
Chapter 3

Vector-valued modular forms

In this chapter we define vector-valued orthogonal modular forms (Section 3.2) and
explain their Fourier expansions at 0-dimensional cusps (Sections 3.3–3.5). These
are the most fundamental parts of this memoir. The rest of this chapter (Sections 3.6–
3.8) is devoted to supplementary materials: the passage from O to SO, an example of
explicit construction, and an interaction with algebraic cycles.

3.1 Representations of O.n; C/

We begin by recollection of some basic facts from the representation theory for
O.n;C/. Our main reference for representation theory is [38, Section 8] (whose
main contents are more or less covered by [18, Section 19] and [19, Sections 5.5.5
and 10.2]). In what follows and in Section 3.6, all representations are assumed to be
finite dimensional over C.

Irreducible representations of O.n;C/ are labelled by partitions

� D .�1 � � � � � �n � 0/

such that t�1C t�2� n, where t� is the transpose of �. The irreducible representation
corresponding to such a partition � is constructed as follows. Let V D Cn be the
standard representation of O.n;C/. Let d D j�j D

P
i �i be the size of �. We denote

by V Œd� the intersection of the kernels of the contraction maps

V ˝d ! V ˝d�2

for all pairs of indices. Vectors in V Œd� are called traceless tensors or harmonic
tensors in the literature. The symmetric group Sd acts on V ˝d naturally and pre-
serves V Œd�. Let T D T #

�
be the column canonical tableau on � (namely, 1; 2; : : : ; t�1

on the first column, t�1 C 1; : : : ; t�1 C t�2 on the second column, : : : ). Let c� D
b�a� 2 CSd be the Young symmetrizer associated to T , where

a� D
X
�2HT

�; b� D
X
�2VT

sgn.�/�

as usual. (HT and VT are the row and the column Young subgroups of Sd for the
tableau T , respectively.) We apply the orthogonal Schur functor for � to V :

V� D c� � V
Œd�
D V Œd� \ .c� � V

˝d /:
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This space V� is the irreducible representation of O.n;C/ labelled by the partition �.
Since b� maps V ˝d to ^

t�1V ˝ � � � ˝ ^
t��1V , we have

V� � ^
t�1V ˝ � � � ˝ ^

t��1V � V ˝d : (3.1)

If we take a basis e1; : : : ; en of V such that .ei ; ej / D 1 when i C j D nC 1 and
.ei ; ej / D 0 otherwise, V� especially contains the vector

.e1 ^ � � � ^ et�1/˝ .e1 ^ � � � ^ et�2/˝ � � � ˝ .e1 ^ � � � ^ et��1
/ (3.2)

(see [38, Section 8.3.1]).

Example 3.1. (1) The exterior tensor ^dV for 0� d � n corresponds to the partition
� D .1d / D .1; : : : ; 1/. By abuse of notation, we sometimes write � D 1; St;^d ; det
instead of � D .0/; .1/; .1d /; .1n/, respectively.

(2) The symmetric tensor Symd V is reducible and decomposes as

Symd V D V.d/ ˚ Symd�2 V D � � �

D V.d/ ˚ V.d�2/ ˚ � � � ˚ V.1/ or .0/:

Geometrically, V.d/ is the cohomology H 0.OQn�2.d// for the isotropic quadric

Qn�2 � PV

of dimension n � 2.

3.2 Automorphic vector bundles

In this section we define automorphic vector bundles and vector-valued modular
forms. Let L be a lattice of signature .2; n/. For simplicity of exposition we assume
n� 3 so that the Koecher principle holds. (This assumption can be somewhat justified
by our calculation of E in the case n � 2 in Section 2.5.) Let � D .�1 � � � � � �n/ be
a partition as in Section 3.1 and let d D j�j. Recall that the second Hodge bundle E

is endowed with a canonical quadratic form. Let E Œd� � E˝d be the intersection
of the kernels of the contractions E˝d ! E˝d�2 for all pairs of indices. The fibers
of E Œd� consist of traceless tensors in the fibers of E˝d . The symmetric group Sd acts
on E˝d fiberwise and preserves E Œd�. We define the vector bundle E� by applying the
orthogonal Schur functor for � relatively to E:

E� D c� � E
Œd�
D E Œd� \ .c� � E

˝d /:

By construction E� is a sub vector bundle of E˝d , naturally defined over Q and is
O.LC/-invariant.
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Let I be a rank 1 primitive isotropic sublattice of L. Recall from Section 2.4 that
we have the I -trivialization E ' V.I /˝ OD.I / over D.I / D Q �Q \ PI?C . Let
V.I /� be the irreducible representation of O.V .I // ' O.n;C/ obtained by applying
the orthogonal Schur functor for � to V.I /. Since the I -trivialization of E preserves
the quadratic forms, it induces an isomorphism

E� ' V.I /� ˝OD.I /

over D.I /. We call this isomorphism the I -trivialization of E�.
Next for k 2 Z we consider the tensor product

E�;k D E� ˝L˝k :

This is an O.LC/-equivariant vector bundle on Q. If we write

V.I /�;k D V.I /� ˝ .I
_
C /
˝k;

the I -trivializations of E� and L˝k induce an isomorphism

E�;k ' V.I /�;k ˝OD.I /

over D.I /. This is equivariant with respect to the stabilizer of IC in O.LC/. We call
this isomorphism the I -trivialization of E�;k .

