
Appendix D

Achinger’s result in the non-noetherian case

Recall that P. Achinger proved a remarkable result [1, Proposition 6.6.1] that says that
an affinoid rigid-analytic varietyX D Spa .A;AC/ that admits an étale map to a closed
unit disk DnK , also admits a finite étale map to DnK provided thatK is the fraction field
of a complete DVR R with residue field of characteristic p. This result is an analytic
analogue of a more classical result of Kedlaya ([39] and [1, Proposition 5.2.1]), that
an affine k-scheme X D SpecA that admits an étale map to an affine space An

k
also

admits a finite étale map to An
k

provided that k has characteristic p.
We generalize P. Achinger’s result to the non-noetherian setting. The proof essen-

tially follows the ideas of [1], we only need to be slightly more careful at some
places due to non-noetherian issues. We also show a version of this result for for-
mal schemes.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra
such that dim A � d for some integer d . Suppose that x1; : : : ; xd 2 A are some
elements of A, and m is any integerm � 0. Then there exist elements y1; : : : ; yd 2 A
such that the map f W kŒT1; : : : ; Td �! A, defined as f .Ti / D xi C y

pm

i is finite.

Proof. We extend the set x1; : : : ; xd to some set of generators x1; : : : ; xd ; : : : ; xn
of A as a k-algebra. This defines a presentation A D kŒT1; : : : ; Td ; : : : ; Tn�=I for
some ideal I � kŒT1; : : : ; Tr ; : : : ; Tn�. We prove the claim by induction on n � d .

The case of n � d D 0 is trivial as then the map f W kŒT1; : : : ; Td �! A, defined
by f .Ti / D xi , is surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that n � d � 1. We consider
the elements

x0i D xi � x
pim
0

n ; i D 1; : : : ; n � 1

for some integer m0 � m. Now the assumption n � d C 1 and Krull’s principal ideal
theorem imply that we can choose some non-zero element g 2 I , thus we have an
expression

g.x01 C x
pm
0

n ; x02 C x
p2m
0

n ; : : : ; x0n�1 C x
p.n�1/m

0

n ; xn/ D 0:

Now [55, Section 1] implies that there is some large m0 such that this expression is
a polynomial in xn with coefficients in kŒx01; : : : ; x

0
n�1� and a non-zero leading term.

We may and do assume that this leading term is 1. So xn is integral over a subring
ofR generated by x01; : : : ; x

0
n�1, we denote this ring byR0. Since xi D x0i C x

pim
0

n , we
conclude that R is integral over R0. Moreover, R is finite over R0 because it is finite
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type over k. Now we note that [54, Theorem 9.3] implies that dimR0 � dimR � d ,
and R0 is generated by x01; : : : ; x

0
n�1 as a k-algebra. So we can use the induction

hypothesis to find some elements

y01; : : : ; y
0
d 2 R

0

such that the morphism f 0W kŒT1; : : : ; Td �! R0, defined as f 0.Ti / D x0i C .y
0
i /
pm ,

is finite. Therefore, the composite morphism

f W kŒT1; : : : ; Td �! R

is also finite. We now observe that

f .Ti / D x
0
i C .y

0
i /
pm
D xi C x

pim
0

n C .y0i /
pm
D xi C .x

pim
0�m

n C y0i /
pm :

Therefore, the set .yi WD x
pim
0�m

n C y0i /iD1;:::;d does the job.

Lemma D.2. Let O be a complete valuation ring of rank-1 with maximal ideal m

and residue field k. Suppose that f WA! B is a morphism of topologically finitely
generated OK-algebras. Then f is finite if and only if f ˝O kWA˝O k ! B ˝O k

is finite.

Proof. The “only if” part is clear, so we only need to deal with the “if” part. We recall
that [53, Lemma (28.P) p. 212] says that A! B is finite if and only if A=� ! B=�

is finite for some pseudo-uniformizer � 2 O. So we only need to show that finiteness
of A˝O k ! B ˝O k implies that there is a pseudo-uniformizer � 2 O such that
A=� ! B=� is finite. Then we note that the maximal ideal m is a filtered colimit
of its finitely generated subideals ¹Ij ºj2J . Moreover, the valuation property of the
ring O implies that this colimit is actually direct and that Ij D .�j / is principal for
any j 2 J . We also observe that each �j is a pseudo-uniformizer since O is of rank-1.
Thus we see that

A˝O k ! B ˝O k D colimj2J .A=�j ! B=�j /

and A=�j ! B=�j is a finite type morphism by the assumption that both A and B
are topologically finitely generated. Then [68, Tag 07RG] implies that there is j 2 J
such that A=�j ! B=�j is finite. Therefore, A! B is finite as well.

