
Chapter 1

Introduction

A discrete dynamical system is a pair .X; g/, where X is a set and g is a function
X ! X . The motivation behind this definition is to think of a complicated system
that evolves in discrete time steps (such as a neural network), with X being the set of
all states which the system can assume, and g.x/ being the successor state of x 2 X .
For this reason, one calls X the state space and g the (state) transition function of
.X;g/. When studying a discrete dynamical system .X;g/, one is naturally interested
in the behavior of g under iteration (i.e., in the function iterates gn for n 2N0 D ¹n 2

Z W n � 0º). See the monograph [48] for a general introduction to discrete dynamical
systems, and [48, Chapter 7] in particular for some examples of practical applications
of them.

When X is finite, one also calls .X;g/ a finite dynamical system. Some important
special cases with regard to applications are when X D Z=mZ and g is a polynomial
modulom (which is used in Pollard’s rho algorithm [59]), or whenX D Fnq (Cartesian
power of the finite field Fq), with a particular focus on q D 2 in the literature (see [36,
43,44,54,74]). It should be noted that one may identify Fnq with Fqn by fixing an Fq-
basis in the latter, so there is in fact no loss of generality when assuming n D 1 (i.e.,
when only considering finite fields themselves as state spaces).

A simple yet remarkable fact when X is finite is that all points x 2 X are pre-
periodic under g, i.e., there exist unique smallest integers pperlg.x/ � 0 and
perlg.x/ � 1, called the pre-period (length) and period (length) of x under g, respec-
tively, such that gpperlg.x/Cperlg.x/.x/ D gpperlg.x/.x/. A different terminology fre-
quently used in the literature for pre-periodic points is eventually (or ultimately) peri-
odic. In the case pperlg.x/ D 0, one says that x is periodic under g (or g-periodic);
periodic points are also known as purely periodic. The subset of X consisting of all
g-periodic points is denoted by per.g/. A point in X that is not g-periodic is called
transient under g (or g-transient). Various stochastic parameters of random functions
X ! X that are of interest for the study of finite dynamical systems, such as the
expected pre-period and period length of a point, were determined in [23].

An important means of visualizing a discrete dynamical system .X;g/, especially
when X is finite, is the so-called functional graph of g, denoted by �g . This is the
directed graph with vertex set X that has an arc (directed edge) x ! g.x/ for each
x 2 X , and no other arcs. It is straightforward to show that a directed graph � with
vertex set X is a functional graph (i.e., is of the form �g for some g W X ! X ) if and
only if each x 2 X has out-degree 1 in � .

Particularly for finite functional graphs �g , one can give the following precise
characterization of their shape: a connected component of �g is the induced subgraph
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of �g on a subset ofX that is the vertex set of a connected component of the underly-
ing undirected graph of �g . Each such connected component contains a single cycle
of periodic points of g. Apart from those periodic points, the connected component
consists precisely of those points which eventually map to the cycle after sufficiently
many iterations of g – the iterated pre-images (under g) of points on the cycle.
For each x on the cycle, the iterated pre-images y of x such that x D ypperlg.y/

form a directed rooted tree, with root x, that has all of its arcs oriented toward the
root. Henceforth, for simplicity, whenever we say “(directed) rooted tree”, it means
“directed rooted tree in which all arcs are oriented toward the root”. Here is a picture
to illustrate the situation:

Conversely, each finite digraph of the shape described above is a functional graph,
as it is readily verified that all vertices in it have out-degree 1. The study of finite
dynamical systems may be understood as the study of finite functional graphs. In
this context, it is also noteworthy that in case  1 and  2 are permutations of a finite
set, we have � 1 Š � 2 if and only if  1 and  2 are of the same cycle type, i.e.,
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they have the same number of cycles of each given length. Formally, the cycle type
of a permutation  of X , denoted by CT. /, is defined as the unique monomial in
QŒxn W n2NC�, where NCD ¹n2Z W n� 1º, in which the degree of each variable xn
is the number of  -cycles of length equal to n. For example, if X D ¹1; 2; : : : ; 9º and
 D .1; 2; 3/.4; 5/.6; 7/.8/.9/, then

CT. / D x21x
2
2x3:

Cycle types (and the related notion of cycle indices) are well studied in combina-
torics, and studying isomorphism types of functional graphs may be seen as a natural
generalization of this to arbitrary functions on finite sets.

