Chapter 10

Square integrability

Let L be a lattice of signature (2,n) with n > 3 and I" be a finite-index subgroup
of OF(L). In this chapter we study convergence of the Petersson inner product

/ (f.€)1.xv0lp
F ()

for f. g € M ("), where (, ), x is the Petersson metric on the vector bundle &, i
and vol g is the invariant volume form on D.

For A=Ay >--->A1,) let A = (A1 = Ans ooy Alny2] — Ant1—[n/2]) be the asso-
ciated highest weight for SO(, C) (see Section 3.6.1). We denote by |A| the sum of
all components of A. Our results are summarized as follows.

Theorem 10.1. Let f, g € M, (') with A # 1, det.
(1) If f is a cusp form, then ff(r)(f, g)akvolp < oo.
(2) Whenk > n + |A| — 1, f is a cusp form if and only if

/ (f. f)axvolp < oo.
F(T)

(3) When k < n — |A| — 2, we always have f?(r)(f’ g)akVvolp < oo.

See Remark 10.13 for the scalar-valued case. The assertion (1) should be more or
less standard. The assertions (2) and (3) give a characterization of square integrability
except in the range

n—|Al—1<k<n+|A-2. (10.1)

The assertion (3) is in fact an intermediate step in the proof of our second vanishing
theorem (Theorem 11.1), where we eventually prove that M ;(I") = 0 in the range
k<n—IAl—2.

This chapter starts with defining the Petersson metrics on the Hodge bundles
explicitly (Section 10.1) and calculating them over the tube domain (Section 10.2). In
Section 10.3 we give some asymptotic estimates needed in the proof of Theorem 10.1.
In Section 10.4 we prove Theorem 10.1.

10.1 Petersson metrics

In this section we explicitly define the Petersson metrics on the Hodge bundles &£
and &, and hence on the automorphic vector bundles &, .
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We begin with £. By the definition of &, the Hermitian form (-,~) on L¢ is pos-
itive on the lines parametrized by . Thus restriction of this Hermitian form defines
a Hermitian metric on each fiber of &£, and hence an O (LR)-invariant Hermitian
metric on £. We call it the Petersson metric on £ and denote it by (, ).

Next we consider &. We first define the real part of €. We write Ly for the product
real vector bundle Lr x D, which we regard as a sub real vector bundle of Lc ® Op
in the natural way. Then we define a sub real vector bundle of Lg by

Er:i=LTNLg = (LD L)' N Lg.

This is a real vector bundle of rank 7. By the second expression, the fiber of Eg over
[w] € D is the negative-definite subspace

(Re(w), Im(w))* N Ly (10.2)

of Lg (cf. Section 2.1). The O"(Lg)-action on L preserves the sub vector bun-
dle &r. The natural homomorphism

3R®R(C<—>$J‘—>8

gives an O1 (Lg)-equivariant C *-isomorphism between &g ®g C and &. This de-
fines a real structure of &.

By the description (10.2) of the fibers, the real vector bundle &g is naturally
endowed with an O (LR)-invariant negative-definite quadratic form. We take the
(—1)-scaling to turn it to positive-definite. This is a Riemannian metric on &r. It
extends to a Hermitian metric on &g ®gr C in the usual way. (Explicitly, the Her-
mitian pairing between two vectors v, w is the quadratic pairing between v and w.)
Via the C *®°-isomorphism Eg ®g C — &, we obtain an O" (LR )-invariant Hermitian
metric on &. We call it the Petersson metric on & and denote it by (, )g.

The Petersson metric on & induces an O"(Lg)-invariant Hermitian metric on
€®4 and hence by restriction an OF (Lg)-invariant Hermitian metric on &, with
|A| = d. Taking the tensor product with the Petersson metric on £®¥, we obtain an
O™ (LR)-invariant Hermitian metric on &, . We call it the Petersson metric on &, j
and denote it by (, ) k.

