Appendix D

Achinger's result in the non-noetherian case

Recall that P. Achinger proved a remarkable result [1, Proposition 6.6.1] that says that an affinoid rigid-analytic variety $X = \text{Spa}(A, A^+)$ that admits an étale map to a closed unit disk \mathbf{D}_K^n , also admits a *finite* étale map to \mathbf{D}_K^n provided that K is the fraction field of a complete DVR R with residue field of characteristic p. This result is an analytic analogue of a more classical result of Kedlaya ([39] and [1, Proposition 5.2.1]), that an affine k-scheme X = Spec A that admits an étale map to an affine space \mathbf{A}_k^n also admits a *finite* étale map to \mathbf{A}_k^n provided that k has characteristic p.

We generalize P. Achinger's result to the non-noetherian setting. The proof essentially follows the ideas of [1], we only need to be slightly more careful at some places due to non-noetherian issues. We also show a version of this result for formal schemes.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra such that dim $A \le d$ for some integer d. Suppose that $x_1, \ldots, x_d \in A$ are some elements of A, and m is any integer $m \ge 0$. Then there exist elements $y_1, \ldots, y_d \in A$ such that the map $f:k[T_1, \ldots, T_d] \to A$, defined as $f(T_i) = x_i + y_i^{p^m}$ is finite.

Proof. We extend the set x_1, \ldots, x_d to some set of generators $x_1, \ldots, x_d, \ldots, x_n$ of A as a k-algebra. This defines a presentation $A = k[T_1, \ldots, T_d, \ldots, T_n]/I$ for some ideal $I \subset k[T_1, \ldots, T_r, \ldots, T_n]$. We prove the claim by induction on n - d.

The case of n - d = 0 is trivial as then the map $f: k[T_1, \ldots, T_d] \to A$, defined by $f(T_i) = x_i$, is surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that $n - d \ge 1$. We consider the elements

$$x'_i = x_i - x_n^{p^{im'}}, i = 1, \dots, n-1$$

for some integer $m' \ge m$. Now the assumption $n \ge d + 1$ and Krull's principal ideal theorem imply that we can choose some non-zero element $g \in I$, thus we have an expression

$$g(x_1' + x_n^{p^{m'}}, x_2' + x_n^{p^{2m'}}, \dots, x_{n-1}' + x_n^{p^{(n-1)m'}}, x_n) = 0.$$

Now [55, Section 1] implies that there is some large m' such that this expression is a polynomial in x_n with coefficients in $k[x'_1, \ldots, x'_{n-1}]$ and a non-zero leading term. We may and do assume that this leading term is 1. So x_n is integral over a subring of R generated by x'_1, \ldots, x'_{n-1} , we denote this ring by R'. Since $x_i = x'_i + x_n^{p^{im'}}$, we conclude that R is integral over R'. Moreover, R is finite over R' because it is finite type over k. Now we note that [54, Theorem 9.3] implies that dim $R' \le \dim R \le d$, and R' is generated by x'_1, \ldots, x'_{n-1} as a k-algebra. So we can use the induction hypothesis to find some elements

$$y'_1, \ldots, y'_d \in R'$$

such that the morphism $f': k[T_1, ..., T_d] \to R'$, defined as $f'(T_i) = x'_i + (y'_i)^{p^m}$, is finite. Therefore, the composite morphism

$$f:k[T_1,\ldots,T_d]\to R$$

is also finite. We now observe that

$$f(T_i) = x'_i + (y'_i)^{p^m} = x_i + x_n^{p^{im'}} + (y'_i)^{p^m} = x_i + (x_n^{p^{im'-m}} + y'_i)^{p^m}.$$

Therefore, the set $(y_i \coloneqq x_n^{p^{im'-m}} + y'_i)_{i=1,...,d}$ does the job.

Lemma D.2. Let \mathcal{O} be a complete valuation ring of rank-1 with maximal ideal \mathfrak{m} and residue field k. Suppose that $f: A \to B$ is a morphism of topologically finitely generated \mathcal{O}_K -algebras. Then f is finite if and only if $f \otimes_{\mathcal{O}} k: A \otimes_{\mathcal{O}} k \to B \otimes_{\mathcal{O}} k$ is finite.

