Chapitre 2

Espaces tordus

Tous les résultats de [25, chapitre 2] sont vrais ici, à l'exception de 2.6 et 2.10.

Dans le chapitre précédent, on a décrit la version « corps de fonctions » des résultats de [25, chapitre 1] sur les transformées de Laplace des fonctions caractéristiques de cônes et sur les (G, M)-familles. L'adaptation au cas tordu étant immédiate, nous serons très succincts.

2.1 Hypothèses

Soit (\tilde{G},G) un G-espace tordu. On rappelle que \tilde{G} est une variété algébrique affine, munie d'une action algébrique de G à gauche, qui en fait un G-espace principal homogène, et d'une application

$$\widetilde{G} \to \operatorname{Aut}(G), \ \delta \mapsto \operatorname{Int}_{\delta}, \qquad \text{telle que} \qquad \operatorname{Int}_{g\delta} = \operatorname{Int}_{g} \circ \operatorname{Int}_{\delta}$$

pour tout $g \in G$ et tout $\delta \in \widetilde{G}$. On en déduit une action à droite de G sur \widetilde{G} , donnée par

$$\delta g = \operatorname{Int}_{\delta}(g)\delta$$
.

On suppose que \widetilde{G} est défini sur F, c'est-à-dire que les actions à gauche et à droite de G sur \widetilde{G} sont définies sur F, et que $\widetilde{G}(F)$ est non vide. L'ensemble $\widetilde{G}(\mathbb{A})$ des points adéliques de \widetilde{G} est un espace tordu sous $G(\mathbb{A})$, et on a

$$\widetilde{G}(\mathbb{A}) = G(\mathbb{A})\widetilde{G}(F) = \widetilde{G}(F)G(\mathbb{A}).$$

On notera souvent θ l'automorphisme de G défini par $\operatorname{Int}_{\delta}$ pour un $\delta \in \widetilde{G}(F)$. On observe que l'automorphisme induit par θ sur \mathfrak{a}_G ne dépend que de \widetilde{G} . On pose

$$\alpha_{\widetilde{G}} = \alpha_{G}^{\theta}, \quad \text{et} \quad a_{\widetilde{G}} = \dim \alpha_{\widetilde{G}}.$$

On suppose, comme en [25, section 2.5]¹, que l'application naturelle

$$\alpha_G^{\theta} \to \alpha_G/(1-\theta)\alpha_G$$

¹Dans [34], l'hypothèse est un peu plus forte que celle de [25, section 2.5] : le F-automorphisme θ de Z_G est supposé d'ordre fini, ce qui assure l'existence d'un F-groupe algébrique affine G^+ de composante neutre G, tel que \widetilde{G} soit une composante connexe de G^+ .

est un isomorphisme. Dans ce cas on a une décomposition en somme directe

$$\alpha_G = \alpha_{\widetilde{G}} \oplus \alpha_G^{\widetilde{G}}, \text{ en posant } \alpha_G^{\widetilde{G}} = (1 - \theta)\alpha_G.$$

On observe que

$$\det(\theta - 1|\alpha_G^{\tilde{G}}) \neq 0.$$

Notons X le \mathbb{Z} -module libre des caractères du tore A_G . Soit X_{θ} le groupe des coinvariants sous θ dans X, et \widetilde{X} le \mathbb{Z} -module libre quotient de X_{θ} par son sous-groupe de torsion. On notera $A_{\widetilde{G}}$ le tore déployé dont le groupe des caractères est \widetilde{X} . C'est aussi le tore déployé dont le groupe des co-caractères est le sous-groupe Y^{θ} des invariants sous θ du groupe Y des co-caractères de A_G . Le morphisme $X \to \widetilde{X}$ induit un homomorphisme $A_{\widetilde{G}} \to A_G$ qui identifie $A_{\widetilde{G}}$ à la composante neutre du sous-groupe A_G^{θ} de A_G , formé des points fixes sous θ . En particulier, $A_{\widetilde{G}}(\mathbb{A})$ est un sous-groupe d'indice fini de $A_G(\mathbb{A})^{\theta} = A_G^{\theta}(\mathbb{A})$. Soit

