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Abstract

In the first part of this paper, we introduce the notion of cyclic stratum of a Frobenius
manifold M. This is the set of points of the extended manifold C* x M at which the
unit vector field is a cyclic vector for the isomonodromic system defined by the flat-
ness condition of the extended deformed connection. The study of the geometry of the
complement of the cyclic stratum is addressed. We show that at points of the cyclic
stratum, the isomonodromic system attached to M can be reduced to a scalar differ-
ential equation, called the master differential equation of M . In the case of Frobenius
manifolds coming from Gromov—Witten theory, namely quantum cohomologies of
smooth projective varieties, such a construction reproduces the notion of quantum
differential equation.

In the second part of the paper, we introduce two multilinear transforms, called
Borel-Laplace (&, B)-multitransforms, on spaces of Ribenboim formal power series
with exponents and coefficients in an arbitrary finite-dimensional C-algebra A. When
A is specialized to the cohomology of smooth projective varieties, the integral forms
of the Borel-Laplace (e, 8)-multitransforms are used in order to rephrase the Quan-
tum Lefschetz theorem. This leads to explicit Mellin—Barnes integral representations
of solutions of the quantum differential equations for a wide class of smooth projec-
tive varieties, including Fano complete intersections in projective spaces.

In the third and final part of the paper, as an application, we show how to use the
new analytic tools, introduced in the previous parts, in order to study the quantum
differential equations of Hirzebruch surfaces. For Hirzebruch surfaces diffeomor-
phic to P! x P!, this analysis reduces to the simpler quantum differential equation
of P1. For Hirzebruch surfaces diffeomorphic to the blow-up of P2 in one point, the
quantum differential equation is integrated via Laplace (1, 2; %,
of solutions of the quantum differential equations of P! and P2, respectively. This
leads to explicit integral representations for the Stokes bases of solutions of the quan-
tum differential equations, and finally to the proof of the Dubrovin conjecture for all
Hirzebruch surfaces.

%)-multitransforms
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Chapter 1

Introduction

1.1 Background

In the last decades, we have been witnessing a growing and fruitful interaction be-
tween theoretical physics and various branches of geometry, leading to new develop-
ments in both disciplines. Enumerative geometry — an old subject and an active field
in the 19th century — has been revolutionized by new ideas from the physics of string
theory. After the categorical axiomatization of physical theories of quantum fields
[4,5,72], the emergence of new mathematical objects was noticed. In such an inspir-
ing context, rich structures known as Frobenius manifolds naturally arise, together
with the construction of several invariants of symplectic and algebraic varieties.

The notion of Frobenius manifolds was introduced by B. Dubrovin, who first rec-
ognized its emergence in the study of classification of two-dimensional topological
field theories [29-31]. A Frobenius manifold consists' of a complex manifold M
whose tangent spaces admit an associative, commutative, and unital algebra structure
(Tp M, op), holomorphically depending on the point p € M. The structure is further
enriched with a non-degenerate symmetric bilinear form 7, whose Levi-Civita con-
nection is flat, and which is compatible with the product, that is,

nY oW.Z) =n(Y,WoZ)

for any local vector fields Y, W, Z on M. This condition makes (7, M, op, np)pem
a family of Frobenius algebras. Pretty soon, it was understood that Frobenius man-
ifolds are a unifying notion in mathematics. These structures play a central role in
mirror symmetry, theory of unfolding spaces of singularities, and enumerative geome-
try [48,61,71]. Remarkably enough, results proved for classes of Frobenius manifolds
emerging in a certain mathematical theory turn out to be valid in general. This uni-
versality of Frobenius manifolds usually leads to unexpected connections between
the aforementioned mathematical theories [33].

Quantum cohomology, introduced by E. Witten [79] and C. Vafa [77] in their
study of topological non-linear sigma model, is one of the most interesting example
of Frobenius manifold, associated with any complex smooth projective variety X, or
a more general compact symplectic manifold [30, 58, 61]. From the physical point
of view, the space X is the target of two-dimensional fields, and the Frobenius alge-
bras that arise are a highly non-linear deformation of the classical cohomological

IPrecise definitions will be given in the main body of the paper.
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ring H*(X, C). If the classical cohomology ring of a variety encodes information
about the intersections of its subvarieties, the non-functorial construction of quan-
tum cohomology is an instrument to understand how they are related by rational
(or, in the general symplectic case, pseudo-holomorphic) curves. This information
is codified in the Gromov-Witten invariants [45, 79, 80], used to define the quan-
tum perturbation of the product. Gromov—Witten invariants count curves on X: for
each 8 € H,(X,Z)/torsion, and cycles Z1,...,Z, € X in general position, the
Gromov-Witten invariant’

(PD(Z1).....PD(Zy))5, 5 €Q

heuristically equals the number of curves C C X, of genus g, with homology class
[C] = B, and intersecting all the cycles Z;. Consider the generating function

=3

n=0 B

, e H*(X,0),
Y Yonp: ¥ (X, C)
n times
of genus 0 Gromov—Witten invariants of X, and assume that this sum is convergent
on a non-empty domain 2 € H*(X, C). The quantum cohomology QH *(X) is the
Frobenius manifold structure on €2, the flat metric n being given by the Poincaré
pairing

nY,w) ::/ YUW
X

for any local vector fields® Y, W on , and the product Y o W of vector fields being
defined by the identity
nY oW,Z)=(YWZ)F¥

for arbitrary flat local vector fields Y, W, Z on €.

1.2 The main problem

At the core of the analytic theory of Frobenius manifolds, there is the local identifica-
tion of semisimple* points p € M with the parameters of isomonodromic deforma-
tions of ordinary differential equations with rational coefficients. Such an identifica-
tion — one of the main points of the theory of Dubrovin — was originally established
in [30-32], and subsequently extended in [22-25].

*Here PD(«) denotes the Poincaré dual class of a.

3The tangent space T, <2 is canonically identified with H®(X, C) for any p € Q. Thus the
U-product ¥ U W of local vector fields is well defined.

“A point p € M is semisimple if the Frobenius algebra (T, M, o,,, 11,,) is with no nilpotents.
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In this paper, we mainly consider the example of analytic Frobenius manifolds
given by the quantum cohomology QH*(X) of a complex smooth projective vari-
ety X, see [30,58,61]. In such a case, points p € Q H*(X) are parameters of isomon-
odromic deformations of a linear system of differential equations of the form

G = (U + 2n) )¢ (12.1)
y4 V4

Here ¢ is a z-dependent vector field of QH®(X), whereas U and u are (1, 1)-tensors
on QH*(X): the first’ is the operator of quantum multiplication by the Euler vector
field —a distinguished vector field on QH *(X) which equals the first Chern class
c1(X) along the locus of small quantum cohomology — the second, called grading
operator, keeps track of the non-vanishing degrees of H*(X, C).

Equation (1.2.1) is a rich object associated with the variety X: it encapsulates
information not only about its Gromov—Witten theory, but also (conjecturally) about
its topology, its algebraic geometry, and their mutual relations. The study of the mon-
odromy of solutions of (1.2.1) is the way to disclose such an amount of information,
see [21,31,36]. In this paper we address the following:

Main Problem. Find integral representations of solutions of (1.2.1) for Fano com-
plete intersections in Fano varieties.

We split the main problem into two parts:

(1) reduce the system of differential equations (1.2.1) to a distinguished scalar
linear differential equation, the master differential equation,

(2) find integral representations of solutions of master differential equations.

The study of these questions leads us to introduce some relevant notions, both in
the analytic theory of Frobenius manifolds and in the theory of integral transforms.
The first three ingredients are the notions of cyclic stratum, master differential equa-
tions and master functions of a Frobenius manifold. The second new analytical tool
is a pair of integral multilinear transforms of functions, that we call Borel-Laplace
(o, B)-multitransforms. We are going to briefly outline these objects.

1.3 Master functions and master differential equations

The rich geometry of a Frobenius manifold M is (almost) completely encoded in
integrability conditions of the extended deformed connection or first structural con-
nection of M (see [30,32,61]). This is a flat meromorphic connection ¥V defined on the
pullback 7*TM of the tangent bundle of M on the extended manifold M:=C*xM,

SPrecise definitions will be given in the main body of the paper.
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by the natural projection r: M — M. Equation (1.2.1) is equivalent to the equation
@3@&‘ =0, £el(x*T*M), (1.3.1)

the one-form § and the vector field { being identified via a flat metric 7 on M. We
call master function at p € M any function® ®z € @(C*) of the form

Dx(2) = 275 (£(z, p) e(p)),

where £ is as in (1.3.1), and d is the charge of the Frobenius manifold M .

In the first part of the paper, we address the problem of reducing the system of dif-
ferential equations (1.3.1) to a scalar differential equation, whose coefficients depend
on the point p € M. This is a well-known problem in the theory of ordinary differ-
ential equations, equivalent to the choice of a cyclic vector [28, Lemma II.1.3]. On
Frobenius manifold, however, we have a natural candidate, namely the unit vector
fielde € I'(TM).

In Chapter 2 we introduce the cyclic stratum M®¢ C M defined as the set of
points (z, p) at which the iterated covariant derivatives

e, ﬁﬁe, @z%e, e @’;%_le, n:=dimc M, (1.3.2)
define a basis of the fiber 7*TM|(;, ). The complement of M in P! x M admits
a natural stratification, whose study is addressed in Section 2.6. A particular role is
played by the #4 A -stratum of M, defined as the set of points p € M such that

C* x{p) < M\ M.

Introducing the cyclic coframe wy, ..., w,—1 € ['(w*T* M) as the dual frame of the
iterated covariant derivatives (1.3.2), the system of differential equations (1.3.1), spe-
cialized at points p € M \ # 4, reduces to a scalar differential equation — the master
differential equation — in the function (£, e). Hence, at points p € M \ #A,, we obtain
a one-to-one correspondence

{Solutions & of system (1.3.1) specialized at p} <= {Master functions ®¢ at p}.

See Theorems 2.7.4 and 2.7.6. Thus, if integral representations for a basis of master
functions are found, the main problem is solved at points in M \ A4 .

Some motivational comments for introducing these new tools are in order. The
notions of master functions and master differential equations define analogs, for an
arbitrary Frobenius manifold, of well-known objects in Gromov—Witten and quantum
cohomology theories. Namely, in the case of quantum cohomology the components of
Givental’s J-function (with respect to an arbitrary cohomology basis) define a gen-

SHere C* denotes the universal cover of C*.
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erating set of master functions. Moreover, the master differential equation is (up to
re-scaling of the unknown function) a quantum differential equation as defined, e.g.,
in [27, Section 10.3], see Chapter 5. In our opinion the concepts of cyclic stratum,
master functions, and master differential equations may represent relevant notions
in the analytic theory of Frobenius manifolds. For example, any contingent relations
with the geometry of distinguished subsets of Frobenius manifolds (e.g., bifurcation
diagram, Maxwell stratum, caustic) deserve further investigations. In that regard, it
would be interesting to study relations with results of [22,23], concerning the isomon-
odromic description of Frobenius manifolds at semisimple coalescing points. This
point will be addressed in a future publication.

1.4 Borel-Laplace multitransforms

In Chapter 6, we introduce a pair of multilinear transforms in both a formal and an
analytical setting.

For h € N*, and a given h-tuple x € (C*)", we introduce a ring .%,(A) of
Ribenboim generalized power series [68,69] with both coefficients and exponents in
a finite-dimensional, commutative, associative, and unitary C-algebra A. The num-
bers k; play arole of “weights” for the exponents of the power series. In such a formal
setting, given &, B € (C*)", we introduce the Borel-Laplace («, B)-multitransforms
as two A-multilinear maps rescaling the weights

h
Bug: R T (A) = For a1 (A), a ! —l-x:=("—1,..., “h )
.8 g{l) S (4) = Fyr g1, (A) 8 Y TR »
h
Lup: Q) F; (A) —> Foppac(A), a-B-k:= (fik1,....onBrkn).
j=1

See Sections 6.2 and 6.3 for precise definitions.
In the analytical setting, given & functions @1, ..., ®;: C* — A, we define their
Borel-Laplace (e, 8)-multitransforms by
2 1 [ L g 5 dA
Oq,...,D = D (z98; \ P ==
wBl1. - O4I(E) 1= 5 /yjl:[1 (25528 S

h
[e.e]
Zupl®1,.... O4l(2) == / [T @i P APi)edn,

0 iz
provided that the integrals exist. The contour y is a Hankel-type contour beginning
from —oo, circling the origin once in the positive direction, and returning to —oo (see
Figure 6.1).
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1.5 Main results

Consider a Fano smooth projective variety X, and let ¢: Y — X be a Fano subvariety
defined as the zero locus of a regular section of a vector bundle £ — X. The clas-
sical cohomology groups H¥ (Y, C) can be (partially) recovered by the cohomology
groups H* (X, C) by the Lefschetz hyperplane theorem. The quantum Lefschetz the-
orem is a quantum improvement of the classical result: it describes how to reconstruct
the Gromov—Witten theory of Y starting from the Gromov—Witten theory of X (see
[15,17,60]).

In this paper, by using the quantum Lefschetz theorem, we give explicit integral
representations of master functions of Y in terms of Laplace (e, 8)-multitransforms
of master functions of the ambient space X under the following assumptions on X
and E:

Case 1. We assume that E is a direct sum of fractional powers of the determinant
bundle det TX of X.

Case 2. We assume that X = X; X --- X X}, is a product of Fano varieties X;, and
that E is the external tensor product of fractional powers of the determinant bundles
det7X;.

Our first main result concerns Case 1. Our Theorem 7.2.1 asserts that any master
function of Y, at points (*§ € H?(Y, C) of its small quantum cohomology, can be
expressed in terms of iterated Laplace (¢, 8)-transforms (simple transforms of a sin-
gle function) of master functions of X at the point § € H?(X,C). More precisely,
if E =@, L®9 and det TX = L* for an ample line bundle L, then any master
function of Y at ¢*§ is a C-linear combination of integrals of the form

w0 L dl—dz do o L d1 d1 [q)]

*l—dy

6_0829%@ Z

ds
ZS ld

=3 d; r
_e—csz/ / ( ’”l_lu)e—zi=lffdzl...dzr,

i=1

where ® is a master function of X at §, and c¢s € C is a complex number depending
on 4.

Our second main result concerns Case 2. In particular, Theorem 7.3.1 asserts that
any master function of Y, at points (*§ € H?(Y, C) of the small quantum locus, can
be expressed in terms of Laplace (o, 8)-multitransforms of master functions of X at
the point §; € H?(X, C), where

h
§=>18®8® - ®L
i=1
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More precisely, if £ = &?ZIL?J/ and det7TX; = ij for ample line bundles L;,

any master function of Y at (*§ is a C-linear combination of integrals of the form

oo h t—d; d;
e-cszza,ﬂ[cpl,...,@h](z)=e-082/ ]‘[cpj(z L A@.f)e-*dx,
0
j=1

where (&, B) = (Zlgldl e, Zhd_hdh : 21—11, e d—z), ®; is a master function of X; at §;,
and c¢s € C is a complex number depending on §.

Assumptions of Cases 1 and 2 are clearly satisfied when the varieties X and X
have Picard rank one. Therefore, Theorems 7.2.1 and 7.3.1 can be applied to all Fano
complete intersections in P” and Fano hypersurfaces in products of projective spaces,
in order to obtain explicit Mellin—Barnes integral representations of master functions.
In particular, if Y € P"~! is a Fano complete intersection defined by homogeneous
polynomials of degrees dy, ..., dy, our Theorem 7.4.1 asserts that any master func-
tionof Y at 0 € H*(Y, C) is a linear combination of one-dimensional Mellin—-Barnes
integrals (j =0,...,n—1)

h
e ¢ h
Gj(z) == —/ L(s)" [[ T = dies)z™ " Zk=1903 ¢, (s) ds,
27TV -1 y k=1
where ¢ € Q, y is a parabola (of the form Res = —p;(Ims)? + p,, for suitable

p1, p2 € Ry) encircling the poles of the factor I'(s)” and separating them from the
poles of the factors I'(1 — ds), and the function ¢; (s) are defined by

exp(2r~v/—1js), n even,

@j(s) := {exp(2ﬂ~/—_1js + w+/—1s), nodd.

In the case of a Fano hypersurface Y € P*171 x ... x P"»~1 defined by a homoge-
neous polynomial of multi-degree (dy, ..., d}), then our Theorem 7.4.2 asserts that
any master function of ¥ at 0 € H*(Y, C) is a linear combination of the 4-dimen-
sional Mellin—Barnes integrals (j = 0,...,n — 1)

h h
F(si)”igaji (si):|F<1 - Zdisi)
1

i= i=1

X Z_Z?=1(”f_df)sf dsy...dsp,

e—CZ
Hj(z):= —(2]“/__1)}2 /x;/,» |:

where ¢ € Q, y; are parabolas (of the form Re s; = —p;; (Im 5i)% + p2,i, for suitable
p1.i, p2.i € R4) encircling the poles of the factors I'(s;)", and the functions (pj’:i (s7)
are defined by

| (s1) exp(2mw/—1jisi), n; even,
- (si) =
Yii o exp(r/—1jis; + w/—1s;), n; odd,

for any h-tuple j = (j1,..., jp) with0 < j, <n; — 1.
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Some comments are in order. Given a Fano variety X, Mirror Symmetry pro-
vides other kinds of integral representations of solutions of equation (1.3.1).” These
are complex oscillating integrals associated with the Landau—Ginzburg models mir-
ror to X, see [35,39-41,50,57]. In these representations the cycles of integration are
multi-dimensional.® This fact typically makes more difficult the study of the asymp-
totic expansions of solutions, and of the determination of the corresponding validity
sectors in @ Furthermore, let us recall another technical issue which may be faced:
Landau—Ginzburg models may not have enough critical points, and suitable com-
pactification procedures have to be applied in order to recover the right number, see
[43,66,70]. This could represent a delicate point for the computation of the Stokes
bases of solutions of equation (1.2.1), whose exponential growth is ruled by the criti-
cal values of the Landau—Ginzburg potential.

We believe that one-dimensional Mellin—Barnes integrals of Theorem 7.4.1 repre-
sent a more advantageous representation of the solutions to the purpose of asymptotic
analysis. Moreover, even for multi-dimensional Mellin—Barnes integrals of Theorem
7.4.2 the study of their asymptotics is tame: it is equivalent to the study of the asymp-
totics of one-dimensional generalized Faxén integrals

00 r
I(A;er,....¢p) = / exp|:—)k<x“ + chxmk):| dx,
0 k=1

with w > my > my > --- > m, > 0, which have saddle points whose exponential
contributions dominate algebraic terms in the asymptotic expansion. See [65, Chap-
ter 7], [53, Section 5] for a detailed asymptotic analysis, and also [7, 13,81] for some
special cases. This will be exemplified in Section 11.6.

1.6 Dubrovin conjecture for Hirzebruch surfaces

Equation (1.2.1) has two singularities: a Fuchsian singularity at z = 0 and an irregular
singularity at z = oo of Poincaré rank 1. The monodromy of its solutions is quantified
by a finite set of matrices:

* a monodromy matrix My, quantifying the monodromy of solutions of (1.2.1) at
z =0,

"More precisely, for the equations %a;ué =0, where 7!,...,t" are coordinates on
QH*(X), and not with respect to the spectral parameter z.

8Notice, for example, that already in the case of P” these oscillating integrals are over
n-dimensional cycles. On the other hand, one-dimensional Mellin—Barnes integral represen-
tations of solutions of equation (1.2.1) associated with P were obtained in [46]. Their

asymptotics in sectors of C* is easier to study.
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» a Stokes matrix S, describing the Stokes phenomenon at z = oo,

* and a central connection matrix C gluing the monodromy data My and S at the
two singularities.

Remarkably, the monodromy data define a sort of “system of coordinates” in the space
of solutions of WDVYV equations: from the knowledge of their numerical values,
the whole Frobenius manifold structure can be reconstructed via a Riemann—Hilbert
problem [30,32,47].

In [31], B. Dubrovin formulated an intriguing conjecture concerning the geo-
metrical meaning of the numerical values of the monodromy data of quantum coho-
mologies of Fano varieties. In the qualitative part of the conjecture, for a given Fano
variety X, the semisimplicity condition of Q H *(X) is claimed to be equivalent to the
existence of full exceptional collections in the derived category Db (X) of coherent
sheaves on X. Moreover, in the refined quantitative part of the conjecture, formu-
lated in [21, Conjecture 5.2], the Stokes and central connection matrices (Sp, Cp)
computed at any point p € QH*(X) are claimed to be determined by characteristic
classes of X and of objects of a full exceptional collection €, in DP(X).

In particular, the central connection matrix C, is claimed to equal the matrix
associated with the morphism

I[}:KO(X)C — H'(X,(C),
Nan
L W=D?

d

(2n)2

(1.6.1)

F Ty exp(—mv/—1¢;(X))Ch(F),

where d = dim¢ X, d is its residue class modulo 2, IA‘)? is the characteristic class
of X defined by

dimc X
I'y := 1_[ I'(1=4;), d; Chernroots of TX,
j=1

where

o (1)
-z = exp(yt + Z —nt”),

n=2 n
and Ch(F) is the graded Chern character defined on vector bundles by the formula
Ch(V) := Z;';V L exp(2r V—le i), € being the Chern roots of V. The matrix of I
is computed with respect to the exceptional basis [€,] of Ko(X)c, defined by the
K-theoretical classes of objects of €, and an arbitrary” basis of H*(X, C). Further-
more, if the central connection matrix C,, is related to the morphism Iy as explained

above, then the Stokes matrix S, automatically equals the inverse of the Gram matrix

The choice of a basis of H*®(X,C) in (1.6.1) corresponds to the choice of a system of flat
coordinates on Q H ®(X) with respect to which the monodromy data (Mg, S, C) are computed.
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of the Grothendieck—Euler—Poincaré y-pairing on Ko(X) with respect to the excep-
tional basis [€,], see [21, Corollary 5.8].

It is important to stress that the monodromy data (M, S, C) are defined up to
several choices: the choice of a system of flat coordinates on the Frobenius mani-
fold QH*(X), choices of normalizations (at both z = 0 and z = o0) of solutions
of equation (1.2.1), and the choice of an “admissible ray” in C*. Remarkably, all
these operations have a geometrical counterpart in derived categories, see [21, The-
orem 5.9]. Deserving special mention is I'-conjecture II of [36]: it consists of an
equivalent conjectural statement about the central connection matrix, though with
respect to a choice of a solution in “Levelt form” at z = 0 not natural from the point
of view of the theory of Frobenius manifolds. See [21, Section 5.6] for details.

The explicit computation of the monodromy data of quantum cohomologies is
typically a rather delicate operation. To the best knowledge of the author, the only
cases in which the computation of the complete set of monodromy data (S, C) of
equation (1.2.1) has been carried out in all the details (including the determination
of the corresponding full exceptional collections) are the cases of projective spaces
[32,46] and of complex Grassmannians [21,36]. We believe that the main results of
the current paper, namely the integral representations described in Theorems 7.2.1,
7.3.1,7.4.1, and 7.4.2, will represent a fundamental tool for the development of this
study [20].

As an application, in Chapters 10 and 11, we will show how to use the Laplace
(oe, B)-multitransform, and the main results described above, in order to prove the
quantitative part of the Dubrovin conjecture for Hirzebruch surfaces [49]. These are
surfaces [Fy, k € Z, defined as the total space of the projective bundle P (O & O (—k))
on P!. The interest of this example is highlighted by the fact that

* only two Hirzebruch surfaces are Fano varieties (namely Fy and IFy),
» all others Hirzebruch surfaces are deformation equivalent to either IFy or IF;.

Results of A. Bayer already suggested the non-necessity of the Fano assumption
for the validity of the qualitative part of the Dubrovin conjecture, see [9]. More-
over, X. Hu proved that, in a smooth family of complete varieties, the existence of
full exceptional collection on a fiber preserves for the fibers in a neighborhood, see
[51]. See also [11, Corollary B] for an analogue result for arbitrary semiorthogonal
decompositions. To the best of our knowledge, the study of the monodromy of the
isomonodromic systems (1.2.1) associated with Hirzebruch surfaces, developed in
Chapters 10 and 11, represents the first example in literature which addresses also the
quantitative part of the Dubrovin conjecture, in both the non-Fano case and the case
of deformations of the complex structures.

The case of Hirzebruch surfaces Fpx (resp. o5 4+1) can be reduced to the single
case of Fo = P! x P! (resp. F; = BI,P?). The monodromy data of Q H*(Fy) can
easily be reconstructed from the monodromy data of Q H*(PP!), see Theorem 10.3.3.
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In the case of QH *(IF;), the computation is more delicate, and reduces to the study
of the quantum differential equation

(2832 — 24)9*® + (28322 — 590z + 24)93® + (—22642% 4+ 192z + 3)9>d
— 422(25472% + 350z — 104)9 ®
+ 22(=311323 — 992422 + 1476z + 192)d = 0,

where ¥ ;= Z%. In Section 11.4, we show that the solutions of this equation can be
expressed as linear combinations of integrals of the form

N~
N~

oo
¢ L2, P P21 2] = 9_2/ @1z
0

A3)®y(z343)eHdA,
where ®; and ®, are solutions of quantum differential equations of P! and P2,
respectively, that is,

D2dy = 4220, 93D, = 27230,

This allows the study of the asymptotics of solutions in sectors of @ to reconstruct
the Stokes bases of solutions of the quantum differential equation of 1, and finally to
the computation of both Stokes and central connection matrices, see Theorem 11.8.2.

From these results, the quantitative part of the Dubrovin conjecture is proved for
all Hirzebruch surfaces Fy, by making explicit the exceptional collections in D? (IFy)
which arise from the monodromy data, see Theorems 10.3.3 and 11.8.3.

1.7 Plan of the paper

The paper is organized as follows. In Chapter 2, we introduce the notion of cyclic stra-
tum in the general context of Frobenius manifolds theory. A first study of the geom-
etry of the cyclic stratum, and its complement in the extended manifold C* x M,
is addressed.