Functional graphs of certain classes of functions on finite fields received con-
siderable attention recently, see the papers [33, 50, 57, 61, 62, 71–73] and references
therein. A survey of this topic can be found in [49]. Additionally, the papers [18, 58]
do not deal explicitly with functional graphs, but with the iteration of functions on
finite fields, and their results could be reformulated in terms of functional graphs. In
this memoir, we contribute to this line of research by investigating functional graphs
of so-called generalized cyclotomic mappings in the following sense.

Definition 1.1. Let q be a prime power, and let d j q � 1. A generalized cyclotomic
mapping of Fq of index d is a function f W Fq ! Fq with f .0/ D 0 such that the
restriction of f to each coset Ci of the unique index d subgroup of F�q agrees with a
monomial function

x 7! aix
ri :

More specifically, let ! be a primitive element of Fq (i.e., a generator of the cyclic
multiplicative group F�q ), and let C be the index d subgroup of F�q . The d cosets of C
in F�q are of the form

Ci D !
iC

for i D 0; 1; : : : ; d � 1. The general form of an index d generalized cyclotomic map-
ping f of Fq is

f .x/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

0; if x D 0;

a0x
r0 ; if x 2 C D C0;

a1x
r1 ; if x 2 C1;

:::
:::

ad�1x
rd�1 ; if x 2 Cd�1;

(1.1)

where ai 2 Fq and ri 2 ¹0; 1; : : : ; q � 2º for i D 0; 1; : : : ; d � 1. These functions are
interesting because they generalize monomial mappings (which constitute the special
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case d D 1) while still being relatively well controlled. From an abstract algebraic
point of view, it is noteworthy that monomial functions

F�q ! F�q ; x 7! axr ;

where a 6D 0Fq necessarily, are affine maps of the multiplicative group F�q , in the sense
that they are compositions of a group endomorphism of F�q (viz., the power function
x 7! xr ) with a (multiplicative) translation

x 7! ax

by a fixed group element a (see also Definition 2.1.15). Hence, generalized cyclo-
tomic mappings in which all coefficients ai from (1.1) are non-zero may be viewed
as “coset-wise affine” functions, and we explore the idea of generalizing the methods
and results from this memoir to other (possibly non-abelian) groups in Section 6.4.
In this context, we also note that the celebrated Collatz function g W Z! Z, given by
the formula

g.x/ D

´
x=2; if x 2 2Z;

3x C 1; if x 2 2ZC 1;

is also a coset-wise affine function, of its respective domain of definition group Z.
The reason why we are able to develop a theory for understanding the behavior of
generalized cyclotomic mappings under iteration in this memoir (while the analo-
gous task for the Collatz function is wide open) is because generalized cyclotomic
mappings preserve the associated partition of Fq into the cosets Ci and the singleton
set ¹0Fq º (and, relatedly, they form a semigroup under function composition) – see
also the distinction between the two concepts introduced in Definition 6.4.1 (2,3).

We observe that a given generalized cyclotomic mapping of Fq may have several
possible indices, and that every function f W Fq ! Fq with f .0/D 0 is a generalized
cyclotomic mapping of Fq of index q � 1, though the study of generalized cyclotomic
mappings is mostly focused on small values of d . For d D q � 1, known methods of
handling generalized cyclotomic mappings, such as [15, Algorithm 1], are essentially
the trivial brute-force approaches. Apart from [15], generalized cyclotomic mappings
were also studied in [80, 81, 87]. An important special case is when ri D r for all i ;
then one speaks of an r-th order cyclotomic mapping of Fq of index d , and those
functions were studied, e.g., in [24, 56, 78, 79, 82].

