Chapter 4

Witt operators

In this chapter, as a functorial aspect of the theory, we study pullback of vector-
valued modular forms to sub orthogonal modular varieties, an operation sometimes
called the Witt operator. Let L be a lattice of signature (2, n) and L’ be a primitive
sublattice of L of signature (2,n’). We put K = (L')* N L and r = rank(K) =
n—n'. If we write O’ = D/, then D’ = IF’L{C N D. Let f be a vector-valued
modular form on 9. In Section 4.1 we study the restriction of f to O’. This produces
a vector-valued modular form on £’, whose weight (in general reducible) can be
known from the branching rule for O(n’, C) C O(n, C). An immediate consequence
is the vanishing of M} x(T") in k < 0 (Proposition 4.4). A more interesting situation
is the case when f vanishes identically at D', which we study in Section 4.2. In that
case, we can define the so-called quasi-pullback of f, which produces a cusp form
on D’ (Proposition 4.10). These operations will be useful when studying concrete
examples.

Restriction of modular forms to sub modular varieties has been considered
classically for scalar-valued Siegel modular forms, going back to Witt [48]. Quasi-
pullback has been also considered in this case: see [10, Section 2] for a general
treatment.

Quasi-pullback of orthogonal modular forms was first considered for Borcherds
products by Borcherds [5, 6], and later for general scalar-valued modular forms by
Gritsenko—Hulek—Sankaran [22, Section 8.4] in the case r = 1. Our terminology
“quasi-pullback” comes from this series of work. The cuspidality of quasi-pullback
was first proved in [21, 22] in the scalar-valued case. Our Proposition 4.10 is the
vector-valued generalization.

4.1 Ordinary pullback

We embed O (L) x O(KR) in Ot (Lr) naturally. This is the stabilizer of L} in
Ot (LR). Let T be a finite-index subgroup of O (L). Then I = T NO*(L') is a
finite-index subgroup of O (L’), and G = I' N O(K) is a finite group. The product
I'" x G is a finite-index subgroup of the stabilizer of L’ in T".

Let £/, & be the Hodge bundles on O’. Since Opr (=Dlpz, = Opr,. (-1,
we have £|p = £’. We also have a natural isomorphism

Elpg ~ 8 @ (Kc ®0Oyp), 4.1)
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which at each fiber is the decomposition
(0t NLc)/Co = (0 N LE)/Cw) @ Kc.

This corresponds to the decomposition St = St’ @ St” of the standard representation
of O(n, C) when restricted to the subgroup O(n’, C) x O(r, C), where St’ and St” are
the standard representations of O(n’, C) and O(r, C), respectively.

Let A be a partition expressing an irreducible representation V) of O(n, C). We
denote by

Vi~ D Vi B Vi 42)
o

the irreducible decomposition as a representation of O(n’, C) x O(r, C), where V;, (@
(resp., V; ’,,( «)) 18 the irreducible representation of O(n’, C) (resp., O(r, C)) with par-
tition A/ (&) (resp., A”(a)). See [30, 32] for an explicit description of this restriction
rule in terms of the Littlewood—Richardson numbers. Let k£ be an integer.

Proposition 4.1. Restriction of modular forms to D' C D defines a linear map

Mk (T) > P My, ) @ (K@) - flor-
o

This maps cusp forms to cusp forms.

For the proof of Proposition 4.1, we need to calculate the Fourier expansion
of f|p’. We take a rank 1 primitive isotropic sublattice I of L". Let U(I)z C U(I)q
be as in Section 3.3 and we define U(1); C U(I)gq similarly for (L', T"). Then
Ull)g C Ul and U(I)z C U(I)z. 1f we write K, = Ko ® I, we have

Ul)g = U(I)f@ &) Kb.
The tube domain realization with respect to I (with I’ also taken from L’) identifies
D' C D with
o((-); =Dr N U(I)gc C Dy.

