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William Cook∗: On the Solution of Traveling Salesman Problems III 645

Michel X. Goemans: Semidefinite Programming and Combinatorial
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 657

Richard H. Byrd and Jorge Nocedal∗: Active Set and Interior
Methods for Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 667

Ranga Anbil, John J. Forrest and William R. Pulleyblank∗:
Column Generation and the Airline Crew Pairing Problem . . . . . . . . . III 677

Alexander Schrijver: Routing and Timetabling by Topological
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 687
Jan C. Willems: Open Dynamical Systems and their Control . . . . . . . III 697
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Vortices in Ginzburg-Landau Equations
Fabrice Bethuel

Abstract. GL models were first introduced by V.Ginzburg and
L.Landau around 1950 in order to describe superconductivity. Similar
models appeared soon after for various phenomena: Bose condensation,
superfluidity, non linear optics. A common property of these models is
the major role of topological defects, termed in our context vortices.

In a joint book with H.Brezis and F.Helein, we considered a simple model
situation, involving a bounded domain Ω in R2, and maps v from Ω to
R2. The Ginzburg-Landau functional, then writes

Eǫ(v) =
1

2

∫

Ω

|∇v|2 +
1

4ǫ2

∫

Ω

(1− |v|2)2

Here ǫ is a parameter describing some characteristic lenght. We are
interested in the study of stationary maps for that energy, when ǫ is
small (and in the limit ǫ goes to zero). For such map the potential forces
|v| to be close to 1 and v will be almost S1-valued. However at some
point |v| may have to vanish, introducing defects of topological nature,
the vortices. An important issue is then to determine the nature and
location of these vortices.

We will also discuss recent advances in more physical models like super-
conductivity, superfluidity, as well as for the dynamics: as previously the
emphasis is on the behavior of the vortices.

1991 Mathematics Subject Classification: 35J20, 35J55, 35Q99, 35Q55,
35B98
Keywords and Phrases: Ginzburg-Landau equations, superconductivity,
vorticity, evolution equations

1 Introduction

Ginzburg-Landau functionals were introduced around 1950 by V.Ginzburg and
L.Landau in order to model energy states of superconducting materials and their
phase transitions. Related functionals appeared soon therafter in various fields
as superfluidity, Bose condensation, nonlinear optics, fluid mechanics and parti-
cle physics. A common feature of these models is that they involve non convex
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12 Fabrice Bethuel

potentials, which allow the existence of topological defects for stationary states:
here we will mainly focus on two-dimensional situations, where theses defects are
often termed vortices. In recent years, very importants efforts have been devoted
to their study from a mathematical point of view: we will try here to survey parts
of these works.

We begin with a simple model, which was studied extensively, in particular
in a joint book with H.Brezis and F.Helein [BBH]. Consider a smooth bounded
domain in R2 (for instance a disk), and complex valued functions v on Ω ( i.e maps
v from Ω to R2). The simplest possible Ginzburg-Landau functional then takes
the form, for these functions

Eǫ(v) =
1

2

∫

Ω

|∇v|2 +
1

4ǫ2

∫

Ω

(1− |v|2)2 .

Here ǫ is a parameter describing some characteristic lenght and we will mainly be
interested in the case ǫ is small and in the limit ǫ tends to zero. The potential
V (v) = ǫ−2(1 − |v|2) forces |v|, for critical maps for Eǫ to be close to 1 and
therefore, stationnary (or low energy) maps will be almost S1-valued. However,
at some points |v| may have to vanish, introducing “defects”.

To have a well-posed mathematical problem, we prescribe next Dirichlet
boundary conditions: let g be a smooth map from ∂Ω to S1, and prescribe v
to be equal to g on ∂Ω. Therefore we introduce the Sobolev space

H1g (Ω;R2) = {v ∈ H1(Ω;R2), v = g on ∂Ω} .

It is then easy to verify that Eǫ is a C∞ functional on H1g , and that its critical
points verify the Ginzburg-Landau equation

∆v =
1

ǫ2
v(1− |v|2) on Ω, v = g on ∂Ω. (1)

Standard elliptic estimate show that, any solution to (1) is smooth, that

|v| ≤ 1 on Ω (maximum principle), (2)

|∇v| ≤ C

ǫ
on Ω for C, some constant depending on g, (3)

1

4ǫ2

∫

Ω

(1− |v|2)2 ≤ C , provided Ω is starshaped. (4)

Since Eǫ is strictly positive, one easily verifies that it achieves its infimum kǫ on
H1g and hence (1) possesses minimizing solutions (not necessarily unique). We will
denote uǫ these solutions.

2 Asymptotic analysis of minimisers

The winding number d of g ( as map from ∂Ω to S1) is crucial in this analysis,
forcing, when d 6= 0, vortices to appear.
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Vortices in Ginzburg-Landau Equations 13

2.1 The case d = 0.

In this case, there exists ψ from ∂Ω to R such that g = exp iψ. Next let ϕ∗ be the
solution of ∆ϕ∗ = 0 on Ω, ϕ∗ = ψ on ∂Ω and consider u∗ = exp iϕ∗. Clearly u∗ is
S1-valued, so that

Eǫ(u∗) =
1

2

∫

Ω

|∇u∗|2 =
1

2

∫

Ω

|∇ϕ∗|2

is bounded independently on ǫ. Hence kǫ remains bounded as ǫ → 0. It is that
easy to show that uǫ → u∗ in H1. Finally in [BBH2] we carried out more refined
asymptotics, in particular

‖u∗ − u‖L∞ ≤ Cǫ2.

2.2 The case d 6= 0.

We may assume, for instance d > 0. In this case there are no maps in H1g which
are S1-valued (the fact that there are no continuous S1-valued maps reduces
to standard degree theory). In particular kǫ −→ +∞, and we are facing a
singular limit. Since uǫ is smooth, the topology of the boundary data forces uǫ
to vanish somewhere in Ω. The points where uǫ vanishes play an important role:
the Dirichlet energy will concentrate in there neighborhood, accounting for the
divergence of kǫ. In [BBH], we established

Theorem 1 i) There exists a constant C > 0 depending only on g such that

|kǫ − πd| log ǫ|| ≤ C , ∀ 0 < ǫ < 1 . (5)

ii) The map uǫ has exactly d zeroes, provided ǫ is sufficiently small (these result
relies on a work by P.Baumann, N.Carlson and D.Philips [BCP] ) .
iii) There exists exactly d points a1, a2, · · · , ad in Ω such that up to a subsequence
, ǫn → 0,

uǫn −→ u∗, on any compact subset of Ω\
d⋃

i=1

{ai} ,

where

u∗ =
d∏

i=1

z − ai
|z − ai|

exp iϕ (ϕ being a harmonic function).

In particular, the winding number around each singularity is +1.
iv) The configuration ai is not arbitrary, but minimizes on Ωd\∆ (where ∆
denotes the diagonal) a renormalized energy which has the form

Wg(a1, · · · , ad) = π
∑

i6=j
log |ai − aj |+ boundary conditions. (6)

v) The energy has the expansion, as ǫ→ 0

kǫ = πd| log ǫ|+Wg(a1, · · · , ad) + dγ0 + o(1)

where γ0 is some absolute constant.
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14 Fabrice Bethuel

Remarks 1) Theorem 1 was established in [BBH] under the additional as-
sumption that Ω is starshaped. This assumption was removed by M.Struwe [Str]
(see also Del Pino-Felmer [DF]).
2) Similar results have been obtained by André and Shafrir, when the potential
depends also on x, [AS], in [BR] for the abelian Higgs models, and in [HJS] for a
self-dual model.
3) Hardt and Lin have studied in [HL] a different singular limit problem, with the
same renormalized energy.
4) A three dimensional analog was studied by Rivière in [R].

3 Asymptotics for non minimizing solution

A similar analysis can be carried out for solution which are not necessarily mini-
mizing. Assume Ω is starshaped. Then, we have, [BBH], for vǫ solution to (1):

Theorem 2 i) There exists some constant C > 0, such that, for 0 < ǫ < 1

E(vǫ) ≤ C(| log ǫ|+ 1) .

ii) there exists a subsequence ǫn, l points a1, · · · , al and l integer d1, · · · , dl such
that

vǫn −→ v∗ =
l∏

i=1

(
z − ai
|z − ai|

)di
exp iϕ, where ϕ is harmonic.

iii) The configuration (ai, di) is critical for the renormalized energy.

Note that an important difference between minimizing and non-minimizing solu-
tions is that, for the later one, the multiplicity of vortices has not to be +1, and
the vortices of opposite degree might coexist.

4 The existence problem

In view of Theorem 2, a natural question is to determine whether non-minimizing
solutions do really exist, and if one is able to prescribe the multiplicity of the
vortices. We begin with an elementary example.

4.1 An example:

Take Ω = D2 and g(θ) = exp idθ (here (r, θ) denote polar coordinate). In view of
the symmetries, one can find a solution v(r, θ) of the form vd(r, θ) = fd(r) exp idθ,
where fd verifies the ODE

r2f“ + rf
′ − d2f +

1

ǫ2
r2f(1− f2) = 0 , f(0) = 0 , f(1) = 1 .

Computing the energy of these solutions, one sees that they are of order πd2| log ǫ|:
hence, if |d| ≥ 2, and ǫ is sufficiently small they are non minimizing. [ In the case
d = 1, v is minimizing thanks to results by P. Mironescu [Mi] and Pacard and
Rivière [PaR] ].
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Vortices in Ginzburg-Landau Equations 15

Actually, for large d, there are much more solutions. Indeed, the Morse Index
of the solution vd is of order |d|2, for large d ( see [AB1], [BeH]). Therefore, using
symmetries and the index theory of Faddell and Rabinowitz [FR] (a Lyusternik-
Schnirelmann theory in the presence of compact group actions), one obtains the
existence of at least µ0|d|2 orbits of solutions, for large d, where µ0 is some positive
constant (the orbit of a solution v is the set {exp(−idα)v(exp iαz), α ∈ [0, 2π[ } ).

4.2 Variational methods

A complete Morse theory for (1) has yet to be constructed. In view of (6), one
might expect that the level sets for Eǫ are related to the level sets of Wg on
Σ = Ωd \∆, and hence that the topologie of Σ might yield solution for (1). This
idea was introduced in [AB1], and then extended by Zhou and Zhou [ZZ]: they
proved that (1) has at least |d|+ 1 distinct solutions, for sufficiently small ǫ. They
are using crucially the fact that the cuplenght of Σ is (at least), |d| − 1, a result
due to V. Arnold [Ar].

We conjecture actually that the number of solutions is much higher. In order
to find solutions with vortices of higher multiplicity, one has also to take into
account vortices of opposite charges and also the fact that they might annihilate.
For that reason, Ωd \∆ is no longer the good model, and one has to turn to spaces
as studied by D.Mc. Duff [McD].

Remark: Another construction of (stable) solutions has been introduced in
[Li1].

5 Superconductivity

We turn now to the original model for superconductivity, as introduced by
Ginzburg and Landau. Here Ω represents a superconducting sample, hex denotes
the external applied magnetic field. The functional to minimize is now

Fǫ(u,A) =
1

2

∫

Ω

|∇Au|2 + |dA− hex|2 +
1

4ǫ2

∫

Ω

(1− |u|2)2 .

Here A = A1dx1 + A2dx2 is a connection accounting for electromagnetic effects,
and u represents a condensated wave function for Cooper pairs of electrons, the
carrier of superconductivity. In the above renormalized units, |u|2 represents the
density of Cooper pairs, so that if |u| ≃ 0 the sample is in the normal state, whereas
if |u| ≃ 1 the material is in the superconducting state. We will see that for certain
applied fields hex, the two states may coexist in the same sample (phase transition
of second order). This model leads therefore to many interesting mathematical
questions, often related to physical experiments.

5.1 Non simply connected domains

In this case, permanent currents have been observed, even when hex = 0. Jimbo,
Morita and Zhai [JMZ], Rubinstein and Sternberg [RS] and Almeida [Al1] have
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16 Fabrice Bethuel

related this fact to the existence of configurations minimizing the energy in a
topological sector. The threshold energy between different sectors is established
in [Al2] and corresponds precisely to the energy of a vortex.

When the external field is non zero interesting phenomena occur (the Little-
Parks effect), which have been studied in particular by Berger and Rubinstein
([BgR]).

5.2 Critical fields

Suppose ǫ is small, and let Ω be an arbitrary domain. For hex = 0, the minimizing
solution is clearly (up to a gauge transformation) u = 1, A = 0. It is observed
that, until hex reaches a critical field Hc1 , the minimizing solution has no vortex
(called a Meissner solution). For hex > Hc1 , vortices appear, and their number
increases with hex. Finally, for hex > Hc2 , another critical field, superconductivity
dissapears, and the minimizing solution is u = 0.

Stable solutions near Hc1 have been thoroughly investigated by S. Serfaty [S1,
S2]. In particular the location of the vortices is determined, and it is proved that
many branches of solutions corresponding to various numbers of vortices, coexist
at the same time. For larger fields, homogenized equations for the vortex distribu-
tion have been proposed and studied (see for instance Chapman, Rubinstein and
Schatzman [CRS]).

Finally very precise estimates have been obtained in the one dimensional case
by C. Bolley and B. Helffer (see[BoH]), for different critical fields and values of ǫ.

6 Evolution equations

Various evolution equations corresponding to the Ginzburg-Landau system have
been studied. For the heat-flow equation related to (1), Lin [Li2] has shown that
the vortices evolve according to the gradient flow of the renormalised energy (see
also [JS]), in a suitable renormalized unit of time. The Schrödinger equation
(termed also Gross-Pitaevskii equation)

i
∂u

∂t
= ∆u+ u(1− |u|2) (7)

is of special importance, since it appears as a model for superfluids, Bose condensa-
tion, nonlinear optics. It is also related to fluid mechanics, because if u = ρ exp iϕ,
then ∇ϕ can be interpretated as the velocity in a compressible Euler equation, ρ2

being the density (with a suitable choice for the pressure).
The dynamics of vortices (on bounded domains) was derived by Colliander

and Jerrard [CJ], as the simplectic gradient for the renormalized energy (see also
[LX]).

When the domain is R2, Ovchinnikov and Sigal [OS1] have shown that when
the initial data has two vortices of the same sign (and hence infinite GL en-
ergy), radiation takes place and the vortices repulse. The existence and behavior
of travelling waves solutions to (7) has been widely considered in the physical
litterature (see for instance Jones, Putterman and Roberts [JPR], Pismen and
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Vortices in Ginzburg-Landau Equations 17

Nepomnyashchy [PN], Josserand and Pomeau [P]). This solutions have the forme
u(x, t) = U(x1 − ct , x2) where U is a function on R2. For 0 < c2 < 2, non con-
stant finite energy solutions exists (rigourous proofs are provided in [BS1], [BS2]).
When c is small, these solution possess two vortices with degrees +1 and −1, the
distance separating the vortices is proportional to the inverse of the speed c. The
limiting speed

√
2 represents the speed of sound (see [OS2], also for the role of

Cherenkov radiation). Stability of these travelling waves has been studied in the
physical literature: mathematical proofs are still to be provided as well as for the
three dimensional case (vortex rings).
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Phenomena of Compensation and Estimatesfor Partial Differential Equations
Frédéric Hélein

Abstract. Quantities like the Jacobian determinant of a mapping play
an important role in several partial differential equations in Physics and
Geometry. The algebraic structure of such nonlinearities allow to improve
slightly the integrability or the regularity of these quantities, sometimes
in a crucial way. Focused on the instance of ∂a

∂x
∂b
∂y − ∂a

∂y
∂b
∂x , where a and

b ∈ H1(R2), we review some results obtained on that quantity for 30
years and applications to partial differential equations arising in Geome-
try, in particular concerning the conformal parametrisations of constant
mean curvature surfaces and the harmonic mappingss between Rieman-
nian manifolds.

1991 Mathematics Subject Classification: 35, 43, 49, 53
Keywords and Phrases: Compensation phenomena, Harmonic maps

For 30 years, many remarkable properties concerning some nonlinear quan-
tities like Jacobian determinants of mappings or the scalar product of a diver-
gencefree vector field by the gradient of a function has been observed and used.
One instance is the continuity with respect to the weak convergence in L2. The
basic example is the following : if ak ⇀ a weakly and bk ⇀ b weakly in H1(Rm),
then {ak, bk}αβ := ∂ak

∂xα
∂bk
∂xβ
− ∂ak

∂xβ
∂bk
∂xα converges to {a, b}αβ in the distribution

sense. The discovery and the study of such properties is the subject of the theory
of compensated compactness of F. Murat and L. Tartar [Mu], which became a
powerful tool in the theory of homogeneisation and the study of quasiconvex
functionals. These technics has been recently enlarged, after R. Di Perna, by P.
Gérard [Gé] and L. Tartar [Ta2] independentely in a microlocal context.

We want to tell here a story parallel to compensated compactness’ one.

1 H-surfaces

It began with the study of surfaces of constant mean curvature H in the Eu-
clidean space R3. Let D2 be the unit disk in the plane R2. A local conformal
parametrisation X ∈ H1(D2,R3) satisfies

∆X = 2H
∂X

∂x
× ∂X

∂y
weakly in H1(D2,R3), (1)
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where V ×W is the standard vectorial product in R3. H. Wente proved that each
weak solution of (1) is smooth (C∞) [W1]. The crucial step of his proof this to
prove that a solution of (1) is continuous. It relies on the particular structure of
the right-hand side of (1). For instance, the first component :

∆X1 = 2H

(
∂X2

∂x

∂X3

∂y
− ∂X2

∂y

∂X3

∂x

)

is a Jacobian determinant. Later in the the beginning of the eighties, in papers
from H. Wente [W2] and H. Brezis, J.-M. Coron [BrC], it became clear that the
main point in Wente’s proof relies on the following. Let a, b ∈ H1(D2,R) and
φ ∈ L1(D2,R) be a weak solution of




−∆φ = {a, b} :=

∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
on D2

φ = 0 on ∂D2.
(2)

Then φ is actually in H1(D2) ∩ C0(D2) and we have the following : there exist
some positive constants C∞ and C2 such that

||φ||L∞ ≤ C∞||da||L2 ||db||L2 , (3)

||dφ||L2 ≤ C2||da||L2 ||db||L2 . (4)

Both estimations are not true in general if we replace the right hand side of (2)
by an arbitrary bilinear function of a and b : we would then only obtain that
φ ∈ W 1,p ∩ Lq with 1 ≤ p < 2 and 1 ≤ q < ∞. Here the algebraic structure of
{a, b} is very important and allows us to do many manipulations such as

{a, b} =
∂

∂x

(
a
∂b

∂y

)
− ∂

∂y

(
a
∂b

∂x

)

- the basic trick in the proof.

Remark Estimates (3) and (4) lead to other inequalities, similar to the isoperi-
metric inequality in R3, see [BrC].

2 Estimates in refined spaces

In the beginning of the eighties, L. Tartar observed other nice properties on {a, b}
in the framework of fluid dynamics [Ta1]. And in 1989, S. Müller showed that if
u is any function in W 1,m(Rm,Rm) such that det(du) is nonnegative a.e. , then,
det(du)log(1 + det(du)) ∈ L1(Rm), which improves slightly the naive observation
that det(du) ∈ L1(Rm) [Mü]. We say that det(du) is in L1logL1(Rm). The proof
of that fact relies also on the use of the isoperimetric inequality in Rm. Notice
that if m = 2 and u = (a, b), then det(du) is just {a, b}.

A few time later, R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved
actually that if u is any function in W 1,m(Rm,Rm), then det(du) belongs to the
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generalized Hardy space H1(Rm) [CLMS]. It includes S. Müller’s result, for it
was known that any nonnegative function in H1(Rm) is in L1logL1(Rm). These
authors obtained similar results: for instance, if B ∈ L2(Rm,Rm) is a divergence
free vector field and V ∈ H1(Rm,R), then

∇V.B ∈ H1(Rm), (5)

the exact analog of the “div-curl lemma” of F. Murat and L. Tartar [Mu].

To make sense it is worth to say what is the generalized Hardy space (see
[St]). Several definition coexists. One is the following. Let f ∈ L1(Rm), define

f⋆(x) := sup
t>0

∣∣∣∣
∫

Rm

f(x− y)φ(
y

t
)
dy

tm

∣∣∣∣ ,

where φ ∈ C∞c (Rm) is a function such that
∫
Rm

fφ = 1. Then

H1(Rm) := {f ∈ L1(Rm)/f⋆ ∈ L1(Rm)}.
We endow this space with the norm

||f ||H1 = ||f ||L1 + ||f⋆||L1 .

Notice that, through as theorem of C. Fefferman and E. Stein, BMO(Rm) is
the dual space of H1(Rm) ([F], [FSt]). The main property of H1(Rm) is that there
exists many linear operators (like the Riesz transform) which are continuous on
Lp spaces for 1 < p < ∞, but not on L1. But these operators are continuous on
H1(Rm).

3 Applications to partial differential equations in geometry

Many applications of these properties have been obtained in the theory of har-
monic maps.

Harmonic maps into a sphere

A first example is my result on the regularity of weakly harmonic maps between
a two dimensional domain Ω and the two-sphere S2 ⊂ R3 [H1]. These are maps
u ∈ H1(Ω, S2) := {v ∈ H1(Ω,R3)/|v| = 1 a.e. } which are weak solutions of

∆u+ u|du|2 = 0, weakly in H1(Ω,R3). (6)

Here, no Jacobian determinant appears at first glance and the knowledge that
u|du|2 ∈ L1 is unuseful. The point is to use another equivalent form of the equation
which is the conservation law
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∂

∂x

(
u× ∂u

∂x

)
+

∂

∂y

(
u× ∂u

∂y

)
= 0, weakly in H1(Ω,R3). (7)

This relation was already observed and used independentely by several authors
([Che], [Sh], [KRS]). Assume without loss of generality that Ω is simply connected.
We can “integrate” this equation and we deduce that ∃B ∈ H1(Ω,R3) such that





∂B

∂x
= u× ∂u

∂y
∂B

∂y
= −u× ∂u

∂x
.

(8)

Now, using the fact that |u|2 = 1 a.e., which implies that 〈u, ∂u∂x 〉 = 〈u, ∂u∂y 〉 = 0,

we can rewrite (6) as

−∆ui = 〈ui ∂u
∂x
,
∂u

∂x
〉+ 〈ui ∂u

∂y
,
∂u

∂y
〉

= 〈ui ∂u
∂x
− u∂u

i

∂x
,
∂u

∂x
〉+ 〈ui ∂u

∂y
− u∂u

i

∂y
,
∂u

∂y
〉.

We recognize in the last expression components of u× ∂u
∂x and u× ∂u

∂y . Thus, using

(8),

−∆ui = −{uj, Bk} − {Bj , uk}, (9)

for any (i, j, k) which is a circular permutation of (1, 2, 3). Now equation (9) is
similar to (1) and allows us to prove continuity of u using Wente’s estimate. The
smoothness of u follows from the classical elliptic theory.

This result generalizes in a straightforward way if we replace the target man-
ifold S2 by a sphere of arbitrary dimension or a homogeneous manifold, once one
realized that the conservation law (7) is a consequence of the symmetries of S2,
using Noether’s theorem (see [H2]).

This result has also been extended to to the case where the domain Ω is also
of higher dimension by L. C. Evans [E]. He proved that, if Ω is an open subset of
Rm is a weakly stationary map into a sphere, then u is smooth in Ω \ S, where
S is a closed subset whose Hausdorff measure of dimension m − 2 vanishes - a
weakly stationary map is a weakly harmonic map satisfying the extra condition
that

∫
Ω |d(u ◦ φt)|2 =

∫
Ω |du|2 + o(t), for all smooth family of diffeomorphisms φt

acting on Ω, such that φ0 is the identity mapping.
Evans’ proof relies on the same arguments, plus the following: the extra

condition leads to a monotonicity formula which provides an estimate in BMO.
On the other hand, equations like (9) gives estimates in Hardy spaces, through
the results of [CLMS]. These estimates complete exactly because of the duality
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between H1 and BMO.

Remark It is possible to avoid to use the difficult duality result about H1 and
BMO by direct estimates obtained by S. Chanillo [Cha]. Even more recently,
more direct proofs without using that duality has been constructed by P. Hajlasz,
P. Strzelecki [HS] and A. Chang, L. Wang, P. Yang [CWY].

Harmonic maps into arbitrary manifolds

It has been possible to extend the previous results for weakly harmonic maps into
arbitrary manifolds N . The difficulty is that in general N is not symmetric and
we cannot apply Noether’s theorem to construct conservation laws. In dimension
2, I did prove that weakly harmonic maps on a surface, into an arbitrary smooth
compact manifold without boundary is smooth, generalizing the preceeding results
for spheres [H3]. After, F. Bethuel generalized Evans’ result to weakly stationary
maps into arbitrary manifolds [Be].

Let N be a smooth compact Riemannian manifold without boundary. Thanks
to the Nash-Moser theorem, we can assume that N is isometrically embedded in
RN . We define H1(Ω,N ) to be the set of functions u in H1(Ω,RN ) such that
u ∈ N a.e. Then weakly harmonic maps u ∈ H1(Ω,N ) are the solutions in the
distribution sense of the system

∆u+A(u)(du, du) = 0, (10)

where A(u)(., .) is the second fundamental form of the embedding ofN in RN . It is
a bilinear form on the tangent space to N at u, with values in the normal subspace
to N at u. Such maps are critical points of the restriction of the functional

E(u) =

∫

Ω

|du|2dx

on H1(Ω,N ). In proving regularity results, the point is to exploit the Euler-
Lagrange equation with suitable test-functions, which in some sense are able to
measure, to calibrate the possible wild behaviour of a given weak solution. One
instance of wild behaviour we have in mind is like the map (x, y) 7−→ (cos(log(r)),

sin(log(r)),0), from R2 to S2, where r =
√
x2 + y2 : it is harmonic on R2 \{0} and

its image turns along a great circle faster and faster as (x, y) goes to 0. One would
like to prove that such a singularity (or something which looks asymptotically
like that) does not exists (it actually has an infinite energy). So how to measure
such a wild winding ? If N is S2, we just take the test function u × φ, where
φ ∈ H1∩L∞(Ω,R3) and we recover the trick given by Noether’s theorem in writing
the equation as the conservation law (7). In other cases, we need to construct test
functions doing the same job, namely calibrating the possible winding of u. This
obtained by using an orthonormal frame on N , moving along u in the “more
parallel way”. This last requirement means that, although it is not possible in
general to construct a covariantly parallel moving frame, it is possible to minimize
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the covariant derivative of that moving frame along u. The good news are that
the obstruction for constructing a covariantly parallel moving frame along u is the
curvature of N or more precisely the pull-back of the curvature two-form by u.
But this pull-back is just a combination of two-order minors of the kind {a, b}, in
the Hardy space! This is done by the following construction.

We start with a given smooth orthonormal moving frame ẽ(m) =
(ẽ1, ..., ẽn)(m) defined globally on N (m being here a point on N ), a smooth sec-
tion of the bundle F of orthonormal tangent frames over N . In many cases, such a
section does not exists globally, because of topological obstructions. Nevertheless,
it is possible to reduce ourself to such a situation, through some geometrical
argument. Then, for any map u ∈ H1(Ω,N ), we consider the composed moving
frame ẽ ◦ u, a section of the pull-back bundle u⋆F , together with all the gauge
transformations of ẽ ◦ u, i.e. for all R ∈ H1(Ω, SO(n)), we consider the new frame
eR(z) = ẽ ◦ u(z).R(z) for a.e. z ∈ Ω, or

eRa (z) =
n∑

b=1

ẽb[u(z)].Rba(z).

We choose among all eR’s those who minimize the functional

F (eR) :=

∫

Ω

n∑

a,b=1

[〈∂e
R
a

∂x
, eRb 〉2 + 〈∂e

R
a

∂y
, eRb 〉2]dxdy.

We call a Coulomb moving frame such a frame. It satisfies the Euler-Lagrange
equation

∂

∂x
〈∂e

R
a

∂x
, eRb 〉+

∂

∂y
〈∂e

R
a

∂y
, eRb 〉 = 0, (11)

another conservation law. This equation can be used as (7): some manipulations
shows that ∃Aab ∈ H1(Ω) such that





∂Aba
∂x

= 〈∂e
R
a

∂y
, eRb 〉

∂Aba
∂y

= −〈∂e
R
a

∂x
, eRb 〉,

and that ∆Aba is a sum of Jacobian determinants of the type {a, b}. Namely ∆Aba
times the volume form on Ω is the pull-back by u of a closed two-form on N related
to the curvature form. This improves slightly the regularity of eR. In particular,

we deduce that the L2 connection coefficients 〈∂e
R
a

∂x , e
R
b 〉 and 〈∂e

R
a

∂y , e
R
b 〉 are in fact

in the Lorentz space L(2,1), a slight refinement of the usual L2 space (actually it is
the dual space to L(2,∞), known as weak L2) (see [StW], [Hu], [BL]). Notice that
the above construction did not use at all the hypothesis that u is weakly harmonic.

Now, if we assume that u is weakly harmonic, we will work with the pro-
jection of equation (10) on the Coulomb moving frame. We hence get a first
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order, Cauchy-Riemann system ∂αa

∂z =
∑n
b=1 ω

a
bα

b, where the αa’s are complex
numbers representing the derivatives of u and the ωab ’s are also complex numbers
representing connection coefficients. The preliminary work on the Coulomb
moving frame ensures us that the ωab ’s are in L(2,1), instead of L2. This is enough
to prove that u is locally Lipschitz and then that u is smooth.

The regularity theorem of F. Bethuel combines in a delicate way these
arguments and Evans’ ones. For more details on all of that, see [Be] and [H4].

Conformal parametrisations of surfaces

In her thesis, T. Toro, proved the surprising (and difficult) result that the graph of
a map φ in H2(Ω,R), where Ω is an open subset of R2, is a Lipschitz submanifold,
i.e. that there exists local bilipschitz parametrisations of the graph of φ. Actually
she proved the more general result that this is true for any surface Σ whose mean
curvature is a L2 function on Σ [Tor]. Then, a simpler approach has been found
by S. Müller and V. Švérak [MüŠ]. They proved that if Σ is a surface whose mean
curvature function belongs to L2(Σ), then a conformal parametrisation of Σ is a
bilipschitz function. Their result follows from the observation that, for a local
conformal parametrisation X : D2 −→ Σ, if we denote (e1, e2) an orthonormal
frame such that dX = ef(e1dx+ e2dy), then

∆f = u⋆Ω, (12)

where Ω is the curvature two-form on Σ. Thus ∆f looks like a Jacobian determi-
nant {a, b} and the Wente estimate, or the Coifman, Lions, Meyer, Semmes results
implies boundedness of f in L∞, meaning that X is Lipschitz.

4 The best constants

Going back to Wente’s result on the disk D2, it is natural to generalize this in-
equality to arbitrary two-dimensional domain Ω in the plane, or on a Riemannian
surface (M, g) and to look for the best constants in (3) and (4). If

−∆gφ = {a, b} on M, (13)

we call

C∞(M, g) = inf{osc(φ)/φ is a solution of (13),

where (a, b) ∈ H1(M,R2), ||da||2L2 + ||db||2L2 = 2},

C2(M, g) = inf{||dφ||2L2/φ is a solution of (13),

where (a, b) ∈ H1(M,R2), ||da||2L2 + ||db||2L2 = 2}.
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A priori, C∞(M, g) and C2(M, g) should depend on M and on the metric g.
A first observation is that (13) is invariant under conformal transformations of
(M, g). Thus C∞(M, g) and C2(M, g) depend only on the conformal structure of
(M, g). Moreover, F. Bethuel and J.-M. Ghidaglia proved that these constants
were bounded by a universal one [BeG]

Recently the precise evaluation of these constants were completed by S.
Baraket and P. Topping for C∞(M, g) [Ba], [Top] and by Y. Ge for C2(M, g)
[Ge]. We have that

• C∞(M, g) = 1
2π , for all (M, g).

• C2(M, g) =
√

3
16π if ∂M is non empty and C2(M, g) =

√
3
32π if ∂M is

empty.

Both result relies on the optimal isoperimetric inequality (on the plane for C∞(Ω)
and in R3 for C2(Ω)).

Back to the beginning

The search for the optimal constant C2(M, g) leads to a variational prob-
lem very similar to the search for the optimal constant in Sobolev embedding of

H1(Rm) in L
2m
m−2 (Rm). First this problem is invariant under conformal transfor-

mations. Moreover critical points of the functional ||dφ||2L2 under the constraint
that ||da||2L2 + ||db||2L2 = 2, satisfies the following Euler-Lagrange equation: there
exists a Lagrange multiplier λ ∈ (0,∞) such that

u =



√
λa√
λb
λφ




is a weak solution of

∆u = 2
∂u

∂x
× ∂u

∂y
,

the equation of conformal parametrisations of constant mean curvature surfaces
(see [H4], [Ge]). Hence we are led to another variational formulation of that
geometrical problem. Y. Ge obtained several existence results on this problem, by
constructing minimizing and non-minimizing solutions [Ge].
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[H3 ] F. Hélein, Régularité des applications faiblement harmoniques entre une
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Viscosity Solutionsof Elliptic Partial Differential Equations
Robert R. Jensen

Abstract. In my talk and its associated paper I shall discuss some re-
cent results connected with the uniqueness of viscosity solutions of non-
linear elliptic and parabolic partial differential equations. By now, most
researchers in partial differential equations are familiar with the definition
of viscosity solution, introduced by M. G. Crandall and P. L. Lions in their
seminal paper, “Condition d’unicité pour les solutions generalisées des
équations de Hamilton-Jacobi du premier order,” C. R. Acad. Sci. Paris
292 (1981), 183–186. Initially, the application of this definition was
restricted to nonlinear first order partial differential equations—i.e.,
Hamilton-Jacobi-Bellman equations—and it was shown that viscosity so-
lutions satisfy a maximum principle, implying uniqueness. In 1988 an
extended definition of viscosity solution was applied to second order par-
tial differential equations, establishing a maximum principle for these
solutions and a corresponding uniqueness result. In the following years
numerous researchers obtained maximum principles for viscosity solutions
under weaker and weaker hypotheses. However, in all of these papers it
was necessary to assume some minimal modulus of spatial continuity in
the nonlinear operator, depending on the regularity of the solution, and
to assume either uniform ellipticity or strong monotonicity in the case
of elliptic operators. The results I shall discuss are related to attempts
to weaken these assumptions on the partial differential operators—e.g.,
operators with only measurable spatial regularity, and operators with
degenerate ellipticity.

1991 Mathematics Subject Classification: 35, 49, 60
Keywords and Phrases: nonlinear, elliptic, partial differential equations,
viscosity solution, stochastic process

1 Viscosity solutions: a brief history

Although the history of viscosity solutions begins in 1981/83, depending on your
individual bias, an important precursor is found in the work of S. N. Kruzkov.
In fact, it’s noted in [12] that, “analogies with S. N. Krukov’s theory of scalar
conservation laws ([29]) provided guidance for the notion [of viscosity solutions]
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and its presentation.” In this context one should also mention L. C. Evans [16],
which developed techniques that serendipitously anticipated the introduction of
viscosity solutions.

M. G. Crandall and P. L. Lions announced the discovery of viscosity solu-
tions in 1981 ([10]). Complete proofs and details were presented shortly after this
in their landmark paper [11]. However, the definition of viscosity solution used
in this paper bears little resemblance to any of those we now employ. It is in
M. G. Crandall, L. C. Evans and P. L. Lions [9] where we first see a systematic
use of one of the now familiar definitions of viscosity solutions. P. L. Lions was
quick to grasp the potential in extending the notion of viscosity solutions to more
general PDEs—[10] and [11] only deal with first order Hamilton-Jacobi-Bellman
equations. His papers, [30] and [31], are the first attempts to extend the first order
results of [11] to second order equations. Using stochastic control theory, he was
able to prove a maximum principle for viscosity solutions of convex (or concave)
nonlinear second order Hamilton-Jacobi equations.

It was five years later that methods were developed which extended the theory
of viscosity solutions to fully nonlinear second order elliptic PDEs. In the first of
these papers R. Jensen [24] proved a maximum principle for Lipschitz viscosity
solutions to the fully nonlinear second order elliptic PDE on a bounded domain
Ω ⊂ Rn

F (u,Du,D2u) = 0 in Ω (1)

Next, in a short note R. Jensen, P. .L. Lions, and P. E. Souganidis [28] removed
the hypothesis of Lipschitz continuity from the viscosity solution. At about the
same time, using the ideas in [24], N. Trudinger proved C1,α regularity for viscosity
solutions of uniformly elliptic problems ([35]), and a maximum principle for such
solutions ([36]). Then H. Ishii [20] made an important contribution by removing
the assumption of spatial independence in the PDE. I.e., the maximum principle
could now be applied to viscosity solutions of

F (x, u,Du,D2u) = 0 in Ω (2)

Finally, in concurrently developed papers H. Ishii and P. L. Lions [22], and
R. Jensen [25] significantly extended [20] giving very general (and in [25], a rather
complicated technical) conditions under which a maximum principle holds for vis-
cosity solutions of (2). In particular, suppose the functions F (x, t, p,M) appearing
in (2) is given by the formula

F (x, t, p,M) = min
β∈B

{
max
γ∈C

{
aβγil (x)aβγjl (x)mij + bβγi (x)pi − cβγ(x)t − hβγ(x)

}}

(3)
where M = (mij), p = (p1, . . . , pn) and summation is implicit over the indices
i, j, and l. Then we have from [25]

Corollary 5.11. Let F be the function defined by (3) and assume
{(
aβγrs (x)

)}

are uniformly Lipschitz continuous in Ω,
{(
bβγi (x)

)}
are uniformly Lipschitz con-

tinuous in Ω, and
{(
cβγ(x)

)}
and

{(
hβγ(x)

)}
are equicontinuous in Ω. If u is a
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viscosity subsolution of (2), v is a viscosity supersolution of (2), and

F (x, t, p,M)−F (x, s, q,N) ≤ max {K1trace(M −N),K2(s− t)}+K3|p− q| (4)

then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (5)

We also have two other corollaries from [25] which demonstrate the link between
the spatial dependence of F and the regularity of the viscosity solution.

Corollary 5.14. Let F be the function defined by (3) and assume
{(
aβγrs (x)

)}

are uniformly Hölder continuous with exponent γ(> 1/2) in Ω,
{(
bβγi (x)

)}
are

uniformly Hölder continuous with exponent 2γ − 1 in Ω, and
{(
cβγ(x)

)}
and{(

hβγ(x)
)}
are equicontinuous in Ω. If u is a viscosity subsolution of (2), v is

a viscosity supersolution of (2), either u or v is Hölder continuous with exponent
α > 2− 2γ, and (4) holds, then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (6)

Corollary 5.16. Let F be the function defined by (3) and assume
{(
aβγrs (x)

)}

are uniformly Hölder continuous with exponent γ(≤ 1/2) in Ω,
{(
bβγi (x)

)}
are

equicontinuous in Ω, and
{(
cβγ(x)

)}
and

{(
hβγ(x)

)}
are also equicontinuous in

Ω. If u is a viscosity subsolution of (2), v is a viscosity supersolution of (2), either
u or v is in C1,α(Ω) for some α ≥ 1−2γ

1−γ , and (4) holds, then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (7)

While the preceding results are not sharp, they do indicate how the assumption
of greater regularity of the viscosity solution allows us to reduce the regularity in
the spatial dependence of F necessary to prove a maximum principle. Specifically,
in conjunction with regularity results about the gradient (e.g., [35]), one obtains
a fairly general maximum principle (compare [36]).

It was also during this period that L. Caffarelli’s famous paper [3] on in-
terior a priori estimates for viscosity solutions appeared. It was in this paper
that Caffarelli extended the classical W 2,p, C1,α, andC2,α interior estimates, us-
ing the Aleksandov-Bakelman-Pucci maximum principle, the Calderon-Zygmund
decomposition lemma, and an extremely clever application of the Krylov-Safonov
Harnack inequality. By eschewing the traditional approach used for linear PDEs—
singular integral operator theory—he obtains results which are powerful enough
to apply to fully nonlinear uniformly elliptic operators.
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2 Viscosity solutions: recent results

The two most exciting (or depressing, depending on your point of view) recent
results are a pair of counterexamples due to N. Nadirashvili. The first ([32]), is
an example of nonuniqueness for linear uniformly elliptic PDEs with bounded,
measurable coefficients. I.e., consider the equation

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
= f(x) in Ω ⊂ Rn

u|∂Ω(x) = g(x)





(8)

If (aij(x)) are bounded, measurable and uniformly elliptic, f is bounded and
measurable, and g is bounded and continuous we may define a solution of (8)
as a limit of solutions of

n∑

i,j=1

akij(x)
∂2uk

∂xi∂xj
= f(x) in Ω ⊂ Rn

uk|∂Ω(x) = g(x)





(9)

where
{(
akij(x)

)}
are smooth and converge almost everywhere to (aij(x)). The se-

quence
{
uk
}

is equicontinuous due to Krylov’s Hölder continuity estimates. Hence,
the sequence has accumulation points. We may view these accumulation points as
“good” solutions of (8). If there is only one accumulation point no matter what
approximating sequence we use, then (in some sense) the “good” solution of (8) is
unique.

Under certain conditions it is possible to prove that “good” solutions of (8) are
unique. For example, M. C. Cerutti, L. Escauriaza, and E. B. Fabes [6] prove this
if the set of discontinuities of (aij(x)) is countable with at most one accumulation
point. M. Safonov [34] proves uniqueness if the set of discontinuities of (aij(x)) has
sufficiently small Hausdorff dimension. In this connection R. Jensen [27] defines a
measure theoretic notion of viscosity solution and proves that viscosity solutions
and “good” solutions are equivalent. A continuous function u ∈ C(Ω) is a viscosity
subsolution of (8) if for any φ ∈ C2(Ω) such that (u−φ)(x) ≥ (u−φ)(y) for all y ∈
Ω and for all η > 0

lim sup
ε→0

1

εn

∫

B(x,ε)




n∑

i,j=1

aij(y)

(
∂2φ

∂xi∂xj
(x) + ηδij

)
− f(y)



+

dy > 0 (10)

it’s a viscosity supersolution if for any φ ∈ C2(Ω) such that (u − φ)(x) ≤ (u −
φ)(y) for all y ∈ Ω and for all η > 0

lim sup
ε→0

1

εn

∫

B(x,ε)




n∑

i,j=1

aij(y)

(
∂2φ

∂xi∂xj
(x) − ηδij

)
− f(y)



−

dy > 0 (11)

and it’s a viscosity solution if it’s both a subsolution and a supersolution. It’s
relatively easy to see that a “good” solution is always a viscosity solution. Amaz-
ingly, it’s also possible to show that if u is a viscosity solution of (8), then there is
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a sequence of coefficients
{(
akij(x)

)}
converging to (aij(x)) such that the solutions{

uk
}

of (9) converge to u.

It follows that viscosity solutions is the “right” or “natural” space to work in
when studying solutions of (8). The counterexample of [32] shows that multiple
viscosity solutions of (8) do can exist. I.e., viscosity solutions of (8) are not unique.
Still, [27] has some interesting consequences. For example, suppose (aij(x)) are
continuous. Then we know from the general theory of linear PDEs that there is a
solution w ∈W 2,p(Ω)∩C(Ω) for any p > n. Such solutions are unique and stable.
It now follows from [27] that if u is a viscosity solution of (8), then u = w. Thus,
if (aij(x)) are continuous, then viscosity solutions of (8) are in W 2,p(Ω). In a pair
of papers related to [27], [5] and [8], L. Caffarelli, , M. G. Crandall, M. Kocan,
P. Soravia, and A. Świ

‘
ech examine the notion of a Lp-viscosity solutions. In the

context of (8) a function u ∈W 2,p(Ω) for p > n/2 is a Lp-viscosity subsolution of
(8) if for any φ ∈W 2,q

loc (Ω) such that q > p and (u−φ)(y) has a local max at y = x
then

ess lim sup
y→x





n∑

i,j=1

aij(y)
∂2φ

∂xi∂xj
(y)− f(y)



 ≥ 0 (12)

it’s a Lp-viscosity supersolution if for any φ ∈ W 2,q
loc (Ω) such that q > p and

(u− φ)(y) has a local min at y = x then

ess lim inf
y→x





n∑

i,j=1

aij(y)
∂2φ

∂xi∂xj
(y)− f(y)



 ≤ 0 (13)

and it’s a Lp-viscosity solution if it’s both a subsolution and a supersolution. The
authors prove a variety of interesting results concerning such solutions. In par-
ticular they they show that that such solutions are twice differentiable almost
everywhere, they examine the relationship between various definitions of viscosity
solutions (in the measurable context), and they extend and generalize the results
in [27]. One of the tools in their analysis is the interesting paper of L. Escau-
riaza ([15]), which extends the classical Aleksandrov-Bakelman-Pucci maximum
principle.

Nadirashvili’s second counterexample, [33], shows that there is a smooth func-
tion F such that the solution of (2) is not C2. This is important because this result
shows that the C2,α regularity theory—the Schauder estimates—of linear PDEs
doesn’t hold for fully nonlinear PDEs, underscoring the importance of the theory
of viscosity solutions to elliptic PDEs. Applications of viscosity solutions to de-
generate elliptic and parabolice PDEs also underscore their importance. One of
the more widely known applications has been to the problem of motion by mean
curvature. The idea of embedding the hypersurface as a level set of some initial
value and evolving the initial data by the appropriate degenerate parabolic PDE
goes back to L. C. Evans and J. Spruck [19], and Y. G. Chen, Y. Giga, and S. Goto
[7]. Showing that the level set’s evolution was independent of the particular initial
data used, they were able to prove existence and uniqueness results for the motion
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by mean curvature problem. These results have been expanded on and generalized
in L. C. Evans [18], and H. Ishii, and P. E. Souganidis [23].

In a different vein R. Jensen [26] studied a highly nonlinear degenerate ellip-
tic PDE in the context of L∞ minimization and the limit of the p-Laplacian as
p goes to infinity. Recently this operator has also been connected to the Monge-
Kantorovich problem of optimal transport, and (I have been told) to image pro-
cessing. The problem studied in [26] is to find the “best” Lipschitz extension into
Ω of the boundary data g(x). This is reduced to the problem of existence and
uniqueness of the nonlinear PDE

∑

i,j=1

∂u
∂xi

|Du| (x)

∂u
∂xj

|Du|(x)
∂2u

∂xi∂xj
= 0 in Ω ⊂ Rn

u|∂Ω(x) = g(x)





(14)

It is easy to see that (14) is both degenerate elliptic and singular at Du(x) = 0.
Never the less, it was shown that viscosity solutions of (14) exist and also satisfy a
maximum principle. Hence, they are unique. Furthermore, for this problem there
are also counterexamples to the existence of classical solutions. In fact, the best
regularity for this problem appears to be C1,α, but a proof of this remains open.
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Minimal Regularity Solutionsof Nonlinear Wave Equations
Hans Lindblad

Abstract.

Inspired by the need to understand the complex systems of non-linear wave
equations which arise in physics, there has recently been much interest in
proving existence and uniqueness for solutions of nonlinear wave equations
with low regularity initial data.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case these are sharp, in
the sense that with slightly more regularity one can prove local existence.

We also present join work with Georgiev and Sogge proving global existence
for a certain class of semi-linear wave equation. This result was a conjec-
ture of Strauss following an initial result of Fritz John. We develop weighted
Strichartz estimates whose proof uses techniques from harmonic analysis tak-
ing into account the symmetries of the wave equation.

1991 Mathematics Subject Classification: 35L70
Keywords and Phrases: Non-linear wave equations, hyperbolic equations,
local existence, low regularity solutions, Strichartz estimates

Introduction.
Recently there has been much interest in proving existence and uniqueness of
solutions of nonlinear wave equations with low regularity initial data. One reason
is that many equations from physics can be written as a system of nonlinear wave
equations with a conserved energy norm. If one can prove local existence and
uniqueness assuming only that the energy norm of initial data is bounded then
global existence and uniqueness follow. Therefore it is interesting to find the
minimal amount of regularity of the initial data needed to ensure local existence
for the typical nonlinear wave equations.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case the counterexamples are
sharp, in the sense that with slightly more regularity one can prove local existence.
It is natural to look for existence in Sobolev spaces, since the Sobolev norms are
more or less the only norms that are preserved for a linear wave equation. The
counterexamples involve constructing a solution that develops a singularity along
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a characteristic for all positive times. In the quasi-linear case it also involves con-
trolling the geometry of the characteristic set. The norm is initially bounded but
becomes infinite for all positive times, contradicting the existence of a solution in
the Sobolev space. The counterexamples are half a derivative more regular than
what is predicted by a scaling argument. The scaling argument use the fact that
the equations are invariant under a scaling to obtain a sequence of solutions for
which initial data is bounded in an appropriate Sobolev norm. The counterexam-
ples were not widely expected since for several nonlinear wave equations one does
obtain local existence down to the regularity predicted by scaling.

On the other hand, the classical local existence theorems for nonlinear wave
equations are not sharp in the semi-linear case. These results were proved us-
ing just the energy inequality and Sobolev’s embedding theorem. Recently they
were improved using space-time estimates for Fourier integral operators known as
Strichartz’ estimates, and generalizations of these. There are many recent results in
this field, for example work by Klainerman-Machedon[13-15], Lindblad-Sogge[24],
Grillakis[6] Ponce-Sideris[26] and Tataru. In particular, Klainerman-Machedon
proved that for equations satisfying the ‘null condition’, one can go down to the
regularity predicted by the scaling argument mentioned above. In joint work with
Sogge[24] we prove local existence with minimal regularity for a simple class of
model semi-linear wave equations. There are related results for KdV and nonlinear
Schrödinger equations, for example in work by Bourgain and Kenig-Ponce-Vega.

Whereas the techniques of harmonic analysis were essential in improving the
local existence results, the Strichartz estimates are not the best possible global
estimates since they do not catch the right decay as time tends to infinity if the
initial data has compact support. The classical method introduced by Klainerman
[11,12] to prove global existence for small initial data is to use the energy method
with the vector fields coming from the invariances of the equation. However, this
method requires much regularity of initial data and also the energy method alone
does not give optimal estimates for the solution since it is an estimate for deriva-
tives. We will present joint work with Georgiev and Sogge giving better global
estimates using techniques from harmonic analysis taking into account the invari-
ances or symmetries of the wave equation. We obtain estimates with mixed norms
in the angular and spherical variables, with Sogge[24], and weighted Strichartz’
estimates with Georgiev and Sogge[4]. Using these new estimates we prove that
a certain class of semi-linear wave equations have global existence in all space
dimensions. This was a conjecture by Strauss, following an initial result by John.

1. Counterexamples to local existence.
We study quasi-linear wave equations and ask how regular the initial data must
be to ensure that a local solution exists. We present counterexamples to local
existence for typical model equations. Greater detail of the construction can be
found in Lindblad [20-23]. In the semi-linear case the counter examples are sharp
in the sense that for initial data with slightly more regularity a local solution exists.
This was shown recently in Klainerman-Machedon [13-15], Ponce-Sideris[26] and
Lindblad-Sogge[24] using space time estimates know as Strichartz’ estimates and
refinements of these. However for quasi-linear equations it is still unknown what
the optimal result is; there is a gap between the counterexamples and a recent
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improvement on the existence result by Tataru[42] and Bahouri-Chemin[1].
Consider the Cauchy problem for a quasi-linear wave equation:

(1.1)
�u = G(u, u′, u′′), (t, x) ∈ ST = [0, T )× Rn,

u(0, x) = f(x), ut(0, x) = g(x),

where G is a smooth function which vanishes to second order at the origin and
is linear in the third variable u′′. (Here � = ∂2t −

∑n
i=1 ∂

2
xi .) Let Ḣγ denote the

homogeneous Sobolev space with norm ‖f‖Ḣγ = ‖ |Dx|γf‖L2 where |Dx| =
√−∆x

and set

(1.2) ||u(t, ·)||2γ =

∫ (∣∣ |Dx|γ−1ut(t, x)
∣∣2 +

∣∣ |Dx|γu(t, x)
∣∣2) dx.

We want to find the smallest possible γ such that

(f, g) ∈ Ḣγ(Rn)× Ḣγ−1(Rn),(1.3)

supp f ∪ supp g ⊂ {x; |x| ≤ 2}(1.4)

implies that we have a local distributional solution of (1.1) for some T > 0, satis-
fying

(1.5) (u, ∂tu) ∈ Cb
(

[0, T ]; Ḣγ(Rn)× Ḣγ−1(Rn)
)
.

To avoid certain peculiarities concerning non-uniqueness we also require that u
is a proper solution:

Definition 1.1. We say that u is a proper solution of (1.1) if it is a distributional
solution and if in addition u is the weak limit of a sequence of smooth solutions
uε to (1.1) with data (φε ∗ f, φε ∗ g), where φε(x) = φ(x/ε)ε−n for some function
φ satisfying φ ∈ C∞0 ,

∫
φdx = 1.

Even if one has smooth data and hence a smooth solution there might still be
another distributional solution which satisfies initial data in the space given by
the norm (1.2). In fact, u(t, x) = 2H(t − |x|)/t satisfies �u = u3 in the sense of
distribution theory. If γ < 1/2 then ||u(t, ·)||γ → 0 when t → 0 by homogeneity.
Since u(t, x) = 0 is another solution with the same data it follows that we have
non-uniqueness in the class (1.5) if γ < 1/2. Definition 1.1 picks out the smooth
solution if there is one.

Our main theorem is the following:

Theorem 1.2. Consider the problem in 3 space dimensions, n = 3, with

(1.6)
�u =

(
Dl u

)
Dk−lu, D = (∂x1 − ∂t),

u(0, x) = f(x), ut(0, x) = g(x),

where 0 ≤ l ≤ k − l ≤ 2, l = 0, 1. Let γ = k. Then there are data (f, g) satisfying
(1.3)-(1.4), with ‖f‖Ḣγ + ‖g‖Ḣγ−1 arbitrarily small, such that (1.6) does not have
any proper solution satisfying (1.5) in ST = [0, T )× R3 for any T > 0.

Remark 1.3. It follows from the proof of the theorem above that the problem is
ill-posed if γ = k. In fact there exists a sequence of data fε, gε ∈ C∞0 ({x; |x| ≤ 1})
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with ‖fε‖Ḣγ + ‖gε‖Ḣγ−1 → 0 such that if Tε is the largest number such that (1.6)
has a solution uε ∈ C∞([0, Tε)×R3), we have that either Tε → 0 or else there are
numbers tε → 0 with 0 < tε < Tε such that ‖uε(tε, ·)‖γ →∞. It also follows from
the proof of the Theorem that either there is no distributional solution satisfying
(1.5) with γ = k or else we have non-uniqueness of solutions in (1.5).

Remark 1.4. By a simple scaling argument one gets a counterexample to well-
posedness, but it has lower regularity than our counterexamples:

(1.7) γ < k +
n− 4

2
.

Indeed, if u is a solution of (1.6) which blows up when t = T then uε(t, x) =
εk−2u(t/ε, x/ε) is a solution of the same equation with lifespan Tε = εT and
‖uε(0, ·)‖γ = εk−2+n/2−γ‖u(0, ·)‖γ → 0 if γ satisfies (1.7). By contrast, our coun-
terexamples are designed to concentrate in one direction, close to a characteristic.
It appears that our construction has a natural generalization to any number of
space dimensions n, with the initial data lying in Ḣγ ,

(1.8) γ < k +
n− 3

4
.

Remark 1.5. In Klainerman-Machedon[13,15] it was proved that for semi-linear
wave equations satisfying the “null condition” one can in fact get local existence
for data having the regularity (1.7) predicted by the scaling argument.

Now, there is a unique way to write (1.6) in the form

(1.9)
3∑

j,k=0

gjk(u)∂xj∂xku = F (u,Du)

where x0 = t and gjk(u) are symmetric. In the semi-linear case gjk = mjk, where
mjk is given by (1.10). We now define the notion of a domain of dependence.

Definition 1.6. Assume that Ω ⊂ R+ × R3 is an open set equipped with a
Lorentzian metric gjk ∈ C(Ω) such that inverse gjk satisfies

(1.10)
3∑

j,k=0

|gjk −mjk| ≤ 1/2, where

{
m00 = 1, mjj = −1, j > 0

mjk = 0, if j 6= k
.

Then Ω is said to be a domain of dependence for the metric gij if for every compact
subset K ⊂ Ω there exists a smooth function φ(x) such that the open set H =
{(t, x); t < φ(x)} satisfies

(1.11) H ⊂ Ω, K ⊂ H
and ∂H is space-like, i.e.

(1.12)
3∑

j,k=0

gjk(t, x)Nj(x)Nk(x) > 0, if t = φ(x), N(x) =
(
1,−▽xφ(x)

)
.

Since a solution u to (1.6) gives rise to a unique metric g jk we say that Ω is a
domain of dependence for the solution u if it is a domain of dependence for gjk.
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Lemma 1.7. There is an open set Ω ⊂ R+ × R3 and a solution u ∈ C∞(Ω) of
(1.6) such that Ω is a domain of dependence and writing

(1.13) Ωt = {x; (t, x) ∈ Ω},
we have that ∂Ω0 is smooth,∫

Ωt

(
(∂x1 − ∂t)ku(t, x)

)2
dx =∞, t > 0, and(1.14)

∑

|β|≤k

∫

Ωt

(
∂βu(t, x)

)2
dx <∞, when t = 0, where(1.15)

β = (β0, ..., β3) and ∂
β = ∂β0/∂xβ00 · · · ∂β3/∂xβ33 . Furthermore in the quasi-linear

case, k − l = 2, the norms ‖Dlu‖L∞(Ω) can be chosen to be arbitrarily small.
Proof of Theorem 1.2. By Lemmas 1.7 we get a solution u in a domain of depen-
dence Ω with initial data u(0, x) ∈ Hk(Ω0) and ut(0, x) ∈ Hk−1(Ω0). We can
extend these to f ∈ Hk(R3) and g ∈ Hk−1(R3), see Stein[36]. If there exist a
proper solution u of (1.6) in ST = [0, T ] × R3 with these data, it follows from
Definition 1.1 and Lemma 1.8 that u is equal to u in ST ∩Ω, contradicting (1.5).

Lemma 1.8. Suppose u ∈ C∞(Ω) is a solution to (1.6) where Ω is a domain of
dependence. In the quasi-linear case, k− l = 2, assume also that ‖Dlu‖L∞(Ω) ≤ δ.
Suppose also that uε ∈ C∞(ST ), where ST = [0, T ) × R3, and uǫ are solutions
of (1.6) with data (fε, gε) where fε → f and gε → g in C∞(K0) for all compact
subsets of K0 of Ω0 = {x; (0, x) ∈ Ω}. Then uε → u in Ω ∩ ST .

It is essential that Ω is a domain of dependence for Lemma 1.8 to be true; one
needs exactly the condition (1.12) in order to be able to use the energy method.

Let us now briefly describe how to construct the solution u and the domain of
dependence Ω in Lemma 1.7. First we find a solution u1(t, x1) for the correspond-
ing equation in one space dimension, (1.16), which develops a certain singularity
along a non time like curve x1 = µ(t), with µ(0) = 0. The initial data (1.17)-(1.18)
has a singularity when x1 = 0 and because of blow-up for the nonlinear equations,
the singularity that develops for t > 0 is stronger than the singularity of data.
Then u(t, x) = u1(t, x1) is a solution of (1.6) in the set {(t, x); x1 > µ(t)}. The
singularity of data is however too strong for the integral in (1.15) over this set to
be finite when t = 0. Therefore we will construct a smaller domain of dependence,
Ω, satisfying (1.20), such that the curve x1 = µ(t), x2 = x3 = 0, still lies on ∂Ω.

One can find rather explicit solution formulas for the one dimensional equations;

(1.16) (∂x1 +∂t)(∂x1−∂t)u1(t, x1)+(∂x1−∂t)lu1(t, x1)(∂x1−∂t)k−lu1(t, x1) = 0.

By choosing particular initial data

(1.17)

u1(0, x1) = χ′′(x1), ∂tu1(0, x1) = 0, if k = 0, l = 0,

u1(0, x1) = −χ′(x), ∂tu1(0, x1) = χ′′(x1) + χ′(x1)
2, if k = 1, l = 0,

u1(0, x1) = 0, ∂tu1(0, x1) = −χ(3−k)(x1), if k ≥ 2,

(1.18) where χ(x1) =

∫ x1

0

−ε| log |s/4||α ds, 0 < α < 1/2, ε > 0

we get a solution
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(1.19) u1 ∈ C∞(Ω1), where Ω1 = {(t, x1);µ(t) < x1 < 2− t} ⊂ R+ × R1

for some function µ(t) with µ(0) = 0, such that Ω1 is a domain of dependence
and such that u1(t, x1) has a singularity along x1 = µ(t). One sees this from
the solution formulas which can be found in Lindblad[22,23]. Essentially what is
happening is that the initial data (1.17)-(1.18) has a singularity when x1 = 0. For
the linear equation, utt − ux1x1 = 0, the singularity would just have propagated
along a characteristic, however the nonlinearity causes the solution to increase
and this strengthens the singularity for t > 0. (This is the same phenomena that
causes blow-up for smooth initial data.)

Define Ω ⊂ R+ × R3 to be the largest domain of dependence for the metric
obtained from the solution u(t, x) = u1(t, x1) (see (1.9)), such that

(1.20) Ω ⊂ Ω1 × R2, Ω0 = {x; (0, x) ∈ Ω} = B0 = {x; |x− (1, 0, 0)| < 1}.
(It follows from Definition 1.6 that the union and intersection of a finite number
of domains of dependence is a domain of dependence so indeed a maximal domain
exists.) It follows that u(t, x) = u1(t, x1) is a solution of (1.6) in Ω satisfying (1.17)
in Ω0. The initial data (1.17)-(1.18) was chosen so that (1.15) just is finite if t = 0

Let Ωt be as in (1.13) and

(1.21) St(x1) = {(x2, x3) ∈ R2; (x1, x2, x3) ∈ Ωt}, at(x1) =

∫

St(x1)

dx2 dx3.

With this notation the integral in (1.14) becomes

(1.22)

∫ 2−t

µ(t)

at(x1)
(
(∂x1 − ∂t)ku1(t, x1)

)2
dx1.

The proof that this integral is infinite consists of estimating the two factors in the
integrand from below, close to x1 = µ(t).

In the semi-linear case the metric gjk is justmjk so Ω1 is a domain of dependence
if and only if µ′(t) ≥ 1 and it follows that Ω = Ω1×R2∩Λ, where Λ = {(t, x); |x−
(1, 0, 0)|+ t < 1}. Hence for x1 > µ(t); St(x1) = {(x2, x3); (x1 − 1)2 + x22 + x23 <
(1− t)2} so then at(x1) = π(2− t−x1)(x1− t). Also, the specific solution formulas
are relatively simple. In particular if k − l = l = 1 then its easy to verify that

(1.23) (∂x1 − ∂t)u1(t, x1) =
χ′(x1 − t)

1 + tχ′(x1 − t)
, u1(0, x) = 0

satisfies (1.16)-(1.17) when 1 + tχ′(x1 − t) > 0. Since χ′(0+) = −∞ and χ′′ > 0
it follows that there is a function µ(t), with µ′(t) > 1 and µ(0) = 0, such that
1 + tχ′(x1 − t) = 0, when x1 = µ(t). Hence 1 + tχ′(x1 − t) ≤ C(t)(x1 − µ(t)) so

(1.24)

∫ 1/2

µ(t)

at(x1)
(
(∂x1 − ∂t)u1(t, x1)

)2
dx1 ≥

∫ 1/2

µ(t)

(x1 − t) dx1
C(t)2(x1 − µ(t))2

=∞.

However, in the quasi-linear case, estimating a t(x1) from below requires a de-
tailed analysis of the characteristic set ∂Ω for the operator (1.25), see Lindblad[23].

(1.25) ∂2t −
3∑

i=1

∂2xi − V (∂x1 − ∂t)2, where V = (∂x1 − ∂t)lu1.
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2. Global Existence

We will present sharp global existence theorems in all dimensions for small-
amplitude wave equations with power-type nonlinearities. For a given “power”
p > 1, we shall consider nonlinear terms Fp satisfying

(2.1)
∣∣ (∂/∂u)jFp(u)

∣∣ ≤ Cj |u|p−j , j = 0, 1.

The model case, of course, is Fp(u) = |u|p. If R1+n+ = R+ × Rn, and if f, g ∈
C∞0 (Rn) are fixed, we shall consider Cauchy problems of the form

(2.2)

{
�u = Fp(u), (t, x) ∈ R1+n+

u(0, x) = εf(x), ∂tu(0, x) = εg(x),

where � = ∂2/∂t2 − ∆x. Our goal is to find, for a given n, the range of powers
for which one always has a global weak solution of (2.2) if ε > 0 is small enough.

In 1979, John [9] showed that for n = 3, (2.2) has global solutions if p > 1 +
√

2
and ε > 0 is small. He also showed that when p < 1+

√
2 and Fp(u) = |u|p there is

blow-up for most small initial data, see also [17]. It was shown later by Schaeffer
[28] that there is blowup also for p = 1 +

√
2. After Johns work, Strauss made the

conjecture in [38] that when n ≥ 2, global solutions of (2.2) should always exist if
ε is small and p is greater than a critical power p c that satisfy

(2.3) (n− 1)p2c − (n+ 1)pc − 2 = 0, pc > 1.

This conjecture was shortly verified when n = 2 by Glassey [5]. John’s blowup
results were then extended by Sideris [30], showing that for all n there can be
blowup for arbitrarily small data if p < p c. In the other direction, Zhou [43]
showed that when n = 4, in which case pc = 2, there is always global existence for
small data if p > p c. This result was extended to dimensions n ≤ 8 in Lindblad
and Sogge [25]. Here it was also shown that, under the assumption of spherical
symmetry, for arbitrary n ≥ 3 global solutions of (2.2) exist if p > pc and ε is small
enough. For odd spatial dimensions, the last result was obtained independently
by Kubo [16]. The conjecture was finally proved in all dimensions by Georgiev-
Lindblad-Sogge[4]. Here we will present that argument.

We shall prove Strauss conjecture using certain “weighted Strichartz estimates”
for the solution of the linear inhomogeneous wave equation

(2.6)

{
�w(t, x) = F (t, x), (t, x) ∈ R1+n+

w(0, · ) = ∂tw(0, · ) = 0.

This idea was initiated by Georgiev [3]. We remark that we only have to consider
powers smaller than the conformal power pconf = (n + 3)/(n − 1) since it was
already known that there is global existence for larger powers. See, e.g., [24].

Let us, however, first recall the inequality for (2.6), that John [9] used;

‖t(t− |x|)p−2w‖L∞(R1+3+ ) ≤ Cp‖tp(t− |x|)p(p−2)F‖L∞(R1+3+ ),

if F (t, x) = 0, t− |x| ≤ 1, and 1 +
√

2 < p ≤ 3.

Unfortunately, no such pointwise estimate can hold in higher dimensions due to
the fact that fundamental solutions for � are no longer measures when n ≥ 4.
Despite this, it turns out that certain estimates involving simpler weights which
are invariant under Lorentz rotations (when R = 0 ) hold;
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Theorem 2.1. Suppose that n ≥ 2 and that w solves the linear inhomogeneous
wave equation (2.6) where F (t, x) = 0 if |x| ≥ t+R− 1, R ≥ 0. Then

(2.7) ‖((t+R)2 − |x|2)γ1w‖Lq(R1+n+ ) ≤ Cq,γ‖((t+R)2 − |x|2)γ2F‖Lq/(q−1)(R1+n+ ),

provided that 2 ≤ q ≤ 2(n+ 1)/(n− 1) and

(2.8) γ1 < n(1/2− 1/q)− 1/2, and γ2 > 1/q.

One should see (2.7) as a weighted version of Strichartz [39,40] estimate;

(2.9) ‖w‖L2(n+1)/(n−1)(R1+n+ ) ≤ C‖F‖L2(n+1)/(n+3)(R1+n+ ).

If one interpolates between this inequality and (2.7), one finds that the latter
holds for a larger range of weights (see also our remarks for the radial case below).
However, for the sake of simplicity, we have only stated the ones that we will use.

Let us now give the simple argument showing how our inequalities imply the
proof of Strauss conjecture. Let u−1 ≡ 0, and for m = 0, 1, 2, 3, . . . let um be
defined recursively by requiring

{
�um = Fp(um−1)

um(0, x) = εf(x), ∂tum(0, x) = εg(x),

where f, g ∈ C∞0 (Rn) vanishing outside the ball of radius R − 1 centered at the
origin are fixed. Then if pc < p ≤ (n+ 3)/(n− 1), we can find γ satisfying

(2.10) 1/p(p+ 1) < γ < ((n− 1)p− (n+ 1))/2(p+ 1).

Set

(2.11) Am = ‖((t+R)2 − |x|2)γum‖Lp+1(R1+n+ ).

Because of the support assumptions on the data, domain of dependence con-
siderations imply that um, and hence Fp(um), must vanish if |x| > t + R − 1. It
is also standard that the solution u0 of the free wave equation �u0 = 0 with the
above data satisfies u0 = O(ε(1 + t)−(n−1)/2(1 + |t−|x||)−(n−1)/2). Using this one
finds that A0 = C0ε <∞. It follows from (2.10) that

(2.12) γ < n(1/2− 1/q)− 1/2, and pγ > 1/q, if q = p+ 1,

so if we apply (2.7) to the equation �(um − u0) = Fp(um−1) we therefore obtain

‖((t+R)2 − |x|2)γum‖Lp+1
≤ ‖((t+R)2 − |x|2)γu0‖Lp+1 + C1‖((t+R)2 − |x|2)pγ |um−1|p‖L(p+1)/p

= ‖((t+R)2 − |x|2)γu0‖Lp+1 + C1‖((t+R)2 − |x|2)γum−1‖pLp+1,
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i.e. Am ≤ A0+C1A
p
m−1. From this we can inductively deduce that Am ≤ 2A0, for

all m, if A0 = C0ε is so small that C1(2A0)
p ≤ A0. Similarly, we can get bounds

for differences showing that {um} is a Cauchy sequence in the space associated
with the norm (2.11), so the limit exists and satisfies (2.2).

The proof of Theorem 2.1 uses a decomposition into regions, where the weights
(t2 − |x|2) are essentially constant, together with the invariance of the norms
and the equation under Lorentz transformations. In each case we get the desired
estimate by using analytic interpolation, Stein[35], between an L1 → L∞ and an
L2 → L2 estimate with weights, for the Fourier integral operators associated with
the wave equation. See [4] for the complete proof and further references. In [4]
we also prove a stronger scale invariant weighted Strichartz estimate under the
assumption of radial symmetry. This assumption was later removed by Tataru[41]

Theorem 2.2. Let n be odd and assume that F is spherically symmetric and
supported in the forward light cone {(t, x) ∈ R1+n : |x| ≤ t}. Then if w solves
(2.6) and if 2 < q ≤ 2(n+ 1)/(n− 1)

(2.13) ‖(t2 − |x|2)−αw‖Lq(R1+n+ ) ≤ Cγ‖(t2 − |x|2)βF‖Lq/(q−1)(R1+n+ ),

if β < 1/q, α+ β + γ = 2/q, where γ = (n− 1)(1/2− 1/q).
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Abstract. The non-linear terms of many equations, including Wave Maps
and Yang-Mills have a special, “null”, structure. In joint work with Sergiu
Klainerman, I use techniques of Fourier Analysis, such as generalizations
and refinements of the restriction theorem applied to null forms to study
the optimal Sobolev space in which such non-linear wave equations are well
posed.
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The following notation will be used: repeated indices are summed, xα, 0 ≤ α ≤ n
are the coordinates t, xi, 1 ≤ i ≤ n, ∇α are the usual derivatives, and indeces are
raised or lowered according to the Minkowski metric −1, 1, · · · , 1 (i. e. raising or
lowering the 0 index changes sign).

Wave maps are functions φ : Rn+1 →M from Minkowski space Rn+1 to a Rie-
mannian manifold M with metric g which arise as critical points of the Lagrangian

(1)

∫

Rn+1

(
∇αφ,∇αφ

)
g

The Euler-Lagrange equations of the above, written in coordiantes on M are

(2) �φi + Γijk(φ)
(
∇αφj ,∇αφk

)
= 0

where Γij,k are the Christoffel symbols. We see the first null form

Q0(φ, ψ) = ∇αφ∇αψ
arising as part of the non-linear term. There is more going on than one can read
off from (2). In the special case of M = Sk−1 ⊂ Rk the equation (2) can also be
written as

(3) �φ+ φ
(
∇αφ · ∇αφ

)
= 0
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with constraint |φ| = 1. Take dot product with φt. Because of the constraint, the
non-linear term drops out and we get conservation of energy, just as for the linear
wave equation. In the special case of n = 2, it is still an open question whether
the Cauchy problem (2) is well posed globally in time. Related to that is the
question whether (2) is well posed locally in time for small data in H1. Because
of conservation of energy, such a result would prove global in time regularity for
solutions of (2) with smooth data with small energy. There is a lot of evidence
that using both the null condition and the geometric condition used in (3) the
wave map equation should be well posed locally in time for Cauchy data in Hn/2.
There has been a lot of work in recent years on this question. We currently have
the result for Hn/2+ǫ, see [K-M 4], [K-S], [G] . These results use only the null
condition, and such a result fails by half a derivative for equations not satisfying
the null condition, see [L]. Also, the sharp Hn/2 result cannot be true for general
equations of the type (2), without using geometric information about the target
manifold, as the example of geodesic solutions shows: Let γ(t) be a geodesic on
M which blows up in finite time, and let ψ be a solution of the homogeneous wave
equations �ψ = 0 with Hn/2 data. Now, φ = γ(ψ) is a solution of (2). Since the
supremum of ψ can become large, φ can blow up instantly.

The definitive result on equations of the type (2) which does not take the

geometric condition into account is well posedness in the Besov space B2,1n/2, due

to Daniel Tataru [T2]. For related applications of the geometric condition see
[F-M-S], [Sh].

The Yang-Mills equations are non-linear analogues of the Maxwell equations.
Let G be one of the classical compact Lie groups, and g its Lie algebra. The
unknown is a connection potential Aα : Rn+1 → g, such that the corresponding
covariant derivative Dα = ∂α + [Aα, ] satisfies

DαFα,β = 0

where the curvature Fα,β = [Dα, Dβ]
Here we have gauge freedom: if Aα is a solution, and O is a G-valued function,

then OAαO
−1 − ∂αOO−1 is also a solution. Thus we may impose an additional

gauge condition on Aα. We choose the Coulomb gauge : ∂iAi = 0. Then we have

�Ai = −2[Aj, ∂jAi] + [Aj , ∂iAj ] + · · ·
together with an elliptic equation for A0. The dots turn out to be less important
terms. We will now identify the null forms in the right hand side. They will
involve Qij(φ, ψ) = ∇iφ∇jψ−∇jφ∇iψ. In fact using the divergence condition on
A to express it as curlB, the first term is of the type Qij(B,A). Similarly, the curl
of the second term is of the type Qij(A,A), which is all the information we need
since the divergence of the whole right hand side is 0. Thus a simplified model for
Yang-Mills is

(4) �A = Qij((−∆)−1/2A,A) + (−∆)−1/2Qij(A,A)
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The indeces of A are not important, and have been supressed.
The Yang-Mills equations in 3+1 dimensions are sub-critical. There is a con-

served energy, and our local existence result implies that the time of existence of
a smooth solution depends only on the energy of the initial data (and the solution
stays as smooth as it started in this interval). The argument is complicated by
gauge dependance, and the fact that energy differs form the H1 norm by a lower
order term, see [K-M3]. The global existence result was already known, due to
Eardley and Moncrief [E-M]. However, our new techniques also give global exis-
tence in the energy space. It was shown by M. Keel [Ke], along the same lines,
that there is global regularity for Yang-Mills coupled with a critical power Higgs
field. This is a new global existence result, accessible only through our new local
estimates.

In 4+1 dimensions, Yang-Mills are critical, and it was shown by Klainerman
and Tataru that they are well posed in H1+ǫ [K-T]. See also [K-M8] for a related
result.

Following is a summary of the main estimates used in the above proofs.
Recall the classical Strichartz inequality gives the (optimal) estimate for a so-

lution of �φ = 0

‖(∇φ)2‖L3(R3) ≤ C
(
‖φ(0, ·)‖2H3/2(R2) + ‖φt(0, ·)‖2H1/2(R2)

)

However, for a null form we have

‖Q(φ, φ)‖L2(R3) ≤ C
(
‖φ(0, ·)‖H5/4(R2) + ‖φt(0, ·)‖H1/4(R2)

)

The proof is based on writing the L2 norm of the quadratic form as the L2 norm
of a convolution of measures supported on the light cone, on the Fourier transform
side. The symbol of the null form kills the worst singularity in the convolution.
This has been generalized to the variable coefficient case by C. Sogge [So]. Some
ideas in the proof were also used in [Sc-So].

Using this type of estimate one can prove that (2) is well posed in H(n+1)/2,
which is already non-trivial, is only true for equations satisfying some kind of null
condition (for n=2, 3), but is not optimal. Also, the same techniques give local
existence for finite energy data for Yang-Mills in 3+1 dimensions.

To get to the optimal result, that the Wave Map equation (2) is well posed in
Hn/2+ǫ we have to make extensive use of the spaces Hs,δ used by Bourgain for
KdV [B]; see also [Be]:

‖φ‖s,δ = ‖ws+wδ−φ̃‖L2(dτdξ)
where w+(τ, ξ) = 1+|τ |+|ξ|, w−(τ, ξ) = 1+||τ |−|ξ||, and φ̃ denotes the space-time
Fourier transform. Also, let D± be the operator with symbol w±. There are two
advantages in working with these spaces. Functions in Hs,δ with δ > 1/2 satisfy
the same Strichartz-Pecher estimates that solutions of �φ = 0 with Hs Cauchy
data would.
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In 3+1 dimensions, for instance,

(5a) ‖φ‖L∞(dt)L2(dx) ≤ C‖φ‖0,δ

is the energy estimate, and all estimates obtained by interpolating it with the
(false) end-point result

(5b) ‖φ‖L2(dt)L∞(dx) ≤ C‖φ‖1,δ

are true.
Also, the argument is simplified if one also notices that, for δ < 1/2 and p

defined by 1
p = 1

2 − δ,

(5c) ‖φ‖Lp(dt)L2(dx) ≤ C‖φ‖0,δ

See [T1] for a general treatment of these spaces.
The second advantage of the spaces Hs,δ is that the solution to �φ = F with

Cauchy data f0, f1 satisfies

‖χ(t)φ‖s,δ ≤ C
(
‖F‖s−1,δ−1 + ‖f0‖Hs + ‖f1‖Hs−1

)

where χ is a smooth cut-off function in time. In order to solve �φ = Q(φ, φ) for
small time it suffices to solve the integral equation

(6) φ = χ(t)

(
W ∗Q+W (f0) + ∂tW (f1)

)

W is the fundamental solution of �. This idea also goes back to Bourgain. See
also [K-P-V].

In order to show that the equation (2) is well posed in Hs, for s > 3/2, in 3+1
dimensions, it suffices to prove an inequality of the form

(7) ‖Q0(φ, ψ)‖s−1,δ−1 ≤ C‖φ‖s,δ‖ψ‖s,δ

where δ > 1/2
The symbol of the null form Q0 is

τλ− ξ · η =
1

2

(
(τ + λ)2 − |ξ + η|2 − τ2 + |ξ|2 − λ2 + |η|2

)

Using this, the left hand side of (4) is dominated by the sum of terms, a typical
one being
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‖Dδ−1
− ((Ds

+D
1/2
− φ)(D

1/2
+ ψ))‖

Estimate this norm by duality, integrating against F ∈ L2:
∫
Dδ−1
− ((Ds

+D
1/2
− φ)(D

1/2
+ ψ))F

=

∫
(Ds
+D

1/2
− φ)(D

1/2
+ ψ))Dδ−1

− F

The first term is in L2, the second one in Hs−1/2,δ and the third one in H0,1−δ.
Thus, it suffices to show H0,1−δ ·Hs−1/2,δ ⊂ L2. This is true, and follows from (5

a, b, c). In fact, for there exist p close to ∞, q > 2, close to 2, 1p + 1
q = 1

2 such

that the first term is in Lp(dt)L2(dx) and the second one in Lq(dt)L∞(dx). The
original argument of [K-M4] used convolutions of measures.

An problem related to Yang-Mills, worked out in [K-M6], to show that the
model

(8) �φ = Qij(φ, φ)

is well posed in H3/2+ǫ in 3+1 dimensions.
The analogue of (7) is not true. There is an estimate for the symbol |ξ × η| ≤

|ξ|1/2|η|1/2|ξ+η|1/2(w−(τ, ξ)+w−(λ, η)+w−(τ+λ, ξ+η)1/2, but after distributing
derivatives as above one has to bound a troublesome term

‖D−1/2− ((D
1/2
− D

1/2
+ φ)(Ds

+ψ))‖L2

By duality, this would correspond to an estimate

D−(s−1/2)
(
H0,1/2 ·H0,1/2

)
⊂ L2

(s > 3/2). This is false, the counterexample is an adaptation of an old construction
due to A. Knapp. There are other useful estimates along these lines which are true,
and which are needed for (4), (8), see [K-M5], [K-T]. In 3+1 dimensions the (barely
false) end-point estimates are are

(9a) D−1/2
(
H1/4,δ ·H1/4,δ

)
⊂ L2

and

(9b) D−1
(
H1/2,δ ·H1/2,δ

)
⊂ L1(dt)L∞(dx)
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Back to (5), we are foced to make stronger assumptions on our norms. A
simplification of the original argument in [K-M6], used in [K-T], is to require,
(modulo an ǫ) that, in addition to φ ∈ Hs,1/2, φ should also satisfy

‖φ‖∗ = inf{‖F‖L1(dt)L∞(dx), |̃(D1/2− D
1/2
+ φ)| ≤ |F̃ |} <∞

These norms are constructed so that we recover (7)

(7’) ‖Qij(φ, ψ)‖s−1,δ−1 ≤ C
(
‖φ‖s,δ + ‖φ‖∗

)(
‖ψ‖s,δ + ‖ψ‖∗

)

and it turns out also

‖D−1+ D−1− Qij(φ, ψ)‖∗ ≤ C
(
‖φ‖s,δ + ‖φ‖∗

)(
‖ψ‖s,δ + ‖ψ‖∗

)

These types of modified norms also work for the model Yang-Mills problem
(4), to prove well posedness in H1+ǫ in 4 + 1 dimensions. To prove the necessary
estimates one must use the analogues of 9a, 9b in 4 + 1 dimensions.
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Blow-up Phenomena for CriticalNonlinear Schr�odinger and Zakharov Equations
Frank Merle

Abstract. In this paper, we review qualitative properties of solutions
of critical nonlinear Schrödinger and Zakharov equations which develop
a singularity in finite time.
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I. The Problem

We are interested in the formation of singularities in time, in Hamiltonian systems
of infinite dimension, and with infinite speed of propagation. A prototype is the
nonlinear Schrödinger equation

{
iut = −∆u− |u|p−1u,
u(0) = u0,

(1)

for (x, t) ∈ RN × [0, T ) and u=0 at infinity. This equation appears in various
situations in physics (plasma physics, nonlinear optics,. . .see [20] for example).
Because of its importance in physics, we are interested in the case where p− 1 =
4/N and N = 2. We will consider

iut = −∆u− |u| 4N u. (2)

Equation (1) has Galilean, scaling, and translation invariances. In the case
p = 4

N + 1, the nonlinear equation has the same structure as the linear equation:
it has one more invariance (the conformal invariance): if u(t) is a solution of

(2) then v(t) = 1
tN/2

e+i
|x|2
4t u

(
1
t ,
x
t

)
is also a solution of (2). Thus, there are

three invariants of the motion in this case: the mass |u|L2 , the energy E(u) =
1
2

∫
RN |∇u|2dx− 1

4
N+2

∫
RN |u|

4
N+2dx, and the energy of v, E(v).

A more refined physical model is also considered: the Zakharov equation
(nonlinear Schrödinger equation coupled with the wave equation). Because of the
coupling, all invariances disappear. The system is





iut = −∆u+ nu,
nt = −∇ · v,
1
c20
vt = −∇(n+ |u|2),

(3)
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where (x, t) ∈ R2 × [0, T ).

We note formally that if c0 = +∞, system (3) reduces to equation (2) in dimension
two. There are two invariants: |u|L2 , and H(u, n, v) =

∫
|∇u|2dx +

∫
n|u|2dx +

1
2

∫
n2dx+ 1

2c02

∫
|v|2dx .

The first natural question concerns the local wellposedness of the equations
in time. The natural spaces for this equation are spaces where the conserved
quantities are defined. For the Schrödinger equation, H1 local wellposedness has
been proved in [10], [11], [14]. The use of Strichartz estimates (of space-time
nature, where the role of space and time are similar) leads to the result in L2 in
[8] (L2 is optimal in some sense, see [2]). This space will play a crucial role in the
analysis below. See [4],[5] in the periodic case.

For the system (3), the coupling between the two equations creates several diffi-
culties. In energy space, that is (u, n, nt) ∈ H1=H1×L2×L2, the local wellposed-
ness was proved in [3],[9]. The problem to be solved in the analogue of L2 for the
Schrödinger equation is still open (an intermediate space was found in [9]).

The problem we are interested in concerns the description of solutions of
equations (2),(3) which develop a singularity in finite time (or blow up in finite
time). That is, solutions such that in the time dynamics, the nonlinear terms play
an important role. This question is important from the physical point of view.
Indeed, equations (2) or (3) appear as simplifications of more complex models. In
particular, one hopes that the simplification is relevant for regular solutions, and
that close to the singularity, the neglected terms will play a role . Blow up in
finite time means that the regular regime where the approximation is carried out
is unstable in time, and close to singularity, a transitory regime appears. From
the description of this transitory regime, one can hope to find the new dynamics
relevant from the physical point of view. In particular, a crucial question, after
the existence of singularity in finite time, is to describe how this singulary forms.

For equation (2), there are two elementary results about existence of blow-up
solutions.

On one hand, in 1972 Zakharov derived in [33] (see also [13],[28]) a Pohozaev type
identity for the nonlinear Schrödinger equation: let u0 ∈ Σ where Σ = H1 ∩
{xu0 ∈ L2}; then for all t, u(t) ∈ Σ and

d2

dt2

∫
|x|2|u|2dx = 16E(u0). (4)

It follows that if E(u0) < 0 then u(t) blows up in finite time. Note that the power
appearing in (2) is the smallest power such that blow-up occurs in H1.

On the other hand, the elliptic theory established in the 80’s ([1],[31],[17], [30])
yields the existence of one explicit solution of (2), periodic in time and of the form
P (t, x) = eitQ(x), where Q is the unique positive solution (up to translation) of
the equation

u = ∆u+ |u| 4N u, (5)

whose L2 norm is characterized by the Gagliardo-Niremberg inequality
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∀v ∈ H1, 1
4
N + 2

∫
|v| 4N+2dx ≤ 1

2

∫
|∇v|2dx

(∫ |v|2dx∫
Q2dx

) 2
N

. (6)

From the conformal invariance, we have that

S(t, x) =
1

tN/2
e−

i
t+i

|x|2
4t Q

(x
t

)
(7)

is a blow-up solution of equation (2). This is in some sense the only explicit
blow-up solution for the critical Schrödinger equation.

Until the 90’s, no rigorous results on blow-up were known for the Zakharov
equation.

II. Results for Nonlinear Critical Schrödinger Equations.

II.1 Characterization of the minimal blow-up solution.
The first task is to define a notion of smallness such that u0 small implies no

blow-up. In the case u0 ∈ H1, energy conservation and (6) yield that if |u0|L2 <
|Q|L2 , the solution is globally defined. Moreover, we note that the blow-up solution
S(t) is such that |S(t)|L2 = |Q|L2. The natural question is to characterize all
minimal blow-up solutions in L2 of equation (2).

a) The result.
We have the following theorem

Theorem 1 ([25]),([26])
Let u0 ∈ H1. Assume that |u(t)|L2 = |Q|L2 and that u(t) blows up in finite

time. Then, up to invariance of equation (2),

u(t) = S(t). (8)

That is, there are x0 ∈ RN , x1 ∈ RN ,T ∈ R, θ ∈ R, and ω ∈ R+ such that

u(t) = ei(−
ω2

t−T +
|x−x0|2
4(t−T ) )

(
ω

t− T

)N
2

Q

(
(x− x0)ω
t− T − x1

)
. (9)

Let us give some idea of the proof. Various arguments in the proof will apply in
other contexts, giving qualitative information about blow-up solutions. Consider
a blow-up solution of minimal mass u(t), and denote by T its blow-up time.

- Localization results on the singularity. Using rough variational estimates,

we show that there exist ρ̃, θ̃, x̃ such that as t → T, u(t) ∼ eiθ̃ρ̃
N
2 Q((x− x̃)ρ̃)

in H1. Then from refined geometrical estimates around Q, there are ρ(t), θ(t),

x(t) such that u(t)− eiθ(t)ρ(t)
N
2 Q((x− x(t))ρ(t)) is bounded in H1. In particular,

|u(t, x + x(t))|2 ⇀ |Q|2L2δx=0 as t → T. In the radial case, a different approach
can be used to show that for all radial blow-up solutions the behavior outside the
origin is mild.

- Local virial identities. Using time variation of
∫
ψ(x)|u(t, x)|2dx, where ψ

is a localized function, we then show that u(t) and u0 decay at infinity. That is,
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u(t) ∈ Σ and |x||u(t, x)| can be controlled in L2 at infinity, uniformly in time.
Moreover, it is shown that the singularity point x(t) has a limit as t→ T (for
example the origin).

- Conclusion using the minimality condition. Let us consider the polynomial
in time of degree two p(t) =

∫
|x|2|u(t, x)|2dx. From the previous steps, p(T ) = 0.

Using the minimality condition, we show that p′(T ) = 0. By explicit calculation,
we check that the energy of a transformation of the initial data u0 is zero with
an L2 norm equal to |Q|L2 , which is the variational characterization of Q up to
invariance of the elliptic equation. This concludes the proof.

b) Application to asymptotic behavior for globally defined solutions [26].
The conformal invariance and the nonblow-up result of Theorem 1 yield a

decay result in time for solutions defined for all time. Indeed, the nonlinear term
can be seen as a perturbation localized in time for the linear Cauchy problem, for
initial data such that u0 ∈ Σ and |u0|L2 ≤ |Q|L2, except for the two solutions P (t)
and S(t) (and the ones related via the invariances). More precisely, as t → +∞,
the nonlinear solution behaves as a solution of the linear Schrödinger equation
(scattering theory can be carried out: u(t, x) ∼ U(t)u∞ as t → +∞, where U(t)
is the free semigroup).

Note that the set of initial data such that this behavior occurs is open, which
implies the following: for all u0 different from P (t) and S(t) such that |u0|L2 =
|Q|L2 , there is a ball in L2 such that if the initial data is inside the ball, the
solution does not blow up. It is optimal since the virial identity yields that for all
ǫ > 0, if u0 = (1 + ǫ)S(−1) or (1 + ǫ)P (−1) then the solution blows up in finite
time.
II.2 Qualitative properties of blow-up solutions
a) Concentration results in L2.
In this subsection, we show that the blow-up phenomena may be observed in L2

and do not depend on the space where the Cauchy theory is applied. Let us assume
first that u0 ∈ H1, then from [22], [12], we have

- Concentration in L2: there are x(t) and ρ(t)→ +∞ such that

lim inf |u(t)|L2(|x−x(t)|≤ρ(t)−1) ≥ |Q|L2. (10)

- asymptotic compactness in L2: for any sequence tn → T there is a subse-
quence tn and an H ∈ H1 with |H|L2 ≥ |Q|L2 such that in H1 − weak

ρ
N
2
n u(tn, (x− xn)ρn) ⇀H. (11)

We do not know if H or |H|L2 depends on the sequence (except for some partial
results in the radial case).

Let us now assume that u0 ∈ L2, and N = 1, 2; energy arguments no longer
apply in this case. Nevertheless, in [6], [27], refinement of Strichartz’ Inequality
(implying that the Cauchy problem can be solved in X ⊃ L2), harmonic analysis
techniques, and the use of the conformal invariance allow us to obtain concentra-
tion in L2 and asymptotic compactness properties in L2 up to the invariance of
the equation. That is, there is an α0 > 0 such that for a subsequence tn and an
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H ∈ L2 with |H|L2 ≥ α0, there are parameters an, bn, xn, ρn, where ρn → +∞,
such that in L2 − weak

eianx+ibn|x|
2

ρ
N
2
n u(tn, (x− xn)ρn) ⇀ H. (12)

Note, from the invariance of the equation, the solution with initial data
eiax+ib|x|

2

c
N
2 H((x− d)c) can be written in terms of the solution with initial data

H .
It is an open problem to prove α0 = |Q|L2 .

b) Construction of blow-up solutions from S(t).
Here we describe constructions of solutions which behave like S(t) at the blow-

up point. Another problem will be to construct if possible other types of blow-up
solutions (with for example a different blow-up rate, see [18],[19]). Let x1, . . . , xn
be given points ofRN . In [21], a blow-up solution is constructed such that the blow-

up set is exactly the points x1, . . . , xn and as t→T, u(t) ∼ Σωi
N
2 S(t, (x − xi)ωi)

in L2, where the ωi are sufficiently large.
In the case N = 2, for u∗ very regular such that ∂αu∗(0) = 0 for |α| ≤ α0, in

[7] the existence of a solution u(t) is proved such that u(t) ∼ S(t, x) +u∗(x) in L2

at the blow-up. An open problem is to reduce α0 to 1 or 2.
c) Giving a sense to the equation after blow-up. [26]
We are interested in giving a sense to the equation after the blow-up time.

We consider the case of a minimal blow-up solution, that is, after renormalization
u(t) = S(t, x) for t < 0.
Let ǫ > 0, and set

uǫ(t, x) = (1− ǫ)S(−1, x) +O(ǫ2) in Σ.

We have that |uǫ|L2 < |Q|L2 , thus uǫ(t) is defined for all time. The question is
what happens in the limit as ǫ → 0 after the blow-up time (for t > 0). Using
the characterization of the minimal blow-up solution and a family of auxiliary
variational problems in Σ, we have the following result:

Theorem 2 ([26]) There is a θ(ǫ) ∈ R continuous in ǫ such that

uǫ(t) → S(t) in H1 for t < 0
|uǫ(0)|2 ⇀ |Q|2L2δx=0

e−iθ(ǫ)uǫ(t) → S(t) in H1 for t > 0.

We then prove that as ǫ→ 0, the omega-limit set of eiθ(ǫ) is S1. From this result,
the omega limit set of uǫ is {uθ | θ ∈ S1}, where

uθ(t) = S(t) for t < 0 and uθ(t) = eiθS(t) for t > 0.

In particular, we first show that the singularity is unstable in time.
In addition, from the blow-up, the physical phenomenon loses its deterministic
character (but just up to one parameter in S1). In addition, this result seems
in some sense independent of the approximation. Therefore, the physics (which
is not understood close to the singularity) has in some sense no influence on the

Documenta Mathematica · Extra Volume ICM 1998 · III · 57–66



62 Frank Merle

behavior of the solution after the blow-up, at least in the case of the minimal
blow-up solution.

III. Results for the Zakharov System.

III.1 No blow-up under smallness conditions
As in the case of the critical Schrödinger equation, for initial data
(u0, n0, v0) in H1, if |u0|L2 < |Q|L2 , then there is no blow-up. Moerover for
any blow-up solution, as t goes to the blow-up time, u(t) concentrates in L2 to a
magnitude of at least |Q|L2 (see (11)).

At the critical mass level, |u0|L2 = |Q|L2 , there is still a periodic solution
(and the family it generates) given by

P̃ (t) = (u(t), n(t), v(t)) = (P (t),−Q2, 0). (13)

Using the coupling between the equations, one can prove ([12]) that there are no
blow-up solutions of (3) such that

|u0|L2 = |Q|L2 . (14)

III.2 Existence of a family of explicit blow-up solutions ([12]).
In fact the family of blow-up solutions of type S, for ω > 0

Sω(t, x) = ω
N
2 S(tω2, xω) (15)

does not disappear. From bifurcation type arguments at ω = +∞ and index
theory, we construct an explicit family of blow-up solutions of equation (3) of
structure similar to that of S(t) (where n and |u|2 are of the same order): for all
ω > 0,

(uω(t, x), nω(t, x)) =

(
(
ω

t
)e−

iω2

t +i
|x|2
4t Pω(

xω

t
),
ω2

t2
Nω(

xω

t
)

)
, (16)

where (Pω , Nω) are radial solutions of the following equation, where r = |x|
{
P +NP = ∆P,
1

c02ω2
(r2 ∂

2N
∂r2 + 6r ∂N∂r + 6N)−∆N = ∆P 2.

(17)

Note that when ω = +∞ (17) reduces to (5). It is then proved that {|Pω|L2} =
(|Q|L2 ,+∞) , which has several consequences:

- There are no minimal blow-up solutions in L2 for the Zakharov equation.
Indeed, for all ǫ > 0, there is a blow-up solution such that |u0|L2 = |Q|L2 + ǫ and
there are no blow-up solutions such that |u0|L2 ≤ |Q|L2 . The situation is different
from the Schrödinger equation.

- Any c > |Q|L2 can be a concentration mass: there is a blow-up solution such
that at the blow-up, |u(t, x)|2 ⇀ cδx=0.

- Using these explicit solutions as ω becomes large, we are able to prove that
the periodic solution P̃ (t) is unstable in the following sense: in all neighborhoods
of it, there is a blow-up solution.
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III.3 Existence of a large class of blow-up solutions [24].
As for the critical Schrödinger equation, a natural question to ask is, For

Hamiltonians H0 < 0, does the solution blow-up? (which will produce a large
class of blow-up solutions). No Pohozaev identity was known until recently. In
[24], the following identity was derived

d2

dt2
M(t) = 2H(u0, n0, v0) +

1

c02

∫
|v|2dx, (18)

where

M(t) =
1

4

∫
|x|2|u|2dx+

1

c02

∫

R2×[0,t]
n(x.v)dxdt. (19)

Note that if c0 = +∞ then relation (19) reduces to (4). The nature of the ob-
struction to global existence is slightly different from that in equation (2). Indeed,
in [23], it is shown that for any blow-up solution, M(t) → −∞ as t goes to the
blow-up time. Nevertheless, by localization techniques, it is proved in the radial
case that if H0 < 0, then the solution blows up in finite time or infinite time (and
is concentrated in L2 at the blow-up).

As a corollary, all periodic solutions of type (u, n) = (eitW (x),−W 2) where
W is a solution of (5) are unstable since H(eitW (x),−W 2, 0) = 0.

III.4 Toward the structural stability of S [23].
Let us measure the blow-up rate by the H1 norm |∇u(t)|L2 . An important

problem is to understand the type of rates at the blow-up time and their stability.
For equation (2), the blow-up of S (that is of the minimal blow-up solution) is 1

|t| .
We expect that minimality is related to stability. It seems not to be the case; in

[18], [19] a blow-up rate of the type |Log|log|t|||
1
2

|t| 12
is observed numerically.

Nevertheless, we show the following result for the Zakharov equation (relating
minimality to structural stability). Consider any blow-up solution of (3) (with any
finite c0), then

|∇u(t)|L2 ≥
c

|t| . (20)

We note that this lower bound is optimal since the solution (uω, nω) blows
up with this rate. Therefore, if we consider the refined equation from the physical

point of view, the solution with blow-up rate |Log|log|t|||
1
2

|t| 12
disappears (even if c0 is

very large).
In [29], the same blow-up rate that was observed for S is seen, and seems nu-
merically stable. It is an open problem to prove that all blow-up solutions of the
Zakharov equation blow up with the same rate as S (the upper bound remains to
be proved).
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On Nonlinear Dispersive Equations
Gustavo Ponce

Introduction: I shall describe some of the recent developments in the application
of harmonic analysis to non-linear dispersive equations. In recent years this subject
has generated an intense activity and many new results have been proved. My
contribution to this field has been made in collaboration with Carlos E. Kenig
and Luis Vega. Their scientific inspiration, which has been so rewarding for me,
is surpassed only by the warmth of their friendship.

We shall be concerned with the initial value problem (IVP) for nonlinear dis-
persive equations of the form

(1)

{
∂tu = iP (∇x)u+ F (u), t ∈ R, x ∈ Rn,
u(x, 0) = u0(x),

where P (D) is the constant coefficient operator defined by its real symbol P (iξ)
and F (·) represents the nonlinearity.

We shall concentrate our attention in the following two problems:

Problem A: The problem of the minimal regularity of the data u0 which
guarantees that the IVP (1) is well-posed.

Problem B: The existence and uniqueness for the IVP (1) for some dispersive
models for which classical approaches do not apply.

Let us first consider Problem A. Our notion of well-posedness includes exis-
tence, uniqueness, persistence, i.e. if u0 ∈ X function space then the corresponding
solution describes a continuous curve in X , and lastly continuous dependence of
the solution upon the data. Thus, solutions of (1) induce a dynamical system on
X by generating a continuous flow, see [Kt].

We use classical the Sobolev spaces X = Hs(Rn) = (1−∆)−s/2L2(Rn), s ∈ R
to measure the regularity of the data.

To illustrate our arguments we consider the IVP for the generalized Korteweg-de
Vries (gKdV) equation

(1.1)

{
∂tu+ ∂3xu+ uk∂xu = 0, t, x ∈ R, k ∈ Z+,
u(x, 0) = u0(x).
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For k = 1 (KdV) the equation in (1.1) was derived by Korteweg-de Vries as a
model for long waves propagating in a channel. Later, the cases k = 1, 2 were
found to be relevant in several physical situations. Also they have been studied
because of their relation to inverse scattering theory and to algebraic geometry
(see [Mi] and references therein).

Local well-posedness results imply global ones via the conservation laws

(1.2) I2(u) =

∞∫

−∞

u2(x, t)dx, I3(u) =

∞∫

−∞

((∂xu)2 − ckuk+2)(x, t)dx,

satisfied by solutions of (1.1), (for k = 1, 2 there are infinitely many Ij ’s, see [Mi]).
Concerning the local well-posedness of the IVP (1.1) our first result is the

following.

Theorem 1.1 ([KePoVe3]).
The IVP (1.1) is locally well-posed in Hs(R) if

(1.3)





k = 1 and s > 3/4,

k = 2 and s ≥ 1/4,

k = 3 and s > 1/12,

k ≥ 4 and s ≥ (k − 2)/4k.−

Observe that if u(·) solves the equation in (1.1) then uλ(x, t) = λ2/ku(λx, λ3t)
is also a solution with data uλ(x, 0) = λ2/ku0(λx) and

(1.4) ‖Ds
xuλ‖2 = cλs−(k−4)/2k.

Thus, for s = (k − 4)/2k the above norm is independent of λ. The result in
Theorem 1.1 for k ≥ 4 correspond to the scaling value in (1.4) and has been shown
to be optimal, see [KePoVe3] and [BKPSV]. Theorem 1.1 and the conservation
laws in (1.2) imply the global well-posedness of (1.1) with u0 ∈ Hs(R), s ≥ 1 and
k = 1, 2, 3. For k ≥ 4 the existence of global solution for data u0 ∈ H1(R) of
arbitrary size is unknown.

To explain our result with more details we choose the case k = 2, i.e. the
modified Korteweg-de Vries (mKdV) equation.

Theorem 1.2 ([KePoVe3]).
Let k = 2. Then for any u0 ∈ H1/4(R) there exist

(1.5) T = c ‖D1/4x u0‖−42 ,

and a unique strong solution u(t) of the IVP (1.1) satisfying

(1.6) u ∈ C([−T, T ] : H1/4(R)),
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and

(1.7) ‖D1/4x ∂xu‖L∞x L2T + ‖u‖L4xL∞T <∞.

Moreover, the map data → solution, from H1/4(R) into the class defined by
(1.6)–(1.7) is locally Lipschitz.

In addition, if u0 ∈ Hs′(R) with s′ > s, then the above results hold with s′

instead of s in the same time interval [−T, T ].-

The properties (1.6)–(1.7) guarantee the uniqueness of the solution and that
the nonlinear term is well defined, i.e. it is at least a distribution.

In [Ka], T. Kato established the existence of a global weak solution for the IVP
(1.1) with k = 1, 2, 3 and data u0 ∈ L2(R2). In [GiTs], Ginibre-Tsutsumi showed
that if (1 + |x|)3/8u0 ∈ L2(R) then IVP (1.1) with k = 2 has a unique solution.
Since the operator Γ = x−3t∂2x commutes with the linear part of the equation in
(1.1) one sees that Theorem 1.2 and the result in [GiTs] complement each other.
Also the estimate of the life span of the local solution in (1.5) agrees with that
given by the scaling argument in (1.4).

The proof of Theorem 1.2 is based on the following two sharp linear estimates,
in which we introduced the notation

(1.8) U(t)v0(x) =

∞∫

−∞

ei(tξ
3+xξ)v̂0(ξ)dξ.

In [KeRu], Kenig-Ruiz proved that

(1.9)



∞∫

−∞

sup
[−1,1]

|U(t)v0|4dx



1/4

≤ c‖D1/4x v0‖2,

and that both indexes in (1.8), i.e. 4, 1/4 are optimal. In [KePoVe1], we showed
that there exists c > 0 such that for any x ∈ R

(1.10)



∞∫

−∞

|∂xU(t)v0|2dt



1/2

= c‖v0‖2.

This is a sharp version of the local smoothing effects first established by T. Kato
[Ka] for solutions of the KdV equation, see also [KuFr].

In [Bo1], J. Bourgain showed that the IVP for the KdV (k = 1 in (1.1)) is
locally (consequently globally) well-posed in L2. His proof relies on the use of the
spaces Xs,b, i.e. the completion of S(R2) respect to the norm

(1.11) ‖F‖Xs,b = ‖(1 + |τ − ξ3|)b(1 + |ξ|)sF̂ (ξ, τ)‖L2(R2).
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These spaces were introduced by M. Beals [Be] in his study of propagation of
singularities for solutions to semi-linear wave equations, and have been success-
fully used in several related works. In [KlMa] and subsequent works, Klainerman-
Machedon used them to study the minimal regularity problem on the data for
systems of nonlinear wave equations with nonlinearities satisfying a special struc-
ture.

In [KePoVe4], we proved that the IVP for the KdV equation (k = 1 in (1.1)) is
locally well-posed in Hs(R), s > −3/4.

Theorem 1.3 ([KePoVe4]).
Let s ∈ (−3/4, 0]. Then there exists b ∈ (1/2, 1) such that for any u0 ∈ Hs(R)

there exist T = T (‖u0‖Hs) > 0 (with T (ρ) → ∞ when ρ → 0) and a unique
solution u(t) of the IVP (1.1) in the time interval [−T, T ] satisfying

(1.12) u ∈ C([−T, T ] : Hs(R)),

(1.13) u ∈ Xs,b ⊆ L∞x,ℓoc(R : L2t (R)),

and

(1.14) ∂x(u2) ∈ Xs,b−1, ∂tu ∈ Xs−3,b−1.

Moreover, the map data→ solution from Hs(R) into the class defined by (1.12)-
(1.14) is locally Lipschitz.

In addition, if u0 ∈ Hs′(R) with s′ > s, then the above results hold with s′

instead of s in the same time interval [−T, T ].-

The method of proof of Theorem 1.3 is based on bilinear estimates involving the
spaces Xs,b and elementary techniques. These techniques were motivated by the
work of C. Fefferman [Fe] for the L4(R2) estimate for the Bochner-Riesz operator.

In [KePoVe4], we also established that for the case of the mKdV (k = 2 in (1.1))
the argument based on multilinear estimates and the use of Xs,b-spaces does not
improve our result in Theorem 1.2.

The gap between the KdV result (s > −3/4) and that for the mKdV (s ≥ 1/4)
is somehow consistent with the Miura transformation, i.e. if v solves the mKdV
equation then u = c1v

2 + c2∂xv solves the KdV equation.
The method of proof in [KePoVe3], [Bo1],[KePoVe4], is based on the contraction

principle which combined with the Implicit Function Theorem shows that the map
data → solution is smooth.

In [Bo2], J. Bourgain proved that if one requires the map data → solution be
smooth (C3 suffices) then our results for the KdV (s > −3/4) in [KePove4] and
for the mKdV (s ≥ 1/4) in [KePoVe3] are optimal. In particular, it follows that
these results cannot be improved by using only an iteration argument.

Regarding the global well-posedness of the IVP for the KdV and mKdV equa-
tions we have the following recent results. In [FoLiPo], Fonseca-Linares-Ponce
showed that the IVP for the mKdV equation is globally well-posed (although not
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necessarily globally bounded) in Hs(R), s ∈ (3/5, 1). In [CoSt], Colliander-
Staffilani proved the IVP for the KdV equation is globally well-posed (although
not necessarily globally bounded) in Hs(R), s ∈ (−3/20, 0). The proofs combine
ideas in [Bo3] and Theorems 1.2-1.3 described above.

Problem B.

We begin by considering the IVP for nonlinear Schrödinger equations of the form

(2.1)

{
∂tu = iLu+ P (u,∇xu, u,∇xu), t ∈ R, x ∈ Rn,
u(x, 0) = u0(x),

where L is a non-degenerate constant coefficient, second order operator

(2.2) L =
∑

j≤k
∂2xj −

∑

j>k

∂2xj , for some k ∈ {1, .., n},

and P : C2n+2 → C, is a polynomial of the form

(2.3) P (z) = P (z1, .., z2n+2) =
∑

l0≤|α|≤d
aαz

α, l0 ≥ 2.

When a special form of the nonlinear term P is assumed, for example,

(2.4) D∂xju
P, are real for j = 1, .., n,

standard energy estimates provide the desired result. In this case, the dispersive
part of the equation, the operator L, does not play any role. Another technique
used to overcome the “loss of derivatives” introduced by the nonlinear term is to
present the problem in a suitable analytic function spaces, see [SiTa], [Hy].

In [KePoVe2], we proved that (2.1) is locally well-posed for “small” data, in
Hs(Rn), for s large enough, when l0 ≥ 3 in (2.3), and in a weighted version of
it, if l0 = 2 in (2.3). This result applies to the general form of L in (2.2). The
main idea is to use in the integral equation version of the IVP (2.1)

(2.5) u(t) = eitLu0 +

∫ t

0

ei(t−t
′)LP (u,∇xu, u,∇xu)(t′)dt′,

and the following estimates,

(2.6)





(i) |||D1/2eitLu0|||T ≡ sup
µ∈Zn

(

∫ T

0

∫

Qµ

|D1/2eitLu0|2dxdt)1/2 ≤ c‖u0‖2,

(ii) |||∇x
∫ t

0

ei(t−t
′)LF (t′)dt′|||T ≤ c|||F |||′T ,

where {Qµ}µ∈Zn is a family cubes of side one with disjoint interiors covering Rn,

and D = (−∆)1/2.
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The local smoothing effect in (i) was proven by Constantin-Saut [CnSa], Sjölin
[Sj], and Vega [Ve]. We proved the inhomogeneous version (ii) in [KePoVe2].

It is essential the gain of one derivative in (2.6) (ii). This allows to use the
contraction principle in (2.5) and avoid the “loss of derivatives”. However, the
||| · ||| norm forces the use of its dual

(2.7) |||G|||′T ≡ ‖G‖l1µ(L2(Qµ×[0,T ])) =
∑

µ∈Zn
(

∫ T

0

∫

Qµ

|G(x, t)|2dxdt)1/2.

This factor cannot be made small by taking T small, except if G(t) is small at
t = 0. It is here where the restriction on the size of the data appears.

In [HyOz], for the one dimensional case n = 1, Hayashi-Ozawa removed the
smallness assumption on the size of the data in [KePoVe2]. They used a change
of variable to obtain an equivalent system with a nonlinear term independent of
∂xu, which can be treated by the standard energy method.

In [Ch], for the elliptic case L = ∆, H. Chihara removed the size restriction on
the data in any dimension. The change of variable in this case involves pseudo-
differential operators ψ.d.o’s. A main step in his proof is a diagonalization method
in which the assumption on the ellipticity of L is essential.

In [KePoVe5], we removed the size restriction for the general form of the oper-
ator L in (2.1).

Theorem 2.1 ([KePoVe5]). There exist s = s(n;P ) > 0, and m = m(n;P ) > 0,
such that for any u0 ∈ Hs(Rn) ∩ L2(Rn : |x|2mdx) the IVP (2.1) has a unique
solution u(·) defined in the time interval [0, T ] satisfying that

(2.8) u ∈ C([0, T ] : Hs(Rn) ∩ L2(Rn : |x|2mdx)), and |||Js+1/2u|||T <∞.

If s′ > s , then the above results hold, with s′ instead of s, in the same time
interval [0, T ].
Moreover, the map data → solution from Hs(Rn) ∩ L2(Rn : |x|2mdx) into the

class in (2.8) is locally continuous.-

Our argument of proof uses the Calderón-Vaillancourt class [CaVa]. This was
suggested by the work of J. Takeuchi [Tk]. In order to extend the argument
in [KePoVe2] to prove Theorem 2.1, we need to show that, under appropriate as-
sumptions on the smoothness and decay of the coefficients bk,j = (bk,1, ., bk,n), k =
1, 2, j = 1, ., n, the IVP for the linear Schrödinger equation with variable coeffi-
cient lower order terms

(2.9)

{
∂tv = iLv + b1(x) · ∇xv + b2(x) · ∇xv + F (x, t), t ∈ R, x ∈ Rn,
v(x, 0) = v0 ∈ Hs(Rn),

has a unique solution v ∈ C([0, T ] : Hs(Rn)) such that

(2.10) sup
[0,T ]

‖v(t)‖Hs + |||Js+1/2v|||T ≤ c(b1; b2;T )(‖v0‖Hs + |||Js−1/2F |||′T ).
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Equations of the form described in (2.1) with L non-elliptic arise in several
situations. For example, in the study of water wave problems, Davey-Stewartson
[DS], and Zakharov-Shulman [ZaSc] systems, in ferromagnetism, Ishimori system
[Ic], as higher dimension completely integrable model, see [AbHa].

Consider the Davey-Stewartson (DS) system

(2.11)





i∂tu+ c
0
∂2xu+ ∂2yu = c

1
|u|2u+ c

2
u∂xϕ,

∂2xϕ+ c
3
∂2yϕ = ∂x|u|2,

u(x, y, 0) = u0(x, y),

where u = u(x, y, t) is a complex-valued function, ϕ = ϕ(x, y, t) is a real-valued
function, (when (c

0
, c
1
, c
2
, c
3
) = (−1, 1,−2, 1) or (1,−1, 2,−1) the system in (1.1)

is known in inverse scattering as the DSI and DSII respectively).
In the case c3 < 0, c0 < 0, (i.e. the equation in (1.6) is essentially not semi-

linear, and the dispersive operator is non elliptic) the only available existence
results are for analytic data, Hayashi-Saut [HySa], or “small” data, Linares-Ponce
[LiPo]. For other results for the DS system we refer to [GhSa], [HySa], [LiPo] and
references therein.

The IVP for the Ishimori system can be written as

(2.12)





i∂tu+ ∂2xu∓ ∂2yu =
2u((∂xu)

2−(∂yu)2)
1+|u|2 + ib(∂xϕ∂yu− ∂yϕ∂xu),

∂2xϕ± ∂2yϕ = 4i
∂xu ∂yu−∂xu ∂yu

(1+|u|2)2 ,

u(x, y, 0) = u0(x, y).

The (−,+) case was studied by A. Souyer [So]. The case (+,−) in (2.11) was
first studied by Hayashi-Saut [HySa] in a class of analytic functions which allowed
them to obtain local and global existence for small analytic data. In [Hy2], N.
Hayashi removed the analyticity assumptions in [HySa] by establishing the local
existence and uniqueness of solutions of the IVP (2.12), for the case (+,−), with
small data u0 in the weighted Sobolev space H4(R2) ∩ L2((x2 + y2)4dxdy).

In a forthcoming article [KePoVe6] we remove the smallness assumption in
[Hy2]. In particular, we prove the local existence and uniqueness of solutions of
the IVP (2.12) with (+,−) sign for data of arbitrary size in a weighted Sobolev
space. Several problems have to be overcome to extend our approach in [KePoVe5]
to this case. First, we have to deal with operators which are ψ.d.o. only in one
variable. In particular, to establish the local smoothing effects described in (2.6)
we shall need the operator valued version of the sharp G̊arding inequality. Another
difficulty of our approach is that for the linearized system associated to (2.12) the
coefficients of the first order terms do not decay in both variables. One has terms
of the form a(x, y)∂xu where the coefficient a(·) is a smooth function with decay
only in the x-variable. However, a careful analysis, consistent with Mizohata’s
condition in [Mz], shows that this one variable decay suffices.
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Abstract. We survey the role of complex geometrical optics solutions to
partial differential equations in the solution of several inverse boundary value
problems.
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0. Introduction

Inverse boundary problems are a class of problems in which one seeks to deter-
mine the internal properties of a medium by performing measurements along the
boundary of the medium. These inverse problems arise in many important physi-
cal situations, ranging from geophysics to medical imaging to the non-destructive
evaluation of materials.

The appropriate mathematical model of the physical situation is usually given
by a partial differential equation (or a system of such equations) inside the medium.
The boundary measurements are then encoded in a certain boundary map. The
inverse boundary problem is to determine the coefficients of the partial differential
equation inside the medium from knowledge of the boundary map.

In this paper we will survey part of the significant progress which has been
made in the last twenty years in this area. Many of the advances have been a
consequence of the construction of complex geometrical optics solutions for the
class of partial differential equations under consideration. The prototypical ex-
ample of an inverse boundary problem is the inverse conductivity problem, also
called electrical impedance tomography, first proposed by A. P. Calderón [7]. In
this case the boundary map is the voltage to current map; that is, the map assigns
to a voltage potential on the boundary of a medium the corresponding induced
current flux at the boundary of the medium. The inverse problem is to recover
the electrical conductivity of the medium from the boundary map.
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We will also discuss in this paper other examples of inverse boundary prob-
lems, including examples associated to the Schrödinger equation in the presence
of a magnetic field, Maxwell’s equations and the Lamé system of elasticity. The
unifying theme of the paper is the role of complex geometrical optics solutions in
inverse boundary value problems and our selection of problems reflects this choice.
We list a series of basic open problems in the field. For an account of the close con-
nection between inverse boundary value problems and inverse scattering problems
at a fixed energy see [40]. Another important omission is the discussion of inverse
boundary value problems for hyperbolic equations, in particular the Boundary
Control Method. See the review paper [4] for more details.

1. The inverse conductivity problem for an isotropic conductivity

Let Ω ⊆ Rn be a bounded domain with smooth boundary (many of the results are
valid for Lipschitz boundaries). We denote by γ the conductivity of Ω, which we
assume is in L∞(Ω) and strictly positive. The potential u in Ω with voltage f on
∂Ω satisfies

(1.1) Lγu = div(γ∇u) = 0 in Ω; u|∂Ω = f.

The voltage to current map, or Dirichlet to Neumann map (DN), is defined by

(1.2) Λγ(f) =

(
γ
∂u

∂ν

)∣∣∣∣
∂Ω

,

where u is the solution of (1.1), and ν denotes the unit outer normal to ∂Ω.
The inverse problem is to determine γ knowing Λγ . More precisely we want to

study properties of the map

(1.3) γ
Λ−−−−−→Λγ .

Note that Λγ : H
1
2 (∂Ω) → H−

1
2 (∂Ω) is bounded. We can divide this problem

into several parts.
a) Injectivity of Λ (identifiability).
b) Continuity of Λ and its inverse if it exists (stability).
c) What is the range of Λ? (characterization problem).
d) Formula to recover γ from Λγ (reconstruction).
e) Give a numerical algorithm to find an approximation. of the conductivity given

a finite number of voltage and current measurements at the boundary (numer-
ical reconstruction).
In this section we outline the proof of the following identifiability result proven

in [36].

1.1 Theorem. Let n ≥ 3. Let γ1, γ2 ∈ C2(Ω) be strictly positive functions in Ω̄
such that Λγ1 = Λγ2 . Then γ1 = γ2 in Ω̄.

Sketch of the proof. Using Green’s thorem it is easy to prove that

(1.4) Qγ(f) :=

∫

Ω

γ|∇u|2dx =

∫

∂Ω

Λγ(f)fdS,
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where u is the solution of (1.1). In other words Qγ(f) is the quadratic form
associated to the selfadjoint linear map Λγ(f), i.e., to know Λγ(f) or Qγ(f) for

all f ∈ H 1
2 (∂Ω) is equivalent. Qγ(f) measures the energy needed to maintain the

potential f at the boundary.
Formula (1.4) suggests that instead of prescribing voltage measurements at the

boundary to determine the conductivity in the interior, we find solutions of the
equation (1.1). This is the point of view of Calderón [7] in his analysis of the
linearized problem at a constant conductivity.

To find these solutions we first reduce the problem to studying the Schrödinger
equation at zero energy. Let γ ∈ C2(Ω) be a positive function. We have

(1.5) γ−
1
2Lγγ

− 12u = (∆− q)u, q =
∆
√
γ

√
γ
.

For any q ∈ L∞(Ω) we can define the set of Cauchy data

Cq = {(f, g); f = u|Ω, g =
∂u

∂ν
|Ω, u ∈ H1(Ω) solution of (1.1)}

If 0 is not a Dirichlet eigenvalue of ∆− q then Cq is the graph of a map which is,
by definition, the DN map. Theorem 1.1 follows from Theorem 1.2 and the fact
that Λγ determines both γ at the boundary and the normal derivative of γ at the
boundary (see [15], [37]).

1.2 Theorem. Assume qi ∈ L∞(Ω), i = 1, 2 and Cq1 = Cq2 . Then q1 = q2.

Sketch of the proof of Theorem 1.2. The key result is the construction of complex
geometrical optics solutions to the Schrödinger equation. This was motivated by
Calderón’s analysis of the linearized problem at a constant conductivity [7].

1.1 Lemma. Let q ∈ L∞(Rn) with compact support. Let ρ ∈ Cn with ρ · ρ = 0.
Let −1 < δ < 0. Then if |ρ| ≥ C(δ)supx∈Rn |(1 + |x|2)q(x)| for some C(δ) > 0,
there exists a unique solution of (∆− q)u = 0 in Rn of the form

(1.6) u = ex·ρ(1 + ψq(x, ρ))

with ψq(·, ρ) ∈ L2δ(Rn). Moreover ‖ψq(·, ρ)‖L2δ(Rn) goes to 0 as |ρ| goes to infinity.
A more precise estimate is proven in [36]. (Here L2δ(R

n) denotes the weighted L2

space with norm ‖f‖2
L2δ(R

n)
=
∫

(1 + |x|2)δ|f(x)|2dx.)

Let qi ∈ L∞(Ω) as in the statement of Theorem (1.2). We define qi = 0 in
Rn−Ω. Let ρi, i = 1, 2 as in Lemma (1.1) with ρ1 = η+i(k+l), ρ2 = −η+i(k−l)
with η, k, l ∈ Rn satisfying 〈η, k〉 = 〈k, l〉 = 〈η, l〉 = 0, |η|2 = |k|2 + |l|2 and
|l| ≥ Ri, with Ri sufficiently large so that Lemma 1.1 is valid for qi, i = 1, 2 (here
we use n ≥ 3). We take

(1.7) ui = ex·ρi(1 + ψqi(x, ρi)), i = 1, 2.

The next important ingredient is the following identity which follows easily from
Green’s theorem.
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1.2 Lemma. Let qi ∈ L∞(Ω) , i = 1, 2 and Cq1 = Cq2 . Then

(1.8)

∫

Ω

(q1 − q2)u1u2 = 0

for every solution ui ∈ H1(Ω) of (∆− qi)ui = 0 in Rn.

Now we plug (1.7) into (1.8). Taking the limit as |l| → ∞, we easily conclude that
the Fourier transform of q1 and q2 coincide.

In order to construct ψq as in (1.6) we solve the equation

(1.9) ∆ρψq = q(1 + ψq) with ∆ρf = e−x·ρ∆(ex·ρf).

We note that the characteristic variety of ∆ρ is a codimension two real submani-
fold. We can construct an inverse ∆ρ that satisfies the following estimate proven
for n ≥ 3 in [36] and for n = 2 in [35].

(1.10) ‖∆−1ρ ‖δ+1,δ ≤
C

|ρ|

with −1 < δ < 0, C is a positive constant, and ‖ ‖δ+1,δ denotes the operator norm.
Using the complex geometrical optics solutions of Lemma 1.1 Alessandrini

proved stability estimates for the map (1.3). A reconstruction method using these
solutions was proposed in [19], [25]. We remark that the construction of the solu-
tions (1.6) is in the whole of Rn. Complex geometrical solutions in compact sets
have been constructed in [8], [10].

Theorem 1.1 extends to non-linear conductivities [29]. Theorem 1.2 extends
to the non-linear Schrödinger equation under some additional assumptions on the
potential [14]. These results use a linearization procedure due to Isakov [11].

Maxwell’s equations.
One obtains the conductivity equation (1.1) if one neglects the time variation of

the electromagnetic field in Maxwell’s equations. We now describe the boundary
map in this case.

Let Ω ⊆ R3 be a bounded domain with smooth boundary. The electromagnetic
field (E,H) satisfies the frequency domain Maxwell’s equation which are given by

(1.11) rotE = iωµH, rotH = (−iωε+ σ)E in Ω

where ω > 0 is the time-harmonic frequency of the field, ε > 0 denotes the electrical
permittivity, µ > 0 the magnetic permeability, and σ ≥ 0 the conductivity. We
assume that all the functions are smooth. The boundary map is given by

Λε,µ,σ(ω) : ν ∧E|∂Ω → ν ∧H|∂Ω

where E,H satisfies (1.11). A global identifiability result was proven in this case in
[26]. The proof was simplified in [27], where the problem is reduced to constructing
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geometrical optics solutions for a Schrödinger equation with q an 8 × 8 matrix.
Lemma 1.1 applies also in this case.

Open problem 1. How much smoothness should one assume on the conductivity
for Theorem 1.1 to be valid? R. Brown extended Theorem 1.1 to conductivities in
C
3
2+ǫ(Ω), with ǫ any positive number. The natural conjecture is that the theorem

holds for Lipschitz conductivities since unique continuation is valid in this case.
There are no known counterexamples for rough conductivites. Kohn and Vogelius
proved identifiability for piecewise real-analytic conductivities [16]. In [12] the case
of a conductivity having a jump discontinuity across the boundary of a subdomain
is considered.
Open problem 2. Is Theorem 1.1 valid if we measure the DN map only on part
of the boundary?
Open problem 3. Is it possible to characterize the boundary values of the com-
plex geometrical optics solutions (1.6)? This might have implications in the char-
acterization and reconstruction problem.
Open problem 4. Is it possible to develop the reconstruction method based on
the complex geometrical optics solutions into a convergent numerical algorithm?
Open problem 5. (The anisotropic case.) Conductivities may depend also on
direction. Muscle tissue in the human body is an example. In this case the conduc-
tivity is represented by a positive definite matrix. It seems like a difficult problem
to find complex geometric optics solutions in the anisotropic case. Moreover, it
is not true that the DN map in this case determines uniquely the conductivity.
See [38] for a discussion of the obstruction to identifiability in this case. The
case of real analytic conductivities was considered in [17]. The case of quasilinear
real-analytic anisotropic conductivities is discussed in [31]. For further results see
[38].

2. The two dimensional case

Nachman proved in [20] that, in the two dimensional case, one can uniquely
determine conductivities in W 2,p(Ω) for some p > 1 from Λγ . An essential part
of Nachman’s argument is the construction of the complex geometrical optics so-
lutions (1.6) for all complex frequencies ρ ∈ C2, ρ · ρ = 0, for potentials of the
form (1.5). Then he applies the ∂-method in inverse scattering, pioneered in one
dimension by Beals and Coifman [2] and extended to higher dimensions by sev-
eral authors (see [25] for further discussions and applications of the ∂ method).
The analog of Theorem 1.2 is open, in two dimensions, for a general potential
q ∈ L∞(Ω). We outline a different approach to [20] that allows less regular con-
ductivities.

The inverse conductivity problem.
We describe here an extension of Nachman’s result to W 1,p(Ω), p > 2, conduc-

tivities by Brown and the author [6]. We follow an earlier approach of Beals and
Coifman [3], who studied scattering for a first order system whose principal part

is

(
∂ 0
0 ∂

)
.
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2.1 Theorem. Let n = 2. Let γ ∈ W 1,p(Ω), p > 2, γ strictly positive. Assume
Λγ1 = Λγ2. Then γ1 = γ2 in Ω.

We first reduce the conductivity equation to a first order system. We define the
scalar potential q and matrix potential Q by

(2.1) q = −1

2
∂ log γ, Q =

(
0 q
q 0

)
.

We let D be the operator

(2.2) D =

(
∂ 0
0 ∂

)
.

An easy calculation shows that if u satisfies the conductivity equation div(γ∇u) =
0, then

(2.3) D

(
v
w

)
−Q

(
v
w

)
= 0 with

(
v
w

)
= γ

1
2

(
∂u
∂u

)
.

In [6] matrix solutions of (2.3) are constructed which have the form

(2.4) uk = m(z, k)

(
eizk 0

0 e−izk

)
,

where z = x1 + ix2, k ∈ C, with m → 1 as |z| → ∞ in a sense to be described
below. To construct m we solve the integral equation

(2.5) m−D−1k Qm = 1

where, for a matrix-valued function A,

DkA = E−1k DEkA; EkA = Ad + Λ−1k Aoff; Λk(z) =

(
ei(zk+zk) 0

0 e−i(zk+zk)

)
.

Here Ad denotes the diagonal part of A and Aoff the antidiagonal part.
The next result gives the solvability of (2.5) in an appropriate space.

2.1 Lemma. Let Q ∈ Lp(R2), p > 2, and compactly supported. Assume that Q is a
hermitian matrix. Choose r so that 1p + 1

r >
1
2 and then β so that βr > 2. Then the

operator (I −D−1k Q) is invertible in Lr−β. Moreover the inverse is differentiable
in k in the strong operator topology. Here Lrβ denotes a weighted L

r space.

Lemma 2.1 implies the existence of solutions of the form (2.4) with m − 1 ∈
Lr−β(R2) with β, r as in Lemma 2.1. The next step, following the ∂ method,

consists in relating ∂
∂k
m(z, k) and scattering data that in turn is determined from

the DN map. For more details see [6].
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Problem 5 has been solved in the anisotropic case in two dimensions for suf-
ficiently smooth conductivities. By using isothermal coordinates, one can reduce
the anisotropic case to the isotropic case, and therefore construct complex geo-
metrical optics solutions in this case (see [34].) The case of quasilinear anisotropic
conductivities is considered in [31].
Open problem 6: The potential case. Problems 1-4 are also open for the
inverse conductivity problem in two dimensions. As we mentioned at the beginning
of this section, the analog of Theorem 1.2 is unknown at present for a general
potential q ∈ L∞(Ω). By Nachman’s result it is true for potentials of the form q =
∆u
u with u ∈ W 2,p(Ω), u > 0 for some p, p > 1. Sun and Uhlmann proved generic

uniqueness for pairs of potentials in [32]. The semilinear case, under additional
assumptions on the potential, was considered in [13]. In [33] it is shown that one
can determine the singularities of an L∞ potential from its Cauchy data.

3. First order perturbations of the Laplacian

There are several inverse boundary value problems associated to first order per-
turbations of the Laplacian. We consider briefly here an inverse boundary value
problem associated to the Lamé system in elasticity theory.

We first discuss how to construct complex geometrical optics solutions for any
scalar first order perturbation of the Laplacian.

Let LN = ∆ + N(x,D) with N(x,D) a first order differential operator in Rn

with smooth coefficients with compact support. We attempt to construct solutions
uρ of LNuρ = 0 of the form uρ = ex·ρmρ. The equation for m(x, ρ) is Mρmρ :=
(∆ρ +Nρ)mρ = 0 where Nρf = e−x·ρN(ex·ρf) and ∆ρ as in (1.9).

The difficulty in finding mρ is that the operator ∆−1ρ Nρ contain terms that don’t
decay in |ρ| in any reasonable norm. We get around this difficulty by conjugating
the operator ∆ρ + Nρ to an operator that behaves like a zeroeth order pertur-
bation of ∆ρ. This idea is motivated by formula (1.5). To do this we consider
pseudodifferential operators depending on a complex parameter [28]. For these
operators the variable ρ behaves like the variable ξ. More precisely, we define
Z = {ρ ∈ Cn − 0; ρ · ρ = 0} and A ∈ Lm(Rn, Z) if we can write

Af(x) =

∫
ei〈x,ξ〉aρ(x, ξ)f̂ (ξ)dξ, f ∈ C∞0 (Rn), where aρ ∈ Sm(Rn, Z), i.e.

.

sup
x∈K
|∂αx ∂βξ aρ(x, ξ)| ≤ Cα,β,K(1 + |ξ|+ |ρ|)m−|β|,∀K ⊂⊂ Rn.

.
We have that ∆ρ ∈ L2(Rn, Z), Nρ ∈ L1(Rn, Z). The key result proved in [21] is

that one can conjugate ∆ρ +Nρ to ∆ρ + Cρ, with Cρ ∈ L0(Rn, Z).

3.1 Lemma. Let K ⊂⊂ Rn be a compact subset. LetMρ(x,D) be as defined above.
Then there exist Aρ, Bρ ∈ L0(Rn, Z) such that

(3.1) MρAρ = Bρ (∆ρ + Cρ) ,
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where Cρ ∈ L0(Rn, Z). Moreover φAρφ and φBρφ are invertible on L
2(K) for

large |ρ| for all φ ∈ C∞0 (Rn) with φ = 1 on K.

Now it is easy to construct many solutions lρ of (∆ρ+Cρ)lρ = 0 in any compact
set since the operator φCρφ is bounded on L2(Rn), with operator norm indepen-
dent of |ρ| being a pseudodifferential operator of order zero depending on the
parameter ρ (see [28] for more details on thiese operators.) Therefore, by the in-
tertwining property (3.1), mρ = Aρlρ is a solution of Mρmρ = 0. The construction
of Aρ, Bρ is quite explicit.

In the paper [23], building on early work of Sun [30], these complex geometrical
optics solutions were used to prove a global identifiability result for an inverse
boundary value problem associated to the Schrödinger equation in the presence
of smooth magnetic potential and electric potential. C. Tolmasky reduced the
regularity needed in [39] to just one derivative for the magnetic potential, and a
bounded electric potential, by using non-smooth symbols depending on the com-
plex parameter ρ. The paper [18] also uses these solutions to prove a global iden-
tifiability result for Maxwell’s equations in chiral media by reducing this case to a
first order system perturbation of the Laplacian.

An inverse boundary value problem for the elasticity system.
An inverse boundary value problem arising in the mechanics of materials is

to determine the elastic parameters of a medium by making displacement and
traction measurements at the boundary of the medium. We describe briefly below
the boundary map in this case.

Let Ω ⊆ Rn be a bounded open set with smooth boundary. We consider Ω
as an elastic, isotropic, inhomogeneous medium with Lamé parameters λ, µ. The
generalized Hooke’s law states that under the assumption of no body forces acting
on Ω, the displacement u satisfies

(3.2) (Lu)i = (Lλ,µu)i =
n∑

j,k,l=1

∂

∂xj
Cijkl

∂

∂xl
uk = 0 in Ω, i = 1, . . . , n,

u|∂Ω = f

where

(3.3) Cijkl = λδijδkl + µ(δikδij + δilδjk) (1 ≤ i, j, k, l ≤ n),

with δij the Kronecker delta and (Lu)i denotes the i-th component of Lu.
C = (Cijkl) is the elastic tensor. The boundary value problem (3.2) has a

unique solution under the strong convexity condition µ > 0, nλ+ 2µ > 0 in Ω̄.
The Dirichlet to Neumann map is defined in this case by

(3.4) (Λλ,u(f))i =
n∑

l,k,l=1

νjCijkl
∂uk
∂xl

∣∣∣∣
∂Ω

, i = 1, ..., n

where ν = (ν1, . . . , νn) is the unit outer normal to ∂Ω and u is the solution of (3.2).
Physically the DN map sends the displacement at the boundary to the traction at
the boundary. The following global identifiability result was proven in [21].
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3.1 Theorem. Let n ≥ 3. Let (λi, µi) ∈ C∞(Ω̄) × C∞(Ω̄), i = 1, 2 satisfy the
strong convexity condition (3.3). Assume Λ(λ1,µ1) = Λ(λ2,µ2). Then (λ1, µ1) =

(λ2, µ2) in Ω̄.

The proof of Theorem 3.1 follows the general outline of the proof of Theorem
1.2. Namely, one proves an identity similar to (1.8) by using Green’s theorem.
Second, one reduces the elasticity system to a first order system (a more direct
way to do this was given in [9]). Now one constructs geometrical optics solutions
for the elasticity system using Lemma 3.1, which also applies to the first order
system under consideration. The details of this outline can be found in [21].
Open problem 7. The analog of problems 1-5 are also open for the elasticity
system. The analog of Theorem 2.1 is not known for the elasticity system in two
dimensions. It is known that one can uniquely identify from the DN map Lamé
parameters close to constant (see [22].) The methods of section 2 might be useful
to prove a global identifiability result in this case.
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Scattering Theory: Some Old and New Problems
D. Yafaev

Abstract. Scattering theory is, roughly speaking, perturbation the-
ory of self-adjoint operators on the (absolutely) continuous spectrum.
It has its origin in mathematical problems of quantum mechanics and
is intimately related to the theory of partial differential equations.
Some recently solved problems, such as asymptotic completeness for the
Schrödinger operator with long-range and multiparticle potentials, as well
as open problems, are discussed. We construct also potentials for which
asymptotic completeness is violated. This corresponds to a new class of
asymptotic solutions of the time-dependent Schrödinger equation. Spe-
cial attention is paid to the properties of the scattering matrix, which is
the main observable of the theory.

1991 Mathematics Subject Classification: Primary 35J10, 47A75; Sec-
ondary 81U20
Keywords and Phrases: wave operators, asymptotic completeness, the N -
particle Schrödinger operator, new channels of scattering, the scattering
matrix

1. Basic notions. Let H0 and H be self-adjoint operators on Hilbert spaces

H0 and H, respectively. Let P
(ac)
0 be the orthogonal projection on the absolutely

continuous subspace H(ac)(H0) of H0 and J : H0 → H be a bounded operator.
The main problem of mathematical scattering theory (see e.g. [23] or [31]) is to
show the existence of the strong limits

W± = W±(H,H0;J) = s− lim
t→±∞

exp(iHt)J exp(−iH0t)P (ac)0 , (1)

known as the wave operators. If the limits (1) exist, then the wave operators
enjoy the intertwining property HW± = W±H0, so their ranges are contained in
H(ac)(H). In the most important case H0 = H, J = Id, the limit (1) is isometric
and is denoted W±(H,H0). The operator W±(H,H0) is said to be complete if its
range coincides with H(ac)(H). This is equivalent to the existence of W±(H0,H).
In terms of the operators (1) the scattering operator is defined by S = (W+)∗W−.
It commutes with H0 and hence reduces to multiplication by the operator-function
S(λ), known as the scattering matrix, in a representation of H0 which is diagonal
for H0.

In scattering theory there are two essentially different approaches. One of
them, the trace-class method, makes no assumptions about the “unperturbed”
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operatorH0. Its basic result is the Kato-Rosenblum theorem (and its extension due
to M. Birman and D. Pearson), which guarantees the existence of W±(H,H0;J) if
the perturbation V = HJ−JH0 belongs to the trace class. According to the Weyl-
von Neumann-Kuroda theorem this condition cannot be relaxed in the framework
of operator ideals even in the case J = Id. The second, smooth, method relies
on a certain regularity of the perturbation in the spectral representation of the
operator H0. There are different ways to understand regularity. For example, in
the Friedrichs model [8] V is an integral operator with smooth kernel. Another
possibility is to assume that V = K∗K0 where K is H-smooth (in the sense of
T. Kato which, roughly speaking, means that the function ||K exp(−Ht)f ||2 is
integrable on R uniformly for ||f || ≤ 1) and K0 is H0-smooth.

The assumptions of trace-class and smooth scattering theory are quite differ-
ent. Thus it would be desirable to develop a theory unifying the trace-class and
smooth approaches. Of course this problem admits different interpretations, but
it becomes unambiguously posed in the context of applications, especially to dif-
ferential operators. Suppose that H = L2(R

d), H0 = −∆ +V0(x), H = H0+V (x)
where V0 and V are real bounded functions and V (x) = O(|x|−ρ) as |x| → ∞.
Trace-class theory shows that the wave operators W±(H,H0) exist (and are com-
plete) if V0 is an arbitrary bounded function and ρ > d. Smooth theory requires
an explicit spectral analysis of the operator H0, which is possible for special V0
only (the simplest case V0 = 0) but imposes the less stringent assumption ρ > 1
on the perturbation V . This raises

Problem 1 Let d > 1. Do the wave operators W±(H,H0) exist for arbitrary
V0 ∈ L∞(Rd) and V satisfying the bound V (x) = O(|x|−ρ), assuming only that
ρ > 1?

In the event of a positive solution of Problem 1, wave operators would be
automatically complete under its assumptions. We conjecture, on the contrary,
that Problem 1 has a negative solution. Moreover, we expect that the absolutely
continuous part of the spectrum is no longer stable in the situation under consid-
eration.

2. The multiparticle Schrödinger operator. One of the important prob-
lems of scattering theory is the description of the asymptotic behaviour of N
interacting quantum particles for large times. The complete classification of all
possible asymptotics (channels of scattering) is called asymptotic completeness.
Let us recall the definition of generalized N -particle Hamiltonians introduced by
S. Agmon. Consider the self-adjoint Schrödinger operator H = −∆ + V (x) on
the Hilbert space H = L2(R

d). Suppose that some finite number α0 of subspaces
Xα of X := Rd are given and let xα, xα be the orthogonal projections of x ∈ X
on Xα and Xα = X ⊖Xα, respectively. We assume that V (x) =

∑α
0
α=1 V

α(xα),
where V α is a real function of the variable xα satisfying the short-range condition

|V α(xα)| ≤ C(1 + |xα|)−ρ, ρ > 1. (2)

Many intermediary results are valid also for long-range pair potentials satisfying

|V α(xα)|+ (1 + |xα|) |∇V α(xα)| ≤ C(1 + |xα|)−ρ, ρ > 0. (3)
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The two-particle Hamiltonian H is recovered if α0 = 1 and X1 = X. The three-
particle problem is distinguished from the general situation by the condition that
Xα ∩Xβ = {0} for α 6= β. Clearly, V α(xα) tends to zero as |x| → ∞ outside of
any conical neighbourhood of Xα but V α(xα) is constant on planes parallel to Xα.
Due to this property the structure of the spectrum of H is much more complicated
than in the two-particle case.

Let us consider linear sums Xa = Xα1 + Xα2 + . . . + Xαk of the subspaces
Xαj . Without loss of generality, one can suppose that X coincides with one of
the Xa. We denote by X the set of all subspaces Xa with X0 := {0} ∈ X
included in it but X excluded. Let xa and xa be the orthogonal projections of
x ∈ X on the subspaces Xa and Xa = X ⊖Xa, respectively. The index a (or b)
labels all subspaces Xa ∈ X and, in the multiparticle terminology, a parametrizes
decompositions of an N -particle system into noninteracting clusters; xa is the set
of “internal” coordinates of all clusters, while xa describes the relative motion of
clusters.

For each a define an auxiliary operator Ha = −∆ + V a with a potential
V a =

∑
Xα⊂Xa V

α, which does not depend on xa. In the representation L2(X) =
L2(Xa) ⊗ L2(X

a), Ha = −∆xa ⊗ I + I ⊗ Ha, where Ha = −∆xa + V a. The
operator Ha corresponds to the Hamiltonian of clusters with their centers-of-mass
fixed at the origin, −∆xa is the kinetic energy of the center-of-mass motion of
these clusters, and Ha describes an N -particle system with interactions between
different clusters neglected. Eigenvalues of the operators Ha are called thresholds
for the Hamiltonian H. We denote by Υ the set of all thresholds and eigenvalues
of the Hamiltonian H. Let P a be the orthogonal projection in L2(X

a) on the
subspace spanned by all eigenvectors of Ha. Then Pa = I ⊗ P a commutes with
the operator Ha. Set also H0 = −∆, P0 = I. The basic result of scattering theory
for N -particle Schrödinger operators is the following

Theorem 2 Let assumption (2) hold. Then the wave operatorsW±
a = W±(H,Ha;

Pa) exist and are isometric on the ranges R(Pa) of projections Pa. The subspaces
R(W±

a ) are mutually orthogonal, and scattering is asymptotically complete:

⊕

a

R(W±
a ) = H(ac), H(ac) = H(ac)(H).

The spectral theory of multiparticle Hamiltonians starts with the following
basic result (see [19], [22]). It is formulated in terms of the auxiliary operator
A =

∑
(xjDj + Djxj), Dj = −i∂j, j = 1, . . . , d. In what follows E(Λ) is the

spectral projection of the operator H corresponding to a Borel set Λ ⊂ R and Q
is the operator of multiplication by (x2 + 1)1/2.

Theorem 3 Let each pair potential V α be a sum of two functions satisfying as-
sumptions (2) and (3), respectively. Then eigenvalues of H may accumulate only
at the thresholds of H, so the “exceptional” set Υ is closed and countable. Fur-
thermore, for every λ ∈ IR \Υ there exists a small interval Λλ ∋ λ such that the
Mourre estimate for the commutator holds, i.e.,

i([H,A]u, u) ≥ c‖u‖2, c = cλ > 0, u ∈ E(Λλ)H. (4)
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Finally, for any compact interval Λ such that Λ ∩ Υ = ∅ and any r > 1/2, the
operator Q−rE(Λ) is H-smooth (the limiting absorption principle). In particular,
the operator H does not have singularly continuous spectrum.

In the case N = 2 the limiting absorption principle suffices for construction of
scattering theory but, for N > 2, one needs additional analytical information cor-
responding in some sense to the critical case r = 1/2. However, the operatorQ−1/2

is definitely not H-smooth even in the free case H = −∆. Hence we construct
differential operators which improve the fall-off of functions (exp(−iHt)f)(x) for
large t and x. Denote by 〈·, ·〉 the scalar product in the space Cd. Let ∇a = ∇xa
be the gradient in the variable xa and let ∇⊥a ,

(∇⊥a u)(x) = (∇au)(x)− |xa|−2〈(∇au)(x), xa〉xa,

be its orthogonal projection in Xa on the plane orthogonal to the vector xa. Let
Γa be a closed cone in Rd such that Γa ∩Xb = {0} if Xa 6⊂ Xb. Let χ(Γa) denote
its characteristic function. Our main analytical result is the following:

Theorem 4 Suppose that the assumptions of Theorem 3 hold. Then for any a,
the operator Ga = χ(Γa)Q−1/2∇⊥a E(Λ) is H-smooth.

In particular, for the free region Γ0, where all potentials V α are vanishing,
the operator χ(Γ0)Q

−1/2∇⊥E(Λ) is H-smooth. By analogy with the radiation
conditions in the two-particle case (see e.g. [24]), we refer to the estimates of
Theorem 4 as radiation estimates.

Our proof of Theorem 4 hinges on the commutator method. To that end, we
construct a first-order differential operatorM =

∑
(mjDj+Djmj), mj = ∂m/∂xj,

such that, for any a, the commutator [H,M ] satisfies the estimate

i[H,M ] ≥ c1G∗aGa − c2Q−2r, r > 1/2, c1, c2 > 0, (5)

locally (that is, sandwiched by E(Λ)). Here the “generating” function m is real,
smooth and homogeneous of degree 1 for |x| ≥ 1. It is completely determined by
the geometry of the problem, that is by the collection of subspaces Xα. Roughly
speaking, we set m(x) = µa|xa| in a neighbourhood of every subspace Xa with
neighbourhoods of all subspaces Xb 6⊃ Xa removed from it. In particular, m(x) =
|x| in a free region where all potentials are vanishing. It is important that m(x)
is a convex function, which implies that i[H0,M ] ≥ 0 (up to an error O(|x|−3)).
The arguments of [18] show that H-smoothness of the operator Ga is a direct
consequence of estimate (5) and of the limiting absorption principle.

For the proof of asymptotic completeness we first consider auxiliary wave
operators

W±(H,Ha;MaEa(Λ)), W±(Ha,H;MaE(Λ)), (6)

where the “identifications” Ma are again first-order differential operators with
suitably chosen “generating” functions ma. It is important that ma(x) equals zero
in some conical neighbourhood of every Xα such that Xa 6⊂ Xα. Hence coefficients
of the operator (V − V a)Ma vanish as O(|x|−ρ), ρ > 1, at infinity. The analysis
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of the commutator [Ha,M
a] relies on Theorem 4. This shows that the “effective

perturbation” HMa −MaHa can be factorized into a product K∗Ka where K is
H-smooth and Ka is Ha-smooth (locally), which implies the existence of the wave
operators (6). The final step of the proof is to choose functions ma in such a way
that

∑
am

a = m and to verify that the range of the operator W±(H,H;ME(Λ))
coincides with the subspace E(Λ)H. This is again a consequence of the Mourre
estimate (4).

In the three-particle case Theorem 2 was first obtained, under some additional
assumptions, by L. Faddeev [7] (see also [10], [27]), who used a set of equations
he derived for the resolvent of H. The optimal formulation in the three particle
case is due to V. Enss [5]. The approach to asymptotic completeness relying on
the Mourre estimate goes back to I. Sigal and A. Soffer [25]. Our proof given
in [32] is closer to that of G. M. Graf [11]. In contrast to [11] we fit N -particle
scattering theory into the standard framework of the smooth perturbation theory.
Its advantage is that it admits two equivalent formulations: time-dependent as
discussed above, and stationary, where unitary groups are replaced by resolvents.
This allows us [33, 34] to obtain stationary formulas for the basic objects of the
theory: wave operators, scattering matrix, etc. The approaches of [7] and of
[25, 11, 32] are quite different and at the moment there is no bridge between them.

There are several Hamiltonians similar to the N -particle Schrödinger operator
H for which the methods of [11] or [32] can be tried.

Problem 5 Develop scattering theory for the discrete version of H (the Heisen-
berg model) acting in the space L2(Z

d). The same question is meaningful for the
generalization of H = H0 + V where H0 = −∑∆k, k = 1, . . . , N , is replaced by
a more general differential operator, say, by

∑
(−∆k)2.

Radiation estimates similar to those of Theorem 4 are crucial also for different
proofs due to S. Agmon, T. Ikebe, H. Kitada, Y. Saito (see e.g. [12] and also
[14, 37]) of asymptotic completeness for the two-particle Schrödinger operator
with a long-range potential and for scattering on unbounded obstacles [3, 13].
Actually, only the case of the Dirichlet boundary condition was considered in
[3, 13]. Therefore the following question naturally arises:

Problem 6 Develop scattering theory for the operator H = −∆ in the comple-
ment of an unbounded domain Ω (for example, of a paraboloid) with Neumann or
more general boundary conditions on Ω.

3. Long-range pair potentials. If H is the two-particle Schrödinger operator
with a short-range potential V (x) = O(|x|−ρ), ρ > 1, then, by the definition of
the wave operator, for any f0 ∈ L2(Rd) and f± = W±(H,H0)f

0,

(exp(−iHt)f±)(x) = exp(iΦ(x, t))(2it)−d/2f̂0(x/(2t)) + o(1), t→ ±∞, (7)

where Φ0(x, t) = x2(4t)−1, f̂0 is the Fourier transform of f0 and o(1) denotes a
function whose norm tends to zero as t→ ±∞. For long-range potentials satisfying
the condition

|DκV (x)| ≤ C(1 + |x|)−ρ−|κ|, ρ > 0, ∀κ, (8)
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the relation (7) can be used for the definition of the modified wave operator W̃± :
f0 7→ f±. (Actually, many results in the long-range case remain valid if (8) is
satisfied for |κ| ≤ 2 only but we shall not dwell upon this.) In this case however
the phase function Φ(x, t) = ΦV (x, t) depends on a potential V and is constructed
as an approximate solution of the corresponding eikonal equation. It follows from
asymptotic completeness that relation (7) is fulfilled for every f ∈ H(ac). The
asymptotics (7) shows that, for f ∈ H(ac), the solution (exp(−iHt)f)(x) “lives”
in the region where |x| ∼ |t|.

Similarly, in the N -particle short-range case, for any f0a ∈ L2(Xa) and f±a,k =

W±
a (ψa,k ⊗ f0a),

(exp(−iHt)f±a,k)(x) = ψa,k(xa) exp(iΦa,k(xa, t))(2it)
−da/2f̂0a (xa/(2t)) + o(1), (9)

where da = dimXa, Φa,k(xa, t) = x2a(4t)−1 − λa,kt. Theorem 2 implies that every
f ∈ H(ac) is an orthogonal sum of vectors f±a,k satisfying (9). For N -particle sys-
tems with long-range pair potentials V α the result is almost the same if condition
(8) with some ρ >

√
3− 1 is fulfilled for all functions V α(xα). In this case again

every f ∈ H(ac) is an orthogonal sum of vectors f±a,k satisfying (9) with suitable
functions Φa,k(xa, t). This result (asymptotic completeness) was obtained by V.
Enss [6] for N = 3 and extended by J. Dereziński [4] (his method is different from
[6] and uses some ideas of I. Sigal and A. Soffer) to an arbitrary number of particles
(see also [26]).

4. New channels of scattering. It turns out that for some three- (and N -)
particle systems with pair potentials satisfying (8) for ρ < 1/2, there exist channels
of scattering different from (9). We rely on the following general construction
[35, 36]. Suppose that Rd = X1 ⊕ X1, dimX1 = d1, dimX1 = d1, d1 + d1 = d,
but we do not make any special assumptions about a potential V (x) = V (x1, x

1).
Let us introduce the operator H1(x1) = −∆x1 + V (x1, x

1) acting on the space
L2(X

1). Suppose that H1(x1) has a negative eigenvalue λ(x1), and denote by
ψ(x1, x

1) a corresponding normalized eigenfunction. In interesting situations the
function λ(x1) tends to zero slower than |x1|−1. Let us consider it as an “effective”
potential energy and associate to the long-range potential λ(x1) the phase function
Φ = Φλ. We prove, under some assumptions, that for every g ∈ L2(X1) there exists
an element f± ∈ H(ac) such that

(exp(−iHt)f±)(x) = ψ(x1, x
1) exp(iΦ(x1, t))(2it)

−d1/2g(x1/(2t)) + o(1) (10)

as t→ ±∞. The mapping ǧ 7→ f± (ǧ is the inverse Fourier transform of g) defines
the new wave operator W±. It is isometric on L2(X1), and HW± =W±(−∆x1).
The ranges of W± and of W̃± are orthogonal if both of these wave operators ex-
ist. The existence of solutions of the time-dependent Schrödinger equation with
asymptotics (10) requires rather special assumptions which are naturally formu-
lated in terms of eigenfunctions ψ(x1, x

1). Typically the asymptotic behaviour of
ψ(x1, x

1) as λ(x1)→ 0 has a certain self-similarity:

ψ(x1, x
1) = |x1|−σd

1/2Ψ(|x1|−σx1) + o(1) (11)
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for some Ψ ∈ L2(X
1) and σ > 0. We prove the asymptotics (10) if (11) is

fulfilled for σ < 1/2. On the other hand, simple examples show that (11) for
σ ≥ 1/2 does not ensure existence of solutions with the asymptotics (10). It is
important that ψ(x1, x

1) can be chosen as an approximate solution of the equation
H1(x1)ψ(x1)− λ(x1)ψ(x1) = 0.

Let us first give an example of a two-body long-range potential (see [36], for
more general classes) for which the completeness of the modified wave operator is
violated. Let

V (x1, x
1) = −v(< x1 >

q + < x1 >q)−ρ/q, ρ ∈ (0, 1), q ∈ (0, 2), v > 0, (12)

where we use the notation < y >= (1 + |y|2)1/2. The function (12) is infinitely
differentiable and V (x) = O(|x|−ρ) as |x| → ∞. The bound (8) is fulfilled for
arbitrary κ off any conical neighbourhood of the planes X1 and X1. This suffices
for the existence of the modified wave operator W̃±. If q = 2, then V (x1, x

1) is a
radial function, so W̃± is complete.

Theorem 7 Let a potential V be defined by (12) where 1 − ρ < q < 2(1 − ρ).
Let Λ be any eigenvalue and Ψ be a corresponding eigenfunction of the operator
K = −∆x1 + vρq−1|x1|q in the space L2(X1). Define the function ψ(x1, x

1) and
the “potential” λ(x1) by the equations

ψ(x1, x
1) = |x1|−σ/2Ψ(|x1|−σx1), λ(x1) = −v|x1|−ρ + Λ|x1|−2σ, (13)

where σ = (ρ + q)(2 + q)−1 and set Φ = Φλ. Then the wave operator W± exists
and the subspaces R(W±), R(W̃±) are orthogonal.

Let us now consider the Schrödinger operator, which describes three one-
dimensional particles with one of three pair interactions equal to zero. The fol-
lowing result was obtained in [35].

Theorem 8 Let V (x) = V 1(x1) + V 2(x1 − x1) where d1 = d1 = 1. Suppose that
V 1 ≥ 0 is a bounded function, V 1(x1) = 0 for x1 ≥ 0 and V 1(x1) = v1|x1|−r, v1 >
0, r ∈ (0, 2), for large negative x1. Suppose that a bounded function V 2 satisfies
for some ρ ∈ (0, 1/2) and v2 > 0 one of the two following conditions: 10 V 2(x2) =
−v2|x2|−ρ for large positive x2; 20 V 2(x2) = v2|x2|−ρ for large negative x2. Let
Λ be any eigenvalue and Ψ a corresponding eigenfunction of the equation −Ψ′′ +
|v2|ρx1Ψ = ΛΨ for x1 ≥ 0, Ψ(0) = 0, extended by 0 to x1 ≤ 0. Define the function
ψ(x1, x

1) and the “potential” λ(x1) by the equations (13), where σ = (ρ + 1)/3
and v = −v2, x1 < 0 in the case 10, v = v2, x1 > 0 in the case 20. Put Φ = Φλ.
Then the wave operator W± defined by equality (10) exists for any g ∈ L2(R∓) in
the first case and for any g ∈ L2(R±) in the second case. Moreover, the subspaces
R(W±), R(W̃±

0 ) and R(W̃±
α ), α = 1, 2, are orthogonal.

We emphasize that for f ∈ R(W±) the solution u(t) = exp(−iHt)f of the
Schrödinger equation “lives” for large |t| in the region where x1 ∼ −|t| in the case
10 or x1 ∼ |t| in the case 20 and x1 ∼ |t|σ for σ ∈ (1/3, 1/2). Such solutions
describe a physical process where a pair of particles (say, the first and the second)
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interacting by the potential V 1 are relatively close to one another and the third
particle is far away. This pair is bound by a potential depending on the position of
the third particle, but this bound state is evanescent as |t| → ∞. Thus solutions
u(t) for f ∈ R(W±) are intermediary between those for f ∈ R(W̃±

0 ) and f ∈
R(W̃±

α ).
There is however a gap between the cases when asymptotic completeness holds

and when it is violated. Hence the following questions arise.

Problem 9 Is the scattering asymptotically complete when ρ ∈ [1/2,
√

3−1)? The
same question for all ρ <

√
3− 1 if particles are, say, three-dimensional.

Note that, under some additional assumptions, asymptotic completeness for
all ρ > 1/2 was checked in [28, 9]. In the cases when new channels are constructed
one can expect that all possible asymptotics of the time-dependent Schrödinger
equation have either the form (9) or (10). In a somewhat similar situation a result
of such type was established in [30]. Thus, we formulate

Problem 10 To prove (for example, under the assumptions of Theorems 7 and 8)
generalized asymptotic completeness, that is, that the ranges of all wave operators
constructed exhaust H(ac)(H).

5. The scattering matrix. For the two-particle Schrödinger operator H =
−∆ + V (x) in the space L2(R

d), the scattering matrix S(λ), λ > 0, is a unitary
operator on the space L2(S

d−1). If V is a short-range potential, then the operator
S(λ) − Id is compact so the spectrum of S = S(λ) consists of eigenvalues µ±n =
exp(±iθ±n ), ±θ±n > 0, lying on the unit circle T and accumulating only at the
point 1. Moreover, the asymptotics of the scattering phases θ±n is determined by
the asymptotics of the potential V (x) at infinity and is given by the Weyl type
formula. The following assertion was established in [2].

Theorem 11 Let V (x) = v(x|x|−1)|x|−ρ + o(|x|−ρ), ρ > 1, v ∈ C∞(Sd−1), as
|x| → ∞. Then nγθ±n (λ)→ Ω± as n→∞, where γ = (ρ− 1)(d− 1)−1 and Ω± is
some explicit functional of v and ρ, λ.

The situation is drastically different for long-range potentials. Note that in
this case modified wave operators can be defined [14, 15] by equality (1) where
J± is a suitable pseudo-differential operator. It depends on the sign of t. The
existence and completeness of the operators W±(H,H0;J±) follow immediately
from Theorem 4, which fits the long-range scattering into the theory of smooth
perturbations. In the long-range case, S(λ) − Id is no longer compact. More-
over, its spectrum covers the whole unit circle. For simplicity we give the precise
formulation only for the case ρ > 1/2 (see [37], for details).

Theorem 12 Let condition (8) with ρ > 1/2 hold. Suppose that the function

V(ω, b) =

∫ ∞

−∞

(
V (tω)− V (b+ tω)

)
dt, |ω| = 1, 〈ω, b〉 = 0, (14)
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satisfies the condition |V(ω0, tnb0)| → ∞ for some point ω0, b0 and some sequence
tn →∞. Then for all λ > 0 the spectrum of the scattering matrix S(λ) covers the
unit circle.

Our study of the scattering matrix relies on its stationary representation (in
terms of the resolvent). First, using the so called microlocal or propagation esti-
mates [20, 17, 16], we show that, up to an integral operator with C∞-kernel, S
can be considered as a pseudo-differential operator with explicit principal symbol

s(ω, b;λ) = exp
(
i2−1λ−1/2V(ω, λ−1/2b)

)
, |ω| = 1, 〈ω, b〉 = 0. (15)

If ρ ≤ 1, this is an oscillating function as |b| → ∞, which implies Theorem 12. Note
that in the short-range case the principal symbol of S equals 1 which corresponds to
the Dirac-function in its kernel. In the long-range case this singularity disappears.

The kernel s(ω, ω′) of S (the scattering amplitude) is [1, 15] a C∞-function off
the diagonal. Its diagonal singularity is given by the Fourier transform of the sym-
bol (15). It turns out [37] that for an asymptotically homogeneous function V (x) of
order −ρ, ρ < 1, the kernel s is a sum of a finite number of terms sj = wj exp(iψj),
where the moduli wj(ω, ω

′) and the phases ψj(ω, ω
′) are asymptotically homoge-

neous functions, as ω−ω′ → 0, of orders −(d−1)(1+ρ−1)/2 < −d+1 and 1−ρ−1,
respectively. Thus S is more singular than the singular integral operator. In the
case ρ = 1, the modulus w = |s| is asymptotically homogeneous of order −d+ 1,
and the phase ψ of s has a logarithmic singularity on the diagonal.

In the N -particle case results on the structure of the scattering matrix S are
scarce. Let us mention the one by R. Newton [21] (see also [29], for an elementary
proof), which asserts that in the 3-particle case, S = S1S2S3S̃, where Sα is the
scattering matrix for the Hamiltonian with only one pair interaction V α and the
operator S̃ − Id is compact. We conclude with

Problem 13 Extend the above result to an arbitrary N .
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1 Introduction

The purpose of this paper is to attract attention to the subject of statistical dis-
tribution of deterministic sequences. In quantum chaos problems they can be the
eigenvalues of a quantum mechanical problem, in number theory the natural choice
is the imaginary parts of non-trivial zeros of zeta functions, etc.

The important point that makes this field interesting is the observation that
statistical distributions of completely different sequences are, to a large extent,
universal depending only on very robust properties of the system considered. The
origin of such universal laws remains unclear.

In the fifties Wigner and later Dyson (see articles in [1] and the review [2]),
based on a physical idea that ‘complicated’ means ‘random’, have proposed to
consider the Hamiltonian of heavy nuclei as a random matrix taken from a certain
ensemble characterized only by symmetry properties. The duality: ‘Hamiltonian
←→ random matrix’ has been proved very useful [3], [4] and stimulated the de-
velopment of random matrix theory [5]. Later it was understood that the same
idea can also be applied to low-dimensional quantum systems and the accepted
conjectures are: (i) local statistical behaviour of energy levels of classically inte-
grable systems is close to the Poisson distribution [7], (ii) energy levels of classically
chaotic systems are distributed as eigenvalues of random matrices from the stan-
dard random matrix ensembles [6]. One of these ensembles (Gaussian Unitary
Ensemble (GUE)) seems to describe the local spectral distribution of non-trivial
zeros of zeta functions of number theory [8]-[11].

The volume of numerical evidences in the favor of these conjectures is im-
pressive (see e.g. [3], [9], [4]) but the full mathematical proof even in the simplest
cases is still lacking.

In this paper we shall discuss a straightforward method to attack this problem
based on trace formulae.
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2 Trace formulae

The Gutzwiller trace formula [12] states that the density of eigenvalues for a quan-
tum system can be written as a sum of a smooth (d̄) term and an oscillating part

d(osc)(E) =
∑

ppo

∞∑

n=1

Ap,n exp(
i

h̄
nSp(E)) + c.c. , (1)

given by a sum over primitive periodic orbits and their repetitions. Here Sp is the
classical action calculated along one of such orbits,

Ap,n =
Tp

2πh̄|Det(Mn
p − 1)|1/2 exp(−iπ

2
nµp),

Mp is the monodromy matrix around the orbit, Tp is its period, and µp is the
Maslov index. For the motion on constant negative curvature surfaces generated
by discrete groups this formula coincides with the Selberg trace formula but for
generic systems it represents only the first term of a formal expansion on the
Planck constant.

Similar expresion exists also for the Riemann zeta function. For the density
of nontrivial Riemann zeros (assuming sn = 1

2 + iEn)

d(osc)(E) = − 1

π

∞∑

n=1

1√
n

Λ(n) cos(E log n), (2)

where Λ(n) = log p, if n is a power of a prime p, and Λ(n) = 0 otherwise.

