
Chapter 8

Filtrations associated to 1-dimensional cusps

Let L, � , J be as in Section 7. In this chapter we introduce filtrations on the auto-
morphic vector bundles canonically associated to the J -cusp, and study its basic
properties. These filtrations will play a fundamental role in the study of the Fourier–
Jacobi expansion. Our geometric approach will be effective here. In Section 8.1 we
define the filtration on the second Hodge bundle E . This induces filtrations on general
automorphic vector bundles E�;k (Section 8.2). In Section 8.3 we study these filtra-
tions from the viewpoint of representations of a parabolic subgroup. In Section 8.4,
as the first application of our filtration, we prove that vector-valued Jacobi forms
decompose, in a certain sense, into scalar-valued Jacobi forms of various weights.
The second application will be given in Section 9.

8.1 J -filtration on E

In this section we define a filtration on E canonically associated to J . For Œ!� 2 D

we consider the filtration

0 � !? \ JC � !
?
\ J?C � !

? (8.1)

on !? D !? \ LC .

Lemma 8.1. Let pW!?! !?=C! be the projection. Then p.!? \ JC/ has dimen-
sion 1 and p.!? \ J?C / D p.!

? \ JC/
? in !?=C!.

Proof. Since .!; J / 6� 0, we have dim.!? \ JC/ D 1. The fact that C! 6� JC then
implies that p.!? \ JC/ has dimension 1. Next we prove the second assertion. It is
clear that p.!? \ J?C / � p.!

? \ JC/
?. Since p.!? \ JC/

? is of codimension 1
in !?=C! by the first assertion, it is sufficient to show that p.!? \ J?C / is of codi-
mension 1 too. Since C! 6� JC , we have .!; J?/ 6� 0. This implies that !? \ J?C
is of codimension 1 in J?C , and so of codimension 2 in !?. The fact that C! 6� J?C
implies that the projection !? \ J?C ! !?=C! is injective. Hence p.!? \ J?C / is
of codimension 1 in !?=C!.

Let EJ be the sub line bundle of E whose fiber over Œ!� 2 D is the image of
!? \ JC in !?=C!. This is an isotropic sub line bundle of E . Taking the image
of (8.1) in !?=C! and varying Œ!� 2 D , we obtain the filtration

0 � EJ � E?J � E (8.2)

on E . We call it the J -filtration on E . By construction, this is �.J /R-invariant.
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We calculate the graded quotients of the J -filtration. Let � WD ! HJ be the
projection to the J -cusp and LJ be the Hodge bundle on HJ . We write V.J / D
.J?=J /C as before.

Proposition 8.2. We have �.J /R-equivariant isomorphisms

EJ ' �
�LJ ; E?J =EJ ' V.J /˝OD ; E=E?J ' �

�L�1J : (8.3)

Proof. We begin with EJ . Let Œ!�2D . The fiber of EJ over Œ!� is the line!? \ JC �

JC , while that of ��LJ is the image of C! in .L=J?/C . In order to compare these
two lines, we consider the canonical isomorphisms

.L=J?/C ! J_C  JC: (8.4)

Here the first map is induced by the pairing on L, and the second map is induced by
the canonical symplectic form J � J !^2J 'Z on J . The second map sends a line
in JC to its annihilator in J_C . In (8.4), the above two lines are both sent to the line
.C!; �/jJC in J_C (the pairing of JC with C!). This gives the canonical isomorphism

.��LJ /Œ!� D Im.C! ! .L=J?/C/! !? \ JC D .EJ /Œ!�:

Varying Œ!�, we obtain a �.J /R-equivariant isomorphism ��LJ ' EJ .
Consequently, we obtain the description of the last graded quotient

E=E?J ' E_J ' �
�L�1J ;

where the first map is induced by the quadratic form on E .
Finally, we consider the middle graded quotient E?J =EJ . The fiber of this vector

bundle over Œ!� 2 D is .!? \ J?C /=.!
? \ JC/. We have a natural map

.!? \ J?C /=.!
?
\ JC/! J?C =JC D V.J /: (8.5)

This is clearly injective. Since the source and the target have the same dimension, this
map is an isomorphism. Varying Œ!�, we obtain a �.J /R-equivariant isomorphism
E?J =EJ ! V.J /˝OD .

