
CHAPTER 5

UNIFORM A PRIORI ESTIMATES FOR THE BBGKY AND
BOLTZMANN HIERARCHIES

This is a revised version of Chapter 5: in the original version, there were inconsistencies in the way
the function spaces were introduced, and the present Paragraph 5.1 has been added to this Chapter in
order to settle the functional framework.

The first two authors wish to thank Thierry Bodineau for his help in the writing of this new version.

This chapter is devoted to the statement and proof of uniform a priori estimates for mild solutions to
the BBGKY hierarchy, defined formally in (4.3.8), which we reproduce here:

(5.0.1) FN (t) = T(t)FN (0) +

Z t

0
T(t� ⌧)CNFN (⌧) d⌧ , FN = (f (s)

N )1sN ,

as well as for the limit Boltzmann hierarchy defined in (4.4.6)

(5.0.2) F (t) = S(t)F (0) +

Z t

0
S(t� ⌧)C0F (⌧) d⌧ , F = (f (s))s�1 .

Those results are obtained in Paragraphs 5.3 and 5.4 by use of a Cauchy-Kowalevskaya type argument.
Before that we need to make sense of the formulation (5.0.1), which is not an obvious fact since
characteristics of the transport are defined only almost everywhere (see Chapter 4) while the collision
operators are defined by integrals on manifolds of codimension 1 (1). In Paragraph 5.1 we show that
the collision integrals make sense in L1 outside some measure zero sets, provided that they are
combined with the transport operator. Then Paragraph 5.2 is devoted to the definition of adequate
function spaces in which the equations will be shown to be wellposed, and to the statements of the
wellposedness results.

5.1. Rigorous formulation of the BBGKY hierarchy

In this paragraph we show how to make sense of the collision operators in (5.0.1). To this end, we
define a new hierarchy by filtering of the transport operator:

(5.1.1) GN (t) = FN (0) +

Z t

0
T(�⌧)CNT(⌧)GN (⌧) d⌧ .

1. The question of correctly defining the hierarchy is also addressed in the work by S. Simonella, Evolution of

correlation functions in the hard sphere dynamics, J. Stat. Phys. 155 (2014), no. 6, 1191-1221.
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Notice that although GN and FN are related by the simple fact that

GN (t) = (Ts(�t)f (s)
N (t))1sN ,

the hierarchy GN has much better regularity properties. In particular one can see (see the discussion
in Remark 5.4.4 at the end of this chapter) that writing GN = (gn,s)1sN then gn,s is a continuous

function of time, with values in L1(Ds), which is not the case of f (s)
N . Moreover the idea of combining

the collision integral Cs,s+1 with the transport operator Ts(⌧) comes from the fact that time can be
viewed as the missing coordinate on @Ds+1 in the direction orthogonal to the boundary. We then
expect to define the collision integral in L1 by using Fubini’s theorem.

5.1.1. A local system of coordinates near the boundary. — From now on we fix two inte-
gers 1  i  s and we note that for all � > 0, the change of variables

(5.1.2)
◆s := Ds ⇥ [0, �]⇥ Sd�1

1 ⇥Rd ! R2d(s+1)

(Zs, , t,!, vs+1) 7! Zs+1 = (Xs � tVs, Vs, xi + "! � tvs+1, vs+1)

maps the measure dµ�
i := "d�1

�

(vs+1 � vi) · !
�

�dZsdtd!dvs+1 on the Lebesgue measure dZs+1. Of

course Zs+1 defined in (5.1.2) is simply the mapping of Z̃s+1 := (Zs, xi+"!, vs+1) by the free transport
operator. Similarly one can consider a post-collisional situation and notice that as the scattering
preserves the measure, we have that for any i  s, with notation (4.4.1),

(5.1.3) ◆⇤s := (Zs, t,!, vs+1) 2 Ds⇥ [0, �]⇥Sd�1
1 ⇥Rd 7! Zs+1 = (Xs� tV ⇤

s , V
⇤
s , xi+ "!� tv⇤s+1, v

⇤
s+1)

maps the measure dµ+
i := "d�1

�

(vs+1� vi) ·!
�

+
dZsdtd!dvs+1 on the Lebesgue measure dZs+1. In the

following we write ◆�s and ◆�⇤
s the above mappings where t is replaced by �t.

