
Zentralblatt MATH 1335 — 1

Shioya, Takashi * 1335.53003
Metric measure geometry. Gromov’s theory of convergence and concentration of metrics and
measures.
IRMA Lectures in Mathematics and Theoretical Physics 25. Zürich: European Mathematical
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This book is dedicated to the study, completion and generalization of the theory of metric
geometry on the space of metric measure spaces, originally developed by M. Gromov in his
book [Metric structures for Riemannian and non-Riemannian spaces. Transl. from the French
by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J.
LaFontaine and P. Pansu. 3rd printing. Modern Birkhäuser Classics. Basel: Birkhäuser (2007;
Zbl 1113.53001)] which in turn is based on the idea of the concentration of measure phenomena
due to P. Lévy [Problèmes concrets d’analyse fonctionnelle. - Seconde éd. des Leçons d’analyse
fonctionnelle. - Avec un complément par F. Pellegrino. Paris: Gauthier-Villars, (1951; Zbl 43.-
32302)] and V. D. Mil’man [Funct. Anal. Appl. 5, 288–295 (1972); translation from Funkts.
Anal. Prilozh. 5, No. 4, 28–37 (1971; Zbl 239.46018)] and [in: Les processus stochastiques,
Coll. Paul Lévy, Palaiseau/Fr. 1987, Astérisque 157–158, 273–301 (1988; Zbl 681.46021)].
Contents. Introduction, 1. Prelimimaries from measure theory, 2. The Lévy-Milman concen-
tration phenomenon, 3. Gromov-Hausdorff distance and distance matrix, 4. Box distance, 5.
Observable distance and measurement, 6. The space of pyramids, 7. Asymptotic concentration,
8. Dissipation, 9. Curvature and concentration, Bibliography, Index.
The author’s new theory is based of the notion of observable distance.
A metric measure space, short mm-space, is a triple (X, dX , µX), where (X, dX) is a complete
separable metric space and µX is a Borel probability measure of X. A sequence of mm-spaces
Xn, n = 1, 2, . . . , is called a Lévy family if lim

n→∞
inf
c∈R

µXn
(|fn − c| > ε) = 0, for any sequence of

1-Lipschitz continuous functions fn : Xn → R, n = 1, 2, . . . , and for any ε > 0. Example: the
sequence of unit spheres Sn(1), n = 1, 2, . . . , is a Lévy family, where the measure on Sn(1) is
taken to be the Riemannian volume measure normalized as the total measure to be 1.
Let I := [0, 1) and X be a topological space with a Borel probability measure µX . A map
ϕ : I → X is called a parameter of X if ϕ is a Borel-measurable map such that ϕ∗L1 = µX ,
where L1 denotes the one-dimensional Lebesgue measure on I.
For a pseudo-metric ρ on I, let Lip1(ρ) denotes the set of 1-Lipschitz function on I with
respect to ρ. Denote by D the set of pseudo-metrics ρ on I such that every element of Lip1(ρ)
is a Borel-measure function. For two pseudo-metrics ρ1, ρ2 ∈ D, denote dconc(ρ1, ρ2) :=
dH(Lip1(ρ1),Lip1(ρ2)), where dH is a Hausdorff distance. If X, Y are two mm-spaces, then
the observable distance dconc(X,Y ) is defined by dconc(X,Y ) := inf

ϕ,ψ
dconc(ϕ

∗dX , ψ
∗dY ), where

ϕ : I → X and ψ : I → Y run over all parameters of X and Y , respectively. It is
said that a sequence of mm-spaces Xn, n = 1, 2, . . . , concentrates to an mm-space X if
lim
n→∞

dconc(Xn, X) = 0. It is proved (Theorem 5.13) that dconc is a metric on the set χ of mm-

