
Chapter 1

Introduction

Classically explicit reciprocity laws or formulae usually mean an explicit computation
of Hilbert symbols or (local) cup products using, e.g., differential forms, (Coleman)
power series, etc., and a bunch of manifestations of this idea exists in the literature
due to Artin–Hasse, Iwasawa, Wiles, Kolyvagin, Vostokov, Brückner, Coleman, Sen,
de Shalit, Fesenko, Bloch–Kato, Benois, . . . In the same spirit, Perrin-Riou’s reci-
procity law gives an explicit calculation of the Iwasawa cohomology pairing in terms
of big exponential and regulator maps for crystalline representations of GQp ; more
precisely, the latter maps are adjoint to each other when also involving the crystalline
duality pairing after base change to the distribution algebra corresponding to the
cyclotomic situation. We refer the interested reader to the survey [92] concerning
the historical development of explicit reciprocity laws.

The motivation for this article is the question of what happens if one replaces
the cyclotomic Zp-extension by a Lubin–Tate extension L1 over some finite exten-
sion L over Qp with Galois group �L D Gal.L1=L/ and Lubin–Tate character
�LT W GL ! o�L which all arise from a Lubin–Tate formal group attached to a prime
�L 2 oL, the additive group of the ring of integers oL of L; by q we denote the cardi-
nality of the residue field oL=oL�L. This situation is considerably more complicated
for various reasons. First of all, for L ¤ Qp , the group �L requires more than one
topological generator and in order to achieve again a sort of one-dimensional theory
one has to work in the “L-analytic case”. Secondly, the quotient q

�L
related to the two

meanings of p in the cyclotomic case as uniformizer and cardinality of the residue
field is no longer a unit and appears directly in formulae. We try to extend the above
sketched cyclotomic picture to the Lubin–Tate case at least for L-analytic crystalline
representations of the absolute Galois group GL of L. As pointed out in [80] already,
the character � WD �cyc � �

�1
LT plays a crucial role, again related to q

�L
.

To this aim we study .'L; �L/-modules over different Robba rings with coeffi-
cients in suitable complete intermediate fields L � K � Cp . The starting point is the
theory of Schneider and Teitelbaum. The p-adic functional analysis of the additive
group of p-adic integers Zp is based on the fact that the continuous p-adic characters
of Zp are parametrized by the points of the p-adic open unit disk. The generalization
of this basic feature to the additive group oL was constructed in [74]: a rigid analytic
group variety XDXL overLwhose points parametrize the locally analytic characters
of oL. The Fourier isomorphism of [74] identifies the ring of holomorphic functions
OL.X/ with the locally analytic distribution algebra D.oL; L/ of oL. A connection
to the Lubin–Tate setting is also established in loc. cit. Under the assumption that the
period � of the dual of the fixed Lubin–Tate group belongs to K an isomorphism
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� W BK Š XK of rigid analytic varieties over K, called the Lubin–Tate isomorphism,
is constructed. Here B denotes the rigid analytic open unit disk and the index K indi-
cates base change to K. In other words, XL is a form of the open unit disk, which is
non-trivial if L ¤ Qp .

The multiplicative group o�L acts by multiplication on oL and hence acts naturally
on X and OL.X/. In [8], the ring OL.X/ with its o�L-action was enlarged by a geo-
metric construction to the Robba ring RL.X/ with o�L-action. Some details of this
will be recalled in Section 4.1.1. This made it possible to introduce the notion of a
.'L; �L/-module over RL.X/. The main result of [8] relates the category of these
new .'L; �L/-modules to the Lubin–Tate .'L; �L/-modules considered in [44, 73]
and therefore to Galois representations. In this paper, we pursue the further system-
atic development of the theory of .'L; �L/-modules over RL.X/ in two directions.

First of all, the construction of the variety XL and its corresponding rings is not
specific to the additive group oL. In Sections 4.1.2 and 4.3.4, this will be worked
out first for the multiplicative group o�L and then for the Galois group �L (which, by
the Lubin–Tate character �LT, is isomorphic to o�L). The corresponding Robba rings
will be denoted by RL.X

�/ and RL.�L/, respectively. We will study the question
to which extent the �L Š o�L-action on RL.X/, resp., on any .'L; �L/-module over
RL.X/, can be extended to an action of the full ring RL.�L/. A first indication of how
this works is given by the Mellin transformation in Lemma 4.1.6. The open and closed
inclusion of locally analytic manifolds o�L ,! oL induces an isomorphism between
the multiplicative distribution algebra D.o�L; L/ and the kernel of the  -operator on
the additive distribution algebra D.oL; L/. This fairly simple observation has a vast
conceptual generalization to the following new structural result in Theorem 4.3.23.

