal of this chapter is to discuss the comparison results between OC=p-
modules in the étale, quasi-proétale, and v-topologies. In particular, we show that the
categories of OC=p-vector bundles in all these topologies are canonically equiva-
lent. Furthermore, one can compute cohomology groups with respect to any of these
topologies (without passing to almost mathematics). A good understanding of OC=p-
vector bundles in the v-topology will be crucial for our proof of almost coherence of
nearby cycles for general OC=p-vector bundles (see Theorem 7.1.2). We also discuss
more general OC=p-modules in Section 6.7.

In this chapter, we will freely use the notions of perfectoid spaces and their tilts
as developed in [58] and [61].

6.1 Recollection: The v-topology

In this section, we discuss the v-topology on adic spaces and show some of its basic
properties that seem difficult to find explicitly stated in the literature.

Before we start this discussion, we recall the notion of a diamond and its relation
to the notion of an adic space. To motivate this discussion, we remind the reader of
the two major problems with the category of adic spaces: the existence of non-sheafy
(pre-)adic spaces and the lack of (finite) limits in the category of adic spaces. It turns
out that both of these problems go away if we consider a (pre-)adic space over Qp as
some kind of sheafX˘ on the category of perfectoid spaces of characteristic p > 0. It
could sound somewhat counter-intuitive to consider a p-adic rigid-analytic variety as
a sheaf on characteristic p objects, but it turns out to be quite useful in practice. The
main idea is that an S D Spa .R;RC/-point of X} should be a choice of an untilt S#

of S (this is a mixed characteristic object) and a morphism S# ! X . This procedure
turns out to remember a lot of information about X (e.g., étale cohomology), but not
all information about X (see Warning 6.1.8).

Definition 6.1.1 ([61, Definitions 8.1, 12.1, and 14.1]). The category Perf is the cat-
egory of characteristic p perfectoid spaces.

The v-topology is the Grothendieck topology on Perf, defined such that a family
¹fi WXi ! Xºi2I of morphisms in Perf is a covering if, for any quasi-compact open
U �X , there are a finite subset I0 � I and quasi-compact opens ¹Ui �Xiºi2I0 such
that U �

S
i2I0

fi .Ui /.
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A small v-sheaf is a v-sheaf Y on Perf such that there is an epimorphism of
v-sheaves Y 0 ! Y for some perfectoid space Y 0.

The v-site Yv of a small v-sheaf Y is the site whose objects are all maps Y 0 ! Y

from small v-sheaves Y 0, with coverings given by families ¹Yi ! Y ºi2I such thatF
i2I Yi ! Y is an epimorphism of v-sheaves.

Remark 6.1.2. The v-site of a small v-sheaf Y has all finite limits by [61, Proposi-
tion 12.10] and [68, Tag 002O].

In what follows, we denote by AdQp the category of adic spaces over Spa.Qp;Zp/
and by pAdQp the category of pre-adic spaces over Spa .Qp;Zp/ as defined in [62,
Definition 2.1.5] and [41, Definition 8.2.3].1 The category of pre-adic spaces satisfies
the following list of properties (see [62, Proposition 2.1.6] or [41, Section 8.2.3]):

(1) The natural functor AdQp ! pAdQp is fully faithful.

(2) There is a functor .Tate–Huber.Qp ;Zp/
comp/op ! pAdQp from the opposite

category of complete Tate–Huber pairs over .Qp;Zp/ to the category of pre-
adic spaces over Spa .Qp;Zp/. To each such .A; AC/ it assigns the pre-adic
affinoid space2 BSpa .A;AC/ .

(3) For an adic space S and a pre-adic affinoid space BSpa .A;AC/ , the set of
morphisms is given by

HompAdQp

�
S; BSpa .A;AC/

�
D Homcont

�
.A;AC/; .OS .S/;O

C

S .S//
�
:

(4) pAdQp has all finite limits.

(5) With a pseudo-adic space X , one can functorially associate an underlying
topological space jX j such that it coincides with the usual underlying topo-
logical space jX j when either BSpa .A;AC/ is a pre-adic affinoid space or
X D .jX j;OX ;O

C

X / is an adic space.

(6) With every pre-adic spaceX 2 pAdQp , one can functorially associate an étale
siteXét such thatXét coincides with the classical étale site whenX is a locally
strongly noetherian space or a perfectoid space (see [38, Section 2.1] and
[58, Section 7]).

Warning 6.1.3. In general, it is not true that HompAdQp

�
Spa .B;BC/; Spa .A;AC/

�
is equal to Homcont

�
.A; AC/; .B; BC/

�
unless Spa .B; BC/ is sheafy. In particular,

the functor �
Tate–Hubercomp

.Qp ;Zp/

�op
! pAdQp

is not fully faithful.

1These spaces are called adic in [62], we prefer to call them pre-adic to distinguish them
from the usual adic spaces in the sense of Huber.

2We follow [41] and use the notation BSpa .A;AC/ for affinoid pre-adic spaces. If A is
sheafy, we freely identify it with Spa .A;AC/.

https://stacks.math.columbia.edu/tag/002O
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Definition 6.1.4 ([62, Definition 2.4.1]). LetXi be a cofiltered inverse system of pre-
adic spaces with quasi-compact and quasi-separated transition maps, X a pre-adic
space, and fi WX ! Xi a compatible family of morphisms.

We say that X is a tilde-limit of Xi , X � limI Xi if the map of underlying topo-
logical spaces jX j ! limI jXi j is a homeomorphism and there is an open covering
of X by affinoids BSpa .A;AC/ � X , such that the map

colim BSpa .A;AC/�Xi
Ai ! A

has dense image, where the filtered colimit runs over all open affinoids

BSpa .A;AC/ � Xi

over which BSpa .A;AC/ � X ! Xi factors.

Definition 6.1.5 ([61, Definition 15.5]). The diamond associated with X 2 pAdQp
is a presheaf

X}WPerfop
! Sets

such that, for any perfectoid space S of characteristic p, we have

X}.S/ D
®�
.S]; �/; f WS] ! X

�¯
=isom;

where S] is a perfectoid space, �W .S]/[ ! S is an isomorphism of the tilt of S]

with S , and f WS] ! X is a morphism of pre-adic spaces.
The diamantine spectrum Spd .A; AC/ of a Huber pair .A; AC/ is a presheaf
BSpa .A;AC/}.

We list the main properties of this functor:

Proposition 6.1.6. The diamondification functor factors through the category of v-
sheaves. Moreover, the functor .�/}WpAdQp ! Shv.Perfv/ satisfies the following list
of properties:

(1) if X is a perfectoid space, then X} ' X [;

(2) X} is a small v-sheaf for any X 2 pAdQp ;3

(3) if ¹Xi ! Xºi2I is an open (resp. étale) covering in pAdQp , then the family
¹X}i ! X}ºi2I is an open (resp. étale) covering of X};

(4) there is a functorial homeomorphism jX j ' jX}j for any X 2 pAdQp ;

(5) if X is a perfectoid space such that X � limI Xi in pAdQp with quasi-
compact quasi-separated transition maps, then X} ! limI X}i is an iso-
morphism;

(6) the functor .�/}W WpAdQp ! Shv.Perfv/ commutes with fiber products.

3It is even a locally spatial diamond in the sense of [61, Definition 11.17].
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Proof. The first claim follows from [61, Corollary 3.20] and the definition of the
diamondification functor. As for the second claim, [61, Proposition 15.6] implies
thatX} is a diamond, and so it is a small v-sheaf due to [61, Proposition 11.9] and the
definition of a diamond (see [61, Definition 11.1]). The third and fourth claims follow
from [61, Lemma 15.6]. The proof of the fifth claim is identical to that of [62, Propo-
sition 2.4.5] (the statement makes the assumption that X and Xi are defined over a
perfectoid field, but it is not used in the proof).

Now we give a proof of the sixth claim. Let U ! V , W ! V be morphisms in
pAdQp with the fiber product U �V W . We fix a perfectoid space S of characteris-
tic p. Then we have a sequence of identifications

.U �V W /
}.S/

D
®�
.S]; �/; S] ! U �V W

�¯
=isom

D
®�
.S]; �/; S] ! U

�¯
=isom �¹..S];�/;S]!V /º=isom

®�
.S]; �/; S] ! W

�¯
=isom

D U}.S/ �V}.S/ W
}.S/;

which is functorial in S . Therefore, this defines an isomorphism

.U �V W /
} �
�! U} �V} W

}:

Warning 6.1.7. The functor .�/} does not send the final object to the final object.
In particular, it does not commute with all finite limits.

Warning 6.1.8. The functor .�/}W pAdQp ! Shv.Perfv/ is not fully faithful. This
observation is quite crucial for our proof of Theorem 7.10.3. In that proof, we exploit
Theorem 7.10.1 which guarantees that some non-perfectoid affinoid (pre-)adic spaces
become perfectoid after diamondification.

The next goal is to discuss some examples of v-covers of X}.

Definition 6.1.9. A family of morphisms ¹fi WXi ! Xºi2I in pAdQp is a naive v-
covering if, for any quasi-compact open U � X , there are a finite subset I0 � I and
quasi-compact opens ¹Ui � Xiºi2I0 such that jU j �

S
i2I0
jfi j.jUi j/.

Remark 6.1.10. Using that the natural morphism jX �Y Zj ! jX j �jY j jZj is sur-
jective, it is easy to see that a pullback of a naive v-covering is a naive v-covering.

Lemma 6.1.11. Let f WX ! Y be an étale morphism of pre-adic spaces in pAdQp
(in the sense of [41, Definition 8.2.19]). Then f is an open map.

Proof. By definition, open immersions induce open maps of underlying topological
spaces. Therefore, after unraveling the definition of étale morphisms, it suffices to
show that a map of pre-adic spaces j Spa .'/jW j Spa .B; BC/j ! j Spa .A; AC/j is
open when 'W .A; AC/! .B; BC/ is a finite étale morphism of Tate–Huber pairs.



Recollection: The v-topology 177

In this case, Lemma C.2.9 and Corollary C.3.12 allow us to assume that .A; AC/ is
strongly noetherian. Then the result follows from [38, Lemma 1.7.9] (alternatively,
one can directly adapt the proof of [38, Lemma 1.7.9] to work in the non-noetherian
case).

Example 6.1.12. (1) A quasi-compact surjective morphism X ! Y of pre-adic
spaces over Spa .Qp;Zp/ is a naive v-cover;

(2) Lemma 6.1.11 implies that a family of jointly surjective étale morphisms
¹Xi ! Xº of pre-adic spaces over Spa .Qp;Zp/ is a naive v-cover.

Our next goal is to show that the diamondification functor .�/˘ sends naive v-
covers to surjections of small v-sheaves.

Lemma 6.1.13. Let f WX!Y be a quasi-compact (resp. quasi-separated) morphism
in pAdQp . Then f }WX}! Y } is quasi-compact (resp. quasi-separated) in the sense
of [61, p. 40].

Proof. We first deal with a quasi-compact f . In order to check that f } is quasi-
compact, it suffices to show that S �Y} X

} is quasi-compact for any morphism
S ! Y with an affinoid perfectoid S . By definition, this morphism corresponds to a
morphism S] ! Y with an affinoid perfectoid source S]. By Proposition 6.1.6, we
have S �Y} X

} ' .S] �Y X/
}, so [61, Lemma 15.6] implies that

jS �Y} X
}
j ' jS] �Y X j

is quasi-compact by our assumption on f . Now S �Y} X
} is quasi-compact due to

the combination of [61, Proposition 12.14 (iii) and Lemma 15.6].
The case of a quasi-separated f follows from Proposition 6.1.6 and the quasi-

compact case by considering the diagonal morphism �f WX ! X �Y X .

Lemma 6.1.14. Let ¹fi WXi ! Xºi2I be a naive v-covering in pAdQp . Then the
family ¹f }i WX

}

i ! X}ºi2I is a v-covering as well.

Proof. We can find a covering ¹Uj ! Xºj2J by open affinoids. Proposition 6.1.6
implies that ¹U}j ! X}º is a v-covering. Therefore, it suffices to show that the fam-
ily ¹fi;j WXi;j WD Xi �X Uj ! Uj ºi2I is a v-covering for every j 2 J . Since naive
v-covers are preserved by open base change, we reduce to the case when X is an
affinoid.

Moreover, the proof of [61, Proposition 15.4] ensures that there is a v-surjection
f WS ! X} where S is an affinoid perfectoid space. By definition, the map f corre-
sponds to a map gWS]!X . Proposition 6.1.6 ensures that diamondization commutes
with fiber products, so it suffices to show that ¹.Xi �X S]/} ! .S]/}ºi2I is a v-
covering. In other words, we can assume that X D S] is an affinoid perfectoid space.
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Now we can find a covering ¹Ui;j ! Xiºj2Ji by open affinoids for each i 2 I .
Then the family ¹Ui;j ! Xºi2I;j2Ji is also a naive v-covering, and so it suffices
to show that ¹U}i;j ! X}ºi2I;j2Ji is a v-covering. In other words, we can assume
thatX is an affinoid perfectoid space and that allXi are affinoids. A similar argument
allows us to assume that each Xi is an affinoid perfectoid space.

Finally, we note that under our assumption that X and Xi are (affinoid) per-
fectoids, ¹Xi ! Xºi2I is a naive v-covering if and only if ¹X}i ! X}ºi2I is a
v-covering since jX}i j ' jXi j and jX}j D jX j by [61, Lemma 15.6].

6.2 Recollection: The quasi-proétale topology

The main goal of this section is to recall the notions of a quasi-proétale morphism
and the quasi-proétale topology. This topology will be a crucial intermediate tool to
relate the v-topology to the étale topology.

In this section, we will only work with strongly sheafy spaces in the sense of
Definition C.4.1. We advise the reader to look at Appendix C for basic definitions
involving such spaces. Most likely, this discussion can be generalized to arbitrary
affinoid pre-adic spaces, but we do not do this since we will never need this level of
generality.