Our aim is to extend this to the case when the free transport in the mappings ◆s, ◆⇤s is replaced by the
transport  s+1 with exclusion

Zs+1 =  s+1(�t)Z̃s+1 , Z̃s+1 := (Zs, xi + "!, vs+1)

so that the image belongs to Ds+1.

To do so, we are going to consider trajectories away from pathological configurations. From now on
we fix R1, R > 0 (which will go to infinity at the very end), as well as the set

B2(s+1)
R1,R

:=
n

Zs+1 2 R2d(s+1) / |Xs+1|  R1 and |Vs+1|  R
o

and we define for all � > 0, the sets

@Di,s+1,±
� :=

n

Zs+1 2 B2(s+1)
R1,R

/ |xi � xs+1| = " , ±(vi � vs+1) · (xi � xs+1) > 0

and 8(k, `) 2 [1, s+ 1]2 \ {(i, s+ 1)} , |xk � x`| > "+R�
o

,

and @Di,s+1
� := @Di,s+1,+

� [ @Di,s+1,�
� . When � = 0 we write @Di,s+1,± := @Di,s+1,±

0 .

Note that
⇣

@Di,s+1,+
�

⌘

�>0
are decreasing families.
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5.1.2. Definition of the truncated collision integral. —

The collision operator is obtained by integration on each component of the boundary @Di,s+1,± with
respect to a partial set of variables, namely !, vs+1, with the measure dµ±

i . For functions in L1 (which
are defined almost everywhere), such integrals are defined by Fubini’s theorem.

More precisely, let us define truncated collision operators as follows: for any � > 0 and any continuous
function 's+1 defined on Ds+1,

�

C±,�
s,s+1's+1

�

(Zs) :=
s

X

i=1

�

C±,i,�
s,s+1's+1

�

(Zs)

:= (N � s)"d�1
s

X

i=1

Z

Sd�1
1 ⇥Rd

�

! · (vs+1 � vi)
�

±

⇥ 's+1(Zs, xi + "!, vs+1)
⇣

Y

(k,`)2[1,s+1]2\{(i,s+1)}

11|x
k

�x
`

|>"+�R

⌘

d!dvs+1 .

In the above integral to simplify notation we have written xs+1 = xi + "! in the exclusion func-

tion
Y

(k,`)2[1,s+1]2\{(i,s+1)}

11|x
k

�x
`

|>"+�R .

Now let us fix T > 0 and let us make sense of the functions C±,�
s,s+1Ts+1(t)'s+1 in L1, for 's+1

belonging to L1(Ds+1) and t 2 [0, T ].

• We start by proving that those functions are locally integrable on Ds ⇥ [0, T ] (equipped with the
Lebesgue measure dZsdt).

In the case when t 2 [0, �] then writing

C±,�
s,s+1(Ts+1(t)'s+1) = C±,�

s,s+1('s+1(Z̃s+1))

then by definition there is no recollision since Z̃s+1 belongs to @Di,s+1,±
� . Using the change of vari-

ables (5.1.2) in the pre-collisional case, and (5.1.3) in the post-collisional one, one finds that for any
function 's+1 belonging to L1(Ds+1) ⇢ L1

loc(Ds+1), the volumic integral is well defined: the domain
of integration is indeed included in ◆�s (B

s
R1

⇥ [0, �]⇥ Sd�1
1 ⇥ B1

R) [ ◆�⇤
s (Bs

R1
⇥ [0, �]⇥ Sd�1

1 ⇥ B1
R), or

in other words in

{Zs+1 2 B2(s+1)
R1,R

/ 9t 2 [0, �], |xi � xs+1 + t(vi � vs+1)| = "}

[ {Zs+1 2 B2(s+1)
R1,R

/ 9t 2 [0, �], |xi � xs+1 + t(v⇤i � v⇤s+1)| = "}

the volume of which is O(R�"d�1Rd(s+1)Rds
1 ). Then,

�

�

�

Z �

0

Z

D
s

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

dZsdt
�

�

�

 Cd�"
d�1Rds

1 Rd(s+1)+1k's+1kL1(D
s+1) .

Next we cover [0, T ] by T/� intervals [n�, (n+ 1)�]

Z (n+1)�

n�

Z

D
s

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

dZsdt =

Z �

0

Z

D
s

⇣

C±,i,�
s,s+1Ts+1(⌧)Ts+1(n�)'s+1

⌘

dZsd⌧

and we know that thanks to Alexander [2] (see also Paragraph 4.1),
�

�(Ts+1(n�)'s+1)(Zs+1)
�

�  k's+1kL1(D
s+1) .
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As above one infers after changing variables that

Z (n+1)�

n�

Z

D
s

�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

�

�

�

dZsdt  Cd�"
d�1Rds

1 Rd(s+1)+1k's+1kL1(D
s+1)

and therefore finally

Z T

0

Z

D
s

�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

�

�

�

dZsdt  CdT"
d�1Rds

1 Rd(s+1)+1k's+1kL1(D
s+1) .

Then, by Fubini’s theorem, we conclude that C±,i,�
s,s+1Ts+1(t)'s+1 2 L1([0, T ] ⇥ Ds), in particular they

are measurable functions.

