
Chapter 1

Introduction

1.1 Main results

Consider the incompressible Navier–Stokes equations in the two-dimensional pipe
D D R � .�1; 1/ ´

@tv � ��vC v � rv D �rp in RC �D;

v D vb Oi1 on RC � @D;
(1.1.1)

where Oi1 D .1; 0/, v D .v1; v2/ is the fluid velocity, and p is the pressure.
The parameter

R WD
1

�
(1.1.2)

is the Reynolds number of the flow and

vb W @D ! R

is the boundary velocity.
Since the flow is incompressible we must have

div v D 0:

We linearize (1.1.1) near the laminar flow (cf. [3])

v D U.x2/Oi1;

to obtain the linearized equation

ut � T0.u; q/ D 0;

where u D .u1; u2/ and q are defined on RC �D, and T0 is the map

.u; q/ 7! T0.u; q/ WD �� �uC U
@u
@x1
C u2 U

0 Oi1 � rq: (1.1.3)

We proceed with a formal derivation of the Orr–Sommerfeld equation, intentionally
skipping the definitions of v, p, u, and q. Interested readers can read the entire deriv-
ation in [3]. The associated resolvent equation for T0 assumes the form

T0.u; q/ �ƒu D f; (1.1.4)

where div u D 0 and ƒ 2 C is the spectral parameter.
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Hence, we may define a stream function

u D r? D .� x2 ;  x1/:

Substituting the above into (1.1.4) and then taking the curl of the ensuing equation
for  yields �

� ��2 C U
@

@x1
� � U 00

@

@x1
�ƒ�

�
 D F; (1.1.5)

where F D curlf .
We consider U 2 C 2.Œ�1; 1�/ (we later restrict ourselves to U 2 C 4.Œ�1; 1�/)

satisfying the following:

U.˙1/ D 0; (1.1.6a)

max
x2Œ�1;1�

U 00.x/ < 0; (1.1.6b)

U.�x/ D U.x/: (1.1.6c)

We normalize U so that
U 0.˙1/ D �1: (1.1.6d)

Substituting  .x1; x2/ D �.x2/ e
i˛x1 into (1.1.5) yields for � W .�1; 1/ ! C the

equation
BD
�;˛;ˇ� D f; (1.1.7a)

where (setting x2 D x)

BD
�;˛;ˇ D .Lˇ � ˇ�/

� d2
dx2
� ˛2

�
� iˇU 00; (1.1.7b)

where

Lˇ D �
d2

dx2
C iˇU: (1.1.7c)

In the above
ˇ D ˛��1 D ˛R (1.1.8)

(R being the Reynolds number introduced in (1.1.2)), and, for ˇ ¤ 0,

� D ˇ�1
�ƒ
�
� ˛2

�
: (1.1.9)

We refer to [3, Section 3] for the details of the derivation. We use the pair of para-
meters .˛; ˇ/ instead of .˛;R/ since the asymptotic limit we consider in the sequel is
ˇ !1.

We define BD
�;˛;ˇ

on

D.BD
�;˛;ˇ / D

®
u 2 H 4.�1; 1/; u.1/ D u0.1/ D u.�1/ D u0.�1/ D 0

¯
: (1.1.10)
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We focus our interest on the restriction B
D;sym
�;˛;ˇ

of the operator BD
�;˛;ˇ to func-

tions that are symmetric with respect to the reflection x 7! �x. Hence, we are led to
consider the equivalent restricted operator B

N;D
�;˛;ˇ

on .0; 1/ whose domain is

D.B
N;D
�;˛;ˇ

/D
®
u 2H 4.0; 1/; u0.0/D u.3/.0/D 0 and u.1/D u0.1/D 0

¯
: (1.1.11)

We leave the discussion of anti-symmetric modes to future research. Note that since

BU
�;˛;ˇ D B�U

N�;˛;ˇ

(where xB denotes the complex conjugate of B) the analysis in the sequel applies to
the case where minx2Œ�1;1�U 00.x/ > 0 as well. Clearly, the Poiseuille flow associated
with U.x/D .1� x2/=2meets all the criteria in (1.1.6). Another example mentioned
in [13] is given by U.x/ D .2=�/ cos�x=2. Note that U is decreasing on .0; 1/.

