
Chapter 10

Square integrability

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. In this chapter we study convergence of the Petersson inner productZ

F .�/

.f; g/�;kvolD

for f; g 2M�;k.�/, where . ; /�;k is the Petersson metric on the vector bundle E�;k
and volD is the invariant volume form on D .

For �D .�1 � � � � � �n/ let x�D .�1 � �n; : : : ; �Œn=2� � �nC1�Œn=2�/ be the asso-
ciated highest weight for SO.n;C/ (see Section 3.6.1). We denote by jx�j the sum of
all components of x�. Our results are summarized as follows.

Theorem 10.1. Let f; g 2M�;k.�/ with � ¤ 1; det.

(1) If f is a cusp form, then
R

F .�/
.f; g/�;kvolD <1.

(2) When k � nC jx�j � 1, f is a cusp form if and only ifZ
F .�/

.f; f /�;kvolD <1:

(3) When k � n � jx�j � 2, we always have
R

F .�/
.f; g/�;kvolD <1.

See Remark 10.13 for the scalar-valued case. The assertion (1) should be more or
less standard. The assertions (2) and (3) give a characterization of square integrability
except in the range

n � jx�j � 1 � k � nC jx�j � 2: (10.1)

The assertion (3) is in fact an intermediate step in the proof of our second vanishing
theorem (Theorem 11.1), where we eventually prove that M�;k.�/ D 0 in the range
k � n � jx�j � 2.

This chapter starts with defining the Petersson metrics on the Hodge bundles
explicitly (Section 10.1) and calculating them over the tube domain (Section 10.2). In
Section 10.3 we give some asymptotic estimates needed in the proof of Theorem 10.1.
In Section 10.4 we prove Theorem 10.1.

10.1 Petersson metrics

In this section we explicitly define the Petersson metrics on the Hodge bundles L

and E , and hence on the automorphic vector bundles E�;k .
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We begin with L. By the definition of D , the Hermitian form .�; N�/ on LC is pos-
itive on the lines parametrized by D . Thus restriction of this Hermitian form defines
a Hermitian metric on each fiber of L, and hence an OC.LR/-invariant Hermitian
metric on L. We call it the Petersson metric on L and denote it by . ; /L.

Next we consider E . We first define the real part of E . We writeLR for the product
real vector bundleLR �D , which we regard as a sub real vector bundle ofLC ˝OD

in the natural way. Then we define a sub real vector bundle of LR by

ER WD L? \ LR D .L˚ xL/
?
\ LR:

This is a real vector bundle of rank n. By the second expression, the fiber of ER over
Œ!� 2 D is the negative-definite subspace

hRe.!/; Im.!/i? \ LR (10.2)

of LR (cf. Section 2.1). The OC.LR/-action on LR preserves the sub vector bun-
dle ER. The natural homomorphism

ER ˝R C ,! L? ! E

gives an OC.LR/-equivariant C1-isomorphism between ER ˝R C and E . This de-
fines a real structure of E .

By the description (10.2) of the fibers, the real vector bundle ER is naturally
endowed with an OC.LR/-invariant negative-definite quadratic form. We take the
.�1/-scaling to turn it to positive-definite. This is a Riemannian metric on ER. It
extends to a Hermitian metric on ER ˝R C in the usual way. (Explicitly, the Her-
mitian pairing between two vectors v; w is the quadratic pairing between v and Nw.)
Via the C1-isomorphism ER˝R C! E , we obtain an OC.LR/-invariant Hermitian
metric on E . We call it the Petersson metric on E and denote it by . ; /E .

The Petersson metric on E induces an OC.LR/-invariant Hermitian metric on
E˝d , and hence by restriction an OC.LR/-invariant Hermitian metric on E� with
j�j D d . Taking the tensor product with the Petersson metric on L˝k , we obtain an
OC.LR/-invariant Hermitian metric on E�;k . We call it the Petersson metric on E�;k
and denote it by . ; /�;k .