Theorem 1 (Theorem 4.3.23). For any complete intermediate field L�K �Cp and
any L-analytic .'L; �L/-module M over RK.X/, we have the following:

• The �L-action onM extends functorially and continuously to an RK.�L/-module
structure on M LD0.

• Any basis of M over RK.X/ can be transformed by a very simple explicit recipe
into a basis of M LD0 over RK.�L/ of the same cardinality.

The proof will be given in Sections 4.3.5–4.3.8. For B instead of X an analogous
statement holds ifK contains�; technically, this is the case we prove first (see Theo-
rem 4.3.21) which then, after involving the Lubin–Tate isomorphism, descends to the
above theorem.

Secondly, we will systematically develop the self-duality properties of the Robba
rings under consideration in Section 4.2.3. This is based on the Serre duality for
the coherent cohomology of rigid analytic spaces as developed in [11, 20, 90]. This
is recalled and complemented in Sections 4.2.1 and 4.2.2. In order to apply this to
Robba rings these will be related to the cohomology with compact support of the
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underlying character varieties. This results in residue pairings

�1RK.�/ �RK.�/! K

for the differentials �1
RK.�/

. The main new results are Corollary 4.2.7 and Proposi-
tion 4.2.12. The latter proposition then has to be evaluated for our two cases of main
interest X and X� in Section 4.2.3. This leads to two duality pairings,

h ; iX W RL.X/ �RL.X/! L and h ; iX� W RL.X
�/ �RL.X

�/! L:

The relation between these two pairings will be investigated in Section 4.5.3 and
will be the base of our main results in Section 4.5. The right-hand pairing induces
topological isomorphisms,

HomK;cont.RK.�L/;K/ Š RK.�L/

and
HomK;cont.RK.�L/=D.�L; K/;K/ Š D.�L; K/:

For an L-analytic .'L; �L/-module M over R WD RK.Y/ with Y equal to either X

or B, we finally use these isomorphisms to define on the one hand the two Iwasawa
pairings

¹ ; º0M;Iw W
{M LD0 �M LD0 ! RK.�L/

and
¹ ; ºM;Iw W {M

 LD
q
�L �M LD1 ! D.�L; K/;

where {M WD HomR.M;�
1
R
/. They are linked by the commutative diagram

¹ ; ºM;Iw W {M
 LD

q
�L M LD1 D.�L; K/

¹ ; º0M;Iw W
{M LD0 M LD0 RK.�L/:

'L�1

�

�L
q 'L�1

�

Now assume that M arises as D�
rig.W / under Berger’s equivalence of categories,

if Y D B, and as D�
rig.W /X under the equivalence from [8], if Y D X (see Theo-

rem 4.5.28), from an L-analytic, crystalline representation W of GL, whence {M Š
D
�
rig.W

�.�LT// and {M ŠD�
rig.W

�.�LT//X, respectively. Then, on the other hand, we
obtain the pairing

Œ ; �Dcris;L.W / W R
 LD0 ˝L Dcris;L

�
W �.�LT/

�
�R LD0 ˝L Dcris;L.W /! RK.�L/

by base extension of the usual crystalline duality pairing, if YDB assuming �2K,
see (4.94). The work of Kisin–Ren and Berger–Schneider–Xie, respectively, provides
comparison isomorphisms

compM WM
h
1
tY

i
Š R

h
1
tY

i
˝L Dcris;L.W /
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and
comp {M W {M

h
1
tY

i
Š R

h 1
tY

i
˝L Dcris;L

�
W �.�LT/

�
:

Here tB WD tLT WD logLT.Z/ 2R denotes the Lubin–Tate period which stems from the
Lubin–Tate logarithm while tX D logX as defined before Remark 4.2.9. The Lubin–
Tate character �LT induces isomorphism �L

Š
�! o�L as well as Lie.�L/

Š
�! L, and we

let r 2 Lie.�L/ be the preimage of 1. Then the abstract reciprocity law we prove is
the following statement.

