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GENERIC LARGE CARDINALS:

NEw AXIOMS FOR MATHEMATICS?

MATTHEW FOREMAN

ABSTRACT. This article discusses various attempts at strengthening the
axioms for mathematics, Zermelo-Fraenkel Set Theory with the Aziom of
Choice Tt focuses on a relatively recent collection of axioms, generic large
cardinals, their success at settling well known independent problems and
their relations to other strengthenings of ZFC, such as large cardinals.

1991 Mathematics Subject Classification: 3,4,5,28
Keywords and Phrases: axioms, large cardinals, ideals, generic large car-
dinals

INTRODUCTION. While the standard axiomatization of mathematics Zermelo-
Fraenkel Set Theory with the Aziom of Choice (ZFC) has been extremely successful
in resolving the foundational issues that arose at the turn of the century, it has
some shortcomings. These shortcomings are largely due to its inability to settle
various natural problems.

Most prominent among these problems are Hilbert’s 15! problem (the Con-
tinuum Hypothesis), and issues having to do with the use of the Axiom of Choice.
The development of Forcing, in the early 1960’s, led to independence results in
most areas of mathematics that have a strong infinitary character, particularly in-
cluding measure theory and other parts of analysis, infinite group theory, topology
and combinatorics.

This paper surveys some of these independence results and the attempts at
finding new axiom systems to settle these questions. It will focus on a technique
that arose naturally in relating large cardinals with combinatorial and descriptive
set theoretic properties of sets of size (roughly) the continuum. This technique
generated plausible properties of the universe. Taken as axioms they settle most
of the important independent statements of mathematics.

Without further explanation, the first few uncountable cardinals are N, Ny,

..y Nyy, ... and the first uncountable limit cardinal and its successor are N, and
N,+1. The natural numbers will be denoted alternately as IN or more commonly
w, the first limit ordinal. The cardinality of the real numbers will be referred to
as ¢, and the cardinality of the power set of a set X as 2X. In particular, 2 = c.
If X is a cardinal, n € N, then A*" will be the n!* cardinal past A\. Lapsing
into the jargon of subfield, I will refer to the mathematical universe as V. (Due
to space limitations the author has not attempted to credit appropriate authors,
particularly for well-known results.)

DOCUMENTA MATHEMATICA - EXTRA VoLUME ICM 1998 - IT - 11-21



12 MATTHEW FOREMAN

INDEPENDENCE RESULTS. Godel’s theorems ([5]) show that any consistent ax-
iom system A sufficiently strong to encompass elementary number theory and
sufficiently concrete to be recognized as an axiom system (i.e. A is recursively
enumerable) must be incomplete. This means that there are statements ¢ such
that there are examples of mathematical structures satisfying the axiomatization
A that satisfy ¢ and examples of structures that satisfy A and satisfy the negation
of . (A simple analagous situation is that the property of being abelian is inde-
pendent of Group Theory because there are examples of abelian and non-abelian
groups.) Further, Godel gave a uniform method of producing such a ¢: it is a
number-theoretic statement equivalent to the consistency of A.

After the shock of this result wears off the question arises as to whether there
are statements of “ordinary mathematics” that are independent of the standard
axioms of set theory. On one level the answer is clearly affirmative: Matijasevic
([14]), using results of Davis, Putnam and Robinson ([2]), showed that every recur-
sively enumerable set of natural numbers is the range of a diophantine polynomial
(of several variables) applied to the natural numbers. (This gave a solution to
Hilbert’s 10" problem. ([7])) Since the collection of inconsistencies of a recursively
enumerable axiom system .4 can be coded canonically as a recursively enumerable
set of natural numbers, the consistency of A is equivalent to the non-existence of
a natural number solution to a particular diophantine equation. If we fix A to be
our (consistent) axiom system, such as ZFC (or ZFC with large cardinals) we find
that there is a diophantine equation such that the (non-)existence of an integer
solution to this diophantine equation is independent of A.

Mathematical problems that arose from motivations outside mathematical
logic itself eventually were seen to be independent. The most famous of these is
Hilbert’s 1% problem: the Continuum Hypothesis. The Continuum Hypothesis (or
CH) is the statement that the real numbers have cardinality the first uncountable
cardinal. Equivalently ¢ = X;. Another equivalent statement is that every infinite
subset of the real numbers is either countable or has cardinality c.

Godel ([6]) discovered a canonical example of the axioms of ZFC, called the
Constructible Universe, L. The idea behind this example is that it is built using
only concrete operations, with the only non-constructive elements being the infinite
ordinals in the domain of these functions. Godel showed that if the Zermelo-
Fraenkel axioms hold, then the Continuum Hypothesis held in L along with the
controversial Aziom of Choice. Hence Godel showed that if the Zermelo-Fraenkel
axioms are consistent, then they are consistent with the Continuum Hypothesis
and the Axiom of Choice.

An important breakthrough came with the advent of Forcing in 1963, in a
paper of Cohen ([1]). In this paper, Cohen gave a general method of building new
examples of ZF from old ones. (In some ways the method is analogous to adding
an algebraic element to a field.) Cohen used this method to show that the Axiom
of Choice and the Continuum Hypothesis are independent of ZF.

Forcing, as developed by Solovay and others, became a primary tool for show-
ing independence results. Among the most prominent statements shown to be
independent of ZFC:

e Most statements of infinitary cardinal arithmetic such as the Generalized

DOCUMENTA MATHEMATICA * EXTRA VOLUME ICM 1998 - IT - 11-21



GENERIC LARGE CARDINALS 13

Continuum Hypothesis and the Singular Cardinals Hypothesis.

o The existence of a Suslin line, a complete linear ordering with no uncount-
able collection of disjoint open intervals that is NOT isomorphic to the real line.
After this came an extensive body of work showing independence results in many
parts of point-set topology.

o The independence of the existence of a non-Lebesque measurable set from
ZF 4 The Axiom of Countable Choice. This shows that the existence of a non-
measurable set is inherently tied up with the use of a non-constructive uncountable
set existence principle.

e The existence of a non-free Whitehead group. This result and related tech-
niques led to a plethora of independence results in abelian groups and homological
algebra.

e The existence of a discontinuous homomorphism between Banach Algebras.

e Many infinitary combinatorial principles, particularly in infinitary Ramsey
Theory.

e The existence of a locally finite group action on a measure space X with a
unique invariant mean (positive linear functional of norm 1).

e The existence of a paradozical decomposition of the sphere S? constructed
using Gs and F, subsets of R® and the operations of complement and projection.

Is there a meaningful way of settling these questions? Is there anything more
to say after they have been shown to be independent of ZFC?

A potential response is to suggest that whatever process led to the acceptance

of ZFC as an axiomatization for mathematics (despite its controversial beginnings)
may lead to other assumptions that settle, or partially settle most of the problems
we are interested in.
THE AxIOM V=L. Jensen ([8, 9]) realized that Godel’s Constructible Universe had
a “fine structure” that made it amenable to the kind of close study that settles
the types of problems mentioned above. Moreover, he discovered a technique, that
when applied with suitable cleverness, appears to answer essentially any question
about L. As part of this work, he discovered various combinatorial principles such
as O, and ¢, that are highly applicable in domains beyond L.

While the axiom of constructibility is very effective, most people working in
set theory reject it as inappropriate. This is primarily because the axiom saying
“every set is constructible” is viewed as restrictive and thus does not account for
all of the possible behavior of sets or other mathematical objects.

Further, in the constructible universe there are “pathologies” such as easily
constructible paradoxical decompositions of the sphere.

DETERMINACY AXIOMS. The Aziom of Determinacy, proposed by Mycielski
and Steinhaus ([13]) is a nonconstructive existence principle that contradicts the
Axiom of Choice. It makes sense however, to assert it in limited domains such
as the collection of Projective Sets or in the smallest model of ZF containing all
of the real numbers. These assertions do not ostensibly contradict the Axiom of
Choice for the class of all sets.

Given a set A contained in the unit interval [0,1] one can associate a game
G 4 where players I, I alternate playing a sequence of digits ng, n1,ns,.... (Each
n; € {0,1,...,9}.) The resulting play yields a number a in the unit interval whose
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decimal expansion is a = .ngnins.... We declare player I1 the winner if a € A.
The assertion that A is determined is the assertion that either player I or player
II has a winning strategy in G4. A collection I' of subsets of R is said to be
determined iff every element A € T is determined.

Martin [11] showed that all Borel sets are determined. However, in L there is
a subset of the real line that is the projection of a Borel set in the plane that is
not determined using strategies in L. Hence one can go no further in ZFC.