Our goal in this memoir is to develop algorithms that answer fundamental ques-
tions concerning the structure of the functional graph �f of a given index d general-
ized cyclotomic mapping f of Fq , specified in the form (1.1). For example, let ! be
any fixed primitive element of F256, and consider the following index 5 generalized
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cyclotomic mapping f of F256.

f .x/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

0; if x D 0;

!5x9; if x 2 C0;

x3; if x 2 C1;

x17; if x 2 C2;

!3x34; if x 2 C3;

!4x9; if x 2 C4:

(1.2)

The functional graph �f has 256 vertices, and one can understand its structure by
drawing it, which we do below. In this drawing, a vertex labeled n 2 ¹0; 1; : : : ; 254º
corresponds to the field element !n 2 F�q (in particular, the label 0 corresponds to
the field element !0 D 1F256), whereas the vertex representing the field element 0 is
labeled by 0F256 . It turns out that �f has four connected components, and in one of
them (the fourth one in our order of drawing), the rooted trees glued to three particular
f -periodic points on the unique cycle in that connected component are relatively
large and thus drawn separately; we mark those rooted trees with�k for k 2 ¹1; 2; 3º
in the schematic drawing of the corresponding connected component.

0F256

95

180 10

29 114 199

110

210 40

4 89 174

230

195 25

59 144 229

35

60 145

44 129 214

65

120 205

79 164 249

80

150 235

54 139 224

215

165 250

84 169 254

155

45 130

14 99 184

125

240 70

64 149 234

185

�1

140

15 100

39 124 209

245

�2

170

75 160

74 159 244

5

0 85

9 94 179

50

90 175

19 104 189

200

135 220

24 109 194

20

�3
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The rooted tree �1 looks as follows.

1
86
171
6
91
176
11
96
181
16
101
186
21
106
191
26
111
196
31
116
201
36
121
206
41
126
211
46
131
216
51
136
221
56
141
226
61
146
231
66
151
236
71
156
241
76
161
246
81
166
251

3

18

33

48

63

78

93

108

123

138

153

168

183

198

213

228

243

105 185 190

49

134

219

13

28

43

58

73

88

103

118

133

148

163

178

193

208

223

238

253

The rooted tree �2 looks as follows.

245225 55 119

34

204

2 17 32 47 62 77 92 107 122 137 152 167 182 197 212 227 242

12 27 42 57 72 87 102 117 132 147 162 177 192 207 222 237 252

7

22

37

52

67

82

97

112

127

142

157

172

187

202

217

232

247
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The rooted tree �3 looks as follows.

20

30 115 8 23 38 53 68 83 98 113 128 143 158 173 188 203 218 233 248

69 154 239

Of course, this approach of understanding �f by drawing it becomes intractable
for large values of q, as its complexity is at least linear in q (i.e., exponential in logq).
The aim of our algorithms is to obtain an understanding of the structure of �f without
needing to draw it vertex by vertex. A detailed complexity analysis of those algo-
rithms, which we carry out in Chapter 5, shows that for asymptotically almost every
finite field and fixed index d , our algorithms have implementations with polynomial
complexity (in log q) on quantum computers, and implementations with subexpo-
nential complexity on classical computers. In the remainder of this introduction, we
discuss the main ideas underlying our algorithms. We also note that we revisit the
example (1.2) in Section 4.2, where we derive the structure of its functional graph
with our methods.

The first step in understanding the functional graph �g of any function g W X!X
is to obtain a suitable parametrization of the connected components of �g . The fol-
lowing notion is helpful in that regard.

Definition 1.2. Let X be a finite set, and g W X ! X . A cycle representatives and
lengths list (or CRL-list for short) of g is a (finite) set L�X �NC with the following
properties:

(1) The first entries of the ordered pairs in L form a system of representatives for
the cycles of g on its periodic points.

(2) If .r; l/ 2 L, then l is the cycle length of r under g.

Remark 1.3. When g is a function on a finite set, it is easy to determine the cycle
type of the restriction gjper.g/ from any CRL-list L of g. Namely,

CT.gjper.g// D
Y

.r;l/2L

xl :

A CRL-list of g can thus be seen as a refinement of CT.gjper.g//.

