Chapter 7

Fourier—Jacobi expansion

Let L be a lattice of signature (2,n) with n > 3 and I" be a finite-index subgroup
of O (L). We fix a rank 2 primitive isotropic sublattice J of L. In this chapter we
study the Fourier—Jacobi expansion of vector-valued modular forms at the J-cusp.
From a geometric point of view, the Fourier—Jacobi expansion is the Taylor expansion
along the boundary divisor A y of the partial toroidal compactification m The m-
th Fourier—Jacobi coefficient is the m-th Taylor coefficient, and is essentially a section
of the vector bundle & ; ® @?m over Ay, where ®; is the conormal bundle of A .
Here we have some special properties beyond general Taylor expansion:

» existence of the projection 7r1: X' (J) — Ay and the isomorphism
Erk =7y (Eakla,)

(Proposition 5.6), and

» existence of a special generator w; of the ideal sheaf of A ; which is a linear map
on each fiber of ;.

These properties ensure that the m-th Fourier—Jacobi coefficient as a section of the
vector bundle &)  ® ®§’m over Ay is canonically defined (Corollary 7.5) and is
invariant under TJ)Z. If we take the (/, wy)-trivialization for / C J, we can pass
to a more familiar definition of the Fourier—Jacobi coefficient as a slice in the Fourier
expansion at /.

In general, we define vector-valued Jacobi forms as T'(J)z-invariant sections
of &)1 ® @?m over Ay with cusp condition (Definition 7.10). Thus the Fourier—
Jacobi coefficients are vector-valued Jacobi forms (Proposition 7.12). Although our
approach is geometric, our Jacobi forms in the scalar-valued case are indeed classical
Jacobi forms in the sense of Skoruppa [43] if we introduce suitable coordinates and
the (I, wy)-trivialization (Section 7.4). When n = 3, our vector-valued Jacobi forms
essentially agree with those considered by Ibukiyama—Kyomura [27] for Siegel mod-
ular forms of genus 2.

When J comes from an integral embedding 2U < L and I is the so-called stable
orthogonal group, the Fourier—Jacobi expansion of scalar-valued modular forms is
well understood through the work of Gritsenko [20]. A large part of this chapter
can be regarded as a geometric reformulation and a generalization of the calculation
in [20, Section 2]. A lot of effort will be paid for keeping introduction of coordinates
as minimal as possible (though never zero), or in other words, for describing what is
canonical in a canonical way. We believe that this style would be suitable even in the
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scalar-valued case when working with general (T, J), for which simple expression
by coordinates is no longer available.

7.1 Fourier-Jacobi and Fourier expansion

We begin with the familiar (but non-canonical) way to define Fourier—Jacobi expan-
sion: slicing the Fourier expansion. The passage to a canonical formulation will be
given in Section 7.2.

We choose a rank 1 primitive sublattice I of J, and also a rank 1 sublattice I’ C L
with (1, 1") # 0. Recall from Section 5.1.2 that U(J)r = A2 Jg is identified with the
isotropic line (J/I)r ® Ir in U(I)r = (I*/I)r ® Ir, and that the Siegel domain
realization of  with respect to J can be identified with the restriction of the projec-
tion

U()e — Uc/UW)c = U(l)e/U()E

to the tube domain Dy C U(I )¢ after the tube domain realization D >~ Dy. The ori-
entation of J determines the nonnegative part 65 = (U(J)Rr)s0 of U(J)r. Let vy r
be the positive generator of U(J)z = U(J)g N I'. We choose a rational isotropic vec-
tor/yr € U(I)g suchthat (vyr,lyr)=1.Thenv, , /s span arational hyperbolic
plane in U({)g. We put

wy =q"T =e(sr.2)), ZeU)c.

This is a holomorphic function on U(I )¢ invariant under the translation by U(J)z.
Thus we have chosen the auxiliary datum /7, ', /j . These will be fixed until Lem-
ma 7.4.

Let f be a I'-modular form of weight (A, k). We identify f with a V(1)) -
valued holomorphic function on O; via the [-trivialization and the tube domain
realization, and let f(Z) = ) ; a(l )q' be its Fourier expansion. Like the calcula-
tion in Section 3.5.2 (see also Remark 3.10), we can rewrite the Fourier expansion
as

£(Z) = Z( 3 ad +ml,,p)q’)w;". (1.1)

m=0 1eU(J))g

Here [ ranges over vectors in U(J) (J@ such that/ +mlyr € U(I)y . They form a trans-
lation of a full lattice in U(J )6 Although [ is not necessarily a vector in U(1)y,
this expression still makes sense over the tube domain ;. We call (7.1) the Fourier—
Jacobi expansion of f at the J-cusp relative to 7, I’, [y r, and usually write it as

f=2 dmo} (7.2)

m=>0
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with
¢m= > al+mlr)g. (7.3)

1eU(NG

We call ¢, the m-th Fourier—Jacobi coefficient of f at the J-cusp relative to 1,
I’, lyr. This is a V(1) x-valued function on £y. Since [ € U(J)@ in (7.3), ¢m
actually descends to a V([) -valued function on Ay C U(I)c/U(J)c. We often
do not specify the precise index lattice in (7.3); it is convenient to allow enlarging it
as necessary by putting a(/ + mlyr) = 0when! +ml;r ¢ U(I)y. Whenm = 0,
¢o is the restriction of f to Ay and was studied in Section 6. In this chapter we study
the case m > 0.