• Returning to the control of the L1 norm, we find from the above analysis that for any subset A
of [0, �]⇥Ds,

Z

A

�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

�

�

�

dZsdt  Cd|A|Rd+1"d�1k's+1kL1(D
s+1) ,

since the domain of integration is included in ◆�s (A ⇥ Sd�1
1 ⇥ B1

R) [ ◆�⇤
s (A ⇥ Sd�1

1 ⇥ B1
R). It is then

easy to conclude that
�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

(Zs)
�

�

�

 CdR
d+1"d�1k's+1kL1(D

s+1)

almost everywhere in [0, �]⇥Ds (since the set where these inequalities are not satisfied is of measure 0).
We then extend the reasoning to any set of the type [n�, (n+ 1)�]⇥Ds as in the previous paragraph:
for any subset An of [n�, (n+ 1)�]⇥Ds, we have

Z

A
n

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

(Zs) dZsdt =

Z

A
n

⇣

C±,i,�
s,s+1Ts+1(t� n�)Ts+1(n�)'s+1

⌘

(Zs) dZsdt

=

Z

A�

n

⇣

C±,i,�
s,s+1Ts+1(⌧)Ts+1(n�)'s+1

⌘

(Zs) dZsd⌧

where A�
n := {(⌧, Zs) / (⌧ + n�, Zs) 2 An}. Since |A�

n| = |An| we find that

Z

A
n

�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

(Zs)
�

�

�

dZsdt  Cd|An|Rd+1"d�1k's+1kL1(D
s+1) ,

so
�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

(Zs)
�

�

�

 CdR
d+1"d�1k's+1kL1(D

s+1)

almost everywhere in [n�, (n+ 1)�]⇥Ds. Finally this implies that

�

�

�

⇣

C±,i,�
s,s+1Ts+1(t)'s+1

⌘

(Zs)
�

�

�

 CdR
d+1"d�1k's+1kL1(D

s+1)

almost everywhere in [0, T ]⇥Ds.

We have thus defined truncated collision integrals far from the singular points of the boundary of Ds+1.
It remains then to check that the sequence of operators thus constructed is a Cauchy sequence with
respect to the truncation parameter in L1, outside a set of measure going to zero with the truncation
parameter.
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5.1.3. Removing the truncation. —

Let 0 < �0 < � be given and consider the truncated operators

C±,i,�0,�
s,s+1 := C±,i,�0

s,s+1 � C±,i,�
s,s+1 .

We shall prove that the partial integral C±,i,�0,�
s,s+1 Ts+1(t)'s+1 is small (of the order

p
�) outside a small

subset of Ds ⇥ [0, T ], of measure going to zero with �. Indeed we have
Z �0

0

Z

D
s

�

�

�

⇣

C±,i,�0,�
s,s+1 Ts+1(t)'s+1

⌘

�

�

�

dZsdt =

Z

V
�,�

0

|'s+1(Zs+1)| dZs+1 ,

where V�,�0 is a subdomain of
n

Zs+1 2 B2(s+1)
R1,R

/ 9t 2 [0, �0] , (j, j0) 6= (i, s+ 1) , |xi � xs+1 + t(vi � vs+1)| = "

and "  |xj � xj0 + t(vj � vj0)|  "+R�
o

[
n

Zs+1 2 B2(s+1)
R1,R

/ 9t 2 [0, �0] , (j, j0) 6= (i, s+ 1) , ` 6= i, s+ 1 , |xi � xs+1 + t(v⇤i � v⇤s+1)| = "

and

8

<

:

either "  |xi � x` + t(v⇤i � v`)|  "+R�

or "  |xs+1 � x` + t(v⇤s+1 � v`)|  "+R� or "  |xj � xj0 + t(vj � vj0)|  "+R�
o

.