In Chapter 3, we recall basic definitions in Gromov—Witten theory, including
the definition of the Frobenius manifold structure on the quantum cohomology of
a smooth projective variety. In Chapter 4, we recall the definitions of topological-
enumerative solution of the isomonodromic system (1.2.1), and also of its mon-
odromy data. We also recall the main properties and natural transformations of the
complete set of monodromy data.

In Chapter 5, we recall the definition of Givental’s J-function, and we explain
how it is related to the space of master functions, see Theorem 5.1.2 and Corol-
lary 5.1.3. We recall the formulation of the quantum Lefschetz theorem, and we obtain
an upper bound for the dimension of the space of master functions of a Fano hyper-
surface of a smooth projective variety X, see Theorem 5.4.1.
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In Chapter 6, we recall the notion of generalized power series in the sense of
P. Ribenboim, and we introduce the ring .%, (A) of generalized power series with
coefficients and exponents in a finite-dimensional C-algebra. We introduce the no-
tions of Borel-Laplace (o, 8)-multitransforms, in both formal and analytic setting,
and we prove the compatibility of the two definitions, see Theorem 6.5.1.

In Chapter 7, we explain how the J-function can be identified (in several ways)
with elements of rings of Ribenboim generalized power series. We prove the main
results of this paper, Theorems 7.2.1, 7.3.1, 7.4.1 and 7.4.2.

In Chapter 8, we recall the notions of exceptional collections in derived categories
of coherent sheaves, exceptional bases in K-theory, their mutations and helices. We
then describe the refined statement of the Dubrovin conjecture, as formulated in [21].

In Chapter 9, we describe the classical and quantum cohomology rings of Hirze-
bruch surfaces.

In Chapter 10, we explicitly compute the monodromy data of the quantum coho-
mologies QH *(IF,;), and we prove the Dubrovin conjecture for Hirzebruch sur-
faces [Fo.

In Chapter 11, we address the study of the quantum differential equations of
Hirzebruch surfaces ;1. We show how to use the Laplace (1, 2; % %)—multitrans-
form in order to give integral representations of solutions, how to reconstruct Stokes
fundamental solutions, and hence how to compute the monodromy data. This leads
to a proof of the Dubrovin conjecture for Hirzebruch surfaces Fopx 1.



Chapter 2

Cyclic stratum of Frobenius manifolds

2.1 Frobenius manifolds

Given a complex manifold M, we denote by TM (resp. T* M) its holomorphic tan-
gent (resp. cotangent) bundle. If E is a holomorphic vector bundle on M, we denote
by @k E its k-th symmetrized tensor power, and by I"(E) the vector space of global
holomorphic sections of E.

Definition 2.1.1. A Frobenius manifold structure on a complex manifold M of di-
mension 7 is defined by giving

(FM1) a symmetric @ (M )-bilinear form n € F(C)2 T*M), called metric," whose
corresponding Levi-Civita connection V is flat,

(FM2) a (1,2)-tensor ¢ € I'(TM ® (O* T*M) such that
(a) the induced multiplication of vector fields X oY :=¢(—, X,Y), for
X,Y € I'(TM), is associative,
(b) * e (O’ T*M),
) Ve e (O T*M),
(FM3) avector field e € I'(T M), called the unity vector field, such that
(a) the bundle morphism c(—, e,—): TM — TM is the identity morphism,

(b) Ve =0,
(FM4) avector field E € T'(TM), called the Euler vector field, such that
(@ Rgc=c,
(b) Len=(2—d)-n,whered e C is called the charge of the Frobenius
manifold.

'In what follows, we will denote by (—)" and (—)* the musical isomorphisms induced
by the metric 1. These are the isomorphisms between vector spaces of mixed tensors. If
v € I'(TM), the one-form v® € I'(T* M) is defined by v*(w) = n(w, v), where w € I'(TM).
Conversely, if &£ € ['(T* M), the vector field £* € I'(T'M) is uniquely defined by the identity

E(w) =n(w, £F),
where w € T'(TM). Thus, (—)*: T(TM) — T'(T*M) and (—)*: T(T*M) — T'(T M) are mutu-
ally inverse. In components, these operations are also known as “lowering” and “raising” of
indices, respectively. These operations naturally extend to mixed tensors. For example, given
a(1,2)-tensor c € T(TM ® T*M ® T*M), the tensor c” is the (0, 3)-tensor defined by
?(1,v2,v3) = n(v1, c(v2,v3)),
where vy, v2,v3 € I'(TM).
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At any point p € M the triple (T, M, np,0p) is a complex Frobenius algebra,
namely an associative commutative algebra with unity whose product is compatible
with the metric, in the sense that

nplaopb,c) =np(a,bo,c) foralla,b,c e T,M,

by axioms (FM2-a), (FM2-b), (FM3-a). Moreover, there exist an open neighborhood
Q € M of p and a function F: Q2 — C such that

¢’ =V3F,
n = V,V2F.
This follows from axiom (FM2-b). Any such a function F' will be called potential

of M.

Remark 2.1.2. The Euler vector field E is an affine vector field, i.e.
V2E =0.
This follows” from axioms (FM1) and (FM4-b).

Convention. In this paper, we assume that the flat endomorphism X — Vy E of
TM is diagonalizable. By introducing V-flat coordinates ¢ = (1*);,_, on M, with
respect to which the metric 7 is constant and the connection V coincides with partial
derivatives, we have that

n
d
E = Z((l_qa)ta"_ra)ﬁa Ga,Ta € C.

a=1

Following [30-32], we choose flat coordinates ¢ so that azil = e and ry # 0 only if
qo = 1. This can always be done, up to an affine change of coordinates.

%For a generic vector field X on a pseudo-Riemannian manifold (M, g), a simple compu-
tation (invoking the first Bianchi identities) shows that

1
VeVaXa =Y Ruapu X" + 5 (VeKax + VaKpr = VaKap).
M

where
Ko = (8x8)ag = VaXp + VgXu.

If X is Killing conformal, and £ x g = wg for a function w, then
w1
VeVaXn =Y Ruapu X" + 5 (8a20p® + 8p20u® — gapdrw).
yva

In our case R = 0 and w is a constant function.
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Remark 2.1.3. The associativity of the algebra is equivalent to the following condi-
tions for F', called WDV V-equations:

D" 0a0p0y F 07005060, F = Y 0,080y F n"°050¢0q F.

y,6=1 y,6=1
while axiom (FM4) is equivalent to
Nap =alaaaﬂF7 LeF =0@-d)F + 0(1).

with Q(t) a quadratic expression in parameters f,. Conversely, given a solution of
the WDVV equations, satisfying the quasi-homogeneity conditions above, a structure
of Frobenius manifold is naturally defined on an open subset of the space of parame-
ters ¢%.

Definition 2.1.4. Define the grading operator of M to be the tensor u € I'(TM ®
T*M) defined by

2 —
w(Y) = TdY —VyE, Y eT(TM).

In what follows we will also denote by U the (1, 1)-tensor defined by o-multiplication
by the Euler vector field, i.e.

U(Y):=EoY, Y eTD(TM).

We denote by p and U the matrices of components of the tensors ., and U, respec-
tively, with respect to the system ¢ of V-flat coordinates.

2.2 Semisimple points and bifurcation set

Definition 2.2.1. A point p € M is semisimple if and only if the corresponding
Frobenius algebra (T, M, *p, np, 8% |p) is without nilpotents. Denote by M, the open
dense subset of M of semisimple points.

In this paper, only generically semisimple Frobenius manifolds are considered. In
other words, we will always assume M, # @.

On M there are n well-defined idempotent vector fields ny, ..., 7, € I'(TMj;),
satisfying

mi x 7wy = mi, 0w, i) = 6iin(wi, i), i, j=1,...,n.

Theorem 2.2.2 ([29, 30, 32]). The idempotent vector fields pairwise commute, that
is, [m;, ;] = 0fori, j = 1,...,n. Hence, there exist holomorphic local coordinates
(U1,...,uy) on Mg suchthata%i =mfori =1,...,n.
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Definition 2.2.3. The coordinates (u1, ..., u,) of Theorem 2.2.2 are called canoni-
cal coordinates.

Proposition 2.2.4 ([30,32]). Canonical coordinates are uniquely defined up to order-
ing and shifts by constants. The eigenvalues of the tensor U define a system of
canonical coordinates in a neighborhood of any semisimple point of M.

Definition 2.2.5. Given a Frobenius manifold M, we call bifurcation set of M the
set By of points p € M at which the spectrum of the operator U(p) is not simple,
ie.u;(p) =u;(p)forsomei # j.

Following the terminology of [21,23,25], the points of B3, which are semisimple
are called semisimple coalescing points. We define the® Maxwell stratum of M to be
the closure of the set of semisimple coalescing points, i.e. Mps := My N Byy.

The caustic of M is the set-theoretic difference Kps := Bys \ M.

Lemma 2.2.6. We have By = My U K. [ ]

Definition 2.2.7. We call orthonormalized idempotent frame a frame ( f;)7_, of T M,
defined by

fii= (g, ) i, i=1,....n, 2.2.1)
for arbitrary choices of signs of the square roots. The W-matrix is the matrix of change
of tangent frames (V;q) defined by

n
i,a=1"

9
ore

n
=leliafi, a=1,...,n.

i=1

Remark 2.2.8. In the orthonormalized idempotent frame, the operator U is repre-
sented by a diagonal matrix, and the operator g by an antisymmetric matrix:

U :=diag(uy, ..., u,), YUY =U,
Vo= wpw!, vT +v=o.

2.3 Extended deformed connection

Given a Frobenius manifold M, we introduce the extended manifold M:=C*xM ,
and consider the pullback 7*TM of the tangent bundle of M along the obvious pro-
jection 7: M — M. We will denote the natural lifts on M of the tensors n,c,e, E,p,
U by the same symbols. Moreover, we also denote by V the pull-backed Levi-Civita
connection: it is the connection on the vector bundle 7 *T'M , uniquely defined by the

3The name is taken from singularity theory: for Frobenius structures defined on the univer-
sal space of unfoldings of singularities the two notions coincide, see [1-3].
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further requirement that
VaY =0 forallY e 7' Iy,

where z denotes the natural coordinate on C*, and .7, denotes the tangent sheaf of
M . We are going now to define a second connection V on 7*TM which is a defor-
mation of V.

Definition 2.3.1. We define the extended deformed connection V as the connection
on m*TM given by

~ ~ 1
VY =Vx¥ +zXoY, Va¥=VaY+UQY)-—pd)
0z z zZ

forall X,Y e '(n*TM).

Theorem 2.3.2 ([32]). The extended deformed connection v is flat. More precisely,
its flatness is equivalent to the totality of the following conditions:

(1) Ve? e T(O*T*M),

(2) the product on each tangent space of M is associative,

(3) V2E =0,

4) Lgc =c. m

The connection V induces a flat connection on 7*T*M , denoted by the same
symbol.

2.4 Cyclic stratum, and cyclic (co)frame

Definition 2.4.1. Given a Frobenius manifold M, we define infinitely many sections
ej e '(n*TM) as
ey 1= Vka e, keN.
9z

We will call the cyclic stratum M®* to be the maximal open subset U of M such
that the bundle 7*TM |y iAs trivial and the collection of sections (eg |U)Z;i) defines
a basis of each fiber. On M ¢ we will also introduce the dual coframe (w; )7;(1), by
imposing

(wj,ex) =8jk. 2.4.1)

The frame (ek)z;}) will be called cyclic frame, and its dual (w; ;-’;(1) cyclic coframe.

Definition 2.4.2. Define the matrix-valued function A = (A;4(z, p)), holomorphic
on M, by the equation

0

n—1
W:ZAiaei, a=1,....n. (2.4.2)
i=0



Cyclic stratum of Frobenius manifolds 18

Remark 2.4.3. The A-matrix should be thought as an analogue of the W-matrix. The

former matrix relates the flat coordinate frame (a%)gzl to the cyclic frame (ei)l’.‘;é,

and the latter matrix relates the flat coordinate frame (3%)2=1 to the normalized
idempotent frame ( f;)7_,.
Lemma244. For j = 1,...,n — 1, we have

Viwj = —Wj-1.
0z

Proof. From (2.4.1), forany k =0, ...,n — 2, we have
(§a%w,~,ek) + (wj. k1) =0 = 68%60/,%) = —bjk+1
— ﬁaia)jz—a)j_l. ]
Proposition 2.4.5. The vector fields e, with k € N, have the following form:

k

1
=) —pE)

j=0
where the vector fields pjl.c (E) do not depend on z and satisfy the difference equations
o (E) = E o p5(E),
PiYUE) = Eo pf(E) — p(pf_(E) + (1 = j)pf_(E), j=1,....k,
PETIE) = —u(pk(E)) — kpi (E),

with the only initial datum pj‘?(E) = 8o - e. ]

2.5 Properties of the function det A

The holomorphic function det A: M — C* extends meromorphically to a function
onP! x M.

Theorem 2.5.1. The function det A is a meromorphic function on P' x M of the
form

2("2Y
detA(z, p) = —— ,
22D Ao(p) + -+ A1) ()
where Ao, ..., A(;") are holomorphic functions on M. Moreover, if n > 2 and if the

eigenvalues of the grading operator p are not pairwise distinct, then the function
A(r5") is identically zero.

We need a preliminary result.
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Lemma 2.5.2. Fork €{0,...,n — 1}, the polyvector field
k+1
Con-Aep € F(/\ n*TM)

admits a pole at {0} x M of order at most (g) More precisely, we have
1 1 k+1
60/\"'/\€k:U)0+—wl+"'+—kw(k), wjef‘(/\ g TM),
z Z(z) 2
with
= (=n® 2 N
w(g)—( D2 eAEAu(E)YAR“(EYAN--- A" (E).

Proof. By induction on k. For the base cases k = 0 and k = 1, we have ey = e and
eo N e1 = e A E, respectively. So, for k = 0, 1 the claim holds true.
Assume that eg A - -+ A ej_1 is of the form

1 1
AN AN€p_1 = — e R _
€o €Ck—1 wo + ZU)] + + Z(kgl) U)(kzl)
with -
w1y = D) e AE A R(E) A RZE) A -+ A pF2(E).
‘We have

3

k
eg N Aep = ( Z z_]wj)/\(ZZ_ZP?(E))
j=0 £=0

e claim that the coefficient w -1y A p of z=(*2)% vanishes. Indee , D
We claim that the coefficient wx—1) A pf (E) of (*2)* vanishes. Indeed, pk(E)
is proportional to e: we have

d(d d
k — (= _ Y >
Pi (E) 2(2 1) (2 k + l)e, k=0,

as it can easily be seen by induction (the key property is u(e) = —%e, together with
the last difference equation of Proposition 2.4.5). Consequently, we have

Wk 1y /\p,’i(E) =c-(en---ne)=0.
Hence, the (possibly non-vanishing) most polar term of eg A - -+ A ex equals
k=1 _ _(k _ _
G ey A pE (B) = 2B way A (CDF R (E))
=2 OB enEn R(E) A A pF~Y(E).

For the first equality we have used the difference equation for p’,j_l (E) of Proposi-
tion 2.4.5. ]

Proof of Theorem 2.5.1. The polyvector field ey A - -+ A e,—; has the form

1 1
eg N Aep—1 = wo(p) + ;wl(p) + -+ mIU(ngl)(p), 2.5.1)
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where wg, Wy, ..., w() are holomorphic n-vector fields on M, by Lemma 2.5.2.
Introduce holomorphic functions Ag(p), . .., A(";')(p) such that
ad 0
wi(p) = A7 (p) - 5 Ao A o
From the identity
d

ad
m/\"'/\al—n=detA'€0/\"'/\€n_1,

we deduce
1 1
1 = det A(z. p) (Ao(p) + - Ai(p) + ...WA(n;)(p))-
zU2

The last statement on A1) follows from the explicit formula for w(»>1) given in
Lemma 2.5.2. u

Theorem 2.5.3. We have
i<j U —Uj u;
Ao(p) = [lic;(u(p) (P))’ Jac(p) = det(a%)‘ ‘
P

Jac(p)
Proof. The polyvector field wg in equation (2.5.1) is

n—1

wo = /\ py(E).

j=0
By Proposition 2.4.5, we have
PYE)=E*, jeN,

and using the idempotent vielbein (%)” we can write wq as follows:
1

i=1

1 1
IZ5} u
S B B O I
0= ? ouq ou,
VLU T
0 0
= (l_[(uj—ui))a—A 3
i<j Ui Un
l_[( 1 d 0 .
= u—u - —_— e —— RN
LYY ! Jac or! o
i<j
Remark 2.5.4. We also have
0 0 det ¥ 0 0
a—l/\"'/\a—n=detlpf1 /\fn— © la_/\”/\a y
t ! l_[l—l (Bu,’au,)2 Un
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so that

et det W (det)®
ac p = 1 = 1 ’
MGl i) b TGl i)t b

The last equality follows from W7 ¥ = 7,

2.6 Geometry of the complement of the cyclic stratum in P! x M

Let us consider the tuple of functions (4, ..., A(ﬂ;l)), and extend it to the sequence
(Ak)keN by Setting Ak = 0fork > (n;l) Set

n:=min{j € N: Ap(p) =0forall p e M andall h > j}.

We necessarily have 0 < 77 < (*}'). By Theorem 2.5.1, we have 71 < ("} ') if u has
not simple spectrum. The function det A takes the form

7
Z"Ao(p) + 2" 1 Ai(p) -+ + Aw(p)

Define the subsets Pa, Mo, Moo € P! x M and sp, I, I € M by

Pr = {(z.p) € M : 2" Ao(p) + -+ + An(p) = O},

detA =

M() = {0} X M,
Moo := {00} X M,
Ap:={peM:Ao(p) = - = Ar(p) = 0},

I :={peM:A(p) =0}
I?\ ={peM: Az(p) = 0}.

Lemma 2.6.1. We have the obvious inclusions
C* x Ap C P, AAEIOAHIZO. [

The set &5 is an analytic subspace of P! x M of codimension 1 along which the
function det A admits a pole. The function det A admits poles along a further analytic
subspace, namely {oo} x I%°. See Table 2.1 and Figure 2.1.

The set P, is the complement M \ M®¢ of the cyclic stratum. The complement
of M in P! x M is the disjoint union

Pa Y My U M.

The geometry of &, is rather complicated: in general it admits several irreducible
components. For example, +4  itself does, and consequently also C* x + . The pro-
jection 7: M — M, if restricted to Py \ (C* x Ap), defines a ramified covering of
degree 7.
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Poles of det A Pa Y (oo} x I)
Zeros of det A Mo\ ({0} x I%)
Indeterminacy locus of det A {0} x T ?\

Table 2.1. Location of poles, zeros and indeterminacy locus for the meromorphic function det A
onP! x M.

10y x 19 L 2 /] foopx I

Mo\ \ /Moo

Pl x M

Figure 2.1. Configuration of the sets 5, {oo} x I3°, and {0} x 19\ inP!x M.

The set {0} x T ?\ is an analytic subspace of P! x M of codimension 2 and it is
the indeterminacy locus of the function det A.

Each of the sets IT%°, T g, A seems to be strictly related to other distinguished
subsets of the Frobenius manifold M, namely its bifurcation set Bjs, and its two

components, the Maxwell stratum M and the caustic K ps. We limit to the following
observation.

Theorem 2.6.2. We have I3° C Byy.

Proof. Let p ¢ 8. On the complement of By, the eigenvalues (u1, ..., u,) define
a holomorphic system of coordinates. Hence, Jac(p) # 0. Moreover, by definition we
have [];_;(u;(p) —ui(p)) # 0. Hence, p ¢ I7° by Theorem 2.5.3. ]

In order to obtain more precise results on contingent relations between the sets
e, I ?\, A and Bys, My, K a more detailed study of the polyvector fields
pj’.c (E) of Proposition 2.4.5 is needed. We plan to address this problem in a future
project. We conclude this section with three low-dimensional examples.

Example. For two-dimensional Frobenius manifolds, we have I° = Bjs. In this

case, indeed, we have

d
ey =e, e1=E+2—e — egNer =eANE.
z

The bivector e A E vanishes if and only if u; = u5,.
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Example. Consider the A3-Frobenius manifold, that is, the space M = C3 of poly-
nomials f(x,a) = x* + a,x? + a;x + ag, where a = (ag, a1, a,) € C3 are natural
coordinate. Fix a, € M, and define the Kodaira—Spencer isomorphism

K. Ta(,M — C[x]/(0x f(x,a,))

by identifying d,, with the class of the partial derivative d4; f(x, a,). This allows
to pull back the product of the Jacobi—Milnor algebra C[x]/(dx f(x,a,)) on To, M.
Consider the Grothendieck residue metric

of of

ENERTRNV
e\ Ba;” da; ) 2mi Jr, U
: ox

du,
(u,a)

where ', is a circle, positively oriented, bounding a disc containing all the roots
of %(u, a). One can show that the coordinates t = (¢1, t2, t3) given by

2
I =ap— §a2, Ih =ay, 13=ay,

are flat for the metric 7. In #-coordinates, the Euler vector field is given by
0 3t 0 t3 0
E=t—+——+-—.
18l1 + 4 0ty + 2 013
The Maxwell stratum is the set {f, = 0}, and the caustic is the set {8t33 + 271,‘22 = 0}.
We have the following formulas for the A-matrix and for det A: Setting

a:=z%t; — 21221213 — 642%t3 1 — 1213 — 18215 — 122°1,43

and
b= =322t — 16215 — 642°1115 + 632%1513 + 1922217 + 48z1; + 48,
we get
a b
22t5(8zt3—613+272t3)  4z(8zt3—6t3+27zt3)
4(9z12+16z11t 4(—4zt32 424z +3
A(Z,t): 0 (Z%2+ 213)2 _ ( f3+ Z]+2)
12(8zt5—6t3+27z1t5) 8zt3—613+27z15
_ 32z13 48z
t2(8zt3—6t3+27zt3) 8zt —6t3+27z13
and 64
z
detA(z,t) = 3 3 .
(81215 + 2715)z — 6213
We have

I =8y, I\ =My U{tz3 =0}, Apx=My.
Example. The A, x A,-Frobenius manifold is the Frobenius structure M on C*4,
with flat coordinates (¢, s) = (o, t1, So, S1), defined by the WDV V—potential

1 1
F(t,s) = E(lgll + s2s1) + ﬁ(t{‘ + 51).
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In these coordinates, the unit vector field is e = a 70 + 8s , and the flat metric 1 has
components

=

Il
c o=
R N

The Euler field equals

E=rl 1200 160 &
= — + 51—
%90 T35 T 0% T 3% 0y,

The bifurcation diagram By equals Bys = Mps U K, where the Maxwell stratum is
= {813 (9(s0 — 10)> + 4s3) + (457 — U(s0 —10)?)” + 1617 = 0},

and the caustic is
Ky = {[1 = 0} U {S] = 0}

After some computations, one finds that
det A(z,t,s) = 729z - (4s111(z*(=8t7 (9(so — 10)* + 457)
+ (453 — 9(s0 — 10)2)? + 1610) + 45(s9 — 10)%))
We have

IR =8u. I\ =XKmUl{so=1to}, Axr=KnUlso=1o.5] =1}

2.7 Master differential equation and master functions

Let £ e T'(w*T*M) be a V-flat section. Consider the corresponding vector field
¢ € T(7x*TM) via musical isomorphism, i.e. such that

§() =n(v)

forallv € I'(w*TM).
The vector field ¢ satisfies the following system* of equations:

8ta§-z€§ a=1,...,n, 2.7.1)

L (u + lﬂ);_ 272)
0z z

Here €, is the (1, 1)-tensor defined by (‘Ca)ff = cgy.

4We consider the joint system (2.7.1)=(2.7.2) in matrix notations ( is a column vector
whose entries are the components £%(z, t) with respect to %). Bases of solutions are arranged
in invertible # x n-matrices, called fundamental systems of solutions.
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Multiply by n (on the left) the left-hand and right-hand sides of (2.7.1)—(2.7.2):
we obtain the equivalent system of differential equations

0
Pl —Z‘C’TS a=1,...,n,

_(qr_1
e = (=2

where £ is a column vector whose entries are the components &,(z, ¢) with respect
to dt®. At points (z, p) € M, let us introduce the column vector £ by

£=(ATHTE, (2.7.4)

where A is defined as in (2.4.2). The entries of & are the components §j with respect
to the cyclic coframe w;. The vector £ satisfies the system

9 _ (Z(A—I)TxeaAT + 8(/;;)TAT)§’

(2.7.3)

ot 27.5)

gg ((A NTYTAT — (A—I)TMAT " a(Aa_Zl)TAT)E.

Proposition 2.7.1. Let§ € T(z*T*M) be a v -flat section, and let (EJ (z, p))” ! be
its components with respect to the cyclic co-frame, i.e. &£ =) . j E jwj. We have

Proof. We have

by Lemma 2.4.4. The claim follows. |

Corollary 2.7.2. The system of differential equations (2.7.5) is the companion system
of a scalar differential equation in &,. |

Remark 2.7.3. Note that §; = 50. Indeed, we have ey = ¢ =
The claim then follows from (2.7.4).

3 1 ,sothat A;; = 6;1.

Theorem 2.7.4. Consider the system of differential equations (2.7.3), specialized at
apoint p € M \ Ap. The system can be reduced to a single scalar ordinary differen-
tial equation of order n in the unknown function &,. The scalar differential equation
admits at most (" ;1) apparent singularities.
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Proof. If p € M \ 4, then there exist n complex numbers z1, . .., Zz, NOt necessar-
ily distinct, such that (z;, p) ¢ M “°. The numbers z; are the zeros of the denominator
of the function det A(z, p). ]

The scalar differential equation to which system (2.7.3) can be reduced will be
called the master differential equation of M .

Definition 2.7.5. Fix a point p € M. Consider the system of differential equations
(2.7.3) specialized at p, and set Xp be the C-vector space of its solutions. Then let
vp: Xp — O(C*) be the morphism defined by

> De(z), De(z) =275 (E(z, p),e(p)),

where d is the charge of the Frobenius manifold. Set §, (M) := im(v,). Elements of
S, (M) will be called master functions at p.

Theorem 2.7.6. At points p € M \ A, the morphism v, is injective.