7.2 Geometric approach to Fourier-Jacobi expansion

In Sections 7.2 and 7.3 we give a geometric reformulation of the Fourier—Jacobi
expansion (7.2). Our starting observation is (compare with Section 3.5.2):

Lemma 7.1. The Fourier—Jacobi expansion (7.2) gives the Taylor expansion of the
V(1) k-valued holomorphic function f on m along the boundary divisor Ay
with respect to the normal parameter wj, where ¢y, is the m-th Taylor coefficient as
a V(1) k-valued function on Aj.

Proof. Since the function f is invariant under the translation by U(J)z C U(I)z, it
descends to a function on X (J) >~ Dy /U(J)z. Since (I;r,vsr) = 1 for the posit-
ive generator vy 1 of U(J)z, the function w; = e((/s,r, Z)) descends to a function
on X(J) and extends holomorphically over X (J), with the boundary divisor A s
defined by w; = 0. In particular, w; generates the ideal sheaf of A ;. On the other
hand, as explained above, the Fourier—Jacobi coefficient ¢,, is the pullback of a
V(1) x-valued functionon Ay C U({)c/U(J)c (again denoted by ¢,,). Thus [ =
Y (T dm)w’} gives the Taylor expansion of f along A ; with respect to the normal
parameter wy, in which the V' (/) x-valued function ¢,, on A is the m-th Taylor
coefficient. ]

Recall from Section 5.3 that m is an open set of the relative torus embedding
TJ)=TWU) XT(J) T(J) which has the structure of a line bundle on A ;. Since
D(J) C D) ~ U(I)c, the function wy on X (J) extends over T (J) naturally. It
is a linear map on each fiber of 7(J) — A . Indeed, the fact that w; preserves the
scalar multiplication follows from the equality

e((yr.avyr + Z)) = e(@)-e((sr.Z)). aeC,

and similarly for the sum. The following property will be used in Section 7.3.
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Lemma 7.2. Foreachy € I'(J)z we have y*w; = (7] j,) - wj for a nowhere van-
ishing function j, on Aj.

Proof. Since y acts on 7 (J) — Ay as an equivariant action on the line bundle (see
Section 5.3), y*wy is also linear on each fiber. Therefore y*wy/wy is the pullback
of a function on A ;. See also Corollary 7.15 for a computational proof. |

Let us reformulate Lemma 7.1 by passing from vector-valued functions to sec-
tions of vector bundles. Let I = I, be the ideal sheaf of Ay and ®; = I /T 2
be the conormal bundle of A ;. As explained above, w; generates I over m In
particular, it generates ® ; over A y. We have

"/ I = @9 = On, 0§

for every m > 0. In what follows, we write & k|a, ® @?m =8&1x ® @QJZ”” for
simplicity. The I -trivialization & k|a, ~ V(I)jx ® Oa, of &, k|a, and the trivi-
alization of %™ by »%" define an isomorphism

Erk ®OF" ~ V(1) 4 ® Op,.

We call this isomorphism the (I, wy)-trivialization of &, y ® @?m. Via this iso-
morphism, we regard the V' (1), x-valued function ¢, over A as a section of &) ; ®
®?m over A . Specifically, the process is to multiply the function ¢,, by w?m, and
then regard ¢, ® a)}@m as a section of &) x ® @?m by the I -trivialization.

Proposition 7.3. The Taylor expansion of sections of &, y over X (J) along the
boundary divisor A j with respect to the normal parameter wj and with the pull-
back

aiHY(A g, Exkla,) = HY (X)), Exx) (7.4)

defines an embedding

HOX(D). &) = [ HO(As. €24 ® O™, f 1> (b @ 0™, (1.5)

m=>0

where ¢y, are the sections of &), |a, with f =), (7{ ¢m)@'}. If we send a modular
form f € My x(I') as a section of &), x by this map, its image is the Fourier—Jacobi
coefficients of f regarded as sections of &) x ® @Q})m via the (I, wy)-trivialization.

Here the pullback map (7.4) is defined by the isomorphism
Erk =7y (Eakla,)

in Proposition 5.6. Via the [ -trivialization, this is just the pullback of V' (1), x-valued
functions by 71: X (J) — Ay (see Remark 5.7). The existence of this pullback map
is one of key properties in the Fourier—Jacobi expansion.
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Proof. The exact sequence of sheaves
0—>I"ME x> Ik > E1p ®OF" >0
on X (J) defines the canonical exact sequence

0— HYX(J). I" &) > HYUX(J). I™E3 k) — H(Ay. 63 @ OF™).
(7.6)
The generator @’} of I"™ and the pullback map

nfHY(Ay, Eakla,) = HO(X (). Erk)

define the splitting map
HO(Ay. 83 ® OF") = HY(X()). I"Ep). ¢ @ 0F™ 1> 0 -7fdp (1.7)

of (7.6). Here a)?m in the source is a section of @?m over Ay, while @7 in the
target is a section of the sheaf I™ over X (J). This defines a splitting of the filtration
(H°(X(J), I™E&) k))m on H°(X(J), &, k) and thus an embedding

HOX(J). &20) = [ H(As. 61k @ OF™).

m=>0

Explicitly, this is given by writing a section f of &, x over X (J) as

f = Z(nrd’m)wrjn

with ¢,, a section of &, x|a,, and sending f to the collection (¢, ® a)?m )m of
sections.