For the purpose of the next definition, we fix a morphism f WX D Spa .S;SC/!
Y D Spa .R;RC/ of strongly sheafy Tate-affinoid adic spaces.

Definition 6.2.1. A morphism f WSpa .S;SC/! Spa .R;RC/ is an affinoid strongly
pro-étale morphism if there is a cofiltered system of strongly étale morphisms of
strongly sheafy affinoid adic spaces (see Definition C.4.5)

Spa .Ri ; RCi /! Spa .R;RC/

such that .S; SC/ D
�5.colimI Ri /u;5.colimI Ri /Cu

�
is the completed uniform filtered

colimit of .Ri ; RCi / (see Definition C.2.4).
We will usually write Spa .S; SC/ � limI Spa .Ri ; RCi /! Spa .R; RC/ for an

affinoid strongly pro-étale presentation of Spa .S; SC/! Spa .R;RC/.

Remark 6.2.2. Explicitly, Remark C.2.5 implies that SC D .colimI RCi /
^
$ is equal

to the$ -adic completion of colimI RCi and S D SC
�
1
$

�
for any choice of a pseudo-

uniformizer $ 2 RC.

Remark 6.2.3. We note that Theorem C.3.10 (1) (see also [62, Proposition 2.4.2])
implies that Spa .S; SC/ � limI Spa .Ri ; RCi / for an affinoid strongly pro-étale mor-
phism Spa .S; SC/ � limI Spa .Ri ; RCi /! Spa .R;RC/.

Warning 6.2.4. Definition 6.2.1 is more restrictive than [61, Definition 7.8] when
Spa .R;RC/ is an affinoid perfectoid space.
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Definition 6.2.5. A perfectoid space X is strictly totally disconnected if X is quasi-
compact, quasi-separated, and every étale cover of X splits.

Lemma 6.2.6. Let each X , Y , Y 0, and Z be affinoid spaces over Spa .Qp;Zp/. We
assume that each of them is strongly sheafy.

(1) Let f WX ! Y and gWY !Z be affinoid strongly pro-étale morphisms. Then
the composition g ı f WX ! Z is also an affinoid strongly pro-étale mor-
phism.

(2) Let f WX ! Y be an affinoid strongly pro-étale morphism, let gW Y 0 ! Y

be a morphism of adic spaces with Y 0 being an affinoid perfectoid space
(resp. strictly totally disconnected perfectoid space), and letXY 0 WDX �Y Y 0

be the fiber product (in pre-adic spaces). Then X}Y 0 is an affinoid perfectoid
space (resp. strictly totally disconnected perfectoid space) and the morphism
f }Y 0 WX

}

Y 0 ! Y 0} is an affinoid pro-étale morphism in the sense of [61, Defi-
nition 7.8].

Proof. (1) The proof of [52, Lemma 2.5 (1)] goes through if we use Theorem C.3.10
in place of [61, Proposition 6.4] (and [38, Proposition 1.7.1]).

Now we show (2). We setXDSpa.S;SC/, Y DSpa.R;RC/, Y 0DSpa.R0;R0C/,
and let X � limI

�
Xi D Spa .Ri ; RCi /

�
! Y D Spa .R;RC/ be an affinoid strongly

pro-étale presentation of X ! Y . Then Proposition 6.1.6 (5) implies that

X} D lim
I
X}i :

Therefore, X}Y 0 D limI .Xi �Y Y 0/} ! Y 0}. Hence it suffices to show that each
.Xi �Y Y

0/} is represented by an affinoid perfectoid space, and that each morphism
f }i W .Xi �Y Y

0/} ! Y 0} is étale. By construction, f }i is étale. In particular, .Xi �Y
Y 0/} is represented by a perfectoid space. Furthermore, f }i is a composition of finite
étale maps and finite disjoint unions of rational subdomains. Therefore, .Xi �Y Y 0/}

is an affinoid perfectoid space due to the combination of [58, Theorem 6.3 and The-
orem 7.9].

If Y 0 is strictly totally disconnected, then [61, Lemma 7.19] implies that X}Y 0 is
also represented by a strictly totally disconnected perfectoid space.

Warning 6.2.7. [52, Lemma 2.5 (1)] claims a stronger version of Lemma 6.2.6 (2).
However, it seems to be false (see Warning 7.6.5).

Now we are ready to show that the issue raised in Warning 6.2.4 disappears when
the target is a strictly totally disconnected perfectoid space.

Lemma 6.2.8. Let X D Spa .R; RC/ be a strictly totally disconnected perfectoid
space, and let f W Y D Spa .S; SC/ ! X D Spa .R; RC/ be an affinoid pro-étale
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morphism (in the sense of [61, Definition 7.8]). Then f is an affinoid strongly pro-
étale morphism.

Proof. The proof of [61, Lemma 7.19] ensures that f can be realized as a pro-
(rational subdomain) inside the pro-(finite étale) morphismX ��0.X/ �0.Y /. Each of
these morphisms is an affinoid strongly pro-étale morphism. Thus, Lemma 6.2.6 (1)
ensures that f is an affinoid strongly pro-étale morphism as well.

For the next definition, we fix a morphism f WX ! Y of adic spaces such that X
and Y are strongly sheafy adic spaces over Spa .Qp;Zp/.

Definition 6.2.9. A morphism f WX ! Y is strongly pro-étale if, for every point
x 2 X , there are an open affinoid x 2 U � X and an open affinoid f .x/ 2 V � Y
such that f jU WU ! V is affinoid strongly pro-étale.

Now we are ready to define quasi-proétale morphisms.

Definition 6.2.10 ([61, Definition 10.1 and 14.1]). A morphism of small v-sheaves
f WX ! Y is quasi-proétale if it is locally separated, and for every morphism S ! Y

with a strictly totally disconnected perfectoid S , the fiber product XS WD X �Y S is
represented by a perfectoid space and XS ! S is pro-étale.

The quasi-proétale site XqproKet of a small v-sheaf is the site whose objects are
quasi-proétale morphisms Y ! X , with coverings given by families ¹Yi ! Y ºi2I
such that

F
i2I Yi ! Y is a surjection of v-sheaves.

Lemma 6.2.11. Let f WX ! Y be a strongly pro-étale morphism such that both X
and Y are strongly sheafy adic spaces over Spa .Qp;Zp/. Then f }WX} ! Y } is
quasi-proétale. Furthermore, if f is also a naive v-covering, then f } is a quasi-
proétale covering.

Proof. The question is local on the source and on the target, so we can assume that f
is an affinoid strongly pro-étale morphism. Then it is easy to see that f }WX}! Y }

is a separated morphism (for example, it is quasi-separated due to Lemma 6.1.13
and then the valuative criterion [61, Proposition 10.9] implies that it is separated).
Therefore, it suffices to show that, for any strictly totally disconnected perfectoid S
and a morphism S ! Y }, the fiber product S �Y} X

}! S is a pro-étale morphism
of perfectoid spaces.

Now we recall that a morphism f WS ! Y } uniquely corresponds to a morphism
gWS] ! Y . Proposition 6.1.6 (6) implies that

S �Y} X
}
' .S] �Y X/

}:

Therefore, Lemma 6.2.6 (2) implies that S �Y} X
} ! S is affinoid pro-étale in the

sense of [61, Definition 7.8]. This finishes the proof that f } is quasi-proétale. If we
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also assume that f is a naive v-covering, then Lemma 6.1.14 ensures that f } is a
surjection of v-sheaves. Thus, f } is a quasi-proétale covering in this case.

Finally, we wish to show that strongly sheafy Tate-affinoids Spa .A; AC/ admit
affinoid strongly pro-étale covers by strictly totally disconnected perfectoid spaces.
For this, we will need some preliminary lemmas:

Lemma 6.2.12. Let .A;AC/ be an affinoid perfectoid pair. Suppose that every surjec-
tive (affinoid) strongly étale morphism Spa .B;BC/! Spa .A;AC/ admits a section
(see Definition C.4.5). Then Spa .A; AC/ is a strictly totally disconnected perfectoid
space.

Proof. It suffices to show that every étale surjective morphism X ! Spa .A; AC/
admits a section. Any such morphism can be dominated by a surjective morphism of
the form

F
i2I Xi ! Spa .A;AC/ where Xi D Spa .Bi ; BCi /! Spa .A;AC/ is affi-

noid strongly étale and I is a finite set. Then Remark C.4.7 implies that
F
i2I Xi !

Spa .Ai ; ACi / is itself strongly étale (and affinoid), so it admits a section due to the
assumption on X . Therefore, X ! Spa .A;AC/ also admits a section.

Lemma 6.2.13. Let Spa .A; AC/ denote a strongly sheafy Tate-affinoid space over
Spa .Qp;Zp/. Then there is an affinoid strongly pro-étale covering Spa .A1;AC1/!
Spa .A; AC/ such that the fiber products Spd .A1; AC1/

j=Spd .A;AC/ are represented
by strictly totally disconnected (affinoid) perfectoid spaces for j � 1. In particular,

Spd .A1; AC1/! Spd .A;AC/

is a quasi-proétale covering by a strictly totally disconnected perfectoid space.

Proof. For the purpose of the present proof, we say that a strongly étale morphism
f W .R;RC/! .S;SC/ of complete Tate–Huber pairs is a covering if the correspond-
ing morphism jSpa .f /jW jSpa .S; SC/j ! jSpa .R;RC/j is surjective.

To begin with, we fix a set of representatives of all strongly étale coverings
¹.A;AC/! .Ai ; A

C

i /ºi2I . Then, for each finite subset S � I , we define

.AS ; A
C

S / D b̋s2S .As; ACs /:
Each .AS ; ACS / is a strongly étale covering of .A; AC/. For each S � S 0, we put
fS;S 0 W .AS ;A

C

S /! .AS 0 ;A
C

S 0/ to be the natural morphism induced by S ,! S 0. Then
we see that ¹.AS ; ACS /; fS;S 0ºS�I finite is a filtered system of strongly étale .A; AC/-
algebras. We put

.A.1/; AC.1// D
�
.4colimS A

C

S /
h 1
p

i
; 4colimS A

C

S

�
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to be the completed uniform filtered colimit of .AS ; ACS / (see Definition C.2.4). The-
orem C.3.10 implies that every strongly étale covering .A;AC/! .B;BC/ admits a
splitting over .A.1/; AC.1//. We repeat the same construction to inductively define�

A.2/; AC.2/
�
WD
�
A.1/.1/; A.1/C.1/

�
;�

A.3/; AC.3/
�
WD
�
A.2/.1/; A.2/C.1/

�
; : : : ;�

A.n/; AC.n/
�
WD
�
A.n � 1/.1/; A.n � 1/C.1/

�
; : : :

Finally, we let .A1;AC1/ be the completed uniform filtered colimit of .A.n/;A.n/C/.
Then Theorem C.3.10 implies that any strongly étale covering of .A1; AC1/ comes
from a covering of some .A.n/; AC.n//, hence it admits a splitting over .A.nC 1/;
AC.nC 1//. In particular, every strongly étale covering of .A1; AC1/ admits a split-
ting. The proof of [61, Lemma 15.3] implies that .A1; AC1/ is a perfectoid pair. In
particular, it is strongly sheafy. Furthermore, Lemma 6.2.12 ensures that it is strictly
totally disconnected. We notice that the morphism Spa .A1; AC1/! Spa .A;AC/ is
an affinoid strongly pro-étale covering. Finally, we conclude that all fiber products
Spd .A1; AC1/

j=Spd .A;AC/ are represented by strictly totally disconnected perfectoid
spaces due to Lemma 6.2.6 (2).

Lemma 6.2.14. Let X D Spa .A; AC/ denote a strongly sheafy Tate-affinoid over
Spa .Qp; Zp/. Then the set of all morphisms f }W Y } ! X} for an affinoid per-
fectoid Y with an affinoid strongly pro-étale morphism f W Y ! X forms a basis
of X}qproKet.

Proof. Let Z ! X} be a quasi-proétale morphism. We wish to show that it can be
covered (in the quasi-proétale topology) by elements of the form Y } ! X} for an
affinoid perfectoid Y and an affinoid strongly pro-étale morphism Y ! X .

Then Lemma 6.2.13 implies that we can find an affinoid strongly pro-étale cov-
ering X 0 ! X such that X 0 is a strictly totally disconnected perfectoid space. Since
Z ! X} is quasi-proétale, we conclude that Z �X} X 0} is a perfectoid space and
Z �X} X

0} is pro-étale. Therefore, we can cover it (in the analytic topology) by
affinoid perfectoid spaces Zi such that each Zi is an affinoid perfectoid space and
Zi ! X 0} is affinoid pro-étale. By construction ¹Zi ! Zºi2I is a covering in the
quasi-proétale topology.

Now Lemma 6.2.8 implies that each Zi ! X 0} is affinoid strongly pro-étale.
Therefore, when we pass to the corresponding untilts, we get morphisms Z]i ! X 0

that are affinoid strongly pro-étale as well (we use [61, Theorem 3.12 and Theo-
rem 6.1]). Consequently, Lemma 6.2.6 (1) implies that each Z]i ! X is an affi-
noid strongly pro-étale morphism (with an affinoid perfectoid Z]i ). By construction
.Z

]
i /
} D Zi ! X} cover the morphism Y ! X}.
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6.3 Integral structure sheaves

In this section, we define various structure sheaves associated with a (pre-)adic space
over Qp . Then we discuss the relationship between some of these sheaves. We will
continue the discussion between these sheaves (and their cohomology) in the next
section.

First, we note that the étale, quasi-proétale, and v-sites of a pre-adic spaceX over
Spa .Qp;Zp/ are related via the following sequence of morphisms of sites:

X}v X}qproKet Xét;
� �

(6.3.1)

which essentially come from the fact that any étale covering is a quasi-proétale cover-
ing, and any quasi-proétale covering is a v-covering.4 Now we define various structure
sheaves on each of these sites:

Definition 6.3.1. Let X be a pre-adic space over Spa .Qp;Zp/.
The integral “untilted” structure sheaf OC

X}
is a sheaf of rings on X}v obtained

as the sheafification of a pre-sheaf defined by the assignment®
S ! X}

¯
7! OC

S]

�
S]
�

for any perfectoid space S ! X} over X} (the transition maps are defined in the
evident way5).