Proof. Given ®¢ € §,(M), the function §;(z) = 2% ®¢(z) is a solution of the master
differential equation at p. By Theorem 2.7.4, the solution £(z) can be reconstructed
from the component &, (z) only. ]
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Gromov-Witten theory

3.1 Notations and conventions

Let X be a smooth projective variety over C. In order not to introduce superstructures,
in what follows we assume that H°¥(X,C) = 0. Denote by by (X) the k-th Betti
number of X.

Attached to X there is an infinite-dimensional C-vector space Py, called the big
phase space, defined as the infinite product of countable many copies of the classical
cohomology space of X, that is,

Px = [[ H(X.0).
neN

Let us fix a homogeneous basis (7, ..., Tx) of H*(X, C) such that

c Tr=1,

s Ti,...,T,is anef integral basis of H?(X,Z).

In particular, by (X) = r. Sett = (¢°,...,t"), the dual coordinates of H*(X,C).
We denote by (7,7y,...,7,Tn) the corresponding basis of the p-th copy of

H*(X,C) in Px. The element 7,7, will be called a descendant of T, with level p.

The coordinate of a point y € $Px with respect to the basis (7, 7y )a,p Will be denoted

by t* = (t*?)q,p. Instead of denoting by y = (t*? 1,1y )q,p a generic element of Py

we will usually write this as a formal series

m [e.e]
y = Z Z tP1,Ty.
a=1p=0

We identify H*(X, C) with the 0-th factor of Py, called the small phase space. This
allow us to identify 1% = %9 fora =0,..., N.

Denote by n: H*(X,C) x H*(X,C) - H*(X, C) the Poincaré pairing defined
by

n(u,v) = / uUw,
X

and we set g8 := n(Ty, Tg) fora, B = 0,..., N. The numbers 144 will be collected

in the Gram' matrix n = (naﬂ)gﬁzo, with inverse matrix n~! = (n“ﬁ)gﬁzo. We also

'We denote the metric tensor and its Gram matrix by the same symbol 7. This is a standard
abuse of notation.
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introduce the dual basis (79, ..., TN) of H*(X, C), by setting

N
=ZTM]M, a=20,...,N.

Define the Novikov ring Ay as the ring of formal sums

Z a,gQﬁ, ag € Q,

BeH>(X,Z)

such that

card{ﬂ:aﬂ;éOand/a)<C}<oo forany C € R,
B

where o is the Kihler form of X.

3.2 Descendant Gromov—Witten invariants

For any given g,n € N and B € Hy(X, Z), denote by Mg (X, B) the Kontsevich—
Manin moduli stack of genus g, n-pointed stable maps of degree § with target X: it
parametrizes isomorphism classes of pairs ((C, x), /), where

C is a genus g nodal connected projective curve,

x = (x1,...,X,) is an n-tuple of pairwise distinct points of the smooth locus
of C,

f:C — X is amorphism with f4[C] = B,

a morphism between two pairs ((C,x), f) and ((C’,x’), f’) is a morphism
0:C — C’such that o(x;) = x] for all 7, and making commutative the diagram

c——2 ¢’

N

the group of automorphisms of ((C, x), f) is finite.

The moduli space ﬂg,n (X, B) is a proper Deligne-Mumford stack of virtual dimen-
sion

vir dimcﬂg,n(){, B) =1 —g)(dimc X —3) + / c1(X) +n.
B

We denote by £;, withi = 1,...,n, the i-th tautological line bundle on ﬂg,n (X.B)
whose fiber at the point [((C, x), f)] € Mg (X, B) is the cotangent space T, C.. Set
Yii=ci(Lj)forj=1,...,n
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We have naturally defined evaluation morphisms
evi: Mgn(X.B) = X, [((C.x), )]~ f(xi)
fori =1,...,n.

Definition 3.2.1. Let dy, ..., d, be non-negative integers. The genus g descendant
Gromov—Witten invariants (or genus g gravitational correlators) are the rational num-
bers defined by the integrals

(rdlal,...,rdnan);n’ﬂ :=/ ]_[w Uev (o)),

[Men (XA 4
where o1, ...,a, € H*(X,C), and the class
[Mgn(X, )] € CHp (Mg n(X.B))., D = virdimgc Mgn(X,p),
denotes the virtual fundamental class of M, , (X, B).

Definition 3.2.2. The genus g total descendant potential of X is the generating func-
tion ¥ X e Ax[t*] of descendant G W -invariants of X defined by

ﬂ
FX@*,Q) = Z 3> Q P g

n= OﬁeEff(X)

it N Rt %P1 t%nsPn

=22 X X i

n=0 B ai,...ap=0p1,....,pn=0 x 8
A1 Tays e T T ) g n g Q-

Setting t%0 = ¢t* and t*? = 0 for p > 0, we obtain the genus g Gromov—Witten
potential of X

4 ton

00 N
FreQ= > > — 1 (Ta Tu)g, @
[

n=0 o] 5.0 =0
It will also be convenient to introduce the genus g correlation functions defined by

the derivatives

0
orersdr T §en.dn

«rdl Td]v"'9TdnT(¥n»g = t“"’=0f0rp>0'

1.0 s

?gX(ttQ)'

3.3 Quantum cohomology

Let B1,...,Br € Hy(X, Z) be the homology classes dual to 71, ..., T,. By the divi-
sor axiom, the genus 0 Gromov—Witten potential FOX (¢, Q) can be seen as an element
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. 1 .
of the ring C[t%, QPret ... QPret" t7+1 . tN]. In what follows we will be
interested in the cases when FOX is a convergent series expansion

FFec{®.Qfe! ... QP! 17t . Ny, (3.3.1)

Without loss of generality we can put Q = 1. Under assumption (3.3.1), FOX ()
defines an analytic function in an open neighborhood 2 € H*(X, C) of the point

=0, i=0,r+1,...,N, Ret! —> —00, i=1,3,...,r

The function FOX is a solution of WDV'V equations [58,61,76,78], and thus it defines
an analytic Frobenius manifold structure on €2. Using the canonical identifications
of tangent spaces 7,2 = H*(X;C): 0;« > T, the unit vector fieldis e = d,0 = 1,
and the Euler vector field is

N 1 .
E:=c1(X)+ 0; (1 — 5 deg Ta)t T,
which satisfies
L F{ = 3 —dimc X)Fg~.

The Frobenius manifold structure on €2 can be extended by analytic continuation. The
resulting maximal Frobenius structure is called quantum cohomology of X, denoted
QH*(X).

In the recent paper [18], a useful convergence criterion for formal power series
solutions of WDVV equations is given. In the case of quantum cohomologies of Fano
varieties, we have the following result.

Assume that X is Fano, and let us consider the finite-dimensional C-algebra
(H*(X,C), 0p), where the product oy is defined by

N
Taoo Ty = ck,Th. a.y=0.....N,
A=0

where

Z Z TDl’T)/’T 03ﬁn a,yzo,...,N.
e=0 B€eEff(X)

Notice that the sums defining the structure constants céﬂ are finite, due to the Fano
assumption.

Theorem 3.3.1 ([18]). If (H*(X,C),o09) is semisimple, then the Gromov—Witten
potential FOX (¢, Q) is convergent. That is, condition (3.3.1) holds. ]

For a further convergence result, beyond the Fano case, see [18, Sec. 6]. See also
[19], where the convergence criteria of [18] have been generalized to solutions of the
more general “oriented associativity equations” [62].
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Monodromy data of quantum cohomology

4.1 Topological-enumerative solution

For $ =0,...,N and k € N, introduce the functions
Ok () = (wTp Mol Op(z.1) = Zeﬂk(t)z

Define the matrix ©(z, t) by
N
005(z, 1)
@(Z,t)% = Z YIOM%T, 05,,3 =0,...,N.
A=0
Denote by R the matrix associated with the morphism

ci(X)U:H*(X,C) > H*(X,C), xr—c1(X)Ux,

with respect to the basis (T, ..., Tn).
Let us consider the joint system (2.7.1)—(2.7.2) attached to the Frobenius manifold

QH*(X).

Theorem 4.1.1 ([23, 32]). The matrix Zp(z,t) := O(z, t)z*zR is a fundamental
system of solutions of the joint system (2.7.1)—(2.7.2). ]

The fundamental system of solutions Z,(z, t) is called topological-enumerative
solution of the joint system (2.7.1)—(2.7.2).
Let My(t) be the monodromy matrix defined by

Zip(e¥™ 712, 1) = Zigp(z. )Mo (1), z € C*.
Lemma 4.1.2. We have
My(t) = expru~/—1u) exp(2r~/—1R).

In particular, My does not depend on t. |

4.2 Stokes rays and £-chamber decomposition

Definition 4.2.1. We call Stokes rays at a point p € 2 the oriented rays R;; (p) in C
defined by

Rij(p) = {~~/=1(i(p) —u;(p)p : p € Ry},
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where (u1(p), ..., u,(p)) is the spectrum of the operator U( p) (with a fixed arbitrary
order).

Fix an oriented ray £ in the universal cover C*.

Definition 4.2.2. We say that £ is admissible at p € 2 if the projection of the ray £
on C* does not coincide with any Stokes ray R;;(p).

Definition 4.2.3. Define the open subset Oy of points p € Q2 by the following condi-
tions:

(1) the eigenvalues u; (p) are pairwise distinct,
(2) £ is admissible at p.

We call £-chamber of Q any connected component of Oy.

4.3 Stokes fundamental solutions at z = oo
Fix an oriented ray £ = {argz = ¢} in C*. For m € Z, define the following sectors
in C*:
Opm(p) i ={z € Cc*: ©+2nm<argz < ¢+ + 2nm},
Orm(p) ={z ¢ Cc*: o—m+2nm <argz < ¢ + 2nm}.
Denote by By the bifurcation diagram of the quantum cohomology of X .

Theorem 4.3.1 ([30, 32]). There exists a unique formal solution Ziym(z,t) of the
joint system (2.7.1)—(2.7.2) of the form

Ziom(z,1) = ()7 G(z,1) exp(zU(1)),

(&)
1
Gz, t)=1 — G (1),
(z.0) +;Zk K(0)

where the matrices Gy (t) are holomorphic on Q \ Bx.

Theorem 4.3.2 ([30, 32]). Let m € Z. There exist unique fundamental systems of
solutions Zy m(z,t) and Zg m(z,t) of the joint system (2.7.1)—(2.7.2) with respective
asymptotic expansion

ZL,m(Zst) ~ Zform(Z’t)s |Z| — 00, Z € HL,m(¢)9
ZR,m(Z»t) ~ Zform(z’t)’ |Z| — 00,z € HR,m((p)~
Definition 4.3.3. The solutions Zj ,,(z,t) and Zg n(z,t) are called Stokes fun-

damental solutions of the joint system (2.7.1), (2.7.2) on the sectors Il ,(¢) and
IR m(¢), respectively.
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4.4 Monodromy data

Let £ = {argz = ¢} be an oriented ray in C* and consider the corresponding Stokes
fundamental systems of solutions Zz, ,(z,t), Zrm(z,t) form € Z.

Definition 4.4.1. We define the Stokes and central connection matrices S (p),
C ™ (p), withm € Z, at the point p € Oy by the identities

Zrm(z t(P) = Zr (2. (PDS™ (), 2 € CF,
Zrm(2 (D) = Zap(z, t(P)C ™ (p), 2 € C*.
Set S(p) := S©(p) and C(p) := CO(p).
Definition 4.4.2. The monodromy data at the point p € Oy are defined as the 4-tuple
of matrices (1, R, S(p), C(p)), where
* u is the matrix associated to the grading operator,
* R is the matrix associated to the operator c;(X) U: H*(X,C) - H*(X, C),
e S(p), C(p) are the Stokes and central connection matrices at p, respectively.

Definition 4.4.3. Fix a point p € Oy with canonical coordinates (u; (p))_,. Define
the oriented rays L; (p,¢), j = 1,...,n, in the complex plane by the equations

Li(p.9) = {u;(p) + peY"1E9 : p e R, Y.
The ray L;(p, ¢) is oriented from u; (p) to oo. We say that (u;(p))?_, are in {-lexi-
cographical order if L;(p, ¢) is on the left of Ly (p,p)forl < j <k <n.

In what follows, it is assumed that the £-lexicographical order of canonical coor-
dinates is fixed at all points of £-chambers.

Lemma 4.4.4 ((21,32]). If the canonical coordinates (u;(p))?_, are in L-lexicogra-
phical order at p € Oy, then the Stokes matrices S (p), m € Z, are upper trian-
gular with ones along the diagonal.

By Lemma 4.1.2, the matrices  and R determine the monodromy of solutions of
the qDE,
My = expav—1p)exp(Rrv—1R).

Moreover, u and R do not depend on the point p. The following theorem furnishes
a refinement of this property.

Theorem 4.4.5 ([21,30,32]). The monodromy data (j1, R, S, C) are constant in each
£-chamber. Moreover, they satisfy the following identities:

csSTs~'c™' = My, (4.4.1)
§S=cCc! exp(—zr«/—_lR) exp(—m \/—_1,11,)7]_1(CT)_1, 4.4.2)
ST = C Vexp(mvV—1R) exp(m~/—1p)n~ 1 (CT)~1. (4.4.3)
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Theorem 4.4.6 ([21]). The Stokes and central connection matrices Sy,, Cy,, With
m € Z, can be reconstructed from the monodromy data (i, R, S, C):

sm =g Cc™=mp;"C, mel. (4.4.4)

Remark 4.4.7. Points of Oy are semisimple. The results of [21,22,24,25] imply that
the monodromy data (i, R, S, C) are well defined also at points p € Q4 N Bg, and
that Theorem 4.4.5 still holds true.

Remark 4.4.8. Note that from the knowledge of the monodromy data (i, R, S, C)
the Gromov—Witten potential FOX (t) can be reconstructed via a Riemann—Hilbert
boundary value problem, see [21, 23, 32, 47]. Hence, the monodromy data may be
interpreted as a system of coordinates in the space of solutions of WDVV equations.

4.5 Natural transformations of monodromy data

The definition of the Stokes and central connection matrices is subordinate to several
non-canonical choices:
(1) the choice of an oriented ray £ in C*,
(2) the choice of an ordering of canonical coordinates uj,...,u, on each
£-chamber,
(3) the choice of signs in (2.2.1), and hence of the branch of the W-matrix on

each £-chamber.

Different choices affect the numerical values of the data (S, C).

For different choices of the oriented ray £, the transformation of .S and C can be
described in terms of an action of the braid group 8,,, described in Section 4.6.
For different choices of ordering of canonical coordinates, the Stokes and central
connection matrices transform as follows:

SIS, C—»col, I permutation matrix.

For different choices of the branch of the W-matrix, we have a transformation of the
following type:

S+ ISI, Cw CI, I =diag(%l,...,=£1).

See [21,23] for more details.
Moreover, let us also add that the value of all the monodromy data is affected by
different choices of the system of flat coordinates ¢.

Proposition 4.5.1. Let (f°,...,7N) be a system of flat coordinates on Q2 related to
(t°, ..., tN) by the transformations

t~°‘:A%tﬂ+c°‘, %,c“e(c, a,f=0,....N.
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The monodromy data ([, R , S R C ), computed with respect to the coordinatesz are
related to the data (i, R, S, C), computed with respect to t, as follows:
L=ApA™', R=ARA™', §=8, C =AC.

Proof. The transformation of u, R is due to their tensorial nature: they are (1,1)-
tensors on Q. Notice that U = WA™!, Zg o = AZg g and Z,, = AZopA~" so that

C=ZgZro=AZ A 'AZpo = AC.
Equation (4.4.2), together with 7 = (471)TnA~!, shows that S = . .

Remark 4.5.2. In particular, Proposition 4.5.1 applies in the case of deformations
of the complex structures of X. Consider a smooth proper map f:¥ — B with
a connected base space B, and set X := f~!(b) with b € B. Given by,b, € B,
there exists a diffeomorphism ¢: X, — Xj,, which allows to identify (co)homology
groups:

Ox: H.(Xb] y Z) — H.(sz, Z)
and

¢* H*(Xp,,Z) - H*(Xp,.Z).

By using the isomorphisms ¢x«, ¢*, and by invoking the deformation axiom of
Gromov—Witten invariants (see e.g. [27, Section 7.3]), we can identify the quantum
cohomologies QH*(Xp,) and QH *(Xp,): the deformation of the complex structure

just represents a change of flat coordinates on the same Frobenius manifold.

4.6 Action of the braid group 8,

Consider the braid group B,, with generators 1, ..., B,—1 satisfying the relations
BiBi = BiBi, li—jl>1,
BiBi+1Bi = Bi+1BiBi+1.
Let U, be the set of upper triangular (n x n)-matrices with ones along the diagonal.

Definition 4.6.1. Given U € U,,, define the matrices AP U),withi =1,...,n—1,
as follows:

(APiU)),, =1, h=1...n h#ii+],

(Aﬂi(U))i+1,i+1 =

(AP U)), 4y = (AP, 40 =1,

—Uiit1,
ii+1

and all other entries of A% (U) are equal to zero.
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Lemma 4.6.2 ([30,32]). The braid group 8B, acts on U, x GL(n, C) as follows:
B, x U, xGL(n,C) - U, x GL(n, C),
(B1.U.C) > (4P1(U) - U - AP (U). C - 4P (U)™).
We denote by (U, C)Pi the action of B; on (U, C). [

Fix an oriented ray £, = {argz = ¢,} in C*, and denote by £, its projection
on C*. Let Do € Oy, and let (Sp, Co) be the Stokes and central connection matrices
computed at p, with respect to £,, the £,-lexicographical order of canonical coordi-
nates u; (p,), and a suitable determination of the W-matrix at p,. If we let the oriented
ray rotate, so that it crosses some Stokes rays R;;(p,), the values of (Sp, Cp) will
change. We can describe this difference of values in terms of the braid group action
of Lemma 4.6.2.

Theorem 4.6.3 ([21,30,32]). Consider a continuous map ¢: [0, 1] — R, with ¢(0) =

0o, and set £(t) := {argz = @(t)} for any t € [0, 1]. Assume that

* the rays £(0) and £(1) are admissible at p,,

* there exists a unique t, € )0, 1] such that £(t,) is not admissible at p,,

o thereexistiy,...,ix €{1,...,n}, with|igz — ip| > 1 fora # b, such that the pro-
Jected ray £(t) € C crosses the rays (R;; ; /+1)§'€=1 in the counterclockwise (resp.
clockwise) direction, ast — t, .

Denote by (S;, C;), withi = 0, 1, the Stokes and central connection matrices at p,
with respect to the oriented ray £(i), withi = 0, 1. We have

k k -1
(Sl, C]) = (S(),Co)ﬂ, ,8 = l_[ lgi_,- (I’&S‘p. ,3 = (1_[ ,Bi_,-) ) ]
j=1 Jj=1

Remark 4.6.4. An arbitrary rotation of £ can be decomposed into the composition
of elementary rotations satisfying the assumptions of Theorem 4.6.3.

Furthermore, the braid group action also describes how the values of Stokes and
central connection matrices in different £-chambers (for a fixed oriented rays {) are
related to each other.

Fix an oriented ray £ = {argz = ¢} in c* , and denote by £ its projection on C*.
Let €2¢,1,8¢, be two {-chambers and let p; € Q; for i = 1,2. The difference
of values of the Stokes and central connection matrices (S7,Cy) and (S5, C3), at
p1 and p,, respectively, can be described by the action of the braid group B, of
Lemma 4.6.2.

Theorem 4.6.5 ([21,30,32]). Consider a continuous path y: [0, 1] — 2 such that
* y(0)=prandy(1l) = p,

* there exists a unique t, € [0, 1] such that £ is not admissible at y(t,),
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o there exist iy,...,ix €{l,...,n}, with |iz —ip| > 1 for a # b, such that the
rays' (Riji;+1())j, (resp. (Rij,ij+1(t))j'€=r+1) cross the ray £ in the clock-
wise (resp. counterclockwise) direction, ast — t, .

Then we have
r k -1
(S2,C2) = (S1,C1)7, ﬁ:=(]_[ﬁi,)-< I1 ﬂfh) : .
j=1 h=r+1

Remark 4.6.6. In the general case, the points p; and p, can be connected by con-
catenations of paths y satisfying the assumptions of Theorem 4.6.5.

Remark 4.6.7. The action of 8B, on (S, C) also describes the analytic continuation
of the Frobenius manifold structure on 2, see [32, Lecture 4].

'Here the labeling of Stokes rays is the one prolonged from the initial point ¢ = 0.






Chapter 5

J -function and quantum Lefschetz theorem

5.1 J-function and master functions

Definition 5.1.1. The J-function of X is the H*(X, Ax)[#~']-valued function of
T € H*(X, C) defined by

N 00
Tx(@) =14 Y Y (g, T, 1)y ;.
a,A=0n=0

The following result will be crucial for us. For its proof see Appendix A.
Theorem 5.1.2. Leta =0,...,N and§ € H*(X,C). The (1, a)-entry of the matrix
NZop(z,8) equals

dim X

z 2 /TaUJX(8+logz-cl(X))‘Q=1.
X h=1

Corollary 5.1.3. Let § € H?(X, C). The components of the function

J(§ +logz - e1(X))|or.
h=1
with respect to any basis of H®(X, C), span the space of master functions Sg(X).

Proof. The functions z_%mztop(z, 8)]L define a generating set of the space of

master functions $5(X ). The claim follows by Theorem 5.1.2. ]

In the notations of Section 3.1, set

SZZHTi.

i=1

Any formal differential operator P € (C[[ha%, .. ,hati,, et e, e’r,h]] such that

PJx(8) =0

is called a quantum differential operator. The equation PY = 0 is called a quantum
differential equation, see e.g. [27, Section 10.3]. By Corollary 5.1.3, the master dif-
ferential equation, defined as in Section 2.7 at a point § of the complement of the
A p-stratum of Q H*(X), is equivalent to a differential equation for master functions

ﬁg(ﬂ, z2)® =0, ¢:= zi,
dz

for a suitable differentiable operator 155.
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5.2 Twisted Gromov—Witten invariants

Given a holomorphic vector bundle E — X and an invertible multiplicative' char-
acteristic class ¢, one can introduce a (E, ¢)-twisted version of the Gromov—Witten
theory of X.

Given E, there exists a complex

0 1
0—>E;,p>E;np—0
of locally free orbi-sheaves on ﬂg,n (X, B) whose cohomology sheaves are

R%ftyt14(evi E) and R'ftyy1(evii E),

respectively. Here, the forgetful and evaluation morphisms ft,+1, ev,4+1 at the last
marked point fit in the diagram

ﬂg,n—i—l(Xv ﬂ)

y X—HJ

Mg n(X.B) X.
Let us introduce an obstruction K-class
Egnp € K*(Mgn(X.B)).
defined as the K-theoretic difference
Egnp = [Ego,n,ﬁ] - [E;,n,ﬂ]‘

It is possible to show that such a difference does not depend on the choice of the
complex.

Definition 5.2.1. The (E, ¢)-twisted Gromov-Witten invariants (with descendants)
of X are the intersection numbers

n
d X.Ec . dj
(a1 ®---® r,‘f”oen)gn ﬁ" = / c¢(Egpnp) U 1_[ v Uevi(e)),
" (M (X, B i

where o1, ...,0, € H*(X,C).

Remark 5.2.2. If ¢ is the trivial characteristic class, then we recover the untwisted
Gromov—Witten invariants of X .

YA characteristic class ¢ is said to be multiplicative if ¢(E1 ® E2) = c¢(E1)c(E>). It is
invertible if ¢ (E) is invertible in H®(Y, C) for any vector bundle £ on a manifold Y.
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5.3 Quantum Lefschetz theorem

Introduce a C*-action on the total space E defined by fiberwise multiplication. Note
that the C*-equivariant Euler class e is invertible over the field of fractions Q(X)
of He. (pt) = Q[A]. Taking ¢ = e we refer to the twisted Gromov-Witten invariants
as Euler-twisted Gromov—Witten invariants.

Exactly as in the untwisted case, (E, ¢)-twisted Gromov—Witten invariants can
be collected in generating functions. In particular, we can introduce the Euler-twisted
J -function as the H*(X, Ax[A])[#~']-valued function on H*(X, C) by

B
JEe(r) =1+ Z h_”_l%(tnTa, 1,7,.. .,t)(}){’lg’g,ﬂT“.
a.k,n,B

Assume now that the vector bundle E is convex,” i.e. H'(C, f*E) = 0 for all
stable maps f:C — X with C of genus zero. Let Y be a smooth subvariety of X
defined by the zero locus of a regular section of E.

Theorem 5.3.1 ([15, 17]). The non-equivariant limit Jg ¢ | =0 exists. Moreover, it is
related to the function Jy by the equation

e lr=0(t) 2 Jy (1), T HY(X,C), (53.1)
where 1. Y — X is the inclusion.

Remark 5.3.2. The symbol & means that identity (5.3.1) holds true after application
of the morphism t4: Ax — Ay defined by Qf > Q5.

Remark 5.3.3. If dim¢c X > 3, then (* is an isomorphism, by the hyperplane Lef-
schetz theorem.

Assume that s
E=L.
i=1

where L; are nef line bundles on X such that ¢1(E) < ¢1(X). In such a case, the
quantum Lefschetz theorem prescribes how to compute the non-equivariant limit
JE.e (8)|1=0 at points of the small quantum locus § € H?(X, C).

Introduce the hypergeometric modification Iy y of the function Jy as follows:
write Jy = Y 4 JgQP, and for § € H?(X, C) define

s {c1(Li),B)
Ixy® :=> J@Q[] [I (cr(Li)+mn). (5.3.2)
B i=1 m=1

2Globally generated vector bundles and direct sums of nef line bundles are automatically
convex.
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Theorem 5.3.4 ([17]). The function Ixy admits an expansion of the form

Ixy () = F(§) + %G(S) + o(hiz), § e H*(X,C),

where F is H°(X, Ax)-valued and G takes values in H°(X,Ax) @ H?*(X, Ax).
Moreover, we have

Ixy (8)
F@6)

_G()

JE.e (9(8))[1=0 = 9(8)

Proposition 5.3.5 ([16, 17]). Moreover, if c1(X) > c1(E), then we have
F($) =1,
G@O)=6+H(®) -1,

H($) = Z(W/sQﬂefﬁs) “81,(B.c1(X)—c1 (E))
B

for suitable rational coefficients wg € Q.

