Chapitre 5

Formes automorphes et produits scalaires

5.1 Formes automorphes

On fixe une mesure de Haar dg sur $G(\mathbb{A})$. On note dk la mesure de Haar sur K, telle que vol(K) = 1. Pour $P \in \mathcal{P}$, on note du_P , ou simplement du, la mesure de Tamagawa sur $U_P(\mathbb{A})$. Par quotient par la mesure de comptage sur $U_P(F)$, on obtient une mesure sur $U_P(F) \setminus U_P(\mathbb{A})$ qui vérifie

$$\operatorname{vol}(U_P(F)\backslash U_P(\mathbb{A}))=1.$$

Posons $M = M_P$. La mesure de Haar dm sur $M(\mathbb{A})$ est choisie de sorte que l'on ait la formule d'intégration

$$\int_{G(\mathbb{A})} f(g) \, \mathrm{d}g = \int_{U_P(\mathbb{A}) \times M(\mathbb{A}) \times K} f(umk) e^{-\langle 2\rho_P, \mathbf{H}_P(m) \rangle} \, \mathrm{d}u \, \mathrm{d}m \, \mathrm{d}k,$$

où ρ_P désigne la demi-somme des racines positives de A_P . La fonction

$$m \mapsto \delta_P(m) = e^{\langle 2\rho_P, \mathbf{H}_P(m) \rangle}$$

est le module de $P(\mathbb{A})$:

$$d(mum^{-1}) = \delta_P(m) du.$$

On pose¹

$$X_P = P(F)U_P(\mathbb{A})\backslash G(\mathbb{A})$$
 et $\overline{X}_P = A_P(\mathbb{A})P(F)U_P(\mathbb{A})\backslash G(\mathbb{A}).$

En particulier

$$X_G = G(F)\backslash G(\mathbb{A})$$
 et $\overline{X}_G = A_G(\mathbb{A})G(F)\backslash G(\mathbb{A}).$

Les groupes $G(\mathbb{A})$ et $P(F)U_P(\mathbb{A})$ sont unimodulaires; on dispose donc d'une mesure quotient invariante à droite sur X_P . Pour ϕ localement intégrable et à support compact sur X_P , on a la formule d'intégration :

(5.1)
$$\int_{\boldsymbol{X}_P} \phi(x) \, \mathrm{d}x = \int_{\boldsymbol{X}_M \times \boldsymbol{K}} \boldsymbol{\delta}_P(m)^{-1} \phi(mk) \, \mathrm{d}m \, \mathrm{d}k,$$

¹On prendra garde à ce que l'espace noté ici X_G ne coïncide pas avec l'espace ainsi noté dans [25], car dans cette référence il y a, en plus, un quotient par \mathfrak{B}_G . Son usage correspond plutôt à celui de notre \overline{X}_G , sans toutefois lui être égal.

où dx est la mesure quotient. Par contre, si $P \neq G$, il n'y a pas de mesure $G(\mathbb{A})$ -invariante à droite sur \overline{X}_P . Toutefois, il existe une fonctionnelle invariante à droite $r_{\overline{X}_P}$ sur l'espace des sections du fibré en droites sur \overline{X}_P , défini par δ_P . Ces sections sont représentables par les fonctions sur X_P , vérifiant

$$\phi(px) = \delta_P(p)\phi(x)$$
 pour $p \in A_P(\mathbb{A})P(F)U_P(\mathbb{A})$.

La fonctionnelle est définie par :

$$r_{\overline{X}_P}(\phi) = \int_{\overline{X}_M \times K} \delta_P(m)^{-1} \phi(mk) \, \mathrm{d} \dot{m} \, \mathrm{d} k,$$

où dm est la mesure quotient.

Rappelons que l'on a noté $\Xi(P)$ le groupe des caractères unitaires de $A_P(\mathbb{A})$ qui sont triviaux sur $A_P(F)$. Soit $\xi \in \Xi(P)$. On dit qu'une fonction φ sur X_P « se transforme à gauche suivant ξ », si pour tout $x \in G(\mathbb{A})$ on a

$$\varphi(ax) = \xi(a)\varphi(x)$$
 pour $a \in A_P(\mathbb{A})$.

On note $L^2(X_M)_\xi$ l'espace de Hilbert formé des fonctions φ sur X_M qui se transforment à gauche suivant ξ et sont de carré intégrable sur \overline{X}_M . Le groupe $M(\mathbb{A})$ agit sur $L^2(X_M)_\xi$ par translations à droite. Considérons deux fonctions φ et ψ localement intégrables sur X_P qui se transforment à gauche suivant le même caractère $\xi \in \Xi(P)$. On pose (si l'intégrale converge)

(5.2)
$$\langle \varphi, \psi \rangle_{P} = \int_{\overline{X}_{M} \times K} \varphi(mk) \overline{\psi(mk)} \, d\dot{m} \, dk.$$

