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Abstract

A kink is a stationary solution to a cubic one-dimensional wave equation (8? - Bi)qﬁ =
¢ — ¢3 that has different limits when x goes to —oo and 400, like H(x) = tanh(%).
Asymptotic stability of this solution under small odd perturbation in the energy space
has been studied in a recent work of Kowalczyk, Martel and Mufioz. They have been
able to show that the perturbation may be written as the sum a(z)Y(x) + ¥ (¢, x),
where Y is a function in Schwartz space, a(¢) a function of time having some decay
properties at infinity, and v (¢, x) satisfies some local in space dispersive estimate.
These results are likely to be optimal when the initial data belong to the energy space.
On the other hand, for initial data that are smooth and have some decay at infinity,
one may ask if precise dispersive time decay rates for the solution in the whole space-
time, and not just for x in a compact set, may be obtained. The goal of this work is to
attack these questions.

Our main result gives, for small odd perturbations of the kink that are smooth
enough and have some space decay, explicit rates of decay for a(¢) and for ¥ (¢, x) in
the whole space-time domain intersected by a strip |t| < €~**¢, for any ¢ > 0, where
€ is the size of the initial perturbation. This limitation is due to some new phenomena
that appear along lines x = =+ */Tit that cannot be detected by a local in space analysis.
Our method of proof relies on construction of approximate solutions to the equation
satisfied by ¥, conjugation of the latter in order to eliminate several potential terms,
and normal forms to get rid of problematic contributions in the nonlinearity. We use
also Fermi’s golden rule in order to prove that the a(z)Y component decays when
time grows.

Keywords. Kink, nonlinear Klein—Gordon equations, normal forms, Fermi’s golden
rule
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Chapter 1

Introduction

This book is devoted to the study of dispersive estimates for small perturbations of
a stationary solution (the “kink”) of a cubic wave equation of the form

(07 —2)p = ¢ — 9>,

in one space dimension. Before discussing that equation and stating our results, we
shall give a general presentation of the framework in which this study lies.

1.1 Long time existence for perturbed evolution equations

The question of long time (or global) existence of solutions to nonlinear dispersive
equations, like the wave equation, has been a major line of research for at least the
last fifty years. Let us start from the following simple model that encompasses several
equations

(Di = p(Dx))u = N(u). (1.1
where u : (¢, x) — u(t, x) is a function defined on I x R4, with I interval of R,
with values in C, where D; = ll% p(Dx) = F Y p§)i(§)), F ! denoting inverse
Fourier transform, and where N(u) is some nonlinearity. The function p(£) may be
equal to
e p(&) = |&|, in which case (1.1) is an half-wave equation,
e p(§) = V1 + |£]?, corresponding to a half-Klein-Gordon equation,
o p§) = %|§ |2 in the case of a Schrodinger equation.

The right-hand side in (1.1) is a nonlinear expression, that we denote by N (u), though

it may contain also factors like %u, (D—’;)u, or their conjugates, or even first-order

derivatives of u in general. For instance, a Klein—-Gordon equation of the form
(32 — A+ 1)¢ = F(¢.0,¢. V) (1.2)

with real-valued ¢, will be reduced to (1.1) defining u = (D; + V1 + |Dx|?)¢,
so that

i _ 1 _1 _
01 = 5(u—u), Ve = va(1+|Dx|2) 2(u + i),
and setting

Nu) = FG(1 1D ) 2 i), Q %Vx(l D) 2 +a)), (1.3)
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which is a non-local nonlinearity. One may proceed in the same way for a quasi-linear
version of (1.2), i.e. equations where the right-hand side of (1.2) contains second-
order derivatives, and is linear in these second-order derivatives. Then N(u) depends
also on first-order derivatives of (u, u).

When one wants to study long time existence for solutions of equations like (1.1)
or (1.2), one of the possible ways is to try to perturb initial data corresponding to
a stationary solution, and to show that this perturbation gives rise to a global solution
that will remain, for long or all times, close to the stationary solution. Of course, the
simplest stationary solution that one may consider is the zero one, in which case one
is led to study (1.1) with small initial data. Since the right-hand side vanishes at least
at order two at zero, one may hope that it might be considered as an higher-order
perturbation.

This framework has been considered by many authors since the mid-seventies,
starting with problems of the form (1.1) in higher space dimensions. Let us explain
why the question is easier in high space dimensions describing some classical results.

1.2 The use of dispersion

A key point in the study of equations of the form (1.1) is the use of dispersion. Con-
sider first the linear equation (D; — p(Dy))u = 0. Assuming that p(£) is real valued,
p(Dy) is self-adjoint when acting on L? or on Sobolev spaces, so that one has preser-
vation of the Sobolev norms of u along the evolution: ||u(¢,- )| gs = ||u(0,- )| gs for
any ¢. If one considers instead equation (1.1), a Sobolev energy estimate gives just
that, as long as the solution exists, one has for any ¢ > 0,

t
(@, )llzs < [u(0, )| as +/0 INQ)(z,)as d, (1.4)

so that one needs, in order to control uniformly the left-hand side, to be able to esti-
mate the integral term on the right-hand side. If one considers a simple model where
N(u) is given by N(u) = P(u,u), where P is an homogeneous polynomial of order
r > 2, one has, for s > 4 \where d is the space dimension, a bound

2
IN@) s < Cllullzs llul g,
so that (1.4) implies
t
e, ) las < (w0, ) ||as + C[O lu(z. )z llu, Hlas dr. (1.5)

As a consequence, by Gronwall’s lemma,

t
e, azs < 1. )ls exp(C/O (e, )= dr). (1.6)
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One thus sees that, if we want to get a control of ||u(z, - )|| gs for large ¢, one needs to
obtain as well a priori estimates for ||u(z, )| L. In particular, to get a uniform global
bounds in (1.6), one would need the right-hand side of this inequality to be bounded,
ie. f0+°°||u(r, 5=t dt < +o0.

One may try to guess what are the best estimates one may expect for ||u(z, - )| Lo
from those holding true for solutions to the linear equation (D; — p(Dy))u = 0. As
the solution is given by

u(t,x) =

7 [ €@ de 17
where vy = u(0, - ), one sees from the stationary phase formula that if ¢ is smooth
enough and has enough decay at infinity, ||u(z,-)||L = O(I_%), where k depends
on the rank of the Hessian of p(£). In the case of the wave equation p(§) = |€ | one
has k = d — 1, while for Schrédinger or Klein-Gordon equations (i.e. p(§) = 3 HE
or p(§) = V1 + |£|?), k = d. Conjecturing that the same decay will hold for solu-
tions of the nonlinear equation, we would get that the integral on the right-hand side
of (1.6) w111 converge if 5(r — 1) > 1, so that if d 1(r — 1) > 1 for the wave equa-
tion and < s(r—=1)>1 for the Klein—Gordon or Schrodmger ones.

1.3 Vector fields methods and global solutions

The above heuristics turn out to give a correct answer for nonlinear wave equations if
one considers general nonlinearities: actually, in this case, smooth enough decaying
initial data of small size give rise to global solutions when d > 4 if the nonlinearity
does not depend on u and is at least quadratic (i.e. r > 2) as it has been proved
by Klainerman [50], Shatah [75], including for quasi-linear nonlinearities. In the
same way, for Klein—Gordon equations with quadratic nonlinearities, global existence
holds if d > 3 (see Klainerman [49], Shatah [76]). Moreover, the solutions scatter, i.e.
have the same long time asymptotics as the solution of a linear equation.

Let us recall the “Klainerman vector fields method” that provides a powerful way
of proving that type of properties. We consider an equation of the form

Ou = f(0:u, Vyu), (1.8)

where u is a function of (¢, x) in R x R4, 0O = 8% — Ay and f is a smooth function
vanishing at least at order 2 at the origin. Instead of [J in the linear part of (1.8),
one may more generally take the operator ), ; g’ k(a,u Vxu)d;dg, where xo = ¢
and the coefficients g/¥ are smooth and satlsfy Z x & k(o, 0)d;dx = O, so that the
method is not limited to semilinear equations, but works as well for quasi-linear ones,
that is one of its main interests. For the sake of simplification, we shall just discuss
(1.8), referring to the original paper of Klainerman [51] and to the book of Horman-
der [42] for the more general case. The Sobolev energy inequality applied to (1.8)

together with nonlinear estimates for the right-hand side imply that, if s > %, the
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energy Es(t) = ||0:u(t, )||%{‘ + ||qu(t,~)||12qs satisfies, as long as ||u/(z, - )| L is
bounded,

t
Es(t)? < E,(0)® + C[ ' (z, )| Es(2)? dz., (1.9)
0

where we set u’ for (d;u, Vyu). This is the analogous of (1.5) for the solution of (1.8)
and in order to exploit this estimate, one needs to show that ¢ > ||u(¢, )| Lo is
integrable. The Klainerman vector fields method allows one to deduce such a property
from L? estimates for the action of convenient vector fields on u. More precisely,
one introduces the Lie algebra of vector fields tangent to the wave cone 2 = |x|?,
generated by

1dx; + x;04, j=1....4d,

Xi0x;, —xj0x;, 1 <i<j<=d,

d
19, + ) xjdy
j=1

and if one denotes by (Z;);eyq the family of fields given by (1.10) or by the usual
derivatives 8;,8xj, j=1,...,d,weset, for [ ={iy,...,ip} Cd?, AR Zi -+ Zi,
and |7| = p. Then, as Z! commutes to [J by construction (up to a multiple of the
equation), one gets from (1.8) essentially

Oz =71 f(3,u, Vyu) (1.11)

(1.10)

from which it follows that, if t > 0,
t
1Z"u(@, )2 < 1270, )2 + [ 1Z" £ @, Vau)(z, )2 d. (1.12)
0

Using that Z7 is a composition of vector fields, one deduces from Leibniz rule that,
setting u'y, = (Z")11<n,
t
[y (8. )22 < Wiy (0.9)llz2 + /0 C(luya (. )ee)
X o (7. )lzoe fady (v, )2 d. (1.13)

This is thus an inequality of the form (1.9), and in order to deduce from it an a pri-
ori bound for the left-hand side of (1.13), one again needs a dispersive estimate for
flu'y /2(1’, )||zeo in O(T_L?). This estimate follows from the Klainerman—Sobolev
inequality

A+ e[+ DA+ [l = Ix)w@. 0P <€ >0 125w )2 (1.14)

11<942

for the proof of which we refer for instance to [42, Proposition 6.5.1]. This implies in
particular that, if we take N large enough so that % + % < N, one has fort > 0,

_d—1
1y /21, )lLee < C(L+ 072 [y (2, ) 2 (1.15)
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One deduces from (1.13) and (1.15) a priori bounds of the form
[y (2, )2 < Ae, (1.16)
_d=1
[wy/o (@ )Lee < Be(1+1)7 2 (1.17)

by a bootstrap argument when d > 4: If one assumes that (1.16) and (1.17) hold
for ¢ in some interval [0, T'], one shows that if A, B have been taken large enough in
function of the initial data, and if € is small enough, then (1.16) and (1.17) hold on the
same interval with (A4, B) replaceddb_y1 (é, %). One has just to plug (1.16) and (1.17)
in (1.13), and to use that (1 +¢)~ 2 is integrable in order to prove (1.16) with A
replaced by %. Concerning (1.17) with B replaced by g, it follows from (1.15) and
(1.16) if B is taken large enough with respect to A. Combining these a priori bounds
with local existence theory for smooth data shows that solutions are global, for ¢
small enough, and satisfy (1.16) and (1.17) for any time.

The same type of arguments works more generally when f in (1.8) vanishes
at order » > 2 at zero and (d_l)(r —1)>1.

2
Of special interest is the limiting case of long range nonlinearities when

d—1
2

r—1)=1.

This happens in particular if d = 3,r = 2, i.e. for quadratic nonlinearities in three
space dimension. In this case, one gets in general that data of size ¢ > 0 give rise to
solutions existing over a time interval of length at least e for some ¢ > 0, but finite
time blow-up may occur. Nevertheless, if the solution satisfies a special structure,
the so-called “null condition”, global existence holds true (see Klainerman [51]). We
again refer to the book of Hérmander [42] and references therein for more discussion
of long time existence for wave equations, in particular in two space dimension, and
to Alinhac [2] for the study of blow-up phenomena when solutions are not global. We
also refer to Christodoulou and Klainerman [11] and to Lindblad and Rodnianski [62]
for applications to general relativity.

In Section 1.4 we discuss the case of long range nonlinearities for Schrodinger
and Klein—-Gordon equations in one space dimension, which is the relevant frame-
work for the problem we study in this book. To conclude the present section, let us
make some comments on another well known way of exploiting the dispersive char-
acter of wave (or other linear) equations, namely Strichartz estimates. The vector
fields method that we described above has the advantage of providing explicit decay
rates for the solution (and, combined with other arguments, may even furnish precise
information on asymptotic behavior of solutions). Moreover, it applies to quasi-linear
equations, even if we described it just on a simple semilinear case. On the other hand,
it is limited to the study of equations with small and decaying data.

When one deals with semilinear equations, and wants to study solutions whose
data do not have further decay than being in some Sobolev space, one may instead
use Strichartz estimates. Recall that they are given, for a solution u to a linear wave
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equation,
9> — Au = F,
@ =2 (1.18)
u(0,-) =uo, du(0,-) =u,
defined on I x R?, where I is an interval containing 0, by
el rxmay < € (ollza + Nl + 1F g ooy (119
where the indices satisfy
1+1_1 1_|_1_1 1 d _d 1+d_d+2
g ¢  F P 7 q r 2 q¢ ¥ 2 7
1 d—l<d—1 1 d—1<d—1
¢ 2r T 4 G T4 (1.20)

(q.r.d) #(2,00,3), q,r>2,r <00
(q,7,d) #(2,00,3), ¢,F>2,F<o0.

We refer to the book of Tao [83] and references therein for the proof. These estimates
express both a smoothing and a time decay property of the solution. Because of that,
they are useful both in the study of local existence with non-smooth initial data or for
global existence and scattering problems in the semilinear case, including for large
data. We shall not pursue here on that matter, as this is not the kind of methods we
shall use below, since we are more interested in explicit decay rates of solutions. We
refer to [83] for some of the many applications of these Strichartz estimates.

1.4 Klainerman-Sobolev estimates in one dimension

The preceding section was devoted to the use of Klainerman vector fields in the frame-
work of wave equations in higher space dimensions. In the present section, we shall
focus on the case of (half-)Klein—Gordon or Schrédinger equations in dimension one,
as this is the closest framework to our main theorem. As a prerequisite, we shall
describe first how (a variant of) the method of Klainerman vector fields allows one
to get dispersive decay estimates for solutions when the nonlinearity vanishes at high
enough order at initial time. We start with the simplest model of gauge invariant non-
linearities, to which more general equations may be in any case reduces by the normal
forms me%hods we shall discuss later. Denote thus for & in R, p(§) = /1 + &2 or
p(§) = > and consider equation (1.1) with N(u) = [u|?Pu with p € N*, i.e.

(D: = p(Dx))u = aul*Pu,

(1.21)
Uls=1 = Uy,

where for convenience of notation we take the initial data at time ¢t = 1, ¢ is a com-
plex number and uo will be given in a convenient space. One has the following
statement.
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Theorem 1.4.1. Let p be larger than or equal to 2 in (1.21). There are sy, py in
N such that, for any s > s, there are g9 > 0,C > 0 and for any ¢ € 0, &¢], any
u € H*(R) satisfying

luollas + llxuollz2 <e, (1.22)

the solution to (1.21) is global and satisfies for any t > 1,
€

7

||M([,-)||Hs = CS, ||M([,')||WD(),OO = C (123)

where ||w||wro.co = ||{Dx)POw| poo.

We shall present the proof following arguments due to Hayashi and Tsutsumi [40]
in the case of Schrédinger equations. For Klein—Gordon equations, the first proof of
such a result is due to Klainerman and Ponce [52] and Shatah [75], using a different
method. We shall describe here a unified approach for both equations. Notice also
that for Klein—Gordon equations, global existence result hold for much more general
nonlinearities. We shall give references to that in the forthcoming sections.

Idea of proof of Theorem 1.4.1. We apply the Klainerman vector fields idea, except
that instead of using true vector fields, we make use of the operator

Ly = x+1p'(Dy). (1.24)

This operator commutes to the linear part of the equation, [L4, D; — p(Dy)] = 0.
Moreover, because the nonlinearity is gauge invariant, a Leibniz rule holds. Actually,
in the case of Schrédinger equations, one has a bound

1Ly (PPl 2 < Cllull |l Lyull 2 (1.25)
that follows using that if p(§) = % then L+ = x + tDy and then
Ly (lu]*Pu) = Ly (uP*'u?)
= (p+ D(Lsw)|ul?® — puPT1aP VL u.
(p + 4 +

When p(€) = /1 + £2, one has an estimate similar to (1.25) up to replacing the L™
norm by a W*0-*° one, for some large enough pg, and up to some remainders that do
not affect the argument below (see [20]). We shall pursue here the argument in the
Schrédinger case. Applying L+ to (1.21) and using the commutation property seen
above and (1.25), we obtain

(Dy — p(D))(Lyu) = Opa([[ull7% | L1ullL2) (1.26)

so that one has by L? energy inequality

t
IL+u(, )2 < [L+u(, )2 +C/ he(z, 2 I L ule, )2 de. (1.27)
1
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The proof of the theorem now proceeds with a bootstrap argument: One wants to find
constants 4 > 0, B > 0 such that

lu(@, )llas < Ae,

ILyu(t, )2 < Ae, (1.28)
&

NG

for any ¢ > 1, as long as € > 0 is small enough. Assume that these inequalities hold
true for ¢ in some interval [1, T']. Then, it is enough to show, using equation (1.21),
that for ¢ in the same interval [1, T'], one has in fact the better estimates

”u([’ )”Loo <B

A
t’. s S ~ K
e, s < S

A

ILyu(t, )2 < 76 (1.29)
B ¢
u(z,- o < ———.
lu, )l i

Actually, estimates (1.28) hold on some interval [1, T] if one has taken A, B large
enough, because of assumptions (1.22) made on the initial data, and of Sobolev
embedding in order to get the L bound.

To show that (1.28) implies the first two estimates (1.29), one uses (1.5) (with r
replaced by 2p + 1) and (1.27). Plugging there the a priori bounds (1.28), one gets
for any ¢ in [1, T,

t
e, Ylas < luollas + CBP 4s2+! / T dx,
! ) (1.30)
VL. Y2 < |Lyu(l, ) g + CB2P A2+ / P dr
1

with p > 1. Consequently, using assumption (1.22), taking A large enough and ¢
small enough, one gets the first two inequalities (1.29). To obtain the last one, one
uses Klainerman—Sobolev estimates, that allow one to recover an L bound with the
right time decay from an L? one for L u. In the case we are treating p(§) = % this
is very easy: one writes, by the usual Sobolev embedding

1 1
lwlizee < Cllwl 2 I Dxwll 7.
x2
Applying this with w = e' 27 u(¢, - ), one gets
¢ } )
(. )llzee < ﬁllu(t,-)llellLJru(h-)IILz- (1.31)
Plugging the first two inequalities (1.28) inside the right-hand side, one gets

e
u(t,)||pe < —=CA,
ez, )l i
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which gives the last bound (1.29) if B is chosen large enough relatively to A and
concludes the proof. ]

1.5 The case of long range nonlinearities

In equation (1.21) we limited ourselves to the case p > 1, which may be considered
as a short range case: actually, if we consider |u|?? as a potential, the time decay
of ||u(t,-)||ree in =% shows that [llu(z,)|??|| oo is time integrable at infinity. This
played an essential role in order to bound the integrals on the right-hand side of (1.30).
Thought, a variant of Theorem 1.4.1 holds as well when p = 1:

Theorem 1.5.1. Let p(§) = /1 +£2 or p(§) = % in one space dimension, a a
real constant. There are sg, pg in N, § > 0 such that for any s > s, there are &g > 0,

C > 0 so that, for any ¢ € 10, &g], any ug in H® (R) satisfying (1.22), the solution of

(D¢ — p(Dx))u = alul*u,

(1.32)
u|t=1 = Uo

is defined for any t > 1 and satisfies there
€

NG

lu(t, Yas < Cet®,  lu(t,-)|weoo < C (1.33)

Remarks. We make the following observations.

* A difference between the conclusion of Theorem 1.4.1 and the above statement is
that the Sobolev estimate is not uniform: a slight growth in % is possible. Actu-
ally, § may be taken of the form C&? for some constant C.

e The form of the nonlinearity is important, at the difference with the short range
case of the preceding section. For instance, one cannot take on the right-hand side
of (1.32) for o an arbitrary complex number. The fact that o should be real is an
example of a null condition that has to be imposed in order to get global solutions.

e The proof of the theorem provides also modified scattering for u as ¢ goes to
infinity.

Let us give some references. For the Schrodinger case, a first proof of Theo-
rem 1.5.1 and of modified scattering of solutions is due to Hayashi and Naumkin [38].
See also Katayama and Tsutsumi [46] and, more recently, Lindblad and Soffer [65],
Kato and Pusateri [47] and Ifrim and Tataru [45]. In the case of Klein—Gordon equa-
tions, including in the case of quasi-linear nonlinearities satisfying a null condition,
we refer to Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Delort [ 18-20],
Lindblad and Soffer [63], Lindblad [64] and Stingo [82]. See also Hani, Pausader,
Tzvetkov and Visciglia [37] for some further applications.

Before explaining the general strategy of proof of Theorem 1.5.1, let us describe
informally how the dispersive estimate in (1.33) will be proved, using an auxiliary
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ODE deduced from (1.32). We make this derivation in the case p(§) = %f 2 deferring
to next paragraph the case of general p. Denote by ¢(x) = —%xz and look for a solu-
tion to (1.32) under the form

elte(F)
NG

where A(, y) is a smooth function. Plugging this Ansatz inside equation (1.32) with
p(Dx) = 1 D2, one gets

u(t,x) =

A(t, )t—c) (1.34)

o 1
DiA(t,y) = Z1A@ »PAG y) + 55 Dy A y). (1.35)

If one ignores the last term (that will be proved a posteriori to be a time integrable
remainder), one gets that A solves the ODE

DAt y) = %lA(r,y)le(t,y) (1.36)

from which follows, as « is real, that |A(¢, y)| = |A(1, y)| for all ¢ > 1, whence
A, y) = A(1L, y) exp(ial A1, y)[* log?).

One thus gets a uniform bound for A, and also discovers that the phase of oscillation
of (1.34) involves a logarithmic modification that reflects modified scattering, i.e. one
gets when time goes to infinity
1 X x?2 X\ |2
u(lt,x) ~ —A4 (—)ex —— +ia‘A (—)) log ¢
(7, x) Ji ol P( 21 ol g

for some function Ag. Of course, to establish this rigorously, one has to show that the
last term in (1.35) is really a remainder whose addition to the right-hand side of (1.36)
does not modify the analysis of asymptotic behavior of solutions.

One may perform such a derivation in a rigorous way using a wave-packets analy-
sis as in Ifrim and Tataru [45] or using a semiclassical approach as we do here. The

idea is the following: because of formula (1.34), u appears naturally as a function of ¢
and )t—‘, so that it is natural to write it in terms of a new unknown v by

1 X
u(t,x) = —v(t, —), 1.37
() = —o(n] (137)
where v will satisfy an equation
1 D o
D,U—Z(X-DX—FD,C-x)v—p(Tx)v:?|v|2v. (1.38)

By (1.34), we expect v(t, x) to oscillate like ¢//™*). We compute for any smooth
function a(t, x),

P(%) (eittp(X)a(t,X)) = (p(axga(x))a(t’x) + O(I_l))ei"/’(x)_
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One expects thus that the main contribution to the left-hand side of (1.38) will be
obtained replacing % by dx¢. This gives an ODE which is nothing but (1.35) if
we replace v by e!??™) A(z, x). In other words, we obtain an ODE allowing us to
describe the asymptotics of the solution starting from the quantum problem given by
the PDE (1.36) and reducing it to the classical problem obtained making in (1.38) the
substitution % > 0x¢. We explain below, in the strategy of proof of Theorem 1.5.1,
the rigorous way of doing so controlling the errors.

Strategy of proof of Theorem 1.5.1. The starting point of the proof is the same as for
Theorem 1.4.1, except that the inequalities to be bootstrapped read now as

e, )las < Ast?,

ILyu(, )2 < der’, (139)
e

Vit

instead of (1.28), with § > 0 a small number. Again, one has (1.30) with p = 1 and
the integral term replaced by flt 148 dr < 87118 If €267 is small enough, one
deduces from (1.30) that the first two inequalities in (1.39) actually hold with A
replaced by %. On the other hand, one cannot deduce the L°° estimate in (1.39)
from the Sobolev and L? ones using (1.31), as the lack of uniformity in the estimate
of ||L+u(t,-)| ;2 would just provide a bound in O(Z_%JFO) instead of O(t_%). On
thus needs an extra argument to obtain the L estimates (since the L? ones cannot
be expected to be improved). There have been several approaches to do so, that all
rely on the derivation from the PDE (1.32) of an ODE, that may be used in order to
get the optimal L*° decay (and the asymptotics of the solution). That ODE may be
written either on the solution itself or on its Fourier transform (actually on the profile
e!P@g(¢, &) of the Fourier transform). As indicated in the preceding paragraph, the
method we shall use in this book, inspired in part from the approach of Ifrim and
Tataru [45] based on wave packets, relies on a semiclassical version of the equation
satisfied by a rescaled unknown.

We introduce as a semiclassical parameter h = % €10, 1] and define from the
unknown u the new unknown v through (1.37). If we denote ||v ||H;§ = [[{(hDx)*v| 2,
then ||u(z,-)|gs = |v(z, ')”HZ‘ The last estimate in (1.39) is equivalent to getting an
O(e) bound for |[(hDx)Pov(t,- )| Loo. Plugging (1.37) inside (1.32), one gets

(D: — Op) (x& + p(§)))v = hav[*v, (1.40)

where the semiclassical Weyl quantization Op}l"’ associates to a “symbol” a(x, £) the
operator

[u(z.-)llweo-co < B

1 .
v OpY (@)v = —/el(x—y)ia(x + y,g)v(y) dyds.  (141)
2mh 2
The above formula makes sense for more general functions a than the one

a(x,§) = x& + p(§)
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appearing in (1.40). We do not give here these precise assumptions, referring to
Appendix D below. Let us just remark that one may translate the action of opera-

tor L4 on u by

Liu(t,x) = %(:ﬁ#})(z, ;)
with |
0Py (x + p'(§))

so that the second a priori assumption (1.39) may be translated as

£y =

|£40llz2 = O@h™).
This brings us to introduce the submanifold
A={(x,E)eRxR:x+ p'(§) =0}
that is actually the graph
A ={(x.do(x)):x €]-1,1]} withg(x)=+1—x2

given by the following picture.

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

The idea is to deduce from (1.40) an ODE restricting the symbol x& + p(§) to A.
By (1.46) and a direct computation, (x& + p(£))|a = ¢(x), so that we would want

to deduce from (1.40) an ODE of the form

(Dr — p(x))w = ha|w|*w + R,

(1.47)
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where w should be conveniently related to v and R being a remainder such that

+o00
| IRy di = 06,

We notice first that the a priori bound (1.44) provides a uniform estimate for v
cut-off outside a \/E—neighborhood of A. The idea is as follows:

First, contributions to v cut-off for high frequencies have nice bounds if we
assume the first a priori estimate (1.39): actually, it implies

I(hDx)*v(t.-)]lL2 = O(eh™),

so that if y € Cg°(R) is equal to one close to zero, B > 0 is small and s¢ > 1 one
gets by semiclassical Sobolev estimate

_1
lOp)Y (x(HP&))vree < ChTZ|[(hDy)*00p) (x(hPE))vl|,2
< Chm24B6—50 (kD) v |2 (1.48)
< Ceh=3~8+B(=50),

Consequently, for any fixed N in N, if sB is large enough, we get an O(¢h®) bound
for estimate (1.48). This shows that one may assume essentially that v is supported
for hB|&| < C for some constant, some small 8 > 0. In the rest of this section, in
order to avoid technicalities, we shall argue as if we had actually |£| < C. The case
hP|&| < C may be treated similarly, up to an extra loss A~#" in the estimates of the
remainders, B’ > 0 being as small as we want. This extra loss does not affect the
general pattern of the reasoning.
Take y in C5°(R), equal to one close to zero, with small enough support, and
decompose
V=20 +Vpe, (1.49)

where

VA = Op}lV(y(L\/pE/(g)))v, Vpe = Op)ZV((l — y)(L\/pE/(é)))v, (1.50)

i.e. vy (resp. v ) is the contribution to v that is microlocally located inside (resp.
outside) a \/ﬁ—neighborhood of A. Then v, satisfies, as a consequence of the L2
estimate (1.44), a uniform L° bound: define y;(z) = % and write

x+p'E)\x+ 1)
S v )k

= h%OphW ()/1 (Lj%/(g)))($+ v) + remainder.

Since, at fixed x, & — y1((x + p’(§))/~/h) is supported inside an interval of length
O(~/I), one may show that the L norm of the first term on the right-hand side

Vpe = OPhW (Vl (
(1.51)



Introduction 14

of (1.51) is essentially bounded from above by h™* times its L2 norm, i.e.
1
lvpcllzoe < Ch¥||L4v] 2. (1.52)

(Actually, if one takes into account the fact that on the support of ¥ one has |§] <ch™ B
instead of |§| < C, one would get a power & 17" instead of 7%, for some 0 < B <1
in (1.52), that would not change the estimates below). In any case, combining with
(1.44), we get an estimate

[vpellzee = O(h3™¥), & > 0 small. (1.53)

If we assume a uniform a priori bound for v (that follows from the third inequality
(1.39) and from (1.37)), we see that (1.53) implies that the difference [v|?v — v, |?v
will be O(e3h 18 ), so that replacing on the right-hand side of equation (1.40) h|v|?v
by h|v, |*v induces an error of the form of R in (1.47), i.e. we have

(D; — Op)Y (x€ + p(§))v = halvy|*va + R. (1.54)

We make act next Op), (y((x + p’(§)) /~/h)) on that equality. We get at the left-
hand side (D; — OphW (x& + p(§)))v, and a commutator whose principal contribu-
tion may be written as

3
_ h—ZOpZV(V'(X + p'(§)
vh
This is of the same form as (1.51), up to an extra A factor, so that, argumg asin (1.52)
and (1.53), we bound the L norm of (1.55) by Cehi=8' = Cet=3t9 As 8 >0
is small, this is an integrable quantity that may enter in the remainders on the right-
hand side of (1.47). As the action of Op) (y((x + p’(£))/~/)) on the right-hand side
of (1.54) may be written under the same form, up to a modification of the remainder,
we get

))(;ﬁ+v). (1.55)

(D — Opy (x€ + p(§)))up = halus|’uy + R. (1.56)
We make now a Taylor expansion of x& + p(£) on A given by (1.45) and (1.46). As
F(xE + pE))a = 0, we get

xE+ p§) = o(x) + O((x + p'(§))%). (1.57)

The action of Opzv((x + p'(£))?) on v, may be written essentially as (1.55), so
provides again a contribution to R in (1.56). Finally, plugging (1.57) inside (1.56), we
see that we get an equation of the form (1.47) for w = v, . This implies in particular
that 3% lva(2,-)|? is time integrable (since the coefficient « in (1.56) is real) and thus
that ||v, (¢, -)||Le is bounded. Coming back to the expression (1.37) of u in terms of
v =V, + Ve, remembering (1.53) and adjusting constants, one gets that the a priori
assumptions (l 39) imply that the last inequality in these formulas holds true with B
replaced by 5 (the reasoning for W?0-> norms instead of L ones being similar).

This shows that the bootstrap argument holds. Moreover, the ODE (1.47) may be used
also in order to get asymptotics for ¥ when times goes to infinity. |
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1.6 More general nonlinearities and normal forms

In model (1.32), we considered only a special case of nonlinearity namely o|u|?u. We
used this special structure in order to get a Leibniz type rule (see (1.25)). However,
we know that we should be able to obtain global solutions even for (some) cubic or
quadratic nonlinearities that have a more general form. This is done in [18, 19] for
quasi-linear Klein—Gordon equations with a nonlinearity satisfying a null condition
(see also Stingo [82]). One makes use of “real” Klainerman vector fields instead of
the operator L above. On the other hand, for other equations like Schrédinger ones,
the natural operator to be used in order to exploit dispersion is an operator like L,
that is not a vector field. It is possible to reconcile both points of view using normal
forms. Moreover, the use of the latter allows also one to treat quadratic nonlinearities.
Consider as a model

(D¢ — p(Dx))u = aou? + oful?u,
ul;=1 = Uo,

where p(§) = /1 + £2, ap is a complex number and « a real one. We would like to
prove the analogous of Theorem 1.5.1, namely:

(1.58)

Theorem 1.6.1. There are sg, pg in N, § > 0 such that, for any s > sg, there are
g0 > 0, C > 0 so that, for any ¢ € 10, &¢], any ug in H*(R) satisfying (1.22), the
solution of (1.58) is global and satisfies for any t > 1,

€

Ji

(e, s < Cet®, Nu(t,)|weoo < C (1.59)

Remarks. We make the following observations.

e Again, one can obtain also the asymptotics of the solution when ¢ goes to infinity,
and in particular show modified scattering, and not just the dispersive estimate
(1.59).

¢ One may consider more general quadratic and cubic nonlinearities than on the
right-hand side of the first equation in model (1.58), as soon as they satisfy the
null condition (see [18, 19, 82]).

The key idea of the proof is essentially to reduce (1.58) to (1.32) by normal
forms. One cannot expect to get directly energy estimates on (1.58): for instance,
the quadratic part of the nonlinearity has Sobolev norm bounded from above by
Cllu(t,-)||Loe lu(t, )|l as, so taking into account the a priori L estimate in (1.39),
by (Ce//t)||u(t,-)||gs. One thus would get an inequality of the form (1.6) with
r = 2, which would give only exponential time control. Though, as shown first by
Shatah [76] and Simon and Taflin [77], one may easily reduce the quadratic nonlin-
earity in (1.58) to a cubic one.

Lemma 1.6.2. Define

mee) = (Jreg+irg-ViTE T R?)
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Then m(&1, &) is well defined,

Im(£1,&)| < C (1 + min(|&], |£2])) (1.60)

and if one sets

1

Op(m)(uy,uz) = )2

/eix(sl+sz)m(gl,gz)ﬁl(él)ﬁz(&)dsl dgy, (161

one has for a fixed py and any large enough s,
1Op(m)(ur, u2) s < C(lurllweooeuallms + lurllaslluzllweoss).  (1.62)

Moreover, the map given by u — u — Op(m)(u, u) is a diffeomorphism from the open
set HS N {u € WP : |lu|weo.co < r} to its image, for small enough r, and if u is
in that set, and solves equation (1.58), then w = u — Op(m)(u, u) solves

(D: = p(Dx))w = ajw*w —2ao0p(m) (w?, w) + R(w),  (1.63)
where R is a sum of contributions of degree of homogeneity larger than or equal to 4.

Proof. Estimate (1.60) follows by an immediate computation. It implies that one does
not lose derivatives when applying Op(m) to a couple (11, u3), i.e. that (1.62) holds
without losing on s on the right-hand side. This allows one to construct the local
diffeomorphism v — w. When one makes act D; — p(Dy) on Op(m)(u, u), one gets
using equation (1.58), on the one hand

Op(m)(p(Dx)u.u) + Op(m)(u, p(Dx)u) — p(Dx)Op(m)(u. u) (1.64)

which, because of the definition of m is equal to u2, and on the other hand contribu-
tions of the form

Op(m)(ctou® + a|ul*u,u), Op(m)(u, cou® + ofu[*u). (1.65)

If we compute the left-hand side of (1.63), we thus see that (1.64) compensates the
quadratic term, and that we are left on the right-hand side with the |u|?u term and
expressions of the form (1.65). If we express u in terms of w = u — Op(m)(u, u),
we shall get the cubic terms on the right-hand side of equation (1.63), and higher-
order terms R(w). These higher-order contributions are essentially of the form

R; = Op(my)(w, ..., w,w,...,w)

withk > 4, my = my(&1,..., &) a smooth function satisfying convenient estimates,
and Ry defined as in (1.61) from

Op(my)(u1, ..., ug) = /eix@”L'“*Ek)mk(&, o)

xuy(§1) ... ug (k) dér - d&.

(2m)k (1.66)
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Then R(w) satisfies estimates of the form
IR@)[lzs < Cllwllyoo.colwlas (1.67)

if w stays in some ball of Wr0-%°j e. plays the role of a perturbation that is at least
quartic. |

The preceding lemma thus reduces the case of a quadratic nonlinearity to a cubic
one. Of course, the cubic term on the right-hand side of (1.63) is non-local, but this is
not a real extra difficulty. Because of that, in order not no be disturbed by unessential
technicalities, we shall pursue the reasoning considering a simple variant of (1.63),
namely

252 (1.68)

with « real, 1, o complex, forgetting any contribution homogeneous of order larger
than or equal to 5 that is in any case easier to treat. Moreover, the special structure
of the nonlinear terms on the right-hand side does not matter except the fact that o
is real.

We have already noticed that a term like u> is not compatible with the action
of L, on the right-hand side. The same holds for u2#%?2. In order to get around that
difficulty, one may try to perform a normal form in order to get rid of cubic or quartic
terms. Nevertheless, unlike the quadratic case, one my not eliminate all these terms.
Actually, to get rid of u2#? for instance, one would have to introduce a new unknown
of the form u — Op(m4)(u, u, i, i), where m4 would be the inverse of

(D: — p(Dy))u = alul*u 4+ aju® + asu

V18- 18+ 1+ g+ 148 - VTH G+ + 87 (169)

But such a quantity vanishes for some values of (§1,...,&4). The idea to overcome
that difficulty is to use “space-time normal forms” introduced by Germain, Masmoudi
and Shatah in [29-32], and Germain and Masmoudi [28] (see also the review paper
of Lannes [58] and the works of Hu and Masmoudi [44], Deng, Ionescu, Pausader
and Pusateri [21], Wang [84] and Deng and Pusateri [22] for further applications and
extensions of the method). These authors define and use space-time normal forms
on the profiles of the solutions, namely the functions e ~/7(Px)y Here, we present
an equivalent approach based on u itself and on microlocal cut-offs similar to those
introduced in (1.50), following [20]. Actually, introducing again from u the unknown
v given by (1.37), we rewrite (1.68) as

(D, — Ophw(xé + p(E)))v = ha|v|]®v + hav? + h%azvzﬁz (1.70)

using notation (1.41). The idea of space-time normal forms may be described in a geo-
metrical way as follows. As we have seen above, a term like v2? in (1.70) may not
be fully eliminated by a usual (time) normal form since (1.69) may vanish for some
values of the arguments. Though, we have seen in (1.34) that v defined by (1.37) is
expected to be a function oscillating as e’ % which means that we expect that v is
“concentrated” on the manifold A defined in (1.45), (1.46). This means that, up to
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remainders having better time decay, we should hope to be able to design a normal
form eliminating the term v22 of (1.70) as soon as (1.69) does not vanish when the
frequencies &1, & (corresponding to v) are set equal to dg(x) (by characterization
(1.46) of A) and &3, &4 (corresponding to v) are set equal to —d¢(x). Notice that
restricted to this subset, (1.69) is just equal to —1, so does not vanish. Of course, in
order to justify that, we need to explain how we may reduce ourselves to the fact that
v may be replaced by a function that is frequency localized on A, up to convenient
remainders, and show how this allows one to prove energy estimates for the solution
of (1.70). Our goal will thus be to prove the following:

Proposition 1.6.3. The solution v of (1.70) satisfies estimates of the form

t
ot ey < @ )llas +C | o )12 0000 (1 + v(z, )l yeo0)
h 1 W)

h(t)
dt
<M ey, —

(1.71)

and
1200t )llz2 = 124001
t
2
€ [ e (14 I ) (172
dt
x vz )z
where h = %, h(zr) = %, ”v”Hﬁ = |[{hDx)*v|12, ”U”W}fo,oo = |[{(hDx)Pov| Lo and

£+ is defined in (1.43).

Remark. These estimates are the translation on v of bounds of the form (1.5) and
(1.27) on u according to (1.37). Consequently, if we prove them, we shall get, as in
the proof of Theorem 1.5.1, that an a priori set of inequalities of the form (1.39) will
imply that the first two of these bounds hold with A replaced by %.

Proof of the proposition. As indicated before the statement, in order to get (1.71) and
(1.72), we have to perform a “space-time” normal form. More precisely, we shall
decompose in the v3, v252 terms of (1.70) each factor v as

UV =0U\ +2Ac, (173)

where v 4 will have better bounds than v, so that cubic or quartic terms involving at
least one factor v 4 will provide remainders. In a second step, we shall get rid of the
remaining nonlinearities o1v3, o2v% ;2 by a normal form process. The function
v, in (1.73) will be defined as in (1.49), except that we cut-oft around an O(1)-
neighborhood of A instead of an O(~/h) one, i.e. we define now

vy =O0py (y(x + p'(§))v. vpe = Opy (1 =) (x + p'(§)))v. (1.74)
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(Actually, the above definition is the correct one when the frequency £ stays in a com-
pact set. It should be adapted for large &, but we forget this technical detail in this
introduction.) Then v, will satisty estimates with an O(h) gain, as we may write it
essentially under the form

e = hOpy (y1(x + p'(EN) (L), (1.75)
where y1(z) = %, so that
laclle = ChlE1v] 2.
Decomposing on the right-hand side of (1.70) v = v + v 5, one has thus
(D; —Op) (x£ + p())v = ha|vPv +hay (vy)® + 3w} 0% +h>S(v), (1.76)

where S(v), coming from monomials involving at least one factor v ., satisfies an
estimate of the form
IS@)l2 = CllvllZeoll£vll2 (1.77)

as long as ||v||zoo stays bounded. Actually, one has to be more careful when making
the above estimates, since A has a degeneracy when & goes to infinity. The preceding
reasoning works for |€| staying in a compact set , or equivalently for x staying in
a compact subset of |—1, 1[. The general case is a little bit more involved, and in
particular estimate (1.77) holds with [|v||ze~ replaced by [[v||w,0-> for some po.

Since making act the operator £ on S makes lose a factor 4~ (see the defini-
tion (1.43) of £4), we get that

R Z+SW)lL2 < ChlvllZeoll€+v] L2, (1.78)

which will be the kind of estimate we want for remainders. By (1.25) with p =1,
rewritten in terms of the unknown v, we have also

hIL+ (V)2 < Chlv|Zeo [ £40] 2. (1.79)

On the other hand, the remaining contributions on the right-hand side of (1.77) would
not satisfy such estimates, but may now be eliminated by normal forms. Actually,
take y in C§°(IR), equal to one close to zero, and define

2

4
ma(x, €1, 8) = [[ 2+ p'EN [ xx = &)

j=1 =3
x[-y1+g-1+8+ 1+8 (1.80)

T N (e ey

This function is well defined, as the term inside the bracket does not vanish on the
support of the cut-off: actually (again forgetting what happens for large frequencies),
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on the support of the cut-oft, §; = do(x) +o0(1), j =1,2, § = —de(x) +o(1),
Jj = 3,4, so that the term inside the bracket is equal to —1 4 o(1), and thus does not
vanish. Consequently, if we define

: / XEETE) 6 ey (1.81)

~ )t
X D5 (E1)D 5 (E2)0A (E3) VA (Ba) dEy -+ dEa,

one obtains that

(D, — Op) (x§ + V1 + £2))(Opy(ma)(vy.....0y)) = vA 4 + remainder,

where the remainder, coming from the nonlinearities of the equation, contains at least
one h factor. Defining in the same way some cubic symbol m3, in order to eliminate
the 23\ term in (1.76), one gets that

(D: — Opy) (x& + v/1+ £2)) (v — hOp,(m3) (V5. v, Vp)

3 (1.82)
— h20py,(ma)(vy,....0,)) = h2S(v) + ha|v[*v

for a new S (v) satisfying (1.77).

In other words, we have reduced ourselves to an equation where the right-hand
side has the same structure as in (1.7) (up to changing the unknown u to v by (1.37)),
modulo a remainder 42S(v) that has better time decay. Using estimates of the form
(1.78)—(1.79), one thus gets, applying L? energy inequalities to (1.82) and denoting

w = v — hOp;, (m3) (v, 15 v4) — K0P, (ma) (vy..... T ).

that
! ) dt
1Lrw(. )z = I €w@. Dz + | Jo@ )lzeollLrv(z. )iz —. (1.83)
1

As one may show that ||£w(z,-)]||z2 is equivalent to | £4+v(z,-)| 2, one does get
an estimate of the form (1.72). [ ]

Remark. As already mentioned, in the proof of Proposition 1.6.3, we argued as if the
frequencies were staying in a compact set. When one makes the reasoning taking into
account what happens also for large frequencies, one gets a lower bound of the bracket
in (1.80) computed for £; in a convenient neighborhood of +d¢(x) by a negative
power of (dg(x)). Since for all j, (do(x)) ~ (&) if (§1,...,&4) is in the support
of (1.80), one may write (dg(x)) ~ 1 + max,(|&1],...,|&4|), and the bounds one
gets in general for a symbol of the form m4 is

ma(x. &1, ... E0)] < C(1+ maxa(&i ... [Ea)" (1.84)
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for some Ny. Because of that, one gets bounds of type
10px(ma) (v, ... D) s < ClIVI, pg.00 V]| 115 (1.85)
h

for any s and with py depending only on Ny. In other words, coming back to the
unknown u, one obtains an estimate similar to (1.62). These inequalities (1.84) and
(1.85) explain why one gets in Proposition 1.6.3 upper bounds involving Whp 0-09
norms instead of L°° ones.

End of proof of Theorem 1.6.1. As for the proof of Theorem 1.5.1, one has just to
bootstrap estimates (1.39), showing that if they hold on some time interval and 4, B
have been taken large enough and e small enough, then they still hold with 4, B
replaced by %, g. We have seen after the statement of Proposition 1.6.3 that this
holds for the first two inequalities (1.39). To show that the last one holds, with B
replaced by %, one argues as in the proof of Theorem 1.5.1. Actually, in that proof,
we did not really use the special form of the nonlinearity in (1.40) (except the fact
that « is real), and the same arguments hold for an equation like (1.68). ]

1.7 Perturbations of non-zero stationary solution

Our main goal in this book is to study the perturbation of a non-zero stationary solu-
tion of a cubic wave equation in dimension one. In this section, we mention some
results and references on that kind of problems. The first set of questions one may
ask is the orbital stability of stationary solutions.

Let us mention first the result of Henry, Perez and Wreszinski [41] that will be
very relevant for us. Consider U a C? function on an interval [a_,a] satisfying
U>0,U(-) =U(ay) =0,U"(ax) > 0. Assume moreover that there is a smooth
strictly increasing function x +— H(x) solving the equation

H"(x) = U'(H(x))

such that

lim H(x) =ax
x—Fo00

and that

Eo = /R(H/;x)z n U(H(x))) dx < +00.

Define for any function ¢ and any g > 0,
44(@) = int [ (@)= H'(x + )% + 4@() — HGx +0)) dix.

One may state the main result of [41] as follows.
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Theorem 1.7.1. There are positive constants r,q, k such that if (¢t,x) +— ¢(t,x) is
the solution of

(32 —-92)p+U'(¢) =0 (1.86)
satisfying ¢(0,-) € H! (R), 3x¢(0,-),3:¢(0,-) € L>(R), and

loc
dg(¢(0.-)) <,

2 2 1.87
/ (8’¢(0’x) + PO L g, x))) v < Eo+ k2, 0P
R 2 2
then ¢ is globally defined and for any t
dg($(1.-)) <. (1.88)

This theorem means that H is orbitally stable, in that sense that an initial data
that is close enough to H gives rise to a solution that remains at any time close to a
translation of . It applies in particular to U(¢) = $(¢> — 1), H(x) = tanh(%)
and ax = %1, i.e. it shows the orbital stability of the “kink”, that is the stationary
solution H(x) = tanh(%) of the ®* model given by the equation

(07 —02)p = ¢ — 9> (1.89)

The question of orbital stability has been then widely studied for other equations. In
particular, we refer to Weinstein [86] for orbital stability of Schrodinger or general-
ized KdV equations. References to earlier works on that topic may be found in the
reference list of that paper.

Once orbital stability is established for a given equation, the next step is to study
asymptotic stability. For Schrodinger equations, the first results are due to Buslaev
and Perelman [5-7] in dimension one and to Soffer and Weinstein [78] in higher
dimension. Buslaev and Perelman consider a one-dimensional Schrodinger equation,
of the form

10,y = =329 + F(y|P)y. (1.90)

Under convenient assumptions on F', one may construct soliton solutions of the equa-
tion, that have the form

e—iﬁg—it(ug-ﬁ-%xvo(p(x — by — tvg) (1.91)

for constants Bg, wg, by, vy and where ¢ is a smooth exponentially decaying function.
The main result of the above references is that if one solves the initial value problem
for (1.90), with initial condition close to the preceding soliton solution, then the solu-
tion may be written when time goes to infinity as a sum of a modified soliton, i.e.
a function of the form (1.91) (with different values of the parameters By, ..., vg), of
a solution to a linear Schrédinger equation and of a remainder that converges to zero
in L2
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In the work of Soffer and Weinstein, one introduces a potential in the linear part
of the operator, i.e. one considers an equation of the form

i0;¢0 =—A¢ + (V(x) + Alp|" )¢ (1.92)

in d = 2 or 3 space dimension, and for 1 < m < %. They assume, among other

things, that the operator —A + V/(x) has exactly one eigenvalue, that is moreover
strictly negative. They show that for E close to that eigenvalue, there is a solution of
(1.92) of the form e "/ £ (x), with ¥ £ smooth and decaying. Then, under some
further assumption, they prove that, if one solves the Cauchy problem starting from
an initial data that is close to e?Y0 E,» for given Eq close to the eigenvalue, yq real,
then the solution may be written at any time ¢ as e()Y¥g() + R(t) where E(¢) is
real, e(¢) is in the unit circle of C and R(¢) goes to zero in a weighted Sobolev space.
We refer to [78] for a precise description of the asymptotics of ¢ — E(¢), e(t) when
time goes to infinity.

Following the above references, a lot of results concerning asymptotic stabil-
ity for solutions to nonlinear Schrodinger equations or Gross—Pitaevsky ones have
been obtained. Limiting ourselves to one-dimensional problems, and without try-
ing to give an exhaustive list of references, one may cite Buslaev and Sulem [8],
Bethuel, Gravejat and Smets [4], Gravejat and Smets [36], Germain, Pusateri and
Rousset [35], Cuccagna and Pelinovski [16], Cuccagna and Jenkins [15], Gang and
Sigal [25-27], Cuccagna, Georgiev and Visciglia [14]. Still in one space dimension,
analogous results have been obtained for (generalized) KdV equations, by Pego and
Weinstein [73], Germain, Pusateri and Rousset [34], Martel and Merle [67-69] and
for Benjamin—Ono equation by Kenig and Martel [48]. Let us point out that for
Schrodinger or gKdV equations, the perturbation of the initial data induces a non-
zero translation speed on the stationary solution, so that the perturbed solution is the
sum of a progressive wave and of a dispersive part. This will be in contrast with
the results we shall obtain in this book, where the bound state that is perturbed will
remain stationary.

Let us discuss now some results more closely related to our work, concerning non-
linear wave equations. A main breakthrough has been made by Soffer and Weinstein
who in [79] consider an equation similar to (1.92), but where the Schrodinger operator
is replaced by the wave (or Klein—Gordon) one in three space dimension, namely

P =(A—V(x)—m>)¢ + 1>, (1.93)

where A is some real constant, m > 0 and V is a smooth decaying potential. One
assumes among other things that —A + V + m? has [m?, +oo[ as continuous spec-
trum and that there is a unique positive eigenvalue 0 < Q2 < m?2. One denotes by ¢
a normalized eigenfunction associated to that eigenvalue, so that for any R, 8 in R,
(t,x) — Rcos(2f + 0)p(x) is a solution to equation (1.93) when A = 0. The main
result of [79] asserts that if one solves (1.93) with small initial data in weighted
Sobolev spaces of smooth enough and decaying enough functions, the solution at
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time ¢ may be written under the form
¢(t,x) = R(t)cos(Qt + 0(1))e(x) + n(t, x), (1.94)

where R(t) = 0(|t|_%) and |[n(t, )]s = O(|t|_%) when ¢ goes to £oo. This result
holds under a special non-resonance condition, Fermi’s golden rule, that we shall
further discuss below in the framework of our problem.

The above breakthrough has been at the origin of many other works. Let us men-
tion in particular Bambusi and Cuccagna [3] who generalized the result of [80] to
a wider framework, namely the case when the operator —A + V(x) + m? has several
eigenvalues instead of just one. Closer to our main result in this book, let us mention
the work where Cuccagna [13] studies asymptotic stability of a kink solution in three
space dimension. More precisely, one considers the solution H of (1.89) as a solution
independent of two of the three space variables of the equation (32 — A)¢p = ¢ — ¢>
on R3. The main result of [13] asserts that if one starts from initial data that are
a small perturbation of (H, 0) by a smooth compactly supported function on R3, then
the solution of the evolution equation may be written as H + ¢(z, - ), where ¢ (¢, )
is O(|t|_%) in L°. The proof uses the fact that in three space dimension, one has
much better dispersive decay than on the real line.

1.8 The kink problem. I

The main goal of this book is to study long time dispersion for small perturbations of
the “kink” H(x) = tanh(%) that is a stationary solution of equation (1.89) that we
recall below

(07 — 009 = ¢ —¢°.
We have seen in the preceding section (see Theorem 1.7.1) that H is orbitally stable,
and one wants to study its asymptotic stability. In order to do so, one writes ¢ under
the form

P(t.x) = H(x) + o(tv/2,xV2) (1.95)

and we aim at describing the asymptotics of ¢, in particular its dispersive properties,
when at initial time ¢ is small in a convenient weighted Sobolev space. By Theo-
rem 1.7.1, we know that ¢ is globally defined. It satisfies by direct computation the
equation

1
(D7 — (D +142V(x)))p = k(x)¢> + §¢3, (1.96)

where 3 ;
V(ix) = ~7 cosh—z(g), Kk(x) = Etanhg' (1.97)

The fact that the linear part of equation (1.96) contains a non-zero potential has two
consequences: first, as seen in the preceding section, the operator D2 + 1 + 2V(x)
may have bound states (and it has for the potential given by (1.97)). Second, even in
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the absence of bound states, that operator does not have nice commutation properties
with the operator L that we used in order to get dispersion in Sections 1.5 and 1.6.

Let us first discuss some results that are known concerning equations of the form
(1.96) either in the case of potentials without bound states, or for equations of that
form with V' = 0 but where the nonlinearities have coefficients that are non- constant
functions of x, as on the right-hand side of (1.97). Such results have been proved
by Kopylova [53] for linear Klein—Gordon equations in a moving frame and, in the
nonlinear case, by Lindblad and Soffer [66], Lindblad, Lithrmann and Soffer [60,61],
Lindblad, Lithrmann, Schlag and Soffer [59], Sterbenz [81]. Very recently, Germain
and Pusateri [33] obtained the most general result in that framework. They consider
a model version of (1.96) of the form

(92 — 32 + V(x) + m?)gp = a(x)¢p?, (1.98)

where a(x) is a function similar to x on the right-hand side of (1.96), i.e. a smooth
function that has finite limits at 0o and whose derivative is rapidly decaying. The
potential V' is assumed to be Schwartz and such that —32 + V' has no bound state.
One of the results of [33] may be stated as follows:

Theorem 1.8.1. Let V' be a generic potential without bound state, m > 0. There is
g0 > 0 such that for any € € 10, g9), equation (1.97) has for any (o, ¢1) satisfying

(V=02 +V +190,01) | s + [ () (/=02 + V + 190, 1) | 1 < &

a unique global solution corresponding to the initial data ¢|;=o = g, 0:¢|r=0 = ¢1.
Moreover, the dispersive estimate

(V=02 +V + 190, ¢1) | oo < Ce(1 + [t])~2 (1.99)

holds and for some small § > 0
lo(e, ) lars + 189G s < Ce(l +1])°. (1.100)

Finally, let us mention that for nonlinearities with coefficients that are rapidly
enough decaying in x, Lindblad, Lithrmann and Soffer [60] (in the case V' = 0) and
Lindblad, Lithrmann, Schlag and Soffer [59] (for generic potentials) could show that
a dispersive bound like (1.99) does not hold in general, and has to be replaced by the
product of the right-hand side with a logarithmic loss.

Remark. The assumption that V' is generic is explained in Chapter 2 below. The
result of [33] is actually more general than Theorem 1.8.1 above. It also applies to
non-generic potentials if one makes in addition evenness/oddness assumptions. Let us
also mention that the question of asymptotic stability estimates on a compact domain
in space, when the linearized equation on the stationary solution has no bound state,
has been addressed by Kowalczyk, Martel, Mufioz and Van Den Bosch [57] for some
models of semilinear wave equations.
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Let us explain the new difficulties one has to take into account to prove a result of
the form above in comparison with the case V' = 0. Clearly, if one wanted to apply
the operator

Dy

(m> + D3)?

(or a “true” Klainerman vector field like ¢, 4+ x9d;) to equation (1.97), its commuta-
tor with the potential V' would generate a new term with coefficients growing like ¢,
which makes the method inapplicable. In order to circumvent such a difficulty, two
approaches are possible. The one implemented by Germain and Pusateri relies on the
use of the “modified Fourier transform”, which is a version of the Fourier transform
well adapted to —A + V instead of being tailored to —A. They introduce then the
profile g of the solution by

g(t, x) = it/ =0 +V+m? (a, —iy -2V m2)¢ (1.101)

and its modified Fourier transform g (¢, £). The analogue of what does work in the case
V' = 0 would be to get estimates of ||dgg (¢, )|/ 2 (which is related to ||Ly n¢| 12
when V = 0). It turns out that, in order to get the most general statement of their
paper, Germain and Pusateri have to introduce a bigger space than L? in which 0:8
has to be estimated, allowing for some degeneracy close to a special frequency. They
have then to combine estimates in that space with normal forms constructed from the
modified Fourier transform.

The approach we use in this book is the one of wave operators. Let us just say
here that, when V is a potential in §(R), without bound states, one may construct
a bounded operator W, on L? such that

L+,m=X+l

WIWy=1d, WiW[=1d and W] (—A+ V)W, =-A.
Applying W to (1.98), one thus gets
(97 — 92 + m*)Wip = Wi(a(x)¢?).
If w = W}, one is thus reduced to an equation of the form
(07 = 02 + m*)w = W (a(x)(Wiw)?), (1.102)

i.e. to an equation for which the linear part has again constant coefficients, and thus
has nice commutation properties relatively to 19, + x9; or to L ,,. Of course, the
drawback is that the right-hand side of (1.102) is no longer a local nonlinearity, but
involves the operators W, Wj. In the framework we shall be interested in, namely
odd initial conditions and odd coefficient a(x), it turns out that W, W may be
expressed from pseudo-differential operators b(x, D), with a symbol b(x, £) such
that g—i(x, £€) is rapidly decaying when |x| tends to infinity. We shall explain in more
detail in Chapter 2 how we treat an equation of the form (1.102). Let us just say
now that if we had a cubic nonlinearity on the right-hand side, one could use directly
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vector fields methods on w. For a quadratic nonlinearity, one has to make use first of
normal forms in order to reduce quadratic nonlinearities to cubic ones. The difference
with Lemma 1.6.2 is that, because of the presence of W, W, a(x) on the right-hand
side of (1.102), one has to consider quadratic corrections of the form (1.61), but with
a symbol m(x, £1,&5) that depends also on x. This introduces new commutators,
involving quadratic operators associated to the symbol %—')’:(x, &1, £&,). Though, as the
latter is rapidly decaying in x, and since we limit ourselves to odd solutions, such
terms form remainders that are not fully negligible, but that may be treated more
easily than in the more general case considered by Germain and Pusateri [33] or
Lindblad, Liihrmann and Soffer [60].

1.9 The kink problem II. Coupling with the bound state

In the preceding section, we discussed an equation of the form (1.98) with a poten-
tial V' that has no bound state. In this section, we go back to the kink problem (1.96),
where the potential V' given by (1.97) does have bound states, so that the preceding
discussion does not apply.

Our starting point has been the paper [56] of Kowalczyk, Martel and Mufioz,
where the authors study the asymptotics of solutions of (1.89) when one takes as
an initial condition an odd perturbation of (H, 0) that is small enough in the energy
norm. They prove that the perturbation of the solution (¢, d;¢) may be decomposed
under the form

(p(1.x). 9:p(t, x)) = (u1 (2, %), uz(1. x)) + (21(2). 22(1)) Y (x), (1.103)

where Y isin § (R) and is a normalized odd eigenfunction of —%3% + V(x), zj(t) are
scalar functions of time and (11 (¢, x), u2(z, x)) is the dispersive part of the solution.
The main result of [56] states that the functions ¢ — z; (¢) decay in time in the sense
that
+o00
| (m0l +1a01) dr < +oo
—0o0

and that the local energy of (11, u,) satisfies

400
/ / ((Bxu1)2 +u? + u%)(t,x)e_"o'xl dt dx < +o0.
—oo JR

At the light of the discussion previously given in the case of small perturbations of the
zero solution of nonlinear Klein—Gordon equations, or for (1.98) with a potential that
has no bound state, the above inequalities raise the following questions: making even-
tually stronger assumptions on the smoothness/decay of the initial perturbation, could
one get an explicit decay rate for the preceding quantities, instead of just integral
inequalities? Moreover, could one obtain decay estimates for ||u; (¢, - )| instead of
just local in space decay?
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A more long term objective might be to obtain for odd perturbations of the kink
solution of (1.89) a description as precise as the one that holds when V' = 0 or when
V is a potential without bound state. We are far from being able to achieve that in this
paper, where as a first step we aim at describing the perturbed solution up to time s~*
if € is the small size of the smooth decaying perturbation of the kink at initial time.
Recall that if we look for solutions of (1.89) under the form (1.95), we get that the
perturbation ¢ satisfies (1.96), with notation (1.97). We already mentioned that the
Schrédinger operator —8)26 + 2V(x) has discrete spectrum: it has two negative eigen-
values —1 and —% and absolutely continuous spectrum [0, +oo[. Eigenvalue —1 will
not be of interest to us as it is associated to an even eigenfunction, while we solve
(1.96) for odd initial data. Consequently, restricting ourselves to odd solutions, one
may decompose the solution of (1.96) as ¢ = P,.¢ + (@, Y)Y, where P, is the pro-
jector on the absolutely continuous spectrum [0, +oo[ and Y is an (odd) normalized
eigenfunction associated to eigenvalue —%. Setting a(t) = (Y, ¢), one may deduce
from (1.96) that (a, P,.¢) satisfies a coupled system of ODE/PDE (see (2.9) in Chap-
ter 2).

Our main result asserts the following: Let ¢ > 0 be given and consider (1.96)
with initial data ¢|;=1 = €@y, 0:¢|r=1 = @1 With (g, ¢1) satisfying for some large
enough s,

lpollZrssr + llnllzrs + lIx@ollZ + el < 1. (1.104)
Then, if ¢ < g¢ is small enough, the decomposition ¢(t,-) = Pace(t,-) +a(t)Y of
the solution of (1.96) satisfies

la(®)] + |a'(t)] = O(e(1 + 16%)73),
I Pacg(t, )|z = OG™2(2VD)Y),

where 6’ € ]0, %[, as long as t < e~*¥¢. Let us mention that we limit our study to
positive times (that does not reduce generality) and that, in order to simplify some
notation, we take the Cauchy data at# = 1 instead of t = 0. Moreover, the statements
we get in Theorem 2.1.1 below give more precise information that (1.105). We just
stress here the fact that (1.105) provides the information we are looking for, namely
an explicit decay rate for a and P,.¢, up to time s~47¢.

We notice that the dispersive estimate obtained for || Py || oo is pretty similar to
the bound in &7~ 2 that holds for small solutions of equations (32 — 92 + Du = N(u).
Here, when ¢t < ¢7#7¢_ we get that

(1.105)

cpr 1
[ PacpllLoe = 0(8201 2),

i.e. an estimate in c(s)t_%, with ¢ (¢) going to zero with zero. Of course, if ¢ goes close
to £ 4, the small factor in front of =% in the second estimate (1.105) gets closer and
closer to one, and this explains why our result is limited to times that are O(s~4%¢).
We shall comment more on that below.

Let us remark also that for dispersive estimates of the form (1.105), there is
a “trivial” regime, corresponding to ¢ < ce~2. For such times, the ODE satisfied
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by a(t), from which we shall deduce the first bound (1.105), is in a small time regime,
before any singularity could form. On the other hand, to reach a time of size =470,
one has to use the structure of that ODE, namely exploit Fermi’s golden rule that we
shall discuss in Chapter 2 below, in order to exclude blowing up in finite time, and
prove the decay estimate (1.105).

Let us comment more on the limitation to times t = O(s~*%) which contrasts
with the fact that, when the potential has no bound state, one may obtain dispersive
estimates up to infinity. The new difficulty, when bound states are present, comes
from the fact that in (1.105), a(¢) and a’(¢) have a decay in W which is larger
than the rate in it that holds for dispersive bounds in the absence of eigenvalues.
This has consequences on the estimates satisfied by the dispersive part of the solu-
tion P,.@(t,-). Actually, applying P,. to equation (1.96), one will get an equation
that, at first glance, might seem pretty similar to (1.98), since on the range of P,
—d2 + 2V will have no bound state. Though, a major difference appears on the right-
hand side: if, for instance, one plugs in the quadratic term of (1.96) the decomposition
o(t,-) = Pyeo(t,-) +a(t)Y, one might get a source term

a(t)? Poc(k(x)Y?), (1.106)

where a(¢) has only an O(it) decay for 7 >> £ (ant not a it bound). This has
dramatic consequences on the solution to the equation itself. Actually, the solution
P,.p will have to encompass the solution of the linear equation

(D7 — (D2 +142V(x))w = a(t)? Pac(k(x)Y?)

with zero initial data. We s}}all solve this equation, but will be able to obtain for its
solution only a bound in =2 (¢2 \/1?)9/ for t < &7*%0 and some 6’ > 0. When doing
so, we are not able to obtain O(¢~2) bounds for w along two lines

2
izi\ﬁ
t 3

when ¢t > ¢7*. Actually, one might expect a logarithmic loss along these two lines,
similar to the ones in the work of Lindblad, Lithrmann and Soffer [60] and Lindblad,
Lithrmann, Schlag and Soffer [59].

Let us also stress on the fact that, besides (1.106), other new terms appear in
comparison to the case of potentials without bound states. For instance, a contribution
like Pa(k(x)(Pic@)a(t)Y) needs also a specific treatment, as it is not amenable to
standard normal forms treatment. We describe that in more detail in Section 2.7 of
Chapter 2.

To conclude this introduction, let us point out the results of Kopylova and Komech
in [54,55] concerning asymptotic stability of a (moving) kink for a modified version
of (1.89). In their model, the Hamiltonian of the equation is tuned in such a way that
the projection of equation (1.96) on the absolutely continuous spectrum has coeffi-
cients in the nonlinearity that decay when x goes to infinity (instead of converging
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to some constant) This allows the authors to obtain a description of the dispersive
behavior of the corresponding solution for any time.

Finally, let us refer to the recent paper of Chen, Liu and Lu [10] concerning
asymptotic stability of kinks for sine-Gordon equations. Using the integrability of
that equation, they may prove soliton resolution for generic data and show the full
asymptotic stability of kinks under space decaying perturbations (see Corollary 1.5
of their paper). In particular, the difference between the solution and the moving kink
is shown to decompose, when time goes to infinity, as the sum of an O(I_%) contribu-
tion that involves a logarithmic phase correction and of a more decaying remainder.



Chapter 2
The kink problem

2.1 Statement of the main result

Consider ¢ : R x R — R a global solution to the nonlinear wave equation
(02 —92)p = ¢ —¢°. 2.1)

The function X

H(x) tanh( ﬁ> 2.2)
is a stationary solution of (2.1), and we are interested in describing the dispersive
behaviour in large time of solutions to (2.1) corresponding to initial data that are
small, smooth, odd and decaying perturbations of the state H. It is known that this
state is orbitally stable in the energy space by Henry, Perez and Wreszinski [41], and
for odd perturbations in that space, asymptotic stability with space exponential weight
is proved by Kowalczyk, Martel and Muioz [56]. This result describes the dispersive
behaviour of the perturbation on compact space domains, but does not give insight
into its behaviour in the whole space time. Our goal is to obtain information when
(¢, x) describes I, x R, where I, is a time interval of length O(¢~4%?), & being the
size of the initial data in a convenient space of smooth decaying functions.

