
Chapter 11

Vanishing theorem II

Let L be a lattice of signature .2; n/ with n � 3 and � be a finite-index subgroup
of OC.L/. Let � D .�1 � � � � � �n/ be a partition expressing an irreducible repres-
entation of O.n;C/. We assume � ¤ 1; det. Therefore �1 > 0 and �n D 0. In this
chapter we prove our second type of vanishing theorem. We define the corank of �,
denoted by corank.�/, as the maximal index 1 � i � Œn=2� such that

�1 D �2 D � � � D �i and �n D �n�1 D � � � D �nC1�i D 0:

Let

x� D .x�1; : : : ; x�Œn=2�/ D .�1 � �n; �2 � �n�1; : : : ; �Œn=2� � �nC1�Œn=2�/

be the highest weight for SO.n;C/ associated to �. Then corank.�/ is the maximal
index i such that x�1 D x�2 D � � � D x�i . Let jx�j D

P
i
x�i be as in Section 10.

Our second vanishing theorem is the following.

Theorem 11.1. Let � ¤ 1; det. If k < nC �1 � corank.�/ � 1, there is no nonzero
square integrable modular form of weight .�; k/. In particular,

(1) S�;k.�/ D 0 when k < nC �1 � corank.�/ � 1.

(2) M�;k.�/ D 0 when k < n � jx�j � 1.

We compare Theorems 11.1 and 9.1. The bound n=2C �1 � 1 in Theorem 9.1
is smaller than the main bound n C �1 � corank.�/ � 1 in Theorem 11.1 because
corank.�/� Œn=2�. However, Theorem 11.1 is about square integrable modular forms,
while Theorem 9.1 is about the wholeM�;k.�/, so Theorem 11.1 does not supersede
Theorem 9.1. The comparison of Theorem 11.1 (1) and Theorem 9.1 raises the ques-
tion if we have convergent Eisenstein series in the range

n=2C �1 � 1 � k < nC �1 � corank.�/ � 1:

As for the comparison of Theorem 11.1 (2) and Theorem 9.1, it depends on � which
n� jx�j � 1 or n=2� 1C �1 is larger. Roughly speaking, Theorem 11.1 (2) is stronger
when jx�j is small, while Theorem 9.1 is stronger when �1 is large. Thus Theor-
ems 11.1 and 9.1 are rather complementary.

The proof of Theorem 11.1 follows the same strategy as Weissauer’s vanishing
theorem for vector-valued Siegel modular forms [47]. If we have a square integrable
modular form f ¤ 0, we can construct a unitary highest weight module for the Lie
algebra of SOC.LR/ by a standard procedure (cf. [23, 47] for the Siegel case). By
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computing its weight and comparing it with the classification of unitarizable highest
weight modules [12, 13, 28], we obtain the bound k � nC �1 � corank.�/ � 1. The
more specific assertions (1), (2) in Theorem 11.1 are derived from combination with
Theorem 10.1.

The rest of this chapter is devoted to the proof of Theorem 11.1. The construction
of highest weight module occupies Sections 11.1 and 11.2, and the concluding step
is done in Section 11.3.

11.1 Lifting to the Lie group

In this section we work with G D SOC.LR/. We lift a square integrable modular
form on D to a square integrable function on G in a standard way. We choose a base
point Œ!0� 2 D . Let K ' SO.2;R/ � SO.n;R/ be the stabilizer of Œ!0� in G. We
denote by g, k the Lie algebras of G, K, respectively. Let g D k ˚ p be the Cartan
decomposition of g with respect to k, and pC D pC ˚ p� be the eigendecomposition
for the adjoint action of so.2;R/ � k on p. Then p is identified with the real tangent
space TŒ!0�;RD of D at Œ!0�, and the decomposition pC D pC ˚ p� corresponds to
the decomposition

TŒ!0�;RD ˝R C D T 1;0
Œ!0�

D ˚ T
0;1
Œ!0�

D :

For each point Œ!�D g.Œ!0�/ of D , the g-action gives an isomorphism p�! T
0;1
Œ!�

D .
This isomorphism is unique up to the adjoint action of K.

