
Chapter 7

Almost coherence of “p-adic nearby cycles”

7.1 Introduction

The main goal of this chapter is to study the “p-adic nearby cycles” sheaves R��OCX}
and R��OCX}=p for a rigid-analytic variety X . We also study other versions with
more general “coefficients” including OC=p-vector bundles in the v-topology, and
sheaves of the form OCX}=p ˝ F for a Zariski-constructible sheaf F (see Defini-
tion 7.1.7). These complexes turn out to be almost coherent; this makes it possible
to study étale cohomology groups of rigid-analytic varieties using (almost) coherent
methods on the special fiber.

Before giving precise definitions, let us explain the main motivation to study these
sheaves and their relation with étale cohomology of rigid-analytic varieties in the sim-
plest case of the “nearby cycles” of the sheaf OCXét

=p. In [59], P. Scholze proved ([59,
Theorem 5.1]) that the étale cohomology groups Hi .X;Fp/ are finite for any smooth,
proper rigid-analytic variety X over an algebraically closed p-adic non-archimedean
field C . There are two important ingredients: the almost primitive comparison theo-
rem that says that Hi .X;OCXét

=p/ are almost isomorphic to Hi .X;Fp/˝ OC=p, and
the almost finiteness of Hi .X;OCXét

=p/.
The proof of the almost finiteness result in [59] uses properness of X in a very

elaborate way; first, the proof constructs some specific “good covering” of X by affi-
noids and then shows that there is enough cancelation in the Čech-to-derived spectral
sequence associated with that covering. We note that all terms of the second page
of this spectral sequence are not almost finitely generated, but mysteriously there is
enough cancelation so that the terms of the1-page become almost finitely generated.
We refer to [59, Section 5] for details.

Our main goal is to give a more geometric and conceptual way to prove this
almost finiteness result. Instead of constructing an explicit “nice” covering of X , we
separate the problem into two different problems. We choose an admissible formal
OC -model X of X and consider the associated morphism of ringed topoi

t W
�
Xét;O

C

Xét

�
!
�
XZar;OX

�
that induces the morphism

t W
�
Xét;O

C

Xét
=p
�
!
�
XZar;OX=p

�
D
�
X0;OX0

�
;

where X0 WD X �Spf OC Spec OC=p is the mod-p fiber of X. Then one can write

R�
�
X;OCXét

=p
�
' R�

�
X0;Rt�OCXét

=p
�
;
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so one can separately study the “nearby cycles” complex Rt�OCXét
=p and its derived

global sections on X0.
The key is that now X is proper over Spf OK by [51, Lemma 2.6]1 (or [65, Corol-

lary 4.4 and 4.5]). Thus, the almost proper mapping theorem (see Theorem 5.1.3) tells
us that, to prove the almost finiteness of R�.X;OCXét

=p/, it is sufficient only to show
that Rt�OCXét

=p 2 DCacoh.X/ has almost coherent cohomology sheaves.
The main advantage now is that we can study the “nearby cycles” Rt�OCXét

=p

locally on the formal model X. So this holds for any admissible formal model and
not only for proper ones. Moreover, the only place where we use properness of X in
our proof is to get properness of the formal model X to be able to apply the almost
proper mapping theorem (see Theorem 5.1.3). This allows us to avoid all elaborate
spectral sequence arguments while at the same time making the essential part of the
proof local on X.

Now we discuss how we prove that Rt�OCXét
=p is almost coherent. In fact, we

will prove a much stronger result that Rt�E is almost coherent for any OC=p-vector
bundle E in the v-topology. However, we find it instructive to discuss the simplest
case first.

When E D OCXét
=p, the main idea of the proof is similar to the idea behind the

proof [59, Lemma 5.6]: we reduce the general case to the case of an affine X with
“nice” coordinates, where everything can be reduced to almost coherence of certain
continuous group cohomology via perfectoid techniques. In order to make this work,
we have to pass to a finer topology that allows towers of finite étale morphisms.
There are different possible choices, but we find the v-topology on the associated
diamond X} of X (in the sense of [61]) to be the most convenient for our purposes
(see Chapter 6 for the detailed discussion).

The case of a general OC
X}
=p-vector bundle (see Definition 6.5.1) will cause us

more trouble; we will use the structure results from Section 6.6 to handle a general
OC
X}
=p-vector bundle. The main crucial input that we are going to use is that the

category of OC
X}
=p-vector bundles is equivalent to the category of étale OCXét

=p-
vector bundles and that, locally, any OC

X}
=p-vector bundle can be trivialized by some

very particular étale covering (see Corollary 6.6.9).
That being said, we can move to the formulation of the main theorem of this

section. We refer to Chapter 6 for the definition of the quasi-proétale and v-topologies
on X} for a rigid-analytic variety over a non-archimedean field K. These sites come
with their “integral” structure sheaves OCX} , OCX}qp

, and OCXét
(see Definition 6.3.1)

and a diagram of morphisms of ringed sites (see Diagram (6.3.1) and (6.3.2)):�
X}v ;O

C

X}

� �
X}qproKet;OX}qp

C
� �

Xét;O
C

Xét

� �
XZar;OX

�
�

� � t (7.1.1)

1Strictly speaking, his proof is written under the assumption that OK is discretely valued.
However, it can be easily generalized to the of a general rank-1 complete valuation ring OK .
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and the mod-p version�
X}v ;O

C

X}
=p
� �

X}qproKet;OX}qp
C =p

� �
Xét;O

C

Xét
=p
� �

XZar;OX0

�
:

�

� � t

(7.1.2)
If there is any ambiguity in the meaning of �, we then denote it by �X to explicitly

specify the formal model for these functors.
Recall that for a perfectoid field K, Lemma B.12 ensures that the maximal ideal

m � OK is an ideal of almost mathematics with flat em ' m2 D m. For the rest of
this section, we fix a p-adic perfectoid field K, and always do almost mathematics
with respect to the ideal m.

We are ready to formulate our first main result. We thank B. Heuer for the sug-
gestion of trying to prove Theorem 7.1.2 for all OCX}=p-vector bundles.

Definition 7.1.1. An OCX}=p-module E is a small OCX}=p-vector bundle if there is
a finite étale surjective morphism V ! U such that Ej

V}v
' .OC

V}
=p/r for some

integer r .

Theorem 7.1.2. Let X be an admissible formal OK-scheme with adic generic fiberX
of dimension d and mod-p fiber X0, and let E be an OCX}=p-vector bundle. Then

(1) R��E 2 DCqc;acoh.X0/ and .R��E/a 2 DŒ0;2d�acoh .X0/
a;

(2) if X D Spf A is affine, then the natural map

BHi
�
X}v ;E

�
! Ri��.E/

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�0
�
Ri�X;�.E/

�
! Ri�Y;�

�
EjY}

�
is an isomorphism for any i � 0;

(4) if X has an open affine covering X D
S
i2I Ui such that Ej.Ui;K/} is small,

then
.R��E/a 2 DŒ0;d�acoh .X0/

a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2I Ui such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I
of X such that �

R�X0
i
;�E

�a
2 DŒ0;d�acoh .X

0
i;0/

a;

for each i 2 I .
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Remark 7.1.3. We refer to Definition 4.4.1 and Definition 4.4.2 for the precise def-
inition of all derived categories appearing in Theorem 7.1.2. In order to avoid any
confusion, we explicate that the expression .R��E/a 2 DŒ0;d�acoh .X0/

a means that the
complex .R��E/ is almost concentrated in degree Œ0; d � and each of its cohomology
sheaves is almost coherent.

Remark 7.1.4. We note that Theorem 7.1.2 (1) implies that the nearby cycles R��E
is quasi-coherent on the nose (as opposed to being almost quasi-coherent). This is
quite unexpected to the author since all previous results on the cohomology groups
of OC=p were only available in the almost category.

Remark 7.1.5. IfKDC is algebraically closed, the proof gives a non-almost version
of cohomological bound. Namely, we see that

R��E 2 DŒ0;2d�acoh .X0/:

However, we do not know if R��E is concentrated in degrees Œ0; d � on the nose (for
a cofinal family of formal models).

Remark 7.1.6. Ofer Gabber has informed the author that he knows an example of a
smooth affinoid rigid-analytic variety X , a formal model X, and an OC

X}
=p-vector

bundle E such that R�X;�E is not almost concentrated in degrees Œ0; d �.

One can prove a slightly more precise version in case E is equal to the tensor
product of a Zariski-constructible étale sheaf of Fp-modules and OC

X}
=p.

Definition 7.1.7 ([32]). An étale sheaf F of Fp-modules is a local system if it is a
locally constant sheaf with finite stalks.

An étale sheaf F of Fp-modules is Zariski-constructible if there is a locally finite
stratification X D

F
i2I Zi into Zariski locally closed subspaces Zi such that F jZi

is a local system.
The category Dzc.X IFp/ is a full subcategory of D.XétIFp/ consisting of objects

with Zariski-constructible cohomology sheaves.

Remark 7.1.8. Any Zariski-constructible sheaf F is overconvergent, i.e., for any
morphism �! s of geometric points in Xét, the specialization map Fs ! F� is an
isomorphism.

Note that any sheaf of Fp-modules on Xét can be treated as a sheaf on any of
the sites X}v , X}qproKet, or XproKet via the pullback functors along the morphisms in Dia-
gram (7.1.1). In what follows, we abuse the notation and implicitly treat a sheaf F as
a sheaf on any of those sites. We also denote the tensor product F ˝Fp OCX =p simply
by F ˝OCX =p in what follows.

Now we discuss an integral version of Theorem 7.1.2:
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Theorem 7.1.9. Let X be an admissible formal OK-scheme with adic generic fiberX
of dimension d and mod-p fiber X0, and F 2 DŒr;s�zc .X IFp/. Then

(1) there is an isomorphism Rt�
�
F ˝OCXét

=p
�
' R��

�
F ˝OC

X}
=p
�
;

(2) R��
�
F ˝OC

X}
=p
�
2DCqc;acoh.X0/, and R��

�
F ˝OC

X}
=p
�a
2DŒr;sCd�acoh .X0/

a;

(3) if X D Spf A is affine, then the natural map

CHi
�
X}v ;F ˝OC

X}
=p
�
! Ri��

�
F ˝OC

X}
=p
�

is an isomorphism for every i � 0;

(4) the formation of Ri��
�
F ˝ OC

X}
=p
�

commutes with étale base change, i.e.,
for any étale morphism fWY ! X with adic generic fiber f W Y ! X , the
natural morphism

f�0
�
Ri�X;�

�
F ˝OC

X}
=p
��
! Ri�Y;�

�
f �1F ˝OC

Y}
=p
�

is an isomorphism for any i � 0.

Definition 7.1.10. An OC
X}

-vector bundle E is a small OCX}-vector bundle if E=pE

is a small OC
X}
=p-vector bundle (see Definition 7.1.1).

Theorem 7.1.11. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d , and let E be an OC

X}
-vector bundle. Then

(1) R��E 2 DCqc;acoh.X/ and .R��E/a 2 DŒ0;2d�acoh .X/a;

(2) if X D Spf A is affine, then the natural map

Hi
�
X}v ;E

��
! Ri��.E/

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�
�
Ri�X;�.E/

�
! Ri�Y;�.EjY}/

is an isomorphism for any i � 0;

(4) if X has an open affine covering X D
S
i2I Ui such that Ej.Ui;K/} is small,

then
.R��E/a 2 DŒ0;d�acoh .X/

a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2I Ui such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I
of X such that

.R�X0
i
;�E/

a
2 DŒ0;d�acoh .X

0
i /
a;

for each i 2 I .
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Remark 7.1.12. We refer to Definition 4.8.9 for the precise definition of all derived
categories appearing in Theorem 7.1.11.

Remark 7.1.13. One can also prove a version of Theorem 7.1.11 for Zariski-con-
structible Zp-sheaves in the sense of [7, Definition 3.32]. However, we prefer not to
do this here as it does not require new ideas but instead complicates the notation.

For the version of Theorem 7.1.11 with the pro-étale site XproKet as defined in [59]
and [60], see Theorem 7.13.6.

The rest of the memoir is devoted to proving Theorem 7.1.9, Theorem 7.1.2, and
Theorem 7.1.11 and discussing their applications. We have decided to work entirely
in the v-site of X} because it is quite flexible for different types of arguments (e.g.,
proper descent, torsors under pro-finite groups, etc.). However, most of the argument
can be done using the more classical pro-étale site defined in [59]. However, it is
crucial to use the theory of diamonds to get an almost cohomological bound on R��E
for non-smooth X , and it also seems difficult to justify that the sheaves Ri��E are
quasi-coherent without using (at least) quasi-proétale topology.

7.2 Digression: Geometric points

In this section, we discuss preliminary results that will be used both in the proof of
Theorem 7.1.9 and in deriving applications from it.

We start the section by recalling some definitions.

Definition 7.2.1. [67, Section 2.1.4] An extension of non-archimedean fields2 K �

L is topologically algebraic if the algebraic closure of K in L is dense in L. Equiva-
lently, K � L is topologically algebraic if L is a non-archimedean subfield of bK.

Lemma 7.2.2. (1) LetK � L and L �M be two topologically algebraic exten-
sions of non-archimedean fields. ThenK �M is also topologically algebraic.

(2) Let
N L

M K

be a commutative diagram of non-archimedean fields such that LM is dense
in N and K � L is topologically algebraic. Then M � N is also a topolog-
ically algebraic extension.

2Recall that non-archimedean fields are complete by our convention.
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Proof. (1) We know that L � bK andM � bL since both extensions are topologically
algebraic. Since bL is already algebraically closed, we conclude that M � bL � bK.

(2) First, we note that

LM � bKM � bKM �cM;

where the composites are taken inside bN . Then we note that LM � N is dense, so
the inclusion LM �cM uniquely extends to an inclusion N �cM . This implies that
M � N is topologically algebraic.

Definition 7.2.3. A geometric point above the point x2X of an analytic adic spaceX
is a morphism xW Spa

�
C.x/; C.x/C

�
! X such that C.x/ is an algebraically closed

non-archimedean field, C.x/C is an open and bounded valuation subring of C.x/,
and the corresponding extension of completed residue fields bk.x/ � C.x/ is a topo-
logically algebraic extension.

Remark 7.2.4. If Spa
�
C.x/; C.x/C

�
! X is a geometric point, then C.x/ can be

identified with the completed algebraic closure of bk.x/ (or, equivalently, of k.x/) and
C.x/C with a valuation ring extending bk.x/C (or, equivalently, k.x/C). Therefore,
Definition 7.2.3 is more restrictive than [38, Definition 2.5.1], but coincides with the
subclass of geometric points constructed in [38, eq. (2.5.2)].

Lemma 7.2.5. Let K be a non-archimedean field with an open and bounded valua-
tion subring KC � K and a pseudo-uniformizer $ . Let f WX ! Y be a morphism
of locally of finite type .K; KC/-adic spaces, and yW Spa

�
C.y/; C.y/C

�
! Y be a

geometric point above y 2 Y . Then the natural morphism

aW i�1
�
OCXét

=$
�
! OCXy;ét

=$

is an isomorphism, where i W Xy ! X is the “projection” of the geometric fiber
Xy WD X �Y Spa

�
C.y/; C.y/C

�
back to X .