In particular, |V�,�0 |  C(R, ")��0. Arguing as in the previous section we deduce the estimate on [0, T ]

(5.1.4)

Z T

0

Z

D
s

�

�

�

⇣

C±,i,�0,�
s,s+1 Ts+1(t)'s+1

⌘

�

�

�

dZsdt  C(R, T )�k's+1kL1(D
s+1) ,

uniformly in �0. Finally we introduce the set

I�,�0,i,± =
n

(t, Zs) 2 [0, T ]⇥Ds

�

�

�

�

�

�

⇣

C±,i,�0,�
s,s+1 Ts+1(t)'s+1

⌘

(Zs)
�

�

�

�
p
�
o

.

Thanks to the Bienaymé-Tchebichev inequality and to (5.1.4), we have uniformly in �0

|I�,�0,i,±| = O(
p
�) .

Note furthermore that I�,�0,i,± is a decreasing function of �. On the complement of I�,�0,i,±, for any
function 's+1 2 L1(Ds+1)

kC±,i,�0,�
s,s+1 Ts+1(t)'s+1kL1  C(R)k's+1kL1

p
� .

This tells us exactly that the sequence C±,i,�
s,s+1Ts+1(t)'s+1 is a Cauchy sequence and converges weakly-⇤

in L1([0, T ]⇥Ds) as � ! 0.

5.1.4. Dependence with respect to time and conclusion. —

Finally to define Cs,s+1Ts+1(t) on time-dependent functions belonging to C([0, T ];L1(Ds+1)) sup-

ported in [0, T ] ⇥ B2(s+1)
R1,R

, we notice that the above arguments are very easily adapted to the case
of piecewise constant functions in time, denoted PC([0, T ];L1(Ds+1)). Then we conclude by density
of PC([0, T ];L1(Ds+1)) in C([0, T ];L1(Ds+1)). Indeed if 's+1 is a function in C([0, T ];L1(Ds+1))

supported in [0, T ] ⇥ B2(s+1)
R1,R

and if ('n
s+1)n2N is a sequence of approximations of 's+1, we have the

following estimate
�

�C±
s,s+1Ts+1(t)

�

'n
s+1(t)� 'm

s+1(t)
�

�

�

L1  C(R)k'n
s+1(t)� 'm

s+1(t)kL1 ,

which tends to 0 as n,m ! 1, uniformly in t 2 [0, T ].
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Letting R1 and R go to infinity, we conclude that the operator Cs,s+1Ts+1(t) is well defined on functions
of C([0, T ];L1(Ds+1)) with bounded support in Vs+1 (or decaying su�ciently fast at infinity). A
quantitative estimate of this decay will be given by introducing appropriate weighted spaces in the
next section.

Notice that for the Boltzmann hierarchy (5.0.2), the collision operators are defined by integrals on
manifolds of codimension d but since free transport preserves continuity one can require that all
functions under study are continuous.

5.2. Functional spaces and statement of the results

In order to obtain uniform a priori bounds for mild solutions to the (filtered) BBGKY hierarchy, we
need to introduce some norms on the space of sequences (gs)s�1. Given " > 0, � > 0, an integer s � 1,
and a measurable function gs : Ds ! R, we let

(5.2.1) |gs|",s,� := supessZ
s

2D
s

�

|gs(Zs)| exp
�

�E0(Zs)
��

where E0 is the free Hamiltonian:

(5.2.2) E0(Zs) :=
X

1is

|vi|2

2
·

Note that the dependence on " of the norm is through the constraint Zs 2 Ds.

We also define, for a continuous function gs : R2ds ! R,

(5.2.3) |gs|0,s,� := sup
Z

s

2R2ds

�

|gs(Zs)| exp
�

�E0(Zs)
��

.

Definition 5.2.1. — For " > 0 and � > 0, we denote X",s,� the Banach space of measurable func-
tions Ds ! R with finite | · |",s,� norm, and similarly X0,s,� is the Banach space of continuous
functions R2ds ! R with finite | · |0,s,� norm.

For sequences of measurable functions G = (gs)s�1, with gs : Ds ! R, we let for " > 0, � > 0,
and µ 2 R,

kGk",�,µ := sup
s�1

⇣

|gs|",s,� exp(µs)
⌘

.

We define similarly for G = (gs)s�1, with gs : R2ds ! R continuous,

kGk0,�,µ := sup
s�1

⇣

|gs|0,s,� exp(µs)
⌘

.