Next we choose a rank 1 primitive sublattice I of J and describe the J -filtration
under the I -trivialization.

Proposition 8.3. The I -trivialization E ' V.I / ˝ OD sends the J -filtration (8.2)
on E to the filtration

.0 � J=I � J?=I � I?=I /C ˝OD

on V.I /˝OD .
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Proof. Since the I -trivialization V.I /˝ OD ! E preserves the quadratic forms, it
suffices to check that this sends .J=I /C ˝OD to EJ . Recall that the I -trivialization
at Œ!� 2 D is the composition map

I?C =IC ! !? \ I?C ! !?=C!: (8.6)

The inverse of the first map sends the line !? \ JC in !? \ I?C to the line JC=IC in
I?C =IC , and the second map sends !? \ JC to .EJ /Œ!� by definition. Therefore (8.6)
sends JC=IC to .EJ /Œ!�. This proves our assertion.

The J -filtration descends to a filtration on the descent of E to X.J /DD=U.J /Z.
We consider the canonical extension over the partial toroidal compactification X.J /.

Proposition 8.4. The J -filtration on E over X.J / extends to a filtration on the
canonical extension of E over X.J / by �.J /R-invariant sub vector bundles. The iso-
morphisms (8.3) for the graded quotients on X.J / extend to isomorphisms between
the canonical extensions of both sides over X.J /.

Proof. We choose a rank 1 primitive sublattice I of J . Recall that the canonical
extension of E is defined via the I -trivialization E ! V.I / ˝ OX.J /. By Propos-
ition 8.3, the I -trivialization sends the sub vector bundles EJ and E?J of E to the
sub vector bundles .J=I /C ˝ OX.J / and .J?=I /C ˝ OX.J / of V.I / ˝ OX.J /,
respectively. The latter clearly extend to the sub vector bundles .J=I /C ˝ O

X.J /

and .J?=I /C ˝ O
X.J / of V.I /˝ O

X.J /, respectively. This means that EJ and E?J

extend to sub vector bundles of the canonical extension of E . They are still �.J /R-
invariant by continuity.

We prove that the isomorphisms (8.3) extend over X.J /. We begin with EJ '

��LJ . For each Œ!� 2 D we have the following commutative diagram of isomorph-
isms between 1-dimensional linear spaces:

!? \ JC
p1 //

p3

��

.C!; �/jJC

p4

��

JC=IC p2
// I_C :

Here p1 is restriction of the second isomorphism JC ! J_C in (8.4), p2 is the map
induced from this JC ! J_C , p3 is the natural projection, and p4 is the restriction
of the natural map J_C ! I_C to the line .C!; �/jJC of J_C . Recall from the proof of
Proposition 8.2 that p1 is identified with the isomorphism EJ ! ��LJ at Œ!� after
the canonical isomorphism

J_C ' .L=J
?/C:
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Varying Œ!�, we obtain the following commutative diagram of isomorphisms between
line bundles on X.J /:

EJ
p1 //

p3

��

��LJ

p4

��

.J=I /C ˝OX.J / p2
// I_C ˝OX.J /:

Here p1 is the isomorphism we want to extend, p2 is the constant homomorphism,
p3 is the I -trivialization of EJ , and p4 is the pullback of the I -trivialization of LJ

(cf. Remark 5.11). By construction, the canonical extension of EJ is given via p3.
Similarly, by the proof of Proposition 5.10, the canonical extension of ��LJ is given
via p4. Since p2 is constant, it extends over X.J /. Then this commutative diagram
shows that p1 extends to an isomorphism between the canonical extensions of EJ
and ��LJ .