In what follows, we work over D . We use the same notations E�, E�;k for the
restriction of E�, E�;k to D . These are OC.LR/-equivariant vector bundles on D .
Like (2.3), we have an OC.LR/-equivariant isomorphism

E� ' OC.LR/ �K .E�/Œ!� ' OC.LR/ �K V�; (3.3)

where K is the stabilizer of Œ!� in OC.LR/. The I -trivialization of E�;k is defined
over D . Let j.g; Œ!�/ be the factor of automorphy for the OC.LR/-action on E�;k
with respect to the I -trivialization. This is a GL.V .I /�;k/-valued function on
OC.LR/ �D . Since the I -trivialization is equivariant with respect to the stabilizer
of IR in OC.LR/, we especially have the following.

Lemma 3.2. When g 2 OC.LR/ stabilizes IR, the value of j.g; Œ!�/ is constant
over D , given by the natural action of g on V.I /�;k .

Now let � be a finite-index subgroup of OC.L/. We call a �-invariant holo-
morphic section of E�;k over D a modular form of weight .�; k/ with respect to � .
By the I -trivialization, a modular form of weight .�; k/ is identified with a V.I /�;k-
valued holomorphic function f on D such that

f .
Œ!�/ D j.
; Œ!�/f .Œ!�/
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for every 
 2 � and Œ!� 2 D . We denote by M�;k.�/ the space of modular forms
of weight .�; k/ with respect to � . When � D .0/, we especially write M.0/;k.�/ D

Mk.�/ as usual.
When � id 2 � , the weight .�; k/ satisfies a parity condition. We state it in a

slightly generalized form.

Lemma 3.3. Let Œ!� 2 D and �Œ!� be the stabilizer of Œ!� in � . The value of a
�-modular form of weight .�; k/ at Œ!� is contained in the �Œ!�-invariant part of
.E�;k/Œ!�. In particular, when � id 2 � and k C j�j is odd, we have

M�;k.�/ D 0:

Proof. The first assertion follows from the �Œ!�-invariance of the section. As for the
second assertion, we note that � id acts on both L and E as the scalar multiplication
by �1. Since E� is a sub vector bundle of E˝j�j, � id acts on E�;k as the scalar
multiplication by .�1/kCj�j. Therefore, when k C j�j is odd, � id has no nonzero
invariant part in every fiber of E�;k .

Product of vector-valued modular forms can be given as follows. Suppose that we
have a nonzero O.n;C/-homomorphism

' W V�1 ˝ V�2 ! V�3 (3.4)

for partitions �1, �2, �3 for O.n;C/. This uniquely induces an OC.LR/-equivariant
homomorphism

' W E�1;k1 ˝ E�2;k2 ! E�3;k1Ck2 :

If f1, f2 are �-modular forms of weight .�1; k1/, .�2; k2/, respectively, then

f1 �' f2 WD '.f1 ˝ f2/

is a �-modular form of weight .�3; k1 C k2/. This is the “'-product” of f1 and f2.
Note that a homomorphism (3.4) exists exactly when V�3 appears in the irreducible
decomposition of V�1 ˝V�2 , and it is unique up to constant when the multiplicity is 1.
This information can be read off from the Littlewood–Richardson numbers [29, 31],
see also [38, Section 12].

The map (3.4) also uniquely induces an O.V .I //-homomorphism

'I W V.I /�1;k1 ˝ V.I /�2;k2 ! V.I /�3;k1Ck2 : (3.5)

If we denote by � the relevant I -trivialization maps, then we have

�.f1/ �'I �.f2/ D �.f1 �' f2/: (3.6)

In this sense, '-product and I -trivialization are compatible.
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It will be useful to know how orthogonal weights .�; k/ in n D 3; 4 are trans-
lated by the accidental isomorphisms. For simplicity we assume t�1 < n=2, namely,
t�1 D 1. See Section 3.6 for some justification of this assumption. (There is no essen-
tial loss of generality when n D 3.) Henceforth we write � D .d/ with d a natural
number.

Example 3.4. Let n D 3. Let F be the rank 2 Hodge bundle considered in Sec-
tion 2.5.3. Automorphic vector bundles on Siegel modular 3-folds can be expressed
as Symj F ˝L˝l with j 2 Z�0 and l 2 Z. In the literature this is often referred to
as weight .Symj ; detl/. This corresponds to the highest weight .�1; �2/ D .j C l; l/
of GL.2;C/. When j D 2d is even, we have

Sym2d F ' .Sym2 F /.d/ ' E.d/ ˝L˝d

by Lemma 2.8. Therefore

Sym2d F ˝L˝l ' E.d/ ˝L˝lCd :

Thus we have the following correspondence of weights:

orthogonal weight ..d/; k/

$ Siegel weight .Symj ; detl/ with .j; l/ D .2d; k � d/

$ GL.2;C/-weight .�1; �2/ D .k C d; k � d/

Example 3.5. Let n D 4. Let F and G be the rank 2 Hodge bundles considered
in Section 2.5.4. Automorphic vector bundles on Hermitian modular 4-folds can be
expressed as

L˝k ˝ Symj1 F ˝ Symj2 G ; k 2 Z; j1; j2 2 Z�0: (3.7)

On the other hand, in [17, Section 2], weights of vector-valued Hermitian modular
forms of degree 2 are expressed as .r;�1� �2/, where r 2Z and �1, �2 are symmetric
tensors of the standard representation of GL.2;C/. (We are working with SU.2; 2/
rather than U.2; 2/, and we do not consider twist by a character as in [17].) Then L

corresponds to the weight r D 1, F corresponds to the weight �1 D St, and

L˝ G ' G_ ' ��F

corresponds to the weight �2 D St. Thus the vector bundle (3.7) corresponds to the
Hermitian weight .r; �1 � �2/ with r D k � j2, �1 D Symj1 and �2 D Symj2 .