Remark 10.2. WhenL is the primitive integral cohomology of a lattice-polarized K3
surface X with period Œ!� 2 D , we have the identifications

LŒ!� D H
2;0.X/; ER;Œ!� D H

1;1
prim.X;R/;

and ER;Œ!�˝R C! EŒ!� is identified withH 1;1
prim.X;C/!H 2;0.X/?=H 2;0.X/. On

H 2;0.X/ and H 1;1
prim.X;C/ we have the so-called Hodge metrics defined by

R
X
˛ ^ x̌

and �
R
X
˛ ^ x̌, respectively (see [46, Section 6.3.2]). Thus the Petersson metrics

on L and E are essentially the Hodge metrics in this geometric setting.
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Let I be a rank 1 primitive isotropic sublattice of L. For a vector v of V.I /R D
.I?=I /R, let sv be the section of E which corresponds to the constant section v
of V.I /˝ OD by the I -trivialization V.I /˝ OD ' E . We compute the Hermitian
pairing between these distinguished sections. We choose and fix a lift V.I /R ,! I?R
of V.I /R and regard vectors of V.I /R as vectors of I?R � LR in this way.

Lemma 10.3. Let v1; v2 2 V.I /R. The pairing of the sections sv1 , sv2 of E with
respect to the Petersson metric . ; /E is given by

.sv1.Œ!�/; sv2.Œ!�//E D �.v1; v2/C
2 � .v1; Im.!// � .v2; Im.!//

.Im.!/; Im.!//

for Œ!� 2 D . In the right-hand side, . ; / is the quadratic form on LR, and ! is
normalized so as to have real pairing with IR. In particular, .sv1 ; sv2/E is R-valued.

Proof. Let Œ!� 2 D . We choose a nonzero vector l 2 I . We may normalize ! so that
.l; !/ D 1. For v 2 V.I /R � I?R we write

˛.v/ D
.v; Im.!//

.Im.!/; Im.!//
D

.v; Im.!//
.Re.!/;Re.!//

2 R

and define a vector of LC by

s0v.Œ!�/ D v � .v; !/l C
p
�1˛.v/!: (10.3)

Claim 10.4. s0v is a section of ER ˝R C and is the image of sv under the C1-
isomorphism E ! ER ˝R C.

We prove Claim 10.4. The conditions to be checked are

.Re.s0v.Œ!�//; !/ D 0; .Im.s0v.Œ!�//; !/ D 0; s0v.Œ!�/ 2 sv.Œ!�/CC!:

Since sv.Œ!�/ D v � .v; !/l C C! by Lemma 2.6, the last condition follows from
the definition of s0v . We check the first equality. Since

Re.s0v.Œ!�// D v � .v;Re.!//l � ˛.v/ � Im.!/;

we see that

.Re.s0v.Œ!�//; !/ D .v; !/ � .v;Re.!// �
p
�1˛.v/.Im.!/; Im.!//

D .v; !/ � .v;Re.!// �
p
�1.v; Im.!//

D 0:

In the first equality we used .Re.!/; Im.!// D 0. The equality .Im.s0v.Œ!�//; !/ D 0
can be verified similarly. This proves Claim 10.4.
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We return to the proof of Lemma 10.3. We take two vectors v1; v2 2 V.I /R. By
definition, .sv1.Œ!�/; sv2.Œ!�//E is the pairing of s0v1.Œ!�/ and s0v2.Œ!�/ with respect to
the Hermitian form on ER ˝R C. This in turn is the pairing of the vectors s0v1.Œ!�/
and s0v2.Œ!�/ of LC with respect to the .�1/-scaling of the quadratic form on LC . By
the expression (10.3) of s0v.Œ!�/, we can calculate

� .sv1.Œ!�/; sv2.Œ!�//E

D .v1 � .v1; !/l C
p
�1˛.v1/!; v2 � .v2; x!/l �

p
�1˛.v2/x!/

D .v1; v2/C ˛.v1/˛.v2/.!; x!/ � 2˛.v1/.Im.!/; v2/ � 2˛.v2/.Im.!/; v1/:

Since we have

˛.v1/˛.v2/.!; x!/ D 2˛.v1/.Im.!/; v2/ D 2˛.v2/.Im.!/; v1/

D
2.v1; Im.!//.v2; Im.!//

.Im.!/; Im.!//
;

this proves Lemma 10.3.

Remark 10.5. By the expression (10.3), the imaginary part of s0v.Œ!�/ is nonzero for
general Œ!�. This shows that the real structure on E ' V.I /˝ OD given by ER is
different from that given by V.I /R. Nevertheless, the Petersson metric on the real
part given by V.I /R is R-valued by Lemma 10.3.