Remark 10.2. When L is the primitive integral cohomology of a lattice-polarized K3
surface X with period [w] € D, we have the identifications

L) = H°(X),  Erjo) = Hyip (X, R),
and € (o) ®r C — €] is identified with H 3 (X.C) — H20(X)/H>(X). On
H?°(X) and ler’irln(X , C) we have the so-called Hodge metrics defined by [, o A B
and — fX oA ,5 respectively (see [46, Section 6.3.2]). Thus the Petersson metrics
on £ and & are essentially the Hodge metrics in this geometric setting.
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Let / be a rank 1 primitive isotropic sublattice of L. For a vector v of V(I)r =
(I1/I)R, let s, be the section of & which corresponds to the constant section v
of V(I) ® Oy by the [ -trivialization V(1) ® Op >~ &. We compute the Hermitian
pairing between these distinguished sections. We choose and fix a lift V(I )gr — Iﬂé
of V(I)r and regard vectors of V(I)r as vectors of Iﬁ C L in this way.

Lemma 10.3. Let vy, v, € V(I)r. The pairing of the sections sy,, Sy, of & with
respect to the Petersson metric ( , )g is given by

2+ (v, Im(w)) - (v2, Im(w))

(o (@]). sva ([@])e = —=(v1.v2) + —— 7m0

Jor [w] € D. In the right-hand side, ( , ) is the quadratic form on Ly, and o is
normalized so as to have real pairing with Ir. In particular, (Sy,, Sv,)e is R-valued.

Proof. Let [w] € O. We choose a nonzero vector [ € 1. We may normalize w so that
(l,w) =1.Forve V()r C I]Ié we write
(v, Im(w)) (v, Im(w))

a(v) = (Im(w), Im(w)) - (Re(w), Re(w))

and define a vector of L¢ by
sp([@]) = v—(v,w)] + V—1a(v)o. (10.3)

Claim 10.4. s} is a section of Er ®r C and is the image of s, under the C°-
isomorphism & — &r ®r C.

We prove Claim 10.4. The conditions to be checked are
(Re(sy([w])), w) =0,  (Im(s,([w]), @) =0, s,([w]) € sp([0]) + Cow.

Since sy ([w]) = v — (v, w)! + Cw by Lemma 2.6, the last condition follows from
the definition of s;,. We check the first equality. Since

Re(s) ([0])) = v — (v, Re(®))] — a(v) - Im(w),
we see that
(Re(s, ([0]). @) = (v, ) — (v, Re(®)) — V—1a(v)(Im(w), Im(w))

= (v,0) — (v,Re(w)) — vV—1(v, Im(w))
=0.

In the first equality we used (Re(w), Im(w)) = 0. The equality (Im(s, ([w])), w) = 0
can be verified similarly. This proves Claim 10.4.
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We return to the proof of Lemma 10.3. We take two vectors v, v, € V(I )r. By
definition, (s, ([@]), sv, ([]))g is the pairing of s;,, ([w]) and s, ([@]) with respect to
the Hermitian form on ég ®g C. This in turn is the pairing of the vectors s, ([w])
and s, ([@]) of L¢ with respect to the (—1)-scaling of the quadratic form on L¢. By
the expression (10.3) of s, ([w]), we can calculate

- (Svl ([w])’ svz([w]))g
= (v1 — (v1, ®)] + V=la(v))w, v2 — (v2, D) — V—1a(v2)D)
= (v1,v2) + a(v)a(v2) (@, ®) — 2a(v)(Im(w), v2) — 2a(v2)(IM(w), v1).

Since we have

a(v)a(v2)(w,®) = 2a(vy)(Im(w), v2) = 2a(v2)(Im(w), v1)
_ 2(vy, Im(w)) (v, Im(w))
- (Im(@),Im(@))

this proves Lemma 10.3. ]

Remark 10.5. By the expression (10.3), the imaginary part of s, ([w]) is nonzero for
general [w]. This shows that the real structure on & >~ V(I) ® Qg given by &g is
different from that given by V(/)r. Nevertheless, the Petersson metric on the real
part given by V([ )R is R-valued by Lemma 10.3.