Proof. The function Iy, y (§) is homogeneous of degree O with respect to the gradings

de @ = [ 1)~ [ )
B B
degh =1,
deg T, =k if T, € H**(X,C).
This is easily seen from the expansion of Jy given in Lemma A.2. Hence, F(§) is

given from the only contribution of the term Jo(§) = 1 + % + ---and H(4) from the
terms for which deg Qf =1. |

5.4 Inequality for dimensions of spaces of master functions

Let Y € X be the zero locus of a regular section of a vector bundle £ — X, sum of
nef line bundles, with ¢; (E) < ¢1(X). Denote by : Y — X the inclusion. We always
assume that both X and Y have vanishing odd cohomology.

Forapointt € QH*(X), denote by $;(X) := §; (QH *(X)) the space of master
functions as .

Theorem 5.4.1. Let § € H*(X, C). We have
dimg Si+5(Y) < dime Ss_e(X), (5.4.1)

where ¢ := c1(X) —c1(E).
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Proof. By the adjunction formula, we have
t*¢ = c1(Y).

The components of the function Jx (6 + ¢ log z)|qg=1, =1, With respect to any basis
of H*(X,C), span the space S54.(X). Analogously, the components of the func-
tion Jy (t*6 + ¢1(Y) log z)|g=1, =1, With respect to any basis of H*(Y, C), span the
space S,x5(Y).

By Theorems 5.3.1, 5.3.4 and Proposition 5.3.5, we have

Jy((*8 + c1(Y)logz)|g=1 = e ZH®) Cxy (8 + clogz)|g=1-
h=1 h=1
The components of the right side are obtained by linear combinations and rescaling
of the components of Jx(§ 4+ c¢logz)|g=1,s=1: such a linear combination is due to
the hypergeometric modification (5.3.2), namely the U-multiplication by an invertible
class. The claim follows. |

Theorem 5.4.2. Let Y be a hyperplane section of X. Assume that d := dim¢ X is
odd, and that the following inequalities of Betti numbers hold true:

1
bg—1(X) < Ebd_l(Y). (5.4.2)

Then *(H?*(X,C)) is contained in the 4Ap-stratum of the Frobenius manifold
QH®*(Y). In particular, along 1*(H?*(X, C)) the canonical coordinates of QH®*(Y)
coalesce.

Proof. From the hyperplane Lefschetz theorem we deduce that (5.4.2) holds true if
and only if dim¢c H*(X,C) < dimc H*(Y,C). Then for any § € H?(X, C) we have
dimc $,x5(Y) < dimc H*(Y, C), by (5.4.1). Hence, the master differential equation
of QH*®(Y) at t*§ is not of order dimc H*(Y, C). This implies that the denominator
of det A is identically zero at (*§. The last statement follows from Lemma 2.6.1 and
Theorem 2.6.2. L






Chapter 6

Borel-Laplace (o, §)-multitransforms

6.1 Algebras of Ribenboim’s generalized power series

Let (M, 4, 0) be a monoid, i.e. a commutative semigroup with neutral element. We
say that a partial order relation < on M defines a strictly ordered monoid (M, +, 0, <)
if the following compatibility condition holds true:

ifa <b,thena+s <b+sforalls e M.

Let R be a commutative ring with unit. The set
R[M] := RM

of all functions f: M — R is equipped with a natural R-module structure, with
respect to pointwise addition and multiplication by scalars. An element f € R[M]
will usually be denoted by

f=>Y fl@ze
aeM
where Z is an indeterminate. Given two functions f, g € R[M], we could be tempted
to define their product as

f-g:=Z( ) f(p)~g(q))Zs, (6.1.1)

seEM *(p,q)eXs(f.g)

where we set

Xs(f,8) =p.9) eMxM:p+q=s, f(p)#0, glg) # 0}.

In general the set X( f, g) is not finite, and consequently the product f - g could be
not defined.

Definition 6.1.1. Let (M, +,0, <) be a strictly ordered monoid. The R-submodule
of R[M] which consists of all functions f: M — R whose support

supp(f) :={s € M : f(s) # 0}
is
(1) Artinian, i.e. every subset of supp( /) admits a minimal element,

(2) narrow, i.e. every subset of supp(f) of pairwise incomparable elements is
finite,

is called the set of generalized power series with coefficients in R and exponents
in M. It is denoted by R[[M, <].
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Proposition 6.1.2 ([68,69]). Given f,g € R[M, <], the set Xs(f, g) is finite, and
the product (6.1.1) is well defined. The set R[[M, <] inherits the structure of an asso-
ciative R-algebra.

Remark 6.1.3. If (M, <) is itself Artinian and narrow, then all its subsets are Artinian
and narrow. Consequently, R[M, <] = R[M].

6.2 The algebra .7, (A)

Let k := (ky,...,kp) € (C*)". Consider an associative, commutative, unitary and
finite-dimensional C-algebra (A4, +, -, 1 4). Denote by Nil(A) the nilradical of A, that
is,

Nil(A) := {a € A : there exists an n € N such that a” = 0}.

Set Ng := {n - 14:n € N}. Define the monoid M4, as the (external) direct sum

of monoids i
My, = (@K,NA) @ Nil(A).
j=1
We have two maps ve: Mg, — N” and te: My — A defined by
v ((eini La)f—y.r) i= ()],
and
h
LK((K,-nilA)f;l, r) = Z/qn,-lA +r.

i=1

On My, we can define the partial order
X<y <= ve(x) e (),

the order on N” being the lexicographical one. This order makes (M, A, <) astrictly
ordered monoid.

We denote by %, (A) the ring A[Myg e, <]

By the universal property of the direct sums of monoids, the natural inclusions
My, — My, induce a unique morphism

h
Pr: @MA,K,' — My .

i=1

Definition 6.2.1. Let r, € Nil(A4). We say that an element f € %, (A) is concen-

trated at r, if ,
supp(f) S (@K,NA) X {ro}.

i=1
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6.3 Formal Borel-Laplace (a, f)-multitransforms

Given two h-tuples a, B € (C*)", we seta - B := (aiﬁ,-)f.‘zl, and ™! := (aii)f.‘zl.

Definition 6.3.1. Let F € C[[x] be a formal power series F(x) = Y e, arxk. For
a € Nil(A4) define F(«) € A by the finite sum

[e.e]
F(a) = Z aga®.
k=0

If F is invertible, i.e. ag # 0, then F () is invertible in A.

In what follows we will usually take F(x) = '(A 4+ x) with A € C \ Z <o, where
I" denotes the Euler Gamma function.

Definition 6.3.2. Let &, B,k € (C*)". We define the Borel («, B)-multitransform as
the A-linear morphism

h

Bup: Q) Fi; (A) > F o1 g1, (A),
j=1

which is defined, on decomposable elements, by

P (é) ( S Zs,»))

S_,'EMA.Kj

h 4 o
= ¥ A (el
5j EMA i, 1ﬂ(l + 2 =1 e (Sz),Be)
j=1,...,h

Definition 6.3.3. Let &, B,k € (C*)". We define the Laplace («, B)-multitransform
as the A-linear morphism

h
goz,;f ®§Kj (A) — d’ﬂ'lC(A)’

Jj=1

which is defined, on decomposable elements, by

.z,,,,ﬂ<(§)( » fs.jjzs_/))

J=1 Vs EMA.KJ'
h . h .
= Z (1_[ fsl,)r (1 + Z Liey (Se)ﬂz) 7P @p=1aePese)
SjEMA,Kj i=1 =1

j=1,h
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In the case & = 1, the Borel-Laplace (e, §)-multitransform simplify as follows.
Definition 6.3.4. Given o, 8 € C*, we define two A-linear maps
Bop: Fi(A) > ﬁﬁ(/l), Lo p: Fi(A) > Fope(A), keC*

called respectively («, B)-Borel and Laplace transforms, through the formulas

s|. Js &
ha| T 57| ¥ gt

SGMA.K SGMA',(
,sfa,ﬂ[ > stS] = Y AT+ Bs)zs.
SEM4 4 SEM 4 4

Theorem 6.3.5. The Borel-Laplace (a, B)-transform are inverses of each other, i.e.

e@a,lg o ga,ﬁ = Id, ga,ﬂ o e%a,ﬂ = Id. ]

6.4 Analytic Borel-Laplace («, 8)-multitransforms

Definition 6.4.1. Let o, B € (C*)". The Borel (&, 8)-multitransform of an A-tuple
of A-valued functions (®1, ..., ®y) is defined, when the integral exists, by

1o o g\ adA
e%a,ﬂ[q)l,...,q)h](Z) = %/ 1_[ qDJ(Z iPi A -’)e T,
ijl

where y is a Hankel-type contour of integration, see Figure 6.1.

Figure 6.1. Hankel-type contour of integration defining Borel (e, #)-multitransform.

Definition 6.4.2. Leto := (oq,..., o) and B := (B1,. .., Bn) be h-tuples in (C*)".
The (e, B)-Laplace transform of an h-tuple of functions (®q,..., ;) is defined,
when the integral exists, by

0 h
L pl®1,..., P](2) ;=/ [T ®: %P A%) exp(—1) dA.
0

i=1
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Proposition 6.4.3. Let (ey,...,e,) be a basis of A and let 1, ..., Oy, be A-valued
functions. Write ®; = ) j CD{ e; for C-valued component functions ij The compo-
nents of Ba g P1. ..., Pyl (resp. Lo g[P1...., Py]) are C- lmear combmatlons of
the h - n C-valued functions B, g [CIDiI' s CI> "] (resp. Lo [P, ..., ®}']), where
(i1,....ip) €{1,... .0}

Proof. Let cj". « € C be the structure constants of the algebra 4, so that
ejex = Zc}kei.
i
We have

a i i
PBagl®1,...,Pp) = Zcmz gy ol eay B pl® ... D],

Similarly for the Laplace multitransform. |

6.5 Analytification of elements of .7, (A)

Lets = ((kjn;1 A)l_l, r) € My, . We define the analytification Z* of the monomial
75 € %, (A) to be the A-valued holomorphic function

o
J
5. % 75 YN ki I ned
2°:C"—> A, Z°(z) = z~i=1 E .!log z.
j=1
Notice that the sum is finite, since r € Nil(A).
Let f € % (A) be a series

f@y= Y fuz*

SEMA

such that
card supp(f) < Ro

The analytification f of f is the A-valued holomorphic function defined if the
series absolutely converges, by

FiweC -4 for= ) fuZ'C).

SEM 4 4

Theorem 6.5.1. Ler f; € F, (A) such that
o cardsupp(fi) < Rofori =1,...,h,

* the functions ﬁ are well defined on R 4.
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We have

——
Bap| Q1 | = Baslhris - Jul,

L j=1

_— -
Lup| QS | = Luplh..... Jal.

L/j=1 .

provided that both sides are well defined.

Proof. 1tis sufficient to prove the statement on monomials Z°1, ..., Z*. To this end,
lets; = (kjnjly,ry)for j =1,...,h. We have
h
%x,ﬂ[@z%}
j=1
— hl ZPK(@2=1 (127%5)
(14 Y ¢—y ey (se)Be)
K; h
— ! Z((ajﬂj IA)j 1 01151+ T ﬁ )

T(1+ Y0 (kenela + ro)Be)

Hence, we have

h
%%ﬁ[GBZW}@>
j=1

Y Y 00 J
_ z L ;B (al.Bl + - +ahﬁh) logjz

L1+ Y eengla + r)Be) io J!

On the other hand, we have
rﬁ

[l

23(2) = z<" ! Jogt z,

so that

Qaméﬁ...ZEKﬂ
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L h
- Y
- 2ri /},e}L )’1"1‘22 llcgnpﬁg l_[ Zﬁlog ( ]B])L ﬂj)

J

Py . di hoyt . i
= , /e p Z l_[1—10g _/(Zoe,-ﬁj A—Bj)_
27 y Al—i—zef:]/cgngﬂg oty =1 Kj'
We have
7
r 1
1_[ j_ 1og€j (Z ajB_/‘ Al_ﬂj)
L L]
j=
[e'e) Ej
r; log z
=[1 X wf,u,(aﬁ) (=B 10g )" Bu-ut,
j=lwu=0 N JFJ
h 17 w;
r; logz\™ ,
= Y o (255) ertoensn, e
W] ,eeny Wy j=1 wj: u] a]ﬂj
Ul,..sUp
and

1 A di ) 1 (u;) h
—(~logV)¥ = = 1 ’
Zm'/ye Al-i—Z?:]Kgngﬁe( ogh) (I‘) +;Keneﬁe

because of the Hankel formula (see e.g. [64])

1 1
P

I'(z) 2ni), A

Thus, we have

Kn ]
BoglZ5, ..., Z9(z) = 1= b 3 l‘[ i

uj

B; (logz)wj
wjlu;! \ ;B

1 (u_/-) h
. (F) L4 keneBe |Suw;4u, 4, -
=1

This coincides with the formula of widehat By g [®j-’=1 Z%7](z). The proof for the
Laplace multitransform is similar, based on the identity

Ly,eky J=1
W, W
UL sy

I(z) = / A lehd.
0
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Integral representations of solutions of qDEs

7.1 Jx-function as element of .7, (X)

Let X be a variety with nef anticanonical bundle.' Introduce the basis (81, ..., B;)
of Hy(X,Z) Poincaré dual to (T'!,..., T"), so that

/Tj=/TiUT]'=5i,j.
i X ‘ ‘

T
Jj=1

Set

Consider the C-algebra H*(X, C). For brevity, we set
Fe(X) = F(H*(X,C))

for any k& € (C*)".
The Jx-function restricted to the small quantum locus of QH *(X) admits the
following expansion:

Jx (8 +logz-c1(X))|o=1
h=1

o0
_ a0 Z Z Z Sl a0 o, X 5T
@ BA0k=0

Such a series can be seen as an element of .%, (X) for different choices of k. We
describe two possible choices. In both cases, we have a series in .%, (X) concentrated
at c1(X).

Choice 1. Set 4 = 1 and k¥ = ¢, where ¢ is a common divisor of the numbers

The series can be rearranged as follows:

Jx (8 +logz-c1(X))|g=1 = Z Ja(8)zdetarX),
h=1 deN

'We recall that this means /, ¢ ¢1(X) = 0 for all curves C in X. If the strict inequality
holds true for any C, then X is Fano by the Nakai—-Moishezon theorem. Varieties with nef
anticanonical bundle can be thought as an interpolation between Fano and Calabi—Yau varieties.
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where

Ja@®) =Y (wTa ozaro@T® deN, T e HX(X,Z), c1(X) = cT.
ak

In particular, Jo(8) = €.

Choice 2. Set & = r and &k = (¢*1,...,c%). By expanding the sum over 3 over
the basis (81, ..., Br), the sum above becomes
Jx(@+logz-ci(X)lo=1= ) Ja (§)z 1™ e ey (X),
h=1 deNT
where

Ja(8) = ¢y (tTo. 1)02.4, Bay, +-+depa, T d €N,
ok

In particular, Jo(8) = €°.

7.2 Integral representations of the first kind

Let X be a Fano smooth projective variety. Assume that det Ty = L®¢ with L ample
line bundle. Lett: ¥ C X be a smooth subvariety defined as the zero locus of a regular
section of the vector bundle £ = @j’:l L®  where the numbers d; € N* are such
that Y5, d; < L.

Theorem 7.2.1. Let § € H?>(X,C), and let S5(X) be the corresponding space of
master functions of QH®(X). There exists a complex number cg € C such that the
space of master functions S,xg(Y) is contained in image of the C-linear map

Fie.ay: Ss(X) > O(CH)

defined by
Fun|®@2) =Ly 0,
ds ’(72?“;% d;
0.0 Li—di-ay ay ©Li—ay a,[P](2).
4 a4 ot

In other words, any element of $,x5(Y) is of the form
o oo [ ewiiq S\
e—CSZ/ / oz []&" |eZ=1tde ... di (7.2.1)
0 0 i=1
for some ® € S5(X). Moreover, cs # 0 only ifzj di =0—-1.

Proof. Set p := c1(L), and let p* € H,(X, Z) be its Poincaré dual homology class.
In particular, we have ¢;(X) = {p and ¢;(E) = (3_;_, di)p. By the adjunction for-
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mula, we have ¢{(Y) = t*(c1(X) — c1(E)). From Lemma A.2, we have
JX(S +10gZ'C1(X))|Q=1 = Z Jdp*(S)ZdK'FCI(X)
h=1  jeN

=Y Jape (§)z41F, (7.2.2)
deN

where Jgp+(8) = el Yok Tk Tas 1>0X,2,dp* T%. Analogously, from (5.3.2) we have

Ixy (8 + (c1(X) — c1(E)) log z)[o=1

h=1
s ({dip,dp™)

= Y Jar G+ @D —er(ENlog) [ ] @ip+m)

deN i=1 m=1

s d-d;

— Z Jdp*(S)Zd(ﬁ—zdi)-f—q(X)—m(E) 1_[ l_[(di,o+m)

deN i=1m=1

N

= 3 g ()24 EHET DR T] L +dip+ddi) 723

deN ’ i=1 F(l—i—d,-p)

On the one hand, from (7.2.2), one can see that Jy (6 + logz - ¢1(X)))|o=1,4=1 is
the analytification Ty of the series Jx € F4(X), concentrated at ¢, (X) = £p, defined
by
IX(Z) =" Jgpe(8)29&1 0,
deN
On the other hand, one recognizes in equation (7.2.3) the analytification of the itera-
tion of Laplace transforms

N

1
xy =] =" <$efz$, 4

iI:II I'(l+dip) i ’E—Z?S;II 4; (7.2.4)
00 Lvaj-ay a» ©Le—ay Q[JX]),

do *L—dy dy ¢t

which is an element of ﬁg,zls,:] 4 (X). By Theorems 5.3.1, 5.3.4, 6.5.1, and Propo-
sition 5.3.5, we have E

Jy ("6 + c1(Y) log Z)|<;=1 = Txy 8+ (e1(X) — c1(E))) exp(—zH(8) o=1),
=1
where H(8) is defined in Proposition 5.3.5. Thus, the components of the right-hand
side, with respect to any basis of H*(Y,C), span the space of master functions
Si=5(Y), by Corollary 5.1.3. The factor * []_, T'(1 + d;ip)~! coming from (7.2.4)
can be eliminated by a change of basis of H*(Y, C). By H*(X, C)-linearity of the
Laplace (, B)-transforms, the claim follows by setting ¢5 := H(5)|g=1. ]
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Remark 7.2.2. Integral (7.2.1) is convergent for any z € C*. This follows from the
exponential asymptotics of Theorem 4.3.2 for z — oo, the Fano assumption on Y
(i.e. Z]_l d; <€), and the asymptotics |®(z)| < C|logz|4™c X for z — 0 (see
Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.2.3. Formula (7.2.4) generalizes [37, Lemma 8.1].

7.3 Integral representations of the second kind

Let X1,..., X} be Fano smooth projective varieties. Assume that det Tx; = L
for ample hne bundles L;. Let Y be a smooth subvariety of X := ]_[ 1 X deﬁned
as the zero locus of a regular section of the line bundle

E— ® 189
j=1"

where the numbers d; € N* are such that d; < {; forany j = 1,...,h.
By Kiinneth isomorphism, any element of H?(X, C) is of the form

h
§=>18®§® @1 withé € H*(X;.C).
i=1

Denote by (: Y — X the inclusion.

Theorem 7.3.1. Let § € H*>(X,C), §; € H*(X;,C) be as above, and let Ss;(Xi)
be the corresponding space of master functions of QH *(X;). There exists a rational

number cg € Q such that the space of master functions S,+5(Y) is contained in image
of the C-linear map (g q4y: ®]_1 S5, (Xj) — (9((C*) defined by

Pu.[P1,.... Ppl(2) = e_c‘sz.iﬂa,ﬂ [®1,...,Dx](2),

where

(avﬂ):( dl LI dh ’61’...75
In other words, any element of $,+5(Y) is of the form

—dj
/ (z U H) A dA (7.3.1)

for some ®; € S5, (X) with j =1,...,h. Moreover, cs # 0 only ifdj = £; — 1 for
some j.

¢ —d th—dy dy d,,)

Proof. Setp; := c1(L;) andlet p} € H,(X;, Z) be its Poincaré dual homology class,
forany i = 1,..., h. By the Kiinneth isomorphism, and by the universal property of
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coproduct of algebras (i.e. tensor product), we have injective’ maps
H*(X;,C) - H*(X,C).

In order to ease the computations, in the next formulas we will not distinguish an
element of H*(X;, C) with its image in H*(X, C). So, for example we will write

h
ci(E) = Z dppp.
p=1

The same will be applied for elements in H, (X, Z).
We have

h
Tx (8 + c1(X)logz)o=1 = (X) Jx; (8 + c1(X;)logz)|o=1
1

h=1 = h=
h
= Y Jikpr G)Fititlin, (7.3.2)
i=1 kiGN

where
) X;
Jikipr () = € Y (i Twis Vg g e T
o, !
Analogously, from (5.3.2), we deduce the formula

Ixy (8 + (c1(X) — c1(E)) log z)|Q=1
h=1

h
= Z ®Ji ko (8) 2K CimdD+Ei=dpi
’ 1
ki,...kpeN i=1
(Zp dppp,Z,, ka;)

I (;dpPerM)

m=1

h
= Y (R i () G G,

ki,...kpeN i=1
Zp dpkp

[ (S m)

m=1
h

= Z ® Ji ki ((gl.)Zki €i—d)+Ei—d;)p;

. L+, dpkp + 3, dppp)
ra+ Zp dppp) .

(7.3.3)

2In particular, we have inclusions F (X;) — F (X).
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Each element in the tensor product (7.3.2) can easily be recognized as the analytifi-
cation in of a series Iy, € ﬁgi (X), foreachi = 1,..., h. The function in equation
(7.3.3) can be identified with the analytification of the Laplace (&, §)-multitransform

h h
1
s <® ra+y, d,,p,,)) L [®JX'}’ 7y

i=1 i=1

where

@ p) = (A L),

dl ey dh ,Zl,...,a
The series Iy,y can be seen as an element of .%, (X), with k = ({; — dl-)lhzl,

Kiinneth isomorphism. By Theorems 5.3.1, 5.3.4, 6.5.1, and Proposition 5.3.5, we
have

via the

Ty (@8 + e log )=t = Ty (3 + (@1(X) = c1(ED) exp(—=H ) =)
=1
Thus, the components of the right-hand side, with respect to any basis of H*(Y, C),
span the space of master functions §,+5(Y"), by Corollary 5.1.3. Notice that the factor
Fi_, T+ Zp a’p,op)_1 coming from (7.3.4) can be eliminated by a change of
basis of H*(Y, C). By H*(X, C)-linearity of the Laplace (e, 8)-multitransform, the
claim follows by setting cs := H(8)|g=1. ]

Remark 7.3.2. Integral (7.3.1) is convergent for any z € C*. This follows from the
exponential asymptotics of Theorem 4.3.2 for z — oo, the assumption d; < {; for
any j = 1,...,h, and the asymptotics |®;(z)| < C|log z|“i™c X/ for z — O (see
Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.3.3. Formula (7.3.4) generalizes [37, Lemma 8.1].

7.4 Master functions as Mellin—Barnes integrals

When applied to the case of Fano complete intersections in products of projective
spaces, Theorems 7.2.1 and 7.3.1 give explicit Mellin—Barnes integral representations
of solutions of the gDE.

Theorem 7.4.1. Let Y be a Fano complete intersection in P"~1 defined by h homo-
geneous polynomials of degrees di, ... ,dy. There exists a unique ¢ € Q such that
any master functions in $o(Y) is a linear combination of the Mellin—Barnes integrals

e—CZ

G =),

h
F(S)n 1_[ ra- dks)z—(n—2£=1 dk)s(pj (s)ds
k=1
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for j =0,...,n— 1. The path of integration y is a parabola of the form
Res = —p1(Ims)® + pa,

Sor suitable p1, p2 € R4, such that y encircles the poles of T (s)", and separates them
from the poles of the factors I (1 — dys). The functions ¢; are given by

* forn even:
@i (s) = exp(Zn«/—_ljs), j=0,...,n—1,
* forn odd:
;i (s) == exp(2nv/—1js + nv/~1s5), j=0,...,n—1.
Moreover, ¢ # 0only if Y, dx =n — 1.

Proof. The functions
1
gj(z) = ﬁ/F(s)”z_”s(pj(s) ds, j=0,...,n—1,
—1Jy

are a basis of the space of master functions So(IP"~!), see [46, Lemma 5]. The result
follows by applying Theorem 7.2.1 to the case X = P"~1, { = n. [

Theorem 7.4.2. Let Y be a Fano hypersurface of P"1 7! x -.. x P~ defined by
a homogeneous polynomial of multi-degree (dy, . .., dy). There exists a unique ¢ € Q
such that any master function in So(Y') is a linear combination of the multi-dimen-
sional Mellin—Barnes integrals

e—CZ
Hj(z) := —(2]“/__1)}2 /Xy,- |:

h
h
-F(l - Zd;si)z_zil(”f_df)“‘f dsy...dsy
i=1

forj = (j1,...,jn) € ]_[;’21{0, ..., nj — 1}. The paths y; are parabolas of the form

i=

h .
()" ¢, (s,-)}
1

Res; = —p1,;(Ims;)* + p2,7,

for suitable py ;, p2,; € Ry, so that they encircle the poles of the factors I' (s;)". The
Sfunction (pj’:l, is defined as follows:

* forn; even:
(p}i(si) = exp(2n«/—_1jl-s,-), ji=0,...,n; —1,
* forn; odd:
(p}i (s;) = exp(2nv/—jisi + nv/~1s;), ji =0,...,n; — L.