Lemmad.2. Let f(Z) = ZleU(I)% a(l)q' be the Fourier expansion of f € M, ,(I')
at the I -cusp of D. Then we have

flog@h=>_ b, @) =e.2). (4.3)
reUUY,)v
for Z' € Dy, where
b= > al’+1").

l”eKb
I'+1"eU(l)y,
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Proof. Letm:U(I)g — U(I)fQ) be the orthogonal projection. This maps U(1)y, to a
sublattice of (U(1)%)Y. For [ € U(I)y, the restriction of the function ¢’ = e((/, Z))
to D; C Dy is ()™ = e((r(1), Z')). Then our assertion follows by substituting
q' = (@)D in f =3, a(l)q". Note that the sum defining b(I’) is actually a finite
sum by the condition I’ 4 [” € €; (the cusp condition for f) and the fact that Kg is
negative-definite. u

Now we prove Proposition 4.1.

Proof of Proposition 4.1. From the expression (3.3) and the decomposition (4.2), we
see that

Exlp = @ &) ® (Kc)ar () 4.4)
o

as an OF (Lg) x O(KR)-equivariant vector bundle on £’. With the isomorphism
£|p = L', we obtain

Exxlo > @ &k ® (KO)a()-

o
If f is a I-invariant section of &, y over D, this shows that f|p/ is a IV x G-
invariant section of P, €, ® (Kc)a7(@ over D’. Hence it is a I'-invariant
section of P, 8;,(05),,{ ® (Kc)f,,(a) over D’.

Holomorphicity of f|gp at the cusps of D’ holds automatically when n’ > 3 by
the Koecher principle. In general, this can be seen from Lemma 4.2 as follows. Let /
and Kb be as in Lemma 4.2. Since Kb is negative-definite, the orthogonal projec-
tion U(/)r — U(I )i maps the positive cone €7 of U(I)R to the positive cone €;
of U(I)g, and maps €] to F; Hence the vectors I’ in (4.3) actually range over
Uy n ‘67} This proves the holomorphicity of f|gps around the -cusp of D’.
Since I is arbitrary, f is holomorphic at all cusps of D’. When f is a cusp form, the
vectors [’ range over (U(I)7)¥ N €} for the same reason. This means that f|gp/ is a
cusp form. This proves Proposition 4.1. |

Example 4.3. Let us look at a typical example. Let A = St. As noticed before, this
decomposes as St = St’ @ St” when restricted to O(n’, C) x O(r, C), which corres-
ponds to the decomposition (4.1). Therefore restriction to O’ gives a linear map

Mg (T) — Mgy 1 (T') ® (Mi(T') ® K&).

The first component Mg x (") — Mgy x(I'") can be considered as the main com-
ponent of the restriction, but we also obtain some scalar-valued modular forms in
M (T) ® Kg as “extra” components. When G fixes no nonzero vector of K, these
extra components vanish. For example, this happens when I" contains a reflection
and L’ is the fixed lattice of this reflection.
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As an application of Proposition 4.1, we obtain the following elementary vanish-
ing theorem. Although this will be superseded later (Section 9), we present it here
because it can be proved easily and is already informative.

Proposition 4.4. When k <0, we have M _;(I") = 0. Moreover, we have M), o(I") =
0 when A # 1, det.

Proof. Let f € M) x(I") with k < 0. We consider restriction of f to 1-dimensional
domains Dy, C D for sublattices L C L of signature (2, 1). As a representation
of O(1,C) = {£id}, V, is a direct sum of copies of the trivial character and the
determinant character. By Proposition 4.1 and the calculation in Section 2.5.1, we see
that f'|p,, is a tuple of scalar-valued modular forms of weight 2k < 0 on the upper
half plane Dy. Since there is no nonzero elliptic modular form of negative weight,
we find that f vanishes identically at Dr. Now, if we vary L', then £y run over a
dense subset of D. Therefore f = 0.

When f €M, o(T") with A#1, det, by combining Proposition 3.7 and Lemma 4.2,
we see that f|p,, is a tuple of scalar-valued cusp forms of weight 0 on £y, which
vanish identically. Therefore f = 0 similarly. ]

The idea to deduce a vanishing theorem by considering restriction to sub mod-
ular varieties is classical. In the case of Siegel modular forms, this goes back to
Freitag [15].

Proposition 4.4 in particular implies the following.

Proposition 4.5. Let n > 3. Assume that (I', —id) does not contain a reflection. Let
X be the regular locus of ¥ (I') = T'\D. Then H°(X, T)}@k) = 0 for every k > 0.