Definition 5.2.2. — For " � 0, � > 0, and µ 2 R, we denote X",�,µ the Banach space of sequences
of functions G = (gs)1sN , with gs 2 X",s,� and kGk",�,µ < 1, and similarly X0,�,µ the Banach
space of sequences of continuous functions G = (gs)s�1, with gs 2 X0,s,� and kGk0,�,µ < 1.

The following inclusions hold:

(5.2.4) if �0  � and µ0  µ, then X",s,�0 ⇢ X",s,� , X",�0,µ0 ⇢ X",�,µ .
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Remark 5.2.3. — These norms are rather classical in statistical physics (up to replacing the L1

norm by an L1 norm), where probability measures are called “ensembles”.

At the canonical level, the ensemble 11Z
s

2D
s

e��E0(Zs

)dZs is a normalization of the Lebesgue measure,
where � ⇠ ✓�1 (and ✓ is the absolute temperature) specifies fluctuations of energy. The Boltzmann-
Gibbs principle states that the average value of any quantity in the canonical ensemble is its equilibrium
value at temperature ✓.

The micro-canonical level consists in restrictions of the ensemble to energy surfaces.

At the grand-canonical level the number of particles may vary, with variations indexed by chemical
potential µ 2 R.

Existence and uniqueness for (5.0.1) comes from the theory of linear transport equations which pro-
vides a unique, global solution to the Liouville equation (4.2.1) by the method of characteristics.
Nevertheless, in order to obtain a similar result for the limiting hierarchy (5.0.2), we need to obtain

uniform a priori estimates with respect to N , on the marginals f (s)
N for any fixed s. We shall thus

deal with both systems (5.0.1) and (5.0.2) simultaneously, using analytical-type techniques which will
provide short-time existence (with uniform bounds) in the spaces of X",�,µ-valued functions of time
(resp. X0,�,µ). Actually the parameters � and µ will themselves depend on time: in the sequel we
choose for simplicity a linear dependence in time, though other, decreasing functions of time could be
chosen just as well. Such a time dependence on the parameters of the function spaces is a situation
which occurs whenever continuity estimates involve a loss, which is the case here since the continuity
estimates on the collision operators lead to a deterioration in the parameters � and µ.

Definition 5.2.4. — Given T > 0, a positive function � and a real valued function µ both defined
on [0, T ], we denote by X",�,µ the space of time continuous functions

G : t 2 [0, T ] 7! G(t) = (gs(t))s�1 2 X",�(t),µ(t) ,

such that

(5.2.5)

|kG|k",�,µ := sup
0tT

kG(t)k",�(t),µ(t) < 1 ,

lim
s!t�

kG(t)�G(s)kX
",�(t),µ(t)

= 0 .

We define similarly

|kG|k0,�,µ := sup
0tT

kG(t)k0,�(t),µ(t) .

We shall prove the following uniform bounds for the BBGKY hierarchy.

Theorem 6 (Uniform estimates for the BBGKY hierarchy). — Let �0 > 0 and µ0 2 R be
given. There is a time T > 0 as well as two nonincreasing functions � > 0 and µ defined on [0, T ],
satisfying �(0) = �0 and µ(0) = µ0, such that in the Boltzmann-Grad scaling N"d�1 ⌘ 1, any family

of initial marginals FN (0) =
�

f (s)
N (0)

�

1sN
in X",�0,µ0 gives rise to a unique solution GN (t) =

(Ts(�t)f (s)
N (t))1sN in X",�,µ to the BBGKY hierarchy (5.0.1) satisfying the following bound:

|kGN |k",�,µ  2kFN (0)k",�0,µ0 .
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Remark 5.2.5. — The proof of Theorem 6 provides a lower bound for the time T on which one has
a uniform bound, in terms of the initial parameters �0, µ0 and the dimension d: one finds

(5.2.6) T � Cde
µ0(1 + �

1
2
0 )

�1 max
�2[0,�0]

�e��(�0 � �)
d+1
2 ,

where Cd is a constant depending only on d.

In particular if d ⌧ �0, there holds max
�2[0,�0]

�e��(�0��)
d+1
2 = �

d+1
2

0

�

1+ o(1)
�

, hence an existence time

of the order of eµ0�d/2
0 .

The proof of Theorem 6 uses neither the fact that the BBGKY hierarchy is closed by the transport
equation satisfied by fN , nor possible cancellations of the collision operators. It only relies on crude
estimates and in particular the limiting hierarchy satisfies the same result, proved similarly. Note that
the functional setting is simpler in the case of the Boltzmann hierarchy as all functions are continuous
with respect to all parameters.

