Chapter 1

Introduction

This memoir is devoted to the well-posedness of linear and nonlinear equations hav-
ing a parabolic forward-backward structure. In the linear case, our main example
will be the Kolmogorov equation yd,u — dy,u = f in the rectangular domain Q :=
(x0, x1) X (=1, 1), where xo < x7 and f is an external source term. We will also
consider nonlinear perturbations of this linear setting. The easiest nonlinear per-
turbation we consider is a Vlasov—Poisson—Fokker—Planck-type system of the form
yoxu + E[u]dyu — dyyu = f, where E[u] = d;' ['u dy. In this case the nonlinear-
ity does not perturb the geometry of the problem, which remains forward parabolic
in the region y > 0, and backward parabolic in the region y < 0.

We will also investigate the existence and uniqueness of sign-changing solutions
to the Burgers-type equation

Udxu — dyyut = f (L.1)
and to the Prandtl system

uUdxu + voyu — dyyu = —0yxp,

1.2
dxu + dyv = 0. (12)

A natural solution to (1.1) with a null source term f = O is the linear shear flow
u(x, y) := y, which changes sign across the horizontal line {y = 0}. In a similar
way, semi-explicit solutions (up, vp) of the Prandtl system (1.2) such that up changes
sign have been exhibited, see the discussion in Section 1.3 below. We are interested
in strong solutions to (1.1) (resp. (1.2)) which are close in an appropriate norm to
this linear shear flow u (resp. to the reference solution (up, vp)). Our purpose is to
construct such solutions by perturbing the lateral boundary data or the source term.

Forward-backward nature. Since solutions to (1.1) and (1.2) will change sign across
a curve {u = 0} lying within €2, a key feature of this work these problems must be
seen as quasilinear forward-backward parabolic equations in the horizontal direction.
Thus, to ensure the existence of a solution, one must be particularly careful as to
how one enforces the lateral perturbations. More precisely, the problem is forward
parabolic in the domain above the curve {¥ = 0}, in which ¥ > 0, and therefore we
shall prescribe a boundary condition on X¢ := {x = x¢} N {u > 0}; and backward
parabolic in the domain below the curve {# = 0}, and we shall prescribe a boundary
conditionon X7 := {x = x1} N {u < 0}.

We will construct solutions to these problems thanks to an abstract implicit func-
tion theorem taking into account the geometry of the problem. More precisely, we will
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Figure 1.1. Fluid domain €2 and inflow boundaries Yo U X1.

first straighten the free boundary {# = 0} by introducing as a new vertical variable z =
u(x, y). A suitable change of unknown function will then transform (1.1) and (1.2)
into quasilinear equations with an easier-to-handle nonlinearity (see Remark 4.2).

Orthogonality conditions. Because of the nonlinearity, we need to work in a high
enough regularity space in order to have a suitable control of the derivatives. However,
one key difficulty of our work lies in the fact that, even when the source term f is
smooth, say in C§°(£2), solutions to (1.1) and (1.2) have singularities in general.
Actually, this feature is already present at the linear level, i.e., for the equation yd,u —
dxxu = f. We prove that if f is smooth, the associated weak solution to the linear
system inherits the regularity of f if and only if f satisfies orthogonality conditions
(i.e., the scalar products of f with some identified profiles must vanish). We also
describe the singularities that appear when these orthogonality conditions are not
satisfied. At the nonlinear level, these orthogonality conditions become a finiteness
assumption on the codimension of the data manifold.

All of the features described above (orthogonality conditions for linear forward-
backward equations, description of the potential singularities, handling of orthog-
onality conditions for quasilinear systems) appear to be new. We believe that the
strategy we use could be extended to other nonlinear settings in which orthogonality
conditions appear (elliptic equations in domains with corners, problems in which the
linearized operator is Fredholm with negative index, ...).

1.1 Statement of the main results

1.1.1 Linear theory

Due to the forward-backward nature of the problem, we must choose the lateral per-
turbations and the source term in a particular product space. We therefore introduce
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the vector space

Xp :={(f.80.81) € HLH} x H>(0,1) x H>(—1,0): f|gous, =0
and §; (0) = & ((=1)") = §(0) = §/ (=) = 0}, (1.3)

where o = {xo} x (0, 1) and X1 = {x1} x (-1, 0) are the lateral boundaries on
which we prescribe boundary conditions. We endow X p with its canonical norm

(/80,805 := 1 |y 2 + 1ol ars + 181l s (1.4)

We establish existence and uniqueness of solutions to our problems in the following
anisotropic Sobolev space:

0! := H53((xg,x1); L*(—1,1)) N H'((x0.x1); H*(—1,1)). (1.5)

In particular, for solutions with such regularity, equation (1.1) or its linear version
yoxu — dyyu = f hold in a strong sense, almost everywhere and the various bound-
ary conditions hold in the usual sense of traces. We first state a result concerning
the well-posedness in Q! of the stationary Kolmogorov equation (see (1.6) below),
up to two orthogonality conditions (see comments below). Although equation (1.6)
has been thoroughly investigated, as we recall in Section 1.2, we could not find this
statement in the existing literature.

Theorem 1 (Orthogonality conditions for linear forward-backward parabolic equa-
tions). There exists a vector subspace X IJ;‘ s« C X of codimension 2 such that, for
each ( f,80,81) € Xp, there exists a solutionu € Q' to the problem

Yoxu — 0yyu = f,
M|Zl_ = 5,’, (16)

if and only if (f,80,61) € leg"sg. Such a solution is unique and satisfies

lullgr < 1I(f. 80, 81)ll x5 - (1.7)

We emphasize that this result implies that there exist triplets ( f, 8¢, 81) that can be
chosen arbitrarily smooth and compactly supported, and for which there are no Q'
solutions to (1.6). Furthermore, the vector space X é s Can be fully characterized:
classically, X IJ; S ker £9 N ker K_l, where €0 and ¢! are two linear forms on X B

which we shall write explicitly. If the data do not belong to X é’sg, the solution has
singularities, which we can describe completely.
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Figure 1.2. Plot of 1 — Ag(t) fort € (—7,7), highlighting the main properties: Ag is a smooth,
monotone decreasing function on R, such that Ag(—o0) = 1 and Ag(+o0) = 0.