Why are determinacy axioms attractive? Asserting determinacy for reason-
ably robust classes I' implies that every element of I' is nicely regular, e.g. is
Lebesgue measurable, has the Property of Baire and uniformization holds in the
relevant guise. So, for example, asserting determinacy for projective sets implies
that there is no paradoxical decomposition using projective sets. (Projective sets
are the subsets of R™ constructed from Borel sets in higher dimensions using the
operations of projection and complement.)

The drawbacks of determinacy are twofold. First off, it says nothing about

sets that are not in its domain. For example, while determinacy in L(R) tells you
that there is no Suslin line in L(R), it says nothing about the actual existence of
a Suslin line. Secondly, there appears to be no extrinsic motivating heuristic for
determinacy. Its appeal and force lie in its effectiveness and the body of coherent,
predictable consequences.
LARGE CARDINALS. The other main source of new axioms for the mathematical
universe is a collection of ideas called large cardinals. These axioms were generated
by intuitions about “higher infinities”, sets whose relation to smaller sets were
roughly similar to the relation between IN and finite sets.

Another motivation for large cardinals is the idea of reflection: the set forma-
tion process has no natural stopping point, for at such a point we would simply
take the union of all sets constructed and form a new set. Hence any property
that holds in the mathematical universe should hold of many set-approximations
of the mathematical universe. Moreover, since this is a property of the universe,
there should be many sets that, in turn, have this property relative to smaller sets,
etc. The sets that have the reflection properties relative to smaller sets are the
large cardinals.

Eventually large cardinal axioms came to be stated more or less uniformly
as the existence of certain kinds of symmetries. Technically these are elementary
embeddings j from the universe V to transitive classes M. (An embedding is
elementary iff for all properties ¢ and all a1, ...a,, if ¢ holds of a1, ..., a,, then
¢ holds of j(a1),...j(ay). So, e.g., if X is a manifold, j(X) is a manifold.)

These axioms vary in strength according to where j sends ordinals and the
closure of the class M. (We can classify M according to the least cardinality of a
set X such that X ¢ M. A theorem of Kunen proves that there always is such a
set.) An important ordinal is the smallest ordinal moved by j, called the critical
point of j, or crit(j).

A well-known example of such an axiom was proposed by Ulam; the axiom
of a Measurable Cardinal. Ulam formulated this as the statement that there is
a set K and a countably additive 2-valued measure defined on all subsets of K.
Using ultraproducts, this can be stated in modern language as the existence of a
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non-trivial elementary embedding of V' to some transitive model M with critical
point k.

The notion of supercompact and huge cardinals can also be stated as the
existence of measures on sets with certain additional structure. The statement in
terms of elementary embeddings is more conceptual:

DEFINITION. A cardinal k is A-supercompact iff there is an elementary embedding
j 'V — M, where M is a transitive class and M contains every A sequence of
ordinals. k is supercompact iff k is A-supercompact for all A.

A cardinal k is n-huge iff there is an elementary embedding j : V' — M with
critical point k such that M is closed under j*(x)-sequences.

For each elementary embedding there is an ideal object in the target model
M (or system of ideal objects, in more sophisticated set ups) that determine the
nature of the embedding. In particular, it determines the closure of M. Each
element ¢ of M determines a measure and with respect to this measure every
property of the ideal object holds at almost every point in the measure space
determined by ¢. In particular, if S C ¢ = crit(j) is stationary, then for almost
every a < ¢,S8 N« is stationary. If ¢ is taken to be the ideal point, then the
ultraproduct of V' by the measure determined by ¢ yields the model M.

By focusing on the ideal points one can see the reflection implied by the
elementary embedding. An important example of such reflection is the statement
that if x is supercompact and A > k is a regular cardinal then every stationary
subset of X\ reflects to an ordinal of cofinality less than . This property, while
useful in its own right as a construction principle, contradicts O.

Large cardinals are also significant in that many of the combinatorial prop-
erties of IN hold at large cardinals. For example Rowbottom’s Theorem, a direct
analogue of Ramsey’s theorem, states that if x is measurable then every partition
of the finite subsets of x into less than k colors has a homogeneous set of size k.
Baumgartner and Hajnal showed that strong partition properties hold at the car-
dinal successor of w. Recent results of Hajnal and the author show that analogous
partition properties hold at the successor of a measurable cardinal.

Results of Ulam (and later Tarski and Keisler) showed that large cardinals,
such as measurable cardinals, must be inacessibly larger than most ordinary math-
ematical objects, such as the real numbers ¢. (Recent results of Gitik and Shelah
show that if 7 is a countably complete ideal on a cardinal such as ¢ (or P(c)) then
P(c)/Z does not have a dense countable set; the least possible density is X;.)

Godel suggested that large cardinal assumptions may eventually be a route to
settling the continuum hypothesis. This hope was dashed however by a theorem
of Levy and Solovay ([10]) that showed that “small forcing” does not affect large
cardinals. In particular the Continuum Hypothesis is independent of of any large
cardinal assumption. This theorem and the apparent remoteness of these cardinals
to ordinary sets is a major drawback of large cardinal assumptions.

Large cardinals do have a coherent motivating heuristic and independent af-
firming intuitions. They have also proved essential for relative consistency results,
such as the failure of the singular cardinals hypothesis. (e.g. Jensen’s Covering
Lemma showed that large cardinals were strictly necessary.)
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GRAND UNIFICATION. In the 70’s and early 80’s large cardinal axioms and de-
terminacy axioms were viewed as competing attempts at extending the axioms
ZFC. Martin and Harrington had showed various connections between some of the
weaker versions of the two systems of axioms, but the exact relationships weren’t
clear.

An important breakthrough came in 1984 ([3]), when it was realized that large
cardinal axioms implied the existence of large cardinal type embeddings, where the
embedding j : V — M was definable not in V', but in a forcing extension of V.
These elementary embeddings have critical point X;, and thus the embeddings are
immediately relevant to “small” sets such as the real numbers. Moreover, this
discovery uncovered a new class of relatively weak large cardinals, the Woodin
cardinals. (Named after the person who isolated the definition.)

Following on the heels of this discovery, Martin and Steel ([12]) showed that
determinacy for the class of projective sets follows from the existence of sufficiently
many Woodin cardinals. Woodin ([16]), using the generic large cardinal embed-
dings, showed that determinacy held for all sets in L(R). In particular, all of the
consequences of determinacy follow from large cardinals.

More recent work has exactly fixed many of the relations between large cardi-
nal and determinacy axioms, often showing that a particular large cardinal axiom
implies determinacy of a class of sets I', which in turn implies the consistency of
a slightly weaker large cardinal axiom.

This close relationship has become a major feature of the contemporary study
of other extensions of ZFC. By and large they are all known to either follow from,
or be equiconsistent with large cardinal axioms. This is viewed by many people as
being suggestive that the various alternative axiom systems suggested are simply
different aspects of the same phenomenon, hence confirming large cardinal axioms.

Despite this type of confirmation and large cardinals’ role of calibrating the

consistency strength of most independent propositions of ZFC, it remains frustrat-
ing that they cannot actually settle important problems such as the Continuum
Hypothesis.
GENERIC LARGE CARDINALS. Generic large cardinals are a marriage of large
cardinals and forcing. The axioms assert the existence of an elementary embedding
j V. — M, where M is a transitive model, where j is definable in a forcing
extension of the universe V[G]. These embeddings can be viewed as virtual versions
of large cardinal embeddings, whose specifics are revealed by forcing with the
appropriate partial ordering. (This technique was first used by Solovay. Jech and
Prikry, realizing its interest, isolated the notion of a precipitous ideal.)

The advantage of generic large cardinals is that the critical point of j can be
a “small” cardinal such as N;. With some limitations this allows these cardinals
to have similar reflection and resemblance properties as posited by large cardinal
axioms on highly inacessible cardinals. Moreover, it allows one to state “symmetry
principles” that can hold in a generic extension of the universe. By and large the
motivational principles used to generate large cardinals can be restated to apply
to generic large cardinal axioms, virtually verbatim.

The current study of generic large cardinal axioms now breaks into three parts:
their consequences as axioms, showing their consistency relative to large cardinals
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and showing that they imply the existence of inner models with large cardinals.
Many research programs in the area combine one or more of these parts. In a
typical example, relative consistency results of properties of Ny can be shown by
first establishing that they follow from a generic large cardinal property and then
showing that the property is consistent relative to a conventional large cardinal.
They can be used in the other direction as well; an archetypical result in the area,
shown by Solovay, is that the existence of a real-valued measurable cardinal implies
the existence of an inner model with a 2-valued measurable cardinal. This was
done by first showing that a real-valued measurable cardinal implied the existence
of a generic large cardinal, which in turn implied the existence of an inner model
with a measurable cardinal.