Let volgp be the invariant volume form on D. The Petersson metric ( , )get,n Of
weight (det, ) gives an invariant metric on the canonical bundle Ko ~ £®" ® det,
where det stands for the determinant character (cf. Example 2.2). This can be used
to express volgp as follows. If €2 is an arbitrary nonzero vector of (Kp)[,] over a
point [w] of O, the volume form volg at [w] is written as

N (104)

volp ([w]) = ———— .
(Q ) Q)det,n

up to a constant independent of [w]. Indeed, the right-hand side does not depend

on the choice of €2, and the differential form of degree (n,n) on D defined by the

right-hand side is clearly O (Lg)-invariant, so it should coincide with volg up to

constant.

10.2 Petersson metrics on the tube domain
Let I be a rank 1 primitive isotropic sublattice of L. We calculate the Petersson

metrics on &£, & over the tube domain Dy C U(I)c. We choose a rank 1 isotropic
sublattice I’ C L with (I, I’) # 0. Recall that the choice of I’ determines a tube
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domain realization £ — Dy. We take a generator / of / and identify U(I)g ~ V(I )g
accordingly.

Lemma 10.6. On the tube domain Dy we have

(51(2),51(Z2)) ¢ = 2(Im(Z),1Im(2)), (10.5)

_ 2-(v1,Im(2)) - (v2,Im(Z))
(Sv1 (Z)’svz(z))é‘ =—(v1,v2) + (Im(Z), Im(Z)) ,

(10.6)

for Z € Dj. Here s7 is the section of £ corresponding to the dual vector of [, vy, v

are vectors of V(I )R, and ( , ) in the right-hand sides are the natural quadratic form
on V(])R =~ U(I)]R.

Proof. We begin with (, ). We can view the section s; over Dy as a function Dy —
Lc which lifts the inverse O; — D of the tube domain realization and satisfies
(s7,1) = 1. Let I’ be the vector of /g, with (/, ") = 1, and we identify V(I)q with
lo® ! b)J-. Then we can explicitly write s; as

s1(2)=1"+Z-2"YZ,2)l € L¢
for Z € Oy C V(I). Thus we have

($1(Z),51(2)e = (51(2),51(2)) = (Z,2) = (Z,2)/2—(Z.2)]2
= 2(Im(Z),Im(Z)).

Next we calculate (, )g. By Lemma 10.3, we have

B 2 (v1,Im(s;(Z))) - (v2,Im(s;(2)))
(Svl (Z)9S1)2(Z))8 - —(Ul, v2) + (Im(S](Z)), Im(S](Z)))

Since
Im(s;(Z)) = Im(Z) — 27 Im((Z, 2))!,

we see that

(Im(s;(2)), Im(s;(2))) = Im(Z),Im(Z)),  (v;, Im(s57(2))) = (vi.Im(Z)).

This proves (10.6). ]

At each point Z € Dy, the Petersson metric on & can be understood as follows.
We take an R-basis vy, ..., v, of V(I)Rr such that vy € RIm(Z) and (v;,Im(Z)) =0
fori > 1. Then, by (10.6), we have

(vlvvl)y l :,] = 11
(SU,‘(Z)’SUJ'(Z))E = _(vivvj)a l»] > 1’
0. i=1,j>1.
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The right-hand side can be seen as the positive-definite modification of the hyperbolic
quadratic form on V(/)g given by taking the (—1)-scaling of the negative-definite
subspace Im(Z)L. The Petersson metric on &z ~ V(I) is the Hermitian extension of
this modified real metric on V()R to V(I).

Finally, we recall the expression of volgp over Dy. Let voly be a flat volume form
on Oy C U(I)c- Then, as it is well known, we have

volp = (Im(Z),Im(Z))™" vol; . (10.7)

This can be seen by substituting 2 = s}@” ® v in (10.4) and using (10.5), where v
is a nonzero vector of det. The section sl®” ® v of £®" ® det corresponds to a flat
canonical form on Oy C U(I)¢ by its U(I)¢-invariance.

10.3 Asymptotic estimates on the tube domain

In this section we prepare some estimates of the Petersson metrics on & x over the
tube domain £y. This will be a main ingredient in the proof of Theorem 10.1. We
keep the setting of Section 10.2.