We recall from above that each connected component of �g contains precisely
one cycle of g on its periodic points. This means that a CRL-list of g also gives
a parametrization of the connected components of g via representative vertices, along
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with the basic information how long the cycle of each representative is. Let us give
some more details on how to obtain L when X D Fq and g is an index d generalized
cyclotomic mapping f of Fq .

We already introduced the notation Ci D !iC for i 2 ¹0; 1; : : : ; d � 1º to denote
the cosets of C in F�q . Let us additionally set Cd WD ¹0Fq º. Then the sets Ci for
i D 0; 1; : : : ; d form a partition of Fq that is preserved by f in the sense that f maps
blocks of this partition to other such blocks (not necessarily surjectively). In other
words, there is a unique function Nf W ¹0; 1; : : : ; dº ! ¹0; 1; : : : ; dº, which we call
induced by f , such that f .Ci /� C Nf .i/ for each i D 0; 1; : : : ; d . We note in particular
that Nf .d/ D d , and that Nf �1.¹dº/ D ¹dº unless at least one of the coefficients ai
in (1.1) is 0.

Setting s WD .q � 1/=d D jC j, we may view each coset Ci D !iC for i D
0;1; : : : ; d�1 as a copy of the cyclic group Z=sZ (with underlying set ¹0;1; : : : ; s�1º
and modular addition as its group operation) via the bijection �i W Z=sZ! Ci , x 7!
!iCdx . As such, f may be viewed as a function that maps between copies of Z=sZ
(as well as a unique singleton block). More specifically, if i 2 ¹0; 1; : : : ; d � 1º and
ai 6D 0, and if we write ai D !ei , then we have d j ei C ri i � Nf .i/ necessarily, and f
maps !iCdx 2 Ci to

ai .!
iCdx/ri D !eiCri iCridx D !

Nf .i/Cd �.
eiCri i�

Nf .i/

d
Crix/ 2 C Nf .i/:

This means that under the identifications of Ci and C Nf .i/ with Z=sZ, the restriction
of f to Ci corresponds to the affine function Ai W x 7! rix C .ei C ri i � Nf .i//=d

of Z=sZ.
In summary, f consists essentially of affine functions mapping between copies

of Z=sZ, though some copies of Z=sZ may also be constantly mapped into Cd D
¹0º by f , in case the corresponding coefficient ai is 0. We note that if all ai are
non-zero, then the way fjF�q preserves the partition of F�q into the cosets Ci for i 2
¹0;1; : : : ;d�1º is analogous to the way the elements of the imprimitive permutational
wreath product Sym.C / o Sym.d/ (where Sym.X/ and Sym.n/ denote the symmetric
group on the set X and on ¹0; 1; : : : ; n � 1º, respectively) preserve this partition. In
fact, the definition of an imprimitive permutational wreath product naturally extends
to one of an imprimitive wreath product of transformation semigroups such that fjF�q
is an element of the imprimitive wreath product of CC (the transformation semigroup
of all functions C ! C ) with ¹0; 1; : : : ; d � 1º¹0;1;:::;d�1º, and Nfj¹0;1;:::;d�1º is the
projection of f to ¹0; 1; : : : ; d � 1º¹0;1;:::;d�1º. Wreath products of transformation
semigroups have been studied before and play a central role in algebraic automata
theory, though the notion used in that theory is the natural generalization of primitive
permutational wreath products [34, pp. 55f.].

In any case, these ideas allow us to easily reduce the determination of a CRL-
list L of f to the determination of CRL-lists of affine functions on Z=sZ – see
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Section 3.1 for the details of this. CRL-lists of affine functions of finite cyclic groups
are determined in Section 2.3.

The remainder of our algorithmic approach is concerned with understanding, for
each given .r; l/ 2 L, the isomorphism type of the connected component of �f con-
taining r . We recall from above that this connected component is essentially obtained
by glueing certain directed rooted trees to the vertices on the cycle. Let us introduce
the following precise notation.

Definition 1.4. Let � be a finite functional graph with vertex set X , and let g be the
unique function X ! X such that � D �g . For each x 2 X , we define Tree�.x/, the
so-called tree above x in � , as follows.

