
Chapter 2

The two Hodge bundles

In this chapter we study some basic properties of the Hodge bundles L and E . In
Section 2.1 we recall basic facts on the Hermitian symmetric domains of type IV. The
Hodge line bundle L is well known, and we recall it in Section 2.2. In Sections 2.3
and 2.4 we study the second Hodge bundle E . In Section 2.5 we describe E and L in
the case n � 4 under the accidental isomorphisms.

2.1 The domain

Let L be a lattice of signature .2; n/. Let Q D QL be the isotropic quadric in PLC

defined by the equation .!;!/D 0 for ! 2LC . We express a point ofQ as Œ!�DC!.
The open set of Q defined by the inequality .!; x!/ > 0 has two connected compon-
ents. They are interchanged by the complex conjugation ! 7! x!. We choose one of
them and denote it by D D DL. This is the Hermitian symmetric domain attached
to L. In Cartan’s classification, D is a Hermitian symmetric domain of type IV. The
isotropic quadric Q is the compact dual of D . Points of D are in one-to-one corres-
pondence with positive-definite planes in LR, by associating

D 3 Œ!� 7! H! D hRe.!/; Im.!/i:

The choice of the component D determines orientation on the positive-definite planes.
Note that .Re.!/; Im.!//D 0 and .Re.!/;Re.!//D .Im.!/; Im.!// by the isotrop-
icity condition .!; !/ D 0.

We denote by OC.LR/ the index 2 subgroup of O.LR/ preserving the compon-
ent D . Then OC.LR/ consists of two connected components, the identity component
being

SOC.LR/ D OC.LR/ \ SO.LR/:

The stabilizer K of a point Œ!� 2 D in OC.LR/ is the same as the stabilizer of the
oriented plane H! , and is described as

K D SO.H!/ � O.H?! / ' SO.2;R/ � O.n;R/:

This is a maximal compact subgroup of OC.LR/. We have D ' OC.LR/=K. On the
other hand, as explained in (1.2), the stabilizer P of Œ!� in O.LC/ sits in the canonical
exact sequence

0! .!?=C!/˝C! ! P ! GL.C!/ � O.!?=C!/! 1:
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The reductive part

GL.C!/ � O.!?=C!/ ' C� � O.n;C/

is the complexification of K.
The domain D has two types of rational boundary components (cusps): 0-dimen-

sional and 1-dimensional cusps. The 0-dimensional cusps correspond to rational iso-
tropic lines in LQ, or equivalently, rank 1 primitive isotropic sublattices I of L. The
point pI D ŒIC� ofQ is in the closure of D , and this is the 0-dimensional cusp corres-
ponding to I . The 1-dimensional cusps correspond to rational isotropic planes in LQ,
or equivalently, rank 2 primitive isotropic sublattices J of L. Each such J determines
the line PJC on Q. If we remove PJR from PJC , then PJC � PJR consists of two
copies of the upper half plane, one in the closure of D . This component, say HJ , is
the 1-dimensional cusp corresponding to J . A 0-dimensional cusp pI is in the closure
of a 1-dimensional cusp HJ if and only if I � J .

Let OC.L/ D O.L/ \ OC.LR/ and � be a finite-index subgroup of OC.L/. By
Baily–Borel [3], the quotient space

F .�/bb D �n
�
D [

[
J

HJ [

[
I

pI

�
has the structure of a normal projective variety of dimension n. Here the union of D

and the cusps is equipped with the so-called Satake topology. In particular, the quo-
tient

F .�/ D �nD

is a normal quasi-projective variety. The variety F .�/bb is called the Baily–Borel
compactification of F .�/.

