
Chapter 9

Vanishing theorem I

Let L be a lattice of signature .2; n/ with n � 3. We assume that L has Witt index 2,
i.e., has a rank 2 isotropic sublattice. This is always satisfied when n � 5. Let �
be a finite-index subgroup of OC.L/. Let � D .�1 � � � � � �n/ be a partition with
t�1 C

t�2 � n which expresses an irreducible representation of O.n;C/. We assume
�¤ 1;det. In this chapter, as an application of the J -filtration, we prove the following
vanishing theorem.

Theorem 9.1. Let �¤ 1;det. If k < �1C n=2� 1, thenM�;k.�/D 0. In particular,
we have M�;k.�/ D 0 whenever k < n=2.

This generalizes the well-known vanishing theorem Mk.�/ D 0 for 0 < k <

n=2� 1 in the scalar-valued case. This classical fact can be deduced from the vanish-
ing of scalar-valued Jacobi forms (Fourier–Jacobi coefficients) of weight < n=2 � 1.
Our proof of Theorem 9.1 is a natural generalization of this approach. The outline is
as follows.

The first step is to take the projection E�;k ! Gr��1 E�;k to the first graded quo-
tient of the J -filtration for each 1-dimensional cusp J . Then we apply the classical
vanishing theorem of scalar-valued Jacobi forms (Proposition 7.19) to Gr��1 E�;k .
This tells us that when k � �1 < n=2 � 1, the Fourier coefficients of a modular form
at a 0-dimensional cusp I � J are contained in a proper subspace of V.I /�;k . Finally,
running J over all 1-dimensional cusps containing I , we find that the Fourier coeffi-
cients are zero.

The second step of this argument (and hence the bound in Theorem 9.1) could
be improved for some specific .�; L/ if a stronger vanishing theorem of classical
Jacobi forms is available (cf. Remark 9.4). Theorem 9.1 would be a prototype in this
direction.

Let us look at Theorem 9.1 in the cases n D 3; 4 under the accidental isomorph-
isms.

Example 9.2. Let n D 3. Recall from Example 3.4 that the orthogonal weight

.�; k/ D ..d/; k/

corresponds to the GL.2;C/-weight .�1; �2/ D .k C d; k � d/ for Siegel modular
forms of genus 2. In this case, the bound in Theorem 9.1 is k < d C 1=2, namely,
k � d . This is rewritten as �2 � 0. This is the same bound as the vanishing theorem
of Freitag [15] and Weissauer [47] for Siegel modular forms of genus 2.
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In the case of Siegel modular forms of genus 2, the idea to use Jacobi forms
to derive a vanishing theorem of vector-valued modular forms seems to go back to
Ibukiyama. See [25, Section 6] (and also [26, p. 54]). Our proof of Theorem 9.1 can
be regarded as a generalization of the argument of Ibukiyama.

Example 9.3. Let nD4. Recall from Example 3.5 that the orthogonal weight .�;k/D
..d/; k/ corresponds to the weight .r; � � �/ with r D k � d and � D Symd for
Hermitian modular forms of degree 2. In this case, the bound in Theorem 9.1 is k <
d C 1, i.e., k � d . Thus Theorem 9.1 says that there is no nonzero Hermitian modular
form of degree 2 and weight .r; �� �/with �D Symd

¤ 1when r � 0. Furthermore,
our second vanishing theorem (Theorem 11.1 (1)) says that there is no nonzero cusp
form when r � 1.

The rest of this chapter is as follows. In Section 9.1 we prove Theorem 9.1. In
Section 9.2 we give an application of Theorem 9.1 to the vanishing of holomorphic
tensors of small degree on the modular variety F .�/.

9.1 Proof of Theorem 9.1

In this section we prove Theorem 9.1. Let � ¤ 1; det and assume that k � �1 <
n=2 � 1. For a rank 2 primitive isotropic sublattice J of L, we denote by FJE�;k D

F
��1C1
J E�;k the level ��1 C 1 (D the first) sub vector bundle of E�;k in the J -

filtration. Here we add J in the notation in order to indicate the cusp.

Step 1. Every Jacobi form in J�;k;m.�.J /Z/ takes values in the sub vector bundle
FJE�;k ˝‚

˝m
J of E�;k ˝‚

˝m
J .

