
Chapter 4

Witt operators

In this chapter, as a functorial aspect of the theory, we study pullback of vector-
valued modular forms to sub orthogonal modular varieties, an operation sometimes
called the Witt operator. Let L be a lattice of signature .2; n/ and L0 be a primitive
sublattice of L of signature .2; n0/. We put K D .L0/? \ L and r D rank.K/ D
n � n0. If we write D 0 D DL0 , then D 0 D PL0C \ D . Let f be a vector-valued
modular form on D . In Section 4.1 we study the restriction of f to D 0. This produces
a vector-valued modular form on D 0, whose weight (in general reducible) can be
known from the branching rule for O.n0;C/ � O.n;C/. An immediate consequence
is the vanishing of M�;k.�/ in k � 0 (Proposition 4.4). A more interesting situation
is the case when f vanishes identically at D 0, which we study in Section 4.2. In that
case, we can define the so-called quasi-pullback of f , which produces a cusp form
on D 0 (Proposition 4.10). These operations will be useful when studying concrete
examples.

Restriction of modular forms to sub modular varieties has been considered
classically for scalar-valued Siegel modular forms, going back to Witt [48]. Quasi-
pullback has been also considered in this case: see [10, Section 2] for a general
treatment.

Quasi-pullback of orthogonal modular forms was first considered for Borcherds
products by Borcherds [5, 6], and later for general scalar-valued modular forms by
Gritsenko–Hulek–Sankaran [22, Section 8.4] in the case r D 1. Our terminology
“quasi-pullback” comes from this series of work. The cuspidality of quasi-pullback
was first proved in [21, 22] in the scalar-valued case. Our Proposition 4.10 is the
vector-valued generalization.

4.1 Ordinary pullback

We embed OC.L0R/ � O.KR/ in OC.LR/ naturally. This is the stabilizer of L0R in
OC.LR/. Let � be a finite-index subgroup of OC.L/. Then � 0 D � \ OC.L0/ is a
finite-index subgroup of OC.L0/, and G D � \ O.K/ is a finite group. The product
� 0 �G is a finite-index subgroup of the stabilizer of L0 in � .

Let L0, E 0 be the Hodge bundles on D 0. Since OPLC .�1/jPL0C
D OPL0C

.�1/,
we have LjD 0 D L0. We also have a natural isomorphism

EjD 0 ' E 0 ˚ .KC ˝OD 0/; (4.1)
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which at each fiber is the decomposition

.!? \ LC/=C! D ..!
?
\ L0C/=C!/˚KC:

This corresponds to the decomposition St D St0˚ St00 of the standard representation
of O.n;C/ when restricted to the subgroup O.n0;C/�O.r;C/, where St0 and St00 are
the standard representations of O.n0;C/ and O.r;C/, respectively.

Let � be a partition expressing an irreducible representation V� of O.n;C/. We
denote by

V� '
M
˛

V 0�0.˛/ � V
00
�00.˛/ (4.2)

the irreducible decomposition as a representation of O.n0;C/�O.r;C/, where V 0
�0.˛/

(resp., V 00
�00.˛/

) is the irreducible representation of O.n0;C/ (resp., O.r;C/) with par-
tition �0.˛/ (resp., �00.˛/). See [30, 32] for an explicit description of this restriction
rule in terms of the Littlewood–Richardson numbers. Let k be an integer.

Proposition 4.1. Restriction of modular forms to D 0 � D defines a linear map

M�;k.�/!
M
˛

M�0.˛/;k.�
0/˝ .KC/

G
�00.˛/; f 7! f jD 0 :

This maps cusp forms to cusp forms.

For the proof of Proposition 4.1, we need to calculate the Fourier expansion
of f jD 0 . We take a rank 1 primitive isotropic sublattice I of L0. Let U.I /Z � U.I /Q
be as in Section 3.3 and we define U.I /0Z � U.I /

0
Q similarly for .L0; � 0/. Then

U.I /0Q � U.I /Q and U.I /0Z � U.I /Z. If we write K 0Q D KQ ˝ IQ, we have

U.I /Q D U.I /
0
Q ˚K

0
Q:

The tube domain realization with respect to I (with I 0 also taken from L0) identifies
D 0 � D with

D 0I D DI \ U.I /
0
C � DI :

Lemma 4.2. Let f .Z/D
P
l2U.I/_Z

a.l/ql be the Fourier expansion of f 2M�;k.�/

at the I -cusp of D . Then we have

f jD 0
I
.Z0/ D

X
l 02.U.I/0Z/

_

b.l 0/.q0/l
0

; .q0/l
0

D e..l 0; Z0//; (4.3)

for Z0 2 D 0I , where
b.l 0/ D

X
l 002K0Q

l 0Cl 002U.I/_Z

a.l 0 C l 00/:
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Proof. Let � WU.I /Q ! U.I /0Q be the orthogonal projection. This maps U.I /_Z to a
sublattice of .U.I /0Z/

_. For l 2 U.I /_Z, the restriction of the function ql D e..l;Z//
to D 0I � DI is .q0/�.l/ D e..�.l/; Z0//. Then our assertion follows by substituting
ql D .q0/�.l/ in f D

P
l a.l/q

l . Note that the sum defining b.l 0/ is actually a finite
sum by the condition l 0 C l 00 2 CI (the cusp condition for f ) and the fact that K 0Q is
negative-definite.