Moreover, ¢ # Oonly ifd; = n; — 1 for somei =1,...,h.
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Proof. The result follows by application of Theorem 7.3.1 to the case X; = P" !
{; = n;.For each factor P"~1 a basis of the space So(PP" ~!) is given by the integrals

. 1
L (2) 1= ——— L (s)%iz7"s ’ s)ds, j =0,...,n; —1. m
g]l() 27[\/_—1 v; () () .]l 1

Example. Consider the complex Grassmannian G := G(2, 4): it can be realized as
a quadric in IP°, by Pliicker embedding. It can be shown that the space So(G) is the
space of solutions @ of the gDE given by

d
92D — 1024249 D — 2048z4d =0, ¥ := 2o (7.4.1)
z

By Theorem 7.4.1, any solution of (7.4.1) is a linear combination of the functions

Gi(z) = [(s)®T (1 —2s)z™% exp(2rv/—1js)ds, j=0,....5.

i)

Recalling the reflection and duplication formulas for I'-function (see e.g. [64]),

L@ -2 = 0. 1o = n—ézﬂ—lr(z)r(z + %)

it is easy to see that the function

3
22 I(s)° 4=,
Go(z) = - z % ds
o(2) 2n/—1Jy T(s + %) sin(27s)

is a solution of (7.4.1). In [23, Section 6] the solutions

F(S)5

®i(z) = 4_S 4 ds

an/_/

and
Dy(z) =

C(s)°T ( —s)ei”54_sz_4s ds
n\/— (s)

of equation (7.4.1) were found and studied. It is not difficult to see that ®; and ®,
are linear combinations of the functions G;.

Remark 7.4.3. This example can be extended to Grassmannians G (k, n) and other
families of partial flag varieties. In the case of Grassmannians it gives different inte-
gral representations of solutions with respect to those obtained from the quantum
Satake identification [42,55]. More in general, it would be interesting to do a com-
parison with the integral representations of solutions obtained from the Abelian—
Nonabelian correspondence [14].



Chapter 8

Dubrovin conjecture

8.1 Exceptional collections and exceptional bases

Let X be a smooth complex projective variety, and denote by D?(X) the bounded
derived category of coherent sheaves on X, see [38,52]. Given E, F € Ob(D?(X)),
define Hom®(E, F) as the C-vector space'
Hom®*(E, F) := @ Hom(E, F[k]).
keZ

An object E € Ob(D?(X)) is said to be exceptional if Hom®*(E, E) is a one-dimen-
sional C-algebra, generated by the identity morphism.

A collection € = (Ej, ..., E,) of objects of D?(X) is said to be an exceptional
collection if

(1) each object E; is exceptional,

(2) we have Hom*(E;, E;) = O for j > i.
Moreover, an exceptional collection & is full if it generates D? (X), i.e. any triangular
subcategory containing all objects of & is equivalent to D?(X) via the inclusion
functor.

Consider the Grothendieck group Ko(X) = Ko(D?(X)), and let y to be the
Grothendieck—Euler—Poincaré bilinear form

((VL[F) := Y (=1)* dimc Hom(V. F[k]). V. F € D°(X).
k
Definition 8.1.1. A basis (e;)"_, of Ko(X)c is called exceptional if x(e;,e;) = 1
fori =1,...,n,and y(ej,e;) =0forl <i < j <n.
Lemma 8.1.2. Let (E;)?_, be a full exceptional collection in DP(X). The K -classes
([Ei])}—, form an exceptional basis of Ko(X)c. ]

8.2 Mutations and helices

Let € = (E4,..., E,) be an exceptional collection in i)b(X). Fori=1,...,n—1
define the collections

Ll(g‘ = (El,...,Ei_l,E;+1,Ei,Ei+2,...,En),
Rl‘@ = (El’-"7Ei—17Ei+l7El{/7Ei+27"' ,En),

INotice that the category D? (X) is a C-linear category.
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/

where the objects E; |,

E[ sitin the distinguished triangles
El'/—i-l[_l] — Hom'(El-, Eit1)Q®E; - Eiyr1 — El{-i—l’
Ez{/ — E; — HOl’Il.(E,‘, Ei+1)* ® Eiy1 — El{/[l].

Remark 8.2.1. The object E;_, (resp. E}') is uniquely defined up to unique isomor-
phism, because of the exceptionality of E; (resp. E;+1), see [21, Section 3.3].

Proposition 8.2.2 ([12,44]). For any i, with 0 < i < n, the collections L; €, R; €
are exceptional. The mutation operators 1L;, R; satisfy the following identities:
L;R;, =R;L; =1d,
RiR; =R;R; if|i —j|>1, Ri+1RiRi+1 = RiR;+1R;.

Moreover, if € is full, then also 1L; € and R; € are full. ]

Denote by 1, ..., Bn—1 the generators of the braid group 8B, satisfying the rela-
tions

BiBi+1Bi = Bi+1BiBi+1.  BiB; =BiBi ifli—jl>1
We define the left action of B, on the set of exceptional collections of length n by

identifying the action of 8; with ;.

Definition 8.2.3. Let € = (Ey,..., E,) be a full exceptional collection. We define
the helix generated by € to be the infinite family (E;);ez of exceptional objects such
that

(Ev—kns Ex—kns -+ Encin) = €2, B = (Bu—i...p0*", k €Z.

Any family of n consecutive exceptional objects (E;1x)% _, is called a foundation of
the helix.

Lemma 8.2.4 ([44]). The following statements hold:
(1) Any foundation is a full exceptional collection.

(2) Fori,j € Z, we have Hom®*(E;, E;) = Hom®*(E;_,, E; ). [ ]

The action of the braid group on the set of exceptional collections in DP(X)
admits a K-theoretical analogue on the set of exceptional bases of Ko(X)c, see
[21,44].

8.3 I'-classes and graded Chern character

Let V be a complex vector bundle on X of rank r, and 61, ..., §, its Chern roots, so
that ¢; (V') = 5;(d1,...,0,), where s; is the j-th elementary symmetric polynomial.
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Definition 8.3.1. Let Q be an indeterminate, and F € C[[Q] be of the form
F(Q)=1+) jan0".
n=1

The F-class of V is the characteristic class Fy € H *(X) defined by

;
Fy =[] F6p.
j=1
Definition 8.3.2. The ['*-classes of V are the characteristic classes associated with
the Taylor expansions

§m)
m

I'(1+0)= exp(:FyQ + Y (F)”

m=2

Qm) € C[21l.

where vy is the Euler—Mascheroni constant and ¢ is the Riemann zeta function.
If V = TX, then we denote f‘f its I"-classes.

Definition 8.3.3. The graded Chern character of the complex vector bundle V is the
characteristic class Ch(V') € H*®(X) defined by Ch(V) := er'=1 exp(2m v/ —16;).

8.4 Statement of the conjecture

Let X be a Fano variety. In [31] Dubrovin conjectured that many properties of the
gDE of X, in particular its monodromy, Stokes and central connection matrices, are
encoded in the geometry of exceptional collections in D? (X ). The following conjec-
ture is a refinement of the original version in [31].

Conjecture 8.4.1 ([21]). Let X be a smooth Fano variety of Hodge—Tate type.

(1) The quantum cohomology Q H*(X) has semisimple points if and only if there
exists a full exceptional collection in DP(X).

(2) If QH*(X) is generically semisimple, then for any oriented ray £ of slope
@ € [0,27[ there is a map from the set of L-chambers to the set of helices
with a marked foundation.

(3) Let 24 be an £-chamber and €y = (E, ..., E,) the corresponding excep-
tional collection (the marked foundation). Denote by S and C Stokes and
central connection matrices computed in Q¢ with respect to a basis (Ty)h—;
of H*(X, C).

(a) The matrix S is the inverse of the Gram matrix of the x-pairing in
Ko(X)c with respect to the exceptional basis [€y],

(S™Yij = x(Ei. Ej).
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(b) The matrix C coincides with the matrix associated with the C-linear
morphism

Hy: Ko(X)c — H*(X),

—\d
F > ((L)lc)ifg exp(—mv/—1¢1(X))Ch(F),
2m)2

where d := dimc X, and d is the residue class d (mod 2). The matrix
is computed with respect to the exceptional basis [€y] and the pre-fixed
basis (Ty)_ ;-

Remark 8.4.2. If point (3.b) holds true, then automatically also point (3.a) holds
true. This follows from identity (4.4.2) and the Hirzebruch—Riemann—Roch theorem,
see [21, Corollary 5.8].

Remark 8.4.3. In [9], A. Bayer suggested dropping any reference to X being Fano in
the formulation of the Dubrovin conjecture. He proved indeed that the semisimplicity
of the quantum cohomology preserves under blow-ups at any number of points. It
follows that point (1) of Conjecture 8.4.1 (the qualitative part) still holds true after
blowing up X at an arbitrary number of points, which may yield a non-Fano variety.
To the best of our knowledge, however, there is no non-Fano example for which both
the Stokes and central connection matrices have been explicitly computed. In Chap-
ters 10 and 11 we will provide the first example, in the case of Hirzebruch surfaces.

Remark 8.4.4. Assume the validity of points (3.a) and (3.b) of Conjecture 8.4.1.
The action of the braid group B, on the Stokes and central connection matrices
(cf. Lemma 4.6.2) is compatible with the action of 8, on the marked foundations
attached at each £-chambers. Different choices of the branch of the W-matrix corre-
spond to shifts of objects of the marked foundation. The matrix M, ! is identified
with the canonical operator k: Ko(X)c — Ko(X)c, [F] —~ (-=1)?[F ® wx]. Equa-
tions (4.4.4) imply that the connection matrices C M) with m € 7, correspond to
the matrices of the morphism I with respect to the foundations (€, ® w)?m )[md].
The statement S = S coincides with the Hom-periodicity described in point (2)
of Lemma 8.2.4, see [21, Theorem 5.9].

Remark 8.4.5. Conjecture 8.4.1 relates two different aspects of the geometry of
X, namely its symplectic structure (Gromov—Witten theory) and its complex struc-
ture (the derived category D?(X)). Heuristically, Conjecture 8.4.1 follows from the
homological mirror symmetry conjecture of M. Kontsevich, see [21, Section 5.5].

Remark 8.4.6. In the paper [54] it was underlined the role of I'-classes for refining
the original version of Dubrovin’s conjecture [31]. Subsequently, in [34] and [36,
I"-conjecture II] two equivalent versions of point (3.b) above were given. However, in
both these versions, different choices of solutions in Levelt form of the gDE at z = 0
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are chosen with respect to the natural ones in the theory of Frobenius manifolds, see
[21, Section 5.6].

Remark 8.4.7. Point (3.b) of Conjecture 8.4.1 allows to identify K-classes with solu-
tions of the joint system of equations (2.7.1)—(2.7.2). Under this identification, Stokes
fundamental solutions correspond to exceptional bases of K-theory. In the approach
of [26,75], where the equivariant case is addressed, such an identification is more fun-
damental and a priori: it is defined via explicit integral representations of solutions
of the joint system of qDE and qKZ equations.

Remark 8.4.8. Note that the existence of a map between £-chambers and helices
with a marked foundation, discussed in point (2) of Conjecture 8.4.1, is an important
aspect of the Dubrovin conjecture. A careful study of such a correspondence may hide
several delicate open problems. Consider, for instance, the study of injectivity and
surjectivity of such a map. This study is closely related (possibly equivalent) to the
study of the freeness and transitivity of the braid group action on the set of exceptional
collections. These are well-known open problems, whose answer is known in a few
special cases only, see [44]. In the remaining sections of this paper, we will address
the study of point (3) of Conjecture 8.4.1, but not of point (2).






Chapter 9

Quantum cohomology of Hirzebruch surfaces

9.1 Preliminaries on Hirzebruch surfaces

Hirzebruch surfaces [y, with k € Z, are defined as the total space of P!-projective
bundles on P!, namely

Fr :=P(O & O(—k)). keZ,
where O (n) are line bundles on P!. More explicitly, they can be defined as hypersur-
faces in P2 x P! by
Fr :={(lao : a1 : az].[by : ba]) € P2 x P! :a1bX = apbk}, keN. (9.1.1)

Hirzebruch surfaces have the following properties:

* the surfaces (IFo )xen are all diffeomorphic,

» the surfaces (IFo41)ken are all diffeomorphic,

» the surfaces IF,, and F,,, with n # m are not biholomorphic,

* the only Fano Hirzebruch surfaces are Fo =~ P! x P! and F; =~ BI, P2,

* the surfaces [, and [, are deformation equivalent if and only if n and m have
the same parity.

See [10,49].
Remark 9.1.1. Let0 <m < %n. Consider the family ¥ defined by the equation
F :={(lao : a1 : az],[b1 : b2).t) € P2 x P! x C : a1b" — axb? + taeh? "bY = 0}.

The central fiber over t = 0 is [F,. Any non-central fiber over ¢ # 0 is isomorphic
to F,,—2m. See [56, Example 2.16]. See also [74] and [63, Example 0.1.10].

Remark 9.1.2. The only possible complex structures on S x S? are the even Hirze-
bruch surfaces Fp, with k € N, and the only possible complex structures on the
connected sum P2#P?2 are the odd Hirzebruch surfaces F»; 11, with k € N, see [67].

9.2 Classical cohomology of Hirzebruch surfaces
Using the explicit polynomial description (9.1.1) of the Hirzebruch surfaces, let us
define the following subvarieties of Fy:

K i={ay =a, =0}, =X :={a=b =0},

ski=la; =by, =0}, ZK:={a =0}
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Each of these subvarieties naturally define a cycle in H(Fg, Z). Notice that, under
the identification
Fr = O(—k) U oosection,

we can
(1) identify E’l‘ with the 0-section of @ (—k),
(2) identify E’j with the co-section,
(3) identify both % and TX with (the compactification of) two fibers of @ (—k).
Using the original notations of Hirzebruch, we denote by
e 1x € Hy(Fg, C) the homology class defined by =,
« & € Hy(Fg, C) the homology class defined by XX,
* g € Hy(IFg, C) the homology class defined by both 212‘ and 213‘.
As it is easily seen, the three classes 1, €, Vg are not Z-linearly independent. They
are indeed related by the equation

& = T, + kvg. 9.2.1)

Finally, let us also introduce a homogeneous basis (To k. 71k, 72,k T3,x) of the clas-
sical cohomology H ®(Fy, Z), where

TO,k =1, Tl,k = PD(Sk), Tz,k = PD(vk), T3,k = PD(pt),

where PD(«) denotes the Poincaré dual class of @ € He (g, Z). We denote the cor-
responding dual coordinates by (£%%, ¢ 15 2, ¢35,

By the Leray—Hirsch theorem, the classical cohomology algebra is generated by
the classes (77 k., 12,k ). More precisely, we have the following result.

Theorem 9.2.1. In the classical cohomology ring H®(IFy, Z.), the following identities
hold true:

() T2, = k- Ts

2 Tzz’ =0

3) TvxTo = T k-

Hence, the following presentation of algebras holds:

ClThg, T
H.(Fk,C) ~ . 2[ 1,k 2,k] .
(T27k7 Tl,k —k- Tl,kTZ,k)

The Poincaré metric in the basis (Ti,k)?=0 is given by
0 0O

1

1 0

= 2.2

e - 9.22)
0 0

- O O

k
1
0
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Proposition 9.2.2 ([59]). Let k € N. The collection
(0,0(5),0(5), O(5 + =)

is a full exceptional collection in Db (Fx). The corresponding Gram matrix of the
X-pairing is

1 2 24k 4+k
01 k 24k
0 0 1 2
0 0 0 1

Proof. The Gram matrix can easily be computed by the Hirzebruch—Riemann—Roch
theorem. ]

9.3 Quantum cohomology of Hirzebruch surfaces

There exist only two classes of deformation equivalence of Hirzebruch surfaces,
namely (Fox)ren and (Fax+1)ren. Hence, by the deformation axiom of Gromov—
Witten invariants [27], the quantum cohomology algebra of F,; (resp. For41) can
be identified with the one of Fy (resp. [F), as explained in Remark 4.5.2. Notice
that the quantum cohomology algebras of [y and [F; coincide with the correspond-
ing Batyrev rings [8]. This does not hold true for other Hirzebruch surfaces [y with
k # 0, 1, being not Fano [73]. See also [6] for a presentation of the quantum coho-
mology algebra of ;.

9.3.1 Case of [

The diffeomorphism ¢, : Fox — Fy induces isomorphisms in homology and coho-
mology. We have (¢a1)«(t2x) = 1o and (¢ar)«(Var) = vo, so that from equations
(9.2.1) and (9.2.2) we deduce

035 (To,0) = To 2k 9.3.1)
O3 (T1,0) = Ty ok — kT ok (9.3.2)
03 (T20) = T 2k, (9.3.3)
93k (T3,0) = T3 21 (9.3.4)

Thus, we can identify the quantum cohomologies QH *(IFp) and Q H *(IF,x) via the
change of coordinates

(0:2k _ 40,0 12k — 41,0

3 El

(9.3.5)
122k = (2.0 _p 10 3.2k _ 43,0
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Theorem 9.3.1. For any k = 0, the following isomorphism of algebras holds true:

C[Tl,zk, Tz,zk, ql,qz]
(T20,22k - q]féh, (Tl,zk — k- T2,2k)°2 _ 6]1)
2,2k)'

OH*(Fa) =

where q1 = exp(t**) and g, = exp(t

Proof. The assertion follows from the presentation of the quantum cohomology alge-
bra of QH*(Fy) =~ QH*(P') ® QH*(P'), and formulas (9.3.1)~(9.3.5). ]

Lemma 9.3.2. Forall k = 0 we have
Tiok © Taok = Ts ok + kqfqa. (9.3.6)

Proof. By homogeneity, let /\052]( , Al,2k7 kzjzk, )L3,2k be the dual basis of He(IF2x, C)
of the basis (7} 2) 13’:0. By the deformation axiom of Gromov—Witten invariants, for
any r, s € N, we have

Fox
<Tl,2k7 T2,2k7 7—'3,216)0’3,,‘}Ll ok +SA1 2k

_ Fo
= (T10 +kT20. T2, T3’0)0,3,rlo.0+S(/\1,o—k/\0,o)

_ Fo Fo

= {T1,0: 12,0, 13,0003, (r—si)0.0 45210 T K{T2,0: T2,0: 13,0003 (r—skyng.0+s21.0

P! P!
= (0. 1.0) 3,r—sky i {1:0: O)g 3. o sty
P! P!
+ k(L 1,0)03 (—sk) {02 0 )0 3, (r—sk)
=k - 8120—ks)+103,25+1-

Here we used the class H € H,(IP!, Z) to be the hyperplane class and o € H?(P2,Z)
to be its dual. This gives the quantum correction in (9.3.6). ]

9.3.2 Case of Far 41

The diffeomorphism ¢, 41:Far+1 — 1 induces an isomorphism <p§k 41 in coho-
mology given by

Pai+1(To,1) = To2k+1, 9.3.7)
Orks1(T11) = Tiok1 — kT2 k41, (9.3.8)
Porr1(T21) = T22k 41, 9.3.9)
Porr1(T3,1) = T3 k11 (9.3.10)

We can identify the quantum cohomologies QH*(F;) and QH*®(Fx4+1) via the
change of coordinates

(02k+1 _ 40,1 (L2k+1 _ L1

3 ’

(9.3.11)
22T 20 32k 31
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Theorem 9.3.3. For any k = 0, the following isomorphism of algebras holds true:

[T1,2k+15 T2,2k+1: 91, q2]

. C
OH"(Fap41) = y ,
k

where

A = (T35 1 — (Trkr1 — (k + Do pis1)q5 g
(Ti2k+1 = kT o5 41) © (Th 2641 — (K + D T2 26 41) — q1)

and q1 1= exp(tl,zk—i-l) and ¢ = exp([2,2k+1)‘
Proof. The following presentation for Q H *(IF) holds true:

C[Tl,ly T2,1,(]1942]
(153 — (Tin — To)ga, T3 —Tipo T —qi)

QH*(Fy) =

The result follows by formulas (9.3.7)-(9.3.10) and (9.3.11). ]






Chapter 10

Dubrovin conjecture for Hirzebruch surfaces [

10.1 A -stratum and Maxwell stratum of QH ®(F»x)

Fix a point p = t12K Ty 5 + 122K T, 5 of the small quantum cohomology of Foy.
The matrix form of the tensor U is given by

0 2q1+2kq¥qr 24%qn 0
2 0 0 2qqu
Up) =1, kgt
2 -2k 0 0 2q1 —2kqiq>
0 2+ 2k 2 0

The canonical coordinates are given by

1 k 1
ui(p) = — (6112 —q7q3), u2p)=2(q

'Q
o TN

<

N o)~

N—

1
. 5l . 5(=5—7 k—1 k+1
T AR (f—k‘h B _1ig T g Lig t v

1 4/?2 1 1k 2Va 2 1
S o = 5) k-5 k1 1
igt 2 % gt * ? (f qu V) 1 ST, L
W(p) 2¥Yaz 244, 1q V42 _lql V42
p) = 1 _k_1 1 _k_1 k
L-4-1 L-4-1 £
2272 2272 2 k1 k+1
qi qi kvarq{ +/491) 1 4 1,74 4
24q2 T 2Q1 \/Q2 2q1 «/612
1 k1 1 1
L-4-1 L-4-1 _
2272 2(=2 k=1 k+1
qq (k. /92 ql +4/41) 1 T(‘/_ 1 Ti/—
294 2% 241 92 39, q2

Proposition 10.1.1. The small quantum cohomology of Hirzebruch surfaces ¥y is
contained in the I ?\—stmtum of QH*(IF,). Moreover, the point p is in the A p-stra-

tum of QH*(Fax) if and only if 1 = q1qa.

Proof. By Theorem 2.5.1, the function det A takes the form

22

z240(p) + zA1(p) + A2(p)’

where Ay, A1, A> are holomorphic functions on QH *(F,). If p is a point of the
small quantum locus, an explicit computation shows that

detA(z, p) =

detA(z, p) = ——(611 q24%)7".

256

so that A1 (p) = A2(p) = 0. The claim follows.
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Corollary 10.1.2. Along the small quantum locus of QH®(Far) the A a-stratum
coincides with the Maxwell stratum My, .

Proof. If g1 = qlf g, we have coalescences of canonical coordinates u1, 4y, U3, Ug.
Any point of the small quantum locus, however, is semisimple. |

10.2 Small qDE of F»x

In the coordinates (*2%)3_ | the grading tensor 4 has matrix u = diag(—1, 0,0, 1).

a=0
The isomonodromic system (2.7.3) is
0 1
e R
z z
952 k
P (2k +2)84 + §1(2kq1 92 + 2q1),
ngv: z
983 k
e 28191 q2 + 284,
z
0 1
8_24 = 264192 + 63291 — 2kq q2) — ba

In the complement of the 4 4 -stratum, it can be reduced to the single equation in &,
the master differential equation

9
4
z az4

20200k 3
z [z (897q2 + 8q1) — ]]W
z (10.2.1)
€1

=3z — (~16z%(q1 — ¢{q2)* = 3)&s = 0.

Given a solution &;(z,?) of equation (10.2.1), we can reconstruct a solution of the
system J;¥ through the formulas

(4K + Dgazqf + 4k + Dgiz> + k= 1)

& = &
1623(q1 — q24%)
_ (4Bk = Dgaz?qf + 4k =3)q122 —k + 1) 36 (k-1 %
1622(q1 — q24%) 0z 16(q1 — q2q”) 923
- (—4q22%q¥ + 4q1z2 + 1), (12q22%qY + 4g12% — 1) 3§,
3 = - 1 — ~
1623(q1 — ¢24%) 1622(q1 — q29%) 0z
N 1 338,
16(q1 — q2¢%) 823"
[\ — (4922%qF + 412> — 1) 1 a5 19%
= — _ Lo

8z2 "7 8z0z ' 80z2°
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By looking for solution of the form
E1(z,t) =z - ®(z,1),
equation (10.2.1) can be rewritten as the (small) quantum differential equation

2(94® — 20°®) —82°(q1 + ¢ g2)[P*® + 9] + 162°(q1 — 4F42)* P =0,

—
where ¥ 1= Zg5-

10.3 Proof for QH®(F2x)

Let us specialize the system J{;¥ at the point 0 € Q H *(Fp ), for whichg; = g2 = 1:

% = (2—2]()53 + 252 + lél’
z zZ

% = (2k +2)&14 + 512k +2),
Hy: BZ

é = 251 + 2%-47

0z

R N Y

z zZ

The point p = 0 is in the # 4 -stratum of Q H *(IF,;), and so in the Maxwell stratum.
Hence, the study of monodromy data of the system of differential equations J€,’( fits
in the analysis developed in [22, 23]. In particular, the isomonodromy property is
justified by [23, Theorem 4.5]. As explained in Remark 4.5.2, we can reduce the
computation of the monodromy data of the system #; to the single case of #,). The
system ) can in turn be integrated using solutions of the isomonodromic system

of QH*(P') (see [32, Lemma 4.10]).
Proposition 10.3.1. Let ((pf), (pg)) with i = 1,2 be two solutions of system (2.7.3)
for the quantum cohomology of P, specialized at 0 € H*(P1, C), i.e.

38% =2¢2 + %‘Pl,
8& =2¢1 — i902-
0z 2z
Then the tensor product
oo
60\ () _[o
(wél)) ¢ (sﬂf)) I Re
03" o

is a solution of the system H,. |
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Remark 10.3.2. In order to explicitly compute the monodromy data of #, one could
still develop the study of solutions of the small quantum differential equation, and
then reconstruct the Stokes solutions of ]/c doing a similar argument to the one devel-
oped in [23, Section 6] for the quantum cohomology of G (2, 4).

Theorem 10.3.3. The central connection matrix of Q H*® (I, ), computed at the point

0 € QH*(IF5k), with respect to an oriented admissible line £ of slope ¢ € 7, 37”[ and
for a suitable choice of the determination of the W-matrix, is equal to
1 1 1 1
2m 2n 2n 2n
- Y — Y Y Y
co I+ I+ p p
k= | _Gk=D=im) imk=yk+y _; , y=vk y=vk |°
b b T b
2y—im)? 2y(y—im) 2y(y—im) 2y2
b4 /1 b/ b4

and the corresponding Stokes matrix is equal to

1 =2 =2 4
0 1 0 =2
S = 0 0 1 =2
0 0 0 1

The matrix Cy, is the matrix associated with the morphism
I, : Ko(Fa)c — H*(Fak, C),
1 ~ .
(7] T, U e~ mie1®0 y Ch(.F),
with respect to
* an exceptional basis € := (Ei);‘=1 of Ko(Fax)c,
* the basis (T,-,2k)13=0 of H®* (5, C).
The exceptional basis € is the one obtained by acting on the exceptional basis
(101 [0(=3)]. [0 (=) [0 (53¢ + £3)
with the element (J.', b) € (Z/2Z)* x B4, where
L anEnr ey ik =2p 1,
(L L(=DP(=DP)  ifk =2p,
by = k.
Proof. We divide the proof into three steps.