$$\mathbf{H}_{\widetilde{G}}:G(\mathbb{A})\to\mathfrak{a}_{\widetilde{G}}$$

l'application composée de $\mathbf{H}_G: G(\mathbb{A}) \to \alpha_G$ et de la projection sur $\alpha_{\widetilde{G}}$. On note $\mathcal{A}_{\widetilde{G}}$ l'image de $\mathbf{H}_{\widetilde{G}}$, c'est-à-dire l'image de \mathcal{A}_G par la projection orthogonale par rapport à $\alpha_{\widetilde{G}}^{\widetilde{G}}$. C'est un réseau de $\alpha_{\widetilde{G}}$. Comme dans le cas non tordu, on a un morphisme naturel injectif $\mathcal{A}_{A_{\widetilde{G}}} \to \mathcal{A}_{\widetilde{G}}$. On note $\mathcal{B}_{\widetilde{G}} \ (= \mathbf{H}_{\widetilde{G}}(A_{\widetilde{G}}(\mathbb{A})))$ son image, qui est un sous-groupe d'indice fini de $\mathcal{A}_{\widetilde{G}}$, et on pose

$$\mathbb{C}_{\tilde{G}} \stackrel{\text{def}}{=} \mathcal{B}_{\tilde{G}} \backslash \mathcal{A}_{\tilde{G}}.$$

Notons que d'après ce qui précède, $\mathcal{B}_{\widetilde{G}}$ coı̈ncide avec le sous-groupe \mathcal{B}_{G}^{θ} de \mathcal{B}_{G} , formé des points fixes sous θ : on a

$$\mathfrak{B}_{\tilde{G}} = \mathfrak{B}_{G}^{\theta} = \mathfrak{B}_{G} \cap \mathfrak{a}_{\tilde{G}}.$$

On pose

$$\mathbb{B}_{G}^{\tilde{G}} = \mathbb{B}_{\tilde{G}} \backslash \mathbb{B}_{G} \quad \text{et} \quad \mathcal{C}_{G}^{\tilde{G}} = \mathbb{B}_{\tilde{G}} \backslash \mathcal{A}_{G}.$$

On observe que $\mathcal{B}_G^{\widetilde{G}}$ est un réseau de $\alpha_G^{\widetilde{G}}$, et que $\mathcal{C}_G^{\widetilde{G}}$ est un \mathbb{Z} -module de type fini qui s'insère dans la suite exacte courte

$$0 \to \mathcal{B}_G^{\widetilde{G}} \to \mathcal{C}_G^{\widetilde{G}} \to \mathcal{C}_G \to 0.$$

On suppose, ce qui est loisible, que la paire parabolique définie sur F minimale (P_0,A_0) de G a été choisie de telle sorte qu'elle soit stable par $\operatorname{Int}_{\delta_0}$ pour un élément $\delta_0\in \widetilde{G}(F)$, déterminé de manière unique modulo $M_0(F)$. On fixe un tel δ_0 , et on pose $\theta_0=\operatorname{Int}_{\delta_0},\ \widetilde{P}_0=\delta_0P_0$ et $\widetilde{M}_0=\delta_0M_0$. Alors le F-automorphisme θ_0 de G induit par fonctorialité un automorphisme de α_0 , que l'on note encore θ_0 . Puisque

le F-automorphisme θ_0 préserve A_0 et P_0 , il induit une permutation de l'ensemble fini Δ_0 et donc un automorphisme d'ordre fini de α_0^G .

On renvoie à [25, sections 2.7, 2.8] pour la définition des sous-ensembles (ou sous-espaces) paraboliques et sous-ensembles de Levi et l'adaptation des autres notions. En particulier, un sous-groupe parabolique standard P dont le normalisateur dans \tilde{G} est non vide est θ_0 stable et l'ensemble $\tilde{P}=P\delta_0$ est un sous-espace parabolique standard.

L'extension au cas tordu de la notion de famille orthogonale, de (G,M)-famille et de la combinatoire des fonctions τ , $\widehat{\tau}$, ϕ et Γ , est immédiate (cf. [25, section 2.9]). On dispose de plus ici de la notion de famille \widetilde{M} -orthogonale entière et de $(\widetilde{G},\widetilde{M})$ -famille périodique. Toute famille M-orthogonale $\mathfrak{X}=(X_P)$ définit par projection une famille \widetilde{M} -orthogonale $(X_{\widetilde{P}})$, et si \mathfrak{X} est entière alors $(X_{\widetilde{P}})$ l'est aussi. En particulier, tout élément $T \in \alpha_0$ définit une famille \widetilde{M} -orthogonale ($[T]_{\widetilde{P}}$). Toutes les relations de [25, section 1.7, 1.8] et de [34, section 1.3] sont valables pour ces nouvelles fonctions. Par exemple, si $\mathfrak{X}=(X_{\widetilde{P}})$ est une famille \widetilde{M} -orthogonale, pour $\Lambda \in \mathfrak{a}_{0,\mathbb{C}}^*$, on pose

$$\gamma_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{X}}(Z;\Lambda) = \sum_{H \in \mathcal{A}_{\widetilde{D}}^{\widetilde{Q}}(Z)} \Gamma_{\widetilde{M}}^{\widetilde{Q}}(H,\mathfrak{X}) e^{\langle \Lambda, H \rangle}.$$

