Chapter 1

Introduction and main results

1.1 System and notation

In this memoir, we are interested in the following coupling between fluid and parti-
cles:

0, f +v-Vyif +div,[fT] =0,
d¢ (o) + divy (ou) = 0, (1.1)
0¢ (aou) + divy (ou @ u) + Vi p(o) — dive(zfu]) = —mp/ dfF dv.

R

This system describes the evolution of a cloud of particles (e.g. droplets or dust
specks) in an underlying compressible fluid (e.g. a gas). Such a suspension is com-
monly referred to as a spray [137]. More generally, the system (1.1) belongs to the
broad family of “multiphase flows” equations [59].

In this work, we study (1.1) in the phase space T? x R¢, with d € N\{0}. The
first equation of (1.1) is a kinetic equation of Vlasov type on the particle distribution
function f(¢,x,v) € R in the phase space (position-velocity), set for > 0 and
(x,v) € T? x R?. The other equations of (1.1) are set forf > 0 and x € T4 and are
barotropic compressible Navier—Stokes equations for the fluid density o(z, x) € R™
and the fluid velocity u (¢, x) € R?. Here, the function «(z, x) € [0, 1] is the volume
fraction of the fluid.

This type of models can be used to capture various natural phenomena and has
widespread applications. Examples include, among others, combustion phenomena
in engines [4, 108], evaporation of droplets [58, 113], aerosols for medical purposes
[27,28], marine and volcanic aerosols and their impact on the atmosphere [114, 134],
as well as aerosols in the atmosphere of gas giants or exoplanets [70, 136].

Here, the system (1.1) describes the so-called thick sprays and has been intro-
duced and derived by O’Rourke in [124]. Such coupling is appropriate for modeling
two-phase mixtures where particles are small but occupy a non-negligible volume
fraction of the whole suspension. The thick (or dense) spray regime is typically found
in regions where droplets are injected in a carrying gas (see [64, 110, 124]). The sys-
tem (1.1) has also been recognized as a set of equations linked to multifluid systems,
which are thoroughly described in [103]. Further details can be found in the overview
provided in Section 1.4.

Let us detail and close the previous equations, explaining the meaning of the
different terms involved. For this physical discussion, we choose d = 3.
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The volume fraction @ = (¢, x) € R* of the fluid is given by

4
alt. )= 1=my [ fxoydo, m, =0
R3 37

where r, > 0 is the radius of one droplet. In the thick spray regime, the quantity o
is not assumed to be close to 1 (this concerns suspensions for which, typically,
« is around the value 0.9), so that the volume fraction for the cloud of particles
is not negligible compared to that of the fluid. This is in sharp contrast with the
thin spray regime, that we shall recall below (see (VNS) in Section 1.4), where
a is somehow directly set to 1 and thus does not explicitly appear in the system.
Here, this quantity induces an extra coupling between both phases. We refer to
[59, 64, 124] for comparisons between the thin and thick regimes.

The pressure p : RT — R* isa given C(R™) N €% (R*\{0}) function such that,
in the barotropic regime, the pressure term is a function p = p(p) depending
only on the fluid density. One usually assumes that p(0) = 0 and p’(p) > 0. For
reasons that will appear later, we shall also assume that p is such that

p + pp’(p) is nondecreasing on R™. (1.2)

A common example is, for instance, p(0) = o? for some y > 1.

The viscous stress tensor t[u] is given by
t[u] = 2uD(u) + Adivy uly

for some constants & > 0 and A € R, where D(u) stands for the deformation
tensor defined as D(u) = (Vyu + (Vxu)T)/2. In this memoir (see the possible
generalization in Section 1.3), we choose the constants @ and A so that

divy(tu]) = Axu + Vi divy u,
but we emphasize that this choice has been made solely for simplicity, and that

no special algebraic property arises in this case.

The force I' = I'(¢, x, v) € R3 acting on the cloud of particles is defined by
mpT(2.x,v) = Drp(u(t.x) — v) —mp Ve[ p(@)](t. X). (1.3)

The first term u(z, x) — v, referred to as the drag force exerted by the fluid on the
particles, is common to all fluid-kinetic couplings. Here, it is linear in the relative
velocity between fluid and particles, and creates friction. Here, the drag coeffi-
cient Drp (with D > 0) is taken proportional to the radius r, and is reminiscent
of the Stokes law. The retroaction of this term in the momentum equation for the
fluid is known as the Brinkman force and can be expressed as

—Drp /R3(u—v)fdv.
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The second term in I', which is a pressure gradient from the fluid, is a specific
feature of thick spray models (see also [64, 124]) where the particles occupy a
significant volume fraction of the two-phase mixture. Here, the constant density
of the droplets has been taken to be equal to one. The presence of this term is
consistent with the fact that the system (1.1) (or some of its variants) is formally
linked to bifluid equations [61], where there is a common pressure gradient to
both phases (see the overview below in Section 1.4). Note that the feedback of
this term in the source term of the fluid momentum equation is

“mp [ FETlp@D v = (1 - a)Vilp(o)l

Remark 1.1. After a suitable rescaling in the equations, it is actually possible to
rewrite the force I" from (1.3) as

I =L -v) - Valpl.
€

together with
a=1-¢° f dv,
R3

where € > 0 is proportional to the radius 7, of a typical particle. Formally proceeding
to the limit € — 0, which corresponds to a small droplet size regime, we observe that
o — 1 and that the drag term u — v is dominant compared to the pressure gradient.
This formally connects the thick spray equations to the thin spray equations (see the
detailed overview made in Section 1.4). However, this formal link has not been made
rigorous so far.

In what follows, we consider a normalization of all physical constants. Introduc-
ing the kinetic moments (of order 0 and 1) of the distribution function f as

pr(t, x) :=/ f(t, x,v)dv (local density),
R4

Jr(t.x) :=/ f(t, x,v)vdv (local current),
R4

sothat a(f, x) = 1 — pr(t, x), we are thus led to the following system:

0 f +v-Vif+ divv[f(u —v)— fvxp(Q)] =0,
3:((1 = pp)o) + dive[(1 — pr)ou] = 0,
3 ((1 — pp)ou) + dive[(1 — prou @ u] + (1 — pr)Vip(o)
= Axu + Vydivy u + jr — pru.