Let volD be the invariant volume form on D . The Petersson metric . ; /det;n of
weight .det; n/ gives an invariant metric on the canonical bundle KD ' L˝n ˝ det,
where det stands for the determinant character (cf. Example 2.2). This can be used
to express volD as follows. If � is an arbitrary nonzero vector of .KD/Œ!� over a
point Œ!� of D , the volume form volD at Œ!� is written as

volD.Œ!�/ D
� ^ x�

.�;�/det;n
(10.4)

up to a constant independent of Œ!�. Indeed, the right-hand side does not depend
on the choice of �, and the differential form of degree .n; n/ on D defined by the
right-hand side is clearly OC.LR/-invariant, so it should coincide with volD up to
constant.

10.2 Petersson metrics on the tube domain

Let I be a rank 1 primitive isotropic sublattice of L. We calculate the Petersson
metrics on L, E over the tube domain DI � U.I /C . We choose a rank 1 isotropic
sublattice I 0 � L with .I; I 0/ ¤ 0. Recall that the choice of I 0 determines a tube
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domain realization D!DI . We take a generator l of I and identifyU.I /Q'V.I /Q
accordingly.

Lemma 10.6. On the tube domain DI we have

.sl.Z/; sl.Z//L D 2.Im.Z/; Im.Z//; (10.5)

.sv1.Z/; sv2.Z//E D �.v1; v2/C
2 � .v1; Im.Z// � .v2; Im.Z//

.Im.Z/; Im.Z//
; (10.6)

for Z 2 DI . Here sl is the section of L corresponding to the dual vector of l , v1, v2
are vectors of V.I /R, and . ; / in the right-hand sides are the natural quadratic form
on V.I /R ' U.I /R.

Proof. We begin with . ; /L. We can view the section sl over DI as a function DI !

LC which lifts the inverse DI ! D of the tube domain realization and satisfies
.sl ; l/ � 1. Let l 0 be the vector of I 0Q with .l; l 0/ D 1, and we identify V.I /Q with
.IQ ˚ I

0
Q/
?. Then we can explicitly write sl as

sl.Z/ D l
0
CZ � 2�1.Z;Z/l 2 LC

for Z 2 DI � V.I /. Thus we have

.sl.Z/; sl.Z//L D .sl.Z/; sl.Z// D .Z; xZ/ � .Z;Z/=2 � .Z;Z/=2

D 2.Im.Z/; Im.Z//:

Next we calculate . ; /E . By Lemma 10.3, we have

.sv1.Z/; sv2.Z//E D �.v1; v2/C
2 � .v1; Im.sl.Z/// � .v2; Im.sl.Z///

.Im.sl.Z//; Im.sl.Z///
:

Since
Im.sl.Z// D Im.Z/ � 2�1 Im..Z;Z//l;

we see that

.Im.sl.Z//; Im.sl.Z/// D .Im.Z/; Im.Z//; .vi ; Im.sl.Z/// D .vi ; Im.Z//:

This proves (10.6).

At each point Z 2 DI , the Petersson metric on E can be understood as follows.
We take an R-basis v1; : : : ; vn of V.I /R such that v1 2R Im.Z/ and .vi ; Im.Z//D 0
for i > 1. Then, by (10.6), we have

.svi .Z/; svj .Z//E D

8̂̂<̂
:̂
.v1; v1/; i D j D 1;

�.vi ; vj /; i; j > 1;

0; i D 1; j > 1:
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The right-hand side can be seen as the positive-definite modification of the hyperbolic
quadratic form on V.I /R given by taking the .�1/-scaling of the negative-definite
subspace Im.Z/?. The Petersson metric on EZ ' V.I / is the Hermitian extension of
this modified real metric on V.I /R to V.I /.

Finally, we recall the expression of volD over DI . Let volI be a flat volume form
on DI � U.I /C . Then, as it is well known, we have

volD D .Im.Z/; Im.Z//�n volI : (10.7)

This can be seen by substituting � D s˝n
l
˝ v0 in (10.4) and using (10.5), where v0

is a nonzero vector of det. The section s˝n
l
˝ v0 of L˝n ˝ det corresponds to a flat

canonical form on DI � U.I /C by its U.I /C-invariance.

10.3 Asymptotic estimates on the tube domain

In this section we prepare some estimates of the Petersson metrics on E�;k over the
tube domain DI . This will be a main ingredient in the proof of Theorem 10.1. We
keep the setting of Section 10.2.