Next we consider E?J =EJ ! V.J /˝OX.J /. We observe that for each Œ!� 2 D ,
the natural composition

.!? \ J?C /=.!
?
\ JC/! .J?C =IC/=.JC=IC/! J?C =JC;

where the first isomorphism comes from !? \ I?C ! I?C =IC , coincides with the iso-
morphism (8.5) defining E?J =EJ !V.J /˝OX.J / at Œ!�. Therefore the isomorphism
E?J =EJ ! V.J /˝OX.J / in (8.3) factorizes as

E?J =EJ ! .J?=I /C ˝OX.J /=.J=I /C ˝OX.J / ! V.J /˝OX.J /;

where the first isomorphism is induced by the I -trivialization and hence gives the
canonical extension of E?J =EJ , and the second isomorphism is the constant homo-
morphism. The constancy of the second isomorphism ensures that it extends over
X.J /. This shows that the isomorphism E?J =EJ ! V.J /˝ OX.J / in (8.3) extends
to an isomorphism between the canonical extensions.

Finally, the extendability of E=E?J ' �
�L�1J follows from the extendability of

EJ ' ��LJ and the fact that the quadratic form on E extends over the canonical
extension (by construction).

8.2 J -filtration on E�;k

In this section we use the J -filtration on E to define a filtration on a general auto-
morphic vector bundle E�;k .

We begin with a recollection from linear algebra. Let V be a C-linear space of
finite dimension endowed with a decreasing filtration of length 3:

0 � F 1V � F 0V � F �1V D V:
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We denote by
Grr V D F rV=F rC1V

the r-th graded quotient. (By convention, F 2V D 0.) Let d > 0. On the tensor product
V ˝d we have a decreasing filtration of length 2d C 1 defined by

F rV ˝d D
X
jEi jDr

F i1V ˝ F i2V ˝ � � � ˝ F idV; �d � r � d; (8.7)

where Ei D .i1; : : : ; id / run over all multi-indices such that jEi j D i1C � � � C id is equal
to r . The graded quotient Grr V ˝d D F rV ˝d=F rC1V ˝d is canonically isomorphic
to

Grr V ˝d '
M
jEi jDr

Gri1 V ˝ Gri2 V ˝ � � � ˝ Grid V: (8.8)

This construction of filtration is well known in the case d D 2; the construction for
general d is obtained inductively.

We apply this construction relatively to the J -filtration on the second Hodge
bundle E . We put

F 1E D EJ ; F 0E D E?J ; F �1E D E;

and define a decreasing filtration

0 � F dE˝d � F d�1E˝d � � � � � F �dE˝d D E˝d

of length 2d C 1 on E˝d by

F rE˝d D
X
jEi jDr

F i1E ˝ F i2E ˝ � � � ˝ F idE; �d � r � d:

This is a filtration by �.J /R-invariant sub vector bundles.

Lemma 8.5. We have a �.J /R-equivariant isomorphism

Grr E˝d ' ��L˝rJ ˝
M
jEi jDr

V.J /˝b.
Ei/;

where b.Ei/ � 0 is the number of components i� of Ei D .i1; : : : ; id / equal to 0.

Proof. By (8.8) we have

Grr E˝d '
M
jEi jDr

Gri1 E ˝ � � � ˝ Grid E: (8.9)
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By Proposition 8.2, each factor Gri� E is isomorphic to ��LJ , V.J /˝OD , ��L�1J
according to i� D 1; 0;�1, respectively. Let a.Ei/, b.Ei/, c.Ei/ be the number of com-
ponents i� of Ei D .i1; : : : ; id / equal to 1, 0,�1, respectively. Then (8.9) can be written
more explicitly as

Grr E˝d '
M
jEi jDr

V.J /˝b.
Ei/
˝ ��L

˝a.Ei/�c.Ei/
J :

We have a.Ei/ � c.Ei/ D jEi j D r .