(TS)

The unknowns of the problem are

f:f(t,x,v)ER+, Q:Q(l,x)eR+, u:u(l,x)eRd,
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and they are coupled through the drag term u — v, the pressure gradient Vy p(o) and
the volume fraction of the fluid « = 1 — pr. We finally prescribe initial conditions

fin= fn(x,v) e RT, o" =o"(x) e RT, u™=u"(x) e RY.

We normalize the torus T¢ = R¢/(27Z)? endowed with the normalized Lebesgue
measure, so that Leb(T¢) = 1.

In this work, we investigate the local well-posedness of the thick spray equations
(TS). The main difficulty comes from the fact that rough energy estimates on the
transport and kinetic part of (TS) seem to result in a loss of several derivatives. As a
matter of fact, suppose that we have a smooth solution ( f, 0, u) with compact support
to the system (TS). Since it is a coupling between a parabolic type equation for u and
two transport equations for f and g, the following observations can be made:

» astandard energy estimate for transport equations shows that a control of k deriva-
tives of o seems to require the control of k& + 1 derivatives of f. This is due to the
coupling with the volume fraction 1 — pr in the mass conservation equation;

* astandard energy estimate for transport(-kinetic) equations shows that a control
of k derivatives of f seems to require the control of k + 1 derivatives of o. This
comes from the pressure gradient in the force field of the Vlasov equation.

As a consequence, we obtain a control of k derivatives of (f, ¢) by k + 1 deriva-
tives of ( f, 0) for any k € N, and so on. Rough estimates of transport type therefore
seem to involve a formal loss of one derivative on the unknown ( f, 0), which makes
the coupling singular. Hence, standard techniques cannot be applied to obtain a
solution to the system (apart from working with functions with analytic regularity).
In [14], Baranger and Desvillettes conjectured anyway that the system is well posed
in Sobolev spaces.

In this work, we partly confirm this conjecture by showing that (TS) is locally well
posed in Sobolev spaces, when the initial data satisty a stability condition of Penrose
type. However, when this stability condition is violated, the system is actually ill
posed in the sense of Hadamard (see [12]), which means, loosely speaking, that it
indeed displays losses of derivatives in this case.

The rest of the introduction is structured as follows. In Section 1.2, we introduce
the Penrose stability condition for thick sprays and state our main result on local
well-posedness for (TS). In Section 1.3, we describe several generalizations of the
thick spray equations (TS), taking into account possible density-dependent drag or
collisions in the kinetic equation, as well as non-barotropic Navier—Stokes equations.
These variants will be treated in Sections 7.1, 7.2 and 7.3. Section 1.4 is a general
overview on fluid-kinetic systems, as well as on singular Vlasov equations. Finally,
Section 1.5 provides a detailed outline of our method of proof.
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1.2 Assumptions and main result

Fora = (a1, ...,aq) € N¢, we write |a| = Zle ; and 9% = 9%} -+~ 95%. In this
work, we will denote by H* (or H* (T d )) the standard L? Sobolev spaces for functions
depending on x € T¢. When it is necessary, we will denote by Hl;,v the same spaces
for functions depending on (x,v) € T¢ x R?. To ease readability, we shall sometimes
abbreviate L2(0, T;L2(T %)) and L?(0, T; H* (T 9)) as L% L? and L% H¥, respectively.
We will also use weighted wa Sobolev spaces. They are defined as follows:

Definition 1.2. Fork € N, r > 0and f: T¢ x R? — R, we define the weighted
(in velocity) Sobolev norms as

1
2
€1l 55 :=( > /Td /Rd(u)”m;’gagf(x,v)|2dxdv) ,

| +1BI<k

where (v) = (1 + [v[?)2.

We now introduce the following Penrose function, which will be used to state the
relevant corresponding Penrose stability condition.

Definition 1.3. For any distribution function f(x, v) and density p(x), we define the
Penrose function

pl(p(x))lo(x) too e—(y—‘,—i‘[)s lk

P k) := "t
f,,O(x’yvra ) l—pf(.x) o 1+|k|2

(Fuy V) (x,ks)ds (1.4)

for (x,y.7.k) € T4 x (0, +00) x R € R4\{0}.

Definition 1.4. We say that the couple (f(x, v), p(x)) satisfies the c-Penrose stability
condition (for the thick spray equations (TS)) if there exists ¢ > 0 such that

P) Vx e T, inf [T —Prp(x, y, 1, k)| > c.
(y,7,k)€(0,4+00) xRxR¥\{0}

When needed, we shall denote this condition by (P)..

As we shall explain later on, such a condition stems from the study of Vlasov
equations in plasma physics. In the context of the Vlasov—Benney equation, a similar
condition was the key to obtain local well-posedness in Sobolev spaces (and for its
derivation in the quasineutral limit), see [90]. We refer to Section 1.5 for more details.

Remark 1.5 (Sufficient conditions ensuring (P)). Let us describe a few classes of
profiles (f(x, v), p(x)) which satisfy the Penrose stability condition (P). Several cri-
teria on the shape of f(x, -) for every x € T¢ indeed provide sufficient conditions for
(P) to hold (see for instance [121]). We shall assume that f(x, -) is at least integrable
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and that the nonnegative prefactor in front of the integral in P, is bounded from
above on T¢.

» First, any sufficiently small smooth profile f satisfies (P).

*  When d = 1, the one-bump profiles in velocity, that is to say profiles such that,
for all x € T, the function v — f(x, v) is increasing then decreasing, satisfy the
Penrose condition.

e In any dimension d > 1, any profile such that, for all x € T4, f(x, ) is a radial
nonincreasing function in velocity is Penrose stable. In particular, it includes the
case of (local smooth) Maxwellians in velocity. If d > 3, any profile such that,
forall x € T, f(x, -) is a radial and strictly positive function in velocity satisfies
the condition.

* More generally, the following criterion on the marginals of f has been devised
in [121] and ensures the Penrose stability: for all x € T4,

¥ (wo, k) € R x R4\{0},

P'(p(x))p(x)
A+ kP —pon ™Y [8 T3

where p.v. stands for the principal value on R and

k
Vr € R, f@(r)'_/k (rm—kw)dw.