3 Correlation functions

The n-point correlation function of energy levels is defined as the probability of
having n levels at prescribed positions

Rn(ǫ1, ǫ2, . . . , ǫn) =< d(E + ǫ1)d(E + ǫ2) . . . d(E + ǫn) >, (3)

where the brackets < . . . > denote the smoothing over an energy window

< f(E) >=

∫
f(E′)σ(E −E′)dE′, (4)

with an appropriate weighting function σ(E) centered near zero.
In particular, the 2-point correlation function has the form

R2(ǫ1, ǫ2) = d̄2 +
∑

pi,ni

Ap1,n1A
∗
p2,n2 < exp(

i

h̄
(n1Sp1(E)− n2Sp2(E))) >

× exp(
i

h̄
(n1Tp1(E)ǫ1 − n2Tp2(E)ǫ2)) + c.c. (5)

The terms with the sum of actions are assumed to be washed out by the smoothing
procedure.
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4 Diagonal approximation

Berry in [13] proposed to estimate the above sum by taking into account only
terms with exactly the same actions which leads to the following expression for
the two-point correlation form factor (the Fourier transform of R2)

K(diag)(t) = 2π
∑

p,n

|Ap,n|2δ(t− nTp(E)) + c.c., (6)

where the sum is taken over all periodic orbits with exactly the same action.
Using the Ruelle-Bowen-Sinai measure on periodic orbits (called in physical

literature the Hannay-Ozorio de Almeida sum rule [14]) one finds that for ergodic
systems

K(diag)(t) = g
t

2π
, (7)

where g is the mean multiplicity of periodic orbits. For generic systems without
time reversal invariance g = 1 and for systems with time reversal invariance g = 2
and this result coincides with the small-t behaviour of form factor of classical
ensembles.

Unfortunately, K(diag)(t) grows with t but the exact form factor for systems
without spectral degeneracies should tend to d̄ when t → ∞. This contradiction
clearly indicates that the diagonal approximation cannot be correct for all values
of t and more complicated tools are needed to obtain the full form factor.

5 Beyond the diagonal approximation

We begin to discuss the calculation of off-diagonal terms on the example of the
Riemann zeta function where more information is available and then we shall
generalize the method to dynamical systems.

The connected two-point correlation function of the Riemann zeros is

R2(ǫ1, ǫ2) =
1

4π2

∑

n1,n2

Λ(n1)Λ(n2)√
n1n2

< eiE log(n1/n2)+i(ǫ1 logn1−ǫ2 logn2) > +c.c. (8)

The diagonal terms correspond to n1 = n2 and

R
(diag)
2 (ǫ) = − 1

4π2
∂2

∂ǫ2
log(|ζ(1 + iǫ)|2Φ(diag)(ǫ)), (9)

where ǫ = ǫ1 − ǫ2 and the function Φ(diag)(ǫ) is given by a convergent sum over
prime numbers

Φ(diag)(ǫ) = exp(−
∑

p

∞∑

m=1

m− 1

m2pm
eim log pǫ + c.c.). (10)

When ǫ→ 0, R2(ǫ)→ −(2π2ǫ2)−1 which agrees with the smooth GUE result.
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The term exp(iE log(n1/n2)) oscillates quickly if n1 is not close to n2. De-
noting n1 = n2 + h and expanding smooth functions on h one gets

R
(off)
2 (ǫ) =

1

4π2

∑

n,d

Λ(n)Λ(n+ h)

n
< eiE(h/n)+iǫ log n > +c.c. (11)

The main problem is clearly seen here. The function F (n, h) = Λ(n)Λ(n + h)
changes irregularly as it is nonzero only when both n and n+h are powers of prime
numbers. Fortunately, the dominant contribution to the two-point correlation
function comes from the mean value of this function

α(h) = lim
N→∞

1

N

N∑

n=1

Λ(n)Λ(n+ h), (12)

and its explicit expression follows from the famous Hardy–Littlewood conjecture
[15]

α(h) =
∑

(p,q)=1

e−2πi
p
q h

(
µ(q)

ψ(q)

)2
, (13)

where the sum is taken over all coprime integers q and p < q, µ(n) and ψ(n) are
the Mobius and the Euler functions respectively.

Using this expression for α(h) and performing the sum over all h one obtains

R
(off)
2 (ǫ) =

1

4π2
|ζ(1 + iǫ)|2e2πid̄ǫΦ(off)(ǫ) + c.c., (14)

where function Φ(off)(ǫ) is given by a convergent product over primes

Φ(off)(ǫ) =
∏

p

(1− (1− piǫ)2
(p− 1)2

). (15)

In the limit of small ǫ, R
(off)
2 (ǫ) → (e2πid̄ǫ + e−2πid̄ǫ)/(2πǫ)2 which corresponds

exactly to the GUE result.
The above calculations demonstrate how one can compute the two-point cor-

relation function through the knowledge of pair-correlation function of periodic
orbits. For the Riemann case one can prove under the same conjectures1 that all
n-point correlation functions of Riemann zeros tend to the corresponding GUE
results [16].

The interesting consequence of the above formula is the expression for the
two-point form factor

K(off)(t) =
1

4π2

∑

(p,q)=1

(
µ(q)

ψ(q)

)2
(
q

p
)δ(t− 2πd̄− log

q

p
), (16)

which means that the off-diagonal two-point form factor is a sum over δ-functions
in special points equal the Heisenberg time (TH = 2πd̄) plus a difference of periods

1Really only a smoothed version of the Hardy-Littlewood conjecture is needed.
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of two pseudo-orbits (linear combinations of periodic orbits). This set is dense but
the largest peaks correspond to the shortest pseudo-orbits. Similarly the two-point
diagonal form factor is the sum of δ functions at the positions of periodic orbits

K(diag)(t) =
1

4π2

∑

p,m

log2 p

pm
δ(t−m log p). (17)

The smooth values corresponding to the random matrix predictions appear only
after a smoothing of these functions over a suitable interval of t.

6 Arithmetical systems

Similar behavior has been observed in a completely different model, namely for
the distribution of eigenvalues of the Laplace–Beltrami operator for the modular
domain [17]. It was shown that in this model the two-point correlation form factor
can be written in the following form

K(t) =
1

π3k

∑

(p,q)=1

∣∣∣∣
q

p
β(p, q)

∣∣∣∣
2

δ(t− tp,q), (18)

where

tp,q =
2

k
ln
kq

πp
, and β(p, q) =

S(p, p; q)

q2
∏
ω|q(1− ω−2)

.

The product is taken over all prime divisors of q and S(p, p; q) is the Kloosterman
sum

S(n,m; c) =
c−1∑

d=1

exp(2πi(nd+md−1)/c).

This model belongs to the so-called arithmetical models corresponding to the mo-
tion on constant negative curvature surfaces generated by arithmetic groups. For
all these models due to the exponential multiplicities of periodic orbits one expects
[18] that the spectral statistics will tend to the Poisson distribution though from a
classical point of view all these models are the best known examples of classically
chaotic motion. Using the above expression one can prove this statement for the
modular group.

7 Construction of the density of states from finite number of pe-
riodic orbits

The main difficulty in using trace formulae is their divergent character. The di-
agonal approximation consists, in some sense, on computing the density of states
from a sum over a finite number of periodic orbits but this sum cannot produce
δ-function singularities. There exists an artificial method [19] which permits to
avoid this difficulty. Its main ingredient is the Riemann-Siegel form of the zeta
function

ζ(1/2− iE) = zT (E) + e2πiN̄(E)z∗T (E), (19)
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where instead of the correct Riemann-Siegel expansion one uses a truncated prod-
uct over periodic orbits

zT (E) =
∏

log p<T

(1− p−1/2+iE)−1.

The density of zeros for function (19) takes the form

DT (E) = dT (E)
∞∑

k=−∞
(−1)ke2πikN̄(E)

(
z∗T (E)

zT (E)

)k
, (20)

where dT (E) is the density of state truncated at log p < T .
Assuming that T is of the order of the Heisenberg time, TH = 2πd̄, and d̄→∞

after some algebra we get

R
(off)
2 (ǫ1, ǫ2) = d̄2e2πid̄ǫ <

z∗T (E + ǫ1)zT (E + ǫ2)

zT (E + ǫ1)z∗T (E + ǫ2)
> +c.c. (21)

The last step consists in performing the energy average of this expression. As
logarithms of primes are not commensurable, the energy average of any smooth
function of exp(iE log pj) equals its phase average

< f >=

∫ 2π

0

. . .

∫ 2π

0

f(eiφ1 , . . . , eiφM )
M∏

j=1

dφj
2π

. (22)

This is essentially equivalent to the random phase approximation, or to the ergodic
theorem for quasi-periodic functions with non-commensurable periods, or to the
strict diagonal approximation.

For the Riemann zeta function the total contribution equals

R2(ǫ) = C2 exp(2πid̄ǫ)|ζ(1 + iǫ)|2Φ(off)(ǫ) + c.c. , (23)

where

Φ(off)(ǫ) =
∏

p

(1− (1− piǫ)2
(p− 1)2

), (24)

ǫ = ǫ2 − ǫ1, and C = d̄
∏
p(1 − 1/p). All products in these expressions include

prime numbers up to ln p = T . The first two products converge when T →∞ and
only the last one requires a regularization. But our parameter T has not yet been
fixed. Let us choose it in such a way that

2πd̄
∏

ln p<T

(1− 1

p
) = 1. (25)

The same factor appears in the statistical approach to prime numbers (see dis-
cussion in [15]) and can be considered as a renormalisation of formally divergent
sums. After this renormalization we get exactly the same formula (14) as has been
derived in the previous section using the Hardy-Littlewood conjecture about the
pairwise distribution of prime numbers.
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8 Off-diagonal terms for dynamical systems

For 2-dimensional dynamical systems the only difference with the Riemann case
is that the truncated zeta function zT (E) contains now an infinite product over m

zT (E) =
∏

Tp<T

∞∏

m=0

(1− eiSp(E)/h̄−iπµp/2

|Λp|1/2Λmp
), (26)

where Λp is the largest eigenvalue of the monodromy matrix.

The simplest and most natural assumption is that in generic systems with-
out time-reversal invariance periodic orbits up to period T are linearly non-
commensurable (as primes). Under this conjecture after some algebra we obtain
that when T →∞

R2(ǫ) =
e2πid̄ǫ

4π2
|γ−1Zcl(iǫ)|2

∏

p

< Rp >

∣∣∣∣
Zp(iǫ)

Zp(0)

∣∣∣∣
2

+ c.c. (27)

and

< Rp >=
∞∑

n=0

(a; q)2n
(q; q)2n

yn, (28)

where (a; q) = (1− a)(1− aq) . . . (1− aqn−1), a = e−iτp , q = Λ−1p , y = |Λp|−1eiτp ,
and τp = lpǫ/k. Zcl(s) is a classical zeta function, Zcl(s) =

∏
p Zp(s)

−1 with
Zp(s) = 1− eτps/|Λp|.

The maximum period T is determined from the condition

2πd̄
∏

Tp<T

Zp(0) =
1

|γ| , (29)

where γ is the residue of Zcl(s) at s = 0 (Zcl(s)→ γ/s when s→ 0). As above this
renormalization fixes T to be of the order of TH and ensures that, when ǫ → 0,
R2(ǫ) tends to the GUE result.

9 Random matrix universality

There exists another method of semiclassical calculation of off-diagonal part of
correlation functions which demonstrates that if such formulae exist they coincide
with the above obtained expressions.

According to the naive trace formula the density of states is

d(E) = d̃(E) + η(E), (30)

where d̃(E) is the truncated density of states computed from a set of short-period
orbits with period Tp < T (now we shall assume that T ≪ TH) and η(E) is
(unknown) part of the density constructed from high-period orbits.
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Let us try now to construct a random matrix ensemble which has the mean
density of eigenvalues exactly equals d̃(E). In principle, the necessary potential
can be computed from the Dyson equation

∫
d̃(t)

x− tdt =
1

2
V ′(x). (31)

But the explicit form of this potential is irrelevant as under quite general conditions
the resulting distribution does not depend on the explicit form of this function
(provided it corresponds to the so-called definite momentum problem [21]) and all
correlation functions depend only on the kernel KN (x, y) which in the bulk of the
spectrum in the limit N →∞ tends to

K(x, y) =
sinπ(N(x)−N(y))

π(x− y)
, (32)

where N(x) =
∫ x

d̃(x′)dx′ is the mean staircase function.
Hence, the two-point correlation function will take the form

R2(ǫ1, ǫ2) =< d̃(E + ǫ1)d̃(E + ǫ2)−
sin2 π(Ñ(E + ǫ1)− Ñ(E + ǫ2))

π2(ǫ1 − ǫ2)2
> . (33)

As d̃(E) is known it is possible to perform the smoothing over the appropriate
energy window. Using the same transformations as above one can show that
under the assumption T ≪ TH the dependence of T will disappear and one gets
the same formulae as above.

10 Conclusion

The heuristic arguments presented in this paper demonstrate how, in principle,
the existence of the trace formula and certain natural conjectures about the dis-
tribution of periodic orbits (or primes) combine together to produce universal
local statistics. In particular, for systems without the time-reversal invariance
the assumption that low-period orbits are non-commensurable leads to the GUE
statistics (at least for 2-point correlation function). The close relation between
diagonal (9) and off-diagonal (14) terms (first observed for disordered systems in
[22]) suggests the existence of a certain unified principle. The best candidate for
it is the ‘unitarity’ property of the trace formula, namely, that the distribution of
periodic orbits should be such that the corresponding eigenvalues will be real. In
some sense certain long-period orbits are connected to the short ones and the in-
vestigation of this connection may clarify the origin of universal spectral statistics.
The interesting question is what conjectures about periodic orbits are necessary
to obtain correlation functions for systems with time-reversal invariance where
almost all periodic orbits appear in pairs with exactly the same action.
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Scaling Algebrasin Local Relativistic Quantum Physics
Detlev Buchholz

Abstract. The novel method of scaling algebras allows one to compute
and classify the short distance (scaling) limit of any local relativistic
C∗–dynamical system and to determine its symmetry structure. The
approach is based on an adaptation of ideas from renormalization group
theory to the C∗–algebraic setting.

Local relativistic quantum physics [1] in a pseudo-Riemannian spacetime manifold
(M, g) can conveniently be described by C∗–dynamical systems (A, α), where A
is a C∗–algebra, describing the physical observables in M, and α a representa-
tion of the isometry group of (M, g) by automorphisms of A. The principle of
Einstein causality is implemented in this setting by specifying a net (pre-cosheaf)
of subalgebras of A which are labelled by the open, relatively compact regions
O ⊂M,

O 7−→ A(O),

such that algebras corresponding to causally disjoint regions commute with each
other. A theory is fixed by specifying a dynamical system which is subject to these
constraints.

In high energy physics the structure of the observables in very small spacetime
regions O (at “small spacetime scales”) is of great interest. It can be explored with
the help of scaling algebras which have been introduced in [2] by adopting ideas
from the theory of the renormalization group. We outline this method for the case
where (M, g) is d–dimensional Minkowski space Rd, equipped with its standard

Lorentzian metric. The corresponding isometry group is the Poincaré group P↑+
whose elements (Λ, x) are composed of Lorentz transformations and spacetime
translations.

For the analysis of the short distance properties of a theory one first pro-
ceeds from the given net and automorphisms (A, α) at spacetime scale λ = 1 (in
appropriate units) to the corresponding nets (A(λ), α(λ)) describing the theory at
arbitrary scale λ ∈ R+. This is accomplished by setting for given λ

O 7−→ A(λ)(O)
.
= A(λO), α

(λ)
Λ,x

.
= αΛ,λx.
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The latter nets are in general not isomorphic to each other for different values of
λ, so they are to be regarded as different theories.

In addition one needs a way of comparing observables at different scales. To
this end one considers certain specific functions A of the scaling parameter whose

values A
λ

are, for given λ, regarded as observables in the theory (A(λ), α(λ)). With
this idea in mind one is led to the following construction.

Consider the C∗–algebra L∞(A) of functions A : R+ 7−→ A for which the
algebraic operations are pointwise defined and which have finite norm ||A|| =

supλ ||Aλ||. The Poincaré group P↑+ acts on L∞(A) by automorphisms α
Λ,x

which

are given by (
α
Λ,x

(A)
)
λ

.
= α

(λ)
Λ,x(A

λ
).

We restrict attention to the subalgebra of L∞(A) on which these automorphisms
act strongly continuously. Moreover, we introduce a local net structure on this
subalgebra by setting

O 7−→ A(O)
.
= {A : A

λ
∈ A(λ)(O), λ ∈ R+}.

The scaling algebra A is then defined as the inductive limit of the local algebras
A(O). It is easily checked that (A, α) is again a local C∗–dynamical system which
is completely fixed by the given net.

The physical states in the underlying theory are described by a folium of
positive linear and nomalized functionals ω ∈ A∗ which are locally normal with
respect to each other [1]. Their structure at small spacetime scales can be analyzed
with the help of the scaling algebra as follows. Given ω, one defines its lift to the
scaling algebra at scale λ ∈ R+ by setting

ω
λ
(A)

.
= ω(A

λ
), A ∈ A.

If πλ denotes the GNS–representation of A induced by ω
λ

one considers the net

O 7−→ A(O)/kerπ
λ
, α(λ),

where ker means “kernel” and α(λ) is the induced action of the Poincaré transfor-
mations α on this quotient. It is important to notice that this net is isomorphic

to the underlying theory (A(λ), α(λ)) at scale λ. This insight leads to the follow-
ing canonical definition of the scaling limit of the theory: One first considers the
limit(s) of the net of states {ω

λ
}λց0. By standard compactness arguments, this

net has always a non–empty set {ω
0
} of limit points. The following facts about

these limit states have been established in [2]:

Proposition 1. The set {ω
0
} does not depend on the chosen physical state ω.

Proposition 2. Each ω
0

is a vacuum state on (A, α), i.e. a ground state with
respect to the time evolution which is invariant under Poincaré transformations.
Moreover, in d > 2 dimensional Minkowski space theories these vacua are pure
states.
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Denoting the GNS–representation corresponding to given ω
0

by (π
0
, H

0
) one

then defines in complete analogy to the case λ > 0 the net

O 7−→ A(0) .= A(O)/kerπ
0
, α(0)

.
= α(0)

which is to be interpreted as scaling limit of the underlying theory. The various
steps in this construction can be summarized in the diagram

(A, α) −→ (A(λ), α(λ)) −→ (A, α) −→ {(A(0), α(0))}.

It is now possible to classify the scaling limits as follows [2].

Classification: Let (A, α) be a net with properties specified above. There are
the following mutually exclusive possibilities for the structure of the scaling limit
theory induced by the corresponding scaling limit states {ω

0
}.

1. The nets (A(0), α(0)) are all isomorphic to the trivial net (C·1, id) (classical
scaling limit)

2. The nets (A(0), α(0)) are all isomorphic and the algebras A(0) are non–
abelian (quantum scaling limit)

3. Not all of the nets (A(0), α(0)) are isomorphic (degenerate scaling limit)

Theories with a quantum scaling limit are of primary physical interest. For
this class there holds the following statement on the enhancement of symmetries
at small scales [2].

Proposition 3. The scaling limit nets (A(0), α(0)) of theories with a quantum
scaling limit admit an automorphic action of the scaling transformations R+.

Simple examples in this class are nets generated by non–interacting quantum
fields in d = 3 and 4 dimensions [3]. For a discussion of the other cases see [4].

The fact that the scaling limit theories (A(0), α(0)) exhibit all features of local
nets of observable algebras allows one to apply standard methods for their analysis
and physical interpretation. For the determination of the symmetries appearing
in the scaling limit one can rely in the case of d > 2 dimensional Minkowski space
on the Doplicher–Roberts reconstruction theorem [5]. The necessary prerequisite
for its application is the following result established in [2].

Proposition 4. If a local net complies with the special condition of duality
(modular covariance) of Bisognano and Wichmann, the same holds true for its
scaling limit.

By the results of Doplicher and Roberts [5] one can then recover from the
outer local endomorphisms of the scaling limit net (A(0), α(0)) a compact group
G(0) whose irreducible representations are in one–to–one correspondence to the set
of physical states which appear in the scaling limit and carry a localizable charge.
Moreover, there exists an extension of the scaling limit net to a field net (F (0), α(0))
on which G(0) acts by automorphisms and which implements the action of the local
endomorphisms. The vacuum representation of this field net describes the charged
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physical states and can be used to analyse their detailed properties. In particular
one can determine from it the particle content of the scaling limit theory, which
corresponds to the set of non–trivial irreducible representations of the Poincaré
group P↑+ appearing in the vacuum sector of (F (0), α(0)).

Of special interest is the comparison of the particle and symmetry content of
the underlying theory and of its scaling limit [6]. Depending on the theory, there
may be particles at finite scales which disappear in the scaling limit, particles
which survive in this limit and particles which only come into existence at very
small scales. These possibilities correspond exactly to the features of the various
particle like structures which are observed in high energy collision experiments.
Intuitive physical notions, such as quark, gluon, colour symmetry and confinement
thus acquire an unambiguous mathematical meaning in the present setting [6].

The extension of the short distance analysis to local nets on spacetimes (M, g)
with a large isometry group, such as de Sitter space, is straightforward. For theo-
ries on spacetimes with small isometry groups it is however less clear how to define
corresponding scaling algebras which consist of sufficiently regular elements. An
interesting proposal to solve this problem has been made by Verch [7]. In this
approach the resulting scaling limits turn out to be local C∗-dynamical systems
in the (Minkowskian) fibers of the tangent bundle of (M, g). For a further classi-
fication of these theories it would be of interest to analyze the transport between
the corresponding dynamical systems in the various fibers which is induced by the
underlying dynamics. This “quantum connection” should also contain relevant
information on the presence of local gauge symmetries in the underlying theory.
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Finite-Size Scaling in Percolation

J. T. Chayes

Abstract. This work is a detailed study of the phase transition in per-
colation, in particular of the question of finite-size scaling: Namely, how
does the critical transition behavior emerge from the behavior of large, fi-
nite systems? Our results rigorously locate the proper window in which to
do critical computation and establish features of the phase transition. This
work is a finite-dimensional analogue of classic work on the critical regime of
the random graph model of Erdös and Rényi.

1991 Mathematics Subject Classification: 82B43, 82B26, 60K35, 05C80

Keywords and Phrases: percolation, phase transitions, finite-size scaling

1. Introduction

This paper gives an overview and discussion of some recent results of Borgs,
Chayes, Kesten and Spencer [BCKS2] on finite-size scaling and incipient infinite
clusters in percolation.

We consider bond percolation in a finite subset Λ of the hypercubic lattice
Zd. Nearest-neighbor bonds in Λ are occupied with probability p and vacant with
probability 1 − p, independently of each other. Let pc denote the bond percola-
tion threshold in Zd, namely the value of p above which there exists an infinite
connected cluster of occupied bonds. As a function of the size of the box Λ, we
determine the scaling window about pc in which the system behaves critically. For
our purposes, criticality is characterized by the behavior of the distribution of sizes
of the largest clusters in the box. We show how these clusters can be identified with
the so-called incipient infinite cluster—the cluster of infinite expected size which
appears at pc. It turns out that these results can be established axiomatically from
hypotheses which are mathematical expressions of the purported scaling behavior
in critical percolation. Moreover, these hypotheses can be explicitly verified in
two dimensions. In this brief overview, I will omit all details of the proofs of the
[BCKS2] results, focusing instead on the motivation, the hypotheses and a few of
the implications of these results. The reader is referred to [BCKS1] and [BCKS2]
for more details and for related results which are not included here. Some of the
discussion here closely parallels that of [CPS].
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2. The Motivation

The motivation for the [BCKS2] work was threefold.

The Random Graph Model
The original motivation for this work was to obtain an analogue of known results

on the so-called random graph model of Erdös and Rényi ([ER1], [ER2]; see also
[B2]). The random graph model is simply the percolation model on the complete
graph, i.e., it is a model on a graph of N sites in which each site is connected to
each other site independently with uniform probability p(N). Physicists would call
this a mean-field percolation model. It turns out that the model has particularly
interesting behavior if p(N) scales like p(N) ≈ c/N with c = Θ(1). Here, as usual,
f = Θ(Nα) means that there are nonzero, finite constants c1 and c2, of equal sign,
such that c1N

α ≤ f ≤ c2Nα.
Let W (i) denote the random variable representing the size of the ith largest clus-

ter in the system. Erdös and Renyi showed that the model has a phase transition
at c = 1 characterized by the behavior of W (1). It turns out that, with probability
one,

W (1) =





Θ(logN) if c < 1

Θ(N2/3) if c = 1

Θ(N) if c > 1.

Moreover, for c > 1, W (1)/N → θ(c) > 0, while for c = 1, W (1) has a nontrivial
distribution (i.e., W (1)/N2/3 9 constant), again with probability one. The smaller
clusters have the same behavior as the largest for c ≤ 1, but different behavior
for c > 1: For i > 1, W (i) = Θ(logN) for all c 6= 1, while at c = 1, W (i) =
Θ(N2/3). The Θ(N) cluster for c > 1 is clearly the analogue of the infinite cluster
in percolation on finite-dimensional graphs; here it is called the giant component.
As we will see, the Θ(logN) clusters are analogues of finite clusters in ordinary
percolation. The Θ(N2/3) clusters will turn out to be the analogues of the so-
called incipient infinite cluster in percolation. The work on the regime c 6= 1
appeared already in the original papers of Erdös and Rényi ([ER1], [ER2]); the
correct behavior for c = 1 was derived many years later by Bollobás [B1].

In the past decade, there has been a great deal of work and remarkable progress
on the random graph model. Much of this work culminated in the combinatoric
tour de force of Janson, Knuth, Luczak and Pittel [JKLP]. Using remarkably
detailed calculations, it was shown that shown that the correct parameterization
of the critical regime is

p(N) =
1

N
+

λN
N4/3

,

in the sense that if limN→∞|λN | < ∞, then W (i) = Θ(N2/3) for all i, and fur-
thermore each W (i) has a nontrivial distribution (which was actually calculated
in [JKLP]). On the other hand, if limN→∞λN = −∞, then W (2)/W (1) → 1
with probability one, whereas if limN→∞λN = +∞, then W (2)/W (1) → 0 and
W (1)/N2/3 → +∞ with probability one. The largest component in the regime
with λN → +∞ is called the dominant component. As we will see, it has an
analogue in ordinary percolation.
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The initial motivation for the [BCKS2] work was to find a finite-dimensional
analogue of the above results. To this end, we considered d-dimensional percolation
in a box of linear size n, and hence volume N = nd. We asked how the size of the
largest cluster in the box behaves as a function of n for p < pc, p = pc and p > pc.
Also, we asked whether there is a window p(n) about pc such that the system has
a nontrivial cluster size distribution within the window.

Finite-Size Scaling
The considerations of the previous paragraph lead us immediately to the ques-

tion of finite-size scaling (FSS). Phase transitions cannot occur in finite volumes,
since all relevant functions are polynomials and thus analytic; nonanalyticities only
emerge in the infinite-volume limit. What quantities should we study to see the
phase transition emerge as we go to larger and larger volumes?

Before the [BCKS2] work, this question had been addressed rigorously only in
systems with first-order transitions—transitions at which the correlation length
and order parameter are discontinuous ([BK], [BI]). Finite-size scaling at second-
order transitions is more subtle due to the fact that the order parameter vanishes
at the critical point. For example, in percolation it is believed that the infinite
cluster density vanishes at pc. However, physicists routinely talk about an incipient
infinite cluster at pc. This brings us to our third motivation.

The Incipient Infinite Cluster
At pc, there is no infinite cluster with probability one, but the expected size

of the cluster of the origin is infinite. Physicists call this finite object of infinite
expected size, the incipient infinite cluster (IIC).

In the mid-1980’s there were two attempts to construct rigorously an object that
could be identified as an incipient infinite cluster. Kesten [K] proposed to look at
the conditional measure in which the origin is connected to the boundary of a box
centered at the origin, by a path of occupied bonds: Pnp (·) = Pp(· | 0↔ ∂[−n, n]d).
Here, as usual, Pp(·) is product measure at bond density p. Observe that, at p = pc,
as n → ∞, Pnp (·) becomes mutually singular with respect to the unconditioned
measure Pp(·). Nevertheless, Kesten found that

lim
n→∞

Pnpc(·) = lim
pցpc

Pp(· | 0↔∞).

Moreover, Kesten studied properties of the infinite object so constructed and found
that it has a nontrivial fractal dimension which agrees with the fractal dimension
of the physicists’ incipient infinite cluster.

Another proposal was made by Chayes, Chayes and Durrett [CCD]. They modi-
fied the standard measure in a different manner than Kesten, replacing the uniform
p by an inhomogeneous p(b) which varies with the distance of the bond b from the
origin:

p(b) = pc +
c

1 + dist(0, b)ζ
.

The idea was to enhance the density just enough to obtain a nontrivial infinite
object. [CCD] found that when ζ = 1/ν, where ν is the so-called correlation length
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exponent, the measure Pp(x) has some properties reminiscent of the physicists’
incipient infinite cluster.

In the work to be discussed here, [BCKS2] propose yet a third rigorous incipient
cluster—namely the largest cluster in a box. This is, in fact, exactly the definition
that numerical physicists use in simulations. Moreover, it will turn out to be closely
related to the IICs constructed by Kesten and Chayes, Chayes and Durrett. Like
the IIC of [K], the largest cluster in a box will have a fractal dimension which
agrees with that of the physicists’ IIC. Also, the [BCKS2] proofs rely heavily on
technical estimates from the IIC construction of [K]. More interestingly, the form
of the scaling window p(n) for the [BCKS2] problem will turn out to be precisely
the form of the enhanced density used to construct the IIC of [CCD].

3. Definitions and Preliminaries

We briefly review some standard definitions and notation for percolation on Zd

(see e.g., [CPS]). Let C(x) denote the occupied cluster of the site x ∈ Zd, and let
|C(x)| denote its size. The order parameter is the infinite cluster density

P∞(p) = Pp(|C(0)| =∞),

and the standard susceptibility is the expected finite cluster size

χfin(p) = Ep(|C(0)|, |C(0)| 6=∞).

Here, as usual, Ep denotes expectation with respect to Pp. The finite cluster
point-to-point connectivity function is

τfin(x, y; p) = Pp(C(x) = C(y), |C(x)| <∞),

The exponential rate of decay of this connectivity defines the correlation length
ξ(p):

1/ξ(p) = − lim
|x|→∞

1

|x| log τfin(0, x; p)

where the limit is taken with x along a coordinate axis. Another point-to-point
connectivity, which for p > pc behaves much like τfin, is

τcov(x, y; p) = Pp(|C(x)| =∞, |C(y)| =∞)− P 2∞(p).

Notice that
χfin(p) =

∑

x

τfin(0, x; p).

Similarly, we can define another susceptibility,

χcov(p) =
∑

x

τcov(0, x; p).

Another connectivity function is the point-to-box connectivity function

πn(p) = Pp(∃x ∈ ∂[−n, n]d s.t. C(0) = C(x)).
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We also introduce the quantity

s(n) = (2n)d πn(pc) .

It will turn out that s(n) represents the size of the largest critical clusters on scale
n. Finally, the cluster size distribution is described by

P≥s(p) = Pp(|C(0)| ≥ s).

We next recall the definitions of some of the standard power laws expected to
characterize the scaling behavior of relevant quantities in percolation, noting that
the existence of these power laws has not yet been rigorously established in low
dimensions. We define F (p) ≈ |p − pc|α to mean limp→pc logF (p)/log |p− pc| =
α, and implicitly assume that the approach is identical from above and below
threshold, unless noted otherwise. Similarly, we use the notation F (n) ≈ nα to
mean limn→∞ logG(n)/logn = α. The power laws of relevance to us are

P∞(p) ≈ |p− pc|β , p > pc ,

χfin(p) ≈ |p− pc|−γ ,
ξ(p) ≈ |p− pc|−ν ,

P≥s(pc) ≈ s−1/δ

and
πn(pc) ≈ n−1/ρ .

Note that the last relation implies

s(n) ≈ ndf with df = d− 1/ρ .

Here we use the notation df to indicate that the power law of s(n) characterizes
the fractal dimension of the incipient infinite cluster.

For rigorous work, it is often convenient to replace the correlation length by
the finite-size scaling correlation length, L0(p), introduced in [CCF]. Define the
rectangle crossing probability: RL,M(p) = Pp{ ∃ occupied bond crossing of [0, L]×
[0,M ] · · · × [0,M ] in the 1-direction} . Observing that, for p < pc, RL,3L(p) → 0
as L→∞, we define

L0(p) = L0(p, ǫ) = min{L ≥ 1 | RL,3L(p) ≤ ǫ} if p < pc .

It can be shown [CCF] that the scaling behavior of L0(p, ǫ) is essentially the same
as that of the standard correlation length ξ(p): for 0 < ǫ < a(d), there exist
constants c1 = c1(d), c2 = c2(d, ǫ) <∞ such that

1

L0(p, ǫ)
≤ 1

ξ(p)
≤ c1 logL0(p, ǫ) + c2

L0(p, ǫ)− 1
, p < pc .
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Hereafter we will assume that ǫ < a(d); we usually suppress the ǫ-dependence
in our notation. For p > pc, [BCKS2] define L0(p, ǫ) in terms of finite-cluster
crossings in an annulus; the reader is referred to [BCKS2] for precise definitions
and properties of the resulting length. Another important quantity in the high-
density phase of percolation is the surface tension σ(p); see [ACCFR] for the precise
definition. By analogy with the definition of a finite-size scaling correlation length
below threshold, [BCKS2] define a finite-size scaling inverse surface tension as

A0(p) = A0(p, ǫ) = min{Ld−1 ≥ 1 | RL,3L(p) ≥ 1− ǫ} if p > pc .

Again, see [BCKS2] for properties of A0(p).

4. The Scaling Axioms and the Results

The [BCKS2] results are established under a set of axioms which we can explicitly
verify in two dimensions and which we expect to be true whenever the dimension
does not exceed the upper critical dimension dc (presumably dc = 6). We call
these axioms the Scaling Axioms since they are characterizations of the scaling
behaviors implicitly assumed in the physics literature. In this section, we will
review the axioms and a few of the results from [BCKS2]. Much of this treatment
is taken almost verbatim from a preliminary version of [BCKS2] and [CPS].

The Scaling Axioms
Several of the axioms involve the length scales L0(p) and A0(p), and therefore

implicitly involve the constant ǫ. [BCKS2] assume that the axioms are true for all
ǫ < ǫ0, where ǫ0 = ǫ0(d) depends on a so-called rescaling lemma.

The axioms are written in terms of the equivalence symbol≍. Here F (p) ≍ G(p)
means that C1F (p) ≤ G(p) ≤ C2F (p) where C1 > 0 and C2 < ∞ are constants
which do not depend on n or p, as long as p is uniformly bounded away from zero
or one, but which may depend on the constants ǫ, ǫ̃ or x appearing explicitly or
implicitly in the axioms. The [BCKS2] scaling axioms are

(I) L0(p)→∞ as p ↓ pc;
(II) For 0 < ǫ̃ < ǫ0, x ≥ 1 and p > pc,

A0(p) ≍ Ld−10 (p) ≍ Ld−10 (p, ǫ̃;x);

(III) There are constants D1 > 0, D2 <∞ such that

D1 ≤ πn(p)/πn(pc) ≤ D2 if n ≤ L0(p);
(IV) There are constants D3 > 0, ρ1 > 2/d, such that

πkn(pc)/πn(pc) ≥ D3k−1/ρ1 , n, k ≥ 1;

(V) There exists a constant D4 such that for p > pc,

χcov(p) ≤ D4Ld0(p)π2L0(p)(pc) and χfin(p) ≤ D4Ld0(p)π2L0(p)(pc);
(VI) For p > pc,

πL0(p)(pc) ≍ P∞(p);

(VII) There exist constants D5, D6 <∞ such that for p < pc and k ≥ 1,

P≥ks(L0(p))(p) ≥ D5e−D6kP≥s(L0(p))(p).
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Let us briefly discuss the interpretation of the axioms. The first tells us that
the approach to pc is critical—i.e., continuous or second-order—from above pc.
Axiom (II) is the assumption of equivalence of length scales above pc: The second
part of it asserts the equivalence of the finite-size scaling lengths at various values
of x ≥ 1 and ǫ ∈ (0, ǫ0). The first part of it, i.e. A0(p) ≍ Ld−10 (p), is called
Widom scaling. It is equivalent to a hyperscaling relation the surface tension and
correlation length exponents.

The third axiom formalizes a central element of the conventional scaling wisdom.
Scaling theory asserts that whenever the system is viewed on length scales smaller
than the correlation length, it behaves as it does at threshold. Axiom (III) asserts
that this is the case for the connectivity function π(p). Axiom (IV) implies that the
connectivity function πn(p) has a bound of power law behavior at threshold. Of
course, scaling theory assumes a pure power law with exponent −1/ρ. Axioms (V)
and (VI) imply hyperscaling and scaling relations among the critical exponents.
In terms of exponents, (V) is equivalent to the hyperscaling relation dν = 2β + γ,
while (VI) is equivalent to the scaling relation ν/ρ = β. Finally, Axiom (VII) gives
a bound on the exponential decay rate of the cluster size distribution below pc.

Theorem 0 ([BCKS2]).The Scaling Axioms (I)–(VII) hold in dimension d = 2.

The proof of this theorem is technically quite complicated. It involves essentially
the most complicated constructions which have been done for two-dimensional
percolation.

A Few Results
In order to state the [BCKS2] results, we need to define a scaling window in

which the system behaves critically, i.e. an analogue of the function p(N) in the
random graph problem. For us, this is described by the function

g(p, n) :=





− n
L0(p)

if p < pc

0 if p = pc
n

L0(p)
if p > pc.

It will turn out that a sequence of systems with density pn behaves critically,
subcritically, or supercritically— as far as size of large clusters is concerned— in
finite boxes if, as n → ∞, g(pn, n) remains bounded, tends to −∞, or tends to
∞, respectively. If this is the case, we say that the sequence of systems is inside,
below or above the scaling window, respectively.

We again use the symbol ≍, this time for two sequences an and bn of real
numbers . We write an ≍ bn if 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn <∞ .

Our first theorem characterizes the scaling window in terms of the expectation
of the largest cluster sizes.

Theorem 1 ([BCKS2]).Suppose that Axioms (I)–(VII) hold.

i) If {pn} is inside the scaling window, i.e., if lim supn→∞ |g(pn, n)| < ∞, and
i ∈ N, then

Epn{W (i)
Λn
} ≍ s(n) .
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ii) If {pn} is below the scaling window, i.e., g(pn, n)→ −∞, then

Epn{W (1)
Λn
} ≍ s(L0(pn)) log

n

L0(pn)
.

iii) If {pn} is above the scaling window, i.e., g(pn, n)→∞, then

Epn{W (1)
Λn
}

|Λn|P∞(pn)
→ 1 as n→∞ ,

and
Epn{W (2)

Λn
}

|Λn|P∞(pn)
→ 0 as n→∞ .

Assuming the existence of critical exponents and monotonicity of various quan-
tities, Theorem 1 says that the scaling window is of the form

pn = pc ±
c

n1/ν
,

that inside the window

W (1) ≈ ndf , W (2) ≈ ndf , · · ·

while above the window

W (1) ≈ ndP∞ ,

W (1)/ndf →∞ ,

W (2)/W (1) → 0,

and below the window
W (1)/ndf → 0

where, in fact,
W (1) ≈ ξdf logn/ξ .

The above results hold in expectation.
[BCKS2] also prove analogues of statements (i)–(iii) of the theorem for conver-

gence in probability, rather than in expectation. Furthermore, within the scaling
window, we get results on the distribution of cluster sizes which show that the dis-
tribution does not go to a delta function. This is to be contrasted with the behavior
above the window, where the cluster size distribution approaches its expectation,
with probability one. All of these additional results require some delicate second
moment estimates. The reader is referred to [BCKS2] for precise statements of
these results and for their proofs.

One final result is worth mentioning, since it is used in the proofs of the other
results and is of interest in its own right. It concerns the number of clusters on
scales m < n. Before stating the result, it should be noted that, due to statement
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(i) of Theorem 1, the “incipient infinite cluster” inside the scaling window is not

unique, in the sense that W
(2)
Λn

is of the same scale as W
(1)
Λn

. This should be con-

trasted with the behavior of W
(2)
Λn
/W

(1)
Λn

above the scaling window (see statement
(iii)), a remnant of the uniqueness of the infinite cluster above pc. The next theo-
rem relates the non-uniqueness of the “incipient infinite cluster” inside the scaling
window to the property of scale invariance at pc. Basically, it says that the number
of clusters of scale m in a system of scale n is a function only of the ratio n/m.
How can this hold on all scales m? The only way it can be true is if the system has
a fractal-like structure with smaller clusters inside holes in larger clusters. The
theorem concerns the number NΛ(s1, s2) of clusters with size between s1 and s2.

Theorem 2 ([BCKS2]).Assume that Axioms (I)–(IV) are valid. Let {pn} lie
inside the scaling window. Then there exist strictly positive, finite constants σ1,
σ2, C1 and C2 (all depending on the sequence {pn}) such that

C1

(
n

m

)d
≤ Epn

{
NΛn(s(m), s(km))

}
≤ C2

(
n

m

)d
,

provided m and k are strictly positive integers with k ≥ σ1 and σ2m ≤ n.

5. Interpretation of the Results

How can we understand the form of the window? As explained earlier, the system is
expected to behave critically whenever the length scale is less than the correlation
length. Indeed, this is the content of Axiom (III). But the boundary of this region
is given by

n ≈ λ̃ξ ≈ λ̃|p− pc|−ν , i.e. p ≈ pc ±
λ

n1/ν
,

where λ̃, λ are constants. This is of course precisely the content of Theorem 1.
What would these results say if we attempted to apply them in the case of

random graph model (to which they of course do not rigorously apply)? Let us
use the hyperscaling relation dν = γ + 2β and the observation that the volume N
of our system is just nd, to rewrite the window in the form

pn = pc ±
λ

n1/ν
= pc

(
1± c

n1/ν

)
= pc

(
1± c

N1/dν

)
= pc

(
1± c

N1/(γ+2β)

)
.

Similarly, let us use the hyperscaling relation df/d = δ/(1 + δ) to rewrite the size
of the largest cluster as

W (1) ≈ ndf ≈ Ndf/d ≈ Nδ/(1+δ).

Noting that the random graph model is a mean-field model, we expect (and in fact
it can be verified) that γ = 1, β = 1 and δ = 2. Using also pc = 1/N , we have a
window of the form

p(N) =
1

N
± c

N4/3
,
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and within that window
W (1) ≈ N2/3,

just the values obtained in the combinatoric calculations on the random graph
model.

The results also have implications for finite-size scaling. Indeed, the form of the
window tells us precisely how to locate the critical point, i.e. it tells us the correct
region about pc in which to do critical calculations. Similarly, W (1) ≈ N2/3 tells
us how to extrapolate the scaling of clusters in the critical regime.

Finally, the results tell us that we may use the largest cluster in the box as a
candidate for the incipient infinite cluster. Within the window, it is not unique, in
the sense that there are many clusters of this scale. However, outside the window
(even including a region where p is not uniformly greater than pc as n → ∞),
there is a unique cluster of largest scale. This is the analogue of what is called the
dominant component in the random graph problem.
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Extended Dynamical Systems
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Abstract. We discuss the dynamics of dissipative systems defined in
unbounded space domains, and in particular results on the existence of
the semi-flow of evolution, on the development structures due to insta-
bilities, and on large time behaviors.
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I. Introduction.

Extended dynamical systems deal with the time evolutions of systems where the
spatial extension is important. One of the remarkable achievement of the theory
of dynamical systems was the proof that if one considers a system in a bounded
domain (for example a two dimensional incompressible fluid), then the global at-
tracting set is a compact set with finite dimensional Hausdorff dimension although
the phase space of the system is infinite dimensional (see [R.], [T.] etc.). It turns
out however that the dimension of the attractor grows with the spatial extension
of the system, and attractors of large dimension are not very easy to analyze at
the present time. Also the theory of dynamical systems does not provide easily
information about the spatial structure of the solutions.

This is not so important for small spatial extension where this spatial structure
is rather simple. However systems with large spatial extension develop interesting
spatial structures. One of the most common of these structures are the waves on
a sea excited by a gentle wind (see [M.] for a discussion of the present status of
knowledge of this major phenomenon). As a simple criteria we will say that a
system is extended if the spatial size of the system is much larger than the typical
size of the structures. As will be explained below, in many interesting situations
the scale of the structures is well defined. For example, even during the wildest
storms, the wavelength of the waves is much smaller than the size of the sea (even
of some large lakes).

Note that for spatially extended systems defined in large but bounded spatial
domains, all the large time information about spatial structures should be available
from the study of the attractor(s), invariant measures etc. The problem is that it
is not easy at all to extract spatial information out of the non linear structure of
the dynamics in phase space. This is why Physicists have been looking for a long
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time for a direct approach which emphasizes the search for structures and their
evolution.

There are other difficulties with large systems which are of more technical
nature. When one tries to use bifurcation theory for example, one is lead to
study the spectrum of the linearized time evolution around a stationary solution.
When the spatial extension of the system becomes large, the spectrum although
discrete (in a bounded domain) becomes very dense. In general this implies that
bifurcation theory gives results only on a very small range of parameters. This has
also unpleasant experimental consequences since a small variation of the parameter
near criticality can result in a large number of eigenvalues becoming unstable.

Physicists have dealt with these difficulties since a long time. By analogy
with Statistical Mechanics, one may hope that if a system has a large spatial
extension, its behavior may be well approximated by the behavior of a system
with infinite extension (the so called thermodynamic limit). Of course one may
expect corrections from far away boundaries.

This assumption has an important technical consequence. When studying
the spectrum of the linearized evolution in bounded domains one should use some
adequate basis of functions (Fourier series etc.). In unbounded domains, at least
for operators with constant coefficients, the spectra is easily obtained using Fourier
transform which is a much more convenient tool. A lot of important results have
been obtained this way by Physicists (see for example [Ch.]). In fact one could
remark that whenever Fourier transform is used in a Physical problem to deal with
spatial dependence, an assumption of infinite spatial extension has been made.

Note that contrary to the case of spatially finite systems, extended systems
lead in general to continuous spectrum for the linearized evolution. Another diffi-
culty, almost never mentioned in the Physics literature is the nature of phase space
of extended systems. Since spectral theory will be an important tool, one would
imagine working in a phase space which is for example a Sobolev space. Several
interesting works have been done in that direction. However this is not the phase
space one would like to use. For example, such a space does not contain waves.
Therefore more natural and interesting phase spaces should be like L∞.

The rest of this paper is organized as follows. In section 2 we will present
some results on the global existence of the time evolution in extended domains. In
section 3 we will discuss the instabilities of homogeneous solutions and see how they
can lead to the appearance of structures at well defined scales. Finally in section
4 we will present some results dealing with questions of large time asymptotic.

II. Global Existence of the Semi-Flow.

The first mathematical question with extended systems is the problem of global
existence of the semi flow of time evolution. As mentioned in the introduction, one
of the difficulty is that we want to deal with a rather large phase space containing in
particular wave-like solutions which do not tend to zero at infinity. Several results
have been obtained in the case of Sobolev phase spaces, however the methods do
not seem to apply to the phase spaces which are required for the general Physical
applications. Very few results are available for only bounded initial conditions, and
we will briefly describe some of these results. As in the case of dynamical systems,
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it is convenient to work with some simplified models which exhibit the essential
phenomena without the complexity of the real equations. One such model is the
so called Swift-Hohenberg equation. This equation gives the time evolution of a
real field u(t, x) and is given in one space dimension by

∂tu = ηu− (1 + ∂2x)2u− u3 , (SH)

where η is a real parameter. This equation was derived by Swift and Hohenberg
as a model for the onset of convection [S.H.].

Another popular model whose importance will become clearer below is the
so called complex Ginzburg-Landau equation. This equation describes the time
evolution of a complex field A(t, x) and is given by

∂tA = (1 + iα)∆A+A− (1 + iβ)A|A|2 , (CGL)

where α and β are two real parameters.
The basic problem is to prove that these equations have (nice) solutions for

all time if we start with an initial condition which is only bounded (and somewhat
regular). The case of the Ginzburg-Landau equation was treated first in [C.E.1] in
dimension one and generalized in [C.1] and [G.V.]. Regularity of the solution was
obtained in [C.3] and [T.B.]. We summarize the results in the following theorem.

Theorem II.1 ([C.1],[C.3]). In dimension one and two, for any complex valued
function A0 of the space variable x, bounded and uniformly continuous, there is a
unique solution A of the (CGL) equation with initial condition A0. This function
A is for all times bounded and uniformly continuous. Moreover, there is a positive
constant T = T (A0, α, β), and two positive constants C = C(α, β) and h = h(α, β)
such that for any t > T , the function A(t, · ) extends to a function analytic in the
strip |ℑz| ≤ h and satisfying

sup
|ℑz|≤h

|A(t, z)| ≤ C .

In other words, the dynamics contracts the large fields to a universal invariant
ball, and moreover regularity develops. In the case of dimension three and higher,
estimates are presently only available for a restricted range of parameters, we refer
to the original publications for more details. A similar result holds for the Swift-
Hohenberg equation. The case of reaction-diffusion equations may prove more
difficult to deal with, see [C.X.].

As mentioned above, in order to prove such a result one has to use techniques
which are rather different from the case of bounded domains. Theorem II.1 has
been proven using a local energy estimate. We only indicate the basic starting
point. Note that the local (in time) existence and boundedness of the solution
follows easily from the usual techniques using the contraction mapping principle.
The main goal is therefore to obtain some global a-priori estimate.

Let ϕ be a regular function tending to zero sufficiently fast at infinity. For
example

ϕ(x) =
1

(1 + |x|2)d
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where d is the dimension. The idea is to probe the size of a bounded function by
looking at the L2 norm of this function multiplied by some translate of ϕ. This is
reminiscent of the so called amalgam spaces.

The basic quantity to estimate is the number

I(t) = sup
x0

I(t, x0)

where

I(t, x0) =

∫
|A(t, x)|2 ϕ(x− x0) dx .

After some simple algebra and integration by parts, one gets easily

d

dt
I(t, x0) ≤ K −

∫
|A(t, x)|2 ϕ(x− x0) dx = K − I(t, x0) .

where K is some constant which depends only on ϕ and the coefficients α and β.
This differential inequality tells us that after some time the quantity I(t, x0) will
settle forever below 2K. Note also that the time it takes to reach this situation can
be bounded above by a quantity which depends only on ‖A0‖L∞ (and of course on
the coefficients α and β of the equation). The rest of the proof is based on similar
but more involved estimates. We refer the reader to the original papers for more
details.

III. Instabilities and Structures.

As mentioned above, instability in extended systems leads very often to the de-
velopment of structures with a well defined wave length. We will illustrate this
phenomenon on the one dimensional Swift-Hohenberg equation (S.H.). We first ob-
serve that for any value of the parameter η, the homogeneous function u(t, x) = 0
is a stationary solution. If we linearize the evolution around this solution, we get
the equation

∂tv = ηv − (1 + ∂2x)2v ,

which describes the linear time evolution of small perturbations of the homo-
geneous solution. This equation can be explicitly solved by taking the Fourier
transform in x. One gets

∂tv̂(t, k) = ω(η, k)v̂(t, k) (III.1)

where
ω(η, k) = η − (1− k2)2 (III.2) .

It is then easy to see that if η < 0, the solution tends to zero (ω < 0), whereas if
η > 0 some Fourier modes are exponentially amplified (ω > 0 for k near ±1). As
mentioned above, one should be careful with the interpretation of this result in
direct space since we want to work in a phase space of functions which do not decay
at infinity and whose Fourier transforms are in general distributions. Nevertheless
this trivial analysis will give the right intuition. It is indeed possible to prove that
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for the complete non-linear (S.H.) equation and η < 0, bounded initial conditions
relax to zero.

The case η > 0 is of course more interesting and reminiscent of bifurcation
theory. Recall that the main idea of bifurcation theory is that in phase space, the
dominant part of the bifurcated branch is along the subspace of the linear problem
which becomes unstable. The amplitude in that direction(s) varying slowly. For
η > 0 small, we have in the (SH) equation two bands of modes of width O(η1/2)
around ±1 which are unstable. All other modes are linearly damped. This follows
easily from (III.1) and (III.2). By analogy with standard bifurcation theory, one
may expect that the coefficient in the unstable directions will vary slowly in space
and time. This is indeed what can be proven.

Theorem III.1. There are positive numbers R, η0, C1, · · · , C4 such that if η ∈
]0, η0[, if u0(x) is a real bounded uniformly continuous function such that ‖u0‖L∞ <
R, there is a positive number T1 = T1(u0, η) such that for any t > T1, the solution
u of (S.H.) with initial condition u0 satisfies

‖u(t, · )‖L∞ < C1η
1/2 .

Moreover, for any t > T1, there is a solution B(s, y) of the real Ginzburg-Landau
equation

∂sB = ∂2yB +B −B|B|2 (G.L.)

such that for any t ≤ τ ≤ t+ C2η
−1 log η−1 we have

‖u(τ, · )− B(τ, · )‖L∞ < C3η
1/2+C4 ,

where
B(τ, x) = 3−1/2η1/2eixB(η(τ − t), η1/2x/2) + c.c.

This result is similar to what can be obtained in bifurcation theory using nor-
mal forms. It says that the function reconstructed from the normal form (here the
(G.L.) equation) reproduces well the true evolution during a large time. However,
as for normal forms, we cannot expect this to be true forever since small errors
due to truncation of the normal form are likely to be amplified by the unstable
dynamics.

The idea of amplitude equation is rather old, and we refer to [C.H.] for refer-
ences. Several versions of the above result (or similar ones) have been published
in [C.E.1], [v.H.], [K.M.S.], [S.]. The original idea of shadowing of trajectories is
due to Eckhaus [E.]. A new proof using a dynamical renormalization group was
given in [C.2] for the case of discrete evolution equations. The renormalization
group method has several advantages. First of all it provides a systematic and
rigorous approach to multi-scale analysis. It also provides a proof of the above
theorem in one step. In the above formulation, it was convenient to separate the
initial contraction regime from the subsequent shadowing result. It turns out in
the proof that they are different manifestations of the same renormalization effect.
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Also one gets some information on the initial contraction phase. The fact that
the size of the initial condition R can be chosen independent of η is important
and in a sense is optimal since one cannot expect the result to hold for initial
conditions of size much larger than unity without further hypothesis since the dy-
namics may well have another fixed point of order one (although for the particular
case of the (S.H.) equation one can prove global attraction). Last but not least,
renormalization group produces universal results. This is a nice substitute for
the generic arguments of finite dimensional bifurcation theory. This explains why
the Ginzburg-Landau equation appears so often in the study of instabilities of ex-
tended systems. It turns out that the associated fixed point of the renormalization
group is the equation

∂sB = ∂2yB −B|B|2 ,
which is invariant by the rescaling s → L2s, y → Ly, B → LB. The relevant
unstable manifold parameterized by a real number σ is the (unnormalized) G.L.
equation

∂sB = ∂2xB + σB −B|B|2 .
We refer to [B.K.1] and [C.2] for more details and references on the renormalization
group ideas and to [A.] page 212 for a general program.

IV. Large Time Behavior.

For dissipative systems in bounded domains, various notions of attractors have
been introduced. One tries to describe in the phase space an invariant set which
captures all the asymptotic dynamics. Various results have been proven about
the compactness and finite Hausdorff dimension of such objects. For extended
systems we cannot hope for such results and the definition of the global attracting
set has to be modified due to the lack of compactness. Mielke and Schneider [M.S.]
following an idea of Feireisl have proposed to define a global attracting set using
two different topologies. One is a global topology (of the type L∞), the other one
is a local topology where one recovers compactness. We give below a variant of
their result for the (CGL) equation (for other equations see [M.S.]).

Theorem IV.1. For the (CGL) equation in dimension 1 and 2, there is a set A
of functions analytic in a strip of width h around the real space and satisfying

sup
|ℑz|<h

|A| < C,

where h and C are as in Theorem II.1 and such that
1) A is closed in L∞,
2) A is invariant by space translations,
3) A is invariant by the semi flow (St) of evolution of the (CGL) equation (namely

St(A) = A for any t > 0),
4) A is compact in L∞(Q) for any cube Q,
5) A attracts any bounded set of L∞, namely if B is a bounded set in L∞, the
L∞ distance between St(B) and A tends to zero when t tends to infinity.

We refer to [M.S.] for the proof. We mention however that although 4) is
trivial from the analyticity of the functions in A, this compactness property is
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crucial in the proof of 3) and 5) together with the fact that the L∞ norm of a
function on the whole line is obtained by taking the sup of the L∞ norms of the
function on the translates of a fixed cube.

Once the global attractor of a dynamical system has been identified, one can
try to give some geometrical description of this object. As mentioned before,
for systems in bounded domains one tries to prove that the attractor has finite
Hausdorff dimension. A natural question for extended domains is whether there is
a good notion of dimension per unit volume of space. In this direction, Ghidaglia
and Heron [G.H.] have given for the (CGL) equation in finite domain an upper
bound on the Hausdorff dimension of the attractor which is proportional to the
length of the domain in space dimension one and proportional to the surface in
space dimension two. However contrary to the case of statistical mechanics, it is
not clear at this moment whether a sub-additive result holds for the dimension.
The main difficulty is to connect the dimension of attractors for the union of two
domains.

We have recently considered this question with J.-P. Eckmann from another
point of view related to signal analysis. For simplicity I will only discuss one
dimensional systems although the results are true in any dimension. We start
directly with the system in an unbounded domain, but we observe it in a finite
window, for example the interval [−L,L]. This is quite natural in view of the above
definition of attractor. Note however that since the functions on the attractor A
are analytic they will be seen in any interval. This implies that the dimension of
A in L∞([−L,L]) is infinite. Kolmogorov and Tikhomirov have studied a similar
situation for some spaces of analytic functions [K.T.]. They have defined following
Shannon the ǫ-entropy per unit length Hǫ as follows. Let B be a subset of L∞(R).
For a fixed ǫ > 0 one defines NL(ǫ) as the smallest number of balls of radius at
most ǫ (in L∞([−L,L])) needed to cover B. The ǫ entropy per unit length of B is
defined by

Hǫ(B) = lim
L→∞

log2NL(ǫ)

L
,

provided the limit exists. One is then interested at the behavior of this quantity
when ǫ tends to zero. Note the exchange of limits with respect to the usual
definition of dimension. For the attractor A, if one fixes L and let ǫ tends to zero,
one gets an infinite dimension. In other words, for a fixed precision ǫ, if the size of
the window is too small, one gets the impression of an object of infinite dimension.
As the result below indicates, there is however a cross-over length which depends
on the precision ǫ beyond which one sees a finite dimension per unit length (at
this fixed precision). Kolmogorov and Tikhomirov in [K.T.] proved the following
estimates.

For the set Eσ(C) of entire functions satisfying

|f(z)| ≤ Ceσ|ℑz|

one has

Hǫ(Eσ(C)) ≈ 2σ

π
log2(1/ǫ) ,

where ≈ means that the ratio of the two quantities tend to 1 when ǫ tends to zero.
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For the set Sσ(C) of functions analytic in a strip of width h around the real
axis and satisfying

sup
|ℑz|≤h

|f(z)| ≤ C

one has

Hǫ(Sh(C)) ≈ 1

πh
(log2(1/ǫ))

2 .

We refer to [K.T.] for the proof of these two statements.
From the previous result on the analyticity of the functions in A one would

expect a growth of the ǫ-entropy proportional to (log ǫ)2. It turns out that there
is in a sense far less functions in A, and in the sense of ǫ-entropy we have indeed
a finite dimension per unit length.

Theorem [C.E.4]. There is a number c = c(α, β) > 1 such that for the (CGL)
in dimension 1 and 2 we have

c−1 log2(1/ǫ) ≤ Hǫ(A) ≤ c log2(1/ǫ) .

Note that some functions belonging to A are known which are not entire.
We have also obtained recently with J.-P. Eckmann a proof of existence of the
topological entropy per unit volume. Moreover this quantity can also be obtained
from a discrete sampling of the solutions (see [C.E.5]).

V. Conclusions.

Extended systems occur naturally in many natural questions. They appear in
Physics, Chemistry, Biology, Ecology and other sciences as soon as the spatial
extension of the system becomes important. We refer to [C.H.] [B.N.] and [Mu.]
for some examples.

From the mathematical point of view there are many open problems. The
understanding of the evolution of structures and the occurrence of spatio temporal
chaos are the most challenging. There are very few results in these area where even
numerical simulations are difficult to perform. As in the case of finite dimensional
dynamical systems, there are two main trends of research up to now.

In the first one, one tries to understand the spatial structure of the solutions.
This is quite natural near the onset of instability of the homogeneous state, where
the structures play a dominant role. We refer to [B.N.] for a review of this ap-
proach. Even near onset there are important questions which are not understood.
For example in dimension 2 or larger, the amplitude should be a distribution on
the unit circle and up to now a global derivation of an amplitude equation has
not been performed. The analysis has only been achieved under various symmetry
assumptions which strongly restrict the solutions, although these solutions with
symmetries are the ones which appear in experiments. In a different perspective,
particular solutions with interesting physical meaning have been constructed (see
for example [C.E.3] for more details).
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The second trend of research is more of statistical nature and is concerned
with asymptotic time evolution. The existence of interesting invariant measures
is still an open problem. Beyond numerical simulations some analogies have been
drawn in the spatio temporal intermittency transition with directed percolation
(see [B.P.V.] for a review). Even in the case where there is no spatio temporal
chaos, the asymptotic state may be non trivial as in the phase ordering kinetics
problem (see [B.] where consequences of scaling hypothesis are developed). We
mention however that in the problem of coupled lattice maps, interesting invariant
measures have been constructed ([B.K.2] and references therein).

Finally I refer to the conclusion of Bowman and Newell in their RPM Collo-
quia [B.N.] for a statement on the future of this field.
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The Mathematics of Fivebranes
Robbert Dijkgraaf

Abstract.

Fivebranes are non-perturbative objects in string theory that general-
ize two-dimensional conformal field theory and relate such diverse sub-
jects as moduli spaces of vector bundles on surfaces, automorphic forms,
elliptic genera, the geometry of Calabi-Yau threefolds, and generalized
Kac-Moody algebras.

1991 Mathematics Subject Classification: 81T30
Keywords and Phrases: quantum field theory, elliptic genera, automor-
phic forms

1 Introduction

This joint session of the sections Mathematical Physics and Algebraic Geometry
celebrates a historic period of more than two decades of remarkably fruitful inter-
actions between physics and mathematics. The ‘unreasonable effectiveness’, depth
and universality of quantum field theory ideas in mathematics continue to amaze,
with applications not only to algebraic geometry, but also to topology, global anal-
ysis, representation theory, and many more fields. The impact of string theory has
been particularly striking, leading to such wonderful developments as mirror sym-
metry, quantum cohomology, Gromov-Witten theory, invariants of three-manifolds
and knots, all of which were discussed at length at previous Congresses.

Many of these developments find their origin in two-dimensional conformal
field theory (CFT) or, in physical terms, in the first-quantized, perturbative for-
mulation of string theory. This is essentially the study of sigma models or maps
of Riemann surfaces Σ into a space-time manifold X. Through the path-integral
over all such maps a CFT determines a partition function Zg on the moduli space
Mg of genus g Riemann surfaces. String amplitudes are functions Z(λ), with λ
the string coupling constant, that have asymptotic series of the form

Z(λ) ∼
∑

g≥0
λ2g−2

∫

Mg

Zg. (1)

But string theory is more than a theory of Riemann surfaces. Recently it
has become possible to go beyond perturbation theory through conceptual break-
throughs such as string duality [23] and D-branes [19]. Duality transformations
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can interchange the string coupling λ with the much better understood geometric
moduli of the target space X. D-Branes are higher-dimensional extended objects
that give rise to special cycles Y ⊂ X on which the Riemann surface can end,
effectively leading to a relative form of string theory.

One of the most important properties of branes is that they can have multi-
plicities. If k branes coincide a non-abelian U(k) gauge symmetry appears. Their
‘world-volumes’ carry Yang-Mills-like quantum field theories that are the analogues
of the two-dimensional CFT on the string world-sheet. The geometric realization
as special cycles (related to the theory of calibrations) has proven to be a powerful
tool to analyze the physics of these field theories. The mathematical implications
are just starting to be explored and hint at an intricate generalization of the CFT
program to higher dimensions.

This lecture is a review of work done on one of these non-perturbative objects,
the fivebrane, over the past years in collaboration with Erik Verlinde, Herman
Verlinde and Gregory Moore [4, 5, 8, 7]. I thank them for very enjoyable and
inspiring discussions.

2 Fivebranes

One of the richest and enigmatic objects in non-perturbative string theory is the so-
called fivebrane, that can be considered as a six-dimensional cycle Y in space-time.
Dimension six is special since, just as in two dimensions, the Hodge star satisfies
∗2 = −1 and one can define chiral or ‘holomorphic’ theories. The analogue of a free
chiral field theory is a 2-form ‘connection’ B with a self-dual curvature H that is
locally given as H = dB but that can have a ‘first Chern class’ [H/2π] ∈ H3(Y,Z).
(Technically it is a Deligne cohomology class, and instead of a line bundle with
connection it describes a 2-gerbe on Y .) A system of k coinciding fivebranes is
described by a 6-dimensional conformal field theory, that is morally a U(k) non-
abelian 2-form theory. Such a theory is not known to exist at the classical level of
field equations, so probably only makes sense as a quantum field theory.

One theme that we will not further explore here is that (at least for k = 1) the
fivebrane partition function ZY can be obtained by quantizing the intermediate
Jacobian of Y , very much in analogy with the construction of conformal blocks
by geometric quantization of the Jacobian or moduli space of vector bundles of
a Riemann surface [24]. This leads to interesting relations with the geometry of
moduli spaces of Calabi-Yau three-folds and topological string theory. In fact there
is even a seven-dimensional analogue of Chern-Simons theory at play.

The fivebrane theory is best understood on manifolds of the product form
Y = X×T 2, with X a 4-manifold. In the limit where the volume of the two-torus
goes to zero, it gives a U(k) Yang-Mills theory as studied in [21]. In that case
the partition function computes the Euler number of the moduli space of U(k)
instantons on X. In the k = 1 case this relation follows from the decomposition
of the 3-form

H = F+ ∧ dz + F− ∧ dz (2)

with F± (anti)-self-dual 2-forms on X. In this way holomorphic fields on T 2

are coupled to self-dual instantons on X. The obvious action of SL(2,Z) on T 2
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translates in a deep quantum symmetry (S-duality) of the 4-dimensional Yang-
Mills theory.

Actually, the full fivebrane theory is much richer than a 6-dimensional CFT.
It is believed to be a six-dimensional string theory that does not contain gravity
and that reduces to the CFT in the infinite-volume limit. We understand very
little about this new class of string theories, other than that they can be described
in certain limits as sigma models on instanton moduli space [20, 7, 1, 25]. As we
will see, this partial description is good enough to compute certain topological
indices, where only so-called BPS states contribute.

3 Conformal field theory and modular forms

One of the striking properties of conformal field theory is the natural explanation
it offers for the modular properties of the characters of certain infinite-dimensional
Lie algebras such as affine Kac-Moody algebras. At the hart of this explanation—
and in fact of much of the applications of quantum field theory to mathematics—
lies the equivalence between the Hamiltonian and Lagrangian formulation of quan-
tum mechanics [22]. For the moment we consider a holomorphic or chiral CFT.

In the Hamiltonian formulation the partition function on an elliptic curve T 2

with modulus τ is given by a trace over the Hilbert space H obtained by quanti-
zation on S1 ×R. For a sigma model with target space X, this Hilbert space will
typically consist of L2-functions on the loop space LX. It forms a representation
of the algebra of quantum observables and is Z-graded by the momentum operator
P that generates the rotations of S1. For a chiral theory P equals the holomorphic
Hamiltonian L0 = z∂z. The character of the representation is then defined as

Z(τ) = TrHq
P− c

24 (3)

with q = e2πiτ and c the central charge of the Virasoro algebra. The claim is that
this character is always a suitable modular form for SL(2,Z), i.e., it transforms
covariantly under linear fractional transformations of the modulus τ .

In the Lagrangian formulation Z(τ) is computed from the path-integral over
maps from T 2 into X. The torus T 2 is obtained by gluing the two ends of the
cylinder S1 × R, which is the geometric equivalent of taking the trace.

Tr =

Modularity is therefore built in from the start, since SL(2,Z) is the ‘classical’
automorphism group of the torus T 2.

The simplest example of a CFT consists of c free chiral scalar fields x : Σ→
V ∼= Rc. Ignoring the zero-modes, the chiral operator algebra is then given by
an infinite-dimensional Heisenberg algebra that is represented on the graded Fock
space

Hq =
⊗

n>0

SqnV. (4)
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Here we use a standard notation for formal sums of (graded) symmetric products

SqV =
⊕

N≥0
qNSNV, SNV = V ⊗N/SN . (5)

The partition function is then evaluated as

Z(τ) = q−
c
24

∏

n>0

(1− qn)−c = η(q)−c (6)

and is indeed a modular form of SL(2,Z) of weight −c/2 (with multipliers if c 6≡ 0
mod 24.) The ‘automorphic correction’ q−c/24 is interpreted as a regularized sum
of zero-point energies that naturally appear in canonical quantization.

4 String theories and automorphic forms

The partition function of a string theory on a manifold Y will have automorphic
properties under a larger symmetry group that reflects the ‘stringy’ geometry of Y .
For example, if we choose Y = X×S1×R, with X compact and simply-connected,
quantization will lead to a Hilbert space H with a natural Z⊕Z gradation. Apart
from the momentum P we now also have a winding number W that labels the
components of the loop space LY . Thus we can define a two-parameter character

Z(σ, τ) = TrH
(
pWqP

)
, (7)

with p = e2πiσ, q = e2πiτ , with both σ, τ in the upper half-plane H. We claim that
Z(σ, τ) is typically the character of a generalized Kac-Moody algebra [2] and an
automorphic form for the arithmetic group SO(2, 2;Z).

The automorphic properties of such characters become evident by changing
again to a Lagrangian point of view and computing the partition function on the
compact manifold X × T 2. The T -duality or ‘stringy’ symmetry group of T 2 is

SO(2, 2;Z) ∼= PSL(2,Z)× PSL(2,Z)⋉ Z2, (8)

where the two PSL(2,Z) factors act on (σ, τ) by separate fractional linear trans-
formations and the mirror map Z2 interchanges the complex structure τ with the
complexified Kähler class σ ∈ H2(T 2,C). This group appears because a string
moving on T 2 has both a winding number w ∈ Λ = H1(T

2;Z) and a momentum
vector p ∈ Λ∗. The 4-vector k = (w, p) takes value in the even, self-dual Narain
lattice Γ2,2 = Λ ⊕ Λ∗ of signature (2, 2) with quadratic form k2 = 2w · p and
automorphism group SO(2, 2;Z).

In the particular example we will discuss in detail in the next sections, where
the manifold X is a Calabi-Yau space, there will be an extra Z-valued quantum
number and the Narain lattice will be enlarged to a signature (3, 2) lattice. Cor-
respondingly, the automorphic group will be given by SO(3, 2,Z) ∼= Sp(4,Z).
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5 Quantum mechanics on the Hilbert scheme

As we sketched in the introduction, in an appropriate gauge the quantization of
fivebranes is equivalent to the sigma model (or quantum cohomology) of the moduli
space of instantons. More precisely, quantization on the six-manifold X ×S1×R,
gives a graded Hilbert space

Hp =
⊕

N≥0
pNHN , (9)

whereHN is the Hilbert space of the two-dimensional supersymmetric sigma model
on the moduli space of U(k) instantons of instanton number N on X. If X is an
algebraic complex surface, one can instead consider the moduli space of stable
vector bundles of rank k and ch2 = N . This moduli space can be compactified by
considering all torsion-free coherent sheaves up to equivalence. In the rank one case
it coincides with the Hilbert scheme of points on X. This is a smooth resolution of
the symmetric product SNX. (We note that for the important Calabi-Yau cases
of a K3 or abelian surface the moduli spaces are all expected to be hyper-Kähler
deformations of SNkX.)

The simplest type of partition function will correspond to the Witten index.
For this computation it turns out we can replace the Hilbert scheme by the more
tractable orbifold SNX. For a smooth manifold M the Witten index computes the
superdimension of the graded space of ground states or harmonic forms, which is
isomorphic to H∗(M), and therefore equals the Euler number χ(M).

For an orbifold M/G the appropriate generalization is the orbifold Euler num-
ber. If we denote the fixed point locus of g ∈ G as Mg and centralizer subgroups
as Cg, this is defined as a sum over the conjugacy classes [g]

χorb(M/G) =
∑

[g]

χtop(M
g/Cg). (10)

For the case of the symmetric product SNX this expression can be straightfor-
wardly computed, as we will see in the next section, and one finds

Theorem 1 [13] — The orbifold Euler numbers of the symmetric products
SNX are given by the generating function

χorb(SpX) =
∏

n>0

(1− pn)−χ(X).

Quite remarkable, if we write p = e2πiτ , the formal sum of Euler numbers is
(almost) a modular form for SL(2,Z) of weight χ(X)/2. This is in accordance
with the interpretation as a partition function on X×T 2 and the S-duality of the
corresponding Yang-Mills theory on X [21].

A much deeper result of Göttsche tells us that the same result holds for the
Hilbert scheme [9]. In fact, in both cases one can also compute the full cohomology
and express it as the Fock space, generated by an infinite series of copies of H∗(X)

Documenta Mathematica · Extra Volume ICM 1998 · III · 133–142



138 Robbert Dijkgraaf

shifted in degree [10]

H∗(SpX) ∼=
⊗

n>0

SpnH
∗−2n+2(X). (11)

Comparing with (4) we conclude that the Hilbert space of ground states of the
fivebrane is the Fock space of a chiral CFT. This does not come as a surprise
given the remarks in the introduction. One can also derive the action of the
corresponding Heisenberg algebra using correspondences on the Hilbert scheme
[16].

6 The elliptic genus

We now turn from particles to strings. To compute the fivebrane string partition
function on X × T 2, we will have to study the two-dimensional supersymmetric
sigma model on the moduli space of instantons on X. Instead of the full partition
function we will compute again a topological index — the elliptic genus. Let us
briefly recall its definition.

For the moment let X be a general complex manifold of dimension d. Phys-
ically, the elliptic genus is defined as the partition function of the corresponding
N = 2 supersymmetric sigma model on a torus with modulus τ [15]

χ(X; q, y) = TrH

(
(−1)FL+FRyFLqL0−

d
8

)
, (12)

with q = e2πiτ , y = e2πiz, z a point on T 2. Here H is the Hilbert space obtained
by quantizing the loop space LX (formally the space of half-infinite dimensional
differential forms). The Fermi numbers FL,R represent (up to an infinite shift
that is naturally regularized) the bidegrees of the Dolbeault differential forms
representing the states. The elliptic genus counts the number of string states with
L0 = 0. In terms of topological sigma models, these states are the cohomology
classes of the right-moving BRST operator QR. In fact, if we work modulo QR,
the CFT gives a cohomological vertex operator algebra.

Mathematically, the elliptic genus can be understood as the S1-equivariant
Hirzebruch χy-genus of the loop space of X. If X is Calabi-Yau the elliptic genus
has nice modular properties under SL(2,Z). It is a weak Jacobi form of weight zero
and index d/2 (possibly with multipliers). The coefficients in its Fourier expansion

χ(X; q, y) =
∑

m≥0, ℓ
c(m, ℓ)qmyℓ (13)

are integers and can be interpreted as indices of twisted Dirac operators on X.
For a K3 surface one finds the unique (up to scalars) Jacobi form of weight zero
and index one, that can expressed in elementary theta-functions as

χ(K3; q, y) = 23 ·
∑

even α

ϑ2α(z; τ)/ϑ2a(0; τ). (14)

Documenta Mathematica · Extra Volume ICM 1998 · III · 133–142



The Mathematics of Fivebranes 139

7 Elliptic genera of symmetric products

We now want to compute the elliptic genus of the moduli spaces of vector bundles,
in particular of the Hilbert scheme. Again, we first turn to the much simpler
symmetric product orbifold SNX.

The Hilbert space of a two-dimensional sigma model on any orbifold M/G
decomposes in sectors labeled by the conjugacy classes [g] of G, since L(M/G) has
disconnected components of twisted loops satisfying

x(σ + 2π) = g · x(σ), g ∈ G. (15)

In the case of the symmetric product orbifold XN/SN these twisted sectors have
an elegant interpretation [8]. The conjugacy classes of the symmetric group SN
are labeled by partitions of N ,

[g] = (n1) · · · (ns),
∑

i

ni = N, (16)

where (ni) denotes an elementary cycle of length ni. A loop on SNX satisfying
this twisted boundary condition can therefore be visualized as

X

S1

.

.

.

.
.
.
.

.

.

.

(   1n )

(   sn )

As is clear from this picture, one loop on SNX is not necessarily describing N
loops on X, but instead can describe s ≤ N loops of length n1, . . . , ns. By length
n we understand that the loop only closes after n periods. Equivalently, the action
of the canonical circle action is rescaled by a factor 1/n.

In this way we obtain a ‘gas’ of strings labeled by the additional quantum
number n. The Hilbert space of the formal sum SpX can therefore be written as

H(SpX) =
⊗

n>0

SpnHn(X). (17)

Here Hn(X) is the Hilbert space obtained by quantizing a single string of length
n. It is isomorphic to the subspace P ≡ 0 (mod n) of the single string Hilbert
space H(X). From this result one derives

Theorem 2 [8] — Let X be a Calabi-Yau manifold, then the orbifold elliptic
genera of the symmetric products SNX are given by the generating function

χorb(SpX; q, y) =
∏

n>0,m≥0, ℓ
(1− pnqmyℓ)−c(nm,ℓ).
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In the limit q → 0 the elliptic genus reduces to the Euler number and we
obtain the results from §5. Only the constant loops survive and, since twisted
loops then localize to fixed point sets, we recover the orbifold Euler character
prescription and Theorem 1.

8 Automorphic forms and generalized Kac-Moody algebras

The fivebrane string partition function is obtained from the above elliptic genus
by including certain ‘automorphic corrections’ and is closely related to an expres-
sion of the type studied extensively by Borcherds [3] with the infinite product
representation1

Φ(σ, τ, z) = paqbyc
∏

(n,m,ℓ)>0

(1− pnqmyℓ)c(nm,ℓ) (18)

For general Calabi-Yau space X it can be shown, using the path-integral repre-
sentation, that the product Φ is an automorphic form of weight c(0, 0)/2 for the
group SO(3, 2,Z) for a suitable quadratic form of signature (3, 2) [12, 14, 18].

In the important case of a K3 surface Φ is the square of a famous cusp form
of Sp(4,Z) ∼= SO(3, 2,Z) of weight 10,

Φ(σ, τ, z) = 2−12
∏

even α

ϑ[α](Ω)2 (19)

the product of all even theta-functions on a genus-two surface Σ with period matrix

Ω =

(
σ z
z τ

)
, det Im Ω > 0. (20)

Note that Φ is the 12-th power of the holomorphic determinant of the scalar
Laplacian on Σ, just as η24 is on an elliptic curve. The quantum mechanics limit
σ → i∞ can be seen as the degeneration of Σ into a elliptic curve.

In the work of Gritsenko and Nikulin [11] it is shown that Φ has an interpreta-
tion as the denominator of a generalized Kac-Moody algebra. This GKM algebra
is constructed out of the cohomological vertex algebra of X similar as in the work
of Borcherds. This algebra of BPS states is induced by the string interaction, and
should also have an algebraic reformulation in terms of correspondences as in [12].

9 String interactions

Usually in quantum field theory one first quantizes a single particle on a space X
and obtains a Hilbert space H = L2(X). Second quantization then corresponds
to taking the free symmetric algebra

⊕
N S

NH. Here we effective reversed the
order of the two operations: we considered quantum mechanics on the ‘second-
quantized’ manifold SNX. (Note that the two operations do not commute.) In this

1Here the positivity condition means: n,m ≥ 0, and ℓ > 0 if n = m = 0. The ‘Weyl vector’
(a, b, c) is defined by a = b = χ(X)/24, and c = − 1

4

∑

ℓ |ℓ|c(0, ℓ).
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framework it is possible to introduce interactions by deforming the manifold SNX,
for example by considering the Hilbert scheme or the instanton moduli space. It
is interesting to note that there is another deformation possible.

To be concrete, let X be again a K3 surface. Then SNX or HilbN(X) is an
Calabi-Yau of complex dimension 2N . Its moduli space is unobstructed and 21
dimensional — the usual 20 moduli of the K3 surface plus one extra modulus.
This follows essentially from

h1,1(SNX) = h1,1(X) + h0,0(X). (21)

The extra cohomology class is dual to the small diagonal, where two points coin-
cide, and the corresponding modulus controls the blow-up of this Z2 singularity.
Physically it is represented by a Z2 twist field that has a beautiful interpretation,
that mirrors a construction for the 10-dimensional superstring [6] — it describes
the joining and splitting of strings. Therefore the extra modulus can be interpreted
as the string coupling constant λ [7, 25].

The geometric picture is the following. Consider the sigma model with target
space SNX on the world-sheet P1. A map P1 → SNX can be interpreted as a map
of the N -fold unramified cover of P1 into X. If we include the deformation λ the
partition function has an expansion

Z(λ) ∼
∑

n≥0
λnZn, (22)

where Zn is obtained by integrating over maps with n simple branch points. In
this way higher genus surfaces appear as non-trivial N -fold branched covers of P1.
The string coupling has been given a geometric interpretation as a modulus of the
Calabi-Yau SNX.

It is interesting to note that this deformation has an alternative interpreta-
tion in terms of the moduli space of instantons, at least on R4. The deformed
manifold with λ 6= 0 can be considered as the moduli space of instantons on a
non-commutative version of R4 [17].
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On the Problem of Stabilityfor Near to Integrable Hamiltonian Systems
Antonio Giorgilli

Abstract. Some recent applications and extensions of Nekhoroshev’s
theory on exponential stability are presented. Applications to physical
systems concern on the one hand realistic evaluations of the regions where
exponential stability is effective, and, on the other hand, the relaxation
time for resonant states in large, possibly infinite systems. Extensions
of the theory concern the phenomenon of superexponential stability of
orbits in the neigbourhood of invariant KAM tori.
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1. Overview

According to Poincaré ([26], tome I, chapt. I, § 13) the general problem of dynamics
is the investigation of a canonical system of differential equations with Hamiltonian

(1) H(p, q, ε) = h(p) + εf(p, q, ε) ,

where (p, q) ∈ G × Tn are action–angle variables, G ⊂ Rn is open, ε is a small
parameter and n is the number of degrees of freedom. The functions h and f are
assumed to be analytic in all arguments; in particular the perturbation f(p, q, ε)
can be expanded in power series of ε in a neighbourhood of ε = 0. Many physical
systems may be described by a Hamiltonian of the form above; the most celebrated
one is the planetary system with its natural and (which is of interest now) artificial
bodies.

My aim here is to illustrate some results concerning the stability of such
systems. The word “stability” is used here in a wide sense, which includes a
considerable weakening of the traditional concept investigated, e.g., by Lyapounov.
I will pay particular attention to quantities that remain almost constant for a time
that increases faster than any inverse power of ε as ε→ 0. Following Littlewood,
I will refer to stability estimates of this kind as exponential stability.

It is well known that for ε = 0 the unperturbed system h(p) is trivially
integrable, since the orbits lie on invariant tori parameterized by the actions p,
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and the flow is typically quasiperiodic with frequencies ω(p) = ∂h
∂p . It has been

proven by Poincaré that for ε 6= 0 the system is generically non–integrable (see [26],
chapt. V). This is due to the existence of resonances among the frequencies, i.e.,
relations of the form 〈k, ω(p)〉 = 0 with 0 6= k ∈ Zn.

It was only after the year 1954 that a significant advance of our knowledge
was made with the celebrated theorem of Kolmogorov[18], Arnold[1] and Moser[23].
They proved the existence of a set of invariant tori of large relative measure, thus
assuring stability in probabilistic sense. Almost at the same time, Moser[22] and
Littlewood[19][20] introduced the methods leading to exponential stability. Several
years later a general formulation was given by Nekhoroshev, who proved that the
action variables p remain almost invariant for a time that increases exponentially
with the inverse of the perturbation ε; more precisely, one has

(2)
∣∣p(t)− p(0)

∣∣ < Bεb for |t| < T∗ exp
(
(ε∗/ε)

a
)

for some constants B, T∗, ε∗, a ≤ 1 and b < 1 (see [24], [25], [3], [4], [21], [14]).
My purpose here is to report on some progress made during the last decade. I

will address in particular the following points: (a) the actual relevance of exponen-
tial stability for physical systems; (b) the extension of the concept of exponential
stability to systems with a very large number of degrees of freedom, and possibly to
infinite systems; (c) some relations between KAM and Nekhoroshev’s theory, and
in particular a stronger stability result that I will call superexponential stability.

Both KAM theorem and Nekhoroshev’s theorem apply provided the size ε of
the perturbation is smaller than a critical value, ε∗ say. On the other hand, the
problem of finding realistic estimates for the critical value ε∗ is generally a very
hard one: the analytical estimates available are useless for a practical application
to a physical model, and only in a few, very particular models realistic results have
been obtained. One such case concerns the stability of the Lagrangian point L4 of
the restricted problem of three bodies in the Sun–Jupiter case. I discuss in sect. 2
how realistic estimates may be obtained by complementing the analytical scheme
with explicit calculation of perturbation series.

For systems with a large number of degrees of freedom one is confronted with
the problem that all estimates seem to indicate that Nekhoroshev’s theorem looses
significance for n→∞ because the constants T∗, ε∗ and a tend to zero. As a typ-
ical example let us consider a system of identical diatomic molecules moving on a
segment and interacting via a short range analytic potential; this may be consid-
ered as a one–dimensional model of a gas, the main simplification being that the
rotational degrees of freedom of the molecules are not taken into account. The
model admits a natural splitting into two subsystems, i.e., the translational mo-
tions and the internal vibrations of the molecules, with a coupling due to collisions.
According to the equipartition principle, every degree of freedom would get the
same average energy. However, it was already suggested by Boltzmann that this
should be true only if one considers time averages over a sufficiently long time
(relaxation time). Boltzmann’s suggestion was that such a time would increase
with the frequency of the internal vibrations, becoming of the order of days or
centuries (see [9]); a few years later Jeans suggested that the relaxation time could
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increase exponentially with the frequency, possibly becoming of the order of bil-
lions of years (see [17]). I discuss in sect. 3 how far the suggestion of Boltzmann
and Jeans may be dynamically justified if one relinquishes the request that all
actions be constant, and pays attention only to the transfer of energy between the
two subsystems. For a discussion of the relevance of the exponential stability in
statistical mechanics see [7] and [10] and the references therein.

Finally, it is interesting from the theoretical viewpoint to investigate the be-
haviour of the orbits in the neighbourhood of an invariant KAM torus. I discuss
this point in sect. 4 by illustrating how KAM theorem may be obtained by using
Nekhoroshev’s theorem as a basic iteration step. As a straightforward consequence
one gets the result that in most of the phase space the orbits are stable for a time
that is much longer than the exponential time predicted by Nekhoroshev. Indeed,
the exponential time in (2) is replaced by exp

(
exp(1/̺)

)
, where ̺ is the distance

from an invariant KAM torus. This is what I call superexponential stability.

2. The triangular Lagrangian equilibria

It is known that in a neighbourhood of an elliptic equilibrium the Hamiltonian
may be given the form

(3) H(x, y) =
1

2

n∑

l=1

ωl
(
x2l + y2l

)
+
∑

s>2

Hs(x, y) ,

where ω ∈ Rn is the vector of the harmonic frequencies and Hs is a homogeneous
polynomial of degree s in the canonical variables (x, y) ∈ R2n. The stability of
the equilibrium x = y = 0 for the system (3) is a trivial matter if all frequencies
ω have the same sign, e.g., they are all positive. For, in this case the classical
Lyapounov’s theory applies since the Hamiltonian has a minimum at the origin.
This simple argument does not apply if the frequencies do not vanish but have
different signs.

The stability over long times has been investigated by Birkhoff using the
method of normal form going back to Poincaré (see [26], tome II, chapt. IX, § 125).
Assuming that there are no resonance relations among the frequencies ω, via a near
the identity canonical transformation (x, y)→ (x′, y′) the Hamiltonian is given the
normal form up to a finite order r > 2

(4) H(r)(x′, y′) =
1

2

n∑

l=1

ωlp
′
l + Z(r)(p′) +R(r)(x′, y′) ,

where p′l = (x′2l +y′2l )/2 are the new actions, Z(r) is at least quadratic in p′ and the
unnormalized remainder R(r) is a power series starting with terms of degree r+ 1
in x′, y′. If we forget the remainder then the system is integrable and the motion
is quasiperiodic on invariant tori, since Z(r) depends only on the new actions.
Birkhoff’s remark was that the normalized Hamiltonian H(r) is convergent in a
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neighbourhood of the origin, e.g., in some polydisk of radius ̺ (that may depend
on r) and center at the origin, i.e.,

(5) ∆̺ =
{

(x, y) ∈ R2n :
√
x2j + y2j < ̺

}
.

Hence, the size of the remainder may be estimated by Cr̺
r+1, with some constant

Cr that Birkhoff did not try to evaluate. He concluded that the dynamics given
by the integrable part of the Hamiltonian is a good approximation of the true
dynamics up to a time of order O(̺−r); on this remark he based his theory of
complete stability (see [8], chapt. IV, § 2 and § 4).

It was pointed out by Poincaré that the series produced by perturbation
expansions have an asymptotic character (see [26], tome II, chapt. VIII). Now
this fact lies at the basis of the exponential stability. Indeed the constant Cr is
expected to grow at least as O(r!), so that the size of the remainder is O

(
r!̺r+1

)
.

Having fixed ̺ (i.e., the domain of the initial data) one chooses r ∼ 1/̺, and by a
straightforward use of Stirling’s formula one gets |R| = O

(
exp(−1/̺)

)
. By working

out the analytical estimates one gets for the unperturbed actions pl = (x2l + y2l )/2
the following bound (see [13] or [12]):

Theorem: Let the frequencies ω satisfy the diophantine condition

(6)
∣∣〈k, ω〉

∣∣ ≥ γ|k|−τ for 0 6= k ∈ Zn .

Then there exists a ̺∗ such that for all orbits satisfying
(
x(0), y(0)

)
∈ ∆̺ one has

∣∣p(t)− p(0)
∣∣ = O(̺3) for |t| < T = O

(
exp(1/̺1/(τ+1))

)
.

For a practical application the problem is that the estimated value of ̺∗ may
be ridiculously small. A better evaluation may be obtained by explicitly calculating
all series involved in the normalization process up to some (not too low) order.
This just requires some elementary algebra on computer.

The Hamiltonian is expanded in power series as in (3) up to some order r,
and then is given a normal form at the same order. The explicit transformation of
coordinates and the new action variables p′ as functions of the old coordinates can
be constructed, too. Moreover, in a polydisk ∆̺ we may evaluate the quantity

D(̺, r) = sup
(x′,y′)∈∆̺

∣∣ṗ′
∣∣ = sup

(x′,y′)∈∆̺

∣∣{p′,R(r)
}∣∣ ;

to this end, the expression of the lowest order term of the remainder R(r) may
be used. Having fixed a polydisk ∆̺0 containing the initial data we conclude
that the orbit can not escape from a polydisk ∆̺, with an arbitrary ̺ > ̺0, for
|t| < τ(̺0, ̺, r), where

(7) τ(̺0, ̺, r) =
̺2 − ̺20
2D(̺, r)

.
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This produces an estimate depending on the arbitrary quantities ̺ and r. Let
̺0 and r be fixed; then, in view of D(̺, r) ∼ Cr̺

r+1, the function τ(̺0, ̺, r),
considered as function of ̺ only, has a maximum for some value ̺r. This looks
quite odd, because one would expect τ to be an increasing function of ̺. However,
recall that (7) is just an estimate; looking for the maximum means only that we
are trying to do the best use of our poor estimate. Let us now keep ̺0 constant,
and calculate τ(̺0, ̺r, r) for increasing values of r = 1, 2, . . . , with ̺r as above.
Since Cr is expected to grow quite fast with r we expect to find a maximum of
τ(̺0, ̺r, r) for some optimal value ropt. Thus, we are authorized to conclude that
for every ̺0 we can explicitly evaluate the positive constants ̺(̺0) = ̺ropt and
T (̺0) = τ(̺0, ̺(̺0), ropt) such that an orbit with initial point in the polydisk ∆̺0

will not escape from ∆̺ for |t| < T (̺0).
In order to show that the method above may be effective let me consider

the triangular Lagrangian point L4 of the restricted problem of three bodies, with
particular reference to the Sun–Jupiter case. In the planar case the frequencies are
ω1 ∼ 0.99676 and ω2 ∼ −0.80464× 10−1; hence the standard Lyapounov theory
does not apply.

The procedure above has been worked out by expanding all functions in power
series up to order 35. One may look in particular for a value of ̺0 such that T (̺0)
is the estimated age of the universe. The result is that ̺0 is roughly 0.127 times
the distance L4–Jupiter; this is certainly a realistic result. A comparison with
the known Trojan asteroids shows that four of them are inside the region which
assures stability for the age of the universe (see [16] for a complete report).

3. On the conjecture of Boltzmann and Jeans

Let us consider a canonical system with analytic Hamiltonian

(8) H(p, x, π, ξ) = ĥ(p, x) + hω(π, ξ) + f(p, x, π, ξ) ,

where

hω(π, ξ) =
1

2

ν∑

l=1

(
π2l + ω2l ξ

2
l

)
, (π, ξ) ∈ R2ν

is the Hamiltonian of a system of harmonic oscillators, ĥ(p, x) is the Hamiltonian of
a generic n–dimensional system, and f(p, x, π, ξ) a coupling term which is assumed
to be of order ξ, and so to vanish for ξ = 0.

This model was suggested by the numerical study of the system of diatomic
molecules mentioned in sect. 1 (see [5] and [6]). In that case ĥ(p, x) represents the
translational degrees of freedom, and hω(π, ξ) describes the internal vibrations of
the molecules. Since the molecules are identical, all frequencies coincide.

The identification of a perturbation parameter in the system (8) goes as fol-
lows. Write ω = λΩ with large λ and Ω of the same order of the inverse of a
typical time scale of the constrained system (for example the characteristic time
for the collision of two molecules, which is non zero if the interaction potential is
regular); then transform the variables according to π = π′

√
λΩ and ξ = ξ′/

√
λΩ,
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and assume the total energy of the subsystem hω to be finite, so that the variables
(π′, ξ′) turn out to be confined in a disk of size 1/

√
λ. Then the Hamiltonian may

be given the form, omitting primes,

H(p, x, π, ξ, λ) = ĥ(p, x) + λhΩ(π, ξ) +
1

λ
fλ(p, x, π, ξ)

hΩ(π, ξ) =
1

2

ν∑

l=1

Ωl
(
π2l + ξ2l

)

(here, a straightforward computation would give λ−1/2 in front of f , but f itself
turns out to be of order λ−1/2, since it vanishes for ξ = 0). Here too the main
technical tool is the reduction of the Hamiltonian to a normal form. Precisely,
via a near to identity canonical transformation (p, x, π, ξ) → (p′, x′, π′, ξ′) the
Hamiltonian is given the form

H ′(p′, x′, π′, ξ′, λ) = λhΩ(π′, ξ′) + ĥ(p′, x′) +Z(p′, x′, π′, ξ′, λ) +R(p′, x′, π′, ξ′, λ) ,

where Z is in normal form in the sense that {hΩ, Z} = 0. Thus hΩ is an approxi-
mate first integral. The normalization process is performed until the remainder is
exponentially small in the parameter 1/λ. This requires an optimal choice of the
number of normalization steps, as in the case of the elliptic equilibrium.

Theorem: Assume that all frequencies ω are equal. Then there are positive
constants T∗ and λ∗ such that for every λ > λ∗ one has

(9)

∣∣hΩ(π, ξ)− hΩ(π′, ξ′)
∣∣ = O(λ−2) ;

∣∣hΩ(t)− hΩ(0)
∣∣ = O(λ−1) for |t| < T∗ exp

(
λ

λ∗

)
.

The remarkable fact is that the exponent a that appears in the general form (2)
of the exponential estimate is 1, no matter of the number n of degrees of freedom.
This removes the worst dependence on n, and is in complete agreement with the
numerical calculations in [5].

In the case of the diatomic gas there is still a dependence on n in the constants
T∗ and λ∗, which turn out to be O(1/n2) (the number of two–body interaction
terms in the perturbation). Such a dependence could hardly be removed on a
purely dynamical basis, because the possibility that all molecules collide together
at all times may not be excluded. This is clearly unrealistic. A complete proof
of the conjecture of Boltzmann and Jeans could perhaps be obtained by comple-
menting the dynamical theory with statistical considerations.

The result above has been extended to further situations, including the case
of infinite systems. As an example, consider a modification of the celebrated
nonlinear chain of Fermi, Pasta and Ulam[11] in which the equal masses are replaced
by alternating heavy and light masses. It is known that the spectrum splits into
two well separated branches, called the acoustical and the optical one. Moreover
the optical frequencies are very close to each other. The whole system may thus
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be considered as composed of two separate subsystems, and the subsystem hω of
the optical frequencies may still be considered as a system of oscillators with the
same frequency: the small difference can consistently be considered as part of the
perturbation. In this case it has been proven that the exponential estimate applies
also to the case of an infinite chain, provided the total energy is sufficiently small
(see [2]). Strictly speaking, this is not enough for the application to the problem of
equipartition of energy in statistical mechanics, since in that case one is interested
in initial data with fixed specific energy. However, the discrepancy is still due to
the fact that we are working on a purely dynamical basis. For, the possibility
that the whole energy of the optical subsystem remains concentrated on a single
oscillator for a long time is not excluded. Here too one should include statistical
considerations.

4. Superexponential stability

Let us go back to considering the Hamiltonian (1). I will need to consider the
action variables in a domain G̺ =

⋃
p∈G B̺(p), where ̺ is a positive parameter,

G ⊂ Rn is open, and B̺(p) denotes the open ball of radius ̺ and center p. The
phase space is D = G̺ ×Tn.

If the unperturbed Hamiltonian h(p) is non degenerate, then the construction
of the normal form for the Hamiltonian can not be performed globally on the action
domain G̺. For, the small denominators 〈k, ω(p)〉 (with k ∈ Zn and ω(p) = ∂h

∂p )
may generically vanish in a set of points that is dense in G̺. This fact lies at
the basis of Poincaré’s proof of nonexistence of uniform first integrals (see [26],
chapt. V).

The way out of this problem is based on: (a) a Fourier cutoff of the perturba-
tion, i.e., only a finite number of Fourier modes is considered during the process of
normalizing the Hamiltonian, and (b) the construction of the normal form in local
nonresonance domains where the small denominators are far enough from zero.
The burden of constructing the nonresonance domains is taken by the so called
geometric part of the proof of Nekhoroshev’s theorem: basically, the original do-
main G̺ is covered by subdomains corresponding to known resonances of different
multiplicity 0, 1, . . . , n, where multiplicity zero corresponds to the region free from
resonances. The domains so constructed are open because only a finite number of
resonances is taken into account; this is a consequence of the Fourier cutoff. The
normal form is local to each domain, and depends on the resonances that appear
on it. Nekhoroshev’s theorem on exponential stability follows by proving that ev-
ery orbit is confined inside a local nonresonance domain for an exponentially long
time.

The result that I’m going to illustrate is based on iteration of Nekhoroshev’s
theorem. Let me first state the result. Let ϕt be the canonical flow generated by
the Hamiltonian (1). A n–dimensional torus T will be said to be (η, T )–stable in
case one has dist(ϕtP, T ) < η for all |t| < T and for every P ∈ T . The formal
statement is the following
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Theorem: Consider the Hamiltonian (1), and assume that the unperturbed
Hamiltonian h(p) is convex. Then there exists ε∗ > 0 such that for all ε < ε∗

the following statement holds true: there is a sequence
{
D(r)

}
r≥0 of subsets of

D, with D(0) = D, and two sequences {εr}r≥0 and {̺r}r≥1 of positive numbers
satisfying

ε0 = ε , εr = O
(
exp(−1/εr−1)

)
,

̺0 = ̺ , ̺r = O(ε
1/4
r−1) ,

such that for every r ≥ 0 one has:
(i) D(r+1) ⊂ D(r) ;
(ii) D(r) is a set of n–dimensional tori diffeomorphic to G(r)̺r ×Tn;
(iii) Vol(D(r+1)) > (1−O(εar)) Vol(D(r)) for some positive a < 1;
(iv) D(∞) =

⋂
r D(r) is a set of invariant tori for the flow ϕt, and moreover one

has Vol(D(∞)) > (1−O(εa0)) Vol(D(0)) ;
(v) for every p(r) ∈ G(r) the torus p(r) ×Tn ⊂ D(r) is (̺r+1, 1/εr+1)–stable;
(vi) for every point p(r) ∈ G(r) there exists an invariant torus T ⊂ B̺r (p(r))×Tn.

Let me illustrate the main points of the proof (for a complete proof see [15]).
A careful reading of the geometric part of Nekhoroshev’s theorem allows one to
extract the following information: there exists a subset D(1) of phase space charac-
terized by absence of resonances of order smaller than O(1/ε); such a domain is the
union of open balls of positive radius ̺1, and its complement has measure O(ε1/4).
Moreover, in this subset one may introduce new action–angle variables, (p′, q′) say,
which give the Hamiltonian the original form (1), but with a perturbation of size
ε1 = O

(
exp(−1/ε)

)
.

Nekhoroshev’s theorem can be applied again to the new Hamiltonian in the
open domain D(1), thus allowing one to construct a second nonresonant domain
D(2) characterized by absence of resonances of order smaller than O(1/ε1) =
O
(

exp(−1/ε)
)
. Such a procedure can be iterated infinitely many times, and this

gives the sequence D(r) of subdomains of phase space, the existence of which is
stated in the theorem. Nekhoroshev’s stability estimates hold in every such do-
main, with stability times exponentially increasing at every step.

The sequence D(r) of domains converges to a set D(∞) of invariant tori. This
part of the proof is just an adaptation of Arnold’s proof of KAM theorem and the
set of invariant tori so obtained is similar to Arnold’s one.

Let me finally explain how superexponential stability arises. Properties (v)
and (vi) imply that every (̺r+1, 1/εr+1)–stable torus is ̺r–close to an invariant
torus. In view of the form of the sequences ̺r and εr given in the statement of
our theorem one has

εr+1 = O(1/ exp(1/εr)) = O(1/ exp(exp(1/εr−1))) = O(1/ exp(exp(1/̺r))) .

In view of this remark we may say that in the neighbourhood of an invariant
torus the natural perturbation parameter is the distance ̺ from the torus, and
the diffusion speed is bounded by a superexponential of the inverse of the distance
from an invariant torus.
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Stability of Matterin Classical and Quantized Fields
Gian Michele Graf

Abstract. In recent years considerable activity was directed to the issue
of stability in the case of matter interacting with an electromagnetic field .
We shall review the results which have been established by various groups, in
different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields. Common to all of them is the fact that electrons
interact with the field both through their charges and the magnetic moments
associated to their spin. Stability of non-relativistic matter in presence of
magnetic fields requires that Zα2 (where Z is the largest nuclear charge in
the system) as well as the fine structure constant α itself, do not exceed
some critical value. If one imposes an ultraviolet cutoff to the field, as it
occurs in unrenormalized quantum electrodynamics, then stability no longer
implies a bound on α, Zα2. An important tool is given by Lieb–Thirring type
inequalities for the sum of the eigenvalues of a one–particle Pauli operator
with an arbitrary inhomogeneous magnetic field.

1991 Mathematics Subject Classification: 81-02
Keywords and Phrases: Stability of matter

Introduction

Ordinary matter consists of molecules and atoms which are largely empty inside.
Yet matter does not shrink. A related — and more fundamental — aspect of
stability is the fact that the energy per particle is bounded below, independently
of the number of particles. This is what is usually referred to as stability of
matter. It should be stressed that it goes well beyond the stability of individual
atoms. Basic thermodynamic properties such as extensivity (e.g., two moles of
water occupy with good approximation twice the volume occupied by a single
mole) also depend on this property. These topics are reviewed in [19, 20].

Stability of matter could not hold without quantum mechanics and, in par-
ticular, without the uncertainty principle, but the Pauli principle and screening
properties of the interaction (Coulomb) potential are equally important (see [34]
for the consequences of tampering with these tenets). The first instance where
stability was established, by Dyson and Lenard [9], is non-relativistic matter con-
sisting of N electrons which move in the field of M nuclei having fixed but arbi-
trary positions. We denote by qi = −1, resp. qi = Z, the charge of an electron
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(i = 1, . . . , N), resp. of a nucleus (i = N +1, . . . , N +M). According to the Pauli
principle a (pure) state of the N electrons is given by a normalized wave function

Ψ ∈
N∧

i=1

L2(R3,C2) (1)

in the N -fold antisymmetric tensor product of the single particle Hilbert space
L2(R3,C2). Here, C2 accounts for the spin of the electron, whose role is however
unessential so far. The Hamiltonian is, in appropriate units,

H =
N∑

i=1

ti + Vc , (2)

where the kinetic energy of a single electron is t = p2, p = −i∇ and the index i
refers to the variables of the i-th electron. The Coulomb potential Vc is

Vc =
∑

i<j

qiqj
|xi − xj |

.

Theorem 1. There is a constant C(Z) independent of the position of the nuclei,
such that

H ≥ −C(Z)(N +M) . (3)

Subsequently, Lieb and Thirring [27] obtained a much better constant C(Z)
which is of order unity for Z ≈ 1. They also provided a simpler proof, thereby
linking (3) to stability of Thomas-Fermi theory. (See however [17] for a short proof
closer in spirit to [9]).

In recent years considerable activity was directed to the issue of stability in
the case of matter interacting with an electromagnetic field, which brings the
model closer to physical reality. Results have been established by various groups,
in different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields.

Stability and instability in classical magnetic fields

To begin with, consider the addition of a classical, external magnetic field B = ∇∧
A. There, stability — uniformly in the magnetic vector potential A — persists [1,
7] if the field is included through minimal substitution, i.e., for t = D2, D = p+A.
This follows by means of the diamagnetic inequality. To actually describe matter
in magnetic fields one must however also add the interaction of the electrons with
the field through their spins or, more precisely, through the associated magnetic
moments. The corresponding kinetic energy is

t = D2 +
g

2
B · σ ,
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where σ = (σ1, σ2, σ3) are the Pauli matrices and g is known as the gyromagnetic
factor. Its physical value is g = 2, as long as radiative corrections from quantum
electrodynamics are neglected. Stability (3) extends straightforwardly to any g <
2, while for g > 2 the Hamiltonian is not even bounded below. In the critical case
g = 2, to which we shall henceforth restrict, the kinetic energy may be written as

t = D2 +B · σ = D
/
2 , D

/
= D · σ .

Dynamical spins confer new aspects to the issue of stability. A first indication of
this is the following: Whereas the equation Dψ = 0 admits (by the uncertainty
principle) only ψ = 0 as a solution in L2(R3,C2), there exist [30] field config-
urations A such that D

/
ψ = 0 has non-trivial solutions called zero-modes. This

effectively invalidates the uncertainty principle and, as a result, stability as defined
above. To see this, just consider the case N = M = 1 with Hamiltonian

HA = D
/
2
A − Z|x|−1 .

By scaling both the field and its zero-mode,

Aλ(x) = λ−1A(x/λ) , ψλ(x) = λ−3/2ψ(x/λ) , (4)

we obtain D
/
Aλψλ = 0 and

(ψλ,HAλψλ) = −Zλ−1(ψ, |x|−1ψ) , (5)

which can be made arbitrarily large and negative by letting λ→ 0.
However, a proper formulation of stability should incorporate the field energy

Hcf =
1

8πα2

∫
B(x)2d3x (6)

into the Hamiltonian:

H =
N∑

i=1

ti + Vc +Hcf . (7)

Here α > 0 is the fine structure constant. The physical value of this dimensionless
parameter is α = e2/~c ≈ 1/137. Note that under (4) the magnetic field scales as
Bλ(x) = λ−2B(x/λ), so that Hcf scales as λ−1, just as the Coulomb energy (5).
Thus already from the case N = M = 1 one sees that stability for (7) may hold
only if Zα2 is sufficiently small. Another necessary condition is that α itself be
small enough. To see the latter, consider N = 1 and M large. As above, let the
electron be in a zero-mode of a fixed field A. Distribute the many nuclei according
to some limiting density, e.g., uniformly over a ball. The repulsion energy between
the nuclei is ≤ C1(ZM)2, and the attraction of the electron ≤ −C2(ZM), with
C1, C2 > 0 independent of Z, M . By minimizing the sum of the two bounds we
obtain (ψ, Vcψ) ≤ −C22/4C1 for ZM = C2/2C1. Thus,

(ψ,Hψ) ≤ − C22
4C1

+
1

8πα2

∫
B(x)2d3x < 0
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for α large enough. Since both the Coulomb and the field energy scale the same
way, the expectation value of the Hamiltonian can in fact be made arbitrarily large
and negative. The above two conditions are in fact sufficient for stability:

Theorem 2. The Hamiltonian (7) is stable, i.e.,

H ≥ −C(N +M) ,

provided α and Zα2 are small enough.
The theorem was first established by Fefferman [12], for Z = 1. Soon there-

after, Lieb, Loss, and Solovej [23] found a simpler proof which furthermore ensures
stability at physical values of the parameters Z, α and produces a realistic lower
bound −C on the energy per particle. An additional improvement of Lieb, Sieden-
top and Solovej [24, 25] and Loss [29] yields the following sufficient condition for
stability:

π

2
Z + 2.7919Z2/3 + 1.2987 ≤ 0.2153α−2 . (8)

In particular, for α = 1/137 stability holds if Z ≤ 2264. Precursors of Theorem 2
are found in [16, 21], where the cases N = 1 and M = 1, resp. N = 1 or M = 1,
were proved.

Let us present the proof of Theorem 2 given in [25], but for brevity we shall
not keep track of best constants. The stability of (7) is brought into relation with
stability of an apparently unrelated Hamiltonian Hrel, namely that of relativistic
matter without dynamical spins. It is defined by (2), but with t = α−1|D|. The
corresponding stability result was proven in [8, 15, 28, 22].

Theorem 3.
Hrel ≥ 0 , (9)

if α and Zα are sufficiently small.
Note that Hrel can be uniformly bounded below only if it is non-negative, since

both its terms scale as λ−1. Explicitly, stability is assured [22] if the l.h.s. of
(8) does not exceed α−1. On the other hand, Hrel is unbounded below [18] if
Zα > 2/π.

The other ingredients of the proof of Theorem 2 are:
• The Birman-Koplienko-Solomyak inequality [3]: For any operators A, B ≥ 0,

tr(A− B)+ ≤ tr(A2 −B2)1/2+ , (10)

where s+ = max(s, 0), provided the operator on the r.h.s. is trace class.
• The Lieb-Thirring estimate [27]:

tr(−h)γ+ ≤ Lγ
∫
v(x)γ+

3
2 d3x (11)

for γ ≥ 0 and any Schrödinger operator h = D2−v on L2(R3) with v = v(x) ≥ 0.
The l.h.s. can be written as

∑
k |ek|γ , where ek < 0 are the negative eigenvalues

of h.
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Let us denote by α̃ the fine structure constant in Hrel, to avoid confusion. Using

(9), the first two terms in (7), Hm =
∑N
i=1D

/
2
i + Vc, can be estimated as

Hm ≥
∑

i=1

(D
/
2 − α̃−1|D|)i ≥ − tr(α̃−1|D| − 2β|D

/
|)+ − β2N ,

for any β > 0. Here we used D
/
2 ≥ 2β|D

/
| − β2 and the Pauli principle. Now (10)

can be used to bound the trace (setting 4β2 = 2α̃−2) as

α̃−1 tr(D2 − 2D
/
2)
1/2
+ = α̃−1 tr(−D2 − 2B · σ)

1/2
+ ≤ 2α̃−1L1/2

∫
4B(x)2d3x ,

where, in the last step, we used −B · σ ≤ |B| and (11). Summing up, one obtains

H = Hcf +Hm ≥
( 1

8πα2
− 8L1/2

α̃

)∫
B(x)2d3x− 1

2
α̃−2N ,

showing that stability holds for α2 ≤ α̃/(64πL1/2).
Finally, Lieb, Siedentop and Solovej [24, 25] considered relativistic matter with

dynamical spins. The appropriate kinetic energy is given by the Dirac operator

t = D · α+ βm

acting on L2(R3,C4), where m ≥ 0 is the mass and α = (α1, α2, α3), β are the
Dirac matrices. Except for this modification, the many-body Hamiltonian HDirac
is still given by (7). Clearly HDirac, just as t, is unbounded below, but the proper
interpretation, going in essence back to Dirac, is ‘to fill the Fermi sea’ for t. In
other words, one should only consider expectation values for HDirac in states

Ψ ∈
N∧

i=1

h+ ,

where h+ ⊂ L2(R3,C4) is the positive spectral subspace for t.

Theorem 4.
(Ψ,HDiracΨ) ≥ 0

(uniformly also in m ≥ 0), provided α and Zα are small enough.
For α = 1/137 stability holds up to Z ≤ 56. The proof is related to the one

sketched above.

Stability and instability in quantized electromagnetic fields

We shall consider only the case of non-relativistic matter. The model is formally
still defined by the Hamiltonian (7), but with the following changes. First, the
Hilbert space now is H = Hm ⊗ F , where Hm is the Hilbert space (1) for matter
and F , the Hilbert space for the field, is the bosonic Fock space over L2(R3,C2).
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Here, C2 accounts for the helicity of the photon. Second, the ultraviolet-cutoff
electromagnetic vector potential in the Coulomb gauge is given by

AΛ(x) = A−(x) +A−(x)∗ , A−(x) =
α1/2

2π

∫

|k|≤Λ
|k|−1/2

∑

λ=±
aλ(k)eλ(k)eikxd3k ,

where Λ <∞ is the cutoff. For each k, the direction of propagation k̂ = k/|k| and
the polarizations e±(k) ∈ C3 are orthonormal. The operators aλ(k)∗ and aλ(k)
are creation and annihilation operators on F and satisfy canonical commutation
relations

[aλ(k)#, aλ′(k
′)#] = 0 , [aλ(k), aλ′(k

′)∗] = δλλ′δ(k − k′) .

The vacuum state Ω ∈ F , (Ω,Ω) = 1, is distinguished by aλ(k)Ω = 0, for all
k ∈ R3. The kinetic energy in (7), t = D

/
2, is now defined with D = p + AΛ(x).

Finally, the quantum field energy is

Hqf = α−1
∫
|k|
∑

λ=±
aλ(k)∗aλ(k)d3k . (12)

This completes the definition of the Hamiltonian, which we denote by HΛ. To
see how (12) relates to the previous definition (6), we introduce the (tranverse)
electric field E(x) = −i[Hqf , AΛ(x)] and the magnetic field B(x) = (∇ ∧ AΛ)(x).
Then,

Hqf =
1

8πα2

∫
:E(x)2 +B(x)2 : d3x , (13)

where : . . . : denotes Wick ordering; explicitly, : B(x)2 := B(x)2 − (Ω, B(x)2Ω),
and analogously for E(x)2. In contrast to (6), the integrand of (13) may also take
negative (expectation) values.

Let us remark that the model represents, apart from the cutoff needed to make
it well-defined, a physically correct description of the coupled system consisting
of matter and field, since the Hamiltonian yields the correct equations of motion.
The spectral theory of a similar model is discussed in [2].

The stability of Theorem 2 carries over to this situation [6, 5], but not with the
same explicit bounds.

Theorem 5. For any Λ > 0,

HΛ ≥ −C(α,Z,Λ)(N +M) , (14)

for small enough α, Zα2, with C(α,Z,Λ) = const ·Z̃ max(Z̃, α1/4Λ) and Z̃ = Z+1.
Actually, the ultraviolet cutoff prevents the instability explained before Theo-

rem 2. As a result, the restriction to small values of α, Zα2 may be dropped, as
shown by Fefferman [13] and Fefferman, Fröhlich and Graf [14]:

Theorem 5’. For any α, Z, Λ, the estimate (14) holds with C(α,Z,Λ) = const ·
Z̃(1 + β5 log β)(β−2Z̃ + Λ) with β = Z̃α2 + 1.
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This fact is not of direct physical significance, however. Rather, one should
consider a renormalized Hamiltonian

HΛ,ren =
N∑

i=1

m−1Λ D
/
2
i + Vc +Hqf − µΛN , (15)

where the mass mΛ and the chemical potential µΛ are to be chosen so that the
energy of a one electron state with small total momentum p is p2. It appears
conceivable that stability for (15) holds uniformly in Λ, for small enough α, Zα2.

The proof of Theorem 5 can be reduced to stability statements for matter in
classical, external fields [12, 4], but with a different expression for the field energy
Hcf than before. For reasons related to the vacuum energy subtraction mentioned
above, the classical field energy (6) should be replaced by

Hcf =
1

8πα2

∫

U

B(x)2d3x , (16)

where the integration is now restricted to a small neighborhood U of the nuclei.
A similar expression [13, 5], involving also the field gradient, occurs in the proof
of Theorem 5’.

Magnetic Lieb-Thirring type inequalities

An issue of related, but also independent interest is found in Lieb-Thirring in-
equalities corresponding to (11) for Pauli, rather than Schrödinger, Hamiltonians,
i.e., for h = D

/
2− v on L2(R3,C2). (We shall focus on γ = 1, corresponding to the

sum of the negative eigenvalues of h). The first such estimate, by Lieb, Solovej
and Yngvason [26] applies to constant magnetic fields B(x) = B.

Theorem 6. For constant fields,

∑

k

|ek| ≤ aδ
∫
v(x)5/2d3x+ bδ|B|

∫
v(x)3/2d3x , (17)

for any 0 < δ < 1, with aδ = 0.3119 δ−2 and bδ = 0.2123(1− δ)−1.
The second term represents the contribution of the lowest Landau level, i.e., of

the lowest (degenerate) eigenvalue of D
/
2, whereas the higher levels are accounted

for by the familiar first term. Note that a generalization to arbitrary non-constant
fields cannot be obtained by just pulling |B(x)| in (17) under the integral sign.
Such a bound would be too small (for small v), since, due to the possible existence
of zero-modes D

/
ψ = 0, the bound has to be at least (ψ, vψ).

Estimates for non-constant fields are due to Erdős [10], followed by [23, 32, 33,
4, 5, 31]. Some of them are useful in proofs of stability of matter. In this context
we mention the bound of Lieb, Loss and Solovej [23]:

Theorem 7.

∑

k

|ek| ≤ aδ
∫
v(x)5/2d3x+ bδ

(∫
B(x)2d3x

)3/4(∫
v(x)4d3x

)1/4
, (18)
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for any 0 < δ < 1, with aδ = 0.0654 δ−1 and bδ = 0.1005 δ−5/8(1− δ)−3/8.
One may be tempted to believe that the second term could be replaced by∫
|B(x)|3/2v(x) d3x, which would imply (18) by Hölder’s inequality. It turns out

— essentially by arguments of Erdős [10] — that this is not true: The interplay
between the field B(x) and the potential v(x) is not strictly local. It is however
possible to define an effective scalar field b(x) ≥ 0 which allows for a semi–local
version of (18). This is of interest in connection with the definition (16) and is the
content of the following result of Bugliaro et al. [4]:

Theorem 8.

∑

k

|ek| ≤ C′
∫
v(x)5/2d3x+ C′′

∫
b(x)3/2v(x)d3x , (19)

∫
b(x)2d3x ≤ C

∫
B(x)2d3x . (20)

In particular, the two estimates together imply (18), except for the constants.
The construction of b(x) can be explained as follows. The interplay between the
field B and V takes place on a length scale r(x) which depends on B itself (see
below), and b(x)2 is the average of B(y)2 over that length scale:

b(x)2 =

∫
r(x)−3ϕ

(y − x
r(x)

)
B(y)2d3y ,

with appropriate decay of ϕ(z) ≥ 0 as |z| → ∞. To determine r(x), note that in
the constant field case it is proportional to |B|−1/2, the radius of a Landau orbit
in the lowest Landau level. In the general case, it is determined self-consistently
as r(x) = b(x)−1/2. A different definition of b(x) due to Sobolev [32, 33], which
motivated the one just presented, also implies (19), but not (20).

Yet another generalization of (17) aims at estimating the contributions of the
field gradient ∇ ⊗ B = (∂iBj)i,j=1,2,3. This was done by Erdős and Solovej [11]
and, under somewhat different conditions, by Bugliaro, Fefferman and Graf [5].
To this end a length scale l(x) is introduced which is related to ∇⊗B in a similar
way as r(x) is related to B.

Theorem 9.

∑
ei ≤ C′

∫
V (x)3/2(V (x) + B̂(x))d3x+ C′′

∫
V (x)P (x)1/2(P (x) + B̂(x))d3x ,

where B̂(x) is the average of |B(y)| over a ball of radius l(x) centered at x, and
P (x) = l(x)−1(r(x)−1 + l(x)−1).

By the variational principle, this estimate implies a bound on the density n(x) =∑
j |ψj(x)|2 of orthonormal zero-modes ψj of D

/
. The bound is

n(x) ≤ C′′P (x)1/2(P (x) + B̂(x)) ,

and, as it should, it vanishes in the case of a homogeneous magnetic field.
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Rogers-Ramanujan Identities:A Century of Progress from Mathematics to Physics
Alexander Berkovich and Barry M. McCoy

Abstract. In this talk we present the discoveries made in the theory of
Rogers-Ramanujan identities in the last five years which have been made
because of the interchange of ideas between mathematics and physics.
We find that not only does every minimal representation M(p, p′) of the
Virasoro algebra lead to a Rogers-Ramanujan identity but that different
coset constructions lead to different identities. These coset constructions
are related to the different integrable perturbations of the conformal field
theory. We focus here in particular on the Rogers-Ramanujan identities
of the M(p, p′) models for the perturbations φ1,3, φ2,1, φ1,2 and φ1,5.

1991 Mathematics Subject Classification: 11P57, 82A68
Keywords and Phrases: Rogers-Ramanujan identities, lattice models of
statistical mechanics, conformal field theory, affine Lie algebras

1 Introduction

In 1894 L.J. Rogers [1] proved the following identities for a = 0, 1 between infinite
series and products valid for |q| < 1

∞∑

n=0

qn(n+a)

(q)n
=

∞∏

n=1

1

(1− q5n−1−a)(1− q5n−4+a)

=
1

(q)∞

∞∑

n=−∞
(qn(10n+1+2a) − q(5n+2−a)(2n+1)) with (q)n =

n∏

j=1

(1− qj). (1)

For about the first 85 years after their discovery interest in these identities and
their generalizations was confined to mathematicians and many ingenious proofs
and relations with combinatorics, basic hypergeometric functions and Lie algebras
were discovered by MacMahon, Rogers, Schur, Ramanujan, Watson, Bailey, Slater,
Gordon, Göllnitz, Andrews, Bressoud, Lepowsky and Wilson and by 1980 there
were over 130 isolated identities and several infinite families of identities known.

The entry of these identities into physics occurred in the early ’80’s when
Baxter [2], Andrews, Baxter and Forrester [3, 4], and the Kyoto group [5] encoun-
tered (1) and various generalizations in the computation of order parameters of
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certain lattice models of statistical mechanics. A further glimpse of the relation to
physics is seen in the development of conformal field theory by Belavin, Polyakov
and Zamolodchikov [6] and the form of computation of characters of representa-
tions of Virasoro algebra by Kac [7], Feigin and Fuchs [8] and Rocha-Caridi [9].
The occurrence of (1) in this context led Kac [10] to suggest that “every modular
invariant representation of Vir should produce a Rogers-Ramanujan type identity.”

The full relation, however, between physics and Rogers-Ramanujan identities
is far more extensive than might be supposed from these first indications. Starting
in 1993 the authors [11]-[17] have fused the physical insight of solvable lattice
models in statistical mechanics with the classical work of the first 85 years and
the recent developments in conformal field theory to greatly enlarge the theory
of Rogers-Ramanujan identities. In this talk we will summarize the results of
this work and present some of the current results. Our point of view will be
dictated by our background in statistical mechanics but we will try to indicate
where alternative viewpoints exist. Hopefully in this way some of the inevitable
language barriers between physicists and mathematicians can be overcome.

2 What is a Rogers-Ramanujan Identity?

The work of the last 5 years originating in physics problems has provided a new
framework and point of view in the study of Rogers-Ramanujan identities. The
emphasis is not the same as in the earlier mathematical investigations and thus it
is worthwhile to discuss generalities before the presentation of detailed results.

2.1 Sums instead of products

The equation (1) is the equality of three objects; an infinite sum involving (q)n,
an infinite product, and a second sum with (q)∞ in the denominator. For the first
85 years since (1) was proved it was the equality of the first infinite series with
the infinite product which was called the Rogers-Ramanujan identity. The second
sum while present in the intermediate steps of the proofs was always eliminated
in favor of the product by use of the triple or pentuple product formula. The first
important insight that was recognized when Rogers-Ramanujan identities arose in
physics is that, contrary to this long history, it is not the product but rather the
second sum on the right which arises in the statistical mechanical and conformal
field theory applications. Indeed by now it is true that in most cases where we
have generalizations of the identities between the two sums a product form is not
known. Consequently by Rogers-Ramanujan identity we will mean the equality of
the sums without further reference to possible product forms.

2.2 Polynomials instead of infinite series

The second insight which is also present in the very first papers on the connection
of Rogers-Ramanujan identities with physics [2, 3, 4] is the fact that the physics
will often lead to polynomial identities (with an order depending on an integer L)
which yield infinite series identities as L → ∞. The polynomial generalization of
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(1) is the identity first proven in 1970 [18]

Fa(L, q) = Ba(L, q) (2)

where

Fa(L, q) =
∞∑

n=0

qn(n+a)
[
L− n− a

n

]
(3)

and

Ba(L, q) =
∞∑

n=−∞
(−1)nqn(5n+1+2a)/2

[
L

⌊ 12 (L− 5n− a)⌋

]
(4)

where ⌊x⌋ denotes the integer part of x and the Gaussian polynomials (q-binomial
coefficients) are defined for integer m,n by

[
n

m

]
=

{
(q)n

(q)m(q)n−m
0 ≤ m ≤ n

0 otherwise.
(5)

The identity (1) is obtained by using limn→∞
[
n
m

]
= 1/(q)m It is generalizations

of the polynomial identity (2) which we will call a Rogers-Ramanujan identity.

2.3 The generalizations of Fa(L, q)

All known generalizations of Fa(L, q) can be written in terms of the following
function [12]

f =
∑

restrictions

q
1
2mBm− 12Am

n∏

α=1

[
((1−B)m+ u

2 )α
mα

]
(6)

where m,u and A are n dimensional vectors and B is an n × n dimensional
matrix and the sum is over all values of the variables mα possibly subject to some
restrictions (such as being even or odd). In many cases the q-binomials are defined
by (5) but there do occur cases in which an extended definition

[
m+ n

m

]
=

{
(qn+1)m
(q)m

for m ≥ 0, n integers

0 otherwise
(7)

which allows n to be negative needs to be used.
The function (6) has the interpretation as the partition function for a collec-

tion of n differerent species of free massless (right moving) fermions with a linear
energy momentum relation e(Pαj )α = vPαj where the momenta are quantized in
units of 2π/M and are chosen from the sets

Pαj ∈ {Pαmin(m), Pαmin(m) +
2π

M
,Pαmin(m) +

4π

M
, · · · , Pαmax(m)} (8)

with the Fermi exclusion rule Pαj 6= Pαk for j 6= k and all α = 1, 2, · · · , n,

Pαmin(m) =
π

M
[((B− 1)m)α −Aα + 1] and Pαmax = −Pαmin +

2π

M
(
u

2
−A)α (9)
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where if some uα =∞ the corresponding Pαmax =∞. The Fa(L, q) of (3) is regained
in the very special case of n = 1, B = 2,u = 2L− 2a and 1

2A = −a. Because of
the Fermi exclusion rule we call these sums which generalize Fa(L, q) Fermi forms.
The generalization which the selection rule (8) makes over the usual exclusion rule
of fermions is of great physical importance in the physics of the fractional quantum
Hall effect [19].

2.4 The generalizations of Ba(L, q)

The first polynomial found which generalizes Ba(L, q) is B
(p,p′)
r,s (L, a, b; q) given

by[3, 4]

∞∑

j=−∞

(
qj(jpp

′+rp′−sp)
[

L
L+a−b
2 − jp′

]
− q(jp+r)(jp′+s)

[
L

L−a−b
2 − jp′

])
. (10)

with L+ a− b even. When L→∞ this polynomial reduces to

lim
L→∞

B(p,p
′)

r,s (L, a, b; q) =
1

(q)∞

∞∑

j=−∞

(
qj(jpp

′+rp′−sp) − q(jp+r)(jp′+s)
)

(11)

which is (multiplied by q∆
(p,p′)
r,s −c/24) the well known character [8, 9] of the minimal

modelM(p, p′) of the Virasoro algebra with central charge c = 1−6(p−p′)2/pp′ and

conformal dimension ∆
(p,p′)
r,s = [(rp′ − sp)2 − (p− p′)2]/4pp′ (1 ≤ r ≤ p− 1, 1 ≤

s ≤ p′ − 1). In the method of Feigin and Fuchs [8] this formula is obtained by
modding out null vectors from the Fock space of one free boson. For this reason
we call generalizations of Ba(L, q) bosonic forms.

When p = 2, p′ = 5, r = 1 and s = 2 − a the character (11) is identical with
the righthand side of (1). This is the original inspiration for the belief that there
is a connection between conformal field theory and Rogers-Ramanujan identities.

Moreover we note that the relation between the exclusion rules (8) with the
character formula (11) provided by Rogers-Ramanujan identities explains why
conformal field theory and related Kac-Moody algebra [20] methods have been
successfully applied to the fractional quantum Hall effect. In particular the Rogers-
Ramanujan identities of [21] guarantee that starting from the U(1) Kac-Moody
algebra description of edge states in the fractional quantum hall effect [20] there
must be corresponding description in terms of fermionic quasiparticles.

But unlike the generalizations of Fa(L, q) there are other quite distinct gen-
eralizations of Ba(L, q) which have been found to occur. One of the more widely
studied uses, instead of q-binomials (5), the q-trinomials of Andrews and Baxter
[22] (

L

A

)p

2

=
∞∑

j=0

qj(j+A−p)
(q)L

(q)j(q)j+A(q)L−2j−A
(12)

and replaces (10) by either B
(1)(p,p′)
r,s (L, a, b; q) given by

∞∑

j=−∞

[
qj(pp

′j+rp′−sp)
(

L

2pj + a− b

)0

2

− q(jp+r)(jp′+s)
(

L

2pj + a+ b

)0

2

]
, (13)
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which appear in the computation of the order parameters of the dilute A models

[23], or B
(2)(p,p′)
r,s (L, a, b; q) given by

∞∑

j=−∞

[
qj(pp

′j+rp′−sp)
(

L

p′j + a− b

)0

2

− q(jp+r)(jp′+s)
(

L

p′j + a+ b

)0

2

]
. (14)

These q-trinomials have the property that limL→∞
(
L
A

)0
2

= 1
(q)∞

and thus we see

that although the polynomials B
(1)(p,p′)
r,s (L, a, b; q) and B

(2)(p,p′)
r,s (L, a, b; q) are not

the same as B
(p,p′)
r,s (L, a, b; q) all three polynomials have the the same L → ∞

limit (11). Further generalizations to q-multinomials have also been investigated
[24, 25, 26, 27].

2.5 Proof by L-difference equations

The polynomial Roger-Ramanujan identities which generalize (2) are proven by
demonstrating that the generalizations of Fa(L, q) and Ba(L, q) each satisfy the
same difference equation in the variable L and are explicitly identical for suitably
small values of L. Thus (2) is proven by demonstrating [18] that both Fa(L, q) and
Ba(L, q) satisfy

h(L, q) = h(L− 1, q) + qL−1h(L− 2, q) forL ≥ a+ 2 (15)

and that they are identical for L = a, a + 1. We refer to such equations as L-
difference equations.

For the Fermi forms (6) the L-difference equations are derived by the general
technique of telescopic expansions [13] which uses the two recursion relations for
q-binomial coefficients (5)

[
n

m

]
=

[
n− 1

m− 1

]
+ qm

[
n− 1

m

]
= qn−m

[
n− 1

m− 1

]
+

[
n− 1

m

]
(16)

which hold for all positive integers m,n or the identical recursion relations for
generalized q-binomial coefficients (7) which hold for all integer m,n without re-
striction.

For the Bose form (10) which involves q-binomials the recursion relation (16)
is sufficient to derive an L-difference equation but for the Bose forms (13) and (14)
which involve q-trinomials we need not only the trinomial recursion relations such
as (

L

A

)1

2

= qL−1
(
L− 1

A

)1

2

+ qA
(
L− 1

A+ 1

)0

2

+

(
L− 1

A− 1

)0

2

(17)

but also so-called “tautological” equations such as

(
L

A− 1

)1

2

− qA−1
(

L

A+ 1

)1

2

=

(
L

A− 1

)0

2

− q2A
(

L

A+ 1

)0

2

(18)

which reduce to trivialities when q = 1. These “tautological” identities are what
make the results involving q-trinomials more intricate to prove.
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3 Results for minimal models M(p, p′)

The irreducible representations M(p, p′) with central charge less than one are
parameterized by two relatively prime integers p and p′ and the characters are given
by (11). Thus the suggestion of Kac [10] can by taken to mean that each bosonic
form of the character has a fermionic form. We have recently proven [14, 15] that
such identities do indeed exist, even generalized to polynomial identities, for all p
and p′.

But there is much more to the theory than this. The minimal models M(p, p′)
can be realized in terms of the coset construction of fractional level [28, 29]

(A
(1)
1 )1 × (A

(1)
1 )m

(A
(1)
1 )m+1

with m =
p

p′ − p − 2 or − p′

p′ − p − 2. (19)

However, these constructions are not unique and as an example we note that the
model M(3, 4) in addition to the coset (19) with m = 1 has the representation

(E
(1)
8 )1 × (E

(1)
8 )1/(E

(1)
8 )2. It may thus be asked whether or not the Rogers Ra-

manujan identity is a unique property of the model M(p, p′) or is it a property of
the several different coset constructions. For the M(3, 4) it is known that just as
there are two coset constructions so there are two very different fermionic repre-
sentations of the characters. For example

χ
(3,4)
1,1 =

∞∑

m=0
m even

q
m2

2

(q)m
=

∞∑

n1,···,n8=0
q
nC

−1
E8
n

8∏

j=1

1

(q)j
. (20)

Thus it is natural to extend the suggestion of Kac to the conjecture that to ev-
ery coset construction of conformal field theory there exists a Rogers-Ramanujan
polynomial identity.

Physically there are even more reasons to make such a conjecture. Conformal
field theories represent integrable massless systems. But it is not needed for a
system to be massless for it to be integrable and it is known [30] that the opera-
tors φ1,3, φ2,1, φ1,5 and φ1,2 provide integrable massive perturbations of M(p, p′)
whenever they are relevant. Each of these massive models has a fermionic quasi-
particle spectrum which is a basis of states in the Hilbert space. As a basis this
is independent of mass and thus still is a basis in the massless limit. We identity
these quasi-particles with the fermionic representations (6). But the different mas-
sive perturbations will in general have a differerent number of quasi-particles and
thus each integrable perturbation is expected to give a different fermionic form and
hence a different Rogers-Ramanujan identity. However, even though at the level
of the field theory these characters are the same at the level of finite statistical
mechanical models the polynomials will be different. Thus we expect that each
coset will lead to a different polynomial identity.

In the remainder of this section we will summarize how much of this conjecture
has been proven.
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3.1 The perturbation φ1,3

The integrable perturbation φ1,3 corresponds to the coset (19) and the bosonic

polynomial is the original B
(p,p′)
r,s (L, a, b; q) (10) of [3, 4].

For the unitary case M(p, p + 1) the Rogers-Ramanujan identities were first
proven in [13]. Here the matrix B is 12 the Cartan matrix of Ap−2

Bj,k =
1

2
CAp−2 |j,k = δj,k −

1

2
δj,k+1 −

1

2
δj,k−1 1 ≤ j, k ≤ p− 2 (21)

and uj = Lδj,1 for r = s = 1 The general case of arbitrary p and p′ is treated
in [14, 15] and here B is a “fractional” generalization of a Cartan matrix which
is obtained from the analysis of Bethe’s Ansatz equations of the XXZ spin chain
of Takahashi and Suzuki [31]. There are families of r, s for which the vector A is
known but results for all cases have not been explicitly written down although an
algorithm exists which allows the identity for any r, s to be found. For p′ = p+ 1
only the conventional binomial coefficients (5) are needed and the Fermi form
consists of a single term of the form (6). However, for general values of p′ the
modified binomials (7) arise and in addition there are many values of r, s where
the Fermi form consists of a linear combination of terms of the form (6). It is
essentially the existence of these linear combinations which makes the complete
set of results difficult to explicitly write down.

3.2 The perturbations φ2,1 and φ1,5

Rogers-Ramanujan identities for the character with the minimal conformal dimen-
sion for the integrable perturbations φ2,1 and φ1,5 have recently been obtained [16]
for models M(p, p′) by means of the recently discovered [17] trinomial analogue
of Bailey’s lemma and some computer tested conjectures. For the unitary case
M(p, p + 1) we have just completed the proof of the identities for all values of r
and s. When 2p > p′ the perturbation φ2,1 is relevant and the bosonic form B(1)

of (13) appears in the identities. We also have identities for p′

3 < p < p′

2 where the

perturbation φ1,5 is relevant and the bosonic form B(2) of (14) is used.

For the unitary case M(p, p+ 1) the matrix B is of dimension p− 1 where

Bj,k =
1

2
CAp−2 |j,k 2 ≤ j, k ≤ p− 2

B0,0 = B1,1 = 1, B0,2 = −B2,0 = 1/2 B1,2 = B2,1 = −1/2 (22)

and zero otherwise and uj = 2Lδj,0 for r = s = 1. This matrix differs significantly
from the p− 2 dimensional matrix (21) in that it is not symmetric.

The matrices B are also known [16] for the nonunitary cases p′ 6= p + 1.
However, in many of these nonunitary cases a new phenomena arises not seen
in the φ1,3 perturbations, namely that there can be several different fermionic
representations (with different dimensions of the B matrix) of the same bosonic
polynomial.
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3.3 The perturbation φ1,2

The final case of integrable perturbations is φ1,2 but this case is not nearly so well
understood. For the three very special unitary cases of cases M(3, 4), M(4, 5) and
M(6, 7) Rogers-Ramanujan identities are known [11, 32] where the B matrices
are twice the inverse of the Cartan matrix of E8, E7 and E6 respectively and
the bosonic form is obtained from (13) with the replacement p → p + 1 in the
q-trinomials. Beyond these nothing further seems to be known.

4 How many identities?

We demonstrated in [14, 15] that every M(p, p′) yields a set of Rogers-Ramanujan
identities. But we also found that there are more than one identity for each
M(p, p′). The question then arises of how many fermionic representations there
are for the characters of each model M(p, p′) The answer to this is not known
and the scope of the problem is perhaps most vividly shown by considering the
three state Potts model M(5, 6) where in addition to the identities for the φ2,1
perturbation discussed above there is another set of identities which are a special
case of the “parafermionic” identities first found by Lepowsky and Primc [33] in
1985 where the matrix B is twice the inverse Cartan matrix of A2 and in the limit
L → ∞, u → ∞. This perturbation is also for the φ2,1 perturbation but has two
quasi-particles instead of the four quasi-particles of (22). One may speculate that
this has something to do with the difference between A and D modular invariants,
but the actual explanation and interpretation of this fact is not known nor is it
known if such extra representations exist for other models. If this is part of the
explanation then we must enlarge the conjecture of sec. 3 to account for the
possible modular invariants. But even this suggestion will not give an explanation
for all of the various identities found for the nonunitary φ2,1 perturbations in [16].
The full range of Rogers-Ramanujan identities is by no means yet understood and
it is anticipated that both in the mathematics and in the physics there is much
still left to be discovered.
Acknowledgement This work is supported in part by the National Science

Foundation of the USA under DMR 9703543
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Metastability and the Ising Model
Roberto H. Schonmann

Abstract. We present recent results on a classical non-equilibrium statis-
tical mechanics problem, in the context of a well-studied idealized interact-
ing particle system, called kinetic Ising model. The problem concerns the
speed and the patterns of relaxation of statistical mechanical systems in the
proximity of the phase-transition region, and is related to the problem of
understanding the metastable behavior of systems in such regions.

1991 Mathematics Subject Classification: 60K35 82B27
Keywords and Phrases: kinetic Ising model, stochastic Ising model, Glauber
dynamics, metastability, relaxation, nucleation, droplet growth, Wulff shape,
large deviations, asymptotic expansion

It is well known that a ferromagnetic material which is in equilibrium under a
negative external magnetic field relaxes to equilibrium very slowly after the mag-
netic field is switched to a small positive value. A detailed mathematical analysis
of such a phenomenon can only be performed on simplified models. It is widely
accepted that an appropriate model for this and many other purposes is a kinetic
Ising model: a Markov process which endows the traditional Ising model with a
particular stochastic dynamics. On each vertex of an infinite lattice Zd, we have
variables (called spins) which take the values −1 or +1. The system evolves in
continuous time as a Markov process which is time-reversible and has as invariant
measures the classical Gibbs measures of statistical mechanics. When the tem-
perature parameter, T , appearing in the definition of the model is small enough,
there is a phase transition which takes place when the external field parameter,
h, changes sign (this corresponds to the change from a negative to a positive ori-
entation of most spins). The question then arises of how the system relaxes to
equilibrium when h is small and positive, and the system is initially in an equilib-
rium distribution corresponding to a small negative value of h.

Simulations have shown that the relaxation mechanism is driven by the behavior
of the clusters (droplets) of +1-spins which form initially in the sea of −1-spins.
While small droplets tend to shrink and disappear, large ones tend to grow and
are responsible for the relaxation. This phenomenon has long been understood on
non-rigorous heuristic grounds, and can be used to predict for instance the order
of magnitude, as h ց 0, of the relaxation time for the process. The prediction
is that the relaxation time grows as exp(λhd−1), where λ is a constant which
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can be computed. The value of λ is, in particular, related to the equilibrium
surface tension of the Ising model through the Wulff construction, which solves a
variational problem.

In this note we will overview rigorous results of the type described above and
also some important extensions. A thorough review of metastability, even in the
context of the kinetic Ising models, is far beyond the scope of this note. Here
we will limit ourselves to the main results in the papers [Sch1] and [SS], which
concern metastability in the vicinity of the phase transition region. A great deal
of recent progress on metastability of the kinetic Ising models stems from the
fact that these models also display metastable behavior away from this region, at
low enough temperature. For a detailed discussion of relations between the various
manifestations of metastability of kinetic Ising models we refer the reader to [Sch2],
where further reference to the literature can also be found. More recent progress in
this direction is contained in [Nev], [BC], [DS], [CO], [CL] and references therein.
For a paper which reports on extensive numerical studies directly related to the
mathematical work reviewed here, we refer the reader to [RTMS].

The precise definition of the kinetic Ising models is lengthy and somewhat
technical. It can be found, e.g., in [Sch1] and [SS]. For the purpose of this note it
is best to just give a somewhat intuitive description. At each site of the lattice Zd

there is a variable (spin) which can take the value −1 or +1. The configuration on

the complete lattice is then an element of the space Ω = {−1,+1}Zd. The system
evolves in time, with spins flipping back and forth, at rates which depend on the
state of nearby spins. The system as a whole is a Markov process with state space
Ω. The interaction among spins is driven by an energy function (Hamiltonian)
formally defined on Ω by

Hh(σ) = −1

2

∑

x,y n.n.

σ(x)σ(y) − h

2

∑

x

σ(x),

where “x, y n.n.” means that x and y are nearest neighbors in Zd, i.e., they are
separated by Euclidean distance 1, h ∈ R is the external field and σ ∈ Ω is a
generic configuration.

Formally, Gibbs distributions are defined as probability distributions µ over Ω,
with

µ(σ) =
exp(−Hh(σ)/T )

Normalization
,

where T = 1/β > 0 is the temperature. When h 6= 0 or T > Tc = Tc(d) it is
known that there is a unique Gibbs distribution, which then describes the system
in equilibrium and will be denoted by µT,h. In d = 1, Tc = 0, but for d ≥ 2,
Tc > 0. The segment {{0} × (0, Tc)} of the phase diagram h × T corresponds
then to the phase-transition region. For these values of the parameters there
are multiple Gibbs distributions; one of them corresponds to a limit of Gibbs
distributions under h < 0 (resp. h > 0) as hր 0 (resp. hց 0), and is called the
(−)-phase (resp. the (+)-phase), represented by µT,− (resp. µT,+). Expectations
with respect to Gibbs measures will be denoted in the standard fashion

〈f〉T,h =

∫
fdµT,h.
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Of particular interest is the magnetization m(T, h) = 〈σ(0)〉T,h. Away from the
phase-transition region, m(T, ·) is analytic. It is nevertheless believed that for
T < Tc this function has no analytic continuation from h < 0 to h > 0. This
result has been proved indeed for low enough T in [Isa].

The time evolution which defines the kinetic Ising model as a Markov process
on Ω is given by a generator L of the form given next. Intuitively, when the
configuration is σ, the spin at each site x ∈ Zd is flipping at a rate c(x, σ).

(Lf)(σ) =
∑

x∈Zd
c(x, σ)(f(σx)− f(σ)).

Here f : Ω → R is supposed to be a local observable, i.e., to depend only on the
spin at finitely many sites of the lattice, σx is the configuration obtained from σ
by flipping the spin at the site x, and c(x, σ) is called the rate of flip of the spin
at the site x when the system is in the state σ. The rates c(x, σ) are supposed to
satisfy certain conditions, the main one of them being called detailed balance or
reversibility, and formally given by

µ(σ)c(x, σ) = µ(σx)c(x, σx).

This assures that the Gibbs distributions are invariant for the process. Other
conditions are that the rates are invariant under translations of the lattice, are of
finite range of dependency, are monotone in the configuration and external field,
and are uniformly bounded above and below when T is fixed and |h| is small.
Several choices can be made for the rates, satisfying all this conditions. To give a
few examples, we introduce

∆xHh(σ) = Hh(σx)−Hh(σ).

Common choices of rates are:
Example 1) Metropolis Dynamics

cT,h(x, σ) = exp(−β(∆xHh(σ))+),

where (a)+ = max{a, 0} is the positive part of a.

Example 2) Heat Bath Dynamics

cT,h(x, σ) =
1

1 + exp(β∆xHh(σ))
.

Example 3)

cT,h(x, σ) = exp

(
−β

2
∆xHh(σ)

)
.

If in the kinetic Ising model the initial configuration is selected at random
according to a probability measure ν, then the resulting process is denoted by
(σνT,h;t)t≥0. When ν is concentrated on the configuration with all spins −1, we

will denote this process by (σ−T,h;t)t≥0. The probability measure on the space of
trajectories of the process will be denoted by P, and the corresponding expectation
by E.

The following is the main result of [Sch1].
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Theorem 1. For each dimension d ≥ 2 there is T0 > 0 such that for every
temperature T ∈ (0, T0) the following happens. There are constants 0 < λ1(T ) ≤
λ2(T ) < ∞ such that if we let h ց 0 and t → ∞ together, then for every local
observable f
i) E(f(σ−T,h;t))→ 〈f〉T,− if lim suphd−1 log t < λ1(T ).

ii) E(f(σ−T,h;t))→ 〈f〉T,+ if lim inf hd−1 log t > λ2(T ).

Explicit estimates on the values of λ1(T ) and λ2(T ) were also given in [Sch1].
The theorem above was conjectured by Aizenman and Lebowitz in [AL], where
they proved a similar result for certain deterministic cellular automata evolving
from initial random configurations selected according to translation invariant prod-
uct measures. Actually they conjectured the stronger result, which states that also
λ1(T ) = λ2(T ) =: λc(T ).

Theorem 1 was greatly improved in [SS] in the case in which d = 2. In particular
in this paper the conjecture by Aizenman and Lebowitz was fully vindicated in
this case. A somewhat simplified and partial statement of the main result in [SS]
is as follows.

Theorem 2. Suppose d = 2 and T < Tc. There is a constant λc = λc(T ) such
that for every probability distribution ν = µT,h′ , h

′ < 0, the following happens.

i) If 0 < λ < λc, then for each n ∈ {1, 2, ...} and for each local observable f ,

E

(
f
(
σνT,h;exp(λ/h)

))
=
n−1∑

j=0

1

j!

dj〈f〉T,ĥ
dĥj

∣∣∣∣∣
ĥ=0−

hj +O(hn)

for h > 0, where O(hn) is a function of f and h which satisfies
lim suphց0 |O(hn)|/hn <∞.

ii) If λ > λc, then for any finite positive C there is a finite positive C1 such that
for every local observable f ,

∣∣∣E
(
f
(
σνT,h;exp(λ/h)

))
− 〈f〉T,h

∣∣∣ ≤ C1 ||f ||∞ exp

(
−C
h

)
,

for all h > 0.

The value of λc(T ) can be written in terms of other quantities which are re-
lated to the equilibrium distributions of the Ising model. This expression and its
meaning, which are of great relevance, will be presented later in the paper. Next
we compare Theorems 1 and 2 and explain some of their content.

Three of the ways in which Theorem 2 improves on Theorem 1 when d = 2
are: 1) There is a single constant λc separating the regimes (i) and (ii). 2) The
temperature is now only required to be below Tc. 3) The initial distribution is
much more general than in Theorem 1, where it was supposed to be concentrated
on the configuration with all spins down. It is natural indeed to start from an
equilibrium state at a small negative h, change it to a small positive h and observe
the evolution of the system afterwards.
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To illustrate and clarify the main way in which Theorem 2 improves further the
statement in Theorem 1, let us take the local observable given by f(σ) = σ(0) and
n = 2. We have then, when 0 < λ < λc

E

(
σνT,h;exp(λ/h)(0)

)
= −m∗ + χh+O(h2),

when h > 0. Here

m∗ = m∗(T ) = 〈σ(0)〉T,+ = −〈σ(0)〉T,−,

is the spontaneous magnetization, and

χ = χ(T ) =
d〈σ(0)〉T,h

dh

∣∣∣∣
h=0−

=

(
β

2

) ∑

x∈Z2
{〈σ(0)σ(x)〉T,− − 〈σ(0)〉T,−〈σ(x)〉T,−} ,

is the susceptibility at h = 0−. This means that when h > 0 is small the function

−m∗ + χh is a better approximation to E
(
σνT,h;exp(λ/h)(0)

)
than the constant

function identical to −m∗ = 〈f〉T,−. This function −m∗+χh is the smooth linear
continuation into the region h ≥ 0 of the function which to h < 0 associates
the equilibrium expectation 〈f〉T,h. Similar interpretations can be given for larger
values of n and arbitrary f . In this sense Theorem 2 shows that the dynamics gives
meaning to arbitrarily smooth metastable continuations of the distributions µT,h,
h < 0, into the region h > 0, inspite of the absence of an analytic continuation.

In the Physics literature (see, e.g., [BM]), one sometimes relates the metastable
relaxation of a system to the presence of a “plateau” in the graph corresponding to

the time evolution of a quantity of the type of E
(
f
(
σνT,h;t

))
. Of course, strictly

speaking there is no “plateau”, and generically the slope of such a function is never
0. Still, from the experimental point of view a rough “plateau” can be seen and

described as follows. In a relatively short time E
(
f
(
σνT,h;t

))
seems to converge to

a value close to 〈f〉T,−; after this, one sees an apparent flatness in the relaxation
curve over a period of time which may be quite long compared with the time
needed to first approach this value. But eventually the relaxation curve starts to
deviate from this almost constant value and move towards the true asymptotic
limit, close to 〈f〉T,+. The experimentally almost flat portion of the relaxation
curve is referred to as a “plateau”. Theorem 2 can be seen to some extent as
giving some precise meaning to such a “plateau”, and we discuss now two ways in
which this can be done. First note that if 0 < λ′ < λ′′ < λc, then from Part (i) of
the Theorem we have

E

(
f
(
σνT,h;exp(λ′/h)

))
− E

(
f
(
σνT,h;exp(λ′′/h)

))
→ 0,

faster than any power of h. Observe that we are considering times which are
of different order of magnitudes, when h is small, and still we are observing a
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nearly constant E
(
f
(
σνT,h;t

))
. For a second way in which Theorem 2 can be seen

as expressing the presence of a “plateau”, we can think of plotting E
(
f
(
σνT,h;t

))

versus log(t), rather than versus t. This is somewhat the natural graph to consider,
if one is interested in the order of magnitude of the relaxation time. If the log(t)-
axis is drawn in the proper scale, amounting to replacing it with h log(t), then,
when h is small, Theorem 2 tells us that the graph should be close to that of a step
function which jumps at the point λc, from the value 〈f〉T,− to the value 〈f〉T,+.

The relation between the constant λc(T ) and some quantities related to the
equilibrium Ising model can best be explained by presenting an heuristic reasoning
which lies behind Theorems 1 and 2. The heuristics is presented next in the case
d = 2. For more on this heuristics including a different way of approaching it and
some of its history see [RTMS].

The first ingredient of the heuristics is the idea of looking at an individual
droplet of the stable phase (roughly the (+)-phase, since h is small) in a back-
ground given by the metastable phase (roughly the (−)-phase). Let S be the shape
of that droplet, which a priori can be arbitrary. Say that l2 is the volume (i.e., the
number of sites) of the droplet, and let us find an expression for the free-energy
of such a droplet. This free-energy may be seen as coming from two main contri-
butions. There should be a bulk term, proportional to l2. This term should be
obtained by multiplying l2 by the difference in free-energy per site between the
(+)-phase and the (−)-phase in the presence of a small magnetic field h > 0. This
difference in the free-energy per site of the two phases should come only from the
term in the Hamiltonian which couples the spins to the external field and should
therefore be given by 2m∗h/2 = m∗h. The other relevant contribution to the
free-energy of the droplet should come from its surface, where there is an interface
between the (+)-phase and the (−)-phase. This contribution is proportional to
the length of the interface, which is of the order of l. It should be multiplied
by a constant wS which depends on the shape of the droplet. This constant wS
represents the excess free-energy per unit of length integrated over the surface of
the droplet when its scale is changed so that its volume becomes 1. Adding the
pieces, we obtain for the free-energy of the droplet the expression

ΦS(l) = −m∗hl2 + wSl.

The two terms in this expression become of the same order of magnitude, in case l
is of the order of 1/h. Therefore, it is natural to write l = b/h, with a new variable
b ≥ 0. This yields

ΦS(b/h) =
φS(b)

h
,

where
φS(b) = −m∗b2 + wSb.

This very simple function takes the value 0 at b = 0, grows with b on the interval
[0, BSc , ], where BSc = BSc (T ) = wS

2m∗ , reaching its absolute maximum φS(B
S
c ) =

(wS)
2

4m∗ = AS(T ) = AS at the end of this interval. Then it decreases with b on the

semi-infinite interval [BSc ,∞), converging to −∞ as b→∞.
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Metastability is then “understood” from the fact that systems in contact with
a heat bath move towards lowering their free-energy, so that the presence of a
free-energy barrier which needs to be overcome in order to create a large droplet
of the stable phase with any shape keeps the system close to the metastable phase.
Subcritical droplets are constantly being created by thermal fluctuations, in the
metastable phase, but they tend to shrink, as dictated by the free-energy land-
scape. On the other hand, once a supercritical droplets is created due to a larger
fluctuation, it will grow and drive the system to the stable phase, possibly colliding
and coalescing in its growth with other supercritical droplets created elsewhere.
As a function of h, the linear size of a critical droplet, BSc /h, blows up as hց 0.
One can then, in a somewhat circular, but heuristically-meaningful way, say that
the macroscopic free-energy of droplets is indeed a relevant object of consideration.
One can also hope then that sharp theorems could be conjectured and possibly
proven regarding the asymptotic behavior of quantities of interest in the limit
hց 0.

Regarding the shape of the droplet, the height of this barrier is minimized by
minimizing the value of the constant wS. It is a fact (see [DKS]) that indeed one
can introduce a well defined surface tension function between the (+)-phase and
the (−)-phase, and that it produces a single convex shape S which minimizes wS .
This shape is called the Wulff shape. We will simplify the notation by omitting
the subscript S when it is the Wulff shape. In particular,

Bc =
w

2m∗
, A =

w2

4m∗
.

Based on the expression above for the free-energy barrier, one predicts the rate

of creation of supercritical droplets with center at a given place to be exp
(
−βA
h

)
.

In what follows now we write d instead of 2, to make the role of the dimension
clear in the geometric argument which comes next. We are concerned with an
infinite system, and we are observing it through a local function f , which depends,
say, on the spins in a finite set Supp(f). For us the system will have relaxed to
equilibrium when Supp(f) is covered by a big droplet of the plus-phase, which
appeared spontaneously somewhere and then grew, as discussed above. We want
to estimate how long we have to wait for the probability of such an event to be
large. If we suppose that the radius of supercritical droplets grows with a speed
v, then we can see that the region in space-time where a droplet which covers
Supp(f) at time t could have appeared is, roughly speaking, a cone with vertex
in Supp(f) and which has as base the set of points which have time-coordinate 0
and are at most at distance tv from Supp(f). The volume of such a cone is of the
order of (vt)dt. The order of magnitude of the relaxation time, trel, before which
the region Supp(f) is unlikely to have been covered by a large droplet and after
which the region Supp(f) is likely to have been covered by such an object can now
be obtained by solving the equation

(vtrel)
d trel exp

(
−βA
h

)
= 1.
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This gives us

trel = v−d/(d+1) exp

(
βA

(d+ 1) h

)
.

In order to use this relation to predict the way in which the relaxation time scales
with h, one needs to figure out the way in which v scales with h. If we suppose,
for instance, that v does not scale with h, or at least that if it goes to 0, as hց 0,
it does it so slowly that

(1) lim
hց0

hd−1 log v = 0,

then we can predict that

trel ≃ exp

(
βA

(d+ 1) h

)
= exp

(
λc
h

)
,

where

(2) λc =
βA

d+ 1
=

βw2

(d+ 1) 4m∗
=

βw2

12 m∗
.

The heuristics above may seem extremely crude. Potentially the interaction
between droplets could spoil the whole picture and lead to a much faster decay.
In the opposite direction, even if the droplet picture makes sense, their speed of
growth could be so slow that (1) could fail an therefore the relaxation time would
be much larger than predicted above.

One of the major contributions of [SS] is to prove that indeed λc in Theorem
2 is given by (2). This means that close to the phase transition region the time
evolution can be well described in first approximation by the highly simplified
droplet dynamics.

Acknowledgements: It is a pleasure to thank Senya Shlosman for the collabo-
ration in [SS] and other related projects. This work was supported by the N.S.F.
grant DMS-9703814.
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Space of Local Fields in Integrable Field Theoryand Deformed Abelian Differentials
Feodor A. Smirnov1

Abstract. In this talk I consider the space of local operators in integrable
field theory. This space allows two different descriptions. The first ofthem is
due to conformal field theory which provides a universal picture of local prop-
erties in quantum field theory. The second arises from counting solutions to
form factors equations. Considering the example of the restricted Sine-Gordon
model I show that these two very different descriptions give the same result. I
explain that the formulae for the form factors are given in terms of deformed
hyper-elliptic integrals. The properties of these integrals, in particular the de-
formed Riemann bilinear relation, are important for describing the space of
local operators.

1 Quantum field theory in two dimensions.

Consider a massive relativistic quantum field theory (QFT) in two dimensional
Minkowski spaceM2. For x = (x0, x1) ∈ M2 we put x2 = x20 − x21. Let us
take for simplicity the case when there is only one stable particle of mass m in the
spectrum. To this particle we associate the creation-annihilation operators a∗(β), a(β)
where the rapidityβ parameterizes the energy-momentum of particle:p0(β) = m coshβ,
p1(β) = m sinhβ. The only non-vanishing commutator is

[a(β1), a
∗(β2)] = δ(β1 − β2)

The space of states of the theory is the Fock space created by the action of an arbitrary
finite number of operatorsa∗(β) on the vacuum|0〉 which is annihilated bya(β). We
denote this space byHp. The action of the operators of energy and momentumPµ inHp
is defined byPµ|0〉 = 0, [Pµ, a

∗(β)] = pµ(β)a∗(β).
In local QFT there exist local operatorsOi(x) = eiPµxµOi(0)e−iPµxµ acting in the

spaceHp and satisfying

[Oi(x),Oj(x′)] = 0 for (x− x′)2 < 0

Obviously, these local operators create a linear space which will be denoted by Ho.
The Lehmann-Symanzik-Zimmerman axiomatic requires the existence of two special lo-
cal operators. One of them is the symmetric energy-momentum tensorTµν such that
∂µTµν = 0 andPµ =

∫
Tµ0(x)dx1. The other one is the interpolating fieldφ(x) weakly

1Membre du CNRS
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approaching, whenx0 → ±∞, the free ”out” and ”in” fields constructed via the creation-
annihilation operatorsa∗out(β), aout(β) , a∗in(β), ain(β). It is required that they are uni-
tary equivalent:aout(β) = Sain(β)S−1 with the unitary operatorS (S-matrix) which
leaves invariant the vacuum and one particle state, and commutes withPµ. We identify
the original operatora(β) with ain(β).

This axiomatic has an obvious generalization to the case when the particle hasinter-
nal (isotopic) degrees of freedom, and to the case of fermionic statisticor even generalized
statistic, the latter case is also possible in two dimensions.

Let us consider in some details the space of local operatorsHo. The general philos-
ophy teaches us that in order to understand the structure of this space onehas to consider
the ultra-violet (short-distance) limit of the original QFT. At least intuitively this idea is
quite natural. The ultra-violet limit of massive QFT is described by acertain confor-
mal field theory (CFT). The spaces of local operators of two theories must coincide, and,
since the CFT in two dimensions allows in many cases a complete solution[1], we get a
description of ”universality classes” of two-dimensional QFT.

In the conformal case the theory essentially splits into two chiral sectors, which
means that any operatorO(x) can be rewritten asO−(x−)O+(x+) wherex± = x0±x1
are light-cone coordinates. The space of local operators in CFT is describedin terms of
two Virasoro algebras with generatorsL±n satisfying

[L±m,L±n ] = (m− n)L±m+n + c δm,−n n
3−n
12

where the central chargec is an important characteristic of the theory. These Virasoro
algebras act on the spaceHo which happens to be organized as follows. There are primary
fieldsφm satisfying

L±nφm = 0, n < 0, L±0 φm = ∆mφm

where∆m is the scaling dimension of primary field. Different local operators are obtained
by acting withL±−n on the primary fields. So, the one has

Ho =
⊕

m

W−
m ⊗W+

m

whereWm is a Verma module of the Virasoro algebra.
In this talk I shall consider a particular example of CFT withc < 1. The coupling

constantξ which we use is related toc as follows

c = 1− 6
ξ(ξ+1)

Considering the coupling constant in generic position we have infinitely many primary
fieldsφm ,m ≥ 0 with scaling dimensions∆m = −m2 + m

2 (m2 + 1)ξ. We shall concen-
trate on one chirality considering only one Virasoro algebra with generatorsLn ≡ L−n .
The Verma moduleWm has a singular vector on levelm+ 1. The irreducible representa-
tion of the Virasoro algebra is obtained by factorizing over the Verma submodule created
over this singular vector. The vectors from this submodule are called ”null-vectors”. It
must be emphasized that the process of factorizing over the null-vectors hasthe dynam-
ical meaning of imposing the equations of motion. The latter statement can be clearly
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understood in the classical limitξ → 0 when the chiral CFT gives the classical Korteweg-
de-Vris (KdV) hierarchy with second Poisson structure. The space of localoperators
turns into the space of functions on the phase space of KdV. It is shown in [2] that the
null-vectors in that case provide all the equations of motion of the KdV hierarchy.

Let us return to massive QFT. Consider a local operatorO(x) and define

fO(β1, · · · , βn) = 〈0| O(0) a∗(β1) · · ·a∗(βn)|0〉

whereβ1 < · · · < βn. To other ranges ofβ’s the functionfO is continued analytically.
The functionfO is called form factor. The matrix elements of a local operator between
two arbitrary states ofHp can be obtained by certain analytical continuation of the form
factors due to crossing symmetry. The dependence onx can be taken into account trivially
because the matrix element is taken between the eigen-states of the energy-momentum.
Thus the form factors define the local operator completely. On the other hand the set of
form factors define a pairing between the spacesHo andHp.

2 Integrable field theory.

The problem of finding the form factors of local operators for any massive QFT looks
rather hopeless. However, in the special case of integrable field theory (IFT) this problem
can be solved. In IFT the scattering is factorizable which means that every scattering
process is reduced to two-particle scattering [3]. The two-particle S-matrix S(β1 − β2)
depends analytically on the difference of rapidities. As it has been already saidthe par-
ticle can carry internal degrees of freedom lying in finite-dimensional isotopic space. In
that caseS(β1 − β2) is an operator acting in the tensor product of the isotopic spaces
attached to the particles scattered. The S-matrix must satisfy certain requirements, the
most important of which being the Yang-Baxter equation [4].

Consider now the form factors. The first examples of exact form factors in IFT are
given in [5]. I gave a complete solution of the problem in a series of papers (partly in
collaboration with A.N. Kirillov) summarized in the monograph [6].If the particles have
internal degrees of freedom the form factor takes values in the tensor product of isotopic
spaces. It is convenient to consider the form factors as row-vectors. Then weact from the
right by the operators likeS(βi−βj) (which act non-trivially only in the tensor product of
i-th andj-th spaces). It has been shown that for the operatorO to be local it is necessary
and sufficient that the following requirements are satisfied [6]:
1. Analyticity. The form factorfO(β1, · · · , βn) is a meromorphic function of all its
arguments in the finite part of the complex plane.
2. Symmetry.

fO(β1, · · ·βi, βi+1 · · · , βn)S(βi − βi+1) = fO(β1, · · ·βi+1, βi · · · , βn) (1)

3.Total Euclidean rotation.

fO(β1, · · · , βn−1, βn + 2πi) = fO(βn, β1, · · · , βn−1) (2)

3. Annihilation pole. In the absence of bound states there are no other singularities
in variableβn in the strip0 < Imβn < 2π but simple poles at the pointsβn = βj + πi.
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The residue at the one of them (βn = βn−1 + πi) is given below, other residues can be
obtained from the symmetry property.