The Lie group P� D exp.p�/ is abelian and is the unipotent radical of the stabil-
izer of Œ!0� in SO.LC/ (see, e.g., [2, pp. 107–108]). Therefore, in view of (1.2), P�
coincides with the group of Eichler transvections of LC with respect to the isotropic
line C!0. In particular, P� acts trivially on C!0 D LŒ!0� and !?0 =C!0 D EŒ!0�. We
will use this property in the proof of Claim 11.3 (3) below.

Now let � be a partition for O.n;C/ and x� be the associated highest weight for
SO.n;C/. To start with O.n;C/ is somewhat roundabout here, but this is for consist-
ency with the formulation of Theorem 11.1 and eventually with other chapters. We
first consider the case when V� remains irreducible as a representation of SO.n;C/
(cf. Section 3.6.1). Let Wx�;k be the finite-dimensional irreducible C-representation
of K ' SO.n;R/ � SO.2;R/ with highest weight .x�; k/.

Lemma 11.2. Assume that either n is odd or nD 2m is even with t�1¤m. Let f ¤ 0
be a square integrable modular form of weight .�; k/ for a finite-index subgroup �
of SOC.L/. Then there exists a smooth function �f ¤ 0 on G with the following
properties.

(1) �f 2 L2.�nG/.
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(2) p� � �f D 0. (Here g acts on �f as the derivative of the rightG-translations.)

(3) The linear subspace of L2.�nG/ spanned by the right K-translations of �f
is finite dimensional and is isomorphic to W _

x�;k
as a K-representation.

Proof. We choose a rank 1 primitive isotropic sublattice I of L and let j.g; Œ!�/ be
the factor of automorphy associated to the I -trivialization E�;k ' V.I /�;k ˝ OD .
The homomorphism

K ! End.V .I /�;k/; k 7! j.k; Œ!0�/; (11.1)

defines a representation of K on V.I /�;k ' .E�;k/Œ!0�. This is irreducible of highest
weight .x�; k/ by our assumption on �. The Petersson metric on .E�;k/Œ!0� is K-
invariant. Via the I -trivialization at Œ!0�, this defines a K-invariant Hermitian metric
on V.I /�;k . The induced constant Hermitian metric on the product vector bundleG �
V.I /�;k overG corresponds to the Petersson metric on E�;k through the isomorphism

E�;k ' G �K .E�;k/Œ!0� ' G �K V.I /�;k : (11.2)

Via the I -trivialization we regard the modular form f as a V.I /�;k-valued holo-
morphic function on D . We define a V.I /�;k-valued smooth function Qf on G by

Qf .g/ D j.g; Œ!0�/
�1
� f .g.Œ!0�//; g 2 G:

This is the V.I /�;k-valued function on G that corresponds to the section f of E�;k
via the G-equivariant isomorphism (11.2).

Claim 11.3. The V.I /�;k-valued function Qf satisfies the following.

(1) Qf .g/ D Qf .g/ for  2 � .

(2) Qf .gk/ D k�1. Qf .g// for k 2 K, where k�1 acts on V.I /�;k by (11.1).

(3) p� � Qf D 0.

(4) Qf is square integrable over �nG with respect to the Haar measure on G and
the Hermitian metric on V.I /�;k .

All these properties should be standard. We supply an argument for the sake of
completeness (cf. [23] for the Siegel modular case). The property (1) follows from the
�-invariance of f , and the property (2) is just the invariance of Qf under theK-action
on G � V.I /�;k . Both (1) and (2) can also be checked directly by using the cocycle
condition for j.g; Œ!�/.

The property (4) holds because we haveZ
�nG

. Qf .g/; Qf .g//d�G D

Z
�nD

volD

Z
K

. Qf .g/; Qf .g//d�K

D

Z
�nD

.f; f /�;kvolD
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up to constant, where d�G , d�K are the Haar measures on G, K, respectively, and
. ; / in the first line is the Hermitian metric on V.I /�;k .