Now, by Lemma 2.9, we have

E.d/ ' Symd F ˝ Symd G :
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Therefore the weights correspond as follows:

orthogonal weight ..d/; k/

$ Hermitian weight .k � d;Symd �Symd /

In [17, Sections 3 and 4], some examples in the case d D 1 are studied in detail.

3.3 Tube domain realization

In this section we recall the tube domain realization of D associated to a 0-dimen-
sional cusp. We refer the reader to [21, 33, 35] for some more details. This section is
preliminaries for the Fourier expansion (Section 3.4).

We choose a rank 1 primitive isotropic sublattice I of L, which is fixed through-
out Sections 3.3–3.5. Recall that this corresponds to the 0-dimensional cusp ŒIC�

of D . The Z-module .I?=I /˝Z I is canonically endowed with the structure of a
hyperbolic lattice, from the quadratic form on I?=I and the standard quadratic form
I � I ! I˝2 ' Z on I in which the generators of I have norm 1. For F DQ;R;C
we write

U.I /F D .I
?=I /F ˝F IF D V.I /F ˝F IF :

This is a quadratic space over F , hyperbolic when F D Q;R.

3.3.1 Tube domain realization

The linear projection PLC Ü P .L=I /C from the point ŒIC� 2 Q defines an iso-
morphism

D.I /! P .L=I /C � PV.I /: (3.8)

We choose, as an auxiliary data, a rank 1 sublattice I 0 � L such that .I; I 0/ ¤ 0.
This determines a base point of the affine space P .L=I /C � PV.I / and hence an
isomorphism

P .L=I /C � PV.I /! V.I /˝C IC D U.I /C: (3.9)

Since the quadratic form on U.I /R is hyperbolic, the set of vectors v 2 U.I /R with
.v; v/ > 0 consists of two connected components. The choice of the component D

determines one of them, which we denote by CI (the positive cone). Let

DI D ¹Z 2 U.I /C j Im.Z/ 2 CI º

be the tube domain associated to CI . Then the composition of (3.8) and (3.9) gives
an isomorphism

D
'
�! DI � U.I /C: (3.10)

This is the tube domain realization of D associated to I . If we change I 0, this iso-
morphism is shifted by the translation by a vector of U.I /Q.
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3.3.2 Stabilizer

Next we recall the structure of the stabilizer of the I -cusp. Let F DQ;R. We denote
by �.I /F the stabilizer of I in OC.LF / (not the stabilizer of IF ). Elements of �.I /F
act on U.I /F as isometries. Let OC.U.I /F / be the subgroup of O.U.I /F / pre-
serving the positive cone CI . By (1.2), �.I /F sits in the canonical exact sequence

0! U.I /F ! �.I /F ! OC.U.I /F / � GL.I /! 1: (3.11)

Here the subgroup U.I /F consists of the Eichler transvections of LF with respect
to the isotropic line IF . The adjoint action of �.I /F on U.I /F via (3.11) coincides
with the natural action of �.I /F on .I?=I /F ˝ IF .

The choice of I 0 determines the lift V.I /F ' .IF ˚ I 0F /
? of V.I /F in I?F , and

thus a splitting LF ' UF ˚ V.I /F . This determines a section of (3.11)

OC.U.I /F / � GL.I / ,! �.I /F ;

by letting OC.U.I /F / ' OC.V .I /F / act on the lifted component V.I /F � LF and
mapping GL.I / D ¹˙1º to ¹˙ idº. In this way, from the choice of I 0, we obtain a
splitting of (3.11):

�.I /F ' .OC.U.I /F / � GL.I // Ë U.I /F ; (3.12)

where OC.U.I /F / acts on U.I /F in the natural way and GL.I / acts on U.I /F
trivially. This splitting is compatible with the tube domain realization in the following
sense. We translate the �.I /F -action on D to action of �.I /F on DI via the tube
domain realization (3.10) defined by (the same) I 0. Then,

• the unipotent radical U.I /F � �.I /F acts on DI as the translation by U.I /F
on U.I /C ,

• the lifted group OC.U.I /F / in (3.12) acts on DI by its linear action on U.I /C ,

• the lifted group GL.I / D ¹˙ idº acts trivially.

Now let � be a finite-index subgroup of OC.L/. We write

�.I /Z D �.I /Q \ �; U.I /Z D U.I /Q \ �; �.I /Z D �.I /Z=U.I /Z:

The group �.I /Z is the stabilizer of I in � . The exact sequence

0! U.I /Z ! �.I /Z ! �.I /Z ! 1 (3.13)

is naturally embedded in (3.11). The group U.I /Z is a full lattice in U.I /Q. It defines
the algebraic torus

T .I / D U.I /C=U.I /Z:
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Then the tube domain realization (3.10) induces an isomorphism

D=U.I /Z
'
�! DI=U.I /Z � T .I /:

The group �.I /Z acts on D=U.I /Z'DI=U.I /Z. Let x
 2 �.I /Z and let 
 2 �.I /Z
be its lift. According to the splitting (3.12), we express 
 as


 D .
1; "; ˛/; 
1 2 OC.U.I /Z/; " D ˙ id; ˛ 2 U.I /Q: (3.14)

Here 
1, a priori an element of OC.U.I /Q/, is contained in OC.U.I /Z/ because
the adjoint action of �.I /Z on U.I /Q preserves the lattice U.I /Z. Then the action
of x
 on DI=U.I /Z is given by the linear action by 
1 plus the translation by Œ˛� 2
U.I /Q=U.I /Z. Note that x
 is determined by .
1; "/ because the projection

�.I /Z ! OC.U.I /Q/ � GL.I /

is injective. Nevertheless, the translation component Œ˛� could be nontrivial because
(3.13) may not necessarily split.