In [13, Theorem 1.1], it has been established by Grenier–Guo–Nguyen that for
sufficiently large R and for each ˛ satisfying

CLR
�1=7
� ˛ � CR R

�1=11;

or equivalently when ˇ is large and

C
7=6
L ˇ�1=6 � ˛ � C

11=10
R ˇ�1=10;

there exists � 2 C with negative real part such that B
N;D
�;˛;ˇ

is not invertible. For the
case of a Poiseuille flow, the positive constants CL and CR have been determined
from well-known formal asymptotic calculations (cf. the book [12] by P. G. Drazin
and W. H. Reid).

In the present contribution, we consider the converse problem, i.e., we attempt to
show that, for any ı > 0, .BD;sym

�;˛;ˇ
/�1 is bounded for <� � 0 when

˛ � ˇ�1=10Cı or 0 � ˛ � ˛L ˇ
�1=6:

Note that unlike [13] we do not provide the precise estimate derived by formal asymp-
totics, i.e., ˛L < CL and ˇ�1=10Cı > ˇ1=10. The determination of the precise curves
is left to future research.

Recall from equation (1.1.8) that ˇ D ˛=�. Our main results are the following
two theorems.

Theorem 1.1.1. Let U 2 C 4.Œ�1; 1�/ satisfy (1.1.6). Then there exist positive ˛L, C ,
‡ , and ˇ0 > 1 such that for all ˇ > ˇ0 it holds that

sup
0�˛�˛Lˇ

�1=6

<�<‡ˇ�1=2



.BD;sym
�;˛;ˇ

/�1


C 


 d

dx
.B

D;sym
�;˛;ˇ

/�1



 � C ˇ�1=2 logˇ: (1.1.12)
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The condition ˛ 2 Œ0; ˛Lˇ�1=6� can be rephrased in terms of the pair .˛; R/ as
˛ 2 Œ0; ˛

6=7
L R�1=7�.

Theorem 1.1.2. Let U 2 C 4.Œ�1; 1�/ satisfy (1.1.6). Let further y�m > 0 be given by
[3, equation (6.57)]. Then for any ı > 0 and any y‡ > 0, there exist positive C , ‡ ,
and ˇ0 such that for all ˇ > ˇ0 we have

sup
ˇ�1=10Cı�˛

<��min.‡ˇ�1=2;ˇ�1=3Œy�m�y‡�˛2ˇ�2=3=2�/



.BD;sym
�;˛;ˇ

/�1


C 


 d

dx
.B

D;sym
�;˛;ˇ

/�1





� Cˇ�1=2Cı : (1.1.13)

The condition ˛ � ˇ�1=10Cı can be rephrased in terms of the pair .˛; R/ as ˛ �
R.�1C10ı/=.11�10ı/. Note that the condition <� � ˇ�1=3.Œy�m � y‡ � ˛2ˇ�2=3=2�/
guarantees, by (1.1.9) that B

D;sym
�;˛;ˇ

is invertible forƒ�˛ˇ�1=3Œy�mC˛2ˇ�2=3=2� y‡�
and hence the stability of the laminar flow even for ˛ & ˇ1=3.

In the above 

.BD;sym
�;˛;ˇ

/�1


 D sup

f 2L2.0;1/
kf k2D1

k.B
D;sym
�;˛;ˇ

/�1f k2

and 


 d
dx
.B

D;sym
�;˛;ˇ

/�1



 D sup

f 2L2.0;1/
kf k2D1




 d
dx
.B

D;sym
�;˛;ˇ

/�1f




2
;

where k � k2 denotes the standard L2.0; 1/ norm.
In recent years, hydrodynamic stability of shear flows has attracted significant

attention. For the case of a Couette flow we mention only a partial list of rigorous
analytical results [4–6, 8]. In [3], we have established similar estimates for the Orr–
Sommerfeld operator, together with semigroup estimates for the linearized Navier–
Stokes operator in the case where jU 0j > 0 in Œ�1; 1� (see also the works of Chen,
Wei, and Zhang [9] and of Jia [17] for recent generalizations). In contrast with the
present case the Orr–Sommerfeld operator has, when jU 00j > 0, a bounded resolvent
in the half-plane <� � 0.