Theorem 2 (Decomposition of solutions as a sum of singular profiles and a smooth
remainder). Let (f, 8o, 81) € Xp. There exists a unique solution u € Hf/ 3L§ n
LiHJ? to equation (1.6). Furthermore, this solution admits the following decomposi-
tion: there exist co,c1 € R, and ues € 0!, such that
— . =0 -1
U= cousing + clusing + Ureg-

Each profile ftiing is supported in the vicinity of (x;,0) and is smooth on Q \ {(x;,0)}.
Furthermore, for |x — x;| < 1 and |y| < 1,

_; 2,1 ; y
Tiy(ey) = (Iy 2 + x —xi|3)4Ao((—1)'—),

x — x|
where Ay € C°°(R) is such that Ao(—o0) = 1 and Ao(+00) = 0 (see Figure 1.2).

The existence of a weak solution was already known, see in particular [22,52,53].
The novelty of the above theorem lies in the identification of the singular profiles
ﬁéing, and in the decomposition of any weak solution. The function Ay is in fact the
solution to an ODE, and can be characterized in terms of special functions (namely
confluent hypergeometric functions of the second kind, or Tricomi’s functions).

The assumptions on the data ( f, 8g, §1) are not optimal and can be weakened:
in particular, we merely need H! Li regularity on the source term f, together with
compatibility conditions in the corners. We will state optimal versions of Theorem 1
and Theorem 2 in Chapter 2, relying on the function space #x defined in (2.13) (see
respectively Proposition 2.17 and Corollary 2.30). In fact, in the sequel, we will need
these sharper versions to prove our nonlinear results. In this introduction, we stick
with the above versions in order to avoid defining too many functional spaces.
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1.1.2 A nonlinear toy model from Kinetic theory

As a corollary to Theorem 1, we obtain a similar statement for a (nonlinear) Vlasov—
Poisson—Fokker—Planck system in an interval. In order not to burden the introduction,
we refer to Chapter 3 for the presentation of the system and to Theorem 5 for the full
statement. The proof of Theorem 5 is rather straightforward since the geometry of the
considered problem remains the same as for (1.6), and the nonlinearity is very weak.
We nevertheless use this example to set up our nonlinear scheme in Section 3.3 and a
general abstract nonlinear existence result in Section 3.5.

1.1.3 The viscous Burgers system

We then turn towards the nonlinear problem (1.1). One of the main results of this
memoir is the following nonlinear generalization of Theorem 1 for small enough
perturbations. More precisely, the norm of the perturbation must be smaller than some
constant 1 depending only on the size of the domain.

Theorem 3 (Existence and uniqueness of strong solutions to (1.1) under orthogonal-
ity conditions). There exists a Lipschitz submanifold Mp of Xp of codimension 2,
containing 0 and included in a ball of radius n < 1 in Xp, such that, for every
(f.80,81) € Mp, there exists a strong solution u € Q1 to

udxu — dyyu = f,
Uy=41 = +1.

More precisely, Mp is modeled on Xé‘ s and tangent to it at 0. Such solutions are
unique in a small neighborhood of u(x, y) = y in Q' and satisfy the estimate

lu —ullgr S I1Cf 80, 61) ]| x5

In the statement above, the condition that the data ( f, 8¢, 8;) belong to the mani-
fold M p is the nonlinear equivalent of the orthogonality conditions from Theorem 1.
We emphasize that this is by no means a technical restriction which could be lifted,
but actually a necessary condition to solve the equation with smooth solutions, as we
state in Proposition 1.1 below. A key difficulty lies in the fact that these orthogonality
conditions depend on the solution itself.

Proposition 1.1 (Necessity of the orthogonality conditions). There exists n > 0 such
that the following result holds. Let (f,80,61) € Xp with ||(f,80,81)|lxz < n. Let
u € Q' be a solution to (1.8) such that ||u — ullgr < n. Then (f,80,81) € Mp.

Remark 1.2. By commodity, ours results are stated using the full triplet ( f, 8o, §1),
and so is the remainder of this memoir. Nevertheless, it is possible to obtain similar



Introduction 6

results either by fixing §o = §; = 0 and constructing a submanifold of source terms
f yielding regular solutions, or by fixing f = 0 and constructing a submanifold
of boundary data (8o, 81). This stems from the independence of the orthogonality
conditions, which can be obtained either by Proposition 2.15 or by Proposition 2.34.

1.1.4 The Prandtl system

We also prove analogous results for the Prandtl system, revisiting the work of Iyer and
Masmoudi in [34,35] (we will comment more thoroughly on the differences between
our results in the next sections). Let us now present our mathematical setting; we will
provide the physical motivation and background for this system in Section 1.3. We
consider a reference flow (up, vp) € C¥([xo, x1] X (0, +00)) for some sufficiently
large k (say k = 4), satisfying the Prandtl system

[Ulpax[l]lp + \Vpapr — 8yy\Yp = —8xp, 8x[!.]1p + apr =0

in the whole domain (xg, x1) X (0, +00), where p is the trace of the pressure of
some outer Euler flow on the boundary {y = 0}. We assume that there exists a curve
I :={y = yp(x)}, with yp smooth and such that inf[x, x,1vp > 0, such that up changes
sign on the curve T': up(x, yp(x)) = 0, and up(x, y) < 0 (resp. up(x, y) > 0) for
¥y < yp(x) (resp. y > yp(x)). Our purpose is to construct a solution to the Prandtl
system close to (up, vp) and in the vicinity of the curve T, by perturbing either the
inflow/outflow on the lateral boundaries or the source term.

To that end, we consider z; < 0 < z; such that there exist smooth functions V3, y7,
with 0 < Yp(x) < yp(x) < ¢ (x) forall x € [xo,x1], and such that up(x,y;(x)) = z;
for j € {b,t}. We set F_, = {y =¥;(x)} for j € {b,t}. We consider the Prandtl
system (1.2) in a domain €2 p, which is defined by

Qp = {(x.y) € (x0.x1) X Ry:yp(x) <y < y:(x)},

where yp, y; are smooth functions, which will actually be free boundaries, corre-
sponding to the level sets z; and z; of the function u. We expect these functions
(which are unknowns of the problem) to be smooth functions located in the vicinity
of ¥, ¥:. We endow system (1.2) with the following boundary conditions, which we
will discuss and comment in Section 1.2. See Figure 5.1 for a sketch of the geometry
of the domain.

(1) Boundary conditions on the top and bottom free boundaries: On the bottom
boundary I'y, = {y = y3(x)}, we enforce

ulr, = uplg,; = 2,
Byu|ph = Byup|ﬁ+8b, (1.9)
vlr, = velg, + vs.

where 8y, vy, are small, smooth perturbations.
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Similarly, on the top boundary I'; = {y = y;(x)}, we enforce

ulr, = z;,
Ire = 2 (1.10)
dyulr, = dyup|r, + 6,

where §; is, again, a small smooth perturbation.

