Chapter 5

Canonical extension over 1-dimensional cusps

In this chapter we recall the partial toroidal compactification over a 1-dimensional
cusp and the canonical extension of the automorphic vector bundles over it. This
provides a geometric basis for the Siegel operator (Section 6) and the Fourier—Jacobi
expansion (Section 7). Except for a few calculations in Sections 5.4 and 5.5, most
contents of this chapter are essentially expository. We refer the reader to [2] for the
general theory of toroidal compactification, to [21,33,35] for its specialization to the
case of orthogonal modular varieties (especially for more details on the contents of
Sections 5.1-5.3), and to [36] for the general theory of canonical extension. Never-
theless, since this chapter is the basis of many later chapters, we tried to keep the
presentation as self-contained, explicit, and coherent as possible.

Throughout this chapter, L is a lattice of signature (2, n) with n > 3. We fix a
rank 2 primitive isotropic sublattice J of L, which corresponds to a 1-dimensional
cusp of D = Dy. We write

V(Ip=U4])®z F

for F = Q, R, C. This is a quadratic space over F, negative-definite when F =
Q. R. We especially abbreviate V(J) = V(J)c. We also write U(J ) = A%Jf. The
choice of the component D determines an orientation of J so that the R-isomorphism
(w,-): JR = C preserves the orientation for any [w] € £. This determines the positive
part of U(J)R.

For2U = U & U, where U is the integral hyperbolic plane, we will denote by e1,
f1 and e5, f> the standard hyperbolic basis of the first and the second components,
respectively. We say that an embedding ¢: 2Ur < L is compatible with J if it
satisfies ((Ze; @ Ze,) = J. This defines a lift V(J)r ~ (QRQUp)* N Lr of V(J)F
inJ IJ; and hence a splitting

L ~2Ur ®V(N)F =(Ur®J)®V(J)F, (5.1

where we identify (({ f1, f2)) with J;/. We often choose a rank 1 primitive sublat-
tice I of J. We say that (:2Uf < L F is compatible with I C J if ((Ze; & Zey) = J
and ((Ze,) = 1.

5.1 Siegel domain realization

In this section we recall the Siegel domain realization of D with respect to the J-cusp
and explain its relation with the tube domain realization.
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5.1.1 Siegel domain realization
The filtration J C J+ C L on L determines the two-step linear projection
PLc -5 P(L/J)c -2 P(L/J ). (5.2)
Via the pairing on L, this is identified with the dual projection
PLE - P(J&)Y - PJY.

The centre of 7; is P J¢, and the centre of 5 is PV (J). The projection 7, identifies
P(L/J)c —PV(J) with an affine space bundle over P(L/J+)c. If we choose a lift
V(J) < J& of V(J), it defines a splitting (L/J)c = V(J) & (L/J*)c, and so,
defines an isomorphism between the affine space bundle P(L/J)c — PV(J) with
the vector bundle V(J) ® O(1) over P(L/J4)c.

We restrict (5.2) to the isotropic quadric Q C PPL¢. The closure of a my-fiber
is a plane containing P Jc. When this plane is not contained in PJ&, it intersects
properly with Q at two distinct lines, one being P J¢. This shows that

mlg:Q—QNPJEF — P(L/J)c —PV(J)

is an affine line bundle.
Next we restrict (5.2) further to an enlargement of the domain D C Q. Let H
be the connected component of P J ' — P Jy consisting of C-linear maps ¢: Jc — C
such that ¢| s, : JR — C is an orientation-preserving R-isomorphism. By the canon-
ical isomorphism P J Y ~P J¢, H s corresponds to the J-cusp. We put Vy=m5 ' (H,)
and D(J) = (m1]0) 1 (Vs). Then D C D(J). We thus have the extended two-step
fibration
Do) v, Bowy, (5.3)

where V; — Hj is an affine space bundle isomorphic to V(J) ® On, (1), D(J) —
V; is an affine line bundle, and £ — V; is an upper half plane bundle inside D (J) —
V. This is the Siegel domain realization of D with respect to J. (Up to this point,
canonically determined by J.)