The parameters involved in determining a generic large cardinal are expanded
to include the nature (in particular the density or saturation) of the partial ordering
P involved in the forcing. Analogously to large cardinals, the transitive model M
typically contains an ideal object, ¢, whose existence implies the closure of the
model M. Rather than determining a measure, this ideal object determines an
ideal Z in the ground model V on any set Z such that ¢ € j(Z). Most of the
relevant properties of P (particularly the stronger properties such as saturation)
are inherited by the Boolean algebra P(Z)/Z, and hence we primarily discuss the
saturation and density properties of Z (or more properly P(Z)/Z.) We will refer
to embeddings as generically huge, or generically A-supercompact if the closure of
M corresponds to the analogous large cardinal property. To simplify statements
of theorems, we will often neglect the optimal hypothesis.

The first result is that if there is a generic huge embedding such that j(c) = 2€,
defined in the simplest possible forcing extension, then the continuum hypothesis
holds and there is a Suslin line:

o(Foreman) Suppose that there is a normal and fine Ri-dense ideal on the
collection of subsets of 2€ of cardinality c. Then the continuum hypothesis holds
and there is a Suslin line. (Woodin has reduced the hypothesis of the first assertion
to the existence of an Wq-dense ideal on R,.)

To extend this to the GCH, there are several possible axioms, one that stresses
the resemblance between successor cardinals is the hypothesis of the following
theorem:

o(Foreman) Suppose that for all reqular A\, n € N there is a generic huge
embedding sending N1 to \** (k < n). Then the Continuum Hypothesis implies
the Generalized Continuum Hypothesis.

Just as large cardinals imply stationary set reflection, generic large cardinals
do as well. Magidor showed (in a different guise) that if for all n, X,, is generically
supercompact by N,,_1-closed forcing then every stationary subset of N, ;1 reflects.
Since Jensen’s O implies the existence of non-reflecting stationary sets, generic
embeddings imply the failure of 0. However, there are variations of O, that while
strictly weaker, are nearly as useful. The strongest of these is O, ,,. The following
theorem shows that it is possible to have some of the best of O and stationary set
reflection.

o(Cummings, Foreman, Magidor) Suppose that there is an example of set
theory with infinitely many supercompact cardinals. Then there is an example of
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set theory where every stationary subset of N1 reflects and where O, ,, holds.

The proof of this theorem uses generic supercompactness in a subtle way.
Magidor and the author showed that generic supercompactness by countably closed
forcing is incompatible with Weak Square ([4]). Instead, in this proof, each R,, is
generically supercompact by a closed forcing notion in a stationary set preserving
extension of V.

As one might expect, generic large cardinals have implications for other topics
in the theory of singular cardinals, such as the “PCF” theory developed by Shelah.
For example, if there is a generic huge embedding, sending 8; to N, 1, then there
is no “Good Scale” in the sense of the PCF theory. The flow goes the other way as
well; using PCF theory one can show that there is no “generic w-huge cardinal”,
an analogue to a result of Kunen for ordinary large cardinals.

Generic large cardinals have similar effects on Ramsey Theory as large cardi-
nals:

o (Foreman, Hajnal) Suppose that there is an Ri-dense ideal on No. Then the
partition property wy — (w? + 1, ) holds for all a < ws.

Generic large cardinal axioms have other combinatorial consequences. For
example the existence of generic huge embeddings with simple forcing notions
imply that every graph on R, with infinite chromatic number has subgraphs of
all smaller infinite chromatic numbers (and these subgraphs have the same finite
subgraphs as the original graph.)

One can postulate other properties of the forcing P. Suppose that k is a
regular cardinal. Say that P is k-tame if P is a regular subalgebra of the partial
ordering for adding a Cohen subset of a cardinal less than x followed by a product of
k-closed and strongly k-c.c. partial orderings. Mitchell showed that it is consistent
for Ny to be generically weakly compact by an Nj-tame partial ordering. Abraham
improved this to two consecutive cardinals.

o(Cummings, Foreman) Suppose that it is consistent for there to be infinitely
many supercompact cardinals. Then it is consistent that for all n > 2, N, is
generically weakly compact by an N,,_1-tame P. Moreover, this implies that for
all n > 2, there is no Aronszajn tree on X,,.

These have applications in other parts of mathematics where infinitary combi-
natorics plays a role. As an example we consider the case of a vector space X over
afield F, with a symmetric bilinear form ¢. If we choose a basis {z,, : @ < s} for X
and let X, = span{zs : 8 < a} we can consider I'(X,¢) = {a: X = X, & X1}
This set is invariant under isomorphism modulo the non-stationary ideal on k.
(This is called the I'-invariant.) It makes sense to ask which sets can arise this
way.

o (Foreman, Spinas) Suppose that Rq is generically weakly compact by an N;-
tame partial ordering. Then there is a subset of Vo that is not the I'-invariant of
any (X7 F7 ¢) °

In addition to the role of generic large cardinal axioms in the unification of
the axiom systems of large cardinals and determinacy, Woodin has shown directly
that they imply determinacy:

o(Woodin) The aziom of determinacy in L(R) is equiconsistent with “ZFC
+ there is an Nq-dense ideal on Ni.”
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There are many open problems about which generic large cardinals can be
shown to be consistent from large cardinals. However much progress has been
made. A partial listing of such results includes:

o(Woodin, improving results of Kunen, Laver and Magidor) Let n € N.
Assuming the consistency of an almost-huge cardinal, it is consistent that there is
an N, -complete, N,,-dense ideal on N,,.

o(Foreman) Assuming the consistency of a huge cardinal, it is consistent that
for all reqular x, there is a k™ -saturated ideal on k.

o (Foreman) Assuming the consistency of a 2-huge cardinal, then for all n, it
is consistent that there is a generic 2-huge embedding with critical point N, .

o(Foreman) Assuming the existence of a huge cardinal, it is consistent that
there is a countably complete, uniform Wi-dense ideal on Ns.

o(Steel-Van Wesep from determinacy assumptions, Foreman, Magidor and
Shelah from large cardinal assumptions with Shelah proving the optimal theorem)
Assuming the consistency of a Woodin cardinal, it is consistent that the non-
stationary ideal on Ry is No-saturated.

It is also possible to show that the generic large cardinal axioms form a hier-
archy in consistency strength. A typical theorem includes:

o(Foreman) Let n > 1. Suppose that there is a generic n-huge embedding by
the partial ordering Col(w,R1). Then it is consistent to have a generic (n-1)-huge
embedding with partial ordering Col(w,N1).

Further it is possible, in certain cases to show from generic embeddings that
large cardinals are consistent. For example:

o(Steel) Suppose that there is a saturated ideal on X1 and a measurable car-
dinal, then there is an inner model with a Woodin cardinal.

Using naive technology one can show that the existence of certain generic ele-
mentary embeddings imply inner models with huge cardinals. Using this fact, one
can find strong Chang’s conjecture principles of the N,,’s that lie strictly between
a huge cardinal and a 2-huge cardinal.

With the exception of the results mentioned in the next section, generic large
cardinals give a coherent theory that settles most of the classical independent
statements of mathematics. Many are known to be consistent relative to conven-
tional large cardinals. Are all principles generated this way consistent? Are they
consistent with each other? It turns out that there are non-trivial restrictions on
the saturation properties of various natural ideals.

Most prominent among these are the results of Shelah, and Shelah and Gitik.
Shelah’s theorem states that if Z is a saturated ideal on x™, then the collection of
ordinals of cofinality different from the cofinality  is an element of Z; in particular,
if K > w, the non-stationary ideal on ' is not saturated. Shelah and Gitik
showed that the non-stationary ideal on the successor of a singular cardinal & is
not saturated, even when restricted to the points having cofinality equal to the
cofinality of k. The following theorem extends work of Burke and Matsubara.

o (Foreman, Magidor) Suppose that k < A\,N; < A. Then the non-stationary
ideal on P, (\) is not AT saturated.

Finally it is possible to show that the limitations on the closure of the target
model M for a generic elementary embedding are roughly similar as they are for
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conventional large cardinals.
o There is no N, -saturated ideal on the subsets of N, of order type V.

MARTIN’S MAXIMUM AND P-MAX. In [3], Magidor, Shelah and the author for-
mulated a principle called Martin’s Mazimum and showed that it implied that the
non-stationary ideal on N; is Ny-saturated, and the singular cardinals hypothesis
holds.

Woodin showed (assuming a mild large cardinal hypothesis) that if the non-
stationary ideal on N; is Ns-saturated then there is a fairly concrete surjection
p :R — No. Further, he developed a canonical theory “P-max” to describe the sets
of hereditary cardinality R;, and showed that this theory is canonical and robust
in many ways. Further it has a close connection with Martin’s Maximum and its
variants such as MM™ and MM™*.

As of this writing, this theory appears to be particular to R;, as the results in
the previous section (and others) show that it is inconsistent for the non-stationary
ideal on N; to be saturated and have an N;-preserving generic elementary embed-
ding with critical point N,.
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WHEN IS AN BEQUIVALENCE RELATION CLASSIFIABLE?

