
Chapter 1

Introduction

In the theory of modular forms of several variables, it is natural and also necessary
to study vector-valued modular forms. One way to account for this is that scalar-
valued modular forms are concerned only with the 1-dimensional abelian quotient
of the maximal compact subgroup K of the Lie group, while the contribution from
the whole K emerges if we consider vector-valued modular forms. In more con-
crete levels, the significance of vector-valued modular forms appears in the study
of the cohomology of modular varieties, holomorphic tensors on modular varieties,
and constructions of Galois representations, etc. The passage from scalar-valued to
vector-valued modular forms is an intrinsic non-abelianization step.

This subject has been well developed for Siegel modular forms since the pioneer-
ing work of Freitag, Weissauer and others around the early 1980s (see, e.g., [44] for
a survey). In particular, a lot of detailed study have been done in the case of Siegel
modular forms of genus 2.

By contrast, despite its potential and expected applications, no systematic theory
of vector-valued modular forms for orthogonal groups of signature .2; n/ seems to
have been developed so far. Only recently its application to holomorphic tensors on
modular varieties started to be investigated [34]. The observation that some aspects
of the theory of scalar-valued Siegel modular forms of genus 2 have been generalized
to orthogonal modular forms, rather than to Siegel modular forms of higher genus,
also suggests a promising theory.

Vector-valued orthogonal modular forms will have applications to the geometry
and arithmetic of orthogonal modular varieties, and so, especially to the moduli
spaces of K3 surfaces and holomorphic symplectic varieties. Moreover, from the geo-
metric viewpoint of K3 surfaces, vector-valued modular forms on a period domain
of (lattice-polarized) K3 surfaces are considered as holomorphic invariants related to
the family that can be captured by the variation of the Hodge structures on H 2.K3/

but typically not by the Hodge line bundle H 0.KK3/ alone. For example in this dir-
ection, the infinitesimal invariants of normal functions for higher Chow cycles in
CH 2.K3; 1/ give vector-valued modular forms with singularities (Section 3.8). This
geometric viewpoint offers another motivation to develop the theory of vector-valued
orthogonal modular forms.

The purpose of this memoir is multi-layered:

(1) to lay a foundation of the theory of vector-valued orthogonal modular forms,

(2) to investigate some aspects of the theory in more depth, and
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(3) as applications to establish several types of vanishing theorems for vector-
valued modular forms of small weight.

Our theory is developed in a full generality in the sense that we work with gen-
eral arithmetic groups � < OC.L/ for general integral quadratic forms L of sig-
nature .2; n/. The facts that unimodular lattices are rare even up to Q-equivalence
(unlike the symplectic case) and that various types of groups � appear in the moduli
examples urge us to work in this generality.

Our approach is geometric in the sense that we define modular forms as sec-
tions of the automorphic vector bundles. Trivializations of the automorphic vector
bundles, and thus passage from sections of vector bundles to vector-valued functions,
are provided for each 0-dimensional cusp. This approach is suitable for working with
general � , without losing connection with the more classical style.

In the rest of this introduction, we give a summary of the theory developed in this
memoir.

The two Hodge bundles (Section 2)

Let L be an integral quadratic lattice of signature .2; n/. We assume n � 3 for simpli-
city. The Hermitian symmetric domain D D DL attached to L is defined as an open
subset of the isotropic quadric in PLC . It parametrizes polarized Hodge structures
0 � F 2 � F 1 � LC of weight 2 on L with dimF 2 D 1 and F 1 D .F 2/?. Over D

we have two fundamental Hodge bundles. The first is the Hodge line bundle

L D OPLC .�1/jD ;

which geometrically consists of the period lines F 2 in the Hodge filtrations. In terms
of representation theory, L is the homogeneous line bundle associated to the standard
character of C� � C� � O.n;C/, where C� � O.n;C/ is the reductive part of a
standard parabolic subgroup of O.LC/ ' O.nC 2;C/. Invariant sections of powers
of L are scalar-valued modular forms on D , which have been classically studied.