2πi resfO(β1, · · ·βn−1, βn) =

=fO(β1, · · ·βn−2)⊗ cn−1,n (I − S(βn−1 − β1) · · ·S(βn−1 − βn−2)) (3)

wherecn−1,n is a certain vector from the tensor product ofn-th and(n − 1)-th isotopic
spaces which is canonically related to the S-matrix.

Two comments are in order here. First, clearly the IFT is completely defined bythe
S-matrix in agreement with the general idea of Heisenberg. Second, the spaceHo is in
one-to-one correspondence with the space of solutions of the system of linear equations
(1, 2, 3). So, we have to establish the relation of this description to the one given by CFT.

Let me consider my favorite example of IFT which is the restricted Sine-Gordon
model (RSG)[7]. I will not give the traditional Lagrangian definition of the model, instead
I shall present the S-matrix which, as it has been said, defines the IFT completely. The
particles in RSG are two-component (soliton-antisoliton), so, theS-matrix is an operator
acting inC2 ⊗ C2 as follows

S(β) = S0(β)
(
e−

β
ξ R(q)− e βξ R̂(q)−1

)
(4)

whereβ = β1 − β2, ξ is a coupling constant,S0(β) is certain c-number multiplier which
is not very relevant for our goals. The matrixR(q) is the R-matrix of the quantum group
Uq(sl2) [8] with q = exp(2πiξ ) acting in the tensor product of two-dimensional represen-
tations:

R(q) = q
1
4 (σ

3⊗σ3+1)
(
I + (q

1
2 − q− 12 )σ+ ⊗ σ−

)
,

whereσ3, σ± are Pauli matrices. Finally,̂R(q) = PR(q), whereP is the operator of
permutation. The S-matrix (4) gives the famous Sine-Gordon (SG) S-matrix found by
Zamolodchikov [9].

The RSG model is a sector of SG model. Let us consider the isotopic spaces asspaces
of two-dimensional representations of the quantum group. The S-matrix (4) is written in
a manifestlyUq(sl2)-invariant form. If one introduces the action ofUq(sl2) in the space
of particles of the SG model, restriction to RSG corresponds to considering Uq(sl2)-
invariant subspace. This restriction looks at the first glance as a kinematical one, but it
has important dynamical consequences. The spaceHo of RSG corresponds toUq(sl2)-
invariant solutions of the equations (1, 2, 3). From certain physical consideration we know
that this space must coincide with the space of operators of CFT withc = 1 − 6

ξ(ξ+1)

defined above.
One remark should be made. I have said that particles in two dimensional QFT

can have generalized statistics which means that their interpolating fields are quasi-local
(some phases appear in the commutation relations on the space-like interval). In that
case the equations (1, 2, 3) are satisfied for the operators which are not only local, but
also mutually local with the interpolating fields, otherwise some minor modification is
needed. This is the situation which takes place in RSG model: solitons areparticles with
generalized statistics. Only the primary fieldsφ2m and their Virasoro descendents are
mutually local with the interpolating fields of solitons. For simplicity we shall take for
Ho of RSG the space span by these “truely local” operators.
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3 Deformed hyper-elliptic differentials.

The formulae for the form factors of the RSG model are given in terms ofdeformed
hyper-elliptic integrals. Let me explain what these integrals are. Consider a hyper-elliptic
Riemann surface of genusn−1 defined by the equationc2 = p(a) with p(a) =

∏2n
j=1(a−

bj). Take the abelian differentials regular everywhere except at the two points lying over
the pointa = ∞, and having no simple poles. Up to exact forms there are2n − 2 such
differentials, everyone of them is written in the form

ω =
l(a)√
p(a)

da (5)

with some polynomiall(a). Introduce the intersection form

ω1 ◦ ω2 =
∑

a=∞
res (ω1Ω2)

wheredΩ = ω. The basis of dual differentials can be constructed as follows. Consider
the anti-symmetric polynomial of two variables:

c(a1, a2) =
√
p(a1)

∂

∂a1

(√
p(a1)

a1 − a2

)
−
√
p(a2)

∂

∂a2

(√
p(a2)

a2 − a1

)

For any decomposition of this polynomial of the form

c(a1, a2) =
n−1∑

i=1

(ri(a1)si(a2)− ri(a2)si(a1))

the differentialsηi andζi defined by usingri andsi respectively in equation (5) are dual:

ηi ◦ ηj = 0, ζi ◦ ζj = 0, ηi ◦ ζj = δij

Consider the canonical homology basis with a-cyclesαi and b-cyclesβi. The Riemann
bilinear relation (as A. Nakayashiki pointed out to me, the hyper-elliptic case was found
by Weierstrass) says that the matrix of periods

P =

(∫
α η ,

∫
β η∫

α
ζ ,

∫
β
ζ

)

belongs to the symplectic groupSp(2n− 2).
Now I am going to describe a deformation of these abelian differentials which is

needed for the description of RSG form factors. Obviously only tensorproduct of even
number of two-dimensional representations can have aUq(sl2)-invariant subspace. So,
we have only form factors with even number of particles with rapiditiesβ1, · · · , β2n. Let
us introduce the notationsbj = exp(

2βj
ξ ), Bj = exp(βj). Consider two polynomials

l(a) andL(A) which can depend respectively onbj andBj as parameters. We define the
following pairing for these polynomials [10]:

〈l, L〉 =

∞∫

−∞

Φ(α)l(a)L(A)dα (6)
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wherea = exp(2αξ ),A = exp(α). The functionΦ(α) satisfies the equations

p(aq)Φ(α+ 2πi) = q2p(a)Φ(α), p(a) =
∏

(a− bj)

P (−AQ)Φ(α+ iξ) = QP (A)Φ(α), P (A) =
∏

(A+Bj) (7)

whereQ = eiξ. We require thatΦ(α) is regular for0 < Imα < π, that it behaves asaA
whenα→ −∞, and that it has the following asymptotics whenα→ +∞:

Φ(α) ∼ f(a)F (A),

f(a) = a−(n−1)
(
1 +

∑

k>0

cka
−k), F (A) = A−(2n−1)

(
1 +

∑

k>0

CkA
−k)

where the coefficientsck, Ck can be found using (7). These requirements fix the function
Φ(α) completely, the explicit formula is available, but we shall not need it.The following
functionals are defined for arbitrary polynomialsl(a) andL(A):

rl ≡ resa=∞(a−1l(a)f(a)), RL ≡ resA=∞(A−1L(A)F (A)) (8)

What is the relation between the pairing〈l, L〉 and the hyper-elliptic integrals? Take the
limit when ξ → ∞ keepingbj finite. In RSG model this is the strong coupling limit. In
this limit the integral (6) goes asymptotically to the period of thedifferential defined by
l(a) (5) over a cycle which is fixed by the polynomialL(A). Thus we have a deformation
of hyper-elliptic integrals in which the differentials and the cycles enter in much more
symmetric way than they do classically. We shall calll andL respectively q-form and
q-cycle. The striking feature of this deformation is that it preserves all the important
properties of classical hyper-elliptic integrals. Let me explain this point.

After appropriate regularization [6], the pairing〈l, L〉 can be defined for every pair
of polynomialsl andL satisfyingrl = 0, RL = 0. However, only a finite number of
them give really different results because it can be shown that the value of the integral
does not change if we add tol orL polynomials of the form

d[h](a) ≡ a−1
(
p(a)h(a)− p(aq−1)h(aq−2)

)

D[H](A) ≡ A−1 (P (A)H(A) − P (AQ)H(−A)) (9)

where the polynomialsh andH are arbitrary. The first polynomial from (9) can be consid-
ered as an exact q-form and the second one as a q-boundary. It is easy to see that modulo
(9) we have2n− 2 q-forms and2n− 2 q-cycles, so, the dimensions of cohomologies and
homologies do not change after the deformation.

Consider now two anti-symmetric polynomials:

c(a1, a2) =
p(a1)

a1(a1q − a2)
− p(a1q

−1)

a1(a1q−1 − a2)
−

− p(a2)

a2(a2q − a1)
+

p(a2q
−1)

a2(a2q−1 − a1)

C(A1, A2) =
1

A1A2

( A1 −A2
A1 +A2

(P (A1)P (A2)− P (−A1)P (−A2)) +

+ (P (−A1)P (A2)− P (A1)P (−A2))
)

(10)
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Suppose that modulo exact q-forms and q-boundaries we have the decompositions:

c(a1, a2) =
n−1∑

i=1

(ri(a1)si(a2)− ri(a2)si(a1))

C(A1, A2) =
n−1∑

i=1

(Ri(A1)Si(A2)−Ri(A2)Si(A1))

then the following deformed Riemann bilinear relation holds [10].
Proposition. The matrix

P =

(
〈r,R〉, 〈r, S〉
〈s,R〉, 〈s, S〉

)

belongs to the symplectic groupSp(2n− 2).

4 Exact form factors and space of operators.

The quantum group invariance means that the2n-particle form factors in the RSG model
belong toUq(sl2)-invariant subspace of the tensor product(C2)⊗2n. The dimension of
this invariant subspace equals

(
2n
n

)
−
(
2n
n−1
)
. There is a nice coincidence of dimensions

(
2n
n

)
−
(
2n
n−1
)

=
(
2n−2
n−1

)
−
(
2n−2
n−3

)

where the RHS gives the dimension of(n− 1)-th fundamental irreducible representation
of Sp(2n− 2) (explicitly described later). This representation is naturally related to the
construction of the previous section.

Consider the spacehk of anti-symmetric polynomials ofk variablesa1, · · · , ak. We
can define the following operators acting between differenthk:
1. The operatorr acting fromhk to hk−1 by applying the “residue” (8) to one argument,
obviouslyr2 = 0.
2. For everyh ∈ h1 (a polynomial of one variable) define the operatord[h] acting from
hk−1 to hk by

(d[h]lk−1)(a1, · · · , ak) =
k∑

i=1

(−1)id[h](ai) lk−1(a1, · · · , âi, · · · , ak)

3. The operatorc acts fromhk−2 to hk by

(clk−2)(a1, · · · , ak) =
k∑

i<j

(−1)i+jc(ai, aj) lk−2(a1, · · · , âi, · · · , âj · · · , ak)

Denote bŷhk the following subspace ofhk:

ĥk = Ker
(
r |hk→hk+1

)
/
⊕

h∈h1
Im
(
d[h] |hk−1→hk

)
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The spacêhk is finite-dimensional of dimension
(
2n−2
k

)
. The action of the operatorc can

be restricted to the spaceshk. We denote byh0k the subspace:

h0k = ĥk/Im
(
c |
ĥk−2→ĥk

)

which is isomorphic toSp(2n− 2)-irreducible submodule of maximal dimension in the
space of anti-symmetric tensors of rankk. We are interested in the biggest possible:h0n−1.

The construction of form factors starts by describing a certain linear isomorphism:

(C2)⊗2ninv ≃ h0n−1 (11)

of which we shall not need the explicit form. Using this isomorphism we identify every
e ∈ (C2)⊗2ninv with a polynomiall[e]n−1 ∈ h0n−1.

Consider now the spacesHk of anti-symmetric polynomialsLk(A1, · · · , Ak). The
action of operatorsR, D[H], C is defined in exactly the same way as the action ofr,
d[h], c using the formulae (8) and (9). ForLn ∈ Hn and for ln−1 ∈ h0n−1 define the
pairing:

〈ln−1, Ln〉 =

∞∫

−∞

dα1 · · ·
∞∫

−∞

dαn−1

n−1∏

i=1

Φ(αi)

× ln−1(a1, · · · , an−1)(RLn)(A1, · · · , An) (12)

The requirementln−1 ∈ h0n−1 together with the existence of q-boundaries and of
deformed Riemann bilinear relation leads to the following remarkable consequence. For
arbitraryH ∈ H1, Ln−1 ∈ Hn−1 andLn−2 ∈ Hn−2

D[H]Ln−1 ≃ 0, CLn−2 ≃ 0 (13)

whereLn ≃ 0 means that for suchLn the integrals (12) vanish for anyln−1 ∈ h0n−1.
The form factors must satisfy three equations (1), (2), (3). Consider first the equa-

tions (1) and (2) only. Obviously, one can multiply any solution of these two equations by
a quasi-constant, i.e.2πi-periodic symmetric function ofβj which is the same as sym-
metric Laurent polynomial ofBj . We have
Proposition. To everyLn ∈ Hn corresponds a solution to (1), (2) belonging to
(C2)⊗2ninv :

fLn(β1, · · · , β2n) =
∑

e

〈ln−1[e], Ln〉e

where the sum is taken over a basis of(C2)⊗2ninv . These solutions span a vector space over
the ring of quasiconstants, and the only possible linear dependence of solutions arises
from relations (13).

Let me appeal to the strong coupling limit for explaining the meaning of this con-
struction. In this limit the equations (1), (2) turn into certain linear differential equations.
These linear differential equations are solved in terms of hyper-ellipticintegrals (bj are
the branch points) and, naturally, different solutions are counted by different cycles. So,
it is not a wonder that after the deformation the solutions are counted by Ln which have
the meaning of deformed cycles as explained above.
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With every local operatorO we identify an infinite tower of polynomialsL[O]n such
that

fO(β1, · · · , βn) = fLn[O](β1, · · · , β2n)

The polynomialsLn[O] must be related for differentn in order to satisfy the remaining
equation (3). We have
Proposition. The form factorsfO(β1, · · · , βn) satisfy (3) if and only if the anti-
symmetric polynomialsLn[O](A1, · · · , An), which are at the same time symmetric Lau-
rent polynomials of the parametersB1, · · · , B2n, satisfy the recurrence relations:

Ln[O](A1, · · · , An|B1, · · · , B2n)|B2n=−B2n−1 ≡
n−1∑

i=1

(−1)i
∏

j 6=i
(A2j −B22n)

× Ln−1[O](A1, · · · , Âi, · · · , An|B1, · · · , B2n−2)
(
mod

n∏

j=1

(A2j −B22n)
)

(14)

i.e. the difference between LHS and RHS is divisible by
∏

(A2j − B22n) as polynomial of
Aj .

Recall that the equation (3) concerns the residue at the poleβ2n = β2n−1 + πi
which corresponds toB2n = −B2n−1 andb2n = qb2n−1. In the strong coupling limit
the branch pointsb2n andb2n−1 approach each other, so, we arrive at a singularity of
the moduli space. Thus the geometrical analogy of our construction is as follows. With
every2n-particle space we associate the moduli space of hyper-elliptic curves, the lower
moduli space is embedded into the upper one as its singularity. Equation (14) gives a rule
for embedding of deformed homologies.

The solution to the relation (14) which describes the primary fieldφ2m is

Ln[φ2m](A1, · · · , An|B1, · · · , B2n) =
∏

i<j

(A2i −A2j)
∏

A2mi
∏

B−mj

One can multiplyLn(φ2m) by the polynomials

I2k−1(B) =
∑

B2k−1j , J2k(A|B) =
∑

A2ki −
1

2

∑
B2kj

which does not spoil the relation (14). It corresponds to the action ofoperatorsI2k−1
andJ2k in the spaceH0, for example,Ln[J2kO](A|B) = J2k(A|B)Ln[O](A|B). I put
forward the following
Conjecture. The space of operators span byI2k1−1 · · · I2kp−1J2k1 · · · J2kqφ2m co-
incides with the Verma module of Virasoro algebra generated over the primary field.

Let me say a few words about the meaning of this construction. In RSG model
there is an infinite number of local integrals of motionI2k−1 which can be written in the
form I2k−1 =

∫
h2k(x)dx1 with some local densitiesh2k(x). For any local operatorO

we define an operatorI2k1−1O = [I2k−1,O] which is also local. The operatorI2k−1
acting onHp is the same as before because the eigen-value ofI2k−1 on 2n-particle state
equalsI2k−1(B). The operatorsJ2k describe certain transverse to the integrals of motion
coordinates.
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The Verma module of Virasoro algebra is span by the vectorsLk1 · · · Lklφ2m. The
operatorL0 defines the grading in this space such that the degree ofLk equalsk. It
can be shown that the degrees ofI2k−1 andJ2k with respect to the same grading equal
respectively2k − 1 and2k. So, the characters of the two graded spaces coincide which
makes the above conjecture very plausible. There are other arguments in favour of this
conjecture which I cannot explain here.

There is a crucial check for the above conjecture. It has been said that the Verma
module of the Virasoro algebra is reducible: there is a submodule of null-vectors which
corresponds to the equations of motion of the model. The question iswhether it is possible
to find these null-vectors describing the spaceHo in terms ofI2k−1 andJ2k? This can
be done because certain local operators vanishes due to the relations (13), moreover, the
number of these operators is exactly the same as the number of null-vectors in the Verma
module [2]. I think that this statement which links together two very different descriptions
of the spaceHo is a good point to finish this talk.
Acknowledgement. I would like to thank O. Babelon and D. Bernard for fruitful
collaboration and for help in preparing this talk.
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Scaling Limit of Particle Systems,Incompressible Navier-Stokes Equationand Boltzmann Equation
Horng-Tzer Yau*

Abstract. We review recent work on derivations of the Euler, incom-
pressible Navier-Stokes and Boltzmann equations from scaling limits of
microscopic dynamics.
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equations, Boltzmann equation, Hamiltonian dynamics, stochastic dy-
namics, Schrödinger equation.

I. Introduction

Macroscopic equations such as the Euler equations, Navier-Stokes equations or
Boltzmann equation are usually derived through a continuum formulation of con-
servation of mass and momentum or in the last case, by idealizing the collision
process. But, they also have a more fundamental origin in the microscopic equa-
tions of Newton or Schrodinger. The main question is whether this assertion can
be put on a firm mathematical foundation and whether macroscopic concepts such
as the viscosity, the nonlinearity, and the dissipation of the entropy can be un-
derstood microscopically. There are other important questions about many-body
dynamics such as fluctuations, time-dependent correlations and behavior of tagged
particles which are naturally formulated only on the microscopic level, but due to
the restriction of the length of this review, we shall address only the first question
here.

In statistical physics, continuum quantities such as density, velocity, and en-
ergy have microscopic versions which assume their macroscopic, deterministic val-
ues through the law of large numbers. Therefore, in order the equations describing
the evolution of the macroscopic quantities to be exact, certain limits have to be
taken, with suitably chosen scalings of space, time, and other macroscopic param-
eters of the systems. So the first step in the derivation of such equations is a choice
of scaling. Denote coordinates by lower case letters (x, t) in the microscopic scale;
by capital letters (X,T ) in the macroscopic scale. We put the system in a cube of

* Partially supported by U. S. National Science Foundation grants 9703752
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size L in d-dimensional space with periodic boundary condition and we will usually
assume d = 3. Denote the particles by (x1, · · · , xN , v1, · · · , vN ) with the density
(in the microscopic unit, i.e., number of particles per microscopic unit volume)
ρ = N/Ld. Let ε be the ratio between the microscopic unit and the macroscopic
unit (say, ε ∼ 10−8). There are typically three choices of scalings:





Grad ρ = ε, (X,T ) := (xε, tε)

Euler ρ = 1, (X,T ) := (xε, tε)

Diffusive ρ = 1, (X,T ) := (xε, tε2)





=⇒





collisions

per particle
:

finite

ε−1

ε−2





(1.1)

The Euler and diffusive limits will be referred to as hydrodynamic limits. The
typical number of collisions is finite for the Grad limit; infinite in the hydrody-
namic limits. Hence the Grad limit is the closest to free motion without collisions.
Essentially due to this feature, O. Lanford [12] proved the convergence of the hard
core billiards to the Boltzmann equation in the Grad limit in short time based on
the BBGKY hierarchy. Lanford’s work, though restrictive in many ways, remains
the only rigorous result on the scaling limits of many-body Hamiltonian systems
with no unproven assumptions.

II. Euler Equations

At present there is no rigorous derivation of Euler equations from Hamiltonian
mechanics. Unlike the Grad limit, the Euler limit involves an infinite number
of collisions and the typical behavior is governed by the stationary (equilibrium,
invariant) states, which are assumed to be Gibbs in the famous Boltzmann Hy-
pothesis. More precisely:
Boltzmann Hypothesis : The invariant (stationary) measures of many body

classical dynamics are Gibbs ∼ e−βH . In particular, the typical velocity distribu-
tions of different particles are uncorrelated (Weak Boltzmann Hypothesis).

The Boltzmann Hypothesis is strictly speaking incorrect because there are
singular invariant measures. We believe that these singular invariant measures can
be removed by regularity assumption such as finite specific entropy, i.e., entropy
per microscopic unit volume is finite. The following theorem is a joint work with
S. Olla and S. Varadhan [15].

Theorem. Assume the weak Boltzmann Hypothesis holds for invariant measures
with finite specific entropy. Suppose the Euler equation has a smooth solution in
[0, T ]. Then the empirical density, velocity. and energy converge to the solution
of the Euler equations in [0, T ] with probability one.

Recall that classical dynamics are characterized by a Hamiltonian

H(x, v) =
1

2

N∑

α=1

‖vα‖2 +
∑

α<β≤N
V (xα − xβ) (2.1)

with V a two-body potential and the Liouville equation

∂tfN,t(x1, · · · , xN , v1, · · · , vN ) = L∗fN,t (2.2)
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where fN,t is the density (w.r.t. the standard Lebesgue measure) of the system at
time t and the Liouville operator is given by

−L∗ = L =
N∑

α=1

[
∂H

∂vα

∂

∂xα
− ∂H

∂xα

∂

∂vα

]

with the adjoint taken w.r.t. the standard Lebesgue measure.
For a given configuration ω = (x1, · · · , xN , v1, · · · , vN ) the empirical density

and velocity (which rigorously speaking are measures) are defined by

ρ̂ǫ,ω(X) = N−1
N∑

α=1

δ(X − εxα) ,

v̂ε,ω(X) = N−1
N∑

α=1

δ(X − εxα)vα ,

where δ is the standard delta function on Euclidean space. We shall say
ρ̂ε,ω(T/ε)(X) has a density ρ(X,T ) if for any test function J on the unit torus,

∫
J(εx)ρ̂ǫ,ω(T/ε)(X)dX = N−1

N∑

α=1

J( ε xα(T/ε) )→
∫
J(X)ρ(X,T )dX

as ε→ 0. Similarly for the velocity,

N−1
N∑

α=1

J( ε xα(T/ε) ) vα(T/ε)→
∫
J(X) (ρv)(X,T )dX.

To obtain the Euler equation, we differentiate the velocity

d

dT

∫
J(X)ρ(X,T )v(X,T )dX ∼ ε−1 d

dt
N−1

N∑

α=1

J(εxα)vα

= −(2N)−1
N∑

α=1

ε−1J(εxα)
∂H

∂xα
+ · · ·

= −(2N)−1
N∑

α=1

∇J(εxα)
∑

β 6=α

xα − xβ
ε

· (∇V )

(
xα − xβ

ε

)

︸ ︷︷ ︸
micro current

+ · · · (2.3)

(the micro current appearing here is only a main term for illustration of the idea).
Recall the Euler equations:

dρ

dt
+∇ (ρv) = 0

d (ρv)

dt
+∇ [ρv ⊗ v + P ] = 0

d (ρe)

dt
+∇ [ρe v − v P ] = 0
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Here the pressure P is a function of density, velocity and energy and is determined
by the equation of state from the equilibrium Gibbs measure. So in order to obtain
the Euler equations we need to show that

micro current→ macro current (= P (ρ̂ε,ω, v̂ε,ω , êε,ω)) (2.4)

in the limit ε→ 0. This equality is understood in the sense of law of large numbers
w.r.t. the density of the systems fN,t at time t, i.e.,

N−1
∫
fN,t(ω)

∣∣∣
N∑

α=1

∇J(εxα)

×
[ ∑

β 6=α

xα − xβ
ε

· (∇V )

(
xα − xβ

ε

)
− P (ρ̂ε,ω , v̂ε,ω, êε,ω)

] ∣∣∣dω → 0

(2.5)
where dω = dx1dv1 · · · dxNdvN .

The density fN,t satisfies the Liouville equation (2.2). At the present time
we have essentially no estimate on this equation and the required identity has not
been proved. To appreciate the difficulties, we list a few comments on the Liouville
equation:
• It conserves Lp norm and positivity (thus fN can be considered as a probability
density) but Lp norm is not useful since ‖ fN ‖p∼ eCN which is a huge number.
• There is no elliptic theory for classical dynamics.
• The BBGKY method works only for perturbation of free dynamics and thus is
only useful for the Grad limit for which ρ ∼ ε.

Instead of approaching it via elliptic estimates or Lp theory, a useful way to
establish (2.5) is to consider the ergodic property of the Hamiltonian systems. The
key observation, due to Morrey [14], is that (2.5) holds if we replace fN,t by any
Gibbs measure (with Hamiltonian H (2.1)), or more generally, if “locally” fN,t
is a Gibbs measure of the Hamiltonian H. If we can prove that “locally” fN,t is
a equilibrium measure with finite specific entropy, we have proved (2.5) provided
that we assume the Boltzmann Hypothesis. So the proof of Theorem 2.1 consists
of two main ingredients: 1. Prove that the weak Boltzmann hypothesis implies
the Boltzmann hypothesis. 2. Clarify the precise meaning of the word “locally”
and eliminate the possibility of meso-scale fluctuation. The method we used for 2
is the relative entropy method.

Recall that for any two probability densities the relative entropy is defined by

S(f |g) =

∫
f log(f/g)dω

Suppose ft is a solution of the Liouville equation and ψt is any density. Then

∂tS(ft|ψt) =

∫
ft
{
ψ−1t [L∗ − ∂t]ψt

}
dω (2.6)

This identity can be checked easily from the Liouville equation. It also has a
version for Markov processes:

∂tS(ft|ψt) = −D(ft|ψt) +

∫
ft
{
ψ−1t [L∗ − ∂t]ψt

}
dω (2.7)
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where D(f |ψ) is the Dirichlet form of f w.r.t. ψ and is nonnegative [21, 15]. Now
recall the entropy inequality (or the Jensen inequality) which states that for any
function W , ∫

fWdω ≤ S(f |ψ) + log

∫
ψ exp (W ) dω

Thus from (2.6),

∂tS(ft|ψt) ≤ S(ft|ψt) + log

∫
ψt exp

{
ψ−1t [L∗ − ∂t]ψt

}
dω

If we have

N−1 log

∫
ψt exp

{
ψ−1t [L∗ − ∂t]ψt

}
dω → 0 (2.8)

then the relative entropy can be controlled on the relevant time scale and this will
imply the estimate (2.5) and thus the Euler equations. Note that the left hand side
of (2.8) is independent of ft so the remaining argument in [15] can be summarized
as showing that (2.8) holds iff ψt is a local Gibbs state with density, velocity and
energy chosen according to the Euler equations (Note: As it is, (2.8) is incorrect;
some arguments using ergodicity of the Hamiltonian dynamics are also needed).
This is essentially a dynamical variational approach because we solve the problem
by guessing a good trial function which in this case is the local Gibbs state.

III The incompressible Navier-Stokes equations

The Navier-Stokes equations are the next order corrections to the Euler equations.
In order to derive them one needs to show that

micro current→ macro current+ εν∇v̂ε,ω + o(ε) (3.1)

where the currents are given by (2.3) and (2.4) and ν is the viscosity. Since there
is an ε appearing in the viscosity term, (3.1) is in a sense the next order correction
to the Boltzmann hypothesis! From the expression for the micro current in (2.3),
it is hard to even imagine how the viscosity correction arises. This difficulty was
recognized decades ago by Dobrushin, Lebowitz, and Spohn, among others. Recent
work [20, 7, 8, 13] has given us a good understanding of the nature of (3.1), though
a rigorous proof from the Hamiltonian dynamics is still very far off.

The equation for the leading order terms of (3.1) is (2.4) and it holds w.r.t.
Gibbs measures in the sense of law of large numbers. The difficulty to justify (2.4)
rigorously for Hamiltonian dynamics (i.e. (2.5)) is to prove that the solutions
to the Liouville equation are locally stationary and all stationary measures are
Gibbs. On the other hand, one can check easily that (3.1) is incorrect w.r.t any
Gibbs measures with Hamiltonian H. Indeed, (3.1) is a “dynamical identity”. It
can be interpreted physically via the linear response theory or the Green-Kubo
formula (see [17] for an account). A more mathematical interpretation is through
the fluctuation-dissipation equation which we now explain.

Roughly speaking, the fluctuation-dissipation equation states that

micro current→ macro current+ εν∇v̂ε,ω + εLg + o(ε) (3.2)
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for some function g(ω), where L is the Liouville operator. In other words, (3.1) is
correct only up to a quotient of the image of the Liouville operator. The image of
the Liouville operator is understood as fluctuation, negligible in the relevant scale
after time average: for any bounded function g

ε

∫ t

0

ds

∫
fs,N(ω) (εLg)(ω) dω = ε2

∫
[ft,N − f0,N ](ω) g(ω) dω ∼ ε2

and is thus negligible to the first order in ε, the relevant scale.
It is difficult to work on “next order correction” and thus we turn to the

incompressible Navier-Stokes (INS) equations

∂u

∂t
+ u · ∇u = −∇p+∇ν∇u, ∇ · u = 0. (3.3)

The INS equations are invariant under the incompressible scaling,

x→ εx, t→ ε2t, u→ ε−1u, p→ ε2p, (3.4)

under which (3.2) becomes

micro current→ macro current+ ν∇v̂ε,ω + Lg (3.5)

Notice that both the viscosity and the function g are unknown and (3.5) determines
both. We interpret (3.5) as a decomposition of the space of microscopic currents
into a direct sum of the space of macroscopic currents, the gradient of the velocity
representing the dissipation and the image of the Liouville operator representing
the fluctuation.

Equation (3.5) is extremely difficult to solve as it requires inversion of the
Liouville operator. A class of more manageable stochastic lattice gas models were
introduced in a joint work with R. Esposito and R. Marra [8]. Even for these,
(3.5) requires the inversion of a nonsymmetric operator in infinite dimensions
with a complex interaction. If the generator L is symmetric, i.e., the dynamics
is reversible, (3.5) can be solved by formulating the problem in an appropriate
space so that it reduces to inverting a self-adjoint operator. This formulation, due
to S. Varadhan [20], is already quite sophisticated since the terms appearing in
(3.5) do not live in a natural space. On the other hand, in order to obtain the
INS equations, the dynamics has to retain essential features of the Hamiltonian
dynamics; this forces us into nonzero drifts and therefore nonreversibility. The
invertibility in the nonsymmetric case is very subtle [13]. Dimension comes into
play, and we believe that (3.5) has no solution at all for dimension d ≤ 2.

In the models of [8] particles have velocities in a chosen finite set and at each
site of the lattice at most one particle of each velocity is allowed. The dynamics
consists of two parts: Random walks and binary collisions between particles. The
random walk part of the dynamics requires only that particles with velocity v
should have the mean drift v. The binary collisions conserve momentum. Note
that conservation of energy is not important here because the INS equations are

Documenta Mathematica · Extra Volume ICM 1998 · III · 193–202



Scaling Limit of Particle Systems 199

equations of velocity alone. The combined dynamics should have good ergodic
properties and also restore rotational symmetry in the limit. The restoration of
the rotational symmetry is not trivial because the lattice structure breaks the
symmetry. Sets of velocities and dynamics satisfying all the requirements can be
found in [8].

The main result in [8] states that (3.5) has a solution (in a suitable sense) for
d ≥ 3 and if the INS equations have a strong solution up to a fixed time T then
the rescaled empirical velocity densities (measures)

vε,ω(X) := εd−1
∑

x

δ(X − εx)
∑

v

vη(x, v) (3.6)

converges to that solution. Here η(x, v) ∈ {0, 1} is the number of particles of
velocity v at site x. Notice the blowup of the velocity by ε−1 in accordance with
the scaling (3.4).

The assumption that the INS equations have a strong solutions has a long his-
tory in their derivation from more basic models. Derivations of the INS equations
from the Boltzmann equation go back already a century to Chapman, Enskog and
Hilbert, and were made rigorous in the seventies [4,5]. However the removal of the
smoothness assumption has not been so easy. A program [3] of deriving the weak
(Leray) solutions from the DiPerna-Lions solutions of the Boltzmann equation re-
mains far from complete, due to a lack of good estimates. Though it was believed
that the analysis of particle systems would be even more difficult because they are
essentially infinite dimensional, in a joint work with J. Quastel [16] we have been
able to remove this obstacle.

Theorem 3.1. Let Pε be the distributions of the empirical momentum densities
(3.6). Then Pε are precompact (as a set of probability measures with respect to a
suitable topology) and any weak limit is supported entirely on weak solutions of
the INS equations satisfying the energy inequality.

Theorem 3.1 is proven only for d = 3. The restriction d ≤ 3 is for technical
reasons; the restriction d ≥ 3, however, is intrinsic. Since the macroscopic velocity
is defined through the law of large numbers in statistical physics, it inherits a small
fluctuation from the central limit theorem, which is of order εd/2. When we blow
up the velocity by ε−1 in the incompressible limit (3.6), this term becomes of order
one or larger for dimensions d ≤ 2 and thus the macroscopic velocity is not well
defined in this limit. Note that this argument applies to any dynamics including
the Hamiltonian dynamics.

Though (3.5) determines the viscosity, it is important to have an indepen-
dent characterization, traditionally expressed as a time integral of current-current
correlation functions, which up to constants is given by:

ν =

∫ ∞

0

〈
micro current (t = 0); micro current (t = s)

〉
ds (3.7)

where
〈
f ; g
〉

=
〈
fg
〉
−
〈
f
〉〈
g
〉

is the correlation function and the expectation is
w.r.t. lattice gas dynamics starting from equilibrium. This is called the Green-
Kubo formula and is proved rigorously in [13, 8] for d ≥ 3. For dimension d ≤ 2,
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the Green-Kubo formula (3.7) diverges, (3.5) has no solution, and the time scaling
is faster than diffusive. We are thus forced to conclude that the two dimensional
INS equations cannot be obtained as the incompressible limit of any microscopic
dynamics.

A large deviation principle was also given in [16]. One main step in [16]
is a proof of the energy estimate for the INS equations directly from the lattice
gas dynamics by implimenting a renormalizatin group analysis. The techincally
most demanding points, the large field problems in the standard field theory and
the large fluctuation here, are controlled by the entropy method [10] and and the
logarithmic Sobolev inequality [22]. The entropy method is an infinite dimensional
version of the energy method in PDE; the logarithmic Sobolev inequality plays the
role of the usual Sobolev inequalities.

IV Quantum Dynamics

Most problems concerning classical or stochastic dynamics have corresponding
quantum versions. They are however often too difficult to study. The classical
or stochastic dynamics are governed by the evolution of a probability density;
the quantum dynamics by a complex wave function. Although both dynamics are
linear, the physics in the quantum case is given by the square of the wave function,
breaking the superposition law. Furthermore, the evolution of a wave function is
determined by its phase which is very hard to control. We mention here a result
on the quantum Lorentz gases [6] to give some flavor of quantum dynamics.

Classical Lorentz gases model a classical particle in an environment of fixed
scatterers distributed randomly (or periodically). The question is the time evo-
lution of this particle for a typical configuration of the scatterers. Denote by
ω = (xα), α = 1, · · · , N, the configuration of scatterers in a cube of width L. We
are interested in the Grad limit (1.1) with ̺ = N/Ld denoting the density of the
scatterers. The typical number of collisions is now of the order tρ ∼ 1. It was
proved in [9,19, 1] that its time evolution converges to a linear Boltzmann equation

∂TFT (X,V ) + V · ∇XFT (X,V ) =

∫
σ(U, V ) [FT (X,U)− FT (X,V )] dU, (4.1)

where F is the phase space density and σ(U, V ) is the scattering cross section.
The quantum Lorentz gases can be obtained by simply replacing the classical

dynamics by the quantum dynamics. More precisely, let V0(x) be a fixed “nice”
function. The Schrödinger equation governing the quantum particle is given by

i∂tψt = HN,Lψt, ψt=0 = ψ0, (4.2)

where the Hamiltonian is given by

HN,L = H := −∆/2 + Vω , Vω(x) =
N∑

α=1

V0(x− xα). (4.3)

The classical phase space density of a wave function ψ is defined through the
Wigner transform:

Wψ(x, v) :=

∫
ψ(x+ z/2)ψ(x− z/2)eivzdz.
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The scaling is the same as in the classical case,

W ε
ψ(X,V ) := Wψ(X/ε, V ). (4.4)

Notice that the velocity is not rescaled. The Wigner transform typically has no
definite sign, and the associated Husimi function or coherent states are needed to
define a positive density, but we will not go into these details here.

Let ψεω,t be the solution to the Schrödinger equation (4.2), (4.3) with initial
data ψε0. Suppose that the initial data is of the following form

ψε0(x) = ε3/2h(εx)eiu0x,

for some smooth functions h so that as ε → 0 the rescaled Wigner transform
W ε
ψε0

(X,V )dXdV converges weakly to |h(X)|2δ(V − u0)dXdV =: F0(X,V )dXdV

as probability measures on R2d. Then in dimension d = 3 and for V0 small enough
(so that there is no bound state) our main result with L. Erdős [6] is that for any
T > 0,

EW ε
ψε
ω,T/ε

W (X,V )dXdV → FT (X,V )dXdV

weakly as ε → 0 and FT (X,V ) satisfies the linear Boltzmann equation (3.6) with
initial data F0(X,V ) and effective collision kernel σ given by the quantum scat-
tering operator of the potential V0.

A simple example illustrates the difference between the classical and the quan-
tum dynamics. Suppose that the particle in a Lorentz gas has one collision. Clas-
sically we simply choose a scatterer and the particle collides with it. In quantum
mechanics, we have from the Duhamel formula

ψt = e−itHψ0 = e−itH0ψ0 − i
∫ t

0

e−i(t−s)H0V e−isH0ψ0 ds+ · · ·

where Vω is the potential given in (4.3) and H0 = −∆/2. The one collision term is

the second term on the right hand side which, for simplicity, we write as
∑N
α=1 ψt,α.

Notice that instead of collision with a scatterer in classical dynamics, it is now a
sum of collisions with all scatterers! Since we have to square the wave function
to get physical quantities, we need to show that the overlaps (or interference) of
off-diagonal terms 〈

ψt,α, ψt,β
〉

are very small. Stationary phase methods show they are small, but the number of
the off-diagonal terms is much larger than that of diagonal terms. The analysis of
this competition is very simple in this first term but very complicated in higher
order terms. It nevertheless can be carried out rigorously to all orders [18, 11].
However such results are restricted to the weak coupling limit (a semiclassical
limit) and short time. Instead we renormalize the perturbation theory so that we
can consider the Grad limit to obtain the quantum scattering kernel. Furthermore,
we truncate the Duhammel formula and estimate the error terms to remove the
short-time restriction and thus we obtain results global in time [6].
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Stochastic Coalescence
David J. Aldous1

Abstract. Consider N particles, which merge into clusters accord-
ing to the rule: a cluster of size x and a cluster of size y merge at
(stochastic) rate K(x, y)/N , where K is a specified rate kernel. This
Marcus-Lushnikov model of coalescence, and the underlying determinis-
tic approximation provided by the Smoluchowski coagulation equations,
have an extensive scientific literature. A recent reformulation is the gen-
eral stochastic coalescent, whose state space is the infinite-dimensional
simplex (the state x = (xi, i ≥ 1) represents unit mass split into clusters
of masses xi), and which evolves by clusters of masses xi and xj coa-
lescing at rate K(xi, xj). Existing mathematical literature (Kingman’s
coalescent, component sizes in random graphs, fragmentation of random
trees) implicitly studies certain special cases. Recent work has uncovered
deeper constructions of special cases of the stochastic coalescent in terms
of Brownian-type processes. Rigorous study of general kernels has only
just begun, and many challenging open problems remain.

1991 Mathematics Subject Classification: 60J25, 60K35
Keywords and Phrases: continuum tree, entrance boundary, fragmenta-
tion, gelation, random graph, random tree, Smoluchowski coagulation
equation.

1 Introduction

Our topic centers around two closely related models. The Marcus-Lushnikov pro-
cess is the following finite-state continuous-time Markov process [17, 16].

Fix an integer N ≥ 1 and a rate kernel K(x, y) ≥ 0. Imagine N particles,
originally separate, which merge into clusters according to the rule

each pair of clusters, sizes {mi,mj} say, coalesces into one cluster

of size mi +mj at rate K(mi,mj)/N.

The general stochastic coalescent [10] is the continuous-time Markov process whose
state space is the infinite-dimensional simplex ∆ = {x = (xi) : xi ≥ 0,

∑
i xi = 1},

1Research supported by N.S.F. Grant DMS96-22859
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where we imagine a state x as a fragmentation of unit mass into clusters of masses
xi, and the process evolves according to the rule

each pair of clusters, masses {xi, xj} say, coalesces into one cluster

of mass xi + xj at rate K(xi, xj).

Provided the rate kernel K is homogeneous with some exponent γ

K(cx, cy) = cγK(x, y), 0 < c, x, y <∞ (1)

we see that the Marcus-Lushnikov process is a special case of the general stochastic
coalescent, by taking each particle to have mass 1/N and rescaling time.

There is a large literature in various science disciplines (e.g. physical chem-
istry [9]) on deterministic equations (see section 3) for coalescence. A lengthy
survey of deterministic and stochastic models appears in [2]. In particular, there
are three special cases which are now well understood: K(x, y) = 1 (Kingman’s
coalescent), K(x, y) = x + y (the additive coalescent), K(x, y) = xy (the multi-
plicative coalescent). The next five sections focus on five open problems, whose
discussion will illustrate some of the known results.

2 The Feller property of the general stochastic coalescent

In making precise the verbal description of the general stochastic coalescent, one
would like to prove it is a Markov process with some regularity properties, specif-
ically the Feller property that the distribution at time t be weakly continuous as
a function of the initial state. Intuitively, this should be true under very weak
assumptions, e.g. that K(x, y) is continuous and strictly positive. But a proof
is elusive. Evans and Pitman [10] give a proof under stronger assumptions of
Lipschitz continuity.

3 Deterministic limits

Studying t → ∞ time asymptotics in these models isn’t interesting: the mass all
coalesces into a single cluster. Our remaining problems concern different sorts of
asymptotics. In the Marcus-Lushnikov process writeML(N)(x, t) for the (random)
number of mass-x clusters at time t. One expects a weak law of large numbers,
saying that as N →∞

N−1 ML(N)(x, t) →p n(x, t), x ≥ 1, t ≥ 0 (2)

where the deterministic limit n(x, t) is the solution of the Smoluchowski coagulation
equation

d
dtn(x, t) = 1

2

x−1∑

y=1

K(y, x− y)n(y, t)n(x− y, t)− n(x, t)
∞∑

y=1

K(x, y)n(y, t) (3)
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with n(x, 0) = 1(x=1). It is these equations which have been studied most inten-
sively in the scientific community [9]. From the verbal description of the model
we expect solutions to have the property that mass density is preserved:

m1(t) ≡
∞∑

x=1

xn(x, t) = 1 ∀t. (4)

This is true [23] under the assumption

K(x+ y) = O(1 + x+ y) (5)

but in general there might be a phase transition called gelation: ∃Tgel < ∞ such
that

m1(t) = 1, t ≤ Tgel; m1(t) < 1, t > Tgel.

The physical interpretation of gelation is that after the critical time, a strictly pos-
itive proportion of mass lies in infinite-mass clusters, the gel. Exact conditions on
K for gelation or non-gelation are another open problem, but let us return to the
question of proving (2), which provides conceptual justification for the determinis-
tic approximation. Proving (2) for t < Tgel is closely related to proving uniqueness
of solutions of (3) up to Tgel. While this is not difficult under assumption (5), the
gelling case seems intrinsically much harder, in that the natural techniques one
tries to use would prove regularity of solutions for all time, whereas by definition
a gelling kernel has solutions with a certain non-regularity property. Jeon [13] and
Norris [18] contain the latest results on such questions.

4 The emerging giant cluster for a gelling kernel

The study of component sizes in the classical random graph process [7] is essentially
the same as the study of the Marcus-Lushnikov process with K(x, y) = xy. It
has long been known that Tgel = 1 and that the N → ∞ behavior around the

critical point is as follows. For large A, at time 1 − A/N1/3 the largest cluster
has size δN2/3 for some small δ, and there are many clusters of similar size; at
time 1 + A/N1/3 the largest cluster has size DN2/3 for some large D, and the
second-largest cluster has size δN2/3. In other words, a distinguished giant cluster
emerges over the time interval 1±O(N−1/3) and it has size Θ(N2/3). See [15] for
an exhaustive analysis. Rescaling size and time near the critical point leads to a
limit process, the standard multiplicative coalescent [1], which is the K(x, y) = xy
case of the general multiplicative coalescent, except that one has to enlarge the
state space to the l2 space {x = (xi) : xi ≥ 0,

∑
i x
2
i < ∞}. Remarkably, the

marginal distribution of the standard multiplicative coalescent at a fixed time can
be expressed in terms of excursion-lengths of a certain inhomogeneous reflecting
Brownian motion.

No other gelling kernel is understood, so it is a matter of speculation to what
extent this behavior holds for general gelling kernels. Heuristic arguments of van
Dongen [21] suggest that for exponent 1 < γ < 2 there should be an emerging
giant cluster of size N2/(1+γ), but the only rigorous theory is some weak results in
[3].
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5 Self-similarity and entrance boundary

Consider a non-gelling kernel K which is homogeneous with some exponent γ ≤ 1.
It is natural [11] to seek a solution of the Smoluchowski coagulation equation which
is asymptotically self-similar (also called self-preserving or scaling), in the sense
that, as t→∞,

n(x, t) = s−2(t)(ψ(x/s(t)) + o(1)) uniformly in x (6)

where ψ(x) ≥ 0 satisfies
∫∞
0 xψ(x) dx = 1. As at (4), we want the mean density∫

xn(x, t) dx to be constant in time, which explains the s−2 term in (6). Of course,
the interpretation of (6) is that cluster mass scales with time as s(t). Moreover
one expects

s(t) ∝ t 1
1−γ , −∞ < γ < 1 s(t) ∝ ewt for some w, γ = 1.

Outside the special cases, little is known, though under extra conditions it is
probably not hard to prove a “tightness” condition weaker than existence of a
self-similar limit (cf. [8] for this result in a slightly different model). For the
Marcus-Lushnikov process, this question relates to the time period when typical
clusters have size o(N) but not O(1). Reformulating in terms of the stochastic
coalescent, we are interested in the time period when typical clusters have mass
o(1). When γ < 1 one expects there to be a unique version of the stochastic
coalescent on 0 < t < ∞ such that the maximum cluster size → 0 as t → 0, and
that in this version the empirical distribution of cluster sizes tends (as t→ 0, and
after rescaling by s(t)) to the self-similar distribution ψ. In Markov chain jargon,
this is a question about the entrance boundary, and is easy to verify ([2] section
4.2) in the case K(x, y) = 1. Establishing it more generally seems difficult.

Paradoxically, the two other special cases (kernels xy and x+y) seem atypical,
in that they have rich entrance boundaries, i.e. there are many different ways to
start the process with all the mass in infinitesimally small clusters. See [4, 6] for
detailed studies.

6 Connections with d-dimensional models

Our models are “mean-field”, in that they do not track positions and velocities of
particles in d-dimensional space. This does not mean the models are completely
divorced from physical reality. Rather, the details of the physical process under
study are used to calculate the form of the rate kernel K(x, y). Perhaps the most
interesting case to a probabilist is the original 1916 setting of Smoluchowski [22],
who considered particles diffusing under thermal noise, i.e. performing physical
Brownian motion in three dimensions, and coalescing upon contact. In this case
the appropriate kernel in the mean-field model turns out to be

K(x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3).

The second term reflects the faster diffusion of smaller particles, the first term
reflects their smaller cross-section and hence smaller chance of touching. It is nat-
ural to conjecture that, in the full model of spherical masses diffusing by Brownian
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motion in 3 dimensions and coalescing upon contact (and relaxing to spheres), as
time goes to infinity the distribution approximates a Poisson spatial distribution
with rescaled mass distribution following the law ψ at (6) predicted by the mean
field theory. This has apparently never been studied rigorously, though a less
realistic model is treated by Lang and Nguyen [14].

7 The standard additive coalescent

Lest talking about open problems makes it seem little is known, let me end by
mentioning a positive result. Cayley’s formula says there are NN−2 trees on N
labeled vertices. Pick such a tree T∞ at random. To the edges e of T∞ attach
independent exponential(1) r.v.’s ξe. Write F (t) for the forest obtained from T∞
by retaining only the edges e with ξe ≤ t. Write Y(N)(t) for the vector of sizes
of the trees comprising F (t). It can be shown that (Y(N)(t); 0 ≤ t < ∞) is the
Marcus-Lushnikov process associated with the additive kernel K(x, y) = x + y.
This construction was apparently first explicitly given by Pitman [20], although
various formulas associated with it had previously been developed in combinatorics
[19, 24] and statistical physics [12]. What is remarkable is that one can take
N → ∞ limits in this construction. The (rescaled) limit of the discrete tree is
the continuum random tree (CRT); the analog of cutting edges is placing marks
according to a Poisson process of intensity e−t along the skeleton of the CRT.
Cutting the mass-1 CRT at these marks splits it into subtrees of finite mass;
write X(t) for the vector of masses of these subtrees at time t. Then (as we
expect by analogy with the discrete case above) the process (X(t),−∞ < t <∞)
evolves as the stochastic coalescent for K(x, y) = x+y. This process, the standard
additive coalescent, is studied in detail in [5]. The CRT itself can be constructed
from Brownian excursion, so ultimately the construction of the standard additive
coalescent uses only Brownian and Poisson ingredients.
Acknowledgements. This project owes much to joint work and ongoing dis-

cussions with Jim Pitman, Steve Evans and Vlada Limic.
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Maury Bramson∗

Abstract. The diffusive limits of queueing networks, known as heavy
traffic limits, are a topic of continuing interest. An important ingredient
in such work is the demonstration of state space collapse, which says
that, in the limit, the process must live on an appropriate subspace. In
[Wi98b], conditions are given under which state space collapse suffices
for heavy traffic limits. Here, we discuss how state space collapse can be
reduced to the problem of showing stability for the fluid model which is
the deterministic analog of the queueing networks under consideration.
We discuss specific cases, such as first-in first-out (FIFO) networks of
Kelly type and certain static priority networks.

1991 Mathematics Subject Classification: Primary 60K25.

1 Introduction

Queueing networks constitute a general family of stochastic processes. In such
models, one envisions “customers”, such as people, products or some task to be
performed, as being lined up at the different queues, or stations, of a network.
When service of a customer at a station is completed, the customer moves to
another station or leaves the network. Customers are also assumed to enter the
network at various stations. This behavior will, in general, be random, with ran-
dom variables corresponding to the choice of the next station when service at
a station is completed, to the service times at stations, and to the interarrival
times for customers entering the network. The evolution of such a network can be
formulated as a continuous time Markov process. Two basic topics for queueing
networks concern (1) obtaining criteria for when this Markov process is positive
recurrent and (2) deciding when a sequence of networks, under diffusive scaling,
converges to a reflecting Brownian motion. The criteria, in the two cases, are
related. In this survey, we discuss both topics, with emphasis on the latter.

In many situations, it is important to permit more than one type of behavior
for customers at a given station. (For example, patients at the receptionist’s
desk of a doctor’s office will follow different rules, depending on whether they are
checking in or out.) To allow for this, one distinguishes between different classes
or buffers at a station; customers in the same class are subject to the same random
rules for service and routing to the next class. A queueing network is single class
if only one class is assigned to each station; otherwise, it is multiclass. One can

∗The author was supported in part by the National Science Foundation.

Documenta Mathematica · Extra Volume ICM 1998 · III · 213–222



214 Maury Bramson

also classify a queueing network based on whether or not it allows feedback, that is,
output from a station can eventually become part of its input. This will occur, for
example, when customers repeatedly visit a station along some preassigned route.
Not surprisingly, answers for (1) and (2) above will be easiest to obtain for single
class networks without feedback, and most difficult for multiclass networks with
feedback.

The limits in (2), which are referred to as heavy traffic limits (HTL), have
been investigated over the past three decades. Presently, HTL theory remains
incomplete for multiclass networks. An important concept in this context is state
space collapse (SSC). When SSC holds, customers in the different classes at a
station occur (asymptotically) in fixed proportions. Such behavior enables one to
generalize HTL results from single class networks to multiclass networks. This is
done in [Wi98a]. It is also shown there that SSC follows from a somewhat weaker
concept, multiplicative state space collapse (MSSC). This work is summarized in
the article [Wi98b] in this volume.

Here, we discuss certain settings where one can demonstrate MSSC. These
include well-known families of networks, such as first-in first-out networks of Kelly
type. More generally, sufficient conditions for MSSC are given by the convergence
of the solutions of fluid model equations which are associated with the networks
in question. Such criteria hold, for example, for static priority networks.

The remainder of this article is organized as follows. In Section 2, we summa-
rize the basic notation and definitions for queueing networks. Section 3 discusses
the stability of queueing networks. Fluid models, the main tool for demonstrating
stability, are introduced here. Section 4 discusses heavy traffic limits. Empha-
sis there is placed on recent work, in [Br98, Wi98a], which employs state space
collapse.

2 Notation and Definitions

We make use here of concepts and notation employed in the article [Wi98b] in
this volume, which the reader should consult for more detail. The variable j,
j = 1, . . . , J , will denote the stations of the network under consideration, and k,
k = 1, . . . ,K, will denote the classes of the network. We use C(j) for the set of
classes belonging to a station j, and s(k) for the station to which class k belongs.
At each station there is a single server. This server will always by non-idling, that
is, the server will remain busy as long as there are customers present at its station.

The triple (E(·), V (·),Φ(·)) contains the random input of the network. The
random vector E(t) = {Ek(t), k = 1, . . . ,K} denotes the number of external
arrivals by time t, t ≥ 0, and V (n) = {Vk(nk), k = 1, . . . ,K}, n = (n1, . . . , nK),
denotes the cumulative service times for the first nk customers in each class. The
random matrix Φ(n), with rows Φk(nk), k = 1, . . . ,K, denotes the cumulative
routing process after nk departures from each class k. As in [Wi98b], summands
of these quantities are assumed, in each case, to be independent and identically
distributed, with the different sequences also being independent of one another.
The triple (α,M,P ) is the deterministic analog of (E(·), V (·),Φ(·)). The mean
vector α gives the external arrival rates at the different classes; the K×K diagonal
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matrix M has the mean service times mk as its diagonal entries. The matrix
P = {Pkℓ, k, ℓ = 1, . . . ,K} gives the probability of a customer being routed
from one class to another. In many interesting cases, the routing of the queueing
network will be deterministic, with all customers entering the system at the same
class, and moving along a given route, until they exit from the system. Such
networks are referred to as re-entrant lines.

We will consider here only open networks, that is, networks for which the
matrix

Q
def.
= (I − P ′)−1 = I + P ′ + (P ′)2 + . . . (2.1)

is finite. (“ ′ ” denotes the transpose.) This means that customers at any class
are capable of ultimately leaving the network. To investigate these networks, one
employs the solutions λℓ, ℓ = 1, . . . ,K, of the traffic equations

λℓ = αℓ +
K∑

k=1

λkPkℓ, (2.2)

or equivalently, in vector form, of λ = α + P ′λ. (All vectors in this article are to
be interpreted as column vectors.) Solving (2.2), one obtains λ = Qα. The term
λk is the nominal arrival rate for class k; to avoid degeneracies, we assume that
λk > 0 for all k. Employing m and λ, one defines the traffic intensity ρj for the
jth server as

ρj =
∑

k∈C(j)
mkλk, (2.3)

with ρ being the corresponding vector. The condition ρj < 1, j = 1, . . . , J , is
required for each station, when nonempty, to serve customers, in the long run,
more rapidly than they enter the station. When this holds, the network is strictly
subcritical. When ρj = 1 for each j, the network is referred to as being critical or
balanced.

Associated with each queueing network is a discipline, which specifies the
order in which customers receive service. We consider here only head-of-the-line
(HL) disciplines, where only the first customer in each class may receive service
at a given time. For multiclass networks, the proportion of service to be devoted
to each class needs to be specified. Examples of disciplines which we will discuss
are first-in first-out (FIFO), where the first customer at a station receives all of
the service irrespective of its class; head-of-the-line proportional processor sharing
(HLPPS), where the amount of service allocated to the first customer in each class
is proportional to the number of customers in that class, and static priority disci-
plines, where classes are assigned a strict ranking, and customers of higher ranked
classes are always served first. In the setting of re-entrant lines, examples of static
priority disciplines are first-buffer-first-served (FBFS) and last-buffer-first-served
(LBFS), where customers at the earlier, respectively latter, classes have priority.
When the queueing network is single class, and the service and interarrival times
are exponentially distributed, it is referred to as a Jackson network. When the re-
striction on the service and interarrival times is removed, it is called a generalized
Jackson network.
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Once a discipline has been given, the triple (E(·), V (·),Φ(·)) and the initial
data uniquely specify the evolution of a queueing network along each realization.
This defines an underlying Markov process. When this process is positive recur-
rent, the queueing network is said to be stable. Depending on the discipline, the
description of the state space can be a bit of a notational burden. We avoid such
details here.

3 Stability and Fluid Models

A necessary condition for a queueing network to be stable is that it be strictly
subcritical. For a long while, it was generally believed that the condition is also
sufficient. This is now known to be false ([Br94], [LuKu91], [RySt92] and [Se94]).
It is possible for the flow of customers through a network to synchronize so that,
at a given time, customers are clustered at specific parts of the network. This
permits individual stations to be periodically “starved” for work, which reduces
their long-term efficiency. At the end of each additional cycle, the number of
customers in the network will then be, on the average, a multiple of the number
for the previous cycle, which produces geometric growth (as measured in cycles).

For many disciplines, however, a queueing network is stable whenever it is
strictly subcritical. Fluid models are the main tool for showing this. They allow
one, in essence, to replace a queueing network with its continuous deterministic
analog of mass flowing through the system. It is typically a considerably easier
problem to show stability in this deterministic setting. Under mild conditions
on the service and interarrival distributions, the stability of the original queueing
network will then follow.

The basic idea is to describe the evolution of a queueing network by a set of
equations. One then analyzes the solutions of the corresponding set of determin-
istic equations, where random quantities have been replaced by their means. One
needs to show that the “queue length” vector for such solutions is 0 after a fixed
time. It then follows that the queueing network is stable.

In order to describe the evolution of a queueing network, one employs random
vectors such as A(t), D(t), W (t), Y (t) and Z(t). The vector A(t) denotes the
number of arrivals by time t, D(t) denotes the number of departures, and Z(t) is
the number of customers at time t. These three quantities are all class vectors, with
components corresponding to the individual classes. The vectors W (t) and Y (t)
are both station vectors, with W (t) being the immediate workload (the future time
required to serve customers currently at each station), and Y (t) is the cumulative
idletime. Typically, the choice of exactly which quantities one employs depends
on the particular setting. We will denote the corresponding n-tuple by X(t); in
the above setting,

X(t) = (A(t), D(t),W (t), Y (t), Z(t)). (3.1)

One connects these quantities together by queueing network equations, which
include

A(t) = E(t) +
∑

k

Φk(Dk(t)), (3.2)
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Z(t) = Z(0) +A(t)−D(t), (3.3)

W (t) = CV (A(t) + Z(0))− et+ Y (t) (3.4)∫ ∞

0

1(0,∞)(Wj(s))dYj(s) = 0, j = 1, . . . , J, (3.5)

for t ≥ 0. Here, e is the J-vector of all 1’s, and C is the J×K matrix with Cjk = 1
for k ∈ C(j), and Cjk = 0 otherwise. An additional equation or two is required for
the discipline of the network. For instance, for the FIFO discipline, one employs

Dk(t+Wj(t)) = Zk(0) +Ak(t), k = 1, . . . ,K, (3.6)

for t ≥ 0.
For our purposes, the exact nature of the equations (3.2)–(3.6) is not too

important. One should think of there as being enough equations to determine the
evolution of the queueing network. These equations are used in conjunction with
their deterministic analogs, known as fluid model equations, which are obtained by
replacing (E(·), V (·),Φ(·)) by (α,M,P ). The analogs of (3.2)–(3.6) are then given
by

Ā(t) = αt+ P ′D̄(t), (3.7)

Z̄(t) = Z̄(0) + Ā(t)− D̄(t), (3.8)

W̄ (t) = CM(Ā(t) + Z̄(0))− et+ Ȳ (t), (3.9)
∫ ∞

0

1(0,∞)(W̄j(s))dȲj(s) = 0, j = 1, . . . , J , (3.10)

D̄k(t+ W̄j(t)) = Z̄k(0) + Āk(t), k = 1, . . . ,K, (3.11)

for t ≥ 0. (To distinguish the solutions of the fluid model equations, we employ
overbar notation for the variables in this context.) We also write X̄(t) for the
analog of (3.1). Such solutions are referred to as fluid model solutions. We restrict
our attention to solutions with continuous and nonnegative components, where
Ā(t), D̄(t) and Ȳ (t) are nondecreasing.

The solutions of the equations (3.2)–(3.6) and (3.7)–(3.11) are connected via
the fluid limits of X(t). These are the limits obtained by applying hydrodynamic
scaling to X(t), i.e., by scaling the weight of individual customers and time pro-
portionately. (We avoid the technical details here.) Fluid limits are solutions of
the fluid model equations; solution of the latter will give information about the
original queueing network. The fluid model is said to be stable if, for a given δ > 0
and all solutions of the fluid model equations, Z̄(t) = 0 for t ≥ δ|Z̄(0)|. (|·| denotes
the sum of the coordinates.) Since the solutions of a fluid model correspond to a
queueing network with the randomness removed, stability of the fluid model says
that, in essence, the total number of customers in the queueing network has a net
negative drift.

Using elementary properties of Markov processes on general state spaces, it
is shown in [Da95] that, under mild assumptions on the service and interarrival
times, a queueing network is stable whenever the corresponding fluid model is
stable. (Versions of these ideas were first employed in [RySt92].) This enables one

Documenta Mathematica · Extra Volume ICM 1998 · III · 213–222



218 Maury Bramson

to indirectly study a queueing network by means of the corresponding fluid model
equations. In particular, the distributions of the service and interarrival times do
not occur in this setting. This enables one, for example, to simply demonstrate
the stability of strictly subcritical generalized Jackson networks, whereas a direct
argument is quite tedious. The stability of strictly subcritical FIFO networks of
Kelly type is another application. (The latter condition means that mk = mℓ

whenever s(k) = s(ℓ).) In general, strictly subcritical FIFO networks which are
not of Kelly type need not be stable.

4 Heavy Traffic Limits

Some background

In the introduction, we briefly discussed heavy traffic limits. Here, we go into more
detail. The basic setup for HTLs consists of a sequence of queueing networks, with
the accompanying n-tuples Xr(t) and queueing network equations. One scales the
quantities W r(t) and Zr(t), setting Ŵ r(t) = W r(r2t)/r and Ẑr(t) = Zr(r2t)/r.
The goal is to show that

Ŵ r(·)⇒W ∗(·) as r →∞, (4.1)

where W ∗(·) is a semimartingale reflecting Brownian motion (SRBM). The func-
tions Ŵ r(·) take values in the space of J-dimensional right continuous functions
with left limits, which is equipped with the usual Skorokhod topology, and “⇒”
denotes weak convergence.

SRBMs and related concepts are defined in [Wi98b]. Intuitively, the SRBM
W ∗(·) behaves like a Brownian motion in the interior of the orthant RJ+; its drift
and its covariance matrix are given by appropriate limits of the first two moments
of the summands of the triples (Er(·), V r(·),Φr(·)), and by the discipline of the
networks. It is confined to RJ+ by pushing on the boundary in the directions given
by a reflection matrix R (also determined by the above quantities), according to
the local time spent there. In order for such a process W ∗(·) to exist, R needs to
be completely-S.

HTLs have been investigated over the past three decades; a summary of the
subject is given in [Wi96, Wi98b]. Implicit in the formulation of (4.1) is the as-
sumption that the states of the corresponding networks are, for large r, essentially
given by Ŵ r(t) at time t. More detailed information about the system, such as
Ẑr(t), should not be necessary to study the evolution of the limit W ∗(t). This
type of behavior is known as state space collapse. (The term was used in [Re84a];
related ideas go back to [Wh71].) For our purposes, the relevant variant is multi-
plicative state space collapse, that is

‖Ẑr(·)−∆Ŵ r(·)‖T
max(‖Ŵ r(·)‖T , 1)

→ 0 in probability (4.2)

as r →∞. Here, ∆ is an appropriate linear map from RJ to RK , which depends
on the service discipline; ‖ · ‖T is the uniform norm over [0, T ].
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HTLs as in (4.1) need not exist, even for standard disciplines such as FIFO.
It was shown in [DaNg94, DaWa93, Wh93] that this is the case for certain se-
quences of FIFO networks; the problem is related to the limiting reflection matrix
R not being completely-S. Another potential problem is the lack of MSSC. These
problems need to be faced when dealing with multiclass networks with feedback.
(When a network is single class, these problems do not arise, and HTLs exist
([Re84b])). This is also the case when the network is feedforward, that is, an or-
dering among the stations is possible so that customers at lower ranked stations
always go to higher numbered stations.) The general theory for multiclass net-
works is presently incomplete. Below, we summarize some recent work on the
subject which uses MSSC and the fluid model equations introduced in Section 3.

Reduction to fluid model equations

In [Wi98a, Br98], HTLs are demonstrated for certain families of multiclass net-
works. The reasoning employed there can be broken into three “modules”, which
are essentially independent. The first module, which is worked out in [Wi98a], uses
MSSC and the completely-S condition to derive HTLs. Solutions of the balanced
fluid model equations corresponding to the limiting triple (α,M,P ), obtained from
(αr ,Mr, P r), are employed in the second module. It is shown in [Br98], that MSSC
holds whenever such solutions have “nice” asymptotic behavior. The third module
consists of deriving the desired asymptotics for these solutions, and verifying that
R is completely-S. Both of these conditions, in the last step, are not trivial in
general. They are, though, substantial reductions from MSSC. In this subsection,
we discuss the appropriate framework for the second module. We also mention
some specific disciplines where the conditions in the third module can be verified.

In order to state our results for MSSC, we need to overcome some technical
difficulties. The specific discipline must be known in order to be able to write
down all of the relevant queueing network or fluid model equations, such as (3.6).
If one wishes to state results on MSSC at the general level of HL processes, it
is more convenient to instead work with cluster points. These are, in the setting
of MSSC, the analog of the fluid limits, which were mentioned briefly in Section
3. Rather than complicate matters, we restrict ourselves here to several more
concrete families where we can work directly with the corresponding fluid model
equations. Also, as in [Wi98b], we assume that Zr(0) = 0 for the sequences of
queueing networks under consideration, in order to simplify formulation of the
results.

Associated with a sequence of queueing networks are the triples
(Er(·), V r(·),Φr(·)). We assume here that the corresponding means (αr ,Mr, P r)
satisfy

αr → α, Mr →M, P r → P as r→∞, (4.3)

and that the limit (α,M,P ) is balanced. One also needs a uniformity condition on
the second moments of the service and interarrival distributions for the sequence.
The latter conditions can be ensured, for example, by not allowingEr(·) or Φr(·) to
vary with r, and only allowing the components of V r(·) to vary by scalar multiples,
as is done in [Wi98b]. In order to obtain HTLs from MSSC, as in [Wi98a, Wi98b],
one will need to strengthen (4.3) so that r(ρr − e) → γ as r → ∞, for some γ,
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also holds, although this is not needed for MSSC itself. (Rγ will be the drift of
the HTL.)

We first consider a sequence of queueing networks, with a fixed static priority
discipline. As mentioned above, we assume that Zr(0) = 0 for all r. We also
assume that (4.3) holds, that (α,M,P ) is balanced, and that the second moment
conditions referred to above hold. Let Z̄(t) denote the queue length for solutions
of the corresponding fluid model equations for the specific discipline. We further
assume that for all solutions with |Z̄(0)| ≤ 1,

|Z̄(t)− Z̄(∞)| ≤ H(t) (4.4)

holds for a fixed function H(t), with H(t) → 0 as t → ∞, and for appropriate
Z̄(∞) (depending on Z̄(0)) of the form

Z̄(∞) = ∆W̄ for some W̄ ∈ RJ . (4.5)

It is shown in [Br98], that MSSC follows under these conditions. In [BrDa98],
(4.4)–(4.5) are verified for several disciplines, such as FBFS and LBFS. Since one
can also show that the R matrix is completely-S in both cases, the corresponding
HTLs follow. (HTLs for FBFS networks are also shown in [ChZh96].)

One can also obtain HTLs for sequences of FIFO networks of Kelly type
and HLPPS networks by investigating the corresponding fluid models. The basic
procedure is the same as above. In each case, one can, in fact, demonstrate
(4.4) with H(t) = B1e

−B2t, for appropriate B1 and B2 > 0. MSSC therefore
follows. Since the R matrix will always be completely-S in both cases, (4.1) holds
for appropriate W ∗(t). The arguments for showing (4.4) for the two models are
related. One obtains an entropy function H(t) which converges exponentially fast
to 0; the states with entropy 0 will satisfy (4.5). The function for FIFO fluid
models of Kelly type is

H(t) =
∑

k

∫ t+W̄j(t)

t

hk(D̄′k(r))dr. (4.6)

Its asymptotic behavior is analyzed in [Br96] by employing the equations (3.7)–
(3.11).

So far, we have not identified the linear map ∆, which “lifts” RJ to RK .
For the above disciplines, this is easy to do, since ∆W , for W ∈ RJ+, will be
among the states that remain invariant under the evolution of the corresponding
fluid model. Clearly, for static priority disciplines, (∆W )k = 0 at all coordinates
except where k is the lowest ranked class at its station j = s(k), in which case
(∆W )k = Wj/mk. For FIFO networks, (∆W )k = λkWj , where λ is as in (2.2),
and for HLPPS networks,

(∆W )k =
λkmkWj∑
ℓ∈C(j) λℓm

2
ℓ

. (4.7)

One can see why, in principle, MSSC should follow from the limiting behavior
of the fluid model solutions, as in (4.4)–(4.5), by comparing the evolution of the
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queue length vector Z(t) under hydrodynamic scaling with its behavior under dif-
fusive scaling. (Some poetic license is taken in phrasing the following steps.) Fluid
limits, which are solutions of the fluid model equations, arise from hydrodynamic

scaling. So, for large t, the components Z̃rk(t) of Z̃r(t)
def.
= Zr(rt)/r, as r → ∞,

will be in the proportions prescribed by ∆. Recalling that Ẑr(t) = Zr(r2t)/r, this
implies that Ẑr(Tr) = Z̃r(rTr), as r → ∞, collapses to the subspace given by ∆,
if Tr is chosen so that rTr → ∞ sufficiently slowly as r → ∞. (One needs the
growth of rTr to be slow enough to avoid the contribution of noise from random
fluctuations of Zr(r2Tr).) One is, moreover, entitled to restart the processes Z̃r(t)
at times i = 1, 2, . . ., with

Z̃r,i(t)
def.
= Zr(r(t + i))/r. (4.8)

Chopping up the interval [0, r2T ], T > 0, from the original time scale into rT
pieces, it suffices to analyze the fluid limits corresponding to each of these processes
in order to demonstrate MSSC. Under the second moment conditions on the service
and interarrival distributions that have already been made, the exceptional events
where any of these processes is ill behaved, and the desired collapse does not occur,
will have small probability for large r. Also, the assumption Ẑr(0) = 0 ensures
that Ẑr(t) remains close to 0 at small times. Therefore, for a typical realization,
Ẑr(t) collapses to the desired subspace for all t ∈ [0, T ]. This reasoning (when
carefully carried out) will demonstrate MSSC.
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Random and Deterministic Perturbationsof Nonlinear Oscillators
Mark I. Freidlin

Abstract. Perturbations of Hamiltonian systems are considered. The
long-time behavior of such a perturbed system, even in the case of de-
terministic perturbations, is governed, in general, by a stochastic process
on a graph related to the Hamiltonian. We calculate the characteristics
of the process for systems with one degree of freedom and consider some
applications and generalizations.

1991 Mathematics Subject Classification: 60H10, 34F05, 35B20, 60J60
Keywords and Phrases: Random perturbations, Hamiltonian systems,
PDE’s with a small parameter

Consider an oscillator with one degree of freedom:

q̈t + f(qt) = 0, q0 = q, q̇0 = p. (1)

Let F (q) =
∫ q
0
f(u) du be the potential and H(p, q) = p2

2 + F (q) be the Hamilton
function of the oscillator. One can rewrite (1) as the system:

ṗt = −f(qt) = −∂H
∂q

, q̇t = pt =
∂H

∂p
. (2)

We assume that the potential F (q) is a smooth generic function: f(q) = F ′(q)
is assumed to be continuously differentiable, f(q) has a finite number of zeros,
|f(q)|+ f ′(q)| 6= 0, and the values of F ′(q) at different critical points are different.
Let also lim|q|→∞ F (q) =∞. A typical example of H(p, q) and of the phase picture
is shown in Fig. 1.

Let C(z) =
{
x = (p, q) ∈ R2 : H(x) = z

}
be the z-level set of H(x). Since

H(x) is generic, C(z) consists of a finite number n = n(z) of connected compo-
nents. Let Γ be the graph homeomorphic to the set of all connected components
of the level sets of H(x) provided with the natural topology (see Fig. 1b). The
vertices O1, . . . , Om of Γ correspond to the critical points of H(x). Let I1, . . . ,
In be the edges of the graph. A vertex Ok ∈ Γ is called exterior if Ok belongs just
to one edge. The other vertices are called interior (vertices O2 and O4 in Fig. 1b).
Each interior vertex belongs to 3 edges. We write Ii ∼ Ok if Ok is one of the
ends of Ii. The value of the Hamiltonian H and the number of an edge k define a
point of Γ, so that the pairs (H, k) form a global coordinate system on Γ. Define
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Figure 1.

a metric ρ( · , · ) on Γ: If y1 = (H1, k) and y2 = (H2, k) are points of the same
edge Ik ⊂ Γ, we put ρ(y1, y2) = |H2 −H1|. The distance between any y1, y2 ∈ Γ
is defined as the length of the path connecting y1 and y2. Such a path is unique
since Γ is a tree.

Consider the map Y : R2 → Γ, Y (x) =
(
H(x), k(x)

)
∈ Γ, where k(x) is

the number of the edge Ik(x) ⊂ Γ containing the point of Γ corresponding to

the component C
(
H(x)

)
containing x ∈ R2. Let Ck(z) = Y −1(z, k), (z, k) ∈ Γ.

Note that H(x), as well as k(x), are first integrals of system (2): H(pt, qt) =
t≡H(p0, q0), k(pt, qt)

t≡ k(p0, q0). If H(p, q) has more than one minimum, then
these first integrals are independent.

The Lebesgue measure inR2 is invariant with respect to the flowXt ≡ (pt, qt).
If z is not a critical value of H(x), then Ck(z) consists of one periodic trajectory.
The normalized invariant density of the flow Xt on Ck(z) with respect to the
length element dℓ on Ck(z) is

(
Tk(z)

∣∣∇H(x)
∣∣
)−1

, x ∈ Ck(z),

where

Tk(z) =

∮

Ck(z)

dℓ∣∣∇H(x)
∣∣

is the period of the revolution along Ck(z).
Consider now the perturbed system:

q̈εt + f(qεt ) = εβ(q̇εt , q
ε
t ) +

√
εσ(q̇εt , q

ε
t ) ◦ Ẇt. (3)
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Here Wt is the Wiener process in R1, functions β(p, q) and σ(p, q) are supposed
to be bounded and continuously differentiable, 0 < σ(p, q), 0 < ε ≪ 1. The
stochasitc term σ(q̇εt , q

ε
t ) ◦ Ẇt in (3) is understood in the Stratanovich sense. The

deterministic part of the perturbation εβ(q̇, q) is a kind of friction. A typical and
interesting example is β = −q̇.

Equations (3) can be written as the system

ṗεt = −f(qεt ) + εβ(pεt , q
ε
t ) +

√
εσ(pεt , q

ε
t ) ◦ Ẇt;

q̇εt = pεt .
(4)

The pair (pεt , q
ε
t ) = Xε

t forms a Markov diffusion process in R2. The generator
A of Xε

t for a smooth function g(p, q), (p, q) ∈ R2, coincides with the differential
operator

Lεg(p, q) = p
∂g

∂q
− f(q)

∂g

∂p
+ εβ(p, q)

∂g

∂p
+
ε

2

∂

∂p

(
σ2(p, q)

∂g

∂p

)
.

We are interested in the behavior of the process Xε
t for 0 < ε≪ 1. On any finite

time interval [0, T ], one can write down an expansion of Xε
t in the powers of

√
ε, if

f(q), β(p, q) and σ(p, q) are smooth enough. But, actually, the long time behavior
of Xε

t is, as a rule, of interest. The finite time interval expansion does not help on
time intervals of order ε−1, ε ↓ 0, when the perturbations become essential.

A typical example of a problem of interest is the exit problem. Let G be
a bounded domain in R2. The most interesting case is when G is bounded by
trajectories of the non-perturbed system. In Fig. 1, the boundary of the domain
G consists of four components ∂G1, ∂G2, ∂G3, ∂G4. Each of them is a periodic
trajectory of system (2). Let γ = Y (G) ⊂ Γ and ∂i = Y (∂Gi), i = 1, 2, 3, 4. Let
τε = min{t : Xε

t 6∈ G} be the exit time from G. It is not difficult to check that
τε ∼ ε−1 as ε ↓ 0. Let ψ(x), x ∈ ∂G, be continuous. Calculation of Exτ

ε = uε(x),
Px{τε < t} = uε(t, x), Exψ(Xε

τ ) = vε(x), where Ex and Px mean the expectation
and the probability for solutions of (4) starting at x = (p, q) ∈ R2, are of interest.
Of course, since Xε

t = (pεt , q
ε
t ) is a diffusion process governed by the operator Lε,

one can write down a boundary problem for each of those functions uε(x), uε(t, x),
vε(x). Say, uε(x) is the solution of the problem:

Lεuε(p, q) = p
∂uε

∂q
− f(q)

∂uε

∂p
+ εβ(p, q)

∂uε

∂p
+
ε

2

∂

∂p

(
σ2(p, q)

∂uε

∂p

)

= −1, (p, q) ∈ G, uε(p, q)
∣∣
∂G

= 0.

(5)

But even numerical solution of problem (5), because of degeneration of the equa-
tion and smallness of ε > 0, is not simple, and the asymptotic approach is the
most appropriate.

Since τε ∼ ε−1, to deal with finite time intervals as ε ↓ 0, we rescale the time.
Put X̃ε

t = Xε
t/ε, τ̃

ε = ετε. Then X̃ε
t = (p̃εt , q̃

ε
t ) is the solution of the system

˙̃pεt = −1

ε
f(q̃εt ) + β(p̃εt , q̃

ε
t ) + σ(p̃εt , q̃

ε
t ) ◦ ˙̃Wt;

˙̃qεt =
1

ε
p̃εt .

(6)

Documenta Mathematica · Extra Volume ICM 1998 · III · 223–235



226 Mark I. Freidlin

Here W̃ ε
t is a new Wiener process. We will omit the tilde in the Wiener process.

One can single out the fast and the slow components in the process X̃ε
t . The

fast component is, basically, the motion along the non-perturbed trajectory. In a
vicinity of a periodic trajectory Ck(z), the fast motion, asymptotically as ε ↓ 0,

can be characterized by the invariant density
(
Tk(z)

∣∣∇H(x)
∣∣
)−1

, x ∈ Ck(z).

Taking into account that H(x) and k(x) are first integrals of the non-
perturbed system, the slow motion can be described by the projection Y (X̃ε

t ) =(
H(X̃ε

t ), k(X̃ε
t )
)

of X̃ε
t on Γ. If we are interested in the asymptotics of uε(x) =

ε−1Exτ̃ε as ε ↓ 0, then it is sufficient to study just the slow component Y εt = Y (Xε
t )

as ε ↓ 0 since τ̃ε = min{t : Y εt 6∈ γ}, γ = Y (G). Therefore, the slow component is,
in a sense, the most important for long-time behavior of the processXε

t , 0 < ε≪ 1.
Note, however, that if we are interested in vε(x) = Exψ(Xε

τε) and ψ(x) is not a
constant on one of the components of ∂G, then the fast component is involved in
the behavior of vε(x) as ε ↓ 0 (compare with [F-W 2] Theorem 2.3 and the remark
afterward).

Thus, the problem of long-time behavior of Xε
t as ε ↓ 0, to some extent, can

be reduced to the asymptotic behavior of the process Y εt = Y (X̃ε
t ) on the graph

Γ as ε ↓ 0.
We prove (see [F-Web 1]) that the process Y εt , 0 ≤ t ≤ T , for any T < ∞

converge weakly as ε ↓ 0 in the space of continuous functions [0, T ] → Γ to a
continuous Markov process Yt on Γ. A complete description of all continuous
Markov processes on a graph is given in [F-W 1,2]. A continuous Markov process
Yt on Γ = {I1, . . . , In;O1, . . . , Om} is determined by a family of second order
elliptic (maybe, generalized) operators L1, . . . , Ln, governing the process inside
the edges, and by gluing conditions at the vertices.

To calculate the operator Lk governing the limiting process Yt inside Ik ⊂ Γ,
apply the Ito formula to H(X̃ε

t ) ≡ H(p̃εt , q̃
ε
t ):

H(X̃ε
t )−H(x) =

∫ t

0

∂H

∂p
(X̃ε

s )σ(X̃ε
s )dWs +

1

2

∫ t

0

σ2(X̃ε
s )
∂2H

∂p2
(X̃ε

s ) ds

+
1

2

∫ t

0

∂H

∂p

∂σ2

∂p
(X̃ε

s ) ds+

∫ t

0

∂H

∂p
β(X̃ε

s ) ds.

(7)
The stochastic integral in (7) is taken in Ito sense. Before H(X̃ε

s ) changes a
little, the trajectory X̃ε

s makes (for 0 < ε≪ 1) many rotations along the periodic
trajectory of the non-perturbed system. Therefore, the second, the third, and the
fourth terms in the right-hand side of (7) are equivalent respectively to

t

2T (H(x))

∮

Ck(H(x))

σ2(x)H ′′pp(x) dℓ

|∇H(x)| ,
t

2T (H(x))

∮

Ck(H(x))

σ2(x)′pH
′
p(x) dℓ

|∇H(x)| ,

t

2T (H(x))

∮

Ck(H(x))

β(x)H ′p(x) dℓ

|∇H(x)| , 0 < ε≪ t≪ 1.

To average the stochastic integral in (7), note that because of the selfsimilarity
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properties of the Wiener process, this integral is equal to

W

(∫ t

0

σ2(X̃ε
s )
(
H ′p(X̃

ε
s )
)2
ds

)
,

where W t is an appropriate Wiener process. Using this representation, one can
check that the stochastic integral is equivalent to

W


 t

Tk(H(x))

∮

Ck(H(x))

σ2(x)(H ′p(x))2 dℓ

|∇H(x)|


 , 0 < ε≪ t≪ 1.

Using the divergence theorem, we have:

∮

Ck(z)

σ2(x)(H ′p(x))2 dℓ

|∇H(x)| =

∫

Gk(z)

(
σ2(x)H ′p(x)

)′
p
dx := Ak(z),

where Gk(z) is the domain in R2 bounded by Ck(z), z ∈ R1. It is easy to check
that

dAk(z)

dz
=

∮

Ck(z)

[
(σ2(x))′pH

′
p(x) + σ2(x)H ′′pp(x)

|∇H(x)|

]
dℓ.

Combining all these facts, we conclude from (7) that, starting at a point of
Ik ⊂ Γ, until the first exit from Ik, the limiting process Yt is governed by the
operator

Lk =
1

2Tk(z)

d

dz

(
Ak(z)

d

dz

)
+

1

Tk(z)
Bk(z)

d

dz
,

where

Bk(z) =

∮

Ck(z)

β(x)H ′p(x)

|∇H(x)| dℓ =

∫

Gk(z)

β′p(x) dx.

In particular, if the perturbation is just the white noise (σ(x) ≡ 1, β(x) ≡ 0),
then the limiting process in Ik is governed by the operator

Lk =
1

2S′k(z)

d

dz

(
Sk(z)

d

dz

)
,

where Sk(z) is the area of the domain Gk(z) ⊂ R2 bounded by Ck(z); S′k(z) =
Tk(z) is the period of rotation along Ck(z).

To calculate the gluing conditions at the vertices, assume for a moment that
β(x) ≡ 0. Then the Lebesgue measure Λ in the plane is invariant for X̃ε

t for
any ε > 0. Therefore, the projection µ(s) = Λ(Y −1(s)), s ⊂ Γ, of the Lebesgue
measure on Γ, defined by the mapping Y : R2 → Γ, is invariant for the processes
Y εt = Y (X̃ε

t ) on Γ for any ε > 0. Thus, the measure µ(s), s ⊂ Γ, is invariant for
the limiting process Yt on Γ. It turns out that among the diffusion processes on Γ
governed by operators Lk inside the edges Ik ⊂ Γ, there exists just one process for
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which the invariant measure coincides with µ(s). This allows one to calculate the
gluing conditions in the case β(x) ≡ 0. One can check that the exterior vertices are
inaccessible for the limit process Yt, and therefore, no additional gluing conditions
should be imposed there. The interior vertices are accessible in a finite time inspite
of the degeneration of the diffusion coefficients at the vertices.

To describe the gluing conditions at an interior vertex Ok, note that Y −1(Ok)
is a ∞-shaped curve γ shown in Fig. 2. The curve γ consists of the trajectories
γ1, γ2, and of the equilibrium point Ok of the non-perturbed system. Let G1 and
G2 be the domains bounded by γ1 and γ2, respectively. Let Ik0 ⊂ Γ be the edge
corresponding to the trajectories surrounding γ (like the trajectory φ0 in Fig. 2);

Okk1I k2I

k0I

ϕ0

Ok

γ1 γ2

Figure 2.

Ik1 ⊂ Γ corresponds to periodic trajectories inside γ1 which are close to γ1, and
Ik2 ⊂ Γ corresponds to trajectories inside γ2 close to γ2; Ik0 , Ik1 , Ik2 ∼ Ok. Put

βki =

∫

Gi

∂

∂p

(
σ2(p, q)

∂H(p, q)

∂p

)
dp dq, i = 1, 2, βk0 = βk1 + βk2.

Then a bounded and continuous on Γ function u(y), y ∈ Γ, which is smooth inside
the edges, belongs to the domain of definition of the generator A of the limiting
process Yt on Γ if the function Lku(z, k), (z, k) ∈ Γ, is continuous on Γ, and at
any interior vertex Ok ∈ Γ

βk1D1u(Ok) + βk2D2u(Ok) = βk0D0u(Ok),

where Di is the operator of differentiation in z along Iki , i = 0, 1, 2. The operators
Lk together with the gluing conditions at the vertices define the limiting process
Yt on Γ in a unique way.

Now, if β(p, q) 6≡ 0 in the perturbation term, one can check, using the
Cameron-Martin-Girsanov formula, that the gluing conditions are the same as
for β(p, q) ≡ 0.

To complete the proof, one should also check that the family of processes
Y εt = Y (X̃ε

t ), 0 ≤ t ≤ T , is tight in the weak topology and that the limiting
process is a Markov one. The tightness follows, roughly speaking, from the at
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most linear growth of the coefficients in (7). The Markov property can be proved
using some a priori bounds for the operator Lε (see [F-Web1]).

This result allows one to calculate in an explicit form the main terms as
ε ↓ 0 of many interesting characteristics of the process Xε

t ([F-Web1]). A slight
generalization of these results allows one to consider also perturbations of the
nonlinear pendulum defined by the equation q̈t + sin qt = 0, ([F-Web2]).

Suppose now that we have just deterministic perturbations: σ(x) ≡ 0 in
equation (6). Let, for brevity, the Hamiltonian have just one saddle point, so that
the phase picture for the non-perturbed system is as in Fig. 3a, and let b′p(p, q) < 0,
(p, q) ∈ R2. The perturbations lead to the picture in Fig. 3b: the perturbed system

(a) (b)

I

II

x

O1' O2'

O3'O3O1 O2

G1

G2

Figure 3.

has a saddle point in a point O′2 which is close to O2; the equilibrium points O1,
O3 will be replaced by asymptotically stable points O′1, O

′
3, which are close to

O1, and O3, respectively, when 0 < ε ≪ 1. Two separatrices I and II enter
O′2. They divide the exterior E of the ∞-shaped curve connected with O2 in two
ribbons. One of these ribbons consists of points attracted to O′1; another ribbon is
attracted to O′3 (see Fig. 3b). The width of each of these ribbons is of order ε as
ε ↓ 0. When ε becomes smaller, they are moving closer and closer to the∞-shaped
curve. Therefore, any point x ∈ E alternatively belongs to a ribbon attracted to
either O′1 or to O′3 as ε ↓ 0. This means that the perturbed trajectory Xε

t starting
at x ∈ E , is attracted alternatively to O′1 or O′3 when ε ↓ 0.

The slow motion of the perturbed system in this case is again the projection
on the graph Γ related to H(x): Y εt = Y (Xε

t/ε). The averaging procedure shows

that the limiting slow motion Y t is a deterministic motion inside each of the edges
of the graph Γ:

żt =
1

Tk(zt)
Bk(zt), Y t = (zt, k) ∈ Ik, k = 1, 2, 3. (8)

If we start from a point x with a large enough H(x), and Bk(z) < 0 if (z, k) is not
a vertex, then the deterministic trajectory hits the vertex O2 corresponding to the
saddle point of H(x) in a finite time. After that, the trajectory of the limiting slow
motion goes to one of the two edges attached to O2 along which H is decreasing.
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To which of these two edges the trajectory goes depends on the initial point in a
very sensitive way. One can show that the measure of the set of initial points from
a neighborhood U of a point x, U ⊂ E , attracted to O1 (to O3) is proportional to∫
G1

β′p(x) dx (
∫
G2

β′p(x) dx) as ε ↓ 0, where G1 and G2 are the left and the right part

of the set in R2 bounded by the ∞-shaped curve. This was briefly mentioned in
[A]. The proof is available in [B-F]. If the graph corresponding to H(x) has a more
complicated structure and the “friction” β(p, q) is allowed to change the sign, the
situation can be more complicated: the limiting slow motion can “remember more
of its past” (see [B-F]).

There is another way to regularize the problem: Instead of random pertur-
bation of the initial point, one can add a random perturbation to the equation.
Let σ(p, q) in (6) be replaced by

√
κσ̃(p, q), where κ > 0 is a small parameter.

Let X̃ε,κ
t be the solution of (6) with such a replacement. Consider the double

limit of the slow component Y ε,κt = Y (X̃ε,κ
t ), 0 ≤ t ≤ T : first as ε ↓ 0 for a

fixed κ > 0, and then as κ ↓ 0. The first limit gives us the diffusion process Y κt
on Γ, which was described above. Now we consider the limiting behavior of Y kt ,
0 ≤ t ≤ T , as κ ↓ 0. As it is proved in [B-F], this limit (in the sense of weak
convergence) exists, independent of the perturbations (of the choice of functions
σ(p, q)) and coincides with the process Y t desribed above: Inside the edges it is
a deterministic motion governed by (8), and it branches at each interior vertex
Ok to one of the edges attached to Ok, along which H is decreasing, with certain
probabilities which are expressed through H(x) and β(x) in a way similar to that
descried above. The behavior of the limiting slow component after touching an
interior vertex Ok is independent now of the past (see [B-F]). The independence
of the process Y t of the characteristics of the random perturbations, as well as
the fact that the limiting process is the same as occurs if the initial conditions
are perturbed, shows that the “randomness” of the limiting slow component is an
intrinsic property of the Hamiltonian system and its deterministic perturbations.
The random perturbation here is just a way of regularization.

The perturbations in equations (6) are included just in one component. There-
fore, the corresponding differential operator ε−1Lε is degenerate. This leads to
certain additional difficulties in the proof of Markov property for the limiting pro-
cess. One can consider non-degenerate perturbations and replace the oscillator by
an arbitrary Hamiltonian system with one degree of freedom:

˙̃X
ε

t =
1

ε
∇H(X̃ε

t ) + β(X̃ε
t ) + σ(X̃ε

t ) ◦ Ẇt, X̃ε
t = x ∈ R2. (9)

Here Wt is the Wiener process in R2, β(x) is a smooth bounded vector field in R2,
and σ(x) is a 2×2 matrix with smooth bounded entries, det σ(x) 6= 0. The Hamil-
tonian function H(x) is assumed to be smooth, generic, and lim|x|→∞H(x) =∞.

Let Γ = {I1, . . . , In;O1, . . . , Om} be the graph corresponding to H(x) and
Y (x) =

(
H(x), k(x)

)
be the corresponding mapping R2 → Γ. Then one can prove

[F-W2,3] that the slow component of the process X̃ε
t , which is Y (X̃ε

t ), 0 ≤ t ≤ T ,
converges weakly as ε ↓ 0 to a diffusion process Yt on Γ. The process Yt is governed
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inside Ik, k ∈ {1, . . . , n}, by the operator

Lk =
1

2Tk(z)

d

dz

(
Ak(z)

d

dz

)
+

1

Tk(z)
Bk(z)

d

dz
, Tk(z) =

∮

Ck(z)

dℓ

|∇H(x)| ,

Ak(z) =

∫

Gk(z)

div
(
a(x)∇H(x)

)
dx, a(x) = σ(x)σ∗(x), Bk(z) =

∫

Gk(z)

div β(z) dx.

(10)
Here Ck(z) = Y −1(z, k), Gk(z) is the domain in R2 bounded by Ck(z), (z, k) ∈
Γ \ {O1, . . . , Om}.

To define the process Yt for all t ≥ 0, we should add the gluing conditions
at the vertices. The gluing conditions are defined by he domain of definition Da
of the generator A of the process Yt: a continuous and smooth inside the edges
function f(g), y ∈ Γ, belongs to Da, if Lkf(z, k), y = (z, k) ∈ Γ, is continuous on
Γ and at any interior vertex Ok ∈ Γ

3∑

i=1

±βkiDif(Ok) = 0, (11)

where βki = lim(z,ki)→Ok Aki(z); Ik1 , Ik2 , Ik3 ∼ Ok; the “+” (“−”) sign in front
of βki is taken if H grows (decreases) as the point approaches Ok along Iki , i ∈
{1, 2, 3}, (see [F-W2,3]).

This result allows one to calculate in a rather explicit form the main term as
ε ↓ 0 of the solution of the following Dirichlet problem:

ε

2
div
(
a(x)∇uε(x)

)
+εβ(x)·∇uε(x)+∇H(x)·∇uε(x) = 0, x ∈ G, uε(x)

∣∣
∇G = ψ(x).

Here G ⊂ R2 is as in Fig. 1, ψ(x) is a continuous function on ∂G.
It follows from [F-W2,3] that limuε(x) = v

(
H(x), k(x)

)
, where v(z, k) is the

solution of the Dirichlet problem in γ = Y (G) ⊂ Γ

Lkv(z, k) = 0, (z, k) ∈ γ \ {O1, . . . , Om}, v(∂k) = ψk, k ∈ {1, 2, 3, 4},

satisfying the gluing conditions described above. Here ∂k = Y (∂Gk), k = 1, 2, 3, 4,
∂γ = (∂1, ∂2, ∂3, ∂4),

ψk =



∮

∂Gk

a(x)∇H(x) · ∇H(x)

|∇H(x)| dℓ



−1 ∮

∂Gk

ψ(x)
(
a(x)∇H(x) · ∇H(x)

)

|∇H(x)| dℓ,

k ∈ {1, 2, 3, 4}.
The Dirichlet problem in γ can be solved explicitly.
Consider now the case of pure deterministic perturbations: σ(x) ≡ 0 in (9).

Let for brevity Bk(z), defined in (10), be negative if (z,k) is not an exterior vertex.
This, in particular, implies that the perturbed system is not Hamiltonian. We can
again “regularize” the problem adding small random perturbations to the initial
conditions or to the equation and then consider the double limit [B-F].
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To consider perturbations of the equation, replace the matrix σ(x) in (8) by√
κσ(x), κ > 0. Let X̃ε,κ

t be the solution of equation (8). Consider the projection
Y ε,κt = Y (X̃ε,κ

t ) of X̃ε,κ
t on Γ. Then, for each κ > 0, the processes Y ε,κt , 0 ≤ t ≤ T ,

converge weakly as ε ↓ 0 to the process Y κt on Γ, which was described above. Let
now κ ↓ 0. One can check that processes Y κt , 0 ≤ t ≤ T , converge weakly to a
process Yt = (zt, kt) on Γ as x ↓ 0. Inside any edge Ik ⊂ Γ, the process Yt is
deterministic motion governed by equation (8) with Bk(z) defined in (10). If Yt
touches an interior vertex Ok ∈ Γ, it leaves Ok without any delay along one of the
edges Ik1 , Ik2 ∼ Ok, along which H is decreasing, with probabilities Pk1, Pk2;

Pki =
|Bki(Ok)|

|Bk1(Ok)|+ |Bk2(Ok)| ,
∣∣Bki(Ok)

∣∣ = lim
(z,ki)→Ok

∣∣Bki(z)
∣∣, i = 1, 2,

independently of the past [B-F].
A special case of this problem when a(x) is the unit matrix was studied in

[W].
If we consider the perturbations of the form

Ẋε,x
t = ∇H(Xε,x

t ) + εβ(Xε,x
t ) +

√
εκζt,

where ζt is a stationary process with strong enough mixing properties, and the
process ζt is not degenerate in a certain sense, then, because of a central-limit-
theorem type result, we can expect the same process Yt as the limit of Y (Xε,κ

t/ε ) as

first ε ↓ 0 and then κ ↓ 0.
These results can be applied to some non-linear problems for second order

elliptic and parabolic equations. Consider, for example, reaction-diffusion in a
stationary incompressible fluid in R2:

∂uε(t, x)

∂t
=
ε

2
∆uε+∇H(x) ·∇u+f(uε), t > 0, x ∈ R2, uε(0, x) = g(x) ≥ 0.

(12)
Here H(x) is the stream function of a stationary flow. We assume that H(x) is
generic and lim|x|→∞H(x) =∞. The initial function is assumed to be continuous.
Let for brevity g(x) has a compact support. Let Γ be the graph related to H(x)
and Y (x) : R2 → Γ be the corresponding mapping. If f(u) ≡ 0, it follows from
the results formulated in this paper [FW2], that uε(t/ε, x) → v(t, Y (x)), where
v(t, y) is the solution of a Cauchy problem on [0,∞)× Γ with appropriate gluing
conditions at the vertices.

But if the reaction term f(u) is included in the equation, one should use a
different time scale. Let, for instance, f(u) = c(u)u is of Kolmogorov-Petrovskii-
Piskunov type: c(u) > 0 for u < 1, c(u) < 0 for u > 1, and c(0) = maxu≥0 c(u).
Then limε↓0 uε(t/

√
ε, x) = w(t, Y (x)), where w(t, y), t > 0, y = (z, k) ∈ Γ, is a

step function with the values 0 and 1. To describe the set, where w(t, y) is equal
to 1, introduce a Riemannian metric ρ on Γ corresponding to the form

ds2 =
Tk(z)

Ak(z)
dz2, Tk(z) =

∮

Ck(z)

dℓ

|∇H(x)| , Ak(z) =

∫

Gk(z)

∆H dx.
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Note that this form has singularities at the vertices, but those singularities are
integrable. Let γ = Y (supp g) ⊂ Γ. Then, w(t, y) = 1 on the set

{
y ∈ Γ : ρ(y, γ) < t

√
2c(0)

}
, t > 0,

and w(t, y) = 0 outside of the closure of this set. This is a result of an interplay
between the averaging and the large deviations for process Xε

t/ε, where Xε
t is the

process in R2 governed by the linear part of the operator in the right-hand side
of (12).

Applications of the ideas discussed in this paper to small viscosity asymptotics
for the stationary Navier-Stokes equations one can find in [F2].

Applications to an optimal stabilization problem are available in [D-F].
I will briefly consider now some generalizations. First, consider a Hamiltonian

system on a two-dimensional torus. A generic Hamiltonian system on a 2-torus
has the following structure: it has a finite number of loops such that inside those
loops, trajectories behave like in a part of R2. The exterior E of the union of
the loops is one ergodic class so that the trajectories of the system are dense in
E (see references in [F1]). Therefore, the graph Γ related to this system has a
special vertex O0 which corresponds to the whole set E . Consider now small white
noise perturbations of the system. The Lebesgue measure on the torus is invariant
for the perturbed process and the projection of this measure on Γ is invariant for
the slow component. This implies that the limiting slow component spends at
O0 ∈ Γ a positive time proportional to the relative area of E . Therefore the gluing
conditions at O0 are a little different from the conditions at other vertices or form
conditions considered above (see [F-W1], [F1]).

Perturbations of certain Hamiltonian systems on 2-torus may lead also to
processes on graphs with loops, but not just trees as in the case of systems in R2.

Finally, we consider briefly perturbations of Hamiltonian systems with many
degrees of freedom:

Ẋε
t = ∇H(Xε

t ) +
√
εẆt + εβ(Xε

t ),

Xε
0 = x ∈ R2n, x = (p1, . . . , pn; q1, . . . , qn).

(13)

Here Wt is the 2n-dimensional Wiener process. β(x) is a smooth vector field
in R2n, 0 < ε ≪ 1. If n > 1, the non-perturbed system may have additional
smooth first integrals: H1(x) = H(x), H2(x), . . . , Hℓ(x). Let C(z) = {x ∈ R2n :
H1(x) = z1, . . . ,Hℓ(x) = zℓ}, z = (z1, . . . , zℓ) ∈ Rℓ. If the non-perturbed system
X0t has a unique “smooth” invariant measure on each C(z), z ∈ Rℓ, then the
slow component can be described by the evolution of the first integrals. In an
appropriate time scale, the slow component converges to a diffusion process Yt,
0 ≤ t ≤ T . The diffusion and drift coefficients of Yt can be calculated using
the standard averaging procedure. We have such an example when considering a
system of independent oscillators with one degree of freedom

Ẋε
k(t) = ∇Hk(Xε

k(t)) + εβk(Xε
1(t), . . . , X

ε
n(t)) +

√
εσkẆk(t),

xk = (pk, qk) ∈ R2, k = 1, . . . , n,
(14)
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with Hk(p, q) = akp
2 + bkq

2 and ak, bk > 0, k ∈ {1, . . . , n}, such that the fre-
quencies of the oscillators are incommensurable. Here Wk(t) are independent
two-dimensional Wiener processes, σk are non-degenerate 2×2 matrices, βk ∈ R2.
But, in general, if Hk are not quadratic forms, the frequences are changing with
the energy and resonances appear. This problem, in the case of deterministic per-
turbations, was studied by many authors (see [AKN]). The approaches used in the
deterministic case allow one to obtain some results on stochastic perturbations as
well.

Let Hk(x), x ∈ R2, k = 1, . . . , n, be generic and lim|x|→∞Hk(x) =∞. Let Γk
be the graph related to Hk(x) and Yk : R2 → Γk be the corresponding mapping.
The slow component Y εt of the process

(
Xε
1(t), . . . , X

ε
n(t)

)
= Xε

t is defined as

the process Y εt =
(
Y1(X

ε
1(t/ε)), . . . , Yn(Xε

n(t/ε))
)
, on Ξ = Γ1 × Γ2 × · · · × Γn.

Under some mild additional conditions, the processes Y εt , 0 ≤ t ≤ T , converge as
ε ↓ 0 weakly to a process Yt on Ξ. Inside the n-dimensional pieces of Ξ, where∑n
k=1

∣∣∇Hk(xk)
∣∣ 6= 0, the process Yt is described by the averaging procedure. To

define the gluing conditions, assume, first, that βk(x) ≡ 0, k = 1, . . . , n. Then
the process Xε

t is just a collection of n independent processes Xε
k(t), each with

one degree of freedom. The slow component Yk(Xε
k(t/ε)) of Xε

k converges, as we
already know, to a process Yk(t) on Γk with the gluing conditions described above.
Thus, we know what is the limiting slow component for Xε

t in the case βk(x) ≡ 0,
k ∈ {1, . . . , n}. Using the Cameron-Martin-Girsanov formula, one can check that,
if βk(x) 6≡ 0 are bounded and matrices σk are non-degenerate, than the gluing
conditions will be, in a sense, the same. This allows to give a complete description
of the limiting slow component for Xε

t as a diffusion process on Ξ [F-W4].

Similar to the case of one degree of freedom, this result enable us to show
that, under some additional conditions, the long-time behavior of deterministic
systems close to Hamiltonian has a stochastic nature. Consider weakly coupled
oscillators with one degree of freedom:

Ẋε
k(t) = ∇Hk(Xε

k(t)) + εβk
(
Xε
1(t), . . . , X

ε
n(t)

)
,

Xk(0) = xk ∈ R2, k ∈ {1, . . . , n}, 0 < ε≪ 1.
(15)

The slow motion for this system is the projection of Xε(t) =
(
Xε
1(t), . . . , X

ε
n(t)

)

on Ξ : Y εt = Y (Xε
t/ε). As in the one-degree-of-freedom case, the processes Y εt does

not converge as ε ↓ 0. But one can regularize the problem, adding small noise to
the equation: Replace σk in (14) by

√
κσk, and let Xε,κ

t be the solution of (14)
after this change. The processes Y ε,κt = Y (Xε,κ

t/ε ), 0 ≤ t ≤ T , converge as ε ↓ 0, for

a fixed κ > 0, to a diffusion process Y κt on Ξ, under some additional conditions.
Then one can check that the processes Y κt , 0 ≤ t ≤ T , converge as κ ↓ 0 to a
process Yt on Ξ. The process Yt is deterministic inside the n-dimensional pieces of
Ξ and has some stochastic behavior on the edges. The process Yt is independent
of the choice of matrices σk, so that it is determined by the intrinsic properties of
system (15), but not by the random perturbations.
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Bayesian Density Estimation
Jayanta K. Ghosh

Abstract. This is a brief exposition of posterior consistency issues in
Bayesian nonparametrics especially in the context of Bayesian Density
estimation,
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1 Introduction

We describe popular methods of Bayesian density estimation and explore sufficient
conditions for the posterior given data to converge to a true underlying distribution
P0 as the data size increases. One of the advantages of Bayesian density estimates
is that,unlike classical frequentist methods,choice of the right amount of smoothing
is not such a serious problem.

Section 2 provides a general background to infinite dimensional problems of
inference such as Bayesian nonparametrics, semiparametrics and density estima-
tion. Bayesian nonparametrics has been around for about twenty five years but the
other two areas,specially the last, is of more recent vintage. Section 3 indicates in
broad terms why different tools are needed for these three different problems and
then Section 4 focuses on our main problem of interest ,namely,positive posterior
consistency results for Bayesian density estimation.

2 Background

Let X1, X2, . . . , Xn be i.i.d. random variables with unknown common probability
measure P on (R,B), whereR is the real line and B the Borel σ− field. Typically P
lies in some given set of probability measures P . In Bayesian analysis, a statistician
puts a probability measure Π on P equipped with a suitable σ− field BP and
assumes that the unknown P is distributed over P according to Π and, given P ,
X1, X2, . . . , Xn are i.i.d. with common distribution P . This completely specifies
the joint distribution of the random P and the random Xs. Hence, in principle
one can calculate the conditional probability Π(B|X1, X2, . . . , Xn) of P lying in
some subset B. This is the posterior in distinction with Π(B) which is the prior
probability of B. Consistency of posterior to be defined below is a sort of partial
validation of this method of analysis. We now define posterior consistency at
P0. Suppose unknown to the Bayesian statistician,X1, X2, . . . , Xn are i.i.d. ∼ P0,
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where P0 is a given element of P and not random. Suppose that P is also equipped
with a topology and the topology and BP are compatible in the sense that the
neighborhoods B of P0 are BP measurable.

Definition: Π(. |X1, X2, . . . , Xn) is consistent at P0 if for all neighborhoods
B of P0, as n→∞,

Π(B|X1, X2, . . . , Xn)→ 1 a.s P0

This property depends on both Π and P0. It would be desirable to have this
property at various P0’s that seem plausible to the Bayesian who is using this
posterior.

An old result of Doob shows that such a property holds for all but a π−null
set of P0’s. Unfortunately, this result is too weak to settle whether consistency
holds for a particular P0. It is well known that this property holds for a wide class
of priors and all P0’s if P is finite dimensional,e.g., when P is the set of all normal
distributions N(µ, σ2) with mean µ and variance σ2, −∞ < µ < ∞, σ2 > 0. In
contrast the answer is usually no when P is infinite dimensional as in density
estimation.

There are three broad classes of infinite dimensional problems —(fully) non-
parametric inference like making inference about an unknown distribution func-
tion, a semiparametric problem like estimating the point of symmetry of an un-
known symmetrical distribution function, and density estimation. The set P is
different for these three cases. In the first case,which is classical, P is the class
of all probability measures on (R,B). In the third case and, in fact also in the
second, we work instead with the set of probability measures P on (R,B) which
have a density f with respect to the Lebesgue measure. In the first two problems
the set P is equipped with the weak topology and the natural tools are the use
of tail free priors or a theorem of Schwartz(1965). In the third case the natural
topology is that induced by the L1 or the Hellinger metric. The natural tool is a
new theorem that makes use of the notion of metric entropy or packing numbers
for the space of densities in addition to one of Schwartz’s conditions.

3 Notations and other technicalities

3.1 Nonparametrics

We start with the nonparametric problem. Let P be the class of all probability
measures on (R,B); P be equipped with the weak topology and BP the corre-
sponding Borel σ− field. Equivalently, BP is the smallest σ− field which makes
the evaluation maps P 7→ P (A) measurable for each A in B.

The most popular prior on (P ,BP) is the Dirichlet process due to Fergu-
son(1973,1974). It is specified by its finite dimensional distributions as follows.
Let α be a finite non zero measure on (R,B). Let A1, A2, . . . , Ak form a measur-
able partition. Then P (A1), P (A2), . . . , P (Ak) have a finite dimensional Dirichlet
distribution with parameters α(A1), α(A2), . . . , α(Ak). If α(Ai) > 0, i = 1, 2, . . . , k
then this distribution has a density with respect (k−1) dimensional Lebesgue mea-
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sure that has the form

Γ(R)
∏k
1 Γ(α(Ai))

k∏

1

p
α(Ai)−1
i , 0 < pi,

k∑

1

pi = 1

If k = 2, one gets the beta distribution. Integrating out p1 one gets

E(P (Ai)) = α(Ai)/α(R) = ᾱ(Ai). (1)

It can be shown that the posterior given X1, X2, . . . , Xn is again a Dirichlet with
α+

∑n
1 δXi , in place of α, where δXi is the point mass at Xi. Using this fact and

(1), one gets immediately,

E (P (A)|X1, X2, . . . , Xn) =
α(R)

α(R) + n
ᾱ(A) +

n

α(R) + n

(
1

n

∑
δXi(A)

)
(2)

which is a convex combination of the prior guess ᾱ(A) and the frequentist
nonparametric maximum likelihood estimate Pn(A) = 1

n

∑
δXi(A). The weights

reflect the Bayesian’s confidence in prior guess. One can elicit or choose ᾱ(.) and
α(R) — and hence α(.)— from these considerations.

We denote the Dirichlet process by Dα.
Proposition. If Π is Dα and B is a weak neighborhood of true P0, then

Π (B|X1, X2, . . . , Xn)→ 1 a.s. (P0), i.e., posterior consistency holds for all P0.
At the heart of this fact is the property of being tailfree,vide Ferguson(1974),

which allows one to reduce an infinite dimensional problem to a finite dimensional
problem and invoke posterior consistency for the latter. This idea as well as the
introduction of Dirichlet for another infinite dimensional problem goes back to
Freedman(1963).

3.2 Semiparametrics

We start with a famous example of Diaconis and Freedman(1986). Suppose we
wish to make inference about θ and Pθ(.) = P (. − θ) where θ is real and P (.) is
symmetric around zero. To put a prior distribution for Pθ one first chooses a P ′

using a Dα, symmetrizes P ′ to get P and independently chooses θ. Diaconis and
Freedman(1986) show that the posterior for θ need not be consistent in the weak
topology.

Various people have observed that semiparametrics should involve probability
measures with densities but the Dirichlet assigns probability one to the set of
discrete measures. However choosing priors on densities is not enough.

Ghosal, Ghosh and Ramamoorthi(1998) have pointed out that one may argue
that the Diaconis–Freedman counter example occurs because of the breakdown of
the tailfree property. They show that posterior consistency can be proved provided
a condition used by Schwartz(1965) holds. Priors for which posterior consistency
holds are exhibited in Ghosal, Ghosh and Ramamoorthi(1998).

The version of Schwartz’s(1965) theorem one has to use for this purpose is
given below. We now work with P = the set of probability measures P having a
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density f with respect to Lebesgue measure. For two such probability measures
P1, P2, with densities f1, f2 the Kullback–Leibler number K(P1, P2) is defined as∫
R
f1 log f1

f2
dx.

K(P1, P2) is always ≥ 0 and may be ∞. It is not a metric but measures
the divergence between P1 and P2 with the extreme tail of the density playing an
important role.

Theorem 1 Suppose P0 belongs to the Kullback–Leibler support of Π,i.e., for
all δ > 0,

Π{K(P0, P ) < δ} > 0 (3)

Then Π (B|X1, X2, . . . , Xn)→ 1 a.s. (P0), for all weak neighborhoods B of P0.

As Ghosal, Ghosh and Ramamoorthi(1998) show property(3)—unlike the tail-
free property — continues to hold even with the addition of a finite dimensional
parameter.

For later reference as well as completeness we record Schwartz’s(1965) theorem
in its original form and an extension due to Barron(1988,1998).

Theorem 2 Let Π be a prior on P, and P0 ∈ B. Assume the following
conditions:

1. Π(K(P0, P ) < δ) > 0 for all δ > 0;

2. There exists a uniformly consistent sequence of tests for testing H0 : P = P0
vs. H1 : P ∈ Bc, i.e., there exists a sequence of tests φn(X1, X2, . . . , Xn)
such that as n→∞,

EP0φn(X1, X2, . . . , Xn)→ 0 and inf
P∈Bc

EPφn(X1, X2, . . . , Xn)→ 1.

Then Π(B|X1, X2, . . . , Xn)→ 1 a.s. P0.

Theorem 3 ((Barron(1988,1998))) Let Π be a prior on P, and P0 be in
P and B be a neighborhood of P0. Assume that Π(K(P0, P ) < δ) > 0 for all ǫ > 0.
Then the following are equivalent.

1. There exists a β0 such that

P0{Π(Bc|X1, X2, . . . , Xn) > e−nβ0 infinitely often} = 0;

2. There exist subsets Vn,Wn of P, positive numbers c1, c2, β1, β2 and a se-
quence of tests {φn(X1, X2, . . . , Xn)} such that

(a) Bc = Vn ∪Wn,

(b) Π(Wn) ≤ C1e−nβ1,
(c) P0{φn(X1, X2, . . . , Xn) > 0 infinitely often} = 0 and

infP∈Vn EPφn ≥ 1− c2e−nβ2 .
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4 Density estimation

4.1 Dirichlet mixture of Normals

We illustrate with what seems to be currently the most popular and successful
Bayesian method, first proposed by Lo(1984) and implemented in the early nineties
via Markov Chain Monte Carlo(1994) by Escobar, Mueller and West (94).

Choose a random P ′ ∼ Dα. Since P ′ is discrete, as observed before,form a
convolution with a normal density N(0, h). Let P = P ′ ∗N(0, h).

Since the smoothness of P depends on h and one does not know how much
smoothness is right, put a prior(usually, inverse gamma)on h also. This completes
the specification of a prior,which is often called a Dirichlet mixture of normal. It
turns out that for MCMC to be feasible one needs α also to be normal. Simula-
tions and heuristic calculations show that one can improve the rate of convergence
by adding a location and scale parameter to α and by putting a prior on these
parameters also. The following discussion can handle these refinements as well as
general nonnormal α. However for the normal α,one can supplement the discussion
below with non trivial heuristic argument that throws light on how convergence
takes place. For lack of space the heuristic argument will not be given.

4.2 Posterior consistency for general priors

The basic theorem is the following which improves on an earlier result of Bar-
ron,Schervish and Wasserman(1997).

Let P0 ⊂ P . For δ > 0, the L1− metric entropy of P0, denoted by J(δ,P0) is
log a(δ), where a(δ) is the minimum over all k such that there exist P1, P2, · · · , Pk
in P with P′ ⊂ ∪k1{P : ‖P − Pi‖1 < δ}.
Theorem 4 (Ghosal,Ghosh and Ramamoorthi) Let Π be a prior on P.

If P0 ∈ P and Π(K(P0, P ) < ǫ) > 0 for all ǫ > 0. If for each ǫ > 0 there is a

δ < ǫ, c1, c2 > 0, β < ǫ2

2 and also Pn such that
1. Π(Pcn) < C1e

−nβ1 for large n

2. J(δ,Pn) < nβ

then Π(B|X1, X2, . . . , Xn)→ 1 a.s.P0n for all L1-neighborhoods B of P0.

The proof of this theorem is based on the result of Barron recorded in Section
3. The first assumption is the condition assumed in Theorem 1 in Section 3 while
the two remaining assumptions take care of conditions(2) and (3) of Barron’s
Theorem.

4.3 Application to Dirichlet mixture of normals

One has to have two sets of tools to verify the two conditions in Theorem 4. The
set or sieve Pn for verifying the condition is: fix a δ and β as in the theorem then

Pn =

{
P = P ′ ∗N(0, h);P ′[−√n,√n] > 1− δ, h > c(δ, β)√

n

}
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Various sufficient conditions which entail application of Theorem 4 are given
in Ghosal, Ghosh and Ramamoorthi(97. For example if P0 is smooth unimodal
with finite Shannon entropy and compact support, like the uniform on [a, b] then
P0 belongs to the Kullback–Leibler support of the prior. For unbounded support
the tails of P0 and ᾱ have to be compatible in a certain way.

4.4 Concluding Remarks

Theorem 4 can also be used to study posterior consistency for Gaussian process
priors and Bayesian histograms (Barron(1988,1998) and Ghosh and Ramamoor-
thi(1998)).

One may also ask whether the Bayes estimate E(P |X1, X2, . . . , Xn) is con-
sistent. It is easy to show that posterior consistency in the weak topology or the
topology induced by L1 norm implies Bayes consistency.

One may also ask questions about rates of convergence and non-informative
or default priors which attain a minimax rate of convergence for the posterior or
Bayes estimates. This issue is currently under investigation by Ghosal,Ghosh and
van der Vaart and by Wassserman and Shen.

A final important remark. In recent work Barron(1998) shows if we focus on
the cumulative Kullback-Leibler predictive loss (also called the entropy loss) an
elegant consistency theory can be built up using only Kullback-Leibler support.
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Lattice Point Problemsand the Central Limit Theoremin Euclidean Spaces
F. Götze1

Abstract. A number of problems in probability and statistics lead to ques-
tions about the actual error in the asymptotic approximation of nonlinear
functions of the observations. Recently new methods have emerged which
provide optimal bounds for statistics of quadratic type. These tools are
adaptions of methods which provide sharp bounds in some high dimensional
lattice point remainder problems and solve some problems concerning the
distribution of values of quadratic forms.
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Keywords and Phrases: Edgeworth expansion, U -statistics, Central Limit
Theorem, lattice point rest, ellipsoids, irrational quadratic forms

1. Introduction.
Let X1, . . . , Xn denote independent and identically distributed random vectors in
Rd, d ≥ 1.
Example 1.1 Assume that X1 takes values in the finite set {−1, 1}d ⊂ Rd with
equal probability 2−d. Write

Sn = n−1/2(X1 + . . .+Xn).

By the Central Limit Theorem (CLT) the sequence of random vectors Sn con-
verges in distribution to a multivariate Gaussian distribution with mean zero and
identity covariance matrix. Let |m|2 = 〈m,m〉 denote the d-dimensional Euclidean
norm and scalar-product. A number of statistical problems require to determine
asymptotic approximations for the distribution of test statistics of type

Tn = |Sn|2.

It is well known that the distribution function (d.f.) P {Tn ≤ v} converges to the
χ2–distribution function with d degrees of freedom, say χ(v), for all v ∈ R. In
order to measure the error of this approximation we shall use the Kolmogorov
distance and would like to determine the optimal exponents α > 0 such that for a
constant c > 0 independent of n

(1.1) δn = sup
v≥0
|P{Tn ≤ v} − χ(v)| ≤ cn−α.

1Research supported by the SFB 343, ’Diskrete Strukturen in der Mathematik’, Bielefeld.
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Here Tn ≤ v means that the sum
√
nSn is contained in a ball Bvn = {|x| ≤ √v n}.

General estimates in the multivariate CLT (Sazonov [Sa], Bhattacharya and
Rao [BR]) established the rate α = 1/2 uniformly in the class of convex sets.
Hence for balls and ellipsoids the achievable rate α should be at least 1/2.

In Example 1.1 the sum Sn takes values in a lattice. By the local limit theorem
its discrete density may be approximated by a Gaussian density such that

P
{
Sn =

m√
n

}
= ϕn(m)

(
1 +O(n−1)

)
, ϕn(m) :=

1

(2πn)d/2
exp

{

− |m|
2

2n

}

.

Hence bounds in (1.1) can be derived from estimates of

sup
v
| ∑
m∈Bvn∩Zd

ϕn(m)− χ(v)|.

Since the weights ϕn(m) are ’smoothly’ depending on m, the problem might be
further reduced to the case of constant weights, which leads to a problem about
counting the lattice points in Bvn. In this way Esseen [E] and Yarnold [Y] have
proved

Theorem 1.2.

(1.2) P{Tn ≤ v} − χ(v) = exp{−v/2}∆(Bvn) +O(n−1).

Here ∆(A) denotes the relative lattice point remainder given by

(1.3) ∆(A) :=
volZA− volA

volA
,

with volZA and volA denoting the number of points of the standard lattice Zd in
A and the volume of A respectively.

The relation (1.2) obviously establishes for Example 1.1 an equivalence between
bounds in the lattice point remainder problem for ellipsoids and bounds of type
(1.1) in the multivariate CLT. Indeed, Landau [L1] and Esseen [E] proved

∆(Bs) = O
(
s−d/(d+1)

)
resp. δn = O

(
n−d/(d+1)

)
.

Note though that Esseen’s bound holds for balls and arbitrary i.i.d. random vec-
tors Xj with finite fourth moment and identity covariance operator, where an
equivalence of type (1.2) is not known.

Example 1.1 provides as well lower bounds for the error. Notice that nTn
assumes integer values in the interval [−dn, dn]. Distributing probability 1 among
these values there exists an integer j such that

P {Tn = j n−1} ≥ c n−1, c = 1/(2d+ 1).

Comparing the piecewise constant function v 7→ P {Tn ≤ v} with the smooth
limit v 7→ χ(v), we find the lower bound δn ≥ cn−1. Hence the rates α in (1.1)
are restricted to 1/2 ≤ α ≤ 1.

This lecture is organized as follows. Section 2 contains results in the CLT
for quadratic statistics in Euclidean spaces. Corresponding results in lattice point
problems are described in section 3. Section 4 contains applications to distributions
of values of positive definite and indefinite forms. Finally, in Section 5 we describe
inequalities for trigonometric sums which are essential for these results.

A major part of the results in this lecture represents joint work with V. Bentkus.
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2. Approximations in the CLT for Quadratic Statistics.

The CLT in Euclidean Spaces. Let X,X1, X2, . . . be a sequence of i.i.d. random
vectors taking values in the d-dimensional Euclidean space Rd including the case
d =∞ of infinite dimensional real Hilbert spaces. We assume thatX has mean zero
and |X| has a finite second moment. Then the sums Sn converge weakly to a mean
zero Gaussian random vector, say G, with covariance equal to the covariance of X.
Assume that G is not concentrated on a proper subspace of Rd. Let Q denote a
bounded linear operator on Rd. Consider the quadratic form Q[x] = 〈Qx, x〉 and
assume that Q is non-degenerated, that is kerQ =

{
0
}

.
The distribution of the quadratic form Q[G] is determined by its distribution

function, say χ(v), and may be represented up to a shift as the distribution of a
finite (resp. infinite) weighted sum of squares of i.i.d. standard Gaussian variables.

Rates of approximation in (1.1) in the CLT for Tn = Q[Sn] have been inten-
sively studied especially in the infinite dimensional case in view of applications to
non parametric goodness-of-fit statistics based on empirical distributions. Unfor-
tunately the techniques of multivariate Fourier inversion of earlier results like that
of Esseen [E] cannot be applied here. Several approaches have been developed for
this problem.

A probabilistic approach is based on the Skorohod embedding resp. the KMT–
method and provided bounds of order α = 1/4, Kiefer [Ki], resp. O(n−1/2 logn),
Csörgö [Cs]. An analytic approach is based on a Weyl type inequality for charac-
teristic functions, see (5.4). Using this technique, rates α = 1 − ε for any ε > 0
have been proved in (1.1), see [G1] and for refinements Bentkus and Zalesskii [BZ]
and Nagaev and Chebotarev [NC]. Moreover, using methods like (5.4) the approx-
imation χ(v) may be refined by asymptotic expansions in (1.1) up to an error of
order O(n−k/2+ε) for polynomials of Sn of degree k ≥ 2, see[G3].

Results providing optimal bounds of order α = 1 are based on techniques used
in related bounds for the corresponding lattice point problems. For diagonal qua-
dratic forms and vectors X with independent coordinates the rate α = 1 was
proved for d ≥ 5 in [BG1]. Here the additive structure of Q[x] allows to apply
a discretization of type (5.5) and a version of the Hardy-Littlewood method of
analytic number theory.

New tools described in (5.5)–(5.6) lead to the following result.

Theorem 2.1. [BG2]. Let EX = 0 and β4 = E |X|4 < ∞. Assume that d ≥ 9
or d =∞. Then

(2.4) sup
v

∣

∣

∣ P
{
Q[Sn] ≤ v

}
− P

{
Q[G] ≤ v

} ∣
∣

∣ = O
(
n−1

)
.

The constant in this bound depends on β4, the eigenvalues of Q and the covariance
operator of G only.

Remark 2.2.
1) For d = 8 the bound O(n−1 lnδ n) holds with some δ > 0.

2) Similar results like (2.4) hold forQ[x−a] involving an arbitrary center a ∈ Rd.
Here the approximation by the limit d.f. P

{
Q[G− a] ≤ v

}
needs to be improved

by a further expansion term, say n−1/2χ1(v; a), which vanishes for a = 0.
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3) For dimensions d > 9 including the case d = ∞ uniform bounds in (2.4),
for Q = Id say, depend on moments of X and on lower bounds for a finite number,
say m, of the largest eigenvalues of the covariance operator of X. For such bounds
the minimal number m ≤ d of eigenvalues needed has recently been determined to
be m = 12, see [GU].

These results can be extended as follows.

U -Statistics. Let X,X1, . . . , Xn be i.i.d. random variables taking values in an
arbitrary measurable space (X , B) and let g : X → R, h : X 2 → R denote real-
valued measurable functions. Assume that h(x, y) = h(y, x), for all x, y ∈ X and
Eh(x,X) = 0 for almost all x ∈ X . Consider the so called degenerated U -statistic

(2.5) Tn =
1

n

∑
1≤i<j≤n

h(Xi, Xj) +
1√
n

∑
1≤i≤n

g(Xi),

and write βs = E
∣∣g(X)

∣∣s and γs = E
∣∣h(X1, X2)

∣∣s. Assuming that γ2 is positive

and β2 + γ2 is finite, the U -statistic Tn converges to a weighted χ2–type distri-
bution, say χ. Using a further expansion term, say χ1, the problem is to derive
explicit estimates for the error

(2.6) δn = sup
v
|P{Tn ≤ v} − χ(v) − n−1/2χ1(v)|.

Rates of order δn = o(n−1/2) have been proved by Korolyuk and Borovskich [KB].
Moreover, for degenerated U -statistics of any degree k ≥ 2 asymptotic approxi-
mations have been established up to errors δn = O(n−k/2+ǫ) in [G2].

Using similar techniques as in Theorem 2.1 the following explicit bound with
optimal rate α = 1 holds.

Theorem 2.3. [BG4]. Let qj denote the eigenvalues (ordered by decreasing ab-
solute value) of the Hilbert-Schmidt operator induced on L2(X ) by the kernel h.
Write γs,r = E

(
E
(∣∣h(X1, X2)

∣∣s ∣∣X2
))r
and σ2 := γ2. If q13 6= 0,

(2.7) δn ≤ C

n

( β4

σ4
+

β23
σ6

+
γ3

σ3
+

γ2,2

σ4

)

, where C ≤ exp
{ cσ

|q13|
}

.

Remark 2.4. 1) In cases where the expansion term χ1 vanishes the condition
q9 6= 0 suffices to prove a similar bound.

2) The result can be extended to von Mises statistics, i.e. statistics including
diagonal terms h(Xj , Xj) := d(Xj), where d(X) has mean zero. This allows to
consider as well statistics like Tn := |Sn − a|2.

It is likely that improvements in lattice point approximation problems (see the
Conjecture in Section 3) allow to prove error bounds of order O(n−1) in Theorems
2.1 and 2.3 for dimensions 5 ≤ d ≤ 8 as well.

3. Lattice Point Problems.
For a symmetric positive definite matrix Q consider the quadratic form
Q[x] = 〈Qx, x〉 on Rd and the corresponding ellipsoid

Es :=
{
x ∈ Rd : Q[x] ≤ s

}
, for s ≥ 0.
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Special Ellipsoids. Using similar arguments as for δn in Section 1 a correspond-
ing lower bound can be shown for the lattice point remainder ∆(Es) (for Q = Id),
namely

(3.1) ∆(Es) = Ω(s−1), d ≥ 1.

For balls of dimensions 2 ≤ d ≤ 4, the lattice point remainder ∆(Es) admits
sharper lower bounds, e.g.

Ω(s−3/4 log1/4 s), d = 2, Ω(s−1 log1/2 s), d = 3, and Ω(s−1 log log s), d = 4,

due to Hardy [Ha], Szegö [Sz] and Walfisz [W2] respectively. The upper bound

(3.2) ∆(Es) = O(s−1), d ≥ 5

has been shown in a number of special cases. It holds for ellipsoids which are
rational, that is the matrix Q is a multiple of a matrix with rational coefficients.
Otherwise Q is called irrational. This result is due to Landau [L2] and Walfisz [W1]
and depends on the rational coefficients in a non uniform way. For a detailed
discussion see the monograph by Walfisz [W2].

For diagonal forms Q[x] =
∑d
j=1 qjx

2
j with arbitrary qj > 0, (3.2) is due to

Jarnik [J1]. Moreover, if Q is irrational, Jarnik and Walfisz [JW] have shown that
the bound

(3.3) ∆(Es) = o(s−1), d ≥ 5

holds and is best possible for general irrational numbers qj .

General Ellipsoids. For this class Landau [L1] obtained ∆(Es) = O(s−1+λ) with
λ = 1/(d + 1) for d ≥ 1, using Dirichlet series methods. His result has been ex-
tended by Hlawka [Hl] to convex bodies with smooth boundary and strictly pos-
itive Gaussian curvature, and improved to O(s−1+λ), with some λ = λ(d) > 0,
λ < 1/(d+ 1), by Krätzel and Nowak [KN1, KN2].

Assume without loss of generality that the smallest eigenvalue of Q is 1 and
denote the largest eigenvalue by q. Hence q ≥ 1. The following results provide
optimal uniform bounds of type (3.2) resp. (3.3) for general ellipsoids.

Theorem 3.1. [BG3, BG5]. There is a constant c > 0 depending on d only and
a function ρ(s) ∈ [0, 2], depending on Q, see (5.2), such that for all s ≥ 1

(3.5) sup
a∈Rd

∆(Es + a) ≤ c qd s−1
(
s−λ + ρ(s)

)
, for d ≥ 9,

where λ
def
=
1

2

[ d− 1
2

]
− 1, and

lim
s→∞

ρ(s) = 0 if and only if Q is irrational.

If d = 8 the bound supa∈Rd ∆(Es + a) ≤ c q8s−1 ln2 (s+ 1) still holds.

The error for generic forms Q[x] should be much smaller than for rational forms,
which can be seen by the following heuristic argument. Let C(m) denote the
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cube of side length 1 centered at a lattice point m ∈ Zd and let Is denote the
indicator function of Es. Define ξm as function of a randomly chosen Q as ξm =
Is(m)−

∫
C(m) Is(x) dx. Then |ξm| ≤ 1 and we may assume that the ξm have mean

zero. Let Ds denote the set of lattice points m such that C(m) intersects ∂Es.
Note that ξm = 0 for m 6∈ Ds. Then

(3.4) ∆(Es) volEs =
∑

m∈Zd
ξm =

∑

m∈Ds
ξm.

Since Es has diameter proportional to r =
√
s, the sum in (3.4) extends over

O(rd−1) nonzero summands only. If the random variables ξm are approximately
independent the CLT implies for r → ∞ with probability tending to 1 that
(3.4) is smaller than r(d−1)/2 log r. Hence one would expect that ∆(Es) =
O(s−(d+1)/4 log s). Indeed, Jarnik [J2] proved for d ≥ 4 an upper bound of or-
der O(s−d/4+ε) for Lebesgue almost all diagonal forms. For generic forms Lan-
dau [L3] established ∆(Es) = Ω(s−(d+1)/4). The results described so far suggest
the following hypothesis about worst and generic case errors.

Conjecture. For any ǫ > 0 the relative lattice point remainder is of order

∆(Es + a) = O(s−1), d ≥ 5, for all Q and a,

= o(s−1), d ≥ 5, for irrational Q,

= O(s−(d+1)/4+ǫ), d ≥ 2, for Lebesgue almost all Q and a.

4. Distribution of Values of Quadratic Forms.

Positive Definite Forms. For fixed δ > 0 consider the shells Es+δ \ Es =
{x ∈ Rs : s ≤ Q[x] ≤ s+ δ}. Theorem 3.1 implies

Corollary 4.1. For d ≥ 9 and irrational Q we have

(4.1) lim
s→∞

volZ
(
Es+δ \Es

)

vol(Es+δ \Es)
= 1.

This result may be applied as well to shrinking intervals of size δ = δ(s) → 0
as s tends to infinity. The quantity vol(Es+δ \Es) measures the number of values
of a positive quadratic form in an interval (s, s+δ], counting these values according
to their multiplicities.

Let s and n(s) denote successive elements of the ordered set Q[Zd] of values
of Q[m]. Davenport and Lewis [DL] conjectured that the distance between succes-
sive values, that is n(s)− s, converges to zero as s tends to infinity for irrational
quadratic forms Q[x] and dimensions d ≥ 5. They proved in [DL] that there ex-
ists a dimension d0 such that for all d ≥ d0 and any given ε > 0 and any lattice
point m with sufficiently large norm |m| there exist another lattice point m ∈ Zd
such that

∣∣Q[m+m]−Q[m]
∣∣ < ε. This does not rule out the possibility of ar-

bitrary large gaps between possible clusters of values Q[m], m ∈ Zd. This result
has been improved by Cook and Raghavan [CR], providing the bound d0 ≤ 995.
Corollary 4.1 now solves this problem for d ≥ 9.

Define the maximal gap between the values Q[m− a], m ∈ Zd in the inter-
val [τ,∞) as d(τ ;Q, a) = sups≥τ

(
n(s)− s

)
. Then (4.1) implies
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Corollary 4.2. [BG5]. Assume that d ≥ 9 and that Q[x] is positive definite.
If Q is irrational then supa∈Rd d(τ ;Q, a)→ 0, as τ →∞.
Indefinite Forms and the Oppenheim conjecture. Assume that Q is irra-

tional and indefinite. Consider the infimum value of Q[m] for nonzero lattice
points m ∈ Zd

M(Q) = inf
{∣∣Q[m]

∣∣ : m 6= 0, m ∈ Zd
}

.

Oppenheim [O1] conjectured that M(Q) = 0, for d ≥ 5 and irrational indefinite Q,
and has shown that this implies that the set Q[Zd] is dense in R for d ≥ 3, see [O2].
This conjecture has been proved, e.g. for diagonal forms and d ≥ 5 by Davenport
and Heilbronn [DH] and for general forms and d ≥ 21 by Davenport [Da]. For
a review, see Margulis [Mar2]. It has been finally established for all dimensions
d ≥ 3 by Margulis [Mar1].

Let Cs denote a d–dimensional cube of side length
√
s and center 0. The

results of Theorem 3.1 are a consequence of more general asymptotic expansion
of µs{Q[x] ≤ β} in powers of s−1 for certain ’smooth’ distributions µs on Zd with
support in Cs, see [BG5, Theorem 2.1]. For indefinite forms this result yields the
following refinement of Oppenheim’s conjecture for dimensions d ≥ 9.

For a sufficiently small positive constant, say c0 = c0(d), let d(s) denote the
maximal gap in the finite set of values Q[m] such that −c0s ≤ Q[m] ≤ c0s and
m ∈ Cs/c20 ∩ Z

d. Then

Theorem 4.3. [BG5]. For d ≥ 9 the maximal gap satisfies

d(s)≪d q
3d/2

(
s−λ + ρ(s)

)
for s ≥ c−10 q3d/2,

with ρ(s) ≤ 2 defined in (5.2) and λ given in Theorem 3.1.

The quantitative version of Oppenheim’s conjecture by Dani and Margulis [DM]
describes the uniformity of the distribution of the set of values Q[Zd ∩ Cs] for
star-shaped sets like the cubes Cs introduced above. For a fixed interval [α, β] let
Vα,β denote the set of x ∈ Rd such that Q[x] ∈ [α, β]. Eskin, Margulis and Mozes
proved the following result using ergodic theory for unipotent groups.

Theorem 4.4. [EMM]. For any irrational indefinite form Q of signature (p, q)
with q ≥ 3,

(4.3)
volZ
(

Vα,β ∩Cs
)

vol
(

Vα,β ∩ Cs
) = 1 + o(1), as s→∞.

In particular (4.3) holds for all indefinite irrational forms with d ≥ 5.

Using expansion results for arbitrary forms, the error term in this convergence
result can be explicitly estimated for d ≥ 9, see [BG5, Theorem 2.6].

5. Inequalities for Characteristic Functions and Trigonometric
Sums.
In order to prove the results of Sections 2–4, characteristic functions of Q[Sn] and
weighted trigonometric sums, say f(t), are used. In the latter case the weights are
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given by a uniform distribution on the lattice points in the cube C2s smoothed
at the boundary of C2s by convolutions with uniform distributions on some suf-
ficiently small cubes, retaining constant weights in the center part Cs ⊂ C2s. A
simplified version of these weighted trigonometric sums, used in the explicit bounds
of Theorems 3.1 and 4.3, is defined as follows. Let

(5.1) ϕa(t; s) =
∣∣∣
(
volZ Cs

)−3 ∑
xj∈Zd∩Cs

exp
{
itQ[x1 + x2 + x3 − a]

}∣∣∣.

Note that ϕa(t; s) is normalized so that |ϕa(t; s)| ≤ ϕa(0; s) = 1. Define

γ
(
s, T

)
= sup

a
sup

s−1/2≤t≤T
ϕa(t; s).

It can be shown that lims→∞ γ
(
s, T

)
= 0 iff Q is irrational. Finally, given d ≥ 9

and ε with 0 < ε < κ := 1− 8/d, the characteristic ρ(s) of Theorem 3.1 and 4.3 is
given by

(5.2) ρ(s) = inf
T≥1

(
T−1 + γ

(
s, T

)κ−ε
T ε
)
.

The connections between the probability resp. counting problems and f(t) are
made by means of Fourier inversion inequalities based on Beuerling type functions,
see Prawitz [Pr], which bound δn resp. |∆(Es)| by

(5.3)
1∫
−1
|f(t)− g(t)| t−1 dt+

1∫
−1

(|f(t)|+ |g(t)|) dt.

Here g(t) is the continuous approximation to f(t) replacing the distribution of Sn
by a Gaussian distribution resp. the counting measure by the Lebesgue measure.

In the CLT the following version of Weyl’s [We] difference scheme for sums of
Rd–valued, independent random vectors, say U, V (with identical distribution) and

Z,W is used. Let X̄ denote an independent copy of X and let X̃ = X − X̄ be its
symmetrization. The inequality

(5.4)
∣

∣

∣ E exp{i tQ[U + V + Z +W ]}
∣

∣

∣

2 ≤ E exp{2 i t 〈QŨ, Z̃〉},

now reduces the estimation of f(t) in (5.3) to bounds of order O(n−1+ε) for con-
ditional linear forms, but in a restricted domain |t| ≤ n−ǫ only. This leads to rates
a = 1− ε in (1.1), see [G1].

In order bound the integral (5.3) by O(n−1), this Weyl step is followed by a
discretization step for positive definite functions H : Rd → R. For even n = 2 l
and binomial weights pn(k) =

(
n
l−k
)
/2n, bounds like

(5.5) EH(Sn) ≤ 1

n

n∑

j=1

E
(∑

|k|≤l
pn(k)H

(
k n−1/2 X̃j

))
,
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reduce the support of X to Zd and replace characteristic functions of Sn by
weighted trigonometric sums.

Finally, for general Q, the desired bounds for weighted trigonometric sums,
say f(t), of type (5.1), are based on the following ’correlation’ bound

(5.6)
∣∣f(t)f(t+ ε)

∣∣ ≤ c qd
((
εs
)−d/2

+ εd/2
)

for all t ∈ R and ε ≥ 0.

For t = 0 we have f(t) = 1 and (5.6) becomes a ’double large sieve’ estimate
for distributions on the lattice, see e.g. Bombieri and Iwaniec [BI]. The inequality
(5.6) implies for t0 ≤ t1 with 0 < δ ≤ |f(t0)|, |f(t1)| ≤ 2 δ that either

|t0 − t1| ≤ λr = c1δ
−4/ds−1 or |t0 − t1| ≥ κ = c2δ

−4/d.

Thus either the arguments t0 and t1, where the trigonometric sums are of the same
(large) order δ, nearly coincide or their distance has to be ’large’ (dependent on
δ and d). Hence the set of arguments t, where f(t) assumes values in an interval
[δ, 2δ] like Aδ = {t ≥ v : δ ≤ |f(t)| ≤ 2δ} with v := s−2/d, may be roughly
described as a set of intervals of size at most δr separated by ’gaps’ of size at
least κ. This allows to estimate part of (5.3) approximately as

∫

Aδ

|f(t)| dt
t
≪

L∑

l=0

δ λr
1

v + lκ
≪ s−1δ1−8/d log

1

δ
,

with some L such that Lκ ≤ 1. The sum of these parts for δ = 2−l, l ∈ N is now
of order O(s−1), provided that d > 8, which explains the dimensional restriction
of this method.
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[BZ] Bentkus, V., and Zalesskĭı, B., Asymptotic expansions with nonuniform
remainders in the central limit theorem in Hilbert space, Lithuanian Math.
J 25 (1985), 199–208.

[BG1] Bentkus, V. and Götze, F., Optimal rates of convergence in the CLT for
quadratic forms, Ann. Prob. 24 (1996), 468-490.

[BG2] , Uniform rates of convergence in the CLT for quadratic forms
in multidimensional spaces, Probab. Theory Relat. Fields 109 (1997),
367–416.

[BG3] , On the lattice point problem for ellipsoids, Acta Arithm. 80
(1997), 101–125.

[BG4] , Optimal bounds in non-Gaussian limit theorems for U -statistics,
Preprint 97–077 SFB 343, Universität Bielefeld (1997) (to appear in An-
nals Probab. 1999).

[BG5] , Lattice Point Problems and Distribution of Values of Quadratic
Forms, Preprint 97-125, SFB 343, University of Bielefeld (1997).

[BR] Bhattacharya, R. N. and Ranga Rao, R., Normal Approximation and
Asymptotic Expansions, Wiley, New York, 1986.

Documenta Mathematica · Extra Volume ICM 1998 · III · 245–255



254 F. Götze

[BI] Bombieri, E. and Iwaniec, H., On the order of ζ(1/2 + it), Annali Scuola
Normale Superiore–Pisa (4) 13 (1986), 449–472.

[CR] Cook, R.J. and Raghavan, S., Indefinite quadratic polynomials of small
signature, Monatsh. Math. 97 (1984), no. 3, 169–176.

[Cs] Csörgo, S., On an asymptotic expansion for the von Mises ω2–statistics,
Acta Sci. Math. 38 (1976), 45–67.

[DM] Dani, S. G. and Margulis, G. A., On orbits of unipotent flows on homo-
geneous spaces, Ergod. Theor. Dynam. Syst. 4 (1984), 25–34.

[Da] Davenport, H., Indefinite quadratic forms in many variables (II), Proc.
London Math. Soc. 8 (1958), no. 3, 109–126.

[DH] Davenport, H. and Heilbronn, H., On indefinite quadratic forms in five
variables forms, Proc. London Math. Soc. 21 (1946), 185–193.

[DL] Davenport, H. and Lewis, D. J., Gaps between values of positive definite
quadratic forms, Acta Arithmetica 22 (1972), 87–105.

[EMM] Eskin, A., Margulis, G. A. and Mozes, S., Upper bounds and asymptotics
in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2)
147 (1998), 93–141.

[Es] Esseen, C.G., Fourier analysis of distribution functions, Acta Math. 77
(1945), 1–125.

[G1] Götze, F., Asymptotic expansions for bivariate von Mises functionals, Z.
Wahrsch. verw. Geb. 50 (1979), 333–355.

[G2] , Expansions for von Mises functionals, Z. Wahrsch. verw. Geb.
65 (1984).

[G3] , Edgeworth expansions in functional limit theorems, Ann. Probab.
17 (1989).

[GU] Götze F. and Ulyanov, V. V., Uniform Approximations in the CLT for
Balls in Euclidean Spaces (1998) (In preparation).

[Ha] Hardy, G. H., On Dirichlet’s divisor problem, Proc. London Math. Soc.
(1916), 1–25.
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Applications ofIntentionally Biased Bootstrap Methods
Peter Hall and Brett Presnell

Abstract. A class of weighted-bootstrap techniques, called biased-
bootstrap methods, is proposed. It is motivated by the need to adjust
more conventional, uniform-bootstrap methods in a surgical way, so as
to alter some of their features while leaving others unchanged. Depend-
ing on the nature of the adjustment, the biased bootstrap can be used
to reduce bias, or reduce variance, or render some characteristic equal
to a predetermined quantity. More specifically, applications of bootstrap
methods include hypothesis testing, variance stabilisation, both density
estimation and nonparametric regression under constraints, ‘robustifica-
tion’ of general statistical procedures, sensitivity analysis, generalised
method of moments, shrinkage, and many more.

1991 Mathematics Subject Classification: Primary 62G09, Secondary
62G05
Keywords and Phrases: Bias reduction, empirical likelihood, hypothesis
testing, local-linear smoothing, nonparametric curve estimation, variance
stabilisation, weighted bootstrap

1. Uniform and weighted bootstrap methods

For centuries the sample mean has been recognised as an estimator of the pop-
ulation mean — or in contemporary notation, X̄ =

∫
xdF̂ (x) is an estimator of

µ =
∫
xdF (x), where F̂ denotes the empirical distribution function computed us-

ing a sample drawn from a distribution F . The idea that the sample median is an
estimator of the population median is implicit in work of Galton about 120 years
ago. Thus, the notion that a parameter may be regarded as a functional of a dis-
tribution function, and estimated by the same functional of the standard empirical
distribution, is a rather old one, even though it was perhaps only recognised as a
general principle relatively recently.

Efron’s (1979) classic paper on the bootstrap vaulted statistical science for-
ward from these simple ideas. Efron saw that when substituting the true F by an
estimator F̂ , the notion of a ‘parameter’ could be interpreted much more widely
than ever before. It could include endpoints of confidence intervals or critical
points of hypothesis tests, as well as error rates of discrimination rules. It could
encompass tuning parameters in a wide variety of estimation procedures (even the
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nominal levels of intervals or tests can be regarded as tuning parameters), and
much more.

Another key ingredient of the methods discussed by Efron (1979) was recogni-

tion that in cases where the functional of F̂ could not be computed directly, it could
be approximated to arbitrary accuracy by Monte Carlo methods. This differed in
important respects from several earlier approaches to ‘resampling’, as the idea of
sampling from the sample has come to be known. In particular, neither Maha-
lanobis’ notion of ‘interpenetrating samples’, nor Hartigan’s (1969) ‘subsampling’
approach, directly involve drawing a resample of the same size as the original sam-
ple by sampling with replacement. The methods of Simon (1969, Chapters 23–25)
are closer in this respect to the contemporary bootstrap.

The combination of these two ideas — the substitution or ‘plug in F̂ ’ rule,
and the notion that Monte Carlo methods can be used to surmount computational
obstacles — has been little short of revolutionary. When Monte Carlo simulation is
employed to compute a standard bootstrap estimator, one samples independently
and uniformly from a data set X = {X1, . . . , Xn}, producing a resample X ∗ =
{X∗1 , . . . , X∗n} with the property that

P (X∗i = Xj |X ) = n−1 , 1 ≤ i, j ≤ n . (1.1)

Standard bootstrap methods may be loosely defined as techniques that approxi-
mate the relationship between the sample and the population by that between the
resample X ∗ and the sample X .

The generality of the standard uniform bootstrap may be increased in a num-
ber of ways, for example by allowing the resampled values X∗i to be exchangeable,
rather than simply independent, conditional on X (see e.g. Mason and Newton,
1992); or by retaining the independence but replacing the sampling weight n−1 at
(1.1) by pj , say. In the latter case we shall use a dagger instead of the familiar
asterisk notation, so that there will be no ambiguity about the procedure we are
discussing:

P
(
X†i = Xj

∣∣X
)

= pj , 1 ≤ i, j ≤ n , (1.2)

where
∑
j pj = 1. This ‘weighted bootstrap’ procedure has been discussed exten-

sively (see e.g. Barbe and Bertail, 1995), usually as a theoretical generalisation
of the uniform bootstrap, pointing to a multitude of different modes of behaviour
that may be achieved through relatively minor modification of the basic resampling
idea.

2. Biased bootstrap methods

In ‘standard’ settings, where the appropriate way of applying the bootstrap is rel-
atively clear, the uniform bootstrap offers an unambiguous approach to inference.
Therein lies part of its attraction — there are no tuning parameters to be selected,
for example. However, the lack of ambiguity can also be a drawback. In particular,
the rigidity of the conventional bootstrap algorithm makes it relatively difficult to
modify uniform-bootstrap methods so as to include constraints on the parameter
space. The weighted bootstrap offers a way around this difficulty, by providing an
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opportunity for ‘biasing’ bootstrap estimators so as to fulfill constraints. More-
over, we may interpret the notion of a ‘constraint’ in a very broad sense, like that
of a ‘parameter’. Nevertheless, an unambiguous approach to choosing the weights
pi is required. Biased-bootstrap methods provide a solution to that problem.

The biased bootstrap requires two inputs from the experimenter: the distance
measure, and the constraints. The first is generic to a wide range of problems, and
will be discussed from that viewpoint in section 3. The second is problem-specific,
and will be introduced through nine examples in section 4. A general form of
the biased bootstrap is to choose the weights pi so as to minimise distance from
the distribution at (1.2) to that at (1.1), subject to the constraints being satisfied
(Hall and Presnell, 1998a).

Details of some of the examples in section 4 may be found in Hall and Pres-
nell (1998a,b,c) and Hall, Presnell and Turlach (1998). Examples not treated in
section 4 include hypothesis testing, bagging (bootstrap aggregation), shrinkage,
and applications involving time series data. The latter may be handled by either
modelling the time series as a process with independent disturbances, and applying
the biased bootstrap to those; or by using a biased form of the block bootstrap.

Section 5 will consider potential computational issues. Aids to computation
include estimating equations, protected Newton-Raphson algorithms, and approx-
imate, sequential linearisation. It will be clear that, using such techniques, biased-
bootstrap methods are definitely computationally feasible.

3. Distance measures

For the sake of brevity we shall confine attention to a class of distance measures,
the power divergence distances, introduced by Cressie and Read (1984) and Read
and Cressie (1988). A wider range has been treated by Corcoran (1998) in the
context of Bartlett adjustment of empirical likelihood. See also Baggerley (1998).

Let p = (p1, . . . , pn). For simplicity we assume throughout that
∑
i pi = 1 and

each pi ≥ 0, although in some cases (e.g. power divergence with index ρ = 2) the
case where negative pi’s are allowed has computational advantages. Given ρ 6= 0
or 1, we may measure the distance between the uniform-bootstrap distribution,
punif = (n−1, . . . , n−1), and the biased-bootstrap distribution (with weight pi at
data value Xi) by

Dρ(p) = {ρ (1− ρ)}−1
{
n−

n∑

i=1

(npi)
ρ

}
.

This quantity is always nonnegative, and vanishes only when p = punif . For ρ = 1
2 ,

Dρ(p) is proportional to Hellinger distance. Letting ρ→ 0 we obtain

D0(p) = −
n∑

i=1

log (npi) ,

which equals half Owen’s (1988) empirical log-likelihood ratio. Similarly, D1 may
be defined by a limiting argument; it is proportional to the Kullback–Leibler diver-
gence between p and punif (whereas D0(p) is proportional to the Kullback–Leibler
divergence between punif and p).
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In constructing a biased-bootstrap estimator we would select a value of ρ,
and then compute p̂ = (p̂1, . . . , p̂n) from the sample X = {X1, . . . , Xn} so as to
minimise Dρ(p), subject to the desired constraints being satisfied. If the parameter
value that we wished to estimate was expressible as θ(F ), then its biased-bootstrap

estimator would equal θ(F̂p̂), where F̂p denotes the distribution function of the
discrete distribution that has mass pi at data value Xi for 1 ≤ i ≤ n. Usually the
value of θ(F̂p̂) will not be computable directly, but it may always be calculated
by Monte Carlo methods, resampling from X according to the scheme that places
weight p̂i on Xi.

In some instances, for example outlier reduction (section 4.7), there are ad-
vantages to using ρ 6= 0, since D0(p) becomes infinite whenever some pi = 0. By
way of comparison, Hellinger distance (for example) allows one or more values of
pi to shrink to zero without imposing more than a finite penalty. However, in
most other applications we have found that there is little to be gained — and
sometimes, something to be lost (see sections 4.1 and 4.2) — by using a value of
ρ other than ρ = 0.

4. Examples

4.1. Empirical likelihood. The method of empirical likelihood, or EL, was in-
troduced by Owen (1988, 1990). See also Efron (1981). It may be viewed as a

special case of the biased bootstrap in which the constraint is θ(F̂p) = θ1, where

F̂p denotes the distribution function of the weighted bootstrap distribution with
weights pi, and θ1 is a candidate value for θ. It is based on the value p̂ = p̂(θ1) of

p that minimises Dρ(p) subject to θ(F̂p) = θ1.
One EL approach to constructing an α-level confidence interval for the true

value of θ is to take tα to be the upper α-level quantile of the chi-squared distri-
bution for which the number of degrees of freedom equals the rank of the limiting
covariance matrix of the uniform-bootstrap estimator, θ̂(F̂punif ); and to let the

interval be the set of θ1’s such that Dρ{θ(F̂p̂(θ1))} ≤ tα. Under regularity con-
ditions that represent only a minor modification of those of Hall and La Scala
(1990), this interval may be shown to have asymptotic coverage equal to 1 − α,
no matter what the value of ρ. Using methods of DiCiccio, Hall and Romano
(1991) it may be shown that this generalised form of EL is Bartlett-correctable
if and only if ρ = 0. (Strictly speaking, the term ‘likelihood’ is appropriate for
describing these generalised EL techniques only if ρ = 0.) See Baggerley (1998)
and Corcoran (1998).

4.2. Variance stabilisation. Here we wish to choose, by empirical means, a transfor-
mation ĝ which, when applied to a (scalar) parameter estimator θ̂, will implicitly
correct for scale. Our method is a biased-bootstrap version of a conventional-
bootstrap technique proposed by Tibshirani (1988). It has an advantage over the
latter approach in that it does not require selection of any smoothing parameters,
or any extrapolation.

As in example 4.1, choose p to minimise Dρ(p) subject to θ(F̂p) = θ1. Let

X † = {X†1, . . . , X†n} denote a resample drawn by sampling from X using the

weighted bootstrap with weights p̂i, and let θ̂† denote the version of θ̂ computed

Documenta Mathematica · Extra Volume ICM 1998 · III · 257–266



Biased bootstrap 261

from X † rather than X . Let v̂(θ1) = var(θ̂†|X ) be the biased-bootstrap estimator

of the variance of θ̂ when the true value of θ is θ1. Write ĝ(θ) for the indefi-
nite integral of v̂(θ)−1/2, with the constant chosen arbitrarily. Using the uniform

bootstrap, compute the conditional distribution of ĝ(θ̂∗) − ĝ(θ̂) and use it as an

approximation to the unconditional distribution of ĝ(θ̂)− ĝ(θ0), where θ0 denotes
the true parameter value. This enables us to compute confidence intervals for
ĝ(θ0), from which we may calculate intervals for θ0 by back-transformation. It
may be shown that ρ = 0 is sufficient for the latter intervals to be second-order
accurate.

4.3. Density estimation under constraints. Here we consider kernel-type, biased-
bootstrap estimators of the form f̂p(x) =

∑
i piKi(x), where Ki(x) = h−1K{(x−

Xi)/h}, K is a positive, symmetric kernel, and h is a bandwidth. (The tradi-
tional kernel estimator, in which each pi is replaced by n−1, may be regarded as a
uniform-bootstrap estimator of θ = E{Ki(x)}.) Constraining the j’th moment of

the distribution with density f̂p to equal the j’th sample moment is equivalent to
asking that

∑
i piAi = a, where a denotes the sample moment,

Ai =

〈j/2〉∑

k=0

(
j

2k

)
Xj−2k
i h2k κ2k ,

〈j/2〉 represents the integer part of j/2, and κℓ =
∫
yℓK(y) dy. Moreover, stip-

ulating that the q’th quantile of the distribution with density f̂p equal the q’th

sample quantile (ξ̂q , say) produces a constraint of the same form, this time with

Ai = L{(ξ̂q−Xi)/h} (where L denotes the distribution function corresponding to

the density K) and a = q. Constraining the interquartile range for f̂ to equal its
sample value amounts to the obvious linear form in constraints on the 25% and
75% quantiles. See also Chen (1997).

The constraint that entropy equals t, say, has the form

−
n∑

i=1

pi

∫
Ki(x) log

{ n∑

j=1

pj Kj(x)

}
dx = t .

Reducing entropy increases ‘peakedness’ and reduces spurious bumps in the tails.
Combining this observation with the fact that increasing the bandwidth also tends
to reduce the number of modes, while decreasing peakedness, we may develop an
implicit algorithm (as distinct from the explicit method suggested in section 4.5)
for computing a density estimator subject to the constraint of unimodality.

4.4. Correcting Nadaraya-Watson estimator for bias. Suppose data pairs (Xi, Yi)
are generated by the model Yi = g(Xi) + ǫi, where g is the smooth function that
we wish to estimate, the design points Xi are random variables with density f ,
and the errors ǫi have zero mean. Then the Nadaraya–Watson estimator of g may
be defined by g̃ = γ̂/f̂ , where γ̂(x) = n−1

∑
i Ki(x)Yi and f̂(x) = n−1

∑
i Ki(x).

The performance of g̃ is generally inferior to that of local-linear estimators,
owing to problems of bias. In particular, g̃ is biased for linear functions. To
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overcome this difficulty we may use the biased bootstrap to constrain the estimator
to be unbiased when g is linear, by insisting that

∑
i pi(x) (x − Xi)Ki(x) = 0.

Thus, p = (p1, . . . , pn) is now a function of location, x. The resulting estimator is

ĝ(x) =

{ n∑

i=1

pi(x)Ki(x)Yi

}/{ n∑

i=1

pi(x)Ki(x)

}
.

It achieves the same minimax efficiency bounds as local-linear smoothing (see e.g.
Fan, 1993), and enjoys positivity properties that the latter approach does not.

4.5. Unimodality and monotonicity. Define a continuous density f to be strongly
unimodal if there exist points −∞ < x1 < x2 < ∞ such that (i) f is convex
on (−∞, x1) and on (x2,∞), and (ii) f is concave on (x1, x2). In principle we

may constrain f̂p to be a strongly unimodal density estimator, by arguing as
follows: (a) for fixed x1 and x2, choose p = px1x2 to minimise Dρ(p) subject to

f̂ ′′p (x) =
∑
i piK

′′
i (x) being positive on (−∞, x1) and on (x2,∞), and negative on

(x1, x2); (b) choose x1, x2 to minimise Dρ(px1x2) over all possible choices satisfying
(a). However, the probability that this is possible does not necessarily converge
to 1 as n→∞, even if the true f is strongly unimodal and considerable latitude
is allowed for choice of bandwidth.

On the other hand, a weaker form of unimodality may be successfully imposed.
There, we argue as follows: (α) select a candidate −∞ < x0 < ∞ for the mode

of f̂p, and choose p = px0 to minimise Dρ(p) subject to f̂ ′(x0) = 0, f̂ ′′(x0) ≤ 0,

and to any point x 6= x0 for which f̂ ′(x) = 0 being a point of inflexion of f̂p; and
(β) choose x0 to minimise Dρ(px0) over all possible choices satisfying (α). There
is also a version of this method in the context of nonparametric regression, where
‘unimodality’ of a regression mean is defined in the obvious way.

Likewise, we may use biased-bootstrap methods to impose monotonicity of a
function estimator in either the density or regression cases. Confining attention to
local-linear estimators for nonparametric regression, we would proceed as follows.
Let (Xi, Yi), for 1 ≤ i ≤ n, denote a sample of independent and identically dis-
tributed data pairs. If (Xi, Yi) is accorded weight pi then the local-linear estimator

of g(x) = E(Y |X = x) equals â, where (â, b̂) denotes the pair (a, b) that minimises

n∑

i=1

{Yi − a− b (Xi − x)}2 piKi(x) .

The biased-bootstrap local-linear estimator is ĝp = (S2T0 − S1T1)/(S2S0 − S21),
where

Sj(x) =
n∑

i=1

(Xi − x)j piKi(x) , Tj(x) =
n∑

i=1

Yi (Xi − x)j piKi(x) .

Suppose we wish to constrain ĝp(x) to have derivative not less than a given value
t, for all x in some interval I. It may be shown that, if the true regression mean
g satisfies g′ ≥ t on I then, with probability tending to 1 as n → ∞, and for a
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wide range of choices of bandwidth, the biased-bootstrap constrained-minimisation
problem has a solution, and that the solution has bias and variance of the same
order as those of the unconstrained local-linear smoother.

4.6. Bias reduction without violating sign. Let θ̂ = θ(F̂punif ) (possibly vector-
valued) denote the uniform-bootstrap estimator of θ(F ), based on data X =
{X1, . . . , Xn}. Suppose we wish to estimate ψ0 = ψ(θ0), where θ0 is the true
value of θ and ψ is a known smooth function. The uniform-bootstrap estimator is
ψ̌ = ψ(θ̂), but is generally biased. The standard uniform-bootstrap bias-reduced

estimator is ψ̃ = 2 ψ̌ − E{ψ(θ̂∗)|X}, where θ̂∗ denotes the uniform-bootstrap ver-

sion of θ̂. However, this approach does not necessarily respect the sign of the
function ψ. For example, when ψ(u) ≡ u2, and θ is a population mean and θ0 = 0,

the probability that ψ̃ < 0 converges to 0.68.
A sign-respecting, biased-bootstrap approach to bias reduction may be defined

as follows. Let θ̂† denote the version of θ̂ computed from a resample drawn by
sampling at random from X according to the weighted empirical distribution F̂p. A

biased-bootstrap approximation to the bias of ψ(θ̂) is β(p) = Ep{ψ(θ̂†)|X}−ψ(θ̂),

where Ep denotes expectation with respect to F̂p. Choose p = p̂ to minimise Dρ(p)
subject to β(p) = 0,

∑
i pi = 1 and each pi ≥ 0. Then, our biased-bootstrap, bias-

reduced, sign-respecting estimator of ψ0 is ψ̂ = ψ(θ̂p̂), where θ̂p = θ(F̂p).

It may be shown that, not only does ψ̂ overcome the sign problem, in cases
where the probability that ψ̃ has the wrong sign does not converge to 0, ψ̂ is closer
(on average) than ψ̃ to ψ0.

4.7. ‘Trimming’ or ‘winsorising.’ Let θ̂p = θ(F̂p) denote the biased-bootstrap
estimator of θ = θ(F ), and let γ(p,X ) be a measure of the concentration of the

biased-bootstrap distribution with respect to θ̂p. For example, in the case of a
scalar sample X , and when our interest is in location estimation, we might define

γ(p,X ) =
n∑

i=1

pi (Xi − X̄p)
2k ,

where k ≥ 1 is an integer and X̄p = X̄p(k) minimises
∑
i pi(Xi−x)2k with respect

to x. (Taking k = 1 we see that γ(p,X ) is the variance of the biased-bootstrap
distribution.) Put γ̂ = γ(punif ,X ), being the version of the concentration measure
in the case of the uniform bootstrap. Given 0 < t ≤ γ̂ we may calibrate the level of
concentration by choosing p = p(t) to minimise Dρ(p) subject to γ(p,X ) = t. As

t decreases, the biased-bootstrap distribution F̂p(t) becomes more concentrated.
To avoid the result of calibration being heavily influenced by tail weight of

the sampling distribution, we suggest ‘inverting’ the calibration so that it is on
Dρ(p) rather than γ(p,X ). That is, given ξ > 0 we propose choosing t = tξ such
that Dρ{p(t)} = ξ, and defining p̂(ξ) = p(tξ). In order for this approach to be
practicable we require Dρ{p(t)} to be a monotone increasing function of t, which
can be verified in many cases.

With this modification it may be shown that, in the case 0 < ρ ≤ 1, the biased
bootstrap provides a remarkably effective device for reducing the effects of outlying
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data values. For example, in the context of univariate location estimation the
estimator has a smooth, redescending influence curve, and a breakdown point that
may be be located at any desired value ǫ ∈ (0, 12 ) simply by ‘trimming’ to a known
distance (depending only on ǫ) from the empirical distribution. The estimator
has an affine-equivariant multivariate form, and has versions for regression and
nonparametric regression.

