Chapitre 13

Simplification du produit scalaire

13.1 Une majoration uniforme

Pour $P \in \mathcal{P}$, choisissons une section du morphisme $A_P(\mathbb{A}) \to \mathcal{B}_P$ et notons \mathfrak{B}_P son image. Cela permet de relever $\Xi(P)^1$ dans $\Xi(P)$, d'où une identification

$$\Xi(P) = \Xi(P)^1 \times \widehat{\mathcal{B}}_P$$
.

Le groupe des caractères automorphes, mais non nécessairement unitaires, de $A_P(\mathbb{A})$ s'identifie à $\Xi(P) \times \mathfrak{a}_P^*$. Un tel caractère ξ peut donc s'écrire

$$\xi = \xi_{\mathbf{u}}|\xi| = (\zeta \star \mu) \star \nu = \zeta \star (\mu + \nu)$$

avec $\zeta = \xi_{|A_P(\mathbb{A})^1}$, $\mu \in \widehat{\mathbb{B}}_P$ et $\nu \in \mathfrak{a}_P^*$. On le notera $\xi = (\zeta, \mu, \nu)$.

Soit ϕ une forme automorphe sur X_G (discrète ou non). Pour $P \in \mathcal{P}_{st}$, on note $\phi_{P,\text{cusp}}$ le terme constant cuspidal de ϕ le long de P, défini en [32, sous-sections I.3.4, I.3.5]. C'est une forme automorphe cuspidale sur X_P , qui s'écrit sous la forme

(13.1)
$$\phi_{P,\text{cusp}} = \sum_{(q,\xi)} q(\mathbf{H}_P(x))\phi_{q,\xi}(x),$$

où (q, ξ) parcourt un sous-ensemble fini de $\mathbb{C}[\alpha_P] \times \Xi(P) \times \alpha_P^*$ et $\phi_{q,\xi}$ est une forme automorphe cuspidale sur X_P , se transformant suivant ξ . En écrivant $\xi = (\zeta, \mu, \nu)$, comme ci-dessus, on voit que la fonction

$$x \mapsto e^{-\langle \mu + \nu, \mathbf{H}_P(x) \rangle} \phi_{q,\xi}(x)$$

appartient à $\mathcal{A}_{\mathrm{disc}}(X_P)_{\xi}$. Notons $\mathcal{A}_{\mathrm{cusp}}(X_P)_{\Xi(P)^1}$ le sous-espace de $\mathcal{A}_{\mathrm{cusp}}(X_P)$, engendré par les espaces $\mathcal{A}_{\mathrm{cusp}}(X_P)_{\xi}$ pour $\xi \in \Xi(P)^1$, identifié au sous-groupe de $\Xi(P)$ des caractères triviaux sur \mathfrak{B}_P . Il se décompose en

$$\mathcal{A}_{\operatorname{cusp}}(X_P)_{\Xi(P)^1} = \bigoplus_{\zeta \in \Xi(P)^1} \mathcal{A}_{\operatorname{cusp}}(X_P)_{\zeta}.$$

Pour tout $P \in \mathcal{P}_{st}$, fixons un sous-ensemble compact $\Gamma_P \subset \mathfrak{a}_{P,\mathbb{C}}^*/\mathcal{A}_P^\vee$, deux entiers naturels n_P et d_P , et un sous-espace de dimension finie V_P de $\mathcal{A}_{cusp}(X_P)_{\Xi(P)^1}$. On note

$$A((V_P, d_P, \Gamma_P, \boldsymbol{n}_P)_{P \in \mathcal{P}_{st}})$$

l'ensemble des formes automorphes ϕ sur X_G telles que, pour tout $P \in \mathcal{P}_{st}$, le terme constant cuspidal $\phi_{P, \text{cusp}}$ puisse s'écrire

(13.2)
$$\phi_{P,\text{cusp}}(x) = \sum_{i=1}^{n_P} e^{\langle \lambda_{P,i} + \rho_P, \mathbf{H}_P(x) \rangle} \sum_{j=1}^{n_{P,i}} q_{P,i,j}(\mathbf{H}_P(x)) \phi_{P,i,j}(x),$$

où les $n_{P,j}$ sont des entiers positifs ou nuls quelconques, $n_P \leq n_P$, $\lambda_{P,i} \in \Gamma_P$, $q_{P,i,j} \in \mathbb{C}[\alpha_P]$ avec $\deg(q_{P,i,j}) \leq d_P$, et $\phi_{P,i,j} \in V_P$. Notons que cet ensemble n'est pas un espace vectoriel (à cause de la condition $n_P \leq n_P$). Dans l'expression (13.2), on peut supposer que les $\lambda_{P,i}$ sont deux-à-deux distincts. On définit comme en [25, section 13.1] une norme

$$\|\phi\|_{\operatorname{cusp}} = \sum_{P \in \mathcal{P}_{\operatorname{st}}} \|\phi_{P,\operatorname{cusp}}\|_{\operatorname{cusp}}.$$

D'après [25, lemme 13.1.1], on a le résultat suivant.

Lemme 13.1.1. Pour tout $\lambda \in \mathfrak{a}_0^*$, il existe une constante c > 0 telle que pour tout $\phi \in A((V_P, d_P, \Gamma_P, \mathbf{n}_P)_{P \in \mathcal{P}_{st}})$ et tout $x \in \mathfrak{G} = \mathfrak{B}_G \mathfrak{G}^*$, on ait la majoration

$$|\phi(x)| \le c \|\phi\|_{\text{cusp}} \sum_{P \in \mathcal{P}_{st}} \sum_{i=1}^{n_P} e^{\langle \lambda^P + \Re(\lambda_{P,i}) + \rho_P, \mathbf{H}_0(x) \rangle} (1 + \mathbf{H}_P(x))^{d_P},$$

où λ^P est la projection de λ sur $\alpha_0^{P,*}$ et les $\lambda_{P,i}$ sont ceux de l'égalité (13.2).

13.2 Majoration des termes constants

On fixe deux sous-groupe paraboliques standards Q, $R \in \mathcal{P}_{st}$ tels que $Q \subset R$ et $\widetilde{\eta}(Q,R)=1$. On pose $Q'=\theta_0^{-1}(Q)$ et $Q_0=Q\cap Q'$. On fixe aussi $S\in \mathcal{P}_{st}^{Q'}$ et $\sigma\in\Pi_{\operatorname{disc}}(M_S)$. La représentation σ intervient dans le spectre discret de $M_S(F)\backslash M_S(\mathbb{A})^1$. Considérons :

- un sous-groupe parabolique standard S_{cusp} tel que $S_{\text{cusp}} \subset S$;
- une représentation automorphe cuspidale $\sigma_{\rm cusp}$ de $M_{S_{\rm cusp}}(\mathbb{A})$ qui est une sousreprésentation irréductible de $L^2(\mathfrak{B}_{S_{\rm cusp}}\backslash X_{M_{S_{\rm cusp}}})$ – c'est-à-dire que $\sigma_{\rm cusp}$ se réalise dans $\mathcal{A}_{\rm cusp}(X_{M_{S_{\rm cusp}}})_{\xi}$ pour un caractère $\xi\in\Xi(S_{\rm cusp})^1$;
- un opérateur différentiel D à coefficients polynomiaux sur $\mathfrak{a}_{S_{\text{cusp}},\mathbb{C}}^{S,*}$;
- un point $v_0 \in \mathfrak{a}_{S_{\text{cusp}}}^{S,*}$.

Rappelons que $\Psi_{S_{\operatorname{cusp}}\cap M_S}(\sigma_{\operatorname{cusp}})$ est une base orthonormale de l'espace vectoriel pré-hilbertien $\mathcal{A}(X_{S_{\operatorname{cusp}}\cap M_S},\sigma_{\operatorname{cusp}})$. Pour $\Phi_{\operatorname{cusp}}\in\Psi_{S_{\operatorname{cusp}}\cap M_S}(\sigma_{\operatorname{cusp}})$ et $\nu\in\alpha_{S_{\operatorname{cusp}},\mathbb{C}}^{S,*}$,

formons la série d'Eisenstein

$$E^{M_S}(y, \Phi_{\text{cusp}}, \nu) = \sum_{\gamma \in (S_{\text{cusp}} \cap M_S)(F) \setminus M_S(F)} \Phi_{\text{cusp}}(\gamma y, \nu), \quad y \in M_S(\mathbb{A}).$$

On applique l'opérateur D sous l'hypothèse que la fonction $\nu \mapsto DE^{M_S}(y, \Phi_{\text{cusp}}, \nu)$ est holomorphe en $\nu = \nu_0$ et on note

$$D_{\nu=\nu_0}E^{M_S}(y,\Phi_{\rm cusp},\nu),$$

sa valeur en $\nu = \nu_0$.

Comme dans [25] on voit qu'en choisissant convenablement la base $\Psi_S(\sigma)$ de $\mathcal{A}(X_S, \sigma)$, on peut supposer que pour tout élément $\Psi \in \Psi_S(\sigma)$, il existe des données S_{cusp} , σ_{cusp} , D, ν_0 et $\Psi_{\text{cusp}} \in \Psi_{S_{\text{cusp}}}(\sigma_{\text{cusp}})$ telles que

$$E^{Q'}(y, \Psi, \mu) = D_{\nu = \nu_0} E^{Q'}(y, \Psi_{\text{cusp}}, \nu + \mu)$$

pour tout $\mu \in \mathfrak{a}_{S,\mathbb{C}}^*/\mathcal{A}_S^\vee$. Prendre un terme constant et prendre un résidu sont deux opérations qui commutent. Grâce à [25, théorème 5.2.2 (4)], on obtient (13.3)

$$E_{Q_0}^{Q'}(y, \Psi, \mu) = D_{\nu = \nu_0} \left(\sum_{s \in \mathbf{W}^{Q'}(\mathfrak{a}_{S_{\text{cusp}}}, Q_0)} E^{Q_0}(y, \mathbf{M}(s, \nu + \mu) \Psi_{\text{cusp}}, s(\nu + \mu)) \right).$$

Le terme constant $E_{S'_{\text{cusp}}}^{Q'}(y,\Psi,\mu)$ de la forme automorphe $E_{Q_0}^{Q'}(y,\Psi,\mu)$, relatif à un sous-groupe parabolique $S'_{\text{cusp}}\in \mathcal{P}^{Q_0}_{\text{st}}$ associé à S_{cusp} dans Q', est égal à :

$$D_{\nu=\nu_0}\bigg(\sum_{s\in\mathbf{W}^{Q'}(\mathfrak{a}_{S_{\text{cusp}}},Q_0)}\sum_{s'\in\mathbf{W}^{Q_0}(\mathfrak{a}_{s(S_{\text{cusp}})},\mathfrak{a}_{S'_{\text{cusp}}})}\mathbf{M}(s's,\nu+\mu)\Psi_{\text{cusp}}(y,s's(\mu+\nu))\bigg).$$

Les exposants cuspidaux de $E_{S_{\mathrm{cusp}}}^{Q'}(y,\Psi,\mu)$ sont les

$$s's(v_0 + \mu) \in \mathfrak{a}_{S'_{\text{cusp}},\mathbb{C}}^*/\mathcal{A}_{S'_{\text{cusp}}}^{\vee}.$$

Pour $w \in \mathbf{W}^{Q'}(\alpha_{S_{\text{cusp}}}, \alpha_{S'_{\text{cusp}}})$, notons Q'_w le plus petit sous-groupe parabolique standard de Q' tel que $\alpha_{Q'_w} \subset w(\alpha_S)$. D'après [25, section 13.2 (5), page 184] et [32, corollaire V.3.16 et proposition VI.1.6 (c)], on sait que, pour $\mu \in \mu_S$, les parties réelles des exposants cuspidaux de $E_{S'_{\text{cusp}}}^{Q'}(y, \Psi, \mu)$ sont de la forme wv_0 , pour des $w \in \mathbf{W}^{Q'}(\alpha_{S_{\text{cusp}}}, \alpha_{S'_{\text{cusp}}})$ tels que

$$\widehat{\tau}_{S'_{\text{cusn}}}^{Q'_w}(-w\nu_0) = 1.$$

Ainsi dans l'expression $E_{S_{\text{cusp}}}^{Q'}(y,\Psi,\mu)$ pour $\mu\in\mu_S$, les termes indexés par les couples (s,s') tels que l'élément w=ss' ne vérifie pas (13.4) sont nuls. On décompose $E_{Q_0}^{Q'}(y,\Psi,\mu)$ en

$$E_{Q_0}^{Q'}(y,\Psi,\mu) = E_{Q_0,\mathrm{unit}}^{Q'}(y,\Psi,\mu) + E_{Q_0,+}^{Q'}(y,\Psi,\mu),$$

où le terme $E_{Q_0,\text{unit}}^{Q'}$ est la sous-somme de (13.3) indexée par les s tels que $s(\alpha_0^S) \subset \alpha_0^{Q_0}$ et le terme $E_{Q_0,+}^{Q'}$ est la sous-somme restante. On obtient, comme en [25, section 13.2 (7)], que pour $\mu \in \mu_S$, on a

$$E_{Q_0,\mathrm{unit}}^{Q'}(y,\Psi,\mu) = \sum_{s \in \mathbf{W}^{Q'}(\mathfrak{a}_S,Q_0)} E^{Q_0}(y,\mathbf{M}(s,\mu)\Psi,\mu).$$

Rappelons que $\mathbf{W}^{Q'}(\alpha_S,Q_0)$ est l'ensemble des restrictions à α_S des $s\in\mathbf{W}^{Q'}$ tels que $s(\alpha_S)\supset\alpha_{Q_0}$ et que s est de longueur minimale dans sa classe $\mathbf{W}^{Q_0}s$ (ce qui signifie que $s(S)\cap L_0$ est standard dans $L_0=M_{Q_0}$). D'après [25, section 13.2 (6)], la fonction $E_{Q_0,\mathrm{unit}}^{Q'}(y,\Psi,\mu)$ est lisse pour $\mu\in\mu_S$, il en est donc de même pour la fonction

$$E_{Q_0,+}^{Q'}(y,\Psi,\mu) = E_{Q_0}^{Q'}(y,\Psi,\mu) - E_{Q_0,\mathrm{unit}}^{Q'}(y,\Psi,\mu).$$

Proposition 13.2.1. Soient $Z \in A_G$ et $T_1 \in \mathfrak{a}_0^{Q_0}$.

(i) Il existe un entier $N \in \mathbb{N}$ et un réel c > 0 tels que

$$|E_{Q_0}^{Q'}(xk, \Psi, \mu)| \le c \, \delta_{P_0}(a)^{\frac{1}{2}} (1 + ||H||)^N |s|^N$$

pour tout $H \in \mathcal{A}_{Q_0}^G(Z)$ tel que $\tau_{Q_0}^{Q'}(H) = 1$, tout $(a,s) \in \mathfrak{B}_{L_0} \times \mathfrak{S}^{L_0,*}$ tel que $x = as \in L_0(\mathbb{A}; H)$, tout $k \in K$ et tout $\mu \in \mu_S$.

(ii) Il existe un entier $N \in \mathbb{N}$ et un réel c > 0 tels que

$$|E_{Q_0}^{Q'}(xk, \Psi, \mu)| \le c \, \delta_{P_0}(x)^{\frac{1}{2}} (1 + ||X_{Q_0}||)^N (1 + ||\mathbf{H}_0(s)||)^N$$

pour tout $X \in \mathcal{A}_{P_0}^G(Z)$ tel que $\tau_{P_0}^{\mathcal{Q}'}(X+T_1)=1$, tout $(a,s) \in \mathfrak{B}_{L_0} \times \mathfrak{S}^{L_0,*}$ tel que $\mathbf{H}_0(x)=X$ avec x=as, tout $k \in K$ et tout $\mu \in \mu_S$.

(iii) Il existe un entier $N \in \mathbb{N}$ et un réel c > 0 tels que

$$|E_{Q_0,\text{unit}}^{Q'}(xk,\Psi,\mu)| \le c \, \delta_{P_0}(x)^{\frac{1}{2}} (1 + ||H||)^N (1 + ||\mathbf{H}_0(s)||)^N$$

pour tout $H \in \mathcal{A}_{Q_0}^G(Z)$, tout $(a, s) \in \mathfrak{B}_{L_0} \times \mathfrak{G}^{L_0,*}$ tel $x = as \in L_0(\mathbb{A}; H)$, tout $k \in K$ et tout $\mu \in \mu_S$.