Since Gr�i E ' .Gri E/_, the expression (8.9) shows that we have the duality

Gr�r E˝d ' .Grr E˝d /_;

by sending an index Ei D .i1; : : : ; id / to its dual index .�i1; : : : ;�id /.
By Proposition 8.3, the I -trivialization

E˝d ' V.I /˝d ˝OD

sends the sub vector bundle F rE˝d of E˝d to the sub vector bundle F rV.I /˝d ˝
OD of V.I /˝d ˝OD , where F rV.I /˝d is the filtration (8.7) applied to V D V.I /,
F 1V D.J=I /C and F 0V D.J?=I /C . This implies that the filtration F �E˝d on E˝d

over X.J / extends to a filtration on the canonical extension of E˝d over X.J / by
sub vector bundles. (We use the same notation.)

Now we consider a general automorphic vector bundle E�;k D E� ˝ L˝k . Let
d D j�j. Recall from Section 3.2 that E� D c� � E

Œd� is defined as an OC.LR/-
invariant sub vector bundle of E˝d , where c� D b�a� is the Young symmetrizer
for �. We define a decreasing filtration on E� by taking the intersection with F rE˝d

inside E˝d :
F rE� D E� \ F

rE˝d ; �d � r � d:

Then we take the twist by L˝k:

F rE�;k D F
rE� ˝L˝k :

This is a �.J /R-invariant filtration on E�;k . We call it the J -filtration on E�;k . This
is a standard filtration on E�;k that can be induced from the J -filtration on E . In
Proposition 8.13, we will prove that the range of the level r reduces to ��1 � r � �1.

Remark 8.6. We also have the following natural expressions of F rE�:

F rE� D c�.E
Œd�
\ F rE˝d / D E Œd� \ c�.F

rE˝d /:

These equalities hold because we have c�.F rE˝d / � F rE˝d by the Sd -invariance
of F rE˝d and c� is an idempotent up to scalar multiplication.
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Let
F rV.I /� D V.I /� \ F

rV.I /˝d ; �d � r � d; (8.10)

be the similar filtration on V.I /�. The I -trivialization E� ' V.I /� ˝ OD sends the
J -filtration F �E� on E� to the filtration F �V.I /� ˝ OD on V.I /� ˝ OD . This
implies that the J -filtration on E�;k , after descending to X.J /, extends to a filtra-
tion on the canonical extension of E�;k over X.J / by �.J /R-invariant sub vector
bundles.

Proposition 8.7. At the boundary divisor�J of X.J /, we have a �.J /R-equivariant
isomorphism

Grr.E�;kj�J / ' .�
�
2L˝rCkJ /˚˛.r/; (8.11)

where ˛.r/ � 0 is the rank of Grr E� and �2 is the projection �J ! HJ .

Proof. Since Lj�J ' �
�
2LJ by Proposition 5.10, it suffices to prove this assertion in

the case k D 0. By Lemma 8.5, we have a �.J /R-equivariant embedding

Grr E� ,! Grr E˝j�j ' .��L˝rJ /˚b

over X.J / for some b > 0. By Proposition 8.4, this embedding extends over X.J /.
By restricting it to �J , we obtain a �.J /R-equivariant embedding

Grr.E�j�J / ,! .��2L˝rJ /˚b:

The image of this embedding is a �.J /R-invariant sub vector bundle of .��2L˝rJ /˚b .
Since the Heisenberg group W.J /R � �.J /R acts on each fiber of �2W�J ! HJ

transitively, this image can be written as ��2F for some SL.JR/-invariant sub vector
bundle F of .L˝rJ /˚b . By the SL.JR/-invariance, F is isomorphic to a direct sum
of copies of L˝rJ .

Before finishing this section, we look at two typical examples.