Ce produit scalaire définit l'espace de Hilbert $L^2(X_P)_{\xi}$, siège de la représentation unitaire « induite parabolique »

$$\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}L^2(X_M)_{\xi},$$

définie par

$$(\boldsymbol{\rho}(y)\varphi)(x) = \boldsymbol{\delta}_{\boldsymbol{P}}^{-1/2}(x)\boldsymbol{\delta}_{\boldsymbol{P}}^{1/2}(xy)\varphi(xy).$$

Pour la notion générale de forme automorphe, nous renvoyons le lecteur à [32, sous-section I.2.17]. Soit $M \in \mathcal{L}$. Un caractère de $A_M(\mathbb{A})$ est automorphe, s'il est trivial sur $A_M(F)$. Ainsi $\Xi(M)$ est le groupe des caractères unitaires automorphes de $A_M(\mathbb{A})$. Pour $P \in \mathcal{P}(M)$, une forme automorphe φ sur X_P est une fonction K-finie à droite telle que la fonction $m \mapsto \varphi(mx)$ sur X_M est automorphe. Elle est dite cuspidale, si pour tout $Q \in \mathcal{P}$ tel que $Q \subsetneq P$, le terme constant φ_Q est nul – ou, ce qui revient au même, si pour tout x, la fonction $m \mapsto \varphi(mx)$ sur X_M est cuspidale. Notons $\mathcal{A}_{\operatorname{cusp}}(X_P)$ l'espace des formes automorphes cuspidales sur X_P . Pour $\xi \in \Xi(P)$, notons

$$\mathcal{A}_{\mathrm{cusp}}(X_P)_{\xi} \subset \mathcal{A}_{\mathrm{cusp}}(X_P),$$

le sous-espace formé des fonctions qui se transforment à gauche suivant ξ .

Définition 5.1.1. Soit $P \in \mathcal{P}(M)$. On appelle représentation automorphe discrète modulo le centre – ou simplement discrète – de $M(\mathbb{A})$, une sous-représentation irréductible de $M(\mathbb{A})$ dans l'espace $L^2(X_M)_{\xi}$ pour un $\xi \in \Xi(M)$. On note $L^2_{\mathrm{disc}}(X_M)_{\xi}$ le sous-espace fermé de $L^2(X_M)_{\xi}$ engendré par ces représentations.

On appelle forme automorphe discrète pour P une fonction K-finie sur X_P telle que, pour tout x, la fonction $m \mapsto \varphi(mx)$ sur $M(\mathbb{A})$ soit un vecteur d'une représentation automorphe discrète modulo le centre de M.

Une représentation automorphe irréductible de $M(\mathbb{A})$ est discrète modulo le centre si et seulement si sa restriction à $M(\mathbb{A})^1$ est une somme finie de représentations irréductibles dans

$$L^2(M(F)\backslash M(\mathbb{A})^1).$$

Pour $\xi \in \Xi(P)$, on note $\mathcal{A}_{\text{disc}}(X_P)_{\xi}$ l'espace engendré par les formes automorphes discrètes qui se transforment à gauche suivant ξ sur X_P . Le produit scalaire $\langle \cdot, \cdot \rangle_P$ munit $A_{\rm disc}(X_P)_{\mathcal{E}}$ d'une structure d'espace pré-hilbertien. On sait (grâce à la proposition 4.2.1 pour les corps de fonctions) que

$$\mathbf{A}_{\mathrm{cusp}}(X_P)_{\xi} \subset \mathbf{A}_{\mathrm{disc}}(X_P)_{\xi}.$$

Ainsi, $A_{\text{cusp}}(X_P)_{\xi}$ est lui aussi muni d'une structure d'espace pré-hilbertien.

5.2 Opérateurs d'entrelacement et séries d'Eisenstein

Soient $P, Q \in \mathcal{P}$ deux sous-groupes parabolique associés, i.e. tels que M_P et M_Q soient conjugués dans G(F). Considérons une fonction Φ lisse sur X_P se transformant à gauche suivant un caractère unitaire automorphe ξ de $A_M(\mathbb{A})$. Pour $\lambda \in \mathfrak{a}_{P,\mathbb{C}}^*$ et $x \in G(\mathbb{A})$, posons

$$\Phi(x,\lambda) = e^{\langle \lambda + \rho_P, \mathbf{H}_P(x) \rangle} \Phi(x).$$

La fonction $x \mapsto \Phi(x, \lambda)$ ne dépend que de l'image de λ dans $\alpha_{P,\mathbb{C}}^*/\mathcal{A}_P^{\vee}$. Pour $s \in \mathbf{W}(\alpha_P, \alpha_Q)$ et pour $\lambda \in \alpha_{P, \mathbb{C}}^*$ « assez régulier » dans la chambre associée à P dans $\alpha_{P,\mathbb{C}}^*$, on a une expression définie par une intégrale convergente :

$$(\mathbf{M}_{Q|P}(s,\lambda)\Phi)(x,s\lambda) = \int_{U_{s,P,Q}(\mathbb{A})} \Phi(w_s^{-1}nx,\lambda) \,\mathrm{d}n,$$

 $^{^2}$ En notant \mathcal{R}_P l'ensemble des racines de A_P dans P, on demande ici l'inégalité stricte $\langle \check{\alpha}, \Re \lambda - \rho_P \rangle > 0$, pour toute racine $\alpha \in \Re_P$ telle que $s\alpha \in -\Re_Q$.

où l'on a posé

$$U_{s,P,Q} = (U_Q \cap w_s U_P w_s^{-1}) \backslash U_Q$$
.