The rational “untilted” structure sheaf OX} is a sheaf of rings on X}v given by
the formula OX} D OC

X}
Œ 1
p
�.

The mod-p structure sheaf OC
X}
=p is the quotient of OC

X}
by p in the category

of sheaves of rings on X}v .
The quasi-proétale integral “untilted” structure sheaf O

X}qp
C is the restriction

of OC
X}

to the quasi-proétale site of X}, i.e., O
X}qp
C D ��O

C

X}
.

The quasi-proétale mod-p structure sheaf O
X}qp
C =p is the quotient of O

X}qp
C by p

in the quasi-proétale site X}qproKet.
If X is a strongly sheafy space over Spa .Qp; Zp/, the étale mod-p structure

sheaf OCXét
=p is the quotient of OCXét

by p in the étale site Xét (see Definition C.4.9
and Lemma C.4.11).

4To show that the natural continuous functors Xét ! X}qproKet and X}qproKet ! X}v induce
morphisms of sites (in the other direction), one needs to verify that all these sites admit finite
limits and these functors commute with all finite limits. We leave this as an exercise to the
interested reader.

5Recall that a morphism S!X} is, by definition, a datum of an untilt S] with a morphism
S] ! X and an isomorphism .S]/[ ' S . Thus, a pair of morphisms T ! S ! X} defines a
pair T ] ! S] ! X .
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Remark 6.3.2. We note that it is not, a priori, clear whether O
X}qp
C =p ' ��

�
OC
X}
=p
�
.

The problem comes from the fact that � is not an exact functor, so it is not clear
whether it commutes with quotiening by p.

Remark 6.3.3. The relation between O
X}qp
C =p and OCXét

=p is even more mysterious.
The first sheaf is defined via descent from perfectoid spaces, so it seems subtle to
control values of this sheaf on locally noetherian adic spaces. On the contrary, the
second sheaf is defined using the étale topology on Xét, so its definition has no direct
relation to perfectoid spaces when X is a locally noetherian adic space.

By definition, for a strongly sheafy adic space X over Spa .Qp;Zp/, we can pro-
mote Diagram (6.3.1) to a diagram of morphisms of ringed sites:

�
X}v ;O

C

X}
=p
� �

X}qproKet;OX}qp
C =p

� �
Xét;O

C

Xét
=p
�
:

� �
(6.3.2)

We also have “tilted” versions of the structure sheaves:

Definition 6.3.4. Let X be a pre-adic space over Spa .Qp;Zp/.
The integral “tilted” structure sheaf O

[;C

X}
is the sheaf of rings on X}v obtained

as the sheafification of a pre-sheaf defined by the assignment®
S ! X}

¯
7! OCS .S/

for any perfectoid space S ! X} over X}.
IfX is a pre-adic space over a p-adic perfectoid pair .R;RC/with a good pseudo-

uniformizer$ 2RC (see Definition B.11), the rational “tilted” structure sheaf O[
X}

is O
[;C

X}
Œ 1
$[
�.

We start with some easy properties of these structure sheaves:

Lemma 6.3.5. Let X 2 pAdQp be a pre-adic space over Spa .Qp;Zp/. Then

(1) for any affinoid perfectoid space Y D Spa .S;SC/! X}, we have the coho-
mology groups H0.Y;OC

X}
/ D S];C and Hi .Y;OC

X}
/ 'a 0 for i � 1;

(2) for any affinoid perfectoid space Y D Spa .S;SC/! X}, we have the coho-
mology groups H0.Y;O[;C

X}
/ D SC and Hi .Y;O[;C

X}
/ 'a 0 for i � 1;

(3) the sheaf OC
X}

is derived p-adically complete and p-torsion free;

(4) if X is pre-adic space over a perfectoid pair .R; RC/ with a good pseudo-
uniformizer $ 2 RC, the sheaf O

[;C

X}
is derived $ [-adically complete and

$ [-torsion free;

(5) if X is a pre-adic space over a perfectoid pair .R;RC/ with a good pseudo-
uniformizer$ 2RC, there is a canonical isomorphism OC

X}
=p'O

[;C

X}
=$ [.
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Proof. (1) and (2) follow directly from [61, Theorem 8.7 and Proposition 8.8].
(3) To show that OC

X}
is p-torsion free, it suffices to show that OX}

C.U / is
p-torsion free on a basis of X}v . Therefore, it is enough to show that

OC
X}
.Y /

is p-torsion free for any affinoid perfectoid space Y ! X}. This follows from (1).
Lemma A.8 ensures that, for the purpose of proving that OC

X}
is p-adically

derived complete, it suffices to show that

R�.Y;OC
X}
/

is derived p-adically complete for any affinoid perfectoid space of the form Y D

Spa .S; SC/! X . Then it suffices to show that each cohomology group Hi .Y;OC
X}
/

is derived p-adically complete. Now (1) implies that

H0.Y;OC
X}
/ D S];C

is p-adically complete, and so it is derived p-adically complete (see [68, Tag 091R]).
Moreover, (1) implies that all higher cohomology groups

Hi .Y;OC
X}
/ 'a 0

are almost zero. In particular, they are p-torsion, and so derived p-adically complete.
Thus, R�.Y;OC

X}
/ is derived p-adically complete finishing the proof.

(4) This is completely analogous to the proof of (3) using (2) in place of (1).
(5) Denote by F the presheaf quotient of OC

X}
by p, and by G the presheaf

quotient of O
[;C

X}
by $ [. It suffices to construct a functorial isomorphism

F .U / ' G .U /

on a basis of X}v . Therefore, it suffices to construct such an isomorphism for any
affinoid perfectoid space U ! X}. Then (1) and (2) ensure that, for an affinoid per-
fectoid space U D Spa .S; SC/! X},

F .U / ' S];C=pS];C;

G .U / ' SC=$ [SC:

Essentially by the definition of a tilt, we have a canonical isomorphism

S];C=pS];C D S];C=$S];C ' SC=$ [SC

finishing the proof.

https://stacks.math.columbia.edu/tag/091R
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Remark 6.3.6. The conclusion of Lemma 6.3.5 (1), (3) holds for the sheaf O
X}qp
C by

a similar proof (using [61, Theorem 8.5] in place of [61, Theorem 8.7 and Proposi-
tion 8.8]). IfX is a perfectoid space, the same conclusions hold for OCXét

with a similar
proof (using [61, Theorem 6.3] in place of [61, Theorem 8.7 and Proposition 8.8]).

Our next goal is to discuss the precise relation between OC
X}
=p, O

X}qp
C =p, and

OCXét
=p. If one is willing to work in the almost world, then one can quite easily see

that each of these sheaves is obtained as the (derived) restriction of the previous one to
the smaller site (this essentially boils down to Lemma 6.3.5). However, to understand
the relation between the categories of OC=p-vector bundles in different topologies,
it is essential to understand the relation between these sheaves on the nose. This turns
out to be quite subtle and will be discussed in the rest of this and the next sections.

Lemma 6.3.7. Let X 2 pAdQp be a pre-adic space over Spa .Qp; Zp/. Then the
natural morphism

O
X}qp

C =p ! ��
�
OC
X}
=p
�

is an isomorphism. If X is a strongly sheafy adic space over Spa .Qp;Zp/, then the
natural morphisms 6

��1
�
OCXét

=p
�
! O

X}qp

C =p;

OCXét
=p ! R��

�
O
X}qp

C =p
�

are isomorphisms as well.

Proof. The first result is [52, Proposition 2.13]. For the second result, we note that
[52, Lemma 2.7] ensures7 that, for a strongly sheafy adic space X , the sheaf O

X}qp
C is

isomorphic to bOCXqp
WD lim

n
��1

�
OCXét

=pn
�
:8

Now we know that the quasi-proétale site of a diamond is replete (in the sense of
[9, Definition 3.1.1]) due to [52, Lemma 1.2]. Therefore, the fact that OCXét

is p-
torsion free and [9, Proposition 3.1.10] imply that

bOCXqp
' R lim��1

�
OCXét

=pn
�
'

4��1.OCXét
/

6The functor ��1WAb.Xét/ ! Ab.X}qproKet/ denotes the pullback of sheaves of abelian
groups.

7Strictly speaking, the proof of [52, Lemma 2.7] assumes that X is either locally noethe-
rian or perfectoid. However, a similar proof works for any strongly sheafy X if one uses
Lemma 6.2.14 in place of [52, Lemma 2.6].

8The sheaf O
X
}
qp
C is denoted bybOCX} in [52].
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is the derived p-adic completion of ��1
�
OCXét

�
. Since O

X}qp
C is also p-torsion free by

Lemma 6.3.5, the universal property of derived completion implies that

O
X}qp

C =p '
�
O
X}qp

C =p
�

'
�4��1.OCXét

/=p
�

' ��1
�
OCXét

=p
�
:

Finally, [61, Proposition 14.8 and Lemma 15.6] imply that

OCXét
=p ' R����1

�
OCXét

=p
�
' R��

�
O
X}qp

C =p
�
:

Our next goal is to compare R��
�
OC
X}
=p
�

with O
X}qp
C =p. To do this, we need a

number of preliminary results. This will be done in the next section.

6.4 v-descent for étale cohomology of OC=p

The main goal of this section is to show that the natural morphism

O
X}qp

C =p ! R��
�
OC
X}
=p
�

is an isomorphism. However, our argument is a bit roundabout, and we first show
that the étale cohomology complex R�.Xét;O

C
Xét
=p/ satisfies v-descent on affinoid

perfectoid spaces. Even to formulate this precisely, we will need to use1-categories
as developed in [48]. In what follows, we denote by D.Z/ the1-enhancement of the
triangulated derived category of abelian groups D.Z/. We are also going to slightly
abuse the notation and identify a (usual) category C with its nerve N.C/ (see [50,
Tag 002M]) considered as an1-category.

We fix a category PerfAffQp of affinoid perfectoid spaces over Spa .Qp;Zp/. For
any morphismZ! Y , we can consider its Čech nerve Č.Z=Y / as a simplicial object
in PerfAffQp , i.e., a functor

Č.Z=Y /W�op
! PerfAffQp :

More explicitly, the n-th term

Č.Z=Y /n D Zn=Y

is the n-th fiber product of Z over Y . Face and degeneracy maps are defined in an
evident way.

For any functor (in the1-categorical sense) F WPerfAffop
Qp!D.Z/, we can com-

pose F with Č.Z=Y /op to get a cosimplicial object Č.Z=Y;F / in D.Z/, whose n-th
term is given by

Č.Z=Y;F /n D F .Zn=Y /:

https://kerodon.net/tag/002M
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Now it makes sense to talk about (derived) limits over this cosimplicial object (see
[50, Tag 02VY] for more detail).

Definition 6.4.1. Let F W PerfAffop
Qp ! D.Z/ be a functor (understood in the 1-

categorical sense).

• A morphism Z ! Y is of F -descent if the natural morphism

F .Y /! R lim
n2�

Č.Z=Y;F /n

is an equivalence;

• a morphism Z ! Y is of universal F -descent if, for every morphism Y 0 ! Y ,
the base change Z �Y Y 0 ! Y 0 is of F -descent;

• F satisfies v-descent (resp. quasi-proétale descent) if every v-covering9 (resp.
quasi-proétale covering) X ! Y is of (universal10) F -descent;

• F is a (derived) v-sheaf if F satisfies v-descent and for any Y1; Y2 2 PerfAffQp ,
the natural morphism F .Y1 t Y2/! F .Y1/ � F .Y2/ is an equivalence.

Remark 6.4.2. A functor F WPerfAffop
Qp!D.Z/ is a (derived) v-sheaf in the sense of

Definition 6.4.1 if and only if it is a D.Z/-valued sheaf on the (big) v-site PerfAffQp
(see [49, Section A.3.3] for the precise definition). See [49, Proposition A.3.3.1] for
a detailed proof of this fact.

Our current goal is to give an explicit condition that ensures that a functor F

satisfies v-descent. Later on, we will show that the étale cohomology of the OC=p-
sheaf satisfies this condition. This will be the crucial input to relate R��

�
OC
X}
=p
�

to O
X}qp
C =p.

Lemma 6.4.3 ([47, Lemma 3.1.2]). Let F W PerfAffop
Qp ! D.Z/ be a functor (in the

1-categorical sense), and f WZ ! Y , gWZ0! Z be morphisms in PerfAffQp . Then

(1) if f has a section, then it is of universal F -descent;

(2) if f and g are of universal F -descent, then f ı gWZ0 ! Y is of universal
F -descent;

(3) if f ı g is of universal F -descent, then f is so.

Lemma 6.4.4. Let Y be a strictly totally disconnected perfectoid space, and let
Z ! Y be a v-cover by an affinoid perfectoid space. Then there is a presentation

9A morphism f WZ ! Y in PerfAffQp is a v-covering (resp. a quasi-proétale covering) if
f }WX} ! Y} is so.

10We note that if every v-covering (resp. quasi-proétale covering) is of F -descent, then they
are automatically of universal F -descent because v-coverings (resp. quasi-proétale coverings)
are closed under pullbacks in PerfAffQp .

https://kerodon.net/tag/02VY
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Z D limI Zi ! Y as a cofiltered limit of affinoid perfectoid spaces over Y such that
each Zi ! Y admits a section.

Proof. The proof of [52, Lemma 2.11] carries over to this case if one uses [34,
Lemma 2.23] in place of [61, Lemma 9.5].

Definition 6.4.5. A v-covering Z ! Y of affinoid perfectoid spaces is nice if it can
be written as a cofiltered limitZ D limI Zi ! Y of affinoid perfectoid spaces over Y
such that each Zi ! Y admits a section.