(iv) Il existe un réel R > 0, un entier N > 0 et un réel c > 0 tels que

$$\begin{split} |E_{Q_0,+}^{Q'}(xk,\Psi,\mu)| &\leq c \, \pmb{\delta}_{P_0}(x)^{\frac{1}{2}} (1 + \|X_{Q_0}\|)^N \\ & \times (1 + \|\mathbf{H}_0(s)\|)^N \sup_{\alpha \in \Delta_0^{Q'} \smallsetminus \Delta_0^{Q_0}} e^{-R\langle \alpha, \mathbf{H}_0(x) \rangle} \end{split}$$

pour tout $X \in \mathcal{A}_{P_0}^G(Z)$ tel que $\tau_{P_0}^{Q'}(X+T_1)=1$, tout $(a,s) \in \mathfrak{B}_{L_0} \times \mathfrak{S}^{L_0,*}$ tel que $\mathbf{H}_0(x)=X$ avec x=as, tout $k \in K$ et tout $\mu \in \mu_S$.

Démonstration. On suit, pas à pas, celle de la proposition 13.2.1 de [25].

13.3 Simplication du terme constant

On a introduit dans la définition 12.5.2 des expressions $A^T(H)$ et A^T . On note

$$A_{\text{unit}}^T = \sum_{H \in \mathcal{C}_{Q_0}^{\widetilde{G}}} A_{\text{unit}}^T(H)$$

les expressions obtenues en remplaçant les fonctions $E_{Q_0}^{Q'}$ par $E_{Q_0, \text{unit}}^{Q'}$ et $E_{Q_0}^{Q}$ par $E_{Q_0, \text{unit}}^{Q}$ dans la définition de $A^T(H)$. Alors [25, lemme 13.3.1] est vrai ici :

Proposition 13.3.1. L'intégrale définissant $A_{\text{unit}}^T(H)$ et la somme définissant A_{unit}^T sont absolument convergentes, et pour tout réel r, il existe c > 0 tel que

$$|A^{T} - A_{\text{unit}}^{T}| \le c \, d_{0}(T)^{-r}$$
.

Démonstration. Elle est identique à celle de *loc. cit.*, à la simplification suivante près : la décomposition de l'opérateur $\mathbf{\Lambda} = \mathbf{\Lambda}^{T[[H^Q]],Q_0}$ en $(\mathbf{\Lambda} - \mathbf{C}) + \mathbf{C}$ conduit à la décomposition des expressions $A^T(H)$ et $A_{\mathrm{unit}}^T(H)$ en

$$\boldsymbol{A}^T(H) = \boldsymbol{A}_{\boldsymbol{\Lambda} - \boldsymbol{C}}^T(H) + \boldsymbol{A}_{\boldsymbol{C}}^T(H) \quad \text{et} \quad \boldsymbol{A}_{\text{unit}}^T(H) = \boldsymbol{A}_{\boldsymbol{\Lambda} - \boldsymbol{C}, \text{unit}}^T(H) + \boldsymbol{A}_{\boldsymbol{C}, \text{unit}}^T(H).$$

Comme dans la preuve de la proposition 12.4.2, si T est assez régulier, on a

$$A^{T}(H) = A_{\mathbf{C}}^{T}(H)$$
 et $A_{\text{unit}}^{T}(H) = A_{\mathbf{C},\text{unit}}^{T}(H)$.

Seules les expressions $A^T_{\mathbf{C}}(H)$ et $A^T_{\mathbf{C},\,\mathrm{unit}}(H)$ sont à comparer. Les assertions sont alors conséquence de la proposition 13.2.1.

13.4 Simplification du produit scalaire

On a défini en 4.1.5 un élément $T[H^Q]$ dans $\mathfrak{a}_{P_0}^{Q_0}$. Pour $S \in \mathcal{P}_{\operatorname{st}}^{Q'}$ et $H \in \mathcal{A}_{Q_0}$, considérons l'opérateur (introduit en section 5.3, mais avec ici Q_0 en place de G, et $T[H^Q]$ au lieu de T)

On a fixé des fonctions

$$\Psi \in \mathcal{A}(X_S, \sigma)$$
 et $\Phi \in \mathcal{A}(X_{\theta_0(S)}, \theta_0(\omega \otimes \sigma))$,

et une fonction lisse ϑ sur μ_S . Rappelons que l'on a introduit dans la définition 5.2.1 un opérateur de décalage \mathbf{D}_{ν} . Pour $\mu, \nu \in \mu_S$ et $\lambda \in \mu_{\theta_0(S)}$, on pose

$$\boldsymbol{\omega}^{T,Q_0}(H;\lambda,\mu;\nu) \stackrel{\text{def}}{=} \langle \mathbf{D}_{\nu} \mathbf{\Omega}_{S,\theta_0(S)}^{T,Q_0}(H;\lambda,\mu) \Phi, \Psi \rangle_{S},$$

c'est-à-dire

$$\boldsymbol{\omega}^{T,Q_0}(H;\lambda,\mu;\nu) = \sum_{\substack{S' \in \mathcal{P}_{\mathrm{st}}^{Q_0} \ s \in \mathbf{W}^{\mathcal{Q}}(\mathfrak{a}_{\theta_0(S)},\mathfrak{a}_{S'}) \\ t \in \mathbf{W}^{\mathcal{Q}'}(\mathfrak{a}_{S},\mathfrak{a}_{S'})}} \varepsilon_{S'}^{Q_0,T[\![H^{\mathcal{Q}}]\!]_{S'}}(H;s\lambda - t\mu) \times \langle \mathbf{D}_{\nu}\mathbf{M}(t,\mu)^{-1}\mathbf{M}(s,\lambda)\Phi,\Psi \rangle_{S'}$$

Avec les notations de la proposition 5.4.5, pour tout $\tilde{u} \in \mathbf{W}^{\tilde{G}}(\alpha_S, \alpha_S)$, on a

$$\mathcal{E}(\theta_0(\omega_{A_S}\xi),\xi) = \{ v \in \mu_S \mid \widetilde{u}(\omega_{A_S}\xi) \star v|_{\mathcal{B}_M} = \xi \}.$$

Comme seule la restriction de ν à \mathcal{B}_M intervient, s'il est non vide, cet ensemble est un espace homogène sous $\widehat{\mathfrak{c}}_M$.

Définition 13.4.1. Lorsque $\xi = \xi_{\sigma}$, on pose

$$\mathcal{E}(\sigma) \stackrel{\text{def}}{=} \{ v \in \mu_S \mid \xi_{\widetilde{u}(\omega \otimes \sigma)} \star v_{\big|_{\mathcal{B}_M}} = \xi_\sigma \} = \mathcal{E}(\theta_0(\omega_{A_S} \xi_\sigma), \xi_\sigma).$$

Lemme 13.4.2. Pour que l'expression $\omega^{T,Q_0}(H;\lambda,\mu;\nu)$ soit non nulle, il est nécessaire que ν appartienne à $\mathcal{E}(\sigma)$.

Démonstration. On a

$$\mathbf{D}_{\nu}\mathbf{M}(t,\mu)^{-1}\mathbf{M}(s,\lambda)\Phi \in \mathbf{A}(X_{S},\widetilde{u}(\omega\otimes\sigma)\star\nu) \quad \text{et} \quad \Psi \in \mathbf{A}(X_{S},\sigma).$$

Pour que l'expression $\omega^{T,Q_0}(H;\lambda,\mu;\nu)$ soit non nulle, il est nécessaire que l'on ait

$$\xi_{\widetilde{u}(\omega\otimes\sigma)}\star v_{|_{\mathfrak{B}_{M}}}=\xi_{\sigma}.$$

Définition 13.4.3. On pose

$$[\boldsymbol{\omega}]^{T,Q_0}(H;\boldsymbol{\lambda},\boldsymbol{\mu}) = |\widehat{\mathbb{c}}_S|^{-1} \sum_{\boldsymbol{\nu} \in \mathcal{E}(\sigma)} \boldsymbol{\omega}^{T,Q_0}(H;\boldsymbol{\lambda},\boldsymbol{\mu} + \boldsymbol{\nu};\boldsymbol{\nu})$$

avec
$$[\boldsymbol{\omega}]^{T,Q_0}(H;\lambda,\mu) = 0$$
, si $\boldsymbol{\mathcal{E}}(\sigma) = \emptyset$.

Avec les notations de la proposition 5.4.5 on a

$$[\boldsymbol{\omega}]^{T,Q_0}(H;\boldsymbol{\lambda},\boldsymbol{\mu}) = \langle [\boldsymbol{\Omega}]^{T,Q_0}_{S|\theta_0(S)}(H,\boldsymbol{\xi},\boldsymbol{\xi}';\boldsymbol{\lambda},\boldsymbol{\mu})\boldsymbol{\Phi},\boldsymbol{\Psi}\rangle_S,$$

mais avec Q_0 en place de G et $T[H^Q]$ au lieu de T. D'après la section 5.4, cette expression est holomorphe en λ et μ . Pour $\lambda = \theta_0(\mu)$, on écrit

$$[\boldsymbol{\omega}]^{T,Q_0}(H;\boldsymbol{\mu}) = [\boldsymbol{\omega}]^{T,Q_0}(H;\theta_0(\boldsymbol{\mu}),\boldsymbol{\mu}).$$

Observons que $[\omega]^{T,Q_0}(H;\mu)$ ne dépend que de l'image de H dans $\mathcal{C}_{Q_0}^{\widetilde{G}}=\mathcal{B}_{\widetilde{G}}\setminus\mathcal{A}_{Q_0}$. On pose

$$A_{\text{pure}}^T(H) = \kappa^{\eta T} (H^Q - T_{Q_0}^Q) \widetilde{\sigma}_Q^R (H - T) \phi_{Q_0}^Q (H - T) \int_{\mu_S} [\boldsymbol{\omega}]^{T,Q_0} (H; \mu) \vartheta(\mu) d\mu$$

et

$$A_{\text{pure}}^T = \sum_{H \in \mathcal{C}_{Q_0}^{\tilde{G}}} A_{\text{pure}}^T(H).$$

Proposition 13.4.4. La série définissant A_{pure}^T est convergente, et pour tout réel r, on a une majoration

$$|A_{\text{unit}}^T - A_{\text{pure}}^T| \ll e^{-r\boldsymbol{d}_0(T)}.$$

Démonstration. La preuve suit, pas à pas, les arguments de [25, proposition 13.4.1]. Tout d'abord, on utilise [25, lemme 2.13.1] pour prouver la convergence de la série définissant A_{pure}^T . Puis, grâce au calcul approché du produit scalaire des séries d'Eisenstein tronquées donné par le théorème 5.4.4 (ii) et compte tenu de la proposition 5.4.5 pour le décalage en ν , on montre qu'il existe un réel c > 0 pour lequel on a la majoration souhaitée.

Corollaire 13.4.5. *Pour tout réel r, on a une majoration*

$$|A^T - A_{\text{pure}}^T| \ll \boldsymbol{d}_0(T)^{-r}.$$

Démonstration. On invoque de plus la proposition 13.3.1.

13.5 Décomposition plus fine

On va décomposer la somme sur $H \in \mathcal{C}_{Q_0}^{\widetilde{G}}$ dans A_{pure}^T en une somme sur $\mathcal{C}_{Q}^{\widetilde{G}}$ précédée d'une somme sur $\mathcal{A}_{Q_0}^Q$, grâce à la suite exacte courte

$$0 \to \mathcal{A}_{Q_0}^Q \to \mathcal{C}_{Q_0}^{\tilde{G}} \to \mathcal{C}_Q^{\tilde{G}} \to 0.$$

Considérons $H \in \mathcal{C}_{Q_0}^{\tilde{G}}, Z \in \mathcal{C}_{Q}^{\tilde{G}}$ et $Y \in \mathfrak{a}_{Q_0}^{Q}$ tels que

$$Z = H_Q$$
 et $Y = T_{Q_0}^Q - H^Q$, et donc $H = Z + T_{Q_0}^Q - Y$.

Puisque $\kappa^{\eta T}(-Y) = \kappa^{\eta T}(Y)$, on a

$$\kappa^{\eta T}(H^{\mathcal{Q}} - T^{\mathcal{Q}}_{O_0})\widetilde{\sigma}^R_O(H - T)\phi^{\mathcal{Q}}_{O_0}(H - T) = \kappa^{\eta T}(Y)\widetilde{\sigma}^R_O(Z - T_{\mathcal{Q}})\phi^{\mathcal{Q}}_{O_0}(-Y)$$

et

$$T[H^Q] = T[T_{Q_0}^Q - Y].$$

Lorsque $\phi_{Q_0}^{\mathcal{Q}}(-Y)=1$ on a $Y=X_{\mathcal{Q}_0}$, où X est de la forme

$$X = \sum_{\alpha \in \Delta_0^Q \setminus \Delta_0^{Q_0}} x_\alpha \check{\alpha} \quad \text{avec} \quad x_\alpha \ge 0 \quad \text{pour} \quad \alpha \in \Delta_0^Q \setminus \Delta_0^{Q_0}.$$

En d'autres termes, X appartient au cône fermé $\mathcal{C}(Q,Q_0)$ de \mathfrak{a}_0^Q engendré par les éléments $\check{\alpha}$ pour $\alpha\in\Delta_0^Q\smallsetminus\Delta_0^{Q_0}$. D'après [25, lemme 4.2.1], on a

$$T[\![H^Q]\!] = T[\![T_{Q_0}^Q - Y]\!] = T^{Q_0} - \sum_{\alpha \in \Delta_0^Q \setminus \Delta_0^{Q_0}} x_\alpha \check{\alpha}^{Q_0} = (T - X)^{Q_0}.$$

Donc

$$H = H_Z^{T-X}$$
, où l'on a posé $H_Z^U \stackrel{\text{déf}}{=} Z + U_{Q_0}^Q$.

L'application qui à Y associe $X \in \mathcal{C}(Q,Q_0)$ est injective et on note

$$\mathcal{C}_F(Q,Q_0;T)\subset\mathcal{C}(Q,Q_0)$$

son image. On a ainsi transformé la somme sur $H\in \mathcal{C}_{\mathcal{Q}_0}^{\widetilde{G}}$ en une somme sur

$$(Z,X) \in \mathcal{C}_{Q}^{\tilde{G}} \times \mathcal{C}_{F}(Q,Q_{0};T),$$

la fonction

$$\kappa^{\eta T}(H^Q - T_{Q_0}^Q)\widetilde{\sigma}_Q^R(H - T)\phi_{Q_0}^Q(H - T)$$
 devenant $\kappa^{\eta T}(X_{Q_0})\widetilde{\sigma}_Q^R(Z - T)$.