Finally, we check the property (3). We have

X � Qf .g/ D .X � j.g; Œ!0�/
�1/f .g.Œ!0�//C j.g; Œ!0�/

�1.X � f .g.Œ!0�///

for X 2 p�. Then X � f .g.Œ!0�// D 0 by the holomorphicity of f . As for the first
term, since P� fixes Œ!0� and acts trivially on .E�;k/Œ!0� as noticed before, we have

j.g exp.tX/; Œ!0�/ D j.g; exp.tX/.Œ!0�// ı j.exp.tX/; Œ!0�/ D j.g; Œ!0�/:

This shows that X � j.g; Œ!0�/ D 0, and so,

X � j.g; Œ!0�/
�1
D �j.g; !0/

�1
ı .X � j.g; Œ!0�// ı j.g; Œ!0�/

�1
D 0:

Therefore X � Qf D 0. Claim 11.3 is thus verified.
We go back to the proof of Lemma 11.2. The property (2) in Claim 11.3 means

that Qf as a vector of the K-representation

L2.�nG; V.I /�;k/ ' L
2.�nG/˝ V.I /�;k ' L

2.�nG/˝Wx�;k

is K-invariant. Therefore it corresponds to a nonzero K-homomorphism

f̂ W W
_
x�;k
! L2.�nG/;

which must be injective by the irreducibility of W _
x�;k

. The image of f̂ consists of
the scalar-valued functions L ı Qf for L 2 V.I /_

�;k
. By the irreducibility, the K-orbit

of any such nonzero vector generates the image of f̂ . Then we put �f D L ı Qf
for an arbitrary L ¤ 0. The property (3) in Claim 11.3 implies the property (2) in
Lemma 11.2. This finishes the proof of Lemma 11.2.

11.2 Highest weight modules

In this section we construct from �f a unitary highest weight module of g. The result
is summarized in Propositions 11.4 and 11.5.

First we recall the theory of highest weight modules following [12, 13, 24] and
specialized to G D SOC.LR/. Let k0 D so.2;R/ and k1 D so.n;R/. Then k D k0 ˚

k1, k0 is the centre of k, and k1 D Œk; k� is the semi-simple part of k. We take a maximal
abelian subalgebra h of k. Then hC is a Cartan subalgebra of gC . We have hD k0˚ h1
with h1 D h \ k1 being a maximal abelian subalgebra of k1. We may take a Borel
subalgebra b of gC constructed from the root data in hC which is the direct sum of a
Borel subalgebra of kC and p� (rather than pC).
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Let z� 2 h_C be a weight which is dominant and integral with respect to kC (rather
than gC). According to the decomposition h D k0 ˚ h1, we can write

z� D .�; ˛/; � 2 .h1/
_
C; ˛ 2 .k0/

_
C ' C;

with � a dominant and integral weight for .k1/C D so.n;C/. Here we identify

.k0/
_
C ' C

by the pairing with the unique maximal non-compact positive root. (In the notation
of [13, Section 4], � D .m2; : : : ;mn/ and ˛ D m1; in the notation of [12, Sections 10
and 11], � D .�2; : : : ; �n/ and ˛ D �1 C z.) We denote by C�;˛ the 1-dimensional
module of hC of weight .�; ˛/. We can regard C�;˛ as a module of b naturally. We
also denote byW�;˛ the finite-dimensional irreducible module of kC of highest weight
.�; ˛/. This is compatible with the notation in Section 11.1.

Let U.gC/ and U.b/ be the universal enveloping algebras of gC and b, respect-
ively. Let

M.�; ˛/ D U.gC/˝U.b/ C�;˛

be the Verma module of gC with highest weight .�; ˛/. The module M.�; ˛/ has a
unique irreducible quotient L.�; ˛/ (see [24, Section 1.3]). This is called the irredu-
cible highest weight module of gC with highest weight .�; ˛/. The module L.�; ˛/ is
also a unique irreducible quotient of the generalized (or parabolic) Verma module

N.�; ˛/ D U.gC/˝U.kC˚p�/ W�;˛;

because N.�; ˛/ is also a quotient of M.�; ˛/ (see [24, Section 9.4]). The highest
weight module L.�; ˛/ is said to be unitarizable if it is isomorphic as a gC-module
to the K-finite part of a unitary representation of G.