Comme dans le cas non tordu, $\Lambda \mapsto \gamma_{\widetilde{M},F}^{\widetilde{\mathcal{Q}},\mathfrak{X}}(Z;\Lambda)$ est une fonction entière de $\Lambda \in \mathfrak{a}_{0,\mathbb{C}}^*$, et on a la décomposition pour Λ en dehors des murs

$$\gamma_{\tilde{M},F}^{\tilde{Q},\mathfrak{X}}(Z;\Lambda) = \sum_{\tilde{P} \in \mathcal{P}^{\tilde{Q}}(\tilde{M})} \varepsilon_{\tilde{P}}^{\tilde{Q},\mathfrak{X}}(Z;\Lambda).$$

Pour une $(\widetilde{G},\widetilde{M})$ -famille $c=(c(\cdot,\widetilde{P}))$, comme en section 1.6 et modulo le choix d'une mesure de Haar sur l'espace $\alpha_{\widetilde{M}}^{\widetilde{Q}}$, on définit pour $\Lambda\in\widehat{\mathfrak{a}}_0$ en dehors des murs,

$$c_{\widetilde{M}}^{\widetilde{\mathcal{Q}}}(\Lambda) = \sum_{\widetilde{P} \in \mathcal{P}^{\widetilde{\mathcal{Q}}}(\widetilde{M})} \epsilon_{\widetilde{P}}^{\widetilde{\mathcal{Q}}}(\Lambda) c(\Lambda, \widetilde{P}).$$

De même, si $Z \in \mathcal{A}_{\widetilde{Q}}$ et $\mathfrak{X} = (X_{\widetilde{P}})$ est une famille \widetilde{M} -orthogonale, on pose

$$c_{\widetilde{M},F}^{\widetilde{\mathcal{Q}},\mathfrak{X}}(Z;\Lambda) = \sum_{\widetilde{P} \in \mathcal{P}^{\widetilde{\mathcal{Q}}}(\widetilde{M})} \varepsilon_{\widetilde{P}}^{\widetilde{\mathcal{Q}},\mathfrak{X}}(Z;\Lambda) c(\Lambda,\widetilde{P}).$$

Ces fonctions vérifient les mêmes propriétés que dans le cas non tordu. En particulier, toute (\tilde{G}, \tilde{M}) -famille périodique c s'écrit $c = c_m$, pour une fonction à décroissance rapide m sur le réseau $\mathcal{H}_{\tilde{M}}$ des familles \tilde{M} -orthogonales qui sont entières. On a une formule d'inversion de Fourier analogue de celle de la proposition 1.6.8 dans le cas

tordu, et la fonction $\Lambda \mapsto c_{\widetilde{M},F}^{\widetilde{\mathcal{Q}},\mathfrak{X}}(Z;\Lambda)$ sur $\widehat{\mathfrak{a}}_0$ est lisse et invariante par $\mathcal{A}_{\widetilde{M}}^{\vee}$. On a aussi une variante de cette formule d'inversion de Fourier, lorsque c se prolonge en une (G,M)-famille périodique :

Lemme 2.1.1. Soient $\widetilde{M} \in \widetilde{\mathcal{L}}$, $\widetilde{Q} \in \mathfrak{F}(\widetilde{M})$ et $Z \in \mathcal{A}_{\widetilde{Q}}$. Soit \mathfrak{X} une famille \widetilde{M} -orthogonale, et soit $\mathbf{c} = (\mathbf{c}(\cdot, \widetilde{P}))$ une $(\widetilde{G}, \widetilde{M})$ -famille périodique. Supposons que \mathbf{c} se prolonge en une (G, M)-famille périodique $(\mathbf{c}(\cdot, P))$, et soit m une fonction à décroissance rapide sur \mathfrak{H}_M telle que $\mathbf{c} = \mathbf{c}_m$. Alors

$$c_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{X}}(Z;\Lambda) = \sum_{\mathfrak{U}\in\mathcal{H}_{M}} m(\mathfrak{U}) \gamma_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{X}}(Z,\mathfrak{U};\Lambda)$$

avec

$$\gamma_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{X}}(Z,\mathfrak{U};\Lambda)=\gamma_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{U}'+\mathfrak{X}}(Z+U_{\widetilde{Q}};\Lambda),$$

où \mathfrak{U}' est la famille \widetilde{M} -orthogonale entière déduite de \mathfrak{U} par projection.