Proof. Recall from (8.20) that we have an embedding

Gr��1.J�;k;m.�.J /Z// ,! Jk��1;m.�.J /Z/
˚˛.��1/:

Since k � �1 < n=2 � 1, we have

Jk��1;m.�.J /Z/ D 0

by Proposition 7.19. Therefore Gr��1.J�;k;m.�.J /Z// D 0, which means that every
Jacobi form in J�;k;m.�.J /Z/ takes values in FJE�;k ˝‚

˝m
J .

Now let f 2 M�;k.�/. We want to prove that f D 0. We fix a rank 1 primitive
isotropic sublattice I of L and let f D

P
l a.l/q

l be the Fourier expansion of f at
the I -cusp, where a.l/ 2 V.I /�;k . For a rank 2 primitive isotropic sublattice J of L
containing I , we denote by FJV.I /� D F

��1C1
J V.I /� the level ��1 C 1 subspace

in the J -filtration (8.10) on V.I /� and write

FJV.I /�;k D FJV.I /� ˝ .I
_
C /
˝k
� V.I /�;k :
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Step 2. Every Fourier coefficient a.l/ is contained in the subspace FJV.I /�;k
of V.I /�;k .

Proof. Let �J be the isotropic ray in U.I /R corresponding to J . If l 2 �J , then a.l/
appears as a Fourier coefficient of the restriction f j�J of f to �J . By Lemma 6.2
and Proposition 8.10, we see that a.l/ is contained in F �1J V.I /�;k � FJV.I /�;k .

Next let l 62 �J . Then a.l/ appears as a Fourier coefficient of the m-th Fourier–
Jacobi coefficient �m of f for some m > 0 along the J -cusp (see Section 7.1). By
Proposition 7.12, �m is a Jacobi form of weight .�;k/ and indexm. By Step 1, �m as a
section of E�;k ˝‚

˝m
J takes values in the sub vector bundle FJE�;k ˝‚

˝m
J . Since

the I -trivialization over X.J / sends FJE�;k to FJV.I /�;k ˝ O
X.J /, this implies

that the Jacobi form �m, regarded as a V.I /�;k-valued function on�J via the .I;!J /-
trivialization, takes values in the subspace FJV.I /�;k of V.I /�;k . It follows that its
Fourier coefficients a.l/ are contained in FJV.I /�;k .

Step 3. Every Fourier coefficient a.l/ is zero.

Proof. LetW D
T
J�I FJV.I /�. By applying Step 2 to all J � I , we find that a.l/

is contained inW ˝ .I_C /
˝k . We shall prove thatW D 0. Since .J=I /Q runs over all

isotropic lines in V.I /Q in the definition of W and

F
JV.I /� D 
.FJV.I /�/

for 
 2 O.V .I /Q/, we see that W is an O.V .I /Q/-invariant subspace of V.I /�.
Since O.V .I /Q/ is Zariski dense in O.V .I //, we find that W is O.V .I //-invariant.
But V.I /� is irreducible as a representation of O.V .I //, so we have either W D 0
or W D V.I /�. Since FJV.I /� ¤ V.I /� by Lemma 8.12, we have W ¤ V.I /�.
Therefore W D 0. This finishes the proof of Theorem 9.1.

Remark 9.4. At least when V� remains irreducible as a representation of SO.n;C/, it
is also possible to replace the argument in Step 3 by an argument using the symmetry
of the Fourier coefficients in Proposition 3.6 and the Zariski density of �.I /Z as
in the proof of Proposition 3.7. This approach allows improvement of Theorem 9.1
when a stronger vanishing theorem of scalar-valued Jacobi forms holds for �.J /Z.

9.2 Vanishing of holomorphic tensors

In this section, as an application of Theorem 9.1, we deduce vanishing of holomorphic
tensors of small degree on the modular variety F .�/ D �nD . To be more precise,
let X be the regular locus of F .�/. Sections of .�1X /

˝k are called holomorphic
tensors on X . Among them, those which extend holomorphically over a smooth pro-
jective compactification of X are a birational invariant of F .�/.
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Theorem 9.5. When 0 < k < n=2� 1, we have H 0.X; .�1X /
˝k/ D 0. In particular,

H 0. zX; .�1
zX
/˝k/ D 0 for any smooth projective model zX of F .�/.