Proof. [38, Proposition 2.5.5] ensures that it suffices to show that a is an isomor-
phism on stalks at geometric points of Xy . Now note that Lemma 7.2.2 implies
that any geometric point xW Spa

�
C.x/; C.x/C

�
! Xy defines a geometric point

x0W Spa
�
C.x/; C.x/C

�
! X of X by taking the composition of x with i . So it is

enough to show that the natural map�
OCXét

=$
�
x0
'
�
i�1.OCXét

=$/
�
x
!
�
OCXy;ét

=$
�
x

(7.2.1)

is an isomorphism. But [38, Proposition 2.6.1] naturally identifies both sides of (7.2.1)
with C.x/C=$C.x/C finishing the proof.

Remark 7.2.6. Lemma 7.2.5 is very specific to the adic geometry (and quite counter-
intuitive from the algebraic point of view). Its scheme-theoretic version with OC=$
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replaced by O is false. The main feature of analytic adic geometry (implicitly) used
in the proof is that the morphism OCX;x ! k.x/C becomes an isomorphism after the
$ -adic completion.

Lemma 7.2.7. Let C be an algebraically closed non-archimedean field, let CC � C
be an open and bounded valuation subring with a pseudo-uniformizer $ 2 CC, and
let .C; CC/ be the corresponding Huber pair. Let .C; CC/! .D;DC/ be a finite
morphism of complete Huber pairs with a local ring D. Then the natural morphism

CC=$CC ! DC=$DC

is an isomorphism.

Proof. First, we show that CC=$CC ! DC=$DC is injective. For that, suppose
that c 2 CC=$CC is an element in the kernel and lift it to c 2 CC. The assumption
on c implies that c D $d for some d 2 DC. Then d D c=$ 2 C \ DC D CC.
Therefore, c D 0 in CC=$CC.

Now we check surjectivity. Since D is a local ring that is finite over an alge-
braically closed fieldC , we conclude thatD is an Artin local ring andD=nil.D/'C .
Therefore, for every d 2DC, we can find c 2C and d 0 2 nil.D/ such that d D cC d 0.
Since nil.D/ � Dıı � DC, we conclude that c D d � d 0 2 DC \ C D CC. Now
note that d 0=$ is still a nilpotent element of D, thus d 0=$ 2 nil.D/ � DC. So we
conclude that

d D c C$.d 0=$/

proving that CC=$CC ! DC=$DC is surjective.

Corollary 7.2.8. Let K be a p-adic non-archimedean field, and KC an open and
bounded valuation subring ofK. Let f WX ! Y be a finite morphism of locally finite
type .K;KC/-adic spaces. Then the natural morphism

cW
�
f�Fp

�
˝OCYét

=p ! f�
�
OCXét

=p
�

is an isomorphim on Yét.

Proof. We use [38, Proposition 2.5.5] to ensure that it suffices to show that c is
an isomorphism on stalks at geometric points. Thus, [38, Proposition 2.6.1] and
Lemma 7.2.5 imply that it suffices to show that the natural map

H0ét

�
X;Fp

�
˝ CC=p ! H0ét

�
X;OCXét

=p
�

is an isomorphism when Y D Spa .C; CC/ for an algebraically closed p-adic non-
archimedean field C and an open and bounded valuation subring CC � C . In this
case,X D Spa .D;DC/ for some finite morphism of Huber pairs .C;CC/! .D;DC/.
In particular, D is a finite C -algebra, so it is a finite direct product of local artinian
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C -algebras. By passing to a direct factor of D (or, geometrically, to a connected
component of Spa .D;DC/), we can assume thatD is local. In particular,D does not
have any idempotents, and therefore Spa .D;DC/ is connected. In this case, we have

H0ét.X;Fp/˝ C
C=pCC ' CC=pCC;

since H0ét.X;Fp/ ' Fp since Spa .D;DC/ is connected.
Now we observe that Spa .D; DC/red ' Spa .C; CC/, so all étale sheaves on

Spa .D;DC/ do not have higher cohomology groups. Thus, we have

H0ét

�
X;OCXét

=p
�
' DC=pDC:

In particular, the question boils down to showing that the natural map

CC=pCC ! DC=pDC

is an isomorphism. This was already done in Lemma 7.2.7.

Corollary 7.2.9. Let K be a p-adic non-archimedean field, f WX ! Y a finite mor-
phism of rigid-analytic varieties over K, and F 2 Dbzc.X I Fp/. Then the natural
morphism

cW .f�F /˝OCYét
=p ! f�.F ˝OCXét

=p/

is an isomorphim on Yét.

Proof. We recall that [7, Proposition 3.6] says that Dbzc.X IFp/ is a thick triangulated
subcategory of D.XétIFp/ generated by objects of the form g�Fp for finite morphisms
gWX 0 ! X . Since both claims in the question satisfy the 2-out-of-3 property and
are preserved by passing to direct summands, it suffices to prove the claim only for
F D g�Fp . In this situation, the claim follows from Corollary 7.2.8 by the sequence
of isomorphisms

f�
�
g�.Fp/

�
˝OCYét

=p ' .f ı g/�.Fp/˝OCYét
=p

' .f ı g/�
�
OC
X 0ét
=p
�

' f�
�
g�O

C

X 0ét
=p
�

' f�
�
g�Fp ˝OCXét

=p
�
:

7.3 Applications

The main goal of this section is to discuss some applications of Theorem 7.1.9. In
particular, we show that “p-adic nearby cycles” commute with proper pushfowards
and prove finiteness of the usual étale cohomology of proper rigid-analytic varieties.
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For the rest of the section, we fix a p-adic algebraically closed field C with its
rank-1 valuation ring OC , maximal ideal m � OC , and a good pseudo-uniformizer
$ 2 OC (see Definition B.11). We always do almost mathematics with respect to the
ideal m in this section. If we need to consider a more general non-archimedean field,
we denote it by K.

The first non-trivial consequence of Theorem 7.1.11 is that the v-cohomology
groups of OCX}-vector bundles have bounded p-torsion.

Lemma 7.3.1. LetK be a p-adic perfectoid field, let XD Spf A0 be an affine admis-
sible formal OK-scheme with adic generic fiber X , and let E be an OC

X}
-vector

bundle. Then the cohomology groups Hi
�
X}v ; E

�
are almost finitely presented over

A0. In particular, they are p-adically complete and have bounded torsion p1-torsion.

Proof. This is a straightforward consequence of Theorem 7.1.11, Lemma 2.12.5, and
Lemma 2.12.7.

Remark 7.3.2. Lemma 7.3.1 implies that the v-cohomology groups of OC
X}

behave
pretty differently from the analytic cohomology groups of OCX . Indeed, we refer to
[5, Remark 9.3.4] (that can be easily adapted to the p-adic situation) for an example
of an affinoid rigid-analytic variety with unbounded p1-torsion in H1an.X;O

C

X /. The
same example shows that H1et.X;O

C/ could have unbounded p1-torsion.

Theorem 7.3.3. Let K be a p-adic perfectoid field, let X be a proper rigid-analytic
K-variety of dimension d , and let E be an OC

X}
-vector bundle (resp. OC

X}
=p-vector

bundle). Then
R�

�
X}v ;E

�
2 DŒ0;2d�acoh

�
OK

�a
:

Proof. We firstly deal with the case of an OC
X}
=p-vector bundle E . We choose an

admissible formal model X of X as in Part (5) of Theorem 7.1.2. This formal model
is automatically proper by [51, Lemma 2.6] and [65, Corollary 4.4 and 4.5]. Now
Theorem 7.1.2 implies that

.R��E/a 2 DŒ0;d�acoh .X0/
a:

Recall that the underlying topological space of X0 is equal to the underlying topo-
logical space of the special fiber X WD X �Spf OC Spec OC=m. Thus, [25, Corol-
lary II.10.1.11] implies that X0 has Krull dimension d . Therefore, Theorem 5.1.3,
[68, Tag 0A3G], and Lemma 3.3.5 imply that

R�
�
X}v ;E

�a
' R�

�
X0;R��

�
E
��a
2 DŒ0;2d�acoh

�
OK=p

�a
:

The case of an OC
X}

-vector bundle follows from the OC
X}
=p-case, Corollary 2.13.3,

and Lemma 6.3.5 (3).

https://stacks.math.columbia.edu/tag/0A3G
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Lemma 7.3.4. Let X be a proper rigid-analytic variety over C of dimension d ,
and let F be a Zariski-constructible sheaf of Fp-modules on Xét. Then we have
R�.X}v ;F ˝OC

X}
=p/a 2 DŒ0;2d�acoh .OC=p/

a.

Proof. The proof is analogous to the proof of Theorem 7.3.3 using Theorem 7.1.9 in
place of Theorem 7.1.2.

Now we discuss finiteness of classical étale cohomology groups. Later, we will
generalize it to Zariski-constructible coefficients.

Lemma 7.3.5. LetX be a proper rigid-analytic variety over C of dimension d . Then

R�.X;Fp/ 2 DŒ0;2d�coh .Fp/

and the natural morphism

R�.X;Fp/˝OC=p ! R�.X}v ;O
C

X}
=p/

is an almost isomorphism.

Proof. The proof will be divided into several steps.

Step 1: R�
�
X}v ;O

[;C

X}

�a
2 DŒ0;2d�acoh

�
O[
C

�a. We consider the tilted integral structure
sheaf O

[;C

X}
(see Definition 6.3.4). Lemma 6.3.5 (4) ensures that O

[;C

X}
is derived $ [-

adically complete and Lemma 6.3.5 (5) implies that�
O
[;C

X}
=$ [

�
'
�
OC
X}
=p
�
' OC

X}
=p:

Therefore, [68, Tag 0BLX] guarantees that R�
�
X}v ;O

[;C

X}

�
2 D

�
O[
C

�
is derived $ [-

adically complete. Moreover, Lemma 7.3.4 implies�
R�

�
X}v ;O

[;C

X}

�a
=$ [

�
' R�

�
X}v ;O

C

X}
=p
�a
2 DŒ0;2d�acoh

�
OC=p

�a
:

Thus, Corollary 2.13.3 applied to R D CC D O[
C implies that R�

�
X}v ;O

[;C

X}

�a
2

DŒ0;2d�acoh

�
O[
C

�a.

Step 2: R�.X; Fp/ 2 DŒ0;2d�coh .Fp/ and the natural morphism R�.X; Fp/ ˝ C [ !
R�

�
X}v ;O

[
X}

�
is an isomorphism. After inverting $ [, Step 1 implies that

R�
�
X}v ;O

[
X}

�
2 DŒ0;2d�coh .C [/:

Since O[
X}

is a sheaf of Fp-algebras, we have a natural Frobenius morphism

F WO[
X}

f 7!f p

�����! O[
X}

https://stacks.math.columbia.edu/tag/0BLX
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that can be easily seen to be an isomorphism by Lemma 6.3.5 (2) (and Remark B.7).
Now we use the Artin–Shreier short exact sequence

0! Fp ! O[
X}

F�id
���! O[

X}
! 0

on the v-site X}v to get the associated long exact sequence3

� � � ! Hi
�
X;Fp

�
! Hi

�
X}v ;O

[
X}

� Hi .F /�id
������! Hi

�
X}v ;O

[
X}

�
! HiC1

�
X;Fp

�
! � � �

We already know that each group Hi
�
X}v ;O

[
X}

�
is a finitely generated C [-vector

space, each Hi .F / is a Frobenius-linear automorphism, and C [ is an algebraically
closed field of characteristic p (see [58, Theorem 3.7]). Thus (the proof of) [68,
Tag 0A3L] ensures that Hi .F / � id is surjective for each i � 0 (so Hi .X; Fp/ '
Hi
�
X}v ;O

[
X}

�
FD1) and the natural morphism

Hi
�
X;Fp

�
˝ C [ ! Hi

�
X}v ;O

[
X}

�
is an isomorphism. In particular, we have dimFp Hi .X;Fp/ D dimC [ Hi .X}v ;O

[
X}
/,

the natural morphism

R�
�
X;Fp

�
˝ C [ ! R�

�
X}v ;O

[
X}

�
is an isomorphism, and R�.X;Fp/ 2 DŒ0;2d�coh .Fp/.

Step 3: The natural morphism R�.X;Fp/˝OC=p!R�
�
X}v ;O

C

X}
=p
�

is an almost
isomorphism. It suffices to show that

R�
�
X;Fp

�
˝O[

C ! R�
�
X}v ;O

[;C

X}

�
is an almost isomorphism. The version with OC

X}
=p would follow by taking the

derived mod-$ [ reduction. Therefore, it suffices to show that

Hi
�
X;Fp

�
˝O[

C ! Hi
�
X}v ;O

[;C

X}

�
is an almost isomorphism for each i � 0. We consider the following commutative
diagram:

Hi .X;Fp/˝O[
C Hi

�
X}v ;O

[;C

X}

�
Hi .X;Fp/˝ C [ Hi

�
X}v ;O

[
X}

�
:

˛

i

ˇ

3We implicitly use that Hi .X; Fp/ ' Hi .X}v ; Fp/ by [61, Propositions 14.7, 14.8, and
Lemma 15.6].

https://stacks.math.columbia.edu/tag/0A3L
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By Step 2, we know that ˇ is an isomorphism. Since i is injective, we conclude that ˛
is injective as well. So it suffices to show that ˛ is almost surjective.

The actions of Frobenius on O[
C and on O

[;C

X}
induce the Frobenius actions on

Hi .X;Fp/˝O[
C and Hi .X}v ;O

[;C

X}
/, respectively. Moreover, the map ˛ is Frobenius-

equivariant. The action on Hi .X;Fp/˝O[
C is an isomorphism because O[

C is perfect,
and the action on Hi .X}v ;O

[;C

X}
/ is an isomorphism because Frobenius is already an

isomorphism on O
[;C

X}
due to Lemma 6.3.5 (2) (and Remark B.7). Therefore, it makes

sense to consider the inverse Frobenius action F �1 on both modules and ˛ commutes
with this action.

Next we pick an element x 2 Hi .X}v ; O
[;C

X}
/. Since F is an isomorphism on

Hi .X}v ; O
[;C

X}
/, we conclude that there exists some x0 2 Hi .X}v ; O

[;C

X}
/ such that

Fm.x0/ D x holds. Since Hi .X}v ;O
[;C

X}
/ is almost coherent, Lemma 2.12.5 implies

that it has bounded .$ [/1-torsion. Combining this with the fact that ˇ is an isomor-
phism, we conclude that there is an integerN and an element y0 2 Hi .X}v ;Fp/˝O[

C

such that ˛.y0/ D .$ [/Nx0. Therefore,�
$ [
�N=pm

x D F �m
��
$ [
�N
x0
�
D F �m

�
˛.y0/

�
D ˛

�
F �m.y0/

�
:

Thus .$ [/N=p
m
x D ˛.y/ where y D F �m.y0/ 2 Hi .X;Fp/˝O[

C . SinceN=pm can
be made arbitrary small by increasing m, we conclude that ˛ is almost surjective.