The Hodge line bundle L is naturally embedded in LC ˝OD as an isotropic sub
line bundle. The second Hodge bundle is defined as

E D L?=L:

Geometrically this vector bundle consists of the middle graded quotients F 1=F 2 of
the Hodge filtrations. In terms of representation theory, E is the homogeneous vector
bundle associated to the standard representation of O.n;C/�C� �O.n;C/. It is this
second Hodge bundle E that emerges in the theory of vector-valued modular forms
on D and plays a central role in this memoir.

While L is concerned with scalar-valued modular forms, E is responsible for the
higher rank aspect of the theory of vector-valued modular forms. While L provides
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a polarization, E is an orthogonal vector bundle, and in particular self-dual (but not
trivial). Thus L and E are rather contrastive.

Vector-valued modular forms (Section 3)

Weights of vector-valued modular forms on D are expressed by pairs .�; k/, where
� D .�1 � � � � � �n � 0/ is a partition which corresponds to an irreducible repres-
entation V� of O.n;C/, and k is an integer which corresponds to a character of C�.
The partition � satisfies t�1 C t�2 � n, where t� is the transpose of �. To such a pair
.�; k/ we associate the automorphic vector bundle

E�;k D E� ˝L˝k;

where E� is the vector bundle constructed from E by applying the orthogonal Schur
functor associated to �. Modular forms of weight .�; k/ are defined as holomorphic
sections of E�;k over D invariant under a finite-index subgroup � of OC.L/ (with
cusp conditions when n � 2). We denote by M�;k.�/ the space of �-modular forms
of weight .�; k/.

Sometimes it is more appropriate to work with irreducible representations of
SO.n;C/ rather than O.n;C/, but in that way we obtain only SOC.LR/-equivariant
vector bundles. Since in some applications we encounter subgroups � of OC.L/ not
contained in SOC.L/, we decided to work with O.n;C/ at the outset. It is not difficult
to switch to SO.n;C/ (see Section 3.6).

Fourier expansion (Section 3)

A first basic point is that E�;k can be trivialized for each 0-dimensional cusp of D in
a natural way. Let I be a rank 1 primitive isotropic sublattice ofL, which corresponds
to a 0-dimensional cusp of D . The quotient lattice I?=I is naturally endowed with a
hyperbolic quadratic form. Then we have isomorphisms

I_C ˝OD ! L; .I?=I /C ˝OD ! E;

canonically associated to I . If we write V.I /�;k D ..I?=I /C/� ˝ .I
_
C /
˝k , these

induce an isomorphism
V.I /�;k ˝OD ! E�;k;

which we call the I -trivialization of E�;k . Via this trivialization, modular forms of
weight .�; k/ are identified with V.I /�;k-valued holomorphic functions f on D sat-
isfying invariance with the factor of automorphy. Then, after taking the tube domain
realization of D associated to I [40], we obtain the Fourier expansion of f of the
form

f .Z/ D
X

l2U.I/_Z

a.l/ exp.2�i.l; Z//; Z 2 DI ;
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where a.l/ 2 V.I /�;k , DI is the tube domain in .I?=I /C ˝ IC , and U.I /_Z is a
certain full lattice in .I?=I /Q ˝ IQ. By the Koecher principle, the index vectors l
range only over the intersection of U.I /_Z with the closure of the positive cone (a con-
nected component of the locus of vectors of positive norm). We prove that the con-
stant term a.0/ always vanishes unless � D .0/; .1n/, which correspond to the trivial
and the determinant characters, respectively. (In what follows, we write � D 1; det
instead.) Therefore the Siegel operators are interesting only at the 1-dimensional
cusps. We can speak of rationality of the Fourier coefficients a.l/ because V.I /�;k
has a natural Q-structure.