Proof. The "only if" part is clear, so we only need to deal with the "if" part. We recall that [53, Lemma (28.P) p. 212] says that $A \to B$ is finite if and only if $A/\pi \to B/\pi$ is finite for some pseudo-uniformizer $\pi \in \mathcal{O}$. So we only need to show that finiteness of $A \otimes_{\mathcal{O}} k \to B \otimes_{\mathcal{O}} k$ implies that there is a pseudo-uniformizer $\pi \in \mathcal{O}$ such that $A/\pi \to B/\pi$ is finite. Then we note that the maximal ideal m is a filtered colimit of its finitely generated subideals $\{I_j\}_{j \in J}$. Moreover, the valuation property of the ring \mathcal{O} implies that this colimit is actually direct and that $I_j = (\pi_j)$ is principal for any $j \in J$. We also observe that each π_j is a pseudo-uniformizer since \mathcal{O} is of rank-1. Thus we see that

$$A \otimes_{\mathcal{O}} k \to B \otimes_{\mathcal{O}} k = \operatorname{colim}_{i \in J}(A/\pi_i \to B/\pi_i)$$

and $A/\pi_j \to B/\pi_j$ is a finite type morphism by the assumption that both A and B are topologically finitely generated. Then [68, Tag 07RG] implies that there is $j \in J$ such that $A/\pi_j \to B/\pi_j$ is finite. Therefore, $A \to B$ is finite as well.

Before going to the proof of Theorem D.4, we need to show a result on the dimension theory of rigid-analytic spaces that seem to be missing in the literature. It seems that there is no generally accepted definition of a dimension of adic spaces. We define the dimension as dim $X = \sup_{x \in X} \dim \mathcal{O}_{X,x}$, this is consistent with the definition of dimension in [25, Definition II.10.1.1]. We denote by $X^{cl} \subset X$ the set of all classical points of X.

Lemma D.3. Let $f: X = \text{Spa}(B, B^+) \to Y = \text{Spa}(A, A^+)$ be an étale morphism of rigid-analytic varieties over a complete rank-1 field K, then dim $B \ge \dim A$. If Y is equidimensional, i.e., dim $\mathcal{O}_{Y,y} = \dim Y$ for any classical point $y \in Y^{\text{cl}}$, then we have an equality dim $B = \dim A$. In particular, if $f: \text{Spa}(A, A^+) \to \mathbf{D}_K^d$ is étale, then dim A = d.

Proof. We note that [25, Proposition II.10.1.9 and Corollary II.10.1.10] imply that

dim
$$X = \dim B = \sup_{x \in X^{cl}} (\dim \mathcal{O}_{X,x})$$
, and dim $Y = \dim A = \sup_{y \in Y^{cl}} (\dim \mathcal{O}_{Y,y})$

Since f is topologically finite type, it sends classical points to classical points. Therefore, [38, Lemma 1.6.4, Corollary 1.7.4, and Proposition 1.7.9] imply that the map $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is finite étale for any $x \in X^{\text{cl}}$. Thus, we see that

$$\dim B = \sup_{x \in X^{cl}} (\dim \mathcal{O}_{X,x}) = \sup_{x \in X^{cl}} (\dim \mathcal{O}_{Y,f(x)}) \leq \dim Y.$$

It is also clear that this inequality becomes an equality if Y is equidimensional.