Lemma 7.3.6. Let X be a proper rigid-analytic variety over C of dimension d , and
F 2 DŒr;s�zc .X IFp/ for some integers Œr; s�. Then

R�.X;F / 2 DŒr;sC2d�coh .Fp/:

Proof. First, [38, Corollary 2.8.3] implies that R�.X;F /2DŒr;sC2d�.Fp/. Therefore,
it suffices to show that R�.X; F / 2 Dcoh.Fp/. For this, we recall that [7, Propo-
sition 3.6] says that Dbzc.X; Fp/ is a thick triangulated subcategory of D.XétI Fp/
generated by objects of the form f�.Fp/ for finite morphisms f WX 0 ! X . Since
Since Dcoh.Fp/ is a thick triangulated subcategory of D.Fp/, it suffices to prove the
claim for F D f�.Fp/. Then Lemma 7.3.5 and [38, Proposition 2.6.3] imply that

R�
�
X; f�.Fp/

�
' R�.X 0;Fp/ 2 DŒ0;2d�coh .Fp/:

The last thing we discuss is the behavior of the “p-adic nearby cycles” under
proper pushforwards. We start with the following lemma:

Lemma 7.3.7. LetK be a p-adic perfectoid fieldK, let f WX ! Y be a proper mor-
phism of rigid-analytic varieties over K, and let F 2 Dbzc.X IFp/. Then the natural
morphism

Rf�F ˝OCYét
=p ! Rf�

�
F ˝OCXét

=p
�

is an almost isomorphism.
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Proof. The claim is local on Y , so we can assume that Y is affinoid. Then a sim-
ilar argument to the proof of Lemma 7.3.6 allows us to reduce to the case when
F D g�.Fp/ for a finite map gWX 0 ! X . Therefore, Corollary 7.2.8 implies that it
suffices to prove the claim for the morphism f ı gWX 0 ! Y and F D Fp .

Now [38, Proposition 2.5.5] guarantees that it suffices to show the claim on stalks
at geometric points. Therefore, by Lemma 7.2.5 we reduce the question to showing
that, for any proper adic space X over a geometric point Spa .C; CC/, the natural
morphism

R�
�
X;Fp

�
˝ CC=p ! R�

�
X;OCXét

=p
�

is an almost isomorphism. Denote by Xı WD X �Spa .C;CC/ Spa .C; C ı/. Now [38,
Proposition 8.2.3 (ii)] implies that R�.X;Fp/' R�.Xı;Fp/, Lemma 2.11.2 implies
that CC=pCC 'a OC=pOC , and Corollary 6.4.15 and Corollary 6.4.18 imply that

R�
�
X;OCXét

=p
�
'
a R�

�
Xı;OC

Xıét
=p
�
:

Combining these results, we may replace .C; CC/ with .C;OC / and X with Xı to
achieve that Spa .C;OC / is a geometric point of rank-1. In this case, the claim was
already proven in Lemma 7.3.6.

Now we show that p-adic nearby cycles commute with proper morphisms.

Corollary 7.3.8. Let K be a p-adic perfectoid field K, let fWX! Y be a proper
morphism of admissible formal OK-schemes with adic generic fiber f WX ! Y , and
let F 2 Dbzc.X IFp/. Then the natural morphism

R�Y;�

�
Rf�F ˝OC

Y}
=p
�
! Rf0;�

�
R�X;�

�
F ˝OC

X}
=p
��

is an almost isomorphism.

Proof. First, note that Rf�F has overconvergent cohomology sheaves by [38, Propo-
sition 8.2.3 (ii)] and Remark 7.1.8. Therefore, Lemma 6.7.10 implies that

R�Y;�

�
Rf�F ˝OC

Y}
=p
�
' RtY;�

�
Rf�F ˝OCYét

=p
�
;

where tYW
�
Yét;O

C
Yét
=p
�
!
�
Y0;OY0

�
is the natural morphism of ringed sites. Simi-

larly, we have an isomorphism

Rf0;�
�
R�X;�

�
F ˝OC

X}
=p
��
' Rf0;�

�
RtX;�

�
F ˝OCXét

=p
��
:

Therefore, it suffices to show that the natural morphism

RtY;�
�
Rf�F ˝OCYét

=p
�
! Rf0;�

�
RtX;�

�
F ˝OCXét

=p
��

is an almost isomorphism.
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For this, we observe that the commutative diagram of ringed sites�
Xét;O

C

Xét
=p
� �

X0;OX0

�
�
Yét;O

C

Yét
=p
� �

Y0;OY0

�
tX

f f0

tY

implies that

Rf0;�
�
RtX;�

�
F ˝OCXét

=p
��
' RtY;�

�
Rf�

�
F ˝OCXét

=p
��
:

Therefore, the morphism

RtY;�
�
Rf�F˝OCYét

=p
�
!Rf0;�

�
RtY;�

�
F˝OCYét

=p
��
'RtY;�

�
Rf�

�
F˝OCXét

=p
��

is an almost isomorphism due to Lemma 7.3.7 and Proposition 3.5.23.

7.4 Perfectoid covers of affinoids

The main goal of this section is to show almost vanishing of higher v-cohomology
groups of a small OCX}=p-vector bundle on an affinoid perfectoid space. Later on, we
will apply it to certain pro-étale coverings of Spa .A; AC/ to reduce the computation
of v-cohomology groups to the computation of Čech cohomology groups.

Set-up 7.4.1. We fix

(1) a p-adic perfectoid field K together with its rank-1 open and bounded val-
uation ring denoted by OK and a good pseudo-uniformizer $ 2 OK as in
Definition B.11 (we always do almost mathematics with respect to the ideal
m D

S
n$

1=pnOK D K
ıı);

(2) an affine admissible formal OK-scheme X D Spf A0 with adic generic fiber
X D Spa .A;AC/;

(3) and an affinoid perfectoid pair .A1; AC1/ (see Definition B.5) with a mor-
phism .A; AC/! .A1; A

C
1/ such that Spd .A1; AC1/! Spd .A; AC/ is a

v-covering (see Definition 6.1.1 and Definition 6.1.5);

(4) a small OC
X}
=p-vector bundle E (see Definition 7.1.1).

Definition 7.4.2. We say that a p-torsionfree (equivalently,$ -torsionfree) OK-alge-
bra R is integrally perfectoid if the Frobenius homomorphism

R=$R
x 7!xp

����! R=$pR D R=pR

is an isomorphism.
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Remark 7.4.3. [8, Lemma 3.10] implies that this definition coincides with [8, Defi-
nition 3.5] for p-torsionfree OK-algebras. In particular, AC1 is an integral perfectoid
OK-algebra by [8, Lemma 3.20].

Lemma 7.4.4. Under the assumption of Set-up 7.4.1, let fW Spf B0 ! Spf A0 be an
étale morphism of admissible affine formal OK-schemes. Then BC1 WD B0b̋A0AC1 is
p-torsion free integrally perfectoid OK-algebra.

Proof. Firstly, we note that A0 ! B0 is a flat morphism by [25, Proposition I.4.8.1],
so B0 ˝A0 A

C
1 is $ -torsion free. Since the $ -adic completion of a $ -torsionfree

algebra is $ -torsion free, we conclude that BC1 D B0b̋A0AC1 is $ -torsion free. We
see that the only thing we are left to show is that the Frobenius morphism

BC1=$B
C
1 ! BC1=$

pBC1

is an isomorphism. We consider the commutative diagram

SpecBC1=$

Spec
�
BC1=$

p ˝
A
C
1=$

p A
C
1=$

�
SpecBC1=$

p

SpecAC1=$ SpecAC1=$
p:

F

ˆ�
B

f1=$
ˆ�
A
�B0

˛ f1=$
p

ˆ�
A

We need to show that ˆ�B is an isomorphism. We know that f1=$
p and f1=$ are

étale morphisms since f is so, and moreover the Frobenius ˆ�A is an isomorphism by
Remark 7.4.3. Therefore, the morphism

˛WSpec
�
BC1=$

p
˝
A
C
1=$

p A
C
1=$

�
! SpecAC1=$

is étale as a base change of the étale morphism f1=$
p . Thus, we conclude that F is

an étale morphism as a morphism between étale AC1=$ -schemes. Now we note that
ˆ�A � B0 is an isomorphism since ˆ�A is an isomorphism. Therefore, ˆ�B is an étale
morphism as a composition of an étale morphism and an isomorphism. However, ˆ�B
is a bijective radiciel morphism since it is the absolute Frobenius morphism. Thus,
we conclude that it must be an isomorphism as any étale, bijective radiciel morphism
is an isomorphism by [29, Exp. I, Théorème 5.1].

Corollary 7.4.5. Under the assumption of Set-up 7.4.1, let fW Spf B0 ! Spf A0 be
an étale morphism of admissible affine formal OK-schemes. Then

.B1; B
C
1/ WD

�
.B0b̋A0AC1/� 1p �; B0b̋A0AC1�

is a perfectoid pair.
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Proof. Lemma 7.4.4 states that BC1 D B0b̋A0AC1 is a p-torsionfree integral per-
fectoid. Now B0 ˝A0 A

C
1 is integrally closed in B0 ˝A0 A

C
1

�
1
p

�
because AC is

integrally closed in A and B0 is étale over A0. Therefore, [5, Lemma 5.1.2] ensures
that the same holds after completion, i.e., BC1 is integrally closed in B1. Thus [8,
Lemma 3.20] guarantees that .B1; BC1/ is a perfectoid pair.

Lemma 7.4.6. Under the assumption of Set-up 7.4.1, let fW Spf B0 ! Spf A0 be
an étale morphism of admissible affine formal OK-schemes with adic generic fiber
Spa .B;BC/! Spa .A;AC/. Then the natural morphism�

.B0b̋A0AC1/� 1p �; B0b̋A0AC1�! �
B b̋AA1; .B b̋AA1/C�

is an isomorphism of Tate–Huber pairs.

Proof. By [36, Lemma 1.6], B b̋AA1 ' .B0b̋A0AC1/� 1p �. Now, .B b̋AA1/C is
defined to be the integral closure of the image of the map

BCb̋ACAC1 ! B b̋AA1:
By [36, Lemma 1.6], we also have

BCb̋ACAC1 ' .BC ˝AC AC1/˝B0˝A0AC1 .B0b̋A0AC1/:
Since BC is integral over B0, we have that BCb̋ACAC1 is integral over B0b̋A0AC1.
In particular, we see that .B b̋AA1/C is integral over B0b̋A0AC1. However, Corol-
lary 7.4.5 implies that B0b̋A0AC1 is a subalgebra of B b̋AA1 that is integrally closed
in B b̋AA1. Thus, we have an isomorphism

B0b̋A0AC1 ' .B b̋AA1/C:
Remark 7.4.7. It will be crucial for our arguments later that .B b̋AA1/C is equal to
B0b̋A0AC1 and not simply to its integral closure.

Lemma 7.4.8. Under the assumption of Set-up 7.4.1, we put

ME WD H0
�
Spd .A1; AC1/v;E

�
:

Then ME is an almost faithfully flat, almost finitely presented AC1=p-module, and
for every morphism Spa .D;DC/! Spa .A1;AC1/ of affinoid perfectoid spaces, the
natural morphism

ME ˝AC1=p
DC=p ! H0

�
Spd .D;DC/v;E

�
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is an almost isomorphism.4 Moreover,

Hi
�
Spd .A1; AC1/v;E

�
'
a 0

for i > 0.

Proof. We divide the proof into several steps.

Step 1: H0
�
Spd.A1; AC1/v; E

�
is almost flat and almost finitely presented. The

smallness assumption implies that there is a finite étale surjection Spa .B; BC/ !
Spa .A1; AC1/ such that EjSpd .B;BC/ ' .O

C

X}
=p/r for some integer r � 0. The adic

space Spa .B;BC/ is affinoid perfectoid by [59, Theorem 7.9].
The natural morphism AC ! BC is almost finitely presented and almost faith-

fully flat by [59, Theorem 7.9] (see also [5, Theorem 10.0.9] for the almost faithfully
flat part). Since EjSpd .B;BC/ is trivial, Lemma 6.3.5 (1) implies that

H0
�
Spd .B;BC/v;E

�
'
a .BC=pBC/r :

In particular, it is almost flat and almost finitely presented. We now want to descend
these properties to H0

�
Spd .A1;AC1/v;E

�
. For this, we use Proposition 6.1.6 to recall

that diamondification commutes with fiber products, and so

Spd .B;BC/ �Spd .A1;A
C
1/

Spd .B;BC/

'
�
Spa .B;BC/ �Spa .A1;A

C
1/

Spa .B;BC/
�
}

' Spd
�
B b̋A1B; .B b̋A1B/C�:

By the proof of [58, Proposition 6.18] (and Lemma B.13), we see thatBCb̋AC1BC!
.B b̋A1B/C is an almost isomorphism (while, a priori, the latter group is the integral
closure of the former one inside B b̋A1B). In particular,

BC=p ˝
A
C
1=p

BC=p 'a .B b̋A1B/C=p.B b̋A1B/C:
Thus

H0
�
Spd .B b̋A1B; .B b̋A1B/C/v;E� 'a �.BC=p/˝2AC1=p�r

and the two natural morphisms

H0
�
Spd .B;BC/v;E

�
˝BC=p .B

C=p/˝
2
A
C
1=p

! H0
�
Spd

�
B b̋A1B; .B b̋A1B/C�v;E�

4We note that E is a sheaf on a (big) v-site of Spd .A;AC/, so it makes sense to evaluate E

on Spd .D;DC/.
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are almost isomorphisms. We use the sheaf condition and the previous discussion to
get the following almost exact sequence:

0! H0
�
Spd

�
A1; A

C
1

�
v
;E
�
!H0

�
Spd .B;BC/v;E

�
!H0

�
Spd .B;BC/v;E

�
˝BC=p

�
.BC=p/˝2

�
:

Theorem 2.10.3 applied to the almost faithfully flat morphism AC1=pA
C
1 !

BC=pBC implies that the natural morphism

H0
�
Spd

�
A1; A

C
1

�
v
;E
�
˝
A
C
1=p

BC=p ! H0
�
Spd .B;BC/v;E

�
(7.4.1)

is an almost isomorphism. The above computation tells us that H0
�
Spd .B;BC/v;E

�
is almost faithfully flat and almost finitely presented over BC=pBC. Thus, the faith-
fully flat descent for flatness and almost finitely presented modules (see Lemma 2.10.5
and Lemma 2.10.7) implies that H0

�
Spd .A1; AC1/v;E

�
is almost faithfully flat and

almost finitely presented over AC1=pA
C
1.