We shall look for solutions to (2.1) under the form

¢(t,x) = H(x) + ¢(tV2,x2). (2.3)
We get for ¢ the equation
1
(D7 — (D +142V(x)))p = k(x)¢> + §¢3, (24)
where D; = ll% D, = %% and
3 3
V(ix) = ~21 cosh_z(g), K(x) = Etanh(g). 2.5

The operator —32 + 2V has [0, +00[ as its continuous spectrum and has two eigen-
values —1 and —%. The first one is associated to an even eigenfunction, and the second
one to the odd normalized eigenfunction

Y(x) = ? tanh(%) cosh™! (g) (2.6)

(see Nikiforov and Uvarov [72] and Kowalczyk, Martel and Muifioz [56]).
We denote by P,. the spectral projector on the continuous spectrum, restricted
to odd functions. The spectral projector on the eigenspace associated to the eigen-
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1 -
value —7 is ¢ = (@, Y)Y so that

Pac(p =¢— (‘/),Y)Y, (27)
where (-, -) denotes the L? scalar product. If ¢ solves (2.4), we set
a(t) = (¢.Y) (2.8)

so that (2.4) may be written
(th - %)a(r) = <Y,K(x)(a(t)Y + Pac<p)2 + %(a(t)Y + Pac<p)3>,
(D7 — (D2 +142V(x))) Pacyp (2.9)
= PaC(K(x)(a(t)Y + Pug)’ + %(a(I)Y + Pa0¢)3).

Our main result asserts that, up to a time of order ¢, the dispersive part P,.¢ of
(2.9) has a time decay in uniform norm of magnitude t_li, and that the function a(t)
in (2.8) has some oscillatory behavior, with decay in ¢~ 2. More precisely, we have:

Theorem 2.1.1. There is pg € N and for any p > po, any ¢ > 0, any 8’ € ]0, %[, any
large enough N in N, any large enough s in N, there are gy € |0, 1[, C > 0 such that
for any couple (¢g, 1) of real-valued odd functions in HST1(R) x H*(R) satisfying

lpoliZrssr + i lZrs + lxgolln + lxeill7> < 1, (2.10)

the global solution ¢ of

(D2 — (D2 + 14 2V(0)g = k()@* + ~°.

2
Pli=1 = &¢o, @11
dr@lr=1 = €91
satisfies when & € 10, o[ the following bounds for any t € [1,e~4T€]: The oscillatory
part a of ¢ given by (2.8) may be written
3 3
a(t) = " F gy (1) — e T g_(1), (2.12)
where
g2 (0] < Ce(l+162) 72, [0,82(1)] < Cor™2 (1 +16%)72, (2.13)

The dispersive part P,.p(t,-) satisfies
| Pocg(t, ) lwoce < C173(2N/1)"
1) 72N Pacg(t. ) lwoee < C1=3 (/1) (2.14)
1) 72N Poc D1 (. o100 < C173 (207,
where | |lwo.co = [[{Dx)?V || oo,
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Remarks. We make the following observations.

o The first estimate (2.14) shows that, up to time essentially equal to ¢~*, the dis-
persive part of the solution decays like t_%, which is the behavior of small global
solutions to nonlinear Klein—Gordon equations (see [18,19,64,82]). Nevertheless,
in that case, the upper boundlis in 0(81_%), while in (2.14), we have a degeneracy

of the factor multiplying =2 when ¢ goes to 4.

. . . _1 .
e We construct in the proof some approximate solutions that are o(¢ ~2) for times
t < & *T¢ and ¢ small. To go past that time seems to require extra arguments —

like devising more accurate approximate solutions — in order to get a useful point-

wise control of P, fort > 74,

¢ Our estimates are consistent with the ones of Kowalczyk, Martel and Mufioz [56]
in time O(¢™*). Actually, it follows from (2.12), (2.13) that if p > 2,
g—4+c

/ la(t)|? dt < CeP™2
1

and
g—4+c

[ (007 Pt D + 100028 D Papte 1 ) dir < €
1

for large enough N. These estimates are in accordance with those proved in [56]
(when p = 4 for the first one) (see Theorem 1.2 in that reference).

2.2 Reduced system

We shall conjugate the second equation (2.9) by the wave operator W, associated
to —%8)26 + V(x). We discuss in Appendix A.l below the properties of such an opera-
tor. According to Proposition A.1.1 of that Appendix, it may be written, when acting
on odd functions, under the form

Wi = b(x,Dy)oc(Dy), (2.15)
where b(x, £) is a symbol of order zero satisfying estimates (A.8) and
C(E) = €i9($)]l§>0 + e—i9($)15<0

for some odd smooth real-valued function 6. Moreover, if we set A = —% 32 + V(x),
Ay = —%8%, one has by (A.6) and (A.7), for any Borel function m on R,

m(A) P = Wem(Ag)WS,  m(Ag) = Wim(A)W,

* " (2.16)
WiW! = Py, WiW, =1d;2
so that applying W on the second equation (2.9), we get
(D? = (D2 + D)W Pacp) = W (k(x) (@)Y + Pucp)?)
(2.17)

+ Wj:(%(a(t)Y + Pacg0)3).
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Let us define
w = b(x, Dx)* Pyo. (2.18)

Since P,.¢ is real valued, and since because of the symmetry properties (A.9) of
b(x,&), b(x, Dy) and b(x, D,)* preserve the space of real (resp. even, resp. odd)
functions, w is still a real-valued odd function. As ¢(Dy) o ¢(Dx)* = 1d,

Pyp = W+W-:Pac(p =b(x, Dy)w

2.19
c(Dx)W? Pucg = w, @19
so that making act ¢(Dy) on (2.17) we see that w solves
(D? — (D2 + 1))w = b(x, Dx)*(k(x)(a(t)Y + b(x, Dy)w)?)
(2.20)

+ %b(x, D)*(a(®)Y + b(x, Dy)w)’.

We shall study from now on the system given by the first equation (2.9) and (2.20).

We define .
Wo = b(x7 Dx) Pac(p07

w) = b(X, Dx)*Pac§01-

Since by (2.15) and (2.16), Pyc = b(x, Dy) o b(x, Dx)*, and since b(x, D) and
[x,b(x, Dy)] are bounded on Sobolev spaces, we get from (2.10) that

2.21)

lwoll o1 + lwiliFzs + lxwollz + lxwillz> < Co (2.22)
for some constant Cy. Denote by p(Dy) the operator

p(Dy) = /14 D2 (2.23)

and introduce complex-valued odd unknowns

Uy = (Dz + p(Dx))Uh

_ (2.24)
u_ = (D, — p(D))w = —iy.
If I = (i1,....ip) is an element of {—, +}7, we shall set
ur = Uy, ..., ui,) (2.25)
and we denote also uy ;j = u;;, so that equivalently
us :(ul,l,...,ul,p). (2.26)
Let us write (2.20) under the equivalent form
2 3
(Di — p(D))uy =Y Flaiuyu ]+ Y Fllazuy.u_], (2.27)

Jj=0 Jj=0
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where F j2 (resp. Fj3) will be made of terms that are O(¢™!) (resp. O(t_%)) in L if
the bounds (2.12)—(2.14) hold true, and are given by the following:

¢ Contribution depending only on @ and not on u 4 are
Fylazuy,u-] = Fgla] = a(t)*b(x, Dx)* (k(x)Y?),

2.28
Flla;uy,u_] = Fila] = la(z)3b(x,Dx)*(Y3). (228

+ Contributions that are homogeneous of degree j > 0in (v, u_) are given by the

following quantities, where if | 1| = (i1, ...,ip), weset |[I| = pand ef =iy -+~ ip:
F [aiuy u] =a()>/ Z 1[u1 j =12,
1
= (2.29)
F [aiuy u] =a@)>/ Z 1[u1 j=12,3,
l=j

with linear terms in (44, u—)
F2;lur) = erb(x, Dx)* (Y()c(x)b(x, Dx)p(Dx)"ur),

3 3 . ) . (2.30)
Filur] = jerb(x. Dx) (Y(x)*b(x, Dx) p(Dx)"'ug),
quadratic terms in (¥4, u_)
2
1
Fzz,l[ul] = Zglb(xv Dy)* (K(x) 1_[ b(x, Dx)p(Dx)_lul,Z),
= 2.31)
3 3 * -1
FZ,I[MI] = gb‘]b(x, D)"Y (x) l_[ b(x, Dy)p(Dx) Ure |»
(=1
and a cubic term in (U4, u—)
3 1 * 2 -1
F3 ) = feerb (e, D) | [ [b0x, Do) p(Dx)hure ). (2.32)
{=1

Notice that since « and Y are odd, as well as u4, and b(x, D) preserves odd
functions, sz, Fj3 are odd functions.

Let us write now the first equation in (2.9) in terms of a, u 4+, u_. We define
V3 V3 _
ay(t) = (D, + 7)a, a_(t) = (D, _ —)a — —a, (2.33)

2
‘/Tg (a4 — a—) and we rewrite the first equation (2.9) as

2
(D - ﬁ)a+ = (a4 —a ) &jfus ]

2
Jj=0

3
+ Z(a+ —a )Ty ul,

Jj=0

so thata =

(2.34)
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where the terms independent of u 4 are

1
Dy = 5(Y,KYZ),
(2.35)
V3
Ip=-—(Y,Y?
0= g (1YY
and for j > 1,
[, u Z @ rlurl,
= (2.36)
jlupu] =" Tjsug]
=y
with linear expressions
V3 _
@1 7[ur] = ——er(Y, Yeb(x, Dx) p(Dx) 'uy),
13 (2.37)
Iirlur] = ZW(K Y?b(x, Dx) p(Dx) "up),
quadratic expressions
| 2
D2 r[ur] = ZEI<Y’K£[ b(x, Dx)P(Dx)_1“1,5>,
- (2.38)
V3 -
Do rlur] = ——er{Y.Y [ T2 D) PP ure),
(=1
and cubic quantities
| 3
D3 rur] = E81<Y’e—l_[1b(x’ Dx)P(Dx)_1M1,£>. (2.39)

We shall study from now on system (2.27), (2.34) with initial data at t = 1. Accord-
ing to (2.24), (2.21), (2.22), (2.33) and the fact that by (2.8), a(1) = (g¢o, Y) and
dra(l) = (e, Y), with g, ¢ satisfying (2.10), we may assume

Uili=1 = 8Uty, a4|i=1 = ea4. (2.40)
where u 1 ¢ is a complex-valued odd function in H*(R, C) satisfying
72 =Cg,

lat,ol < Cg

2.41)

for some fixed constant Cy.
In the following sections, we shall describe the main steps of the method of proof
of our main result.
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2.3 Step 1: Writing of the system from multilinear operators

In Section 2.2, we have reduced (2.9) to the system made of equations (2.27) and
(2.34). One may rewrite (2.27) on a more synthetic way as

(Di = p(Dx))uy = Fgla] + Flal+ Y Op(mo r)lur]
2<|I|=<3

+a() Y Op(my ] (2.42)

1<|I|=2

+a(t)® > Op(m)y p)lur]

1I|=1

with the following notation: The term F§[a] (resp. Fg[a]) is the quadratic (resp.
cubic) contribution in a obtained setting w = 0 on the right-hand side of (2.27). It has
structure a(t)%Z, (resp. a(t)>Z3) for some § (R)-function Z, (resp. Z3). The other
terms on the right-hand side of (2.42) are expressed in terms of multilinear opera-
tors Op(m)(u1,...,up), defined if m(x, &, ...,&,) is a smooth function satistying
convenient estimates, as

Op(m)(uy1,...,up)

= G [ O )

p (2.43)
< [1#;@) dé - dg,.

J=1

On the right-hand side of (2.42), we denote by I p-tuples I = (iy,...,i,) where
ig = £ and set |I| = p. Then u; stands for a p-tuple u; = (u;,,...,u;,) whose
components are equal to u or u_ defined in (2.24). The symbols my s, m’l,l, m’z’l
are functions of (x,&,...,&,) with p = |I|. We do not write explicitly in this pre-
sentation of the proof the estimates that are assumed on these functions and their
derivatives: we refer to Definition 3.1.1 below and to Appendix B for the precise
description of the classes of symbols we consider. Let us just say that symbols mg,
are bounded in x, while their d,-derivatives are rapidly decaying in x. This comes
from the fact that the symbol b(x, &) and the functions «, Y in (2.20) satisfy such
properties. On the other hand, symbols m’1 I m’z’ ; (and more generally any symbol
that we shall denote as m’ in what follows) decay rapidly in x even without taking
derivatives. It turns out that operators with decaying symbol in x acting on functions
we shall introduce below will give quantities with a better time decay than operators
associated to non-decaying symbols.

2.4 Step 2: First quadratic normal form

The goal of the whole paper is to obtain energy estimates for the solution u 4 to (2.27)
and a4 to (2.34).
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As we have seen in Section 1.6 of the Introduction, the first thing to do in order
to get Sobolev estimates for an equation like (2.27) is to eliminate the quadratic
contributions ZI I|=2 Op(mo,r)[ur]. We do that through a “time normal form” a la
Shatah [76] and Simon and Taflin [77] (see also for one-dimensional Klein—Gordon
equations Moriyama, Tonegawa and Tsutsumi [71], Moriyama [70], Hayashi and
Naumkin [39] and the very recent works of Germain and Pusateri [33], of Lindblad,
Lithrmann and Soffer [60] and of Lindblad, Lithrmann, Schlag and Soffer [59]). Actu-
ally, we construct new symbols (1729,7)|7|=2 such that

(D¢ — p(Dx)) (M+ - Op(ﬁio,l)[ul])

11]=2
= Fglal + Fglal+ Y Op(mo,)url+ Y Op(my lus]
’ 0! 3<|I|<4 [I]=2 > (2.44)
3
+Y a@’ Y Op(m) url.
= 1=|I|=4—j

where on the right-hand side, we eliminated the quadratic contributions Op(mg, 1)[ur],
but made appear new quadratic terms Op(mg, lug] given in terms of new sym-
bols m{)’ ; that decay rapidly when x goes to infinity. These corrections come from
the fact that, at the difference with a usual normal form method where one elim-
inates quadratic expressions like (2.43) with p = 2 and a symbol m(&;, &) inde-
pendent of x, we have here to cope with symbols m(x, &1, &;). This x dependence
makes appear some commutator, given essentially in terms of Op( (x,£1,&)), with
a symbol rapidly decaying in x. These commutators are the new quadratic terms
Op(m(), 7)[ur] on the right-hand side of (2.44). As already mentioned, such expres-
sions will have better time decay estimates than the quadratic expressions given by
non-space decaying symbols that we have eliminated, and are actually better than
most remaining terms on the right-hand side of (2.44). They are not completely neg-
ligible, but will be treated only at the end of the reasoning.

2.5 Step 3: Approximate solution

Our general strategy is to define from the solution u 4 of (2.44) a new unknown % 4
that would satisfy similar estimates as those of the bootstrap (1.39) of the introduc-
tion. More precisely, we aim at constructing a new unknown %4 for which we could
get, for t € [1,e7#T¢] with ¢ > 0 given, bounds of the following form:

it (. )| as = O(et?), (2.45)
IL 4t (2,2 = O((2V/0)14), (2.46)
(82«/5)9/)

i (2.47)

i+ .Y lwoeo = O(
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where § > 0 is small, 0/ < 0 < % with 6’ close to %, s > p > 1, and where we
denoted ||w|we.co = ||[{Dx)Pw| roo. The first estimate (2.45) is the one that would
follow by energy inequality for the solution of (1.32), assuming that (2.47) holds
(since, for t < e747¢, (2.47) implies a bound in c(s)t_%, with c(g) going to zero
when ¢ goes to zero). In the same way, assuming (2.47) and assuming that 7 solves
an equation of the form (1.26) with p = 1, one could bootstrap a bound of the
form (2.46). Finally, an estimate of the form (2.47) will have to be deduced from
(2.46) constructing from the PDE solved by 74 an ODE with remainder term con-
trolled from (2.46).

Of course, the right-hand side of (2.44) is far from having the nice structure of the
one of (1.32), and this is why we shall have to modify the unknown 4 in order to
eliminate all bad terms on the right-hand side of (2.44). In Chapter 4 of the paper we
shall get rid of the contributions FZ[a], Fg[a]. These functions are bounded as well
as their space derivatives by =1 (x)™" for any N. Clearly, if we make act L on
them and compute the L2 norm, we shall get an O(1) quantity. If we were integrating
such a bound, we would deduce that || L1u (¢, )| ;2 = O(f), amuch worse estimate
than the one (2.46) we want. We shall thus remove from u - the solution of the linear
equation with force terms FZ[a] + Fgla], i.e. we shall solve

(D: — p(Dx))U = Fgla] + Fglal.

(2.48)
U|z=1 =0

and then make the difference between (2.44) and (2.48) in order to eliminate FO2 [a]
and F [a] from the right-hand side of the new equation obtained in that way. Actually,
one needs to take also into account at this stage bilinear terms in (a, u) in (2.44). We
thus construct in Proposition 4.1.2 an approximate solution uzfp of

(Dr = p(D))u® = Fg (a™) + F (@)

+ a*P? Z Op(m'y_ ;) (u}™) + remainder, (2.49)
[I|=1

app —
uJ,- |t=1 - O»

where a*? is some approximation of the function a(¢) solving the first equation (2.9).

Let us explain what are the bounds satisfied by the approximate solution ui‘_’p of
equation (2.49) that we obtain in Proposition 4.1.2 using the results of Appendix C.
We decompose uy’ = u'" 4+ u”*. The term u'{" satisfies the kind of estimates
we aim at proving, namely (2.45)—(2.47) (and actually slightly better ones) for times
t = O(¢7*¢). On the other hand, inequalities (2.45) and (2.47) hold for u”* (and
even actually slightly better ones), but L u” e_‘fp does not verify (2.46). On the other

hand, L4 u” ‘ffp obeys good estimates in L* norms, of the form
| L4u" P |lwr.co = O(log(l + 1) log(1 + %1)) (2.50)

that will allow us to estimate conveniently nonlinear terms containing u” ifp. Let us
stress that the limitation of our main result to times O(¢~%) comes from the degen-
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eracy of bound (2.46) for L u’ ?fp when ¢ becomes larger than e~*. We do not claim
that, in such a regime, an estimate of the form (2.46) would be optimal. But we remark
that in the construction of u’ il_ap made from the results of Appendix C, the main contri-
bution comes from quantities that have pretty explicit bounds: see Proposition C.1.4
and in particular bound (C.40) with @ = 1 (that gives the main contribution to u’ ?_lfp
and (C.42) with w = 1 (that gives the main contribution to L1’ é_?:p). If we extrap-
olate estimate (C.40) for t > ¢~* (which is of course not legitimate, as we prove it
only for times O(g™*)), we see that outside a conical neighborhood of the two lines
x = £1/2/3, an estimate of [u* (¢, x)| in O(£2¢~%) would hold. On the other
hand, along these two lines, a degeneracy happens, and we do not expect to be able
to prove that, for ¢ > e=*, [u’FP (¢, £t /2/3)|/7 remains small (or even bounded).
Because of that, we do not hope to push estimates of the form (2.45)—(2.47) for such
times, without taking into account first some extra corrections. In particular, going
back to (1.105), we do not expect an O(I_%) bound for | P,.¢(¢, x)| along these lines.

Notice that such a phenomenon cannot be detected using weighted space esti-
mates an in [56]: actually, along the lines x = +7./2/3, a space decaying weight is
also time decaying and kills bad bounds of u’ f‘,‘_’p along these lines. We shall comment
more extensively on that issue in Section 2.10 below.

In addition to the proof of estimates of the form (2.45)—(2.47), we need, in order
to obtain (1.105), to study the solution of the first equation (2.9). We do that in Sec-

tion 4.2 of Chapter 4. Setting

= —a,,

as(t) = (D, + ?)a a_(t) = (Dt - ?)a

the first equation (2.9) may be rewritten as

3 2 .
(Dz - %)CM =) (ar —a-)> 7 @;fut,u-]
0

/= 2.51)

3
+ D ar —a )Ty u],
j=0

where ®;,I"; are expressions in the solution u4 to (2.42) or (2.44). The goal of
Section 4.2 is to uncover the structure of a.. We write

ap(t) = a™ (1) + 0(3(1 + t6%)73),
where a’* (¢) has structure (4.97), that implies in particular
app it3 .
a;"(t) = e'" "2 g(t) + more decaying terms. (2.52)
The main goal of Section 4.2 is to prove by bootstrap that g(¢) satisfies bounds

180 = O(e(1 +16%)73),  [d:g(t)] = O(™3). (2.53)
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(Actually, we get more precise bounds for d; g: see (4.99)). These bounds are obtained
showing that (2.51) implies that g satisfies an ODE

D,g(t) = (a — iz/—gg?z(ﬁ)z)lg(t)|2g(t) + remainder, (2.54)

where Y is some explicit function in § (R) and « is real. The coefficient of the cubic
term on the right-hand side comes from some of the terms on the right-hand side
of (2.51) where we replace u+ by the approximate solution u"fp determined in Sec-
tion 4.1. The main contribution to uz_l,fp, integrated against an S (R) function, may be
computed explicitly in terms of g (see Proposition 4.1.3), and brings the right-hand
side of (2.54). The key point in that equation is that 1?2(«/5)2 < 0. This implies that
g satisfies bounds (2.53) for ¢ > 1 if g(1) = O(e). The inequality Y>(v/2)2 < 0 is
nothing but Fermi’s golden rule. Actually, ¥5(+/2)% < 0 holds trivially and the key
point is to check that Y>(V/2) = 0. This reduces to showing that some explicit inte-
gral is non-zero. Kowalczyk, Martel and Muiioz checked that numerically in [56]. In
Appendix G, we compute explicitly this integral by residues.

2.6 Step 4: Reduced form of dispersive equation

The goal of this step is to rewrite equation (2.44) in terms of a new unknown 74 that
will satisfy estimates (2.45)—(2.47). We define

Uy =uq — Z Op(rig,r)(ur) —u'* —u"¥, (2.55)
|I]1=2
and set 1i_ = —Z. Making the difference between (2.44) and (2.49), we show in
Section 5.2 (see Proposition 5.2.1) that 1 4 satisfies
(D: — p(Dy))ii4 = > Op(rity ) (it u )

3=|I|=4,1=01",1")

+ > Oplmp )i, ufh)
[I|=2,1=(",1")

+a™(1) Y Op(m ) (iir) (2.56)
|I|=1
1 . 3 . 3 \2
+ g(e”ég(t) + e‘”ég(t)) > Op(mg ;)(iir)
1I]=1

-+ remainder,

where:
e For3 <|I| <4, my are symbols my(x,&1,....&), p = |I| = |I'| +|1"| which
are O(1) as functions of x, but O({x)™°°) if one takes at least one d,-derivative.

o Forl <|I] <2,my ;, m) ; are symbols thatare O((x)~>°), even without taking
any derivative.
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¢ Function of time g has been introduced in (2.52) and gives the principal term in
the expansion of aifp (t) oray(z).

e Function g®*P(¢t) = “/ngzfp (t) — a*P(t)), where

a™ (1) = "7 g(1) + waeV3g(t)? + wolg()2 + w_re " V3g(0)" (2.57)

with convenient constants w;, wg, w— and a®?P(¢) = —c_le_‘fp(t).

We cannot derive directly from equation (2.56) estimate (2.46) for i1, as the
right-hand side of (2.56) has not the nice structure (1.32). Before applying an energy
method, we shall have to use several normal forms in order to reduce ourselves to
such a nice nonlinearity. As a preparation to that step, we show in Corollary 5.2.3 that
(2.56) may be rewritten under the following equivalent form:

2 2
(Di = p(D0))it = Y &2 0p(b )ity = Y €% Op(b] i~

j=-2 J==2

= > Op(iy )iy ufy) + ) Op(mg )(iir)

3<|l|<4,1=0",1") |7]=2 (2.58)
+ > Op(mpy )iy u'F)

I=(1",17), 1'|=|1"|=1

+ Z Op(m{,j,)(u’;pp’l) + remainder,
[I]=2

where, in comparison with (2.56), all linear terms in #% 4, #— have been sent to the left-
hand side, and are expressed from symbols b}’ 4 (2, x,§) that are rapidly decaying in x
at infinity. Moreover, on the right-hand side, we still use the convention of denoting
by mg, ; symbols rapidly decaying in x, while 772; are O(1) in x, with d.-derivatives
rapidly decaying in x. Furthermore, in the last two sums in (2.58), we replaced u’?"?
by u/@p-1, which is actually the main contribution (in terms of time decay) to u'*P.
If wesetu = [';Jr ], we may rewrite (2.58) as a system of the form

(D; — Po— V)it = Ms(ii, u™™) + Mq(ii, u™™)

o ) (2.59)
+ M, (i1, u'*P") + remainder,
where
0 —p(Dx) |’
V is a 2 x 2 matrix of operators of the form
2
i3
V=3 T 0p(Mj(t.x.£) (2.60)

j==2

with M} 2 x 2 matrix of symbols whose entries are given in terms of the b}, in
(2.58), and where the 2-vectors M3 (resp. M, resp. M) come from the cubic (resp.
quartic, resp. quadratic) terms on the right-hand side of (2.58).
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To obtain the wanted estimates (2.45) and (2.46) for i, we have next to reduce
(2.59) to an equation essentially of the form (1.32). This is the object of Step 5 of
the proof.

2.7 Step 5: Normal forms

Equation (2.59) has not structure of the form (1.32), in that sense that if we make act

with L_ = x — tp’(Dy), first L does not commute to the potential term V, and
second the action of L on the nonlinearities on the right-hand side does not give
quantities whose L? norm is O (||#|? o || L1 .2) (Which is essentially necessary if we
want to get (2.46) by energy estimates). To cope with the lack of commutation of L
with 'V, we shall construct a wave operator and use it to eliminate 'V by conjugation
of the equation. This is similar to what has been done to pass from the second equa-
tion (2.9), that was involving the potential 2V (x) to equation (2.17), where there was
no longer any potential. The difference here is that 'V given by (2.60) is time depen-
dent (with O(Z_%) decay). We thus cannot rely on existing references, and have to
construct by hand operators B(¢), C(¢) (depending on time) such that

C(t)(D;— Po— V) = (D; — Po)C(2). (2.61)
In that way, if % solves (2.59), then C(¢)u solves the new equation without potential

(Dy — Po)C(t)u = C(t) M3 (i, u™) + C(t) M4(ti, u™®)

e . (2.62)
+ C(t)M5 (1, u"™ ") + remainder

(see Proposition 6.1.2). Moreover, since we want to pass from an L? bound on Lii to
an L2 bound on LC(¢)i and conversely, we need to relate L o C(¢) and L, proving
that

LoC(t)=C(t)o L+ Ci(2), (2.63)

where C () is bounded on L2 uniformly in ¢ and C;(¢) is bounded with a small
time growth when ¢ goes to infinity. The construction of operator C(¢) is made in
Appendix E by a pretty standard series expansion. We notice however that we need
to use in that construction the fact that we are dealing with odd functions u.

Once reduced to (2.62), we still have to handle those nonlinear terms on the right-
hand side that do not have a structure of the form (1.32), i.e. we have to cope with
nonlinearities that have the same structure as in the model (1.68) of Section 1.6 of the
introduction. We have seen there that this problem may be solved using “space-time
normal forms”. We shall follow essentially the approach of [20], already described in
Section 1.6 of the introduction, that we have to adapt to the more general operators
M3, M4 on the right-hand side of (2.62). Remark that the components of the vectors
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M3, My are, according to (2.58), given by expressions Op (1) (2, . . . ,ui’p), where
m(x,&1,...,&,) is a symbol that is O(1) when |x| goes to infinity, but O({x)~>) if
one takes at least one d,-derivative. We have to distinguish between to type of terms,
the characteristic and the non-characteristic ones. The former correspond to the case
when, among the p arguments of Op(m)(ti s, ..., ui’p), pTH are equal to 74 or uif’p
and pT_l are equal to 1_ or u®P?,

In the case of simple monomial nonlinearities, example of characteristic terms
are given by the right-hand side |u|?u of (1.32), which, when making act L on
it, may be estimated in L? by [|u4(7,-)||7 oo [| L4+ (7, )| z2. If iz were independent
of x, the same would hold for the action of the operator L on any characteris-
tic term like Op(m)(uy,...,1u4), as L4Op(m)(tit,...,ux) could be expressed
from Op(m)(L+ti+,...,Ux),...,0p(n)(tx,..., Litit). Using the boundedness
properties of Op(7i1), one would then estimate the L? norm of these quantities by
|| ||fo_o1 ||Li| ;2. As p > 3, one could then obtain estimate (2.46) by energy inequal-
ity, as in (1.26). Since here m does depend on Xx, there is no exact commutation
relation in the characteristic case between Op(72) and L, as some commutators of
the form #Op(d,m) have to be taken into account. It turns out that, because d,m is
rapidly decaying in x, and because # + is odd, ||Op(#1)(#i+, ..., U+)| 2 may be also
estimate by the right-hand side of (1.26). Actually, the kind of expressions one has to
cope with is morally of the form

—1~ \3
1 Z(x)((Dx)"Miix)”, (2.64)
where Z is in § (R) (This reflects the fact that 0, is rapidly decaying in x). Since

iy is odd, we may write using the definition of L = x + ¢ —(3—;)

1

(Dy) ity = ix / I (l'i;m)(ux) e

1 (2.65)

X ~ ~
=07 [ (o)) = it ()
The rapid decay of Z(x) allows one to absorb the powers of x on the right-hand side
of (2.65), and to estimate the L2 norm of (2.64) by

C(IL+iitl L2 + Nl L2) 41 oo

i.e. by the right-hand side of (1.26) with p = 1. Similar arguments apply when the
factors i+ are replaced by u’f”.

The above reasoning disposes of the characteristic components in M (i, u*?) in
(2.62). The non-characteristic ones are for instance of the form Op(m)(ti 4+, ..., U4)
and we no longer have an approximate commutation property of L with such oper-
ators. These terms have thus to be eliminated by a space-time normal form. We con-
struct in Proposition 6.2.1, using the results of Appendix F, operators M i»J =34
such that

(D; — PO)MJ (1, u™P) = M (i1, u™P) e + remainder, (2.66)
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where M; (i1, u®P),c, denotes the non-characteristic contributions to M (i, u*PP) on
the right-hand side of (2.62). Actually, M4 (@i, u*P)ncn = M4 (i, u?P) as only M3
contains characteristic components. In that way, we deduce from (2.62) that

(D — Po)(C(t) (it — M3 (it u™) — My(it, u*)))

(2.67)
= C(t) M, (i1, u'™") + R,

where the remainder R satisfies bounds of the form
IL+Rllz2 = O(|lig | Zoo | L1tis |I12)

as on the right-hand side of (1.26) with p = 1. Notice that to deduce (2.67) from
(2.66), we have to compare (D; — PO)C(t)ﬂj and C(¢)(D; — Po)e/{/{j which by
(2.61) makes appear a term C (t)"VM 7, but the time and space decay of operator V
allows one to show that such errors form part of the remainder R in (2.67).

One has still on the right-hand side of (2.67) term C(t) M/ (i, u'®P1). Again M),
may be expressed in terms of quantities Op(m’)(ti+, #i+) (and similar ones with i+
replaced by u’ ;‘Epp ’1), so that one may gain some time decay using expressions of the
form (2.65), but as this term is just quadratic, this gain is not sufficient to include
C(t)M), into R in (2.67). As C(t) — 1d has some time decay, one may prove though
that (C(r) — 1d)M), is a remainder, but the expression M) (i1, u'#P1) still needs to
be eliminated from the right-hand side of (2.67). We do that in Proposition 6.2.4 of
Chapter 6, using results of Appendix F. Actually, a quantity like Op(m’)(fi, ti+)
may be expressed, using the x-rapid decay of m’ and the oddness of i, as a sum of
expressions of the form

2K (L e, L20s), 0<€,6, <1, (2.68)

where K is an operator of form

K ) (Eo) = / k(o b1, £2) fu(E1) f (2) dE1 s, (2.60)

where the kernel k& has rapid decay in (§9 — &1 — &). An operator of form (2.68)
slightly misses bounds in O(¢™!||L41i+]/;2) when we make act on it L+ and take
the L2 norm. But it does satisfy such estimates if we cut-off k in (2.69) on a domain
|E£(&) £ (&1) £ (&2)] < ct72, Consequently, one may assume that in (2.69), k is
supported for |+ (&) £ (&1) £ (&)] > ct~2. This extra cut-off allows to construct by

R

normal forms a quadratic term M} (iZ, u’*P!) such that
(D; — Po) M (i, u'*') = M} (i, u'* ') 4 remainder.
Subtracting this equation from (2.67), one gets finally

(D, — Po)ti = R (2.70)
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where

4
— C(t)(ft = MG, uapp)) — M (i1, w1, 2.71)
j=3
and where R will satisfy among other things essentially

ILR(, )2 = O | Lyiig [ 12). (2.72)

2.8 Step 6: Bootstrap of L2 estimates

As seen above, the conclusion of the main theorem follows from the bootstrap of
estimates (2.45)—(2.47). In Chapter 7, we perform the bootstrap of (2.45) and (2.46),
assuming that (2.45)—(2.47) hold on some interval [1, T] with T < ¢~*¢ and show-
ing that (2.45)—(2.46) then actually hold with the implicit constant on the right-hand
side divided by 2 for instance. As we have seen, estimate (2.46) cannot be obtained
making act L directly on (2.59), as the action of L on the right-hand side of this
equation has bad upper bounds in L2. On the other hand, making act L on (2.70),
commuting it to D; — Py and using (2.72), one may obtain a bound of the form
(2.46) for ||L4114(t, )| 2. Actually, to do so with an improved implicit constant,
one has to show that the right-hand side of (2.72) is o(¢t™!|| L], 2) instead of
just O(¢t7Y||L4i4||.2), but this follows from the estimates we get if 1 < £~4+¢ and
£ < 1. The remaining thing to do is then to relate estimates for L1 in L? and
estimates for L 41, i.e. to show that the action of L4 on the M; i M’ terms in (2.71)
do not perturb significantly the a priori bound of the left-hand s1de We do that in
Section 7.1 for JM; i, J = 3,4 and in Section 7.2 for M’ In this Chapter 7, we also
check that the remainder R in (2.70) satisfies (2.72). These estimates heavily rely
on the boundedness properties of the different multilinear operators we use, that are
discussed in Appendix D. Putting all of that together, we conclude the bootstrap for
estimates (2.45)—(2.46) in Proposition 7.3.7.

2.9 Step 7: Bootstrap of L°° estimates and end of proof

The only remaining step in order to conclude the proof of the main theorem is to
bootstrap bound (2.47). We do that in Chapter 8. We deduce from equation (2.56) sat-
isfied by 4+ an ordinary differential equation. We proceed as in [1] for water waves,
with simplifications inspired by Ifrim and Tataru [45] (see also [20, 82]). If we write
equation (2.56) as (D; — p(Dx))i+ = f+ and if we define Q+,i+ by

i (t,x) = %L(z, ’I—C) Folt,x) = %L(z, ;) 2.73)

we obtain

(De = 0p) (v + VT+8) )iz, = /. (2.74)
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where we used a Weyl semiclassical quantization, depending on the parameter & = %,
defined in general by

1 emE (Xt Y
W - i(x—y)
Opy, (a(x,§)) 5o /e ha( 3 ,E)u(y) dy dE. (2.75)
We decompose then 4, = u, + U pc, where

S W (X p’($)>>~
ii, = Op) (y(—ﬂ i, (2.76)
with y in C§°(R), equal to one close to zero and with small enough support. Then
i is localized close to the set A = {(x,&) : x = —p/(§)}, i.e. close to {§ = do(x)}
if ¢(x) = V1 — x2 is the phase of oscillations of solutions to linear Klein—-Gordon
equations (after rescaling (2.73)). One sees that the L? estimates (2.45)—(2.46) allow
one to get wanted bounds for the component i » . (see Proposition 8.1.1). On the other
hand, since i, is microlocalized close to A, in the term Op}lV(xE + V1 +E2)iiy
one may replace the symbol by its restriction to A, up to remainders that are well
controlled thanks to the L? estimates (2.45)—(2.46). This brings an ODE for i A that
implies by integration the wanted bound (2.47). The end of Chapter 8 (Section 8.2)
puts together these estimates and those obtained in Section 4.2 for a(¢) in order to
close the bootstrap argument and prove the main conclusions (2.13) and (2.14).

2.10 Further comments

In the last section of the present chapter, we shall explain what is the difficulty in
order to go beyond the time limit £~#. Since this is much related to a phenomenon
extensively discussed in the two papers of Lindblad, Lithrmann and Soffer [60] and
Lindblad, Lithrmann, Schlag and Soffer [59], as well as in the work of Germain and
Pusateri [33], let us first recall some of the results of [60].

The authors of that paper consider an equation of the form

(De = 1+ D2 = —2 (D)7 (@) + ) e

on R xR, where « is a smooth decaying function (say « € § (R), even if their assump-
tions are weaker), satisfying & (+/3) # 0 or &(—+/3) # 0. They prove that if (2.77) is

supplemented by an initial data u satisfying e = || (x)?u¢| g4 < 1, then the solution
to (2.77) may be decomposed as a sum
u(ta') = ufree(t, X) + umod(t’ x)a (2.78)

where uge. satisfies the same dispersive estimates as a solution a linear Klein—Gordon
. _1

equation, namely ||Ugee(Z,-)||Lo = O(et~2) when ¢ goes to +o0o, and where Umpoq

obeys only the weaker dispersive estimate

1
ttmoa (t. )00 = 0(82%) (2.79)
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(see [60, Theorem 1.1] and in particular formulas (1.12) and (1.15)). Moreover, the
logarithmic loss that appears on the right-hand side of (2.79), in comparison with the
decay of linear solution, in unavoidable. Actually, Lindblad, Lithrmann and Soffer
show that along the rays x = £ «/gt/2, Umod (?, :I:«/§Z/2) behaves when ¢ goes to +00
as

2
ay ;jm L. logt
0o Tl 2 (FN3) — (2.80)

for some complex coefficient ag = O(¢). (See [60, (1.15)] and (1.16) of the same
paper for an explicit expression of a¢ in terms of the solution u to (2.77)). On the
other hand, outside a conical neighborhood of these two rays, umeq has an 273
bound, without any logarithmic loss. In order to relate this with the obstacle that pre-
vents us from going above time ¢ ~* in our own result, let us recall the argument of
the introduction of [60] that explains heuristically the appearance of the logarithmic
factor in (2.80). The idea is that, since ¢(x) on the right-hand side of (2.77) is decay-
ing when x goes to infinity, one may replace there u(z, x) by u(¢, 0), up to terms that
are expected to have a stronger time decay. In that way, an approximation of (2.77) is

(D —/1+ D2)u= —%(Dx)_l(a(x)(u(z,O) +(t,0)). (2.81)

A second approximation (that is justified a posteriori) is to assume that u (¢, 0) will
have the same asymptotic behavior as a solution to a linear Klein—-Gordon equation
restrlcted to x = 0 when ¢ goes to infinity. This allows one to replace in (2.81) u(¢, 0)
by e&- [ so that upeg Will be essentially the solution to

2
(Dt = /14 D2)tmoa = —%((Dx)_la) (2 +2+e72). (2.82)

If more generally one considers an equation of the form

(Di—/1+ D2)u = ;Y(x)e”” (2.83)

with Y in § (R) (or at least smooth enough and decaying enough at infinity), one may
rewrite (2.83) as an equation for u; (f, x) = e **u(z, x) of the form

(D +A— /14 D2)u, = lY(x). (2.84)

If A < 1, the operator /1 + D2 — A is elliptic and the solution to (2.84) will be
ot~ 2) in L* when ¢ goes to infinity: This may be seen using Duhamel formula and
integrating by parts, or equivalently defining

wi = u; + (/1 +D2—2)" ('Y (x)) (2.85)

that satisfies a new equation

(D 4+ A — /14 D2)w, = le?(x), (2.86)
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where Y is some new § (R) function and the new right-hand side is time integrable.
Because of that, the solution to (2.86) will have the same dispersive time decay rate
as a solution to a linear Klein—Gordon equation, i.e. will be O(t_%) in L°°. This is
what happens for the last two terms on the right-hand side of (2.82). On the other
hand, for the first one, one gets an equation of the form (2.83), (2.84) with A = 2, so
that the symbol /1 + £2 — 2 vanishes at § = ++/3. In this case, the analysis of the
solution to (2.86) expressed from Duhamel formula and Fourier transform shows that
an asymptotic behavior of the form (2.80) holds along the two rays x = =+¢ ‘/Tg

The logarithmic loss displayed in (2.80) seems incompatible with the known
methods used to study global existence and asymptotic behavior for Klein—Gordon
equations of the form (1.21) or (2.77) if we no longer assume that (- ) is decaying at
infinity. Actually, [60, Theorem 1.1] as well as [59, Theorem 1.1], uses in an essential
way the fact that the space decay of this coefficient will provide, along the rays over
which (2.80) holds, a time decay that will compensate the logarithmic loss.

Another situation when asymptotic behavior may be obtained for the solution
of a problem of the form (2.77), including with nonlinearities involving terms like
(u+1)2, (u+1u)3 (without space decaying pre-factors), appears if the bad term (2.80)
vanishes. This happens for the non-resonant case &(~/3) = &(—+/3) = 0 treated in
[60, Theorem 1.6] and [59, Theorem 1.1], when one recovers the same asymptotics
as those holding true for equations of the form (2.77) with the function « replaced by
a constant.

The second case when (2.80) vanishes is when ay = 0. This happens for instance
when « is an odd function and the initial condition in (2.77) is also odd (see (2.81)
where the right-hand side vanishes for odd functions u, so that the contributions
coming from (2.82) that were responsible of the bad term (2.80) disappear). Such
a situation is studied by Germain and Pusateri [33], in a more general framework.
They consider equations of the form

(8? — 02 +V(x)+ mz)u = a(x)u?, (2.87)

where a(x) is a smooth function that has different limits at 400 and —oo and V(x)
an S (R) potential that has no bound state. They prove a decay estimate for the solu-
tion in O(t_%) when time goes to infinity, under some orthogonality assumption on
the solution. This assumption always holds for generic potentials, and in the case
of exceptional ones (like the zero potential), it holds under evenness or oddness
conditions on V,a and the initial data. One of the key ingredients in the proof of
[33, Theorem 1.1] is again related to the fact that a bad frequency +3 appears.
Actually, it shows up when one tries to perform a variable coefficients normal form.
In order to overcome this difficulty, the authors introduce functional spaces, involv-
ing dyadic Fourier cut-offs close to the bad frequencies, and measuring the (distorted)
Fourier transform of the solution in such spaces.

Let us go back to the problem we study in this book, and in particular to the lim-
itation of our result to times O(¢~*). We already discussed this issue in Section 2.5
after the introduction of the approximate solution in (2.49). Here, we want to explain
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how the problem we encounter to go beyond time s~# might be related to some of
the works we just described, namely the possible appearance of some extra logarithm
in pointwise estimates of the solution along two rays, as in (2.80). Remark first that
we are dealing only with odd solutions. As already noticed, this implies that the coef-
ficient ag in (2.80) vanishes, so that a solution of a problem of the form (2.77) has
O(t_%) L°° estimates. The point is that, in our problem, we do not study an equation
of the form (2.77) or (2.87), but a coupling between a PDE and an ODE, namely sys-
tem (2.11) or equivalently, a coupling between the PDE (2.27) and the ODE (2.34).
Because of that, our PDE contains a source term given by (2.28), involving expres-
sions of the form

a(t)*Ya(x), a(t)*Ys(x), (2.88)

where Y5, Y3 are S(R) functions and a(t), solution of the ODE, has an oscillatory
behavior of the form

€ +ir 3
e (2:59)

When plugged in (2.88), this shows that our PDE will contain a source term that
has a similar structure as the right-hand side of (2. 82) with oscillating terms eTitV3
instead of e*2/* and pre-factor : J: ~ instead of 8 (for the quadratic contribution
coming from (2.88)). Because of that, and by analogy with the study of [60], we may
expect that the solution to our PDE contains contributions that might grow as 1:’%’
when ¢ goes to infinity.

In this book, we prove that such a possible growth does not happen before at least
time =410, Let us return to the discussion on that issue that we started in Section 2.5.
We introduced in (2.49) a solution udpp of a linear equation with source terms that
are essentially of the form (2.88) (forgettlng the second line of the first equation
in (2.49)). If we retain only the quadratic term a (7)Y, in (2.88), and use (2.89),
this means that we have to solve essentially an equation of the form

2 .
(D= 1+ DU = e M () (2.90)

for some function M in $(R) and zero initial data at + = 1. This is an equation

of the form (2.83), and as we have seen after (2.84), the delicate case is the one

corresponding to the phase 1+/3 in the exponential, so that in the sequel we discuss

only (2.90) with sign +. Then U is one of the contribution to the approximate solution
uy? of (2.49), and we decompose it as U = U’ + U” with essentially

Jt 2
U0 =i [N IEPR R ) drz, @91)
1 + 1¢e
UN([ x) :i/ l(l t)«/1+D2+lth( ) dt (2'92)
’ Ji 1+ 62’

This decomposition corresponds to uy" = u’%" 4+ u”*” introduced before (2.50) in
Section 2.5, and we may prove some good L estimate for L U” (see (2.50)) and
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some good L? estimate for L U’ (of the form (2.46)) for times ¢ = O(¢~**°). This
last L2 bound degenerates when ¢ goes to ¢~*, and actually so does the pointwise
estimate of U’ that is obtained in Appendix C (see (C.40) with @ = 1). We obtain
there for U’ a pointwise bound in

2 . -1
(Ef)<tz(§i §)> . (2.93)

Outside a conical neighborhood of the rays x = F¢ \/2_/3, (2.93) reduces to an £2¢ ™2
decay (whatever the value of 7). On the other hand, along the lines x = Fz,/2/3, we
just get a bound in (¢24/7)/+/1, that provides an O(Z_%) decay only for t = O(g™%).
Past such a time, estimate (2.93) will no longer remain valid and, at the light of the
results of [60] concerning (2.77) and [59], one may not exclude that some log ¢/+/t
behavior might hold along the two preceding rays. Since, unlike in (2.77), we no not
have just nonlinearities involving rapidly space decaying coefficients, we do not know
how such contributions might be handled in the nonlinear problem.







Chapter 3

First quadratic normal form

In Section 2.2 of the preceding chapter, we have introduced an evolution equation
(2.27) for a function u 4. This equation is of the type of (1.58) in the introduction,
except that its nonlinearity is non-local (see (2.31) and (2.32)). In this chapter, we
shall express these nonlinearities in terms of multilinear operators, that are a special
case of classes introduced in Appendix B. This will give us a general framework that
will be stable under the reductions we shall have to perform.

The nonlinearity in our equation contains quadratic terms. We have already
explained in Section 1.6 of the introduction that such terms have to be eliminated
by normal form. This is the goal of Section 3.2 of this chapter, following the guide-
lines explained in Section 2.4 of Chapter 2.

3.1 Expression of the equation from multilinear operators

Let us define the classes of multilinear operators we shall use. They are special cases
of the operators introduced in Appendix B, that will be useful in the rest of the paper.
We introduce in this section only the subclasses we need in Chapter 3.

In this chapter, an order function on R? is a function from R? to R4 such that
there is some Ny € N so that, for any (¢1,...,§,), (§],....§,) € R?,

D
M@, &) <C]E - )M, ... &) 3.1)
j=1

(In Appendix B, we shall allow order functions depending also on a space variable x.)

Deﬁ~niti0n 3.1.1. Let M be an order function on R?, with p € N*, k¢ € N. We denote
by Sk,0(M, p) the space of smooth functions

(yﬁsl’---’gp)'_)a(y’gl,---’%-p),

R xR? - C 3-2)
satisfying for any o € N2,
|9a(y. )] < CM(E)Mo() ™! (3.3)
and for any @ € N”, any o € N*, any N € N,
0505°a(y. )] < CMEMo@(1+ Mo® Y)Y, G4

where My (€) denotes

, o\
Mo@l,...,sp):( 3 <si>2<sj>2)<2<si>2) (3.5)

1<i<j<p i=1
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and is equivalent to 1 4+ max,(|£1], ..., |§,|), max, standing for the second largest of
the arguments.

We denote by S’,Q,O(M, p) the subspace of LS:K’O(M, p) of those a for which (3.4)
holds including for oy, = 0.

The symbols of Definition 3.1.1 are the special case of those defined in Defini-
tion B.1.2 of Appendix B when there is no x dependence in (B.11). We associate to
them operators through the quantization rule

1 ;
Op@(1....vp) = 75 /elx(fl+ 0)a(x, €1, ... &)
P (3.6)
<[]0, der - dtp
j=1
for any a € SNK,O(M, p), any test functions vy, ..., vp. This is the rule defined in

(B.17) of the appendix in the case of general symbols a(y, x, §), specialized to the
subclass of symbols that do not depend on x, as in Definition 3.1.1. We shall also
impose on our symbols the extra condition

a(=y.—€1,....—&) = (=D la(y.&1.....&p). (3.7

Under this condition, the operator Op(a) sends a p-tuple of odd functions to an odd
function.

Let us state the symbolic calculus result that is proved in Appendix B (see Corol-
lary B.2.6, (B.42), (B.43)) and that we shall use below.
Proposition 3.1.2. The following statements hold.

(i) Letn'.n" e N*, n=n"+n"—1 let M'(&1,.... &), M"(Ew. ... En) be
two order functions. Let a (resp. b) be in S, o(M',n’) (resp. S o(M”,n")).
Define

M. &) = M'(r, .. w1 b+ EOM Ew. o En). (38

There are v € N, depending only on the order functions M’ and M", and
a symbol ¢y in S, o(MMg*, n) such that if

c(y7‘§17""$n) =a(yvélv"'75}1'—1751’!’+"'+En)b(y7§n/7""En)

3.9
+c/1(y7$11-"’én)v ( )

then for all test functions vq, . . ., Uy,
Op(a)[vi, ..., V—1,0pb) vy, ..., vy)] = Op(c)[v1,...,va]. (3.10)

Moreover, if a and b satisfy (3.7), so do ¢ and C’l.

@) Ifaisin SO,O(M, 1), there is a symbol a™ in SO,O(M, 1) such that Op(a™) =
Op(a)*. Moreover, if a satisfies (3.7), so does a*.
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‘We shall use the above class of symbols to re-express equation (2.27).

Proposition 3.1.3. For any multiindex I = (iy,...,ip) € {— +} with2 < |I| =
p <3, one may find symbols my_j in 50,0(]_[]17=1 (£,)71, p) satisfying condition (3.7),
and for any multiindex I = (iy, .. ip) e{—,+}P with 1 <|I| = p <2, one may
find symbols m1 ;in S0 0(]_[ (&)Y, p) satisfying condition (3.7), such that equa-
tion (2.27) may be written

(D¢ — p(D))uy = Fglal + Fgla]+ ) Op(mo,r)[ur]
2<|I]=3

+a() Y Op(m) plurl 3.11)

1=<|I|=2

+a()> " Oplmy plurl.

[I|=1
where uy is defined in (2.25) and (2.26).

Proof. Consider first the terms on the right-hand side of equation (2.27) that do
not depend on a, i.e. with notation (2.29) 3"\, F5 [us] and 373 F3 [u1].
These terms are given by the first equality in (2.31) and (2.32). A symbol of the
form /c(y) T, b(y. E)pE)~" or [Tiz; 2(y. &) p(£;)~" belongs respectively to
So.0([T7—,(&/)~".2) and So.0([T;—;(£;)~".3) and because of property (A.9) sat-
isfied by b and the oddness of «, condition (3.7) holds. If we apply the results of
Proposition 3.1.2, we conclude that the contributions to (2.27) that do not depend
on a have the structure of the first sum on the right-hand side of (3.11).

Consider next terms of the form a(t)Fﬁ,[u,], [I|=1or a(t)F23’I[u1], 1] =2
in equation (2.29). They may be expressed from the first line in (2.30) and the second
line in (2.31). Since Y is rapidly decaying, the symbols Y (y)k(y)b(y,£)p(£)~! and
Y(3) [Ti=1 b &) (&)  arein 8§ o((8) 7", 1) and S§ o(IT7=; (§/)7", 2). Because
of the oddness of Y, k and (A.9), they satisfy (3.7). Using again the composition result
of Proposition 3.1.2, and noticing that as soon as at least one of the symbols a and b
in (3.9) is in the S class, so is the composed symbol ¢, we conclude that the linear
term in a(¢) on the right-hand side of (2.27) is given by the second sum in (3.11).

In the same way, the contributions a(t)2F13’ ;[ur] coming from the second line
(2.29) with j =1, with F13,1 given by (2.30), provide the last sum in (3.11). This
concludes the proof. ]

On the right-hand side of equation (3.11), terms with higher degree of homogene-
ity in (a, u) will have better decay estimates. Moreover, an expression of the form
Op(m')[uy] with |I| = p and a symbol m’ in S(’),O(M, p), i.e. with rapid decay in y,
will have better time decay than a term Op(m)[u;] with |/| = p and a symbol m
in SO,O(M, p). Consequently, we expect that the terms in  |;|_, Op(mo,r)[us] will
be, among all 4 -dependent terms on the right-hand side of (3.11), those having the
worst time decay. In next section, we shall get rid of these terms by normal form.
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3.2 First quadratic normal form

Proposition 3.2.1. Define from the symbols mq 1, |I| = 2 of Proposition 3.1.3 new
functions

o1 (y.€1,62) = mo1(y.61.62)(—p(&1 + §2) +irp(§1) + izP(&z))_l (3.12)

if I = (iy.i2). Then g1 belongs to Sy o (H/2'=1 (£/) "My (&1, £2),2). Moreover; there
are new symbols

o (my p)1=2 belonging to Si,o(nf (E7) —1Mo(s) 2),

o M h<iri<ay 1< <3 in S O(H"' ) "I Mo(§)".|1]) for some v,

e (mo,1)3<|1|<4 belonging to S, o(l_[ 1MO(E) |11)

such that

(D — p(Dx))(u+ ~ 3" OpGto.)lur])
|1|=2
= Fla) + Fgla+ ) Op(mo.n)lusl + Y Op(my )lurs] a3
3<|I|<4 |I1=2 '
3
+ a’ Y Opmj plurl.
Jj= 1<|I|<4—j

Finally, all above symbols satisfy (3.7).

Proof. We notice first that

1+ 2((61)(52) — §162)

(1) + (&2) + (51 + &2)
> (1 + maxa([é]. |62]) "
> cMo(§1.6)"

(1) + (&2) — (61 + &) =
(3.14)

This implies that

(&1 + &) + (&) — (51) = c(1 + maxz (&1 + &2, |§2|))_1

which is larger than the right-hand side of (3.14), except when |&>| > |&;]. But then
the left-hand side is larger than one. Consequently, we deduce from these inequalities
that, for any sign i1, i, we have for any @ € N2,

O ({61 + &) +i1(&1) + i2(82)) ‘ < CoMy(£1,5)" 11 (3.15)

This implies that 119 ; belongs to the wanted class of symbols. It obeys trivially (3.7)
since mg,; does.
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Denoting for |I| = 2, u; = (u;,,ui,) as in (2.25), we compute

(D¢ — p(Dx))[Op(rito,1)[ur]]
= —0p(p(§)) o Op(mmo,1)[ur] + Op(rio,1)[i1Op(p(§))ui, , ui,]
+ Op(ritg,1)[ui, . i20p(p(£))u;,] (3.16)
+ Op(rito,)[(Dy — i1 p(Dx))uiy» Ui,
+ Op(mo,1) Uiy, (D¢ — i2p(Dx))tti, ]

By Corollary B.2.7, the sum of the first three terms on the right-hand side may be
written as a contribution to };—, Op(mg ;)[us] in (3.13) plus the expression

Op((—p (&1 + &) + i1 p(§1) + iap(E2))rito, 1) [ur]. (3.17)

By (3.12), (3.17) will cancel the term Z|1|=2 Op(mo,r)[ur] in (3.11). Since the other
terms on the right-hand side of (3.11) are still present in (3.13), we see that to con-
clude the proof, we just need to show that the last two terms in (3.16) provide as
well contributions to the three sums on the right-hand side of (3.13). We express
(D¢ F p(Dx))uy from (3.11) (or its conjugate). To fix ideas, consider for instance

Op (110, (+,i))[(Ds — p(Dx))u4, uj,]. (3.18)

If we replace (D; — p(Dy))u4 by the contribution Fi[a] + Fg[a], which by (2.28)
may be written a(¢)2Y, + a(¢)3Y3, with odd functions Y3, Y3 in § (R), we see apply-
ing Corollary B.2.8 of Appendix B that expression (3.18) will provide contributions
to the Z/ ,a(t)’ lel 1 Op(m’; )[ur] term in (3.13).

We replace next (D; — p(Dy))u4 in (3.18) by the a(t) or a(t)? terms in (3.11).
We use (i) of Proposition 3.1.2, noticing that if in (3.9), either a is in S, o(M', n") or
b is in S,/( o(M"”,n"), then ¢ is in S o(M,n). Consequently, we get contrlbutlons to
a(t) 22<|1|<3 Op(m ;)[ur] and a(t) >111=2 Op(m’ p)[u]in (3.13). Finally, if we
replace in (3.18) (D; — p(Dx))u 4 by the first sum on the right-hand side of (3.11),
we obtain contributions to ) ;<4 Op(mo,r[us]) in (3.13) using again (i) of Propo-
sition 3.1.2. This concludes the proof as property (3.7) of the symbols is preserved
under composition. |






Chapter 4

Construction of approximate solutions

In the preceding chapter, we have performed a quadratic normal form in order to
reduce ourselves to an equation of the form (3.13). The right-hand side of this equa-
tion contains a source term and in Section 4.1 below, we construct an approximate
solution solving the linear equation whose right-hand side is essentially this source
term. We explained this part of the proof in Section 2.5, see equations (2.48)—(2.49).
The construction of the approximate solution relies on Appendix C below.

On the other hand, because of the coupling between a dispersive equation and
the evolution equation for the bound state, we have seen in Section 2.2 that we have
also to study an ordinary differential equation (2.34), which is equivalent to the first
equation in (2.9). We have explained at the end of Section 2.5 what is the form of
that ODE, and how we can show that its solutions are global and decaying using
Fermi’s golden rule. Section 4.2 below is devoted to the asymptotic analysis of this
ODE. Of course, the study is more technical than in the presentation in Chapter 2
since we have to fully take into account those terms on the right-hand side that come
from the interaction between the bound state and the dispersive part of our problem.

4.1 Approximate solution to the dispersive equation

The proof of our main theorem being done by bootstrap, we shall assume that we
know, on some interval [1,T], an approximation of the function ¢ > a(¢) that is
present on the right-hand side of (3.13).
Letsg €]0,1], 4,4’ > 1,6 €]0, %[ (close to %) be given. Let T € [1,e74]. We
shall denote for¢t > 1, ¢ € ]0, g¢],
te = & 2(t?) 4.1)
and assume given functions
1, T] = C, 4 :[1,T] xR — C,
g:[1.7) L [LTIXR = € ws)
1 g(0), (t,x) > ux(1, x)

and x — Z(x) in §(R), real valued, satisfying the following conditions:

_1 _3 ,
18 < A2, |0, < A6 2 + (2VD3173), 1e[1LT).  (43)

3

(Z.iis(t, )] < (VD173 1 e[1,T). (4.4)

Moreover, we assume given W a neighborhood of {—1,1} in R and for any A in
R — ‘W, two functions

t—=> (A1), t> Y1) 4.5)
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satisfying forany ¢ € [1,T],any A € R — W,
o 0] = VD172 Jya(in] = (VD7 (4.6)
and solving the equation
(Dy = VoA, 1) = (Z, i) + Y+ (A, 1). (4.7)
We define from the above data
a(0) = €5 g1) + wrg (123 + wolg (P + w250 ¢V
608 (g(0p+ (0.0) — (g (0.1) (438)
+ e gD+ (V3.0) — 59— (V3.1)).

where wg, w2, w_5 are given complex constants. We set

=, ) = L0 - ), “9)

We assume given, as in the statement of Proposmon 3.2.1, symbols m1 pfor |1 =1
(i.e. I = 4 or —) belonging to the class St 0((5) , 1) satisfying (3. 7) We want to
construct an approximate solution ", + P to the equation

(Di = p(D))u’ = Fgla®™] + Fgla*™] +a*(1) Y Op(m} D™l (4.10)
[I]=1

that is deduced from (3.13) computing the source terms FZ, F; at a®P, and retaining
from the other terms on the right-hand side only those that are linear both in a and u 4.
Before stating the main proposition, let us re-express the source term in (4.10).

Lemma 4.1.1. Under the preceding assumptions on a**®, one may rewrite

FE[a*™] + F3la™] = I + I + I + R(t, x), (4.11)
where 5
.. 3
Lx)= Y /"5 M. x) (4.12)
j€{—2,0,2}

Sfor smooth odd functions of x, M; (t, x), satisfying for any o, N € N,
0 M (t.8)] < Cants (6)7V,

. N R P (4.13)
050, M, (1,8)] < Can ()™ Vite (1 2 +172(2V1)27)
with constants Cy N depending on A, A" in (4.3)—(4.4), where
/3
Ltx)= Y T M) (4.14)

Jje{=3,-1,1,3}
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for smooth odd functions of x satisfying

) _3
0§ M, (1.6)| < Cante >(E)N,

(4.15)
~ _3 ’
1920, M; (1. 8)] < Can (&) V17 (122 +172(2V0)2Y),
and where I3 is a sum of terms
l ..
It.x) = Y e"V3M3 (e x), (4.16)

j=—1

where M /‘3 are odd and satisfy the following conditions: First, for any j with |j| < 1,
any o, N,
- PR R
023 (1,6)] < ContT ()N
- “1,-3 =
080, M} (1.8)] < Cont; 177 (E)N.
Moreover, for j = 1, and when & is a point in a small neighborhood ‘W of the set

{&: /1 + &2 = /3), one may find functions ®1 (¢, €), W, (¢, §), satisfying
D11, 6) < Cr7' 72, |0 (,8) < Cole! (4.18)

(4.17)

such that for £ € ‘W,
DMP(t,8) = (Dr + (V3= V1 +E2))D1(1,6) + U1 (1, %). (4.19)

A similar decomposition holds for x M 13 instead of M 13
Finally, the remainder R in (4.11) satisfies for any «, N € N,

05 R(1,x)| < Cant ™'t

&

Lx)=™N (4.20)

and we have for M;(t, x) in (4.12) the following explicit expressions:
1
Ma(t.x) = 381 ¥ (),
2
Mo (t, x) = §|g(l)|2Y2(X), (4.21)

Moot ) = 50 Vo),
where Y, is given by
Y2(x) = b(x, Dx)*(k(x)Y(x)?) € S(R). (4.22)
Moreover, the constants in all above inequalities depend only on A, A" in (4.3)—(4.4).

Proof. Consider first the contribution FO2 [a?P] that is given according to (2.28), (4.9)
and (4.22) by

1, , ;
F (@ +a")¥a(0).
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We replace az_ifp by its expansion (4.8). We get terms of the following form (up to
irrelevant multiplicative constants):

V3e(1)?Y,,  |gPYa, e V3g() Y (4.23)
) /3 a3
dCEIE (e 'y, 0=t <3, (4.24)

and

V3 (1) (91 (0.0) = 9 (0.1) + 9+ (V3,1) — p_(v/3,0)) Y,
go(1)Re(p4(0.1) — 9_(0.1) + ¢4 (v/3.1) — p_(V/3.1)) Y, (4.25)
eV 1) (1 (0.1) —9-(0.0) + ¢4 (V3,0) — - (V3>

with g2;, j = —1,0, 1 satisfying, according to (4.3), the bounds

1 _3 39/
182/ ()] < CANT", 0,82 ()] < C(A, ANt 2 (1% + 173 (£2V0)3Y), (4.26)

and expressions that are, according to conditions (4.3) and (4.6), O(t, %t_% (x)™)
or O(t7't7(x)™N) for any N, as well as their d, derivatives, so that they will
satisfy (4.20). Terms (4.23) give I, with actually the explicit expression (4.21) for
My, My, M_5. Terms (4.24) provide contributions to I, in (4.14).

To study terms in (4.25) that will provide 73, let us define

Gr(A, 1) = e oA, 1). 4.27)
By (4.7), we have
DiGr(A.t) = (Z iithe ™ + ya(A,1)e” M. (4.28)

Then all contributions in (4.25) may be written under the form e/’ 3m jE(t X),
J =—10,1, with M; * given by linear combinations of expressions

3 (L35 L+ 8=1,0<80<1,ifj =1
2 20(GL(N3.0)Ys. g20(1)G£(EN/3.1)Ys, £ =01, if j =0 (4.29)
V3 (1)L (5N3.1)Ys, L+8=1,0<8,6<1,ifj = —1.
Since by (4.28), (4.6), (4.7), (4.4),
1D g (83/3,1)] < Ct_%(szﬁ)e/

we deduce from (4.3) and (4.6) that (4.17) holds for M 3 which is a combination of
M+ and M —1 <j <l.Inthecase j =1, we have to obtain (4.19), i.e. to find
functlons <I>1 VL %5 é, £ =0, 1 satisfying (4.18), such that if we define according to
the first line in (4. 29)

ME(t.x) = g20()@+((1 = O3.1)Va(x), (4.30)
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for & in the neighborhood W of {—+/2, +/2}, we have
D Mt (1.6) = (D, +(V3-V1+ 52))&@@,5) +UE,0E). @3
Let us apply (4.7) with A replaced by A(§) = /1 + &2 —£+/3 and § € W, so that
A(£) remains close to Z~/3, and thus outside a neighborhood of {—1,1}. We may
then find functions ¢4 (A(§),1), ¥+ (A(§), ) such that

(D = V1 + 8+ £33)p (M), 1) = (Z, 1) + Y (A(E). 1) (4.32)

with estimates of the form
lp2(M®.01 = VD172 [P (E).0] = VD71 (4.33)
uniformly for & in ‘W. Define
O (1,8) = 9+ (M), e 1703 g0 (1) P2 (6).
Then (4.33) implies that

(Dr = (VI+8 = V3))b5(0.8)

=(Z, fti)e_it(l_g)ﬁgze(t)?z(g)

. ) (4.34)
+ YA€), e 0OV g (1) D (8)
+ r(A(E), e 11=OV3D 0y (1) V2 (£).
On the other hand, (4.30), (4.28), (4.6) and (4.26) imply that
DiME(1.6) = (Z.iix)e O3 g5 () F2(8) + RE((1.6) (4.35)
with
0 RE, (1. 8)] < Cr a7 (VD) (8)7Y (4.36)

for any N. Making the difference between (4.34) and (4.35), and using (4.3) and
(4.6), we obtain that (4.31) holds, with functions ®F,, Wi, satisfying (4.18) since
the last two terms in (4.34) and (4.36) are

_1 ’
O 7  + 1,272V 3%y = 01 Y)

fort < g4,

As xM 1i,e (¢, x) is also of the form (4.30), with Y, replaced by xY,, the same
reasoning applies to that function and shows that (4.19) holds as well for x M 13 (with
different functions 5)1, \fll on the right-hand side).

We have thus obtained that the first term FZ[a®P] in (4.11) has the wanted struc-
ture.
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To study FO3 [a®P], we notice that by (2.28), (4.9), (4.8), it may be written as
a linear combination of expressions of the form (4.24) (with Y, replaced by another
function in §(R)), that have been already treated, and of products of an §(R) func-
tion by expressions that are, by (4.3) and (4.6), O(t; 1¢=1), so that form part of the
remainder term (4.20). ]

We may now state the main proposition of this section.

Proposition 4.1.2. Assume that properties (4.3)— (4.7) hold. One may construct
a function uapp :[1,T] x R — C (where T < &™* is the length of the interval on
which aapp is deﬁned by (4.8)), solving the equation

(Dt = p(DEF = F§ (@) + F3(a*)
+a® ) 0pimy D) + REX). 437
[Il=1
uéfp|t=1 =0,

where m'| ; is the symbol in the last sum of (3.13), where the remainder R satisfies
bounds

|0%R(t, x)| < Cont; 't og(1 + 1) (x)™V (4.38)
for any a, N in N, with constants Cy N(A, A") depending on the constants A, A’
in (4.3), and where uefp has the following structure: One may decompose

u :[_)P / app + " app

where u'’{ P satisfies for any r € N,

1/, e < C(A, A1, (4.39)
||u’app(t Nlwree < C(A, A )8 (4.40)
ILu ()l < C(A ANF (VD) + (2VDe¥), (@41
where
Ly =x+1p'(Dy), (4.42)
and where """ satisfies for any r,
re? \2
", ) ar < C(A,A’)s((t82>) , (4.43)
)
[P (2, ) lwroo < C(A, A& log(1 + 1), (4.44)
IL4u" P (2, ) ||wroee < C(A, A')log(1 + 1) log(1 + &°1). (4.45)

For the action of the half-Klein—Gordon operator on u’e_lfp, we have estimates

I(Ds = p(D W™ (1, ) | e < C(A, A)s% 3 (4.46)
and
IL4+(D; — p(D W@, )| < C(A, AN~ (V0 + (2D Fe). (4.47)
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. .. app
Moreover, we may write also another decomposition of u", of the form

ua_lfp(l,x) = u‘fp’ (t,x)+ X4(t,x), (4.48)
p,1 .
where u+ is a sum
WPl )= Y U, (4.49)
j€{—2,0,2}

where U; 1 solves the equation

/3
(Dy — p(D))Uj 1 = &'V Mj (1. x).
Uj+li=1 =0,

(4.50)

with source term M given by (4.21). The second contribution Xy on the right-hand
side of (4.48) may be also written as a sum

3
Z U, x),

j:_
/3
with U ; solving an equation of the form (4.50), with source terms e’ 15 M (2, x),
where M ; satisfies for any o, N,
|02 B (1,§)| < Can (A AN 173 ()N @.51)

and for any symbol m’ in the class S(’),O((E)_l, 1) of Definition 3.1.1, one has for any
o, N € N estimates

|xN3§Op(m’)(2+(Z,X))|EC(A,A’)(ZE + 7y +l_182)10g(1+l) (4.52)

In addition, all constants C(A, A’) in the above inequality depend only on A and A’
in (4.3) and (4. 4)
Moreover u'l? > may be decomposed as ufp’l =u'P 'y u”” ' with u
(resp. u““Pp ) satisfying (4.39)—(4.41) and (4.46), (4.47) (resp (4. 4%) (4.45)).
Finally, all functions above are odd.