 $D\acute{e}monstration$. Notons m' la fonction à décroissance rapide sur $\mathcal{H}_{\widetilde{M}}$ définie par

$$m'(\mathfrak{U}') = \sum_{\mathfrak{U} \in \mathcal{H}_{M}(\mathfrak{U}')} m(\mathfrak{U}),$$

où $\mathcal{H}_M(\mathcal{U}') \subset \mathcal{H}_M$ est la fibre au-dessus de \mathcal{U}' . Il suffit de voir que la $(\widetilde{G}, \widetilde{M})$ -famille c est associée à m': on a $c = c_{m'}$.

La preuve de la proposition 1.7.4 s'étend au cas tordu et fournit le lemme suivant.

Lemme 2.1.2. Soient $\widetilde{M} \in \widetilde{\mathcal{L}}$, $\widetilde{Q} \in \mathcal{F}(\widetilde{M})$ et $Z \in \mathcal{A}_{\widetilde{Q}}$. Soit \mathfrak{X} une famille \widetilde{M} -orthogonale rationnelle, et soit $\mathbf{c} = (\mathbf{c}(\cdot, \widetilde{P}))$ une $(\widetilde{G}, \widetilde{M})$ -famille périodique. Pour $\Lambda \in \widehat{\alpha}_0$, la fonction $T \mapsto \mathbf{c}_{\widetilde{M},F}^{\widetilde{Q},\mathfrak{X}(T)}(Z;\Lambda)$ appartient à PolExp. On a aussi l'analogue tordu des points (ii) et (iii) de la proposition 1.7.4.

Nous aurons besoin d'une variante de ce qui précède. Le Z-module de type fini

$$\mathcal{C}_{\tilde{M}}^{\tilde{Q}} \stackrel{\text{def}}{=} \mathcal{B}_{\tilde{Q}} \backslash \mathcal{A}_{\tilde{M}}$$

s'insère dans la suite exacte courte

$$0 \to \mathcal{B}_{\tilde{Q}} \backslash \mathcal{B}_{\tilde{M}} \to \mathcal{C}_{\tilde{M}}^{\tilde{Q}} \to \mathcal{C}_{\tilde{M}} \to 0.$$

On note $\mathcal{B}_{\widetilde{M}}^{\widetilde{Q}}(Z) \subset \mathcal{C}_{\widetilde{M}}^{\widetilde{Q}}$ la fibre au-dessus de $Z \in \mathfrak{C}_{\widetilde{M}}$. C'est un espace principal homogène sous $\mathcal{B}_{\widetilde{M}}^{\widetilde{Q}} = \mathcal{B}_{\widetilde{Q}} \backslash \mathcal{B}_{\widetilde{M}}$. Pour $\Lambda \in (\mathfrak{a}_{0,\mathbb{C}}^G)^* \oplus \mathcal{B}_{\widetilde{Q}}^{\vee}$, $\widetilde{P} \in \mathcal{P}^{\widetilde{Q}}(\widetilde{M})$, $T \in \mathfrak{a}_0$ et $X \in \mathfrak{a}_0$, on pose

$$\eta_{\widetilde{P},F}^{\widetilde{Q},T}(Z;X,\Lambda) = \sum_{H \in \mathcal{B}_{\widetilde{M}}^{\widetilde{Q}}(Z)} \Gamma_{\widetilde{P}}^{\widetilde{Q}}(H-X,T) e^{\langle \Lambda,H \rangle}.$$

L'expression

(2.1)
$$\eta_{\widetilde{P},F}^{\widetilde{Q},T}(Z;X) = \eta_{\widetilde{P},F}^{\widetilde{Q},T}(Z;X,0)$$

ne dépend que de l'image de T dans $\mathcal{B}_{\widetilde{P}}^{\widetilde{Q}} \setminus \alpha_{\widetilde{P}}^{\widetilde{Q}}$. La proposition suivante est une variante du lemme 1.6.7 et de la proposition 1.7.4.