We choose an R-basis ¹viºi of the real part .V .I /R/� of V.I /�. Then ¹viºi is
also a C-basis of V.I /�. Let s0i be the section of E� corresponding to vi via the I -
trivialization E� ' V.I /�˝OD and let si D s0i ˝ s

˝k
l

. Then ¹siºi is a frame of E�;k
corresponding to a basis of V.I /�;k by the I -trivialization. Accordingly, we express a
section f of E�;k over D 'DI as f D

P
i fisi with fi a scalar-valued holomorphic

function on DI .

Lemma 10.7. There exist real homogeneous polynomials ¹Pij ºi;j on U.I /R of de-
gree � 2j�j determined by the basis ¹viºi of .V .I /R/� such that

.f; g/�;kvolD D
X
i;j

figj � Pij .Im.Z// � .Im.Z/; Im.Z//k�n�j�j volI (10.8)

for all sections fD
P
ifisi , gD

P
igisi of E�;k over DI . The matrix .Pij .Im.Z///i;j

is symmetric and positive-definite for Z 2 DI .

Proof. The section s0i is an R-linear combination of j�j-fold tensor products of the
distinguished sections sv of E associated to v 2 V.I /R. (Recall that V� � V ˝j�j.)
The equation (10.6) can be written as

.sv1.Z/; sv2.Z//E D
�.v1; v2/.Im.Z/; Im.Z//C 2.v1; Im.Z//.v2; Im.Z//

.Im.Z/; Im.Z//
:

The numerator is a real homogeneous polynomial of Im.Z/ of degree � 2. Therefore
the Petersson paring between s0i and s0j can be written as

.s0i .Z/; s
0
j .Z//� D Pij .Im.Z// � .Im.Z/; Im.Z//

�j�j (10.9)
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for a real homogeneous polynomial Pij of Im.Z/ of degree � 2j�j. Together with
(10.5) and (10.7), we obtain

.si .Z/; sj .Z//�;kvolD D Pij .Im.Z// � .Im.Z/; Im.Z//k�n�j�j volI :

This proves the equality (10.8). Since the matrix ..s0i .Z/; s
0
j .Z//�/i;j is real symmet-

ric and positive-definite, so is .Pij .Im.Z///i;j by (10.9).

Let � be a finite-index subgroup of OC.L/ and let X.I / D DI=U.I /Z. We
take a regular �.I /Z-admissible cone decomposition †I of CCI � U.I /R in the
sense of Section 3.5.1. Let X.I /†I be the associated partial toroidal compactific-
ation of X.I /. Let � be a cone in †I of dimension c. By the regularity of †I , we
can write � D R�0v1 C � � � C R�0vc such that v1; : : : ; vc is a part of a Z-basis of
U.I /Z, say v1; : : : ; vn. Let l1; : : : ; ln 2 U.I /_Z be the dual basis of v1; : : : ; vn. Then
zi D .li ; Z/, 1 � i � n, are flat coordinates on U.I /C . We have

volI D dz1 ^ � � � ^ dzn ^ d Nz1 ^ � � � ^ d Nzn

up to constant. We write qi D e.zi / for 1 � i � c. Let �� be the boundary stratum
of X.I /†I corresponding to the cone � , and �i D �vi be the boundary divisor
corresponding to the ray R�0vi . Then q1; : : : ; qc ; zcC1; : : : ; zn give local coordinates
around �� . The divisor �i is defined by qi D 0, and �� is defined by q1 D � � � D
qc D 0. We write qi D rie.�i / with ri D jqi j and 0 � �i < 1. Then

volI D
dq1

q1
^
d Nq1

Nq1
^ � � � ^

dqc

qc
^
d Nqc

Nqc
^ dzcC1 ^ � � � ^ d Nzn

D
1

r1 � � � rc
dr1 ^ d�1 ^ � � � ^ drc ^ d�c ^ dzcC1 ^ � � � ^ d Nzn (10.10)

up to constant.
We give an asymptotic estimate of the right-hand side of (10.8) as q1; : : : ; qc

approach to 0. We take an arbitrary base point Z0 2DI and consider a flow of points
of the form

Z D Z.t1; : : : ; tc/ D Z0 C
p
�1.t1v1 C � � � C tcvc/; t1; : : : ; tc !1: (10.11)

This flow converges to a point of �� as t1; : : : ; tc !1, and every point of �� can
be obtained in this way. Let v0 D Im.Z0/. This is a vector in the positive cone CI .

Lemma 10.8. The following asymptotic estimates hold as t1; : : : ; tc !1.