On obtient ainsi un opérateur

$$\mathbf{M}_{Q|P}(s,\lambda): \mathcal{A}_{\mathrm{disc}}(X_P)_{\xi} \to \mathcal{A}_{\mathrm{disc}}(X_Q)_{s\xi}.$$

Pour P et Q standards et P fixé, Q est déterminé par s, et l'on pose

$$\mathbf{M}(s,\lambda) = \mathbf{M}_{Q|P}(s,\lambda).$$

Pour s = 1, on écrira

$$\mathbf{M}_{O|P}(\lambda) = \mathbf{M}_{O|P}(1,\lambda).$$

Dans le cas particulier où Q = s(P), on a (cf. [25, lemme 5.2.1]):

$$\mathbf{M}_{s(P)|P}(s,\lambda) = e^{(\lambda + \rho_P, Y_s)} s,$$
 où $Y_s = \mathbf{H}_0(w_s^{-1}) = T_0 - s^{-1} T_0$

et

$$s: \mathcal{A}_{\operatorname{disc}}(X_P)_{\xi} \to \mathcal{A}_{\operatorname{disc}}(X_Q)_{s\xi}$$
 est défini par $s\Phi(x) = \Phi(w_s^{-1}x)$.

Définition 5.2.1. Pour $\mu \in \mu_P$, on pose

$$\varphi_{\mu}(x) = e^{\langle \mu, \mathbf{H}_P(x) \rangle} \varphi(x),$$

et on note \mathbf{D}_{μ} l'opérateur $\varphi \mapsto \varphi_{\mu}$, i.e. $\mathbf{D}_{\mu}\varphi = \varphi_{\mu}$.

Lemme 5.2.2. Pour $P, Q \in \mathcal{P}$ associés, $s \in \mathbf{W}(\alpha_P, \alpha_Q)$, $\mu \in \mu_P$ et $\lambda \in \alpha_{P, \mathbb{C}}^*$ assez régulier, l'opérateur \mathbf{D}_{μ} vérifie l'équation fonctionnelle :

$$\mathbf{M}_{O|P}(s,\lambda)\mathbf{D}_{\mu} = \mathbf{D}_{s\mu}\mathbf{M}_{O|P}(s,\lambda+\mu).$$

Démonstration. Il suffit d'observer que $(\mathbf{D}_{\mu}\Phi)(x,\lambda) = \Phi(x,\lambda+\mu)$.

Soient $P, Q \in \mathcal{P}$ tels que $P \subset Q$. Pour $\Phi \in \mathcal{A}_{\operatorname{disc}}(X_P)_{\xi}$ et $\lambda \in \mathfrak{a}_{P,\mathbb{C}}^*$ assez régulier, on définit une série d'Eisenstein sur X_Q , par la formule :

$$E^{Q}(x, \Phi, \lambda) = \sum_{\gamma \in P(F) \setminus Q(F)} \Phi(\gamma x, \lambda).$$

Pour Q = G, on pose $E(\cdot, \Phi, \lambda) = E^G(\cdot, \Phi, \lambda)$. Le théorème 5.2.2 de [25] est vrai ici $(mutatis\ mutandis)^3$: pour $\Phi \in \mathcal{A}_{disc}(X_P)_{\mathcal{E}}$ et $x \in X_O$, les fonctions

$$\lambda \mapsto (\mathbf{M}_{Q|P}(s,\lambda)\Phi)(x)$$
 et $\lambda \mapsto E(x,\Phi,\lambda)$

admettent un prolongement méromorphe définissant des fonctions rationnelles sur le cylindre $\mathfrak{a}_{P}^* \mathbb{C}/\mathcal{A}_{P}^{\vee} = \operatorname{Hom}(\mathcal{A}_{P}, \mathbb{C}^{\times}).$

³Les propriétés de rationalité dans le cas cuspidal sont établies dans [32, section IV.4]. Le cas général est traité dans [32, appendice II].

5.3 La (G, M)-famille spectrale

Soient $M \in \mathcal{L}$, $P \in \mathcal{P}(M)$ et $\lambda \in \mathfrak{a}_{P,\mathbb{C}}^*$. On définit une (G, M)-famille périodique à valeurs opérateurs [25, corollaire 5.3.2] : pour $Q \in \mathcal{P}(M)$ et $\Lambda \in \widehat{\mathfrak{a}}_M$, on pose

$$\mathcal{M}(P,\lambda;\Lambda,Q) = \mathbf{M}_{Q|P}(\lambda)^{-1} \mathbf{M}_{Q|P}(\lambda+\Lambda).$$

Soit $T \in \alpha_0$. Rappelons que l'on a défini en section 3.2 une famille M_0 -orthogonale, qui est rationnelle si $T \in \mathfrak{a}_0 \mathbb{O}$:

$$\mathfrak{Y}(T) = (Y_{T,P}),$$

où, pour $P \in \mathcal{P}(M_0)$, on a posé

$$Y_{T,P} = [T]_P + Y_P$$
, et $Y_P = T_0 - [T_0]_P$.