/dpp 1

Proof. The proof of the proposition will be divided in several steps, and use the results
of Appendix C below.

First step. We have decomposed in equation (4.11) the source term of (4. 37) i.e.
FZ[a®™P] + Fg'[a®P]. In this first step, we construct a first contribution u®y PP o the
solution of (4.37) taking as forcing term the contribution /; given by (4.1 2) to (4.11),
i.e. we solve, with the notation (4.12)

(D — p(D))uP™! = 3 itV % M (t, x),
Jj€{-2,0,2} (4.53)

W =0,

+
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The functions M; 0n the right-hand side are given by (4.21), satisfy (4.13), and one
may thus write u’y top.1 under the form (4.49), with U; 1 given as the solution of (4.50).
We apply Appendlx C. The solution of (4.50) is given by (C.3) with A = j +/3/2 and
may be decomposed according to (C.4) in U/, + U/’, . We define

rapp,1 __ i rapp,1 __ "
Wy = Z U, wy = Z Ui+ (4.54)

Jj€{=2,0,2} Jj€{-2,0,2}

and check that they give contributions to ", u”" that satisfy (4.39)~(4.41) and
(4.43)—(4.45). By (4.13), the functions M; on the right-hand side of (4.53) satisfy
(C.7) with v =1, i.e. Assumption (H1); holds. By (i) of Proposition C.1.1, we
thus get bounds of the form (4.39)—(4.41), and by (i) of Proposition C.1.2, we have
(4.43)—(4.45). We shall define the contribution uapp’ in (4.48) by

app, rapp,1 17app,1
=u +u
+ +

u'f , (4.55)

i.e. by the right-hand side of (4.49). Moreover, as M; is odd in x, so are U; 4, U jf’ n
and UV .

Second step. We consider now the term 1nvolv1ng Op(m1 ;) on the rlght hand side

of (4.37), where we replace u’" by udpp’ given by (4.49) (with y@P-1 = —u’” b,
ie.
a™(@) Y Y Op(my)(Ur) (4.56)

[11=1;€{~2,0,2}

with U;_ = —U ;. Recall that we decomposed U; ; = = U, + U/, according to
(C.4). Let us examine first the contribution coming from Op(m1 1)(U v '7) to (4.56).
The symbol m1 ; lies in S{ o((E)7' M, 1), which is contained in S} (1 1) (recall
that My = 1 when there is only one £ variable), and it satisfies (3. 7) Since U ”
is defined by (C.4) with A = j V3 3/2 from some odd M;, we may apply Prop051—
tion C.2.1, with M; satisfying Assumption (H1){, i.e. (C.7) with @ = 1 according
to (4.13). We shall thus get from (C.89)

Op(m_)(U/',) = e M) %) + (. x) 4.57)
with for any , N, by (C.91),
|0%r(t, x)| < Ca,stt_l log(1 + t)(x)_N (4.58)
and where M) satisfies by (C.90)
02M ) (t.x)| < Canty < )7V,
o . , L (4.59)
020 MO (1, )] = Cats (1572 + 17320037 ) ()Y,

By conjugation, we shall have also

Op(m) )(U)) = e MO (t.x) + r_(1.x) (4.60)
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with M](l_) (resp. r—) satisfying also (4.59) (resp. (4.58)). We plug (4.57) and (4.60)
in (4.56) and use the expression (4.8)—(4.9) of a®P. We get that (4.56) is a sum of
quantities of the following form:

e Terms of the form
eli'ts M“)(tx) j'=-3,-1,1,3, (4.61)

coming from the product of the first term in (4.8) (or its conjugate) and of the
M a ) terms in (4.57) and (4.60). One gets thus smooth odd functions of x, that
satlsfy by (4.59) and (4.3) estimates

_3
02M D (1.x)| < Cante  (x )‘N,
(4.62)

020, MV (0, x)| < Cants (1 +1 3 2V1)3%) (x)

e Terms satisfying (4.38) and thus contributing to R in (4.37). These terms come
from the product of (4.57) or (4.60) with all terms on the right-hand side of (4.8),
except e’ V3/2 g(?) (and its conjugate), and from the product of a*P with ry in
(4.57) and (4.60). As

_1
27, 2 <ct7 ]!

ift < e7*, we do get that these terms satisfy (4.38).

e Terms of the form

a™ (@) Yy Y. Op(m) (U ), (4.63)

1I=1,€{~2,0,2}

where U j’ ; is given by (C.4) in terms of M; satisfying Assumption (H1),, with
o = 1. We shall see in fifth step below that (4.63) satisfies also (4.38) and thus
contributes to R.

It follows thus from (4.53) and the fact that (4.56) is given by (4.61) up to remainders,
that

(De — p(D))u! —a™(1) Y Op(my NPy =11 — ;P + R(1.x). (4.64)
|I]=1
where I is given by (4.12), I{" is the sum of terms (4.61) and R satisfies (4.38).
Making the difference between (4.37) and (4.64), we get, taking (4.11) into account
(Di — p(D)) ¥ —uf™)

=L+ I+ IV + a™ () Z Op(m'y 1) (uy™ — w3 + R(1, %), (4.65)
1I]=1

with R satisfying (4.38). Notice that by (4.62), I 2(1) has the same form as I, given by
(4.14) and (4.15) so that we shall be able to treat both terms altogether.
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Third step. We now construct an appr0x1mate solution in order to eliminate />+1, 1
on the right-hand side of (4.65). Define uapp’ as the solution to the linear equation

D = I + 1.V,
(D= p( );gz 27T (4.66)
uy 2 lt=1 = 0.

As the right-hand side has structure (4 14) with M; satisfying (4.15), we may express
the solution as a sum Zje{ 3-1,1,3 Uj, +(t, x), where U; 4 is obtained from the j-th
term in (4.14) and expressed under form (C.3) with A = j V3 3/2. By (C.4),

o/ "
Ut =Ujr +Uj4

and since (4.15) shows that (C.7) holds with @ = 3/2, Assumption (H1);/, holds.

By Proposition C.1.1, bounds (C.18)—(C.20) with @ = 3/2 hold for U]’+, and by
Proposition C.1.2, (C.24), (C.25) and (C.27) are true. If we set
W= Y U = Y U (4.67)

je{=3,-1,1,3} je{=3,-1,1,3}

this shows that these functions provide to u"S", u”*" contributions satisfying esti-

mates (4.39)—(4.41) and (4.43)—(4.45).
Let us study
a* (1) Y Op(my )™?). (4.68)
1I]=1
If we apply Proposition C.2.1, using that Assumption (H1)3 /2 holds, we get from
(C.89), (C.90), (C.91) and the fact that a®P(¢) is O(t, 1 2) that the contribution of
u/L P2 1o (4.68) is O(t; 't~ (x)™"), i.e. may be included in R satisfying (4.38).
On the other hand, if we replace in (4.68) uapp’ by u/,*P2, we shall get terms of
the form (4 63), with U; ! 1 givenby (C.4) in terms of M; satlsfymg Assumption (H1),,
with w = 5. These terms are thus better than those in (4.63) and the fact that they
fulfill remamder estimates (4.38) will be seen in Step 5 below.
Consequently, we have shown that

(D¢ = p(D))uP? —a*™ (1) > Op(m ™?) = L + I3 + R(t.x) (4.69)
|I]=1

with R satisfying (4.38). Making the difference between (4.65) and (4.69), we get

(D= (D) (T =T ")

= I3 +a™(0)( Z Op(m} N —u™ —u?)) + R, x). 470
[I]=1

Fourth step. We construct an approximate solution in order to eliminate /3 in (4.70),
i.e. we solve 5

a"“lt o 4.71)
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with I3 given by equation (4.16). For each contribution e/’ [M (z,x) to (4.16),
with —1 < j <1, we get an equation of the form (C.2) with A = j V3. Moreover,
by (4.17)—(4.19) assumptions (C.8)—(C.10) hold (the last two ones being empty if
A= V3 with j = 0or —1), i.e. Assumption (H2) of section (C.2) holds. We may
thus apply (ii) of Proposition C.1.1 and Proposition C.1.2 that allow to write uap P3 as

a sum

U’ = Z Upt(t.x), Uy =Uj + U/, 4.72)
j—
with Uj, satisfying (C.21)—(C.23) and U”+ satisfying (C.28)—(C.30). If we now set
uifpa u[l_app’ +u'} apP:3 with
1

u/, PP3 Z L @x), = YU (), (4.73)
J== j==
it follows that (4.39)—(4.41) and (4.43)—(4.45) hold true. Let us check that
a™ () Y Op(my )™ (4.74)
1I]=1

is a remainder satisfying (4.38). Since we are here under Assumption (H2), we shall
apply Proposition C.2.4 splitting each U; 1 in (4.72) as

Ui+ = U;ﬂL’l + U]{,’Jﬁ1 (4.75)
_1
according to (C.110). Then by (C.111), and the fact that a®® = O(t, 2), the contri-

bution coming from U jf/ 4.1 obeys remainder estimates (4.38), so that (4.74) may be
written as a contribution to R in (4.37) and as

a*™(t) Y Op(my ') (4.76)
[I|=1
with
P = Z Ul (). 4.77)

j=-—1
We shall see in Step 5 below that (4.76) provides also a contribution to R. Conse-
quently, we have obtained that

(Dy — p(D))UP? —a™ (1) > Op(my )F™?) =I5 + R(t.x).
[I|=1

Making the difference with (4.70), we conclude that 1" will solve (4.37) if and only

if
3
(1= p(D0) (s = Yt

=1

3
—a™ (1) Y Op(m’u)(ul Z PP‘) = R(1.x).

[7]=1



Construction of approximate solutions 70

Consequently, we just have to take uapp ap L uap P2 4 u?fpﬁ. We have checked
that then estimates (4.39)—(4.41) and 4. 43) (4.45) hold. It remains to check that
terms of the form (4.63) and (4.76) provide remainders, and that estimates (4.46)—
(4.47) hold true, as well as the properties of the decomposition (4.48). This will be
done in the following steps.

Fifth step. Let us show that (4.63) and (4.76) are remainders. Let us use the same
notation U/ Jj+ 4 for either U 4 in (4.63) or U; / i+ in (4.77). Notice that since the func-
tions M; in (4.12), (4. 14) (4 16) are odd i 1n X, so are the U / 4 defined from them.
Moreover, as m' ; is in S1 o({(E)71, 1), we may write

Op(m} 1) (U} 1) = Op(it1, £)({Dx) ' Uj 1) (4.78)

with /i)  in §7 (1, 1). By oddness of U; ,

_ ix (/D
(Dx) 1Uj’,+=_ _1( al )(t,/uc)d,u

2 (Dy) 7t
zx
2t

4.79)

((L+ L ux) — pxUJ L (1, px)) dp

As m has rapidly decaying coefficients in x, we rewrite (4.78) as a linear combi-
nation of expressions

1

for new symbols m1 ; in the class S! 0(1 1). Using (C. 92) withw = 1 or (C.112), we
bound any L norm of x# 9% acting on (4.80) by C&?¢t~1. Taking into account that
a®P(t)is O(t, 1/2) we see that (4.63) and (4.76) satisfy (4.38) (using again t < &™%).

Sixth step. We shall prove estimates (4.46) and (4.47). Recall that by definition

/app __ ./ app,l / app,2 / app,3
wit=uy +u, +uy

with u/, P! given by (4.54), u/, P2 given by (4.67) and u’, *PP3 given by (4. 73).
Consequently, the term (D,—p(Dx))u’ PP is a sum of expressions (D;—p(D))U ] 4o
where U j’, is given by an integral of the form (C.4) (resp. (C.110)) with M replaced
by an M; satisfying either (4.13) (for those coming from (4.54)) or (4.15) (for those
coming from (4.67)) (resp. satisfying (4.17) for those coming from (4.73)). Conse-
quently, for contributions of the form (C.4),

1

( p(Dx))U//+ =73

oo . T
TP @IA Ty () My(r, ) dr, (481)
1 Vil
where y(t) = tx/(r) and A; is some integer multiple of @ In other words, we
obtain still an expression of the form of the first line in (C.4), but with a gain of a fac-
tor 1. Estimates (4.39) and (4.41) that we have already obtained for u’** furnish
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thus (4.46) and (4.47) multiplying them by ¢! (the change of cut-off ¥ does not
matter, as it has support contained in the one of y). This shows also that (4.46) and
(4.47) hold for 1/#P-1 4 34/%P-2 The case of u'*P-3 is similar, using (C.110) to get an
expression of the form (4.81), but with X( u ) replaced by %(7), i.e. again an integral
of form (C.110) with the gain of a pre- factor 1~

Seventh step. We have to establish still (4.48). The contribution uif’p’l on the right-
hand side is the one that has been defined in the first step by (4.53), with right-hand
side glven in terms of M; defined in (4.21). The term X, in (4.48) is thus given
by uapp’ + uapp >~ introduced in (4.67) and (4.72). These functions are constructed as
sums of contrlbutlons U that satisfy equations of the form (4.50), where the source
term satisfies (4.15) or (4‘17) and thus (4.51). It remains to show (4.52). As m’ has
rapidly decaying coefficients in x, we may forget the x factor in (4.52), and are thus
reduced to the study of 9%Op(m’) (uapp’ ) and 0°Op(m’) (uapp’ ).
Consider first 920p(m”) (u’f™ %). By (4.67), we express that from

3%Op(m’ )(U-/+), 8§Op(m/)(Uj/:+). (4.82)

As Assumption (H1),, holds with w = accordmg to (4.15), the second term above
is given by (C.89) of Proposition C.2. 1 It follows from (C.90) and (C.91) that its
modulus is smaller than

_3
t; 2 + &3t Mog(1 + 1),

so than the right-hand side of (4.52). On the other hand, Op(m)(U; ) has been
expressed in fifth step under the form (4.80). If we plug there estimates (C.92), we
see that the modulus of the first term in (4.82) is O (e3¢~ 1), so better than the right-
hand side of (4.52).

Consider next d$Op(m”) (ua]p p.3 ). Solving (4.71), we have written uffp > under the
form Z] ——1 (U] 4, + U/, ) according to (4.75). If we plug this decomposition
in d¢Op(m’)(-), we get on the one hand expressions of the form (C. 111) that are
bounded by the right-hand side of (4.52). For the contribution 0¢Op(m’) (U i +1)> we
use again that we can write an expression of the form (4.80) and bounds (C.112).
We get an estimate in O(g2¢~!) that is better than the right-hand side of (4.52). This
concludes the proof. |

To conclude this section, let us compute some integrals that will be useful in
the sequel.

Proposition 4.1.3. Let Y, be the function defined in (4.22). The functions U; .,
j = —=2,0,2, on the right-hand side of (4.49) satisfy the following:
/ Us,+(t,x)p(D) " Yo dx = (ea + i) V3g (1) + 7 (1), (4.83)

where o is real,

Ba = —%ifz(ﬁ)z (4.84)
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for the function Y, defined in (2.6), and where r(t) satisfies
()| < C(A, A’)(g%—% b ez—%(gw;)%f’/) <CcA A (485)
Moreover;
/ Uo.+ (1) p(Dy) " Yo dx = aolg () + (1), (4.86)
-1 _ 2, —ity/3
/Uz,_(t,x)p(Dx) Yodx =a_,g(t) e + r(1), (4.87)

where o, —y are real constants, and where r satisfies (4.85). Finally, the function
34 in (4.48) satisfies

’/EJr(t,x)p(Dx)_le dx’ (4.88)

_3 _1
<CA At 2 + 27 + 171, ?) log(1 +1).

Proof. Let us establish (4.83). The function U, 4 is defined as the solution of (4.50)
with j = 2 and M, on the right-hand side given by (4.21). We write (4.83) as

oo [ Gase0p@ Fa-6) d

Since Y> is odd, we get from equation (C.124) applied with Z &) =—p@E)! Vs &),
M(t, &) = My(t,8), A = /3, a contribution to r and two integral terms. By (4.21),
the second one is

B V3 (1= x ) Ya(e)?
or ) V3-1+8& J1+§
which may be written since Y, is real and odd, under the form o/zei 13 g(t)? for some
real o).

Using the definition (C.123) of y;, and the fact that ¥5(&)? is even, the first term
on the right-hand side of (C.124) brings the contribution

deg(t)? (4.89)

; +o00

_ l_eitﬁg(t)Z lim / eir(«/ 1+§'2—\/§)—01X(E _ ﬁ)

o omordo (4.90)
RA0s |

V1+E2
Denote by &(¢) the reciprocal of the change of variables & — ¢ = /3 — /1 + &2

defined from a neighborhood of & = V2t0a neighborhood of { = 0. We rewrite
(4.90) as

dEdt

¢

0] dt. (4.91)

. +o0 . R
~ Lty tim / T (€ (D) — VDT (E D))

3 o—=>0+ Jo
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Notice that

. oo —it¢—ot : c—1 : 1
Ul_l)r(r)1+ ; e dt =—-i(¢—1i0) —nSO—zp.V.Z.

Plugging in (4.91), we obtain an expression a5 + if> with o real and B, given
by (4.84).

To obtain (4.86) and (4.87), we apply again Proposition C.3.1 but with A = 0 or
A = —+/3 so that x2 = 0 and in (C.124) the first term on the right-hand side disap-
pears. Only the second one and r remain, so that one gets no imaginary contribution
to (4.86) and (4.87).

Finally, let us prove (4.88). As Y5 is in § (R), the integral may be expressed as an
integral of Op(m’)(X ) for the symbol m’ = Y,(x)p(§)~', so that (4.52) brings the
conclusion. |

4.2 Asymptotic analysis of the ODE

In this section, we shall prove that solutions of the ordinary differential equation
(2.34) have a certain asymptotic expansion by a bootstrap argument.

We make some a priori assumptions on the functions ®; and I'; on the right-hand
side of (2.34).

Assumption (H)). Assume that 1 is a solution to equation (2.27) defined on the set
[1,T] x R for some T < &% such that the functions ®, and T';, Jj =1,2,3, defined
on (2.36) satisfy the inequality

3 3,
(@200 (o )ou—(to N+ e 22T (0 )ou— (2. )

= (4.92)

< B/l—% (82\/;)20/

for some constant B’, some 6’ € ]0, %[ (close to %), allt € [1, T], and assume that the
function ®; given by (2.36) satisfies for any ¢ € [1, T'],

‘q)l(u-i-(lv ')’ u—(t’ )) - ?(Y’ YK(X)b(X, Dx)p(Dx)_l(qu - u?p)>

— (Z.iiy) — (z,a_>)( < B3 (2 VD)7,

(4.93)

where uifp is the approximate solution constructed in Section 4.1, Z is a function
in § (R), ti1 are functions verifying inequality (4.4) such that forany A in R —{—1, 1},
one may find functions ¢+ (A, 7) and Y+ (4, 7) as in (4.5), solving equation (4.7) and
such that estimates (4.6) hold true, for A outside a given neighborhood W of {—1, 1}
in R.
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We consider on the interval [1, 7'] the solution a4 of equation (2.34), namely

3 2 .
<D, - %_)aJr = Z(a+ —a )" ®j[uy,u_]
/=0 (4.94)

3
+ Z(a+ —a )/ Tjluy,u]
=0

with an initial condition at ¢ = 1 satisfying
lar (D] = Aoe (4.95)

for some constant Ay. We introduce as a second assumption an estimate on a., that
we give in terms of upper bounds (4.99) below:

Assumption (H)). The solution of equation (4.94) with initial condition (4.95) exists
on some interval [1,7] with T < &= and satisfies on that interval the following
requirements: One may write

ay(t) = aif’p(t) + S(@), (4.96)
where a’* (¢) has the structure
@TP(1) = 5 g(t) + w0ag (126 + wolg () + w_2g (1) eV
+ e (1) (¢4 (0,1) — 9_(0,1)) (4.97)
+ e T g D) (04 (V3.1) — - (V3,1)
and where
S(1) = 03g()*e¥5 + w1 |g()Pge T + w_sg@) e T (4.98)

with the following notation:

e The coefficients w; in (4.97) (resp. (4.98)) are real (resp. complex) constants that
will be chosen below.

e The function g satisfies, for some constants A, A" and ¢ € [1, T,

_1 _3 ,
2] < A1 2, 19,g(0)] = A2 +173EVD3Y),  (4.99)
where 0’ € ]0, L[ is close to % and has been introduced in (H7).

e The functions ¢ (0, 1), p+(+/3, 1) satisfy conditions (4.5)~(4.7) with Z and i+
introduced in (4.93), i.e. one has estimates
1

o0l < (VD172 Y] < (VDT
(Z.dis, )] < (VD717
(when ¢ is small enough) and one has the equation
(Di = V(A1) = (Z,ux(r,-)) + ¥+ (A, 1) (4.101)
for A = 0 or v/3.

(4.100)
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We shall bootstrap Assumption (H)), i.e. estimates (4.99) assuming that (H)
holds:

Proposition 4.2.1. Let ¢ €10, 1] and 6’ € ]0, %[, 0’ close to % There are constants
A, A’ g9 > 0 such that if Assumption (H') holds and if the solution a of (4.94)
exists on [1,T] and has structure (4.96) with g satisfying (4.99) on [1,T], then if
£€10,e0, T < e 4T¢, one has actually, for any t € [1,T],

1 _1 1 _3 ,
g0 = 5467, 10ig0] = 54/ (17 + 73 EVDE). (4.102)

As a first step towards the proof of the proposition, let us rewrite equation (4.94).

Lemma 4.2.2. There are a real constant y1 and complex constants y3, y—1, V—3 such
that, under the assumptions of the proposition,

(- ?)CH = % g0 g () (11 - if—ffz(ﬁ)z)

/3 i3 —

+ e g (1)Pys + R 2 () 22Oy @103
PV p— ’

+ e ¥ () Y,

+ (ay —a-)*®o + (at —a-)’Ty

+(ay —a)(Z,uy)—(Z,u_)) +r(t),

where r(t) satisfies
3 /
r(0)] < C(4, 4", B2 (V1) (4.104)
for a constant depending only on the constants A, A’, B" of (4.99), (4.92), (4.93).

Proof. Consider thegright-hand side of equation (4.94). By (4.92), the ®, contribution
is bounded by B't 3 (¢2/1)2%', so satisfies (4.104). By (4.96), (4.97), (4.99), (4.100)

las ()] + la_(6)] < C(Ay; * (4.105)

so that (4.92) implies that the contributions (a4 — a_)3_f Iy, j =1,2,3,to (4.94)
satisfy (4.104). We are thus left with studying

Oo(ay —a_)? + ®uy,u_l(ay —a_)+ Tolay —a_)>. (4.106)

The first and last terms in (4.106) are present on the right-hand side of (4.103). Con-
sider (a4 — a_)®;. By (4.93), up to another contribution to r, we get on the one hand
the last but one term on the right-hand side of (4.103) and the quantity

NE] _
= (@ —a){Y. Ye(x)b(x. Dx) p(Dy) Ll — uPy)
that, according to the definition (4.22) of Y,, may be written

‘?(u —a-){(Y2, p(Dx) ™ (uf® — u™)). (4.107)
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We replace above ui'fp by expansion (4.48). According to (4.88),

_3 _1
(Y2, p(Dx) 'Z4)| < C(A ANt 2 + 171> + 171, 2) log(1 +1).

If we use also (4.105) and (4.1), we conclude, since
_1
172 < Ct72(2V1), 1,217 1% < Cr2(2V0), Tl < Ct3(2V0),

that (4.107) satisfies inequality (4.104) (if we absorb the logarithm using that we
assume &2/t < 85 0 < —, and that we take & small). We are thus left with the
contribution to (4.107) of

?(Uu —a_){(Ya., p(Dx) " P! —urly) (4.108)

with ua pp-1 given by (4.49). The bracket above has been computed in (4.83), (4.86)
and (4. 87) It is in particular O(C(A4, A )t_l) By equations (4.96)—(4.100) the diffe-
rence ay — ¢'V3/2g is bounded by C(A) (17 + 1, 124=1/2(62 /1)¥'), so that if we
replace in (4.108) a1 by e'’ V3/2 g, we get an error bounded by

C(4, A )( e z(&{)") < C(A, A3 (2 VD)%Y (4.109)

so that we get a remainder. Consequently, using again (4.49), we have reduced (4.108)
to

ﬁ

(50 F 450N Y (. p(D0 7 Ui + Tp))] @110)

Jj€{-2,0,2}

up to remainders. We have computed the bracket above in (4.83), (4.86) and (4.87).
Up to terms bounded by the product of (4.85) with 7, 1/ 2 which still provides remain-
ders satisfying (4.104), we get that (4.110) is given by

L _
A E g (1) + AT g0 (1) + ey g ()P + e E Y35 () s

where y; are complex constants, with y; = ‘/75(2040 4+ ay + a—p +iB5), where «y,
o, 0o are real and B, is given by (4.84). We obtain thus the first four terms on the
right-hand side of (4.103). This concludes the proof. ]

‘We shall next compute from expression (4.96) of a4 and from (4.103) an equation
satisfied by g.

Lemma 4.2.3. One may choose the coefficients w;, =3 < j <3, j # 1, in (4.97)
and (4.98) such that if a4 is given by (4.96) and satisfies (4.103), then g solves

Dig(t) = (o= if—ffz(ﬁ)z)m(z)ﬁg(z) + (), (4.111)
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where « is real, ?2(«/5)2 is negative and r(t) satisfies
()] < C(A)E 27 VD +C(4, 4, B) (r;2 + 17N VD
I TN LN o TNt L z—z(ezﬁ)%"’),

where C(-) are constants depending only on the indicated quantities.

(4.112)

Proof. Let us express in a more explicit way the right-hand side of (4.103). By equa-
tions (4.96)—(4.100),

. /3 i —2 —i
a:(t) = (€7 g(0) + g (12" V? + wo|g () + w28(1) ¢ *V?)

(4.113)

w

< C 2 VDY + CA)y

for constants C(A) depending only on A.
It follows that

(a+() —a_(0))® = e"™3g(1)* + 202 + e V35 (1)
+ 2e3"’§g(r)3(w2 + w_3)
+ zeff%g(ng(z)(zwo oyt o) (G114)
+2e710F |g(r)|2g(r)(2wo + w2+ w_2)
+2e73% D) (@2 + ) + (1),

where r satisfies (4.112).
In the same way

(a+() —a-(1))* = T g(t)3+3e” *g0Pg()
+3¢7F g0 8@ + gD + (1)

where r satisfies (4.112). We plug (4.114)—(4.115) in the right-hand side of (4.103).
We get, as ©¢, I'g given by (2.35) are real constants, the expression

(4.115)

¢V3Dog(t)? +2g(1) 2o + e V3 Dog(1)

+ e 2 g0 Pe)(y, - if—ffz(ﬁ)z)

+ T g1y, + e gDy + e T gy, G110
e F g ()(Z.iy) — (Z.5-)

e GO (Zg) — (Z.02) + (1),

where Zj’ Jj = —3,—1,1,3, are new constants with Y, real, Y 3V 075 depending
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on w_,, g, W butnot on w_3, w—_1, w3, and where r(¢) satisfies (4.112), and contains
in particular the product of (Z, ii+) with a, (1) — e/*™V3/2g(t), a_(1) + €'V3/2g(1),
according to estimates (4.113) and (4.100).

On the other hand, we may compute the left-hand side of (4.103) replacing a by
its expression (4.96). We get, using (4.101) with A = 0 or V3,

(D, — ?)M —it% D.g + ?e"’ﬁwzg(t)2 — ?cvolg(l)l2
_ 3%§w_2e_i’ﬁm2 + «/§w3e3i’§g(f)3
N R NP0 30) @.117)
— 2«/§w_3e_3”§m3
+ T g(1)(Z,i4) — (Z.0-)
4 e RGO Z, k) — (Z.62) + 1),

where r1(t) is made of terms of the form

O(IgD:g)). O(1D:ge+(0,1)]), O(ID;gp+(v/3,1)]),

5 (4.118)
0(1gy+(0,0)), O(gy+(v3,0)). O(g*Dig).
By a priori estimate (4.99) and (4.100), these terms are bounded by
C(A, A)( 4232V 13 (VDY + 223 )
(4.119)

I TN

the last contribution coming from the first two terms in the second line of (4.118). We

choose now the free parameters w;, j € {—3,...,3} — {1} setting
V3 B 2J§q> B 4J§¢
w3 = sz w2 = 3 o wo = 3 Yo
V3 2V3 o V3
w_1=—— , W_p = ——— , W_3 = ———
1 3 Y, 2 9 0 3 6 Y 3

(which is possible as y Y Y do not depend on w_3,w—_1,w3). In that way,
when we make the difference between the two expressions (4.116) and (4.117) of
(D — 25 ) we obtain equation (4.111) with a remainder satisfying (4.119). This
concludes the proof, as Yz(«/_ ) being purely imaginary (since Y5 is real and odd),
Yz(\/_)2 < 0 and moreover, by Proposition G.1.2, Yz(«/_) # 0. ]

Proof of Proposition 4.2.1. Let us show first that under the assumptions of the propo-
sition, the first inequality of (4.102) holds if A has been chosen large enough, ¢ small
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enough and ¢ < ¢#7¢_ In a first step, consider the case when ¢ is small, i.e. let us
show that there is 79 € ]0, 1] such thatif 1 <t < ro , and ¢ is small enough,

)= At
g®)] < 41‘5 . (4.120)

Since for these ¢ one has % <11 < ¢?, the a priori bound (4.99), equation (4.111)
and estimates (4.112) imply that, for any such ¢,

lg()] < |g(D)| + KA3*t + C(A, A, B') (1T + &%),

where K = |o — i‘{—sgfz(ﬁ)2| and C(-) is a new constant depending on A, A’, B/
(and 7). If A4 is taken such that

lg(D)] =

oo|::;
Sle

and tp small enough so that

1
KA%t < ,
* T 162
and if we take ¢ small enough, we get, using that 8’ is close to , that
A A -1
N < ——=e<—t1 2,
i.e. (4.120).
We shall thus study from now on equation (4.111) forz > ’g and initial condition

at ro bounded by fs In this regime, for some new constant C(A4, A’, B’), (4.112)
1mphes

Ir(0)] < C(4, 4 B (73 (20" +172), (4.121)

remembering that ¢ stays in [rge ™2, e74¢]. For ¢ in [rg, 27¢], set

_ 1 s
e(t) = e 1(1 +t)2g(82). (4.122)
We deduce from (4.111) and (4.121) thatif 8 = —‘{—Ef’g(ﬁ)z > 0,

_le()  —BHia >
D) = 51+ o leOPe@ + RO, (4.123)

where

PR 14+t ’ 1+1¢ P
|R(z)|sc(A,A,B)(( 3) e+ ,2)2)
C(A, A, B) 3 ; e
SO e ),
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Denote w(t) = |e(t)|?. Then

1
dew(r) = 1——1—t(w(t) —2Bw(1)* 4+ Q(1)), (4.125)
where according to (4.124), for t € [tg, e721¢],
[0(1)] < C(s%c + sro_%)|w(t)|% (4.126)

for some constant depending on A4, A", B’, t9. Moreover, we have

w(te) < (%)2. 4.127)

We fix A large enough so that (%)2 — 2/3(%)4 < —% and then take & < g¢ small
enough (in function of A, A’, B’, 7o) such that (4.126) implies |Q(¢)| < 1|w(r)|"/2.
Then it follows that if, at some time 7., w(?«) reaches (%)2, the right-hand side
of (4.125) is strictly negative. Consequently, taking (4.127) into account, we get

w(t) < (%)2 for any ¢ in [rg, £27¢]. Using (4.122), we conclude that

A -1
)] < 5ts

for ¢ in [;—2, £~4%¢]. This gives the first inequality of (4.102).
To get the second one, we notice that we may bound the right-hand side of (4.112)
by
=3 =32 /30
C(A)(ts 2 +172(2/1)27)
’ _3 ,
+CA, A, B’)(s + (82\/2)67>(t8 N ICNO L

for new constants C(A), C(A, A’, B"), depending only on the indicated arguments.
Plugging this in (4.111), we get

9,80)] = Klg0P + (C(A) + C(A, A, Be(t. o) (1* + 1732V

with
lim sup e(t,e) =0.
E0F e[y e—4+e]
If we plug there the first inequality of (4.102), choose A’ large enough relatively to
A, so that

K 42 C(A A
—_ <
(3) +ew =3
and then take & small enough relatively to A, A’, B’, we get the second inequality
of (4.102). This concludes the proof. ]



Chapter 5

Reduced form of dispersive equation

In Section 3.2, we performed a quadratic normal form on equation (3.11) satisfied by
u 4 in order to get equation (3.13). On the other hand, in Section 4.1, we constructed
some approximate solution solving equation (4.37). Making the difference between
(3.13) and (4.37), we shall get an equation for the action of D; — p(Dx) on

iy =uy— Y Op(ior)ur) —uf’.
=

The goal of this chapter is to invert in convenient spaces the map u 4 — i, to obtain
an expression for u 4 in terms of 4+ and to write down the equation satisfied by 7
in closed form.

5.1 A fixed point theorem

We establish first some abstract theorem. We consider E, F' two Bgnach spaces witl~1
norms || - || £, || - [| 7. We consider also two other normed spaces E, F suchthat E N E
(resp. F' N F) is also a Banach space. We set Br(r), Bg(r) for the closed ball of
center zero, radius r in F, E. We assume given a function
P (ENF)x(ENF)— ENF,
W", )= @W", f)

satisfying the following estimates: There are C > 0,0 > 0 such that for any parame-
ter A > 1, any u”, f, f1, f> in E N F, one has

le@”, Hlle < C(l"Ir + 1) (1" + 1 f1lE). (5.2)

D", Hlr < CA(|u"lF + 1 f1F)?
+CA (e + 1A 1F) (2 + 11 f 1l
1D@”, f1) — D", f)ll £
<C(u’IF + I filr + 1L1F) A = flE (5.4)
+C(l"le + 1 file + | AlE) A~ fllF,
D", f1) — D", f2)llF
<CA(lu"IF + IAilr + 1 L2l F)
+ 27 (e + A llE + 1 AIENIA - flF
+ CAY (W + 1 ALE + 1 AIENIA = fllE

5.1

(5.3)

(5.5)
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We assume also that if, in addition to preceding assumptions, u” is in F and fis
in E, then ®(u”, f) is in E, with estimate

1", Nz = CUlu"llzlu"Ie + (Iu"le + 1 £11F)1S 1 5) (5.6)

and if f1, f> are in E,

[o@”, fi) = @W”, )z < C(Iu"lIlr + I Aillr + I LlF) A = faollg. (5.7)

Lemma 5.1.1. There is ro > 0 such that for any r in]0, ro[, any A > 1, any u’,u”, it
in BE(rA) N Br(rA=9), the fixed point problem

f=u+u+ou", f) (5.8)

has a unique solution f in B (3rA) N Br(3rA™%). Moreover, if one defines induc-
tively

" a,g) =a+ P, g),

5.9
" (' a,g) = " a, ' " a,g) = @' (', a,®" (", a,g)),

and if one sets
€x =27 (Ilu"llr + 1l F + il F) + 27 (" lE + 'l + 7] £),

one has for any N > 1 and a new constant C > 0,

If =N " v +i.u)|E
<NV f =g
+CVTEN T (W e + Il + N e)Lf — oI F (5.10)
If =N " ' + i)l F
<CVHEN|f —u'|lp + CVTENAT f — ||k,

Furthermore, if one assumes that u’, il are also in E and u" is also in F, then fis
in E and one has for any N > 1,

- - N
If =N + @) g < CV (I + il e + 1)V =o'l (5.10)
Proof. We define the usual sequence of approximations

fver =N W a0 =u + 0+ W, fN),
Jo=0

using notation (5.9). By (5.2) and (5.3), we have

Ifn+ille < Ille + llille + C (" IlF + L fnlle) (el + 1 i le)
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and
I fveille < Wlle + llidlle + C A7 (Iu"llF + Il fw ]l F)

+ A7 (e e + 1N IE)) (e + 1L Al ).
It follows that if u’, u”, i are in Bp(rA~%) N Bg (Ar) with r small enough, one has

for any N,

4 - 1
I fn+illE < §(||”/||E + |lill g) + FIlE.

4 - 1
I/N+1llF = g(”“/”F + |l F) + gllu”llF.

In particular, ( fy )y remains bounded in Br (3rA~%) N Bg (3Ar). Moreover, by (5.4)
and (5.5) and the above bounds, for r small enough, ( fy)y converges in E N F to
alimit f satisfying

f=u+a+ow, f)=d W v+, f).

Then (5.10) with N = 1 follows from (5.4) and (5.5). One obtains the general case
by induction, using (5.4) and (5.5). In the same way, (5.11) follows from (5.7). [ ]

We shall apply the preceding lemma with £ = H*(R), F = W»*°(R), s > 0,
A =1t >1, p e N. We define the spaces E, F by

E={fel>R):xf eL’(R)}, F={feWP®R):xf e W ®[R)} (5.12)
and we endow them with norms depending on the parameter ¢:

IA g =tllfll2 + Ixflle2. g =l fllwece + lIxf lwo.co.

The functions u’, u” of (5.8) will be the functions u"*, u”*" of Proposition 4.1.2.

By (4.39)—(4.41) applied with a large enough r, and using (4.42), we get

[P, )llE < C(A, A)e,
[P )| < C(A, A')e?, (5.13)
Pl g < CA, AN + 13 (2 V) Fes),
In particular, for ¢ small, t%[[u"S* (¢, )| F + ¢ 7" P (2, - )| g may be made as small
as we want (uniformly in ¢ < &~#) if & > 0 is small enough. In the same way, by

(4.43)—(4.45)
[, )l < C(A, A)e,

"1, )F < C(A, A)e2(log(1 + 1), G149
Ju"P(, )l 5 < C(A, A)re?(log(l + 1),

Again, for t < &%, we see that 17 |[u”"(¢,-)||F + ¢t~ "} (¢, )| g may be made
as small as we want for ¢ > 0 small.
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We shall take some function 74 in Bg(Ar) N Bp(A~°r) N E, and shall solve
in ¥ the equation

Uy =uq — Z Op(ritg, 1) (ur) —u'§* —u"*f", (5.15)
=

where 719, 1 are symbols in S~1,0(]_[12~=1 ()71 My, 2) defined in Proposition 3.2.1. Set-

ting f4 = uy —u"’, we rewrite (5.15) as

fr=uP i + Q"L f), (5.16)
where
W, fr) = ) Oplio, ) ("™ + f)r). (5.17)
11]=2

Let us check that the assumptions of Lemma 5.1.1 are satisfied by the preceding map.

Lemma 5.1.2. [f we take E = H*(R), F = W"*(R), with s, p large enough and
E ., F defined by (5.12), then inequalities (5.2) to (5.7) are satisfied by the function ®
defined by (5.17).

Proof. To prove (5.2) we have to check that, for any / with |/| = 2,
10pGit0, 1) (" + f)r)llas < C(Ilu" lwoco + 11 f lwese) (1" ls + 11 f llzrs)

which follows from (D.32) if p is large enough, since Proposition D.1.6 applies in
particular to symbols that are independent of x, which is the case of elements of
S1.0 (]_[J2~=1 (£,)"1 My, 2) according to Definition 3.1.1. In the same way, (5.3) may be
written

10p(ito, 1) (" + f)1)llwoce
< C(7(Iu"llwe.co + 11 £ lwe.co)
+ e (e s+ 1S s ) (1" lwoce + 1L f we.ce)
which follows from (D.39) with r = 1 if (s — p)o is large enough. Inequalities (5.4)
and (5.5) are proved in the same way using the bilinearity of Op(s1¢,1).

Let us prove (5.6) and (5.7). To simplify notation, consider for instance the case
1 = (2,0). It is enough to prove the estimates

10p(0, 1) (f1. /)2 = Cllfillwosell f2ll 2. (5.18)
1xOp(io, ) (f1. f)lIL2 = C(tll fillwoeo + lIxfillwooo) |l f2ll 2 (5.19)
1xOpGito, ) (f1. f2)lIL2 = Cll fillweoo (]l f2ll2 + Ix/2ll22) (5.20)

(and the symmetric ones) in order to get (5.6) and (5.7). But (5.18) (resp. (5.19))
follows from (D.33) (resp. (D.37)) if on the right-hand side of the latter inequality we
estimate

ILsvjllweoee < C(Ilxvslweose + tllv; lymo+1.0).
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To get (5.20), one applies instead (D.33) after commuting x to Op(#2¢,7) in order to
put it against the f, argument.
This concludes the proof of the lemma. ]

We may now state the main result of this section, that will show that the implicit
equation (5.16) may be solved in f4, and that we get an expansion for f in terms

/app  /7app ~
of u' ", u" " and uy.

Proposition 5.1.3. Let u"", u""{* be function satisfying (5.13)~(5.14). Let also i
be a function of (t, x) € [1, T] x R, with T < e~*%¢ satisfying for some 0 < 0’ < <
% (0" and 6 being close to % ), some § > 0, some constant D the following estimates

liiy(t.)| g < Det®,

2 o’
4@, )F < D%, (5.21)
iy (2.)]| g < Dt (>V0)P.

Then, if € is small enough, there is a unique function fy in E N F with

2/t 0’
| fllF < 3max(C(A4,A"), D) max(az(log(l +1))2, %), (5.22)
I f+E < 3max(C(4, A), D)et®
such that, setting f- = — f4,
fr=u +ar+ Y Oplito,) ("™ + f)r). (5.23)

|I|=2

Moreover, one may find symbols (my),<|1|<4 in the class St.0 (]_[y=|1 (E) My ))
Sfor some v, such that one may write the solution f to (5.23) under the form

fr=u+iy+ > Opmp)(ir.ufl) + R (5.24)
2<|I<4
I=(I/,I'/)

where R satisfies

09 .o\ 4

IR, )||gs < C'(A, A, D)(W%) et (5.25)
9 .o\ 4

xR, )2 < C'(A, A, D)(W%) t%(ezﬁ)e (5.26)

for some new constants C'(A, A’, D), ¢ > 0 as small as we want.

Proof. Equation (5.23) may be written under the form (5.16) with ® given by (5.17).
We hav~e seen in Lemma 5.1.2 that inequalities (5.2) to (5.7) hold true, with the spaces
E,F,E,F defined in that lemma. By (5.13), (5.14) and (5.21), if t < ¢ % and ¢ is
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smlall inough, we can maz%(e 17" (e, ~)||~p, 1" P, ), t @’ (¢, )| F and
P ) e, T @ ) ey A (2,2 ) || £ as small as we want. We may
thus apply Lemma 5.1.1, that gives the solution f to (5.23) and its uniqueness. This
lemma gives as well the first inequality of (5.22). To get the second one, we deduce
from (5.8) and (5.2) that

Ifele < 1WPle +ldsle +o@ (e + v lE). (5.27)

where o (¢) is controlled by || /|| and [[u”%" || 7, so goes to zero if & goes to zero by
the first inequality of (5.22) and (5.14). Using (5.13), (5.14), (5.21), it follows that,
for & small enough,

| f+llg < 3max(C(A4, A'), D)et®. (5.28)

In the same way, we get from (5.8) and (5.6),
I lg < 15 + il g + Clu"SP 1 # 1" llE + o @l f+l

where o(¢) is controlled by [|[u”$*||F + || f+|lF, so goes to zero with ¢. Plugging
(5.13), (5;14), (5.21) in this inequality, we get for & small enough, and some new
constant C (A, A’, D),

| fellg < C(A. A" Dy (2 V1), (5.29)
We apply next (5.10) with N = 4. We obtain, using (5.13), (5.14), (5.21), (5.22) that

(2/1)9'1°
Ji

with some ¢ > 0. In the same way, by (5.11)

4
| fo = @* " PP + i w | < C'(A A, D)( ) et® (5.30)

since we assume ¢ < g~ 41¢

| fr = @2 i w0

A 5.31
< C’(A,A’,D)(M) 13(2V1)°. (>:31)
NG

The right-hand side of (5.30) (resp. (5.31)) is controlled by (5.25) (resp. (5.26)).
To finish the proof, we have to rewrite ®*(u”*", u’" + 7, u"f") as the main
term on the right-hand side of (5.24), up to remainders. Let us show by induction that

one may write

q)N(u//afP,u/jI_JP iy, u ) =0T i+ Z Op(m}\’)(zz,,, upy) (5.32)
2<|I|=N+1
I=(1/,I”)

for some new symbols mfv in Sl,o(nl.lzll(éj)_lMa’, |7]) for some v. For N =1
this follows from the definition (5.9) of ®! and of (5.17). The general case follows

using (5.9) and Corollary B.2.6, i.e. the stability of operators of the form Op(mfv ) by
composition.
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We apply (5.32) with N = 4, and according to (5.30) and (5.31), equality (5.24)
will be proved if we show that the contribution to the right-hand side of (5.32) given
by I with |/| = 5 forms part of R in (5.24). Using (D.33), we estimate the H* norm
of such a term by

-~ P P 4
C (it llweo-o + U P lweo-co + [[u" P lweo.oo)
X (g llrs + 1w N ers + NP llas ).

so by the right-hand side of (5.25), using (5.13), (5.14), (5.21).
To study the L2 norm of the product of x and of the terms in the sum (5.32) with
|I] = 5, we rewrite the latter, decomposing u®"? = y'*PP 4 y”?PP under the form

> OpEp) PR ") (533)
\1|=>5
I=(I/,I//’I///)
with symbols 772} in 5’1,0(]_[15:1 (&)71MQ,5).
In (5.33), we distinguish the cases || < 5 and |I"’| = 5. In the first one, we use
(D.36), making play the special role to one argument different from u”%". We obtain
a bound in

~ 4 ~
(It llwoo.eo + 1" lweo-oo + [l lweo-o)” (1PNl 5 + i+l 5)

which is controlled by the right-hand side of (5.26). When |[I”’| = 5, we use (D.37),
to obtain a bound in

8
0" [y o 00 1PNl L2 0Pl 7 < C(A, ANt (log(1 + 1)) "¢’

by (5.14). Since ¢t < g~41¢ the last bound is smaller, for & small enough, than

/ ’ (82\/?)9/ 4% 2 0
C(A,A,D)(T) t3(2V1)?,

so than the right-hand side of (5.26). This concludes the proof. ]

5.2 Reduction of the dispersive equation

The goal of this section is to deduce from equation (3.13) satisfied by u 4+ an equation
satisfied by the function # defined in (5.15). More precisely, we shall prove:

Proposition 5.2.1. Wefixc > 0,0 <0’ <6 < % with 0’ close to % and § > 0 small.
We take numbers satisfying s > p > 1 (that may depend on the preceding param-
eters ¢,0,0'). Let € €10,1] and T € [1,e74%¢]. Assume we are given on interval
[1,T] a solution u®l" = u'¥* +u""* of (4.37) satisfying bounds (4.39)~(4.41) and
(4.43)—(4.45). Assume also given a function uy in C([1,T], H*(R)), odd, solution



Reduced form of dispersive equation 88
of (3.13) and such that, if we define ti4 by (5.15), i.e.
iy =uy— »  Oplio,r)(ur) —u'f" —u", (5.34)
[1]=2
then U4 satisfies for t € [1, T] the bounds

lii4 (¢, )llas < Det?,
y 2. /1)
(2, )lwe.co < D%, (5.35)

~ 1
ILsite ()2 < DEF VD)
or some constant D. Then u 4 solves the equation
+ q

(D¢ = p(Dx))ii+

= > Op(ap)ir.uff)+ Y Oplmy )i upy)
3<|1]<4 17]=2
I=",1") I="1")

+a™ (1) Y Op(m ;)(ir)

[71=1

1 : 3 . 33—
+5(67F 50+ 5®) Y Oplm, () + RG, ),
I1=1

(5.36)

where for some v € N, my are symbols in S~1,0(]_[y=|1(§j)_1M0(§)”, 1)), 3<|1]|<4,
where my, ;i  are in Si,o(nﬂl (£, YMo(§)",|1|), all these symbols satisfying
(3.7), and where

NE]

5 (@) —a™ () (5.37)

with c_ljl_’p(t) being given by the first four terms on the right-hand side of (4.8), namely

a*(t) =

a L3 : _—
aP(t) = 7 g(1) + w28(1)2e" V3 + wolg ()2 + w_2g(1) e Y3 (5.38)

and

a® (1) = —a’* (1),

and where R(t, x) satisfies the following bounds fort € [1, T}]:

IR(t,)las < et®e(t,e), (5.39)
ILLR(t, )2 < 73 VD) e, 0), (5.40)

where
lim sup e(t,e) =0. (5.41)

e—>0+ 1<t<g—4+c
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As a preparation for the proof, let us rewrite equation (3.13) replacing in its left-
hand side u 4 by the expression of that function that follows from (5.34), namely
(De = p(Dx)) (4 + 3" +u"}F)
= F2lal + Flal+ Y. Op(mo.nlurl+ Y Op(mi )ur]

X 3<|I|<4 [1|=2 (5.42)
+Y a@’ Y Opm} ).
j=1 1<|I|<4—j

Recall that we have written in (4.37) an expression for (D; — p(Dx))uzfp. Making
the difference between (5.42) and (4.37), we get that (D; — p(Dy))ti+ is equal to the
sum of the following expressions:

Flla] — F2[a*)] + FJla] — F2[a™]. (5.43)
>~ Op(mo.n)lul. (5.44)

3<|I|=<4
>~ OpOmg lurl. (5.45)

|I|=2
a(r) Y Op(m} Plur]—a*™ (1) Y Op(m} )y, (5.46)

[1]=1 [1|=1
a(t) > Op(mg url, (5.47)
2<|11=<3
a@ty Y OplmyPlurl, j=2.3 (5.48)
1<|I|<4—j

—R(t,x), (5.49)

where R satisfies (4.38).
We shall analyze successively the expressions (5.43) to (5.49), using (5.34), in
order to rewrite their sum as the right-hand side of (5.36) with a new remainder R.
We first write in a lemma some elementary inequalities that we shall refer to in
the sequel.

Lemma 5.2.2. We denote by e(t, x) any real-valued function defined on the interval
[1,e74%€), satisfying (5.41). We have then the following inequalities:

1
1717 = O(ete(t,e)) ify > > (5.50)
\ 1 1
logelr; 717t = 0~ (Vi) ett.e)) ify = 5.0 <.
(7 + (V) 17 etd = O(et5Te(t,e)) if§>0,y >4,y >0, (552
(82\/;)y|10g8|4l‘_%(82«/;)0 = 0(1‘_%(82\/;)06(1,8))

. 1
zfy>0,0<9<§,

(5.51)

(5.53)
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(€2V/1)7 |log 8|t_%_°‘ (I%(szx/f)o) = 0(et’e(t, ¢))

g L 042 0 G5
—_— < — — >

lf2 <v=j3 +26, 0 >0,

1
logeer™2 = O(t~ 3 (2VD)le(t.e)) if0 <6 < 5 (5.55)

_1 1

lloge|?et, 2t = O(st te(t, ) if5 <y <1, (5.56)
21714 = O(ete(t.€)). (5.57)

Proof of Proposition 5.2.1. Since (D; — p(Dy))ti+ is given by (5.43) to (5.49), we
have to write each of these terms as contributions to the right-hand side of (5.36). We
study them successively.

Terms of the form (5.43). Recall thata = f(a+ — a—_) with a_ —a4 (see (2.33))
and that a (¢) is given by (4.96). Since by (4.99), g(¢) is O(tg %), it follows from
(4.96), (4.98) that a4 () — a*™(t) = O(t;>?). The definition (2.28) of FZ[a], F$[a]
implies that for any o, N integers

|92 (Fg [a] — F [a*™]) (1, x)| < Cant 2(x)7N, j =2,3. (5.58)

Thus (5.50) implies that (5.39) holds (even with § = 0) and (5.51) implies that (5.40)
is true for any 6 < % So these terms contribute to R in (5.36).

Terms of the form (5.44). Notice that if 4 satisfies estimates (5.35), then it satis-
fies bounds (5.21) (with a new constant D) in view of the definition of £ = H¥,

F = W*> and (5.12) of E. Moreover, if we set fi = uq —u""", equation (5. %4)
may be written as (5.23). Then Proposition 5.1.3 implies that for & small enough, there
is a unique solution f4 solving equation (5.23), and we have an expansion (5.24) for
f4+ in terms of &, u*PP. We may rewrite this as

wy =ufP +idp+ Y Op(mp)(ir.ufl) + R (5.59)
2<|I1<4
I_(I/ I//)
with symbols m; in S 0(]_[| )~IMY,|I|) and R satisfying (5.25) and (5.26).
We plug expansion (5.59) 1ns1de (5 44) Recall that by Proposition 3.2.1, the symbols
mo,7 in (5.44) belong to S o(ﬂl Y~ My, |I]). By Corollary B.2.6, we shall
get terms of the following form:
Op(mp)(ip . ufy), 3<|I|<4, 1= 1"), (5.60)
where 717 is some new symbol in S; 0(]_[| £/)"'My,|I|) for some new v;
Op(i)(U1,Us, ..., Ur), k=|I| (5.61)

with 717 as above and either

k=5, Up€ {iie, u P u"® (5.62)
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or
k>3, Upe{us, u u"® R} (5.63)

with R satisfying (5.25), (5.26), one of the Uy at least being equal to R.

Terms of the form (5.60) are present on the right-hand side of (5.36). We have to
show that (5.61) contributes to the remainder in that formula. By (D.32), under (5.62),
the H® norm of (5.61) is bounded from above by

~ k—1
C(lliitlweee + P llweoce + [u"3F llwe.co)
X (i llms + 1 Pllas + u" P las).

By (5.35), (5.13), (5.14), and since k > 5, we obtain a bound in

2 o'\ 4
C (82|10g e|* + %) et? (5.64)

so that (5.52) implies that (5.39) holds. On the other hand, consider the action of L4
on (5.61) and let us estimate the L2 norm of the resulting expression by the right-hand
side of (5.40). If we multiply (5.61) by x, we have to study

xop(ml)(Ulv”’ka—lka)' (565)

Consider first the case when among the U,’s in (5.61), at least one of them is
equal to #ix or v’ ifp , say Ux. We apply (D.36) (with j = k) and obtain thus for the
L? norm of the relevant quantity at time 7 a bound in

_ k-1
C(llitllweoe + [P llwe.co + u"Pllwe.ce)

i i (5.66)
< (tlillzz + 1 Ladivllz + Tl SN2 + 1 Lew Pl L2).

By (5.35), (4.40), (4.44), (4.39), (4.41), and the fact that k > 5, we obtain a bound at

time 7 in . o
C (82|log8|2 + %) 3 (2V7)". (5.67)
T

By (5.53) we get a bound of the form (5.40) for (5.66).

Consider next the case when in (5.61), all the Uy are equal to u” jfp. In this case,
we use (D.37) (with p > pg) to estimate the L? norm of (5.65) at time 7. We get
a bound by

C " 2o (e oo + | Lt P lwoce) [P 2. (5.68)
By (4.43)—(4.45) we get an estimate by
Ce(e® V1) logelBr7! + e(2V/7)? |logs|gr_%

to which (5.53) largely applies.
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On the other hand, the L2 norm of the product of (5.61) by 7 is estimated using
(D.33) by (5.66) or (5.68) as well. We thus have obtained that, under condition (5.62),
(5.61) forms part of the remainder in (5.36).

Let us study now case (5.63). If we compute the H* norm of (5.61) applying
(D.32), we obtain a bound in

. , , k—1
C(llarllwooo + WP llwe.co + " lwoco + | RIlwoo)” I R||as

~ k—2
+ C(lisllwoee + WP lwo.co + 1" llwo.co + | Rl|lwoee)”~ (569

X (N lls + 1w Plles + 1" Plles) IR wo.eo.

By (5.25), that allows to bound || R||we.co by Sobolev injection, (4.40), (4.44), (5.35),
the first line is bounded by (5.25), so it satisfies (5.39). The second line of (5.69) is
also estimated in that way. Notice that the assumption k > 3 is not used here, and that
k > 2 suffices.

If we compute instead the L2 norm of the product of (5.61) by x from an expres-
sion of the form (5.65) with Uy, replaced by R and apply (D.36), we obtain an estimate
at time 7 in

~ k—1
C(lillwoee + w3 lwoco + u"Pllwe.co + [|Rllwe.co)

(5.70)
x (I Rl> + xR .2).

The first factor is 0(820/) by (4.40), (4.44), (5.35) and (5.25) (coupled with Sobolev
injection). The last one is bounded from above using (5.25) and (5.26), so that it sat-
isfies (5.40) using (5.53). The L? norm of the product of (5.61) by 7 is also estimated
by (5.70). Again, only k > 2 is used.

Terms of the form (5.45). We plug in (5.45) expansion (5.59). By Corollary B.2.6, we
get terms of the form

Op(mg ) Gip . upy), |I=2.1="1") (5.71)
and terms of higher degree of homogeneity. We may thus write these terms as
Op(my) (U1, ..., Ux), |I| =k, (5.72)
where 772/, is in S{,O(Hﬂl (§,Y"'M,|1]) for some v and where either
k>3, Uge {ﬁi,u’i’p,u”i’p} (5.73)

or
k>2, Upe{ig, u P u"" R} (5.74)

with at least one factor equal to R. Terms (5.72) under condition (5.74) provide
remainders satisfying (5.39) and (5.40), as it has been seen in (5.69) and (5.70). (The
fact that k > 3 there has not been used.)
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Terms (5.71) are present on the right-hand side of (5.36). Let us show that terms
(5.72) under condition (5.73), provide contributions to R in (5.36). To estimate the
H* norm of (5.72), we may first split the symbols in new ones satisfying the support
condition of Corollary D.2.12, i.e. for instance |€1| + -+ + |Exk—1| < K(1 + |&]). We
shall apply estimate (D.78) withn = k,£ = k — 1. Let £ be the number of indices j
between 1 and k — 1 such that in (5.72), U; is equal to 14 or u’jfp. Then by (D.78)

[Op(ip) (U, ..., Ug)llus

—(k— - 4 ~ , Vi
<Ctm® DY Lydig o 4+ 1Ll 2 + i s + [Pl ars)

e (5.75)

1
X (IL4u" P lweo-oe + [u" P llweoee + 172 u"P|lg

< (M llms + T Pllas + 1w las).

Since k > 3, we obtain from (4.39)—(4.41), (4.43)—(4.45) and (5.35) a bound in
Ct"%(t T (£*/1)?|log €|2)2$t‘S < Ct le(t,e)et®

if o is taken small enough, so that (5.39) holds.

We consider next the L? norm of (5.72) multiplied by x or . The rapid decay of
symbols in the S, , class relatively to Mo(§)™|y| given by (B.13) implies that the
product of 771 by x is still a symbol of the form 772, (with a new value of v). We thus

have to estimate just
t|0p(my)(Uy, ..., U L2 (5.76)

with Uy satisfying (5.73). If at least one U; is equal to i+ or u'}”, we use (D.71)
with that value of j. We get a bound of (5.76) in

. k-1
C(li+lweooe + P lweoce + u" P llweo.oe)

- - 5.77)

X (1 Lytiq |2 + 1L Pllze + sl + Pl L2).

If all U; are equal to u”%”, we use (D.72) in order to obtain a bound in
Cllu" PPl 00 (I L 41" PP lweo-oo + " FP w000 ) 1”2 2. (5.78)

By (4.39)-(4.41), (4.43)—(4.45) and (5.35), the sum of (5.77) and (5.78) is estimated
at time t (since k > 3) by

((82«/_)9
NG

By (5.53), the first term is smaller than the right-hand side of (5.40). The same holds
true trivially for the last term in (5.79). This finishes the proof that terms (5.45) con-
tributes to the remainder in (5.36).

+ e2[log e[? ) 13 (2/7) + &3[logel*. (5.79)

Terms of the form (5.46). We need to prove that (5.46) contributes to the remainder
and to the @® ;| Op(7irg ;) (us) terms on the right-hand side of (5.36). Substi-



Reduced form of dispersive equation 94

tute (5.59) in (5.46). We get the following terms:

(a()—a*™(1)) Y Op(my ™)+ (a(t)—a*™ (@) > Op(m} [)(ir). (5.80)

[7]=1 |I|=1
a®™(t) Y Op(m} (), (5.81)
[Il=1
a(t) Y Y Op(my )Op(mp) iz, ufy), (5.82)
1I1=1 2<|]|<4
i=(i’,i”)
a(t) ) Op(m} )(R), (5.83)
[I]=1

where R satisfies (5.25), (5.26).
By (5.38), (4.8), (4.6), (4.3) and (4.96), (4.98),

_1 /
a*P (1) — a*P(t) = 0(,8 21_%(82«/;)9 )
and s )
a(t) —a™ (1) = 0(t; 2) = 0(t; 2172 (2VD)).
By (D.31), the H® norm of (5.80) is thus bounded from above at time 7 by

1 1 , N _ ’
Cr. 2t 2(2V0) (WPl as + " las + g ms) < Co (€2 v0) e

using (4.39), (4.43), (5.35). This quantity satisfies (5.39). If we make act L+ on (5.80)
and use (D.71) to estimate the L2 norm, we obtain a bound in

1 2 o’ 5 5
Cre >t 2(*VO) (IL+u' N2 + 1 Ltiig 2 + 5P 2 + i+ ]l.2)

for the contribution of u’jfp and 74 to (5.80). Using (5.35) and (4.39), (4.41), we get
by (5.53) the wanted estimate of the form (5.40). On the other hand, if we consider
the contribution (a() — a*®(t))Op(m} Ju"}" to (5.80) on which acts L, we may
estimate the L2 norm from the L one, as m’ ;(x,§) is rapidly decaying in x. Then,
by (D.77) with £ = n = 1, we obtain a bound in

p 1
Ctla = (e~ ([ e + 1= [u"P ] 5)

—1+40 /7app L 17app (584)
+1 (I llweo.co + | Lyu” PP lwoo.c)).

_3
Asa —a® = O(t, ), it follows, taking for instance r = 1, and using (4.43), (4.44),
(4.45) that (5.84) at time T may be estimated, if o is small enough, from

_3
2

_1 1
Ct, 21|logel® < Cr, 2t 2729 log ¢

By (5.51), (5.40) will hold largely. We have thus obtained that (5.80) is a remainder.
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Term (5.81) is present on the right-hand side of (5.36).
Consider next (5.82). By Corollary B.2.6, the composition Op(m ;) o Op(m )
may be written under the form Op(m’1 i) for new symbols m’1 7 in

1]
51,0(1'[<s,->—1M0“,|i|)

Jj=1

for some v and 2 < |7| < 4. Consequently, we write (5.82) under the form

a(ty Y, Op(m . uf). (5.85)
2=<|I|=4
I=I"1")
Since such expressions will appear also in the study of terms of the form (5.47), we
postpone their study.

Finally, let us study (5.83). As Op(m ;) is bounded on H?, the Sobolev norm
of (5.83) is O(ts_l/2||R(t, )lzs). Using (5.25), it satisfies (5.39). If we make act
L4 on (5.83), the rapid decay of m’l,l and (5.25), show that we obtain at time 7 an
expression whose L? norm is bounded from above by

1
Cl'g 2(82\/?)40/T_l+40(€‘f8)

that trivially satisfies (5.40).
This concludes the study of terms of the form (5.46).

Terms of the form (5.47) (and (5.85)). We study now expressions of the form (5.47)
and the related ones introduced in (5.85).

We plug expansion (5.59) in (5.47). By Corollary B.2.6, we get again terms of the
form (5.85), with 2 < |f| < 6 instead of 2 < |f| < 4, and terms of the form

a(t)Op(ﬁq’l,,)(Ul, LU, | =k=2 (5.86)

with again 71 ; in Si’o(nﬁﬂl(éj)_lMé’, |1]), Uy belonging to

{4, u" P u"PP R,
one of the arguments at least being equal to R satisfying (5.25) and (5.26). We have
already checked that terms of this last form provide remainders (even without the
pre-factor a(¢)) (see (5.69) and (5.70), where the assumption k > 3 was not used).
We are thus reduced to the study of terms of the form (5.85), with |i | > 2 in the sum.
If |i | > 3, we get terms of the form (5.72) with conditions (5.73), that have been seen
to be remainders. We must thus just study

a(t)0p(rr} )(Uy, Uz) (5.87)

with 1| =2, Uy, Uz € {fi+,u"" u”}. Moreover, we may assume, in order to
bound the Sobolev norm, that 772} ; is supported for |§;| < K(1 + |&;|) for instance.
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Applying (D.78) with ¢/ =£ =1if Uy = ti+ or u’i‘Ep and{=1,¢'=0if U; = u”iEp,
we bound the H*® norm of (5.87) by

—1 ~ ~
la@e ™ (I Lt | 2+ i s + 1L SN2 + Sl

1
+ 1L P llno.ce + 1" llyoo.co + 173 "7 <)

< (I llas + N Pllas + [u" P las).

_1
As a(t) = O(t, 2), one gets at time 7 a bound in et~ le(z, £) using (4.39)—(4.41),
(4.43)—(4.45) and (5.35). It follows that (5.39) will hold. On the other hand, if we
make act L on (5.87) and compute the L? norm, we get a bound given by

la(t)] = 0t %)

multiplied by (5.77) or (5.78) with k = 2. Using again (4.39)—(4.41), (4.43)—(4.45)
and (5.35), we obtain at time t an upper bound in

| 6’ .
CIE_2((—(82:;_§) + 82|10g8|2)1’z(82ﬁ)9

2 1
+ log(1 + 7)log(1 + ‘L'EZ)E((:i2>)2).

By (5.53), (5.55), (5.40) will hold true. This concludes the estimate of these terms.

Terms of the form (5.48). Terms (5.48) with |I| > 2 are of the same form as (5.47),
with a smaller pre-factor a(¢)”, so they are remainders. We have thus to study

a(t)’ Y Op(my )(ur). j =2.3. (5.88)
[I]=1

By (4.96), (4.97), (4.98), (4.100) and the definition of a(¢) = ¢T§ (a4 —a—), one may
write (5.88) from the term

LY (¢ ) + 5 ) Optm ) (5.89)
[1]=1
and from terms like
a() Y Op(m ) (ur), (5.90)
[1]=1
where
a0 < C VDY + 170, (5.91)

Terms (5.89) are present on the right-hand side of (5.36). We have to show that (5.90)
provides remainders. The H® norm of these terms in bounded from above, using
the Sobolev boundedness of Op(m() ;) and estimates (4.39), (4.43) and (5.35) by
Cet3=162% 50 that (5.39) will hold.
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On the other hand, if we make act L+ on (5.90) and compute the L? norm, we
have to estimate by (5.91) expressions of the form

TRV + 1 )|Op(m01)U||Lz, (5.92)

where st ; is of the same form as m{, ; and U = il or u" P or u”fP.

When U = ii4 or u’}”, we use (D.71) to bound (5.92) by

—1/.—1 ’ -5 ~ ~
Ci ' (72D +1 2)(IIL+M+IIL2 L Pl + itz + 5l 2).

Using (4.39), (4.41) and (5.35), we see from (5.53) that (5.40) will hold. On the other
hand, if U = u” fp, we estimate the L2 norm in (5.92) from an L™ one, using the
rapid decay of mO’I, and we use (D.77) with £ = n = 1, r = 1, in order to obtain
a bound in

SR VDY + 1) (P lwroe + L Plgonce + 175 [P s).
By (4.43)—(4.45), we bound this by
Clog 8|28l_%(lc8)

so that, since t < ¢4 and o may be taken as small as we want, (5.55) implies that
(5.40) holds. This concludes the study of terms (5.48).

Terms of the form (5.49). These terms satisfy (4.38). It follows immediately from
(5.50) that (5.39) holds. Using (5.51), we get as well (5.40).
This concludes the proof of Proposition 5.2.1. ]

The reduced equation (5.36) obtained in Proposition 5.2.1 still needs one more
reduction before we are able to deal with it. Recall that in Proposition 4.1.2, we have

decomposed u P under the form (4.48) uap = app’ + X, where u pr’l was given
by (4.49). We reﬁned this decomposition in (4. 54) as
s LRV L
)1
u't = Z Uj’,+(t, x),
j€{—2,0,2} (5.93)
)1
W= Y U (x),
j€{~2,0,2}
where U ]/ + U/ /', are defined in (C.4) from the right-hand side of (4.50), namely

+oo
Ul (x) =i / TP () My (2
1

t
Ul (1 x) = i/

—00

(5.94)
el =D p(Dx)+ij 5> (1—)()<\/—)M (r,-)dr

with M; given by (4.21). Let us prove the following corollary of Proposition 5.2.1.
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Corollary 5.2.3. Under the assumptions of Proposition 5.2.1, iy solves an equation
of the form

(Ds = p(D))ii+ — Z 15 Op(b) )ity — Z 5 Op(b )it

j=—2 j=—2
= > OpUap)(r. uff) + Y Op(my ) (i)
3=<|I=4 [1]=2
I=1".1") (5.95)
+ > Oplmy )G u'FRh
I= (I/ //)
[=11"1=1
+ > Opmy NP + Ry (2, %),

[11=2

where ()s3<|11<4 IS as in the statement of Proposition 5.2.1, where (m0 =2
are symbols in the class S1 0(]_[J_l (£, YMo (&), 2), where R satisfies (5. 39) and
(5.40), and where the symbols b it satisfy (3.7) and the following estimates for «, B,
NinN:Ifj=—lorj =1,

_1
0200 b} 4 (t.x.§)| < Capvte 2< YN E) T

(5.96)
10:0%0 ) (1, %, §)] = Capy (2 + (VD37 173) ()N (),
andif j = -2,0,2,
|a“aﬂb’~,i(r,x, £) < Capnty (x)™N(E)7,
5.97)

10:0%08 D) (1, %, 6)] < Capnt 2 (12 + (2VD37 1 3) (0) N (g).