In this way, the choice of a 0-dimensional cusp I determines a passage to a
more classical style of defining modular forms. Since there is no distinguished 0-
dimensional cusp for a general arithmetic group � , we need to treat all 0-dimensional
cusps equally. Even after the I -trivialization, it is more suitable to have V.I /�;k as
the canonical space of values, rather than identifying it with CN by choosing a basis.
This approach enables us to develop various later constructions in an intrinsic and
coherent way (and so, in a full generality) without sacrificing the classical style.

These most basic parts of the theory are developed in Sections 2 and 3. In Sec-
tion 4, as a functorial aspect of the theory, we study pullback and quasi-pullback of
vector-valued modular forms to sub orthogonal modular varieties. This type of opera-
tions are sometimes called the Witt operators. The consideration of pullbacks leads to
an elementary vanishing theorem for M�;k.�/ in k � 0 (Proposition 4.4). We prove
that the quasi-pullback produces cusp forms (Proposition 4.10), generalizing a result
of Gritsenko–Hulek–Sankaran [22] in the scalar-valued case.

After these foundational parts, this memoir is developed in the following two
directions:

(1) Geometric treatment of the Siegel operators and the Fourier–Jacobi expan-
sions at 1-dimensional cusps (Sections 5–9).

(2) Square integrability of modular forms (Sections 10-11).

Both lead, as applications, to vanishing theorems of respective type for modular forms
of small weight.

Siegel operator (Section 6)

Let J be a rank 2 primitive isotropic sublattice of L. This corresponds to a 1-dimen-
sional cusp HJ of D , which is isomorphic to the upper half plane. We take a geomet-
ric approach for introducing and studying the Siegel operator and the Fourier–Jacobi
expansion at the cusp HJ , by using the partial toroidal compactification over HJ .
The Siegel operator is the restriction to the boundary divisor, and the Fourier–Jacobi
expansion is the Taylor expansion along it.
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The Siegel domain realization of D with respect to J [40] is a two-step fibration

D
�1
�! VJ

�2
�! HJ ;

where �1 is a fibration of upper half planes and �2 is an affine space bundle. Divid-
ing D by a rank 1 abelian group U.J /Z < � , the quotient X.J / D D=U.J /Z is a
fibration of punctured discs over VJ . The partial toroidal compactification

X.J / ,! X.J /

is obtained by filling the origins of the punctured discs [2]. Its boundary divisor�J is
naturally identified with VJ . We can extend E�;k to a vector bundle over X.J / via the
I -trivialization for an arbitrary 0-dimensional cusp I � J , the result being independ-
ent of I (Section 5.4). This is an explicit form of Mumford’s canonical extension [36]
which is suitable for dealing with the Fourier–Jacobi expansion. If f is a �-modular
form of weight .�;k/, it extends to a holomorphic section of the extended bundle E�;k
over X.J /.

Intuitively (and more traditionally), the Siegel operator should be an operation of
“restriction to HJ ” which produces vector-valued modular forms of some reduced
weight on HJ . Geometrically this requires some justification because of the complic-
ated structure around the boundary of the Baily–Borel compactification. We take a
somewhat indirect but more geometrically tractable approach, working with the auto-
morphic vector bundle E�;k over the partial toroidal compactification X.J /.

Let LJ be the Hodge line bundle on HJ . We write V.J / D .J?=J /C . For the
given partition � D .�1 � � � � � �n/, we denote by V.J /�0 the irreducible represent-
ation of O.V .J // ' O.n � 2;C/ for the partition �0 D .�2 � � � � � �n�1/.

Theorem 1.1 (Theorem 6.1). Let � ¤ 1; det. There exists a sub vector bundle EJ
�;k

of E�;k such that EJ
�;k
j�J ' �

�
2L
˝kC�1
J ˝ V.J /�0 and that the restriction of every

modular form f of weight .�; k/ to �J takes values in EJ
�;k
j�J . In particular, there

exists a V.J /�0-valued cusp form ˆJf of weight k C �1 on HJ such that f j�J D
��2 .ˆJf /.