2.2 The Hodge line bundle

In this section we recall the first Hodge bundle. Let OQ.�1/ be the tautological line
bundle over Q � PLC . The Hodge line bundle over D is defined as

L D OQ.�1/jD :

This is an OC.LR/-invariant sub line bundle of LC ˝ OD . The fiber of L over
Œ!� 2D is the line C!. By definition L extends overQ naturally, and we sometimes
write L D OQ.�1/ when no confusion is likely to occur. A holomorphic section
of L˝k over D invariant under a finite-index subgroup of OC.L/ and holomorphic
at the cusps (in the sense explained later) is called a (scalar-valued) modular form of
weight k.
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The stabilizer K � OC.LR/ of a point Œ!� 2 D acts on the fiber LŒ!� of L as
the weight 1 character of SO.2;R/ � K. Therefore, if we denote by W ' C the
representation space of the weight 1 character of SO.2;R/, we have an OC.LR/-
equivariant isomorphism

L ' OC.LR/ �K LŒ!� ' OC.LR/ �K W:

Similarly, the extension OQ.�1/ overQ is the homogeneous line bundle correspond-
ing to the weight 1 character of C� � C� � O.n;C/.

A trivialization of L can be defined for each 0-dimensional cusp of D as follows.
Let I be a rank 1 primitive isotropic sublattice of L. For later use, it is useful to work
over the following enlargement of D :

D.I / D Q �Q \ PI?C :

This is a Zariski open set of Q containing D . Its complement Q \ PI?C is the cone
over the isotropic quadric in P .I?=I /C with vertex ŒIC�. If Œ!� 2 D.I /, the pairing
between IC and C! is nonzero. This defines an isomorphism C! ! I_C . Since C!
is the fiber of L D OQ.�1/ over Œ!�, by varying Œ!� we obtain an isomorphism

I_C ˝OD.I / ! L (2.1)

of line bundles on D.I /. We call this isomorphism the I -trivialization of L. This is
equivariant with respect to the stabilizer of IC in O.LC/. Over Q the I -trivialization
has pole of order 1 at the divisor Q \ PI?C , and hence extends to an isomorphism

I_C ˝OQ ! L.Q \ PI?C /:

In what follows, we work over D . We call the restriction of (2.1) to D the I -
trivialization of L too. If we choose a nonzero vector of I_C , it defines a nowhere
vanishing section of L via the I -trivialization. To be more specific, we choose a
vector l ¤ 0 2 I and let sl be the section of L corresponding to the dual vector of l .
This section is determined by the condition that the vector

sl.Œ!�/ 2 LŒ!� D C!

has pairing 1 with l . The factor of automorphy of the OC.LR/-action on L with
respect to the I -trivialization is a function on OC.LR/ �D which can be written as

j.g; Œ!�/ D
g � sl.Œ!�/

sl.Œg!�/
D
.g!; l/

.!; l/
; g 2 OC.LR/; Œ!� 2 D : (2.2)

This gives a more classical style of defining scalar-valued modular forms. Note that
if g acts trivially on IR, then j.g; Œ!�/ � 1.
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2.3 The second Hodge bundle

In this section we define the second Hodge bundle. We have a natural quadratic form
on the vector bundle LC ˝ OD . By the definition of Q, L is an isotropic sub line
bundle of LC ˝OD , so we have L � L?. The second Hodge bundle is defined by

E D L?=L:

This is an OC.LR/-equivariant vector bundle of rank n over D . The fiber of E over
Œ!� 2 D is !?=C!. The quadratic form on LC ˝ OD induces a nondegenerate
OC.LR/-invariant quadratic form on E . In other words, E is an orthogonal vector
bundle. In particular, we have E_ ' E . Since L is naturally defined on Q, E is also
naturally defined on Q. This is an O.LC/-equivariant vector bundle. By abuse of
notation, we often use the same notation E for this extended vector bundle.