(1) If x is g-transient, we define Tree�.x/ as the induced subgraph of � on the
set

¹xº [ ¹y 2 V.�/ W y 6D x, and gk.y/ D x for some k D k.y/ � 1º:

(2) If x is g-periodic, we define Tree�.x/ as the induced subgraph of � on the
set

¹xº [
[
¹V.Tree�.y// W y is g-transient and g.y/ D xº;

with the convention that in case g.x/ D x, the loop at x is deleted from
Tree�.x/.

With this definition, Tree�g .x/ is defined for all x 2X DV.�g/, and for periodic
vertices x, those are the trees that need to be glued to the cycles of g in order to obtain
the full connected components of �g .

Necklaces are a well-studied concept in combinatorics. Let us consider vertex-
labeled, directed graphs that consist of a single, directed cycle (let us call such a
graph a necklace graph). Intuitively, one may think of the vertices as beads on a
necklace (in the common sense of the word), and the vertex labels represent colors
of those beads. An isomorphism of vertex-labeled digraphs is a digraph isomorphism
preserving vertex labels, and a necklace is an isomorphism class of necklace graphs
under isomorphism of vertex-labeled digraphs. If ExD .x0;x1; : : : ;xL�1/ is a length-L
sequence with entries from a set X, then we denote by ŒEx� D Œx0; x1; : : : ; xL�1� the
orbit of Ex under the natural action of the cyclic group Z=LZ on XL. Hence, ŒEx�
consists of those length-L sequences over X that can be obtained from Ex through
cyclic shifts. We also call ŒEx� the cyclic sequence associated with Ex. We observe that
two necklace graphs are isomorphic if and only if their sequences of vertex labels are
cyclically equivalent, whence in combinatorics, a necklace is often simply defined as
a cyclic sequence (cyclic equivalence class of strings).

The connected components of a functional graph �g of a function g W X ! X ,
whereX is a finite set, may be viewed as necklace graphs. Indeed, we take the unique
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directed cycle contained in a given connected component as the underlying digraph
of the associated necklace graph. The label of a vertex x on that cycle is defined as
the rooted tree isomorphism type of Tree�g .x/. For example, if we denote by

• I0 the digraph isomorphism type of the trivial rooted tree (consisting of a single
vertex without arcs);

• I1 the most common rooted tree isomorphism type above a periodic vertex in the
functional graph of the exemplary generalized cyclotomic mapping f of F256
defined in (1.2) above (i.e., a rooted tree of height 2, where the root has in-
degree 2 and one of the two neighbors of the root has in-degree 0, the other has
in-degree 3);

• I2 the digraph isomorphism type of �3 in the above example (the seemingly
chaotic numbering for the Ij is chosen such that it matches with Table 4.4 in
Section 4.2);

• I3 the digraph isomorphism type of �1;

• I4 the digraph isomorphism type of �2;

then the four connected components of the example above may be identified with
necklace graphs corresponding to the following cyclic sequences of rooted tree iso-
morphism types (in order of drawing):

• ŒI0�;

• ŒI1�;

• ŒI1;I1;I1;I1;I1;I1;I1;I1�;

• ŒI3;I1;I4;I1;I1;I1;I1;I2�.

With the above convention of identifying connected components of functional
graphs with certain necklace graphs, two digraphs that are connected components of
finite functional graphs are isomorphic as digraphs if and only if they are isomorphic
as necklace graphs (i.e., they represent the same necklace of rooted tree isomorphism
types). This means that in order to understand the connected components of �g , we
need to understand the associated cyclic sequences of rooted tree isomorphism types.

We note that if the goal is to understand the (undirected graph) isomorphism
type of the underlying undirected graph of a connected component of a functional
graph, an analogous approach can be used. One needs to replace necklace graphs
by bracelet graphs (undirected, vertex-labeled cycle graphs), cyclic sequences by
dihedral sequences (orbits of the natural action of the dihedral group of order 2L
on XL, where the generating reflection acts by writing the sequence in reverse order),
and necklaces by bracelets (isomorphism classes of bracelet graphs).