We choose an R-basis {v;}; of the real part (V(I)r)x of V(I),. Then {v;}; is
also a C-basis of V(I),. Let s, be the section of &, corresponding to v; via the /-
trivialization &, ~ V(/); ® Op andlets; =5 ® sl®k. Then {s;}; is a frame of &, x
corresponding to a basis of V([); x by the [ -trivialization. Accordingly, we express a
section f of &) y over D >~ Dy as f =) ; fis; with f; a scalar-valued holomorphic
function on Dy .

Lemma 10.7. There exist real homogeneous polynomials {P;;}; i on U(I)r of de-
gree < 2|A| determined by the basis {v;}; of (V(I)r) such that

(L @rxvolp = ) fig; - Pi;(Im(Z)) - (Im(Z), Im(Z))* "M vol;  (10.8)
i,J
for all sections =7 _; fisi, g=_;8iSi of &x x over Dy. The matrix (P;;(Im(Z)));, ;
is symmetric and positive-definite for Z € Dj.

Proof. The section s; is an R-linear combination of |A|-fold tensor products of the
distinguished sections s, of & associated to v € V(I)r. (Recall that V) C Vel
The equation (10.6) can be written as

—(1. v2)(Im(Z). Im(Z)) + 2(v:1.Im(Z)) (v2. Im(Z))

(50,(Z),50,(2))e = (Im(Z),Im(Z))

The numerator is a real homogeneous polynomial of Im(Z) of degree < 2. Therefore
the Petersson paring between s; and sj/. can be written as

(5/(Z).5}(Z)x = Pi(Im(Z)) - (Im(Z), Im(Z)) "™ (10.9)
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for a real homogeneous polynomial P;; of Im(Z) of degree < 2|A|. Together with
(10.5) and (10.7), we obtain

(5:(Z),5;(Z))skvolp = Pij(Im(Z)) - (Im(Z), Im(Z))F "~ vol, .

This proves the equality (10.8). Since the matrix ((s;(Z), sj’. (Z£))1):,; is real symmet-
ric and positive-definite, so is (P;;(Im(Z))); ; by (10.9). [

Let T' be a finite-index subgroup of O1(L) and let X(I) = D;/U(I)z. We
take a regular I"(/)z-admissible cone decomposition X; of ‘€I+ C U(I)R in the
sense of Section 3.5.1. Let X (/ )21 be the associated partial toroidal compactific-
ation of X (/). Let o be a cone in X; of dimension c¢. By the regularity of X;, we
can write 0 = R>gv; + -+ + R>qv, such that vy, ..., v, is a part of a Z-basis of
U(l)z,say vi,...,v,. Letly,.... [, € U(I)% be the dual basis of vy, ..., v,. Then
zi = (l;,Z),1 <i < n, are flat coordinates on U(I)c. We have

voly =dzi A~ ANdzy, NdZy AN---NdZ,

up to constant. We write ¢; = e(z;) for 1 <i < c. Let A; be the boundary stratum
of X(1)®! corresponding to the cone o, and A; = A,; be the boundary divisor
corresponding to the ray R>ov;. Thengi,...,qc, Zc+1, - - -, Zn give local coordinates
around A,. The divisor A; is defined by ¢; = 0, and A, is defined by g; = --- =
qc = 0. We write ¢; = rje(6;) withr; = |g;] and 0 < 6; < 1. Then

dg1 dg dg. dg
ﬂ/\ﬂ/\.../\ qc/\ _qc

q1 q1 dc de

1
= dri ANdOy A ---ANdre NdO. Ndzegy Ao ANdZy (10.10)
rl...rc

vol; = ANdzesi AN~ ANdZy

up to constant.

We give an asymptotic estimate of the right-hand side of (10.8) as g1, ..., g
approach to 0. We take an arbitrary base point Zy € Dy and consider a flow of points
of the form

Z =7Z(ty,...,.tc) =Zo+ ~V=1(t1v1 + -+ tcve), ti,...,tc = o00. (10.11)

This flow converges to a point of Ay as #q,...,#. — 00, and every point of A, can
be obtained in this way. Let vg = Im(Zy). This is a vector in the positive cone €;.

