Appendix D

Achinger’s result in the non-noetherian case

Recall that P. Achinger proved a remarkable result [ 1, Proposition 6.6.1] that says that
an affinoid rigid-analytic variety X = Spa (A4, A™) that admits an étale map to a closed
unit disk D%, also admits a finite étale map to D% provided that K is the fraction field
of a complete DVR R with residue field of characteristic p. This result is an analytic
analogue of a more classical result of Kedlaya ([39] and [1, Proposition 5.2.1]), that
an affine k-scheme X = Spec A that admits an étale map to an affine space A} also
admits a finite €étale map to A} provided that k has characteristic p.

We generalize P. Achinger’s result to the non-noetherian setting. The proof essen-
tially follows the ideas of [1], we only need to be slightly more careful at some
places due to non-noetherian issues. We also show a version of this result for for-
mal schemes.

Lemma D.1. Let k be a field of characteristic p, and let A be a finite type k-algebra
such that dim A < d for some integer d. Suppose that x1,...,xq € A are some

elements of A, and m is any integer m > 0. Then there exist elements y1,...,yq € A
such that the map [ k[T, ..., Tyl — A, defined as f(T;) = x; + y! s finite.

Proof. We extend the set x1, ..., x; to some set of generators xq,...,Xg,..., Xy
of A as a k-algebra. This defines a presentation A = k[Ty,...,T4,...,T,]/1 for
some ideal I C k[Ty,..., Ty, ..., T,]. We prove the claim by induction onn — d.

The case of n —d = 0 is trivial as then the map f: k[T1,...,Ty] — A, defined
by f(T;) = x;, is surjective. Therefore, it is finite.

Now we do the induction argument, so we suppose that n — d > 1. We consider
the elements

Fon!

im .
xi=xi—xF ,i=1,...,n—1

for some integer m’ > m. Now the assumption n > d + 1 and Krull’s principal ideal
theorem imply that we can choose some non-zero element g € I, thus we have an
expression

’

’ 4
’ m / 2m / (n—1)m
gxy+xP xy +xP o x, +xP ,Xp) = 0.

Now [55, Section 1] implies that there is some large m’ such that this expression is
a polynomial in x, with coefficients in k[x], ..., x)_,] and a non-zero leading term.
We may and do assume that this leading term is 1. So x, is integral over a s_ul?ring
of R generated by x{,...,x],_,, we denote this ring by R'. Since x; = x| + x,flm ,we
conclude that R is integral over R’. Moreover, R is finite over R’ because it is finite
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type over k. Now we note that [54, Theorem 9.3] implies that dim R’ < dim R < d,
and R’ is generated by x},...,x,_, as a k-algebra. So we can use the induction
hypothesis to find some elements

Vi Vg R

such that the morphism f': k[T, ..., Ty] — R, defined as f'(T;) = x| + (y))?",
is finite. Therefore, the composite morphism

fik[Ty,....Ts] — R

is also finite. We now observe that

m m 7 m

FT) = x]+ D" =xi +x2" + D" =x + 2T 4y

Therefore, the set (y; = x,{)lm - + ¥))i=1,...,a does the job. [ ]

Lemma D.2. Let O be a complete valuation ring of rank-1 with maximal ideal m
and residue field k. Suppose that f: A — B is a morphism of topologically finitely
generated Ok-algebras. Then f is finite if and only if f Q@ k: A ®ov k — B Qo k
is finite.

Proof. The “only if” part is clear, so we only need to deal with the “if”” part. We recall
that [53, Lemma (28.P) p. 212] says that A — B is finite if and only if A/n — B/x
is finite for some pseudo-uniformizer & € (0. So we only need to show that finiteness
of A ®9 k — B ®p k implies that there is a pseudo-uniformizer 7 € O such that
A/mw — B/ is finite. Then we note that the maximal ideal m is a filtered colimit
of its finitely generated subideals {/;};cs. Moreover, the valuation property of the
ring @ implies that this colimit is actually direct and that /; = () is principal for
any j € J. We also observe that each 7; is a pseudo-uniformizer since @ is of rank-1.
Thus we see that

A®p k - B ®@k =colimjej(A/nj — B/m;)

and A/m; — B/m;j is a finite type morphism by the assumption that both A and B
are topologically finitely generated. Then [68, Tag 07RG] implies that there is j € J
such that A/mw; — B/n; is finite. Therefore, A — B is finite as well. L]