Pour $Z \in \mathcal{A}_O$ et $X \in \mathcal{C}_F(Q, Q_0; T)$, on pose

$$\begin{split} \boldsymbol{\omega}^{T,Q_0}(Z,X;\boldsymbol{\lambda},\boldsymbol{\mu};\boldsymbol{\nu}) &\stackrel{\text{def}}{=} \sum_{S' \in \mathcal{P}_{\text{st}}^{Q_0}} \sum_{s \in \mathbf{W}^{\mathcal{Q}}(\boldsymbol{\alpha}_{\theta_0(S)},\boldsymbol{\alpha}_{S'})} \sum_{t \in \mathbf{W}^{\mathcal{Q}'}(\boldsymbol{\alpha}_{S},\boldsymbol{\alpha}_{S'})} \varepsilon_{S'}^{Q_0,(T-X)_{S'}} \\ & \times (H_Z^{T-X};s\boldsymbol{\lambda} - t\boldsymbol{\mu}) \big\langle \mathbf{M}(s,\boldsymbol{\lambda})\boldsymbol{\Phi}, \mathbf{M}(t,\boldsymbol{\mu})\mathbf{D}_{-\boldsymbol{\nu}}\boldsymbol{\Psi} \big\rangle_{S'}. \end{split}$$

On a donc

$$\boldsymbol{\omega}^{T[H^{Q}],Q_{0}}(H_{Z}^{T-X};\lambda,\mu;\nu) = \boldsymbol{\omega}^{T,Q_{0}}(Z,X;\lambda,\mu;\nu).$$

En remplacant la variable t par t't avec $t \in \mathbf{W}^{Q'}(\alpha_S, O_0)$ et $t' \in \mathbf{W}^{Q_0}(t(\alpha_S), \alpha_{S'})$, et la variable s par $t'^{-1}s \in \mathbf{W}^{\mathcal{Q}}(\theta_0(\alpha_S), t(\alpha_S))$ cette expression peut s'écrire :

$$\begin{split} \sum_{t \in \mathbf{W}^{\mathcal{Q}'}(\alpha_{S}, \mathcal{Q}_{0})} \sum_{s \in \mathbf{W}^{\mathcal{Q}}(\theta_{0}(\alpha_{S}), t(\alpha_{S}))} \sum_{S' \in \mathcal{P}^{\mathcal{Q}_{0}}_{\mathrm{st}}} \sum_{t' \in \mathbf{W}^{\mathcal{Q}_{0}}(t(\alpha_{S}), \alpha_{S'})} \varepsilon_{S'}^{\mathcal{Q}_{0}, (T-X)_{S'}} \\ \times (H_{Z}^{T-X}; t'(s\lambda - t\mu)) \langle \mathbf{M}(t's, \lambda) \Phi, \mathbf{M}(t't, \mu) \mathbf{D}_{-\nu} \Psi \rangle_{S'} \end{split}$$

Le sous-groupe parabolique t(S) n'est en général pas standard mais il existe un unique sous-groupe parabolique standard $_tS \subset Q_0$ tel que $M_{t(S)} = M_{tS}$. On pose $tM = M_{tS}$. Pour $S' \in \mathcal{P}_{st}^{Q_0}$ et $t' \in \mathbf{W}^{Q_0}(t(\alpha_S), a_{S'})$, le sous-groupe parabolique $t'^{-1}(S')$ appartient à l'ensemble $\mathcal{P}^{Q_0}(_tM)$ des $S'' \in \mathcal{P}^{Q_0}$ tels que $M_{S''} = _tM$. On peut remplacer ci-dessus S' par $S'' = t'^{-1}(S')$. Alors la double somme en S' et t'se transforme en une somme sur $S'' \in \mathcal{P}^{Q_0}(_tM)$. Pour

$$H' = t'^{-1}(H)$$

on a

$$\varepsilon_{S'}^{\mathcal{Q}_0,(T-X)_{S'}}(H;t'(s\lambda-t\mu))=\varepsilon_{S''}^{\mathcal{Q}_0,[T-X]_{S''}}(H';s\lambda-t\mu),$$

et

$$\langle \mathbf{M}(t's,\lambda)\Phi, \mathbf{M}(t't,\mu)\mathbf{D}_{-\nu}\Psi\rangle_{S'}$$

égale

$$\langle \mathbf{M}(t', s\lambda)\mathbf{M}(s, \lambda)\Phi, \mathbf{M}(t', t\mu)\mathbf{M}(t, \mu)\mathbf{D}_{-\nu}\Psi\rangle_{S''}$$

Notons que

$$[T-X]_{S''} = t'^{-1}((T-X)_{S'})$$
 et donc $[T-X]_{S''}^{Q_0} = t'^{-1}((T-X)_{S'}^{Q_0}).$

D'après [25, lemme 5.4.3 (3)], on a

$$\mathbf{M}(t',t\mu)^{-1}\mathbf{M}(t',s\lambda) = e^{\langle s\lambda - t\mu, Y_{S''}\rangle}\mathbf{M}_{S'|S''}(t\mu)^{-1}\mathbf{M}_{S'|S''}(s\lambda)$$

avec $Y_{S''} = (T_0 - t'^{-1}(T_0))_{S''}$. En définitive, on obtient

$$\boldsymbol{\omega}^{T,Q_0}(Z,X;\lambda,\mu;\nu) = \sum_{t \in \mathbf{W}^{Q'}(\alpha_S,Q_0)} \sum_{s \in \mathbf{W}^{Q}(\theta_0(\alpha_S),t(\alpha_S))} \boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\lambda,\mu;\nu)$$

avec

$$\begin{split} \boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\boldsymbol{\lambda},\boldsymbol{\mu};\boldsymbol{\nu}) &= \sum_{S'' \in \mathcal{P}^{Q_0}(_t\boldsymbol{M})} \varepsilon_{S''}^{Q_0,[T-X]_{S''}}(H_Z^{T-X};s\boldsymbol{\lambda}-t\boldsymbol{\mu}) e^{\langle s\boldsymbol{\lambda}-t\boldsymbol{\mu},Y_{S''}\rangle} \\ &\times \big\langle \mathbf{M}_{S''|_tS}(s\boldsymbol{\lambda})\mathbf{M}(s,\boldsymbol{\lambda})\boldsymbol{\Phi}, \mathbf{M}_{S''|_tS}(t\boldsymbol{\mu})\mathbf{M}(t,\boldsymbol{\mu})\mathbf{D}_{-\boldsymbol{\nu}}\boldsymbol{\Psi} \big\rangle_{S''}. \end{split}$$

On doit intégrer en μ la fonction

$$\boldsymbol{\omega}^{T,Q_0}(Z,X;\mu;\nu) \stackrel{\text{def}}{=} \boldsymbol{\omega}^{T,Q_0}(Z,X;\theta_0(\mu),\mu+\nu;\nu),$$

puis sommer en Z et X. Chaque expression $\omega_{s,t}^{T,Q_0}(Z,X;\lambda,\mu;\nu)$ est encore une fonction lisse de λ et μ , et l'on pose

$$\boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\mu;\nu) \stackrel{\text{def}}{=} \boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\theta_0(\mu),\mu+\nu;\nu).$$

L'expression $\boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\mu;\nu)$ ne dépend que de l'image de Z dans $\mathcal{C}_Q^{\widetilde{G}} = \mathcal{B}_{\widetilde{G}} \setminus \mathcal{A}_Q$.

Ces manipulations permettent d'écrire, au moins formellement, A_{pure}^T comme une somme indexée par des éléments s et t dans des ensembles de Weyl :

$$A_{\text{pure}}^T = \sum_{t \in \mathbf{W}^{\mathcal{Q}'}(a_{\mathcal{S}}, \mathcal{Q}_0)} \sum_{s \in \mathbf{W}^{\mathcal{Q}}(\theta_0(\alpha_{\mathcal{S}}), t(\alpha_{\mathcal{S}}))} A_{s,t}^T \qquad \text{où} \qquad A_{s,t}^T = |\widehat{\mathbb{c}}_{\mathcal{S}}|^{-1} \sum_{v \in \mathcal{E}(\sigma)} A_{s,t,v}^T$$

avec

$$A_{s,t,v}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \bigg(\sum_{X \in \mathcal{C}_F(Q,Q_0;T)} \kappa^{\eta T}(X_{Q_0}) \int_{\mu_S} \omega_{s,t}^{T,Q_0}(Z,X;\mu;\nu) \vartheta(\mu) \, \mathrm{d}\mu \bigg).$$

On peut montrer, en reprenant des arguments de [25, proposition 13.4.1], déjà utilisés pour la preuve de la proposition 13.4.4, que l'expression converge (dans l'ordre indiqué). Une autre preuve de la convergence de la série en Z résultera du lemme 13.6.3 (A).

Nous aurons besoin d'une variante de l'expression $\omega_{s,t}^{T,Q_0}(Z,X;\lambda,\mu;\nu)$, où la sommation porte sur $\mathcal{P}^Q(_tM)$, sans variable X, et où le sous-groupe parabolique Q_0 est remplacé par Q. On pose pour $Z\in\mathcal{A}_Q$:

$$\begin{aligned} \boldsymbol{\omega}_{s,t}^{T,Q}(Z;\lambda,\mu;\nu) &= \sum_{S'' \in \mathcal{P}^{Q}(tM)} \varepsilon_{S''}^{Q,[T]_{S''}}(Z;s\lambda - t\mu) e^{\langle s\lambda - t\mu, Y_{S''} \rangle} \\ &\times \left\langle \mathbf{M}_{S''|_{t}S}(s\lambda) \mathbf{M}(s,\lambda) \Phi, \mathbf{M}_{S''|_{t}S}(t\mu) \mathbf{M}(t,\mu) \mathbf{D}_{-\nu} \Psi \right\rangle_{S''}. \end{aligned}$$

C'est une fonction lisse de λ et μ . On pose

$$\boldsymbol{\omega}_{s,t}^{T,Q}(Z;\mu;\nu) = \boldsymbol{\omega}_{s,t}^{T,Q}(Z;\theta_0(\mu),\mu+\nu;\nu)$$

et

$$[\boldsymbol{\omega}]_{s,t}^{T,\mathcal{Q}}(Z;\boldsymbol{\mu}) = |\widehat{\mathbb{c}}_{S}|^{-1} \sum_{\boldsymbol{\nu} \in \mathcal{E}(\sigma)} \boldsymbol{\omega}_{s,t}^{T,\mathcal{Q}}(Z;\boldsymbol{\mu};\boldsymbol{\nu}).$$

Les expressions $\omega_{s,t}^{T,Q}(Z;\mu;\nu)$ ne dépendent que de l'image de Z dans $\mathcal{C}_{O}^{\tilde{G}}=\mathcal{B}_{\tilde{G}}\backslash\mathcal{A}_{Q}$.

Proposition 13.5.1. On pose:

$$A_{s,t}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mu_S} [\omega]_{s,t}^{T,Q}(Z;\mu) \vartheta(\mu) \, \mathrm{d}\mu.$$

- (i) L'expression $A_{s,t}^T$ est convergente dans l'ordre indiqué.
- (ii) Pour tout réel r, on a une majoration $|A_{s,t}^T A_{s,t}^T| \ll d_0(T)^{-r}$.

Cette proposition est l'analogue de [25, proposition 13.5.1], l'un des résultats les plus fins du livre. Sa démonstration occupera les deux sections suivantes.

13.6 Première étape

Considérons l'application

$$s\theta_0 - t : \mu_S \to \mu_{tS}$$

On note χ_S son noyau et η_{tS} son image, et l'on pose

$$\eta_S = \chi_S \backslash \mu_S, \quad \chi_{tS} = \eta_{tS} \backslash \mu_{tS}.$$

L'application ci-dessus se restreint en un isomorphisme $\iota:\eta_S\to\eta_{\iota S}$. La suite exacte courte de groupes abéliens compacts

$$0 \to \boldsymbol{\eta}_{tS} \to \boldsymbol{\mu}_{tS} \to \boldsymbol{\chi}_{tS} \to 0$$

donne, par dualité de Pontryagin, une suite exacte courte de \mathbb{Z} -modules libres de type fini

$$0 \to \widehat{\pmb{\chi}}_t S \to \mathcal{A}_t S \to \widehat{\pmb{\eta}}_t S \to 0.$$

En relevant dans \mathcal{A}_{tS} une \mathbb{Z} -base de $\widehat{\boldsymbol{\eta}}_{tS}$, on définit un morphisme section du morphisme $\mathcal{A}_{tS} \to \widehat{\boldsymbol{\eta}}_{tS}$, ce qui fournit un isomorphisme entre \mathcal{A}_{tS} et le produit $\widehat{\boldsymbol{\chi}}_{tS} \times \widehat{\boldsymbol{\eta}}_{tS}$. Dualement, cela permet d'identifier $\boldsymbol{\mu}_{tS}$ au produit $\boldsymbol{\chi}_{tS} \times \boldsymbol{\eta}_{tS}$ et donc d'écrire $\Lambda \in \boldsymbol{\mu}_{tS}$ sous la forme

$$\Lambda = \Lambda_{\chi} + \Lambda_{\eta} \in \chi_{tS} \times \eta_{tS}$$

via cette identification (non canonique), et on identifie de même μ_S au produit $\chi_S \times \eta_S$. On définit un élément de μ_S en posant, pour $(\chi, \Lambda) \in \chi_S \times \mu_{tS}$,

$$\mu(\chi, \Lambda) = \chi + \iota^{-1}(\Lambda_{\eta}).$$

L'application

$$\chi_S \times \mu_{tS} \to \mu_S \times \chi_{tS}, \quad (\chi, \Lambda) \mapsto (\mu(\chi, \Lambda), \Lambda_{\chi})$$

est bijective et on a la relation

(13.5)
$$\theta_0 \mu(\chi, \Lambda) = s^{-1} (t \mu(\chi, \Lambda) + \Lambda_n).$$

Posons

$$\lambda(\chi, \Lambda) = s^{-1}(t\mu(\chi, \Lambda) + \Lambda).$$

Fixons $v \in \mu_S$. Rappelons que $tM = M_{tS}$ et $L = M_Q$. Pour $\chi \in \chi_S$, $\Lambda \in \mu_{tS}$ et $S'' \in \mathcal{P}^Q(tM)$, posons

$$c(\chi; \Lambda, S''; \nu) = \vartheta(\mu(\chi, \Lambda)) \langle \mathbf{M}_{S''|t} S(s\lambda(\chi, \Lambda)) \mathbf{M}(s, \lambda(\chi, \Lambda)) \Phi,$$

$$\mathbf{M}_{S''|t} S(t\mu(\chi, \Lambda) + \nu) \mathbf{M}(t, \mu(\chi, \Lambda) + \nu) \mathbf{D}_{-\nu} \Psi \rangle_{S''}.$$

Les expressions $c(\chi; \Lambda, S''; \nu)$, considérées comme des fonctions de Λ dépendant des paramètres χ et ν , définissent une $(Q, {}_tM)$ -famille périodique $c(\chi; \nu)$. On définit aussi une $(Q, {}_tM)$ -famille périodique $d(\chi; \nu) = c(\mathfrak{Y}, \chi; \nu)$ par

$$d(\chi; \Lambda, S''; \nu) = e^{\langle \Lambda, Y_{S''} \rangle} c(\chi; \Lambda, S''; \nu).$$

En se limitant aux $S'' \in \mathcal{P}^{Q_0}(_tM)$, on obtient des $(Q_0,_tM)$ -familles périodiques. Pour $Z \in \mathcal{A}_Q$, resp. $H \in \mathcal{A}_{Q_0}$, et $X' \in \mathfrak{a}_{0,\mathbb{Q}}$, on leur associe les fonctions

$$d_{tM,F}^{Q,X'}(Z,\chi;\Lambda;\nu) = \sum_{S'' \in \mathcal{P}^{Q}(tM)} \varepsilon_{S''}^{Q,[X']_{S''}}(Z;\Lambda) d(\chi;\Lambda,S'';\nu)$$

et

$$d_{tM,F}^{Q_0,X'}(H,\chi;\Lambda;\nu) = \sum_{S'' \in \mathcal{P}^{Q_0}(tM)} \varepsilon_{S''}^{Q_0,[X']_{S''}}(H;\Lambda)d(\chi;\Lambda,S'';\nu).$$

Ces fonctions sont lisses en χ et Λ .

Lemme 13.6.1. Soient $Z \in \mathcal{C}_Q^{\widetilde{G}}$, $\chi \in \chi_S$, $\Lambda \in \eta_{tS}$ et $X \in \mathcal{C}_F^+(Q, Q_0; T)$. On a les égalités suivantes :

(i)
$$\boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\mu(\chi,\Lambda);\nu)\vartheta(\mu(\chi,\Lambda)) = \boldsymbol{d}_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\chi;\Lambda;\nu)$$

(ii)
$$\boldsymbol{\omega}_{s,t}^{T,Q}(Z;\mu(\chi,\Lambda);\nu)\vartheta(\mu(\chi,\Lambda)) = \boldsymbol{d}_{tM,F}^{Q,T}(Z,\chi;\Lambda;\nu).$$

Démonstration. Rappelons que, par définition,

$$\boldsymbol{\omega}_{s,t}^{T,Q_0}(Z,X;\lambda,\mu;\nu) = \sum_{S'' \in \mathcal{P}^{Q_0}(tM)} \varepsilon_{S''}^{Q_0,[T-X]_{S''}} (H_Z^{T-X};s\lambda - t\mu) e^{\langle Y_{S''},s\lambda - t\mu \rangle} \times \langle \mathbf{M}_{S''|t}{}_{S}(s\lambda)\mathbf{M}(s,\lambda)\Phi, \mathbf{M}_{S''|t}{}_{S}(t\mu)\mathbf{M}(t,\mu)\mathbf{D}_{-\nu}\Psi \rangle_{S''}.$$

Pour $Z \in \mathcal{A}_{Q_0}$ et $\Lambda \in \mu_S$ en position générale, on a

$$d_{tM,F}^{Q,T-X}(H_Z^{T-X},\chi;\Lambda;\nu) = \omega_{s,t}^{T,Q_0}(Z,X;\lambda(\chi,\Lambda),\mu(\chi,\Lambda) + \nu;\nu).$$

Mais, d'après la relation (13.5) on a

$$\lambda(\chi, \Lambda) = \theta_0 \mu(\chi, \Lambda) + s^{-1}(\Lambda_{\chi}).$$

On obtient (i) pour $\Lambda_{\chi} = 0$. La preuve de (ii) est similaire.

