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The book is devoted to the analysis of viscous hydrodynamics limits, mainly from a fundamental point
of view. A second book will indeed follow the present one with applications. The present book is divided
into two parts and twelve chapters. Three appendices complete the book.

The first part contains three chapters, devoted to the presentation of Vlasov-Maxwell-Boltzmann system
and its properties, and to the corresponding mathematical framework. It gathers weak stability results
for the limiting macroscopic systems. The second part presents the formal limits which are deduced
from this Vlasov-Maxwell-Boltzmann system according to different scalings.

Chapter 1 starts with the Vlasov-Maxwell-Boltzmann system which describes viscous incompressible
magneto-hydrodynamics. It is written as ;f +v - V,f + < (E +vAB)-Vof =Qf, f), tocodE —
rot B = —40q [gs fvdv, O;B +1otE = 0, div E = Z( [ fdv , div B = 0, where f is the density of
charged particles which depends on the time ¢ G (O o0), on the position x and on the velocity v, ¢
is the charge, m is the mass, E is the electric field, B is the magnetic field, ) is Boltzmann collision
operator, ji is the vacuum permeability and ¢ is the vacuum permittivity. Because the charged ions
may be positive or negative, the Vlasov-Boltzmann equation may be split in two equations O;f" +
v-Voft+ gl—:(E +vAB)-V,fT=Q(f", f")+ Q(f", f) for the cations and O,f~ + v - V,f~ —
L (E+vAB)-V,f =Q(f,f )+ Q(f, f") for the anions, the integral [, ¢fvdv being replaced
in the Ampeére and Gauss equations by [o.(¢"f™ — ¢ [ )vdv or ng +f+ — q~ f7)vdv, respectively.
The Boltzmann collision operator is taken as Q(f,h) = [os Jo (f — f(0)h(v.))b(v — vy, 0) do dv,

where v = % + wa, v, = vtbe l=v-l 5 The collision kernel b depends on the relative velocity

2 2
|z| and on the deviation angle 6 as b(|z|,cosf) = Siﬁ 6% |z|, where ( is the impact parameter. The
authors do not assume the usual simplifying cutoff hypothesis for the collision kernel. The authors then
derive that the entropy dissipation is nonnegative, which leads to Boltzmann H-theorem and that the
entropy ng flog fdv is at least formally a Lyapunov function for the Boltzmann equation. They also
prove the entropy inequality. The authors finally explain that they will consider renormalized solutions
to the Vlasov-Maxwell-Boltzmann system although their existence is not yet proved. They indeed
explain the difficulty to prove the convergence to renormalized solutions of approximate solutions to
the Vlasov-Maxwell-Boltzmann system. Such approximate solutions instead converge to measure-valued
renormalized solutions with the introduction of Young measures.

Chapter 2 starts with the description of incompressible Viscous regimes. The authors write the Boltzmann
equation in adimensional variables as S;0,f + v - V,f = =Q(f, f), where Kn is the Knudsen number
equal to the ratio \g/lyp between the mean free path \g and the observation length scale [y, St is the
Strouhal number equal to ly/coty with ¢y being the speed of sound and ¢y, being the unit time. The
authors also introduce the Mach number as Ma = wug/co where wug is the bulk velocity. They con-
sider hydrodynamics limits obtained when Kn goes to 0 (hence Ma — 0) and they take the density
f in the form f = M (1 + Mag) where M is the global normalized Maxwellian equilibrium of density

v 2
1, bulk velocity 0 and temperature 1 defined as M (v) = B 1) 5 e~ and g is a fluctuation. They re-
T) 2
write the Vlasov-Maxwell-Boltzmann system, assuming that Kn, St and Ma are of the same order e.
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A parameter § appears which has to be compared to this order e. Changing also the units of £ and
B, the authors get the problem €0,f +v - V,f + (£ + v AB) -V, f = %Q(f, f), f =M1+ eg),
vO,E — rotB = —6% Jas fodv, ¥0,B + rotE = 0, divE = %([ps fdv — 1), divB = 0, for one spe-
cies and €d, f* 4+ v - Vo fT £ (aE + Bv A B) - V, f* = 2Q(f*, f5) + SQ(fE, fF), f£ = M(1 + eg?),
VOE —10tB = =5 [ (fF — f)vdv, ¥0,B +rotE = 0, div E = $( [ps(f* — f7)dv — 1), div B = 0 for
two species. They formally derive the asymptotic systems according to the orders of this parameter
0. They conclude Chapter 2 with the formal derivations of the asymptotic systems in the case of two
species.