Proof. Let us analyze the different terms on the right-hand side of (5.36). The first
sum appears unchanged in (5.95).

By the definition (5.38) of aap P the fact that g®P = *r(aapp app 1) and (4.3),
the a®P(r) ZI I1=1 Op(ml’ P 1) term in (5.36) contributes to the terms involving
bj’., 4 on the left-hand side of (5.95). The same holds true for the last but one term
in (5.36). We are thus left with studying

> Oplmpy p)Gip ). (5.98)
[ I|=2
I:(I/,I//)

First step. If |1"| = 0, we get the ;| _, Op(my, ;) (i) contribution in (5.95).
Second step. We consider next the contributions to (5.98) with |I’| =1, |I"| = 1.
As one may decompose

app rapp,1 //app,
Uy =uy tu + X4
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by (4.48) and (4.55), we shall get three type of terms:

> Oplmy )G P, (5.99)
I=(I/,I//)
=171

> Op(mp )i a5, (5.100)
I=',1")
=17]=1

> Op(my )Gip. Bp0). (5.101)
1=',1")

=117]=1

Term (5.99) appears on the right-hand side of (5.95). From (5.93), we may rewrite
(5.100) as a sum of expressions

Op(my )iy Ul'p).  j =—2.0.2. (5.102)

We shall apply Proposition C.2.2 with « = 1, w = 1. Since UJ” 4 18 defined by (5.94)
from a M; given by (4.21), thus satisfying by (4.3) inequalities (C.7) with v =1,
Assumption (H1); of Proposition C.2.1 is satisfied, and so Proposition C.2.2 applies.
It follows from (C.106), applied with A = j “/75 Jj =-2,0,2, that (5.102) may be
written as
€' 0p(by)iiy + Op(by )iy (5.103)
where b{ (resp. bé) satisfies (3.7) and the first two lines (resp. the last line) in (C.107)
with @ = 1. The first term in (5.103) brings thus contributions to the last two sums on
the left-hand side of (5.95), for j = —2, 0, 2, with symbols satisfying (5.97) and (3.7).
We have to check next that the last term in (5.103) contributes to the remainders.
By the last line in (C.107) and (D.32), (5.35)

|0p(b3)iiy|las < Cet~ log(1 + 1)er®

from which a remainder estimate of the form (5.39) follows. If we make act L+ on
Op(bé)ﬁ 77 and use (D.71) with n = 1 and the bounds (C.107) for the semi-norms
of bé (with @ = 1), we obtain from (5.35)

IL£Op(®))ir 2 < Ce?t~ log(l + 1) # (€2 3/1)° (5.104)

so that a bound of form (5.40) holds.
It remains to study (5.101). Recall the definition of X4 given after (4.50): this

function is a sum
3
> U@y,

j=-3
where U; solves (4.50) with source term et % M ;, where M ; satisfies (4.51),
i.e. the first inequality in (C.8). We may then decompose each U; as U’ , + U7,
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according to (C.110) with A = j ‘/73 and rewrite the terms in (5.101) from
Op(mi),l)(ﬁl’,g},hlﬂ)’ Op(mé),l)(ﬁl”g}/,l,ﬂ) (5.105)

to which Proposition C.2.5 applies. This allows us to rewrite these terms in the form
Op(b)(i+), where b satisfies estimates (C.117), namely

ol -1
10,°0¢b(1, y.£)| < Cte 2t log(1 + 1) (y) N (£)~". (5.106)
By (D.32) and (5.35), we thus get
_1
I0p(®)(lix) s < Cte 2t~ log(1 + 1) ||+ | s

_1
< Ct, 2t " 1og(1 + t)etd.

An estimate of the form (5.39) follows at once. If we make act L+ on Op(b)(ti+), use
the rapid decay in y of (5.106) and (D.71), we obtain an estimate of the L? norm by
the right-hand side of (5.104), with &2 replaced by ¢, 1/2 < ¢. This suffices to imply
that (5.40) holds, and thus shows that (5.101) is a remainder.

Third step. We study finally contributions to (5.98) where |I’| = 0. Again, we use
(4.48) and (4.55) to write

app rapp, 1 /aPPa
uy =uy tu + X4

Plugging this expression inside the terms (5.98) with |I’| = 0, we shall get expres-
sions given by

Op(mp ) (u'F™), 1] =2, (5.107)

Op(mpy ) (Zp. PP, ' =\1"=1,1=U.1"), (5.108)

Op(mg 1) (X1). 1] =2, (5.109)

Op(mp ) ("), 1] =2, (5.110)

Op(my (S "), I =1"=11=(I.1"), (5.111)

Op(mpy ) (/S u" PNy, |1 = 11" =1,1=(",1"), (5.112)
where my, ; are still elements of S 0(]_[l YTIMY|T)).

Term ’(5 107) appears on the rlght hand 51de of (5 95)

Term (5.108) is treated as (5.101): actually, u /app’ satisfies (4.39)—(4.41) as has
been established after (4.54), and these bounds are better than inequalities (5.35)
for i 4.

Term (5.109) may be treated in the same way: we have seen in the study of
(5.101) that Op(mé),l)(-,Eln) may be written as Op(b) - for b satisfying (5.106)
(see (5.105)). By (4.52), we shall get for any N,

IxN Op(mpy ) (D) s < CllxN Opb)(S2)llas

3 (5.113)
<Ct, zt_l(log(l +0))(te 2+ 17 —l—t ~1e?)
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By (5.56), we see that (5.39) will hold. Estimating the action of L+ on Op(m0 D7)
in L2, we get an upper bound by the right-hand side of (5.113) multiplied by ¢. Then
(5.55) shows that (5.40) holds.

To study (5.110), we recall that u”:‘f’p’l is given by (4.54), where U/, is given
by the second formula (C.4) in terms of an M that satisfies (4.13), i.e. such that
(C.7) with @ = 1 (Assumption (H1);) holds. We may thus apply Corollary C.2.3
with w = 1. It follows that the H* norm of (5.110) is bounded from above by

C(1;% + e*t 2 (log(1 +1))?).

This largely implies (5.39). On the other hand, the L? norm of the action of L+ on
(5.110) is bounded by

C(tta_2 + e* 1(log(1 + t))z).

Then (5.55) implies that (5.40) largely holds.
Terms (5.111) may be treated in a similar way as (5.109): we have seen that
Op(my)(Zy, u”;ff?’l) may be written as Op(b)u”"*™" with b satisfying (5.106). By

the expression (4.54) of
app, 1
M”_Ep = Z Uj/,/"r"
je{—2,0,2}
where U/, is defined by the second formula (C.4) with A = j ‘/75 and M = M,

given by (4.21), we see that we may apply Proposition C.2.1 with @ = 1. Taking into
account the time decaying factor on the right-hand side of (5.106), it follows from
(C.89)—~(C.91) that

10%0p(mpy ) (S u" )]
o (5.114)
< Ct; 2t (log(1 + 1)) (¢ " + &2t Mog(1 + 1)) {x) V.

Thus the H® norm of (5.111) is bounded from above by the ¢-depending factor in
(5.114). By (5.56), we get that (5.39) largely holds. If we make act L4 on (5.111)
and estimate the L2 norm, we get a bound in

_1
Ct, 2 log(1 + 1) (1, + &%t log(1 +1)).

Thus (5.55) implies (5.40).

It just remains to treat (5.112). Notice that (5.112) is of the same form as (5.100)
with @i/ replaced by u'}) Pl 5o that may be written under a similar form as (5.103),
namely

e/5 Op(b] '8P + Op(b] '8!, (5.115)

where b{ (resp. b'2i) satisfies the first two lines (resp. the last line) in (C.107) with

o = 1. We have checked after (5.103) that the second term in that formula is a remain-

der. Since as seen above, u’ Tp’l satisfies (4.39)—(4.41), which are better estimates than
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those verified by 4, it follows that the last term in (5.1 15) is also a remainder. Let us
prove that, because of the better bounds satisfied by u'"’ PPl versus Uy, the first term
in (5.115) is a remainder as well. By the estimates of b1 in (C.107) and (D.32),

s < Ct; 124

||Op(bj)u/app’ |HS < Cla_l ||u/zfp,1|

according to (4.39) written for u'%f P! By (5.57), we conclude that (5.39) holds.
To estimate || L-Op(b] 'y P15, we are reduced, by the fact that b is rapidly
decaying in x, to bounding t||Op(b] 'Y P15 According to (D.71) and the bounds
(C.107) of b , we thus get an estimate in

12) < C17' 13 ((PV0) + (2V1)Fe¥)

by (4.41). As in (5.40) 6 <3 L (5.53) shows that (5.40) holds.
This ends the study of term (5.112) and thus the proof of Corollary 5.2.3. ]

(T PR TG Ll




Chapter 6

Normal forms

This chapter is devoted to the completion of Step 5 of the proof of our main theorem,
that is described in Section 2.7 of Chapter 2. We recall here some elements of the
strategy. The preceding steps of the proof allowed us to reduce ourselves to an equa-
tion (5.95) for a new unknown i 4. In this chapter, we first write a system made of that
equation and of the one obtained by conjugation. In that way, if we set 1i_ = —
andu = [g* ], the system we get on # may be written (see equation (6.17) below)

(D = Po = V)it = M3 (i, u™®) + My (i, u™™) + M (i, u"™") + R, (6.1)
where R is a remainder and the other terms in the equation have the following struc-

ture:

e Operator Py is just

_ [ p(Dx) 0
PO_[ 0 _p(Dx)]. 6.2)

e Operator V is a 2 x 2 matrix of linear operators acting on .

Each of these operators is a pseudo-differential operator of order —1, whose coeffi-
cients depend on the approximate solution u*? constructed in Chapter 4. The main
contribution to 'V has thus entries of the following simplified form:

/3 1
eET 12 e (x)(Dy) 6.3)

D=

where ¢(x) is in $(R) and again t, > = m The left-hand side of (6.1) is thus

a vectorial version of the scalar operator

Dy — p(Dy) — 1 * Re(c(x)(Dy) el 7). (6.4)
We get thus a perturbation of the constant coefficients operator p(Dy) = /1 + D2
by a potential term, rapidly decaying in x. We already encountered such a perturba-
tion in Chapter 2, except that there the potential was autonomous. Here, it is time
dependent and has some decay when ¢ goes to infinity. Because of that, we can-
not apply the results of Chapter 2 or of Appendix A to eliminate term V in (6.1)
through conjugation. Nevertheless, one may construct by hand some wave operators
for a time depending perturbation of D; — p(D,) like the one in (6.4). That con-
struction is made on the Fourier transform side: we introduce in Lemma 6.1.1 below
a class of operators, obtained composing at the left and the right the last term in
(6.4) by (inverse) Fourier transform. In Appendix E below we design “by hand” wave
operators for such perturbations of p(Dy), so that, conjugating (6.1) through them,
we may eliminate 'V from that equation, exactly as we got rid of potential 2V in the
second equation of (2.9) in Section 2.1 of Chapter 2 (see equation (2.17)).
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The second part of this chapter is devoted to a normal form procedure allowing
one to eliminate non-characteristic contributions to the quadratic, cubic and quartic
terms M), M3, M4 in (6.1). Characteristic contributions are terms like |ii4 |*ii4 that
obey a Leibniz type rule of the form

1L+ (it Pia)) L2 < Clliit [Gyo0.00 | L+l 2

up to remainders. These contributions may be safely kept on the right-hand side
of (6.1). The non-characteristic terms are those that do not satisfy such a Leibniz
rule, and that have to be eliminated by normal form. We explained this idea on a sim-
ple model in Section 1.6 of the introduction, and gave more details in Section 2.7. In
the present chapter, we apply this method to M3, M4 that have essentially the same
structure as the models discussed there.

We have also to eliminate the quadratic term M} (&, u’*P!) on the right-hand
side of (6.1). Since the arguments i, u’*P! are odd, and M} is morally of the form
a(x)uyuy, with a(x) rapidly decaying, one may express each factor i+ using (2.65)
in terms of L+ gaining a ¢t~ ! decay for each factor. Nevertheless, this gain is not
sufficient to be able to consider M/, as a remainder. One get operators of the form
(2.68)—(2.69), and we explained at the end of Section 2.7 how to eliminate these
expressions performing again some elementary normal form.

6.1 Expression of the equation as a system

Let us first fix some notation. From #i4, i = —ii4, ult, utP = —u P % and
u'®P = —y’* we introduce the vector-valued functions
. app /app
- | U+ app _ | U+ rapp _ | U+
= |:ﬁ_:|’ u®P — [uapp]’ u'PP — |:u’app ) (6.5)
In order to write (5.95) as a system on i, let us define, when I = +,
2 Ve
/ itj 5= 1./
by(t,x,§) = Z e 2b (1, x,6), (6.6)

j=—

where b}’i satisfies (5.96), (5.97). Denoting l;/i(t, x,&) = b/ (t.x,—£), we define
the matrix of symbols

bl (t.x,&) b (t,x,§) ] 6.7)

M'(t,x,§) = [_,;fg(,,x,g) —b"Y (1, x.£)

As Op(b/ )w = Op(b’ 1) w, if we denote by Op(M") the quantization of M’ defined
entry by entry, and define Op(M’) by

Op(M )it = Op(M")i,
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the form of M’ shows that

Op(M’) = [

Op(b))  Op(b.) } (6.8)

—Op(b2) —Op(})
or equivalently, if No = [9 ],

Op(M’)No + NoOp(M') = 0. 6.9)
If we define for j = —2,...,2,

b, (¢, x, b. (¢, x,
Mi(t,x,§) = -f’v+( ) - (t6:5) g
—b _j,_(t,x,f) —b _j’+(t,x,$)
we have
2 A

M'(t.x.8) =Y V"7 Mj(t.x.§),

j=—2 (6.10)
Op(M[)No + NoOp(M_ ;) = 0.

We shall set also, if m(x, &1, ..., &,) is a multilinear symbol,

n_/lv(xvélv"'9sn) = m(X,_%_l’---a_En) (6.11)

so that Op(m) = Op(m") if we set again
Op(m)(wiy, ..., wy) = Op(m)(wy,..., Wy).

IfI =(,...,in)€{— +}" and uy = (u;,,...,u;,), we denote I = (—i1,....—In)

ul-:(u_il,...,u_in):—(ﬁil,...,ﬁin):—ﬁ (612)
according to our definition u_ = —ii4. Then if my is in Sy o(M,|I]), we shall get
that

Op(mp)(ur) = Op(my) @) = (—1)10p(mp)(up) = (~1)!Op(my)(uz). (6.13)

Let us use this notation to express nonlinear quantities constructed from (5.95). We
define first the quadratic terms, that will come from the right-hand side of (5.95),
namely

~ Op(m’ )(u/agy,l)
M) = Z |: T ept
I=(I/,I//) Op(m 0’1)(14 I )
[I']=0, 1" |=2
- app. 1
by [ Orem
_ - op.1
I1=(",1") OP(m'X,I)(up,u’I-‘if’) (6.14)
1I'|=[1"]=1
+ [OP(ma,n(um]
1=, Op(m'g ()i )
|I'1=2,]1"]=0
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and the cubic and quartic expressions, given for j = 3, 4 by

1 Op(ﬁ’l )(ft / uaE?)
Mj(a,uapp){ Zer=na7 1= OPO G i (6.15)
( 1) ZI a1, |I|= JOp(mI)(ul/, I”
We also set
_ R+(t,X)

where R is the last term in (5.95).

The system obtained taking equation (5.95) and the conjugated equation may be
written as follows, denoting 'V the operator Op(M”) given by (6.8) and Py the matrix
of operators given by (6.2):

(Dt — Po— V)it = M3(it, u™) + Ma(it, u™) + M (i1, ') + R, (6.17)

In order to apply the results of Appendix E below, we need to re-express operator V
on the Fourier transform side.

Lemma 6.1.1. For j = —2,...,2, there are two by two matrices
0,6 = [ g, @t m)]
’ (€) (m) " 1<k L2

whose entries satisfy estimates

aaaﬂ . <C _% _ -N -1
|08 90 q),(e.00| < Cnte > (IE] = nD) ™" ()™,

6.18
10208950 < Cw (2 + VD37 173)(le] = [nl)™ ()~ o
foranyoa,B,N if j = —1,1, and
13208 4.1, < Cut (] - =N ()", o1
10208 0i4;. 00 < Cnta 2 (60 + @YD) el — ™ )™
foranya, B, N if j = —2,0,2, such that, if we define the operator KQj by
Ko, 1© = [ os.6mitndy (6.20)

for f a C2%-valued function, the operator 'V acting on odd functions may be written
as

.
V=Y Ky, (6.21)
j:_
Moreover, one has 7Ng = —NoV.



Expression of the equation as a system 107

Proof. If f = [J;J_r ], we have according to the definition (6.8) of V = Op(M’) and
(6.10)

2
Op(M')f = 3 &% Op(M)) £ (622)
j=—2

Op(®; ) f+ + Op(b; _) f~
Op(M;) f = . 6.23
P [ 0P, ) f1 — Op(b'Y; ) /- } ©29

The Fourier transform of the first line of (6.23) may be written
[Bwe—nniiman+ [5 cs-nnfman 629

where bj’. 4 is the Fourier transform relatively to the first variable. Since b]’. L satisfies
(3.7), if we set

gian@.En) =b; (t.E—n.n). ¢ia.En) =b;_(t.§—n.n),

we see that G; (x,¢)(t, =&, =) = G}, k,0) (¢, §. n). If we make act (6.24) on odd func-
tions f4, f—, we may rewrite this expression as the sum for (k,£) = (1, 1) or (1,2)
of

1 A
3 [ @060 = G e.6.-0) fetn dn

(with f4 if (k,€) = (1,1) and f_ if (k,£) = (1, 2)). In other words, we may assume
that g; (1,1)(¢, &, 1) is odd in 7. Since that function is even in (§, n), it has also to be
odd in £. By (5.96)—(5.97), x bl/. (t,x,n) is in $(R), and the function is C*° in 7.
It follows that the Fourier transform in x of these functions satisfies

1020805715) (.6 — .| < Capn T (2. &) (E] — Inl) ™ ()"

for any o, 8, N, £ = 1,2, where ’fje (¢, ¢) is the time dependent pre-factor in the £-th
equation in (5.96) (resp. (5.97)). After the preceding reductions, it follows that g; . ¢)
satisfies forall o, B, N e N, £ = 1,2,

1080205 3w (1 E. )| < Capn T ) (IEl = Inl) ™ ()"

Since we have seen that this function is odd in £ and odd in 7, we may write it as
é) m 4i. k.0 (z,§,n), where q; k¢ satisfies (6.18)— (6.19). It follows that we have
written the first component of the Fourier transform 'V f of (6.22) as the first com-

ponent of Z = eltiN3I2K 0, J (§). Since the reasoning is the same for the second
component, we get (6.21).
The last statement of the lemma follows from (6.9). ]

We may now eliminate the operator 'V on the left-hand side of (6.17), using the
results of Appendix E.
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Proposition 6.1.2. Fix m in |0, %[ close to %, and set as in the example following
Definition E.1.1, t = min(1 — 2m, %69/) > 0. There is &9 > 0 such that, for any V
of the form (6.21), defined in terms of matrices Q; whose coefficients satisfy (6.18)
and (6.19), with ¢ € 10, &¢[, there are operators B(t), C(t), defined for t € [1,T]
(T < &747¢), bounded on H*(R), satisfying the properties of Propositions E.1.1 and
E.1.3 of Appendix E, such that, if i solves (6.17) and satisfies estimates (5.35), then
C(t)u solves

(Di — Po)C()u = C()M3(u, u™) 4 C(1) Ma(it, u™?)

+ C()M, (i, u'*P) + C(H)R 625)

with R satisfying for any t € [1,T],
IR ) as < et’ et e). (6.26)
LR, s < 173 (VD) e, ), (6.27)

where e satisfies (5.41). Moreover, C(t)u is odd if i is odd and NoC (t)u = —C(t)u.

Proof. By (E.9), it holds (D; — Py — V)B(t) = B(1)(D; — Po) and by (E.14), we
have it = B(¢)C(¢)u. Replacing # by this value on the left-hand side of (6.17), com-
posing at the left with C(¢) and using again (E.14), we obtain (6.25). Since V(z)
preserves odd functions and satisfies V() Ng = —Ny'V(¢), the last statement of the
proposition follows from (E.23) and the fact that Noii = —ii. This concludes the
proof, as estimates (6.26) and (6.27) are just rewriting of (5.39) and (5.40). ]

6.2 Normal forms

Our next objective will be to eliminate by normal forms most of the contributions on
the right-hand side of (6.25). We shall construct first the relevant operators in order
to do so.

Let us fix some notation. Let n be in N*. Consider C?-valued test functions v},
defined on [1, T] x R for some T, of the form

. _ 'Uj,+(l‘, X)
(t,x)—v(t,x) = |:Uj,_(t, x)] (6.28)
with v; + odd in x and satisfying v; - = —v; 1. If n > 3, we shall consider n-linear
maps }

(V1s.- s v) > M (V1, ..., 0p) (6.29)

sending C2-valued functions to C2-valued functions and having the following struc-
ture (using notation (B.17)):

D 111=n OP' (D) (Vi - - Vniy)

e/I/((vl,...,v)z —
" " [(—1)“ Y1112 OP" () W1ty - - Vn i)

i| , (6.30)
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where I = (iy,..., z,,ls {— +}",myisin Sy g (M, ]—[;'zl(fj)_l,n) for some 8 >0
small, v € N, where 11/ is defined by (6.11), and where the form of the second line of
(6.30) versus the first one just reflects the fact that M,,(vq, ..., v,) will have a struc-
ture with respect to conjugation similar to the one in (6.14) or (6.15) (see (6.13)).
Moreover, we assume that 71 satisfies

nﬁ(y,x,él, o 75”) = (_l)n_ll/h(_y’ —X, _517 ey _gn) (631)

so that the associated operator preserves odd functions (see (3.7)).

Proposition 6.2.1. Let n > 3. For any I with |I| = n one may find symbols my in
Sa.p(My 1_[;'1=1 (£/,)1(x)™%, n) such that, if one sets

[ > 111=n OP (D) (V1iy s+ o, Uniy)
ey V) =

e/i{ (U . —V
m (=n" Zm:n OPt(ml)(Ul,—ip"-’Un,—in)

:| (6.32)

one may write

def Y =
R,(v1,...,vy) = (Dy — Po)M,(v1,...,05) — M(v1,...,0,)
"oa (6.33)
=Y Mu(vr.....(D; = Po)vj.....vn)
j=1
under the following form:
| Ru+(v1,... v0)
Ry,(v1,...,vp) = |:Rn,—(vl,--~,vn) (6.34)
with R, — = Ry, 4, and Ry, 4 satisfies the following: One may write R, 4 (v, ..., V)
as a sum
Ry +(vi,...,vp) = Z Op" (r1) (Vi dys- -+ Vniiy) (6.35)
|I|=n
with symbols ry in the class S4 g(My H;’:l(éj)_l,n) for some v € N. Moreover,
LRy +(v1,...,v,) may be written as a sum of terms of the following form:
n
YN 00 (11 ) Wiy Lig vy Uiy (6.36)
[I|=nj=1
with rrj in Sq.p(Mg 1=, (8)~" ),
> Op' ()i Vi) (6.37)
|I|=n

Jor symbols ry in S4. g(My T17=, (&), n), and

£y 0P )Wy Vi) (6.38)
|I|=n
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for symbols ry in Si’ﬂ (M, ]_[;?zl(fj)_l,n). Moreover, my satisfies
rh[(_yv —X, _Slz ey _Sn) = (_l)n_ln/:ll(y»X, Els ey Sl’l) (6‘39)

if my does so in (6.30).

We shall prove the proposition expressing (6.33) in terms of the semiclassical
quantization of symbols introduced in (B.14) in Appendix B. If h = % we introduce

for any function v;, j = 1,...,n, the function v i defined by
1 X
i (tx) = v, (%) = @) (6.40)

according to (B.15). By (B.16), each term on the first line of (6.30) may be written
~ n ~ X
Op' (i) (W14, -« Vms, )(t, X) = hzoph(ml)(glail,...,yn,in)(t, ?) (6.41)

and similarly for the first line of (6.32). The first line on the right-hand side of (6.33)
may be written as the sum in / of

(Dt — p(Dx)OP (p)(V1,iys -+« s Unsin) — OP (1) (Viiys - Uniiy)

n
N : (6.42)
- Zopt(ml)(vl,ilﬁ ceey (Dt - ljp(Dx))vj,ij LERIEIRE) vn,in)-

Jj=1

It follows from (6.4 1) that the first term in (6.42) may be written as

n .n A X
h% (Do = Opy (x§ + p(©) =1 5h) ) (OPRORN @, 1,2 s)) (8T ).
The other terms in (6.42) admit analogous expressions, so that (6.42) may be rewritten

as h%E£,+(El,i1 voes Uy 1 )(t, ) with

Ry @y 0y, (E.0)
.n .
= (Dt — Opy, (xé +p) —1i Eh))(Oph(mI)(yUl e Vi)
_O ﬁ;l U i ,...,Qni
nph( )y, i) h 6
B Oy ()| v 7, (Dr = Opy (x€ +1;p®) = 15) )

.o ’Qn,in:l'

We shall study (6.43) both when I is characteristic and / is non-characteristic, accord-
ing to the terminology introduced in Definition F.1.1, that we recall in the statements
of the following two lemmas.

Lemma 6.2.2. Let I = (iy,...,I,) be characteristic, i.e. iy + --- + i, = 1, and take
My =0in (6.43). Then if £+ = ;0p, (x £ p'(§)), the term LR}  (vy ;... 0, )
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may be written as a sum of the following expressions:

Oph(rl,j)(gl,il"' f,ljvj, ,...,yn,in),
Opp (r))(Vy 4,5+ -5 2y i) (6.44)
1
Eoph(r;)(yl,il oo Up i)

with ry.j.rp in Sqg(Mg [Tj_1(&;)7" n) and ry in Sy o(Mg [Tj_1(&;)~".n) for
some v.

Proof. We just have to apply Proposition F.2.1 of Appendix F. ]

We shall consider next the case of non-characteristic indices.

Lemma 6.2.3. Let I = (il, ..., in) be non- characteristic, ie.iy+---+in#1 Then
one may find a symbol my in S4 B(MY ]_[ '_ (&) H(x)7°, n), for some v, such that
Brlz,+(21,zl soe s Uy ) given by (6.43) may be written as a sum of terms

Oph(rll)(yl,il e ’Qnsiﬂ)’
hOPh(VI)(Eu]v---»Qn,in)’ (6.45)
Opp(r) @y -+ U iy)

with symbols ri in Sq (M} ]_[ =1 ()1 n), rpin Sq.p(M{ H/ LEH)TH X)),
and ry in S, ﬂ(M”]_[ '_ (&) n). Moreover, $+R,Il+(vlll,... Vy,.i,) may be
written under the form (6.44) and my satisfies (6.39) if my does so.

Proof. We apply Proposition F.3.1 and define 7717 to be the symbol a; of that state-
ment, that satisfies (F.7). According to (F.20) (with mj replaced by my in its right-
hand side), (6.43) may be written as the sum of (F.22) and of the last two lines
in (F.21). This gives (6.45).

To get the last statement of the lemma, we use that B,i . is also given by (F.21).
We have thus to show that the action of £ = %Oph (x + p’(§)) on the three terms
in (F21) may be rewritten under the form (6.44). For %Oph (p'(&)) this follows
from the composition result of Proposition B.2.1. For the product of ;Z—‘ by (F.21),
this is a consequence of the fact that in these formulas my ; and r; are in classes
Sa.p(Mg 171 ()" (x)~". n). In the case of r;, the fact that the symbol belongs to
the class Sé’l’ﬂ (M ]_[;-’zl (§,)71, n) means that it is rapidly decaying in Mo (§)™*|y|,
so may be multiplied by x (and even by x/ &), up to a loss on the exponent v. This
concludes the proof since the definition (F.9) of ay (with mj replaced by #17) shows
that it satisfies (6.39) if m; does (taking the cut-off y even). ]

Proof of Proposition 6.2.1. We just have to translate the above two lemmas going
back to functions vy,...,v, from v,,...,v, through (6 40). The first component
Ry + of (6.33) is then h%BiJr@l’il,..., Vy.i,) With R! .+ given by (6.43). In the
characteristic case, (6.43) with iy = 0 and (6. 41) show that equation (6.35) holds,
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and Lemma 6.2.2 implies that L R, 4 is of the form (6.36). In the non-characteristic
case, these properties follow from Lemma 6.2.3. ]

Proposition 6.2.1 will allow us to treat by normal form the contributions M3, M4
on the right-hand side of (6.25). We need alsp a result that will allow us to treat M.
We consider a bilinear map (vy, v2) = M5 (v1, v2) of the form

Z|I\=2 Op(mé)’l)(vl,il , U2,i2)
2in1=2 00§ W10y v2,-iy) |

where my, ; is in 5{’0(]_[]2-21 (£, My (£),2) and satisfies (3.7). Our goal is to prove:

My (v, v0) = [ (6.46)

Proposition 6.2.4. One may find an operator (v1, v3) — Jf(’z (v1, v2), that may be
written

222 yinyet—ty? Qivia (Wi vz’iz)} (6.47)

Z Z(il Jin)e{—,+}2 Qilai2 (Ul,il , v2,i2)

with operators Qj, i, (V1,i,, V2,i,) of the form (F.35), preserving the space of odd func-
tions, such that, if we set

Mlz(vl»vz) = |:

Ry(vi,v2) = (D — PO)M;(UL v2) — M'g(vl, vp) — M&((Dr — Po)vi, v2)

— M (v1, (D — Po)vs)
(6.43)
and if vy, v are odd functions, then Ry, = [Ilgit | with Ry — = Ry 4 and Ry 4 being
a sum

- K AL L L
Ryy(uiv) =172 )~ ZZ K2 (Litvrg, Li2va,)  (6.49)

(i1,i2)€{—,+}? £1=0£{2=0

with Kill’bj in the class JC’ 4 (1,i1,12) of Definition F.4.1.

Proof. We just have to apply Corollary F 4 4 to the first component of equality (6.48)
changing the definition of the notation K Ll i zl on the right-hand side of (6.49). =

We shall use the results established so far in that section in order to rewrite equa-
tion (6.25). Recall first that by (E.8), (E.9), (E.14), where V is the operator (6.21), we
have

(Dy — Po)C(t) = C(t)(D: — Po = V) (6.50)

when both sides of these equalities act on odd functions.
Recall the form of operators M in (6.15): these operators may be written as

M (1, u™P) = Z,Me(u L, u®™P o u®Py, =34, (6.51)
“/—/ S —
£=0 ¢ j—t
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where

Yo U=(irsic) OPL 1) (Vg5 -5 V)

,/\/{e(vl, L ) — I//=(if+1;-..,ij) . —v (6.52)
/ / Z I'=(i1,..sig) (_I)Jop(ml’,l”)(vl,—il seues vj,—ij)
I//=(ie+1,...,l'j)

and the symbols 27/ r~ are in Sl,o(nl.l:ll(éj)_lMo(E)“, [1]),with3 < |I| = j <4,
according to Proposition 5.2.1. According to Corollary D.1.7, each of these sym-
bols may be replaced by a symbol in Sy g (]_[yzl1 (£ IMo(£)", 1)), for B > 0 small,
up to adding to (6.51) some remainder satisfying (D.35) for an arbitrary r. In other
words, we may rewrite (6.51) under the form

J
M (L u™P) =Y MG, ) R (i, ), (6.53)
£=0

where Mf is of the form (6.52) with symbols sy, ;7 in

1]
Sip ( [t " Mo, |1|),

j=1
with 8 > 0 and where R; satisfies
IR @) < Co7(allas + 4™ as)’ (6.54)

and setting L = [LO+ LO_ ],

T ~ — ~ j—1
ILR; @ u™) |2 < Ct72 (it s + [[uP || prs)’
x (lallgs + ™ |gs + | L] 2 (6.55)
+ [ Lu"®| 12 + || Lu"*P||peo.00),

where in (6.55), we decomposed the factor u*P that eventually replaces v, in (D.35)
as u™PP = y’%P 4 /2P and used the second (resp. third) of these estimates if v, is
substituted by u’*P (resp. u’/?PP).

In the same way, operators M), in (6.14) may be written as

Mo (i, u" Py = MO P W) 4 MO, u ) + MG ), (6.56)

where M/zz is given by the (£ 4 1)-st contribution in (6.14). Applying again Corol-
lary D.1.7, we may assume that

> U=Gi1sie) OPMG 1 1) (Vg5 V2,5)

My vy, v2) = I7=Gegrip) (6.57)
2 > U=Giysie) OPR'S 11 1) (V1) s V2,—i5)
I"=(ig41,m05i5)
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up to replacing (6.56) by
Mlz(ﬁ’u/app,l) — M/g(u/app,l’u/app,l) + M/;(ljl, u/app,l) + M’%(ft, a)

= o (6.58)
+ R (i, u"*PP7),
where sz satisfies
| Ra ™ g5 < o> (s + ™ | 1zs)
ILR2 (@, w1l 2 < Co2 (il s + /™ || gs ) 6.59)
x (lallas + u"™ ) gs

+ | L]l 2 + | Lu1) )

and where the symbols m, ;, 7, in (6.57) are now in S{’ﬂ (]_[12:1 (E/) Mo (§), 2) for
some 8 > 0.

Let us apply to each EMK on the right-hand side of (6.53) Proposition 6.2.1 set-
ting M Me in order to define by (6.32) an operator M that we denote just
by EMZ, 0<¢ < j,j = 3,4. In the same way, apply to each ,M’g, £ =0,1,2 Propo-
sition 6.2.4 in order to define operators M g £ =0,]1,2. Denote

M (1, u™P) = Z:Me(u L, u™P o u™Py, =34,
“/—’ N ——
=0 ¢ j—t
5 (6.60)
d{{/ = o,7app,1y ~ /app, 7app, 1 )
bGPty =" ML ')
£=0 ¢ 2—¢

Let us prove:

Corollary 6.2.5. Let u satisfy the assumptions of Proposition 6.1.2, so that equation
(6.25) holds. Then, with the above notation,

4
(D, — PO)(C(I)(zZ = > M (i, uapp)) — M, u’app’l)) = R, 6.61)

Jj=3

where R is the sum of contributions of the following form:

COVOMEG ... u™, ... u™™), j=3,4,0<l<j (662
—— ————
l j—t
(C(t) —Td) M4 @, ... i, w/™P1 w0 <€ <2, (6.63)
——
L 2—¢
—C(O)YMEiL, ... i, (Dy — Po)il, ... i, u", ... u™™),
) ¢ (6.64)
—C(O)MEG ... 10, u™, .. u™, (D, — Po)u™,... u"P)
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forj=340<{<j,

—CO)MEG, . ... (Dy — Po)it, ... i, /™t /Pl

14

A , ‘ , (6.65)
—C()MS(i, ... a0, u*t (D, — Po)u'™!, . /")
~——
)4
for 0 < £ <2, of remainders of type
CH)R;(,...,u,u™, ... u*), j=340=<L<], (6.66)
~——— ——
14 j—t
where R; is of the form (6.34) and
Ro(it, ... o, u/™Pt /%Pl o< (<2, (6.67)
—— —

12 2—4{

where Ry, = [gif] with Ry — = R, 4, and Ry 4 given by (6.49), and of contribu-
tions ' _ _ B

C(t)(R(t,x) + R3 + R4) + R, (6.68)
where :73 is given by equation (6.16) and satisfies (6.26)—(6.27) and with 532 (resp. j?3,
resp. Ry4) satisfying (6.59) (resp. (6.54), resp. (6.55)).

Proof. We write, using (6.50), for j = 3,4,

(D; — Po)C(t)M; (i, u™P) = —C(£)V(£)M; (it, u™)

R (6.69)
+ C(t)(D; — Po)M; (i1, u™P).

We plug in the right-hand side of this equality (6.33) with M (resp. M) replaced
by Mf (resp. Mf) according to the notation defined before (6.60). In the same way,
we express

(D — Po) My (it u' ™)

from (6.48) with J/(/z (resp. *M/z) replaced by M,* (resp. Jf(’zé). Making the difference
between (6.25) (where we substitute (6.53) and (6.58)) and these expressions, we
obtain the contributions (6.62) to (6.68). This concludes the proof. ]






Chapter 7

Bootstrap: L? estimates

The proof of the main theorem relies on a bootstrap argument of the type described
in Sections 1.4 and 1.5 of the introduction (see estimates (1.28), (1.29) and (1.39)).
In our setting, the bounds to be bootstrapped will be actually (2.45), (2.46), (2.47)
of Section 2.5 in Chapter 2 (see (7.3) below). In the present chapter our objective is
to bootstrap the first and last estimates (7.3) (see Proposition 7.3.7 below). We have
thus to bound the Sobolev norm of the solution i of (6.61), and the L? norm of L.
This is done by energy inequality, and the main task is to estimate the right-hand side
of (6.61) in Sobolev spaces or the action of L on that right-hand side in L2. We do
that first for cubic and quartic terms, then for quadratic ones, and finally for terms of
higher order.

7.1 Estimates for cubic and quartic terms

We consider C-valued functions u’ afp cu” ifp , defined on some interval [1, T'], with

T < &=*+¢ for some given ¢ > 0, and that satisfy on that interval, for a given large r
in N and some constant C(A4, A”) bounds (4.39)—(4.41) and (4.43)—(4.45) that we
recall below:
I PPl = €A, A)ees,
PP (. llwree < C(A, A, (7.

L 4w (e, )| ar < C(A, A ((2V1) + (21 Be¥)

and

1
1 e < CA, ()
+ = (te2)

") [ wree < C(4, A)e? log(1 + 1),
ILu” P, ) [wreo < C(A, A')log(1 + t) log(1 + &2¢).
Moreover, we shall assume that the solution # = [ZJ“] (with 7i_ = —ii1) of (6.61)

satisfies a priori estimates (5.35), i.e. having fixed c>0,0 <0< % with @’ close
to % and § > 0 small, for some 1 < p < s, we have

(1.2)

4 (¢, )llms < Det?,
§ N
iy (2, ) lwo.e < D%, (7.3)

Iyt (t.) 2 < D4 (VD)0
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We recall also that we have deﬁned from u" + P the function uapp’ in (4.48), that we

decomposed in (4.55) as u’ il_jp T4 ’ifp’ and we have seen after (4.54) that u'% app.1

satisfies the same estimates as u’ pr , so that we shall have

P (1, e < C(A, APt
||u’ap"’ (t,)|lwreo < C(A, A)e2, (7.4)
L4112, ) [ar < C(A, A3 ((€23/1) + (2VD)e).

We may assume that r in (7.1) and (7.4) is as large as we want since the smoothness
of the approximate solution u*PP is independent of s: these functions are actually C *°,
since their x dependence comes only from stationary solution to our initial problem.

Our goal in that section is to deduce from (7.1) to (7.4) bounds for the cubic and
quartic terms on the left-hand side of (6.61) and in (6.62) and (6.64).

Proposition 7.1.1. Let Mj (u, u®P), j = 3,4, be given by the first line in (6.60). There
is a function (t,¢&) — e(t,¢), depending on the constants A, A’, D in (7.1)«(7.3),
satisfying limg— o+ SUp <, <o—a+c €(t, &) = 0, such that the following bounds hold:

IC@O)M; (1, u) | gs < Cer® (2VD)2 17+ e*%) < ete(re),  (1.5)
ILC) M (@, u) | 2 < 17 (21 et €) (7.6)
foranyt € [1,674%¢], any o > 0.

Proof. We prove first (7.5). By (E.19), C(¢) is bounded on H*, uniformly in ¢ staying
in the wanted interval. By (6.60) we have thus to bound

MG u ) 0<E< . j =34 a7
N’ e’
4 it

(where each ﬂf has form (6.32)) by the right-hand side of (7.5). By (D.32), (7.7) is
bounded from above by

j—g—1
Cltll s 1100 1770 [ 00 + [P Lz (1472 g o |G m0.00] — (7:8)

with the convention that the first (resp. second) term in the bracket should be replaced
by zero if £ = 0 (resp. £ = j). As

app
app __  /app 17app app __ U+
Uy =uyp +u o, U _|:uapp7

it follows from (7.1) and (7.2) that

1
~ te? \2
Wy < C(A, A
[u™||gs < C(A, )8((l82)) , (7.9)

[l yoo.00 < € (A, A)e?(log(1 + 1))
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for t < ¢~*. Using also (7.3), we bound (7.8) by

ngé’(( 2(log(1 + 1))?)’~ ((82://__)0 ) ) (7.10)

Since j > 3, we have obtained a bound by the right-hand side of (7.5).
Let us prove (7.6). By (E.20)—(E.22), it suffices to bound by the right-hand side
of (7.6) the quantities

~ ~ ~ ~ 1_
LM Gl w2, | M (@, uP) || 227"

where m is close to 5. The estimate of the second term is a consequence of (7.5). To
study the first one, we recall that L = [L+ 0 " Jwith Ly = x £ tp’(Dy), so that we
have to estimate

A ™) 2 [lxAG (w2 (7.11)

By (7.10), the first term is estimated by (as j > 3)
t3(2v)el(t, ) (7.12)
with
e(t.€) = 0(e2* (log(1 + 1)* (VD)3 + e17473 (2/1)%'°),

Ifr<e™ 0 <6< % is close enough to % so that 20’ — @ > 0, and if § is small
enough, one gets that e satisfies the condition in the statement. This concludes the
proof of (7.6) for the first term in (7.11). To study the second one, we have to bound
byt4 (szf)ee the norm ||x¢M£(u u, u* .. u®P)||;2,£ =0,...,j.Consider
first the case £ > 0, so that at 1east one of the arguments is equal to i#. By the form
(6.32) of J{'{f we may apply (D.36), putting the L? norm on that argument equal to i,

1.e. we obtain a bound in
C 11511y 00 + 1P 100 [ il L2 + | Lk 2] (7.13)

The contribution of the first term in the last bracket has already been estimates by
(7.12) in the study of the first term (7.11). The second term gives rise, according
to (7.9) and (7.3), to a quantity bounded by

Cti(ng)e((ng) + &2(log(1 + 1)) )

which is also of the form (7.12). It just remains to study the term
I P, P o

We decompose one of the arguments u?PP, say the last one, as P = y/2PP 4 /2P,
We estimate then the L2 norm of the function x,Me (u®P, ..., u®P y’%P) (resp. of
xMZ(u"Pp o, UPPP %Py using (D.36) with n = ] (resp. (D.37) withn = j). We
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obtain a bound in

C [ [pg.c0 (¢ 1Pl 2 + [ L™ 2)

a aj 1ma 1"a (7.14)
+ C U™ 3y o000 16 | 2 (¢ [P 000 + [| Lt [ yroo.00).
Using (7.9), (7.1), (7.2), we obtain a bound in
Ce*(log(1 + [))4(82l% + t%(szx/; + (82«/;)%8%)) (7.15)
+ C&(log(1 + 1)%s(%1 (log(1 + 1))? + log(1 + 1) log(1 + %))
which is largely of form (7.12). This concludes the proof. |

We shall study next term (6.62).

Proposition 7.1.2. With notation (5.41) for e(t, €), one has the following bounds for
0<t<j,j=34

ICO) VO MEG, ... i u", . u™™) || gs <t erbe(t. ), (7.16)
Af—/
4
ILC@OVOMEG, ... 0w, )| gs < 17 (14 (2D )elte).  (717)
y4

Proof. Recall that M ; is given by (6.60) in terms of operators Mf defined in (6.32).
Moreover, recall that V(¢) in (6.17) is by definition the operator Op(M’) given by
(6.8), in function of symbols b satlsfymg (5.96)—(5.97). This means that in par-
ticular tg/ b!_ are elements of the class S’ ﬁ((é y~1,1) (for any «, B as these sym-
bols depend only on one frequency vanable) Moreover, the symbols 717 in (6.32)
belong to Sy g(M{ 1, =10, L. j). It follows from the composition result of Corol-
lary B.2.6 that the components of V(t),/\/tZ (1, ...,u*P) may be written under the
form

1
te 20p' (M) (g, ... dx, u’, ... uf’) (7.18)

for some symbol " in the class S 8 (Mg ]_[Ll (€)1, j) (for some new v), and any
choice of the signs . We use (D.32) together with the boundedness of C(¢) on H?,
to estimate the left-hand side of (7.16) by

-1 . - i—1 . -
Cte 2 (J[u™|lwo.co + [lillwoeo)’ ™ (1wl s + lllles). (7.19)

Using estimates (7.9), (7.3) and j > 3, we bound this largely by the right-hand side
of (7.16).
Let us prove (7.17). By (E.20)—(E.22) it is enough to estimate

ST VO ML . )2, |LVOMEGE )]

by the right-hand side of (7.17). The first term satisfies the wanted bound as a conse-
quence of (7.19), since the exponent % — m is close to zero. By (7.18), the study of
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the second one is reduced to
_1
te 2||L+Op' (M) (g, ... s, ul . uP) |12 (7.20)

for m’ in the class Si,ﬂ (M ngzl(ég)_l,j). As Ly = x +1p’(§), and the symbol
m'(y,x,£1,...,&) is decaying like (Mo(£)7®y)™" for any N, we are reduced to
bounding by the right-hand side of (7.17) the quantity

_1 _ o
tte 2 |Op' (M) (g, ... e, u o uP) 2 (7.21)

for a new m’. If there is at least one argument equal to 7+ in (7.21), we use estimate
(D.71), making play the special role devoted to v; there to such an i+ argument. We
obtain a bound of (7.21) in

i i—1 = -
Cte * (llwoee + u'™wo.ce)’ ™ (lill L2 + I Litll2)- (7.22)
By (7.9) and (7.3), this is bounded by

2 0 2
i’ (—(8 7, £ (log(1 + t))z) (15(2v0)°) (7.23)
NG
since j > 3. Again this is largely bounded by the right-hand side of (7.17).

Consider next the case when all arguments in (7.21) are equal to u*P. Decompose
one of these arguments, say the last one, as u®P? = u/P 4 /2P By linearity, we get
a contribution in Op’ (m’ )(ujl;p e uzi’p, u’ iEp ) for which (7.21) may be estimated by
(7.22) with 7 replaced by 1’ in the last factor. As by (7.1) the L? bounds of /%P
and Lu’*? are better than the corresponding ones for i, L in (7.3), we get that (7.23)
holds again. We are thus left with

_1
tty 2||Op’ (m’)(u”jfp, .. ,u"ifp)HLz.
We use then (D.72) to estimate this by
1 .
-3 -2
Cte > [[u" |l 50.00 6" [l 2 ([ *PP [ wrr0.00 + | Lu" P || yro0.00). (7.24)

By (7.2), we thus get a bound in

2

t;%ez(log(l + t))ze((;;>

Distinguishing the cases te? <1, te? > 1, one checks that this is smaller than

3
) log(1 4 t)log(1 + t&?).

t_%(ezx/;)%e(t, g),

so than the right-hand side of (7.17). This concludes the proof. ]
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7.2 Estimates for quadratic terms

We shall study in this section the quadratic term in (6.61) and (6.63).
Proposition 7.2.1. Let M; be given by the second line in (6.60). One has the follow-
ing bounds:
M (@, u®P ) | s < etbe(r.e), (7.25)
LM @, w2 < 14 (VD) e(t, &) (7.26)
foranyt € [1,674FC], where e(t, €) satisfies (5.41).
To prove the proposition, we shall study the three terms in the definition of e/(/{’2
Lemma 7.2.2. One has the following estimates:
M3 )| s < Cer® (17319 (2VD)°), (7.27)
ILAM2G@, )2 < 1% (2VD) elt,6) (7.28)
forany t in[1,e71F¢], any o > 0, if s is large enough relatively to l.

Proof. By definition, M/ is obtained applying Proposition 6.2.4 to M3 given by the
first term on the right—hand side of the second line in (6.60). It has structure (6.47).
We thus have to study

||Q;1,i2(ﬁi19al'2)”HS’ (729)

IL+Qj, 1, iy ihiy) | 2 (7.30)

to obtain respectively (7.27) and (7.28), where Qll i, are operators of the form (F.35),
preserving the space of odd functions. To bound (7.29), we thus have to study

3K (Lél ~”,L 25 ) e (7.31)

H.,iy,iz
where 0 < £1,4, < 1.
If £; = £, = 0, we apply inequality (F.46) of Corollary F.5.2, with w = % We

obtain a bound of (7.31) in .

Ct™#||iiy|%s. (7.32)
If £, = 0,£, = 1 (or the symmetric case), we apply (F.58), which gives for (7.31) an
estimate in s

Ct™4|iiy||%s. (7.33)
If¢; = €, = 1, we use (F.57) in order to bound (7.31) by

_3 . . _
Ct 3% (ILytitllze + Nt lles) it | s (7.34)

where o0 > 0 is as small as we want (if s is large enough). Plugging in these esti-
mates (7.3), we obtain a bound in

Cet=a+o+813 (210, (7.35)
which gives (7.27).
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Consider next (7.30) and decompose L+ = x & ¢p’(D). The action of ¢tp’ (D)
on Ql’-1 i, (Wi Uiy) has L? norm bounded from above, according to (F.35), by

Y e -
K (L, L) 2 (7.36)

When £; = €, = 0 (resp. (£1,£2) = (1,0) or (0, 1)), we apply (F.46) with s =0
(resp. (F.50) and (F.51)) to bound this by

_3 3 3 3
Ct™3% (g lms + IL4tigllp2) 4| as

for any o > 0, so by (7.35), which is better that what we want.
On the other hand, if £; = >, = 1 in (7.36), we apply (F.50) or (E.51) with f;
or f1 replaced by Lt . We obtain for (7.36) an estimate in

_3 - . 2
Cr7 37 (|Lytiq |2 + it llas)” (1.37)
Using (7.3), we obtain a better bound than (7.28). We are left with studying

T K (L, L2i,) o (7.38)

H.,iy,iz

We noticed at the end of the proof of Proposition F.5.1 that an operator xK may
be wrltten as an operator K of the same type as K, ,up to the loss of a factor
(here t2) It follows that (7.38) will be bounded by =3 times (7.36), which is better
than the estimate already obtained for the other contribution to (7.30). This concludes
the proof. ]

Proof of Proposition 7.2.1. We remark first that the conclusion of Lemma 7.2.2 holds
for the three terms on the right-hand side of the second formula in (6.60) that defines
M’ We have seen it for the last one. It holds for the other two terms as, by the end of
the statement in Proposition 4.1.2, u’ ffp’ satisfies the same estimates (7.1) as u/%P.

Since these bounds are better than inequalities (7.3) satisfied by # (for t < £7%), the
proof of Lemma 7.2.2 thus applies as well to M g, M é in (6.60). Consequently, (7.25)

and (7.26) hold. [ ]

We want next to study quadratic terms on the right-hand side of (6.61), i.e. terms
of the form (6.63).

Proposition 7.2.3. Let M/, be given by (6.14) and denote by e(t, ) a function satis-
fying (5.41). We have bounds

1(C(2) — Id) M) (i, '™V || s < 17 et0e(r, ¢), (7.39)
IL(C (1) — Td) M, (i, w/™P 1) |12 < 1713 (23/1)Pe (2, ). (7.40)

Proof. We write the proof for the component of M/ that is quadratic in . This
implies the general case, as u’®P! satisfies better estimates than those holding true
for u.
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Recall that by (6.14), the components of M), are of the form Op(m0 () with
my ; in S1 0(1_[]_1 £;)"1 My, 2). If we apply estimate (D.78) with £’ = £ = 1 and
n = 2, we obtain

I MGt )| s < Ce7 O (| Latl g2 + 15t s ) 152 ) s
Plugging there (7.3), we get a bound in
C(et®)—310 (2 1)°. (7.41)
Since ||C(t) — Id|| g2y = O('+~™+5'+1) by (E.19), we obtain an estimate in

Cet®™1 [8Lt%—m+8/+o(82\/;)0]'
Since m may be taken as close to % as we want (see the example following Def-
inition E.1.1 where m is introduced), and since §’, 0 may also be taken as small as
wanted (in function of the fixed parameters c, 6, 8), fort < e~#7¢, the factor between
brackets is of the form e(z, €) in (7.39).
To prove (7.40), we write by (E.20)

L(C@t) —1d) M, = (C(t) —Td) LM}, + C1 (1) M), (7.42)

Since || M) (@, )| 12 1s estimated by (7.41), and since ||C; (t)||$(Lz) is bounded by
(E.22) with m close to 1 we see that the L2 norm of the last term in (7.42) is smaller
than the right-hand 51de of (7.40) (for t < &™*).

On the other hand, by the definition of L, || LM (i1, i)|| ;2 is bounded from above
by ¢[0p(my, ) (i) 2. with my ; in 87 o([T7—; (§;)7". 2). Using (D.76), we esti-
mate this by

Cr (| Lyiig gz + i llas)® < Co714 (13 (£200)°) .

Since [|C (1) —1d|| g2y = O(et=m+8'+1) with m close to 3 by (E.21), we see that
the L2 norm of the first term on the right-hand side of (7.42) is bounded from above
by

Ct—lt% (82 \/;)9 [(82 \/;)Qt %—m+3/+08L]
and again, if % —m, §', 0 have been taken small enough, the bracket is of the form
e(t, €), whence a bound by the right-hand side of (7.40). This concludes the proof. m

7.3 Higher-order terms

In this section, we shall bound expressions of the form (6.64)—(6.65) that appear
as contributions of higher order of homogeneity if one replaces (D; — Py)ii by its
expression coming from (6.17). We study first the first line in (6.64).
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Proposition 7.3.1. Denote for 1 <{ < j, j = 3,4,
F(t) = C)Mi(il, ... (Dy = Po)il, ... i, u™™, ... u™P). (7.43)
Then under a priori assumptions (7.1) and (7.3), one has the following bounds:
IF@)|ms <17 'et’e(t.e), (7.44)
ILF@©)lz2 < (15 (2VD°)elr. e) (7.45)
with e satisfying (5.41).

To prove the proposition, we first re-express F () replacing on the right-hand side
(D; — Py)t by its value.

Lemma 7.3.2. The components of
MEiL, ..., (Dy — Po)il, ... ., u™, ... u™P)
may be written as sums of terms of the following form:
1 Op )y, =11+ 1172 3, (746)
where m' is in Sy g (Mg ]_[é:l(&)_l»j):
Op’ (m) @iy upy). j ="+ 1"] =5, (7.47)
where m is in S4. g(M{ ngzl(ég)_l,j),
Op' (m) (R (@, u™), iy ufy), j=II'+11"], (7.48)

where j' >3, j > 2, misin Sy g(M j—H(Sg) . J + 1) and R satisfies (6.54)
and (6.55),

op' (m") (iig w50 uifh),  j o= 1|+ 17|+ 1] = 4, (7.49)
where m' is in S} 5 (Mg ]_lézl(éz)_l, J)
Op' (m) (Ra (i1, w'™™ 1), iy ufy), j =1+ |1"], (7.50)
with j > 2, misin Sq.s(MY T2 (&)™ J + 1), Ro satisfying (6.59),
Op' (m)(R. i uyy), j=I'l+1"]=2, (7.51)

where R satisfies estimates (5.39) and (5.40) and where m is a symbol in the class
Sa.p(My T2, (E)j + 1.

Proof. Recall that by (6.17)

(D; — Po)it = V(t)it + M3 (i, u*™) + My (i, u™™) + My (i, u"*') + R. (7.52)
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Recall that j,{f is an operator of the form (6.32), so that its components computed at
(u,...,u,u®P, ..., u*P) may be written

Op' (m) (@i, - - - Uiy Ui oo Uy (7.53)

2 A
with i; = &+ and m element of Sy g(M| ]_['l{:l(ég)_l, j) for some 8 > 0. We have
to compute (7.53) when one of its # arguments, say the first one, is replaced by
(D — Py)ii, so by the right-hand side of (7.52). If we replace (D; — Po)u by V(¢t)u
and use that V() is constructed from operators Op(b’,) in (6.8) that satisfy (5.96)
and (5.97), i.e. are such that tgl/zbgE =cl isin S, B((E)_l, 1) (for any «, B), we get
a contribution
_1 L .
te 2Opt(m)(0p(cl{1)u,~1,u,-2,...,uie,u?gil,...,u?fp).
By the composition result of Corollary B.2.6, we get a term of the form (7.46).
Let us study next (7.53) with the first argument replaced by

M3 (i, u*P) + Ma(it, ur)

coming from (7.52). According to definition (6.15) of M; and to (6.53), we shall get
contributions

) (7.54)

Op' (m)(Op(ny) (@ upy). thiy, ... Hip Us i

aj
igg1”""

with |7| = 3 or 4 and 7 in S1 (Mo ()" [1/L, (&) ~". 1]), with B > 0 and

Op' (1) (R 4 (i, ™), il ..., u™) (7.55)
for ~
~ R
R = - o+
/ [ﬂj/y_}

satisfying (6.54) and (6.55) with j’ = 3 or 4. By Corollary (B.19), (7.54) may be
written as a term homogeneous of degree larger than or equal to 5 that has the struc-
ture (7.47). Moreover, (7.55) provides terms of the form (7.48).

We have to study then the term (7.53) where the first argument is replaced by the
M (i1, u'®P1) term in (7.52). By (6.58) and (6.57), we get contributions of the form

Op' (m)[Op(myg 1+ 1) (g, u’é}g})’l), Uiys oo Uiy, u??i] e u?jp,’p] (7.56)
with [I’| +|I"| =2, j > 3, and
Op' (m)[Ra,+ (@™ 1) ity u™ . (7.57)

Again by Corollary B.2.6, (7.56) brings a contribution of the form (7.49) and (7.57)
an expression of type (7.50).

Finally, we have to replace one argument of (7.53) by the last term R in (7.52).
This brings (7.51). This concludes the proof of the lemma. ]
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Proof of Proposition 7.3.1. Let us prove (7.44) and (7.45). We have to estimate all
contributions from (7.46) to (7.51). As already seen, (E.19) to (E.22) allow us to
ignore the action of operator C(¢) on the definition (7.43) of F (), so that we need to
study only the Sobolev norm of (7.46) to (7.51), and the L? norm of the action of L
on these two quantities.

Term (7.46). This term is of the form (7.18) and has already been estimated by the
wanted quantities.

Term (7.47). The Sobolev norm of this term may be bounded from above, according
to (D.32), by

- a 4,0~ a
C (llillweo-co + [[u™llweo-co)” (Il ars + 14| as).
Using (7.1) and (7.3), we bound this by
C172(e2V1)* er? (7.58)

which is better than the right-hand side of (7.44). If we make act L4 on (7.47) and
compute the L? norm, we get on the one hand the product of (7.58) by ¢, which
is smaller than the right-hand side of (7.45) and |xOp’(m)(@iy, u}7)|| 2. This is
a quantity of the same form as the second term in (7.11), except that j > 5. We thus
obtain a bound by (7.13), when at least one of the arguments in (7.47) is equal to u.
By (7.1)=(7.3) and j > 5, this is controlled by the right-hand side of (7.45). If all
the arguments are equal to u®’P, we get instead a bound by (7.14) with j > 5, so by
(7.15) multiplied by [|u*P(|3, 50 00 < C1~" whent < ~*+¢ by (7.1) and (7.2). Since
(7.15) was controlled by (7.12), we get again a bound of the form (7.45).

Term (7.48). By (D.32), the H® norm of (7.48) is bounded by

% _ 2
CI Ry (™) | s (1 oo + [ [ no.co)
+ 1Ry @1, 1) [ woo.co (1 | weo.0o + [[u®||weo-oo) (7.59)
x (Il ars + [ gs)
since j > 2 in (7.48). Using Sobolev injection, we may bound ||f/~2j/||Wpo,oo from

||f/~?j/ |lzzs. By (6.54) and (7.1)—(7.3), we largely get an estimate of the form (7.44).
If we make act L4 on (7.48), and use that

xOp’ (m)(vy,...,v,) —Op' (m)(xvy,...,v,)

is of the form Op’ (m1)(vy, ..., v,) for a new symbol m of the same form as m, we
reduce the estimate of the L2 norm of the action of L on (7.48) to bounding

t|1Op" (m) (Rr 2 (G, u™). dip gy )l 2.

0P’ (m) (LR + (i, u™), dipr, uf) | L2
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By (D.33), we get an estimate in
A S - 2
(eI Ry @@ ™) |2 + | LRy @ w'™) | 2) ([ llwnooe + ™ llwreooe) ™. (7.60)

By (6.54), (6.55), (7.1)—(7.3), this is largely estimated by the right-hand side of (7.45).

Term (7.49). This term is of the form (7.18), except that there is no 7, 1/2 factor, that
we may have an argument u%P! instead of u®P, and that the number of arguments is
larger than or equal to 4. By (7.19), the H* norm of (7.49) is bounded from above by

~ 3
C (' lwoo.co + [[u™[lweo.co + [l weo-)

(1™l grs 4[|l grs + fJa'P!

).

Using (7.1)—(7.4) we get a better estimate than (7.44). If we make act L on (7.49)
and compute the L2 norm, we obtain a quantity of the form (7.20), without the pre-
factor ¢, /2 We obtain thus an upper bound given by (7.22) or (7.24) without the
te 1/2 factor, but with j > 4 and an argument u/%! replacing eventually an 1. By
(7.1)-(7.4),

~ 3/~ ~
(" llweo.c0 + 1™ |lwoo.co + illweo-oe)” (il L2 + || L]l 2)

is smaller than the right-hand side of (7.44). On the other hand, the contribution of
the form (7.24) is bounded from above by

C " P[5 pg.00 " PP | L2 (11" *P o000 + | Lu"* o000 ) < Ce”(log(1 +1))°

by (7.2). As t < & *T¢ we estimate this by %se(t, €), so by the right-hand side
of (7.45).

Term (7.50). This is a term of form (7.48). The H® norm may be bounded by (7.59),
with R - replaced by ﬁz. It follows from (6.59), Sobolev injection and (7.1)—(7.4)
that we largely get a bound of the form (7.44). If we make act L+ and estimate the
L? norm, we get a bound of the form (7.60), with R ;i replaced by R>. Again, by
(6.59), (7.1)—(7.4), we obtain the conclusion.

Term (7.51). This is a term of the form (7.48), with ﬁj/ replaced by R. Again, we
may apply (7.59) to bound the H® norm. According to (5.39), we obtain a bound by
the right-hand side of (7.44). To study the L2 norm of the action of L on (7.51), we
use that we have again a bound of the form (7.60) with R i replaced by R. As the
last factor in (7.60) is O(¢t~1) by (7.1)—(7.3), we conclude that we get an upper bound
by (7.45) using (5.39), (5.40). This concludes the proof of Proposition 7.3.1 ]

Our next task is to study the second line in (6.64).

Proposition 7.3.3. Denote now

F(t) = CO)MEG ... it u™, ... (D; — Po)u'™, ... u™P). (7.61)
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Then under assumptions (7.1)—(7.4)
IF@)las <t et’e(t,8), (7.62)
ILF@ s < 7' 132V e e). (7.63)
Proof. Recall that (D; — p(Dx))u is given by (4.37). Together with the definition

(2.28) of F2, F3, with the fact that by (4.3), (4.6), (4.8), a® is O(t5 /%), and with
estimates (4.38), this implies that

(D — p(D WP = Z(t,x) +a*(t) Y Op(m} )i, (7.64)
[I]=1

where m ; is in 51’0((5)_1, 1) and Z(z, x) satisfies for any o, N,
10%Z(t, x)| < Cont; (x)7V. (7.65)

Notice that we may consider as well m’1 ; as an element of § { 8 (&)1 1) for B > 0,
since for symbols depending only on one frequency variable, this does not make
any difference. We plug (7.64) inside (7.61). Using the form (6.32) of Mf and the
composition result of Corollary B.2.6, we write (7.61), where we forget factor C(¢)
that does not affect the estimates, as a sum of terms (up to permutations of the argu-
ments)

_1
te 20p' (M) (%, ... . u’), (7.66)
Oop' (m)(Z, i+, ... . uth), (7.67)
where the number of arguments (ﬁi, ey u?:p) in term (7.66) (resp. term (7.67))

is j (resp. j —1) with j > 3, and m' belongs to S, (M" ]—[Z )™ L), mto
Sa,8(My Hézl(ég 1. j) for some v. Expression (7 66) is of the form (7.46), so
satisfies the wanted bounds (7.62)—(7.63) by the first point in the proof of Proposi-
tion 7.3.1. The H* norm of (7.67) is bounded by (D.32) by

C (il s + 11| zzs ) (]| woo-c + [Pl wreo.00) || Z | wroo-o0
~ 2
+ C (it weooo + U™ |lwoo-) |1 Z || s

so by the right-hand side of (7.62), by (7.1)—(7.3) and (7.65).
Let us bound next the L2 norm of the action of L+ on (7.67). We decompose

each factor u ﬁp =u afp +u” ifp . Consider first the case of the resulting expression

where at least one of the last j — 1 arguments in (7.67) is equal to %+ or u’ aipp, say

the last one. We have to estimate

t|Op* (m)(Z, s, ... . uf* w) 2,

7.68
[xOp’ (m)(Z,dix,....uy’ w2 (769

with w = @i+ or u"}”. Up to commuting x to Op’ (m) in order to put it against Z, it
is enough to bound the first expression. We use (D.73) with the special index j equal



Bootstrap: L2 estimates 130

to the last one. Recalling the 7, 1 factor in (7.65), we get a bound in
=1(15 app Jj=2
Ct;  (lillweoeo + (U™l wreo-)

_ _ - - (7.69)
< (lllez + I Lall L2 + "l L2 + [ L] 2)

which by (7.1)—(7.3) is smaller than the right-hand side of (7.63) (as j —2>1).0n
the other hand, if we consider (7.68) with all arguments (4, .. Jul i P w) replaced
by u”*", we use (D.74) and get instead of (7.69), by (7.2)

C ity " [yt oo (LA 0,00 + ([P | yrog.00) [P .2
< Ct; 'elog(l + t)log(l + t&?).
This is much better than (7.63). This concludes the proof. ]
Let us move now to the study of (6.65).
Proposition 7.3.4. Denote
F(t) = C(t) M'9((D; — Po)u'®P1 y/2P:1)
+ C(t)M’O( rapp-1 (D, — Po)u’app’l)
+ C(t)M'A((Dy — Po)it, u'™P1) (7.70)
+ C(t) M (i1, (D, — Po)u'™P1)
+ C(O)M'E((D; — Po)it, it) + C(t)M'2(it, (D, — Po)ii).

Then
[F(t)|ms <t 'etbe(t, ), (7.71)

ILF()]2 < 7 (13 (20 )e(t. ). (1.72)
Before starting the proof, we recall some estimates for (D; — Py)u.

Lemma 7.3.5. Under a priori assumptions (7.43)—(7.45) we have the following esti-

mates. :
I(D: — Poit|lgs < Cet®~z, (7.73)
L(D; — Po)ii = f1 + xf2 (7.74)
with O
I fillL2 < Ct2(t3(2VD)°), (1.75)
I fall 2 < Ct (2 VD) erd. (7.76)

Proof. Recall that (D; — Po)ui is given by (7.52) and that V(¢) may be expressed,
according to (6.8), from operators ¢, 1/2 Op’(cly) with ¢/, in the class N L.
By boundedness of these operators on H* and (7.3), we get for ||V (¢t)u ||H s abound by
the right-hand side of (7.73).
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The action of L on V(¢)# will have L? norm bounded from above by

_1 . _1 .
ts > | xOp' (L)l L2 + tts > |Op* (cl)it 2.

By (D.71) with n = 1 and (7.3), we get a bound by the right-hand side of (7.75).

Consider next the M (i, u*®) terms, j = 3,4, on the right-hand side of (7.52).
By (6.53), these terms are given on the one hand by the contributions R i» which
by (6.54) are largely bounded in H* by the right-hand side of (7.73), and which by
(6.55) contribute to f; in (7.74) if we apply L on them. On the other hand, the main
terms in (6.53) are of the form Op’ (7, 17) (fiy/, u}y). By (D.32) and (7.1)—(7.3), they
satisfy (7.73). Let us study L+Op’ (/g 7) (i, uy’y). We apply Proposition F.2.1
and Corollary F.2.2 (translated in the non-semiclassical framework). This allows us
to re-express this quantity from

Op' (i) (L+v1,v2. ..., V)), (7.77)
Op' (F)(v1. ... v)), (7.78)
10p' (F)(v1. ..., ). (7.79)
xOp' (F)(v1.....v)) (7.80)

where vy = ti4+ or vy = u'*P + u”*P where m, 7 are in Sy g(M{ ]_[4 LE0TN D)
and 7' is in S, 4.5 (Mg ]_[4 HLEDTN D).