Step 2: H0
�
Spd.A1; AC1/v;E

�
almost commutes with base change. By the proof

of [58, Proposition 6.18] (and by virtue of Lemma B.13), we can conclude that
Spa .B;BC/�Spa .A1;A

C
1/ Spa .D;DC/ exists as an adic space and is represented by

Spa .R;RC/ for a perfectoid pair .R;RC/ such that

BC=p ˝
A
C
1=p

DC=p ! RC=p (7.4.2)

is an almost isomorphism. Thus, the proof of Step 1 and (7.4.2) imply that

H0
�
Spd .D;DC/v;E

�
˝
A
C
1=p

BC=p ! H0
�
Spd .R;RC/v;E

�
is an almost isomorphism. Now we wish to show that the natural morphism

H0
�
Spd .A1; AC1/v;E

�
˝
A
C
1=p

DC=p ! H0
�
Spd .D;DC/v;E

�
is an almost isomorphism. By the faithfully flat descent, it suffices to check after
tensoring against BC=p over AC1=p. Therefore, we use (7.4.1) and (7.4.2) to see that
it suffices to show that

H0
�
Spd .B;BC/v;E

�
˝BC=p R

C=p ! H0
�
Spd .R;RC/v;E

�
is an almost isomorphism. Now Lemma 6.3.5 (1) almost identifies (in the technical
sense) this morphism with the identity morphism

.BC=pBC/r ˝BC=p R
C=p ! .RC=pRC/r

since EjSpd .B;BC/ is a trivial OC=p-vector bundle of rank r . This map is clearly an
isomorphism.
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Step 3: Hi
�
Spd.A1; AC1/v;E

�
is almost zero for i > 0. As in Step 1, we use that

Spa .B;BC/! Spa .A1; AC1/

is a finite étale morphism of affinoid perfectoid spaces to conclude that all fiber prod-
ucts

Spa .B;BC/j=Spd .A1;A
C
1/

are represented by affinoid perfectoid spaces Spa .Bj ;BCj / and the natural morphisms

.BC=pBC/
˝
j

A
C
1=pA

C
1 ! BCj =pB

C

j

are almost isomorphisms. Since each restriction EjSpd .Bj ;B
C

j
/ is trivial, it is ensured

by Lemma 6.3.5 (1) that the higher cohomology of E on Spd .Bj ; BCj / almost van-
ishes. Thus, R�

�
Spd .A1;AC1/v;E

�
is almost isomorphic to the Čech complex asso-

ciated with the covering Spd .B; BC/ ! Spd .A1; AC1/. Step 2 implies that this
complex is almost isomorphic to the standard Amitsur complex

0!ME !ME ˝AC1=p
BC=p !ME ˝AC1=p

BC=p ˝
A
C
1=p

BC=p ! � � �

Almost exactness of this complex follows from Lemma 2.10.4.

7.5 Strictly totally disconnected covers of affinoids

The main goal of this section is to eliminate almost mathematics in Lemma 7.4.8
under some stronger assumptions on A1.

Set-up 7.5.1. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring
denoted by OK and a good pseudo-uniformizer $ 2 OK (we always do
almost mathematics with respect to the ideal m D

S
n$

1=pnOK D K
ıı);

(2) an affine admissible formal OK-scheme X D Spf A0 with adic generic fiber
X D Spa .A;AC/;

(3) a strictly totally disconnected affinoid perfectoid space Spa .A1; AC1/ (see
Definition 6.2.5) with a morphism

Spa .A1; AC1/! Spa .A;AC/

such that Spd .A1;AC1/! Spd .A;AC/ is a v-covering and all fiber products

Spd .A1; AC1/
j=Spd .A;AC/

are strictly totally disconnected affinoid perfectoid spaces.
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Corollary 7.5.2. Under the assumption of Set-up 7.5.1, let fW Spf B0 ! Spf A0 be
an étale morphism of admissible affine formal OK-schemes. Then

.B1; B
C
1/ WD

�
.B0b̋A0AC1/� 1p �; B0b̋A0AC1�

is a perfectoid pair and Spa .B1; BC1/ is a strictly totally disconnected (affinoid)
perfectoid space.

Proof. Corollary 7.4.5 already implies that Spa .B1; BC1/ is an affinoid perfectoid
space. Moreover, Lemma 7.4.6 implies that

Spa .B1; BC1/ ' Spa .B;BC/ �Spa .A;AC/ Spa .A1; AC1/;

where Spa .B;BC/ is the generic fiber of Spf B0. So Spa .B1;BC1/! Spa .A1;AC1/
is an étale morphism, thus the claim follows from [61, Lemma 7.19].

Lemma 7.5.3. Under the assumption of Set-up 7.5.1, let ME be the AC1=pA
C
1-

module
ME WD H0

�
Spd .A1; AC1/v;E

�
:

Then ME is a finite projective .AC1=p/
r -module. Moreover, for every morphism

Spa .D; DC/ ! Spa .A1; AC1/ of strictly totally disconnected affinoid perfectoid
spaces, the natural morphism

ME ˝AC1=p D
C=p ! H0

�
Spd .D;DC/v;E

�
is an isomorphism. Furthermore,

Hi
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
' 0

for i; j � 1.

Proof. Lemma 6.5.6 implies that we can replace Spa .A1; AC1/ by a finite clopen
decomposition to assume5 that EjSpd .A1;A

C
1/ '

�
OCSpd .A1;A

C
1/
=p
�r for some inte-

ger r . Then Corollary 6.4.16 implies that ME ' .AC1=p/
r . The same applies to

EjSpd .D;DC/, therefore the natural morphism

ME ˝AC1=p
DC=p D .AC1=p/

r
˝
A
C
1=p

DC=p ! .DC=p/r

is clearly an isomorphism. Furthermore, Corollary 6.4.16 implies that

Hi
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
' 0

for i; j � 1 because we assume that all fiber products Spd
�
A1; A

C
1

�j=Spd .A;AC/ are
representable by strictly totally disconnected (affinoid) perfectoid spaces.

5At this step, the map Spd .A1;A
C
1/! Spd .A;AC/might not be a v-covering anymore.

But this will not matter for the rest of the proof.
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Corollary 7.5.4. Under the assumption of Set-up 7.5.1, let fW Spf B0 ! Spf A0 be
an étale morphism, and let .B1; BC1/ be the perfectoid pair from Corollary 7.4.5.
Then the natural morphism

�
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
˝A0=pA0 B0=pB0

! �
�
Spd .B1; BC1/

j=Spd .B;BC/
v ;E

�
is an isomorphism for j � 1.

Proof. For j D 1, the result follows from Lemma 7.5.3 and Corollary 7.5.2. For
j > 1, we know that Xj WD Spd .A1; AC1/

j=Spd .A;AC/ is represented by a strictly
totally disconnected perfectoid space. The morphism Xj ! Spd .A; AC/ defines a
strictly totally disconnected perfectoid spaceX]j with a morphismX

]
j ! Spa .A;AC/.

One checks that X]j ! Spa .A; AC/ satisfies the assumptions of Set-up 7.5.1, so we
can replace Spa .A1;AC1/ with X]j to reduce the case of j > 1 to the case j D 1.

Corollary 7.5.5. Under the assumption of Set-up 7.5.1, let fW Spf B0 ! Spf A0 be
an étale morphism, and let Spa .B; BC/ be the adic generic fiber of Spf .B0/. Then
the natural morphism

Hi
�
Spd .A;AC/v;E

�
˝A0=pA0 B0=pB0 ! Hi

�
Spd .B;BC/v;E

�
is an isomorphism for i � 0.

Proof. Arguing as in the proof of Corollary 7.5.4, we see that Lemma 7.5.3 implies
that

Hi
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
' 0

for i; j � 1. Consequently, the cohomology groups Hi .Spd .A; AC/v; E/ can be
computed via the cohomology of the Čech complex associated with the covering
Spd .A1; AC1/! Spd .A;AC/. By Corollary 7.5.2, the same applies to Spa .B;BC/
and the Čech complex associated with the covering Spd .B1; BC1/! Spd .B; BC/.
Therefore, the claim follows from Corollary 7.5.4.

Corollary 7.5.6. Under the assumption of Set-up 7.4.1, let K � C be a completed
algebraic closure of K, and Spa .AC ; ACC / D Spa .A; AC/ �Spa .K;OK/ Spa .C;OC /.
Then the natural morphism

Hi
�
Spd .A;AC/v;E

�
˝OK=p OC=p ! Hi

�
Spd .AC ; ACC /v;E

�
is an almost isomorphism.
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Proof. The proof is similar to that of Corollary 7.5.4 and Corollary 7.5.5. The only
change we need to make is that the fiber product

Spa .A1; AC1/ �Spa .K;OK/ Spa .L;OL/

is a strictly totally disconnected affinoid perfectoid space with the C-ring almost
isomorphic to AC1b̋OKOL. The strictly totally disconnected claim follows from [61,
Lemma 7.19] and the almost computation of the C-ring follows from the proof of
[59, Proposition 6.18].

7.6 Perfectoid torsors

We apply the results of Section 7.4 to certain pro-étale covers of Spa .A; AC/ to see
that the computation of v-cohomology groups can often be reduced to the compu-
tation of certain continuous cohomology groups. To make this precise, we need to
define the notion of a G-torsor under a pro-finite group G.

Definition 7.6.1. A v-sheaf G associated with a pro-finite group G is a v-sheaf
GWPerfop

! Sets such that G.S/ D Homcont.jS j; G/.
A morphism of v-sheaves X ! Y is a G-torsor if it is a v-surjection and there is

an action aWG �X!X over Y such that the morphism a �Y p2WG �X!X �Y X

is an isomorphism, where p2WG �X ! X is the canonical projection.

Remark 7.6.2. If a pro-finite group G is a cofiltered limit of finite groups, that is,
G ' limI Gi , then G ' limI Gi .

Now we can formulate the precise set-up we are going to work in.

Set-up 7.6.3. We fix

(1) a p-adic perfectoid field K with its rank-1 open and bounded valuation ring
denoted by OK and a good pseudo-uniformizer $ 2 OK (we always do
almost mathematics with respect to the ideal m D

S
n$

1=pnOK D K
ıı);

(2) an admissible formal OK-scheme X D Spf A0 with adic generic fiber X D
Spa .A;AC/;

(3) a morphism .A; AC/! .A1; A
C
1/ such .A1; AC1/ is a perfectoid pair and

Spd .A1; AC1/! Spd .A;AC/ is a �1-torsor under a pro-finite group �1;

(4) a small OC
X}
=p-vector bundle E .

At the beginning of this section, we analyze the structure of the fiber products
Spd .A1; AC1/

j=Spd .A;AC/ for j � 1. For a general v-cover, we cannot say much
about these fiber products. However, we have much more control in the case of G-
torsors.
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Lemma 7.6.4. With the notation and under the assumption of Set-up 7.6.3, the fiber
product Spd .A1; AC1/

j=Spd .A;AC/ is represented by an affinoid perfectoid space6

Spa .Tj ; TCj /, for every j � 0. Moreover, for every j � 0,�
Tj ; T

C

j

�
'
�
Mapcont.�

j�1
1 ; A[1/;Mapcont.�

j�1
1 ; A[;C1 /

�
and T ];Cj =pT

];C
j ' TCj =$

[TCj ' Mapcont

�
�
j�1
1 ; AC1=pA

C
1

�
.

Proof. We first show that Spd .A1; AC1/
j=Spd .A;AC/ are representable by affinoid

perfectoid spaces. We write a presentation of �1 D limI �i as a cofiltered limit of
finite groups. Since Spd .A1; AC1/! Spd .A;AC/ is a �1-torsor, we get that

Spd .A1; AC1/
j=Spd .A;AC/

' Spd .A;AC/ ��j�11
' lim

I

�
Spa .A[1; A

[;C
1 / ��

j�1
i

�
' lim

I

�
Spa

�
Map.�j�1i ; A[1/;Map.�j�1i ; A[;C1 /

��
is a cofiltered limit of affinoid perfectoid spaces, so it is an affinoid perfectoid space
Spa .Tj ; TCj / by [61, Proposition 6.5]. Moreover, loc. cit. implies that TCj is equal
to the $ [-adic completion of the filtered colimit colimI Map.�j�1i ; A[;C1 / and Tj D
TCj Œ

1

$[
�. In particular, we already see that

T
];C
j =pT

];C
j ' TCj =.$/

[TCj '
�
colimI Map.�j�1i ; A[;C1 /

�
=.$/[

' colimI Map
�
�
j�1
i ; A[;C1 =.$/[A[;C1

�
' colimI Map

�
�
j�1
i ; AC1=$A

C
1

�
' colimI Map

�
�
j�1
i ; AC1=pA

C
1

�
' Mapcont

�
�j�11 ; AC1=pA

C
1

�
:

Now we compute TCj and Tj . We start with TCj :

TCj ' lim
n

�
colimI Map.�j�1i ; A[;C1 /=.$ [/n

�
' lim

n

�
colimI Map.�j�1i ; A[;C1 =.$ [/nA[;C1 /

�
' lim

n
Map

�
�j�11 ; A[;C1 =.$ [/nA[;C1

�
' Mapcont

�
�j�11 ; lim

n
A[;C1 =.$ [/nA[;C1

�
' Mapcont

�
�j�11 ; A[;C1

�
:

6Recall that Spd .A1;A
C
1/ is itself represented by an affinoid perfectoid Spa .A[1;A

[;C
1 /.
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Since �1 is compact and A[1 ' A
[;C
1

�
1

$[

�
, we also have

Tj ' T
C

j

h 1
$ [

i
' colim�$[;n Mapcont

�
�j�11 ; A[;C1

�
' Mapcont

�
�j�11 ; colim�$[ A

[;C
1

�
' Mapcont

�
�j�11 ; A[1

�
finishing the proof.

Warning 7.6.5. The fiber product Spa .A1; AC1/ �Spa .A;AC/ Spa .A1; AC1/ in the
category of adic spaces is often not a perfectoid space. This already happens for
Spa .A; AC/ D Spa .Qp; Zp/ and Spa .A1; AC1/ D Spa .Qp.�p1/^; ZpŒ�p1 �^/.
However, the diamond Spd .A1; AC1/ �Spd .A;AC/ Spd .A1; AC1/ is always repre-
sented by an affinoid perfectoid space as guaranteed by Lemma 7.6.4.

Note that since Spd .A1;AC1/! Spd .A;AC/ is a�1-torsor, there is a canonical
continuous AC-linear action of �1 on AC1. Now we want to relate v-cohomology
groups of E to the continuous group cohomology of�1. This is done in the following
lemmas:

Lemma 7.6.6. Under the assumption of Set-up 7.6.3, we defineME to be the AC1=p-
module H0

�
Spd .A1; AC1/v;E

�
. Then ME is an almost faithfully flat, almost finitely

presented AC1=p-module, and for every i; j � 1,

H0
�
Spd .A1;AC1/

j=Spd .A;AC/
v ;E

�
'
aMapcont

�
�j�11 ;ME

�
'
aMapcont

�
�j�11 ;.M a

E /Š
�
;

Hi
�
Spd .A1;AC1/

j=Spd .A;AC/
v ;E

�
'
a 0:

Proof. Lemma 7.6.4 implies that all fiber products Spd .A1; AC1/
j=Spd .A;AC/ satisfy

the assumptions of Lemma 7.4.8. Thus, Lemma 7.4.8 and the computation of fiber
products in Lemma 7.6.4 imply that

Hi
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
'
a 0

for every i; j � 1, and the natural morphism

ME ˝AC1=p Mapcont

�
�j�11 ; AC1=p

�
! H0

�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
is an almost isomorphism for every j � 1. Thus, it suffices to show that the natural
morphism

ME ˝AC1=p
Mapcont

�
�j�11 ; AC1=p

�
! Mapcont

�
�j�11 ;ME

�
is an isomorphism. This can be done by writing �1 D limI �i and reducing to the
case of a finite group similarly to the proof of Lemma 7.6.4. The almost isomorphism

Mapcont.�
j�1
1 ;ME/ '

a Mapcont.�
j�1
1 ; .M a

E /Š/
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is achieved similarly using that .�/Š commutes with colimits being a left adjoint func-
tor.