Since 77 is just the ordinary pullback after the /-trivialization, the equation
f =2 w@dm)w when f is a modular form coincides with the Fourier-Jacobi
expansion (7.2) of f after the /-trivialization. Thus the [/ -trivialization of ¢,, is the
m-th Fourier—Jacobi coefficient (7.3). It follows that the section ¢, ® a)}gm is identi-
fied with the Fourier—Jacobi coefficient by the (7, wy)-trivialization. |

At first glance, the Taylor expansion (7.5) may seem non-canonical because the
lifting map (7.7) uses the special normal parameter s, which as a function on X (J)
depends on the choice of /5, I’, I. In fact, it is canonical.

Lemma 7.4. The map (7.7), and hence the Taylor expansion (7.5), does not depend
on the choice of Ly, I', I.

Proof. Let @y be the special normal parameter constructed from another such data
(I,1',1yr). Both wy and @y extend over 7 (J) and are linear at each fiber of the



Fourier—Jacobi expansion 86

projection 7r1: 7 (J) — A . Therefore we have @ /w; = m{§ for a nowhere vanish-
ing holomorphic function £ on A ;. Then the map (7.7) defined by using @y in place
of wy sends ¢ ® a)?m as

PP = (TP @G > B T () = 0F -7,
This coincides with the map using w;. ]

This in particular implies the following.

Corollary 7.5. The m-th Fourier—Jacobi coefficient of a modular form, viewed as a
section of &)k ® @QJD’" over Ay via the (I, wy)-trivialization, does not depend on
the choice of lyr, I', I.

This means that we obtain the same section of &, ; ® @?m even if we start from
the Fourier expansion at another 0-dimensional cusp IcJ.

To summarize, the Fourier—Jacobi expansion of a modular form f as a sec-
tion of &, x is a canonical Taylor expansion along Aj; which uses but does not
depend on the choice of a special normal parameter wy. The m-th Fourier—Jacobi
coefficient is canonically determined as a section of &)  ® @?m. If we take the
(I, wy)-trivialization, this section is identified with the V(1) x-valued function (7.3)
defined as a slice in the Fourier expansion of f at the /-cusp.

7.3 Vector-valued Jacobi forms

We want to refine Proposition 7.3 by taking the invariant part for the integral Jacobi
group I'(J)z and imposing cusp condition. This leads us to define vector-valued
Jacobi forms in a geometric style. In what follows, we let m > 0 and consider the
vector bundle &,  ® @?m over Ay, leaving modular forms on £ for a while.

As in Sections 7.1 and 7.2, we choose a rank 1 primitive sublattice / of J, a
rank 1 sublattice I’ C L with (I, ") # 0, and an isotropic vector I;r € U(I)q
with (I;r,vyr) = 1. (I will be fixed until Definition 7.10, and I’, Iy will be
fixed until Lemma 7.9.) We keep the same notation as in Section 7.1. Since U(I)z C
I'(J)z by (5.8), the group WR contains U(1)z/U(J)z as a subgroup. As recalled
in Section 7.1, I’ determines an embedding Ay < U(I)c/U(J)c. The action of
U(l)z/U(J)z on Ay is given by the translation on U(I)c/U(J)c.

We consider the action of U(1)z/U(J )z on the vector bundle &; x ® ®§’m. The
I -trivialization &) g |a, ~ V(1) x ® Oa, over Ay is equivariant with respect to the
subgroup (I'(/)r N I'(J)R)/U(J)z of I'(J)g. In particular, it is equivariant with
respect to U(1)z/U(J)z. Since U(1)z/U(J )z acts trivially on V(I); x, the factor
of automorphy for the 7 -trivialization of &, |a, is trivial on this group. On the other
hand, as for the w-trivialization of ® s, we note the following.
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Lemma 7.6. There exists a finite-index sublattice Ao of U(1)z/U(J)z such that
v*wy = wy forevery y € Ay. In particular, the factor of automorphy for the (I, wy)-
trivialization &) j ® @‘?m V() ®0a, of €5 k ®®§’m is trivial on the group A .

Proof. Recall that v € U(/)Rr acts on the tube domain Dy ~ P as the translation
by v, say t,,. Then

tyog =e((lyr.Z +v)) =e((lyr,v)) ;.
Therefore, if we put

Ao={veUl)z/UJ)z | (syr.v+U(J)z) CZ}, (7.8)

we have 1wy = wy forevery v € Ay. Since (U(I)z.l;,r) C Q and U([)z is finitely
generated, we have (U(1)z, 1y r) C N~'Z for some natural number N. This shows
that Ay is of finite index in U({)z/U(J)z. ]

Let ¢ be a mz-invariant section of the vector bundle &, ; ® @?m over Aj.
By the (I, wy)-trivialization of &, x ® @?m, we regard ¢ as a V(I), x-valued holo-
morphic function on A y. By Lemma 7.6, the function ¢ is invariant under the trans-
lation by the lattice A¢. Therefore it admits a Fourier expansion of the form

$(Z) =) alq', ZeA;CcUU)c/UW)c, (7.9)
leA

where a(l) € V(1) k., g' = e((l, Z)), and A is a full lattice in U(J)(J@ (which is the
dual space of U(I)q/U(J)q).