Remark 6.4.6. ([61, Proposition 6.5]) We recall that the category of affinoid per-
fectoid spaces PerfAff admits cofiltered limits. Namely, the limit of the cofiltered
system ¹Spa .Si ;SCi /º is given by Spa .S;SC/where SC is the$ -adic completion of
colimI SCi (for some compatible choice of pseudo-uniformizers$ ) and S D SCŒ 1

$
�.

In particular, PerfAffQp also admits all cofiltered limits. Moreover, one can choose
$ D p in this case.

Lemma 6.4.7. Let F WPerfAffop
Qp !D.Z/ be a functor (in the1-categorical sense)

such that

(1) F is universally bounded below, i.e., there is an integer N such that F .Y / 2

D��N .Z/ for any Y 2 PerfAffQp ;

(2) F satisfies quasi-proétale descent;

(3) for an affinoid perfectoid space Z D limI Zi that is a cofiltered limit of affi-
noid perfectoid spaces Zi over Spa .Qp;Zp/, the natural morphism

hocolimI F .Zi /! F .Z/

is an equivalence.

Then F satisfies v-descent.

Proof. By shifting, we can assume that F .Y / 2D�0.Z/ for any Y 2 PerfAffQp . We
pick a v-covering f WZ ! Y in PerfAffQp , and wish to show that it is of universal
F -descent. We use [61, Lemma 7.18] to find a quasi-proétale covering gW Y 0 ! X

such that Y 0 is strictly totally disconnected. Then we consider the fiber product

Z �Y Y
0 Z

Y 0 Y:

g0

f 0 f

g

Lemma 6.4.3 implies that f is of universal F -descent if g and f 0 are so. By assump-
tion, F satisfies quasi-proétale descent, so g is of universal F -descent. Therefore, it
suffices to show that f 0 is of universal F -descent.
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We rename f 0 by f to reduce the question to showing that any v-cover f WZ ! Y

with a strictly totally disconnected Y is of universal F -descent. Further, Lemma 6.4.4
implies that f is nice, so it suffices to show that any nice v-cover (with an arbitrary
affinoid perfectoid target space) is of universal F -descent. The property of being nice
is preserved by arbitrary pullbacks, so it suffices to show that a nice v-cover is of F -
descent.

After all these reductions, we are in the situation of a v-cover f WZ! Y that can
be written as a cofiltered limitZ D limI Zi ! Y of affinoid perfectoid spaces over Y
admitting a Y -section. Lemma 6.4.3 ensures that each fi WZi ! Y is of F -descent
since it has a section. We wish to show that

F .Y /! R lim
n2�

Č.Z=Y;F /n

is an equivalence. By assumption, we know that the natural morphism

hocolimI Č.Zi=Y;F /n ! Č.Z=Y;F /n

is an equivalence for any n � 0. Now the claim follows from the fact that totalization
of a coconnective cosimplisial object commutes with filtered (homotopy) colimits
(for example, this follows from [44, Corollary 3.1.13] applied to C D Fun.�;D.Z//,
D D D.Z/, and F D hocolim).

The next goal is to show that the functor (in the1-categorical sense)

R�ét.�;O
C=p/WPerfAffop

Qp ! D.Z/

Y 2 PerAffQp 7! R�.Yét;O
C

Yét
=p/

is a (derived) v-sheaf.

Lemma 6.4.8. The functor R�ét.�;O
C=p/WPerfAffop

Qp !D.Z/ satisfies quasi-pro-
étale descent.

Proof. By Lemma 6.3.7, we have a functorial isomorphism

R�.Yét;O
C

Yét
=p/ ' R�.Y }qp ;OY}qp

C =p/:

Now the quasi-proétale cohomology satisfies quasi-proétale descent by definition.

Lemma 6.4.9. Let ¹Zi D Spa .Si ; SCi /ºi2I be a cofiltered system of affinoid perfec-
toid spaces over .Qp;Zp/, and letZ1 D limZi with morphisms fi WZ1!Zi . Then
the natural morphism

colimI f �1i OCZi;ét
=p ! OCZ1;ét

=p

is an isomorphism, where fi WX1 ! Xi are the natural projection morphisms and
f �1i is the pullback functor on small étale topoi.
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Proof. Note that [61, Proposition 6.5] implies that Z1 D Spa .S1; SC1/, where SC1
is the p-adic completion of colimI SCi and S1 D SC1Œ

1
p
�.

Now we put F to be the sheaf colimI f �1i OCZi ;ét. Since filtered colimits are exact,
we conclude that F =p D colimI f �1i OCZi ;ét=p. Because affinoid perfectoid spaces
U1 ! Z1, étale over Z1, form a basis of the étale site Z1;ét, it thus suffices to
show that the natural morphism

F .U1/=p ! OCZ1;ét
.U1/=p

is an isomorpism for any such U1 ! Z1. Then [61, Proposition 6.4 (iv)] implies
that, for some i0 2 I , there is an affinoid perfectoid space Ui0 with an étale morphism
Ui0 ! Zi0 such that

Ui0 �Zi0
Z1 ' U1:

For any j � i0, we put Uj WD Ui0 �Zi0 Zj . Since fiber products commute with limits,
we see that

U1 ' lim
I
Ui

in the category of affinoid perfectoid spaces. From this it follows that OCZ1;ét
.U1/D�

colimi�i0 OCZi;ét
.Ui /

�^
p

. Arguing as in [61, Proposition 14.9] (or as in [23, Proposi-
tion 5.9.2]), we conclude that F .U1/D colimi�i0 OCZi ;ét.Ui /. Thus, [68, Tag 05GG]
ensures that the natural morphism

F .U1/=p ! OCZ1;ét
.U1/

is an isomorphism.

Corollary 6.4.10. Let Z be an affinoid perfectoid space over Spa .Qp;Zp/, and let
Z D limI Zi be a cofiltered limit of affinoid perfectoid spaces Zi over Spa .Qp;Zp/.
Then the natural morphism

hocolimI R�
�
Zi;ét;O

C

Zi;ét
=p
�
! R�

�
Zét;O

C

Zét
=p
�

is an equivalence.

Proof. The result is a formal consequence of Lemma 6.4.9 and [61, Proposition 6.4]
(for example, argue as in [23, Proposition 5.9.2]).

Corollary 6.4.11. The functor R�ét.�;O
C=p/W PerfAffop

Qp ! D.Z/ is a (derived)
v-sheaf.

Proof. Clearly, R�ét.�;O
C=p/ transforms disjoint unions into direct products, so it

suffices to show that R�ét.�;O
C=p/ satisfies v-descent. Then it suffices to show that

R�ét.�;O
C=p/ satisfies the conditions of Lemma 6.4.7.

https://stacks.math.columbia.edu/tag/05GG
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By definition, R�.Yét;O
C

Yét
=p/ 2 D�0.Z/ for any Y 2 AffPerfQp . Lemma 6.4.8

implies that R�ét.�;O
C=p/ satisfies quasi-proétale descent, and Corollary 6.4.10

ensures that it satisfies the third condition of Lemma 6.4.7. Thus, Lemma 6.4.7 guar-
antees that R�ét.�;O

C=p/ satisfies v-descent.

Lemma 6.4.12. Let Y 2 PerfAffQp , and let K ! Y } be a v-hypercover in Y }v (in
the sense of [68, Tag 01G5]). Then there is a split (in the sense of [68, Tag 017P])
v-hypercover K 0 ! Y such that each term K 0n is a strictly totally disconnected per-
fectoid space, and there is a morphism K 0} ! K of augmented (over Y ) simplicial
objects.

Proof. This is a standard consequence of the fact that any v-small sheafX admits a v-
covering f WX 0! X with a strictly totally disconnected affinoid perfectoid spaceX 0.
Since this reduction is standard, we only indicate that one should argue as in [68,
Tag 0DAV] or [21, Theorem 4.16] by inductively constructing a split n-truncated
hypercoverK 0 with a morphismK 0! K�n. For this inductive step, the crucial input
is [21, Theorem 4.12] that allows us to construct morphisms from a split (truncated)
hypercovering.

Lemma 6.4.13. For an affinoid perfectoid space Y D Spa .S;SC/ over Spa .Qp;Zp/,
the natural morphism

R�.Yét;O
C

Yét
=p/! R�.Y }v ;O

C

Y}
=p/

is an isomorphism.

Proof. We divide the proof into several steps.

Step 1: Compute R�.Y }v ;O
C

Y}
=p/ “explicitly” in terms of hypercovers (see [68,

Tag 01G5] for a definition of a hypercovering). Let us denote by HC.Y }/ the cate-
gory of all v-hypercovers of Y } up to homotopy.11 Likewise, we denote by HC.Y /
the category of all v-hypercovers of Y in PerfAffQp up to homotopy, and by HCstd.Y /

the full subcategory of hypercovers K ! Y such that each Kn is strictly totally dis-
connected.

Then the diamondification functor naturally extends to a fully faithful functor
.�/}WHCstd.Y /!HC.Y }/. Lemma 6.4.12 ensures that this functor is cofinal, and so
[68, Tag 01H0] implies that, for every integer i � 0, we have a canonical isomorphism

Hi
�
Y }v ;O

C

Y}
=p
�
' colimK2HCstd.Y /

LHi
�
K}v ;O

C

Y}
=p
�
; (6.4.1)

where LHi
�
K}v ;O

C

Y}
=p
�

are the Čech cohomology groups associated with a hyper-
cover K} ! Y } (see [68, Tag 01GU]).

11See [68, Tag 01GZ] for the precise definition.

https://stacks.math.columbia.edu/tag/01G5
https://stacks.math.columbia.edu/tag/017P
https://stacks.math.columbia.edu/tag/0DAV
https://stacks.math.columbia.edu/tag/01G5
https://stacks.math.columbia.edu/tag/01H0
https://stacks.math.columbia.edu/tag/01GU
https://stacks.math.columbia.edu/tag/01GZ
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Moreover, for any affinoid perfectoid space Z with a map Z ! Y , we have a
natural isomorphism OC

Y}
=pjZ} ' OC

Z}
=p. Furthermore, Lemma 6.3.7 ensures that

H0
�
Z}v ;O

C

Y}
=p
�
' H0

�
Z}v ;O

C

Z}
=p
�
' H0

�
Zét;O

C

Zét
=p
�
:

IfZ D Spa .S;SC/ is strictly totally disconnected, we can simplify it even further by
noting that all étale sheaves on Zét have trivial higher cohomology groups, so

H0
�
Zét;O

C

Zét
=p
�
' SC=pSC:

Combining all these observations, we see that Equation (6.4.1) can be simplified
to the following form:

Hi
�
Y };OC

Y}
=p
�
' colimK2HCstd.Y / Hi

�
SC0;K=p ! SC1;K=p ! � � �S

C

n;K=p ! � � �
�
;

(6.4.2)
where Kn D Spa .Sn;K ; SCn;K/ is a strictly totally disconnected perfectoid space, and
the differentials are given by the usual Čech-type differentials.

Step 2: R�ét.�;O
C=p/ satisfies v-hyperdescent. First, we note that Corollary 6.4.11

and [49, Proposition A.3.3.1] ensure that R�ét
�
�;OCYét

=p
�

is a D.Z/-valued v-sheaf
on PerfAffQp . Moreover, for any Y 2 PerfAffQp , we know that

R�
�
Yét;O

C

Yét
=p
�
2 D�0.Z/:

Therefore, [48, Lemma 6.5.2.9] implies that R�ét.�; O
C=p/ is a hypercomplete

(derived) v-sheaf. Furthermore, [48, Corollary 6.5.3.13] implies that any hypercom-
plete (derived) v-sheaf F (in particular, R�ét.�;O

C=p/) satisfies hyperdescent, i.e.,
for any v-hypercovering K ! X , the natural morphism

F .X/! R lim
n2�

F .Kn/

is an equivalence.

Step 3: Compute R�.Yét;O
C

Yét
=p/ “explicitly” in terms of hypercovers. By Step 2,

we know that, for any v-hypercovering K ! Y in PerfAffQp , the natural morphism

R�
�
Yét;O

C

Yét
=p
�
! R lim

n2�
R�

�
Kn;ét;O

C

Kn;ét
=p
�

is an isomorphism. Now we assume that each termKn D Spa
�
Sn;K ; S

C

n;K

�
is strictly

totally disconnected, so higher étale cohomology of any étale sheaf on Kn vanishes.
Thus, we have

R�
�
Kn;ét;O

C

Kn;ét
=p
�
' H0

�
Kn;ét;O

C

Kn;ét
=p
�
' SCn;K=pS

C

n;K :
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Therefore, in this case, the totalization R limn2� R�
�
Kn;ét;O

C

Kn;ét
=p
�

can be explic-
itly computed as the Čech cohomology associated with the hypercovering K ! Y .
More explicitly, we see that, for every integer i � 0, we have

Hi
�
Yét;O

C

Yét
=p
�
' Hi

�
SC0;K=p ! SC1;K=p ! � � �S

C

n;K=p ! � � �
�

with standard Čech-type differentials. Since this formula holds for any v-hypercover
K ! Y with strictly totally disconnected terms Kn, we can pass to the filtered co-
limit12 over HCstd.Y / to see that, for every integer i � 0,

Hi
�
Yét;O

C

Yét
=p
�
' colimK2HCstd.Y / Hi

�
SC0;K=p ! SC1;K=p ! � � �S

C

n;K=p ! � � �
�
;

(6.4.3)
where Kn D Spa

�
Sn;K ; S

C

n;K

�
is a strictly totally disconnected perfectoid space, and

the differentials are given by the usual Čech-type differentials.

Step 4: Finish the proof. Now Equations (6.4.2) and (6.4.3) imply that the natural
morphism

Hi
�
Yét;O

C

Yét
=p
�
! Hi

�
Y }v ;O

C

Y}
=p
�

is an isomorphism for every i � 0. In other words, the morphism

R�
�
Yét;O

C

Yét
=p
�
! R�

�
Y }v ;O

C

Y}
=p
�

is an isomorphism.

