Chapitre 4

L'opérateur de troncature

4.1 Terme constant

Une fonction $\varphi: G(\mathbb{A}) \to \mathbb{C}$ est dite à *croissance lente* s'il existe des réels c, r > 0 tels que pour tout $g \in G(\mathbb{A})$, on ait

$$|\varphi(g)| \le c|g|^r$$
.

On écrit aussi « $|\varphi(g)| \ll |g|^r$ pour tout $g \in G(\mathbb{A})$ ».

Soit $P \in \mathcal{P}$, et soit φ une fonction sur $U_P(F) \setminus G(\mathbb{A})$, mesurable et localement L^1 . On définit le terme constant $\varphi_P = \Pi_P \varphi$ de φ le long de P par

$$\varphi_P(x) = \int_{U_P(F)\setminus U_P(\mathbb{A})} \varphi(ux) \, \mathrm{d}u, \quad x \in G(\mathbb{A}),$$

où d*u* est la mesure de Tamagawa sur $U_P(\mathbb{A})$ – i.e. celle qui donne le volume 1 au quotient $U_P(F)\backslash U_P(\mathbb{A})$. Alors φ_P est une fonction sur $U_P(\mathbb{A})\backslash G(\mathbb{A})$ mesurable et localement L^1 . De plus, si φ est à croissance lente, resp. lisse, alors φ_P est à croissance lente, resp. lisse.

Pour $P \in \mathcal{P}_{st}$, on note $\mathcal{R}_0^{P,+}$ l'ensemble des racines de T_0 dans M_P qui sont positives par rapport à Δ_0^P . Rappelons que l'on a fixé en section 3.4 un domaine de Siegel $\mathfrak{S} = \mathfrak{B}_G \mathfrak{S}^*$ pour le quotient $G(F) \setminus G(\mathbb{A})$. Fixons aussi un sous-groupe ouvert compact K' de $G(\mathbb{A})^1$.

Le lemme suivant [32, lemme I.2.7] est le résultat technique clef pour l'étude du terme constant dans le cas des corps de fonctions.

Lemme 4.1.1. Soit $P \in \mathcal{P}_{st}$. Il existe une constante $c_P > 0$ telle que si $g \in \mathfrak{S}$ vérifie $\langle \mathbf{H}_0(g), \alpha \rangle > c_P$ pour tout $\alpha \in \mathcal{R}_0^{G,+} \setminus \mathcal{R}_0^{P,+}$, alors, pour toute fonction φ sur $G(F) \setminus G(\mathbb{A})$ invariante à droite par K', on a $\varphi_P(g) = \varphi(g)$.

Ce lemme se généralise aux fonctions φ sur $U_{P'}(\mathbb{A})M_{P'}(F)\backslash G(\mathbb{A})$, pour $P'\in \mathcal{P}_{\mathrm{st}}$ tel que $P\subset P'$: en remplaçant $\mathcal{R}_0^{G,+}$ par $\mathcal{R}_0^{P',+}$ dans la condition sur g, on obtient, de même, $\varphi_P(g)=\varphi(g)$. On a aussi la variante suivante [32, corollaire I.2.8]:

Lemme 4.1.2. Il existe une constante c'>0 telle que pour tout $T'\in \mathfrak{a}_0$ tel que $d_0(T')>c'$, la propriété suivante soit vérifiée : pour tout $P\in \mathcal{P}_{st}$, tout $g\in \mathfrak{G}$ tel que

$$\begin{cases} \langle \alpha, \mathbf{H}_0(g) - T' \rangle > 0 & pour tout \alpha \in \Delta_P, \\ \langle \varpi, \mathbf{H}_0(g) - T' \rangle \leq 0 & pour tout \varpi \in \hat{\Delta}_0^P, \end{cases}$$

et toute fonction φ sur $G(F)\backslash G(\mathbb{A})$ invariante à droite par K', on a $\varphi_P(g) = \varphi(g)$.

Pour Q, $R \in \mathcal{P}$ tels que $Q \subset R$, et ψ une fonction sur $U_Q(F) \setminus G(\mathbb{A})$ mesurable et localement L^1 , on pose¹

$$\Pi_{\mathcal{Q},R}\psi = \sum_{\{P \in \mathcal{P} | \mathcal{Q} \subset P \subset R\}} (-1)^{a_P - a_R} \psi_P.$$

C'est encore une fonction sur $U_O(F)\backslash G(\mathbb{A})$, mesurable et localement L^1 .