Remark 1.3. Note that on the top and bottom boundary, we prescribe the
trace of u and of its normal derivative. Of course, it would be impossible
to prescribe simultaneously these two boundary conditions if the boundaries
Ty, I'; were fixed. This is only made possible by the fact that these two bound-
aries are free.

(2) Lateral boundary conditions: As in the case of (1.6) and (1.8), we enforce
lateral boundary conditions on u, namely

wgr =up+ 8. i€{0.1} (1.11)

where ¢ = {xo} x (yp(x0). 71 (x0)) and TF = {x1} X (V5 (x1), yp(x1)) (see
also Figure 5.1). In particular, up > 0 on 25 and up < O on Ef. For simplic-
ity, we assume that 8o (yp(x0)) = 81(yp(x1)) = S0 (¥ (x0)) = 61 (Vs (x1)) =0,
and we recall that 8¢, §; are assumed to be small in some sufficiently strong
Sobolev norm. Therefore, provided that d,up|r > 0, the signs of up(x;,-) + §;
and of up(x;, -) are identical on EiP .

We will in fact state two different results: one in “low regularity”, under merely
one orthogonality condition, and another one in higher regularity, under three orthog-
onality conditions. For the sake of readability, we have stated them under the same
regularity and compatibility assumptions on the data, although the assumptions are
not optimal in the low regularity case, and the compatibility conditions could be
generalized in both cases. We will state a more general result in Chapter 5 (see Propo-
sition 5.2). Therefore, we take our data in the function space

Xp = {(80,81,8:.8p.vp) | 8 € HS(EF) N HF(EF) fori € {0, 1},
8¢,0p € Hoz(xo,xl),vb € Hl(xo,xl)},

which we endow with its natural norm.

Theorem 4. There exist numbers n > 0, zog > 0, depending only on the underlying
flow (wp, vp), such that if |zp|, z; < zo, the following results hold.

(1) There exists a manifold My of codimension 1 in Xp and included in a ball
of radius n in Xp, such that for all (89, 61, 08¢,0p, Vp) € My, equation (1.2)
endowed with the boundary conditions (1.9), (1.10), (1.11) has a unique con-
tinuous solution u such thatu€ L3 H} (Q2p), (x—xo)(x —x1)u € H, H} (2p),
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dyueL>®(Qp), udydyu e L*(Q2p), and

[ —wpll 2 g3 4 19y (4 —wp)llLoe + [[(x = x0)(x = x1)(u —wp)ll 1 53

< 1(B0. 81,84, 85, v) [l xp -

(2) There exists a manifold My of codimension 3 in Xp and included in a ball
of radius n in Xp, such that for all (8o, 61, 8¢, 8p, Vp) € My, equation (1.2)
endowed with the boundary conditions (1.9), (1.10), (1.11) has a unique solu-
tion u such thatu € Hy*H! N H}H}(QF), and

“u _MP”H£/3H; + “u _uHP”H)%H;’ 5 ||(8098178t’8bvvb)||XP'

1.2 Comments and previous results

We start with a few comments on our main results and recall related known results.

Problem (1.6), involving the operator ydx — dy,, can be seen as a particular
case of the class of “degenerate second-order elliptic-parabolic linear equations”,
also referred to as “second-order equations with nonnegative characteristic form” (as
opposed to positive definite ones), “forward-backward” or “mixed type” problems.
They date back at least to Gevrey [24].

Problem (1.6) itself, as well as these wide classes of equations, has received a
lot of attention and has been investigated under different aspects: with variable coef-
ficients or other geometries [22,47, 53], higher-order operators [42, Chapter 3, 2.6],
abstract operators [9, 54], explicit representation formulas [23,27] or with a focus on
numerical analysis [3].

On weak solutions for the linear problem. It is well known since the work of
Fichera [22] that weak solutions to (1.6) with Li Hy1 regularity exist. For general
boundary-value problems for elliptic-parabolic second-order equations, one owes to
Fichera the systematic separation of the boundary of the domain into three parts: a
“noncharacteristic” part, where one sets either Dirichlet or Neumann boundary condi-
tions (here y = £1), an “inflow” part, where one sets a Dirichlet boundary condition
(here ¥y U ¥;) and an “outflow” part, where one cannot set a boundary condition
(here, the two sets {x¢} X (—1,0) and {x;} x (0, 1)).

Baouendi and Grisvard [8] proved the uniqueness of weak solutions to (1.6) with
L?CHJ} regularity, by means of a trace theorem and a Green identity (see Appendix A).

On strong solutions for the linear problem. There is an extensive literature on the
regularity of solutions to degenerate elliptic-parabolic linear equations, and whether
weak solutions are strong. We refer the reader in particular to the book [48] by Oleinik
and Radkevic¢. Generally speaking, depending on the exact setting considered, it is
quite often possible to prove that the solutions to such equations are regular far from
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the boundaries of the domain and/or from the regions where the characteristic form
is not positive definite. A nice example is Kohn and Nirenberg’s work [38], which
proves a very general regularity result. A key assumption of their work is that the
“outflow” part of the boundary does not meet the “noncharacteristic” and “inflow”
parts (i.e., they are in disjoint connected components of d2). Hence, it does not apply
to (1.6), and hints towards a difficulty near the points (xg, 0) and (x1, 0).

In a series of papers [51-53], Pagani proved the existence of strong solutions to
(1.6) (and related equations). More precisely, Pagani proved the existence of solu-
tions such that yd,u and dy,u belong to L2(2). Moreover, he determined the exact
regularity of the various traces of such solutions (trace of u at x = x;,at y = £1 or
¥y = 0, and trace of d,u at y = 0). These maximal regularity results play a key role
in our analysis and motivate the functional spaces we introduce in Section 1.5.

On orthogonality conditions for higher regularity. As noted by Pyatkov in [55],
for such forward-backward problems: “as a rule, there is no existence theorems for
smooth solutions without some additional orthogonality-type conditions on the prob-
lem data”. Even for the linear problem (1.6), there have been very few works concern-
ing higher regularity (than the one given by Pagani’s framework) in the whole domain.
Most of the works focused on higher regularity (such as [55]) involve weighted
estimates which entail regularity within the domain but not near the critical points
(x;,0). An attempt for global regularity is Goldstein and Mazumdar’s work [25, The-
orem 4.2]; however the proof seems incomplete (see Proposition 2.10 below and its
proof for more details).

A misleading aspect is that it is quite easy, assuming the existence of a smooth
solution, to prove a priori estimates at any order. Such phenomena are usual in the
theory of elliptic problems in domains with corners or mixed Dirichlet-Neumann
boundary conditions (see for instance [28]). Let us give an illustration of such a phe-
nomenon in a close context. For a source term f € C2°(£2), consider the elliptic
problem

—Au=f in 2,

u(x;,y) =0 for (—=1)'y > 0,
du(x;,y) =0 for(=1)'y <0,
u(x,+1) =0  forx € (xg, x1).