Example 8.8. Let �D .1d /with 0 < d < n, namely, V� D^dV . We have ^iEJ D 0
if i > 1 and .^iE?J / ^ .^

jE/ D ^iCjE if j > 0. This shows that the J -filtration on
^dE reduces to the following filtration of length 3:

0 � EJ ^
�
^
d�1E?J

�
� ^

dE?J C EJ ^
�
^
d�1E

�
� ^

dE:

These three subspaces have level 1, 0, �1, respectively. (Note that we have ^d�1E D
.^d�2E?J / ^ E in the second term and ^dE D .^d�1E?J / ^ E in the last term.) The
three graded quotients are, respectively, isomorphic to

EJ ˝^
d�1.E?J =EJ / ' ^

d�1V.J /˝ ��LJ ;

^
d .E?J =EJ /˚^

d�2.E?J =EJ / '
�
^
dV.J /˚^d�2V.J /

�
˝OD ;

.E=E?J /˝^
d�1.E?J =EJ / ' ^

d�1V.J /˝ ��L�1J :

Here ^d�2V.J / D 0 when d D 1, and ^dV.J / D 0 when d D n � 1.
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Example 8.9. The J -filtration on Symd E has length 2d C 1, with subspaces

F r Symd E D
X

aCbCcDd
a�cDr

Syma EJ � Symb E?J � Symc E; �d � r � d:

The graded quotient Grr Symd E is isomorphic to

��L˝rJ ˝ .Symd�jrj V.J /˚ Symd�jrj�2 V.J /˚ � � � ˚ Sym0 or 1 V.J //:

This shows that the J -filtration on the main irreducible component E.d/ of Symd E

has length 2d C 1 with graded quotient

Grr E.d/ ' �
�L˝rJ ˝ Symd�jrj V.J /; �d � r � d: (8.12)

8.3 J -filtration and representations

In this section we study the J -filtration, in its I -trivialized form, from the viewpoint
of representations of a parabolic subgroup. As consequences, we determine the range
of possible levels, and also relate the Siegel operator (Section 6) to the J -filtration.

We choose a rank 1 primitive sublattice I � J . Let P.J=I /C be the stabilizer of
the isotropic line .J=I /C � V.I / in O.V .I //. As in (6.4), P.J=I /C sits in the exact
sequence

0! U.J=I /C ! P.J=I /C ! GL..J=I /C/ � O.V .J //! 1; (8.13)

where U.J=I /C ' V.J /˝ .J=I /C is the unipotent radical of P.J=I /C consisting
of the Eichler transvections of V.I / with respect to .J=I /C . The filtration

.F rV.I //�1�r�1 D .0 � .J=I /C � .J
?=I /C � V.I //

on V.I / is P.J=I /C-invariant. The unipotent radical U.J=I /C acts on the graded
quotients trivially, so they are representations of

GL..J=I /C/ � O.V .J // ' C� � O.n � 2;C/:

Specifically,

• Gr1 V.I / D .J=I /C is the weight 1 character of C�.

• Gr0 V.I / D V.J / is the standard representation of O.V .J //.

• Gr�1 V.I / D .J=I /_C is the weight �1 character of C�.

Let d > 0. As in (8.7), let

F rV.I /˝d D
X
jEi jDr

F i1V.I /˝ � � � ˝ F idV.I /; �d � r � d;
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be the induced filtration on V.I /˝d . This is P.J=I /C-invariant. By (8.8), the uni-
potent radical U.J=I /C acts on the graded quotients Grr V.I /˝d trivially. Hence
Grr V.I /˝d is a representation of C� � O.V .J //. Specifically, by the same calcula-
tion as in Lemma 8.5, we have

Grr V.I /˝d ' �r �
M
jEi jDr

V.J /˝b.
Ei/; (8.14)

where �r is the weight r character of C�. If we take a lift of C� �O.V .J // in (8.13),
we have a decomposition

V.I /˝d '

dM
rD�d

Grr V.I /˝d

as a representation of C� �O.V .J // because C� �O.V .J // is reductive. By (8.14),
this is the weight decomposition with respect to C�.