Suivant la convention habituelle, pour $Q \in \mathcal{P}$ et $P \in \mathcal{P}(M_0)$ tels que $P \subset Q$, on pose $Y_{T,Q} = (Y_{T,P})_Q$ et $Y_Q = (Y_P)_Q$. Rappelons que pour $P \in \mathcal{P}(M_0)$, l'élément Y_P appartient à A_0 . En particulier, la famille M_0 -orthogonale (Y_P) est entière. On peut donc définir une autre (G, M)-famille périodique à valeurs opérateurs : pour $Q \in \mathcal{P}(M)$ et $\Lambda \in \widehat{\mathfrak{a}}_M$, on pose

$$\mathcal{M}(\mathfrak{Y}; P, \lambda; \Lambda, Q) = e^{\langle \Lambda, Y_Q \rangle} \mathcal{M}(P, \lambda; \Lambda, Q).$$

Le lemme suivant résulte de la proposition 1.6.8 :

Lemme 5.3.1. Fixons un élément $Z \in A_G$. Les fonctions méromorphes de λ et Λ à valeurs opérateurs⁴

$$\mathcal{M}_{M,F}^{G,T}(Z,\mathfrak{Y};P,\lambda;\Lambda) = \sum_{Q\in\mathcal{P}(M)} \varepsilon_Q^{G,[T]_Q}(Z;\Lambda) \mathcal{M}(\mathfrak{Y};P,\lambda;\Lambda,Q)$$

sont lisses pour les valeurs imaginaires pures de λ et Λ .

Observons que l'expression $\mathcal{M}_{M,F}^{G,T}(Z,\mathfrak{Y};P,\lambda;\Lambda)$ est égale à

$$\mathcal{M}_{M,F}^{G,T}(Z;P,\lambda;\Lambda) = \sum_{Q \in \mathcal{P}(M)} \varepsilon_Q^{G,[T]_Q}(Z;\Lambda) \mathcal{M}(P,\lambda;\Lambda,Q)$$

si $\mathfrak{Y} = 0$, et donc, par exemple, si G est déployé.

⁴La notion de méromorphie invoquée pour un opérateur, disons $A(\lambda)$, est entendue au sens faible, il s'agit de la méromorphie pour les fonctions $\lambda \mapsto A(\lambda)\Phi$, pour Φ dans un espace de Banach.

Soit $Z \in \mathcal{A}_G$. Pour Q, $R \in \mathcal{P}_{st}$, on introduit la fonction méromorphe de $\lambda \in \mathfrak{a}_{Q,\mathbb{C}}^*$ et $\mu \in \mathfrak{a}_{R,\mathbb{C}}^*$, à valeurs opérateurs,

$$\mathbf{\Omega}_{R|Q}^{T}(Z;\lambda,\mu) = \sum_{S,s,t} \varepsilon_{S}^{G,T_{S}}(Z;s\lambda - t\mu) \mathbf{M}(t,\mu)^{-1} \mathbf{M}(s,\lambda),$$

où S parcourt les éléments de \mathcal{P}_{st} qui sont associés à Q, s parcourt les éléments de $\mathbf{W}(\alpha_Q,\alpha_S)$, et t parcourt les éléments de $\mathbf{W}(\alpha_R,\alpha_S)$. Notons que $\mathbf{\Omega}_{R|Q}^T(Z;\lambda,\mu)$ ne dépend que des images de λ dans $\alpha_{Q,\mathbb{C}}^*/\mathcal{A}_Q^\vee$ et de μ dans $\alpha_{R,\mathbb{C}}^*/\mathcal{A}_R^\vee$, et que l'on a $\mathbf{\Omega}_{R|Q}^T(Z;\lambda,\mu)=0$ si R et Q ne sont pas associés.

