Abstract

The purpose of this memoir is to investigate the well-posedness of several linear and
nonlinear equations with a parabolic forward-backward structure, and to highlight
the similarities and differences between them. The epitomal linear example will be
the stationary Kolmogorov equation ydyu — d,,u = f in arectangle. We first prove
that this equation admits a finite number of singular solutions, of which we provide
an explicit construction. Hence, the solutions to the Kolmogorov equation associated
with a smooth source term are regular if and only if f satisfies a finite number of
orthogonality conditions.

We then extend this theory to a Vlasov—Poisson—Fokker—Planck system, and to
two quasilinear equations: the Burgers-type equation udxu — dy,u = f in the vicinity
of the linear shear flow, and the Prandtl system in the vicinity of a recirculating solu-
tion, close to the line where the horizontal velocity changes sign. We therefore revisit
part of a recent work by Iyer and Masmoudi. For the two latter quasilinear equations,
we introduce a geometric change of variables which simplifies the analysis. In these
new variables, the linear differential operator is very close to the Kolmogorov oper-
ator yd, — dy,. Stepping on the linear theory, we prove existence and uniqueness of
regular solutions for data within a manifold of finite codimension, corresponding to
some nonlinear orthogonality conditions.
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