Now we prove Proposition 4.1.

Proof of Proposition 4.1. From the expression (3.3) and the decomposition (4.2), we
see that

E�jD 0 '
M
˛

E 0�0.˛/ ˝ .KC/�00.˛/ (4.4)

as an OC.L0R/ � O.KR/-equivariant vector bundle on D 0. With the isomorphism
LjD 0 D L0, we obtain

E�;kjD 0 '
M
˛

E 0�0.˛/;k ˝ .KC/�00.˛/:

If f is a �-invariant section of E�;k over D , this shows that f jD 0 is a � 0 � G-
invariant section of

L
˛ E 0

�0.˛/;k
˝ .KC/�00.˛/ over D 0. Hence it is a � 0-invariant

section of
L
˛ E 0

�0.˛/;k
˝ .KC/

G
�00.˛/

over D 0.
Holomorphicity of f jD 0 at the cusps of D 0 holds automatically when n0 � 3 by

the Koecher principle. In general, this can be seen from Lemma 4.2 as follows. Let I
and K 0Q be as in Lemma 4.2. Since K 0Q is negative-definite, the orthogonal projec-
tion U.I /R ! U.I /0R maps the positive cone CI of U.I /R to the positive cone C 0I
of U.I /0R, and maps CI to C 0I . Hence the vectors l 0 in (4.3) actually range over
.U.I /0Z/

_ \ C 0I . This proves the holomorphicity of f jD 0 around the I -cusp of D 0.
Since I is arbitrary, f is holomorphic at all cusps of D 0. When f is a cusp form, the
vectors l 0 range over .U.I /0Z/

_ \ C 0I for the same reason. This means that f jD 0 is a
cusp form. This proves Proposition 4.1.

Example 4.3. Let us look at a typical example. Let � D St. As noticed before, this
decomposes as St D St0˚ St00 when restricted to O.n0;C/ � O.r;C/, which corres-
ponds to the decomposition (4.1). Therefore restriction to D 0 gives a linear map

MSt;k.�/!MSt0;k.�
0/˚ .Mk.�

0/˝KGC /:

The first component MSt;k.�/ ! MSt0;k.�
0/ can be considered as the main com-

ponent of the restriction, but we also obtain some scalar-valued modular forms in
Mk.�

0/˝KGC as “extra” components. When G fixes no nonzero vector of K, these
extra components vanish. For example, this happens when � contains a reflection
and L0 is the fixed lattice of this reflection.
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As an application of Proposition 4.1, we obtain the following elementary vanish-
ing theorem. Although this will be superseded later (Section 9), we present it here
because it can be proved easily and is already informative.

Proposition 4.4. When k < 0, we haveM�;k.�/D 0. Moreover, we haveM�;0.�/D

0 when � ¤ 1; det.

Proof. Let f 2M�;k.�/ with k < 0. We consider restriction of f to 1-dimensional
domains DL0 � D for sublattices L0 � L of signature .2; 1/. As a representation
of O.1;C/ D ¹˙ idº, V� is a direct sum of copies of the trivial character and the
determinant character. By Proposition 4.1 and the calculation in Section 2.5.1, we see
that f jDL0 is a tuple of scalar-valued modular forms of weight 2k < 0 on the upper
half plane DL0 . Since there is no nonzero elliptic modular form of negative weight,
we find that f vanishes identically at DL0 . Now, if we vary L0, then DL0 run over a
dense subset of D . Therefore f � 0.

When f 2M�;0.�/with �¤1;det, by combining Proposition 3.7 and Lemma 4.2,
we see that f jDL0 is a tuple of scalar-valued cusp forms of weight 0 on DL0 , which
vanish identically. Therefore f � 0 similarly.

The idea to deduce a vanishing theorem by considering restriction to sub mod-
ular varieties is classical. In the case of Siegel modular forms, this goes back to
Freitag [15].

Proposition 4.4 in particular implies the following.

Proposition 4.5. Let n � 3. Assume that h�;� idi does not contain a reflection. Let
X be the regular locus of F .�/ D �nD . Then H 0.X; T˝kX / D 0 for every k > 0.