The map

M�;k.�/! SkC�1.�J /˝ V.J /�0 ; f 7! ˆJf;

is the Siegel operator at the J -cusp, where �J is a suitable subgroup of SL.J / '
SL.2;Z/. If we take the I -trivialization for a 0-dimensional cusp I � J and intro-
duce suitable coordinates .�; z; w/ on the tube domain in which the Siegel domain
realization is given by

.�; z; w/ 7! .�; z/ 7! �;
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the Siegel operator can be expressed as

.ˆJf /.�/ D lim
t!1

f .�; 0; i t/; � 2 H:

In this way, the naive “restriction to HJ ” can be geometrically justified at the level of
automorphic vector bundles as the combined operation

restrict to �J C reduce to EJ�;k C descend to HJ :

This a priori tells us the modularity of ˆJf with its weight. When n D 3, the weight
calculation in Theorem 1.1 agrees with the corresponding result for Siegel modular
forms of genus 2 [1, 47]. The sub vector bundle EJ

�;k
will be taken up in Section 8

again from the viewpoint of a filtration on E�;k .

Fourier–Jacobi expansion (Section 7)

Next we explain the Fourier–Jacobi expansion at the J -cusp. Let‚J be the conormal
bundle of �J in X.J /. After certain choices, we have a special generator !J of the
ideal sheaf of �J . With this normal coordinate, we can take the Taylor expansion of
a modular form f 2M�;k.�/ along �J as a section of the extended bundle E�;k:

f D
X
m�0

�m!
m
J : (1.1)

The m-th Taylor coefficient �m, or rather �m ˝ !˝mJ , is essentially a section of the
vector bundle E�;k ˝ ‚

˝m
J over �J . We call (1.1) the Fourier–Jacobi expansion

of f at the J -cusp, and call the section �m ˝ !˝mJ of E�;k ˝ ‚
˝m
J for m > 0 the

m-th Fourier–Jacobi coefficient of f . (�0 is just f j�J considered above.) Although
the choice of !J is needed for defining the Fourier–Jacobi expansion, the resulting
expansion and the sections of E�;k ˝‚

˝m
J are independent of this choice, thus canon-

ically determined by J (Section 7.2). This geometric definition of Fourier–Jacobi
expansion, whose advantage is its canonicity, agrees with the more familiar style of
defining Fourier–Jacobi expansion by slicing the Fourier expansion (Section 7.1) if
we take the .I; !J /-trivialization.

In general, we define vector-valued Jacobi forms of weight .�;k/ and indexm>0
as holomorphic sections of E�;k ˝‚

˝m
J over �J D VJ which is invariant under the

integral Jacobi group and satisfies a certain cusp condition (Definition 7.10). Them-th
Fourier–Jacobi coefficient of a modular form of weight .�; k/ is such a vector-valued
Jacobi form (Proposition 7.12). In the scalar-valued case, our geometric definition
agrees with the classical definition of Jacobi forms [20, 43] after introducing suitable
coordinates and trivialization (Section 7.4). When n D 3, our vector-valued Jacobi
forms essentially agree with those considered by Ibukiyama–Kyomura [27] for Siegel
modular forms of genus 2.
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Filtrations associated to 1-dimension cusps (Section 8)

While a 0-dimensional cusp of D provides a trivialization of E�;k which enables
the Fourier expansion, we will show that a 1-dimensional cusp introduces a filtration
on E�;k which is useful when studying the Fourier–Jacobi expansion. To start with,
we observe that for each 1-dimensional cusp J , the second Hodge bundle E has an
isotropic sub line bundle EJ canonically determined by J . This defines the filtration

0 � EJ � E?J � E

associated to the J -cusp, which we call the J -filtration. Its graded quotients are
respectively isomorphic to

EJ ' �
�LJ ; E?J =EJ ' .J

?=J /C ˝OD ; E=E?J ' �
�L�1J ;

where � D �2 ı �1 is the projection from D to HJ . The J -filtration is translated
to a constant filtration on V.I / ˝ OD by the I -trivialization for every adjacent 0-
dimensional cusp I � J (Proposition 8.3).

