Chapitre 6

Le noyau intégral

6.1 Opérateurs et noyaux

Notons $C_c^{\infty}(\widetilde{G}(\mathbb{A}))$ l'espace des fonctions lisses et à support compact sur $\widetilde{G}(\mathbb{A})$. On notera dy la mesure $G(\mathbb{A})$ -invariante à droite et à gauche sur $\widetilde{G}(\mathbb{A})$ déduite de la mesure de Haar dx sur $G(\mathbb{A})$ en posant :

$$\int_{\widetilde{G}(\mathbb{A})} f(y) \, \mathrm{d}y = \int_{G(\mathbb{A})} f(\delta x) \, \mathrm{d}x \quad \text{avec} \quad \delta \in \widetilde{G}(F).$$

La mesure ainsi définie est indépendante du choix de δ . L'espace tordu localement compact $\widetilde{G}(\mathbb{A})$ est unimodulaire, au sens de [25, section 2.1]. Il agit sur X_G de la manière suivante : pour $x \in X_G$ et $y \in \widetilde{G}(\mathbb{A})$, on choisit un représentant \dot{x} de x dans $G(\mathbb{A})$ et un élément δ dans $\widetilde{G}(F)$. Alors $\dot{x}' = \delta^{-1}\dot{x}y$ est un élément de $G(\mathbb{A})$, dont l'image x' dans X_G ne dépend pas des choix de \dot{x} et de δ . On pose x*y=x'.

On fixe, dans toute la suite, un caractère unitaire ω de $G(\mathbb{A})$ trivial sur le groupe $A_{\widetilde{G}}(\mathbb{A})G(F)$. La représentation régulière droite ρ de $G(\mathbb{A})$ dans $L^2(X_G)$ se prolonge naturellement en une représentation unitaire $\widetilde{\rho}$ de $(\widetilde{G}(\mathbb{A}), \omega)$, au sens de [25, section 2.3]: pour $\varphi \in L^2(X_G)$, et x et y comme ci-dessus, on pose

$$\widetilde{\boldsymbol{\rho}}(y,\omega)\varphi(x) = (\omega\varphi)(x*y) = \omega(\delta^{-1}\dot{x}y)\varphi(\delta^{-1}\dot{x}y).$$

Par intégration contre une fonction $f \in C^\infty_{\mathrm{c}}(\widetilde{G}(\mathbb{A}))$, on définit l'opérateur

$$\widetilde{\boldsymbol{\rho}}(f,\omega) = \int_{\widetilde{\boldsymbol{G}}(\mathbb{A})} f(y)\widetilde{\boldsymbol{\rho}}(y,\omega) \,\mathrm{d}y.$$

Il est représenté par le noyau intégral sur $X_G \times X_G$

$$K_{\widetilde{G}}(f,\omega;x,y) = \sum_{\delta \in \widetilde{G}(F)} \omega(y) f(x^{-1}\delta y),$$

c'est-à-dire que nous avons

$$(\widetilde{\boldsymbol{\rho}}(f,\omega)\varphi)(x) = \int_{\boldsymbol{X}_{\widetilde{G}}} K_{\widetilde{G}}(f,\omega;x,y)\varphi(y) \,\mathrm{d}y.$$

Le noyau $K_{\widetilde{G}}(f,\omega;x,y)$ sera noté $K(f,\omega;x,y)$ si aucune confusion n'est à craindre. D'après [25, lemme 6.2.1] on a le

Lemme 6.1.1. Il existe des constantes c(f) et N telles que, pour tout x et tout y dans $G(\mathbb{A})$, on ait

$$|K(f,\omega;x,y)| < c(f)|x|^N|y|^N.$$

6.2 Factorisation du novau

Pour $f \in C_c^{\infty}(\widetilde{G}(\mathbb{A}))$ et $h \in C_c^{\infty}(G(\mathbb{A}))$, on note $f \star h \in C_c^{\infty}(\widetilde{G}(\mathbb{A}))$ la fonction définie par

$$(f \star h)(x) = \int_{G(\mathbb{A})} f(xy^{-1})h(y) \, \mathrm{d}y.$$

Le noyau intégral de l'opérateur $\widetilde{\rho}(f*h,\omega)$ sur X_G est donné par

$$K(f \star h, \omega; x, y) = \int_{X_G} K(f, \omega; x, z) K_G(\omega h; z, y) dz.$$