Proof. Let � WD ! F .�/ be the projection and X 0 � X be the locus where � is
unramified. By [21], the absence of reflection in h�;� idi implies that � is unramified
in codimension 1, so the complement of ��1.X 0/ in D has codimension � 2. Since
we can pull back sections of T˝kX 0 by the étale map

��1.X 0/! X 0;

we see that

H 0.X; T˝kX / D H 0.X 0; T˝kX 0 / D H
0
�
��1.X 0/; T˝k

��1.X 0/

��
D H 0.D ; T˝k

D
/� :

Since TD ' E ˝L�1 by (2.4), we find that

H 0.X; T˝kX / D H 0.D ;E˝k ˝L˝�k/� D
M
i

M�.i/;�k.�/;

where �.i/ run over the irreducible summands of St˝k . By Proposition 4.4, the last
space vanishes when �k < 0.
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4.2 Quasi-pullback

In this section we show that when f jD 0 � 0, we can still obtain a nonzero cusp form
on D 0 by considering the Taylor expansion of f along D 0. We assume n0 � 3 for
simplicity of exposition, but the results below hold also when n0 � 2 (see the proof
of Proposition 4.10).

We first describe the normal bundle N D ND 0=D of D 0 in D .

Lemma 4.6. We have N ' .L0/�1 ˝KC as an OC.L0R/�O.KR/-equivariant vec-
tor bundle on D 0.

Proof. By (2.4) and (4.1), we have natural isomorphisms

TD jD 0 ' .E ˝L�1/jD 0 ' .E
0
˚ .KC ˝OD 0//˝ .L

0/�1

' TD 0 ˚ ..L
0/�1 ˝KC/:

This implies
N ' .L0/�1 ˝KC:

Let 	 be the ideal sheaf of D 0 � D and � � 0. By Lemma 4.6 we have

	�=	�C1jD 0 ' Sym� N _ ' .L0/˝� ˝ Sym� K_C (4.5)

as an OC.L0R/ � O.KR/-equivariant vector bundle on D 0. Therefore we have the
exact sequence

0! 	�C1E�;k ! 	�E�;k ! E�jD 0 ˝ .L
0/˝kC� ˝ Sym� K_C ! 0 (4.6)

of sheaves on D . By (4.4) we have an OC.L0R/ � O.KR/-equivariant isomorphism

E�jD 0 ˝ .L
0/˝kC� ˝ Sym� K_C '

M
˛

E 0�0.˛/;kC� ˝ .KC/�00.˛/ ˝ Sym� K_C:

Note thatK_C 'KC canonically by the pairing onK. Taking global sections in (4.6),
and then the � 0 �G-invariant part, we obtain the exact sequence

0! H 0.D ;	�C1E�;k/
�0�G

! H 0.D ;	�E�;k/
�0�G

!

M
˛

M�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G : (4.7)

By definition, a modular form f 2 M�;k.�/ vanishes to order � � along D 0 if it is
a section of the subsheaf 	�E�;k of E�;k . The vanishing order of f along D 0 is the
largest � for which f is a section of 	�E�;k .
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Definition 4.7. Let f 2M�;k.�/ and � be the vanishing order of f at D 0. We define
the quasi-pullback of f

f kD 0 2
M
˛

M�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G

as the image of f by the last map in (4.7).

By the exactness of (4.7) and the definition of the vanishing order, we have
f kD 0 6� 0. Note that the vanishing order � contributes to the increase kÝ k C �

of the scalar weight. When � D 0, the quasi-pullback is just the ordinary pullback
considered in Section 4.1.

Example 4.8. When r D 1, ignoring the symmetry byG � ¹˙ idº, the quasi-pullback
f kD 0 belongs to

L
˛M�0.˛/;kC�.�

0/. Explicitly, f kD 0 is given by the restriction of
f=.�; ı/� to D 0, where ı is a nonzero vector of K and .�; ı/ is the section of O.1/

defined by the pairing with ı.

Example 4.9. The quasi-pullback of a Borcherds product f considered by Borcherds
[5,6] is defined as f=

Q
ı.ı; �/jD 0 , where ı run over primitive vectors inK (with mul-

tiplicity) such that f vanishes at ı? \D . This is a single scalar-valued modular form
(again a Borcherds product), while our quasi-pullback produces a tuple of scalar-
valued modular forms, or more canonically, a Sym� KC-valued modular form. The
relationship is as follows.