Now let � D .�1 � � � � � �n/ be a partition expressing an irreducible representa-
tion of O.V .I // ' O.n;C/. As in (8.10), let

F rV.I /� D V.I /� \ F
rV.I /˝j�j

be the filtration induced on the space V.I /�. This is a P.J=I /C-invariant filtration,
and U.J=I /C acts on the graded quotients trivially. By the above argument, if we
take a lift of C� � O.V .J // in (8.13), we have a decomposition

V.I /� '
M
r

Grr V.I /� (8.15)

as a representation of C� � O.V .J //, and this agrees with the weight decomposition
for C� with Grr V.I /� being the weight r subspace.

Proposition 8.10. Let � ¤ det. We have

F �1C1V.I /� D 0; F ��1V.I /� D V.I /�: (8.16)

Thus the filtration F �V.I /� has length � 2�1 C 1, from level ��1 to �1. Moreover,
we have

F �1V.I /� D V.I /
U.J=I/C
�

: (8.17)

Proof. This is purely a representation-theoretic calculation. We write V D V.I / and
take a basis e1; : : : ; en of V such that .J=I /C D Ce1, .ei ; ej / D 1 if i C j D nC 1,
and .ei ; ej / D 0 otherwise. We also write P D P.J=I /C and U D U.J=I /C . (The
same notation as in the proof of Proposition 6.3.) We identify V.J / with V 0 D
he2; : : : ; en�1i. This defines a lift C� � O.V 0/ ,! P . Then C� acts on Ce1 by
weight 1, on V 0 by weight 0, and on Cen by weight �1.
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We first prove (8.16). Recall from (3.1) that

V� � ^
t�1V ˝ � � � ˝ ^

t��1V: (8.18)

Since the weights of C� on each space ^iV are only �1, 0, 1, the weights of C�

on the right-hand side of (8.18) are contained in the range Œ��1; �1�. Therefore the
weights of C� on V� are contained in Œ��1;�1�. Since Grr V� is the weight r subspace
for the action of C�, this shows that Grr V� ¤ 0 only when ��1 � r � �1. This
implies (8.16).

Next we prove (8.17). In Proposition 6.3, we proved that V U
�
' ��1 �W as a

representation of C� � O.V 0/, where W is a representation of

O.V 0/ ' O.n � 2;C/:

(We do not use precise information onW .) In particular, C� acts on V U
�

by weight �1.
This means that V U

�
� F �1V�. On the other hand, since U acts trivially on

Gr�1 V� D F �1V�=F �1C1V� D F �1V�;

we also see that F �1V� � V U� . Therefore F �1V� D V U� .

We have the following duality between the graded quotients.

Lemma 8.11. We have Grr V.I /� ' Gr�r V.I /� as representations of O.V .J //.

Proof. We keep the notation as in the proof of Proposition 8.10 and take the C� �
O.V 0/-decomposition (8.15) of V�. Let � be the involution of V which exchanges e1
and en and acts on V 0 D he2; : : : ; en�1i trivially. Thus � and C� D SO.he1; eni/
generate O.he1; eni/. The involution � normalizes C� � O.V 0/. Its adjoint action acts
on C� by ˛ 7! ˛�1, and acts on O.V 0/ trivially. Therefore the action of � on V� maps
the weight r subspace Grr V� to the weight �r subspace Gr�r V�, and this map is
O.V 0/-equivariant.

It will be useful to know that the graded quotients in level ��1 and �1 are indeed
nontrivial.

Lemma 8.12. Let � ¤ det. We have Gr�1 V.I /� ¤ 0 and Gr��1 V.I /� ¤ 0.

