
Appendix C

Strongly sheafy adic spaces

In this appendix, we discuss the notion of strongly sheafy spaces following [33]
and [41].

C.1 Preliminary results

In this section, we discuss some results about general Tate–Huber pairs.

Lemma C.1.1. Let .A;AC/ be a complete Tate–Huber pair with a pair of definition
.A0 � A

C; $/, and let A! B be a finite étale morphism. Topologize B using its
natural A-module topology (see [72, Appendix B.3]). Then .B; BC/ is a complete
Tate–Huber pair where BC is the integral closure of AC in B .

Proof. Step 1: B is complete in its natural topology. Since B is finite étale, B is
a projective A-module of finite rank. Then there is another finite A-module M such
that B ˚M ' A˚n. Consider the projection pWA˚n! B , the natural topology on B
coincides with the quotient topology (see [72, Lemma B.3.2]). Using the fact thatA is
a Huber ring, it is not difficult to show that the quotient topology onB should coincide
with the subspace topology. Since A˚n is complete, we conclude that the natural
topology onB is separated. Therefore, the same applies toM since we never used the
ring structure onB . ThenB is closed inA as a kernel of a continuous homomorphism
with a separated target. In particular, B is complete in its subspace (equivalently,
quotient) topology, and as discussed above, this topology coincides with the natural
topology. So it is complete in its natural topology.

Step 2: B admits a finite set of A-module generators x1; : : : ; xn that are integral
over A0. Pick any finite set x01; : : : ; x

0
n 2 B of A-module generators. It suffices to

show that xi D $cx0i 2 B are integral over A0 for some integer c. So it is enough to
show that, for any b 2 B , there is an integer c such that $cb is integral over A0.

By definition, b is integral over A. So we can find a monic equation

bn C an�1b
n�1
C � � � C a0 D 0

with ak 2 A for k D 0; : : : ; n � 1. Then there is an integer c such that $cak 2 A0
for k D 0; : : : ; n � 1. Thus, the equation

.$cb/n C an�1$
c.$cb/n�1 C � � � C a0$

cn
D 0

shows that $cb is integral over A0.
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Step 3: An A0-subalgebra B0 of B generated by x1; : : : ; xn is finite as an A0-module.
Clearly, this algebra is finitely generated over A0 as an algebra and every element is
integral. Therefore, it is finite.

Step 4: B0 is open in B and the induced topology coincides with the $ -adic one.
Choose some A0-module generators b1; : : : ; bm 2 B0. Clearly, B0

�
1
$

�
D B , so the

A-linear morphism

qW

mM
iD1

Aei ! B

sending ei to bi is surjective. By [37, Lemma 2.4 (i)], q is open. In particular, the
topology on B is the quotient topology along q. Therefore, B0 is open in B as
q�1.B0/ is a subgroup that contains an open subgroup

Lm
iD1 A0ei . Moreover, the

topology on B0 is$ -adic since B0 D q.
Lm
iD1A0ei / with the quotient topology, and

the topology on
Lm
iD1A0ei is already $ -adic.

Step 5: .B;BC/ is a complete Huber pair. We have already shown that B is complete
in its natural topology and .B0; $/ is a pair of definition for this topology. There-
fore, B is a Huber ring. It suffices to show that BC is open, integrally closed, and lies
in Bı. Openness is clear since B0 � BC, and BC is integrally closed by definition.
One also easily shows that BC � Bı because BC is integral over AC � Aı.

Lemma C.1.2. Let .A; AC/ and .B; BC/ be as in Lemma C.1.1. Then SpecB !
SpecA is surjective if and only if Spa .B;BC/! Spa .A;AC/ is surjective.

Proof. First, we assume that SpecB ! SpecA is surjective. In order to show that
Spa .B;BC/! Spa .A;AC/ is surjective, we need to show thatB b̋A bk.x/¤ 0 for any
x 2 Spa .A;AC/. Now [72, Lemma B.3.5] and Lemma C.1.1 ensure thatB b̋A bk.x/D
B ˝A bk.x/. To finish the proof, we note that B ˝A k ¤ 0 for any field k and a
homomorphism A! k (in particular, this holds for A! bk.x/).

Now we assume that Spa .B; BC/ ! Spa .A; AC/ is surjective. Then we note
that [37, Lemma 1.4] implies that every maximal ideal m � A admits a valuation
v 2 Spa .A;AC/ such that supp.v/Dm. This implies that the image of the morphism
SpecB ! SpecA contains all closed points of SpecA. Since étale morphisms are
open, we conclude that SpecB ! SpecA must be surjective.

Now we discuss the notion of semi-uniform Tate–Huber pairs.

Lemma C.1.3. Let .A;AC/ be a (possibly noncomplete) Tate–Huber pair. Then AC

is bounded if and only if A is uniform (i.e., Aı is bounded).

Proof. Clearly, AC is bounded if Aı is bounded. So we assume that AC is bounded
and we wish to show thatAı is bounded as well. Choose a ring of definitionA0 �AC

and a pseudo-uniformizer$ 2A0. SinceAC is bounded, we conclude that there is an
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integerN such thatAC � 1
$N

A0. Now we note thatAıı �AC sinceAC is integrally
closed and open. Since$ is topologically nilpotent and any element a 2 Aı is power
bounded, we conclude that$Aı � Aıı � AC. Therefore, Aı � 1

$NC1
A0, i.e., Aı is

bounded.