Lemma 7.6.7. Under the assumption of Set-up 7.6.3, let ME be the AC1=pA
C
1-

module H0
�
Spd .A1; AC1/v;E

�
. Then there is a canonical continuous action of �1

on .M a
E
/Š compatible with the action of �1 on AC1=p, i.e., g.am/ D g.a/g.m/ for

any a 2 AC1=p and m 2ME .

Proof. By Lemma 7.6.4, the fiber product Spd .A1; AC1/ �Spd .A;AC/ Spd .A1; AC1/
is represented by an affinoid perfectoid space Spa .T2;TC2 / of characteristic p. There-
fore, we can uniquely write it as Spd .S; SC/ for an untilt of .T2; TC2 / corresponding
to the morphism Spa .T2; TC2 /! Spd .A;AC/! Spd .Qp;Zp/.

Lemma 7.4.8 implies that the descent data for the sheaf E provide us with an
.SC=pSC/a-isomorphism

.SC=p/a ˝.AC1=p/a .ME/
a
! .ME/

a
˝.AC1=p/a .S

C=p/a

satisfying the cocycle condition. By Corollary 2.2.4 (2), this defines an .AC1=p/
a-

linear morphism �
ME

�a
!
�
ME

�a
˝.AC1=p/a

�
SC=p

�a
:

By Lemma 7.4.8 and Lemma 7.6.6, this is equivalent to an .AC1=p/
a-linear morphism�

ME

�a
! Mapcont

�
�1; .M

a
E /Š
�a
:

By Lemma 2.1.9 (3), this is the same as an .AC1=pA
C
1/-linear morphism

�W
�
M a

E

�
Š
! Mapcont

�
�1;

�
M a

E

�
Š

�
:

This defines a morphism

 W�1 ! HomA
C
1=p

��
ME

�
Š
;
�
ME

�
Š

�
by the rule

.g/.m/ D .�.m//.g/:

One checks that the cocycle condition translates to the statement that  is a group
homomorphism, i.e., it defines an action of �1. Similarly, one checks that AC1=p-
linearity of � translates into the fact that this action is compatible with the action on
AC1=p. And continuity of � translates to the fact that  defines a continuous action,
i.e., the natural morphism

colimUiG�1;open
�
M a

E

�Ui
Š
!
�
M a

E

��1
Š

is an isomorphism.
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Corollary 7.6.8. Under the assumption of Set-up 7.6.3, letME be theAC1=p-module
H0
�
Spd .A1; AC1/v;E

�
. Then

Hi
�
Spd .A;AC/v;E

�
'
a Hicont

�
�1; .M

a
E /Š
�
:

Proof. Lemma 7.6.6 implies that

Hi
�
Spd .A1; AC1/

j=Spd .A;AC/
v ;E

�
'
a 0

for i; j � 1. Consequently, the cohomology groups Hi
�
Spd .A; AC/v; E

�
can be

almost computed via cohomology of the Čech complex associated with the cover-
ing Spd .A1; AC1/ ! Spd .A; AC/. Moreover, Lemma 7.6.6 also implies that the
terms of this complex can be almost identified with the bar complex computing the
continuous cohomology of the pro-finite group �1 with coefficients in the discrete
module .M a

E
/Š. We leave it to the reader to verify that the differentials in the Čech

complex coincide with the differentials in the bar complex computing the continuous
cohomology.

For future reference, we also discuss the following base change result:

Lemma 7.6.9. Let G be a pro-finite group, and let M be a discrete R-module that
has a continuous R-linear action of G. Suppose that R! A is a flat homomorphism
of rings. Then the canonical morphism Hicont.G;M/˝R A! Hicont.G;M ˝R A/ is
an isomorphism for i � 0.

Proof. We first prove the claim for H0. SinceG acts onM continuously, we can write
M D colimI Mi as a filtered colimit of G-stable R-submodules of M such that the
action ofG onMi factors through a finite groupGi . Since both H0cont.G;�/˝R A and
H0cont.G;�˝R A/ commute with filtered colimits, we can reduce to the case when the
action of G factors through a finite group quotient. In this case, the result is classical
(see, for example, [29, Exp. V, Proposition 1.9]).

In general, the result follows from the following sequence of isomorphisms:

Hicont.G;M/˝R A Š
�
colimHGG;open Hi .G=H;MH /

�
˝R A

' colimHGG;open
�
Hi .G=H;MH /˝R A

�
' colimHGG;open Hi

�
G=H;MH

˝R A
�

' colimHGG;open Hi
�
G=H; .M ˝R A/

H
�

' Hicont

�
G;M ˝R A

�
:

7.7 Nearby cycles are quasi-coherent

We start the proof of Theorem 7.1.9 and Theorem 7.1.2 in this section. Namely, we
show that the complex R��E is quasi-coherent and commutes with étale base change
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for an OC
X}
=p-vector bundle E . The main idea is to apply the results of Section 7.4

to a particular perfectoid covering of X .
For the rest of this section, we fix a perfectoid p-adic fieldK with a good pseudo-

uniformizer $ 2 OK (see Definition B.11). We always do almost mathematics with
respect to the ideal m D

S
n$

1=pnOK .

Lemma 7.7.1. Let X D Spf A0 be an admissible affine formal OK-scheme with an
affinoid generic fiber X D Spa .A;AC/, and let E be an OC

X}
=p-vector bundle. Then

Ri��E is quasi-coherent for i � 0. More precisely, the natural morphism

BHi
�
X}v ;E

�
! Ri��E

is an isomorphism for any i � 0.

Proof. The universal property of the tilde-construction implies that we do have a
natural morphism

cW BHi
�
X}v ;E

�
! Ri��E:

Recall that Ri��E is the sheafification of the presheaf defined by the rule

U 7! Hi
�
U}K;v;E

�
:

Thus, in order to show that c is an isomorphism, it suffices to show that the natural
morphism

Hi
�
X}v ;E

�
˝A0=p

�
A0=p

�
f
! Hi

�
U}K;v;E

�
is an isomorphism for any open formal subscheme Spf .A0/¹f º � Spf A0. We choose
a covering Spa .A1; A1/! Spa .A; AC/ from Lemma 6.2.13. Then the result fol-
lows from Corollary 7.5.5 since .A;AC/! .A1; A

C
1/ fits into Set-up 7.5.1.

Theorem 7.7.2. Let X be an admissible formal OK-scheme with adic generic fiber
X D XK , and let E be an OC

X}
=p-vector bundle. Then Ri��E is quasi-coherent for

i � 0. Furthermore, if fWY! X is an étale morphism with generic fiber f WY ! X ,
then the natural morphism

f�0
�
Ri�X;�E

�
! Ri�Y;�

�
Ej
Y}v

�
is an isomorphism for any i � 0.

Proof. Both claims are local on X and Y, so we can assume that X D Spf A0 and
Y D Spf B0 are affine. Then quasi-coherence of Ri��.E/ directly follows from
Lemma 7.7.1. In order to show that f�0

�
Ri�X;�E

�
! Ri�Y;�

�
EjY}v

�
is an isomor-

phism, it suffices to show that the natural morphism

Hi
�
X}v ;E

�
˝A0=pB0=p ! Hi

�
Y }v ;E

�
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is an isomorphism. This follows by the application of Corollary 7.5.5 to the covering
Spa .A1; AC1/! Spa .A;AC/ from Lemma 6.2.13.

For future reference, we also prove the following result:

Lemma 7.7.3. LetX D Spa .A;AC/ be an affinoid rigid-analytic space overK, let E

be an OC
X}
=p-vector bundle, and let K � C be a completed algebraic closure of K.

Then
Hi
�
X}v ;E

�
˝OK=p OC=p ! Hi

�
X}C;v;E

�
is an almost isomorphism.

Proof. Similarly to the reasoning above, this follows directly from Corollary 7.5.6
using the covering Spa .A1; AC1/! Spa .A;AC/ from Lemma 6.2.13.

7.8 Nearby cycles are almost coherent for smooth X and small E

The main goal of this section is to show that the complex R��E has almost coherent
cohomology sheaves for an admissible formal OK-scheme with smooth generic fiber.
The main idea is to apply the results of Section 7.6 to a particular “small” perfectoid
torsor cover of X , where one has good control over the structure group �1.

For the rest of the section, we fix a p-adic perfectoid fieldK with a good pseudo-
uniformizer $ 2 OK . We always do almost mathematics with respect to the ideal
m D

S
n$

1=pnOK .
Before we embark on the proof, we discuss the overall strategy of the proof. We

proceed in four steps: first, we show the result for bGn
m and E D OC

X}
=p; then we

deduce the result for affine formal schemes such that the adic generic fiber admits a
map to a torus TnC that is a composition of finite étale maps and rational embeddings.
After that, we finish the proof for E D OC

X}
=p and a general smooth X by choosing

a “good” covering of X, possibly after an admissible blow-up of X. We reduce the
general case to the case E D OC

X}
=p via Corollary 6.6.9.

The main ingredient for the third step is Achinger’s result ([1, Proposition 6.6.1])
that any étale morphism gW Spa .A; AC/ ! DnK can be replaced with a finite étale
morphism

g0WSpa .A;AC/! DnK :

The proof of this result in [1] is given only for rigid-analytic varieties over discretely
valued non-archimedean fields, but we need to apply it in the perfectoid situation that
is never discretely valued. So Appendix D provides the reader with a detailed proof
of this result without any discreteness assumptions.

To realize the above sketched strategy, we consider XD Spf OK
˝
T˙11 ; : : : ; T˙1n

˛
,

and set RC WD OK
˝
T˙11 ; : : : ; T˙1n

˛
and RCm WD OK

˝
T
˙1=pm

1 ; : : : ; T
˙1=pm

n

˛
. We note
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that the map Spf RCm ! Spf RC defines a �npm-torsor, thus �npm continuously acts
on RCm by RC-linear automorphisms.

Now we consider the RC-algebra

RC1 D OK
˝
T
˙1=p1

1 ; : : : ; T˙1=p
1

n

˛
D
�
colimn R

C
m

�b
where b stands for the p-adic completion. It comes with a continuous RC-linear
action of the profinite group�1 WD Zp.1/n D Tp.�p1/ on RC1. We trivialize Zp.1/
by choosing some compatible system of pi -th roots of unity .�p; �p2 ; �p3 ; : : : /. To
describe the action of �1 on RC1 we need the following definition:

Definition 7.8.1. For any a 2 Z
�
1
p

�
, we define �a as �ap

l

pl
whenever apl 2 Z. It is

easy to see that this definition does not depend on the choice of l .

Essentially by definition, the k-th basis vector k 2 �1 ' Znp acts on RC1 as

k
�
T
a1
1 � � �T

an
n

�
D �akT

a1
1 � � �T

an
n :

Lemma 7.8.2 ([59, Lemma 5.5]). Let RC, RC1 and�1 be as above. Then the coho-
mology groups Hicont

�
�1; R

C
1=p

�
are almost coherent RC=p-modules. Moreover,

the natural map

Hicont

�
�1; R

C
1=p

�
˝RC=p A

C=p ! Hicont

�
�1; R

C
1=p ˝RC=p A

C=p
�

is an isomorphism for a p-torsionfree RC-algebra AC and i � 0.

Proof. We note that RC=p is an almost noetherian ring due Theorem 2.11.5. Thus,
Corollary 2.7.8 implies that Hicont

�
�1; R

C
1=pR

C
1

�
is almost coherent if it is almost

finitely generated.
Now [8, Lemma 7.3] says that R�cont

�
�1; R

C
1=p

�
is computed via the Koszul

complex K
�
RC1=pI 1 � 1; : : : ; n � 1

�
. Then, similarly to [6, Lemma 4.6], we can

write

K
�
RC1=pI 1 � 1; : : : ; n � 1

�
D K

�
RC=pI 0; 0; : : : ; 0

�
˚

M
.a1;:::;an/

2.ZŒ1=p�\.0;1//n

K
�
RC=pI �a1 � 1; : : : ; �an � 1

�
:

We observe that

Hi
�
K.RC=pI 0; 0; : : : ; 0/

�
D ^

i
�
RC=p

�
is a free finitely presented RC=p-module. For each .a1; : : : ; an/ 2

�
Z
�
1
p

�
\ .0; 1/

�n,
we can assume that a1 has the minimal p-adic valuation for the purpose of proving
that

K
�
RC1=pI 1 � 1; : : : ; n � 1

�
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has almost finitely generated cohomology groups. Then [8, Lemma 7.10] implies that
Hi
�
K.RC=pI �a1 � 1; : : : ; �an � 1/

�
is finitely presented over RC=p and a �a1 � 1-

torsion module. Note that

vp.�
a1 � 1/ D vp.�pl � 1/ D

v.p/

pl � pl�1
! 0

where a1 D b=pl with gcd.b; p/ D 1. Furthermore, for any h 2 Z, there are only
finitely many indices .a1; : : : ; an/ 2 .Z

�
1
p

�
\ .0; 1//n with vp.aj / � h. This implies

that

Hicont

�
�1; R

C
1=p

�
D Hi

�
K.RC1=pI 1 � 1; : : : ; n � 1/

�
is a finitely presentedRC=p-module up to any$1=pn-torsion. In particular, this mod-
ule is almost finitely presented.

Now we show that Hicont.�1; R
C
1=p/ commutes with base change for any OK-

flat algebra AC. In order to show this, we observe that the .RC=p/Œ�1�-module
RC1=p comes as a tensor product M ˝OK=p R

C=p for the .OK=p/Œ�1�-module

M WD
M

.a1;:::;an/
2.ZŒ1=p�\Œ0;1//n

.OK=pOK/T
a1
1 � � �T

an
n ;

where the basis element k acts by

k.T
a1
1 � � �T

an
n / D �akT

a1
1 � � �T

an
n :

Therefore, the desired claim follows from a sequence of isomorphisms

Hicont

�
�1; R

C
1=p

�
˝RC=p A

C=p

'
�
Hicont.�1;M/˝OK=p R

C=p
�
˝RC=p A

C=p

' Hicont

�
�1;M

�
˝OK=p A

C=p

' Hicont

�
�1;M ˝OK=p A

C=p
�

' Hicont

�
�1; R

C
1=p ˝RC=p A

C=p
�
;

where the third isomorphism uses Lemma 7.6.9.