Le lemme 5.3.4 de [25] est vrai ici. Il entraîne la variante suivante de [25, lemme 5.3.5]⁵ : en posant $M = M_R$, le changement de variables $s \mapsto u = t^{-1}s$, $S \mapsto S' = t^{-1}S$ et $s\lambda - t\mu \mapsto \Lambda_u = u\lambda - \mu$, donne

$$\begin{split} & \boldsymbol{\Omega}_{R|Q}^{T}(Z;\boldsymbol{\lambda},\boldsymbol{\mu}) \\ & = \sum_{u \in \mathbf{W}(\boldsymbol{\alpha}_{Q},\boldsymbol{\alpha}_{R})} \sum_{S' \in \mathcal{P}(M)} e^{\langle \boldsymbol{\Lambda}_{u},Y_{S'} \rangle} \varepsilon_{S'}^{G,[T]_{S'}}(Z;\boldsymbol{\Lambda}_{u}) \mathcal{M}(R,\boldsymbol{\mu};\boldsymbol{\Lambda}_{u},S') \mathbf{M}_{R|Q}(u,\boldsymbol{\lambda}) \\ & = \sum_{u \in \mathbf{W}(\boldsymbol{\alpha}_{Q},\boldsymbol{\alpha}_{R})} \mathcal{M}_{M,F}^{G,T}(Z,\boldsymbol{\mathfrak{Y}};R,\boldsymbol{\mu};\boldsymbol{\Lambda}_{u}) \mathbf{M}_{R|Q}(u,\boldsymbol{\lambda}). \end{split}$$

Puisque, pour $\lambda \in \widehat{\mathfrak{a}}_Q$, l'opérateur $\mathbf{M}_{R|Q}(u,\lambda)$ est une isométrie [25, théorème 5.2.2 (2)], on en déduit que la fonction à valeurs opérateurs

$$(\lambda, \mu) \mapsto \mathbf{\Omega}_{R|O}^T(Z; \lambda, \mu)$$

est lisse pour les valeurs imaginaires pures de λ et μ . L'opérateur

$$\Omega_{R|O}^{T}(Z;\lambda,\mu)$$

entrelace les représentation de $G(\mathbb{A})$ dans $\mathcal{A}_{\mathrm{disc}}(X_Q)_{\xi}$ et $\mathcal{A}_{\mathrm{disc}}(X_R)_{\xi'}$, où ξ et ξ' sont des caractères unitaires automorphes de $A_Q(\mathbb{A})$ et $A_R(\mathbb{A})$ respectivement, tels que pour un (i.e. pour tout) $u \in \mathbf{W}(\alpha_Q, \alpha_R)$, on ait $\xi' = u\xi$.

Définition 5.3.2. On pose

$$[\mathbf{\Omega}]_{R|Q}^T(Z;\lambda,\mu) = |\widehat{\mathbf{c}}_R|^{-1} \sum_{\nu \in \widehat{\mathbf{c}}_R} \mathbf{D}_{\nu} \, \mathbf{\Omega}_{R|Q}^T(Z;\lambda,\mu+\nu).$$

La fonction à valeurs opérateurs $(\lambda, \mu) \mapsto [\mathbf{\Omega}]_{R|Q}^T(Z; \lambda, \mu)$ est lisse pour les valeurs imaginaires pures de λ et μ .

⁵Dans l'énoncé de loc. cit., M est la composante de Levi standard de Q.

5.4 Séries d'Eisenstein et troncature

Soit $M \in \mathcal{L}$. Pour $Z \in \mathcal{A}_G$ et $H \in \mathcal{A}_M$, on pose

$$X_G(Z) = G(F)\backslash G(\mathbb{A}; Z), \quad X_M(H) = M(F)\backslash M(\mathbb{A}; H)$$

et

$$\overline{X}_M = A_M(\mathbb{A})M(F)\backslash M(\mathbb{A}).$$

Pour $P \in \mathcal{P}(M)$, soient Φ et Ψ deux fonctions sur X_P qui se transforment à gauche suivant le même caractère unitaire automorphe de $A_M(\mathbb{A})$. On a défini un produit scalaire

$$\langle \Phi, \Psi \rangle_P = \int_{\overline{X}_M \times K} \Phi(mk) \overline{\Psi(mk)} \, \mathrm{d}m \, \mathrm{d}k.$$

Lemme 5.4.1. *Pour* $H \in A_M$, *on pose*

$$\langle \Phi, \Psi \rangle_{P,H} = \int_{\boldsymbol{X}_M(H) \times \boldsymbol{K}} \Phi(mk) \overline{\Psi(mk)} \, \mathrm{d} m \, \mathrm{d} k.$$

On a alors

$$\langle \Phi, \Psi \rangle_{P,H} = |\widehat{\mathbb{c}}_{M}|^{-1} \sum_{\nu \in \widehat{\mathbb{c}}_{M}} e^{-\langle \nu, H \rangle} \langle \mathbf{D}_{\nu} \Phi, \Psi \rangle_{P}.$$

Démonstration. On observe que puisque

$$\Phi(amk)\overline{\Psi(amk)} = \Phi(mk)\overline{\Psi(mk)}$$

pour tout $a \in A_M(\mathbb{A})$, le produit scalaire $\langle \Phi, \Psi \rangle_{P,H}$ ne dépend que de l'image de H dans \mathfrak{C}_M . On conclut par transformée de Fourier sur le groupe fini \mathfrak{C}_M .