13

dy <1,
wo

* Finally, any sufficiently small smooth perturbation of a Penrose stable profile will
still satisfy (P). In particular, a slightly perturbed one-bump profile f(x, -) remains
Penrose stable.

Our main result reads as follows.

Theorem 1.6. There exist mg > 0 and ro > 0, depending only on the dimension, such
that the following holds for all m > mg and r > ry. Let

fin c Jm Qin = Hm-‘rl uin c H™
r o ’

such that (f, o™) satisfies the c-Penrose stability condition (P). for some ¢ > 0 and
0< fin, prn < O <1, 0<p<om 0<Q§(1—pfm)gi“§§

for some constants ©, i, ., 0. Then there exist T > 0 and a solution ( f, 0, u) to (TS)
with initial condition (™, o™, u™) such that

fee(o, T #™ "), o0el?0,T:H™), ueC0,T];H™) NL>*0,T;H"),

and with (f(t), o(t)) satisfying the 5-Penrose stability condition (P)c/, for all t €
[0, T']. In addition, this solution is unique in this regularity class.
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In short, our result yields the local well-posedness for the thick spray equations,
in the class of Penrose stable initial data. On the other hand, as already mentioned
earlier, outside of this class, the system is ill posed in the sense of Hadamard. We refer
to [12], in the spirit of [11,87] for singular Vlasov equations (see also the discussion
in Section 1.4).

Remark 1.7. The uniqueness part in the previous statement must be understood as
follows: if (f1,01,u1) and (f2, 02, u2) are two solutions to (TS) on [0, 7] with the
previous regularity and with the same initial condition ( /™", o', u'") (satisfying (P)),
then (f1,01,u1) = (f2,02,u2) if t = (f1(¢), 01(?)) satisfies the Penrose stability
condition (P) on [0, T'].

Remark 1.8. Let us point out the shift of one derivative in the regularity between f
and o, which is reminiscent of the formal loss of derivative that was evoked earlier.

Remark 1.9. In [39], the authors consider the linearization of (TS) around a radially
nonincreasing and homogeneous profile (for the kinetic part). This can be seen as a
particular case of the Penrose stability condition (P). They obtain a stability estimate
in L? around the solution generated by such particular data. However, it is not suffi-
cient to provide a well-posedness result for the full nonlinear equations. As a matter
of fact, since the equations are quasilinear, one would need to prove the analog of
such stability estimates for all functions in a neighborhood of the aforementioned
solution.

Remark 1.10. (1) It appears to be more natural (see, in particular, the proof of
uniqueness in Section 6.3) to consider the optimal Penrose function

p'(p(x)p(x) [F°

e~ UFDS i fe  (F, Vo) (x, ks) ds,
L—pr(x) Jo

Prplx,y.1,k) =

instead of P; ,,, as well as the related stability condition

(Opt-P) Vx e T?, inf 11— Prp(x.y.T.k)| > c.
(7,7.k)€(0,+00) xRxR4\ {0}

We refer to (Opt-P) as the optimal Penrose stability condition. The condition (Opt-P)
is weaker than (P). Indeed, using a homogeneity argument combined with a continuity
argument, it is possible to prove that if (P) holds for some ¢ > 0 for (f, p), then (Opt-P)
holds as well.! However, our strategy in this work will be based on a regularization
of the force field in the Vlasov equation, and requires the stability condition (P). It is
likely that, using the techniques of [41], one could assume (Opt-P) instead of (P) on

'We refer to the uniqueness part of the proof in Section 6.3 for more details.
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(f, o) to prove the well-posedness of thick spray equations. However, this would
require substantial work

(2) The factor T k\2 in the Penrose function Py, could appear as arbitrary. It is
actually related to the explicit regularization procedure of the force field that will be
made clearer later on. By a homogeneity argument, it is however possible to prove
that the condition (P) is equivalent to

Vx € T¢, inf 1= AP, (x.y. T.k)| > c. (1.5)
(y,t,k,A)eStx(0,1]

where
Fi={0n k) € (0.400) x RX R0} | y? + 22 + &% =1},

This implies, in particular, that the factor ™ k|2 could for instance be replaced by
W for any o > 0 in (1.4). We refer to Remark 2.12 in Section 2.2 for the use

of such reformulation of (P) in the regularization procedure.

Remark 1.11. In the Euler case for the fluid, that is, for the same system on ( f, 0, u)
but without the term —A u — V, divy u in the equation for u, the question of well-
posedness remains open.

1.3 Generalization to several variants

We are also interested in more complex versions of the system (TS) that take into
account more physical effects. In this section, several such variants are presented. The
main strategy of proof adopted in this work for (TS) will be robust enough to handle
such models: we will show how to obtain their local well-posedness in Sections 7.1,
7.2 and 7.3.

1.3.1 Non-barotropic Navier-Stokes equations

If one wants to get rid of the barotropic-type assumption on the fluid, one has to
consider its internal energy e = e(¢, x) € R™ as an additional unknown. This leads to
the following system of equations:

df +v-Vif +divy[f(u —v) — fVxp(o,e)] =

d; (o) + divy (aou) = 0,

¢ (ou) + divy(aou @ u) + aVyp(o,e) — Axu — Vydivyu = jr — pru,
0¢ (oe) + divy(coeu) + p(o, e)(9;a + divy(au)) = » lu —v|? fdv,
a=1-pr.

(1.6)
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Here, p : RT x Rt — Risagiven C(RT x RT) N C®(RT\{0} x RT\{0}) function
such that the pressure term is a function p = p(p, e) depending on the fluid density
and the internal energy. For instance, a relation of the type p(o, e) = boe (for some
b > 0) is a perfect gas pressure law.

The apparent loss of derivative is still present in such model and occurs between
f and e. In Section 7.1, we shall also justify how to build local-in-time solutions for
(1.6) thanks to an adapted Penrose stability condition.

1.3.2 Kinetic equation with collisions

In the thick spray regime, it is physically relevant to take into account collisions
between droplets. A collision operator is therefore sometimes added in the kinetic
equation, which turns into a Vlasov—Boltzmann type:

I f +v-Vaf +divy[ fu—v) = fVxp(0)] = QL /).