The stabilizer K � OC.LR/ of a point Œ!� 2 D acts on the fiber EŒ!� of E as the
standard C-representation of O.n;R/ � K, because we have a natural isomorphism
H?! ˝R C ' !?=C!. Therefore, if we denote by V D Cn the standard representa-
tion space of O.n;C/, we have an OC.LR/-equivariant isomorphism

E ' OC.LR/ �K EŒ!� ' OC.LR/ �K V: (2.3)

Similarly, the extension of E overQ is the homogeneous vector bundle corresponding
to the standard representation of O.n;C/ � C� � O.n;C/.

We present some examples where E and L appear naturally.

Example 2.1. The “third” Hodge bundle .LC ˝ OD/=L
? is isomorphic to L�1 by

the natural pairing with L.

Example 2.2. The determinant line bundle det E D ^nE of E is isomorphic, as an
OC.LR/-equivariant bundle, to the line bundle det˝OD associated to the determin-
ant character detWOC.LR/! ¹˙1º of OC.LR/. Indeed, by Example 2.1, we have
the OC.LR/-equivariant isomorphism

det E ' det.LC ˝OD/˝L˝L�1 ' det.LC ˝OD/ ' det˝OD :

The line bundle det˝OD appears in the study of scalar-valued modular forms with
determinant character.

Example 2.3. Let TD and �1
D

be the tangent and cotangent bundles of D , respect-
ively. Then we have the canonical isomorphisms

TD ' E ˝L�1; �1D ' E ˝L: (2.4)

Indeed, by the Euler sequence for PLC , we have

TPLC ' OPLC .1/˝ ..LC ˝OPLC /=OPLC .�1//:
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As a sub vector bundle of TPLC jQ, we have

TQ ' OQ.1/˝ .OQ.�1/
?=OQ.�1// D L�1 ˝ E:

The isomorphism for �1Q is obtained by taking the dual.
Tautologically, the identity of D can be regarded as the period map

Œ!� 7! LŒ!�

for the universal variation 0�L�L? �LC ˝OD of Hodge structures on D . Then
the isomorphism TD ' L�1 ˝ E is nothing but the differential of this tautological
period map (cf. [46, Section 10.1]). By taking the adjunctions of

TD ' L�1 ˝ E;

we obtain the homomorphisms

L˝ TD

'
�! E; E ˝ TD ! L�1: (2.5)

These are familiar forms in the context of variation of Hodge structures. Here the
second homomorphism is given by the pairing on E:

E ˝ TD ' E ˝ E ˝L�1 ! L�1:

Example 2.4. Adjunctions of (2.5) induce the following complex of vector bundles
on D (the Koszul complex):

L! E ˝�1D ! L�1 ˝�2D : (2.6)

Here the second homomorphism is the composition

E ˝�1D ' L�1 ˝�1D ˝�
1
D

^
�! L�1 ˝�2D :

By (2.4), the Koszul complex is identified with the complex

L˝
�
OD ! E˝2

^
�! ^

2E
�
;

where OD ! E˝2 is the embedding defined by the quadratic form on E . This shows
that (2.6) is indeed a complex, and its middle cohomology sheaf is isomorphic to

.Sym2 E=OD/˝L ' E.2/ ˝L;

where E.2/ is the automorphic vector bundle associated to the representation
Sym2 Cn=C of O.n;C/ (see Section 3.2). The Koszul complex will be taken up in
Section 3.8.
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2.4 I-trivialization of the second Hodge bundle

In this section we define a trivialization of E associated to each 0-dimensional cusp.
This is the starting point of various later constructions.

Let I be a rank 1 primitive isotropic sublattice of L. The quadratic form on L
induces a hyperbolic quadratic form on the Z-module I?=I . We write

V.I /F D .I
?=I /˝Z F

for F DQ;R;C. This is a quadratic space over F . We especially abbreviate V.I /D
V.I /C . We consider the following sub vector bundle of LC ˝OD.I /:

I? \L? D .I?C ˝OD.I // \L?:

The fiber of I? \L? over Œ!� 2 D.I / is the subspace I?C \ !
? of LC . The projec-

tion L? ! E induces a homomorphism I? \ L? ! E , and the projection I?C !
V.I / induces a homomorphism I? \L? ! V.I /˝OD.I /.