Soit $\varphi \in L^1_{loc}(P(F)\backslash G(\mathbb{A}; \mathbb{Z}))$. On pose, si la série converge,

$$E(x,\varphi) = \sum_{\gamma \in P(F) \backslash G(F)} \varphi(\gamma x).$$

Soit $\psi \in L^1_{loc}(\overline{X}_M \times K)$, c'est-à-dire que ψ est une fonction localement intégrable sur $X_M \times K$ qui est invariante à gauche sous $A_M(\mathbb{A})$. On pose, si l'intégrale a un sens, pour $\nu \in \widehat{\mathbb{C}}_M$,

$$\widehat{\psi}(\nu) = \int_{\overline{X}_M \times K} e^{\langle \nu, \mathbf{H}_M(m) \rangle} \psi(m, k) \, \mathrm{d}m \, \mathrm{d}k.$$

Nous aurons besoin du calcul formel suivant.

Lemme 5.4.2. Notons $A_M(Z)$ l'image réciproque dans A_M de $Z \in A_G$. Soit φ comme ci-dessus et supposons que

$$\varphi_P(x) = \int_{U_P(F)\setminus U_P(\mathbb{A})} \varphi(ux) \, \mathrm{d}u$$

soit de la forme

(5.3)
$$\varphi_P(mk) = \delta_P(m)e^{\langle \xi, \mathbf{H}_P(m) \rangle} \psi(m, k)$$

pour $m \in M(\mathbb{A})$, $k \in K$, $\xi \in \mu_M$ et $\psi \in L^1_{loc}(\overline{X}_M \times K)$. On a l'égalité suivante :

$$\int_{X_G(Z)} E(x,\varphi) \, \mathrm{d}x = |\widehat{\mathfrak{e}}_M|^{-1} \sum_{\nu \in \widehat{\mathfrak{e}}_M} \sum_{H \in \mathcal{A}_M(Z)} e^{\langle \xi - \nu, H \rangle} \widehat{\psi}(\nu).$$

Démonstration. Tout d'abord, il est classique d'observer que

$$\int_{X_G(Z)} E(x,\varphi) \, \mathrm{d}x = \int_{P(F) \backslash G(\mathbb{A};Z)} \varphi(x) \, \mathrm{d}x = \int_{P(F)U_P(\mathbb{A}) \backslash G(\mathbb{A};Z)} \varphi_P(x) \, \mathrm{d}x.$$

La formule d'intégration (5.1) montre alors que

$$\int_{\boldsymbol{X}_G(Z)} E(x,\varphi) \, \mathrm{d}x = \sum_{\boldsymbol{H} \in \mathcal{A}_M(Z)} \int_{\boldsymbol{X}_M(H) \times \boldsymbol{K}} \boldsymbol{\delta}_P(m)^{-1} \varphi_P(mk) \, \mathrm{d}m \, \mathrm{d}k,$$

soit encore, compte tenu de l'hypothèse (5.3),

$$\int_{X_G(Z)} E(x,\varphi) \, \mathrm{d}x = \sum_{H \in A_M(Z)} e^{\langle \xi, H \rangle} \int_{X_M(H) \times K} \psi(mk) \, \mathrm{d}m \, \mathrm{d}k,$$

et il suffit pour conclure d'observer que

$$\int_{X_M(H)\times K} \psi(mk) \, \mathrm{d}m \, \mathrm{d}k = |\widehat{\mathbb{c}}_M|^{-1} \sum_{\nu \in \widehat{\mathbb{c}}_M} e^{\langle -\nu, H \rangle} \widehat{\psi}(\nu).$$

Nous pouvons maintenant établir l'analogue, dans notre cadre, de [25, théorème 5.4.3]. Soient Φ et Ψ des formes automorphes associées à des sous-groupes paraboliques standards, vérifiant les conditions suivantes :

Hypothèses 5.4.3. On suppose que :

- (i) $\Phi \in \mathcal{A}_{\mathrm{disc}}(X_Q)_{\xi}$ et $\Psi \in \mathcal{A}_{\mathrm{disc}}(X_R)_{\xi'}$ pour des sous-groupes paraboliques associés Q, $R \in \mathcal{P}_{\mathrm{st}}$, où ξ , resp. ξ' , est un caractère unitaire automorphe de $A_Q(\mathbb{A})$, resp. de $A_R(\mathbb{A})$;
- (ii) $\lambda \in \mathfrak{a}_{Q,\mathbb{C}}^*/\mathcal{A}_Q^{\vee} \text{ et } \mu \in \mathfrak{a}_{R,\mathbb{C}}^*/\mathcal{A}_R^{\vee};$
- (iii) $\xi' = w\xi$ pour un (i.e. pour tout) $w \in \mathbf{W}(\alpha_Q, \alpha_R)$.