GREG HJORTH

ABSTRACT. One finds in certain branches of analysis the idea that a
classifiable equivalence relation is one for which we can assign points in
a very concrete space as a complete invariant. Results by Effros, Glimm,
and Mackey, and then later Harrington, Kechris, and Louveau, have given
a thorough analysis of when such a classification is possible. In the last
few years a similar analysis has been undertaken by descriptive set the-
orists regarding when an equivalence relation is classifiable by countable
structures considered up to isomorphism. There is a kind of parallel the-
ory of which equivalence relations can be assigned countable structures
as complete invariants.

1991 Mathematics Subject Classification: 04A15
Keywords and Phrases: Equivalence relations, effective cardinality, clas-
sification, Polish group actions.

80 ONE ANSWER The question posed in the title of this talk is admittedly a
vague one. Not only is the question itself vague, but moreover any answer to this
question will necessarily be subjective, since a classification theorem will only be
satisfactory if it is judged as such for some specific purposes.

Nevertheless, in certain branches of mathematics, especially those influenced
by the works of George Mackey, one finds the idea that a classifiable equiva-
lence relation is one for which points in some very concrete spaces — such as R,
C,T,C([0,1]) — can be assigned in some reasonably ‘nice’, preferably Borel, man-
ner. Ultimately I will discuss some alternative notions of classifiable and present
motivating examples for this line of research. Before continuing we should under-
stand the following definition.

0.1 DEFINITION Let E be an equivalence relation on a Polish space X. E is smooth
or tame if there is Polish space Y and a Borel function

0: X —>Y

such that for all z,y € X
zEy < 0(x) = 0(y).

Just so there are no confusions about the definitions, a Polish space is a
separable topological space that admits a complete compatible metric — and so

the class of Polish spaces includes objects like the reals, the complex numbers,
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Hilbert space, and so on. A function between Polish spaces is said to Borel if the
pullback of any open set is Borel.

It is also customary in this context to refer to a Polish space stripped down
to its Borel structure as a standard Borel space; that is to say, (Y, B) is a standard
Borel space if there is a Polish topology 7 on Y with respect to which B is the
o-algebra generated by the 7-open sets.

In definition 0.1 we could just as well insist that Y be R, since any Polish
space allows a Borel injection into the reals.

It may then be helpful to think of the function

f: X —>R
from 0.1 as lifting to an injection
0:X/E— R,

and that in this sense the Borel cardinality of X/ F is less than or equal to the Borel
cardinality of R. Indeed this is an important theme in this branch of descriptive
set theory: Determine the effective cardinality of quotients of the form X/E.

An another equivalent formulation of smoothness is that the space of equiv-
alence classes, X/E = {[z]g : * € X}, be a subspace of a standard Borel space
in the quotient Borel structure — that is to say, if we let Bg be the collection of
subsets of X/F of the form {[z]g : x € A} for A C X an E-invariant (any z € A
has [z]g C A) Borel set, then there is some standard Borel space (Y, B) with
Y D X/E and Bg = {ANX/E : A € B}. Finally, E is smooth if and only if there
is a countable sequence (A, )nen of E-invariant such that for all z,y € X

zEy & Vn(z € A, & yc A,).

I suppose that for a mathematician approaching this from another area the
restriction to the Borel category may seem rather arbitrary. It turns out that
many mathematically objects can be naturally realized as either points in some
Polish space or as equivalence classes in some Polish space, and in fact the context
of these problems is far wider than it may initially appear. The theorems stated
below in §4 for Borel functions all pass to much more general classes of reasonably
definable functions.

Historically the notion of smoothness as classifiability is extremely important.
Not only does one find the notion in papers such as [2], [3], and [5], and perhaps
[15]. These papers suggest a wider project to determine which equivalence rela-
tions are smooth and which classification problems are no harder than that of the
equality relation on R.

§1 EXAMPLES: SMOOTH

1.1 EXAMPLE: COMPACT RIEMANN SURFACES A very natural classification prob-
lem is that of compact Riemann surfaces considered up conformal equivalence. In
this case there exists a reduction to the equality relation on the reals. The classical
theory, as at say [11], obtains points in some standard Borel space as a complete
invariant.
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Of course one can ask how this sits with the original definition at 0.1. Here it
is routine (but see [13] for details) to obtain a standard Borel space parameterizing
(separable) complex manifolds in some natural manner. In this context one has
that the set of points parameterizing the compact complex surfaces is Borel and
the equivalence relation of conformal equivalence restricted to this Borel set is
indeed smooth in exactly the sense of 0.1.

1.2 EXAMPLE: BERNOULLI SHIFTS Let S = {si,...,8,} be a finite alphabet,
o : 8% — S” be the shift map, and for py,ps, ..., p, a finite sequence of positive
numbers summing to 1 let p the product measure resulting from giving s; the
weight p;. We may choose to think of two such systems as being equivalent if
there is an invertible measure preserving map that conjugates them: that is, set
(S1,01, 1) ~ (S2, 09, u2) if there is a measurable preserving bijection

VI (Sl)Z — (SQ)Z

such that
o1 = 7 1o 09 0T

VA C (82)%(u2(A) = pa (71 (4))).

Ornstein in [16] shows a single real number, the entropy of the system (S, o, u),
provides a complete invariant. Moreover in a suitable standard Borel structure,
this invariant can be calculated in a Borel fashion. Here as a suitable Borel struc-
ture one may represent the shift by the sequence p1,ps,...,pn, € R™ for various
n; the point is that a countable union of standard Borel spaces, such as (J,, R" is
again standard Borel.

1.3 EXAMPLE: GROUP REPRESENTATIONS Consider the irreducible representa-
tions of the group Z. Given a complex Hilbert space H with associated unitary
group U of all inner product respecting transformations, we can let Irr(Z, H) be
the space of homomorphisms

T:Z—-U

where U has no non-trivial invariant subspaces under 7[Z]. It is natural to think of
71 and 7o as somehow presenting equivalent representations if there is some T' € U
with

T1(g) =Tom(g)o T

for all g € Z.

The space of all representations may be naturally identified with a closed
subspace of HZ, and hence it is a Polish space. Furthermore the equivalence
relation of interest here is induced by the continuous action of the group H.

Here Irr(Z, H) is non-empty if and only if H is one dimensional. Moreover
we may identify the elements of Irr(Z, H) with characters, and thus a complete
classification of these objects may be given by points in T, and hence R.

On the other hand if G is finite the space Irr(G, H) will be non-empty only
when H is finite dimensional. Then the above equivalence relation will be induced
by the a continuous action of the now compact group U on the Polish space
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Irr(G, H). In general such orbit equivalence relations are always classifiable by
points in R.

§2 EXAMPLES: NON-SMOOTH

2.1 EXAMPLE: GENERAL COMPLEX DOMAINS One can view Becker, Henson, and
Rubel in [1] as obtaining non-classifiability by a process tantamount to embedding
the equivalence relation Ej of eventual agreement on infinite sequences of 0’s and
1’s into conformal equivalence on complex domains — so that for f,¢g: N — {0,1}
we have fEyg if there is some N € N such that

Vn > N(f(n) = g(n)).

Here Ey is an F, equivalence relation on {0, 1}, the space of all infinite binary
sequences in the product topology, and is in some ways (compare [9]) the canonical
example of a non-smooth equivalence relation.

In fact if we assign D, the space of open subsets of C, with the Effros standard
Borel structure — under which it does have a natural Borel structure — then their
argument can be seen as showing that there is a Borel function

6:{0,1}" =D

such that fEpg if and only if 0(f) and 6(g) are biholomorphic. Since Ejy is non-
smooth we obtain non-smoothness of conformal equivalence on arbitrary complex
surfaces, even with respect to the Borel structure articulated in [13].

2.2 EXAMPLE: ARBITRARY MEASURE PRESERVING TRANSFORMATIONS Consider
Mo the group of all invertible measure preserving transformations of the unit
interval . In the topology it inherits from its action on L?([0, 1]) this is a topological
group that is Polish as a space — that is to say, it is a Polish group. For instance, if
(U,) enumerates the basic open subsets of [0, 1] we obtain a complete metric with

d(my,ma) = 27" A (Un)Ama(Un)) + Ay (Un) Ay (Un)).

neN

The obvious classification problem is for the conjugacy equivalence relation — it is
natural to say that 1,72 : [0,1] — [0, 1] are equivalent if they are conjugate, in
the sense of their being some o € M, such that

0O =Tg00a.e.
This equivalence relation was observed by Feldman [5] to be non-smooth. As
with 2.1 the proof rested on embedding Fj.