Proposition 2.1.3. *Pour* $X \in \mathfrak{a}_{0,\mathbb{O}}$, *la fonction*

$$T \mapsto \phi(T) = \eta_{\widetilde{P},F}^{\widetilde{Q},T}(Z;X)$$

est un élément de PolExp : pour tout réseau \mathbb{R} de $\mathfrak{a}_{0,\mathbb{Q}}$, sa restriction à \mathbb{R} s'écrit

$$\phi_{\mathcal{R}}(T) = \sum_{\nu \in E} p_{\mathcal{R},\nu}(T) e^{\langle \nu, T \rangle},$$

où E est un sous-ensemble fini de $\widehat{\mathbb{R}}$ et les $p_{\mathfrak{R},v}$ sont des polynômes de degré majoré par $a_{\widetilde{P}} - a_{\widetilde{Q}}$. Les polynômes $p_{\mathfrak{R}_k,0}$ ont pour limite, lorsque $k \to \infty$, un polynôme qui est indépendant du réseau \mathfrak{R} .

Démonstration. Puisque

$$\eta_{\tilde{P},F}^{\tilde{Q},T}(Z;X) = e^{\langle \Lambda, Z' \rangle} \eta_{\tilde{P},F}^{\tilde{Q},T}(0;X-Z'),$$

on peut supposer Z=0, et il suffit de traiter le cas $\widetilde{Q}=\widetilde{G}$. Posons

$$\eta_{\widetilde{P},F}^{\widetilde{G},T}(X,\Lambda) = \eta_{\widetilde{P},F}^{\widetilde{G},T}(0;X,\Lambda).$$

On rappelle que

(2.2)
$$\Gamma_{\widetilde{P}}^{\widetilde{G}}(H,T) = \sum_{\{\widetilde{R}|\widetilde{P} \subset \widetilde{R}\}} (-1)^{a_{\widetilde{R}} - a_{\widetilde{G}}} \tau_{\widetilde{P}}^{\widetilde{R}}(H) \hat{\tau}_{\widetilde{R}}^{\widetilde{G}}(H - T),$$

et que la projection dans $\alpha_{\widetilde{P}}^{\widetilde{G}}$ du support de la fonction $H \mapsto \Gamma_{\widetilde{P}}^{\widetilde{G}}(H,T)$ est compacte. Pour $\Lambda \in \alpha_{0,\mathbb{C}}^{\widetilde{G}}$, sa transformée anti-Laplace

$$\eta_{\widetilde{P},F}^{\widetilde{G},T}(X,\Lambda) = \sum_{H \in \mathfrak{B}_{\widetilde{P}}^{\widetilde{G}}} \Gamma_{\widetilde{P}}^{\widetilde{G}}(H-X,T) e^{\langle \Lambda,H \rangle}$$

est donc une fonction holomorphe de Λ . Comme dans le lemme 1.6.3, on considère un réseau \mathcal{D}_k de $\alpha_{\widetilde{P}}^{\widetilde{G}}$ assez fin pour que $\mathcal{B}_{\widetilde{P}}^{\widetilde{G}}$ et les images de X et T dans $\alpha_{\widetilde{P}}^{\widetilde{G}}$ soient contenus dans ce réseau. On a

$$\eta_{\widetilde{P},F}^{\widetilde{G},T}(X,\Lambda) = c^{-1} \sum_{\nu \in \mathfrak{N}} \sum_{H \in \mathcal{D}_{\nu}} \Gamma_{\widetilde{P}}^{\widetilde{G}}(H - X,T) e^{\langle \Lambda + \nu, H \rangle},$$

où ν parcourt le dual $\mathfrak{N}=\mathfrak{B}_{\widetilde{P}}^{\widetilde{G},\vee}/\mathfrak{D}_{k}^{\vee}$ de $\mathfrak{B}_{\widetilde{P}}^{\widetilde{G}}\backslash\mathfrak{D}_{k}$ et c est l'indice de $\mathfrak{B}_{\widetilde{P}}^{\widetilde{G}}$ dans \mathfrak{D}_{k} . La somme en H peut se calculer au moyen de l'expression (2.2) lorsque $\mathfrak{R}(-\Lambda)$ est régulier:

$$\eta_{\widetilde{P},F}^{\widetilde{G},T}(X,\Lambda) = \sum_{\{\widetilde{R}|\widetilde{P} \subset \widetilde{R}\}} \eta_{\widetilde{P},\widetilde{R}}^{T}(X,\Lambda),$$