Lemma 2.5. The homomorphisms I? \L? ! E and I? \L? ! V.I /˝ OD.I /

are isomorphisms. Therefore we obtain an isomorphism

V.I /˝OD.I / ! E (2.7)

of vector bundles on D.I /. This is equivariant with respect to the stabilizer of IC

in O.LC/, and preserves the quadratic forms on both sides.

Proof. At the fibers over a point Œ!� 2 D.I /, the two homomorphisms are given by
the linear maps I?C \ !

? ! !?=C! and I?C \ !
? ! .I?=I /C , respectively. The

source and the target have the same dimension (D n) for both maps, so it suffices
to check the injectivity of these two maps. This is equivalent to I?C \ C! D 0 and
!? \ IC D 0, respectively, and both follow from the nondegeneracy .IC;C!/ ¤ 0
for Œ!� 2 D.I /.

Since both I?C \ !
? ! !?=C! and I?C \ !

? ! .I?=I /C preserve the quad-
ratic forms, so does the composition

!?=C! ! .I?=I /C:

Hence (2.7) preserves the quadratic forms. The equivariance of (2.7) can be verified
similarly.

We call the isomorphism (2.7) and its restriction to D the I -trivialization of E .
This is a trivialization as an orthogonal vector bundle. See Claim 6.10 for the bound-
ary behavior of this isomorphism at a Zariski open set of the divisor Q \ PI?C .

For later use, we calculate the sections of E corresponding to vectors of V.I /. We
choose a vector l ¤ 0 of I and let sl be the corresponding section of L as defined in
Section 2.2.
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Lemma 2.6. Let v be a vector of V.I /. We define a section of I? \L? by

sv.Œ!�/ D Qv � . Qv; sl.Œ!�//l; Œ!� 2 D.I /;

where Qv 2 I?C is a lift of v 2 V.I / and we regard sl.Œ!�/ 2C! �LC . Then the image
of sv in E is the section of E which corresponds by the I -trivialization to the constant
section of V.I /˝OD.I / with value v.

Proof. It is straightforward to check that sv.Œ!�/ does not depend on the choice of the
lift Qv and that .sv.Œ!�/;!/D .sv.Œ!�/; l/D 0. Thus sv is indeed a section of I? \L?.
Since sv.Œ!�/ � Qv mod IC as a vector of I?C , the image of sv.Œ!�/ in V.I / is v. This
proves our assertion.

2.5 Accidental isomorphisms

When n � 4, orthogonal modular varieties are isomorphic to other types of clas-
sical modular varieties by the so-called accidental isomorphisms. In this section we
explain how the second Hodge bundle E in n � 4 is translated under the accidental
isomorphism. (This is well known for L; we also include it for completeness.) This
correspondence is the basis of comparing vector-valued orthogonal modular forms
in n D 3; 4 with vector-valued Siegel and Hermitian modular forms, respectively.
We explain the translation from both algebro-geometric and representation-theoretic
viewpoints. Since the contents of this section will be used only sporadically in the
rest of this memoir, the reader may skip it for the moment.

2.5.1 Modular curves

When nD 1, the accidental isomorphism between the real Lie groups is PSL.2;R/'
SOC.1; 2/. Its complexification is the isomorphism PSL.2;C/' SO.3;C/. This lifts
to SL.2;C/ ' Spin.3;C/. The isomorphism between the compact duals is provided
by the anti-canonical embedding P1 ,! P2 of P1, which maps P1 to a conicQ� P2.
This gives an isomorphism between the upper half plane and the type IV domain in
n D 1. The line bundle L D OQ.�1/ on Q is identified with OP1.�2/ on P1. This
means that orthogonal modular forms of weight k correspond to elliptic modular
forms of weight 2k.