The above lemma motivates the following definition:

Definition C.1.4. A (possibly noncomplete) Tate–Huber pair .A; AC/ is uniform if
AC � A is bounded.

Remark C.1.5. [36, Proposition 1] implies that .A; AC/ is uniform if and only if
the subspace topology on AC coincides with the$ -adic topology for a (equivalently,
any) choice of a pseudo-uniformizer $ 2 AC. Lemma C.1.3 implies that it is equiv-
alent to asking that the subspace topology on Aı coincides with the$ -adic topology.

Lemma C.1.6. Let A be a (possibly noncomplete) Tate ring. If A is Hausdorff, then
A is reduced. In particular, any complete uniform Tate ring is reduced.

Proof. Let a 2 A be a nilpotent element. We choose a pseudo-uniformizer $ 2 Aı.
Then a

$n
is nilpotent for any n � 0. In particular, it is bounded, so a

$n
2 Aı. Thus,

a 2 $nAı for any n � 0. Since A is uniform, we conclude that the topology on Aı

coincides with the $ -adic topology. Since A is Hausdorff,
T
n�0$

nAı D 0. Thus,
a D 0 finishing the proof.

Definition C.1.7. Let .A; AC/ be a (possibly noncomplete) Tate–Huber pair with a
pseudo-uniformizer $ 2 AC. The uniformization of .A; AC/ is the Tate–Huber pair
.Au; A

C
u /, where ACu D A

C, Au D A, and the topology on Au is induced from the
$ -adic topology on ACu .

The uniform completion of .A;AC/ is the Tate–Huber pair . yAu; yACu / obtained as
the completion of .Au; ACu / (see [36, Lemma 1.6]).

Remark C.1.8. We leave it to the reader to check that the uniformization is indeed
a Tate–Huber pair and that it is independent of the choice of a pseudo-uniformizer
$ 2 AC. In fact, uniformization is a left adjoint functor to the inclusion of uniform
Tate–Huber pairs into the category of all Tate–Huber pairs. Likewise, uniform com-
pletion is a left adjoint functor to the inclusion of complete uniform Tate–Huber pairs
into all Tate–Huber pairs.

Now we discuss the relation between the topology of Spa .A;AC/ and its uniform
completion.
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Lemma C.1.9. Let .A; AC/ be a (possibly noncomplete) Tate–Huber pair. Then the
natural morphisms

Spa .Au; ACu /! Spa .A;AC/;

Spa . yA; yAC/! Spa .A;AC/;

Spa . yAu; yACu /! Spa .A;AC/

are homeomorphisms that induce bijections on the sets of rational subdomains.

Proof. First, [36, Proposition 3.9] implies that the natural morphism Spa . yA; yAC/!
Spa .A; AC/ is a homeomorphism that induces a bijection on the sets of rational
subdomains. Applying the same result to .Au;ACu /, we see that it suffices to show the
claim for Spa .Au; ACu /! Spa .A;AC/.

For this, we note that rational subdomains on both sides are indexed by tuples
.f1; : : : ; fn; g/ of non-zero elements in A generating the unit ideal, so we conclude
that it suffices to show that Spa .A;AC/! Spa .Au; ACu / is a bijection. After unrav-
eling the definition, we see that it suffices to show that any continuous (in the usual
topology) valuation vWA! �v [ ¹0º is continuous in the topology induced from the
$ -adic topology on AC. Since v is continuous, [64, Corollary 9.3.3] implies that
v.$/ 2 �v is cofinal and v.$a/ < 1 for any ring of definition $ 2 A0. Likewise,
loc. cit. implies that it suffices to show that v.$a/ < 1 for any a 2 AC. This follows
from [36, Corollary 1.3], which ensures that we can always find a ring of definition
A0 � A

C which contains both a and $ .

Lemma C.1.10. Let .A; AC/ be a complete Tate–Huber pair, and let $ 2 AC be a
pseudo-uniformizer. Then AC is $ -adically henselian.

Proof. First, [36, Corollary 1.3] ensures that AC is a filtered colimit of its subrings
of definition A0 � AC. Therefore, the result follows from [68, Tag 0ALJ] and [68,
Tag 0FWT].

Lemma C.1.11. Let .A; AC/ be a (possibly noncomplete) Tate–Huber pair with a
pseudo-uniformizer $ 2 AC. Suppose that AC is $ -adically henselian, then the
natural functors

�˝A yA WAfét ! yAfét;

�˝A yAuWAfét ! yAu;fét

are equivalences. Further, the natural maps Idem.A/! Idem. yA / and Idem.A/!
Idem. yAu/ are bijections.

https://stacks.math.columbia.edu/tag/0ALJ
https://stacks.math.columbia.edu/tag/0FWT
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Proof. The semi-uniform completions of .A; AC/ and . yA; yAC/ coincide, therefore
Lemma C.1.10 implies that it suffices to prove both claims for yAu.