The hydrodynamic stability of symmetric flows in a channel has been considered
extensively in physics (cf. for instance [12,19–21]). These works, just like that of [13],
all attempt to determine as function of ˇ the region in the .˛;=�/ plane where the
Orr–Sommerfeld is unstable. In a recent work [11], the stability of Poiseuille flow has
been established in the case of a Navier-slip boundary condition. This means that the
boundary condition u0.˙1/ D 0 in (1.1.11) is replaced by u00.˙1/ D 0. The stability
of a pipe Poiseuille flow has also been addressed in [10].
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1.2 Proof strategy

In the following informal discussion, we present the main ingredients of the proofs
of Theorems 1.1.1 and 1.1.2. Some of the definitions appearing in the discussion will
remain slightly vague and will be reformulated more precisely in the next sections.
The reader may be interested in reviewing the relevant part of this presentation before
diving into the technical details of any part of the analysis in the sequel.

We begin with a rather heuristic discussion. Consider the equation

B�;˛;ˇ� D f; (1.2.1)

where .�; f / 2 D.BN;D
�;˛;ˇ

/ � L2.0; 1/ and B�;˛;ˇ D B
N;D
�;˛;ˇ

.
Our goal is to estimate the operator B�1

�;˛;ˇ
under specific conditions on the para-

meters .�; ˛; ˇ/ 2 C � RC � RC. We may rewrite the above equation in the form

A�;˛� D v; (1.2.2a)

where
v D ˇ�1Œf C �.4/ � ˛2�00� (1.2.2b)

and

A�;˛ D .U C i�/
�
�
d2

dx2
C ˛2

�
C U 00 (1.2.2c)

is the inviscid (Rayleigh) operator whose study will be the main object of Section 1.2.
We define A�;˛ for <� ¤ 0 or when <� D 0 and =� … Œ0; U.0/�, on

D.A
N;D
�;˛

/ D
®
� 2 H 2.0; 1/ j �0.0/ D 0 and �.1/ D 0

¯
: (1.2.2d)

It intuitively appears that v should tend to 0 as ˇ ! 1, and thus, we adopt the
following proof strategy.

(1) We prove that v becomes small as ˇ !1.

(2) We obtain a bound for kA�1
�;˛
vk1;2 (where k � k1;2 denotes the standard

H 1.0; 1/ norm).

After successfully completing the above stages we expect to obtain an inequality of
the form

k�0k2 � ı1.ˇ/kf k2 C ı2.ˇ/k�
0
k2:

If for sufficiently large ˇ it holds that ı2.ˇ/ < 1=2, we can conclude from here an
estimate for kB�1

�;˛;ˇ
k C k

d
dx

B�1
�;˛;ˇ
k.
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Estimation of A�1
�;˛

. We use in Chapter 2 a similar procedure to the one used in [3].
Let � D �C i�. Given that jU 00j > 0 in Œ0; 1� and since

=

D
�;

A�;˛�

U C i�

E
D ��




 jU 00j1=2�
U C i�




2
2
; (1.2.3)

we easily obtain that 


 �

U C i�





2
�
C

j�j
kvk2: (1.2.4)

From the above (accompanied by a rather straightforward integration by parts) it is
not difficult to show that

kA�1�;˛k C



 d
dx

A�1�;˛




 � C

j�j
:

The above estimate is unsatisfactory in the limit �! 0, and hence finer estim-
ates need to be established. We use the fact that Ai�;˛ is self-adjoint. Thus, for
� 62 .0; U.0/� (see Sections 2.7 and 2.10) we may writeD �

U � �
;Ai�;˛�

E
D




.U � �/� �

U � �

�0


2
2
C ˛2k�k22;

and obtain from it an estimate for k�0k2 in the case where j�j is small.
For � 2 .0;U.0/�, we have to address the singularity where U D �. Given the fact

that U is increasing in Œ0; 1� there exists a unique x� 2 Œ0; 1/ where U.x�/ D �. Let
� 2 C1.Œ0; 1�; Œ0; 1�/ denote a cutoff function supported on Œ0; .1C x�=2/�. Setting
' D � � �.x�/� we may write