Toute fonction $f \in C_c^{\infty}(\widetilde{G}(\mathbb{A}))$ est K'-bi-invariante, c'est-à-dire invariante à droite et à gauche, par K', un sous-groupe ouvert compact de $G(\mathbb{A})$, que l'on peut choisir distingué dans K. Si on suppose que le caractère ω est trivial sur K', la fonction

$$X_G \times X_G \to \mathbb{C}, (x, y) \mapsto K(f, \omega; x, y)$$

est $(K' \times K')$ -invariante (pour l'action à droite) et le novau $K(f, \omega; x, y)$ est A-admissible au sens de [25, section 6.3]. Le théorème de factorisation de Dixmier-Malliavin [25, théorème 6.3.1] est trivialement vrai ici : notons $e_{K'}$ la fonction caractéristique de K' divisée par vol(K'). C'est un idempotent de $C_c^{\infty}(G(\mathbb{A}))$ et l'on a

$$f = f \star e_{\mathbf{K}'} = e_{\mathbf{K}'} \star f = e_{\mathbf{K}'} \star f \star e_{\mathbf{K}'}.$$

Puisque $\omega_{|_{K'}} = 1$, le noyau $K(f, \omega; x, y)$ s'écrit

$$K(f,\omega;x,y) = \int_{\boldsymbol{X}_G} K(f,\omega;x,z) K_G(e_{\boldsymbol{K}'};z,y) \,\mathrm{d}z.$$

6.3 Propriétés du noyau tronqué

On a défini en section 3.4 un domaine de Siegel $\mathfrak{S}^* = \mathfrak{E}_G \mathfrak{S}^1$ pour le quotient

$$\mathfrak{B}_GG(F)\backslash G(\mathbb{A}),$$

et on pose $G(\mathbb{A})^* = \mathfrak{E}_G G(\mathbb{A})^1$. On note Λ_1^T l'opérateur de troncature agissant sur la première variable d'un noyau $K(f, \omega; x, y)$. On a, dans [32], la variante IV.2.5(b) des lemmes 6.4.1 et 6.4.2 de [25] :

Lemme 6.3.1. (i) Il existe un sous-ensemble compact Ω_1 de \mathfrak{S}^* tel que pour tout $y \in G(\mathbb{A})^*$, la fonction

$$\mathfrak{S}^* \to \mathbb{C}, \quad x \mapsto \mathbf{\Lambda}_1^T K(f, \omega; x, y)$$

soit à support dans Ω_1 . De plus, la fonction

$$\mathfrak{S}^* \times \mathfrak{S}^* \to \mathbb{C}, \quad (x, y) \mapsto \mathbf{\Lambda}_1^T K(f, \omega; x, y)$$

est à support compact, donc bornée.

(ii) Soit K' un sous-groupe ouvert compact de $G(\mathbb{A})$. Il existe un sous-ensemble compact Ω_2 de $\mathfrak{S}^* \times \mathfrak{S}^*$ tel que pour toute fonction K'-bi-invariante f dans $C_c^{\infty}(\widetilde{G}(\mathbb{A}))$, le support de la restriction à $\mathfrak{S}^* \times \mathfrak{S}^*$ du noyau tronqué $(x, y) \mapsto \mathbf{\Lambda}_1^T K(f, \omega; x, y)$ soit contenu dans Ω_2 .

Démonstration. La fonction $(x, y) \mapsto K(f, \omega; x, y) \operatorname{sur} X_G \times X_G \operatorname{est} (K' \times K')$ -invariante pour un sous-groupe ouvert compact K' de $G(\mathbb{A})$. On peut donc appliquer la proposition 4.2.1 : il existe un sous-ensemble compact Ω_1 de \mathfrak{S}^* tel que pour tout $y \in G(\mathbb{A})^*$, le support de la fonction $x \mapsto \mathbf{\Lambda}_1^T K(f, \omega; x, y)$ soit contenu dans Ω_1 . On procède ensuite comme dans la preuve de [32, assertion IV.2.5 (b)]. La dernière assertion résulte de la proposition 4.2.1 et de la preuve de [32, assertion IV.2.5 (b)].