Before going to the proof of Theorem D.4, we need to show a result on the dimen-
sion theory of rigid-analytic spaces that seem to be missing in the literature. It seems
that there is no generally accepted definition of a dimension of adic spaces. We define
the dimension as dimX D supx2X dim OX;x , this is consistent with the definition of
dimension in [25, Definition II.10.1.1]. We denote by X cl � X the set of all classical
points of X .

https://stacks.math.columbia.edu/tag/07RG


Achinger’s result in the non-noetherian case 295

Lemma D.3. Let f WX D Spa .B; BC/! Y D Spa .A; AC/ be an étale morphism
of rigid-analytic varieties over a complete rank-1 field K, then dimB � dimA. If Y
is equidimensional, i.e., dim OY;y D dim Y for any classical point y 2 Y cl, then we
have an equality dimB D dimA. In particular, if f WSpa .A;AC/!DdK is étale, then
dimA D d .

Proof. We note that [25, Proposition II.10.1.9 and Corollary II.10.1.10] imply that

dimX D dimB D sup
x2Xcl

.dim OX;x/; and dimY D dimA D sup
y2Y cl

.dim OY;y/:

Since f is topologically finite type, it sends classical points to classical points. There-
fore, [38, Lemma 1.6.4, Corollary 1.7.4, and Proposition 1.7.9] imply that the map
OY;f .x/ ! OX;x is finite étale for any x 2 X cl. Thus, we see that

dimB D sup
x2Xcl

�
dim OX;x

�
D sup
x2Xcl

�
dim OY;f .x/

�
� dimY:

It is also clear that this inequality becomes an equality if Y is equidimensional.
Finally, we claim that DdK D Spa.KhT1; : : : ;Td i;OKhT1; : : : ;Td i/D Spa.A;AC/

is equidimensional. Pick any classical point x 2 .DdK/
cl and a corresponding maximal

ideal mx 2KhT1; : : : ;Td i. Then we know thatAmx and ODd
K
;x are noetherian by [25,

Proposition 0.9.3.9, Theorem II.8.3.6], moreover, the isomorphism 1ODd
K
;x '

bAmx

holds by [25, Proposition II.8.3.1]. Therefore, we get

dim ODd
K
;x D dim 1ODd

K
;x D dim bAmx D dimAmx D d;

where the last equality comes from [25, Proposition 0.9.3.9].

For the rest of the section we fix a complete rank-1 valuation ring O with fraction
field K and characteristic p residue field k. We refer to [38, Section 1.9] for the
construction of the adic generic fiber of a topologically finitely generated formal O-
scheme. The only thing we mention here is that it sends an affine formal scheme
Spf A to the affinoid adic space Spa .A˝O K;A

C/, where AC is the integral closure
of the image Im.A! A˝O K/.

Theorem D.4. In the notation as above, let gW Spf A! yAd
O

be a morphism of flat,
topologically finitely generated formal O-schemes such that the adic generic fiber
gK W Spa .A ˝O K; A

C/ ! DdK is étale. Under these assumptions, there is a finite
morphism f WSpf A! yAd

O
that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 implies that dimA ˝O K D d . Now
[25, Theorem 9.2.10] says that there exists a finite injective morphism

'WO
˝
T1; : : : ; Td

˛
! A
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with an OK-flat cokernel. This implies that KhT1; : : : ; Td i ! A˝O K is finite and
injective. Flatness of Coker' implies that the map

kŒT1; : : : ; Td �! A˝O k

is also finite and injective, so dim A ˝O k D d . Now we finish the proof in two
slightly different ways depending on charK.

Case 1: charK D p. We consider the morphism g#WOhT1; : : : ; Td i ! A induced
by g. We define xi WD g#.Ti / for i D 1; : : : ; d . Since dimA˝O k D d , we can apply
Lemma D.1 to the residue classes x1; : : : ; xd andmD 1 to get elements y1; : : : ; yd 2
A˝O k such that the map

f #W kŒT1; : : : ; Td �! A˝O k; defined as f #.Ti / D xi C yi
p for i D 1; : : : ; d;

is finite. We lift yi in an arbitrary way to elements yi 2 A, and define

f #
WOhT1; : : : ; Td i ! A

as f #.Ti / D xi C y
p
i for any i D 1; : : : ; d . This map is finite by Lemma D.2.

Now we note that X WD Spa .A˝O K;A
C/ is smooth over K, so [15, Proposi-

tion 2.6] says that étaleness of fK WX ! DdK is equivalent to the bijectivity of the
map

f �K�
1

Dd
K
=K
! �1X=K :

This easily follows from étaleness of gK and the fact that d.xi C y
p
i / D d.xi / in

characteristic p.