At this point, A can be taken to be the dual lattice of A defined by (7.8), but
we can replace A by its arbitrary overlattice (or even the whole U(J )6) by setting
a(l) =0if [ ¢ Ay. It is sometimes convenient to enlarge A in this way. For this
reason, we do not specify the lattice A in (7.9).

Remark 7.7. The dual lattice of Ag in U(J )6 can be explicitly written as
Ay = Uy Zlyr) N UG-
We do not use this information.
Replacing A by its overlattice, we assume that A is of the split form
A =Z(Bvsr) ® K,

where 81 > 0 is a rational number and K is a full lattice in / JLF nUJ )(JQ;. Note that K
is negative-definite. Accordingly, we can rewrite the Fourier expansion of ¢ as

¢$(Z)= > Y am.Dq'dtr. qir=e(vir,2)), (7.10)

nGﬂIZZGK

forZe Ay cUU)c/UJ)c.-
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Definition 7.8. We say that ¢ is holomorphic at the I -cusp of Hy if a(n,l) # 0 only
when 2nm > |(I,1)|. We say that ¢ vanishes at the I-cusp if a(n,l) # 0 only when
2nm > |(1,1)].

The expression (7.10) of the Fourier expansion of ¢ depends on the choice of I’,

Iy, A. Specifically,

» I’ determines the embedding Ay — U({)c/U(J)c.

* [ determines the normal parameter w; which determines the trivialization
of @QJ;’". The vector /7  also determines the splitting U(J)(J@ =U(J)g ® Kg of
the index space U(J )6

* A is the index lattice in the Fourier expansion which is taken to be a split form.

However, we can prove the following.
Lemma 7.9. Definition 7.8 does not depend on the choice of I', Iy r, A.

Proof. We verify this for the holomorphicity condition. The case of vanishing condi-
tion is similar.

(1) If we change I, its effect is the translation on Ay C U(I)c/U(J)c by a vec-
tor of U(1)g/U(J)q. This multiplies each Fourier coefficient a(n, /) by a nonzero
constant, so its vanishing/nonvanishing does not change.

(2) The condition 2nm > |(I, )| is the same as the condition

(mlyr+v.mlyr+v)>0 (7.11)

for the vector v=nvyr+[/ of U(J )6 which corresponds to the index (n,/). With /7 ¢
fixed, this condition does not depend on the lattice A.
(3) Finally, if we change /; r, the new vector can be written as

Uyr =150 +1lo—2""(lo. lo)vsr

for some vector /o € Kg. Since the normal parameter wy = e((/;r, Z)) is replaced
by

(o.l0)/2 .
r

oy =e((l)r.2)) =q" - q] vy,

—mlo ,q'Jn(r{o,lo)/Z

we have to multiply the function ¢ by ¢ when passing from the w -

trivialization to the w’;-trivialization of @?m . Also
Ko =I7rNUW)G
is replaced by K(’@ = /J’F)L NUWJ )(JQ;, for which we have the natural isometry

K@—)Kb, ll—)l/ Z=l—(l,lo)v,],r.
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Therefore the new Fourier expansion is

_ lo,l0)/2
¢/ ::¢.q mly .q';lg_‘o 0)/

s

=3 Y an g gm0

neQleKg

'—mll, n+(,lo)—m(lo,lp)/2
_ Z Z a(n,lyq' mloq;’F( 0)-m(lo.l0)/2.
nEQlGK@

In the last equality we used
I —mly = (1 —mly) + (I —mlo,lo)vyr.
This means that a(n, [) is equal to the Fourier coefficient of ¢’ of index
(n+ (I.1o) —m(lo.1o)/2,1' =mly) € Q & Kg.
The holomorphicity condition 2nm > —(I, 1) for ¢ can be rewritten as
2m(n + (I,10) — m(lo, lo)/2) = —(I" = mlg, " — mly).
This is the holomorphicity condition for ¢’. ]

Lemma 7.9 ensures that Definition 7.8 is well defined for a I (J ) -invariant sec-
tion of &) x ® @?m.

Definition 7.10. We denote by
Jrakm(T(N)z) C HO(Ay, €10 @ OF™)

the space of mz—invariant sections ¢ of &, x ® G)Q}’m over Ay which are holo-
morphic at every cusp I C J of Hj in the sense of Definition 7.8. We call such
a section ¢ a Jacobi form of weight (A, k) and index m for the integral Jacobi
group I'(J)z. We call ¢ a Jacobi cusp form if it vanishes at every cusp I C J. When
A = (0), we especially write Joy x,m(I'(J)z) = Ji,m(T'(J)z).

For later use (Section 7.4), we note the following.

Lemma 7.11. Let y be an element of I'(J)q which stabilizes J. A mz-invariant
section ¢ of &) k ® @?m over Ay is holomorphic at the y(I)-cusp of Hy if and
only if the y 1T (J )z y-invariant section y*¢ of €, x ® @?m is holomorphic at the
I-cusp of Hy.