On munit χ_S et η_{tS} des mesures de Haar telles que $\operatorname{vol}(\chi_S) = 1 = \operatorname{vol}(\eta_{tS})$. En posant, comme ci-dessus, $H_Z^{T-X}=Z+(T-X)_{O_0}^Q$, l'expression $A_{s,t,\nu}^T$ se réécrit

$$\begin{split} A_{s,t,v}^T &= \sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^R(Z-T) \sum_{X \in \mathcal{C}_{F}(Q,Q_0;T)} \kappa^{\eta T}(X_{Q_0}) \\ &\times \int_{\mathbf{X}_{S}} \left(\int_{\mathbf{\eta}_{tS}} d_{tM,F}^{Q_0,T-X}(H_{Z}^{T-X},\chi;\Lambda;\nu) \, \mathrm{d}\Lambda \right) \mathrm{d}\chi. \end{split}$$

Pour $Z \in \mathcal{A}_Q$, $S'' \in \mathcal{P}^Q({}_tS)$, $V \in \mathcal{A}_{tS}$ et $X' \in \mathfrak{a}_{0,\mathbb{Q}}$, on pose

$$\widehat{d}(\chi; V, S''; \nu) = \int_{\mu_{\tau}S} d(\chi; \Lambda, S''; \nu) e^{-\langle \Lambda, V \rangle} d\Lambda$$

et

$$\widehat{\boldsymbol{d}}_{tM,F}^{\,\mathcal{Q},X'}(Z,\chi;V;\nu) = \int_{\boldsymbol{\mu}_{tS}} \boldsymbol{d}_{tM,F}^{\,\mathcal{Q},X'}(Z,\chi;\Lambda;\nu) e^{-\langle \Lambda,V\rangle} \,\mathrm{d}\Lambda.$$

Pour $H \in \mathcal{A}_{Q_0}$, on définit de manière analogue $\widehat{d}_{tM,F}^{Q_0,X'}(H,\chi;V;\nu)$. Ces fonctions sont à décroissance rapide en V. Notons

$$\mathcal{D}_{tS} \stackrel{\text{def}}{=} \boldsymbol{\eta}_{tS}^{\vee} \subset \mathcal{A}_{tS}$$

l'annulateur de η_{tS} ($\subset \mu_{tS}$) dans A_{tS} .

Lemme 13.6.2. *On a*

$$A_{s,t,\nu}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z-T) \sum_{X \in \mathcal{C}_F(Q,Q_0;T)} \kappa^{\eta T}(X_{Q_0}) \int_{\mathbf{X}S} \sum_{V \in \mathcal{D}_t S} \widehat{d}_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\chi;V;\nu) \mathrm{d}\chi.$$

Démonstration. Il suffit d'observer que par inversion de Fourier on a

$$\int_{\eta_{t}S} d_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\chi;\Lambda;\nu) d\Lambda = \sum_{V \in \mathcal{D}_{t}S} \widehat{d}_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\chi;V;\nu). \quad \blacksquare$$

Il résultera du lemme 13.6.3 (qui est l'analogue de [25, lemme 13.6.3]) que cette expression est absolument convergente.

Lemme 13.6.3. Fixons un réel $\rho > 0$, et considérons les cinq expressions :

$$(\mathsf{A}) \quad \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{X \in \mathcal{C}_F(Q, Q_0; T)} \int_{XS} \sum_{V \in \mathcal{D}_t S} \left| \widehat{\boldsymbol{d}}_{tM, F}^{Q_0, T - X}(\boldsymbol{H}_Z^{T - X}, \chi; V; \boldsymbol{\nu}) \right| \mathrm{d}\chi;$$

$$\sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{\mathcal{Q}}^{R}(Z-T) \sum_{X \in \mathcal{C}_{F}(\mathcal{Q}, \mathcal{Q}_{0}; T)} (1 - \kappa^{\eta T}(X_{\mathcal{Q}_{0}})) \int_{X_{S}} \sum_{V \in \mathcal{D}_{t}S} \left| \widehat{\boldsymbol{d}}_{tM, F}^{\mathcal{Q}_{0}, T-X}(H_{Z}^{T-X}, \chi; V; \nu) \right| d\chi;$$

$$\sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^{R}(Z-T) \sum_{X \in \mathcal{C}_{F}(Q,Q_{0};T)} \int_{\mathbf{X}S} \sum_{V \in \mathcal{D}_{t}S} (1-\kappa^{\rho T}(V)) \left| \widehat{\boldsymbol{d}}_{tM,F}^{Q_{0},T-X}(\boldsymbol{H}_{Z}^{T-X},\chi;V;\boldsymbol{\nu}) \right| \mathrm{d}\chi;$$

(D)
$$\sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^{R}(Z-T) \int_{\chi_{S}} \sum_{V \in \mathcal{D}_{t}S} \left| \widehat{\boldsymbol{d}}_{tM,F}^{Q,T}(Z,\chi;V;\nu) \right| d\chi;$$

(E)
$$\sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^{R}(Z-T) \int_{\chi_{S}} \sum_{V \in \mathcal{D}_{t}S} (1 - \kappa^{\rho T}(V)) \left| \widehat{\boldsymbol{d}}_{tM,F}^{Q,T}(Z,\chi;V;v) \right| d\chi.$$

Alors on a:

- (i) Les cinq expressions sont convergentes.
- (ii) Pour tout réel r, l'expression (B) est essentiellement majorée par $d_0(T)^{-r}$.
- (iii) Il existe une constante absolue $\rho_0 > 0$ telle que si $\rho > \rho_0$, alors pour tout réel r, les expressions (C) et (E) sont essentiellement majorées par $\mathbf{d}_0(T)^{-r}$.

Admettons provisoirement ce lemme prouvé au paragraphe suivant. D'après le lemme 1.5.1, pour chaque $\chi \in \chi_S$ (le paramètre ν étant fixé), il existe une fonction à décroissance rapide

$$\varphi = \varphi(\chi; \nu) : \mathfrak{U} \mapsto \varphi(\mathfrak{U}) = \varphi(\chi; \mathfrak{U}; \nu)$$

sur $\mathcal{H}_{Q,tM}$ telle que $c(\chi; \nu) = c_{\varphi}$. Rappelons que $c(\chi; \nu)$ est la (Q, tM)-famille périodique définie par

$$c(\chi; \Lambda, S''; \nu) = \vartheta(\chi, \Lambda) \langle \mathbf{M}_{S''|t} S(s\lambda(\chi, \Lambda)) \mathbf{M}(s, \lambda(\chi, \Lambda)) \Phi,$$

$$\mathbf{M}_{S''|t} S(t\mu(\chi, \Lambda) + \nu) \mathbf{M}(t, \mu(\chi, \Lambda) + \nu) \mathbf{D}_{-\nu} \Psi \rangle_{S''}$$

et que l'on a posé

$$d(\chi; \nu) = c(\mathfrak{Y}, \chi; \nu).$$

Pour $H \in \mathcal{A}_{Q_0}$ et $X' \in \mathfrak{a}_{0,\mathbb{Q}}$, on a donc

$$d_{tM,F}^{Q_0,X'}(H,\chi;\Lambda;\nu) = \sum_{\mathfrak{U}\in\mathcal{H}_{Q_0,tM}} \varphi(\mathfrak{U}-\mathfrak{Y})\gamma_{tM,F}^{Q_0,X'}(H,\mathfrak{U};\Lambda)$$

avec

$$\gamma_{tM,F}^{\mathcal{Q}_0,X'}(H,\mathfrak{U};\Lambda) = \sum_{H' \in \mathcal{A}_{tM}^{\mathcal{Q}_0}(H+U_{\mathcal{Q}_0})} \Gamma_{tM}^{\mathcal{Q}_0}(H',\mathfrak{U}(X')) e^{\langle \Lambda,H' \rangle}.$$

Pour $Z \in \mathcal{A}_Q$ et $X \in \mathcal{C}_F^+(Q, Q_0; T)$, on obtient

$$d_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\chi;\Lambda;\nu) = \sum_{\mathfrak{U}\in\mathcal{H}_{Q_0,tM}} \varphi(\mathfrak{U}-\mathfrak{Y})\gamma_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\mathfrak{U};\Lambda).$$

On a aussi

$$d_{tM,F}^{Q,T}(Z,\chi;\Lambda;\nu) = \sum_{\mathfrak{U}\in\mathcal{H}_{Q,tM}} \varphi(\mathfrak{U}-\mathfrak{Y})\gamma_{tM,F}^{Q,T}(Z,\mathfrak{U};\Lambda).$$

On introduit, comme ci-dessus, des transformées de Fourier inverses

$$V \mapsto \widehat{\gamma}_{tM,F}^{\mathcal{Q}_0,X'}(H,\mathfrak{U};V) \quad \text{et} \quad V \mapsto \widehat{\gamma}_{tM,F}^{\mathcal{Q},X'}(Z,\mathfrak{U};V),$$

le paramètre V variant dans A_{tM} . Par inversion de Fourier, on a

$$\widehat{\gamma}_{tM,F}^{Q,X'}(Z,\mathfrak{U};V) = \begin{cases} \Gamma_{tM}^{Q}(V,\mathfrak{U}(X')) & \text{si } Z + U_{Q} = V_{Q}, \\ 0 & \text{sinon.} \end{cases}$$

On en déduit que

$$\widehat{\boldsymbol{d}}_{tM,F}^{Q_0,T-X}(\boldsymbol{H}_Z^{T-X},\chi;\boldsymbol{V};\boldsymbol{v}) = \sum_{\substack{\mathfrak{U}\in\mathcal{H}_{Q_0,tM}\\\boldsymbol{H}_Z^{T-X}+\boldsymbol{U}_{Q_0}=\boldsymbol{V}_{Q_0}}} \varphi(\chi;\mathfrak{U}-\mathfrak{Y};\boldsymbol{v})\Gamma_{tM}^{Q_0}(\boldsymbol{V},\mathfrak{U}(T-X))$$

et

$$\widehat{\boldsymbol{d}}_{tM,F}^{\mathcal{Q},T}(Z,\chi;V;v) = \sum_{\substack{\mathfrak{U} \in \mathcal{H}_{\mathcal{Q},tM} \\ Z + U_{\mathcal{Q}} = V_{\mathcal{Q}}}} \varphi(\chi;\mathfrak{U} - \mathfrak{Y};v) \Gamma_{tM}^{\mathcal{Q}}(V,\mathfrak{U}(T)).$$

Fixons un réel $\rho > \rho_0$ comme dans le point (iii) et posons

$$E_1^T = \sum_{Z \in \mathcal{C}_O^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mathcal{X}S} \sum_{V \in \mathcal{D}_t S} \kappa^{\rho T}(V) \sum_{X \in \mathcal{C}_F(\mathcal{Q}, \mathcal{Q}_0; T)} \widehat{d}_{tM, F}^{\mathcal{Q}_0, T - X}(H_Z^{T - X}, \chi; V; \nu) \, \mathrm{d}\chi.$$

D'après le lemme 13.6.2 et les assertions du lemme 13.6.3 concernant les expressions (A), (B) et (C), l'expression E_1^T est absolument convergente, et pour tout réel r, on a une majoration

$$|A_{s,t,\nu}^T - E_1^T| \ll d_0(T)^{-r}$$
.

Notons \mathcal{R}_{tS}^+ l'ensemble des racines de A_{tM} qui sont positives pour le sous-groupe parabolique standard $_tS$. Pour tout $S'' \in \mathcal{P}^{Q_0}(_tM)$, notons a(S'') le nombre d'élément de $(-\Delta_{S''}) \cap \mathcal{R}_{tS}^+$ – ou encore de $(-\Delta_{S''}^{Q_0}) \cap \mathcal{R}_{tS}^+$ – et

$$\mathcal{C}^{Q_0}(S'') \subset \mathfrak{a}_{tM}^{Q_0}$$

le cône formé des

$$\left(\sum_{\alpha \in \Delta_{S''}^{Q_0} \cap \mathcal{R}_{t^S}^+} x_{\alpha} \check{\alpha}\right) + \left(\sum_{\alpha \in (-\Delta_{S''}^{Q_0}) \cap \mathcal{R}_{t^S}^+} y_{\alpha} \check{\alpha}\right),$$

pour des $x_{\alpha} \geq 0$ et des $y_{\alpha} > 0$. Pour $Y \in \mathfrak{a}_{tM}^{Q_0} + \mathcal{A}_{Q_0}$, on pose

$$\mathcal{C}_F^{Q_0}(Y;S'') = \left(Y + \mathcal{C}^{Q_0}(S'')\right) \cap \mathcal{A}_{tM} \subset \mathcal{A}_{tM}^{Q_0}(Y_{Q_0}).$$

Notons que pour $H \in \mathcal{A}_{tM}$, on a

$$\mathcal{C}_F^{Q_0}(H+Y;S'') = H + \mathcal{C}_F^{Q_0}(Y;S'').$$

En remplaçant les exposants Q_0 par Q, on définit de la même manière

$$\mathcal{C}^{\mathcal{Q}}(S'') \subset \mathfrak{a}_{tM}^{\mathcal{Q}} \quad \text{et} \quad \mathcal{C}_{F}^{\mathcal{Q}}(Y;S'') \subset \mathcal{A}_{tM}.$$

Lemme 13.6.4. Pour $Z \in A_Q$, $\chi \in \chi_S$, $V \in A_{tM}$ et $X \in C_F(Q, Q_0; T)$, on a

$$\widehat{d}_{tM,F}^{Q_{0},T-X}(H_{Z}^{T-X},\chi;V;v) = \sum_{S'' \in \mathcal{P}^{Q_{0}}(tM)} (-1)^{a(S'')} \sum_{V_{1} \in \mathcal{C}_{F}^{Q_{0}}(-H_{Z-S''}^{T-X};S'')} \widehat{d}(\chi;V+V_{1},S'';v)$$

avec

$$H_{Z,S''}^{T-X} \stackrel{\text{déf}}{=} Z + [T-X]_{S''}^Q$$

Démonstration. On rappelle que $H_Z^{T-X}=Z+(T-X)_{Q_0}^Q\in\mathcal{A}_{Q_0}.$ On a

$$\widehat{\boldsymbol{d}}_{tM,F}^{\mathcal{Q}_0,T-X}(\boldsymbol{H}_Z^{T-X},\chi;\boldsymbol{V};\boldsymbol{v}) = \sum_{\mathfrak{U}\in\mathcal{H}_{\mathcal{Q}_0,tM}} \varphi(\chi;\mathfrak{U}-\mathfrak{Y};\boldsymbol{v}) \widehat{\boldsymbol{\gamma}}_{tM,F}^{\mathcal{Q}_0,T-X}(\boldsymbol{H}_Z^{T-X},\mathfrak{U};\boldsymbol{V})$$

avec

$$\widehat{\gamma}_{tM,F}^{Q_0,T-X}(H_Z^{T-X},\mathfrak{U};V) = \begin{cases} \Gamma_{tM}^{Q_0}(V,\mathfrak{U}(T-X)) & \text{si } H_Z^{T-X} + U_{Q_0} = V_{Q_0}, \\ 0 & \text{sinon.} \end{cases}$$