isomorphism classes of mm-spaces. The dconc-convergence of mm-spaces is a generalization of
the Lévy property for spheres. The dconc-convergence of mm-spaces is called concentration of
mm-spaces. A typical example Xn → Y of concentration is obtained by a sequence of fibrations
Fn → Xn → Y such that {Fn}∞n=1 is a Lévy family. This example shows that the concentration
of mm-spaces is the analogous of collapsing of Riemannian manifolds. An example proves that
the concentration is strictly weaker than measured-Gromov-Hausdorff convergence and that
this is more suitable for the study of a sequence of manifolds whose dimensions are unbounded.
However, because the dconc is not easily investigated, the author considers the so-called box
distance between mm-spaces, which is closely related to the measured-Gromov-Hausdorff con-
vergence of mm-spaces. For two pseudo-metrics ρ1, ρ2 on I, �(ρ1, ρ2) is the minimum of ε ≥ 0
for which there exists a Borel subset I0 ⊂ I such that: (1) |ρ1(s, t) − ρ2(s, t)| ≤ ε, for all s,
t ∈ I0, (2) L1(I0) ≥ 1− ε. The box distance �(X,Y ) between two mm-spaces X and Y is the
infimum �(ϕ∗dX , ψ

∗dY ), where ϕ : I → X, ψ : I → Y run over all parameters of X and Y
respectively, where ϕ∗dX(s, t) := dX(ϕ(s), ϕ(t), for s, t ∈ I.
Concentration of mm-spaces is equivalent to convergence of associated pyramids using the
box distance function, where a pyramid is a family of mm-spaces that forms a directed set
with respect to some natural order relation between mm-spaces, called the Lipschitz order. A
metric ρ is defined on the set Π of pyramids induced from the box distance function. Each
mm-space X is associated with a pyramid PX consisting of all descendents of the mm-space
with respect to the Lipschitz order. Then the map ι : χ 3 X → PX ∈ Π is a 1-Lipschitz
continuous topological embedding map with respect to dconc. Also it is proved that Π is a
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compactification of χ with respect to dconc (Proposition 7.29).
Then the author studies sequences of mm-spaces such that dconc-diverges but has proper
asymptotic behavior. A sequence of mm-spaces Xn, n = 1, 2, . . . , is said to be asymptotic if
the associated pyramid PXn

converges in Π, and this sequence asymptotically concentrates
if it is a dconc-Cauchy sequence. Any asymptotically concentrating sequence of mm-spaces is
asymptotic. Some examples (Example 7.36) and counter-examples (Theorem 7.40, Corollary
7.42) are given. Theorem 7.27, one of main theorems in the book, states that the map ι : χ→ Π,
ι(X) = PX , extends to the dconc-completion of χ, so that the space Π of pyramids is also a
compactification of the dconc-completion of the space χ.
If γn denotes the standard Gaussian measure on Rn, then both associated pyramids PSn(

√
n)

and P(Rn
,γn) converge to a common pyramid as n → ∞ (Theorem 7.40), a result which is a

generalization of the Maxwell-Bolzmann law (or the Poincaré limit theorem).
About the spectral compactness the author proves that any spectrally compact and asymptotic
sequence of mm-spaces asymptotically concentrates if the observable diameter is bounded
from above (Theorem 7.52). A sequence of mm-spaces spectrally concentrates if it is spectrally
compact and asymptotically concentrates. An example is given.
There is some notion of dissipation (δ and infinitely dissipation) for a sequence of mm-spaces,
which is opposite to concentration and means that the mm-spaces disperse into many small
pieces far apart of each other. A nondissipation theorem is proved (Theorem 8.8).
In the last chapter (Chapter 9) the author studies the relation between curvature and con-
centration. The concept of curvature-dimension condition for an mm-space in the sense of
J. Lott and C. Villani [Ann. Math. (2) 169, No. 3, 903–991 (2009; Zbl 1178.53038)] and K.-
T. Sturm [Acta Math. 196, No. 1, 65–131 (2006; Zbl 1105.53035); ibid. 196, No. 1, 133–177
(2006; Zbl 1106.53032)] was used by the author together with K. Funano in [Geom. Funct.
Anal. 23, No. 3, 888–936 (2013; Zbl 1277.53038)] to prove that if a sequence of mm-spaces
satisfies this condition and concentrates to an mm-space, then the limit also satisfies the
curvature-dimension condition. This stability result of the curvature-dimension condition by
concentration has an application to the eigenvalues of the Laplacian of Riemannian manifolds.
Finally the author proves the stability of a lower bound of the so-called Alexandrov curvature
(Theorem 57). Ioan Pop (Iaşi)