The claim about finite étale algebras follows immediately from [26, Proposi-
tion 5.4.54] and the observation that $ 2 AC is a regular element. Then the claim
about idempotents follows from [68, Tag 09XI] and the observation that any idempo-
tent e 2 A must lie in AC because it is integral over Z.

C.2 Noetherian approximation

The main goal of this section is to show a version of noetherian approximation for
complete Tate–Huber pairs. The main result of this section was originally shown in
[41, Proposition 2.6.2] in a slightly different language.

To motivate the definition below, we want to mention one important subtlety of
working with complete Tate–Huber pairs: this category does not admit filtered col-
imits. However, this issue can be remedied by considering Tate–Huber pairs together
with the choice of a ring of definition.

Definition C.2.1. A Tate–Huber quadruple .A;AC;A0;$/ is a quadruple of a Tate–
Huber pair .A; AC/, a ring of definition A0, and a pseudo-uniformizer $ 2 A0. A
morphism of Tate–Huber quadruples

f W .A;AC; A0;$/! .B;BC; B0; �/

is a continuous ring homomorphism f WA!B such that f .AC/�BC, f .A0/�B0,
and f .$/ D � .

For the next definition, we fix a filtered system
®
.Ai ; A

C

i ; Ai;0; $/; fi;j
¯
i2I

of
Tate–Huber quadruples.1

Definition C.2.2. The filtered colimit of
®
.Ai ; A

C

i ; Ai;0; $/; fi;j
¯
i;j2I

is the Tate–
Huber quadruple �

colimI Ai ; colimI ACi ; colimI Ai;0;$
�
;

where we topologize Ai by requiring colimI Ai;0 � colimI Ai to be a ring of defini-
tion with a pseudo-uniformizer $ .2

The completed filtered colimit of
®
.Ai ; A

C

i ; Ai;0;$/; fi;j
¯
i2I

is the Tate–Huber
quadruple�

A1; A
C
1; A1;0;$

�
WD
�3colimI Ai ;4colimI ACi ; 4colimI Ai;0;$

�
;

1We slightly abuse notation and denote the pseudo-unifomizer inAi;0 by the same letter$ .
2We note that this implies that the subspace topology on colimI Ai;0 is equal to the$ -adic

topology. We warn the reader that the colimit topology on Ai;0 is usually different from the
$ -adic one.

https://stacks.math.columbia.edu/tag/09XI
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where b� stands for the topological completion in the sense of [18, Chapitre III, Sec-
tion 3 n.4] (see also [18, Chapitre III, Section 6 n.5 and Chapitre III,Section 7 n.2]).

Remark C.2.3. [36, Lemma 1.6] gives a very explicit description of completed fil-
tered colimits. Namely, the ring A1;0 is equal to .colimI Ai;0/^$ , the usual $ -adic
completion of colimI Ai;0, the ringAC1D .colimI ACi /˝colimIAi;0 A1;0, and the ring
A1 D A

C
1

�
1
$

�
D A1;0

�
1
$

�
.

For the next definition, we fix a filtered system of
®
.Ai ; A

C

i /; fi;j
¯
i;j2I

of (not
necessarily uniform) Tate–Huber pairs with a compatible choice of pseudo-uniformiz-
ers $ 2 ACi .

Definition C.2.4. The uniform filtered colimit of
®
.Ai ; A

C

i /; fi;j
¯
i;j2I

is the filtered
colimit of the Tate–Huber quadruples

®
Ai;u;A

C

i;u;A
C

i;u;$
¯
i2I

(see Definition C.1.7).
The completed uniform filtered colimit of

®
.Ai ; A

C

i /; fi;j
¯
i;j2I

is the completed
filtered colimit of the Tate–Huber quadruples

®
Ai;u; A

C

i;u; A
C

i;u;$
¯
i2I

.

Remark C.2.5. Remark C.2.3 implies that the completed uniform filtered colimit is
explicitly given by the pair

�
.4colimI ACi /

�
1
$

�
;4colimI ACi

�
, where b.�/ stands for the

$ -adic completion.

Now we wish to prove a version of noetherian approximation for complete (uni-
form) Tate–Huber pairs. Before we do this, we need to invoke the following basic
fact:

Lemma C.2.6. Let .A; AC/ be a complete Tate–Huber pair, and let I � A be a
closed ideal. Then .A=I; .A=I /C/ is a complete Tate–Huber pair, where .A=I /C is
the integral closure of AC=.I \ AC/ in A=I .

Proof. First, we choose a ring of definition A0 and a pseudo-uniformizer $ 2 A0.
Then A=I is complete in the quotient topology due to [16, Chapitre IX Section 3
Proposition 1] and [16, Chapitre IX Section 3 Proposition 4]. Then [37, Proposi-
tion 2.4 (ii)] ensures that the natural morphism � W A ! A=I is open. Therefore,
�.A0/ � A=I is an open subset such that the subset topology coincides with the
$ -adic topology. Furthermore, (the image of) $ is clearly a topologically nilpotent
unit in A=I . Therefore, we conclude that A=I is a complete Tate ring. Thus, we only
need to show that .A=I /C is open, integrally closed, and lies in .A=I /ı. It is closed
integrally by construction and is open because it contains �.A0/. Finally, we note that
by construction we have .A=I /C � �.Aı/C � .A=I /ı, where �.Aı/C is the integral
closure of �.Aı/ in A=I .