(1.12)

It is classical that such a system has a unique weak solution u € H!(2). Moreover,
assuming that u is smooth enough, v := d,u satisfies

—Av =0y f in Q,

dxv(xi,y) =0 for (—=1)'y >0,
v(x;,y) =0  for (—1)'y <0,
v(x,£1) =0 for x € (xg, x1).

(1.13)
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For such systems, one has |[v||g1 < [|0xf|lz2. Hence |dxxu|l < [|0xf |72, and,
using the equation, ||u||g2 < || fllgz1. So one has an a priori estimate. However, it
is known that there exist source terms for which the unique weak solution u € H'!
does not enjoy H? regularity (see [28, Chapter 4] and Section 2.4). The key point is
that, when reconstructing u from the solution v to (1.13), say by setting u(x, y) :=
f;o v(x’,y)dx' for y > 0and u(x, y) := f;l v(x’, y) dx’ for y < 0, there might be a
discontinuity of u or d,u across the line y = 0. Such discontinuities prevent u from
solving (1.12). Preventing these discontinuities requires that the source term satisfies
appropriate orthogonality conditions.

Let us also emphasize that if one wishes to construct solutions of (1.1) with even
stronger regularity, say u € H ff H yl with k > 1, then generically, one needs to ensure
that 2k orthogonality conditions are satisfied by the source terms (see Lemma 2.18).
This situation occurs (at a nonlinear level) in [34].

On orthogonality conditions for nonlinear problems. Of course, such orthogonal-
ity conditions make it very difficult to obtain results at a nonlinear level. Generally,
one tries to avoid such difficulties when considering nonlinear problems. For instance,
for elliptic problems in polygonal domains, the classical textbook [28, Section 8.1]
focuses on a nonlinear case where there is no orthogonality condition at the linear
level.

Nevertheless, some results are known in the semilinear case. For example, for
semilinear Fredholm operators with negative index, a theoretical toolbox is known
(see, e.g., [60, Chapter 11, Section 4.2]) and has been implemented for some reaction-
diffusion semilinear systems (see, e.g., [61, Chapter 7, Section 2.2], based on [20]).

Outside of the semilinear setting, we are not aware of nonlinear results obtained
despite the presence of orthogonality conditions at the linear level prior to our present
work (we discuss the recent preprint [34] by Sameer Iyer and Nader Masmoudi in
Section 1.3).

Problem (1.1) is only quasilinear, and this makes the analysis harder. In an earlier
version of this memoir, we introduced a nonlinear scheme in which the orthogonal-
ity conditions changed at every step. Tracking the evolution of these orthogonality
conditions was then a major difficulty.

Following a very helpful remark by several colleagues', we have changed our
strategy. We first perform a change of unknown which allows us to keep the same
linear operator throughout the scheme, and to treat the nonlinearity perturbatively.
This greatly simplifies the proof. In turn, this change of variables allows us to revisit
the work of Iyer and Masmoudi [34,35] on the analysis of the Prandtl system in the
vicinity of a recirculating flow, since the equation for the vorticity after the change
of variables has a very simple structure, see Section 1.4. Let us also recall that at

IFelix Otto, Yann Brenier, and an anonymous referee, whom we warmly thank.
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the nonlinear level, the orthogonality conditions are translated in Theorem 3 (resp.
Theorem 4) as the fact that the data must lie within the manifold M (resp. M), which
can be pictured as a perturbation of the linear subspace X is . of data satisfying the
orthogonality conditions for the linear problem.

The proof of both of our main theorems (on Burgers and Prandtl) relies on the
same abstract result (see Theorem 6 in Section 3.5) concerning quasilinear equations
in a perturbative regime.

On entropy solutions. An entirely different approach to solve (1.1) is to look directly
for weak solutions to the nonlinear problem, for example using an entropy formula-
tion. The regularity for such solutions is u € L3, N L)zc Hy1 and they are typically
obtained as limits of solutions u® to regularized versions of (1.1), e.g., u®d,u® —
0yyu® — edxxu® = 0. Such solutions satisfy the equation and the lateral boundary
conditions only in the weak sense of appropriate inequalities linked with “entropy
pairs”. Given &g, §; € L*°(—1, 1), the existence of an entropy solution to

udxu — dyyu =0,
U=x; = i, (1.14)

Uy=+1 =0

was first proved in [11]. More recently, Kuznetsov proved in [39] the uniqueness
of the entropy solution to (1.14), determined in which sense the lateral boundary
conditions were satisfied and proved a stability estimate of the form

lu =l < 160 —dollz1(—1,1) + 161 = S1llL1(=1,1)-

In particular, this stability estimate guarantees that one can construct sign-changing
solutions in the vicinity of the linear shear flow.

However, an important drawback of the entropy formulation is that the boundary
conditions are only satisfied in a very weak sense. Although functions in L3, N
LfCHy1 do not have classical traces at x = x;, one can give a weak sense to the
traces using the equation (see [40] for more details). Unfortunately, it is expected
that these weak traces do not coincide with the supplied boundary data on sets of
positive measure.

In contrast, since the solutions we construct in this work have (at least) H ; Li
regularity, they have usual traces ujy, € L*(Z;) and the equalities u|x, = &; hold in
L2(X;), so almost everywhere.

On the choice of the linear shear flow for equation (1.1). We choose to study the
well-posedness of (1.1) in the vicinity of the linear shear flow to lighten the compu-
tations. Nonetheless, we expect that our results and proofs can be extended to study
the well-posedness of (1.1) in the vicinity of any sufficiently regular reference flow u
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changing sign across a single curve {u = 0}, satisfying uy, > co > 0in £ (so that (1.6)
is the correct toy model) and with either ||uy| o small enough, or with a restriction
on the size of the domain (to ensure a priori estimates). In fact, this is precisely what
we do when we study the Prandtl system around a recirculating flow: the linearized
equation for the vorticity then becomes a forward-backward equation with variable
coefficients, see (5.12) and Proposition 5.5.

Moreover, taking a step further in the modeling of recirculation problems in fluid
mechanics (see Section 1.3), we also expect that our approach could be extended to
an unbounded domain of the form (xg, x1) % (0, +00), with a reference flow such
thatu|,—o = 0, u < 0 below some critical curve and then u > 0 above, with u having
some appropriate asymptotic behavior as y — +o0. In such a setting, the Poincaré
inequalities in the vertical direction that we use here should probably be replaced
with well-suited Hardy inequalities. As mentioned above, one of the issues is then to
obtain a priori estimates on the linearized system. We comment further on this point
at the end of Section 5.6.