Lemma 10.8. The following asymptotic estimates hold as t1, .. .,t. — o0.
Pij(Im(2)) = O((tx + -+ + 1)*), (10.12)
(Im(Z),Im(2)) = O((ty + -+ + 1)*). (10.13)

(Im(2),Im(Z))"' = O((t1 + -+ 1) 7). (10.14)
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Proof. We have Im(Z) = v + ) _; t;v;. Since P;; is a real homogeneous polynomial
of degree < 2|A| on U([ )R, we see that P;j(vo + ), t;v;) is a real inhomogeneous
polynomial of ¢q, ..., . of degree < 2|A|. This implies (10.12). Next we have

(Im(Z).Im(Z)) = (vo.v0) +2 D (vo. vi)ti +2 > _(vi.v)tit; + ¥ _(v;. vi)t2.
i i#j i

The estimate (10.13) is obvious from this expression. Since vy € €7 and vy,...,V, €
€y, all coefficients in the right-hand side are nonnegative; possibly except for (v;, v;)
with i > 1, they are furthermore positive. Therefore we have

(Im(Z).Im(Z)) > 2 (v, vi)ti > C - Y 1;

for some constant C > 0. This implies (10.14). ]

Lemma 10.9. In a small neighbourhood of an arbitrary point of Ay, we have

Pij(Im(Z)) = O((=logry -+~ re)*), (10.15)
(Im(Z2),Im(Z)) = O((—logry ---re)?), (10.16)
(Im(Z),Im(Z))"! = O((—logry---r:)™Y), (10.17)

asqi,...,qc — 0.

Proof. We consider the flow (10.11) with Z, varying over the range where Re(Z)
is in a fundamental neighbourhood of U(J)r/U(I)z and vy = Im(Zy) is in a small
neighbourhood of an arbitrary point of €;. Since

ri = |qi| = exp(=27(l;,Im(Z))) = exp(—27(l;, vo) — 271;),
we have
ti = —2n) ogr; — (I;, vo). (10.18)

The constant term —(/;, vg) depends on vy = Im(Zg) continuously. Therefore our
assertions follow by substituting #; ~ —(27r)~! log r; in the estimates in Lemma 10.8
and using logry + -+ 4+ logr, = logry -« 7. |

Summing up the calculations so far, we obtain the following asymptotic estimate
of (f,g)xkvolo.

Proposition 10.10. Let f = ) ; fisi and g = ) _; gisi be as in Lemma 10.7. In a
small neighbourhood of an arbitrary point of Ay, we have

(f-@axvolp =Y figj - O((=logry---re)*) - (ry--re) ™"
i,j
Xdri A ANdre NdOy AN~ ANdO. Ndzeg1 Ao ANdZy
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asqi,...,qc — 0, where
) 2k —2n, k>n+|Al
k—n+|Al, k<n+]Al
Proof. By substituting (10.15) and (10.10) in the right-hand side of (10.8), we obtain

(f. &) kvolo
=Y fi& - O((—logry -+ re)*™) - (Im(Z). Im(Z))F "~

i,J
X (ri-re) bedri Ao Adre AdOL A - ANdOe AdZegy Ao AdZy.

Then, according to whether the power degree k —n — |A| of (Im(Z), Im(Z)) is non-
negative or negative, we use (10.16) and (10.17), respectively. |

Before going to Section 10.4, we recall the following exercise in calculus.
Lemma 10.11. Let m € 7. The integral

1/2 1
lim[ —dr
>0 J¢ (logr)™-r

converges if m > 2, and diverges if m < 1.

Proof. This can be seen from

1 ! I
(logrym=1) — (logr)™ -r
when m # 1, and (log(—1logr))’ = ((logr) - r)~' whenm = 1. ]

10.4 Proof of Theorem 10.1

Now we prove Theorem 10.1. Let us begin with some reductions. For the proof of
Theorem 10.1, there is no loss of generality even if we replace the given group I" by
a subgroup of finite index. Thus we may assume that I" is neat. In particular, I" is
contained in SO™(L). By Proposition 3.12 (1), when ‘A, > n/2, we have &, ~ &
as SOT (Lg)-equivariant vector bundles. This isomorphism preserves the Petersson
metrics up to constant by their uniqueness as SO (Lg)-invariant Hermitian metrics.
Thus we have a natural isomorphism

M) (') =~ M3 (')
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which preserves the Petersson inner product up to constant. Since the highest weight
for the partition A is A itself, the assertions of Theorem 10.1 for weight (A, k) follow
from those for weight (A, k). Therefore, for the proof of Theorem 10.1, we may
assume that ‘A; < n/2.