Example C.2.7. Let A be a Tate ring and let e 2 A be an idempotent element. Then
the ideal eA is closed in A since it is equal to the kernel of the continuous multiplica-
tion by .1 � e/ map.
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Finally, we are ready to prove the main results of this section.

Lemma C.2.8 (cf., [41, Proposition 2.6.2]). Let .A; AC/ be a complete Tate–Huber
pair, letA0 2AC be a ring of defintion, and let$ 2A0 be a pseudo-uniformizer. Then
there is a filtered system of Tate–Huber quadruples

®
.Ai ; A

C

i ; Ai;0;$/
¯
i2I

such that

(1) each Ai is a strongly noetherian complete Tate algebra;

(2) the completed filtered colimit .A1;AC1;A1;0;$/ of ¹.Ai ;ACi ;Ai;0;$/ºi2I
is isomorphic to .A;AC; A0;$/.

Proof. The choice of a pseudo-uniformizer $ 2 AC defines a map .Z..t//;ZJtK/!
.A;AC/. Then we put I to be the filtered poset of all finite subsets S � AC. For each
S 2 I , we consider the unique .Z..t//;ZJtK/-linear continuous morphism

˛S W
�
Z..t//hXf if 2S ;ZJtKhXf if 2S

�
!
�
A;AC

�
that sends Xf to f . We put IS D Ker˛S and ICS D IS \ ZJtKhXf if 2S . The ideal IS
is closed because it is the kernel of a continuous morphism. Therefore, Lemma C.2.6
gives us a complete Tate–Huber pair

.AS ; A
C

S / WD
�
Z..t//hXf if 2S=IS ; .Z..t//hXf if 2S=IS /C

�
that admits an injective continuous morphism ˛S W .AS ; A

C

S /! .A; AC/. We finally
define

AS;0 WD
�
Z..t//hXf if 2S=ICS

�
\ A0:

This subring is clearly open and bounded, so it is a ring of definition due to [36,
Proposition 1]. Finally, we put $ 2 AS;0 to be the image of t . Therefore, we note
that ®

.AS ; A
C

S ; AS;0;$/
¯
S2I

with natural (injective) transition maps is a filtered system of Tate–Huber quadruples.
Using the explicit description of completed filtered colimits from Remark C.2.3, we
note that the (uncompleted) filtered colimit of

®
.AS ; A

C

S ; AS;0; $/
¯
S2I

coincides
with the completed filtered colimit, and it is isomorphic to .A;AC; A0;$/. To finish
the proof, we only need to show that each AS is strongly noetherian. This follows
from the fact that Z..t// admits a noetherian ring of definition and AS is topologically
finite type over Z..t//.

Lemma C.2.9. Let .A;AC/ be a complete uniform Tate–Huber pair, and let$ 2 A0
be a pseudo-uniformizer. Then there is a filtered system of complete uniform Tate–
Huber pairs ¹.Ai ; ACi /ºi2I such that

(1) each Ai is strongly noetherian;

(2) the completed uniform filtered colimit .A1;AC1/ of
®
.Ai ;A

C

i /
¯
i2I

is isomor-
phic to .A;AC/.
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Proof. The proof is similar to that of Lemma C.2.8. We define the index set I as in
the proof of Lemma C.2.8. Likewise, for any S 2 I , we define AS , ACS , and AS;0 as
in the proof of Lemma C.2.8 as well. Then we wish to show that the Huber-Tate pair
.AS ; A

C

S / is uniform. Once we know this fact, the rest of the argument is the same.
Now we show that .AS ; ACS / is uniform. We note that ZJtK is excellent due to

[68, Tag 07QW]. Therefore, [45, Main Theorem 2] implies thatAS;0 is also excellent.
Then we recall that ACS was defined as the integral closure of AS;0 inside A. Since
A is reduced due to Lemma C.1.6, [68, Tag 03GH] and [68, Tag 07QV] imply that
ACS is a finite AS;0-module. Therefore, there is an integer n such that ACS �

1
$n
AS;0,

i.e., ACS is bounded. This finishes the proof.

C.3 Étale maps

In this section, we discuss (strongly) étale maps of general complete Tate–Huber
pairs. We also show that strongly étale morphisms satisfy approximation along com-
pleted (uniform) filtered colimits of complete Tate–Huber pairs.

Definition C.3.1. A morphism .A;AC/! .B;BC/ of complete Tate–Huber pairs is
a rational subdomain if there is a finite set of non-zero elements f1; : : : ; fn; g 2 A
which generates the unit ideal in A and .B;BC/ D

�
Ahfi

g
i; Ahfi

g
iC
�

as an .A;AC/-
algebra. We denote by .A; AC/rsd the poset3 of rational subdomains of .A; AC/ (it
coincides with the poset of rational subdomains of Spa .A;AC/).