On the conditions §¢(0) = §1(0) = 0 for fixed end-points. It is an important fea-
ture of our work that we are able to enforce precisely the exact endpoints of the curve
{u =0} at x = x¢ and x = x;. Theorem 3 and Theorem 4 are stated for perturbations
which satisfy 6; (0) = 0 (see (1.3)), so that the full boundary data uw(x;, y) + 8; (y)
changes sign exactly at y = 0, where u = y in Theorem 3 and uw = up in Theo-
rem 4. This choice simplifies the definition of the submanifolds M, My and M,
of boundary data for which we are able to solve the problem. Nevertheless, given
Yo, y1 sufficiently close to 0 and &, §; such that y + &;(y) changes sign at y = y;,
we expect that similar existence results hold, provided that the perturbations are
chosen in an appropriate modification of .M, with suitable modifications to the func-
tional spaces and where, in (1.8), the definitions of X; are generalized by setting

i o= {(xi. y): (=D (u(xi, y) + 8 () > 0}.

On the boundary conditions (1.9) and (1.10) for the Prandtl system in the recir-
culation zone. The boundary conditions we choose for the Prandtl system are mostly
meant to simplify the present analysis as much as possible. As stated earlier, they are
slightly unconventional since we prescribe both the trace and the normal derivative
of u, but we let the boundary remain free. Other choices of boundary conditions are
of course possible, and may lead to additional technical difficulties. These boundary
conditions are designed in order to have a nice formulation after we have performed
a change of variables in order to straighten the curve {u = 0}.

Note also that we only consider here the Prandtl system in the vicinity of the curve
{u = 0}, and not in the whole infinite strip (xo, x1) X (0, +00). The coupling with
the outside regions y < yp(x) and y > y;(x) leads to additional difficulties, which
have been treated by Iyer and Masmoudi in [35], albeit with a different method, since
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conditions (1.9) and (1.10) are not considered in [35]. We propose in Section 5.6 a
possible strategy to solve the Prandtl equation in an infinite strip.

On the compatibility conditions §; ((—1)’) = 0 and §(0) = §/((~1)') = 0 in
Theorem 3. These conditions are classical compatibility conditions for solutions to
elliptic-parabolic equations. For example, the condition §o(1) = 0 in Theorem 3 is
intended to match the condition u|,—; = 0, and is necessary to have L2H yZ regularity.
The condition §;(0) = 0 comes from the equation. Indeed, if u is a sufficiently regu-
lar solution of (1.6) with f(xg.0) = 0, the equality d,,u = ydxu at (xo, 0) enforces
dyyu(xg, 0) = 0, so §5(0) = 0. The condition §;5(1) = 0 stems similarly from the
equation and the fact that 0,u|,—; = 0. It corresponds to a classical parabolic reg-
ularity compatibility condition in order to have L2 Hy4 regularity. We have imposed
similar conditions for the Prandtl system by requiring §; € Hg (EiP ). Note that in the
Prandtl case, we actually require extra cancellation assumptions. It is possible that the
latter are technical, and could be removed.

On the number of orthogonality conditions for the Prandtl system. Note that the
number of orthogonality conditions in Theorem 3 and in Theorem 4 is different. The
reason for this is twofold.

Firstly, as previously noted by Iyer and Masmoudi in [35], the “good unknown”
for the equation is the vorticity d,,u, which satisfies an equation which is very similar
to (1.6) in a suitable set of variables (see (1.17) and (1.19) below). Therefore, in a
sense, (1.2) is smoother than (1.1): indeed, without assuming any orthogonality con-
dition, one can expect the vorticity d,u to belong to the function space H)% / 3L§ n
LfCH)? (see Theorem 2), and therefore the solution of the Prandtl system belongs to

H? / 3Hy1 N LfCH;, in which we have gained one vertical derivative. On the contrary,
without any orthogonality condition, one cannot expect the solution u of (1.1) to have
better regularity than H2/ 3L§ N L3 H}, which is insufficient for a fixed-point argu-
ment for (1.1). This gain of vertical regularity allows us to have a theory for weaker
solutions of the Prandtl system, and therefore to get rid of two of the orthogonality
conditions.

Secondly, reconstructing the velocity from the vorticity in the Prandtl system
gives rise to one additional orthogonality condition, as we will explain in Chapter 5.
Hence the number of orthogonality conditions in Theorem 4 is odd, while it is even

in Theorem 3.

1.3 Motivation from recirculation problems in fluid mechanics

Our original motivation stems from fluid mechanics. Indeed, the stationary Prandtl
equation (1.2) describes the behavior of a fluid with small viscosity in the vicinity
of a wall. The pressure p(x) is the trace of the pressure of an outer Euler flow. This
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equation is usually set in a 2d domain of the form 7/ x (0, +00), where I C R is
an interval, and y = 0 is the solid wall. The equation is endowed with the boundary
conditionsu = v =0ony = 0, and lim, o u(x, y) = ug(x), where u g (x) is the
trace of the outer Euler flow on the wall, and satisfies ugdxug = —0x p.

As long as u remains positive, (1.2) can be seen as a nonlocal, nonlinear diffusion
type equation, the variable x being the evolution variable. Using this point of view,
Oleinik (see, e.g., [49, Theorem 2.1.1]) proved the local well-posedness of a solution
to (1.2) when the equation (1.2) is supplemented with a boundary data u|y—o = uo,
such that ug(y) > 0 for y > 0 and u(0) > 0. Let us mention that such positive solu-
tions exist globally when 0, p < 0, but are only local when d, p > 0. More precisely,
when d, p = 1, for instance, for a large class of boundary data u, there exists x* > 0
such that

lim uy(x,0) =0.
X—>X

Furthermore, the solution may develop a singularity at x = x*, known as Goldstein
singularity. The point x* is called the separation point: intuitively, if the solution to
Prandtl exists beyond x*, then it must have a negative sign close to the boundary
(and therefore change sign). We refer to the seminal works of Goldstein [26] and
Stewartson [59] for formal computations on this problem. A first mathematical state-
ment describing separation was given by Weinan E in [21] in a joint work with Luis
Cafarelli, but the complete proof was never published. The first author and Nader
Masmoudi then gave a complete description of the formation of the Goldstein sin-
gularity [17]. The work [58] indicates that this singularity holds for a large class of
initial data.