Lemme 4.1.3. Il existe une constante c'' > 0 telle que pour tous les couples de sousgroupes paraboliques Q, $R \in \mathcal{P}_{st}$ avec $Q \subseteq R$, tout $g \in \mathfrak{S}$ vérifiant

$$\langle \alpha, \mathbf{H}_0(g) \rangle > c'', \quad pour tout \quad \alpha \in \Delta_Q^R,$$

et toute fonction φ sur $G(F)\backslash G(\mathbb{A})$, invariante à droite par K', on ait

$$\Pi_{Q,R}\varphi(g) = 0.$$

Démonstration. Il suffit d'adapter la démonstration de [32, corollaire I.2.9]. Par définition de \mathfrak{S} , il existe une constante $c_1 < 0$, telle que $\langle \mathbf{H}_0(g), \delta \rangle > c_1$ pour tout $g \in \mathfrak{S}$ et tout $\delta \in \mathcal{R}_0^{G,+}$. Fixons aussi une constante $c_2 > 0$, telle que pour tous $P, P' \in \mathcal{P}_{\text{st}}$ tels que $P \subset P'$, on ait la version généralisée du lemme 4.1.1: pour tout $g \in \mathfrak{S}$ tel que $\langle \mathbf{H}_0(g), \alpha \rangle > c_2$, pour tout $\alpha \in \mathcal{R}_0^{P',+} \setminus \mathcal{R}_0^{P,+}$, et pour toute fonction ψ sur $U_{P'}(\mathbb{A})M_{P'}(F)\backslash G(\mathbb{A})$, invariante à droite par K', on a $\psi_{P'}(g) = \varphi(g)$. Posons $c'' = c_2 - c_1$.

Soient Q, $R \in \mathcal{P}_{st}$ tels que $Q \subsetneq R$, et soit $g \in \mathfrak{S}$. Posons

$$\Delta_Q^R(g) = \{ \alpha \in \Delta_Q^R : \langle \alpha, \mathbf{H}_0(g) \rangle \le c'' \}.$$

L'ensemble des $P \in \mathcal{P}$ tels que $Q \subset P \subset R$ est en bijection avec l'ensemble des couples (Θ, Θ') avec $\Theta \subset \Delta_Q^R(g)$ et $\Theta' \subset \Delta_Q^R \setminus \Delta_Q^R(g)$. Pour un tel couple (Θ, Θ') , on note $P(\Theta, \Theta')$ l'élément de $\mathcal{P}_{\mathrm{st}}$ tel que $Q \subset P(\Theta, \Theta') \subset R$, défini par

$$\Delta_{O}^{P(\Theta,\Theta')} = \Theta \cup \Theta'.$$

Puisque

$$a_{P(\Theta,\Theta')} - a_R = a_Q - a_R - (|\Theta| + |\Theta'|),$$

on a

$$\Pi_{Q,R}\varphi(g)=(-1)^{a_Q-a_R}\sum_{(\Theta,\Theta')}(-1)^{|\Theta|+|\Theta'|}\varphi_{P(\Theta,\Theta')}(g),$$

¹Dans [25, section 4.3], cette fonction est notée $\Theta \psi$.

où (Θ, Θ') parcourt les couples comme ci-dessus. Fixé un tel couple, toute racine $\alpha \in \mathbb{R}^{P(\Theta,\Theta'),+} \setminus \mathbb{R}^{P(\Theta,\emptyset),+}$ s'écrit $\alpha = \beta + \delta$ avec $\beta \in \Theta'$ et $\delta \in \mathbb{R}^{P(\Theta,\Theta'),+} \cup \{0\}$, et l'on a

$$\langle \alpha, \mathbf{H}_0(g) \rangle = \langle \beta, \mathbf{H}_0(g) \rangle + \langle \delta, \mathbf{H}_0(g) \rangle > c'' + \inf\{c_1, 0\} \ge c_2.$$

Par conséquent, $\varphi_{P(\Theta,\Theta')}(g) = \varphi_{(\Theta,\emptyset)}(g)$. On a donc

$$\Pi_{\mathcal{Q},R}\varphi(g) = (-1)^{a_{\mathcal{Q}} - a_{R}} \Big(\sum_{\Theta' \subset \Delta_{\mathcal{Q}}^{R} \smallsetminus \Delta_{\mathcal{Q}}^{R}(g)} (-1)^{|\Theta'|} \Big) \sum_{\Theta \subset \Delta_{\mathcal{Q}}^{R}(g)} (-1)^{|\Theta|} \varphi_{P(\theta,\emptyset)}(g).$$

Or, la somme sur Θ' est nulle si $\Delta_Q^G(g) \neq \Delta_Q^R$, ce qui prouve le lemme.