Theorem 2 (Theorem 4.5.32). For all x 2 {M LD0 and y 2 M LD0, for which the
crystalline pairing is defined via the comparison isomorphism, it holds that

q�1
q
¹rx; yº0M;Iw D Œx; y�Dcris;L.W /

if Y D X, while the analogous statement for Y D B holds upon assuming � 2 K.

As explained in more detail at the beginning of Section 4.5, the proof of this
abstract reciprocity law is mainly based on the insight, how the residue maps of X

and X� and hence their associated pairings h ; iX and h ; iX� are related to each other
by Theorem 4.5.12 in Section 4.5.3.

As an application for Y D B we show in Chapter 5 the adjointness of big expo-
nential and regulator maps. Recall that already Fourquaux [32], who initiated the
investigation of Perrin-Riou’s approach for Lubin–Tate extensions in his thesis in
2005, had achieved a generalization of Colmez’s construction of the Perrin-Riou log-
arithm. Moreover, Berger and Fourquaux [7] have constructed for V an L-analytic
representation of GL and an integer h � 1 such that

• Fil�hDcris;L.V / D Dcris;L.V / and

• Dcris;L.V /
'LD�

�h
L D 0,

a big exponential map à la Perrin-Riou

�V;h W
�
OK.B/

� LD0
˝L Dcris;L.V /! D

�
rig.V /

 LD
q
�L ;

which up to comparison isomorphism is for h D 1 given by f D .1 � 'L/x 7! rx
and which interpolates Bloch–Kato exponential maps expL;V.�rLT/

.
On the other hand, based on an extension of the work of Kisin and Ren [44] in

the first section, we construct for a lattice T � V , such that V.��1/ is L-analytic
and crystalline and such that V does not have any quotient isomorphic to L.�/, a
regulator map à la Loeffler and Zerbes [52]

L0
V W H

1
Iw.L1=L; T / Š DLT

�
T .��1/

� LD1
!
�
OK.B/

� LD0
˝L Dcris;L

�
V.��1/

�
as applying the operator

1 � �L
q
'L
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up to comparison isomorphism. Then we derive from the abstract version above with
W D V.��1/ the following reciprocity formula.

Theorem 3 (Theorem 5.2.1). Assume that V �.1/ is L-analytic. We suppose further
that Fil�1Dcris;L.V

�.1// D Dcris;L.V
�.1// and additionally

Dcris;L
�
V �.1/

�'LD��1L D Dcris;L
�
V �.1/

�'LD1
D 0:

Then the following diagram commutes:

D
�
rig

�
V �.1/

� LD q
�L � D

�
V.��1/

� LD1
L0
V
��

¹ ; ºIw // D.�L;Cp/

�
OK.B/

� LD0
˝LDcris;L

�
V �.1/

��V�.1/;1

OO

�

�
OK.B/

� LD0
˝LDcris;L

�
V.��1/

� Œ ; �
// D.�L;Cp/:

While the crystallinepairingsatisfies an interpolation property (Proposition 5.2.22)
for trivial reasons, the statement that the second Iwasawa pairing interpolates Tate’s
cup product pairing is more subtle (Corollary 5.2.20). Eventually, the interpolation
property of Berger and Fourquaux for �V;h combined with the adjointness of the lat-
ter with L0

V implies an interpolation formula for the regulator map, which interpolates
dual Bloch–Kato exponential maps, see Theorem 5.2.26.

As alluded to at the beginning of this introduction, we expect that the new regu-
lator map L0

V will play the same role as the one of Loeffler and Zerbes; i.e., it should
be related to "-isomorphisms and p-adic L-functions. With regard to the first topic,
this regulator map should be compared to the one defined in [92, §6.6], which is used
in [55] to generalize Nakamura’s explicit reciprocity law from the cyclotomic to the
Lubin–Tate setting. Moreover, we hope that our regulator map can be used to also
generalize [51] to the Lubin–Tate situation.