Proof. Let w: D — F (T') be the projection and X’ C X be the locus where 7 is
unramified. By [21], the absence of reflection in (I, —id) implies that 7 is unramified
in codimension 1, so the complement of 7! (X’) in & has codimension > 2. Since
we can pull back sections of Tgk by the étale map

M X)— X,
we see that
_ r
HY(X, T = HOX' T = HO(x 7' (X'), T ) = HO(D. TEH)".
Since Tp ~ & ® £~ ! by (2.4), we find that

HO(X. TE%) = HO(D. %% @ £27)T' = (P M)~ (D).
i

where A(i) run over the irreducible summands of St®%. By Proposition 4.4, the last
space vanishes when —k < 0. ]



Quasi-pullback 49
4.2 Quasi-pullback

In this section we show that when f |9/ = 0, we can still obtain a nonzero cusp form
on D’ by considering the Taylor expansion of f along £’. We assume n’ > 3 for
simplicity of exposition, but the results below hold also when n’ < 2 (see the proof
of Proposition 4.10).

We first describe the normal bundle &' = Ngp//p of D’ in D.

Lemma 4.6. We have N ~ (£')™! ® K¢ as an O (L) x O(KR)-equivariant vec-
tor bundle on D'

Proof. By (2.4) and (4.1), we have natural isomorphisms
Tolp ~ (6 QL™ )|p ~ (6@ (Kc ® 0p)) ® (£)7!
~To & (£)7' ® Ko).

This implies
N~ (&) '® K. "

Let I be the ideal sheaf of &’ C D and v > 0. By Lemma 4.6 we have
Y/ 1" o ~ Sym” MY =~ (£)% ® Sym" K¢ (4.5)

as an O1(Lj) x O(KR)-equivariant vector bundle on £’. Therefore we have the
exact sequence

0— 1"118, 4 - I"E 4 — il @ (LN @Sym” K — 0 (4.6)
of sheaves on O. By (4.4) we have an O (L}) x O(Kg)-equivariant isomorphism
Exlor ® (L) @ Sym” K¢ = (D) e iv ® (KO)irie) ® Sym” K¢
o
Note that KX ~ K¢ canonically by the pairing on K. Taking global sections in (4.6),
and then the I'" x G-invariant part, we obtain the exact sequence
0— HD. I 6,07 — HOD. 1", 0" ¢
— B Mu@.k+v(T) ® (Kc)ar@) ® Sym” Kc)©. 4.7
o
By definition, a modular form f € M), x (") vanishes to order > v along O’ if it is

a section of the subsheaf IV&,  of &, k. The vanishing order of f along D’ is the
largest v for which f is a section of IV&, .
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Definition 4.7. Let f € M, ;(I") and v be the vanishing order of f at D’. We define
the quasi-pullback of f

flor € B My atv(T) ® (Kc)ar@ ® Sym” Kc)@
o

as the image of f by the last map in (4.7).

By the exactness of (4.7) and the definition of the vanishing order, we have
fllor # 0. Note that the vanishing order v contributes to the increase kK ~> k + v
of the scalar weight. When v = 0, the quasi-pullback is just the ordinary pullback
considered in Section 4.1.

Example 4.8. When r = 1, ignoring the symmetry by G C {£id}, the quasi-pullback
S llor belongs to @, My (a)k+v(I''). Explicitly, f|lo- is given by the restriction of
f/(,6) to D', where § is a nonzero vector of K and (-, §) is the section of O (1)
defined by the pairing with §.

Example 4.9. The quasi-pullback of a Borcherds product f considered by Borcherds
[5,6] is defined as f/[[5(8,-)| o/, Where § run over primitive vectors in K (with mul-
tiplicity) such that f vanishes at §* N D. This is a single scalar-valued modular form
(again a Borcherds product), while our quasi-pullback produces a tuple of scalar-
valued modular forms, or more canonically, a Sym" K¢-valued modular form. The
relationship is as follows.