.U � �/� '

U � �

�0


2
2
C ˛2k�k22

D

D '

U � �
;Ai�;˛'

E
� �.x�/

hD '

U � �
; U 00�

E
� h'; �00 � ˛2�i

i
: (1.2.5)

For the above balance to become useful for the purpose of obtaining estimates for
k�0k2, we need to obtain an estimate for �.x�/. To this end we use (1.2.3) to obtain
(for � ¤ 0)

�j�.x�/j
2



 1

U C i�
k
2
2 � k�k1




 v

U C i�





1
C C j�j




� � �.x�/
U � �




2
2
:

Under the condition in [3] on U , which is assumed to be strictly monotone, the above
estimates leads to

j�.x�/j � k�k1




 v

U C i�





1
C C j�j k�0k2:

Substituting the above into (1.2.5) (properly amended to account for small values of
j�j) yields an estimate for k�0k2.

To adapt the above method to the present context we need to overcome several
difficulties.
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(1) It holds that A0;0U D 0 and since U 2D.A0;0/, .A�;˛/
�1 becomes strongly

singular in the limit .�; ˛/! .0; 0/.

(2) The boundary condition at x D 0 is a Neumann condition in contrast with
the Dirichlet condition in [3]. Thus, we have to write (1.2.5) separately on
the intervals .0; x�/ and .x� ; 1/. On .x� ; 1/ we may use the same method
used in [3]. However, on .0; x�/, considering �=.U � �/, we obtain bounds
of this quotient for small values of ˛ that are significantly greater than those
obtained for larger values of ˛.

(3) The quadratic behavior of U � U.0/ as opposed to the linear behavior con-
sidered in [3].

The first pair of difficulties is addressed by the same techniques.

• For small values of ˛ we use the fact that we can consider .A0;�/
�1 as an integral

operator to obtain satisfactory estimates for its norm (see Proposition 2.4.1).

• For larger values of ˛ we use again (1.2.5) (see Section 2.5).

In Section 2.6, we present a different analysis, which is valid for any ˛ � 0 with
stronger singularity in the limit �! 0. In all cases, we use the orthogonal decom-
position � D Ck.U � �/C �? to obtain separate estimates for Ck and �?, estimates
of the latter being significantly smaller than the former. To overcome the last diffi-
culty we simply use (1.2.4) in Section 2.9. In Section 2.8, we consider the transition
between the quadratic behavior of U near x� and the linear behavior considered in
Section 2.6.

Estimate of B�1
�;˛;ˇ

. To obtain an estimate of v (see (1.2.2b)) we set

vD WD A�;˛� C .U C i�/�
00.1/ O ; (1.2.6)

where

y .x/ D
Ai
�
ˇ1=3e�i�=6Œ.1 � x/ � i��

�
Ai
�
e�i2�=3ˇ1=3�

� �.x/:

Here, Ai is the Airy function and � 2 C1.Œ0; 1�; Œ0; 1�/ is supported on .1=4; 1�,
and satisfies � � 1 on Œ1=2; 1�. Note that vD.1/ D v

0
D.0/ D 0 and that y is a good

approximation for the L2.�1; 1/ solution of´ �
�

d2

dx2
C iˇŒ.1 � x/C i��

�
u D 0 in .�1; 1/;

u.1/ D 1:
(1.2.7)

We can now rewrite (1.2.1) in the form

.Lˇ � ˇ�/vD D gD;
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where

Lˇ D �
d2

dx2
C iˇU

is defined on
D.Lˇ / D ¹u 2 H

2.0; 1/ j u.1/ D u0.0/ D 0º:

While the precise form of gD need not concern us in this brief summary of the proof
we still need to obtain an estimate of its L2.0; 1/ norm. Thus, we get an estimate of
v by working through the following steps.

(1) Estimate of �00.1/.

(2) Estimate of gD.

(3) Estimate of vD.

(4) Estimate of A�1
�;˛
vD and of �00.1/A�1

�;˛
.U C i�/ y .