Step 1. Let us first show that for suitable choices of the oriented line £ and W-matrix,
the central connection matrix computed at the point 0 € QH *(IFy) is given in the
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following form:

1 1 1 1

2 2 2 2

7 Y _q Y Y Y

Co = L+ 1+ T T
el P R (10.3.1)

! 4 T ! 4 T

2(y—im)?  2y(y—im) 2y(@—im) 2y>

m T m T

According to [21, Corollary 6.11], the central connection matrix C of QH*(P')

computed at the point 0, with respect to an oriented line £ of slope ¢ € |7, 37”[ and

with respect to the following choice of W-matrix
I A
o — (ﬁ s )
l l ’
V22

equals

C e i ( 1 1 )
C V2 2y —wi) 2y)
This is the matrix associated with the morphism
Iz Ko(PHe — H* (P!, C),
[Z] — l—]f“];, Ue ™ ®D y Cch(.F),
(2m)2

with respect to the bases
+ ([09],[0(1)]) of Ko(P1)c (the Beilinson basis),
* (1,0)of H*(P!,C).
By taking the Kronecker tensor square C ®2, we obtain the central connection matrix
of QH*(P! x P!) computed at the point 0, with respect to the same line £ (which is

still admissible) and with respect to the choice of the W-matrix given by the Kronecker
tensor square \IJ(;@Z:

_1 _1 _1 _1

21 2 2 2

_y-iw _Yy _y-iw _Yy

®2 __ b 4 T b4 k14
™= _y-iw _y=im _Y _Yy
T 4 T T

_2@—im?  _2y(y—im) _2y(y—im) _ 2y?

T 4 T o

By changing all the signs of the rows of the Kronecker tensor square \1189 2 i.e. acting
with (=1, —1,—1,—1) € (Z/27Z)* on C®2, we obtain the matrix —C ®? associated
with the morphism

pipi: Ko(P' x P — H* (P! x P!, C),

1 ~ .
(7] S Tpie U et ®IXPY | Cp (),
v
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written with respect to the bases

« ([0].10(1,0)],[0(0, )], [O(1, D)) of Ko(P' x P')c,

e (lL,o®1,1®0,00)of H*(P! xP!,C) = H*(P!,C)®2.

See [21, Proposition 5.11]. In the notations introduced before for Hirzebruch surfaces,
this exceptional collection is

(0.0(29). 0(29). 0(=5 + £9)).

It is a 3-block exceptional collection,' coherently with the fact that 0 € QH *(FFp) is
a semisimple coalescing point, see [23, Section 6] and [21, Remark 5.4]. In particular,
the braids 5,3 and ﬂz_’ 13 act as a mere permutation of the central objects, and of the
two central columns of the matrix —C ®2. Such a permuted matrix is exactly the
matrix Cp in (10.3.1), and it corresponds to the matrix associated with the morphism
I, with respect to the collection

(0,0(£9), 0(£9), 0(23 + £9)).

In conclusion, we have proved that, for suitable choices of £ and W, the central con-
nection matrix computed at 0 € QH *(IFy) is

1 1 1 1

2 2 2 2

7 Y i Y 4 Y

Co = I+ 1+ T E
- _q Y Y 7 Y Y ’

2(y—im)?  2y(y—im) 2y(@y—im) 2y?

T T T T

which coincides with the matrix associated with the collection
(0.0(29).0(=9). 0(29 + =)).

Step 2. Equations (9.3.5) and Proposition 4.5.1 imply that the central connection
matrix computed at 0 € Q H* (I, ), with respect to the same choices of £ and W, is

1 1 1 1
2w 2 2 2w
—q Y —q Y 4 Y
C _ ! + g ! + g b g g
k=1 _G—D-in) ink—yk+y —i + y—yvk  y—yk
T b3 g g
2(y—in)? 2y(y—im) 2y(y—in) 2y?
T b g b g g
! An exceptional collection (E1, ..., Ey) is a k-block exceptional collection if it is possible
to decompose it into k exceptional sub-collections B, ..., By, called blocks, such that
* they are consecutive, i.e. of the form 81 = (E1,....E;,), B2 = (Ej +1.---. Ejy), ...,
Br = (Ejj_+1,....Ej ), withl < ji < jo <. < jr <n,

* we have Hom®*(E;, E;) = 0if E; and E; belong to a same block Bj,.

In particular, inside each block B, mutations act as permutations of exceptional objects. See
[21, Section 3.6.4], and references therein.



Proof for QH®(IF2x) 79

The corresponding Stokes matrix is independent of &, and it is equal to

1 -2 -2 4
0 1 0 -2

S=lo 0 1 — (10.3.2)
0 0 0 1

Step 3. Let us define the matrix J; € (Z/2Z)* as follows:

AL DI ) itk =2p 41,
Tl L (D2 (=1P) itk =2p.

We claim that by acting on Ci Ji with the braid B3 k we obtain the matrix associated
with [ - and with respect to the exceptional collection

(0.0(2%), 0(235), 0z + £3)).

namely the matrix

1 1 1 1

2w 2w 2w 2n

g Y g Y e Y

E, = I+ T L+ T T T
k=1 k-D@y—in) izk—-yk+y _ (=Dy—in) izk—yk+y

T T T T
2(y—in)? 2y(y—im) 2y(in(k—1)+y) 2y(inxk+y)

I3 T I3 T

Note that the claim is equivalent to the following statement: the matrix A? (Ji - S - J¢),
with 8 = B3% and S as in (10.3.2), is equal to

10 0 0

_ 01 0 0

E;'Cr i = 00 k41 k|7 (10.3.3)
00 —k 1—k

Given a generic 4 x 4 unipotent upper triangular matrix X, the action of subsequent
powers of the braid B3, or of its inverse 83!, simply changes the sign of the entry in
position (3, 4): more precisely, we have

(X134 = (—1)"[X]34 if p = B5E".

For example, by acting twice with the braid 3 we have

1 a b c 1 a ¢ b—cf 1 a b—cf c+ f(b—cf)

0 1 d e 01 e d—ef 0 1 d—ef e+ f(d—ef)
[ d [ d

00 1 f 001 ~—f 00 1 f

0 0 0 1 0 0 0 1 0 0 0 1
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In particular, the matrix A# (X), with g = B5 k_is equal to

(1o 0 o0
01 0 0

. — Xaa.

[{o 0 (=1)/x 1| *TT A
“Noo 1 o0

In the case X = J - S - Ji, we have
x = (=112,

So, in conclusion, we have to prove that the following identity holds for all £k = 0:

(L0 0 0 10 0 0
I 0 1 0 ol o1 o o |,
I11o o (—1yitkt 00 k+1 & k-
=\o o i 0 00 —k 1—k

We prove the claim by induction on k. The base case k = 0 is evidently true. Let us
assume that the statement holds true for k£ — 1, and let us prove it for k. We have

A 0 0
1—Io 1 0 0
o 0 (=1)/tkt1y
0 0 1 0
AR 0 0 1 0 0 0
_ 0 1 0 0 01 0 0
_‘Flo 0 (=1)/*tk+1p 00 —2 1
i 0 0 1 0 00 1 0
1 0 0 0 1 0 0 0
~lo1 o 0 J 01 0 0
“loo k k—t1t]"*"lo o —2 1|
0 0 1—-k 2—k 00 1 0

and in both cases k even/odd, the last term is easily seen to be equal to (10.3.3). =
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Dubrovin conjecture for Hirzebruch surfaces F,;

11.1 A, -stratum and Maxwell stratum of QH ® (Fzx+1)
Fix a point
p= t1’2k+1T1,2k+1 + l2’2k+1T2,2k+1

of the small quantum cohomology of F,x 1. The matrix associated to the U-tensor
at pis

0 2q1 0 3¢5 g,
U(p) = kqi a2 9792 0
1 -2k k(—kqaq* —q¥q2) —kqag¥ —d¥qr 24
0 2%k +3 2 0

The canonical coordinates are the roots u1(p), u2(p), us(p), us(p) of the polyno-
mial

Ja) = ut +uiqkqr — 8q1u® — 36ugf ' g2 — 274343 + 1643
Hence the bifurcation set Bp,, , ,, along the small quantum cohomology, is defined
by the zero locus of the discriminant of j(u), i.e.
By =1{p: q%k+zqg(27454fk +25641)> = 0}.

Since any point of the small quantum cohomology of F,x; is semisimple, the set
above actually coincides with the Maxwell stratum M, . The determinant of the
A-matrix is given by
z
(27qfkq§ + 25641)z — 24q2q]1c .

detA(z, p) =
Hence, the #4 A -stratum is given by
Ap = {p:27¢%¢% + 2564, = 0). (11.1.1)

Also in this case, the Maxwell stratum and the #4 A -stratum coincide along the small
quantum cohomology of Fpj 1.

11.2 Small qDE of F;

At the point p, the grading operator p has matrix
n = diag(—1,0,0, 1).
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Hence the isomonodromic system of differential equations (2.7.3) for QH*(Fax+1)
is given by

0
% = (1-2k)é + 26 + 5_1
0z z
0
d % = 2k +3)8 + kgzqqulc + k§3(—k6]26]]1€ - qquf) + 28141,
H
0
% = quw]f + E3(—kq2qlf — qzq]f) + 28,4,
0
? = 36124} T + 263q1 — s
z z

As explained in Remark 4.5.2, the computation of the monodromy data of J(’,‘c’d can
be reduced to the single case Jf(‘)’d.

The point 0 € QH*(IF1) is not in the « 4 -stratum, as it follows from (11.1.1). At
the point 0 € QH *(IF1), indeed, the system HJ¢ can be reduced to the small quantum
differential equation

(2832 — 24)9*® 4 (28322 — 590z + 24)9>d
+ (=2264z7% + 192z + 3)%
—42%(25472% + 350z — 104)9
+ 22(=311323 — 992422 + 1476z + 192)® = 0.

(11.2.1)

Given a solution ®(z) of (11.2.1), the corresponding solution of the system F¢ can
be reconstructed by the formulas

£1(2) = z- ®(2), (11.2.2)

b2(2) = (1692381 (2) + 2°€](2) + 2042361 (2)

z2(283z — 24)
— 8235, ®(2) — 922€] (2) — 10522, (z) — 82¢)(z)

+ 9z&1(2) + 8£1(2)), (11.2.3)
1
£3(z) = m(—%fﬁ (2) —22°E](z) — 40823£,(2)
+ 16238, P (2) — 6228 (2) — 73221 (2) + 162, (2)
+ 62&1(2) — 16£1(2)), (11.2.4)
§a(2) = (—2823%1(2) + 352%¢ (2) — 2182°£1(2)

z2(283z — 24)
+ 323, 3 (2) — 3522¢] (2) — 322E](z) + 162%&1(2)
+ 62£1(2) + 35z£1(2) — 6£1(2)). (11.2.5)
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These formulas are obtained by the identity

51
&
"
1
(3
1

£=AT

El

where the A-matrix at 0 € QH*(IFy) is

1 204z3-105z249z48 —408z3-73z2+4+6z—16 —218z3+1622+4+352—6
z2(283z—24) 2z2(283z—24) z2(283z—24)
0 169z2-9z—8 —5522—62z+16 —282z2-352z+6
A(Z, 0) — z(283z—-24) z(283z—-24) z(283z—-24)
0 _z ___2z 35z—3
283z—24 283z—24 283z—24
0 _ 8z 16z 3z
283z—24 283z—24 283z—24

Remark 11.2.1. The quantum differential equation (11.2.1) has one apparent singu-

larity at z = %. This coincides with the zero of the denominator of the determinant
of the A-matrix: .
detA(z,0) = ———.
24 — 283z
The W-matrix at the point 0 € Q H*(IF;) is given by

1
o1 afur
3 3 3 3
ayer ;8 a;02 Q5 U
Loads ades adul
ajes w303 @303 03 VU3
3 3 3 3
aye4 Qz04 ;04 Q4 Vs

1
afer apd

- = N—=
= = N

where the numbers «;, ¢;, 8;, 0;, v; satisfy the algebraic equations

af 4 —6a? —283 =0,

283ef + 667 —g; — 1 =0,

2838} — 287 —98; — 1 = 0,

2830} — 3207 —0; +1 =0,

283v — 28307 + 10507 — 17v; + 1 = 0.

Their numerical approximations are

o) ~ 4.21193, &1 ~ 0.237421,
ap ~ —0.204399 — 3.73457i, &2 ~ —0.0146116 + 0.266969i,
a3z ~ —0.204399 + 3.73457i, &3 ~ —0.0146116 — 0.266969i,

%

a4 ~ —4.80313, g4 ~ —0.208197,
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81 ~ 0.353808, o1 &~ 0.194489,

8y ~ —0.122264 — 0.276482i, 0y ~ —0.240929 — 0.0719476i,
83 ~ —0.122264 + 0.276482i, 03 ~ —(0.240929 4 0.0719476i,
84 ~ —0.10928, o4 ~ 0.28737,

v; ~ 0.28983,

Uy & 0.279666 — 0.05113371,

v3 &~ 0.279666 + 0.0511337i,

vg &~ 0.150837.

The reader can check that W7 W = 7, and that
UY! = diag(x1, x2, X3, X4),

where the canonical coordinates x; are the roots of the polynomial
x* +x7 —8x* —36x —11=0.

Their numerical approximations are

X1 & 3.7996,

Xp &~ —2.23455 4 1.94071i,
X3 &~ —2.23455 — 1.94071i,
x4 ~ —0.3305.

11.3 Coordinates on S (P1) ® S (P?)

Consider the spaces S(P!) and §(P2) of solutions of the qDEs of P! and P? spe-
cialized at the origins of H?(P!,C) and H?(PP2, C), respectively: these equations
are

B2y = 422y, (11.3.1)

93D, = 27230,. (11.3.2)

Solutions ®;(z) of equation (11.3.1) have the following expansion at z = 0:

ZZm

o0
®1(2) = Y (Ama + Am,ologz)W, (11.3.3)
m=0 :

where Ao and Ap,; are arbitrary complex numbers, and the other coefficients are
uniquely determined by the difference equations
Am-1,0 = Am,o. (11.3.4)
Am,O
m

A1 = + Ams. (11.3.5)
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In particular, notice that from equation (11.3.5) we deduce that
Ami1 = Ao — AooHyn, m=0,

where Hy, 1= Y it ll denotes the m-th harmonic number.
Analogously, solutions ®,(z) of equation (11.3.2) have the following expansion
atz = 0O:

Z3n

(n!)*’

where By o, Bo,1, Bo,2 are arbitrary complex numbers, and the other coefficients are
uniquely determined by the difference equations

o0
®3(z) = Y (Bup + Bn1logz + By olog®2)

n=0

(11.3.6)

Bn—1,0 = Bu,o. (11.3.7)
2
By-11 = EBn’O + Bp.1, (11.3.8)
2 1
Bu-12=7=5Bno+ —Bun1+ Bnp. (11.3.9)
3n n

From the difference equation (11.3.8) we deduce that
By,1 = Bo,1 —2Bo,0Hp.

The products Ao ; By, ;j, withi = 0,1and j = 0, 1, 2, define a natural system of coor-
dinates on the tensor product $(P!) ®c S (P?).

11.4 Solutions of qDE of F; as Laplace (1, 2; %, %)-multitransforms

According to Theorem 7.3.1, the space of solutions of the quantum differential equa-
tion (11.2.1) can be reconstructed from the spaces of solutions of the qDEs (11.3.1)
and (11.3.2). From the polynomial equation (9.1.1), indeed, it follows that Theo-
rem 7.3.1 applies with the specialization of the parameters 7 = 2, £ = (2,3) and
d =(1,1).

Hence, we expect to reconstruct the solutions of the differential equation (11.2.1)
via a C-bilinear operator

2:S(P) @ $(P?) — O(C*)
involving the Laplace (1, 2; %, %)—multitransform:

= e—”/ ®1(z2A2)Dy(z3A3)e* dA,
0

for a suitable number ¢ € QQ to be determined.



Dubrovin conjecture for Hirzebruch surfaces Fox 41 86

Lemma 11.4.1. We have ¢ = 1.
Proof. Along the locus of small quantum cohomology, the J -function of P"~! is

(o)
s 1
Tpna1(8) = et Yy Qled — . 8=1H,
d=0 (=1 (H + kh))"
where H € H?(P"~!, C) denotes the hyperplane class. It follows that the 7 -function
Ip1yp2 F, equals

IIP’IXPZ,]FI(Sl ® 1 + 1 &® 52)

etldl etzdz
=eh ®eh . Z Q ;® — .
didr>0 (1'[ (Hy + km)? (T8, (Ha + k)
di+d>
] Hi®1+1® H + jh)
j=1

1, 4 1
=1+£( Diet! +51®1+1®82)+0(h2)

where we set:

e H; € H*(P!,C)and H, € H?(P?, C) are the hyperplane classes,
e 8§ =t'H and 8, = t?H, witht1,t? € C,

«  Q; = Q¥F, B; being the dual homology class of H;, fori = 1,2.

In the notations of Proposition 5.3.5, we have H(§; ® 1 + 1 ® §) = Qf diet! The
number ¢ equals
c = H(0)|Q=1 = 1. L

For brevity, in all the remaining part of this section, we will simply write .Z to

denote the Laplace (1,2; 3 5 3)-multitransform.

11.4.1 The subspace #

The space $ (P!) ® $(IP?) has dimension 6. We are going to identify a subspace # of
dimension 4 which is isomorphically mapped to the space $ (IF;) via the operator &2.

Theorem 11.4.2. Let ©1(z) and ®,(z) be two solutions of the quantum differential
equations of P! and P2, respectively, namely

B2D1(z) = 422®(2), 93Dy(z) = 2723D,(2).

The function
D(z) := e 7LD, Dy 2]
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is a solution of the quantum differential equation of Ty if the following vanishing
conditions are satisfied:

D1[P1. P2:2] =0, D[Py, P:2] =0,
where

2
D[ @1, Dy z] := 222 L9 Dy, Dy 2] — 5.,2”[196131, B2 d,; 2]

4
+ §z$[<b1,192<1>2;21,

2
Da[®1, By 2] i= 23 LDy, Pr; 2] — Z?DS,”[CDI, 0, 7]

_ gg[cbl, 920, 2] + %.,s,ﬂwcpl, 9y z].
Proof. Let us look for solutions of equation (11.2.1) in the form
cI>(Z) = e_z"?il,Z;%a%)[(Dl’ (I)z; Z],

where ®; and ®, are solutions of the quantum differential equation for P! and P2,
respectively, that is,

92d, = 4220, (11.4.1)
93D, = 27230,. (11.4.2)

Given arbitrary functions f and g, we have
1
ZL[s*f(s). g(s): 2] = Z{i”[f(S),g(S);Z] + L0 f(5). 8(5): 2]

+ %,,S,ﬂ[f(s), Osg(s);z] = I(f, g)},

with L 21
I(fg) = A f(z2A7)g(z3A%)e H[=. (11.4.3)

Applying the previous identity to ®; and ®,, and using equations (11.4.1)—-(11.4.2),
we deduce the following identities:

1
L2, 0y 2] = 42{.2[@1, ®,;z] + 5,,6f[z9c1>1, ®,; 7]
i %z[cbl,mz;z]} s
3[193@1, Dy 2] =8(z + Zz)f[d)l, Dy z] + (82 + 422).,%[19@)1, Dy; 7]
8
+ g(Z +2%).L[®1,9 Dy 2]

4
+ 523[19(191, l?q)z;Z] + R,,
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L4, y:2] = 16(z + 422 + 2°) L[Dy, Py; 2]
+ 83z + 5z% + 23) L[ 1, Dy: 2]

+ ?(z +52% 4+ 2°) 2[00, 9 D1 2]

. ?(z +22).L[9 D, Dy 2]

4 %zzj[d)l,ﬁzcbz;z] + Rs,
Loy 93y 7] = 27zz{g[q>l, @i 2]+ %z[f}qn, ;7]

+ %.Z[d?l, 29@2;2]} + Ry,

9
L1, 04Dy 2] = Ezz{lzg.,zﬂ[obl, ®y: 2] + 12.2[®1, 9 Dy: 2]
+2.L[®1, 0% ®y; 2] + 9.L[0 Dy, Ps; 2]
+ 33[0@1,0%;2]} + Rs.
BALIIR 193d>2;z] = 5423.,2”[@1, Dy z] + 27(z% + 23)$[z9CI>1, D,; z]
+ 1823.Z[®y, 9 ®y; 2]
+ 922 L0 D1, 0 Py; 2] + R,
L2, 02 Dy; z] = 3623 L[Dy, Br; z] + 1823 L0 Py, y: 2]
+ 1223 L[®1, 9 Oy 2] + 42.L[ Dy, 92 D5; 2]
+ 223[19(1)1, 192q>2;Z] + fR7,
L3P, 0Py z] = 8(z + 22).L[P1, O Ps; 2]
+ (82 + 422 L0 1,9 Dy: 2]
8
+ 5(2 + 22). L[ @1, 92 Dy; 2]
4
+ 523[19(131, 192(1)2;21 + Rg,
1
L9230 Py;z] = 4z{$[q>1, D dy:z] + Ez[ml, ¥y 2]
1
; gf[cbl,zs‘zcbz;z]} T Ro.

where R; with j = 1, ..., 9 denote some negligible boundary terms due to the cumu-
lations of terms like (11.4.3). Using these identities, after some computations, we can
rewrite the quantum differential equation (11.2.1) as follows:

(=72 + 1674z + 2832%) D1 [®y, By] + (36 + 724z + 48112%) D[P, D,] = 0. m
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An explicit computation shows that 2,[®1, ®,;z] and Z,[®D, P,; z] have the
following expansions:

D@1, @2;2] = O1(2) log’ z + Oz(z) log? z + O3(2) log z + B4(z),
Da[®1, Briz] = Ay(2)log® z + Az(2)log? z 4+ As(z) logz + A4(2),

where the functions ®; (z) and A;(z) are of the form
(m+m)! o) @)
®;(z) = A (m,n) + A, (m,n)z
+ A(’)(m n)z?) 2", (11.4.4)
(m+m! o0 Q)
Ai(z) = Z Z el ')3 (81" (m,n) + By (m,n)z
m=0n=0
+ ﬂgl)(m, n)22)2m+2n+1 (11.4.5)

fori =1,2,3, 4. See Appendix B for the explicit expressions of the coefficients A(l)

and 58(1)

Lemma 11.4.3. Forallm,n = landi = 1,2, 3, 4, the following identities hold true:
(m + n)eAu(li)(m,n) + ngAu(li)(m —1,n) + n3¢>4)§i)(m,n -1 =0, (11.4.6)
m+n)B8Pm.n) +m*B8Pm —1.0) +n*B8Pm.n—1)=0, (1147

AD(m,0) + mAP (m—1,00=0,  (114.8)
B89m,0)+m8P(m—1,00=0, (1149
AP, n) +n2APO.n—1) =0, (11.4.10)
890.n) +n280.n—1)=0. (11411
Proof. The reader can check the validity of these identities using the explicit expres-

sions in Appendix B, equations (11.3.4), (11.3.5), (11.3.7), (11.3.8), (11.3.9), and the
following identities (see e.g. [64]):

kK1
YO =y O+ T ko
F/
VO = Hyr =y, n=1, ()= F((ZZ))

Theorem 11.4.4. Let ®,(z) € S(P), ®,(2) € S(P?) be as in equations (11.3.3)
and (11.3.6), respectively. Then the function ®(z) := e *.L[®y, Oy; z] is a solution
of the gDE of 1 if

Ao,0Bo,0 =0, 4Ap,1Bo,0 =340,0B0.1- (11.4.12)
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Proof. Let us rearrange the double series (11.4.4) as follows:

0;(z) = {043(1)(0 0) + Z Z ((I’I’l +n)! EA)gi)(rn’n)Zm-i-Zn

2 3
m=1n=1 ‘) ')
(*)
- 1,0 - 1 o 2n
m
+ ZlﬁAl (m,0)z +Z: (n!)ZAI (0,n)z
m= n=

(%) (*x%)
m-—n i
+ Z Z (m 4 n)! Ag)(m’n)zl+m+2n

|2 N3
mOnlm) I’l)

(*)
+ Z A(l)(m 0)z!*tm

(%)

+2 (z(Z)j(nt))gAgi)(mv")22+m+2"

)
- 1 @) 2+42n
+ Z( ')2A3 (Oﬂn)z )
— (!

(*x*)

where
(1) the (x)-labelled summands cancel by equation (11.4.6),
(2) the (xx)-labelled summands cancel by equation (11.4.8),
(3) the (x * x)-labelled summands cancel by equation (11.4.10).
The proof for A;(z) is identical. ]

Definition 11.4.5. Let J# denote the four-dimensional subspace of §(P!) ® $(P?)
defined by the linear equations (11.4.12).

Corollary 11.4.6. The space K is isomorphic to the space of solutions § (F1) via the
operator 2. [

11.4.2 Bases of S (P1)
Define

1 2
§() =5~ r(%) 275 ds, (11.4.13)
i £
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where £ is a (positively oriented) parabola Res = —c - (Ims)? + ¢’, for suitable
¢, ¢’ € Ry so that it encircles all the poles of the integrand at s € 2Z <. It is easy to
see that the integral in (11.4.13) converges for all z € C* and that its value does not
depend on the particular choice of ¢, ¢’.