A morphism .A;AC/! .B;BC/ of complete Tate–Huber pairs is strongly finite
étale if A! B is finite étale and BC is the integral closure of AC in B . We denote by
.A;AC/sét the category of finite étale .A;AC/-pairs and all .A;AC/-linear morphisms
between them.

A morphism .A;AC/! .B;BC/ of complete Tate–Huber pairs is strongly étale
if it can be written as a finite composition of finite étale morphisms and rational
subdomains. We denote by .A; AC/sét the category of étale .A; AC/-pairs and all
.A;AC/-linear morphisms between them.

Remark C.3.2. In what follows, we will freely use the fact that the category of
complete Tate–Huber pairs admits pushouts. Explicitly, the pushout .B; BC/˝A;AC
.C; CC/ is given by �

B b̋AC; .B b̋AC/C�;
where B b̋AC is the completed tensor product, and .B b̋AC/C is the integral closure
of (the image of) BCb̋ACCC in B b̋AC .

3[37, Proposition 1.3] implies that there is at most one unique continuous .A; AC/-linear
morphism between two rational subdomains over .A;AC/.

https://stacks.math.columbia.edu/tag/07QW
https://stacks.math.columbia.edu/tag/03GH
https://stacks.math.columbia.edu/tag/07QV
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Remark C.3.3. By definition, strongly étale maps are closed under composition.
Lemma C.1.1 implies that strongly finite étale maps are closed under pushouts of
complete Tate–Huber pairs (since completion is not needed). Therefore, all strongly
étale maps are also closed under pushouts in the category of complete Tate–Huber
pairs.

Remark C.3.4. Lemma C.1.1 ensures that there is an equivalence .A;AC/sfét ' Afét

for any complete Tate–Huber pair .A;AC/.

Now we wish to show that the category of strongly étale .A; AC/-pairs satisfies
approximation with respect to completed filtered colimits. It will be convenient to
first prove a version of this result for completed uniform filtered colimits. For this, we
need a number of preliminary lemmas.

Definition C.3.5. A morphism f W .A;AC/! .B;BC/ of complete Tate–Huber pairs
is a clopen immersion if A! B is a topological quotient morphism, BC is equal to
the integral closure of AC, and Kerf is generated by an idempotent element ef 2 A.

Remark C.3.6. If f W .A;AC/! .B;BC/ is a clopen immersion, then Lemma C.2.6
implies that

.B;BC/ D
�
A=efA;

�
AC=.efA \ A

C/
�C�

as complete Tate–Huber pairs.

Remark C.3.7. We note that the idempotent ef 2 A in Definition C.3.5 is unique if
exists. In particular, two clopen immersions f W .A;AC/! .B;BC/ and gW .A;AC/!
.B;BC/ coincide if and only if ef D eg .

For the purpose of the next definition, we fix a complete Tate–Huber pair .A;AC/
and an .A; AC/-linear morphism f W .B; BC/! .C; CC/ of complete Tate–Huber
pairs.

Definition C.3.8. The graph of f is the unique continuous .A;AC/-linear morphism

�f W
�
B b̋AC; .B b̋AC/C�! .C; CC/

which sends b ˝ c to f .b/c.
The diagonal of f is the morphism �f W

�
C b̋BC; .C b̋BC/C�! .C; CC/ that

sends c ˝ c0 to cc0.

Lemma C.3.9. Let f W .A;AC/! .B;BC/ and gW .B;BC/! .C;CC/ be morphisms
of complete Tate–Huber pairs such that g and h WD g ı f are strongly étale. Then the
morphisms �g and �g are clopen immersions.

Proof. First, we note that it suffices to prove the claim for�g (for all g). This follows
from the following pushout square (for simplicity, we suppress the C-rings in the
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diagram below):

B b̋AB B

B b̋AC C

�f

id˝g g

�g

and the observation that clopen immersions are preserved by pushouts. Now we
show that �g is a clopen immersion if �f and �h are so. For this, we consider the
following diagram (for simplicity, we suppress theC-rings in the diagram below):

B b̋AB B

C b̋AC C b̋BC C;

�f

g˝g

˛

�h

�g

(C.3.1)

where the left square is a pushout square. Now, if�f is a clopen immersion, then ˛ is
a clopen immersion as well. Now since ˛ and �h are clopen immersions, then �g is
a clopen immersion as well (with e�g D ˛.e�h/). Therefore, we reduce the question
to showing that f and h are clopen immersions. In other words, we can assume that
g is a strongly étale morphism.

Now we use Diagram (C.3.1) and the observation that clopen immersions are
preserved by compositions to conclude that it suffices to prove the result separately
for strongly finite étale morphisms and rational subdomains. If g is a rational subdo-
main, then �g is clearly an isomorphism. Therefore, it suffices to assume that g is a
strongly finite étale map. In this case, Lemma C.1.1 and [72, Lemma B.3.5] imply that
B b̋AB D B ˝A B . Therefore, the result follows from the algebro-geometric claim
that SpecB ! Spec .B ˝A B/ is a clopen immersion for a finite étale A! B .