Le lemme 1.6.1 nous dit que

$$\Gamma_{tM}^{\mathcal{Q}_0}(V,\mathfrak{U}(T-X)) = \sum_{S'' \in \mathcal{P}^{\mathcal{Q}_0}(tM)} (-1)^{a(S'')} \mathbf{1}_{\mathcal{C}^{\mathcal{Q}_0}(S'')} \big(([T-X]_{S''} + U_{S''} - V)^{\mathcal{Q}_0} \big),$$

où $\mathbf{1}_{\mathcal{C}^{Q_0}(S'')}$ est la fonction caractéristique du cône $\mathcal{C}^{Q_0}(S'')$. On obtient

$$\begin{split} \widehat{\gamma}_{tM,F}^{Q_{0},T-X}(H_{Z}^{T-X},\mathfrak{U};V) &= \sum_{S'' \in \mathcal{P}^{Q_{0}}(tM)} (-1)^{a(S'')} \\ &\times \left\{ \begin{array}{l} \mathbf{1}_{\mathcal{C}^{Q_{0}}(S'')} \big(([T-X]_{S''} + U_{S''})^{Q_{0}} - V \big) & \text{si } H_{Z}^{T-X} + U_{Q_{0}} = V_{Q_{0}}, \\ 0 & \text{sinon,} \end{array} \right. \end{split}$$

soit encore

$$\widehat{\boldsymbol{\gamma}}_{t\boldsymbol{M},F}^{\mathcal{Q}_{0},T-X}(\boldsymbol{H}_{\boldsymbol{Z}}^{T-X},\mathfrak{U};\boldsymbol{V}) = \sum_{\boldsymbol{S}'' \in \mathcal{P}^{\mathcal{Q}_{0}}(t\boldsymbol{M})} (-1)^{a(\boldsymbol{S}'')} \mathbf{1}_{\mathcal{C}^{\mathcal{Q}_{0}}(\boldsymbol{S}'')}(\boldsymbol{Y})$$

avec

$$Y = Z + (T - X)_{Q_0}^Q + [T - X]_{S''}^{Q_0} + U_{S''} - V = H_{Z,S''}^{T-X} + U_{S''} - V.$$

La condition $Y \in \mathcal{C}^{Q_0}(S'')$ équivaut à

$$U_{S''} \in V + \mathcal{C}_F^{Q_0}(-H_{Z,S''}^{T-X}; S'')$$

et implique que $U_{Q_0} = V_{Q_0} - H$. D'autre part on a, par définition,

$$\boldsymbol{d}(\chi; \Lambda, S''; \nu) = \sum_{\mathfrak{U} \in \mathcal{H}_{Q_0, t}M} \varphi(\chi; \mathfrak{U} - \mathfrak{Y}; \nu) e^{\langle \Lambda, U_{S''} \rangle},$$

et donc, par inversion de Fourier,

$$\widehat{\boldsymbol{d}}(\chi; V, S''; \nu) = \sum_{\substack{\mathfrak{U} \in \mathcal{H}_{Q_0, t^M} \\ U_{S''} = V}} \varphi(\chi; \mathfrak{U} - \mathfrak{Y}; \nu).$$

Par conséquent, on a

$$\sum_{\mathfrak{U}\in\mathcal{H}_{\mathcal{Q}_{0,t}M}}\varphi(\chi;\mathfrak{U}-\mathfrak{Y};\nu)\mathbf{1}_{V+\mathcal{C}_{F}^{\mathcal{Q}_{0}}(-H_{Z,S''}^{T-X};S'')}(U_{S''})=\sum_{V_{1}\in\mathcal{C}_{F}^{\mathcal{Q}_{0}}(-H_{Z,S''}^{T-X};S'')}\widehat{d}(\chi;V+V_{1};\nu),$$

ce qui prouve le lemme.

D'après le lemme 13.6.4, la somme sur X dans l'expression E_1^T devient

(13.6)
$$\sum_{S'' \in \mathcal{P}^{Q_0}(_t M)} (-1)^{a(S'')} \sum_{X \in \mathcal{C}_F(Q_0, Q; T)} \left(\sum_{V_1 \in \mathcal{C}_F^{Q_0}(-H_{Z, S''}^{T-X}; S'')} \widehat{d}(\chi; V + V_1, S''; \nu) \right).$$

L'expression (13.6) est bien absolument convergente.

Lemme 13.6.5. Pour $Z \in A_Q$, $\chi \in \chi_S$ et $V \in \mathcal{D}_{tS}$

$$\widehat{\boldsymbol{d}}_{tM,F}^{Q,T}(Z,\chi;V;v) \sum_{S'' \in \mathcal{P}^{Q}(tM)} (-1)^{a(S'')} \sum_{V_{2} \in \mathcal{C}_{F}^{Q}(-H_{Z,S''}^{T};S'')} \widehat{\boldsymbol{d}}(\chi;V+V_{2},S'';v)$$

avec $H_{Z,S''}^T \stackrel{\text{def}}{=} Z + [T]_{S''}^Q$.

Démonstration. Elle est identique à celle du lemme 13.6.4.

Pour $S'' \in \mathcal{P}^{Q_0}(_tM)$, il résulte des définitions que l'application

$$\mathcal{C}(Q, Q_0) \times \mathcal{C}^{Q_0}(S'') \to \mathfrak{a}_{tM}^Q$$
 définie par $(X, V_1) \mapsto [X]_{S''}^Q + V_1$

est injective et a pour image le cône $\mathcal{C}^Q(S'')$. Pour $X \in \mathcal{C}_F(Q, Q_0; T)$, tout élément $V_1 \in \mathcal{C}_F^{Q_0}(-H_{Z,S''}^{T-X}; S'')$ s'écrit

$$V_1 = -H_{Z,S''}^{T-X} + V_1^* = -H_{Z,S''}^T + V_2^*$$

avec $V_1^* \in \mathcal{C}^{\mathcal{Q}_0}(S'')$ et $V_2^* = [X]_{S''}^{\mathcal{Q}} + V_1^* \in \mathcal{C}^{\mathcal{Q}}(S'')$. Par définition, V_1 appartient à $\mathcal{C}_F^{\mathcal{Q}}(-H_{Z,S''}^T;S'')$. Réciproquement, tout élément $V_2 \in \mathcal{C}_F^{\mathcal{Q}}(-H_{Z,S''}^T;S'')$ s'écrit

$$V_2 = -H_{Z,S''}^T + [X]_{S''}^Q + V_1^* = -H_{Z,S''}^{T-X} + V_1^*$$

avec $X \in \mathcal{C}(Q, Q_0)$ et $V_1^* \in \mathcal{C}^{Q_0}(S'')$. Donc V_2 appartient à $\mathcal{C}_F^{Q_0}(-H_{Z,S''}^{T-X}; S'')$, et comme

$$(V_2)_{Q_0} = -Z - (T - X)_{Q_0}^Q = -H_Z^{T-X},$$

par définition, X appartient à $\mathcal{C}_F(Q,Q_0;T)$. L'expression (13.6) se réécrit donc

$$\sum_{S'' \in \mathcal{P}^{Q_0}(_t M)} (-1)^{a(S'')} \sum_{V_2 \in \mathcal{C}_F^Q(-H_{Z,S''}^T; S'')} \widehat{\boldsymbol{d}}(\chi; V + V_2, S''; \nu),$$

soit encore, d'après le lemme 13.6.5,

$$\widehat{\boldsymbol{d}}_{tM,F}^{\mathcal{Q},T}(Z,\chi;V;\nu) - \sum_{S'' \in \mathcal{P}^{\mathcal{Q}}(tM) \smallsetminus \mathcal{P}^{\mathcal{Q}_{0}}(tM)} (-1)^{a(S'')} \sum_{V_{2} \in \mathcal{C}_{F}^{\mathcal{Q}}(-H_{Z-S''}^{T};S'')} \widehat{\boldsymbol{d}}(\chi;V+V_{2},S'';\nu).$$

On en déduit l'égalité

$$(13.7) E_1^T = E_2^T - E_3^T,$$

où

$$E_2^T = \sum_{Z \in \mathcal{C}_Q^{\tilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mathbf{X}S} \sum_{V \in \mathcal{D}_t S} \kappa^{\rho T}(V) \widehat{\mathbf{d}}_{tM,F}^{Q,T}(Z, \chi; V; \nu) \, \mathrm{d}\chi$$

et

$$\begin{split} E_3^T &= \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\chi_S} \sum_{V \in \mathcal{D}_{tS}} \kappa^{\rho T}(V) \\ &\times \sum_{S'' \in \mathcal{P}^Q(_t M) \smallsetminus \mathcal{P}^{Q_0}(_t M)} \sum_{V_2 \in \mathcal{C}_F^Q(-H_{Z,S''}^T; S'')} \widehat{\boldsymbol{d}}(\chi; V + V_2, S''; \nu). \end{split}$$

La décomposition (13.7) est justifiée, car l'expression E_2^T est absolument convergente d'après le lemme 13.6.3 (D), et donc E_3^T est convergente, au moins dans l'ordre indiqué.

Lemme 13.6.6. Pour $S'' \in \mathbb{P}^Q(_tM) \setminus \mathbb{P}^{Q_0}(_tM)$, posons

$$E_{S''}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\chi_S} \sum_{V \in \mathcal{D}_t S} \kappa^{\rho T}(V) \sum_{V_2 \in \mathcal{C}_F^Q(-H_{Z,S''}^T; S'')} |\widehat{\boldsymbol{d}}(\chi; V + V_2, S''; \nu)| d\chi.$$

Pour tout réel r, on a une majoration de la forme $E_{S''}^T \ll d_0(T)^{-r}$.

Admettons ce lemme (qui sera lui aussi prouvé dans le paragraphe suivant), et posons

$$E_4^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\chi_S} \sum_{V \in \mathcal{D}_{tS}} \widehat{d}_{tM,F}^{Q,T}(Z, \chi; V; \nu) d\chi.$$

L'expression E_4^T est absolument convergente et, d'après l'assertion (iii) du lemme 13.6.3, concernant l'expression (E), pour tout réel r, on a

$$|E_2^T - E_4^T| \ll d_0(T)^{-r}$$
.

Par inversion de Fourier de la somme sur V dans E_4^T , on a

$$E_4^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\chi_S} \left(\int_{\eta_{tS}} d_{tM,F}^{Q,T}(Z,\chi;\Lambda;\nu) \, \mathrm{d}\Lambda \right) \mathrm{d}\chi$$

avec (d'après le lemme 13.6.1 (ii))

$$d_{tM,F}^{Q,T}(Z,\chi;\Lambda;\nu) = \omega_{s,t}^{T,Q}(Z;\mu(\chi,\Lambda);\nu)\vartheta(\mu(\chi,\Lambda)).$$

L'expression E_4^T est convergente dans l'ordre indiqué. On peut regrouper les intégrales en χ et Λ grâce au changement de variables $(\chi, \Lambda) \mapsto \mu(\chi, \Lambda)$. On obtient

$$E_4^T = A_{s,t,\nu}^T \stackrel{\text{def}}{=} \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mu_S} \boldsymbol{\omega}_{s,t}^{T,Q}(Z; \mu; \nu) \vartheta(\mu) \, \mathrm{d}\mu.$$

On a prouvé que pour tout réel r, on a

$$|A_{s,t,\nu}^T - A_{s,t,\nu}^T| \ll d_0(T)^{-r},$$

ce qui achève la preuve de la proposition 13.5.1, modulo les majorations des lemmes 13.6.3 et 13.6.6, qui seront établies dans la section suivante.

13.7 Fin de la preuve

Avant d'attaquer la démonstration proprement dite des lemmes 13.6.3 et 13.6.6, on établit une variante du lemme 1.6.12. Soit $Z \in \mathcal{A}_Q$. Pour $P' \in \mathcal{F}^Q(_tM)$, $U \in \mathcal{A}_{P'}$ et $X \in \alpha_{P'}$, considérons l'expression

$$\gamma_{P',F}^{Q,U}(Z;X,\Lambda) \stackrel{\mathrm{def}}{=} \sum_{H \in \mathcal{A}_{P'}^Q(Z)} \Gamma_{P'}^Q(H-X,U) e^{\langle \Lambda,H \rangle}.$$

Puisque la somme sur H est finie, c'est une fonction entière en Λ . Pour $V \in \mathcal{A}_{P'}$, sa transformée de Fourier inverse

$$\widehat{\gamma}_{P',F}^{Q,U}(Z;X,V) = \int_{\mu_{P'}} \gamma_{P',F}^{Q,U}(Z;X,\Lambda) e^{-\langle \Lambda, V \rangle} d\Lambda$$

est donnée par

$$\widehat{\gamma}_{P',F}^{Q,U}(Z;X,V) = \begin{cases} \Gamma_{P'}^{Q}(V-X,U) & \text{si } Z = V_{Q}, \\ 0 & \text{sinon.} \end{cases}$$

Soit e une (Q, tM)-famille périodique donnée par une fonction à décroissance rapide m sur $\mathcal{H}_{Q,tM}$. La fonction

$$e_{P',F}^{Q}(Z;X,\Lambda) = \sum_{\mathfrak{U} \in \mathcal{H}_{Q,IM}} m(\mathfrak{U}) \gamma_{P',F}^{Q,U_{P'}}(Z + U_{Q};X,\Lambda)$$

est lisse en Λ . Pour $V \in \mathcal{A}_{P'}$, on définit comme ci-dessus les transformées de Fourier inverses $\widehat{e}_{P',F}^{\mathcal{Q}}(Z;X,V)$ et $\widehat{e}(V,P')$. Ce sont des fonctions à décroissance rapide en $V \in \mathcal{A}_{P'}$.

Lemme 13.7.1. Pour $V \in A_{P'}$, on a

$$\widehat{e}_{P',F}^{\mathcal{Q}}(Z;X,V) = \sum_{U \in \mathcal{A}_{P'}^{\mathcal{Q}}(V_{\mathcal{Q}}-Z)} \widehat{e}(U,P') \Gamma_{P'}^{\mathcal{Q}}(V-X,U).$$

De plus pour tout réel r, il existe une constante c > 0 telle que

$$|\widehat{e}_{P',F}^{Q}(Z;X,V)| \le c \left(1 + \|V - Z - X^{Q}\|\right)^{-r}.$$

Démonstration. On a

$$\widehat{e}_{P',F}^{Q}(Z;X,V) = \sum_{\substack{\mathfrak{U} \in \mathcal{H}_{Q,t}M\\ Z+U_{Q}=V_{Q}}} m(\mathfrak{U}) \Gamma_{P'}^{Q}(V-X,U_{P'})$$

avec, pour $U \in \mathcal{A}_{P'}$,

$$\sum_{\substack{\mathfrak{U}\in\mathcal{H}_{Q,t}M\\U_{P'}=U}}m(\mathfrak{U})=\int_{\boldsymbol{\mu}_{P'}}e(\Lambda,P')e^{-\langle\Lambda,U\rangle}\,\mathrm{d}\Lambda=\widehat{e}(U,P').$$

D'où la première assertion du lemme. Quant à la majoration, pour $V, U \in \mathcal{A}_{P'}$ tels que $\Gamma_{P'}^Q(V-X,U)$, on a $\|(V-X)^Q\| \ll \|U^Q\|$. Si de plus $Z+U_Q=V_Q$, alors puisque $V - Z - X^Q = U_O + (V - X)^Q$, on a

$$||V - Z - X^{Q}|| \ll ||U_{Q}|| + ||(V - X)^{Q}|| \ll ||U||.$$

On obtient que pour tout réel r > 1, l'expression

$$\|\widehat{e}_{P',F}^{Q}(Z;X,V)\|(1+\|V-Z-X^{Q}\|)^{r}$$

est essentiellement majorée par

$$\sum_{U \in \mathcal{A}_{P'}^{Q}(V_{Q}-Z)} \widehat{e}(U, P') |(1 + ||U||)^{r}.$$

Cette somme converge car $\widehat{e}(U, P')$ est à décroissance rapide en U.