Proof. We keep the notation as in the proof of Proposition 8.10. Recall from (3.2)
that V� contains the vector

.e1 ^ � � � ^ et�1/˝ .e1 ^ � � � ^ et�2/˝ � � � ˝ .e1 ^ � � � ^ et��1
/:

Since t�1 < n by � ¤ det, this vector is contained in the weight �1 subspace for the
C�-action. Therefore Gr�1 V� ¤ 0. The nontriviality of Gr��1 V� then follows from
Lemma 8.11.
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Since (8.15) is the weight decomposition for C�, we can write

Grr V.I /� ' �r � V.J /�0.r/

as a representation of C� � O.V .J //, where V.J /�0.r/ is some (in general redu-
cible) representation of O.V .J //'O.n� 2;C/. The representation V.J /�0.r/ can be
understood through the restriction rule of V� for SO.2;C/�O.n� 2;C/� O.n;C/.
See [30, 32] for a description of this restriction rule in terms of the Littlewood–
Richardson numbers.

By translating the conclusions of Proposition 8.10 and Lemmas 8.11 and 8.12 by
the I -trivialization, we obtain the following consequence for the J -filtration on E�.

Proposition 8.13. Let � ¤ det. The J -filtration F �E� on E� satisfies

F �1C1E� D 0; F ��1E� D E�

and
F �1E� D Gr�1 E� ¤ 0; Gr��1 E� ¤ 0:

Thus F �E� has length� 2�1C 1, from level ��1 to �1. The graded quotients Grr E�
and Gr�r E� have the same rank. Moreover, F �1E� coincides with the sub vector
bundle EJ

�
of E� defined in Section 6.2.

Remark 8.14. (1) By this description of EJ
�

, some of the results of Section 6.2 also
follow from the results of Section 8.2.

(2) The isomorphism (8.11) can be written better as

Grr.E�;kj�J / ' �
�
2L˝rCkJ ˝ V.J /�0.r/:

8.4 Decomposition of Jacobi forms

In this section we use the J -filtration on E�;k to show that vector-valued Jacobi forms
decompose, in a sense, into some tuples of scalar-valued Jacobi forms.

Proposition 8.15. Let � ¤ det. There exists an injective map

J�;k;m.�.J /Z/ ,!

�1M
rD��1

JkCr;m.�.J /Z/
˚˛.r/; (8.19)

where ˛.r/ is the rank of Grr E�.

Proof. We use the notation in Section 7. Let F rJ�;k;m.�.J /Z/ be the subspace of
J�;k;m.�.J /Z/ consisting of Jacobi forms which take values in the sub vector bundle
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F rE�;k ˝ ‚
˝m
J of E�;k ˝ ‚

˝m
J . This defines a filtration on J�;k;m.�.J /Z/ from

level r D ��1 to �1. By the exact sequence

0! F rC1E�;k ˝‚
˝m
J ! F rE�;k ˝‚

˝m
J ! Grr E�;k ˝‚

˝m
J ! 0

and Proposition 8.7, we obtain an embedding

Grr.J�;k;m.�.J /Z// ,! H 0.�J ;Grr E�;k ˝‚
˝m
J /�.J /Z

' H 0.�J ; .�
�
2L˝rCkJ /˚˛.r/ ˝‚˝mJ /�.J /Z :

The image of this embedding is contained in JrCk;m.�.J /Z/˚˛.r/, namely, holo-
morphic at the cusps of HJ . Indeed, if we take the .I; !J /-trivialization at I � J ,
the quotient homomorphism F rE�;k ˝‚

˝m
J ! Grr E�;k ˝‚

˝m
J is identified with

the quotient homomorphism

F rV.I /� ˝ .I
_
C /
˝k
˝O�J ! Grr V.I /� ˝ .I_C /

˝k
˝O�J :

Since this is constant over �J , its effect on the Fourier expansion of a Jacobi form
is just reducing each Fourier coefficient from F rV.I /� ˝ .I

_
C /
˝k to Grr V.I /� ˝

.I_C /
˝k , so the Fourier coefficients still satisfy the holomorphicity condition at the

I -cusp.
Therefore we obtain a canonical embedding

Grr.J�;k;m.�.J /Z// ,! JrCk;m.�.J /Z/
˚˛.r/: (8.20)

Finally, if we choose a splitting of the filtration F �Jk;�;m.�.J /Z/, we obtain a (non-
canonical) isomorphism

Jk;�;m.�.J /Z/ '

�1M
rD��1

Grr.Jk;�;m.�.J /Z//:

This defines an embedding as claimed.