Case 2: charK D 0. We denote Spf A by X and we denote its adic generic fiber
Spa .A˝O K;A

C/ by X . Then we use [15, Proposition 2.6] once again to see that
the map

g�K�
1

Dd
K
=K
! �1X=K

is an isomorphism. Since .b�1
X=O

/K ' �1
X=K

and the same for yAd
O

and DdK , we
conclude that the fundamental short exact sequence ([25, Proposition I.3.6.3, Propo-
sition I.5.2.5 and Theorem I.5.2.6])

g�b�1
yAd

O
=O
! b�1X=O ! b�1

X=yAd
O

! 0

implies that
�b�1

X=yAd
O

�
K
D 0. Furthermore, we know that

b�1
X=yAd

O

Š
�b�1A=OhT1;:::;Td i��

for a finite A-module b�1
A=OhT1;:::;Td i

(see [25, Corollary I.5.1.11]). We denote this
module by b�1g for the rest of the proof, and recall that the condition

�b�1X=yAd
O

�
K
D 0
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is equivalent to b�1g ˝O K D 0. Using finiteness of b�1g and adhesiveness of A, we
conclude that there is an integer k such that

pkb�1g D 0
as p is a pseudo-uniformizer in O. Now, similarly to the case of charK D p, we
consider the morphism

g#
WOhT1; : : : ; Td i ! A

and define xi WD g#.Ti / for i D 1; : : : ; d . Again, using that dimA˝O k D d , we can
apply Lemma D.1 to the residue classes x1; : : : ; xd and m D k C 1 to get elements
y1; : : : ; yd 2 A˝O k such that the map

f #W kŒT1; : : : ; Td �! A˝O k; defined as f #.Ti / D xi C yi
pkC1 for i D 1; : : : ; d;

is finite. We lift yi to some elements yi 2 A and define

f #
WOhT1; : : : ; Td i ! A

by f #.Ti / D xi C y
pkC1

i . The map f # is finite by Lemma D.2.
We are only left to show that the induced map

f WX ! yAdO

is étale on adic generic fibers. Next we claim that pk.b�1
f
/ D 0. Indeed, we use [25,

Proposition I.5.1.10] to trivialize b�1
OhT1;:::;Td i=O

'
Ld
iD1dTiOhT1; : : : ; Td i, so we

have the fundamental exact sequence

dM
iD1

AdTi
dTi 7!d.xiCy

pkC1

i
/

��������������! b�1A=O ! b�1f ! 0

as d.yp
kC1

i / is divisible by pkC1. Therefore, we see that modulo pkC1, this sequence
is equal to

dM
iD1

A=pkC1dTi
dTi!d.xi /
�������! b�1A=O=pkC1 ! b�1f =pkC1 ! 0:

Thus, we see that b�1
f
=pkC1 ' b�1g=pkC1. In particular,�

pkb�1f �=p�pkb�1f � D �pkb�1g�=p�pkb�1g� D 0
by the choice of k. Therefore, pkb�1

f
D 0 by [53, Lemma 28.P p. 212]. By passing to

the adic generic fiber, we get the map fK WX ! DdK such that

d.fK/Wf
�
K�

1

Dd
K
=K
! �1X=K
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is surjective. However, we recall that X and DdK are both smooth rigid-analytic vari-
eties of (pure) dimension d . Thus df �

K
is a surjective map of vector bundles of the

same dimension d , so it must be an isomorphism. Finally, [15, Proposition 2.6]
implies that fK is étale.

Corollary D.5. Let K be a complete rank-1 valuation field with valuation ring OK ,
and residue field k of characteristic p. Suppose that gWX D Spa .A;AC/! DdK is an
étale morphism of affinoid rigid-analytic K-varieties. Then there exists a finite étale
morphism f WX ! DdK .

Proof. We note that [37, Lemma 4.4] implies thatACDAı, so the map g corresponds
to the map

g#
W .KhT1; : : : ; Td i;OKhT1; : : : ; Td i/! .A;Aı/

of Tate–Huber pairs. Theorem D.4 implies that it suffices to show that the image of
OKhT1; : : : ; Td i lies inside some ring of definition A0 � A.

Since A is topologically finitely generated, we can extend g# to a surjection

'WKhT1; : : : ; Td ; X1; : : : ; Xni� A:

Then
A0 WD '.OKhT1; : : : ; Td ; X1; : : : ; Xni/

is bounded and it is open as a consequence of the Banach open mapping theorem ([37,
Lemma 2.4 (i)]). Thus, it is a ring of definition containing g]

�
OKhT1; : : : ; Td i

�
.