The quadratic operator Q(f, f) = @, (f, f) stands for some Boltzmann collision
operator for (in)elastic hard-spheres. Here A € (0, 1] is given and is called the restitu-
tion coefficient, which is involved in the microscopic laws defining collisions between
particles. We refer to Section 7.2 for some details about the precise definition of the
collision operator @ and some of the main basic features of inelastic collisions. Let
us mention that the case A = 1 corresponds to standard perfectly elastic collisions
and that the inelastic case A € (0, 1) leads to a loss of kinetic energy along collisions
(while mass and momentum are always conserved).

We will also explain how to include a collision operator in the kinetic equation
for f and still obtain an analog of Theorem 1.6.

1.3.3 Density-dependent drag force

In many applications, the force I' = I'(¢, x, v) € R¢ acting on the particle should
actually present a density-dependent drag force, for instance of the form

[, x,v) = o(t, x)(u(t, x) = v) = Vx[p(2)](z, x).

Compared to that of the system (TS), this force displays an additional nonlinearity.’
The Brinkman force in the Navier—Stokes equations also becomes

—[Rd o(u —v)fdv =o(jr — pru).

2 A more physical model should deal with a nonlinear drag of the form C[o, [u — v|](u — v),
which is for the moment out of the scope of a rigorous mathematical analysis. However, our
approach can for instance allow the treatment of a drag of the form o[(u — v) + y(u — v)]
where y € C°(R¥:R¥) is such that y(0) = 0 and y’(0) = 0.
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Because of the modified term o(¢, x)v - V,, f in the kinetic equation, this induces a
potential growth in velocity which could become out of control. In Section 7.3, we
will deal with the case of such a density-dependent drag term, up to the additional
assumption that the initial data 7™ has a compact support in velocity.

1.3.4 Density-dependent viscosities

It is also possible to consider more general viscosity coefficients in the Navier—Stokes
equations of (TS), that is, replacing the differential operator —Ayu — V, div, u in the
equation for u by

—divy (2u[0]D(u) + Alo] divy u 1),

for smooth nonnegative coefficients i, A : R™ — R* such that 1£(0) = A(0) = 0.
For the sake of simplicity, we restrict ourselves in this work to the case © = 1 and
A = 0. We claim however that our analysis applies mutatis mutandis to this more
general situation. As a matter of fact, we will consider local-in-time strong solutions
for which g is non-vanishing.

1.4 Overview on fluid-kinetic systems and related models

Let us provide an overview on couplings between fluid and kinetic equations, both
from the modeling and the theoretical points of view. In particular, we want to high-
light the differences between the main regimes for the description of sprays (namely,
thick versus thin). We also review some existing works on singular Vlasov equations
coming from plasma physics, our strategy for thick sprays being inspired by the study
of such systems (see Section 1.5).

1.4.1 Fluid-kinetic description

We can trace back the introduction of fluid-kinetic couplings for the description of
sprays involving a large number of particles to [124, 137]. We also refer to [59] for
a general overview on the description of multiphase flows, as well as to [129]. Note
that, compared to an Eulerian-Eulerian description for both gas and droplets (where
both phases are described at the macroscopic level, with (¢, x) variables), a fluid-
kinetic point of view seems to be well-suited for polydispersed flows (i.e., when the
size of the droplets can vary). Indeed, no average is taken to compute the drag force,
for instance. Of course, many other physical effects, such as coalescence, breakup,
vaporization or chemical reactions, can be included in the models (see e.g. [13, 108]).
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1.4.2 Thick spray case

Models for thick sprays have been explicitly introduced and derived at the formal
level in [64] and in [124, Chapter 2]. In particular, the pressure gradient acting on
the dispersed phase is already present in [64], while [124, Chapter 2] also consid-
ers the additional contribution of collisions. The use of such complex models was
subsequently pursued by O’Rourke’s team at the Los Alamos National Laboratory to
develop the Kiva code [4, 125, 126]. From the numerical and modeling point of view,
let us also refer to the works [20, 26].

As explained above, the coupling between both phases makes the rigorous study
of thick spray equations reputedly challenging. The mathematical study of such type
of models is still in its infancy and only a few formal results are available.

In [61], the authors consider a formal hydrodynamic limit starting from a thick
spray system of the type (1.6) (without fluid dissipation and with an additional energy
variable for f) with an inelastic collision operator. The limit of Knudsen number
tending to 0 allows one to derive (at least formally) a two-fluid coupled system. The
latter turns out to be a standard model of multiphase flow theory where the volume
fraction is now an unknown (see the book [103]). It formally connects thick spray
models to multifluid systems, where the presence of a common pressure term is stan-
dard. This somehow a posteriori explains the additional pressure gradient in the force
field acting in the kinetic equation. A standard feature of this bifluid limiting system
seems to be a lack of hyperbolicity [92,107,123], so that its behavior is a priori highly
unstable. Note that preliminary computations performed in [128] tend to indicate that
adding some viscous term along some directions makes this type of system better
behaved.

A new understanding of thick sprays has been obtained in [39], where the lin-
ear stability for (TS) and (1.6) is investigated. More precisely, the L? linear stability
around a family of particular space-homogeneous profiles (for the kinetic phase)
is obtained thanks to a suitable Lyapunov functional. The profiles in velocity are
required to satisfy a property of monotonicity, this condition being a special example
of the Penrose stability condition (P) that we shall impose on the initial condition
(recall Remark 1.5 above).

Very recently, [69] has proposed a new averaged version of thick spray models,
where the pressure gradient —V, p(@) in the kinetic equation and the volume frac-
tion « are regularized by including an extra convolution operator. Local existence in
Sobolev spaces for this new version of the original thick spray model is obtained in
the Euler case for the fluid, using tools from symmetrizable hyperbolic systems (see
[14,115]).
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1.4.3 Barotropic compressible Navier—Stokes equations

When f = 0 (and thus & = 1), the system (TS) reduces to the standard compressible
Navier—Stokes equations for (g, u), in the barotropic-type regime. These equations
have given rise to an abundant literature for more than half a century. Global weak
solutions of finite energy have been built for the first time in [109] for constant vis-
cosity coefficients, a result extended in [68] for more general pressure power laws.
Another notion of weak solutions was also considered in Hoff [100]. For more recent
results allowing one to include degenerate viscosities and more general pressure laws,
see e.g. [35-38, 118, 133].