Theorem C.3.10. Let ¹.Ai ; ACi /ºi2I be a filtered system of complete uniform Tate–
Huber pairs, and let .A1; AC1/ D

�4colimI ACi
�
1
$

�
; 4colimI ACi

�
be its completed

uniform filtered colimit. Then

(1) the natural map jSpa .A1;AC1/j! limI jSpa .Ai ;ACi /j is a homeomorphism
of spectral spaces;

(2) the natural map colimI .Ai ; ACi /rsd ! .A1; A
C
1/rsd is a bijection;

(3) the natural functor 2- colimI .Ai ; ACi /sfét ! .A1; A
C
1/sfét is an equivalence;

(4) the natural functor 2- colimI .Ai ; ACi /sét ! .A1; A
C
1/sét is an equivalence.

Proof. Let us denote by
�
A; A

C�
D
�
colimI ACi

�
1
$

�
; colimI ACi

�
the uncompleted

uniform filtered colimit of .Ai ; ACi /. Then we easily see that the natural morphism

jSpa .A;A
C
/j! limI jSpa .Ai ;ACi /j is a homeomorphism. Now [36, Proposition 3.9]
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implies that the natural map jSpa .A1; AC1/j ! jSpa .A;A
C
/j is a homeomorphism

that induces a bijection on rational subdomains. This already proves (1). To see (2),
we use that the homeomorphism jSpa .A;A

C
/j ' jSpa .A1;AC1/j induces a bijection

on rational subdomains. Since every rational subdomain of j Spa .A; A
C
/j is defined

at a finite level, we conclude that the natural morphism

colimI .Ai ; ACi /rsd ! .A1; A
C
1/rsd

is surjective. The map is also injective due to and [68, Tag 0A30]. This finishes the
proof of (2).

(3) follows from Lemma C.1.11, Remark C.3.4, and a standard (algebraic) ap-
proximation for finite étale algebras.

Now we show (4). First, we set up some notation. For any complete Tate–Huber
.Ai ; A

C

i /-pair .Bi ; BCi / and i 0 > i 2 I t ¹1º, we put

.B 0i ; B
0C

i / WD
�
Bi b̋AiAi 0 ; .Bi b̋AiAi 0/C�:

Observation. For any compatible sequence of complete Tate–Huber .Ai ; ACi /-pairs
.Bi ; B

C

i /, the uniform completion of .B1; BC1/ and the compeleted uniform filtered
colimit of ¹.Bi ; B 0i /ºi2I are isomorphic as .A;AC/-pairs.

In what follows, we will freely use this observation. Finally, we are ready to start
the proof.

Step 0: Essential surjectivity. Using Observation, Lemma C.1.9, and Lemma C.1.11,
we can inductively reduce the question to showing that any rational subdomain (resp.
finite étale pair) over .A1; AC1/ comes from a finite level. This follows directly
from (1) (resp. (2)).

Step 1: Faithfulness. We start with fixing two systems of compatible morphisms
fi ; gi W .Bi ; B

C

i / ! .Ci ; C
C

i / in .Ai ; ACi /sét and then wish to show that, if their
pushouts to .A1; AC1/ coincide, then fi D gi for some i � 0. For this, we set
f1; g1W .B1; B

C
1/! .C1; C

C
1/ to be the morphisms induced by fi and gi respec-

tively.
The graphs �fi , �gi , �f1 , and �g1 are clopen immersions due to Lemma C.3.9.

We notice moreover that fi D gi (resp. f1 D g1) if and only if �fi D �gi (resp.
�f1 D �g1). Furthermore, Remark C.3.7 implies that �fi D�gi (resp. �f1 D �g1)
if and only if e�fi D e�gi (resp. e�f1 D e�g1 ). Thus, we reduce the question to
showing that if two idempotents e; e0 2 Ai become equal in A1, they are already
equal in Aj for some j > i . This follows from Lemma C.1.11 and usual properties
of filtered colimits. This finishes the proof of faithfulness.

Step 2: Fullness. We start with two compatible sequences .Bi ;BCi /, .Ci ;C
C

i / of ele-
ments in .Ai ;ACi /sét and a continuous .A1;AC1/-linear morphism f1W .B1;B

C
1/!

.C1; C
C
1/, we wish to show that it is defined over .Ai ; ACi / for some i 2 I . For this,

https://stacks.math.columbia.edu/tag/0A30
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we can freely replace I with I�i0 for some i0 to assume that I has a minimal element
i0 2 I .

We write the morphism gi0 W .Ai0 ; A
C

i0
/! .Bi0 ; B

C

i0
/ as a composition of n mor-

phisms, each of which is finite étale or a rational subdomain. We argue by induction
on n. If n D 0, then .Ai0 ; A

C

i0
/ D .Bi0 ; B

C

i0
/ and then the result is obvious (the mor-

phism f1 must be the structure morphism .A1; A
C
1/! .C1; C

C
1/, so it descends

to any i 2 I ).
Now we do the induction step. We write gi0 as a composition�

Ai0 ; A
C

i0

� hi0
��!

�
B 0i0 ; B

0C

i0

� g0
i0
��!

�
Bi0 ; Bi0

�
;

where g0i0 is either strongly finite étale or a rational subdomain, and hi0 is a compo-
sition of at most n � 1 finite étale and rational subdomain morphisms. By induction,
we know that there is i 2 I such that the morphism f 01 WD f1 ı g

0
1W .B

0
1; B

0C
1 /!