5.1.2 Relation with tube domain realization

We choose a rank 1 primitive sublattice / of J. Recall from Section 3.3 that the
tube domain realization at the 7-cusp (before choosing a base point) is the canonical
embedding

DC D)= P/ —PV()

induced by the projection PL¢ --> P(L/I)c. Note that D(J) C D(I). We can
factor the projection 1 in (5.2) as:

PLc --> P(L/I)c - P(L/J)c - P(L/JY)c.
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Hence we have the following commutative diagram:

P(L/)c~PV(U) — P(L/])c~PU*/])c — P(L/JH)c-PU+/TH)c

] I ]

DcCOHW) i sy V, 2 s Hy.

Here the upper row is projections of affine spaces, the left vertical map is the tube
domain realization at I/, and other vertical maps are natural inclusions. The two
squares are cartesian, i.e., D(J) — V; — Hy is the restriction of the upper row
over H ;. Thus the Siegel domain realization at J can be given by a decomposition
of the tube domain realization at I C J.

Next we choose a rank 1 isotropic sublattice I’ C L with (I, I’) # 0 and accord-
ingly a base point of the affine space P(L/I)c — PV(I). This identifies the upper
row of the above diagram with the linear maps

Ull)c =/ De®Ic— (IH/))c®Ic — I/ T e ® Ic.

We identify U(J)c = A%Jc with the isotropic line (J/I)c ® Ic in U(I)c. Then
this is written as the quotient maps

U(l)c - U)c/U(J)c = U(l)c/UWJ)g. (5.4)

Therefore, after choosing the base point I/, the above commutative diagram can be
rewritten as

Ul)e —=— U(I)c/U(J)c —= U(I)c/U(J)E

I I |

DcDWJ) sy, s Hy

where the vertical embeddings are defined by I’ and the two squares are cartesian.
This gives a simpler (but depending on I, I’) expression of the Siegel domain realiz-
ation.

Finally, we introduce coordinates. Let vy be the positive generator of A2J ~ Z.
We choose an isotropic vector I; € U(I)g with (vy,ly) = 1. This defines a split-
ting U(/)g >~ Ug @ Kq, where Kg = V(J)g ® Ig, which determines a splitting
of (5.4). Accordingly, we express a point of U(I)c >~ Cl; x K¢ x Cvy as

Z=(r,z,w)=tly+z+wvy, zeKc, r,weCl. (5.5)
In these coordinates, the 7 -directed Siegel domain realization (5.4) is expressed by

(t,z,w) — (1,2) —> 1.
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The w-component gives coordinates on the 71-fibers (~ U(J)c¢), and T gives coor-
dinates on the base U(I)c/U(J )é >~ U(J){- The images of the embeddings

D) = Ule, Vi=Ul)c/UJ)c, Hy = Ul)c/UU)E

are all defined by the inequality Im(z) > 0, and the tube domain O; C U(I)c is
defined by the inequalities

—(Im(z),Im(z)) < 2Im(7) - Im(w), Im(z) > 0.

Thus the choice of I, I’, I; defines a passage from the canonical presentation (5.3)
to a more classical presentation of the Siegel domain realization.

Remark 5.1. The choice of I’ and [ is almost equivalent to the choice of an embed-
ding 2Ug <> Lg compatible with /g C Jg. More precisely, we choose one of the
two generators of / =~ Z, say vy. Let v; € I, be the dual vector of vy in Ig. We
can write vy = Uy ® vy and [y = l} ® vy for some vectors v € (I(’))l N Jo and
Iy e (I@)J- N 16. This defines an embedding 2Ug < Lg compatible with /g C Jg
by sending

ev—>vr, fir v, er—Uy, f 1.

5.2 Jacobi group

In this section we describe the rational/real Jacobi group of the J-cusp and its action
on the Siegel domain realization.