Corollary 6.4.14. Let X 2 pAdQp be a pre-adic space over Spa .Qp;Zp/. Then the
natural morphism

O
X}qp

C =p ! R��
�
OC
X}
=p
�

is an isomorphism.

Proof. Lemma 6.3.7 ensures that O
X}qp
C =p ! ��

�
OC
X}
=p
�

is an isomorphism. Thus,
it suffices to show that

Rj��
�
OC
X}
=p
�
' 0

for j � 1. Since strictly totally disconnected spaces form a basis for the quasi-proétale
topology of any diamond, it suffices to show that

Hj .Y }v ;O
C

Y}
=p/ D 0

for a totally strictly disconnected perfectoid Y !X and j � 1. Lemma 6.4.13 implies
that

Hj
�
Y }v ;O

C

Y}
=p
�
' Hj

�
Yét;O

C

Yét
=p
�
:

12The category HCstd.Y / is cofiltered because it is a cofinal category in the filtered category
HC.Y}/. See Step 1 and [68, Tag 01GZ] for more detail.

https://stacks.math.columbia.edu/tag/01GZ


v-descent for étale cohomology of OC=p 195

Now the latter group vanishes because any étale sheaf on a strictly totally discon-
nected perfectoid space has trivial higher cohomology groups.

Corollary 6.4.15. LetX be a strongly sheafy adic space over Spa .Qp;Zp/. Then the
natural morphisms

R�
�
X;OCXét

=p
�
! R�

�
X}qp;OX}qp

C =p
�
! R�

�
X}v ;O

C

X}
=p
�

are isomorphisms.

Proof. It follows directly from Lemma 6.3.7 and Corollary 6.4.14.

Corollary 6.4.16. Let X D Spa .R;RC/ be a strictly totally disconnected perfectoid
space over Spa .Qp;Zp/. Then we have Hi

�
X}v ;O

C

X}
=p
�
' 0 for every i � 1, and

H0
�
X}v ;O

C

X}
=p
�
' RC=pRC.

Remark 6.4.17. We emphasize that Corollary 6.4.16 guarantees the actual vanishing
of higher v-cohomology groups of OCX}=p on a strictly totally disconnected perfec-
toid spaceX . This is quite surprising for two reasons: this vanishing holds on the nose
(without passing to the almost category), the definition of strictly totally disconnected
perfectoid spaces, a priori, guarantees vanishing only of étale cohomology groups (as
opposed to the v-cohomology groups).

Proof. Corollary 6.4.15 implies that

R�
�
X}v ;O

C

X}
=p
�
' R�

�
X;OCXét

=p
�
:

Since X is a strictly totally disconnected space, so any étale sheaf has no higher
cohomology groups. This implies that Hi

�
X}v ;O

C

X}
=p
�
' 0 for i � 1, and

H0
�
X}v ;O

C

X}
=p
�
' H0

�
X;OCXét

�
=p ' RC=pRC:

As an application, we get the following result:

Corollary 6.4.18. LetK be a p-adic non-archimedean field, letKC �K be an open
and bounded valuation subring, and let X be a locally noetherian adic space over
Spa .K;KC/. Put Xı WD X �Spa .K;KC/ Spa .K;OK/. Then the natural morphism

R�
�
X}v ;O

C

X}
=p
�
˝KC=p OK=p ! R�

�
Xı;}v ;OC

Xı;}
=p
�

is an isomorphism. In particular, if .K;KC/ is a perfectoid field pair, then the natural
morphism

R�
�
X}v ;O

C

X}
=p
�
! R�

�
Xı;}v ;OC

Xı;}
=p
�

is an almost isomorphism.
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Proof. Using the Mayer–Vietoris spectral sequence, we can localize the problem
on X . Thus, we can assume that X D Spa .A; AC/ is affinoid. Then we can find a
quasi-proétale covering Spd .A1; AC1/! Spd .A;AC/ such that all fiber products

Spd .A1; AC1/
j=Spd .A;AC/

D Spd .Bj ; BCj /

are strictly totally disconnected (affinoid) perfectoid spaces for j � 1. Thus, Corol-
lary 6.4.16 implies that

Hi
�
Spd .Bj ; BCj /v;O

C

X}
=p
�
' 0

for i; j � 1, and

H0
�
Spd .Bj ; BCj /v;O

C

X}
=p
�
' BCj =pB

C

j

for j � 1. Therefore, we can compute Hj
�
X}v ;O

C

X}
=p
�

via the Čech cohomology
groups of the covering Spd .A1; AC1/! Spa .A;AC/. So we get an isomorphism

Hi
�
X}v ;O

C

X}
=p
�
' Hi

�
BC1 =p ! BC2 =p ! � � �

�
:

Now the morphism Spa .K;OK/ ! Spa .K; KC/ is a pro-open immersion, so the
fiber products

Spa .Bj ; BCj / �Spa .K;KC/ Spa .K;OK/

are strictly totally disconnected affinoid perfectoid spaces represented by13

Spa
�
Bj ; Bj b̋KCOK

�
:

In particular, the same argument as above implies that the OC=p cohomology of
Xı;} can be computed as follows:

Hi
�
Xı;}v ;OC

X}
=p
�
' Hi

�
BC1 =p ˝KC=p OK=p ! BC2 =p ˝KC=p OK=p ! � � �

�
:

Now [53, Theorem 10.1] implies that OK is an algebraic localization of KC, so OK
is KC-flat. Thus, we get the desired isomorphism

R�
�
X}v ;O

C

X}
=p
�
˝KC=p OK=p ! R�

�
Xı;}v ;OC

Xı;}
=p
�
:

If K is perfectoid, the almost isomorphism

R�
�
X}v ;O

C

X}
=p
�
! R�

�
Xı;}v ;OC

Xı;}
=p
�

now follows from Lemma B.13.

13For example, the proof of Lemma 7.4.6 goes through without any changes as OK is an
algebraic localization of KC.
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6.5 OC=p-vector bundles in different topologies

The main goal of this section is to show that the categories of v-, quasi-proétale, and
étale OC=p-vector bundles are all equivalent.

The results of this section are mostly due to B. Heuer. A version of these results
has also appeared in [35]. We present a slightly different argument that avoids non-
abelian cohomology. We heartfully thank B. Heuer for various discussions around
these questions and for allowing the author to present a variation of his ideas in this
section.

For the next definition, we fix a pre-adic space X over Spa .Qp;Zp/.

Definition 6.5.1. An OC
X}
=p-module E (in the v-topology on X}) is an OC

X}
=p-

vector bundle if there is a v-covering ¹Xi ! X}ºi2I such that EjXi '
�
OC
X}
=p
�
j
ri
Xi

for some integers ri . The category of OC
X}
=p-vector bundles will be denoted by

Vect
�
X}v ;O

C

X}
=p
�
.

An O
X}qp
C =p-module E (in the quasi-proétale topology on X}) is said to be an

O
X}qp
C =p -vector bundle if there is a quasi-proétale covering ¹Xi!X}ºi2I such that

EjXi '
�
O
X}qp
C =p

�
j
ri
Xi

for some integers ri . We will denote the category of O
X}qp
C =p-

vector bundles by Vect
�
X}qp;OX}qp

C =p
�
.

Let now X be a strongly noetherian adic space over Spa .Qp;Zp/. An OCXét
=p-

module E (in the étale topology on X ) is an OCXét
=p-vector bundle if, there is an étale

covering ¹Xi ! Xºi2I such that EjXi '
�
OCXét

=p
�
j
ri
Xi

for some integers ri . We will
denote the category of OCXét

=p-vector bundles by Vect
�
Xét;O

C

Xét
=p
�
.

Remark 6.5.2. Note that OC
X}
=p-vector bundles are “big sheaves”, i.e., they are

defined on the big v-site X}v . In contrast, O
X}qp
C =p and OCXét

=p-vector bundles are
“small sheaves”; i.e., they are defined on the small quasi-proétale X}qproKet or the small
étale site Xét respectively.

The main goal of this section is to show that all these notions of OC=p-vector
bundles are equivalent.

First, we define the functors between these categories of OC=p-vector bundles
which we later show to be equivalences. For this, we note that Lemma 6.3.7 implies
that ��1

�
OCXét

=p
�
' O

X}qp
C =p. Consequently, ��1 carries OCXét

=p-vector bundles to
O
X}qp
C =p-vector bundles. In particular, it defines the functor

�� WD ��1WVect
�
Xét;O

C

Xét
=p
�
! Vect

�
X}qp;OX}qp

C =p
�
:

Unfortunately, the natural morphism ��1
�
O
X}qp
C =p

�
! O

X}v

C =p is not an isomorphism
(see Remark 6.5.2). For this reason, we define �� to be the “OC=p-module pullback”
functor

��WVect
�
X}qp;OX}qp

C =p
�
! Vect

�
X}v ;O

C

X}
=p
�
;
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defined by the formula

��E WD ��1E ˝��1O
X
}
qp
C =p OC

X}
=p:

Our goal is to show that both �� and �� are equivalences. Before we do this, we
need some preliminary lemmas:

Lemma 6.5.3. Let X be a pre-adic space over Spa .Qp;Zp/, let E be an OC
X}
=p-

vector bundle, and let Z D limI Zi be a cofiltered limit of affinoid perfectoid spaces
over X . Then the natural morphism

colimI H0
�
Z}i;v;E

�
! H0

�
Z}v ;E

�
is an isomorphism.

Proof. Without loss of generality, we can assume that I has a final object 0. Then,
by the sheaf condition and exactness of filtered colimits, it suffices to show the claim
v-locally on Z0. Therefore, we may assume that EjZ} '

�
OC
Z}
=p
�d is a free vector

bundle. The claim then follows from Corollary 6.4.10.

Corollary 6.5.4. Let X be a pre-adic space over Spa .Qp;Zp/, let E be an OC
X}
=p-

vector bundle, and letZ � limI Zi !Z0 be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid spaces over X . Then the natural morphism

colimI H0
�
Z}i;v;E

�
! H0.Z}v ;E/

is an isomorphism.

Proof. We can prove the claim v-locally on Z}0 . Therefore, we can choose a v-
covering eZ0!Z0 with a strictly totally disconnected perfectoid space eZ0. The proof
of Lemma 6.2.6 (2) ensures that each eZi WD Zi �Z0 eZ0 is a strictly totally discon-
nected affinoid space, and the diamond .Z �Z0 eZ0/} is a strictly totally disconnected
perfectoid space (of characteristic p). Therefore, we see that the natural morphism

eZ WD �.Z �Z0 eZ0/}�] ! Z �Z0
eZ0

becomes an isomorphism after applying the diamondification functor, and

eZ ' lim
I

eZi
in the category of perfectoid spaces over X . Since the question is v-local on Z}0 and
depends only on the associated diamonds ofZi andZ, we can replaceZi andZ witheZi and eZ, respectively, to achieve that each Zi and Z is an affinoid perfectoid. In
this case, the result follows from Lemma 6.5.3.
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Lemma 6.5.5. Let X be a pre-adic space over Spa .Qp;Zp/, let E be an OC
X}
=p-

vector bundle, and letZ � limI Zi !Z0 be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid adic spaces over X . If EjZ} '

�
OC
Z}
=p
�d for some

integer d , then there is an i 2 I such that Ej
Z}
i
'
�
OC
Z}
i

=p
�d .

Proof. We choose an isomorphism

f W
�
OC
Z}
=p
� �
�! EjZ}

and wish to descend it to a finite level.

Step 1: We approximate f . Corollary 6.5.4 ensures that we can find i 2 I and a
morphism

fi W
�
OC
Z}
i

=p
�d
! Ej

Z}
i

such that fi jZ} D f .

Step 2: Approximate f �1WEjZ} !
�
OC
Z}
=p
�d . We note that the dual sheaf

E_ D Hom
O
C

X}
=p

�
E;OC

X}
=p
�

is also an OC
X}
=p-vector bundle. So we can apply the same argument as in Step 1 to

.f �1/_W
�
OC
Z}
=p
�d
! E_jZ} D Hom

O
C

X}
=p

�
E;OC

X}
=p
�
jZ}

to find (after possible enlarging i 2 I ) a morphism

g0i W
�
OC
Z}
i

=p
�d
! E_j

Z}
i

such that g0i jZ} D .f
�1/_. By dualizing, we get a morphism

gi WEjZ}
i
!
�
OC
Z}
i

=p
�d

such that gi jZ} D f
�1.

Step 3: Show that fi ı gi D id and gi ı fi D id after possibly enlarging i 2 I . We
show the first claim, the second is proven in the same way (and even easier). We
consider idEj

Z
}
i

and fi ı gi as sections of the internal Hom sheaf, i.e.,

idEj
Z
}
i

; fi ı gi 2
�
End

O
C

X}
=p
.E/

��
Z}i

�
:

For brevity, we simply denote End
O
C

X}
=p
.E/ by End . Note that End is again an

OC
X}
=p-vector bundle, and so Lemma 6.5.3 ensures that

colimI End .Z}i / D E.Z}/:
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Thus if fi ı gi and id are equal in the colimit, they are equal on Z}i for some large
index i . Similarly, gi ı fi D id for some i 2 I . Therefore, fi W

�
OC
Z}
i

=p
�d �
�! Ej

Z}
i

is an isomorphism for i � 0.

Lemma 6.5.6. Let Y denote a strictly totally disconnected perfectoid space over
Spa .Qp;Zp/, and let E be an OC

Y}
=p-vector bundle. Then there is a finite clopen

decomposition Y D
F
i2I Yi such that Ej

Y}
i
'
�
OC
Y}
i

=p
�ri for some integers ri .

Proof. By assumption, there is a v-covering ¹fj WZj ! Y } D Y [ºj2J by affinoid
perfectoid spaces. Since Y is quasi-compact, we can assume that J is a finite set.