In the framework of strong solutions (local in time or global with assumption on
the data), we can for instance refer to [122, 131] for classical ones, to [132] for mild
solutions, to [116, 117] for solutions with high Sobolev regularity near equilibria, and
to [101] for the fine description of the time asymptotics of the system. Let us also
mention the more recent works [43, 50-52, 54,56, 57] for the study of the system in
critical spaces.

1.4.4 Thin spray case: The Vlasov—Navier—Stokes system

Unlike the thick spray regime corresponding to (TS), there exists a rich literature
on the so-called thin spray models. This corresponds to a regime where the particle
volume fraction is small compared to that of the surrounding fluid; the quantity « is
directly set to 1 and does not appear in the system (see Remark 1.1). The main term
of the coupling which is retained is the drag force (that is, I'(¢, x, v) = u(¢, x) — v),
and its feedback in the fluid equation.

An important fluid-kinetic model in this class is the so-called Vlasov—Navier—
Stokes system, which describes a monodisperse phase of small particles flowing in
an ambient, incompressible, homogeneous, viscous fluid. It takes the form

0, f +v-Vyf +divy[f(u—v)] =0,
(VNS) dru+ (u-Vy)u—Axu +Vep = jr — pru,

divyu =0.

This system has been for instance shown to provide a good description of medical
aerosols in the upper part of the lung (see e.g. [28,30]).

From the mathematical point of view, many directions of research have been
explored about (VNS) (and its variants) over the past twenty years. The Cauchy the-
ory, addressing the existence of global weak solutions for (VNS) on a large class of
domains in dimension 2 or 3, is by now well developed (see e.g. [5,25,77]), and
also allows for more complex physics in the model (see [29,31]). It mainly consists
in obtaining a Leray weak solution for ¥ and a renormalized weak solution (in the
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sense of DiPerna and Lions [63]) for f, using a remarkable energy-dissipation iden-
tity that is satisfied by solutions to the system. In dimension 2, the uniqueness of such
solutions has been shown in [85].

More recently, several asymptotic behaviors of (VNS) have attracted considerable
attention. The question of the large-time dynamics for (VNS) has seen significant
advances over the past few years. Roughly speaking, it is expected that the cloud of
particles aligns its velocity with that of the fluid, that is,

ut) ——> v, f(t) —— p* ® Sy=yp=
t—>—+o00 t—>+00

for some asymptotic velocity v> € R? and profile p>(z, x).

The first complete answer justifying such singular asymptotics has been obtained
in [86] for Fujita—Kato-type solutions, in the 3D torus case. In the whole space R3,
this question is studied in [55, 80], while the case of a 3D bounded domain (with
absorption boundary conditions for f') is investigated in [67]. We also refer to [65]
for the half-space case, where the additional effect of a gravity force on the particles
(combined with absorption at the boundary) leads to decay of the solution to 0.

Another asymptotic regime is the so-called hydrodynamic limit starting from
(VNS), related to high-friction regimes. Considering some suitable scalings mak-
ing a small parameter & appear in (VNS), one wants to obtain a hydrodynamic and
effective system when ¢ tends to 0. Here again, this issue is linked to a monokinetic
behavior of the form f;(1) — p(t) ® Sy—u() and ug(t) — u(t), with (p(z), u(r))
satisfying transport-Navier—Stokes or inhomogeneous Navier—Stokes equations. We
refer to [84] for the more complete and recent results on this question, and to [66,96],
where the gravity effect is taken into account, leading to macroscopic sedimentation
couplings in the limit.

Let us finally mention the challenging open problem of the derivation of (VNS),
starting from microscopic first principles. We refer to [42, 60,93-95,97] for a partial
answer based on homogenization and the justification of the Brinkman force in the
fluid equation, but without the complete dynamics of the particles. In the case of
the Vlasov—Stokes system, let us mention the recent results obtained in [98,99]. An
alternative (but still formal) program has been proposed in [22, 23], starting from a
system of coupled Boltzmann equations.

1.4.5 Several variants of (VNS)

The Vlasov—Navier—Stokes system can also be considered with inhomogeneous or
compressible Navier—Stokes equations [45, 46, 49] and additional terms in kinetic
equations [47,48].

Note that the case of compressible Euler equations for the fluid, coupled to a
kinetic equation, has also been investigated. We refer to [14] (for the thin spray case)
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and [115] (for the so-called moderately thick spray case when collisions between
particles are not neglected), where local-in-time strong solutions are built, thanks to
ideas coming from hyperbolic systems.

1.4.6 Singular Vlasov equations

As we shall explain later on (see Section 1.5 on our strategy of proof), we shall take
our inspiration from a different problem coming from plasma physics, which is the
so-called quasineutral limit problem. More specifically, let us look at the dynamics
of ions described by the following Vlasov—Poisson system:

O fe+v-Vife+E.-Vyfe =0,
(VPS) Es = _VxUsa
(Id — AU, = / fe(t, x,v)dv —1,
R4

when ¢ < 1, corresponding to a small Debye length regime for the plasma. The issue
at stake is the validity (or invalidity) of the formal limit ¢ — 0, leading to

atf‘{‘v'vxf_vxpf'vvfzov

(VB) pr(t,x) = / f(t,x,v)dv.

R4
This system was named as the Vlasov—(Dirac)-Benney system by Bardos in [15]. As
directly seen on (VB), the force field in this Vlasov equation is one derivative less
regular than the distribution function f itself, thus displaying an apparent loss of
derivative.

The question of the justification of the quasineutral limit (from (VP,) to (VB))
and of the well-posedness of the limiting system (VB) has given rise to a wealth of
literature for more than twenty years. Preliminary results have investigated the limit,
up to some defect measures [34,74], and have been followed by a full justification in
the analytic regime [75] (see also [82,83]). We also refer to [33,78, 112] for the case
of singular monokinetic data leading to fluid equations. However, the quasineutral
limit does not hold in general because instabilities for Vlasov—Poisson can take over
(see [81]).