4.8. Sensitivity analysis. The ideas suggested in section 4.7 may be used to develop
new, empirical methods for describing influence and sensitivity. For example, one
may vary t by an infinitesimal amount, starting at t = γ̂, and rank the data values
Xi in decreasing order of the amount by which this variation produces a decrease
in the respective values of pi. This may be regarded as ranking data values in
terms of their influence on concentration, according to the chosen concentration
measure. It produces an outlier diagnostic.

An alternative approach is to apply the biased bootstrap with θ equal to a
candidate value, θ1 say, for the parameter, and consider the values of (∂/∂θ1) pi(θ1)

evaluated at the uniform-bootstrap estimator θ̂ = θ(F̂unif). (Of course, the signs
of the derivatives convey important information about the nature of sensitivity.)
Still another approach is to examine leave-one-out empirical-likelihood ratios com-
puted at biased-bootstrap estimators. These influence diagnostics have potential
advantages over traditional techniques; for example, they may be applied to quite
arbitrary estimators and parameters.

4.9. Generalised method of moments. The generalised method of moments, or
GMM, can provide substantial improvements over the naive method of moments,
by reducing the variance of estimators. Versions of the biased bootstrap have
already been successfully applied to GMM; see for example Brown and Newey
(1995) and Imbens, Johnson and Spady (1998). However, those applications re-
quire equations defining the estimators to be of full rank, and the methods can
perform poorly when one or more of those equations is (approximately) redun-
dant. Indeed, one may show by example that in such cases, the rate of conver-
gence of GMM estimators can be as slow as n−1/4 (where n is sample size), rather
than the n−1/2 achieved using a much simpler method without a weight matrix
in the least-squares step; and that this rate is not improved by iterating GMM.
Biased-bootstrap methods can be used to identify redundancy and accommodate it
adaptively. The approach involves choosing the weight matrix to minimise a non-
asymptotic estimator of mean squared error, and thereby calibrating the standard
GMM method so as to obtain nearly-optimal performance. The biased bootstrap
is employed to enforce an empirical version of the method-of-moments constraint
when defining the mean squared error estimator.

5. Computational issues

By way of notation, let us say that a constraint on p is linear if it may be written in
the form

∑
i piAi = a, which we denote by (L), where Ai and a depend only on the

data, not on p, and may be vectors. (If they were vectors of length ν then we would,
in effect, be imposing ν separate linear constraints.) Examples of linear constraints
include those encountered in in the context of constraining moments and quantiles
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in section 4.3. Particularly for linear constraints, methods described by Owen
(1990) and Qin and Lawless (1995), based on estimating equations, generally lead
to numerically stable procedures.

It may be shown after a little algebra that under constraint (L), and when
the distance function is Dρ for some ρ 6= 1, the resulting pi’s are given by pi =
pi(λ) = (λ0+λT1 Ai)

1/(1−ρ), where λ0 is a scalar, λ1 is a column vector of length ν,
and λ = (λ0, λ1). (The λ0 term comes from incorporating the additional condition∑
i pi = 1. We have not, at this stage, included the constraints pi ≥ 0, which in

any event hold automatically when −1 < ρ < 2.) When ρ = 1 we have instead
pi = exp(λ0+λT1 Ai); and for any given ρ, the value of λ is defined by substituting
back into (L). Thus, the dimension of the problem has been reduced from n to
ν + 1, which remains fixed as n increases. If in addition ρ = 0 then it may be
shown that λ0 = n− λT1 a, and so dimension reduces further, to ν.

In highly nonlinear problems, where these dimension reduction arguments do
not apply, it may be necessary to compute the pi’s directly as the solution to an
(n − 1)-dimensional optimisation problem. For example, we have found that for
moderate n a protected Newton-Raphson algorithm performs well in the problem
of enforcing unimodality through constraints on entropy. Other approaches, such
as the linearisation methods of Wood, Do and Broom (1996), may also be useful
in nonlinear problems.
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Oracle Inequalitiesand Nonparametric Function Estimation
Iain M. Johnstone

Abstract. In non-parametric function estimation, partial prior infor-
mation about the unknown function is often expressed by a family of
models or estimators, among which a choice must be made. Oracle in-
equalities bound the mean squared error of a given estimator in terms of
the (unknowable) best possible choice of model for the unknown function.
This survey concentrates on three examples: the James Stein estimator,
soft thresholding, and complexity penalized least squares and as illustra-
tions, we describe some consequences for adaptive estimation.

1991 Mathematics Subject Classification: 62G07, 62G20, 62C20
Keywords and Phrases: adaptive estimation, complexity penalty, James-
Stein estimator, minimax estimation, thresholding, unconditional basis,
wavelet shrinkage

1 Introduction

Statistical theory aims in part to articulate when and why certain applied methods
of data analysis succeed. With emergence of large, often instrumentally acquired
datasets, recent decades have seen a focus on “nonparametric” models in which the
number of model parameters grows with the size of available data. Here we focus
on the estimation (or “recovery” or “denoising”) of functions observed in additive
noise and describe some relatively simple inequalities that encode information on
the effect of sparse representation on the quality of estimation.

A common caricature is to posit observed data y ∈ Rn with structure
y = µ + ǫz. Here µ is an unknown function which one desires to “estimate”
or “recover”, and z ∈ Rn is a vector of standard Gaussian noise of known scale ǫ.
When expressed in terms of coefficients in an orthonormal basis {ψi, I ∈ In}, the
model becomes

yI = µI + ǫzI I ∈ In. (1)

Here zI are independent Gaussian noises of mean zero and variance one. This
sequence form of the “Gaussian white noise model”, whether finite as here, or
infinite, as in Section 1.1 below, is the conceptually and technically simplest model
of nonparametric estimation. Extensions to correlated noise and indirect data
y = Kµ+ ǫz are possible, but not covered here.
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Examples 1. (a) The equispaced, fixed design in which yI = f(tI) + σzI , with f
an unknown function defined on [0, 1] and tI = I/n, I = 1, . . . n.

(b) An initial segment of the continuous Gaussian white noise model. Suppose
that Wt is a standard Brownian motion (or sheet) and that one observes dYt =
f(t)dt + ǫdWt for t ∈ D, a compact set in Rd. If d = 1 and D = [0, 1], this

may be interpreted as Yt =
∫ t
0 f(s)ds + ǫWt for 0 ≤ t ≤ 1. Take inner products

with elements {ψI , I ∈ I} of a complete orthonormal basis for L2[0, 1] and set
yI = 〈ψI , dY 〉, θI = 〈ψI , f〉 and zI = 〈ψI , dW 〉. This gives an infinite sequence
version of (1), to be used in Section 1.1 below. To recover precisely (1), consider
an initial segment of cardinality n of the index set I. A discrete orthogonal
wavelet transform of model (i) yields an approximation to this initial segment
(after calibrating ǫ = σn−1/2, cf. [10]).

(c) Redundant regression. Suppose that there are given vectors (or signals)
x1, . . . xp ∈ Rn, and that it is thought useful, for reaons of parsimony, interpretabil-
ity or otherwise, to represent µ in terms a few of the xi. Collecting xi as columns
of a “design matrix” X = [x1 · · ·xn], one obtains the standard, homoscedastic
Gaussian linear regression model y = Xβ + ǫz. In traditional parametric regres-
sion analysis, it is supposed that p < n and that µ ∈ span{xi}. However, we
specifically consider two “non-parametric” cases: a) p = n and xi orthogonal (i.e.
equivalent to (1)), and b) p > n and not orthogonal - here the xi might be a class
of basic signals from a (possibly highly) redundant dictionary D and we seek a
parsimonious representation of µ in terms of as few elements of D as possible.

Assessing error. An estimator µ̂ = µ̂(y) is a function of observed data y: we
wish to quantify and compare the quality of estimation as µ̂ varies. Simplest to
work with is mean squared error (MSE):

rǫ(µ̂, µ) = Eµ|µ̂− µ|2 =

∫
|µ̂− µ|2φǫ(y − µ)dy. (2)

Here φǫ(z) denotes the probability density function of ǫz. The notation rǫ(µ̂, µ),
mnemonic for “risk”, hints at the possible and frequently desirable use of more
general error norms ‖µ̂− µ‖ or loss functions L(µ̂, µ).

The error µ̂−µ is usually decomposed into a zero-mean stochastic component
µ̂ − Eµµ̂ and a deterministic component, the bias, Eµµ̂ − µ. For quadratic error
measures, these components are uncorrelated, so that the MSE is the sum of
variance and squared bias terms. In particular, for a linear estimator µ̂L(y) = Ly,

r(µ̂L, µ) = ǫ2tr LLt + |Lµ− µ|2. (3)

The quality of approximation of µ by the operator L is thus balanced against the
complexity of L, as measured by the variance term, which for example becomes
ǫ2m in the case of orthogonal projection onto a subspace of dimension m. Already
visible here is the important role that approximation theory plays in analysing
the deterministic component of error. For non-linear estimators that, implicitly or
explicitly, involve a choice among linear estimators, the analysis of the stochastic
term is facilitated by the concentration of measure phenomenon (Section 4).
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Models and Estimators. A model is a subset M of the full parameter space
Rn. A family of models {Mα, α ∈ A} is one device commonly used to represent
imperfect and partial information about the unknown µ. Often there is a natu-
ral estimator µ̂α associated with each model and in this paper we simplistically
conflate choice of model with choice of the associated estimator.

Examples 2. (a) Spheres and linear shrinkage. For positive α, let Mα be the
sphere |µ| = α: this might correspond to prior information about the signal-
to-noise ratio. Natural corresponding estimators are given by linear shrinkage:
µ̂α = γy where γ = γ(α) is obtained by minimizing the MSE in (3), namely
nγ2+ (1− γ)2|µ|2, on Mα to obtain the Wiener filter γ(α) = α2/(n+α2) ∈ (0, 1).
(b) Subspaces and projections. In the regression setting of Example 1(c) above,

to each subset J ⊂ {1, . . . , p} of the full variable list is associated a linear model
MJ = span {xj , j ∈ J}. The corresponding estimators are orthogonal projections
PJ on MJ : these are the least squares estimators on the assumption that µ ∈MJ .

Ideal Risk Given a family A of models (or corresponding estimators), and for a
given unknown µ, the best attainable MSE is given by the ideal risk

Rǫ(µ,A) = inf
α
R(µ̂α, µ).

Thus, in example (a), the ideal linear shrinkage risk is

Rǫ(µ,LS) = nǫ2|µ|2/(nǫ2 + |µ2|). (4)

Outline of paper. Of course, µ is not known, and without access to an oracle
who divulges the best α, the ideal risk is not attainable by an estimator depending
on the data y alone. Nevertheless, it acts as a useful benchmark, and we seek
estimators that in an appropriate sense optimally mimick the ideal risk. Such
estimators turn out to be non-linear, and in particular, not members of the family
µ̂α. For three settings and estimators, oracle inequalities are presented in Theorems
3, 5 and 8 – we emphasize that the inequalities are non-asymptotic and uniform
in character, holding for all n, ǫ and for all µ ∈ Rn.

Corresponding lower bounds (although asymptotic in n) show that without
some restriction on, or further information about µ, the inequalities cannot be
improved, and thus represent in some sense the necessary “price” for searching
over a class of models/estimators of a given size.

Oracle inequalities are neither the beginning nor the end of a theory, but
when available, are informative tools. For example, Theorems 3, 5 and 8 may
also be used to derive asymptotic (i.e. low noise ǫ) results within a framework of
adaptive minimax estimation: this class of applications is considered in a connected
sequence of “illustrations” in the continuous Gaussian white noise model, which
we now introduce.

1.1 Illustration: Asymptotic Minimax Estimation.

The continuous Gaussian white noise model is that of Example 1(b). Because

of Parseval’s inequality
∫ 1
0

(f̂ − f)2 =
∑
I(θ̂I − θI)2 = ‖θ̂ − θ‖2, estimation error
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can equally well be measured in the sequence domain. To evaluate estimators, we
use the minimax principle - although inherently conservative and not universally
accepted, we find that it leads to clear structures and informative results. Thus,
estimators are assessed by their worst case risk over a given Θ. The minimax
risk measures the best attainable such maximum risk, within a class E of esti-
mators: RE(Θ, ǫ) = inf θ̂∈E supθ∈Θ rǫ(θ̂, θ). The symbols E = N,L,D, . . . refer to
specific estimator classes: all non-linear, all linear, all threshold rules etc. Finally,
estimator θ̂ is called asymptotically E− minimax if

sup
θ∈Θ

rǫ(θ̂, θ) = RE(Θ, ǫ)(1 + o(1)), ǫ→ 0.

In order to describe a flexible and scientifically meaningful class of parameter
spaces Θ, we employ a dyadic sequence notation, in which I = (j, k), with j =
0, 1, . . . and k = 1, . . . , 2j. The primary motivation comes from orthonormal bases
of wavelets {ψjk}, which, under suitable regularity and decay conditions on the
wavelets, and with suitable modifications to handle intervals, form unconditional
bases for many function spaces of interest ([22, 15, 3]). Thus their norms may
be characterized in terms of conditions on |θI | . For example, let χI denote the
indicator function of the interval [(k−1)2−j, k2−j]: the sequence of (quasi-)norms
‖ · ‖α,p, defined for 0 < α <∞, 0 < p ≤ ∞ by

‖θ‖pα,p =

∫ 1

0

[
∑

I

(2aj |θI |χI)2]p/2, a = α+ 1/2,

are equivalent, (for p > 1 and α ∈ N) to the traditional Sobolev norms ‖f‖pWα
p

=
∫ 1
0 |f (α)|p + |f |p. In the Hilbertian case p = 2, these take the simpler form

‖θ‖2α,2 =
∑

j≥0
2jα|θj |2, |θj |2 =

∑

k

|θjk|2.

As parameter spaces, we thus use norm balls: Θα,p(C) = {(θI) : ‖θ‖α,p ≤ C},
which are analogs of size restrictions on derivatives, but measured in Lp norms.

In practice, the values of (α, p, C) will not be known, and rather than seeking
a minimax estimator for a single such Θα,p(C), we look for estimates with an
adaptive minimaxity property. Thus, suppose that a scale of spaces S = {Θν(C) :
ν ∈ V, C > 0} is given, where ν is an order parameter, such as (α, p) above, and

C a scale parameter. Then θ̂ is adaptively E−minimax if (i) the definition of θ̂ is

independent of (ν, C), and (ii) θ̂ is asymptotically E−minimax for all (ν, C).

2 Linear Shrinkage and Orthogonal Invariance

A celebrated result in parametric statistics, due to Stein [24], is the inadmissibility
of the maximum likelihood estimator µ̂0(y) = y in model (1) as soon as n ≥ 3.
Indeed, [17] showed that adaptive linear shrinkage

µ̂JS+(y) = (1− γ̂)+y, γ̂ = (n− 2)ǫ2/|y|2,
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is everywhere better than µ̂0, in the sense that for all µ ∈ Rn, rǫ(µ̂
JS+, µ) <

rǫ(µ̂
0, µ) ≡ nǫ2. Here a+ = max(a, 0). The result was and remains surprising

because it can seem counterintuitive that combining data from statistically com-
pletely independent problems, represented by each coordinate in (1), leads to bet-
ter MSE properties.

A simple proof was later given by Stein [25], using his unbiased estimate of
risk to show that µ̂JS(y) = (1− γ̂)y, necessarily worse than µ̂JS+, satisfies

r(µ̂JS , µ) = Eµ{n− (n− 2)2|y|−2} < n. (5)

(where, for simplicity, ǫ = 1 here.) Using in (5) the fact that the distribution of
|y|2 can be represented as the mixture of central chi-squared distributions χ2n+2P
with P distributed as a Poisson variate with mean |µ|2/2, and applying Jensen’s
inequality, one obtains our first oracle inequality.

Theorem 3 ([7]). In model (1), suppose n ≥ 3. For all µ ∈ Rn,

E|µ̂JS − µ|2 ≤ 2ǫ2 +
(n− 2)ǫ2|µ|2

(n− 2)ǫ2 + |µ|2 . (6)

In view of (4), this implies

rǫ(µ̂
JS+, µ) ≤ 2ǫ2 +Rǫ(µ,LS). (7)

Thus, the classical James-Stein estimator comes within an additive penalty of 2ǫ2

of mimicking the ideal linear shrinkage estimator. This performance is impressive
when calibrated against the minimax risk RN (Rn, ǫ), in this problem nǫ2.

However it should be noted that this inequality is orthogonally invariant, and
makes no use of the particular basis in which the unknown signal µ is represented.

2.1 Illustration: Levelwise shrinkage in the dyadic sequence model.

In the dyadic sequence model of Section 1.1, group coefficients by level j : yj =

(yjk)2
j

k=1. Form a levelwise James Stein estimator θ̂LJS by applying James-Stein

shrinkage to yj: θ̂
LJS
j = θ̂JS+(yj), at least for levels j below a cutoff J = log2 ǫ

−2,

above which θ̂LJSj simply estimates zero. [Recall the calibration n = ǫ−2 of Ex-

ample 1(b).] The MSE of the θ̂LJS may then also be represented levelwise:

E‖θ̂LJS − θ‖2 =
∑

j<J(ǫ)

E|θ̂JS+(yj)− θj |2 +
∑

j≥J(ǫ)
|θj |2.

The oracle inequality (7) may be applied to each level j in the first sum, while the
geometric weights 2aj used to define Θα,2 imply that the second sum is negligible
for small ǫ. For the scale of Hilbert spaces S2 = {Θα,2(C) : α > 0, C > 0} :

Theorem 4 ([7]). θ̂LJS is adaptively minimax over S2.
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This recovers and extends a notable result of Efroimovich & Pinsker [14],
originally formulated in the Fourier basis. In fact, one verifies relatively easily that
θ̂ is adaptively minimax among linear estimates (from the ideal linear shrinkage
risk) and then appeals to the celebrated theorem of Pinsker [23]), which shows that
for the ellipsoids occurring in S2, linear minimax rules are actually asymptotically
minimax among all non-linear estimates.

This levelwise application of an oracle inequality is shows how the dyadic se-
quence model allows a “lifting” of results from a symmetric and “parametric” set-
ting (an exchangeable multivariate normal law at each level) to a non-parametric,
infinite-dimensional model. Other examples of this type may be found in [7, 9].

3 Orthogonal Regression and Thresholding

To this point, we have considered only orthogonally invariant estimators. However,
a basic principle is that sparsity of representation of a signal in a given basis leads
to better estimation, and to exploit such sparsity, non-linear estimators are needed.

Thus, assume the orthonormal basis leading to coefficients (1) is chosen so
that {µi} contains few large coefficients, although of course it is not known in
advance which among the co-ordinates are important.

In this orthogonal regression setting, the least squares subset selection estima-
tors have a simple co-ordinatewise representation: the j−th component of µ̂J (y)
equals yj if j ∈ J and 0 otherwise. Thus, the least squares estimators have the
form of diagonal projections (DP below). The mean squared error of µ̂J is then
the sum of terms which measure either variance or bias:

r(µ̂J , µ) =
∑

j∈J
ǫ2 +

∑

j /∈J
µ2j .

The ideal risk for among all such diagonal projection estimators can therefore be
found by minimizing termwise:

Rǫ(µ,DP ) = inf
J
r(µ̂J , µ) =

∑

j

µ2j ∧ ǫ2.

To quantify sparsity, order the squared magnitudes of the components of µ via
µ2(1) ≥ µ2(2) ≥ . . . ≥ µ2(n) and define compression numbers c2j =

∑
k>j µ

2
(k). The

number of large coefficients is measured by N(ǫ) = #{j : |µj | > ǫ}, and we have

Rǫ(µ,DP ) = ǫ2N(ǫ) + c2N(ǫ),

which shows an intimate connection between ideal risk and the compressibility of
the signal in this basis.

Various forms of thresholding estimator can be introduced: here we consider
soft thresholding:

µ̂STj (y) = sgn(yj)(|yj | − λ)+.

The key points are that the estimator acts co-ordinatewise and that there is a
threshold zone [−λ, λ] in which the data is interpreted as noise and “discarded”.
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Theorem 5 ([6]). If λ =
√

2 logn, then for all µ ∈ Rn,

rǫ(µ̂
ST , µ) ≤ (2 logn+ 1)[ǫ2 +Rǫ(µ,DP )]. (8)

Since the logarithmic penalty is of small order relative to n, the result shows
that sparsity, as measured by ideal risk, implies good estimation. The bound is
valid for all sample sizes and all µ. There has been much work on the choice of
threshold λ - the choice given here is attractive for its conservatism: since for
independent and identically distributed N(0, 1) variates zi, P (max1≤j≤n |zj | >√

2 logn) → 0, it follows that P (µ̂ST = 0|µ = 0) → 1. For more on these issues
and numerical examples, see [11]. Smaller choices of λ, even depending on the
data y, lead to better mean squared error in exchange for less conservatism [7].
Natural extensions of Theorems 5 and 6 to correlated noise exist [19]

Optimality. Absent extra restrictions on µ, the factor 2 logn is optimal:

Theorem 6 ([6]). As n→∞,

inf
µ̂

sup
µ∈Rn

r(µ̂, µ)

ǫ2 +Rǫ(µ,DP )
≥ (2 logn)(1 + o(1)).

The lower bound arises from the difficulty of distinguishing rare true signal
components from the also infrequent extremes of the white Gaussian noise zi.
Indeed, suppose ǫ = 1 and that the values µi are drawn independently from a
two point prior distribution with masses of probability 1− δn at 0 and δn at µ̄n.
Choosing δn = logn/n and µ̄n ∼ (2 log δ−1n )1/2, it turns out that the posterior
distribution of µi, having observed even a value of yi > µ̄n, is still concentrated
on 0 : P (µ = 0|y = µ̄n + z) ≈ 1, for z large and fixed, as n → ∞. Hence, with
probability δn, the estimator is forced to make an error of order µ̄2n ∼ 2 logn.

3.1 Illustration: thresholding in the dyadic sequence model.

Return to the dyadic sequence model, and apply soft thresholding at λ =
ǫ
√

2 log ǫ−2 to the first n = ǫ−2 coefficients. In other words, θ̂TI (y) = ηST (yI , λ)
for all I with j < J(ǫ). Applying the thresholding oracle inequality (8) to the first
n co-ordinates,

rǫ(θ̂
T , θ) ≤ c · log ǫ−2 · [ǫ2 +Rǫ(θ,DP )] +

∑

j≥J(ǫ)
|θj |2 (9)

In contrast with the scale S2 of Section 2.1, consider now a broader scale of Sobolev-
type parameter spaces: S = {Θα,p(C) : α > 1/p − 1/2, p > 0, C > 0}. For such
spaces there is a bound relating ideal to minimax risk. First, the geometric weights
in the definition imply ([12]) that for Θ = Θα,p(C) and on setting r = 2α/(2α+1),

Rǫ(Θ, DP ) := sup
Θ
Rǫ(θ,DP ) = sup

θ∈Θ

∑
θ2I ∧ ǫ2 ≤ cαC2(1−r)ǫ2r.

Second, the minimax risk over Θ is minorized by that over any inscribed hyper-
cube of dimension m and side length ǫ : RN (Θ, ǫ) ≥ c0mǫ

2. Optimizing over the
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dimension m and combining with the previous display, we obtain the basic ideal
to minimax risk inequality:

Rǫ(Θ, DP ) ≤ cαC2(1−r)ǫ2r ≤ c′αRN (Θ, ǫ). (10)

In combination with the oracle inequality and negligibility of the tail sum in
(9), this yields an adaptive near -minimaxity property for thresholding:

Theorem 7. For all Θα,p(C) ∈ S,

sup
Θα,p(C)

rǫ(θ̂
T , θ) ≤ cα,p · log ǫ−2 ·RN (Θα,p(C), ǫ).

The term near-minimaxity refers to the logarithmic term in the upper bound,
which is negligible with respect to the algebraic rate ǫ2r. In fact, this logarithmic
term can also be removed by a lower, data-dependent choice of threshold [7, 18].

Important here is that in contrast to the linear adaptivity of Theorem 4, this
result applies for all p > 0, and in particular for p < 2. These latter spaces
contain spatially inhomogeneous functions with localized discontinuities or other
singularities. The ability of an estimator to adapt to such functions is in practice
more important than the attractive, but limited adaptation of the levelwise James-
Stein estimator, and its cousins, the spatially homogeneous kernel methods, even
with bandwidth selected from data. This is discussed further in [11].

4 Redundant Dictionaries & Complexity Penalized Model Selection

In seeking a sparse representation for a signal, one may build build rich dictionaries
D = {x1, . . . , xp} in various ways: for example by combining many orthonormal
bases (as in libraries of wavelet and cosine packets, [4]), or by considering redun-
dant discretizations of continuously parametrized families, or by allowing products
(interactions) of many simple elements, such as B-splines with knots at individual
data locations (e.g. [16]). In all these cases, the dictionary size p greatly exceeds
that data size n, and estimation methods will have to allow for the effects of
searching over such a vast domain (in principle, 2p models).

Recalling Examples 1(c) and 2(b), the data may be represented in the form
y = Xβ + ǫz, where we now assume that span(X) = Rn. Thus, the models of
interest correspond to subsets J ⊂ {1, . . . , p}, MJ = span {xj : j ∈ J}, and µ̂J =
PJy, orthogonal projection on MJ . The risk of individual projection estimators is
given by (3), so the ideal risk of subset selection from dictionary D becomes

Rǫ(µ, SS(D)) = min
J
rǫ(µ̂J , µ) = min

J
|µ− PJµ|2 + ǫ2rank(PJ ).

To obtain an estimator that mimicks ideal risk, we use the penalized least
squares principle. This balances the fit of the estimate, which in the absence of
any penalty could be made arbitrarily close to the data, against some measure of
complexity of the estimate:

µ̂P = argminµ̃|y − µ̃|2 + ǫ2P (µ̃).
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In the orthonormal basis setting, µ̂P can be evaluated explicitly when the penalty
P has an additive form: for example, P (µ) = c

∑
µ2i implies linear shrinkage,

P (µ) = 2λ
∑ |µi| implies soft thresholding, and P (µ) = λ2

∑
I{µi 6= 0} implies

µ̂P,i(y) = yiI{|yi| > λ}, or hard thresholding. For the redundant linear model
y = Xβ + ǫz, we generalize the third case by setting

P (µ) = λ2N(µ), N(µ) = min{|J | : µ =
∑

j∈J
βjxj}.

The resulting penalized least squares estimator may expressed in terms of the
residual sums of squares RSSJ = |y − µ̂J |2 of the possible models:

min
µ̃
|y − µ̃|2 + λ2ǫ2N(µ̃) = min

J
RSSJ + λ2ǫ2rank(PJ ).

Hence we call this the Complexity Penalized Residual Sum of Squares (CPRSS)
estimate. Certain choices of the factor λ lead to well known estimators: λ2 =
2 (AIC), log p (BIC), 2 logn (RIC) (For details and references see [8]).

Theorem 8 ( [8]). Let ζ > 1, β > 0 and λ = λp = ζ[1 +
√

2(1 + β) log(p+ 1)].
Then for all n, p ≥ n,and µ ∈ Rn,

rǫ(µ̂CPRSS , µ) ≤ Lp[(2 + γp)ǫ
2 +Rǫ(µ, SS(D))], (11)

where Lp = (1− ζ−1)−1λ2p, and γp = γ(p, β)→ 0 as p→∞.
The penalty factor λ2p is slightly larger than 2 log p, where p is the cardinality

of the dictionary. We emphasize that the result holds for all µ, n and p ≥ n, and
in particular the inequality depends only on p, not n! Building on the remarkable
[1], Birgé & Massart are conducting a thorough study of penalties P (µ) for which
such oracle inequalities and improvements hold. While the constant Lp in (11) is
certainly not optimal, there is a lower bound similar to Theorem 6:

Theorem 9 ( [8]). For each fixed r ∈ N, there exists a sequence of dictionaries
Dn with p(n) = |Dn| ≍ nr such that as n→∞,

inf
µ̂

sup
µ∈Rn

E|µ̂− µ|2
ǫ2 +Rǫ(µ, SS(D))

≥ [2 log p(n)](1 + o(1)].

Role of Concentration Inequalities. The stochastic part of the proof
of Theorem 8 depends on an early example (due to Cirelson-Ibragimov-Sudakov [2,
21]) of what are now in probability called concentration (or deviation) inequalities.
Suppose f : Rn → R is Lipschitz with ‖f‖Lip = L. If Z ∼ Nn(0, I), then

P{f(Z) ≥ Ef(Z) + t} ≤ exp{−t2/2L2}.
The key points are the Gaussian tail behaviour of f(Z) and the fact that it does
not depend on dimension n - hence the dimension-free aspect of Theorem 8. This
inequality can then be applied to all projections onto model subsets of cardinality
|J | = ℓ, and then summed over ℓ. Thus, since f(z) = ‖PJz‖ has ‖f‖Lip = 1, and

since Ef(Z) ≤
√
ℓ, we have, on setting t =

√
2ℓ(1 + β) log p,

P{ sup
|J|=ℓ

‖PJz‖ ≥
√
ℓ+ t} ≤

(
p

ℓ

)
p−ℓ(1+β) ≤ 1

pℓβℓ!
.
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4.1 Illustration: Minimaxity for non-standard function classes

The penalized least squares formalism can be applied in situations where no un-
conditional basis exists. To give a simple example, consider again the model
dYt = fdt + ǫdWt, where now t ∈ [0, 1]2, and the horizon model for edges in im-
ages, studied earlier by, for example, Korostelev and Tsybakov [20]. It is supposed
that f takes only the values 0 and 1, and further that the boundary is such that
f(t1, t2) = I{t2 ≤ θ(t1)}. The boundary, or horizon, is supposed to be Hölder con-
tinuous: more specifically, we say that f ∈ Hölders(B) if ‖θ‖∞ + ‖θ(r)‖β ≤ B,
where r ∈ N, β = s− r ∈ (0, 1] and ‖g‖β = sup |g(t)− g(t′)|/|t− t′|β. . . . ]
Dictionaries and minimax risk. While D is often conceptually infinite, in

practice one must work with a family of finite subdictionaries Dǫ with cardinality
m(ǫ) being at most a polynomial function of ǫ−2 : m(ǫ) ≤ β1ǫ

−2β2 . [8] defines a
notion of universal dictionary for a scale S = {Fν(C)}offunctionclasses, which
has as consequence the same type of ideal to minimax risk inequality as used in
the orthobasis case (compare (10)): for all Fν(C) ⊂ S and ǫ < ǫ(ν, C), there exists
r = r(ν) such that

Rǫ(Fν(C),Dǫ) ≤ KνC
2(1−r)ǫ2r ≤ K ′νRN (Fν(C), ǫ).

This may then be combined with the oracle inequality of Theorem 8 to obtain
adaptive near-minimaxity.

Thus, in the horizon example, we start with a continuum trapezoid dictionary,
parametrized by γ = (a, b, c, d), representing a function taking value 1 on the
trapezoid in [0, 1]2 with abscissae a < b and corresponding ordinates c, d. Thus
DTrap = {Tγ : γ ∈ [0, 1]4, b ≥ a}. To obtain finite subdictionaries, discretize the
unit interval into IN = {i/N : 0 ≤ i ≤ N} and set DN = {Tγ : γ ∈ I2N × I2N2}.
Choose N(ǫ) = ǫ−2, and set Dǫ = DN(ǫ). It can be verified [8] that DTrap is

universal for S = {Hölders(B) : 0 < s ≤ 2, 0 < B}, with ν = s/2, C = B1/2.

Corollary 10 ([8]). On Hölders(B), for 0 < s ≤ 2, and setting r = s/(s+ 1),

rǫ(f̂CPRSS , f) ≤ c0 · log2 ǫ
−2 ·B1−rǫ2r.

A key remark is that this adaptively (near minimax) rate of convergence is
better than the rate attainable using a two dimensional tensor product wavelet
basis when s > 1.

Nevertheless, a serious practical defect of Theorem 8 is the combinatorial
search implicit in the definition of µ̂CPRSS . The development of fast algorithms
suitable for specific cases is an active direction of current research [5, 13].
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Branching Processes, Random Trees and Superprocesses
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Abstract. We present some recent developments concerning the ge-
nealogy of branching processes, and their applications to superprocesses.
We also discuss connections with partial differential equations, statistical
mechanics and interacting particle systems.
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semilinear partial differential equation, Lévy process, voter model, lattice
tree.

1 Discrete and continuous genealogical trees

(1.1) Galton-Watson processes and trees. A Galton-Watson branching process
describes the evolution in discrete time of a population where each individual gives
rise, independently of the others, to a random number of children distributed to a
given offspring distribution. To be specific, consider an integer k ≥ 0 representing
the initial population, and a probability distribution ν on the set N of nonnegative
integers. The corresponding Galton-Watson process is the Markov chain (Nn, n ≥
0) in N such that, conditionally on Nn,

Nn+1
(d)
=

Nn∑

i=1

Ui

where U1, U2, . . . are independent and distributed according to ν.
It is obvious that the genealogy of such a branching process can be described

by k discrete trees. Take k = 1 for simplicity. Then the genealogical tree of the
population is defined in the obvious way as a random subset T of

⋃∞
n=0(N

∗)n,
where N∗ = {1, 2, 3, . . .} and (N∗)0 = {∅} by convention (cf Fig.1 for an example).
Here ∅ labels the ancestor of the population and, for instance, (3, 2) corresponds
to the second child of the third child of the ancestor.

Throughout this article, we will concentrate on the critical or subcritical case
wherem =

∑∞
j=0 jν(j) ≤ 1 and we also exclude the (trivial) case where ν({1}) = 1.

Then the population becomes extinct in finite time and so the tree T is a.s. finite.

(1.2) Continuous-state branching processes. Continuous-state branching pro-
cesses (in short, CSBP’s) are the continuous analogues of Galton-Watson pro-
cesses. Formally, a CSBP is a Markov process Y in R+ whose transition ker-
nels (Pt(x, dy); t ≥ 0, x ∈ R+) satisfy the additivity or branching property
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Pt(x + x′, ·) = Pt(x, ·) ∗ Pt(x′, ·). Lamperti [15] has shown that these processes
are exactly the scaling limits of Galton-Watson processes. Start from a sequence
Nn of Galton-Watson processes with initial values kn and offspring distributions
νn depending on n. Suppose that there exists a sequence of constants an ↑ ∞ such
that

lim
n→∞

( 1

an
Nn
[nt], t ≥ 0

)
= (Yt, t ≥ 0) (1)

in the sense of weak convergence of the finite-dimensional marginals. Then the
limiting process Y must be a CSBP, and conversely any CSBP can be obtained in
this way.

The distribution of a CSBP can be described analytically as follows. Here
again, we restrict our attention to the critical or subcritical situation where∫
y Pt(x, dy) ≤ x. Then, the Laplace functional of the kernels Pt(x, dy) must

be of the form
∫
Pt(x, dy) e−λy = exp(−xut(λ)), and the function ut(λ) solves the

ordinary differential equation

∂ut(λ)

∂t
= −ψ(ut(λ)) , u0(λ) = λ, (2)

with a function ψ of the type

ψ(u) = αu+ βu2 +

∫

(0,∞)
π(dr) (e−ru − 1 + ru), (3)

where α, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫

(r∧r2)π(dr) <∞.
Conversely, for any choice of a function ψ of the type (3), there exists an associated
CSBP, which we will call the ψ-CSBP.

The case when ψ(u) = βu2 (quadratic branching mechanism) is of special
importance. The associated process is called the Feller diffusion. It occurs as the
limit in (1) when νn = ν has mean 1 and finite variance, and kn ≈ λn, an = n.

In contrast with the discrete setting, it is no longer straightforward to define
the genealogical structure of a CSBP. At an informal level, one would like to answer
questions of the following type. Suppose that we divide the population at time t
in two parts, say green individuals and red individuals. Then which part of the
population at time t+s does consist of descendants of green individuals, resp. red
individuals ? This should be answered in a consistent way when s and t vary.

(1.3) The quadratic branching case. It has been known for some time that the
genealogical structure of the Feller diffusion can be coded by excursions of linear
Brownian motion. To explain this coding, we will recall a result of Aldous [1].

Start from an offspring distribution ν on N with mean 1 and finite variance.
Consider the Galton-Watson tree with offspring distribution ν, conditioned to
have exactly n edges (some mild assumption on ν is needed here so that this
conditioning makes sense). Then, provided we rescale each edge by the factor
1/
√
n, this conditioned tree, denoted by T(n), converges in distribution as n→∞

to the so-called Continuum Random Tree (CRT).
To give a precise meaning to the last statement, we need to say what the

CRT is and to explain the meaning of the convergence. The easiest definition of
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the CRT is via the coding by a continuous function. Let e = (e(s), s ≥ 0) be a
continuous function from R+ into R+ with compact support and let σ denote the
supremum of the support of e. We can then think of this function as coding a
“continuous tree” through the following prescriptions:

• Each s ∈ [0, σ] labels a vertex of the tree at generation e(s).

• The vertex s is an ancestor of the vertex s′ if e(s) = infr∈[s,s′] e(r). (In general,
the quantity infr∈[s,s′] e(r) is the generation of the last common ancestor to
s and s′.)

• The distance on the tree is d(s, s′) = e(s) + e(s′) − 2 infr∈[s,s′] e(r), and we
identify s and s′ if d(s, s′) = 0.

According to these definitions, the set of ancestors (line of ancestors) of a given
vertex s is isometric to the segment [0, e(s)]. The lines of ancestors of two vertices
s and s′ have a common part corresponding to the segment [0, infr∈[s,s′] e(r)].
More generally, for any finite set s1, . . . , sk of vertices, we can make sense of the
reduced tree consisting of the lines of ancestors of s1, . . . , sk (see [1] and [17] for
more details).

The CRT is the (random) continuous tree that corresponds in the previ-
ous coding to the case when the function e is a normalized Brownian excursion
(positive Brownian excursion conditioned to have duration 1). Furthermore, the
convergence of discrete trees towards the CRT should be understood as follows.
Consider for each conditioned tree T(n), the contour process of the tree (cf Fig.1).
Provided that we rescale space by the factor 1/

√
n and space by the factor 1/(2n),

the contour process of T(n) converges in distribution towards the normalized Brow-
nian excursion.
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To summarize the previous considerations, we can say that the genealogical struc-
ture of the Feller diffusion (ψ(u) = βu2) is coded by excursions of linear Brownian
motion. This fact has appeared in different forms in many articles relating random
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walks or linear Brownian motion to branching processes (see in particular Harris
[14], Dwass [9], Neveu-Pitman [22], etc.). It is also implicit in the Brownian snake
construction of quadratic superprocesses [16], to which we will come back later.

In the next section, we will address the question of extending the previous
coding to a general branching mechanism ψ.

2 Coding the genealogy of continuous-state branching processes

(2.1) The discrete coding. Consider a sequence T1, T2, . . . of independent ν-Galton-
Watson trees. Write σk for the number of vertices (or individuals) in the tree Tk.
Then suppose that we enumerate the vertices of the trees T1, T2, . . . in lexicograph-
ical order: We write Tk = {uσ1+···+σk−1 , uσ1+···+σk−1+1, . . . , uσ1+···+σk−1} where
uσ1+···+σk−1 , uσ1+···+σk−1+1, . . . , uσ1+···+σk−1 are the vertices of the tree Tk listed
in lexicographical order.

Then for every n ≥ 0, let Hn be the length (or generation) of the vertex un.
The (random) process (Hn, n ≥ 0) is called the discrete height process (cf Fig.1
for an example with one tree). It is a variant of the contour process that was
mentioned previously. It is easy to see that the data of the sequence (Hn, n ≥ 0)
completely determines the sequence of trees and in this sense provides a coding of
the trees. The interest of this coding comes from the following elementary lemma.

Lemma 2.1 There exists a random walk (Sn, n ≥ 0) on Z, with initial value S0 = 0
and jump distribution µ(k) = ν(k + 1) for k = −1, 0, 1, 2, . . ., such that, for every
n ≥ 0,

Hn = Card{j ∈ {0, 1, . . . , n− 1}, Sj = inf
j≤k≤n

Sk}. (4)

Note that the random walk S is “left-continuous” in the sense that its negative
jumps are of size −1 only. This lemma is taken from [19]. Closely related discrete
constructions can be found in Borovkov-Vatutin [3] and Bennies-Kersting [2].

(2.2) The continuous height process. The previous lemma gives an explicit formula
for the height process coding a sequence of Galton-Watson trees in terms of a
random walk. Following [19], we will explain how this formula can be generalized
to the continuous setting, thus yielding a coding of the genealogy of a CSBP in
terms of a Lévy process with no negative jump (the continuous analogue of the
left-continuous random walk S).

We start from a Lévy process X with no negative jump. We assume that
X0 = 0 and that that X does not drift to +∞. Then the law of X is characterized
by its “Laplace transform” E[exp(−λXt)] = exp(tψ(λ)) (for λ > 0), where the
possible functions ψ are exactly of the type (3), with the same assumptions on
α, β and π. We assume in addition that β > 0 or

∫
rπ(dr) = ∞ (or both these

properties). This is equivalent to assuming that the paths of X are of infinite
variation. (A simpler parallel theory can be developed in the finite variation case.)
An important special case is the stable case ψ(λ) = λ1+b, 0 < b < 1.

Our first aim is to give a continuous analogue of the discrete formula (4).

For every fixed t ≥ 0, we let X(t) = (X
(t)
s , 0 ≤ s ≤ t) be the time-reversed

process X
(t)
s = Xt−X(t−s)−, and M

(t)
s = supr≤sX

(t)
r be the associated maximum
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process. Note that (X
(t)
s , 0 ≤ s ≤ t)

(d)
= (Xs, 0 ≤ s ≤ t). The process M (t) −X(t)

is a Markov process in R+ and under our assumptions 0 is a regular point for this
Markov process. This enables us to set the following definition.

Definition 2.2 For every t ≥ 0, let Ht denote the local time at level 0 and at
time t of the process M (t) − X(t). The process (Ht, t ≥ 0) is called the ψ-height
process.

A few comments are in order here. First, one needs to specify the normaliza-
tion of local time. This can be achieved via the following approximation

Ht = P − lim
ε→0

1

ε

∫ t

0

ds 1{M(t)
s −X(t)s <ε}.

Secondly, we have defined Ht for every fixed t, and the measurability properties
of the process (Ht, t ≥ 0) are not obvious. One can in a canonical way construct
a lower-semicontinuous modification of the process (Ht, t ≥ 0) (see [19]).

In one special case, namely when β > 0, one can give a much simpler formula
for Ht: If Ist = inf{Xr; s ≤ r ≤ t}, we have Ht = β−1m({Ist ; 0 ≤ s ≤ t}), where m
denotes Lebesgue measure on R (from this formula one immediately sees that H
has continuous paths when β > 0). In the quadratic case ψ(λ) = βλ2 (X is then
a linear Brownian motion), we get that Ht = β−1(Xt − I0t ) is a reflected linear
Brownian motion, which agrees with the considerations in (1.3).

We now (informally) claim that H codes the genealogy of a ψ-CSBP “starting
with an infinite mass”. This should be understood in the sense of the coding
of continuous trees via functions as explained previously. (Our present setting
is slightly more general because the process H does not always have continuous
sample paths.) Analogously to the discrete case, we get the genealogy of a ψ-CSBP
starting at ρ > 0 by stopping H at Tρ = inf{t ≥ 0, Xt = −ρ}.

In what follows, we will give several statements that provide a rigorous justifi-
cation of the previous informal claim. We first state a “Ray-Knight theorem” that
formalizes the naive idea that the number of visits of H at a level a corresponds
to the population of the tree at that level.

Theorem 2.3 [19] For every a ≥ 0, the formula

Lat = P − lim
ε→0

1

ε

∫ t

0

ds 1{a<Hs<a+ε}

defines a continuous increasing process (Lat , t ≥ 0). If Tρ = inf{t ≥ 0, Xt = −ρ},
the process (LaTρ , a ≥ 0) is a ψ-CSBP started at ρ.

When ψ(u) = β u2, Theorem 2.3 reduces to a classical Ray-Knight theorem
for Brownian local times. In general, Theorem 2.3 can be applied to study the
sample path continuity of H.

Theorem 2.4 [19] The process H has a continuous modification if and only if∫∞ du
ψ(u) <∞.
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This condition holds in particular when β > 0 and in the stable case.

(2.3) From discrete trees to continuous trees. Our next result shows that if a
sequence of rescaled Galton-Watson processes converges to a ψ-CSBP, the cor-
responding discrete height processes, suitably rescaled, also converge to the con-
tinuous height process H. This is analogous to Aldous’ result in the quadratic
branching case and proves in some sense that whenever rescaled Galton-Watson
processes converge, their genealogical structure also converges to that of the lim-
iting CSBP.

We consider a sequence (νn) of offspring distributions and a sequence (an)
of positive numbers with lim an = ∞. For every n let Nn be a Galton-Watson
process with offspring distribution νn and initial value Nn

0 = [an].

Theorem 2.5 [19],[7] Suppose that the convergence (1) holds and that Y is a ψ-
CSBP. For every n ≥ 1, let Hn be the discrete height process associated with a
sequence of independent νn-Galton-Watson trees. Then,

lim
n→∞

( 1

n
Hn
[nant]

, t ≥ 0
)

= (Ht, t ≥ 0) (5)

in the sense of weak convergence of finite-dimensional marginals.

The last convergence can be shown to hold in a functional sense, provided
that some regularity conditions are satisfied (Duquesne [7]). This reinforcement is
important in various applications to invariance principles for functionals of Galton-
Watson trees. For instance, one may want to look at the limiting behavior of the
reduced tree that consists only of the ancestors of individuals alive at time p. The
point is that this reduced tree can be written as an (almost) continuous functional
of the discrete height process. Thus the (reinforced) convergence (5) allows one to
pass to the limit and to obtain a limiting tree that is a simple functional of the
height process H (see [7]).

3 Superprocesses

(3.1) The snake construction. Roughly speaking, superprocesses are obtained by
combining a continuous branching mechanism with a Markovian spatial motion.
To give a formal definition, consider a function ψ of the type (3) and a Borel
right Markov process (ξt, t ≥ 0; Πx, x ∈ E) with values in a Polish space E. Let
Mf (E) stand for the space of finite measures in E. The (ξ, ψ)-superprocess is the
Markov process Z with values in Mf(E) whose transition kernels are determined
as follows. For every 0 ≤ s < t and every bounded continuous function g on E,
E[exp−

〈
Zt, g

〉
| Zs] = exp(−

〈
Zs, vt−s

〉
), where (vt(x), t ≥ 0, x ∈ E) is the unique

nonnegative solution of the integral equation

vt(x) + Πx

(∫ t

0

dsψ(vt−s(ξs))

)
= Πx(g(ξt)). (6)

(Compare with (2).) When ξ is a diffusion process with generator L, (6) is the
integral form of the partial differential equation ∂v

∂t = Lv − ψ(v), v0 = g. In the

Documenta Mathematica · Extra Volume ICM 1998 · III · 279–289



Branching Processes, Random Trees and Superprocesses 285

special case when ξ is Brownian motion in Rd and ψ(u) = β u2, Z is called super-
Brownian motion (see Perkins [23] for a discussion of super-Brownian motion and
related processes).

We will now use our approach to the genealogy of the ψ-CSBP to give a
construction of the (ξ, ψ)-superprocess. The idea is to use the height process H
to construct in a Markovian way the individual spatial motions of the “particles”
of the superprocess. To simplify the presentation, we assume that the condition
of Theorem 2.4 holds, so that H has continuous sample paths.

Let us fix a starting point x ∈ E. Conditionally on (Hs, s ≥ 0), we define
a path-valued (time-inhomogeneous) Markov process (Ws, s ≥ 0) whose law is
characterized by the following properties:

• For every s ≥ 0, Ws = (Ws(t), 0 ≤ t ≤ Hs) is a finite cadlag path in E started
at x and defined on the time interval [0,Hs].

• If s < s′, Ws′(t) = Ws(t) for every t ≤ m(s, s′) := inf [s,s′]Hr, and, conditionally
on Ws(m(s, s′)), (Ws′(m(s, s′) + t), 0 ≤ t ≤ Hs′ −m(s, s′)) is independent of
Ws and distributed according to the law of ξ started at Ws(m(s, s′)).

Informally, Ws is a path of ξ started at x with length Hs. When Hs decreases,
the path erases itself and when Hs increases the path extends itself by following
the law of the spatial motion ξ. To summarize the previous properties, we will say
that W is the snake driven by H with spatial motion ξ (and initial point x).

The connection with superprocesses is contained in the next theorem, which
is essentially the main result of [20]. Recall the definition of Lat in Theorem 2.3.

Theorem 3.1 For every a ≥ 0, let Za be the random measure on E defined by

〈
Za, g

〉
=

∫ Tρ

0

dsL
a
s g(Ws(a)).

Then (Za, a ≥ 0) is a (ξ, ψ)-superprocess started at ρ δx.

To keep track of the dependence on the initial point x, we will use the notation
Px for the probability under which W is defined.

(3.2) The Brownian snake and partial differential equations. We now concentrate
on the quadratic case ψ(u) = βu2 and take β = 1/2 for definiteness. As pointed
out previously, the process H is then a (scaled) reflected linear Brownian motion
and in particular is Markovian. As a consequence, the process (Ws, s ≥ 0), which is
now called the Brownian snake, is (time-homogeneous) Markov and indeed verifies
the strong Markov property. This plays a crucial role in the applications that are
outlined below.

From now on, we suppose that ξ is Brownian motion in Rd. An easy ap-
plication of the Kolmogorov criterion shows that W has a modification that is
continuous with respect to the uniform topology on stopped (continuous) paths.

Our goal is to give some applications of the snake construction to connections
between superprocesses and partial differential equations. These connections have
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been investigated by Dynkin in a series of important papers (see in particular [10],
[11]). The Brownian snake turns out to be a useful tool in the quadratic branching
case. The key to the connections with partial differential equations is the next
theorem, which reformulates in terms of the Brownian snake a result of Dynkin
[10] valid for superprocesses with a more general branching mechanism. We let D
be a domain in Rd and for every path w, we denote by τ(w) = inf{t ≥ 0, w(t) /∈ D}
the first exit time of D by w (with the convention inf ∅ =∞).

Theorem 3.2 Let x ∈ D. The limit
〈
ZD, g

〉
= lim
ε→0

1

ε

∫ T1

0

ds 1{τ(Ws)<Hs<τ(Ws)+ε}g(Ws(τ(Ws)))

exists Px-a.s. for every continuous function on ∂D, and defines a random mea-
sure ZD on ∂D called the exit measure from D. If D is regular (in the classical
potential-theoretic sense) and g is continuous and nonnegative on ∂D, the formula

u(x) = − logEx(exp−
〈
ZD, g

〉
) x ∈ D (7)

defines the unique nonnegative solution of the equation ∆u = u2 in D with bound-
ary value u|∂D = g.

A nice feature of the probabilistic representation formula (7) is that it can be
used to produce many other solutions via suitable passages to the limit. In the
setting of our next result, a generalized form of this representation holds for any
nonnegative solution.

We denote by RD the random set {Ws(t); 0 ≤ s ≤ T1, t ≤ τ(Ws) ∧Hs}.

Theorem 3.3 [18] Let D be a domain of class C2 in R2. Then, for every x ∈ D,
Px a.s., the random measure Z

D has a continuous density zD(y), y ∈ ∂D with
respect to Lebesgue measure on ∂D. Furthermore, the formula

u(x) = − logEx
(
1{RD∩K=∅} exp−

〈
γ, zD

〉)
, x ∈ D (8)

gives a one-to-one correspondence between nonnegative solutions of ∆u = u2 in D
and pairs (K, γ), where K is a closed subset of ∂D and γ is a Radon measure on
∂D\K.

In the representation of Theorem 3.3, both K and γ can be determined an-
alytically in terms of the boundary behavior of u: K is the set of points in ∂D
where u blows up like the inverse of the squared distance to the boundary, and γ
corresponds to the usual trace of u on ∂D\K.

The analytic part of Theorem 3.3 has been extended by Marcus and Véron [21]
to the equation ∆u = up, p > 1 in a smooth domain of Rd, provided that d < p+1

p−1 .

(see also Dynkin and Kuznetsov [12],[13]). In the supercritical case d ≥ p+1
p−1 , things

become more complicated: One can still define the trace of a general nonnegative
solution as a pair (K, γ), but a solution is in general not uniquely determined by
its trace, and not all pairs (K, γ) are admissible traces (see [21], [13]). Recently,
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Dynkin and Kuznetsov [13] have proposed a finer definition of the trace that might
lead to a one-to-one correspondence even in the supercritical case.

A remarkable feature of the connections between superprocesses or snakes
and semilinear partial differential equations is the fact that almost all important
probabilistic questions correspond to basic analytic problems, and conversely. We
will give a last example involving on one hand a Wiener-type test for the Brownian
snake and on the other hand solutions with boundary blow-up. We use the notation
c2,2 for the Sobolev capacity associated with the Sobolev space W 2,2.

Theorem 3.4 [6] Let D be a domain in Rd. The following statements are equiv-
alent.

(i) There exists a nonnegative solution of ∆u = u2 in D that blows up everywhere
at the boundary.

(ii) Let T = inf{s ≥ 0,Ws(t) /∈ D for some t ∈ (0,Hs]}. Then Py(T = 0) = 1
for every y ∈ ∂D.

(iii) d ≤ 3, or d ≥ 4 and for every y ∈ ∂D,
∞∑

n=1

2n(d−2)c2,2(D
c ∩ {z ∈ Rd, 2−n ≤ |z − y| < 2−n+1}) =∞.

4 Statistical mechanics and interacting particle systems

(4.1) Lattice trees. A lattice tree with n bonds is a connected subgraph of Zd with
n edges in which there are no loops.

We are interested in a limit theorem that gives information on the typical
shape of a lattice tree when n is large. To this end, let Qn(dω) be the uniform
probability measure on the set of all lattice trees with n bonds that contain the
origin of Zd. For every tree ω, let Xn(ω) be the probability measure on Rd obtained
by putting mass 1

n+1 to each vertex of the rescaled tree cn−1/4ω. Here c > 0 is a
positive constant.

Provided that the dimension d is large enough, Derbez and Slade [5] proved
that the limiting behavior of the law of Xn under Qn involves a random measure
which is closely related to Aldous’ CRT. To define this random measure, consider
the snake W driven by a normalized Brownian excursion (e(s), 0 ≤ s ≤ 1), assum-
ing again that the spatial motion is Brownian motion in Rd (and the initial point
is 0). Then the formula

〈
I, f

〉
=

∫ 1

0

ds f(Ws(e(s))

defines a random measure in Rd, sometimes called Integrated Super-Brownian
Excursion (ISE).

Theorem 4.1 [5] For d sufficiently large and for a suitable choice of the constant
c = c(d) > 0, the law of Xn under Qn converges weakly to the law of I.
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It is expected that the result holds when d > 8 (which is the condition needed to
ensure that the topological support of I is a tree). This is true [5] if one considers
“spread-out” trees rather than nearest-neighbor trees. A recent work of Hara and
Slade indicates that ISE also appears as a scaling limit of the incipient infinite
percolation cluster at the critical temperature, again in high dimensions (d > 6).

(4.2) Interacting particle systems. A number of recent papers explore the connec-
tions between the theory of superprocesses and some of the most classical interact-
ing particle systems. Durrett and Perkins [8] show that the asymptotic behavior of
the contact process in Zd can be successfully analysed in terms of super-Brownian
motion. Here we will concentrate on the classical voter model and follow a work in
preparation in collaboration with M. Bramson and T. Cox. Closely related results
can be found in a forthcoming article by Cox, Durrett and Perkins.

At each site of Zd sits an individual who can have two possible opinions, say 0
or 1. At rate 1 each individual forgets his opinion and gets a new one by choosing
uniformly at random one of his nearest neighbors and taking his opinion. Suppose
that at the initial time all individuals have type 0, except for the individual at the
origin who has type 1. For every t > 0, let Ut denote the set of individuals who
have type 1 at time t, and let Ut be the random measure

Ut =
∑

x∈Ut
δx/
√
t.

Then P [Ut 6= ∅] = P [Ut 6= 0] tends to 0 as t→∞, and the rate of this convergence
is known [4]. One may then ask about the limiting behavior of Ut conditionally
on {Ut 6= 0}.

The answer to this question can be formulated in terms of the snake W driven
by a Brownian excursion conditioned to hit level 1, with spatial motion given by
(d−1/2 times) a standard Brownian motion in Rd. We have the following result in
dimension d ≥ 3 (an analogous result holds for d = 2).

Theorem 4.2 The law of t−1Ut conditionally on {Ut 6= 0} converges as t → ∞
to the law of cdH, where cd > 0 and the random measure H is defined by

〈
H, f

〉
=

∫ ∞

0

dL1s f(Ws(1)),

where L1s is as previously the local time of the excursion at level 1 and at time s.

To interpret this last theorem, one may say, for the voter model as well as
for the (long-range) contact process [8], that the limiting behavior of the process
depends on a pseudo-branching structure, which asymptotically comes close to the
genealogical structure of the Feller diffusion.
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Genetic Linkage Analysis: an IrregularStatistical Problem
David Siegmund

Abstract. Linkage analysis, which has the goal of locating genes as-
sociated with particular traits in plants or animals (especially inherited
diseases in humans), leads to a class of “irregular” statistical problems.
These problems are discussed with reference to an idealized model, which
serves as a point of departure for more realistic versions of the problem.
Some general results, adapted from recent research into “change-point”
problems, are presented; and more specific problems arising out of the
underlying genetics are discussed.

1991 Mathematics Subject Classification: 62M40, 92D10
Keywords and Phrases: gene mapping, linkage analysis, change point,
irregular

1. Introduction. The goal of gene mapping, or linkage analysis, is to locate
genes that affect particular traits, especially genes that affect human susceptibility
to particular diseases and also genes that affect productivity of agriculturally im-
portant species. An artificially simplified, but illuminating genetic model leads to
the following class of statistical problems. Observations are available on a doubly
indexed set of random variables Z(c, i∆), where c = 1, · · · , 23 indexes the set of
human chromosomes of genetic lengths ℓc and i∆, 0 ≤ i∆ ≤ ℓc are the locations of
markers spaced at intermarker distance ∆ along each chromosome. For different
values of c the random variables are independent. For each fixed c, Z(c, t) is a
stationary Gaussian process in t, which satisfies

Var[Z(c, t)] = 1, Cov[Z(c, s), Z(c, t)] = R(t− s). (1)

A case of particular interest is R(t) = exp(−β|t|). For most or perhaps all values
of c

E[Z(c, t)] = 0 for all t, (2)

while for some c′, 0 < τ < ℓc′ and ξ > 0

E[Z(c′, t)] = ξR(t− τ). (3)

The values of c′, τ, and ξ are all unknown. Thus the data consist of a large number
of zero mean Gaussian processes observed at equally spaced “time” points. A small
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number of these processes are superimposed on a mean value function defining a
“peak” of an unknown height ξ at an unknown location τ , and having a known
shape R. The statistical problems are to decide which chromosomes, if any, harbor
such a location τ and estimate the location by a confidence region. These problems
are “irregular” for two reasons: (i) the parameter τ is not identifiable when the
nuisance parameter ξ = 0; the log likelihood function, which is proportional to
Z(c, τ), is not a smooth function of the parameter τ , even if we are able to make
continuous observations in t.

The purpose of this paper is (a) to explain briefly the genetic background
of the preceding problems as they relate to mapping human disease genes, (b)
propose a framework for their solutions that is useful as a point of departure for
discussing more realistic versions of the problems, and (c) describe some alternative
models designed to capture the complicating features arising in practice. Special
consideration is given to the issue of multiple comparisons that arises through
examining the large number of variables Z(c, i∆) in searching for the relatively
few values of c′, t where the expected value is substantially different from 0, and
to estimation of τ by confidence regions. Some of these problems can be understood
in terms of recent literature on “change-point” problems, to which they are closely
related.

2. Genetic Background. Given two related individuals, at a given locus in
the genome two alleles are said to be identical by descent if they are inherited
from a common ancestor. For example, a pair of half siblings can inherit zero
or one allele identical by descent from their common parent, and according to
Mendel’s laws each of these possibilities has probability 1/2. Genes on different
chromosomes segregate independently, while genes on the same chromosome tend
to be inherited from the same parental chromosome, and are said to be linked.
More precisely, if two half siblings share an allele identical by descent at locus t,
they will share an allele identical by descent at a locus on a different chromosome
with probability 1/2 and at a locus s on the same chromosome with a probability
(1−φ) ∈ (1/2, 1). This probability is a decreasing function of the distance between
s and t.

A pair of siblings can inherit zero or one allele identical by descent from their
mother and similarly from their father, hence 0, 1, or 2 overall. For some purposes
a single sib pair can be regarded as two independent half sib pairs, but in general
siblings require a more complicated analysis. For ease of exposition, we consider
only the much simpler case of half siblings.

The basic logic of linkage analysis is that if two relatives, e.g., half siblings
or siblings, share an inherited trait, e.g., a disease, that is relatively rare in the
population, it is likely that they share an allele predisposing them to the trait
that has been inherited identical by descent. Thus the probability of identity by
descent for an affected relative pair at a marker locus close to a trait locus is
greater than the value given by Mendel’s laws (1/2 in the case of half siblings).
Our problem is to scan the genome of a sample of affected relatives in search of
regions where the identity by descent exceeds the expected proportion by more
than can be explained as a chance fluctuation.
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A mathematical model for a pair of half siblings is as follows. Let Xt be 1
or 0 according as the half siblings are or are not identical by descent at locus t
(on a chromosome c, which henceforth is suppressed in the notation). Then for a
random pair of half siblings,

P{Xt = 1} = P{Xt = 0} = 1/2 (4)

for all t; and for loci s and t on the same chromosome

P{Xs = 1|Xt = 1} = P{Xs = 0|Xt = 0} = 1− φ. (5)

Assume that τ denotes a genetic locus predisposing to inheritance of the trait (and
that there is no other trait locus on the given chromosome). Then for two half
siblings sharing a trait in common,

P{Xτ = 1} = (1 + α)/2 > 1/2, (6)

while the conditional probability (5) continues to hold for loci s, t on the same side
of τ . In particular by taking t = τ in (5) we obtain P{Xs = 1} = [1+α(1−2φ)]/2.
The value of φ in terms of the parameters s and t depends on the model used for
the genetic process of recombination. According to the commonly used model
suggested by Haldane in 1919,

φ = [1− exp(−β|t− s|)]/2, (7)

and more generally
φ ∼ β|t− s|/2 as |t− s| → 0. (8)

The value of β is determined by the relation of the relative pair. For half siblings
it is 0.04 when the units of genetic distance along a chromosome are centimor-
gans (cM). (One cM is defined as the distance for which the expected number
of crossovers per meiosis is 0.01. The average length of a human chromosome is
roughly 140 cM. See Suzuki et al. for a more thorough discussion.)

Assuming now that one observes identity by descent data for N independent
half sibling pairs at marker loci, denoted i∆, equally spaced at intermarker distance
∆ throughout the genome, we form the statistics

Zi∆ = N−1/2ΣNj=1[2X
j
i∆ − 1], (11)

where the summation is over all half sibling pairs. It is possible starting from (11)
to address the basic questions of Section 1 (cf. Feingold, 1993, Tu and Siegmund,
1998). A somewhat simpler and more complete analysis is possible if we introduce
an additional approximation. It follows from the central limit theorem that as
N → ∞ and α → 0 in such a way that N1/2α → ξ ≥ 0 the process Zi∆ defined
in (11) converges in distribution to a process, which by (4)-(7) has the properties
described in (1) - (3). By an abuse of notation we continue to denote this new
process by Zi∆. Thus we return to the problems already formulated in Section 1.
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3. Genome wide false positive error rate. If i∆ in (11) is equal to τ , it
follows from (6) that (11) is the score statistic for testing whether α = 0; it is also
the likelihood ratio statistic in the approximating Gaussian model. Since usually
τ is unknown, to test for linkage somewhere on the genome we use

max
c

max
i
Zi∆. (12)

To evaluate approximately the false positive error rate, i.e., the probability under
the hypothesis of no linkage throughout the entire genome that (12) exceeds a
threshold b, we assume that b → ∞ and ∆ → 0, in such a way that b∆1/2

converges to a positive constant. Then for a genome wide search

P
{

max
c

max
i
Zi∆ > b

}
≈ 1− exp{−C

[
1− Φ(b)

]
− βLbϕ(b)ν

(
b{2β∆}1/2

)
}. (13)

Here Φ and ϕ are the standard normal distribution function and density function,
respectively, C is the number of chromosomes and L = Σcℓc is the total length
of the genome in cM. The function ν, which arises in the fluctuation theory of
random walks developed by Spitzer in the 1950’s, is defined by

ν(x) = 2x−2 exp[−2Σn−1Φ(−xn1/2/2)]. (14)

For small x it is easily evaluated via the relation ν(x) = exp(−ρx) + o(x2), where
ρ = −ζ(1/2)/(2π)1/2 ≈ 0.583, while the series in (14) converges very rapidly for
large x. For a numerical example, for markers every ∆ = 1 cM and a human
genome of 23 chromosomes of average length 140 cM the threshold b = 3.91 gives
a false positive error rate equal to the conventional 0.05. The approximation
(13) was given by Feingold, Brown and Siegmund (1993), as an application of the
method of Woodroofe (1976).

4. Power. To obtain an approximation to the power that we detect a disease
locus on a correct chromosome (for simplicity we assume there is at most one on
any given chromosome), we first suppose that the disease locus τ is itself a marker
locus. We then have the approximation

P
{

max
k

Zk∆ ≥ b
}
≈ 1− Φ(b− ξ) + ϕ(b− ξ)

[
2ν/ξ − ν2/(b+ ξ)2

]
, (15)

where ν = ν
(
b{2β∆}1/2

)
, as defined above. The first term in (15) is simply

the probability that the process exceeds the threshold b at the disease locus. A
disease locus between marker loci needs a similar but more complicated argument
involving the (correlated) process Zi∆ at the two flanking markers. The resulting
approximation requires a one dimensional numerical integration for its numerical
evaluation.

For the 1 cM intermarker distance and threshold b = 3.91 considered in the
preceding section, and a disease locus midway between two markers a noncentrality
parameter of ξ = 5.03 is needed to achieve power of 0.9 to detect the disease locus.
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For a given value of the genetic parameter α, this can be converted to a sample
size requirement by virtue of the relation ξ = N1/2α.

5. Confidence regions. A confidence region can be used to identify a chromo-
somal region in which to concentrate the search for the exact location of a disease
gene. We discuss here two methods that are motivated by the recent literature
on “change-point” problems, which have essentially the same structure. These
methods are (i) support regions and (ii) Bayesian credible sets. (See Siegmund,
1989, for a review of the change-point literature). Note that as a consequence
of the irregularity of this problem, the maximum likelihood estimator of τ is not
normally distributed, so it is not correct to use the maximum likelihood estimator
plus or minus two estimated standard errors as an approximate 95% confidence
interval.

We assume that a disease gene has been correctly identified to lie on a partic-
ular chromosome, which contains no other disease gene. For simplicity we assume
that the locus τ is exactly a marker locus. Since many investigators type addi-
tional markers in the proximity of an apparent disease gene, this latter assumption
is often approximately true in practice.

The traditional genetic technique for estimating the location of a disease gene
is a support region, which for our purposes can be defined as follows. Given c > 0,
a support region contains all loci j∆ such that

Z2j∆ ≥ max
i
Z2i∆ − c. (16)

Within the framework of the approximate Gaussian model, this is equivalent to
the standard statistical technique of inverting the likelihood ratio test that j∆
is the disease locus, to obtain a confidence region. If the problem were regular,
which in this case would require that Zt be twice continuously differentiable in t,
the probability of (16) would be given approximately by a χ2 distribution with
one degree of freedom; but that approximation is not correct here. By methods
similar to those used to obtain (13) one can approximate the probability of (16)
and show that (16) yields an approximate confidence region for the disease locus
(Feingold, Brown and Siegmund, 1993, Lander and Kruglyak, 1995, Dupuis and
Siegmund, 1998).

Because of the local linear decay near τ displayed in (3), the inequality (16)
will be satisfied at all loci within a distance from τ of roughly c/2βξ2. Since ξ is
proportional to N1/2, the expected size of the support region is proportional to
N−1. This stands in contrast to regular problems, where the likelihood function
decays quadratically, and the size of a confidence region is proportional to N−1/2.
It may be shown by more detailed analysis that a value c ≈ 4.5 corresponds
roughly to a 90% confidence interval when ∆ = 1 and β = 0.04. Then for ξ ≈ 5,
the value indicated above that one needs to detect linkage with power about 0.9,
the expected size of a support region is about 5 cM. Since this corresponds to
about 5 × 106, base pairs, one still needs additional information, invariably of a
qualitatively different kind, to locate the gene with precision at the base pair level.

In his study of the closely related change-point problem, Cobb (1978) ob-
served that if ξ were known, the problem of estimation of τ would have essentially
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the same structure as estimation of a location parameter. Hence Fisher’s (1934)
suggestion for estimating a location parameter, to use the conditional distribution
of the maximum likelihood estimator given the ancillary statistic, in our case the
local rate of decay of the likelihood function, is very attractive. Moreover, this
suggestion has minimal computational requirements, since it can be effected by a
formal Bayesian credible region based on a uniform prior distribution for τ . To
accommodate unknown ξ, one can introduce a prior distribution for ξ or use the
profile likelihood function obtained by maximization with respect to ξ for each
fixed τ.

Dupuis and Siegmund (1998) have compared these two methods and find that
they are roughly comparable, although the former is more robust under a variety
of conditions.

6. Multilocus models. There are many additional problems that require a
more detailed understanding of the underlying genetics than we have presented so
far. In this section we discuss traits involving more than one gene, while in the
next we very briefly point out several additional problems.

While some inherited human diseases are governed by a single gene, most of
the more common ones having a genetic component, e.g., diabetes, breast cancer,
Alzheimer’s disease, are known or thought to involve multiple genes. Conceptually
the simplest of these are heterogeneous traits, where susceptibility increases by
virtue of a mutant allele at any one of several loci. It is, of course, possible that
the genome scan defined above would identify several disease loci, even though
there is no particular effort to do so. Typically a much larger sample size would
be required than for a single gene trait having a comparable degree of heritability,
since the evidence for linkage is divided among the different disease loci.

Three methods have been suggested to deal with heterogeneous traits: (i)
simultaneous search, (ii) conditional search and (iii) homogenization. In simulta-
neous search, suggested originally by Lander and Botstein (1986), one hypothesizes
a specific number, say two, trait loci and searches over combinations of putatitve
loci to identify both simultaneously. Because there is a much larger number of
multiple comparisons, a suitable threshold under the conditions assumed above
would increase from the neighborhood of 4 to about 5 (in searching for two loci).
Conditional search, which is appropriate after some trait loci have already been
identified, involves stratification of the sample according to the identity by descent
status at the (estimated) location of the already discovered loci in order to increase
precision in searching for additional trait loci. See Dupuis, Brown and Siegmund
(1995) for a theoretical analysis of these two methods. An interesting application
of conditional search is contained in Morahan et al. (1996), who identified a gene
on chromosome two for insulin dependent diabetes by conditioning on the identity
by descent status of their sample of sib pairs at the HLA locus on chromosome 6,
which had been implicated in several earlier studies.

A third approach to alleviate the problem of heterogeneity is to develop a
narrow definition of the disease, in order to make the disease more homogeneous.
In some cases this definition can be achieved statistically. A notable success was
the identification of the breast cancer gene BRCA1 by defining the trait to be
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early onset breast cancer. A recent attempt in the same direction involved a
search for a gene contributing to noninsulin dependent diabetes (Mahtani et al.,
1996). After failing to find evidence of linkage in the complete study group, the
pedigrees in the study were identified with their average level of a quantitative
covariate thought to be associated with the trait. The analysis was repeated with
only those pedigrees in the most extreme 25% of the distribution of this covariate,
then the most extreme 50%, then the most extreme 75%. The genome scan in the
most extreme 25% turned up a value that would have been marginally significant
at the 0.05 level if the phenotype had been defined a priori, but now there is
the second dimension of multiple comparisons (i.e., the search over levels of the
covariate) to account for.

A suitable model to analyze this two dimensional search within the Gaussian
framework introduced above is as follows. Let Z(t, k) for k = 1, · · · ,m be indepen-
dent identically distributed Gaussian processes in t as defined in Section 1. Here
k denotes levels of the covariate and for convenience is assumed to involve equal
quantiles of its distribution. Then let

S(t, k) = k−1/2Σki=1Z(t, i).

Linkage is detected if
max
1≤k≤m

max
c

max
j
S(j∆, k) ≥ b (17)

for a suitable threshold b. Using the method of Siegmund (1988), which generalizes
Woodroofe (1976) to multidimensional time, one finds under the hypothesis of no
linkage that the probability of (17) is approximately

1− exp
(
−βLν[b(2β∆)1/2]b3φ(b)

∫ ∞

bm−1/2
x−1ν(x) dx

)
. (18)

For the threshold b = 3.91 appropriate for the simple scan of Section 1 when ∆ = 1,
we find when m = 4 that (18) is about 0.15. To obtain a false positive rate of
0.05, one must increase the threshold to b = 4.2. Some rough calculations, which
should be more carefully analyzed, indicate that if the covariate is effective in
“homogenizing” the original sample, one can sometimes achieve substantial gains
in power after allowing for the increase in threshold.

In the paper of Mahtani et al. (1996) there was the additional problem that
the study design required pedigrees to have at least three affecteds and employed
a statistic whose distribution under the hypothesis of no linkage is skewed to the
right. (See (iii) in Section 7 below.) As a consequence the p-value of their result
was about 0.24 after one adjusts for skewness in addition to the two dimensional
search.

7. Additional problems. Linkage analysis involves a large number of problems
in addition to those discussed above. A few that have been the subject of recent
research follow.

(i) The identity by descent data that form the basis of our previous discussion
are intrinsically incomplete and require complicated algorithms to process. For
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example, for a given relative pair a particular marker may be “informative,” so
that we can observe the identity by descent status at that marker, or it may be
“uninformative.” Intermediate possibilities also exist. Since by (5) identity by
descent status is correlated at nearby markers, it may be possible to infer that
status at an uninformative marker from the status at nearby informative markers.
For example, for half siblings it follows from (6) that the likelihood function (for
the case of completely informative markers, when the trait locus τ is itself a marker
locus) equals

ΠN
j=1 (1 + α)X

j
τ (1− α)1−X

j
τ .

Let G denote the observed genotypes of all individuals at all markers, and let
P0 denote probability under the hypothesis of no linkage. Then the likelihood
function (relative to P0) when some of the Xj

τ may not be observable is

ΠN
j=1E0[(1 + α)X

j
τ (1− α)1−X

j
τ |G] = ΠN

j=1[1 + α(2Y jτ − 1), (19)

where Y jτ = E0[X
j
τ |G]. Kruglyak et al. (1996) use hidden Markov chains to cal-

culate the required conditional expectations. Their algorithm works best for a
possibly large number of small pedigrees. Additional techniques are required for
studies involving large pedigrees, which can make the required calculations ex-
tremely onerous (cf. Thompson, 1994). By differentiating (19) one sees that the
score statistic for testing α = 0 is

Ẑτ = Σj [Y
j
τ − 1/2]/[ΣjVar(Y jτ )]1/2,

which reduces to (11) in the case of complete data. Since τ is unknown, we
use maxc maxi Ẑi∆ to search the genome for evidence of linkage. By studying
the correlation function of Ẑi∆, Teng and Siegmund (1998) show under certain
conditions that a threshold b appropriate for the case of completely informative
markers studied above is approximately correct for Ẑi∆ as well. They also study
the effect of incompletely informative markers on the power to detect linkage.
These problems are difficult, and pose a number of impediments to a completely
satisfactory solution.

(ii) Many traits are defined by quantitative measurement rather than a yes/no
dichotomy. Understanding the genetic basis of quantitative traits is also of interest
in experimental genetics, e.g., for agriculturally important species or for animal
models of human diseases. At the level of abstraction provided by Gaussian ap-
proximations one finds that linkage analysis of quantitative traits in humans and in
experimental genetics has much in common with the problems discussed above, but
many details are quite different–particularly when one considers various breeding
designs available in experimental genetics (cf. Lander and Botstein, 1989; Dupuis
and Siegmund, 1998).

(iii) The normal approximation suggested in Section 1 is adequate for the
simple case of half siblings discussed there, because under the hypothesis of no
linkage (11) is symmetrically distributed. In general, particularly when pedigrees
contain more than two affecteds or distant affected relatives, the statistic is not
symmetrically distributed and the normal approximation can be very poor. For
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example, for first cousins the probability of identity by descent at an arbitrary
locus is 1/4, so the statistic corresponding to (11) has a distribution skewed to the
right; and the approximation (13) is anti-conservative. While it is possible to give
approximations based directly on (11) or its analogue in more complex cases, these
approximations can be onerous to evaluate numerically. A simple modification of
(13) is given by Tu and Siegmund (1998). Let γ be the third moment of Zt under
the hypothesis of no linkage and θ = [−1+(1+2bγ/N1/2)1/2]/γ. Then for a single
chromosome of genetic length ℓ

P{ max
0≤i∆<ℓ

Zi∆ ≥ b}

≈ [1−Φ(b)] exp(γb3/6N1/2)+νβℓb[2π(1+γθ)]−1/2 exp[−Nθ2(1+2γθ/3)/2], (20)

where ν = ν[b(2β∆)1/2]. Note that θ ∼ b/N1/2 as either N → ∞ or γ → 0, and
then (20) reduces to (13). An application of the analogous extension of (18) was
described at the end of Section 6.
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Brownian Motion and Random Obstacles
Alain-Sol Sznitman

Abstract. The investigation of Brownian motion and random obstacles
exhibits a rich phenomenology and displays paradigms which appear in
several other areas of random media. We provide here a brief survey of
some recent developments.

1991 Mathematics Subject Classification: 60K40, 82D30

0. Introduction

Much effort has been devoted to the investigation of random media over the last
two decades. This field offers a broad selectio n of surprising effects and represents
a mathematical challenge. The above applies in particular to the topic of Brownian
motio n and random obstacles, which has given rise to new ideas, results and
techniques. We shall now explain what the subject is abo ut.

A common example of random obstacles are the soft Poissonian potentials:

(0.1) V (x, ω) =
∑

i

W (x− xi), x ∈ lRd ,

where ω =
∑
i δxi is a typical cloud configuration for the Poisson measure lP

with constant intensity ν > 0, and W (·) is a bounded measurable nonnegative
function, compactly supported and not a.e. equal to 0. Of central i nterest is the
investigation of the interaction of Brownian motion with the random obstacles.
Several path measures of interest arise in this context, for instance

- Brownian motion in a Poissonian potential, described by:

(0.2) Qt,ω =
1

St,ω
exp

{
−
∫ t

0

V (Zs, ω)ds
}
P0, (quenched measure),

with ω a lP-typical cloud configuration, Z. the canonical d-dimensional Brownian
motion, P0 the Wiener measure, St,ω the normalizing constant,

(0.3) Qt =
1

St
exp

{
−
∫ t

0

V (Zs, ω)ds
}
P0 ⊗ lP, (annealed measure) ,

with St the normalizing constant,
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- Brownian crossings in a Poissonian potential, described by:

(0.4) P̂λx,ω =
1{H(x) <∞}
eλ(0, x, ω)

exp
{
−
∫ H(x)

0

(λ+ V (Zs, ω))ds
}
P0,

(quenched measure) ,

with ω as in (0.2), λ ≥ 0, x ∈ lRd, H(x) the entrance time of Z. in the unit ball
around x, eλ(0, x, ω) the normalizing constant,

(0.5) P̂λx =
1{H(x) <∞}

ēλ(x)
exp

{
−
∫ H(x)

0

(λ+ V (Zs, ω))ds g P0 ⊗ lP,

(annealed measure),

with ēλ(x) the normalizing constant.

Trapping problems provide natural interpretations for these path measures.
In this light, V (x, ω) can be viewed as the random rate of absorption at location x
for a particle diffusing in the environment ω. Thus (0.2), (0.3) govern the so-calle
d quenched and annealed behaviors of a particle conditioned to survive absorption
up to a (long) time t, whereas (0.4), (0.5) govern the quenched and annealed
behaviors of a particle conditioned to perform a (long) crossing without being
absorbed. Ther e are other physical interpretations, and for instance (0.2) also
comes as a model of “flux lines in dirty-high-temperature su perconductors”, cf.
Section 4.6.3 of Krug [13], or Krug-Halpin Healy [14]. In this case t represents
the transvers al thickness of a material with “columnar defects”, rather than time.
Discrete analogues of the above path measures also aris e in the literature, see for
instance Bolthausen [3], Khanin et al. [12]. It may be helpful to mention that
quenched measures describe the evolution in a lP-typical environment of a particle
starting at the origin, whereas for the annealed m easures the lP-integration should
be viewed as the result of an ergodic average over the starting point of the particle.
It i s a recurrent theme of random media that quenched and annealed behaviors
can be substantially different.

I. Normalizing constants for (0.2), (0.3)

Analyzing the principal asymptotic behavior of normalizing constants is a first
step in the understanding of the path measures attached to Brownian motion in
a Poissonian potential.

With the help of the Feynman-Kac formula, the normalizing constants St,ω
and St can respectively be expressed as:

(1.1) St,ω = uω(t, 0) and St = lE[uω(t, 0)] ,

where uω(t, x) is the bounded solution of

(1.2)

{
∂t uω = 1

2 ∆uω − V uω ,
uω(0, x) = 1 .
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Their principal asymptotic behaviors as t→∞, are governed by:

(1.3) lP−a.s., St,ω = exp{−c(d, ν) t(log t)−2/d(1 + o(1))} ,

(1.4) St = exp{−c̃(d, ν) t
d
d+2 (1 + o(1))} .

The constants c and c̃ are “explicit”, and independent of the specific choice of W (·)
in (0.1). If λ(U) and |U | respectively denote the principal Dirichlet eigenvalue of
− 12 ∆ in U and the volume of U , one has:

(1.5) c(d, ν) = λ(B(0, R0)), with R0 =
( d

ν|B(0, 1)|
)1/d

, whereas

(1.6)

c̃(d, ν) = inf
U open

{ν|U |+ λ(U)} = ν|B(0, R̃0)|+ λ(B(0, R̃0)), with

R̃0 =
(2λ(B(0, 1))

dν |B(0, 1)|
) 1
d+2

.

The annealed asymptotics (1.4) goes back to Donsker-Varadhan [5], where it was
obtained as an application of large deviati on theory for occupation times of Brow-
nian motion on a torus. Both asymptotics have also been derived through the
analysis of p rincipal Dirichlet eigenvalues of − 12 ∆ + V (·, ω) in large boxes, and
the method of enlargement of obstacl es, cf. [24], [33], [36]. Sharper versions of
(1.3), (1.4) can also be found in [36].

Intuitively for the quenched asymptotics, the contribution in the Feynman-
Kac formula

(1.7) St,ω = E0

[
exp

{
−
∫ t

0

V (Zs, ω)ds
}]

of Brownian paths going to some obstacle-free ball of radius of order R0(log t)1/d,
typically occurring within distance slightly less than t from the origin, and staying
there up to time t, has the principal asymptotic behavior (1.3). On the other hand
for the annealed asymptotics, the contribution in the representation

(1.8) St = lE⊗E0
[

exp
{
−
∫ t

0

V (Zs, ω)ds
}]

,

of largely deviant environments, for which an obstacle-free ball of radius of order

R̃0 t
1
d+2 contains the origin, and of Brownian trajectories, which stay in the ball up

to time t, has the principal behavior (1.4). Of course, under standing whether and
up to what point these heuristics truly govern the quenched and annealed path
measures (0.2), (0.3) is qui te another matter. As it turns out, the loose concept
of pockets of low local principal Dirichlet eigenvalue for − 12 ∆ + V (·, ω), plays
an important role in the analysis of (0.2), (0.3). The predominance of atypical
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“pocket s of abnormally low eigenvalues” locally describing a system is a recurrent
paradigm of random media, which for instance shows up in models of intermittency,
cf. Gärtner-Molchanov [8], [9], Molchanov [17], in random walks in random envi
ronment, cf. [4], [19], [20], [35], or in stochastic dynamics of spin systems with
random interactions, cf. [16] and references therein.

II. Pinning effect and confinement property

The large t behavior of the quenched path measure Qt,ω is governed by a “com-
petition” between the various “pockets o f low local eigenvalues”, resulting in a
pinning effect: the path tends to get attracted to near minima of a certain random
va riational problem. The discussion of the real pinning effect would go beyond
the scope of this expository article, and we restr ict here to a simplified version.
We refer to [32] or [36] for the “real story”. We denote by λω(U) the principal
D irichlet eigenvalue of − 12 ∆ + V (·, ω) in U , and for sufficiently small χ > 0,

consider the random function on lRd.

(2.1) Ft(x, ω) = α0(x) + tλω(B(x,Rt)) ,

with Rt = exp{(log t)1−χ}, a “small scale” growing slower than any positive power
of t, and α0(·) a certain deterministic norm, the so-called quenched 0-th Lyapunov
coefficient, see Section IV below, (the role of α0(·) is somewhat cosmetic in the
simplified pinning effect we discuss here). Minimizing Ft(·, ω) induces a competitio
n between distance to the origin and occurrence of pockets of low local eigenvalues.
One can show, cf. [32], [36], that

(2.2) lP-a.s., inf Ft(·, ω) ∼ c(d, ν) t(log t)−2/d, as t→∞ ,

with c(d, ν) as in (1.5). Defining a skeleton of near minima of Ft(·, ω) via

(2.3) Lt,ω =
{
x ∈ 1√

d
ZZd, Ft(x, ω) ≤ inf Ft(·, ω) + t(log t)−χ−

2
d } ,

it can be shown that this set “lies almost at distance t” from the origin. The
(simplified) pinning effect asserts that

Theorem: For small χ > 0,

(2.4) lP-a.s., lim
t→∞

Qt,ω(C) = 1, where

(2.5)
C = {Z. comes before time t within distance 1 of some x ∈ Lt,ω from

which it then does not move further away than Rt up to time t} .

As a by-product of the proof one also has the refinement of (1.3):

(2.6) lP-a.s., logSt,ω + inf Ft(·, ω) = o(t(log t)−χ−
2
d ) .

The true pinning effect is substantially sharper but involves certain random scales
which would take too long to introduce here . In particular in the one-dimensional
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case it can be shown that for ǫ > 0, with lP × Qt,ω-probability ten ding to 1 as
t → ∞, Z. gets pinned within time ǫ t in scale t(log t)−3 within an interva l of
length 2(log t)2+ǫ, cf. [32], [36].

Loosely speaking, in the quenched situation the particle “goes the extra mile”
to find an adequate pocket of low local eigenv alue. The annealed situation is quite
different and favours a “good location” for the starting point of the path which
then t ends to remain “confined” there. For instance in the case of hard obstacles,
i.e. for the path measure

(2.7) Qt = lP⊗ P0[ · |T > t] ,

with T the entrance time of Z. in the obstacle set
⋃
i xi +K, ω =

∑
i δxi and K

a fixed nonpola r compact set, one has the confinement property:

Theorem: For any d ≥ 1,

(2.8) lim
t→∞

Qt[ sup
0≤u≤t

|Zu| ≤ 2 t
1
d+2 (R̃0 + ǫ(t))] = 1 ,

with R̃0 as in (1.6), and ǫ(t) a suitable function tending to 0, when t tends to ∞.
Thus the path “typically lives in scale t

1
d+2 under Qt”. The result is consider-

ably harder to prove when d ≥ 2. The two-dimensional case goes back to [26]. The
case of dimension d ≥ 3 was proved by Povel [21], who used a recent version of the
method of enlargement of obstacles (cf. next section), and certain isoperimetric
controls of R.R. Hall [?], which play the role of the Bonnesen’s inequality in the
two-dimensional proof. In fact in the two-dimensional case, it was proved in [26]
that

Theorem: (d = 2)

(2.10)

There exists a measurable map Dt(ω), B(0, t1/4 (R̃0 + ǫ(t)))-valued,
such that with Qt-probability tending to 1, as t→∞, Z[0,t] is
included in B(Dt, t

1/4(R̃0 + ǫ(t))) and no obstacle fall in

B(Dt, t
1/4(R̃0 − ǫ(t))) .

In the case of the simple random walk on ZZ2, Bolthausen proved in [3] a version of
this result using a refined version of D onsker-Varadhan’s large deviation principles.
It is also possible to obtain further information on the “spherical clearing” w here
the process lives, cf. Schmock [23], when d = 1, [26], when d = 2, and [21], when
d ≥ 3:

(2.11)

As t→∞, t−
1
d+2Z

· t
2
d+2

converges in law under Qt, to the

mixture with weight ψ(x)/
∫
ψ of the laws of Brownian motion

starting from 0 conditioned not to exit B(x, R̃0), with ψ the

principal Dirichlet eigenfunction of − 12 ∆ in B(0, R̃0) .

Documenta Mathematica · Extra Volume ICM 1998 · III · 301–310



306 Alain-Sol Sznitman

III. the method of enlargement of obstacles

As mentioned above, in many questions related to Brownian motion in a Poissonian
potential, the analysis of local principal Dir ichlet eigenvalues of − 12 ∆ + V (·, ω)
plays in important role. Indeed these numbers control in a very qu antitative
fashion the decay properties of the Dirichlet-Schrödinger semigroup. This is illus-
trated by the estimat e:

(3.1) sup
x
Ex

[
exp

{
−
∫ t

0

V (Zs, ω)ds
}
, TU > t

]
≤ c(1 + (λω(U)t)d/2) e−λω(U)t ,

with c a merely dimension dependent constant and TU the exit time of Z. from
U , cf. [36]. The method of enlargement o f obstacles in particular provides an
efficient way of deriving uniform controls on the numbers λω(U) close to 0 (i .e.
the bottom of the spectrum of − 12 ∆ + V (·, ω) in lRd), as U and ω vary. The
rough idea is to remodel the region V > 0, and construct a coarse grained picture
with lower combinatorial complexity than the original clo ud configuration, which
for probabilistic purpose is simpler to analyze, but still has principal eigenvalues
close to the origi nal objects. This remodeling of the region V > 0 brings into
play a trichotomy of lRd. In a first region, true obstacles a re quickly sensed by
Brownian motion, and obstacles can be “enlarged” by imposing Dirichlet condition
on this set. A second r egion where obstacles are insufficiently present and where
enlargement of obstacles could possibly influence eigenvalues is sho wn to have
little volume and thus little effect on probabilistic estimates. The third and last
region receives no point of the cloud. In a sense, this parallels the trichotomy
associated to any compact set K by considering the set of regular points of K, the
set of irregular points of K and the complement of K.

Specifically after scaling the problem so that ǫ represents the size of the true
obstacles, 1 the size of the pocket s of interest in the scaled cloud configurations
(still denoted by ω), one constructs a density set Dǫ( o) where obstacles are en-
larged and a bad set Bǫ(ω) where obstacles are untouched, so that:

(3.2)

i) Dǫ(ω), Bǫ(ω), lRd\(Dǫ(ω) ∪ Bǫ(ω)) ; partition lRd,

ii) no point of ω falls in lRd\(Dǫ(ω) ∪ Bǫ(ω)),

iii) for each box C of size 1, the maps ω → C ∩ Dǫ(ω) and

ω → C ∩ Bǫ(ω) have range of cardinality smaller then 2ǫ
−dβ

,
with β ∈ (0, 1) a fixed number.

Denoting by Vǫ(·, ω) =
∑
i ǫ
−2W ( ·−xiǫ ) the scaled potential, the construct ion can

be done so that for a suitable α ∈ (0, β), Brownian motion, when starting on
Dǫ(ω), strongly feels the obstacles before moving at distance ǫα:

Theorem A0: (pointwise absorption estimate). There exists ρ0 > 0, such that

(3.3)
lim
ǫ→0

ǫ−ρ0 sup
ω,x∈ωverlineDǫ(ω)

Ex

[
exp

{
−
∫ Hǫα

0

Vǫ(Zs, ω)ds
}]

< 1, with

Hǫα = inf{s ≥ 0, |Zs − Z0| ≥ ǫα} ,
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and on the other hand the bad set has small volume:

Theorem B: (volume estimate)

(3.4) ∃κ > 0, lim
ǫ→0

sup
riptsize C box of size 1, ω

ǫ−κ |Bǫ(ω) ∩C| < 1 .

The construction of the trichotomy (3.3) i) relies on a type of quantitative Wiener
test involving a series of capacities of a skeleton of the true obstacles at scales
intermediate between ǫβ and ǫα. In a sense (3.4), (3.5) parallels the Wiener test
characterization of regular points of a compact set and the Kellog-Evans theorem
on the smallness of the set of ir regular points of a compact set. As an application
of the pointwise absorption estimates (3.3) one can in particular obtain eig envalue
estimates:

Theorem A: (eigenvalue estimate)
(3.5)
∃ρ > 0, ∀M > 0, lim

ǫ→0
ǫ−ρ sup

ω,U
(λǫpsilonω(U\Dǫ(ω)) ∧M − λǫω(U) ∧M) = 0 ,

with λǫω(O) = principal Dirichlet eigenvalue of − 12 ∆ + Vǫ(·, ω) in O.

In other words this shows that in the asymptotic regime, provided λǫω(U) has
value of order unit, an addition al Dirichlet condition on Dǫ(ω) does not essentially
increase the principal eigenvalue.

The method of enlargement of obstacles has numerous applications to the
quenched and annealed situation, cf. [36]. The method e asily applies to non-
Poissonian obstacles (uniformity of controls in ω is very handy), cf. [28], to shrink-
ing obstacles, cf. [25], see also [2], to confidence intervals on principal eigenvalues,
cf. [33], see also [39]. A version of the method in the discrete setting can be found
in Antal [1]. Recently L. Erdös applied in [6] a version of the method to the study
o f the Lifschitz tail effect for the density of states of the magnetic Schrödinger
operator with Poissonian obstacles.

IV. Lyapunov norms

The technique of Lyapunov norms has been very helpful in the investigation of
“off-diagonal” properties of the path measures (0.2), (0.3), in particular in the
derivation of large deviation principles governing the location of Zt. The Lyapunov
norms describe the principal exponential decay of the normalizing constants in
(0.4), (0.5). In a one-dimensional setting, in the co ntext of wave propagation in
random media, they can be traced back to the work of Gärtner and Freidlin, cf.
Chapter 7 of Frei dlin [7].

At the heart of the method lies the fact that the functions eλ(x, y, ω) satisfy
an almost supermultiplicative property and still contain much information about
Brownian motion in a Poissonian potential. An important role is played by certain
sha pe theorems (analogous to shape theorems of first passage percolation, cf.
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Kesten [11]), which construct two families of norms on lRd, βλ(·) ≤ αλ(·), λ ≥ 0,
the annealed and quenched Lyapunov coeffici ents:

(4.1) lP-a.s. for M > 0, lim
x→∞

sup
0≤λ≤M

1

|x| | − log eλ(0, x, ω)− αλ(x)| = 0 ,

(4.2) for M > 0, lim
x→∞

sup
0≤λ≤M

1

|x| | − log tog(lE[eλ(0, x, ω)])− βλ(x)| = 0 .

These shape theorems are quite robust and one can replace in (4.1), (4.2),
eλ(0, x, ω) by the λ-Green function gλ(0, x, ω), or eλ(x, 0, ω), or exp{−dλ(0, x, ω)},
with dλ certain natural random distance functions (in general nongeodesic) con-
structed with the eλ, cf. [36]. The Lyapunov coefficients enter several large d
eviation theorems, cf. [29], [30], [31], as well as the random variational problem of
the pinning effect. For instance when arphi(t)→∞,

(4.3)

lP-a.s. under Qt,ω, Zt/ϕ(t) satisfies a large deviation principle
at rate ϕ(t), with rate function:

i) α0(x), if ϕ(t) = t(log t)−2/d, cf. [31],

ii) α0(x), if t(log t)−2/d << ϕ << t, cf. [29],

iii) I(x) = sup
λ≥0

(αλ(x) − λ), if ϕ(t) = t, cf. [29].

Similar results hold under the annealed measure Qt, when d ≥ 2, with t
d
d+2 in place

of t(log t)−2/d and βλ(·) in place of αλ(·), (the one-dimensional case is singular,
cf. Povel [22]). In the discrete setting (4.3) iii) has been proved by Zerner in [40].
In fact the above strategy also applies in the context of random walks in random
environments, cf. Zerner [41]. This is especially interesting since there are few
mathematical results on this model.

The understanding of crossing Brownian motion in a Poissonian potential, see
(0.4), (0.5), is so far rather primitive. However recently for rotationally invariant
truncated Poissonian potentials, Wüthrich has been able to relate in [37], the
fluctuatio n properties of − log eλ(0, x, ω) to transversal fluctuations of the path
under the path measure (0.4). In a slightly d ifferent situation (“point to line”
model), he was also able to obtain a result about the superdiffusive nature of
transversa l fluctuations, cf. [38]. This is qualitatively similar to what happens in
first passage percolation, cf. Licea-Newman-Piza [15], Newman-Piza [18].
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Within and Beyond the Reachof Brownian Innovation
Boris Tsirelson

Abstract. Given a system whose time evolution is random, we often
try to describe it as a deterministic system under independent random
influences. Doing so, we reduce complicated statistical correlations to
a complicated but deterministic mechanism, and a stochastic but un-
correlated noise. That is the idea of innovation. The corresponding
mathematics is surprisingly interesting.

1991 Mathematics Subject Classification: 60G07; 60H10, 60J65.
Keywords and Phrases: innovation, filtration, cosiness, noise.

1. The name of the game

An innovation is a real-time transformation of a noise into a given random process.
Out of the four terms, only one, “random process”, is standard. The notion

of a real-time transformation was introduced repeatedly, and used under various
names: “lifting” (of a filtered probability space) [19, (7.1–7.3)], “Hypothèse (H)”
[7, Sect. 2.4], “extension” (of a filtered probability space) [22, Chap. 2, Def. 7.1],
[8, Def. 6.1], with no name [44, 17.3.1(a)], [2, Lemma 7(c)], “morphism” (from one
filtration to another) [33, Def. 1.1], “immersion” (of one filtration into another) [4],
“orthogonal factor” (of a reverse filtration) [15, Sect. 2]. My favorite “real-time
transformation” appeared in [33].

A noise in the discrete-time framework amounts to an independent sequence
(of random variables or σ-fields), or a product (of a sequence of probability spaces).
For continuous time, the classical white noise is a special case of a noise as defined
in [34, Def. 1.1]; see also “factored probability spaces” [13], “measure factoriza-
tions” [36, Def. 1.2], and “product measures” (on a factorized Borel space) [36,
Def. 2.4].

Innovation processes are well-known in filtering theory (see [5, Sect. 8]). A far-
reaching generalization is the “innovation” introduced here. In the discrete-time
framework, innovation appeared as “standard extension” (of a reverse filtration)
[8, p. 885], “generating parametrization” [28, Sect. 2], [26, Def. 2.1], “substandard
representation” [15, Sect. 2]. My favorite “innovation” appeared in [26].

2. Trivial cases

Let µ be a probability measure on a space X . (Usually X = R or Rn, but it
may be a finite set, a complete separable metric space, a standard Borel space.)
Every such µ can be represented as the image of the Lebesgue measure U(0, 1)
under a measurable map f : (0, 1)→ X . Let U be a random variable distributed
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uniformly on (0, 1) (in symbols U ∼ U(0, 1)), then f(U) ∼ µ. Of course, µ does not
determine f uniquely; f(g(U)) ∼ µ for all measure preserving g : (0, 1) → (0, 1).
So, every X -valued random variable Y is distributed like some X = f(U).

Consider a discrete time random process Y = (Yt)t∈T , assuming for now that
T is finite, T = {1, . . . , n}; thus Y is just n random variables Y1, . . . , Yn, and its
distribution is a measure µ on Xn. Let U1, . . . , Un be independent U(0, 1) random
variables. Choose f1 : (0, 1) → X such that f1(U1) is distributed like Y1. For
each y1 ∈ X consider the conditional distribution of Y2 given that Y1 = y1 (I
omit trivial reservations) and choose f2(·, y1) accordingly. Introduce X1 = f1(U1),
X2 = f2(U2, X1), then the pair (X1, X2) is distributed like (Y1, Y2). Continuing
the process, we get functions f1, . . . , fn and random variables X1, . . . , Xn such
that

(2.1)
X1 = f1(U1), X2 = f2(U2, X1), . . . , Xn = fn(Un, Xn−1, . . . , X1) ,

(X1, . . . , Xn) is distributed like (Y1, . . . , Yn) .

That is the innovation: at a time t ∈ T the process X takes on a value Xt produced
by a deterministic mechanism ft out of two sources: the past (X1, . . . , Xt−1)
of the process, and the current value Ut of a noise. Note that each Ut is used
only once (formulas like X2 = f2(U2, U1, X1) are disallowed), and U1, . . . , Un are
independent. The uniform distribution of Ut is only conventional; in Sect. 4 we
prefer the normal distribution. Note also the large choice available on each stage
when constructing f1, . . . , fn.

Example. Let (Yt)t∈T be a process with independent increments, having as-
sumed that X = R or another group. We may choose an innovation of the form

(2.2) Xt = gt(Ut) +Xt−1 .

The simple form (2.2) seems to be decidedly preferable to (2.1) for such processes,
which is a delusion, to be refuted in Sect. 3.

The distribution of X = (X1, . . . , Xn) is the given µ. Consider, however, the
joint distribution of X and U . We have

(2.3) E
(
ϕ(X1, . . . , Xn)

∣∣U1, . . . , Ut
)

= E
(
ϕ(X1, . . .Xn)

∣∣X1, . . .Xt

)

for all t = 1, . . . , n and all bounded Borel functions ϕ : Xn → R. Forecasting the
future of the process X, we want to know the past of X only, and not the past of
U . In other words, (Xt+1, . . . , Xn) and (U1, . . . , Ut) are conditionally independent,
given (X1, . . . , Xt). *

Consider the σ-field FX(t) generated by X1, . . . , Xt; clearly, FX(t) ⊂ FU(t)
for all t, that is, FX ≤ FU , where FX =

(
FX(t)

)
t∈T is the filtration generated by

X. Writing (2.3) in the form E
(
ξ
∣∣FU(t)

)
= E

(
ξ
∣∣FX(t)

)
for FX(n)-measurable

ξ, note that E
(
ξ
∣∣FX(t)

)
is the general form of an FX-martingale; so,

(2.4) M(FX) ⊂M(FU) ,

* Though, (2.1) stipulates more: (Xt+1, Ut+1, . . . , Xn, Un) and (U1, . . . , Ut) are
conditionally independent, given (X1, . . . , Xt).
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whereM(F) is the set of all F-martingales. Relation (2.4) implies FX ≤ FU , and
is much stronger; try X2 = f2(U2, U1, X1) instead of f2(U2, X1) and you’ll find
(2.4) violated but FX ≤ FU is still valid.

The following definition is formulated in terms of processes, but only their
distributions are relevant. Still, T = {1, . . . , n}.
2.6 Definition. A real-time transformation of a random process V = (V1, . . . , Vn)
into another process W = (W1, . . . ,Wn) is a two-component process (V ′,W ′) =(
(V ′1 ,W

′
1), . . . , (V

′
n,W

′
n)
)

such that V ′ is distributed like V , W ′ is like W ,
and for each t = 1, . . . , n, W ′

t is equal to a function of V ′1 , . . . , V
′
t , and two

vectors (V ′1 , . . . , V
′
t ) and (W ′

t+1, . . . ,W
′
n) are conditionally independent given

(W ′
1, . . . ,W

′
t ).

Reformulations via (2.3), (2.4) and generalizations for infinite T are left to the
reader. Nothing new emerges for an infinite increasing sequence of time moments,
t ∈ T = N = {1, 2, 3, . . .}. Still, an innovation is constructed step-by-step: f1, then
f2, and so on ad infinitum. The same holds for every countable ordinal number,
that is, every countable linearly ordered set T that contains no infinite strictly
decreasing sequences.

3. Decreasing sequences are highly non-trivial

The following two examples show an astonishing phenomenon: some information
appears magically, from thin air; see [25, p. 156], [43, p. 136], [10] and references
therein.

The first example: Xt = ±1 for t ∈ Z are i.i.d. equiprobable random signs,
Ut = Xt/Xt−1; then Ut are i.i.d. equiprobable random signs, also. Thus, X is both
a process with independent values, and a process with independent increments
in the multiplicative group {−1,+1}. The equality Xt = UtXt−1 should be an
innovation of the process X by the noise U . However, it is not; X contains more
information than U , since U determines X only up to an overall sign. The missing
information should be a kind of initial value, X−∞; however, any function of the
germ (tail) of X at −∞ is either constant almost sure, or nonmeasurable, which
is the well-known tail triviality.

The second example is the “eternal” (stationary) Brownian motion in a circle
(or any other compact Lie group). Let

(
B(t)

)
t∈[0,∞) be the standard Brownian

motion in R, and α a random variable, uniform on (0, 1) and independent of(
B(t)

)
t∈[0,∞). Consider the complex-valued process X(t) = exp

(
2πiα + iB(t)

)
.

The process
(
X(t)

)
t∈[0,∞) is stationary. Therefore, it has a unique (in distribution)

extension
(
X(t)

)
t∈R, the eternal motion. Multiplicative increments Ut = Xt/Xt−1

for t ∈ Z should innovate the process
(
X(t)

)
t∈Z. However, they do not, for the

same reason as in the first example: they stay invariant under transformations of
the form

(
X(t)

)
t∈R 7→

(
eiϕX(t)

)
t∈R.

About notation: ergodic people, being more light-hearted toward the time
arrow than probabilists, prefer (X ′1, X

′
2, . . .), where X ′1 = X−1, X ′2 = X−2, . . ., to

(. . . , X−2, X−1). Accordingly, dependence on the past turns into dependence on
larger indices t [8], [16], [28], [26], [15]. I adhere to the probabilistic school, [44],
[4], [9], [10], choosing T = (−N) = {. . . ,−2,−1}.
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Every process Y = (Yt)t∈T is distributed like some process X satisfy-
ing Xt = ft(Ut;Xt−1, Xt−2, . . .) for some Borel functions ft and independent
Ut. It follows that M(FX) ⊂ M(FX,U), but we need M(FX) ⊂ M(FU ).
The two-component process (U,X) is a real-time transformation of U into X
if and only if FX ≤ FU . Chaining ft, ft−1, . . . , fs+1 we get fs,t such that
Xt = fs,t(Ut, . . . , Us+1;Xs, Xs−1, . . .). However, we need f−∞,t such that Xt =
f−∞,t(Ut, Ut−1, . . .). That is possible if and only if the influence of Xs, Xs−1, . . .
on fs,t(Ut, . . . , Us+1;Xs, Xs−1, . . .) disappears in the limit s → −∞. Tail trivi-
ality is necessary but not sufficient. Both examples shown above are tail trivial,
and satisfy Xt = Ut . . . Us+1Xs. Given U , the influence of Xs on Xt is strong,
irrespective of s. Thus, the equality Xt = UtXt−1 fails to give an innovation.

Despite the strong influence of Xs on Xt, these Xs, Xt are (statistically)
independent in the first example, and asymptotically independent (for s→ −∞) in
the second example. The strong dependence characterizes the specific way of using
Ut (namely, Xt = UtXt−1), that is, the parametrization (ft)t∈T rather than the
process X itself. Is there a better parametrization for the same process? For the
first example, the answer is evidently positive. Here, the conditional distribution
of Xt, given the past, does not depend on the past. The parametrization Xt =
UtXt−1 is bad because it introduces an unnecessary dependence on the past. A
good parametrization is simply Xt = Ut, which surely is an innovation. For the
second example, restricted to t ∈ Z, the conditional distribution of Xt, given the
past, depends on Xt−1. However, such distributions (corresponding to different
values of Xt−1) overlap. A good parametrization uses the overlap for reducing
dependence on the past. In continuous time, an innovation for the eternal motion
is constructed [10] by inventing a coupling for processes differing in remote past.
They are forced to coalesce, which never happens under the bad parametrization
Xt = UtXt−1 of the form (2.2). That is the refutation of the delusion mentioned
after (2.2).

Is there an innovation for an arbitrary tail-trivial process (Xt)t∈(−N) ? The
answer is negative, which fact is “highly non-trivial and remarkable” [26], “deep
and surprising” [15]. The first example, admitting no innovation, was discovered
in the context of ergodic theory [37]. There are more examples of ergodic flavor
[38], [29], [39], [28], [21], and of probabilistic flavor [8], [17], [14], [26], [4], [9]. The
example of [8], furthered in [17], [14], [26], [4], is strikingly close to the sequence
of i.i.d. equiprobable random signs; namely, the product measure is replaced with
an equivalent (that is, mutually absolutely continuous) measure.

Some criteria for existence of an innovation, outlined in [37], [39], are elab-
orated in [15]. There, “substandardness” is our “existence of innovation”, while
“product type” is stronger, stipulating that Ut is a function of Xt, Xt−1, . . . In such
a case one says that Ut is exactly the new information furnished by X at t (though
it depends on the chosen innovation). “Substandardness” implies “product type”
provided that the conditional distribution of Xt given the past, is nonatomic [15].

4. Cosiness

Cosiness is a useful necessary condition for existence of an innovation. (Is it also
sufficient? I do not know.) Cosiness emerged in [33, Def. 2.4] for continuous time
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and in [4, Sect. 4] for discrete time, the latter with a reservation that “there is a
whole range of possible variations” of the definition; one of the variations follows.
Still, T = (−N) = {. . . ,−2,−1}, and processes are X -valued.

4.1 Definition. A random process (Xt)t∈T is cosy, if for each ε > 0 and each
bounded Borel function ϕ : XT → R there exists a two-component random process
(Y,Z) =

(
(Yt, Zt)

)
t∈T such that

(a)
(
(Y,Z), Y

)
and

(
(Y,Z), Z

)
are real-time transformations of (Y,Z) into X;

(b) E|ϕ(Y )− ϕ(Z)| < ε;
(c) there exists δ ∈ (0, 1) such that for all bounded Borel functions ψ, χ : XT → R,

(
E|ψ(Y )χ(Z)|

)
2−δ ≤

(
E|ψ(Y )|2−δ

)(
E|χ(Z)|2−δ

)
.

Some comments. Condition (a) implies that each of the two processes Y,Z is
distributed like X; thus, (Y,Z) is a joining of two copies of X, possessing the “real
time” propertyM(Y ) ⊂M(Y,Z),M(Z) ⊂M(Y,Z) (recall (2.4)). Condition (b)
means that Y,Z are close, since ϕ may be one-one. Condition (c) means that Y,Z
are “independent a little”, since it is always satisfied for δ = 0 and equivalent to
independence of Y,Z for δ = 1.

4.2 Theorem. [4, Lemma 6 and Corollary 3] A non-cosy process admits no
innovation.

The idea of a proof. Assume that X has an innovation; X is distributed
like Y , Yt = f−∞,t(Ut, Ut−1, . . .), U = (Ut)t∈T being a sequence of independent
N (0, 1) random variables. (This time we prefer the normal distribution N (0, 1)
to U(0, 1).) Take another sequence V = (Vt)t∈T of independent N (0, 1) random
variables such that U, V are independent. Introduce Wt = Ut cos ε + Vt sin ε,
and let Zt = f−∞,t(Wt,Wt−1, . . .).* Condition (c) follows from the celebrated
hypercontractivity theorem (pioneered by Nelson, see [24, Sect. 3])!

The first example of a non-cosy process in discrete time is given in [4, Th. 1];
it appears that the method of [8] produces non-cosy processes. It is interesting
to know, whether “ergodic” examples [37], [38], [29], [39], [28], [21] are also non-
cosy, or not. Another non-cosy discrete-time filtration [9] is the restriction of a
continuous-time filtration to a discrete set on the time axis.

5. Applications to continuous time

An X -valued process (Xt)t∈T , T = (−N) = {. . . ,−2,−1}, generates its filtration
FX =

(
FX(t)

)
t∈T . The family

(
FX(2t)

)
t∈T is also a filtration; it is generated by

the X 2-valued process (Yt)t∈T , Yt = (X2t−1, X2t). If X admits an innovation, then
the amalgamated process Y also does. The same applies for any infinite subset
T1 ⊂ T . If X is tail-trivial and T1 is sparse enough, then Y admits an innovation,
see [15, Th. 1.18] and references therein.

A continuous process (Xt)t∈[0,∞) generates its filtration FX =
(
FX(t)

)
t∈[0,∞).

Choosing a sequence (tk)k∈(−N), tk ∈ [0,∞), tk−1 < tk, inf tk = 0, we get a

* Which is anticipated in [23].
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discrete-time filtration
(
FX(tk)

)
k∈(−N), generated by the amalgamated process

(Yk)k∈(−N), Yk = (Xt)t∈[tk−1,tk]. If Y admits no innovation, then X also admits
no innovation, for any reasonable definition of continuous-time innovations. Some
continuous-time problems are solved in that way.

The effect of “information from thin air” (see Sect. 3) can be reproduced by
the stochastic differential equation

(5.1) dXt = dBt + v
(
t,
(
Xs

)
s∈[0,t]

)
dt

with a bounded drift v, if v is chosen properly. Then (5.1) fails to innovate X,
which means that the equation has no strong solution. That is the “celebrated
and mysterious” [25, V.3.18, p. 155] example, constructed in [32] and investigated
in [5], [30], [43], [23], [10]. The eternal Brownian motion in a circle, mentioned in
Sect. 3, can be obtained from X by a real-time transformation and a deterministic
time change that maps [0,∞) onto R [10]. The same process X is a strong solution
of the stochastic differential equation

(5.2) dXt = σ
(
t,
(
Xs

)
s∈[0,t]

)
dBt + v

(
t,
(
Xs

)
s∈[0,t]

)
dt

for some σ(. . .) = ±1 [10] (see also [16]). Once again, a clever parametrization is
better than the straightforward parametrization.

One of the processes admitting no innovation, mentioned in Sect. 3, leads to
a more ingenious drift v in (5.1); the corresponding (continuous) process X has
no innovation, which means that it cannot be the strong solution of any equation
of the form (5.2) [8]; see also [17], [14], [26], [4]. The drift is not bounded, but I
believe that it can be made bounded. “Dreadfully complicated, their construction
is almost as incredible as the existence result itself” [4]. Is it really a compli-
cated construction? In fact, the drift is not constructed “by hands”, it is chosen
at random. It is a random drift; here “random” is interpreted like the second
“random” in the phrase “random walk in a random environment”. Thus, it is a
typical drift in the same sense as a nowhere differentiable Brownian sample path
is a typical function. Few parameters are adjusted by authors, such as order of
magnitude, and depth of dependence on the past, both depending on time in a
simple prescribed way.

There exists a pure martingale admitting no innovation [9].

6. From stochastic analysis to stochastic topology

Some continuous-time phenomena have no (evident) discrete-time counterpart.
For example, Brownian motion cannot be transformed in real time into a Pois-
son process. A non-Gaussian stable process cannot be transformed into Brownian
motion. The m-dimensional Brownian motion can be transformed into the n-
dimensional Brownian motion if and only if m ≥ n, which may be treated as the
starting point of stochastic topology, the theory of filtration invariants of random
processes.* A diffusion process with smooth nondegenerate coefficients in an n-
dimensional smooth manifold is equivalent to the n-dimensional Brownian motion

* A useful classification claimed in [27, Th. 7] appeared to be not exhaustive
[8, Sect. 6].
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in the sense that their filtrations are isomorphic; in other words, the two processes
can be connected by an invertible real-time transformation. What happens in pres-
ence of singularities of the topology or the coefficients? Few results are available;
they are based on stochastic analysis (Itô formula, local times, . . . ). All negative
results are based on continuous-time cosiness [33, Def. 2.4]. Brownian motion of
finite or countable dimension is cosy [33, Lemma 2.5]. A cosy process cannot be
transformed in real time to a non-cosy process [33, Lemma 2.6]. Therefore, all
non-cosy processes are beyond the reach of Brownian innovation.

Two well-known diffusion processes in R are singular at the origin (x = 0, not
t = 0 as in Sect. 5). The skew Brownian motion (see [20]) has a singular drift at 0,
and is equivalent to the usual Brownian motion [20]. The sticky Brownian motion
(see [41]) is slowed down at 0; its filtration is non-cosy [42].

Consider n rays (say, on the plane) with a single common point, the origin.
There is a natural diffusion process Zn on the union of the rays; Z2 is the usual
Brownian motion, Z1 is the reflecting Brownian motion; Z3, Z4, . . . are so-called
Walsh’s Brownian motions [40], [3]. Such processes arise when considering small
random perturbations of Hamiltonian dynamical systems [18] and some other top-
ics [40], [3]. Processes Z1 and Z2 are equivalent (Lévy, Skorokhod). Nevertheless,
Walsh’s Brownian motions are non-cosy [33, Th. 4.13] (see also [11], [2]), which
solves Problem 2 of [3].

Interestingly, stochastic topology can be of help to the classical (non-
stochastic) analysis. Consider three non-intersecting domains in Rn. If they
are smoothly bounded, then points of trilateral contact are evidently rare among
boundary points. It was conjectured for irregular domains, that the infimum of
the three corresponding harmonic measures must vanish [6, Sect. 6], [12, Problem
a]. In terms of the Martin boundary: its natural projection to the topological
boundary is at most 2 to 1 almost everywhere. However, the best result of clas-
sical analysis is “at most 10 to 1” [6]. The final result “2 to 1” is achieved via
stochastic topology [33, Th. 7.4]. A challenge for classical analysis!

So, some characteristic of Rn (or any smooth manifold) as a harmonic space,
is equal to 2 irrespective of dimension, but exceeds 2 in presence of branching
points. The nameless characteristic has its counterpart in stochastic topology,
named splitting multiplicity. Introduced in [3, Def. 4.2], it was hibernating till
the birth of cosiness. Every cosy process is of splitting multiplicity 2 (or 1, if
it is degenerate) [2], while Walsh’s Brownian motion Zn, n > 2, is of splitting
multiplicity n [2]. Splitting multiplicity is invariant under measure changes and
time changes [2], while cosiness is not [4], [9].

7. White noise versus black noises

In discrete time we have no choice of noises for innovation; a noise is a sequence
of independent random variables, each having a non-atomic distribution. In con-
tinuous time, the classical theory of processes with independent increments tells
us that in general, a noise consists of a Gaussian component (a finite or count-
able collection of independent white noises) and a Poissonian component. The
latter is useless for innovating diffusion processes. The former can innovate only
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cosy processes. Thus, Walsh’s Brownian motion is beyond the reach of classical
innovation.

We may turn to Brownian motions (defined as continuous processes with sta-
tionary independent increments) on more general groups. In that aspect, finite-
dimensional Lie groups are equivalent to Rn. The Polish group of all unitary
operators on the (separable) Hilbert space, equipped with the strong operator
topology, is equivalent to (the additive group of) the Hilbert space [34, Th. 1.6].
(Interestingly, the proof involves continuous tensor products and continuous quan-
tum measurements.) A commutative Polish group cannot give more [34, Th. 1.8].

The system of coalescing independent one-dimensional Brownian motions [1],
[31, Sect. 2], is a limiting case of a coalescing stochastic flow. The system generates
a two-parametric family of σ-fields (Fs,t)s<t that shares with the white noise the
following property:

(7.1) Fr,s ⊗Fs,t = Fr,t whenever r < s < t ;

that is, Fr,s and Fs,t are independent and, taken together, generate Fr,t. Never-
theless, (Fs,t)s<t supports no white noise (nor a Poisson process); it means that
there is no Brownian motion (Bt)t∈[0,∞) such that Bt −Bs is Fs,t-measurable for
all intervals (s, t) ⊂ [0,∞) [35]. Thus, (Fs,t)s<t is a black noise as defined in [34,
Sect. 1]. It is predictable [34, Def. 1.12] in the sense that its filtration (F0,t)t∈[0,∞)
supports only continuous martingales. In fact, the filtration is Brownian! There-
fore, that black noise still cannot innovate Walsh’s Brownian motion.

One more example of a black noise is available [36, Sect. 5]. Does it generate
a cosy filtration? I do not know.

7.2 Problem. Can a predictable noise (see [34, Defs. 1.1, 1.12]) generate a non-
cosy filtration?

If the answer is positive, another problem follows.

7.3 Problem. Can Walsh’s Brownian motion be innovated by some predictable
noise?

7.4 Problem. Can a noise generate a cosy but non-Brownian filtration?*

References

[1] R. Arratia, Coalescing Brownian motions, and the voter model on Z, manuscript,
Univ. of Southern California, 1985.
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Birkhäuser Verlag, Basel, 1996. (MR 97f:60150)

[19] R.K. Getoor, M.J. Sharpe, Conformal martingales, Invent. Math. 16 (1972), 271–
308. (MR 46#4603)

[20] J.M. Harrison, L.A. Shepp, On skew Brownian motion, Ann. Probab. 9:2 (1981),
309–313. (MR 82j:60144)

[21] D. Heicklen, C. Hoffman, T, T−1 is not standard, Ergodic Theory and Dynamical
Systems (to appear).

[22] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes,
second edition, North-Holland, 1989. (MR 90m:60069)

[23] J.F. Le Gall, M. Yor, Sur l’equation stochastique de Tsirelson, Lect. Notes Math.
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École Norm. Sup. (4) 13:1 (1980), 95–164. (MR 82b:60051)
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lems, Birkhäuser Verlag, Basel, 1997. (MR 98e:60140)

Boris Tsirelson
School of Mathematics
Tel Aviv University
Tel Aviv 69978, Israel
email: tsirel@math.tau.ac.il

Documenta Mathematica · Extra Volume ICM 1998 · III · 311–320



Doc.Math. J. DMV 321Reflecting Diffusions and Queueing Networks
R. J. Williams1

1 Introduction

Queueing models are of interest for analyzing congestion and delay in complex
processing networks such as those occurring in computer systems, telecommuni-
cations and manufacturing (see e.g., [BG92, Ya94]). Many of these networks can
process more than one class of job at a given station (so-called multiclass net-
works) and/or have complex feedback structures. Generally such models cannot
be analyzed exactly and it is natural to seek more tractable approximations. In
connection with this, certain diffusion processes known as semimartingale reflect-
ing Brownian motions (SRBMs) [RW88] have been proposed as approximations
for heavily loaded queueing networks (see e.g., [Ha88, HN93]), and there is now a
substantial theory for these diffusions (see the survey in [Wi95]). However, limit
theorems justifying their role as approximations have only been proved for some
networks (see the overview in [Wi96]). Indeed, since a surprising example of Dai
and Wang [DWa93] it has been known that these approximations are not always
valid for multiclass networks with feedback. A challenging open problem has been
that of establishing general conditions under which SRBM approximations for
open multiclass queueing networks are valid. Recent progress on this problem and
related work is summarized here.

The paper is organized as follows. In §2, the existence and uniqueness theory
for SRBMs is described, including an oscillation inequality [Wi97a] which is critical
to establishing tightness of normalized queueing network processes. In §3, the
model used here for an open multiclass queueing network is defined. In §4, the
main theorem is stated which gives general sufficient conditions for a heavy traffic
limit theorem, which justifies approximating an open multiclass queueing network
by a SRBM [Wi97b]. One of the key conditions involves something called “state
space collapse”. Bramson has recently given sufficient conditions for this to hold
(see [Br97b] and his article [Br98] in this volume). New heavy traffic limit theorems
for two interesting collections of networks are obtained by combining the above
results. The paper concludes with some open problems in §5.

2 Semimartingale Reflecting Brownian Motions

Definition of a SRBM Let J be a positive integer, IRJ
+ ≡ {x ∈ IRJ : xj ≥

0 for j = 1, . . . , J}, B denote the σ-algebra of Borel subsets of IRJ
+, ν be a probabil-

ity measure on (IRJ
+,B), θ be a constant vector in IRJ , Γ be a J×J non-degenerate

covariance matrix, and R be a J × J matrix.

1Research supported in part by the U.S. National Science Foundation.
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Definition 2.1 A semimartingale reflecting Brownian motion (SRBM) associ-
ated with the data (θ,Γ, R, ν) is a J-dimensional processW defined on some filtered
probability space (Ω, F , {Ft}, P ) such that

W = X +RY (1)

where W, X, Y are {Ft}-adapted processes such that W has continuous paths in
IRJ+, X is a J-dimensional Brownian motion with drift vector θ, covariance matrix
Γ, initial distribution ν, and {X(t) − X(0) − θt,Ft, t ≥ 0} is a martingale, and
Y is a J-dimensional process such that for each j ∈ {1, . . . , J}, Yj(0) = 0, Yj
is continuous and non-decreasing, and

∫∞
0 1(0,∞)(Wj(s))dYj(s) = 0, i.e., Yj can

increase only when Wj is zero.

Intuitively, such a SRBM behaves in the interior of the orthant IRJ
+ like a

Brownian motion with initial distribution ν, constant drift θ and covariance
matrix Γ, and it is confined to IRJ+ by “pushing” at the boundary, where for
j = 1, . . . , J , the allowed direction of push on the relative interior of the boundary
face Fj = {x ∈ IRJ

+ : xj = 0} is given by the jth column of the matrix R. At
an intersection of faces, the allowed directions of “push” are given by the con-
vex combinations of the push directions associated with the faces meeting there.
For historical reasons, stemming from an alternative construction of the driftless
process in one-dimension, the “pushing” at the boundary is called instantaneous
reflection. However, it is more accurate to think of this action as deflection or
regulation rather than some type of mirror reflection. The process Y is called the
“pushing process” associated with W and it is related to the local time of W on
the boundary. Since the state space for a SRBM is not smooth and the directions
of reflection may be discontinuous at the non-smooth parts of the boundary, the
general theory for diffusions with smooth boundary conditions [SV71] does not
apply to SRBMs and one must develop a theory from first principles.

The above definition of a SRBM is in the spirit of weak solutions of stochastic
equations. In particular, one is free to choose the filtered probability space and
processes W,X, Y such that the above properties hold. Here the focus is on such
weak solutions, since necessary and sufficient conditions for their existence and
uniqueness are known, whereas only sufficient conditions are known for strong so-
lutions. Furthermore, there are multiclass queueing networks (see the example due
to Dai, Wang and Wang in Appendix A of [Wi97b]) whose SRBM approximants
are not covered by the extant strong solution theory.

Existence and Uniqueness for SRBMs It is straightforward to see that a
necessary condition for the existence of a SRBM associated with (θ,Γ, R, ν) for
each probability measure ν on (IRJ

+,B) is the following: at each point on the

boundary of IRJ
+ there is a positive linear combination of the “push” directions

that can be used there which points into the interior of IRJ+. This geometric
description can be expressed succinctly as the following algebraic condition: the
matrix R is completely-S if for each principal submatrix R̃ of R there is a vector
x̃ ≥ 0 such that R̃x̃ > 0. (Here inequalities are to be interpreted componentwise
and a principal submatrix of R is obtained by deleting all rows and columns of R
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with indices in some strict (possibly empty) subset of {1, . . . , J}.) In fact, R being
completely-S is also sufficient for the existence and uniqueness in law of a SRBM.
The following result is proved for ν = δx (the unit mass at x ∈ IRJ

+) in [TW93]
and is easily extended to all ν [Wi97a].

Theorem 2.1 Suppose that R is completely-S. There exists a SRBM associated
with (θ,Γ, R, ν) and it is unique in law. Furthermore, the laws induced on the space
of continuous paths in IRJ+ by the SRBMs associated with (θ,Γ, R, δx), x ∈ S, define
a Feller continuous strong Markov process.

Oscillation Inequality Solutions of a deterministic Skorokhod problem
have been used to obtain strong constructions of SRBMs in some cases [DuI91,
HR81]. While this Skorokhod problem will not have unique solutions for general
completely-S matrices R [BEK91, Ma92], an oscillation inequality for a perturbed
form of this problem can be used to establish tightness for suitable approxima-
tions to a SRBM. Indeed, this inequality can be used to show existence of a SRBM
(using deflected random walk approximations having small inward jumps at the
boundary) and the form obtained by restricting to continuous paths x(·) and set-
ting ǫ = 0 is used in the proof of uniqueness in law of a SRBM [TW93]. (This
“continuous” case of the oscillation inequality first appeared in [BEK91].)

In the following statement of the oscillation inequality, for any 0 ≤ t1 < t2 <
∞, D([t1, t2], IR

J) denotes the set of functions x : [t1, t2] → IRJ that are right
continuous on [t1, t2) and have finite left limits on (t1, t2] and Osc(x, [t1, t2]) =
sup{|x(t) − x(s)| : t1 ≤ s < t ≤ t2} for any x ∈ D([t1, t2], IR

J), where |a| =
maxJj=1 |aj| for any a ∈ IRJ .

Theorem 2.2 [Wi97a] Assume that R is completely-S. Suppose that ǫ ≥ 0, 0 ≤
t1 < t2 <∞ and w, x, y ∈ D([t1, t2], IR

J) are such that

(i) w(t) = x(t) +Ry(t) ∈ IRJ+ for all t ∈ [t1, t2],

(ii) for each j ∈ {1, . . . , J}, yj(t1) ≥ 0, yj is non-decreasing, and∫
[t1,t2]

1(ǫ,∞)(wj(s))dyj(s) = 0.

Then there is a constant C > 0, depending only on R, such that

Osc(y, [t1, t2]) + Osc(w, [t1, t2]) ≤ C(Osc(x, [t1, t2]) + ǫ). (2)

This oscillation inequality plays a key role in establishing tightness of normalized
queueing network processes approximating SRBMs (cf. §4).

Other Results and Extensions For further discussion of SRBMs, includ-
ing weak versus strong solutions, conditions for recurrence, and characterization
of stationary distributions, see the survey article [Wi95] and references therein.
Semimartingale reflecting Brownian motions in convex polyhedrons (in contrast
to the orthant) can arise as approximations to closed and capacitated queueing
networks. The reader is referred to [DWi95] for sufficient conditions for the ex-
istence and uniqueness of such processes and to [DD97] for a related oscillation
inequality and heavy traffic limit theorem. Semimartingale reflecting Brownian
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motions in polyhedrons also arise in other applications, e.g., in economic models
of monetary exchange [FL98]. Reflecting Brownian motions (RBMs) that are not
semimartingales have also been proposed as approximations to some particular
queueing network models (see e.g., [DuR98b, KL93]). However, the theory of exis-
tence and uniqueness for these non-semimartingale RBMs is not as complete as for
SRBMs, being restricted to the two-dimensional case [VW85] or to RBMs whose
geometric data is a limit of that for SRBMs [DuR98a].

3 Open Multiclass Queueing Network Model

In an open queueing network, jobs arrive from outside the system, visit a finite
number of stations where they receive service, and then exit the network. The
model for an open multiclass queueing network used here is a generalization of one
with a first-in-first-out (FIFO) service discipline considered in [HN93]. To simplify
the exposition, attention is restricted to networks that are initially empty. For a
more complete specification of the model, including a treatment of networks that
are initially non-empty, see [Wi97b]. The model description is broken down into
assumptions concerning the network structure, primitive stochastic processes (for
exogenous arrivals, service times and routing), and the service discipline.

Network Structure The model has a fixed set {1, . . . , J} of stations with a
single reliable server at each. At any given time, each job in the network belongs
to one of a finite set K = {1, . . . ,K} of job classes. Each class is associated with
exactly one station (where the class is to receive service). The deterministic many-
to-one function mapping classes to stations is specified by a J ×K constituency
matrix C where Cjk = 1 if class k is served at station j and Cjk = 0 otherwise. At
a given station, jobs of different classes may be distinguished by features such as
the distributions of their service times, their routing characteristics, or their order
of service. Upon completing service in a class, a job changes class in Markovian
fashion. Each station serves at least one class and has an infinite buffer for storing
jobs awaiting service there.

Stochastic Primitives The primitive stochastic processes for the model
are (E, V,Φ) where E is a K-dimensional external arrival process, V is a K-
dimensional cumulative service time process, Φ = (Φ1,Φ2, . . . ,ΦK) and Φk is a
K-dimensional routing process for class k ∈ K. More precisely, for each k and
t ≥ 0, Ek(t) represents the number of exogenous arrivals to class k up to time
t. It is assumed that Ek 6≡ 0 for at least one k and for each such k, Ek is a
renewal process derived from a sequence of positive i.i.d. interarrival times having
finite mean and variance. For each class k and integer n ≥ 0, Vk(n) =

∑n
i=1 vk(i)

where {vk(i)}∞i=1 is a sequence of i.i.d. positive random variables with finite mean
and variance, and vk(i) is interpreted as the service time for the ith job that ar-
rives to class k. To describe the Markovian routing, let e1, . . . , eK denote the
non-negative unit basis vectors parallel to the K coordinate axes in IRK and
let e0 be the K-dimensional zero vector. For each class k and integer n ≥ 0,
Φk(n) =

∑n
i=1 φ

k(i) where {φk(i)}∞i=1 is a sequence of i.i.d. random vectors tak-
ing values in {e0, e1, . . . , eK} with P (φk(i) = el) = Pkl, k, l ∈ K, and P is a strictly
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substochastic K×K matrix. The interpretation of the routing vector φk(i) is that
the ith job to depart from class k is routed next to class l if φk(i) = el and it
leaves the network if φk(i) = e0. The strict substochasticity of P ensures that jobs
eventually leave the network. The processes E1, . . . , EK , V1, . . . , VK ,Φ

1, . . . ,ΦK

are assumed to be mutually independent.

Service Discipline It remains to specify the order in which jobs are served
at each station, i.e., the service discipline. Attention is confined to HL (head-
of-the-line) service disciplines (cf. [Br97a, Wi97b]). (Other disciplines such as
last-in-first-out or general processor sharing are also of interest, but the heavy
traffic theory for networks with these disciplines is much less developed.) Firstly,
an HL discipline is non-idling in the sense that a server is never idle when there are
jobs waiting to be served at its station. In addition, jobs in each class are served
on a first-in-first-out basis, i.e., service for each class is concentrated on the job
at the head-of-the-line for that class. Each class receives a proportion (possibly
zero) of the associated server’s time, where this proportion may be random but
is kept constant between changes in the arrival or departure processes, and these
proportions depend in a measurable way on the “state” of the queueing network at
the time of the last such change. (The “state” description includes such quantities
as queue lengths, remaining service times of jobs at a station, amounts of time
that jobs have been waiting in their current class, and the amount of time until
the next exogenous arrival to each class cf. [Wi97b].) Common service disciplines
included in the HL framework are FIFO (regardless of their class designation, jobs
at a station are served in the order in which they arrived there), static priorities
(classes at a station are ranked and jobs of a higher ranking class are always served
before those of a lower ranking class), and HLPPS (head-of-the-line proportional
processor sharing: each class at a station receives service in proportion to the
number of jobs that are present in that class).

Descriptive Processes and Model Equations Let A,D be the K-
dimensional processes such that Ak(t) denotes the number of arrivals to, and
Dk(t) denotes the number of departures from, class k up to time t. The processes
that are used to measure performance are a K-dimensional queue length process
Z, a J-dimensional workload process W and a J-dimensional cumulative idletime
process Y . For each class k, station j and time t, Zk(t) denotes the number of
class k jobs that are in queue or being served at time t (the letter Z is mnemonic
for the German Zahl or number), Wj(t) denotes the amount of work for server j
(measured in units of remaining service time) that is embodied in those jobs that
are at station j at time t, Yj(t) denotes the total amount of time that server j has
been idle up to time t.

The descriptive processes (A,D,W, Y, Z) satisfy the following equations:

A(t) = E(t)+Φ(D(t)), Z(t) = A(t)−D(t), W (t) = CV (A(t))−et+Y (t). (3)

Here e is the J-dimensional vector of all ones and the kth component of Φ(D(t))

is to be read as
∑K
l=1Φlk(Dl(t)) and the kth component of V (A(t)) is to be read

as Vk(Ak(t)). The equation for A indicates that the Ak(t) arrivals to class k up to

time t consist of Ek(t) exogenous arrivals plus
∑K
l=1Φlk(Dl(t)) arrivals obtained by
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feedback of some of the departures that have occurred up to time t. The equation
for the workload process W expresses the fact that

∑
k∈K CjkVk(Ak(t)) units of

work have arrived for server j in [0, t] and that this has been depleted by the
amount of time t − Yj(t) that server j has been active in [0, t]. The fact that an
HL discipline is non-idling implies that

∫∞
0

1(0,∞)(Wj(s))dYj(s) = 0 for all j.

- - -��
��
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Figure 1: Schematic for an open multiclass queueing network

Note that the equations (3) do not give a complete description of the behavior
of the queueing network. In particular one must add additional equations to pro-
vide information about the service discipline. For example, for the FIFO discipline
one can add the relations: Dk(t+Wj(t)) = Ak(t), for each class k and associated
server j. Equations for other HL service disciplines will not be given here, since
for the statement of the main theorem (Theorem 4.1), only a distillation of the
service discipline is needed in the form of a K × J matrix ∆. Since this matrix is
related to the heavy traffic behavior of networks, discussion of it is deferred to the
next section.

Heavy Traffic The following notation is used in describing the notion of heavy
traffic. Let α denote the K-dimensional long run average arrival rate vector for the
exogenous arrival process E and let M denote the K ×K diagonal matrix whose
diagonal entries are the mean service times mk for the classes k ∈ K. Let λ be the
unique solution of the “traffic flow” equation λ = α+ P ′λ, i.e., λ = (I − P ′)−1α.
Here ′ denotes transpose. (To avoid degeneracies, it is assumed that λk > 0
for each k.) Define ρ = CMλ. The quantity λk is called the arrival rate for
class k and ρj is called the traffic intensity parameter for station j. These are
nominally the long run average rate at which jobs arrive to class k and the long
run fraction of time that server j is busy, respectively. For single class networks,
these nominal quantities represent actual long run quantities (provided ρj ≤ 1 for
all j). However, since the appearance of counterexamples in the early 1990s (see
e.g., [LK91, RS91]), it has been known that this interpretation is not always valid
for multiclass networks. Indeed, the question of whether these nominal quantities
actually correspond to long run quantities is related to the stability properties of
the queueing network. Rather than digressing to discuss this further here, the
reader is referred to the articles on stability in [KW95], the references therein,
and the article [Br98]. Here λ and ρ are simply regarded as useful parameters.
Networks that are (nominally) heavily loaded or in heavy traffic are those in which
ρj is close to one for each j. Such networks are the focus of attention in the next
section.
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4 Sufficient Conditions for a Heavy Traffic Limit Theorem

A Sequence of Networks Mathematically, to justify the approximation of a
given heavily loaded open multiclass queueing network by a SRBM, we regard the
network as being a member of a sequence of networks in which the traffic intensity
vector ρ converges to e. Here, to simplify the exposition, the sequence is chosen so
that only the distributions of the service times vary along the sequence where this
variation is parametrized by the mean service times. (A more complex setup can
be considered, allowing for more general variation of the distributions of all of the
stochastic primitives along the sequence [Wi97b]. Although this implies a certain
robustness of the approximation to small perturbations in the distributions of the
stochastic primitives, for the purpose of stating a limit theorem that justifies the
approximation of a fixed heavily loaded network, only the simpler setup described
here is needed.)

Thus, we consider a sequence of networks indexed by r, which tends to in-
finity through a strictly increasing sequence of positive numbers. Each network
in the sequence has the same basic structure as described in the previous sec-
tion. Furthermore, J,K,C,E,Φ and the service discipline do not vary with r, and
vk(i) = mr

kuk(i) where mr
k is the mean service time for class k in the rth network

and uk(i) is a random variable independent of r that has mean one and finite
variance. (To avoid degeneracies, it is assumed that uk(i) has positive variance
for each class k. This assumption implies that the covariance matrix for the pro-
posed SRBM approximant is non-degenerate. For other ways in which this can
be achieved, see §5 of [Wi97b].) In the sequel, the superscript r is attached to all
quantities that may depend on r.

Now assume the following heavy traffic conditions: as r → ∞, mr
k → mk ∈

(0,∞) for each k ∈ K, such that γr ≡ r(ρr − e) → γ ∈ IRJ . Define the diffusion
scaled workload, cumulative idletime and queue length processes:

Ŵ r(t) = W r(r2t)/r, Ŷ r(t) = Y r(r2t)/r, Ẑr(t) = Zr(r2t)/r. (4)

The purpose of a heavy traffic limit theorem is to justify approximating
(Ŵ r, Ŷ r, Ẑr) in distribution using a SRBM.

State Space Collapse A key feature of prior limit theorems in the multiclass
setting [Wh71, Pe91, Re88] has been a phenomenon called state space collapse,
which states that the diffusion scaled queue length process for each class k can be
approximately recovered as a multiple of the associated station’s diffusion scaled
workload process. Here a slightly weaker notion called multiplicative state space
collapse is used. This form suffices for our purposes and seems more amenable to
verification (cf. [Br97b]). Here ‖f(·)‖T = sup0≤t≤T |f(t)| for any vector valued
function f defined on [0, T ]. (The notion of state space collapse is defined by
omitting the denominator in (5) below.)

Definition 4.1 Multiplicative state space collapse holds if there is a K×J matrix
∆ such that for each T ≥ 0,

‖Ẑr(·)−∆Ŵ r(·)‖T
‖Ŵ r(·)‖T ∨ 1

→ 0 in probability as r →∞, (5)
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where a ∨ b ≡ max(a, b) for any two real numbers a, b.

Based on extant limit theorems, some conjectured forms of ∆ for various service
disciplines are described in [Wi97b]. In fact, one can show (see Appendix B in
[Wi97b]) that a necessary condition for {(Ŵ r, Ẑr)} to be C-tight under the FIFO
service discipline is that (multiplicative) state space collapse holds with ∆ = ΛC′

where Λ is the K ×K diagonal matrix with the entries of λ on its diagonal.

Sufficient Conditions for a Heavy Traffic Limit Theorem The main
content of the following theorem is that for a sequence of open multiclass queueing
networks as described above (with a general HL service discipline), multiplicative
state space collapse plus the natural condition that the reflection matrix R for the
purported SRBM approximant is well defined and completely-S, is sufficient for a
heavy traffic limit theorem to hold. Here⇒ denotes convergence in distribution of
processes taking values in the space of paths that are right continuous with finite
left limits, where this space is endowed with the usual Skorokhod topology.

Theorem 4.1 [Wi97b] Suppose that multiplicative state space collapse holds and
that the inverse matrix R = (CM(I−P ′)−1∆)−1 exists and is completely-S. Then

(Ŵ r, Ŷ r, Ẑr)⇒ (W ∗, Y ∗, Z∗) as r →∞, (6)

where W ∗ is a SRBM with data (Rγ,Γ, R, δ0) and associated pushing process Y
∗,

and Z∗ = ∆W ∗. The covariance matrix Γ is a known quantity determined from C
and the means and covariances of the stochastic primitives [Wi97b], and δ0 denotes
the unit mass at the origin in IRJ+.

The proof of this theorem proceeds by showing tightness of the sequence
{(Ŵ r, Ŷ r, Ẑr)} and uniqueness in law of any weak limit point. For the tight-
ness, multiplicative state space collapse is combined with the oscillation inequality
of Theorem 2.2. For the uniqueness of any weak limit point (W †, Y †, Z†), one
needs to show that W † is a SRBM with associated pushing process Y †. In par-
ticular, the martingale property in the definition of a SRBM needs to be verified
for X† = W † − RY †. This involves establishing a multiparameter stopping time
property which is where the precise definition of a HL service discipline (including
its measurable dependence on the “state”) comes into play.

New Heavy Traffic Limit Theorems In a companion work to [Wi97b],
Bramson [Br97b] (see also [Br98]) has given sufficient conditions for multiplicative
state space collapse to hold. These conditions are in terms of the behavior of a
balanced fluid model (a law of large numbers approximation for the sequence of
heavily loaded queueing networks). In particular, using these conditions and his
prior work on the fluid model behavior for FIFO Kelly type and HLPPS networks,
Bramson [Br97b] has shown that multiplicative state space collapse holds for these
two collections of networks. The qualifier “Kelly type” means that mk depends
only on the station j at which class k is served, i.e., the limiting mean service
times are station-dependent, not class-dependent, quantities. In addition, it is
known [DH93, Wi97b] that R is well defined and completely-S for these networks.
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Combining the above results yields new heavy traffic limit theorems for these two
collections of networks. In particular, the FIFO Kelly type network introduced
by Dai, Wang and Wang (see Appendix A in [Wi97b]) can be approximated by
a SRBM. This is particularly interesting since the continuous mapping (strong
solution) approach used in most prior limit theorems cannot be applied to that
example.

In independent work, Chen and Zhang [CZ97] have established a heavy traffic
limit theorem for FIFO networks in which G = CM(I −P ′)−1P ′ΛC′ has spectral
radius less than one. Although they do not use Theorem 4.1, they implicitly verify
the conditions of that theorem for their case and avoid a continuous mapping
argument in a similar manner to that in [Wi97b].

5 Open Problems

The results in [Br97b, Wi97b] reduce the problem of establishing heavy traffic
limit theorems for open multiclass queueing networks with a HL service discipline
to that of establishing multiplicative state space collapse through the study of
balanced fluid models over long intervals of time and to verifying that the reflec-
tion matrix R is well defined and completely-S. A compelling open problem is to
identify new collections of networks that satisfy these conditions. In particular, it
is natural to consider networks with static priority service disciplines (see the ar-
ticle [Br98] by Bramson for recent work in this direction). Another area for future
investigation is heavy traffic behavior of networks with non-HL disciplines such as
last-in-first-out and general processor sharing. Finally, the focus here has been on
performance analysis for heavily loaded networks with a fixed structure. In some
applications one may be able to vary such quantities as the service discipline or
routing in a dynamic manner with the objective of optimizing some measure of
performance. Again such problems frequently cannot be analyzed exactly and one
may seek approximate models. An approach using approximate diffusion models
has been advocated by some authors (see e.g., [HW89, KL93, Ku95]), but many
open problems remain concerning justification and interpretation of such approx-
imations in general.
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Hereditary Properties of Graphs:Asymptotic Enumeration, Global Structure,and Colouring
Béla Bollobás

1991 Mathematics Subject Classification: Primary: 05C, 05D; secondary:
51M16, 60E15

1. Introduction. In this paper we shall discuss recent developments concerning
hereditary graph properties. In particular, we shall study the growth of the number
of graphs with a given hereditary property; the structure of a ‘typical’ graph with
the property; and the P-chromatic number of a random graph Gn,p for a fixed
hereditary property P .

A graph property P is a union of isomorphism classes of finite graphs. To avoid
trivialities, we shall always assume that our properties contain infinitely many non-
isomorphic graphs, but that for some n do not contain all graphs of order n. Here
are some simple examples of graph properties: (i) all triangle-free graphs without
8-cycles, (ii) all graphs of chromatic number at most k, (iii) all graphs containing
no induced quadrilaterals, (iv) all regular bipartite graphs, (v) all Hamiltonian
graphs.

Rather than considering general properties, we frequently study hereditary
properties. A property P is hereditary if it is closed under taking induced sub-
graphs. In other words, P is hereditary if G ∈ P implies that G− x ∈ P for every
vertex x of G.

An important subclass of hereditary properties is the class of monotone prop-
erties, those that are closed under taking subgraphs. Thus P is monotone if G ∈ P
implies that G − x ∈ P for every vertex x of G and G − e ∈ P for every edge e
of G. Note that properties (i) and (ii) are monotone, (iii) is hereditary but not
monotone, and properties (iv) and (v) are not hereditary.

The most natural way of measuring the size of a property is to take the
number of elements in its finite sections. Given a property P , write Pn for the set
of graphs in P with vertex set [n] = {1, . . . , n}. Then (|Pn|)∞n=1 is, in an obvious
sense, a measure of P .

For a monotone property P there is another natural measure: the sequence
(e(Pn))∞n=1, where e(Pn) is the maximal size (number of edges) of a graph in Pn.
For a general property P , the sequence (e(Pn))∞n=1 may have little significance, so
we have to turn to a natural extension of it. A pregraph is a triple G̃ = (V, Ẽ, Ñ),
where V is a finite set, the set of vertices, and Ẽ and Ñ are disjoint subsets of
V (2), the set of unordered pairs of vertices; Ẽ is the set of edges and Ñ is the
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set of non-edges of G̃. A graph G = (V,E) extends G̃ if Ẽ ⊂ E ⊂ V (2) \ Ñ .

The size e ˜(G) of a pregraph is |V (2) \ (Ẽ ∪ Ñ)|: the number of choices we have
when extending G̃ to a graph. We say that a pregraph G̃ belongs to Pn if every
graph extending G̃ belongs to Pn. Then another natural measure of the size of
a property P is the sequence (en(P))∞n=1, where en(P) is the maximal size of a
pregraph in Pn.

It is natural to identify a graph G = (V,E) with the pregraph G̃ = (V, ∅, V (2)\
E); with this identification we find that e(G) = e(G̃). Hence, for a monotone
property P , the two definitions give the same value: in other words, e(Pn) =
en(P).

Scheinerman and Zito [28] were the first to study the rate of growth of |Pn| for
a hereditary property. They discovered that, crudely, |Pn| behaves in one of the
following five ways: (i) for n large enough, |Pn| = 1 or 2, (ii) it grows polynomially:
for some positive integer k, a1n

k ≤ |Pn| ≤ a2nk for some a1, a2 > 0, (iii) it grows
exponentially: aan1 ≤ |Pn| ≤ an2 for some a > 0 and 1 < a1 ≤ a2, (iv) it grows
factorially: ana1n ≤ |Pn| ≤ na2n for some a > 0 and 0 < a1 ≤ a2, (v) it grows
superfactorially: |Pn| > nan for every a > 0 and n large enough.

Here we are interested in properties whose rate of growth is not far from
maximal. To measure the rate of growth of such a property P , we replace the

sequence (|Pn|)∞n=1 by the sequence (cn)∞n=1, where |Pn| = 2cn(n2). Since 1 ≤
|Pn| ≤ 2(n2), we have 0 ≤ cn ≤ 1.

We call cn the logarithmic density of Pn, and c = limn→∞ cn the asymptotic
logarithmic density of P provided the limit exists.

Similarly, the (normalized) size of Pn is dn, 0 ≤ dn ≤ 1, defined by en(P) =
dn
(
n
2

)
.

The asymptotic size of P is d = limn→∞ dn, provided this limit exists. Since

every pregraph G̃ extends to 2e(G̃) graphs, we have cn ≥ dn for every property.
Hence if P is a property with asymptotic logarithmic density c and asymptotic size
d, then c ≥ d. We shall see later that every hereditary property has an asymptotic
logarithmic density c and an asymptotic size d and, in fact, they are equal.

2.Monotone properties. One of the main aims of classical extremal graph the-
ory is the study of the sequence (en(P))∞n=1 for various monotone graph properties.
Frequently, a monotone property is given by a family F of forbidden subgraphs.
For a family F = {F1, F2, . . .} of finite graphs, let Mon(F) be the collection of
all graphs containing no Fi as a subgraph. Clearly every monotone property is of
the form Mon(F) for some family F of forbidden subgraphs, but one is especially
interested in monotone families defined by small families of forbidden subgraphs.
If there is only one forbidden subgraph F then we have a principal monotone
property and we write Mon(F ) instead of Mon({F}).

It has been known for over fifty years that every monotone graph property
has an asymptotic size. In particular, a weak form of Turán’s theorem [31] states
that d(Mon(Kr+1)) = 1− 1

r for every r ≥ 1. The fundamental theorem of Erdős
and Stone [15] extends this result to d(Mon(Kr+1(t))) = 1 − 1

r for all r, t ≥ 1.
Here, as usual, Kn denotes a complete graph of order n and Kr(t) denotes the
complete r-partite graph in which each part has t vertices. An equivalent form of
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the Erdős-Stone theorem is that if F is any family of forbidden subgraphs then
d(Mon(F)) = 1− 1r , where r = min{χ(F )− 1 : F ∈ F} and χ(F ) is the chromatic
number of F .

Rather more effort is needed to prove that every monotone property has an
asymptotic density. Using the method of Kleitman and Rothschild [18], Erdős,
Kleitman and Rothschild [12] proved that c(Mon(Kr+1)) = 1− 1r . This result was
extended by Erdős, Frankl and Rödl [11], who proved that c(Mon(F )) = 1 − 1

r
for every graph F , where r = χ(F ) − 1. The proof of this result implies that
c(Mon(F)) = 1− 1r for every family F , where r is, as before, one smaller than the
minimal chromatic number of a graph in F . In particular, c(P) = d(P) for every
monotone family.

The structure of Kr+1-free graphs was investigated in great detail by Kolaitis,
Prőmel and Rothschild [19]. Among other results, they proved that Mon(Kr+1)
is well approximated by the smaller property Nr of graphs of chromatic number
at most r: not only do we have the crude result that c(Mon(Kr+1)) = c(Nr), but
also

|Mon(Kr+1)
n|/|Nn

r | = 1 +O(n−k)

for all k > 0. Furthermore, a first-order labelled 0 − 1 law holds for the class of
Kr+1-free graphs.

Before leaving monotone properties, let us note that the following somewhat
surprising fact is an immediate consequence of the description of c(P) = d(P) for
a monotone property. If P1 and P2 are monotone properties, and P = P1 ∩ P2,
then

c(P) = min{c(P1), c(P2)}. (1)

Thus the intersection of two monotone properties is about as large as the smaller
of the two properties!

3. Volumes of projections and asymptotic enumeration. The existence
of the asymptotic logarithmic density of a hereditary property is closely related to
a family of inequalities involving volumes of projections of bodies. Our next aim
is to describe this relationship.

A body in Rn is a compact convex subset of Rn that is the closure of its
interior. Let v1, . . . , vn be the standard basis ofRn = lin{v1, . . . , vn}. For a subset
A of [n], write KA for the orthogonal projection of a body K onto lin{vj : j ∈ A},
and |KA| for the |A|-dimensional volume of KA. In particular, |K| = |K[n]| is the

volume of K. With β(K) = (|KA| : A ⊂ [n]) = (|KA|)A⊂[n] ∈ RP(n) = R2
n

, the
map K → β(K) can be considered to be a measure of the size of the boundary of
K.

We are interested in the best possible isoperimetric inequalities involving the
boundary vector β(K) and the volume |K|. In other words, we would like to know
for which vectors (xA) ∈ R2n with x[n] = 1 is there a body K ⊂ Rn of volume 1
such that |KA| ≤ xA for all A ⊂ [n]. The following box theorem we proved with
Thomason [6] gives a surprisingly simple answer to this question. A box B in Rn

is a body of the form B =
∏n
j=1 Ij , where each Ij is an interval.

Theorem 1. For every body K ⊂ Rn, there is a box B ⊂ Rn such that
|B| = |K| and |BA| ≤ |KA| for every A ⊂ [n].
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An immediate consequence of the box theorem is the uniform cover inequal-
ity below, extending the Loomis-Whitney inequality [20]. A sequence (Ai)

m
i=1 of

subsets of [n] is a k-uniform cover of [n] if every element of [n] belongs to precisely
k of the sets A1, . . . , Am. Now, if (Ai)

m
i=1 is a k-uniform cover of [n], and K is a

body in Rn then Theorem 1 implies that

|K|k ≤
m∏

i=1

|KAi |. (2)

In fact, in [6] the box theorem is deduced from the uniform cover inequality
(1) by a simple compactness argument. Since the original proof, several other
deductions have been suggested: Ball noted that separation theorems, and Kahn
and Meshulam pointed out that properties of submodular functions, can be used
to deduce the box theorem from inequality (2).

The box theorem easily implies that, as first proved by Alekseev [1], every
hereditary property of graphs has an asymptotic logarithmic density.

Theorem 2.Let P be a hereditary property of graphs. Then 1 = c1(P) ≥
c2(P) ≥ · · · ; in particular, the asymptotic logarithmic density c(P) =
limn→∞ cn(P) exists.

It is easily seen that the arguments above apply to hereditary properties of
r-uniform hypergraphs as well, mutatis mutandis.

4. Asymptotic enumeration and global structure. Given a family F =
{F1, F2, . . .}, of finite graphs, let Her(F) be the collection of all graphs that contain
no Fi as an induced subgraph. Clearly, every hereditary property is of the form
Her(F) for some family F of forbidden subgraphs. Theorem 2 tells us that every
hereditary property P = Her(F) has an asymptotic logarithmic density c(P), but
gives no indication as to how one could determine c(P) from F . In fact, Prömel
and Steger [22], [23], [24], [25] gave such a description for a principal hereditary
property, i.e., for one with a single forbidden induced subgraph. They also gave
approximations of principal hereditary properties by rather simple (non-principal)
hereditary properties. With Thomason [7] we extended these results to general
hereditary properties.

Before we can describe these results, we have to introduce some definitions.
An (r, s)-colouring of a graph G = (V,E) is a partition of the vertex set into
r classes such that the first s classes induce complete graphs, and the remaining
r−s classes induce empty subgraphs. (Needless to say, empty classes are allowed.)
Thus an (r, 0)-colouring of a graph is precisely a standard r-colouring. We write
Pr,s for the collection of all (r, s)-colourable graphs; clearly, Pr,s is a hereditary
property for all 0 ≤ s ≤ r, r ≥ 1. For example, P1,1 is the collection of all complete
graphs, and P1,0 is the collection of all empty graphs. The colouring number r(P)
of a property P is

r(P) = max{r : Pr,s ⊂ P for some s}.
Note that if P = Her(F) then

r(P) = max{r : for some s ≤ r, no F ∈ F is (r, s)-colourable}.
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If P = Mon(F) then r(P) is exactly as before:

r(P) = min{χ(F )− 1 : F ∈ F} = max{r : no F ∈ F is (r, 0)-colourable}.

The colouring number gives us a lower bound for cn and dn. Indeed, let
0 ≤ s ≤ r be such that r = r(P) and Pr,s ⊂ P , and let G̃ = ([n], Ẽ, Ñ) be the
pregraph obtained as follows. Partition [n] into r classes as equal as possible in
size, [n] = V1 ∪ . . . ∪ Vr , say, and let Ẽ consist of all edges within a class Vi for
0 ≤ i ≤ s. Since Pr,s ⊂ P , every extension of G̃ belongs to P . Consequently,

cn(P) ≥ dn(P) ≥ e(G̃)/

(
n

2

)
≥ 1− 1

r
.

As shown in [7], c(P) and d(P) exist for every hereditary property, and these
inequalities are essentially best possible.

Theorem 3. If P is any hereditary property then

c(P) = d(P) = 1− 1

r(P)
,

where r(P) is the colouring number of P.
The proof of this theorem is based on the three pillars of extremal graph

theory: the theorems of Ramsey [26], Erdős and Stone [15], and Szemerédi [30].
One needs only the very simple case of Ramsey’s theorem that the diagonal graph
Ramsey function is finite: R(k) < ∞ for every k. On the other hand, one needs
a slight extension of the Erdős-Stone theorem: for all r, t ≥ 1 and ǫ > 0 there are
δ > 0 and n0 ∈ N such that if F and G are graphs with V (F ) = V (G) = [n],
n ≥ n0, e(F ) ≤ δn2 and

e(G) ≥ (1− 1

r
+ ǫ)

(
n

2

)
,

then G contains an F -avoiding Kr+1(t). Here we say that a graph H avoids F if
no edge of F joins two vertices of H.

The most important ingredient of the proof of Theorem 3 is Szemerédi’s
uniformity lemma [30]. Given a graph G = (V,E), and subsets A,B,⊂ V , the
density d(A,B) is defined as

d(A,B) =
e(A,B)

|A||B| ,

where e(A,B) is the number of A-B edges. A pair (A,B) is (ǫ, δ)-uniform if

|d(A′, B′)− d(A,B)| ≤ ǫ

whenever A′ ⊂ A, B′ ⊂ B, |A′| ≥ δ|A| and |B′| ≥ δ|B|.
Szemerédi’s uniformity lemma states that for all ǫ, δ, η > 0 there is an M =

M(ǫ, δ, η) such that the vertex set of every graph G can be partitioned into at most
M sets U1, . . . , Um of sizes differing by at most 1, such that at least (1− η)m2 of
the (ordered) pairs (Ui, Uj) are (ǫ, δ)-uniform.
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The fewer sets U1, U2, . . . we can take the more powerful the result is; unfor-
tunately when ǫ = δ = η, all we know about M(ǫ, ǫ, ǫ) is that it is at most a tower
of 2s of height proportional to ǫ−5. As the proof of this bound seemed rather
‘wasteful’, for many years there had been some hope that this enormous bound
could be reduced greatly. It was a great surprise when recently Gowers [17] proved
the difficult result that K(ǫ, δ, η) can not be less than of tower type in 1/δ, even
when ǫ and η are kept large.

Szemerédi’s uniformity lemma implies that every graph satisfying certain
global conditions contains appropriate induced subgraphs; this is precisely how
the lemma was used in the proof of Theorem 3.

The descriptions of the asymptotic logarithmic density and asymptotic size of
a hereditary property provided by Theorem 3 imply that hereditary properties are
much more complex than monotone ones. In particular, the simple relationship (1)
fails for hereditary properties. For example, if P1 = Her(K4), P2 = Her(C7)
and P = P1 ∩ P2 = Her{K4, C7}, then r(P1) = r(P2) = 3 but r(P) = 2: the
intersection of two hereditary properties can be much smaller than either of them.

In fact, the intersection of two large hereditary properties need not even be a
property in our sense: it may contain only finitely many non-isomorphic graphs.
For example, if r ≥ 1 then each of Pr,0 and Pr,r has colouring number r, so that
c(Pr,0) = c(Pr,r) = 1− 1r , but Pr,0 ∩Pr,r consists of graphs G with χ(G) ≤ r and
χ(Ḡ) ≤ r. In particular, |G| ≤ r2 for every G ∈ Pr,0 ∩ Pr,r, so Pr,0 ∩ Pr,r indeed
consists only of finitely many non-isomorphic graphs.

5. Colouring random graphs Gn,1/2 with hereditary properties. The random
graph Gn,p is a graph with vertex set [n], whose edges are selected independently,
with probability p. The probability space of these graphs is G(n, p). In particular,

G(n, 1/2) is the space of all 2(n2) graphs on [n] with the uniform distribution.
One of the main questions left open by Erdős and Rényi when, almost forty

years ago, they founded the theory of random graphs ([13], [14]; see also [5]) was
the behaviour of the chromatic number of a random graph. Over 25 years later,
first Shamir and Spencer [29] proved that the chromatic number of Gn,p is highly
concentrated, and then it was shown [3] that if 0 < p < 1 is fixed and q = 1 − p
then

χ(Gn,p) = (1 + o(1))
n

2 log1/q n
(3)

for almost every Gn,p. Substantial extensions of this result were proved by
 Luczak [21], Frieze and  Luczak [16], and Alon and Krivelevich [2]. All these
results use various martingale inequalities (see [4]).

For a property P , a P-colouring of a graph G = (V,E) is a partition V = V1∪
. . .∪Vk of the vertex set such that every class Vi induces a P-graph: G[Vi] ∈ P , i =
1, . . . , k. The P-chromatic number χP(G) of a graph G is the minimal number
of classes in a P-colouring of G. Thus χP1,0(G) = χ(G) and χP1,1(G) = χ(G).
Scheinerman [27] was the first to study the P-chromatic number of random graphs.
He noted that if P is a hereditary property then either P1,0 ⊂ P or P1,1 ⊂ P so
χP(G) ≤ max{χ(G), χ(G)}. From this it follows that χP(Gn,p) = O(n logn) for
every fixed 0 < p < 1 and hereditary property P , and it is easily seen that, in fact,
χP(Gn,p) = Θ(n logn).
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With Thomason [8] we proved an analogue of (3) for a general hereditary
property, but only in the case p = 1

2 .

Theorem 4. Let P be a non-trivial hereditary property of graphs, with colour-
ing number r = r(P). Then

χP(Gn,1/2) = (
1

2r
+ o(1))

n

log2 n

for almost every Gn,1/2.

In fact, this result follows rather easily from (3) and from the facts that
c(P) = 1− 1r and that Pr,s ⊂ P for some s, 0 ≤ s ≤ r. More precisely, c(P) = 1− 1r
implies that χP(Gn,1/2) is unlikely to be much smaller than n/(2r log2 n), and
Pr,s ⊂ P implies that χP(Gn,1/2) is unlikely to be much larger than n/(2r log2 n).

6. Colouring random graphs Gn,p with hereditary properties. The ac-
cepted wisdom in the theory of random graphs is that whatever can be proved
for the space G(n, p) with p = 1/2 can be proved for G(n, p) with any fixed p,
0 < p < 1. This conventional wisdom is contradicted by the problem of determin-
ing χP(Gn,p)! As we saw in Theorem 4, it is easy to determine χP(Gn,p) in the
uniform case p = 1/2. However, for p 6= 1/2 not only does the proof collapse, but
we are faced with a genuinely more complicated phenomenon, so that much more
effort is needed to overcome the difficulties.

A lower bound for χP(Gn,p) is easily obtained from the following result, which
is a consequence of the box theorem.

Theorem 5. Let P be a hereditary graph property, let 0 < p < 1 and let

the constants ek,p(P) be defined by P(Gk,p ∈ P) = 2−ek,p(P)(
k
2). Then ek,p(P)

increases with k. In particular, ek,p(P) tends to a limit ep(P) as k → ∞. Fur-
thermore, ep(P) > 0 if P is non-trivial, i.e., if not every graph has P.

Theorem 5 implies that, for ǫ > 0, the expected number of induced subgraphs
of order k in a random graph Gn,p having property P is o(1) for k ≥ (2/ep +
ǫ) log2 n, and tends to infinity for k ≤ (2/ep − ǫ) log2 n. Consequently,

χP(Gn,p) ≥ (ep + o(1))n/(2 log2 n) (4)

almost surely.
It was conjectured in [8] that (4) is in fact an equality, as claimed by Theorem 4

for p = 1/2. Now, the proof of Theorem 4 is based on the fact that for p = 1/2
the constant ep(P) has a simple interpretation in terms of the values (r, s) for
which Pr,s ⊂ P . However, for p 6= 1/2 this is no longer true: ep(P) cannot be
characterized solely in terms of these values (r, s). For example, let P ′ = P2,0 be
the property of being bipartite, and let P ′′ be the property of being 3-colourable,
with two of the colour classes spanning complete bipartite graphs. Then P ′ and
P ′′ contain P1,0 and P2,0, and no other Pr,s. Nevertheless, ep(P ′) 6= ep(P ′′) for
p > 1/2.

In spite of these difficulties, with Thomason [9] we proved the conjecture
above.
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Theorem 6. Let P be a hereditary graph property and let 0 < p < 1. Let
ep = ep(P) be the constant defined in Theorem 5. Then

χP(Gn,p) = (ep + o(1))n/(2 log2 n)

almost surely.