Démonstration du lemme 13.6.3. On reprend en l'adaptant celle de [25, lemme 13.6.3]. Commençons par l'expression (D). D'après le lemme 1.6.12, pour $V \in \mathcal{A}_{tM}$, on a

$$\widehat{\boldsymbol{d}}_{tM,F}^{\mathcal{Q},T}(Z,\chi;V;v) = \sum_{\substack{\mathfrak{U} \in \mathcal{H}_{\mathcal{Q},tM} \\ Z + U_{\mathcal{Q}} = V_{\mathcal{Q}}}} \varphi(\chi;\mathfrak{U} - \mathfrak{Y};v) \Gamma_{tM}^{\mathcal{Q}}(V,\mathfrak{U}(T))$$

avec (d'après [25, lemme 1.8.6])

$$\Gamma^{\mathcal{Q}}_{tM}(V,\mathfrak{U}(T)) = \sum_{P' \in \mathfrak{T}^{\mathcal{Q}}(tM)} \Gamma^{P'}_{tM}(V,\mathfrak{T}) \Gamma^{\mathcal{Q}}_{P'}(V_{P'} - [T]_{P'}, U_{P'}).$$

On obtient

$$\widehat{\boldsymbol{d}}_{tM,F}^{\mathcal{Q},T}(Z,\chi;V;\nu) = \sum_{P' \in \mathcal{F}^{\mathcal{Q}}(tM)} \Gamma_{tM}^{P'}(V,\mathfrak{T}) \widehat{\boldsymbol{d}}_{P',F}^{\mathcal{Q}}(Z,\chi;[T]_{P'},V_{P'};\nu)$$

avec, pour $X \in \mathfrak{a}_{P'}$ et $V' \in \mathcal{A}_{P'}$,

$$\widehat{\boldsymbol{d}}_{P',F}^{\,Q}(Z,\chi;X,V';\nu) \stackrel{\text{def}}{=} \sum_{\substack{\mathfrak{U} \in \mathcal{H}_{Q,t}M \\ U_Q = V'_Q - Z}} \varphi(\chi;\mathfrak{U} - \mathfrak{Y};\nu) \Gamma_{P'}^{\,Q}(V' - X,U_{P'}),$$

soit encore (d'après le lemme 13.7.1),

$$\widehat{\boldsymbol{d}}_{P',F}^{\mathcal{Q}}(Z,\chi;X,V';v) = \sum_{U \in \mathcal{A}_{P'}^{\mathcal{Q}}(V'_{O} - Z)} \widehat{\boldsymbol{d}}(\chi;U,P';v) \Gamma_{P'}^{\mathcal{Q}}(V' - X,U).$$

L'expression (D) est donc majorée par

$$\sum_{P' \in \mathcal{F}^{\mathcal{Q}}(_{t}M)} I_{(D)}^{T}(P')$$

avec1

$$I_{(D)}^T(P') = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mathcal{X}S} \sum_{V \in \mathcal{D}_t S} \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T}) |\widehat{d}_{P',F}^Q(Z, \chi; [T]_{P'}, V_{P'}; \nu)| \, \mathrm{d}\chi.$$

Fixons un $P' \in \mathcal{F}^Q(_tM)$. L'élément T étant fixé, d'après [25, corollaire 1.8.5], il existe une constante c>0 telle que pour tout $V \in \alpha_{tS}$ tel que $\Gamma^{P'}_{tM}(V^{P'},\mathfrak{T}) \neq 0$, on ait $\|V^{P'}\| \leq c$. Pour $X \in \alpha_{P'}$, la fonction $\widehat{d}_{P',F}^Q(Z,\chi;X,V';\nu)$ est à décroissance rapide en $V' \in \mathcal{A}_{P'}$, uniformément en χ , par conséquent l'expression

$$\int_{\mathbf{\chi}_{S}} \sum_{V \in \mathcal{D}_{+S}} \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T}) |\widehat{\mathbf{d}}_{P',F}^{Q}(Z, \chi; [T]_{P'}, V_{P'}; \nu)| \, \mathrm{d}\chi$$

est convergente et, en posant

$$\phi(Z, X, V') \stackrel{\text{def}}{=} \int_{\chi_S} |\widehat{\boldsymbol{d}}_{P', F}^{Q}(Z, \chi; X, V'; \nu)| d\chi,$$

on a

$$I_{(D)}^T(P') = \sum_{Z \in \mathfrak{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{V \in \mathfrak{D}_t S} \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T}) \phi(Z, [T]_{P'}, V_{P'}).$$

Le groupe \mathcal{D}_{tS} est par définition l'annulateur de

$$\boldsymbol{\eta}_{tS} = (s\theta_0 - t)\boldsymbol{\mu}_{S} \subset \boldsymbol{\mu}_{tS}$$

¹Rappelons que puisque l'élément T est régulier, la famille orthogonale $\mathfrak T$ est régulière, et d'après [25, proposition 1.8.7], la fonction $H \mapsto \Gamma_{tM}^{P'}(H,\mathfrak T)$ est la fonction caractéristique d'un ensemble qui se projette sur un compact convexe de $\mathfrak a_{tM}^{P'}$.

dans A_{tS} . On a donc

$$\mathcal{D}_{tS} = \ker \left(\theta_0^{-1} s^{-1} (1 - w \theta_0) : \mathcal{A}_{tS} \to \mathcal{A}_S \right) \quad \text{avec} \quad w = s \theta_0(t)^{-1},$$

soit encore,

$$\mathcal{D}_{tS} = \ker \left(1 - w\theta_0 : \mathcal{A}_{tS} \to \mathcal{A}_{tS} \right).$$

Posons

$$\mathfrak{d}_{tS} = \ker \left(1 - w\theta_0 : \mathfrak{a}_{tS} \to \mathfrak{a}_{\theta_0(tS)} \right) \quad \text{et} \quad \mathfrak{d}_{P'} = \mathfrak{d}_{tS} \cap \mathfrak{a}_{P'}.$$

Soit $e_{P'}$ l'orthogonal de $\mathfrak{d}_{P'}$ dans $\mathfrak{d}_{P'}$. On note $V' \mapsto V'_d$, resp. $V' \mapsto V'_e$, la projection orthogonale de $\mathfrak{d}_{P'} = \mathfrak{d}_{P'} \oplus e_{P'}$ sur $\mathfrak{d}_{P'}$, resp. $e_{P'}$. Posons

$$\mathfrak{d}_{tS}^{(P')} = \mathfrak{d}_{tS} \cap (\mathfrak{a}_{tS}^{P'} \oplus \mathfrak{e}_{P'}).$$

On a la décomposition

$$\delta_{tS} = \delta_{P'} \oplus \delta_{tS}^{(P')}$$

et la projection $\alpha_{tS} \to \alpha_{tS}^{P'}$, $V \mapsto V^{P'}$ est injective sur $\delta_{tS}^{(P')}$. Posons

$$\mathcal{D}_{P'} \stackrel{\mathrm{def}}{=} \mathcal{D}_{tS} \cap \mathfrak{a}_{P'} = \mathcal{A}_{tS} \cap \mathfrak{b}_{P'},$$

et notons $\mathcal{D}_{P'}^{\flat}$ et $\mathcal{D}_{tS}^{(P')}$ les projections orthogonales de \mathcal{D}_{tS} sur $\mathfrak{d}_{P'}$ et $\mathfrak{d}_{tS}^{(P')}$ pour la décomposition (13.8). On a l'inclusion $\mathcal{D}_{P'} \subset \mathcal{D}_{P'}^{\flat}$ (avec égalité si $P' = {}_{t}S$), et la suite exacte courte

$$(13.9) 0 \to \mathcal{D}_{P'} \to \mathcal{D}_{tS} \to \mathcal{D}_{tS}^{(P')} \to 0.$$

On décompose la somme $\sum_{V\in \mathcal{D}_t S}$ en une double somme

$$\sum_{V_1 \in \mathcal{D}_{\epsilon S}^{(P')}} \sum_{V \in \mathcal{D}_{P'}(V_1)},$$

où $\mathcal{D}_{P'}(V_1) \subset \mathcal{D}_{tS}$ est la fibre au-dessus de V_1 pour la suite exacte courte (13.9). L'expression $I_{(D)}^T(P')$ se réécrit

$$I_{(D)}^T(P') = \sum_{Z \in \mathcal{C}_Q^{\tilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{V_1 \in \mathcal{D}_{t,S}^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T}) \phi_e(Z, [T]_{P'}, V_1)$$

avec

$$\phi_e(Z, X, V_1) \stackrel{\text{def}}{=} \sum_{V \in \mathcal{D}_{P'}(V_1)} \phi(Z, X, V_{P'}).$$

On a

$$\phi_e(Z, X, V_1) \ll \phi_e^{\flat}(Z, X) \stackrel{\text{def}}{=} \sum_{V' \in \mathcal{D}_{P'}^{\flat}} \phi(Z, X, V').$$

Observons que

$$\phi(Z, X, V') = \phi(0, X - Z', V' - Z'),$$

où Z' est un relèvement de Z dans $\mathcal{A}_{P'}$. On en déduit que les fonctions $\phi_e(Z,X,V_1)$ et $\phi_e^{\flat}(Z,X)$ ne dépendent que Z_e et qu'elles sont à décroissance rapide en Z_e . D'autre part, puisque la projection $V\mapsto V^{P'}$ est injective sur $\mathcal{D}_{r,S}^{(P')}$, la somme

$$\sum_{V_1 \in \mathcal{D}_{tS}^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T})$$

est finie. D'où la majoration

$$I_{(D)}^T(P') \ll \sum_{Z \in \mathcal{C}_{\tilde{O}}^{\tilde{G}}} \widetilde{\sigma}_{\mathcal{Q}}^R(Z-T) \phi_e^{\flat}(Z, [T]_{P'}).$$

D'après [25, section 13.6 (10), page 202], on a l'inclusion

$$\delta_{tS} \subset \ker(q_O),$$

où $q_Q: \alpha_0 \to \alpha_Q^{\widetilde{G}}$ est l'application définie en section 2.3. Rappelons que cette application est légèrement différente de celle de [25, section 2.13] (au lieu de projeter sur α_Q^G , on projette ici sur $\alpha_Q^{\widetilde{G}}$). L'inclusion (13.10) entraı̂ne l'analogue de la majoration [25, section 13.6 (10), page 202] : (13.11)

$$\|(Z-T_Q)^{\widetilde{G}}\| \ll \|(Z-T_Q)_e\|$$
 pour tout $Z \in \mathfrak{a}_Q$ tel que $\widetilde{\sigma}_Q^R(Z-T) = 1$.

On en déduit que $\|Z^{\widetilde{G}}\| \ll 1 + \|Z_e\|$ pour tout $Z \in \mathcal{A}_Q$ tel que $\widetilde{\sigma}_Q^R(Z - T) = 1$. Cela entraîne la convergence de $I_{(D)}^T(P')$ et achève la preuve de la convergence de (D).

Considérons maintenant l'expression (E). On voit comme ci-dessus qu'elle est majorée par

$$\sum_{P' \in \mathcal{F}^{\mathcal{Q}}(_{t}M)} I_{(E)}^{T}(P')$$

avec

$$I_{(E)}^T(P') = \sum_{Z \in \mathcal{C}_Q^{\tilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{V \in \mathcal{D}_t S} \left(1 - \kappa^{\rho T}(V)\right) \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T}) \phi(Z, [T]_{P'}, V_{P'}),$$

soit encore,

$$\begin{split} I_{(E)}^T(P') &= \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{V_1 \in \mathcal{D}_t^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T}) \\ &\times \sum_{V \in \mathcal{D}_{P'}(V_1)} \left(1 - \kappa^{\rho T}(V)\right) \phi(Z, [T]_{P'}, V_{P'}). \end{split}$$

Fixons $\rho' > 0$, pour l'instant arbitraire. Pour alléger l'écriture, posons

$$Z_T \stackrel{\text{déf}}{=} Z - T_O \in \mathfrak{a}_O.$$

Observons que

$$\widetilde{\sigma}_{Q}^{R}(Z-T) = \widetilde{\sigma}_{Q}^{R}(Z_{T}) = \widetilde{\sigma}_{Q}^{R}(Z_{T}^{\tilde{G}}).$$

On majore $I_{(E)}^T(P')$ par

$$I_{(E),\geq}^T(P') + I_{(E),<}^T(P'),$$

où $I_{(E),\geq}^T(P')$, resp. $I_{(E),<}^T(P')$, est l'expression obtenue en remplaçant la fonction $\widetilde{\sigma}_Q^R(Z-T)$ par $\widetilde{\sigma}_Q^R(Z_T)(1-\kappa^{\rho'T}(Z_T))$, resp. $\widetilde{\sigma}_Q^R(Z_T)\kappa^{\rho'T}(Z_T)$, dans $I_{(E)}^T(P')$. On commence par majorer $I_{(E),\geq}^T(P')$. On peut choisir $\rho''>0$ tel que $(1-\kappa^{\rho'T}(Z_T))=1$ (c'est-à-dire $\|Z_T\|>\rho'\|T\|$) implique $\|Z_T^{\widetilde{G}}\|>\rho''\|T\|$. Alors on a

$$I_{(E),\geq}^T(P') \ll \sum_{Z \in \mathcal{C}_{\tilde{Q}}^{\tilde{G}}} \widetilde{\sigma}_{Q}^R(Z_T^{\tilde{G}}) (1 - \kappa^{\rho''T}(Z_T^{\tilde{G}})) \sum_{V_1 \in \mathcal{D}_{t}^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T}) \phi_e(Z, [T]_{P'}, V_1).$$

Pour tout $V \in \mathcal{D}_{P'}(V_1)$ la projection orthogonale $V_{P',e}$ de $V_{P'}$ sur $e_{P'}$ ne dépend que de V_1 , et on la note $V_{1,e}$. D'après le lemme 13.7.1, pour tout réel r on a une majoration

(13.12)
$$\phi_e(Z, X, V_1) \ll \left(1 + \|V_{1,e} - Z_{T,e} - X_e\|\right)^{-r},$$

où la constante implicite est absolue, c'est-à-dire ne dépend d'aucune variable. La constante implicite dans la majoration (13.11) est elle aussi absolue. Comme dans la preuve de [25, lemme 13.6.3]² on montre que l'on peut choisir ρ'' tel que la condition

$$\widetilde{\sigma}_O^R(Z_T^{\tilde{G}})(1-\kappa^{\rho^{\prime\prime}T}(Z_T^{\tilde{G}}))\Gamma_{tM}^{P^\prime}(V^{P^\prime},\mathfrak{T})=1$$

entraîne une majoration

$$||Z_T^{\widetilde{G}}|| \ll ||V_{1,e} - Z_{T,e} - [T]_{P',e}||.$$

²Voir toutefois les *errata* **Err** (xix) et **Err** (xx) de l'annexe.

Pour tout réel r on a donc une majoration

$$I_{(E),\geq}^{T}(P') \ll \sum_{Z \in \mathcal{C}_{Q}^{\tilde{G}}} (1 - \kappa^{\rho''T}(Z_{T}^{\tilde{G}}))(1 + \|Z_{T}^{\tilde{G}}\|)^{-r} \sum_{V_{1} \in \mathcal{D}_{t}^{(P')}} \Gamma_{tM}^{P'}(V_{1}^{P'}, \mathfrak{T}).$$

La somme en V_1 est essentiellement majorée par $||T||^D$ pour un certain entier D, et la somme en Z est essentiellement majorée par $||T||^{-r}$. D'où la majoration

$$I_{(E),>}^T(P') \ll d_0(T)^{-r}$$
.