In general, there also exist unstable homogeneous equilibria of (VB) around which
the linearized equations have unbounded unstable spectrum (typically two-bump pro-
file in velocity, leading to the so-called two-stream instability). Therefore (VB) may
be ill posed in the sense of Hadamard [11, 18, 87] in Sobolev spaces, even with arbi-
trary losses of derivatives and arbitrary small time.

A local theory for (VB) thus requires additional assumptions on the initial data.
A Cauchy—Kovalevskaya-type theorem can be applied [24, 105, 121] to show that
there is local existence of analytic solutions for analytic initial data. In dimension
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d =1, Sobolev initial data with a one-bump profile in velocity (for all x) leads to
local-in-time solutions, as shown in [16] (see also [17] for more properties).

In any dimension, the quasineutral limit and the well-posedness in Sobolev spaces
of (VB) have been obtained in [90] under a Penrose stability condition on the initial
data f™. In this work, the same type of condition as (P) is assumed, replacing the
function P, by P defined as

+o0 ) ik
PYP(x,y. 1. k) = / e~ rHiDs (Fo Vo) (x, ks) ds.

0 1+ |k

Up to some prefactor coming from coupling for sprays, our assumption (P) in The-
orem 1.6 is closely related to that of [90], and this work is the main inspiration of
our analysis. We also refer to the recent work [44], where the existence of local-in-
time solutions for mildly singular Vlasov equations is shown (without assuming any
stability condition).

Note that the rescaling (¢, x, v) — (¢/¢e, x /e, v) in (VP,) leads to the same equa-
tion with ¢ = 1, hence connecting the quasineutral limit to an issue of large-time
dynamics. The Penrose stability condition (P) appearing on a homogeneous profile
f(v) is actually a necessary condition for its long-time stability in the Vlasov—Poisson
equation (VP,) with ¢ = 1. This last issue is also linked to the Landau damping effect,
which has been proved to hold in a small (Gevrey) neighborhood of such stable pro-
file. In the torus, we refer to the breakthrough work [121], as well as to [19, 76].

1.5 Strategy of the proof

We conclude this introduction by presenting a detailed outline of the proof. This will
allow at the same time to explain the structure of the memoir. In order to ease read-
ability and highlight the main features of the analysis, we deliberately state our results
without specifying the precise assumptions.

As explained above, and for the sake of clarity, we shall focus on (TS). This
system indeed retains the main features and difficulties of this work. Our result and
proof will be generalized to the more complete systems presented in Section 1.3 (see
Sections 7.1, 7.2 and 7.3).

In the preliminary Chapter 2, we start by deriving several a priori energy esti-
mates on the system (TS). We show in Proposition 2.3 that for all € [0, T'],

lo@ i < " lim ®(T.... latlluooo, s+ 1y 1 oo pogemtty)s (17

where @ is a continuous function which is increasing with respect to each of its
arguments and ...’ involves lower order terms. On the other hand, we have, for all
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t €[0,T],

lor @Ollam +11jr @ lam < 1LF @ ¢

< 1" (T [l o.7smem)- el 20, m+1))-
(1.8)
The estimates (1.7) and (1.8) thus yield a loss of two derivatives for the fluid density g.
This formally prevents the use of standard techniques to obtain a (local-in-time) solu-
tion. The main goal of the analysis is to show that these losses are only apparent when
the initial condition ( /™", o™) satisfies the Penrose stability condition (P).
To this end, we first consider the following regularization of the system (see also
Remark 2.12), which includes a parameter ¢ € (0, 1) that is bound to go to O:

0 fe +v - Vi fo +divy[fe Ee — fev] =0,

0:((1 — pr)os) + dive (1 — pg)ostts) = 0,

(1 — pr)(eld:ius + (us - Vi)ue] + Vi p(oo)) (1.9)
= Axug + Vi divyug + jr, — pr.its,

_ fin __ in __,,in
fS\t=0—f s Qejp=0 =0, Ugt=0=1U",

where
pr.(t,x) :/ fe(t, x,v)dv, Jr.(t,x) :/ fe(t, x,v)vdv,
R4 R4
Ee = —p'(0e)Vx[Jc0e] + ue, Jo=(1d—e2A) "

In the following, for the sake of readability, we systematically dismiss the subscripts &
but keep in mind that all unknowns depend on €. When ¢ > 0, the regularized system
can be seen as a non-singular coupling between compressible Navier—Stokes and the
Vlasov equation; as a result, classical energy methods allow us to build local-in-time
solutions, away from vacuum (this is shown in Appendix B). However, the point is to
obtain uniform in & estimates on some interval of time which has to be independent
of . With this goal in mind, we set up a bootstrap argument that starts at the end of
Section 2.2.
We introduce

Nm:r(f? Q’ u, T)
= ||f||Loo(o,T;,;e;ﬂ*1) + llell 2o, 7:mmy + U llLeo 0, 7:1m)AL2(0,7:1m+1)

for T > 0, and we want to obtain a uniform (in ¢) estimate for this quantity. This
will pave the way for a compactness argument allowing us to pass to the limit in the
previous regularized system when ¢ — 0. Observe the shift of one derivative between
the norm on f and that on o. By (1.8), a control on [|o||; 2o, 7;1my and [|u| oo o, 7;1m)
implies a control on || f || oo (g, 7;5em~1)- Hence, the main challenge is to derive an
estimate for [[ol|;2(o,7:um)-



Strategy of the proof 17

Our main observation is that, using the definition of « in the equation of conser-
vation of mass, the fluid density satisfies a transport equation of the type
0
1 —py

dio+u-Vyo+ divy [jf — pfu] = lower order terms; (1.10)
therefore ¢ depends on f only through its moments in velocity ps and jr. The goal
of Chapters 3 and 4 is thus to relate these two moments to the fluid density o itself.