Before going to the proof of Theorem D.4, we need to show a result on the dimen-
sion theory of rigid-analytic spaces that seem to be missing in the literature. It seems
that there is no generally accepted definition of a dimension of adic spaces. We define
the dimension as dim X = sup,y dim Oy x, this is consistent with the definition of
dimension in [25, Definition I1.10.1.1]. We denote by X! C X the set of all classical
points of X.


https://stacks.math.columbia.edu/tag/07RG
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Lemma D.3. Let f: X = Spa(B, BT) — Y = Spa (A4, A") be an étale morphism
of rigid-analytic varieties over a complete rank-1 field K, then dim B > dim A. If Y
is equidimensional, i.e., diim Oy,, = dimY for any classical point y € Y., then we
have an equality dim B = dim A. In particular, if f:Spa(A4,A") — D‘Ii( is étale, then
dimA =d.

Proof. We note that [25, Proposition I1.10.1.9 and Corollary I11.10.1.10] imply that

dim X = dim B = sup (dimOx ), and dimY = dim A = sup (dim Oy,,).
xeXedl erCl

Since f is topologically finite type, it sends classical points to classical points. There-
fore, [38, Lemma 1.6.4, Corollary 1.7.4, and Proposition 1.7.9] imply that the map
Oy, f(x) = Oxx is finite étale for any x € X Thus, we see that

dim B = sup (dim (9X,x) = sup (dim @Y,f(x)) <dimY.

xeX¢ xeXe

It is also clear that this inequality becomes an equality if ¥ is equidimensional.

Finally, we claim that D‘Ii{ =Spa(K(Ty,...,Ty),Ox(T1,...,Tg)) =Spa(A,A™)
is equidimensional. Pick any classical point x € (D‘I’é)Cl and a corresponding maximal
ideal my € K(T1,...,T4). Then we know that Ay, . and (QD%,X are noe@n byBé,
Proposition 0.9.3.9, Theorem I1.8.3.6], moreover, the isomorphism OD?( x = Am,
holds by [25, Proposition 11.8.3.1]. Therefore, we get

dim OD?(,X = dim (9D‘,’<,x =dimAy, =dimAy,, =d,
where the last equality comes from [25, Proposition 0.9.3.9]. ]

For the rest of the section we fix a complete rank-1 valuation ring @ with fraction
field K and characteristic p residue field k. We refer to [38, Section 1.9] for the
construction of the adic generic fiber of a topologically finitely generated formal ©-
scheme. The only thing we mention here is that it sends an affine formal scheme
Spf A to the affinoid adic space Spa (4 ® 9 K, A™), where A™ is the integral closure
of the image Im(4 — A ®p K).

Theorem D.4. In the notation as above, let g: Spf A — Kg be a morphism of flat,
topologically finitely generated formal O)-schemes such that the adic generic fiber
gk:Spa (A ®9 K, AT) — D}"< is étale. Under these assumptions, there is a finite
morphism f:Spf A — 1&?9 that is étale on adic generic fibers.

Proof. First of all, we note that Lemma D.3 implies that dim A ® 9 K = d. Now
[25, Theorem 9.2.10] says that there exists a finite injective morphism

@:O(Ty,....Tq)— A
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with an Og-flat cokernel. This implies that K(T},...,Ty) — A ®@ K is finite and
injective. Flatness of Coker ¢ implies that the map

K[Ti,....Ty] = A®ok

is also finite and injective, so dim A ® 9 k = d. Now we finish the proof in two
slightly different ways depending on char K.

Case 1: char K = p. We consider the morphism g*: O(T}, ..., T;) — A induced
by g. We define x; := g*(T;) fori = 1,...,d. Since dim A ® 9 k = d, we can apply
Lemma D.1 to the residue classes X7, ...,Xg7 and m = 1 to get elements y;,...,yg €
A ®@ k such that the map

fHK[Ty,....Tq] > A Qe k, defined as f#(T;) = X7 + y;? fori = 1,....d,
is finite. We lift y; in an arbitrary way to elements y; € A, and define
fRo(r,....T;) - A

as f*(T;) = x; + y} foranyi = 1,...,d. This map is finite by Lemma D.2.

Now we note that X := Spa (4 ®@ K, A™) is smooth over K, so [15, Proposi-
tion 2.6] says that étaleness of fgx: X — D}i( is equivalent to the bijectivity of the
map

1
fKQDd/K — SZX/K.