Finally, we claim that $\mathbf{D}_{K}^{d} = \operatorname{Spa}(K\langle T_{1}, \ldots, T_{d} \rangle, \mathcal{O}_{K}\langle T_{1}, \ldots, T_{d} \rangle) = \operatorname{Spa}(A, A^{+})$ is equidimensional. Pick any classical point $x \in (\mathbf{D}_{K}^{d})^{cl}$ and a corresponding maximal ideal $\mathfrak{m}_{x} \in K\langle T_{1}, \ldots, T_{d} \rangle$. Then we know that $A_{\mathfrak{m}_{x}}$ and $\mathcal{O}_{\mathbf{D}_{K}^{d}, x}$ are noetherian by [25, Proposition 0.9.3.9, Theorem II.8.3.6], moreover, the isomorphism $\widehat{\mathcal{O}_{\mathbf{D}_{K}^{d}, x}} \simeq \widehat{A_{\mathfrak{m}_{x}}}$ holds by [25, Proposition II.8.3.1]. Therefore, we get

$$\dim \mathcal{O}_{\mathbf{D}_{K}^{d},x} = \dim \widehat{\mathcal{O}_{\mathbf{D}_{K}^{d},x}} = \dim \widehat{A_{\mathfrak{m}_{x}}} = \dim A_{\mathfrak{m}_{x}} = d,$$

where the last equality comes from [25, Proposition 0.9.3.9].

For the rest of the section we fix a complete rank-1 valuation ring \mathcal{O} with fraction field *K* and characteristic *p* residue field *k*. We refer to [38, Section 1.9] for the construction of the adic generic fiber of a topologically finitely generated formal \mathcal{O} scheme. The only thing we mention here is that it sends an affine formal scheme Spf *A* to the affinoid adic space Spa ($A \otimes_{\mathcal{O}} K, A^+$), where A^+ is the integral closure of the image Im($A \to A \otimes_{\mathcal{O}} K$).

Theorem D.4. In the notation as above, let $g: \operatorname{Spf} A \to \widehat{A}^d_{\mathcal{O}}$ be a morphism of flat, topologically finitely generated formal \mathcal{O} -schemes such that the adic generic fiber $g_K: \operatorname{Spa}(A \otimes_{\mathcal{O}} K, A^+) \to \mathbf{D}^d_K$ is étale. Under these assumptions, there is a finite morphism $f: \operatorname{Spf} A \to \widehat{A}^d_{\mathcal{O}}$ that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 implies that dim $A \otimes_{\mathcal{O}} K = d$. Now [25, Theorem 9.2.10] says that there exists a finite injective morphism

$$\varphi: \mathcal{O}\langle T_1, \ldots, T_d \rangle \rightarrow A$$

with an \mathcal{O}_K -flat cokernel. This implies that $K\langle T_1, \ldots, T_d \rangle \to A \otimes_{\mathcal{O}} K$ is finite and injective. Flatness of Coker φ implies that the map

$$k[T_1,\ldots,T_d] \to A \otimes_{\mathcal{O}} k$$

is also finite and injective, so dim $A \otimes_{\mathcal{O}} k = d$. Now we finish the proof in two slightly different ways depending on char *K*.

Case 1: char K = p. We consider the morphism $g^{\#}: \mathcal{O}(T_1, \ldots, T_d) \to A$ induced by g. We define $x_i := g^{\#}(T_i)$ for $i = 1, \ldots, d$. Since dim $A \otimes_{\mathcal{O}} k = d$, we can apply Lemma D.1 to the residue classes $\overline{x_1}, \ldots, \overline{x_d}$ and m = 1 to get elements $\overline{y_1}, \ldots, \overline{y_d} \in A \otimes_{\mathcal{O}} k$ such that the map

$$\overline{f^{\#}}:k[T_1,\ldots,T_d] \to A \otimes_{\mathcal{O}} k$$
, defined as $\overline{f^{\#}}(T_i) = \overline{x_i} + \overline{y_i}^p$ for $i = 1,\ldots,d$,

is finite. We lift $\overline{y_i}$ in an arbitrary way to elements $y_i \in A$, and define

$$f^{\#}: \mathcal{O}\langle T_1, \ldots, T_d \rangle \to A$$

as $f^{\#}(T_i) = x_i + y_i^p$ for any i = 1, ..., d. This map is finite by Lemma D.2.