Let F = Q, R. Let I'(J) r be the subgroup of the stabilizer of Jg in O(L ) act-
ing trivially on A2JF and V(J) . We call I'(J)  the Jacobi group for J over F. (It
is certainly useful to take into account the action on V(J) r, but here we refrain from
doing so for simplicity of exposition.) The Jacobi group has the canonical filtration

U)r CW(I)F CT()F
defined by

W(J)r = Ker(I'(J)r — SL(JF)),
U(J)r = Ker(T'(J)F — GL(JF)).
The group U(J)F consists of the Eichler transvections E;g;s for [,1’ € JF. Since

Epgr = E_jg, U(J)F is canonically isomorphic to A2J . This justifies our use of
the notation U(J)r. We also have the canonical isomorphism

VINFQ®Jr > W(I)F/UJ)F, mIl+— Egzgr mod U(J)F,
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where m € JI% isaliftof m € V(J)F. The linear space V(J)r ® JF has a canonical
U(J) F-valued symplectic form as the tensor product of the quadratic form on V(J)
and the canonical A?Jf-valued symplectic form on Jz. We thus have the canonical
exact sequences

0— W(J)F — F(J)F —>SL(JF) — 1,

(5.6)
0—>UN)rF—>WJ)r >V(J)F®Jr — 0.

The group U(J)F is the centre of I'(J)r, and W(J)F is the unipotent radical of
I'(J)F. The first sequence (5.6) splits if we choose an embedding 2Ur < L com-
patible with Jr and hence a splitting Lz ~ (Jr @ J¥) @ V(J)F asin (5.1):

I'(J)F ~ SL(JF) x W(J)F. (5.7)

Here the lifted group SL(Jr) C I'(J)F acts on the component Jr @ J % in the nat-
ural way. The adjoint action of SL(Jr) on W(J)r/U(J)Fr =~ V(J)F ® JF is the
tensor product of the natural action of SL(JF) on JF and the trivial action on V(J)F.
The group W(J)F is isomorphic to the Heisenberg group attached to the symplectic
space V(J)F ® JF with centre U(J) . We call W(J)F the Heisenberg group for J
over F.

If I is arank 1 primitive sublattice of J, we have

UJ)r CUIF CcI'(J)F, (5.8)

as can be seen from the definitions. In U(I)r = (I+/I)F ® I, U(J)F corresponds
to the isotropic line (J/I)r ® Ir. We also have W(J)r C I'(/)F and

U r "W =U)F =/ DF ® IF.

The image of W(J)Fr in O(V(I)F) is the group of Eichler transvections of V(/)F
with respect to the isotropic line (J/I)F.

The Jacobi group I'(J)r preserves the Siegel domain realization (5.3) by defin-
ition. The actions of the factors U(J) g, W(J)r/U(J)F, SL(JF) of T'(J)F on the
spaces in (5.3) are described as follows.

(1) The group U(J)F acts on Vy trivially. The projection D (J) — V; is a prin-
cipal U(J)c-bundle, where U(J)c = A?Jc is the group of Eichler transvections
Ejgr with 1,1’ € Jc.

(2) The Heisenberg group W(J)F acts on H trivially. The quotient W (J)r/
U(J)F acts on the fibers of V; — H; by translation. More precisely, if  is a point
of Hy C PJY and Jc = J'0 @ J! is the corresponding Hodge decomposition
of Jc (where J'0 is the kernel), the fiber of O, (1) over 7 is Jc/J 0. So the
fiber (V). of V; over 7 is an affine space for V(J) ®c (Jc/J'°). On the other
hand, we have a natural projection V(J)r ®r Jr — V(J) ®c (Jc/J %) which is
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an R-isomorphism. Then the action of an element of W(J)r/U(J)r =~ V(J)r ®r
Jr on the affine space (Vy), is the translation by its projection image in V(J) Q¢
(Jc/TT0).