We estlmate the L? norm of (7.77) using (D.33) with the special index equal to
the first one, when v, is replaced either by i+ or u'} PP We largely get a bound by
(7.75) as j = 3 using (7.1)—(7.3). If v; is replaced by u” PP we still use (D.33), but
make play the special role to the second argument. We obtam a bound in

1L 2" Pllwoo.co (U lweoee + lillweooo) (IuPll2 + litll2) — (7.81)

which is largely controlled by (7.75) by (7.1)—(7.3).

The L? norm of (7.78) (or of the coefficient of x in (7.80)) is bounded from above
by the right-hand side of (7.75) (or (7.76)) again by (D.33), (7.1)—(7.3) and the fact
that j > 3.

Consider (7.79). If at least one vy is replaced by u 4+ or u’fp, we use (D.71), with
the special index equal to this £. By (7.1)—~(7.3) we largely get an estimate (7.75).
If all vy are equal to u” aipp, we use instead (D.72), from which (7.75) largely follows.

To finish the proof of the lemma, we still have to study the last two terms on the
right-hand side of (7.52). Contribution M’ (i, u'*P) has structure (6.58). The remain-
ders R, largely satisfy bounds (7.73), (7.75). The other terms are, by (6.57), of the
form Op (m')(vy, v2) with /i’ in S} 5 (Mo(§) ]_[]_1 (§,)71,2) and vy, v, equal to 7 1
or u’ jfp’ By (D.32) and (7.3)—(7. 4) the Sobolev estimate (7.73) holds. On the other
hand, by (D.76) (and the rapid decay in x of symbols in Sl,ﬂ (Mo () 1_[/=1 (£,)71,2)),
we have

~ — ~ app,1
IL£Op’ (") (w1, v2)ll2 < Cr 4O (| il L2 + 1 L4 $ |2

. 1 2
+ i g + WS las)
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if so is large enough. Using (7.3)—(7.4) and taking o < %, we estimate this by the
right-hand side of (7.75).

Finally, the last term R in (7.52) satisfies (5.39)—(5.40), so also (7.73) and (7.75)
for the action of L on it. This concludes the proof of the lemma. |

Proof of Proposition 7.3.4. We shall prove successively (7.71) and (7.72).

Step 1: Proof of (7.71). Since C(z) is bounded on H*, we may ignore it. We thus
need to study || M5 (v, v2)|| Hj» Where (up to symmetries)

vy = (D; — Po)ii or (D; — Po)u'®P1, v, = i1 or u/®P1, (7.82)

Recall that :/{/{’2 is given by (6.47) in term of operators Q;, ;, of the form (F.35). We
have thus to bound
-3 £1,4 L yl
12 ||KHI,1']2,1'2(Lillvl>il’Lizzv2>i2)”Hs (7.83)

with operators K;;‘ ’lle.z in the class K 1 1 (1,1, i) introduced in Definition F.4.1.
A1, 4

Consider first the case v; = (D; — Po)u’*!. We apply Corollary F.5.4 when £; or
£, is non-zero and (F.46) if £; = £, = 0. We obtain for ¢ > 0 small and so large
enough a bound of (7.83) by
-3 a ~ a
Crma (17| L(Dy = Po)u"™ || 2 (il s + [|u*™" | ars)
+ 17 (|Lill 2 4 1Lu ™| L2) [(Dr — Po)u'*® || s (7.84)
+ 1Dy = Po)u"™™ | gs (|||l s + 1" | 1rs)).

By the end of the statement of Proposition 4.1.2, u’ Tp’l satisfies estimates of the

form (4.46)—(4.47) and also (4.39)—(4.41). Moreover, i satisfies (7.3). Plugging these
estimates in (7.84), we get a better upper bound than (7.71).

Consider next the case v; = (D; — Po)u, £1 = 1 in (7.83). Decompose
Kﬁll,fz,iz = K< + K>1
L1.62

where K. (resp. K-) is defined by the same formula (F.25) as K Hor i but with the
function k cut-off for |&1] < 2(&,) (resp. |&2| < 2(&1)). We need to bound

_3 . ~
73| K<(Liy (Dy — iy p(Dx))iliy . Li2v2.3,) | s, (7.85)
_3 . ~
72| Ko (Liy (Dy — i1 p(Dx))iliy . Li2v2.5,) | s, (7.86)

where £, = 0 or 1 and v, = # or u’*P!, Consider first expression (7.85). We decom-
pose the first argument in K< under the form g 4 g», where, for y € C§°(R), equal
to one close to zero,

g1 = (1= )t P D) (Li (D — i1 p(Dx))ilyy ), (7.87)
g2 = 1P DY (fiiy + xfoi)), (7.88)
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where we used decomposition (7.74). Using the definition of L;, and (7.73), we may
rewrite g1 as a sum g, = tg} + xg/ with according to (7.73), for any o < s,

1
g\ llzoo + g7 lmoo < 1767000 gr8=2, (7.89)

Applying (F.38)—(F.40) (with the roles of fj, f> interchanged), we see that (7.85)
with the first argument of K. replaced by g; has Sobolev norm bounded from above
by

Cra=PE=00 g3~ (|| s + [[u*>|

If 5B is large enough, we get an estimate by the right-hand side of (7.71). On the other
hand, if we replace the first argument of K« in (7.85) by g», we reduce ourselves to

).

_3 -~ ~
T2 K<(R P DY) friy L2 v2) s, (7.90)
_3 -~ ~
2| K<(x (P D) faiy . Li202) | s (7.91)

for new functions f~1, f~2 satisfying the same estimates (7.75)—(7.76) as f1, f» and
¥ in C§°(R). Decomposing L;, = x + i»tp’(Dy) and using (F.38)—(F.39) with the
roles of f1, f» interchanged, we bound (7.90) by

3 ~
3 7P D) fri oo lvallas-
By (7.75) and (7.3)—(7.4), this is smaller than
1m34BO03 (13 (2 /1)) et

so than the right-hand side of (7.71) if # < ¢™**¢ and B is small enough. To study
(7.91), we decompose again L;, as above and use (F.39) and (F.40), to obtain a bound
in
7P D) ol oo [vall s
By (7.76) for f~2 and (7.3), (7.4), we obtain a bound by the right-hand side of (7.71).
Let us study next (7.86). If £, = 1, we use (F.52) (with f; and f5 interchanged)
and if £, = 0 we use (F.58). We bound thus (7.86) by

3 ~ ~ ~
Ct=4(Dy = PoYillars (PO (I Ll L2 + [Lu"*™ [ 2) + Il s + " [11rs).

If we use (7.73), (7.3), (7.4), we bound this by the right-hand side of (7.71), using
again t < ¢~4%¢, and taking 8 small enough.

To conclude Step 1, we still have to consider (7.83) with v; = (D; — Py)ui and
£1 =0, i.e. to bound

_3 . -

TRK YR (D — i1 p(D))itsy . L2 v2,5,) s

H,iy,iz

Expressing L;, and using (F.54) and (F.46), we obtain a bound in

3 . .
173|(Dy = Po)il s ([l ms + [[u/* | ars).
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Using (7.73), (7.3), (7.4), we obtain a bound of the form (7.71). This concludes the
proof of Step 1.

Step 2: Proof of (7.72). Again, properties (E.20)—(E.22) of operator C(¢) allow us to
ignore it in the proof of the estimates. We shall have thus to bound ||Le/{/{’2 (v1,v2) |2
where M’z has structure (6.47) and vy, v, are given by equation (7.82). If we express
Ly = x £1p'(Dy), we are reduced to studying

-1 £1.4 14 14

2Ky 5, (L v Ligva,n) 2, (7.92)
-3 £1.,4 L 14

172 |xKy 2 (Lt vy, L2 va,,) 2 (7.93)

» . . 1z
By Definition F.4.1 of the class K7 | , (7). xK;;"’lffiz may be written as 72 Kﬁ,‘,}?’iz for

another operator in | /2(1' ). It is thus enough to bound (7.92).
We consider first the case vy = (D; — Po)u’®P-!. By (F.50), (F.47), we bound (7.92)
by
Ct=3(I(Ds — Po)u"™ || gs + 1| L(D; — Po)u"™1 || 2)
X (L™ 2 + | Lid]l 2 + /™ |2 + ]l 2)

for any o > 0 (if so is large enough). Since by Proposition 4.1.2, u/®P! satisfies
(4.46)—(4.47), we deduce from (7.3)—(7.4) an estimate better than (7.72).

Consider next the case v; = (D; — Py)ui,£1 = 1in (7.92). We replace L(D; — Py)u
by the right-hand side of (7.74). By (F.47) and (F.51), the f; contribution to (7.92) is
bounded from above by

_3 a - a -
Ctrm3|| fill 2 (e (1L |2 + I Litll2) + " llazs + [l ).
Using (7.75), (7.3), (7.4), we get an estimate in
Cr (13 (2VD)0) (VD017 + 1P~ 4).

If o is small enough, and since ¢ < g4t we get a bound of the form (7.72).
On the other hand, if we replace (D; — Py)i by x f2, (7.92) is reduced to

IR (i L2020 o (7.94)
A 0¢, -integration by parts in (F.25) using (F.27) shows that (7.94) is reduced to
IR 52 (Frins L2022
for a new operator in the same class. Using (F.47) and (F.51), we get a bound in

Ct=4|| foll o (| Lo/ !

2+ L] L2)e” + [lu P

Hs + ||ﬁ||HS).

Using (7.76), (7.3), (7.4), we obtain a bound of the form (7.72).
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Consider finally the case vy = (D; — Po)u, £1 = 0 in (7.92). By (F47), we get
a bound of (7.92) by

_3 ~ ~ ~
Ct73(Dy — PoYillgs (L] L2 + L' || L2 + [lit]| 2 + [Jae'P!

12)-

If we plug there (7.73) and (7.3)—(7.4), we get an estimate of the form (7.72). This
concludes the proof. |

This concludes the study of terms of the form (6.65). It remains to study (6.66),
(6.67) and (6.68).

Proposition 7.3.6. The following statements hold.

(1)  Denote

F@t)=C@®)R;(u,....u,u™ ... .u™), j=340<L<j (795
N ——’
¢

with R; of the form (6.34)—(6.35). Then there is a function e satisfying
(5.41) such that

IF@) s <17 et’e(t, ), (7.96)
ILLF@)llg2 < 71 (13 (2V00)er. €). (7.97)
(i) Denote
F(t) = C(t)R (i, ... u,u'®P1 . q/aP 1)
N’
L
with 0 < £ <2 and R, = [ﬁj’j] given by (6.49). Then (7.96) and (7.97)

hold.

(ili) Let F(t) = C()(R(t,-) + R3(t,-) + Ra(t,-)) + Ra(t,-) with R, R; as
in (6.68). Then (7.96) and (7.97) hold.

Proof. (i) By (6.35) and (D.32) (and the boundedness of C(¢) on H*®), we bound
[F()llas by

~ =1/ ~
C(lillweo-c + [u™llweo.ce )™ (lallzrs + U zrs).

As j > 3,(7.1) and (7.3) imply (7.96).

To prove (7.97), we use once again that by (E.20)—(E.22), we may ignore the fac-
tor C(7), and have to estimate LR; in L?. This expression is a sum of quantities of the
form (6.36)—(6.38), so of the form (7.77)~(7.79) with v, = i1+ or vy = u' L’ + u” .

When vy in (7.77) is replaced by #i+ or u’jfp, we use (D.33) to estimate the L2

norm of these terms by

~ i—1 ~
C (ltllweo-oe + [ |lweo.c0)’ " (L] L2 + | Lu'*P]2)
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so by the right-hand side of (7.97) by (7.1)—(7.3), since j > 3.If v; = u”?"?, we have
a bound by (7.81) so by

;m(ng 0P (VD)8 log(1 + 1) log(1 + 162)) (7.98)

which is bounded by the right-hand side of (7.97) for § > 0 small, 6, 8’ close to %
if 1 < g=4te,

Expression (7.78) is controlled as (7.77). For (7.79), we use (D.71) if at least one
of the functions v; is equal to %+ or u' PP which brings the wanted estimate (7.97)
by (7.1)—(7.3). If all arguments v; are equal to u”*, we use (D.72), that brings again
an estimate of the form (7.98). This concludes the proof of (1).

(ii) Again, we may forget operator C(¢). We have to study

— l N4 { l
2K (L vy L va) s, (7.99)
2 La K2 (L L2, )| (7.100)
L,iy,in iy Vi i, V2,02 ) 112 .

with Kﬁ‘lfziz in K| /2.1(0), and vy, v2 equal to i or u'®P1_ Since estimates (7.4) are
better than (7.3), we may argue just in the case v; = v, = u. Then (7.99) 1s just
(7.31) multiplied by =3 Itis then estimated by (7.32)—(7.34) multiplied by ¢~ 2 and
thus by (7.35) multiplied by =2, so by er3=179 (¢2./1)?. For t < e=#+¢, this is of the
form of the right-hand side of (7.96) if o is small enough. Let us bound next (7.100).
Using the expression Ly = x & #p’(Dy), we have to estimate

KSR (Lo, L20s ) (7.101)

L,i,in iy Vi iy V2,2 11125 .
2K (L v L2 vl 2. (7.102)

L,iy,iz

By (F.47), (F.50), (F.51), we bound (7.101) by
_5 - o ~ 2
Ct=a (|| L)l 21 + it ars)”
Using (7.3), we obtain
Ct—l((82\/;)0t%)120(82\/;)9

which is smaller than the right-hand side of (7.97) fort < e~#7¢ if ¢ is small enough.

Finally, to §tudy (7.102), we notice, as after (7.38), that this expression may be
bounded by 172 times (7.101), so has the wanted bounds.

(iii) The contributions C(7)R3, C(1)R4, R, are estimated by (6.59), (6.54),
(6.55), so largely by the right-hand side of (7.96)—(7.97), using (7.1)—(7.3). The fact
that C(¢)R satisfies these estimates follows from inequalities (5.39)—(5.40) satisfied
by R (or (6.26)—(6.27)). This concludes the proof. ]

We conclude this chapter summarizing the estimates we have obtained.
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Proposition 7.3.7. Letc > 0 (small) be given, 0 < 6’ < 0 < % with 6’ close to % Let

—44c : . ~ rapp
T el,e | and assume that we are given on [1,T] xR functions iy, u'}",

u” il_jp , u’il_)p 1 that satisfy estimates (7.1)—(7.4), for some small § > 0, some constants
C(A, A", D, any ¢ in an interval )0, &g}, and such that il solves (6.61). Then there
are Do > 0, g €0, 89] such that if D > Dg and ¢ € 0, g), for any t € [1,T], the

L? estimates in (7.3) may be improved to

o

4 (2. ) lars < Eeﬁ, (7.103)
D
| Lt ()2 < S1# (VD). (7.104)
Proof. By Corollary 6.2.5, we know that
(D — Po)ii = R (7.105)
if we define
4 A A
0= C(t)(ﬁ — Z M; (i, uapp)) — M (1, u/*PP . (7.106)
Jj=3

By Proposition 7.1.1, Proposition 7.2.1 and the boundedness properties (E.19)—(E.22)
of C(t), we have

57 — C(@)iil| s < et’e(t.e), (7.107)
ILGE— C@)i)> < t4(2VD) et o), (7.108)

where e satisfies (5.41).
The right-hand side &R of (7.105) is the sum of terms (6.62)—(6.68). These terms
have been estimated in Proposition 7.1.2, Proposition 7.2.3, Proposition 7.3.1, Propo-

sition 7.3.3, Proposition 7.3.4, Proposition 7.3.6, which imply that
IR s < o1’ e, o),

. | 2 (7.109)

ILR(t, )2 <t 't3 (V1) e(t,e).

By the fact that L. commutes to (D; — Py), it follows from the energy inequality
applied to (7.105) that

I, Hllas < (1) |las +s1’e(t, o), (7.110)
ILG () lle < L1 )2 + 13 (2D et 6) (7.111)

and then, by (7.107)—(7.108) and (E.14), (E.19)—(E.22) that
(e ) les < Cla(1, ) ms + et’e(t. o). (7.112)
ILaG. )2 < C(ILa(L )2 + Na(L )l 2) + 13 (2D Pe(te)  (7.113)
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for some constant C, some new factors e(?, ¢). Recall that % has been defined
from u4 in (5.34), and that since this function is O(¢g) at time ¢ = 1 in the space
{f € HS : xf € L?} by (2.24) and (2.22), we may take D so large that the first term
on the right-hand side of (7.112)—(7.113) is smaller than %8. If £ is small enough, we
thus get (7.103)—(7.104) using (5.41). ]



Chapter 8

L estimates and end of bootstrap

The goal of this chapter is to conclude the bootstrap argument that gives our main
theorem. At the end of the preceding chapter, we have seen that assuming a priori
estimates (7.3), we could prove that the first and last ones hold with a better constant.
Here, we shall bootstrap the W**° bound in (7.3). Once this is done, we still have to
go back to the original unknowns of the statement of our main Theorem 2.1.1 and to
deduce from estimates of % and from the study made in Section 4.2 the bounds of the
quantities that appear in that theorem.

8.1 L° estimates

One cannot deduce an L* estimate of the form of the second inequality in (7.3) from
the Sobolev estimates satisfied by ., L4 through Klainerman—Sobolev inequal-
ities: the fact that || L4+ |72 admits only an O(¢%) bound would be too rough in
order to do so. Instead, we deduce from the equation satisfied by 7 an ODE, that will
allow us to get the wanted L°° bound.

We shall reduce ourselves to the semiclassical framework, defining from the solu-
tion i = [g‘f ] of (6.61) a function & = [EJF ] by

u

1
s = ﬁzi(r, =) = @) ®.1)

using notation (B.15). We set # = ¢~ ! and decompose for a given p > 0,
(th)pEj: = Qi,A + Qfl:,AC (8.2)

with according to notation (D.91)

i\ = OpZV(V(Lj%@))OpZV«s)P)zi, 8.3)

where y € Cj°(R) has small enough support and is equal to 1 close to zero. We
denote by % ,,#’. 5. the functions corresponding to @’y ,, %% ,. by a change of
variables of the form (8.1).

The contribution thj Ac has nice L bounds by Klainerman—Sobolev estimates:

Proposition 8.1.1. For any o > 0, any s with so large enough, one has the following
estimate:

~ _3 ~ ~
75 pcllLee < Co73 4 (| Latis |2 + x| o). (8.4)
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Proof. Translating that on Qi’ Ac» this means

- 1_ - -
85 acllzoe < ChF70 (| Lxtiyll L2 + iyl ay)-
This is just statement (D.87) in Proposition D.3.4. ]

We study from now on the function ", uy 5. We first prove some bounds for expres-
sions (5.43)—(5.49), whose sum is equal to (D; — p(Dx))uy. If W(¢,x) is some
function and W is defined from W by (8.1), i.e. W(¢,-) = ©,W (¢, ), we denote
by K’j\ the function defined by (8.3) with sign + and % replaced by W, and we
shall call WK the function WK = @,Kf\.

Lemma 8.1.2. Let

a(t) = ?(am) —a_(t)), a™() = \/_(aap"(t) —a'™ (1)),

where a_ = —ay, a® = —a+ , and where a ., a P satisfy by (4.96)—(4.100)
_1 _3
@ ()] < Cte 2, at(t) —afP ()| < Ct, * (8.5)

for t in the interval [1,T], T < & *T¢, where these functions are defined. Assume
moreover that on that interval, the functions ti4,u""{", w"*" satisfy (7.1)~(7.3). Then
the quantities (5.43)—(5.49) satisfy the following estimates, with a constant C depend-
ing on the constants A, A’, D in (7.1)—(7.3):

15.43) |wree < C173 (V1) (8.6)
1544 |wree < C173 (VD)7 8.7
15.45) |wree < C173 (VD)7 (8.8)
15464 llzee < Cr37 (2 V1)?, (8.9)
1547 wree < C173 (VD) (8.10)
1(5.48) | wroe < C173 (V1) 8.11)
I(5.49)lwe.co < C173%0(2V/1)?, (8.12)

where 0 > 0 may be taken as small as one wants if so is large enough (s being the
index of Sobolev estimates (7.1)—(7.3)) relatively to p, and where in (8.9) one uses the
notation WK defined before the statement of the lemma.

Proof. We prove the inequalities separately.
1

Inequality (8.6). This inequality follows from (5.58) and the fact that#, > < &

Inequality (8.7). We have seen in the proof of Proposition 5.2.1 that (5.44) is a sum
of terms of the form (5.60) or (5.61), with conditions (5.62) or (5.63), i.e. may be
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written from
Op(m)(v1,...,vn), (8.13)

where m is in S1,0([T}=; (/)" Mg .n), with n > 3 and v; equal to #i+ or u'*P+ or
u” iEP or R (with R satisfying (5.25)—(5.26)). In particular, by Sobolev estimates, one

has , ” \
IR o < c((f%) o,

If we apply (D.39), we obtain for the W#:°° norm of (8.13) a bound in

(8.14)

~ 2
(I llwe.co + 5P lwe.co + [lu" P llwe.co + | Rlwe.co)

x (17 (it lwooo + I P llwoeo + [u" P lweoe + | Rllwsos)
—1 ~
17 (s s + s+l P ls + IRl as) ).

By (7.1)—(7.3) and (5.25), (8.14), this is smaller than the right-hand side of (8.7) (if
we use that (62 /1) 017 < C fort = &4+°),

Inequality (8.8). Expression (5.45) to estimate has been seen to be of the form (5.71)
or (5.72), with either (5.73) or (5.74). Terms corresponding to (5.73) are of the form
(8.13) and, as we have just seen, satisfy the wanted bound. We have just to consider
expressions (5.71) or (5.72) under (5.74), i.e. quantities of the form

Op(m') (v, v2), (8.15)

fore i O 2 —1aqv ~ sapp  /rapp
where m’ is in Sl,o(nj=1(§j> Mg, 2),and vy, vy taken among niy, u' ", u” [, R.

If both vy, v, are different from u”‘i’p, weuse (D.77)withr =2, n =2, =0. We
get a bound in

2 (P s + i llas + IR s

L rapp L. L. R 2 (8'16)
Lyl 2 + [ Lydig 2 + (L4 R 22)

(estimating the W*0-°° norm from the H® one). It follows from (5.25) and (5.26)
that | L4+ R|;2 < C(t%(sz\/?)e). Using also (7.1) and (7.3), we estimate (8.16) by
the right-hand side of (8.8), when ¢ < ¢~#¥¢ if o is small enough. Consider next the
case when vy or v; is equal to u”%". If for instance vy = u”%" and v, = ti4 or u'}"
or R, we apply (D.77) withn = 2, £ = 1. The first term on the right-hand side of this
expression is largely estimated by (8.8) if r is taken large enough. The second one is

smaller than
Ct>T(JJu" P lwooo + | Lyu" P |lwo.oo)
< (1w llas + Ny s + | Rl as
+ 1Ly Pll2 + 1L ytig |2 + 1L+ R 22).

By (7.1)=(7.3) and (5.25)—(5.26), this is largely bounded by the right-hand side of
inequality (8.8).
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If v; and v, are both equal to u”i‘f:p, we use (D.77) with £ = n = 2. We obtain

a bound in 72+ (log(1 + 1))?(log(1 + t£2))? for the second contribution to the
right-hand side of (D.77). If ¢ is small enough, this is better than (8.8) since 8 < %

Inequality (8.9). It follows from (D.82) (with a large enough r) translated in the non-
semiclassical framework, that for any function W

_1 _
IWRllLee < C(t7#F W ip2 4+ t 2| W |l as). (8.17)

To estimate (8.9), we decompose expression (5.46) as the sum of (5.80)—(5.83). Con-
sider first the nonlinear quantity (5.82), that may be written as (5.85). By (D.88) and
the fact that a(¢) = O(t, 1/ 2), its contribution to (8.9) is bounded from above by

_1
%te 2(|Op(m")(v1, ..., va)lwo.co + 77| Op(m')(v1, ..., v0) || s) (8.18)

for any r, if 0 > 0 and so is large enough, m’ being in S1 0(]_[ E)TIMY ),
2 <n <4, v; being equal to @i+ or u’” or u”%’. Since (8. 18) involves expressions
of the form (8.13) or (8.15), we already know that the first term is estimated by the
right-hand side of (8.9). The second term is easily bounded, as r is arbitrary.

We have thus just to consider the linear expressions (5.80), (5.81), (5.83). As
a(t) = O(t_1 2) a(t) —a*P(t) = O(I_3 2) by (8.5), the expressions to study are
of the form

1
-1 -
te 1Op(m Y4, 8.19)
te 20p(m’)R,
-3 app.
Op(mu's (8.20)
ZOp(m )u//app

where m’ is in S‘{,O((S)_l, 1). We replace in (8.17) W by (8.19) or (8.20). It follows
from (D.71) and (D.32) with n = 1 that the contribution of (8.19) to the right-hand
side of (8.17) is bounded from above by

IO (sl + Rl + | Lasdig 2 + | LeR]2).

Combined with (7.1), (7.3) and (5.25)—(5.26), this gives an estimate in 17349 (2 /7)?
as wanted.

To study the contribution of (8.20) to the right-hand side of (8.17), we just apply
the Sobolev boundedness of Op(m’) to get

_3 1
te 2 4+U(||u/€fp||1-1x 4 ”u//«:r_JP”HS)‘

Combining with (7.1) and (7.2), we get again the wanted bound. This concludes the
study of (8.9).
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Inequality (8.10). Expression (5.47) is made of terms of the form (5.45) or (5.44)
multiplied by the decaying factor a(z). It is thus estimated by better quantities than
the right-hand side of (8.7)—(8.8).

Inequality (8.11). To estimate (5.48), we notice first that terms in that expression
corresponding to |/| > 2 have already been treated in the proof of (8.7) and (8.8). It
remains thus to study the linear terms, that are of the form

a(t)’ Op(mus, j =2,

with m’ in 5’{’0((5)_1, 1). By expression (5.59) of u, we shall get terms of the form
(5.82) with a(t) replaced by a(t)?. These terms have already been considered in the

study of (8.7) and (8.8) (see (8.13) and (8.15)). We obtain also linear terms in
a(t)! Op(m')iiz,  a(t)’ Op(m" W', (8.21)
a(t)’ Op(m" " {*, a(t)’ Op(m’)R '

with j > 2. To study those terms in (8.21) of the form a(¢)’ Op(m')w with w = @i+
or u/jfp or R, we use (D.77) with n = 1, £ = 0. We obtain an estimate of the W*-*°
norm in

CO 1 ([P s + i+ lars + I R s
+ Lyt llz2 + 1Ll 2 + IL4 Rl z2).

Combined with (7.1)—(7.2) and (5.25)—(5.26), this largely implies a bound by the

right-hand side of (8.11). Finally, the W#>*® norm of the terms in (8.21) involving

u”® is estimated using (D.77) when n = 1,£ = 1. One obtains

Co 7 (" PPl s + "l woco + | L TP [ woce)
which by (7.2) is also largely estimated by (8.11).

Inequality (8.12). Finally, (8.12) follows from the fact that (5.49) satisfies bounds
(4.38), that largely imply (8.12). ]

We may deduce from the above lemma an L°° bound for (D; — p(Dy))ti .

Proposition 8.1.3. Denote fy = (D; — p(Dx))u+ and define f N by

1 X
filt,x) = TﬁL (r, 7) =0.f,(t.%) (8.22)
using notation (B.15). According to (D.91), define
P AW x + p'(§) W
Lha =00 (r( ) Jonl @ 1, (8.23)

Then, under a priori assumption (7.3) on U, for any 6 > 0, any s such that so is
large enough, one has

Lf5 A ) llee < CRYO (2 V1)P. (8.24)



L°° estimates and end of bootstrap 144

Proof. Recall that
Jf+ = (D: — p(Dx))u

is given by the sum of expressions (5.43)—(5.49). Call f4 » contribution (5.46) and
S+,1 the sum of all other contributions. Define f 'i s J =12, from S+, as
in (8.23). Then (8.9) shows that i i 5 A Satisfies (8.24). To obtain the same estimates
for £ ; o, we apply (D.88) in order to bound the different contributions to % | \
in L from (8.6)—(8.8) and (8.10)—(8.12), using moreover (7.73) in order to estimate
the H* norm in (D.88) (taking the power N in the pre-factor 4"V large enough). This
concludes the proof. |

We shall now write an ODE satisfied by function (8.3).

Proposition 8.1.4. Assume a priori assumptions (7.1)—(7.3). There is a real-valued
function 0y, supported in |—1, 1] such that Qﬁ_,A defined by (8.3) satisfies

(D = Op(x)V1 = x2)iiy , = Opeo (17" (2V1)?), (8.25)

where o > 0 is as small as one wants (if s in estimate (7.3) is large enough relatively
1

to —).
o

Proof. Denote as in the preceding proposition f = (D; — p(Dy))ti4, so that
(D¢ — p(Dx))((Dx)’ii+) = (Dx)” f+.
It f N is given by (8.22) and & , by (8.1), this is equivalent to
(De = Op) (x& + VT+82))0p) ()i, = Op) (), (826)

We make act Op)) (y(”l’ ©))) on (8.26). By (D.94) and the definition (8.3) of i,
we obtain

(De = OpY (x + VI+E)i o = [0 + Ri + R 8.27)

with
+p + i
ri = hop! (-1 (L) (L op i, 62w
R, = h20p)) (r)Op}Y (£)")i, (8.29)
where |0%y_1(z)| < Cq(z)"!17% and r satisfies
1391322 (hap)Fr (x. £, )| < Ch‘W<Lj%@)>_l (8.30)

By [82, Lemma 4.2], R; may be replaced by

phony (i (LD el san
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modulo a quantity estimated in L by
5_ ~ -
Cha™ (| L4ity |2 + it |l ar) (8.32)

for some o > 0, 0 going to zero with B. By a priori assumption (7.3) (translated
on i ) this is estimated by the right-hand side of (8.25). By [82, estimate (4.25) of
Lemma 4.3], the L°° norm of (8.31) is also controlled by (8.32), so by the right-hand
side of (8.25).

Let us check that R, given by (8.29) is also bounded by the same quantity. This
follows from semiclassical Sobolev injection together with the a priori Sobolev esti-
mate in (7.3). Moreover, by (8.24), the f ’J’r’ A contribution in (8.27) is also bounded
by the right-hand side of (8.25).

It remains to write the left-hand side of (8.27) as the left-hand side of (8.25),
up to some new contributions to the right-hand side of the latter. This follows from
Proposition D.3.6, where the right-hand side of the second inequality of (D.93) is
again estimated using (7.3). This concludes the proof. ]

8.2 Bootstrap of L°° estimates

We have shown in Proposition 7.3.7 that under a priori assumptions (7.1)—(7.4), we
could improve the Sobolev estimates in (7.3) to (7.103)—(7.104). Our first goal here
will be to improve also the L°° estimate.

Proposition 8.2.1. Assume that (7.1)—(7.3) hold true on an interval [1,T]. Let ¢ > 0
be given. Then if D in (7.3) has been taken large enough, there is ¢ € |0, 1] such
that, forall e €10,g9], all 1 <t < T < &4, one has the bound

2
4 |wo.co < BM
2Vt

Proof. We have to bound (D, )14 in L°°. By (8.1) and the notation introduced after
(8.3) for ﬁﬁ—,A’ ﬂi,Ac, it suffices to show

(8.33)

=2(2v0)? (8.34)

AN

v R ]

~ _1 /
17 pcllzee = Z172(2VD) (8.35)

By (8.4) and a priori estimate (7.3), one may bound (8.35) by Ct~2%7 (¢2./7)?. Since
0" <6 and t < e #+¢, we bound this by the quantity C¢~2(2+/7)? e(t, £), where
e satisfies (5.41), if o has been taken small enough relatively to ¢(6 — 6).

We are left with estimating (8.34). It is equivalent to show that

- D ,
Il < (VD)
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if & is small enough. Computing 9;| E’; A (2, x)|? from (8.25) and integrating in time,
we get

t
i (X)) < |75, (1x)] + c/ 12 1)l d
1

If D has been taken large enough so that ||Q’_J|r A )L < D¢, we get the wanted
estimate, using again that + < ¢#7¢ and that & may be taken small relatively to
c(8 — 0). This concludes the proof. ]

Propositions 7.3.7 and 8.2.1 allowed us to bootstrap estimates (7.3). To be able to
finish the proof of the main theorem, we shall have to bootstrap as well the inequalities
satisfied by g. We prove first some technical lemmas.

Proposition 8.2.2. Let Z be a function in S (R). Assume that the function i 4 satisfies
estimate (7.3). For any neighborhood ‘W of {—1, 1} in R, there is g9 > 0 (depend-
ing only on ‘W and on the constants in (7.3)) such that for any A in R — W, there
are functions @ (A, t), Y+ (A, t) defined fort € [1,e74%¢], & €0, &¢), satisfying the
estimates

lpx (0] < 1722V, (8.36)
e, 0] <71 @@V (8.37)
and solving the equation
(Di = Mo+ (A. 1) =(Z. i+) + ¥+(A.1). (8.38)
(Z,ﬁ+>

Moreover, denoting (Z, 1) for the vector [ ], one has the bound

(Z.u-)

(Z. i) < 73 (2D (8.39)

Proof. We shall use the following notation: we set f = o(g) when we may write
| f] <l|gle(t,e) for some e(t,e) satisfying (5.41). In particular, for any given N,
taking & small enough, we may bound | f| by %| gl

We prove the proposition in the case of sign +. Let us show first that on the right-
hand side of (8.38), we may replace (Z,14) by (Z(C(¢)i)+), up to a contribution
to ¥ 4. Since ((Id — C(¢))#)+ is odd, and Z is in §, we may use (4.79) to write

1
(Z,(d=C@)u)+) = %/ (Z',(L(1d — C(1))it) 4 (ux)) dp
-1 (8.40)

1 1
1 [ (22 - com o du
-1

for new functions Z!, Z2 in $(R). By (7.3) and L? boundedness of C(t), the last
term is O(et®~1) = o((e24/7)?'t~"). It may thus be integrated to ¥, (A, 7). In the
first term on the right-hand side of (8.40) we write using (E.20)

L(d— C(t))i = (Id — C(¢))Lii + C; (¢)i.
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By (E.21), (E.22) and (7.3), we get

IL(d — C@)ill 2 < C2VD)Y [er ™3+ (2 /1)P=¥'

(8.41)
+ glti— —26’ tj—m-l-(?——]‘

As 0,0 are fixed with 8’ < 0 < % and 6’ close to % andas 8,1 —m may be taken
as small as we want, the bracket above is 0(1) when ¢t < ¢~*7¢ and & goes to zero.
Thus (8.41) plugged in the first term on the right-hand side of (8.40) shows that this
term is o(t 71 (&2 \/f)e/), so satisfies (8.37). We are thus reduced to studying equation

(Dt = VoA, 1) =(Z, (CO)u)+) + ¥4+ (4,1). (8.42)
Recall the function 1 defined in (7.106). We may write

(Z.(C)i)+) = (Z,ii4) + Y1(1).

o 4 N (8.43)
Y1(1) = (Z, (MG, '™ 1)) 4) + D (Z (CO)M; (@, u' ™)) ).

J=3

By (7.5), we may bound the last sum by
Cr(2vh)? (ta(gz Ve + 85—20}1—%—{-8%—0)‘

Ast < g=4%¢ this is smaller than the right-hand side of (8.37) (for §, o small).

Let us show that the first term on the right-hand side of the expression of ¥,
satisfies also (8.37). It suffices to show that || M} (i, u'*P1)| 2 = o(t_l(szf)e
Recall that () 5@, u'*P1) is given by (6.60) in terms of expressions M.¢, that have
structure (6.47), i.e. that may be written from expressions

(KLY fia L2 fon), (8.44)
where 0 < £1,0, < 1, K12 is in J{{ ) 2(1 4+, +) and fi, f> equal to i or u/#P!

(see (F.35)). If we apply (F.47), (F. 50) (FS 1), we obtain a bound for the L? norm
of (8.44) in

_3_1 - app, 1 - app,1 2
Cr 273 (| Lytig |2 + 1 L+u" P N2 + s las + [0/ as)
so according to (7.3) and (7.4) by
Ct—%—FG(SZ\/;)Gt%(EZ\/;)B

which is better than (8.37). On the right-hand side of (8.42), up to incorporating
Y1 to Yy, we thus may replace (Z, (C(t)ii)4) by (Z, 1), i.e. we reduced equa-
tion (8.42) to

(D: =N+ (A.1) = (Z.uig) + Yy (8.45)
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for a new /.. Since 1 is odd and Z in § (R), we may write using (4.79) again

1 1

b o 1 2 o
(Z.i4) = /_ (2 (L) o)) du = ; / (225 pdn (8.46)

for new functions Z!, Z? in the space $(R). By inequality (7.110), the last term is
O(et’1) = o((24/1)?"t~1). It may thus be incorporated to ¥, (,7). We decom-
pose the first integral on the right-hand side of (8.46) as I; + I, with

1
= [ (2% (x(Veh = 1+ D)) (L) e e
-1
1
= [ (Vi = T 02) (21 (). i) 22,
where y € C5°(R) is real valued, equal to one close to zero. By Cauchy—Schwarz,

b= [ (Vi T+ p9)(#(2))

Since A & W, || x(Vt(A — /1 + EDL2@e = O(t_%), so that the L? norm inside
the above integral is bounded by

2'(2)

By (7.111), it follows that the contribution of I, to the first term in (8.40) satisfies
(8.37), so may be incorporated to ¥1. We have thus written by (8.40) and (8.46)

(8.47)

du o
> 7||L+“+”L2~ (8.48)

1

Ct % = 0(uCr3),

L

o

1
(Z,diy) = —1 + ¥y, (8.49)

where w}r satisfies the same estimates as ¥4 (with an arbitrary small multiplicative
constant on the right-hand side) and

I = /_ll(zl, ((1 - X)(fz(x —J1+ D%))(L+ﬁ+))(u-)>du. (8.50)
We thus reduced (8.45) to

1
Dy =D+ (A1) = ~Ii + Y4 (A1) (8.51)

for a new 4. We define

1 1 — A—JI¥D2) .
¢+(A,r)=;/_l<zl,(( X)(jf(TD%_ * x))L+u+)(M-) m

A
e [ ) () )

(8.52)



Bootstrap of L°° estimates 149

where y1(z) . Arguing as in (8.48) and using inequality (7.111), we obtain
that ¢4 (A, t) satisfies (8.36). If we compute (D; — A)p4 (A, 1), we get the following
terms:

— x(2)-1
z

;‘”(M)’ (8.53)
1 (Y, (A=0(Vi(A—/1+D2)) .
' /—1<Z ’ ( J1+D2Z—2 (D _P(Dx))L+u+)(M-)> dp, (8.54)
;’l(f)’ (8.55)
i / ]

According to (8.51), we shall have proved (8.38) (in the case of sign +) if we show
that (8.53), (8.54), (8.56) satisfy estimates (8.37), with a small constant in front of the
right-hand side of this inequality. For (8.53), this follows from (8.52) and (8.36). We
may rewrite (8.54) as

% /_1{)(1(\/?@ —J1+ D}C)) (zl(;)) (D, — 1+ Dg)L+ﬁ+) %".

Arguing as in (8.48), we estimate that by

Ct3||(Dy — /1 + D)Lyt || 2.

Since L4 commutes to (D; — /1 + D2), it follows from (7.105) and (7.109) that
this is bounded by

=3 (*VD)le(t, ) = o(t™! (82\/;)6/)

which implies an estimate of the form (8.37). Finally, (8.56) is bounded by

e [ 11\ K (V= 1+ 09)(2'())

mll
according to (7.111). This is again better than needed.
Finally, estimate (8.39) follows from (8.40) (that is bounded by (8.37)), (8.43),
the fact that ¥y is o(t 1 (¢2+/7)?"), (8.46) were we plug (7.110) and (7.111). This
concludes the proof. ]

o d _3
il 7" < Ci73(2V1)°

Our next task will be to show that a priori assumptions (7.1)—(7.3) imply that
inequalities (4.92)—(4.93) that we assume in Section 4.2 in order to get estimates for
the solution of the ODE (4.94), hold.

Lemma 8.2.3. Assume that estimates (7.1)—(7.3) hold. Then inequality (4.92) is true,
with a constant B’ depending only on the constants A, A’, D in (7.1)—(7.3).
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Proof. We divide the proof into two steps.

Step 1. Consider first the contribution @, on the left-hand side of (4.92). Recall that
®, is given by (2.36), (2.38) so may be written as a sum of terms

/ f e ETE) ! (x £ E)ie (61)i4 () dE dEy dx (8.57)

with

m'(x,€1,6) = k()Y (x)b(x.£1)b(x, &) p(§1) " p(&2) 7"
By estimates (A.8) satisfied by b, and the fact that ¥ is in §(R), we have that m’
belongs to S(’)’O(]_[]z-=1 (£,)71,2) and @, is thus a sum of expressions

/ Op(m) (s 1) dx.

On the other hand, recall that u is related to %y by (5.59), with a remainder R
satisfying (5.25) and (5.26). By Corollary B.2.6, we get that (8.57) may be written as
a sum of expressions

/Op(nﬁ’)(vl, co V) dx (8.58)

where n > 2 and v; is equal to u’?:p or u”?sp, or i+ or R, with a symbol 7 in

5{,0(]_[/2-21 (§/)71M{,2) for some v.

Consider first the case when at least one of the arguments v;, say the last one, is
not equal to u”*". Since /i’ is rapidly decaying as (Mo (€)™ |y[) ™", we may estimate
(8.58) from the L2 norm of the integrand. If n = 2, we use (D.76) when v is different

from u”*f* and (D.75) if v1 = u”"{*. We obtain for (8.58) a bound in

Ct 2 (| Lyt g2 + Ly Pl + 1L+ Rll2 + iy s + 1" |l as
+ IR s + I Lyu"Pllweoco + [[u" P lweo.co)
X (ILytigllp2 + 1L4u PNz + 1L Rl g2 + i llms
+ " Pl s + R as)-

(8.59)

We plug there (7.1)—(7.3) and (5.25)—(5.26). We obtain a bound in (30 (€2 \/?)29.
As 0 > 6" and < e7*1¢, we see that if o is small enough, this is smaller than the
right-hand side of (4.92).

If n > 3 in (8.58), and again at least one v;, say the last one, is different from
u”*’, we use Corollary D.2.8. By (D.71), we estimate then (8.58) by

— ~ n—1
Cr= ([P llweo-ee + " Flweoce + [+ [[weo-ce + | Re[lweo-eo)
X (1Lt N2 + 1L+ N2 + 1L+ Rl 2+l 2
+ 1Pl + IRIL2)-

Using (7.1)—(7.3) and (5.2?) (together with Sobolev injection), (5.26), we get a bound
in t72(£2/1)%% (23/1)?1 %, which is better than what we want.
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It remains to study (8.58) when all arguments v; are equal to u” iEp . Again by the
rapid decay in x of the symbol 77/, it is enough to control the L norm of the inte-
grand (up to changing the definition of 7i’). We may use then (D.77) withn = £ > 2.
We obtain a bound in

1
2 (" ao.ce + Lyt PP wooco + 172 1" PP rs) . (8.60)
Using (7.2) and the fact that 6’ < %, o < 1, one controls that by =3 (e2/1)%Y for
t < e~**¢ This concludes the proof of (4.92) for contribution ®,.

Step 2. We study next the term #, > 3 I'j(uy,u_) in (4.92), for 1 < j < 3. Recall
that I'; is given by (2.36)—(2.39). It has thus again the structure (8.58) with n = j,
as it follows from the expression (5.59) of u in terms of u’, 1 P 7i,, R and the com-
position results of Appendix B. If j > 2, our preceding reasoning implies the wanted
bound. We thus just have to consider

;! / Op(ii)(v) dv (8.61)

with /' in 5{,0((5)_1, 1) and v = P, u”$? 1+, R. When v is not equal to u”}",
we use (D.71) in order to bound (8.61) by
Ct 't (1L Pll2 + I Lsiis |2 + 1L+ R 2
+ 1Pl + il + IRIlL2)

which by (7.1)—(7.3) and (5.25)—(5. 26) is bounded from above by t‘lt_l (21014,
One checks that this quantity is O(¢~2 (£24/7)2%") using 6’ < 6 < 1
If v in (8.61) is equal to u”**, we bound (8.61) by

C1;H|Op (vl oo
(for a new symbol ’). We use (D.77) to get a bound in

T _1
1 T P lweooo + || Lu” P lwoo-co + 72 u" P | s . (8.62)

Using (7.2), one bounds the bracket by 7’ % (e2 \/_) 2 for any, o' >0.Ast < g74t¢,
one concludes that if ¢, ¢’ are small enough, (8.62) is O(t~2 (82 V1)2?'). This con-
cludes the proof of the lemma. ]

We show next that a priori assumptions (7.1)—(7.3) imply as well estimates (4.93).

Lemma 8.2.4. Assume that estimates (7.1)—(7.3) hold true. Then inequality (4.93)
holds true with a constant B’ depending only on A, A’, D in (7.1)—(7.3).

Proof. Recall that @ (14, u_) is given by (2.36), i.e. taking (2.37) into account, by

?(Y» Y ()i (x)b(x, D) p(Dx) ™" (w4 —u-)). (8.63)
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Expressing u 4 using (5.59), we get that, if we define

V3
3
the term inside the modulus on the left-hand side of (4.93) may be written as the
sum of an expression (Z, R) with R satisfying (5.25) and of expressions of the form
(8.58) with n > 2. We have seen that these last quantities may be bounded by (8.59)
or (8.60), and thus by the right-hand side of (4.93). On the other hand, by (5.25)
(Z, R)is also O(t~3 (£2/1)2%"). This concludes the proof. n

Z = == p(Dx)"'b(x, Dx)* (k(x)Y (x)?),

Corollary 8.2.5. Assume that estimates (7.1)—~(7.3) hold true. Then Assumption (H)
of Section 4.2 holds.

Proof. We have seen that by Lemmas 8.2.3 and 8.2.4, inequalities (4.92) and (4.93)
hold. It remains to check that for any A € R — {—1, 1}, there are functions ¢4 (4, ?),
Y+ (A,) as at the end of the statement of condition (H7). But this is exactly the
statement of Proposition 8.2.2. ]

8.3 End of bootstrap argument

We give here the proof of Theorem 2.1.1. We shall have to gather all estimates we
proved in the preceding chapters. We first restate the main estimates in Theorem 2.1.1.

Proposition 8.3.1. There is pg in N and for any p > po, any ¢ €10, 1], any 08’ €10, %[
close to % any large enough N € N, there are g9 > 0, C > O such thatif 0 < & < g,
the solution ¢ of equation (2.11) with odd initial conditions with bounds (2.10) satis-
fies fort € [1,e741¢] the following estimates (using notation (2.7) and (2.8)):

| Pacg(t,)lweee < C1=3(23/1)7,
1) 72N Pacp(t. ) lwee < 13 (E23/0)7 (8.64)
1) 72V Dy Pactp(t, o100 < C173(£24/0)
and a(t) may be written as a(t) = ei’§g+(t) - e_”gg_(t) with

192()] < Ce(l + 16277,

| . (8.65)
|0,g+(t)| < Cet™2(1 +te?)72.
Proof. Recall that we have defined in (2.18) and (2.19)
w = b(x,Dx)* P, Pop = b(x, Dyx)w. (8.66)

We have introduced in (2.24)

uy = (Di + p(Dx))w. (8.67)
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We shall prove the following inequalities, where the last two ones are just the restate-
ment of (8.65):

s (6. ) [woeo < Ct3(2V0)7

5 (8.68)
|luy(t,-)gs < Cet

and
1
lg+ ()] < Ce(1 +16%)72,

(8.69)
19:g4(t)] < Cet™2(1 + te2)™2.

We shall deduce these estimates from bounds on # 4 that we establish by boot-
strap of (7.3). Actually, let us show that if (7.3) holds on some interval [1, T'] with
T < ¢~4+¢ with a constant D, then it still holds with D replaced by %, as soon as D
has been fixed large enough, and ¢ smaller than some ¢y (depending on D). Proposi-
tion 7.3.7 shows that this statement holds for the Sobolev and L? estimate as soon as
bounds (7.1), (7.2), (7.4) hold true (with constants 4, A’ that may depend on D). By
Proposition 8.2.1, the W#-*° estimate of 74+ may also be bootstrapped.

Let us next show that we may bootstrap as well estimate (4.99) on g. Accord-
ing to Proposition 4.2.1, we may do so as soon as Assumption (H{) holds true. By
Corollary 8.2.5, this follows under a priori conditions (7.1)—(7.3). Property (7.3) is
the bootstrap assumption. On the other hand, (7.1), (7.2), (7.4) hold, for convenient
constants C (A, A”) by Proposition 4.1.2 as soon as (4.3)—(4.7) hold. The first of these
inequalities is the bootstrap assumption (4.99) on g. The other ones are (8.36)—(8.39),
that, according to Proposition 8.2.2, hold under the bootstrap assumption (7.3).

Let us now deduce (8.68) from estimates (7.1)—(7.3) and (4.3), that hold on
[1,e74%¢] for & small, according to our bootstrap assumption. Recall that 1y is given
by (5.59) (or (5.24)) by

wy =w P+ u" P i+ > OpOip) (@i uy) + R, (8.70)
2<|11<4
I=01",1")

where R satisfies (5.25). This (and Sobolev injection) shows that R satisfies better
bounds than those given by (8.68). By (7.1)—(7.3), the first three terms in (8.70) satisfy
also the wanted bounds. Finally, the terms in the sum are also estimated by these
bounds using (7.1)—(7.3) and (D.32), (D.39).

Let us check inequalities (8.69). Recall that a(t) = */Tg(aJr(t) —a—(t)), where

a_ = —ax and ay is given by (4.96). We set then, using notation (4.97) and (4.98),
3 .3
e = L (@0 + 50) (8.71)

and g_ (1) = —g4 (7). It follows from the expressions of a’f*, S and (4.97)—(4.101)
that

g+ ()= 0(2). dige(t) = 01 2173,
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It remains to prove (8.64). By (2.19) and (2.24),
Pag = b(x. Dow = 5h(x. DYp(D) ™ us —uw ). BT
By Proposition D.1.5, the operator b(x, Dx) p(Dx) "' (D)% is bounded on W#"->®
if « > 0. It follows that the first estimate (8.64) follows from (8.68) if we modify the

value of p on the left-hand side of (8.64).
To obtain the weighted estimates in (8.64), let us write from (8.72) and (2.24)

(1) 2N Pucp = S (x) M b(x. Do) p(Dx) " g —us).  (8.73)

N =N =

()2 D, Pocg = = (x) 2V b(x. D) (ug + o). ®.74)

On the right-hand side of (8.73), we replace u 4 by its expression (8.70). We have to
bound the following quantities:

100) >V b(x, D) p(Dx) P e, 675
1(x) X b(x. D) p(Dx) iy | woece,
1x) 7Y b(x, Dx) p(Dx) ™ u" ¥ oo, (8.76)
> 1) bx, Do) p(Do) ™ Oplmp) i up ) lweee,  (8T7)
2<|I|<4
I1=(",1")
10x) N b(x, Dx) p(Dx) ' Rl woce. (8.78)

If N = 2, the assumptions of Proposition D.2.5 with n = 1 are satisfied. We may thus
apply Corollary D.2.11 with £ = 0. Taking into account (7.1) and (7.3), we obtain for
(8.75) a bound in o
3402 /70 4 -1 (e>/1)
t V? +1¢ i
For (8.76), we apply also Corollary D.2.11, but with £ = 1. We obtain by (7.2)
a bound in

7 Jog(1 + 1) log(1 + 16?) = O (13129 (£2/1)3).

modulo a bound in t~1 €YD To estimate (8.77), we use again Corollary D.2.11,

with n = |I] and £ equal to the number of arguments equal to u” lpp, n — £ equal to
the number of arguments equal to &+ or u’ lpp. If N is taken large enough, we get
better estimates than those holding for (8.75) and (8.76). Finally, Sobolev injection
and (5.25) provide for (8.78) a better upper bound than the one in (8.64). We thus got
estimates of || (x) ™ Pu@(t,-)||we.c in =3 (€2/1)? since o is as small as we want,
t<e*¢ and 0 < % This implies the second inequality of (8.64).

The proof of the last inequality (8.64) is similar, starting from (8.74). ]



Appendix A

Scattering for time independent potential

This appendix is devoted to the construction of wave operators for a Schrodinger

operator of the form
2

1d
A=
3 a2 + V(x),

where V is a real-valued potential in S(R). If W, stands for the wave operator
defined by (A.5) below, one knows that W, W} = Py, Wi W, =1d;2, where Py
is the spectral projector associated to the absolutely continuous spectrum of A. More-
over, one has the intertwining property

1 d?

2dx?’

Our main result below is that, under convenient assumptions on V', operator W,
acting on odd functions may be represented from pseudo-differential operators (see
Proposition A.1.1). Let us mention that, even if we give quite complete proofs, our

approach here is not original, and that we strongly rely on the classical paper of Deift
and Trubowitz [17] and on the work of Weder [85].

W:AW+ - —

A.1 Statement of main proposition

We consider V' : R — R a potential belonging to § (R). Then the operator

1A +V = L +

2 © 2dx?
is a self-adjoint operator whose spectrum is made of an absolutely continuous part,
equal to [0, +oof, and of finitely many negative eigenvalues (see [17]). For £ in R,
we define the Jost function f1(x, &) (resp. f>(x, £)) as the unique solution to

d2
— S A =8 (A1)

that satisfies f;(x, &) ~ e™*€ when x goes to 400 (resp. fo(x, ) ~ e **¢ when x
goes to —o0). We set

mi(x,£) = e fi(x,8),

ik (A2)
ma(x,§) = €' fr(x,§).
We shall say that the potential V' is generic if
+o0
/ V(x)mi(x,0)dx # 0. (A.3)
—0o0
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Notice that the above integral is convergent as m(x, £) is bounded when x goes to
400 and has at most polynomial growth as x goes to —oo (see [17, Lemma 1] and
Lemma A.1.1 below). We say that V' is very exceptional if

+o0 +oo
/ V(x)mi(x,0)dx =0 and / V(x)xmi(x,0)dx = 0. (A.4)
—o0 —00
If one sets V(x) = —% cosh_z(g), as for the potential of interest in this paper (see

equation (2.5)), it is proved in [13, Lemma 2.1] that the transmission coefficient of
this potential satisfies 7(0) = 1 (see [17] or below for the definition of the transmis-
sion coefficient). This implies on the one hand that (A.3) does not hold (as (A.3) is
equivalent to 7(0) = 0 —see [17,85] or (A.32) below) and that moreover

/xV(x)ml(x,O) dx =0,

i.e. that (A.4) holds, as follows from (A.26) and (A.31).
We denote by W, the wave operator associated to A = —%A + V, defined as the
strong limit

Wiy =s— lim_ eltAe=it Ao (A.5)
where Ag = —%A. One knows (see Weder [85] and references therein) that
WiWE = Py, WIWL =1dpo, (A.6)

where P, is the orthogonal projector on the absolutely continuous spectrum and,
more generally, that if b is any Borel function on R,

B(A) Poc = WiB(Ag)WE,  B(Ag) = WIb(A)W,. (A7)

Notice that since A and Ao preserve the space of odd functions, so do W, W. For
odd w, we shall obtain an expression for W, w given by the following proposition.

Proposition A.1.1. Assume that V is an even potential that is either generic or very
exceptional. Let y+ be smooth functions, supported for £x > —1, with values in
the interval [0, 1], with y—(x) = y+(—=x), x+(x) + y—(x) = 1. There are an odd
smooth real-valued function 0, and a smooth function (x, &) — b(x, §) satisfying

|02b(x.8)| < Cp forall B €N, As)
020fb(x.£)| < Capy(x)™  foralla e N*, Be N, N €N, '

and
b(x,—§) = b(x,§),b(—x,—§) = b(x,§) (A.9)
such that if we set c(§) = ei9($)15>0 + e_ie(é)llg<0, then for any odd function w,
Wiw = b(x, Dy) oc(Dx)w (A.10)
with

1 .
b(x,D)v = E/e’xéb(x,?g‘)ti)@)dé.
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A.2 Proof of main proposition

We shall give here the proof of Proposition A.1.1, relying on the results of Deift and
Trubowitz [17] and Weder [85].

If V is a real-valued even potential, the Jost functions satisfy by uniqueness
f1(=x,&) = fa(x, &) so that (A.2) implies that

mi(=x,§) = ma(x.§). (A.11)

By [17, Lemma 1], m; solves the Volterra equation

+o00
my(x,€) =1 —l—/ De(x" —x)2V(x"ymy(x', §) dx’ (A.12)
R
where
* 2ix’§-‘d ’ eZiXS —1 A13
D = = — .
(= [eay = (A13)

If Visin 8§ (R), then [17, Lemma 1 (ii)] shows that

0202 (m1(x.8) — 1)] < Capn (x) ™V (§)7'# forallx > —M. £ € R,

A.14
|8‘)’C‘8§(m2(x,f) — 1)| < CaﬂN(x)_N(E)_l_ﬂ forallx < M, £ e R, ( )

holds for m; (and thus also for m,) when o = 8 = 0. To get also estimates for the
derivatives, we need to establish the following lemma, whose proof relies on the same
ideas as in [17]:

Lemma A.2.1. Denote for any B, N in N by Q’;;,(x) a smooth positive function
such that Qﬁ,(x) = (x)7N for x > 1 and Qj’i,(x) = (x) for x < —1. Then for any
N,a, p in N, there is C > 0 such that for any & with Im& > 0, any x,

10202 (m1 (x. &) — D] < QR ) (E) 7. (A.15)

Proof. Following the proof of [17, Lemma 1], we write

+o00
mi(x.£) =14 Y gu(x.) (A.16)
n=1
with
gn(x.£) =/ [ DeCx; — x—0)2V(x)) dxy -+ dxy. (A.17)

<X]="=Xn j=1
using the convention xo = x. Set 2(x) = Q(x) and

Ke(y.y") = De(y — y)QO) 2V (»)Q().
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Then we may rewrite g, as

gn(x,§) = Q%) [T ey xjm)Qn) " dixy -+ doc,

XSX|SSXn

or equivalently

n

enlx.6) = 200 [ [T Kex 43+ o+ 31 oty
Y120,.0y020 ;4
XQx+y1 4+ +y) Vdyr--dy,. (A18)

By (A.13), we have
|08 De(y)| = Cpi) ()2,

Fix some integer m. The definition of K¢ implies that foro + 8 <m

iaiast(x +nt+-F+yi,x+y1r+-+ yj_1)|
<CETIQx+yi 4+ y—) N Fyr 4y (A.19)
X W(x + y1 4+ y) ()P

where W is some smooth rapidly decaying function. When y; > 0,...,y; > 0, we
may bound

DN+ yr 4 )T k)T TP 2 Co)
Consequently, (A.18) implies that

19292 gn(x.6)] < CQE)PF1 ()™

n
(A.20)
x/ l_[W(x+y1+~-~+yj)dy1~-dy,,.
ylZOa"-aynsz:l
Define G(x) = f:oo W(z) dz, so that the last integral above may be written
n—1
ot [ [16G+y+ 4
y120,..., J’n—IZszl
1
X G+ 1t yn—) dyr e dyp-y = G
As |G(x)| < Cn Q% (x) for any N, it follows from (A.20) that, for any N,
5 Cn+1 A1
|50 &n (x, )] = == (6) Q" (). (A21)

If we sum for n > 8 + 1, we get a bound by the right-hand side of (A.15).
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We are thus left with studying

B
> 050, gn(x.6). (A22)
n=1
Notice that (A.21) summed forn = 1,..., B gives, when |[§] < 1, estimate (A.15) for

(A.22) as well. Assume from now on that |£] > 1 and let us prove by induction on
n=1,...,0 that |8§8§gn(x, £€)| is bounded by the right-hand side of (A.15). We
may write from (A.17)

gn(x.§) =/ Dg(x1 —x)2V(x1)gn—1(x1,§) dxy

= (A.23)

= [ D2V On + g 01+ 3By
y1i=

with go = 1. We use in (A.23) the last expression (A.13) for Dg. We have then to
consider two kind of terms. The first one is

/ W31 + X)gnos O + X, ) dvy
y1=>0

§
1
= _rézzv(x)gn—l(x, £)
eZiyls
— /ylzo _21'52 dy, (ZV()/l + x)gn—1(y1 + x, 5)) dyr.

Repeating the integrations by parts, we end up with contributions that, according
to the induction hypothesis (and the fact that go = 1), satisfy estimates of the form
(A.15) (with Qjﬁ\, (x) replaced by (x)~%), and an integral term of the form

[ Sl erOn + g0+ . 8) (A24)
y1i=

for M as large as we want. If M = B, we see that (A.24) satisfies (A.15). The second
type of terms coming from (A.23) to consider is

1
! / W (31 + X)gnos (0 + X, ) dvy
f y1=0

which trivially satisfies (A.15) by the induction hypothesis applied to g,—;. This con-
cludes the proof. ]

In order to obtain the representation (A.10) for Wi w, when w is odd, we recall
first the definition of the transmission and reflection coefficients. The Wronskian of

(f1(x,8), f1(x,—£)) (resp. (f2(x, ), f(x,—£))) is non-zero for any £ in R* (see
[17, p. 144]), so that, for real £ # 0, we may find unique coefficients T7(§), T2 (§)
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non-zero, R1(§), R>(§) such that

R1(§)
f2(x,8) = T(E)fl( )+ (E)fl(x,—é) a5
_ R(® '
Jilx.§) = o) Sa(x.8) + 5 (E)fZ( —£).

By [17, Theorem I], these functions extend as smooth functions on R, and they satisfy
the following properties:

def

Ti(§) = Ta(€) = T(§).
T(E)R2E) + Ri(E)TE) =0,
ITEP+IREP =1 j=12
TE) =T, R;(E) =R;(-§).

If the potential V' is even, we have seen that

f1(=x,8) = fa(x,§),

so that, plugging this equality in the first relation of (A.25), comparing to the second
one, and using that 77 = T3, we conclude that

Ry (§) = Ra(§). (A.27)

(A.26)

We denote by R(§) this common value. The integral representations of the scattering
coefficients (see [17, p. 145])

?LE) = 2#/eZ’V’@ZV(x)ml(x,E) dx,
gé ) ZiE (A.28)
@ =1- 5 5 2V(x)my(x,§&)dx
together with (A.15) and the fact that V' € §(R), show that for any N, 3,
WRE) =0(&)™), L TE -1 =00s""). (A29)
We need the following lemma:
Lemma A.2.2. The functions T, R satisfy
T0) =1+ R(0) (A.30)

in the following two cases:
o The generic case [ V(x)m(x,0)dx #0.
e The very exceptional case [ V(x)m(x,0)dx =0and [ V(x)xmi(x,0)dx =0.
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Proof. Summing the two equalities (A.28) and making an expansion at £ = 0 using
(A.15), we get

1 400
RE) +1= T(E)(l - .—/ Vomy (x. £) dx
i ) oo
+ % / = 2%V (x)my (x, £) dx)

+o0
= T(S)(l + 2/ xV(x)my(x,0)dx + O(é)), £— 0,

(o)

so that oo
R(0O)+1-T(0) = 2T(O)/ xV(x)my(x,0)dx. (A.31)

In the generic case, by (A.28),

+o00 -1
T¢) = ié(—/_ V(x)mi(x,0)dx + 0(5)) , £€—0, (A.32)

o0

so that 7(0) = 0. This shows that (A.31) vanishes in the two considered cases. ]

Proof of Proposition A.1.1. We have to prove that W, acting on odd functions is
given by (A.10). Recall (see for instance Weder [85] formula (2.20), Schechter [74])
that Wi w is given by

Wiw = Fiw, (A.33)

where F is the adjoint of the distorted Fourier transform, given by

Fio= - / Vi (6. E)(E) dE. (A34)

where
Vi(x,8) = Lg=oT(§) /1(x,8) + Lg<oT(=§) f2(x, =§). (A.35)

Let y+ be the functions defined in the statement of Proposition A.1.1 and write

(0, 8) = X+ ()P4 (x, &) + x- ()P4 (x, ).

Replace in y4+ ¥4 (resp. x—¥+) ¥4 by (A.35), where we express f, from fj (resp.
f1 for f3) using the first (resp. second) formula (A.25). We get, using notation (A.2),

Y (6, 6) = 24 (0) (™ (T @i (. ©) Lo + 111 (x, )T <o)
+ e ER(—E)my (x, —E)lg<o)
+ 1= () (€ (ma(x, —§) g + T(=E)ma(x, —§) g <o)

+ e EREM(x.6)lgno ).

(A.36)
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Using (A.11), we deduce from (A.33), (A.34) and (A.36) that

Wow = o [eta i@ de + o [ anpn©ds @
with
e1(5,6) = 14 (1 (6, ) (T()Lemo + Tg<o)

+ )(_(x)ml(—x, _g) (]1§'>0 + T(_S)1§<0)’ (A38)
e2(x,§) = x+ () R(=E)m1(x, =§)1g<o + x-(X)R(E)m1(—x, §)lg>o.

If w is odd, we may rewrite (A.37) as

1 .
Wow= / e a(x, )i (E) dE
with

a(x,§) = e1(x,§) —ex(x, =§)
= 1+ )m1(x. E)((T(E) — R(§))Le=o + Le<o) (A.39)
+ x=()m1(=x, =) (Lg=0 + (T(=§) — R(—§))Lg<o)-

By properties (A.26), |T(£) — R(£)|> = 1 and by (A.30), T(0) — R(0) = 1. We
may thus find a unique smooth real-valued function 6(§), satisfying 6(0) = 0, such
that 7'(§) — R(€) = e29®) Moreover, using (A.26), one gets that 6 is odd, and by
(A.29) it satisfies 980(&) = O((£)1F). We define

c(€) = Ol + 01, (A.40)
so that in (A.39)
(T(€) = RENIgs0 + Lg<o = €7@ (§),
Igso + (T(=8) — R(=€))Ig<o = e @ (&)
and a(x, &) = b(x, £)c(£), where b is a smooth function satisfying (A.8) given by
b(x.8) = x1(x)mi(x. £)e @ + y_(x)my(—x, —§)e0®.

We thus got Wiw = b(x, Dy) o c(Dy)w for odd w. Moreover, the definition of f;
and mi shows that fi(x,§&) = fi(x,—§),m1(x, &) = m1(x,—=§), so that it follows
from the expression of b that equalities (A.9) hold. |

Remarks. We make the following observations.

e The proof of the last result shows that b satisfies better estimates than those writ-
ten in (A.8): Actually, on the right-hand side of these inequalities, one could insert
a factor (€)™, We wrote the estimates without this factor because we shall have
in any case to consider also more general classes of symbols, for which only (A.8)
holds.
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The difference between generic or very exceptional potentials versus exceptional
ones appears, as is well known, when considering the action of the Fourier mul-
tiplier ¢(£) on L based spaces. Since 026(§) = O((§)~17#) when |£] — 400,
¢(&) — 1 coincides with a symbol of order —1 outside a neighborhood of zero.
Consequently, if yo € C5°(R) is equal to one close to zero, (1 — xo)(Dx)c(Dy)
is bounded on L°°. On the other hand, y(§)c(§) is Lipschitz at zero if the poten-
tial is generic or very exceptional, since 8(0) = 0, so that yo(Dx)c(Dy) is also
bounded on L. In the exceptional potential case, ¢(§) has a jump at & = 0, and
L°° bounds for ¢(Dy) do not hold.






Appendix B

(Semiclassical) pseudo-differential operators

This appendix is devoted to the definition and main properties of classes of multi-
linear pseudo-differential operators and their semiclassical counterparts. Recall that
the symbol of a pseudo-differential operator of order m € R is in general a smooth
function (x, £) - a(x, £) defined on R? x R¥, satisfying for any multi-indices o,
estimates of the form

9208 a(x, £)] < Cap(g)m PPN, B.1)

where 0 < § < p < 1 (see Hérmander [42,43]). One associates to such a symbol an
operator acting on test functions in S (R) by a quantization rule, that may be given for
instance by the usual quantization

1

Op(a)u = am?