Pij .Im.Z// D O..t1 C � � � C tc/2j�j/; (10.12)

.Im.Z/; Im.Z// D O..t1 C � � � C tc/2/; (10.13)

.Im.Z/; Im.Z//�1 D O..t1 C � � � C tc/�1/: (10.14)
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Proof. We have Im.Z/D v0C
P
i tivi . Since Pij is a real homogeneous polynomial

of degree � 2j�j on U.I /R, we see that Pij .v0 C
P
i tivi / is a real inhomogeneous

polynomial of t1; : : : ; tc of degree � 2j�j. This implies (10.12). Next we have

.Im.Z/; Im.Z// D .v0; v0/C 2
X
i

.v0; vi /ti C 2
X
i¤j

.vi ; vj /ti tj C
X
i

.vi ; vi /t
2
i :

The estimate (10.13) is obvious from this expression. Since v0 2 CI and v1; : : : ; vc 2
CI , all coefficients in the right-hand side are nonnegative; possibly except for .vi ; vi /
with i � 1, they are furthermore positive. Therefore we have

.Im.Z/; Im.Z// > 2
X
i

.v0; vi /ti > C �
X
i

ti

for some constant C > 0. This implies (10.14).

Lemma 10.9. In a small neighbourhood of an arbitrary point of �� , we have

Pij .Im.Z// D O..� log r1 � � � rc/2j�j/; (10.15)

.Im.Z/; Im.Z// D O..� log r1 � � � rc/2/; (10.16)

.Im.Z/; Im.Z//�1 D O..� log r1 � � � rc/�1/; (10.17)

as q1; : : : ; qc ! 0.

Proof. We consider the flow (10.11) with Z0 varying over the range where Re.Z0/
is in a fundamental neighbourhood of U.I /R=U.I /Z and v0 D Im.Z0/ is in a small
neighbourhood of an arbitrary point of CI . Since

ri D jqi j D exp.�2�.li ; Im.Z/// D exp.�2�.li ; v0/ � 2�ti /;

we have
ti D �.2�/

�1 log ri � .li ; v0/: (10.18)

The constant term �.li ; v0/ depends on v0 D Im.Z0/ continuously. Therefore our
assertions follow by substituting ti � �.2�/�1 log ri in the estimates in Lemma 10.8
and using log r1 C � � � C log rc D log r1 � � � rc .

Summing up the calculations so far, we obtain the following asymptotic estimate
of .f; g/�;kvolD .

Proposition 10.10. Let f D
P
i fisi and g D

P
i gisi be as in Lemma 10.7. In a

small neighbourhood of an arbitrary point of �� , we have

.f; g/�;kvolD D
X
i;j

fi Ngj �O..� log r1 � � � rc/˛/ � .r1 � � � rc/�1

� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn
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as q1; : : : ; qc ! 0, where

˛ D

´
2k � 2n; k � nC j�j;

k � nC j�j; k < nC j�j:

Proof. By substituting (10.15) and (10.10) in the right-hand side of (10.8), we obtain

.f; g/�;kvolD

D

X
i;j

fi Ngj �O..� log r1 � � � rc/2j�j/ � .Im.Z/; Im.Z//k�n�j�j

� .r1 � � � rc/
�1
� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn:

Then, according to whether the power degree k � n � j�j of .Im.Z/; Im.Z// is non-
negative or negative, we use (10.16) and (10.17), respectively.

Before going to Section 10.4, we recall the following exercise in calculus.

Lemma 10.11. Let m 2 Z. The integral

lim
"!0

Z 1=2

"

1

.log r/m � r
dr

converges if m � 2, and diverges if m � 1.

Proof. This can be seen from�
1

.log r/m�1

�0
D

1 �m

.log r/m � r

when m ¤ 1, and .log.� log r//0 D ..log r/ � r/�1 when m D 1.

10.4 Proof of Theorem 10.1

Now we prove Theorem 10.1. Let us begin with some reductions. For the proof of
Theorem 10.1, there is no loss of generality even if we replace the given group � by
a subgroup of finite index. Thus we may assume that � is neat. In particular, � is
contained in SOC.L/. By Proposition 3.12 (1), when t�1 > n=2, we have E� ' Ex�
as SOC.LR/-equivariant vector bundles. This isomorphism preserves the Petersson
metrics up to constant by their uniqueness as SOC.LR/-invariant Hermitian metrics.
Thus we have a natural isomorphism

M�;k.�/ 'Mx�;k.�/
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which preserves the Petersson inner product up to constant. Since the highest weight
for the partition x� is x� itself, the assertions of Theorem 10.1 for weight .�; k/ follow
from those for weight .x�; k/. Therefore, for the proof of Theorem 10.1, we may
assume that t�1 � n=2.