We use two different methods for the estimation of �00.1/.
For ˛ values that are not too small. We rewrite (1.2.1) in the form�

�
d2

dx2
C iˇŒU C i��

�
.�00 � ˛2�/ D iˇU 00� C f:

Given �.1/D �0.1/D �0.0/D 0, we may conclude that for z.x/D cosh.˛x/= cosh˛
it holds that

hz; �00 � ˛2�i D 0: (1.2.8a)

Consequently, we define the Schrödinger operator L
z
ˇ

with the same differential oper-
ator as for Lˇ but with the following domain

D.L
z
ˇ
/ D

®
u 2 H 2.0; 1/ j u0.0/ D 0; hz; ui D 0

¯
: (1.2.8b)

Let .v; g/ 2 D.Lz
ˇ
/ � L2.0; 1/ satisfy

.L
z
ˇ
� ˇ�/v D g: (1.2.9)

In Chapter 4, we obtain estimates for v.1/ that we later use in Chapter 5 (except for
Sections 5.8 and 5.7) to obtain an estimate for �00.1/. Again, we have to distinguish
between the quadratic case (Section 4.3) and the linear case (Section 4.2).

For smaller values of ˛ and j�j. The estimate of �00.1/, obtained by the above
technique becomes deficient, given the singularity of A0;0. We thus integrate (1.2.1)
for ˛ D 0 to obtain

�.3/.1/ D �

Z 1

0

f .x/ dx: (1.2.10)

Then we use the identity

k.U 00/�1=2�.3/k22 D �<h.U
00/�1�00;B�;0;ˇ�i �

1

U 00.1/
<. N�00.1/�.3/.1//

�<hŒ.U 00/�1�0�00; �.3/i C �ˇk.U 00/�1=2�00k22
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to obtain a proper bound for k�.3/k2, which together with Sobolev embedding (skip-
ping, of course, some of the details) leads to a satisfactory bound for j�00.1/j. Note
that the effectiveness of this technique is lost when ˛ is not small since (1.2.10) is no
longer valid. We use it only in Section 5.8.

Finally, we note that for ˛ & ˇ�1=3 z undergoes significant changes through an
O.ˇ�1=3/ boundary layer near x D 1. Hence, we can no longer make any good use of
(1.2.7) as an estimate for the behavior near x D 1 of the solution of (1.2.9). Instead,
we need to use the same method developed in [3] for this case. Note that, since z

is localized near x D 1 for large values of ˛, the effect of the different boundary
conditions at x D 0 here and in [3] is exponentially small. Resolvent estimates for
L

z
ˇ

in this case are brought in Section 4.7 whereas estimates for the inverse of B�;˛;ˇ

are given in Section 5.7.

Remark. We note an error in the derivation of [3, equation (8.96)] where the term
‚0C 

0
C= C.1/ (‚C is analogous to � in the present contribution) was overlooked.

This error does not affect at all the validity of [3, equation (8.96)] given that the error
generated by the missing term can be estimated using (4.2.17), and is much smaller
than the right-hand side of [3, equation (8.96)] (which is greater or equal than Cˇ�1=4

for some positive C ).

We skip the rather technical stage of estimating gD. Once it is done, we need to
estimate .Lˇ � ˇ�/

�1 in L.L2; Lp/ for 1 � p � 1 in order to obtain an appropri-
ate estimate for vD. These estimates are obtained in Chapter 3 for various ranges of
� values. Again we need to distinguish between the linear behavior of U � U.x�/
near x D x� (Section 3.1) and the quadratic behavior near x D 0 for � D U.0/ (Sec-
tion 3.2). Special attention is also devoted to L.L2; L1/ and L.H 1; L1/ estimates
(Section 3.3).

Next, we estimate A�1
�;˛
vD using the aforementioned techniques of Chapter 2. For

A�1
�;˛
.U C i�/ y we use the exponential decay of y away from x D 1 to obtain the

desired estimate in a rather straightforward manner, except in the case .�;˛/! .0;0/.
These estimates are addressed in Section 5.2.

Finally, in Chapter 6 we summarize the results of Chapter 5 and prove the main
theorems.