3.4 Fourier expansion

Let I and I 0 be as in Section 3.3. Let f be a modular form of weight .�; k/ on D

with respect to a finite-index subgroup � of OC.L/. By the I -trivialization E�;k '

V.I /�;k ˝OD and the tube domain realization D 'DI , we regard f as a V.I /�;k-
valued holomorphic function on the tube domain DI (again denoted by f ). The
subgroup U.I /Z of �.I /Z acts on DI by translation, and acts on V.I /�;k trivially.
By Lemma 3.2, this shows that the function f is invariant under the translation by
the lattice U.I /Z. Therefore it admits a Fourier expansion of the form

f .Z/ D
X

l2U.I/_Z

a.l/ql ; ql D e..l; Z//;

forZ 2DI , where a.l/ 2 V.I /�;k and U.I /_Z � U.I /Q is the dual lattice of U.I /Z.
This series is convergent when Im.Z/ is sufficiently large. The Fourier coefficients
a.l/ can be expressed as

a.l/ D

Z
U.I/R=U.I/Z

f .Z0 C v/e.�.Z0 C v; l//dv; (3.15)

where dv is the flat volume form on U.I /R normalized so that U.I /R=U.I /Z has
volume 1.

The Koecher principle says that we have a.l/ ¤ 0 only when l is in the closure
of the positive cone CI , which is the dual cone of CI . See, e.g., [44, p. 191] for a
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proof of the Koecher principle in the vector-valued Siegel modular case. The present
case can be proved similarly by using (3.15) and Proposition 3.6 below. See also [8,
Proposition 4.15] for the scalar-valued case. In general, when n � 2, the condition
a.l/ ¤ 0) l 2 CI is the holomorphicity condition required around the I -cusp.

The modular form f is called a cusp form if a.l/ ¤ 0 only when l 2 CI at every
0-dimensional cusp I . We denote by

S�;k.�/ �M�;k.�/

the subspace of cusp forms.
It should be noted that the Fourier expansion depends on the choice of I 0. If

we change I 0, the tube domain realization is shifted by the translation by a vector
of U.I /Q, say v0. Then we need to replace f .Z/ by f .Z C v0/, and the Fourier
coefficient a.l/ is replaced by e..l; v0// � a.l/. In what follows, when we speak of
Fourier expansion at the I -cusp, the choice of I 0 (and hence of the tube domain
realization D ! DI ) is subsumed.

The Fourier coefficients satisfy the following symmetry under �.I /Z.

Proposition 3.6. Let x
 2 �.I /Z. Let 
 D .
1; "; ˛/ be its lift in �.I /Z expressed as
in (3.14). Then we have

a.
1l/ D e.�.
1l; ˛// � 
.a.l// (3.16)

for every l 2 U.I /_Z.

Proof. By Lemma 3.2, the factor of automorphy for 
 is given by its natural action
on V.I /�;k . Therefore we have

f .
.Z// D 
.f .Z//; Z 2 DI ;

where 
 acts on DI via the tube domain realization D 'DI . We compute the Fourier
expansion of both sides. Since 
.Z/ D 
1Z C ˛, we have

f .
.Z// D
X
l

a.l/e..l; 
1Z C ˛//

D

X
l

a.l/e..l; ˛//e..
�11 l; Z//

D

X
l

a.
1l/e..
1l; ˛//e..l; Z//:

In the last equality we rewrote l as 
1l . Comparing this with


.f .Z// D
X
l


.a.l//e..l; Z//;

we obtain 
.a.l// D e..
1l; ˛//a.
1l/.
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In the right-hand side of (3.16), the action of 
 on a.l/ 2 V.I /�;k is determined
by .
1; "/. More precisely, 
 acts on IC by " 2 ¹˙1º, and on V.I / D U.I /C ˝ I_C
by 
1 ˝ ".

Proposition 3.6 implies the vanishing of the constant term a.0/ in most cases.

Proposition 3.7. Assume that � ¤ 1; det. Then a.0/ D 0.

Proof. We apply Proposition 3.6 to l D 0 and elements x
 in the subgroup

¹x
 2 �.I /Z j " D 1; det 
1 D 1º (3.17)

of �.I /Z. By trivializing I ' Z, we identify V.I /�;k with V.I /�. We also identify
SO.U.I /Q/ with SO.V .I /Q/ naturally. Then elements x
 of the group (3.17) act
on V.I /�;k by the action of 
1 2 SO.V .I /Q/ on V.I /�. Therefore, by Proposi-
tion 3.6, we find that a.0/D 
1.a.0//2 V.I /� for every such x
 . The mapping x
 7! 
1
embeds the group (3.17) into SO.V .I /Q/, and the image is an arithmetic subgroup of
SO.V .I /Q/. By the density theorem of Borel [7] (see also [41, Corollary 5.15]), it is
Zariski dense in SO.V .I //. Therefore the vector a.0/ 2 V.I /� is invariant under the
action of SO.V .I // on V.I /�. However, by our assumption �¤ 1;det, the SO.n;C/-
representation V� contains no nonzero invariant vector (cf. Section 3.6). Therefore
a.0/ D 0.