Proof. This holds because the pullback of a Fourier expansion of ¢ at the y(/)-cusp
by the y-action

y :U)c/U(J)c - Uyl)c/U(J)c
and the isomorphism y: V(1) x — V(yI)a k gives a Fourier expansion of y*¢ at
the I-cusp. |
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Now we go back to modular forms on & and refine Proposition 7.3 for M} x (T").
Recall that the m-th Fourier—Jacobi coefficient of a modular form was initially defined
as a V(I); x-valued function on A by (7.3), and then regarded as a section of the
vector bundle &) ; ® 6)?”’ by the (/, wj)-trivialization. By Corollary 7.5, this section
is independent of /.

Proposition 7.12. For m > 0 the m-th Fourier—Jacobi coefficient of a modular form
f € My x(I') as a section of & x ® @?m is a Jacobi form of weight (A, k) and
index m in the sense of Definition 7.10. When f is a cusp form, the Fourier-Jacobi
coefficient is a Jacobi cusp form.

Proof. In what follows, &s‘m stands for the m-th Fourier—Jacobi coefficient of f as
a section of &, x ® @?m. What has to be shown is that ¢, is T'(J) z-invariant and
is holomorphic at every cusp of H ;. We first check the cusp condition. Let I C J
be an arbitrary cusp (not necessarily the initial one). Corollary 7.5 ensures that the
Fourier expansion of 5,,, at the I -cusp of H ; is given by the series (7.3) obtained from
the Fourier expansion of f at the /-cusp of £. Then the holomorphicity condition
for 5,,, at I, written in the form (7.11), follows from the cusp condition in the Fourier
expansion of f at /. The assertion for cusp forms follows similarly.

It remains to check the mz -invariance of 5,,, Let ¢y, = {5,,, ® a)?_m. This is a
section of &, x|a, whose I-trivialization is the (1, w)-trivialized form (7.3) of &m
By Proposition 7.3, we have the expansion

f=) @iomoT (7.12)

as a section of & , where we view w; as a generator of the ideal sheaf T of A;. We
let y € T'(J)g act on this equality. Then we have

Y=Y v Eiem) o™ =Y a1t om) (Yo"

by Proposition 5.6. By Lemma 7.2, we have y*w; = (1] j,) - @ for a holomorphic
function j, on A;. Therefore we have

v f =Y mtU) v eme]. (7.13)

Since f is [-invariant, we have y* f = f. Comparing (7.12) and (7.13), we obtain
bm =J," y*¢m for every m. This means that ¢, = ¢, ® a)?m is y-invariant. This
proves Proposition 7.12. ]

When m = 0 and A # det, let us denote by J ,o(I'(J)z) the space of I'(J) -
invariant sections of

&) @ L%, ~ n £ @ V(JI)u
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over Ay which is holomorphic at every cusp of H;. By the result of Section 6,
the 0-th Fourier—Jacobi coefficient ¢9 = f|a, of a modular form f € M, (')
belongs to this space (cuspidal when A # 1). Then, as a refinement of Proposition 7.3
for M; ("), we see that the Fourier-Jacobi expansion gives the embedding

My x (@) = [ Takem@DNz), =D (1 ¢m)e] = @m @ @F)m,

m=>0

which is canonically determined by J.

7.4 Classical Jacobi forms

In this section we introduce coordinates and translate Jacobi forms with A = 0 in
the sense of Definition 7.10 to classical scalar-valued Jacobi forms a la [20,43]. The
result is stated in Proposition 7.18. Our purpose is to deduce a vanishing theorem in
the present setting (Proposition 7.19) from the one for classical Jacobi forms.

7.4.1 Coordinates

We begin by setting some notations. In U(J )g ~ A% Jg we have two natural lattices:
A2J and U(J)z. The former depends on L, and the latter depends on I'. Recall that
the positive generator of U(J)z is denoted by v r (Section 7.1), and the positive
generator of A2J is denoted by vy (Section 5.1.2). Then vy = Bov J,r for some
rational number B¢ > 0. This constant 8¢ depends only on L and I". We choose an
isotropic plane in Lg whose pairing with Jg is nondegenerate, and denote it by J&
for the obvious reason. This is fixed throughout Section 7.4. We identify V(J)g =
(J+/J)q with the subspace (Jo & J)* of Lo.

Next we choose a rank 1 primitive sublattice / of J. Let ey, f1, €2, f> be the
standard hyperbolic basis of 2U . We take an embedding 2Ug < Lg which sends

Zei @ Zey —J, Zey—1. QfidQfs— Jy

isomorphically. Thus it is compatible with / C J in the sense of Section 5. We
identity ey, f1, e2, f> with their image in Lg. Then vy = e; ® e;. We define vectors
ly,ljr € U(I)g (asin Sections 5.1.2and 7.1) by Iy = f, ® ey and [ = Bols. We
also put I’ = Z f1. The choice of these data has two effects: it introduces coordinates
on P and on the Jacobi group.

The coordinates on D are introduced following Section 5.1.2. The choice of
I’ = 7 f defines the tube domain realization & — D; C U(I)c. According to the
decomposition

Ul)c = Uc®V(J)c)®Ic =Cly x (V(J) ® Cey) x Cuy,
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we express a point of U(/ )¢ as
Z=tlj+zQe +wvy =(r,z,w), t,weC, zelV(J)c.