avec

$$\eta^T_{\widetilde{P},\widetilde{R}}(X,\Lambda) = c^{-1}(-1)^{a_{\widetilde{R}}-a_{\widetilde{G}}} \sum_{\nu \in \mathfrak{N}} \sum_{H \in \mathcal{D}_k} \tau^{\widetilde{R}}_{\widetilde{P}}(H-X) \hat{\tau}_{\widetilde{R}}(H-T-X) e^{\langle \Lambda + \nu, H \rangle},$$

qui est une fonction méromorphe en Λ ayant un pôle d'ordre $a_{\widetilde{P}}^{\widetilde{G}}=a_{\widetilde{P}}-a_{\widetilde{G}}$ en $\Lambda=0$. On conclut comme dans le lemme 1.6.7 en considérant les développements de Laurent des $\eta^T_{\widetilde{P},\widetilde{R}}(X,\Lambda)$. Pour la dernière assertion, on procède comme dans la preuve de la proposition 1.7.4.

2.2 Les fonctions σ et $\widetilde{\sigma}$

D'après [25, lemme 2.11.1], pour $Q \in \mathcal{P}_{st}$, il existe un plus petit $\widetilde{Q}^+ \in \widetilde{\mathcal{P}}_{st}$ et un plus grand $\widetilde{Q}^- \in \widetilde{\mathcal{P}}_{\mathrm{st}}$ tels que

$$Q^- \subset Q \subset Q^+$$
.

De plus ([25, lemme 2.11.2]), pour Q, $R \in \mathcal{P}_{\text{st}}$ tels que $Q^+ \subset R^-$, on a $(\alpha_Q^R)^{\theta_0} = \alpha_{\widetilde{O}^+}^{\widetilde{R}^-}$.

Pour $Q, R \in \mathcal{P}$, tels que $Q \subset R$, on note σ_Q^R la fonction caractéristique de l'ensemble des $H \in \mathfrak{a}_0$ tels que

$$\begin{cases} \langle \alpha, H \rangle > 0 & \text{pour } \alpha \in \Delta_Q^R, \\ \langle \alpha, H \rangle \leq 0 & \text{pour } \alpha \in \Delta_Q \setminus \Delta_Q^R, \\ \langle \varpi, H \rangle > 0 & \text{pour tout } \varpi \in \hat{\Delta}_R. \end{cases}$$

Si de plus $Q \in \mathcal{P}_{st}$ et $Q^+ \subset R^-$, il existe un $\widetilde{P} \in \widetilde{\mathcal{P}}$ tel que $Q \subset P \subset R$, alors on définit la variante tordue $\widetilde{\sigma}_O^R$ de la fonction σ_O^R en remplaçant la troisième condition

$$\langle \widetilde{\varpi}, H \rangle > 0$$
 pour tout $\widetilde{\varpi} \in \hat{\Delta}_{\widetilde{P}}$.

D'après [25, lemme 2.11.3], la fonction $\widetilde{\sigma}_{O}^{R}$ est indépendante du choix du $\widetilde{P} \in \widetilde{\mathcal{P}}$ avec $O \subset P \subset R$ utilisé pour la définir, ce qui justifie la notation.

2.3 La fonction q

Pour $Q \in \mathcal{P}_{st}$, considérons l'application linéaire²

$$q = q_Q : \mathfrak{a}_0 \to \mathfrak{a}_Q^{\tilde{G}}$$

définie par

$$q(X) = ((1 - \theta_0)X^{\tilde{G}})_Q = ((1 - \theta_0)X)_Q^{\tilde{G}}.$$

Elle se factorise à travers la projection orthogonale $\mathfrak{a}_0 \to \mathfrak{a}_{Q_0}^{\widetilde{G}},$ avec

$$Q_0 = Q \cap \theta_0^{-1}(Q) \in \mathcal{P}_{\text{st}}.$$

Tous les résultats de [25, sections 2.12 et 2.13] sont vrais ici, mutatis mutandis.

Notons que notre définition de q_Q diffère de celle de [25, section 2.13] puisqu'on projette sur $\alpha_Q^{\widetilde{G}}$ et non pas sur α_Q^G . Cela ne change pas grand chose à l'affaire puisque, par hypothèse, l'application $1-\theta$ est un automorphisme de $\alpha_G^{\widetilde{G}}$.