The denominator
Q
ı.ı; �/ is a section of 	� � O.�/ over D . This corresponds to

a sheaf homomorphism �WL˝� ! 	� . By a property of Borcherds products, f is a
section of the subsheaf �.L˝�/ �L˝k of 	� �L˝k . Letx�W .L0/˝� ! Sym� N _ be the
embedding induced by �jD 0 and (4.5). Under the isomorphism

Sym� N _ ' .L0/˝� ˝ Sym� K_C;

this corresponds to the vector
Q
ı.�; ı/ of Sym� K_C , which in turn corresponds to the

vector
Q
ı ı of Sym�KC . Then f kD 0 as a section of Sym�N _˝ .L0/˝k takes values

in the sub line bundlex�..L0/˝�/˝ .L0/˝k ' .L0/˝kC� . This section of .L0/˝kC� is
the quasi-pullback in [5, 6].

Next we prove the cuspidality of quasi-pullback. In the case �D 0 and r D 1, this
is due to Gritsenko–Hulek–Sankaran [22, Theorem 8.18].

Proposition 4.10. Let f 2 M�;k.�/ and � be the vanishing order of f at D 0. Sup-
pose that � > 0. Then f kD 0 is a cusp form. Thus

f kD 0 2
M
˛

S�0.˛/;kC�.�
0/˝ ..KC/�00.˛/ ˝ Sym� KC/

G :

For the proof of Proposition 4.10, we calculate the Fourier expansion of f kD 0 .
We work under the same setting and notation as in the proof of Lemma 4.2. We
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choose a basis of K 0Q. According to the decomposition U.I /Q D U.I /0Q ˚K
0
Q, we

express a point of U.I /C as Z D .Z0; z1; : : : ; zr/ with Z0 2 U.I /0C and zi 2 C.
Then D 0I � DI is defined by z1 D � � � D zr D 0. The coordinates z1; : : : ; zr give
a trivialization of the conormal bundle N _ of D 0I . The quasi-pullback f kD 0 as a
V.I /�;k ˝ Sym� Cr -valued function on D 0I is given, up to constants, by the Taylor
coefficients of f along D 0I in degree �:

f kD 0.Z
0/ D

�
@�f

@z
�1
1 � � � @z

�r
r

.Z0; 0/

�
�1C���C�rD�

We calculate the Fourier expansion of the Taylor coefficients. In what follows, we
identify .K 0Q/

_ 'Qr by the dual basis of the chosen basis ofK 0Q and express vectors
of .K 0Q/

_ as .n1; : : : ; nr/, ni 2 Q.

Lemma 4.11. Let f .Z/D
P
l a.l/q

l be the Fourier expansion of f . Let .�1; : : : ; �r/
be an index with �1 C � � � C �r D �. Then we have

@�f

@z
�1
1 � � � @z

�r
r

.Z0; 0/ D .2�
p
�1/�

X
l 02.U.I/0Z/

_

b.l 0/.q0/l
0

;

where .q0/l
0

D e..l 0; Z0// and

b.l 0/ D
X

.n1;:::;nr /2Qr

l 0C.n1;:::;nr /2U.I/
_
Z

n
�1
1 � � �n

�r
r � a.l

0
C .n1; : : : ; nr//:

Here, by convention, 00 D 1 but 0m D 0 when m > 0.

Note that the sum defining b.l 0/ is actually a finite sum for the same reason as in
Lemma 4.2.

Proof. We can rewrite the Fourier expansion of f as

f .Z0; z1; : : : ; zr/

D

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � e..l
0
C .n1; : : : ; nr/; .Z

0; z1; : : : ; zr///

D

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � e..l
0; Z0// �

rY
iD1

e.nizi /:

Here l 0 ranges over .U.I /0Z/
_ and .n1; : : : ; nr/ ranges over vectors in Qr D .K 0Q/

_

such that l 0 C .n1; : : : ; nr/ 2 U.I /_Z. Since we have

@�
Q
i e.nizi /

@z
�1
1 � � � @z

�r
r

D .2�
p
�1/�

Y
i

n
�i
i � e.nizi /;
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we see that

@�f

@z
�1
1 � � � @z

�r
r

.Z0; z1; : : : ; zr/

D .2�
p
�1/�

X
l 0

X
.n1;:::;nr /

a.l 0 C .n1; : : : ; nr// � .q
0/l
0

�

Y
i

n
�i
i � e.nizi /:

Substituting z1 D � � � D zr D 0, this proves Lemma 4.11.

Now we complete the proof of Proposition 4.10.

Proof of Proposition 4.10. Let l 0 be a vector in C 0I \ .U.I /
0
Z/
_ with .l 0; l 0/ D 0.

For .n1; : : : ; nr/ 2 Qr , we have l 0 C .n1; : : : ; nr/ 2 CI only when .n1; : : : ; nr/ D
.0; : : : ; 0/ because K 0Q is negative-definite and perpendicular to U.I /0Q. By Lem-
ma 4.11, this shows that

b.l 0/ D 0�1 � � � 0�r � a.l 0/ D 0

because .�1; : : : ; �r/ ¤ .0; : : : ; 0/ by the assumption � > 0. This proves Proposi-
tion 4.10.