As the proof shows, the embedding (8.19) is not canonical: it requires a choice of
a splitting of the filtration F �J�;k;m.�.J /Z/. But at least the last subspace is canon-
ically determined.

Corollary 8.16. Let � ¤ det. We have a canonical embedding

JkC�1;m.�.J /Z/˝ V.J /�0 ,! J�;k;m.�.J /Z/;

where �0 D .�2 � � � � � �n�1/.

Proof. The last (= level �1) subspace F �1J�;k;m.�.J /Z/ is the space of Jacobi forms
with values in F �1E�;k ˝‚˝mJ . By Proposition 8.13 and Theorem 6.1, this sub vec-
tor bundle is isomorphic to ��2L

˝kC�1
J ˝ V.J /�0 ˝‚

˝m
J .
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Example 8.17. Let n D 3 and � D .d/. In this case, in view of (8.12), the embed-
ding (8.19) takes the form

J.d/;k;m.�.J /Z/ ,!

dM
rD�d

JkCr;m.�.J /Z/:

In the context of Siegel modular forms of genus 2, Ibukiyama–Kyomura [27] found
an isomorphism of the same shape for a certain type of integral Jacobi groups. (In our
notation, LD 2U ˚ h�2i,K D h�2i, J � 2U the standard one, U.J /Z D^2J , and
�.J /Z D �J Ë .K ˝ J /.) The method of Ibukiyama and Kyomura is different, based
on differential operators. It might be plausible that their decomposition essentially
agrees with that of us.

Propositions 8.15 and 7.18 enable us to deduce some basic results for vector-
valued Jacobi forms from those for scalar-valued Jacobi forms. We present two such
consequences.

Corollary 8.18. Let � ¤ det. We have J�;k;m.�.J /Z/ D 0 when k C �1 < n=2� 1.

Proof. In this case, all weights k C r in (8.19) satisfy k C r � k C �1 < n=2 � 1.
Then we have JkCr;m.�.J /Z/ D 0 by Proposition 7.19.

Corollary 8.19. J�;k;m.�.J /Z/ has finite dimension. Moreover, we have the follow-
ing asymptotic estimates:

dimJ�;k;m.�.J /Z/ D O.k/ .k !1/;

dimJ�;k;m.�.J /Z/ D O.m
n�2/ .m!1/:

Proof. By Propositions 8.15 and 7.18, we have

dimJ�;k;m.�.J /Z/ �

�1X
rD��1

˛.r/ � dimJkCr;m.�.J /Z/

�

�1X
rD��1

˛.r/ � dimJkCr;K.ˇ0m/.�J /;

where K, ˇ0, �J do not depend on �, k, m. By the dimension formula of Skoruppa
[43, Theorem 6], we see that each JkCr;K.ˇ0m/.�J / is finite dimensional and

dimJkCr;K.ˇ0m/.�J / D O.k/ .k !1/;

dimJkCr;K.ˇ0m/.�J / D O.detK.ˇ0m// D O.mn�2/ .m!1/:

These imply the asymptotic estimates for dimJ�;k;m.�.J /Z/.
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Remark 8.20. From Proposition 8.10, we have imposed the assumption � ¤ det.
This was necessary in our representation-theoretic calculation. Indeed, (8.17) and
Lemma 8.12 do not hold for � D det. On the other hand, since �.J /Z � SOC.L/,
Jacobi forms with � D det are the same as those with � D 1 (scalar-valued Jacobi
forms) as far as �.J /Z is concerned. The difference arises when we consider the
action by the full stabilizer �.J /�Z, which may contain an element of determinant�1.


