
Oracle Inequalities and Regularization 193

inaccuracy

systematic error

complexiteitcomplexity|

oracle

Figure 1. The trade off between inaccuracy and systematic error

P depends on n, and is in fact more “rich” for larger n. This is only natural,
since when we have many observations, we may want to use more flexible models
and get more information out of the data. Thus, in a parametric model, Θ may
depend on n, and in particular its dimension N may depend on n, and in fact
grow without limit as n → ∞. This means strictly speaking that we deal with a
sequence of parametric models with nonparametric limiting model. We think of
such a situation as a nonparametric one.

Parametric models (with N “small”) are in a sense less rich than nonparamet-
ric models, and there is also a range in the complexity of various nonparametric
models. The more complex a model, the larger the inaccuracy will be. On the
other hand, too simple models have large systematic error. (Here, we use a generic
terminology. we will be more precise in our definitions later on, e.g., in Section
2.3.) Both inaccuracy and systematic error depend on the model, and on the truth
P . The optimal model trades off the inaccuracy and systematic error (see Figure
1). However, since P is unknown, it is also not known which model this will be.
Only an oracle can tell you that. Our aim will be to mimic this oracle.

To evaluate the inaccuracy of a model, we will use empirical process theory.
Empirical process theory is about comparing the theoretical distribution P with
its empirical counterpart, the empirical distribution Pn, introduced in the next
section.

1.2. The empirical distribution

The unknown P can be estimated from the data in the following way. Suppose
first that we are interested in the probability that an observation falls in A, where
A ⊂ X is a certain set chosen by the researcher. We denote this probability by
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Figure 2. Theoretical and empirical distribution function
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Figure 3. True density and a histogram

Figure 3 shows the histogram, with bandwidth h = 0.25, for the sample of
size n = 200 from the Pareto distribution with parameter θ0 = 2 (i.e., with some
abuse of notation, f0 = fθ0). The solid line is the density of this distribution.

The bandwidth h is an example of a tuning parameter. Choosing a value for
it is a complicated matter, as it leads to considering variance, bias, and related
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Figure 4
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Figure 5

Here, “arg” stands for “argument”, i.e., the location where the minimum is at-
tained. Moreover, λ is a tuning – or regularization – parameter. If λ = 0, the
estimator f̂n will just interpolate the data. On the other hand, if λ = ∞, f̂n will
be a constant function (namely, constantly equal to the average

∑n
i=1 Yi/n of the

observations). To the least squares loss function, we have thus added a penalty for
choosing a too wiggly function. This is called (complexity) regularization.

Figure 4 above plots the true f (which is f0) together with the data (rugged
line). The aim is to recover f0 from the data. Figure 5 shows the estimator f̂n

(smooth curve) for two choices of the tuning parameter λ. The fit of f̂n is defined as
n∑

i=1

|Yi − f̂n(xi)|2/n.

Obviously, the smaller value of λ gives a better fit. Figure 6 plots the estimator f̂n

together with f0, for two values of λ. The error (or “excess risk”, see Chapter 2),
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which is defined here as
n∑

i=1

|f̂n(xi) − f0(xi)|2/n

turns out to be smaller for the smaller value of λ.
Now, in real life situations, it is not possible to make the plots of Figure 6

and/or calculate the error, since the true f is then unknown. Thus, again, we need
an oracle to tell us which λ to choose. In Section 4.5, we show that by penalizing
small values of λ one may arrive at an oracle inequality.
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Figure 6

Intermezzo. As a continuous version of the problem studied in Example 1.4, con-
sider

f̂ = argmin
f

{∫ 1

0

|y(x) − f(x)|2dx + λ2

∫ 1

0

|f ′(x)|2dx

}

.

In fact, let us formulate an extension, namely a continuous version corre-
sponding to the so-called white noise model

dY (x) = f(x)dx + σdW (x),

where W is standard Brownian motion. In that case, the derivative y(x) =
dY (x)/dx does not exist, as Brownian motion is nowhere differentiable. We there-
fore use a formulation avoiding this derivative:

f̂ = argmin
f

{

−2
∫ 1

0

f(x)dY (x) +
∫ 1

0

f2(x)dx + λ2

∫ 1

0

|f ′(x)|2dx

}

.

We show in Lemma 1.1 below that the solution f̂ can be explicitly calculated
(using variational calculus). This solution reveals that the tuning parameter λ
plays the role of a bandwidth parameter.