(3) To describe the action of SL(JF), we take an embedding 2Ur — L com-
patible with Jg. As explained before, this induces an isomorphism V; ~ V(J) ®
Om, (1) and a lift SL(JF) < I'(J) r. Then the lifted group SL(JFr) acts on V; by
its equivariant action on O, (1).

5.3 Partial toroidal compactification

Let T be a finite-index subgroup of O*(L). We take the intersection of I'(J)q,
W(J)q, U(J)g with I" and denote them by

I'N)z=TW)o NI, WU)z=WUJ)oNI, UWJ)z=UJ)gNT.

By the orientation on J, we have a distinguished isomorphism U(J)z =~ Z. We also
denote by I'(J )7, the stabilizer of J in I'. The integral Jacobi group I'(J)z is of finite
index in I'(J))7, because

I'(J);/T(J)z = O(J1/J)

and O(J+/J) is a finite group. If T is neat, we have )z =TW)z.
We put

T(J)z =T()z/U)z, T)p=T)Fr/UJ)z

for F = Q, R. These quotients make sense because U(J)F is the centre of I'(J)F.
By definition we have the canonical exact sequence

0— W(J)z/UW)z = T(J); = T(J)z/W(J)z — 1,

which is canonically embedded in the quotient of (5.6) by U(J)F: more specific-
ally, '(J)z/W(J)z is embedded in SL(J) as a finite-index subgroup, and W(J)z/
U(J)z is embedded in V(J)g ® Jg as a full lattice.

LetT(J) =U(J)c/U(J)z =~ C* be the 1-dimensional torus defined by U(J)z.
We denote by T(J) ~ C the natural partial compactification of T'(J). We take the
quotient of H C D(J) by U(J)z:

X(J)=D/U)z, TJ)=D)/U)z.

Then 7 (J) is a principal T (J)-bundle over V;, which contains X (J) as a fibration of
punctured discs. Let 7 (J) = 7 (J) X7 T(J) be the relative torus embedding. This
has the structure of a line bundle on V; : the scalar multiplication on each fiber is given
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by the action of 7'(J) >~ C*, and the sum is determined by the scalar multiplication
because the fiber is 1-dimensional. The group WR acts on 7 (J) naturally, and this
extends to an action on 7 (J). The fact that I'(J)g commutes with U(J)c implies
that the action of WR on m is an equivariant action on the line bundle.

Let X(J) be the interior of the closure of X (J) in T(J). We call X(J) the
partial toroidal compactification of X (J). This is a disc bundle over V; obtained by
filling the origins in the punctured disc bundle X (J) — V;. Let A; be the boundary
divisor of m This is naturally isomorphic to V. We denote by ® ; the conormal
bundle of Ay in m This is a mwequivariant line bundle on A ;. (Although the
subgroup U(J)r/U(J)z of T(J)g acts on Ay trivially, it acts on the fibers of @ ;
by rotations.)

Lemma 5.2. We have a natural T (J )y -equivariant isomorphism ®V >~ T (J) of line
bundles on Aj.

Proof. Since Ay is the zero section of the line bundle 7 (J), its normal bundle
in X (J) is the same as the normal bundle in 7 (J), which is isomorphic to 7 (J)
itself. "

The partial compactification m already appears in essence in the partial com-
pactifications X (1)* for I C J considered in Section 3.5.1. Recall that the isotropic
ray oy = (U(J)Rr)>0 appears in every I'(/)z-admissible fan X as in Section 3.5.1.
Since U(J)z C U(I)z, we have a natural étale map X (J) — X (I) which is a free
quotient map by U(l)z/U(J)z.

Lemma 5.3. The map X (J) — X (I) extends to an étale map X (J) — X (I)=. The
image of Ay is a Zariski open set of the boundary divisor of X (I)* associated to the
isotropic ray 0.