Lemma 7.8.2 combined with Corollary 7.6.8 essentially settles the first step of our
strategy. Now we move to the second step. We start with the following preliminary
result:

Lemma 7.8.3. Let A0 be a topologically finitely presented OK-algebra, and P a
topologically free A0-module, i.e., P DcL

IA0 for some set I . Then M is A0-flat.
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Proof. We start the proof by noting that [68, Tag 00M5] guarantees that it suffices to
show that TorA01 .P;M/ D 0 for any finitely presented A0-module M . We choose a
presentation

0! Q! An0 !M ! 0

and observe thatQ is finitely presented because A0 is coherent. So vanishing of Tor1
is equivalent to showing that

P ˝A0 Q! P ˝A0 A
n
0

is injective.
Now note that QŒp1�, An0Œp

1�, and MŒp1� are bounded by [11, Lemma 7.3/7],
so the same holds for

L
I Q,

L
I A

n
0 , and

L
I M . Therefore, the usual p-adic com-

pletions of
L
IQ,

L
I A

n
0 and

L
IM coincide with their derived p-adic completions.

Since derived p-adic completion is exact (in the sense of triangulated categories) and
coincides with the usual one on these modules, we get that the sequence

0!cL
I

Q!cL
I

An0 !cL
I

M ! 0

is exact.
Now we want to show that this short exact sequence is the same as the sequence

P ˝A0 Q! P ˝A0 A
n
0 ! P ˝A0 M ! 0:

As a consequence, this will show that P ˝A0 Q! P ˝A0 A
n
0 is injective.

For each A0-module N , there is a canonical map

P ˝A0 N !cL
I

N:

So we have a morphism of sequences:

P ˝A0 Q P ˝A0 A
n
0 P ˝A0 M 0

0 cL
IQ cL

IA
n
0

cL
IM 0:

The map An0 ˝A0 P !cL
IA

n
0 is an isomorphism because An0 ˝A0 P D P

n is
already p-adically complete. This implies that the arrow

M ˝A0 P !cL
I

M

https://stacks.math.columbia.edu/tag/00M5
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is surjective. But then

P ˝A0 Q!cL
I

Q

is surjective since M was an arbitrary finitely presented A-module. Now a diagram
chase implies that

M ˝A0 P !cL
I

M

is also injective. And, therefore, it is an isomorphism. So

P ˝A0 Q!cL
I

Q

is also an isomorphism. Therefore, these two sequences are the same. In particular,

P ˝A0 Q! P ˝A0 A
n
0

is injective.

To establish the second part of our strategy, we will also need a slightly refined
version of [59, Lemma 4.5] specific to the situation of an étale morphism to a torus.

We recall that we have defined

RC WD OKhT
˙1
1 ; : : : ; T˙1n i;

RCm WD OKhT
˙1=pm

1 ; : : : ; T˙1=p
m

n i;

and
RC1 D OK

˝
T
˙1=p1

1 ; : : : ; T˙1=p
1

n

˛
D
�
colimn R

C
m

�b;
and the group �1 ' Zmp continuously acts on RC1. We also define R (resp. Rm
and R1) as RC

�
1
p

�
(resp. RCm

�
1
p

�
and RC1

�
1
p

�
). Furthermore, for an étale morphism

Spa .A;AC/! Spa .R;RC/ D Tn, we define a Huber pair�
Am; A

C
m

�
WD
�
Rm ˝R A; .Rm ˝R A/

C
�
D
�
Rmb̋RA; .Rmb̋RA/C�;

where .Rmb̋RA/C is the integral closure of the image of RCm b̋RCAC in Rmb̋RA.
Similarly, we define

AC1 WD
�
colimn A

C
m

�b
and A1 WD AC1

�
1
p

�
.

Lemma 7.8.4. [59, Lemma 4.5] Let Spa .A; AC/! Spa .R; RC/ D Tn be a mor-
phism that is a composition of finite étale maps and rational embeddings. Then the
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pair .A1; AC1/ is an affinoid perfectoid pair, Spd .A1; AC1/ ! Spd .A; AC/ is a
�1-torsor, and, for any n 2 Z, there exists m such that the morphism

ACmb̋RCmRC1 ! AC1

is injective with cokernel annihilated by $1=pn .

Proof. We note that [59, Lemma 4.5] proves that .A1; AC1/ is an affinoid perfec-
toid space (denoted by .S1; SC1/ there). By construction (and Proposition 6.1.6 (6)),
Spd .Am; ACm/! Spd .A; AC/ is a .Z=pmZ/n-torsor. Therefore Spd .A1; AC1/ '
limm Spd .Am; ACm/ (see Proposition 6.1.6 (5)) is a �1 ' limm .Z=pnZ/n-torsor.
Thus, we are only left to show that, for any n 2 Z, there exists m such that the mor-
phism

ACmb̋RCmRC1 ! AC1

is injective with the cokernel annihilated by $1=pn .
In the following, we denote by zAm the p-adic completion of the p-torsionfree

quotient of ACm˝RCmR
C
1 ( zAm is denoted by Am in [59, Lemma 4.5]). Then [59,

Lemma 4.5] shows that, for any n 2 Z, there exists m such that the map zAm ! AC1
has cokernel annihilated by $1=pn . Moreover, the map becomes an isomorphism
after inverting p. We observe that this implies that zAm ! AC1 is injective as the
kernel should be p1-torsion, but the p-adic completion of a p-torsionfree ring is
p-torsion free. Thus, the only thing we need to show is that ACm˝RCmR

C
1 is already

p-torsion free for any m. We note that RC1 is topologically free as an RCm-module
because

RC1 D OKhT
˙1=p1

1 ; : : : ; T˙1=p
1

n i

D cL
.b1;:::;bn/2ZnnmZn

OKhT
˙1=pm

1 ; : : : ; T˙1=p
m

n iT
1=pb1

1 � � �T 1=p
bn

n

D cL
.b1;:::;bn/2ZnnmZn

RCm � T
1=pb1

1 � � �T 1=p
bn

n :

Thus, RC1 is RCm-flat for any m due to Lemma 7.8.3. Therefore, ACm˝RCmR
C
1 is flat

over ACm, so it is, in particular, OK-flat. As a consequence, it does not have any non-
zero p-torsion. This finishes the proof.

Lemma 7.8.5. Let X D Spf A0 be an affine admissible formal OK-scheme with
generic fiber X D Spa .A; AC/ that admits a map f WX ! Tn D Spa .R; RC/ that
factors as a composition of finite étale morphisms and rational embeddings. Then the
cohomology groups

Hi
�
X}v ;O

C

X}
=p
�

are almost coherent A0=p-modules for i � 0.
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Proof. We denote the completed algebraic closure of K by C . Then we note that
Lemma 7.7.3 implies that

Hi
�
X}v ;O

C

X}
=p
�
˝OK=p OC=p ! Hi

�
X}C;v;O

C

X}
C

=p
�

is an almost isomorphism for any i � 0. Therefore, faithful flatness of the morphism
OK=p ! OC=p and Lemma 2.10.5 imply that it suffices to prove the claim under
the additional assumption that K D C is algebraically closed.

Theorem 2.11.5 ensures that A0 is an almost noetherian ring, thus it suffices to
show that Hi .X}v ;O

C

X}
=p/ are almost finitely generated A0=p-modules.

Now the generic fiber X is smooth over C , so [12, Corollary 6.4.1/5] implies
that AC D Aı is a flat, topologically finitely type OC -algebra that is finite over A0.
Thus Lemma 2.8.3 ensures that it suffices to show that Hi

�
X}v ;O

C

X}
=p
�

is an almost
finitely generatedAC=pAC-module for i � 0. We note thatAC is almost noetherian as
a topologically finitely generated OC -algebra, so almost coherent and almost finitely
generated AC-modules coincide.

We consider the �1-torsor Spd .A1; AC1/! Spd .A;AC/ that was constructed
in Lemma 7.8.4. Thus, Corollary 7.6.8 ensures that

R�
�
X}v ;O

C

X}
=p
�
'
a R�cont

�
�1; A

C
1=p

�
:

So we reduce the problem to showing that the complex R�cont
�
�1; A

C
1=p

�
has

almost finitely generated cohomology modules.
We pick any " 2 Q>0 and use Lemma 7.8.4 to find m such that the map

ACmb̋RCmRC1 ! AC1

is injective with cokernel killed by p". Thus, we conclude that the map

ACm=p ˝RCm=p R
C
1=p ! AC1=p

has kernel and cokernel annihilated by p". Then it is clear that the induced map

Hicont

�
�1; A

C
m=p ˝RCm=p R

C
1=p

�
! Hicont

�
�1; A

C
1=p

�
has kernel and cokernel annihilated by p2" for any i � 0. Therefore, Lemma 2.5.7
implies that it is sufficient to show that Hicont

�
�1; A

C
m=p ˝RCm=p R

C
1=p

�
is almost

finitely generated over AC=p for any m � 0 and any i � 0.
The trick now is to consider the subgroup pm�1 that acts trivially on ACm=p to

pull it out of the cohomology group by Lemma 7.8.2. More precisely, we consider
the Hochschild–Serre spectral sequence

Ei;j2 DHi
�
�1=p

m�1;H
j
cont.p

m�1; A
C
m=p ˝RCm=p R

C
1=p/

�
) HiCjcont

�
�1; A

C
m=p ˝RCm=p R

C
1=p

�
:
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We recall that the group cohomology of any finite group G can be computed via
an explicit bar complex. Namely, for a G-module M , the complex looks like

C0.G;M/
d0

�! C1.G;M/
d1
�! � � � ;

where
Ci .G;M/ D

®
f W Gi !M

¯
'M˚i �#G

and

d i .f /.g0; g1; : : : ; gi / Dg0 � f .g1; : : : ; gi /

C

iX
jD1

.�1/jf .g0; : : : ; gj�2; gj�1gj ; gjC1; : : : ; gi /

C .�1/iC1f .g0; : : : ; gi�1/:

In caseM is an AC=p-module and G acts AC=p-linearly onM , all terms Ci .G;M/

have a natural structure of an AC=p-module, and the differentials are AC=p-linear.
Moreover, the terms Ci .G;M/ are finite direct sums of M as an AC=p-module. In
particular, they are almost coherent, if so is M . Thus, Lemma 2.6.8 guarantees that
all cohomology groups Hi .G; M/ are almost coherent over AC=p if M is almost
coherent (equivalently, almost finitely generated) over AC=p.

We now apply this observation (together with Lemma 2.6.8) to

G D �1=p
m�1 and M D Hjcont

�
pm�1; A

C
m=p ˝RCm=p R

C
1=p

�
to conclude that it suffices to show that Hjcont

�
pm�1;A

C
m=p˝RCm=p R

C
1=p

�
is almost

coherent (equivalently, almost finitely generated) over AC=p for any j � 0, m � 0.
We note that ACm is finite over AC by [12, Corollary 6.4.1/5]. Thus, Lemma 2.8.3
implies that it is enough to show that Hjcont

�
pm�1; A

C
m=p ˝RCm=p R

C
1=p

�
is almost

finitely generated over ACm=p for i � 0 andm� 0. Now we use Lemma 7.8.2 to write

Hjcont
�
pm�1; A

C
m=p ˝RCm=p R

C
1=p

�
' Hjcont

�
pm�1; R

C
1=p

�
˝RCm=p A

C
m=p:

Moreover, Lemma 7.8.2 guarantees that Hjcont
�
pm�1; R

C
1=p

�
is almost finitely gen-

erated over RCm=p. Thus Hjcont
�
pm�1; R

C
1=p

�
˝RCm=p A

C
m=p is almost finitely gen-

erated over ACm=p by Lemma 2.8.1.

Corollary 7.8.6. Let X D Spf A0 and X D Spa .A;AC/ be as in Lemma 7.8.5, and
let E be a small OC

X}
=p-vector bundle. Then the cohomology group Hi .X}v ; E/ is

almost coherent over A0=pA0 for any i � 0.

Proof. Similarly to the proof of Lemma 7.8.5, we can assume that K D C is alge-
braically closed and A0 D Aı D AC is almost noetherian.
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By assumption, we can find a finite étale surjection Y ! X that splits E . SinceX
is noetherian, we can dominate it by a Galois cover to assume that Y ! X is a G-
torsor for a finite group G such that Ej

Y}v
' .OC

Y}
=p/r for some r . Then we have

the Hochschild–Serre spectral sequence

Ei;j2 D Hi
�
G;Hj

�
Y }v ;

�
OC
Y}
=p
�r��
) HiCj

�
X}v ;E

�
:

Now note that [12, Corollary 6.4/5] implies that OCX .X/! OCY .Y / is a finite mor-
phism. Therefore, similarly to the proof of Lemma 7.8.5, the argument with the
explicit bar complex computing Hi .G;�/ implies that it is sufficient to show that
Hj
�
Y }v ;

�
OC
Y}
=p
�r� is almost coherent over OC

Y}
.Y }/=p for j � 0. But this is done

in Lemma 7.8.5.

Lemma 7.8.7. Let K be a p-adic perfectoid field, let X be an admissible formal
OK-scheme with adic generic fiber X D XK , and let E be an OC

X}
=p-vector bundle

on X}v . Then there is a collection of

(1) an admissible blow-up X0 ! X,

(2) a finite open affine cover X0 D
S
i2I Ui ,

such that, for every i 2 I , the restriction Ej.Ui;K/}v is small.

Proof. Corollary 6.6.9 ensures that there is a finite open coverX D
S
i2I Ui such that

Ej.Ui;K/}v can be trivialized by a finite étale surjection. Therefore, [11, Lemma 8.4/5]
implies that there is an admissible blow-up X0 ! X with a covering X0 D

S
i2I Ui

such that Ui;K D Ui . We can then refine U to assume that each Ui D Spf Ai;0 is
affine.

Theorem 7.8.8. Let X be an admissible formal OK-scheme with smooth adic generic
fiber X and mod-p fiber X0. Then

.R��E/a 2 DCacoh.X0/
a

for any OC
X}
=p-vector bundle E .

Proof. First, we note that the claim is clearly Zariski-local on X and descends through
rig-isomorphisms by the almost proper mapping theorem (see Theorem 5.1.3). Thus
Lemma 7.8.7 implies that it suffices to prove the theorem for X D Spf A0 an affine
formal OK-scheme and a small E .

Now we note that X is rig-smooth in the terminology of [15, Section 3]. Thus, [15,
Proposition 3.7] states that there are an admissible blow-up � WX0!X and a covering
of X0 by open affine formal subschemes U0i with rig-étale morphisms f 0i WU

0
i !
yAni

OK
,

i.e., the adic generic fibers f 0i;K WU
0
i;K ! DniK are étale. We apply the almost proper

mapping theorem (see Theorem 5.1.3) again to conclude that it suffices to show the
theorem for X0. Moreover, since the claim is Zariski-local on X, we can even pass to
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each U0i separately. So we reduce to the case where X D Spf A0 is affine, admits a
rig-étale morphism f 0WX! yAd

OK
, and E is small.