We take a smooth toroidal compactification ¥ (I')* of  (T"), where the fans X;
are regular. We take a subdivision of ¥; as follows.

Lemma 10.12. There exists a I'(I)z-admissible and regular subdivision X of X1
such that every cone in X', contains at most one isotropic ray.

Proof. We take representatives 71, ..., Ty of mz-equivalence classes of 2-dimen-
sional cones spanned by two isotropic rays. For each 7,, we choose a rational vec-
tor from the interior of 7,. This vector has positive norm, and the ray it generates
divides t,. By letting TI)Z act, we obtain a division of every 2-dimensional cone
spanned by two isotropic rays. This is well defined because I"(/) is torsion-free, and
so, acts on the set of such cones freely. The collection of these divisions is I'(/)-
invariant by construction.

The division of 7 uniquely induces a division of every cone o having t as a
face, because o is simplicial. Explicitly, if 0 = R>ov1 + - + Rsove, 7 = R5ov1 +
Rsov, and vy € 7 is the division vector, we add the wall R>qvg + Rsov3 +-+- +
R>ov.. The collection of these new walls defines a I"(/)4-invariant subdivision of
the fan X7 such that every cone contains at most one isotropic ray. Taking its regular
subdivision [2, p. 186], we obtain a desired subdivision. [ ]

Thus our reduced situation is: I' is neat, “A; < n/2 so that A = A, and every cone
in ¥ contains at most one isotropic ray. (The last property will be used only in the
proof of the assertion (3).)

Now, the integral | W(F)( /. 8)a kvolp converges if for every boundary point x
of ¥ (I')* there exists a neighbourhood U = U, of x such that Ju (f. &)axvolp
converges. Therefore, for the proof of (1) and (3) of Theorem 10.1, it suffices to verify
the convergence of the integral over U. Conversely, when f = g, if [, (f. f)i kvolp
diverges around some boundary point x, then |, 37(1“)( J. f)a.xvolp diverges because
(f, f)a k is nonnegative, real-valued. Therefore, for the proof of (2) of Theorem 10.1,
it suffices to show that the integral [, (f, f) xvolp diverges at some U when f is
not a cusp form.

Recall that we have étale maps X (7)%/ — ¥ (I')% and X (J) — F(I')® which
give local charts around the boundary points of  (I")*. Moreover, we have an étale
gluing map X(J)— X(I)%! for I C J. Therefore the problem is reduced to estimat-
ing [;;(f. &)k volp for a small neighbourhood U of a boundary point of the partial
toroidal compactification X (7)>! over a 0-dimensional cusp /. We are thus in the
situation of Section 10.3. In what follows, we use the same notation as in Section 10.3.
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(1) We first prove the assertion (1) of Theorem 10.1. By Proposition 10.10, the
local integral [y, (f, g)a kvolp can be bounded from above by

aj ac 1 1
lim / / / / /
€15ee0sEc—>0 € ¢ 0 0 U’

> £igi - O((=logry 1)) - (- re) ™
i,
Xdri A Adre NdOy A~ ANdO. Ndzesy N+ ANdZy

for some integer N > 0, where ay,...,a. > 0 are small constants and U’ is a small
open set in A, with coordinates z¢41, ..., z,. If f is a cusp form, its components f;
vanish at the boundary divisors Ay, ..., A, by Lemma 3.9. Hence

fi=q1--qc.-0().

Similarly we have g; = O(1). We also have —logry ---r. < ]_[‘;:1(— log r7). Then
the above integral can be bounded from above by

aj ac €
lim / / HO((—logrl)N)drl/\---/\drc.
€15.e0sEc—0 &1 e ]

This integral converges because | : (log r)¥dr converges in ¢ — 0. Thus the integ-
ral fU (f. ) xvolp converges if f is a cusp form. This proves the assertion (1) of
Theorem 10.1.