The J -filtration on E induces a (decreasing) filtration on a general automorphic
vector bundle E�;k , also called the J -filtration, whose graded quotient in level r is iso-
morphic to a direct sum of copies of ��L˝kCrJ . Representation-theoretic calculations
show that the J -filtration on E�;k has length � 2�1 C 1 (from level ��1 to �1), and
that the sub vector bundle EJ

�;k
of E�;k in Theorem 1.1 is exactly the last (D level �1)

sub vector bundle in the J -filtration (Proposition 8.13). Moreover, we have a duality
between the graded quotients in level r and �r .

We give two applications of the J -filtration. The first is decomposition of vector-
valued Jacobi forms. We prove that a vector-valued Jacobi form of weight .�; k/
decomposes, in a certain sense, into a tuple of scalar-valued Jacobi forms of various
weights in the range Œk � �1; k C �1� (Proposition 8.15). More precisely, what is
proved is that certain graded pieces are scalar-valued Jacobi forms, so this result does
not mean that the theory of vector-valued Jacobi forms reduces to the scalar-valued
theory. Nevertheless, this decomposition theorem enables us to derive some basic
results for vector-valued Jacobi forms from those for scalar-valued ones. For example,
we deduce that vector-valued Jacobi forms of weight .�; k/ with

k C �1 < n=2 � 1

vanish (Corollary 8.18). In the case of Siegel modular forms of genus 2 (namely,
n D 3), the fact that vector-valued Jacobi forms decompose into scalar-valued Jacobi
forms was first found by Ibukiyama and Kyomura [27]. Their method is different,
using differential operators, but it might be plausible that their decomposition agrees
with that of us.



Introduction 8

Vanishing theorem I (Section 9)

It is a classical fact that there is no nonzero scalar-valued modular form of weight
0 < k < n=2 � 1 on D . Two proofs of this fact are well known. The first uses van-
ishing of Jacobi forms (cf. [20, 43]), and the second uses classification of unitary
representations. We give two generalizations of this classical vanishing theorem to
the vector-valued case, corresponding to these two approaches.

Our first vanishing theorem belongs to the Jacobi form approach, and is obtained
as the second application of the J -filtration. We assume that L has Witt index 2,
i.e., D has a 1-dimensional cusp. This is always satisfied when n � 5.

Theorem 1.2 (Theorem 9.1). Let �¤ 1;det. If k < �1C n=2� 1, thenM�;k.�/D 0.
In particular, M�;k.�/ D 0 whenever k < n=2.

As a consequence, we obtain the following vanishing theorem for holomorphic
tensors on the modular variety �nD .

Corollary 1.3 (Theorem 9.5). Let X be the regular locus of �nD . Then we have

H 0.X; .�1X /
˝k/ D 0

for all 0 < k < n=2 � 1.

Moreover, we obtain a classification of possible types of holomorphic tensors of
the next few degrees up to n=2 (Proposition 9.6). The vanishing bound k < n=2 � 1
is optimal as a general bound.

The proof of Theorem 1.2 is built on the results of Sections 7 and 8, and proceeds
as follows. We apply the classical vanishing theorem of scalar-valued Jacobi forms of
weight < n=2� 1 [20,43] to the first graded quotient of the J -filtration on E�;k . This
implies that the Fourier–Jacobi coefficients of f 2 M�;k.�/ take values in a certain
sub vector bundle of E�;k ˝ ‚

˝m
J . Passing to the Fourier expansion at I � J , we

see that the Fourier coefficients of f are contained in a proper subspace of V.I /�;k .
Finally, running J over all 1-dimensional cusps containing I , we conclude that the
Fourier coefficients are zero.