Proof. Since D(J) C D(I), we have the following commutative diagram (cf. Sec-
tion 5.1.2):
T(J) — DD)/UJ)z — T()

| | |

Vy —— DU)/UJ)c — T)/T{).

Here the vertical maps are principal 7' (J)-bundles, and the two right horizontal maps
are free quotients by U(I)z/U(J)z. The two squares are cartesian: the right is the
pullback of a principal 7'(J)-bundle to a U(I)z/U(J)z-cover, and the left is the
restriction to an open set. Since the upper row is 7'(J)-equivariant, it extends to

T(J) = (DU)/UJ)z) xr5y TT) = T) x5y T(J).

The second map is still a free quotient by U(1)z/U(J)z. The image of Ay C T(J)
by this map is an open set of the (unique) boundary divisor of T'(I) X7y T(J).
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Since T'(1) x7y) T(J) is the torus embedding of 7'(I) associated to the ray oy, it
is a Zariski open set of 7'(/)%. Thus we obtain an étale map 7 (J) — T(I)* which
maps A to an open set of the boundary divisor of 7'(I)¥ correspondingtoo;. m

5.4 Canonical extension

In this section, which is the central part of Section 5, we extend the automorphic
vector bundles & ; over m This is an explicit form of Mumford’s canonical
extension [36] which is suitable for dealing with the Fourier—Jacobi expansion. We
use the same notations &£, &, &,, &, x for the descends of these vector bundles
to X (J). They are TJ)R -equivariant vector bundles on X (J).

We choose an adjacent 0-dimensional cusp I C J. Since U(J)z C I'({)R, the /-
trivialization of &, x over & descends to an isomorphism &, x >~ V(1) x ® Ox(J)
over X (J) = D/U(J)z. Thus we still have the [-trivialization over X (J). This is
equivariant with respect to (I'(/)r N I'(J)r)/U(J)z. We extend &, j to a vector
bundle over X (J) (still use the same notation) by requiring that this isomorphism
extends to

Erk = V()i k ® Oxipy-

We call it the canonical extension of & j over m This is the pullback of the
canonical extension over X (/)= defined in Section 3.5.3 by the gluing map X (J) —
X (I)% in Lemma 5.3. By construction, the frame of &, x over X (J) corresponding
to abasis of V([); x viathe [ -trivialization extends to a frame of the extended bundle
over X (J).

Proposition 5.4. The canonical extension of &), y over X (J) defined above does not
depend on the choice of 1. The action of I'(J ) on &, x over X (J) extends to action
on the canonical extension of &), y over X (J).

The proof of this proposition amounts to the following assertion.

Lemma 5.5. The factor of automorphy of the I' (J )r-action on & _j with respect to
the I -trivialization is constant on each fiber of w1: D — Vj. In particular, if I’ is
another R-line in Jg, the difference of the I -trivialization and the I'-trivialization at
[w] € D as the composition map

VD, = (Er)w = VU ik (5.9)
is constant on each 1 -fiber.

Proof. Let j(y, [@]) be the factor of automorphy in question. This is a GL(V(1); x)-
valued function on I'(J)r x . What has to be shown is that j(y, [w]) = j(y, [@']) if
71 ([w]) = m1([@']). We consider the natural extension of &, x over £(J), on which



Canonical extension 61

the group U(J)c-T"(J)R acts equivariantly. Note that U(J)c commutes with I'(J)R.
We can write ['] = g[w] for some g € U(J)c. Since U(J)¢ acts trivially on I¢
and V (1), we have j(g,-) = id. Therefore

Iy, glo]) = j(rg, [@]) = j(gy. [w]) = j(y. [@]).

As for the second assertion, we choose y € I'(J)r with y(Ig) = I’. Then (5.9)
coincides with the isomorphism

yo ity Llw)) : V(Dax = V(Dak = VU )ik

1

Hence the constancy of j(y™", [w]) over m;-fibers implies that of (5.9). |

Now we can prove Proposition 5.4.

