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book uses the term, is to a very large extent the

creation of a single mathematician, Alain Connes.
Chapter 3, indeed, begins with an extended quotation from
Connes’s summary of his talk at a memorable Oberwolfach
conference in 1981: the first public presentation of cyclic
cobomology. At that time there were hardly any published
references, and photocopies of Connes’s elegantly hand-
written notebooks were valuable treasures among us
graduate students finding our way in the new field. A
glance through the bibliography will confirm that, more
than 30 years later, Connes’s work is still the primary
source both for foundations and for new developments in
noncommutative geometry.

What, then, is noncommutative geometry, in Connes’s
sense? It is the product of a vision of mathematics informed
by a particular history. One component of that history is as
old as Fermat and Descartes: the algebraization of geom-
etry, or the realization that the geometry of a “space” can be
studied by way of the algebraic properties of functions on
that space. By choosing different classes of functions, one
studies different kinds of geometry (such as algebraic
geometry, differential geometry, topology, and so on).

The other component is more recent: it is the theory of
algebras of operators on Hilbert space. In the 1920s, mathe-
maticians and physicists realized that quantum theory
required a radical restructuring of the foundations of physics,
whereby the observables were no longer modeled by func-
tions on the phase space of a system, but instead by (self-
adjoint) operators on a Hilbert space: operators that need not
commute. This led Murray and von Neumann to develop a
theory of (not necessarily commutative) algebras of operators
on Hilbert space, a theory that generated qualitatively new
phenomena such as “real-valued dimensions.”

It is the operator-theoretic and analytic elements arising
from Hilbert space that distinguish Connes’s noncommutative
geometry from other similar proposals. From a physical per-
spective, the use of Hilbert space seems to be forced on one by
the idea of positivity: physical theory has to calculate proba-
bilities, which have to be positive real numbers, so that the
idea that a state of a quantum system is a positive linear func-
tional on the algebra of observables seems to be built into the
theory at a fundamental level. Via a classical construction
(named after Gelfand, Naimark, and Segal) this gives rise to
Hilbert space representations of the algebra of observables.

In modern terminology, an algebra of operators on a
Hilbert space H, which is norm-closed and closed under
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the adjoint operation, is called a C*-algebra. If X is a com-
pact Hausdorff space, then C(X), the algebra of continuous
complex-valued functions on X, is a C*-algebra (with unit),
and another theorem of Gelfand and Naimark says that
every commutative C*-algebra with unit is of this sort. In
other words, all of topology—at least of compact Haus-
dorff spaces—is subsumed as a special (commutative) case
of the theory of C*-algebras. This is a fundamental moti-
vation in Connes’s program insofar as it suggests that we
frame the theory of noncommutative C*-algebras as some
kind of “noncommutative topology.”
To justify this language, one needs two things:

(@) A rich family of examples of noncommutative C*-
algebras (and related operator algebras) that have
significant geometric content.

(b) A variety of techniques for studying noncommutative
operator algebras, which “extend to the noncommuta-
tive world” familiar tools of topology and geometry:
cohomology, K-theory, differential forms, curvature,
Riemannian metrics, and so on.

Khalkhali’s book introduces the student to many of these
examples and techniques. The first chapter is an extensive
survey of examples of “algebra-geometry correspon-
dence,” including noncommutative spaces such as
crossed products and noncommutative tori, vector bundles
and projective modules, algebraic function fields (Riemann
surfaces), various approaches to noncommutative algebraic
geometry, Hopf algebras, and quantum groups. Continuing
with the theme of examples, the second chapter focuses on
the noncommutative quotient, Connes’s generalization of
the group measure space construction of Murray and von
Neumann and a primary motivation for noncommutative
geometry. Within this chapter one finds an excellent
discussion of groupoids (which provide a general frame-
work for several kinds of noncommutative quotient
construction) and of Morita equivalence.

In the third chapter of the book, the focus shifts to (b) as
mentioned previously, with a detailed presentation of cyclic
(co)homology theory, including the recent development of
Hopf-cyclic cohomology. In noncommutative geometry, the
cyclic cohomology of an algebra A serves as a model for the
“de Rham homology” of the “underlying space” of A. Thus, if
elements a € A are thought of as some kinds of “functions”
on this underlying space, cyclic (co)homology for A should
be obtained by manipulating symbols a and da, for a € A4,
subject to suitable rules. Problems both algebraic and ana-
lytic arise in developing this theory. Algebraically, it is not at
all clear exactly what the right properties are for the “non-
commutative differential” suggested by the symbol “d”
above; analytically, the example of manifolds already sug-
gests that to be effective the theory will need to be applied
not to a C*-algebra (like the algebra of all continuous func-
tions) but to a suitable subalgebra of “smooth” elements.
Questions related to the choice of such subalgebras play an
important role in noncommutative geometry, but they are
not emphasized here. On the other hand, the algebraic
aspects of cyclic theory are developed with great clarity from
two or three different perspectives.
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The theme of the fourth chapter is K-theory and its
relationship to cyclic cohomology. It turns out that, of all
the tools of algebraic topology, K-theory is the one that is
most immediately amenable to noncommutative general-
ization. In ordinary topology, the relationship between
K-theory and (rational) cohomology is expressed by the
Chern character. This naturally leads one to ask whether
there is a noncommutative Chern character relating K-the-
ory and cyclic (co)homology. The answer (as explained in
this chapter) is yes: indeed, Connes’s development of cyclic
theory was expressly guided by the expectation that a
“good” Chern character must exist.

A fruitful source of K-theory classes, especially on
noncommutative spaces arising from the “noncommutative
quotient” construction mentioned earlier, is the index
theory of elliptic operators. By asking whether a/l K-classes
arise from index theory, one arrives at the Baum-Connes
conjecture, which relates the noncommutative quotient to
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other “desingularized” quotients such as the Borel con-
struction from homotopy theory. The fourth chapter of the
book will leave the reader well prepared to engage this
material. Earlier chapters will similarly prepare the reader
well to study current work on noncommutative geometry
in relation to Hopf algebras, quantum groups, or spectral
triples.

This book will be very valuable to students and
others seeking an orientation to noncommutative
geometry.
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