The proof of Theorem 6 makes use of Szemerédi’s uniformity lemma, mar-
tingale inequalities and, above all, a careful study of the structure of a general
hereditary property. The product

∏
γ∈ΓPγ of hereditary properties Pγ , γ ∈ Γ, is

the class of graphs G with vertex sets
⋃
γ∈Γ Vγ such that G[Vγ ] ∈ Pγ for every

γ ∈ Γ. A hereditary property is irreducible if it is not the product of two other
hereditary properties. It is easily shown that every hereditary property is the prod-
uct of a finite collection of irreducible hereditary properties. Also, if P =

∏
γ∈Γ Pγ

then

ep(P)−1 =
∑

γ∈Γ
ep(Pγ)−1.

Next, one can show that if Theorem 6 holds for each of the properties
P1, . . . ,Pk, then it holds for

∏k
i=1 Pi as well. Consequently, it suffices to prove

Theorem 6 for irreducible properties.

In fact, the heart of the proof is the assertion that Theorem 6 holds for every
‘typed’ property P = P(τ). A type is a labelled graph, each of whose vertices
and edges is coloured black or white. Given a type τ , the property P(τ) consists
of those graphs G for which V (G) has a partition

⋃
t∈V (τ) Vt such that G[Vt] is

complete or empty according as t is black or white, and moreover, if the edge tu is
in τ then G[Vt, Vu] is a complete or empty bipartite graph according as the edge tu
is black or white. The proof of the fact that Theorem 6 holds for typed properties
P(τ) is based on a careful analysis of the maximal number of induced edge-disjoint
subgraphs of a given order having property P – after much work enough can be
deduced so that martingale inequalities can be applied.

7. Open problems. Numerous open problems remain. Concerning graphs,
all the discussion above is about rather ‘rich’ properties P , namely those with
c(P) > 0. The case c(P) = 0 is not understood nearly as well.

Although we know that c(P) = d(P) for every hereditary property, this is far
from being the entire story. We always have

|Pn| = 2cn(n2) ≥ 2en(P) = 2dn(n2),

but it would be good to decide whether cn = (1 + o(1))dn holds as well.

More importantly, we know very little about hypergraphs. The quantities
cn(P) and dn(P) are easily defined for r-graphs, and cn(P) ≥ dn(P) for every
n. Also, the box theorem implies that cn(P) → c(P), and one can show that
dn(P)→ d(P), but we do not know whether we always have c(P) = d(P). Nothing
of importance is know about the P-chromatic number of r-graphs: we do not even

know the asymptotic P-chromatic number of random r-graphs G
(r)
n,p for p = 1/2.
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Geom. Funct. Anal. 7 (1997), 322-332.

[18] D.J. Kleitman and B.L. Rothschild, Asymptotic enumeration of partial orders
on a finite set, Trans. Amer. Math. Soc. 205 (1975), 205–220.
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[23] H.J. Prömel and A. Steger, Excluding induced subgraphs II: extremal graphs,
Discrete Applied Mathematics 44 (1993), 283–294.
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Applications of Relaxed Submodularity
András Frank

Abstract. Combinatorial optimization problems often give rise to set-
functions which satisfy the sub- or supermodular inequality only for cer-
tain pairs of subsets. Here we discuss connectivity problems and show
how results on relaxed submodular functions help in solving them.
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1. Introduction

Let V be a finite set and b : 2S → R ∪ {∞} and p : 2S → R ∪ {−∞} two
set-functions. The submodular and the supermodular inequality, respectively, for
subsets X,Y ⊆ V are, as follows:

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (1.1b)

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (1.1p)

Function b [respectively, p] is called fully submodular if (1.1b) [ fully supermodular if
(1.1p)] holds for every two subsetsX,Y ⊆ V . (When equality holds everywhere, we
speak of a modular function.) We call a function semimodular if it is submodular
or supermodular.

Semimodular functions proved to be extremely powerful in combinatorial op-
timization. One intuitive explanation for this is that submodular functions may
be considered as discrete counterparts of convex functions. For example, L. Lovász
[L83] observed that a (natural) linear extension of an arbitrary set-function h to
a real function on RV+ is convex if and only if h is submodular. Another occur-
rence of this relationship is the discrete separation theorem [F82] asserting that
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if an integer-valued supermodular function p is dominated by an integer-valued
submodular function b, then there is an integer-valued (!) modular function m
for which p ≤ m ≤ b. Recently, this kind of analogy has been developed system-
atically by K. Murota [M96] into a theory relating convex analysis and discrete
optimization.

In applications, however, often the submodular inequality is not fulfilled by
every pair of sets. Accordingly, several frameworks concerning semimodular func-
tions have been introduced, analyzed, and applied. One fundamental property of
these models is total dual integrality (TDI-ness) which ensured applicability to
weighted optimization problems, as well. (See [Schrijver, 1984], for an account.)
For example, C. Lucchesi and D. Younger [LY78] proved a min-max formula for
the minimum number of edges of a directed graph whose contraction results in
a strongly connected digraph. J. Edmonds and R. Giles [EG76], by introducing
submodular flows, found an extension to a minimum cost version. Based on this
ground, a polynomial time algorithm was developed in [F81] to actually find the
cheapest edge set.

There have been optimization problems, however, where the minimum car-
dinality case was nicely treatable while the min-cost version was NP-complete.
For example, making a digraph strongly connected by adding new edges is such
a problem [Eswaran and Tarjan, 1976]. This type of connectivity augmentation
problems gave rise recently to a new class of results concerning relaxed semimod-
ular functions.

In this paper we outline the new frameworks, exhibit recent developments
concerning submodular flows, and show applications to problems from the area of
graph connectivity.

The following forms of relaxed semimodularity will be used. Let S and T be
two subsets of a groundset V and b a set-function. b is intersecting submodular if
(1.1b) holds wheneverX∩Y 6= ∅. b is crossing submodular if (1.1b) holds whenever
X ∩Y 6= ∅ and V − (X ∪Y ) 6= ∅. Intersecting and crossing supermodular funtions
are defined analogously but for supermodularity we need further relaxations. Let
p be a non-negative set-function. p is ST -crossing supermodular if (1.1p) holds
whenever p(X) > 0, p(Y ) > 0, X ∩ Y ∩ T 6= ∅ and S − (X ∪ Y ) 6= ∅. p is
T -intersecting supermodular if (1.1p) holds whenever p(X) > 0, p(Y ) > 0, X ∩
Y ∩ T 6= ∅. p is skew supermodular if p(X) + p(Y ) ≤ max(p(X ∩ Y ) + p(X ∪
Y ), p(X − Y ) + p(Y −X)) whenever p(X) > 0, p(Y ) > 0. We call a set-function p
symmetric if p(X) = p(V −X) for every X ⊆ V . Throughout we will assume that
the occurring set-functions are integer-valued.

2. Connectivity problems

In a graph or digraph G, λ(u, v) (respectively, κ(u, v)) denotes the maximum
number of edge-disjoint (openly disjoint) paths from u to v. λ(u, v) is called the
local edge-connectivity from u to v while the minimum of these λ-values (κ-values)
is the edge-connectivity (node-connectivity) of G. A digraph is k-edge- (node-)
connected from root s if λ(s, v) ≥ k (κ(s, v) ≥ k) for every v ∈ V .
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The problems we consider can be cast in the following general form: Create
an (optimal) graph (or digraph, or hypergraph) satisfying some connectivity prop-
erties. Sometimes we are interested only in the existence of the requested object,
other times finding an optimal object is also important. A connectivity property
typically means that bounds are imposed on the number of edges (nodes) in cuts.
”Creating” means that certain specified operations are allowed. We will consider
the following operations: Given a graph or digraph, take a subgraph, take a su-
pergraph (that is, augment the graph), orient the undirected edges, reorient some
of the directed edges.

The travelling salesman problem, for example, is a special case, as it requires
finding a minimum cost 2-edge-connected subgraph of n edges. Another special
case is the Steiner-tree problem which seeks for cheapest subgraphs containing at
least one edge from each cut separating a specified set T of terminal nodes. These
well-known NP-complete problems are special cases of several other connectivity
problems. On the positive side, the problem of finding a minimum cost subdigraph
of a digraph that contains k edge-disjoint paths from s to t is a special min-cost
flow problem and hence it is solvable in polynomial time. Here we consider other
connectivity problems having a good characterization and/or a polynomial-time
solution algorithm. Some of them are, as follows.

Subgraph problems

S1. Given a graph and a stable set S, find a (minimum cost) spanning tree
satisfying upper and lower bound requirements for its degree of the nodes in S.

S2. Given a digraph with a root s, find a cheapest subgraph which is k-edge-
(node-) connected from s.

Supergraph (=augmentation) problems

A1. Given a digraph, add a cheapest subset of new edges to get a k rooted
edge-connected digraph.

A2. Given a digraph, add a minimum number of new edges to get a k-edge-
(node-) connected digraph.

A3. Given a digraph and two subsets S and T of nodes, add a minimum number
of new edges from S to T to get a digraph with λ(s, t) ≥ k (resp., κ(s, t) ≥ k)
whenever s ∈ S, t ∈ T .

A4. Given a hypergraph, add a minimum number of edges to obtain a k-edge-
connected hypergraph.

Orientation problems

O1. Given a graph, orient the edges to get a digraph which is k-edge-connected
from a root s and l-edge-connected to s. (When k = l, the digraph is just k-edge-
connected).

O2. Given a mixed graph, orient its undirected edges so as to obtain a k-edge-
connected digraph.

O3. Given a digraph with edge-costs, reorient a cheapest subset of edges to get a
k-edge-connected digraph.
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Problem S1 is a matroid intersection problem and therefore Edmonds’ [E79]
intersection theorem and algorithm apply. A solution to Problem S2 requires
submodular flows, the topic of Section 3. Problem A1 may be formulated as a
special case of S2, but the other augmentation problems need different techniques,
to be discussed in Sections 4 and 5. All the orientation problems will be handled
with the help of submodular flows.

3. Submodular flows

Let V be a ground-set and b an integer-valued set-function with b(∅) = 0. Associate
with b a polyhedron B(b) := {x ∈ RV : x(V ) = b(V ), x(A) ≤ b(A) for every
A ⊆ V }. When b is fully submodular, B(b) is called a base-polyhedron (0-base-
polyhedron in case b(V ) = 0). For convenience, the empty set is also considered
a base-polyhedron. It follows from the work of J. Edmonds [E70] that a non-
empty base-polyhedron uniquely determines its defining fully submodular function.
Moreover, the intersection of two base-polyhedra is integral (a version of Edmonds’
polymatroid intersection theorem). Therefore it is important that weaker functions
may also define base-polyhedra. For example, L. Lovász [L83] proved that if b is
intersecting submodular, then B := B(b) is a base-polyhedron which is non-empty
if and only if b(V ) ≥∑i b(Vi) holds for every partition {V1, . . . , Vt} of V . Moreover,
the unique fully submodular function defining B is b↓(Z) := min(

∑
i b(Zi) : {Zi}

a partition of Z). S. Fujishige [Fu84] extended this result to crossing submodular
functions. He showed that B(b) is a base-polyhedron if b is crossing submodular.
Moreover, B := B(b) is non-empty (assuming b(V ) = 0) if and only if

∑
i b(Zi) ≥ 0

and
∑
i b(V − Zi) ≥ 0 for every partition {Z1, . . . , Zt} of V .

What is the unique fully submodular function defining B, provided B is non-
empty? We need the following notion of tree-composition of sets. The tree-
composition of the ground-set V is either a partition of V or a co-partition of
V (the complements of a partition of V .) Let A be a proper non-empty subset
of V . Let {A1, . . . , Ak} (k ≥ 1) be a partition of A and {B1, . . . , Bl} (l ≥ 1) a
partition of B := V −A. Let U := {a1, . . . , ak, b1, . . . , bl} be a set of new elements
and define ϕ(v) := ai if v ∈ Ai and := bj if v ∈ Bj . Let F be a directed tree
defined on U so that every edge is of form biaj . For every edge e of the tree, F − e
has two components, among which Fe denotes the one entered by e. Now a tree-
composition of A is a family of subsets of V given in form {ϕ−1(Fe) : e ∈ E(F )}.
(A tree-composition has at most |V | − 1 members.)

Theorem 3.1 [F96] Let b be a crossing submodular function for which b(V ) = 0
and B := B(b) is non-empty. Then the unique fully submodular function b↓

defining B is given by b↓(Z) = min(b(F) : F a tree-composition of Z).

Submodular flows provide a general and powerful framework for combinatorial
optimization problems. Let ~G = (V, ~E) be a directed graph. Let f : ~E → Z∪{−∞}
and g : ~E → Z ∪ {+∞} be such that f ≤ g. For a function z : ~E → R let
̺z(A) :=

∑
(z(e) : e enters A) and δz(A) :=

∑
(z(e) : e leaves A). Let λz(A) :=

̺z(A) − δz(A). Note that λz is modular, that is, λz(A) =
∑
v∈A(λz(v)) and
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therefore we may consider λz as a function on V . Furthermore, let b : 2V →
Z ∪ {∞} be a crossing submodular function with b(V ) = 0. We call z : ~E → R a
submodular flow (with respect to b) if

λz(A) ≤ b(A) for every A ⊆ V. (3.1a)

Submodular flow z is feasible if

f ≤ z ≤ g. (3.1b)

Submodular flows were introduced and investigated by J. Edmonds and R. Giles
[EG77]. Their fundamental result asserts that the linear system (3.1) is totally
dual integral, that is, the dual linear programming problem to max(cz : z satisfies
(3.1)) has an integer-valued optimal solution for every integer-valued c for which
the optimum exists. It follows that the primal polyhedron is also integral (i.e.,
every face contains an integer point) if b, f, g are integer-valued.

This result implies for example (a min-cost extension of) a theorem of C.
Lucchesi and D. Younger asserting that a digraph (with no cut-edge) can be made
strongly connected by reorienting at most γ edges if and only if there are no
k + 1 disjoint directed cuts. Another direct consequence of the integrality of the
submodular flow polyhedron is the (weak form of an) orientation theorem of C.
Nash-Williams [N60] asserting that a 2k-edge-connected undirected graph always
has a k-edge-connected orientation.

In applications, we often need criteria for feasibility which are easy to handle.
An easy relationship between submodular flows and base-polyhedra enables us to
formulate such a result. Namely, z is a submodular flow if and only if λz belongs
to the base-polyhedron B(b). The following was proved in [F82]. Where b is fully
submodular, there exists an integer-valued feasible submodular flow if and only if
̺f (A) − δg(A) ≤ b(A) holds for every A ⊆ V . (Note that, in the special case of
b ≡ 0, we obtain Hoffman’s circulation feasibility theorem.) When this result is
combined with Theorem 3.1, one obtains the following:

Theorem 3.2 Let b be (A) an intersecting or (B) a crossing submodular function.
There exists an integer-valued feasible submodular flow if and only if

̺f (A)− δg(A) ≤ b(A) (3.2)

holds for every A ⊆ V and for every partition A of A in case (A) and for every
tree-composition A of A in case (B).

The partition-type condition for (A) is easier to handle than the one including
tree-compositions. Although there are important cases where tree-compositions
cannot be avoided, in the next two special cases partition-type conditions turn
out to be sufficient. As a generalization of Case (A) in Theorem 3.2, one has the
following.

Theorem 3.3 Suppose that b is crossing submodular (with b(V ) = 0) which, in
addition, satisfies (1.1b) when X ∪ Y = V,X ∩ Y 6= ∅, and dg−f (X,Y ) > 0 hold.
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There exists an integer-valued feasible submodular flow if and only if (3.2) holds
for every A ⊆ V and for every partition A of A.

The other special case requires both partitions and co-partitions, but not
tree-compositions.

Theorem 3.4 Suppose that b is crossing submodular (with b(V ) = 0) satisfying

̺g(B)− δf (B) ≥ b(B) for every B ⊂ V. (3.3)

There exists an integer-valued feasible submodular flow if and only if b(R) ≥ 0 for
every partition and co-partition R of V .

Orientations

Connectivity orientation problems are strongly related to submodular flows.
Let G = (V,E) be an undirected graph and h : 2V → Z ∪ {−∞} a crossing
G-supermodular set-function with h(V ) = h(∅) = 0, (that is, h(X) + h(Y ) ≤
h(X ∩ Y ) + h(X ∪ Y ) + dG(X,Y ) where dG(X,Y ) denotes the number of edges
between X − Y and Y − X). The connectivity orientation problem consists of
finding an orientation of G so that the in-degree function ̺~G of the resulting

digraph ~G = (V, ~E) satisfies:

̺~G(X) ≥ h(X) for every X ⊆ V. (3.4)

Let us choose an arbitrary orientation ~Gr = (V, ~Er) of G whose in-degree

function is denoted by ̺r := ̺~Gr .
~Gr will serve as a reference orientation to

specify other orientations ~G of G. Define b(X) := ̺r(X) − h(X). Any other

orientation of G will be defined by a vector x : ~E → {0, 1} so that x(a) = 0 means
that we leave a alone while x(a) = 1 means that we reverse the orientation of a.
The revised orientation of G defined this way satisfies (3.4) if and only if ̺r(X)−
̺x(X) + δx(X) ≥ h(X) for every X ⊆ V . Equivalently, ̺x(X) − δx(X) ≤ b(X).
Clearly, the submodularity of b and the G-supermodularity of h are equivalent
and hence there is a one-to-one correspondence between the good orientations of
G and the 0 − 1-valued submodular flows. Since h ≥ 0 if and only if (3.3) holds
for f ≡ 0, g ≡ 1, Theorem 3.4 implies:

Theorem 3.5 [F80] Suppose that h is non-negative and crossing G-supermodular.
There exists an orientation of G satisfying (3.4) if and only if both eG(P) ≥∑
i h(Pi) and eG(P) ≥∑i h(V − Pi) hold for every partition P= {P1, . . . , Pp} of

V . If, in addition, h is symmetric, then it suffices to require dG(X) ≥ 2h(X) for
every X ⊆ V .

When h(X) ≡ k for ∅ ⊂ X ⊂ V , we obtain Nash-Williams’ weak orientation
theorem. The following generalization, answering Problem O1, is also a conse-
quence of Theorem 3.5: A graph G has an orientation which is k-edge-connected
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from s and l-edge-connected to s (where k ≥ l) if and only if eG(P) ≥ k|P|+ l− k
holds for every partition P of V .

Using the same bridge between orientations and submodular flows, one can
derive from Theorem 3.3 the following.

Theorem 3.6 Suppose that h is crossing G-supermodular and that h satisfies
h(A) + h(B) ≤ h(A ∩ B) + dG(A,B) whenever A ∪ B = V,A ∩ B 6= ∅ and
dG(A,B) > 0. Then G has an orientation satisfying (3.4) if and only if eG(P) ≥∑
i h(Pi) holds for every sub-partition P of V .

This result can be used to derive a (generalization) of a recent orientation
theorem of Nash-Williams [N95] on the existence of a strongly connected orienta-
tion of a mixed graph that satisfies lower bound requirements on the in-degrees of
nodes.

Problem O2 gives rise to crossing G-supermodular functions for which tree-
compositions are needed. Let A be a tree-composition of a subset A ⊆ V and
let j = uv be an edge of G. Let euv(A) denote the number of sets in A entered
by the directed edge with tail v and head u. Let ej(A) := max(euv(A), euv(A))
and eG(A) :=

∑
j∈E ej(A). The quantity ej(A) indicates the (maximally) possible

contribution of an edge j = uv to the sum
∑

(̺~G(X) : X ∈ A) for any orientation ~G
of G. Hence eG(A) measures the total of these contributions and therefore, for any

orientation ~G of G satisfying (3.4), one has
∑
X∈A h(X) ≤∑X∈A ̺~G(X) ≤ eG(A).

Theorem 3.7 Let h be a crossing G-supermodular function. G has an orientation
~G satisfying (3.4) if and only if

∑
X∈A h(X) ≤ eG(A) holds for every subset A ⊆ V

and for every tree-composition A of A.

Let M = (V,E + ~A) be a mixed graph and let h(X) := k − ̺ ~A(X) for ∅ ⊂
X ⊂ V . By applying Theorem 3.7 to this G and h, one obtains a characterization
of mixed graphs having a k-edge-connected orientation, the problem O2.

Rooted connectivity

Let G = (V,E) be a digraph with a special root node s and non-empty
terminal set T ⊆ V − s so that no edge of G enters s. Let p be a non-negative,
T -intersecting supermodular function. Let g : E → Z+ ∪ {∞} be a non-negative
upper bound on the edges of G. We assume that ̺g(Z) ≥ p(Z) for every subset
Z ⊆ V where ̺g(Z) :=

∑
(g(e) : e ∈ E, e enters Z).

Theorem 3.8(a) The linear system {̺x(Z) ≥ p(Z) for every Z ⊂ V , 0 ≤ x ≤ g} is
totally dual integral. (b) The polyhedron defined by this system is a submodular
flow polyhedron.

For the special case T = V − s, part (a) was proved in [F79] while part (b) in
[Schrijver, 1984]. The edge-version of problem S2 could be solved via this special
case. It is not difficult to observe that the proofs extend easily to the more general

Documenta Mathematica · Extra Volume ICM 1998 · III · 343–354



350 András Frank

case. The main advantage of this extension is that, beyond handling the edge-
version of problem S2, the node-version can also be settled by using the standard
node-splitting technique.

To conclude the section, we remark that there is a polynomial time algo-
rithm to solve minimum cost submodular flow problems hence all the connectivity
problems above admit polynomial time solution algorithms.

4. Covering ST -crossing supermodular functions by digraphs

We say that a digraph G = (V,E) covers a set-function p if there are at least p(X)
edges entering every subset X ⊆ V . How many edges are needed to cover p?

Theorem 4.1 [F94] Let p be a crossing supermodular function and γ a positive
integer. There exists a digraph G = (V,E) of at most γ edges covering p if and
only if

∑
(p(X) : X ∈ P) ≤ γ and

∑
(p(V − X) : X ∈ P) ≤ γ hold for every

subpartition P of V .

This result can be extended, as follows. Let S and T be two subsets of a
ground-set V . Two subsets X,Y are called ST -independent if X ∩ Y ∩ T = ∅ or
S ⊆ X ∪ Y .

Theorem 4.2 [FJ95] Let p : 2V → Z+ be an ST -crossing supermodular function
and γ a positive integer. There exists a digraph G = (V,E) that covers p, has
at most γ edges, and each edge has its tail in S and its head in T if and only
if
∑

(p(X) : X ∈ P) ≤ γ holds for every family P of pairwise ST -independent
subsets of V .

When S = T = V , an ST -independent family consists of pairwise disjoint
sets or of pairwise co-disjoint sets. (Two sets are co-disjoint if their complement is
disjoint). Hence Theorem 4.1 is indeed a special case of Theorem 4.2. Theorem 4.1
may be applied to solve an extension of the edge-connectivity version of problem
A2. Let D = (V,E) be a directed graph and T a subset of nodes. We say that D
is k-edge-connected in T if λ(u, v) ≥ k for every pair of nodes u, v ∈ T .

Theorem 4.3 It is possible to make digraph D k-edge-connected in T by adding
at most γ new edges connecting elements of T if and only if

∑
i(k − ̺D(Xi)) ≤ γ

and
∑
i(k − δD(Xi)) ≤ γ holds for every family F = {X1, . . . , Xt} of subsets V

for which ∅ ⊂ Xi ∩ T ⊂ T and F|T is a sub-partition of T .

We say that D is k-edge-connected from S to T if there are k edge-disjoint
paths from every node of S to every node of T . (When S = T we are back at
k-edge-connectivity in T .) Theorem 4.2 gives rise to the following solution to
problem A3:

Theorem 4.4 A digraph D = (V,E) can be made k-edge-connected from S to
T by adding at most γ new edges with tails in S and heads in T if and only
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if
∑
j(k − ̺(Xj)) ≤ γ holds for every choice of an (S, T )-independent family of

subsets Xj ⊆ V where T ∩Xj 6= ∅, S −Xj 6= ∅ for each Xj .

There is a constructive proof of Theorem 4.1 which gives rise to a strongly
polynomial algorithm to find an optimal augmentation in Theorem 4.3. The proof
of Theorem 4.2 is not constructive and no combinatorial polynomial algorithm is
known to construct the optimal augmentation of Theorem 4.4. It is a major open
problem of the field to find one.

Another consequence of Theorem 4.2 concerns the node-connectivity version
of problem A2. Given a digraph D = (V,E), we say that a pair of disjoint,
nonempty subsets X,Y of V is a one-way pair if there is no edges from X to Y .
The deficiency pdef (X,Y ) of a one-way pair is defined by k− |V − (X ∪Y )|. Two
one-way pairs (X,Y ) and (A,B) are called independent if X∩A = ∅ or Y ∩B = ∅.

Theorem 4.5 A digraph D = (V,E) can be made k-node-connected by adding at
most γ new edges if and only if

∑
(pdef (X,Y ) : (X,Y ) ∈ F) ≤ γ holds for every

family F of pairwise independent one-way pairs.

Are these results related to the ones mentioned in the previous section? One
fundamental difference is that, while submodular flows are appropriate to handle
min-cost problems, here the minimum-cost versions include NP-complete prob-
lems. For example, finding a minimum cost strongly connected augmentation of
a digraph is NP-complete. However, for node-induced cost functions the node-
connectivity augmentation problem turns out to be tractable. A node-induced
cost of a directed edge uv is defined by c(uv) := ct(u) + ch(v) where ct and ch
are two cost-functions on the node set V . The better behaviour of node-induced
cost-functions is based on the fact that the in-degree vectors of k-connected aug-
mentations with γ edges span a base-polyhedron.

We conclude this section by briefly remarking that Theorem 4.2 has a surpris-
ing consequence in combinatorial geometry; a theorem of E. Győri [Gy84] asserting
that every vertically convex rectilinear polygon R (bounded by horizontal and ver-
tical segments) in the plane can be covered by γ rectangles belonging to R if and
only if R does not contain more than γ pairwise independent points (where two
points are called independent if they cannot be covered by one rectangle (with
horizontal and vertical sides).

5. Covering crossing and skew supermodular functions by graphs

Let p be a non-negative, symmetric, crossing supermodular function. An undi-
rected graph is said to cover p if every cut [X,V −X] contains at least p(X) edges.
What is the minimum number of edges covering p?

For a partition P of V , the sum
∑

(p(X) : X ∈ P)/2 is clearly a lower bound.
However, even the best such bound can be strictly smaller than the true minimum:
when p(X) ≡ 1 for ∅ ⊂ X ⊂ V and p(∅) = p(V ) = 0, the minimum is |V | − 1
while the best partition bound is |V |/2. Hence we need a new parameter, called
the dimension of p. A partition F := {V1, . . . , Vh} of V with h ≥ 4 is said to be
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p-full if p(∪F ′) ≥ 1 for every sub-partition F ′, ∅ ⊂ F ′ ⊂ F , and F has a member
Vl with p(Vl) = 1. We call the maximum size of a p-full partition the dimension
of p and denote it by dim(p). It can easily be seen that any graph covering p must
have at least dim(p)−1 edges. The content of the next result is that the minimum
in question is equal to the larger of the two lower bounds.

Theorem 5.1 [BF96] Let p : 2V → Z+ be a symmetric, crossing supermodular
function and γ a positive integer. There exists an undirected graph G = (V,E)
with at most γ edges covering p if and only if

∑
(p(X) : X ∈ P) ≤ 2γ holds for

every partition P of V and dim(p) − 1 ≤ γ.

It is an important open problem to extend this theorem to skew-supermodular
functions. For even-valued functions p (that is, when p(X) is even for every subset
X) this was done by Z. Szigeti. The advantage of even supermodular functions
is that their dimension does not play any role. To capture the difference, observe
that if p1 is identically 1 on non-empty proper sutsets of V , then a tree will be
the smallest graph covering p1, that is, the minimum number of edges is n− 1. If
p2 := 2p1, then we do not need twice as many edges to cover p2. Just one more
edge will do as a circuit of n edges cover every cut at least twice.

Theorem 5.2 [Sz95] Let p : 2V → Z+ be a symmetric, even-valued, skew-
supermodular function and γ a positive integer. There exists a graph G = (V,E)
with at most γ edges covering p if and only if

∑
(p(X) : X ∈ P) ≤ 2γ holds for

every partition P of V .

As a consequence of Theorem 5.1 we exhibit a result concerning hypergraph
connectivity augmentation. Given a hypergraph H ′ = (V,A′), a subset ∅ ⊂ C ⊂ V
is called a component of H ′ if dH′(C) = 0 and dH′(X) > 0 for every ∅ ⊂ X ⊂ C.
(dH′(X) denotes the number of hyperedges of H ′ intersecting both X and V −X.)
For a subset T ⊂ V , we let cT (H ′) denote the number of components of H ′

having a non-empty intersection with T . H ′ is said to be k-edge-connected in T if
dH′(X) ≥ k for every subset ∅ ⊂ X ⊂ V separating T. When T = V we say that
H ′ is k-edge-connected.

Theorem 5.3 Let H = (V,A) a hypergraph, T a specified subset of V , and γ
a positive integer. H = (V,A) can be made k-edge-connected in T by adding at
most γ new graph-edges if and only if

∑
(k − dH(X) : X ∈ P) ≤ 2γ for every

sub-partition P of V separating T and cT (H ′) − 1 ≤ γ for every hypergraph
H ′ = (V,A′) arising from H by leaving out k − 1 hyperedges. If these conditions
hold, the new edges can be chosen so as to connect elements of T .

This result is a solution to problem A4. It extends an earlier theorem of J.
Bang-Jensen and B. Jackson [BJ95] where T = V , which, in turn, generalizes an
even earlier result of T. Watanabe and A. Nakamura [WN87] when the starting
hypergraph H is itself a graph. The latter result was generalized in another direc-
tion in [F92] where, instead of global k-edge-connectivity, specified demands r(u, v)
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were required for the augmented local edge-connectivities between every pair of
nodes u and v. Since such a problem gives rise to skew-supermodular functions,
Theorem 5.1 cannot be applied. However, if half-capacity edges are also allowed in
the augmentation, then Theorem 5.2 can be applied. That is, one can find a graph
G of minimum number of edges so that adding the edges of G with half-capacity to
the starting hypergraph, the local edge-connectivities of the increased hypergraph
attain a prescribed value r(u, v) for every pair {u, v} of nodes.
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Ordonner le Groupe Sym�etrique:Pourquoi Utiliser l'Alg�ebre de Iwahori-Hecke ?
Alain Lascoux(*)

Abstract. The Bruhat order on the symmetric group is defined by
means of subwords of reduced decompositions of permutations as prod-
ucts of simple transpositions. Ehresmann gave a different description by
considering any permutation as a chain of sets and comparing component-
wise the chains. A third method reduces the Bruhat order to the inclusion
order on sets, by associating to any permutation a set of bigrassmannian
permutations. This amounts to embed the symmetric group into a lat-
tice which is distributive. The last manner to understand the Bruhat
order is to use a distinguished linear basis of the Iwahori-Hecke algebra
of the symmetric group, and this involves computing polynomials due to
Kazhdan & Lusztig; we explicit these polynomials in the case of vexillary
permutations.

1991 Mathematics Subject Classification: 05E10, 20C30
Keywords and Phrases: Symmetric group, Bruhat Order, Kazhdan-
Lusztig Polynomials

1. Ordre par les sous-mots En tant que groupe de Coxeter, le groupe
symétrique S(n) est engendré par les transpositions simples σi, i = 1 . . . n − 1,
qui vérifient les relations de tresse

σiσi+1σi = σi+1σiσi+1 et σiσj = σjσi , |i− j| > 1 (1.1)

ainsi que σ2i = 1.
Une décomposition réduite d’une permutation µ est un mot wij...h =

σiσj · · ·σh, dont le produit, de longueur minimale, est égal à µ (cette longueur
est dite longueur ℓ(µ) de µ). Par définition (cf. [Hu]), l’ordre de Bruhat est l’ordre
induit par les sous-mots :

ν ≤ µ ⇔ ∃wij...h = µ, wij...h réduit , ∃ ǫ, . . . , ǫ′′ ∈ {0, 1}, ν = σǫi σ
ǫ′

j · · ·σǫ
′′

h (1.2)

Soit σ une transposition simple telle que ℓ(µσ) > ℓ(µ). Alors on a la “propriété
d’échange” :

[1, µ] = A ∪B et [1, µσ] = A ∪B ∪Bσ (1.3)

(*) C.N.R.S.
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où [1, µ] := {ν ∈ S(n), ν ≤ µ}, A := {ν : ν ≤ µ, νσ ≤ µ} et B := [1, µ] \A.
On définit, sur l’algèbre du groupe symétrique S(n), des opérateurs de

réordonnement π1, . . . , πn−1, notés à droite

S(n) ∋ µ πi−→
{
µ+ µσi si µi < µi+1

0 autrement

Il est aisé de voir que pour toute décomposition réduite de µ, l’image de 1 par
un produit de πi est la somme des éléments de l’intervalle [1, µ] :

µ = σiσj · · ·σh réduit ⇒ 1πiπj · · ·πh =
∑

ν≤µ
ν (1.4)

Deux décompositions réduites de la même permutation vont donner en général
des ensembles de sous-mots différents et donc ces ensembles ne sont pas des in-
variants de la permutation.

Une autre manière que (1.4) de corriger cette non-canonicité est de pondérer
les sous-mots. Etant données n variables x1, . . . , xn, on définit, à la suite de Yang
[Ya],[Ch], une base linéaire Yµ, µ ∈ S(n), de l’algèbre du groupe symétrique à
coefficients rationnels en les xi, par

ℓ(µσi) > ℓ(µ)⇒ Yµσi = Yµ
(
σi +

1

xµi+1 − xµi
)
. (1.5)

Toute décomposition réduite wi...h de µ fournit une factorisation de Yµ, dont
le développement est une somme impliquant tous les sous-mots de wi...h. On vérifie
de plus que le coefficient de ν dans Yµ est non nul ssi ν ≤ µ.

En fait, les coefficients sont des spécialisations de polynômes en deux ensem-
bles de variables ([LLT2], [F-K]). On peut les obtenir en définissant des opérateurs
sur l’anneau des polynômes vérifiant les relations de tresse [L-S4], [L-S5]. Ces
opérateurs fournissent à leur tour des bases distinguées de l’anneau des polynômes
en tant que module libre sur l’anneau des polynômes symétriques [BGG] et l’ordre
de Bruhat joue un rôle essentiel [L-S3] (les programmes sont disponibles comme
librairie Maple [Ve]). On trouvera dans [L-P] l’étude analogue de l’anneau des
polynômes comme module libre sur l’anneau des polynômes symétriques en les
carrés des variables, qui correspond aux groupes hyperoctahedraux.

2. Ordre par projection Il existe un ordre naturel sur les sous-ensembles de
{1, . . . , n} :

u, v ⊆ {1, . . . , n}, u ≤ v ⇔ ∃ une injection croissante de u dans v

Cet ordre permet de définir les tableaux de Young comme étant les châınes crois-
santes d’ensembles d’entiers.

Ehresmann [Eh] induit à partir de cet ordre sur les ensembles, un ordre sur les
cellules de Schubert de la variété de drapeaux pour le groupe linéaire (lesquelles
sont en bijection avec les permutations) :

ν, µ ∈ S(n), ν ≤ µ ⇔ ∀i : 1 ≤ i ≤ n, {ν1, . . . , νi} ≤ {µ1, . . . , µi} (2.1)
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On peut disposer les ensembles {µ1, . . . , µi} dans un tableau, dit clef de la
permutation, dont ils sont les colonnes (décroissantes). Alors deux permutations
sont comparables ssi leurs clefs le sont, composante à composante. De fait, on
vérifie aisément par récurrence sur la longueur que l’ordre d’Ehresmann coinc̈ıde
avec l’ordre de Bruhat.

La restriction µ → {µ1, . . . , µi} peut s’interpréter comme la projection de
S(n) sur S(n)/S(i)×S(n− i), où S(i) ×S(n − i) est le sous-groupe de Young
engendré par σ1, . . . , σi−1, σi+1, . . . , σn−1. On peut identifier les éléments de
S(n)/S(i)×S(n−i) aux permutations γ (dites grassmanniennes) : γ1 < · · · < γi;
γi+1 < · · · < γn, ayant une descente en i. La restriction de l’ordre de Bruhat à ces
dernières est

γ ≤ γ′ ⇔ γ1 ≤ γ′1, . . . , γi ≤ γ′i
Deodhar [De] a étendu à tous les groupes de Coxeter W la définition de l’ordre

de Bruhat par relèvement de l’ordre sur les W/P , P parabolique. Proctor [Pr] a
généralisé aux types B,C,D la construction des clefs.

3. Ordre par sous-ensembles Au lieu de considérer toutes les projections
S(n) 7→ S(i)×S(n− i), i = 1, . . . , n− 1, on peut associer à toute permutation µ
l’ensemble G(µ) des permutations grassmanniennes γ telles que γ ≤ µ. Le critère
(2.1) se formule alors

ν ≤ µ ⇔ G(ν) ⊆ G(µ) (3.1)

Cette définition n’est pas invariante par l’involution µ 7→ µ−1, contrairement
à l’ordre de Bruhat. Pour corriger cette disymétrie, on définit les permutations
bigrassmanniennes comme étant les permutations qui sont grassmanniennes, ainsi
que leurs inverses. En d’autres termes

β bigrassmannienne ⇔ ∃!i, ∃!j : ℓ(σiµ) < ℓ(µ), ℓ(µσj) < ℓ(µ)

(i est dit recul de β, et j descente).
Soit B(µ) l’ensemble des permutations bigrassmanniennes β telles que β ≤ µ.

Le critère (3.1) est équivalent à

ν ≤ µ ⇔ B(ν) ⊆ B(µ) (3.2)

En fait, on peut montrer que l’ensemble des bigrassmanniennes est optimal pour
obtenir l’ordre de Bruhat par inclusion. Plus précisément, soit C ⊆ S(n). Pour
que le morphisme S(n)→ 2C : µ→ C ∩ [1, µ] soit un morphisme d’ordre injectif,
il faut et il suffit que C contienne l’ensemble des bigrassmanniennes (cf. [L-S6]).

Pour les groupes de Coxeter finis, on trouvera dans [G-K] la détermination du
sous-ensemble optimal codant l’ordre. Les élements de la “base de l’ordre” sont
caractérisés par la propriété :

β appartient à la base ssi il existe un élément µ du groupe tel que β soit
minimum dans le complémentaire de l’intervalle [1, µ] .

La même construction peut être étendue aux groupes de Coxeter affines (pour
une description plus classique, voir [B-B] dans le cas du type A et [Er] plus
généralement).
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Toute permutation bigrassmannienne dans S(n) est une permutation du type
[ 1, . . . , a, a+ 1 + c, . . . , a+ b+ c, a+ 1, . . . , a+ c, a+ b+ c+ 1, . . . , a+ b+ c+ d ] et
donc définie par un vecteur [[a, b, c, d]] ∈ N4, a, d ≥ 0, b, c ≥ 1, a+ b+ c+ d = n.

La restriction de l’ordre de Bruhat aux bigrassmanniennes est

[[a, b, c, d]] ≤ [[a′, b′, c′, d′]]⇔ a ≥ a′, d ≥ d′; b ≤ b′, c ≤ c′ . (3.3)

Une permutation µ est supérieure à une bigrassmannienne β = [[a, b, c, d]] ssi
l’ensemble {µ1, . . . , µa+b} contient au moins b valeurs > a+ c.

Le treillis engendré par les bigrassmanniennes (en tant que sup-irréductibles;
de manière équivalente, on prend l’ensemble des unions quelconques de B(µ))
est dit treillis enveloppant du groupe symétrique, ou complétion de Mac Neille
[Bi]. Les éléments de ce treillis sont par définition en correspondance bijective
avec les antichâınes de bigrassmanniennes. Par exemple, pour S(4), il y a 10
bigrassmanniennes et 42 antichâınes, donc 42-24=18 éléments du treillis qui ne
sont pas des permutations, l’ordre sur les bigrasmanniennes étant :

[[0, 3, 1, 0]] [[0, 2, 2, 0]] [[0, 1, 3, 0]]

[[1, 2, 1, 0]] [[1, 1, 2, 0]] [[0, 2, 1, 1]] [[0, 1, 2, 1]]

[[2, 1, 1, 0]] [[1, 1, 1, 1]] [[0, 1, 1, 2]]

Les éléments du treillis enveloppant peuvent aussi être identifiés aux supre-
mums (composante à composante) d’une famille quelconque de clefs. Ces supre-
mums sont des tableaux ayant des propriétés supplémentaires de croissances di-
agonales, que l’on appelle triangles monotones, et qui sont en bijection avec les
matrices à signe alternant (alternating sign matrices), cf. [M-R-R], [An], [Zei].

Ainsi le supremum des bigrassmanniennes [[1, 2, 1, 0]], [[1, 1, 2, 0]],
[[0, 2, 1, 1]], [[0, 1, 2, 1]] se représente par




0 0 1 0
0 1 −1 1
1 −1 1 0
0 1 0 0


↔

3 4 4 4
2 3 3

1 2
1

= sup




3 3 3 4
2 2 3

1 2
1

et

1 4 4 4
1 3 3

1 2
1




et c’est de plus le supremum des deux permutations [3, 2, 1, 4] et [1, 4, 3, 2] dont
nous avons donné les clefs à droite.

La lecture par colonnes, de gauche à droite, des tableaux ou des matrices
donne la même suite d’ensembles : 1 ou -1 en ligne i signifie que la lettre i apparâıt
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ou disparâıt. Ainsi la matrice ci-dessus se lit : ” 3 apparâıt; 2 et 4 apparâıssent,
3 disparâıt; 1 et 3 apparâıssent, 2 disparâıt; 2 revient enfin”.

On montre en outre que le treillis enveloppant du groupe symétrique est dis-
tributif [L-S6]. En d’autres termes, pour toute bigrassmannienne β, il existe une
permutation η telle que S(n) est l’union disjointe des deux intervalles [1, η] et
[β, ω], où ω est l’élément maximum de S(n). Par exemple, une permutation de
S(4) est soit au dessus de β = [1, 4, 2, 3] = [[1, 1, 2, 0]], soit en dessous de [3, 2, 4, 1].

Codant chaque permutation par B(µ), ou par le vecteur booléen [vβ(µ)]β∈B :
vβ(µ) = 1 ou 0 selon que β ≤ µ ou non, on dispose ainsi d’un outil purement
algébrique de calcul sur les intervalles pour l’ordre de Bruhat.

4. Algèbre de Hecke Au lieu d’énumérer, on peut se proposer au contraire de
chercher à caractériser la fonction génératrice

∑
ν≤µ(−q)ℓ(µ)−ℓ(ν) ν des éléments

de l’intervalle [1, µ].
L’algèbre appropriée est cette fois-ci l’algèbre de Iwahori-HeckeHn du groupe

symétrique S(n), définie comme l’algèbre, à coefficients dans Z[q, 1/q], engendrée
par les T1, . . . , Tn−1 satisfaisant les relations de tresse

TiTi+1Ti = Ti+1TiTi+1 et TiTj = TjTi , |i− j| > 1 (4.2)

ainsi que la relation de Hecke

(Ti − q)(Ti + 1/q) = 0 , i = 1, . . . , n− 1 . (4.3)

Une base linéaire de Hn consiste en les {Tµ, µ ∈ S(n)}, définies par produits
réduits de Ti. Sur Hn, on a une involution Tµ 7→ (Tµ−1)

−1, q 7→ 1/q. Soit L le
sous-module ⊕µ∈S(n)Z[q]Tµ et θ la projection L 7→ L/qL. Kazhdan & Lusztig (cf.
[KL1], [Lu]) ont montré que pour chaque µ ∈ S(n), il existe un élément unique
cµ ∈ L qui soit invariant par l’involution et tel que θ(cµ) = θ(Tµ). Les élements
cµ, µ ∈ S(n) constituent donc une base linéaire de Hn, et l’on a de plus

cµ =
∑

ν≤µ
(−q)ℓ(µ)−ℓ(ν) Pν,µ(q−2)Tν , (4.4)

les Pν,µ étant des polynômes à coefficients entiers positifs, dits Polynômes de Kazh-
dan & Lusztig , qui interviennent dans de nombreuses théories [KL2], [Br].

Il est clair que { 1, T1 − q } est la base de Kazhdan & Lusztig de H2. Plus
généralement, posons ci := Ti − q.

Tout produit cµ ci est invariant par l’involution, a pour terme dominant Tµσi
si ℓ(µσi) > ℓ(µ), et peut donc être considéré comme une approximation de cµσi .
On obtient cµσi en soustrayant récursivement les multiples appropriés des cν pour
les ν tels que le coefficient de Tν comporte un terme constant.

Par exemple, c2,3,1 · c1 = (q2 + 1)T2,1,3 + T3,2,1 − qT3,1,2 − qT2,3,1 + q2T1,3,2 −
(q3 + q)T1,2,3 et c3,2,1 = c2,3,1c1 − c2,1,3 = T3,2,1 − qT3,1,2 − qT2,3,1 + q2T1,3,2 +
q2T3,1,2 − q3T1,2,3.

Cette récurrence élémentaire peut difficilement être mise en oeuvre dès
n > 8 et il faut donc trouver des méthodes plus économiques qui n’imposent
pas d’énumérer les éléments d’un intervalle.
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En fait, pour tout i tel que ℓ(µσi) < ℓ(µ), alors Pν,µ = Pνσi,µ , ∀ν ∈ S(n),
et donc, comme l’indiquent [KL1], les polynômes Pν,µ sont constants dans toute
double classe S(I)\S(n)/S(J), où S(I),S(J) sont deux sous-groupes de Young
déterminés par µ (S(I) est le sous groupe engendré par les σi, i recul, et S(J) est
engendré par les descentes).

L’invariance par rapport à deux sous-groupes de Young permet d’utiliser des
propriétés de factorisation.

Soit ω = [n, . . . , 1], et pour 1 ≤ i < j ≤ n, ω[i, j] = [1, . . . , i− 1, j, . . . , i, j +
1, . . . , n]; posons pour tout entier positif [r] := (qr − q−r)/(q − q−1). Alors
[DKLLST]

cω =
∑

ν∈S(n)
(−q)ℓ(ω)−ℓ(ν) Tν = cω[1,n−1] (Tn−1 − qn−1

[n−1] ) · · · (T2 −
q2

[2] )(T1 −
q1

[1] )

= (T1 − q1

[1] ) · · · (Tn−1 −
qn−1

[n−1]) cω[2,n] (4.5)

Proposition Soit µ ∈ S(n); soient k l’entier tel que µk = n et ν ∈ S(n − 1)
obtenue par effacement de n dans µ (ν est notée µ\n).
Si n = µk > µk+1 > · · · > µn, alors

cµ = cµ\n (Tn−1 − qn−k

[n−k] ) · · · (Tk+1 −
q2

[2] ) (Tk − q1

[1] ) (4.6)

Preuve L’élément de droite a pour terme dominant Tµ, et est invariant par

l’involution. Par ailleurs, cω[k,n−1](Tn−1 − qn−k

[n−k] ) · · · (T1 −
q1

[1] ) = cω[k,n] =

cω[k,n−1](T(n,k)−qT(n,k+1)+· · ·+(−q)n−1−kT(n,n−1)+(−q)n−k), somme sur toutes
les transpositions de n avec i, i ≥ k. Le produit se développe en une somme où
l’on retrouve comme coefficients les polynômes de Kazhdan-Lusztig pour ν; il est
donc bien égal à cµ

La proposition précédente, combinée aux involutions µ 7→ µ−1 et µ 7→ ωµω,
permet de factoriser totalement certains cµ. En particulier, une permutation µ est
dite non singulière si µ ou µ−1 a la propriété qu’il existe k : µk = n > µk+1 >
· · · > µn, et µ\n est non singulière ([1] ∈ S(1) est décrétée non singulière).

Dans le premier cas, cµ = cµ\n(Tn−1− qn−k

[n−k] ) · · · (Tk−
q1

[1] ). Dans le deuxième,

cµ = (Tk − q1

[1] ) · · · (Tn−1 −
qn−k

[n−k] ) c[µ−1\n]−1 .
Corollaire Si µ est une permutation non singulière, alors cµ =∑
ν≤µ(−q)ℓ(µ)−ℓ(ν) Tν et cµ factorise en un produit de facteurs (Ti − qj

[j] ).

Le polynôme de Poincaré de l’intervalle [1, µ] s’obtient, à une puissance de q près,
en spécialisant Ti 7→ −1/q dans chaque facteur.

Par exemple, µ = [4, 1, 6, 5, 3, 2] est non singulière; écrivant k, k+, k++ pour

Tk − q1

[1] , Tk −
q2

[2] , Tk −
q3

[3] respectivement, on obtient la suite d’égalités

c312 = 21 7→ c4132 = 23+(21) 7→ c41532 = (23+21)4+3 7→ c416532 = (23+214+3)5++4+3

et le polynôme de Poincaré de l’intervalle [1, µ], en la variable q2, est égal à

−q9 [2]
[3]

[2]
[2] [2]

[3]

[2]
[2]

[4]

[3]

[3]

[2]
[2] = (1 + q2)2 (1 + q2 + q4)2 (1 + q2 + q4 + q6)

Documenta Mathematica · Extra Volume ICM 1998 · III · 355–364



Ordonner le Groupe Symetrique 361

Par contre, c461532 = c416532 c2, mais le polynôme de Poincaré de l’intervalle
[123456, 461532] ne s’obtient pas en spécialisant Ti en −1/q, car [4, 6, 1, 5, 3, 2] est
singulière.

La factorisation du polynôme de Poincaré, dans le cas non singulier, est due à
Carrell et Peterson [Ca]. La caractérisation des variétés de Schubert non singulières
est donnée par Lakshmibai et Seshadri [La-Se].

La densité du nombre de permutations non singulières tend vers 0 lorsque n
tend vers l’infini. En fait, [La-Sa] ont montré que
Proposition Dans S(4), seules [3, 4, 1, 2] et [4, 2, 3, 1] sont singulières et µ ∈ S(n)
est non-singulière ssi l’image de µ par toute projection S(n)→ S(4) est différente
de ces deux permutations.

En d’autres termes, il y a deux types élémentaires de singularités. Dans ce qui
suit, nous montrons que les constructions du paragraphe 3 permettent d’expliciter
les polynômes Pν,µ pour toutes les permutations évitant le motif [3, 4, 1, 2] (i.e.
celles qui n’ont jamais [3, 4, 1, 2] comme image par projection).

Il est commode de changer les conventions, et de noter, pour µ, ν ∈ S(n),
Pµ(ν)(q) := Pνω,µω(1/q2).

Lorsque µ est bigrassmannienne, alors la variété de Schubert correspondante
est dite déterminantale, et la géométrie, ou le calcul direct, montrent que les
polynômes Pµ(ν) sont des polynômes de Gauss. Plus précisément,
Lemme Soit µ = [[a, b, c, d]] une bigrassmannienne, et βi := [[a−i, b+i, c+i, d−i]],
si 0 ≤ i ≤ min(a, d), βi :=∞ sinon. Soit k = min(b, c). Pour tout ν ≥ µ, il existe
un unique i, dit niveau par rapport à µ = β0, tel que ν ≥ βi et ν 6≥ βi+1, et alors
Pµ(ν) =

[
k+i
i

]
= (1− qk+i) · · · (1− qk+1)/(1− q) · · · (1− qi).

Les polynômes de Gauss correspondent à des arbres linéaires, mais plus
généralement, il est facile d’associer à toute permutation grassmanienne γ un
arbre ainsi qu’il est expliqué en [L-S2]. Soit en effet i la descente de γ; alors
(γ1 − 1, γ2 − 2, . . . , γi − i) est une partition λ (croissante), et la lecture de la
frontière nord-est du diagramme de Ferrers de λ donne un mot en a, b (a= pas
vertical, b = pas horizonal), dont on extrait un sous-mot maximal de lettres ap-
pariées par couples successifs ba (cette opération est utilisée pour définir une action
du groupe symétrique sur les mots [L-S1], ainsi qu’en théorie des graphes cristallins
[K-N], [LLT1]).

Ainsi, pour γ = [1, 2, 7, 12, 15, 16, 17, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14], on a λ =
(0, 0, 4, 8, 10, 10, 10). La frontière se lit a2b4ab4ab2a3. Disposant ce mot planaire-
ment de sorte à faire apparâıtre les appariements dans les horizontales, les lettres
non appariées (à éliminer) étant dans la ligne supérieure

a a b b b b b
b a

b a
b a b a b a

sous−mot b a b b a b b a a a

Ce dernier mot (bab2ab2a3) est le parcours d’un arbre Γ (b = s’éloigner de
la racine, a = s’en rapprocher). Soient α1, . . . , αr les branches terminales de Γ.
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L’arbre Γ définit une fonction fΓ : Nr → N[q] comme suit : un étiquetage E de
Γ est un morphisme croissant de l’ensemble des arêtes de Γ dans N et son poids
p(E) est la somme des étiquettes. Alors (voir un exemple à la fin)

fΓ(i1, . . . , ir) :=
∑

E∈E(i1,...,ir)
qp(E) , (4.7)

somme sur toutes les étiquetages de Γ tels que les étiquettes de α1, . . . , αr soient
majorées respectivement par i1, . . . , ir. Le résultat essentiel de [L-S2] est

Proposition Soient γ une permutation grassmannienne, Γ l’arbre associé et r
son nombre de branches terminales. Alors pour toute permutation ν, il existe des
entiers i1, . . . , ir tels que

Pγ(ν) = fΓ(i1, . . . , ir) . (4.8)

Zelevinsky [Zel] a donné une désingularisation explicite des variétés de Schu-
bert indicées par des permutations grassmanniennes, qui relève la construction
combinatoire précédente.

Le code d’une permutation µ ∈ S(n) est le vecteur [c1, . . . , cn] ∈ Nn tel que
ci = card

(
{j > i, µj < µi}

)
. Réordonnant le code en une partition, on peut donc

associer à toute permutation µ un arbre Γ(µ), comme on l’a fait plus haut.

Le théorème suivant ([La]) montre que cet arbre continue à fournir tous les
polynômes de Kazhdan & Lusztig dans le cas où µ est vexillaire, i.e. lorsqu’aucune
projection de µ dans S(4) n’est égale à [2, 1, 4, 3].

Théorème Soient µ une permutation vexillaire, Γ l’arbre associé et β1, . . . , βr
les bigrassmanniennes maximales dans [1, µ]. Alors pour tout ν ≥ µ, le polynôme
de Kazhdan & Lusztig est égal à

Pµ(ν) = fΓ(i1, . . . , ir) , (4.9)

où i1, . . . , ir sont les niveaux respectifs de ν par rapport à β1, . . . , βr.

En fait, dans le cas d’une permutation vexillaire, pour tout r-uple i1, . . . , ir,
tel que βi11 , . . . , β

ir
r 6=∞, le supremum ζI de βi11 , . . . , β

ir
r (calculé dans le treillis en-

veloppant) est une permutation, d’après [L-S6]. Sous les hypothèses du théorème,
on a alors Pµ(ν) = Pµ(ζI).

Par exemple, µ = [1, 5, 6, 2, 7, 3, 4, 8, 9] a pour code [033020000], qui se
réordonne en la partition [. . . , 0, 2, 3, 3]. La frontière de cette dernière se
lit (· · · aa) b b a b a a (bb · · ·) et le mot réduit bbabaa est le parcours de l’arbre
•|
•∧
• •

. Il y a deux bigrassmanniennes maximales en dessous de µ, qui sont

[1, 5, 6, 2, 3, 4, 7, 8, 9] = [[1, 2, 3, 3]] = β1 et [1, 2, 5, 6, 7, 3, 4, 8, 9] = [[2, 3, 2, 3]] = β2.
Le paramètre i1 ne peut prendre que les valeurs 0, 1, puisque β11 = [[0, 3, 4, 2]], β21 =
∞; par contre, i2 ∈ {0, 1, 2} puisque β12 = [[1, 4, 3, 1]], β22 = [[0, 5, 4, 0]], β32 =∞.
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Le supremum de β11 et β22 est ζ1,2 = β22 = [5, 6, 7, 8, 9, 1, 2, 3, 4]. Toute per-
mutation ν au dessus de cette dernière va donner le même polynôme Pµ(ζ1,2) =
fΓ(1, 2) = 1 + 2q + 2q2 + 2q3 + q4, fourni par l’énumération

•
0|
•
0
∧
0

• •
q0

•
0|
•
0
∧
1

• •
q1

•
0|
•
1
∧
0

• •
q1

•
0|
•
0
∧
2

• •
q2

•
0|
•
1
∧
1

• •
q2

•
0|
•
1
∧
2

• •
q3

•
1|
•
1
∧
1

• •
q3

•
1|
•
1
∧
2

• •
q4
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Mathematical Snapshotsfrom the Computational Geometry Landscape
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Abstract. We survey some mathematically interesting techniques and
results that emerged in computational geometry in recent years.
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try, arrangement, Davenport-Schinzel sequence

We survey some mathematically interesting notions, techniques, and results that
emerged in the field of computational geometry in recent years.

Computational geometry is a branch of theoretical computer science which
constituted sometimes around the year 1980. It considers the design of efficient
algorithms for computing with geometric objects in the Euclidean space Rd. The
objects are simple, like points, lines, spheres, etc., but there are many of them.
The space dimension d is usually considered constant—many problems are studied
mainly in the plane or inR3. As for general references, there is one fresh handbook
[20] and another one pending [31]. A recent introductory textbook is [16]. Some
mathematical spinoffs are nicely treated in [29].

Although this field mainly emphasizes algorithms, it has many fine purely
mathematical results. I have selected a few of them for this overview quite subjec-
tively (with many other, perhaps even nicer things omitted). Since they include
the ideas of many researchers (my results being a tiny part only), it is not possible
to give explicit credits to all of the contributors and to always refer to original
sources (rather than surveys) in the limited space.

Combinatorial complexity of arrangements

The arrangement of a finite set of lines in the plane is a partition of the plane
into cells of dimension 0, 1, and 2. The 0-cells (vertices) are the intersections of
the lines, the 1-cells (edges) are the portions of the lines between vertices, and
the 2-cells are the open convex polygons left after removing the lines from the
plane. More generally, for a collection H = {h1, h2, . . . , hn} of sets in Rd, the
arrangement of H is a decomposition of Rd into connected cells, where each cell
is a connected component of the set of points lying in all of the sets hi with i ∈ I
and in no hj with j 6∈ I, for some index set I ⊆ {1, 2, . . . , n}. In computational
geometry, the most general sets considered in the role of the hi’s are usually the
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so-called surface patches, which means (d − 1)-dimensional closed semialgebraic
sets defined by Boolean combinations of polynomial inequalities; moreover, both
the number of inequalities and the degree of the polynomials are bounded by some
constant.

Arrangements, especially arrangements of hyperplanes, have been investigated
for a long time from various points of view. In the direction of research reflected,
e.g., by the recent book [28], one is mainly interested in topological and alge-
braic properties of the whole arrangement. Computational geometers have mostly
studied different aspects, primarily asymptotic bounds on the combinatorial com-
plexity of various parts of arrangements,1 and while the number n of sets in H
is considered large, d is fixed (and small). Some important problems also lead
to considering arrangements of less “regular” objects than hyperplanes, such as
segments in the plane, triangles in space, or even pieces of complicated algebraic
surfaces in Rd. Two thorough and up-to-date surveys by Agarwal and Sharir in
[31] complement our sketchy exposition here and in the next section.

The total complexity, i.e. the total number of cells, of an arrangement is quite
well understood. Exact formulas are known for hyperplane arrangements, and
fairly precise estimates exist for arrangements of surface patches (rough bounds
for surface patches come from old papers in real-algebraic geometry by Petrov and
Oleinik, Milnor, and Thom, and there are some recent refinements, such as [7]).
The complexity is always at most O(nd).2 More challenging problems concern the
complexity of certain portions of the arrangements; some of them are schematically
illustrated in Fig. 1.

The zone of a set X ⊆ Rd in an arrangement consists of the cells intersecting
X. For hyperplane arrangements, the complexity of the zone of any hyperplane is
O(nd−1) [17]. The zone of a low-degree algebraic surface, or of an arbitrary convex
surface, in a hyperplane arrangement has at most O(nd−1 logn) complexity [5].

The level k in a hyperplane arrangement consists of the (d − 1)-dimensional
cells, i.e. edges in the case of lines in R2, with exactly k of the hyperplanes below
them (where the xd-axis is considered vertical, say). The maximum complexity of
the k-level is a tantalizing open problem even for lines in the plane; we refer to
the paper by Welzl in this volume for more information.

Next, we discuss the lower envelope of an arrangement. Informally, this is the
part of the arrangement that can be seen by an observer sitting at (0, 0, . . . , 0,−∞).
The lower envelope in an arrangement of hyperplanes is the surface of a convex
polyhedron with at most n facets, whose maximum complexity, of the order n⌊d/2⌋,
is known precisely (since McMullen’s paper in 1970). This bound is trivial in
the plane, but already for planar arrangements of segments, the lower envelope
question is hard.

If we number the segments 1 through n and write down the numbers of the seg-
ments as they are encountered along the lower envelope from left to right, we get a

1If X is a set of cells in an arrangement, the (combinatorial) complexity of X is the number
of cells of the arrangement that are contained in the closure of X. Typically, this complexity is
asymptotically dominated by the number of vertices of the arrangement in the closure of X.
2Here and in the sequel, the constants hidden in the O(.) and Ω(.) notations generally depend

on d, and, in some cases, on other parameters declared fixed. For instance, here the constant
also depends on the degree and formula size of the surface patches forming the arrangement.
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Line arrangements

Segment arrangements

Curve
arrangements

“Fat” objects

lower envelope single cell etc. union complexity

Graphs
of functions

1

2 3 4

1 2 1 314 1

lower envelope single cell multiple cells

zone level k (here k = 3) multiple cells

Figure 1: A bestiary of planar arrangement problems

sequence a1a2a3 . . . am, for which the following conditions hold: ai ∈ {1, 2, . . . , n},
ai 6= ai+1, and there is no (not necessarily contiguous) subsequence of the form
ababa, where a 6= b. Any finite sequence satisfying these conditions is called a
Davenport-Schinzel sequence (or DS-sequence for short) of order 3 over the sym-
bols 1, 2, . . . , n. For DS-sequences of order s, the forbidden pattern is abab . . . with
s+2 letters. Such sequences are obtained, e.g., from lower envelopes of x-monotone
curves (i.e. graphs of univariate functions), such that any two of the curves inter-
sect in at most s points (a typical example are graphs of degree-s polynomials).
Davenport and Schinzel started investigating λs(n), the maximum possible length
of a DS-sequence of order s over n symbols, in 1965. Fairly precise estimates
(asymptotically tight for many s’s) were proved by Sharir, Hart, Agarwal, and
Shor in the late 1980s (see [33] for an account). The results are remarkable: while
λ1(n) and λ2(n) are easily seen to be linear, for any fixed s ≥ 3, λs(n)/n grows to
infinity with n→∞, but incredibly slowly. For example, λ3(n) is asymptotically
bounded by constant multiples of nα(n) from both above and below, where α(n) is
the inverse of the Ackermann function.3 For all practical purposes, for each fixed

3If we define a hierarchy of functions by f1(n) = 2n and fk+1(n) = fk ◦ fk ◦ · · · ◦ fk(2)
((n − 1)-fold composition), then the Ackermann function of n is A(n) = fn(n), and α(n) =
min{k ≥ 1:A(k) ≥ n}. For example, A(4) is an exponential tower of 2s of height 216.
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s ≥ 3, λs(n) behaves like a linear function, but it is nonlinear in a very subtle
manner, and hence any proofs of the correct bounds must be quite complicated.

The maximum complexity of the lower envelope for segments is at most
λ3(n) = O(nα(n)), and a construction by Wiernik and Sharir, later simplified
by Shor, provides an arrangement of segments with lower envelope of complex-
ity Ω(nα(n)). Thus, similar to DS-sequences, lower envelopes of segments are no
laughing matter.

Before proceeding with the discussion of lower envelopes, we mention recent
developments in generalized DS-sequences. In the original definition, the forbidden
pattern ababa . . . is made of two letters. Klazar, Valtr, and Adamec studied forbid-
den patterns consisting of more letters, such as abccbaabc (for a forbidden pattern
with k distinct letters, an analogue of the condition ai 6= ai+1 for DS-sequences is
that any k consecutive symbols in the sequences be all distinct). They proved that
for any fixed forbidden pattern, the maximum length of a sequence in n symbols
is near-linear in n, and they characterized numerous cases where a linear bound
holds (see e.g. [22, 23]). One forbidden pattern of the latter type is abcdedcbabcde
(or analogous with more letters); this result was used by Valtr [35] for solving in-
teresting problems concerning geometric graphs. A geometric graph is a drawing
of a graph in the plane with edges drawn as straight segments (possibly crossing);
they have recently been studied by Pach, Katchalski, Last, Károlyi, Tóth, and
others.

The main result for lower envelopes in higher dimensions is quite recent, due
to Sharir and Halperin [21, 32]. For an arrangement of surface patches in Rd,
with some mild additional technical assumptions, they prove lower envelope com-
plexity bound of O(nd−1+ε) for any fixed ε > 0, which is nearly tight (there is
an Ω(nd−1α(n)) lower bound). As a sample of techniques in the area, we demon-
strate this proof in the planar case. This is a ridiculous setting, since here much
better results are obtained via DS-sequences, but the higher-dimensional case is
too complicated to fit here.

So let us consider a set H of n x-monotone curves (such as in Fig. 1 bottom
left), any two intersecting in at most s points (s fixed). Moreover, assume for
convenience that no 3 curves have a common intersection. Let L = L(H) be the
set of vertices on the lower envelope and let f(n) denote the maximum possible
cardinality of L in this situation. We aim at proving f(n) = O(n1+ε).

First, let k be an auxiliary parameter, 2 ≤ k ≤ n
2 , let L<k be the set of

vertices in the arrangement of H at level smaller than k (i.e. with fewer than k
curves below them), and let f<k(n) be the maximum possible cardinality of L<k.
Lemma. f<k(n) = O

(
k2f(⌊n/k⌋)

)
.

Here is a beautiful probabilistic argument of Clarkson and Shor [15]. Suppose
that f<k(n) is attained for H, set r = ⌊n/k⌋, and let R ⊂ H be an r-element
subset of H picked uniformly at random. First, we lower-bound the expected size
of L(R). Consider a vertex v ∈ L<k(H) at a level j < k. Such a v appears in
L(R) iff both the curves defining v fall in R and none of the j curves below v does,
and so Prob [v ∈ L(R)] =

(
n−2−j
r−2

)
/
(
n
r

)
. Calculation shows that this probability

is Ω(k−2), and so the expected size of L(R) is Ω(k−2f<k(n)). At the same time,
|L(R)| ≤ f(r) for all R, and the lemma follows by comparing these two bounds.
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Next, we partition the set L = L(H) into subsets L1, . . . , Ls, with Li consist-
ing of the vertices of L that are the ith leftmost intersections of their two curves.
Divide L<k similarly, and let fi(n) and f<ki (n) be the corresponding maximum
possible cardinalities.

The strategy of the proof is “there shouldn’t better be any vertices on the
lower envelope, and if there are, someone is going to pay for it”. To find out who
pays for a vertex v ∈ Li, we start walking from v to the left along the curve h
passing through v and not being on the lower envelope on the left of v. We charge
every vertex encountered 1

ki
units, where ki is an integer parameter (to be fixed

later). If ki vertices are encountered without returning to the lower envelope or
escaping to −∞ then the charging is complete. Otherwise, if we end up at −∞,
we charge 1 to the curve h itself. Finally, if we are back at the lower envelope
without having passed at least ki vertices then, crucially, we must have crossed
the second curve h′ defining the vertex v again, at a vertex v′ ∈ L<kii−1 , and this v′

pays 1 for v. A picture illustrates these three cases of charging:

ki

v h v h v h
h′v′

−∞

If we do this charging for all vertices v ∈ Li then, altogether, each curve was
charged at most 1 and each vertex of L<ki was charged at most 2ki , except possibly

for vertices of L<ki−1, which could each be charged 1 extra. Since at least 1 unit

was paid for each vertex of Li, we obtain fi(n) ≤ n+ 2
ki
f<ki(n) + f<kii−1 (n).

By substituting for f<ki and f<kii−1 the bound from the lemma, we arrive at the

system of inequalities fi(n) ≤ n+O
(
kif(⌊n/ki⌋) + k2i fi−1(⌊n/ki⌋)

)
, i = 1, 2, . . . , s

(where we put f0 = 0), and we also have f ≤ f1 + · · · + fs. If one sets ki = nεi

with 0 < ε1 ≪ ε2 ≪ · · · ≪ εs ≪ ε, a not too difficult calculation shows that
f(n) = O(n1+ε) as claimed. 2

Bounding the maximum complexity of a single cell is usually considerably
more demanding than the lower envelope question, mainly because a cell can have
a complicated topology (cells in hyperplane arrangements, no more complicated
than the lower envelope, are a honorable exception). In the plane, these obstacles
are not too formidable, and by a reduction to DS-sequences, it can be shown that
the single-cell complexity for segments is O(nα(n)), and for pieces of algebraic
curves it can be bounded by some λs(n), with s depending on the maximum
degree of the curves. In R3, a general near-tight bound of O(n2+ε) was proved
in [21]. Some more special results are known for all d, such as an O(nd−1 logn)
bound for a single cell in an arrangement of (d−1)-dimensional simplices in Rd [6].
Very recently, Basu proved, in an unpublished manuscript, that the sum of the
Betti numbers (i.e. “topological complexity”) of a single cell in an arrangement of
surface patches in Rd is O(nd−1). This might be helpful in getting good bounds
on the combinatorial complexity too.

Concerning the union of “fat” objects (Fig. 1 bottom right), let us consider
n convex sets in the plane, and let us ask what is the combinatorial complexity
of the complement of their union. To get a meaningful problem, we assume that
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370 Jiř́ı Matoušek

the boundaries of any two sets intersect in at most s points for some fixed s ≥ 4
(s = 2 is easy). Long and skinny sets can form a grid pattern and have union
complexity about n2, but if we also require that the sets be “fat” (the ratio of
the circumradius and inradius is bounded by some constant K), then a recent
result of Efrat and Sharir [18] shows that the union complexity is near-linear,
at most O(n1+ε), with the constant of proportionality depending on s,K, ε ([26]
gives a simpler and more precise bound for fat triangles). Various extensions to
non-convex cases or to higher dimensions seem easy to conjecture but quite hard
to prove.

There are still many open problems in the above-discussed areas, but what
seems to be needed most at the moment is a simplification and streamlining, since
building up on the existing proofs is getting more and more cumbersome.

Here is an annoying open problem concerning arrangements of n algebraic
surfaces in Rd. If the degrees of the surfaces are bounded, the complexity of
the arrangement is O(nd). But the cells can be combinatorially very complicated,
while for many applications, one needs to work with cells definable by constant-size
formulas, the so-called Tarski cells (curved analogues of simplices, so to speak).
Can each of the cells of the arrangement be subdivided into Tarski cells, in such a
way that altogether O(nd) Tarski cells result? The best known upper bound for
d ≥ 3 is a bit larger than O(n2d−3) [11].

Multiple cells, incidences, cuttings

Besides a single cell, also the total complexity of several cells in an arrangement
has been studied, and this has interesting connections to some old combinatorial-
geometric problems. Let us consider some m 2-cells in a planar arrangement of
n lines (call them marked cells), and let us denote the maximum possible total
number of vertices of these cells by K(n,m). While K(n, 1) = n, K(n,m) is
considerably smaller than mn for large m.

To get a nontrivial upper bound on K(n,m), we define a bipartite graph with
the lines and the marked cells as vertices and with edges connecting each cell to
the lines forming its sides. There cannot be 5 lines simultaneously connected to
the same two cells, and the Kővári-Sós-Turán theorem in extremal graph theory
implies that there are O(m

√
n + n) edges; thus K(n,m) = O(m

√
n + n). In

particular, K(n,
√
n) = O(n), (this is a result of Canham from 1969), which is

obviously tight. But the bound is not tight for n = m, say, and the right bound is
K(n,m) = O(n2/3m2/3 + n+m). This was proved by Clarkson et al. [14], using
a general technique that emerged in previous work on geometric algorithms. We
give the proof for m = n. The basic idea is this: since the bound we already have
is good if there are many more lines than points, we subdivide the problem with n
lines and n points into smaller subproblems, most of them with many more lines
than points. The device for this subdivision is the so-called 1

r -cutting.
For a parameter r ≥ 1 and a set L of n lines in the plane, a 1

r -cutting for
L is a finite set of triangles4 with disjoint interiors covering the plane, such that

4Where unbounded triangles are admitted too, i.e. a triangle means an intersection of 3
halfplanes here.
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the interior of each triangle is intersected by no more than n
r lines of L. A basic

existence result says that for any L and r, a 1
r -cutting exists consisting of O(r2)

triangles (note that the bound is independent of n). Three proofs are known: a
very elementary one [24], and two probabilistic ones which generalize to higher
dimensions [12, 10].

For bounding K(n, n), let L be the n considered lines, set r = n1/3, and
consider a 1

r -cutting {∆1, . . . ,∆q} for L, q = O(r2). Let Li ⊂ L be the set of
lines intersecting the interior of ∆i and suppose that there are mi marked cells
completely contained in ∆i. The total complexity of these marked cells, over all
∆i, is at most

∑q
i=1K(|Li|,mi) ≤

∑q
i=1O(mi

√
n/r + n

r ) = O(n3/2r−1/2 + nr),
using the above-derived bound for K(n,m) and

∑
mi ≤ n. It remains to account

for the marked cells intersecting boundaries of some of the ∆i’s. But each vertex
of such a marked cell lies in the zone of a side of some ∆i in the arrangement of
Li, and the total complexity of these zones is at most 3

∑q
i=1O(|Li|) = O(nr).

Altogether we get K(n, n) = O(n4/3). 2

An easy consequence of the bound K(n,m) = O(n2/3m2/3 + m + n) is the
same (and also tight) bound for the maximum number of incidences between n
lines and m points in the plane. This bound for incidences was proved earlier by
Szemerédi and Trotter, and the new proof via 1

r -cuttings [14] was a considerable
simplification. A still much simpler proof was found later by Székely [34] via
geometric graphs, but so far his technique seems mainly applicable for problems
in the plane, while with 1

r -cuttings, various higher-dimensional problems can be
handled too (see, e.g., [14, 29] or a survey by Agarwal and Sharir in [31] for more
results and references).

The perhaps most challenging related problem is Erdős’ question on unit
distances: given n points in the plane, what is the maximum possible number of
pairs of points at distance 1? By drawing a unit circle around each point, the
question can be reduced to the maximum number of incidences between n points
and n unit circles. Both Székely’s technique and the one with 1

r -cuttings yield the

same O(n4/3) bound as for line-point incidences, but while for lines this is tight,
the best known lower bound for unit circles is only slightly superlinear. To decrease
the upper bound for the unit-distance problem, a radically new approach seems
to be needed, because the n4/3 bound is tight for pseudocircles, i.e. collections
of Jordan curves that combinatorially behave “like unit circles”, and none of the
known methods can take advantage of “true circularity” of the unit circles.

In this connection, a recent result of Elekés and Rónyai [19] should be men-
tioned. They characterized bivariate polynomials and rational functions that at-
tain only O(n) distinct values on X × Y for some n-element sets X,Y ⊂ R. As
a special case, they settled a conjecture of Purdy: if u and v are lines and P ⊂ u
and Q ⊂ v are n-point sets such that the distance |p − q| attains only O(n) dis-
tinct values for p ∈ P and q ∈ Q, then u and v must be parallel or perpendicular
(provided n is large enough). The proof is in part algebraic and it strongly uses
the “straightness” of the lines u and v.
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Range searching, partitions, Heilbronn’s problem

Let us consider the following algorithmic problem. Given an n-point set P ⊂ R2,
we want to build some data structure for storing information about P , in such
a way that if we get a stripe σ (bounded by two parallel lines) as a query, the
number of points of P lying in σ can be determined quickly, hopefully much faster
than by examining all points of P . Moreover, we insist that the space occupied by
the data structure is at most proportional to n.

Questions of this type, the so-called range searching problems, have been
studied quite intensively and in a much more general form—in higher dimensions,
with different query shapes, with more space allowed, etc. (there is a survey by
Agarwal in [20], and another survey is [25]). But many interesting aspects can
be demonstrated on the particular problem formulated above. In this case, it is
possible to answer the query in O(

√
n) time, and with some restriction on the type

of algorithm used, this is asymptotically optimal. Ironically, while the known data
structures for this problem are not very useful in practice, the underlying theory
involves some of the nicest mathematics in computational geometry.

At first sight (and probably at many subsequent sights too), it is not clear how
to achieve any sublinear query time. Willard discovered in 1981 that the following
type of geometric construction can be used: given the point set P , partition the
plane into some number r of regions, each containing roughly n

r points of P , in
such a way that no line intersects more than κ of these regions, where κ should
be considerably smaller than r. How can this help with a query? We store the
number of points in each of the regions. Given a query stripe σ, the boundary of
σ intersects at most 2κ regions. These must be further examined, but each of the
other regions can be processed in unit time using the stored point counts. The
actual algorithms are more complicated but this is the basic idea.

Finding an optimal construction of such a partition took a long time. (Look-
ing for good partitions stimulated, for instance, research in equipartitioning masses
by hyperplanes—see e.g. [30]—although other approaches were used in the sub-
sequent development.) One of the most important steps was the following result,
essentially invented by Welzl, with a slight improvement in [13]: any 2n-point
set in the plane can be divided into pairs of points in such a way that any line
crosses only O(

√
n) of the segments connecting the pairs. One almost wouldn’t

believe that after thousands of years of geometry, it is still possible to discover
such pretty theorems about points in the plane. This was later generalized to
a partition of an n-point set into r parts of size roughly n

r , with any line cross-
ing O(

√
r) parts only (see [25]). Both these results are asymptotically optimal.

The research in range searching also initiated a fruitful theory related to the so-
called Vapnik-Chervonenkis dimension of set systems, with applications, e.g., in
discrepancy theory; this is surveyed in [27].

Lower bounds for range searching were proved mainly by Chazelle; a key paper
is [9]. In the proof, some integral-geometric considerations appear, and, interest-
ingly, the lower bounds are related to a generalization of Heilbronn’s problem from
discrete geometry. For an n-point set P ⊂ [0, 1]2 and 3 ≤ k ≤ n, let ak(P ) denote
the minimum area of the convex hull of a k-point subset of P . Heilbronn’s problem
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asks for determining a3(P ), and although the answer is unknown, it is known that
a3(P ) is of much smaller order than 1

n (which is what one might perhaps expect at

first). In Chazelle’s proof, one needs a set P with ak(P ) = Ω( kn ) for all k ∈ [k0, n],
with k0 as small as possible. He achieves this with k0 ≈ logn, and this causes
the presence of an logn factor in the range-searching lower bound in R3 which
probably shouldn’t be there. From Heilbronn’s problem, we know that k0 = 3
is impossible to reach, but perhaps it might be possible to decrease k0 to some-
thing smaller than log n, which would improve the range-searching bound. For a
more recent progress in range-searching lower bounds, and some nice geometric
problems, see [8].

Many other areas and results would deserve to be mentioned, such as the
developments related to linear programming algorithms (see the survey [1]) which
also led to a nice purely mathematical application by Amenta [3] (a short proof of a
Helly-type result), or the story of weak ε-nets, born in computational geometry and
later used by Alon and Kleitman [2] in their solution of the long-open Hadwiger-
Debrunner problem in convex geometry, or an interesting question of algebraic-
topological nature arising in motion planning of multiple robots [4]. But it’s really
time to finish.
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118 00 Praha 1, Czech Republic

Documenta Mathematica · Extra Volume ICM 1998 · III · 365–375



376

Documenta Mathematica · Extra Volume ICM 1998 · III ·



Doc.Math. J. DMV 377

Nets, (t, s)-Sequences, and Algebraic Curvesover Finite Fields with Many Rational Points
Harald Niederreiter

Abstract. The current status of the theory of (t,m, s)-nets and (t, s)-
sequences is presented in a brief form, with some emphasis on the con-
nections with algebraic geometry. Closely related work on constructions
of algebraic curves over finite fields with many rational points and on
improving the Gilbert-Varshamov bound in algebraic coding theory is
discussed as well.

1991 Mathematics Subject Classification: 05B15, 11G20, 11K38, 11R58,
11T71, 14G15, 14H05, 94B27, 94B65.
Keywords and Phrases: quasirandom points, orthogonal arrays, alge-
braic curves over finite fields, rational points, algebraic-geometry codes,
Gilbert-Varshamov bound.

1. Introduction and basic concepts
Nets and (t, s)-sequences are finite point sets, respectively infinite sequences, sat-
isfying strong uniformity properties with regard to their distribution in the s-
dimensional unit cube Is = [0, 1]s. The general theory of these combinatorial
objects was first developed in [12]. They have attracted a lot of interest in sci-
entific computing in recent years because of their role as quasirandom points in
quasi-Monte Carlo methods, e.g. for numerical integration over Is (see [14] for
the details). They also offer a great appeal for theoretical studies in view of the
many links with other areas such as classical combinatorial designs, coding theory,
algebra, number theory, and algebraic geometry. To set the stage, we first review
some basic definitions.
Definition 1. For a given dimension s ≥ 1 and integers b ≥ 2 and 0 ≤ t ≤ m,

a (t,m, s)-net in base b is a point set P consisting of bm points in Is such that
every subinterval J of Is of the form

J =
s∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s and with Vol(J) = bt−m

contains exactly bt points of P .
For integers b ≥ 2 and m ≥ 1 and a point x ∈ Is, we obtain [x]b,m ∈ Is

by truncating a b-adic expansion of each coordinate of x after m terms. Here
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expansions with almost all digits equal to b− 1 are allowed – thus, the truncation
operates on the expansions of the coordinates of x and not on x itself. The
following definition of a (t, s)-sequence is the slightly generalized version described
in [20], [21] (see [14, Chapter 4] for the original narrower definition). We assume
prescribed b-adic expansions on which the truncations operate.
Definition 2. For a given dimension s ≥ 1 and integers b ≥ 2 and t ≥ 0, a

sequence x0,x1, . . . of points in Is is a (t, s)-sequence in base b if for all integers
k ≥ 0 and m > t the points [xn]b,m with kbm ≤ n < (k+ 1)bm form a (t,m, s)-net
in base b.

The following useful principle shows that if we can construct a (t, s)-sequence,
then we can construct infinitely many nets in dimension s+ 1 (see [12, Section 5],
[20, Section 6]).
Lemma 1. If there exists a (t, s)-sequence in base b, then for every integer

m ≥ t there exists a (t,m, s+ 1)-net in base b.
The aim in the construction of (t,m, s)-nets and (t, s)-sequences in base b is

to make the quality parameter t as small as possible if the other parameters are
fixed. Most of the known constructions of nets and (t, s)-sequences are based on
the digital method which was introduced in [12, Section 6]. For the sake of brevity,
we just sketch the digital method for constructing (t,m, s)-nets in base b. Select a
commutative ring R with identity and of finite order b ≥ 2. For given m ≥ 1 and
s ≥ 1 choose a system

C =
{
c
(i)
j ∈ Rm : 1 ≤ i ≤ s, 1 ≤ j ≤ m

}
.

Now we get the jth b-adic digits of the ith coordinates of the points of the (t,m, s)-

net by forming the inner product of c
(i)
j with all elements of Rm and then iden-

tifying elements of R with b-adic digits. The value of the quality parameter t
depends on the choice of C. The resulting net is called a digital (t,m, s)-net in
base b (or constructed over R if we want to emphasize R). Similarly, we speak of
a digital (t, s)-sequence in base b (or constructed over R if we want to emphasize
R). There is a “digital” analog of Lemma 1, i.e., a digital (t, s)-sequence yields
infinitely many digital nets in dimension s+ 1 (see [20, Section 2]). For practical
purposes it suffices to consider the digital method in the special case where the
ring R is a finite field Fq of prime-power order q. Digital nets and (t, s)-sequences
in an arbitrary base b can be obtained by using rings R that are direct products
of finite fields (see [14, Chapter 4], [20, Section 5]).

In this paper we give a brief review of the state-of-the-art in the area of
(t,m, s)-nets and (t, s)-sequences, with some emphasis on the connections with
algebraic geometry. Section 2 discusses links with classical combinatorial objects
such as MOLS and orthogonal arrays. Constructions of nets and (t, s)-sequences,
e.g. by methods using algebraic curves over finite fields, are presented in Section 3.
This leads to the discussion of algebraic curves over finite fields with many rational
points in Section 4. As a by-product we obtain the applications to algebraic coding
theory in Section 5, such as improvements on the Gilbert-Varshamov bound. For
various aspects, more detailed expository accounts can be found in [14, Chapter
4], [21], [25], [32].
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2. Connections with combinatorial designs
The fact that there are close links between nets and combinatorial designs was
noticed already in [12, Section 5]. For instance, it was shown there that for s ≥ 2
the existence of a (0, 2, s)-net in base b is equivalent to the existence of s−2 MOLS
of order b. Later it was proved by Mullen and Whittle [11] that for s ≥ 2 and any
t ≥ 0, the existence of a (t, t + 2, s)-net in base b is equivalent to the existence
of a certain set of mutually orthogonal hypercubes of order b. In the language of
orthogonal arrays, there is the result in [15] that there exists a (t, t + 2, s)-net in
base b if and only if there exists an orthogonal array OA(bt+2, s, b, 2) of index bt.

Lawrence [6] and Mullen and Schmid [10] independently established a com-
binatorial equivalence between arbitrary (t,m, s)-nets in base b and suitable com-
binatorial designs. Depending on the language that is used, these designs can be
generalized orthogonal arrays, ordered orthogonal arrays, or strongly orthogonal
hypercubes. The proofs of all these combinatorial results are constructive.

These connections with combinatorial designs imply obstructions to the exis-
tence of (t,m, s)-nets for m ≥ t+ 2 (nets exist trivially for m− t = 0, 1). Consider
e.g. the following simple argument: if there exists a (0,m, s)-net in base b for some
m ≥ 2, then there exists a (0, 2, s)-net in base b, hence there are s − 2 MOLS of
order b, and so we must have s ≤ b + 1. A more general argument of this type,
combined with bounds for the appropriate combinatorial designs, leads to upper
bounds on s in terms of b, m, and t, under the assumption that there exists a
(t,m, s)-net in base b with m ≥ t + 2. A description of this method, together
with tables of bounds, can be found in [2]. More recently, this approach was fur-
ther refined by Martin and Stinson [7], [8] and improved bounds were obtained.
In view of Lemma 1, combinatorial obstructions to the existence of (t,m, s)-nets
yield combinatorial obstructions to the existence of (t, s)-sequences, such as the
following bound from [21].
Theorem 1. Given b ≥ 2 and s ≥ 1, a (t, s)-sequence in base b can exist only

if

t ≥ s

b
− logb

(b− 1)s+ b+ 1

2
.

3. Constructions of nets and (t, s)-sequences
The number of known construction methods for nets and (t, s)-sequences is already
quite large and ideas from various areas are employed. The combinatorial approach
to the construction of nets uses the equivalences between (t,m, s)-nets and suitable
combinatorial designs mentioned in Section 2 and techniques of constructing such
combinatorial designs. Surveys of combinatorial methods for the construction of
nets are given in [2], [9]. Other important methods for the construction of nets
are based on coding theory. This approach goes back to an observation in [12,
Section 7] that there is a connection between the digital method over a finite field
Fq and the construction of parity-check matrices for good linear codes over Fq.
This connection is conveniently formalized through the notion of a (d,m, s)-system

over Fq introduced in [32], which is a system
{
a
(i)
j ∈ Fmq : 1 ≤ i ≤ s, 1 ≤ j ≤ m

}

of vectors such that for any integers d1, . . . , ds ≥ 0 with
∑s
i=1 di = d the a

(i)
j , 1 ≤

j ≤ di, 1 ≤ i ≤ s, are linearly independent over Fq. Finding a digital (t,m, s)-
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net constructed over Fq is then equivalent to finding a (d,m, s)-system over Fq
with d = m − t. The surveys [2], [9] report on coding-theory methods for the
construction of nets and new methods of this type can be found in [32].

Standard constructions of digital (t, s)-sequences in base b are due to Sobol’
[38] for b = 2 and any s, to Faure [3] for prime bases b ≥ s, and to Niederreiter [13]
for any b and any s. Generalizations of these sequences are described in Tezuka
[39, Chapter 6]. As a by-product, these constructions yield digital (t,m, s+1)-nets
in base b.

An important recent development is the use of algebraic curves over finite
fields (or, equivalently, of global function fields) for the construction of (t, s)-
sequences. The basic idea goes back to Niederreiter [16], [17]. At present, four
different construction principles using algebraic curves are available and they all
rely on the digital method over Fq. We refer to [18], [20], [21], [44] for the detailed
description of these constructions and to [25], [32] for further discussions. Three
of the methods, and indeed the most effective ones, are based on algebraic curves
over Fq with many Fq-rational points (or, equivalently, on global function fields
with many rational places). Given q and a dimension s ≥ 1, the typical procedure
is to choose a smooth, projective, absolutely irreducible algebraic curve C over
Fq containing at least s + 1 Fq-rational points, say P∞, P1, . . . , Ps. The point
Pi, 1 ≤ i ≤ s, is used to produce the data that are needed in the digital method
(i.e., certain elements of Fq) for generating the ith coordinates of the points of
the (t, s)-sequence. These elements of Fq are obtained by expansions on the curve
C in local coordinates at P∞. The methods in [20] and [44] yield digital (t, s)-
sequences constructed over Fq with t being the genus of C. If we optimize these
constructions, we arrive in a natural way at the following important quantity from
algebraic geometry over Fq and at the subsequent theorem in [20].
Definition 3. For given g ≥ 0 and q, let Nq(g) be the maximum number

of Fq-rational points that a smooth, projective, absolutely irreducible algebraic
curve over Fq of genus g can have.
Theorem 2. For every q and s there exists a digital (Vq(s), s)-sequence con-

structed over Fq, where Vq(s) is the least value of g such that Nq(g) ≥ s+ 1.
The behavior of Vq(s) as s→∞ can be obtained from class field towers and

the asymptotic theory of Nq(g) (see Section 5). As stated in Section 1, we can also
pass from prime-power bases q to arbitrary bases b in the digital method. Finally,
this leads to the following bound (see [20, Section 5]), which in view of Theorem
1 is best possible as far as the order of magnitude in s is concerned.
Theorem 3. For every b ≥ 2 and s ≥ 1 there exists a digital (t, s)-sequence

in base b with

t ≤ c

log q1
s+ 1,

where c > 0 is an absolute constant and q1 is the least prime power in the factor-
ization of b into pairwise coprime prime powers.
4. Algebraic curves with many rational points
The constructions of (t, s)-sequences in Section 3 based on algebraic curves over
Fq lead to the requirement of finding good lower bounds for the number Nq(g)
in Definition 3, or in other words to the problem of constructing algebraic curves
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over Fq of given genus g with many Fq-rational points. This problem is also of
great importance in the theory of algebraic-geometry codes (see Section 5). Recent
surveys of this problem, also in the equivalent language of global function fields,
are given in Garcia and Stichtenoth [4], Niederreiter and Xing [26], [30], and van
der Geer and van der Vlugt [42].

A well-known technique for establishing the existence of various algebraic
curves over Fq with many Fq-rational points is due to Serre [37] and uses methods
of class field theory. This approach was continued by Auer [1] and Lauter [5].
Usually, the curves obtained by this technique are not in an explicit form. On
the other hand, constructions in the function field setting that work with Artin-
Schreier and Kummer extensions and with subfields of cyclotomic function fields
yield explicit generators and defining equations. Such constructions can be found
e.g. in [19], [21], [26], [46] for q = 2, in [22], [27] for q = 3, in [22], [23] for q = 4,
in [22], [24], [35] for q = 5, in [29] for q = 8, 16, and in [32] for q = 9, 27. Explicit
constructions inspired by techniques from coding theory were introduced by van
der Geer and van der Vlugt [41] (see also the survey [42]).

In the function field setting, a powerful technique of obtaining global func-
tion fields with many rational places is based on Hilbert class fields. The aim is
to construct unramified abelian extensions of a given global function field F in
which certain selected rational places of F split completely. This method works
particularly well if the divisor class number of F is large relative to the genus of
F . Applications of this method can be found in [22], [24], [26], [27], [29], [30], [35],
[46]. A more general approach, which contains both cyclotomic function fields and
Hilbert class fields as special cases, uses the theory of narrow ray class extensions
obtained from Drinfeld modules of rank 1 and was introduced in [45]. This method
allows great flexibility and produces a large number of families of global function
fields with many rational places. We refer to [23], [24], [26], [27], [29], [30], [31],
[35], [46] for further results and examples with this method.

Table 1 contains all bounds for Nq(g) available to the author for q =
2, 3, 4, 5, 8, 9, 16, 27 and 1 ≤ g ≤ 50 (for g = 0 we trivially have Nq(0) = q + 1). In
each entry of the table, the first number is a lower bound for Nq(g) and the second
an upper bound for Nq(g). If only one number is given, then this is the exact value
of Nq(g). A program for calculating upper bounds for Nq(g), which is based on
Weil’s explicit formula for the number of Fq-rational points in terms of the zeta
function and on the trigonometric polynomials of Oesterlé, was kindly supplied by
Jean-Pierre Serre. The lower bounds in Table 1 are obtained by combining [32,
Table 3] with new data in [1], [35]. We refer also to the tables of van der Geer and
van der Vlugt [43] which represent the most recent result of an ongoing project to
update bounds for Nq(g) periodically.
5. Applications to coding theory
There is an asymptotic theory of Nq(g) which has significant applications to alge-
braic coding theory. The basic quantity here is

A(q) = lim supg→∞
Nq(g)

g
.

For values of q for which A(q) is larger than a known comparison function, Goppa’s
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construction of algebraic-geometry codes leads to improvements on the classical
Gilbert-Varshamov bound for the existence of good linear codes over Fq.

Let Uq be the set of ordered pairs (δ,R) ∈ [0, 1]2 for which there exists a
sequence of linear codes over Fq of increasing lengths such that δ is the limit of
the relative minimum distances and R the limit of the information rates. It is
known that for some continuous function αq on [0, 1] we have

Uq = {(δ,R) : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1} ,

where αq(0) = 1 and αq(δ) = 0 for δ ∈ [(q− 1)/q, 1]. The function αq is unknown,
and it is an important issue in algebraic coding theory to obtain good lower bounds
for αq on the interval (0, (q − 1)/q). The Gilbert-Varshamov bound says that

αq(δ) ≥ RGV (q, δ) := 1−Hq(δ) for 0 < δ < (q − 1)/q,

where Hq is the q-ary entropy function. Algebraic-geometry codes lead to the
bound

αq(δ) ≥ RAG(q, δ) := 1− 1

A(q)
− δ for 0 ≤ δ ≤ 1.

By showing that A(q) ≥ q1/2− 1 if q is a square, Tsfasman, Vlǎdut, and Zink [40]
proved that RAG(q, δ) > RGV (q, δ) if q is a sufficiently large square and δ belongs
to a suitable subinterval of [0, 1].

For nonsquares q only weaker lower bounds for A(q) are known. Serre [37]
showed that A(q) is at least of the order of magnitude log q, and an alternative
proof and an effective version of this result were recently given in [33]. In many
cases the following result in [28] yields a considerable improvement: if q = pe with
a prime p and an odd integer e ≥ 3, then A(q) is at least of the order of magnitude
q1/(2k), where k is the least prime factor of e. Further discussions and refinements
of this result can be found in [30], [33]. As a consequence we get the following
theorem in [28] which improves on the Gilbert-Varshamov bound for sufficiently
large composite nonsquares q.
Theorem 4. Let m ≥ 3 be an odd integer and let r be a prime power with

r ≥ 100m3 for odd r and r ≥ 576m3 for even r. Then there exists an open interval
(δ1, δ2) ⊆ (0, 1) containing (rm − 1)/(2rm − 1) such that

RAG(rm, δ) > RGV (rm, δ) for all δ ∈ (δ1, δ2).

In connection with lower bounds for A(q) we mention that there is a method of
Perret [36] for obtaining such lower bounds which depends, however, on a conjec-
ture that would provide a sufficient condition for the infinitude of certain ramified
class field towers. It was recently shown in [34] by a counterexample that this
conjecture is wrong. Therefore, the lower bounds for A(q) in Perret [36, Section
III] remain unproved.
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Table 1: Bounds for Nq(g)

g\q 2 3 4 5 8 9 16 27
1 5 7 9 10 14 16 25 38
2 6 8 10 12 18 20 33 48
3 7 10 14 16 24 28 38 58
4 8 12 15 18 25-29 30 45-47 64-68
5 9 12-14 17-18 20-22 29-32 32-36 49-55 55-78
6 10 14-15 20 21-25 33-36 35-40 65 76-88
7 10 16-17 21-22 22-27 33-39 39-43 63-70 64-98
8 11 15-18 21-24 22-29 34-43 38-47 61-76 92-108
9 12 19 26 26-32 45-47 40-51 72-81 82-118

10 13 19-21 27-28 27-34 38-50 54-55 81-87 91-128
11 14 20-22 26-30 32-36 48-54 55-59 80-92 96-138
12 14-15 22-24 29-31 30-38 49-57 55-63 68-97 109-148
13 15 24-25 33 36-40 50-61 60-66 97-103 136-156
14 15-16 24-26 32-35 39-43 65 56-70 97-108 84-164
15 17 28 33-37 35-45 54-68 64-74 98-113 136-171
16 17-18 27-29 36-38 40-47 56-71 74-78 93-118 136-178
17 17-18 24-30 40 42-49 61-74 56-82 96-124 128-185
18 18-19 26-31 41-42 32-51 65-77 46-85 113-129 94-192
19 20 27-32 37-43 45-54 58-80 84-88 121-134 126-199
20 19-21 30-34 37-45 30-56 68-83 48-91 121-140 133-207
21 21 32-35 41-47 50-58 72-86 82-95 129-145 163-214
22 21-22 28-36 40-48 51-60 66-89 78-98 129-150 112-221
23 22-23 26-37 41-50 55-62 68-92 92-101 126-155 114-228
24 20-23 28-38 42-52 46-64 66-95 91-104 129-161 166-235
25 24 36-40 51-53 52-66 66-97 64-108 144-166 196-242
26 24-25 36-41 55 45-68 72-100 110-111 150-171 108-249
27 22-25 39-42 49-56 52-70 96-103 60-114 145-176 114-256
28 25-26 37-43 51-58 54-71 97-106 105-117 136-181 108-263
29 25-27 42-44 49-60 56-73 97-109 104-120 161-187 114-270
30 25-27 34-46 53-61 58-75 80-112 60-123 161-192 117-277
31 27-28 40-47 60-63 72-77 72-115 84-127 150-197 114-284
32 26-29 38-48 57-65 62-79 72-118 81-130 132-202 126-291
33 28-29 37-49 65-66 64-81 92-121 78-133 193-207 220-298
34 27-30 44-50 57-68 76-83 80-124 111-136 156-213 135-305
35 29-31 47-51 58-69 68-85 106-127 84-139 144-218 126-312
36 30-31 46-52 64-71 64-87 105-130 110-142 185-223 244-319
37 29-32 48-54 66-72 72-89 121-132 120-145 208-228 162-326
38 28-33 36-55 56-74 78-91 129-135 105-149 193-233 144-333
39 33 46-56 65-75 76-93 117-138 84-152 160-239 271-340
40 32-34 54-57 75-77 65-94 100-141 90-155 162-244 244-346
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g\q 2 3 4 5 8 9 16 27
41 33-35 50-58 65-78 80-96 112-144 84-158 216-249 153-353
42 33-35 39-59 66-80 60-98 129-147 90-161 209-254 280-360
43 33-36 55-60 72-81 84-100 100-150 120-164 226-259 196-367
44 33-37 42-61 68-83 60-102 129-153 90-167 162-264 153-374
45 32-37 48-62 80-84 88-104 144-156 112-170 242-268 171-381
46 34-38 55-63 81-86 75-106 129-158 138-173 243-273 162-388
47 36-38 47-65 73-87 92-108 120-161 154-177 176-277 174-395
48 34-39 55-66 77-89 82-110 126-164 163-180 184-282 325-402
49 36-40 63-67 81-90 96-111 130-167 168-183 192-286 268-409
50 40 56-68 91-92 70-113 130-170 182-186 225-291 180-416
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The Sphere Packing Problem
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Abstract. A brief report on recent work on the sphere-packing problem.
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1 Introduction

The sphere packing problem has its roots in geometry and number theory (it is
part of Hilbert’s 18th problem), but is also a fundamental question in information
theory. The connection is via the sampling theorem. As Shannon observes in his
classic 1948 paper [37] (which ushered in the age of digital communication), if f is a
signal of bandwidth W hertz, with almost all its energy concentrated in an interval
of T secs, then f is accurately represented by a vector of 2WT samples, which
may be regarded as the coordinates of a single point in Rn, n = 2WT . Nearly
equal signals are represented by neighboring points, so to keep the signals distinct,
Shannon represents them by n-dimensional ‘billiard balls’, and is therefore led to
ask: what is the best way to pack ‘billiard balls’ in n dimensions?

This talk will report on a few selected developments that have taken place
since the appearance of Rogers’ 1964 book on the subject, proceeding upwards in
dimension from 2 to 128. The reader is referred to [16] (especially the third edition,
which has 800 references covering 1988-1998) for further information, definitions
and references. See also the lattice data-base [31].

2 Dimension 2

The best packing in dimension 2 is the familiar ‘hexagonal lattice’ packing of
circles, each touching six others. The centers are the points of the root lattice A2.
The density ∆ of this packing is the fraction of the plane occupied by the spheres:
π/
√

12 = 0.9069 . . ..
In general we wish to find ∆n, the highest possible density of a packing of equal

nonoverlapping spheres in Rn, or ∆
(L)
n , the highest density of any packing in which

the centers form a lattice. It is known (Fejes Tóth, 1940) that ∆2 = ∆
(L)
2 = π/

√
12.

An n-dimensional lattice Λ of determinant d and minimal nonzero squared length
(or norm) µ has packing radius ρ =

√
µ/2 and density ∆ = Vnρ

n/
√

det Λ, where
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Vn = πn/2/(n/2)! is the volume of a unit sphere. The center density of a packing
is δ = ∆/Vn.

We are also interested in packing points on a sphere, and especially in the

‘kissing number problem’: find τn (resp. τ
(L)
n ), the maximal number of spheres

that can touch an equal sphere in Rn (resp. in any lattice in Rn). It is trivial that

τ2 = τ
(L)
2 = 6.

3 Dimension 3

In spite of much recent work ([20], [21]) ∆3 is still unknown; nor is ∆n known in any
dimension above 2. It is conjectured that ∆3 = π/

√
18 = 0.74048 . . ., as in the face-

centered cubic (f.c.c.) lattice A3. Muder [28] has shown that ∆3 ≤ 0.773055 . . ..
It is worth mentioning, however, that there are packings of congruent ellipsoids
with density considerably greater than π/

√
18 [3].

In two dimensions the hexagonal lattice is (a) the densest lattice packing,
(b) the least dense lattice covering, and (c) is geometrically similar to its dual
lattice. There is a little-known three-dimensional lattice that is similar to its dual,
and, among all lattices with this property, is both the densest packing and the
least dense covering. This is the m.c.c. (or mean-centered cuboidal) lattice [11]
with Gram matrix

1

2




1 +
√

2 1 1
1 1 +

√
2 1−

√
2

1 1−
√

2 1 +
√

2


 .

In a sense this lattice is the geometric mean of the f.c.c. lattice and its dual
the body-centered cubic (b.c.c.) lattice. Consider the lattice generated by the
vectors (±u,±v, 0) and (0,±u,±v) for real numbers u and v. If the ratio u/v is
respectively 1, 21/2 or 21/4 we obtain the f.c.c., b.c.c. and m.c.c. lattices. The
m.c.c. lattice also recently arose in a different context, as the lattice corresponding
to the period matrix of the hyperelliptic Riemann surface w2 = z8 − 1

4 Dimensions 4–8

Table 1 summarizes what is presently known about the sphere packing and kissing
number problems in dimensions ≤ 24. Entries enclosed inside a solid line are
known to be optimal, those inside a dashed line optimal among lattices.

The large box in the ‘density’ column refers to Blichfeldt’s 1935 result that

the root lattices Z ≃ A1, A2, A3 ≃ D3, D4, D5, E6, E7, E8 achieve ∆
(L)
n for n ≤ 8.

It is remarkable that more than 60 years later ∆
(L)
9 is still unknown.

The large box in the right-hand column refers to Watson’s 1963 result that
the kissing numbers of the above lattices, together with that of the laminated

lattice Λ9, achieve τ
(L)
n for n ≤ 9. Odlyzko and I [16, Ch. 13] and independently

Levenshtein determined τ8 and τ24. The packings achieving these two bounds are
unique [16, Ch. 14].
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2

6

12

24

40

Highest kissing numberDensest packingDim.

72

24 196560

126

240

272

336

756

2

3

4

5

6

1

7

8

9

10

12 K12

(306 from P9a)

(500 from P10b)

(840 from P12a)

BW16 ≃ Λ16
Leech ≃ Λ24

Λ9

432016

Λ10 (P10c)

D4 ≃ Λ4
D5 ≃ Λ5
E6 ≃ Λ6
E7 ≃ Λ7
E8 ≃ Λ8

A3 ≃ D3 ≃ Λ3

Z ≃ Λ1
A2 ≃ Λ2

Table 1: Densest packings and highest kissing numbers known in low dimensions.
(Parenthesized entries are nonlattice arrangements that are better than any known
lattice.)

The ‘Low Dimensional Lattices’ project Some years ago Conway and I
noticed that there were several places in the literature where the results could
be simplified if they were described in terms of lattices rather than quadratic
forms. (It seems clearer to say ‘the lattice E8’ rather than ‘the quadratic form
2x21+2x22+4x23+4x24+20x25+12x26+4x27+2x28+2x1x2+2x2x3+6x3x4+10x4x5+
6x5x6 + 2x6x7 + 2x7x8’.) This led to a series of papers [7], [10], [13].

Integral lattices of determinant d = 1 (‘unimodular’ lattices) have been classi-
fied in dimensions ≤ 25, dimensions 24, 25 being due to Borcherds. In [16, Ch. 15]
and [7, (I)] we extended this to d ≤ 25 for various ranges of dimension.

[7, (II)] is based on the work of Dade, Plesken, Pohst and others, and describes
the lattices associated with the maximal irreducible subgroups of GL(n,Z) for
n = 1, . . . , 9, 11, 13, 17, 19, 23. Nebe, and Nebe and Plesken (see [29], [32]) have
recently completed the enumeration of the maximal finite irreducible subgroups of
GL(n,Q) for n ≤ 31, together with the associated lattices.

[7, (IV)] gives an improved version of the mass formula for lattices, and [7, (V)]
studies when an n-dimensional integral lattice can be represented as a sublattice
of Zm for some m ≥ n, or failing that, by a sublattice of s−1/2Zm for some integer
s. [10] describes the Voronoi and Delaunay cells of all the root lattices and their
duals, and [7, (VI), (VIII)] discusses how the Voronoi cell of a 3- or 4-dimensional
lattice changes as the lattice is continuously varied.

[7, (VII)] determines the ‘coordination sequences’ of various lattices. Consider
E8, for example, and let S(k) denote the number of lattice points that are k steps
from the origin, where a step is a move to an adjacent sphere (S(1) is the kissing
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number). Then
∑∞
k=0 S(k)xk = f(x)/(1−x)8, where f(x) = 1 + 232x+ 7228x2+

. . .+x8. Thus the coordination sequence for E8 begins 1, 240, 9120, . . .. For other
examples see [39]

Perfect lattices One possible approach to the determination of the densest
lattices in dimensions 7 to 9 is via Voronoi’s theorem that the density of Λ is a
local maximum if and only if Λ is perfect and eutactic [27].

In 1975 Stacey, extending the work of several earlier authors, published a list
of 33 perfect lattices in dimension 7. Unfortunately one of the 33 was omitted
from her papers and her dissertation. In [7, (III)] we reconstructed the missing
lattice and ‘beautified’ all 33, computing their automorphism groups, etc. In 1991
Jaquet-Chiffelle [22] completed this work by showing that this is indeed the full
list of perfect lattices in R7. This provides another proof that E7 is the densest
lattice in dimension 7.

Martinet, Bergé and their students are presently attempting to classify the
eight-dimensional perfect lattices, and it appears that there will be roughly 10000

of them. Whether this approach can be used to determine ∆
(L)
9 remains to be

seen!

5 Dimension 9. Laminated lattices

There is a simple construction, the ‘laminating’ or ‘greedy’ construction, that
produces many of the densest lattices in dimensions up to 26. Let Λ1 denote the
even integers in R1, and define the n-dimensional laminated lattices Λn recursively
by: consider all lattices of minimal norm 4 that contain some Λn−1 as a sublattice,
and select those of greatest density. It had been known since the 1940’s that
this produces the densest lattices known for n ≤ 10. In [6] we determined all
inequivalent laminated lattices for n ≤ 25, and found the density of Λn for n ≤ 48
(Fig. 1). A key result needed for this was the determination of the covering radius
of the Leech lattice and the enumeration of the deep holes in that lattice [16,
Ch. 23].

What are all the best sphere packings in low dimensions? In [13] we
describe what may be all the best packings in dimensions n ≤ 10, where ‘best’
means both having the highest density and not permitting any local improvement.

In particular, we conjecture that ∆
(L)
n = ∆n for n ≤ 9. For example, it appears

that the best five-dimensional sphere packings are parameterized by the 4-colorings
of Z. We also find what we believe to be the exact numbers of ‘uniform’ packings
among these, those in which the automorphism group acts transitively. These
assertions depend on certain plausible but as yet unproved postulates.

A remarkable property of 9-dimensional packings. We also show in [13]
that the laminated lattice Λ9 has the following astonishing property. Half the
spheres can be moved bodily through arbitrarily large distances without overlap-
ping the other half, only touching them at isolated instants, the density remaining
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24

...

. . .

. . . . . .

. . .

Figure 1: Inclusions among laminated lattices Λn.

the same at every instant. A typical packing in this family consists of the points
of Dθ+

9 = D9 ∪D9 + ((1/2)8, θ/2), for θ real. D0+9 is Λ9 and D1+9 is D+9 , the 9-
dimensional diamond structure. All these packings have the same density, which

we conjecture is the value of ∆9 = ∆
(L)
9 . Another result in [13] is that there

are extraordinarily many 16-dimensional packings that are just as dense as the
Barnes-Wall lattice BW16 ≃ Λ16.

6 Dimension 10. Construction A.

In dimension 10 we encounter for the first time a nonlattice packing that is denser
than all known lattices. This packing, and the nonlattice packing with the highest
known kissing number in dimension 9, are easily obtained from ‘Construction
A’ (cf. [24]). If C is a binary code of length n, the corresponding packing is
P (C) = {x ∈ Zn : x (mod 2) ∈ C}.

Consider the vectors abcde ∈ (Z/4Z)5 where b, c, d ∈ {+1,−1}, a = c − d,
e = b + c, together with all their cyclic shifts, and apply the ‘Gray map’ 0 →
00, 1 → 01, 2 → 11, 3 → 10 to obtain a binary code C10 containing 40 vectors
of length 10 and minimal distance 4. This is our description [12] of a code first
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ROGER’S BOUND

Q32

Ks36 Λn

LEECH LATTICE Λ24

2

-2

-3

DIMENSION

Λ48

D4 BW16
Λn

P48q

D3 Λn

K12

Λ8 = E8

Kn

1

12 16 444 24 40 48

-1

0

36328 20 28

(SCALED)
DENSITY

Figure 2: Densest sphere packings known in dimensions n ≤ 48.

discovered by Best. The code is unique [25]. Then P (C10) = P10c is the record
10-dimensional packing.

Figure 2 shows the density of the best packings known up to dimension 48,
rescaled to make them easier to read. The vertical axis gives log2 δ+n(24−n)/96.
The figure also shows the upper bounds of Muder (for n = 3) and Rogers (n ≥ 4).
Lattice packings are indicated by small circles, nonlattices by crosses (however,
the locations of the lattices are only approximate). The figure is dominated by the
two arcs of the graph of the laminated lattices Λn, which touch the zero ordinate
at n = 0, 24 (the Leech lattice) and 48. K12 is the Coxeter-Todd lattice.

7 Dimensions 18–22

Record nonlattice packings in dimensions 18, 20 and 22 have recently been given in
[4], [14], [40]. Vardy’s construction [40], ‘Construction B∗’, also uses binary codes.
Let B and C be codes of length n such that c·(1+b) = 0 for all b ∈ B, c ∈ C, and set
P ∗(B, C) = {0+2b+4x,1+2c+4y : b ∈ B, c ∈ C, x, y ∈ Zn,∑xi even,

∑
yi odd}.

For example, by taking B to be the quadratic residue code of length 18 and C to
be its dual, Bierbrauer and Edel [4] obtain a new record packing in R18.

8 Dimension 24. The Leech lattice

The Leech lattice Λ24 is a remarkably dense packing in R24 (as can be seen from
Fig. 2). Here are four constructions. (i) As a laminated lattice: start in dimension
1 with the lattice Λ1 = Z and apply the greedy algorithm (see Fig. 1). (ii) Apply
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Construction A to the Golay code of length 24 to obtain a lattice L24. Then Λ24 is
spanned by (−3/2, 1/2, . . . , 1/2) and {x ∈ L24 :

∑
xi ≡ 0 (mod 4)}. (iii) Hensel

lift the Golay code to an extended cyclic (and self-dual) code over Z/4Z and apply
‘Construction A mod 4’ [5]. (iv) There is a unique unimodular even lattice II25,1 in
Lorentzian space R25,1, consisting of the points (x0x1 · · ·x24|x25) with all xi ∈ Z
or all xi ∈ Z+1/2 and satisfying x0+ · · ·+x24−x25 ∈ 2Z. Let w = (0 1 · · · 24|70),
a vector of zero length. Then (w⊥ in II25,1)/w is Λ24 [16, Ch. 26].

9 Dimensions 26–31

New packings in these dimensions have been discovered by Bacher, Borcherds,
Conway, Vardy, Venkov — see [16] for details.

10 Dimension 32. Modular lattices

An N -modular lattice [34] is an integral lattice that is similar to its dual, under
a similarity that multiplies norms by N . A unimodular lattice is 1-modular. The
interest in this family arises because many of the densest known lattices are N -
modular: Z, A2, D4, E8, K12, BW16, Λ24, Q32, P48q , . . ..

Quebbemann’s lattice Q32, for example, is 2-modular, and can be constructed
from a Reed-Solomon code of length 8 over F9 [33], [16, Ch. 8].

Shadow theory. The concept of the shadow of a lattice or code was introduced
in [8], [9] (see also [15]) and has proved to be very useful ([9] has stimulated over
50 sequels in the coding literature).

Let Λ be an n-dimensional unimodular lattice. If Λ is even then the shadow
S(Λ) = Λ, otherwise S(Λ) = (Λ0)

∗ \ Λ, where the subscript 0 denotes even sub-
lattice. The set 2S(Λ) = {2s : s ∈ S(Λ)} is precisely the set of parity vectors
for Λ, i.e. the vectors u ∈ Λ such that u · x ≡ x · x (mod2) for all x ∈ Λ. Such
vectors have been studied by many authors from Braun (1940) onwards, but their
application to obtaining bounds on lattices seems to have been overlooked.

If the theta series of Λ is ΘΛ(z) then [8] the shadow has theta series

(
eπi/4√
z

)n
ΘΛ

(
1− 1

z

)
. (1)

One of the most satisfying properties of integral lattices is the classical theorem
that (a) if Λ is a unimodular lattice then ΘΛ belongs to the graded ring C[ΘZ,ΘE8 ],
and (b) if Λ is even then Θ belongs to C[ΘE8 ,ΘΛ24 ].

To illustrate the use of the shadow, let us prove there is no 9-dimensional
unimodular lattice of minimal norm 2. If so then from (a) ΘΛ = −ΘZ/8+9ΘE8/8 =
1 + 252q2 + 456q3 + · · ·, where q = eπiz . But then (1) implies ΘS(Λ) = 9

4q
1/4 +

1913
4 q9/4 + · · ·, a contradiction since ΘS(Λ) must have integer coefficients.

In [26] we used (a), (b) to show that the minimal norm µ of an n-dimensional
odd unimodular lattice satisfies

µ ≤
[n

8

]
+ 1 , (2)
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and for an even unimodular lattice

µ ≤ 2
[ n

24

]
+ 2 . (3)

In [36] we used shadow theory to strengthen (2) by showing that odd lattices
satisfy

µ ≤ 2
[ n

24

]
+ 2 , (4)

except that µ ≤ 3 when n = 23. In view of the similarity between (3) and (4) we
propose that a lattice satisfying either bound with equality be called extremal (the
old definition of this term was based on (2) and (3)).

Quebbemann [35] has generalized (3) to certain families of even N -modular
lattices, and analogous bounds for odd N -modular lattices (using an appropriate
generalization of the shadow) were given in [36]. One can then define extremal
N -modular lattices.

11 Higher dimensions

Space does not permit more than a mention of the following: Kschischang and
Pasupathy’s lattice Ks36 in R36 [23]; the three extremal unimodular lattices P48q,
P48p, P48n in R48, the latter being a recent discovery of Nebe [30]; Bachoc’s ex-
tremal 2-modular lattice in R48 [1]; Nebe’s extremal 3-modular lattice in R64 [30];
and Bachoc and Nebe’s extremal unimodular lattice in R80 [2].

The existence of the following extremal lattices is an open question: 3-modular
in R36 (determinant d = 318, minimal norm µ = 8); 2-modular in R64 (d = 232, µ =
10); unimodular in R72 (d = 1, µ = 8).

From dimensions 80 to about 4096 the densest lattices known are the Mordell-
Weil lattices discovered by Elkies [19], and Shioda [38]. But we know very little
about this range, as evidenced by the recent construction of record kissing numbers
in dimensions 32 to 128 [17] from binary codes. In dimension 128, for example,
the Mordell-Weil lattice has kissing number 218044170240 [18], whereas in our
construction (which admittedly is not a lattice) some spheres touch 8812505372416
others.

It would also be desirable to have better upper bounds, especially in low
dimensions (see Fig. 2). The Kabatiansky-Levenshtein bound is asymptotically
better than the Rogers’ bound, but not until the dimension is above about 40. We
know very little about these problems!

In short, many beautiful packings have been discovered, but there are few
proofs that any of them are optimal.
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[27] J. Martinet, Les réseaux parfaits des espaces euclidiens, Masson, Paris, 1996.

[28] D. J. Muder, A new bound on the local density of sphere packings, Discrete
Comput. Geom. 10 (1993), 351–375.

[29] G. Nebe, Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31, Comm. Alg. 24 (1996),
2341–2397.

[30] G. Nebe, Some cyclo-quaternionic lattices, J. Alg. 199 (1998), 472–498.

[31] G. Nebe and N. J. A. Sloane, A Catalogue of Lattices, published electronically
at http://www.research.att.com/∼njas/lattices/.

[32] W. Plesken, Finite rational matrix groups — a survey, in Proc. Conf. “The
ATLAS: Ten Years After”, to appear.

[33] H.-G. Quebbemann, Lattices with theta-functions for G(
√

2) and linear codes,
J. Alg. 105 (1987), 443–450.

[34] H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory
54 (1995), 190–202.

[35] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices,
L’Enseign. Math. 43 (1997), 55–65.

[36] E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimod-
ular lattices, J. Number Theory, to appear.

[37] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J.
27 (1948), 379–423 and 623–656.

[38] T. Shioda, Mordell-Weil lattices and sphere packings, Am. J. Math. 113
(1991), 931–948.

[39] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published
electronically at http://www.research.att.com/∼njas/sequences/.

[40] A. Vardy, A new sphere packing in 20 dimensions, Invent. math. 121 (1995),
119–133.

N. J. A. Sloane
AT&T Labs-Research
180 Park Avenue
Florham Park NJ 07932-0971 USA
njas@research.att.com

Documenta Mathematica · Extra Volume ICM 1998 · III · 387–396



Doc.Math. J. DMV 397Finite Geometries, Varieties and Codes
Joseph A. Thas

Abstract. In recent years there has been an increasing interest in finite
projective spaces, and important applications to practical topics such as
coding theory and design of experiments have made the field even more
attractive. It is my intention to mention some important and elegant the-
orems, to say something about the used techniques and the relation with
other fields, and to mention some open problems. First some character-
izations of particular pointsets in the projective space PG(n, q), n ≥ 2,
over GF(q) will be given, where, from the beginning, it is assumed that
the pointset is contained in PG(n, q). A second approach is that where
the object is described as an incidence structure satisfying certain prop-
erties; here the geometry is not a priori embedded in a projective space.
This approach will be illustrated with some theorems on inversive planes,
polar spaces and Shult spaces. Finally, there is a section on k-arcs in
PG(n, q) and on linear Maximum Distance Separable codes, where the
interplay between finite projective geometry, coding theory and algebraic
geometry is particularly present. In an appendix an example of brand
new research in the field is given.

1991 Mathematics Subject Classification: 51E15, 51E20, 51E21, 51E25,
51A50, 51B10, 05B05, 05B25, 94B27
Keywords and Phrases: Finite Geometries, Varieties, Codes, Designs,
k-Arcs, Polar Spaces

1 Introduction and history

In recent years there has been an increasing interest in finite projective spaces
(or Galois spaces), and important applications to practical topics such as coding
theory and design of experiments have made the field even more attractive. Ba-
sic works on the subject are “Projective Geometries over Finite Fields”, “Finite
Projective Spaces of Three Dimensions” and “General Galois Geometries”, the
first two volumes being written by Hirschfeld [1979,1985] and the third volume
by Hirschfeld and Thas [1991]; the set of three volumes was conceived as a single
entity. We also mention the “Handbook of Incidence Geometry: Buildings and
Foundations”, edited in 1995 by Buekenhout, which covers an enormous amount
of material. In 1998 the second edition of the first volume by Hirschfeld appeared;
here the author writes the following on the history of finite geometry (for biblio-
graphical details, see Hirschfeld).
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“The first actual reference or near-reference on finite geometry is von Staudt’s
Beiträge (1856). It contains countings of real and complex points of a projective
space, as if they were points over GF(q) and GF(q2); only dimensions two and three
are considered. Then Fano (1892) defined PG(n, p) synthetically, while more than
a decade later Hessenberg (1903) did it analytically. Next, Veblen and Bussey
(1906) gave the first systematic account of PG(n, q) for any n and q; really, it
may be noted that the group PGL(n+ 1, q) of projectivities, which is implicit in
the geometry, goes back to Jordan (1870). At the same time and later, Dickson
was investigating modular invariants, curves and other parts of algebraic geometry
over a finite field. The link with statistics was developed by Bose (1947); earlier,
Fisher (1942) had produced an experimental design from a finite plane, with Yates
(1935) already having made the connection with block designs”.

In his investigations on graph theory, design theory and finite projective
spaces, the statistician Bose mainly used pure combinatorial arguments in combi-
nation with some linear algebra. Another great pioneer in finite projective geome-
try was the Italian geometer Beniamino Segre. His celebrated result of 1954 stating
that in the projective plane PG(2, q) over the Galois field GF(q) with q odd, every
set of q + 1 points, no three of which are collinear, is a conic, stimulated the en-
thusiasm of many young geometers. The work of Segre and his followers has many
links with error-correcting codes and with maximum distance separable codes, in
particular. Finally, the fundamental and deep work in the last four decades on
polar spaces, generalized polygons, and, more generally, incidence geometry, in the
first place by Tits, but also by Shult, Buekenhout, Kantor and others, gave a new
dimension to finite geometry.

Here I will state some important and elegant theorems, say something about
the used techniques and the relation with other fields, and mention some open
problems.

2 The geometry of PG(2, q)

First I will consider the geometry of PG(2, q), that is, the projective plane over the
finite field GF(q). To begin with, it is the purpose to show how classical algebraic
curves can be characterized in pure combinatorial terms. I will illustrate this with
a theorem on conics and one on Hermitian curves.

A k-arc of PG(2, q) is a set of k points of PG(2, q) no three of which are
collinear. Then clearly k ≤ q + 2. By Bose [1947], for q odd, k ≤ q + 1. Further,
any nonsingular conic of PG(2, q) is a (q + 1)-arc. It can be shown that each
(q + 1)-arc K of PG(2, q), q even, extends to a (q + 2)-arc K ∪ {x} (see, e.g.,
Hirschfeld [1998], p.177); the point x, which is uniquely defined by K, is called the
kernel or nucleus of K. The (q+1)-arcs of PG(2, q) are called ovals. The following
celebrated theorem is due to Segre [1954].

Theorem 1. In PG(2, q), q odd, every oval is a nonsingular conic.

For q even, Theorem 1 is valid if and only if q ∈ {2, 4}; see e.g., Thas [1995a].
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A Hermitian arc or unital H of PG(2, q), with q a square, is a set of q
√
q + 1

points of PG(2, q) such that any line of PG(2, q) intersects H in either 1 or
√
q+ 1

points. The lines intersecting H in one point are called the tangent lines of H.
At each of its points H has a unique tangent line. Let ζ be a unitary polarity
of PG(2, q), q a square. Then the absolute points of ζ, that is, the points x of
PG(2, q) which lie on their image xζ , form a Hermitian arc. Such a Hermitian
arc is called a nonsingular Hermitian curve. For any nonsingular Hermitian curve
coordinates in PG(2, q) can always be chosen in such a way that it is represented
by the polynomial equation

X
√
q+1

0 +X
√
q+1

1 +X
√
q+1

2 = 0.

In 1992 the following theorem was obtained, solving a longstanding conjecture
on Hermitian curves; see Thas [1992a].

Theorem 2. In PG(2, q), q a square, a Hermitian arc H is a nonsingular Her-
mitian curve if and only if tangent lines of H at collinear points are concurrent.

Theorems 1 and 2 are pure combinatorial characterizations of algebraic curves.
Now we give a characterization, due to Hirschfeld, Storme, Thas and Voloch [1991],
in terms of algebraic curves, that is, we will assume from the beginning that our
pointset is an algebraic curve.

Theorem 3. In PG(2, q), q a square and q 6= 4, any algebraic curve of degree√
q + 1, without linear components, and with at least q

√
q + 1 points in PG(2, q),

must be a nonsingular Hermitian curve.

To prove the previous theorems, classical projective geometry, finite algebraic
geometry, finite field theory and counting arguments were used. A proof of a com-
pletely different nature was used to solve a conjecture from 1975 on the following
easily defined pointsets in PG(2, q).

In PG(2, q) any nonempty set of k points may be described as a (k;m)-arc,
where m (m 6= 0) is the greatest number of collinear points in the set. For given
q and m (m 6= 0), k can never exceed mq − q +m, and a (mq − q +m;m)-arc is
called a maximal arc. Equivalently, a maximal arc may be defined as a nonempty
set of points meeting every line in just m points or in none at all. Trivial maximal
arcs are the plane PG(2, q) itself (m = q + 1), the affine plane AG(2, q) obtained
by deleting a line L from PG(2, q) (m = q), and a single point (m = 1). If K is a
(mq− q+m;m)-arc of PG(2, q), where m ≤ q, then it is easy to show that the set

K ′ = {lines L of PG(2, q) : L ∩K = ∅}

is a (q(q −m+ 1)/m; q/m)-arc (i.e., a maximal arc) of the dual plane. Hence, if
the plane PG(2, q) contains a (mq − q +m;m)-arc, m ≤ q, then it also contains a
(q(q −m+ 1)/m; q/m)-arc. It follows that a necessary condition for the existence
of a maximal arc, with m ≤ q, is that m should be a factor of q.

Documenta Mathematica · Extra Volume ICM 1998 · III · 397–408



400 J. A. Thas

In 1969 Denniston proves that the condition m|q does suffice in the case of
any plane PG(2, 2h), and in 1975 Thas proves that in PG(2, q), with q = 3h and
h > 1, there are no (2q+3; 3)-arcs and no (q(q−2)/3; q/3)-arcs. The longstanding
conjecture that in PG(2, q), q odd, the only maximal arcs are the trivial ones,
was proved just recently by Ball, Blokhuis and Mazzocca; see Ball, Blokhuis and
Mazzocca [1997] and Ball and Blokhuis [1998].

Theorem 4. In PG(2, q), q odd, there is no maximal (qm − q + m;m)-arc with
1 < m < q.

In the proof the point (x, y) of the affine plane AG(2, q) is identified with
the element x + αy of GF(q2) = GF(q)(α). Then, assuming the existence of a
nontrivial maximal arc in AG(2, q), q odd, polynomials over GF(q2) are defined
the clever manipulation of which leads to a contradiction.

3 The geometry of PG(n, q), n ≥ 3

If V is a “classical” algebraic variety in PG(n, q) (or one of its projections), n ≥ 3,
e.g., a quadric, a Hermitian variety, a Veronese variety, then a first approach is to
characterize V either as a subset of PG(n, q) which intersects certain subspaces of
PG(n, q) in sets with cardinalities in some range or as a subset of PG(n, q) whose
points satisfy certain linear independence conditions. One characterization of the
first type will be given here, while in Section 4 we will show how (subsets of)
normal rational curves can be characterized by one simple independence condition
on the points.

A nonsingular Hermitian variety H of PG(n, q), q a square and n ≥ 2, is any
subset of PG(n, q) which is equivalent under the group PGL(n+1, q) to the subset
of PG(n, q) represented by the equation

X
√
q+1

0 +X
√
q+1

1 + · · ·+X
√
q+1

n = 0.

A subset K of PG(n, q), n ≥ 2, is of type (1,m, q+ 1) if every line of PG(n, q)
meets it in 1,m, or q + 1 points. A point of K is singular if every line through it
intersects K either in 1 or q + 1 points. Then K is called singular or nonsingular
as it has singular points or not.

Theorem 5. If K is a nonsingular set of type (1,m, q + 1) of PG(n, q), with
3 ≤ m ≤ q − 1, n ≥ 3 and q > 4, then K is either a nonsingular Hermitian
variety of PG(n, q) (and then m =

√
q + 1) or the projection onto PG(n, q) of a

nonsingular quadric Q of PG(n+ 1, q) ⊃ PG(n, q) from a point x ∈ PG(n+ 1, q)\
PG(n, q) other than the nucleus (or kernel) of Q in the case that n is even (and
here m = q

2 + 1, so q is even).

Form 6= q
2+1 the result is due to Tallini Scafati [1967] and form = q

2+1, n > 3
and part of n = 3, to Hirschfeld and Thas [1980a, 1980b]. The missing part in
the case m = q

2 + 1 and n = 3 was done by Glynn [1983]. Finally the case
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(q,m) = (4, 3) was handled by Sherman [1983], see also Hirschfeld and Hubaut
[1980] and Hirschfeld [1985]; it appears that here the sets K can be identified with
the codewords of a projective geometry code.

A second approach is that where the object is described as an incidence struc-
ture satisfying certain properties; here the geometry is not a priori embedded in a
projective space, even the finite field is in many cases a priori absent. Hence the
finite projective space must be constructed.

A first example concerns circle geometries and designs. A t− (v, k, λ) design,
with v > k > 1, k ≥ t ≥ 1, λ > 0, is a set P with v elements called points,
provided with subsets of size k called blocks, such that any t distinct points are
contained in exactly λ blocks. A 3 − (n2 + 1, n + 1, 1) design is usually called
an inversive plane or Möbius plane of order n; here the blocks are mostly called
circles. An ovoid O of PG(3, q), q > 2, is a set of q2+1 points no three of which are
collinear; an ovoid of PG(3, 2) is the same as a nonsingular elliptic quadric, that is,
a nonsingular quadric of PG(3, 2) containing no lines. For properties on ovoids we
refer to Hirschfeld [1985]. If O is an ovoid, then O provided with all intersections
π ∩ O, where π is any plane containing at least 2 (and then automatically q + 1)
points of O, is an inversive plane J (O) of order n. An inversive plane arising from
an ovoid is called egglike. The following famous theorem is due to Dembowski
[1964].

Theorem 6. Each (finite) inversive plane of even order is egglike.

If the ovoidO is an elliptic quadric, then the inversive plane J (O) is called classical
or Miquelian. Barlotti [1955] and, independently, Panella [1955] proved that for q
odd any ovoid is an elliptic quadric. Hence for q odd any egglike inversive plane is
Miquelian. For odd order no other inversive planes are known. To the contrary, in
the even case Tits [1962] showed that for any q = 22e+1, with e ≥ 1, there exists an
ovoid which is not an elliptic quadric; these ovoids are called Tits ovoids and are
related to the simple Suzuki groups Sz(q). For even order no other nonclassical
inversive planes than the ones associated to the Tits ovoids are known.

Let J be an inversive plane of order n. For any point x of J , the points
of J different from x, together with the circles containing x (minus x), form a
2 − (n2, n, 1) design, that is, an affine plane of order n. That affine plane is
denoted by Jx, and is called the internal plane or derived plane of J at x. For an
egglike inversive plane J (O) of order q, each internal plane is Desarguesian, that
is, is the affine plane AG(2, q). The following theorem, due to Thas [1994], solves
a longstanding conjecture on circle geometries.

Theorem 7. Let J be an inversive plane of odd order n. If for at least one point
x of J the internal plane Jx is Desarguesian, then J is Miquelian.

The key idea in the proof of this theorem on Möbius planes is to use a fundamental
result on Minkowski planes (another type of circle geometries), which in turn
depends on the classification of a particular class of quasifields. As a corollary
of Theorem 7 we obtain the first computer-free proof of the uniqueness (up to
isomorphism) of the inversive plane of order 7.
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Another beautiful illustration of this second approach is a characterization of
all polar spaces of rank at least three. Here, starting from about nothing we get
everything. First, let us give Tits’ axioms for a polar space of rank r, with r ≥ 3.

A polar space S of rank r, with r ≥ 3, is a set P of elements called points,
provided with distinguished subsets called subspaces, such that the following prop-
erties are satisfied.

(i) Any subspace, together with the subspaces it contains, is a projective space
of dimension at most r − 1.

(ii) The intersection of any family of subspaces is a subspace.

(iii) Given a subspace π of dimension r − 1 and a point p in P\π, there exists a
unique subspace π′ containing p such that the dimension of π ∩ π′ is r − 2.
Also, the subspace π ∩ π′ is the set of all points p′ of π such that p and p′

are contained in some subspace of dimension one.

(iv) There exist two disjoint subspaces of dimension r − 1.

Isomorphisms between polar spaces are defined in the usual way.

Examples of finite polar spaces
(a) Let Q be a nonsingular quadric in PG(n, q) of rank r (that is, Q contains (r−1)-
dimensional projective spaces, but no r-dimensional projective space), with r ≥ 3.
Then Q together with the projective spaces lying on it is a polar space of rank r.
(b) Let H be a nonsingular Hermitian variety of PG(n, q2), n ≥ 5. Then H
together with the subspaces lying on it is a polar space of rank [n+12 ] (here [n+12 ]
is the greatest integer less than or equal to n+1

2 ).
(c) Let ζ be a (nonsingular) symplectic polarity of PG(n, q), with n odd. Then
PG(n, q) together with all absolute subspaces of ζ, is a polar space of rank (n+1)/2
(a projective subspace π of PG(n, q) is absolute for ζ if πζ ⊆ π).

A complete classification of all polar spaces of rank at least three has been
obtained by Tits [1974], building on work of Veldkamp [1959]. We state now this
celebrated deep result in the finite case.

Theorem 8. If S is a finite polar space of rank at least three, then S is isomorphic
to one of (a), (b), (c).

Polar spaces of rank 2 were also defined by Tits [1959]; these polar spaces
are usually called generalized quadrangles. The role of generalized quadrangles in
the theory of polar spaces, can be compared to the role of projective planes in the
theory of projective spaces. Just as for projective planes a complete classification
of all generalized quadrangles seems to be hopeless. For more on generalized
quadrangles we refer to the monograph by Payne and Thas [1984] and to Thas
[1995b].

Now we will describe polar spaces in an extremely simple way, just using
points and lines.
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A Shult space S is a nonempty set P of points together with distinguished
subsets of cardinality at least two called lines such that for each line L of S and
each point p of P \ L, the point p is collinear with either one or all points of L;
here two not necessarily distinct points p1 and p2 are called collinear if there is at
least one line of S containing these points. A Shult space is nondegenerate if no
point of S is collinear with all points of S. A subspace X of a Shult space S is
a set of pairwise collinear points such that any line meeting X in more than one
point is contained in X. The Shult space S has rank r, with r ≥ 1, if r is the
largest integer for which there is a chain

X0 ⊂ X1 ⊂ . . . ⊂ Xr

of distinct subspaces X0 = ∅, X1, X2, . . . , Xr.
From Theorem 8 it follows that, for any finite polar space S of rank r, with

r ≥ 3, the pointset P together with the subspaces of dimension one is a Shult space
of rank r. In fact this result also holds for infinite polar spaces. The following
beautiful and extremely strong converse is due to Buekenhout and Shult [1974].

Theorem 9. Any nondegenerate Shult space of rank r, with r ≥ 3, all of whose
lines have cardinality at least three, together with its subspaces, is a polar space of
rank r.

We remark that Buekenhout and Shult [1974] also classified all degenerate
Shult spaces; in fact, the problem is reduced to the classification of the nondegen-
erate ones.

Finally, let us mention that further fundamental and deep work on polar
spaces, point-line geometries related to buildings, and, more generally, incidence
geometry, was done in the first place by Tits, and further by Buekenhout, Cohen,
Cooperstein, Kantor, Shult and others; these developments gave a new dimension
to finite geometry. As excellent reference we mention the “Handbook of Incidence
Geometry: Buildings and Foundations”, edited by Buekenhout in 1995.

4 An exemplary illustration of the interplay between Galois ge-
ometry, coding theory and algebraic geometry

Let C be a code of length k over an alphabet A of size q, with q ∈ N\{0, 1}. In
other words C is simply a set of (code) words where each word is an element of Ak.
Having chosen m, with 2 ≤ m ≤ k, we impose the following condition on C: no
two words in C agree in as many as m positions. It then follows that |C| ≤ qm. If
|C| = qm, then C is called aMaximum Distance Separable code (MDS code). MDS
codes are exactly the codes which meet the Singleton bound; see e.g. Hill [1986].
There is a voluminous literature on the subject; we refer e.g. to the standard work
by MacWilliams and Sloane [1977] and to the book by Hill [1986]. MacWilliams
and Sloane introduce their chapter on MDS codes as “one of the most fascinating
in all of coding theory”.

The Hamming distance between two code words x = (x1, x2, . . . , xk) and
y = (y1, y2, . . . , yk) is the number of indices i for which xi 6= yi; it is denoted by
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d(x, y). The minimum Hamming distance of C is

min(d(x, y) : x, y ∈ C and x 6= y)

and is denoted by d(C). If C is an MDS code, then one easily shows that

d(C) = k −m+ 1,

that is, the Singleton bound is met. One of the main problems concerning such
codes is to maximize d(C), and so k, for given m and q. Also, what is the structure
of C in the optimal case?

Now the problem will be formulated for the case when C is linear, i.e., for
the case that C is an m-dimensional subspace of the k-dimensional vector space
V (k, q) over GF(q). It goes like this. Choose any basis for C and represent it as
an m × k-matrix A over GF(q) of rank m. Then C is MDS if and only if every
set of m columns of A is linearly independent.

Next, let us turn to particular pointsets of PG(n, q) introduced by Segre in
1955. A k-arc in PG(n, q), with n ≥ 2, is a set K of k points with k ≥ n+ 1 such
that no n+ 1 points of K lie in a hyperplane, that is, such that any n+ 1 points
are linearly independent. A k-arc K is complete if it is not properly contained in
a larger arc. Otherwise, if K ∪ {x} is a (k + 1)-arc for some point x of PG(n, q)
we say that x extends K.

A normal rational curve (NRC) of PG(n, q), with q > n + 1, is any set of
points in PG(n, q) which is equivalent under the group PGL(n+ 1, q) to

{(tn, tn−1, . . . , t, 1) : t ∈ GF (q)} ∪ {(1, 0, . . . , 0, 0)}.

Clearly any NRC is a (q + 1)-arc. A NRC of PG(2, q) is a nonsingular conic; a
NRC of PG(3, q) is a twisted cubic.

k-Arcs were introduced by Segre [1955], who also posed the next three fun-
damental problems.

(a) For given n and q what is the maximum value of k for which there exist
k-arcs in PG(n, q)?

(b) For what values of n and q, with q > n+ 1, is every (q + 1)-arc a NRC?

(c) For given n and q, with q > n+ 1, what are the values of k for which every
k-arc is contained in a (q + 1)-arc of this space?

The famous Theorem 1 of Segre gives the answer, for q odd, to Problem (b)
in the twodimensional case.

Hundreds of papers were written on k-arcs, in particular on the above prob-
lems, which are now solved for “most” values of the parameters. For example, if
q > f(n) with f some quadratic polynomial over Q, then k ≤ q+ 1 for n ≥ 3, and
any (q + 1)-arc in PG(n, q), with n ≥ 3 and (n, q) 6= (3, 2h), is a NRC; also, by
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Casse and Glynn [1982] any (q + 1)-arc of PG(3, q), q = 2h, is equivalent under
PGL(4, q) to

{(t2r+1, t2r , t, 1) : t ∈ GF(q)} ∪ {(1, 0, 0, 0)},
with (r, h) = 1.

The main tool in the proofs is that with any k-arc of PG(n, q) there corre-
sponds an algebraic hypersurface in the dual space of PG(n, q). For n = 2 this
was proved by Segre [1967] and for n > 2 twenty years later, by Bruen, Thas and
Blokhuis [1988]. Essential also are the bounds on the number of points of an alge-
braic curve in PG(2, q), particularly the Hasse-Weil bound (see, e.g., Sections 2.9
and 2.15 of Hirschfeld [1988] for references) and the Stöhr-Voloch [1986] bound.

For surveys on k-arcs we refer to Hirschfeld and Thas [1991], Thas
[1992b,1995a] and Hirschfeld and Storme [1998].

The main conjecture on k-arcs is the following.

Conjecture. If K is a k-arc of PG(n, q), with q ≥ n+ 1, then

(a) for q even and n ∈ {2, q − 2} we have k ≤ q + 2,

(b) k ≤ q + 1 in all other cases.

We remark that (q + 2)-arcs exist in PG(2, q) and PG(q− 2, q), q = 2h and h ≥ 2;
see Hirschfeld and Thas [1991].

As already mentioned, a linear code C of length k and dimension m, with
2 ≤ m ≤ k, over GF(q) is MDS if and only if it is generated by the rows of anm×k-
matrix A over GF(q) for which every set of m columns is linearly independent.
Now we regard the columns of A as points p1, p2, . . . , pk of PG(m − 1, q). Then,
for a linear MDS code, no m of these points lie in a hyperplane, that is, for
m ≥ 3 these points form a k-arc of PG(m − 1, q). Conversely, with any k-arc
of PG(m − 1, q),m ≥ 3, there corresponds a linear MDS code. Remark that the
linear MDS codes of dimension two are known and are quite trivial. So we have
the following theorem.

Theorem 10. Linear MDS codes of dimension at least three and k-arcs are
equivalent objects.

So each result on linear MDS codes of dimension at least three can be tranlated
into a result on k-arcs, and conversely. This way a lot of new fundamental results
on linear MDS codes were obtained. Many of these translated results on k-arcs
were proved long before the relation with coding theory was discovered. This is
indeed a beautiful example of interrelationship between pure finite geometry and
coding theory.

5 Appendix: Recent research in finite geometries

In this appendix I will give an example of brand new research in the field.
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Let P and B be disjoint sets, each consisting of q2+q+1 lines of PG(n, q). An
element L of P and an element M of B are called incident if and only if L∩M 6= ∅.
Now assume that the point-line incidence structure with pointset P , lineset B and
the given incidence is a projective plane P of order q. Finally, we suppose that for
any incident point-line pair (L,M) of P , all points and lines of P incident either
with L or with M are contained in a common hyperplane of PG(n, q). Then the
author and Van Maldeghem just proved that the plane P is Desarguesian, that
n ∈ {6, 7, 8}, that for n = 6 q is a power of 3 and that, up to isomorphism, there
is a unique example in PG(6, q) for any such q = 3h. Also, they already handled
large part of the remaining cases n = 7, 8, and the complete classification normally
should be finished by the beginning of the conference.

The solution of this problem is a key step in the determination of all dual
classical generalized hexagons with q + 1 points on any line, whose points are
points of PG(n, q) and whose lines are lines of PG(n, q); see Thas [1995b] for the
definition of generalized hexagon.
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P. Dembowski [1964]. Möbiusebenen gerader Ordnung,Math. Ann., 157: 179-205.

R.H.F. Denniston [1969]. Some maximal arcs in finite projective planes. J. Com-
bin. Theory, 6:317-319.

Documenta Mathematica · Extra Volume ICM 1998 · III · 397–408



Finite Geometries, Varieties and Codes 407

D.G. Glynn [1983]. On the characterization of certain sets of points in finite
projective geometry of dimension three. Bull. London Math. Soc., 15:31-34.

R. Hill [1986]. A First Course in Coding Theory. Oxford University Press, Oxford.

J.W.P. Hirschfeld [1985]. Finite Projective Spaces of Three Dimensions. Oxford
Univerity Press, Oxford.

J.W.P. Hirschfeld [1998]. Projective Geometries over Finite Fields. Oxford Uni-
versity Press, Oxford; first edition, 1979.

J.W.P. Hirschfeld and X. Hubaut [1980]. Sets of even type in PG(3, q) alias the
binary (85,24) projective code. J. Combin. Theory Ser. A, 29:101-112.

J.W.P. Hirschfeld and L. Storme [1998]. The packing problem in statistics, coding
theory and finite projective spaces. J. Statist. Plann. Inference, to appear.

J.W.P. Hirschfeld, L. Storme, J.A. Thas, and J.F. Voloch [1991]. A characteriza-
tion of Hermitian curves. J. Geom., 41:72-78.

J.W.P. Hirschfeld and J.A. Thas [1980a]. The characterization of projections of
quadrics over finite fields of even order. J. London Math. Soc., 22:226-238.

J.W.P. Hirschfeld and J.A. Thas [1980b]. Sets of type (1, n, q + 1) in PG(d, q).
Proc. London Math. Soc., 41:254-278.

J.W.P. Hirschfeld and J.A. Thas [1991]. General Galois Geometries. Oxford
University Press, Oxford.

F.J.K. MacWilliams and N.J.A. Sloane [1977]. The Theory of Error-Correcting
Codes. North-Holland, Amsterdam.

G. Panella [1955]. Caratterizzazione delle quadriche di uno spazio (tri-
dimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital., 10:507-
513.

S.E. Payne and J.A. Thas [1984]. Finite Generalized Quadrangles. Pitman, Lon-
don.

B. Segre [1954]. Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei Rend.,
17:1-2.

B. Segre [1955]. Curve razionali normali e k-archi negli spazi finiti. Ann. Mat.
Pura Appl., 39:357-379.

B. Segre [1967]. Introduction to Galois Geometries (edited by J.W.P. Hirschfeld).
Atti Accad. Naz. Lincei Mem., 8:133-236.

B.F. Sherman [1983]. On sets with only odd secants in geometries over GF(4). J.
London Math. Soc., 27:539-551.
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1. Introduction. We discuss some recent interactions between representation
theory, algebraic geometry and algebraic combinatorics. Classically such an inter-
action involves:

• finite-dimensional representations of symmetric and general linear groups;
• geometry of flag varieties and Schubert varieties;
• combinatorics of Young tableaux and related algorithms such as the

Robinson-Schensted-Knuth correspondence.

More recent advances in representation theory such as Lusztig’s canonical
bases [14] and Kashiwara’s crystal bases [10] require new geometric and com-
binatorial tools. On the geometric side, an important role is played by quiver
representation varieties and totally positive varieties. On the combinatorial side,
the objects of interest become rational polyhedral convex cones and polytopes,
their lattice points, and their piecewise-linear transformations.

We illustrate this interplay with a particular piecewise-linear involution, the
multisegment duality. It was introduced in [20, 21] in the context of representa-
tions of general linear groups over a p-adic field. It also naturally appears in the
geometry of quiver representations, and in the study of canonical bases for quan-
tum groups. On the combinatorial side, it is closely related to Schützenberger’s
involution on Young tableaux [19], as demonstrated in [4]. In this talk, we give a
new combinatorial interpretation of the multisegment duality as an intertwining
map between two piecewise-linear actions of the Lascoux-Schützenberger plactic
monoid [12].
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2. Multisegment duality and quiver representations. We fix a positive
integer r and consider the set Σ = Σr of pairs of integers (i, j) such that 1 ≤
i ≤ j ≤ r. We regard a pair (i, j) ∈ Σ as a segment [i, j] := {i, i + 1, . . . , j}
in [1, r]. Note that Σ can be identified with the set of positive roots of type Ar:
each segment [i, j] corresponds to a root αi + αi+1 + · · · + αj , where α1, . . . , αr
are the simple roots of type Ar in the standard numeration. Let NΣ denote the
free abelian semigroup generated by Σ. We call its elements multisegments; they
are formal linear combinations m =

∑
(i,j)∈Σmij [i, j] with nonnegative integer

coefficients.
Our main object of study will be the multisegment duality involution ζ on NΣ.

Following [21], we define it in terms of quiver representations of the equidirected
quiver of type Ar . Such a representation is a collection of finite-dimensional vector
spaces V1, . . . , Vr (say overC) and linear maps Xk : Vk → Vk+1 for k = 1, . . . , r−1.
Morphisms between and direct sums of representations are defined in an obvious
way. As a special case of Gabriel’s classification [8], isomorphism classes of these
quiver representations are in natural bijection with NΣ. That is, the multisegment
m =

∑
mij [i, j] corresponds to the isomorphism class I(m) = ⊕mijIij , where

the indecomposable representations Iij are defined as follows: the space Vk in
Iij is one-dimensional for k ∈ [i, j], and zero otherwise, and Xk(Vk) = Vk+1 for
k ∈ [i, j − 1].

We also consider representations of the opposite quiver: such a representation
is a collection of finite-dimensional vector spaces V1, . . . , Vr and linear maps Yk :
Vk → Vk−1 for k = 2, . . . , r. The isomorphism classes of these representations
are also labeled by multisegments: now a multisegment m corresponds to the
isomorphism class Iop(m) = ⊕mijI

op
ij , where Iopij is obtained by reversing arrows

in Iij .
Now let (V ;X) be a quiver representation in the isomorphism class I(m).

Let Z(V ;X) be the variety of opposite quiver representations (V ;Y ) on the same
collection of vector spaces Vk such that Yk+1Xk = Xk−1Yk for k ∈ [1, r] (with
the convention that X0 = Xr = Y1 = Yr+1 = 0). It is easy to show that all
generic representations from Z(V ;X) belong to the same isomorphism class (here
“generic” means that, for any (i, j) ∈ Σ, the composition Yi+1 · · ·Yj : Vj → Vi has
the maximal possible rank). We define ζ(m) to be the multisegment corresponding
to a generic representation in Z(V ;X); that is, the isomorphism class of this
generic representation is Iop(ζ(m)). The definition readily implies that the map
ζ : NΣ→ NΣ is an involution.

3. Formula for the multisegment duality. We now present a closed for-
mula for ζ obtained in [11]. For (i, j) ∈ Σ, let Tij denote the set of all maps
ν : [1, i]× [j, r] → [i, j] such that ν(k, l) ≤ ν(k′, l′) whenever k ≤ k′ and l ≤ l′ (in
other words, ν is a morphism of posets, where [1, i] × [j, r] is supplied with the
product order). For any multisegment m =

∑
mij [i, j], we set

ρij(m) = minν∈Tij
∑

(k,l)∈[1,i]×[j,r]
mν(k,l)+k−i,ν(k,l)+l−j(1)

(with the understanding that ρij(m) = 0 for (i, j) /∈ Σ).

Documenta Mathematica · Extra Volume ICM 1998 · III · 409–417



Multisegment Duality, . . . 411

Theorem 1. For every multisegment m, the multisegment ζ(m) =
∑
m′ij [i, j] is

given by

m′ij = ρij(m)− ρi−1,j(m)− ρi,j+1(m) + ρi−1,j+1(m) .(2)

The function ρij(m) in (1) has the following meaning: it is the rank of the
map Yi+1 · · ·Yj : Vj → Vi for any quiver representation (V ;Y ) in the isomorphism
class Iop(ζ(m)).

The proof of Theorem 1 in [11] is elementary, using only linear algebra and
combinatorics. The main ingredients of the proof are: the “Max Flow = Min Cut”
theorem from the network flow theory [7], and the result of S. Poljak describing
the maximal possible rank for a given power of a matrix with a given pattern of
zeros [18].

4. Representation-theoretic connections. It was conjectured in [20, 21]
that the multisegment duality describes a natural duality operation acting on
irreducible smooth representations of general linear groups over p-adic fields. In
[17], this conjecture was reformulated in terms of representations of affine Hecke
algebras and then proved. We recall (see [17, I.2]) that the affine Hecke algebra
Hn can be defined as the associative algebra with unit over Q(q) generated by the
elements S1, . . . , Sn−1, X

±1
1 , . . . , X±1n subject to the relations:

(Si − q)(Si + 1) = 0, SiSi+1Si = Si+1SiSi+1,

XjXk = XkXj , SiXj = XjSi (j 6= i, i+ 1), SiXi+1Si = qXi.

As shown in [17] using the results of [20], irreducible finite-dimensional repre-
sentations of Hn are naturally indexed by multisegments m =

∑
mij [i, j] with∑

i,j(j+1−i)mij = n (here we have to take the multisegments supported on some

segment [a, b] ⊂ Z, not only on [1, r]). According to [17, Proposition I.7.3], the in-
volution ζ corresponds to the following involution on irreducible finite-dimensional
representations of Hn: π 7→ π ◦ϕ, where ϕ is the automorphism of Hn defined by

ϕ(Si) = −qS−1n−i, ϕ(Xj) = Xn+1−j.

(This result was extended from GLn to other reductive groups in [1].)
Another interpretation of ζ is in terms of quantum groups. Let Cq[N ] be

the q-deformation of the algebra of regular functions on the group N of unipotent
upper triangular (r+ 1)× (r+ 1) matrices (see, e.g., [4]). We recall that Cq[N ] is
an associative algebra with unit over Q(q) generated by the elements x1, . . . , xr
subject to the relations:

xixj = xjxi for |i− j| > 1,

x2i xj − (q + q−1)xixjxi + xjx
2
i = 0 for |i− j| = 1.

This algebra has a distinguished basis B, the dual canonical basis (it is dual to
Lusztig’s canonical basis constructed in [14]). It follows from the results in [14]
that B is invariant under the involutive antiautomorphism b 7→ b∗ of Cq[N ] such
that x∗i = xi for all i. As shown in [4], there exists a natural labeling m 7→ b(m)
of B by multisegments such that b(m)∗ = b(ζ(m)) for every m ∈ Σ.
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Recently in [13], a duality similar to the multisegment duality was introduced
and studied; it involves affine Hecke algebras at roots of unity, modular represen-
tations of the groups GLn over p-adic fields, and Kashiwara’s crystal bases for
affine Lie algebras.

5. Mœglin–Waldspurger rule. We now turn to a more detailed discussion of
combinatorial properties and connections of the multisegment duality ζ. We start
with a recursive description of ζ given in [17].

Take any nonzero multisegment m =
∑
(i,j)∈Σmij [i, j]. Let k be the minimal

index such that mkj 6= 0 for some j. Define the sequence of indices j1, j2, . . . , jp
as follows:

j1 = min {j : mkj 6= 0}, jt+1 = min {j : j > jt,mk+t,j 6= 0} (t = 1, . . . , p− 1) .

The sequence terminates when jp+1 does not exist: that is, when mk+p,j = 0 for
jp < j ≤ r. We associate to m the multisegment m′ given by

m′ =m+

p∑

t=1

([k + t, jt]− [k + t− 1, jt])(3)

(with the convention [i, j] = 0 unless 1 ≤ i ≤ j ≤ r). The Mœglin–Waldspurger
rule states that

ζ(m) = ζ(m′) + [k, k + p− 1] .(4)

Setting |m| :=
∑

(j + 1 − i)mij ∈ N, we see that |m′| = |m| − p < |m| for any
nonzero multisegment m; thus (4) (combined with ζ(0) = 0) indeed provides a
recursive description of ζ.

6. Relations with plactic monoid. We now give a new combinatorial in-
terpretation of the multisegment duality as an intertwining map between two
piecewise-linear actions of the Lascoux-Schützenberger plactic monoid [12]. Let
Plr denote the plactic monoid on r + 1 letters. By definition, Plr is an associa-
tive monoid with unit generated by r + 1 elements p1, p2, . . . , pr+1 subject to the
relations

pjpipk = pjpkpi, pipkpj = pkpipj (1 ≤ i < j < k ≤ r + 1) ,

pjpipj = p2jpi, pipjpi = pjp
2
i (1 ≤ i < j ≤ r + 1)

(sometimes called the Knuth relations). As shown by A. Lascoux and M.-P.
Schützenberger, this structure provides a natural algebraic framework for the study
of Young tableaux and symmetric polynomials.

We now define two right actions of Plr on NΣ, which we shall denote (m, p) 7→
m·p and (m, p) 7→m∗p, respectively. Given a multisegmentm =

∑
(i,j)∈Σmij [i, j]

and an index k ∈ [1, r + 1], the multisegments m · pk and m ∗ pk are defined as
follows.

To define m · pk, let j1, j2, . . . , jp be a sequence of indices given recursively as
follows:

j1 = k − 1, jt+1 = min {j : jt < j ≤ r, mtj > 0} (t = 1, . . . , p− 1) .
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The sequence terminates when the set under the minimum sign becomes empty:
that is, when mpj = 0 for jp < j ≤ r. Now we set

m · pk =m+

p∑

t=1

([t, jt]− [t− 1, jt]) .(5)

To definem∗pk, we construct recursively two sequences of indices c0, c1, . . . , cp
and i1, i2, . . . , ip+1:

c0 = r, i1 = k; ct = max
(
{c : 0 ≤ c < ct−1, mit,it+c > 0} ∪ {−1}

)
,

it+1 = max
(
{i : 1 ≤ i < it, mi,i+ct = 0} ∪ {0}

)
(t = 1, . . . , p) .

The process terminates when ip+1 = 0. Now we define

m ∗ pk =m+

p∑

t=1

∑

it+1<i≤it
([i− 1, i+ ct]− [i, i+ ct]) .(6)

Theorem 2. (a) Each of the correspondences given by (5) and (6) extends by
associativity to a right action of Plr on NΣ.
(b) Each of the two actions in (a) is transitive: i.e., for every two multisegments
m1 and m2, there exist p, p

′ ∈ Plr such that m2 =m1 · p =m1 ∗ p′.
(c) The multisegment duality ζ intertwines the two actions: ζ(m · p) = ζ(m) ∗ p
for any multisegment m and any p ∈ Plr.

In view of part (b), ζ is uniquely determined by the intertwining property (c)
combined with the normalization ζ(0) = 0. The following proposition, a direct
consequence of the definitions, shows that the Mœglin–Waldspurger rule (4) is a
special case of Theorem 2 (c).

Proposition 3. Let m be a nonzero multisegment. Suppose k is the minimal
index such that mkj 6= 0 for some j, and l is the maximal index such that mkl 6= 0.
Then m · (pkpk−1 · · · p1) is the multisegment m′ in (3), while m∗ (pkpk−1 · · · p1) =
m− [k, l].

The idea to relate the multisegment duality with the plactic monoid was
suggested to the author by M.-P. Schützenberger during the author’s visit to Uni-
versité de Marne-la-Vallée in May-June 1994. Theorem 2 was proved soon after,
but never published.

7. Schützenberger involution. Let us now explore the relation between the
multisegment duality and the Schützenberger involution on Young tableaux. We
need some terminology and notation related to tableaux. Let λ = (λ1 ≥ · · · ≥
λr ≥ 0) be a partition of length ≤ r. We identify λ with its diagram (denoted by
the same letter)

λ = {(i, j) ∈ Z× Z : 1 ≤ i ≤ r, 1 ≤ j ≤ λi} .
An Ar-tableau of shape λ is a map τ : λ→ [1, r + 1] satisfying

τ(i, j + 1) ≥ τ(i, j), τ(i+ 1, j) > τ(i, j)

for all (i, j) ∈ λ (with the convention that τ(i, j) = +∞ for i > r or j > λi). The
Schützenberger involution τ 7→ η(τ) (also known as the evacuation involution) is
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an involution on the set of Ar-tableaux of shape λ which can be defined recursively
as follows (cf. [19]).

To any Ar-tableau τ of shape λ we associate a sequence of entries
(i1, j1), . . . , (ip, jp) ∈ λ in the following way. We set (i1, j1) = (1, 1) and

(it+1, jt+1) =

{
(it, jt + 1) if τ(it, jt + 1) < τ(it + 1, jt) ;

(it + 1, jt) if τ(it, jt + 1) ≥ τ(it + 1, jt) .

The sequence terminates at a corner point (ip, jp) ∈ λ, i.e., when none of (ip+1, jp)
and (ip, jp+1) belong to λ. Now we set λ′ = λ−{(ip, jp)} and consider the tableau
τ ′ of shape λ′ obtained from τ by changing the values at (i1, j1), . . . , (ip−1, jp−1)
according to τ ′(it, jt) = τ(it+1, jt+1). The tableau η(τ) is defined recursively
as the tableau η(τ ′) of shape λ′ extended to a tableau of shape λ by setting
η(τ)(ip, jp) = r + 2− τ(1, 1).

There are (at least) two natural ways to encode tableaux by multisegments:
to each tableau τ : λ → [1, r + 1] we associate two multisegments ∂(τ) and ∂′(τ)
given by

∂(τ)ij = #{s : τ(i, s) = j + 1}, ∂′(τ)ij = #{s : τ(i, s) ≤ j, τ(i+ 1, s) ≥ j + 2} .
For a given shape λ, a tableau τ is uniquely recovered from each of the multiseg-
ments ∂(τ) and ∂′(τ). More precisely, the correspondence τ 7→ ∂(τ) is a bijection
between the set of all Ar-tableaux of shape λ and the set of multisegments m
satisfying

r∑

k=j

(mi,k −mi+1,k+1) ≤ λi − λi+1 (1 ≤ i ≤ j ≤ r) ;

and the multisegments m = ∂(τ) and m′ = ∂′(τ) are related as follows:

m′ij = λi − λi+1 −
r∑

k=j

(mi,k −mi+1,k+1) ;

mij = λr−j+i − λr−j+i+1 −
r∑

k=j

(m′k−j+i,k −m′k−j+i,k+1) .

The relationship between the Schützenberger involution η and the multiseg-
ment duality ζ is now given as follows.

Theorem 4. For every tableau τ , the multisegment ∂′(η(τ)) is obtained from
ζ(∂(τ)) by the following permutation of indices: ∂′(η(τ))j−i+1,r−i+1 = ζ(∂(τ))ij .

Theorem 4 was formulated in [11] and proved in [4]; the proof uses some
properties of canonical bases, and an equivalent definition of the Schützenberger
involution in terms of the so-called Bender-Knuth operators (this definition is due
to Gansner [9]).

8. Lusztig’s transition maps and total positivity. We now show that the
multisegment duality is a special case of Lusztig’s piecewise-linear transition maps
between various parametrizations of the (dual) canonical basis B. This will require
some terminology.
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Recall that Σ = Σr stands for the set of all segments [i, j] ⊂ [1, r]. We say
that a triple of distinct segments is dependent if one of these segments is the
disjoint union of two remaining ones; the largest segment in a dependent triple
will be called the support of the triple, and two remaining ones the summands. Let
ν = (ν1, . . . , νm) be a total ordering of Σ; here m = r(r + 1)/2, the cardinality of
Σ. We say that ν is normal if the support of every dependent triple of segments lies
between its summands. The bijection between segments and positive roots given
in Section 2 identifies normal orderings of Σ with the well-known normal orderings
of positive roots; thus normal orderings are in natural bijection with reduced
words for w0, the longest permutation in the symmetric group Sr+1 (see e.g., [3,
Proposition 2.3.1]). Two examples: in the lexicographic normal ordering νmin a
segment [i, j] precedes [i′, j′] if i < i′ or i = i′, j < j′; the reverse lexicographic
normal ordering νmax is obtained from νmin by replacing each segment [i, j] with
[r + 1− j, r + 1− i].

Now consider the dual canonical basis B in Cq[N ] (see Section 4). Translating
results of [15, 16] (see also [3]) into the language of segments, we see that every
normal ordering ν of Σ gives rise to a bijective parametrization bν : NΣ→ B. (In
particular, bνmin is the parametrization m → b(m) discussed in Section 4.) For
any two normal orderings ν and ν′, Lusztig’s transition map between ν and ν′ is
a bijection Rν

′
ν of NΣ onto itself given by

Rν
′

ν = b−1ν′ ◦ bν .(7)

The multisegment duality turns out to be one of these maps (see [3, Theorem 4.2.2
and Remark 4.2.3]):

ζ = Rνmaxνmin .(8)

In [3], closed formulas for the transition maps Rν
′
ν were obtained using a

parallelism discovered by Lusztig [16] between canonical bases and total positivity.
In particular, a new proof of Theorem 1 was obtained. We conclude with a brief
discussion of the ideas and methods used in [3].

Clearly, the set of all normal orderings of Σ is closed under the following
elementary moves:

2-move. In a normal ordering ν, interchange two consecutive (with respect to
ν) segments provided they do not belong to a dependent triple.

3-move. Interchange the summands of a dependent triple that occupies three
consecutive positions in ν.

As a consequence of the corresponding well-known property of reduced words,
every two normal orderings of Σ can be obtained from each other by a sequence
of 2- and 3-moves. It follows that every transition map can be expressed as a
composition of “elementary” transition maps Rν

′
ν for pairs (ν, ν′) related by a 2-

or 3-move. These elementary transition maps were computed by Lusztig in [15].
Translated into the language of multisegments they take the following form:

• if ν and ν′ are related by a 2-move then Rν
′
ν is the identity map;

• if ν′ is obtained from ν by a 3-move

· · ·α, α ∪ β, β · · · → · · ·β, α ∪ β, α · · ·
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then the only components of the multisegment m′ = Rν
′
ν (m) different from

the corresponding components of m are

m′α = mα +mα∪β −min (mα,mβ), m′α∪β = min (mα,mβ) ,

m′β = mβ +mα∪β −min (mα,mβ) .
(9)

The key observation now is as follows: the piecewise-linear expressions that
appear in (9) can be interpreted as rational expressions if one uses an exotic “semi-
field” structure on Z, where the usual addition plays the role of multiplication,
and taking the minimum plays the role of addition. The semifield (Z,min,+) is
known under various names. We use the term tropical semifield, which we learned
from M.-P. Schützenberger. A detailed study of its algebraic properties, along
with numerous applications, can be found in [2].