Proof of Proposition 5.4. Let I, I' be two rank 1 primitive sublattices of J. By the
second assertion of Lemma 5.5, the difference of the 7-trivialization and the [I’-
trivialization

VIDrk @ Oxry = Erk = VU Nak @ Oxsys (5.10)

viewed as a GL(n, C)-valued holomorphic function on X (J) via basis of V(1) x
and V(I’), k. is constant on each fiber of X (J) — V;. Therefore it extends to a
GL(n, C)-valued holomorphic function over X (J). This implies that (5.10) extends
to an isomorphism

V(IDak ® Oy = VU ak ® Oxzy

over m Thus the two extensions agree.

Extendability of the WR—action on &,  can be verified as follows. Let y €
I'(J)r. The y-action on &, ; sends a frame corresponding to a basis of V(I);
via the /-trivialization to a frame corresponding to a basis of V(y[I), x via the yI-
trivialization. By Lemma 5.5 again, the latter extends to a frame over X (J) also in
the 7-trivialization. Thus y sends an extendable frame to an extendable frame. This
means that the y-action extends over m ]

The fact that the canonical extension comes with an [/ -trivialization (but inde-
pendent of it) enables us to develop the theory of Fourier—Jacobi expansion (Sec-
tion 7) in an intrinsic but still explicit way. The following property will play a funda-
mental role in Section 7.

Proposition 5.6. Let w1: X(J) — Vj ~ Ay be the projection. Then we have a
I (J)g-equivariant isomorphism & x >~ w{ (&} k|a,) over X (J).




Canonical extension over 1-dimensional cusps 62

Proof. We fix a rank 1 primitive sublattice / C J and let j(y, [w]) be the factor
of automorphy of the I'(J)r-action on &, ; with respect to the [ -trivialization. By
Lemma 5.5, the GL(V (1), x)-valued function j(y, [w]) on I'(J)r x X (J) descends
to a GL(V({) x)-valued function on I'(J)r x Ay. This gives the factor of auto-
morphy of the I'(J)r-action on &, x|a, with respect to the /-trivialization

Exxlay, 2 VU )rx ®Oa,.

The fact that its pullback agrees with the factor of automorphy of &,  implies that
the composition

71 (Eakla,) = i (V(Dak ® Oa,) = V(Iak ® Oy = Eak

gives a I'(J )r-equivariant isomorphism 777 (€, x|a ;) — &x k over X (J), where the
first isomorphism is the pullback of the I-trivialization over A, and the last iso-
morphism is the /-trivialization over X (J). ]

Remark 5.7. By the proof, we have the following commutative diagram:

7 Erula,) —— &k

| |

f(V(Dak ® Oay) —— VUik ® Oxgy-

Here the upper arrow is the isomorphism in Proposition 5.6, the vertical arrows are
the 7 -trivializations, and the lower arrow is the natural isomorphism.

Remark 5.8. Although the canonical extension at the level of X (J) still has a trivi-
alization (by construction), this no longer holds when passing to the full toroidal
compactifications (Section 5.6). Around Ay we need to further take the quotient
by mz» which does not preserve the trivialization.

5.5 The Hodge line bundle at the boundary

In this section we study the Hodge line bundle &£ relative to the J-cusp and show that
its canonical extension can be understood more directly. Let

Ly =0m,(=1) = Opp sy (=Dlm,

be the Hodge bundle over the upper half plane H ;. The group I'(J)r acts on £
equivariantly via the natural map I'(J)gr — SL(Jr). Letm = mp o 11: D — H; be
the projection from D to H ;.
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Lemma 5.9. We have a T (J)r-equivariant isomorphism £ ~ 7*£Lj over D.