In the case of Siegel modular forms of genus 2, the idea to use Jacobi forms to
deduce a vanishing theorem for vector-valued modular forms seems to go back to
Ibukiyama [25, Section 6]. Our proof of Theorem 1.2 can be regarded as a generaliz-
ation of his argument.

In this way, we have the unified viewpoint that the Siegel operator is concerned
with the last sub vector bundle in the J -filtration, while the proof of Theorem 1.2
makes use of the first graded quotient. We expect that a closer look at the intermediate
pieces of the J -filtration would tell us more.
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Square integrability (Section 10)

We now turn to our second line of investigation. We can explicitly define and calcu-
late an invariant Hermitian metric on E (and on L, which is well known). They are
essentially the Hodge metrics. They induce an invariant Hermitian metric . ; /�;k on
a general automorphic vector bundle E�;k . Apart from the matter of convergence, this
defines the Petersson inner product on M�;k.�/:

.f; g/ D

Z
�nD

.f; g/�;kvolD ; f; g 2M�;k.�/;

where volD is the invariant volume form on D . When f or g is a cusp form, this
integral converges as usual. Conversely, we prove the following. Let

x� D .x�1; : : : ; x�Œn=2�/ D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/

be the highest weight for SO.n;C/ associated to �. We write jx�j D
P
i
x�i .

Theorem 1.4 (Theorem 10.1). Let �¤ 1;det and assume that k � nC jx�j � 1. Then
a modular form f of weight .�; k/ is a cusp form if and only if .f; f / <1.

This holds also for � D 1; det at least when L has Witt index 2 (Remark 10.13).
In fact, Theorem 10.1 contains one more result that any modular form of weight
.�; k/ with k < n � jx�j � 1 and � ¤ 1; det is square integrable, but this is rather an
intermediate step in the proof of our second vanishing theorem.

Vanishing theorem II (Section 11)

Our study of square integrability is partly motivated by the following vanishing the-
orem. Let corank.�/ be the maximal index 1� i � Œn=2� such that x�1Dx�2D � � �D x�i .
Let S�;k.�/ �M�;k.�/ be the subspace of cusp forms.

Theorem 1.5 (Theorem 11.1). Let � ¤ 1; det. If k < nC �1 � corank.�/ � 1, there
is no nonzero square integrable modular form of weight .�; k/. In particular,

(1) S�;k.�/ D 0 if k < nC �1 � corank.�/ � 1.

(2) M�;k.�/ D 0 if k < n � jx�j � 1.

Although �1 C n=2� 1 < nC �1 � corank.�/� 1, Theorem 1.5 does not super-
sede Theorem 1.2 because it is about square integrable modular forms. It depends on
.�; k/ which bound in Theorem 1.2 or Theorem 1.5 (2) is larger. The two vanishing
theorems are rather complementary.

The proof of Theorem 1.5 is parallel to Weissauer’s vanishing theorem [47] for
Siegel modular forms. If we have a square integrable modular form, we can con-
struct a unitary highest weight module for SOC.LR/ by a standard procedure. Then
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the bound k < n C �1 � corank.�/ � 1 is derived from the classification of unit-
ary highest weight modules [12, 13, 28]. The more specific conclusions (1), (2) are
consequences of the square integrability theorem (Theorem 10.1).