To do so, we initiate in Section 2.3 the study of the Vlasov equation satisfied
by f with a Lagrangian point of view. We study the characteristic curves for the
kinetic dynamics with friction

d_ .. . .
d—XS”(x, v) = V¥ (x,v), X" (x,v) =x,
s

d_ .. . . . .
d—VS’t(x, v) = =V (x,v) + E(s, X (x,v), V¥ (x,v)), V' (x,v) =v,
s

stemming from the Vlasov equation in (1.9). The term —v in the force field is respon-
sible for the friction dynamics. To simplify its study, we want to straighten the total
kinetic operator

0 +v-Vy +divy((E —v)-)

into
0 +v-Vy—v-V, (1.11)

for short times. The operator in (1.11) corresponds to the free dynamics with friction.

More precisely, we prove in Lemma 2.26 that for 7" small enough (independent
of &), x € T¢ and 5,1 € [0, T], there exists a diffeomorphism ¥ ,(x,-) : R — R4
satisfying, for all v € R?,

XS (x, Y (x,0) = x + (1 —e" ). (1.12)

In addition, we provide several useful Sobolev estimates on . We call this diffeo-
morphism the straightening change of variable in velocity.

The heart of the proof appears in the remaining chapters. In Chapter 3, we study
some smoothing averaging operators that will be crucial for the subsequent analysis
of Chapter 4. In short, the study of these operators will enable us to split all the
quantities exhibiting a loss of derivative into a leading term and a good remainder
which will be controlled.

Let us introduce the following kernel operator, already considered in [90]:

KEe[HI(, x) = / | / [VxH](s,x = (t = 5)v) - G(t, 5, x,v) dv ds.
0o JR4

Despite the apparent loss of derivative, it is proved in [90] that this operator is bounded
in L2TL)2€ as soon as the kernel G is sufficiently smooth and decaying in velocity, a
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result related to the classical averaging lemmas [71]. We refer to the introduction of
Chapter 3 for more references and explanations about this aspect. We shall provide
here extensions of this result to the natural averaging operator for the dynamics with
friction (associated with (1.11)), namely

KE[H](@t, ) = [ / [VxH](s,x + (1= ™)) - G(t,5,x,v) dv ds.
0o JR4

We shall see in Proposition 3.4 that K{%¢ is also bounded in LZL2 under similar
smoothness and decay assumptions for the kernel G. It was also observed in [91]
that when the kernel cancels out on the diagonal s = 7, the operator ng’e becomes
bounded from LZTL)ZC to L%H)lc, i.e., we gain one extra derivative in x; the same holds
as well for KfGriC, see Proposition 3.5.

A key result we prove (see Proposition 3.7) is the fact that the difference between
the two latter operators also allows us to gain a derivative in x, namely KfGree — Kf(r;iC is
bounded from LZL2 to LZH.. Propositions 3.4, 3.5 and 3.7 will be used at multiple
times in this work.

Chapter 4 is dedicated to the proper analysis of the kinetic moments ps and jr.
The main result provided in Proposition 4.1 is the fact that for all |[/| < m we can
write

8 pyr (1) ,
= p’(@(t,X))/ / Vi[TedLol(s, x — (t — $)v) - Vy, f(t, x,v) dv ds + R,
0 JR4
3L jr(t.x) t
) / / VY, [1.9%0](s. % — (¢ — $)v) - Vo £ (£ x. v) du ds + R,
0 JR4

(1.13)
where R stands for a well-controlled remainder in L2 H?. Combining with the conti-
nuity results for the averaging operator K¢ this proves that the loss of deriva-

'@V f’
tive for pr and j in (1.8) was only apparent.

To obtain these identities, the first step is to derive a good equation satisfied by
L £ to this end, it is natural to apply the operator 3. to the Vlasov equation. We
readily obtain

3,01 f +v-Vyedl f + div, (3L f(E — v)) + div,([8L, E]f) = 0,

and we observe that the commutator involves
e the main order term
div, (3L(E) ) (1.14)
that will account for the leading term in the identities (1.13),

¢ Jow order terms that can be controlled,
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* but also terms of the form

M E-9Vyf. |Jl=m—1,
() PE-3/Vyf. |J|=m-2.

The terms of type (I) clearly cannot be considered as remainders, since they involve
m derivatives of f, which we do not uniformly control. The terms of type (II) are
not remainders either, since we expect to plug in the identities (1.13) in the equation
for o, and this involves an extra derivative in x, thus also resulting in terms with
m derivatives of f. To overcome this difficulty, we argue as in [90] and consider an
augmented unknown ¥ = (8)’6,” S)11=m—1,m Which satisfies a system of the form

3 F +v Vo —v-VoF +divy(EF) + MF + £ = R,

where M is a bounded linear map, &£ stands for the terms like (1.14), and R is a well-
controlled remainder. Note though that in [90], only the terms of type (I) are relevant
and the augmented unknown only involves derivatives of order m.

Controlling the averages in velocity of the whole family (BJIC,U I |=m—1,m allows
us to recover derivatives of ps and jr in H". We finally rely on the Duhamel formula
combined with an integration in velocity along the characteristics, on the straighten-
ing change of variable in velocity ¥ ; satisfying (1.12), and on the crucial gain of
derivatives provided by the kernel operators Kfvr‘;e r and KfV“j rto deduce (1.13).

We refer to this approach as a semi-Lagrangian one, in the sense that we first
apply derivatives on the kinetic equation and then integrate along the characteristics
to obtain equations bearing on moments.

Chapter 5 is then devoted to obtaining an estimate for ||oll;2(p,7;um). Taking
derivatives in the transport equation (1.10) for ¢ and using (1.13), one can write an
equation for dZp for all || = m under the form

0 .
1= py v (Ko @v, s 0e050) = KjiGpyv, s Uedi0)u]

3,0Lo +u-Vidlo+

= lower order terms.

Based on this equation, and using some commutation properties relating the operators

div, and Kf}r;?(ng Iz it is then possible to prove (see Proposition 5.1) that for all

|I| = m the function 31 satisfies

(Id—l @ ngeoJe)[ata§Q+u-vxa§Q]=52, (1.15)
—pr

G(t.x,v) = p'(o(t.x))Vy f(1. X, V).
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where R is a well-controlled remainder. The equality (1.15) has to be seen as a struc-
tural factorization of the equation for 3£ o, between the operators

4
—Pr

ld— 5 K&eoJ,
and
8; + u- Vx.