Theorem 7 (Existence for the Boltzmann hierarchy). — Let �0 > 0 and µ0 2 R be given.
There is a time T > 0 as well as two nonincreasing functions � > 0 and µ defined on [0, T ], satisfy-
ing �(0) = �0 and µ(0) = µ0, such that any family of initial marginals F (0) =

�

f (s)(0)
�

s�1
in X0,�0,µ0

gives rise to a unique solution G(t) = (Ss(�t)f (s)(t))s�1 in X0,�,µ to the Boltzmann hierarchy (5.0.2),
satisfying the following bound:

|kG|k0,�,µ  2kF (0)k0,�0,µ0 .

5.3. Main steps of the proofs

The proofs of Theorems 6 and 7 are typical of analytical-type results, such as the classical Cauchy-
Kowalevskaya theorem. We follow here Ukai’s approach [45], which turns out to be remarkably short
and self-contained.

Let us give the main steps of the proof: we start by noting that the conservation of energy for the s-
particle flow is reflected in identities

(5.3.1) |Ts(t)gs|",s,� = |gs|",s,� and kT(t)GNk",�,µ = kGNk",�,µ ,

for all parameters � > 0, µ 2 R, and for all gs 2 X",s,� , GN = (gs)1sN 2 X",�,µ, and all t � 0.
Similarly,

(5.3.2) |Ss(t)gs|0,s,� = |gs|s,� and kS(t)Gk0,�,µ = kGk0,�,µ ,

for all parameters � > 0, µ 2 R, and for all gs 2 X0,s,� , G = (gs)s�1 2 X0,�,µ, and all t � 0.

Next assume that in the Boltzmann-Grad scaling N"d�1 ⌘ 1, there holds the bound

(5.3.3) 8 0 < "  "0 ,
�

�

�

�

�

�

Z t

0
T(�⌧)CNT(⌧)GN (⌧) d⌧

�

�

�

�

�

�

",�,µ
 1

2
|kGN |k",�,µ ,

for some functions � and µ as in the statement of Theorem 6. Under (5.3.3), the linear operator

L : GN 2 X",�,µ 7!
✓

t 7!
Z t

0
T(�⌧)CNT(⌧)GN (⌧) d⌧

◆

2 X",�,µ
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is linear continuous from X",�,µ to itself with norm strictly smaller than one. In particular, the
operator Id�L is invertible in the Banach algebra L(X",�,µ). Hence, there exists a unique solution GN

in X",�,µ to (Id� L)GN = FN (0), an equation which is equivalent to (5.0.1).

The reasoning is identical for Theorem 7, replacing (5.3.3) by

(5.3.4)
�

�

�

�

�

�

Z t

0
S(�⌧)C0S(⌧)G(⌧) d⌧

�

�

�

�

�

�

0,�,µ
 1

2
|kG|k0,�,µ .

The next section is devoted to the proofs of (5.3.3) and (5.3.4).

5.4. Continuity estimates

In order to prove (5.3.3) and (5.3.4), we first establish bounds, in the above defined functional spaces,
for the collision operators defined in (4.3.2) and (4.4.3), and for the total collision operators. In Cs,s+1,
the sum in i over [1, s] will imply a loss in µ, while the linear velocity factor will imply a loss in �.

The next statement concerns the BBGKY collision operator.

Proposition 5.4.1. — Given � > 0 and µ 2 R, for 1  s  N � 1, the collision operator Cs,s+1

satisfies the bound, for all GN = (gs)1sN 2 X",�,µ in the Boltzmann-Grad scaling N"d�1 ⌘ 1, and
for almost all t and Zs,

(5.4.1)
�

�

�

Cs,s+1Ts+1(t)gs+1

�

(Zs)
�

�  Cd �
� d

2

⇣

s�� 1
2 +

X

1is

|vi|
⌘

e��E0(Zs

)|gs+1|",s+1,� ,

for some Cd > 0 depending only on d.

Proof. — Recall that as in (4.3.2),
�

Cs,s+1Ts+1(t)g
(s+1)

�

(t, Zs) :=(N � s)"d�1

⇥
s

X

i=1

Z

Sd�1
1 ⇥Rd

! · (vs+1 � vi)Ts+1(t)g
(s+1)(t, Zs, xi + "!, vs+1)d!dvs+1 .