Proof. Recall that 7 is restriction of the projection PL¢ --> P(L/J1)c. Since this
is induced by the linear map L¢c — (L/J1)c, we have a natural isomorphism

7 Opy 1y (1) =~ Opre(=1)

over PLc — IP’J(é-. Restricting this isomorphism to D, we obtain £ >~ 7n*£ ;. Since
the projection Lc — (L/J+)c is T'(J)r-equivariant, so is the isomorphism £ ~
a*Ly. n

The fiber of 7* &£y over [w] € D is the image of the projection Cw» — (L/J 1),
and the isomorphism £ — 7*£ s over [w] is identified with the natural map Cw —
Im(Cow — (L/JY)c).

The projection § — H; descends to X (J) — H; and extends to m — Hy,
naturally. We denote it again by m: m — Hy. The isomorphism in Lemma 5.9
descends to a T'(J ) -equivariant isomorphism £ ~ 7* £ | %) over X (J). We have
respective extension of both sides over m: for £ the canonical extension construc-
ted in Section 5.4, and for 7*& s | (s the natural extension 7*&£ ;. It turns out that
these two extensions agree, as the following proposition shows.

Proposition 5.10. The isomorphism £>~n*&L j|x () over X (J) extendstoaT'(J )g-
equivariant isomorphism between the canonical extension of £ and n*£j over
X (J). In particular, we have £|p , >~ 75 Ly over Aj.

Proof. We choose a rank 1 primitive sublattice / C J. The canonical extension of &£
is defined via the [ -trivialization of £, which we denote by (7: &£ ~ I ® Ox(s). On
the other hand, we also have a trivialization (}: £; ~ Il ® Om, of £; = Om, (—1)
over Hy C P(L/J+)c induced by the pairing between (L/J1)c and Ic. The nat-
ural extension 7*& ; of *& ;| x(s) over X (J) coincides with the extension via the
trivialization

B

Tl
7*Lylx) —= 7 UE ® Om,)|xw) = I ® Ox(y, (5.11)

because 7 *(} is defined over m

We observe that the composition of (5.11) with the isomorphism & >~ 7* &£ s | x ()
in Lemma 5.9 coincides with the [ -trivialization ¢; of &£: this is just the remark that
taking the pairing of a vector w € L¢ with I¢ (this is ¢7) is the same as projecting @
to (L/JL)c (thisis £ — 7*£ ) and then taking pairing with I¢ (this is w*t}). From
this coincidence, we see that the isomorphism in Lemma 5.9 extends to an isomorph-
ism over m from the extension of &£ via ¢; (this is the canonical extension of &£)
to the extension of 7*&£ y|x(s) via 7*(} (this is 7*&£ ). The TJ)R—equivariance
holds by continuity. ]
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Thus the canonical extension of £ defined in Section 5.4 via the [ -trivialization
can be understood more directly as the canonical (verbatim) extension 7*&£; of
w* L%

Remark 5.11. By the proof of Proposition 5.10, £ is endowed with the [ -trivial-
ization /¥ ® Op, — £, induced by the pairing between (L/J1Y)c and Ic, and its
pullback by 7 agrees with the [ -trivialization of £ via the isomorphism &£ >~ 7*L ;.

5.6 Toroidal compactification

In this section we recall the (full) toroidal compactifications of the modular variety
F(I') = I'\D following [2]. While this provides a background for our geometric
approach, logically it will be used only in Section 10 in a rather auxiliary way, so the
reader may skip it for the moment.

The data for constructing a toroidal compactification of ¥ (I") is a collection ¥ =
(X7) of I'(I)z-admissible rational polyhedral cone decomposition of ‘C’I’L CcCU)r
in the sense of Section 3.5.1, one for each I'-equivalence class of rank 1 primitive
isotropic sublattices I of L. Two fans X, ¥/ for different I"-equivalence classes I,
I’ are independent, and no choice is required for rank 2 isotropic sublattices J (it is
canonical). Then the toroidal compactification is defined by

7% = (DU X v X))/ ~,
I J

where I (resp., J) run over all primitive isotropic sublattices of L of rank 1 (resp.,
rank 2), and ~ is the equivalence relation generated by the following étale maps.