2.3 EXAMPLE: GROUP REPRESENTATIONS AGAIN Let G be a countable discrete
group that it not abelian-by-finite. Let H,, be a separable infinite dimensional
Hilbert space and U, the unitary group on Hy,. Again take Irr(G, Hoo) to be
space of irreducible representations 7 : G — U, with the equivalence relation of
conjugacy —

T &R Ty A € UyVg € G(Tl(g) =A"! OTZ(g) OA)'
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It is known from [17] and [8] that Irr(G, Hwo) is non-empty and ~ is not smooth:
there is no Borel assignment of reals as complete invariants to Irr(G, Heo )/ ~.

§3 MORE EXAMPLES: PUZZLING CASES The above were deliberately chosen with
the view to supporting the intuition that classifiable means smooth. In the cases
where there is a proof of smoothness, it is generally accepted as a classification
theorem. In the cases where the equivalence relation does not admit points in R
as a complete invariant, the authors seemed to take that as a proof of at least
some manner of non-classifiability. Consequently I hope the position that takes
classifiable to mean smooth will seem an initially attractive one.

This much said, let us consider some examples where there is a more generous
notion of classifiability implicit; these in turn have motivated the search for new
tools in the study of Borel and analytic equivalence relations.

3.1 QUESTION: COMPLEX SURFACES Becker, Henson, and Rubel in [1] explicitly
ask: is there some reasonably non-pathological way to assign to every domain
D C C some countable set of complex numbers Sp such that

D=D

if and only if
Sp=Sp7?

3.2 EXAMPLE: DISCRETE SPECTRUM MPT’S Halmos and von Neumann in [10]
showed that for discrete spectrum elements of M.,, we may assign a countable
collection {¢;() : ¢ € N} of complex numbers that completely describe the equiva-
lence class of w. While conjugacy on discrete measure preserving transformations
is not smooth, the Halmos-von Neumann theorem would seem to constitute some
sort of weaker notion of classification, and it certainly appears to be accepted as
such.

3.3 EXAMPLE: C*-ALGEBRAS AND TOPOLOGICAL DYNAMICS (This is not quite
analogous to examples 1.3 and 2.3, but derives from roughly the same area.) Gior-
dano, Putnam, and Skau in [6] consider the problem of classifying minimal Cantor
systems up to orbit equivalence. Two continuous

p1: X — Xy,

(p22X2—>X2

which are minimal in the sense of having no non-trivial closed invariant sets and
are Cantor in the sense of X7, X5 being compact, uncountable and completely
disconnected metric spaces, are said to be orbit equivalent if there is a homeomor-
phism F : X; — X5 which respects the orbit structure set wise, in that for all
x

{¢a(F(x)) i € Z} = F{¢i() : i € Z}].

This problem is in turn equivalent to classifying a certain class of C*-algebras.
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Here they produce countable ordered abelian groups as complete invariants.
One similarly finds discussion of the classification of certain C* by countable dis-
crete structures considered up to isomorphism in papers such as [4].

It is important to note a link between the kind of classification one finds in
3.1-2 and 3.3: Any equivalence relation that can be classified by a countable set
of reals can be classified by countable structures considered up to isomorphism.
For instance, if we let (g,,) enumerate the rationals, then to a countable unordered
set A C R we can associate the model M4 = {z, : @ € A} with unary predicates
(P,) governed by the rule that

My E Py(z,)

if and only if ¢, < a. Trivially then reduction to the equality relation on R im-
plies classification by countable sets of reals, and hence classification by countable
structures.

Thus we may be led to formulate a more generous notion of classifiability.

3.4 QUESTION For which F can we provide some kind of countable structure
considered up to isomorphism as a complete invariant?

Letting £ be a countable language, we form Mod(L), the space of all L-
structures on N with the topology generated by quantifier free formulas. This is a
Polish space, and therefore there is a precise version of the question.

For which equivalence relations F on Polish X can we find a Borel § : X —

Mod(£) such that for all z,y € X

xRy < 0(x) = 0(y)?

In very general terms these examples may illustrate the kinds of concerns
driving the descriptive set theory of equivalence relations, as well as the particular
problem of classification by countable structures. I should add to these general
remarks that the isomorphism relation on countable structures is historically im-
portant in logic, and that for someone in my area it seems intriguing to ask which
classification problems may be simply reduced to that of countable models con-
sidered up to isomorphism.

§4 SOME THEOREMS I will begin with two sufficient conditions for classifiability,
the first of which is trivial.

4.1 THEOREM(folklore) Let G be a compact metrizable group acting continuously
on a Polish space X with induced orbit equivalence relation Eg. Then FEg is
smooth.

4.2 THEOREM (Kechris [14]) Let G be a locally compact Polish group acting
continuously on a Polish space X. Then there is a countable sequence of Borel
functions (f;)ien such that for all z,y € X

zEqy & {fi(x) : i € N} = {fi(y) : i € N}.
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In other words, we may classify by countable unordered sets of reals.
And two sufficient conditions for non-classifiability:

4.3 THEOREM (folklore) Let G be a Polish group and X a Polish space. Suppose
that

(1) some orbit is dense;

(ii) every orbit is meager (its complement includes the intersection of count-
ably many open dense sets). Then F¢ is not smooth.

4.4 THEOREM (Hjorth [12]) Let G be a Polish group and X a Polish space. Suppose
that

(i) some orbit is dense;

(ii) every orbit is meager (its complement includes the intersection of count-
ably many open dense sets);

(iii) for some = € X, the local orbits of x are all somewhere dense; that is
to say, if V' is an open neighborhood of 1¢, U is an open set containing x, and if
O(z,U,V) is the set of all & € [z]g such that there is a finite sequence (x;);<x C U
such that zy = z, xx = &, and each z;41 € V - z;, then the closure of O(z,U, V)
contains an open set.

Then there is no Borel (or even Baire measurable) 8 : X — Mod (L) such
that for all z,y € X

zEqy < 0(z) = 0(y).

Consequently there is no sequence (f;);cn of Borel (or even reasonably defin-
able) functions

such that
zEqy < {fi(x) : i € N} = {fi(y) : i € N}.

A Polish group action satisfying 4.4(i)-(iii) is called generically turbulent.

Again I will return to the motivation and examples in the next and final
section. These examples on their own may suggest that 4.4 is the right theorem
for showing this kind of non-classifiability.

However there are also results in [12] reinforcing this view. The presence
of a generically turbulent action is necessary for non-classifiability in the sense
that if Eg arises from the continuous action of Polish G on Polish X then either
E¢ is reducible to isomorphism on countable structures (using say universally
Baire measurable functions) or there is a generically turbulent Polish G-space Y
which admits a continuous G-embedding into X. (Here a function 6 is said to
be universally Baire measurable if for any Borel function p we have that 6 o p is
Baire measurable — in the sense of pulling back open sets to sets with the Baire

property.)

§5 EXAMPLES AGAIN

5.1 EXAMPLE: COMPLEX MANIFOLDS AGAIN By the uniformization theorem,
conformal equivalence on complex surfaces may be reduced to an appropriately
chosen locally compact group action.
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THEOREM (Hjorth-Kechris [13]) Let D be the space of all complex domains. Then
there is a definable assignment
M — SM

of countable sets of reals to domains such that for all M, N € D
M=N<& Sy =>_5yN.

Moreover it is Borel in the sense of there existing a countable sequence (f,) of
Borel functions from D to R such that Sy always equals the (unordered) set
{fu(M):n € N}

But in higher dimensions one may embed a generically turbulent orbit equiv-
alence relation and obtain:
THEOREM (Hjorth-Kechris [13]) Let M? be the space of two dimensional com-
plex manifolds. Then there is no Borel assignment of countable structures up to

isomorphism as complete invariants. Consistently with ZFC there is no definable
assignment.

5.2 EXAMPLE: MEASURE PRESERVING TRANSFORMATIONS AGAIN

THEOREM (Hjorth) Let Mo, be the space of invertible measure preserving trans-
formations on the unit interval. Consider the conjugacy equivalence relation ~:
1 ~ mo if there is o € M, such that

0 oM =T 00 a.e.
Then there is no sequence (f;);en of Borel functions
fi: Mo — R
such that
w1 ~my < {fi(m) i € N} = {fi(m) : i € N}.

In fact, ~ is strictly more complicated than isomorphism on countable models:
there is a Borel 6 : Mod(L) — My, such that for all M, N € Mod

M= N & (M) ~ 6(N),

but (for any choice of £) there is no Borel (or even universally Baire measurable)
p: My — Mod(L) such that for all 7, m € My

T~ e & p(m1) = p(m2).