Now we note that $X := \text{Spa}(A \otimes_{\mathcal{O}} K, A^+)$ is smooth over K, so [15, Proposition 2.6] says that étaleness of $f_K \colon X \to \mathbf{D}_K^d$ is equivalent to the bijectivity of the map

$$f_K^* \Omega^1_{\mathbf{D}_K^d/K} \to \Omega^1_{X/K}.$$

This easily follows from étaleness of g_K and the fact that $d(x_i + y_i^p) = d(x_i)$ in characteristic p.

Case 2: char K = 0. We denote Spf A by \mathfrak{X} and we denote its adic generic fiber Spa $(A \otimes_{\mathfrak{O}} K, A^+)$ by X. Then we use [15, Proposition 2.6] once again to see that the map

$$g_K^* \Omega^1_{\mathbf{D}_K^d/K} \to \Omega^1_{X/K}$$

is an isomorphism. Since $(\widehat{\Omega}^1_{\mathfrak{X}/\mathcal{O}})_K \simeq \Omega^1_{X/K}$ and the same for $\widehat{A}^d_{\mathcal{O}}$ and \mathbf{D}^d_K , we conclude that the fundamental short exact sequence ([25, Proposition I.3.6.3, Proposition I.5.2.5 and Theorem I.5.2.6])

$$g^*\widehat{\Omega}^1_{\widehat{\mathbf{A}}^d_{\mathcal{O}}/\mathcal{O}} \to \widehat{\Omega}^1_{\mathfrak{X}/\mathcal{O}} \to \widehat{\Omega}^1_{\mathfrak{X}/\widehat{\mathbf{A}}^d_{\mathcal{O}}} \to 0$$

implies that $(\widehat{\Omega}^1_{\mathfrak{X}/\widehat{A}^d_{\mathcal{O}}})_K = 0$. Furthermore, we know that

$$\widehat{\Omega}^{1}_{\mathfrak{X}/\widehat{\mathbf{A}}^{d}_{\mathcal{O}}} \cong \left(\widehat{\Omega}^{1}_{A/\mathcal{O}\langle T_{1},\ldots,T_{d}\rangle}\right)^{\mathcal{L}}$$

for a finite A-module $\widehat{\Omega}^1_{A/\mathcal{O}(T_1,...,T_d)}$ (see [25, Corollary I.5.1.11]). We denote this module by $\widehat{\Omega}^1_g$ for the rest of the proof, and recall that the condition $(\widehat{\Omega}^1_{\mathcal{X}/\widehat{A}^d_{\mathcal{O}}})_K = 0$

is equivalent to $\widehat{\Omega}_g^1 \otimes_{\mathcal{O}} K = 0$. Using finiteness of $\widehat{\Omega}_g^1$ and adhesiveness of A, we conclude that there is an integer k such that

$$p^k \widehat{\Omega}_g^1 = 0$$

as p is a pseudo-uniformizer in \mathcal{O} . Now, similarly to the case of charK = p, we consider the morphism

$$g^{\#}: \mathcal{O}\langle T_1, \ldots, T_d \rangle \to A$$

and define $x_i := g^{\#}(T_i)$ for i = 1, ..., d. Again, using that dim $A \otimes_{\mathcal{O}} k = d$, we can apply Lemma D.1 to the residue classes $\overline{x_1}, \ldots, \overline{x_d}$ and m = k + 1 to get elements $\overline{y_1}, \ldots, \overline{y_d} \in A \otimes_{\mathcal{O}} k$ such that the map

$$\overline{f^{\#}}:k[T_1,\ldots,T_d] \to A \otimes_{\mathcal{O}} k$$
, defined as $\overline{f^{\#}}(T_i) = \overline{x_i} + \overline{y_i}^{p^{k+1}}$ for $i = 1,\ldots,d$,

is finite. We lift $\overline{y_i}$ to some elements $y_i \in A$ and define

$$f^{\#}: \mathcal{O}\langle T_1, \ldots, T_d \rangle \to A$$

by $f^{\#}(T_i) = x_i + y_i^{p^{k+1}}$. The map $f^{\#}$ is finite by Lemma D.2. We are only left to show that the induced map