/ e a(x.£)i(§) dt = / ' a(x, Eu(y) dy dt

(2m)4

or by the Weyl quantization

1 ie—y)E (X TV
% _ i(x—y)§ _
Op"(a)u = ) /e a( 5 ,é)u(y)dydf.
We shall be here more interested in the semiclassical version of this calculus, namely
smooth symbols (x, &, 1) — a(x, &, h) that depend on a parameter / € ]0, 1], and that
satisfy bounds of the form

|9%98 (hdp)¥a(x.€.h)| < CapM(x.§) (B.2)

with a fixed “weight function” M (x, §) (see Dimassi and Sjostrand [24]). For instance,
a function satisfying (B.1) with p = § = 0 obeys these inequalities with M = 1. One
defines then the semiclassical quantization of a by the formulas

Opy(a)u = a(x,hDy, hyu = /efxfa(x,hg,h)ﬁ(g)dg

277)4
( ”1) o (B.3)
= G | €O Rate et dy e
or for the Weyl quantization by
1 i(x—vy)-& X +
op) (a)u = (2nh)d/e( y)ha( Zy,g,h)u(y)dydg. (B.4)

One has then a symbolic calculus. Assume for instance that we are given two symbols
a, b satisfying (B.2) with M = 1. Then there is a symbol ¢ in the same class such that
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Opy,(a) o Op;,(b) = Op;,(c). Moreover, one may get an asymptotic expansion of ¢ in
terms of powers of the semiclassical parameter /2, whose first terms are given by

d
c(x,& h) =a(x,& h)b(x, & h) + zﬁ Z g, a(x, &, h)dx; b(x, &, h) +---. (B.S)
j=1

It turns out that we shall be interested only in the case of one variable d = 1, but
with more general classes of symbols. In Appendix A, we have used symbols b(x, §)
satisfying inequalities (A.8). It turns out that, if one translates in the semiclassical
framework the operators b(x, D) (see (B.15) and (B.16) below), one is led to con-
sider instead of (B.3) the more general operator

b(%,th)u — %/el’xsb(;ﬁ,hg)ﬁ(g)dg. (B.6)

Of course, the function (x, §) > b(3, £) does not satisfy the estimates in (B.2), since
0, -derivatives make lose powers of #~!. On the other hand, because of (A.8), taking a
0y -derivatives makes gain a weight in (;Z—‘)_N for any N. We shall thus consider sym-
bols depending on two space variables, (v, x,§) — a(y, x, &, h), such that at fixed
v, (x,& h) —a(y,x,& h) satisfies the estimates in (B.2), and that for any £ > 0,
(x,&h)— Bf,a (y, x, &, h) satisfies (B.2) with on the right-hand side of these inequal-
ities an arbitrarily decaying factor in (%)_N . We shall quantify such symbols as

Opy,(@)u = a(%,x,th,h)u - %/e”‘%(%,x,hé,h)ﬁ(é)dé. (B.7)

In that way, instead of getting for the composition of two such symbols an expansion
of the form (B.5), we shall obtain

C(y’x’gvh) = a(ywxvé’h)b(y’xvgvh) +hr1 + ri? (BS)

where ry is in the same class as a, b and where r{ is rapidly decaying in 7, i.e. satisfies
(B.2) with on the right-hand side an extra arbitrary factor in (%)_N .

It turns out that we shall not just need linear, but also multilinear operators,
defined instead of (B.7) by formula (B.14) below. The goal of this chapter is thus
to define such operators and study their composition properties, establishing the gen-
eralization of formulas of the form (B.8) to this multilinear framework.

B.1 Classes of symbols and their quantization

We shall use classes of semiclassical multilinear pseudo-differential operators, analo-
gous to those introduced in [20]. We shall use also the non-semiclassical counterparts
of these operators that are deduced from the former by conjugation through dilations.
We refer to Dimassi and Sjostrand [24] for a reference text on semiclassical calculus.
Recall first the following definition.
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Definition B.1.1. An order function on R x R? is a function M from R x R? to
Ry, (x,&1,....6) = M(x,&,...,§p), such that there is Ny in N, C > 0 and for
any (x,£1,...,&), (x",&],...,&) inR xR?,

p
Mg 5) s Clo—x) TG - )M 61 ). BY)

Jj=1

An example of an order function that we use several times is

Mot &) = () <a>2<éj>2)5(f<a>2)_. (B.10)

Nl

1<i<j<p i=1
Actually, this function is smooth and is equivalent to 1 + max,(|&1].....|&,|), where
maxy(|€1]....,|&p]) is the second largest among [/, ..., |&,].

We shall introduce several classes of semiclassical symbols, depending on a semi-
classical parameter & € ]0, 1]:

Definition B.1.2. Let p be in N*, M an order function on R x R?, M the function
defined in (B.10). Let (B, k) be in [0, +00[xN. We denote by S, g(M, p) the space
of smooth functions

(y’x’élv--'7Sp1h)'_)a(y’x’élv--wsp’h)a

B.11
RxRxR?”x]0,1] > C ( )

satisfying for any g € N, € N, k e N, N € N, o € N* the bounds
182092 (hop)<a(y. x.6.h)| < CM(x.§)Mo(§)* 0+l (1 4 1P Mo(£)) ™ (B.12)
and

19500200 (hdy)a(y, x. &, h)|

(B.13)
< CM(x, ) Mo(§)< 1D (1 1 Bh8 Mo(£)) ™ (1 + Mo(&) ™ |y])”

N

where £ stands for (§1,...,&,).

We denote by S, (M p) the subspace of S g (M, p) of those symbols that sat-
isfy (B.13) 1nc1ud1ng for oy = 0.

We shall set §*/ N’ (M p) for the space of functions satisfying the bound in (B.13)
including for the case 0‘0 = 0, but with the last factor (1+Mq(£) 7|y |)~" replaced by
(1 4+ Mo(&)~*|y)~V, for a fixed power N’ instead of for all N.

Remarks. We make the following observations.

e If p =1, then My(§) = 1 and symbols of the class S, g (M, 1) that do not depend
on y are just usual symbols of pseudo-differential operators as defined in [24] for
instance. For symbols depending on y, we impose that if we take at least one
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dy-derivative, we get a rapid decay in |y| in the case of the class S, g (M, 1). For
elements of S (M 1), this rapid decay has to hold including without taking any
0, -derivative. N0t1ce also that when p = 1, the classes we define do not depend
on the parameters «, f.

o The parameter « in the definition of the classes of symbols measures the power
of My(§) that we lose when taking 0 - or dg-derivatives. As these losses involve
only “small frequencies”, they will be affordable.

e When 8 > 0, we have an extra gain in (h# M (€))~" for any N, that allows to
trade off the loss Mo (£) for h=¥_If B is small, this reduces these losses to those
ones used usually in definitions of semiclassical symbols as in [24]. Moreover,
an element of S, o(M, p) may be always reduced to an element of S, g(M, p)
multiplying it by y (h? Mo (&)) for some y in C$°(R).

We shall quantize symbols in S, g (M, p) as p-linear operators acting a p-tuple
of functions by

Opp(a)(vy, ..., v,)

! f ix(E1+-+&p)  (* L
— 14 P’ a —,x,hf ,...,hs y(i:)di: "'df
2m)P (h 1 p)jl:[l Y 1 - B0
_ 1 iZ'f’=1(x—xﬁ)% X P o
B (27Th)”/e ’ ’ '“(E’x’sl’---fp)l_[yj(xj) x'dE.

Jj=1

We shall call (B.14) the semiclassical quantization of a. We shall also use a classical
quantization, depending on the parameter t = % > 1, related to (B.14) through conju-
gation by dilations: If > 1, and v is a test function on R, define the L? isometry ®,
by

Ou(x) = \iﬁg(;—c) (B.15)

We shall set for a an element of S, g (M, p),
Op' (@)(v1......vp) = h"Z ©, 0 Op;(@)(O-1v1.....0,-1v) (B.16)
with & = ¢~ 1. Explicitly, we get from (B.14)

op'(a)(vy, ..., Vp)

1 ix X p . (B]7)
= (27T)P /e ¢+ +§p)a(X, ?,El,'-.,gp>j1:[l v.i(gj)dgl"'dé;'p.

Remark that if a(y, x, £) is independent of x, then Op’ (@) is independent of ¢, and if
p = 1, 0p’(a) is just the usual pseudo-differential operator of symbol a(y, §). In this
case, we shall just write Op(a) for Op’(a).
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B.2 Symbolic calculus

We prove first a proposition generalizing [20, Proposition 1.5].

Proposition B.2.1. Letn',n”" beinN*, n =n’ +n” — 1. Let M'(x,&1,....&y) and

M"(x, &, ....En) be two order functions on R x R" and R x R"", respectively. In
particular, they satisfy (B.9) and we shall denote by N an integer such that
M'(x Epo... ) < Clx —xXYWNOM"(x,En.....En). (B.18)

Let (k,B) e Nx[0,1], a in Scg(M',n'), b in S, g(M",n"). Assume either that
(x,B) = (0,0) or 0 < Bk < 1 or that symbol b is independent of x. Define

M(x. &1, ) = M'(x 6 b o+ EDMT (X 6 6. (BL19)
Then there is v in N, that depends only on N{ in (B.18), and symbols
c1 € Se.g(MMg*,n),ci € S, s(MMy“,n) (B.20)
such that one may write

Opp(@)[v1, ..., vp—1,0p, (D) (Vpr, . . ., Vy)] = Opp(c)[v1, - .., Unl, (B.21)
where

c(y,x,&1,....8) =a(y, x, &1, w1 En + -+ &)
Xb(y, X, Ens ... 6n) (B.22)
+hcl(y,X,E1,...,En) +c’1(y,x,$1,...,§n).

Moreover, if b is independent of y, ¢/ in (B.22) vanishes and if b is independent of x,
then ¢y vanishes. In addition, if a is in S, ﬂ(M’, n')orbisinS, ﬁ(M”,n”), then ¢
and cy are in SI; ﬂ(MM‘”‘, n).

Let us prove first a lemma:
Lemma B.2.2. Let & = (&1,....6pw—1) and &' = (&nr, ..., &n), € = (§',&"). Then
Mo(&" Ew + -+ 1) < CMo(§), Mo(E") = CMo(£). (B.23)
Moreover, if ¢ is a real number and |{|/ Mo (§) is small enough,
max(Mo(§', & + -+ + & — ), Mo(£")) = cMo(£) (B.24)

for some ¢ > 0.

Proof. Estimate (B.23) follows from the fact that My(&y,...,&,) is equivalent to
1+ maxa(|&1], .- -, &)

To prove estimate (B.24), we may assume that |§,| > |§,—1| > --- > |§,| and
|E1] = |&2] = -+ = |E/—1]- Moreover, if n = 1/, then (B.24) is trivial, so that we may
assume n’ < n.
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Case 1. Assume |§,| > |&1]. If |&,] ~ |En—1], then both My (§”) and My (§) are of the
magnitude of (£,—1), so (B.24) is trivial.
Let us assume that |§,—1| < |&x].

o Ifin addition |&,| ~ |&;], then My(£) ~ (£,) ~ (&) and
<Sn’ +"'+$n _é‘) ~ <$n>,

so that
Mo(&" & + -+ & = 0) ~ Mo(E, &) ~ (&) ~ (€1)
and (B.24) holds.

o If [&1] < [§xl, then Mo(§) ~ max((€1), (§4—1)) and Mo(§") ~ (§4—1), so that
Mo(E & + -+ &y — 0) ~ Mo(£',&,) ~ (£1) and (B.24) holds again.

Case 2. Assume |&1| > |&,|. Then My(§) ~ max((£2), (€,)).

o If[§,] > [&2] and [x| ~ [§n—1], then Mp(§”) ~ (&x), so that (B.24) holds.

o If|&,] = |&2] and |&,| > |Ex—1], then we have [§,/ + -+ + &, — §| ~ [&4], so that
Mo(& & + -+ & — &) ~ (E,) and (B.24) holds.

o If|&] > |&,|, then Mo (€', & + -+ + &, — &) ~ (&2), so that (B.24) holds as well.
This concludes the proof. ]

Proof of Proposition B.2.1. Going back to the definition (B.14) of quantization, we
may write the composition (B.21) as the right-hand side of this expression, with
a symbol ¢ given by the oscillatory integral

c(y,x.§) = %/e_”@a<y,x,s’,s,,/ Fo £ —0)

(B.25)
xb(y —z,x—hz,§")dzd¢.
We decompose
a(y, x, & Ew 4+ En—0) = a(y,x,éi, En + o0+ &) (B.26)
—Ca(y. x. & &+ + 6.0
with i 19 3
x££ 0) =/0 (a_g)(y,x,g/,g—xﬁ) dx. (B.27)

It follows from (B.23) that
Mo(E" Ew + -+ + En — A0) < C(Mo(§) + (0)). (B.28)
Using (B.12) and the definition of order functions, we get that a satisfies
9209207 (hd)*a (v, x. &' Ew + - + 0. 0)]
< C(Mo(§) + () HH e () Nop/(x & £ o+ £1) (o)

1
x / (L4 B Mo(E & + - + &0 — 20) ™ di
0
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for any o, «p, ¥, k, N. If one takes at least one 0y, -derivative, the same estimate holds,
with an extra factor

(1+ (Mo(&) + )™y (B.30)

using (B.13) and (B.28). If we plug (B.26) in (B.25), we get the first term on the right-
hand side of (B.22) and, by integration by parts, the following two contributions:

j . db
_L /e_lzgd(y,x,é’,gn/ +-+E.0—(p —z,x—hz,§")dzd¢, (B.31)
2 dy

| h : ob

2 e Ay X, E w4+ En O)— (v —z.x —hz,E")dzdE.  (B.32)
2w ax

Let us show that (B.31) (resp. (B.32)) provides the contribution ¢} (resp. ficy) in
equation (B.22).

Study of (B.31). If we insert under integral (B.31) a cut-off (1 — xo)(¢) for some Cg®
function y¢ equal to one close to zero and make N integrations by parts in z, we gain
afactor =1 up to making act on %(y —z,x—hz,&") at most Ny d,-derivatives. By
(B.12) and (B.13), each of these d,-derivatives makes lose (h Mgy (£”)%) if it falls on
the x argument of a—ly’, and does not make lose anything if it falls on the y argument.
Consequently, if 8 = x = 0, or if b is independent of x, we get no loss, while if
kB > 0, we get a loss that may be compensated since, in this case, we get by (B.12)
and (B.13) a factor (h? My(£”))™" in the estimates, with an arbitrary N. Since we
assume Bi < 1, (WP Mo(€"))™N (WMo (E")<)N1 = O((hP Mo(£"))~N/?) if N is large
enough relatively to Np. In other words, up to changing the definition of b, we may
insert under (B.31) an extra factor decaying like (¢) ™™ as well as its derivatives, for
a given Nj.
We perform next N, integrations by parts using the operator

(2((¢) + Mo (&)™) > (1 = ((¢) + Mo(§)*zDy). (B.33)

By estimates (B.28) and (B.29), each of these integrations by parts makes gain a factor
(z({&) + My(£))™*)~L. Using (B.29), (B.13), the definition (B.19) of M and (B.18),
we bound the modulus of (B.31) by

CM(x, £) [ (&) NN (2 ((2) + Mo(8) ™) ((£) + Mo(€))*
x (hz) N6 (1 + Mo(&) |y —z) "

1
x / (L4 B Mo(E b + - + £ — 20) ™ di
0
x (1 + BhP Mo(g") ™™ dz d¢

(B.34)

for arbitrary Ny, N, N and given Ny, Ng (coming from (B.9) and (B.18)), the factor
in (1 + Mo(&)™|y — z|)™" coming from the last factor in (B.13) of %. If Ny — No
is large enough, and if we integrate for |¢| > ¢ Mo(£), then the factor (¢)~N+No
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provides a decay in Mo(£)™ for any given N’. On the other hand, if we integrate
for |¢| < cMy(§), we may use (B.24) that shows that the product of the last two
factors in (B.34) is smaller than C(1 + Bh®P My(£))™". We thus get a bound in

CM(x,§)(1 + ph? Mo(€)) ™™
_ _\—N
X/(E) MIANOEN(2((8) + Mo() ™) 2 ((8) + Mo(§))*
X (hz)N3 (1 + Mo(§) ™|y — z|) " dz d
-N 1 _ -N
< CM(x, §)(1 + BhP Mo(§)) ™" Mo(§) PN (1 + Mo(§)™*1y)
if Ny > Ny > N + Ny + N§. We thus get an estimate of the form (B.13), with
oo = 0, o = 0, and the order function M replaced by M (x, §) My (E)"(2+N6/).
If we make the same computation after taking a d%° and a %-derivative of (B.31),
we replace, according to estimate (B.29), the factor (Mo(§) + (¢))* in (B.34) by

(Mo (§) + (¢))<(FeotlaD g6 that we obtain again a bound of the form (B.13), with
still M replaced by M (x, &) Mo(§)"* withv =2 4+ N{'.

(B.35)

Study of (B.32). The difference with the preceding case is that the d,-derivative act-
ing on b makes lose an extra factor My(§)*, and that we do not have in (B.34) the
factor in (1 + Mo(£)™ |y — z|)~V . Instead of (B.35), we thus get a bound in

CM(x, €)My (§)" (1 + BhP Mo(£)) ™"

for some v depending only on N{. On the other hand, if one takes a dy,-derivative
of (B.32), either it falls on b, which reduces one to an expression of the form (B.31),
or on 4, so that one gains a factor (B.30) in the estimates. In both cases, it shows that
a bound of form (B.13) holds. One studies in the same way the derivatives, and shows
that (B.32) provides the /¢ contribution in (B.22).

If b does not depend on y, then (B.31) vanishes identically so that there is no c}
contribution in (B.33). If it is independent of x, the term /¢; given by (B.32) vanishes.

Finally, if one assumes that b is in S;’ (M",n"), then estimates of the form
(B.35), i.e. with the factor (1 + My(£)™|y — z|)~¥, hold also for the study of term
(B.32), so that we get that ¢y in (B.22) is also in S;,ﬂ (MM ,n). In the same way,
if a is in S/;,ﬁ (M’,n’), one gets in (B.29) an extra factor of the form (B.30) on the
right-hand side, so that (B.32) is again in S|, B (M, n). This concludes the proof. m

Let us write a special case of Proposition B.2.1.

Corollary B.2.3. Let p(§) = (§) and let b(y,&1,...,E,) be a function satisfying
estimates

|0gb(».8)| < C H(gi)_lMo(“?)H'“‘,
/= (B.36)

n

195092 (v.£)] < O [ (&) Mo®)" 1 (y)™

Jj=1
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forallay € N*, « € N", N € N. Then

Op;, (P(§)[Ops (b)) (V1. ..., v4)]
= Opy, (P(f)b(% f))(vl, oo Un) + Opp(c) (1, ..., vp),

P
where ¢y satisfies

(B.37)

n

138002¢) (v, )] = Cw [T (&) Mo®'+12! (y)~¥ (B.38)

j=1
oralla’,a,N.
f 0

Proof. We may not directly apply the proposition, as the order function it would
provide on the right-hand side of (B.38) would not be the right one. Though, we may
apply its proof that shows that the composed operator (B.37) is given by (B.31) with
a given by (B.27), i.e.

o 3b
‘zl_/ /e—ﬂfp’(sl b b= A  (y — 2,61, En) dz dE dA. (B39)
T Jo ay

Performing integrations by parts in z, {, we may bound the modulus of (B.39) by
n
c [@ @ -2V dzds []ie) ™ Mo(©
j=1

which gives (B.38) performing the same computations for the derivatives. |
We shall use also the following corollary.

Corollary B.2.4. Let b be a symbolin Sy g(M, n) for some order function M, some n
in N*, with («, B) satisfying the assumptions of Proposition B.2.1. Assume more-
over that b(y,x,&1,...,&,) is supported inside |&1| + -+ + |En—1]| < C{&,). There
is v > 0 such that for any s > 0, one may write

(hD)*Opy, (b (£4)™*) = Opy(c) (B.40)

with a symbol ¢ in S, g(MMy ,n). The result holds also if b (and then c) satisfy
(B.13) with the last exponent N replaced by 2, i.e. if b is in S/i,ﬂ (M, n), then c lies
in S’iB(MM”,n).

Proof. We apply Proposition B.2.1 with a(§) = (§)° € S, g((§)°, 1) (for any (k, B))
and for second symbol b(y, x,&1,...,&,)(E,) 7. Notice that, because of the support
assumption on b, this symbol belongs to the class Sy g(M(x, 5)(2;’=1(§j))_s,n).
Then by (B.20), ¢ in (B.40) belongs to S, g(M (x,§)My*, n), where v depends only
on the exponent N in (B.18), which is independent of s, and where M is given,
according to (B.19), by

G 6 ) = (61 o+ anM(x,s)(Z(s,))_ < CM(x.6).

j=1
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The conclusion follows, as the last statement of the corollary comes from the fact that
when taking a d,,-derivative of ¢ given by (B.25), it falls on the b factoras a(§) = (£)°
and makes appear a gain (1 + Mo (§)™*|y — z|)~2 if we assume that (B.13) holds
with last exponent equal to 2. |

Let us state a result on the adjoint. Since we shall need it only for linear operators,
we limit ourselves to that case.

Proposition B.2.5. Let M(x, &) be an order function on R x R and let a be an ele-
ment of So,0(M, 1). Define

a*(y,x,§) = %/e_izfd(y —z,x—hz,§—-0)dzdc. (B.41)

Then a* belongs to So,0(M, 1) and (Opy(a))* = Opy(a*).

Proof. By a direct computation (Opy,(a))* is given by Op,(a*) if a* is defined by
(B.41). Making 9, and 0; integrations by parts, one checks that a* belongs to the
wanted class. |

Remark. It follows from (B.25), (B.31), (B.32), that if @, b in the statement of Propo-
sition B.2.1 satisfy

a(=y,—x,~&1, ... —E) = (D" a(y, x, &1, ... &),

- (B.42)
b(=y,—x,=§1..... &) = (=1)" T b(y.x. 61, ... &),

then symbol ¢ in (B.22) satisfies

c(=y,=x,—E1 ..o, —En) = (=)' Ta(y, x. E1, ... En) (B.43)
and a similar statement for ¢y, ¢]. One has an analogous property for a*.

To conclude this appendix, let us translate Propositions B.2.1 and B.2.5 in the
framework of the non-semiclassical quantization introduced in (B.16) and (B.17).
Corollary B.2.6. The following statements hold.

(1) Letn’,n" beinN*,n=n"4+n"—1, M', M" two order functions on R x R"
and R xR™" | respectively. Let (k, B) be in N x [0, 1], a in Seg(M',n'), bin
Se,p(M" . n"). Assume that either (k, B) = (0,0) or 0 < kf < 1 or that b is
independent of x. Then if M is defined in (B.19), there are v in N, symbols
crin Seg(MMJ*, n), | in S;,ﬂ(MM"",n) such that if

X 1 B) = (0% 1 B B e )
Xb(yvxvén’w”agn)

+l_1C1(y,X,§'1,---,En)
—|—Ci(y,x,§1,---’§n)y

(B.44)
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then for any functions vy, ..., Up,
Oop’ (a)[v1, ..., Vn—1,Op" (B)(Vnr, ..., vn)] = OP'(C)[V1s. .., Vs]. (B.45)

Moreover, if b is independent of x, then cy vanishes in (B.44). Finally, if a is
inS, ﬂ(M’,n’) orbisin S;ﬂ(M”,n”), then c is in S;ﬂ(MM"",n).

(ii) In the same way, if a is in S o(M, 1), then Op’ (a)* = Op’ (a*), for a symbol
a* in the same class. Moreover, if a satisfies (B.42), so does a*.

Proof. Statement (i) is just the translation of Proposition B.2.1. Statement (ii) follows
from Proposition B.2.5. ]

We get also translating Corollary B.2.3:

Corollary B.2.7. Under the assumptions and notation of Corollary B.2.3, one has

Op(p(§))Op(b)(v1, ..., vn)
=O0p(p(&1 + -+ + &)b)(v1, ..., vn) + Op(c)) (v, ..., Vp)

with ¢} in the class 5{,0(]_[721 (£, Mo (&), n) of Definition 3.1.1.
We shall use also:

Corollary B.2.8. Letn > 2. Let M (&1, ... ,&,) be an order function on R" (indepen-
dent of x) and let a(y, &1, ...,&) be a symbol in S, o(M,n), independent of x, for
some k in N. Let Z be a function in § (R). Denote

M. Eam) = M(Er, ... £0—1.0).

There is a symbol a’ in S,’(’O(M ,n — 1), independent of x, such that for any test func-
tions vi,...,Vn—1,

Op(a)[vy,...,vu—1,Z] = Op(a')[v1, ..., Vp—1]. (B.46)
Moreover; if Z is odd and a(—y, —£1,...,—&,) = (=1)""la(y.&1,...,&), then
d'(=y, =1, =) = (D)"2a(y, &1, Eam).
Proof. By (B.17), we have that (B.46) holds if we define

1 . A
O ) = 5 [ Pa0 G b 62 A (B4T)

Ifa' = (a1,...,0p—1) € N*land & = (&1, ...,&,—1), we deduce from (B.12) with
B = 0 that

0%d' (y.61.....E))| = C / ME E)Mo(E 6| Z E)| dEn.
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Using (B.9) both for M and My, we obtain a bound in M (§') Mo(£')1%'. To check
that actually our symbol a’ is in S,’(’O(]\;[ ,n — 1), i.e. that it is rapidly decaying in
(1 + Mo(E)™|y)™N, we just make in (B.47) 3, -integrations by parts, and perform
the same estimate. One bounds d,-derivatives in the same way. Finally, the last state-
ment of the corollary follows from (B.47) and the oddness of Z. ]



Appendix C

Bounds for forced linear Klein—-Gordon equations

The goal of this appendix is to obtain some Sobolev or L estimates of solutions
of half-Klein—-Gordon equations with zero initial data and force term that is time
oscillating. The kind of equations we want to study is of the form

_ LAt —
(Di — /1 + D2)U =M1 ' M(x), €D

U|t=l - 07

where M is in S(R), 1,1 = £ and A is a real number different from one. This

2

restriction means that the rigfl?—t}fand side of the equation oscillates at a frequency
which is non-characteristic when one restricts the symbol /1 + £2 of the opera-
tor on the left-hand side to frequency zero. Our goal is to prove estimates for U
or LyU=(x+ t(g—i))U for large times. Actually, we shall split the solution as
U =U"+U", where U’ is obtained writing the Duhamel formula to express U
and restricting the time integral to times that are O(+/7). It turns out that, when
time ¢ stays smaller than e™%°, L, U’(¢,-) has L? estimates that are o(t%), which
is acceptable for our applications. On the other hand L, U” would not enjoy such
bounds, but it has good estimates in L°°-like spaces.

Equation (C.1) is actually just a simplified model of the problem we study in
this Appendix. For the applications to our main problem, i.e. the description of some
approximate solutions (see Section 2.5 of Chapter 2), we need more general right-
hand sides than in (C.1). Though, the method of proof of our estimates is quite the
same as for the model above. It relies on the explicit writing of the solution using
Duhamel formula and the stationary phase formula.

We shall close this appendix with explicit computations that are used in the main
part of this text to check Fermi’s golden rule.

C.1 Linear solutions to half-Klein—-Gordon equations

We consider a function (¢, x) — M(t, x) thatis C ! in time, with values in S (R). If A
isin R, A # 1, we denote by U(t, x) the solution to

(D; — p(Dx)U = e M(1, x),

(C2)
U|t=1 = 07

where p(Dy) = /1 + D2, and where we study the solution for ¢ in an interval
[1, T]. We write the solution by Duhamel formula as

t
Ut,x) =i / e t—OPDI)+iAT pre g, (C.3)
1
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We fix some function y in C*°(R), equal to one close to |—oo, %], supported in
]—o0, %] Then for ¢ larger than some constant (say ¢ > 16), we may write (C.3) as
U =U'+ U" where

U/(l X) _; Fo0 ei(l—f)p(Dx)‘H'/lr (L M( )d
y = : X \/; T, T

t
U’(t, x =if el t—Dp(Dx)+idr S \m 7,-)dr.
=i (1 =n(Z)M@)

Our goal is to obtain Sobolev and L estimates for U’, U” and for the result of the
action on U’, U” of the operator

(C4)

/ DX
Li=x%1p(Dy)=x 12, (C.5)
(Dx)

under two sets of assumptions on M, that we describe now. We shall take ¢ in |0, 1]
and for ¢t > 1, we recall that we defined in (4.1)

te = e 2(te?) = (74 +12)2. (C.6)
For w in [1, +o0[, 8’ € ]0, %[, close to % we introduce the following:

Assumption (H1),,. For any o, N in N, any ¢ in [1, T'], x in R, € in ]0, 1], one has
bounds

|09 M (2, x)| < Cont;®(x)™N

)
_3
2

il , (C.7)
1020, M(t.x)] < Cants “ 720652 + 172 (2027 (x) V.

The second type of assumption we shall make on M is more technical. If A > 1,
we denote by £§&, the two roots of /1 + £2 = A (with &, > 0) and set W, for a small
open neighborhood of the set {§;, —&, }. We introduce:

Assumption (H2). For any «, N, the x-Fourier transform of M (¢, x) satisfies bounds

02D (1,6)] < Cant 2171 (6)7V, s
A _; _ _ N
19,02 M (1, )] < Cat =312 (E) 7.

Moreover, for £ in ‘W), one may decompose
DM(1.§) = (Dr + A — V1 +E)D(.E) + V(1.5). (C.9)
where ®, W satisfy the following bounds:

1 _
|®(t,8)| < Ct™ 21!,
[W(r, &) < Ct et

&

(C.10)

and a similar decomposition holds for x M instead of M. Of course, conditions (C.9)
and (C.10) are void if A < 1.
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For future reference let us state some elementary inequalities that hold if 8’ < 3

2
is close enough to L2/t <landow > 1:
N 3 ,
/1 T£w+2( 24 2(82\/—)2 )drfCez“’(szﬁ—i—ew_l) cin
< Ce*,
! _ 4l _3
/ Te w+2(r8 2+ 2?02 de
Jt
821 ’
< C£2‘"(<8 7] +e29 (22t ") (C.12)
t 2
< len(szw 1(<82t)) ,82“’),
£
ﬁ a
/ 0 dr < Cet3t8 | g > 1, (C.13)
1

J 2\ 21\? 1
/ r_“ts_ldthez"(sT) §C8( ¢ ) , —=<a<l1, (Cl14
Vi (&2t) (e21) 2

[t PR OO I N LW P

NG
2 3 2 3p/
2w—1 &t 2 ie/ &“t 40
=c (((8%) te ((32[)) (C.15)
1
20-1f €1 \?
=ce ((821)) ’
L1 &2t
/ﬁrzrg drfC«/?—<82t). (C.16)

Let us state two propositions giving the bounds we shall get for U’, U” under either
Assumption (H1),, or Assumption (H2). We denote below

[vllwe.co = [{Dx)?v||Loo (C.17)

for any p > 0.

Proposition C.1.1. The following statements hold.

(i) Assume that (H1),, holds for some w > 1. Then for anyr > 0, thereis C, > 0
such that U’ given by (C.4) satisfies for any ¢ €10, 1], t € [1,&7%],

U ar < Cre(e@ D (e2V0)3), (C.18)
|U'(t,)|lwree < Cre®®, (C.19)
1Ly Ut ) e < Crt# (@D (2 V). (C.20)



Bounds for forced linear Klein—-Gordon equations 180

(i) Under Assumption (H2), there is, for any r > 1, a constant C, > 0 such that
U’ satisfies for any € € 10,1], t € [1,74],

U’ (2. ) lr < Cre(e24/1)2, (€21
U’ (2. )lwroo < Cre®t™ 3, (C.22)
IL+U'(t, ) |mr < Crtd (3 (21 %). (C.23)

Let us state now the bounds we shall prove for U”.

Proposition C.1.2. The following statements hold.
(i) Under Assumption (H1),, with o > 1, one has for any r > 0, the following

bounds:
2 1
1 20—-1( €1 \2
10"l = G2 (155)" (C.24)
IU" (&, )wree < Cre®log(1 + 1), (C.25)
|LLU"(t,)||wroo < Crlog(l + 1) log(l + €21) ifo=1 (C26)
2
ILLU"(t,)|lwroo < Cre? @™V log(1 + z)(le)) ifo>1. (C27)
&
(i1) Under Assumption (H2), one has for any r > 0, the following bounds:
&2t \3
"
10" () ar scre((gzt)) , (C.28)
IU" (. )|wroe < Cre®(log(l +1))?, (C29)
ILLU"(t,)|lwree < Crlog(l + 1) log(1 + &21). (C.30)

Remark. Notice that we obtain Sobolev estimates for L U’ (¢, -) in (C.20), (C.23),
while we bound L U"(¢,-) in W™ gpaces in (C.26), (C.27), (C.30). Actually, we
could not obtain for the L U” contribution to L4+ U as good Sobolev estimates as
those that hold for L U’, and this is the reason for our splitting U = U’ + U".

Study of the U’ contribution. We shall prove Proposition C.1.1. By (C.4) and (C.5)
: +o00 . .
U't,x) = — / / el (= 1+52+“+XE]X(L)M(T, £)dedr  (C31)
2 )1 NG

and

; +o00 .
L U'(t,x) = i/l /e’((t_r) v 1+52+M+x$))((%)
(C.32)

x <‘L’é—)M(‘C, £) + xM(x, g)) dEdx.

We shall estimate first the above integrals when either A < 1, so that the coefficient of
7 in the phase A — /1 + &2 never vanishes, or when A > 1 but M (z, §) is supported
outside a neighborhood of the two roots +£, of that expression.
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Lemma C.1.3. Assume that either A < 1 or A > 1 and there is a neighborhood ‘W),
of {—Ex, £} such that M (-, €) vanishes for £ in 'Wy. Assume alsot < ¢4,

(i) Under Assumption (H1),, estimates (C.18)—(C.20) hold true.
(i) Under Assumption (H2), estimates (C.21)—(C.23) hold true.

Proof. LAet us prove first the Sobolev bounds (C.18), (C.20), (C.21) and (C.23). By
(C.31), U’(t, &) may be written as

+oo
ot V/1+82 /1 ol A—/1+82 fx(%)N(t’ £)dr, (C.33)

where N(z, £) satisfies for any N, any «, according to (C.7) and (C.8),
. — VA _3 INT
028/ N(2.6)] < Cavte " 2 (w2 + v 3(E2VD)2Y) ()N, j=0.1, (C34)
under Assumption (H1),, and
9% N(z,£)] < Cant 2, e 5 (8)N, j=0,1, (C.35)

under Assumption (H2). In the same way, by (C.32), l:_? '(z, €) may be written under
the form (C.33), where N satisfies, according to (C.7) and (C.8),

080 N(r.6)| < Cant'/r72(6) N, j=0.1, (C.36)
under Assumption (H1),, and
1020/ N(z, £)] < Cont2 5271 E)™N, j=0,1, (C.37)

under Assumption (H2).

Since N(z, §) is supported outside a neighborhood of the zeros of /1 + §2 — A,
we may perform in integral (C.33) one d.-integration by parts. Taking moreover an
L?((£)"d &) norm, we obtain quantities bounded in the following way:

o If N satisfies (C.34), we obtain a control of (C.33) in terms of C £2¢ and of (C.11).

This gives an £2® estimate, better than the right-hand side (C.18).

o If N satisfies (C.35), we obtain an upper bound by the right-hand side of (C.13),

which is better than (C.21).

o If N satisfies (C.36), the L2({£)"d &) norm of (C.33) is bounded by (C.13) with

a = 0, so by (C.20).

e If N satisfies (C.37), that same norm is bounded by (C.13), thus by the right-hand

side of (C.23).

We have thus proved Lemma C.1.3 for Sobolev estimates. It remains to establish
(C.19) and (C.22). Since M is rapidly decaying in £, it is sufficient to estimate the
L% norm of U’. Notice that the d é-integral in (C.31) may be written as

/eit((l—f)m+f€)]\2(r,§) dt (C.38)
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and that on the support of y(t/+/1), |t/t| < 1, so that the stationary phase for-
mula implies that (C 38) is smaller in modulus than C ¢~ 3 T, %1 NG under conditions
(CTand Ct™ 3773 7, 1]1t <Ji under condition (C.8). Integratlng in 7, we get bounds
in O(£2?) and O(g%t~ 4) respectively, as in (C.19) and (C.22). This concludes the
proof. |

Lemma C.1.3 provides Proposition C.1.1 when either A <1 or A > 1 and M in
(C.31) and (C.32) is cut-off outside a neighborhood of /1 + £2 = A. We have thus
to study now the case when A > 1 and M is supported in a small neighborhood of
one of the roots +§&, of that equation. More precisely, we have to study, in order to
estimate the contribution to U’, the expressions

0:1:(1’)() _ /1+00 / eit((l—f)«/1+§2+)t§+),‘§')X<%>Ni(f’ g)drde, (C.39)

where Ny is supported close to ££, and satisfies (C.34) or (C.35), and, in order
to estimate the contribution to L4 U’, an expression of the form (C.39) with N1
satisfying (C.36) or (C.37). We shall show actually the more precise result:

Proposition C.1.4. For any o in N, we have the following bounds:

0904 (1, x)| < Ca® (172 (Ax £ 183)) ! (C.40)

if N1 satisfies (C.34),
940 (1. 0] < Cae®™ (178 x £ 1£,))7 (C41)

if N1 satisfies (C.35),
02T (¢, x)| < Cae®t2 (™2 (Ax % 1£,)) " (C.42)

if N1 satisfies (C.36), and
19204 (1, x)| < Cae4 (17§ (Ax £ 18,)) ™! (C43)
if N1 satisfies (C.37).

It follows immediately from (C.40) (resp. (C.41)) that (C.18) and (C.19) (resp.
(C.21) and (C.22)) hold true. In the same way, computing the L2 norms of (C.42)
(resp. (C.43)) we obtain upper bounds by (C.20) (resp. (C.23)). Consequently, Propo-
sition C.1.1 will be proved if we establish Proposition C.1.4.

Lemma C.1.5. One may write the derivatives of U | given by (C.39) under the form
IUL(t,x) = / eVEELID L (1,1, 24) Ny (Tt ze)dT + RE,  (C44)
1

where ¥+ is supported for T < /t and for |z+| < ¢, and where

Zy = )I—C:l: % Fr=0(1), 0fx=00"2), (C45)
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where V4 (t,t, z4) satisfies
0:Ya (1, 20)| ~ |z2], 292 =0 (C.46)
on the support of the integrand, if t is large enough, and where Jy satisfies the bounds

[Ja(T.1.22)] < Cat 21,7,
1 —Ll)-‘rl -3 1 -1 3. 9 39/ (C47)
10cJa(T,0,24)| < Cat ™27, (w2 +17 1, 2 + 17 2(e%V/7)27)

if N1 satisfies (C.34), and

| Jo(z, 1, z+)] < Cat_%rg_lr_%, (©48)
0:Ja (1,1, 22)] < Ct 27, 74 '

if N satisfies (C.35).
In the same way, 0% U . is given by an integral of the form (C.44) with Jo satisfy-
ing
[Ja(t.1.22)] < Cat 21,1,

. (C.49)
|0: o (T, 1, 24)| < Cot ™27, ¢
if Ny satisfies (C.36), and
1 1
Jo(T.1,24)] < Cut ™27 122,
| a( :I:)l o 1 £ 1 (C.50)
[0:Jq(T,t,24)| < C(xt_frs_l'cZ
if N1 satisfies (C.37). Finally, the remainder Rgf in (C.44) satisfies
RE| < Cune®t™ Ax £1£)™N  under (H1),,
| al— a,N ( Ex) ( ® (C.51)

|RE| < Cune®t™ (Ax £15)Y  under (H2),
forany N in N.

Proof. For t bounded, estimates of the form (C.51) follow from (C.34), (C.36) and
Og-integration by parts. Assume ¢t >> 1. We treat the case of sign + and set z for z
in (C.45). We consider the d £ integral in (C.39), expressed in terms of z instead of x.
The oscillatory phase may be written as t¢ (z, 7, z, £) with

d¢ . 3 iy Tt &
PR (\/T_EZ—T)—;\/T_SZJFZ. (C.52)

Since we assume ¢ > 1, % < % < 11in (C.52).If |z| > ¢ > 0, under this condition
on ¢, and for |£ — &;| < 1, we see from (C.52) that |g—?(r, t,z,§)| ~ |z|, so that,
performing d¢-integration by parts, we get again estimates of the form (C.51).

We may thus assume from now on that ¢ > 1, |z| < 1. Forz = 0, % =0, (C.52)
vanishes at § = &, and since the d¢-derivative at this point is A7 # 0, we have for
t > 1, |z] < 1, a unique critical point £(¢, 7, z) close to &,. Moreover, it follows
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from (C.52) that

Eien=o(d). Zern=o(L). (€53)

t

We rewrite the phase ¢ as

BTz 8 = $ D)+ AT E—EC T (59
where the critical value ¢€(t, t, z) satisfies
0:¢¢(t, 7. 2)| = 0G™"),  [97¢°(, 7. 2)| = O 7?) (C.55)

and where A is strictly positive for 7 < 1, |z| < 1, |§ — &3] < 1 and satisfies for
any y,
0.0 A(t,7,2,6)| = O¢ ). (C.56)

We introduce the change of variables { = A(¢,7,2,8)(§ —£(¢, 1, 2)) for & close to &),
and its inverse § = E (¢, 7, z, {). By (C.53) and (C.56), we have

9
ot

a]"f‘lE )
3675 = 0 (C.57)

=01,

for any y. Then the expression of 92U | may be written from (C.39)

- Too T
agu;(r,x)zfl cit® (”f@x(ﬁ)Ju(z,z,z)dr, (C.58)
where
Jo(t,7.2) = /e”‘zzzva(z,z,z,g)dg, (C.59)

where N is supported close to ¢ = 0 and satisfies when © < 4/, by (C.57), the
following estimates for any y in N:

|3yNa(t,T,Z,Z;)| <Cr;°,

|0; 81' No(t,7,2,0)| <Crt, w+2( -3 +1 2(82f)2 + re_%t_l) (©e
if N1 in (C.39) satisfies (C.34),
|8y w(t,7,2,0)| <Ct™ 2t |0; 8” No(t,7,2,0)| < Ct™ 41 ! (C.61)
if N4 satisfies (C.35),
0] No(t,7,2,0)| < Ctr,®,  |0:9] No(t,7,2,0)| < Cr.® (C.62)

if N4 satisfies (C.36), and

|0} No(t.7.2.0)| < Cr2r] !, |aragﬁa(t,z,z,§)| < Crig)! (C.63)
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if Ny satisfies (C.37). If we apply the stationary phase formula to equation (C.59),
we gain a factor t_%, which, according to (C.60)—(C.63) provides bounds of the
form (C.47)—(C.50). To get expressions of the form (C.44), we still have to replace
the phase 1¢¢ of (C.58) by . By the Taylor-Lagrange formula relatively to t
and (C.55),

2

¢°(t,7,2) = ¢°(1,0,2) + 1(3:6°)(1,0,2) + 0(:—2).

Moreover, by the definition of the phase ¢ of (C.39),

1
(3:9°)(1.0,2) = ;(A —V1+E(,0,2)
and by (C.52), the critical point £(z, 0, z) satisfies
§0.02) _ & _ &

(£@0.2)) 2 T (&)

so that
VI4+E(1,0,2)2=1—-A%6z24 0(z%), z—0.

We thus get

P°(1.7.2) = $°(.0,2) + ~ (A28 + O(D) +7(1.7.2),

t
2 . (C.64)
r(t,t,z) = O(I—z), 0.r(t,t,z) = O(t_z)

We define

Vit 1,2) =1(¢°(t, 7. 2) — (1,7, 2)),

- TN (C.65)
£.1.2) = - ettr(t,r,z).

Tt e = x(—)

Plugging (C.64) in (C.58), we deduce from (C.65) that for |z| < 1, the properties of

X+, ¥4+ in (C.45), (C.46) do hold. This concludes the proof of the lemma. ]

Proof of Proposition C.1.4. Since R&t in (C.44) satisfy better estimates than those we
want, by (C.51), we just consider the integral in the expansion of 0% U i

Under condition (C.34), J, satisfies (C.47). It follows from (C.13) that the mod-
ulus of the integral in (C.44) is O(g2?). On the other hand, if we multiply (C.44)
by z4, use (C.46), integrate by parts in 7 in (C.44) and use (C.45), we deduce from
(C.11) and (C.13) a bound in =329 for the resulting expression. Together with the
definition (C.45) of z, this brings (C.40).

To prove (C.41), we proceed in the same way. Under estimates (C 35), (C.48)
holds for Jy. By (C.13), this provides for (C.44) an estimate in €2t~% . On the other
hand, if we multiply equatlon (C 44) by z+ and integrate by parts, we get using (C.48)
and (C.13) an estimate in £2¢~ 8 . Together with the first one, this implies (C.41).

One obtains (C.42) (resp. (C.43)) in the same way from (C.49) (resp. (C.50))
and (C.13). ]
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Study of the U” contribution. According to (C.4) and (C.5) we have
.t
U"(t,x) = — / / ol =DV 1+E+27+x8) (] _ X)(L)M(z, £)dtdr (C.66)
27 J oo Jt

and

. t
L+UN(I,X) — 21_/ /ei((t—r)\/1+$2+kr+xf)(1 _ X)(%)
T J-co

£ _
x (TEM(f, £) + xM(x, g)) dedr.

We treat first the case when A < 1 or A > 1and M is supported for £ outside a neigh-
borhood of +§,.

(C.67)

Lemma C.1.6. Assume A <1 or A > 1 and M supported outside a neighborhood

of {=§x. 61}
(i) Under Assumption (H1),,, estimates (C.24)—(C.27) hold true.

(i) Under Assumption (H2), estimates (C.28)—(C.30) hold true.
Proof. We write U” (¢, £) as

| eI (Ve an IR e

with N satisfying condition (C.34) under Assumption (H1),, and condition (C.35)
under Assumption (H2). In the same way, L1 U" is given by (C.68) with N satisfying
(C.36) when Assumption (H1),, holds and (C.37) under Assumption (H2).

We perform one d--integration by parts in (C.68) and compute the L({£)”) norm.
When N satisfies (C.34), we obtain from (C.12) (and from (C.13) if d, falls on
(1 = x)(t/+/1)) a bound of the form (C.24). If instead of computing the L2({£)"d§)
norm, we estimate the L' ({£)"d€) one, we get (C.25) from (C.12) and (C.13).

Under condition (C.35) we get an estimate of the L?({£)”d &) norm of (C.68) by

t
C / rs_lr_% dt+ Ce2t™?
Jt
which is smaller than the right-hand side of (C.28) by (C.14).
We are left with proving (C.26), (C.27), (C.29) and (C.30). Integrating by parts
in 7 in (C.66) and (C.67), we have thus to bound the integrals

/ MO N £) dE, (C.69)
t

i ((t—7) /T EZ+ AT +xE) _
/_ ) / (=Y b (N5 x)(ﬁ)>dédr, (C.70)

where N satisfies (C.35) (to get (C.29)) or (C.36) (to obtain (C.26)—(C.27)) or (C.37)
(to get (C.30)). The W norm of (C.69) is bounded from above by the L' norm of
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(£} N(z, ), that has immediately the wanted estimates. Let us study (C.70). Since
the integrand is in § (R) relatively to &, stationary phase shows that the d &-integral
is O({t — r)_%), with bounds given by the right-hand side of (C.35)—(C.37). Conse-
quently, the contribution of (C.70) to (C.29) will be estimated by

t 2
c[ -1y iy (C.71)
its contribution to (C.26)—(C.27) will be bounded by
t 1 82(0
C t—1) 2————dr, C.72
[t €7
and its contribution to (C.30) will be controlled by
d . &2 1
C / (t—1) 2 ——rt*dr. (C.73)
VI 14 te

One checks that (C.71) (resp. (C.72), resp. (C.73)) is bounded from above by the
right-hand side of (C.29) (resp. (C.26)—(C.27), resp. (C.30)). This concludes the proof
of the lemma. ]

‘We have obtained estimates (C.24)—(C.30) when M in (C.66)—(C.67) is supported
away from the zeros of A — /1 + 2. We shall next obtain these bounds for M
supported in a small neighborhood of this set. We prove first these estimates under
Assumption (H1),,, i.e. those of (i) in the statement of Proposition C.1.2. We have to
study again the integral

t
i((—1)/1+E2H AT +xE) (1 T
/_ ) / G (a-x( ﬁ)N(r,é)dédr, (C.74)

where N will satisfy (C.34) or (C.36) and is supported close to £&,.

Lemma C.1.7. Assume A > 1 and N supported in a small enough neighborhood of
{&1,—&2}. Then if N satisfies (C.34) (resp. (C.36)), estimates (C.24) and (C.25) (resp.
(C.26)—(C.27)) hold true.

Proof. Introduce 2(z,¢) = % and write (C.74), after making a d.-integration
by parts, as the sum of the following quantities:

/ei(n/1+$2+xé)9(,, A—+/1+ 52)]\](;, &) dE, (C.75)

_/t /ei(t«/1+$2+x$)9(_[’)t_m)

x 3,((1 _ X)(%)N(r, g)) dedr.

(C.76)
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Assume for instance that £ stays in a small neighborhood of &, on the support of N,
and make the change of variables { = A — /1 + £2 in the integrals, with ¢ staying
close to zero.

Consider first the case when N satisfies (C.34) and let us prove (C.25). We esti-
mate the modulus of (C.75) by

820) C82w
Q(z, dt < logt
/m«l| Ol s 96 = oz 08

which is controlled by the right-hand side of (C.25). In the same way, we bound the
modulus of (C.76) by

c/;;(r;w%( @i ¢ 2oty [l olagan

As
[ Q(r.0)|d¢ = O(log ) = O(log1).
[l

we obtain using (C.12) and (C.13) a bound in £2? log(1 + t) as wanted. Assume next
that N satisfies (C.36), and let us show (C.26)—(C.27). We estimate then (C.75) by

Ce*@¢

— 12z, 0)[d¢
(1+1e2)® /;|<<1
that is bounded by (C.26)—(C.27). On the other hand, (C.76) may be controlled by

t 82(0
logt———dr,
/ o8t (14 te2)e
that is bounded by (C.26) if w = 1, (C.27) if v > 1.

To finish the proof of the lemma, we still need to get (C.24). The H” norm of
(C.75) and (C.76) is bounded from above respectively by

|02 = VI+E)NCH] 2y ay €77)
and by
/ﬁ Q(r. A - m)a,((l —X)(I)N( g))‘Lz( Lt €T

We consider again the case when N is supported in a small neighborhood of &, and
use { = A — /1 + &2 as the variable of integration. Since

120, Dg«illzz@e = O

we estimate, in view of (C.34), (C.77) and (C.78) by (C.24) again using (C.15) and
(C.13). This concludes the proof. ]

Lemma C.1.7 concludes the proof of (i) of Proposition C.1.2. In order to finish
the proof of (ii), we need to show the following.
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Lemma C.1.8. Consider equation (C.66) (resp. (C.67)) when M is supported close
to {—§&y, &} and when Assumption (H2) holds i.e. under conditions (C.8)—(C.10).
Then estimates (C.28) and (C.29) (resp. (C.30)) hold true.

Proof. Notice first that the term xM under the integral (C.67) satisfies the same
hypothesis as M under integral (C.66) (see the lines below (C.10)). Since the right-
hand side of (C.30) is larger than the one in (C.29), it suffices to show (C.28) and
(C.29) for expression (C.66), and (C.30) for (C.67) where one forgets the xM term.
We thus have to study an expression

t
i(E—0) A/ 1+E2+AT+xE) (1 _ TN
/_oofe =)/ (1 X)(ﬁ)t]N(t, £)dedx, (C.79)

where, according to conditions (C.8)—(C.10), N is supported in a small neighborhood
of {—&,, &, } and there are functions ¢, ¥ such that the following estimates hold:

INGL )| + ot )] < Cr 27",
0, N(t.£)| < Cr= 31",
lw(t, &) < Ct e,

D/N({t,&) = (Dy + A — 1+ E2)p(,€) + (2, £),

and where j = 0 in the case of bounds (C.28)—(C.29) and j = 1 for (C.30).
Let yo be in C§°(IR), equal to one close to zero, and write the integral in (C.79)
as IZ + I, where

]Z:/t /ei((t—r)«/1+52+)lt+x§))(0((A_ /1+€2)ﬁ)

x (1— )()(%)‘CjN(T,g)d‘cdf.

(C.80)

(C.81)

Since A > 1, the d§ integral is O(t_%), and using the estimate of N in (C.80), we get
by (C.14) and (C.16)

1
e [ te? \2 te?
Pl<c () <c
il = «/?((fgz)) il = (te2)

which are better than the right-hand side of (C.29), (C.30), respectively. To study 7 J ,
we make a d,-integration by parts and write this term as a sum of

- i«/Z/ e"(*’”@m(«/?(x —V1+ 52))111\/(1,5) dE, (C.82)
where y1(z) = I_XTO(Z), of

t
i«/?/ /ei((t—r)«/1+§2+/lr+x§')
—00

x Xl((x _ 1+ 52)«/?)ar((1 - X)(%)H)N(t, £)dtdt

(C.83)



Bounds for forced linear Klein—-Gordon equations 190

and of

t
_\/;/ /ei((t—r)«/1+$2+kr+x$)
—00

(C.84)
x Xl((x —J1+ gZ)ﬁ)(l . X)(%)er,N(r, £)dedr.
We plug the last equality (C.80) in (C.84). We get on the one hand
_ﬁ/t [ ei((t—r)«/l-‘ré'z—l—)tr-‘rxé)
o0 (C.85)

T .
(= VTFEWVI) (= 0( ) v dedr
and, after another integration by parts, the terms

i [0 (Vi - VT D)) .8 ds (C56)
and

Vi / t / ol (=TT +Arxd)
Ji
(= VIFEWVE)a (1 - () o e g d

(C.87)
Notice that since N and ¢ satisfy the same bound (C.80), a bound for (C.82) will also
provide a bound for (C.86). In the same way, an estimate for (C.83) will bring one
for (C.87). We are just reduced, in order to get (C.29) and (C.30), to estimate the L°°
norms of (C.82), (C.83) and (C.85).

We estimate the modulus of (C.82) by

&2t/ de 273
C <C log(1
(te2) /;|<c ig) = € ey oA

which is better than the right-hand side of (C.29) (resp. (C.30))if j = O (resp. j = 1).
We bound (C.83) by

cvi Itl<c (j?i“) /ﬁf_ ar(fj(l_)()<%>)|dt

If j =0, we get a bound in log(1 + t)szt_%, better than (C.29), and if j = 1, we
obtain using (C.13), a bound in

82

1+ &2

D=

2¢% log(1 + 1)

which is better than (C.30) since ¢ < g%,
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Finally, we estimate (C.85) by, using (C.80),

82

t
log(1 +¢ J-1 d
og(1+ )/ﬁl’ T T

which is bounded by (C.29) if j = 0 and by (C.30)if j = 1. We have thus established
these two estimates. To get the remaining bound (C.28), we just plug inside (C.66)
bound (C.8) of M and use (C.14). This concludes the proof. ]

C.2 Action of linear and bilinear operators

The goal of this section is to study the action of some operators on a function of the
form (C.3), and on its decomposition U = U’ + U” given by (C.4). These operators
will be of the form Op(m’), given by the non-semiclassical quantization (B.17), for
symbols m’(y, &) that do not depend on x and belong to the class S~IQ’O(1, Jj)j=12,
defined in Definition 3.1.1.

We study first linear operators.

Proposition C.2.1. Let (¢, x) — M(t, x) be a function satisfying Assumption (H1),,,
i.e. inequalities (C.7). Assume moreover that M is an odd function of x. Let m' be
a symbol in the class SY)’O(I, 1) of Definition 3.1.1, i.e. a function m’(y, &) on R x R
such that ,

85°0%m’ (v.6)| < C(1 + [y~ (C.88)

or any N,ay, o, and that m’ satisfies m'(—y, —&) = m'(y, &), so that Op(m’) wi
N« d th " sati ! ! hat Op(m’) will
preserve odd functions. Then, for U" defined from M by (C.4), we have

Op(m"\U" = "™ M, (t, x) + r(t, x), (C.89)
where M1 (t, x) is an odd function of x, satisfying for any o, N € N,

0% My (£, )| < Canty®(x) 7Y,

ks 2 / (C.90)
020 My (1, )| = Cate ™2 (12 + 732V ) ()7

and where r(t, x) is such that for any a, N,

1027 (£, x)| < Co,n (2t log(1 + 1)) (x)™V. (C.91)
Moreover, if L+ is the operator (C.5), foranya € N, k = 0,1,

1

| 10p (L4 U Dl die = Cr.
! (C.92)

1
/_ 1050p(n ) (LU e Dl di = Cae®.
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Proof. The definition (B.17) of Op(m’) and the expression (C.4) of U” imply that

.ot
Op(m/)U” — l_/ /ei(x$+(z—r)./1+$2+Ar)m/(x,g)

2 (C.93)
x (1= (=) M(x.§) dg dr.

Vi

We decompose M (t,€) = M'(z, &) + M" (1, £), where M’ is supported for £ in
a small neighborhood of the two roots +&;, of v/1 + £2 = A and M” vanishes close
to that set when A > 1, and M’ = 0if A < 1. Moreover, M'(t, £), M" (., £) are odd

in £, because M is odd in x. We define then

B'(x,7.§) = ™ m'(x, §)M' (1, £),

B"(x,7,£) = e™m/(x, §)M" (1, §). (99
By the evenness of m’, we have
B'(—x,7,—§) = —-B'(x.1,§), B"'(—x,1,—-§) = —B"(x,1,§). (C.95)
Let us study first the contribution of M” to (C.93), given by
/ / i@V HEHAD iy 1oy —x)(\[) dt dr. (C.96)

We perform one . -integration by parts, that provides on the one hand e’* M, (¢, x),

where
Mi(t,x) = /( \/1+§2) B"(x.1,£) dE

satisfies (C.90) by (C.94), (C.88) and (C.7), and is odd in x by (C.95), and on the
other hand a contribution

1 [ ‘
— / / ! COVIHERO Ny 7 £) dE d, (C.97)

where
V2.8 = =0c(B'er 00 = () (A= VTHE)
satisfies by (C.88) and (C.7)
920 N, 7,6)] < C ()™ (§) N e

L » (C.98)
('t T2 VD)2,

By the oddness of M in &, N(x,t,0) = 0. Consequently, if we apply the stationary
phase formula to the d¢-integral in (C.97) at the unique (non-degenerate) critical point
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£ = 0, we gain a decaying factor in (t — r)~! instead of (t — r)_%. Taking (C.98)
into account, and using (C.12), we obtain for (C.97) and its d,-derivatives a bound in

t 1 ,
CN(x)_N/ (t — r)_lrg_“’(rg_l + r_l]lwﬁ + 12 (_%(gzﬁ)%g )dr
< Cy{x)"Ne2rTog(1 + 1)

which is bounded by (C.91).
Let us study next the contribution of M’ to (C.93). We get

flt/e"“’—f)m“”za’(x,r, £)(1 - x)(%) dtd. (C.99)

Write for1 <7 <t
B'(x,7.8) = B'(x,1.8) + (t —1)B'(x, 1.1, §), (C.100)
where B’ satisfies by (C.7) and (C.88)
~ 1 ’
9992 B'(x. 7.1, §)| < Cop @ (07 + 2213 (VD)3 ) (x) ™V
and is supported for § close to {—£, §1}. If we substitute in the integral (C.99) expres-
sion (z —t)B’ to B/, and use that, since £, # 0, B’ is supported far away the critical

point £ = 0 of the phase, we may gain a factor (t — 7)™ for any N by d¢-integration
by parts. We thus get a contribution to (C.99) and to its dx-derivatives bounded by

t 1 ,
Cy{x)™ / (t — r)_Nrg_“’(rs_l + ‘L'EZ‘L'_%(F,‘Z\/Z)%G )dr.

This again provides a contribution to (C.91). We are left with studying (C.99) with
B’(x, 1, &) replaced by B’(x,t, &) according to (C.100), i.e.

! i((t—t 240t T ’
/1 /e (=0 /148244 )(1—)()($>B (x,1,6)dEdt
:eM’/T(I,\/l FE2—A)B(x.1.6) dE

(C.101)

with
T(t’ é-) = Tl(t’ é') + TZ(t’ é')

and

t—1
Ti(t.¢) = / e/t dr,
1]

To(t.0) = —/OH em%(%) dr.
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Note that if ¢ € S(R),

t—1 “+o00
[ Ty(t. (0 dE = /0 () dr = /0 p-r)dr + 0(—).
(C.102)

[ To(t. () d = 0(1=),

Using that B’ is supported close to £ = +£;, and that £, # 0, we may use in the
last integral in (C.101) ¢ = /1 + £2 — A as a variable of integration close to this
point. We express thus (C.101) from integrals of the form (C.102), with ¢ expressed
from B’. The definition (C.94) of B” and (C.88), (C.7) imply that the principal term
on the first line (C.102) brings to (C.101) a contribution in e MM, (t, x) with M,
satisfying estimates (C.90). The other contributions, as well as their d,-derivatives,
are 017t~V (x)™) for any N, so satisfy (C.91).

It remains to prove (C.92). We express LU’ from (C.32), which allows us to
write Op(m’)((L+U’)(u-)) as the sum of two expressions

i +oo ; T
_ (=) 1+E2447) ( _° \ pu .
2]T/; /e X(ﬁ)BJ (x,t,.8)drds, j=1,2, (C.103)

with ) -
BY'(x,7,§) = & m' (x, u§)x M (1, §),

. . £ (C.104)
By (x,7,§) = e'**H'm (X,,LL&)‘E@:—)M(T, £).

When j = 1, we use the stationary phase formula in & to make appear a (t — 7)™ 2
factor. Using also (C.7) and (C.88), we get for any dy-derivative of (C.103) with
j = 1l abound in

Vi 1
c/ (t—1) 20,9 de(x)™N < Ce?(x)7N. (C.105)
1

When j = 2, we notice that because M is odd in g, BY (x,t,£) vanishes at second
order at £ = 0. Consequently, stationary phase formula in (C.103) makes gain a factor
in {t — t)~2, so that (C.103) is controlled, using again (C.13), by

ﬁ 3
C / (t—1) 2 %de(x) ™V < Ce??(x)™V.
1
Bounds (C.92) follow from this inequality and (C.105). This concludes the proof of
(C.92) when k = 1. If £ = 0, the estimate is similar to the one with B{L above. [
Let us prove a similar result to Proposition C.2.1 for some bilinear operators.

Proposition C.2.2. Let M and U" be as in the statement of Proposition C.2.1. Let
m' be a symbol in Sy (1_[J2~=l ()71, 2) for some k > 0, satisfying

m'(—y, =1, —&1) = —m'(y. £1.&2).
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Then for any function v,
Op(m') (U, v) = e**Op(b1)v + Op(b2)v, (C.106)
where by, by satisfy for any g, o, N the following estimates:
57
+ 1732V () V)T, (10D
05002 ba (e, », £)] = Ce21 log(1 + 0){y) N (£) ",
Moreover, bj(t,—y,—§) = b;(t,y.§).

195092y (1, v, )] < C17 ()™

1
950020:b1 (1, v, )] < C1o 2 (177

Proof. By expression (C.4) of U”, we have

Op(m') (U v) = i /’ //ei(x(&-i-é)-i-(t—t) 1+£2+47)

()
X' (1,61 = ()M (@ 600(E) dE dr de
= Op(b)v
if o
bl x.8) = 2l_n/_oo // e (C.108)
' 6,00 - 0( )M e dadn

We notice that if we consider £ as a parameter, the function

(v.&1) > m' (3. E1. )M (1, &)

satisfies estimates of the form (C.88) for every t, as the losses in

Mo(§1.8)" = O((61)")

appearing when one takes derivatives in the definition of symbol classes in (B.13)
are compensated by the rapid decay of M (z, &;). We obtain thus an integral of the
form (C.93) (with & replaced by &), depending on an extra parameter £. By (the
proof of) Proposition C.2.1, we obtain thus that (C.108) has an expression of the
form (C.89), i.e. e/ by + by, with by, (resp. by) satisfying bounds of the form (C.90)
(resp. (C.91)), which gives (C.107), using also that m’(x, &1, €) in equatlon (C.108)
is O((¢)™1). The evenness of b; in (y, £) comes from the oddness of m’ and M . This
concludes the proof. ]

Corollary C.2.3. Under the assumptions of Proposition C.2.2, one has the following
estimates for any a, N :

1020p(m")(U", U")| < C{x)™N (172 + e**1 72 (log(1 + 1))?). (C.109)
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Proof. By (C.106), we may write
Op(m/)(UN, U//) — ei)ttop(bl)U// 4 Op(bz)U//

with by, b satisfying (C.107). We may apply (C.89) to each term above, using that
b1, by satisfy estimates of the form (C.88), with an extra pre-factor given by the first
and last estimates (C.107). Using the first bound (C.90) and (C.91), we reach the
conclusion. ]

We have obtained in the preceding results estimates under assumptions of the
form (C.7) for the function M in (C.4), i.e. under Assumption (H1),. We shall need
also variants of the preceding results when Assumption (H2), i.e. (C.8) holds instead.
In this case, we shall split the function U defined in (C.3) in a different way than
in (C.4), cutting at time of order t ~ ct instead of T ~ /7. More precisely, we set

U=U]+U/.

’ oo it—t)p(Dy)+irr (T
U/(t,x) =i - x —)M(z,-)dr,
1(t.x) l/l e X(,) (z.-) dx (C.110)

t
Ut x) = i / IO — (D) M(r, ) de
oo t
Proposition C.2.4. Let us assume that M is odd in x, satisfies the first inequality
of (C.8) and that m’ satisfies (C.88). We have then the following estimates for any
oa, N € N:

_1
10%0p(m")U]'| < Con (x)Nt; 2t og(1 + 1) (C.111)
and for £ = 0,1,
1
l850p(m") (LG U7) (. 1)l .2
/—1( * (C.112)
+ 820p(m ) (LU, 1)) oo ) dip < Co
Estimate (C.112) holds as soon as (C.88) is true for some large enough N.
Proof. We denote .
B(x,7,§1) = ™ 1m (x, §) M (¢, £1),
that satisfies by the first inequality of (C.8) and (C.88)
192002 B(x, 7, E1)] < Caga ()™ (E1) Ve 27!
and that vanishes at £, = 0 as M is odd. Then as in (C.93), (C.96)
w1 i((t—7)\/14+£2+A7)
Op(mHU{ = — e 1
27 J—o0 (C.113)

x (1 — X)(;)B(x, T, £ dE dr.
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Using stationary phase in &; and the fact that B vanishes at §&; = 0, we get for some
a €10,1],
t

#0p)U{ 0] =€ [ (= o)t ey

at

which is bounded by the right-hand side of (C.111).

To prove estimate (C.112) with £ = 1, we express Op(m’)((L+U’)(u-)) under
form (C.103), except that the cut-off y(z/+/t) has to be replaced by y(t/t), i.e. we
have to study

1 +o0 ) 5
2’_7[/1 /ez((t—r) 1+$1+M)X(;)B}‘.’“(x,f,51)d§1df, (C.114)

where BJ’-L , J =1,2,1s given by (C.104). If j = 1, we get from the first inequality
of (C.8), (C.88) and stationary phase in &; a bound of d,-derivatives of (C.114) by

at 1 L
)N / (t -7y e dr C.115)
1

for some a € ]0, 1], whence the O(¢?) wanted bound for the L? and L™ norms.
If j = 2, using stationary phase and the fact that BéL vanishes at order 2 at £ = 0, we
get an estimate in

at 3 1
C(x)_N/ (t—t)2r2¢ M de (C.116)
1
which is also O(g?). This concludes the proof of (C.112) when £ = 1. If £ = 0, we
may use directly (C.115) to get the estimate. Notice that to get (C.112), we do not

need that (C.115) and (C.116) hold for any N, but just for a large enough N (actually
N = 1 suffices), so that (C.88) has to be assumed only for some large enough N. =

Let us write a version of Proposition C.2.2 under Assumption (H2) as well.

Proposition C.2.5. Let M be as in Proposition C.2.4 and m’ in S~,Q’O(]_[]2-=1 (£)71,2).
Then Op(m’)(U{, v) and Op(m’)(U{,v) may be written as Op(b)v for all symbols
b(t,y,§) satisfying the estimates
’ _1
185°02b(1. y.6)| < Cty 2t og(1 + 1)(y) N (&) 71, (C.117)

Proof. Consider first Op(m’)(U;’, v) that may be written using expression (C.110)
of U’ as

Op(n)(UYv) = 5 [ Ebe.x.£)0(6) d C.118)
with

i (! ; ((— 2
b(t,x,“.;‘) _ E/ /ezxi-‘l-‘rt((t 1)/ 1+&7 +A71)
—00

xm'(r 61 OM (. 8)(1 = (7 ) dé d.

Using again stationary phase with respect to £; and the fact that M (z,0) = 0 to gain
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1

a decaying factor in (t — t)~", we obtain for the 950 8g—derivatives of b an upper

bound in

c/ta —)y e e ()Y E)T (@ e]0,1)) (C.119)

t
since, as seen at the beginning of the proof of Proposition C.2.2,

(y. &) > m/(y. 1.5 M (x. £1)

and its derivatives have bounds in
N -1 _ _ _
C{y) N eV E) !

according to (C.8). As (C.119) is bounded by the right-hand side of (C.117), we get
the wanted conclusion for Op(m’)(U/’, v).
Consider now the case of Op(m’) (U7, v), i.e.

(271,)2 / e E ! (x, £, 6)0] (£1)D(€) d&1 dE.

We may rewrite it as

= / (1 x, E)D(E) dE

with, for any N,

bt.x.6) = [ Knlex = y.x D,V U{0) . (€.120)
where :
K208 = o / 7 () 2N T (. £1.€) dE.

By the assumption on m’, estimates of the form (B.13) hold (with y on the right-hand
side of this inequality replaced by x) whence

00020 m' (v, 61, 6)] = C(1+ |x|(E) ™)™ (6) 71 () T+l
for any N’. We conclude that for any «, 8, N’, N”, one has estimates
19298 Ky (t.2.x.§)| < C(x) ™ (2) ™V (g) !

if N is taken large enough relatively to N, N”, «, B. Plugging this in (C.120), we
conclude that for any N’, N”, «, B, there is N such that

0202 b(r. x. £)] < C(x)™ supl(y) N (D) IO ()IE)TT. (€121
Yy
Since U] is odd, we may write

1
(DM 1010) =i [ (Da(D MU W) d
-1

1
=i (DM UD ) = my (DN UD () dp
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using the definition (C.5) of L. We get finally

() (Dy) MU ()]

< £(||(y>_N//+1L (D >2NU/|| + ”( —N"+2 D ZNU/ (C122)
=7 +{Ux 111Loe ) (Dx) 1||L°°)-

We may apply estimate (C.112) with U replaced by (Dx)?NU{ (as (Dx)*N M(z,-)
in (C.110) satisfies the same assumption as M(z, -)), and the pre-factor (y)~N"+1,
(y)™N "+2 on the right-hand side of (C.122) satisfies estimates of the form (C.88) with
some large fixed N (instead of for any N ). By the last statement in Proposition C.2.4,
this is enough to apply (C. 112) Plugging this in (C.121), we get for that expression
a bound in &2/~ (x)~N'(£)~!, which is controlled by the right-hand side of (C.117)
since t < ¢~*. This concludes the proof. ]

C.3 An explicit computation

In this last section of this chapter, we make an explicit computation that will be used
in relation with Fermi’s golden rule.
Let y be in C5°(R), even, equal to one close to zero. If A > 1 and if £, are still

the two roots of /1 + &2 — A = 0, set
x(8) = x(€ =) + x( + &) (C.123)
IfA < 1,set yp =0.