Traitons maintenant $I_{(E),>}^T(P')$. Grâce à la suite exacte courte

$$(13.13) \hspace{1cm} 0 \to \mathcal{D}_{tS}^{P'} \stackrel{\text{def}}{=} \mathcal{D}_{tS} \cap \mathfrak{d}_{tS}^{(P')} \to \mathcal{D}_{tS} \to \mathcal{D}_{P'}^{\flat} \to 0,$$

on peut décomposer la somme $\sum_{V \in \mathcal{D}_{tS}}$ en une double somme

$$\sum_{V' \in \mathcal{D}_{P'}^{\flat}} \sum_{V \in \mathcal{D}_{t_S}^{P'}(V')},$$

où $\mathcal{D}_{t_S}^{P'}(V')$ est la fibre au-dessus de V' dans \mathcal{D}_{t_S} pour la suite exacte courte (13.13). On a donc

$$\begin{split} I_{(E),<}^T(P') &= \sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^R(Z - T) \kappa^{\rho' T}(Z_T) \sum_{V' \in \mathcal{D}_{P'}^{\flat}} \phi(Z, [T]_{P'}, V') \\ &\times \sum_{V \in \mathcal{D}_{tS}^{P'}(V')} (1 - \kappa^{\rho T}(V)) \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T}). \end{split}$$

Comme dans la preuve de [25, lemme 13.6.3], il existe une constante $c_1 > 0$ telle que pour tout $V \in \mathcal{D}_{tS}$ tel que $\Gamma_{tM}^{P'}(V^{P'},\mathfrak{T}) = 1$, on ait la majoration $\|V_1\| \leq c_1\|T\|$, où $V_1 = V - V_d$ est l'image de V dans $\mathcal{D}_{tS}^{(P')}$. Si $\rho > c_1$, en ajoutant la condition $(1 - \kappa^{\rho T}(V)) = 1$ c'est-à-dire $\rho\|T\| < \|V\|$, on obtient $\|V_d\| > (\rho - c_1)\|T\|$ c'est-à-dire $(1 - \kappa^{(\rho - c_1)T}(V_d)) = 1$. En particulier $V_d \neq 0$ et l'espace $\delta_{P'}$ n'est pas nul. Il existe $c_2 > 0$ tel que la condition $\kappa^{\rho' T}(Z_T) = 1$ c'est-à-dire $\|Z_T\| \leq \rho' \|T\|$ entraîne $\|Z_{T,d} + [T]_{P',d}\| \leq c_2 \|T\|$. En prenant $\rho > c_1 + c_2$, on obtient que la condition

$$\kappa^{\rho'T}(Z_T)(1-\kappa^{\rho T}(V))\Gamma_{t,M}^{P'}(V^{P'},\mathfrak{T})=1$$

entraîne l'inégalité

$$||V_d - Z_{T,d} - [T]_{P',d}|| \ge (\rho - (c_1 + c_2))||T|| > \left(1 - \frac{c_2}{\rho - c_1}\right)||V_d||.$$

Grâce au lemme 13.7.1, on en déduit que pour tout réel r l'expression $I_{(E),<}^T(P')$ est essentiellement majorée par

$$\sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \kappa^{\rho'T} (Z_{T}^{\widetilde{G}}) \sum_{V' \in \mathcal{D}_{tS}^{\flat}} (1 + ||V'||)^{-r} (1 - \kappa^{(\rho - c_{1})T}(V')) \sum_{V_{1} \in \mathcal{D}_{tS}^{(P')}} \Gamma_{tM}^{P'}(V_{1}^{P'}, \mathfrak{T}).$$

Les sommes en Z et en V_1 sont essentiellement majorées par $||T||^D$ pour un entier D convenable, et pour tout réel r la somme sur V' est essentiellement majorée par $||T||^{-r}$. D'où une majoration

$$I_{(E),<}^T(P') \ll d_0(T)^{-r},$$

qui, jointe à la majoration $I_{(E),\geq}^T(P') \ll d_0(T)^{-r}$, assure la convergence de l'expression (E) et l'assertion de (iii), la concernant.

Considérons maintenant l'expression (A). Comme pour (D), on obtient qu'elle est essentiellement majorée par

$$\sum_{P' \in \mathcal{F}^{Q_0}(_t M)} I_{(A)}^T(P')$$

avec

$$\begin{split} I_{(A)}^T(P') &= \sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^R(Z - T) \sum_{X \in \mathcal{C}_{F}(Q, Q_{0}; T)} \\ &\times \sum_{V \in \mathcal{D}_{t}S} \left| \Gamma_{tM}^{P'}(V^{P'}, \mathfrak{T} - \mathfrak{X}) \right| \psi(H_{Z}^{T - X}, [T - X]_{P'}, V_{P'}) \end{split}$$

et

$$\psi(H, Y, V') \stackrel{\text{def}}{=} \int_{\mathbf{X}_{S}} \left| \widehat{\mathbf{d}}_{P', F}^{Q_{0}}(H, \chi; Y, V'; \nu) \right| d\chi.$$

Ici $\mathfrak{T} - \mathfrak{X}$ est la famille orthogonale $([T - X]_{P'})$. Elle est rationnelle si $T \in \mathfrak{a}_{0,\mathbb{Q}}$. Fixons un $P' \in \mathcal{F}^{Q_0}(_tM)$. Rappelons que $e_{P'}$ est l'orthogonal de $\mathfrak{d}_{P'} = \mathfrak{d}_t S \cap \mathfrak{a}_{P'}$ dans $\mathfrak{a}_{P'}$, et qu'on a noté $V' \mapsto V'_e$ la projection orthogonale de $\mathfrak{a}_{P'} = \mathfrak{d}_{P'} \oplus e_{P'}$ sur $e_{P'}$. Comme pour (D), l'expression $I^T_{(A)}(P')$ se réécrit

$$\begin{split} I_{(A)}^T(P') &= \sum_{Z \in \mathcal{C}_{Q}^{\widetilde{G}}} \widetilde{\sigma}_{Q}^R(Z - T) \sum_{X \in \mathcal{C}_{F}(Q, Q_0; T)} \\ &\times \sum_{V_1 \in \mathcal{D}_{t, S}^{(P')}} \Big| \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T} - \mathfrak{X}) \Big| \psi_{e}(H_Z^{T - X}, [T - X]_{P'}, V_1) \end{split}$$

avec

$$\psi_e(H, Y, V_1) \stackrel{\text{def}}{=} \sum_{V \in \mathcal{D}_{P'}(V_1)} \psi(H, Y, V_{P'}).$$

D'après le lemme 13.7.1, pour tout réel r on a une majoration

$$\psi_e(H, Y, V_1) \ll (1 + ||V_{1,e} - (H + Y^{Q_0})_e||)^{-r}.$$

Pour
$$H = H_Z^{T-X} = Z + (T-X)_{Q_0}^Q$$
 et $Y = [T-X]_{P'}$, on a

$$H + Y^{Q_0} = Z + [T - X]_{P'}^Q = Z_{T-X} + [T - X]_{P'}$$

avec $Z_{T-X}=Z-(T-X)_Q$. Comme X appartient à $\mathcal{C}_F(Q,Q_0;T)\subset\mathfrak{a}_0^Q$, on a $Z_{T-X}=Z_T$. Notons $\mathfrak{d}_{Q_0}^\flat\subset\mathfrak{a}_{Q_0}$ l'image de \mathfrak{d}_{tS} par la projection $V\mapsto V_{Q_0}$, et soit \mathfrak{h} l'orthogonal de $\mathfrak{d}_{Q_0}^\flat$ dans \mathfrak{a}_{Q_0} . Puisque

$$\mathfrak{d}_{Q_0}=\mathfrak{d}_{P'}\cap\mathfrak{a}_{Q_0}\subset\mathfrak{d}_{Q_0}^{\flat},$$

on a l'inclusion $\mathfrak{h} \subset e_{P'}$. Notons \mathfrak{h}^{\perp} l'orthogonal de \mathfrak{h} dans $e_{P'}$, et $V \mapsto V_h = V_{P',h}$ la projection orthogonale de

$$a_0 = a_0^{P'} \oplus b_{P'} \oplus b \oplus b^{\perp}$$

sur \mathfrak{h} . Pour $V \in \mathfrak{d}_{t}S$, on a $V_h = 0$. D'autre part puisque la projection $V \mapsto V_h$ se factorise à travers $V \mapsto V_{Q_0}$, on a $[T-X]_{P',h} = (T-X)_h = T_h - X_h$. Pour tout réel r, on obtient une majoration

$$\psi_e(H_Z^{T-X}, [T-X]_{P'}, V_1) \ll (1 + ||Z_{T,h} + T_h - X_h||)^{-r}$$

Or d'après [25, section 13.6 (13), page 204], pour tout $Z \in \mathcal{C}_Q^{\widetilde{G}}$ tel que $\widetilde{\sigma}_Q^R(Z_T) = 1$ et tout $X \in \mathcal{C}(Q, Q_0)$, on a une majoration

$$||Z_T^{\tilde{G}}|| + ||X|| \ll ||Z_{T,h} + T_h - X_h||.$$

Comme $\|Z^{\widetilde{G}}\| \ll 1 + \|Z^{\widetilde{G}}_T\|$ (la constante implicite dépendant de T), pour tout réel r on obtient une majoration

$$I_{(A)}^T(P') \ll \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \sum_{X \in \mathcal{C}_F(Q,Q_0;T)} \left(1 + \|Z^{\widetilde{G}}\| + \|X\|\right)^{-r} \sum_{V_1 \in \mathcal{D}_{tS}^{(P')}} \left|\Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T} - \mathfrak{X})\right|.$$

Puisque l'application $V_1\mapsto V_1^{P'}$ est injective, la somme en V_1 est essentiellement majorée par

$$||T||^D + (1 + ||X||)^D$$

pour un entier D convenable. On en déduit que pour tout réel r, on a une majoration

$$(13.15) I_{(A)}^{T}(P') \ll \sum_{Z \in \mathcal{C}_{\tilde{Q}}^{\tilde{G}}} \sum_{X \in \mathcal{C}_{F}(\mathcal{Q}, \mathcal{Q}_{0}; T)} ||T||^{D} (1 + ||Z^{\tilde{G}}||)^{-r} (1 + ||X||)^{-r}.$$

Cela prouve la convergence de l'expression (A).

Quant aux deux expressions restantes ((B) et (C)), leur convergence se déduit des raisonnements précédents comme dans la preuve du lemme 13.6.3 de [25]. Idem, pour la majoration du point (ii) de l'énoncé. Cela achève la preuve du lemme 13.6.3.

Démonstration du lemme 13.6.6. Le sous-groupe parabolique

$$S'' \in \mathcal{P}^{Q}(_{t}M) \backslash \mathcal{P}^{Q_{0}}(_{t}M)$$

étant fixé, on considère la transformée de Fourier inverse

$$V \mapsto \widehat{d}(\chi; V, S''; \nu).$$

C'est une fonction à décroissance rapide en $V \in \mathcal{A}_{tM}$, uniformément en χ . Par conséquent la fonction

$$V \mapsto \xi(V) = \int_{\mathbf{X}S} |\widehat{\mathbf{d}}(\chi; V, S''; \nu)| \, \mathrm{d}\chi$$

sur A_{tM} est encore à décroissance rapide, et on a une majoration

$$(13.16) E_{S''}^T \ll \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R (Z - T) \sum_{V \in \mathcal{D}_t S} \kappa^{\rho T}(V) \sum_{V_2 \in \mathcal{C}_F^Q (-H_{Z,S''}^T; S'')} \xi(V + V_2).$$

Rappelons que pour $Y \in \alpha_{tM}^Q + A_Q$, on a posé

$$\mathcal{C}^{\mathcal{Q}}_F(Y;S'') = \left(Y + \mathcal{C}^{\mathcal{Q}}(S'')\right) \cap \mathcal{A}_{tM} \subset \mathcal{A}^{\mathcal{Q}}_{tM}(Y_{\mathcal{Q}}).$$

On note $\mathcal{C}^{\mathcal{Q}}(S'')_{\mathcal{Q}_0}$ et $\mathcal{C}^{\mathcal{Q}}_F(Y;S'')_{\mathcal{Q}_0}$ les images (projections orthogonales) de $\mathcal{C}^{\mathcal{Q}}(S'')$ et $\mathcal{C}^{\mathcal{Q}}_F(Y;S'')$ dans $\alpha_{\mathcal{Q}_0}$. Par définition $\mathcal{C}^{\mathcal{Q}}(S'')_{\mathcal{Q}_0}$ est un sous-ensemble de $\alpha^{\mathcal{Q}}_{\mathcal{Q}_0},Y_{\mathcal{Q}_0}$ appartient à $\alpha^{\mathcal{Q}}_{\mathcal{Q}_0}+\mathcal{A}_{\mathcal{Q}}$, et on a les inclusions

$$\mathcal{C}_F^{\mathcal{Q}}(Y;S'')_{\mathcal{Q}_0} \subset \left(Y_{\mathcal{Q}_0} + \mathcal{C}^{\mathcal{Q}}(S'')_{\mathcal{Q}_0}\right) \cap \mathcal{A}_{\mathcal{Q}_0} \subset \mathcal{A}_{\mathcal{Q}_0}^{\mathcal{Q}}(Y_{\mathcal{Q}}).$$

Pour $X \in \mathcal{C}_F^{\mathcal{Q}}(Y;S'')_{\mathcal{Q}_0}$, on note $\mathcal{C}_F^{\mathcal{Q}}(Y;S'')_X^{\mathcal{Q}_0} \subset \mathcal{C}_F^{\mathcal{Q}}(Y;S'')$ la fibre au-dessus de X. Cette fibre est contenue dans $\mathcal{A}_{tM}^{\mathcal{Q}_0}(X)$. On peut donc décomposer la somme $\sum_{V_2 \in \mathcal{C}_F^{\mathcal{Q}}(-H_{T-S''}^T;S'')}$ en une double somme

$$\sum_{X \in \mathcal{C}_F^Q(-H_{Z,S''}^T;S'')_{\mathcal{Q}_0}} \sum_{V_2 \in \mathcal{C}_F^Q(-H_{Z,S''}^T;S'')_X^{\mathcal{Q}_0}},$$

puis majorer brutalement la seconde somme par $\sum_{V_2 \in \mathcal{A}_{t,M}^{\mathcal{Q}_0}(X)}$. On obtient

$$(13.17) \quad E_{S''}^T \ll \sum_{Z \in \mathcal{C}_{Q}^{\tilde{G}}} \widetilde{\sigma}_{Q}^R(Z-T) \sum_{V \in \mathcal{D}_{t}S} \kappa^{\rho T}(V) \sum_{X \in \mathcal{C}_{F}^{Q}(-H_{Z,S''}^T;S'')_{\mathcal{Q}_0}} \overline{\xi}(V_{Q_0}+X),$$

avec, pour $\overline{V} \in \mathcal{A}_{O_0}$,

$$\overline{\xi}(\overline{V}) = \sum_{V_2 \in \mathcal{A}_{tM}^{\mathcal{Q}_0}(\overline{V})} \xi(V).$$

La fonction $\overline{\xi}$ est à décroissance rapide en $\overline{V} \in \mathcal{A}_{Q_0}$.