Now we go back to modular forms on D .

Proposition 11.4. Assume that either n is odd or n D 2m is even with t�1 ¤ m. If
we have a square integrable modular form f ¤ 0 2 M�;k.�/, then the irreducible
highest weight module L.x�_;�k/ is unitarizable.

Proof. Let Vf be the minimal Hilbert subspace of L2.�nG/ which contains the right
G-translations of the function �f in Lemma 11.2. This is a sub unitary representa-
tion of L2.�nG/. The K-finite part .Vf /K of Vf is a .g; K/-module. Let V0 be the
subspace of .Vf /K generated by the right K-translations of �f . By Lemma 11.2 (3),
V0 is isomorphic to W _

x�;k
D Wx�_;�k as a K-representation. By Lemma 11.2 (2), V0

is annihilated by p�. Indeed, for X 2 p� and k 2 K, we have

k�1 � .X � .k � �f // D Adk�1.X/ � �f D 0
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because the adjoint action of K preserves p�. Therefore the natural homomorphism
U.gC/˝C V0� .Vf /K descends to a surjective homomorphism

N.x�_;�k/ ' U.gC/˝U.kC˚p�/ V0� .Vf /K

from the generalized Verma module N.x�_;�k/. By the minimality of the quotient
L.x�_;�k/, this in turn implies that there exists a surjective homomorphism

.Vf /K� L.x�_;�k/:

Since .Vf /K is unitarizable, so is L.x�_;�k/.

So far we have considered the case when V� remains irreducible as an SO.n;C/-
representation. It remains to consider the exceptional case nD 2m, t�1Dm, where V�
gets reducible. In that case, Proposition 11.4 is modified as follows. For a highest
weight � D .�1; : : : ; �m/ for SO.2m;C/, we write �� D .�1; : : : ; �m�1;��m/ as in
Section 3.6.1.

Proposition 11.5. Let nD 2m be even and t�1 D m. Suppose that we have a square
integrable modular form f ¤ 0 2M�;k.�/. Then either L.x�_;�k/ or L..x��/_;�k/
is unitarizable.

Proof. According to the decomposition of E� in Proposition 3.12 (2), we can write
f D .fC; f�/ with fC of weight .x�; k/ and f� of weight .x��; k/ with respect to
SO.n;R/ � SO.2;R/. We have either fC ¤ 0 or f� ¤ 0. Then we can do the same
construction for the nonzero component f˙ as before, by using the component-wise
I -trivialization (3.22).

Finally, we recall the classification of unitarizable irreducible highest weight
modules [12, 13, 28]. For our purpose, we restrict ourselves to those weights .�; ˛/
such that ˛ 2 Z and � is a highest weight for SO.n;C/ (rather than so.n; C/).
In this situation, the version in [13] is convenient to use. For such a weight � D
.�1; : : : ; �Œn=2�/, we denote by corank.�/ the maximal index i such that

�1 D �2 D � � � D �i�1 D j�i j:

Theorem 11.6 ([12,13,28]). Let �D.�1; : : : ;�Œn=2�/ be a highest weight for SO.n;C/.
Assume that �1 ¤ 0, i.e., � nontrivial. Let ˛ 2 Z. Then the irreducible highest weight
module L.�; ˛/ is unitarizable if and only if �˛ � nC �1 � corank.�/ � 1.