The “rational” version of (9) takes the form

m′α =
mαmα∪β
mα +mβ

, m′α∪β = mα +mβ, m
′
β =

mβmα∪β
mα +mβ

.(10)

We use this version to define rational transition maps Rν
′
ν : R>0Σ → R>0Σ;

here the components mij of multisegments can be any positive real numbers, and
the algebraic operations in (10) are understood in the most common sense. It

is not hard to show that a closed formula for some rational transition map Rν
′
ν

would imply such a formula for the corresponding piecewise-linear transition map,
by simply translating it into the tropical language; the only caveat is that the
formula in question must be subtraction-free because the tropical structure does
not allow subtraction.

This is precisely the method used in [3]. To compute rational transition maps,
we use the observation (due to Lusztig) that they have another interpretation par-
allel to that in (7). Namely, they describe the relationships between different
parametrizations of the variety N>0 of all totally positive unipotent upper trian-
gular matrices (recall that a matrix x ∈ N is totally positive if all the minors that
do not identically vanish on N take positive values at x). We refer the reader to
[3] for the details; let us only mention that the computations in [3] are based on
algebraic and geometric study of totally positive varieties. This study is put into
a much more general context in [5, 6].
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Worst-Case Complexity,Average-Case Complexity and Lattice Problems
Miklós Ajtai

Abstract. There is a need both from a theoretical and from a practical
point of view to create computational problems (in NP) that are hard
(that is, they have no polynomial time solutions). Currently there are
no methods to prove that such problemx exist at all. We may assume
however as an axiom, that certain problems are hard, where the choice
of the problems may have historical or theoretical motivations. These
problems however are usually worst-case problems, while, e.g. for cryp-
tographic application, we need hard average-case problems. In this paper
we desrcibe two different average-case problems, and their cryptographic
applications, which are at least as difficult as some well-known worst-case
problems concerning lattices.

1991 Mathematics Subject Classification: lattice, worst-case, average-
case, complexity, basis, shortest vector 68Q15
Keywords and Phrases: lattice, worst-case, average-case, complexity, ba-
sis, shortest vector

1. Introduction. The goal of complexity theory is to describe the necessary
resources, in terms of time, memory etc. for the solutions of computational prob-
lems. For cryptographic applications it would be particularly important to know
that certain problems (e.g. finding the prime factors of a large integer) cannot
be solved in a reasonable amount of time. (In fact the popular RSA public-key
cryptosystem is based on that assumption.) Unfortunately we do not have yet
any results of this type. Still we may get some information about the (relative)
hardness of such problems if we accept as an axiom the hardness of a well-known
computational problem which was attacked for a long time by many mathemati-
cians without success (that is, we accept that there is no polynomial time solution
of the problem in the size of the input) and prove from this axiom the hardness of
other problems or the security of a cryptographic protocol. E.g. factoring integers,
finding the discrete logarithm can be such problems.

Another similar solution would be to accept as an axiom that there is a
problem in NP (that is a problem where the correctness of a proposed solution
can be checked in polynomial time) which has no polynomial time solution. This
is the famous P 6= NP conjecture. There are known problems (namely each NP -
complete problem) whose hardness follows from this assumption. E.g. “find a
Hamilton-cycle in a given graph” is an NP -complete problem.
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Unfortunately these methods (either we choose the hardness of a famous prob-
lem or an NP -complete problem as an axiom) has an inherent limitation. The
problems in both categories are so-called worst-case problems. That is, they are
hard in the sense that finding a solution is assumed to be difficult only for some
unknown values of the input and can be very easy for other values. E.g. there are
integers whose factors are very easy to find. For cryptographic applications we
have to present a hard instance of the problem, that is, a particular input where
the solution cannot be found easily. The practical solution in the case of factoring
e.g. is to pick the integer as the product of two random primes with some ad-
ditional constraint to make sure that factoring is not made easier by the specific
structure of the prime factors. That is, we use an average-case problem instead of
a worst-case problem. We assume now that this problem whose input is chosen
at random is difficult on the average (or for almost all choice of the input). We
gave up however our original requirement namely that we use only simply stated
and well-studied problems. The algorithmic theory of average-case problems are
ususally only a few decades long, while the history of certain worst-case problems
go back for hundreds of years. The statement of an average-case problem is also
generally less clear-cut because of the many possible choices of the parameters
involved in the randomization. In the case of the Hamilton cycle problem it is not
even clear what would be a good randomization.

There is however a possiblitiy which unites the advantages of the two (worst-
case average-case) methods. Namely we need an average-case problem which is
just as difficult as a well-known worst-case problem. There are two different worst-
case problems concerning short vectors for lattices which has been used recently
in this way to create average-case problems which are at least as difficult as the
original worst-case problems and can be used for various cryptographic purposes.
It is important that individual random instances of these average-case problems
can be created together with a known solution. To formulate these problems we
need some basic defintions about lattices.

A lattice is a subset of the n-dimensional spaceRn over the reals which consist
of the integer linear combinations of n fixed linerly independent vectors. Such a set
of vectors will be called a basis of the lattice. The history of finding short vectors
in lattices goes back to the works of Gauss and Dirichlet. With the fundamental
results of Minkowski about a hundred years ago the theory of lattices became a
separate branch of number theory with a huge literature. Finding short vectors
in a lattice (in various possible senses) was always one of the main goals of this
theory. (The reader may find more information about lattices e.g. in [6] and [11].
The more modern algorithmic theory of lattices is described in [12].)

The two mentioned worst-case problems are the following:

(P1) Find a basis b1, ..., bn in the n-dimensional lattice L whose length, defined
as maxni=1 ‖bi‖, is the smallest possible up to a factor of nc, where c is constant.
(P2) Find the shortest nonzero vector in an n dimensional lattice L where the
shortest vector v is unique in the sense that any other vector whose length is at
most nc‖v‖ is parallel to v, where c is a sufficiently large absolute constant.

Problem (P1) is equivalent to the problem of finding a single vector shorter
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than a given number in a class of randomly generated lattices, with a positive
probability (see Ajtai [2]). Therefore finding a short vector in a random lattice is
just as difficult (with high probability) as finding a short basis in the worst-case.
This random construction also gives a one-way function which leads to some cryp-
tographic tools like pseudo-random number generators. A different cryptographic
application namely a collision-free hash function were given by Goldreich, Gold-
wasser and Halevi in [9] . Problem (P2) is somewhat weaker than Problem (P1),
but it seems to be more easily applicable for cryptographic protocols, e.g. its hard-
ness guarantees the security of a public-key cryptosystem (see Ajtai and Dwork
[4]). Another completely different public-key cryptosystem based on the hardness
of lattice problems (without worst-case average-case connection) was proposed by
Goldreich, Goldwasser and Halevi (see [10]).

2. The construction of a random lattice. In this section we describe a way
to generate random n-dimensional lattices so that, if we can find, with a positive
probablitiy and in polynomial time a short vector in the random lattice Λ (where
the probability is taken for the generation of Λ), then the worst-case problems
(P1) and (P2) can be solved in polynomial time. (This assumption also implies
that it ia possible to approximate the length of the shortest vector in an arbitrary
lattice up to a polynomial factor in polynomial time. This is, again a worst-case
problem.) The proofs of the results described in this section can be found in [2].

The definition of the random class. The definition of the lattices will depend
on a parameter n. n can be any positive integer. (The meaning of n is the following:
if it is possible to find a short vector easily in the random lattice generated with
parameter n, then the n dimensional worst-case problem (P1) have a polynomial
time solution.) The dimension of the random lattice will be somewhat larger, about
cn logn for some constant c. The lattices in the random class will be subsets of
Zm, that is, they will contain only vectors with integer coordinates. (m will be
defined later as a function of n). We will fix an integer q as well (it will be also
a function of n) and the lattices will be defined in a way that the fact whether
a vector belongs to the lattice or not will depend only on the modulo q residue
classes of its coordinates.

Assume that the positive integers n,m and q are fixed, for the moment in an
arbitrary way, and ν = 〈u1, ..., um〉 where u1, ..., um ∈ Zn is an arbitrary sequence
of length m from the elements of Zn. We define a latice Λ(ν, q) in the following
way: Λ(ν, q) will consist of all sequences 〈h1, ..., hm〉 of integers of length m with
the property:

∑m
i=1 hiui ≡ 0 (mod q).

Our definition of the random class will depend on the choice of two absolute
constant c1 and c2. Assume that n is fixed let m = [c1n logn] and q = [nc2 ]. For
each n we will give a single random variable λ so that Λ = Λ(λ, q) is a lattice
with dimension m. (The existence of a polynomial time algorithm which finds a
short vector in Λ will imply the existence of such an algorithm which solves the
mentioned problems in every lattice L ⊆ Rn.)

First we define an “idealized” version λ′ of λ, which we can define in a simpler

Documenta Mathematica · Extra Volume ICM 1998 · III · 421–428



424 Miklós Ajtai

way. The disadvantage of λ′ is that we do not know how to generate λ′ together
with short vector in Λ(λ′, q). Then we define λ (in a somewhat more complicated
way) so that we can generate it together with a short vector in Λ(λ, q) and we will
also have that P (λ 6= λ′) is exponentially small. This last inequality implies that
if we prove our theorem for Λ(λ′, q) then it will automatically hold for Λ(λ, q) too.

Let λ′ = 〈v1, ..., vm〉 where v1, ..., vm are chosen independently and with uni-
form distribution from the set of all vectors 〈x1, ..., xn〉 where x1, ..., xn are integers
and 0 ≤ xi < q. To find a short vector in the lattice Λ(λ′, q) is equivalent of finding
a solution for a linear simultaneous Diophantine approximation problem. Dirich-
let’s theorem implies that if c1 is sufficiently large with respect to c2 then there
is always a vector shorter than n. (The proof of Dirichlet’s theorem is not con-
structive, it is based on the Pigeonhole Principle applied to a set of exponential
size.)

Definition of λ. We randomize the vectors v1, ..., vm−1 independently and with
uniform distribution on the set of all vectors 〈x1, ..., xn〉 ∈ Zn, with 0 ≤ xi < q.
Independently of this randomization we also randomize a 0, 1-sequence δ1, ..., δm−1
where the numbers δi are chosen independently and with uniform distribution
from {0, 1}. We define vm by vm ≡ −

∑m−1
i=1 δivi (mod q) with the additional

constraint that every component of vm is an integer in the interval [0, q − 1]. Let
λ = 〈v1, ..., vm〉. (If we want to emphasize the dependence of λ on n, c1, c2 then we
will write λn,c1,c2 .) It is possible to prove that the distribution of λ is exponentially
close to the uniform distribution in the sense that

∑
a∈A |P (λ = a)−|A|−1| ≤ 2−cn,

where A is the set of possible values of λ. This will imply that the random
variable λ′ with the given distribution can be chosen in a way that P (λ′ 6= λ) is
exponentially small.

With this definition our theorem will be formulated in the following way: “if
there is an algorithm which finds a short vector in Λ(λ, q) given λ as an input, then
etc.” That is, we allow the algorithm whose existence is assumed in the theorem
to use λ.

Definitions. 1. If v is a shortest nonzero vector in the lattice L ⊆ Rn, and
α > 1, we say that v is α-unique if for any w ∈ L, ‖w‖ ≤ α‖v‖ implies that v and
w are parallel.

2. If k is an integer then size(k) will denote the number of bits in the
binary representation of k, (size(0) = 1). If v = 〈x1, ..., xn〉 ∈ Zn then
size(v) =

∑n
i=1 size(xi). Our definition implies that for all v ∈ Zn, size(v) ≥ n.

Theorem . There are absolute constants c1, c2, c3 so that the following holds.
Suppose that there is a probabilistic polynomial time algorithm A which given a
value of the random variable λn,c1,c2 as an input, with a probability of at least
1/2 outputs a vector of Λ(λn,c1,c2 , [n

c2 ]) of length at most n. Then, there is a
probabilistic algorithm B with the following properties. If the linearly independent
vectors a1, ..., an ∈ Zn are given as an input, then B, in time polynomial in σ =∑n
i=1 size(ai), gives the outputs z, u, 〈d1, ..., dn〉 so that, with a probability of

greater than 1− 2−σ, the following three requirements are met:

(1.1) if v is a shortest non-zero vector in L(a1, ..., an) then z ≤ ‖v‖ ≤ nc3z
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(1.2) if v is an nc3-unique shortest nonzero vector in L(a1, ..., an) then u = v or
u = −v
(1.3) d1, ..., dn is a basis with maxni=1 ‖di‖ ≤ nc3bl(L).

Remarks. 1. The probability 1/2 in the assumption about A can be replaced
by n−c. This will increase the running time of B by a factor of at most nc but
does not affect the constants c1, c2 and c3.

2. If we assume that A produces a vector of length at most nc
′

for some c′ > 1
then the theorem remains true but c1, c2 and c3 will depend on c′.

3. A public-key cryptosystem. The following public-key cryptosystem was
constructed by Ajtai and Dwork (see [4]). It is secure if problem (P2) has no
polynomial time solution. Here we give only a very high level and somewhat
simplified description of the cryptosystem and its mathematical background, and
we refer the reader to [4] for the exact definitions and proofs.

A public cryptosystem serves an unlimited number of participants. Each of
them publishes a public key and keeps a private key. The public key is available
for everybody, but the private key is known only for its owner. Assume now that
Alice wants to send a message to Bob, who published a public key. (We do not
assume that Alice has a public or private key.) Alice, gets Bob’s public key from a
directory available for everybody. Then, using Bob’s private key, she encodes the
message and sends it to Bob through an open channel. Bob using his private key
is able to decode the message, but without this private key the message cannot be
decoded.

The RSA public key cryptosystem (see [14]) for example, fulfils this require-
ment, provided that each participant B can find a positive integer mB = pBqB
where pB, qB are primes known to B, but nobody else in the knowledge of the
number nB alone is able to find the primes pB, qB. Since there is no known fac-
toring algorithm which can factor in a reasonable amount of time a number n
with several hundred digits we may think that the assumption is justified. No-
tice however that the fact that there is no such algorithm implies only that if B
would be able to find the worst possible number nB then his private key would be
safe. However Bob has no way of knowing which is the “worst” number nB. In
practice the pair pX , qX is generated at random with some care of avoiding such
pairs where the factoring of pBqB can be easy. Therefore the assumption used in
practice is that a certain (rather complicated) average-case problem is hard (with
high probability).

In the cryptosystem described below the assumption is the hardness of the
worst-case problem (P2). Still it is proved that this assumption implies that with
a probability very close to one not a single message can be broken without acces
to the private key.

The private key of Bob will be a sequence of equidistant n − 1 dimensional
hyperplanes in the n dimensional real space Rn. More precisely, Bob picks a
random vector uB with uniform distribution from the n dimensional unit ball and
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this vector uB is his private key. For each integer k the set of all x ∈ Rn whose
inner product with uB is k forms a hyperplane Hk. The sequence 〈Hi〉 is the
sequence of hyperplanes mentioned at the beginning. Of course Bob has only the
vector uB, we mentioned the hyperplanes only to make it easier to visualize the
steps in the protocol.

The public key will be a sequence of vectors v1, ..., vm, where m = nc3 , that
Bob picks at random close to the hyperplanes. More precisely assume that Q is
a large cube and U is the union of the hyperplanes Hi. Bob first picks vectors
v′1, ..., v

′
m independently and with uniform distribution from Q ∩ U (with respect

to the n − 1 dimensional Lebesgue measure). Then Bob perturbs these vectors
sightly at random so that they remain close to the hyperplanes. (Their distance
to the closest hyperplane remains smaller than, say, n−8.) The perturbed vectors
are v1, ..., vm.

It is possible to prove (assuming that (P2) has no polynomial time solution)
that the sequence v1, .., vm is computationally indistinguishable from a sequence of
length m whose elements are picked independently and with uniform distribution
from the cube Q. Therefore by making the public key available for anybody, Bob
did not give out any information about the hyperplanes.

Knowing the public key Alice is able to generate a sequence of independent
random points x1, ..., xi, ... ∈ Rn with identical distributions and with the following
properties:

(1) with high probability xi is very close to a hypeprlane Hk, more precisely
if the distance of neighboring hyperplanes is M then there is a hyperplane Hk so
that the distance of xi and Hk is smaller than M

n5 .
(2) the distribution of xi is computationally indistinguishable in polynomial

time, form the uniform distribution on a parallelepiped P , where P can be com-
puted from the public key, so it is known to everybody.

(This last property will be a consequence of the hardness of problem (P2).)

For the moment we accept that Alice has a way of generating such a distri-
bution. Assume now that Alice wants to send a single bit δ to Bob. If δ = 0
then Alice picks a random point y with uniform distribution on the set P , and
sends y as the message. If δ = 1 then Alice generates a random point x with the
distribution of the points xi, from the P and sends x as the message.

Suppose that Bob gets a message z. z is an n-dimensional vector in P . Bob
computes the inner product α = z · uB. If α is close to an integer (say closer than
1
n4 ) then Bob knows z is close to a hyperplane therefore he concludes that δ = 1.
If the distance of α from the closest integer is greater than 1

n4 , then Bob concludes
that δ = 0. (There is a small probability, about 1

n4 , that Bob makes the wrong
decision.)

Finally we sketch how can Alice generate the points xi with the required
properties. P will be a parallelepiped determined by n vectors from the sequence
v1, ..., vm, so that the parallelepiped is relatively “fat”, that is, the minimal dis-
tance between its opposite sides is not too small with respect to the length of a
side of Q. (Larger then, say, n−2 times this length.) P may be the first such par-
allelpiped with this property or Bob can designate a parallelepiped in the public
key. With a very high probability such a parallelepiped always exists. Assume
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that P is the parallelepiped determined by the vectors vi1 , ..., vin
Alice takes a random 0, 1 linear combination w of the vectors v1, ..., vm, then

reduces it to the parallelepiped P modulo vi1 , ..., vin . In other words she adds an
integer linear combination of the vectors vi1 , ..., vin to the vector w so that the
sum x is in P . x has a distribution with the required properties.

4. The NP-hardness of the shortest vector problem. We cannot prove
from any reasonable assumption from complexity theory (like P 6= NP ) that the
problems (P1) or (P2) are hard. Actually it is unlikely that Problem (P2) is NP-
hard for c > 1

2 since it would lead to a collapse in the computational hierarchy (see
Goldreich and Goldwasser [8]). However if we drop the uniqueness requirement
from the problem, that is, we want to find the shortest vector (under the Euclidean
norm) then the problem is NP -hard at least for randomized reductions (see Ajtai
[3]). The proof of this result uses lattices constructed from logarithms of small
primes. This type of lattice construction was originally used by Adleman ([1]) to
reduce factoring to the shortest vector problem (for the proof of correctness he
used number theoretical conjectures about the distribution of smooth numbers.)
The proof of the NP-hardness result also has a combinatorial part which is a
constructive/probabilistic version of Sauer’s Lemma (related to the concept VC
dimension). This is the most difficult part of the proof.

The NP-hardness of the shortest vector problem was conjectured by Van Emde
Boas almost twenty years ago (see [5]). He proved the analogue statement for the
L∞ norm (for deterministic reductions). The shortest vector problem in L2 is NP-
hard even in some approximate sense. Micciancio has proved recently, that the
problem “find a vector which is longer than the shortest vector only by a constant
factor c, where c < n

1
2 ” is NP -hard (see [13]). (The original proof in [3] gave only a

factor 1+2−n
ǫ

which was improved first by Cai and Nerurkar (see [7] ) to 1+n−ǫ.)
Micciancio also proved that the NP -hardness of the shortest vector problem for
deterministic reductions follows from a natural number theoretic conjecture about
the existence of square-free smooth numbers in long enough intervals.
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1 Introduction

Game theory provides a framework in which to model and analyze conflict and
cooperation among independent decision makers. Many areas of computer science
have benefitted from this framework, including artificial intelligence, distributed
computing, security and privacy, and lower bounds. Games are particularly impor-
tant in computational complexity, where they are used to characterize complexity
classes, to understand the power and limitations of those classes, and to interpret
the complete problems for those classes.

This paper surveys three sets of results in the interplay of games and com-
plexity. First, we present several characterizations (some old, some new) of the
complexity class PSPACE that show that it is extremely robustly characterized by
zero-sum, perfect-information, polynomial-depth games. Next, we explain how the
more recent of these characterizations of PSPACE are used to show that certain
natural maximization and minimization functions, drawn from domains such as
propositional logic, graph searching, graph reliability, and stochastic optimization,
are as hard to approximate closely as they are to compute exactly. Finally, we
present some connections between complexity classes and imperfect information
games; some tight characterizations of exponential-time classes are known, but no
set of imperfect-information games is as robustly identified with any complexity
class as zero-sum, perfect-information, polynomial-depth games are with PSPACE.

We assume familiarity with basic computational complexity theory, especially
with the complexity classes P, NP, PSPACE, EXP, and NEXP, with the notions
of reduction and completeness, and with the concept of an “approximation algo-
rithm” for an NP-hard or PSPACE-hard optimization function. Among the books
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that cover this material and are accessible to all mathematically educated readers
are those by Garey and Johnson [10] and Papadimitriou [16]. We also assume
familiarity with elementary game theory, in particular with the notions of “perfect
information” and “perfect recall.” The few game-theoretic notions that we use are
defined precisely in, e.g., [9]

2 Alternation and Randomized Players

Chandra et al. [5] proved a fundamental result about the connection between games
and complexity that serves as the starting point for most of the results surveyed
in this paper. In the Alternating Polynomial Time computational model, there
are two computationally unbounded players P1 and P0 and a polynomial-time
referee V . There is an input string x written on a common tape readable by P1,
P0, and V , and the goal of the computation is to determine whether x is in the
language L. P1 claims that x ∈ L, and P0 claims that x 6∈ L. They “argue”
for polynomially many rounds, and then V decides who’s right. More precisely,
there are two functions m and l such that, on inputs x of length n, P1 and P0 take
turns for m(n) rounds (P1 moving in odd rounds and P0 in even rounds), writing a
string of length l(n) in each round. Both m(n) and l(n) are polynomially bounded
(abbreviated poly(n)). After the entire “game transcript” of length m(n) · l(n)
has been written, V reads it, does a polynomial-time computation, and outputs
“ACCEPT” or “REJECT,” depending on whether it thinks the winner is P1 or P0.
For (P1, P0, V ) to be an Alternating Polynomial Time machine for the language
L, it must have the property that, if x ∈ L, V always outputs ACCEPT (i.e.,, P1
has a winning strategy), and, if x 6∈ L, V always outputs REJECT (i.e.,, P0 has a
winning strategy). The fundamental result of Chandra et al. [5] is that Alternating
Polynomial Time is equal to PSPACE: Languages that correspond to zero-sum,
perfect-information, polynomial-depth games are exactly those recognizable by
Turing Machines that use polynomial space.

The fundamental correspondence between PSPACE and perfect-information
games is clearly illustrated by the well-known PSPACE-complete language of
true quantified Boolean formulas. Consider quantified Boolean formulas in 3CNF
(“three conjunctive normal form”); that is, those of the form

Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn),

where eachQi ∈ {∃,∀}, each xi is a Boolean variable, and φ is a formula in conjunc-
tive normal form, each clause of which has exactly three literals. Let Q3SAT be
the set of true quantified formulas in 3CNF. To obtain a perfect-information game,
let the variables of the formula be chosen by P1 and P0, in order of quantification,
where P0 chooses the universally quantified variables and P1 chooses the existen-
tially quantified variables. By definition, the formula is true (i.e., in Q3SAT) if
and only if P1 has a winning strategy for this game. The classical paper of Schae-
fer [18] provides many more examples of PSPACE-complete perfect-information
games.

Papadimitriou [17] considers an interesting variation on the Alternating Poly-
nomial Time model. In a “Game Against Nature,” the input x is still given to P1,
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who claims that x ∈ L, to P0, who claims that x 6∈ L, and to the polynomial-time
referee V . However, P0 is now a “random” player; in even-numbered moves of the
game, P0 just tosses fair coins to select a string of the appropriate length uniformly
at random. Thus, instead of playing against a strategic opponent, P1 is playing
against “nature.” If P1 is truthful in his claim that x ∈ L, then V must accept with
probability at least 1/2. If x 6∈ L, then V must accept with probability less than
1/2. (The probability is computed over the coin tosses of P0.) The main result
of [17] is that Games Against Nature recognize exactly the languages in PSPACE
– or, at least for perfect-information, polynomial-depth games, playing against
“nature” is just as hard for P1 as playing against an evenly-matched opponent!

Babai and Moran [3] consider “Arthur-Merlin Games.” These are defined in
the same way as Games Against Nature, except that there must be a “gap” in
acceptance probabilities: If x ∈ L, then V must accept with probability at least
2/3, and, if x 6∈ L, then V must accept with probability at most 1/3. One of the
most highly acclaimed results in computational complexity theory, proved by Lund
et al. [14] and Shamir [19], is that the (seemingly very stringent) requirement of
this (1/3, 2/3) gap does not change the class of languages accepted: poly(n)-round
Arthur-Merlin Games also recognize exactly PSPACE.

3 Probabilistically Checkable Debate Systems

In the Alternating Polynomial Time, Games Against Nature, and Arthur-Merlin
Game models, the referee reads the entire transcript of a played game before
deciding the winner. In this Section, we consider models in which the referee
reads only a randomly selected subset of the game transcript but can still decide
the winner correctly, because the players encode their moves in a clever way that
makes refereeing easy. The results obtained are the PSPACE analogue of the
probabilistically checkable proof system theory developed for NP (see, e.g., [1, 20]).

A probabilistically checkable debate system (PCDS) for a language L consists
of a player P1, who claims that the input x is in L, a player P0, who claims that
x is not in L, and a probabilistic polynomial-time referee V . The language L is in
the complexity class PCD(r(n), q(n)) if V flips at most O(r(n)) coins on inputs x
of length n and reads at most O(q(n)) bits of the game transcript produced by P1
and P0. On inputs x ∈ L, V always declares P1 to be the winner, and on inputs
x 6∈ L, V declares P0 to be the winner with probability at least 2/3. An RPCDS is
a PCDS in which player P0 follows a very simple strategy: In each even round of
the game, P0 simply chooses uniformly at random from the set of all legal moves.
The class RPCD(r(n), q(n)) is defined by analogy with PCD(r(n), q(n)).

The characterizations of PSPACE presented in Section 2 are those in which
r(n) = 0 and q(n) is an arbitrary polynomial. Specifically, Alternating Polynomial
Time is, by definition, PCD(0, poly(n)), and poly(n)-round Arthur-Merlin Games
are RPCD(0, poly(n)).

Condon et al. [6, 7] study the potential tradeoff between random bits and
query bits. If the referee V is allowed to flip coins, might it still be able to determine
the winner of the game without reading the entire transcript? The results in [6, 7]
show that, as in the PCP characterization of NP, the best possible tradeoff between
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r(n) and q(n) is obtainable. Furthermore, this tradeoff is obtainable both when
the opponents are two strategic players (a PCDS) and when they are a strategic
player and a random player (an RPCDS). Specifically, it is shown in [6, 7] that

PSPACE = PCD(logn, 1) = RPCD(log n, 1).

One surprising aspect of these results is that, while the number of rounds of
the game is poly(n), the number of bits of the game examined by the referee is
O(1). Thus, most of the moves of both players are never looked at, and yet the
referee still decides the winner correctly. In order to encode games to permit such
efficient refereeing, Condon et al. [6, 7] exploit and extend the probabilistically
checkable coding techniques developed in the PCP characterization of NP [1, 20],

In conclusion, the results of [5, 6, 7, 14, 17, 19] demonstrate that the identifica-
tion of PSPACE with zero-sum, perfection-information, polynomial-depth games
is extremely robust. Numerous variations on the computational model of a game
between two strategic players that is judged after it is played by a polynomial-
time referee have been studied, e.g., replacing one strategic player by a random
player, putting a sharp threshold between yes-instances and no-instances precisely
at acceptance probability 1/2, requiring a (1/3, 2/3) gap in acceptance probability
between yes-instances and no-instances, and only allowing the referee to examine
a constant number of bits of the played game before making a decision. All of
these variations on perfect-information games (and several combinations thereof)
cause the same class of languages to be accepted, namely PSPACE. As the results
surveyed below in Section 5 demonstrate, there is no complexity class known to
be as robustly identifiable with a class of imperfect-information games.

4 Nonapproximability

The game-theoretic characterizations of PSPACE presented in Sections 2 and 3
can be used to prove that many optimization functions that are PSPACE-hard
to compute exactly are also PSPACE-hard to approximate closely. This use of
the debate-system characterizations in Section 3 was inspired by the use of the
PCP(logn, 1) characterization of NP to prove nonapproximability results for NP-
hard optimization functions; see Arora and Lund [2] for an overview of these results
on NP.

The basic proof structure of the nonapproximability results surveyed in this
Section is as follows. First, a characterization of PSPACE is used directly to show
that a particular function F is hard to approximate within a certain factor; then
approximability-preserving, polynomial-time reductions are given from F to other
functions of interest. Note that these reductions must be constructed with some
care, because the mere fact that two optimization problems are equivalent under
polynomial-time reductions does not mean that they are equivalent with respect
to approximability. A canonical example of a polynomial-time reduction that
does not appear to preserve approximability is the one from VERTEX COVER to
INDEPENDENT SET (see Section 6.1 of Garey and Johnson [10]).

Throughout this section, we say that “algorithm A approximates the function
f within ratio ǫ(n),” for 0 < ǫ(n) < 1, if, for all x in the domain of f , ǫ(|x|) ≤
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A(x)/f(x) ≤ 1/ǫ(|x|). If ǫ(n) > 1, then “algorithm A approximates the function
f within ratio ǫ(n)” means that 1/ǫ(|x|) ≤ A(x)/f(x) ≤ ǫ(|x|).

4.1 Reductions from PCD(logn, 1)

From the characterization PSPACE = PCD(logn, 1), we obtain a nonapprox-
imability result for one optimization version of the PSPACE-complete language
Q3SAT defined in Section 2. Let the variables of the formula be chosen by P0
and P1, in order of quantification, where P0 chooses the universally quantified
variables and P1 chooses the existentially quantified variables. If P1 can guarantee
that k clauses of φ will be satisfied by the resulting assignment, regardless of what
P0 chooses, we say that k clauses of Φ are simultaneously satisfiable. Let MAX
Q3SAT be the function that maps a quantified 3CNF formula Φ to the maximum
number of simultaneously satisfiable clauses.

Theorem: There is a constant 0 < ǫ < 1 such that approximating MAX Q3SAT
within ratio ǫ is PSPACE-hard.

Nonapproximability results for other PSPACE-hard functions can now be
obtained via approximability-preserving reductions from MAX Q3SAT. The fol-
lowing two are given by Condon et al. [6]:

MAX FA-INT: The language FA-INT consists of all sets {A1, A2, . . . , Am} of de-
terministic finite-state automata having the same input alphabet Σ such that there
is a string w that is accepted by all of them. FA-INT plays a key role in the field
of “computer-aided verification” of devices and protocols (see, e.g., Kurshan [12])
and was shown to be PSPACE-complete by Kozen [11]. The PSPACE-hard func-
tion MAX FA-INT maps each set {A1, A2, . . . , Am} to the largest integer k such
that there is a string w accepted by k of the Ai’s.

MAX GGEOG: Instances of the game “generalized geography” consist of pairs
(G, s), where G is a directed graph and s is a distinguished start node. A marker
is initially placed on s, and P0 and P1 alternatively play by moving the marker
along an arc that goes out of the node it is currently on. Each arc can be used at
most once; the first player that is unable to move loses. The language GGEOG
consists of all pairs (G, s) for which P1 has a winning strategy; GGEOG is one
of the many perfect-information games shown to be PSPACE-complete by Schae-
fer [18]. We say that (G, s) “can be played for k rounds” if P1 has a strategy that
causes the marker to be moved along k arcs, no matter what P0 does, even if P1
ultimately loses. The PSPACE-hard function MAX GGEOG maps pairs (G, s) to
the maximum number of rounds for which they can be played.

In fact, the lower bounds for MAX FA-INT and MAX GGEOG are stronger
than the one for MAX Q3SAT: In both cases, there is a constant ǫ > 0 such that
approximating the function to within a factor of nǫ is PSPACE-hard. Additional
nonapproximability results from the domains of modal logic and system specifica-
tion and analysis are given, respectively, by Lincoln et al. [13] and by Marathe et
al. [15].
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4.2 Reductions from RPCD(0, poly(n))

The PSPACE-complete language SSAT is defined as follows by Papadimitriou [17].
An instance is a 3CNF formula φ over the set of variables {x1, x2, . . . , xn}. The
instance is in SSAT if there is a choice of Boolean value for x1 such that, for
a random choice (with True and False each chosen with probability 1/2) for x2,
there is a choice for x3, etc., for which the probability that φ is satisfied is at least
1/2. Think of SSAT as a game between an existential player and a random player;
on odd moves i, the existential player chooses an optimal value for xi (where
“optimal” means “maximizes the probability that φ will be satisfied”) and, on
even moves i, the random player chooses a random value for xi. Yes-instances of
SSAT are those in which the existential player wins with probability at least 1/2.

The function MAX-PROB SSAT maps each SSAT instance to the probability
that φ is satisfied if the existential player plays optimally; so yes-instances of the
decision problem are those on which the value of MAX-PROB SSAT is at least
1/2. The proof that PSPACE = RPCD(0, poly(n)) (see Lund et al. [14] and
Shamir [19]) yields the following strong nonapproximability result.

Theorem: For any language L in PSPACE and any ǫ < 1, there is a polynomial-
time reduction f from L to SSAT such that

x ∈ L⇒MAX-PROB SSAT(f(x)) = 1, and

x 6∈ L⇒MAX-PROB SSAT(f(x)) < 2−n
ǫ

,

where n is the number of variables in f(x).

Condon et al. [7] and Papadimitriou [17] give approximability-preserving re-
ductions from MAX-PROB SSAT to the following three functions.

MIN DMP: An instance of Dynamic Markov Process (DMP) is a set S of states
and an n × n stochastic matrix P , where n = |S|. Associated with each state si
is a set Di of decisions, and each d ∈ Di is assigned a cost c(d) and a matrix Rd.
Each row of Rd must sum to 0, and each entry of P + Rd must be nonnegative.
The result of making decision d when the process is in state si is that a cost of c(d)
is incurred, and the probability of moving to state sj is the (i, j)th entry of P +Rd.
A strategy determines which decisions are made over time; an optimal strategy is
one that minimizes the expected cost of getting from state s1 to state sn. The
language DMP, shown to be PSPACE-complete by Papadimitriou [17], consists of
tuples (S, P, {Di}, c, {Rd}, B) for which there is a strategy with expected cost at
most B. The optimization function MIN DMP maps (S, P, {Di}, c, {Rd}) to the
expected cost of an optimal strategy.

Coloring Games: An instance of a coloring game (see Bodlaender [4]) consists
of a graph G = (V,E), an ownership function o that specifies which of P0 and P1
owns each vertex, a linear ordering f on the vertices, and a finite set C of colors.
This instance specifies a game in which the players color the vertices in the order
specified by the linear ordering. When vertex i is colored, its owner chooses a
color from the set of legal colors, i.e., those in set C that are not colors of the
colored neighbors of i. The game ends either when all vertices are colored, or
when a player cannot color the next vertex in the linear ordering f because there
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are no legal colors. P1 wins if and only if all vertices are colored at the end of
the game. The length of the game is the number of colored vertices at the end of
the game. In a stochastic coloring game (SCG), P0 chooses a color uniformly at
random from the set of legal colors at each stage. Two corresponding optimization
problems are to maximize the following functions: MAX-PROB SCG(G, o, f, C),
which is the maximum probability that P1 wins the game (G, o, f, C), and MAX-
LENGTH SCG(G, o, f, C), which is the maximum expected length of the game.
Both maxima are computed over all strategies of P1.

For each of MIN DMP and MAX-PROB SGC, there is a constant ǫ > 0 such
that it is PSPACE-hard to approximate the function within ratio 2−n

ǫ

. For MAX-
LENGTH SGC, the ratio within which approximation is PSPACE-hard is n−ǫ, for
a constant ǫ > 0.

4.3 Reductions from RPCD(logn, 1)

The starting point for this set of nonapproximability results is the function MAX-
CLAUSE SSAT, whose value on the 3CNF formula φ is the expected number of
clauses of φ that are satisfied if P1 chooses the values of the existentially quantified
variables, the other variables are assigned random values, and P1 plays optimally
with the goal of maximizing the number of satisfied clauses. Using their result
that PSPACE = RPCD(logn, 1), Condon et al. [7] prove the following.

Theorem: There is a constant 0 < ǫ < 1 such that approximating MAX-CLAUSE
SSAT within ratio ǫ is PSPACE-hard.

They then reduce MAX-CLAUSE SSAT to many other optimization func-
tions, using reductions that preserve approximability. Two examples include:

MAX SGGEOG: Consider the variation of the game GGEOG defined in Sec-
tion 4.2 in which P0 plays randomly; that is, at every even-numbered move, P0
simply chooses an unused arc out of the current node uniformly at random and
moves the marker along that arc. The goal of P1 is still to maximize the length
of the game, and the function MAX SGGEOG maps an instance (G, s) to the
expected length of the game that is achieved when P1 follows an optimal strategy.

MAX-PROB DGR: The Graph Reliability problem is defined as follows by
Valiant [21]: Given a directed, acyclic graph G, source and sink vertices s and
t, and a failure probability p(v, w) for each arc (v, w), what is the probability that
there is a path from s to t consisting exclusively of arcs that have not failed? Pa-
padimitriou [17] defines Dynamic Graph Reliability (DGR) as follows: The goal
of a strategy is still to traverse the digraph from s to t. Now, however, for each
vertex x and arc (v, w), there is a failure probability p((v, w), x); the interpretation
is that, if the current vertex is x, the probability that the arc (v, w) will fail before
the next move is p((v, w), x). The PSPACE-complete language DGR consists of
those digraphs for which there exists a strategy for getting from s to t with prob-
ability at least 1/2. A natural optimization function is MAX-PROB DGR, which
maps a graph, vertices s and t, and a set {p((v, w), x)} of failure probabilities to
the probability of reaching t from s under an optimal strategy.
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It is PSPACE-hard to approximate MAX SGGEOG within ratio n−ǫ, for any
constant 0 < ǫ < 1/2, where n is the number of vertices in the graph. It is
also PSPACE-hard to approximate MAX-PROB DGR within ratio 2−n

ǫ

, for some
constant ǫ > 0. See Condon et al. [7] for proofs of these results and for a related
result about a stochastic version of the board game Mah-Jongg.

5 Imperfect Information Games

Feigenbaum et al. [9] develop a framework in which to generalize the connections
between game classes and complexity classes. A polynomially definable game sys-
tem (PDGS) for a language L consists of two arbitrarily powerful players P0 and
P1 and a polynomial-time referee V . The referee may be probabilistic, but there
are some interesting cases in which V does not need randomness. P0 and P1 and
the referee V have a common input tape. On input x, P1 claims that x is in L,
P0 claims that x is not in L, and V ’s job is to decide which of these two claims is
true.

Each input x to a PDGS determines a polynomially definable game Gx as
follows. The game is essentially run by the referee V . The moves in the game
are relayed by the players to V . Neither player sees V ’s communication with the
other, but V can transmit information about the current status of the game to
one or both players. This reflects the fact that the players can have imperfect
information to varying degrees. When the interaction is finished, V either accepts
or rejects x. Because the referee is polynomial-time, Gx lasts for poly(n) moves,
and each move can be written down in poly(n) bits, where n = |x|. The resulting
game Gx clearly defines a two-person, zero-sum game tree in which the length of
each path is polynomial. If V is probabilistic, then his coin tosses correspond to
chance moves in the game tree.

It is essential to the PDGS framework that P0 and P1 use mixed strategies.
(See [9, Section 1] for a discussion of why previous attempts to characterize com-
plexity classes with imperfect-information games in which the players use pure
strategies were unsatisfactory.) That is, for each possible input x, each player has
a probability distribution over the space of his deterministic strategies. At the
beginning of the game, the players examine x and independently choose a pure
strategy using their respective probability distributions; those pure strategies are
then played throughout the game. Since the game tree has exponential size, a pure
strategy also has exponential size. An arbitrary mixed strategy could of course
have size doubly exponential in n.

There are two ways to define acceptance of a language L by a PDGS
(P1, P0, V ). In the “exact model,” yes-instances x correspond to games Gx of
value at least 1/2 and no-instances to games of value less than 1/2:

• For all x ∈ L, there exists a mixed strategy µ1 for P1 such that, for all
strategies µ0 for P0, V accepts with probability at least 1/2.

• For all x 6∈ L, there exists a mixed strategy µ0 for P0 such that, for all
strategies µ1 for P1, V accepts with probability less than 1/2.
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In the “approximate model,” yes-instances x correspond to games Gx of value at
least 2/3 and no-instances to games of value at most 1/3:

• For all x ∈ L, there exists a mixed strategy µ1 for P1 such that, for all
strategies µ0 for P0, V accepts with probability at least 2/3.

• For all x 6∈ L, there exists a mixed strategy µ0 for P0 such that, for all
strategies µ1 for P1, V accepts with probability at most 1/3.

In both models, the probability of acceptance is computed over the pure strategies
of both players (if they use mixed strategies) and the coin tosses of V (if any).

The main question addressed in [9] is the relationship between the game-
theoretic properties of P0 and P1 and the class of languages recognizable by
PDGS’s. One class of PDGS’s studied are those in which at least one player
has imperfect information (i.e., those in which the referee V does not tell P0 ev-
erything about its communication with P1 and/or vice versa) but perfect recall
(i.e., P0 and/or P1 has enough memory to record everything they do and every-
thing they receive from V and can use it in subsequent rounds of the protocol).
Another class are those in which at least one player has imperfect recall: P0 or P1
or both cannot store everything they do and receive and may have to act in the
ith round of the game based on partial or no information about what happened in
the first i− 1 rounds.

In the results on PSPACE surveyed in Sections 2 and 3, the computational
models are very special cases of PDGS’s, in which the referee’s role is trivial while
the game is being played: V simply sends all information about P1’s current move
and the entire history of the game to P0 and vice versa. Therefore these results
show that PDGS’s in which both players have perfect information recognize exactly
PSPACE, both in the exact model and in the approximate model. Feigenbaum
et al. [9] obtain similarly tight results for PDGS’s in which at least one player
has imperfect recall. If P1 has imperfect recall, but P0 has either perfect infor-
mation or perfect recall, then PDGS’s accept exactly those languages recognizable
in nondeterministic exponential time (the complexity class NEXP), in both the
exact model and the approximate model. If P0 is the one with imperfect recall,
the class recognized in both models is coNEXP. An almost-tight characterization
is obtained for PDGS’s in which both players have imperfect recall (see [9] for
details).

Feigenbaum et al. [9] also proved that, in the exact-value model, the languages
accepted by PDGS’s in which P0 and P1 both have perfect recall (but imperfect
information) are exactly those languages recognizable in deterministic exponen-
tial time (the complexity class EXP). They left open the question of whether the
approximate-value model is equivalent to the exact-value model when both play-
ers have perfect recall. This question was subsequently answered by Feige and
Kilian [8]: One-round PDGS’s with two perfect-recall players accept PSPACE;
Polynomial-round PDGS’s with two perfect-recall players accept EXP.

Thus, perfect-recall games seem to be fundamentally different perfect-
information games and from games in which at least one player has imperfect
recall; in particular, whether or not exact refereeing is equivalent to approximate
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refereeing seems to depend on the number of rounds of the game. It remains
open whether there are natural explanations or generalizations of these results on
imperfect information games or whether these results have applications to approx-
imability. Also open is the question of whether there are imperfect-information
analogues of the Arthur-Merlin and Games-Against-Nature characterizations of
PSPACE; that is, can a random player replace one of the perfect-recall players
or one of the imperfect-recall players in a class of PDGS’s without changing the
language-recognition power of the class.
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On Approximating NP-Hard Optimization Problems
Johan Håstad

Abstract. We discuss the efficient approximability of NP-hard opti-
mization problems. Although the methods apply to several problems we
concentrate on the problem of satisfying the maximal number of equa-
tions in an over-determined system of linear equations. We show that
over the field of two elements it is NP-hard to approximate this problem
within a factor smaller than 2. The result extends to any Abelian group
with the size of group replacing the constant 2.

1991 Mathematics Subject Classification: 68Q25,68Q99
Keywords and Phrases: Approximation algorithms, NP-hard optimiza-
tion problems, Linear equations

1 Introduction

The basic entity in complexity theory is a computational problem which, from a
mathematical point of view, is simply a function F from finite binary strings to
finite binary strings. To make some functions more intuitive these finite binary
strings should sometimes be interpreted as integers, graphs, or descriptions of
polynomials. An important special case is given by decision problems where the
range consists of only two strings, usually taken to be 0 or 1.

The basic notion of efficiently computable is defined as computable in time
polynomial in the input-length. The class of polynomial time solvable decision
problems is denoted by P. Establishing that a problem cannot be solved efficiently
can sometimes be done but for many naturally occurring computational problems
of combinatorial nature, no such bounds are known. Many such problems fall into
the class NP; problems where positive answers have proofs that can be verified
efficiently. The standard problem in NP is satisfiability (denoted SAT), i.e. the
problem of given a Boolean formula ϕ over Boolean variables, is it possible to
assign truth values to the variables to make ϕ true? The most common version of
SAT, which is also the one we use here, is to assume that ϕ is a CNF-formula, i.e.
a conjunction of disjunctions.

It is still unknown whether NP=P, although it is widely believed that this
is not the case. It is even the case that much work in complexity theory, and
indeed this paper, would have to be completely reevaluated if it turns out that
NP=P. There is a group of problem, called the NP-complete problems, introduced
by Cook [8], which have the property that they belong to P iff NP=P. Thus being
NP-complete is strong evidence that a problem is computationally intractable and
literally thousands of natural computational problems are today known to be NP-
complete (for an outdated but still large list of hundreds of natural problems see
[13]). SAT is the most well known NP-complete problem.
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Many combinatorial optimization problems have a corresponding decision
problem which is NP-complete. As an example take the traveling salesman prob-
lem of finding the shortest tour that visits a certain set of cities. The corresponding
decision problem, namely that of, given K, determine if there is a tour of length K
is NP-complete and thus solving the optimization problem exactly in polynomial
time would mean that NP=P. Optimization problem with this property are called
NP-hard (not NP-complete as they do not fall into the class NP as they are not
decision problems). Solving NP-hard optimization problems exactly is thus hard,
but in many practical circumstances it is almost as good to get an approximation
of the optimum. Different NP-hard optimization problems behave very differently
with respect to efficient approximation algorithms and this set of questions has
lead to many interesting results.

The goal of this paper is to derive lower bounds on how well natural optimiza-
tion problems can be approximated efficiently. The type of result we are interested
in is a conclusion of the form ”If optimization problem X and be approximated
within factor c in polynomial time, then NP=P”. The techniques we discuss give
results for many optimization problem but we here concentrate on solving over-
determined systems of linear equations over finite Abelian groups. For this problem
we are given a set of m equations in n unknowns and the task is to determine the
maximal number of equations that can be simultaneously satisfied and possibly
also produce an assignment that satisfies this number of equations.

An algorithm is a c-approximation algorithm if it, for every instance, finds
a solution that is within a factor c of the optimal value. Thus if the best as-
signment satisfies o equation, such an approximation algorithm would always find
an assignment that satisfies o/c equations. For linear equations over GF[2] a
random assignment satisfies, on the average, half the equations. It is hence not
surprising that one can efficiently find an assignment that satisfies at least half the
equations. This gives a 2-approximation algorithm and the result extends to any
Abelian group G to give a size(G)-approximation algorithm. The main result we
discuss in this paper is to prove that this simple heuristic is optimal in that for
any Abelian group G and any ǫ > 0 it is NP-hard to size(G)− ǫ-approximate the
problem of linear equations over G.

The main tool for deriving such strong approximability results was introduced
in the seminal paper [10]. It gives a connection to multiprover interactive proofs
and let us here give an informal description of a variant of this concept. We later
give some formal definitions in Section 1.1.

NP can be viewed as a proof system where a single prover P tries to convince a
polynomial time verifier V that a statement is true. For concreteness let us assume
that the statement is that a formula ϕ is satisfiable. In this case, P displays a
satisfying assignment and V can easily check that it is a correct proof. This proof
system is complete since every satisfiable ϕ admits a correct proof, and it is sound
since V can never be made to accept an incorrect statement.

If ϕ contains n variables, V reads n bits in the above proof. Suppose we limit
V to reading fewer bits where the most extreme case would be to let this number
be constant independent of the the number of variables in ϕ. It is not hard to see
that the latter is impossible unless we relax the requirements of the proof. The
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proof remains a finite binary string, but we allow the verifier to make random
choices. This means that given ϕ we should now speak of the probability that V
accepts a certain proof π. Soundness is relaxed in that when ϕ is not satisfiable
then there is some constant s < 1 such that for any proof π the probability that
V accepts is bounded by s. A bit surprisingly it turns out that it is convenient
also to relax completeness in that we only require the verifier to accept a correct
proof for a correct statement with probability c > s where we might have c < 1.
Note that both completeness and soundness probabilities are taken only over V ’s
internal random choices and hence we can improve these parameters by making
several independent verifications and taking a majority decision. Naturally this
increases other parameters that we want to keep small such as the number of bits
of the proof that V reads.

It is an amazing fact, proved by Arora et al [1], that any NP-statement has a
proof of the above type, usually called probabilistically checkable proof or simply
PCP, where V only reads a constant, independent of the size of the statement
being verified, number of bits of the proof and achieves soundness s = 1/2 and
completeness c = 1. Apart from being an amazing proof system this gives a
connection to approximation of optimization problems as follows.

Fix a formula ϕ and consider the PCP by Arora et al. Since everything is
fixed except the proof π, we have a well defined function acc(π), the probability
that V accepts a certain proof π. Consider maxπ acc(π). If ϕ is satisfiable then
this optimum is 1, while if ϕ is not satisfiable then the optimum is ≤ s. Thus, even
computing this optimum approximately would enable us to decide an NP-complete
question. Now by choosing the test appropriately this optimization problem can
be transformed to more standard optimization problems leading to the desired
inapproximability results.

1.1 Probabilistic proof systems

As discussed in the introduction we are interested in proof systems where the
verifier is a probabilistic Turing machine. The simplest variant is a probabilistically
checkable proof.

Definition 1.1 A Probabilistically Checkable Proof (PCP) with completeness c
and soundness s for a language L is given by a verifier V such that for x ∈ L there
is a proof π such that V π outputs 1 on input x with probability at least c, and for
x 6∈ L and all π the probability that V π outputs 1 on input x is bounded by s.

We are interested in efficient PCPs and hence we assume that V runs in worst
case polynomial time. It is also important for us to efficiently enumerate all the
random choice of V and hence we need that V only makes O(log |x|) binary random
choices on input x. We maintain this property without mentioning it explicitly.

We also need what is generally called a two-prover one-round interactive proof.
Such a verifier has two oracles but has the limitation that it can only ask one
question to each oracle and that both questions have to be produced before either
of them is answered. We do not limit the answer size of the oracles. We call the
two oracles P1 and P2.
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Definition 1.2 A probabilistic polynomial time Turing machine V is a verifier
in a two-prover one-round proof system with completeness c and soundness s for
a language L if on input x it produces two strings q1(x) and q2(x), such that for
x ∈ L there are two oracles P1 and P2 such that the probability that V accepts
(x, P1(q1(x)), P2(q2(x))) is c while for x 6∈ L, for any two oracles P1 and P2 the
probability that V accepts (x, P1(q1(x)), P2(q2(x))) is bounded by s.

In all our two-prover interactive proofs the verifier always accepts a correct
proof for a correct statement, i.e. we have c = 1 in the above definition.
Brief history. The notion of PCP was introduced by Arora and Safra [2].

It was a variation of randomized oracle machines discussed by Fortnow et al [12]
and transparent proofs by Babai et al [4]. Multiprover interactive proofs were
introduced by Ben-Or et al [7], and all these systems are variants of interactive
proofs as introduced by Goldwasser, Micali, and Rackoff [14] and Babai [3].

1.2 Essential previous work

The surprising power of interactive proofs was first established in the case of one
prover [17], [20] and then for many provers [5]. After the fundamental connection
with approximation was discovered [10] the parameters of the proofs improved,
culminating in the result [2, 1] that it is sufficient to read a constant number of
bits. Using a transformation of [18] and massaging the result slightly we arrive at
the following theorem.

Theorem 1.3 [1] Let L be a language in NP and x be a string. There is a univer-
sal constant c < 1 such that, we can in time polynomial in size(x) produce a CNF
formula ϕx,L with exactly 3 literals in each clause such that if x ∈ L then ϕx,L
is satisfiable while if x 6∈ L, any assignment satisfies at most a fraction c of the
clauses of ϕx,L. Furthermore, we can assume that each variable appears exactly
12 times.

Let us now turn to two-prover interactive proofs. Given a one-round protocol
with soundness s and completeness 1 we can repeat it k times in sequence im-
proving the soundness to sk. This creates a many round protocols, whereas we
need our protocols to remain one-round. This can be done by parallel repetition

in that V repeats his random choices to choose k pairs of questions (q
(i)
1 , q

(i)
2 )ki=1

and sends (q
(i)
1 )ki=1 to P1 and (q

(i)
2 )ki=1 to P2 all at once. V then receives k answers

from each prover and accepts if it would have accepted in all k protocols given each
individual answer. The soundness of such a protocol can be greater than sk, but
Raz [19] proved that when the answer size is small the soundness is exponentially
decreasing with k.

Theorem 1.4 [19] For all integers d and s < 1, there exists cd,s < 1 such that
given a two-prover one-round proof system with soundness s and answer sizes
bounded by d, then for all integers k the soundness of k protocols run in parallel
is bounded above by ckd,s.
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1.3 Definitions for approximation algorithms

Definition 1.5 Let O be a maximization problem. For an instance x of O let
OPT (x) be the optimal value. An efficient C-approximation algorithm is an al-
gorithm that on any input x outputs a number V such that OPT (x)/C ≤ V ≤
OPT (x) and runs in worst case polynomial time.

2 First steps towards a good proof system

We want to construct a proof system for an arbitrary language in NP and let us
start by an overview.

We start by a simple two-prover one-round protocol which is obtained more
or less immediately from Theorem 1.3. We improve the soundness of this protocol
by running several copies of it in parallel and using Theorem 1.4. It is possible
to transform this improved two-prover protocol to a PCP simply by writing down
the prover answers. The answers are, however, long and since we want to keep
the number of read bits very small we write the answers in a more useful form by
asking the prover to supply the value of all Boolean functions of these answers.
This is the long code of the answers as defined in [6]. We now proceed to give the
details.

Suppose ϕ = C1 ∧C2 ∧ . . .∧Cm, where Cj contains the variables xaj , xbj and
xcj . Consider the following one-round two-prover interactive proof.

Simple two-prover protocol

1. V chooses j ∈ [m] and k ∈ {aj , bj, cj} both uniformly at random. V sends j
to P1 and k to P2.

2. V receives values for xaj , xbj and xcj from P1 and for xk from P2. V accepts
if the two values for xk agree and Cj is satisfied.

We have the following proposition which can be proved by a straightforward ar-
gument which we omit.

Proposition 2.1 If any assignment satisfies at most a fraction e of the clauses
of ϕ, then V accepts in the simple two prover protocol with probability at most
(2 + e)/3.

We now concentrate a protocol we called the u-parallel 2-prover game and
which consists of u copies of this basic game. That is, the verifier picks u clauses
(Cjk )uk=1 and then uniformly at random for each k he picks a random variable
xik contained in Cjk . The variables of (Cjk )uk=1 are sent to P1 while (xik)uk=1 are
sent to P2. The two provers respond with assignments on the queried variables
and the verifier checks that the values are consistent and that the chosen clauses
are satisfied. We get completeness 1 and the soundness is in the case of ϕx,L of
Theorem 1.3 is, by Theorem 1.4 and Proposition 2.1, bounded by cu1 for some
constant c1 < 1. To fix notation, Let U = {xi1 , xi2 . . . xiu} be the set of variables
sent to P2, and W the set of variables sent to P1.
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As discussed in the introduction to this section we want to replace this two-
prover interactive proof by a PCP consisting of the answers of P1 and P2 given in
a more redundant form. We use the powerful long code introduced in [6].

Definition 2.2 The long code of a string x of length w is of length 22
w

. The
coordinates of the codeword are identified with all possible functions f : {0, 1}w 7→
{0, 1} and the value of coordinate f is f(x).

Before we continue, let us fix some more notation. The written part of
the PCP described above is called a Standard Written Proof of size u or sim-
ply SWP(u). Let FT denote the set of functions on a set T and let AT be the
supposed long code of the restriction of the satisfying assignment to the set T .
It is convenient to have {−1, 1} as our set of two values for Boolean functions
and Boolean variables and thus exclusive-or turns into multiplication. For the
supposed long code AT we assume that AT (f) = −AT (−f). This is achieved by,
for each pair (f,−f), having only one value in AT . This value is negated if the
value of AT (−f) is needed. For the tables AW , we know that it should be a long
code for some assignment that satisfies ∧kCjk and instead of storing an entry for
each g ∈ FW we only store an entry for each function of the form g ∧ (∧kCjk ).
When we want the value of a function h we access the entry for h ∧ (∧kCjk). A
SWP(u) is correct for ϕ if there is an assignment x that satisfies ϕ and thus that
AT (f) = f(x|T ) for any supposed long code AT for any set T obtained as U or W
in a run of the u-parallel 2-prover game.

We need the discrete Fourier transform defined by

Âα,T = 2−2
size(T)∑

f

AT (f)
∏

x∈α
f(x)

for any α ⊆ {−1, 1}T . It is inverted by

AT (f) =
∑

α

Âα,T
∏

x∈α
f(x).

and since |A(f)| = 1 for any f we have, by Parseval’s identity,
∑
α Â

2
α,T = 1. For

a set β ⊆ {−1, 1}W and U ⊂ W we let πU2 (β) ⊆ {−1, 1}U be those elements that
have an odd number of extensions in β. This a mod 2 projection and note that it
might be empty even if β is not empty.

3 Linear equations

We now study the optimization problem of satisfying the maximal number of
equations mod 2. For natural reasons we want to design a test for SWP(u) that
accepts depending only on the exclusive-or of three bits of the proof.

Test Lǫ2(u)

Written proof. A SWP(u).
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Desired property. To check that it is a correct SWP(u) for a given formula
ϕ = C1 ∧ C2 . . . Cm.
Verifier. Choose set U and W as in the u-parallel 2-prover game. Choose
f ∈ FU and g1 ∈ FW with the uniform probability. Choose a function µ ∈ FW by
setting µ(y) = 1 with probability 1−ǫ and µ(y) = −1 otherwise, independently for
each y ∈ {−1, 1}W . Define g2 by for each y ∈ {−1, 1}W , g2(y) = f(y|U)g1(y)µ(y).
Accept if AU (f)AW (g1)AW (g2) = 1.

We need to analyze the soundness and completeness of this test.

Lemma 3.1 The completeness of Test Lǫ2(u) is at least 1− ǫ.

Proof: Fix a correct SWP(u) obtained from the assignment x satisfying ϕ
We claim that V accepts unless µ(x|W ) = −1 and leave the verification to the
reader.

Lemma 3.2 For any ǫ > 0, δ > 0, suppose that the probability that the verifier
of Test Lǫ2(u) accepts is (1 + δ)/2. Then there is a strategy for P1 and P2 in the
u-parallel two prover protocol that makes the verifier of that protocol accept with
probability at least ǫδ2/2.

Proof: Let us first fix U and W and for notational convenience we denote the
function AU by A and the function AW by B. We want to consider

Ef,g1,µ[A(f)B(g1)B(g2)] (1)

since by the assumption of the lemma

EU,W,f,g1,µ[AU (f)AW (g1)AW (g2)] = δ. (2)

Using the Fourier expansion and moving the expected value inside (1) equals

∑

α,β1,β2

ÂαB̂β1B̂β2Ef,g1,µ


∏

x∈α
f(x)

∏

y∈β1
g1(y)

∏

y∈β2
(f(y|U)g1(y)µ(y))


 . (3)

If β1 6= β2 then since g1(y) for y ∈ β1∆β2 is random and independent of all other
variables the inner expected value in this case is 0 and thus we can disregard all
terms except those with β1 = β2 = β. Now consider such a term and let sx be
number of y ∈ β such that y|U = x. Since f(x) is random and independent for
different x, unless for every x either x ∈ α and sx is odd or x 6∈ α and sx is even
again the inner expected value is 0. These conditions imply that we only keep
terms with πU2 (β) = α and finally since Eµ[

∏
y∈β µ(y)] = (1 − 2ǫ)size(β) we have

reduced the sum (1) to

∑

α

∑

β|πU2 (β)=α
ÂαB̂

2
β(1− 2ǫ)size(β). (4)
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We want to prove that if the expected value of this (over random choices of U
and W ) is at least δ then we have a good strategy of the provers. We define good
randomized strategies for P1 and P2.

The strategy of P2 is first to pick a random α with and Âα ≥ δ/2. The
probability of picking α is defined to be proportional to Âα and hence by Parseval’s
identity it is at least δÂα/2. P2 sends a random x ∈ α. Note that α is nonempty
since AU(f) = −AU (−f) implies that Â∅ = 0.

The strategy of P1 is to pick a random β with probability B̂2β and then answer
with a random y ∈ β.

Let us evaluate the success-rate of this strategy. By the property that AW (h)
only depends on h ∧ (∧kCjk) it is not hard to establish that every y sent by P1
satisfies the corresponding clauses and thus we only need to look at the probability
that the answers are consistent. This probability is at least size(β)−1 times the
probability that for the picked α and β we have α = πU2 (β). The probability of
picking a specific pair α and β is, provided Âα > δ/2, at least ÂαB̂

2
βδ/2 and thus

the overall success-rate for a fixed choice of U and W is at least

δ/2
∑

α|Âα|≥δ/2

∑

β|πU2 (β)=α
ÂαB̂

2
βsize(β)−1. (5)

Comparing this sum to (4) and making some calculations one can establish that
expected value over U and W is at least δ2ǫ/2 and the proof of Lemma 3.2 is
complete.

Armed with the very efficient PCP given by Test Lǫ2(u) we can now establish
the main theorem of this paper.

Theorem 3.3 For any ǫ > 0 it is NP-hard to approximate the problem of max-
imizing the number of satisfied equation in a system of linear equations mod 2
within a factor 2 − ǫ. The result applies to systems with only 3 variables in each
equation.

Proof: (Sketch) Let L be an arbitrary language in NP and given an input x,
create the formula ϕx,L as given in Theorem 1.3. Let δ be small positive number
to be determined and consider test Lδ2(u) where u is chosen sufficiently large so
that the acceptance probability in the u-parallel 2-prover game is smaller than
δ3/2.

For each bit b in a SWP(u) introduce a variable xb. To accept in the test
Lδ2(u) is equivalent to the condition

bU,fbW,g1bW,g2 = c

where bU,f , bW,g1 and bW,g2 are the bits in the proof corresponding to AU (f),
AW (g1) and AW (g2), respectively1. Write down the equation

xbU,f xbW,g1xbW,g2 = c

1One might think that the right hand size would always be 1, but because of our convention
on having one entry in AU to represent the value on two functions this might be the case since
the value corresponding to AU (f) in the proof might actually give the value of AU (−f)
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with a weight that is equal to the probability that the verifier chooses the tuple
(U,W, f, g1, g2). Now each proof corresponds to an assignment to the variables xb
and the total weight of all satisfied equations is exactly the probability that this
proof is accepted. This implies that if x ∈ L this maximal weight is 1 − δ while
if x 6∈ L, it is, in view of Lemma 3.2 and the choice of u, at most (1 + δ)/2. It
is not difficult to check that we have a polynomial number of equations and an
approximation algorithm with performance ratio smaller than 2− ǫ would enable
us, for sufficiently small δ, to answer a NP-hard question.

As is standard, the weights can be eliminated by duplicating each equation a
suitable number of times. This creates a slight degrade in the value of ǫ, but since
ǫ is arbitrary anyway this can easily be compensated. We omit the details.

Note that there is a meta reason that we have to introduce the error function µ
and make our test have non perfect completeness. If we had perfect completeness
then the equations produced in the proof of Theorem 3.3 could all be satisfied
simultaneously. However, to decide if a set of linear equations have a common
solution can be done in polynomial time by Gaussian elimination.

Finally, let us just state the extension to an arbitrary Abelian group.

Theorem 3.4 For any ǫ > 0 and any Abelian group G, given a system of linear
equations over G, it is NP-hard to approximate the maximal number of simul-
taneously satisfiable equations within a factor size(G) − ǫ. The result applies to
systems with only 3 variables in each equation.

4 Final remarks

As mentioned in the introduction the efficient multiprover interactive proofs give
strong inapproximability results for many combinatorial optimization problems.

Independence number is to, given a graph G, find the largest set S of nodes
such that no two nodes in S ares pairwise connected. It is established in [15]
that it is, assuming that NP cannot be done in probabilistic polynomial time, for
any ǫ > 0, hard to approximate independence number within n1−ǫ where n is the
number of nodes G. A very related problem is that of chromatic number where we
want to color the nodes in G with the minimal number of colors so that adjacent
nodes get different colors. The result for independence number can be extended to
chromatic number [11]. The problem of set cover is that given a number of subsets
Si of [n] to find the minimal size sub-collection of the Si that covers the entire set.
This problem is, under standard complexity assumptions, hard to approximate
within (1 + o(1)) lnn [9] and this result is tight. For inapproximability results on
other problem, some optimal and some non-optimal we refer to the full versions
of [6] and [16].
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Abstract. This abstract discusses algebraic proof systems for the
propositional calculus. We present recent results, current research di-
rections, and open problems in this area.
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1 Introduction

A fundamental problem in logic and computer science is understanding the effi-
ciency of propositional proof systems. It has been known for a long time that
NP = coNP if and only if there exists an efficient propositional proof system,
but despite 25 years of research, this problem is still not resolved. (See [21] for
an excellent survey of this area; see also [2] for a more recent article focusing
on open problems in proof complexity.) The intention of the present article is
to discuss algebraic approaches to this problem. Our proof systems are simpler
than classical proof systems, and purely algebraic. It is our hope that by studying
proof complexity in this light, that new upper and lower bound techniques may
emerge. This paper is a revision and update of the earlier paper ([18]); due to
space considerations, we omit all proofs and focus on current research directions.

Let C = C1∧C2∧...∧Cm be an instance of the classical NP-compete problem,
3SAT. That is, C is a propositional formula over {x1, ..., xn}, in conjunctive normal
form, where each Ci is a clause of size at most three. Each clause Ci can be
converted into an equation, Ci = 1 over F such that C is unsatisfiable if and only if
{C1 = 0, ..., Cm = 0} has no 0/1 solution. The equations Q = {Q1 = 0, ...QR = 0}
corresponding to C are: {C1 = 0, ..., Cm = 0}, plus the equations x2 − x = 0 for
all variables x.

We show how to translate from the basis {∨,∧,¬} to the basis {+,×, 1} over
a field F . For a atomic, t(a) = 1 − a; t(¬x) = 1 − t(x); t(x ∨ y) = t(x)t(y); and
lastly, t(x ∧ y) = t(¬(¬x ∨ ¬y) = t(x) + t(y) − t(x)t(y). Our translation has the
property that for any truth assignment α, and any boolean formula f , f evaluates

1Supported by NSF NYI grant CCR-9457783, US-Israel BSF Grant 95-00238, and Grant
INT-9600919/ME-103 from NSF and MŠMT (Czech Republic)
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to 1 under α if and only if t(f) evaluates to 0 under α. In other words, “0”
represents true over the new basis. Moreover, one could further convert Q into a
family of degree 2 equations by replacing each monomial xyz in Qi by xw (where
w is a new variable), and adding the extra equations w− yz = 0 and w2 −w = 0.

The above reduction (due to Valiant [22]) shows that solving systems of degree
2 polynomial equations is NP -complete. We are interested in defining natural
algebraic proofs in the case where the equations are unsolvable, and in studying the
complexity of the resulting proofs. What exactly is a natural algebraic proof, and
how long can such proofs be? Our starting point for defining such algebraic proof
systems is Hilbert’s Nullstellensatz. That is, if Qi(x) = 0 is a system of algebraic
equations over F (translated from an instance of 3SAT), then the equations do not
have a solution in the algebraic closure of F if and only if there exists polynomials
Pi(x) from F [x] such that

∑
i Pi(x)Qi(x) = 1. We can think of the polynomials Pi

as a proof of the unsolvability of the equations Qi. Moreover, in our scenario since
Qi includes the equations x2 − x = 0 for all variables x, there exists a solution
if and only if there exists a 0 − 1 valued solution. This is the main property
which distinguishes our investigations from earlier, classical work on the effective
Nullstellensatz. ([10, 15, 5]).

Algebraic proof systems are appealing because of their simplicity and non-
syntactic nature. Moreover, the question of how large a proof must be amounts
to asking how many field operations are required in order to generate the con-
stant polynomial from certain initial polynomials. Moreover these proof systems
are powerful, and by studying various complexity notions (degree, monomial size,
algebraic size), there are close correspondences between these systems and various
classical propositional proofs.

The organization of the paper is as follows. In Section 2, we define our
algebraic proof systems and various complexity measures on them. In Section 3,
we state basic theorems about algebraic proofs and simulation results. In Section
4, we focus our attention on lower bounds. Lastly in Section 5, we present several
open problems in this area.

2 Algebraic Proof Systems

Recall that C = C1 ∧C2 ∧ ... ∧ Cm is a propositional formula over {x1, ..., xn}, in
conjunctive normal form, where each Ci is a clause of size at most three. Let Q
be the corresponding system of (degree 3) polynomial equations. Here is a simple
example. Let C = (b ∨ a) ∧ (¬a ∨ b) ∧ (¬b). Then Q = {Q1, Q2, ..., Q5}, where
Q1 = (1− b)(1−a) = 1−a− b+ab,Q2 = (a)(1− b) = a−ab, Q3 = b, Q4 = a2−a,
Q5 = b2 − b.

An algebraic refutation for C (over a fixed ring or field F ) is an algebraic
straight-line program, S = S1, ..., Sl such that each Si is either one of the initial
equations (from Q) or is obtained from previous equations by a valid rule, and
where the final equation Sl is 0 = 1. The two rules are as follows. (1) From
g1(x) = 0 and g2(x) = 0, derive ag1(x) + bg2(x) = 0, where a, b are constants
from F ; (2) From g(x) = 0, infer xg(x) = 0 for x a variable. (Thus, a proof is
merely an explicit derivation that 1 is in the ideal generated by Q.) In the above
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example, a refutation is: S1 = Q1, S2 = Q2, S3 = Q3, S4 = S1 + S2 = 1 − b,
S5 = S4+S3 = 1. An algebraic refutation S for Q can also be put in an alternate
form,

∑
i Pi(x)Qi(x) = 1.

Our algebraic proof system is sound since such a straight-line program is not
possible to obtain if Q is solvable. The algebraic proof system is also complete
since every unsolvable system of equations Q (derived from an unsatisfiable 3CNF
formula C) has an algebraic proof. There are several proofs of completeness. One
follows from (the weak form of) Hilbert’s Nullstellensatz. There are also other
simpler and more constructive proofs [18, 8]; one is obtained by simulating a
truth-table proof and a second is by simulating a type of tableau proof.

2.1 Complexity measures

We will discuss several complexity measures on algebraic refutations. Perhaps
the most natural is the algebraic size. This is defined to be the number of lines,
l, in S. The degree is defined to be the maximum degree of the intermediate
polynomials Si, after simplifications. This measure has been studied quite a bit,
and the name Polynomial Calculus (PC) is given to algebraic proofs in this form,
where the Si’s are viewed as explicit sums of monomials. Another degree measure,
which is called the Nullstellensatz (HN) degree is the maximum degree of the
intermediate polynomials Si before simplifications. That is, the maximum degree
of the polynomial

∑
i PiQi in the alternate representation

∑
i PiQi = 1.

Note that the minimal Polynomial Calculus degree of a formula f is never
greater than the minimal Nullstellensatz degree of f ; however, the Polynomial
Calculus degree can sometimes be much smaller as is evidenced by the following
example. Let INDn denote the following system of degree 2 equations: (1) 1−x1 =
0; (2) xi(1− xi+1) = 0 for all 1 ≤ i ≤ n− 1; (3) xn = 0 and (4) x2i − xi = 0 for all
1 ≤ i ≤ n− 1. (These equations formalize induction: if x1 = 1 and xn = 0, then
there must be an index i such that xi = 1 and xi+1 = 0.) It is not too hard to see
(by applying induction!) that these equations have a degree 2 PC refutation; on
the other hand, they require degree O(logn) Nullstellensatz refutatons [7].

2.2 Automatizability

An important issue in proof complexity is whether or not a given proof system can
actually be used as the basis for an efficient automated theorem prover. Intuitively,
it seems that the more expressive and powerful the proof system, the harder it is
to perform an efficient search for a short proof. A proof system S is thus said to
be automatizable if there exists a deterministic procedure A that takes as input
a (unsatisfiable) formula f and outputs an S-proof f in time polynomial in the
size of the shortest S-proof of f . In other words, if S is automatizable, then short
proofs can be found efficiently.

One of the nicest features of algebraic proofs is that small degree proofs can
be found quickly–in other words, small-degree proofs are automatizable. To see
this in the case of small-degree Nullstellensatz proofs, note that if

∑
i PiQi = 1

where Pi’s have degree at most d, and the Qi’s have degree at most 3, then the
total number of monomials on the left side is bounded by a polynomial in d and
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therefore we can set up a system of linear equations (one for each monomial) and
solve for the coefficient values in polynomial time. Using a modification of the
Gröbner basis algorithm, [11] have shown that small-degree Polynomial Calculus
proofs are also automatizable.

Theorem. [11] For all d, n, there is an algorithm A such that for any (unsatis-
fiable) 3CNF formula f with underlying variables x1, .., xn, A returns a degree-d
Polynomial Calculus refutation (if one exists) in time nO(d).

3 Relationship to classical proof systems

In this section, we will discuss the relationship between the size of algebraic proofs
under the above complexity measures and the size of more standard propositional
proofs.

3.1 Algebraic proofs versus Frege proofs

Definition. The algebraic proof system over F is polynomially-bounded if there
exists a constant c such that for every unsatisfiable 3CNF formula, f , there exists
an algebraic proof of f of size O(|f |c) (that is, the proof is of size polynomial in
the size of f).

The standard definition of a propositional proof system is as follows.
Definition. Let L ⊆ Σ∗, where Σ is a finite alphabet, and Σ∗ denotes all finite
strings over Σ. (Typically, L encodes either the set of all tautological formulas,
or the set of all unsatisfiable formulas.) Then a Cook-Reckhow proof system for
L is a function f : Σ∗ → L, where f is an onto, polynomial-time computable
function. A Cook-Reckhow proof system, f , is polynomially bounded if there is
a polynomial p(n) such that for all y ∈ L, there is an x ∈ Σ∗ such that y = f(x)
and |x| (the length of x) is at most p(|y|).

A key property of a Cook-Reckhow proof system is that, given an alleged
proof, there is an efficient method for checking whether or not it really is a proof.
For most standard, axiomatic proof systems (Extended Frege, Frege, even ZFC),
there is actually a very efficient method for checking whether or not it is really a
proof. This property leads to the following theorem.

Theorem. [13] There exists a polynomially-bounded Cook-Reckhow propositional
proof system if and only if NP = coNP .

The above theorem does not appear to hold for algebraic proofs because there
is no known deterministic polynomial time algorithm to check whether or not a
polynomial is identically 1, even in the case of finite fields. (In other words, there
is no efficient procedure to check that it is a proof.) Nonetheless, the probabilistic
polynomial-time algorithm due to Schwartz allows us to prove that if algebraic
proofs are polynomially-bounded, then the polynomial hierarchy collapses.

Theorem. [18] For any prime p, if the algebraic proof system over Zp is
polynomially-bounded, then PH = Σp2.
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We conjecture that the above premise also implies NP = coNP . It is not too
hard to show that algebraic proof systems are at least as powerful as Extended
Frege systems, as is evidenced by the following theorem.

Theorem. [18] For any commutative ring R, Frege proofs (and Extended Frege
proofs) can be polynomially simulated by algebraic proofs with polynomial size.

It is open whether or not the simulation holds in the reverse direction.

3.2 Polynomial Calculus versus Resolution

Resolution proofs dominate the work in automated theorem proving since they
are extremely simple and can also be applied to first order theorem proving. A
Resolution proof P of an (unsatisfiable) CNF formula f = C1 ∧ ... ∧ Cm is a
sequence of clauses D1, ..., Dl such that: (a) each Di is either an initial clause
from f or follows from two previous clauses by the Resolution rule, and (b) the
final clause Dl is the empty clause. The resolution rule derives (A ∨ B) from
(A ∨ x) and (B ∨ ¬x), where A and B are disjunctions of literals. The size of the
above Resolution proof is l; a tree-like proof has the additional property that each
intermediate clause generated in the proof (not including the initial clauses) can be
used at most once in the derivation–i.e., if it is used more than once it must be re-
derived. Tree-like Resolution is of practical interest since most theorem provers are
based on tree-like Resolution proofs. The following theorem gives a relationship
between small degree Polynomial Calculus proofs and small-size Resolution proofs.

Theorem. [11] If f has a tree-like Resolution proof of size S, then f has a degree
O(logS) Polynomial Calculus refutation. If f has a Resolution proof of size S,
then f has a degree O(

√
nlogS) Polynomial Calculus refutation.

The intuition behind the above proof is as follows. Define the width of a
Resolution proof to be the maximum clause size in the proof. The proof of the
above theorem can be used to show: (1a) If f has a size S tree-like Resolution
proof, then f has a width O(logS) Resolution proof [9]; (1b) if f has a size S
Resolution proof, then f has a width O(

√
nlogS) Resolution proof. And secondly,

it is easy to show: (2) if f has a width d Resolution proof, then f has a degree
O(d) Polynomial Calculus proof.

3.3 Polynomial Calculus versus bounded-depth Frege

Bounded-depth Frege proofs are Frege proofs where the depth of each intermediate
formula is bounded by a fixed constant. (See [21, 2] for motivation and details.)
Bounded-depth Frege proofs are known to be strictly more powerful than Resolu-
tion, but strictly less powerful than unrestricted Frege proofs. AC0[p]-Frege proofs
are bounded-depth Frege proofs where the underlying connectives are: unbounded
fanin AND, OR, NOT and MODp. There are no nontrivial lower bounds known
at present for AC0[p]-Frege proofs, and the original motivation for defining and
studying small-degree algebraic proofs was to prove such lower bounds [4].

It does not seem to be possible to simulate polynomial-size AC0[p]-Frege
proofs by small degree Polynomial Calculus proofs (overGFp). This is because any
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single unbounded fanin OR gate would translate into a large degree polynomial.
To circumvent this problem, [8] extended the Polynomial Calculus by adding new
equations to the initial ones, where these new equations introduce new variables to
represent or define unbounded fanin OR gates. The new equations, R, are small-
degree polynomial equations in the original variables, plus the new “extension
variables.” The nesting level of the new equations corresponds to the depth of
the unbounded fanin formulas that can be represented. Thus, loosely speaking,
a degree d constant-depth Polynomial Calculus with Extension proof of f is a
degree d Polynomial Calculus refutation of 0 = 1 from the equations Q, R, where
Q corresponds to the original equations defining f , and R corresponds to the new
extension axioms, and such that the definitions given by R have a constant number
of levels of nestings. With these definitions, [8] show that constant-depth AC0[p]-
Frege proofs are essentially equivalent to constant-depth Polynomial Calculus with
Extension proofs.

In a different line of work, [17] show that any quasipolynomial-size ACC0[2]-
Frege proof can be simulated by a quasipolynomial-size, depth 3 Frege proof of
a very special form: the output gate is a weak threshold gate, the middle layer
consists of mod 2 gates and the input layer consists of AND gates of small fanin.
Put another way, each formula in the depth 3 Frege proof is a probabilistic small-
degree polynomial over GF2. This in turn can be viewed as another generalization
of small-degree Polynomial Calculus proofs.

4 Lower Bounds

In the last five years, there have been many lower bounds obtained on the degree
of Nullstellensatz and Polynomial Calculus proofs of various principles. The table
below summarizes the progress thus far. Of particular importance are the formulas
expressing the pigeonhole principle, and the formulas expressing various counting
principles.

The onto version of the propositional pigeonhole principle states that there
is no 1-1, onto map from m to n, m > n. This can be expressed by the following
equations, with underlying variables Pi,j , i ≤ m, j ≤ n: (1) Pi,1+ ...+Pi,n−1 = 0,
for all i ≤ m; (2) P1,j + ... + Pm,j − 1 = 0, for all j ≤ n; and (3) Pi,kPj,k = 0,
for all i, j ≤ m, k ≤ n. For each n, let the above set of equations be denoted by
¬PHPm,nonto. For each m = n + 1, there is a constant degree Nullstellensatz proof
over GFp of ¬PHPm,nonto. The proof is obtained by adding together all of the above
equations in (1) and subtracting all of the above equations in (2). Each variable
will cancel because it occurs once positively in (1) and once negatively in (2), and
we are left with m− n = 1. However, for m = nmodp, this proof fails.

The more general version of the propositional pigeonhole principle states that
there is no 1-1 map from m to n. For each m > n, the general pigeonhole principle
can be expressed by equations (1) and (3) above, and is denoted by ¬PHPm,n.

The mod q counting principle, Modqn, states that there is no way to partition
a set of size n into equivalence classes, each of size exactly q. For each n, the
negation of this principle (¬Modqn) can be expressed by the following equations,
with underlying variables Xe, e ⊆ [1, ..,m], |e| = q, m = pn+ 1:
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(1)
∑
e, i∈eXe − 1 = 0, for all i ≤ m; (2) XeXf = 0, for all e, f , e ∩ f 6= 0.

The induction principle was explained earlier. The principle Homesitting
is a variant of strong induction. The principle Graph, stands for Tseitin’s graph
tautologies: given a connected graph, where each vertex has a 0-1 labelling (charge)
and such that the mod 2 sum of all labellings is odd, the principle states that the
mod 2 sum of the edges coming into each vertex is equal to the charge of that
vertex. Clearly this principle is unsatisfiable and when the underlying graphs
are k-regular and have good expansion properties, the associated formula is hard
to prove (as long as the field does not have characteristic 2). Subsetsum is a
single equation, m−∑i(cixi) = 0 and this lower bound shows that over fields of
characteristic 0, there are no small Nullstellensatz degree refutations of the subset
sum principle. HN means that the degree lower bound holds for Nullstellensatz;
PC means that the degree bound holds in the stronger Polynomial Calculus.

By now, there are many families of formulas requiring large Nullstellensatz
degree, but a lack of many explicit lower bounds for Polynomial Calculus degree.
The first such lower bound for the Polynomial Calculus is the paper by Razborov
[19]. In that paper, he explicitly describes the set of all polynomials derivable
from the initial equations in degree d. The only other lower bound known for
the Polynomial Calculus, due to Kraj́ıček[16], uses important ideas from Ajtai [1]
linking the lower bound in question to the representation theory of the symmetric
group.

Formulae Reference Lower bound Notes

PHP [12] O(n1/4) (HN) nearly optimal
PHP [19] O(n1/2) (PC) nearly optimal
ontoPHP [3] O(n) (HN) nearly optimal
IND [7] O(logn) (HN) nearly optimal
Homesitting [11, 6] O(n1/2) (HN)
Graph [14] O(n) (HN) Char(F ) 6= 2
Modp [4, 1] nonconstant (HN)
Modp [8] nΩ(1) (HN)
Modp [16] nonconstant (PC)
Subsetsum [8] O(n) (HN) Char(F ) = 0

4.1 The Design Method

In this section we review the primary method that has been used to obtain the
above Nullstellensatz degree lower bounds.

LetR be any commutative ring, and letQ = {Q1, .., Qm} be a set of unsolvable
equations of degree at most 3 over R[x1, ..., xn], where m is nO(1). We want to
show that there is no degree d set of polynomials P1, ..., Pm such that

∑
i PiQi =

1. Assume for sake of contradiction that degree d Pi’s do exist. Write Pi as∑
m a

i
mXm, where m ∈ {0, 1}n, Xm is the corresponding monomial, and aim is the

coefficient in front of that monomial in Pi. Because the total number of monomials
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in the Pi’s is bounded by nO(d), we can write a system of linear equations with the
coefficients aim as variables such that the system of linear equations has a solution
if and only if such Pi’s exist. In particular, the condition

∑
i PiQi = 1 can be

specified by a system of linear equations in the ami ’s where for each nonempty
monomial m of degree at most d + 3, we have one equation specifying that the
sum of all coefficients in front of this monomial must be 0, and for the empty
monomial, we have one equation specifying that the sum of all coefficients in front
of the empty monomial must be 1.

Now by weak duality, if we can find a linear combination of the equations
such that the left-hand-side of the linear combination is 0, then there can be no
solution. (Because the total sum of the right-hand-sides of the equations is 1.)
Conversely, if R is a field, then we get the converse direction as well. The name
design refers to the linear combination of the equations witnessing the fact that the
equations can have no solution; because of the structure of the original Qi’s, the
properties required of the linear combination can often be seen to be equivalent to
the existence of a particular type of combinatorial property, and thus it is called
a design.

5 Open Problems

5.1 Lower bounds for stronger proof systems

The most outstanding question is to strengthen these methods to obtain lower
bounds for stronger systems, such as AC0[2]-Frege proofs. A solution to this
problem seems to be within reach. For this system, a candidate hard tautology is
the principle Modnp for p prime.

5.2 Degree lower bounds

Lower bounds and new methods for the degree of Polynomial Calculus proofs for
other principles is another important problem. In particular, one can generate
random 3CNF formulas with m clauses and n variables and when m = 4.3n, such
formulas are believed to be hard to refute for all natural proof systems. An open
problem is to prove linear degree lower bounds for such formulas. This would
show that on average (as opposed to worst-case), unsatisfiable formulas (from this
distribution) require large degree proofs.

5.3 Degree versus monomial size

What is the relationship between the minimal degree of a Nullstellen-
satz/Polynomial Calculus refutation and the minimal number of monomials
in a refutation? This is analagous to pinning down exactly the relationship
between the minimal Resolution clause width for a formula and the minimal
Resolution proof size. Some weak results are known, establishing a connection
between them, but they are far from tight [11, 9].
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5.4 Representation theory and uniformity

Important work by Ajtai [1] exploits the uniform nature of standard unsatisfiable
families of formulas to establish a close connection between Nullstellensatz degree
lower bounds and representation theory of the symmetric group. These ideas were
further developed by Kraj́ıček[16] to obtain nonconstant degree lower bounds for
the Polynomial Calculus. This line of research is quite promising and deserves
further study.

5.5 Algebraic Theorem provers

Designing efficient theorem provers for the propositional calculus is an important
practical question. To date, Resolution-based algorithms are the champion theo-
rem provers although they are theoretically quite weak as proof systems. A recent
challenger is the Polynomial Calculus and more specifically, using variants of the
Gröbner basis algorithm to solve 3SAT [11]. This type of algorithm needs to be
fine-tuned to the same extent as Resolution based methods and then rigorously
evaluated on standard hard examples. On a more theoretical side, can the sim-
ulations of Resolution by PC be improved? Another very interesting question is
whether or not Cutting Planes can be simulated by efficient PC proofs.

5.6 Natural proofs in proof complexity?

In a major blow to circuit complexity, [20] show that, subject to some plausi-
ble cryptographic conjectures, current techniques will be inadequate for obtaining
super-polynomial circuit lower bounds. To this point, proof complexity has made
steady progress at matching the superpolynomial lower bounds currently known
in the circuit world. Unlike the circuit world, however, there is no analogue of
Shannon’s counting argument for size lower bounds for random functions, and
there does not seem to be any inherent reason for Frege lower bounds (and simi-
larly for superpolynoimal lower bounds for algebraic proofs) to be beyond current
techniques. Is there any analogue of natural proofs in proof complexity?
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Probabilistic Verification of Proofs
Madhu Sudan

Abstract. Recent research in the theory of computing has led to the fol-
lowing intriguing result. “There exists a probabilistic verifier for proofs of
mathematical assertions that looks at a proof in only a constant number
of bit positions and satisfies the following properties: (Completeness) For
every valid theorem there exists a proof that is always accepted. (Sound-
ness) For invalid assertions every purported proof is rejected with some
positive probability that is independent of the length of the theorem or
proof.” This result sheds insight into the fundamental complexity class
NP and shows that it is equivalent to a seemingly smaller class of lan-
guages with efficient probabilistically checkable proofs. This result is
especially significant to combinatorial optimization. For many combina-
torial optimization problems it demonstrates that the task of finding even
nearly-optimal solutions is computationally intractable. In this article we
describe some methods used to construct such verifiers.

1991 Mathematics Subject Classification: 68Q10, 68Q15.
Keywords and Phrases: Computational complexity, Algorithms, Combi-
natorial optimization, Logic, Probability, Approximation.

1 Introduction

The notion of efficient verification of proofs has been a central theme in the theory
of computing. The computational view of this notion abstracts the semantics
of the proof system into a verification procedure or verifier, i.e., a polynomial
time computable Boolean function described by a Turing machine. A purported
theorem T and proof π are then just a sequence of bits; π proves T if the verifier
accepts the pair (T, π). The purported theorem T is true if such a proof π exists.
The class NP [15, 32] represents the class of all theorems with “short” proofs; and
allows for very simple combinatorial descriptions of theorems and proofs. As an
example, we describe the problem 3-SAT.

A 3cnf formula φ is described by N “clauses” C1, . . . , CN on n Boolean vari-
ables x1, . . . , xn. A clause consists of up to 3 literals (i.e., a variable or its negation)
and the clause is satisfied by some Boolean assignment to the variables if at least
one literal is assigned a true value. The formula φ is said to be satisfiable, if there
exists an assignment to the n variables which simultaneously satisfies all clauses.
3-SAT is the language of all satisfiable 3cnf formulae.
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The NP-completeness of 3-SAT may be interpreted as follows: For any system
of logic, there exists a polynomial time computable function f such given an asser-
tion T in this system of logic and an integer n, f(T, 1n) computes a 3cnf formula
that is satisfiable if and only if T has a proof of length at most n. Thus, under
the equivalence class of polynomial time computation, the satisfying assignment to
f(T, 1n) is a proof for the theorem T , and the statement f(T, 1n) ∈ 3-SAT is itself
the theorem. While this method of describing theorems and proofs is equivalent
to any other system of logic it has some conceptual simplicity. One formal effect
that captures this simplicity is that an incorrect proof has a very local error: Such
an incorrect proof is an assignment that fails to satisfy at least one clause. Hence
the three bits corresponding to the assignment to the variables participating in
this clause point give the explicit error in the proof. In other words every incor-
rect proof has a witness of the error that is at most 3 bits long. This example
demonstrates some of the power of the computational view of proofs.

Over the course of the last decade a number of new computational notions of
proofs have been proposed and analyzed. The common theme in these definitions
is a probabilistic verifier who is allowed some small probability of making an er-
ror. One of these notions, known as a probabilistically checkable proof (PCP), is
motivated by the following informally stated question: “How fast can the verifier
be compared to the size of the proof?” It is easy to establish that a deterministic
verifier must at the very least “look” at the whole proof. This however need not be
true for probabilistic ones. The notion of “looking at a bit of the proof”. can be
formalized by providing the verifier with oracle access to the proof, i.e., the verifier
can specify the address of a location of the proof and gets back the bit written in
that location and this entire process takes only as much time as required to write
the address. The number of bits of the proof that are “looked” at is now the num-
ber of oracle queries. To contrast such a verifier with the traditional verifier, one
also quantifies the amount of randomness used by such a verifier. Thus we define
(r(·), q(·))-restricted PCP verifier to be a probabilistic verifier with random access
to a proof oracle, such that on input x of length n, the verifier tosses at most r(n)
coins and accesses the oracle at most q(n) times, where the locations accessed are a
function of the random coins. A language L is said to be in class PCP(r, q) if there
exists an (r(·), q(·))-restricted PCP verifier V satisfying the following: If x ∈ L
there exists an oracle π such that the verifier V accepts x with probability 1 on
oracle access to π. If x 6∈ L, for every π, V accepts x with probability at most 1/2.
Notice that the verifier can make mistakes when x 6∈ L. (The definition of a PCP
as defined above is from [6]. Many components in this definition come from earlier
works: The notion of probabilistic verifiers was first proposed in [25, 10], as part
of a larger definition. The notion of oracle machine verifiers was proposed in [22].
The parameters of interest. i.e., r(·) and q(·), were implicit in [19]. A closely re-
lated definition focusing on different parameters, termed transparent proofs, was
also studied by [9].)

It is immediate from the definition of PCP that NP = ∪c>0PCP(0, nc) (the
verifier is not randomized, but is allowed unlimited access to the proof). The
results of [8, 9, 19] showed that by allowing the verifier small amounts of ran-
domness, the query complexity can be reduced dramatically and in particular
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NP ⊆ ∪c>0PCP(c logn log logn, c logn log logn). Subsequently [6, 5] showed that
it is possible to restrict the verifier even more significantly to just a constant num-
ber of queries (independent of the theorem, the proof or the system of axioms).
They also reduce randomness to strictly logarithmic in input size. Specifically,
they show

Theorem 1 ∃q <∞ such that NP = ∪c>0PCP(c logn, q).

The consequences to combinatorial optimization may be described informally
as follows: The notion of a PCP verifier allows one to formalize the notion of an
“approximately” correct proof; and the strong results obtained above show that
such a proof exists if and only if a perfectly correct proof exists. Thus the task
of finding an approximately correct proof is as hard as the task of finding a per-
fectly correct proof. The traditional connection between proofs and optimization
[15, 29, 32] now indicates that for some optimization problems (unfortunately, not
necessarily natural ones) finding near-optimal solutions should be as hard as find-
ing optimal ones. The statement can actually be formalized and made applicable
even to natural optimization problems. This connection was discovered by [19]
and its applicability was further extended in [5] to apply to a large number of
optimization problems considered in [34].

In this article we describe some of the methods used in the construction of
probabilistically checkable proofs, from a very high level. In particular, we describe
some of the properties that a probabilistically checkable proof must have. We also
give a hint of how such properties are effected. The primary hope is to motivate
the reader to read more detailed descriptions. The concluding section includes
pointers for further reading as well as to more recent work.

2 Construction and verification of PCPs

In this section we will describe from a high-level the construction of a probabilis-
tically checkable proof. Using the completeness of 3-SAT we will assume that we
restrict our attention to theorems of the form φ ∈ 3-SAT, where φ is a 3cnf for-
mula. It will be useful to think of φ as a function mapping {0, 1}n to {0, 1}, using
the association that 0 represents the Boolean false and 1 represents the Boolean
true. φ(~a) = 1 if φ is satisfied by the assignment ~a ∈ {0, 1}n. We will switch
between 3 possible views of a, the proof of the theorem φ ∈ 3-SAT. a may be
thought of as a string, as a vector (over some appropriate field containing 0 and
1), or as an oracle that on query i responds with the ith coordinate of a.

Recall that our goal is to describe an alternate proof for φ ∈ 3-SAT. More
importantly we wish to describe a new probabilistic verifier V for proofs of satis-
fiability of 3cnf formulae. The verifier will make “few” queries to the new proof,
an oracle A, and then cast a verdict. If φ 6∈ 3-SAT, then no oracle satisfies the
verifier with probability 1/2, while if φ ∈ 3-SAT, then there exists an oracle A
such that V always accepts. In the latter case there exists a effective transfor-
mation T which transforms the proof a ∈ {0, 1}n satisfying φ(a) = 1 into the the
oracle A. It is this transformation that will be our primary focus. For reasons of
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space, we will focus on the weaker goal of describing a verifier V that makes only
q = q(n) = (logn)O(1) queries and the transformation T for such a verifier.

2.1 Motivation

We start by examining some properties such a transformation T necessarily ex-
hibits. The first interesting property exhibited by A = T (a) is its redundancy. Let
us view A as a string, and suppose Ã is a string obtained by randomly choosing a
small fraction of the bits of A and changing them (from 0 to 1 and vice versa). A
PCP verifier making q queries still accepts with probability the proof Ã with high
probability, where this probability tends to 1 as the fraction of errors in the proof
tend to 0. Furthermore it is possible to determine the acceptance probability of
the verifier on string Ã in polynomial time. Thus even though Ã is far from A, it
preserves its “meaning” (i.e., continues to prove the statement φ ∈ 3-SAT.) The
easiest conceivable way to achieve such an effect is to insist that Ã preserves the
original proof. i.e., ~a itself (despite the fact that 1% of its bits are erroneous).
This leads us to the first property of the transformation T (·) that we will try to
achieve. T is an error-correcting code, i.e., for any two strings a1 and a2, T (a1)
and T (a2) differ in a constant fraction of the bits.

In particular this implies that T is an expansive mapping i.e., maps {0, 1}n→
{0, 1}N for N > n and hence there are many strings in the range that T does not
map to. Given a formula φ 6∈ 3-SAT and a string Ã, the PCP verifier has to reject
the offered proof with probability at least ǫ > 0 after reading just q bits in such
a proof. Furthermore, when the verifier rejects the proof, it must offer an explicit
error in the proof in the three bits it reads. The error described may either claim
(1) Ã is not describing any string in the image of T ; or (2) Ã may be the encoding
of some string ~a; but φ(~a) 6= 1 for any such string.

To use error of the form (1) above with some string A, it must be that there
exist indices i1, . . . , iq ∈ [N ] such that for any string T (~a), the projection to
the coordinates i1, . . . , iq does not agree with the projection of A to the same
coordinates. We say that an error-correcting code T is q-locally checkable if for
every string A that is not in the range of T , there exist indices i1, . . . , iq ∈ [N ]
with this property. It will be our goal to come up with an appropriate q-locally
checkable code T , for relatively small q.

Finally, T will need to have a “semantic” part: i.e., somehow T must be
dependent on φ, in order for it to exploit the error condition in (2) above. Sum-
marizing, in the next sections we will describe a transformation T that is an
error-correcting code, with good local checkability, that will somehow reveal the
truth of the statement φ ∈ 3-SAT.

2.2 The transformation

We start with a simple transformation which leads to some error-correction proper-
ties. (Here and later we use [n] to denote the set {1, . . . , n}.) The simplest method
for adding some error-correcting feature to any information string is to encode
it using the Reed-Solomon code. Specifically, to encode the information string
a1, . . . , an we pick a finite field F of order Ω(n) and an injective map b : [n]→ F .
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We then pick a polynomial Pa : F → F of degree at most n such that Pa(b(i)) = ai
for i ∈ [n] and our first transformation, denoted T1 is given by T1(a) = (Pa(z))z∈F
be the encoding of a. Notice that the encoding does not give us a string in {0, 1}N ,
but rather an element of F |F | that we view as a string over F . Using the elemen-
tary property that two distinct degree n polynomials can agree in at most n places,
we find that this transformation is very redundant. Specifically T1(a1) and T1(a2)
have a Hamming distance of at least |F | − n when viewed as strings over F .

The above transformation has the right error-correcting property, but lacks
local checkability. To get this additional property, we use the idea of encoding
using multivariate polynomials. Specifically, we pick an integer m, and field F
(whose size will be determined shortly), a set H ⊂ F , such that |H|m ≥ n and
an injective function b : [n] → Hm. To encode a string ~a, we pick an m-variate
polynomial Pa : Fm → F of degree |H| in each variable such that Pa(b(i)) = ai
for every i ∈ [n]. (It is easy to prove that such a polynomial Pa always exists.)
The total degree of such a polynomial is at most m|H|. The encoding of a is then
simply the string T2(a) = (Pa(z1, . . . , zm))z1,...,zm∈F . Thus T2 : {0, 1}n → F |F |

m

and satisfies the following distance property. For any pair of strings a1 and a2,
T2(a1) and T2(a2) agree in at most m|H|/|F | fraction of all indices, when viewed as
strings over F . This property follows from a well-known extension of the distance
property of polynomials to the multivariate case, which states that a (multivariate)
polynomial of total degree d can be zero on at most d/|F | fraction of the domain.

The advantage in using the multivariate polynomials is that they exhibit
significantly better local checkability properties. In particular, for every function
Q : Fm → F that is not a polynomial of degree d, there exist d + 2 points that
“prove” this property. We are now ready to describe some useful choices of m, |H|
and |F |. (Incidentally, the choice of the function b : [n]→ Hm does not affect the
performance of the transformation T2 in any way.) To get a good locally checkable
code one would like to minimize the degree which is at most m|H|. However, the
choice has to satisfy |H|m ≥ n. To ensure that T2(a) is not too long compared to a,
one needs to ensure that |F |m is only polynomially larger |H|m, which implies |F |
should be a polynomial in |H|. Furthermore, to get a constant distance, |F | better
be larger than the total degree (by at least a constant factor). One such choice of
parameters is (we omit floors and ceilings in the following choices): m = logn

log logn ,

|H| = logn, and |F | = (log n)2. This creates a transformation T2 which maps
n bits to n2 elements from a field of size log2 n, with degree and hence q-local
checkability for q ≤ log2 n.

We now bring in the semantic element to the error correcting code. This
will take some development, so we first outline the plan for this stage. In the
final construction T (a) = Tφ(a) will be a sequence of polynomials f0 : Fm →
F and f1, . . . , fk : Fm

′ → F , described by their value at every input in Fm
′
.

(k,m′ will be specified later.) The value of the polynomial fi at some point
u ∈ Fm

′
will be determined by a simple formula — or “construction rule” —

applied to the value of the polynomial fi−1 at some l places ψi,1(u), . . . , ψi,l(u).
(Again, l will be determined shortly.) The polynomial f0 will be T2(a). The rules
will be constructed so that fk is identically zero if and only if a satisfies φ.

To get such a sequence, we start by “arithmetizing” the notion of a 3-SAT
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formula and the notion of satisfiability of a clause. Recall that a variable is specified
by an index in [n] and thus a literal can be specified as an element of [n]× {0, 1}.
A clause is a triple of literals and thus an element of [n]× [n]× [n]×{0, 1}3. A 3cnf
formula φ can thus be described by a function φ′ mapping [n]× [n]× [n]× {0, 1}3
to {0, 1}. φ′(i, j, k, b1, b2, b3) = 1 iff the clause with literals (i, b1), (j, b2) and
(k, b3) occurs in φ. Using the function b : [n] → Hm, we can identify a clause

with an element of H3m+3. We say that a polynomial φ̂ : F 3m+3 → F of degree
less than |H| in each variable is the arithmetization of φ if φ′(i, j, k, b1, b2, b3) =

φ̂(b(i), b(j), b(k), b1, b2, b3) for any i, j, k ∈ [n] and b1, b2, b3 ∈ {0, 1}. We will fix

φ̂(u) = 0 for all other u ∈ H3m+3. As claimed earlier, it can be shown that such a

polynomial φ̂ does exist and that it can be computed in polynomial time from φ.
We now move on to the task of arithmetizing the notion of satisfiability. Given

a clause C on literals (i, b1) (j, b2) and (k, b3), and an assignment a1, . . . , an that
has been transformed by the transformation T2 into the polynomial f0 : Fm → F ,
notice that the formula (f0(b(i))− b1) · (f0(b(j)) − b2) · (f0(b(k)) − b3) is 0 if and
only if the clause C is satisfied. This leads us to the definition of the polynomial
f1 : F 3m+3 → F to be

f1(u, v, w, b1, b2, b3) = φ̂(u, v, w, b1, b2, b3)(f0(u)− b1)(f0(v)− b2)(f0(w)− b3) (1)

where u, v, w ∈ Fm and b1, b2, b3 ∈ F . By construction it is clear that f1 is a
polynomial on m′ = 3m+ 3 variables having degree at most 2|H| in each variable;
and furthermore is identically zero on the domain Hm′ if and only if φ is satisfied
by the assignment a.

This is close in spirit to what we desire. In what follows, we will develop a
sequence of polynomials which will move the condition on f1 being zero on the
domain Hm to the condition that fm′+1 being zero on Fm

′
. This will be achieved

inductively: specifically we will define fi : Fm
′ → F to be such that fi+1 is zero

on the domain F i×Hm−i if and only if fi is zero on the domain F i−1×Hm−i+1.
This is achieved by the following rule.

fi+1(r1, . . . , ri; zi+1, . . . , zm′) =

|H|∑

j=1

rji · fi(r1, . . . , ri−1; ζj ; zi+1, . . . , zm′), (2)

where ζ1, . . . , ζ|H| is any enumeration of the elements of H. It is easy to argue that
the polynomials fi+1 satisfies the desired property by an inductive argument on
i. This concludes the transformation T , that we summarize as follows: given φ, a,
we pick a field F , a subset H, an integer m, an injective map b : [n]→ Hm and an
enumeration ζ1, . . . , ζ|H| of the elements of H. We then let f0 = T2(a), f1 be as
defined by (1), f2, . . . , fm′+1 be as defined by (2) and let T (a) = (f0, . . . , fm′+1).

2.3 The verification

We now describe the verifier for the transformation T . The verifier will be given
oracles for functions f0, . . . , fm′+1 and needs to verify that (a) The oracles fi, i ∈
{0,m′+1} describe polynomials of the correct degree. (b) For every i ∈ [m′+1], the
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polynomial fi is constructed from pi−1 using (1) or (2) (as appropriate). (c) The
polynomial fm′+1 is identically zero. Assuming that the functions f0, . . . , fm′+1
are indeed polynomials of the correct degree, (b) and (c) can be verified very easily,
probabilistically. To verify (c) the verifier queries the oracle fm′+1 at a randomly
chosen input u ∈ Fm′ . By the distance property of polynomials, if fm′+1 is not
identically zero then fm′+1(u) 6= 0 with high probability. To check (b) the verifier
checks that the appropriate rule (1) or (2) holds for the oracles fi+1 and fi for
randomly chosen u. If the polynomial fi+1 is not identical to the polynomial
obtained by applying the rule to fi, then this difference will be witnessed by the
point u with high probability. (Once again the distance property of polynomial is
being used here.)

Thus the entire verification process reduces to the task of checking condition
(a). A test for this condition is termed a “low-degree test” and has been a sub-
ject of active investigation recently. Specifically a low-degree test probabilistically
queries q locations in an oracle Q and behaves as follows: If Q is a polynomial of
total degree d, then the test accepts with probability 1. If the test accepts with
probability 1−δ, then there is a polynomial P : Fw → F such that Q and P agree
in all but at most ǫ fraction of the inputs, where ǫ, δ are parameters associated
with the test.

To test that Q is a polynomial of degree at most d, one exploits the geometry
of the space Fm as follows: For u, v ∈ Fm and t ∈ F , let lu,v(t) = u+ tv and let
the line through u with slope v, denoted lu,v, be the parameterized set of points
{lu,v(t)|t ∈ F}. It is immediate that for any polynomial P : Fm → F of degree at
most and a line l = lu,v, the function P |l : F → F given by P |l(t) = P (lu,v(t)) is a
univariate polynomial of degree at most d. Based on this observation a low-degree
test was proposed in [37]: “Pick u, v uniformly and independently at random from
Fm and verify that the points {(t,Q(lu,v(t))|t ∈ F} are described by a univariate
polynomial of degree at most d.” It is clear that the tester makes |F | queries to
the oracle for Q and accepts all degree d polynomials. The “converse” is harder
to prove and we will not attempt to hint at the proof here. A sequence of results
[37, 6, 5, 36, 7] concludes showing that this test works for every ǫ < δ < 1, provided
|F | is polynomially larger that d/(1− δ).

We are still not done, since the low-degree test does not guarantee that the
oracle Q is always equal to a low-degree polynomial, but only close to one. To
patch this problem, we again resort to the error-correcting nature of polynomials;
by using a probabilistic (and highly-efficient) error-correcting algorithm C for low-
degree polynomials, due to [11]. C will have oracle access to some function Q :
Fw → F and behave as follows on input u ∈ Fw: If Q is a degree d polynomial,
it will return Q(u). If Q is ǫ-close to a degree d polynomial P , it will return P (u)
or “error” with high probability (over its internal coin tosses). Again C uses the
property of lines in Fm. “Given ~u ∈ Fw C picks at random ~v ∈ Fw and considers
the function q(t) = Q|l~u,~v (t). If q is a polynomial in t of degree at most d, then
outputs q(0) else outputs error.” A simple probabilistic argument shows that C
has the desired properties for every ǫ < 1, provided F is large enough.

We are now ready to specify the complete PCP verifier for verifying φ ∈
3-SAT. The verifier has access to the oracles f0, . . . , fm′+1. It performs a low-
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degree test on every oracle fi, i ∈ {0, . . . ,m′ + 1}. If all low-degree tests pass,
it then picks a random u ∈ Fm

′
and verifies that for every i that the oracles

Cfi+1 satisfies the appropriate rule (1 or 2) w.r.t Cfi . (Notice that we are now
working with the oracles Cfi rather than fi. This is the right choice, since Cfi is a
polynomial — not merely close to one.) Finally it checks that Cfm′+1(u) = 0. If all
checks pass, then it accepts the proof, else it rejects the proof. Thus for the choices
of m, |F | etc. as made above, the construction yields a verifier making a total of
O(logc n) queries to all the oracles, for some absolute constant c. A formalization
of the arguments above yields (modulo the analysis of the low-degree test) that
the verifier accepts incorrect proofs with probability o(1), as n → ∞. Thus we
conclude:

Theorem 2 NP ⊆ PCP(O(log n), logc n).

Notes The result from Theorem 2 is essentially due to [8, 9], though the ran-
domness efficiency was not reduced to O(log n) until the work of [6]. To get the
full effect of Theorem 1 a number of new ideas are required. A central theme is a
paradigm to compose proof systems, developed by [6]. In addition [5] present two
new PCP constructions to prove Theorem 1. The interested reader may read the
original papers for further details. Additional details may be found in [1, 38].

Subsequently there has been a significant amount of work improving the con-
stant q of Theorem 1. This quest was initiated in [13] and further pursued in
[20, 14, 35, 12]. Recently, a surprisingly sharp result, essentially showing q = 3,
has been obtained by [27] (see also [23] for a variant of this result). This work
introduces novel techniques to analyze the soundness of verifiers and while the
result does rely on some prior work, may be read completely independently.

The consequences to optimization problems have also improved significantly
since the initial works of [19, 5]. In particular, a number of new optimization
problems have been related to PCPs and sharp results obtained in [33, 3, 21, 18, 26,
39]. Detailed surveys of such connections are available in [4, 17]. The connections
have also motivated some new systematic study of combinatorial optimization
problems — see [16, 31, 30].

The renewed interest in the approximability of optimization problems has also
resulted, surprisingly, in a new spurt in algorithmic results. Particularly striking
results in this direction are [24, 2]. Some of these algorithmic results, in particu-
lar [28, 40], are needed to analyze the tightness of the new PCP constructions of
[27].
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Halving Point Sets
Artur Andrzejak and Emo Welzl

Abstract. Given n points in Rd, a hyperplane is called halving if it has
at most ⌊n/2⌋ points on either side. How many partitions of a point set
(into the points on one side, on the hyperplane, and on the other side)
by halving hyperplanes can be realized by an n-point set in Rd?

1991 Mathematics Subject Classification: 52C10, 52B05, 52B55, 68R05,
68Q25, 68U05
Keywords and Phrases: combinatorial geometry, computational geome-
try, k-sets, k-levels, probabilistic method, matroid optimization, oriented
matroids, Upper Bound Theorem.

Consider the following algorithmic problem first. Given n points in Rd, we want
to find a hyperplane that minimizes the sum of Euclidean distances to these n
points. A glimpse of reflection tells us that an optimal hyperplane cannot have
a majority (⌊n/2⌋ + 1 or more) of the points on either side; otherwise a parallel
motion towards this side will improve its quality [YKII, KM]. A hyperplane with
at most ⌊n/2⌋ points on either side is called halving. How many partitions of a
point set (into the points on one side, on the hyperplane, and on the other side)
by halving hyperplanes can be realized by an n-point set in Rd? The notions
and results mentioned below are closely related to this question. Emphasis in the
presentation is on techniques that may be useful elsewhere, and on interconnections
to other topics in discrete geometry and algorithms. A more complete treatment
is in preparation [AW].

Halving edges and a crossing lemma

Let P be a set of n points in the plane, n even, and no three points on a line. A
halving edge is an undirected edge between two points, such that the connecting
line has the same number of points on either side. Around 1970 L. Lovász [Lo]
and P. Erdős et al. [ELSS] were the first to investigate the geometric graph of
halving edges of a point set, and proved that there cannot be more than O(n3/2)
such edges. Except for a small improvement to O(n3/2/ log∗ n) [PSS], there was no
progress on the problem until T. Dey [De] recently gave an upper bound ofO(n4/3).
He shows that the graph of halving edges cannot have more than O(n2) pairs of
crossing edges. Then he employs a crossing lemma (due to M. Ajtai et al. [ACNS]
and T. Leighton [Le]), which has a number of other applications: A geometric
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Figure 1: Graphs of halving edges. The configurations maximize the number of
halving edges for the given number of points [AAHSW]. Note that, in general,
graphs of halving edges are not plane!

graph with n vertices and c pairs of crossing edges has at most O(max(n,
3
√
cn2))

edges.
A variation of Dey’s proof ([AAHSW]) goes via the following identity.

Lemma 1

C +
∑

p∈P

(
(deg p+ 1)/2

2

)
=

(
n/2

2

)

where deg p is the number of halving edges incident to p (this number is always
odd), and C is the number of pairwise crossings of halving edges.

The lemma shows that the number of pairwise crossings in a graph of halving edges
is bounded by

(
n/2
2

)
< n2/4. We will now prove the implication on the number,

m, of halving edges of P . Recall that a geometric graph without crossings of edges
has at most 3n− 6 edges. Now we choose a random induced subgraph Gx of the
graph of halving edges of P by taking each point with probability1 x = 2/ 3

√
n,

independently from the other points. Let Px be the resulting point set, let mx be
the number of halving edges of P with both endpoints in Px, and let Cx be the

1Here we have to assume that n ≥ 8.
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number of pairwise crossings among such edges. We know that mx−Cx ≤ 3nx−6,
since all crossings in Gx can be removed by deletion of Cx edges. The expected
value for nx is xn, for mx it is x2m, and for Cx it is x4C. Hence, due to linearity
of expectation, x2m− x4C ≤ 3xn− 6, which gives2

m ≤ x2C + 3n/x− 6/x2 ≤ 4
3
√
n2
n2

4
+ 3n

3
√
n

2
=

5

2
n4/3 .

For a proof of Lemma 1, we first observe that the identity holds if P is the set
of vertices of a regular n-gon. Then the halving edges are connecting the antipodal
vertices of the polygon. We have n/2 halving edges, deg p = 1 for all points, and
any pair of halving edges crosses. An alternative example is given by the vertices
of a regular (n− 1)-gon together with its center. Then the halving edges connect
this center with the other points, with no crossing of halving edges. In a second
and final step one verifies that the identity remains valid under continuous motion
of a point set. We will not go through this argument, but we mention here a
lemma due to L. Lovász [Lo], which is essential for this argument and for most
proofs in this context.

Lemma 2 Let line ℓ contain a unique point p in P . Assume there are x halving
edges incident to p emanating into the side of ℓ which contains less points from P
than the other side of 3 ℓ. Then there are x+ 1 halving edges emanating into the
other side of ℓ.

The lemma can be proven by rotating a line λ about point p starting in position ℓ
until it coincides with ℓ again. The halving edges incident to p are encountered in
alternation on the large and small side of ℓ, starting and ending on the large side.

It is remarkable, that the graph of halving edges is the unique graph that
satisfies Lemma 2, i.e., it completely characterizes the graph of halving edges of a
point set. Simple implications of the lemma are that the number of halving edges
incident to a point in P is always odd, and that there is exactly one halving edge
incident to each extreme point of P . Moreover, we have the following implication,
which, in fact, is equivalent to Lemma 2.

Corollary 1 Let ℓ be a line disjoint from P with x points from P on one side
and y points on the other side, x+ y = n. Then ℓ crosses min(x, y) halving edges
of P .

The corresponding problem of bounding the number of halving triangles of n points
in R3, n odd, has also been investigated in a sequence of papers with a currently
best bound of O(n8/3) due to T. Dey and H. Edelsbrunner [DE]. Building blocks
of the proof are a probabilistic argument similar to the one given above, and a
counterpart of Corollary 1: No line crosses more than n2/8 halving triangles.

While the bound in R3 still allows for a simple proof, the situation gets more
involved in dimensions 4 and higher, where the best bounds due to P. Agarwal
et al. [AACS] are based on a colored version of Tverberg’s Theorem [Tv] by
R. T. Živaljević and S. T. Vrećica [ZV].

2The general bound of O(max(n,
3
√
cn2)) in the crossing lemma [ACNS, Le] is obtained with

x = min(1, 3
√

n/c). The best known constant in the asymptotic bound can be found in [PT].
3This side is unique, since ℓ contains a point, and |P | is even.
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k-Levels and parametric matroid optimization.

Let H be a set of n non-vertical lines in R2. For 0 ≤ k ≤ n − 1, the k-level of
the arrangement of H is the set of all points which have at most k lines below
and at most n − k − 1 above. Clearly, points on the k-level must lie on at least
one line. Moreover, the k-level can be easily seen to be an x-monotone polygonal
curve from −∞ to +∞, since it intersects every vertical line in exactly one point.

We will now show how the halving edges of a planar point set P , |P | even,
correspond to vertices of the (n/2− 1)- and (n/2)-level of some line arrangement.
To this end we consider the mapping p = (a, b) 7→ p∗ : y = ax + b from points
to non-vertical lines, and the mapping h : y = kx + d 7→ h∗ = (−k, d) from non-
vertical lines to points. This mapping preserves incidences and relative position:
p lies on h iff p∗ contains h∗, and p lies above h iff h∗ lies below p∗. Set P ∗ =
{p∗|p ∈ P}. Now a pair of points p and q is connected by a halving edge iff the
intersection4 of p∗ and q∗ lies both on the (n/2 − 1)- and the (n/2)-level of the
arrangement of P ∗.

The results in [De] imply an upper bound of O(n 3
√
k + 1 ) on the number of

vertices on the k-level. k-levels have a number of applications in the analysis of
algorithmic problems in geometry. We briefly outline here a connection where the
methods for analyzing k-levels proved useful.

A matroid of rank k consists of a set of n elements and a non-empty family of
k-element subsets, called bases. The family of bases is required to fulfill the basis
exchange axiom: for two bases B1, B2 and an element x ∈ B1 \B2 we can always
find y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} is again a basis.

Typical examples of matroids are the set of edges of a graph with its spanning
trees as bases, or a set of vectors with its bases. If we equip the elements e with
weights w(e), we can ask for the minimal weight basis (i.e., the basis with minimal
sum of weights). The matroid property ensures that the greedy method finds such
an optimal basis.

Assume now that the weights are linear functions w(e) = keλ+ de depending
on some real number λ [Gu, KI]. While λ ranges from −∞ to ∞, we obtain a
sequence of minimal weight bases. How long can this sequence be?

By plotting the weights of the elements along the λ-axis, we obtain an ar-
rangement of n lines. The changes of the minimal weight basis occur at vertices of
this arrangement. In the special case of a uniform matroid, i.e., where each set of
k elements forms a basis, the changes of minimal weight basis occur at the vertices
of the (k − 1)-level of the line arrangement. N. Katoh was the first to notice this
connection.

For general rank k matroids it is known [Ep] that the length of the minimal
base sequence is bounded by the total number of vertices of k convex polygons
whose edges do not overlap and are drawn from n lines. T. Dey [De] has shown an
upper bound O(nk1/3+n2/3k2/3) (which is O(nk1/3) for k ≤ n) on this quantity by
a modification of his proof for the complexity of a k-level. This bound is optimal,
due to a lower bound Ω(nk1/3) obtained by D. Eppstein [Ep].

4This intersection may vanish to infinity, if the halving edge is vertical.
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For graphs the problem looks at the number of different minimal spanning
trees for edge weights parameterized by some linear fuction in a parameter λ. The
best lower bound for this quantity is Ω(nα(k)) [Ep], where n is the number of
edges, k + 1 is the number of vertices, and α is a slowly growing inverse of the
Ackermann function. The known upper bound is the same as for general matroids.

Lower bounds and oriented matroids

The upper bounds mentioned may be far from optimal. In the plane sev-
eral constructions of n-point sets with Ω(n logn) halving edges are known
[ELSS, EW, EVW]. If we consider the corresponding problem for oriented ma-
troids (cf. [BLSWZ]) of rank 3 (or pseudoline arrangements in the dual), then

there is an unpublished lower bound of n2Ω(
√
log n ) due to M. Klawe, M. Paterson,

and N. Pippenger, inspired by a connection to sorting networks (cf. [AW]). It is
open whether this construction is realizable (stretchable) or not.

j-Facets and the Upper Bound Theorem

The following notion generalizes halving edges and triangles. Let P be a set
of n > d points in Rd in general position, i.e., no d + 1 points on a common
hyperplane. A j-facet of P is an oriented (d−1)-simplex spanned by d points in P
that has exactly j points from P on the positive side of its affine hull. The 0-facets
correspond to the facets of the convex hull of P . Hence, the Upper Bound Theorem
due to P. McMullen [McM] (cf. [Zi]) gives us a tight upper bound on the number

of 0-facets, which is attained by the vertices of cyclic polytopes: 2
(
n−⌊d/2⌋−1
⌊d/2⌋

)

for d odd, and 2
(n−⌊d/2⌋
⌊d/2⌋

)
−
(n−⌊d/2⌋−1

⌊d/2⌋
)

for d even. Below we will use the fact that

these expressions are upper bounded by 2
(

n
⌊d/2⌋

)
. For d fixed, K. L. Clarkson and

P. W. Shor [CS] derive an asymptotically tight bound of O(n⌊d/2⌋(j + 1)⌈d/2⌉) for
the number of (≤ j)-facets (i.e., i-facets with 0 ≤ i ≤ j) by an argument along the
following lines.

We use gj for the number of j-facets of P and Gj for the number of (≤ j)-

facets, i.e., Gj =
∑j
i=0 gi. Now fix some j, 0 ≤ j ≤ n − d and x, 0 < x ≤ 1. We

take a random sample Px of P by selecting each point in P with probability x,
independently from the other points. Let nx = |Px| and let Fx be the number of
0-facets of Px.

On the one hand, the Upper Bound Theorem implies Fx ≤ 2
(
nx
⌊d/2⌋

)
and so

E(Fx) ≤ 2

(
n

⌊d/2⌋

)
x⌊d/2⌋ , (1)

since E(
(
X
i

)
) =

(
N
i

)
xi for a random variable X following the binomial distribution

of N Bernoulli trials with success probability x. On the other hand, an i-facet of
P appears as a 0-facet of Px with probability xd(1 − x)i – we have to select the
d points that determine the i-facet, but none of the i points on its positive side.
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Hence,

E(Fx) =
n−d∑

i=0

xd(1− x)igi ≥ xd(1− x)j
j∑

i=0

gi = xd(1− x)jGj . (2)

Combining (1) and (2), we have Gj ≤ 2(1 − x)−j
(

n
⌊d/2⌋

)
x−⌈d/2⌉. By setting x =

⌈d/2⌉/(j + ⌈d/2⌉),

Gj ≤ 2

(
n

⌊d/2⌋

)
(j + ⌈d/2⌉)j+⌈d/2⌉

jj⌈d/2⌉⌈d/2⌉
≤ 2

(
e

⌈d/2⌉

)⌈d/2⌉ (
n

⌊d/2⌋

)
(j + ⌈d/2⌉)⌈d/2⌉

and the claimed asymptotic bound follows.
Except for dimensions 2 and 3, no exact upper bounds for the number of (≤ j)-

facets are known. In particular, it is not known whether the exact maximum is
attained for sets in convex position or not. It is still possible that the exact
maximum can be obtained for points on the moment curve, where the number of
(≤ j)-facets can be easily counted.

We summarize the known bounds for the number of j-facets.

Proposition 1 Let P be a set of n > d points in Rd in general position, i.e., no
d+ 1 points on a common hyperplane. Let 0 ≤ j ≤ n− d.
(0) There is a constant εd > 0 dependent on d only, such that

gj = O(n⌊d/2⌋(j + 1)⌈d/2⌉−εd)

[AACS]. There are point sets with g⌊(n−d)/2⌋ = Ω(nd−1 logn) [Ed].

Gj = O(n⌊d/2⌋(j + 1)⌈d/2⌉)

which, for d fixed, is asymptotically tight for points on the moment curve [CS].
(1) If d = 2 then

gj = O(n 3
√
j + 1 )

[De]. Gj ≤ n(j + 1) for j < n/2− 1 [AG, Pe], which is tight for points in convex
position.
(2) If d = 3 then

gj = O(n(j + 1)5/3)

[AACS].
Gj ≤ (j + 1)(j + 2)n− 2(j + 1)(j + 2)(j + 3)/3

for j ≤ n/4− 2, which is tight if P is in convex position [AAHSW].

And k-sets?

We have met halving edges and triangles, k-levels and j-facets, but if the reader
inspects the references, she will repeatedly encounter the term ‘k-set.’ In fact,
many people think of the problem in the following setting (although proofs and
applications go via the notions we have discussed above):
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Let P be a set of n points in Rd. A subset S of P is called k-set, if |S| = k and
S can be separated from P \S by a hyperplane. The maximum possible number of
k-sets of n-point sets in Rd is related to the maximum possible number of k-facets,
although the connection is somewhat subtle [AAHSW, AW].
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[PT] János Pach and Géza Toth, Graphs drawn with few crossings per edge,
Lecture Notes in Comput Sci 1190 (1997) 345–354

[Pe] G. W. Peck, On k-sets in the plane, Discrete Math 56 (1985) 73–74

[Sh] Micha Sharir, k-Sets and random hulls, Combinatorica 13 (1993) 483–
495

[Tv] Helge Tverberg, A generalization of Radon’s Theorem, J London Math
Soc 41 (1966) 123–128

[YKII] Peter Yamamoto, Kenji Kato, Keiko Imai, and Hiroshi Imai, Algo-
rithms for vertical and orthogonal L1 linear approximation of points,
in “Proc 4th Ann ACM Symp on Comput Geom” (1988) 352–361

[Zi] Günter Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics,
Spinger-Verlag (1995)
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ETH Zürich
CH-8092 Zürich
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On Multiresolution Methodsin Numerical Analysis
Gregory Beylkin

Abstract. As a way to emphasize several distinct features of the mul-
tiresolution methods based on wavelets, we describe connections between
the multiresolution LU decomposition, multigrid and multiresolution re-
duction/homogenization for self-adjoint, strictly elliptic operators. We
point out that the multiresolution LU decomposition resembles a direct
multigrid method (without W-cycles) and that the algorithm scales prop-
erly in higher dimensions.

Also, the exponential of these operators is sparse where sparsity is defined
as that for a finite but arbitrary precision. We describe time evolution
schemes for advection-diffusion equations, in particular the Navier-Stokes
equation, based on using sparse operator-valued coefficients. We point
out a significant improvement in the stability of such schemes.

1991 Mathematics Subject Classification: 65M55, 65M99, 65F05, 65F50,
65R20, 35J, 76D05
Keywords and Phrases: multigrid methods, fast multipole method,
wavelet bases, multiresolution analysis, multiresolution LU decompo-
sition, time evolution schemes, exponential of operators, advection-
diffusion equations

1 Introduction

Multiresolution methods have a fairly long history in numerical analysis, going
back to the introduction of multigrid methods [10], [18] and even earlier [22]. A
renewed interest in multiresolution methods was generated recently by the develop-
ment of wavelet bases and other bases with controlled time-frequency localization
[23], [20], [13], [19], [12], [2], [1], etc.. The introduction of these new tools allows
us to relate numerical analysis with harmonic analysis and signal processing by
the fundamental need of an efficient representation of operators and functions.

It is useful to compare the wavelet approach with the multigrid method (MG)
and the Fast Multipole Method (FMM). For most problems the wavelet approach,
FMM, and MG provide the same asymptotic complexity. The differences are
typically in the “constants” of the complexity estimates. These differences will,
most likely, diminish in the future.
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A typical MG is a fast iterative solver based on a hierarchical subdivision.
Hierarchical subdivision is also used in FMM which was initially proposed for
computing potential interactions [21], [17]. This algorithm requires order N oper-
ations to compute all the sums

pj =
∑

i6=j

qiqj
|xi − xj |

, where xi ∈ R3 i, j = 1, . . . , N, (1)

and the number of operations is independent of the configuration of charges. In the
FMM, the reduction of the complexity of computing the sums in (1) from order N2

to −N log ǫ, where ǫ is the desired accuracy, is achieved by approximating the far
field effect of a cloud of charges located in a box by the effect of a single multipole
at the center of the box.

Although both MG and FMM have been extended well beyond their original
applications, neither of these methods use the notion of bases in their development
and, specifically, orthonormal bases1. On the conceptual level using bases makes it
easier to consider efficient representations of functions and operators that handle
smooth, oscillatory, and scaling behavior.

In particular, to emphasize several distinct features of the wavelet approach,
we consider two topics. First, we describe connections between the multiresolution
LU decomposition, MG, and multiresolution reduction/homogenization for self-
adjoint, strictly elliptic operators. Second, we describe the effects of computing the
exponential of such operators on numerical properties of time evolution schemes
for advection-diffusion equations.

The essence of the first topic is that multiresolution LU decomposition (the
usual LU decomposition interlaced with projections) is equivalent to the direct
MG, i.e., a MG without W-cycles. The reason for the absence of W-cycles is that
on every scale we construct equations for the orthogonal projection of the true
solution. Once these equations are solved, there is no need to return to a coarser
scale to correct the solution (which is the role of W-cycles in MG). Moreover,
equations obtained in this manner on coarser scales are of interest by themselves,
since they can be interpreted as “homogenized” or reduced equations, leading to
(numerical) multiresolution reduction and homogenization.

The essence of the second topic is that we can drastically improve properties
of time evolution schemes for advection-diffusion equations by using the exponen-
tial of operators. As it turns out, for self-adjoint, strictly elliptic operators L the
exponential exp (−tL) is sparse in wavelet bases (for a finite but arbitrary preci-
sion) for all t ≥ 0. This observation makes the construction of exp (−tL) feasible
in two and three spatial dimensions. Given a proper choice of basis and several
additional algorithms, we are led to adaptive numerical schemes for the solution
of advection-diffusion equations [8].

1We note that the representation of functions via their values and via coefficients in an ex-
pansion are closely related. In fact if one uses interpolating bases functions then there is a way
to simplify this relation (see [3]).
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2 Multiresolution Direct Solvers

Direct solvers are not used for problems in multiple dimensions since the standard
LU decomposition will fill most of the matrix and, thus, render the method in-
efficient. This is even without considering additional difficulties due to the high
condition numbers typical in these problems. It turns out that both difficulties
can be overcome for self-adjoint, strictly elliptic operators by using wavelet bases
and multiresolution LU decomposition [7], [16].

As usual, we consider multiresolution analysis (MRA), a chain of subspaces

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . .

such that ⋂

j

Vj = {0} and
⋃

j

Vj = L2(Rd).

Let the subspace Vj be spanned by an orthonormal basis formed by the tensor

product of scaling functions {φjk(·) = 2−j/2φ(2−j · −k)}k∈Z, where φ satisfies the
two-scale difference equation (see e.g. [13] for details). Let us denote by Wj the
orthogonal complement of Vj in Vj−1, Vj−1 = Vj ⊕Wj. We use Pj and Qj to
denote the projection operators onto Vj andWj . If x ∈ Vj , we write sx = Pj+1x
and dx = Qj+1x, where sx ∈ Vj+1 and dx ∈Wj+1.

Given a bounded linear operator S on L2(Rd), let us consider its projection
Sj on Vj , Sj = PjSPj and represent the operator Sj as a (possibly infinite)
matrix in that basis. With a slight abuse of notation, we will use the same symbol
Sj to represent both the operator and its matrix. Since Vj = Vj+1 ⊕Wj+1, we
may also write Sj : Vj → Vj in a block form

Sj =

(
ASj BSj
CSj TSj

)
: Vj+1 ⊕Wj+1 → Vj+1 ⊕Wj+1, (2)

where ASj = Qj+1SjQj+1, BSj = Qj+1SjPj+1, CSj = Pj+1SjQj+1, and
TSj = Sj+1 = Pj+1SjPj+1. Each of the operators may be considered as a matrix

and in the matrix form the transition from Sj in (2) to

(
ASj BSj
CSj TSj

)
requires

application of the wavelet transform. We refer to ASj , BSj , CSj and TSj as the
A, B, C, and T blocks of Sj .

Consider a bounded linear operator Sj : Vj → Vj and a linear equation

Sjx = f, (3)

which we may write as
(
ASj BSj
CSj TSj

)(
dx
sx

)
=

(
df
sf

)
. (4)

Formally eliminating dx from (4) by substituting dx = A−1
Sj

(df − BSjsx)

(Gaussian elimination) yields

(TSj −CSjA−1Sj BSj )sx = sf −CSjA−1Sj df . (5)
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We call (5) the reduced equation, and the operator

RSj = TSj −CSjA−1Sj BSj (6)

the one-step reduction of the operator Sj . The right-hand side of (6) is also known

the Schur complement of the block-matrix

(
ASj BSj
CSj TSj

)
.

Note that the solution sx of the reduced equation is exactly Pj+1x, the projec-
tion of the solution of the original equation in Vj+1. The solution of the reduced
equation is the same on the subspace Vj+1 as the solution of the original equa-
tion (3). Once we have obtained the reduced equation, it may be reduced again
to produce an equation on Vj+2. Likewise, we may reduce n times to produce
an equation on Vj+n the solution of which is the projection of the solution of
(3) on Vj+n. We note that in the finite-dimensional case, the reduced equation
(5) has 1/2d as many unknowns as the original equation (3). Reduction, there-
fore, preserves the coarse-scale behavior of solutions while reducing the number of
unknowns.

The critical questions are: (i) can we control the sparsity (for any finite but
arbitrary precision) of the matrix CSjA

−1
Sj
BSj? and, (ii) can we repeat the reduc-

tion step for RSj? In MG literature the Schur complement appears in a number of
papers but these questions were not answered. In [7] and [16] these questions were
answered affirmatively for a finite number of reduction steps. The key property
that makes this affirmative answer possible is the vanishing moments property of
the basis functions.

The sparsity (for any finite but arbitrary precision) of the multiresolution LU
factorization does not depend on dimension. This is in a sharp contrast with the
usual practice, where LU factorization is not recommended as an efficient approach
in problems of dimension two or higher. For example, if we consider the Poisson
equation, then LU decomposition is not considered as a practical option since the
fill-ins will yield dense LU factors.

A close examination of the algorithm in [16] reveals a striking resemblance
of the multiresolution LU decomposition coupled with the multiresolution forward
and backward substitution to a MG technique. The important difference, however,
is that there are no W-cycles.

As described above, reduction is an algebraic procedure carried out on ma-
trices over a finite number of scales. It relies on the explicit hierarchy of scales
provided by the MRA to algebraically eliminate the fine-scale variables, leaving
only the coarse-scale variables and can be cast as a multiresolution reduction pro-
cedure for the corresponding ODEs and PDEs [11]. The classical homogenization
of partial differential equations is the process of finding “effective” coefficients. In
classical homogenization, the fine scale is associated with a small parameter, and
the limit is considered as this small parameter goes to zero. In dimension one a
connection has been established [15],[14] between multiresolution reduction and
classical homogenization (see e.g. [4]). It is important to point out that reduction
approximately preserves small eigenvalues of elliptic operators, and the accuracy
of this approximation depends on the order of the wavelets [7].
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3 Sparsity of Exponential Operators

If L is a self-adjoint, strictly elliptic operator then the operator eLt is sparse in
wavelet bases (for a finite but arbitrary precision) for all t ≥ 0. This observation
has a significant effect on the methods for solving PDEs.

Let us consider a class of advection-diffusion equations of the form

ut = Lu+N (u), x ∈ Ω ⊂ Rd, (7)

where u = u(x, t), x ∈ Rd, d = 1, 2, 3 and t ∈ [0, T ] with the initial conditions,

u(x, 0) = u0(x), x ∈ Ω, (8)

and the linear boundary conditions

Bu(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (9)

In (7) L represents the linear and N (·) the nonlinear terms of the equation, re-
spectively.

Using the semigroup approach we rewrite the partial differential equation (7)
as a nonlinear integral equation in time,

u(x, t) = e(t−t0)Lu0(x) +

∫ t

t0

e(t−τ)LN (u(x, τ)) dτ, (10)

and describe a new class of time-evolution schemes based on its discretization.
A distinctive feature of these new schemes is exact evaluation of the contribu-
tion of the linear part. Namely, if the nonlinear part is zero, then the scheme
reduces to the evaluation of the exponential function of the operator (or matrix)
L representing the linear part.

We note that the incompressible Navier-Stokes equations can be written in
the form (7). Let us start with the usual form of the Navier-Stokes equations for
x ∈ Ω ⊂ R3,

ut = ν∆u− (u1∂1 + u2∂2 + u3∂3)u−∇p, (11)

∂1u1 + ∂2u2 + ∂3u3 = 0, (12)

u(x, 0) = u0, (13)

where p denotes the pressure and u =




u1
u2
u3


, x =




x1
x2
x3


 and ∂k = ∂

∂xk
. In

addition, we impose the boundary condition

u(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T ], (14)

Let us introduce the Riesz transforms which are defined in the Fourier domain as

̂(Rjf)(ξ) =
ξj
|ξ| f̂(ξ), j = 1, 2, 3, (15)
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where f̂ denotes the Fourier transform of the function f . It is not difficult to show
that the projection operator on the divergence free functions (the Leray projection)
may be written with the help of the Riesz transforms,

P =




I 0 0
0 I 0
0 0 I


−




R21 R1R2 R1R3
R2R1 R22 R2R3
R3R1 R3R2 R23


 . (16)

Applying the divergence operator to (11), we obtain −∆p =
∑3
k,l=1 ∂k∂lukul

and an expression for pressure in terms of the Riesz transforms, p =
−∑3k,l=1RkRl(ukul). Substituting the expression for the pressure into (11) and
taking into consideration that the Riesz transforms commute with derivatives and,
moreover, Rk∂l = Rl∂k, we obtain

ut = ν∆u−P(
3∑

m=1

um∂mu), (17)

instead of (11) and (12). Equations (17) are now in the form (7), where L = ν∆

and N (u) = −P(
∑3
m=1 um∂mu). The transformation from (11) and (12) to (17)

is well known and appears in a variety of forms in the literature. Here we followed
a derivation presented by Yves Meyer at Summer School at Luminy in 1997.

The apparent problem with (17) for use in numerical computations is that
the Riesz transforms are integral operators (which makes (17) into an integro-
differential equation). Let us point out that the presence of the Riesz transforms
does not create serious difficulties if we represent operators Rj , j = 1, 2, 3 in a
wavelet basis with a sufficient number of vanishing moments (for a given accu-
racy). The reason is that these operators are nearly local on wavelets, and thus,
have a sparse representation. This approximate locality follows directly from the
vanishing moments property. Vanishing moments imply that the Fourier trans-
form of the wavelet and its several first derivatives vanish at zero, and therefore,
the discontinuity of the symbol of the Riesz transform at zero has almost no effect.
The precise statements about such operators can be found in [6] and [5].

Finally, in rewriting (17) as ut = Lu + N (u), we incorporate the boundary
conditions into the operator L. For example, u = L−1v means that u solves
Lu = v with the boundary conditions Bu = 0. Similarly, u(x, t) = eLtu0(x)
means that u solves ut = Lu, u(x, 0) = u0(x) and Bu(x, t) = 0.

Computing and applying the exponential or other functions of operators in the
usual manner typically requires evaluating dense matrices and is highly inefficient
unless there is a fast transform that diagonalizes the operator. For example, if L
is a circulant matrix, then computing functions of operators can be accomplished
using the FFT. It is clear that in this case the need of the FFT for diagonalization
prevents one from extending this approach to the case of variable coefficients.

In the wavelet system of coordinates computing the exponential of self-adjoint,
strictly elliptic operators always results in sparse matrices, and therefore, using the
exponential of operators for numerical purposes is an efficient option [8].

Further development of the approach of [8] can be found in [9], where issues
of stability of time-discretization schemes with exact treatment of the linear part
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(ELP) schemes are considered. The ELP schemes are shown to have distinctly
different stability properties as compared with the usual implicit-explicit schemes.
The stability properties of traditional time-discretization schemes for advection-
diffusion equations are controlled by the linear term and, typically, these equations
require implicit treatment to avoid choosing an unreasonably small time step. As
it is shown in [9], using an explicit ELP scheme, it is possible to achieve stability
usually associated with implicit predictor-corrector schemes.

If an implicit ELP scheme is used, as it is done in [8], an approximation is
used only for the nonlinear term. This changes the behavior of the corrector step
of implicit schemes. The corrector step iterations of usual implicit schemes for
advection-diffusion equations involve either both linear and nonlinear terms or
only the linear term. Due to the high condition number of the matrix representing
the linear (diffusion) term, convergence of the fixed point iteration requires a
very small time step, making the fixed point iteration impractical. Implicit ELP
schemes do not involve the linear term and, typically, the fixed point iteration is
sufficient as in [8].

We would like to note, that (10) in effect reduces the problem to an ODE–type
setup, and for that reason, a variety of methods can be used for its solution. We
present operator valued coefficients of multistep ELP schemes and our main point
is that these coefficients can be represented by sparse matrices and applied in an
efficient manner.

Let us consider the function u(x, t) at the discrete moments of time tn =
t0 + n∆t, where ∆t is the time step so that un ≡ u(x, tn) and Nn ≡ N (u(x, tn)).
Discretizing (10) yields

un+1 = elL∆tun+1−l + ∆t

(
γNn+1 +

M−1∑

m=0

βmNn−m

)
, (18)

where M+1 is the number of time levels involved in the discretization, and l ≤M .
The expression in parenthesis in (18) may be viewed as the numerical quadrature
for the integral in (10). The coefficients γ and βm are functions of L∆t. In what
follows we restrict our considerations to the case l = 1. We observe that the
algorithm is explicit if γ = 0 and it is implicit otherwise. Typically, for a given
M , the order of accuracy is M for an explicit scheme and M + 1 for an implicit
scheme due to one more degree of freedom, γ.

For l = 1 we provide Tables 1 and 2 for M = 1, 2, 3 with expressions for the
coefficients of the implicit (γ 6= 0) and the explicit (γ = 0) schemes in terms of
Qk = Qk(L∆t), where

Qk(L∆t) =
eL∆t − Ek(L∆t)

(L∆t)k
, (19)

and

Ek(L∆t)) =
k−1∑

l=0

(L∆t)l

l!
(20)
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M γ β0 β1 β2
1 Q2 Q1 −Q2 0 0
2 1

2Q2 + Q3 Q1 − 2Q3 Q3 − 12Q2 0
3 1

3Q2 + Q3 + Q4 Q1 + 1
2Q2 − 2Q3 − 3Q4 Q3 −Q2 + 3Q4

1
6Q2 −Q4

Table 1: Coefficients of implicit ELP schemes for l = 1, where Qk = Qk(L∆t)).

M β0 β1 β2
1 Q1 0 0
2 Q1 + Q2 −Q2 0
3 Q1 + 3Q2/2 + Q3 −2(Q2 + Q3) Q2/2 + Q3

Table 2: Coefficients of explicit ELP schemes for l = 1, where Qk = Qk(L∆t).

In Tables 1 and 2 we have presented examples of the so-called “bare” coefficients.
Modified coefficients [8] differ in high order terms: these terms do not affect the or-
der of accuracy but do affect the stability properties. Modified coefficients depend
on a particular form of the nonlinear term.

Let us describe a method to compute operators Q0, Q1, Q2, . . . . without
computing (L∆t)−1. In computing the exponential, Q0, we use the scaling and
squaring method which is based on the identity

Q0(2x) = (Q0(x))
2
. (21)

First we compute Q0(L∆t2−l) for some l chosen so that the largest singular value
of L∆t2−l is less than one. This computation is performed using the Taylor
expansion. Using (21), the resulting matrix is then squared l times to obtain the
final answer. In all of these computations it is necessary (and possible) to remove
small matrix elements to maintain sparsity, and at the same time, maintain a
predetermined accuracy.

A similar algorithm may be used for computing Qj(L∆t), j = 1, 2, . . . for any
finite j. Let us illustrate this approach by considering j = 1, 2. It is easy to verify
that

Q1(2x) = 1
2 (Q0(x)Q1(x) + Q1(x)) , (22)

Q2(2x) = 1
4 (Q1(x)Q1(x) + 2Q2(x)) . (23)

Thus, a modified scaling and squaring method for computing operator-valued
quadrature coefficients for ELP schemes starts by the computation of Q0(L∆t2−l),
Q1(L∆t2−l) and Q2(L∆t2−l) for some l selected so that the largest singular value
of all three operators is less than one. For these evaluations we use the Taylor
expansion. We then proceed by using identities in (21), (22) and (23) l times to
compute the operators for the required value of the argument.

As an example consider Burgers’ equation

ut + uux = νuxx, 0 ≤ x ≤ 1, t ≥ 0, (24)
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for ν > 0, together with an initial condition,

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (25)

and periodic boundary conditions u(0, t) = u(1, t). Burgers’ equation is the sim-
plest example of a nonlinear partial differential equation incorporating both linear
diffusion and nonlinear advection. In [8] a spatially adaptive approach is used to
compute solutions of Burgers’ equation via

un+1 = Q0(L∆t)un −
∆t

2
Q1(L∆t) [un∂xun+1 + un+1∂xun] . (26)

We refer to [9] for the analysis of stability of ELP schemes.

4 Conclusions

The wavelet based algorithms described above are quite efficient in dimension one.
Although algorithms described above scale properly with size in all dimensions,
establishing ways of reducing operation counts remains an important task in di-
mensions two and three. This is an area of the ongoing research and the progress
will be reported elsewhere.
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Abstract. We consider asymptotics of orthogonal polynomials with
respect to a weight e−Q(x)dx on R, where either Q(x) is a polynomial
of even order with positive leading coefficient, or Q(x) = NV (x), where
V (x) is real analytic on R and grows sufficiently rapidly as |x| → ∞.
We formulate the orthogonal polynomial problem as a Riemann-Hilbert
problem following the work of Fokas, Its and Kitaev. We employ the
steepest descent-type method for Riemann-Hilbert problems introduced
by Deift and Zhou, and further developed by Deift, Venakides and Zhou,
in order to obtain uniform Plancherel-Rotach-type asymptotics in the
entire complex plane, as well as asymptotic formulae for the zeros, the
leading coefficients and the recurrence coefficients of the orthogonal poly-
nomials. These asymptotics are also used to prove various universality
conjectures in the theory of random matrices.

1991 Mathematics Subject Classification: 33D45, 60F99, 15A52, 45E05.
Keywords and Phrases: orthogonal polynomials, asymptotics, random
matrix theory, universality.

Let w(x)dx = e−Q(x)dx be a measure on the real line. Denote by πn(x,Q) =
πn(x) = xn + . . . the n-th monic orthogonal polynomial with respect to the mea-
sure, and by pn(x,Q) = pn(x) = γnπn(x), γn > 0, the normalized n-th orthogonal
polynomial, or simply the n-th orthogonal polynomial, i.e.

∫

R

pn(x)pm(x)e−Q(x)dx = δn,m , n,m ∈ N. (1)

Furthermore, denote by (an)n∈N, (bn)n∈N the coefficients of the associated three
term recurrence relation, namely, xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x),
n ∈ N, and denote by x1,n > x2,n > . . . > xn,n the roots of pn.

In [8], the authors considered the case where

Q(x) =
2m∑

k=0

qkx
k, q2m > 0, m > 0, (2)

is a polynomial of even degree with a positive leading coefficient, and in [7] the
case where

Q(x) = NV (x), V (x) is real analytic on R,

and
V(x)

log(x2 + 1)
→∞ as x→∞.

(3)
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In [8], the authors are concerned with the asymptotics as n → ∞ of the lead-
ing coefficient γn, the recurrence coefficient an, bn and the zeros xjn, as well as
Plancherel-Rotach-type asymptotics for the orthogonal polynomials pn, i.e asymp-
totics for pn(zcn+dn) uniformly for all z ∈ C, where cn, dn are certain quantities re-
lated to the so-called Mhaskar-Rahmanov-Saff numbers (see (5) below). The name
“Plancherel-Rotach” refers to [17] in which the authors prove asymptotics of this
type for the classical case of Hermite polynomials. In [7], the authors are concerned
with the asymptotics of γn, an, bn and pn(z;NV ) in the case c−1N ≤ n ≤ cN for
some c > 1, as N → ∞. These asymptotics are crucial ingredients in proving a
variety of universality conjectures in random matrix theory (see [7]).

Due to the page restrictions in these Proceedings, we limit our considerations
to a description of the results in [8]. Plancherel-Rotach-type asymptotics for poly-
nomial orthogonal with respect to exponential weights of the above type, play a
central role in various questions of weighted approximation on the line (see e.g.
[15]). In order to prove our results we use a reformulation of the orthogonal polyno-
mial problem as a Riemann-Hilbert problem, due to Fokas, Its and Kitaev [13, 14]
(see below). This Riemann-Hilbert problem is then analyzed in turn asymptoti-
cally using the non-commutative steepest-descent method introduced by Deift and
Zhou in [11], and further developed in [12] and [9], and placed eventually in a gen-
eral form by Deift, Venakides and Zhou in [10]. In [8], and particularly in [7], a
basic role is played by the results on the equilibrium measure (see below) obtained
by Deift, Kriecherbauer and Ken McLaughlin in [5]. In this paper we will only
have the opportunity to give a very rough sketch of the steepest descent method:
full details can be found in [8]. For the case of varying weights e−NV (x)dx, we
must, alas, refer the reader to [7], for both a detailed description of the results as
well as their proofs, and the connection to random matrix theory. The methods in
[7] are similar to those in [8], but require additional technical considerations. In
the special case where V is an even quartic polynomial, the results in [7] should
be compared with the results of Bleher and Its [2], who were the first to use the
steepest-descent method in [11] to study the asymptotics of orthogonal polyno-
mials via a Riemann-Hilbert problem. Some of the results in [7] and in [8] were
announced in [6].

There is a vast literature on asymptotic questions for orthogonal polynomials.
The list of researchers who have made important contributions close to the results
of [7] and [8], includes, in addition to Plancherel and Rotach, and Bleher and
Its, Bauldry, Chen, Criscuolo, Della Vechia, Geronimo, Ismail, Lubinsky, Magnus,
Maskar, Mastroiani, Mate, Nevai, Rahmanov, Saff, Sheen, Totik and Van Assche,
but there are many others. Again, we do not have the opportunity to describe
their work in any detail. Fortunately there is an excellent review [15]: also, a
detailed description of the work of the above authors related to the present paper
is given in [8].

Henceforth we will assume that the potential Q(x) is of the form (2). The
statement of our results involves the n-th Mhaskar-Rahmanov-Saff numbers (in
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short: MRS-numbers [16], [18]) αn, βn which can be determined from the equations

1

2π

∫ βn

αn

Q′(t)(t− αn)√
(βn − t)(t− αn)

dt = n,
1

2π

∫ βn

αn

Q′(t)(βn − t)√
(βn − t)(t− αn)

dt = −n, (4)

and in particular the interval [αn, βn] whose width and midpoint are given by

cn :=
βn − αn

2
, dn :=

βn + αn
2

. (5)

For the weights under consideration it is straightforward to prove the existence of
the MRS-numbers for sufficiently large n. Moreover, they can be expressed in a
power series in n−

1
2m . We obtain

cn = n
1
2m

∞∑

l=0

c(l)n−
l
2m , dn =

∞∑

l=0

d(l)n−
l
2m , (6)

where the coefficients c(l), d(l) can be computed explicitly. From now on we will
assume that n is sufficiently large for (6) to hold.

Statement of Results

To simplify the analysis, we normalize the interval [αn, βn] to be [−1, 1] by making
the linear change of variable

λn : C→ C : z 7→ cnz + dn, (7)

which takes the interval [−1, 1] onto [αn, βn], and we work with the function

Vn(z) :=
1

n
Q(λn(z)). (8)

The function Vn is again a polynomial of degree 2m with leading coefficient
(mAm)−1 > 0, whereas all other coefficients tend to zero as n tends to ∞.

We present our results in terms of the well-known equilibrium measure µn
(see e.g. [19]) with respect to Vn which is defined as the unique minimizer in
M1(R) = {probability measures on R} of the functional

IVn :M1(R)→ (−∞,∞] : µ 7→
∫

R2

log |x− y|−1dµ(x)dµ(y) +

∫

R

Vn(x)dµ(x). (9)

The equilibrium measure and the corresponding variational problem emerge natu-
rally in our asymptotic analysis of the Riemann-Hilbert problem. The minimizing
measure is given by

dµn(x) =
1

2π

√
1− x2hn(x)1[−1,1](x)dx, (10)

where 1[−1,1] denotes the indicator function of the set [−1, 1] and hn is a polynomial
of degree 2m− 2,

hn(x) =
2m−2∑

k=0

hn,kx
k, (11)
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and the coefficients hn,k can be expanded in an explicitly computable power series

in n−
1
2m .

Finally, to state our first theorem, we define

ln :=
1

π

∫ 1

−1

√
1− t2hn(t) log |t|dt− Vn(0), (12)

which also has an explicitly computable power series in n−
1
2m .

Asymptotics of the leading and recurrence coefficients of
the orthogonal polynomials pn

Theorem 13. In the above notation we have

γn
√
πc2n+1n enln = 1− 1

n

(
4hn(1)− 3h′n(1)

48hn(1)2
+

4hn(−1) + 3h′n(−1)

48hn(−1)2

)
+O

(
1

n2

)
,

bn−1
cn

=
1

2
+O

(
1

n2

)
, an = dn +

cn
2n

(
1

hn(1)
− 1

hn(−1)
+O

(
1

n

))
.

(14)

In all three cases there are explicit integral formulae for the error terms which all

have an asymptotic expansion in n−
1
2m , e.g. O

(
1
n

)
= 1

n

(
κ0 + κ1n

− 1
2m + . . .

)
.

The coefficients of these expansions can be computed via the calculus of residues
by purely algebraic means.

Next we will state the Plancherel-Rotach type asymptotics of the orthogonal
polynomials pn, i.e. the limiting behavior of the rescaled n-th orthogonal polyno-
mial pn(λn(z)), as n tends to infinity and z ∈ C remains fixed. We will give the
leading order behavior and produce error bounds which are uniform in the entire
complex plane C.
Notation: In the following, (·)α, α ∈ R, denotes the principal branch of the αth

root. On the other hand, we will reserve the notation
√
a for nonnegative numbers

a, and we always take
√
a nonnegative: thus

√
1− x2, −1 ≤ x ≤ 1 in (10) is

positive.

Plancherel-Rotach Asymptotics

We state our second theorem in terms of the function

ψn : C \ ((−∞,−1] ∪ [1,∞))→ C : z 7→ 1

2π
(1− z)1/2(1 + z)1/2hn(z). (15)

The function ψn is an analytic extension of the density of µn on (−1, 1) to C \
((−∞,−1] ∪ [1,∞)) and is thus closely linked to the equilibrium measure (cf.
(10)). We show that there exist analytic functions fn, f̃n in a neighborhood of 1,
respectively −1, satisfying
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(−fn(z))3/2 = −n3π

2

∫ z

1

ψn(y)dy, for |z− 1| small, z /∈ [1,∞).

(f̃n(z))3/2 = n
3π

2

∫ z

−1
ψn(y)dy, for |z + 1| small, z /∈ (−∞,−1].

(16)

As pn(z) = pn(z̄), it is sufficient to describe the asymptotics of pn(cnz + dn)
in the closed upper half plane C+. Depending on a small parameter δ, we divide
C+ into six closed regions, as shown in Figure 17 below. We only describe the
asymptotics in Aδ, C1,δ, C2,δ and Bδ. The asymptotics in Dj,δ, j = 1, 2, is of a

similar form to that in Cj,δ, j = 1, 2 respectively, with f̃n replacing fn. Let Ai(z)
denote the Airy function [1, 10.4].
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.... ....................................................................................................................................................
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−1 1−1 + δ−1− δ 1− δ 1 + δ

Figure 17. Different asymptotic regions for pn(cnz + dn) in C±.

Theorem 18. There exists a δ0 such that for all 0 < δ ≤ δ0 the following holds
(see Figure 17):

(i) For z ∈ Aδ:

pn(cnz + dn)e−
1
2Q(cnz+dn) =

√
1

4πcn
exp

(
−nπi

∫ z

1

ψn(y)dy

)
(19)

×
(

(z − 1)1/4

(z + 1)1/4
+

(z + 1)1/4

(z − 1)1/4

)(
1 +O

(
1

n

))
.

(ii) For z ∈ Bδ:

pn(cnz + dn)e−
1
2Q(cnz+dn) =

√
2

πcn
(1− z)−1/4(1 + z)−1/4 (20)

×
{

cos

(
nπ

∫ z

1

ψn(y)dy +
1

2
arcsin z

)(
1 +O

(
1

n

))

+ sin

(
nπ

∫ z

1

ψn(y)dy +
1

2
arcsin z

)
O
(

1

n

)}
.
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(iii) For z ∈ C1,δ:

pn(cnz + dn)e−
1
2Q(cnz+dn) (21)

=

√
1

cn

{(
(z + 1)1/4

(z − 1)1/4
(fn(z))

1/4
Ai (fn(z))

)(
1 +O

(
1

n

))

−
(

(z − 1)1/4

(z + 1)1/4
(fn(z))

−1/4
Ai′ (fn(z))

)(
1 +O

(
1

n

))}
. (22)

(iv) For z ∈ C2,δ:

pn(cnz + dn)e−
1
2Q(cnz+dn) =

√
1

cn

{
(z + 1)1/4

(z − 1)1/4
(fn(z))

1/4
Ai(fn(z))

− (z − 1)1/4

(z + 1)1/4
(fn(z))

−1/4
Ai′(fn(z))

}(
1 +O

(
1

n

))
. (23)

All the error terms are uniform for δ ∈ compact subsets of (0, δ0] and for
z ∈ Xδ, where X ∈ {A,B,C1, C2}. There are integral formulae for the error
terms from which one can extract an explicit asymptotic expansion in n−

1
2m .

Remarks:
(a) Some of the expressions in Theorem 18 are not well defined for all z ∈ R

(see e.g. (z − 1)1/4,
∫ z
1
ψn(y)dy). In these cases we always take the limiting

expressions as z is approached from the upper half-plane.
(b) The function arcsin is defined as the inverse function of

sin : {z ∈ C : |Re(z)| < π

2
} → C \ ((−∞,−1] ∪ [1,∞)) .

Asymptotic Location of the Zeros

In order to state our result on the location of the zeros, we denote the zeros of the
Airy function Ai by 0 > −ι1 > −ι2 > . . . . Recall that the all the zeros of Ai lie
in (−∞, 0), so that there exists a largest zero −ι1 < 0. Furthermore, note that

[−1, 1] ∋ x 7→
∫ 1
x ψn(t)dt ∈ [0, 1] is bijective and we define its inverse function to

be ζn : [0, 1] 7→ [−1, 1].

Theorem 24. The zeros x1,n > x2,n > . . . > xn,n of the n-th orthogonal polyno-
mials pn satisfy the following asymptotic formulae:
(i) Fix k ∈ N. Then

xk,n − dn
cn

= 1−
(

2

hn(1)2

)1/3
ιk
n2/3

+O
(

1

n

)
, as n→∞, (25)

and

xn−k,n − dn
cn

= −1 +

(
2

hn(−1)2

)1/3
ιk
n2/3

+O
(

1

n

)
, as n→∞. (26)
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(ii) There exist constants k0, C > 0, such that for all k0 ≤ k ≤ n − k0 the
following holds:

xk,n − dn
cn

∈
(
ζn

(
6k − 1

6n

)
, ζn

(
6k − 5

6n

))
. (27)

∣∣∣∣
xk,n − dn

cn
− ζn

(
6k − 3

6n
+

1

2πn
arcsin (ζn (k/n))

)∣∣∣∣ ≤
C

n2[α(1− α)]4/3
, (28)

where α := k/n.
(iii) There exists a constant C1 > 0 such that

1

C1
<

xk,n − xk+1,n
cn[nk(n− k)]1/3

< C1 for all 1 ≤ k ≤ n− 1. (29)

Remarks:
(a) Using the asymptotic expansion for the error terms in Theorem 18 one

can of course approximate the k-th zero xk,n of the orthogonal polynomial pn to
arbitrary accuracy.

(b) Note that the error term in (28) is at most of orderO(n−2/3). Furthermore
it is obvious that for any compact subset K of (0, 1), there exists a constant CK ,
such that the error term in (28) is bounded by CK/n

2, as long as α = k/n ∈ K.

As noted earlier, our approach to the asymptotic problem for orthogonal
polynomials, is based on the reformulation of the orthogonal polynomial problem
as a Riemann-Hilbert problem due to Fokas, Its and Kitaev (see [13], [14]: a
specialized version appeared also in [4]).

A general reference for Riemann-Hilbert problems is, for example, [3]. Let Σ
be an oriented contour in C.

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................
...........................................................................................................................................................................................................................................................................................................................................

.......
.......
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..............
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..
................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

+
−

+
−

+

+−

+

+−

+−

−

−

Figure 30.

As indicated in the Figure, the (+)-side (resp, (−)-side) of the contour lies to left
(resp, right) as one moves along the contour in the direction of the orientation.
Let v be a given map from Σ to Gl(k,C). We say that m = m(z) is a solution of
the Riemann-Hilbert problem (Σ, v) if

• m(z) is analytic in C− Σ,
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• m+(z) = m−(z)v(z) , z ∈ Σ,

where m±(z) = limz′→zz′∈(±)−sidem(z′). The matrix v is called the jump matrix
for the Riemann-Hilbert problem. If in addition

• m(z)→ I as z →∞,

we say that the the Riemann-Hilbert problem is normalized at infinity.

Theorem 31. ([13, 14]) Let w : R→ R+ denote a function with the property that
w(s)sk belongs to the Sobolev space H1(R) for all k ∈ N. Suppose furthermore that
n is a positive integer. Then the Riemann-Hilbert problem on Σ = R, oriented from
−∞ to +∞,

Y : C \ R→ C2×2 is analytic , Y+(s) = Y−(s)

(
1 w(s)
0 1

)
for s ∈ R,

Y (z)

(
z−n 0

0 zn

)
= I +O

(
1

|z|

)
, as |z| → ∞,

(32)

has a unique solution, given by

Y (z) =

(
πn(z)

∫
R

πn(s)w(s)
s−z

ds
2πi

−2πiγ2n−1πn−1(z)
∫
R

−γ2n−1πn−1(s)w(s)
s−z ds

)
, (33)

where πn denotes the n-th monic orthogonal polynomial with respect to the measure
w(x)dx on R and γn > 0 denotes the leading coefficient of the n-th orthogonal
polynomial pn = γnπn. Furthermore, there exist Y1, Y2 ∈ C2×2 such that

Y (z)

(
z−n 0

0 zn

)
= I +

Y1
z

+
Y2
z2

+O
(

1

|z|3
)
, as |z| → ∞,

and γn−1 =
√

(Y1)21/− 2πi, γn = 1/
√
−2πi(Y1)12,

an = (Y1)11 + (Y2)12/(Y1)12, bn−1 =
√

(Y1)21(Y1)12,

(34)

where an, bn are the recurrence coefficients associated to the orthogonal polynomi-
als pn.
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Figure 35. The contour ΣS .
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We are interested in the case where w(x) = e−Q(x), and Q(x) satisfies (2).
Theorem 31 converts the problem of computing the asymptotics of γn, an, bn, . . .
into a problem of computing the asymptotics of the Riemann-Hilbert problem
(32) as n → ∞. As indicated, this is achieved by using the steepest descent
method for Riemann-Hilbert problems introduced in [11], and further developed
in [12]. We conclude with a brief sketch of the method, which involves a sequence
of transformations of the Riemann-Hilbert problem:

(i) rescaling: Y → Un(z) ≡
(
c−nn 0
0 cnn

)
Y (cnz + dn), where cn, dn are

related to the MRS-numbers as in (5).
(ii) introduction of the “g-function” which is the analog for the Riemann-

Hilbert problem of the phase function of linear WKB theory: U → T (z) ≡
e−nlσ3/2U(z)e−n(g(z)−l/2)σ3 where σ3 is the Pauli matrix

(
1 0
0 −1

)
and l = ln

is given in (12). The function g(z) is analytic in C \ R, has asymptotics
g(z) ∼ log z as z → ∞ and is uniquely determined as in [10] by requiring that
g±(z) ≡ limǫ→0+ g(z ± iǫ) satisfy certain equalities and inequalities (“Phase Con-
ditions”) on R. A simple computation shows that T (z) is the solution of the
following Riemann-Hilbert problem, normalized at infinity:

• T (z) is analytic in C \ R,

• T+(z) = T−(z)

(
e−n(g+(z)−g−(z)) en(g+(z)+g−(z)−Vn(z)−l)

0 en(g+(z)−g−(z))

)
for z ∈ R,

• T (z) = I +O( 1|z|) as z →∞.