Estimating each term in the sum separately, regardless of possible cancellations between “gain” and
“loss” terms, it is obvious that

|Cs,s+1Ts+1(t)gs+1(Zs)|  d"
d�1(N � s)|gs+1|",s+1,�

X

1is

Ii(Vs) ,

where d is the volume of the unit ball of Rd, and where

Ii(Vs) :=

Z

Rd

�

|vs+1|+ |vi|
�

exp
⇣

� �

2

s+1
X

j=1

|vj |2
⌘

dvs+1 .

Since a direct calculation gives

Ii(Vs)  Cd �
� d

2
�

�� 1
2 + |vi|

�

exp
⇣

� �

2

X

1js

|vj |2
⌘

,

the result (5.4.1) is deduced directly in the Boltzmann-Grad scaling N"d�1 ⌘ 1. Proposition 5.4.1 is
proved.

A similar result holds for the limiting collision operator.
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Proposition 5.4.2. — Given � > 0, µ 2 R, the collision operator C0
s,s+1 satisfies the following bound,

for all gs+1 2 X0,s+1,� :

(5.4.2)
�

�(C0
s,s+1gs+1)(Zs)

�

�  Cd�
� d

2

⇣

s�� 1
2 +

X

1is

|vi|
⌘

e��E0(Zs

)|gs+1|0,s+1,� ,

for some Cd > 0 depending only on d.

Proof. — There holds

�

�(C0
s,s+1gs+1)(Zs)

�

� 
X

1is

Z

Sd�1⇥Rd

�

|vs+1|+ |vi|
��

|gs+1(v
⇤
i , v

⇤
s+1)|+ |gs+1(vi, vs+1)|

�

d!dvs+1,

omitting most of the arguments of gs+1 in the integrand. By definition of |·|0,s,� norms and conservation
of energy (5.3.1), there holds

|gs+1(v
⇤
i , v

⇤
s+1)|+ |gs+1(vi, vs+1)| 

�

e��E0(Z
⇤
s

) + e��E0(Zs

)
�

|gs+1|0,�
= 2e��E0(Zs

)|gs+1|0,s+1,� ,

where Z⇤
s is identical to Zs except for vi and vs+1 changed to v⇤i and v⇤s+1. This gives

�

�(C0
s,s+1gs+1)(Zs)

�

�  Cd|gs+1|0,s+1,�e
��E0(Zs

)
X

1is

Ii(Vs) ,

borrowing notation from the proof of Proposition 5.4.1, and we conclude as above.

Propositions 5.4.1 and 5.4.2 are the key to the proof of (5.3.3) and (5.3.4). Let us first prove a continuity
estimate based on Proposition 5.4.1, which implies directly (5.3.3).

Lemma 5.4.3. — Let �0 > 0 and µ0 2 R be given. For all � > 0 and t > 0 such that �t < �0, there
holds the bound

(5.4.3) es(µ0��t)
�

�

�

Z t

0
Ts(�⌧)Cs,s+1Ts+1(⌧)gs+1(⌧) d⌧

�

�

�

",s,�0��t
 c̄(�0, µ0,�, T )|kGN |k",�,µ ,

for all GN = (gs)1sN 2 X",�,µ, with c̄(�0, µ0,�, T ) computed explicitly in (5.4.9) below. In particular
there is T > 0 depending only on �0 and µ0 such that for an appropriate choice of � in (0,�0/T ), there
holds for all t 2 [0, T ]

(5.4.4) es(µ0��t)
�

�

�

Z t

0
Ts(�⌧)Cs,s+1Ts+1(⌧)gs+1(⌧) d⌧

�

�

�

",s,�0��t
 1

2
|kGN |k",�,µ .

Proof. — Let us define, for all � > 0 and t > 0 such that �t < �0, the functions

(5.4.5) ��
0 (t) := �0 � �t and µ�

0 (t) := µ0 � �t .

By conservation of energy (5.3.1), there holds the bound
�

�

�

Z t

0
Ts(�⌧)Cs,s+1Ts+1(⌧)gs+1(⌧) d⌧

�

�

�

",s,��

0 (t)
 sup

Z
s

2R2ds

Z t

0
e�

�

0 (t)E0(Zs

)
�

�Cs,s+1Ts+1(⌧)gs+1(⌧, Zs)
�

� d⌧ .