These are the same coordinates as in (5.5) except that z in (5.5) is z ® e; here. When
Z € Py, the corresponding point of D is Cw(Z), where

wZ)=fi+ttf/h+z+wes—((z,2)/2+ Ttw)e; € Lc. (7.14)

Note that this vector is normalized so as to have pairing 1 with e;. In these coordin-
ates, the Siegel domain realization D — V; — H; with respect to J is the restriction
of the projection

ClyxV({J)yxCvy —>Cly xV({J)—>Cly, (t,z,w)>(1,2)>T1

to the tube domain £y . The coordinates introduced on H; C P(L/J l)<c and V; C
P(L/J)c are written as

HSHy, tetly=C(fi +1h), (7.15)
Hx V)=V, (2)>tly+z@e=C(fi+1tf+z). (7.16)

Note that the isomorphism (7.15) maps the cusps ]P’é ={ico} UQ of H C P! to the
cusps PJy of Hy C P J¢¥, and especially maps the cusp i oo to the /-cusp ItNPJY
of Hy.

Next we consider the Jacobi group I'(J) r, F = Q, R. Recall from (5.7) that the
splitting Ly = (Jr @ JY) @ V(J)F defines an isomorphism

F(J)F ZSL(JF)D(W(J)F, (7.17)
which we fix below. (This splitting depends on J ., but not on 1.) We identify
SL(JF) = SL(JF) = SL(2, F)

by the basis f>, f1 of J } , or equivalently, by the basis e;, —e; of Jg. Thus an element
(¢5) eSL(2, F)actson Jp & Jy by

ey = ae; —cey, eyt> —bey+dey, fi—dfi+bfa, far>cfitafs.

Finally, we have a splitting of the Heisenberg group W(J)F as a set:

W(J)F ~UUJ)F x(V(J)F ® Fer) x (V(J)F ® Fes)
~ FxV(J)r xV(J)F, (7.18)

where we take vy as the basis of U(J)Fr. Accordingly, we write an element of
W(J)F as (a, vy, v2), where o € F and vy,v, € V(J)F C L. In this expression,
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(2,0,0) = avy corresponds to Egeyne; € U(J)F, (0,v1,0) to Ey, e, and (0,0, v2)
to Ey,ge,. Note that each V(J)r ® Fe; and V(J)fF ® Fe, are, respectively, sub-
groups of W(J) F, but they do not commute.

Proposition 7.13. The action of T'(J)F on D is described as follows.
(1) (2,0,0) € U(J)F acts by

(t.z,w) —~ (1, z,w + ).
(2) (0,v1,0) € W(J)F acts by
(r,z,w) — (1,2 + v1, w).
(3) (0,0,v5) € W(J)F acts by
(t.z,w) = (1,2 + T2, w — (V2,2) — 271 (V2, V2) 7).

(4) (45) e SL(2, F) acts by

at+b z c(z,z) )

(#.2,w) > (cr+b’cr+d’w+2(cr+d)

Proof. Letw(Z) € Lc be asin (7.14). By direct calculation using the definition (1.3)
of Eichler transvections, we see that

Eqeype, (@(Z)) = fi+tfa+z+ (w+a)ex + Ae;
=w(Z +(0,0,a)),
Eyige (0(Z2)) = f1 + /2 + (z + v1) + wea + Aey
= w(Z + (0,v1,0)),
Ev,0e,(0(Z2)) = f1 + tf2 + (2 + tv2)+ (W — (2, v2) —(7/2) (v2, v2))ez + Aey
= (Z + (0, 7v2, —(z,v2) — (v/2)(v2, v2))),

(¢ )@ =crrasntans

+z4+ ((ct+d)w + (c¢/2)(z,z2))es + Aey.
Here the constant A in each equation is an unspecified constant determined by the
isotropicity condition. This proves (1)—(4). ]

Proposition 7.13 agrees with the classical description of the action of Jacobi group
in [20, p. 1185]. («, vy, vy correspond to r, y, x in [20], respectively.) We note two
consequences of the calculation in Proposition 7.13.
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Corollary 7.14. Let y € I'(J)r and (% 5) be its image in SL(2, R). The factor of
automorphy of the y-action on £ with respect to the I -trivialization £ ~ I ® O 9
isct+d.

Proof. In view of (2.2), this follows by looking at the coefficients of fj in the equa-
tions in the proof of Proposition 7.13. ]

This gives a computational explanation of the I'(J)gr-equivariant isomorphism
£ ~ x*£L; in Lemma 5.9. We also provide a computational proof of Lemma 7.2.

Corollary 7.15 (cf. Lemma 7.2). Let y € I'(J)r and wj = e((lyr, Z)) be as in
Section7.1. Then y*wy; = j, (v, z)wy for a function j,(z,z) of (t, z) which does not
depend on the w-component.

Proof. Since ljr = Boly, if we express Z = (z, z, w), we have
wy =e((lsr.2)) = e((Bols. wvy)) = e(Bow).
Therefore, if we denote by y*w the w-component of y(Z), we have
Vos)/o; = eBo(y™w —w)). (7.19)
It remains to observe from Proposition 7.13 that y*w — w depends only on (7,z). =

The function j, (7, z) is the inverse of the factor of automorphy of the y-action
(= pullback by y~!) on the conormal bundle ®; of A; with respect to the w-
trivialization. Thus j, (7, z) is the multiplier in the slash operator by y on ®; with
respect to the w-trivialization. By (7.19), j, (t, z) is explicitly written as follows.

e(ﬂoa)’ )/ = (Ol,(), O)v

: 1, y = (0,v1,0),

Jy(T.2) = » : (7.20)
e(—Bo(v2,2) =27 Bo(v2,v2)T), ¥ = (0,0,v7),
e(SEE2), y=(25).