In Chapter 3, the authors analyze the well-posedness of three asymptotic problems which have been
formally derived in Chapter 2: an incompressible quasi-static Navier-Stokes-Fourier-Maxwell-Poisson
system, the two-fluid incompressible Navier-Stokes-Fourier-Maxwell system with Ohm’s law and the
two-fluid incompressible Navier-Stokes-Fourier-Maxwell system with solenoidal Ohm’s law. The chapter
starts with the incompressible quasi-static Navier-Stokes-Fourier-Maxwell-Poisson system, written as
ou+u-Vou=—Vp+E+pV,.04+unB, divu = 0, 8t(%9—p)+u-vz(%9—p)—g/-@A_,E@ =0, A.(p+0) = p,
rotB = u, divE = p ;B + rotE = 0, div B = 0. Initial conditions (p™, u™™, #", B™) are added. The
authors first prove a global energy inequality, assuming that (p,u,6, B) is a smooth solution to this
problem. They define the notion of weak or Leray solution, and they prove the existence of such a weak
solution under hypotheses on the initial data. They then move to the Navier-Stokes-Fourier-Maxwell
system with Ohm’s law and the two-fluid incompressible Navier-Stokes-Fourier-Maxwell system with
solenoidal Ohm’s law. They prove that a smooth solution (u, E, B) to these problems satisfies a global
conservation of energy. They quote from the literature the existence of large global solutions in the
2D case to the Navier-Stokes-Maxwell system, or a local small solution to this problem in the 3D case.
Chapter 3 ends with the proof of weak-strong stability and existence results for dissipative solutions to
these two systems.

Part II begins with Chapter 4 which is devoted to a deeper analysis of two asymptotic systems. The
authors first define the notion of renormalized solutions to the Vlasov-Maxwell-Boltzmann system
with one or two species, first for the Vlasov-Boltzmann equation 0;f +v -V, f + F -V, f = Q(f, f),
assuming that the given force F satisfies at least F,V, - ' € L] (dtdz; L'(M“dv)) for all o > 0,
where M is the global asymptotic Maxwellian equilibrium. Assuming now classical hypotheses on the
kernel b, on F and on the initial data, the authors recall the existence of a renormalized solution
to the Vlasov-Boltzmann equation which further satisfies a local conservation of mass property and
the global entropy inequality. The authors then define the notion of a renormalized solution to the
Vlasov-Maxwell-Boltzmann system with one or two species and they analyze macroscopic conservation
laws within this context. In the case of the Navier-Stokes-Fourier-Maxwell-Poisson system, the authors
assume the existence of a renormalized solution to the one species Vlasov-Maxwell-Boltzmann system
and they prove a weak relatively compactness result in L{. (dtdz) for special macroscopic fluctuations of
the density, bulk velocity and temperature and under hypotheses on the initial data. The limit is a weak
solution to the Navier-Stokes-Fourier-Maxwell-Poisson system. The proof of this result is postponed to
Chapter 11. In the case of the Navier-Stokes-Fourier-Maxwell system with solenoidal Ohm’s law, the
authors also assume the existence of renormalized solutions to the Vlasov-Maxwell-Boltzmann system
with two species. They again prove a weak relatively compactness result is L (dtdr) and that the
limit is a non-positive solution to the Navier-Stokes-Fourier-Maxwell system with solenoidal Ohm’s
law. They here assume that the initial data satisfy different hypotheses, among which a “well-prepared”
hypothesis. A quite similar weak relatively compactness result is proved in the case of Navier-Stokes-
Fourier-Maxwell system with Ohm’s law, and the proofs of these results are postponed to Chapter
12.

In Chapter 5, the authors prove weak compactness results for fluctuations in the case of the Vlasov-
Boltzmann equation or the Vlasov-Maxwell-Boltzmann system with one species. The authors first
derive the relation between the entropy bounds and the entropy dissipative bounds. They present a
decomposition of the linearized collision operator and properties of the linear collision operator. The
chapter ends with improved integrability results on the velocity for the fluctuations.
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In Chapter 6, the authors derive lower-order linear macroscopic constraint equations, using weak com-
pactness methods, first for one species, then for two species with weak interactions. They prove en-
ergy estimates for sequences of renormalized solutions with one or two species to the Vlasov-Maxwell-
Boltzmann system. The chapter ends with considerations on the difficulty to pass to the limit in Maxwell
equations.