We wish to reduce the question to the situation of Corollary 7.8.6, though we are
still not quite there. The key trick now is to use Theorem D.4 to find a finite rig-étale
morphism fWX! yAd

OK
. In particular, the generic fiber fK WX ! DdK is a finite étale

morphism. So the only thing we are left to do is to embed DdK into TdK as a rational
subset. This is done by observing that

DdK ' TdK
�T1 � 1

p
; : : : ;

Td � 1

p

�
� TdK :

In particular, X admits an étale morphism to a torus that is a composition of a finite
étale morphism and a rational embedding. Therefore, Corollary 7.8.6 implies that

R�
�
X}v ;E

�a
2 DCacoh

�
A0=pA0

�a
:

Finally, we note that Theorem 7.7.2 ensures that BR�
�
X}v ;E

�
' R��E , so

.R��E/a 2 DCacoh.X0/
a

by Theorem 4.4.6.

7.9 Nearby cycles are almost coherent for general X and E

The main goal of this section is to generalize Theorem 7.8.8 to the case of a general
generic fiber X . The idea is to reduce the general case to the smooth case by means
of Lemma 5.4.4, resolution of singularities, and proper hyperdescent.

For the rest of this section, we fix a perfectoid p-adic fieldK with a good pseudo-
uniformizer $ 2 OK (see Definition B.11). We always do almost mathematics with
respect to the ideal m D

S
n$

1=pnOK .

Lemma 7.9.1. Let Spf A0 be an admissible affine formal OK-scheme with adic
generic fiber Spa .A; AC/. Let f WX ! Spa .A; AC/ be a proper morphism with
smoothX , and let E be an OCSpd .A;AC/=p-vector bundle. Then Hi .X}v ;E/ is an almost
coherent A0=p-module for any i � 0.

Proof. First, [13, Assertion (c) on p. 307] implies that we can choose an admissible
formal OK-model X of X with a morphism fWX! Spa A0 such that fK D f . The
map f is proper by [51, Lemma 2.6] (or [65, Corollary 4.4 and 4.5]). Now we can
compute

R�
�
X}v ;E

�
' R�

�
X0;R��E

�
:

Theorem 7.8.8 implies that R��E 2 DCacoh.X0/ as X is smooth. Thus, Theorem 5.1.3
implies that

R�
�
X}v ;E

�
' R�

�
X0;R��E

�
2 DCacoh

�
A0=p

�
:
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Now we recall the notion of a hypercovering that will be crucial for our proof.
We refer to [68, Tag 01FX] and [21] for more detail.

Definition 7.9.2. Let C be a category admitting finite limits. Let P be a class of
morphisms in C which is stable under base change, preserved under composition
(hence under products), and contains all isomorphisms. A simplicial object X� in C

is said to be a P-hypercovering if, for all n � 0, the natural adjunction map7

X� ! coskn.skn.X�//

induces a map XnC1! .coskn.skn.X�///nC1 in degree nC 1 which is in P. If X� is
an augmented simplicial complex, we make a similar definition but also require the
case n D �1 (and then we say X� is a P-hypercovering of X�1).

Lemma 7.9.3. Let X be a quasi-compact, quasi-separated rigid-analytic variety
overK. Then there is a proper hypercovering aWX�! X such that allXi are smooth
over K.

Proof. First, we note that quasi-compact rigid-analytic varieties over Spa .K;OK/
admit resolution of singularities by [66, Theorem 5.2.2]. Thus, the proof of [21,
Theorem 4.16] (or [68, Tag 0DAX]) carries over to show that there is a proper hyper-
covering aWX� ! X such that all Xi are smooth over Spa .K;OK/.

Lemma 7.9.4. Let aWX� ! X be a proper hypercovering of a rigid-analytic vari-
ety X . Then a}WX}� ! X} is a v-hypercovering of X}.

Proof. The functor .�/} commutes with fiber products by Proposition 6.1.6 (6). So�
.coskn.sknX�//nC1

�}
'
�
coskn

�
sknX}�

��
nC1

:

Therefore, the only thing we need to show is that .�/} sends proper coverings to
v-coverings. This follows from Lemma 6.1.14 and Example 6.1.12.

Theorem 7.9.5. Let X be an admissible formal OK-scheme with adic generic fiberX
and mod-p fiber X0 WD X �Spf OK Spec OK=p. Then

R��E 2 DCacoh.X0/

for any OC
X}
=p-vector bundle E .

Proof. The claim is Zariski-local on X, so we can assume that X D Spf A0 is affine.
Thus, Theorem 7.7.2 and Theorem 4.4.6 ensure that it suffices to show that

R�
�
X}v ;E

�
2 DCacoh

�
A0=p

�
:

7See [21, Section 3] (or [68, Tag 0AMA]) for the definition of the coskeleton functor.

https://stacks.math.columbia.edu/tag/01FX
https://stacks.math.columbia.edu/tag/0DAX
https://stacks.math.columbia.edu/tag/0AMA
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Lemma 7.9.3 shows that there is a proper hypercovering aWX�! X with smooth Xi ,
and Lemma 7.9.4 implies that aWX}� ! X} is then a v-hypercovering.

The proof of [68, Tag 01GY] implies that there is a spectral sequence

Ei;j1 D Hj
�
X}i;v;E

�
) HiCj

�
X}v ;E

�
:

Lemma 7.9.1 guarantees that Hj .X}i;v; E/ is almost coherent over A0=p for every
i; j � 0. Therefore, Lemma 2.6.8 guarantees that HiCj

�
X}v ; E

�
is almost coherent

over A0=p for every i C j � 0.

7.10 Cohomological bound on nearby cycles

The main goal of this section is to show that R��E is almost concentrated in degrees
Œ0; d � for a small vector bundle E . This claim turns out to be pretty hard. To achieve
this result, we have to use a recent notion of perfectoidization developed in [10] that
gives a stronger version of the almost purity theorem in the world of diamonds. Our
approach is strongly motivated by the proof of [30, Proposition 7.5.2].

For the rest of this section, we fix a perfectoid p-adic fieldK with a good pseudo-
uniformizer $ 2 OK . We always do almost mathematics with respect to the ideal
m D

S
n$

1=pnOK .
In this section, it is crucial that we work on the level of diamonds. The main

observation is that the functor

.�/}W
®
(Pre-)Adic Analytic Spaces

¯
!
®
Diamonds

¯
is not fully faithful, so it is possible that a non-perfectoid (pre)-adic space becomes
representable by an affinoid perfectoid space after diamondification (we already saw
this phenomenon in Warning 7.6.5). An explicit construction of such examples is the
crux of our argument in this section. To construct such spaces, we need the following
theorem of B. Bhatt and P. Scholze:

Theorem 7.10.1 ([10, Theorem 10.11]). Let R be an integral perfectoid ring.8 Let
R ! S be the p-adic completion of an integral map. Then there exists an integral
perfectoid ring Sperfd together with a map of R-algebras S ! Sperfd, such that it is
initial among all R-algebra maps S ! S 0 for S 0 being integral perfectoid.

Now we show how this result can be used to obtain a cohomological bound on
R��E . We recall that a torus

Td D Spa
�
K
˝
T˙11 ; : : : ; T˙1d

˛
;OK

˝
T˙11 ; : : : ; T˙1d

˛�
D Spa

�
R;RC

�
8We use [8, Definition 3.5] as the definition of integral perfectoid rings here. This definition

coincides with Definition 7.4.2 in the p-torsionfree case, but it is less restrictive in general.

https://stacks.math.columbia.edu/tag/01GY
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admits a map

Td1 D Spa
�
K
˝
T
˙1=p1

1 ; : : : ; T
˙1=p1

d

˛
;OK

˝
T
˙1=p1

1 ; : : : ; T
˙1=p1

d

˛�
! Td

such that Td1 is an affinoid perfectoid space, and the map becomes a �1 D Zp.1/d -
torsor after applying the diamondification functor.

Now we can embed a d -dimensional disk Dd as a rational subdomain

Dd D Td
�T1 � 1

p
; : : : ;

Tn � 1

p

�
� Td ;

so the fiber product
Dd1 D Dd �Td Td1 ! Dd

is again an affinoid perfectoid covering of Dd by Lemma 7.8.4.
If X D Spa .A;AC/! Dd is an arbitrary finite morphism, then the fiber product

X �Dd Dd1 may not be an affinoid perfectoid space (or even an adic space). How-
ever, it turns out that the associated diamond is always representable by an affinoid
perfectoid space.

Lemma 7.10.2. Let f WX D Spa .A;AC/!Dd be a finite morphism of rigid-analytic
K-spaces. Then the fiber product X}1 WD X

} �Dd;} Dd;}1 is representable by an affi-
noid perfectoid space (of characteristic p).

Proof. Let us say that Dd D Spa .S; SC/ and bDd1 D Spa .S1; SC1/. The map f
defines an integral morphism SC ! AC, we define

A�1 WD S
C
1
b̋
SCA

C:

This is a p-adic completion of an integral morphism over an integral perfectoid
ring SC1 (see [8, Lemma 3.20]), so there is a map

A�1 !
�
A�1

�
perfd

initial to an integral perfectoid ring. We define A1 as A�1
�
1
p

�
and AC1 as the inte-

gral closure of A�1 in A1. Then .A1; AC1/ is an affinoid perfectoid pair by [8,
Lemma 3.21]. Therefore, it suffices to show that the natural morphism

Spd
�
A1; A

C
1

�
! Spd

�
A;AC

�
�Spd .S;SC/ Spd

�
S1; S

C
1

�
is an isomorphism. This can be easily checked on the level of rational points by the
universal property of .A�1/perfd and the construction of the diamondification functor
in Definition 6.1.5 (and [8, Lemma 3.20] that relates affinoid perfectoid pairs and
integral affinoid rings).
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Theorem 7.10.3. Let X D Spf A0 be an admissible formal OK-scheme with adic
generic fiber X D Spa .A; AC/ of dimension d , and let E be a small OC

X}
=p-vector

bundle. Then
R�

�
X}v ;E

�a
2 DŒ0;d�acoh

�
A0=p

�a
:

Proof. Lemma 7.9.1 ensures that R�
�
X}v ;E

�
2 Dacoh.A0=p/, so it suffices to show

that
Hi
�
X}v ;E

�
'
a 0

for i > d . The Noether normalization theorem (see [11, Proposition 3.1.3]) implies
that there is a finite morphism f WX ! Dd . We consider the �1 ' Zp.1/d -torsor

X}1 ' X
}
�Dd;} Dd;}1 ! X}:

As a consequence of Lemma 7.10.2, X}1 is represented by an affinoid perfectoid
space Spd

�
A1;A

C
1

�
D Spa

�
A[1;A

[;C
1

�
. Thus, we are in the situation of Set-up 7.6.3.

So Corollary 7.6.8 implies that

Hi
�
X}v ;E

�
'
a Hicont

�
�1; .M

a
E /Š
�
;

where ME ' H0
�
X}1;v; E

�
. Therefore, the claim follows from the observation that

the cohomological dimension of�1 ' Zp.1/d ' Zdp is d due to [8, Lemma 7.3].

7.11 Proof of Theorem 7.1.2

The main goal of this section is to give a full proof of Theorem 7.1.2. Most of the
hard work was already done in the previous sections.

For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-
uniformizer $ 2 OK as in Remark B.10. We always do almost mathematics with
respect to the ideal m D

S
n$

1=pnOK .

Theorem 7.11.1. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d and mod-p fiber X0, and let E be an OCX}=p-vector bundle. Then

(1) R��E 2 DCqc;acoh.X0/ and .R��E/a 2 DŒ0;2d�acoh .X0/
a;

(2) if X D Spf A is affine, then the natural map

BHi
�
X}v ;E

�
! Ri��

�
E
�

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�0
�
Ri�X;�.E/

�
! Ri�Y;�

�
EjY}

�
is an isomorphism for any i � 0;
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(4) if X has an open affine covering X D
S
i2IUi such that Ej.Ui;K/} is small,

then �
R��E

�a
2 DŒ0;d�acoh

�
X0
�a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2IUi such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I of
X such that �

R�X0
i
;�E

�a
2 DŒ0;d�acoh

�
X0i;0

�a
;

for each i 2 I .

Proof. The first part of (1), (2), and (3) follow from Theorem 7.7.2 together with
Theorem 7.9.5. Now to show that R��E is almost concentrated in degrees Œ0; 2d �, it
suffices to show that, for every affine U D Spf A0 � X, the complex R�.U}K;v;E/

a

(almost) lies in DŒ0;2d�.A0=p/a. By Lemma 7.7.3 and full faithful flatness of OK=p!

OC=p, it is sufficient to prove it under the additional assumption that K D C is
algebraically closed. Then Theorem 6.5.7 and Theorem 6.5.9 imply that

E 0 WD R��R��E

is an OCXét
=p-vector bundle concentrated in degree 0. Therefore,

R�
�
U}C;v;E

�
' R�

�
UC;ét;E

0
�
;

and
R�

�
UC;ét;E

0
�
2 DŒ0;2d�.A0=p/

due to [38, Corollary 2.8.3 and Corollary 1.8.8].
In order to show (4), we consider an open affine covering XD

S
i2IUi and denote

Ui D Spf Ai . Then Part (2) implies that it suffices to show that

R�
�
.Ui;K/

}
v ;E

�a
2 DŒ0;d�acoh

�
Ai=p

�a
for each i 2 I . This follows from Theorem 7.10.3 and the assumption that Ej.Ui;K/}

is small.
(5) now follows from Lemma 7.8.7.

7.12 Proof of Theorem 7.1.9

The main goal of this section is to prove Theorem 7.1.9. The idea is to reduce to the
case of a constant Zariski-constructible sheaf through a sequence of reductions; in
this case, the result follows directly from Theorem 7.1.2.
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For the rest of this section, we fix a perfectoid p-adic field K with a pseudo-
uniformizer $ 2 OK as in Remark B.10. We always do almost mathematics with
respect to the ideal m D

S
n$

1=pnOK .
We consider the following diagram of morphisms of ringed sites:

�
X}v ;O

C

X}
=p
� �

X}qproKet;OX}qp
C =p

� �
Xét;O

C

Xét
=p
� �

XZar;OX0

�
:

�

� � t

Both �� and t� will play an important role in the proof.

Lemma 7.12.1. Let fWX!Y be a finite morphism of admissible formal OK-schemes
with adic generic fiber f WX ! Y , and F 2 Dbzc.X IFp/. Then the natural morphism

R�Y;�

�
f�F ˝OC

Y}
=p
�
! Rf0;�

�
R�X;�

�
F ˝OC

X}
=p
��

is an isomorphism in D.Y0/.

Proof. First, we note that f is finite, and so f� ' Rf� due to [38, Proposition 2.6.3].
Now the proof of Corollary 7.3.8 just goes through using Corollary 7.2.9 (that does
not use Theorem 7.1.9 as an input) in place of Lemma 7.3.7.

Lemma 7.12.2. Let f WX ! Y be a finite morphism of quasi-compact, quasi-sepa-
rated rigid-analytic varieties over K, and F 2 DŒr;s�zc .X IFp/ such that

R�X;�

�
F ˝OC

X}
=p
�a
2 DŒr;sCd�acoh

�
X0
�a

(resp.
R�X;�

�
F ˝OC

X}
=p
�
2 DCqc;acoh

�
X0
�
/

for any formal OK-model X of X . Then, for any formal OK-model Y of Y ,

R�Y;�

�
f�F ˝OC

Y}
=p
�a
2 DŒr;sCd�acoh .Y0/

a

(resp.
R�Y;�

�
f�F ˝OC

Y}
=p
�
2 DCqc;acoh

�
Y0

�
/:

Proof. First, we note that we can choose a finite morphism fWX! Y such that its
generic fiber fK is equal to f (for example, this follows from [25, Corollary II.5.3.3,
II.5.3.4]).