Théorème 5.4.4. Soit $Z \in A_G$. Sous les hypothèses 5.4.3, on a les assertions suivantes :

(i) On suppose que Φ et Ψ sont cuspidales. On a l'égalité entre fonctions méromorphes de λ et μ :

$$\int_{\boldsymbol{X}_G(Z)} \boldsymbol{\Lambda}^T E(x, \Phi, \lambda) \overline{E(x, \Psi, -\bar{\mu})} \, \mathrm{d}x = \langle [\boldsymbol{\Omega}]_{R|Q}^T(Z; \lambda, \mu) \Phi, \Psi \rangle_R.$$

(ii) On suppose que Φ et Ψ sont discrètes mais non nécessairement cuspidales. Il existe une constante c>0 telle que, pour tout $\lambda\in\mu_Q$ et tout $\mu\in\mu_R$, on ait :

$$\left| \int_{\boldsymbol{X}_G(Z)} \boldsymbol{\Lambda}^T E(x, \Phi, \lambda) \overline{E(x, \Psi, -\bar{\mu})} \, \mathrm{d}x - \langle [\boldsymbol{\Omega}]_{R|Q}^T (Z; \lambda, \mu) \Phi, \Psi \rangle_R \right| \ll e^{-c\boldsymbol{d}_0(T)}.$$

Démonstration. Prouvons (i). Pour $\lambda \in \alpha_{Q,\mathbb{C}}^*$ dans le domaine de convergence de la série d'Eisenstein $E(x, \Phi, \lambda)$, et puisque Φ est cuspidale, on a ([25, proposition 5.4.1])

$$\mathbf{\Lambda}^T E(x, \Phi, \lambda) = \sum_{S, s, \gamma} (-1)^{a(s)} \phi_{M, s}(s^{-1}(\mathbf{H}_0(\gamma x) - T))(\mathbf{M}(s, \lambda)(\gamma x, s\lambda)),$$

où la somme porte sur les $S \in \mathcal{P}_{st}$ associés à $Q, s \in \mathbf{W}(\alpha_Q, \alpha_S), \gamma \in S(F) \backslash G(F)$, et $M = M_Q$. On déduit du lemme 5.4.2 que pour λ dans le domaine de convergence de $E(x, \Phi, \lambda)$, et $-\bar{\mu}$ dans celui de $E(x, \Psi, -\bar{\mu})$, l'intégrale de (i) est égale à

(5.4)
$$\sum_{S,s} \int_{X_S(Z)} (-1)^{a(s)} \phi_{M,s}(s^{-1}(\mathbf{H}_0(x) - T)) \mathbf{A}(x,s) \, \mathrm{d}x$$

avec

$$X_S(Z) = S(F)U_S(\mathbb{A}) \backslash G(\mathbb{A}; Z)$$

 $(X_S(Z) \text{ est l'image de } (\coprod_{H \in A_M(Z)} X_M(H)) \times K \text{ dans } X_S), \text{ et}$

$$\mathbf{A}(x,s) = (\mathbf{M}(s,\lambda)\Phi)(x,s\lambda)\Pi_S \overline{E(x,\Psi,-\bar{\mu})},$$

où $\Pi_S E$ est le terme constant de E le long de S. Notons que $\phi_{M,s}(s^{-1}(\mathbf{H}_0(x)-T))$ ne dépend que de l'image $(\mathbf{H}_S(x)^G-T_S^G)$ de $(\mathbf{H}_0(x)-T)$ dans α_S^G . D'après [25, théorème 5.2.2 (5)], on a

$$\mathbf{A}(x,s) = \sum_{t \in \mathbf{W}^G(\mathfrak{a}_R,\mathfrak{a}_S)} e^{\langle s\lambda - t\mu + 2\rho_S, \mathbf{H}_S(x) \rangle} (\mathbf{M}(s,\lambda)\Phi)(x) \overline{(\mathbf{M}(t,-\bar{\mu})\Psi)(x)}.$$

La fonction $\mathbf{M}(s,\lambda)\Phi$ appartient à $\mathbf{A}_{\mathrm{cusp}}(X_S)_{s\xi}$ et la fonction $\mathbf{M}(t,-\bar{\mu})\Psi$ appartient à $\mathbf{A}_{\mathrm{cusp}}(X_S)_{t\xi'}$. Il résulte des lemmes 5.4.1 et 5.4.2 que l'expression (5.4) est égale à la somme sur S, s et t de

$$|\widehat{\mathbb{c}}_{S}|^{-1} \sum_{\nu \in \widehat{\mathbb{c}}_{S}} \sum_{H \in \mathcal{A}_{S}(Z)} (-1)^{a(s)} \phi_{M,s}(H - T_{S}) e^{\langle s\lambda - t\mu - \nu, H \rangle} \langle \mathbf{D}_{\nu} \mathbf{M}(s, \lambda) \Phi, \mathbf{M}(t, -\bar{\mu}) \Psi \rangle_{S}.$$

Fixons un triplet (S, s, t) comme ci-dessus. En tenant compte du lemme 1.6.5 on a pour λ assez régulier et μ fixé,

$$\sum_{H \in \mathcal{A}_S(Z)} (-1)^{a(s)} \phi_{M,s}(H - T_S) e^{\langle s\lambda - t\mu - \nu, H \rangle} = \varepsilon_S^{G,T_S}(Z; s\lambda - t\mu - \nu).$$