Because of this singularity, it is actually unclear that the Prandtl system is a rel-
evant physical model in the vicinity of the separation point x*, because the normal
velocity v becomes unbounded at x = x*. Consequently, more refined models, such
as the triple deck system (see [41] for a presentation of this model, and [18, 36] for
a recent mathematical analysis of its time-dependent version), were designed specif-
ically to replace the Prandtl system with a more intricate boundary layer model in
the vicinity of the separation point. However, beyond the separation point, i.e., for
x > x*, it is expected that the Prandtl system becomes valid again, but with a chang-
ing sign solution.

The well-posedness of the Prandtl system (1.2) when the solution u is allowed
to change sign has only recently been investigated. Such solutions are called “recir-
culating solutions”, and the zone where u < 0 is called a recirculation bubble, the
usual convention being that u g (x) > 0, so that the flow is going forward far from
the boundary. In the recent preprint [35] by Sameer Iyer and Nader Masmoudi, the
authors prove a priori estimates in high regularity norms for smooth solutions to the
Prandtl equation (1.2) in a domain of the form I x (0, +00), with restrictions on
the length of the interval 7, in the vicinity of explicit self-similar recirculating flows,
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called Falkner—Skan profiles. The latter are given by
u(x,y) = x" (o), (1.15)

_ m—1 _
v(x, ) ==y () = ——y T f(©), (1.16)
m+ 1
where ¢ := (”’TH)% yme_l is the self-similarity variable, m is a real parameter and
f is the solution to the Falkner—Skan equation

"+ B (D) =0,

where 8 = ,3—_':1, subject to the boundary conditions f(0) = f/(0) =0, f’(4+00) = 1.
Such flows correspond to an outer Euler velocity field u g (x) = x™. For some par-
ticular values of m (or, equivalently, ), these formulas provide physical solutions to
(1.2) which exhibit recirculation (see [12]). Obtaining high regularity a priori esti-
mates for recirculating solutions to the Prandtl system (1.2) on the whole infinite
strip is a difficult task. This important step was achieved by Sameer Iyer and Nader
Masmoudi in [35].

In the present memoir, we have chosen to focus on a different type of difficulty,
and to consider first the toy-model (1.1), which differs from (1.2) through the lack of
the nonlinear transport term vd,u and its associated difficulties (nonlocality, loss of
derivative) and the exclusion of the zones close to the wall and far from the wall. For
the model (1.1), a priori estimates are easy to derive, see [56, Chapter 4]. The diffi-
culty lies elsewhere, as explained previously. Indeed, in order to construct a sequence
of approximate solutions satisfying the a priori estimates, we need to ensure that the
orthogonality conditions are satisfied all along the sequence. For the Prandtl system
(1.2), this difficulty has recently been tackled by Sameer Iyer and Nader Masmoudi
in [34], building upon their a priori estimates of [35] and the ideas developed in the
first version of our present work. We revisit in Chapter 5 part of their work. Per-
forming the different steps of the analysis (straightening the boundary, linearizing,
differentiating with respect to the horizontal or vertical variable), we found a way to
substantially simplify the analysis of the system in the vicinity of the recirculating
line, and the results that we obtain are slightly different from the ones of [34, 35].
First, we prove a result in a rather low regularity setting, in which u is not even an
L? function in the whole domain €2 p. This result holds under merely one orthogonal-
ity condition, whose role is rather different from the ones of Theorem 3, for instance.
Indeed, the role of this additional orthonogality condition is not to ensure a certain
regularity, but rather to allow for a reconstruction of the velocity from the vorticity.
Moreover, we use solely one change of variables, which we present in the next section
and which is identical to the one for the Burgers equation. Once the adequate change
of variables is identified, we retrieve the fact that the vorticity (in these new variables)
is a good unknown. In fact, in the appropriate set of variables, the equation for the
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vorticity becomes remarkably simple (it is a closed, quasilinear equation). We how-
ever prescribe lateral boundary conditions on the velocity (rather than the vorticity).
Eventually, we do not require any condition on the horizontal size of the domain (i.e.,
on the length x; — x¢). Our understanding is that such conditions may arise when the
Prandtl system in the whole infinite strip is considered. They are linked to the well-
posedness of a linearized system in the whole strip. We refer to Section 5.6 for more
comments regarding this point.

1.4 Scheme of proof of nonlinear theorems and plan of the memoir

The uniqueness of solutions is fairly easy to prove. For the linear problem (1.6),
uniqueness already holds at the level of weak solutions (see Proposition 2.2 and
Appendix A). For the nonlinear problems, uniqueness is straightforward since we are
considering strong solutions. Therefore, the main subject of this memoir is the proof
of the existence of solutions for the nonlinear problems (1.8) and (1.2) endowed with
the boundary conditions (1.9), (1.10), (1.11).

A first natural idea would be to prove existence thanks to a nonlinear scheme
relying on the linear problem (1.6). For example, concerning equation (1.1), one could
wish to construct a sequence of approximate solutions (#,),eN by setting ug := 0 (or
any other initial guess) and solving

YOxUpt1 — ayyun-i-l = f —(un — y)0xun,
(Un+1)z; = dis

(Un+1))y=+1 = 0.

However, this strategy fails. The key point is that the right-hand side contains a full
tangential derivative of u,, whereas the operator yd, — dy, only yields a gain of 2/3
of a derivative in this direction (more precisely, see Proposition 1.7, Remark 1.8 and
Proposition 2.5). Hence, this nonlinear scheme would exhibit a “loss of derivative”,
preventing us from proving a uniform bound on the sequence (1),eN-.

Another drawback of this scheme is that it would not translate well to a setting
where one does not assume §; (0) = 0. Indeed, in such a case, the inflow boundaries of
the problem with the perturbed data y + &; (y) would not match the inflow boundaries
of the linear problem (1.6).

Hence, we will rather construct solutions to equation (1.1) through another itera-
tive scheme. As suggested to us by an anonymous referee and by other colleagues, we
first straighten the curve {u = 0} by setting as a new vertical variable z = u(x, y). Our
new unknown, both for the Burgers equation (1.1) and for the Prandtl system (1.2), is
the inverse function of u, i.e., the function Y such that u(x, Y (x, z)) = z. In this new
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set of variables, the equation for ¥ becomes, in the case of the Burgers equation (1.1),
20xY —(3;Y)7202Y = -3, Yf(x,Y), (1.17)

and in the case of the Prandtl system (1.2)

z
z0,Y —/ Y — (3:Y)202Y = —8:Y dxp + Velr; + va, (1.18)
zp
in which the nonlocal integral term on the left-hand side stems from the transport
term vd,u in the original equation. Differentiating (1.18) with respect to z, we find
that in the case of the Prandtl system, the vorticity W = d,Y satisfies

zaxw+axpazw+a§(%) = 0. (1.19)
We immediately see the linearized operator associated with (1.17) around Y (x,z) =z
is equation (1.6). In a similar fashion, the linearized operator of equation (1.19)
around the flow Yp associated with up is a forward-backward operator with variable
coefficients, of the form zd, + 0, — 8§(a-), where o = (0,Yp) ™2 and B = 0, p.
Such forward-backward operators bear strong similarities with the canonical one
zdxy — 0z, and therefore we will rely on our linear analysis to study (1.19) (see
Lemma 5.3 and Proposition 5.5).