(iii) involves a factorization of the jump matrix and a deformation of
the contour: T → S. The 2×2 matrix function S = S(z) solves a Riemann-Hilbert
problem on a contour of type ΣS as in Figure 35. Now the Phase Conditions in (ii)
are chosen precisely to ensure that the jump matrix vS for S on Σ1,Σ3,Σ4 and
Σ5, converges exponentially to the identity matrix as n→∞, whereas vS =

(
0 1
−1 0

)

on Σ2 = [−1, 1]. Thus as n → ∞, we expect that S converges to the solution of
the simple Riemann-Hilbert problem (Σ2 = [−1, 1], v =

(
0 1
−1 0

)
), which may be

solved in turn in terms of elementary radicals.
The final step (iv) involves the construction, following [12], of a parametrix

for S at the points of self-intersection {−1, 1} of ΣS : S → R. Although vS → I on
Σ1∪Σ3∪Σ4∪Σ5, the convergence is not uniform and is slower and slower near 1 and
−1. This is the central analytical difficulty in the method, and requires delicate
consideration. The parametrix for S is chosen so that R solves a Riemann-Hilbert
problem on an extended contour ΣR ⊃ ΣS with a jump matrix vR satisfying
‖vR − I‖L∞(ΣR) → 0 as n → ∞. By standard Riemann-Hilbert methods, R can
then be solved in terms of a Neumann series, and retracing the steps R → S →
T → U → Y , we obtain the asymptotics for γn, an, bn, xkn and pn(cnz + dn) as
advertised in Theorem 13, 18 and 24.

Finally we note that it is a remarkable piece of luck that the phase condition
in (ii) above can be expressed simply in terms of the equilibrium measure dµn cor-
responding to Vn(z) as in (9), (10) above. Indeed, if we set g(z) =

∫
log(z − x)dµn,
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then it turns out that the Euler-Lagrange variational equations for µn, the min-
imizing measure in (9), are equivalent to the desired phase condition on g. In
this way we construct the g-function in terms of the equilibrium measure.
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Wavelet Based Numerical Homogenization
Bjorn Engquist

Abstract. In analytic homogenization, a differential equation and its
solution with multiple scales are replaced by an approximating equation
and its corresponding smoother solution with fewer scales. The scales
related to the shortest wavelengths are eliminated. We shall start from a
discretization of the original differential equation, which includes all the
scales. The solution and the difference operator will be represented in a
wavelet basis and the homogenized discrete operator will correspond to
a particular form of an approximative projection onto the coarser scales.
We shall show that this new operator inherits many of the properties
of the original discrete operator, including sparseness. Some numerical
examples will be presented and comparisons with the analytic homoge-
nization process will be given. We shall also discuss direct coarse grid
approximation.

1. Introduction. Homogenization is a classical analytical way to approximate
the effect of some classes of periodic or stochastic oscillations. The problem is
often formulated as follows. Consider a set of operators Lǫ, indexed by the small
parameter ǫ, and a right hand side f . Find the homogenized operator L̄ defined by

Lǫuǫ = f, lim
ǫ→0

uǫ = ū, L̄ū = f. (1)

In certain cases the convergence above and existence of the homogenized operator
can be proved, [3].

In the d-dimensional elliptic case, let A(y) ∈ Rd×d be one-periodic in each of
its arguments and let Id denote the unit square. It can then be shown, [3], that

Lǫ = −∇ ·
(
A
(x
ǫ

)
∇
)
, L̄ = −∇ · (H∇), H =

∫

Id

A(y)−A(y)Dχ(y)dy, (2)

where Dχ is the Jacobian of the vector valued function χ(y) ∈ Rd, whose compo-
nents χk are given by solving the so called cell problems

∇ · (A(y)∇χk) =
d∑

i=1

∂

∂yi
aik(y), k = 1, . . . , d, (3)

with periodic boundary conditions for χk. Note that H is a constant matrix. See
[9] for a direct numerical application of this analytic formalism.
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In this paper we present a general procedure for constructing numerical sub-
grid models to be used on a coarse grid where the smallest scales are not resolved.
As in analytic homogenization the subgrid phenomina can be oscillations. The
wave length ǫ in the oscillations may be smaller than the the typical grid step size
h. The objective is to find models that accurately reproduce the effect of subgrid
scales and that in some sense are similar to the original differential operator as
is the case in analytic homogenization. The starting point is a finite-dimensional
approximation, Lu = f , of a differential equation where L approximates the dif-
ferential operator and u the solution. The operator L can be written on the form

L = P (∆, A, h, ǫ), (4)

where ∆ is a collection of difference operators, A are discretized variable coeffi-
cients, typically diagonal matrices, h represents the grid size, and ǫ the smallest
scale of significance in the problem.

We shall first briefly discuss the possibility of directly discretizing (4) on a
coarse grid, h > ǫ. In general, for finite difference and finite element methods, a
reasonable number of grid points or elements are required per wave length of the
oscillation, h << ǫ. Phase and group velocity errors will otherwise be O(1).

For a special type of problems and numerical methods it is, however, possible
to prove convergence in a weak sense even if the oscillations are not resolved on
the computational grid. These types of techniques are studied in [10], [11] and
commented on in section 2.

For the wavelet based homogenization technique we start with a resolved
discretization, h << ǫ, and a coarse grid approximation. The specific scale ǫ does
not play a role any longer and is dropped in the notation.

We seek a finite dimensional operator L̃ and a right hand side f̄ with the fol-
lowing properties. First, L̃ũ = f̄ and ũ is a projection of u onto a lower dimensional
subspace. Second, L̃ can be written on the same form as L,

L̃ = P (∆,H, h̄), (5)

but with h̄ >> h and the structure of H close inheting essential properties from
the structure of A, typically diagonal dominance and sparsity. The sparsity of the
discrete operator is important and corresponds to L̃ being an approximation of a
differential operator. We interpret H as the subgrid model of A. If A corresponds
to a material coefficient, H can be seen as the effective material coefficient. The
procedure outlined above resembles that of the analytic homogenization technique
used for the continuous case, see section 4. In view of this, we will call L̃ the
homogenized operator. See Bensoussan et al., [3], for a thorough presentation of
classical homogenization.

Our method is based on multiresolution analysis with wavelet projections and
approximation of the discrete operator. Although it can be used with any type
of discretization, it is algebraic and, in the present form, only deals with linear
systems of equations. The great advantage of this procedure to derive subgrid
models is its generality. It can be used on any system of differential equations
and does not require separation into the distinct O(ǫ) and O(1) scales or periodic
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coefficients. It can also be used to test if it is physically reasonable to represent
fine scale effects on a coarse grid with a local operator.

This work was initially presented in Dorobantu and Engquist [8], Andersson,
Engquist, Ledfelt and Runborg [1], and based on ideas from Brewster and Beylkin,
[5]. See also [13] for analysis in the one-dimensional case. Moreover, there are
similarities with numerical homogenization based on techniques from algebraic
multigrid, [15,16] and from the use of special purpose finite element methods, [14].

2. Direct discretization. Let us first consider the simple approach of using
a coarse grid even if not all scales of the original differential equation are clearly
resolved. For solutions which are highly oscillatory relative to the grid discretiza-
tion, numerical techniques without phase velocity errors are needed. In [10], [11]
particle scheme or method of characteristics approximations of hyperbolic partial
differential equations are analyzed. For a restricted class of schemes it is possible
to prove convergence, or weak convergence, in Lp of the numerical approximation
to the analytic solution as h → 0 essentially independent of ǫ. Convergence es-
sentially independent of ǫ means that a set of ratios of h/ǫ with arbitrary small
Lebesque measure must be excluded to avoid resonance, [10], [11].

One simple but typical example for which a rigorous theory is possible is the
method of characteristics for the Carleman equations,

∂u

∂t
+
∂u

∂x
+ u2 − v2 = 0

∂v

∂t
− ∂v

∂x
+ v2 − u2 = 0 (6a)

u(x, 0) = a(x, x/ǫ)

v(x, 0) = b(x, x/ǫ)

a(x, y), b(x, y), 1-periodic in y

u(xj , tn) ∼ unj
xj = j∆x, tn = n∆t, ∆t = ∆x,

un+1j = unj−1 + ∆t((vnj−1)
2 − (unj−1)

2),

vn+1j = vnj+1 + ∆t((unj+1)
2 − (vnj+1)

2), (6b)

u0j = a(xj , xj/ǫ)

v0j = b(xj , xj/ǫ)

The homogenization theory of Tartar [17] applies to the differential equations (6a)
and is also used in the convergence proof. The local truncation errors are large
for h > ǫ and a cancelation of the errors must be established. The theorem gives
strong convergence in L∞ essentially independent of ǫ as h→ 0.

The wavelet based type of homogenization was derived in order to handle
wider classes of differential equations.
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3. Wavelet based homogenization. Given the full discrete solution operator
on a fine grid we wish to find an operator of lower dimension that extracts only
the coarse scales of the solution. Let Vj and Wj refer to the usual scaling and
wavelet spaces, see e.g. [7]. Then, for a solution in Vj+1 = Vj ⊕Wj , the coarse
scale is represented by Vj , and we are thus interested in the operator that yields
the solution’s projection onto Vj .

Consider the equation

Lj+1U = F, U, F ∈ Vj+1, (7)

originating from a discretization of a differential equation, where U , in the Haar
case, is identified as a piecewise constant approximation. We introduce the or-
thogonal transformation

Wj : Vj+1 →Wj × Vj , WjU ≡
[
Uh
Ul

]
Uh ∈Wj , j Ul ∈ Vj , (8)

and note that the linear operator WjLj+1WT
j can be decomposed into four oper-

ators Lj+1 = Aj + Bj + Cj + Lj, acting between the subspaces Vj and Wj , and
such that (7) becomes

[
Aj Bj
Cj Lj

] [
Uh
Ul

]
=

[
Fh
Fl

]
, Uh, Fh ∈Wj , Ul, Fl ∈ Vj . (9)

when we applyWj from the left. Block Gaussian elimination now gives an equation
for Ul, the coarse part of the solution,

L̄jUl = F̄j , L̄j = Lj − CjA−1j Rj , F̄j = Fl − CjA−1j Fh. (10)

Hence, our new “coarse grid operator” L̄j is the Schur complement ofWjLj+1WT
j .

We also get the homogenized right hand side, F̄j .
For higher dimensions, a standard tensor product extension of the multireso-

lution analysis allows us to use essentially the same derivation as above to obtain
coarse grid operators.

We should note that in general L̄j will not be sparse even if Lj+1 is. For the
method to be efficient we must be able to approximate L̄j with a sparse matrix

L̃j . This is possible in many important cases. The fact that L̄j is approximately

sparse is fundamental. The finite dimensional operator L̃j is our numerically
homogenized operator.

The homogenization procedure can be applied recursively on L̄j to get L̄j−1
and so on. This can easily be verified when Lj+1 is symmetric positive definite.
Furthermore, the condition number will not deteriorate. From [2], Chapter 3 with
Lj+1 = LTj+1 and

c1‖U‖2 ≤ 〈Lj+1U,U〉 ≤ c2‖U‖2, ∀U ∈ R2j+1 (11)

Documenta Mathematica · Extra Volume ICM 1998 · III · 503–512



Wavelet Based Numerical Homogenization 507

we have the same constants c1, c2,

c1‖V ‖2 ≤ 〈LjV, V 〉 ≤ c2‖V ‖2, ∀V ∈ R2j , (12)

where L̄j is defined by (10) and 〈u, v〉 =
∑
k ūkvk. For the first step in the process

an improvement in the condition number can often be estimated from

〈L̄jV, V 〉 = 〈(Lj −BTj Λ−1j Bj)V, V 〉 = 〈LjV, V 〉 − 〈A−1j BjV,BjV 〉
≤ 〈LjV, V 〉. (13)

When the operator Lj+1 is derived from a finite difference, finite element or finite
volume discretization, it is sparse and of a certain structure. In one dimension it
might for instance be tridiagonal. However, as remarked above, the matrix L̄j is
not sparse since A−1j is usually dense. Computing all components of L̄j would be

inefficient. Fortunately, L̄j will be diagonal dominant in many important cases.
For instance, in [8] we proved that for a class of elliptic problems the matrix
elements of L̄j decay exponentially away from the diagonal. We are then able to
find a sparse matrix that is a close approximation of L̄j . In general the sparse
approximation property follows from the analysis of Calderon-Zygmund operators
in Beylkin, Coifman and Rokhlin, [4].

One simple way approximate L̄j is to set all components outside a prescribed
bandwidth equal to zero. Let us define truncation of M to bandwidth ν as

trunc(M,ν)ij =

{
Mij , if 2|i− j| ≤ ν − 1
0, otherwise.

(14)

There are natural extensions to multi dimensions. This procedure was introduced
in [4] and used in [8]. We propose that L̄j be projected onto banded form in a
more effective manner. Let {vj}νj=1 be a set of linearly independent vectors in

R2
j

. We define the band projection, band(M,ν), of a matrix M as the projection
of M onto the subspace of matrices with bandwidth ν such that

Mx = band(M,ν)x, ∀x ∈ span{v1, v2, . . . , vν}. (15)

In our setting M will usually operate on vectors representing smooth functions,
for instance solutions to elliptic equations, and a natural choice for the vj vectors
in one dimension are thus the first ν polynomials,

vj = {1j−1, 2j−1, . . . , N j−1}T . (16)

For the case ν = 1 we should remark that we get the standard “masslumping” of
a matrix.

This technique is similar to the probing technique used by Chan et al, [6]. In
that case the vectors vj are sums of unit vectors. Other probing techniques have
been suggested by Axelsson, Pohlman and Wittum, see e.g. Chapter 8 in [2]. In
some cases the band projection technique only gives improvements for small values
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of ν, see figure 1. Numerical evidence indicate that for small values of ν, the band
projection technique is quite efficient.

In figure 1 the results from different types of compressions are given for a
simple test example. The differential equation is

d

dx
a(x)

d

dx
u(x) = 1, 0 ≤ x ≤ 1, (17)

u(0) = 0,
d

dx
u(1) = 0,

and it is approximated by centered differences. The variable coefficient a(x) > 0
is a uniformly distributed random function. It is clear that the divergence form
of the operator with an explicit H-matrix is important. Reducing the number of
non-zero elements in H is more efficient than in L̄j .

Exact

ν=13 
ν=15 
ν=17 

Exact

ν=3  
ν=5  
ν=7  

Exact

ν=1  
ν=3  
ν=5  

Exact

ν=9  
ν=11 

ν=7  

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0
band(H, ν)

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0
trunc(L,ν)

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0
trunc(H, ν)

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0
band(L,ν)

Figure 1: The effect of different types of projections of Lj in the
homogenized approximations of (17).

For simple elliptic problems with periodic coefficients it is possible to prove rigorous
error estimates for the projection techniques, [1], [8]. The theorems typically state
that a finite approximation error δ can be achieved by an operator L̃j, the matrix
of which has only a low number (m) of non-zero elements in each row. The number
m depends on δ but at most as logh on h.
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4. Comparisons and examples. There is a striking relationship between the
analytically homogenized operator in (2) and the Schur complement L̄j in (10).
The first term in both the expressions represent averaged operators, Lj in a discrete
sense and

∫
Id
A is an integral sense. In both formulations a correction term for

the high frequency interaction is subtracted from the average. Furthermore, in the
correction term χ is the solution of an elliptic equation and A−1j is an analogous
discrete positive definite solution operator.

In the classical analytical setting (2) homogenization gives the asymptotic
expansion

uc(x) = ū(x) + ǫu1(x, x/ǫ) +O(ǫ2) (18)

for the solution, see [3]. The techniques described in [14], [15] and [16] give nu-
merically homogenized operators with coarse grid solutions which directly samples
(18). The oscillatory term ǫu1(x, x/ǫ) is contained in the solution. In the wavelet
homogenization the solution is a projection of uǫ onto a coarse scale Vj space. The
influence of the u1 term, which oscillates with mean zero [4], is then significantly
reduced in orders of ǫ, depending on the type of wavelet basis. Another advantage
of using wavelets is the favorable compression ratio for A−1j , [4].

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x y

a

Wall with slit

Figure 2: coefficient a(x) in the Helmholtz equation

A number of problems have been studied numerically. Some are simple test
cases in one space dimension for the analysis of different properties of the wavelet
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based homogenization technique. One example was given in section 3 above. See
also [1], [7] and [8]. Others originate from more realistic simulations of e.g. wave
propagation in fiber optics and flow in porous media, [12].

A practical application is subcell modelling in the form of the coarsening of
a mesh refinement. Sometimes mesh refinements are necessary in order to resolve
small geometric details. The refined mesh increases the computational complexity.
The numerical homogenization can produce an operator on a uniform coarser grid
which inherits the correct resolution from the finer grid. In figure 2 and 3 an
example of such a grid coarsening is given.

A standard centered finite difference approximation of the Helmholtz equa-
tion,

−∇a(x)∇u− k2u = 0, u : R2 → R, (19)

is projected onto a coarser wavelet space. The figure displays different levels of
homogenizations, and it is clear that the quality of the

The application comes from the study of wave propagation through a slit for
the analysis of electromagnetic compatibility. The figure 4 gives the structure of
the matrix corresponding to L̃j .
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Figure 3: Discrete solution of the Helmholtz equation for different
levels of numerical homogenization
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Figure 4: Non-zero elements in the matrix representation of the projected
L̄j corresponding to the solution given in figure 3.
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A Study of Bifurcation of Kolmogorov Flows withan Emphasis on the Singular Limit
Hisashi Okamoto1

Abstract.

We consider a family of stationary Navier-Stokes flows in 2D flat tori. The
flow is driven by an outer force which is of the form (sin y, 0). Varying
the Reynolds number and the aspect ratio of the torus, we numerically
compute bifurcating solutions by a path-continuation method. Folds and
cusps are obtained in the range where the Reynolds number is < 100.
Some solutions are computed up until the Reynolds number becomes
10,000. Asymptotic properties as the Reynolds number tends to infinity
are discussed. Also given is an analysis as the aspect ratio of the torus
tends to zero.

1991 Mathematics Subject Classification: Primary 76D30; Secondary
76C05, 35Q30, 35Q35.
Keywords and Phrases: Kolmogorov flows in 2D tori, incompressible
fluid, bifurcation, singular perturbation, internal layer, inviscid limit.

1 Introduction

The Navier-Stokes equations have attracted very much attention of both math-
ematicians and physicists; accordingly scientific papers on them are almost in-
numerable. Nonetheless, many difficult problems remain to be analyzed; this is
especially true when the Reynolds number is large ( see [7] and [4] ). One of the
purposes of the present paper is to point out that something new can be found
even if we restrict ourselves to steady-states.

1Supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Sci-
ence, Sports and Culture of Japan, # 09304023, # 09554003

Documenta Mathematica · Extra Volume ICM 1998 · III · 513–522



514 H. Okamoto

We compute numerically a family of stationary motions of incompressible
viscous fluid, which is governed by the following Navier-Stokes equations:

u
∂u

∂x
+ v

∂u

∂y
=

1

R
△u− ∂p

∂x
+

1

R
sin y, (1)

u
∂v

∂x
+ v

∂v

∂y
=

1

R
△v − ∂p

∂y
, (2)

∂u

∂x
+
∂v

∂y
= 0, (3)

where R is the Reynolds number, (u, v) the velocity, and p the pressure. Those
equations are satisfied in (x, y) ∈ [−π/α, π/α] × [−π, π], with periodic boundary
condition. Namely we consider the Navier-Stokes flows in a two-dimensional flat
torus and α is its aspect ratio. See [5] and [11].

If the driving force is (sin ky, 0) with k ≥ 2, then interesting phenomena are
already known for nonstationary motions as well as steady-states ( see [2], and the
references in [11] for instance ). In our problem, which comes from Iudovich [5], the
flow is driven by an outer force (R−1 sin y, 0). This simplifies the problem greatly.
We would like to refer the reader to [3] and [11], where motives of investigation
and historical comments are found. The purpose of the present paper is to report
that we can observe many interesting phenomena when we change the aspect ratio
α as well as the Reynolds number R. Varying α and R, we numerically compute
bifurcating solutions ( [11] ). Folds and cusps are obtained in the range where
R < 100. Some solutions are computed until R becomes 10,000 ( [13] ). We hope
that such a list of solutions serves as raw materials for future study of the Navier-
Stokes equations. In particular, we would like to obtain a bifurcation diagram
which is global in the sense that solutions of all the parameters (α,R) are listed
in the diagram. Such global bifurcation diagrams are computed in many one-
dimensional systems, notably reaction-diffusion systems ( [10] ). However, global
diagram for the Navier-Stokes equations are substantially more difficult to obtain
and we are forced to be content with a partial answer, which we are going to present
in the present paper. The following study of Kolmogorov flows is motivated by
A. Majda’s pioneering works on incompressible fluid motions ( see, e.g., [7] ) and
Nishiura’s analysis of reaction-diffusion systems [10].

From our numerical computation, we can guess some interesting asymptotic
behavior as the Reynolds number tends to infinity. Since the Navier-Stokes equa-
tions are defined in a 2D torus, there can not be a boundary layer. However, we
can observe some internal layers, which we will explain in the next section. In or-
der to analyze those internal layers, we apply in section 3 a singular perturbation
method in the range where (α,R) ≈ (1,∞). The solution obtained by the per-
turbation method shows a good agreement with the numerical solution. Analysis
when α→ 0 is given in section 4.
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A

Figure 1: Neutral curves of mode n ( n = 1, 2, · · · ) (left). Nontrivial solutions
bifurcate from the points on the neutral curves. The curve of mode n starts from
(α,R) = (0,

√
2) and ends at (α,R) = (1/n,∞). Schematic bifurcation diagram of

solutions of mode 1 (right). The point A represents (α,R, ψ) = (1.0,∞,−(cosx+
cos y)/2). Only the upper half of the bifurcating solutions are drawn.

2 Global picture of solutions and inviscid limit

We first recall some numerical facts reported in [11]. We discretize (1)–(3) by
the spectral method. The resulting nonlinear equations are solved by the path-
continuation method ( see [6], for instance ). One easily notice that (u, v, p) =
(sin y, 0, 0) solves the equations and the boundary conditions for all R > 0 and all
α > 0. We call it a trivial solution. It is Meshalkin and Sinai [9] which proves
that any bifurcation from the trivial solution occurs by steady-states. Namely, the
Hopf bifurcation from the trivial solution is prohibited. Iudovich [5] showed that
there are bifurcation from the trivial solution if 0 < α < 1 and that there is none
if 1 ≤ α <∞. See Figure 1 (left). Bifurcating solutions are classified by a positive
number called a mode. Roughly speaking, solutions of mode n contains n pairs of
eddies in the rectangle (−π/α, π/α)× (−π, π). See [11]. When 0 < α < 0.966 · · ·,
then with R as a bifurcation parameter, there exists a pitchfork of bifurcating so-
lutions. There is no secondary bifurcation in the class of those solutions satisfying
ψ(x, y) = ψ(−x,−y). When 0.966 · · · < α < 1, the branch of nontrivial solutions
possesses two turning points ( = limit points ) but still there is no secondary bifur-
cation in the same function class ( [11] ). We recently re-computed the stability of
those solutions in the function space where we do not assume any symmetry. We
have found that the solutions are stable even in this general setting. Therefore the
nontrivial solutions on the pitchfork is stable however large the Reynolds number
may be. The global view of the solutions of mode one is given in Figure 1 (right).
See [11] for detail. This suggests that a possibility that the global attractor for
1/2 < α < 1 is of one-dimension however large the Reynolds number may be. Such
low-dimensionality is reported in a different context in Afendikov and Babenko [1]
and Chen and Price [2].
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The pitchfork bifurcations are supercritical for all α ∈ (0, 1). Namely, the
nontrivial solutions in a neighborhood of the bifurcation point lie in the right hand
side, where the Reynolds number is greater than the critical Reynolds number.
This was shown numerically in [11] but a mathematical proof was not available
there, although the supercriticality for sufficiently small α is proved by Afendikov
and Babenko [1], and independently by M. Yamada. See [11]. Recently Matsuda
and Miyatake [8] gave a proof of supercriticality when α is close to one.

We now consider the asymptotic behavior of the solutions as R→∞. When
R increases with a fixed α, the nontrivial solution seems to converge on a certain
function. The numerical experiments in [13] suggests that the vorticity as a limit
of R → ∞ is at most C1. See Figure 2, which shows that (−△)−3/2ψ ( ψ is
the stream function ) loses smoothness along certain curves. We call these curves
internal layers. The layer yields an energy spectrum of k−r, where k is the wave
number and r is between −7 and −4, depending on the aspect ratio. See [13] for
detail. We remark that our “singularity” is much weaker than those found in [7].

Since the knowledge of solutions with large R may help us understand the
turbulent motion of fluid, it would be of practical importance to mathematically
analyze an asymptotic behavior of steady-states as R → ∞. In the present case,
asymptotic analysis seems to be very difficult for a general α. First of all, we
encounter the following problem: The Euler equations, which are obtained from
(1)–(3) by setting R = ∞, possess an infinite number of solutions. In fact, they
have a continuum of steady-states. On the other hand, the Navier-Stokes equations
have finitely many steady-states for a fixed R < ∞. Therefore the vast majority
of the stationary Euler flows are disconnected with the Navier-Stokes flows. Hence
we would like to know how the Euler flows which are connected with the Navier-
Stokes flows are distinguished from those which are disconnected. Some partial
answers are given in [12, 13] but we do not know the real mechanism for it. We
will show in the next section that a certain heuristic analysis is possible for those
solutions which lie in the neighborhood of the point A in Figure 1 (right).

3 Asymptotic analysis as (R,α)→ (∞, 1)

The equations (1)–(3) are written by the stream function as follows ( see [11] ):

△2ψ + cos y

R
+ ψx△ψy − ψy△ψx = 0, (4)

where the subscript means differentiation. Substituting x = x′/α, y = y′ and
dropping the primes, we obtain

0 =
(
α2∂2x + ∂2y

)2
ψ + cos y +Rα

[
ψx
(
α2∂2x + ∂2y

)
ψy − ψy

(
α2∂2x + ∂2y

)
ψx
]
, (5)
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Figure 2: Graphs of (−△)−3/2ψ. Bird’s-eye views (left) and slices of the graphs
along the line y = αx (right). α is 0.7 (top), 0.984 (center), and 0.999 (bot-
tom), respectively. The equations are discretized by the Fourier-Galerkin method.
The resulting nonlinear equations, which contains 544 to more than 5,000 inde-
pendent variables depending on the Reynolds number R, are solved by the path-
continuation method.
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which is satisfied in −π < x < π,−π < y < π. Let δ = 1/(Rα) and γ = 1− α2.
Then, by defining J(f, g) = fxgy − fygx, we obtain

0 = δ
(
△2ψ + cos y − 2γ△ψxx + γ2ψxxxx

)
+ J(ψ,△ψ)− γJ(ψ,ψxx). (6)

We now consider those solutions which are close to the point A in Figure 1
(right). We expand γ ∈ R and ψ as follows:

ψ =
∞∑

j,k=0

ǫjδkψj,k(x, y), γ =
∞∑

j,k=0

ǫjδkγ(j, k), (7)

where ǫ is an artificial parameter. It is taken along the vertical tangent of surface of
solution set at (α,R) = (1,∞). See Figure 1(right) and Figure 3 (left). γ(0, 0) = 0
is assumed so as to comply with the numerical results. Substituting (7) into (6), we
compute coefficients of ǫjδk. Then we first obtain J(ψ0,0,△ψ0,0) = 0. We already
know from the numerical results in [11, 13] that ψ0,0 = −(cos y ± cosx)/2. Since
both cases are dealt with in the same way, we choose ψ0,0 = −(cos y + cosx)/2.
From the coefficient of ǫ0δ1, we obtain

△2ψ0,0 + cos y + J(ψ0,0,△ψ0,1) + J(ψ0,1,△ψ0,0)− γ(0, 1)J(ψ0,0, ψ0,0xx ) = 0,

which is written as

cos y − cosx

2
− γ(0, 1)

sinx sin y

4
+

1

2
(sinx∂y − sin y∂x) (I +△)ψ0,1 = 0.

alpha=0.999900

R=3000.0 5000.0 8000.0

n

0.5

0.2

Figure 3: Two coordinates near the turning pint A (left).
Plots of αR(−1)nn(1− 2n2)a(n, n). α = 0.9999 and R = 3000, 5000, 8000. (right)

Let us define the operator K by K = 1
2 (sinx∂y − sin y∂x). Note that

K

(
log

∣∣∣∣∣
cos x−y2
cos x+y2

∣∣∣∣∣

)
=

1

2
(cos y − cosx) and K(cosx− cos y) = sinx sin y.
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Note also that a function u = u(x, y) satisfies Ku = 0 if and only if there exists
a function of one variable f such that u(x, y) = f(cosx+ cos y). These facts lead
us to

log

∣∣∣∣∣
cos x−y2
cos x+y2

∣∣∣∣∣+
1

4
γ(0, 1)(cosy − cosx) + (I +△)ψ0,1 + f(cosx+ cos y) = 0

with some function f . Multiplying this equation with cosx − cos y, we integrate
it on [−π, π]2. Then we obtain γ(0, 1) = 0, whence

log

∣∣∣∣∣
cos x−y2
cos x+y2

∣∣∣∣∣+ (I +△)ψ0,1 + f(cosx+ cos y) = 0. (8)

If we further assume that f ≡ 0, then we obtain

ψ0,1(x, y) = −
∞∑

n=1

2(−1)n−1

n(1− 2n2)
sinnx sinny + c1 cosx+ c2 cos y, (9)

where cj ’s are constant.

Because of the limitation of the paper size we do not compute other coefficients
in the present paper. Even with our incomplete computation, we can guess a
certain interesting asymptotic behavior as (α,R)→ (1,∞). In fact,

ψ = −cosx+ cos y

2
+ ǫψ1,0

+
1

αR

∞∑

n=1

2(−1)n

n(1− 2n2)
sinnx sinny + smooth function + · · · (10)

shows that the nonsmooth function appearing in (9) is a dominant factor for a
large ( but not too large ) wave number range when (R,α) → (∞, 1). Figure 3
(right) shows the plot of αRn(1− 2n2)a(n, n). This figure indicates that

ψ = −cosx+ cos y

2
+

2

αR

∞∑

n=1

(−1)n

n(1− 2n2)
sinnx sinny + · · · (11)

is a good approximation to the solutions on the turning points in Figure 1 (right)
in an intermediate wave number space.

4 Kolmogorov flows of small aspect ratio

The purpose of the present section is to consider the asymptotic behavior of
the solutions of (5) as α → 0 with a fixed R. The stationary solution of
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the Navier-Stokes equations are expanded into the Fourier series: ψ(x, y) =∑
(m,n)6=(0,0) a(m,n) exp(iαmx + iny). Then the Fourier coefficients satisfy the

following equations:

1

R

(
α2j2 + k2

)2
a(j, k) +

1

2R
δk,±1δj,0

−
+∞∑

p=−∞

+∞∑

q=−∞
αa(p, q)a(j − p, k − q)(kp− qj)(α2jp+ kq) = 0, (12)

where Kronecker’s delta is used. In particular we obtain

a(j, 0) +R
∑

p,q

a(p, q)a(j − p,−q) pq
αj2

= 0. (13)

This suggests the following asymptotic relation:

a(j, 0) = O(α−1) as α→ 0,

which we assume from now on. Also we assume that

a(j, k) = O(1) as α→ 0 ( k 6= 0).

These asymptotic relations are compatible with our numerical experiment, which
we can not show because of the page limitation. We now define b(j, k) as follows:
b(j, k) = limα→0 a(j, k) for k 6= 0 and b(j, 0) = limα→0 αa(j, 0). Then, we have the
following equations:

1

R
k4b(j, k) +

1

2R
δk,±1δj,0 −

∑

p6=j
b(p, k)k3(p− j)b(j − p, 0) = 0, (k 6= 0) (14)

b(j, 0) +R
∑

p6=0,q 6=0
b(p, q)b(j − p,−q)pqj−2 = 0. (15)

After some computation, with the aid of symmetry b(−j, k) = b(j,−k) =
(−1)j+k−1b(j, k), we can prove that b(j, k) = 0 if |k| > 1. Then we can rewrite
(14) by means of {b(j, 1)}+∞j=−∞ only:

b(j, 1) +
1

2
δj,0 −R2

∑

p−j:odd

∑

s6=0
b(p, 1)

2s(−1)s−1

j − p b(s, 1)b(j − p− s, 1) = 0. (16)

This equation is supplemented by the equation (15) with q = ±1.

We have seen that the Navier-Stokes equations (12), which are written by the
two-dimensional array {a(m,n)}, are reduced to a system of nonlinear equations of
a one-dimensional array {b(j, 1)}. We have thus achieved a substantial reduction.
However, the reduced equation contains a new difficulty. In fact, the equation (16)

Documenta Mathematica · Extra Volume ICM 1998 · III · 513–522



Kolmogorov Flow 521

has a trivial solution such that b(0, 1) = −1/2, b(j, 1) = 0 (j 6= 0). Lineariz-
ing (16) at this trivial solution, we can easily see that the system (16) possesses
one and only one bifurcation point, which degenerates with infinite multiplicity.
Consequently, the set of solutions of (16) near the trivial solution would look like
Figure 4 (left). Note, however, that this figure is based on a naive guess from the
linear analysis and the truth may well be different.

R
x

y

Figure 4: Infinite number of pitchforks at (α,R) = (0,
√

2) (left). Graph of the
stream function of mode 1. α = 0.02, R = 100.0. Since x ranges from −50π to
50π, it is rescaled to a scale similar to y (right).

Now let us come back to the equation (4). Figure 4 (right) is the graph of the
numerical stream function when α is small. This and the Fourier analysis above
suggest that

ψ ∼ f(αx)

α
+ g(αx) cos y + h(αx) sin y +O(α) as α→ 0, (17)

where f , g, and h are functions of one variable. Figure 4 (right) shows that
f(ξ) = µ(R)

(
|ξ| − π

2

)
, where µ(R) is a constant depending on R. Substituting

(17) into (5), we obtain

g(ξ) =
−1

1 +R2(f ′(ξ))2
, h(ξ) =

Rf ′(ξ)

1 +R2(f ′(ξ))2
.

Thus, the solutions are calculated up to order O(1) as α → 0. However, further
expansion accompanies a substantial difficulty.

The analysis of the singular perturbation problems of this and the preceding
sections will be left to the future work.
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Computation with Wavelets in Higher Dimensions
Jan-Olov Strömberg1

Abstract.

In dimension d, a lattice grid of size N has Nd points. The representa-
tion of a function by, for instance, splines or the so-called non-standard
wavelets with error ǫ would require O(ǫ−ad) lattice point values (resp.
wavelet coefficients), for some positive a depending on the spline order
(resp. the properties of the wavelet). Unless d is very small, we easily
will get a data set that is larger than a computer in practice can handle,
even for very moderate choices of N or ǫ.

I will discuss how to organize the wavelets so that functions can be rep-
resented with O((log(1/ǫ))a(d−1)ǫ−a) coefficients. Using wavelet packets,
the number of coefficients may be further reduced.

1991 Mathematics Subject Classification: Primary Secondary
Keywords and Phrases: Wavelets, high dimension .

1 Introduction

Although we live in a three-dimensional space it is often useful to consider spaces
with much higher dimension. For example, describing the positions in a system
with P particles we may use a 3P dimensional space. Although we in theory can
work very high dimesnsion, it is very limited what we can do in practical numerical
computations. The are properties of the geometry in very high dimension that may
be surprising.. For example, consider a geometric object as simple as a cube in
Rd. A cube with side length as small as a finger nail may still contain a sets as
large as the earth on a three-dimensional subspaces, provided d is large enough.

The fundamental issue of analysis in high dimensions involves the approxi-
mation to prescribed accuracy of transformations of high dimensional data. Ap-
proximating functions with a grid of size N in dimension d means that we have
the Nd grid points with data. With the limited amount of data we can handle in

1Professor at University of Tromsø, Norway until 1998. Supported by Norwegian Research
Counsil
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practice, this imposes strong restrictions both on N and on d. The current state
of approximation theory is essentially useless in dimensions larger than 10.

One may think that this problem would be solved with faster and faster
computers. But there are limitations how fast computers can be.. Let us illustrate
this by the following example of ”ultimate massive parallel super computer”: (I
have taken physical constants from a standard physics handbook.)

Let the number or parallel processors be as many as the estimate of total
number of protons in universe, let clock cycle speed on each processor defined by
the time to travel the distance of a nuclear radius at the speed of light, and finally
let running time be as long as estimated live time of universe. Totally this will
be about 10120 cycles. This correspond to a the number of grid points Nd with
N = 256 and with d ≈ 50, For a systems or P particles (d = 3P ), this means
that P can not be larger than 17. Let f function be in the unit cube in R3P

with first order derivatives bounded by 1. Then f may approximated in this grid
with accuracy 1/10 (when P = 17). In reality, it seems to be beyond our reach to
handle P > 3 or maybe even P > 2 particles.

The theory for numerical computation in high dimensions is in a premature
state, but the approach of Jones; Davis and Semmmes([5]), is the first indication
that a powerful theory for high dimensions exists.

In the rest of this paper, I will discuss some ideas which in practice are useful
only in rather low dimensions (≤ 10).

In recent years wavelet methods have appeared as useful tools for reducing
complexity in numerical computations. By expanding functions in wavelet co-
efficients one has been able to compress the data to be handled. For example,
consider Singular Integral Operator on functions on R bounded on L2 and with
kernel K(x, y). Assume the kernel satisfies the standard decay properties away
from the diagonal:

|∂αx ∂βyK(x, y)| ≤ C|x− y|−d−α−β (1)

for α, β| ≤ m. Representing the operator with a N × N matrix, we need to use
essentially all N2 matrix elements, even if the elements far away from the diagonal
are very small - the total contribution of all the matrix elements on distance ≈ 2j

from diagonal will not decay by j. In the famous paper by Beylkin, Coifman, and
Rokhlin([2], the authors has shown how the Singular Integral Operators can be
expressed in a wavelet basis with a matrix, where the elements decays much faster
away from the diagonal. In fact, if the accuracy level is ǫ one may use a diagonal
band limited matrix with bandwidth proportional to ǫ

1
m . Here m is the order of

the wavelets. Thus one need only to use NO(ǫ−
1
m ) non-zero matrix elements.

In dimension d > 1 one has often used the so called non-standard tensor
extension , using tensor product combinations of the one-dimensional wavelets
and and its scale functions, with all factors of the same scale. Let M = Nd, the
number of grid points in which the functions arthe represented. Instead of using
all M2 elements to represent the Singular Integral Operator, one need only use a
matrix with non-zero element limited to a band around the diagonal (x = y), For

accuracy level ǫ one need to use MO(ǫ−
d
m ) non-zero matrix elements. When d is

large andm small the number of terms O(ǫ−
d
m ) increases very fast as ǫ gets smaller.
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Even in as low dimension as d = 3,4 or 5 we feel the restriction on how small ǫ may
be. We shall see than under certain circumstances, with good control of the mixed
variation of f , the exponential dependence of d in O((1ǫ)

d
m ) may be replaced with

the somewhat better, but still exponential expression; O(log 1{ǫ
1
m )d−1ǫ−

1
m ). The

error in the approximation, in sup norm, is of magnitude O(log 1{ǫ
1
m )d−1ǫ). More

exactly, if the smoothness condition on f is stated with the expression α1 + · +
αd <= m replaced by max αi ≤ m. Here α = (α1, .., αd) is the multi-index for
the derivative Dαf . This is a smoothness condition that is especially suitable to
use for functions which are tensor products as f1(x1) · · · fd(xd), or for functions
that behaves almost like such tensor products.

The ideas ,which are presented here ,comes from some very trivial observations
I did trying to work with wavelets in dimension d > 2: First, as said above, we

very easily get a terrible amount of data.

Second, the full tensor extension of the wavelets to higher dimensions seems to
give better compression of the data than the, now classical, non-standard tensor
wavelet extension.

This is certainly not a new observation. There have, for example, been arguments
for using the full tensor wavelet expansion on R2 in image compression. I have
also seen a mixed tensor wavelet representation for Operators on functions on Rd:
The non-standard wavelet tensor basis on Rd was extended to a basis on Rd×Rd
by a full tensor extension of the d dimensional wavelet basis.

I have, so far, only made rather trivial estimates using ideas with full wavelet
tensor extension. My Ph.D student Øyvind Bjørk̊as has done some more detailed
studies in his Cand. Scient. Thesis. ([3]).The implementations would be longer
future projects Some of the ideas presented in here were communicated to R.R.
Coifman, who in a joint paper with D.L. Donoho ([4] has used them in the setting of
stochastic variables and their distribution functions. A tensor wavelets expansion
in 3-dimension has been used by Averbuch, Israeli and Vozovoi ([1]) to implement
a fast PDE solver.

We will, in this presentation, only consider the case m = 1. In this case the
wavelet functions are the classical Haar functions. However, it is not difficult to
generalize the corresponding statements to general m > 0. One may also, without
much difficulty, generalize to the situation with fractional smoothness conditions
(as multi-Lipschitz conditions).

2 Preliminaries

Let χ be characteristic function of interval [0, 1], and the Haar function

H(x) =
−1 when 0 ≤ x ≤ 1

2
1 when 1

2 < x ≤ 1

The family of Haar functions in dimension d = 1 is defined by

Hkj(x) = 2j/2H(2jx− k)
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We also define the corresponding set of so called scale functions by

χkj(x) = 2jχ(2jx− k)

With this notation the set of Haar functions Hkj , 0 ≤ k < 2j, j ≥ 0. together with
function χ00 is an orthonormal basis on the unit interval [0, 1] in R In this paper
I prefer to work the the L∞ normalized Haar functions hj,k = 2−j/2Hjk and the

L1 normalized dual functions h̃jk = 2j/2Hjk. We also write ψ = 2−j/2χjk and

ψ̃jk = 2j/2χjk The expansion of a function f on [0, 1] with the Haar wavelets then
may be written

f =< f, ψ̃ > ψ +
∑

jk

< f, h̃jk > hjk.

Clearly, | < f, ψ̃ > | ≤ ‖|f ||∞. Also, if there is a constant A > 0 such that

|f(x)− f(y)| ≤ A|x− y| (2)

then

| < f, h̃jk > | ≤
1

4
A2−j . (3)

Note that the factor 2−j is equal to the length of the supporting interval of h̃jk

3 The non-standard tensor wavelet extension

I non-standard tensor extension, all the 2d combinations of the wavelets hjk and
the scale functionswhere for each scale j are used exept for the tensor product
where all factors are scale functions. The latter tensor product is unly used on
coarses scale. Estimating the wavelets coefficients we have the the worst cases
tensor products with only on wavelet factor and thus only one directions where we
have the estimate decreasing with j as above . The number of functions needed
for accuracy level ǫ is (1ǫ)d. We will later compare this with the full wavelet tensor
expansion (See figure 1)

4 Mixed variation

With good control of the mixed variation ,we will get better estimates for the
wavelet coefficients in the full tensor wavelet expansion. To define what we mean
with mixed variation, we need some definition. Let R be a rectangle in Rd of
dimension s, 0 ≤ s ≤ d, which is parallel to the axes. Let Corner(R) be the set of
corners of R. For p = (x1, . . . , xd) ∈ Corner(R) we associate the number δp equal
to +1 or −1. We do this by setting p = 1 at the point p for which x1 + ·+ xd is
maximal and by changing the sign of the value of p as me move along each of the
edges (of dimension 1) of R. The difference operator △R is defined bye

△Rf =
∑

p∈Corner(R)
δpf(p)

(In the case s = 0 R is a point and p = R and △Rf = f(p).)
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Definition 1 A function f on the unit cube Id in Rd is of bonded mixed variation
of order m = 1 and with constant A if

|△Rf | ≤ A(|R|s) (4)

for each rectangles R parallel to the axes and of dimension s, 0 ≤ s ≤ d,. We use
notation |R|s for the s dimensional volume of R. (In the case s = 0 R is a point
and |R|s = 1.)

Let M(x1, . . . , xm) = x1 + · · ·+ xm be a mapping Rmd to Rd

Definition 2 The function f onf Id has bounded mixed variation higher order m
with constant A if for the function F (x) = f(M(x) we have

|△RF | ≤ A|R|s (5)

for each sub-rectangle R in Rmd of of dimension s, 0 ≤ s ≤ md contained in Id

As a direct consequence of the classical mean value theorem, the condition 4 holds
for any function f satisfying the mixed derivative condition ∂αf/∂xα satisfying

|∂αf/∂xα| ≤ A (6)

for all multi index α = (α1, . . . , αd) with

max αi ≤ m (7)

5 The full tensor wavelet expansion

In the full tensor wavelet expansion we use tensor products

ηJ = ηj1,k1 ⊗ · · · ⊗ ηjd,kd ,

where ηR = η ∈ {h, χ} with 0 ≤< ki < 2ji . Here the scale index in the i-direction
ji ≥ 0 when η = h and ji = 0 when η = χ. R indicates the supporting rectangle
of the this wavelet function. For the full tensor wavelet extension of the one
dimensional wavelet we get the estimate of the of the coefficients related to the
volume of the supporting rectangle. In case of the Haar wavelet extension we have,
more precisely,

| < f, η̃R > | ≤ (1/4)sA|R|d (8)

where s is the number of h factors in the tensor product ηR. This is much better
estimate than the estimate for the non-standard extension of the wavlets where a
coefficients in the worst case are related to the side length of the supporting cube.

6 The Multi Scale Space Grid

In dimension one we have a sequence of nested spaces Vj which we may think
of as points along a line. In the Haar case Vj is the space of functions partially
constant on intervals of length 2−j. In dimension d ≥ 1 we will consider the spaces
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Figure 1: (left:) Approximation with full tensor expansion, (right:) Approximation
with non-standard tensor expansion

Vj = Vj1,...jd = Vj1 ⊗ · · · ⊗ Vjd as points j = (j1, . . . , jd) in a d dimensional integer
grid. Let Pj be the projection to Vj . We evaluate a function f at the space point
j as the function Pjf . As above may define the mixed different △R for any axes
parallel rectangle R on this grid (with dimension s, 0 ≤ s ≤ d). One can show
that △R is a projection. In this space grid we identify rectangles R as the space
corresponding to projection △R Now, we may make simple algebraic rules of how
any rectangle R and its lower dimensional boundaries are related. We may also
add together collections of rectangles Ri and express the sum in terms of their
union and its boundaries. We introduce the variable J = j1 + · · · + jd and turn
out multi-scale grid with the J-axis (not drawn) pointing vertically upwards:

Let Q be the whole Multi Scale Space Grid as a cube in Rd The space cor-
responding to the top point of Q is Vn,...,n, while the bottom point is the space
V0,...,0 In the full tensor expansion of the wavelets the top point is decomposed
as a direct sum of all spaces corresponding to all the small s-dimensional cubes,
0 ≤ s ≤ d, lying on those s - dimensional boundary cubes of Q, which contains the
bottom point. These spaces are indicated on the left part of figure 1 as all filled
squares,all bold line segment and finally the bottom point.

7 Approximation with full tensor wavelets expansions

The main observation is, that the a priori estimate of the wavelet coefficient for a
the subspace in this decomposition is essentially proportional to

2−J
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or the J - coordinate of the position of this subspace. On the other hand the
number of bases element in the subspace is proportional to

2J

This means that it strategic to approximate a functions in the top space by using
the projection with all subspaces with J coordinate under some level, such as
J ≤ n. We get

Theorem 1 Let ǫ > 0. Then there is a set S with O((log 1ǫ )d−1ǫ−1) Haar full
tensor wavelets functions such that any function f be a function in the unit cube
in Rd satisfying condition 7 may be approximated by

∑

h∈S
< f, h̃ > h

with accuracy in sup norm O((log 1ǫ )d−1ǫ) (in L2 norm O((log 1ǫ )fracd−12ǫ)). The
value of f at a single point may be computed in O((log 1ǫ )d steps.

8 A sparse set of rectangles

The approximation in the theorem above is done with subspaces with space grid
coordinate J ≤ N . All those subspaces are in the span of the subspaces Vj with
the coordinate J = n. This means in the Haar case we that the mean fR0 may be
computed from the mean values fR, R dyadic rectangle (with some accuracy).

Theorem 2 Let f be a function on the unit cube in Rd satisfying condition 7.
Let R0 be a dyadic sub rectangle with volume |R0|d ≤ 2−n. and let Rk be the set
of dyadic rectangle R in the unit cube with volume |R|d = 2−k and let fR the mean
value of f over R Then, with errorr O(nd−12−n) we have

fR0 ≈
d−1∑

k=0

(−1)k
(
d− 1
k

) ∑

R ∈ Rn−k
R ⊃ R0

fR

9 A sparse subset of grid points

We would not have much practical use of the full tensor approximation with with
the sparse set of O((logN)d−1N) wavelet coefficients if, in order to compute them,
we need all Nd samples points of the function. However, it is not very difficult to
show that that these wavelet coefficients may be calculated from a sparse set of
sample values of the function.

Let GN be the set of grid points in the unit cube in Rd where the grid size
is 1/N Let SN be the subset of GN consisting of all corners of dyadic rectangles
with volumes ≥ 1/N . The number of points in SN is O((logN)d−1N).
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530 Jan-Olov Strömberg

Theorem 3 Let f be a function satisfying 5. Given the value of f at SN one may
also compute the the sparse set of (O((logN)d−1N) coefficients < f, h̃jk> with an

error bounded by O((logN)d−1 1/N) (with h̃jk L
1- normalized) This can be done

in O((logN)d−1N) steps.

There is also a fast algorithm to recover the values of functions at any grid point
in GN

Theorem 4 Let f be a function satisfying 5. Given the value of f at all points
in SN one may compute the values of f at any point p ∈ GN with error bounded
by O((logN)d−1 1N ). The complexity of such a computation is O((logN)d−1).

We do not have room here to include any proofs of this.

10 Tensor wavelets on Singular Integral Operators

Wavelets was used with great success, by Beylkin, Coifman and Rokhlin with great
success to reduce complexity for the computation of Singular Integral Operators
. The operator T is assumed to be bounded on L2(Rd) and its kernel K(x, y)
satisfies the usual smoothness conditions 1 away away from the diagonal. Let us
consider the problem as to compute the inner product

< f, Tg >=< f ⊗ g,K > .

We may think of K represented by a matrix (2d dimensional tensor) with N2d

elements, N = 2n. Beylkin, Coifman and Rokhlin represent this inner product by
use the non-standard tensor bases extension of the wavelets (of orderm) onR2d. In
this bases the Kernel is represented by a matrix, which may by approximated with
accuracy level ǫ to a matrix with finite diagonal bandwidth containing NdO(ǫ

d
m )

non-zero elements. We see that estimate for the number of non-zero elements in
this matrix is not very good when d is large. Using a hybrid of non-standard and
full tensor basis extension it is possible to improve their result:

Theorem 5 There is a hybrid tensor wavelet extension basis on the unit cube I2d

in R2d, in which the kernel K is represented with accuracy level ǫ by a matrix with
NdO(1/ǫ) non-zero elements. The coefficients of K in this basis may be computed
in O(N2d) steps. The wavelet coefficients of f⊗g in this basis are simple products
of coefficients taken from on set of coefficients for f and one set set of coefficients
for g, Each of these two sets is order O(Nd) and may be computed in O(Nd) steps.

We will not give the proof here.

11 The Haar packets

A C∞ function may be approximated much better with wavelet packets than by
wavelets. We will for simplicity only consider wavelet packets of the Haar functions
for approximating functions f satisfying

dk|f
dxk

(x)| ≤ 1 for all k ≥ 0 (9)
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Then we have

Theorem 6 Let ǫ > 0 then there is as set of

Mǫ = O

(
exp

(
c

√
log(

1

ǫ
)

))

Haar wavelet packet functions {Wk}Mǫk=1 on the interval [0, 1], such that any func-
tion f as above is approximated with error less than ǫ by

f ≈
Mǫ∑

k=1

< f,Wk > Wk.

The smoothness condition 9 on the function f is very strong. However, one may
get some rather similar estimates with much weaker condition on f . The wavelet
packe tree starting from the top consists of nodes, which are connected by branches
of low-pass and high-pass filters. At the bottom of the tree, each space is of
dimensions one. Let j1, j2, . . . , js be a sequence of positve integers which indicates
the levels of the branshes, where we have passed through the high-pass filter to
reach a node. Then we get, by iteration of the mean value theorem, the a priori
estimate

2−(j1+···+js)2−2s.

(We assume have normalized the filters so that the Low-pass filter does not increase
the norm.) Let 2−n = ǫ. To get the Theorem above we mainly hove to solve the
following problem in combinatorics: Estimate the number of finite sequences of
integers (j1, j2, · · · js) with

0 < j1 < j2 < · · · < js ≤ n
such that

j1 + j2 + · · ·+ js ≤ n.
Approximating with the Haar packets on the unit cube i Rd leads to a similar
combinatorics problem with sets where up to d indices jk may assume the same
integer values. One will get the estimate

M = O

(
exp

(
c

√
d log(

1

ǫ
)

))

The problem with the approximating Singular Integral Operator kernels with Haar
packets will also lead to a combinatoric problem. As in the compression of the
kernel K by Haar wavelets above one my use Whitney decomposition also in this
case. We have not analized this in detailed yet. However, one would probably get
something like, that the kernel K, may be approximated at accuracy level ǫ using
a set of

NdO

(
exp

(
c

√
d log(

1

ǫ
)

))
,

Haar Packet functions.
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Abstract. Thanks to powerful algorithms and computers, Schwarz–
Christoffel mapping is a practical reality. With the ability to compute
have come new mathematical ideas. The state of the art is surveyed.
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1. Introduction. In the past twenty years, because of new algorithms and new
computers, Schwarz–Christoffel conformal mapping of polygons has matured to a
technology that can be used at the touch of a button. Many authors have con-
tributed to this progress, including Däppen, Davis, Dias, Elcrat, Floryan, Henrici,
Hoekstra, Howell, Hu, Reppe, Zemach, and ourselves. The principal SC software
tools are the Fortran package SCPACK [15] and its more capable Matlab succes-
sor, the Schwarz–Christoffel Toolbox [3]. It is now a routine matter to compute
an SC map involving a dozen vertices to ten digits of accuracy in a few seconds
on a workstation.

With the power to compute has come the ability to explore. The obvious
kind of problem—“here is a polygon; map it onto a disk or a half-plane”—is
rarely what one encounters in practice. Instead it is variations on the idea of
SC mapping that arise. In this article, after briefly mentioning the algorithmic
developments that have made SC mapping possible, we describe four of these
variations: oblique derivative problems on polygons; ideal free-streamline flows;
the CRDT (cross-ratio Delaunay triangulation) algorithm; and Green’s functions
for symmetric multiply connected domains.

2. Numerical Algorithms. Independently around 1869, Schwarz and Christof-
fel derived their famous formula,

f(z) = A+B

∫ z

0

n∏

k=1

(1− ζ/zk)−βk dζ. (1)

They proved that any conformal map f(z) of the unit disk or the upper-half plane
onto a polygon P with n vertices can be written in the form (1) for some constants
A, B, {zk}, and {βk} [9,10]. The exponents {βk} are determined by the angles at
the vertices of P (exterior turning angles divided by π), but the other parameters
are unknown. Translation, scaling, and rotation are accomplished by A and B,
and the prevertices {zk}, unknown a priori, are the preimages on the unit circle
or the real axis of the vertices of P .

Three computational hurdles arise in implementing (1): finding the unknown
parameters, evaluating the integrals, and computing the inverse map. Analytically,
one can do very little. The hurdles must be crossed numerically, and the history
here is long, in part because this is a topic that every engineer has heard of and
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534 Trefethen and Driscoll

may be tempted to solve from scratch. The list of names above includes only some
of the more prominent contributors. Two of the earliest contributions in the list
were those of Davis [1] and Reppe [13].

We will not give details, but mention a few of the algorithmic ideas that are
the basis of SCPACK and the SC Toolbox. Schwarz–Christoffel integrals can be
evaluated by an automatic process of compound Gauss–Jacobi quadrature: Gauss–
Jacobi formulas handle the singularities at endpoints, and adaptive subdivision of
intervals combats the phenomenon of exponential distortions that is universal in
conformal mapping (see §5). The unknown parameters can be found by solving a
system of nonlinear equations that assert that the side lengths of P are correct.
By a change of variables, the ordering conditions among the prevertices can be
eliminated to make this system of equations unconstrained, whereupon it can be
treated by quasi-Newton iteration or by more specialized techniques. Finally, f−1

can be evaluated by a Newton iteration (the derivative f ′ is just the integrand of
(1)), made robust as necessary by the generation of initial guesses via numerical
solution of an ordinary differential equation.

We urge readers to download a copy of the SC Toolbox [3] and give all this a
try. Begin by typing scgui to explore the graphical user interface, but remember
that everything can also be done by inline Matlab commands. For example,

plot(diskmap(polygon([2 2+i 1+i 1+2i 2i 0])))

generates a plot of a conformal map of the unit disk onto an L-shaped polygon
in five seconds on the first author’s workstation. Changing diskmap to extermap
maps the exterior of the same polygon. The command

plot(rectmap(polygon([2 2+i 1+i 1+2i 2i 0]),[1 4 5 6]))

maps the interior onto a rectangle, whose length-to-width ratio is necessarily the
conformal modulus of the L-shaped region,

√
3 . Similar SC Toolbox commands

construct maps from a half-plane or an infinite strip and onto generalized polygons
with slits, vertices at infinity, or overlapping regions.

3. Oblique Derivative Problems on Polygons. The following problem,
considered by Trefethen and Williams [18], arises in queuing theory and in the
study of the classical Hall effect in electronics. On each side Γj of a polygon P ,
an angle θj is specified. We seek a non-constant harmonic function u in P , i.e.,
a solution to Laplace’s equation ∆u = 0, that satisfies the condition du/ds = 0
along the direction at angle θj to the boundary.

Such problems can be solved by conformal mapping as follows. Suppose a
function f is found that maps P conformally onto a second polygon Q, whose side
lengths are unspecified, with the property that f(Γj) is oriented at the angle θj
from the vertical. Then all the boundary directions in Q line up vertically, and
therefore u(z) = Ref(z) is the function required. Theorems 1–3 of [18] establish
that this procedure generates all solutions to the oblique derivative problem.

Figure 1 shows an example of an oblique derivative problem solved in this
manner. Though only pictures are presented, it is an easy matter to extract
numbers from such a computation accurate to ten or more digits.
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P Q

f

Figure 1. Solution of an oblique derivative problem by conformal mapping.
On the L-shaped problem domain P , a bounded harmonic function u is sought
with du/ds = 0 at angle π/4 on the left edge, π/3 on the right edge, and π/2 (the
usual Neumann condition) elsewhere. The required function is u(z) = Ref(z),
where f(z) is a conformal map of P to a trapezoid Q with sides oriented at the
prescribed angles from the vertical, and all solutions are of this form, differing
only in shift and scale. The preimages of vertical lines in the trapezoid are curves
u(z) = const. The two dots show the conformal images of the two vertices in the
L that map into degenerate vertices of the trapezoid.

4. Ideal Free-Streamline Flows. A longstanding topic of fluid mechanics is
the study of jets, wakes, and cavities, all of which may involve a surface, or in two
dimensions a line, across which the flow properties change. In 1868, Helmholtz
and Kirchhoff introduced the theory of free streamlines for such problems and
proposed the use of complex analysis to find solutions in 2D. Other early contrib-
utors were Planck, Joukowski, Réthy, Levi-Civita, Greenhill, and von Mises, and
later generations saw major extensions and survey publications by Birkhoff and
Zarantonello, Gilbarg, Gurevich, Monakhov, and Wu, among others [12,20].

The classical theory of 2D free-streamline flows has two limitations. The
first is that in many cases it omits important aspects of the physics. The second
is that the flows in question can be computed analytically for only the simplest
geometries. Here, however, it turns out that by a modification of the SC idea,
effective algorithms can be devised that are exactly analogous to those used for
SC mapping. If one is careful about the physics, as in various papers over the
years by J. Keller and by Vanden-Broeck, among others, the results can reveal a
great deal about certain flows.

One version of a classical 2D free-streamline flow problem goes like this. A
semi-infinite inviscid, incompressible fluid flows in the absence of gravity above
a polygonal wall that ends at a point, after which the fluid continues on into
free space. Beyond the separation point, the flow is bounded by a curved free
streamline on which the boundary condition (because of Bernoulli’s equation) is
that the magnitude of the velocity must be constant—say, 1.
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The solution can be found as follows. Let z be the spatial variable; the
boundary of the problem domain in the z-plane is partly unknown, because of
the free streamline. Let w be the velocity potential, inhabiting the upper half-
plane, with the origin corresponding to the point of separation. Let ζ = dw/dz be
the hodograph or conjugate-velocity variable. The problem is to find an analytic
function ζ(w) such that argζ(w) takes prescribed piecewise constant values along
(−∞, 0] and has constant modulus |ζ(w)| = 1 along [0,∞).

−βkπ

−βkπ

ζk

fk

zk

0wk 0 1

0

(a)

(b)

Figure 2. Comparison of the ideas underlying Schwarz–Christoffel and free-
streamline mapping. (a) For an SC map f(z), the derivative f ′(z) has piecewise
constant argument for z ∈ (−∞,∞), so it can be written as a product of elemen-
tary maps of the upper half-plane onto infinite wedges. (b) For a free-streamline
map, ζ′(w) has piecewise constant argument for w ∈ (−∞, 0] and constant modu-
lus for w ∈ [0,∞), so it can be written as a product of maps of the upper half-plane
onto a circular-arc wedges.

The hodograph (ζ) domain is bounded by straight segments and a circular
arc, and the classical approach would be to take the logarithm to reduce it to a
polygon, which could then be mapped by the SC formula. For all but very simple
geometries, however, this method is unworkable because of unknown ordering of
prevertices, for the topology of the polygon is not known in advance. Instead,
general polygonal boundaries can be handled by the method suggested in Fig. 2,
developed by Monakhov [12] and Elcrat and Trefethen [6]. The key idea is to
employ a modification of the SC integral (1) in which each term in the product in
the integrand is an elementary map onto a bounded circular-arc wedge rather than
an unbounded wedge. A numerical example is presented in Figure 3; for more, see
[2] and [6].

The method just described for free-streamline flows is a general one, permit-
ting the ready computation, with slight variations, of flows in a wide variety of
geometries. Once such a general tool is in hand it is an easy matter to repro-
duce computations from the past, including those of Kirchhoff (flat plate, 1869),
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Figure 3. Example of a free-streamline flow computed by the method of
Fig. 2. The free streamline is the curve that separates from the tip of the solid
boundary. The equal spacing of the curves on the right reveals that the constant-
speed condition has been satisfied.

Rayleigh (inclined plate, 1876), Bobyleff (symmetric wedge, 1881), Michell (slot,
1890), von Mises (funnel, 1917), Chaplygin and Lavrentiev (plate with separation,
1933), Keller (“teapot effect”, 1957), Lin (asymmetrical wedge, 1961), Wu and
Wang (symmetric 4-piece wedge, 1964), and Elcrat (plate with spoiler, 1982).

5. The CRDT (Cross-Ratio Delaunay Triangulation) Algorithm. The
methods described above are based on what might be called standard SC mapping
technology, in which the realization of (1) is achieved by standard “best practice”
methods of numerical analysis. It has been recognized since around 1980, however,
that such methods fail for highly elongated regions. Suppose, for illustration, that
the unit disk is mapped onto a rectangle of aspect ratio L, with 0 mapping to the
center of the rectangle. Then the prevertices along the unit circle lie in two pairs
separated by intervals that shrink in proportion to exp(−πL/2). For L = 30, for
example, adjacent prevertices are separated by only about 10−21. Thus conformal
maps are subject to exponential distortions, a phenomenon known as crowding,
and in floating point arithmetic, the result is that highly elongated regions cannot
be treated by standard methods.

One solution, due to Howell and Trefethen [11], is to dispense with the disk
or half-plane and map directly onto a highly elongated domain such as an infinite
strip or a long rectangle. Both options are included in the SC Toolbox. For many
problems arising in practice, this solves the crowding problem by weakening the
effect from exponential to algebraic.

Domains that are elongated in multiple directions, however, require more
radically new approaches, and one such, also included in the SC Toolobx, has
recently been developed by Driscoll and Vavasis [4]. The idea behind the CRDT
algorithm is that no matter how distorted a conformal map may be globally, any
portion of it can be made locally well-behaved by some Möbius transformation
(az + b)/(cz + d). By composing Möbius transformations, it ought to be possible
to represent arbitrarily great distortions by compositions of well-behaved maps.
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The CRDT algorithm begins by constructing a Delaunay triangulation of the
target polygon P , generally after introducing extra degenerate vertices so that
the triangles will be not too slender. The task then is to find the correspondence
function between prevertices on the unit circle and vertices on the boundary of P .
The Möbius idea is used by formulating the correspondence condition not globally
but four vertices at a time, corresponding to two adjacent triangles. A convenient,
Möbius-invariant description of the unknown prevertices is furnished by the cross-
ratios of these 4-tuples, defined by

ρ(z1, z2, z3, z4) =
(z4 − z1)(z2 − z3)
(z3 − z4)(z1 − z2)

, (2)

which is negative and real when z1, . . . , z4 lie on counterclockwise order on the unit
circle. The CRDT algorithm formulates a system of n− 3 nonlinear equations in
which the independent variables are the negatives of the logarithms of the cross-
ratios of 4-tuples of prevertices on the unit circle, and the dependent variables are
the deviations from their correct values of the absolute values of the logarithms of
the cross-ratios of 4-tuples of vertices on P . This system of equations is observed
to be very well behaved and easily solved by iteration.

The algorithm sounds complicated, and its elements of computational geome-
try certainly give it a flavor different from other algorithms in this field, but it has
proved remarkably effective. It makes possible the mapping of regions that would
have been regarded as impossible a few years ago, except in multiple precision
arithmetic. Figure 4 gives an example.

Figure 4. Conformal map of “Emma’s maze” onto a rectangle of aspect ratio
18.2, computed by the CRDT algorithm. The solid curves are the conformal images
of straight lines in the rectangle; the dotted curves are the same, but correspond to
lines in the rectangle exponentially close to the sides (10−2, 10−4, 10−6, . . . , 10−16).
Because of exponential distortions, the numerical computation of maps like this is
far beyond the capabilities of ordinary algorithms.

Documenta Mathematica · Extra Volume ICM 1998 · III · 533–542



Schwarz–Christoffel Mapping 539

6. Green’s Functions for Multiply Connected Domains. Our final SC
variation represents recent work by Embree and Trefethen [6] based on ideas going
back at least to Widom [19]. It is a longstanding dream to generalize SC maps to
multiply connected domains, but except in the doubly-connected case treated in
successive works by Henrici, Däppen, and Hu, no general results of much practical
value are available in this line. Consider, however, the special case of a region
P in the complex plane consisting of polygons P1, . . . , PK that are symmetrically
located along the real axis, illustrated in Fig. 5 for an example with K = 3. (In an
important special case, the polygons degenerate to intervals along the real axis.)
To be specific, suppose we seek the Green’s function for P , the function u(z)
harmonic outside P with boundary values u(z) = 0 on the boundary of P and
u(z) ∼ log |z| as z →∞.

Such a Green’s function can be computed by SC mapping. The crucial ob-
servation is that the upper half of the problem domain, with segments of the real
axis inserted as necessary to provide a complete boundary, is simply-connected.
Let g(z) be a conformal map of this region onto a semi-infinite strip with vertices
πi, 0, and ∞ and K − 1 slits of indeterminate height and length along the com-
plex interval [0, πi] (Fig. 5(b)). The semi-infinite segments of the real axis map to
the sides [0,∞) and [πi,∞) of the strip, and the bounded segments between the
polygons Pj map to the horizontal slits; the boundaries of the polygons themselves
map into segments of [0, πi]. The Green’s function required is now given by

u(z) = Reg(z). (3)

A second conformal transformation may provide further insight. If f(z) =
exp(g(z)), then f maps the upper half of the problem domain onto the exterior
of the unit disk with protruding spikes (Fig. 5(c)). In terms of this new map, the
Green’s function is given by

u(z) = log |f(z)|. (4)

This Green’s function algorithm has several special features from the SC map-
ping point of view, both of which arise in certain other applications too. One is
that the positions of the slits (spikes) in the semi-infinite strip (exterior of the disk)
are unknown a priori, and must be determined as part of the mapping process.
Doing so is easy, since this part of the parameter problem enters linearly, as is often
the case with slits in SC mapping; but we can view this aspect of the calculation
as prototypical of more complicated generalized parameter problems that arise in
various applications such as inverse problems [16].

The second special feature of this SC computation is that although the Green’s
function u(z) is single-valued, the conformal maps involved in getting it, if viewed
in the large, are multiple-valued. Specifically, consider the function f(z). A priori,
it maps the upper half of Fig. 5(a) to the upper half of Fig. 5(c), and reflection in
the semi-infinite segments of the real axis completes this to a single-valued map of
all of (a) to all of (c). Reflection in the bounded segments of the real axis between
the polygons that correspond to the spikes in Fig. 5(c), however, is equally justified
mathematically. After one such reflection, further reflections become possible, and
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(a)

(b)

0

πi

g(z)

(c)

exp

Figure 5. Computation of the Green’s function u(z) for a multiply connected
domain. (a) Final result, showing four level curves u(z) = const.; the innermost is
the critical one at which two connected components first touch. (b) To compute
u, the portion of the problem domain in the upper half-plane is transplanted by
an SC map g(z) to a semi-infinite slit strip; the upper halves of the level curves of
(a) are the preimages of vertical lines in the strip (dashed). (c) The exponential
function transplants the slit strip to the upper half of the exterior of a disk with
spikes, and the level curves of (a) become preimages of concentric circles.
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so on, and the ultimate result is that f(z) maps the multiply connected region onto
a Riemann surface with (in general) infinitely many sheets [19]. Fortunately, these
complications do not matter for the application of computing the Green’s function.

Green’s functions for multiply connected regions have applications to prob-
lems of polynomial approximation. When the polygons reduce to intervals we have
a problem in digital filtering [14], and the general case relates to beautiful theo-
rems of Fuchs in the 1970s [8]. Suppose in Fig. 5, for example, that three distinct
entire functions f1, f2, f3 are defined and polynomials pn(z) of increasing degrees
n are sought that approximate fj on Pj in the uniform norm. Then apart from
a small algebraic factor, the approximation errors decrease at the rate exp(−βn),
where β is the length of the shortest slit in Fig. 5(b). The heights of the slits give
asymptotic information about the proportions of interpolation points on each set
Pj , with the images of roots of unity in Fig. 5(c) on the boundaries of Pj pro-
viding near-optimal interpolation points, and the optimal approximants have the
property that they converge precisely inside the critical level curve of Fig. 5(a).

7. Further Variants and Applications. We have touched upon only a few
developments in Schwarz–Christoffel mapping in the computer era. Among the
variants not mentioned are periodic domains, fractals, circular polygons, curved
boundaries, gearlike domains, and polygonal Riemann surfaces. Among the appli-
cations not mentioned are Faber polynomials, matrix iterations, the KdV equa-
tion, electrical resistances and capacitances, magnetostatics, and vortex methods
in fluid mechanics. References for some of these problems can be found in [17].

We would like to put in writing our view of the best applications of Schwarz–
Christoffel transformations. Many people have the idea that SC methods may be
useful for general geometric purposes such as grid generation for finite differencing,
perhaps even for domains with curved boundaries approximated by polygons. Our
opinion is that whereas such applications are of course sometimes effective, the real
excitement of SC mapping lies elsewhere. What is special about the SC formula is
that it solves a certain precisely defined problem exactly, delivering a semi-analytic
solution dependent only on a small number of parameters. We favor applications
where this semi-analytic solution solves the problem of ultimate interest exactly,
for in such circumstances, SC methods far outperform general-purpose tools such
as adaptive finite elements.
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The Minimum-Entropy Algorithm and RelatedMethods for Calibrating Asset-Pricing Models
Marco Avellaneda

Abstract. We describe an algorithm for calibrating asset-pricing mod-
els based on minimizing the relative entropy between probabilities. The
algorithm determines a probability measure on path-space which mini-
mizes the Kullback information with respect to a given prior and satisfies
a finite number of moment constraints which correspond to fitting prices.
It admits, generically, a unique, stable, solution that depends smoothly
on the input prices. We study the sensitivities of the model values of
contingent claims to variations in the input prices. We find that hedge
ratios can be interpreted as “risk-neutral” regression coefficients of the
contingent claim’s payoff on the set of payoffs of the input instruments.
We also show that the minimum-entropy algorithm is a special case of a
general class of algorithms for calibrating asset-pricing models based on
stochastic control and convex optimization. As an illustration, we use
minimum-entropy to construct a smooth curve of instantaneous forward
rates from US LIBOR data and to study the corresponding sensitivities
of fixed-income securities to variations in input prices.

1 Introduction

Despite its practical importance, model calibration has received little attention
in Mathematical Finance. Calibrating an asset-pricing model means specifying a
probability distribution for the underlying state-variables in such a way that the
model reproduces, by taking discounted expectations, the current market prices
of a set of reference securities. The reference securities, or inputs, characterize
the market under consideration. The most common models of this kind are yield-
curve models, used for managing portfolios of fixed-income securities.1 Other, less
ubiquitous, examples are the so-called local volatility models used for managing
option portfolios.2

1In this case, it is customary to vary the swap rates or bond yields corresponding to standard
maturities by one basis point and to compute the corresponding dollar change in the portfolio
value. These sensitivities are the so-called “DV01”s (dollar value of one basis point) used to
quantify interest-rate exposure.
2Also known as “smile models”.
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In many cases of interest, the calibration problem is equivalent to a classical
problem in statistics: the determination of a probability distribution from a finite
set of moments. The “moments” correspond to the discounted expectations of
the cash-flows of the reference instruments. It is well-known, however, that such
problems are ill-posed: there can be many solutions or, sometimes, no solution at
all. In financial-economic terms, this signifies that prices may not be consistent
with any risk-neutral probability (and hence that an arbitrage exists) or, more
likely, that there exist several risk-neutral probabilities consistent with the cur-
rent prices due to market incompleteness. Selecting a probability is tantamount
to “completing the market”, in the sense that Arrow-Debreu prices are assigned
to all future states. Thus, any calibration procedure involves making subjective
choices. Taking into account available econometric information and stylized facts
about the market reduces (partially) the ill-posedness of the model selection prob-
lem. Intuitively, a calibrated model which is “near” our prior beliefs and market
knowledge is more desirable than one that is “far away” from the prior. 3

In this paper, we study an algorithm which consists in choosing the risk-
neutral probability that minimizes the relative entropy, or Kullback-Leibler entropy
with respect to a subjective prior. This approach was pioneered in statistics by
Jaynes (1996) and others; see McLaughlin (1984), Cover and Thomas (1991).
An appealing feature of the method is that it takes into account the a priori
(econometric) information available. This information is modeled by the prior
probability, which can be viewed as a “first step” towards adjusting the model to
econometric data but not necessarily to current prices. The entropy minimization
algorithm provides a way of reconciling the prior with the information contained
in current market prices.

Buchen and Kelly(1996) and Gulko(1995, 1996) used entropy minimization
for calibrating one-period asset pricing models; see also Jackwerth and Rubinstein
(1996) and Platen and Rebolledo (1996). In a previous article, Avellaneda, Fried-
man, Holmes and Samperi (1997) applied the minimum relative entropy method
to the calibration of volatility surfaces in the context of commodity option pric-
ing. In the present paper, following Buchen and Kelly and Avellaneda et al, we
use Lagrange multipliers to model the price constraints. However, we go one step
further in the analysis and study also the sensitivities of the model with respect
to the input prices. For this purpose, we use the matrix of second derivatives with
respect to the Lagrange multipliers computed at the critical point.

The paper is organized as follows: In Section 2, we consider a one-period
model. Under mild no-degeneracy assumptions, we show that if there exists a
probability with finite relative entropy, then the calibration problem has a unique
solution. We establish also that the price-sensitivities of contingent claims depend
smoothly on the input prices. The calibrated model has a remarkable property: the
deltas (price-sensitivities) and the betas (regression coefficients of the cash-flow of a
contingent claim on the space generated by the cash-flows of the input instruments)

3For example, practitioners tend to favor models in which interest rates are mean-reverting
and oscillate about some asymptotic distribution. Processes that have unit roots and can reach
very large values with large probabilities are discarded and appear to fail to pass simple statistical
tests.
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are, in fact, equal. More precisely, let Π denote the model price of a contingent
claim which has a discounted payoff h. Let us denote by Gi, i = 1, 2, ..., N the
discounted cash-flows of the reference instruments, and by C1, ... CN their prices.
Then, we have

∂Π

∂Ci
=

N∑

j=1

Kij Cov{Gj , h}

where

K = H−1 , Hij = Cov{Gi, Gj}
and Cov represents the covariance operator under the risk-neutral (calibrated)
measure. It is well-known that the right-hand side of the first equation corresponds
to the value of the coefficient βi in the linear regression model

h = α +
N∑

i=1

βiGi + ǫ

where ǫ has mean zero and is uncorrelated with the cash-flows {Gj} under the
risk-neutral measure. This property of the minimum-entropy algorithm suggests
that it has econometric relevance. 4

Sections 3 and 4 are devoted to inter-temporal asset-pricing models, where
we formulate the algorithm in terms of partial differential equations. The al-
gorithm involves solving a Hamilton-Jacobi-Bellman partial differential equation
of “quasi-linear” type5 and minimizing the value of the solution at one point in
terms of a finite set of Lagrange multipliers. The gradient of the objective function
corresponds to a coupled system of linearized equations.

In Section 5, we show that the algorithm can be formulated as a constrained
stochastic control problem. This suggests that there are many generalizations of
the “pure” entropy algorithm that can be made by changing the form of the cost
function. Specifically, minimizing relative entropy is equivalent to minimizing the
L2 norm of the risk-premia mi(t), i.e.

EP





Tmax∫

0

ν∑

i=1

mi(t)
2 dt





where Tmax is the time-horizon and ν is the number of factors. In practice, it is
computationally advantageous to consider functionals of the form

EP





Tmax∫

0

e
−

t∫
0

r(s) ds ν∑

i=1

mi(t)
2 dt





,

4Calibration via relative entropy minimization is, in a certain sense, the non-parametric coun-
terpart of the maximum-likelihood estimation method; cf Jaynes (1996).
5This means that the nonlinearity appears in the gradient terms.
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because this reduces the dimensionality of the computation, while preserving at
the same time the essential features of the algorithm. 6

In Section 6, we use the algorithm to construct smooth forward rate curves
from US LIBOR data (FRAs and swap rates). We pay particular attention to
the sensitivities with respect to input swap rates, an issue that remains somewhat
controversial among practitioners. Hedges tend to be model-dependent and there-
fore a certain amount of risk is taken when choosing different forward rate curves.
The issue is whether smooth curves, which give rise to “non-local” hedges7, are
preferable to discontinuous forward rate curves, such as the ones obtained by the
bootstrapping method. The latter method tends to give rise to “local” hedges
in which the sensitivities are essentially limited to the nearest maturities. It is
our hope that the minimum-entropy method can compete favorably and perhaps
even improve on some of the other methods used to generate smooth forward-rate
curves, in the sense that the resulting sensitivities are acceptable from a practical
viewpoint. These issues will be investigated in a separate paper.

2 Relative entropy minimization with moment constraints

We consider the problem of determining a probability density function f(X) for a
real-valued random variable X satisfying

∫
Gi(X) f(X) dX = Ci , 1 ≤ i ≤ N , (1)

where G1(X), ...GN (X) are given functions and C1, ...CN are given numbers. 8

Financially, X represents a state-variable describing the economy; Gi(X) and Ci
represent, respectively, the cash-flows and prices of a set of traded securities.

Buchen and Kelly proposed, in the context of option pricing, to choose the
density f(X) that minimizes the functional

H(f |f0) =

∫
f log

(
f

f0

)
dX , (2)

where f0(X) is a prior probability density function. The expression H(f |f0) is
known as the Kullback-Leibler entropy or relative entropy of f with respect to f0.
It represents the “information distance” between f(X) and f0(X). 9

It is well-known (Cover and Thomas) that if there exists a probability density
function f satisfying the constraints (1) and such thatH(f |f0) is finite, the solution
of the constrained entropy minimization problem exists and can be found by the
method of Lagrange multipliers. Namely, we solve

6The advantage of passing from minimum-entropy to a more general control formulation was
also shown in Avellaneda et. al., where the technique was used to “regularize” the relative
entropy of two mutually singular diffusions.
7By this we mean hedges that imply correlations between bonds with distant maturities.
8Henceforth, we say that a probability satisfying the constraints (1) is calibrated. It is implic-

itly assumed that the functions Gi(X) are such that all integrals considered are well-defined.
9The relative entropy is not symmetric with respect to the variables f and f0, so it is not a

distance in the mathematical sense of the word. Nevertheless, it measures the “deviation” of f
from f0 (Cover and Thomas).
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inf
λi

sup
f

[
−H(f |f0) +

∑

i

λi

(∫
Gi f dX − Ci

) ]
. (3)

Let us first fix λ and seek the density that maximizes this “augmented Lagrangian”.
An elementary calculation of the first-order optimality conditions (Cover and
Thomas) shows that for each λ, the optimal probability density function is given
by

fλ(X) =
1

Z(λ)
f0(X) e

∑
i

λi Gi(X)

(4)

where Z(λ) is the normalization factor

Z(λ) =

∫
f0 e

∑
i

λi Gi

dX.

Substituting expression (3a) into (2), it follows that the optimization over the
Lagrange multipliers is equivalent to minimizing the function

log (Z(λ)) −
∑

i

λi Ci , (5)

over all values of λ = (λ1, ... λN ). The first-order conditions for a minimum are

1

Z(λ)

∂Z(λ)

∂λi
= Ci .

This shows, in view of (4), that if λ is a critical point of (5) then fλ is calibrated.
The stability of the solution, i.e. the continuous dependence of fλ on input

prices, follows from convex duality. To see this, notice first that

(log (Z(λ)))λi, λj =
Zλi λj
Z

− Zλi Zλj
Z2

= Covfλ [Gi(X), Gj(X) ] ≡ Hij .

Since covariance matrices are non-negative definite, log(Z(λ)) − λ ·C is convex.
It also follows from this characterization that log(Z(λ)) is strictly convex if the N
payoff functions are linearly independent. 10

Let λ∗ be the value of the Lagrange multipliers that minimizes the objective
function log [Z(λ)] − λC. To assess the sensitivity of the calibrated probability

10As a rule, redundancies within the class of input securities should be avoided when fitting
prices. They lead to instabilities, since the input prices must satisfy linear relation exactly (i.e.
with infinite precision) in order to avoid mispricing these instruments with the model.
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fλ∗ to input prices, consider a new contingent claim with payoff h(X) (the “target
payoff”). Let Π(λ) = Efλ (h(X)). Then, we have

∂Π(λ∗)

∂λj
=

∂

∂λj

∫
f0 e

λ ·G h dX∫
f0 eλ ·G dX

= Efλ(h(X)Gj(X)) − Efλ(h(X)) Efλ(Gj(X))

= Covfλ∗ ( h(X), Gj(X)) .

Hence,

∂Π(λ∗)

∂Ci
=

∑

j

(
∂Π(λ)

∂λj

)

λ = λ∗

∂λ∗j
∂Ci

=
∑

j

(
∂Π(λ∗)

∂λj

)

λ = λ∗

(
H−1

)
ij

=
∑

j

Covfλ∗ ( h(X), Gj(X))
(
H−1

)
ij
. (6)

Here, in deriving the second equation, we made use of the well-known duality
relations (Rockafellar (1970) )

∂Ci
∂λ∗j

= Hij ,
∂λ∗j
∂Ci

=
(
H−1

)
ij
.

It follows from equations (4) and (6) that Π = Π (C1, ...CN ) is infinitely dif-
ferentiable as a function of C1, ... CN . In particular the sensitivities ∂Π

∂Ci
vary

continuously with the input prices.
Formula (6) admits a simple interpretation. Consider the linear regression

model

h(X) = α +
N∑

i=1

βi Gi(X) + ǫ ,

where we assume that ǫ is a random variable with mean zero uncorrelated with
Gi(X) i = 1, .. N under the the risk-neutral measure. The coefficients βi which
minimize the variance of the residual h − α − ∑

i

βiGi are given by

βi =
∑

j

(
H−1

)
ij
Covfλ∗ (h(X), Gj(X)) =

∂Π

∂Ci
, 1 ≤ i ≤ N .

We summarize the results of this section in

Proposition 1. (a) The minimum-relative-entropy method reduces the
class of candidate solutions of the moment problem to an N -parameter exponential
family fλ(X) given by (4).

Documenta Mathematica · Extra Volume ICM 1998 · III · 545–563



The Minimum-Entropy Algorithm 551

Assume that the input payoffs G1(X), ... GN (X) are linearly independent.
Then:

(b) If there exists a calibrated density f(X) such that H(f |f0) < ∞, the
solution of the constrained entropy-minimization problem is unique.

(c) The sensitivities of contingent-claim prices to variations in input prices
are equal to the linear regression coefficients of the target payoff on the input payoffs
under the calibrated measure.

3 Inter-temporal models

We consider a classical continuous-time economy, represented by a state-vector
X(t) = (X1(t), ..., Xν(t)) which follows a diffusion process under the prior prob-
ability measure:

dXi(t) =
ν∑

j=1

σ
(0)
ij dZj(t) + µ

(0)
i dt 1 ≤ i ≤ ν . (7)

Here (Z1, ... Zν) are independent Brownian motions and σ
(0)
ij and µ(0) are functions

of X and t.

We assume that there are N traded securities, with prices C1, ... CN . Our goal
is to find a risk-neutral probability measure P consistent with these prices based
on the principle of minimum relative entropy with respect to the prior (denoted
by P0).

The price constraints can be written in the form on N equations

Ci = EP





ni∑

k=1

e−
Tik∫

r(s) dsGik(X(Tik))



 , 1 ≤ i ≤ N , (8)

where {Tik}nik=1 are the cash-flow dates of the ith security and {Gik(X)}nij=1 rep-
resent the corresponding cash-flows. We assume that the latter are bounded, con-
tinuous functions of X. The process r(s) = r(X(s), s) represents the short-term
(continuously compounded) interest rate. Notice that in (8) the expectation value
is taken with respect to a calibrated (risk-neutral) measure P which, in general,
is not equal to P0.

We follow the approach of the previous section. First, we consider the
Kullback-Leibler relative entropy of P with respect to P0 in the diffusion setting.
For this purpose, it is convenient to define a finite time horizon 0 < t < Tmax,
( where Tmax ≥ max

ik
Tik). The relative entropy of P with respect to P0 is given

by

H(P |P0) = EP

{
log

(
dP

dP0

)

Tmax

}
,
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where
(
dP
dP0

)
Tmax

is the Radon-Nykodym derivative of P with respect to P0 over

the time-horizon Tmax . 11

Next, we consider the augmented Lagrangian associated with the constraints
(8) (compare with (3))

−EP
{

log

(
dP

dP0

)

Tmax

}
+

N∑

i=1

λi



∑

j

EP




e
−
Tij∫
0

r(s)ds

Gij(X(Tij))




− Ci


 . (9)

The solution of the inf-sup problem is identical to the one outlined in the
previous section. Accordingly, we define the normalization factor (cf. (4))

Z(λ) = EP0





exp



∑

ij

λi e
−
Tij∫
0

r(s)ds

Gij(X(Tij))








. (10)

Further, by mimicking equation (4), we obtain a parametric family of measures
{Pλ}λ defined by their Radon-Nykodym derivatives with respect P0:

dPλ
dP0

=
1

Z(λ)
· exp



∑

ij

λi e
−
Tij∫
0

r(s)ds

Gij(X(Tij))


 . (11)

Elementary calculus of variations shows that for any fixed vector λ =
(λ1, λ2, ...λN ), the measure Pλ realizes the supremum of the Lagrangian (9) over
all probability measures. As expected, the supremum is given by

log[Z(λ) ] −
N∑

i=1

λi Ci .

If λ is a critical point, we have

Ci =
Zλi
Z

= EPλ





ni∑

j=1

e
−
Tij∫
0

r(s)ds

Gij(X(Tij))





1 ≤ i ≤ N .

Therefore, the corresponding measure Pλ is calibrated to the input prices.

11In particular, the relative entropy is infinite if P is not absolutely continuous with respect
to P0.
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Define the discounted cash-flows

Γi =

ni∑

j=1

e
−
Tij∫
0

r(s)ds

Gij(X(Tij)) , 1 ≤ i ≤ N .

As in the previous section, we can interpret the Hessian of log(Z(λ)) − λC as a
covariance matrix, viz.,

∂2

∂λi ∂λj
(log(Z(λ))− λ ) = CovP [Γi, Γj ] .

Similarly, if h(XT ) is the payoff of a security maturing at time T ≤ Tmax, we
have

∂

∂λj
EP




e
−
T∫
0

rs ds

h(XT )





= CovP


Γj , e

−
T∫
0

rs ds

h(XT )


 .

Like in the previous section, we conclude that

Proposition 2. (a) Relative entropy minimization is equivalent assuming
that the probability measure belongs to an N -parameter exponential family given
by (11).
(b) If the input payoffs are linearly independent, there is at most one calibrated

measure that minimizes relative entropy.
(c) The model prices and sensitivities of contingent claims depend continu-

ously on input prices.
(d) The sensitivities with respect to input prices can be interpreted as the linear

regression coefficients of the target discounted cash-flows on the space generated by
the discounted cash-flows of the input instruments.

4 PDE formulation

Let L(0) represent the infinitesimal generator of the semi-group corresponding to
the prior P0 i.e.,

12

L(0) φ =
1

2

∑

ij

aij φXi Xj +
∑

i

µ
(0)
i φXi (12)

where

aij =
ν∑

p=1

σ
(0)
ip σ

(0)
jp .

12We use the notation φXi =
∂φ
∂Xi

for partial derivatives.
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It follows from (10) and standard diffusion theory that the normalization
factor is given by

Z(λ) = U(X(0), 1, 0 ;λ) , (13)

where U(X, Y, t ;λ) is the solution of the Cauchy problem

Ut + L(0) U − r Y UY = 0 t 6= Tij (14)

with the boundary conditions at cash-flow dates t = Tij

U(X, Y, Tij − 0 ;λ) = U(X, Y, Tij + 0 ;λ) · exp

(∑

i

λiGij(X)Y

)
. (15)

To derive (14), we introduced the auxiliary state-variable Yt = e
−

t∫
0

r(s) ds

and the
ν+1-dimensional process (Xt, Yt) which is a Markov process with an infinitesimal
generator given by the left-hand side of (14).

From (14) we can derive partial differential equations satisfied by log(Z(λ))
and its gradient with respect to λ. Accordingly, we obtain

log(Z(λ)) = W (X(0), 1, 0 ;λ) ,
Zλi
Z

= V (i)(X(0), 1, 0 ;λ)

where W satisfies the PDE

Wt + L(0)W +
1

2

N∑

ij=1

aijWXiWXj − r Y WY =
∑

ij

λiGij(X)Y δ(t−Tij) . (16)

The PDE for V (l) is obtained by differentiating (16) with respect to λl, viz.

V
(l)
t + L(0)V (l) +

N∑

ij=1

aijWXi V
(l)
Xj
− r Y V

(l)
Y =

ni∑

j=i

Gij(X)Y δ(t− Tij) . (17)

From this last equation, we deduce the following characterization of the cali-
brated measure.

Proposition 3. The calibrated measure which minimizes the relative entropy
corresponds to the diffusion process

dXi =
ν∑

j=1

σ
(0)
ij dZj +


 µ

(0)
i +

ν∑

j=1

σ
(0)
ij mj


 dt
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with

mi =
N∑

i=1

σ
(0)
ij WXj , (18)

where W is computed with λ at the critical point.

5 Modified entropies and the optimal control formulation.

It is useful to view the entropy minimization algorithm as a stochastic optimal
control problem with constraints. We recall the following result (Platen and Re-
bolledo): Proposition 4. The class of diffusion measures P which have finite

relative entropy with respect to P0 consists of Ito processes

dXi(t) =
ν∑

j=1

σ
(0)
ij dZj(t) + µi dt

with

µi = µ
(0)
i +

∑

j

σ
(0)
ij mj ,

where, mj 1 ≤ j ≤ ν are square-integrable. Moreover, the relative entropy
of P with respect to P0 (viewed as measures in path-space with the time horizon
0 < t < Tmax = max

ik
Tik) is given by

H(P |P0) =
1

2
EP





Tmax∫

0

ν∑

j=1

mj(t)
2 dt



 . (19)

Thus, minimizing the KL entropy is equivalent to selecting the risk-neutral mea-
sure in such a way that the vector of risk-premia has the smallest mean-square
norm (cf. Platen and Rebolledo (1996), Samperi(1997)).

Using (19) we rewrite the augmented Lagrangian (9) as

−EP


Tmax∫

0

ν∑

j=1

m2j(t) dt


 +

N∑

i=1

λiE
P



ni∑

j=1

e
−
Tij∫
0

r(s)ds

Gij(X(Tij))


 (20)

The advantage of the stochastic control formulation is that it can be gener-
alized considerably. In fact, we can replace the function

∑
j

m2j(t) by more gen-

eral functions of the form η(t, m1(t), m2(t), ...mν(t)), which are strictly convex in
mi(t).

The class of functionals of the form
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Hmod(P |P0) =
1

2
E





Tmax∫

0

e
−

t∫
0

r(s) ds

η(m(t)) dt





, (21)

where η(m) is a deterministic and strictly convex is of particular importance. In
this case, Hmod(P |P0) can be seen as a “running cost” with respect to the choice
of parameters which penalizes deviations from the prior.

Notice that the definition of entropy in (19) is independent of the interest
rate. One important advantage of discounting the local entropy by the interest
rate is dimension reduction: we can dispense of the auxiliary state variable Y . In
fact, the HJB equation corresponding to the modified entropy (21) is

Wt + L(0)W + η∗
(
σ(0) ·WX

)
− rW =

∑

ij

λiGij(X) δ(t− Tij) , (22)

where η∗ is the Legendre transform of η (Rockafellar). The function W plays the
role of log(Z(λ) in the “pure entropy” framework. Note, however, that in the
special case η(t, m) = 1

2

∑
j

m2j we have η = η∗. The corresponding Bellman

equation is

Wt + L(0)W +
1

2

∑
aijWXiWXj − rW =

∑

ij

λiGij(X) δ(t− Tij) , (23)

In the rest of this section we assume this particular form for the modified entropy.
Following the steps outlined in §2, the algorithm consists of minimizing

W (X(0), 0 ; λ1, ... λN )−
M∑

i=0

λi Ci ,

over λ. This is done with a gradient-based optimization algorithm such as L-BFGS
(Zhu, Boyd, Lu and Nocedal (1994)). The gradient is computed by solving the N
linearized equations:

V
(l)
t + L(0) V (l) +

∑

ij

aijWXi V
(l)
Xj
− r V (l) =

nl∑

j=0

Glj(X) δ(t− Tlj) (24)

Notice that the first-order conditions for the minimum in λ are
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V (l) (X(0), 0 ; λ1, ... λN ) − λi Cl = 0 , 1 ≤ l ≤ N .

Formally, these equations imply that the corresponding probability measure is
calibrated, since

V (l) (X(0), 0 ; λ1, ... λN ) = EP





nl∑

k=1

e−
Tlk∫

r(s) dsGlk(X(Tlk)



 .

Here P is the diffusion process with drift µ(0) + WX ·σ(0) , whereW is calculated at
the optimal values of the Lagrange multipliers. We refer to the diffusion measure
implied by solving equation (23) as Pλ, a slight abuse of notation. The optimal
control formulation has the same mathematical structure (i.e. convexity λ) as the
“pure” entropy problem. To study the dependence on the inputs, we consider the
Hessian of W (λ). Differentiating equations (24) with respect to λ, we find that
the Hessian matrix

H(lm) =
∂2W

∂λl∂λm

satisfies

H
(lm)
t + LH(lm) +

∑

ij

aijWXi H
(lm)
Xj

+
∑

ij

aij V
(l)
Xi

V
(m)
Xj
− r H(lm) = 0 . (25)

In particular, we have

H(lm)(X(0), 0; λ∗) = EP





Tmax∫

0

e
−

t∫
0

r(s) ds M∑

i j=1

aij V
(l)
Xi

V
(m)
Xj

dt





. (26)

Unlike the case of “pure” entropy, the Hessian does not admit a simple inter-
pretation in terms of linear regression coefficients. Nevertheless, we can express
the difference between the Hessian and the covariance matrix of the discounted
input cash-flows as an expectation. More precisely, we have

CovPλ
(

Γ(l), Γ(m)
)

= EPλ





Tmax∫

0

e
−2

t∫
0

r(s) ds ν∑

ij=1

aij V
(l)
Xi

V
(m)
Xj

dt




, (27)

which differs from (26) in the fact that the stochastic discount factor is squared.
Therefore, we conclude that
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H(lm) = CovPλ
(

Γ(l), Γ(m)
)

+

EPλ





Tmax∫

0


e
−

t∫
0

r(s) ds

− (e
−2

t∫
0

r(s) ds




ν∑

ij=1

aij V
(l)
Xi

V
(m)
Xj

dt





. (28)

In particular, this shows that if the instruments are not linearly dependent with
P0-probability 1, the Hessian matrix is positive definite.13 14 Barring trivial
redundancies, the argument establishes that there is at most one λ that minimizes
the objective function.

Finally, we analyze the sensitivities of model prices to input prices.
Given a contingent claim with a payoff h(XT ) due date T, (T < Tmax), let

Π and Π(l) denote, respectively, the model price and the sensitivity of this price
with respect to λl.

The functions Π and Π(l) are readily computed by solving the system of
equations

Πt + L(0)Π +
∑

ij

aijWXi ΠXj − rΠ = δ(t− T )h(X) , (29)

and

Π
(l)
t + L(0)Π(l) +

∑

ij

aijWXi Π
(l)
Xj

+
∑

ij

aij ΠXi V
(l)
Xj
− rΠ(l) = 0 . (30)

It follows from this that the Π(l) = Π(l)(X(0), 0) satisfies

Π(l) = EPλ





Tmax∫

0

e
−

t∫
0

r(s) ds ν∑

ij=1

aij V
(l)
Xi

ΠXj dt





= CovPλ


e
−
T∫
0

r(s) ds

h(XT ), Γ(l)


 +

13This property also follows directly from equation (25). The strict positivity of the Hessian
holds for any strictly convex modified entropy function η(m, t), provided that the inputs are not
linearly dependent.
14For example, the following set of inputs is linearly dependent, or redundant: (i) a one-year
swap resetting quarterly, and (ii) four 3-month forward-rate agreements starting at the swap
reset dates. This constitutes a redundancy because the swap can be replicated exactly with the
FRAs.
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EPλ





Tmax∫

0


e
−

t∫
0

r(s) ds

− e
−2

t∫
0

r(s) ds




ν∑

ij=1

aij V
(l)
Xi

ΠXj dt





. (31)

As in §2, we can compute the sensitivities of Π with respect to the input
prices C1, ...., CN using the inverse Hessian and the sensitivities with respect to
λ. Accordingly, we have

∂Π

∂Cm
=

N∑

l=1

∂Π

∂λl

∂λl
∂Cm

=
N∑

l=1

Π(l)
(
H−1

)
lm

(32)

where H−1 is the inverse of H.

6 Forward-rate modeling and hedging portfolios of interest rate
swaps

To illustrate the minimum-entropy algorithm, we calibrate a one-factor interest-
rate model to the prices of standard instruments in the US LIBOR market.

We consider a set of input instruments consisting of forward-rate agreements
(FRAs) and swaps with standard maturities. Using the algorithm, we compute
a probability measure on the process driving the short-term rate which has the
property that all the input instruments are priced correctly by the model by dis-
counting cash-flows. Since we do not use options to calibrate the model, we view
the algorithm as a way of generating a curve of instantaneous forward rates from
the discrete dataset. In other words, we are primarily concerned with the modeling
of “straight” debt instruments and not the study of the volatility of the forward
rate curve. The curve is generated by the formula

f(T ) = − ∂

∂T
log P (T )

= − ∂

∂T
log EP




e
−
T∫
0

rt dt





.

where f(T ) and P (T ) represent the instantaneous forward rate and the discount
factor (present value of a dollar) associated with the maturity date T . The in-
stantaneous forward-rate curve allows us to price arbitrary fixed-income securities
without optionality. Hedge-ratios for different instruments are derived from the
sensitivities of the curve to input prices.
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We consider a prior distribution for the short-term interest rate

drt
rt

= σ dZt + µ
(0)
t dt , (33)

where σ is constant and µ
(0)
t is given. For simplicity, we take µ

(0)
t ≡ 0 under

the prior, which, as we shall see, corresponds essentially to a prior belief of a flat
forward-rate curve. 15

Given the considerations of the previous sections, the family of candidate
probability measures for the short rates has the form (33) where µ(0) is replaced
by an unknown drift µt.

The modified entropy functional (21) with η = 1
2m

2 is

Hmod(P |P0) =
1

2σ2
E





Tmax∫

0

e
−

t∫
0

rs ds (
µt − µ

(0)
t

)2
dt





=
1

2 σ2
E





Tmax∫

0

e
−

t∫
0

rs ds

µ2t dt





. (34)

We calibrated this model to a data-set extracted from the US LIBOR market
in late November 1997, consisting of FRAs and swap rates; cf. Table 1. The
futures data corresponds to a series of 3-month Eurodollar contracts from January
1998 to December 2002. Forward-rates were computed from futures prices using an
empirical convexity adjustment, which is displayed on the left of the futures price.
Swap rates were computed from Treasury bond yields adding the corresponding
credit spread, also displayed on the right of the yield. 16 Accordingly, the 3-month
forward rate four months from today is computed as follows:

forward rate = futures-implied rate − conv. adjustment

= (100− 94.20) − 0.12

= 5.68 %

The 6-year swap rate was taken to be

swap rate = Treasury yield + spread

= 5.8150 + 0.3975

= 6.2125 %

15Of course, we could have chosen any other drift for prior probability on short rates– this
constitutes the “subjective” portion of the method. The significance of different priors will be
clarified below.
16We shall not be concerned here about how convexity adjustments were generated or about
the computation of the spread between swaps and Treasurys.
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Table 1: Data for US LIBOR Market

ED futures / FRAs Bonds / Swaps
04m 94.20 0.0012 06y 5.8150 0.3975
10m 94.14 0.0023 07y 5.8236 0.4150
13m 94.08 0.0030 10y 5.8470 0.4475
16m 93.98 0.0044 12y 5.8683 0.4700
19m 93.98 0.0092 15y 5.9002 0.4800
22m 93.94 0.0131 20y 5.9535 0.4750
25m 93.91 0.0176 30y 6.0600 0.3750
28m 93.85 0.0234
31m 93.87 0.0232
34m 93.85 0.0371
37m 93.83 0.0447
40m 93.77 0.0522
43m 93.79 0.0637
46m 93.77 0.0730
49m 93.75 0.0830

In implementing the calibration algorithm for these instruments, we assumed
that the discounted cash-flows of the FRAs per dollar notional are given by

Γf = e
−
T∫
0

rt dt

− e
−
T+0.25∫
0

rt dt (
1 +

FRA× 0.25

100

)

where FRA is the 3-month forward rate (expressed in percentages) corresponding
to the maturity T . The discounted cash-flows of a semi-annual vanilla interest
swap with N cash-flow dates is

Γs = 1 −
N∑

n=1

e
−
0.5n∫
0

rt dt (
SWAP × 0.5

100

)
− e

−
0.5N∫
0

rt dt

,

where SWAP is the swap rate and where we assumed that the floating leg of the
swap is valued at par.

In both cases (FRAs, swaps) we assumed that, under the risk-neutral proba-
bility, we have

EP { Γi } = 0 i = f, s .

These equations represent the constraints for calibration in this context. We have
therefore 22 constraints: 15 for the FRAs and 7 for the swaps. The entropy-mini-

mization was implemented by solving the partial differential equations (23), (24),
(25) using a finite-difference scheme (trinomial lattice) and using L-BFGS to find

Documenta Mathematica · Extra Volume ICM 1998 · III · 545–563



562 Marco Avellaneda

the minimum of the augmented Lagrangian. We assumed a discretization of 12
periods per year.

Figure 1 shows the corresponding forward rate curve which derives from the
data. We assumed a value of σ = .10 in this calculation. We noticed that the
sensitivity of the curve to σ is negligible for σ ≤ 10%. The hedging properties
of the model can be quantified by analyzing the sensitivities of the prices of par
bonds with N years to maturity, for N = 1, 2, 3 ... 30. These results are exhibited
in the bar graphs diplayed hereafter. Each chart considers a par swap with a
give maturity. The bars on the graph represent the sensitivity of the price of the
instrument with respect to the prices of the input securities. Notice, in particular
that the maturities that correspond to an input security consist of a single column.
Intermediate maturities (not represented in the input instruments) give rise to
multiple bars that decay as we move away from the corresponding maturity.

Finally, we point out that the volatility parameter σ in this model has an
interesting interpretation. Heuristically speaking, the construction of the forward
rate curve can be viewed as a problem in interpolation from a discrete set of
data. Since the problem is ill-posed, various regularizations have been proposed
at the level of forward-curve building, without having recourse to an underlying
probability model. These regularizations typically penalize oscillations in the curve
by means of penalization functions of the form

Tmax∫

0

η(f(t), f ′(t), f ′′(t), t) dt

that are typically minimized subject to the constraints and to a choice of function
space for f(t).

It is easy to see that, in the limit σ ≪ 1, the minimum-entropy calibration
algorithm is associated with a special choice of the above functional, namely,

Tmax∫

0

e
−

t∫
0

f(s) ds (
f ′(t)

f(t)
− µ(0)

)2
dt . (35)

This can be seen from the results of Section 5 and by letting σ formally tend to
zero in the entropy functional

EP





Tmax∫

0

m2(t) dt



 =

1

σ2
EP





Tmax∫

0

(
µ(t) − µ(0)(t)

)2
dt



 .

This result corresponds mathematically to the relation between the “viscous” so-
lution of the penalized problem associated with (35) and the stochastic control
problem discussed in Section 5. Form a numerical point of view, we can there-
fore view the minimum-entropy algorithm as an “articifial viscosity” method for
minimizing the functional (35) subject to the price constraints.
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The Tree of Life and Other Affine Buildings
Andreas Dress, Werner Terhalle

In this note, we discuss some mathematics which has proven to be of use in the
analysis of molecular evolution – and, actually, was discovered in this context
(cf. [D]).

According to evolutionary theory, the spectrum of present-day species (or bio-
molecules) arose from their common ancestors according to a well-defined scheme
of bi-(or multi-)furcation steps. The task of phylogenetic analysis as defined by
E. Haeckel is to unravel that scheme by comparing systematically all data available
regarding present and extinct species. This task has been simplified enormously in
recent years through the availability of molecular sequence data, first used for that
purpose by W. Fitch and E. Margoliash in their landmark paper from 1967 dealing
with Cytochrome C sequences [FM]. The basic idea in that field is that species (or
molecules) which appear to be closely related should have diverged more recently
than species which appear to be less closely related.

A standard formalization is to measure relatedness by a metric defined on
the set of species (or molecules) in question. The task then is to construct an
(R-)tree which represents the metric (and hence the bifurcation scheme) as closely
as possible. Below, we discuss necessary and sufficient conditions for the existence
of such a tree that represents the metric exactly, as well as some constructions
which lead to that tree if those conditions are fulfilled, and to more or also less
treelike structures if not. Remarkably, the theory we developed in this context
allowed also to view affine buildings (which in the rank 1 case are R-trees) from a
new perspective.

Here are some basic definitions and results:

Definition 1: Given a non-empty set E, an integer m ≥ 2, and a map

v : Em → {−∞} ∪ R,

the pair (E, v) is called a valuated matroid of rank m if the following prop-
erties hold:

(VM0) for every e ∈ E, there exist some e2, . . . , em ∈ E such that

v(e, e2, . . . , em) 6= −∞,

(VM1) v is totally symmetric,

(VM2) for e1, . . . , em ∈ E with #{e1, . . . , em} < m, one has

v(e1, . . . , em) = −∞,
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(VM3) for all e1, . . . , em, f1, . . . , fm ∈ E, one has

v(e1, . . . , em) + v(f1, . . . , fm)

≤ max
1≤i≤m

{v(f1, e1, . . . , ei−1, ei+1, . . . , em) + v(ei, f2, . . . , fm)}.

Condition (VM3) is also called the valuated exchange property.

If {b1, . . . , bm} ⊆ E satisfies v(b1, . . . , bm) 6= −∞, then {b1, . . . , bm} is called a
base of the valuated matroid (E, v).

Note that (VM3) implies the bases exchange property of ordinary matroids for the
set B(E,v) of bases of (E, v).

Here is a “generic” example:
Let K be a field with a non-archimedean valuation w : K → {−∞} ∪ R, that is a
map satisfying the conditions

w(x) =∞ ⇐⇒ x = 0,

w(x · y) = w(x) + w(y),

and
w(x+ y) ≤ max{w(x), w(y)}

for all x, y ∈ K; then – in view of the Grassmann-Plücker identity

det(e1, . . . , em) · det(f1, . . . , fm)

=
m∑

i=1

det(e1, . . . , ei−1, f1, ei+1, . . . , em) · det(ei, f2, . . . , fm)

(e1, . . . , em, f1, . . . , fm ∈ Km) – the pair (Km \ {0}, w ◦ det) is a valuated matroid
of rank m.

Definition 2: Given a valuated matroid (E, v) of rank m, we put

T(E,v) := {p : E → R
∣∣ ∀e ∈ E : p(e) = max

e2,...,em∈E
{v(e, e2, . . . , em)−

m∑

i=2

p(ei)}}.

T(E,v) is also called the tight span of (E, v) or its T -construction.

The following proposition details this set of maps:

Proposition 1: Let H := {(t1, . . . , tm) ∈ Rm
∣∣ m∑
i=1

ti = 0}. Then, for every base
{b1, . . . , bm} ∈ B(E,v) of a valuated matroid (E, v) of rank m, the map Φb1,...,bm :
H → RE which maps each (t1, . . . , tm) ∈ H to the map

E → R : e 7→ max
1≤i≤m

{v(e, b1, . . . , bi−1, bi+1, . . . , bm) + ti} − m−1
m v(b1, . . . , bm)

is an injective map into T(E,v).
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Furthermore, one has

T(E,v) =
⋃

{b1,...,bm}∈B(E,v)

Φb1,...,bm(H).

Thus, T(E,v) is a union of (images of) affine hyperplanes of dimension m−1, called
the apartments in T(E,v).

These apartments intersect as follows:

Proposition 2:

1) Given two bases B,B′ ⊆ E of a valuated matroid (E, v) of rank m, with suit-
able orderings of their elements as B = {b1, . . . , bm} and B′ = {b′1, . . . , b′m},
resp., one has

Φb1,...,bm(H) ∩ Φb′1,...,b′m(H) =
m⋂

i=0

Φb1,...,bi,b′i+1,...,b′m(H).

2) Given a base {b1, . . . , bm} ∈ B(E,v), an element b0 ∈ E \ {b1, . . . , bm}, and a
subset I ⊆ {1, . . . ,m} so that {b0, b1, . . . , bi−1, bi+1, . . . , bm} is a base if and
only if i ∈ I, then one has

Φ−1(Φb1,...,bm(H) ∩Φb0,b1,...,bi−1,bi+1,...,bm(H))

= {(t1, . . . , tm) ∈ H
∣∣ ti + v(b0, b1, . . . , bi−1, bi+1, . . . , bm) =

max
j∈I
{tj + v(b0, b1, . . . , bj−1, bj+1, . . . , bm)}}

for every i ∈ I.

We return to our generic example mentioned above, that is, to the valuated matroid
(E := Km \ {0}, v = w ◦ det), with K a field with a non-archimedean valuation
w : K→→{−∞}∪Z. By ΓZ, we denote the group of all affine maps from H to itself
consisting of a translation by an integer vector and a permutation of coordinates,
that is,

ΓZ := {γ : H → H
∣∣(t1, . . . , tm) 7→ (tσ(1) + a1, . . . , tσ(m) + am) for some

(a1, . . . , am) ∈ H ∩ Zm and some σ ∈ Sm}.

Every subset

C = {Φb1,...,bm ◦ γ(t1, . . . , tm)
∣∣ (t1, . . . , tm) ∈ H with

t1 ≤ t2 ≤ . . . ≤ tm ≤ t1 + 1}

with {b1, . . . , bm} ∈ B(E,v) some base and γ ∈ ΓZ is called a chamber of T(E,v);
in case {b1, . . . , bm} is the canonical base of the vector space Km and γ equals
idH , the resulting chamber C0 is called the fundamental chamber, while the
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apartment A0 = Φb1,...,bm(H) for the canonical base is called the fundamental
apartment.
If a map p in T(E,v) satisfies p(e) ≡ i

m mod 1 for some i ∈ {0, . . . ,m − 1} and
every e ∈ E, then p is called a vertex of T(E,v) (of type i).
It is easy to see that the general linear group GLm(K) acts transitively on the set
of vertices of T(E,v) via its group action defined on T(E,v) by

GLm(K)× T(E,v) → T(E,v) :

(X, p) 7→ (E → R : e 7→ p(X−1e) + 1
mw ◦ det(X))

(X ∈ GLm(K), p ∈ T(E,v), e ∈ E).
This action induces a transitive action of the group SLm(K) on the set of apart-
ments as well as on the set of chambers of T(E,v); since the stabilizers of these
actions give rise to a BN -pair in the sense of building theory, one has

Theorem 1: For the valuated matroid (E = Km \{0}, v = w ◦det) with K a field
with a non-archimedean valuation w : K→→{−∞} ∪ Z, the T -construction T(E,v)
is a geometrical realization of the affine building defined for the group GLm(K).

Now, we come back to the general case of an arbitrary valuated matroid (E, v) of
rank m.

Lemma 1: For every p ∈ T(E,v), the map

dp : E ×E → R

(e, f) 7→ e
sup{v(e,f,e3,...,em)−p(e)−p(f)−

m∑
i=3

p(ei)|e3,...,em∈E}

(with e−∞ := 0) is a (pseudo-ultra-)metric on E.
In addition, for any two maps p and q in T(E,v), the metrics dp and dq are topo-
logically equivalent.

Definition 3: A valuated matroid (E, v) of rank m is called complete if, for
some (or equivalently: for every) p ∈ T(E,v), the metric space (E, dp) is complete.

Up to “projective equivalence” and identifying “parallel elements” (we refer to
[DT1] for details), one has

Theorem 2: Every valuated matroid has an (essentially unique) completion.

(In fact, one only has to complete (E, dp) to a metric space (Ê, d̂) and then to

define v̂ : Êm → {−∞} ∪ R as the continuous extension of v.)

Concerning the T -construction, one has the following result:

Theorem 3: Let (Ê, v̂) be a completion of the valuated matroid (E, v) with Ê ⊇ E.
Then the restriction map from T(Ê,v̂) ⊆ RÊ to RE, mapping every p ∈ T(Ê,v̂) to
p
∣∣
E
, is a bijection into T(E,v).

From now on, we assume for simplicity (E, v) to be a complete valuated matroid
of rank m.

Definition 4: An end of T(E,v) is a map ε from T(E,v) to R satisfying
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(E1) for every base {b1, . . . , bm}, there exist some r ∈ {1, . . . ,m}, some affine
map γ : H → H with a coordinate permutation as linear component, and
some c ∈ R such that, for every (t1, . . . , tm) ∈ H, the equation

ε ◦ Φb1,...,bm ◦ γ(t1, . . . , tm) = max
1≤i≤r

ti + c

holds;

(E2) there exist some base {b1, . . . , bm} and some c ∈ R such that, for every
(t1, . . . , tm) ∈ H,

ε ◦ Φb1,...,bm(t1, . . . , tm) = t1 + c.

The set of all ends of T(E,v) will be denoted by ET(E,v) .
With this definition, one has

Proposition 3: For every e ∈ E, the map

εe : T(E,v) → R
p 7→ p(e)

is an end of T(E,v).
And, for every ε ∈ ET(E,v) , there exist some e ∈ E and some c ∈ R such that
ε = εe + c.

And one has

Theorem 4: If one defines a map w from the set EmT(E,v) of m-tupels of ends of
(E, v) to {−∞} ∪ R by

w(ε1, . . . , εm) := inf
p∈T(E,v)

m∑

i=1

εi(p)

for ε1, . . . , εm ∈ ET(E,v) , then one has

w(εe1 , . . . , εem) = v(e1, . . . , em)

for all e1, . . . , em ∈ E. That is, (ET(E,v) , w) is a complete valuated matroid of rank
m which – up to “parallel elements” – is isomorphic to (E, v).

We now restrict ourselves to the case that the rank m equals 2. Here, T(E,v) is a
path-infinite R-tree, that is an R-tree being the union of isometric images of the
real line – namely the apartments from above: for any two p, q ∈ T(E,v), there
exists some base {b1, b2} such that p, q ∈ Φb1,b2(H), say p = Φb1,b2((s,−s)) and
q = Φb1,b2((t,−t)) for some s, t ∈ R; then putting d(p, q) := |s − t| leads to a
(well-defined) metric on T(E,v) having the desired property.
And the ends of T(E,v) in our sense correspond to its ends in the way ends are
defined for R-trees, that is, they correspond to (equivalence classes of) isometric
embeddings of real halflines into T(E,v).
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An example which we found particularly intriguing is the following one: Let E
denote the set of subsets of R which are bounded from above, and for e, f ∈ E,
let v(e, f) := sup(e△f) be the supremum of their symmetric difference. Then it is
easy to see that (E, v) is a valuated matroid of rank 2. The corresponding R-tree
has the particular property that omitting any point leads to the same “number”
of connected components, and this number equals #P(R), the cardinality of the
powerset of R.

Now, it is well-known that, for the metric d of an R-tree T , the so-called four-point
condition

d(x, y) + d(z, w) ≤ max

{
d(x, z) + d(y, w),
d(x,w) + d(y, z)

}

holds for all x, y, z, w ∈ T . But this four-point condition is literally the exchange
property (VM3) in the rank 2 case! Of course, one has d(x, x) = 0 instead of
d(x, x) = −∞ (cf. (VM2)).

This observation led us to the definition of matroidal trees:

Definition 5: A matroidal tree or, for short, matree, is a pair (X,u) con-
sisting of a non-empty set X together with a map u : X×X → {−∞}∪R satisfying
the following three conditions:

(MT0) for every x ∈ X, there exists some y ∈ X with u(x, y) 6= −∞,

(MT1) u is symmetric,

(MT2) for all x1, x2, y1, y2 ∈ X, one has

u(x1, x2) + u(y1, y2) ≤ max

{
u(y1, x2) + u(x1, y2),
u(y1, x1) + u(x2, y2)

}

(and no restriction on the diagonal corresponding to (VM2)).

Note that, for every matree (X,u), the restriction u
∣∣
{x∈X|u(x,x)=0}2 is a

(pseudo)metric.

Now, let’s have a look at the set

H(X,u) :={f : X → {−∞} ∪ R
∣∣ f(x) + u(y, z) ≤

max

{
f(y) + u(x, z),
f(z) + u(x, y)

}
for all x, y, z ∈ X, f 6≡ −∞},

the set of all one-point extensions of a matree (X,u) (containing at least all maps

ha : X → {−∞} ∪ R :

x 7→ u(a, x)

for a ∈ X).
If one wants to make a new matree (H(X,u), w) from this set, and one wants the
map w : H(X,u)×H(X,u) → {−∞}∪R to satisfy w(hx, hy) = u(x, y) for all x, y ∈ X
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(in order to have an “homomorphism” X → H(X,u) : x 7→ hx), and, slightly more
general, w(f, hx) = f(x) for every f ∈ H(X,u) and every x ∈ X, then w necessarily
has to satify

w(f, g) + u(x, y) ≤ max

{
f(x) + g(y),
f(y) + g(x)

}

for all f, g ∈ H(X,u) and all x, y ∈ X.
And, indeed, one has

Theorem 5: If, for a matree (X,u) and for H(X,u) as above, one defines

w := w(X,u) : H(X,u) ×H(X,u) → {−∞} ∪R

(f, g) 7→ inf
x,y∈X

{
max

{
f(x) + g(y),
f(y) + g(x)

}
− u(x, y)

}

(with the convention (−∞)− (−∞) := +∞), then (H(X,u), w) is again a matree.
In addition, for every f ∈ H(X,u) and every x ∈ X, one has

w(f, hx) = f(x)

– in particular, one has w(hx, hy) = u(x, y) for all x, y ∈ X.
The matree (H(X,u), w) can be seen as a “hull” of (X,u), as one has

Theorem 6: If, for F ∈ H(H(X,u),w(X,u)), one defines

ϕ(F ) : X → {−∞} ∪ R
x 7→ F (hx),

and, for f ∈ H(X,u),

ψ(f) : H(X,u) → {−∞} ∪ R
g 7→ w(X,u)(f, g),

then ϕ is a bijective map from H(H(X,u),w(X,u)) to H(X,u), and ψ is a bijective map in
the other direction; both maps are inverse to each other; and for all f, g ∈ H(X,u),
one has

w(H(X,u) ,w(X,u))(ψ(f), ψ(g)) = w(f, g).

Thus, (H(H(X,u),w(X,u)), w(H(X,u),w(X,u))) and (H(X,u), w(X,u)) are canonically iso-
morphic matrees.

In addition, one has

Theorem 7: H(X,u) is the smallest set of maps X → {−∞}∪R that a) contains
{hx

∣∣ x ∈ X} and b) is closed under addition of constants, under suprema, and
under limites.
More precisely: for every f ∈ H(X,u), one of the following three possibilities hold:

(i) there exist some x ∈ X and some c ∈ R such that f = hx + c,

Documenta Mathematica · Extra Volume ICM 1998 · III · 565–574



572 Andreas Dress, Werner Terhalle

(ii) there exist some x, y ∈ X and some b, c ∈ R such that

f = max{hx + d, hy + c},

(iii) there exist sequences (xn)n∈N in X and (cn)n∈N in R such that

f = lim
n→∞

(hxn + cn).

Essential for the study of matrees is the following

Fundamental Lemma: Let (X,u) be a matree; for x, y ∈ X with u(x, y) 6= −∞,
put

sx,y :=
1

2
(u(y, y)− u(x, y)) ∈ {−∞} ∪ R,

sx,y :=
1

2
(u(x, y)− u(x, x)) ∈ R ∪ {+∞},

and I(x, y) := [sx,y, s
x,y] ∩R; for t ∈ R, define ht ∈ H(X,u) by

ht := max{hx + t, hy − t} −
1

2
xy.

Then the map I(x, y)→ H(X,u) : t 7→ ht is a surjective isometry onto the set

{f ∈ H(X,u)
∣∣ w(hx, hy) = w(f, hx) + w(f, hy) and w(f, f) = 0}

– with isometry meaning that w(hs, ht) = |s− t| holds for all s, t ∈ I(x, y).

Corollary: The set
{f ∈ H(X,u)

∣∣ w(f, f) = 0}
is connected; hence – since the restriction of w to it is a metric satisfying the
four-point condition – it is an R-tree relative to the restriction of w (cf. [D]).

We want to close this section by a short discussion on the relationship between
H(E,v) and T(E,v) for a valuated matroid (E, v) of rank 2.
For this, let

T ′(E,v) := {p : E → R
∣∣ p(e) = sup

f∈E
{v(e, f)− p(f)} for every e ∈ E}

– note the “sup” instead of “max” as for T(E,v); and define the canonical metric
d on T ′(E,v) by d(p, q) := sup

e∈E
|p(e) − q(e)|. It is easy to see that T ′(E,v) is the

completion of T(E,v) relative to this metric.
One should remark that T ′(E,v) is the set of all minimal elements in the polytope

P(E,v) := {p : E → R | p(e) + p(f) ≥ v(e, f) for all e, f ∈ E}

relative to the order p ≤ q :⇐⇒ p(e) ≤ q(e) for every e ∈ E.
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Coming back to the comparison of H(E,v) with T ′(E,v), the following holds: The

maps p ∈ T ′(E,v) are exactly those maps in H(E,v) satisfying

w(E,v)(p, p) = 0,

and one has
d = w(X,u)

∣∣
{p∈H(E,v)|w(E,v)(p,p)=0}2

.

Slightly more general, one has

{p ∈ H(E,v)
∣∣ w(E,v)(p, p) 6= −∞} = {p+ c

∣∣ p ∈ T ′(E,v), c ∈ R}.

And the maps p ∈ H(E,v) satisfying w(E,v)(p, p) = −∞ correspond to the ends of
the R-tree T(E,v).

Based on these considerations, an algorithm for analyzing distance data and for
constructing phylogenetic trees if those data fit exactly into trees and phyloge-
netic networks based on the T-construction if the data do not fit into a tree
has been developed jointly with D. Huson and others which is available via
http://bibiserv.techfak.uni-bielefeld.de/splits/ where also further ref-
erences can be found.
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A New Version of the Fast Gauss Transform
Leslie Greengard and Xiaobai Sun

Abstract. The evaluation of the sum of N Gaussians at M points
in space arises as a computational task in diffusion, fluid dynamics, fi-
nance, and, more generally, in mollification. The work required for direct
evaluation grows like the product NM , rendering large-scale calculations
impractical. We present an improved version of the fast Gauss transform
[L. Greengard and J. Strain, SIAM J. Sci. Stat. Comput. 12, 79 (1991)],
which evaluates the sum of N Gaussians at M arbitrarily distributed
points in O(N+M) work, where the constant of proportionality depends
only on the precision required. The new scheme is based on a diagonal
form for translating Hermite expansions and is significantly faster than
previous versions.

1991 Mathematics Subject Classification: 65R10 , 44A35, 35K05
Keywords and Phrases: diffusion, fast algorithms, Gauss transform

1 Introduction

Many problems in mathematics and its applications involve the Gauss transform

Gδf(x) = (πδ)−d/2
∫

Γ

e−|x−y|
2/δf(y) dy (δ > 0) (1)

of a function f , where Γ is some subset of Rd. This is, of course, the exact solution
to the Cauchy problem

ut(x, t) = ∆u(x, t), t > 0

u(x, 0) = f(x), x ∈ Rd

at time t = δ/4 and corresponds to a mollification of the function f . Similar
transforms occur in solving initial/boundary value problems for the heat equation
by means of potential theory [3, 10, 11] and in nonparametric statistics [4, 17].

In the present paper, we will focus our attention on the discrete Gauss trans-
form

G(x) =
N∑

j=1

qj e
−|x−sj|2/δ , (2)
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where the coefficients qj and “source” locations sj are given, and we wish to
evaluate the expression (2) at a large number of “target” points xj .

If the number of target points is denoted by M , we can define the rectangular
transform matrix G by the formula

Gij = e−|xi−sj |
2/δ. (3)

Direct application of this matrix to the vector q = (q1, . . . , qN )T . requires O(NM)
work, which makes large scale calculations prohibitively expensive.

To overcome this obstacle, Greengard and Strain developed a fast Gauss trans-
form [9], which requires only O(N + M) work, with a constant prefactor which
depends on the physical dimension d and the desired precision. The amount of
memory required is also proportional to N +M , so that the algorithm is asymp-
totically optimal in terms of both work and storage. In this scheme, the sources
and targets can be placed anywhere; methods based on the fast Fourier trans-
form (FFT), by contrast, are restricted to a regular grid and require O(N logN)
operations. For the case where the variance δ is not constant:

G(x) =
N∑

j=1

qj e
−|x−sj|2/δj , (4)

a generalization of the fast Gauss transform has been developed by Strain [18],
but we will consider only the simpler case (2) here.

The fast Gauss transform is an analysis-based fast algorithm. Like the closely
related fast multipole methods for the Laplace and Helmholtz equations [1, 5, 7,
13, 8, 14, 15, 16], it achieves a speedup in computation by using approximation
theory to attain a specified, albeit arbitrarily high, precision. The FFT, on the
other hand, is exact in exact arithmetic. It is an algebra-based fast algorithm which
uses symmetry properties to reduce the computational work.

2 The original fast Gauss transform

The starting point for the fast algorithms of [9, 18] is the generating function for
Hermite polynomials [2, 12]

e2xs−s
2

=
∞∑

n=0

sn

n!
Hn(x) ,

where
Hn(x) = (−1)nex

2

Dne−x
2

x ∈ R
and D = d/dx. A small amount of algebra leads to the expansion

e−(x−s)
2/δ =

∞∑

n=0

1

n!

(
s− s0√

δ

)n
hn

(
x− s0√

δ

)
,

where
hn(x) = (−1)nDne−x

2
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and s0 is an arbitrary point.
This formula describes the Gaussian field e−(x−s)

2/δ at the target x due to the
source at s as an Hermite expansion centered at s0. The higher dimensional analog
of (5) is obtained using multi-index notation. Let x and s lie in d-dimensional
Euclidean space Rd, and consider the Gaussian

e−|x−s|
2

= e−(x1−s1)
2−...−(xd−sd)2 .

For any multi-index α = (α1, α2, . . . , αd) and any x ∈ Rd, we define

|α| = α1 + α2 + . . .+ αd

α! = α1!α2! . . . αd!

xα = xα11 x
α2
2 . . . xαdd

Dα = ∂α11 ∂α22 . . . ∂αdd

where ∂i is differentiation with respect to the ith coordinate in Rd. If p is an
integer, we say α ≥ p if αi ≥ p for 1 ≤ i ≤ d.

The multidimensional Hermite polynomials and Hermite functions are defined
by

Hα(x) = Hα1(x1) . . .Hαd(xd)

hα(x) = e−|x|
2

Hα(x) = hα1(x1) . . . hαd(xd) (5)

where |x|2 = x21 + . . . + x2d. The Hermite expansion of a Gaussian in Rd is then
simply

e−|x−s|
2

=
∑

α≥0

(x− s0)α
α!

hα(s− s0) . (6)

Lemma 2.1 ([9], 1991) Let NB sources sj lie in a box B with center sB and side

length
√
δ. Then the Gaussian field due to the sources in B,

G(x) =

NB∑

j=1

qj e
−|x−sj |2/δ, (7)

is equal to a single Hermite expansion about sB:

G(x) =
∑

α≥0
Aα hα

(
x− sB√

δ

)
.

The coefficients Aα are given by

Aα =
1

α!

NB∑

j=1

qj

(
sj − sB√

δ

)α
. (8)

The error EH(p) due to truncating the series after pd terms satisfies the bound:

|EH(p)| = |
∑

α≥p
Aαhα

(
x− sB√

δ

)
| ≤ 2.75dQB

(
1

p!

)d/2(
1

2

)(p+1)d/2
(9)

where QB =
∑ |qj |.
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Lemma 2.2 ([9], 1991) Let NB sources sj lie in a box B with center sB and

side length
√
δ and let x be a target point in a box C with center xC . Then the

corresponding Hermite expansion

G(x) =
∑

α≥0
Aα hα

(
x− sB√

δ

)
.

can be expanded as a Taylor series of the form

G(x) =
∑

β≥0
Bβ

(
x− xC√

δ

)β
.

The coefficients Bβ are given by

Bβ =
(−1)|β|

β!

∑

α≥0
Aα hα+β

(
sB − xC√

δ

)
. (10)

The error ET (p) due to truncating the series after pd terms satisfies the bound:

|ET (p)| = |
∑

β≥p
Bβ

(
x− xC√

δ

)β
| ≤ 2.75dQB

(
1

p!

)d/2(
1

2

)(p+1)d/2
(11)

These are the only tools required to construct a simple fast algorithm for the
evaluation of

G(xi) =
N∑

j=1

qje
−|xi−sj |2/δ (12)

for 1 ≤ i ≤ M , using O(M + N) work. By shifting the origin and rescaling δ if
necessary, we can assume (as a convenient normalization) that the sources sj and
targets xi all lie in the unit box B0 = [0, 1]d.

Algorithm

Step 1. Subdivide B0 into smaller boxes with sides of length
√
δ parallel to the

axes. Assign each source sj to the box B in which it lies and each target xi to the
box C in which it lies. The source boxes B and the target boxes C may, of course,
be the same.

Step 2. Given ǫ, use Lemma 2.1 to create an Hermite expansion for each source
box B with pd terms satisfying:

G(x) =
∑

B

∑

sj∈B
qje
−|x−sj |2/δ

=
∑

B

∑

α≤p
Aα(B)hα

(
x− sB√

δ

)
+O(ǫ)
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where

Aα(B) =
1

α!

∑

sj∈B
qj

(
sj − sB√

δ

)α
. (13)

The amount of work required for this step is of the order pdN .

Consider now a fixed target box C. For each xj ∈ C, we need to evaluate
the total field due to sources in all boxes of type B. Because of the exponential
decay of the Gaussian field, however, it is easy to verify that, if we include only
the sources in the nearest (2r + 1)d boxes, we incur an error bounded by Qe−r

2

,

where Q =
∑N
j=1 |qj |. Given a desired precision ǫ, we can always choose r so that

this truncation error is bounded by Qǫ. With r = 4, for example, we get single
precision accuracy (ǫ = 10−7) and with r = 6, we get double precision (ǫ = 10−14).
We denote the nearest (2r+1)d boxes as the interaction region for box C, denoted
by IR(C).

Step 3. For each target box C, use Lemma 2.2 to transform all Hermite ex-
pansions in source boxes within the interaction region into a single Taylor expansion.
Thus, we approximate G(x) in C by

G(x) =
∑

B

∑

sj∈B
qje
−|x−sj|2/δ

=
∑

β≤p
Cβ

(
x− xC√

δ

)β
+O(ǫ)

where

Cβ =
(−1)|β|

β!

∑

B∈IR(C)

∑

α≤p
Aα(B)hα+β

(
sB − xC√

δ

)
, (14)

and the coefficients Aα(B) are given by (13). Because of the product form (5) of
hα+β , the computation of the p

d coefficients Cβ involves only O( d pd+1) operations
for each box B. Therefore, a total of O((2r + 1)d d pd+1) work per target box C is
required. Finally, evaluating the appropriate Taylor series for each target xi requires
O(pdM) work. Hence this algorithm has net CPU requirements of the order

O((2r + 1)d d pd+1Nbox) +O(pdN) + O(pdM) ,

where the number of boxes Nbox is bounded by min(δ−d/2, N + M). The work is
cleanly decoupled into three parts; O(pdN) to form Hermite expansions, O(pdM)
to evaluate Taylor series, and a constant term depending on the number of box-box
interactions and the cost of transforming Hermite expansions into Taylor series.

Remark: A proper implementation of the fast Gauss transform is a bit more
complex. For example, if a box contains only a few sources, it is more efficient to
compute their influence directly than to use expansions.
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Suppose now that the source boxes are denoted by B1, B2, . . . , BS , that the
target boxes are denoted by C1, C2, . . . , CT , that Nj sources lie in box Bj , that
Mj targets lie in box Cj , and that the points are ordered so that

{s1, . . . , sN1} ⊂ B1

{sN1+1, . . . , sN1+N2} ⊂ B2

. . .

{sN−NS+1, . . . , sN} ⊂ BS ,

{x1, . . . , xM1} ⊂ C1

{xM1+1, . . . , xM1+M2} ⊂ C2

. . .

{xM−MT+1, . . . , xM} ⊂ CT .

Then the approximation Gǫ to the discrete Gauss transform matrix (3) can be
written in the factored form

Gǫ = D ·E · F. (15)

Here, F is a block diagonal matrix of dimension S × S. The jth diagonal block

F(j) ∈ Rpd×Nj satisfies

F(j)n,m =
1

αn!

(
sm − sBj√

δ

)αn
,

where sBj is the center of box Bj and the pd Hermite expansion coefficients are
ordered in some fashion from n = 0, . . . , pd. D is very similar. It is a block

diagonal matrix of dimension T × T , with the jth diagonal block D(j) ∈ RMj×pd
satisfying

D(j)n,m =
(−1)βm

βm!

(
xn − xCj√

δ

)βm

where xCj is the center of box Cj , and the pd Taylor expansion coefficients are
ordered from n = 0, . . . , pd in the same fashion as the Hermite series. Note that,
if the sources and targets coincide, then D is the transpose of F.

The mapping E is a sparse block matrix of dimension T × S, with up to
(2r + 1)d nonzero entries per row. The nonzero entries E(ij) are matrices of
dimension pd × pd, corresponding to a conversion of the Hermite series for box Sj
into a Taylor series for box Ti, assuming Sj is in the interaction region IR(Ti).
The matrix entries are dense.

E(ij)nm = hαn+βm

(
sBj − xCi√

δ

)
.

Given this notation, Step 2 of the fast Gauss transform described above corre-
sponds to multiplying the vector {q1, q2, . . . , qN} by F. Step 3 of the fast Gauss
transform corresponds to multiplying the output of Step 2 by E to create all the
Taylor expansions. The result is then multiplied byD to evaluate the Taylor series
at all target locations.
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Remark: The factorization (15) reveals the structure of Gǫ. When δ is large
enough, only one box is created and the rank of Gǫ is bounded by pd (the order
of the factor E). When δ is very small, the dimensions of E grow, but it becomes
sparse and structured.

3 Diagonal form for translation operators

Our new version of the fast Gauss transform is based on replacing Hermite and
Taylor expansions with an expansion in terms of exponentials (plane waves). The
starting point is the Fourier relation

e−|x−s|
2/δ =

(
1

2
√
π

)d ∫

Rd

e−|k|
2/4eik·(x−s)/

√
δ dk (16)

which is easily seen to satisfy the estimate

∣∣∣∣∣ e
− |x−s|

2

δ −
(

1

2
√
π

)d ∫

|k|≤K
e−

|k|2
4 e

i
k·(x−s)√

δ dk

∣∣∣∣∣ ≤
{
e−

K2

4 for d = 1, 2

Ke−
K2

4 for d = 3.

Setting K = 7.5, the truncation error from ignoring high frequency contri-
butions is approximately 10−7. Ssetting K = 12, the truncation error is approxi-
mately 10−14. It still remains to discretize the Fourier integral in (16) within the
range determined by K. The trapezoidal rule is particularly appropriate here since
it is rapidly convergent for functions which have decayed at the boundary. Note,
however, that the integrand is more and more oscillatory as x − s grows. Fortu-
nately, we only need accurate quadrature when s is within the interaction region of
x, so that |x− s|/

√
δ ≤ 5 for seven digit precision and |x− s|/

√
δ ≤ 7 for fourteen

digit precision. It is easy to verify that p = 12 equispaced modes in the interval
[0, 7.5] are sufficient to reduce the quadrature error to 10−7 when |x− s|/

√
δ ≤ 5

and that p = 24 equispaced modes in the interval [0, 12] are sufficient to reduce
the quadrature error to 10−14 when |x− s|/

√
δ ≤ 7.

Thus, for a source box B with center sB, we replace the Hermite series of
Lemma 2.1 with

G(x) =
∑

sj∈B
qje
−|x−sj|2/δ

=
∑

β≤p
Cβe

i
Kβ·(x−sB)

p
√
δ +O(ǫ),

where

Cβ =

(
K

2p
√
π

)d
e−|β|

2K2/(4p2)
NB∑

j=1

qj e
−iKβ·(sj−sB)

p
√
δ .

There are two reasons to prefer this form. First, the translation operator
described in Lemma 2.2 becomes diagonal.
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Corollary 3.1 Let NB sources sj lie in a box B with center sB and side length√
δ and let x be a target point in a box C with center xC . Then the plane wave
expansion

G(x) =
∑

β≤p
Cβe

i
Kβ·(xi−sB)

p
√
δ +O(ǫ),

can be expanded about xC as

G(x) =
∑

β≤p
Dβe

i
Kβ·(xi−xC)

p
√
δ +O(ǫ).

The coefficients Dβ are given by

Dβ = Cβ e
i
Kβ·(xC−sB)

p
√
δ . (17)

In terms of matrix factorization, we have

Gǫ = D′ ·E′ ·F′. (18)

In this formulation, the diagonal blocks of F′ and D′ are given by

F′(j)n,m =

(
K

2p
√
π

)d/2
e
−|βn|K
2p e

−i
Kβn·(sm−sBj )

p
√
δ .

D′(j)n,m =

(
K

2p
√
π

)d/2
e
−|βn|K
2p e

i
Kβm·(xn−xCj )

p
√
δ .

As in the original algorithm, note that if the sources and targets coincide, then
D′ is the adjoint of F′. The nonzero entries E′(ij) are now diagonal matrices of
dimension pd × pd, with entries defined in (17). The net cost of all translations
per target box is reduced from O((2r + 1)d d pd+1) work to O((2r + 1)d pd) work.

The second (and more important) reason to prefer the new form is that the
number of translations can be dramatically reduced. We describe the modifica-
tion to the algorithm in the one-dimensional case. For this, imagine that we are
sweeping across all boxes from left to right and that, at present, a target box Cj
has accumulated all plane wave expansions from source boxes within its interac-
tion region (Fig. 1(a)). The net expansion can be shifted to the center of Cj+1
using Corollary 3.1. By adding in the contribution from the box marked by +
and subtracting the contribution from the box marked by −, we have the correct
plane wave expansion for box Cj+1 (Fig. 1(b)). Thus, (2r + 1) translations are
replaced by three. In d-dimensions, the cost O((2r + 1)d pd) work can be reduced
to O(3d pd), by sweeping across each dimension separately.

4 Conclusions

We have presented a new version of the fast Gauss transform, which uses plane
wave expansions to diagonalize the translation of information between boxes. The
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Cj

Cj+1

Figure 1: After shifting the expansion from box Cj to box Cj+1, one needs only to
subtract the contribution from the box marked − and add the contribution from
the box marked +. (The interaction regions are indicated by the square brackets).

approach is similar to the new diagonal forms used in fast multipole methods for
the Laplace and Helmholtz equations [8, 6, 13]. When the present improvements
have been incorporated into existing fast Gauss transform codes, the resulting
scheme should provide a powerful kernel for one, two and three-dimensional cal-
culations.
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Strategies for Seeing
Ulf Grenander

Abstract. We shall study the mathematical basis for computer vision
using ideas from pattern theory. Starting from some general principles
for vision several strategies for seeing will be derived and implemented by
computer code. Using the code computer experiments have been carried
out in order to examine the performance of the resulting inference engines
for vision.

1991 Mathematics Subject Classification: 62P
Keywords and Phrases: pattern theory, computer vision

The mathematics of vision is not well understood. The human visual system is
an awesome inference engine of unparalleled power, but its working remains a
mystery in spite of great advances in the study of vision in recent years: much
is known about its detailed functioning on the physiological level but theories
proposed about its overall logical architecture are still tentative.

After the appearence of David Marr’s seminal work, Marr (1982), many re-
searchers in vision have adopted his view that seeing should be treated as a com-
putational activity, where ’computational’ is understood in a wide sense, more
general than von Neumann architecture or Turing machines. We adhere to this
view although we do not insist on his feed-forward paradigm. Therefore we be-
lieve that there should be a mathematical theory of vision underlying the visual
computing and that machine vision would be aided by such a theory.

Another difference to Marr’s approach is that we shall emphasize the pri-
macy of analysis of the environment: this is needed for the understanding of the
’why’ and ’how’ of the algorithms that are realized through the sensory process-
ing. An early proponent of this research strategy was Gibson with his ’ecological
psychology’, Gibson (1979).

To analyze the environment, the scene ensemble to be encountered by the
visual system, we shall apply ideas from pattern theory and will use methods from
this discipline as presented in Grenander (1993). A similar approach to vision, but
oriented toward human rather than machine vision, has been outlined in Mumford
(1994), (1996).

The vision strategies will be reductionist in the sense that they will be derived
from general and mathematically articulated prinicples in contrast to being based
on ad hoc devices. To achieve this the starting point will be the mathematical
representation of the image algebra of the likely scenes. Different representations
will lead to different strategies for seeing. Several strategies have been derived and
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implemented computationally. We do not attribute much significance to the algo-
rithms themselves, since they are based on quite simple minded representations,
but more to the way they are derived from first principles.

1. Principles for vision.

1. To be able to see it is necessary to know what one is looking for. In other words,
the system must be equipped with knowledge about scenes that are likely to be
encountered and be based on an explicitly formulated purpose. It is therefore
the first task for the system designer to express such knowledge in a form that
is sufficiently precise for the software development. In a biological system such
knowledge may have been created and stored during evolution, but we shall only
be concerned with computer vision in the following. The system must also possess
the ability to handle scenes it is not expecting, send warning signals and be honest
enough to admit ignorance in doubtful situations.

2. Different scene types and different sensors will require different strategies of
vision. To ask for a universal vision system, a system that is able to see and
interpret anything, any electro-magnetic radiation emanating from completely ar-
bitrary scenes, is a hopeless task. Instead of searching for such a chimera we shall
narrow down and specify the ensemble of scenes that the system is intended for.
We do not believe there is any universal representation valid for all scene/sensor
combinations. Therefore the representations must be tailored to the particular
scene types.

3.Knowledge about the image esemble should be represented by logical structures
formulated so precisely that they can serve as a basis for computing. The repre-
sentations shall be compositional in the sense that scenes are built from geometric
objects, generators, that are combined together according to rules that may be
deterministic or stochastic. They shall be transformational in that generators are
themselves obtained from prototypes,templates, that are modified by transforma-
tions that play the role of generalizations.

It is clearly impossible to store all expected scenes in memory: this is avoided
by the compositional/transformational scheme. Compare Chomskyan linguistics.

4.The transformations shall form groups, arranged in a cascade that starts with
solid, often low-dimensional, transformations and ends with diffeomorphisms. The
cascade will typically begin with translation, rotation, and perhaps scaling groups,
whose semi-direct product forms a low dimensional group Ssolid, but greater flexi-
bility is needed to get enough generative power to deal with complex image ensem-
bles of high variability and that will be supplied by the full diffeomorphic group
Sdiff or one of its high-dimensional sub-groups. The idea of group cascades has
been examined in Matejic (1996). To represent abnormal variability it may be
necessary to extend the transformations by giving up the group property, but this

will not be explored here.
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5.The occurence of templates in the scene is controlled by probabilities, and de-
formations of the templates will be controlled by other probability measures on the
groups; these measures evaluate how likely are the occurrences of various transfor-
mation of the templates. Consider the set C = Sdiff/Ssolid of right (or left )
cosets of the sub-group Ssolid in the full group Sdiff .

The elements in C represent shape changes while Srigid describes the less
drastic transformations that moves sets around etc. The cosets can carry vital
information while the elements of Ssolid often play the role of nuisance parameters
in the statistical sense of this term.

6.The mechanism T that maps a scene into sensory entities shall be explicitly
defined. In general we shall let T , the range of the T ’s, consist of arrays, not
necessarily rectangular, with scalar entries and of fixed shape.

7.The T transformation can be controlled by the system. This allows the system
to concentrate its attention on a detail of the scene, to direct its sensor(s) to point
in a new direction or vary the focal length. In animal vision this corresponds to
focussing the fovea and it also enables the vision system to function at different
scales.

8.The control of T is governed by an attention function A that attributes different
weights to different parts of the observed image ID. We should think of A as a

real valued function of sub-images of ID that takes real values, A : 2I
D → R. The

attention function formalizes the purpose(s) of the vision engine.

9. The saccadic search will be controlled by covariants w.r.t. the solid groups.
This will suggest plausible candidates for the generators that make up the true
scene.

10. For fixed T visual understanding will be attempted by an inference engine
that selects plausible generators and elements from the groups that deform these
generators. In this way local decisions are made sequentially, forming, accepting
or rejecting hypotheses. The selection may be deterministic, say maximizing some
estimation criterion, or have random elements, as in simulating a posterior distri-
bution. The visual understanding shall result in a structured description of the
scene that can be used for decision making.

11. The saccadic search is intended to reduce global inference problems to local
ones. The saccads should give rough estimates of the true group elements; the
estimates will then be refined by applying the local group operations applying the
diffeomorpic deformations.

12. Once a ROI (Region Of Interest) has been analyzed the attention function is
examined again to find other possible ROIs. If the saccads result in more than
one ROI they are all analyzed in the same way until the attention function points
to no more ROI.

13. The noise in the system is represented by a stochastic process N operating on
the array outputted by the sensor transformation T . Note that this randomness
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is essentially different from the one governing the variability of the scenes. The
latter is inherent in the vision setup, while the first can differ from sensor to sensor.

2. Mathematical Formalization.

2.1. Let us now express the principles mathematically and concretize to specific
choices of assumptions that have been used in a series of computer experiments.
But first let us explain what we mean by a solid group, or rather solid group
action, in a general context, Consider a configuration of generators gi coupled by
the connector σ

c = σ(g1, g2, . . . gn) = ∪kck

where the sub-configurations ck are the connected (w.r.t. the neighborhood system
induced by the graph σ ) components of c. Then we shall define a general solid
transformation to be of the form

c 7→ ∪kskck; sk ∈ Ssolid

so that each connected component is transformed separately and with the same
group element for all the generators in the component and with the semi-direct
product Ssolid = SL(d) ∝ R(d) of the special linear group with the translation
group in d dimensions.

To formalize principles 1 - 3 let the generators form a space partitioned into
the subsets Gα

G = ∪αGα

where α denotes the object type.
Principle 4 will be realized by choosing some of the sub-groups of Ssolid and

Sdiffeo.
The purpose of the cascade is to allow large deformations, which is not possible

with the single group elastic model, but without the large computing effort needed
for the fluids model, see Christensen, Rabbit, Miller (1993).

Principle 5 will be implemented by introducing probability measure on the
groups which is straightforward for the solid ones since they are low-dimensional.
For Sdiffeo (discretized approximation) on the other hand we induce a probability
measure via the stochastic difference equation

(Ls)(x) = e(x);x ∈ X

for the displacement field s(x) = (s1(x), s2(x)) and e(x) is a stochastic field; the
group action is x 7→ x+s(x). Let us choose basis functions for Sdiffeo (discretized
to a lattice Zl1×l2) as the eigen functions of L as in Grenander (1993), p. 523,

φµν(x) = sin(
πx1µ

l1
)sin(

πx2ν

l2
);x = (x1, x2) ∈ [1, l1]× [1, l2]
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with µ, ν = 1, 2, . . . r, where the choice of r depends on the resolution of the sensor.
Then we can expand the displacement fields

s1(x) =
r∑

µ=1

r∑

ν=1

t1µνφµν(x)

s2(x) =
r∑

µ=1

r∑

ν=1

t2µνφµν(x)

and we combine the Fourier coefficients into two matrices

t1 = (t1µν ;µ, ν = 1, 2, . . . r)

t2 = (t2µν ;µ, ν = 1, 2, . . . r)

We shall assume that for each generator index α the set Gα can be generated
by applying Sdiffeo to a single template gαtemp so that

Gα = Sdiffeog
α
temp

In pattern theoretic terminologyGα then forms a pattern, actually a finest pattern,
see Grenander (1993) p. 55-56. Then (Gα, Sdiffeo) forms a homogeneous space.

For principle 6 we shall allow the range T of the T -transformation to be quite
different from the scene that is being captured. For example, the output of a radar
with a cross array of antennas will consist of two vectors with complex entries,
superficially completely different from the target/background configuration. Or,
the sinogram in a CAT scan which is quite different from the organ scanned.

Principles 7,8 will be realized by attention functions that will formalize the
purpose of the system. For example, it could give great weight to regions close to
the sensor, or to regions with high optical activity, or to objects of particular shape
or texture. The function will generate saccadic movement of the fovea and/or the
sensor(s).

For principle 9 we shall use classical covariants. Say that the intensity func-
tions I(·) are continuous with compact support. For example, dealing with the
translation group in the plane we use the 2-vector valued covariant

φ1(I) = m = 1/J

∫ ∫
(x1, x2)I(x1, x2)dx1dx2

with

J =

∫ ∫
I(x1, x2)dx1dx2

For SO(2) we calculate the moment matrix

R = 1/J

∫ ∫
(x−m)(x−m)T I(x)dx1dx2
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and diagonalize it R = OTDO and put

φ2(I) = O

Note however that this definition needs a further qualification in order to be unique.
First, we should choose the orthogonal matrix O so that det(O) > 0 since we are
dealing with the special orthogonal group SO(2). Second, we should select O so
that its first column equals the eigen vector of R corresponding to the largest eigen
vallue. The sign of the eigen vector is arbitrary so that this leads to an ambiguity
that must be kept in mind when developing the code. Third, if the two eigen values
coincide, typical for symmetric objects, we get more ambiguity and the covariant
must be augmented with further information.

For the uniform scaling group in the plane we can use the scalar covariant

φ3(I) = 1/J

∫ ∫
‖x‖I(x)dx1dx2

The use of saccadic search has split the global inference problem into several
local ones in which we can let the inference engine look just for a local optimum,
principles 10, 11.

Of course the whole group can push templates outside the total (bounded)
region Z(l1,l2), so that search should be limited to the latter region unless the
sensor is re-directed to some other region. The saccadic search will lead to one
ROI after another, point 12, until the remaining attention values are suffiently
small; then the inference engine stops and outputs a structured description of the
scene.

For principle 13 let us assume that the noise process of the system forms a
stationary process in the plane, for example the Gaussian one with the non-singular
covariance operator Cov. Then the likelihood function will be proportional to

L = exp− 1

2σ2
‖ID − TsItemp‖2Cov−1

with the norm associated with the kernel Cov−1. Introducing the positive definite
square root M

M = +
√
Cov−1

we can write the likelihood function in terms of the standard l2-norm

L = exp− 1

2σ2
‖MID − MTsItemp‖2 =

= exp−Elikelihood
where Elikelihood is the likelihood energy.

In a similar fashion we are led to prior probability measures on each group in
the cascade. For the Sdiffeo, for example, we have used the expression

Eprior(s) = 1/2σ2
l1∑

µ=1

l2∑

ν=1

[l1µ
2t21µν + l2ν

2t22µν ]
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involving the t-matrices introduced earlier and with some scaling constant σ2. We
can then apply Markov Chain Monte Carlo to simulate the probability measure
on one of the groups in the cascade and solve the SDE

ds(t) = −grad[Eprior(s) + Elikelihood(s)]dt + d(W (t)

in terms of the d-dimensional Wiener process W (t) and continue iterating until the
algorithmic time parameter t is so large that approximate statistical equilibrium
has been reached. The previous propagated template, say Iαtemp(k, x), is then
further propagated

Iαtemp(k, x)→ Iαtemp(k + 1, x) = Iαtemp(k, s
∗
kx)

where s∗k is the resulting group element from the SDE.
We now do this for each group in the cascade, successively propagating the

template, see Matejic (1997). The resulting propagated template then induces the
output of the vision engine under the adopted strategy for seeing.

3. Experiments.

Based on the above principles three strategies for seeing have been developed. Due
to space limitations it is not possible to describe them in detail here; the reader
is referred to Grenander (1998) where the strategies are fully described and their
code is attached. The algorithms are so complex that it is difficult to predict their
behavior. For this reason extensive experimentation has been carried out in order
to find their strengths and weaknesses.

Here a few remarks will have to suffice. The first strategy was considering
objects as sets in the plane and the attention funcion was then just measuring the
optical activity in sub-sets. The observations were degraded by deformations of
the generators, additive noise as well as clutter. Additive noise was easily handled
by this algorithm, while clutter confused the algorithm and occassionally led it
to make the wrong decision; this occurred even for moderate amounts of clutter.
Obscuration was well handled if the overlap of generators was not too large but
otherwise mistakes were made sometimes.

To handle obscuration better a second strategy was developed where the gen-
erators were closed simple curves in the plane, the boundaries of the sets. The
attention function was designed to measure the (estimated) lengths of boundaries
in subsets. Again additive noise caused no problem for the recognition algorithm.
This strategy was less confused by obscuration than the first one, but it was quite
sensitive to clutter, apparently because of the differential-geometric nature of the
attention function.

A third strategy was constructed for a dynamic situation with moving gen-
erators. The attention function measured the amount of change in sub-sets from
one frame to the next. This strategy was not very sensitive to clutter although it
sometimes made the algorithm answer ”do not understand the scene”.
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We draw the following conclusions from the experiments. The experiments
have been carried out under controlled laboratory conditions, and since the infer-
ence algorithms are optimal modulo given assumptions, the observed weaknesses of
the engines cannot be blamed on the construction of the algorithms. Instead they
are essential to the visual set up and point to the need for a careful formulation
of the purpose to be realized.
(i) Additive noise in not much of a problem but clutter is. In order to build
effective strategies in the future one should develop a better understanding of how
clutter can represented mathematically.
(ii) The purpose of a vision engine must be clearly articulated with attention
functions that combine several properties of the image, not just a single one as in
the three experiments.
(iii) Related to (ii) is the need for incorporating cues in the observed ”image” ID:
in addition to the image itself relevant facts known to the operator of the inference
engine should also be included.
(iv) The vision engines should be integrated systems for multi-sensor, multi-target,
multi-purpose situations with parallel implementations.

Work is under way to implement (i) - (iv).
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Canonical Models in Mathematical Neuroscience
Frank Hoppensteadt and Eugene Izhikevich

Abstract. Our approach to mathematical neuroscience is not to con-
sider a single model but to consider a large family of neural models. We
study the family by converting every member to a simpler model, which
is referred to as being canonical. There are many examples of canonical
models [7]. Most of them are derived for families of neural systems near
thresholds; that is, near transitions between the rest state and the state
of repetitive spiking. The canonical model approach enables us to study
frequency and timing aspects of networks of neurons using frequency do-
main methods [6]. We use canonical (phase) models to demonstrate our
theory of FM interactions in the brain: Populations of cortical oscillators
self-organize by frequencies [6]; same-frequency sub-population of oscil-
lators can interact in the sense that a change in phase deviation in one
will be felt by the others in the sub-population [7]; and oscillators oper-
ating at different frequencies do not interact in this way. In our theory,
sub-networks are identified by the firing frequency of their constituents.
Network elements can change their sub-population membership by chang-
ing their frequency, much like tuning to a new station on an FM radio.
Also discussed here are mechanisms for changing frequencies obtained in
our recent work using similar models to study spatial patterns of theta
and gamma rhythm phase locking in the hippocampus.

1991 Mathematics Subject Classification: Primary 11E16; Secondary
11D09, 11E04, 15A63.
Keywords and Phrases: Neuroscience, canonical models, phase locked
loops.

A promising approach to mathematical neuroscience is to consider not a single
neural model but a large family of such models. A reasonable way to study such
a family is to convert every member to a simpler model by a continuous (possibly
non-invertible) change of variables. We refer to such a simple model as being
canonical for the family [7]. We present here a few examples of such families and
their canonical models.

1 Neural Excitability

Most neurons are at rest, but they can fire repeatedly when stimulated. If the
emerging firing pattern has very low frequency, then the neuron is said to exhibit
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Class 1 neural excitability [5]. If it starts with a high frequency, it is said to exhibit
Class 2 excitability.

The transition from rest to oscillatory firing as the stimulus is increased is
a bifurcation. A typical bifurcation corresponding to Class 1 excitability is the
saddle-node on limit cycle (SNLC) bifurcation. The family of all neural systems
having this bifurcation has the canonical model

θ′ = (1 + cos θ) + (1− cos θ)λ , θ ∈ S1 , (1)

where λ is the bifurcation parameter that characterizes the stimulus [4, 7].
A typical bifurcation corresponding to Class 2 excitability is the supercritical

Andronov-Hopf (AH) bifurcation. The family of all neural systems having this
bifurcation has the canonical model

z′ = (λ+ i)z − z|z|2 , z ∈ C , (2)

which is a topological normal form for the bifurcation. Notice that (2) is local in
the sense that a continuous change of variables that converts a dynamical system
into (2) is defined is some small neighborhood of equilibrium. The canonical
model (1) is not local in this sense. Many other canonical models for neuroscience
applications are derived in [7].

2 FM Interactions in Phase Models

Rhythmic behavior is ubiquitous in nature and especially in the brain. Since we
do not know (and probably will never know) the exact equations describing any
neural system we consider a family of brain models of the following general form

x′i = fi(xi) + εgi(x1, . . . , xn, ε) , xi ∈ Rm , (3)

where each xi describes activity of the ith neural element (neurons, cortical
columns, etc.), and the dimensionless parameter ε ≥ 0 measures the strength
of connections. Many neuro-physiological experiments suggest that ε is small; see
discussion in [7].

When each neural element exhibits oscillatory activity; that is, when each
subsystem x′i = fi(xi) in (3) has a limit cycle attractor, then the weakly connected
system (3) can be transformed into the canonical (phase) model

θ′i = Ωi + εhi(θ1, . . . , θn, ε) , θi ∈ S1 , (4)

by a continuous change of variables. Here Ωi > 0 is the frequency, and θi is the
phase of the ith oscillating element.

The phase model (4) can be simplified further depending on the presence of
resonances between the frequencies Ω1, . . . ,Ωn. For example, when the frequencies
are non-resonant and some other technical conditions are satisfied, each connection
function hi can be transformed into a constant. This implies that such oscillators
do not interact even though there are synaptic connections between them; i.e., even
though the functions gi are non-constant in (3). A detailed analysis [7, 8] shows
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that the interaction between oscillators is most effective when their frequencies are
nearly identical, less effective when the frequencies are nearly low-order resonant,
and practically non-effective otherwise.

Since this result was obtained for the canonical model (4), it can be applied
to an arbitrary neural system of the form (3) regardless of the details of the math-
ematical equations. This universality suggests a far-reaching biological principle:
The existence of synaptic connections between two neurons or two cortical columns
does not guarantee that the they interact. To interact they must establish a certain
low-order resonant relation between their frequencies. We say that interactions are
frequency modulated (FM) in this case.

We see that an entire network can be partitioned into relatively independent
ensembles of neurons processing information on different frequencies (channels).
Each neuron can change its membership simply be changing its frequency. Thus,
the entire brain can reconfigure itself by changing the frequency of oscillations of
its units without changing the efficacy of synaptic connections (the wiring).

Finally, we notice that when the frequencies are chosen appropriately, the neu-
ral elements interact through modulation of the timing of their spikes. Therefore,
the brain might employ FM radio principles: The frequency of neural rhythmic
activity does not encode any information other than identifying the channel of
communication; the information is carried by phases.

Equal
Frequency

Different
Frequency

20 ms

1

2
2

1

1

2
2

1

Phase Resetting
Stimulus

Phase Resetting
Stimulus

Induced
Phase Shift

No Significant
Phase Shift

Figure 1: Temporal integration of a periodic input depends on the frequency
of the input. Upper part: Neurons have identical frequencies. If a brief strong
stimulus is applied to neuron 1 to change its phase, then neuron 2 can “feel” the
change by acquiring a phase shift. Lower part: Neurons have different frequencies
(close to the resonance 4 : 5.) The post-synaptic neuron is relatively insensitive to
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the phase of the pre-synaptic one. (These simulations are based on space-clamped
Hodgkin-Huxley equations.)

3 The Hippocampus

Similar methods are used to study the hippocampus and its role in information
processing [1, 2]. In this, the three dimensional structure of the CA1, CA3 and
DG regions of the hippocampus and their inputs from the medial septum and
the entorhinal cortex are modeled by lumping the continuum model into discrete
segments. These segments do not necessarily correspond to anatomical features of
the hippocampus; they result from standard mathematical analysis. The model is

ẋj = γ + cosxj + (1− cosxj)(cosφj(t) + cosψj(t) +
N∑

i=1

Ci,jV (xi))

where

• γ is the gamma-rhythm frequency (≈ 40Hz).

• xj is the phase of the jth segment.

• ψj is the phase deviation of the input to the jth segment from the entorhinal
cortex. This is taken to be a theta-rhythm (≈ 5Hz) having phase deviations
increasing along the array of sites from the right, so ψj(t) = ωt + j∆ + Φ
where ∆ is the propagation time of stimulation from one segment to the
next.

• φj is the phase deviation of the input from the medial septum to segment j:
φj(t) = ωt+ (N − j)∆
• Φ indicates the difference in timing between the two inputs.

This system is depicted in Figure 2.

6 6

? ?

S1 SN

V (ωt+ φN )V (ωt+ φ1)

V (ωt+ ψN )V (ωt+ ψ1)

Septum

Entorhinal Cortex

Figure 2: A segment model comprising N identical segments that have inputs
from the Septum and from the Entorhinal Cortex, that have a fixed wave form
(V ), a fixed frequency (ω) and a phase deviation (φj or ψj). The phase differences
along the line are φj − ψj for j = 1, · · · , N .

The value Φ is the key control variable, and we show in [1] that as Φ in-
creases through 2π various patterns of phase locking to the theta rhythm occur
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in the model; the other segments oscillate at near the gamma rhythm. Thus, Φ
is encoded in a spatial pattern of theta-rhythm activity. Figure 3 shows typical
power-spectrum densities resulting from a simulation of 64 segments. Note that
there is for the choice of Φ used here an interval of segments that are locked at
the theta rhythm while the remaining segments oscillate at or near the gamma
rhythm. Changing Φ changes the pattern of theta-rhythm oscillations. So, the
firing frequency of individual cells can be changed by external forcing (here Φ)
that is applied uniformly to the entire network.

Each of these phase variables has an asymptotic limit of the form xj →
ρjt + φj(t) where ρj is the asymptotic frequency (rotation number) and φj(t) is
the asymptotic phase deviation. This result is the basis of the rotation vector
method which is discussed later.
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Figure 3: Power spectrum of 64 segments. There is an interval of segments
having frequency ≈ 5Hz, and the rest are near 40Hz.

A sequence of input phases Φk can be memorized by adaptive connections
within the structure. Lateral connections along the longitudinal axis of the
hippocampus are modeled as before (Equation (??)), but now the connection
strengths C change in response to correlation between pre- and post- synaptic
activities:

ΩĊi,j + Ci,j = K sinxi sinxj

where K is a mixer gain and Ω is a time constant for a synapse. The matrix C
accumulates memory traces, and it forms a slowly changing record of memorized
states and transitions between them. In particular, this matrix can learn a se-
quence of input control variables Φ1,Φ2, · · · ,ΦM , and the resulting matrix has a
left to right structure that can be used to recall this sequence. This is short term
memory in the circuit.
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In addition, this matrix C serves as the basis for studying recall of informa-
tion in the presence of random noise. Its structure reflects the connections that
correspond to memorized stimuli and to the transition from one memory to the
next. This form can be abstracted into a Markov chain, and it can be studied by
methods for Markov chains in random environments [1, 9].

4 Discussion

We will never know a complete model of any brain structure, no matter how small.
However, a powerful aspect of mathematics is that (usually) quite simple models
can accurately describe aspects of broad ranges of physical and biological systems.
In particular, the approach we have developed for mathematical neuroscience is
based on canonical models [7]. Care must be taken in interpreting and applying
results obtained using canonical models, but a principal goal of this work is to
suggest experiments and alternate ways of interpreting experimental data. Some
outcomes of this approach are the use of VCONs to process voltage recordings
from electrodes in behaving animals and the use of Markov chains to describe
navigation by behaving rats.

Patterns of phase locking in networks of VCONs can be determined using the
rotation vector method [6]: The vector ~x describes the phases in an entire network.