Remark 3.8. Since V.I /C and IC have the natural Q-structures V.I /Q and IQ,
respectively, the C-linear space V.I /�;k has the natural Q-structure

V.I /Q;� ˝ .I
_
Q/
˝k;

where V.I /Q;� D c� � V.I /
Œd�
Q is the Q-representation of O.V .I /Q/ obtained by

applying the orthogonal Schur functor to V.I /Q. Thus we can speak of rationality
and algebraicity of the Fourier coefficients a.l/. (Rationality depends on the choice
of I 0, but algebraicity does not because the transition constant e..l; v0// is a root
of unity.) When the homomorphism 'I in (3.5) is defined over Q, the '-product of
two modular forms with rational Fourier coefficients at the I -cusp again has rational
Fourier coefficients by (3.6).

3.5 Geometry of Fourier expansion

Let I and I 0 be as in Sections 3.3 and 3.4. In this section we recall the partial toroidal
compactifications of D=U.I /Z following [2] and explain the Fourier expansion from
that point of view.
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3.5.1 Partial toroidal compactification

We write X.I / D D=U.I /Z. The tube domain realization identifies X.I / with the
open set DI=U.I /Z of the torus T .I /. Let

CCI D CI [
[
v

R�0v

be the union of the positive cone CI and the rays R�0v generated by rational isotropic
vectors v in CI . Let †I D .�˛/ be a rational polyhedral cone decomposition of CCI ,
namely, a fan in U.I /R whose support is CCI . Note that every rational isotropic ray
in CCI must be included in†I . We will often abbreviate†I D†when I is clear from
the context. The fan† is said to be �.I /Z-admissible if it is preserved by the �.I /Z-
action on U.I /R and there are only finitely many cones up to the �.I /Z-action. The
fan † is called regular if each cone �˛ is generated by a part of a Z-basis of U.I /Z.
It is possible to choose † to be �.I /Z-admissible and regular [2, 14].

Let† be a �.I /Z-admissible fan. It determines a �.I /Z-equivariant torus embed-
ding T .I / ,! T .I /†. The toric variety T .I /† is normal; it is nonsingular if † is
regular. The cones � in † correspond to the boundary strata of T .I /†, say �� . A
stratum �� is in the closure of another stratum �� if and only if � is a face of � .
The stratum �� is isomorphic to the quotient torus of T .I / defined by the quotient
lattice U.I /Z=.U.I /Z \ h�i/, where h�i is the R-span of � . In particular, the rays
R�0v in † correspond to the boundary strata of codimension 1, say �v . If we take v
to be a primitive vector of U.I /Z, the stratum �v is isomorphic to the quotient torus
of T .I / defined by U.I /Z=Zv. The variety T .I /† is nonsingular along �v . If we
take a vector l 2 U.I /_Z with .v; l/ D 1, then ql D e..l; Z// is a character of T .I /
and extends holomorphically over �v . The divisor �v is defined by ql D 0. More
generally, a character ql of T .I /, where l 2 U.I /_Z extends holomorphically around
a boundary stratum �� (i.e., extends over �� and the strata �� which contains ��
in its closure) if and only if .l; �/ � 0, or in other words, l is in the dual cone of � . If
moreover l has positive pairing with the relative interior of � , the extended function
vanishes identically at �� .

Now let X.I /† be the interior of the closure of X.I / in T .I /†. We call X.I /†

the partial toroidal compactification of X.I / defined by the fan †. As a partial com-
pactification of X.I / D D=U.I /Z, this does not depend on the choice of I 0. When
a cone � 2 † is not an isotropic ray, its relative interior is contained in CI , and the
corresponding boundary stratum �� of T .I /† is totally contained in X.I /†. On
the other hand, when � D R�0v is an isotropic ray, only an open subset of �v is
contained in X.I /†. (This will be glued with the boundary of the partial toroidal
compactification over the corresponding 1-dimensional cusp: see Section 5.3.) By
abuse of notation, we still write �v for the boundary stratum in X.I /† in this case.
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3.5.2 Fourier expansion and Taylor expansion

Let f .Z/D
P
l a.l/q

l be the Fourier expansion of a �-modular form of weight .�;k/
at the I -cusp. This can be viewed as the expansion of the V.I /�;k-valued function f
on X.I / by the characters of T .I /.

Lemma 3.9. The function f on X.I / extends holomorphically over X.I /†. When
� ¤ 1; det and � is not an isotropic ray, f vanishes at the corresponding boundary
stratum �� . When f is a cusp form, it vanishes at every boundary stratum �� .

Proof. Since the dual cone of CI is CI itself, CI is contained in the dual cone of every
cone � in †. Therefore, if l 2 U.I /_Z \ CI , then l is contained in the dual cone of
every � , which implies that the function ql extends holomorphically over X.I /†. By
the cusp condition in the Fourier expansion, this shows that the function f extends
holomorphically over X.I /†.

When � is not an isotropic ray, its relative interior is contained in CI . Hence any
nonzero vector l 2 U.I /_Z \ CI has positive pairing with the relative interior of � .
This shows that the corresponding character ql vanishes at the boundary stratum�� .
It follows that f j�� is the constant a.0/. By Proposition 3.7, this vanishes when
� ¤ 1; det.