.C1; C
C
1/ is defined over i 2 I . So we can replace i0 with i to assume that there is a

morphism
f 0i0 W

�
B 0i0 ; B

0C

i0

�
!
�
Ci0 ; C

C

i0

�
such that its pushout to .A1; AC1/ is equal to f 01.

Consider the following diagram: �
Ci ; C

C

i

�
�
Ai ; Ai

� �
B 0i ; B

0C

i

� �
Bi ; B

C

i

�f 0
i

g0
i

fi (C.3.2)

for i � i0 2 I . The proof of faithfulness boils down to constructing a morphism fi
such that Diagram (C.3.2) commutes and the pushout of fi to .A1; AC1/ is equal
to f1. For this, we consider two cases.

Case 1: g0i0 is a rational subdomain. In this case, [37, Proposition 1.3] implies that,
for each i 2 I t1, there is at most one fi which makes Diagram (C.3.2) commute.
Furthermore, it exists if and only ifˇ̌

Spa .f 0i /
ˇ̌
W
ˇ̌
Spa .Ci ; CCi /

ˇ̌
!
ˇ̌
Spa .B 0i ; B

0C

i /
ˇ̌

factors through jSpa .Bi ; BCi /j � jSpa .B 0i ; B
0C

i /j. Loc. cit. implies that jSpa .f 01/j
factors through jSpa .B1; BC1/j � jSpa .B 01; B

0C
1 /j. So, Observation, Lemma C.1.9,

Part (1), [68, Tag 0A2S], and [68, Tag 0A2X] imply that there is an index i 2 I such
that ˇ̌

Spa .f 0i /
ˇ̌
W
ˇ̌
Spa .Ci ; CCi /

ˇ̌
!
ˇ̌
Spa .B 0i ; B

0C

i /
ˇ̌

factors through the inclusion jSpa .Bi ; BCi /j � jSpa .B 0i ; B
0C

i /j. This defines a mor-
phism fi W .Bi ; B

C

i /! .Ci ; C
C

i / which makes Diagram (C.3.2) commute. Further-
more, its pushout to .A1; AC1/ equals f1 due to its uniqueness.

https://stacks.math.columbia.edu/tag/0A2S
https://stacks.math.columbia.edu/tag/0A2X
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Case 2: g0i0 is a finite étale morphism. Then we consider the pushout diagram

.Ci ; C
C

i / .Di ;D
C

i / WD .Bi b̋B0iCi ; .Bi b̋B0iCi /C/
.B 0i ; B

0C

i / .Bi ; B
C

i /;

˛i

f 0
i

g0
i

f 00
i

and notice that morphisms fi that make Diagram (C.3.2) commute are in bijection
with morphisms ˇi W .Di ; DCi /! .Ci ; C

C

i / such that ˇi ı ˛i D id, i.e., they are in
bijection with sections of ˛i . Now we note that ˛i are finite étale as pushouts of finite
étale morphisms. Therefore, we note that the question boils down to showing that
any section of a finite étale morphism ˛1W .C1; C

C
1/! .D1; D

C
1/ comes from a

finite level. This follows from Observation, Lemma C.1.11, and Part (2) (applied to
the filtered system ¹.Ci ; CCi /ºi2I ).

Corollary C.3.11. Let
�
A; AC

�
be a complete Tate–Huber pair with the uniform

completion
�
yAu; yA

C
u

�
. Then the natural functor�

A;AC
�

sét !
�
yAu; yA

C
u

�
sét

is an equivalence.

Proof. This follows directly from Theorem C.3.10 applied to the constant filtered
system ¹.A;AC/º.

Corollary C.3.12. Let
®
.Ai ;A

C

i ;Ai;0;$/
¯
i2I

be a filtered system of complete Tate–
Huber quadruples and set�

A1; A
C
1; A1;0;$

�
WD
�3colimI Ai ;4colimI ACi ; 4colimI Ai;0;$

�
its completed filtered colimit. Then

(1) the natural map jSpa .A1;AC1/j! limI jSpa .Ai ;ACi /j is a homeomorphism
of spectral spaces;

(2) the natural map colimI .Ai ; ACi /rsd ! .A1; A
C
1/rsd is a bijection;

(3) the natural functor 2- colimI .Ai ; ACi /sfét ! .A1; A
C
1/sfét is an equivalence;

(4) the natural functor 2- colimI .Ai ; ACi /sét ! .A1; A
C
1/sét is an equivalence.

Proof. This follows directly from Theorem C.3.10 and Corollary C.3.11 by replacing
Ai , ACi , A1, and AC1 by their uniform completions.
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C.4 Strongly sheafy adic spaces

In this section, we define the notion of a strongly sheafy adic space. We also define
the étale structure sheaves on such spaces.

Definition C.4.1 ([33, Definition 4.1]). A complete Tate ring A is strongly sheafy if
AhT1; : : : ; Td i is sheafy for any integer d � 0.

A Tate-affinoid (pre-)adic space X D Spa .A; AC/ is strongly sheafy if A is
strongly sheafy.