Proposition 11.4.7. The functions g(e " z) and g(z) define a basis of solutions of
the gDE of P, ]

Define the bases (g1(2), g2(z)) and (s1(2), 52(2)) of S(P1) by
g1(2)\ _ gle™™'z) s1(2)\ _ gle™™z)
(50)=m (507) ()= ("507):

_ly  ilytin) -1 2
Ml = 14” 4"1’- s M2 = ( ) .
4r T 4nm 0 I

Lemma 11.4.8. For z — 0, the following asymptotic expansions hold true:

where

g1(z) = logz + 0(z%logz),
g2(2) = 1 + 0(z%log 2).
Proof. The proof is a simple computation of residues: by modifying the paths of

integration £, one obtains the asymptotic expansions of g as a sum of residues of
the integrand. ]

Lemma 11.4.9. We have

22
g(z) ~ nl e, 7 00,

z2
in the sector |arg z| < %n.
Proof. The estimate follows from application of steepest descent method. ]
11.4.3 Bases of S (P?)
Define s

1 wis
h(z) = — F(f) ™ 27 d, (11.4.14)
2wi Jg, 3

where £, is a (positively oriented) parabola Res = —c - (Ims)? + ¢’, for suitable

¢, ¢’ € Ry so that it encircles all the poles of the integrand at s € 3Z<o. It is easy to
see that the integral in (11.4.14) converges for all z € C* and that its value does not
depend on the particular choice of ¢, ¢’.

1T

Proposition 11.4.10. The functions h(e™ x4 z),h(z),h(e 4 z) define a basis of solu-
tions of the gDE of P2. |
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Define the bases (h1(z), h2(z), h3(z)) and (p1(2). p2(2). p3(2)) of S(P?) by

h(2) h(e=* 2) p1(2) he=*5 2)
ha(z) | = Ny h(z) , p2(2) | =N, h(z) ,  (11.4.15)
h3(z) h(eZITﬂz) p3(2) h(ezzTﬂz)
where
—18y2—72  —18y2—24iyx+7n2  18y2+12iyn+57n2
21672 21672 10872
N; = y 3y+2inm =3y—im
1 1272 3672 1872 ’
__1_ __1_ _1_
1272 1272 612
-1 3 -3
N,=10 1 0
0O 0 -1

The basis (p1, p2, p3) will be studied later, in Section 11.7, where it will be used
to construct Stokes bases of solutions. We now focus on the properties of the basis

(h1, h2, h3).
Lemma 11.4.11. For z — 0, the following asymptotic expansions hold true:
hi(z) =log? z + O(z31og? 2),
hy(z) =logz + O(z%log? z),
hi(z) = 14 0(z3log? 2).
Proof. The proof is a simple computations of residues: by modifying the paths of

integration &£,, one obtains the asymptotic expansions of / as a sum of residues of
the integrand. u

Lemma 11.4.12. We have

: 3 i
h(z) ~ e_%’”£ exp(3esz), 7z — 00,
z

in the sector —m < argz < %ﬂ.

Proof. The estimate follows from the steepest descent method. ]

11.5 Basis of solutions Y of S (1)
Theorem 11.5.1. The tensors

§g1®h2+%gz®h1, g1®h3, g2Qhy, g>Qh;3 (11.5.1)
define a basis of the subspace .
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Proof. Each of the vectors given in (11.5.1) satisfy the constraints (11.4.12), by Lem-
mata 11.4.8 and 11.4.11. ]

Corollary 11.5.2. The functions

1 1
T = @(§g1 ® hy + 182 ® hl),
T := P(g1 ® h3),
T3 := P (g2 ® ha),
T4 = ﬁ(gz ® h3)
define a basis of solutions of the gDE of IF;. ]

Remark 11.5.3. Explicit double Mellin—Barnes integral representations of solutions
Y1,..., Y4 can be obtained: for any j, k we have

P 2nji e_Z s 2 t 3 s {
@ ki h(e™3" _ ¢ NN
(g(e ) ® (e Z)) (27i)2 Jg,x2, (2) (3) ( ) 3)
: e_”ikﬁ%it(l_zj)z_%_% dt ds.

The functions Y; are linear combinations of the integrals above, in accordance with
Theorem 7.4.2.

11.6 Asymptotics of Laplace (1, 2; %, %)-multitransforms

Consider the integral
o 1.1 2.1 g
I(z) ::/ D(z2A2)Dy(z3A3)e™ " dA,
0
where

@, (2) = 2P exp(zuy), ®2(z) = zP2 exp(zun),

with D1, Dy, uq,us € C. The integral I(z) is convergent for all z € C*.
Set z = re'® with r > 0, and change variable of integration A = az:
e*i/(oo D, Dy

I(2) :zl+D1+D2/ azt3 exp{z(—a—i—ula% —|—uzoe-%)} da.
0

Change variable @ = 89, by taking the principal determination of the sixth root:
e 3 00

I(z) =621+D1+02/ BIT3P1T2D2 exp L2 (— B8 +u1 B2 +uaB?) ) dB. (11.6.1)
0
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Define
S(Biur,uz) = —ﬂG + M1ﬁ3 + uzﬂz for p € C,

and consider the z-dependent downward flow in the 8-plane defined by

aw_ o B
i S A 2 (11.6.2)

The equilibria points S are the critical points of f, that is,

of
B |p=p.

For a fixed z, we associate to each critical point 8. a curve £, a Lefschetz thimble,
defined as the set-theoretic union of the trajectories of the flow (11.6.2) starting at S,
for t — —o0. Morse and Picard-Lefschetz theory guarantee that the cycles £, are
smooth one-dimensional submanifolds of C, piecewise smoothly dependent on the
parameter z, and they represent a basis for the inverse limit of relative homology
groups

= 0.

l(iilHl((C,(CT,z), Crz:={B€C :Re(zf(B;u1,uz)) <-T}, T e Ry.
T

Lemma 11.6.1. The Lefschetz thimble £ is the steepest descent path at B.: the func-
tiont —Im(zf(B;u1,uz)) is constant on L. and the functiont — Re(zf(B;u1,u2))
is strictly decreasing along the flow.

Proof. We have

d C(dB 9 dB a\[zf -]
GGl = (G + 2 )|t o

dt op ~ dt 3B 2i
d dB 3 dp dI\[zf +zf af |?
—[R =\—=+——=|—|=—z275| -
ar ReCDI (dt T, aﬁ)[ 2 98 "
We are interested in the following cases, by Lemmata 11.4.9 and 11.4.12:
i
up = +2, up =3tk 3= exp % k=0,1,2. (11.6.3)

For any possible pair (11, #2), define 84 as the critical point of f(8;u1,uz) with
maximal real part (the bold one in Table 11.1).

Lemma 11.6.2. We have

21 2
I(Z) ~ 6Z%+D1+D2ﬂj—+2D1+3D2 (m) CXPZ(—ﬂﬁ_ + ul,Bi + Mz,Bi)

for|z| — oo in the sector |arg z — arg f(B+)| < 7.
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ui uz ﬂc f(,Bc) f(ﬂc)_l
2 3 —0.724492 0.6695 —0.3305
2 3 0. 0. —1.
2 3 1.22074 4.7996 3.7996
2 3 —0.248126—1.03398/ —1.23455+1.94071i —2.2345541.94071i
2 3 —0.248126+1.03398i —1.23455—1.94071i —2.23455—1.94071i
2 303" 0. 0. ~1.
2 3¢5 —0.771392—0.731875i —1.23455—1.94071i —2.23455—1.94071i
2 3035 —0.610372+ 1.0572i 4.7996 3.7996
2 3¢%5 0.362246—0.627428i 0.6695 —0.3305
2 3¢35 1.01952+0.302108 —1.23455-+1.94071i —2.23455+1.94071i
2 3e—3im 0. 0. —1.
2 3e32iM) _0771392+4+0.731875i —1.23455+1.94071i —2.23455+ 1.94071i
2 3e73@iM  _0.610372—1.0572i 4.7996 3.7996
2 3e=3QIm) (3622464 0.627428i 0.6695 —0.3305
2 3e"3CGiT 1,01952-0.302108; —1.23455—1.94071i —2.23455—1.94071i
-2 3 —1.22074 4.7996 3.7996
-2 3 0. 0. —1.
-2 3 0.724492 0.6695 —0.3305
-2 3 0.248126—1.03398; —1.23455—1.94071i —2.23455—1.94071i
-2 3 0.248126+1.03398/ —1.23455+1.94071i —2.234554 1.94071i
-2 305 0. 0. ~1.
-2 3¢%5 —1.01952—0.302108; —1.23455-+1.94071i —2.23455+1.94071i
-2 3¢ —0.362246 +0.627428i 0.6695 —0.3305
-2 305" 0.610372—1.0572i 4.7996 3.7996
-2 3e355 0771392+ 0.731875i  —1.23455—1.94071i —2.23455—1.94071i
—2 3e—3Qim 0. 0. —1.
—2 3e73QiM  _101952+40.302108i —1.23455—1.94071i —2.23455—1.94071i
—2 3e73CIM 0362246 —0.627428i 0.6695 —0.3305
—2 3e—3Cim 0.610372 +1.0572i 4.7996 3.7996

2 3¢~3CQIm 0.771392—0.731875i —1.23455+1.94071i —2.23455+ 1.94071i

Table 11.1. For any possible value of the pair (u1,u2), we list the corresponding critical
points B, of the function f(B;u1,u>), and the corresponding critical values f(B.). Notice
that the numbers f(B.) — 1, with S, # 0, equal all possible values of the canonical coordi-
nates X1, X2, X3, X4 at the origin of Q H*(IF1). In bold, we represent the critical point S with
maximal real part.



Dubrovin conjecture for Hirzebruch surfaces Fox 41 96

Proof. After choosing an orientation for each Lefschetz thimble, the path of integra-
tion y, = ¢! 6 - R, defining the function I in equation (11.6.1), can be expressed
as integer combination, y, = Zle nj(z)&; with n; € Z, of the thimbles £ for
any value of z not on a Stokes ray Rij, defined by

Rij={z€C* iz2=r(fBei) — [(Bep). 7 €R} ij =1.....5,

where . are the critical points of (11.6.2). If we let z vary, the Lefschetz thimbles
change. When z crosses a Stokes ray R;;, Lefschetz thimbles jump discontinuously:
in particular, for z on a Stokes ray there exists a flow line of (11.6.2) connecting two
critical points B.. A detailed analysis of the phase portrait of the flow (11.6.2), for
each pair (11, u5) as in (11.6.3), shows that in the sector |argz —arg f(B+)| <7
we have y, = +£p, + £8 £ £, where £} is only one half of the Lefschetz thim-
ble £o, and &£’ denotes the sum of Lefschetz thimbles attached to other critical
points B.. Hence, we have three contributions in the asymptotics of I(z): one from
the integration along £, , one from other critical points, the last one from the inte-
gration along éﬁ(l). The last two contributions are easily seen to be negligible with
respect to the first one. So, by the steepest descent method, we obtain the estimate

2

e ]
See Figure 11.1. ]

1
I(z) ~ :I:6Z§+D1—irDz,BijLZDFHD2 (—

Remark 11.6.3. Note that the arbitrariness of the orientations of the Lefschetz thim-
bles can be incorporated in the choice of the entries of the W-matrix. Consequently,
it will affect the monodromy data by the action of the group (Z/27)%.

Proposition 11.6.4. Let now ®1, ®; be two functions with asymptotic expansions
®,(z) ~ zPVexp(zuy), ®2(z) ~ zP2 exp(zuz) (11.6.4)
for |z| — oo in the sectors
A; <argz < By, Ap <argz < By, (11.6.5)
respectively. We have
D%(l,z;%,%)[dh, Dy 2] ~ CZ%JFDIJFD2 exp Z(—f3_6|r + ulﬂi + uzﬂi),

where .

C = 6pTHP1+3D: 2 2
+ 9141,3+ + 8142 ’

for|z| — oo in the sector A’ < argz < B’, where
A’ = max{A, —3arg By, A» —2arg B4, arg f(B4) — 7},
B’ :=min{B; —3arg B4, B, —2arg B4, arg f(B1) + w}.
(See Table 11.2.)
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Lefschetz thimbles are in red. The path of integration in equation (11.6.1) is drawn in green.
To be continued on the next page.
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Figure 11.1 (continued). Notice that, for tain range of values of arg z, there is also a contri-
bution in the asymptotic expansion coming from a third critical point. Such a term is negligible,
since it is dominated by the exponential term from the critical point 8.

A B’

2 3 -7 %
2 3¢ 371775 0.471036
2 3¢% —1.00423 1.62336
-2 3 -7 %
2 3¢ -1.00423  —0.706554
2 3¢ 162336 1.00423

Table 11.2. In this table we represent the values A’ and B’ predicted in Proposition 11.6.4 for
all possible values of u; and u;.
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Proof. The statement follows by application of the steepest descent path method and
Lemma 11.6.2. Notice that the sector A’ < argz < B’ is chosen so that the critical
point of the logarithm of the integrand lies in the region (11.6.5) of validity of the
asymptotic expansions (11.6.4). u

11.7 Stokes basis of the qDE of [y

Set
sij =5 ® pj € S(PY) ® S(P?)
fori =1,2and j = 1,2, 3. See equation (11.4.15).
Theorem 11.7.1. The following linear combinations of the tensors s;; define a basis
of #:
S11 — 5822 — 6523, S12 + 523, S13 — S22 — 2823, S21 — 4822 — 5823.

Proof. Define the column vectors
e g=1(g1.82)T ands = (51, 52)7, bases of §(P1),
o h=(hi,hy,h3)T and p = (p1. p2., p3)7T, bases of S (P?), respectively.
In what follow we denote by A ® B the Kronecker tensor product of two matrices A
and B. Hence we denote
* by g ® h the basis (g; ® hj);,; of S(P') ® S(P?),
* bys ® p the basis (s; ® p;);,; of S(P1) ® S(P?).
We have

g®h =[(MM;")® (N1N; s ® p. (11.7.1)
where we represent the basis g ® h and s ® p as column vectors. Multiply on the
left both sides of (11.7.1) by the matrix

1 0 0 0 0 O
01 0 0 0O
0 01 0 0O
E1 = 1 1
0 3 0 7200
0 0 0 010
0 0 0 0 01
We thus obtain the relation
g1 ® hy
g1 ® hy
g1 ® hs3
sQp=X (11.7.2)
P 181 ®hy+ tea® Iy
g2 ® hy

g2 ® hs
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where X is the matrix

X =[(MiM;") ® (N1 N; D' ET!
54 36(y + 1liw)
—54  —36(y +in)
54 36(y + 3in)
54 36(y +9im)
—54  —36(y —im)
54 36(y +im)

* ¥ X X X% *
EE I SR

* ¥ X X X% *
* K X X X *

Multiply on the left each sides of (11.7.2) by the matrix

1 0 0 0 -5 -6
01 0 0 O 1
001 0 -1 -2
E2=10 001 -4 —s
0O 0 0 0 1 1
00 0 0 O 1
‘We obtain
S11 — 5822 — 6523 g1®m
S12 + $23 g1 ® hy
§13 — 8§22 — 2523 _Bx|, g1 ®}ll3
521 — 4522 — 5823 381 ® ha + 782 ® Iy
S22 + 523 g2 ® hy
$23 g2 ® hs
and we have
0 0
0 0 C
0 0
E>)X = 11.7.3
2 0 0 ( )
0 T2imw ¥ x k%
54 36(y +im) | % x *x %
This proves the claim. |

Remark 11.7.2. The matrix C; in equation (11.7.3) is

24(=3iy —2m)m —216imw 367(=5iy +97m) 3n(—42iy?+Ryn +17i7?)
Tiym 216iw 367 (5iy +m) 3n(42iy? + 12ymw —in?)
—N2iym —216im 36m(=5iy+m) 3a(—42iy>+ 12ym +in?)
—4872 0 0 —48ym?
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Corollary 11.7.3. The functions

X = P(s11 — 5522 — 6523), Xp 1= P(s12 + 523),
Y3 = P(s13 — S22 — 28523), X4 := P(s21 — 4522 — 5523)

define a basis of solutions of the gDE of TF;. |

Proposition 11.7.4. The Stokes basis E g of H on the sector T1g(e) can be recon-
structed, using formulas (11.2.2)—(11.2.5), from a basis X of solutions of the gDE
of 1 of the form

AMXo, AX3+A3X5, AgXa+AsE34+AeXs, A7 +AsXa+AoX3+ 41020,

for a suitable choice of the coefficients A; € C, with j =1, ..., 10.

Proof. The canonical coordinates xi, x5, X3, X4 are in lexicographical order with
respect to a line of slope ¢ > 0 sufficiently small. The functions above have the
expected exponential growth exp(x;z) in the sector [1g(¢e) defined by an oriented
line of slope ¢. This follows from the data in Tables 11.1 and 11.2, and from the
configuration of the Stokes rays R;; := {—r V=17 — Xj):r € R4 }: these are given
by

Rip = fargz = m). Rz = fargz = 2.36573},
Ris = {argz = 1.88197}, Ra3 = {argz = 0.775863),
b1
R24 = {argz = 125962}, R34 = {argz — 5}’
see Figure 11.2. .

Remark 11.7.5. Notice that, according to Proposition 11.6.4, the function X3 has
the expected exponential growth exp(zx;) in the sector in which this is minimal with
respect to the dominance relation, i.e. in which it is dominated by any other exponen-
tial exp(zx1), exp(zx3), exp(zx4). Hence, we expect that A3 = 0.

Ris R34 Ryy4
Ri3 R>;3

5 R12

Figure 11.2. From the left to the right: Stokes rays corresponding to the origin of the quantum
cohomology of P 1 P2 and Fy, respectively.
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11.8 Computation of the central connection and Stokes matrices

Denote by J the system of differential equations JJ" specialized at 0 € Q H*(Fy).
Consider the fundamental system of solutions of

zY1(z) zYa(z) zY3(z) zYa(2)
ET(Z)::< : : : : )

El

reconstructed from the basis (Y1, Y5, Y3, Y4) of the gDE of IF; (see Corollary 11.5.2)
by formulas (11.2.2)—(11.2.5).

Proposition 11.8.1. We have

where )
18 0 0 0
—r 1 0 0
Co = P 0 (11.8.1)
138 2 3
6y2+n2 Y _v 1
72 2 3

Proof. From Lemmata 11.4.8 and 11.4.11, we can compute the asymptotic expan-
sions of Y;(z) for z — 0. We have
1

Ti(z) = 7

1
(161og?(z) — 20y log(z) + 6y> + %) + ﬁz(log(z) —y=2)

1
+ 7—222(16 log?(z) — 20y log(z) — 17 log(z) 4+ 6y + 7% + 13y + 2)
3

+ 1944

(43210g?(z) — 540y log(z) — 750 log(z) + 162>
+277% + 426y +311) + -+,
12() = 5(l0g(2) — ) — 5 + 32 (Alog(z) — 4y +3)
+ 31—623(1810g(2) — 18y —37)

1
+ @24(2410g(2) — 24y +13) 4 -+,
2log(z) =z 1
Ys(z) = —% + 3g + 2+ T522(8log(z) — 4y = 9)

1
+ 5—423(36 log(z) — 18y — 17)

1
+ ﬁz“(4810g(z) — 24y —49) + ...,
Z4
T4(Z):1+22+Z3+Z+”' .
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After some computations, one finds the first terms of the asymptotic expansion of
Evx(z) forz — 0:

z(1610g2(2)—20y log(z)+6y2+n2)  z(log(z)—y) z(2log(z)—y)
72 2

3 z
log(z) vy 0 1 0
= - 6 9 3
Ev(2) log(z) + z(log(z)—y—1) _ y 1z z 0 + h.o.t.
9 18 18 272 3
(2log(2)—y—1) 1
S z 0 0
The leading term of the asymptotic expansion of Ep(z) for z — 0 is
Etop(Z) = T}ZMZR + h.o.t.
4zlog?(z) 3zlog(z) 2zlog(z) =z
3lo 1 1 0
= 8(z) + h.o.t.,
2log(z) 1 0 0
1 0 0 0

z

where y = diag(—1,0,0, 1) and R is the operator of U-multiplication by c¢; (IF;) on
H*(F;, C), that is,

00 0O
2 0 00
R =
1 000
0320
By comparison of the leading terms of the asymptotic expansions of Ey and Eqp,
one obtains the matrix Cy in formula (11.8.1). [

Theorem 11.8.2. The central connection and Stokes matrices at0 € QH *(Fy), com-
puted with respect to an admissible oriented line of slope € > 0 sufficiently small,

equal

1 _ 1 1 1
2w 27 i o
z -z i+ X i_x
¢ = " 5 T Il s
eihy) I L(iey)
y(—i+2) y(—i—2) 2own 2040
1 2 -1 -3
01 1 -1
S=lo o 1 2 (11.8.3)
0O 0 O 1

Proof. Denote

* by E, the fundamental system of solutions of #{ constructed from the basis X3
of Proposition 11.7.4,
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* by E x the fundamental system of solutions of J# constructed from the basis X
of Corollary 11.7.3.

We have
0O 0 0 Ay 0O 0 0 Ay
= At Az As Ao —=~nTcT A1t Az As Ao
SATEE 0 A, s Ao ST L0 A As Ao |
0 0 Az Ag 0 0 Aq Ag
where C; is as in Remark 11.7.2 and
01 0O
1 0 00
= 0 01 0
0 0 01
Thus, we obtain
0O 0 0 Ay
A Az Ag A
Ep = EBiwpCa, Ca:=ConTcl |t 73 26 ~op
2 topCa py 0 o a4 As 2o
0 0 As Ag

where Cy is given by (11.8.1). In order to determine the values of A for which &} is
the Stokes basis, let us compute the product

Clnemite™Rc,, (11.8.4)

If 8, is the Stokes basis, then the matrix above is the inverse of the Stokes matrix S,
by equation (4.4.2): in particular, it is an upper triangular matrix with ones along the
main diagonal. An explicit computation gives the following result: the columns of
(11.8.4) are

—57614A2
—5767‘[4llk3
—5767% X1 A6 ’

—5767‘[4/\1 (317 + )&10)

5767‘[4/\1 (212 — /\3)
57674 (hy —A5)>2
—5767‘[4()&316+12(A4+A5—216)) ’
57674 (A (A7 —Ag — Ao +2X10) —A3(3A7 + A10))

—5767T4A1 (/14 — 215 + As)
—5767‘[4()k215 +A3(Ag—2A5+ AG))
—5767* (A% + (A5 +A6)As + (A5 — A¢)?) ’
—5767*(A6(3A7 4+ A10) + A4 (547 4+ As + A10) + As5(—A7 + Ag + A9 —2410))
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5767‘[411 (6)&7 —/\8 + 2/\9 _AIO)
—5767* (A2 (647 4+ Ao) + A3(—6A7 + Ag — 2Ao + A10))
—57671’4(/\5(617 4+ A9) + A4 (6A74+Ag +Ag) + Ag(—6A7 + Ag—2X9 + A10))
—5767‘[4(13A% + (1 1A8 + Slg - 3)&10)A7 + A% + ()tg —110)2 + 18(19 + klo))

The matrix (11.8.4) is upper triangular with ones along the diagonal if and only if

1 1 1

M= AM2=——" A3=0, A= A5 =4,

L7 757624 2T 576040 P 47 7576040 ¢

1

Ae =0, M= Ag=-217, Ao =317, Ao = —347.

6 7 5764 8 7 9 7 10 7
For the choice A; = A, = A4 = A7 = —ﬁ, we obtain the central connection and
Stokes matrices (11.8.2) and (11.8.3). ]

Theorem 11.8.3. The central connection matrix of QH®*(Fax+1), computed with
respect to an oriented line of slope ¢ > 0 sufficiently small, and a suitable choice
of the branch of the V-matrix, equals

1 1 1 1

27 2 27 2w
y v Sy iy
C = ~ ” ‘o ‘w 1185
k= | y-ayk—in _ y—2yk+in —2yk—iQ@rktm)ty @k—D@+in) |- 11.8.5)
2 2 2 2
S 2y .2y 2y(y+in) 2y +im)?
v(=i+3F) v(=i—3F) = e

This is the matrix associated with the morphism
g, . Ko(Faks1)c = H* (Fakq1, C),

1 ~ .
(71 5Ty, Ue ™) U Ch(2),
T

with respect to

* an exceptional basis € := (Ei)?=1 of Ko(Fak+1)c,
*  the basis (Tj 2k +1);_g of H®*(Fa41.C).

The exceptional basis € mutates to the exceptional basis

([(9]’ [O(E%k-i-l)]’ [(g(zik-i-l)]’ [(9(2%k+1 4 Eﬁk+l)]), (1186)

by application of the following natural transformations:

(1) action of the braid B3B28183P2,
(2) action of the element Jy € (Z)27)*

7 .o JELLEDPEDPTY ik = 2p,
Tl L e e ik =2p 4L

(3) action of the element ,3’; .
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Proof. Equations (9.3.11) and Proposition 4.5.1 imply equation (11.8.5). The matrix
associated to I[]EZI(Jrl with respect to the basis (11.8.6) is

1 1 1 1
2w 2 2w 2w
| . :
Ey = (1-2k)(y—int) —2yk+iQRrk+n)+y (1—2k)(y—im) —2vk+iQRrk+m)+y
2w 2 2w 2w
2 2 s
Ay=iz) Zrly—iz) y(=i +2ik +2)  y(i +2ik+2)
Set C}, := C£3ﬂ2ﬂlﬂ3ﬁ2. We have
-1 0 0 0

r\—1 _ 0 -
COEe=|0o o 1k &

0 O -k  —k-1

It is now easy to see that this is the matrix representing the action of the element
(Jx, ,3’3‘) € (Z/27)* x B4: the argument is the same as in Step 3 of the proof of
Theorem 10.3.3. ]



Appendix A
Proof of Theorem 5.1.2

We need some preliminary results.

Lemma A.l. Forn >0, and § € H*(X, C), we have

1 n
T AU LA D D) B

B#0VZ0

Qﬁ J58

(T T U 1)3, 4.

Proof. We have

d d X - QB X
(0T Do) = 5am 500 %o | = DD mTa L8 8
k=0 B

Two cases occur:
o If B # 0, then for k = 0 we have

k! "
(o 1.8 o ) ing = D _(/,35) (T Ta U )X, 4,

!
n+v=k K

by the divisor axiom of Gromov—Witten invariants. Here any invariant with t_,
with r > 0 is vanishing.