Notons $\mathfrak k$ le noyau de l'application $q_Q: \alpha_0 \to \alpha_Q^{\widetilde G}$ définie en section 2.3, et $\mathfrak k_t$ sa projection sur α_{tS} ou ce qui revient au même (puisque $\alpha_0^{tS} \subset \alpha_0^{Q_0} \subset \mathfrak k$) son intersection avec cet espace. On note $\mathfrak k$ l'orthogonal de $\mathfrak k_t$ dans α_{tS} . Puisque $\mathfrak k = \mathfrak k_t \oplus {\alpha_0^{tS}}$, c'est aussi l'orthogonal de $\mathfrak k$ dans α_0 . C'est donc un sous-espace de α_{Q_0} . Pour $V \in \alpha_{tS} = \mathfrak k_t \oplus \mathfrak k$, on note $V_f = V_{Q_0,f}$ la projection orthogonale de V sur $\mathfrak k$. D'après l'inclusion (13.10), on a $\mathfrak k_{tS} \subset \mathfrak k_t$, par conséquent $V_f = 0$ pour tout $V \in \mathfrak k_{tS}$. D'après (13.17), pour tout réel r, on obtient une majoration

$$(13.18) \quad E_{S''}^T \ll \sum_{Z \in \mathcal{C}_{Q}^{\tilde{G}}} \widetilde{\sigma}_{Q}^R(Z_T) \sum_{V \in \mathcal{D}_{tS}} \kappa^{\rho T}(V) \sum_{X \in \mathcal{C}_{F}^{Q}(-H_{Z,S''}^T;S'')_{Q_0}} (1 + \|X_f\|)^{-r}.$$

La somme sur V est essentiellement majorée par $\|T\|^D$ pour un D convenable. L'élément $H^T_{Z,S''}$ est par définition égal à $Z+[T]^Q_{S''}=Z_T+[T]_{S''}$. Tout élément $X\in\mathcal{C}^Q_F(-H^T_{Z,S''};S'')_{Q_0}$ s'écrit $X=-H^T_{Z;S''}+X'$ avec $X'\in\mathcal{C}^Q(S'')_{Q_0}$, et l'on a

$$X_f = -Z_{T,f} - T_f + X_f'.$$

D'après [25, section 13.7 (4), page 208], pour $Z \in \mathcal{A}_Q$ tel que $\widetilde{\sigma}_Q^R(Z_T) = 1$ et $X' \in \mathcal{C}_F^Q(S'')_{Q_0}$, on a une majoration absolue

$$||T|| + ||Z_T^{\tilde{G}}|| + ||X'|| \ll 1 + ||-Z_{T,f} - T_f + X_f'||.$$

On en déduit que pour $Z \in \mathcal{A}_Q$ tel que $\widetilde{\sigma}_Q^R(Z_T) = 1$ et $X \in \mathcal{C}_F^Q(-H_{Z,S''}^T; S'')_{Q_0}$, on a une majoration absolue

$$||T|| + ||Z^{\widetilde{G}}|| + ||X|| \ll 1 + ||X_f||.$$

D'après (13.18), pour tout réel r, on obtient une majoration

$$(13.19) \qquad E_{S''}^T \ll \|T\|^{D-r} \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} (1 + \|Z^{\widetilde{G}}\|)^{-r} \sum_{X \in \mathcal{C}_F^Q(-H_{Z,S''}^T;S'')_{\mathcal{Q}_0}} (1 + \|X\|)^{-r}.$$

Ceci est essentiellement majoré par $d_0(T)^{-r}$, ce qui démontre le lemme.

13.8 Élargissement des sommations

D'après [25, lemme 13.8.1], on a l'inclusion

(13.20)
$$\mathbf{W}^{Q'}(\mathfrak{a}_S, Q_0) \subset \mathbf{W}^G(\mathfrak{a}_S, Q).$$

On relâche les hypothèses sur Q et R: on suppose seulement $P_0 \subset Q \subset R$ et on abandonne l'hypothèse $\widetilde{\eta}(Q,R) \neq 0$. Pour $t \in W^G(\alpha_S,Q)$, on pose

$$\widetilde{\eta}(Q, R; t) = \sum_{\widetilde{P}} (-1)^{a_{\widetilde{P}} - a_{\widetilde{G}}},$$

où la somme porte sur l'ensemble des $\widetilde{P} \in \widetilde{\mathcal{P}}_{\mathrm{st}}$ tels que $Q \subset P \subset R$ et $t \in W^P$. Cet ensemble peut être vide. S'il est non vide, alors il existe deux espaces paraboliques standards $\widetilde{P}_1 \subset \widetilde{P}_2$ tel que ce soit l'ensemble des $\widetilde{P} \in \widetilde{\mathcal{P}}_{\mathrm{st}}$ vérifiant $\widetilde{P}_1 \subset \widetilde{P} \subset \widetilde{P}_2$ (on a alors $P_2 = R^-$). On en déduit que $\widetilde{\eta}(Q,R;t) \neq 0$ si et seulement s'il existe un unique $\widetilde{P} \in \widetilde{\mathcal{P}}_{\mathrm{st}}$ tel que $Q \subset P \subset R$ et $t \in W^P$, auquel cas on a

$$\widetilde{\eta}(Q, R; t) = (-1)^{a_{\widetilde{P}} - a_{\widetilde{G}}}.$$

Rappelons que pour $P' \in \mathcal{F}^{\mathcal{Q}}(tM)$ et $w = s\theta_0(t)^{-1}$ on a posé :

$$\mathfrak{d}_{tS} = \ker \left(1 - w\theta_0 : \mathfrak{a}_{tS} \to \mathfrak{a}_{\theta_0(tS)} \right).$$

Rappelons aussi que pour $V \in \mathfrak{a}_{P'} = \mathfrak{b}_{P'} \oplus \mathfrak{e}_{P'}$, on a noté V_e la projection orthogonale de V sur $\mathfrak{e}_{P'}$.

Lemme 13.8.1. On suppose $\widetilde{\eta}(Q, R; t) \neq 0$. Soient $Z \in A_Q$ et $V \in \mathcal{D}_{t}S$ tels que

$$\widetilde{\sigma}_{Q}^{R}(Z-T)\Gamma_{tM}^{P'}(V^{P'},\mathfrak{T})=1.$$

Alors,

- (i) $\|(Z-T_O)^{\tilde{G}}\| \ll 1 + \|V_{P',e} (Z-T_O)_e [T]_{P',e}\|;$
- (ii) et, si $t \notin \mathbf{W}^{Q'}(\alpha_S, Q_0)$,

$$||T|| + ||(Z - T_Q)^{\tilde{G}}|| \ll 1 + ||V_{P',e} - (Z - T_Q)_e - [T]_{P',e}||.$$

Démonstration. Ce sont les analogues des assertions (3)(i) et (3)(ii) en bas de la page 211 de [25], dont la preuve occupe les pages 212 à 215 de *loc. cit*. ■

Proposition 13.8.2. Soient $t \in \mathbf{W}^G(\alpha_S, Q)$ et $s \in \mathbf{W}^Q(\theta_0(\alpha_S), t(\alpha_S))$. On pose

$$A_{s,t}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mu_S} [\omega]_{s,t}^{T,Q}(Z; \mu) \vartheta(\mu) \, \mathrm{d}\mu.$$

On suppose $\widetilde{\eta}(Q, R; t) \neq 0$.

- (i) L'expression $A_{s,t}^T$ est convergente dans l'ordre indiqué.
- (ii) Supposons $t \notin \mathbf{W}^{Q'}(\mathfrak{a}_S, Q_0)$. Alors pour tout réel r, on a une majoration

$$|A_{s,t}^T| \ll d_0(T)^{-r}.$$

Démonstration. Puisque $A_{s,t} = |\widehat{\mathbb{C}}_S|^{-1} \sum_{v \in \mathcal{E}(\sigma)} A_{s,t,v}$ avec

$$A_{s,t,v}^T = \sum_{Z \in \mathcal{C}_O^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \int_{\mu_S} \omega_{s,t}^{T,Q}(Z; \mu; \nu) \vartheta(\mu) \, \mathrm{d}\mu,$$

il suffit de prouver les résultats pour $A_{s,t,\nu}^T$ avec $\nu \in \mathcal{E}(\sigma)$ fixé. Le lemme 13.6.1 (ii) s'applique ici encore et on en déduit l'analogue du lemme 13.6.2 :

$$A_{s,t,v}^T = \sum_{Z \in \mathcal{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \bigg(\int_{\mathbf{X}_S} \sum_{V \in \mathcal{D}_{tS}} \widehat{d}_{tM,F}^{Q,T}(Z,\chi;V;v) \, \mathrm{d}\chi \bigg).$$

L'expression est convergente dans l'ordre indiqué. Il s'agit de prouver qu'elle est absolument convergente puis de la majorer lorsque $t \notin \mathbf{W}^{Q'}(\alpha_S, Q_0)$. On observe que dans la preuve de la convergence de l'expression (D) du lemme 13.6.3, ce n'est qu'à partir de la relation (13.10) que l'hypothèse $t \in \mathbf{W}^{Q'}$ est utilisée. On a donc ici aussi la majoration

$$A_{s,t,\nu}^T \ll \sum_{P' \in \mathcal{TQ}(s,S)} I_{(D)}^T(P')$$

avec

$$I_{(D)}^T(P') = \sum_{Z \in \mathcal{C}_O^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T) \sum_{V_1 \in \mathcal{D}_{tS}^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T}) \phi_e(Z, [T]_{P'}, V_1).$$

D'après (13.12) et le lemme 13.8.1, pour tout réel r, en posant $C_r = 1$ sans hypothèse sur t et $C_r = ||T||^{-r}$ sous l'hypothèse de (ii), on a une majoration

$$I_{(D)}^{T}(P') \ll C_r \sum_{Z \in \mathcal{C}_{Q}^{\tilde{G}}} \left(1 + \| (Z - T_Q)^{\tilde{G}} \| \right)^{-r} \sum_{V_1 \in \mathcal{D}_{tS}^{(P')}} \Gamma_{tM}^{P'}(V_1^{P'}, \mathfrak{T}),$$

où la constante implicite est absolue. La somme en V_1 est essentiellement majorée par $\|T\|^D$ pour un certain entier D. La somme en Z est convergente, ce qui démontre le point (i). Sous l'hypothèse de (ii) on obtient $I_{(D)}^T(P') \ll \|T\|^{-r}$ pour tout réel r, ce qui démontre (ii).

On pose

$$\boldsymbol{A}^{T} = \sum_{t \in \mathbf{W}^{G}(\alpha_{S}, Q)} \widetilde{\eta}(Q, R; t) \sum_{s \in \mathbf{W}^{Q}(\theta_{0}(\alpha_{S}), t(\alpha_{S}))} \boldsymbol{A}_{s, t}^{T}.$$

Corollaire 13.8.3. *Pour tout réel r, on a les majorations suivantes :*

- (i) $Si \widetilde{\eta}(Q, R) \neq 0 \ alors \ |\widetilde{\eta}(Q, R)A^T A^T| \ll d_0(T)^{-r}$.
- (ii) $Si \widetilde{\eta}(Q, R) = 0 \text{ alors } |A^T| \ll d_0(T)^{-r}$.

Définition 13.8.4. On considère Q, $S \in \mathcal{P}_{st}$ tels que $S \subset Q' = \theta_0^{-1}(Q)$. Soient $t \in \mathbf{W}^G(\alpha_S, Q)$, $s \in \mathbf{W}^Q(\theta_0(\alpha_S), t(\alpha_S))$, $Z \in \mathcal{A}_Q$, $\mu \in \mu_S$ et $\lambda \in \mu_{\theta_0(\alpha_S)}$. Pour $\sigma \in \Pi_{\mathrm{disc}}(M_S)$, on définit l'opérateur

$$\begin{split} \boldsymbol{\Omega}_{s,t}^{T,Q}(Z;S,\sigma;\lambda,\mu) &= \sum_{S'' \in \mathcal{P}^{Q}(_{t}M)} \varepsilon_{S''}^{Q,[T]_{S''}}(Z;s\lambda - t\mu) e^{\langle s\lambda - t\mu, Y_{S''} \rangle} \\ &\times \mathbf{M}(t,\mu)^{-1} \mathbf{M}_{S''|_{t}S}(t\mu)^{-1} \mathbf{M}_{S''|_{t}S}(s\lambda) \mathbf{M}(s,\lambda). \end{split}$$

C'est une fonction lisse de λ et μ . On a introduit dans la définition 13.4.1 l'ensemble $\mathcal{E}(\sigma)$ qui, s'il est non vide, est un espace principal homogène sous $\widehat{\mathbb{C}}_M$. Pour $\mu \in \mu_S$, on pose :

$$[\mathbf{\Omega}]_{s,t}^{T,Q}(Z;S,\sigma;\mu) = |\widehat{\mathbf{c}}_{S}|^{-1} \sum_{\nu \in \mathcal{E}(\sigma)} \mathbf{D}_{\nu} \, \mathbf{\Omega}_{s,t}^{T,Q}(Z;S,\sigma;\theta_{0}(\mu),\mu+\nu).$$

La fonction $\mu \mapsto [\Omega]_{s,t}^{T,Q}$ est lisse. On rappelle que l'on a défini dans la proposition 12.1.1 une expression $\mathfrak{F}^{\tilde{G},T}=\mathfrak{F}^{\tilde{G},T}(f,\omega)$. Nous allons en introduire une variante. Pour alléger un peu les notations nous aurons recours au lemme suivant :

Lemme 13.8.5. Considérons deux espaces pré-hilbertiens $\mathcal{E} \subset \mathcal{F}$ où \mathcal{E} est un facteur direct et un opérateur $A: \mathcal{E} \to \mathcal{F}$ de rang fini. On suppose que \mathcal{E} est muni d'une base (au sens algébrique) orthonormale Ψ . L'expression

$$\mathfrak{Sp}(A) = \sum_{\Psi \in \Psi} \langle A\Psi, \Psi \rangle_{\mathcal{F}},$$

donnée par une série convergente, est indépendante du choix de la base. Si, de plus, A stabilise &, c'est-à-dire si A est un endomorphisme de &, alors

$$\mathfrak{Sp}(A) = \operatorname{trace}(A)$$
.

Démonstration. Puisque \mathcal{E} est un facteur direct, tout $\Phi \in \mathcal{F}$ peut s'écrire $\Phi = \Phi_1 + \Phi_2$ avec $\Phi_1 \in \mathcal{E}$ et Φ_2 est orthogonal à \mathcal{E} . La série

$$\sum_{\Psi\in\boldsymbol{\Psi}}\langle\Phi,\Psi\rangle_{\boldsymbol{\mathcal{F}}}=\sum_{\Psi\in\boldsymbol{\Psi}}\langle\Phi_1,\Psi\rangle_{\boldsymbol{\mathcal{E}}}$$

se réduit à une somme finie et il en est de même de la série définissant $\mathfrak{Sp}(A)$ puisque A est de rang fini. L'indépendance du choix de la base se ramène au cas de la dimension finie.

Nous appliquerons ce lemme au cas où $\mathcal{E} = \mathcal{A}(X_S, \sigma)$ et où \mathcal{F} est l'espace engendré par $\mathcal{A}(X_S, \sigma)$ et les $\mathcal{A}(X_S, \widetilde{u}(\sigma \otimes \omega) \star \nu)$ pour $\nu \in \mathcal{E}(\sigma)$. Nous poserons

$$\mathfrak{Sp}_{\sigma}(A) = \sum_{\Psi \in \Psi_{S}(\sigma)} \langle A\Psi, \Psi \rangle_{S}.$$

Proposition 13.8.6. On considère l'expression

$$\begin{split} \mathfrak{F}_{\text{spec}}^{\widetilde{G},T}(f,\omega) &= \sum_{\substack{Q,R \in \mathcal{P}_{\text{st}} \\ Q \subset R}} \sum_{S \in \mathcal{P}_{\text{st}}^{Q'}} \frac{1}{n^{Q'}(S)} \sum_{\sigma \in \Pi_{\text{disc}}(M_S)} \widehat{c}_M(\sigma) \\ &\times \sum_{t \in \mathbf{W}^G(\mathfrak{a}_S,Q)} \sum_{S \in \mathbf{W}^Q(\theta_0(\mathfrak{a}_S),t(\mathfrak{a}_S))} \widetilde{\eta}(Q,R;t) \sum_{Z \in \mathfrak{C}_Q^{\widetilde{G}}} \widetilde{\sigma}_Q^R(Z - T_Q) \\ &\times \int_{\mu_S} \mathfrak{Sp}_{\sigma} \bigg([\mathbf{\Omega}]_{s,t}^{T,Q}(Z;S,\sigma;\mu) \widetilde{\rho}_{S,\sigma,\mu}(f,\omega) \bigg) \mathrm{d}\mu. \end{split}$$

- (i) L'expression $\mathfrak{F}_{\text{spec}}^{\tilde{G},T} = \mathfrak{F}_{\text{spec}}^{\tilde{G},T}(f,\omega)$ est convergente.
- (ii) Pour tout réel r, on a une majoration

$$\left|\mathfrak{J}_{\mathrm{spec}}^{\widetilde{G},T}-\mathfrak{F}_{\mathrm{spec}}^{\widetilde{G},T}\right|\ll d_{0}(T)^{-r}.$$

Démonstration. On observe que, d'après le théorème 7.1.1, l'opérateur $\widetilde{\rho}_{S,\sigma,\mu}(f,\omega)$ est de rang fini; l'assertion (i) résulte alors de la proposition 13.8.2 (en utilisant la remarque 12.1.2). Compte tenu de l'expression pour $\mathfrak{F}^{\widetilde{G},T}$ donnée dans la proposition 12.5.1, on voit que la majoration (ii) résulte de la conjonction des inégalités du corollaire 13.4.5, de la proposition 13.5.1 et du corollaire 13.8.3.