(1) The y-action D — D, X(I)* — X(yI)*1, X (J) — X(yJ) fory e T.

(2) The gluing maps D — X ()%, D — X (J)and X (J) — X (I)>! forI C J
as in Lemma 5.3.

By [2, Section IIL5], #(I")* is a compact Moishezon space which contains % (T")
as a Zariski open set and has a morphism ¥ (I')* — ¥ (F)bb to the Baily—Borel
compactification. We have natural maps

X(I)* /T(I)g — F@O)= X))/ (T)y/UJ)z) — FO)  (5.12)

These maps are isomorphism in a neighbourhood of the locus of boundary points
lying over the 7 -cusp and the J -cusp, respectively (see [2, p. 175]). We may choose
so that ¥ (T")¥ is projective. When I is neat and each fan X; is regular, i.e., every
cone is generated by a part of a Z-basis of U(I)z, then ¥ (I')* is nonsingular [2,
Section II1.7].
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Next we explain the canonical extension of &, x over ¥ ()% (cf. [36]). We
assume that I is neat and 3 is regular. Then not only I itself but also the subquotients
I'(I)z and I'(J)7/U(J)z = T'(J)g are torsion-free, so the quotient map

Dul | XD u| | X)) - F(D)*
1 J

is étale. The vector bundle &, x is initially defined on & and hence on

Du| |xmul |xw.
1 J

In Sections 3.5.3 and 5.4, we constructed the canonical extension of &, x over X (/) Zr
and X (J), respectively. By construction we have a natural isomorphism

P 6k = &k

for a gluing map p in (2) above. Moreover, we have a natural isomorphism y* & j >~
&,k for the action of y € T': this is evident for O and X (/)*/, while it is assured by
Proposition 5.4 for X (J). Since these isomorphisms are compatible with each other,
the extended vector bundle &, x on

Du| x> ul |xd)
1 J

descends to a vector bundle on ¥ (T")Z. We denote it again by &, k. This is the
same as extending &, x on F (T") over the boundary of ¥ (I")* by using the local
charts (5.12).

Proposition 5.12. For T neat, we have M x(T') = H°(¥ ()%, &; ).
Proof. We have the natural inclusion
HO(F(T)”, &30) — HY(F(T), &14) = My ().

It is sufficient to see that this is surjective. Let f € M, x(I"). As a section of & x
over X (1), f extends holomorphically over X (7)¥/ by Lemma 3.11. By the gluing,
J extends holomorphically over X (/). Therefore, as a section of &, x over ¥ (I"),
f extends holomorphically over ¥ (I")*. ]

Let us remark an immediate consequence of this interpretation. We go back
to a general finite-index subgroup I' of OT(L). For a fixed A, the direct sum
Drso0 Mi x(T) is a module over the ring Py Mk (T') of scalar-valued modular
forms.

Proposition 5.13. For each A, the module @, M), i (') is finitely generated over the
ring @ My (T).
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Proof. We may assume that I" is neat by replacing the given I' by its neat sub-
group of finite index. We take a smooth toroidal compactification ¥ (I')¥ as above
andlet 7: F (I)* - F (F)bb be the projection to the Baily—Borel compactification.
Then £®" = 7*©(1) for an ample line bundle (1) on ’F(I‘)bb by [36, Proposi-
tion 3.4 (b)]. (In fact, £ itself descends, but we do not need that.) It suffices to show
that for each 0 < ko < n, the module @ M} k,+nk (') is finitely generated over
@D M,k (T'). By Proposition 5.12, we have

B Mi ko 1ni (@) = P HO(F (D)%, €5 4, ® 7*O(K))
k>0 k>0

~ P HOF (D) 154 ® O(K)).
k>0

where the second isomorphism follows from the projection formula for w. Since
F (F)bb is projective, the last module is finitely generated over the ring

P HOF @), 0(k) = P Mur(T)
k k

by a general theorem of Serre (see, e.g., [37, p. 128]). |