We take a smooth toroidal compactification F .�/† of F .�/, where the fans †I
are regular. We take a subdivision of †I as follows.

Lemma 10.12. There exists a �.I /Z-admissible and regular subdivision †0I of †I
such that every cone in †0I contains at most one isotropic ray.

Proof. We take representatives �1; : : : ; �N of �.I /Z-equivalence classes of 2-dimen-
sional cones spanned by two isotropic rays. For each �a, we choose a rational vec-
tor from the interior of �a. This vector has positive norm, and the ray it generates
divides �a. By letting �.I /Z act, we obtain a division of every 2-dimensional cone �
spanned by two isotropic rays. This is well defined because �.I /Z is torsion-free, and
so, acts on the set of such cones freely. The collection of these divisions is �.I /Z-
invariant by construction.

The division of � uniquely induces a division of every cone � having � as a
face, because � is simplicial. Explicitly, if � DR�0v1C � � � CR�0vc , � DR�0v1C
R�0v2 and v0 2 � is the division vector, we add the wall R�0v0 C R�0v3 C � � � C
R�0vc . The collection of these new walls defines a �.I /Z-invariant subdivision of
the fan †I such that every cone contains at most one isotropic ray. Taking its regular
subdivision [2, p. 186], we obtain a desired subdivision.

Thus our reduced situation is: � is neat, t�1 � n=2 so that x�D �, and every cone
in †I contains at most one isotropic ray. (The last property will be used only in the
proof of the assertion (3).)

Now, the integral
R

F .�/
.f; g/�;kvolD converges if for every boundary point x

of F .�/† there exists a neighbourhood U D Ux of x such that
R
U
.f; g/�;kvolD

converges. Therefore, for the proof of (1) and (3) of Theorem 10.1, it suffices to verify
the convergence of the integral over U . Conversely, when f D g, if

R
U
.f;f /�;kvolD

diverges around some boundary point x, then
R

F .�/
.f; f /�;kvolD diverges because

.f;f /�;k is nonnegative, real-valued. Therefore, for the proof of (2) of Theorem 10.1,
it suffices to show that the integral

R
U
.f; f /�;kvolD diverges at some U when f is

not a cusp form.
Recall that we have étale maps X.I /†I ! F .�/† and X.J /! F .�/† which

give local charts around the boundary points of F .�/†. Moreover, we have an étale
gluing map X.J /!X.I /†I for I � J . Therefore the problem is reduced to estimat-
ing

R
U
.f; g/�;kvolD for a small neighbourhood U of a boundary point of the partial

toroidal compactification X.I /†I over a 0-dimensional cusp I . We are thus in the
situation of Section 10.3. In what follows, we use the same notation as in Section 10.3.



Proof of Theorem 10.1 129

(1) We first prove the assertion (1) of Theorem 10.1. By Proposition 10.10, the
local integral

R
U
.f; g/�;kvolD can be bounded from above by

lim
"1;:::;"c!0

Z a1

"1

� � �

Z ac

"c

Z 1

0

� � �

Z 1

0

Z
U 0X

i;j

fi Ngj �O..� log r1 � � � rc/N / � .r1 � � � rc/�1

� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn

for some integer N > 0, where a1; : : : ; ac > 0 are small constants and U 0 is a small
open set in �� with coordinates zcC1; : : : ; zn. If f is a cusp form, its components fi
vanish at the boundary divisors �1; : : : ; �c by Lemma 3.9. Hence

fi D q1 � � � qc �O.1/:

Similarly we have gj D O.1/. We also have � log r1 � � � rc �
Qc
lD1.� log rl/. Then

the above integral can be bounded from above by

lim
"1;:::;"c!0

Z a1

"1

� � �

Z ac

"c

cY
lD1

O..� log rl/N /dr1 ^ � � � ^ drc :

This integral converges because
R a
"
.log r/Ndr converges in "! 0. Thus the integ-

ral
R
U
.f; g/�;kvolD converges if f is a cusp form. This proves the assertion (1) of