Terminology and notation

Let us summarize some frequently used terminology and notation.
(1) By a lattice we mean a free Z-module L of finite rank equipped with a nonde-

generate symmetric bilinear form .�; �/ WL�L!Z. (Sometimes we still use the word
“lattice” when the bilinear form is only Q-valued.) The dual lattice Hom.L;Z/ of L
is written as L_. A sublattice M of L is called primitive if L=M is free. We denote
byM? the orthogonal complement ofM in L. A sublattice I of L is called isotropic
if .I; I /� 0. The lattice L is called an even lattice if .l; l/ 2 2Z for every l 2 L. The
orthogonal group of a lattice L is denoted by O.L/. For F D Q;R;C we write

LF D L˝Z F:

This is a quadratic space over F . Its orthogonal group is denoted by O.LF /. The spe-
cial orthogonal group, namely, the subgroup of O.LF / of determinant 1, is denoted
by SO.LF /. A lattice L in a Q-quadratic space V is called a full lattice in V if
V D LQ. For a rational number ˛ ¤ 0 we write L.˛/ for the ˛-scaling of L, namely,
the same underlying Z-module with the bilinear form multiplied by ˛. In the context
of lattices, the symbol U will stand for the integral hyperbolic plane, namely, the even
unimodular lattice of signature .1; 1/.

(2) LetG be a group acting on a setX and let Y be a subset ofX . By the stabilizer
of Y in G, we mean the subgroup of G consisting of elements g such that g.Y /D Y .

(3) Let V be a nondegenerate quadratic space over F DQ;R;C. Let I be an iso-
tropic line in V , and P.I / be the stabilizer of I in O.V /. Then we have the canonical
exact sequence

0! .I?=I /˝F I ! P.I /! GL.I / � O.I?=I /! 1: (1.2)

Here P.I / ! GL.I / and P.I / ! O.I?=I / are the natural maps, and the map
.I?=I /˝F I ! P.I / sends a vector m˝ l of .I?=I /˝F I to the isometry Em˝l
of V defined by

Em˝l.v/ D v � . zm; v/l C .l; v/ zm �
1

2
.m;m/.l; v/l; v 2 V: (1.3)

Here zm 2 I? is a lift of m 2 I?=I . In particular, when v 2 I?, (1.3) is simplified to

Em˝l.v/ D v � .m; v/l:
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The isometries Em˝l are sometimes called the Eichler transvections. If we take a
basis e1; : : : ; en of V such that I D he1i, I? D he1; : : : ; en�1i and .e1; en/ D 1,
.ei ; en/ D 0 for i > 1, then Em˝e1 is expressed by the matrix0@1 �m_ �.m;m/=2

0 In�2 m

0 0 1

1A ;
where we regard m 2 he2; : : : ; en�1i ' I?=I . The group .I?=I /˝F I of Eichler
transvections is the unipotent radical of P.I /.

(4) We will not distinguish between vector bundles and locally free sheaves on a
complex manifold X . The fiber of a vector bundle F over a point x 2 X is denoted
by Fx (not the germ of the sheaf). A collection of sections of a vector bundle F is
called a frame of F when it defines an isomorphism O˚rX ' F , i.e., it forms a basis
in every fiber. The dual vector bundle of F is denoted by F _.

(5) Let X be a complex manifold and G be a group acting on X . Let F be a
G-equivariant vector bundle on X . Suppose that F is endowed with an isomorphism

�WV ˝OX ! F

for a C-linear space V . Then the factor of automorphy of the G-action on F with
respect to the trivialization � is the GL.V /-valued function on G �X defined by

j.g; x/ D ��1gx ı g ı �x W V ! Fx ! Fgx ! V

for g 2 G, x 2 X . Here the middle map is the equivariant action by g. If � is a
subgroup of G, a �-invariant section of F over X is identified via � with a V -valued
holomorphic function f on X satisfying f .x/ D j.; x/f .x/ for every  2 � and
x 2 X .

(6) We write e.z/D exp.2�iz/ for z 2 C=Z. We use the symbol H for the upper
half plane ¹� 2 C j Im.�/ > 0º.

Organization

The logical dependence between the chapters is as follows. A dotted arrow means
that the dependence is weak.

Section 4 Section 6

�� ''

Section 2 // Section 3 //

77

''

Section 5 //

77

��

Section 7 // Section 8 // Section 9

Section 10 // Section 11