We put Y 000j WD fj .Zj / � Y
[. This subset is pro-constructible by [68, Tag 0A2S]

and it is generalizing due to [38, Lemma 1.1.10]. Therefore, [61, Lemma 7.6] implies
that there is a canonical structure of an affinoid perfectoid space on Y 000j such that
�j W Y

000
j ! Y [ is a pro-(rational subdomain). In particular, Y 000j is strictly totally dis-

connected for every j 2 J (for example, due to [61, Lemma 7.19]).
Lemma 6.4.4 implies that, for each j 2 J , we can writeZj D limƒj Zj;� ! Y 000j

as a cofiltered limit of affinoid perfectoid spaces such that Zj;� ! Y 000j admits a sec-
tion for each � 2 ƒj . Therefore, Lemma 6.5.5 ensures that, for each j 2 J , there is
�j 2 ƒj such that EjZj;�j

is a free OC
Y}
=p-vector bundle. Since each Zj;�j ! Y 000j

admits a section, we can pull back this trivialization along the section to conclude that
EjY 000

j
is a free OC

Y}
=p-vector bundle.

Now we use Lemma 6.5.5 and the fact that �j W Y 000j ! Y [ is a pro-(rational sub-
domain) to find a rational open subdomain Y 00j � Y

[ such that Y 000j � Y
00
j and EjY 00

j

is a free OC
Y}
=p-vector bundle of rank r.j /. Finally, for each integer i , we put Y 0i to

be the union of all Y 00j such that r.j / D i (in other words, it is the union of Y 00j such
that EjY 00

j
is free of rank i ). Then all Y 0i are disjoint and only finitely many of them

are non-empty. Finally, we define I to be the (finite) set of integers such that Y 0i ¤ ¿.
Then Y } D Y [ D

F
i2I Y

0
i is a finite clopen decomposition such that EjY 0 is finite

free. Then the set of untilts Yi WD Y
0]
i � .Y

[/] D Y does the job.

Theorem 6.5.7 (see also [35]). Let X be a pre-adic space over Qp . Then the functor

��WVect
�
X}qp;OX}qp

C =p
�
! Vect

�
X}v ;O

C

X}
=p
�

is an equivalence of categories. Furthermore, for any O
X}qp
C =p-vector bundle E , the

natural morphism
E ! R����E

is an isomorphism.

Proof. We start the proof by showing that the natural morphism

E ! R����E

https://stacks.math.columbia.edu/tag/0A2S
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is an isomorphism. The claim is quasi-proétale local, hence we can assume that E is
a trivial O

X}qp
C =p-vector bundle. In this case, the claim follows from Corollary 6.4.14.

This already implies full faithfulness of ��. Indeed, it follows from a sequence of
isomorphisms:

Hom
O
C

X}
=p
.��E1; �

�E2/ ' HomO
X
}
qp
C =p.E1; ���

�E2/ ' HomO
X
}
qp
C =p.E1;E2/:

To show that �� is essentially surjective, it is enough to show that, for an OC
X}
=p-

vector bundle E , ��E is an O
X}qp
C =p-vector bundle and the natural morphism

E ! ����E

is an isomorphism. Both claims are quasi-proétale local on X}, so we can assume
that X is a strictly totally disconnected perfectoid space. Then we can assume that E

is a free vector bundle due to Lemma 6.5.6. Then ��E is a free O
X}qp
C =p-vector bundle

by Lemma 6.3.7. Thus, the natural morphism

E ! ����E

is evidently an isomorphism.

Lemma 6.5.8. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, and let E

be an O
X}qp
C =p-vector bundle (equivalently, an OC

X}
=p-vector bundle). Then there is

an étale covering ¹X 0i ! Xºi2I such that Ej
X 0}
i
' .O

X 0}
i

C =p/ri for some integers ri .

Proof. The question is local on X . So we can assume that X D Spa .A; AC/ for a
complete strongly sheafy Tate–Huber pair .A; AC/. Then the result follows directly
from Lemma 6.2.13, Theorem C.3.10, Lemma 6.5.6, and Lemma 6.5.3.

Theorem 6.5.9 (See also [35]). Let X denote a strongly sheafy adic space over
Spa .Qp;Zp/. Then the functor

��WVect.Xét;O
C

Xét
=p/! Vect.X}qp;OX}qp

C =p/

is an equivalence of categories. Furthermore, for any O
X}ét

C =p-vector bundle E , the
natural morphism

E ! R����E

is an isomorphism.

Proof. The proof is completely analogous to the proof of Theorem 6.5.7 making use
of Lemma 6.5.8 in place of Lemma 6.5.6.
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6.6 Trivializing OC=p-vector bundles

We recall that Theorem 6.5.7 and Theorem 6.5.9 ensure that the categories of OC=p-
vector bundles in the v, quasi-proétale, and étale topologies are equivalent. In partic-
ular, any OC=p-vector bundle in the v-topology can be trivialized étale locally. The
main goal of this section is to show that it suffices to consider some very specific étale
covers.

To do this, we need to start with the discussion of OC=p-vector bundles on some
very specific adic spaces.

Lemma 6.6.1. Let X D Spa .A;AC/ be a Tate affinoid pre-adic space such that AC

is a Prüfer domain (in the sense of [28, Theorem 22.1 and the discussion before it]).
Then the specialization map spX W jX j ! jSpf ACj D jSpecAC=Aııj is a homeomor-
phism.

Proof. First, (the proof of) [5, Theorem 8.1.2] implies that it suffices to show that
SpecAC does not admit any non-trivial admissible blow-ups. For this, it suffices to
show that any finitely generated ideal I � AC is invertible. This is, in turn, one of the
defining properties of Prüfer domains (see [28, Theorem 22.1]).

Lemma 6.6.2. Let X D Spa .K;KC/ be a Tate affinoid adic space such that K is a
non-archimedean field and KC is a Prüfer domain.14 Then the morphism of locally
ringed spaces

spX W
�
Xan;O

C

X

�
!
�
Spf KC;OSpf KC

�
is an isomorphism.

Proof. Lemma 6.6.1 implies that spX is a homeomorphism. Therefore, it suffices to
show that sp#

X WOSpf KC ! spX;�.O
C

X / is an isomorphism. It suffices to show that
sp#
X .Df / is an isomorphism for any f 2 KC.

Since K is a non-archimedean field, we conclude that Kı D OK is a rank-1
valuation ring. Then we consider the inclusions Kıı � KC � OK and fix a pseudo-
uniformizer $ 2KC. Since OK is a rank-1 valuation ring, we conclude that the
induced topologies on OK and KC coincide with the $ -adic topologies.

Now pick f 2KC. If f 2Kıı, thenKC
�
1
f

�
DK and so the principal open D.f /

is empty. In particular, sp#
X .Df / is clearly an isomorphism. Therefore, we can assume

that f 2 KC XKıı. Then KC
�
1
f

�
� OK is an open subring, so KC

�
1
f

�
is already

complete in the $ -adic topology. In particular, we conclude that OSpf KC.D.f // D
KC

�
1
f

�
. Likewise, since KC

�
1
f

�
� K is already complete and integrally closed, we

conclude that �
spX;�O

C

X

��
D.f /

�
D OCX

�
X
� 1
f

��
D KC

h 1
f

i
:

14We do not assume that KC is a valuation ring.
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In particular, we conclude that sp#
X .Df / is an isomorphism, finishing the proof.

Now we recall that any locally noetherian analytic adic space X comes with the
natural morphism of ringed sites iX W

�
Xét;O

C

Xét

�
!
�
Xan;O

C

X

�
. We show that this is

an equivalence for some special X .

Lemma 6.6.3. Let X D Spa .K;KC/ be a Tate affinoid adic space such that K is a
non-archimedean field,15 and let U � X be a non-empty rational subdomain. Then
U D Spa .K;K 0C/ for some Tate–Huber pair .K;K 0C/.

Proof. Since U is an affinoid space, we only need to show that OX .U / D K. First,
we choose a pseudo-uniformizer $ 2 KC. Then we note that Kı D OK is a rank-1
valuation ring since K is a non-archimedean field. In particular, we conclude that the
induced topologies on bothKı andKC coincide with the$ -adic topology (and both
are complete with respect to this topology).

Now we consider the case U D X
�
f
g

�
for some f;g 2K�. SinceK is a field, we

can assume that U D X
�
1
f

�
for some f 2 K�. If f 2 Kıı, then X

�
1
f

�
D ¿, so we

can assume that f … Kıı. Then we recall that the induced topology on KC is equal
to the $ -adic topology to conclude that (see [37, Section 1])

OX .U / D
�
KC

h 1
f

i^
.$/

�h 1
$

i
;

whereKC
�
1
f

�
is theKC-subalgebra ofK

�
1
f

�
D K generated by 1

f
. Since f … Kıı,

we conclude thatKC
�
1
f

�
�OK is an open subring of OK . Thus, it is already complete

in the $ -adic topology. So we conclude that

OX .U / D
�
KC

h 1
f

i�h 1
$

i
D K:

A rational subdomain U is equal toX
�
f1;:::;fn

g

�
for some f1; : : : ; fn; g 2 K�. Denote

by Ui the rational subdomain X
�
fi
g

�
. Then

U D U1 \ U2 \ � � � \ Un:

Therefore, we see that

OX .U / ' OX .U1/b̋KOX .U2/b̋K � � � b̋KOX .Un/ ' K b̋KK b̋K � � � b̋KK ' K:
Lemma 6.6.4. Let X D Spa .C; CC/ be a Tate affinoid adic space such that C is an
algebraically closed non-archimedean field.16 Let $ 2 CC be a pseudo-uniformizer.
Then the morphism of ringed topoi

iX W
�
Xét;O

C

Xét

�
!
�
Xan;O

C

X

�
15We do not assume that KC is a valuation ring.
16We do not assume that CC is a valuation ring.
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is an equivalence. In particular, the functor i�1X induces an equivalence of categories

i�1X WVect
�
Xan;O

C

X =$
� �
�! Vect

�
Xét;O

C

Xét
=$

�
:

Proof. We verify conditions (a)–(d) of [38, Corollary A.5]. Conditions (a) and (c)
are clear. Condition (d) follows from the fact that étale maps are open. Indeed, in
the notation of [38, Corollary A.5], we can take I D ¹0º, X0 D X , Y0 D '.X/, and
X0 ! Y0 the map induced by '.

Therefore, we are only left to check condition (c) of loc. cit. That is, we need to
show that any étale morphism f WY !X admits an étale covering ¹Yi ! Xºi2I such
that Yi ! X is an open immersion.

Without loss of generality, we can assume that Y D Spa .A; AC/ is affinoid.
We can construct Yi analytically locally on X . Lemma 6.6.2 implies that we can
freely replace X with any non-empty open affinoid without changing the assump-
tions onX . Therefore, [38, Lemma 2.2.8] implies that we can assume that f WY !X

factors as a composition of an open immersion j WY ! Y =X followed by a finite étale
morphism f =X WY =X ! X . Since X is strongly noetherian, we conclude that the cat-
egory Xfet of finite étale adic spaces over X is equivalent to the category Cfet of finite
étale C -algebras. Since C is algebraically closed, we conclude that Y =X D

F
i2I Xi

is a disjoint union of a finite number of copies of X (Xi ' X ). Therefore,®
ji WYi WD Xi \ Y ! Y

¯
i2I

gives the desired covering of Y .
Now to conclude that i�1X WVect

�
Xan;O

C

X =$
�
! Vect

�
Xét;O

C

Xét
=$

�
is an equiv-

alence, it suffices to show that i�1X OCX =$ D OCXét
=$ . Since i�1X is exact, it suffices

to show that i�1X OCX D OCXét
. For this, it suffices to show that iX;�OCXét

D OCX , but this
is evident from the definition.

Lemma 6.6.5. Let K be a non-archimedean field with an open and bounded val-
uation subring KC � K and a pseudo-uniformizer $ 2 KC. Let Ksep be a sep-
arable closure of K, and let ¹Kiºi2I be a filtered system of finite subextensions
K � Ki � K

sep. For each i 2 I , we put KCi to be the integral closure of KC in Ki .
Then the completed colimit

CC WD
�
colimI KCi

�^
.$/

is a Prüfer domain and C WD CC
�
1
$

�
is an algebraically closed non-archimedean

field.

Proof. First, we note that [36, Lemma 1.6] implies that C is the usual completion of
the topological fieldKsep. Therefore, [12, Proposition 3.4.1/3 and Proposition 3.4.1/6]
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imply that C is algebraically closed. So we only need to show that CC is a Prüfer
domain.

First, we note that [28, Theorem 22.1] ensures that KC is a Prüfer domain. Then
[28, Theorem 22.3] implies that each KCi is a Prüfer domain. Now we note that
colimI KCi is a domain, so [28, Proposition 22.6] ensures that it is a Prüfer domain.
Then [56, Theorem 4] implies that it suffices to show that every torsionfree CC-
module M is flat. Clearly, M

�
1
$

�
is a flat C D CC

�
1
$

�
-module because C is a

field. Furthermore, [19, Chapter VII, Proposition 4.5] applied to A D M and ƒ D
colimI KCi implies that M is flat over colimI KCi . In particular, M=$M is flat over
CC=$ '

�
colimI KCi

�
=$ . Therefore, [11, Lemma 8.2/1] concludes that M is flat

over CC and finishes the proof.

Lemma 6.6.6. In the notation of Lemma 6.6.5, any finite projective CC=$ -module
is free.

Proof. First, we note that CC=$ ' colimI .KCi =$/. Therefore, a standard approxi-
mation argument reduces the question of showing that every finite projectiveKCi =$ -
module is finite free. Let us denote the residue field of (the rank-1 valuation ring)
Kıi D OKi by ki . Then we observe that Kııi D rad.$/, and thus KCi =rad.$/ D
KCi =K

ıı
i � OKi =K

ıı
i D ki is a domain. In particular,

jSpecKCi =$ j D jSpecKCi =K
ıı
i j

is irreducible. Furthermore, [17, Ch. VI Section 8.3, Thm. 1 and Ch.VI, Section 8.6,
Prop. 6] imply that eachKCi is semi-local. In particular, the ringKCi =$ is semi-local
as well. Therefore, [68, Tag 02M9] and the above observation, that jSpecKCi =$ j is
irreducible, guarantee that any finite projective KCi =$ -module is free.