Proposition C.3.1. Let M be a function satisfying (C.7) with w = 1, that is odd in x.
Let U be defined from M by (C.3) ant let Z be an odd function in § (R). Then

[ 00026 a
400
= lim ie"“/ /e”W1+52—*+f“)“(§)1\2(t,5)2(5)dsdr (C.124)
0

o—>0+
i [ (L= x) @)

_ \/TEZM(t’E)Z(E)dS +r(1),

+e

where r satisfies
()] < C (273 + 172 4+ 2173 (2V1)37). (C.125)

Remark. It is clear that the limit on the right-hand side of (C.124) exists and may
be computed from (1/1 + £2 — A 4+ i0)~!. We keep it nevertheless under the form
(C.124) as this will be more convenient for us when using the proposition.

To prove the proposition, we shall write the left-hand side of (C.124), according
to (C.3), under the form

t
i/ /el'(f—f)v1+52+l‘“1\2(r,g)2(5)dgdz. (C.126)
1
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We decompose

M(x.§) = M'(r.§) + M"(z.§).
M'(r.€) = M(x.§) 1.(6), (C.127)
M"(t.§) = M(z.6)(1— x)(©).
We notice that M” vanishes at order one at ¢ = 0 by the oddness assumption on M.

Lemma C.3.2. Expression (C.126) with M replaced by M may be written as

(1= x)E)
PR

modulo a remainder satisfying (C.125).

M(t.§)Z()déE (C.128)

Proof. The expression under study is the sum of (C.128) and of

/ it— 1)./1+§2+1AM(1 5)% &) dg (C.129)

and

/ / i(t— r)«/1+g2+tkra M( E)%Z(E)dédr (C.130)

In (C.129) and (C.130), the integrand vanishes at order 2 at £ = 0 by the oddness
of M and Z. The stationary phase formula in & allows thus to gain a factor ¢~ 3 or
(t — 1)~ 3 . Taking into account (C.7) with @ = 1, we thus bound (C.129) by C&? =3
and (C.130) from

t 4 1436 ,
f (t — r)_%( ‘ 55 T : ; r_%(l_%)) dt
1 1+ 7e?) (1 + t62)2

<C( + et 2(82\/—)2 )

(using ¢ < £~4). We thus get quantities controlled as in (C.125). ]

The lemma implies the proposition when A < 1. We shall assume from now on
that A > 1 and study (C.126) with M replaced by M’.

End of the proof of Proposition C.3.1. By the Taylor formula, we write for 1 <7 <7,
M'(x.§) = M'(t.§) + (t = H(1.w.§).

where according to (C.7) with @ = 1, H satisfies for any «,

02 H(, T, 6)| < Cata * (0 2 + 173 (2V0)3Y).
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Integral (C.126) with M replaced by M’ may be written as the sum J; + J,, where

t
Ji=i / / TONVITERIN (1. 6)Z (§) d§ d,
1t (C.131)
Jo=1i / /ei(t—t)«/ 1+$2+i/lr(_[ _ I)H(l, T, 5)2(&-) d%’ dr.
1

Since H is supported close to £, so far away from zero, we can make in J, any
number of integrations by parts in £ in order to gain a decaying factor in (t — 7)™V
for any N, so that

t 1 3,
1| < c/ (t =) N2 4w 23 (VD)3 ) de
1
which is better than the right-hand side of (C.125). On the other hand, we may write

t—1
J1 =iei“/ /eir(VHSz_MM’(z,g)Z(g)dgdf
o (C.132)
= lim ie”"/ /e"fwlﬁz—“"@M’(z,g)Z(g)dsdr+J',
0

o—0+

where

+o00
J| = —ie* lim / o TWIHE =AY Ny £ 7(£) dE d.
o—>0+ J;_1
The first term on the right-hand side of (C.132) provides the first term on the right-
hand side of (C.124). Moreover, in the expression of J{, we can make as many
integrations by parts in £ as we want to get a decaying factor in (t) ™" for any N. This
shows that J; is 0(&2t~), so may be incorporated to r in (C.124). This concludes
the proof. |






Appendix D

Action of multilinear operators on Sobolev and Holder
spaces

In Appendix B, we have introduced multilinear operators that generalize the linear
operators (B.3). In this appendix, we want to discussed Sobolev boundedness proper-
ties of such operators. For linear ones like (B.3), given in terms of symbols satisfying
(B.1) with M(x, &) = 1, such bounds are well known: see for instance Dimassi and
Sjostrand [24]. We generalize these bounds to multilinear operators, under the form

n
10ps @@y - )y = € 3 [luelyrolyylag, D
J=14#]
where [[u]l 0 = [[(hDx)?0u]lzo0 and o]y = [1{hDx)*vl> with s > 0 and po

a large enough number independent of s. Notice that such an estimate is the natural
generalization of the standard bound ||uv||gs < ||u|lzee||v]as + |u|lms]|v|Lee, that
holds for any s > 0, to a framework of multilinear operators more general than the
product.

We give also, in the case when the symbol a (7, x, 1, ..., &,) in (D.1) is rapidly
decaying in 7, other estimates of the form

n—1

1Opp(@) (s, -, v,) 2 < Ch H”Q]'”W;O’oo(”i:l:QnHLz + lvall2)  (D.2)
Jj=1

for any odd functions v, ...,v,, where

P

(Dx)’

The important point here is that the rapid decay in ;l—‘ of the symbol a allows one
to gain on the right-hand side a small factor #. We have already explained in Chap-
ter 2 where this gain comes from: The quantity inside the norm on the left-hand side
of (D.2) is h = t~! times a generalization of expression (2.64). We have seen that
thanks to (2.65), one may express any of the functions v;, say v,,, from £+v,, up
to a loss of 7 that is compensated by the rapid decay of a relatively to that variable.
Such properties explain why terms like 7| in (B.8) may be considered somewhat as
remainders: they do not involve a factor % in their estimate, but the fact that they
decay rapidly in 3 allows one to use (D.2) and thus to recover in that way an O(h)
bound.

Let us indicate more precisely what are the Sobolev bounds we shall get with
respect to the symbols defined in Appendix B. Recall that we introduced classes of
symbols SK,O(M , D) S :/c,o(M , p) in Definition 3.1.1 and their (generalized) semiclas-
sical counterparts Sy g(M, p), S, B (M, p) in Definition B.1.2. We shall study first

L+ =x=+
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the action of operators associated to the S‘K,O(M . D)s Se,p(M, p) classes and then,
in the second section of this appendix, the case of operators associated to classes of
decaying symbols S, ,(M, p), S, 5(M. p).

D.1 Action of quantization of non-space-decaying symbols

We introduce the following notation. If v is a function depending on the semiclassical
parameter 1 € 0, 1], we set

lvlly = I(hDx) vl L2 (D.3)
for any s € R. For p in N, we define
I2llpoe = [I{hDx) v Loo. (D.4)

Proposition D.1.1. Let n be in N*, k in N, v > 0. There is po in N such that, for
any B > 0, any symbol a in the class S, g(M ,n) of Definition B.1.2 (with M given
by (B.10)), the following holds true, under the restriction that, for (i) and (ii), either
(x,8) =(0,0)0r0 <k <lora(y,x,&1,...,&,) is independent of x:

(1)  Assume moreover that a(y, x, &1, ..., &) is supported in the domain
1l + -+ [§n—1] = K(1 + [&al)

for some constant K. Then, for any s > 0, there is C > 0 such that, for any

test functions vy, ..., U,

n—1
10PR@ @y vy = € [Tl llypo-os o g (D.5)
j=1

uniformly in h € 10, 1].

(1)  Without any support condition on the symbol, we have instead

n
10ph @@y, - vl = € [luelysoosle; g D6

J=1U]
(i) Forany j = 1,...,n, we have also the estimate (without any restriction on
(x,B) ora)
0py(@)(Wy, ..., v )2 =C l_[||2@||W:0~°°||E,'||L2- (D.7)
L#j

Moreover, the above estimates hold true under a weaker assumption than in Defini-
tion B.1.2 of the symbols: namely it is enough to assume that bounds (B.13) hold with
N = 2 (instead of for all N ) for the last exponent in this formula.

Before giving the proof, we establish a lemma.
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Lemma D.1.2. Let a be in the class S, O(M", n) of Definition B.1.2 (or more gen-
erally a symbol satisfying (B.13) for any ag, a9,k € N, € NP, with the last factor
replaced by (1 + My™*|y|)~2). There are po in N depending only on v, and a fam-
ily of functions ag, ...k, (V1. V,y_1, v, X, E) indexed by (ki, ..., kn—1) € N*71
satisfying bounds

19208 @k oy (Ve g 9,
n—
B B (D.8)
= C2m ke ()72 [ M lypo-ee
Jfor 0 < a, o’ <2, such that if we set for any y
a(y,)@th,-- th)(_lv"'v “n— 1,U
1 ; (D.9)
— E1++En)
= G [ At xR H b (&) dr - d
and use a similar notation for ag, . k,_,(Vy,...,V,_1, ¥, X,hDy)v,, then
a(y,x,hDy,....hDp)(vy. ... .01, 0,)
+o00 400 (D.10)
= Z Z Ak ek Wi -+ Vg5 Y5 X, D)0y,
k1=0 kjp—1=0
Proof. We take a Littlewood—Paley decomposition of the identity, Id = Ah

where Ag = Op, (¥ (£)), A" = Op,(p(27%§)) for k > 0, with convenient functlons
¥ € Ci°(R), ¢ € Cg°(R —{0}). We also take ¥ in Co°(R), ¢ in Cg°(R — {0}) with
YU =¥, §p = ¢. We set G (§) = ¢(27%) fork > 0, Go(£) = ¥ (£). Plugging this
decomposition on each factor v;, j = 1,...,n — 1 in (D.9), we obtain an expression
of the form (D.10) if we define

akl,...,kn71 (217 L ﬂyn—ls y,X, S)
1 ;
= — /elx(él-i- +§”“)a(y,x,h51,...,hén_l,é)
(2m) (D.11)
n—1 P
x [T ox; ()AL ;&) d&r - dEnr.
j=1
We may rewrite this as
ey ooy U1 Vg ¥, X, )
=17 [ Ky (0. e, )
h h (D.12)
n—1

h ’ ’ /
X 1_[ A, v (xj)dxy -+ dx,
Jj=1
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with
Kkl,...,kn_l (ya X,Z1,+-45Zn—1, g)

1 ;
= @t / G a(y, x B, )
(2n) (D.13)

n—1
< [T, ) dér - dén.
j=1
By the definition of My(£1,...,&,—1, &), on the support of ]_[7;} @x; (&), one has
Mo(E1. ... 6n1.60) = OQ2F) ifk = max(ky.... . ky_y).

As a is in the class S;é,o (M}, n), this implies that a in (D.13) is O(2"¥). Moreover,
if we perform two J¢; -integrations by parts in (D.13), we gain a factor in (27K ;)2
under the integral, for j = 1,...,n — 1, according to (B.13). In addition, we have
also a decaying factor in (27%¢|y|)~2. It follows that for o, &’ < 1,

|8§‘8‘§"Kk1,...,k,1_1 (y.x.z1,. ... zn—1.§)|

n—1
, A A (D.14)
< C2(K(a+a +2)+v+n—1)k | |<2_Kij)_2(y>_2-

j=1
Plugging this estimate in (D.12) and using
AL v (x))] < C27RP0)| (hD ), || oo

we see that if pg has been taken large enough relatively to v, k, we get bounds of the
form (D.8). This concludes the proof. ]

Proof of Proposition D.1.1. (i) We reduce first to the case s = 0. Actually, by Corol-
lary B.2.4, that applies under the restrictions in the statement on («, 8) or a, the
operator

V..., 0,) = (hDx)*Opy (@) (vy, ..., 0,1, (hDx) " v,)

may be written as Op,(a)(v, ..., v,) for some symbol a in S, g (MY, n) for some
Vv’ that does not depend on s. It is thus sufficient to show that

n—1

10pn(@) (s, ... 0,2 =C nllziIIW;o-wllynllLZ- (D.15)
j=1

By expression (B.14), we have

~ (X
OPA(@(v,. - v,) = &(Z X D1 Dy ) vy 0,)

=d(—OO,)C,th,...,th)(Ql,...,Qn) (D16)

%
+ / (0ya)(y,x,hDy,...,hDy)(vq,...,v,)dy.



Action of quantization of non-space-decaying symbols 207

As dyd isin S, o(My, n) (for some v), we may apply at any fixed y expansion (D.10)
to dya. The symbols a, .. k,_, on the right-hand side satisfy (D.8), so that we may
apply to them the Calderén—Vaillancourt theorem [9] in the version of Cordes [12],
considering y,v;,...,,_; as parameters. One gets in that way forany y, v;,...,v

s Yns
[0ya(y,x,hDy,...,hDp)(Vy, ..., 0,12

n—1
= C Y e Y0 2D ()72 Ty ymoce o, .2
j=1

k1 kn—1

(D.17)

The fact that the L? norm of the last term in (D.16) is bounded from above by the
right-hand side of (D.5) (with s = 0) follows from that inequality. If we apply the
version of Lemma D.1.2 without parameter y to a(—oo, x, &1,...,§&,), we obtain
also an inequality of the form (D.17) (without factor (y)~2 on the right-hand side),
which implies for the first term on the right-hand side of (D.16) the wanted estimate.
This concludes the proof.

(i1) We just split a as a sum of symbols for which

DolEl < KA+gD, j=1....n
L#£j

and apply (i) to each of them.

(iii) It is enough to prove (D.7) with j = n for instance. Remember that in the
proof of (i), we use that the support condition on a and the restrictions on (k, ) or
a only to reduce the case of H} to L? estimates. Once this has been done, inequality
(D.15) has been proved without any support condition on &, nor on (k, 8), so that it
implies (D.7). This concludes the proof, the last statement of the Proposition coming
from the fact that Lemma D.1.2 has been proved for symbols satisfying the indicated
property and that Corollary B.2.4 used at the beginning of the proof holds also under
such a condition. |

It will be useful to be able to decompose a symbol belonging to S o(My, n)
as a sum of a symbol in S, g(M,n) for some small B > 0 and a symbol whose
quantization satisfies better estimates than (D.6) and (D.7). Define

1
Ly = Eoph(x + p'(§)). (D.18)

Corollary D.1.3. Let a(y,x,&1,...,&) be in Sco(MJ, n) for some k > 0, some
v >0, somen >2. Let B >0 (small), r € Ry. One may decompose a = a; + a»,

where ay isin S, g(My , n) and ay is such that if s satisfies (s — po — 1) > r + ”erl,
n
10ps(@2) @y, .-, v ) s < Ch™ [Tl s, (D.19)

Jj=1
n—1

[£+0ppy(az)(y, ..., v,) L2 < Ch Hllzj e o,z + [€+v,l22)  (D-20)
i=1
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and

n—1
1£0py(a2) @y - )2 < CA™ [ Tl g (I, 2+ [ €20, llyp0-0). (D.21)
=1
(In the last two estimates, we could make play the special role devoted to n to any
other index).

A similar statement holds replacing classes Sy (resp. Sc,g) by S, ,’6,0 (resp. S :: 8 ).

Proof. Take y in C§°(IR) equal to one close to zero and define a; = ay(h? My(§)),
a = a(l — y)(hB My(£)). Then a; is in Si,p (M, n) as it satisfies (B.12)—~(B.13).
Let us show that a, obeys (D.19)-(D.20). Decomposing a; in a sum of several sym-
bols, we may assume for instance that it is supported for |&1| 4+ -+ + |En—1| < K ().
Then, by the definition of a,, there is at least one index j, | < j <n — 1, such that
€] > ch™ on the support of a5, for instance j = n — 1. Applying (D.5), we get

||Oph (aZ)(213 e ’En)”Hz

n—1
g — (D.22)
< C [Tl llyro10ps (1 = DYEPE)w, lIyrooe vyl

J=1
for some new function j equal to one close to zero. By semiclassical Sobolev injec-
tion,

1
vl p0-0 = Ch™2 v, [l

if s > po + %,and
10pA (1 = DR E) v,y oo
_1 ~ _
= Ch=2]10py (1 = DU EDL, 1 oo+ (D.23)

< CH3F6=0= DBy | .

If s is as in the statement, we get (D.19).
To obtain (D.20), we notice that

L2094 @)y, ;) = % 3 Opy (7 €)OP4 @) 1. 1,)

+i0ph(gaT2)(le""Qn) (D.24)

+ Oph(az)(gl,...,gn_l, %Qn)

The L? norm of the first two terms on the right-hand side is bounded from above
by Ch" ]_[7;} v L3 v, I L2 if we use (D.7) and (D.23), for s as in the statement.
On the other hand, in the third term, the last argument of Opj,(az) in (D.24) may be
written £+v,, F 10p;,(p'(£)), so that we get an upper bound by the right-hand side
of (D.20) using again (D.7) and (D.23).
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We may also estimate the last term in (D.24) using (D.7), but putting the L? norm
ony,_,i.e. writing

|IOpy(az2)(Vys .- 0y—q, L1V, |12
n—2

< C [T o 1004 (1 = DEP )0,y 210, 0.
j=1

Bounding the last but one factor by 2#5|v, || my» we get as well (D.21). The last
statement of the corollary concerning classes S//<,07 S 8 holds in the same way. |

Let us state next a corollary of Proposition D.1.1.

Corollary D.1.4. Let v > 0,n € N*. There is po € N such that for any k > 0, any
B =0, forany j =1,...,n,anyain Scg(My,n), there is C > 0 such that for any

Visoo e Uy

” %Oph (@) (vy.....v,)

=€ };[.Ilyellwhéom(h_lllyjllm + I€+;(r2) (D.25)
J

andforany j # j', 1< j,j' <n,

= C(TT Meelyeo=) oy lie
L#£7,J’

—1

X

| Fop @),

(D.26)

Proof. Let us prove (D.25) with j = n for instance. By the definition of the quanti-
zation

%Oph(a)(zl, e ly) = Oph(a)(yl, ce Vs %En) + iOph(;)—a)(yl, e Up)-
En

If we write ¥ = £+ F h~'p/(Dx), and apply (D.7) with j = n, we obtain (D.25).

One obtains (D.26) in the same way, applying estimate (D.7) with j replaced by j’,

and using that p’(h D) is bounded from Whp6’°° to WPo-if py > po. This concludes

the proof. |

‘We shall also use some L°° estimates.

Proposition D.1.5. Let v € [0, +o0, « >0, n e N*, >0. Let ¢ > | and let a
be a symbol in S, g(M 1_[7:1 (§;)79,n). (It is actually enough to assume that in
estimates (B.13), the last exponent N is equal to 2). Assume that (k, ) = (0,0) or
0 <k <1, orthat a(y, x, §) is independent of x. Then there are pg in N and, for

any integer p > po, a constant C > 0 such that for any v, ..., v,

n
10ph@) ;... )l < C [Tlly; lpoe- (D27)
j=1
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If we havejusta € Sep(My ]—[]_1 £,)71,n), we get for any r in N, any o > 0, any
s,pwith(s—p—1)a >r+ > andp > po, the bound

IIOPh(a)(vl, ce Uy [lwpeee

<Ch™ Gl‘[||v [P +Ch’Z]_[|| oo 10 1y

=y

Proof. One may assume that a is supported for |&1] + -+ + |En—1| < K(1 + |&4]).
One may use Corollary B.2.4, whose assumptions are satisfied, in order to reduce
(D.27) to estimate

(D.28)

n—1

10p (@) ;... v,)llLoe < C H|| ligpo.22 [yl (D.29)

We apply (D.16) to reduce (D.29) to bounds of the form
la(—o0,x,hDy,...,hDy)(Vy,...,0,) Lo

n—1

= € [Tl oo, e,
j=1

too (D.30)

/ 0ya(y,x,hDy,....,hDy)(;,...,v,)||lLoe
—00

n—1

=< € [Tlos oo vy iz
j=1

We may decompose dya(y,x,hDy,...,hD,) using equality (D.10). Each contri-
bution in the sum is given by a symbol satisfying estimate (D.8), with an extra
factor (&,)7¢ on the right-hand side, coming from the fact that our symbol a was
in S g(My T = 1(&;)74, n). The kernel of the corresponding operator will then be
bounded in modulus by

n—1
1 —max(kq,..., kn—1) -2
G (X Yok ()72 Ty s

Jj=1

with some L! function G. The second estimate (D.30) follows from that. The first
one is proved in the same way.

Finally, to get (D.28), we assume again a supported as above and decompose it
asa = ay + ap, witha; = ay(h?§,) for some o > 0 and y in C5°(R) equal to one
close to zero. Then ay is in h™%S,g(My ]_[;’Zl (§,)72,n) (for a new value of v), so
that (D.27) applies, with a loss 7%, which provides the first term on the right-hand

side of (D.28). On the other hand, we estimate ||Opy(a2)(vy,...,v,)[wp-> from
Ch™z 0py(a2)(vy, . ... v,) [l HA*! by semiclassical Sobolev mjectlon and then th1s
quantity by the last term on the rlght hand side of (D.28) withr = o(s —p—1) — 5

This concludes the proof. l
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Let us translate the preceding results in the non-semiclassical case using the
transformation ®; defined in (B.15) and (B.16)—(B.17). We translate first Proposi-
tion D.1.1.

Proposition D.1.6. Let a be a symbol satisfying the assumptions of Proposition D.1.1
and (k, B) satisfying also the assumptions of that proposition in the case of statements
(i) and (i1) below (in particular, if a is independent of x, these statements hold for any
(k, B) withk > 0,8 > 0).

(i)  If moreover a is supported for |E1| + -+ + |En—1| < K(1 + |&,|), one has
for any s > 0 the bound
n—1
lop’ @) (v1......v)llas < C [ [llvjllweoos llvallms (D.31)
j=1

with some pg independent of s, Op' being defined in (B.16).

(i)  Without any support assumption on the symbol of a, one has

n
10p @1, va)lars < € 3 [T lvellwooelivs s, (D32)

J=10#]
(iii)) Forany j = 1,...,n, one has also
10p @ (@1, va)llz2 < € [Tlvellwoooelivyll2. (D33)
L#j

Proof. One combines Proposition D.1.1, (B.16) and the fact that by (B.15),
1©wlas = llvllag

and )
1©:p]lweoo = h2||ulyp.co
ifh =1 ]

To get non-semiclassical versions of Corollaries D.1.3 and D.1.4, let us notice
that by (B.15)
1 X
Li®;v = —(L+yv —)
+Y9:U «/;( i_)( P
is L4 is defined by (D.18) and

Li = xZ1p'(Dy). (D.34)
We have then:

Corollary D.1.7. Leta(y,x.&1,...,&,) be asymbolin S, o(My,n) for some k > 0,
some v >0, some n > 2. Let B > 0 be small and r in Ry. One may decompose
a = ay + az, where ay is in S, g(My,n) and ay satisfies, if (s — po)p is large
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enough relatively to r, n,

n
10p* (@2)(v1, ..., va)lars < Ct 7" [ [llvsllms,

j=1
n—1
IL+Op (a2) (v1.....va)llr2 < Ct7" [ Tllvillms (lvallz2 + 1L +vallz2).  (D.35)
j=1
n—1
|L£0p" (@2)(vr.... va) 2 < Ct—’(l‘[||v,»||Hs)(||vn||Lz + 1L 2vnllwoss).
j=1

Moreover, in the last two estimates, one may make play the special role devoted to n
to any other index.

Proof. Again, we combine (B.15)—(B.16) and the estimates in (D.19)—(D.21) (up to
a change of notation for r). ]

In the same way, we get from Corollary D.1.4:

Corollary D.1.8. With the notation of Corollary D.1.4, we have

IXOp’ (@)(v1,-. - v L2 < € [ llvellweoso (tllvj L2 + [1L4vjll2)  (D36)
L#j

forany 1 < j < n. Moreover, forany j # j', 1< j,j <n,

1x0p" (@) (v1, - - -, va) I 2

<C [T lvellwrooelvjllz2(llvjllweoos + 1) weo-oo).
L#£j,J’

(D.37)

Finally, it follows from Proposition D.1.5:

Proposition D.1.9. Under the assumptions and with notation of Proposition D.1.5,
one has for p > po,

n
Iop! @)(v1...... v)llwoe < C [ lvjllwoeo (D.38)
j=1

ifaisin Sep(My [1;=,(&)"%, n) for some g > 1 and

10p* (@) (v1, .., v) | wo.ce

n n
< 1o [Tlvslweee + € 3 [Tlvellwooo v llas

j=1 J=1L#]

(D.39)

ifg=1,0 > 0and (s — p)o is large enough relatively to r.
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D.2 Action of quantization of space decaying symbols

In this section we study the action of operators associated to symbols belonging to
the classes S:/c, 8 (M ,n) on Sobolev or Holder spaces of odd functions. The odd-
ness of the functions, together with the fact that elements in the S’ class are symbols
a(y, x, §) rapidly decaying in y, will allow us to re-express the functions v on which
acts the operator from 4 + v (using notation (D.18)), thus gaining a power of /. Actu-
ally, it is not necessary that a be rapidly decaying in y, and we shall give statements
with less stringent decay assumptions.

Proposition D.2.1. Let n be in N*, x in N, v > 0. There is pg in N such that, for
any B > 0, any symbol a(y, x,&1, ..., &), supported in the domain

1] + -+ [En—1] = KA + [En])

for some constant K, and such that for some £, 1 <{ <n —1, a belongs to the
class S’2€+2(M”, n) introduced at the end of Definition B.1.2, with k > 0 and either
(x,B) = (0 0) or 0 < kB < 1 ora is independent of x, the following holds true:

(1) For any s > 0, any odd test functions v;,...,v,,
&j € {—,+}, j = 1,...,6,

”Oph(a)(yh cee vyn)”HhS

and any choice of signs

L
< Ch T T(I1€s; v, llyeoe + 11y [l yro0.)
1'1:[1 S . (D.40)
x H 2110022 12l ;-
j={+1

(ii) Assume in addition to the preceding assumptions that B > 0. Then, for any
0 </{ <, one has

10ps (@) (s, - - - v) | g
e/
i 7
< CRE B T (6,02 + N, 022)
Jj=1

¢

(D.41)
< T (12605 o0 + vyl 050)
j=e/+1 '

x 1‘[ I o 2, 5
j=L+1

where a(B) > 0 goes to zero when B goes to zero (o(B) = €' (po + %)ﬁ
holds).
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Proof. We shall prove (i) and (ii) simultaneously. We notice first that, by our support
condition on (&§1,...,&,), Mo(§) ~ 1 + |&1| + -+ + |€4,—1], so that, up to chang-
ing v, we may study the H} norm of

Op;, (@) (0p; ((6) vy, . ... 0P, ((E) g vy y.-- - 1,) (D.42)

for a new symbol a satisfying the same assumptions as a. Moreover, when 8 > 0, this
symbol is rapidly decaying in h# My (&) according to (B.12)—~(B.13), so that, modify-
ing again a, we rewrite (D.42) as

Opy (@) (Op;, ((§) " (BRP£) vy, ... Op,((€) " (BRPE) ")y,

(D.43)
Vyyqs--- ,yn)

with y > 0 to be chosen. We use now that if f is an odd function, we may write

x 1
f@=3 /_ (@) d

Consequently, for j = 1,...,7,

ix (!

Opy((6)~ (BHPE) V), = o _1(Oph(whﬂsr%)y,-)(mx) dpj, (D.44)
that we rewrite using (D.18)
Opy ((6)""(BRP§) 77 ),
_ .hiffl(o ((,Bhﬁg)_”)éﬁ )( x)du;
=1 20 ), Ph g; Vi ){LjX) AL (D.45)

1

=iny g [ (Oma((BA8) )5 v, ) ) .

We may thus write (D.45) as a linear combination of expressions of the form

xX\4 1 q/
h(>) /_ V) . (D.46)

where ¢ = 0,1,2, ¢’ € N and V;(x) is of the form
Vi(x) = Opy (b; (BRP§))Le,v; or  Vi(x) = Opy (b (BRPE))y; (D.47)

with |8kbj ()] = O((€)777%). We plug these expressions inside (D.43). We remark
that when we commute each factor 3 with &, we get again an operator given by a sym-
bol similar to @, up to changing v. Moreover, the (M()_"y)_”_2 decay of a(y, x, &)
that we assume shows that for ¢ < 2¢, (%)q&(%,x, £) may be written &1(%,)@5)
with @1 (y, x, ) in S’i B(MU’ n) (for a new v). Consequently, we may write (D.43)
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as a combination of quantities of the form

1 1
ht /_1"'/_1 Opp (@) (Vi(ur)s .- Ve(ie ) vgyqs- .-, 0,)

X P(p1,.. ., pme)dpy -+ dpg,

(D.48)

where V; are given by (D.47) and P is some polynomial.

If we apply (D.5) (together with the remark at the end of the statement of Proposi-
tion D.1.1) and use that Opy, (b; (BhP€)) is bounded from Whp 0:%° to itself, uniformly
in i1, we obtain (D.40). To prove (D.41), we apply again (D.5) and use that, for factors
indexed by j = 1,...,¢', we may write if y > pg + 1 and § > 0

10p (b; (BRP&))wl 0.0 = 10p, ((£)7°b; (BhP§))w]| o0
< Ch |0, ()™ (B &) w2,
X [0p, ((£)70E (BRBEY ™ Yw 2,
< Ch—%—ﬂ(po+%)”w”L2
if y > po. This brings (D.41) with o(8) = £'(po + %),B [

When we want to estimate only the L? norms, instead of the H® ones, we have
the following statement:

Proposition D.2.2. Letn bein N*, k € N, 8 > 0,v > 0. There is py € N such that,
for any symbol a in S|, 5 (Mg ]_[;-'=1 (£,)7Y,n) and for any odd functions v, ..., v,
one has the following estimate:

n—1
10ps(@) @y, - 0,2 = Ch HIIQJIIW;o-w[IIiiinle + lvplle2l (D.49)
j=1

Moreover, when n > 2, we have also the bound

10px(a@) vy, -+ v, 2

n—2
(D.50)
< Ch [Ty oo (1220, 1 lroe + g llyeo.0 T2y -

Jj=1

Estimate (D.49) (resp. (D.50)) holds as well for n (resp. (n — 1,n)) replaced by any
je{l,....n}(resp. j,j' €{1,...,n}, j # j'). Moreover, it suffices to assume that
aisin S/i,ﬂ(M(;) H;?:l(éj)_l,n) instead of a € S,Q,ﬁ(M(;) ]_[;;1(5]-)_1,11).

Proof. Because of the assumption on a, we may write

Opy(@)(vy.....v,) = Op,(@)(Vy.....V,u_1. Op,((€) "Hv,)) (D.51)
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with @ in S’ s (Mg J_I(Ej) ,n) (ordin S’# g (Mg J_I(Ej) ,n)). We use next
equation (D 45) (with y = 0) in order to express Op;, ({(§)~ 1)v as a combination of
terms of the form (D.46) with j = n and V}, given by (D.47). We obtain thus for
(D.51) an expression in terms of integrals

1
h /_ 0@y Vo )P ) (D.52)

for some polynomial P, some a; € S'7 5 (Mg ]_[;';}(Sj)_l,n). Applying (D.7), we
get (D.49).

To obtain (D.50), we make appear the Opj,({(§)~!) operator on argument v,_,
instead of v,, in (D.51), use (D.45) with j = n — 1, obtain an expression of the form
(D.52) with the roles of n and n — 1 interchanged, and apply again (D.7). ]

Let us also establish some corollaries and variants of the above results.

Corollary D.2.3. Let n, k, /3 v be as in Proposition D.2.2. Let a be a symbol in the
class Sc.g(My ]_["H(Sj) ,n+1). Let Z be in $(R). Then for any odd functions

Viseonr Uy .
onal ()],
n—1 (D.53)
< Ch [ Tlwyllgeoes (1 €22, lz2 + lugllz2)-
j=1
Ifn > 2, we have also
X
Jom@ {20
n_>2 (D.54)
=<Ch nllv IIWﬂow(lliivn 000 + 1wyl eo- o) |vnl 2

j=1

Proof. We write
a(y,x.§) = (y)*a(y, x.§).

Then, according to the last remark in the statement, Proposition D.2.2 applies to a.
Moreover, we may write Op,,(a)[Z(3), vy, ...,v,] as a sum of expressions

(h) Oph(“)[ (h) vl""’yn]’ 0<g=<4. (D.55)

The commutator

—Oph(a)[ (x) vlv---,yn] _Oph(&)[%z(%)’glv”"yn]

is again of the form Opy,(d1)[Z(3).v,. . ... v,], for a new symbol satisfying the same
assumptions as a, eventually with a different v. Finally, we express (D.55) as a sum
of expressions Opy(d1)[Z1(3).v;....,v,], for new symbols a; and a new S(R)

function Z;. If we apply (D.49) (resp. (D.50)), we get (D.53) (resp. (D.54)). ]
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We have also the following variant of Proposition D.2.2, that we state only for
bilinear operators.
Proposition D.2.4. Let v,k > 0. There is pg € N such that, for any a in the class
Se.o(Mg ]_[Jz-zl (§/)71,2), any odd functions v, v,, one has the following estimates:
10p; (@) (vy, vy)llz2

(D.56)
< Ch*(||Lxv, I eoee + s llgroo) (1 €425 l122 + lvallz2)

for any choice of the signs & on the right-hand side. The symmetric inequality holds
as well.
If moreover s, o are positive with so > 2(pg + 1), we get

2

3_
10p;, (@) (v, v)llz2 < Ch> [T (I €2)llz2 + ) 13)- (D.57)
j=1

Proof. To get (D.56), we write

Opy,(a)(vy, v,) = Op,(@)(Op, ((€) vy, Opy ((6)Huy)

with some a in Si,0(My,2). We use next (D.45) (with y = 0) for j = 1,2 in order
to reduce ourselves to expressions of the form (D.48) with £ = 2. Applying (D.7), we
get the conclusion.

To obtain (D.57), we may assume that a is supported for |&1| < 2(1 + |&;|) for
instance. Let B > 0, y € C§°(R), equal to one close to zero and decompose

a(y,x,&1,6) = a(y,x, &1, &) x(WPE) +a(y, x, &1, &)1 — ) (hPE).

If we apply (D.7) to the second symbol, we obtain an estimate to the corresponding
contribution to (D.57) by

CllOpA((1 = B, llyypoo2 12, 2.

By semiclassical Sobolev injection, this is bounded from above by
1 —po—
Ch=3+B6=20=D 1y, s v, 2.

so by the right-hand side of (D.57) if B(s — (po + 1)) = 2 — 0.
Consider next Op,Z (a1)(vq,v,) witha; = ayx(h™ ﬂgl) so that a; is in the class
Sx,ﬂ (My H/:l £;)71,2). Since B > 0, we may rewrite as in (D.43), Opj,(a1) (v, v,)

Op;,(@1)[Opy, (€)™ (hPE) 7 vy, Opy, () ™") v, ]

with a; in S’2 (M", 2), hence under form (D.48) with £ = 2, V; (resp. V>) being
given by (D. 47) with b; = O((§)™7) (resp. O(1)). Applying (D.7), we get, in view



Action of multilinear operators on Sobolev and Holder spaces 218

of the definition of the V; a bound in
Ch2 (0 (b1 () L0, [l o= + [Opy (b1 HPE))y 0.2 )
< (€20, lL2 + llvallz2)-
Using the semiclassical Sobolev injection, the first factor is bounded from above by
Ch=3 7P (L syl + oy 2)-
We set 0 = B(po + 1) and get the conclusion under the condition sa > 2(po+1). =

We prove now an L°° estimate that is a counterpart of (D.40).

Proposition D.2.5. Let k € N, v >0, n € N. There is pg € N such that, for any

0> po, any a in S’i"'0+2(M”, n), any £ <n, one has for any odd functions v,, ..., v,
any r > 0, the estimate
10pR(@) (s, -, v,) e
n
< Ch" T (I lypome + ;)
j=1
brleo T (D.58)
+ Ch2 27 T e + 1L20;llyp-o)
j=1
n
< T Olyllzz + €2, 22)
j=t+1

forany o > 0, any s such that

5> so(p,/c)(l n rail) (D.59)

(where s¢(p, k) is some explicit function of (p, k)).

Proof. Set |£|* = &2 + --- + £2. Take y € C{°(R) equal to one close to zero and let
B > 0 to be chosen. Decompose a = a; + a, with

a1(y, x. &1, .. &) = a(y. x, Er.... &) x (PP IEP),
ar(y, X, E1y e En) = a(y, x, 61, E) (1= (2P |E).

Let us assume in addition that a, is supported for instance for

(D.60)

|‘§1| +-+ |§n—1| = K(l + |§n|)

By semiclassical Sobolev injection, we have

_1
10Px(a2) Wy - ... vy) [lwpoe = CH72(|Opp(a2) (Vs - .o V) [ gotr. (D.OD)
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If we use estimates (B.12) and (B.13), we see that the action of an & D,-derivative
on Opy,(az2)(v;, ..., v,) makes lose at most one power of (£,)max(1K) (since &, is the
largest frequency). Consequently, (D.61) is bounded from above by

Ch™2||0py(@2) Uy - - 0y, (B D) PTImLy )

»Xn—1>

for a symbol d, that has the same support properties as a,. We apply next (D.7) with
J = n, and remember that, by definition of a,, d» is supported for [;,| > ch™ for
some jo. We thus get a bound either by

n—1
_1 X
Ch=2 Tl ly o2 0P, ()P ™09 1, (B E)), .2 (D.62)
j=1

if jo = n, or
1
chm2 TT ujliwrose 0P Gt (P D)o llyooes
1<j<n—1,j#jo ' (D.63)
X 0y ((£) Dm0y, (1P8) Y, .2

if jo < n, where y; € C*°(R) is equal to one close to infinity and to zero close to
zero. Writing (using semiclassical embedding)

10D, ((€)" X1 (hP &) v, 12 < CRES™ v, |15,

1 —
10p4 (x1 (AP ), I ypoce = CATZHPET 0Ty 1,

we obtain for (D.62) and (D.63) an estimate in

n

Ch T Tl llpo o + I, ll;) (D.64)
j=1
if .
- 1 19 > ~
B(s — (p + 1) max(1,&)) = r + 3 D65)
B(s—(po+1)>r—+1.
Consider next a;, which satisfies
n
WPrg, e S’ij’;z (M(;’ H(Sj)_3,n).
j=1
We may write Opy,(a1)(vy,...,v,) under form (D.48) with £ = n and a new sym-

bol ay, such that

n
h*#ra; e 87, (M(;’ ]‘[(g,)—z,n)

j=1
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(for a new v). We apply (D.27) that implies
10ps (@) (y, - - v llwpo

1 1 n (D.66)
== [ [ TG s dr -+ dan
—1 -1
Jj=1

where V; is given by (D.47) withy > p+ 1. For j ={ + 1,...,n, we use semiclas-
sical Sobolev injection to estimate

1
_1_
/ VY lpee iy < CH P00 (10, g2 + o .2)

whence finally a bound of (D.66) in

£
_ _n—~£ __ _
C h"(1=38)="5==Blo+1)(n—0) H(HQ/HW,fOO + ”:C:I:Qj ”W}f"“)
i=1
n
< TT (ol + 1 €£0;11.2).
j=t+1
Combining this with (D.64) and taking § = WZ)@H)’ we get the conclusion if
s satisfies the inequality in the statement. ]

The same type of reasoning as above may be used to remove the assumption
B > 0in (ii) of Proposition D.2.1.

Proposition D.2.6. Let a be a symbol in Si,0(M{,n) independent of x, satisfying
the assumptions of Proposition D.2.1. Then, for any B > 0 with kB < 1, one may
decompose a = a1 + ap withay in S’if;z(M”, n) and a, is such that
n—1
I0p4 @)@y vy < CH ([T hyroos )l lgg e gy .67)
J=1 L#i
as soonas (s —po—1)>r + %
As a consequence, one has the estimate, for 1 <{ <n—1,0=<{ </,

10PK @@y - vl

Z/

Y
< ChT 7 [T (1%e 05022 + vy llars)

i=1

l4
(D.68)
< TT (12, v;llyeoe + vyl moee + s lay)
j=t+1

n—1
< TT (llyroes + 1) lwalla.
j={+1

where o > 0 is any small number and s is such that (s — pg — 1)o is large enough.
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Proof. We shall decompose a = a; + a; as at the beginning of the proof of Corol-
lary D.1.3. By (D.22)—(D.23), estimate (D.67) holds if (s —po — 1)8 > r + % On
the other hand, applying (D.41) to Op,(a1), and expressing o (8) from S, one gets
a bound of ||Opy(a1)(vy, - -. _n)”H‘ by the right-hand side of (D.68). Since, for r
large enough, the right-hand side of (D 67) may be estimated by (D.68) (using semi-
classical Sobolev injection to bound some Wpo’ norm by i~ 3 times an Hj} one),
we get the conclusion. |

Let us translate the inequalities proved in this section in the non-semiclassical
framework, using (B.15)—-(B.17).

Corollary D.2.7. Under the assumptions of Proposition D.2.1, one has the following
estimates:

(i) For any s > 0, any odd test functions vq,...,v,, and any choice of signs
gie{—+Lj=1....¢

l
10" (@) (v1. ... va)llms < Ct™  TT(I1Le, vj Iweoo + v | weo-oo)
j=1
- (D.69)
X l_[ [vj llweo-o ([ vnll s
j=t+1
with Ly defined in (D.34).
(ii) If moreover B > 0, one has for any 0 < {' < ¢,
10D (@) (v1.....vn) |l Es
Z/
<Crto® H(IILSJ» villzz + llvjliz2)
j=1
(D.70)
x l_[ (I1Le,; vjllwoo.co + [[vj llweo.oe)
j=t'+1
n—1
< T losllweoo lvallizs
j=l+1

with o(B) > 0 going to zero when 8 goes to zero.
This is just a restatement of Proposition D.2.1. Proposition D.2.2 gives:

Corollary D.2.8. Under the assumptions and with the notation of Proposition D.2.2,
one has the following estimates for any j, 1 < j < n:

10p" (@) (v1, .., va)ll2

scrt IT lvellweoss (ILxvjllze + v l2). (D.71)
L#j,1<l<n
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andifn > 2, forany j # j', 1 < j,j <n,
I0p" @ @1.....vw)llz < Ce7t [T lvjllweos
L#j,j's1<t<n

X (IIL+vj lweo-co + l[vjrlwoo-co)[[vj 2.

Moreover, these estimates hold as soon as a € S/i,ﬂ (M, 1_[;'1=1 (gj)_l, n). (b7
In the same way, we have the bounds of Corollary D.2.3:
Corollary D.2.9. With the notation of Corollary D.2.3, one has for any j,
10p" (@) (Z, v1, ... va)ll2
<ct™ ] Ivslweees(ILavjlize + llvjl2) @79

1<l<n,(#]
andifn>2,j # jlarein{l,...,n},
10p" (@)(Z, v1....,vn)ll L2

—1
<Ct [T  Ivlweocs (1L llwooss + vy llweoce)llvjllz2. P79
L#£j,j s 1<t<n

Next we restate Proposition D.2.4.

Corollary D.2.10. With the notation and under the assumptions of Proposition D.2.4,
one has for any odd functions vy, vy,

10p* (@) (v1, v2)ll2 < Ct7>(||L£vtllweo.o + villweo.)

(D.75)
x (ILxv2llz2 + v2llL2).
2
10" (@) (v1, v2)ll22 < Ce724 TT(IL2v; N2 + v l115) (D.76)
j=1

if s,0 > 0 are such that so > 2(pg + 1).
Finally, we translate the estimates of Propositions D.2.5 and D.2.6.

Corollary D.2.11. With the notation and under the assumptions of Proposition D.2.5,
one has, for any odd functions vy, ...,v,, any0 <€ <n,anyr >0,

n

_ _1
10p" (@) (V1. va)lweco < Co7" [T (Ilvfllweoce + 172 |vj 7<)
j=1

+ C o [T (jllwoos + ILsvjlwo) ©.77)
Jj=1

n
< T (lwillzz + 1L l22)
j=t+1

ifs > so(p, )1 + rgil)for some function so(p, k).
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Corollary D.2.12. With the notation and under the assumption of Proposition D.2.6,

one has for any odd functions vy, ..., vy, any , 1 <€ <n—1,any0 <{' </,
|Op’ (@) (v1, ..., v0)|lHS
Z/
—L
< 7 [T (ILe, o7z + vy lrs)
j=1
¢ n (D.78)
< T (ILe;vsllweoce + v llweoso + 17 |vyllas)
j=t+1
n—1 )
< TT (Ijliwsoss + 2oy s loalas
J=t+1

for any small 0 > 0, as soon as (s — pg — 1)0 is large enough. The same estimate holds
true if we apply on the right-hand side any permutation on the indices {1, ...,n — 1}.

D.3 Weyl calculus

In Chapter 8, we use a different quantization of symbols a(x, £) on R x R. We give
its definition and properties here. Our classes of symbols will be variants of those
introduced in Definition B.1.2.

Definition D.3.1. Let §’ € [0, %], B >0, and let (x, &) — M(x, &) be a weight func-
tion on R x R. One denotes by SbY)’ 8 (M) the space of smooth functions

(h.x.§) ~a(x.§.h)
defined on ]0, 1] x R x R satisfying estimates
19595 (o) a(x. §. )| < CM(x. )R~ T (1 + prPigp™  ©.79)
for any &y, o, k, N in N.

Remark. Notice that for 8 > 0, we assume a rapid decay of the symbol in (h#&)~N.
This is not the same condition as in (B.12) and (B.13), where the rapid decay was
in (h# Mo(£))~N, which, when there is only one £ variable, is just O(1). Notice also
that instead of having a loss in M (£)* for each derivative acting on the symbol, we
allow a h=%" loss. Finally, at the difference of (B.11), we consider symbols that do not
depend on the y variable.

For a in SgY, 8 (M), we define the Weyl quantization by

opan = 5 [ Fea( en)umayas @30

for any test function v. We recall some results of [82] that we use in Chapter 8.
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Proposition D.3.2. Let p be in R4, I'(x, &, h) a function satisfying

a1+az<LP/(§)>_l (D.81)

o k —
050> (h9p)“I'(x. &, )| < Ch™ = N

for any ay,as,k in N. Then, for any 0 > 0, any r > 0, any s such that so is large
enough, we have

|0p} (M)OpY ((6))ulloe < C (47 |Jull2 + h" vllag)- (D.82)

Proof. Fix B > 0small. Decompose I' = Ty (h#£) + I'(1 — x)(h#) for y in CsP(R)
equal to one close to zero. By [82, Lemma 3.9], we may write

Opy (T x(hP£)) = Op)Y (r)Op) (7 (hP£)) + KN Opy) (r2) (D.83)
and
Op) (T(1 — ) (hP&)) = Op) (r3)0p) (1 — 71)(hP&)) + KN Op)Y (ra),  (D.84)

where r; are in Sr/fz’ﬂ(l), N is arbitrary, x, y1 are in Cj°(R) equal to one close to
zero. By semiclassical Sobolev injection and Proposition D.3.3 below, the last term
in (D.83)—(D.84) acting on OpX" (£)?)v has L norm estimated by the last term
in (D.82). Moreover, r; satisfies estimates of the form (D.81), so that we may apply
[82, Proposition 3.11] to estimate

l0py (r)Op)Y (7 (P E)(E)P)v]| oo

by the first term on the right-hand side of (D.82) with o linear in . Finally, by semi-
classical Sobolev injection and Proposition D.3.3, the L°° norm of the first term on
the right-hand side of (D.84) is bounded from above by

Ch 10} (€)(1 = 21" 9) Iy

which is estimated by A" ||v|| Hj 18 sB is large enough. This concludes the proof. =

One has also Sobolev estimates (see [24] or [82, Proposition 3.10]):

Proposition D.3.3. Let >0, 8 €[0,3]. r €R, a in S s({E)"). Then Op) (a) is
bounded from Hj to H;~" for any s in R, with operator norm bounded uniformly
in h.

We state next [82, Proposition 4.4].

Proposition D.3.4. Let y be in C5°(R), equal to one close to zero. Let £ 1 be the
operator (D.18) that may be written as well

2o =L Op (x4 p(E)).
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For pin N, v a function, define

x+ p'(§)
Vh

Then for any o > 0, any s such that so is large enough, one has estimates

vhe = Op) (1= )Py (). (D85)

1_
IAcllzz = Ch27 (112l 2 + llullay). (D.86)
1_
Ve llzoe < CRA77 (| L1 vllL2 + vl ) (D.87)
Let us prove next an L estimate for Opzv()/(&\/}%@))).

Proposition D.3.5. Let y be in C§°(R), with small enough support. Then for any
o > 0, N > 0, we have as soon as so is large enough relatively to N,

Jon ((“E2E))a] . = CH ki + 1 Il 39

Proof. Let B > 0, y in C§°(R) equal to one close to zero. Decompose
v =0py (x(W*§)u + OpyY (1 = (P &))u.
By semiclassical Sobolev injection, Proposition D.3.3 and the fact that

109} (1 = DAPEN g gz gy = OBPE)

if s > s’, we have

o ((=2D)ort(1 - pve],.

ol ((** 5o - 0o,

1
<Ch 2
- vh

< Ch™3HF6D |y o

which is estimated by the right-hand side of (D.88) if s8 is large enough. On the other
hand, by [82, Lemma 3.9], we may write for any N,

on} (1 (22) Jor (14 6)) = 0p (v, £.10) + 1 0p 1)

B (1) and a symbol I" in SV B (1) supported inside

< QW
for some r in S 1/2

1/2
lEl<h™ and |x+ p'(®)] <cvVh

for some small c¢. According to [20, Lemma 1.2.6], we know that setting

o(x) =~v1—x2
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for |x| < 1,if |x 4+ p’(£)| < c{£)~2 for some small enough c, then
& —dp(x)| < C(§)%x + p'(®)].
It follows that
I(x,§.h) =T(x,§ )1
The kernel of Op}lV(F) is
1
27h

1 .
le—do(x)|<ch23#

= ”Sr(’“zry s,h)dg (D.89)

that may be written
1 o G=yde(<5)

2/l ; ¢ x4+ x + (D-50)
x/el(x_y)ﬁF(Ty,dw( _ y) + ﬁg,h) de

The integral is of the form

) C
/el(x MEA(x, y,0) dE,

with A supported for |¢| < Ch™3# and satisfying a‘é‘A = O(1). It follows that (D.89)

o( 2],

which implies that operator (D.89) has £(L°°) norm that is O (h~3#).
On the other hand, ||AY Op (r)v||Le~ is bounded by the last term on the right-
hand side of (D.88) using again semiclassical Sobolev injection. |

We shall use also [82, Proposition 4.11] that we reproduce below.

Proposition D.3.6. Define
+ !/
Vi = OpZV(y(x—j’E(S)))Op},’V(@)")g, (D91

where y € C§°(R) has small enough support. There is (0)ne)o,1] a family of smooth
functions, real valued, supported in an interval [—-1 + ch®# |1 — ch?P] for some small
constant ¢ > 0, with 936, = O(h~ 2B for some small B > 0, such that, still denot-

ing p(x) = V1 — xzfor x| <1,
Opy (x& + p(E)vy = ¢(x)bh(x)v} + IR (D.92)

where 1
IRIlz2 < Ch277 (| L4ull2 + lullag).

1_
IRl|zee <= CRA7 (1€ 422 + lvllay)

forany o > 0, any s such that so is large enough.

(D.93)
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Finally, let us reproduce [82, Lemma 4.5].

Lemma D.3.7. Let y be as in Proposition D.3.6. One may write

[D,——Op?(xg4—P($»7OPY(V(5;#5%§2))]

X+EG»X+ﬂ@)
Vh Vh

where y_1(z) satisfies for any a, |0%y_1(z)| < Co(z)~17% and where r satisfies esti-
mates (D.81).

(D.%4)

= hopy (-1 ( ) + hiop} ().






Appendix E

Wave operators for time dependent potentials

The goal of this chapter is to construct wave operators for some time dependent per-
turbations of a constant coefficients operator. We consider a reference operator Py
independent of time, and a perturbation of Py of the form P(¢) = Py + V(¢), given
in terms of a time depending potential V(¢). Our goal is to construct a “wave opera-
tor” B(t) such that

(D¢ — P(1))B(t) = B(t)(D: — Po). (E.D

We did something similar in Appendix A in the autonomous case, when V(¢) does
not depend on time, and is given by a potential smooth and decaying in space. Here,
we shall have to consider a potential V(¢) that depends on time. As mentioned in the
introduction of Chapter 6, a scalar model for the kind of operators P(¢) we want to
consider is given by

3
2

Dy — p(Dy) — 172 Re(c(x)(Dy) "¢ 5, (E2)

where p(§) = /14 £2 and c is in §(R). The potential perturbing the autonomous
problem is given here in terms of

(S

te c(x)(Dx)_leiité.

As a function of Xx, this is still a smooth rapidly decaying function, but we have now
also ¢ dependence. On the one hand, this time dependence might be considered as
an advantage, since it makes the potential smaller and smaller as time growth. On
the other side, it makes impossible to use stationary arguments in order to construct
wave operators. Of course, there are well known results concerning scattering by time
dependent potentials. We refer for instance to the book of Derezinski and Gérard [23],
in particular Sections 3.3 and 3.4. Though, these results would not apply to our prob-
lem, as they demand better time decay of the potential and of its space derivatives
as the one we have in (E.2). We thus have to construct B(¢) by hand, composing
(E.1) at the left with Fourier transform, at the right with inverse Fourier transform
and defining a wave operator through iterated integrals.

E.1 Statement of the result

In order to state the result, we have to introduce some notation.

Definition E.1.1. Let a,b be in N, m > 0, ¢ > 0. We denote by 28,"& the space of
functions (z, &, n) — ¢q(t, &, n) defined on [1, +00[xR x R, with values in C, that are
Lipschitz in time, smooth in (&, n), and satisfy for any N in N, any j = 0, 1, any
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t > 1,any (§,7) € R?, any (o, @) € N?,
17992 q(t. 1. §)| < Cawrne't™ 7 {|&] = nl) V. (E.3)

We denote by E;"Z the space of functions ¢ of the form ¢ = (%)“(%)b g1 with g1
in 370

Example. Letus give an example of functions in the preceding class. Let ¢ = q; (x.¢),
where g; (k¢) is one of the functions defined in Lemma 6.1.1. Assume that these

functions are defined and satisfy (6.18) or (6.19) for ¢ in some interval [1, 7] with
4 < T < g=*+¢_ Extend this function to [1, 4+o0[ by

g E it +9CT —1.E 111070, (E4)

where yo € C*°(R) is equal to one on |—o0, %] and to zero on [%, +ool. If we denote
this extension still by ¢, we get a Lipschitz function of time on [1, +oo[ that satisfies
(6.18) or (6.19) for any ¢t > 1. Notice that these inequalities imply estimates of the
form (E.3) when we take 7 in (E.4) smaller than e ~#7¢ for some ¢ > 0, so that (E.4) is
supported for ¢ < Ce~4+¢. Actually, writing for any m € ]0, %[, tg_l/z <t mglm2m,
it follows from (6.18) that ¢ belongs to X' if ¢ = min(1 — 2m, 3c6’/4) > 0. In the
same way, under condition (6.19), we obtain an element of E‘O”'gﬂ/ 2 The matrix 0;
of Lemma 6.1.1 has thus entries in 2’1"11

We consider in this section an operator V defined in the following way. Assume
that we are given matrices Q; with entries in 26"8 form > 0,0t >0and -2 < <2.
.3 ’
Let A; = j 5> and define

2
V(i)=Y eM'Kg,, (E.5)

j==2

where, when ¢ is in X', and f is a scalar-valued function, K, f is defined by

Ko (6) = / a(t. &) f () dn, E6)

and when Q; is a 2 x 2 matrix, and f is C2-valued, K 0, [ is defined in the natural
way. We shall assume also that operator V satisfies

V(t)No = —NoV(1) (E.7)

with No = [9 §] (see (6.9)) and that V(r) preserves the space of odd functions. If

_ p(Dx) 0
P°‘[ 0 —p(Dx)]’

we define
P(t) = Py + V(2). (E.8)
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We want to construct a family of operators B(t) so that, for any f in L?(R) such that
(D; — Py) f is in L?(R) for any ¢,

(D: = P(1))B(1) f = B(t)(Dy — Po) f. (E.9)
We shall prove:

Proposition E.1.2. Foranyt > 1, let V(t) be a bounded operator on L*(R). Assume
that t — V(t) is compactly supported and define for any t > 1, n € N*,

n
Bu(t) = (—=i)" / [[e™ PV + 1)e' " Plocr, <ocry dT1 -+ d Ty, (E.10)
ji=1

where, for non-commuting variables A1, ..., Ay, 1_[;'1=1 A;j denotes A1 Ay -+ Ap. Set
also Bo(t) = Id. Assume that for any f in L*>(R), one may find a sequence (atn)y
in €Y such that one has

su;l)lan(t)flle < an. (E.11)
t>
Define
+o0
B(t)f =Y Ba()f. (E.12)
n=0

that exists because of our assumptions. Then B(t) solves equation (E.9). Moreover,
define Co(t) = Id and for n in N*,

n
Cpu(1) =i”/]_[e—”ﬂ’ov(t+r,-)e”f”010<rn<...<ndn cdty,. (E.13)
j=1

If we assume that the analogous of (E.11) holds for C,, and define then C(t) as in
(E.12), one has
B(@)C(t) = C(¢t)B(t) = 1d. (E.14)

Proof. Let us denote A(t,s) = —ie SPoV(t 4 5)e’sF0. Then
[Dl - DSa A(t5 S)] = [P07 A(t,S)]

and by (E.10)

B,(t) = / [TAC t)l0wr,<cr, d Ty -+ d (E.15)

Jj=1

so that

n
[Dl‘ — P(), Bn] = /(Dfl + -+ Dfn)(l—[ A([’ Tj))]l0<‘51<"'<tn dTl e dTn
j=1

n
= _[ HA(ty ‘C]')(Drl + -..+ D‘L’n)]l0<rl<...<rn d‘[l ...d-[n
j=1

— i A(1,0)Bp_i (0).
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Using (E.8), and making the convention B_;(¢) = 0, we rewrite this as
(D¢ = P(1))Bu(t) = Bp(1)(D: — Po) = V(t)(Bn(t) — Ba—1(1)).

If we denote by Sy, (1) = Y_/_o Bn(¢) the partial sum, we get

n’'=

(Di = P(0))Sn(t) = Su(t)(D: — Po) = V(1) By (2). (E.16)

If we make act this on a function f in L2(R) such that (D; — Py) f is in L2, we get
when n goes to infinity, in view of (E.11) and (E.12), the conclusion (E.9).

We still have to show that C () is the inverse of B(¢). To this end, let us denote for
J=0,....n—1L¢i(tj,141) = ﬂf_i+1>t_/ and rewrite the definition of B, (¢) given
in (E.15) as

n n—1
B, (1) =/1_[A(t,rj))((t1,...,tn) [ @ t)do - du.
j=1 =1

j =
where y(t1,...,Tn) = ]_[?=1 lo<z,. In the same way, (E.13) may be written as
n n—1
Cp(t) = (—1)" / [TAC.)x@.....o) [TA =9 g dry - d .
Jj=1 Jj'=1
We thus get for 1 < £ <n,
n -1
€0 Byes) = (1 [ [TAC o)) [T 0= 0@
j=1 jr=1
n—1
X l—[ @i (T Tirv1) dty - dy
Ji=t+1
using the convention ]_[;-)=1 = 7;,11 = 1. This may be rewritten for{ =1,...,n—1,

n L
Ce(t) o By_y(t) = (—1)" [ [TAC ). o) [ =)@ 7i1)
j=1 =1

J'=

n—1
X 1_[ @i (T, tjrp1)drty ---dy
Jj/=t+1
n {—1
— (D! / [TAC. )@, ...w) [T =)@ tr41)
j=1 j'=1
n—1

X l_[ ng/(Tj/,‘Cj/+1)d‘C1 d‘Cn

jr=t
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It follows that > y_o Ce(¢) By—¢(¢) = O whenn > 1, which implies C(7) o B(r) = 1d.
In the same way B(t) o C(¢) = Id. ]

In the rest of this chapter, we shall show that the preceding proposition may be
applied to an operator of the form (E.5), if one makes convenient assumptions on
the Q;. Moreover, we shall obtain for the operators B(¢) and C(¢) estimates in other
spaces than L2. More precisely, we shall prove the proposition below, where we use
the following notation. Set, according to (D.34),

Li=x+ip'(Dy), L= [Lo+ LO_} (E.17)

so that
[D; — Py, L] =0. (E.18)
In the following sections, we shall prove:

Proposition E.1.3. Let B, (t) and C,(t) be defined respectively by (E.10) and (E.13),
in terms of 'V given by (E.5) with Q; a 2 x 2 matrix of elements of Ellnf for some
t > 0 small, some m € )0, %[, close to % Then for & small enough, (E.11) and the
corresponding inequality for C,(t) holds, so that

+o00 oo
Y Bu(t)=B(t) and Y Cp(t) =C(1)

are well defined as operators acting on L*(R). Moreover, the operators B(t), C(t)
are bounded on H* (R) for any s > 0 and satisfy for small §’' > 0,

1B(t) — Id|| gy < Cett™m 343,

o (E.19)
|C(t) = 1d||g(zsy < Ce'r™™ 5" +a,
One may also write for any f in L>(R; C?) such that Lf € L*>(R;C?),
LoC(t)f =C@)Lf +Ci(0) f, (E.20)
where
IC (1) —1d|l g 12 < Clt ™8 +4, (E21)
1C ()2 < Ce'r2 ™. (E22)
Moreover, under condition (E.7), one has
B()No = NoB(t).  C(t)No = NoC (1) (E23)

and if 'V(t) preserves the space of odd functions, so do B(t) and C(t).
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E.2 Technical lemmas

In this section, we prove some technical lemmas that will be used to obtain Proposi-
tion E.1.3.

Lemma E.2.1. For &, n, A real, denote

¢+ n.A) = () £ () + A (E.24)
There is C > 0 such that for any A in R, any t > 1,

/ (1 (E,m,2) " dy < Cr72, (E.25)
b (5.1, 1)]<1

/ (tp+ (€, n,)t))—lm dn < Ct™'log(1 +1). (E.26)
6+ (&m0, 1)|<1 (m

Proof. We compute first the integrals over the domain 1 > ¢ or n < —c for some con-
stant ¢ > 0. On these domains, n +— ¢ = ¢+ (€, 1, A) is a change of variables, whose
Jacobian has uniform lower and upper bounds. The corresponding integrals are thus
bounded by

C/ (tty v de < Ct7 log(t + 1).
[¢l<1

We compute next the integrals for |n| < c. If ¢ is small enough, we may write on this
domain

¢+ (5.0, 1) = ¢+ (5,0,1) + g(n)?,
where g(0) = 0, g’(0) # 0, so that we may bound the two integrals (E.25) and (E.26),
respectively, by

C 2 —ld , C 2\—1 d ,
[ territas [ ot

where ¢’ > 0 is some constant, and p is some real number depending on &, A, t. These
two integrals are smaller than the right-hand side of (E.25) and (E.26), respectively,
uniformly in p. |

We study now composition of operators defined by (E.6) from symbols in the
classes of Definition E.1.1, and we prove also Sobolev estimates for such operators.

Lemma E.2.2. The following statements hold.

i) Iflisin N, set u(f) = % if £ = 0 and let 1(£) be strictly smaller than 1
if £ > 1. Let N > 2. There is a constant C > 0 such that if two functions
q1,q2 satisfy estimates

b
&0l < Ky (§l = n) (—) ,
(E.27)

426 )| < Ka ] — n)~N (—) |
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where a, b are in {0, 1}, then the function given by

q3(§.n) = /ql(é, Oq2(& ) {1pe (5,8, 2) 7 d¢ (E.28)

satisfies
436 | = CK1 Kot ™0+ (1] — )=, (E29)
(ii) LetsbeinRy, 8 >0, N > s+ 2. There is C > 0 such that if a function
(§.m) = q(&,n) satisfies

g < K{E] = 1) (% ; %) (E30)

then the operator K, defined by (E.6) satisfies
1Kl 2asy < CK1=3+Y, (E31)
(i) Ifinstead of (E.30), q satisfies

- 8L Il
lg(€,m)| < K(|&] — In]) & ) (E.32)

one gets instead of (E.31)
1Kl gcarsy < CKe™'F (E.33)

Proof. (i) If in (E.28) we integrate for ¢4 (&,Z,A) > 1, then (E.29) holds trivially,
as a consequence of (E.27), with factor ! instead of t—HGFD) 1f we integrate for
|pL(€,¢,A)| < 1, the contribution to ¢3 is bounded from above by

(1960207 (2 a.

=N
CKi Kol ~ )™ [ ()

lp4 (§,¢,1)|<1

Applying Lemma E.2.1, we get (E.29).

(i) Since N > s + 2, the £ (H*) estimate is reduced to an £ (L?) one for N > 2
using the decay in (|§]| — |n|) in (E.30). If the kernel of the operator K is cut-off
for |¢+(£,1,A)| > 1, then Schur’s lemma shows that estimate (E.31) holds with ¢!
instead of £~ 375, We have thus to study

fro [ GE M (DL E 1) i entri<r £ d.

By Schur’s lemma and (E.30), the £(L?) norm of this operator is bounded from
above by

Inl
CK (Slglp/(|§| Inl)™N (&, 0, 1))~ 1( ) )
(E.34)

1

« (sup [ el = 0y~ s .02 " )
and by the symmetric quantity. Using (E.25) and (E.26), we get (E.31).
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(iii)) We make the same reasoning as above, except that (E.34) is now replaced by

CK(Sl;p/(IEI—IUI) {1+ (5,n, )" U )

m
) e el
(sup 4 = e (e ) o

We conclude by (E.26). ]

dg)

Let us define a class that will contain functions obtained from those of Defini-
tion E.1.1 by introduction of an extra variable.

Definition E.2.3. We denote by E‘ M0 the space of functions

(I’U’E’ TI) '—>CI(Z’U,§’ 71)7

defined for ¢t > 1, v > 0, &, n in R, that are Lipschitz and compactly supported in v
and satisfy forany N and j =0, 1,

107q(t, v, £, )| < Cyet'™™ (1 + v) ™0~/ (|&] — [n|) ™. (E.35)

For a, b in N, we denote by FEV;”mb’mO the space of functions that may be written
,i: a/n b
() () o
with g1 in X

We shall also allow ¢ to depend on extra parameters, estimates (E.35) being uni-
form in these parameters.

meo

Notice that if ¢ belongs to the class X" ab of Definition E.1.1 and is compactly
supported in time, then G (¢, v, £, ) = tq(t(l +v),£,n)isin EL L0 i m > my.

We shall discuss some operators constructed from functlons in 2‘ "0 In the
following discussion, we shall identify operators and their kernels.

Let O bein E‘ "0 Q@ Ma(R) (i.e. a2 x 2 matrix of elements of Z‘ T0) I A s
in R, we consider the operator from L?(R) to L?(R) given at fixed ¢, v by the kernel

in (§,7) , ,
S(t.v, 0, 1) = e PO (1 v £, )tV FoMFA), (E.36)

If we decompose

2 2
Q(I’U7$7 77) = qujk(lvvvgv n)E]k,

where

Eji = (8 8¢ hzj w2, (E37)
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we may write

2 2
S(t,v, 0, 1) = ZZ Sik(t,v, 0, 1) (E.38)
j=1k=1
with
Sjk(t’ v, Q7 A') = qjk(t’ v, g? n)eitvq}jk(g’n,A)Ejk’ (E39)
where
Gi(E.n.A) = (1)) p(§) — (=¥ p(m) + A. (E.40)

~ il ol 0l
We assume given functions Q° in E;e’n;e’mo ® M5 (R) and real numbers Ay for £

in N*. We set

Qn:(Q",...,Ql), A= A" AN, (E41)
We define inductively a sequence of operators by their kernels, starting with
+o00
M0,y = [ S0 A ay (E42)
u

and forn > 1,

Mn-i—l(ts u, gn_i__lv&n—‘r—l)

+o0 (E.43)
= / S(t,v,Q"H,)t"“)oMn(t,v,gn,&n) dv.
u

Notice that the above integrals converge since S is compactly supported in v. Accord-
ing to our convention of identification between kernels and operators, we shall set for
a function f

My (2,0, Q,.4,) f(§) = /Mn(t,v,gn,&n)(é, m.f(n)dn. (E.44)

We shall prove the following estimates:

Lemma E.2.4. Let m,m{, my,,a,b satisfy

1
mg,m6>z, a,beN,a+b>1, 1>0, m>0. (E.45)
Let Q be in Z‘L . ® M2(R), A inR, and let Ky be the best constant Cy in (E.35)
for the entries of Q. In the same way, denote by Ky 4 the best constant in (E.35) for
the entries of Qg, £ = 1,...,n. There are for any N =2, any 8’ > 0, a constant Cy
that does not depend on Ky, Ky ¢ and a symbol Q in

Jtttn,m+m't—

1 n r_1
Za,b" 2:mytmy—3 ® Ma(R)
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ifa® +b =0, and in

Sttt mAm" =8 m§ 4+-m{—

8/
Ea’bn & MZ(R)
ifa" +b > 1, whose N -th semi-norm is bounded from above by Cy Kn Kn , such

that ifn > 1,

+o0
/ S(t.v. Q. 1) o My(t,v. Q . A,)dv
u (E.46)

+o00 oL
= [ S(t,v,0,4)0 n_l(t,v,gn_l,&n_l)dv—{—Rn(t,u),
u
where A = X + A, and Ry, satisfies for any f in L>(R) and any §' > 0,

_ 1., s/
Isup| Ra (¢, ) f1l 2 < CKos't ™" 3F 5 |sup| My (1,0, @ A) fllL2. (BAT)
u u

Ifn = 0, then (E.46) holds as well without the integral term on the right-hand side.