5.3 EXAMPLE: DISCRETE GROUP REPRESENTATIONS AGAIN
THEOREM (Hjorth) Let G be a countable group that is not abelian-by-finite. Let
H, be an separable infinite dimensional Hilbert space, let Irr(G, Hw, ) be the space
of irreducible representations of G in He,. Then there is no sequence (f;)ien of
Borel functions
fi :Irr(G, Hoo) = R
such that
T R Ty & {fl(ﬁ) NS N} = {fl(’rg) NS N}

In fact there is no reasonably definable assignment of countable models con-

sidered up to isomorphism as complete invariants.
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ABSTRACT. We describe meager forking, m-independence and related
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0 INTRODUCTION

Throughout, T' = T°? is a complete theory in a countable first-order language L
and we work within a large saturated model € of T' (a monster model). Until
section 5 we assume that T is stable. Often we assume that T is small, i.e. S, (0)
is countable for every n < w. The general references are [Bub, Pi].

The main motivation here is Vaught’s conjecture for superstable theories.
Vaught’s conjecture says that if 7 has < 280 countable models, then T has count-
ably many of them. If T is not small, then T has 2% countable models. So the
assumptions that 7' is small or even that T has < 2% countable models appear
naturally in many theorems in this paper. Thus far Vaught’s conjecture is proved
for w-stable theories [SHM)] and superstable theories of finite U-rank [Bu4]. The
main tools of Shelah in [SHM] are forking of types and forking independence.
These tools are combinatorial in nature. Forking is also the main tool in [Sh].
[Bu4, Nel, Ne3] indicate that in order to approach Vaught’s conjecture for su-
perstable theories we may need some new ideas and tools, of more geometric and
algebraic character.

In a series of papers I introduced meager forking, m-independence and other
notions intended for a fine analysis of countable models. Meager forking relates
forking to the topological structure of the space of types. It is used to show that the
topological character of forking is related to the geometry of forking. An important
problem arising in the context of Vaught’s conjecture is to describe the ways in
which a type in a superstable theory may be non-isolated, and also to describe
the sets of stationarizations of such a type. Here m-independence and the calculus
of traces of types are useful. Apart from their relevance to Vaught’s conjecture,
these notions may be important for model theory in general. Indeed, in a small
stable theory m-independence is the strongest natural notion of independence (on
finite tuples) refining forking independence. So there is a hope that with sharper
tools we can better describe countable models. The theory of m-independence is
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in many ways parallel to the theory of forking independence of Shelah [Sh]. Also,
restricted to *-algebraic tuples, m-independence may be defined in an arbitrary
(small) theory T.

Usually, a,b,c,... denote finite tuples and A, B,C, ... finite sets of elements
of €. x,y, z,... denote finite tuples of variables.

1 MEAGER FORKING AND MEAGER TYPES

Assume s(z) is a (possibly incomplete) type over €. [s] denotes the class of types
in variables x containing s(z). s(€) denotes the set of tuples from € realizing s.
We define the trace of s over A as the set Tru(s) = {tp(a/acl(A)) : a € s(€)},
a closed subset of S(acl(A)). In particular, for p € S(A), Tra(p) is the set of
stationarizations of p over A.

Assume P is a closed subset of S(acl(A)). We say that forking is meager on
P if for every formula ¢(z) forking over A, the set Tr4(¢) N P is nowhere dense
in P (equivalently: for every finite B D A, the set of types r € P with a forking
extension in S(acl(B)) is meager in P). For p € S(A) we say that forking is meager
on p, if forking is meager on T 4(p).

Assume r is a stationary regular type. We say that ¢(z) € L(A) is an r-
formula (over A) if

e cvery type in S(acl(A)) N [yp] is either hereditarily orthogonal to r or regular
non-orthogonal to 7,

o the set P, = {p € S(acl(A))N[p]: pLr} is closed and non-empty,

o r-weight 0 is definable on ¢, that is whenever a € ¢(€) and w,(a/Ac) = 0,
then for some formula ¢ (x,y) over acl(A), true of (a,c), if ¥(a’,c’) holds,
then w,(a’'/Ac") = 0.

If P, = {p} is a singleton, then we say that p is strongly regular. Strongly regular
types were an essential ingredient in describing countable models of an w-stable
theory in [SHM].

For a stationary regular type r € S(B), forking induces a closure operator
cl on r(€) defined by a € cl(X) iff al X(B), where {a} UX C 7(¢). ¢l is a
(combinatorial) pregeometry on 7(€) (this is in fact equivalent to regularity of r),
which we call the forking geometry on r. We say that r is [locally] modular, if
this geometry is [locally] modular. We say that r is non-trivial, if this geometry
is non-trivial [P1i].

Locally modular regular types are important in geometric model theory. If
r is non-trivial and locally modular, then the associated geometry is either affine
or projective over some division ring [Hrl]. By [HS], in a superstable T, for any
non-trivial regular type r, r-formulas exist.

DEFINITION 1 ([NE5]) We say that a regular stationary type v is meager if for
some (equivalently: any) r-formula ¢, forking is meager on P,.

For instance, every properly weakly minimal non-trivial type is meager.
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THEOREM 1 ([NE5]) Every meager type is non-trivial and locally modular.

This theorem improves [Bul, LP]. It shows that the topological character of
forking on a regular type is relevant to its geometric properties. Hrushovski and
Shelah proved in [HS] that in a superstable theory without the omitting types
order property

(x) every regular type is either locally modular or non-orthogonal to a strongly
regular type.

So in this case either the forking geometry on a type is nice or the situation is
similar to the w-stable case. Hrushovski [Hr2] gave an example of a regular type
in a superstable theory, for which () fails.

QUESTION 1 Does (*) hold in any superstable theory with < 2%° countable mod-
els ?

Following [Ta] we say that a regular type p € S(A) is eventually strongly
non-isolated (esn), if some non-forking extension p’ of p over a finite A’ D A is
strongly non-isolated, that is, for every finite B D A’, p’ is almost orthogonal to
any isolated type in S(B). Also we say that p is almost strongly regular (asr), via
¢ € p, if ¢ is a p-formula over A and P, = Tra(p). Since by Theorem 1 every
meager type is locally modular, the following characterization of non-trivial esn
types is relevant for Question 1.

THEOREM 2 ([NET7]) Assume T is small superstable and p is a non-trivial reqular
type. Then p is esn iff (1) or (2) below holds. Moreover, (1) and (2) are mutually
exclusive.

(1) p is non-orthogonal to an almost strongly regular non-isolated type.

(2) p is meager.

2 M-RANK AND M-INDEPENDENCE

In this section T is small and stable. For p € S(A), Tra(p) is either finite or
homeomorphic to the Cantor set. We measure traces of types by comparing topo-
logically traces of their various extensions. This is done by means of M-rank and
m-independence.

Assume ¢ € S(B) is a non-forking extension of p € S(A) (A C B). Then
Tra(q) is a closed subset of Tr4(p) and either is open in Tr4(p) or is nowhere
dense in Tr4(p). In the former case we call g an m-free and in the latter a meager
extension of p. So ¢ is an m-free extension of p iff ¢ is isolated in the set of
non-forking extensions of p in S(B).

DEFINITION 2 ([NE3]) The rank function M is the minimal function defined on
the set of all complete types over finite sets, with values in Ord U {oo}, such that
for every a € Ord we have

M(p) > a+ 1 iff M(q) > « for some meager non-forking extension q of p.
M(a/A) abbreviates M(tp(a/A)). We say that T is m-stable if M(p) < oo for
every p.
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DEFINITION 3 ([NES8]) We say that a is m-independent from B over A (symboli-
cally: a’LB(A) ) if tp(a/AU B) is an m-free extension of tp(a/A).

m-independence has similar properties as forking independence.

PROPOSITION 1 ([NE3, NES8]) (1)(symmetry) If a Lb(A), then bLa(A).

(2) (transitivity) a’L B U C(A) iff a’LB(A) and a’LC(AU B).

(3) a’LB(A) is invariant under automorphisms of € and under changes of enu-
merations of a, A, B.

(4)(acl-triviality) If B C acl(A), then a’LB(A).

(5) In a small theory, " has an extension property, i.e. every type p € S(A) has
an m-free extension over any finite B D A.

THEOREM 3 ([NE10]) In a small stable theory m-independence is the strongest
notion of independence on finite tuples and finite sets of elements of €, which
refines forking independence and has the properties exhibited in Proposition 1.

In a small stable theory, in the following Lascar-style inequalities
(L) M(a/Ab) + M(b/A) < M(ab/A) < M(a/Ab) & M(b/A)

the right side is always true, while the left side holds if a [ b(A) (that is, if a, b are
forking-independent over A).

In a small superstable theory M-rank may be used to find meager types
[Ne6] (similarly as U-rank considerations lead to regular types [Ls]). To find many
such types we need types of large (infinite, but < o0o) M-rank, to begin with.
Unfortunately, no such types are known in a small stable theory.