In Chapter 7, the authors prove strong compactness results for the fluctuations. They first assume that
the collision operator b is smooth and compactly supported, and they derive a compactness result with
respect to the velocity v. They quote from previous results they obtained, locally relatively compact
results in LP(R; x R x R3), 1 < p < oo, for families of functions in this space which satisfy a locally
relatively compactness property with respect to v and further properties which allow to use the hy-
poellipticity property of the free transport equation. The chapter ends with the proof of compactness
results for fluctuations in the one or two species cases.

In Chapter 8, the authors consider the case with two species. Using the symmetries of the collision
integrands ¢* and ¢F, they derive a singular limit for a sequence of renormalized solutions to the scaled
Vlasov-Maxwell-Boltzmann system in the case of weak interspecies interactions. They assume that
d = o(1), §/e is unbounded, and different conditions on the data of the problem are imposed. They then
characterize the limiting kinetic equations for the case of two species for strong interspecies interactions,
assuming that 6 = 1 and different conditions on the data. They also characterize the limiting collision
integrands and, finally, the limiting energy inequality in this case.

Chapter 9 investigates the consistency of the electro-magneto-hydrodynamic approximation for the
incompressible quasi-static Navier-Stokes-Fourier-Maxwell-Poisson system. The authors consider the
admissible nonlinearity I'(z) — 1 = (2 — 1)7(z) with v € C'(]0, 00); R) satisfying further conditions, and
they first build approximate conservation laws for the scaled one-species Vlasov-Maxwell-Boltzmann

system, considering fluctuations of the kind g.v.x( K‘Tcl;el) where x € C°([0,00)) with 1j91; < x < 19

and K > 0 is large enough. They prove that the associated reminders converge to 0 in Ll (dt; W, > (dx)).
They also prove that the conservation defects converge to 0 in Li (dtdz). They finally build approx-
imate conservation of mass, momentum and energy in the case of two species proving estimates and
convergence to 0 on the reminders.

In Chapter 10, the authors consider the case of one species and they analyze the time oscillations in
the incompressible quasi-static Navier-Stokes-Fourier-Maxwell-Poisson system which allows to derive

the weak stability and the convergence of the Vlasov-Maxwell-Boltzmann system as € tends to 0. They

Pe Pe
Ue Ue
introduce the singular linear system 0 \/gee +1iW \/geﬁ = O(1), where W : L*(dz) — H *(dz)
E. E.
B, B.
0 div 0 0 0
Ve 0 2V, —1d 0
is defined th h W = : . Th Iso introd the L ject
is defined throug 0 2div 0 0 0 ey also introduce the Leray projector
0 Id 0 0 —rot
0 0 0 rot 0

P : L[*(dx) — L*(dx) onto solenoidal vector fields. The main result of this chapter proves a weak
stability result for acoustic and electromagnetic waves in the sense of distributions for nonlinear terms
using the Leray projector, considering a sequence of renormalized solutions to the scaled one-species
Vlasov-Maxwell-Boltzmann system.

Chapter 11 is devoted to the proof of the result announced in Chapter 4 and concerning the convergence
of the renormalized solution to the one-species Vlasov-Maxwell-Boltzmann system to a weak solution
to the incompressible quasi-static Navier-Stokes-Fourier-Maxwell-Poisson system.
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In the final Chapter 12, the authors consider the asymptotics leading to the two-fluid incompressible
Navier-Stokes-Fourier-Maxwell system. The main tool is a relative entropy method. They prove the
results announced in Chapter 4, first for weak interactions and finally for strong interactions.
Appendix A gives a short analysis of the cross-section for momentum and energy transfer. Appendix B is
devoted to the presentation and the properties of Young measures. Appendix C gives short complements
to the hypoelliptic transfer of compactness which has been used in Chapter 7.
The book presents deep results concerning the Vlasov-Maxwell-Boltzmann system and its asymptotics.
Alain Brillard (Riedisheim)
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