An adic space X is strongly sheafy if there is an open covering of X by strongly
sheafy Tate-affinoids.

Example C.4.2. A strongly noetherian Tate ring A is strongly sheafy (see [37, The-
orem 2.2]). Likewise, a sousperfectoid Tate ring A is strongly sheafy as well (see
[33, Definition 7.1 and Corollary 7.4]).

Remark C.4.3. [33, Proposition 5.5] and (the proof of) [33, Theorem 5.6] imply that,
if .A;AC/ is a sheafy complete Tate–Huber pair and Spa .A;AC/ is a strongly sheafy
adic space, then A is a strongly sheafy Tate ring.

Remark C.4.4. [33, Theorem 5.6 and Definition 5.4] imply that, if .A; AC/ is a
strongly sheafy Tate–Huber ring and .A; AC/ ! .B; BC/ is a strongly étale mor-
phism, then .B;BC/ is strongly sheafy as well.

The above remark allows us to make the following definition:

Definition C.4.5. A morphism of strongly sheafy Tate-affinoids Spa .B; BC/ !
Spa .A; AC/ is strongly finite étale if .A; AC/ ! .B; BC/ is strongly finite étale
(in the sense of Definition C.3.1).

A morphism of strongly sheafy Tate-affinoids Spa .B; BC/ ! Spa .A; AC/ is
(affinoid) strongly étale if .A;AC/! .B;BC/ is strongly étale (in the sense of Def-
inition C.3.1).

Remark C.4.6. We note that finite disjoint unions of rational subdomains
F
i2I Xi!

X D Spa .A; AC/ are strongly étale as they can be decomposed as a compositionF
i2I Xi !

F
i2I X ! X , where the first morphism is a rational subdomain and the

second morphism is strongly finite étale.

Remark C.4.7. More generally, if ¹Xi ! Xºi2I is a finite family of strongly étale
morphisms, then

F
i2I Xi ! X is a strongly étale morphism as well.

Lemma C.4.8. Let Y be a strongly sheafy adic space, let X be a pre-adic space (in
the sense of [41, Definition 8.2.3]), and let f WX ! Y be an étale morphism (in the
sense of [41, Definition 8.2.16]). Then X is a strongly sheafy adic space.
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Proof. The claim is local in the analytic topology on bothX and Y . Therefore, we can
assume that X D BSpa .B;BC/ , Y D BSpa .A;AC/ for a strongly sheafy Tate ring A,
and the morphism .A; AC/! .B; BC/ is strongly étale. Then .B; BC/ is strongly
sheafy due to Remark C.4.4.

Finally, we can define the étale integral and structure (pre-)sheaves on strongly
sheafy spaces:

Definition C.4.9. Let X be a strongly sheafy adic space. The étale structure pre-
sheaf OXét is a pre-sheaf of rings on Xét defined via the assignment�

Y
étale
��! X

�
7! OY .Y /

with evident transition maps. The integral étale structure pre-sheaf OCXét
is a pre-sheaf

of rings on Xét defined via the assignment�
Y

étale
��! X

�
7! OCY .Y /

with evident transition maps.

Before we show that OXét and OCXét
are sheaves, we need to prove the following

basic lemma:

Lemma C.4.10. Let
®
'i W .A;A

C/! .Bi ;B
C

i /
¯
i2I

be a family of morphisms of com-
plete Tate–Huber pairs such that

S
i2I jSpa .'i /j

�
jSpa .Bi ; BCi /j

�
D jSpa .A;AC/j,

and let a 2 A. Then a 2 AC if and only if 'i .a/ 2 BCi .

Proof. If a 2 AC, then clearly 'i .a/ 2 BCi for every i 2 I . Now we assume that
'i .a/ 2 B

C

i for all i 2 I and wish to show that a 2 AC. First, [36, Lemma 3.3 (i)]
(or [37, Proposition 1.6 (iv)]) implies that

AC D
®
f 2 A j v.f / � 1 8v 2 Spa .A;AC/

¯
:

Therefore, we wish to show that v.a/ � 1 for any v 2 Spa .A; AC/. For this, we
choose i 2 I and a wi 2 Spa .Bi ;BCi / such that Spa .'i /.w/D v. Then we know that

v.a/ D w.'i .a// � 1:

This finishes the proof.

Lemma C.4.11. For a strongly sheafy adic space X , the étale pre-sheaves OXét

and OCXét
are sheaves.

Proof. Let
®
Yi ! Y

¯
i2I

be a covering in Xét. We wish to verify the sheaf axiom
for OXét and OCXét

with respect to this covering. Lemma C.4.8 implies that the usual
(analytic) pre-sheaves OCY , OCYi , OY , and OYi are sheaves (in the analytic topology).
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Therefore, we can verify the sheaf condition analytically locally on Y and Yi . There-
fore, we can assume that all spaces involved are strongly sheafy Tate-affinoids and
all morphisms are strongly étale. In this case, sheafiness of OXét follows from the last
sentence of [33, Proposition 5.5] and (the proof of) [33, Theorem 5.6]. Then sheafi-
ness of OCXét

follows from sheafiness of OXét and Lemma C.4.10.