Pour $Q = P_0$ et R = G, puisque l'ensemble des $g \in \mathfrak{S}^*$, tels que $\langle \mathbf{H}_0(g), \alpha \rangle \leq c''$, est compact, on a, en particulier [32, corollaire I.2.9] :

Lemme 4.1.4. Il existe un sous-ensemble compact $C = C_{K'}$ de \mathfrak{S}^* tel que, pour toute fonction φ sur $G(F) \setminus G(\mathbb{A})$ invariante à droite par K', le support de

$$\Pi_{P_0,G}\varphi|_{\mathbf{S}^*}$$

soit contenu dans C.

Soit $Q \in \mathcal{P}_{st}$. Pour $T \in \alpha_0$, on définit un opérateur de troncature $\Lambda^{T,Q}$ pour une fonction $\varphi \in L^1_{loc}(Q(F)\backslash G(\mathbb{A}))$ par

$$\mathbf{\Lambda}^{T,Q}\varphi(x) = \sum_{P \in \mathcal{P}_{\mathrm{st}}, P \subset Q} (-1)^{a_P - a_Q} \sum_{\xi \in P(F) \setminus Q(F)} \widehat{\tau}_P^Q (\mathbf{H}_0(\xi x) - T) \varphi_P(\xi x).$$

D'après [25, lemme 3.7.1], la somme sur ξ est finie. Notons que l'opérateur $\Lambda^{T,Q}$ ne dépend que de la projection T^Q de T sur α_0^Q . On pose

$$\mathbf{\Lambda}^T = \mathbf{\Lambda}^{T,G}.$$

Les résultats de [25, section 4.1] sur les propriétés de Λ^T sont vrais ici. En particulier, pour T assez régulier (i.e. tel que $d_0(T) \ge c$ pour une constante c dépendant de G), l'opérateur Λ^T est un idempotent [25, corollaire 4.1.3] : on a $\Lambda^T \circ \Lambda^T \varphi = \Lambda^T \varphi$.

Définition 4.1.5. Pour $X \in \mathfrak{a}_{\mathcal{Q}}^G$ et $T \in \mathfrak{a}_{\mathbf{0}}^G$, on définit²

$$T[\![X]\!] = T[\![X]\!]^Q \in \mathfrak{a}_0^Q$$

²On a utilisé les doubles crochets pour éviter les confusions avec la famille M_0 -orthogonale $([T]_P)$ définie par un élément $T \in \mathfrak{a}_0$.

en posant

$$T-X = \sum_{\alpha \in \Delta_0} x_{\alpha} \check{\alpha}$$
 et $T[X] = \sum_{\alpha \in \Delta_0^{\Omega}} x_{\alpha} \check{\alpha}$.

Le raffinement [25, lemme 4.2.2] des propriétés de $\Lambda^{T,Q}$ est encore vrai ici.

4.2 Troncature et support

Cette section adapte au cas des corps de fonctions les résultats de [25, section 4.3]. On fixe un $T \in \alpha_0$, assez régulier. La proposition suivante joue ici le rôle de [25, proposition 4.3.2]. Elle est très simple à prouver et fournit cependant des décroissances beaucoup plus radicales.

Proposition 4.2.1. Soit K' un sous-groupe ouvert compact de $G(\mathbb{A})$. Il existe un sous-ensemble fermé $\Omega = \Omega_{T,K'}$ de $G(F)\backslash G(\mathbb{A})$ d'image compacte dans

$$\mathfrak{B}_GG(F)\backslash G(\mathbb{A}),$$

tel que, pour toute fonction φ sur $G(F)\backslash G(\mathbb{A})$ invariante à droite par K', le support de la fonction tronquée $\mathbf{\Lambda}^T \varphi$ soit contenu dans Ω .