The reductive part of a standard parabolic subgroup of SL.2;C/ is the 1-dimen-
sional torus T consisting of diagonal matrices

�
˛ 0
0 ˛�1

�
of determinant 1. The corres-

ponding group in PSL.2;C/ is T= � 1. The weight 2 character ˛ 7! ˛2 of T defines
an isomorphism T= � 1 ' C�. This explains OQ.�1/ ' OP1.�2/ from representa-
tion theory.
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The full orthogonal group O.3;C/ is SO.3;C/ � ¹˙ idº. By Example 2.2, the
second Hodge bundle E is the line bundle associated to the determinant character
detWO.3;C/! ¹˙1º. This is nontrivial as an O.3;C/-line bundle, but trivial as an
SO.3;C/-line bundle. Therefore E cannot be detected at the side of SL.2;C/.

2.5.2 Hilbert modular surfaces

When n D 2, the accidental isomorphism between the real Lie groups is

SL.2;R/ � SL.2;R/=.�1;�1/ ' SOC.2; 2/:

Its complexification is

SL.2;C/ � SL.2;C/=.�1;�1/ ' SO.4;C/:

This lifts to SL.2;C/ � SL.2;C/ ' Spin.4;C/. The isomorphism between the com-
pact duals is provided by the Segre embedding P1 � P1 ,! P3 of P1 � P1, which
maps P1 � P1 to a quadric surface Q � P3. This gives an isomorphism between the
product of two upper half planes and the type IV domain in n D 2. Since the Segre
embedding is defined by OP1�P1.1; 1/, the Hodge line bundle L D OQ.�1/ on Q
is identified with OP1�P1.�1;�1/ on P1 � P1. This means that orthogonal modular
forms of weight k correspond to Hilbert modular forms of weight .k; k/.

We explain the representation-theoretic aspect. The reductive part of a standard
parabolic subgroup of SL.2;C/ � SL.2;C/ is the 2-dimensional torus T1 � T2 con-
sisting of pairs .˛;ˇ/ of diagonal matrices in each SL.2;C/. The corresponding group
in SL.2;C/ � SL.2;C/=.�1;�1/ is T1 � T2=.�1;�1/. We have natural isomorph-
isms

T1 � T2=.�1;�1/ ' C� �C� ' C� � SO.2;C/; (2.8)

where the first isomorphism is induced by

T1 � T2 ! C� �C�; .˛; ˇ/ 7! .˛ˇ; ˛�1ˇ/:

This is the isomorphism between the reductive parts of standard parabolic subgroups
of SL.2;C/ � SL.2;C/=.�1;�1/ and SO.4;C/. The pullback of the weight 1 char-
acter of C� � C� � SO.2;C/ to T1 � T2 by (2.8) is the tensor product �1 � �2 of
the weight 1 characters �1, �2 of T1, T2. This explains OQ.�1/ ' OP1�P1.�1;�1/

from representation theory.
The second Hodge bundle E is described as follows.

Lemma 2.7. We have an O.4;C/-equivariant isomorphism

E ' OP1�P1.�1; 1/˚OP1�P1.1;�1/: (2.9)
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Proof. Let �i WP1 � P1 ! P1 be the i -th projection. Then

�1P1�P1 ' �
�
1�

1
P1 ˚ �

�
2�

1
P1 ' OP1�P1.�2; 0/˚OP1�P1.0;�2/:

By (2.4) and L�1 ' OP1�P1.1; 1/, we have

E ' �1P1�P1 ˝OP1�P1.1; 1/ ' OP1�P1.�1; 1/˚OP1�P1.1;�1/:

This proves (2.9).

Note that O.4;C/ is the semi-product S2 Ë SO.4;C/, where S2 switches the
two SL.2;C/. This involution switches the two rulings ofQ ' P1 � P1, and acts on
the right-hand side of (2.9) by switching the two components.