Corollary 6.6.7. In the notation of Lemma 6.6.5, put X D Spa .C; CC/. Then any
OCXét

=$ -vector bundle is free.

Proof. Lemma 6.6.2, Lemma 6.6.4, and Lemma 6.6.5 imply that the category of
OCXét

=$ -vector bundles is equivalent to the category of usual vector bundles on the
scheme SpecCC=$ . Any such vector bundle is free due to Lemma 6.6.6.

Now we can prove the main result of this section:

Theorem 6.6.8. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, let x 2 X
be a point, and let E be an OC

X}
=p-vector bundle. Then there are an affinoid open

subset x 2Ux �X and a finite étale surjective morphism zUx!Ux such that Ej zUx '�
O
C
zU}x
=p
�d for some integer d .

Proof. For clarity, we divide the proof into several steps.

https://stacks.math.columbia.edu/tag/02M9
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Step 1: The space X D Spa .K; KC/ for a non-archimedean field K and an open
and bounded valuation subring KC � K. In this case, we first fix a separable clo-
sure Ksep of K. We put ¹Kiºi2I to be a filtered system of all finite sub-extensions
K � Ki � K

sep, we also put KCi to be the integral closure of KC in Ki . Then
Lemma 6.6.5 ensures that CC WD

�
colimI KCi

�^
.p/

is a Prüfer domain and C WD
CC

�
1
p

�
is an algebraically closed non-archimedean field. Therefore, Corollary 6.6.7

implies that EjSpd .C;CC/ is free. By construction,

Spa .C; CC/ � lim
I

Spa .Ki ; KCi /! Spa .K;KC/

is an affinoid strongly pro-étale morphism. Therefore, Lemma 6.5.5 implies that there
is an index i 2 I such that EjSpd .Ki ;K

C

i
/ is free. Now the result follows from the

evident observation that Spa .Ki ; KCi / ! Spa .K; KC/ is a surjective finite étale
morphism.

Step 2: General X . Step 1 constructs a finite separable extension bk.x/ � K such
that EjSpd .K;KC/ is free, where KC is the integral closure of bk.x/C in K.

Now, [5, Proposition 7.5.5 (5)] implies that OCX;x is p-adically henselian, and
there is a natural isomorphism

�
OCX;x

�^
.p/
' bk.x/C. So, [26, Proposition 5.4.54] says

that we can find a finite étale morphism OX;x ! A such that A˝OX;x
bk.x/ D K.

Since OX;x is a local ring with residue field k.x/, we easily conclude that OX;x ! A

is also faithfully flat. Now we recall that OX;x D colimx2V�X OX .V /, so a standard
approximation argument implies that we can find an affinoid open x 2 V � X and a
faithfully flat finite étale morphism OX .V /! AV such that AV ˝OX .V / OX;x ' A.

For each affinoid open subset x � W � V , we put AW WD AV ˝OX .V / OX .W /

and put ACW to be the integral closure of OX .W / in AW . Then Lemma C.1.1 ensures
that .AW ; ACW / is a complete Tate–Huber pair for each open affinoid x � W � V .
Furthermore, the corresponding morphism fW W Spa .AW ; ACW /! W is a finite étale
surjection due to Lemma C.1.2. By construction, we have that

Spa .K;KC/ � lim
x2W�V

Spa .AW ; ACW /! Spa .AV ; ACV /

is an affinoid strongly pro-étale morphism, and EjSpd .K;KC/ is free. So, Lemma 6.5.5
implies that there is an open affinoid subspace x 2 Ux � Vx such that EjSpd .AU ;A

C

U
/

is free. Then zU x D Spa .AU ; ACU / does the job.

Now we summarize all results about various OC=p-vector bundles below:

Corollary 6.6.9. Let X be a strongly sheafy adic space over Spa .Qp;Zp/. Then

(1) the categories Vect.XétIO
C

Xét
=p/, Vect.X}qpIOX}qp

C =p/, and Vect.X}v IO
C

X}
=p/

are equivalent;

(2) these equivalences preserve cohomology groups;



Étale coefficients 207

(3) for any OC
X}
=p-vector bundle E and a point x 2 X , there exists an open affi-

noid subspace x 2 Ux � X and a finite étale surjective morphism zUx ! Ux
such that Ej zU}x

is a free vector bundle.

6.7 Étale coefficients

The main goal of this section is to relate the étale and v-cohomology groups of étale
“overconvergent” OC=p-modules.

We fix a strongly sheafy adic space X over Spa .Qp; Zp/. Then we note that
any étale sheaf of Fp-modules F on X defines sheaves ��1F and ��1��1F of
Fp-modules on X}qp and X}v respectively, see Diagram (6.3.1). In what follows, we
abuse the notation and denote .��1��1F /˝Fp OC

X}
=p simply by F ˝OC

X}
=p for

any F 2 Shv.XétI Fp/. Similarly, we denote by .��1F / ˝Fp O
X}qp
C =p simply by

F ˝O
X}qp
C =p.

Before we go to the comparison results, we need to discuss some preliminary
results on sheaves on pro-finite sets. They turn out to be tied up with overconvergent
étale sheaves on strictly totally disconnected spaces.

Definition 6.7.1. For S a pro-finite set, a sheaf of Fp-modules F is constructible
if there exists a finite decomposition of S into a disjoint union of clopen subsets
S D

Fn
iD1 Si such that F jSi is a constant sheaf of finite rank.

Lemma 6.7.2. Let S be a pro-finite set, and let f WF ! G be a morphism of con-
structible sheaves of Fp-modules. Then Kerf and Cokerf are constructible.

Proof. Since S is pro-finite, each point s 2 S admits a clopen subset s 2 Us � S
such that both F jUs and G jUs are constant. Since S is quasi-compact, we can find a
finite disjoint union decomposition S D

Fn
iD1 Ui such that both F jUi and G jUi are

constant. So we can assume that both F and G are constant. Then it is easy to see
that the kernel and the cokernel are constant as well.

Lemma 6.7.3. Let S be a pro-finite set, and let F be a sheaf of Fp-vector spaces.
Then F ' colimI Fi for a filtered system of constructible sheaves Fi .

Proof. We use [68, Tag 093C], with B being the collection of clopen subsets of S , to
write F as a filtered colimit of the form

F ' colimI Coker
� mM
jD1

Fp;Vj !
nM
iD1

Fp;Ui
�
:

Now Lemma 6.7.2 implies that each cokernel is constructible finishing the proof.

https://stacks.math.columbia.edu/tag/093C
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Definition 6.7.4. A sheaf of Fp-modules F on Xét is overconvergent if, for every
specialization �! s of geometric points of X , the specialization map Fs ! F� is an
isomorphism.

Definition 6.7.5. An étale sheaf of Fp-modules F on a strictly totally disconnected
perfectoid spaceX is special if there exists a finite decomposition ofX into a disjoint
union of clopen subsets X D

Fn
iD1 Xi such that F jXi is a constant sheaf of finite

rank.

Lemma 6.7.6. Let X be a strictly totally disconnected perfectoid space, and F an
overconvergent étale sheaf of Fp-modules. Then F ' colimI Fi for a filtered system
of special sheaves Fi of Fp-modules.

Proof. Since X is strictly totally disconnected, the étale and analytic sites of X are
equivalent. So we can argue on the analytic site of X . By [61, Lemma 7.3], there
is a continuous surjection � WX ! �0.X/ onto a pro-finite set �0.X/ of connected
components.

Step 1: The natural map ����F ! F is an isomorphism. It suffices to check that
it is an isomorphism on stalks. Pick a point x 2 X , then [61, Lemma 7.3] implies
that the connected component of x has a unique closed point s. Then after unrav-
eling all definitions, one gets that the map .����F /x ! Fx is naturally identified
with the specialization map Fs ! Fx that is an isomorphism by the overconvergent
assumption.

Step 2: Finish the proof. Lemma 6.7.3 ensures that ��F ' colimI G 0i is a filtered
colimit of constructible sheaves. Since pullback commutes with all colimits, we get
isomorphisms F ' ����F ' colimI ��G 0i . This finishes the proof since each Gi WD

��G 0i is special.

Lemma 6.7.7. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, and let F

be an overconvergent étale sheaf of Fp-modules. Then the natural morphism

O
X}qp

C =p ˝ F ! R��
�
OC
X}
=p ˝ F

�
is an isomorphism.

Proof. Since strictly totally disconnected spaces form a basis for the quasi-proétale
topology on X}, it suffices to show that a is an isomorphism on such spaces. Then
we can write F ' colimI Fi as a filtered colimit of special sheaves by Lemma 6.7.6.
One easily checks that ˛ is a coherent morphism of algebraic topoi, and thus each
Ri��.OCX}=p ˝ �/ commutes with filtered colimits by [2, Exp. VI Theoreme 5.1].
Thus, it suffices to prove the claim for a special F . By the definition of a special
sheaf, there exists a disjoint decomposition X D

Fn
iD1 Xi into clopen subsets such

that F jXi is constant of finite rank. Since the question is local on X}qproKet, we can
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replace X with each Xi to assume that F is constant. In this case, the claim follows
from Corollary 6.4.14.

Remark 6.7.8. We do not know if Lemma 6.7.7 holds for non-overconvergent étale
sheaves F .

Now we discuss the relation between the étale and quasi-proétale topologies.

Lemma 6.7.9. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, and let F

be an overconvergent étale sheaf of Fp-modules. Then the natural morphism

OCXét
=p ˝ F ! R��

�
O
X}qp

C =p ˝ F
�

is an isomorphism.

Proof. As a consequence of Lemma 6.3.7, the right-hand side is canonically isomor-
phic to R����1

�
OCXét

=p˝F
�
. So the result follows from [61, Proposition 14.8].

Now we combine all these results together:

Lemma 6.7.10. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, and F an
overconvergent étale sheaf of Fp-modules on X . Then the natural morphisms

OCXét
=p ˝ F ! R��

�
O
X}qp

C =p ˝ F
�
;

O
X}qp

C =p ˝ F ! R��
�
OC
X}
=p ˝ F

�
are isomorphisms.

6.8 Application: OC and O vector bundles

In this section, we discuss the relation between OCX} and OX} vector bundles in
different topologies. As an application of the methods developed in this section, we
reprove a theorem of Kedlaya–Liu saying that, for a perfectoid spaceX , the categories
of OX}-vector bundles in the analytic, étale, quasi-proétale, and v-topologies are all
equivalent. To achieve this result, we prove an intermediate claim that the categories
of OCX}-vector bundles in the étale, quasi-proétale, and v-topologies are equivalent.
The results of this section will not be used in the rest of the memoir.

We define the categories of v, quasi-proétale, and étale OC-vector bundles on X
(resp. O-vector bundles on X ) similarly to Definition 6.5.1.

We start by understanding the category of OCX}-torsors on an affinoid perfectoid
space X .

Lemma 6.8.1. Let .R; RC/ be a perfectoid pair, and let f W .RC/d ! .RC/d be
an RC-linear homomorphism such that f W .RC=Rıı/d ! .RC=Rıı/d is an isomor-
phism. Then f is an isomorphism.
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Proof. Lemma B.9 (2) together with a standard approximation argument imply that
f mod$ W .RC=$/d ! .RC=$/d is an isomorphism. Then [68, Tag 0315] implies
that f is surjective, put K D Ker f . We note that K is derived $ -adically complete
due to [68, Tag 091U]. Furthermore, our assumption implies that K=$K D 0, so
[68, Tag 09B9] ensures that K D 0. In particular, f is an isomorphism.

Lemma 6.8.2. LetXDSpa.R;RC/ be an affinoid perfectoid space over Spa.Qp;Zp/,
and let E be an OC

X}
-vector bundle. If E=p is a free OC

X}
=p-vector bundle, then E

is a free OC
X}

-vector bundle.

Proof. In this proof, we put mDRıı and always do almost mathematics with respect
to this ideal (see Lemma B.12).

Lemma 6.3.5 (1) implies that R�.X}v ;E=p/ is almost concentrated in degree 0.
Then Lemma 6.3.5 (3), [68, Tag 0A0G], and Lemma A.5 imply that R�.X}v ; E/ is
almost concentrated in degree 0. This implies that

m˝RC R�.X}v ;E/ D R�.X}v ;m˝RC E/ D R�.X}v ;mE/ (6.8.1)

and

m˝RC R�.X}v ;E=p/ D R�.X}v ;m˝RC E=p/ D R�.X}v ;mE=pmE/ (6.8.2)

are concentrated in degree 0. Since E=p is trivial, we conclude that E=mE is a trivial
OC
X}
=m-vector bundle. We choose an isomorphism E=mE '

�
OC
X}
=m
�d and define

a basis
e001 ; : : : ; e

00
r 2 H0

�
X}v ;E=mE

�
:

Then we consider the short exact sequence

0! m˝RC .E=p/! E=pmE ! E=mE ! 0:

Now (6.8.1) implies that we can lift e00i to elements e0i 2 H0
�
X}v ;E=pmE

�
. Then we

use the commutative diagram

0 m˝RC pE E E=pmE 0

0 E E E=p 0
�p

and (6.8.2) to conclude that the natural morphism H0
�
X}v ;E=pmE

�
!H0

�
X}v ;E=p

�
factors through H0

�
X}v ; E

�
=p � H0

�
X}v ; E=p

�
. This implies that we can lift e0i to

elements ei 2 H0
�
X}v ;E

�
. This defines a morphism

'W
�
OC
X}

�d
! E:

https://stacks.math.columbia.edu/tag/0315
https://stacks.math.columbia.edu/tag/091U
https://stacks.math.columbia.edu/tag/09B9
https://stacks.math.columbia.edu/tag/0A0G
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By construction, ' mod m becomes an isomorphism. We wish to show that this
implies that ' is an isomorphism. This can be checked v-locally on X , so we can
assume that E ' .OC

X}
/d , and we need to check that '.X 0/ is an isomorphism for

any affinoid perfectoid X 0 ! X . Then the result follows directly from Lemma 6.3.5
and Lemma 6.8.1.