Now Lemma 7.12.1 ensures that the natural morphism

R�Y;�

�
f�F ˝OC

Y}
=p
�
! Rf0;�

�
R�X;�.F ˝OC

X}
=p/

�
is an isomorphism. Therefore, R�Y;�

�
f�F ˝ OCY}=p

�
already lies in Dacoh.Y0/

a

(resp. in Dqc;acoh
�
Y0

�
) by Theorem 5.1.3. The cohomological bound follows from
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Proposition 3.5.23 and the fact that the finite morphism f0 is (almost) exact on (al-
most) quasi-coherent sheaves.

Lemma 7.12.3. Let X be an admissible formal OK-scheme with adic generic fiberX
of dimension d and mod-p fiber X0, and let F 2 DŒr;s�zc .X IFp/. Then

Rt�
�
F ˝OCXét

=p
�
' R��

�
F ˝OC

X}
=p
�
2 DCqc;acoh

�
X0
�
;

and
R��

�
F ˝OC

X}
=p
�a
2 DŒr;sCd�qc;acoh

�
X0
�a
:

Proof. Lemma 6.7.10 and Remark 7.1.8 imply that

Rt�
�
F ˝OCXét

=p
�
' R��

�
F ˝OC

X}
=p
�
:

In what follows, we will freely identify these sheaves. Also, we can assume that F is
concentrated in degree 0, i.e., F is a usual Zariski-constructible sheaf.

Step 1: The case of a local system F . In this case, E WDF ˝OC
X}
=p fits the assump-

tion of Theorem 7.11.1. Since an Fp-local system on any rigid-analytic variety Y
splits by a finite étale cover, so F ˝ OC

X}
=p is small for any open affinoid U � X .

Thus, the desired claim follows from Theorem 7.11.1.

Step 2: Case of a zero-dimensional X . If X is of dimension 0, then any Zariski-
constructible sheaf on X is a local system. So the claim follows from Step 1.

Now we argue by induction on dimX . We suppose the claim is known for every
rigid-analytic variety of dimension less than d (and any Zariski-constructible F ) and
wish to prove the claim for X of dimension d .

Step 3: Reduction to the case of a reduced X . Consider the reduction morphism
i WXred ! X . Then iét is an equivalence of étale topoi, we see that

i�i
�1F ! F

is an isomorphism. Thus the claim follows from Lemma 7.12.2.

Step 4: Reduction to the case of a normal X . Consider the normalization morphism
f WX 0 ! X . It is finite by [20, Theorem 2.1.2] and an isomorphism outside of a
nowhere dense Zariski-closed subset Z. We use [38, Proposition 2.6.3] and argue on
stalks to conclude that the natural morphism F ! f�f

�1F is injective. Therefore,
there is an exact sequence

0! F ! f�f
�1F ! i�G ! 0;

where i WZ ! X is a Zariski-closed immersion with dimZ < dimX and G is a
Zariski-constructible sheaf on Z. Now the induction hypothesis and Lemma 7.12.2
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ensure that

R��
�
i�G ˝OC

X}
=p
�
2 DCqc;acoh

�
X0
�
;

R��
�
i�G ˝OC

X}
=p
�a
2 DŒ0;d�1�acoh

�
X0
�a
:

Therefore, it suffices to show the claim for f�f �1F . Thus, Lemma 7.12.2 guarantees
that it suffices to show that

R�X0;�

�
f �1F ˝OC

X 0}
=p
�
2 DCqc;acoh

�
X00
�
;

R�X0;�

�
f �1F ˝OC

X 0}
=p
�a
2 DŒr;sCd�acoh

�
X00
�a

for any admissible formal OK-model X0 of X 0. So we may and do assume that X is
normal.

Step 5: Reduction to the case F D Fp . By definition of a Zariski-constructible sheaf,
there are a nowhere dense Zariski-closed subset i WZ!X with the open complement
j WU ! X and an Fp-local system L on U such that F jU ' L. In particular, there is
a short exact sequence

0! jŠL! F ! i�F jZ ! 0:

Similarly to the argument in Step 4, it suffices to prove the claim for F D jŠL.
Then “méthode de la trace” (see [68, Tag 03SH]) implies that there is a finite

étale covering gWU 0 ! U of degree prime-to-p such that L0 WD LjU 0 is an iterated
extension of constant sheaves Fp . Then L is a direct summand of g�.L0/. Thus, it is
enough to prove the claim for

F D jŠ.g�L0/:

Moreover, it suffices to prove the claim for F D jŠ.g�Fp/ because the claim of
Lemma 7.12.3 satisfies the 2-out-of-3 property, and both functors g� and jŠ are exact.

Now we use [32, Theorem 1.6] to extend g to a finite morphism g0WX 0 ! X .
Then a similar reduction shows that it suffices to prove the claim for F D g0�.Fp/.
This case follows from Step 1 and Lemma 7.12.2.

Theorem 7.12.4. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d and mod-p fiber X0, and F 2 DŒr;s�zc .X IFp/. Then

(1) there is an isomorphism Rt�
�
F ˝OCXét

=p
�
' R��

�
F ˝OC

X}
=p
�
;

(2) R��
�
F ˝OC

X}
=p
�
2DCqc;acoh.X0/, and R��

�
F ˝OC

X}
=p
�a
2DŒr;sCd�acoh .X0/

a;

(3) if X D Spf A is affine, then the natural map

DHi
�
X}v ;F ˝OC

X}
=p
�
! Ri��

�
F ˝OC

X}
=p
�

is an isomorphism for every i � 0;

https://stacks.math.columbia.edu/tag/03SH
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(4) the formation of Ri��
�
F ˝ OC

X}
=p
�

commutes with étale base change, i.e.,
for any étale morphism fWY ! X with adic generic fiber f W Y ! X , the
natural morphism

f�0
�
Ri�X;�

�
F ˝OC

X}
=p
��
! Ri�Y;�

�
f �1F ˝OC

Y}
=p
�

is an isomorphism for any i � 0.

Proof. (1) and (2) follow from Lemma 7.12.3. Now (3) follows from Lemma 4.4.4
and the isomorphism

R�
�
X0;R��

�
F ˝OC

X}
=p
��
' R�

�
X}v ;F ˝OC

X}
=p
�
:

We are left to show (4). By (1), it suffices to show that the natural morphism

f�0
�
Ri tX;�

�
F ˝OCXét

=p
��
! Ri tY;�

�
f �1F ˝OCYét

=p
�

is an isomorphism. Moreover, [7, Proposition 3.6] ensures that it suffices to prove
the claim for F D g�.Fp/ for some finite morphism gWX 0 ! X . Then we can lift
it to a finite morphism gWX0 ! X as in the proof of Lemma 7.12.2. Then we have a
commutative diagram

.Y 0ét;O
C

Y 0ét
=p/ .Y00;OY0

0
/

.X 0ét;O
C

X 0ét
=p/ .X00;OX0

0
/

.Yét;O
C

Yét
=p/ .Y0;OY0/

.X;OCXét
=p/ .X0;OX0/

f 0

g0

tY0

f0
0

g0
0

g

tX0

f

tY

f0
tX

g0

(7.12.1)
with Y0 D Y �X X0 and Y 0 being its adic generic fiber. Then we have a sequence of
isomorphisms:

f�0
�
RtX;�

�
g�
�
Fp
�
˝OCXét

=p
��
' f�0

�
RtX;�

�
Rg�OCX 0ét

=p
��

' f�0
�
Rg0;�

�
RtX0;�OCX 0ét

=p
��

' Rg00;�
�
f 00
��RtX0;�OCX 0ét

=p
��

' Rg00;�
�
RtY0;�

�
OC
Y 0ét
=p
��

' RtY;�
�
Rg0�O

C

Y 0ét
=p
�
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' RtY;�
�
g0�
�
Fp
�
˝OCYét

=p
�

' RtY;�
�
f �1

�
g�Fp

�
˝OCYét

=p
�
:

The first isomorphism holds by (the proof of) Corollary 7.2.9. The second isomor-
phism is formal and follows from Diagram (7.12.1). The third isomorphism holds by
flat base change applied to f0. The fourth isomorphism follows from Theorem 7.11.1
applied to E D OC

X 0}
=p and the étale morphism Y0 ! X0. The fifth isomorphism

is formal again. The sixth isomorphism follows from (the proof of) Corollary 7.2.9.
Finally, the last isomorphism follows from [38, Theorem 4.3.1].

7.13 Proof of Theorem 7.1.11

The main goal of this section is to prove Theorem 7.1.11. The proof is a formal
reduction to the case of OC

X}
=p-vector bundles. After that, we also discuss a version

of this theorem for the classical pro-étale site from [59].
For the rest of this section, we fix a perfectoid p-adic fieldK with a good pseudo-

uniformizer $ 2 OK . We always do almost mathematics with respect to the ideal
m D

S
n$

1=pnOK .

Lemma 7.13.1. LetX be a rigid-analytic variety overK, and let E be an OC
X}

-vector
bundle on X . Then E is derived p-adically complete.

Proof. It suffices to prove the claim v-locally on X}v . Therefore, we may and do
assume that E D

�
OC
X}

�r for some integer r . Then the claim follows immediately
from Lemma 6.3.5 (3).

Lemma 7.13.2. Let XD Spf A0 be an affine admissible formal OK-scheme with adic
generic fiber X D Spa .A;AC/ of dimension d , and let E be an OC

X}
-vector bundle.

Then
R�

�
X}v ;E

�a
2 DŒ0;2d�acoh

�
A0
�
:

Moreover,
R�

�
X}v ;E

�a
2 DŒ0;d�acoh

�
A0
�

if E is small (see Definition 7.1.10).

Proof. Lemma 7.13.1 implies that E is derived p-adically complete. Thus, the result
follows from Theorem 7.1.2, [68, Tag 0A0G], and Corollary 2.13.3.

Lemma 7.13.3. Let X D Spf A0 be an admissible affine formal OK-scheme with
adic generic fiber X D Spa .A; AC/, and fW Spf B0 ! Spf A0 an étale morphism

https://stacks.math.columbia.edu/tag/0A0G
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with adic generic fiber f W Y ! X , and E an OC
X}

-vector bundle on X . Then the
natural morphism

r WR�
�
X}v ;E

�
˝A0 B0 ! R�

�
Y }v ;E

�
is an isomorphism.

Proof. The morphism A0 ! B0 is flat since f is étale. Now Lemma 7.13.2 and
Lemma 2.12.7 ensure that the cohomology groups of both R�

�
X}v ;E

�
˝A0 B0 and

R�
�
Y }v ; E

�
are (classically) p-adically complete. In particular, both complexes are

derived p-adically complete. So it suffices to show that r is an isomorphism after
taking derived mod-p fiber (see [68, Tag 0G1U]). Then the claim follows from The-
orem 7.11.1 (3) (4).

Theorem 7.13.4. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d , and let E be an OC

X}
-vector bundle. Then

(1) R��E 2 DCqc;acoh.X/ and .R��E/a 2 DŒ0;2d�acoh .X/a;

(2) if X D Spf A is affine, then the natural map

Hi
�
X}v ;E

��
! Ri��

�
E
�

is an isomorphism for every i � 0;

(3) the formation of Ri��.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�
�
Ri�X;�.E/

�
! Ri�Y;�

�
EjY}

�
is an isomorphism for any i � 0;

(4) if X has an open affine covering X D
S
i2IUi such that Ej.Ui;K/} is small,

then �
R��E

�a
2 DŒ0;d�acoh

�
X
�a
I

(5) there is an admissible blow-up X0 ! X such that X0 has an open affine cov-
ering X0 D

S
i2IUi such that Ej.Ui;K/} is small.

In particular, there is a cofinal family of admissible formal models ¹X0iºi2I
of X such that �

R�X0
i
;�E

�a
2 DŒ0;d�acoh

�
X0i
�a
;

for each i 2 I .

Proof. First, (5) follows directly from Lemma 7.8.7. Therefore, we only need to
prove (1)–(4). These claims are local on X, so we can assume that X D Spf A is

https://stacks.math.columbia.edu/tag/0G1U
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affine. Then it suffices to show that, for every étale morphism Spf B0! Spf A0 with
adic generic fiber Y ! X ,

Hi
�
Y }v ;EjY}

�
is almost coherent for i � 0,

Hi
�
Y }v ;EjY}

�
'
a 0

for i > 2d (resp. for i > d if E is small), and the natural morphism

Hi
�
X}v ;E

�
˝A0 B0 ! Hi

�
Y }v ;EjY}

�
is an isomorphism (see Lemma 5.1.8 and its proof). The first two claims follow
from Lemma 7.13.2, while the last one follows from Lemma 7.13.3 (and A0-flatness
of B0).

Let us also mention a version of Theorem 7.1.11 for the pro-étale site of X as
defined in [59] and [60]. It will be convenient to have this reference in our future
work. In what follows, bOCX is the completed integral structure sheaf on XproKet (see
[59, Definition 4.1]), and

�0W
�
XproKet;bOCX �! �

XZar;OX

�
is the evident morphism of ringed sites.

Theorem 7.13.5. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d and mod-p fiber X0. Then

(1) R�0�
�
OCX =p

�
2 DCqc;acoh.X0/ and R�0�

�
OCX =p

�a
2 DŒ0;d�acoh .X0/

a;

(2) if X D Spf A is affine, then the natural map

CHi
�
XproKet;O

C

X =p
�
! Ri�0�

�
OCX =p

�
is an isomorphism for every i � 0;

(3) the formation of Ri�0�
�
OCX =p

�
commutes with étale base change, i.e., for any

étale morphism fWY ! X with adic generic fiber f W Y ! X , the natural
morphism

f�0
�
Ri�0X;�

�
OCX =p

��
! Ri�0Y;�

�
OCY =p

�
is an isomorphism for any i � 0.

Proof. By [59, Corollary 3.17], R�0�
�
OCX =p

�
' Rt�

�
OCXét

=p
�
. So the results follow

formally from Theorem 7.12.4.

Theorem 7.13.6. Let X be an admissible formal OK-scheme with adic generic fiber
X of dimension d . Then
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(1) R�0�bOCX 2 DCqc;acoh.X/ and
�
R�0�bOCX �a 2 DŒ0;d�acoh .X/

a;

(2) if X D Spf A is affine, then the natural map

Hi
�
XproKet;bOCX �� ! Ri�0�bOCX

is an isomorphism for every i � 0;

(3) the formation of Ri�0�.E/ commutes with étale base change, i.e., for any étale
morphism fWY!X with adic generic fiber f WY !X , the natural morphism

f�
�
Ri�0X;�

�bOCX ��! Ri�0Y;�
�bOCY �

is an isomorphism for any i � 0.

Proof. The proof is identical to the proof of Theorem 7.13.4 once one establishes that
the sheaf bOCX is p-adically derived complete. For this, see [8, Remark 5.5].