Estimate (5.4.1) from Proposition 5.4.1 gives

e�
�

0 (t)E0(Zs

)
�

�Cs,s+1Ts+1(⌧)gs+1(⌧, Zs)
�

�

 Cd

�

��
0 (⌧)

�� d

2 |gs+1(⌧)|",s+1,��

0 (⌧)

⇣

s(��
0 (⌧))

� 1
2 +

X

1is

|vi|
⌘

e�(⌧�t)E0(Zs

) .
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By definition of norms k · k",�,µ and |k · |k",�,µ we have

(5.4.6)
|gs+1(⌧)|",s+1,��

0 (⌧)  e�(s+1)µ�

0 (⌧)kGN (⌧)k",��

0 (⌧),µ�

0 (⌧)

 e�(s+1)µ�

0 (⌧)|kGN |k",�,µ .

The above bounds yield, since ��
0 and µ�

0 are nonincreasing,

esµ
�

0 (t)
�

�

�

Z t

0
Ts(�⌧)Cs,s+1Ts+1(⌧)gs+1(⌧) d⌧

�

�

�

",s,��

0 (t)

 Cd|kGN |k",�,µe
�µ�

0 (T )
�

��
0 (T )

�� d

2 sup
Z

s

2R2ds

Z t

0
C(⌧, t, Zs) d⌧ ,

where, for ⌧  t,

(5.4.7) C(⌧, t, Zs) :=
⇣

s(��
0 (⌧))

� 1
2 +

X

1is

|vi|
⌘

e�(⌧�t)(s+E0(Zs

)) .

Since

(5.4.8) sup
Z

s

2R2ds

Z t

0
C(⌧, t, Zs) d⌧  Cd

�

⇣

1 +
�

��
0 (T )

�� 1
2

⌘

,

there holds finally

esµ
�

0 (t)
�

�

�

Z t

0
Ts(�⌧)Cs,s+1Ts+1(⌧)gs+1(⌧) d⌧

�

�

�

",s,��

0 (t)
 c̄(�0, µ0,�, T )|kGN |k",�,µ ,

where, with a possible change of the constant Cd,

(5.4.9) c̄(�0, µ0,�, T ) := Cd e
�µ�

0 (T )��1
�

��
0 (T )

�� d

2

⇣

1 +
�

��
0 (T )

�� 1
2

⌘

.

The result (5.4.3) follows. To deduce (5.4.4) we need to find T > 0 and � > 0 such that �T < �0 and

(5.4.10) Cd(1 + (�0 � �T )�
1
2
�

e�µ0+�T (�0 � �T )�
d

2 =
�

2
·

With � := �T 2 (0,�0), condition (5.4.10) becomes

T = Cde
µ0�e�� (�0 � �)

d+1
2

1 + (�0 � �)
1
2

� Cde
µ0(1 + �

1
2
0 )

�1�e��(�0 � �)
d+1
2 ,

up to changing the constant Cd and (5.4.4) follows. Notice that (5.2.6) is a consequence of this
computation.

The proof of the corresponding result (5.3.4) for the Boltzmann hierarchy is identical, since the esti-
mates for C0

s,s+1 and Cs,s+1 are essentially identical (compare estimate (5.4.1) from Proposition 5.4.1
with estimate (5.4.2) from Proposition 5.4.2).

Remark 5.4.4. — The above arguments provide the global in time wellposedness of the BBGKY hi-
erarchy for each fixed N — though with no uniform bound on N . Indeed the exponential weight
exp

�

�µ0N � �0E0(ZN )
�

11D
N

is an invariant measure for the flow of the transport equation

@tfN + VN ·rX
N

fN = 0 .

The maximum principle then implies that for all t � 0

0  fN (t, ZN )  exp
�

�µ0N � �0E0(ZN )
�

11D
N

.
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By integration we find

0  f (s)
N (t, Zs)  exp

�

�µ0N � �0E0(Zs)
�

11D
s

As the measure exp
�

�µ0N � �0E0(Zs)
�

11D
s

is invariant by the flow Ts, we get by filtering that with
the notation introduced in Pargagraph 5.1, GN = (gN,s)1sN satisfies

0  gN,s(t, Zs)  exp
�

�µ0N � �0E0(Zs)
�

11D
s

hence a bound for which no parameters depend on t (though the bound is very poor in N).

Then we can iterate the fixed point method used in the proof of Theorem 6 to prove that the marginals
belong for all time to the space X",�,µ and not only on a short time interval . However the size of the
functions grows with N so that fact cannot be used to obtain a convergence result.