Theorem 10.1.
(3) Next we prove the assertion (3) of Theorem 10.1. Let k � n � j�j � 2. When

� has no isotropic ray, f and g vanish at the boundary divisors �1; : : : ; �c by
Lemma 3.9. (Recall our assumption �¤ 1;det.) Therefore we can give a similar (actu-
ally stronger) estimate as in the case (1) above, which implies that

R
U
.f; g/�;kvolD

converges. We consider the case when � has an isotropic ray, say R�0v1. Since other
rays R�0v2; : : : ;R�0vc are not isotropic by our assumption, we see from Lemma 3.9
that f and g vanish at �2; : : : ; �c . Therefore we have f D q2 � � � qc � O.1/ and
g D q2 � � � qc � O.1/. By substituting these estimates in the second case of Proposi-
tion 10.10, we see that

.f; g/�;kvolD D .r2 � � � rc/ �O.1/ �O..� log r1 � � � rc/k�nCj�j/ � r�11
� dr1 ^ � � � ^ drc ^ d�1 ^ � � � ^ d�c ^ dzcC1 ^ � � � ^ d Nzn:

We have .� log r1 � � � rc/�1 � .� log r1/�1. Therefore
R
U
.f;g/�;kvolD can be bound-

ed from above by

lim
"1!0

Z a1

"1

O..� log r1/k�nCj�j � r�11 /dr1:

Since k � nC j�j � �2 by the assumption, this integral converges by Lemma 10.11.
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(2) Finally, we prove the assertion (2) of Theorem 10.1. When L has Witt
index � 1, we have S�;k.�/ D M�;k.�/ by Proposition 3.7. Thus we may assume
that L has Witt index 2. Let k � nC j�j � 1 and assume that f is not a cusp form.
Then f does not vanish identically at a boundary divisor � D �� corresponding
to an isotropic ray � D R�0v for some 0-dimensional cusp I . We shall show thatR
U
.f; f /�;kvolD diverges for a general point x of �. Thus we consider the case

c D 1. We rewrite q1 D r1e.�1/ as q D re.�/, and also denote Z0 D .z2; : : : ; zc/

which give local charts on �.
We go back to the flow Z D Z0 C

p
�1tv in Section 10.3. Then Pij .Im.Z//

is a real polynomial of t whose coefficients depend continuously on v0 D Im.Z0/.
Therefore, by substituting (10.18), we see that in a neighbourhood of x,

Pij .Im.Z// D Qij .log r/

for a real polynomial Qij of one variable whose coefficients depend continuously
on Z0. Moreover, as in the proof of Lemma 10.8, we have

.Im.Z/; Im.Z// D .v0; v0/C 2.v0; v/t � �C log r

for some constant C D C.Z0/ > 0 depending continuously on Z0. Therefore, by the
same calculation as in Section 10.3, we see that

.f; f /�;kvolD <
X
i;j

fifjQij .log r/.� log r/k�n�j�jr�1dr ^ d� ^ � � �

as r ! 0.
We take the base change of the frame .si /i by a GLN .C/-valued holomorphic

function A D A.Z0/ of Z0 around x so that f1 ! 1 and fi ! 0 for i > 1 as r ! 0.
This is possible because f ¤ 0 2 V.I /�;k around x. Then the real symmetric mat-
rix Q D .Qij /i;j is replaced by the Hermitian matrix t xAQA, which we denote by
Q0 D .Q0ij /i;j . Each Q0ij is a C-polynomial of log r whose coefficients depend con-
tinuously on Z0. Since the Hermitian matrix Q0 is positive-definite when r is small,
we have in particular Q011 ¤ 0. Then

.f; f /�;kvolD < Q011.log r/.� log r/k�n�j�jr�1dr ^ d� ^ � � �

as r ! 0. Since Q011 is a nonzero real polynomial and k � n � j�j � �1 by our
assumption, we obtain

.f; f /�;kvolD < .� log r/�1r�1dr ^ d� ^ � � �

as r ! 0. By Lemma 10.11, this implies that the integral
R
U
.f; f /�;kvolD diverges.

This completes the proof of Theorem 10.1.
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Remark 10.13. As the proof shows, the assertion (1) of Theorem 10.1 holds even
when �D 1; det. Similarly, the assertion (2) holds also for �D 1; det at least when L
has Witt index 2. On the other hand, the proof of (3) makes use of Proposition 3.7,
which requires � ¤ 1; det.