CONJECTURE 1 ([NE7, THE M-GAP CONJECTURE]) In a small stable theory
there is no type p with w < M(p) < oco.

This conjecture is true for superstable theories under the few models assumption.

THEOREM 4 ([NE5, NE7]) If T is superstable with < 2%° countable models, then
T is m-stable. Moreover, for every type p, M(p) is finite and < U(p).

The proof of this theorem relies on the construction of some meager types
and the analysis of traces of some types in the associated meager groups (defined
below). The special case of theorem 4, where T is weakly minimal and U(p) = 1,
was conjectured by Saffe and proved in [Nel]. It was decisive in the proof of
Vaught’s conjecture for weakly minimal theories [Bu3, Nel].

Using the notions of M-rank and m-independence we get the following de-
scription of traces of types.

THEOREM 5 ([NES, THE TRACE THEOREM]) If T is superstable with < 2%°
countable models, then for every p € S(A) there is a formula ¢(z) (usually not in
p) with Tra(p) = Tra(p). In particular, if p is regular and forking is meager on
p, then p is isolated and meager.
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[Ne8, Theorem 2.6] contains more information on traces of meager types.

Regarding Theorem 3 we should mention that there is a notion of indepen-
dence intermediate between L and . Namely, assume again ¢ € S(B) is a
non-forking extension of p € S(A). On Tra(p) there is a natural probabilistic
Haar measure, invariant under Aut(€/A). We say that ¢ is a u-free extension
of p if Tra(q) has positive measure in Tr4(p). This leads to the notion of u-
independence ‘L (implicitly used in [LS]), having the properties from Proposition
1 [Neg]. Also, L =1 = L.

Tanovic proved that m-independence and p-independence are equal in an m-
stable theory [Ne8], and I proved there that they are equal in an m-normal theory
(defined below). In particular, by Theorem 4 we could say that in a superstable
theory with < 280 countable models, “measure equals category”. No theory is
known in which these two notions of independence differ.

3 THE M-GAP CONJECTURE AND M-NORMAL THEORIES

In this section we assume 7' is small stable. In an attempt to refute the M-gap
conjecture I constructed in [Ne8] small weakly minimal groups with types of various
M-ranks. However the traces of types in these groups are not complicated, they
are just translates of traces of some generic subgroups. This leads to the definition
of an m-normal theory.

DEFINITION 4 ([NES8]) T is m-normal if for every finite A C B and a € €, for
some E € FE(A), the set Tra(a/B)N[E(z,a)] has finitely many conjugates over
Aa.

The idea underlying this definition is that in an m-normal theory, locally T'r 4 (a/B)
can be almost recovered from Aa alone. This corresponds to the condition
Cb(a/A) C acl(a), defining 1-based theories.

There is an evident analogy between the theory of m-independence and
the theory of forking independence: meager forking, M-rank, meager types, m-
stability correspond to forking, U-rank, regular types, superstability. (Unfortu-
nately in the theory of m-independence there is no good counterpart of the notion
of a stationary type.) m-normality corresponds to 1-basedness. In order to justify
this we need to introduce *-finite tuples, which play for m-independence a role
similar to imaginaries in forking.

DEFINITION 5 ([NES8]) (1) A x-finite tuple is a tuple ar = (a;,i € I) of elements
of € (with the index set I countable), such that ar C del(a) for some finite tuple a
of elements of €. Moreover, we say that ay is *-algebraic over A if ar C acl(A).
(2) S1(A) denotes the space of complete types over A, in variables x; = (x;,1 € I).
If ay is *-finite [x-algebraic over A], then we call tp(ay/A) *-finite [x-algebraic].

EXAMPLE 1 Let p =tp(a/A) € S(A). Then a* = (a/E : E € FE(A)) is a *-finite
x-algebraic over A tuple naming tp(a/acl(A)) over A.

EXAMPLE 2 Let G C € be a group definable over A and let G,,,n < w, be a
sequence of A-definable subgroups of finite index in G with G° = N,,G,, (G° is the
connected component of G). Then an element a/G° of G/G° may be regarded as
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a *-finite *-algebraic over A tuple {(a/G,,n < w). So G/GY is a *-finite *-algebraic
group.

The definitions of forking, traces of types, M-rank and m-independence work
also for x-finite tuples and *-finite types. From now on we let a,b,c, ... denote
x-finite tuples and A, B, C, ... finite sets of *-finite tuples of elements of €. Finite
tuples or sets of elements of € will be called standard.

Most importantly, in the new set-up Proposition 1 remains valid, also (L)
holds in the same way as for standard tuples. Theorem 4 is true, except that for
a #-finite type p, M(p) may be larger than U(p). Unfortunately Theorem 5 does
not hold for x-finite types. The change of the set-up does not affect the value
of the M-ranks of standard types. Also, in Example 1, M(a/A) = M(a*/A).
This is an important point, showing that *x-algebraic tuples are the backbone of
M-rank and m-independence. If p € S;(A) is x-algebraic, then there is a natural
correspondence between Tr4(p) and p(€), inducing on p(€) a compact topology.

The next theorem explains the definition of an m-normal theory with the help
of x-algebraic tuples, making it similar to the definition of a 1-based theory using
imaginaries.

THEOREM 6 ([NE7, NE12]) T is m-normal iff for every finite A and a,b *-
algebraic over A, there is a c € acla(a) N acla(b) with a’Lb(Ac).

Here ¢ € acla(a) means that ¢ has finitely many Aa-conjugates. For an infinite
set I of x-finite tuples, ¢ € acl(I) means that ¢ € acl(lp) for some finite Iy C I.

Buechler characterized 1-based theories among superstable theories of finite
rank as those where every U-rank 1 type is locally modular [Bu2]. This explains
the geometric importance of 1-basedness. In the case of m-normality we can give a
similar description. Since x-algebraic types are the backbone of m-independence,
this description refers to some geometries on *-algebraic types of M-rank 1.

Assume p € S7(A) is x-algebraic, of M-rank 1. We say that I C p(€) is a flat
Morley sequence in p if I is countably infinite, m-independent over A and dense
in p(€) (by [Nel0], such an I is unique up to Aut(€/A)). Now acls induces a
pregeometry on p(€) (just like acl induces the forking geometry on a U-rank 1
type). We say that p is locally modular if for some flat Morley sequence I in p,
the localized aclar-geometry on p(€) is modular.

We define the notion of [almost] m-orthogonality analogously to the cor-
responding definition in the theory of forking. We say that T has weak m-
coordinatization if every x-algebraic type of M-rank > 0 is m-nonorthogonal to
a x-algebraic type of M-rank 1. We say that T has full m-coordinatization if for
every A and a x-algebraic over A with M(a/A) > 0, there is some b € acla(a)
with M(b/A) = 1.

The next three theorems justify our interest in m-normal theories.

THEOREM 7 ([NE12]) Assume T is small, of finite M-rank. Then the following
are equivalent.

(1) T is m-normal.

(2) T has full m-coordinatization and every x-algebraic M-rank 1 type is locally
modular.
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(8) T has weak m-coordinatization and every *-algebraic M-rank 1 type is locally
modular.

THEOREM 8 ([NE8, NE12]) In an m-normal theory there is no type p with w <
M(p) < 0.

So for m-normal theories the M-gap conjecture is true. The small weakly minimal
groups referred to at the beginning of this section are m-normal. I know no small
theory, which is not m-normal.

THEOREM 9 ([NE11, NE12]) If T is superstable with < 2%° countable models,
then T' is m-normal.

Regarded as properties of m-independence, Theorems 4,7 and 9 correspond to
the result from [CHL] saying that every Rg-stable Ro-categorical theory has finite
Morley rank and is 1-based. [Nell] contains more information on *-algebraic types
of M-rank 1 in superstable theories with < 2%° countable models.

4 MEAGER GROUPS

Meager groups are some definable groups of standard elements of €. First we
shall define however the notion of a *-finite group. We say that G is a *-finite
group if G is a type-definable group consisting of uniformly *-finite tuples, that
is for some finite set A and a tuple fr = (fi,i € I) of A-definable functions,
G = {fr(a) : a € X} for some set X C € type-definable over A. G C Si(acl(A))
denotes the set of generic types of G. For B O A we say that a; € G is m-
generic over B (and tp(ar/B) is m-generic) if a; L B(A), tp(ar/acl(A)) € G and
Tra(ar/B) is open in G. We define M(G) as M(p) for any m-generic type p of
elements of G. Also there is a natural group structure on G, given by independent
multiplication of types [Ne2|. G is called *-algebraic if elements of G are *-algebraic
over A (the group from Example 2 is a good example here).

Now assume G C € is an A-definable regular abelian group in a stable theory.
As above, G C S(acl(A)) denotes the set of generic types of G. Let p € G be the
generic type of G°, the connected component of G. Notice that G is a p-formula
and G = Pg. So p is meager iff forking is meager on G. In this case we call G a
meager group.