We then construct solutions of (1.17) and (1.18) thanks to an iterative scheme?,
which we now explicit in the Burgers case, the Prandtl one being similar. We define
a sequence (Yn)neN such that

az?’n(2 - 8z?n)

(1 9 ?)2 azzf;n +(1 —8z?n)f(x,2—f;n)+gn+l’
—9,Y,

Zax?n—l—l - azzi;n-i-l =

where the additional term g ™! ensures that the orthogonality conditions are satisfied

at every step. We then prove that (17 )neN is a Cauchy sequence in the space Q.
Passing to the limit, we obtain a solution ¥ = z — lim, - fn to (1.17) with an
additional source term g. The manifold M is then defined by requiring that the limit
term g is zero.

Remark 1.4. In a first version of this memoir [16], we had chosen a strategy which
seemed only slightly different, but which led to substantial technical difficulties.
However, we believe that this strategy is rather natural, and could be of use in other
problems. Therefore we describe it here.

2In fact, we will state and use an abstract theorem, whose proof follows a similar scheme.
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Let (u,)nenN be a sequence solving the following iterative scheme:

UpOxUpnt1 — 8yyun—i—l = fn_H,
(Uns)z; =y + 8" (1.20)
(Un+1))y=+1 = £1.

This scheme is similar to the one used to construct solutions to quasilinear symmetric
hyperbolic systems, see for instance [7, Section 4.3]. In our case, it is possible to
prove a uniform bound for u, in the space H f / 3L§ N L)zc H; and the convergence of
the sequence in an interpolation space L2 H, gl 6L§.

In (1.20), the triplet (™!, 86’“ .87 *1) is an appropriate perturbation of the data
(f. 80, 81) tailored to satisfy the orthogonality conditions associated with the linear
operator u,dx — 0yy. In order to define these orthogonality conditions, it is necessary
to straighten the curve {u,(x, y) = 0}: hence this straightening step is still necessary,
but performed after the “linearization” of the equation, rather than before.

The issue lies in the fact that the orthogonality conditions change at every step,
which is a key difficulty. In particular, in order to allow the sequence u,, to converge,
one must prove that these perturbations also converge. This amounts to proving that
the linear forms associated with the operator u,dx — dy, depend continuously (and
even in a Lipschitz manner) on u,, for the same topology as the one within which
one proves the convergence of the sequence u,. This continuity estimate requires
identifying quite precisely what the linear forms are.

We believe that this methodology is rather robust and could be applied to other
nonlinear problems in which orthogonality conditions are present at the linearized
level, in particular in contexts where there is no nonlinear change of variables such as
the one presented above allowing to treat the nonlinearity as a perturbation. For exam-
ple, the PDE u(1 + d,u)dxu — d,,u = f could be an example where our previous
methodology applies, but not the one exposed in the present memoir.

Remark 1.5. Let us highlight some differences between the strategy of the present
memoir and the one by Iyer and Masmoudi in [35]. As explained above, there are sev-
eral mathematical operations which are required to complete the proof of Theorem 4:

* changing variables in order to straighten the free boundary;
* linearizing the equation around some background profile;

» differentiating the equation with respect to the vertical variable in order to obtain
an equation for the vorticity;

» differentiating the equation with respect to the tangential variable in order to
derive higher order estimates (under compatibility conditions).

These operations more or less commute at main order, and lead to the study of
the equation zdyu — d,,u = f. However, their (lower order) commutators may be
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a source of substantial technical difficulties. Our understanding is that the authors
of [35] perform the operations in the following order (see Section 3 of their paper):
(1) linearize; (2) differentiate with respect to the horizontal variable; (3) straighten
the free boundary; (4) differentiate with respect to the vertical variable.

We believe that the computations are much simpler, and the structure is better
understood, when the straightening change of variables is performed first. This also
allows us to have a more accurate comparison between the Burgers-type equation and
the Prandtl one.

The plan of this work is as follows. As a preliminary, we will introduce in Sec-
tion 1.5 the functional spaces we will use. First, we study the linear problem (1.6)
in Chapter 2, leading to Theorem 1, and prove that the two orthogonality conditions
we expose are indeed nonvoid. We also construct the singular profiles L_tiing and prove
Theorem 2. In order to introduce our nonlinear scheme, we extend these linear results
to the Vlasov—Poisson—-Fokker—Planck system as an example in Chapter 3, where we
also set up our general nonlinear methodology. We then turn towards the proof of
Theorem 3 in Chapter 4, and the one of Theorem 4 in Chapter 5. In order to prove
the existence of weak solutions of the Prandtl system (i.e., the first point of Theo-
rem 4), we will need an interpolation result: this rather technical step is performed in
Chapter 6. Eventually, in Appendix A, we prove the uniqueness of weak solutions to
various linear problems, by adapting an argument due to Baouendi and Grisvard [8].
In Appendix B, we prove various technical results of functional analysis that we use
throughout the memoir. Appendix C contain the postponed proof of a lemma of Chap-
ter 5.

As this memoir is quite long, a list of notations is provided starting page 133.

1.5 Functional spaces and interpolation results

1.5.1 Notations

Throughout this work, an assumption of the form “A < 17 will mean that there exists
a constant ¢ > 0, depending only on €2 such that, if A < ¢, the result holds. Similarly,
a conclusion of the form “4 < B” will mean that there exists a constant C > 0,
depending only on 2 and on the underlying flow (namely u(x, y) = y or up), such
that the estimate 4 < CB holds. For ease of reading, we will not keep track of the
value of these constants, mostly linked with embeddings of functional spaces. Note
in particular that the sizes of these constants will depend on the length x; — xg (see,
e.g., Proposition 2.5).
We will often use the notations Q24 := Q N {£z > 0}.