« If B =0, then for k > 0 by the divisor axiom we have'
(tnTw, 1,8 '-.,5)0X,k+2,o = (tykt1 T UK, 1,8)030 = (/ Ty U 5k)5k,n+1-
X

So, we obtain

_ 1 n+1
(T o) = o ([ 70 )
Q'B . §v X

+ Z Z Z 'V' (Tn—vTa U 5 1)0,2,ﬂ

B#0 k=0 ! = k

1 n
- (n+1)!(/ T, US “)

—{—ZZQB elss

B#0v=0

(T Ta U S 1) 5 5. m

"Here, we use the fact that £ is trivial on ﬂoj(X ,0) and hence has zero Chern class.
This follows from the fact that Mo,3(X,0) = X, and the forgetful morphism Mo 4(X,0) —
Mo .3(X, 0) is the projection X x Mg 4 — X.



Proof of Theorem 5.1.2 108

Lemma A.2. Let§ € H?(X, (C). We have

@ B£0n=0k+p=n

Proof. By Lemma A.1, we have

o h—(n-i—l)
JX(S):1+ZZ(”T1)!(/ Taué’”“)T"‘
+ZZZ > ("“)Q il (TkTaUSP,l)(},{Z,ﬂT“

o ﬂ¢0n 0 k+p=n

_AYYY Y <n+1>Q T, USP K, T m

o B#£0n=0k+p=n
Lemma A.3. For§ € H*(X,C), we have
Ziop(8,2)Ty = ey,
o1 (X 2 (A
+§)§:efﬁ <1—zw U zkza T, TA>02ﬂT .
Proof. Fort € H*(X,C), we have

O(t,2)Ty = Z O(t,2), T,

' Z, o
:ZZZZ (T LT T, )k p T
A =0

p=0%k

Consider the contribution coming from the fact that (k, 8) = (0, 0): by the mapping-
to-point axiom of Gromov—Witten invariants, we have’

ZZZ (tpTa. LT3, )5 50TH = ZZZP(/T UTA)SO,I,TA

A p=0 A p=0
=T,.

2 Also here, we use the fact that £ is trivial on ﬂo,g(X ,0).
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By the fundamental class axiom, instead, the contribution from (k, 8) # (0,0) can
be rewritten as

Z Z Z Z F(rp_lTa, Ty, 7,.. .,r)({Hk’ﬂTA.
A p=0k=1B8#0
Thus, we have recovered the formula
o0
O(r.z) =Id+ Y Y 2P {5, (=). Ta)o(x)lo=1T",
A p=0

which was used in [23, Proposition 7.1] to define ®. At this point the proof is known,
and can be found in [27, Proposition 10.2.3]: the parameter % of [27] has to be
replaced by our z, and pre-composition with z#z¢1) has to be taken into account in
order to obtain formula (A.1). [ ]

We are now ready for the proof of Theorem 5.1.2.
Proof of Theorem 5.1.2. Let us compute the entries of the first row of the matrix
nO(8, z)zHz1 X,
By Lemma A.3, we have
7!
[n©(8, z)zHz ]a
=n(1,0(8,2)z"z10T,)
= r;(l,e28 Utz DT,

z8 X
4 ZZeIﬁS<ILUZMZC1(X)Ta,TA> Tl)
B£0 A —zy 0,2,8

= 77(1,@2‘s U z”zcl(X)Ta)
: ze?s X
+ n(l, > Ze-/ﬁ5<— Uzhza T, T,1> T").
ET I—-zy 0.2,
Using the identity of endomorphisms of H*(X, C)

"o (hFU) ozt = z7F(W*U), he H*(X,C), keN,

and the n-skew-symmetry of ©, we can rewrite the first summand as

n(1,e? U2tz Ty = p(1, 24P 20T,
= n(z7*(1),e"z10T,)

dimc X
=z 2 /e‘szc‘(X)Ta.
X
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For the second summand, notice that
(1) the only nonzero contribution comes from A = 0,
(2) forany ¢ € H*(X, (C) we have

+1

— knk
1—21// ve= Zz(n—k)' ¢

n=0k=0

(3) we have

X >, (logz)t 26tdaesTg—dinx ¢
zhz T, = Z YT 2 c1(X) T,
£=0 ’

(4) the Gromov—Witten invariant
(8" 1 (X)) Tu. 1) 5 4

is nonzero only if
2k +2(n — k) + 2¢ + deg Ty, = 2dimc X —|—2/ c1(X) —
B

So, we obtain

Zezb’ X
< UZ”zcl(X)Ta,l>
1—z¢ 0.2.8
(lOg Z) 20+deg Ty —dim X _
- ZZZ@@ —k)' M 2 <Tk5n kcl(X)eTaJ)())(,z,ﬂ
n=0k=04£{=0
anX [0 N (logz)* ¢ X
=y Y S s e (X0 Ta 155

h=0m+L+k=h

— 95" /BCI(X)Z Z tk(8+logz 1 (X)) T 1), 4-
h=0k+p= nP

Putting this all together, we obtain
(108, z)zz1 0]

— " /e‘gzc‘(X)Ta
X

110

+Zefﬁ82fﬁcl(x)2 Z Tk(5+10g2 c1(X))? Ta’l)OZﬂ)

B#0 h= 0k+p—h

=Zding/T UJX(5+]0gZ Cl(X))‘Q 1
h=1

The last equality follows by Lemma A.2. This completes the proof.



Appendix B
Coefficients AJ(.i) and !B;i)

The coefficients Aj(.i) and B}i), introduced in equations (11.4.4) and (11.4.5), are
8
rA’(ll)(m,n) = —§mn2A0,0B0,0,
) _ 85
Ay (m,n) = 3" Ag,0Bo,0,
o _8
Ay (m,n) = §on,oBo,0,

4
,Awgz)(m, }’l) = §n (4mnA0,0B0,0Hm + 6ml’lA0,()B()’0Hn — 4m1’lA0’1B(),0
— 3mnA0,()B(),1 — 4m}’lA0,oBo’0W(O)(m +n+ 1)
—4mAg,0Bo,o —2nA0,0Boy).

4
Agz)(m,n) = —§n(4nA0,oB0,0Hm + 6nA0,oBO,0H,,

—4nA0,0Boov @ (m +n+ 1) — 4nAo,1Bo,o
— 37114()5030,1 - 4A0,OBO,O)7

4
Agz)(m,n) = —5(6mA0,oBO’()Hn + 4I71A0,oBo,0Hm
— 4I’I’lA0,OB(),0¢'(0)(m +n+ 1) — 4onﬁlB(),0
—3mAg,0Bo,1 —2A0,0Bo).

A (m.n) = —%(24mn2A0,OBO,OHmH,, — 24mn®Ag.1 Bo.o Hy
— 12mn®Ag,0Bo.1 Hm — 8mn®Ag o Bo,o Huy @ (m 4+ n + 1)
— 18mn®Ag,0Bo.o Hy @ (m +n + 1) — 16mn Ao,0Bo,o Hm
— 12mn Ao, Bo,o Hy — 12n% A9 0 Bo,o Hy + 12mn*A¢ 1 Bo 1
+ 9mn?Ag,0Bna + 5mn?Ag0Boo¥ @ (m +n + 1)
+ 4n%A0,0Bo,o¥ @ (m +n + 1)
+ 5mn®Ag.oBooy P (m +n + 1)
+ 8mn?Ao,1 Bo,oy @ (m +n + 1)
+ 9mn2A0,0B0,11ﬂ(0)(m +n4+1)
+ 16mnAp,1 Bo,0 + 6mnAo,oBo1
+ 12mnAgoBo,ov @ (m +n + 1)
+2mAg,0Bo,o + 6n*Ag0Bo.1 + 8nA40,0Bo,0).



Coefficients ,A,;” and 3}(}) 12

AP (m,n) = %(24n2A0,OBO,OHmHn —12n2A49,0Bo.1 Hp
— 812 A0,0Bo,o Hny @ (m +n + 1)
— 18n%A9,0Boo Ha @ (m + n + 1)
—16nA0,0Bo.oHm — 24n% Ag,1 Bo,o Hy — 12nA0,0Bo.o Hy
+5n%A0,0Boov @ (m +n + 1)?
+ Snon,oBo’ow(l)(m +n+1)
+ 8n%401Bo oV @ (m 4+ n + 1)
+ 9112140,030,11//(0)("1 +n+1)
+ 12n40,0Bo oy @ (m +n + 1)
+12n%Ag,1 Bo.1 + 9n* Ao 0Bn
+ 16nAg,1Bo,0 + 61 40,0Bo,1 + 2A40,0Bo,o),

AP (m,n) = %(24mAO,OBO,0HmH,, — 24m Ao, BooHy
—8mAo,0BooHny @ (m +n + 1)
— 18mAg0Bo,oHy @ (m +n + 1)
—12mAg0Bo,1 Hpm — 12400 Bo.o Hy + 9mAg0Bn 2
+ Son,OBO,OW(O)(m +n+1)? +4A0,oBo,oW(0) m+n+1)
+ 8mAo,1 Booy @ (m +n + 1) +9mAgoBo1v @ (m +n + 1)
+ 5mAo0BooV P (m +n 4+ 1)+ 12mAg 1 By + 6A40,0B0,1).

AL (m,n) = —g(—18mnon,017lmB,,,2 —2mn2A9,0BooHu @ (m + n + 1)2
— 6mn2A0,0B0,0Hnw(O)(m +n+1)2
—6n2A0,0BooHyy @ (m +n +1)
+ 12mn?Ag,0Bo,o Hm Hy @ (m +n + 1)
— 12mn2A0,lBo,0Hnw(O)(m +n+1)
—6mn?Ag,0Bo 1 Hn @ (m +n + 1)
—2mn2A0,0Bo,oHuy'V(m +n + 1)
—6mn?Ag0Bo,oHy vV (m +n + 1)
+24mnApo0BooHmHy —24mnAo,1 Bo,oHy
— 12mnAg,0Bo.1 Hm — 8mnAgoBo.oHpn @ (m +n + 1)
— 12mnAo0BooHn @ (m 4+ n + 1) — 4m Ao 0Bo.oHm
—12nA9,0Bo.o Hy + 18mn* Ao 1 By 2
+mn?A0,0Boov @ (m +n + 1)
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+ nZA(),()B(),()w(O)(m +n+1)?

+ 2mn®Ao,1 Bo,o¥ @ (m + n + 1)2

+ 3mn?A0,0Bo ¥ @ (m + n + 1)
+3mn2A0,0Booy PV(m +n + )Y Qm +n + 1)
+3n%Ao,0Bo1 v P (m +n + 1)

+ 6mn2A0,1BO,11//(0)(m +n+1)

+ 9mn2A0,0Bn,2w(0)(m +n+1)

+ non,oBo,olﬁ(l)(m +n+1)

+mn? Ao, Boo¥ P (m +n + 1)
+2mn*Ao,1 Booy ™ (m + n + 1)
+3mn?Ag0Bo ¥V (m +n + 1) + 12mn Ao, Bo,y
+4mnAooBo,o¥v @ (m +n + 1)
+2mAo,0Boo¥ @ (m +n + 1)
+4ndooBooy @ (m +n+1)

+ 8mn Ao, Booy @ (m +n + 1)
+6mnAooBo ¥ @ (m +n + 1)

+ 4mnA0,0B0,0w(1)(m +n+1)

+ 4mAo,1 Bo,o + 9% Ao,0 B2 + 61 Ao,0Bo,1 + 240,0Bo.).

AL (m.n) = g(—lsnon,onBn,z —2n2A9,0BooHn @ (m + n + 1)
—6n2A9,0Bo.o Hy @ (m +n + 1)
+ 12n2Ao,oBo,onHnW(0)(m +n+1)
— 12n2A0,1Bo,0HnW(O)(m +n+1)
— 61 Ao,0Bo,1 Hu ¥ @ (m +n + 1)
—2n2A0,0Bo,o Hn ™V (m +n + 1)
—6n2A0,0BooHyyV(m +n+1)
+24nAo,0BooHmHy, —12nA0,0Bo,1 Hn
— 8n40,0Bo,0 Hnv @ (m +n + 1)
— 12n40,0Bo,o Hy V@ (m +n + 1)
—4A9,0B0,0Hm —24nAo,1Bo,o Hy
+n?A0,0Bo oV @ (m +n +1)°
+ 2112140,1Bo,o‘/f(o)("1 +n+1)2
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+3n%A0,0Bo v D (m + n + 1)
+ 302400800y (m +n + Dy (m +n + 1)
+6n2Ag,1 Bo 1y @ (m +n + 1)
+9n*A0,0Bup¥ @ (m +n + 1)
+ nZAO,OBo,Ow(Z)(m +n+1)+ 2n2A0,lBo,0w(1)(m +n+1)
+3n% Ao, 0Bo ¥y (m +n + 1)
+ 4nA0’oBo,ow(°)(m +n4+1)%+ 2A0,OBO,OW(°)(m +n+1)
+ 8nA0,1B0,0w(0)(m +n+1)+ 6nA0,oBO,1w(°)(m +n4+1)
+ 4n40,0Bo,oy V(m +n 4+ 1)+ 1812491 By
+ 12nA0,1Bo,1 + 4A0,1Bo,0).

AL (m,n) = —g(lson,onBn,z +2mAg,0Bo,o Hnv @ (m + n + 1)?
+ 6mA0,oBo,0HnW(O)(m +n+1)?
— 12mAg,0Bo,o Hm Hy 9 @ (m + 1 4 1)
+640,0Bo,0Hn Y (m +n + 1)
+ 12mAg,1 Bo,o Hyy @ (m +1n 4 1)
+ 6mAgoBo Hun @ (m 4+ n + 1)
+2mAo,0Bo,o Hn ™V (m +n + 1)
+ 6mAg,oBooHyyV(m +n + 1)
— 18m Ao, Bny —mAgoBo o @ (m +n + 1)
— Ao,oBo,ol/f(O)(m +n41)? - 2”11‘10,130,01//(0)(”1 +n+1)?
—3mAo,oBo ¥ @ (m +n+1)°
—3mAgoBooy P (m +n+ DYy@Q@m +n+1)
—340,0Bo1 v @ (m +n + 1) — 6mAg 1 Bo1y @ (m +n + 1)
— 9mAo,0Bu2¥ @ (m +n + 1) — AgoBoo¥ ™ (m +n + 1)
—mAo,0Bo,o¥® (m +n + 1) —2m Ao, Booy ™ (m +n + 1)
~3mAg,0Boa vV (m +n+1)— 9A0,0Bn.2).

2
!Bfl)(m,n) = §nAo,oBo,o(m —n),
0 2
B, (m,n) = —§nAo,oBo,o,

2
Bgl)(m, n) = §A0,030,0,
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1
B8P (m.n) = —m— n)(4n40,0Bo.o Hm + 6149,0BooH,

—4nA0,0Bo,ov @ (m +n 4+ 1) — 4n 40,1 Boo
—3nAo,0Bo,1 —2A40,0Bo,0).

1
i)’éz)(m,n) = 5(4I1AQ,OBO’0Hm + 6I1AQ,OB0,0Hn

1

B_S,Z)(m? I’l) = 9

— 471140,030,0‘/’(0) (m+n+1)—4nAdo1Bo,o
— 3I’IA(),0B0,1 - 2A0,0B0,0)’

(—440,0Bo,0Hm — 6A0,0Bo,0 Hy

+ 440,0B0,0% P (m +n + 1) + 440,1Bo,o + 340,0Bo,1),

1
8% (m.n) = 1—8(—24n2AO,OBO,OHmHn +12n%A40,0Bo.1 Hm

+ Snon,oBo,onw(o)(m +n+1)

+ 1812 A0,0Boo Hy v @ (m +n + 1) + 16nA¢,0Bo.o Hp
+24mnAg,o0BooHmH, —24mnAg,1 Bo,oHy
—12mnAop,0Bo,1 Hm — 6mAg,0Bo,0Hy
—8mnAgoBo,oHm @ (m +n +1)

— 18mnAg,0BooHyy @ (m +n + 1)

— 8mAg,0Bo,oHpm + 24n*Ao.1Bo o Hy

—5n2A40,0Bo,ov @ (m +n + 1)?

—5n%A0,0Boov VP (m +n+1)

—8n% 49,1 Boov @ (m +n+1)

— 9% Ag,0Bo 1V O (m +n+1)

+ 12mnAp,1Bo,1 + 9mnAooBn 2

+5mnAooBo oV @ (m +n + 1)

—8nAo,0Booy @ (m +n + 1)

+ 5mnAgoBooy ™ (m +n + 1)

+ 8mnAg,1 Bo o @ (m +n+1)

+9mnAooBo 1y @ (m +n+ 1)

+ 6mAo,0Bo,ov @ (m +n + 1) + 8mAo.1 Bo,o + 3mAgoBo,
— 12n%Ag,1 Bo,1 — 9n* Ao,0Bn» — 160491 Bo,o + 2A0,0Bo.0).

1
B (m.n) = E(—24nA0,0BO,OHmHn +12n40,0Bo.1 Hp

+ SnAg,oBo,onw(O)(m +n+ 1)
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+ 18nA0,oBo,0HnW(O)(m +n+1)

+ 840,0B0,0Hm + 6A40,0Bo,0H, + 24nAg,1 Bo,o Hy
—5nA0,0Boo¥ @ (m +n + 1) — 649,0Booy @ (m +n + 1)
—8n40,1Bo,o¥ ”(m +n + 1) = 9nAo0Boiy P (m +n + 1)
—5nAgoBoo¥ Y (m 4+ n+1)—12nd01Bo.1 — 9 Ao0Bna
—840,1Bo,0 —340,0B0,1).

B8P (m.n) = %(24A0,OBO,OH,,,H,, —840,0BooHmy @ (m +n + 1)
— 1840,0Bo,o Hy V@ (m 4+ n + 1) — 1249,0Bo,1 Hm
—2440,1Bo,0Hy + 540,0Boo¥ @ (m + n + 1)
+840,1Bo,0¥ @ (m +n + 1)
+940,0Bo,1 9@ (m +n + 1) + 540,0Bo,oy V' (m +n + 1)
+ 940,0Bn2 + 1240,1Bo 1).

1
B8W (m.n) = ﬁ(—nZAO,OBo,Ow(O)(m +n+1)>

+mnAooBooy @ (m +n+1)°
+ 2mA0,oBo,ow(0)(m +n+ 1)2

—3nA0,0Bo,ov @ (m +n +1)?

+ 2n2Hon,oBo,0W(0)(m +n+1)?
—2mnHy, Ao oBo,ov @ (m +n + 1)2
+ 6n*Hy Ao,0Bo,oy @ (m + n + 1)

— 6mnHy Ao,0Boo¥ @ (m +n + 1)
—2n%A0,1Bo,o¥ @ (m + n + 1)
+2mnAo,1 Booy @ (m +n + 1)
—3n%A0,0Bo ¥ @ (m +n + 1)2

+ 3mnAooBo, ¥ @ (m +n + 1)2

— 4mHyp Ao ,0Booy @ (m +n + 1)

+ 8nHpAg o Boov @ (m +n +1)
—6mHy, Ao oBooV @ (m +n+1)

+ 6nH, Ao o0Boov @ (m +n +1)
—12n2Hy Hy Ao,0Bo o @ (m +n + 1)
+ 12mnHy Hy Ao0Bo oW @ (m +n + 1)
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=302y (m +n + 1)Ao,0Boo¥ @ (m +1n + 1)
+3mny ™ (m + n + 1) Ag,0Bo,oy @ (m +n + 1)
+4mAo,1Booy @ (m +n + 1) — 8ndo 1 Boo¥y @ (m +n + 1)
+ 12n% Hy Ao,1 Bo,o¥ @ (m +n + 1)

— 12mnHy Ao, Bo oy @ (m 4+ n + 1)

+3mAgoBo ¥ @ (m +n + 1) —3ndo0Bo 1y @(m +n+ 1)
+ 6n2HypyAgoBo v @ (m +n + 1)

— 6mnHpy Ao,0Boa v @ (m +n+ 1)

— 6112140,130,1\//(0)(’71 +n+1)

+ 6mnAo,1 By @ (m +n + 1)

— 912 A9, B2 @ (m +n + 1)

+9mnAooBu oy @ (m+n+1)

+4Hpy Ao,0Bo,o + 12mH,, Hy Ao, Bo,o — 24nHpy Hy Ao 0 Boo
— 6Hy Ao,0Bo,o + 2my ™V (m + n + 1)A0,0Bo,o

—3nyD(m +n + 1)A90Boo

+ 20 Hyu ™ (m + n + 1) A0,0Bo,o

—2mnHpu ™M (m +n + 1)A0,0Boo

+ 6n2H,,w(1)(m +n 4+ 1)Ao,0Bo,0

— 6mnH, ™D (m 4+ n + 1)40,0Bo,o

— 12y P (m +n + 1)Ag,0Bo,o + mny® (m +n + 1)A0,0Bo,o
— 12mHy Ao 1Boo + 24nHy, Ag 1 Bo o

— 202y W (m + n + 1)Ao,1 Bo,o

+ 2mnw(1)(m +n+ 1)A0,1Bo,0

—4A0,1Bo,0 — 6mHy, Ag,0Bo,1

+ 121 Hy Ao,0Bo — 30>y (m +n + 1) Ao 0 Bo 1
+3mny M (m +n + 1)Ao,0Bo,1 + 340,0Bo, + 6mAo1Bo,
—12n 40,1 Bo,1 + 9nA0,0Bu 2 + 180> Hy Ao,0 Bu 2

— 18mnHypAg,0Bnp — 181 Ag1 By p + 18mnAo1 By o).

1
B8P (m.n) = ﬁ(—leo,oBo,onHn + 18nAg.0Hp B o
+2nA0,0BooHm @ (m + n + 1)
+ 6nA0,oBo,oHn1//(0)(m +n+1)?
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+ 4A0,oBo,on1ﬂ(O)(m +n+1)
—12nAg,0BooHmHyy @ (m 4+ n + 1)
+ 640,0Bo,oHyy @ (m +n + 1)
+ 120 40,1 Boo Hy @ (m + 1 + 1)
+ 6n40,0Boy Hny @ (m +n + 1)
+ 2nAo,oBo,onw(1)(m +n+1)
+ 6nAo0BooH, VD (m +n+1)
+ 6A40,0Bo,1 Hm + 12401 Bo,oHy
—nAo,0Booy @ (m +n +1)>3
—240,0Boo¥ @ (m +n + 1)> = 2n 40,1 Boo¥ @ (m + n + 1)?
- 3nA0,0B0,11//(0)(m +n+1)?
—3ndooBooV P (m+n+ DYyO@m+n+1)
— 440,1Bo0¥ O (m + 1 + 1) = 340,0Bo y @ (m +n + 1)
—6nd9 1 Bo 1y @ m+n+1)—9nAdgoBuav@m +n+1)
—2A0,0Bo,0v P (m +n+ 1) —nAooBoo¥ P (m +n +1)
—2nd01Booy P (m+n+1)=3n40,0Bo1 v PV(m +n+1)
— 18n40,1Bn.2 — 640,1Bo,1),

B (m.n) = %(—18Ao,onBn,2 —240,0Boo Hn @ (m 4+ n +1)2
— 6A40,0Bo,0 Hy V@ (m + n + 1)?
+ 1240,0Bo.o Hn Hy @ (m +n + 1)
— 1240,1Boo Ha @ (m + 1 + 1)
—640,0B0,1 Hn @ (m +n + 1)
—2A40.0Bo,oHnv P (m +n + 1)
—640,0Bo,o Hay™(m + 1 + 1) + Ao ,0Booy @ (m +n + 1)°
+2A40,1Bo.o¥ @ (m + 1 + 1)? + 340,0Bo,1 ¥ @ (m + n + 1)?
+340,0Boov P +n+DyQ@m+n+1)
+ 6401 Bo1 v O (m4n+1)
+940,0Bu 2@ (m +n + 1) + Ao 0Boov P (m +n + 1)
+ 2401 BooV VP (m +n+ 1) +340,0Bo1 vy V(m +n + 1)
+ 1840,1B52).
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continued from the back cover

In the third and final part of the paper, as an application, we show how to use the new
analytic tools, introduced in the previous parts, in order to study the quantum differential
equations of Hirzebruch surfaces. For Hirzebruch surfaces diffeomorphic to P! x P!, this
analysis reduces to the simpler quantum differential equation of P'. For Hirzebruch surfaces
diffeomorphic to the blow-up of IP? in one point, the quantum differential equation is inte-
grated via Laplace (1, 2; 1/2, 1/3)-multitransforms of solutions of the quantum differential
equations of P! and IP?, respectively. This leads to explicit integral representations for the
Stokes bases of solutions of the quantum differential equations, and finally to the proof of
the Dubrovin conjecture for all Hirzebruch surfaces.
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Cyclic Stratum of Frobenius Manifolds, Borel-
Laplace (a, 8)-Multitransforms, and Integral
Representations of Solutions of Quantum
Differential Equations

In the first part of this paper, we introduce the notion of cyclic stratum of a Frobenius mani-
fold M. This is the set of points of the extended manifold C* x M at which the unit vector
field is a cyclic vector for the isomonodromic system defined by the flatness condition of

the extended deformed connection. The study of the geometry of the complement of the
cyclic stratum is addressed. We show that at points of the cyclic stratum, the isomono-
dromic system attached to M can be reduced to a scalar differential equation, called the
master differential equation of M. In the case of Frobenius manifolds coming from Gromov-
Witten theory, namely quantum cohomologies of smooth projective varieties, such a con-
struction reproduces the notion of quantum differential equation.

In the second part of the paper, we introduce two multilinear transforms, called Borel-
Laplace (a, B)-multitransforms, on spaces of Ribenboim formal power series with expo-
nents and coefficients in an arbitrary finite-dimensional C-algebra A. When A is specialized
to the cohomology of smooth projective varieties, the integral forms of the Borel-Laplace
(a, 8)-multitransforms are used in order to rephrase the Quantum Lefschetz theorem. This
leads to explicit Mellin—Barnes integral representations of solutions of the quantum differ-
ential equations for a wide class of smooth projective varieties, including Fano complete
intersections in projective spaces.
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