(3) Next we prove the assertion (3) of Theorem 10.1. Let k <n — |A| — 2. When
o has no isotropic ray, f and g vanish at the boundary divisors Aj,..., A, by
Lemma 3.9. (Recall our assumption A # 1, det.) Therefore we can give a similar (actu-
ally stronger) estimate as in the case (1) above, which implies that [;,(f, &)1,k Volp
converges. We consider the case when o has an isotropic ray, say R>v;. Since other
rays R>ova,...,R5ov. are not isotropic by our assumption, we see from Lemma 3.9
that f and g vanish at A,, ..., A.. Therefore we have f = ¢ ---¢q. - O(1) and
g = ¢q2---q. - O(1). By substituting these estimates in the second case of Proposi-
tion 10.10, we see that

(f:@)rkvolp = (ra---1e) - O(1) - O((—logry -+ re) " HH) !
XdriA--Adre NdOy A---ANdO Ndzes1 N+ ANdZy.

We have (—logr; ---r.)~! < (—logr;)~!. Therefore Ju (f.8) 2,k volp can be bound-
ed from above by

a

1
lim O((—log r)k="+ A= 1yar

81—)0 £1

Since k —n + |A| < —2 by the assumption, this integral converges by Lemma 10.11.
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(2) Finally, we prove the assertion (2) of Theorem 10.1. When L has Witt
index < 1, we have S; x(I') = M, x(I') by Proposition 3.7. Thus we may assume
that L has Witt index 2. Let k > n 4+ |A| — 1 and assume that f is not a cusp form.
Then f does not vanish identically at a boundary divisor A = A, corresponding
to an isotropic ray 0 = Rxov for some 0-dimensional cusp /. We shall show that
fU (f. f)axvolp diverges for a general point x of A. Thus we consider the case
¢ = 1. We rewrite g1 = rie(01) as ¢ = re(0), and also denote Z’ = (2, ..., z¢)
which give local charts on A.

We go back to the flow Z = Z + +/—1tv in Section 10.3. Then P;;(Im(Z))
is a real polynomial of ¢ whose coefficients depend continuously on vy = Im(Zy).
Therefore, by substituting (10.18), we see that in a neighbourhood of x,

Pij(Im(Z)) = Qij(logr)

for a real polynomial Q;; of one variable whose coefficients depend continuously
on Z'. Moreover, as in the proof of Lemma 10.8, we have

(Im(Z),Im(Z)) = (vo, vo) + 2(vg,v)t ~—C logr

for some constant C = C(Z’) > 0 depending continuously on Z’. Therefore, by the
same calculation as in Section 10.3, we see that

(fs flaxvolp = Z fi f; Qij(logr)(—log P g AdO A -
iJ
asr — 0.

We take the base change of the frame (s;); by a GLy (C)-valued holomorphic
function A = A(Z’) of Z' around x so that f; — land f; - Ofori > 1asr — 0.
This is possible because f # 0 € V(I), x around x. Then the real symmetric mat-
rix Q = (Qj)i,; is replaced by the Hermitian matrix ' AQ A, which we denote by
Q' = (Q};)i,j- Each Q}; is a C-polynomial of log r whose coefficients depend con-
tinuously on Z’. Since the Hermitian matrix Q’ is positive-definite when r is small,
we have in particular Q’; # 0. Then

(f, /)axvolp = 07, (logr)(—log r)k_"_lllr_ldr ANdO A ---

as r — 0. Since Q7, is a nonzero real polynomial and k —n — [A| > —1 by our
assumption, we obtain

(f. faxvolp = (=logr) 'rtdr ndO A ---

as r — 0. By Lemma 10.11, this implies that the integral [, (f, f)a xvolgp diverges.
This completes the proof of Theorem 10.1. |
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Remark 10.13. As the proof shows, the assertion (1) of Theorem 10.1 holds even
when A = 1, det. Similarly, the assertion (2) holds also for A = 1, det at least when L
has Witt index 2. On the other hand, the proof of (3) makes use of Proposition 3.7,
which requires A # 1, det.