If we divide I'(J)r by U(J )R, these coincide with the multipliers in the slash oper-
ator in [43, p. 248] with k = 0 and the quadratic space V(J)g(—pBo). (We identify
the half-integral matrix F' in [43] with the even lattice with Gram matrix 2 F, and this
lattice tensored with Q corresponds to our V(J)g(—pBo).)

7.4.2 Translation to classical Jacobi forms

Now, using the coordinates prepared in Section 7.4.1, we describe Jacobi forms with
A = 0in a more classical manner. We identify

Ay ~Hx V(J)
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by (7.16) and accordingly use the coordinates (,z) on Ay. We put g5 = e(t) =
e((vy,Z))andgyr =e((vsr,Z)) (asin (7.10)) for Z = (r,z) € Ay. Since vy =
Bolvs.thengyr = e(By't) = (g7)P0 " . We also write B = By !B

Let ¢ € Ji m(I'(J)z) be a Jacobi form of weight (0, k) and index m in the sense
of Definition 7.10. Via the (I, wy)-trivialization and the basis e; of 7,

L8 @ 09" ~ (IH)®* ® Oa, ~ O4,.

we regard ¢ as a scalar-valued function on A ;. Let V(J)(Bom) be the scaling of the
quadratic space V(J) by Bom.

Lemma 7.16. We identify V(J) = V(J)(Bom) as a C-linear space naturally and
regard ¢ as a function on Ay ~ H x V(J)(Bom). Then ¢ has a Fourier expansion
of the form

o(t,z) = Z Z a(n,l)qlqﬁ, t e H, z € V(J)(Bom).

n€PrZ leKy (Bom)Y

Here ¢! = e((1, 2)) with (1, z) being the pairing in V(J)(Bom), and Ky is some full
lattice in V(J)q such that Ki(Bo) is an even lattice. The holomorphicity condition
at the I-cusp is 2n > |(1,1)|.

Proof. Recall from (7.10) that ¢ as a function on H x V(J) has a Fourier expansion
of the form

¢(t,z) = Z Za(n,l)qlqj,r, teH, zeV({J),

nep1Z leK’

where K’ is some full lattice in V(J)g and ¢’ = e((1,z)). (The vectors [ in (7.10) are
| ® ey here.) The I-cusp condition is 2nm > |(/,[)|. We substitute g; r = (q;)ﬂt?l
and rewrite 8 5 as n. Then this expression is rewritten as

o(t,z) = Z Z a(n,l)qlqﬁ, teH, zeV({J)),

nePrZ leK’

with the 7-cusp condition being 2nBom > |(I,1)|. By enlarging K’, we may assume
that K’ = K for alattice K; C V(J)q such that K;(Bo) is even.

Next we identify V(J) = V(J)(Bom) as a C-linear space, which multiplies the
quadratic form by Bom. This identification maps the lattice K;” C V(J) to the lattice
Bom Ky (Bom)Y CV(J)(Bom). Then, by multiplying the index lattice K’ by (Bom) ™
and identifying it with K;(Bom)" by this scaling, the Fourier expansion of ¢ as a
function on H x V(J)(mpBo) is written as

¢p(r.z)= Y. > alDg'q;. teH, zeV(I)(Bom),

nePrZ leKy (,Bom)V
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where (1, z) in ¢' = e((l, z)) is the pairing in V(J)(Bom). The I-cusp condition is
then rewritten as 2n > |(I,1)| for l € Kj(Bom)". [

Here we passed from g r to gy because the latter does not depend on I, and
passed from V(J) to V(J)(Bom) in order to match our holomorphicity condition at
the I-cusp to the holomorphicity condition at i co of Skoruppa [43, p. 249].

Next we shrink the integral Jacobi group I'(J) to a subgroup of simpler form.
We let 'y C SL(J) be the intersection of I'(J)z with the lifted group SL(Jg) C
I'(J)g- (This is different from the notation in Section 6.3 in general.) Note that I'y
does not depend on / (but on J(é C Lg). The splitting (7.17) defines an isomorphism

L'(J)/U(J)q = SL(Jg) x (V(J)q ® Jo),

where SL(Jg) acts on V(J)g ® Jg by its natural action on Jg. We fix this splitting
of I'(J)g/U(J)g. The inclusion I'(J)z C I'(J)q defines a canonical injective map
mz — I'(J)g/U(J)g. Its image is not necessarily a semi-product. Elements in
the intersection mz N (V(J)g ® Qe;) are images of elements of I'(J)z of the
form Ege,nes © Evge;» v € V(J)q, but ey A ey € U(J)q is not necessarily con-
tained in U(J)z in general. We remedy these two subtle problems by passing to a
subgroup of TJ)Z as follows.

Lemma 7.17. There exists a full lattice K} in V(J)q such that
I'yx (K;®zJ)CT(J)g (7.21)

as subgroups of I'(J )q/U(J )q, and for each i = 1,2, the subgroup K; @z Ze; of
this semi-product is contained in the image of W(J)z N (V(J)o ® Qe;) in I'(J)q/
U(J)q, where V(J)g ® Qe; is the component of W(J)q in (7.18).