At the level of representations, the isomorphism (2.9) comes from the follow-
ing correspondence. Let � be the weight 1 character of SO.2;C/ ' C�. The 2-
dimensional standard representation of SO.2;C/ is �˚ ��1. The pullback of � to
T1 � T2 by (2.8) is the character ��11 � �2. Hence the pullback of the standard rep-
resentation of SO.2;C/ to T1 � T2 is .��11 � �2/˚ .�1 � ��12 /. This explains (2.9)
from representation theory.

By Lemma 2.7, a general automorphic vector bundle E�;k onQ decomposes into
a direct sum of various line bundles OP1�P1.a; b/. This means that vector-valued
orthogonal modular forms in n D 2 decompose into tuples of scalar-valued Hilbert
modular forms of various weights, so we have nothing new here.

2.5.3 Siegel modular 3-folds

When n D 3, the accidental isomorphism between the real Lie groups is

PSp.4;R/ ' SOC.2; 3/:

Its complexification is PSp.4;C/ ' SO.5;C/, which lifts to Sp.4;C/ ' Spin.5;C/.
The isomorphism between the compact duals is provided by the Plücker embedding
LG.2; 4/ ,! PV D P4 of the Lagrangian Grassmannian LG.2; 4/. Here V is the 5-
dimensional irreducible representation of Sp.4;C/ appearing in ^2C4. The Plücker
embedding maps LG.2; 4/ to a 3-dimensional quadric Q � P4, and hence gives an
isomorphism between the Siegel upper half space of genus 2 and the type IV domain
in n D 3.

Let F be the rank 2 universal sub vector bundle over LG.2; 4/. (This is the
weight 1 Hodge bundle for Siegel modular 3-folds.) Since the Plücker embedding
is defined by OLG.1/ D det F _, the Hodge line bundle L D OQ.�1/ on Q is identi-
fied with det F on LG.2; 4/. This means that orthogonal modular forms of weight k
correspond to Siegel modular forms of weight k.
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We explain the representation-theoretic aspect. The reductive part of a standard
parabolic subgroup of Sp.4;C/ is isomorphic to GL.2;C/. The corresponding group
in PSp.4;C/ is GL.2;C/= � 1. We have a natural isomorphism

GL.2;C/= � 1 ' C� � PGL.2;C/ ' C� � SO.3;C/; (2.10)

where GL.2;C/ ! C� in the first isomorphism is the determinant character, and
PGL.2;C/ ' SO.3;C/ in the second isomorphism is the accidental isomorphism in
n D 1. This gives the isomorphism between the reductive parts of standard parabolic
subgroups of PSp.4;C/ and SO.5;C/. By construction, the pullback of the weight 1
character of C� to GL.2;C/ by (2.10) is the determinant character of GL.2;C/. This
explains L ' det F from representation theory.

The second Hodge bundle E is described as follows.

Lemma 2.8. We have an SO.5;C/-equivariant isomorphism

E ' Sym2 F ˝L�1: (2.11)

Proof. It is known (see, e.g., [44, Section 14]) that we have an Sp.4;C/-equivariant
isomorphism

�1LG ' Sym2 F :

Then (2.11) follows from the isomorphism E ' �1LG ˝L�1 in (2.4).

Note that F is not SO.5;C/-linearized but Sym2 F is. At the level of repres-
entations, the isomorphism (2.11) comes from the following fact: the symmetric
square of the standard representation of GL.2;C/, when viewed as a representation
of C� � SO.3;C/ via (2.10), is isomorphic to the tensor product of the weight 1
character of C� and the standard representation of SO.3;C/.

The full orthogonal group O.5;C/ is SO.5;C/ � ¹˙ idº. As an O.5;C/-vector
bundle, we have

E ' Sym2 F ˝L�1 ˝ det :

The twist by det cannot be detected at the side of Sp.4;C/.