Proof. Let � WD ! F .�/ be the projection. We can pull back sections of .�1X /
˝k to

�-invariant sections of .�1
��1.X/

/˝k . They extend holomorphically over D because
the complement of ��1.X/ in D is of codimension � 2. Hence we have an embed-
ding

H 0.X; .�1X /
˝k/ ,! H 0.D ; .�1D/

˝k/� : (9.1)

Recall from (2.4) that�1
D
'E˝L. If we denote by St˝k D

L
˛ V�.˛/ the irreducible

decomposition of St˝k , we thus obtain an embedding

H 0.X; .�1X /
˝k/ ,!

M
˛

M�.˛/;k.�/: (9.2)

When �.˛/ ¤ 1; det, we have M�.˛/;k.�/ D 0 for k < n=2 by Theorem 9.1. The
determinant character does not appear in the irreducible decomposition of St˝k if
k < n [38, Theorem 8.21]. Finally, when �.˛/D 1, we haveMk.�/D 0 for 0 < k <
n=2 � 1 as it is classically known. Therefore H 0.X; .�1X /

˝k/ D 0 when 0 < k <

n=2 � 1.

We can also classify possible types of holomorphic tensors on X in the next few
degrees n=2 � 1 � k � n=2.

Proposition 9.6. We write N.k/ D kŠ=2k=2.k=2/Š when k is even.

(1) Let k D Œ.n � 1/=2�. Then we have an embedding

H 0.X; .�1X /
˝k/ ,!

´
0 n � 0; 3 mod 4;

Mk.�/
˚N.k/ n � 1; 2 mod 4:

(2) Let k D n=2 with n even. Then we have an embedding

H 0.X; .�1X /
˝k/ ,!

´
M^k ;k.�/ n � 2 mod 4;

M^k ;k.�/˚Mk.�/
˚N.k/ n � 0 mod 4:

The component M^k ;k.�/ in (2) gives the holomorphic differential forms of
degree k D n=2. The component Mk.�/

˚N.k/ in both (1) and (2) corresponds to
the trivial summands in St˝k . In both (1) and (2), the embedding is an isomorphism
when h�;� idi contains no reflection.

Proof. We keep the same notation as in the proof of Theorem 9.5.
(1) When �.˛/ ¤ 1; det, we still have

M�.˛/;k.�/ D 0
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for k < n=2 by Theorem 9.1. The determinant character does not appear too. By [38,
Exercise 12.2], St˝k does not contain the trivial representation when k is odd, while
it occurs with multiplicity N.k/ when k is even.

(2) When �.˛/¤^d with 0 � d � n, we have �1 � 2, and so,M�.˛/;n=2.�/D 0

by Theorem 9.1. By [38, Theorem 8.21], the representations ^d with d > n=2 or
d 6� n=2 mod 2 do not appear in St˝n=2, and ^n=2 occurs with multiplicity 1. The
multiplicity of the trivial summand is as before. It remains to consider ^d with
0 < d < n=2 and d � n=2 mod 2. We apply our second vanishing theorem (The-
orem 11.1 (2)). This says that M^d ;n=2.�/ D 0 when n=2 � n � d � 2, namely,
d � n=2 � 2.

Finally, when h�;� idi contains no reflection, the projection D!F .�/ is unram-
ified in codimension 1 by [21]. Then (9.1) and (9.2) are isomorphisms, and so, the
above embeddings are isomorphisms.

Remark 9.7. (1) The weight k D Œ.n � 1/=2� in Proposition 9.6 (1) is the so-called
singular weight when n is even, and the critical weight when n is odd, for scalar-
valued modular forms. Since Mk.�/ ¤ 0 in general for these weights, the bound in
Theorem 9.5 is optimal as a general bound.

(2) Theorem 9.5 and Proposition 9.6 imply in particular vanishing of holomorphic
differential forms of degree < n=2 on X . Via the extension theorem of Pommeren-
ing [39], this can also be deduced from the vanishing of the corresponding Hodge
components in the L2-cohomology (cf. [4]).