Proof. The intersection of W(J)z with the component V' (J)g ® Qe; in (7.18) is a
full lattice in V(J)g ® Qe; and hence can be written as K; ®z Ze; for some full
lattice K; in V(J)g. We put K; = K; N K,. Then the second property holds by
construction. Since J = Ze; @ Ze,, it follows that

K;i®zJ CT(J)zN(V(J)g ® Jo).

Since we also have I'y C I'(J)5 N SL(Jg) by construction, the inclusion (7.21) is
verified. ]

The second property in Lemma 7.17 means that Eyge,, Evge, € W(J)z forv €
K}, and their images in I'(J)q/U(J)q form the subgroups K; ®z Ze,, K; @z Ze;
in (7.21), respectively. Their factors of automorphy on ®; are given by the second
and the third line in (7.20), respectively. This is why we require the second property
in Lemma 7.17.
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We can now state the translation of Jacobi forms in a precise form. For an even
negative-definite lattice K’, let Ji g/(I'y) be the space of Jacobi forms of weight k
and index lattice K’(—1) for the group

I'; <SL(J) ~ SL(2,7Z)

in the sense of Skoruppa [43, p. 249]. (In the notation of [43], K'(—1) is the positive-
definite even lattice with Gram matrix 2 F, and corresponds to the Z" in the Heisen-
berg group in [43, p. 248]. The dual lattice of K’(—1) corresponds to the index Z" in
the Fourier expansion in [43, p. 249].)

Proposition 7.18. There exists a full lattice K in V(J)q such that K(Bo) is an even
lattice and we have an embedding

Jem(T(N)z) = T,k (Bom)(T'y)
foreverym > 0 and k € Z.

Proof. The correspondence is summarized as follows.
(1) Start from a section ¢ of L%k @ 6)?'” over Aj.

(2) Choose arank 1 primitive sublattice / C J and identify ¢ with a holomorphic
function on Ay by the (I, wy)-trivialization of L%k @ ®‘§m.

(3) Identify Ay >~ H x V(J)(Bom) by the coordinates in Section 7.4.1 and the
scaling

V(J) = V(J)(Bom).
(4) In this way ¢ is identified with a holomorphic function on H x V(J)(Bom).

We shall show that this correspondence defines a well-defined map from Ji ,, (I'(J) z)
to Ji, k(om) (') for a suitable lattice K C V(J)q.

We replace K; in Lemma 7.16 and K} in Lemma 7.17 by their intersection
K; N K and rewrite it as K;. Then Lemma 7.16 says that our Jacobi form ¢ viewed
as a function on H x V(J)(Bom) by the above procedure has the same shape of Four-
ier expansion as that of Jacobi forms of weight k and index lattice Kj(Bom) atioo
in the sense of [43, p. 249]. Our I -cusp condition 2n > |(/,1)| agrees with the holo-
morphicity condition at oo in [43]. By Corollary 7.14 and (7.20), we see that the
factor of automorphy for the action of I'; x (K; ® J) on £8% @ @?m with respect
to the (I, wy)-trivialization agrees with the factor of automorphy for the slash oper-
ator |k, v (J)(Bom) in [43, p. 248]. Therefore the function ¢ satisfies the transformation
rule of [43, p. 249] (Definition (i)) for the group I'y < SL(J) with weight k and
index lattice Ky (Bom). In particular, the function ¢ is also holomorphic (in the sense
of [43]) at the cusps equivalent to / under I';.

It remains to cover all cusps. The coincidence of the automorphy factors on
SL(Jr) implies that the function ¢ v (s)(gom)y for y € SL(J) is identified with
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the section y*¢ via the (I, ws)-trivialization. Then we have

the section ¢ is holomorphic at the yI-cusp in our sense
& the section y*¢ is holomorphic at the 7 -cusp in our sense

< the function ¢

k,V(J)(Bom)Y 18 holomorphic at i oo in the sense of [43].

The first equivalence follows from Lemma 7.11, and the second equivalence follows
by applying the argument so far to the Jacobi form y*¢ for y~'T'(J)zy C T'(J/)o
(with J = y(J) and U(J )z unchanged). Here the index lattice for y*¢ is determined
from the Fourier expansion of y*¢ at the I-cusp with the group y~'I'(J)zy, by
the procedure in Lemma 7.16. We denote it by K, ;(Bom), with K, a full lattice
in V(J)q. This may be in general different from Kj.

Then we take representatives Iy = I, I, ..., Iy of I'j-equivalence classes of
rank 1 primitive sublattices of J and put

K =K1, C V().

As a function on H x V(J)(Bom), ¢ satisfies the transformation rule of Jacobi forms
of weight k and index lattice K(Bom) for 'y < SL(J), and is holomorphic at the
cusps I1 =ioo, I,...,Ixy of Hy >~ H in the sense of [43]. If y([;), y € 'y, is an
arbitrary cusp of Hy, the holomorphicity of ¢ = ¢|r v(s)B,m)Y at I; implies that
of ¢ at y([/;). Thus ¢ is holomorphic at all cusps, namely, ¢ € Jx k(gom)(I's). ]

Proposition 7.18 implies the following.
Proposition 7.19. We have Ji ,,,(I'(J)z) = O when k <n/2 —1.

Proof. This holds because J x/(I'y) = 0 when k < tk(K")/2 = n/2 — 1 (see [43,
p- 251)). [