By [Hrl], for any locally modular regular type g there is a regular group non-
orthogonal to g, so every meager type is non-orthogonal to a meager group. We
will say more on such groups.

Assume G is a locally modular regular abelian group definable over A. Let
Gm denote the set of modular types in G (so p € Gm and Gm is a subgroup of
G). Let Gm (the modular component of G) be the subgroup of G generated by
the realizations of types in Gm. In a small theory, Gm is closed in G and G \ Gm
is open in S(acl(A)) [Ne5].

THEOREM 10 ([NE5, NET7]) AssumeT is superstable with < 2%° countable models
and G C € is a locally modular regular abelian group definable over §. Then:
(1) G is meager iff [G : Gm] =[G : Gm] is infinite iff Gm is nowhere dense in G.
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(2) If G is meager, then M(G) = M(Gm) + 1.

(3)(generalized Saffe’s condition) If G is meager and a € G is generic over A,
then exactly one of the following conditions holds:

(a) Trg(a/A) is open in G (i.e. a is m-generic over A and tp(a/A) is isolated).
(b) Trg(a/A) is contained in finitely many cosets of Gm (so it is nowhere dense
and tp(a/A) is non-isolated).

Also, with every locally modular group G we associate a division ring Fg of de-
finable pseudo-endomorphisms of GV, and forking dependence on G° is essentially
the linear dependence over Fg [Hrl]. Now if G is meager, then Fg is a locally
finite field and every element of Fi is definable over acl(()) [Lo, Ne5].

Using the above ideas we can prove Vaught’s conjecture for some superstable
theories of infinite rank. For instance, we have the following theorem.

THEOREM 11 ([NE9]) Assume T = Th(G), where G is a meager group of U-rank
w and M-rank 1, with Fg being a prime field. Then Vaught’s conjecture is true
forT.

The proof of this theorem uses also ideas from [Bu3] and from [Ne3, Ne4] on
describing models piece-by-piece. This leads to some “relative Vaught’s conjec-
ture” results, which consist in the following.

Suppose ®(z) is a countable disjunction of formulas in 7. Then we can
consider the restricted (many-sorted) theory T'[® = Th(®(€)). Proving Vaught’s
conjecture for T' relative to ® means proving Vaught’s conjecture for 7" under the
assumption of Vaught’s conjecture for T'[®. [Ne9, Nel3| contain some results of
this form. T' = Th(G) for some meager group G there and ®(z) is a disjunction
of formulas such that ®(G) = G~ = {a € G : a is non-generic}, or &(G) = Gm.

5 A GENERALIZATION

As mentioned in section 3, x-algebraic tuples are the backbone of m-independence.
Definition 3 (of m-independence) makes sense in an arbitrary theory if a is *-
algebraic over A. m-independence restricted to #-algebraic tuples has all the prop-
erties from Proposition 1 (but smallness is needed to get (5)). Then (1)-(5) from
Proposition 1 imply (L), which for x-algebraic tuples holds fully (because when
a,b are x-algebraic over A, then a\Lb(A)). Also, Theorems 7 and 8 hold for an
arbitrary small theory (or even just for a theory, where x-algebraic tuples sat-
isfy conditions (1)-(5) from Proposition 1) [Nel2]. This suggests a possibility of
applying m-independence in an unstable context.

Hrushovski and Pillay prove in [HP] that every 1-based group is abelian-by-
finite. In [Nel2] I develop a theory of x-algebraic groups in a small m-normal
theory parallel in some respects to [HP].

THEOREM 12 ([NE12]) Assume G is a x-algebraic group type-definable over 0, in
a small m-normal theory. Assume a € G and p = tp(a/A). Then p(G) is a finite
union of cosets of subgroups of G definable over parameters algebraic over . Also,
G is abelian-by-finite.
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Any x-algebraic group is a topological profinite group. It would be interesting
to extract the topological content of Theorem 12. Since the group G/G° from
Example 2 is x-algebraic, we get the following surprising corollary.

COROLLARY 1 Assume G is a (standard) group interpretable in a superstable the-
ory with < 280 countable models. Then G/G° is abelian-by-finite.

QUESTION 2 Is any *-algebraic group interpretable in a small (stable) theory
abelian-by-finite ?

Regarding this question we should mention that by the results from [Bal, if G is
a standard group interpretable in a superstable theory, then G/G° is solvable-by-
finite, and if additionally M(G/G°) = 1, then G/G? is abelian-by-finite.
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An analysis of a given class S of structures in this area frequently splits into two
natural parts. One part consists in recognizing the critical members of S while the
other is in showing that a given list of critical members is in some sense complete.
These kinds of problems tend to be interesting even in cases when elements of S do
not have much structure or interest in themselves as they often appear as crucial
combinatorial parts of other problems abundant in structure. A typical example of
such a situation is the appearance of the Hausdorff gap (a critical substructure of
the reduced power N /FIN; see [15]) at the crucial place in Woodin’s (consistency)
proof of Kaplansky’s conjecture about automatic continuity in Banach algebras
([34]). The purpose of this paper is to explain some of these problems and resulting
developments. Before we start describing specific Basis Problems some general
remarks are in order. Critical objects are almost always some canonical members of
S simple to describe and visualize. Sometimes, however, it may take a considerable
number of years (or decades) before an old object is identified as critical, or before
one finds a (simple!) definition of a new critical object. To show that a given list
Sp of critical objects is exhaustive one needs to relate a given structure from S to
one from the list Sp. If the structure in question is explicitly given one usually has
no problems in finding the corresponding member of Sy and the connecting map.
However, if the given structure from & is “generic”, while one may still be able to
identify the member of Sy to which it is related, one can only hope for a “generic”
connecting map. Whenever we use this approach to show that a given list Sp is in
some sense complete, the corresponding Theorem or Conjecture will be marked by
[PFA]. The readers interested in the metamathematical aspects of this approach
will find a satisfactory explanation in the recent monograph of Woodin [35] where
it is actually shown that there is a certain degree of uniqueness in this approach.

1 DISTANCE FUNCTIONS

It is not surprising that many critical objects in families of uncountable structures
live on the domain w; of all countable ordinals as “critical” very often means
“minimal” in some sense. It is rather interesting that many such critical objects
can be defined on the basis of a single transformation o — ¢, which for every
countable ordinal a picks a set ¢, of smaller ordinals of minimal possible order-
type subject to the requirement that o = sup(c,). This gives us a way to approach
higher ordinals from below in various recursive definitions. For example, given
two ordinals 5 > « one can step from 3 down towards o along the set cg. More
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precisely, one can define the step from 3 towards o as the minimal point £ of cg
such that £ > «. Let cg(ax), or simply B(«), denote this ordinal. Now one can
step further from B(a) towards « and get S(a)(a) (= (8(a))(e)), and so on. This
leads us to the notion of a minimal walk from G to «

8> B(e) > Bla)(@) >--- > Ba)(a) -+ (@) = a.

Let [B(c)] denote the weight of the step from [ towards «, the cardinality of the
set of all £ € cg such that that & < a. This gives us a way to define various
distances between o and [3:

L lafll = max{[B(c)], [[aB(@)l, [El < € € c5, & < a},
2. |laBl = max{[B(a)], [aB(@)[l1},
3. llaBllz = [laf(a)ll + 1.

Thus, |af|2 is the number of steps in the minimal walk from 8 towards o,
and |laB|; is the maximal weight of a single step in that walk. On the other
hand, ||af]| is a much finer distance function which has the following interesting
subadditivity properties for every triple v > 0 > «a of countable ordinals:

4. |lay|l < max{{las], |37},
5. |laB < max{[lev|, |87}

Moreover, we also have the following important coherence properties for every pair
B > «a of countable ordinals and every integer n (see §4 below where this is used):

6. ||€all = ||€8]] and ||€al|r = [|€B]|1 for all but finitely many £ < a.
7. ||€al| > n and ||£a|l1 > n for all but finitely many £ < «,

The minimal walk from § to a can be coded by the sequence pg(a, 3) of weights
of the corresponding steps, or more precisely:

8. po(a, B) = [B()]” po(a, B(e)).

This leads us to another distance function whose values are countable ordinals
rather than non-negative integers:

9. Ao(a, B) = min{€ : po(&, @) # po(§,6)}.

Let Tr(a, B) denote the places visited during the walk from f to « i.e., the set of
all ¢ < 8 for which pg(&, 3) is an initial segment of pg(c, 3). This leads us now to
the first basic square-bracket operation on ws:

10. [@f] = min(Tr(¢, B) \ @) where &€ = Ag(w, B).

Thus [af] is the member §; on the path Tr(a,, 8) = {B=00 > 1> ...> fBn = a}
furthest from [ subject t