Finally, if f is a cusp form, we have a.l/ ¤ 0 only when l 2 CI . Such a vector l
has positive pairing with the relative interior of every cone � 2†, and so, ql vanishes
at �� . Therefore f vanishes at the boundary of X.I /†.

Let us explain that the Fourier expansion gives Taylor expansion along each
boundary divisor. Let � D R�0v be a ray in † with v 2 U.I /Z primitive. We can
rewrite the Fourier expansion of f as

f .Z/ D
X
m�0

X
l2U.I/_Z
.l;v/Dm

a.l/ql : (3.18)

We choose a vector l0 2 U.I /_Z with .l0; v/ D 1 and put q0 D ql0 . The boundary
divisor �v is defined by q0 D 0. We put

�m D
X

l2U.I/_Z
.l;v/Dm

a.l/ql�ml0 D
X

l2v?\U.I/_Z

a.l Cml0/q
l :

Note that v? \ U.I /_Z is the dual lattice of U.I /Z=Zv and hence is the character
lattice of the quotient torus �v . Therefore �m is (the pullback of) a V.I /�;k-valued
function on �v . Then (3.18) can be rewritten as

f .Z/ D
X
m�0

�mq
m
0 :
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This is the Taylor expansion of f along the divisor �v with normal parameter q0,
and �m (as a function on �v) is the m-th Taylor coefficient. In particular, the restric-
tion of f to �v is given by �0:

f j�v D �0 D
X

l2v?\U.I/_Z

a.l/ql :

When .v; v/ ¤ 0, this reduces to a.0/ because v? \ CI D ¹0º holds (cf. the proof of
Lemma 3.9). On the other hand, when .v; v/ D 0, this reduces to

f j�v D
X

l2Qv\U.I/_Z

a.l/ql (3.19)

because v? \ CI D R�0v.

Remark 3.10. Sometimes it is useful to allow l0 from an overlattice of U.I /_Z, e.g.,
when considering the Fourier–Jacobi expansion (Section 7). Then q0 and �m are still
defined, as functions on a finite cover of T .I /.

3.5.3 Canonical extension

In Sections 3.4 and 3.5, we regarded modular forms as V.I /�;k-valued functions via
the I -trivialization. Let us go back to the viewpoint of sections of E�;k . The vector
bundle E�;k on D descends to a vector bundle on X.I /DD=U.I /Z, which we again
denote by E�;k . We extend it over X.I /† as follows.

Since the I -trivialization E�;k ' V.I /�;k ˝ OD is equivariant with respect
to U.I /Z which acts on V.I /�;k trivially, it descends to an isomorphism

E�;k ' V.I /�;k ˝OX.I /

over X.I /. Then we can extend E�;k to a vector bundle over X.I /† (still denoted
by E�;k) so that this isomorphism extends to E�;k ' V.I /�;k ˝OX.I /† over X.I /†.
In other words, the extension is defined so that the frame of E�;k over X.I / corres-
ponding to a basis of V.I /�;k by the I -trivialization extends to a frame of the exten-
ded bundle E�;k . This is an explicit form of Mumford’s canonical extension [36]. By
construction, a section f of E�;k over X.I / extends to a holomorphic section of the
extended bundle E�;k over X.I /† if and only if f viewed as a V.I /�;k-valued func-
tion via the I -trivialization extends holomorphically over X.I /†. Then Lemma 3.9
can be restated as follows.

Lemma 3.11. A modular form f 2M�;k.�/ as a section of E�;k over X.I / extends
to a holomorphic section of the extended bundle E�;k over X.I /†. When � ¤ 1; det
and � is not an isotropic ray, this extended section vanishes at �� . When f is a cusp
form, this section vanishes at every �� .
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3.6 Special orthogonal groups

In the theory of orthogonal modular forms, there is an option at the outset: which Lie
group to mainly work with. The full orthogonal group O, or the special orthogonal
group SO, or the spin group Spin, or even the pin group Pin. We decided to start
with O for two reasons: (1) in some applications we need to consider subgroups � of
OC.L/ not contained in SOC.L/, and (2) the explicit construction by the orthogonal
Schur functor for E will be useful at some points.

On the other hand, it is sometimes more convenient to work with SO. In this
section we explain the switch from O to SO. The contents of this section will be used
only in Sections 6.1, 10 and 11, so the reader may skip it for the moment.

3.6.1 Representations of SO.n; C/

We first recall some basic facts from the representation theory of SO.n;C/ fol-
lowing [38, Sections 4 and 8] and [18, Section 19]. Irreducible representations of
SO.n;C/ are labelled by their highest weights. When n D 2m is even, the highest
weights are expressed by m-tuples � D .�1; : : : ; �m/ of integers, nonnegative for
i < m, such that �1 � � � � � �m�1 � j�mj. We write �� D .�1; : : : ; �m�1;��m/ for
such �. When n D 2m C 1 is odd, the highest weights are expressed by m-tuples
� D .�1; : : : ; �m/ of nonnegative integers such that �1 � � � � � �m � 0. We denote
byW� the irreducible representation of SO.n;C/with highest weight �. The dual rep-
resentationW _� is isomorphic toW� itself when n is odd or 4jn, while it is isomorphic
to W�� in the case n � 2 mod 4.

By the Weyl unitary trick, W� remains irreducible as a representation of

SO.n;R/ � SO.n;C/;

and the above classification is the same as the classification of irreducible C-represen-
tations of SO.n;R/.