On obtient que l'expression (5.4) est égale à la somme sur S, s et t, de

(5.5)
$$|\widehat{\mathbf{c}}_{S}|^{-1} \sum_{\nu \in \widehat{\mathbf{c}}_{S}} \varepsilon_{S}^{G, T_{S}}(Z; s\lambda - t\mu - \nu) \langle \mathbf{D}_{\nu} \mathbf{M}(s, \lambda) \Phi, \mathbf{M}(t, -\bar{\mu}) \Psi \rangle_{S},$$

soit encore

(5.6)
$$|\widehat{\mathbb{c}}_{R}|^{-1} \sum_{\nu \in \widehat{\mathbb{c}}_{R}} \varepsilon_{S}^{G,T_{S}}(Z; s\lambda - t(\mu + \nu)) \langle \mathbf{D}_{t\nu} \mathbf{M}(s, \lambda) \Phi, \mathbf{M}(t, -\bar{\mu}) \Psi \rangle_{S},$$

et, grâce à l'équation fonctionnelle du lemme 5.2.2, on obtient que (5.6) est égal à

$$(5.7) |\widehat{\mathbf{c}}_{R}|^{-1} \sum_{\nu \in \widehat{\mathbf{c}}_{R}} \varepsilon_{S}^{G,T_{S}}(Z; s\lambda - t(\mu + \nu)) \langle \mathbf{D}_{\nu} \mathbf{M}(t, -(\mu + \nu))^{-1} \mathbf{M}(s, \lambda) \Phi, \Psi \rangle_{R}.$$

On voit apparaître la (G, M)-famille spectrale à valeurs opérateurs pour $M = M_R$ et l'intégrale de (i) est donc égale à

$$|\widehat{\mathfrak{c}}_{R}|^{-1} \sum_{\nu \in \widehat{\mathfrak{c}}_{R}} \langle \mathbf{D}_{\nu} \mathbf{\Omega}_{R|Q}^{T}(Z; \lambda, \mu + \nu) \Phi, \Psi \rangle_{R}.$$

L'assertion (i) en résulte. Le cas général (ii), dans le cas des corps de nombres, est dû à Arthur [3]. La preuve consiste à se ramener au cas cuspidal, c'est-à-dire à la formule de Langlands [25, théorème 5.4.2 (i)]. Dans le cas des corps de fonctions, on prouve, de la même manière, (ii) à partir de (i). Notons qu'ici les groupes μ_Q et μ_R sont compacts, d'où la borne uniforme en λ et μ .

Sous les hypothèses 5.4.3 (i) et 5.4.3 (ii), pour que l'intégrale

$$\int_{X_G(Z)} \mathbf{\Lambda}^T E(x, \Phi, \lambda) \overline{E(x, \Psi, -\bar{\mu})} \, \mathrm{d}x$$

soit non nulle, il faut que $w\xi$ et ξ' coïncident sur $A_R(F)\backslash A_R(\mathbb{A})^1$ pour un (et donc pour tout) $w\in \mathbf{W}(\alpha_Q,\alpha_R)$. Cette condition équivaut à l'existence d'un $\tau\in\mu_R$, tel que

$$(w\xi) \star \tau = \xi'$$
.

Son image dans $\widehat{\mathcal{B}}_R$ est uniquement déterminée.

Proposition 5.4.5. Notons $\mathcal{E}(\xi, \xi')$ l'ensemble des $\tau \in \mu_R$ vérifiant l'équation

$$(w\xi) \star \tau = \xi',$$

pour un $w \in \mathbf{W}(\alpha_Q, \alpha_R)$. S'il est non vide, c'est un espace principal homogène sous $\widehat{\mathbb{C}}_R$, indépendant du choix de w. Sous les hypothèses 5.4.3 (i) et 5.4.3 (ii), le théorème 5.4.4 reste vrai sans l'hypothèse 5.4.3 (iii), à condition de remplacer $[\Omega]_{R|Q}^T(Z;\lambda,\mu)$ par l'opérateur

$$[\mathbf{\Omega}]_{R|Q}^T(Z,\xi,\xi';\lambda,\mu) \stackrel{\text{def}}{=} |\widehat{\mathbf{c}}_R|^{-1} \sum_{\nu \in \mathcal{E}(\xi,\xi')} \mathbf{D}_{\nu} \, \mathbf{\Omega}_{R|Q}^T(Z;\lambda,\mu+\nu).$$

Par convention, $[\Omega]_{R|Q}^T(Z, \xi, \xi'; \lambda, \mu) = 0$ si $\mathcal{E}(\xi, \xi')$ est vide. Si $(\lambda - \mu - \nu) \in \widehat{\mathbb{C}}_G$ pour $\nu \in \mathcal{E}(\xi, \xi')$, chacun des membres de l'égalité ne dépend que de l'image de Z dans \mathbb{C}_G .

Démonstration. Il suffit d'observer que $E(x, \mathbf{D}_{\nu} \Psi, \mu) = E(x, \Psi, \mu + \nu)$.