Introduction 20

1.5.2 Trace spaces for the lateral boundaries

For the traces of the solutions to (1.6) or (1.8) at x = xo and x = x1, we will need the
following spaces, due to [52,53]. We define Lg(— 1,1) as the completion of L2(—1,1)
with respect to the following norm:

1

1 2
W2 = ( [ v dz) , (1.21)
and H1(—1, 1) as the completion of H, (—1, 1) with respect to the following norm:

19 llar = 1l g2 + 109 2 (122)

1.5.3 Pagani’s weighted Sobolev spaces

Let O be an open subset of R?, and let Q := (xg,x1) X (—1, 1). In the works [52,53]
(albeit with swapped variables with respect to our setting), Pagani introduced the
space Z(0) of scalar functions ¢ on O such that ¢, d,¢, d,,¢ and zd,¢ belong to
L?(0) (in the sense of distributions). In this work, we will refer to this space with the
notation Z°(@). It is a Banach space for the following norm:

¢llzo := 11z0xPllL2 + 0220 ]2 + 110292 + (@]l L2- (1.23)

We will also need the space Z! (), which we define as the space of scalar functions
¢ on O such that ¢ and d,¢ belong to Z°(0), associated with the following norm:

[$llz1 == lI$ll zo + 10l zo0- (1.24)

The omitted proofs of the results of this section are postponed to Appendix B. We start
with a straightforward extension result, which allows transferring results on Z°(R?)
to Z%(Q).

Lemma 1.6. There exists a continuous extension operator from Z°(Q) to Z°(R?).

The next embedding is the most important result concerning the spaces Z°. Since
solutions to (zd, — d,,)u = f for f € L?(2) belong to Z°(Q) (see Proposition 2.5),
the following embedding entails that such solutions belong to H2/3(Q).

Proposition 1.7. Z°(R?) is continuously embedded in H 2 / 3L§.

Remark 1.8. Proposition 1.7 can be seen as a hypoellipticity result for the operator
L = 03,, — z0y in the full space R?, which is of the form X7 + Xo, where X; = 9,
Xo = —zdy and [Xo, X1] = 0y, so the Lie brackets generate the full space and L
satisfies Hormander’s sufficient condition of [29] for hypoellipticity. In fact, in the
full space R2, the H2*L2 N L2 H? regularity of solutions to Lu = f for f € L?
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can be derived from the general theory of quadratic operators, which makes a link
between the anisotropic gain of regularity and the number of brackets one has to take
in order to generate a direction. For instance, this regularity follows from [1, Theorem
2.10] and more precisely Example 2.11 therein applied with

0 0 0 1
k=0, Q=(0 1)’ B=(0 0)'

Lemma 1.9. Z°(R?) is continuously embedded in C2(H . / 2).

Proof. On the one hand, by definition, Z°(R?) < H2(L?). On the other hand, by
Proposition 1.7, Z(R2) < L2(H} /3). Therefore, by the “fractional trace theorem”
[45, equation (4.7), Chapter 1], Z°(R2) < CO(H,/?). n

Lemma 1.10. Z°(Q) is continuously embedded in C°([xo, x1]; H1 (-1, 1)).
Proof. This is contained in the trace result [53, Theorem 2.1]. [
Lemma 1.11. For ¢ € Z%(Q), 3;¢|,—+1 € HY*(x0, x1).

Proof. Let x4+ € C°°([—1, 1]) such that y = 1 in a neighborhood of {z = +1} and
x(z) =0forz <1/2.For¢ € Z%(Q), x+(2)¢(x,z) € H L2 N L2 H?2. By the “frac-
tional trace theorem” [45, equation (4.7), Chapter 1] (3; (x4¢))|z=+1€ H /*(x0,x1).
The result follows since y+ = 1 near {z = +1}. The same argument applies for the
trace at z = —1. |

Remark 1.12. Although it is almost the case, there does not hold Z°(R?)< C?(R?).

e Pagani [52, Theorem 2.1] proves that the operator ¢ — ¢(-, 0) is onto from
Z°(R?) to H 3 (R). But H 3 (R) contains unbounded functions of x.

* Pagani [52, Theorem 2.3] proves that the operator ¢ — ¢(0, -) is onto from
Z°(R?) to the space 3 (R). But this space contains unbounded functions, for
example ¥ (z) := (—1n|z|/2)* x(z) for s < % and y e C(R) with y =1ina
neighborhood of z = 0.

1.5.4 Baouendi and Grisvard’s weak space

In [8], Baouendi and Grisvard introduce the space
B :={¢ € L*((x0,x1), Hy (=1,1));20x¢ € LI (H; ")} (1.25)

Baouendi and Grisvard proved the uniqueness of solutions to (1.6) in 8. They also
proved that functions in B have traces on {x = x;} in £2(—1, 1). These results are
recalled in Appendix A, and will be used abundantly throughout the memoir.

The following embedding is proved in Appendix B and used in Section 5.5.



Introduction 22

Lemma 1.13. B is continuously embedded in H xl; / 3L§.

Lemma 1.14. B is continuously embedded in C2([—1, 1]; H;/6).

Proof. By definition, 8 <> H(L2). By Lemma 1.13, 8 < L2(H.’?). Hence, the
result follows from the “fractional trace theorem” [45, equation (4.7), Chapter 1]. =

1.5.5 Anisotropic Sobolev spaces

We will construct solutions to (1.6), (1.8) and (1.2) in various anisotropic Sobolev
spaces such as Q! of (1.5). Within these spaces, one has heuristically the correspon-
dence 9y ~ 33, which corresponds to the appropriate scaling due to the degeneracy
of zdy atz = 0.

Indeed, if u is a solution to zdxu — d,,u = 0 say on the whole plane R?2, then the
rescaled functions u (x, z) := u(A3x, Az) are also solutions. This is also consistent
with the shape of the singular profiles ﬁiing from Theorem 2, and leads to the rule of
thumb ““one derivative in x equals three derivatives in z”” (which is different from the
usual parabolic scaling, because of the cancellation on the line z = 0).

In particular, we will use abundantly the following embeddings from the interpo-
lated Pagani spaces to anisotropic Sobolev ones.

Lemma 1.15. Let o € [0, 1] and define Z° () := [Z°(Q), Z1(Q)]y. Then one has
the embedding Z° — HZ'*"° L2 0 H? L2. In particular, Z' < Q' defined in (1.5).

Proof. By Proposition 1.7, Z%(Q2) — H§/3L§ and Z1(Q) — Hf/3L§. Hence
Z°(Q) < [HZPL2 HPL2], = HZ3TL2

using, e.g., [45, equation (13.4), Chapter 1].
Moreover, by definition, Z%(Q) < L2H?2 and Z'(Q) — H!H2, 50 Z°(Q) —
HYH?Z. -

Remark 1.16. The definition (1.5) of Q! does not contain the “full vertical” reg-
ularity L2 H?, since we do not need it to close our nonlinear estimates. However,
assuming sufficient regularity on the source terms, one can build solutions to (1.6)
and (1.8)in Q' N L2 H3, and this was in fact what we did in the earlier version [16]
of this work.