Proof. In the left-hand side of (E.46) we plug (E.38). Then the kernel of that operator
isthe sumin j, k,1 < j, k <2, of

+o00
[ [ S0 06 0M 0.0, A E )t o, (E.43)
Let us define for 1 < j, k < 2 the operator
Liga(€.0) = (11 + v)gjx €. 8 0)
X (14 1(1 + v)gi (5., A)(1 + v)Dy),
where we used notation (E.40). Then, by (E.39),

(40 h)
A E50)
X Dogyp (1, v, .8 N PO EEN |

(E.49)

LjxaSik(.8) = Sjx(§,0) +

We plug the expression of S;; deduced from (E.50) inside (E.48). We obtain on the
one hand

_/+°°/ t(1+v)gpj¢.5. 1)
u (tA +v)gjr(§.C. 1))
x eV EEN poM, (2, v, 0 A mdSdy

14+ v)Dygir(t,v,E ¢ A
> (L +v)Dyqk(t.v.6.8,4) E51)

and on the other hand

+o00
[ [ Losutv. 0 € oM., 2)@ndsdn. @5

Using the expression (E.49) of L, we perform in (E.52) one integration by parts
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in v. We get the following contributions:

Yoo | -2 t(1+v)pjr(§.5,4)
/u / ((’(” D9jk(E.£.) D“(“+”)<z(1+v)¢z,-k(s,z,k)>2)) (E53)

X Sji(t, v, 0 W) E DM, 0, A,)(E 1) dE d,
T L)
[ (T gz ap kv 2 DED (E.54)
X(l—|—U)Dan(t,v,gn,&n)(é',ﬂ)dé'dv,
L[ R E L
/ W+ Wy E. gy ok @ ME0) E55)
X My(tu, Q| A,)(En) de.

Let us show that (E.51), (E.53), (E.54), (E.55) may be written as contributions to the
right-hand side of (E.46).

Contributions of (E.51) and (E.53). We make act (E.51) and (E.53) on a function f.
We shall get an expression

+o00
| [ kesoMer.0, 2006 v, (E.56)

where, by the fact that g;; in (E.39) is in ’i;'Zmo and (E.35), the kernel K satisfies
the bound

£y 121 \?
Kweol=chau+ose e (g) (7)) ey
e (1 v) 0 (1] — [nl) 2.
We bound the modulus of (E.56) by
+o00
| [iKeeoiumima. w0, 2 1@ dz dv.

Then the L2 norm in £ of the supremum in u of (E.56) is bounded from above by

/ H/ K. 8. D)l (suplMa(t.w. Q. 4,) f(D)]) dE dv.  (ES58)

L2(d¥)

As a+ b > 1, (E.57) shows that we may apply to the d ¢-integral, which is of the
form of the right-hand side of (E.30), estimate (E.31), with ¢ replaced by ¢(1 + v).
We obtain that (E.58) is smaller than

+o0
CK2/ 147+ (1 p) ™m0~ gy || sup| My (1, w, 0 A f 12
0 w _

with §" > 0 as small as we want. Since by assumption 1y, > %, we obtain a bound of

the form (E.47), that shows that (E.51) and (E.53) contribute to R,, in (E.46).
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Contribution of (E.55). This is an expression similar to (E.53), except that we no
not have a dv integral and have a factor (1 + u)? instead of (1 + v). Consequently,
for the L2 norm of that operator acting on f, we get a bound of the form (E.58) but
without dv-integration and an extra factor (1 + u), and with K estimated at » instead
of v. This implies again that we obtain a contribution to R,,.

Contribution of (E.54). By (E.43) at order n — 1,
Dan(t7 U’Qn’&l’l) = iS(ta U5 Qn’ A'n) o n—l(tv U5 gn_15&n—l)‘

Plugging this in (E.54), we get the expression

P (I+v)gi€.8A)
’ / // W+ g Ly kv 2 DED 59

x (L+v)S(t, v, Q" A" )My—1(t,v. Q. A,_)(n',n)dC dn dv.

We write by (E.38)

2 2
SE.v. Q" A" = > Selt.v. Q" A").

k'=14=1

By (E.39) and the fact that E;; Exry = 8’]5 E;¢, we have

2
D Skt v, @, ME O Sk e(t,v, Q" A, )

k’'=1
— C]jk(f’ v, €, é-)qzz(t’ v, ¢, n/)eitvd)jk(f,C,k)+itv¢ke(§»n’,ln)Eje’

(E.60)

where q,’: ‘ denote the entries of matrix Q”. By (E.40), the phase in the exponential is
¢ie(E, ', A + A™). Define

2
Gio(t,v,E,1, ) = —i(1+ U)/};‘]jk(lvva Ot v.8.1) (E.61)

X t(1 + )ik (€, &, ) {1 (1 + v)jx (€, m, 1)) "2 dC.

Slnce gjk is in E‘ m '”0 estimate (E.35) shows that we may write this function as
( )“ multiplied by a function that will satisfy the first estimate (E 27) w1th K,
bounded by ¢ t1 '”(1 + v)™™0. In the same way, since gy, is in s o bn’ mg | it may

replaced by a” and K, bounded by & t1="(1 + v)~™0. By (i) of Lemma E.2.2,
apphed w1th t replaced by #(1 + v), we see that (E.61) may be written as a product
of ( )“( )b times a quantity bounded from above by

CKy Ky et 137" (1 4 p)37m8=m0o (€| — /|y~
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if b + a" = 0 and by
CKy Ky e T (17m=m" 8 (| 4 yy=mo=mo+8" (| _ /|y~

for any §' > 0if b + a" > 1, according to (E.29).

If one takes a 9, -derivative of (E.61), one gains an extra decay factor in (1 + v) 1
Consequently, equation (E.61) defines a symbol in the class EH" mem'! =5 mg +"’0_i
(resp. in the class Z"‘“ mm" =8 mG+mo=8"y e p 4 gn =0 (resp b +a™ > 1). Since

the phases in equatlon (E.60) satisfy
¢jk(g7 é" A) + ¢k€(§’ 77/’ An) = ¢]€(E? ’7,, A+ An)v

this shows that (E.59) may be written under the form of the first integral on the right-
hand side of (E.46), with a matrix function Q, depending on A, but with estimates
uniform in A, whose entries are respectively in the classes of the statement of the
lemma. This concludes the proof as, in the case n = 0, one has just to estimate terms
of the form (E.51), (E.53), (E.55). ]

Our next goal will be to obtain bounds for (E.43) iterating (E.46). We introduce
some notation. .
Let p,n be in N*. Assume given for each (n, p) a sequence (X (Jn p))15 j<n, where
X (] n.p) is an element
J J J J J
Xinoy = W) M0 M, 9,0 U+ o )

of 0, +o00[ x ]%, ~+o0[ x ]Z’ +oo[ x N x N satisfying the following conditions:

(E.62)

3 .
pr<nthenm(np)0 g,]=1,...,l’l

(E.63)

pr>n+1thenm cJ=Lon—1 andmg, 4> -

.0~ g 4
Forl < j'.j" <n, a(np)+b(nl7)

j' < j” = p (this exception being void if p > n or p = 1).

> 1 except eventually if (E.64)

For any X (jn ») of the form (E.62), we denote for short by ’i(X (jn p)) the class

. i J J
Sx? )= 53 )Mo p) M ). 0
(n,p) a’ b/
(n.p)>"(n.p)

of Definition E.2.3.

If (X(n+1 p))1<j <n+1 1sCa sequence of the form (E.62), we define from it the
concatenated sequence (X . p))1< j<n and the truncated sequence (X @, p))1< j<n in
the following way: We just set

xS =x!

(n.p) wt1,py J = L...n, (E.65)

while we denote

j,.C j,.C j,.C ] C J,C
X(n,p) (L(n,p)’ Mn,p) " (n,p),0° a(n,p)’ b(n p))
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where the components of the preceding vector are defined in the following way:

n,C _ n+l »C ] .
Ynp) = t’(’n+1p)+t?n+1’p), Ynp) = Yntl.p) j=1,...,n—1. (E.66)

Ifn# p—1,wesetforj =1,...,n—1,

n,C n+1 / iCc
m(n 2 m(n+1 p) + m(n+1 p) -8, m(n p) m(n+1,p)’ (E67)
nC _ n+1 / J.C j .
Mnp),0 = Mnt1,p,0 T m(n-H P),0 -4, M 5.0 = Mnt1,p).00

where §’ > 0 is as small as wanted (in particular, §’ will be small enough so that the

lower bound (E.63) still holds with m” 1.0).0 o Teplaced by m’ (1.0).0 - 3.
Ifn=p-1, wedeﬁne1nsteadof(E67) forj=1,...,p—2,
1 ;
p—1,C P p—1 J,C ]
m =m +m - = m
(p—1,p) = "(p,p) (p.p) ’ (r—1.p) = "M(p,p)°
2 | (E.68)
mP~ 1,C _ P -1 - J C j
Mp-1.)0 = M(p.p)0o T m(p 2.0 5 Mp-1.p.0 = Mp.p).00
Finally, we set for all (n, p),
n C n+1 bn ,C bn
An,p) = Yn+1,p) 20.p) = P(n+1.p)
(E.69)
a’c  =al piC = bl =1 n—1
%n,p) n+1,p0 Pmp) T Pt1py E :

Let us check that if the sequence (X (n+1, p))1< j<n+1 satisfies (E.63)—(E.64) (with n
replaced by n + 1), then (X ))1<J <n satisfies also (E.63)—~(E.64).

Verification of condition (E.63).
Case p <n. Asn # p — 1, (E.67) applies and shows that

mj ,C mj
(n,p),0 (n+1,p),0

for j = 1,...,n — 1. On the other hand, by (E.63) with n replaced by n + 1,

j 3
Mo 1,00 = g’

so that the first condition (E.63) holds for m’ if j =1,...,n—1. To get it for

nC (n p)O
m(,, )00 W€ write by (E.67) that
3 3 3
nC )
M0 = Miat 1,0 T Mns1.p0 =8 > sts 9>3

using the first line in (E.63) with n replaced by n + 1.
Case p = n + 1. By (E.68), we have

1 C j
Mip—1,9),0 = " (p,p),0
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forj =1,...,p—2,and by the first line in (E.63) (with n replaced by n 4+ 1 = p),
this is strictly larger than 3 §» so that the second line of (E.63) holds for my pc 1.0).0°
j =1,..., p— 2. On the other hand, still by (E.68)

- 1 3 3 1 1
mP—1C P o1 1
o100 = Mo T om0 T3 7§ T3 T2 TG
so that the last condition (E.63) holds for mé’ p__ll’cp) o- We thus got (E.63) for m

whenn = p — 1.

J,C
(n,p),0

Case p > n + 2. Again, we may apply (E.67) to writefor j = 1,...,n —1,

i 3
J,C m’
M 0.0 = Mnt1,p).0 =~ 3
by the second condition of (E.63) with n replaced by n + 1. On the other hand, still
by (E.67)
1 3 3
n,C _ +1
M 22,0 = Mn1,p0.0 T Mintrpp0 =8 > 7+ g =8 >7¢
using (E.63) with n replaced by n + 1. This is better than what we need to ensure the

last condition (E.63) for m n,C 2).0° This concludes the verification.

Verification of (E.64). We assume that (E.64) holds at rank n + 1, i.e.

Forl1 <j',j" <n+ 1,a(n+1 »n T b(nJrl > 1 except eventually
if j' < j" = p.
Let us check (E.64) for a’ o ;), b(jn 1?) If both j" and j” are strictly smaller than 7, then
(E.69) shows that the wanted property holds. On the other hand, if j” < n, j’ <n,
then
_ 0
@) + Bl gy = Cusr. T Dot )
by (E.69), and this expression is larger than or equal to one, except eventually if
j’ < j” = p, whence again (E.64). It remains to study the case j’ = n. We have
then
n,C J7.C _  n+1 Jj"”
‘) + Dy = A+ Doy
The inequality n + 1 < j” = p cannot hold, so that the above quantlty is always

larger than or equal to one. This shows that (E.64) is satisfied by (X’ @, p))1< j<n-
We may state our main proposition.

Proposition E.2.5. Let n be in N, p in N*. Assume a sequence (X(j;,ﬂ p))1<] <n+1
of the form (E.62) is given, satisfying (E.63) and (E.04), with n replaced by n + 1.
For j=1,....,n41, let Q(nJrl ») be an element of E(X(nJrl p)) ® M5 (R). Denote
by K(n +1,p) the semi-norm provided by the best constant in estimate (E.35), in the
special case N = 2. Set as in (E.41),

_ +1 1
2n+1 - (Q?n+1,p)’ Tt Q(n+1,p))'
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Then there exists a universal constant Cq such that, for any function f in L?, any

App1 = AL AY) in R*Y one has when p > n + 1 or p = 1 the bounds
|| Sup|Mn+1(ta u, 2n+1v&n+1)f| HLZ
u>0 (E.70)
= G K g pystrt T b0 f |2,
where
n+1 )
_ J
Lnt1,0) = D k1)
Jj=1
n+1
, 1 (E.71)
_ J /
Mpitp) = D My — (0 F 1)(5 + 1)7
=1
— ! n+1
Kot1,p) = K(n+1,p) K(n+1 p)’
while if 2 < p <n + 1, one gets instead
H SulerH—l(t? u, 2n+1’in+l)f| ”LZ
u>0 (E.72)

<GP K g sttt e 2O £ o,
The proposition will be deduced from the following lemma.

Lemma E.2.6. Let Qn+ ) be as in the statement of Proposition E.2.5. There are
C > 0, a sequence

0" = (Q/ Nicjen:
with Q‘(Ilfp) in f(X {};’Tp)) ® Mo (R) with semi-norms K (],fp) satisfying

KT <K/

(n,p) — T (n+1,p)’ (E.73)

a sequence
0° = (Q(,, p)1<j<ns

with Q (n py in E(X ) ® M2 (R) and semi-norms K (j’;(;p) satisfying

(n, p)

J,.C J P
K(n,p) K(n+1,p)’ J =

n,C n n+1
K(n p) — = CK(n+1,p)K(n+l,p)’

1,...,n—1,
(E.74)

such that
HiliI())IMnH(t,u,gnH,&nH)leLz

< |[sup| My (t,u, Q€ A0) 1] 12

u=0 . (E.75)
m{, +i48 47 +1

+Ct™ Mn+1.p) g(+1p)K?+1p)

x supl M .. Q7. A0 /1] .2

for other sequences of real numbers )LC AT
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Proof. We apply Lemma E.2.4 with

1
Q,=Qs1.p) > Qint1.p)
_ +1
Q - Q?n-t—l D)’
1
Q (Q(n+1,p)’ "Q(n+1,p))'

The left-hand side of equation (E.46) is then, according to equation (E.43), equal to
My 41(t,u, 2n+1 . A 41)- Let us check that condition (E.45) holds. By (E.63) with n
replaced by n 4 1, we have

1
n+1 - n -
Mo 1,p),0 = 1 Me+1,p).0 > s

We have to check that
g+l 4 pntl 1.
(n+1,p) (n+1,p) —

that follows from (E.64) at order n + 1. Let us check that the first term on the right-
hand side of (E.46) may be written as M, (¢, u, QC AC) so that it will provide the
first term on the right-hand side of (E.75). We shall "define the sequence QC by

0L, =0.00C =00, . j=1l..n-1 (E.76)

where O is introduced in the statement of Lemma E.2.4. Let us check that we get
for the elements of the sequence (X o )1< j<n the expressions in (E.66)—(E.69).
For j = 1~ — 1, this follows from the definition of Q{ Cp) in (E.76). Con-
sider now Q. The class to which it belongs depends on the fact that

+1
b?n-i—l »n T a?n+1,p) > 1 (E.77)

ornot. By (E.64) atordern + 1, (E.77) holds exceptifn 4+ 1 = p > n. Consequently,
whenn # p — 1, we have accordmg to Lemma E.2.4 that (7, m™C  om™C | are

(n p)’ "1, p) "™ (n,p).0
given by (E.66)~(E.67) and a’, o, p), b:‘ncp) by (E.69).If n = p — 1, then we know only
that

bn+1 4 an > 0
(n+1,p) (n+1,p) =

n.C and m™C

and in this case, the lemma shows that m (n.p),0 AT€ given by the expres-
sions in equation (E.68). We thus obtain that the first term on the right-hand side
of equation (E.46) is M, (¢, u, QC )tc) fora convement sequence A /\C Moreover, again
by Lemma E.2.4, the semi-norm of Q Q (correspondlng to N = 2in (E.35))

is controlled according to the last 1nequahty in (E 74), the case of the semi-norms of

J .
Q(n p) Q(n+l,p)’ Jj=1...,n—-1,

being trivial.

We have next to check that the remainder R, in (E.46) provides the last contri-
bution to (E.75). This follows from (E.47) and the fact that, by definition, QT is the
truncated sequence ( Q(n p) Q(n p)) This concludes the proof. ]
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Proof of Proposition E.2.5. We proceed by induction on n. If n = 0, the last state-
ment in Lemma E.2.4 shows that we get (E.70). We assume from now on thatn > 1.
Assume that (E.70) and (E.72) have been proved at order n instead of n + 1.

Case p > n 4+ 2. We apply inequality (E 75) On its right-hand side, we may apply
the induction hypothesis to M, (¢, u, Q ) and M, (¢, u, Q ) Since p > n, it
follows that estimate (E.70) (with n —I— 1 replaced by n) for M (t,u, Q ,Cl) will

hold, with ¢, 1 ), M, 41, p)» Knt1,p) replaced by
n
C — €
*(n.p) — op)

j=1

1
m(n,p) Zm(n,p) ( +Z)

Kupy = 1—[ Ky

respectively. Using (E.66), (E.67), (E.74), we get a bound of the first term on the
right-hand side of (E.75) by

n+1
CcyC 1_[ K(]n+ljp)8£(n+1,p)[_m(n-i—l,p)||f||L2. (E.78)
Jj=1

On the other hand, if we apply inequality (E.70) (with n 4 1 replaced by n) to
M, (t,u, QT, &;) and use (E.73), we bound the last term in (E.75) by

n+1

Ct Ma+1.pTa 3 +8 ‘(n+1 p)Kz’t_ll p)CO K(n e Lon.p) ™. ) I fll2. (E.79)

where we denoted

n
T J
to,p) = ZL(H )2 Zt(nﬂ,p)’
j=1
1 8/ _ “ ] 1 8/
m(n,p)_zm(n p) (Z+ ) _Zm(n+1,p)_n(1+ )’
j=1

n

K' =[]k, = l_[K<n+1,p>
Jj=1

according to the definition of x/T o
again (E.79) by (E.78).

») in (E.65). Taking (E.71) into account, we bound

D

Case p = n + 1. We apply again (E.75). On the right-hand side, the first term may
be estimated again from (E.70) with n + 1 replaced by n = p — 1, since we have
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p > p — 1. The exponent mfn » of ¢ on the right-hand side will be here

1

m(p Lp) — Zm(p Lp) _1)<8/+Z)
; 1 1
:;m{”””‘(”‘”(?”’w)—z

according to (E.68). On the other hand, the last term in (E.75) will be estimated by
(E.70) at order n instead of n + 1, and thus by (E.79). We thus get a bound of the
form (E.72).

Case 2 < p < n. We apply again (E.75). The first term on the right-hand side may

be estimated from the induction hypothesis (E.72), applied with n + 1 replaced by n,

to M, (¢, uQS&S) Since n # p — 1, the exponent m(;l?p) are given by (E.67), so
that

C / 1 1

Mn,p) = Zm(n » ”(5 + Z) ZMeut1p) T g

which largely allows to bound the first term by
CYCK gy pysterttn ottt 5G| ). (E.80)

The second term on the right-hand side of (E.75) is estimated using the induction
assumption for M, (t, u,gz,&,f), i.e. writing for this expression (E.72) with n + 1
replaced by n. One gets again a bound of the form (E.80).

Case p = 1. Inthis case, we proceed as when p > n 4 1: We prove (E.70) by induc-
tion, using at each step (E.75), and the fact that the condition n # p — 1 = 0 holding
for all n > 1, we may use at each step (E.67). This concludes the proof. ]

E.3 Proof of Proposition E.1.3

We shall prove first Sobolev estimates.

Lemma E.3.1. Let B, (t) (resp. Cy(t)) be given by (E.10) (resp. (E.13)) with V(-)
of the form (E.5), Q; being in Etl'? Sfor some 1 > 0, some m € |0, %[ close to % (asin
the example following Definition E.1.1). There are K > 0, §' > 0 small, such that for
any n in N¥,
—(m—§'—1
IBa ()l crsy < (Ke't™ =¥ =9)",

) (E.81)
1Ca ()l 2ars) < (Kt~ =D)",

The same conclusion holds true if Q; is in 2‘2’,'3 forall j or Q;isin Ef)”'; forall j.
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Proof. We shall estimate |[(Dx)* By (t){Dx) |l ¢(L2)- By (E.10),

(D) B0} = [ [T ™ (Do) iy V(e + 1) (Dy) " P
i (E.82)
X lo<gy<zg, dT1 *** Tn.

By (E.5), this may be written as a sum of 5" terms

Z Z /1_[( iYe ' Fo(D,) K Qi i, +T)

i1=—2 ip=-2 (E.83)

itj Po+i(t+t; ))Lln—ﬁ—l—j (Dx>_

X e lo<zy <<z, dT1 -+ d Ty,

where by assumption Q;; is an element of 37"} (resp. 3577, resp. 3¢7) for all ;.
We shall set (a,b) = (1, 1) (resp. (2,0), resp. (0, 2)). Composing (E.83) by Fourier
transform on the left and inverse Fourier transform on the right, as in (E.6), we
reduce ourselves to the £ (L?) boundedness of an operator that may be written, set-

ting t; = v;t in the integral, as the sumin iy, ..., i, of
n
f [1SC v 0ipir s Aipir— ) Lo<vy <o, dvr -+ dvn, (E.84)
j=1

where Qin+1—j is defined from Qin+1—j by

Qin+]—j (t,vj,§,n) = eitli"“_”(é)sQinﬂ—j (A +vp). &)~ (E.85)

and S(z, vj, an+1 _;»Aiyyq—;) is defined in (E.36). Since Q;, ., . belongs to the
class X" of Definition E.1.1, Qi,.1_, is in the class P ap 0 of Definition E.2.3,
taking for mg any number mo < m. Since m is taken close to 5 L we may assume that
mo > g. In other words, the integral in (E.84) is of the form M (2,0, Q ,A™), with
notatlon (E.43) with Q (Q,n, .. Qll)

We shall apply Proposition E.2.5 with n 4+ 1 replaced by n and p = n + 1. This
is possible since, if in condition (E.64),a; = b; = 1 forall j,ora; = 2,b; = 0 for
all j, ora; =0,b; =2 for all j, inequality a, + b, > 1 is always satisfied. We
deduce from (E.70) that the £ (L?) norm of (E.84) is bounded from above by

(Retm=3=Dy"

for some K > 0. Since we have 5” terms in the sum (E.83), (E.81) follows for B, ().
Since according to (E.13), C,(¢) may be written as B, (¢)* for some Bj(t) of the
form (E.10), we get also the second estimate of (E.81).

This concludes the proof. |

We want next to obtain & (L?) bounds for L o C,(¢), where L is defined in equa-
tion (E.17). We compute first the composition between L and an operator of the form
e~ Py (t 4+ 1)e! ™o where V is of the form (E.5).
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Lemma E.3.2. Let Q be a 2 x 2 matrix of functions in the class El 1 of Defini-
tionE.1.1. Let A be in R and set Vg (t) = e’)”KQ according to notation (E.5)—(E.6).
Then one may find 2 x 2 matrices Q' (resp. Q") with entries in 22,0 (resp. 22’0
or Xg'7) such that

Lo (7™ (1 + 1)e' ™)

. . . . (E.86)
= (e7™P0Vo/(t + 1)e'™0) o L + (e7 POV (t + )’ TF0).

Proof. Using notation (E.37), we write

2

§ n
2 G = E
o.5.n) JE 11; lq,k(t EMEjx—~ o)

with g in Ei)’,"g. We have to compute the action of L on the operator with kernel
el AE+T)

/ ol CE=ym+it(=1)7 pE)—(=D* p(n) Eji
2
k=2 (E.87)

& n
xqujk(tJrf,E,n)dédn-

One gets, using expression (E.17) of L,

eM(t+r) ) . . X
/et(xé—yn)+zr((—1)fp(S)—(—l) p("))Ejk
- 2 ;
1<j,k<2 (ESS)
: §
x (x + (=D ep"(€)) 5 7 age (e + T E.m) dEdn.
(&) (n)
As p'(§) = , we have

§ n § (. & k
= (=) (x5 (=1 =y (=)
(&) (m (E)( (n) () )
2

O CD ),
We plug (E.89) in (E.88). The last term in (E.89) gives an expression of the form of the
first term on the right-hand side of (E.86), where the operator e oYy (t + T)elho
is given by an expression of the form (E.87), w1th )q ik replaced by

(x+ (—1)j t'(6) =
(E.89)

(-UHkifl'k
(€2

i.e. Q' is given by

OEm =3 gt b (-1 Eye é—>
j=1k=1

This is an element of X5'7 as wanted.
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On the other hand, if we plug the first term of the right-hand side of (E.89)
in (E.88) and perform one integration by parts, we get

2

. 2 1A(l+r) ) ) J A
(—1)/+1 ZZ / oI =y T(= 1) pE~(-1E p(n))

x (=17 5D + (- F é) )(%qjkoﬂs,n))dwn.

We get an operator of the form of the last term in (E.86), with a symbol Q” that may
be written as the sum of an element in X5 and an element in X'} This concludes
the proof of the lemma. ]

We may prove now the following statement.

Lemma E.3.3. For any n in N*, one may find operators Cf (t), 0 < p < n, such
that

n
LoCy(t)=Cl(t)o L+ Y CP(t) (E.90)
=1
which have the following structure: Operator C,? (2) is of the form

n
/ [Te @iVt +5)e' P locg,<cr, dT1 - d i, (E91)

where V'(t) = Z% ’“tKQ/ with Q) matrices with entries in 22 o- Operator
CP(tyforl<p<n has the structure

p—1
/ l_[ e PV (1 4 rj)e’r-/P‘) x e TPV 4 Tp)elfppo

" (E.92)
< [T eV + 1)e’ Plocr, <ocry d Ty -+ d T,
J=p+1
where V is as in (E.5), V' is as above and V" is a sum V" (t) = Z% “WKQN
with Q matrices with entries in Z‘ " 0 Or Et m . Moreover, one has the esttmates
1CY Ol 22y < (Ke' z“ Hammy, (E.93)
~ ’ 1_(s/1
1CP (O]l grz) < (Rettd+H3—m)"2 6+ 1< p<n. (E.94)

Proof. We start from expression (E.13) of C,(¢). If we compose at the left with L
and use (E.86), we obtain the sum of an expression of the form (E.92) with p =1
and a quantity of the form (E.13), with the product replaced by

n
e PV (4 1y)e P00 Lo [[e W P0iv(t + 15)e' W 7. (E.95)
j=2
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If we iterate, we obtain C2() o L with C2(¢) given by (E.91) and the sum for p
going from 1 to n of (E.92).
We have next to obtain (E.93) and (E.94). By duality, we may replace (E.91) by

n
=n" / l_[ e TPy (1 + rj)*e"r/‘p‘)]lktl <wcr, ATy - d Ty (E.96)
and (E.92) by

n—p
(_1)n/ l_le_irjPOiV(l—{—tj)*eirjPO
j=1

x e~ 1= Poi Y (¢t 4o,y ) *el Tri—p PO (E.97)
n
x [ e"@Pivie+1)t e locr<nr, drr -+ dy
Jj=n+2—p

forl < p <n.

Consider first (E.96). We have an operator of the form (E.83) (with s = 0) whose
&£ (L?) boundedness reduces to the one of an expression of the form (E.84) in terms
of symbols Qin 41—, given by (E.85) from symbols in the class Z‘O’Z because of the
definition of V'(t + t;). It follows from the last statement in Lemma E.3.1 that the
same estimate as (E.81) holds, which gives a bound of the £(L?) norm of (E.96) by
the right-hand side of (E.93).

Let us study expression (E.97) and show that its £(L?) norm is bounded from
above by the right-hand side of (E. 94) Operator (E.97) is of the form (E. 84) with

a sequence of symbols (Q,. ..., Q;,) with Q;, belonging to the classes E‘ o,
where (a;,b;)1<j<n has the followmg form:
(an.bn) = (1,1), ..., (@p+1.bp+1) = (1,1), (ap.bp) = (0,2) or (1,0), (E.98)
(ap_l,bp_l) = (0,2), euy (Cll,bl) = (0,2). )

The only couples (j’, j”) such that a;» + bj» may be eventually equal to zero are
those with j < j” = p, i.e. those for which condition (E.64) is satisfied. We thus
obtain that (E.97) is of the form (E.84) and has £ (L?) norm bounded from above by
(E.70) and (E.72), so by the right-hand side of (E.94). This concludes the proof. m

Proof of Proposition E.1.3. Since m is taken close to % and &’ close to zero, the expo-
nent of ¢ on the right-hand side of (E.81) is negative. As ¢ > 0, for ¢ small enough,
we have
1 1
IBn @l = 550 €Ol = 55
In particular, (E.11) and its counterpart for C,(¢) holds, so that B(¢) and C(¢) are
well defined, bounded on H* and satisfy (E.19)
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Since by (E.93), [|C2(1)|l ¢(72) satisfies the same estimate as || B, (¢) || ¢(z+) and
[|Cn(2) || £(ars), the operator

+o00
CH=1d+ ) Cl)

n=1

is well defined and satisfies (E.21). We notice next that if we set forn > 1,

Cin(t) =) Cl),

p=1

we have by (E.94)
1C1n ()l gz2) < Cn(Rey't D@ +5=m) 3-m

Since §’ + % —m < 0, we get after summation estimate (E.22) for

400
Cl(t) = Z Cl,n(t)-

n=1

We still have to check the last assertions of the proposition. To prove (E.23), it suf-
fices to check that for any n, No B, (t) = B, (t) Ny for any n, and the corresponding
equality for C,(¢). Because of (E.10) and (E.13), it is enough to show that

Noe  TPoV (1 + 1)el ™0 = el ™o+ 1)e~ PO N,

But this equality follows from (E.7) and the fact that Noe!?Fo = e=i7Po N
Moreover, if 'V preserves the space of odd functions, so do B, (¢) and Cy(¢)

because of their definition, and of the fact that Py preserves such spaces. This con-

cludes the proof. ]



Appendix F

Division lemmas and normal forms

We have discussed in Section 1.6 normal forms for an equation of the form
(Dt — p(Dx))u = N(u),

where p(§) = /1 + &2 and N (u) is some polynomial in u, 7. We distinguish among
the monomials of u the characteristic ones, that are those of the form

uPta? = u|*Pu

and the non-characteristics ones, of the form u?u4¢ with p — g # 1. We have seen that
if Ly = x +tp’(Dy), a characteristic monomial will satisfy essentially an equality
of the form

Ly([ul*”u) = (p + D(Lyuw)|ul?*? — pu? T 4P~ L {u + remainder, (F.1)

that allows one to obtain for the L2 norm of the left side a bound in [|u ”iléo |L+ulzz2.

Our first goal in this appendix is to give a proof of inequalities of that form for
more general characteristic nonlinearities, given in terms of the kind of non-local
multilinear operators that we have to use in the proof of the main theorem of the book.
Section F.2 below is devoted to that, except that we put ourselves in the semiclassical
framework that is very convenient for the proofs.

For non-characteristic nonlinearities, (F.1) non-longer works, and as explained
in Section 1.6, one has then to eliminate such nonlinearities by space-time normal
forms. We perform in section (F.4) these space-time normal forms in the semiclassi-
cal framework, for general non-characteristic nonlinearities given by the multilinear
pseudo-differential operators introduced in Appendix B. The method is the one out-
lined in Section 1.6, extended to these general multilinear expressions. We make also
normal forms for quadratic contributions given in terms of symbols with space decay-
ing symbols, along the lines of the end of Section 2.7.

F.1 Division lemmas

We establish in this section some division lemmas, which are variants of similar
results obtained in [20].

Definition F.1.1. For n in N*, denote by T, the set of multi-indices I = (iy,...,in)
with i; = £1 for j = 1,...,n. Denote by Fﬁh the subset of I', made by those
I =(i1....,ip)suchthat Y 7_,i; = land T)" = T, — T'".

Let us fix some notation. If I = (i1, ..., i) is in ', and as above

p¢) = V1+£2,
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we define .

j=1
Setalso ¢(x) = ~/1 —x2 for |x| < 1, so that by [20, Lemma 1.8], if y € C§°(R) has
small enough support

_XEPO L
ax .9 = 2y (20 % 6)). -
y .
batxn§) = ST (620 £ )

satisfy estimates
|9%0F ax(x, £)| < Cop(§)~>F271AL

10208 b (x. £)] < Cap(£) 21111,

Proposition F.1.2. Recall notation (B.10) for the function My (&1, ...,&,) and the
class of symbols introduced in Definition B.1.2 for 8 > 0, k > 0. Let v > 0.

(F4)

(i) Let I be a multi-index in (iy,...,i¢) be in 'y, and let my be a symbol in
S1,8 (H7=1 (£, Y Mo(§)", n). Then we may find symbols

n
mpy € 54,/3(H<§;>—1M0(5)4+“<x>—1,n), ¢=1,....n, (F5)
J=1
such that if y is in Cg§°(R) and has small enough support, one may write

mr(y,x,€1,...,&n)

=mr(y, %, E1,. . &) | | v(Mo(®)*(x +icp (€0))
! ! e_lj[l (Mo e €0) (E6)

+ Y (xFiep EDymre(y. x. 61, En).

{=1
(ii) Assume that I is in TN, Then we may find a symbol
n
ar € Sup (1‘[ (6)" Mo(§)" (). ) (E7)
j=1
and symbols my ; as in (F.5) such that

mr (X ) = g1 Enar (7. X 1 )
+ 30+ iep Emre(y.x. b ).

=1

(F.8)
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Proof. Define

_ M. 4 . /
A x B En) = mr(rox e ) ST x°f31§f(;)”” €

mP (%, E1 e E) = mp(ox, € ED Y (Mo(©)* (x + i1 (61)))

and write

mp(y,x, 61, E) =mP o x 6 E) Fmp (X, Er ) (X Pl (E1).

Then my ; satisfies (F.5), and repeating the process with mj replaced by my 1, suc-
cessively with respect to &5, ..., &,, we get (F.6).
(i1) Equality (F.8) is obtained from (F.6) defining

ar =mrg;" [[v(Mo(®)*(x + iep' (€0)) (F.9)
=1

and showing that a; belongs to Sy p ([ 17— (&)~ Mo(§)"'(x)~°°, n). This is done
in [20, proof of (i) of Proposition 2.2] (with the parameter « in that reference set
to 2). ]

F.2 Commutation results

We study now the action of the operator £ = %Oph (x + p’'(&)) introduced in (D.8)
on characteristic terms.

Proposition F.2.1. Let I be in F,C,h for some (odd) n > 3 and let v be nonnegative. Let
my be an element of Sy (szl(gj)—lMo(g)“, n) with B > 0. Then, for some new
value of v, there are symbols my ; in S4,,3(]_[7=1(§j)_1M6’,n), j=1,....,nrin
Sap([1j=1 (&) MG, n), 1" in Si.p (ITj=1 (&))" Mg, n), such that for any functions

Vi Uy,

n
L10p(mr) @y, v,) = Y Opp(mr )@y Liy0; -, 0,)
j=1

+ Opy (1) (vy, .-, 0,) (F.10)
1
+ Eoph(”,)(ﬂl’ cU,).

Proof. We write decomposition (F.6) of m, denoting the first term on the right-hand
side by mgl). This is an element of S g(I}—; (§;)~" Mg, n) supported in

(V. x 61, E) 2 X +iep' )| < aMo(Ers ..., €))7 (F11)

{=1
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for some small & > 0. It is proved in the proof of [20, Proposition 2.2] that on domain
(F.11), one has |&;| < CMy(§) forany £ = 1,...,n and that {(dp(x)) ~ My(§) (see
[20, formulas (2.10)—(2.13), and the lines following them as well as Lemma 1.8]). Let
us show that

mP . x b, . .,s,,)(p’(a Fot ) - Zp/(s»)
/= (F.12)

=Y mp (. x B (x4 P (E))

Jj=1

for symbols my j in S4 p([17=1 (&)~  Mo(§)>*¥ (x) =%, n). Actually, expanding the
bracket in the left hand side of (F.12) on §; =i;jde(x), j =1,...,n and using

27=1 i; = 1, one may write the left-hand side of (F.12) as

S mP(yxEr . EDE — ipde(x))E (x,E) (E.13)
j=1
with .
50,0 = [ (/1= mde) +ue -+ + )
n (F.14)
= P (1= wijde(x) + //«Sj)) dp.

j=1
Notice that on the set (F.11) containing the support of mgl), x stays for any £ in
a compact subset of |—1, 1[ and that for any « in N*,

(0dp(x)) = O({dp(x))'T2%) = O(Mo(£)' %) = O(Mo(§)**).

so that each 9%-derivative of ¢; (x, £) is O(My(£)3¥) on that support. Moreover, we
may write using (F.3)

(& —ijde(x))e;(x.§) = (x +i; p'(§))b+(x,§)é; (x, §)

if (x, &) stays in (F.11) and the function y in (F.3) is conveniently chosen. Plugging
this in (F.13) and defining

My (v, X1 ) =m0, EL L B (x,E)E (x, 6,

we get (F.12), with a symbol my_ ; in the wanted class because of (F.4) and of the fact
that |§;| = O(Mo(§)) on (F.11). We use now Proposition B.2.1 to write

Opy(P'(§)) 0 Opy, (m$” (v, x, &1, ..., £n))

= Op(P' &1 + -+ EmV (v, x, 61, ... ) (F.15)
+ hOpy (r1(y. x. €1, ... &) + Opy (r{ (v, x. &1, ... &)
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with ry in Sg g([17=,(§/)~' M¢,n), and r{ in S, ﬂ(ﬂ7=1 (§7)"1M{, n) for some v.
Using (F.12), we may rewrite the first term on the right-hand side as

ZOph(mgl)(y, X, fl, D) En)P/(%_j))
= ) (E.16)
+ ) " Opy(my(y. x.E1.. .. E)(x + i1 P/ ()))).

j=1

Using that Y 7_, i; = 1, and that £y = £Opj,(x + p/(§)). it follows from (F.6),
(F.15), (F.16) and Proposition B.2.1 that £ Op,,(my) is the sum of terms of the fol-
lowing form:

I; . .
E’Oph(mgl)(y,x,él, L EX D)), =10,

1
EOph(ml,j(y,x,El, LE)+ipE)). S =1.....n, (F.17)

0P (713, . £1.-. ) + 1O ({0 x. 1. )

withmy,;j in S4p([17=1 (&)~ Mo(§)"(x)~", n) coming from (F.6) or (F.16). To con-
clude the proof, we just have to apply again Proposition B.2.1 to the first two lines
of (F.17), in order to rewrite them as the sum on the right-hand side of (F.10), up to
new contributions to the remainders. ]

In the non-characteristic case, we cannot expect an equality of the form (F.10).
Instead, we shall have:

Corollary F.2.2. Let I be in T’ ,rl‘Ch. Then there are symbols my ;, r, r’ as in the state-
ment of Proposition F.2.1 and a symbol ry in S4 g (ﬂ?zl(fg‘j)_lM(;’,n) for some v,
such that

n
£40p;, (M) (@,,....v,) =Y Opy(mr )y, ..., L0, ..., 0,)
Jj=1

+ Opy(r)(vy, ..., 0,) (E18)
1

+ Eoph(r/)@pw-,yn)
X

+ Zoph(rl)(yl,--.,yn).

Proof. We may reproduce the proof of Proposition F.2.1, except that, when Taylor
expanding the bracket on the left-hand side of (F.12) on §; = i;d¢(x), we shall get
the right-hand side of this equality and the extra term

mP (v, x, 6, én)(p/ (Z i,-dcp(x)) - P,(ijd(ﬂ(x))) (F.19)
j=1 j=1



Division lemmas and normal forms 258

which does not vanish if 27=1 i; # 1. Since

p'@)zé—) and  dp(x) = —x(dp(x)).

with (dp(x)) = O(Myp(§)) on the support of mgl), we see that (F.19) may be written
as xry for some r; as in the statement. This gives the last contribution to (F.18), the
preceding ones being those furnished by the proof of Proposition F.2.1. ]

The last term in (F.18) does not enjoy nice estimates. Because of that, non-
characteristic terms have to be eliminated by normal forms. We describe such normal
forms in next section.

F.3 Normal forms for non-characteristic terms

Proposition F.3.1. With the notation and under the assumptions of (ii) of Proposi-

tion F.1.2, one may write forany v,, ..., v,,

h
(D0 =0y (xt + p®) —in3))Oprian @y .. .2,
= Op (m1)(vy -, v,)

n (F.20)
+ > 0p,@n)yy. ... (Dr = Op,(4i))y; .. ... v,]
j=1
+B(yl7 s 72;1)7

where A, (x,§) = x§ +i;p(§) — %h, and where R is the sum of terms of the follow-
ing form
hOpy(my ;)(Vy, ..., L£i;v;,...,v,), 1=j<n,

Op;, (r) (v, - -, v,), (F21)

hOpy (rr) (v, - ., v,),
where my ; is a symbolin S4 g (]‘[;Ll(gj)—lM(;’ (x)7Y,n), rf (resp. r} ) belongs to the

class Sa.p (H?zl(sj)_lM(;’ (x)™%°,n) (resp. S""ﬁ (H?zl(éj)_lMé’,n)) for some v.
The first line in (F.21) may also be written as

Op, (rp) (@, -+, v,) (F22)
for a symbol r} in S4 g (]_[7=1 ()" 1My . n).
Proof. Notice first that by the definition (B.14) of Opj, and the fact that & = % one

has
(D: — Opy(x§))Opy(an) (. ... .v,)
=Y Opy(ar)(y.....(D: — Op,(xE))y;.....v,) (F23)
j=1

+ ihoph((xaxal)(y’ X, E))(Elv s 7Rn)
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Moreover, by Proposition B.2.1 and the definition (F.2) of g7,

—Op(p(§))O0pp(ar)(vy, ..., v,)
= Opy(argr)(vy,...,v,)

= i0pu(an(vy. ... Opy(p(E))y). .. .. 1,) (F24)
j=1
+ hOpy, (r1)(vys - -+, v,) + Opp (rp) vy, ..., 0,,),

where r7 is in Sq g([17=; (&)™ Mg (x)7°°,n) and r} in Sip (T=1 (&)~ Mg, n).
Notice that p(§) isin S g({§), 1) (for any «, B since, this symbol depending only on
one variable &, Mo(§) = 1), so that, to get from Proposition B.2.1 symbols r7, r; in
the indicated classes, we would need that ay be in Sy g(My [T/, (€/)7(x)">,n)
instead of (F.7). But by (F.9), ay is supported in (F.11), and we have seen just after
this formula that this implies that |£;| < CM(§) for any £. Consequently, the above
property for a;y does hold, for large enough v. If we make the sum of (F.23) and
(F.24), we get that the left-hand side of (F.20) is given by the sum on the right-hand
side of (F.20), contributions to R of the form of the last two lines in (F.21) and the
term Opy(argr)(vy,...,v,). By (F.8), we thus get the first term on the right-hand
side of (F.20) and expressions

—Opp, (mre(y. x. 61, &) (X +iep' () @y v,).

Using again Proposition B.2.1, we write these terms as contributions to R given
by (F.21). This concludes the proof. |

F.4 Quadratic normal forms for space decaying symbols

In Section 3.2 we have performed an easy quadratic normal form, that allowed us to
get rid of the quadratic term on the right-hand side of (3.11), given by Opy, (m0,1)[u1],
with [/| = 2 and mg s in So 0(]_[]2_1 (£,)71,2). This procedure made appear a new
quadratic term Opy, (m0 p)[ur] on the right-hand side of equation (3.13), given in
terms of a symbol m0 7 in Sy, 0(]_[ _1(&/)71,2). We shall have to perform also a nor-
mal form to eliminate such terms. We define a new class of operators.

Definition F.4.1. Letw € [0, 1], and i = (i1, i2,13) in {—1, 1}>. We denote by K ws
resp. K (i), the space of operators of the form

1 1
(fl’fZ)H%/il [_1/eixsok(hfosSl,fz,m,ﬂz)
x f (1) f (&) dEo dEr d&> du dyus,

where k is a smooth function of (¢, &g, &1, &2, (41, u2) that satisfies for some v in N,

(F.25)
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any N, Yo, V1, Y2, 1, f2, j in N,

|07 010071 01k (. £0. £1. £2. 1. )|

. (F26)
< CMO(SI, 52)v+(y()+)’1 +y2)K (‘;’;0 _ M1§1 _ MZSZ)_le(y()+YI+y2)_'],

resp. that satisfies

|3{3;83§11 A k(t,E0, 61,82, 1, po)|
< CMO(&I, 52)v+(1’0+1’1+)’2)l< (EO _ MIEI . “2§2>—le(yo+yl+l’2)—j (E27)
x (t°(io(Eo) — i1(£1) — i2(£2))) "

in the case of K ,(i)), where Mo (&1, &) still denoted the second largest among (£1)

and (&).
If k satisfies

k(t,—&0,—&1,—82) = —k(t.%0.61.62), (F.28)

then (F.25) sends a couple of two odd functions or two even functions to an odd
function. If k satisfies

k(t,—&o0, —£1,—82) = k(t,%0,61.,62), (F.29)

then (F.25) sends a couple ( f1, f») with f; odd, f> even or fi even, f» odd to an odd
function.

Let us check first that we may express operators of the form Op(m’)(vy, v2) with
m'in S} o(Mo(£1, £2) ]_[12:1 (£,)71,2) in terms of operators Ky 4.

Lemma F.4.2. Let m' be in S} (M, ]_[le(éj)_l, 2). Let iy, iy € {—1,1}? be any
choice of signs. Then if L+ is defined by (C.5), one may find operators Ky, ¢, in Ko,
0 < £1,45 < 1, such that the action of Op(m’) on any couple of odd functions (v, v2)
(as defined in (3.6)) may be written as

1 1
t_z Z Z Kel’£2 (Lfll U1, szl v2)- (F30)
£1=04,=0

Moreover, if m satisfies (3.7), then Ky, ¢, is given by a symbol k satisfying (F.28) if
61 +€2 = Oor2and(F.29) lf@] +€1 = 1.

Proof. We may rewrite
Op(m')(v1,v2) = Op(m})({Dx) ' v1, (Dx) " v2)
with m{ in S~1,0 (Mo, 2). Using the oddness of v;, we write
: 1
— l -
(D)1 = 5x [ (DaD2) o) wy) s
! (F31)

. 1
=570 / ((Liy 07)(p1j%) = 00 () dps
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for any choice of the signs i; = +. By definition (3.6) of the quantization and inequal-
ities (3.4) satisfied by elements of the class S/, one may rewrite expressions like
Op(m')(xfi, f2) as sums of expressions of the form Op(i11} )(f1, f2), for new sym-
bols 1) in Sl,o(M(}), 2) for some v. Using (F.31), we thus see that Op(m’)(v1, v3)
may be rewritten as a sum of terms

1 p1

- 1-6; 1—¢ - ¢ ‘

t 2/1/1/1«1 1“2 ZOp(m’)[(L,-llm)(/'Ll-),(Ll-221)2)(M2.)] d,bLl d/L2
for some symbols 72’ in S{’O(M", 2). By (3.6), we have

Op(")[ f1(p1+), fa(pz:)]

= (2]1,)2 / ePREHIE) ! (11, 1aa) fr(61) fal62) dEr dEo

_ %/eixsok(éo,él,éz,m,uz)ﬁ(sl)f;(gz)dgl d

with
1
k(§o.51.52. p1, p2) = (2—27?/(50 — 11 — paba, i€, pabo).
)

It follows from estimates (3.4) that hold for any «, oy, that inequalities (F.26) are true
for some v, k = 1, @ = 0, which implies the conclusion as the last statement follows
from the transfer of property (3.7) to k by inspection. |

Proposition F.4.3. Let K be in K, o. Let i = (ig,i1,i2) € {—, +}>. One may find
operators Kr, Kg in ‘K,:,%(i) such that for any f1, f2,
(D: — iop(D)) (V1 Ku (f1. 12))
= K(f1. f2) + V1K ((D: — i1 p(Dx)) f1. f2) (F32)
+ ViKg (f1. (D —i2p(Dx)) f2) + KL(f1. f2).
If K satisfies (F.28) (resp. (F.29)), so do K, K.

Proof. Take y in C5°(R) equal to one close to zero and set y1(z) = 1_+(Z) Define
from the function k associated to K by (F.25) a new function

kp (t,%0,81,62, 1, u2) = k(50,61 62, 1, 2)
X Xl(\/;(—io(go) +i1(61) + i2(£2))).

Then kg satisfies (F.27) with w = % Call Ky the associated operator. If we make
act D; —igp(Dyx) on /1t K (fi1, f2), we get the second and third terms on the right-
hand side of (F.32), an operator associated to the function

k(o €1, &2, j11, p2) (1 — 1) (V1 (=io(o) + i1(E1) + i2(£2))) (F.34)

(F.33)
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and contributions coming from the action of D; on kg, that may be written as contri-
butions to K, in (F.32) (with even an extra factor 1 ~1/2). Finally, we see that (F.34)
provides K on the right-hand side of (F.32), modulo another contribution to Kz . This
concludes the proof as the last statement follows from (F.34). ]

Corollary F.4.4. Ler m’ be in S{,O(]_[?ZI(SJ-)”J). One may find for any iy, i in
{—. +}, any £1, €5 in {0, 1} operators

L1,82 L1,
Kuiin Kiivi

in the class JC; 1 (1,11, i2) such that for any odd functions vy, v,, if one sets
2

Oiin(v1.v2) =17 Z Z K2, (Lilvi. L2v,), (F.35)
£1=04£,=0
then
(Dt - p(Dx)) Qil,iz(vla v2)
= Op(m/)(vh 1)2) + Qil,ig ((Dt - ilP(Dx))Ul, UZ) (F36)
+ Qirir (V1. (D —i2p(Dx))v2) + Riy iy (v1,v2),
where

1,4 14 L
ll,lz(vlv 1)2) =1 —2 Z Z KLlllzlz L IU L 2 )

£1=04,=0

. 51,42 4 12
+2it Z Z H,iy,iz L'lvl’Lizvz)'
£1=04£,=0

(F.37)

Moreover, if m’ satisfies (3.7), Kﬁ} lez Ki'llez satisfy (F.28) if £1 + £, = 0 or 2
and (E29) if £ + £, = 1. In particular, Q;, i, sends a couple of odd functions to an

odd function.

Proof. By Lemma F.4.2, we may write Op(m’)(vy, v2) under the form (F.30). We
apply to each Ky, ¢, in (F.30) Proposition F.4.3. If we define KH1 141 ;, (resp. KLl;lez)
from the operator Ky (resp. Ky ) in equation (F.32), and use that L;, commutes to
D, —igp’'(Dy), we obtain (F.36) for the Q;, ;, defined in equation (F.35). The last
statement of the corollary follows from the last statement in Proposition F.4.3 and

Lemma F.4.2. n

F.5 Sobolev estimates

We shall prove Sobolev estimates for operators introduced in Definition F.4.1.
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Proposition F.5.1. Let w € [0, 1], k > 0, let K be an operator in the class X, (i)
(foratriplei = (i1,i2,i3) € {—, +}3). Assume moreover that the function k in (F.25)
is supported for || < 2(&1). There exists o9 € Ry (depending on the exponent v
in (F.27)) such that the following estimates hold true for any s in R4, any test func-

tions f1, fa:

IK(fio D llas < Co 2| follmoo | fillas. (E38)

”K(fl’XL{Z)”HX + | K(xf1, 2)las + IxK(f1, f2)llas 19
< Ct%| fallmooll fillms.

K fixf2) s < €8 | fallgoo | fills. (F.40)

Proof. By (F.25), we have to prove, in order to establish (F.38), that the operator

1 1
(g1.92) > [ 1 /_ 1 / (60 k(1. 0. E1. E. jin. i) (1) (£2)~0
x g1(£1)g2(52) dé1dEr dpy dps

is bounded from L2 x L2 to L2, with operator norm O(z~% ). Because of our support
assumptions, Mo(&1,&2) < C (&), so that we may control the factor My(&;,&>) in
(F.27) by C(£&3), i.e. M will be bounded using (£,) 70 if oy is taken large enough.
Moreover, as s > 0, (§0)* (€0 — 161 — 1282) "N (§1)™° = O(1) when || < 2(&,) if
N is large enough relatively to s. The proof of (F.38) is thus reduced to the proof that
operators of the form

(F41)

1 pt
@ [ [ [ R0 b b mn @086 dé ds durdua F42
-1J-1
are bounded from L? x L? to L2, with operator norm O(t_%), if k satisfies

|k (. 0. £1. 82, 1. 112)| < C (€0 — &1 — paka) ™ (£2) 72

" ' ' ) (F.43)
x (¥ (o (50) — i11(€1) —12(62))) .
The operator norm of (F.42) is bounded from above by
1,1 . 3
C/ / (Sup/|k([,SO’SI,SZ,MI,MZNdgl dgz)
R (F44)

1
~ 2
§1.62

Notice that there is C > 0 such that for any «, 8 in R, any u € [—1, 1],

/ (12 e+ (ED)1(B + pE) " dE < Clul 3% (F45)
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uniformly in «, B. Actually, if we integrate for || > 1, we bound (F.45) by

_1 _ 2
([ e+ e 2ag)
If one takes in the above integral computed either on domain & > 1 or § < —1,
n = (&) as a new variable of integration, we get a bound by the right-hand side

of (F.45). If one integrates for || < 1 on the left-hand side of (F.45), we bound the
corresponding quantity by

/|$| ((°(a+ V11 8)) 'de < C /<a’ Loy ldr <ot
<1

which is better than the bound we want. We use (F.43) and (F.45) with £ = &, to
estimate the second factor in (F.44) by t~% and (F.45) with £ = &; to estimate the
first integral factor by 1 =% |1 |_%. We obtain that (F.44) is O (¢~ %) from which (F.38)
follows.

To get estimate (F.39), we notice that, by (F.25), K(xf1, f2) (resp. K(f1,x/2),
resp. xK(f1, f2)) may be written as K;(f1, f2) for an operator K; of the form
(F.25), obtained replacing k by D¢ k (resp. Dg,k, resp. —Dg k). Since by (F.27)
these D¢, -derivatives make lose 7 (and change the value of the exponent v), we get
(F.39) from (F.38) (with a new value of o).

One obtains (F.40) in a same way. ]

Corollary F.5.2. Let K be an element of K, ,(i) forw € [0,1], k > 0,1 € {—, +)3.

The following estimates hold true for any s > 0 and some o independent of s:
IKCfrs ) lms < Ce=2 (I fill oo ll fallars + 11 files | fall oo ). (F.46)
1K1, )Nz < €2 fill 2|l foll oo,

v (F47)
IK(f1, 22 < Ctm 2| fillmoo || f2l L2,
IKCxfr, f2)lle2 + 1K, xf2)ll2 + 1xK(f1s f2)l2
= CE | fillz2ll falleo, F43)
IK(Cxfr, f2)lle2 + 1K1, xf2)ll2 + 1xK(frs f2)l2
< Ct2| filloo |l fallL2
I K(xfr, f2)lms + 1K, xf2) s + 1xK(frs f2)llms (E49)

< Ct2 (Il filmoo | ollas + 1L fills I all o).

Proof. We may split K = K- + K-, where K. (resp. K<) is given by an expression
of the form (F.25) with k supported for |&;| < 2(&1) (resp. |&1| < 2(&)). If we apply
(F.38) to K~ and the symmetric inequality to K., we obtain (F.46).

Let us prove (F.47). It suffices to show that the two estimates hold for K. for
instance. The first one follows from (F.38) with s = 0. To get the second one, we



Sobolev estimates 265

notice that it is enough to establish the L2 x L? — L? boundedness of

1 1
(glag2)'_)/_l /_1k(f,50,51,52,Ml,Mz)(fl)_oogl(gl)gz(&)dél dé>dpydps

with operator norm O (¢~ %). Since |€,| < 2(&1) on the support, if o has been taken
large enough, we see that we may rewrite this under the form (F.42), with some k
fulfilling (F.43) so that the conclusion follows.

Finally, estimates (F.48) follow from (F.47), noticing that, as in the proof of (F.39),
we may reduce ourselves to operator Ki( f1, f2) satisfying the same assumptions
as K, up to the loss of a factor #“. This concludes the proof, as (F.49) follows from
(F.39) and the above decomposition K = K« + K-. ]

Corollary F.5.3. Let B > 0, K, 0¢ as in Corollary F.5.2 and take s large enough so
that (s — 09)B > 1. Then

@

IK(Lx f1. )2 < Ct= 3 (PO Ly fillpz + L fillas) | 2l iz (F.50)
I K(f1, Lt f2)ll2 < C[_%||f1||L2([ﬁUO||L:I:f2”L2 + | f2 1l as)- (E51)

Proof. Let y be in Cg°(R), y = 1 close to zero. Decompose

Lifi= P Do) (Lifi)+ 0= 0P D)(Ls fr).

Write
(1= PD)Lefi) =x0 = PDy)fi+it™ Py P D) fi
D
_ -B X
+r(1 )()(t Dx)<Dx)f1.

If one applies the second estimate in (F.47) and (F.48), one gets then
IK((1— )P Dx)L f1. o)1
= (2101 = D™ D) filloo
+ 173 (10 D) fillaeo + 111 = 0GP D) fillueo) ) foll 2

Since (s — 09)B > 1, this is bounded by Ct=% || fi |l s || f2ll 2.
On the other hand, by the second estimate (F.47)

||K(X(l_ﬂDx)Lif1,f2)||L2 <Ct7 5|yt D)L+ fillgooll f2ll 12
< Cr7 8P| Ly fill 2]l ol 2

This concludes the proof of (F.50), and thus of the corollary since (F.51) is just the
symmetric estimate. |

Let us get next some Sobolev estimates for K(L 4 f1, L+ f>).
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Corollary F.5.4. Let K be in the class X, ,(i). Assume moreover that k in (F.25) is
supported for |£1| < 2(&). Let s, 0g, B be as in Corollary F.5.3. Then, if (s —09) B > 1,
IK(Ls fi. Ls fo)llas < CE7 2| fallas (PO Lx fillpz + [ falls).  (F52)
IK(Lx f1. )llas + IK(fi. Le f)llas < CO7 2| fullas | fallas. (F53)
IKGfr. ) s + IKCfroxf)llms < Ce2 | fillas| fallas
1K fioxf)llas < CE% | fillasll fallas.

Proof. Take y in C§°(R), equal to one close to zero and write K(L+ f1, L+ f>) as
a linear combination of the four terms

(F.54)

_ -8 D=
I = tK(X(t Do)L4 fi, (Dx)f2>,

1=1K((1 = e DLs f. %fz), F55)
11 = K(x(t™?Dy) Ly f1.x12).
IV = K((1 = 0P Dy)Ls fr.xfa).
We apply (F.38) (with f; and f> exchanged since we assume here |£1] < 2(&;) on the
support instead of |&2] < 2(£1)) in order to estimate the H* norm of / by

Ct'" 3|3t P D)L filluoo |l follus < Ce' =3B Ly fill 2] follas  (F56)

which is bounded by the right-hand side of (F.52).
To study /I, we write it as a combination of terms

_ Dy Dy
IZK((I -0 ﬁDx)mfl,mfz),
(K (5= 06 Do) A D55 1)

i K (LGP D) . (ZD)—i)fz).

We estimate their H* norm using (F.38) and (F.39) (with f; and f, interchanged) by
Ct* 2| fallas (11 = )P D) fill oo + I (t77 D) fillzzoo)
< CrC % fillgs | follas.

This implies a bound by the right-hand side of (F.52) since (s — 0¢)f > 1.
By (F.39) (with f; and f> exchanged), we estimate the H* norm of /I by

Ct3 |yt Dy)Ls fillgoo |l follars

that we bound by the right-hand side of (F.52) as in (F.56) since v < 1.
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‘We write IV as a combination of terms
D
_ -B x
K (=00 Do) 5 froxf).
K(x(1= )P Dy) fi.xf2).
it_ﬂK()(’(t_ﬂDx)fl, xfz).

We estimate the H* norm of these quantities using (F.39) and (F.40) with f; and f;
interchanged. We get

Ce"*% + %) = P D) fillmeol follas
+ Ct7 PR P D) fillmoo | folls.
As (s — 09)B > w, this implies a bound by the right-hand side of (F.52). This con-
cludes the proof of (F.52)

To prove (F.53), we decompose K (L f1, f>) (resp. K( f1, L+ f2)) as the sum of

itK(% f1, f2) (resp. £tK( f1, (ll;—i>f2)) and of K(x f1, f2) (resp. K(f1,xf2))and
we apply (F.38) and (F.39) to get the conclusion.
Finally, (F.54) is just a consequence of (F.39) and (F.40). ]

We translate finally the preceding corollary when one does not make any assump-
tion of support on the frequencies.

Corollary F.5.5. Let K be in the class X, ,(i). With the notation of Corollary F.5.4,
one has the following inequalities:

(23

IK(Ls fi L f)lrs = Co' =5 (PO (1L fil 2] foll s

(F.57)
Al L s follz2) + 1 filas | ol )

and

IKCfo L f)llas + IK(Ls fi, f)lms < CO7 2| fillms |l follms,  (F58)

(with any choice of the signs * in the left and right-hand side of these inequalities).

Proof. One decomposes K = K. + K- as in the proof of Corollary F.5.2 and applies
(F.52) and (F.53). ]






Appendix G

Verification of Fermi’s golden rule

The goal of this Appendix is to check that Fermi’s golden rule, used in Chapter 4
(see Lemma 4.2.3 and the proof of Proposition 4.2.1) does hold. We already know
that from Kowalcyk, Martel and Mufioz, who gave a numerical verification of the
condition. We shall prove here that it may actually be checked analytically.

G.1 Reductions

We want to prove the following:
Proposition G.1.1. Let Y, be the function defined in (4.22). Then Y(+/2) #0.
Let us prove here the following reduction:

Lemma G.1.2. Define the integral

. 1 : h3
I = / ez”“/i(coshzx + = —l—i«/ﬁsinhxcoshx)wdx. (G.1)
R 2 cosh’ x
If I # 0, then Y»(v/2) # 0.
Proof. Recall that by (4.22), Y5 is given by
Y2(x) = b(x. Dx)*(k(x)Y (x)?), (G.2)

where k, Y are defined in (2.5)—(2.6) and b(x, D) has been introduced in Proposi-
tion A.1.1. Since b(x, Dx)* preserves real-valued functions and odd functions, we
see that Y is real valued and odd. By Proposition A.1.1, W = ¢(Dx)* o b(x, Dx)*
(when acting on odd functions), where ¢ (&) has modulus one. In order to show that
1}2(\/5) # 0, it thus suffices, according to (G.2), to prove that

W)Y )(V2) £ 0.
Recall that by (A.33) and (A.34),
1 R
Wow = / Ve (. E(E) (G3)
T
with, by (A.35),

Y (0, 8) = Le=oT(6) f1(x.§) + Le<o T (=6) fa(x. —§). (G.4)

where fi, f> are the two Jost functions introduced at the beginning of Appendix A
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and T (§) is defined in (A.26). We thus get

WY)W = [V V@Y (@2 d
(G.5)

= T(V2) / F1(6, V2 (x)Y (x)? dx.

Since the transmission coefficient 7'(+/2) is non-zero, it remains to prove that if I
given by (G.1) is different from zero, the same is true for the last integral in (G.5), or
since kY2 is real valued, that

/ Fi(x, V2)k(x)Y (x)2 dx # 0. (G.6)
One checks by a direct computation that the function
: 1
e”‘ﬁ(l + 3 cosh_z(g) + i+/2tanh %)(1 +iv/2)7!

solves (A.1) with & = +/2 and is equivalent to e'* Y2 when x goes to 4-00, so that is
the Jost function f; (x, ~/2). If one plugs that value in (G.6) and uses the definition
(2.5)—(2.6) of k, Y, one obtains that (G.6) is just a non-zero multiple of (G.1). This
concludes the proof. ]

G.2 Proof of the non-vanishing of IA/Z(«/E)

In order to prove Proposition G.1.1, it remains to show that I given by (G.1) is non-
zero. We compute explicitly this integral by residues.

Lemma G.2.1. One has

7= 2imw G7)
sinh(r+/2) .
Proof. Denote
2iz42 5 1 . . sinh? z
F(z)=e (cosh z 4 = +i~/2sinhz cosh z)—7. (G.8)
2 cosh’ z

This is a meromorphic function on C with poles zx = i 5 (2k + 1), k € Z. Let Ry
be the rectangle in the complex plane with vertices at £k, +km + ik for k in N*,

In order to show that
+o00

I =2im ) Res(F.z) (G.9)
k=0
we have to check that

1 1
/ |F(£km + itkm)k dt — 0, / |F(thkn + ikm)lk dt — 0
0 —1
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when k goes to +00. As F(—z) = —F(z), we just have to prove

1
k/ (|F(km + itkm)| + |F(tkr + ikm)|) di — 0 (G.10)
0

2iz+/2 sinh? 2
cosh? z

when k — +00. As F(z) is a sum of expressions of the form e with p, g

in N, p < ¢, and bounding
sinh? z (1—e2%)P
(14 e22)4

< e(P_q) Rez ,

cosh? z

we obtain when 0 <r < 1,k € N*,

|F(tkm +ikm)| < e—ZkN\/E—tkn’

F(ln + ithm)| < o~2knaikr L+ €207
- (1 — e—ZkTE)q

from which (G.10) follows.
Using

cosh(zx + w) = i(=1)Fsinhw and sinh(zx + w) = i(—=1)¥ coshw,
we may write

F(zx +w) = e ™V2CAD G ),
cosh® w

.h7

; 1
G(w) = e2iv2w (— sinh® w + 3" i /2 sinh w cosh w)
sinh” w

so that Res(F, zx) = e~ "V2@k+1 Res(G, 0). One checks by direct computation that
Res(G, 0) = —2. It follows that (G.9) is given by

R k3 2in
[ = —dige ™V2Y e2mhkV2 — T 7
I; sinh(77 +/2)

whence (G.7). ]
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Long-Time Dispersive Estimates for Perturbations
of a Kink Solution of One-Dimensional Cubic
Wave Equations

A kink is a stationary solution to a cubic one-dimensional wave equation (37 — 32)¢ =
¢ — ¢> that has different limits when x goes to —oo and +oo, like H(x) = tanh(x/v2).
Asymptotic stability of this solution under small odd perturbation in the energy space has
been studied in a recent work of Kowalczyk, Martel and Mufoz. They have been able to
show that the perturbation may be written as the sum a(t)Y (x) + ¢(t, x), where Y is a
function in Schwartz space, a(t) a function of time having some decay properties at infinity,
and (t, x) satisfies some local in space dispersive estimate. These results are likely to be
optimal when the initial data belong to the energy space. On the other hand, for initial
data that are smooth and have some decay at infinity, one may ask if precise dispersive
time decay rates for the solution in the whole space-time, and not just for x in a compact
set, may be obtained. The goal of this work is to attack these questions.

Our main result gives, for small odd perturbations of the kink that are smooth enough and
have some space decay, explicit rates of decay for a(t) and for (¢, x) in the whole space-
time domain intersected by a strip [t| < e74*¢, for any ¢ > 0, where ¢ is the size of the
initial perturbation. This limitation is due to some new phenomena that appear along lines

x = +v/2/3 t that cannot be detected by a local in space analysis. Our method of proof relies
on construction of approximate solutions to the equation satisfied by ¢, conjugation of the
latter in order to eliminate several potential terms, and normal forms to get rid of problem-
atic contributions in the nonlinearity. We use also Fermi’s golden rule in order to prove that
the a(t)Y component decays when time grows.
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