Let us next explain our approach for understanding the digraph isomorphism
types of the connected components of �g via necklaces of rooted tree isomorphism
types in case X D Fq and g is an index d generalized cyclotomic mapping f of Fq .
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For this, we first need to understand the rooted tree above a given (periodic) point.
The basic idea is to construct a certain partition Pi of each coset Ci that “controls”
the isomorphism types of rooted trees above the vertices in each of its blocks. Deal-
ing with entire blocks of vertices at once is crucial to ensure that the complexities of
our algorithms are not at least linear in the number of vertices q like many general-
purpose algorithms for handling graph isomorphism, including Babai’s breakthrough
quasi-polynomial algorithm from [9].

In order to sketch how the said partition Pi of Ci is constructed, we need to
introduce some more concepts. For a given positive integer m, we define the notion
of anm-(in)congruence to be an (in)congruence of the form �.x� b .mod a//, where
� 2 ¹;;:º is a “logical sign”, and a;b are integers with a � 1 and a jm. We subsume
these two notions under the namem-congruential condition, orm-CC for short. Next,
we consider the concept of an arithmetic partition of Z=mZ, see point (2) of the
following definition.

Definition 1.5. Let m be a positive integer. We identify the elements of Z=mZ with
their standard representatives in ¹0; 1; : : : ; m � 1º.

(1) Let x� bj .mod aj / for j D 1;2; : : : ;K bem-congruences. There is a unique
partition of Z=mZ, which we denote by

P.x � bj .mod aj / W j D 1; 2; : : : ; K/;

such that each block of this partition is the solution set modulom of a system
of m-CCs of the form

�1.x � b1 .mod a1//;

�2.x � b2 .mod a2//;

:::

�K.x � bK .mod aK//; (1.3)

where �1; �2; : : : ; �K 2 ¹;;:º are logical signs.

(2) A partition P of Z=mZ is called arithmetic if it is of the form

P.x � bj .mod aj / W j D 1; 2; : : : ; K/

for a suitable non-negative integer K and suitable m-congruences

x � bj .mod aj /

for j D 1; 2; : : : ;K. If P D P.x � bj .mod aj / W j D 1; 2; : : : ;K/, then we
also say that P is the arithmetic partition of Z=mZ spanned by the congru-
ences x � bj .mod aj / for j D 1; 2; : : : ; K.
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(3) When P is an arithmetic partition of Z=mZ, then the smallest value of K 2
N0 such that P is spanned byK suitably chosenm-congruences is called the
(arithmetic) complexity of P , written AC.P /.

(4) When P is an arithmetic partition of Z=mZ and a sequence of spanning con-
gruences .x � bj .mod aj //jD1;2;:::;K has been fixed for P , then we denote
for each E� D .�1; �2; : : : ; �K/ 2 ¹;;:º

K by B.P ; E�/ the unique subset of
Z=mZ that is the solution set of the system (1.3) (this solution set is a block
of P as long as it is non-empty).

Remark 1.6. There are significantly fewer arithmetic partitions of Z=mZ than there
are partitions in total. Indeed, the total number of (set) partitions of Z=mZ is the Bell
number Bm, which satisfies

Bm �
1
p
m

�
m

W.m/

�mC 12
exp

�
m

W.m/
�m � 1

�
as m!1, where W.m/ � logm is the Lambert W function (see [47, Section 1.14,
Problem 9]). In particular, as m!1,

logBm � �
1

2
logmC

�
mC

1

2

�
.logm� logW.m//C

m

W.m/
�m� 1 � m logm:

On the other hand, every arithmetic partition of Z=mZ is spanned by a selection of
congruences of the form x � b .mod a/, where a ranges over the positive divisors
of m, and b 2 ¹0; 1; : : : ; a � 1º. Because the total number of such congruences is
�.m/ (the sum of all positive divisors of m), it follows that the number of arithmetic
partitions of Z=mZ is at most 2�.m/, and so its natural logarithm is at most

log 2 � �.m/ � log 2.e
 C "/m log logm;

where 
 denotes the Euler–Mascheroni constant and the second bound follows from
a result of Robin [63].