With respect to the second topic we explain at the end of Section 5.1.1 how in
the context of an CM-elliptic curve with supersingular reduction at p the attached p-
adic L-function is the image of the Euler system of elliptic units under this regulator
map. While this is merely a reinterpretation of the work [74, §5], Manji is working
out in his PhD thesis [56] another manifestation of this principle in the context of
an ordinary automorphic representation defined over the unitary group GU.2; 1/, see
also [92, Ex. 7.2] for slightly more details.

In the remaining part of this introduction, we briefly outline the content of the
various sections.

After fixing some general notation in Chapter 2, we dedicate Chapter 3 to the
generalization of Wach modules to the Lubin–Tate situation. First of all, we recall in
Section 3.1 the work [44] of Kisin and Ren, who already accomplished most of this
task. Then we check a missing compatibility of their constructions in Lemma 3.1.5,
i.e., the commutativity of diagram (3.2), and add Corollary 3.1.15 to the picture to
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identify how to recover Dcris;L.V / from the Kisin–Ren module attached to an L-
analytic presentation V . Moreover, we compare in Proposition 3.1.10 their approach
to the construction in [5, Prop. II.1.1], in particular, applying the concept of positive
representations. After calculating the determinant of the crystalline comparison iso-
morphism in Section 3.2, we generalize in Section 3.3 for non-negative Hodge–Tate
weights Appendix A of [4] to the Lubin–Tate situation culminating in the statement
in Lemma 3.3.6 that under certain conditions the part of the .'L; �L/-module fixed
under the  -operator is contained in the associated Kisin–Ren module.

The main section of our article is Chapter 4 concerning the theory of .'L; �L/-
modules over different types of Robba rings as explained above. In particular, follow-
ing the ideas of [42] in the cyclotomic setting, we deduce from the residue pairing in
Section 4.5.1 for anL-analytic .'L;�L/-moduleM and its dual {M the corresponding
Iwasawa pairing in Section 4.5.4. In Section 4.5.5, we recall as Theorem 4.5.28 the
equivalences of categories between L-analytic Galois representation and L-analytic,
étale .'L; �L/-modules over the Robba rings RL.B/ and RL.X/, respectively. The
study of the compatibility of the Iwasawa pairings under the Kisin–Ren comparison
isomorphisms (4.91) and also using in the proof of Lemma 4.5.26 the consequence
(4.86) from Theorem 4.5.12 leads to our main result, the abstract reciprocity law in
Theorem 4.5.32.

In Chapter 5, we apply first the results from Chapter 3 concerning the Wach mod-
ules à la Kisin–Ren to construct under certain technical assumptions the regulator
map in Section 5.1. As a reality check and for further motivation, we study how pre-
vious work [74, §5] by the first named author and Teitelbaum fits into this picture.
In Section 5.2, we recall Berger’s and Fourquaux’s construction of their big expo-
nential map. From this and the definition of our regulator map the adjointness in
Theorem 5.2.1 of the big exponential map and the regulator map is an immediate
consequence of the abstract reciprocity law in Theorem 4.5.32. After fixing some
notation of homological algebra in Section 5.2.1 and recalling the self-duality of
Koszul complexes in Section 5.2.2, we study in Section 5.2.3 continuous and analytic
cohomology in order to consider various generalized Herr complexes of .'L; �L/-
modules. The version using Koszul complexes being the most explicit one is then
used to prove Proposition 5.2.18 and Corollary 5.2.20, i.e., the statement that Iwa-
sawa pairing interpolates the local cup product. Based on this compatibility of the
dualities, we shall derive in Section 5.2.4 the interpolation property for the regulator
map from that for the big exponential map, see Theorem 5.2.26.

In Appendix A, we first show how to construct a quasi-isomorphism between the
two Herr complexes built of continuous cocycle and an appropriate Koszul complex,
respectively. In order to compare the cup product pairings between .'L; �L/-modules
over different coefficient rings, we have to generalize some technical lemmata from
[19, 42] to our setting, especially concerning the cokernel of the operator  � 1. In
particular, the derived finite dimensionality of some cohomology group h2 is needed
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for the interchange of taking continuous duals with forming cohomology h1 in the
sense of Remark 5.2.6.

Finally, Appendix B recalls the quasi-isomorphism (B.5) between the complex
defining Iwasawa cohomology in the sense of Nekovar and the complex given by the
operator � 1 by [45] and calculates its descent, which is needed for the interpolation
property of the Iwasawa pairing.