Démonstration. On reprend la démonstration de l'assertion (2) du lemme I.2.16 de [32]. Fixons un élément $T' \in \mathfrak{a}_0$ assez régulier : on demande que la conclusion du lemme 4.1.2 soit vérifiée pour K'. Pour $P \in \mathcal{P}_{st}$, notons $G(\mathbb{A})_{P,T'}$ l'ensemble des $x \in G(\mathbb{A})$ vérifiant

$$\left\{ \begin{array}{l} \langle \alpha, \mathbf{H}_0(x) - T' \rangle > 0 & \text{pour tout } \alpha \in \Delta_P, \\ \langle \varpi, \mathbf{H}_0(x) - T' \rangle \leq 0 & \text{pour tout } \varpi \in \hat{\Delta}_0^P, \end{array} \right.$$

et posons

$$\mathfrak{S}_{P|T'}^* = \mathfrak{S}^* \cap G(\mathbb{A})_{P,T'}.$$

D'après [25, lemme 4.1.1], pour $P \in \mathcal{P}_{st}$ et $x \in G(\mathbb{A})$, si $(\mathbf{\Lambda}^T \varphi)_P(x) \neq 0$, alors

$$\langle \overline{w}, \mathbf{H}_0(x) - T \rangle \le 0$$
, pour tout $\overline{w} \in \hat{\Delta}_P$.

Grâce à [25, lemme 1.2.8], on en déduit que le support de $(\mathbf{\Lambda}^T \varphi)_P|_{\mathbf{S}_{P,T'}^*}$ est contenu dans un compact de \mathfrak{S}^* indépendant de φ . En appliquant le lemme 4.1.2 à la fonction $\mathbf{\Lambda}^T \varphi$, on obtient que le support de $\mathbf{\Lambda}^T \varphi|_{\mathbf{\mathfrak{S}}_{P,T'}^*}$ est contenu dans un compact de \mathfrak{S}^* indépendant de φ . Puisque ([25, lemme 1.7.5])

$$\sum_{P \in \mathcal{P}_{\text{et}}} \phi_{P_0}^P \tau_P^G = 1,$$

on a $G(\mathbb{A}) = \bigcup_{P \in \mathcal{P}_{st}} G(\mathbb{A})_{P,T'}$. D'où la proposition.

61

Pour démontrer la proposition 4.2.1, on a utilisé la partition [25, lemme 1.7.5] de α_0 . On observe aussi que, d'après [25, lemme 3.6.4], on a

(4.1)
$$\mathbf{\Lambda}^{T} \varphi(x) = \sum_{\substack{Q, R \in \mathcal{P}_{\text{st}} \\ Q \subset R}} A_{Q, R}^{T} \varphi(x),$$

avec

$$(4.2) A_{Q,R}^T \varphi(x) = \sum_{\xi \in \mathcal{Q}(F) \backslash G(F)} F_{P_0}^Q(\xi x, T) \sigma_Q^R(\mathbf{H}_0(\xi x) - T) \Pi_{Q,R} \varphi(\xi x).$$

Si Q = R, alors $\sigma_Q^R = 0$, sauf si Q = R = G, auquel cas

$$A_{G,G}^T \varphi(x) = F_{P_0}^G(x,T) \varphi(x).$$

On note \mathbb{C}^T l'opérateur $A_{G,G}^T$. Puisque la fonction $F_{P_0}^G(\cdot,T)$ est invariante à gauche par $\mathfrak{B}_GG(F)$ et que son support est d'image compacte dans $\mathfrak{B}_GG(F)\backslash G(\mathbb{A})$, il existe un sous-ensemble fermé $\Omega^*=\Omega^*_{T,K'}$ de $G(F)\backslash G(\mathbb{A})$, d'image compacte dans $\mathfrak{B}_GG(F)\backslash G(\mathbb{A})$, tel que, pour toute fonction φ sur $G(F)\backslash G(\mathbb{A})$ invariante à droite par K', le support de $(\Lambda^T-\mathbb{C}^T)\varphi$ soit contenu dans Ω^* . On a aussi la variante de [25, proposition 4.3.3]:

Proposition 4.2.2. Soit K' un sous-groupe ouvert compact de $G(\mathbb{A})$. Il existe une constante $c = c_{K'}$ (qui ne dépend pas de T) telle que, si $d_0(T) \ge c$, alors pour toute fonction φ sur $G(F) \setminus G(\mathbb{A})$ invariante à droite par K', on a

$$(\mathbf{\Lambda}^T - \mathbf{C}^T)\varphi = 0.$$

Démonstration. Pour étudier $(\mathbf{\Lambda}^T - \mathbf{C}^T)\varphi(x)$, on traite séparément chaque terme $A_{Q,R}^T\varphi(x)$, avec $Q \neq R$ dans (4.1). On peut prendre x dans \mathfrak{S} . Pour $\xi \in Q(F)\backslash G(F)$, il s'agit de contrôler $\Pi_{Q,R}\varphi(\xi x)$, sous la condition

$$F_{P_0}^Q(\xi x,T)\sigma_Q^R(\mathbf{H}_0(\xi x)-T)=1.$$

D'après [25, lemme 3.6.1], pour x fixé, il y a au plus un ξ modulo Q(F) tel que l'expression ci-dessus soit non nulle. Puisqu'on est libre de multiplier ξx par un élément de Q(F), on peut supposer que $\xi x = uay \in \mathfrak{S}_{P_0}^Q(T_1,T)$ avec $u \in U_Q(\mathbb{A}), a \in \mathfrak{B}_0$ et $y \in C_Q$ (cf. section 3.4). On peut même supposer que $u \in \Omega_Q$ pour un compact $\Omega_Q \subset U_Q(\mathbb{A})$, tel que $U_Q(F)\Omega_Q = U_Q(\mathbb{A})$. Rappelons que C_Q est un compact fixé (assez gros, mais indépendant de T) de $G(\mathbb{A})$, et que $H = \mathbf{H}_0(\xi x)$ vérifie

$$\begin{cases} \langle \alpha, H - T_1 \rangle > 0 & \forall \alpha \in \Delta_0^Q, \\ \langle \varpi, H - T \rangle \le 0 & \forall \varpi \in \hat{\Delta}_0^Q. \end{cases}$$

Puisque $\sigma_Q^R(H-T)=1$, on a $\langle \alpha,H\rangle>\langle \alpha,T\rangle$ pour tout $\alpha\in\Delta_Q^R$. Comme l'élément $T-T_1$ est régulier, il existe $c_1\in\mathbb{R}$ (indépendant de T) tel que $\langle \alpha,H\rangle>c_1$ pour tout $\alpha \in \mathbb{R}^{R,+}$. D'après le lemme 4.1.3, il existe c'' > 0 tel que, pour $g \in \mathfrak{S}$ tel que $\langle \mathbf{H}_0(g), \alpha \rangle > c''$, pour tout $\alpha \in \Delta_Q^R$, on ait $\Pi_{Q,R} \varphi(g) = 0$, pour toute fonction φ sur $G(F)\setminus G(\mathbb{A})^1$, invariante à droite par K'. Ici l'élément $\xi x = uay$ n'appartient pas à \mathfrak{S} , mais $H = \mathbf{H}_0(a) + \mathbf{H}_0(y)$, et y reste dans un compact fixé, par conséquent il existe $c_1' \in \mathbb{R}$ (indépendant de T) tel que $\log |\alpha(a)| > c_1'$ pour tout $\alpha \in \mathbb{R}^{R,+}$. Puisque u reste dans un compact fixé de $U_O(\mathbb{A})$, pour tout $P' \in \mathbb{P}^R_{st}$, la version généralisée du lemme 4.1.1 s'applique encore à ξx (cf. la preuve du lemme I.2.7 de [32]), et quitte à modifier la constante c'', la conclusion du lemme 4.1.3 s'applique encore à ξx . D'où la proposition.

La différence par rapport au cas des corps de nombres est ici spectaculaire : sur un corps de nombres F, pour toute fonction lisse à croissance uniformément lente φ sur $\mathfrak{B}_GG(F)\backslash G(\mathbb{A})$, la fonction $\Lambda^T\varphi$ est seulement à décroissance rapide. Par ailleurs la décomposition

$$\mathbf{\Lambda}^T = \mathbf{C}^T + (\mathbf{\Lambda}^T - \mathbf{C}^T),$$

qui joue un rôle crucial dans les estimées de [25, chapitres 12 et 13], est bien plus simple à contrôler, car ici, pour toute fonction K'-invariante à droite sur $G(F) \setminus G(\mathbb{A})$, non seulement $\Lambda^T \varphi$ est à support d'image compacte dans $\mathfrak{B}_G G(F) \backslash G(\mathbb{A})$, mais si T est assez régulier, la troncature est encore plus brutale : on a $\mathbf{\Lambda}^T \varphi = \mathbf{C}^T \varphi$. Cela simplifiera, plus loin, la preuve des estimées à établir.