Let us return to our index d generalized cyclotomic mapping f of Fq . We recall
that s D .q � 1/=d denotes the order (size) of the index d subgroup C of F�q . The
aforementioned partitions Pi of the cosets Ci are constructed as arithmetic partitions
of Z=sZ, with which Ci is to be identified via the bijection �i introduced above.
They have the property that for vertices x; y 2 Ci chosen from a common block
B.Pi ; E�/ of Pi , one has Tree�f .x/ Š Tree�f .y/, and this common isomorphism
type is denoted by Treei .Pi ; E�/. The constructions of the partitions Pi and of the
associated rooted tree isomorphism types Treei .Pi ; E�/, which are carried out in detail
in Section 3.3, are based on two crucial tools:

• the elementary result Lemma 2.2.2 from Section 2.2; and
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• an explicit understanding, developed in Section 3.2 but also based on earlier the-
ory developed in Section 2.1, of the structures of rooted trees in the induced sub-
graph �per of �f on the union of ¹0Fq º with all cosets Ci , where i is Nf -periodic.

Once the Pi and Treei .Pi ; E�/ have been constructed explicitly, in order to under-
stand the isomorphism type of the connected component of �f with representative
periodic vertex r , one needs to understand how the cycle moves through the various
blocks of the respective coset partitions. Of course, if the cycle length l of r under f
is small, one can just enumerate the points on the cycle by brute force, check in which
blocks they lie and spell out the corresponding cyclic sequence of rooted trees; this
is what we do at the end of the example in Section 4.2. However, if l is large, then
one can obtain a more concise description of the cyclic rooted tree sequence via a
certain tuple of arithmetic partitions, the blocks of which represent intersections of
the cycle of r with blocks of the involved arithmetic partitions Pi . For details on this,
see Section 3.4, which builds on Section 2.4.

Here is an overview of our approach for understanding �f .

(1) Determine the induced function Nf W¹0;1; : : : ;dº!¹0;1; : : : ;dº, and rewrite f
into a collection of affine functions that map between d C 1 sets Ci , each of
the form Z=sZ or ¹0º.

(2) Compute a CRL-list L for f as specified in Section 3.1, which is based on
the results for affine maps of finite cyclic groups from Section 2.3.

(3) For each i 2 ¹0;1; : : : ;d � 1º, compute the arithmetic partition Pi and associ-
ated rooted tree isomorphism types Treei .Pi ; E�/, as well as the isomorphism
type of Tree�f .0Fq /, as specified in Section 3.3. This requires the theory
developed in Sections 2.1 and 3.2.

(4) For each .r; l/ 2 L, understand the associated cyclic sequence of rooted tree
isomorphism types along the cycle of r under f , either

• by listing elements on the cycle of r by brute force, then looking up in
which blocks of the relevant arithmetic partitions they lie, or

• by following the approach from Section 3.4, which relies on Section 2.4.

In Chapter 5, where we give a detailed algorithmic complexity analysis, we treat
the procedures described in steps (2–4) each as a separate algorithm to be analyzed.
We note that in general, f has too many cycles in order for it to be possible to spell
out a CRL-list of f element-wise if the procedure is to be efficient (i.e., subexpo-
nential in log q); one can, however, obtain a concise parametrization of a CRL-list
of f efficiently. Likewise, the approach described in point (4) can be carried out for
each given pair .r; l/ individually in an efficient manner for asymptotically almost
all finite fields Fq , but it is not clear in general how to obtain a “global” understand-
ing of �f efficiently. In fact, the number of distinct isomorphism types of connected
components of �f might be superpolynomial in log q even for fixed d (cf. Prob-
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lem 6.3.3), so one would first need to come up with a compact way of parametrizing
those isomorphism types. Still, as we will see in Section 5.3, for some special cases
of generalized cyclotomic mappings f of Fq , there are algorithms for describing �f
as a whole which are efficient for all or at least for “most” q (in an asymptotic density
sense). In particular, in those cases, it can be efficiently decided whether the func-
tional graphs of two given generalized cyclotomic mappings of Fq are isomorphic.

Chapter 6 concludes the memoir with a list of open problems for further research.
For the reader’s convenience, an extensive index of the notation and terminology
appearing in this memoir is given in Tables A.1 and A.2 in Appendix A.