The restriction rule from O.n;C/ to SO.n;C/ is as follows [38, Proposition 8.24].
Let �D .�1 � � � � � �n � 0/ be a partition expressing an irreducible representation V�
of O.n;C/. We define a highest weight x� for SO.n;C/ by

x� D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/:

Note that x� itself can be viewed as a partition for O.n;C/. When n is odd or n D
2m is even with t�1 ¤ m, the O.n;C/-representation V� remains irreducible as a
representation of SO.n;C/, with highest weight x�. The vector defined in (3.2) is a
highest weight vector. Thus V� ' Wx� as a representation of SO.n;C/ in this case. In
particular, since the highest weight for the partition x� is x� itself, we have V� ' Vx� as
SO.n;C/-representations. More specifically, when t�1 < n=2 we have x� D �, while
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when t�1 > n=2 we have V� ' Vx� ˝ det as O.n;C/-representations. (In the latter
case, the partitions � and x� are called associated in [18, 38].)

In the remaining case, namely, when n D 2m is even and t�1 D m, V� gets redu-
cible when restricted to SO.n;C/. More precisely,

V� ' Wx� ˚Wx�� (3.20)

as a representation of SO.n;C/. Note that x� D � and �m ¤ 0 in this case. Since
x� ¤ x��, this decomposition is unique. In this case, V� is the induced representation
from the representation Wx� of SO.n;C/ � O.n;C/.

3.6.2 Automorphic vector bundles

We go back to the automorphic vector bundles on D . We choose a base point Œ!0�2D .
Let K ' SO.2;R/ � O.n;R/ and SK ' SO.2;R/ � SO.n;R/ be the stabilizers
of Œ!0� in OC.LR/ and in SOC.LR/, respectively (cf. Section 2.1).

Proposition 3.12. The following holds.

(1) If either n is odd or nD 2m is even with t�1¤m, then E� remains irreducible
as an SOC.LR/-equivariant vector bundle, and we have

E� ' SOC.LR/ �SK Wx�:

In particular, we have E� ' Ex� as SOC.LR/-equivariant vector bundles.

(2) If n is even and t�1 D n=2, then E� as an SOC.LR/-vector bundle decom-
poses into the direct sum of two non-isomorphic vector bundles:

E� ' EC
�
˚ E�� (3.21)

with each component isomorphic to SOC.LR/ �SK Wx� and SOC.LR/ �SK
Wx�� , respectively.

Proof. By (3.3), we have E� ' OC.LR/ �K V� as an OC.LR/-equivariant vector
bundle. Therefore

E� ' SOC.LR/ �SK V�

as an SOC.LR/-equivariant vector bundle. Note that the representation of O.n;R/'
O.H?!0/ � K on V� D .!?0 =C!0/� ' .H

?
!0
˝R C/� extends to a representation of

O.n;C/ ' O.H?!0 ˝R C/ naturally. Then our assertions follow from the restriction
rule for SO.n;C/ � O.n;C/.

At each fiber of the vector bundle, the decomposition (3.21) is the irreducible de-
composition of .!?=C!/� as a representation of SO.!?=C!/. The I -trivialization
respects the decomposition (3.21) in the following sense. As a representation of



Vector-valued modular forms 40

SO.V .I //, V.I /� decomposes according to (3.20), which we denote by V.I /� D
W.I/x�˚W.I/x�� . By the uniqueness of the decomposition (3.20), the I -trivialization
E� ' V.I /� ˝OD sends the decomposition (3.21) of E� to the decomposition

V.I /� ˝OD D .W.I /x� ˝OD/˚ .W.I /x�� ˝OD/

of V.I /� ˝OD . Thus we have the I -trivializations

EC
�
' W.I/x� ˝OD ; E�� ' W.I/x�� ˝OD (3.22)

of each component EC
�

, E�
�

.

3.7 Rankin–Cohen brackets

In this section, as an example of explicit construction of vector-valued modular forms,
we define the Rankin–Cohen bracket of two scalar-valued modular forms. This is
a general method: see, e.g., [9, 16, 17, 26, 42] for the case of some other types of
modular forms, where Rankin–Cohen bracket is a successful technique for explicitly
describing some modules of vector-valued modular forms.

Let f , g be nonzero scalar-valued modular forms of weight k, l , respectively, for
� < OC.L/. We define the Rankin–Cohen bracket of f and g by

¹f; gº D .gkC1=f l�1/˝ d.f l=gk/:

Here gkC1=f l�1 is a meromorphic section of

L˝l.kC1/�k.l�1/ D L˝kCl ;

and d.f l=gk/ is the exterior differential of the meromorphic function f l=gk on D .
Thus d.f l=gk/ is a meromorphic 1-form on D . It is immediate to see that ¹g; f º D
�¹f; gº. When k D l , the Rankin–Cohen bracket reduces to the more simple expres-
sion

¹f; gº D .gkC1=f k�1/˝ k.f=g/k�1 � d.f=g/

D kg2 ˝ d.f=g/:

Proposition 3.13. The Rankin–Cohen bracket ¹f; gº is a modular form of weight
.St; k C l C 1/ for � . We have ¹f; gº ¤ 0 unless when f l is a constant multiple
of gk .