The denominator [ [(3, -) is a section of IV - O (v) over D. This corresponds to
a sheaf homomorphism ¢: £8” — IV. By a property of Borcherds products, f is a
section of the subsheaf ((£®V) - £8% of TV . £®% Let7: (£/)® — Sym” NV be the
embedding induced by (| o/ and (4.5). Under the isomorphism

Sym” NV >~ (£)®” ® Sym” K¢,

this corresponds to the vector [ [5(-, §) of Sym” K%, which in turn corresponds to the
vector [ [5 8 of Sym” K¢. Then f'|| o as a section of Sym” NV ® (£/)®¥ takes values
in the sub line bundle T((£/)®") ® (£/)®% ~ (£/)®**V. This section of (£/)®¥+V is
the quasi-pullback in [5, 6].

Next we prove the cuspidality of quasi-pullback. In the case A = 0 and r = 1, this
is due to Gritsenko—Hulek—Sankaran [22, Theorem 8.18].

Proposition 4.10. Let f € M; x(I") and v be the vanishing order of f at D'. Sup-
pose that v > 0. Then f | o’ is a cusp form. Thus

flo € P Sv@iiv(T) & (Kc)ar(@ ® Sym” Kc)©.
o

For the proof of Proposition 4.10, we calculate the Fourier expansion of f || p/.
We work under the same setting and notation as in the proof of Lemma 4.2. We
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choose a basis of Kg,. According to the decomposition U(I)q = U(I)q ® K¢, we
express a point of U(I)c as Z = (Z',zy,...,z,) with Z' € U(I)¢ and z; € C.
Then JD} C Py is defined by z; = --- = z, = 0. The coordinates zy, ..., z, give
a trivialization of the conormal bundle &Y of ;. The quasi-pullback f| o as a
V(I)jx ® Sym” C”-valued function on D; is given, up to constants, by the Taylor
coefficients of f along O in degree v:

A av 4
fllo(Z) = (aw—fvr(z ,0))
Zl cee 8Zr U1+“'+Vr=v

We calculate the Fourier expansion of the Taylor coefficients. In what follows, we
identify (Kg)" =~ Q" by the dual basis of the chosen basis of K¢, and express vectors
of (Kg)" as (n1,...,n,),n; € Q.

Lemmad.11. Let f(Z) =), a(l)q' be the Fourier expansion of f. Let (vy, ..., vy)
be an index with vy + --- + v, = v. Then we have

" p
L _zo=eav=y Y b)),

vl ) vr
0z, 0z, Ve,

where (¢")! = e((I', Z")) and

b(l') = Z ny'eeentcal + (ny, ... np)).

(n1,....,nr)€Q”
U'+(ny,...n)eUU)y,

Here, by convention, 0° = 1 but 0™ = 0 whenm > 0.

Note that the sum defining b(/’) is actually a finite sum for the same reason as in
Lemma 4.2.

Proof. We can rewrite the Fourier expansion of f as

f(Z/,Zl,...,Z,-)
=Y Y al'+(m.....np) e+ (n1....onp) (221, 2p))
I’ (ny,..,nr)
=Y Y all'+ (ny.....np)-e(. Z2) - [ [ enizo).

I’ (ny,...,nr) i=1

Here [’ ranges over (U(1)7)" and (n1, ..., n,) ranges over vectors in Q" = (Kg)"
such that /" + (ny,...,n,) € U(I)y. Since we have

" [, e(nizi)
m (2 TN — )Ul_[n e(n Zl
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we see that
avf
dzyl -0z

=(271«/—_1)”Z Z a(l’—l—(nl,...,nr))-(q')l/-l_[n:-)"-e(nizi).

I (ni,..nr)

(Z/,Zl,...,Zr)

Substituting z; = -+ = z, = 0, this proves Lemma 4.11. ]
Now we complete the proof of Proposition 4.10.

Proof of Proposition 4.10. Let I’ be a vector in ‘C’_} N (U(I)y)Y with (I',1") = 0.
For (ny,...,n,;) € Q", we have I’ + (ny,...,n,) € €7 only when (ny,...,n,) =
(0, ...,0) because Kb is negative-definite and perpendicular to U(/ )b By Lem-
ma 4.11, this shows that

b(l'y = 0" -0 -a(l') = 0

because (vq,...,v,) # (0,...,0) by the assumption v > 0. This proves Proposi-
tion 4.10. ]



