Addendum to Proposition III.5, p. 84 E. Zehnder, Lectures on Dynamical Systems

In the proof of Proposition III.5 we have studied the homoclinic points $p \in \Lambda \setminus Q$, and it remains to examine the homoclinic points $p \in \Lambda \cap Q$ near the hyperbolic fixed point. For this purpose we consider $p \in \Lambda \cap W_{\text{loc}}(Q, \varphi)$ in a sufficiently small neighborhood Q of the origin and prove the following linearized version of the Inclination Lemma due to Janko Latschev. Recalling the notation of the proof we work with the (ξ, η) coordinates and denote by Q' the image of Q under the coordinate transformation.

Linearized Inclination Lemma. We consider the points $(0, \eta) \in W^-_{loc}(Q', \hat{\varphi})$ and let $L \subset T_{(0,\eta)} \mathbb{R}^n$ *be a subspace of the tangent space, which is transversal to the* space $E_{-} = T_{(0,\eta)} W_{\text{loc}}^{-}(Q', \hat{\varphi})$, so that dim $L + \dim E_{-} = n$. Then

$$
d\hat{\varphi}^{-j}(0,\eta)L \to E_+
$$

as $i \rightarrow \infty$.

Proof. Abbreviating the linear spaces $L_n := d\hat{\varphi}^{-n}(0, \eta)L$ we shall show that for every $\varepsilon > 0$ there exists a positive integer N such that for $n \geq N$ and for nonvanishing vectors $v = (v_+, v_-) \in L_n$ we have the estimates

$$
\frac{|v_-|}{|v_+|} \le \varepsilon.
$$

As a consequence the vector space L_n is the graph of a linear map $E_+ \to E_-$ whose operator norm is smaller than or equal to ε , so that the lemma follows.

Since $0 < \alpha < 1$, we can choose $\varepsilon > 0$ so small that

$$
\vartheta := \alpha + \frac{\varepsilon}{2} < 1 \quad \text{and} \quad \frac{1}{\alpha} - \frac{\varepsilon}{2} > 1.
$$

If $|\eta| > 0$ is sufficiently small we find, in view of our choice of the coordinates, a constant $K>0$ such that

$$
d\hat{\varphi}^{-1}(0,\eta) = \begin{pmatrix} A_+^{-1} + \rho_+(\eta) & 0 \\ \rho(\eta) & A_-^{-1} + \rho_-(\eta) \end{pmatrix},
$$

where $|\rho_+(\eta)| \leq K \cdot \eta$, $|\rho_-(\eta)| \leq K \cdot \eta$ and $|\rho(\eta)| \leq K \cdot \eta$. We now choose the integer N_0 so large that $\hat{\varphi}^{-N_0}(0, \eta) = (0, \eta_0)$ satisfies

$$
K\cdot \eta_0\leq \frac{\varepsilon}{2}(1-\vartheta).
$$

For $n \ge N_0$ we have $L_n = d\hat{\varphi}^{-(n-N_0)}(0, \eta_0)L_{N_0}$. If $v \in L_{N_0}$ we can estimate, using $\frac{1}{\alpha} - K\eta_0 \geq \frac{1}{\alpha} - \frac{\varepsilon}{2} > 1$,

$$
\frac{|(d\hat{\varphi}^{-1}(0,\eta_0)v)|}{|(d\hat{\varphi}^{-1}(0,\eta_0)v)|_+|} \leq \frac{K\eta_0|v_+| + (\alpha + K\eta_0)|v_-|}{(\frac{1}{\alpha} - K\eta_0)|v_+|} \leq K\eta_0 + \vartheta \frac{|v_-|}{|v_+|}.
$$

Defining the sequence of numbers λ_i by

$$
\lambda_j := \frac{|(d\hat{\varphi}^{-j}(0, \eta_0)v)|}{|(d\hat{\varphi}^{-j}(0, \eta_0)v)|_+|}, \quad j \ge 0,
$$

we have just proved that $\lambda_1 \leq K \cdot \eta_0 + \vartheta \cdot \lambda_0$. Analogously, $\lambda_{i+1} \leq K \cdot \eta_0 + \vartheta \cdot \lambda_i$ and consequently, if $j \geq N_1$ for a sufficiently large number N_1 ,

$$
\lambda_{j+1} \leq \vartheta^{j+1} \lambda_0 + K \eta_0 \sum_{s=0}^j \vartheta^s
$$

$$
\leq \vartheta^{j+1} \lambda_0 + K \cdot \eta_0 \frac{1}{1-\vartheta} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

We have proved, for $n \geq N_0 + N_1$, that indeed $\frac{|v_-|}{|v_+|} \leq \varepsilon$ for the non-vanishing vectors $v \in L_n$, and the lemma follows.

From the lemma we easily deduce the desired estimate near the origin. Indeed, recalling the estimate $|d\hat{\varphi}(0)v_+| \leq \alpha |v_+|$ for $v_+ \in E_+$ we choose $\alpha < \beta < 1$. In view of the continuity of the derivative $d\hat{\varphi}$ and in view of the convergence $L_n \to E_+$ and $\hat{\varphi}^{-n}(0, \eta) \to 0$ as $n \to \infty$, we find an integer N' such that, for all $n \geq N'$, we have the estimate

$$
|d\hat{\varphi}(\hat{\varphi}^{-n}(0,\eta))v| \leq \beta|v|
$$

for all $v \in L_n$.

The case $p \in \Lambda \cap W_{loc}^+(Q, \varphi)$ is treated the same way, and Proposition III.5 follows. For the Inclination Lemma (the λ -Lemma) we refer to the book [81] by Jacob Palis, Jr., and Welington de Melo.