Proof. Since gkC1=f l�1 and d.f l=gk/ are meromorphic sections of L˝kCl and
�1

D
' E ˝L, respectively, ¹f; gº is a meromorphic section of E ˝L˝kClC1, i.e.,

has weight .St;kC l C 1/. The �-invariance is obvious from the definition. It remains
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to check the holomorphicity over D . We take a frame s of L and write f D Qf s˝k ,
g D Qgs˝l with Qf , Qg holomorphic functions on D . Then

¹f; gº D . QgkC1= Qf l�1/s˝kCl ˝ d. Qf l= Qgk/

D s˝kCl ˝ .l.d Qf / Qg � k.d Qg/ Qf /:

From this expression, we find that ¹f; gº is holomorphic. The nonvanishing assertion
is apparent.

When f D 0 or gD 0, we simply set ¹f;gº D 0. Then the Rankin–Cohen bracket
defines a bilinear map

Mk.�/ �Ml.�/!MSt;kClC1.�/:

When k D l , this induces ^2Mk.�/!MSt;2kC1.�/ by the anti-commutativity.

3.8 Higher Chow cycles on K3 surfaces

One of the geometric significance of vector-valued modular forms on D is the appear-
ance of the middle graded piece of the Hodge filtration, while scalar-valued modular
forms are concerned only with the last piece. Thus the connection between modu-
lar forms and geometry related to the variation of Hodge structures on D shows up
fully. In this section we present such an example of geometric construction of vector-
valued modular forms with singularities. This section is independent of the rest of the
memoir.

Let � WX ! B be a smooth family of K3 surfaces. We say that � WX ! B is
lattice-polarized with period lattice L if we have a sub local system ƒNS of R2��Z
whose fibers are primitive hyperbolic sublattices of the Néron–Severi lattices of the
�-fibers Xb and the fibers of ƒT D ƒ?NS are isometric to L. Let zB be an unramified
cover of B , where the local system ƒT can be trivialized (e.g., the universal cover)
and let zX D X �B zB . After choosing a base point o 2 zB and an isometry

.ƒT /o ' L;

we have the period map

zP W zB ! D ; b 7! ŒH 2;0. zXb/ � LC�:

If � is a finite-index subgroup of OC.L/ which contains the monodromy group
of ƒT , zP descends to a holomorphic map

P W B ! F .�/:



Vector-valued modular forms 42

When B is algebraic, P is a morphism of algebraic varieties by Borel’s extension
theorem.

Let Z D .Zb/ be a family of higher Chow cycles in CH 2.Xb; 1/. By this, we
mean that

• Z is a higher Chow cycle of type .2; 1/ on the total space X , i.e., a codimen-
sion 2 cycle on X �A1 which meets X � ¹0º and X � ¹1º properly and satisfies
ZjX�¹0º D ZjX�¹1º, and

• the restriction Zb D ZjXb to each fiber Xb is well defined, i.e., without using the
moving lemma, Z already intersects with Xb � A1 properly and gives a higher
Chow cycle on Xb .

The normal function �Z of Z is defined as a holomorphic section of the fibration of
the generalized intermediate Jacobians H=.F 2H CR2��Z/. Here H D R2��C ˝
OB and .F pH /p is the Hodge filtration on H . The infinitesimal invariant ı�Z of �Z
is defined as a section of the middle cohomology sheaf of the Koszul complex

F 2H ! .F 1H=F 2H /˝�1B ! .H=F 1H /˝�2B (3.23)

over B . See [11, 45] for more details and examples.
We explain the connection with vector-valued modular forms. We first consider

the case where zB D B is an analytic open set of D and the period map B ! D

coincides with the inclusion map. Then we can identify

F 2H D LjB ; F 1H=F 2H D EjB ˚ .ƒNS ˝Z OB/; H=F 1H D L�1jB :

The Koszul complex (3.23) is the direct sum of the complex

0! ƒNS ˝�
1
B ! 0

and the modular Koszul complex (2.6) restricted to B:

L! E ˝�1B ! L�1 ˝�2B :

According to this decomposition, we can write ı�Z as ..ı�Z/pol; .ı�Z/prim/, where
.ı�Z/pol is a section of ƒNS ˝�1B and .ı�Z/prim is a section of the middle cohomo-
logy sheaf of the modular Koszul complex overB . By the calculation in Example 2.4,
we see that

.ı�Z/prim 2 H
0.B;E.2/ ˝L/;

namely, .ı�Z/prim is a local modular form of weight .�; k/ D ..2/; 1/ over B .
Now we consider the case where the family � WX ! B is algebraic, � id 62 � , and

the algebraic period map P WB ! F .�/ is birational. By removing some divisors
from B if necessary, we may assume that P is an open immersion and D ! F .�/

is unramified over B � F .�/. Then we may take zB to be a �-invariant Zariski open
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set of D . In this case, the Koszul complex (3.23) over B is the direct sum of 0!
ƒNS ˝�

1
B! 0 and the descent of the modular Koszul complex (2.6) from zB �D to

B � F .�/. LetZ be a family of higher Chow cycles onX ! B as above. According
to the decomposition of the Koszul complex over B , we can write

ı�Z D ..ı�Z/pol; .ı�Z/prim/

as in the local case. Then the pullback of the primitive part .ı�Z/prim to zB is a �-
invariant holomorphic section of E.2/ ˝ L over zB . By a vanishing theorem proved
later (Theorem 9.1), there is no nonzero holomorphic modular form of weight ..2/; 1/
on D . Hence, if .ı�Z/prim does not vanish identically, it must have a singularity at
some component of the complement of zB in D . In other words, the primitive part
.ı�Z/prim of the infinitesimal invariant ı�Z of Z is a modular form of weight ..2/; 1/
with singularities.