Corollary 6.8.3. Let X be a perfectoid space over Spa .Qp; Zp/, and let E be an
OC
X}

-vector bundle. Then, for each x 2 X , there are an open subspace x 2 Ux � X
and a finite étale surjective morphism zUx ! Ux such that Ej zUx is trivial.

Proof. This formally follows from Corollary 6.6.9 and Lemma 6.8.2.

Now we denote by

�� D ��1 ˝��1O
C

Xét
O
X}qp

C
WVect

�
XétIO

C

Xét

�
! Vect

�
XqpIOX}qp

C
�

and
�� D ��1 ˝��1O

X
}
qp
C OC

X}
WVect

�
X}qpIOX}qp

C
�
! Vect

�
X}v IO

C

X}

�
the pullback functors.

Now we can show that the categories of OC-vector bundles in the étale, quasi-
proétale, and v topologies are all equivalent:

Theorem 6.8.4. Let X be a pre-adic space over Spa .Qp;Zp/.

(1) Then the functor ��WVect
�
X}qpI O

X}qp
C
�
! Vect

�
X}v IO

C

X}

�
is an equivalence.

Furthermore, for any O
X}qp
C -vector bundle V , the natural morphism

V ! R����V

is an isomorphism.

(2) If X is perfectoid, then the functor ��WVect
�
XétIO

C

Xét

�
! Vect

�
X}qpIOX}qp

C
�

is an equivalence. Furthermore, for any OCXét
-vector bundle E , the natural

morphism
E ! R����E

is an isomorphism.

Proof. First, we note that the second claim is quasi-proétale local on X , so we can
assume that X is a perfectoid space. Then the proof is very similar to that of Theo-
rem 6.5.7. We spell out the main steps.

We first show that the natural morphisms

˛WOCXét
! R��OX}qp

C ;

ˇWO
X}qp

C
! R��OCX}
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are isomorphisms. For this, we note that Remark 6.3.6 implies that OCXét
, O

X}qp
C ,

and OC
X}

are derived p-adically complete and p-torsion free. Therefore, we can
check that ˛ and ˇ are isomorphisms modulo p (in the derived sense). This follows
from Theorem 6.5.9 and Theorem 6.5.7.

This formally implies that the maps V ! R����V and E ! R����E are iso-
morphisms. This, in turn, formally implies that �� and �� are fully faithful. Essential
surjectivity of both functors follows from Corollary 6.8.3.

Remark 6.8.5. We note that [35, Theorem 4.27] gives a much more general version
of Theorem 6.8.4. However, Corollary 6.8.3 does not seem to be addressed in [35].

Now we discuss the case of OX -vector bundles. We first wish to show that any
OX}-vector bundle (in the v-topology) admits an OC

X}
-lattice étale locally on X .

This will be our key tool to reduce questions about O-vector bundles to the case of
OC-vector bundles. For this, we will need a number of preliminary lemmas:

Lemma 6.8.6. Let A be an f -henselian ring for some regular element f 2 A, and
let yA be its f -adic completion. Then the natural morphism

GLn
�
A
�
1
f

��
=GLn.A/! GLn

�
yA
�
1
f

��
=GLn. yA /

is a bijection.

Proof. In this proof, we denote by Vectn.R/ the groupoid of finite projective R-
modules of rank-n, and by Vectn.R/ the set of isomorphism classes of finite projective
R-modules of rank-n.

Now we start the proof. First, [68, Tag 0BNS] ensures that .A ! yA; f / is a
gluing data. Second, [68, Tag 0BNW] ensures that any finite projective A-module
is glueable. Therefore, [68, Tag 0BP2] and [68, Tag 0BP6] imply that the following
diagram of groupoids:

Vectn.A/ Vectn. yA /

Vectn.Af / Vectn. yA
�
1
f

�
/

�˝A yA

�˝AAf �˝ yA
yA
h
1
f

i

�˝Af
yA
h
1
f

i
is cartesian. Therefore, we can pass to homotopy groups at the free module An to get
a long exact sequence of pointed sets:

0 GLn.A/ GLn.A
�
1
f

�
/� GLn. yA / GLn. yA

�
1
f

�
/

Vectn.A/ Vectn. yA / � Vectn.A
�
1
f

�
/ Vectn. yA

�
1
f

�
/ 0:

˛

https://stacks.math.columbia.edu/tag/0BNS
https://stacks.math.columbia.edu/tag/0BNW
https://stacks.math.columbia.edu/tag/0BP2
https://stacks.math.columbia.edu/tag/0BP6


Application: OC and O vector bundles 213

To prove the claim, it suffices to show that the fiber of ˛ over the pair of trivial rank-n
modules is just a point. This follows from [68, Tag 0D4A] which even implies that
the map Vectn.A/! Vectn. yA/ is a bijection.

Definition 6.8.7. Let X be a pre-adic space over Spa .Qp;Zp/. The (pre-)sheaf of
invertible matrices GLn;X} on X}v is defined via the rule�

S ! X}
�
7! GLn

�
OS].S

]/
�

for any affinoid perfectoid space S over X}.
We define the (pre-)sheaf of integral invertible matrices GLCn;X} on X}v via the

rule �
S ! X}

�
7! GLn

�
OC
S]
.S]/

�
for any affinoid perfectoid space S over X}.

One easily checks that a GLn;X} is a v-sheaf since it is isomorphic to the diamond
associated with the classical (pre)-adic space GLn;Qp �Qp X . Similarly, GLCn;X} is
a v-sheaf since it is isomorphic to the diamond associated with the (pre-)adic space�
GLn;Qp \ Dn2Qp

�
�Qp X .

For the next definition, we fix a pre-adic spce X over Spa .Qp;Zp/ and an OX}-
vector bundle E .

Definition 6.8.8. The sheaf of lattices LattX .E/ is the v-sheaf defined by the formula�
S ! X}

�
7!

°
EC 2 Vect

�
S];}v IO

C

S];}

�
; 'WEC

h 1
p

i
�
�! EjS

±
=isom

for each affinoid perfectoid S ! X} over X}.

Lemma 6.8.9. Let X denote a pre-adic space over Spa .Qp;Zp/, and let E be an
OX}-vector bundle. Then, v-locally on X}, the sheaf LattX .E/ is isomorphic to
GLn;X}=GLCn;X} .

Proof. The claim is v-local on X by design, so we can assume that E ' Od
X}

. Then
we note that GLn;X} acts E , i.e., for any g 2 GLn;X}.S/ we have an isomorphism
g�WES ! ES . Therefore, it also acts on LattX .E/ via the rule

g
�
EC; 'WEC

�
�! E

�
D
�
EC; g� ı '

�
:

Now let EC0 � E be the trivial lattice
�
OC
X}

�d
� Od

X}
D E , this defines a point `0 2

LattX .E/. Then the orbit map defines a morphism of sheaves ˛WGLn;X} ! LattX .E/
via the rule

g 7! g.`0/:

https://stacks.math.columbia.edu/tag/0D4A
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The stabilizer of `0 is equal to GLCn;X} , so ˛ factors through an injective morphism

ˇWGLn;X}=GLCn;X} ,! LattX .E/:

So we are only left to show that it is surjective. Let S ! LattX .E/ be a point corre-
sponding to a lattice .EC; '/. We need to show that this point lies in the image of ˇ
locally in the v-topology. By definition, there is a v-covering S 0! S such that ECjS 0

becomes a free OC
X}

-vector bundle. But then there is an element g 2 GLn;X}.S 0/
such that g.EC/ D EC0 jS 0 . In particular, .ECjS 0 ; 'jS 0/ lies in the image of ˇ.S 0/.

Corollary 6.8.10. Let X be a pre-adic space over Spa .Qp;Zp/, let E be an OX}-
vector bundle, and let Z D limI Zi be a cofiltered limit of affinoid perfectoid spaces
over X . Then the natural morphism

colimI LattX .E/.Z}i /! LattX .E/.Z}/

is a bijection.

Proof. Let Zi D Spa .Ri ; RCi /, we put RC1 WD colimI RCi and denote by yRC1 its p-
adic completion. Then we note that the claim is v-local onZ, so we can assume that E

is a free OX}-vector bundle. Then Lemma 6.8.9 implies that it suffices to show that

GLn
�
RC1

�
1
p

��
=GLn

�
RC1

�
! GLn

�
yRC1
�
1
p

��
=GLn

�
yRC1
�

is a bijection. This follows directly from Lemma 6.8.6, [68, Tag 0ALJ], and [68,
Tag 0FWT].

Corollary 6.8.11. Let X be a pre-adic space over Spa .Qp;Zp/, let E be an OX}-
vector bundle, and letZ � limI Zi !Z0 be an affinoid strongly pro-étale morphism
of strongly sheafy Tate-affinoid adic spaces over X . Then the natural morphism

colimI LattX .E/
�
Z}i

�
! LattX .E/

�
Z}

�
is a bijection.

Proof. This is a direct consequence of Corollary 6.8.10 (one can argue as in Corol-
lary 6.5.4).

Corollary 6.8.12. Let X be a strongly sheafy adic space over Spa .Qp;Zp/, let E be
an OX}-vector bundle. Then there are an étale covering X 0 ! X , an OC

X 0}
-vector

bundle EC, and an isomorphism EC
�
1
p

�
' EjX 0 .

Proof. First, we note that we want to show that LattX .E/ admits a section for some
étale covering X 0 ! X . For this, we can assume that X is an affinoid space.

If X is strictly totally disconnected, the result follows from the observation that
such a section exists after a v-surjection, Lemma 6.4.4, and Corollary 6.8.10. Then
the result follows from Lemma 6.2.13 and Corollary 6.8.11.

https://stacks.math.columbia.edu/tag/0ALJ
https://stacks.math.columbia.edu/tag/0FWT
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We will later be able to prove a more precise version of Corollary 6.8.12. But,
before that, we show that all possible versions of OX -vector bundles coincide on
perfectoid spaces. For this, we denote by � W .Xét;OXét/! .Xan;OX / the natural mor-
phism of ringed sites. We also denote by

�� D ��1 ˝��1OXan
OXét WVect.XanIOXan/ ! Vect.XétIOXét/;

�� D ��1 ˝��1OXét
OX}qp

WVect.XétIOXét/ ! Vect.X}qpIOX}qp
/;

�� D ��1 ˝��1OX}qp
OX} WVect.X}qpIOX}qp

/! Vect.X}v IOX}/

the natural pullback functors.

Theorem 6.8.13 ([42, Theorem 3.5.8], [63, Lemma 17.1.8], [35, Theorem 4.27]).
Let X be a pre-adic space over Spa .Qp;Zp/.

(1) IfX is strongly sheafy, then ��WVect.Xan;OX /!Vect.Xét;OXét/ is an equiv-
alence. Moreover, the natural morphism

L! R����L

is an isomorphism for any OX -vector bundle L. Further, if X D Spa .A;AC/
for a strongly sheafy Tate ring A, then Vect.Xan;OX / is equivalent to the
category of finitely generated projective R-modules.

(2) If X is perfectoid, then ��WVect.XétIOXét/! Vect.XqpIOX}qp
/ is an equiva-

lence. Furthermore, the natural morphism

E ! R����E

is an isomorphism for any OXét-vector bundle E .

(3) The functor ��WVect
�
X}qpIOX}qp

�
! Vect

�
X}v IOX}

�
is an equivalence. Fur-

thermore, the natural morphism

V ! R����V

is an equivalence for any OX}qp
-vector bundle V .

Proof. (1) follows from [41, Theorem 8.2.22 (c), (d)].
Part (3) is quasi-proétale local on X , so we can assume that X is an affinoid

perfectoid for the purpose of proving (2) and (3).
Then it follows from Theorem 6.8.4 that the natural maps OCXét

! R��OX}qp

and OX}qp
! R��OX} are isomorphisms. Then this formally implies that the maps

E ! R����E and V ! R����V are isomorphisms. This, in turn, formally implies
that �� and �� are fully faithful. In order to show essential surjectivity, it suffices
to show that any OX}-vector bundle can be trivialized étale locally on X (for a
perfectoid space X ). This follows from the combination of Corollary 6.8.12 and
Corollary 6.8.3.
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Finally, we give a more refined version of Corollary 6.8.12:

Corollary 6.8.14. Let X be a strongly sheafy adic space over Spa .Qp; Zp/, and
let E be an OX}-vector bundle. Then, for each x 2 X , there are an open subspace
x 2 Ux � X , a finite étale surjective morphism zUx ! Ux , and an O zU}x

C -vector bun-
dle ECx such that ECx

�
1
p

�
' Ej zUx .

Proof. Using Corollary 6.8.11 in place of Lemma 6.5.5, we can repeat the argument
of Theorem 6.6.8 once we know that EjSpd .C;CC/ admits a lattice for any mor-
phism Spa .C; CC/ ! X such that C is an algebraically closed non-archimedean
field (and any open, integrally closed, bounded subring CC � C ).17 For this, we
note that .C; CC/ is a perfectoid pair, so Theorem 6.8.13 implies that the category
of OSpd .C;CC/-vector bundles is equivalent to the category of finite-dimensional C -
vector spaces. In particular, any EjSpd .C;CC/ is a free bundle, so it clearly admits an
OC
X}

-lattice. This finishes the proof.

17The proof of Theorem 6.6.8 ensures that it suffices to prove this claim for a very restrictive
class of such pairs .C; CC/, but this is irrelevant for the current proof.