Here we follow [13, Theorems 4.2 and 4.3], with ˛ D m1, � D .m2; : : : ; mn/

and corank.�/ D i � 1 in the notation there. A complete classification of unitary
irreducible highest weight modules for general .�; ˛/ (and also for other Lie groups)
is given in [12, 28]. For the proof of Theorem 11.1, we just use the “only if” part of
Theorem 11.6.
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Remark 11.7. In fact, the result of [12] tells us more than unitarizability. Let �1 > 0.
By the calculation of “the first reduction point” in [12, Lemmas 10.3 and 11.3], we
see that the generalized Verma module N.�; ˛/ is already irreducible when �˛ >
nC �1 � corank.�/� 1. ThusL.�;˛/DN.�;˛/ in that case. Furthermore, according
to [12, Theorem 2.4 (b)], L.�; ˛/ belongs to the holomorphic discrete series when
�˛ > nC �1 � 1, and to the limit of holomorphic discrete series when �˛ D nC
�1 � 1. Note that ˛ D �1 C z in the notation of [12, Sections 10 and 11], and this �1
corresponds to ��1 � nC 1 in our notation, so z in [12] is ˛ C nC �1 � 1 here.

11.3 Proof of Theorem 11.1

With the preliminaries in Sections 11.1 and 11.2, we can now complete the proof of
Theorem 11.1. Let n� 3 and �¤ 1;det. We first consider the case when either n is odd
or n D 2m is even with t�1 ¤ m. Suppose that we have a square integrable modular
form f ¤ 0 2 M�;k.�/. Then the highest weight module L.x�_;�k/ is unitarizable
by Proposition 11.4. By applying Theorem 11.6 to .�; ˛/ D .x�_;�k/, we see that
.�; k/ must satisfy

k � nC .x�_/1 � corank.x�_/ � 1:

Recall from Section 3.6.1 that x�_ D x� in the case n 6� 2 mod 4 and x�_ D x�� in the
case n � 2 mod 4. Since n � 3, we have x�1 D .x��/1, and so,

.x�_/1 D x�1 D �1 (11.3)

in both cases. Since corank.x��/ D corank.x�/, we also have

corank.x�_/ D corank.x�/ D corank.�/ (11.4)

by the definition of corank.�/. (Note that all components of x� are nonnegative.)
Hence .�; k/ satisfies the bound

k � nC �1 � corank.�/ � 1: (11.5)

This proves the main assertion of Theorem 11.1. The assertion (1) for S�;k.�/ is
then a consequence of Theorem 10.1 (1). As for the assertion (2), we note that the
inequality

n � jx�j � 1 < nC �1 � corank.�/ � 1

holds, because corank.x�/ � jx�j and �1 > 0. Therefore, when k < n � jx�j � 1, any
modular form of weight .�; k/ is square integrable by Theorem 10.1 (3), but at the
same time its weight violates the bound (11.5). This implies thatM�;k.�/D 0 in this
case.
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Next we consider the exceptional case when n D 2m is even and t�1 D m. Note
that x�D� in this case. If we have a square integrable modular form f ¤ 02M�;k.�/,
then either L.x�_;�k/ or L..x��/_;�k/ is unitarizable by Proposition 11.5. Since
�_ D � or ��, this means that either L.�;�k/ or L.��;�k/ is unitarizable. By The-
orem 11.6, we obtain the bound

k � min.nC �1 � corank.�/ � 1; nC .��/1 � corank.��/ � 1/:

Since .��/1 D �1 and corank.��/ D corank.�/ as before, this reduces to the same
bound as (11.5). The rest of the argument is similar to the non-exceptional case. This
completes the proof of Theorem 11.1.

Remark 11.8. Since Theorem 11.1 (2) is derived from Theorem 10.1 (3), this part
could be improved if we could improve the characterization of square integrability in
the remaining range (10.1).

Remark 11.9. Let Vf � L2.�nG/ be the unitary representation attached to a square
integrable modular form f 2M�;k.�/, say in the non-exceptional case. Recall from
the proof of Proposition 11.4 that

N.x�_;�k/� .Vf /K� L.x�_;�k/:

If we apply Remark 11.7 to .�; ˛/D .x�_;�k/ and use (11.3) and (11.4), we find that

.Vf /K ' L.x�
_;�k/ ' N.x�_;�k/

when k � nC �1 � corank.�/. The unitary representation Vf belongs to the holo-
morphic discrete series when k � nC �1, and to the limit of holomorphic discrete
series when k D nC �1 � 1.