This easily follows from étaleness of gx and the fact that d(x; + y7) = d(x;) in
characteristic p.

Case 2: char K = 0. We denote Spf A by X and we denote its adic generic fiber
Spa (A ®e K, AT) by X. Then we use [15, Proposition 2.6] once again to see that
the map

1
gKQDd d /K - Qy/x

is an isomorphism. Since (Q%/@)K ~ QX/K and the same for Ad and Dd,
conclude that the fundamental short exact sequence ([25, Proposition I 3.6.3, Propo-
sition 1.5.2.5 and Theorem 1.5.2.6])

*S1 81 a1
QA‘é/@ — Qx/@ — Q%/Kg —0

= 0. Furthermore, we know that

implies that (ﬁ;E JAd ) K

¢

for a finite A-module Q1 A/O(T ... (see [25, Corollary 1.5.1.11]). We denote this
module by Ql for the rest of the proof and recall that the condition (Q} /Ad )g =0
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is equivalent to Q; ®@ K = 0. Using finiteness of Qé and adhesiveness of A, we
conclude that there is an integer k such that

ka; =0

as p is a pseudo-uniformizer in @. Now, similarly to the case of charK = p, we
consider the morphism
g#:(9(T1,...,Td) — A

and define x; := g*(T;) fori = 1,...,d. Again, using that dim 4 ® 9 k = d, we can
apply Lemma D.1 to the residue classes x1,...,Xxg; and m = k + 1 to get elements
Y1s-..,Vd € A ®@ k such that the map

F:k[Tl,...,Td] — A ®p k, defined asF(Ti) =x_i+ﬁpk+l fori =1,....,d,
is finite. We lift y; to some elements y; € A and define
ffo(r,....T;) - A

k
by fH(T;) = xi +yF ™' The map f* is finite by Lemma D.2.
We are only left to show that the induced map

f:X—>1§d

is €tale on adic generic fibers. Next we claim that p (Q ) = 0. Indeed, we use [25,
Proposition 1.5.1.10] to trivialize Q Ty Ty} )0 = @l_ldT O(T1,...,Ty), so we
have the fundamental exact sequence

k+1
dTj—>d(xi+y] )~

P 4dT; Qlio— Qb =0

k+1
asd(y?" ") is divisible by p¥*1. Therefore, we see that modulo p¥*1, this sequence
is equal to

d
dT[—)d i ~ ~
@A/pkHdT,- Cxi) Q}i/@/pkﬂ N Q}/pk+1 o
i=1
Thus, we see that fi}/pk+1 ~ Q;,/pk“. In particular,
kA1 ka1 ka1 ka1
(P"2p)/p(P"2p) = (P72¢)/P(P72¢) = 0
by the choice of k. Therefore, p* Q} = 0 by [53, Lemma 28.P p. 212]. By passing to

the adic generic fiber, we get the map fx: X — D?{ such that

d(fi): f§ g 1k = Qx
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is surjective. However, we recall that X and D}l( are both smooth rigid-analytic vari-
eties of (pure) dimension d. Thus d r s a surjective map of vector bundles of the
same dimension d, so it must be an isomorphism. Finally, [15, Proposition 2.6]
implies that fx is étale. ]

Corollary D.5. Let K be a complete rank-1 valuation field with valuation ring Ok,
and residue field k of characteristic p. Suppose that g: X = Spa (A, AT) — D?( isan
étale morphism of affinoid rigid-analytic K -varieties. Then there exists a finite étale
morphism f: X — D%.

Proof. We note that [37, Lemma 4.4] implies that AT = A4°, so the map g corresponds
to the map
g (K(T1., ... Ta), Ok(Th..... Ta)) — (A, A°)

of Tate—Huber pairs. Theorem D.4 implies that it suffices to show that the image of
Ok (T1,...,Ty) lies inside some ring of definition A9 C A.
Since A is topologically finitely generated, we can extend g* to a surjection

0: K{Ty,....,Tg,X1,..., Xp) > A.

Then
A() = gD(@K(Tl,.. . ,Td,X],...,Xn>)

is bounded and it is open as a consequence of the Banach open mapping theorem ([37,
Lemma 2.4 (i)]). Thus, it is a ring of definition containing g* ((9K (T1,..., Td)). ]