We are only left to show that the induced map

$$f: X \to \widehat{\mathbf{A}}^d_{\mathcal{O}}$$

is étale on adic generic fibers. Next we claim that $p^k(\widehat{\Omega}_d^1) = 0$. Indeed, we use [25, Proposition I.5.1.10] to trivialize $\widehat{\Omega}^1_{\mathcal{O}\langle T_1,...,T_d\rangle/\mathcal{O}} \simeq \bigoplus_{i=1}^d dT_i \mathcal{O}\langle T_1,...,T_d\rangle$, so we have the fundamental exact sequence

$$\bigoplus_{i=1}^{d} AdT_i \xrightarrow{dT_i \mapsto d(x_i + y_i^{p^{k+1}})} \widehat{\Omega}^1_{A/\mathcal{O}} \to \widehat{\Omega}^1_f \to 0$$

as $d(y_i^{p^{k+1}})$ is divisible by p^{k+1} . Therefore, we see that modulo p^{k+1} , this sequence is equal to

$$\bigoplus_{i=1}^{d} A/p^{k+1} dT_i \xrightarrow{dT_i \to d(x_i)} \widehat{\Omega}^1_{A/\mathcal{O}}/p^{k+1} \to \widehat{\Omega}^1_f/p^{k+1} \to 0.$$

Thus, we see that $\widehat{\Omega}_{f}^{1}/p^{k+1} \simeq \widehat{\Omega}_{g}^{1}/p^{k+1}$. In particular,

$$\left(p^k\widehat{\Omega}_f^1\right)/p\left(p^k\widehat{\Omega}_f^1\right) = \left(p^k\widehat{\Omega}_g^1\right)/p\left(p^k\widehat{\Omega}_g^1\right) = 0$$

by the choice of k. Therefore, $p^k \widehat{\Omega}_f^1 = 0$ by [53, Lemma 28.P p. 212]. By passing to the adic generic fiber, we get the map $f_K: X \to \mathbf{D}_K^d$ such that

$$d(f_K): f_K^* \Omega^1_{\mathbf{D}^d_K/K} \to \Omega^1_{X/K}$$

is surjective. However, we recall that X and \mathbf{D}_{K}^{d} are both smooth rigid-analytic varieties of (pure) dimension d. Thus $d_{f_{K}^{*}}$ is a surjective map of vector bundles of the same dimension d, so it must be an isomorphism. Finally, [15, Proposition 2.6] implies that f_{K} is étale.

Corollary D.5. Let K be a complete rank-1 valuation field with valuation ring \mathcal{O}_K , and residue field k of characteristic p. Suppose that $g: X = \text{Spa}(A, A^+) \rightarrow \mathbf{D}_K^d$ is an étale morphism of affinoid rigid-analytic K-varieties. Then there exists a finite étale morphism $f: X \rightarrow \mathbf{D}_K^d$.

Proof. We note that [37, Lemma 4.4] implies that $A^+ = A^\circ$, so the map g corresponds to the map

$$g^{\#}: (K\langle T_1, \ldots, T_d \rangle, \mathcal{O}_K\langle T_1, \ldots, T_d \rangle) \to (A, A^{\circ})$$

of Tate–Huber pairs. Theorem D.4 implies that it suffices to show that the image of $\mathcal{O}_K(T_1, \ldots, T_d)$ lies inside some ring of definition $A_0 \subset A$.

Since A is topologically finitely generated, we can extend $g^{\#}$ to a surjection

$$\varphi: K\langle T_1, \ldots, T_d, X_1, \ldots, X_n \rangle \twoheadrightarrow A.$$

Then

$$A_0 := \varphi(\mathcal{O}_K \langle T_1, \dots, T_d, X_1, \dots, X_n \rangle)$$

is bounded and it is open as a consequence of the Banach open mapping theorem ([37, Lemma 2.4 (i)]). Thus, it is a ring of definition containing $g^{\sharp}(\mathcal{O}_K(T_1, \ldots, T_d))$.