2.5.4 Hermitian modular 4-folds

When n D 4, the accidental isomorphism between the real Lie groups is

SU.2; 2/= � 1 ' SOC.2; 4/:

The complexification is SL.4;C/= � 1 ' SO.6;C/. This lifts to

SL.4;C/ ' Spin.6;C/:
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The isomorphism between the compact duals is provided by the Plücker embedding
G.2; 4/ ,! P .^2C4/ D P5 of the Grassmannian G.2; 4/. This maps G.2; 4/ to a
4-dimensional quadric Q � P5, and gives an isomorphism between the Hermitian
upper half space of degree 2 and the type IV domain in n D 4.

The reductive part of a standard parabolic subgroup of SL.4;C/ is the group

G D

²�
g1 0

0 g2

� ˇ̌̌̌
g1; g2 2 GL.2;C/; detg2 D detg�11

³
:

The corresponding group in SL.4;C/=� 1 isG=� 1. We have a natural isomorphism

G= � 1 ' C� � .SL.2;C/ � SL.2;C/=.�1;�1// ' C� � SO.4;C/: (2.12)

Here the first isomorphism sends .g1; g2/ 2 G to .det g1;˙˛�1g1;˙˛g2/, where
˛ is one of the square roots of det g1, and the second isomorphism is given by the
accidental isomorphism in n D 2. This is the isomorphism between the reductive
parts of standard parabolic subgroups of SL.4;C/= � 1 and SO.6;C/.

Let F , G be the universal sub and quotient vector bundles on G.2; 4/, respect-
ively. Since the Plücker embedding is defined by OG.2;4/.1/D detG D .detF /�1, the
Hodge line bundle L D OQ.�1/ is isomorphic to det F . Thus orthogonal modular
forms of weight k correspond to Hermitian modular forms of weight k. At the level
of representations, this comes from the fact that the pullback of the weight 1 character
of C� to G by (2.12) is the character of G given by .g1; g2/ 7! detg1.

The second Hodge bundle E is described as follows.

Lemma 2.9. We have an SO.6;C/-equivariant isomorphism

E ' F ˝ G : (2.13)

Proof. We have a canonical isomorphism TG.2;4/ ' F _˝ G . The natural symplectic
form F ˝F ! detF induces an isomorphism F _'F ˝L�1. Therefore, by (2.4),
we have

E ' TG.2;4/ ˝L ' F _ ˝ G ˝L ' F ˝ G :

This proves (2.13).

Note that each F , G is not SO.6;C/-linearized, but F ˝ G is. At the level of
representations, the isomorphism (2.13) comes from the following correspondence.
Let Vi , i D 1; 2, be the representation of G obtained as the pullback of the standard
representation of GL.2;C/ by the i -th projection G ! GL.2;C/, .g1; g2/ 7! gi .
Then V1, V2 correspond to the homogeneous vector bundles F , G , respectively.
Each V1, V2 is not a representation of G= � 1, but V1 ˝ V2 is. Then, as a repres-
entation of C� � .SL.2;C/2=.�1;�1// via the first isomorphism in (2.12), V1 ˝ V2
is isomorphic to the external tensor product of the standard representations of the
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two SL.2;C/ (with weight 0 on C�). This in turn is the standard representation of
SO.4;C/ via the second isomorphism in (2.12). This explains the isomorphism (2.13)
from representation theory.

Finally, O.6;C/ is the semi-product S2 Ë SO.6;C/, where S2 D h�i acts on
G.2; 4/ by the following involution: choose a symplectic form on C4 (say the stand-
ard one), and sends 2-dimensional subspaces W � C4 to W ? � C4. This involution
exchanges the two P3-families of planes on G.2; 4/ D Q. (This is essentially the
involution Z 7! Z0 in [17, Section 1] on the Hermitian upper half space.) The invol-
ution � acts on the vector bundle F ˝ G ' F _ ˝ G_ by ��F ' G_ and ��G ' F _.
Then (2.13) is an O.6;C/-equivariant isomorphism.