This relation is fully based on the coupling with the kinetic part.

The main goal is then to derive some good LzTL)ZC estimates on 8)ICQ. Again follow-
ing [90], the idea is to relate I_LWK?;“ o J, to a pseudodifferential operator and use
pseudodifferential calculus to derive a suitable estimate. This is where the Penrose
stability condition steps in and plays a crucial role: it will allow us to obtain estimates
without loss.

Compared to the analysis of [90], the extra derivative due to the transport opera-
tor in (1.15) forces us to consider time-dependent symbols; this requires an extension
on the whole line R of all functions, ensuring in the process that the Penrose sta-
bility condition still holds globally, see Section 5.3. For any y > 0, one has (see
Lemma 5.14)

eTVIKE=[e? H(t, x) := Op” (ar,)(H)(t,x) on(0,T)x T?,
with

“+o00 )
ago(t,x,y,t,k) = p’(g(z,x))/ e UFIDS i fe (F,Vy (2, x, ks) ds,
0

and thus (1.15) turns into the pseudodifferential equation

(Id_l Qp Opy(aﬁg)OJS)[ata)ICQJru.vxa){Q] - R (1.16)
— o7

Here, Op? refers to a pseudodifferential quantization on R x T4 and with parameter
y > 0 (see Appendix C for more details). By observing that

ar, = Pr,,
1= py fe fe

where

Pr).a@) (X, v, T, k)

— p,(Q(l‘,x))Q(l‘,x) oo e—(y-i—ir)s ik
1—pr(t,x)  Jo 1+ |k|?

(FuVy ), x, ks)ds,

we discover that the Penrose stability condition

vVt e R, inf |1— fPf(t),Q(t)(x, v, 7,k)| >0
(x,y,7.k)
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thus asserts the ellipticity of the symbol involved in the equation (1.16). Roughly
speaking, the Penrose stability condition shows that the equation (1.15) can be seen
as a factorization between an elliptic part and a hyperbolic part.

If we have an L2.L.2 bound on

H = a,a,{g +u- an,lcg,

a standard hyperbolic energy estimate associated to the transport part d; + u - Vy
directly leads to a suitable estimate on BJICQ (see Corollary 5.22).

Obtaining an LZTLfC control on H as the solution to the previous pseudodiffer-
ential equation (1.16) is thus enough to conclude. To do so, as in [90], we rely on a
semiclassical (with small parameter ¢) pseudodifferential calculus (with large param-
eter y) whose aim is to invert the equation for H up to some small remainder.’ The
key is that one can consider the symbol (1 — Ps,)"". This yields an L%L? estimate
for H in terms of the remainder R (see Corollary 5.20).

Chapter 6 is dedicated to the conclusion of the proof, gathering all the previous
steps and estimates of the bootstrap analysis. We obtain the desired uniform estimate
for the quantity Ny, »(fe, Oc, Ug, T'), which is valid for some time 7" > 0 independent
of e. The existence part of Theorem 1.6 is then easily deduced by a compactness
argument on [0, T']. The uniqueness part requires an additional argument, in the same
spirit as the strategy previously devised.

We provide in Chapter 7 several generalizations of our analysis to the more com-
plex models introduced in Section 1.3. In Section 7.1, we show how one can easily
adapt the strategy developed in this work to treat the case of a non-barotropic fluid
with an additional equation for the fluid’s internal energy.

In Section 7.2, we describe how one can include an inelastic collision operator of
Boltzmann type in the kinetic equation (see (7.3)). Note that our method follows an
idea used in [115], which allows us to overcome the loss of weight in velocity from
the collision operator thanks to the friction term in the original Vlasov equation.

In Section 7.3, we consider the case of a density-dependent drag force, for which
one can also prove a local well-posedness result, with the limitation that the initial
data ™" has a compact support in velocity.

We refer to the precise statements of Sections 7.1, 7.2 and 7.3 for more details
about the corresponding existence results.

Remark 1.12. Let us mention a possible simplified variant of our strategy (that will
not be developed in this work), which would only allow one to treat the barotropic

3This part of the analysis (involving a large parameter) is reminiscent of the use of the
Lopatinskii determinant or Evans functions to obtain good estimates in hyperbolic boundary
value problems or singular stable boundary layer problems (see e.g. [119, 120, 130]).
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case. The idea is to introduce the unknown
m = (1 —of)o
so that, using the relation

Q
Vio = \Y
x@ 1— oy xpf+1_pf

me7

the Vlasov equation and the equation for the mass conservation of the fluid can be
rewritten as

d;m + divy (mu) = 0,

p'(0)e r'(0)
11— prf Vo f = 1 —
of of

0 f +v-Vyf +divy[(u —v) f]— Vym -V, f,
where u is the solution of the associated equation for the momentum balance in the
Navier—Stokes system. Since u is expected to be more regular than f and m, the
only loss of derivative displayed by the estimates satisfied by ( f, mt, u) is now that
stemming from the force field Vy ps in the former equation for f. We can then focus
on the distinguished quantity por and rely on an analysis very akin to that of [90] to
prove local well-posedness under the Penrose condition (P).

The strategy which we develop in this work turns out to be more robust and
appears in particular effective in handling more complex cases, in particular that of
non-barotropic fluids (see Section 1.3.1 and Section 7.1), which is relevant in physical
applications.

Finally, we describe the content of the appendices at the end of this work.

In Appendix A, we state several useful functional inequalities for commutators,
products and composition on T¢ and T¥ x R¢. In Appendix B, we justify the main
steps providing the existence of a local-in-time solution ( f;, 0¢, U¢) to the regularized
system (1.9) when ¢ > 0 is fixed. In Appendix C, we recall and give the main notions
on pseudodifferential calculus (with parameter) that we shall need in this work.

In the rest of the work, we use the standard notation A < B to mean A < ¢cB
for some ¢ > 0 that is independent of A, B and ¢, but that may change from line to
line. Furthermore, A will stand for a nonnegative continuous function which is inde-
pendent of e, nondecreasing with respect to each of its arguments, that may depend
implicitly on the initial data and that may change from line to line. Finally, we denote
by [P, Q] = PQ — QP the commutator between two operators P and Q.