If this population is in synchrony, then the phases have the form ~x→ ω1t+ ~φ(t)
where ω is the common frequency, 1 is the vector of all ones, and the phase
deviations ~φ are less significant in the sense that ~φ(t)/t → 0 as t → ∞. In FM

radio, ω identifies the sending station and ~φ carries the signal. We have shown
here how two cells that are in synchrony can interact by demonstrating that a
change in the timing of one will induce a change in the timing of the receiver.
We propose that this is a fundamental mechanism for propagating and processing
information in the brain. Using this approach, we can derive a system of equations
for the phase deviations ~φ, and results of Liapunov and Malkin can be combined
with singular perturbation methods to determine energy surfaces that govern the
dynamics of ~φ [6].

The illustrations from our hippocampus model suggest that there are many
possible mechanisms for cells to change their firing frequency; for example, as de-
scribed here through external oscillatory inputs or through chemical modification
by hormones, neurotransmitters, etc.

The systems approach described here is based on canonical models, and it
brings out possibilities for FM interactions and communications in brain structures
by describing how a network can process such complex data in parallel.
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Numerical Study of Free Interface Problems UsingBoundary Integral Methods
Thomas Yizhao Hou

Abstract. Numerical study of fluid interfaces is a difficult task due
to the presence of high frequency numerical instabilities. Small pertur-
bations even at the round-off error level may experience rapid growth.
This makes it very difficult to distinguish the numerical instability from
the physical one. Here, we perform a careful numerical stability anal-
ysis for both the spatial and time discretization. We found that there
is a compatibility condition between the numerical discretizations of the
singular integral operators and of the Lagrangian derivative operator. Vi-
olation of this compatibility condition will lead to numerical instability.
We completely eliminate the numerical instability by enforcing this dis-
crete compatibility condition. The resulting scheme is shown to be stable
and convergent in both two and three dimensions. The improved method
enables us to perform a careful numerical study of the stabilizing effect of
surface tension for fluid interfaces. Several interesting phenomena have
been observed. Numerical results will be presented.

1991 Mathematics Subject Classification: 65M12, 76B15.
Keywords and Phrases: Free boundary, numerical stability, surface ten-
sion, topological singularity.

1 Introduction.

Many physically interesting problems involve propagation of free interfaces. Wa-
ter waves, boundaries between immiscible fluids, vortex sheets, Hele-Shaw cells,
thin-film growth, crystal growth and solidification are some of the better known ex-
amples. Numerical simulations for interfacial flows play an increasingly important
role in understanding the complex interfacial dynamics, pattern formations, and
interfacial instabilities. Many numerical methods have been developed to study
these interfacial problems, including phase field models, volume-of-fluid methods,
level set methods, front tracking methods, and boundary integral/element meth-
ods. Here we will focus on boundary integral methods.

Numerical study of fluid interfaces is a difficult task due to the presence
of high frequency numerical instabilities [6, 7]. Small perturbations even at the
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round-off error level may experience rapid growth. This makes it very difficult to
distinguish the numerical instability from the physical one. In our study, we first
establish the well-posedness of the linearized motion far from equilibrium. This
involves careful analysis of singular integral operators defined on free interfaces
[2, 11]. The continuous well-posedness analysis provides a critical guideline for our
numerical analysis of the discrete system. We found that there is a corresponding
compatibility condition between the discrete singular operators and the discrete
derivative operator. Violation of this compatibility condition will lead to numerical
instability. We completely eliminate the numerical instability by introducing an
effective filtering. The amount of filtering is determined by enforcing this discrete
compatibility condition. The resulting scheme is shown to be stable and convergent
[3]. The corresponding 3-D problem is considerably more difficult since the singular
operators have non-removable branch point singularities and there is no spectrally
accurate discretization. A new stabilizing technique is introduced to overcome this
difficulty [12, 13]. This technique is very general and effective. It also applies to
non-periodic problems with rigid boundaries.

The improved method enables us to perform a careful numerical study of
the stabilizing effect of surface tension for fluid interfaces. Water waves with small
surface tension are shown to form singular capillary waves dynamically. The mech-
anism for generating such capillary waves is revealed and the zero surface tension
limit is investigated [5]. In another study, surface tension is shown to regular-
ize the early curvature singularity induced by the Rayleigh-Taylor instability in
an unstably stratified two-fluid interface. However, a pinching singularity is ob-
served in the late stage of the roll-up. The interface forms a trapped bubble and
self-intersects in finite time [4, 9].

2 Stability of Boundary Integral Methods for 2-D Water Waves

In this section, we consider the stability of boundary integral methods for 2-D
water waves. The result can be generalized to two-fluid interfaces and Hele-Shaw
flows [4, 8]. Consider a 2-D incompressible, inviscid and irrotational fluid below a
free interface. We assume the interface is 2π-periodic in the horizontal direction
and parametrize the interface by a complex variable, z(α, t) = x(α, t) + iy(α, t),
where α is a Lagrangian parameter along the interface. We use the usual conven-
tion of choosing the tangential velocity to be that of the fluid. The first boundary
integral method for water waves was proposed by Longuet-Higgins and Cokelet
[15] who used a single layer representation. Here we will use a double layer rep-
resentation introduced by Baker-Meiron-Orszag [1]. Following [1], we obtain a
system of evolution equations as follows:

z̄t =
1

4πi

∫ π

−π
γ(α′)cot(

z(α)− z(α′)

2
)dα′ +

γ(α)

2zα(α)
≡ u− iv, (1)

φt =
1

2
(u2 + v2) − gy , (2)

φα =
γ

2
+ Re

(
zα
4πi

∫ π

−π
γ(α′)cot(

z(α)− z(α′)

2
)dα′

)
, (3)
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where φ is the potential, γ is the vortex sheet strength, z̄ is the complex conjugate
of z. Equations (1)-(3) completely determine the motion of the system. The
advantage of using the double layer representation is that the Fredholm integral
equation of second kind has a global convergent Neumann series [1]. Thus γ can
be solved by fixed point iteration.

The boundary integral formulation of water waves is naturally suited for nu-
merical computation. There are many ways one can discretize the boundary in-
tegral equations, depending on how we choose to discretize the singular integrals
and the derivatives. These choices affect critically the accuracy and stability of the
numerical method. Straightforward numerical discretizations of (1)-(3) may lead
to rapid growth in the high wavenumbers. In order to avoid numerical instability,
a certain compatibility between the choice of quadrature rule for the singular in-
tegral and the discrete derivatives must be satisfied. This compatibility ensures
that a delicate balance of terms on the continuous level is preserved on the discrete
level. Violation of this compatibility will lead to numerical instability.

Let zj(t) be the numerical approximation of z(αj, t), where αj = jh, h =
2π/N . φj(t), γj(t) are defined similarly. To approximate the velocity integral, we
use the alternating trapezoidal rule:

∫ π

−π
γ(α′) cot (

z(αj) − z(α′)

2
)dα′ ≃

N/2∑

j=−N/2+1
(j − i) odd

γk cot(
zj − zk

2
)2h . (4)

The advantage of using this alternating trapezoidal quadrature is that the ap-
proximation is spectrally accurate. We denote by Dh the discrete derivative op-

erator. In general, we have ̂(Dh)k = ikρ(kh) for some nonnegative even function
ρ. The specific form of ρ(ξ) depends on the approximation. For example, we
have ρc(kh) = 3 sin(kh)/(kh(2 + cos(kh))) for the cubic spline approximation, and
ρ(kh) = 1 for a pseudo-spectral derivative.

Now we can present our numerical algorithm for the water wave equations
(1)-(3) as follows:

dz̄j
dt

=
1

4πi

∑

(k−j)odd

γkcot(
z
(ρ)
j − z

(ρ)
k

2
)2h+

γj
2Dhzj

≡ uj − ivj , (5)

dφj
dt

=
1

2
(u2j + v2j ) − gyj , (6)

Dhφj =
γj
2

+ Re


Dhzj

4πi

∑

(k−j)odd

γkcot(
z
(ρ)
j − z

(ρ)
k

2
)2h


 , (7)

where z(ρ) is a Fourier filtering defined as ̂(z(ρ))k = ẑkρ(kh). The Fourier filtering
z(ρ) in (5) and (7) is to balance the high frequency errors introduced by Dh. This
will become apparent in the discussion of stability below.

Theorem 1. Assume that the water wave problem is well-posed and has a
smooth solution in Cm+2 (m ≥ 3) up to time T . Then if Dh corresponds to a r-th
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order derivative approximation, we have for 0 < h ≤ h0(T )

‖z(t) − z(·, t)‖l2 ≤ C(T )hr . (8)

Similar convergent results hold for φj and γj. Here ‖z‖2l2 =
∑N
j=1 |zj |2h .

2.1 Discussion of stability analysis

Here we discuss some of the main ingredients in the stability analysis of the scheme
given by (5)-(7). We will mainly focus on the linear stability. Once linear stability
is established, nonlinear stability can be obtained relatively easily by using the
smallness of the error and an induction argument. The reader is referred to [3] for
details.

To analyze linear stability, we first derive evolution equations for the errors
żj(t) ≡ zj(t)−z(αj, t), etc., and try to estimate their growth in time. If we take the
difference between the sum in (5) for the discrete velocity and the corresponding
sum for the exact solution, the linear terms in żj , γ̇j for the difference are

h

πi

∑

(k−j)odd

γ̇k
z(αj)(ρ) − z(αk)(ρ)

− h

πi

∑

(k−j)odd

γ(αk)(ż
(ρ)
j − ż

(ρ)
k )

(z(αj)(ρ) − z(αk)(ρ))2
, (9)

where we have expanded the periodic sum, with k now unbounded. To identify
the most singular terms, we use the Taylor expansion to obtain the most singular
symbols

1

z(αj)− z(αk)
=

1

zα(αj)(αj − αk)
+ f(αj , αk) ,

where f is a smooth function. Thus, the most important contribution to the first
term in (9) is (2izα)−1Hhγ̇j , where Hh is the discrete Hilbert transform

Hh(γ̇j) ≡
1

π

∑

(k − j)odd

γ̇k
αj − αk

2h . (10)

Similarly, the most important contribution to the second term in (9) is

−γ(2iz2α)−1Λh(z
(ρ)
j ), where Λh is defined as follows:

Λh(ḟj) ≡
1

π

∑

(k − j)odd

ḟj − ḟk
(αj − αk)2

2h . (11)

LetH and Λ be the corresponding continuous operators forHh and Λh respectively,
i.e. replacing the discrete sums by the continuous integrals. In the continuous level,
it is easy to show by integration by parts that

Λ(f) = H(Dαf) , (12)
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where Dα is the continuous derivative operator. It turns out that in order to
maintain numerical stability of the boundary integral method, the quadrature
rule for the singular integral and the discrete derivative operator Dh must satisfy
a compatibility condition similar to (12). That is, given a quadrature rule, which
defines a corresponding discrete operators Hh and Λh, and a discrete derivative
Dh, they must satisfy the following compatibility condition:

Λh(żi) = HhDh(żi) , (13)

for ż satisfying ̂̇z0 = ̂̇zN/2 = 0. If (13) is violated, it would cause a mismatch of
a singular operator of the form (Λh −HhDh)(ż) in the error equations. This will
generate numerical instability.

By performing appropriate Fourier filtering in the approximations of the veloc-
ity integral, we can ensure a variant of the compatibility condition (13) is satisfied,

Λh(ż
(ρ)
j ) = HhDh(żj) . (14)

This can be verified from the spectrum properties of Hh and Λh and the definition
of the ρ filtering. This modified compatibility condition is sufficient to ensure
stability of our modified boundary integral method. This explains why we need
to filter z in (5) and (7) when we approximate the velocity integral. The modified
algorithm also allows use of non-spectral derivative operators.

By using properties of the discrete Hilbert transform: (i) H2h = −I , (ii)
Λh(z(ρ)) = HhDh(z), (iii) the commutator, [Hh, f ], is a smoothing operator, i.e.
[Hh, f ](ż(ρ)) = A−1(ż) for smooth f , we can derive an error equation for żj which
is similar to the continuum counterpart in the linear well-posedness study [2, 3]

dżj
dt

= z−1α (I − iHh)DhḞ + A0(ż) +A−1(φ̇) +O(hr),

where Ḟ = φ̇ − uẋ − vẏ, A0 is a bounded operator from lp to lp, and A−1 is a
smoothing operator of order one, i.e. DhA−1 = A0 and A−1Dh = A0. The leading
order error equation suggests that we project the error equation into the local
tangential and normal coordinate system. In this local coordinate, the stability
property of the error equations becomes apparent. Let żN , żT be the normal and
tangential components of ż, with respect to the underlying curve z(α), N being
the outward unit normal, and δ̇ = żT +Hhż

N . We obtain after some simplification

δ̇t = A−1(Ḟ ) +A0(ż), (15)

żNt =
1

|zα|
HhDhḞ +A−1(Ḟ ) +A0(ż), (16)

Ḟt = −c(α, t)żN +A−1(ż), c(α, t) = (ut, vt + g) ·N, (17)

where equation (17) is obtained by performing error analysis on Bernoulli’s equa-
tion and using the Euler equations. In this form it is clear that only the normal
component of ż is important. This is consistent with the physical property of
interfacial dynamics. Now it is a trivial matter to establish an energy estimate for
the error equations. Note that HhDh is a positive operator with a Fourier symbol
ρ(kh)|k|. The discretization is stable if the water wave problem is well-posed, i.e.
the sign condition, c(α, t) > 0, is satisfied. We refer to [3] for details.
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3 Generalization to 3-D Water Waves.

Numerical stability of 3-D boundary integral methods is much more difficult. Let
z(α1, α2) be a parametrization of a 3-D surface. Recall that the 3-D free space
Green function for the Laplace equation is given by G(z) = −1/(4π|z|). The
corresponding velocity integral is given by

dz

dt
=

∫
Ω(α′)×∇z′G(z(α) − z(α′))dα′ + wloc(α) ,

where Ω = µα1zα2 − µα2zα1 , wloc = Ω(α) × (zα1 × zα2) /|zα1 × zα2 |2 is the local
velocity, and µ is the dipole strength.

One of the main difficulties for 3-D boundary integral methods is that the
velocity integral has a branch point singularity which is not removable by desin-
gularization. Also, unlike the 2-D case, we cannot express the leading order con-
tribution of the singular operator as an integral operator defined on a flat surface.
Now, the leading order singular operators depend on the free surface and have
variable coefficients (assuming the tangent vectors are orthogonal for simplicity):

Hl(f) =
1

2π

∫
(αl − α′l)f(α′)dα′

(|zα1(α)|2(α1 − α′1)2 + |zα2(α)|2(α2 − α′2)2)3/2
, l = 1, 2,

Λ(f) =
1

2π

∫
(f(α) − f(α′))dα′

(|zα1(α)|2(α1 − α′1)2 + |zα2(α)|2(α2 − α′2)2)3/2
.

As in 2-D, there are certain compatibility conditions among singular operators
and the derivative operator. For example, we have Λ = H1D1+H2D2. Stability of
the boundary integral method requires a similar compatibility condition to hold:

Λh(z) = (Hh
1D

h
1 +Hh

2D
h
2 )z,

which, unfortunately, is generically violated by almost all discretizations. Although
this compatibility condition can be imposed by applying a Fourier filtering as in
the 2-D case, such filtering can no longer be evaluated efficiently by Fast Fourier
Transform (FFT) since the singular operator, Hh

l or Λh, is not a convolution
operator. The kernel depends on a variable coefficient.

In additional to the above compatibility condition, there are several other
compatibility conditions that need to be satisfied for 3-D surfaces. Since there
are no spectrally accurate approximations to the singular integrals in 3-D, it is
almost impossible to enforce all the other compatibility conditions by using Fourier
filtering alone.

To overcome this difficulty, we introduce a new stabilizing method without
using the Fourier filtering. This new technique can be illustrated more clearly for
the 2-D point vortex method [12]. Let us illustrate how we enforce the compati-
bility condition Λh = HhDh indirectly by adding a stabilizing term. The modified
point vortex method approximation for 2-D water waves is given by

dz̄j
dt

=
1

2πi

∑

k 6=j

γkh

zj − zk
+

γj
2Dhzj

+ CIj ,
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where

CIj =
γj

2i(Dhzj)2
(Λh −HhDh)zj .

This method is clearly consistent since the point vortex method gives a first order
approximation to the singular integral: (HhDh − Λh)z(αj) = O(h). Let żj =
zj − z(αj), γ̇j = γj − γ(αj) be the errors in zj and γj . Let Ei = 1

2πi

∑
j 6=i

γj
zi−zj h,

and define Ėi = Ei − E(αi), Ċ
I
i = CIi − CI(αi). Using the same argument as

before, we can show that the linear variation in Ei is given by

Ėi =
1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
Λhżi +A0(żi) +A−1(γ̇i) .

Similarly, we have

ĊIi =
γ(αi)

2izα(αi)2
(Λh −HhDh)żi +A0(żi) +A−1(γ̇i),

where we have used the fact that (Λh −HhDh)z(αi) = O(h). Now combining Ėi
with ĊIi , we obtain

Ėi + ĊIi =
1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
Λhżi

+
γ(αi)

2izα(αi)2
(Λh −HhDh)żi +A0(żi) +A−1(γ̇i)

=
1

2izα(αi)
Hh(γ̇i)−

γ(αi)

2izα(αi)2
HhDhżi +A0(żi) +A−1(γ̇i).

Note that the two Λhżi terms cancel each other in the above equation, and only
the HhDhżi term survives in place of Λhżi. This in effect enforces the compat-
ibility condition Λh = HhDh. This stabilizing technique is very general, and it
applies to 3-D water waves. For 3-D water waves, we have four more compati-
bility conditions that need to be satisfied. We need to handle each one of them
by adding a corresponding stabilizing term just as we outlined above. This will
give a stable discretization for 3-D water waves. Moreover, by using a generalized
arclength frame which enforces |zα1 |2 = λ1(t)|zα2 |2 and (zα1 , zα2) = λ2(t)|zα2 |2,
these correction terms can be evaluated efficiently by FFT, see [13].

4 Stabilizing Effect of Surface Tension

Surface tension plays an important role in understanding fluid phenomena such
as pattern formation in Hele-Shaw cells, the motion of capillary waves on free
surfaces, and the formation of fluid droplets. On the other hand, surface tension
also introduces high order spatial derivatives into the interface motion through
local curvature which couples to the interface equation in a nonlinear and nonlocal
manner. These terms induce strong stability constraints on the time step if an
explicit time integration method is used. These stability constraints are generally
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time dependent, and become more severe by the differential clustering of points
along the interface.

Hou, Lowengrub, and Shelley [8] proposed to remove the stiffness of surface
tension for 2-D fluid interfaces by using the Small Scale Decomposition technique
and reformulating the problem in the tangent angle θ and arclength metric sα.
Curvature has a very simple expression in these variables, κ = θα/sα. One im-
portant observation is that the stiffness only enters at small scales. The leading
order contribution of these singular operators at small scales can be expressed in
terms of the Hilbert transform, which is diagonalizable using Fourier Transform.
By treating the leading order terms implicitly, but treating the lower order terms
explicitly, we obtain a semi-implicit discretization which can be inverted efficiently
using FFT. This reformulation greatly improves the time step stability constraint.
Many interfacial problems that were previously not amenable are now solvable
using this method. This idea has been subsequently generalized to 3-D filaments
by Hou, Klapper, and Si who use curvature and arclength metric as the new dy-
namic variables [10]. Applications to Hele-Shaw flows, 3-D vortex filaments, and
the Kirchhoff rod model for protein folding all give very impressive results.

In the following, we would like to present two numerical calculations using our
numerical methods. In Fig. 1, we show that water waves with small surface tension
generate singular capillary waves dynamically. Our study shows that the dynamic
generation of capillary waves is a result of the competition between convection
and dispersion. The capillary waves originate near the crest in a neighborhood
where both the curvature and its derivative are maximum. For fixed but small
surface tension, the maximum of curvature increases in time and the interface
develops oscillatory capillary waves in the forward front of the crest. The minimum
distance between adjacent capillary crests appears to approach zero, suggesting the
formation of trapped bubbles as observed in Koga’s experiments of breaking waves
[14]. On the other hand, for a fixed time, as the surface tension coefficient τ is
reduced, both the capillary wavelength and its amplitude decreases nonlinearly.
The interface converges strongly to the zero surface tension profile [5].

We study the stabilizing effect of surface tension for an unstably stratified
two-fluid interface in Fig. 2. This problem was first investigated by Pullin in
[16]. Due to the numerical instability, Pullin’s calculations were not conclusive.
Using our improved method, we do not observe any numerical instability and we
are able to perform well-resolved calculations to study the stabilizing effect of
surface tension. Our study shows that surface tension indeed regularizes the early
curvature singularity induced by the Rayleigh-Taylor instability. The interface
rolls up into two spirals as time evolves. Note that the tips of the fingers broaden
as they continue to roll, and that the interface bends towards the tip of the fingers.
At around t = 1.785, the interface forms a trapped bubble and self-intersects. The
minimum distance between the neck of the bubble is approximately 5× 10−4 [4].
This process of bubble formation through self-intersection of a fluid interface has
been observed in [8, 9] for a vortex sheet. In both cases, we found a convincing
evidence that the minimum distance between the neck of the bubble scales like
(tc − t)2/3, providing a partial agreement with the self-similar scaling.
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Figure 1: Comparison of the zero surface tension interface profile with the
corresponding ones for decreasing surface tension τ at t = 0.45, N = 2048.
(a)τ = 2.5× 10−4. (b)τ = 1.25× 10−4. (c)τ = 6.25× 10−5. (d)τ = 3.125× 10−5.
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Figure 2: Rayleigh-Taylor instability: Atwood ratio A = −0.1, surface tension
τ = 0.005, N = 2048 and ∆t = 1.25× 10−4.
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Travelling Water-Waves,as a Paradigm for Bifurcations in ReversibleInfinite Dimensional \Dynamical" Systems
Gérard Iooss

Abstract. We first show a typical bifurcation study for a finite di-
mensional reversible system, near a symmetric equilibrium taken at 0.
We state the results on known small bounded solutions: periodic, quasi-
periodic, homoclinic to 0, and homoclinics to periodic solutions. The
main tool for such a study is center manifold reduction and normal form
theory, in presence of reversibility. This allows to prove persistence of
large class of reversible (symmetric) solutions under higher order terms,
not considered in the normal form. We then present water-wave prob-
lems, where we look for 2D travelling waves in a potential flow. In case
of finite depth layers, the problem of finding small bounded solutions, is
shown to be reducible to a finite dimensional center manifold, on which
the system reduces to a reversible ODE. Bounded solutions of this ODE
lead to various kinds of travelling waves which are discussed.

If the bottom layer has infinite depth, which appears to be the most phys-
ically realistic case, concerning the validity of results in the parameter
set, the mathematical problem is more difficult. We don’t know how to
reduce it to a finite dimensional one, due to the occurence of a contin-
uous spectrum (of the linearized operator) crossing the imaginary axis.
We give some hints, on how to attack this difficulty, specially for periodic
and homoclinic solutions which have now a polynomial decay at infinity .

1991 Mathematics Subject Classification: 58F39, 58F14, 76B15, 34A47,
76B25

1 Bifurcations of reversible systems near a symmetric equilibrium

1.1 Basic tools

Let us first consider a finite dimensional vector field of the form

dU

dx
= F (U) (1)

where U(x) lies in Rn, we say that system (1) is reversible if there exists a linear
symmetry S, satisfying S2 = I, such that SF = −F ◦S. This implies, in particular,
that if x 7−→ U(x) is solution of (1), then x 7−→ SU(−x) is also solution. Assume
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in addition that F (0) = 0 and that F is Ck, k ≥ 2, and define the derivative at
the origin: L = DF (0). It is clear that SL = −LS, which implies that the set
of eigenvalues of L is symmetric with respect to both axis in C. In what follows,
we are specially interested in solutions of (1) which stay in a neighborhood of 0
for x ∈ R. The main tool for understanding such solutions is a center manifold
reduction theorem [19] (see [28] for a complete and pedagogic proof):

Theorem 1 (Center manifold theorem) Assume that the spectrum of L is
composed with a part σ0 on the imaginary axis and another part σh lying at a
positive distance from the imaginary axis. Let us denote respectively by E0 and Eh
the subspaces invariant under L, corresponding to this splitting of the set of eigen-
values of L. Then, there exists a function Ψ ∈ Ck(E0, Eh),Ψ(0) = 0, DΨ(0) = 0,
and a neighborhood U of 0 in Rn, such that the manifold

M0 = {X + Ψ(X)|X ∈ E0} ⊂ U

has the following properties
(i) M0 is locally invariant under (1);
(ii) M0 contains all solutions of (1) staying in U for all x ∈ R;
(iii) Ψ commutes with the symmetry S : SΨ = Ψ ◦ S0 (we denote by S0 the

restriction of S on the space E0).

The part (iii) of the above theorem is not in [19] but results easily from the
proof of the theorem, as it is also true for any linear unitary operator commuting
with F.

We are in fact interested in Bifurcations of solutions lying in a neighborhood
of 0, i.e. in a structural change of these solutions when some parameter varies. To
fix ideas, we now consider systems of the form

dU

dx
= F (µ,U), F (0, 0) = 0 (2)

where µ is a real parameter, F being smooth with respect to both arguments, and
F (0, ·) satisfies the same assumptions as F in (1). Then, it is nearly straightforward
that there is a neighborhood of 0 in R× Rn for (µ,U) for which a family of center
manifolds Mµ exist, of the form

U = X + Ψ(µ,U), X ∈ E0,Ψ(0, 0) = 0, DXΨ(0, 0) = 0. (3)

The interest of this result rests in particular in the ”uniform” validity for µ in a
neighborhood of 0. Indeed, in case 0 stays an equilibrium of (2) when µ varies, the
eigenvalues of DUF (µ, ·) may escape from the imaginary axis, and we might be
tempted to apply the classical invariant manifold theorem for hyperbolic situations.
This would lead to a domain of validity much smaller than the one given by
the present theorem. Of course we ”pay” this by the non uniqueness of such
center manifolds, and the fact that the more regularity we wish, the smaller is the
existence domain for Mµ.
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The reduced system on Mµ is written

dX

dx
= f(µ,X) in E0 (4)

and is still reversible, provided that the representation S0 of S on E0 is not trivial.
Moreover, f(0, 0) = 0 and DXf(0, 0) = L0 = DUF (0, 0)|E0 has all its eigenvalues
of zero real part.

Now, a very powerfull tool for studying the reduced system (4) is normal form
theory. This technique consists in making near the origin, a change of variables
close to identity and polynomial in X, which modifies the form of (4) in simplifying
its Taylor expansion up to a fixed order (the degree of the polynomial). We then
expect to recognize more easily relevant solutions of our system on a ”simplified”
f. Normal form theory goes back to Poincaré and Birkhoff and was more recently
developed in particular by V.Arnold [2], Belitskii [4], Cushman & Sanders [6] and
Elphick et al [9]. In the context of a system like (4) where all eigenvalues of L0 lie
on the imaginary axis, we use the following global characterization result of [9],
(see also [12]):

Theorem 2 (Normal form theorem) For any p ≤ k, there is a neighborhood
Ũp of 0 in R×E0 and there are polynomials Φ(µ, ·) and N(µ, ·) E0 → E0, of degree
p, with coefficients smooth in µ, such that Φ(0, 0) = N(0, 0) = 0, DXΦ(0, 0) =

DXN(0, 0) = 0 and such that for (µ,X) ∈ Ũp the change of variable

X = X̃ + Φ(µ, X̃)

transforms (4) into the following system which has the same regularity in (µ, X̃):

dX̃

dx
= L0X̃ +N(µ, X̃) +R(µ, X̃) (5)

where N is characterized by

N(µ, eL
∗
0xX) = eL

∗
0xN(µ,X),∀x ∈ R,∀X ∈ E0,∀µ near 0,

and R(µ, X̃) = o(||X||p). In addition, (5) inherits the symmetries of (2).

This theorem provides an additional symmetry to nonlinear ”simplified”
terms, this symmetry only resulting from the linearized operator! The proof which
includes the parameter dependance of the polynomial coefficients and the optimal
estimate on the rest R, is quite technical (see hint in [9], and [12]).

1.2 Study of some reversible normal forms

Let us restrict our attention to systems such that 0 stays solution of (2) for µ 6= 0.
This eliminates some cases which are not of interest here. Now, because of re-
versibility, we know that the eigenvalues of DUF (µ, 0) are symmetric with respect
to both axis, hence theorem 1 indicates that bifurcation situations may occur at
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least when some eigenvalues meet (by pairs) the imaginary axis. The simplest case
is when L0 has only a double 0 eigenvalue on the imaginary axis. This leads to a
2 dimensional center manifold for the study of small bounded solutions of (4). We
give below some details only on the next most important cases, i.e. when

(i) L0 has only a double 0 and a pair of simple pure imaginary eigenvalues on
the imaginary axis;

(ii) L0 has only a pair of double pure imaginary eigenvalues on the imaginary
axis.

Notice that case (ii) was introduced by Y.Rocard (see chapter I.14 of [27])
when he presents the instability ”par confusion de fréquences propres”, which oc-
curs in the phenomenon of the fluttering of a wing (submitted to the aerodynamic
forcing of a big wind), particularly dangerous for planes and for long suspended
bridges.

1.2.1 Case (i)

Here the center manifold is four dimensional. Let us denote by ±iq the pair of
simple eigenvalues and decompose X = Aξ0 + Bξ1 + Cζ + Cζ, where (A,B) are
real amplitudes, C a complex one and L0ξ0 = 0, L0ξ1 = ξ0, L0ζ = iqζ.

Then we need to know how the reversiblity symmetry S0 acts on (A,B,C,C).
There are two theoretical possibilities, depending on whether Sξ0 = ξ0 or −ξ0. In
most physical problems we have the first case, so S0 : (A,B,C,C)→ (A,−B,C,C)
and after parameter dependent rescaling, the normal form, truncated at quadratic
order, reads





dA

dx = B
dB

dx = µA+A2 + c|C|2,
dC

dx = iC(q + d1µ+ d2A),

(6)

where c = ±1 and (real) coefficients dj can be explicitely computed (see [14] for
a proof of (6) and the computation of principal part of coefficients on a specific
physical problem). This system is integrable, with the two first integrals

K = |C|2,H = B2 − (2/3)A3 − µA2 − 2cKA, (7)

and we show at figure 1 the various graphs of functions

fµ,K,H(A) = (2/3)A3 + µA2 + 2cKA+H

depending on (K,H), for µ > 0. In this case, we have, in addition to the trivial
equilibrium, another ”conjugate” equilibrium, and several types of periodic solu-
tions, quasi-periodic solutions (interior of the triangular region in (K,H) plane,
and homoclinic solutions, one homoclinic to 0, and all others homoclinic to one of
the periodic solutions.

We represent on figure 2, in the (A,B) plane all bounded solutions for cK <
µ2/4. Notice that the homoclinic solution to A+ corresponds here to a solution
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Figure 1: case (i). Graphs of fµ,K,H(A) for µ > 0.

homoclinic to a periodic solution since K 6= 0. Notice that A+ ∼ −cK/µ when
|K|≪ |µ|, meaning that oscillations at ∞ are very small in this case. For K = 0
this corresponds to a solution homoclinic to 0, even though the stable and unstable
manifolds of 0 are only one dimensional (in the 4 dim space!). We shall see in next
section that this solution does not exist in general for the full system (5), even
though one may compute its expansion in powers of the bifurcation parameter µ
up to any order.

Figure 2: case (i). Bounded solutions of (6) for various values of H in the (A,B)

plane, for µ > 0, cK < µ2/4. A± = 1/2(−µ±
√
µ2 − 4cK).

An analogous study holds for µ < 0 using fµ,H,K(A) = −f−µ,−H,K(−A)).

1.2.2 Case (ii)

Here the center manifold is again four dimensional. Let us denote by ±iq the pair
of double eigenvalues at criticallity, and define by (A,B) the complex amplitudes
corresponding respectively to the eigenmode and to the generalized eigenmode.
This case is often denoted by ”1:1 reversible resonance”. We can always assume
that the reversibility symmetry S0 acts as: (A,B) 7−→ (A,−B). The normal form,
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at any order, reads (see a proof in [12]):

dA

dx
= iqA+B + iAP [µ, |A|2, i/2(AB −AB)], (8)

dB

dx
= iqB + iBP [µ, |A|2, i/2(AB −AB)] +AQ[µ, |A|2, i/2(AB −AB)],

where P (µ, ·, ·) and Q(µ, ·, ·) are real polynomials. Let us define more precisely
the coefficients of Q, for the cubic normal form [N of degree 3 in (5)]: Q(µ, u, v) =
µ+q2u+q3v, where q2 may be taken as ±1, after a parameter dependent rescaling.
This means that for µ > 0 the eigenvalues are at a distance

√
µ from the imaginary

axis, while, for µ < 0, they sit on the imaginary axis. The explicit computation of
the principal parts of coefficients of polynomials P and Q is made for instance in
[7] on a specific physical example. The vector field (8) is integrable, with the two
following first integrals:

K = i/2(AB −AB), H = |B|2 −
∫ |A|2

0

Q[µ, u,K]du.

It is then possible to describe all small bounded solutions of (8), and to discuss
the various types of solutions in the (K,H) plane, for µ > 0, or µ < 0 (see [17]).
We obtain families of periodic and quasi-periodic solutions and, for µ > 0, q2 < 0 a
”circle” of solutions homoclinic to 0, for H = K = 0, due to the SO(2) invariance
of the normal form, while for µ < 0, q2 > 0 we have a family (curve in the (H,K)
plane) of ”circles” of solutions homoclinic to periodic solutions (as in case (i)) (the
amplitude is here minimum at x = 0).

1.3 Typical persistence results

In section 1.2, we investigated the normal forms, i.e. equation (5) with no re-
maining term R, and we obtained various type of solutions that we would like to
be persistent for the complete problem (5). The problem consists now in proving
persistence results. In summary, the persistence of periodic solutions of the normal
form can in general be performed, through an adaptation of the Lyapunov-Schmidt
technique (see [14],[22]). The persistence of quasi-periodic solutions is much more
delicate, and can only be performed in a subset of the (H,K) plane, where these
solutions exist for the normal form. Typically, it is proved for case (i), that for any
fixed µ, quasi-periodic solutions exist on a subset of the interior of the triangular
region of figure 1, which is locally the cartesian product of a curve with a Cantor
set (see a complete proof in [16] for case (ii), and see [14] for case (i), both applied
to specific examples in fluid mechanics). The persistence of solutions homoclinic
to periodic solutions, provided that they are not too small, needs some technical-
ity, see for instance [14] for case (i) and [17] for case (ii). The same results holds
for solutions homoclinic to 0 in case (ii). In fact one can prove the persistence
of two symmetric (reversible) solutions (instead of a a full circle of solutions),
using a transversality argument (intersection of the stable manifold of a periodic
orbit (or of the fixed point in case (ii) for µ < 0) with the subspace of symmetric
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points), after controlling the size of the perturbation due to R, which applies for
x ∈ [0,+∞).

Now, for the normal form of case (i), there is a family of orbits homoclinic
to periodic solutions whose amplitudes can be chosen arbitrarily small. It can
be proved (see Lombardi [22] for a complete proof) that there are two families of
reversible solutions homoclinic to a periodic solution whose size may be chosen
arbitrary, until a (non zero) exponentially small size µ−1e−c/

√
µ (smaller than any

power of the bifurcation parameter µ). The method used by Lombardi consists in a
complete justification of a matching asymptotic expansion method of the solution
which is extended in a strip of the complex plane, where the singularity in the
complex plane originates from one of the homoclinic solution of the truncated
normal form (6). Moreover, despite of the fact that a solution homoclinic to 0
exists for the normal form (6), this is not true in general for the full system (5)
(see [23]), even though one can compute an asymptotic expansion up to any order
of such an homoclinic (non existing) ”solution”! This non obvious result says in
particular that we cannot avoid small oscillations at infinity in this case.

2 Application to the water wave problem

Let us consider the case of one layer (thickness h) of an inviscid fluid, the flow is
assumed potential, under the influence of gravity g and surface tension T acting
at the free surface (see left of figure 3). We are interested in steady waves of
permanent form, i.e. travelling waves with constant velocity c. Formulating the
problem in a moving reference frame, our solutions are steady in time, and we
intend to consider the unbounded horizontal coordinate ξ as a ”time”. Let us
denote by ρ the fluid density, then we choose c as the velocity scale and l = T/ρc2

as the length scale. The important dimensionless parameters occuring in the
equations are λ = ghc−2 , b = T (ρhc2)−1 = l/h.

1

Figure 3: Left: geometric configuration of the water-wave problem. Right: posi-
tions of the 4 critical eigenvalues of Lµ in function of µ = (b, λ).
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A nice formulation of this problem uses a change of coordinates introduced by
Levi-Civita [21]. He uses the coordinates (x, y) defined by the complex potential
w(ξ + iη) = x + iy and unknown are α and β defined by w′(ξ + iη) = e−i(α+iβ)

(complex velocity). The free surface is given by y = 0 , the rigid bottom by y =

−1/b. The physical free surface is given by η = Z(ξ) = Z̃(x) =
∫ 0
−1/b(e

−β cosα−
1)dy. In our formulation, the unknown is [U(x)] (y) = (α0(x), α(x, y), β(x, y))t

and the system has the form

dU

dx
= F (µ,U) =





sinhβ0 + λbe−β0
∫ 0
−1/b(e

−β cosα− 1)dy
∂β
∂y ,

−∂α∂y

}
− 1/b < y < 0.

(9)

where µ = (b, λ) , and equation (9) has to be understood in the space H =
R × {L1(−1/b, 0)}2, and U(x) lies in D = R × {W 1,1(−1/b, 0)}2 ∩ {α0 = α|y=0,
α|y=−1/b = 0}, where we denote by β0 the trace β|y=0 and by W 1,1(−1/b, 0) the
space of integrable functions with an integrable first derivative on the interval
(−1/b, 0). A solution of our water-wave problem is any U ∈ C0(D) ∩ C1(H) which
is solution of (9), where (e.g.) C0 means continuous and bounded for x ∈ R.

It is clear that U = 0 is a particular solution of (9), which corresponds to the
flat free surface state. A very important property of (9) is its reversibility: indeed
let us define the symmetry S: SU = (−α0,−α, β)t, then it is easy to see that
the linear operator S anticomutes with F (µ, ·). This reflects the invariance under
reflexion symmetry ξ → −ξ of our original problem.

Remark 3 There is a large class of water-wave problems which can be treated in
a similar way: one may consider several layers of non miscible perfect fluids, and
consider cases with or without surface (or interface) tension (see [11] for these
formulations).

Since we are interested in solutions near 0, it is natural to study the problem
obtained after linearization near 0. We then define the linear operator Lµ =
DUF (µ, 0), unbounded and closed in H. In all problems, for layers with finite
depth , it can be shown that the spectrum of Lµ which is symmetric with respect
to both axis of the complex plane because of reversibility, is only composed of
isolated eigenvalues of finite multiplicities, accumulating only at infinity. More
precisely, denoting by ik these eigenvalues (not necessary pure imaginary), then
one has the classical ”dispersion relation” for solving the eigenvalues, under the
form of a complex equation f(µ, k) = 0. For problem (9), we obtain the following
dispersion relation:

(λb+ k2)k−1 sinh k/b− coshk/b = 0, for k 6= 0. (10)

There is no more than 4 eigenvalues on (or close to) the imaginary axis, the rest
of them being located in a sector (ik ∈ C; |kr| < p|ki| + r) of the complex plane
(see right side of figure 3). There is a codimension 2 case when (b, λ) = (1/3, 1),
where 0 is a quadruple eigenvalue. The roots of the dispersion equation give the
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poles of the resolvent operator (ikI−Lµ)−1. In addition, we obtain an estimate of
the form

||(ikI− Lµ)−1||L(H) ≤ c/|k|, (11)

where c > 0 is fixed and for large enough |k|, and where L(H) is the space of
bounded linear operators in H. The choice of the basic space H should be appro-
priate for finding the good estimate (11) of the resolvent, this is a little delicate
for problems with several layers and no surface tension (see [11]). This estimate
is essential in our method of reduction to a center manifold.

For the study of the nonlinear problem (9) the idea is now to use a center
manifold reduction like in section 1, which leads to an ordinary differential equation
of dimension at most 4 in the present problem. Let us assume that, for µ near µ0,
the eigenvalues of Lµ are contained either in a small vertical strip of width tending
towards 0 for µ→ µ0, or at a distance of order 1 from the imaginary axis, then the
estimate (11) allows us to find such a center manifold as in finite dimensional case
(see [20], [24], [29]). Roughly speaking, all ”small” bounded continuous solutions
taking values in D, of the system (9) for values of µ near µ0, lie on an invariant
manifoldMµ which is smooth (however loosing the C∞ regularity) and which exists
in a neighborhood of 0 independent of µ (depending on the required smoothness).
The dimension of Mµ is equal to the sum of dimensions of invariants subspaces
belonging to pure imaginary eigenvalues occuring for the critical value µ0 of the
parameter. In addition, the trace of system (9) on Mµ is also reversible under
the restriction S0 of the symmetry S. It results, in particular that the study we
made at sections 1.2 and 1.3 applies here (after a suitable choice of the bifurcation
parameter). The situation near the set λ = 1, b < 1/3 was studied first in [1] and
[25] in an uncomplete way. Here case (i) applies (not too close to the codimension
2 point, since we would need to use another normal form there (see [10] for such
a study). Denoting by µ = λ − 1, it is shown in [14] that we are in situation
of figure 1, with c > 0. The study of unavoidable exponentially small oscillations
at infinity was first studied directly on the water wave problem in [3] and [26],
and as a general property for a large class of problems in [22]. The generic non
existence of solitary waves in this case follows from [23]. Now, the study made
for case (ii) applies near the curve Γ of figure 3 (right). For problem (9) it is
shown that coefficient q2 is negative. For other water wave problems with more
than one layer, this coefficient may change of sign, which leads to new types of
solutions near this singular case. In the present problem, we then have for (b, λ)
slightly above the curve Γ, the bifurcation of two reversible solitary waves, with
exponentially damping oscillations at infinity [13].

Remark 4 Such reversible bifurcations in function of 2 parameters also appear
in various physical problems. A very nice example is in the study of localized
stuctures for long (assumed infinitely long) rubber rods subject to end tension and
moment! The basic state is the straight rod. The study of eigenvalues of the
linearized operator lead to a picture analogue to figure 3 (right). In particular,
the two homoclinic orbits above, become four because of an extra symmetry of the
problem, and are physically important in the study of buckling of such rods (see [5]).
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3 Physical relevance - infinite depth problem

A common point for the various water wave problems, is that when the bottom
layer thickness grows (b → 0 in (10)), there is an accumulation of eigenvalues on
the whole real axis, and at the limit, as we choose a space D where we replace
1/b by ∞ and suppress the boundary condition at y = −1/b, all real eigenvalues
disappears, leaving the place to the entire real axis forming the essential spectrum:
for σ real 6= 0 the operator (σI−Lµ) is not Fredholm [18]: it is one-to-one, but its
range is not closed and its closure has a non zero finite codimension (see [15],[11]).

At this point we should emphasize that the physical relevance of the center
manifold reduction for the finite depth problem is linked with the distance of the
rest of (non critical) eigenvalues from the imaginary axis. So, the validity of the
bifurcation analysis is becoming empty when the thickness of the layer increases.
To fix ideas, let us give some physical numerical values for air-water free surface
waves. The point (b, λ) = (1/3, 1) then corresponds to a thickness h = 0.48 cm,
and a velocity of waves c = 21.6 cm/s. This means that a layer with thickness
more than few centimeters leads to a spectrum with real eigenvalues very close
to 0, so the analysis which might be done (as in previous section) near the curve
Γ (right of figure 3) for λb near 1/4 on the upper branch) would be valid only in
a very tiny neighborhood of this curve, and this analysis would have no physical
interest. We need to study the worse limiting case, which is here the infinite
depth case, and physical cases are in fact considered as regular perturbations of
this limiting case. We shall see below that this has dramatic consequences on the
mathematical analysis!

For the limiting problem the dispersion relation (10) has at most 4 roots.
There is a pair of two pure imaginary double eigenvalues for λb = 1/4. The re-
maining of the spectrum of Lµ is formed by the full real line, hence it crosses the
imaginary axis at 0, and we cannot use the center manifold reduction. However,
we still have the resolvent estimate (11), due to a good choice of space H. In par-
ticular this type of results is also valid for problems with several layers, one being
of infinite depth, with an additional eigenvalue in 0 (embedded in the essential
spectrum), when there is no surface tension at one of the free surfaces [11].

3.1 Normal forms in infinite dimensions

Since we cannot reduce our problems to finite dimensional ODE’s, and since we
still would like to believe that eigenvalues near the imaginary axis are ruling the
bounded solutions, this is a motivation for developing a theory of normal forms
in separating the finite dimensional critical space, from the rest (the ”hyperbolic”
part of the spectrum, including 0). This leads to ”partial normal forms”, where
there are coupling terms, specially in the infinite dimensional part of the system
(see [15],[8]). For developing this theory, there are some technical difficulties,
specially for problems with more than one layer and no surface tension at some free
surface. A first difficulty is due to cases where 0 is an eigenvalue embedded in the
essential spectrum: for extracting it from the spectrum, we use the explicit form
of the resolvent operator near the real axis, to explicitely obtain the continuous
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linear form which can be used for the projection on the eigenspace belonging to 0.
A second difficulty is that in space H the linear operator has not an ”easy” (even
formal) adjoint. This adjoint and some of its eigenvectors are usually necessary
for expressing projections on the critical finite dim space. Fortunately, in our
problems, we use the explicit form of the resolvent operator near the (for example
double) eigenvalues, to make explicit the projection commuting with the linear
operator (see [18]).

3.2 Typical results

Since we have not yet a center manifold reduction process to a finite ODE, the
method we use now, needs to give a priori the type of solution, we are looking for.
This is a major difference with the cases we had before, for finite depth layers. For
periodic solutions, we use an adaptation of Lyapunov-Schmidt method, except that
the presence of 0 in the spectrum gives some trouble (resonant terms). It appears
that we can formulate all these problems, such that there is no such resonant
term for reversible solutions (symmetric under S). As a result, there are as many
periodic solutions as in the finite depth problem [11]. For solutions homoclinic to 0
(solitary waves), for example in our one layer problem, we first derive the infinite
dimensional normal form, then we inverse the infinite dimensional part of the
system, using Fourier transform. Indeed, the linearized Fourier transform uses the
above resolvent operator, where we eliminated, via a suitable projection, the poles
given by eigenvalues sitting on the imaginary axis. The fact that the resolvent
operator is not analytic near 0 (there is a jump of the resolvent in crossing the
real axis [15]), leads to the fact that this ”hyperbolic part” of the solution decays
polynomially at infinity. Putting this solution into the four dimensional part of the
system, we can solve as before except that the decay of solutions is now polynomial
(as 1/x2), instead of exponential. The principal part of the solution (of order
(λb − 1/4)1/2) at finite distance still comes from the four dimensional truncated
normal form, but its decays faster at infinity than the other part of the solution,
which makes this queue part predominant at infinity. This is the main difference
with the finite depth case, where the principal part coming from the normal form
is valid for all values of x (see [15] for the proofs related with problem (9)).

As a conclusion, let us just say that I present here a specific type of physical
problems which motivate some developments of existing mathematical theories. It
also gives motivation for finding a new tool, probably very difficult to produce,
like a center manifold reduction in cases when a continuous part of the spectrum
crosses the imaginary axis. This is another illustration of the fact that progresses
in mathematics may come from non academic questions raised naturally from
discussions and collaboration with other disciplines.
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Exact Relations for Composites:Towards a Complete Solution
Yury Grabovsky and Graeme W. Milton1

Abstract. Typically, the electrical and elastic properties of composite
materials are strongly microstructure dependent. So it comes as a nice
surprise to come across exact formulae for ( or linking) effective tensor
elements that are universally valid no matter what the microstructure.
Here we present a systematic theory of exact relations embracing the
known exact relations and establishing new ones. The search for exact
relations is reduced to a search for tensor subspaces satisfying certain
algebraic conditions. One new exact relation is for the effective shear
modulus of a class of three-dimensional polycrystalline materials.

1991 Mathematics Subject Classification: Primary 35B27, 73B27, 73S10;
Secondary 73B40, 49J45
Keywords and Phrases: Composites, homogenization, polycrystals, exact
relations

Introduction

Take a metal rod. We can bend it, twist it, stretch it, vibrate it or use it as a
conduit for the flow of electrons or heat. It looks just like a homogeneous material
with behavior governed by bulk and shear elastic moduli and electrical and thermal
conductivities. However if we break the metal rod there is a surprise! One can see
that the surface of the break is rough, comprised of individual crystalline grains
sparkling in the light. Similarly foam rubber behaves like a highly compressible
homogeneous elastic material, even though its pore structure is quite complicated.
Homogenization theory provides a rigorous mathematical basis for the observation
that materials with microstructure can effectively behave like homogeneous mate-
rials on a macroscopic scale. A typical result is the following. To ensure ellipticity
of the equations let us suppose we are given positive constants α and β > α and

1Both authors are supported by the National Science Foundation through grants
DMS9402763, DMS9629692, DMS9704813 and DMS-9803748.
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624 Grabovsky and Milton

a periodic conductivity tensor field σ(x) taking values in the set Mc comprising
of all d× d symmetric matrices σ satisfying

αv · v ≤ v · σv ≤ βv · v, (1)

for all vectors v. Then with σǫ(x) = σ(x/ǫ) the electrical potential φǫ(x) which
solves the Dirichlet problem

∇ · σǫ(x)∇φǫ(x) = f(x) within Ω, φǫ(x) = ψ(x) on ∂Ω, (2)

converges as ǫ → 0 (i.e. as the length scale of the periodicity of σǫ(x) shrinks to
zero) to the potential φ0 which solves

∇ · σ∗∇φ0(x) = f(x) within Ω, φ0(x) = ψ(x) on ∂Ω, (3)

where the effective conductivity tensor σ∗ is in Mc and only depends on σ(x)
and not upon the choice of Ω, the source term f(x), nor upon the potential ψ(x)
prescribed at the boundary. The effective conductivity tensor σ∗ is obtained by
solving the following cell-problem. One looks for periodic vector fields j(x) and
e(x), representing the current and electric fields, which satisfy

j(x) = σ(x)e(x), ∇ · j = 0, ∇× e = 0. (4)

The relation 〈j〉 = σ∗〈e〉 between the average current and electric fields serves to
define σ∗. Here, as elsewhere, the angular brackets will be used to denote volume
averages over the unit cell of periodicity. Homogenization results extend to fields
σǫ(x) taking values in Mc which are locally periodic, or random and stationary,
or simply arbitrary: see Bensoussan, et. al. (1978), Zhikov, et. al. (1994), and
Murat and Tartar (1997) and references therein.

Similar results hold for elasticity. Given positive constants α and β > α and
a periodic elasticity tensor field C(x) taking values in the setMe comprised of all
elasticity tensors C satisfying

αA ·A ≤ A · CA ≤ βA ·A, (5)

for all symmetric d×d matrices A, there is an associated effective elasticity tensor
C∗ in Me. It is obtained by looking for periodic symmetric matrix valued fields
τ (x) and ǫ(x), representing the stress and strain fields, which satisfy

τ (x) = C(x)ǫ(x), ∇ · τ = 0, ǫ = [∇u+ (∇u)T ]/2, (6)

in which u(x) represents the displacement field. The relation 〈τ 〉 = C∗〈ǫ〉 between
the average stress and strain fields serves to define C∗.

A key problem, of considerable technological importance, is to determine the
effective tensors σ∗ and C∗ governing the behaviour on the macroscopic scale.
For a long while it was the dream of many experimentalists and theorists alike
that there should be some universally applicable “mixing formula” giving the ef-
fective tensors as some sort of average of the tensors of the crystalline grains or
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constituent materials. However the reality is that the details of the microgeom-
etry can sometimes play an influential role in determining the overall properties,
particularly when the crystalline grains have highly anisotropic behavior or when
there is a large contrast in the properties of the constituent materials. Consider,
for example, a two-phase composite where one phase is rigid and the second phase
is compressible. The question of whether the composite as a whole is rigid or com-
pressible is not solely determined by the volume fractions occupied by the phases,
but depends on whether the rigid phase has a connected component spanning the
material or consists of isolated inclusions embedded in the compressible phase.

So we have to temper the dream. Instead of seeking a universally applicable
“mixing formula” one can ask whether certain combinations of effective tensor
elements can be microstructure independent. Indeed they can. Sometimes these
exact relations are easy to deduce and sometimes they are not at all obvious.
Such exact relations provide useful benchmarks for testing approximation schemes
and numerical calculations of effective tensors. Grabovsky (1998) recognized that
there should be some general theory of exact relations. Utilizing the fact that an
exact relation must hold for laminate materials he derived restrictive constraints
on the form that an exact relation can take. This reduced the search for candidate
exact relation to an algebraic question that was analysed by Grabovsky and Sage
(1998). Here we give sufficient conditions for an exact relation to hold for all
composite microgeometries, and not just laminates. At present the general theory
of exact relations is still not complete. There is a gap between the known necessary
conditions and the known sufficient conditions for an exact relation to hold. In
addition the associated algebraic questions have only begun to be investigated.
Before proceeding to the general theory let us first look at some examples: see
also the recent review of Milton (1997).

Examples of some elementary exact relations

An example of a relation which is easy to deduce is the following. Lurie, Cherkaev
and Fedorov (1984) noticed that if the elasticity tensor field C(x) is such that
there exist non-zero symmetric tensors V and W with C(x)V = W for all x
then the effective tensor C∗ must satisfy C∗V = W . The reason is simply that
the elastic equations are solved with a constant strain ǫ(x) = V and a constant
stress τ (x) = W and the effective tensor, by definition, relates the averages of
these two fields. In particular, consider a single phase polycrystalline material,
where the crystalline phase has cubic symmetry. Each individual crystal responds
isotropically to hydrostatic compression, and we can take V = I and W = dκ0I
where d is the spatial dimension (2 or 3) and κ0 is the bulk modulus of the pure
crystal. The result implies that the effective bulk modulus κ∗ of the polycrstal is
κ0 (Hill, 1952). Another way of expressing this exact relation is to introduce the
manifold

M =M(V ,W ) = {C ∈ Me | CV =W }, (7)

of elasticity tensors. The exact relation says that if C(x) ∈ M for all x then
C∗ ∈ M. In other words the manifold M is stable under homogenization. It
defines an exact relation because it has no interior. Many other important exact
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relations derive from uniform field arguments: see Dvorak and Benveniste (1997)
and references therein.

The classic example of a non-trivial exact relation is for two-dimensional con-
ductivity (or equivalently for three-dimensional conductivity with microstructure
independent of one coordinate). When d = 2 the equations (4) can be written in
the equivalent form

j′(x) = σ′(x)e′(x), ∇ · j′(x) = 0, ∇× e′(x) = 0, (8)

where

j′(x) ≡ cR⊥e(x), e′(x) ≡ R⊥j(x), σ′(x) ≡ cR⊥[σ(x)]−1RT⊥. (9)

in which c is a constant and R⊥ is the matrix for a 90◦ rotation. In other words
the fields j′(x) and e′(x) solve the conductivity equations in a medium with
conductivity σ′(x). Moreover by looking at the relations satisfied by the average
fields one sees that the effective conductivity tensor σ′∗ associated with σ′(x) and
the effective conductivity tensor σ′∗ associated with σ(x) are linked by the relation

σ′∗ = cR⊥(σ∗)
−1RT⊥, (10)

[see Keller (1964), Dykhne (1970) and Mendelson (1975)]. Now suppose the
conductivity tensor field is such that its determinant is independent of x, i.e.
detσ(x) = ∆. With c = ∆ we have σ′(x) = σ(x) implying σ′∗ = σ∗. From (10)
one concludes that detσ∗ = ∆. In other words the manifold

M =M(∆) = {σ ∈Mc | detσ = ∆} (11)

is stable under homogenization (Lurie and Cherkaev, 1981). Again it defines an
exact relation because it has no interior. An important application of this result is
to a single phase polycrystalline material where the crystalline phase has a conduc-
tivity tensor with determinant ∆. If the polycrystal has an isotropic conductivity
tensor the exact relation implies the result of Dykhne (1970) that σ∗ =

√
∆I.

An equation satisfied by the polarization field

For simplicity, let us consider the conductivity problem and take as our reference
conductivity tensor a matrix σ0 inMc. Affiliated with σ0 is a non-local operatorΓ
defined as follows. Given any periodic vector-valued field p(x) we say that e′ = Γp
if e′ is curl-free with 〈e′〉 = 0 and p − σ0e′ is divergence-free. Equivalently, we
have

ê
′(k) = Γ(k)p̂(k) for k 6= 0,

= 0 when k = 0, (12)

where ê′(k) and p̂(k) are the Fourier coefficients of e′(x) and p(x) and

Γ(k) =
k ⊗ k
k · σ0k

. (13)
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Now suppose we take a polarization field p(x) = (σ(x) − σ0)e(x) where
e(x) solves the conductivity equations. It is analogous to the polarization field
introduced in dielectric problems. From the definition (13) of the operator Γ we
see immediately that it solves the equation

[I + (σ − σ0)Γ]p = (σ − σ0)〈e〉 and 〈p〉 = (σ∗ − σ0)〈e〉. (14)

For investigating exact relations it proves convenient to use another form of these
equations. We choose a fixed matrixM , define the fractional linear transformation

WM (σ) = [I + (σ − σ0)M ]−1(σ − σ0), (15)

(in which we allow for σ − σ0 to be singular) and rewrite (14) as

[I −KA]p =Kv, 〈p〉 =K∗v, (16)

where
K(x) = WM (σ(x)), K∗ = WM (σ∗), v = 〈e〉+M 〈p〉, (17)

and A is the non-local operator defined by its action, Ap = M(p − 〈p〉) − Γp.
The formula (16) involves the operator KA. If q =KAp we have

q(x) =
∑

k 6=0

eik·xK(x)A(k)p̂(k), where A(k) =M − Γ(k), (18)

and p̂(k) is the Fourier component of p(x).

Necessary conditions for an exact relation

Since exact relations hold for all microstructures they must in particular hold
for laminate microstructures for which the tensors and hence the fields only have
variations in one direction, n. This simple consideration turns out to impose very
stringent constraints. Consider the conductivity problem. Let us takeM = Γ(n)
and let Wn(σ) denote the transformation WM (σ). When K(x) = K(n · x)
(16) is easily seen to have the solution p(x) = K(x)v and K∗ = 〈K〉 because
A annihilates any field which only has oscillations in the direction n. [Milton
(1990) and Zhikov (1991) give related derivations of the formula K∗ = 〈K〉:
see also Backus (1962) and Tartar (1976) for other linear lamination formulae.]
Since K∗ is just a linear average of K(x) any set of conductivity tensors which
is stable under homogenization, and hence lamination, must have a convex image
under the transformation Wn. In particular if a manifold M defines an exact
relation, and σ0 ∈ M then Wn(M) must be convex and contain the origin. But
M and hence Wn(M) have no interior, and a convex set with no interior must
lie in a hyperplane. It follows that Wn(M) must lie in a hyperplane passing
through the origin, i.e. in a subspace K = Kn. Moreover, sinceM must be stable
under lamination in all directions the set Wm(W−1

n (K)) must be a subspace for
each choice of unit vector m. Now given some tensor K ∈ K and expanding
Wm(W−1

n (ǫK)) in powers of ǫ gives

Wm(W−1
n (ǫK)) = ǫK{I − [Γ(n)− Γ(m)]ǫK}−1

= ǫK + ǫ2KA(m)K + ǫ3KA(m)KA(m)K + . . . , (19)

Documenta Mathematica · Extra Volume ICM 1998 · III · 623–632



628 Grabovsky and Milton

where A(m) is given by (18) with M = Γ(n). Since the linear term is ǫK the
hyperplane Wm(W−1

n (K)) must in fact be K itself, i.e. K does not depend on n.
From an examination of the quadratic term we then see that

KA(m)K ∈ K for all m and for all K ∈ K. (20)

Higher order terms in the expansion do not yield any additional constraints. Indeed
substitution of K =K1+K2 in (20), where K1 and K2 both lie in K, yields the
corollary,

K1A(m)K2 +K2A(m)K1 ∈ K for all K1,K2 ∈ K. (21)

Applying this with K1 =K and K2 =KA(m)K shows that the cubic term lies
in the space K. Similarly all the remaining higher order terms must also lie in K
once (20) is satisfied. Therefore the condition (20) is both necessary and sufficient
to ensure the stability under lamination of the set of all conductivity tensors in
Mc ∩W−1

n (K).
For example, consider two-dimensional conductivity and take σ0 = σ0I. Then

A(m) = (n⊗ n−m⊗m)/σ0 is a trace-free 2× 2 symmetric matrix. Now trace
free 2 × 2 symmetric matrices have the property that the product of any three
such matrices is also trace free and symmetric. So (20) will be satisfied when K
is the space of trace free 2 × 2 symmetric matrices. Then W−1

n (K) consists of
2× 2 symmetric matrices σ∗ such that Tr[(σ0I − σ∗)−1] = 1/σ0. Equivalently, it
consists of matrices σ∗ such that detσ∗ = σ20 . This confirms that the manifold
(11) is stable under lamination.

The preceeding analysis extends easily to the elasticity problem (and also
to piezoelectric, thermoelectric, thermoelastic, pyroelectric and related coupled
problems). Candidate exact relations are found by searching for subspaces K of
fourth-order tensors K satisfying (20) where A(m) = Γ(n)−Γ(m) and Γ(k) is a
fourth-order tensor dependent upon the choice of a reference elasticity tensor C0 ∈
Me. In particular, for three-dimensional elasticity, if C0 is elastically isotropic
with bulk modulus κ0 and shear modulus µ0, Γ(k) has cartesian elements

{Γ(k)}ijℓm =
1

4µ0

(
kiδjℓkm + kiδjmkℓ + kjδiℓkm + kjδimkℓ − 4kikjkℓkm

)

+
3kikjkℓkm
3κ0 + 4µ0

. (22)

Once such a subspace K is found the canditate exact relation is the set

M =Me ∩W−1
n (K), (23)

where W−1
n is the inverse of the transformation

Wn(C) = [I + (C − C0)Γ(n)]−1(C − C0). (24)

Using a related procedure Grabovsky and Sage (1998) found as a canditate exact
relation, stable under lamination, the manifold M = M(µ0) consisting of all
elasticity tensors in Me expressible in the form

C = 2µ0(I − I ⊗ I) +D ⊗D, (25)
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for some choice of symmetric second-order tensorD, in which I is the fourth-order
identity tensor. We will establish that this manifoldM does in fact define an exact
relation valid for all composites and not just laminates. For planar elasticity the
analogous exact relation was proved by Grabovsky and Milton (1998).

Sufficient conditions for an exact relation

We would like to show that the manifold M of elasticity tensors defined by (23)
is stable under homogenization and not just lamination, i.e. to ensure that any
composite with elasticity tensor C(x) ∈ M always has an effective elasticity tensor
C∗ ∈ M. Here we will prove it is sufficient that there exist a larger space of fourth-
order tensors K (not necessarily self-adjoint) such that

K1A(m)K2 ∈ K for all m and for all K1,K2 ∈ K, (26)

and such that K equals the subspace of all self-adjoint tensors in K.
To avoid confusion let us first return to the setting of the conductivity prob-

lem. To find K∗ and hence σ∗ we need to solve (16) for a set of d different values
v1, v2, . . .vd of v. Associated with each value vi of v is a corresponding polariza-
tion field pi(x). Let V and P (x) be the d × d matrices with the vectors vi and
pi(x), i = 1, 2, . . . , d, as columns. [Similar matrix valued fields were introduced
by Murat and Tartar (1985).] Taking V = I the set of equations (16) for K∗ and
the d polarization fields can be rewritten as

[I −KA]P =K, 〈P 〉 =K∗, (27)

where now the field Q =KAP is given by

Q(x) =
∑

k 6=0

eik·xK(x)A(k)P̂ (k), (28)

in which P̂ (k) is the Fourier component of P (x), andK(x)A(k) acts on P̂ (k) by
matrix multiplication. The extension of this analysis to elasticity is mathematically
straight-forward, but physically intriguing since in the elasticity setting P (x) is
taken as a fourth-order tensor field.

Provided K(x) is sufficiently small for all x, i.e. σ(x) is close to σ0, the
solution to (27) is given by the perturbation expansion

P (x) =
∞∑

j=0

P j(x) where P j = (KA)jK. (29)

Now let us suppose K(x) takes values in a tensor subspace K satisfying (26).
Our objective is to prove that each field P j(x) in the perturbation expansion also
takes values in K. Certainly the first term P 0(x) = K(x) does. Also if for some
j ≥ 0 the field P j takes values in K then its Fourier coefficients also take values
in K and (28) together with (26) implies that P j+1 = KAP j also lies in K. By
induction it follows that every term in the expansion takes values in K. Provided
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the perturbation expansion converges this implies that 〈P 〉 =K∗ lies in K. Even
if the perturbation expansion does not converge, analytic continuation arguments
imply the exact relation still holds provided σ(x) ∈Mc for all x, as will be shown
in a forthcoming paper.

The effective shear modulus of a family of polycrystals

To illustrate the power of this method of generating exact relations, let us consider
three-dimensional elasticity and prove that the manifold M consisting of all elas-
ticity tensors in Me expressible in the form (25) for some choice of D defines an
exact relation. We take C0 to be an arbitrary isotropic elastcity tensor with bulk
modulus κ0 and shear modulus µ0. The associated tensor Γ(n), given by (22) has
the property that Tr[Γ(m)I] is independent of m implying that with

M = I ⊗ I/3(3κ0 + 4µ0), (30)

we have
Tr{[M − Γ(m)]I} = 0 for all m. (31)

Now consider the subspace K consisting of all fourth order tensors K expressible
in the form K = I ⊗B +B′ ⊗ I for some choice of symmetric matrices B and
B′. Now given symmetric matrices B1, B

′
1, B2 and B′2 (31) implies there exist

symmetric matrices B3 and B′3 such that

[I ⊗B1 +B′1 ⊗ I]A(m)[I ⊗B2 +B′2 ⊗ I] = I ⊗B3 +B′3 ⊗ I. (32)

Therefore the subspace K satisfies the desired property (26). The subspace K
of self-adjoint fourth-order tensors within K is six-dimensional consisting of all
tensors of the form K = I ⊗B +B ⊗ I, where B is a symmetric matrix. When
K = I⊗B+B⊗I and 3κ0+ 4µ0−2TrB > 0 algebraic manipulation shows that

C = W−1
M

(K) = 2µ0(I − I ⊗ I) +D ⊗D, (33)

with
D = [3κ0 + 4µ0 − TrB)I + 3B]/

√
3(3κ0 + 4µ0 − 2TrB). (34)

The manifold M associated with K therefore consists of all tensors C ∈ Me

expressible in the form (25), and is stable under homogenization.
As an example, consider a three-dimensional elastic polycrystal where the

elasticity tensor takes the form

C(x) = R(x)R(x)C0R
T (x)RT (x), (35)

where R(x) is a rotation matrix, giving the orientation of the crystal at each point
x and C0 is the elasticity tensor of a single crystal which we assume has the form

C0 = 2µ0(I − I ⊗ I) +D0 ⊗D0, where [Tr(D0)]
2 − 2Tr(D20) > 4µ0 > 0, (36)

in which the latter condition ensures that C0 is positive definite. The elasticity
tensor field C(x) is of the required form (25) with D(x) = R(x)D0R

T (x) and
therefore the effective tensor C∗ of the polycrystal must lie on the manifold M
for some β > α > 0. In particular if C∗ is isotropic then its shear modulus is µ0,
independent of the polycrystal microgeometry. For planar elasticity the analogous
result was proved by Avellaneda et. al. (1996).
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Some interesting exact relations for coupled field problems

We are left with the algebraic problem of characterizing which tensor subspaces
satisfy the conditions (20) or (26). One might wonder if there is perhaps some
easy characterization. For elasticity and conductivity in two or three dimensions all
possible rotationally invariant exact relations have now been found [see Grabovsky
(1998), Grabovsky and Sage (1988) and references therein] but in a more general
context the following example shows that the task is not so simple.

Consider a coupled field problem where there are there are m divergence free
fields j1(x), j2(x), ..., jm(x) and m curl free fields e1(x),e2(x), ...,em(x) which
are linked through the constitutive relation

jiα(x) =
d∑

j=1

m∑

β=1

Liαjβ(x)ejβ(x), (37)

where α and β are field indices while i and j are space indices. Milgrom and
Shtrikman (1989) have obtained some very useful exact relations for coupled field
problems. Rather than rederiving these let us look for exact relations withM = 0
and a reference tensor L0 which is the identity tensor I. The associated tensor
A(m) = M − Γ(m) has elements Aiαjβ = −δαβmimj . Now take R to be a
r-dimensional subspace of m ×m matrices and let S denote the d2-dimensional
space of d × d matrices, and consider the rd2-dimensional subspace K spanned
by all tensors K which are tensor products of matrices R ∈ R and matrices
S ∈ S, i.e. which have elements Kiαjβ = RαβSij . Given a tensor K1 which
is the tensor product of R1 ∈ R and S1 ∈ S and a tensor K2 which is the
tensor product of R2 ∈ R and S2 ∈ S, the product K1A(m)K2 will certainly
be in K provided R1R2 ∈ R. Moreover if this holds for all R1,R2 ∈ R then K
defines an exact relation because it is spanned by matrices of the same form as
K1 andK2. This observation allows us to generate countless exact relations. The
condition on R just says that it is closed under multiplication, i.e. that it forms an
algebra. Unfortunately there is no known way of characterizing which subspaces
of matrices form an algebra for general m, and this hints of the difficulties involved
in trying to obtain a complete characterization of exact relations. Since M = 0
the manifold M consists of an appropriately bounded coercive subset of tensors
of the form L = I +K where K ∈ K. The case where m = 2 and R is the set
of all 2 × 2 matrices of the form R = aI + bR⊥ (which is clearly closed under
multiplication) corresponds to tensor fields L(x) for which the consitutive relation
can be rewritten in the equivalent form of a complex equation

j1(x) + ij2(x) = (A(x) + iB(x))(e1(x) + ie2(x)). (38)

The effective tensor L∗ will have an associated complex form A∗ + iB∗.
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Optimal Dynamic Instability of Microtubules
Charles S. Peskin1

Abstract. Microtubules are polymers that play many important struc-
tural and functional roles within biological cells, including the separation
of newly replicated chromosomes into the daughter cells during cell di-
vision. In order to catch the chromosomes that they must transport,
microtubules grow out of the centrosome in each of the daughter cells.
For any particular microtubule, epochs of steady growth are punctuated
by episodes of rapid decay; this is known as dynamic instability. It allows
for multiple attempts on the part of each microtubule to hit the small
target at the center of each chromosome known as the kinetochore, where
the microtubule can attach and apply traction to the chromosome. The
optimal design of dynamic instability is the subject of this paper.

1991 Mathematics Subject Classification: 92C05, 92C40, 92C45
Keywords and Phrases: dynamic instability, microtubule, chromosome

1 Introduction: How to Catch and Transport a Chromosome

During cell division, the newly replicated chromosomes are pulled into the daugh-
ter cells by microtubules. This activity is organized by the centrosomes, one in
each of the daughter cells, which form the two poles of the familiar mitotic spindle.
Microtubules are polymers, made of protein subunits known as tubulin, that grow
radially outward from the centrosomes. Dynamic instability, discovered by Mitchi-
son and Kirschner [1], is a phenomenon concerning the assembly and disassembly
of microtubules. Specifically, the individual steps of addition and removal of tubu-
lin subunits to and from the end of a given microtubule, although random, are
far from independent. Indeed, the microtubule acts like a two-state device, with
a steadily growing state and a rapidly decaying state. Transitions between these
states occur much more rarely than the individual steps of addition or removal of
subunits.

As has been emphasized by Hill and Chen [2], dynamic instability drastically
alters the statistical properties of microtubules, in comparison to the properties
that would be expected on the basis of independent addition and removal of sub-
units. In this paper, we shall continue the exploration of this theme, from a

1Supported by the National Science Foundation (USA) under DMS/FD 92-20719. Thanks
also to George Oster and David McQueen for their help in connection with this work.
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somewhat different perspective, that of optimal design. Specifically, we shall state
and solve an optimization problem that explains why dynamic instability is needed
and determines certain relationships between the rate constants that characterize
the assembly and disassembly of microtubules.

Mathematical theories and computer simulations of the dynamic instability
of microtubules may be divided into two broad categories. First, there are the
theories that simplify the microtubule by treating it as a one-dimensional polymer.
Among such works are [2, 3] and also the present paper adopts this simplified point
of view, which is amenable to analysis. Another possibility is to take into account
the two-dimensional tubular lattice in which the subunits of the microtubule are
actually arranged. This has been done in [4, 5, 6, 9]. The two-dimensional lattice
models have been studied by Monte-Carlo simulation.

For a detailed review of the role of microtubules in chromosome transport,
including but not limited to dynamic instability, see [7]. Dynamic instability
makes possible the trial-and-error process that leads to chromosome capture by
microtubules. Following capture, traction on the chromosome is generated by
depolymerization of the microtubules [8].

2 Polymerization and Depolymerization of Microtubules

A typical microtubule consists of 13 protofilaments, each of which runs in a straight
line, parallel to the axis of the microtubule. We shall simplify the description of
the microtubule by regarding it as a one-dimensional polymer; this polymer may
be thought of as representing any one of the 13 protofilaments, even though this
ignores significant interactions between neighboring protofilaments, interactions
which tend to coordinate their assembly and disassembly.

The subunits of a microtubule are tubulin dimers, here denoted by the symbol
T. Each such tubulin dimer has two possible states, denoted T.GDP or T.GTP
according to whether a guanosine diphosphate (GDP) or a guanosine triphosphate
(GTP) molecule is bound to the tubulin dimer. Following the lateral cap hypoth-
esis of Bayley et al. [5], in the simplified form appropriate to our one-dimensional
model, we assume that only T.GTP can be added to a microtubule, and only
T.GDP can exist in the interior of a protofilament (i.e., not at its end). Note that
these rules allow the terminal subunit to be either T.GDP or T.GTP. This one bit
of information will determine whether the model microtubule is in a polymerizing
mode (with T.GTP at the tip), or in a depolymerizing mode (with T.GDP at the
tip).

In case the terminal subunit is T.GTP, then the following polymerization re-
action, driven by GTP hydrolysis (GTP→ GDP + Pi, where Pi denotes inorganic
phosphate) can occur

(T.GDP)n−1(T.GTP) + (T.GTP)→ (T.GDP)n(T.GTP) + Pi (1)

Note that the protofilament has grown by the addition of one tubulin dimer and
that it still has a T.GTP subunit at its tip, so the process described by Eq.1 may
be repeated indefinitely.
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If, on the other hand, the terminal subunit is T.GDP, then this subunit can
spontaneously dissociate:

(T.GDP)n → (T.GDP)n−1 + (T.GDP) (2)

and this depolymerization process, too, may be repeated indefinitely (until the
microtubule has shrunk to zero length).

Conversion in either direction between the polymerizing mode (Eq.1) and the
depolymerizing mode (Eq.2) may occur through the following reversible reaction,
which is supposed to be rare (i.e., slow) in comparison to the reactions described
by Eqs.1 and 2, above:

(T.GDP)n−1 + (T.GTP)↔ (T.GDP)n−1(T.GTP) (3)

The forward reaction in Eq.3 switches the protofilament from the depolymerizing
to the polymerizing mode, and the reverse reaction accomplishes the opposite.
There are other possible ways to switch modes (involving phosphorylation or de-
phosphorylation of the terminal T.GDP or T.GTP, respectively), but we shall
adhere to Eq.3 as the switching mechanism throughout this paper.

The following diagram summarizes the kinetic scheme for the assembly and
disassembly of microtubules that is used in this paper:

α α α α α
A1 → A2 → · · · → An → An+1 → · · ·

α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′
B0 ← B1 ← · · · ← Bn−1 ← Bn ← · · ·

β β β β β

(4)

In this diagram, the symbol A denotes the polymerizing mode and B denotes
the depolymerizing mode. The subscript on A or B denotes the total number of
subunits in the polymer. Thus, An = (T.GDP)n−1(T.GTP), n ≥ 1; and Bn =
(T.GDP)n, n ≥ 0. Note that B0 is the fixed anchor, or seed, located within the
centrosome, from which the microtubule grows. Implicit in the kinetic scheme Eq.4
is the assumption that this seed has the same properties as a T.GDP molecule.

The rate constants, with dimensions of inverse time, that appear in the fore-
going scheme, are defined as follows: α = rate constant for fast (Eq.1) polymer-
ization; β = rate constant for fast (Eq.2) depolymerization; α′ = rate constant for
slow (Eq.3) polymerization; β′ = rate constant for slow (Eq.3) depolymerization.
Note that the polymerizing rate constants are proportional to the concentration of
T.GTP in solution: α = a [T.GTP]; α′ = a′ [T.GTP], but that the depolymerizing
rate constants are independent of concentration.

Implicit in our whole discussion of the microtubule as a two-state device, with
a polymerizing state and a depolymerizing state, are the inequalities β′ < α and
α′ < β, so that the microtubule takes many steps of polymerization with rate
constant α before losing its T.GTP cap, and many steps of depolymerization with
rate constant β before regaining that cap.

For the sake of comparison, however, it is also of interest to consider the special
case α = α′, β = β′. This corresponds to the situation in which polymerization
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and depolymerization proceed without regard to the distinction between T.GTP
and T.GDP, and there is no phenomenon of dynamic instability. We shall try to
understand why nature does not proceed in this simple manner.

The differential equations describing an ensemble of protofilaments can now
be written down by inspection of the kinetic scheme (Eq.4). Let pn(t) be the
probability of finding the system in state An at time t, and let qn(t) be the corre-
sponding probability for the state Bn. Then

dq0
dt

= β′p1 + βq1 − α′q0 (5)

dp1
dt

= α′q0 − (α+ β′)p1 (6)

and for n ≥ 1
dqn
dt

= β′pn+1 + βqn+1 − (α′ + β)qn (7)

dpn+1
dt

= αpn + α′qn − (α+ β′)pn+1 (8)

Finally, the qn and pn are normalized according to

∞∑

n=0

qn +
∞∑

n=1

pn = 1 (9)

It follows from Eqs.5-8 that

n−1∑

k=0

(
dqk
dt

+
dpk+1
dt

) = −(αpn − βqn) (10)

for n ≥ 1. This will be useful in constructing a steady-state solution of Eqs.5-9.

3 Steady-State Solution [3]

In the steady state (dpn/dt = dqn/dt = 0 for all n), Eq.10 becomes αpn = βqn.
Thus, we may set un = αpn = βqn, n ≥ 1. It then follows from the steady-state
form of Eq.7 or 8 that un+1 = run, n ≥ 1, where r = (1 +α′/β)/(1 +β′/α). Thus,
we have a normalizable solution if and only if r < 1, which (since all of the rate
constants are positive) is equivalent to

0 < (ββ′ − αα′) (11)

This means that depolymerization is dominant over polymerization. If the in-
equality Eq.11 is not satisfied, then the microtubule just grows forever and there
is no steady state. From now on we shall assume that this important inequality is
indeed satisfied.

According to the foregoing, the un form a geometric sequence for n ≥ 1. It
is then straightforward to express all of the pn and qn in terms of u1, and to
determine u1 with the help of the normalization condition, Eq.9, thus completing
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the steady-state solution. We omit the details, but just give the following useful
result:

Let N be the random variable which is the number of subunits in a protofil-
ament, and let E[ ] denote the expected value (ensemble average) of the enclosed
quantity. Then

np = E[N |N > 0] =

∑∞
n=1(pn + qn)n∑∞
n=1(pn + qn)

=
E[N ]

1− q0
=
β(α+ β′)

ββ′ − αα′ (12)

Note that np measures the average length (in subunits) of microtubules by av-
eraging only over actual microtubules, i.e., by not including microtubules of zero
length in the average.

We now compare two special cases. First suppose α = α′ and β = β′. This
is the above-mentioned case in which the kinetics are indifferent to the distinction
between T.GDP and T.GTP. In this case, we find np = 1/(1 − α/β) Clearly, to
achieve a microtubule of any significant length (e.g., np = 100) in this situation,
(α/β) must be very close to 1. On the other hand, it is also required that (α/β) <
1, or the steady-state solution does not exist. This implies that the parameters
must be poised on the edge of disaster in order for the system to function!

Now consider instead the limiting case β → ∞, with α, α′, and β′ all finite.
In this limit, np → (α/β′) + 1, the steady-state solution always exists, and we can
make the microtubules as long as we like by choosing (α/β′) large. This is much
better! The limiting case β → ∞ has other virtues as well. These will appear
below.

4 Mean and Variance of the Cycle Time

In order to participate in chromosome transport, a microtubule must first grow
until it hits the kinetochore of a chromosome. This being an unlikely event, re-
peated trials are needed. To the extent that microtubules grow in straight lines, a
new trial cannot be said to begin until the microtubule shrinks all the way down
to zero length and then starts to grow again, at a possibly different angle. Thus,
an important random variable is the cycle time, Sc, which we define as the elapsed
time between successive departures from the state B0, in which the microtubule
has zero length, see Eq.4.

The cycle time Sc has two components:

Sc = S0 + Sp (13)

where S0 is the waiting time in state B0, and Sp is the time elapsed between a
given departure from B0 and the subsequent arrival at B0. Since S0 and Sp are
independent random variables, we have τc = E[Sc] = E[S0] + E[Sp] and vc =
Var[Sc] = Var[S0] + Var[Sp], where Var[ ] denotes the variance of the enclosed
random variable.

On general principles concerning chemical reactions, we know that the waiting
time S0 in the state B0 is exponentially distributed with mean 1/α′. It follows
that E[S0] = 1/α′ and Var[S0] = (1/α′)2 Thus, to evaluate τc and vc, we just
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need to know the mean and variance of the random variable Sp. These are found
by assuming that the system starts (t = 0) in the state A1 and by treating B0
as an absorbing state. The reaction scheme is the same as Eq.4, except that the
transition B0 → A1 is omitted:

α α α α α
A1 → A2 → · · · → An → An+1 → · · ·
↓ β′ α′ ↑↓ β′ α′ ↑↓ β′ α′ ↑↓ β′
B0 ← B1 ← · · · ← Bn−1 ← Bn ← · · ·

β β β β β

(14)

The differential equations are

dq0
dt

= β′p1 + βq1 (15)

dp1
dt

= −(α+ β′)p1 (16)

and for n ≥ 1, we have, as before, Eqs.7 and 8. Finally, the initial conditions are
p1(0) = 1 with all of the other pn and all of the qn equal to zero at t = 0.

If we can solve this initial-value problem, then we shall have the probability
density function of Sp, denoted ρp(t), which is given by

ρp(t) =
dq0
dt

= βq1(t) + β′p1(t) (17)

The initial-value problem stated above can indeed be solved in terms of
Laplace transforms. Instead of inverting the Laplace transform to find ρp(t), how-
ever, we shall be content with finding the mean and variance of Sp, which can
be evaluated directly from the Laplace transform itself. Specifically, if we define
ρ̂p(λ) =

∫∞
0
ρp(t) exp(−λt)dt (and similarly for all other functions of t), then we

have

E[Sp] =

∫ ∞

0

tρp(t)dt = −dρ̂p
dλ

(0) (18)

and similarly,

Var[Sp] = E[S2p]− (E[Sp])
2

=
d2ρ̂p
dλ2

(0)−
(
dρ̂p
dλ

(0)

)2
(19)

In terms of the transformed variables q̂n and p̂n, the initial value problem
becomes

λq̂0 − βq̂1 − β′p̂1 = 0 (20)

λp̂1 + (α+ β′)p̂1 = 1 (21)

and for n ≥ 1:
(λ+ α′ + β)q̂n − β′p̂n+1 − βq̂n+1 = 0 (22)

(λ+ α+ β′)p̂n+1 − αp̂n − α′q̂n = 0 (23)
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Now Eq.21 gives p̂1 directly, and we look for a solution of Eqs.22-23 of the
following form

p̂n(λ) = p̂1(λ)zn−1, n ≥ 1 (24)

q̂n(λ) = q̂1(λ)zn−1, n ≥ 1 (25)

where we must require |z| < 1. With this assumed form, Eqs.22 and 23 reduce to
the homogeneous 2× 2 system

(
λ1z − α −α′
−β′z λ2 − βz

)(
p̂1(λ)
q̂1(λ)

)
= 0 (26)

where λ1 = λ+ α+ β′ and λ2 = λ+ α′ + β. Of course, z is chosen so that Eq.26
has nontrivial solutions and |z| < 1. Then q̂1 can be found from Eq.26, since p̂1
is already known from Eq.21. The details are left as a (lengthy) exercise for the
reader. The results, after adding the expectations of Sp and S0, and similarly after
adding their variances, are as follows:

τc = E[Sc] =
1

α′
+

α+ β

ββ′ − αα′ (27)

vc = Var[Sc]

=

(
1

α′

)2
+

2β

(α+ β′)(ββ′ − αα′)

(
1 +

αβ′(α+ β′ + α′ + β)2

(ββ′ − αα′)2
)

−
(

α+ β

ββ′ − αα′
)2

(28)

5 Optimal Design of Dynamic Instability

We are now ready to state the optimization problem that is the main subject
of this paper. In order that the stochastic process of dynamic instability should
proceed as regularly as possible, let us choose α, α′, β, and β′ to minimize the
variance vc of the cycle time, subject to given values of the mean cycle time τc
and the mean length np of nonzero length microtubules.

Since there are 4 variables and 2 constraints, it should be possible to reduce
the number of independent variables to 2. A convenient choice of independent
variables is α′ and β. From the constraints, Eqs.12 and 27, we find

α =
β(np − 1)

Q
(29)

β′ =
α′np + β

Q
(30)

where

Q = (α′τc − 1)(np +
β

α′
)− α′τc(np − 1) (31)
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We can use these results to express vc as a function of α′ and β only (though
of course it will also contain as parameters the given constants np and τc):

vc(α
′, β;np, τc) =

(
1

α′

)2
+ τ2c

(
1 + 2(np − 1)

α′

β

)
− 2

τc
α′

+

(
1

α′ + β

)((
1

α′

)(
2np − 1 +

β

α′

)
− 4(np − 1)τc

)
(32)

Our goal is to minimize vc with respect to α′ and β. Let us first consider

∂vc
∂β

= − 2(np − 1)

α′(α′ + β)2

((
α′ + β

β

)2
(α′τc)

2 − 2(α′τc) + 1

)
(33)

Since (α′ + β)/β > 1, and since np > 1, it is evident that ∂vc/∂β < 0, and there
can be no minimum at finite β We can, however, look for a minimum at β = ∞.
Letting β →∞, we find

vc(α
′,∞;np, τc) =

(
1

α′

)2
+

(
τc −

1

α′

)2
(34)

which is minimized by setting

α′ =
2

τc
(35)

To complete the solution, we need only find α and β′. Taking the limit β →∞
in Eqs.29-31, we find

α =
np − 1

τc − 1
α′

=
2

τc
(np − 1) (36)

β′ =
1

τc − 1
α′

=
2

τc
(37)

Thus, in summary, the optimal solution is given by α′ = β′ = 2/τc; α =
(np − 1)(2/τc); and β =∞. The variance in the mean cycle time obtained in this
way is given by vminc = τ2c /2, which is half that of an exponentially distributed
random variable with the same mean. Note that vminc is independent of np.

To appreciate better the optimal solution, let us contrast it with the case
obtained by setting α′ = α and β′ = β. As discussed above, this means that
there is no distinction between the T.GDP and the T.GTP subunit. Under these
(degenerate) circumstances, we have, after some algebra,

vc =

(
1

α

)2
+

2β

(β − α)3
−
(

1

β − α

)2
=

(
τc
np

)2 (
1 + (2np − 1)(np − 1)2

)
(38)

which is asymptotic to 2npτ
2
c as np →∞.

Thus, in the absence of a mechanism that distinguishes T.GDP from T.GTP,
we find that the variance of the cycle time is a large multiple of the square of the
mean cycle time, instead of being fixed at τ2c /2 as in the optimal solution. Such
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Figure 1: Near-optimal dynamic instability (above) and no dynamic instability
(below); sample trajectories obtained by Monte-Carlo simulation. The horizontal
axis measures time in units of τc, and the vertical axis is polymer length expressed
in terms of the number of subunits. Note the extreme difference in statistical
character of the trajectories, even though both have the same mean polymer length
np = 25 and the same mean cycle time τc = 1. The (nearly) optimal case has many
cycles of comparable duration, whereas the degenerate case has a few long cycles
and a great many cycles that are much too short to be effective. This difference
in statistics, which is already quite dramatic, can be tremendously accentuated by
increasing the mean polymer length np.
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a large multiple indicates a long-tailed distribution of cycle times. Under these
conditions, a microtubule that missed its target (and that would be most of them,
after the first try) might spend a long time wandering up and down in length before
shrinking to zero length to try again. In the case of the optimal solution, though,
the cycle time is rather tightly controlled, and its variance is independent of the
mean length of the microtubules. The length can therefore be made large without
paying a price in terms of the variability of the cycle time. The degenerate case
and a near-optimal case (finite but large β) are further contrasted in Figure 1.
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On the Solution of Traveling Salesman Problems

David Applegate, Robert Bixby,

Vašek Chvátal and William Cook1

Abstract. Following the theoretical studies of J.B. Robinson and
H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulk-
erson, and S.M. Johnson demonstrated in 1954 that large instances of the
TSP could be solved by linear programming. Their approach remains the
only known tool for solving TSP instances with more than several hun-
dred cities; over the years, it has evolved further through the work of
M. Grötschel, S. Hong, M. Jünger, P. Miliotis, D. Naddef, M. Padberg,
W.R. Pulleyblank, G. Reinelt, G. Rinaldi, and others. We enumerate
some of its refinements that led to the solution of a 13,509-city instance.

1991 Mathematics Subject Classification: 90C10 90C27
Keywords and Phrases: traveling salesman; cutting planes

The traveling salesman problem, or TSP for short, is easy to state: given a finite
number of “cities” along with the cost of travel between each pair of them, find the
cheapest way of visiting all of the cities and returning to your starting point. The
travel costs are symmetric in the sense that traveling from city X to city Y costs just
as much as traveling from Y to X; the “way of visiting all the cities” is simply the
order in which the cities are visited. The simplicity of this problem, coupled with
its apparent intractability, makes it an ideal platform for exploring new algorithmic
ideas. Surveys of work on the TSP can be found in Bellmore and Nemhauser [1968],
Lawler, Lenstra, Rinnooy Kan, and Shmoys [1985], Reinelt [1994], and Jünger,
Reinelt, and Rinaldi [1995].

The origins of the TSP are obscure. In the 1920’s, the mathematician and
economist Karl Menger publicized it among his colleagues in Vienna. In the 1930’s,
the problem reappeared in the mathematical circles of Princeton. In the 1940’s,
it was studied by statisticians (Mahalanobis [1940], Jessen [1942]) in connection
with an agricultural application and the mathematician Merrill Flood popularized
it among his colleagues at the RAND Corporation. Eventually, the TSP gained
notoriety as the prototype of a hard problem in combinatorial optimization.

A breakthrough came when Dantzig, Fulkerson, and Johnson [1954] published
a description of a method for solving the TSP and illustrated the power of this
method by solving an instance with 49 cities, an impressive size at that time.
Riding the wave of excitement over the numerous applications of the simplex

1Supported by ONR Grant N00014-98-1-0014.
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method (designed by Dantzig in 1947) and following the studies of Robinson [1949]
and Kuhn [1955], Dantzig, Fulkerson, and Johnson attacked the salesman with
linear programming as follows.

Each TSP instance with n cities can be specified by a vector c with n(n−1)/2
components, whose values are the travel costs; each tour through the n cities can
be represented as its incidence vector with n(n − 1)/2 components; if S denotes
the set of the incidence vectors of all the tours, then the problem is to

minimize cTx subject to x ∈ S. (1)

Like the man searching for his lost wallet not in the dark alley where he actually
dropped it, but under a street lamp where he can see, Dantzig, Fulkerson and
Johnson begin not with the problem they want to solve, but with a related problem
they can solve,

minimize cTx subject to Ax ≤ b (2)

with some suitably chosen system Ax ≤ b of linear inequalities satisfied by all x in
S: solving linear programming problems such as (2) is precisely what the simplex
method is for. Since (2) is a relaxation of (1) in the sense that every feasible
solution of (1) is a feasible solution of (2), the optimal value of (2) provides a
lower bound on the optimal value of (1).

The ground-breaking idea of Dantzig, Fulkerson, and Johnson was that solving
(2) can help with solving (1) in a far more substantial way than just by providing
a lower bound: having determined that the wallet is not under the street lamp,
one can pick the street lamp up and bring it a little closer to the place where the
wallet was lost. If (2) has an optimal solution and if the polyhedron {x : Ax ≤ b}
has an extreme point, then the simplex method finds an optimal solution x∗ of
(2) such that x∗ is an extreme point of {x : Ax ≤ b}; in particular, if x∗ is not
a member of S, then some linear inequality is satisfied by all the points in S and
violated by x∗. Such an inequality is called a cutting plane or simply a cut . Having
found cuts, one can add them to the system Ax ≤ b, solve the resulting tighter
relaxation by the simplex method, and iterate this process until one arrives at a
linear programming relaxation of (1) and its optimal solution x∗ such that x∗ ∈ S.

The influence of this work reached far beyond the narrow confines of the
TSP: the cutting-plane method can be used to attack any problem (1) such that
S is a finite subset of Rm and an efficient algorithm to recognize points of S is
available. Many problems in combinatorial optimization have this form: in the
maximum clique problem, S consists of the incidence vectors of all cliques in the
input graph; in the maximum cut problem, S consists of the incidence vectors
of all edge-cuts in the input graph; and so on. Applications of the cutting-plane
method to these problems stimulated the development of the flourishing field of
polyhedral combinatorics. Another important class of problems (1) are the integer
linear programming problems, where S is specified as the set of all integer solutions
of a prescribed system of linear inequalities. For this class, Gomory [1958] designed
efficient procedures to generate cutting planes in a way that guarantees the cutting-
plane method’s termination.

The efficiency of the cutting-plane method is a different matter. Where the
TSP is concerned, there are reasons to believe that the method may require
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prohibitively large amounts of time even on certain reasonably small instances:
R.M. Karp, E.L. Lawler, and R.E. Tarjan (see Karp [1972]) proved that the deci-
sion version of the TSP is an NP-complete problem.

When S consists of all tours through a set of cities V , Dantzig, Fulkerson,
and Johnson let the initial polyhedron consist of all vectors x, with components
subscripted by edges of the complete graph on V , that satisfy

0 ≤ xe ≤ 1 for all edges e, (3)∑
(xe : v ∈ e) = 2 for all cities v. (4)

In solving the 49-city problem, Dantzig, Fulkerson, and Johnson tightened this
initial LP relaxation first by a number of subtour inequalities,

∑
(xe : e ∩ S 6= ∅, e− S 6= ∅) ≥ 2 with S ⊂ V, S 6= ∅, S 6= V , (5)

and then by two additional cuts, after which x∗ became the incidence vector of a
tour; to show that these two inequalities are satisfied by incidence vectors of all
tours, Dantzig, Fulkerson, and Johnson used ad hoc combinatorial arguments.

When an LP relaxation of a TSP instance includes all constraints (3), (4),
a nonempty set of cuts can be found easily whenever x∗ 6∈ S: on the one hand,
if x∗ is not an integer vector, then Gomory’s procedures find a nonempty set of
cuts; on the other hand, if x∗ is an integer vector, then it is the incidence vector of
the edge-set of a disconnected graph and each connected component of this graph
yields a subtour cut. This scheme is used, with embellishments, in the computer
code of Martin [1966], which seems to be the first computer code for solving the
TSP. Eventually, subtour inequalities became a staple of TSP cuts but, when new
ways of finding TSP cuts emerged, Gomory cuts fell into disuse as TSP cuts.

1 Finding cuts

Hypergraph cuts

Given a subset S of V and given an x satisfying (3), (4), we write

η(S, x) =
∑

(xe : e ∩ S 6= ∅, e− S 6= ∅)− 2.

A hypergraph is an ordered pair (V,F) such that V is a finite set and F is a family
of (not necessarily distinct) subsets of V ; elements of V are called the vertices
of the hypergraph and the elements of F are called the edges of the hypergraph.
Given a hypergraph (V,F) denoted H, we write H ◦ x =

∑
(η(S, x) : S ∈ F)

and we let µ(H) stand for the minimum of H ◦ x taken over the incidence vectors
of tours through V . Every linear inequality satisfied by all the incidence vectors
of tours through V is the sum of a linear combination of equations (4) and a
hypergraph inequality,

H ◦ x ≥ t
with t ≤ µ(H). Subtour inequalities are the simplest instances of hypergraph
inequalities; one class of more complex instances is as follows.
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The intersection graph of a hypergraph (V,F) is the graph with vertex-set F
and with two vertices adjacent if and only if these two members of F intersect. A
clique tree is any hypergraph H such that
• the intersection graph of H is a tree

and such that the edge-set of H can be partitioned into a set of “handles” and a
set of “teeth” with the following properties:
• there is at least one handle,
• the handles are pairwise disjoint,
• the teeth are pairwise disjoint,
• the number of teeth that each handle intersects is odd and at least three,
• each tooth includes a point that belongs to no handle.

Grötschel and Pulleyblank [1986] introduced this notion and proved that, for every
clique-tree H with s teeth, the incidence vector x of any tour through V satisfies

H ◦ x ≥ s− 1. (6)

Let us give a short proof of this theorem here. Consider a clique tree with
handles H1, . . . ,Hr and teeth T1, . . . , Ts; let tj denote the number of handles that
intersect tooth Tj and let hi denote the number of teeth that intersect handle Hi;
write

cij =

{
1 if the tour includes an edge from Hi ∩ Tj to Tj −Hi,
0 otherwise.

Since the teeth are pairwise disjoint, we have η(Hi, x) ≥∑j cij − 2; by definition,
we have

∑
j cij ≤ hi; since η(Hi, x) is even and hi is odd, we conclude that

η(Hi, x) ≥ 2
s∑

j=1

cij − hi − 1. (7)

The restriction of the tour on a tooth Tj consists of 1 + η(Tj , x)/2 segments; one
of these segments passes through the point of Tj that belongs to no handle; since
the handles are pairwise disjoint, each i such that Hi ∩ Tj 6= ∅ and cij = 0 adds a
new segment; we conclude that

η(Tj , x) ≥ 2(tj −
r∑

i=1

cij). (8)

From (7) and (8), we obtain H ◦ x ≥ 2
∑
j tj −

∑
i hi − r =

∑
j tj − r; since the

intersection graph of H is a tree, we have
∑
j tj = r + s− 1 and (6) follows.

Clique-trees with precisely one handle are called combs and the corresponding
inequalities (6) are called comb inequalities.

Facet-inducing cuts and the template paradigm

Some cuts are better than others. The ultimate measure of quality of a cut is its
contribution to reducing the total running time of the cutting-plane method.
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It is well known (Grötschel and Padberg [1975], Maurras [1975]) that the
affine hull of the set S of all tours through V consists of all solutions x of (4); it
follows that every cut is the sum of
• a linear combination of equations (4) and
• a nonnegative combination of linear inequalities that induce facets

of the convex hull of S.
Appealing to this fact, one may argue for preferring facet-inducing cuts to all
others. This point of view suggests a two-phase paradigm for finding TSP cuts:

(i) describe linear inequalities that induce facets of the convex hull of S,
(ii) for each template obtained in phase (i), design an efficient algorithm that,

given an x∗, finds a cut matching that template, if such a cut exists.
Algorithms designed in phase (ii) are called exact separation algorithms; algorithms
that attempt to find a cut matching the template, and may fail even if such a cut
exists, are called heuristic separation algorithms.

The template paradigm was championed by Grötschel and Padberg [1979a,
1979b] and by Padberg and Hong [1980]. As for its phase (i), Grötschel and Pad-
berg [1979a, 1979b] proved that both subtour inequalities and comb inequalities
induce facets of the convex hull of S; Grötschel and Pulleyblank [1986] proved that
clique tree inequalities induce facets of the convex hull of S; Naddef and Rinaldi
[1998] proved that path inequalities (another generalization of comb inequalities,
introduced by Cornuéjols, Fonlupt, and Naddef [1985]) induce facets of the convex
hull of S.

A polynomial-time exact separation algorithm for subtour inequalities was
pointed out by Hong [1972]. It uses the observation that the problem of minimizing
η(S, x∗) subject to S ⊂ V , S 6= ∅, S 6= V reduces to |V |−1 instances of the problem

minimize η(S, x∗) subject to S ⊂ V , s ∈ S, t 6∈ S (9)

with s fixed and t ranging through the remaining cities; it relies on the fact that
(9) can be solved in polynomial time by variations on the max-flow min-cut theme
of Ford and Fulkerson [1962]. The appeal of this scheme for actual computations
is much enhanced when the input size is first reduced by “shrinking procedures”
designed by Crowder and Padberg [1980] and by Padberg and Rinaldi [1990];
these procedures alone, without the subsequent max-flow min-cut computations,
constitute fast heuristic separation algorithms for subtour inequalities.

A comb with each tooth having exactly two vertices is called a blossom. Pad-
berg and Rao [1982] designed a polynomial-time exact separation algorithm for
blossom inequalities. Their algorithm is an important tool in the computer codes
of Grötschel and Holland [1991] and Padberg and Rinaldi [1991]: besides deliv-
ering blossom cuts, it is also used in heuristic separation algorithms for the more
general comb inequalities. (The idea is to select sets S such that η(S, x∗) = 0
and to shrink each of these sets into a single vertex: blossom inequalities over the
shrunken image of V yield comb inequalities over the original V .)

Other heuristic separation algorithms for comb inequalities, and for 2-handled
clique tree inequalities, were designed by Padberg and Rinaldi [1991]; guided by
the structure of the graph with vertex-set V and edge-set {e : 0 < x∗e < 1}, they
attempt to build the desired hypergraph in a greedy fashion. Heuristic separation
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algorithms for path inequalities and other templates of TSP cuts were designed
by Clochard and Naddef [1993] and by Christof and Reinelt [1995].

We have written a computer code for the TSP that follows in part the template
paradigm. Our separation algorithms are
• an exact separation algorithm for subtour cuts that consists of Padberg-

Rinaldi shrinking followed by repeated calls of the push-relabel method, as imple-
mented by Cherkassky and Goldberg [1997], to solve max-flow min-cut problems,
• the Padberg-Rao exact separation algorithm for blossom cuts,
• the Grötschel-Holland and Padberg-Rinaldi heuristics for comb cuts,
• a greedy heuristic of the Clochard-Naddef kind for certain path cuts,

and heuristic separation algorithms that we have designed. Three of them that
turned out to be important in solving the more difficult instances are as follows.
• Like most TSP codes, ours maintains the best tour x that we know of. One

may suspect that, as both x∗ and x approximate an optimal tour, sets S with
η(S, x∗) < 0 are likely to satisfy η(S, x) < 2, and so constitute single segments
of the tour x; our computational experience confirms this suspicion. We have
designed an algorithm that, given x∗ and x, returns a family of segments Sv(v ∈ V )
of x such that each Sv minimizes η(S, x∗) over all segments S that begin at v; its
running time is in O(m log |V |), where m is the number of positive components of
x∗. (We have used this algorithm not only in solving TSP instances, but also in
computing lower bounds for TSP instances with up to 500,000 cities.)
• Having collected a family F of sets S such that η(S, x∗) < 2, we search for

combs with handle H and teeth T1, T2, T3 such that H,T1, T2, T3 ∈ F and such
that x∗ violates the corresponding comb inequality. The search is guided by the
observation that the desired {H,T1, T2, T3}, as well as {H,T1, T2, V − T3}, is a
minimal family without the consecutive ones property; as an oracle for testing the
consecutive ones property, we use PQ-trees, an efficient data structure designed
by Booth and Lueker [1976].
• One way of showing that comb inequalities are satisfied by all tours is related

to the framework for describing Gomory cuts propounded by Chvátal [1973]. We
decided to turn the argument into an algorithm and search for comb cuts by
solving certain systems of linear congruences mod 2. Our implementation of this
plan uses PQ-trees once again, this time as a compact device for storing families
of sets S such that η(S, x∗) = 0: variables in our system of linear congruences are
in a one-to-one correspondence with Q-nodes of our PQ-tree. (Later on, Adam
Letchford pointed out to us how our algorithm could be adjusted to search for the
more general path cuts.)

Beyond the template paradigm

There are routine and well known algorithms that, given a finite subset S of some
Rm and given a point x∗ in Rm, either express x∗ as a convex combination of
points in S or find a linear inequality that is satisfied by all points of S and
violated by x∗. Using these algorithms directly to find cuts would be insane, since
their running time is prohibitively long when m is large; using them in conjunction
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with the trick of first projecting S and x∗ into a lower-dimensional space was a
crucial ingredient in our solution of a 13,509-city TSP instance.

Given x∗, we choose many different linear mappings φ : Rm → Rd; for each of
our choices of φ, we express x∗ as a convex combination of points in φ(S) or find a
linear inequality aT ξ ≥ b that is satisfied by all points ξ of φ(S) and aTφ(x∗) < b;
in the latter case, inequality aTφ(x) ≥ b is a cut. This scheme is feasible as long as
d is reasonably small: large size of φ(S) presents no difficulty provided that φ(S)
can be accessed by an efficient oracle which, given any vector c in Rd, returns an
element ξ of φ(S) that maximizes cT ξ.

True, it may happen that φ(x∗) belongs to the convex hull of φ(S) even though
x∗ lies outside the convex hull of S; however, this is not always the case, and φ(S)
is easier to handle than S. Going a step further in this spirit adds flexibility to
the method: for φ(S), we may substitute any T such that φ(S) ⊆ T . True, it may
happen that φ(x∗) belongs to the convex hull of T even though it lies outside the
convex hull of φ(S); however, this is not always the case, and T may be easier to
handle than φ(S).

Success of this method depends on making choices of φ and T in such a way
that φ(x∗) has a reasonable chance of lying outside the convex hull of T and
yet T is reasonably easy to handle. In the special case where S consists of all
tours through a set V , our computer code makes each choice of φ by choosing a
partition of V into nonempty sets V0, V1, . . . , Vk. The corresponding φ is defined
by shrinking each of these sets into a single point: the component of φ(x) that is
indexed by i and j (0 ≤ i < j ≤ k) has value

∑
(xe : e ∩ Vi 6= ∅, e ∩ Vj 6= ∅). Our

T consists of all nonnegative integer vectors ξ with components indexed by edges
of the complete graph with vertex-set {0, 1, . . . , k} such that

• the graph with vertex-set {0, 1, . . . , k} and edge-set {e : ξe > 0} is connected,

• ∑(ξe : v ∈ e) is even whenever v ∈ {0, 1, . . . , k}.
(Cornuéjols, Fonlupt, and Naddef [1985] call the problem of minimizing a pre-
scribed linear function over this T the graphical traveling salesman problem.) We
let k range between 8 and 30; our choices of V0, V1, . . . , Vk are guided by the
structure of x∗; in particular, η(Vj , x

∗) = 0 for all j = 1, 2, . . . , k.

We do not know how useful this approach might prove in finding cuts for
other problems (1); possibly its success in our experience with the TSP comes at
least in part from the peculiar nature of the TSP; let us elaborate. The algorithm
that we use to deal with T and φ(x∗) either expresses x∗ as a convex combination
of points in T or finds an inequality aT ξ ≥ b that induces a facet of the convex
hull of T and is violated by φ(x∗). In the latter case, we transform aT ξ ≥ b into
a hypergraph inequality H ◦ ξ ≥ t before substituting φ(x) for ξ; in our experi-
ence, these hypergraph inequalities are often (but not always) tight triangular ; a
conjecture implicit in the work of Naddef and Rinaldi [1992] suggests that, under
this condition, inequality H ◦ φ(x) ≥ t induces a facet of the convex hull of S.

Another algorithm for finding TSP cuts that strays off the beaten path of the
template paradigm, but starts from the Naddef-Rinaldi notion of tight triangular
inequalities, has been designed by Carr [1998].
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Alterations while you wait

Watching our computer code run, we have observed that optimal solutions x∗ of
the successive LP relaxations often react to each new cut we add by shifting the
defect prohibited by this cut to an area just beyond the cut’s control. The remedy
is obvious: we respond to each slight adjustment of x⋆ with a slight adjustment of
our hypergraph cuts.

Given a hypergraph H with edges E1, . . . , Em, we set

α(I,H) =
⋂

i∈I
Ei −

⋃

i/∈I
Ei

for each subset I of {1, . . . ,m}; we refer to each α(I,H) as an atom of H; we write
H ⊑ H′ to signify that H and H′ are hypergraphs with the same set of vertices
and the same number of edges, and such that α(I,H′) 6= ∅ whenever α(I,H) 6= ∅.
It can be shown that H ⊑ H′ implies µ(H′) ≥ µ(H). By tightening a hypergraph
H with respect to a vector x∗, we mean a swift attempt to modify H in such a
way that the resulting hypergraph, H′, satisfies
• H ⊑ H′ and H′ ◦ x∗ < H ◦ x∗.

We tighten H by a greedy algorithm that moves single vertices from one atom to
another if such a move decreases H ◦ x∗ (or, with some restrictions, if the move
at least does not increase H ◦ x∗). Some of these permissible moves are more
appealing than others; all of them are kept in a priority queue, which is updated
after each move is made. We make extensive use of tightening in our computer
code. Every cut that we find is tightened before it is added to the LP relaxation.
We also periodically run through all constraints of the LP relaxation and tighten
each of them.

We use one additional technique for adjusting comb inequalities. Let us refer
to a comb with some of its teeth removed as a generalized comb; let us say that a
tooth of a generalized comb is big if its size is at least three; for every generalized
comb H0, let ∆(H0, x∗) denote the minimum of H ◦ x∗ − µ(H) over all combs H
such that H and H0 have the same handle and all big teeth of H are teeth of H0.
We have designed a dynamic programming algorithm that, given a generalized
comb H0, finds either
• a comb H such that all big teeth of H are teeth of H0 and,

if ∆(H0) ≤ 0, then H ◦ x∗ − µ(H) ≤ ∆(H0)
or else a subtour inequality violated by x∗. We refer to this algorithm as teething,
and we apply it to comb constraints in the LP relaxation.

2 The branch-and-cut method

Progress of the cutting-plane method towards solving a particular problem instance
is often estimated by the increase in the optimal value of its LP relaxation; as more
and more cuts are added, these increases tend to get smaller and smaller. When
they become too small, the sensible thing is to branch: having partitioned the
set S of tours into sets S1,S2, apply the cutting-plane method first to one of the
subproblems

minimize cTx subject to x ∈ Si
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and then to the other. At some later time, one or both of these subproblems can be
split into sub-subproblems, and so on. In the resulting binary tree of subproblems,
each leaf has been either solved by the cutting-plane method without recourse to
branching or else found irrelevant when the optimal value of its LP relaxation
turned out to be at least as large as the cost of a previously known tour. The
standard way of splitting a problem into subproblems is

S1 = {x ∈ S : xe = 0}, S2 = {x ∈ S : xe = 1} (10)

for a suitably chosen edge e; Clochard and Naddef [1993] advocated

S1 = {x ∈ S : η(S, x) = 0}, S2 = {x ∈ S : η(S, x) ≥ 2} (11)

for a suitably chosen subset S of V . Our computer code chooses the most appealing
of all options (10), (11); in our experience with the larger TSP instances, this policy
reduces the size of the tree of subproblems.

Every subproblem in the tree has the form

minimize cTx subject to x ∈ S, Cx ≤ d

for some system Cx ≤ d of linear inequalities. When this subproblem is attacked
by the cutting-plane method, the initial LP relaxation is

minimize cTx subject to Ax ≤ b, Cx ≤ d

with S ⊆ {x : Ax ≤ b} and each cut added to Ax ≤ b, Cx ≤ d is satisfied by
all x in S ∩ {x : Cx ≤ d}; this is a variant of the branch-and-bound method. In
the branch-and-cut method, used by Hong [1972], Miliotis [1976], Padberg and
Rinaldi [1987, 1991], and others, cuts are restricted to those satisfied by all x in
S and added to Ax ≤ b; this system, acquiring more and more inequalities as
more and more subproblems are being processed, may be used to initialize the
cutting-plane method on any as yet unprocessed subproblem. Our computer code
uses the branch-and-cut method.

3 Experimental results

Computer codes for the TSP have become increasingly more sophisticated over
the years. A conspicuous sign of these improvements is the increasing size of the
nontrivial instances that have been solved: a 120-city problem by Grötschel [1980],
a 318-city problem by Crowder and Padberg [1980], a 532-city problem by Padberg
and Rinaldi [1987], a 666-city problem by Grötschel and Holland [1991], a 1,002-
city problem and a 2,392-city problem by Padberg and Rinaldi [1991].

In the table below, we report the results of running our computer code on
these instances, as well as on five others. With the exception of the 13,509-city
instance, our code was run on a single processor of a Digital AlphaServer 4100 (400
MHz). The 13,509-city TSP was run on a network of 48 workstations, including
Digital Alphas, Intel Pentium IIs and Pentium Pros, and Sun UltraSparcs. The
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Name Cities Tree of subproblems Running time
gr120 120 1 node 3.3 seconds
lin318 318 1 node 24.6 seconds

pr1002 1,002 1 node 94.7 seconds
gr666 666 1 node 260.0 seconds

att532 532 3 nodes 294.3 seconds
pr2392 2,392 1 node 342.2 seconds

ts225 225 1 node 438.9 seconds
pcb3038 3,038 193 nodes 1.5 days
fnl4461 4,461 159 nodes 1.7 days
pla7397 7,397 129 nodes 49.5 days

usa13509 13,509 9,539 nodes ∼10 years

reported time for this instance is an estimate of the cumulative CPU time spent
on the individual machines.

The problems reported in the table come from the set TSPLIB of test instances
collected by Reinelt [1991]. We sorted them by their solution time, rather than by
their size, to emphasize that the difficulty of an instance depends on factors other
than just its number of cities. In particular, ts225 is a contrived nasty instance
that was first solved only in 1994—three years after it first appeared in TSPLIB.
We will present results for the full set of 110 TSPLIB problems in a comprehensive
report of our TSP work that we are preparing.

Our computer code (written in the C programming language) is available for
research purposes. It can be obtained over the internet at the page:

http://www.caam.rice.edu/∼keck/concorde.html
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Semidefinite Programmingand Combinatorial Optimization
Michel X. Goemans1

Abstract. We describe a few applications of semidefinite programming
in combinatorial optimization.

1991 Mathematics Subject Classification: 90C25, 90C10, 90C27, 05C50,
05C60, 68R10.
Keywords and Phrases: Convex optimization, combinatorial optimiza-
tion, semidefinite programming, eigenvalue bounds.

Semidefinite programming is a special case of convex programming where the feasi-
ble region is an affine subspace of the cone of positive semidefinite matrices. There
has been much interest in this area lately, partly because of applications in com-
binatorial optimization and in control theory and also because of the development
of efficient interior-point algorithms.

The use of semidefinite programming in combinatorial optimization is not new
though. Eigenvalue bounds have been proposed for combinatorial optimization
problems since the late 60’s, see for example the comprehensive survey by Mohar
and Poljak [20]. These eigenvalue bounds can often be recast as semidefinite
programs [1]. This reformulation is useful since it allows to exploit properties of
convex programming such as duality and polynomial-time solvability, and it avoids
the pitfalls of eigenvalue optimization such as non-differentiability. An explicit
use of semidefinite programming in combinatorial optimization appeared in the
seminal work of Lovász [16] on the so-called theta function, and this lead Grötschel,
Lovász and Schrijver [9, 11] to develop the only known (and non-combinatorial)
polynomial-time algorithm to solve the maximum stable set problem for perfect
graphs.

In this paper, we describe a few applications of semidefinite programming in
combinatorial optimization. Because of space limitations, we restrict our attention
to the Lovász theta function, the maximum cut problem [8], and the automatic
generation of valid inequalities à la Lovász-Schrijver [17, 18]. This survey is much
inspired by another (longer) survey written by the author [7]. However, new results
on the power and limitations of the Lovász-Schrijver procedure are presented as
well as a study of the maximum cut relaxation for graphs arising from association
schemes.

1Supported in part by NSF contract 9623859-CCR.
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1 Preliminaries

In this section, we collect several basic results about positive semidefinite matrices
and semidefinite programming.

Let Mn denote the cone of n× n matrices (over the reals), and let Sn denote
the subcone of symmetric n× n matrices. A matrix A ∈ Sn is said to be positive
semidefinite if its associated quadratic form xTAx is nonnegative for all x ∈ Rn.
The positive semidefiniteness of a matrix A will be denoted by A � 0; similarly,
we write A � B for A − B � 0. The cone of positive semidefinite matrices will
be denoted by PSDn. The following statements are equivalent for a symmetric
matrix A: (i) A is positive semidefinite, (ii) all eigenvalues of A are nonnegative,
and (iii) there exists a matrix B such that A = BTB. (iii) gives a representation
of A = [aij ] as a Gram matrix: there exist vectors vi such that aij = vTi vj for all
i, j. Given a symmetric positive semidefinite matrix A, a matrix B satisfying (iii)
can be obtained in O(n3) time by a Cholesky decomposition.

Given A,B ∈Mn, the (Frobenius) inner product A •B is defined by A •B =
Tr(ATB) =

∑
i

∑
j AijBij . The quadratic form xTAx can thus also be written

as A • (xxT ). Since the extreme rays of PSDn are of the form xxT , we derive
that A • B ≥ 0 whenever A,B � 0. We can also similarly derive Fejer’s theorem
which says that PSDn is self-polar, i.e. PSD∗n = {A ∈ Sn : A • B ≥ 0 for all
B � 0} = PSDn.

Semidefinite programs are linear programs over the cone of positive semidefi-
nite matrices. They can be expressed in many equivalent forms, e.g.

SDP = inf C • Y (1)

subject to: Ai • Y = bi i = 1, · · · ,m
Y � 0.

In general a linear program over a pointed closed convex cone K is formulated
as z = inf{cTx : Ax = b, x ∈ K}, and its dual (see [22]) is w = sup{bT y :
AT y + s = c, s ∈ K∗} where K∗ = {a : aT b ≥ 0 for all b ∈ K}. Weak duality
always holds: cTx− yT b = (AT y + s)Tx− yTAx = sTx for any primal feasible x
and dual feasible y. If we assume that A has full row rank, {x ∈ intK} 6= ∅, and
{(y, s) : AT y + s = c, s ∈ int K∗} 6= ∅, then z = w and both the primal and dual
problems attain their optimum value. In the case of semidefinite programs, the
dual to (1) is sup{∑n

i=1 biyi :
∑
i yiAi � C}.

Semidefinite programs can be solved (more precisely, approximated) in
polynomial-time within any specified accuracy either by the ellipsoid algorithm
[9, 11] or more efficiently through interior-point algorithms. For the latter, we
refer the reader to [22, 1, 24]. The above algorithms produce a strictly feasible
solution (or slightly infeasible for some versions of the ellipsoid algorithm) and, in
fact, the problem of deciding whether a semidefinite program is feasible (exactly)

is still open. However, we should point out that since

(
1 x
x a

)
� 0 iff |x| ≤ √a,

a special case of semidefinite programming feasibility is the square-root sum prob-
lem: given a1, · · · , an and k, decide whether

∑n
i=1

√
ai ≤ k. The complexity of

this problem is still open.
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2 Lovász’s Theta Function

Given a graph G = (V,E), a stable (or independent) set is a subset S of vertices
such that no two vertices of S are adjacent. The maximum cardinality of a stable
set is the stability number (or independence number) of G and is denoted by α(G).
In a seminal paper [16], Lovász proposed an upper bound on α(G) known as the
theta function ϑ(G). The theta function can be expressed in many equivalent
ways, as an eigenvalue bound, as a semidefinite program, or in terms of orthogonal
representations. These formulations will be summarized in this section. We refer
the reader to the original paper [16], to Chapter 9 in Grötschel et al. [11], or to
the survey by Knuth [15] for additional details.

As an eigenvalue bound, ϑ(G) can be derived as follows. Consider P = {A ∈
Sn : aij = 1 if (i, j) /∈ E (or i = j)}. If there exists a stable set of size k, the
corresponding principal submatrix of any A ∈ P will be Jk, the all ones matrix of
size k. By a classical result on interlacing of eigenvalues for symmetric matrices
(see [13]), we derive that λmax(A) ≥ λmax(Jk) = k for any A ∈ P , where λmax(·)
denotes the largest eigenvalue. As a result, minA∈P λmax(A) is an upper bound
on α(G), and this is one of the equivalent formulations of Lovász’s theta function.

This naturally leads to a semidefinite program. Indeed, the largest eigenvalue
of a matrix can easily be formulated as a semidefinite program: λmax(A) = min{t :
tI −A � 0}. In order to express ϑ(G) as a semidefinite program, we observe that
A ∈ P is equivalent to A − J being generated by Eij for (i, j) ∈ E, where all
entries of Eij are zero except for (i, j) and (j, i). Thus, we can write

ϑ(G) = min t

subject to: tI +
∑

(i,j)∈E
xijEij � J.

By strong duality, we can also write:

ϑ(G) = max J • Y (2)

subject to: yij = 0 (i, j) ∈ E (3)

I • Y = 1 (i.e. T r(Y ) = 1) (4)

Y � 0. (5)

Lovász’s first definition of ϑ(G) was in terms of orthonormal representa-
tions. An orthonormal representation of G is a system v1, · · · , vn of unit vec-
tors in Rn such that vi and vj are orthogonal (i.e. vTi vj = 0) whenever i
and j are not adjacent. The value of the orthonormal representation is z =
minc:||c||=1maxi∈V

1
(cTui)2

. This is easily seen to be an upper bound on α(G) (since

||c||2 ≥ ∑i∈S(cTui)
2 ≥ |S|/z for any stable set S). Taking the minimum value

over all orthonormal representations of G, one derives another expression for ϑ(G).
This result can be restated in a slightly different form. If x denotes the incidence
vector of a stable set then we have that

∑

i

(cT vi)
2xi ≤ 1. (6)
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In other words, the orthonormal representation constraints (6) are valid inequal-
ities for STAB(G), the convex hull of incidence vectors of stable sets of G.
Grötschel et al. [10] show that if we let TH(G) = {x : x satisfies (6) and x ≥ 0},
then ϑ(G) = max{∑i xi : x ∈ TH(G)}. Yet more formulations of ϑ are known.

2.1 Perfect Graphs

A graph G is called perfect if, for every induced subgraph G′, its chromatic number
is equal to the size of the largest clique in G′. Even though perfect graphs have
been the focus of intense study, there are still important questions which are
still open. The strong perfect graph conjecture of Berge claims that a graph is
perfect if and only if it does not contain an odd cycle of length at least five or its
complement. It is not even known if the recognition problem of deciding whether
a graph is perfect is in P or NP-complete. However, the theta function gives some
important characterizations (but not a “good” or NP∩co-NP characterization) of
perfect graphs.

Theorem 1 (Grötschel et al. [10]) The following are equivalent:

• G is perfect,

• TH(G) = {x ≥ 0 :
∑
i∈C xi ≤ 1 for all cliques C}

• TH(G) is polyhedral.

Moreover, even though recognizing perfect graphs is still open, one can find the
largest stable set in a perfect graph in polynomial time by computing the theta
function using semidefinite programming (Grötschel et al. [9, 11]); similarly one
can solve the weighted problem, or find the chromatic number or the largest clique.
Observe that if we apply this algorithm to a graph which is not necessarily perfect,
we would either find the largest stable set or have a proof that the graph is not
perfect.

Although ϑ(G) = α(G) for perfect graphs, ϑ(G) can provide a fairly poor
upper bound on α(G) for general graphs. Feige [6] has shown the existence of
graphs for which ϑ(G)/α(G) ≥ Ω(n1−ǫ) for any ǫ > 0. See [7] for further details
and additional references on the quality of ϑ(G).

3 The Maximum Cut Problem

Given a graph G = (V,E), the cut δ(S) induced by vertex set S consists of the set
of edges with exactly one endpoint in S. In the NP-hard maximum cut problem
(MAX CUT), we would like to find a cut of maximum total weight in a weighted
undirected graph. The weight of δ(S) is w(δ(S)) =

∑
e∈δ(S) we. In this section,

we describe an approach of the author and Williamson [8] based on semidefinite
programming.

The maximum cut problem can be formulated as an integer quadratic pro-
gram. If we let yi = 1 if i ∈ S and yi = −1 otherwise, the value of the cut
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δ(S) can be expressed as
∑
(i,j)∈E wij

1
2 (1 − yiyj). Suppose we consider the ma-

trix Y = [yiyj ]. This is a positive semidefinite rank one matrix with all diagonal
elements equal to 1. Relaxing the rank one condition, we derive a semidefinite
program giving an upper bound SDP on OPT :

SDP = max
1

2

∑

(i,j)∈E
wij(1− yij) (7)

subject to: yii = 1 i ∈ V
Y = [yij ] � 0.

It is convenient to write the objective function in terms of the (weighted) Laplacien
matrix L(G) = [lij ] of G: lij = −wij for all i 6= j and lii =

∑
j wij . For any matrix

Y , we have L(G) • Y =
∑
(i,j)∈E wij(yii + yjj − 2yij) (in particular, if Y = yyT

then we obtain the classical equality yTL(G)y =
∑
(i,j)∈E wij(yi − yj)2). As a

result, the objective function can also be expressed as 14L(G) • Y .
The dual of this semidefinite program is SDP = 1

4 min{∑j dj : diag(d) �
L(G)}. This can also be rewritten as

SDP =
1

4
n min
u:
∑

i
ui=0

λmax(L+ diag(u)). (8)

This eigenvalue bound was proposed and analyzed by Delorme and Poljak [4, 3].
In their study, they conjectured that the worst-case ratio OPT/SDP is 32/(25 +
5
√

5) ∼ 0.88445 for nonnegative weights and achieved by the 5-cycle. By exploiting
(7), Goemans and Williamson [8] derived a randomized algorithm that produces
a cut whose expected value is at least 0.87856SDP , implying that OPT/SDP ≥
0.87856 for nonnegative weights. We describe their random hyperplane technique
and their elementary analysis below.

Consider any feasible solution Y to (7). Since Y admits a Gram represen-
tation, there exist unit vectors vi ∈ Rd (for some d ≤ n) for i ∈ V such that
yij = vTi vj . Let r be a vector uniformly generated from the unit sphere in Rd, and
consider the cut induced by the hyperplane {x : rTx = 0} normal to r, i.e. the cut
δ(S) where S = {i ∈ V : rT vi ≥ 0}. By elementary arguments, the probability
that vi and vj are separated is precisely θ/π, where θ = arccos(vTi vj) is the angle
between vi and vj . Thus, the expected weight of the cut is exactly given by:

E[w(δ(S))] =
∑

(i,j)∈E
wij

arccos(vTi vj)

π
. (9)

Comparing this expression term by term to the objective function of (7) and
using the fact that arccos(x)/π ≥ α12 (1 − x) where α = 0.87856 · · ·, we derive
that E[w(δ(S))] ≥ α14L(G) • Y . Hence if we apply the random hyperplane tech-
nique to a feasible solution Y of value ≥ (1 − ǫ)SDP (which can be obtained in
polynomial time), we obtain a random cut of expected value greater or equal to
α(1 − ǫ)SDP ≥ 0.87856SDP ≥ 0.87856OPT . Mahajan and Ramesh [19] have
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shown that this technique can be derandomized, therefore giving a deterministic
0.87856-approximation algorithm for MAX CUT.

The worst-case value for OPT/SDP is thus somewhere between 0.87856 and
0.88446, and even though this gap is small, it would be very interesting to prove
Delorme and Poljak’s conjecture that the worst-case is given by the 5-cycle. This
would however require a new technique. Indeed, Karloff [14] has shown that the
analysis of the random hyperplane technique is tight, namely there exists a family
of graphs for which the expected weightE[w(δ(S)] of the cut produced is arbitrarily
close to αSDP .

No better approximation algorithm is currently known for MAX CUT. On the
negative side though, H̊astad [12] has shown that it is NP-hard to approximate
MAX CUT within 16/17 + ǫ = 0.94117 · · · for any ǫ > 0. Furthermore, H̊astad
shows that if we replace the objective function by 1

2

∑
(i,j)∈E1 wij(1 − yiyj) +

1
2

∑
(i,j)∈E2 wij(1 + yiyj), then the resulting problem is NP-hard to approximate

within 11/12 + ǫ = 0.91666 · · ·, while the random hyperplane technique still gives
the same guarantee of α ∼ 0.87856.

The analysis of the random hyperplane technique can be generalized fol-
lowing an idea of Nesterov [21] for more general Boolean quadratic programs.
First observe that (9) can be rewritten as E[w(δ(S))] = 1

2πL(G) • arcsin(Y ),
where arcsin(Y ) = [arcsin(yij)]. Suppose now that we restrict our attention to
weight functions for which L(G) ∈ K for a certain cone K. Then a bound of α
would follow if we can show that L(G) • ( 2π arcsin(Y )) ≥ L(G) • (αY ) or L(G) •(
2
π arcsin(Y )− αY

)
≥ 0. This corresponds to showing that

(
2
π arcsin(Y )− αY

)
∈

K∗, where K∗ is the polar cone to K. For several interesting cones K (e.g. the
cone of positive semidefinite matrices), this analysis can be performed.

We now describe a situation in which the semidefinite programming relaxation
simplifies considerably. This is similar to the well-known LP bound in coding
introduced by Delsarte [5] which corresponds to the theta function for graphs
arising from association schemes. The results briefly sketched below were obtained
jointly with F. Rendl.

Consider graphs whose adjacency matrix can be written as
∑
i∈M Ai where

M ⊆ {1, · · · , l} and A0, A1, · · · , Al are n× n 0− 1 symmetric matrices forming an
association scheme (see [2]):

1. A0 = I,

2.
∑l
i=0 Ai = J ,

3. there exist pkij (0 ≤ i, j, k ≤ l) such that AiAj = AjAi =
∑n
k=0 p

k
ijAk.

When l = 2, the graph with incidence matrix A1 (or A2) is known as a strongly
regular graph.

We list below properties of association schemes, for details see for example [2].
Since the Ai’s commute, they can be diagonalized simultaneously and thus they
share a set of eigenvectors. Furthermore, the (Bose-Mesner) algebra A generated
by the Ai’s has a unique basis of minimal idempotents (i.e. E2 = E) E0, · · · , El.
These matrices Ei’s are positive semidefinite (since their eigenvalues are all 0 or 1
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by idempotence), and have constant diagonal equal to µi/n where µi is the rank
of Ei.

For association schemes, we can show that the optimum correcting vector in
(8) is u = 0, giving SDP = n

4λmax(L(G)), and that the optimum primal solution
Y is equal to nEp/µp where p is the index corresponding to the eigenspace of the
largest eigenvalue of L(G). To see this optimality, one simply needs to realize that
Z = λmax(L(G))I−L(G) can be expressed as

∑
i6=p ciEi and, as a result, satisfies

complementary slackness with nEp/µp: ZEp = 0. Furthermore, if we were to add
valid inequalities of the form Ci • Y ≤ bi with Ci ∈ A to the primal semidefinite
program then the primal and dual SDPs can be seen to reduce to a dual pair of
linear programs:

1
4 max

∑

j

(L(G) •Ej)xj = 1
4 min ns+

∑

i

bizi

s.t.
∑

j

µjxj = n s.t. µjs+
∑

i

(Ci •Ej)zi ≥ L •Ej ∀j
∑

j

(Ci •Ej)xj = bi ∀i zi ≥ 0 ∀i

xj ≥ 0 ∀j
The primal semidefinite solution is then

∑
j xjEj and the dual constraints imply

that sI +
∑
i ziCi � L(G). As an illustration, the triangle inequalities can be

aggregated in order to be of the required form, and thus the semidefinite program
with triangle inequalities can be solved as a linear program for association schemes.

4 Deriving Valid Inequalities

Lovász and Schrijver [17, 18] have proposed a technique for automatically gener-
ating stronger and stronger formulations for integer programs. We briefly describe
their approach here and discuss its power and its limitations.

Let P = {x ∈ Rn : Ax ≥ b, 0 ≤ x ≤ 1}, and let P0 = conv(P ∩ {0, 1}n)
denote the convex hull of 0− 1 solutions. Suppose we multiply a valid inequality∑
i cixi − d ≥ 0 for P by either 1 − xj ≥ 0 or by xj ≥ 0. We obtain a quadratic

inequality that we can linearize by replacing xixj by a new variable yij . Since
we are interested only in 0-1 solutions, we can impose that x2i = xi for all i.
Replacing xi by yii, we therefore obtain a linear (“matrix”) inequality on the
entries of Y . Let M(P ) denote the set of all symmetric matrices satisfying all
the matrix inequalities that can be derived in this way, and let N(P ) = {x : Y ∈
M(P ), x = Diag(Y )}, where Diag(Y ) denotes the diagonal of Y ; thus N(P ) is a
projection of M(P ). By construction, we have that P0 ⊆ N(P ) ⊆ P . They also
consider a much stronger operator involving semidefinite constraints. Observe
that, for any 0-1 solution x, the matrix Y defined above as xxT must satisfy
Y −Diag(Y )Diag(Y )T = 0. This is again an (intractable) quadratic inequality but
it can be relaxed to Y −Diag(Y )Diag(Y )T � 0. Viewing Y −Diag(Y )Diag(Y )T

as a Schur complement, this is equivalent to
[

1 Diag(Y )T

Diag(Y ) Y

]
� 0. (10)
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As a result, defining M+(P ) as {Y ∈ M(P ) satisfying (10)} and N+(P ) = {x :
Y ∈ M+(P ), x = Diag(Y )}, we have that N0(P ) ⊆ N+(P ) ⊆ N(P ) ⊆ P and
optimizing a linear objective function over N+(P ) can be done via semidefinite
programming.

Lovász and Schrijver study the operator Nk(·) (resp. Nk
+(·)) obtained by

repeating N(·) (resp. N+(·)) k times, and show that for any P ⊆ Rn we have
Nn
+(P ) = Nn(P ) = N0. Lovász and Schrijver show that the equivalence between

(weak) optimization and (weak) separation [9, 11] implies that one can optimize
(up to arbitrary precision) in polynomial time over Nk

+ for any fixed value of k.
They introduce the N -index (resp. N+-index) of a valid inequality for P0 starting
from P as the least k such that this inequality is valid for Nk(P ) (resp. Nk

+(P )).
The N+-index of an inequality can be much smaller than its N -index. The

following theorem gives an upper bound on the N+-index. The case k = 1 appears
in [18], while the general case is unpublished by the author. Given a set Q ⊂ Rn,
let Q[I] = {x ∈ Q : xi = 1, i ∈ I}.
Theorem 2 Let aTx ≤ a0 be a valid inequality for P with a ≥ 0. Let S = {i :
ai > 0}. Assume that aTx ≤ a0 is valid for P [J ] whenever (i) J ⊆ S, |J | = k and
whenever (ii) J ⊆ S, |J | ≤ k − 1 and

∑
j∈J aj ≥ a0. Then a

Tx ≤ a0 is valid for

Nk
+(P ).

The condition a ≥ 0 can be satisfied through complementation. This theorem
essentially says that if one can derive validity of an inequality by fixing any set of
k variables to 1, then we can derive it by k repeated applications of N+; condition
(ii) simply takes care of those sets of k variables that do not satisfy the inequality.

As an illustration, consider the stable set polytope where we can take as initial
relaxation the fractional stable set polytope

FRAC(G) = {x : xi + xj ≤ 1 if (i, j) ∈ E, xi ≥ 0 for all i ∈ V }.

Lovász and Schrijver [18] show that the N -index of a clique constraint on k vertices
(
∑
i∈S xi ≤ 1) is k − 2 while its N+-index is just 1, as can be seen from Theorem

2. Odd hole, odd antihole, odd wheel, and orthonormal representation constraints
also have N+-index equal to 1, implying the polynomial time solvability of the
maximum stable set problem in any graph for which these inequalities are sufficient
(including perfect graphs, t-perfect graphs, etc.).

However, there are also situations where the N+ operator is not very strong.
Consider the matching polytope (the convex hull of incidence vectors of matchings,
which can also be viewed as the stable set polytope of the line graph) and its
Edmonds constraints:

∑
i∈S xi ≤ (|S| − 1)/2 for |S| odd. Stephen and Tunçel

[23] show that their N+-index (starting from the relaxation with only the degree
constraints) is exactly (|S| − 1)/2, and thus Θ(

√
n) iterations of N+ are needed

to get the matching polytope where n is its dimension. Although n iterations are
always sufficient for N or N+, here is a situation in which not significantly fewer
iterations are sufficient. Let

P =

{
x ∈ Rn :

∑

i∈S
xi ≤

n

2
for all S : |S| = n

2
+ 1

}
.
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Thus

P0 =

{
x ∈ Rn : 0 ≤ xi ≤ 1 for i = 1, · · · , n, and

n∑

i=1

xi ≤
n

2

}
.

Let zk and zk+ denote max{ 1n
∑n
i=1 xi} over x ∈ Nk(P ) and Nk

+(P ), respectively.
Goemans and Tunçel (unpublished) have obtained recurrences for zk and zk+ and
derived several properties; their most important results are summarized below.

Theorem 3 1. For k ≤ n
2 , z

k ≥ zk+ > n/2−r
n/2+1−r . In particular z

n/2−1 > 0.5.

2. For k ≤ n
2 −
√
n+ 3

2 , we have z
k = zk+.

Together with Theorem 2, (i) implies that the N+-index of
∑n
i=1 xi ≤ n/2 is

exactly n/2, while one can show that its N -index is n− 2. Furthermore, (ii) says
that semidefinite constraints do not help for n/2− o(n) iterations.
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Active Set and Interior Methodsfor Nonlinear Optimization
Richard H. Byrd and Jorge Nocedal

Abstract. We discuss several fundamental questions concerning the
problem of minimizing a nonlinear function subject to a set of inequality
constraints. We begin by asking: What makes the problem intrinsically
difficult to solve, and which characterizations of the solution make its
solution more tractable? This leads to a discussion of two important
methods of solution: active set and interior points. We make a critical
assessment of the two approaches, and describe the main issues that must
be resolved to make them effective in the solution of very large problems.

1991 Mathematics Subject Classification: 65K05 90C30
Keywords and Phrases: nonlinear optimization, large-scale optimization,
nonlinear programming

The most important open problem in nonlinear optimization is the solution of
large constrained problems of the form

minimize f(x)

subject to h(x) = 0 (1)

g(x) ≤ 0,

where the functions f : Rn → R, h : Rn → Rm and g : Rn → Rt are assumed to
be smooth.

Assuming that certain regularity assumptions hold, the solution of (1) is char-
acterized by the Karush-Kuhn-Tucker conditions [4]. They state that any solution
x∗ must satisfy the system

∇f(x∗) +Ah(x∗)λ∗h +Ag(x
∗)λ∗g = 0 (2)

h(x∗) = 0 (3)

g(x∗) ≤ 0 (4)

g(x∗)Tλ∗g = 0 (5)

λ∗g ≥ 0, (6)

for some Lagrange multiplier vectors λ∗h and λ∗g. Here Ah and Ag denote the
matrices whose columns are the gradients of the functions h and g. The first
equation can be written as ∇xL(x∗, λ∗) = 0, where L is the Lagrangian function

L(x, λ) = f(x) + λThh(x) + λTg g(x). (7)
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This mathematical characterization is, however, not suitable for computation
because finding a pair (x∗, λ∗) that satisfies the Karush-Kuhn-Tucker system (2)-
(6) is a very hard problem.

Indeed we could attempt to guess the optimal active set, i.e. the set of in-
equality constraints that will be satisfied as equalities at the solution x∗. Based
on this guess, we could then replace (4) by a set of equalities, remove (5) and (6),
and define all Lagrange multipliers corresponding to inactive inequality constraints
to be zero. This transforms (2)-(6) into a system of nonlinear equations, which
is much more tractable. Unfortunately, the set of all possible active sets grows
exponentially with the number t of inequality constraints. Moreover, not all pairs
(x, λ) satisfying the Karush-Kuhn-Tucker conditions are solutions of (1); some of
them could be, for example, maximizers. Therefore this type of approach can only
be practical if we make intelligent guesses of the active set. We will return to this
question below.

The fact that it is impractical to solve the Karush-Kuhn-Tucker system di-
rectly has given rise to a variety of constrained optimization methods which make
use of two fundamental ideas:

transformation and approximation.

In the rest of the paper we describe how these ideas are used in some of the most
powerful methods for nonlinear optimization.

1 Exact Penalty Functions

A very appealing idea is to replace (1) by a single unconstrained optimization
problem. At first glance this may seem to be impossible since the general nonlinear
optimization problem (1) must be much more complex than the minimization of
any unconstrained function.

Nevertheless, several “exact penalty functions” have been discovered [4], and
can be used in practice to solve nonlinear programming problems. The best ex-
ample is the ℓ1 penalty function

ψ(x; ρ) = f(x) + ρ
m∑

i=1

|hi(x)| + ρ
t∑

i=1

g+i (x), (8)

where a+ = max{0, a}. Here ρ is a positive penalty parameter whose choice is
problem dependent. One can show that if the value of ρ is large enough, then
local solutions of the nonlinear program (1) are normally local minimizers of (8).

The beauty and simplicity of this approach is undeniable. But it has two
drawbacks. First of all, the function φ function is not differentiable, and thus
minimizing it is far more difficult than minimizing a smooth function. One could
use the tools of non-differentiable optimization, but an approach that may be much
more effective is to make linear-quadratic approximations of φ, and use them to
generate a series of estimates of the solution [4]. Interestingly enough, this leads
to a method that is closely related to the active set method described in the next
section.
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The second drawback may be potentially fatal: the approach appears to be
very sensitive to the choice of the penalty parameter ρ. Small values of ρ may
lead to unbounded solutions, and excessively large values will slow the iteration
because the nonlinear constraints will be followed closely. It is interesting that
even though this exact penalty approach [4] was proposed more than 15 years ago,
it has not yet been firmly established whether the difficulty in choosing the penalty
parameter is serious enough to prevent it from becoming a powerful technique for
large-scale optimization.

There is another open question concerning this, and most other methods for
constrained optimization. It concerns the use of a merit function to determine
whether a step is acceptable. We could regard a step p to be acceptable only if it
gives a reduction in ψ. Some analysis, as well as numerical experience indicates
that this strategy may be overly conservative and that it may be preferable to
allow controlled increases in the merit function. How to do this is still an active
area of research; an interesting recent proposal is described in [5].

2 Active Set Methods

Let us now consider a different approach, which is based on the strategy of making
a series of intelligent guesses of the optimal active set, mentioned in the introduc-
tion.

Suppose that x is an estimate of the solution of (1) and that we wish to
compute a displacement p leading to a better estimate x+ = x + p. We can do
this by making a linear-quadratic approximation – but this time of the original
problem (1) — and solving the following subproblem in the variable p,

minimize ∇xL(x, λ)T p+
1

2
pT∇2xxL(x, λ)p

subject to h(x) +Ah(x)T p = 0 (9)

g(x) +Ag(x)T p ≤ 0.

This subproblem is much more tractable than (1). In fact, if ∇2xxL(x, λ) is
positive definite, then (9) is not much more difficult to solve than a linear pro-
gram. For this reason it is common to either modify ∇2xxL(x, λ), so that it is
always positive definite in the null space of constraints, or to replace it — directly
or indirectly — by a positive definite approximation. (A recently developed algo-
rithm [5]) deviates from this standard practice by formulating indefinite quadratic
programming subproblems, but it is too early to determine if it will supersede the
current approaches.)

The step p is considered to be acceptable only if it leads to a reduction in a
merit function. An example of such a merit function is (8), but many other choices
that combine constraint satisfaction and objective function decrease are possible
[4]. This method is called Sequential Quadratic Programming and is currently
regarded as the most powerful active set method.

There is a good mathematical justification [9, 8] for generating steps by means
of the quadratic subproblem (9). One can show that the step is a direction of de-
scent for a variety of merit functions. Moreover, the model (9) has the precise
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balance between constraint satisfaction and decrease in the objective function.
Unlike approaches, such as reduced gradient methods, that attempt to satisfy the
original constraints of the problem at each step (which can be computationally very
demanding) the quadratic programming model (9) applies successive linearizations
to the constraints – which is the idea behind Newton’s method for solving equa-
tions. Thus we can expect that the iterates generated by this active set approach
will decrease a measure of feasibility at a quadratic rate.

There are really two different ideas in the method we have just described.
The first is to use the subproblem (9) to provide us with an informed guess of
the optimal active set: our guess is the active set identified in the solution of the
quadratic subproblem. The second idea is to use the right level of approximation to
the objective function and constraints, as discussed above. In the interior methods
described next, we no longer attempt to guess the optimal active set, but retain
the idea of making linear-quadratic approximations.

3 Interior Point Methods

Let us use slack variables s to transform (1) into the following equivalent problem
in the variables x and s,

minimize f(x)

subjet to h(x) = 0

g(x) + s = 0

s ≥ 0.

Even though the only inequalities are now simple non-negativity constraints, a
little reflection shows that this problems is just as complex as (1). Let us now
soften the inequalities by introducing a barrier term in the objective function to
obtain the new problem

minimize φ(x;µ) = f(x)− µ
t∑

i=1

ln si

subject to h(x) = 0 (10)

g(x) + s = 0,

where µ is a positive parameter. Note that we have removed the bound s ≥ 0
because we will assume that the initial value of s is positive, and the barrier term
prevents us from generating negative values of s – or for that matter, values that
are close to zero.

Of course, (10) is not equivalent to (1) and we have introduced a parameteri-
zation of the problem that is controlled by the barrier parameter µ. Note that (10)
contains only equality constraints, and is much simpler to solve than an inequality
constrained problem. Once the barrier problem (10) is approximately solved, we
decrease µ, and repeat the process. This will lead to a sequence of iterates xµ that
will normally converge to a solution of (1) as µ→ 0.
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The set of estimates xµ obtained by this approach is interior to the region
s > 0, but is not necessarily feasible with respect to the inequalities g(x) ≤ 0.
Thus the term “interior point method” must be interpreted in a broad sense.
The ability to generate infeasible iterates turns out to be highly advantageous in
practice because finding a feasible point for a nonlinear system is computationally
expensive, and it is more efficient to perform the minimization while searching for
a feasible point.

Barrier methods for nonlinear programming have been known for a long time
[3]. But they fell out of favor in the 1970s, and have been resurrected only re-
cently, in a variation that we now call interior point methods. There are three
recent developments that have made barrier methods more effective in solving
large problems. We will discuss each of these separately.

3.1 Primal-Dual Steps

Let us consider the problem of finding an approximate solution of the barrier prob-
lem (10) for a fixed value of the parameter µ. The Karush-Kuhn-Tucker conditions
take the form

∇f(x) +Ah(x)λh +Ag(x)λg = 0

−µS−1e+ λg = 0

h(x) = 0 (11)

g(x) + s = 0,

where e = (1, ..., 1)T and S = diag(s1, ..., st). This is a nonlinear system of equa-
tions in x, λh and λg. We can ignore (for the moment) the fact that s and λg must
be positive, and simply apply Newton’s method to (11) to compute a displacement
p in x and new values of the multipliers. We obtain the iteration




∇2xxL 0 Ah(x) Ag(x)
0 Σ 0 I

ATh (x) 0 0 0
ATg (x) I 0 0







px
ps
λ+h
λ+g


 =




−∇f(x)
µS−1e
−h(x)
−g(x)− s


 , (12)

where Σ = µS−2. This approach is very similar to the barrier techniques used in
the 1980s (cf. [10]) and is called a primal barrier method.

An important observation is that (11) is not well suited for Newton’s method
because the second equation is rational. But if we multiply this equation by S we
obtain the equivalent system

∇f(x) +Ah(x)λh +Ag(x)λg = 0

Sλg − µe = 0

h(x) = 0 (13)

g(x) + s = 0.

This nonlinear transformation is very beneficial because the rational equation has
now been transformed into a quadratic – and Newton’s method is an excellent
technique for solving quadratic equations.
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Applying Newton’s method to (13) gives the iteration (12) but now Σ is
defined as

Σ = ΛS−1, (14)

where Λ is a diagonal matrix containing the entries of λg . This primal-dual iter-
ation is at the heart of most interior point methods. After the step is computed,
one can backtrack along it to make sure that s and the λg remain positive.

Note that, in contrast to standard practice, we have not used any duality
arguments in deriving the primal-dual step computation. Indeed the term “primal-
dual” is not very descriptive of the key idea, which consists of applying a nonlinear
transformation that changes the optimality conditions (11) into the equivalent
system (13). Even though these two systems have the same solutions, Newton’s
method will produce different iterates, and the primal-dual step is known to be
superior [13].

An interesting question is whether the nonlinear transformation we used is
the best possible.

3.2 Coping With Ill-Conditioning

The barrier function φ(x;µ) defined in (10) is inherently ill conditioned. A simple
computation shows that the Hessian of φ has condition number of order O(1/µ).
This is reflected in the primal-dual iteration (12) where the matrix Σ = ΛS−1

becomes unbounded as µ → 0. Nevertheless, solving (12) by a direct method, as
is done in most linear programming codes, does not lead to significant roundoff
errors, even when µ is very small [11, 12].

The key observation in this roundoff error analysis can be better explained if
we consider Newton-like methods for solving the unconstrained problem min f(x).
Here the step p is computed by solving a system of the form

Ap = −∇f(x),

where A is either the Hessian matrix ∇2f(x) or some other related matrix. It is
easy to see that the quality of the search direction is very sensitive to the accuracy
with which ∇f(x) is calculated, but is not particularly sensitive to changes in A.
The ill-conditioning of the barrier function can cause errors in the factorization of
the iteration matrix, but very significant errors can be tolerated before the quality
of the iteration is degraded — and simple safeguards ensure that high accuracy is
obtained in most cases [12].

All of this assumes that a direct method is used to solve (12). But in many
practical applications, the problem is so large that direct methods are impractical
due to the great amount of fill that occurs in the factorization. In other applica-
tions, the Hessians of f, g or h are not be available, and only products of these
Hessians times vectors can be computed. In these cases it is attractive to use the
linear conjugate gradient (CG) method to solve the Newton equations (12). This
system is indefinite, but by eliminating variables, one obtains a positive definite
reduced system to which the projected conjugate gradient method can be applied
[2, 1].

Documenta Mathematica · Extra Volume ICM 1998 · III · 667–676



Methods for Nonlinear Optimization 673

When using the conjugate gradient method to solve the Newton equations,
ill-conditioning is a grave concern. The unfavorable distribution of eigenvalues of
the matrix in (12) may require a large number of CG iterations, and may even
prevent us from achieving sufficient accuracy in the step computation. Fortunately,
since the barrier function is separable and the portion that gives rise to the ill-
conditioning is known explicitly, we can apply preconditioning techniques. To
describe them let us recall that the step given by (12) has been decomposed in
terms of its x and s-components, p = (px, ps). Then the change of variables

p̃s = µS−2ps,

transforms the primal-dual matrix Σ = ΛS−1 into Σ = µ−1ΛS. The second
equation in (11) implies that ΛS converges to µI, showing that the new matrix
Σ will not only be bounded, but will converge to the identity matrix. The CG
iteration can now be effectively applied to the transformed system [1]. One should
note, however, that this preconditioning comes at a price, and increases the cost
of the CG iteration [1].

In summary, we have learned how to cope with ill-conditioning in barrier
methods for nonlinear optimization. These observations also indicate that de-
veloping quasi-Newton variants of the interior methods just described may not
pose significant difficulties provided that we approximate only the Hessian of the
Lagrangian (7) of the original problem (1), as opposed to the Hessian of the La-
grangian of the barrier problem (10) which contains structural ill-conditioning.

3.3 Predictor-Corrector Strategy

The third key contribution of interior point methods has been the idea of using
probing schemes to determine how fast to reduce the barrier parameter, and at the
same time to determine (indirectly) how accurately to solve the barrier problem
[7]. We cannot describe these predictor-corrector techniques here, and refer the
reader to [13] for an excellent treatment of this subject.

We will only outline the key ideas of this approach which, at present, has
only been implemented in the context convex optimization. Its most interesting
feature is that it goes beyond the principle of Newton’s method which computes a
step based on an approximation of the problem at the current point. Instead, one
first probes the problem by attempting to solve (12) with µ = 0, which amounts
to trying to solve the original nonlinear program (1). By gathering information
in this probing iteration (the predictor), we can make a decision on how much to
decrease the barrier parameter. At the same time, and at minimal cost, we can
compute a primal-dual type step that corrects the predictor step and generates an
iterate that is closer to the solution of the current barrier problem.

4 Final Remarks

Let us contrast the active set and interior approaches described in the previous
sections by comparing the way in which they generate steps.
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In the active set method we compute an exact solution of the subproblem (9).
This is a full-fledged inequality constrained problem which can be costly to solve
when the number of variables and constraints is large – particularly if the Hessian
of the model is not positive definite. This is the main disadvantage of active set
methods.

The great virtue of the active set approach is that it gives us, at every iteration,
a guess of the optimal active set. As the iterates approach the solution, the active
set of the subproblem (9) does not change, or undertakes minimal changes. This
allows great savings in the solution of the subproblem because a warm start can be
used: the solution of a new subproblem (9) can start from the active set identified
at the previous iteration, and one can also re-use certain matrix factorizations [6].

Let us now consider interior point methods. The primal-dual iteration (12)
is only a local method, and must be modified to be capable of dealing with non-
convex problems. The interior methods described in [1] and [14] compute the step
by solving a quadratic subproblem obtained by making a linear-quadratic approx-
imation of the barrier problem. This approximation is such that, asymptotically,
the iteration reduces to the primal-dual iteration (12). In both of these approaches
there is an explicit bound on the step ps in the slack variables. It takes the form

ps ≥ 0.995s,

and is known as a “fraction to the boundary rule”.
This subproblem appears to be very similar to (9) since it also contains in-

equality constraints, but the presence of the barrier terms in the objective softens
these constraints. Whereas in the active set approach the solution of the sub-
problem will normally lie on the boundary of the feasible region, in the interior
approach this will not be the case, and solving the subproblem is simpler. This is
one of the great advantages of interior methods.

A drawback of interior methods is that they normally do not provide a clear
indication of the optimal active set until the solution is computed to high accu-
racy. This is undesirable in some applications, and future interior point codes may
need to switch to an active set iteration, if necessary. Another weakness of interior
methods is that they cannot efficiently re-use information from a previous sub-
problem. Roughly speaking, the solution of every subproblem requires the same
amount of work. Finally, it is not yet known if interior point methods will prove
to be as robust as active set methods for solving difficult non-convex problems.

These observations are based on the limited numerical experience that has
been accumulated for both approaches when solving large problems. Once we have
gained a better understanding of their practical behavior, and after new variants
have been proposed, we will undoubtly discover that other unforeseen issues will
tilt the balance towards one approach or the other.
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Column Generationand the Airline Crew Pairing Problem
Ranga Anbil, John J. Forrest and William R. Pulleyblank

Abstract. The cost of flight crews is the second largest operating cost of
an airline. Minimizing it is a fundamental problem in airline planning and
operations, and one which has leant itself to mathematical optimization.
We discuss several recent advances in the methods used to solve these
problems. After describing the general approach taken, we discuss a
new method which can be used to obtain approximate solutions to linear
programs, dramatically improving the solution time of these problems.
This is the so-called volume algorithm. We also describe several other
ideas used to make it routinely possible to get very good solutions to
these large mixed integer programs.

1991 Mathematics Subject Classification: 90B35, 90C09, 90C10
Keywords and Phrases: linear programming, integer programming, vol-
ume algorithm, crew pairing, column generation

1 Airline Operations and the Crew Pairing Problem

The Airline Crew Pairing problem has become well known as a prototypical applied
problem which lends itself to a column generation approach. A pairing, or tour of
duty, is a sequence of flights to be flown by a crew, starting and ending at the crew
member’s home base. Typically the length of a pairing will range from a single day
to four or five days. The pairing problem is to compute a set of pairings covering
all the scheduled flights of an airline, which has minimum, or near minimum, cost.
This problem normally forms the third major stage in a four part planning process:

1. Schedule Creation. Flights are planned, based on market demands and
competitive analysis. For example, we may schedule a flight from New York’s
La Guardia Airport to Chicago’s O’Hare Airport every non-holiday weekday
departing at 6:15 P.M.

2. Fleet Scheduling. Airlines normally have several different types (fleets)
of aircraft. A fleet is chosen for each flight scheduled in the first stage,
subject to the constraints that the type of aircraft chosen for each flight be
of suitable capacity and flying characteristics and subject to “Kirchoff’s law”
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for aircraft – each aircraft that departs from an airport must have landed
there first. Subject to these constraints, the operating cost of the aircraft
should be minimized.

3. Crew Pairing. A set of pairings is created which assigns crews to aircraft
flights. This will normally be solved separately for each fleet, as typically a
crew member only has current authorization for one type of fleet.

4. Rostering. Individual crew members are assigned to each pairing, often
based on seniority, sometimes by an auction process.

The difficulty of the crew pairing problem comes from several factors:

1. The rules which govern the feasibility of a pairing are very complex, often
combining FAA regulations with sets of rules coming from union negotia-
tions.

For example, the rules governing a feasible assignment of duties of a major
US carrier, include the following rules: the maximum trip length is 4 duty
days; the maximum duty flying time is 8 hours; the minimum time allowed
between connecting flights is 40 minutes; at most one aircraft changes is
permitted in a duty.

There are also more complicated rules. One example requires that in any 24
hour window of a pairing, a crew member flying up to 8 hours is entitled to
an intervening rest period of 540 minutes before the next duty. However, if
necessary, this can be shortened to 510 minutes, but if this is done, then the
following intervening rest must be at least 630 minutes.

2. The calculation of the cost of a pairing is complex, and usually incorporates
several nonlinear components. Most of the cost is for the crew pay. This
is based on the amount of actual flight time, but also has minima that are
applied based on the time of duty each day and the number of days in
the pairing. There are also costs associated with hotel costs and per diem
expenses.

3. The number of feasible pairings is very large, so it is not practical to generate
the complete set of feasible pairings for a problem.

The table below illustrates the number of feasible pairings, with maximum
length three or four days, for several fleets.

Fleet Max Days #Flights #Bases #Duties #Pairings
(millions)

AAS80 3 1152 12 690,000 48,400
AA757 3 251 15 7,000 1
AA727 3 375 11 31,000 36
AAF10 4 307 3 55,000 63,200
UA737 4 773 7 568,000 100,000,000
USDC9 4 478 4 562,000 105,000,000
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Note that although the number of feasible pairings is very large, the number of
feasible one day duties is of a much more manageable size.

2 Overall Approach and Formulation

2.1 Basic formulation

The crew pairing optimization problem is normally solved in several stages. First,
a daily problem is solved, which handles all the flights which are scheduled every
day. Then a weekly problem is solved which reuses as much of the daily solution as
possible, and also handles weekends. Then a monthly or dated problem is solved
which keeps as much as possible of the weekly solutions and creates a complete
monthly schedule, dealing with holidays and week to week transitions. Each stage
of this problem can be formulated as an integer program.

Let P be the set of all feasible pairings. For each j ∈ P , we define a 0, 1
variable xj with the interpretation xj = 1 if the pairing j is used and xj = 0 if it
is not used. Let cj denote the cost of pairing j, which can be computed based on
the cost structure as described above.

Let F be the set of all flights that must be covered in the period of time under
consideration. For each i ∈ F , let P i denote the set of all pairings which cover the
flight i. Then the problem becomes:

Minimize
∑
j∈P cjxj (1)

subject to xj ∈ {0, 1} for all j ∈ P, (2)∑
j∈P i xj = 1 for all i ∈ F. (3)

Let A = (aij : i ∈ F, j ∈ P ) denote the 0, 1 flight-pairing incidence matrix,
where aij = 1 if pairing j includes flight i and 0 otherwise. Then this can be
written as the set partitioning problem:

Minimize cx subject to 0 ≤ x ≤ 1, integer, and Ax = 1. (4)

A is a matrix which typically has several hundred rows (one for each flight
to be covered) and many millions of columns, corresponding to the set of feasible
pairings. The size of A makes exhaustive column enumeration impractical.

Early works, discussed in Arabeyre et al.[3], Bornemann[11], and Marsten and
Shepardson[23], restrict column generation a priori to a small, manageable subset
of preferred pairings and solve the resulting set partitioning problem by implicit
enumeration or branch-and-bound via linear programming or Lagrangian relax-
ation. Other works, reported in Rubin[26], Baker et al.[4], Ball and Roberts[5],
Etschmaier and Mathaisel[15], Gershkoff[18], Anbil et al.[1] and Graves et al.[19]
employ iterative column generation schemes centered around local improvement
procedures but do not guarantee global convergence.

Anbil, Johnson and Tanga[2], present a method to handle more than 5 million
columns and report excellent cost savings over a local improvement scheme, but
the search is nonetheless limited to this subset. Recently, Housos and Elmroth
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[21] solve the problem a day at a time over a week horizon and report excellent
results, however, it is not clear if their iterative scheme has global convergence.

Minoux[24] is perhaps the first to present a globally converging column gen-
eration method for the linear relaxation of the crew pairing problem. This is
described in the next solution. Crainic and Rousseau[13] also report a similar but
less formal procedure.

Desaulniers et al.[14] and Barnhart et al.[9] discuss convergence rate issues
and column generation integrated into branch-and-bound for solving the overall
mixed integer program. Barnhart, Hatay and Johnson[8] discuss a scheme for
interactively expanding the duty network to include deadhead flights as they are
needed. Ryan and Falkner[28], Hoffman and Padberg[20], Bixby et al.[10], Chu et
al.[12] and Wedelin[30] discuss specialized optimization algorithms for the underly-
ing mixed integer programs. Vance, Barnhart, Johnson and Nemhauser[29] present
a different formulation for the crew pairing problem but with similar algorithmic
issues.

Some additional constraints may also be added to this formulation. For ex-
ample, Crew base constraints associate each pairing with a crew base from which
it can be flown. Then the number of pairings associated with each crew base is
given both upper and lower bounds. Quality constraints may apply to an entire
problem, and restrict the number of three and four day pairings which can be
used in an optimal solution. Often these are soft constraints, in that they can be
violated, but an artificial penalty cost is added to the solution if this happens.

2.2 Solution Approach

Our solution approach combines rapid solutions of linear programming relaxations
with column generation and specialized branching:

1. Generate an Initial Solution. If a warm start solution is available, use
it. (A warm start solution is a solution obtained from an earlier, similar run.) If
not, use heuristics to create a feasible solution. Add additional columns to the
problem, as described in the following section.

2. Solve the linear program using the Sprint method, described below.
3. Generate additional columns to improve the quality of the linear program

solution. We focus on flights which are being covered by expensive pairings, but
also randomize. Also, we use the column generation method described in the next
section.

4. Repeat Steps 2 and 3 until the linear program solution only improves
negligibly.

5. Collapse flights based on best follow-on using the linear program solution.
This is described in Section 4.

6. Reduce the matrix, generate additional columns to improve the linear
programming solution using the reduced matrix, and return to Step 5.

7. When the number of flights in Step 5 is less than 100, solve for the best
integer programming solution.

The selection of flights to be used for deadheading creates an additional prob-
lem. Airlines generally prefer to use their own flights, but will permit the use of
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competitor flights, if it substantially improves the objective function. This then
has the potential to substantially increase the problem size, even to an extent that
it cannot be solved. For that reason, careful selection of a suitable set of deadheads
is crucial.

2.3 The Sprint method

The linear programs solved in the above procedure have a small number of rows
but a very large number of columns. As the problems get large, the solution times
using standard linear programming methods grow too rapidly to be practical. John
Forrest[16] introduced the so-called Sprint method. The example below, based on
a problem from American Airlines, had 837 flights and generated a total of 5.5
million feasible pairings. The problem was solved with IBM’s OSL Primal, Dual
and Sprint, for successively larger subsets of the 5.5 million columns. In each case,
the pairings represented by the first 110 columns gave a good feasible solution. All
times are minutes of solution time on a S/390 (in 1989).

Number of Primal Dual Sprint
Pairings Iterations Time Iterations Time Iterations Time

5,000 479 .05 203 .05 933 .10
10,000 1416 .35 295 .10 1072 .14
50,000 7239 11.1 1861 3.99 2870 .86

100,000 17273 57.7 4804 21.5 6981 2.68
200,000 33950 226.8 8008 74.3 36356 12.7
250,000 44215 397.8 8727 100.7 57181 21.5
500,000 11105 258.6 106002 54.5

The Sprint method proceeds as follows: It begins by solving the linear program
obtained by keeping a small subset of the columns and then uses the optimal dual
variables to price out all columns of the original problem. If the solution is not
optimal to the original problem, then there are columns having negative reduced
cost. A new problem is formed by keeping the columns in the optimal basis and
then adding a subset of the best unused columns, based on the current reduced
cost. This is done by first bucketing the columns based on the reduced cost, adding
the columns in the best buckets, plus a random selection of columns from other
buckets. Note that even though the number of Sprint iterations grows rapidly,
they are performed very quickly, enabling our low solution times.

3 Optimal Column Generation

In the solution approach described above, we go through a number of waves of
column generation. Minoux[24] introduced an approach, based on the optimal
dual variables to the linear program described above, which would generate new
columns that could reduce the cost of the current solution, if any existed.

The linear programming relaxation of the integer program above is
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Minimize cx subject to 0 ≤ x, and Ax = 1. (5)

We have dropped the upper bounds on the variables, as they are implied by
the non negativity constraints, combined with the equations Ax = 1. The dual
problem will have a variable yi corresponding to each flight i ∈ F .

Minoux observed that the total number of feasible one-day duties is manage-
able. (See the table above.) He suggested building a tree of duties to represent
pairings as paths in this tree. A path includes both duty arcs and ground arcs
that link consecutive duties, and the cost of a path or pairing is viewed as a linear
sum of duty and ground arc costs. Initially, some paths are selected and a linear
programming solver gives the dual variables corresponding to each flight. The
duty arc costs are then reduced by their flight duals and a shortest path algorithm
applied to the duty tree gives the most negative reduced cost pairing to enter the
problem. It is then resolved and the updated duals drive the next shortest path
generation. This process will eventually reach a point when the shortest path
yields a non-negative reduced cost. The columns present in the current linear
program contain the optimum solution.

Current column generation methods reported in Barnhart et al.[7] Desaulniers
et al.[14] Lavoie et al.[22], Wise[31] and Barnhart et al.[9] are mostly further
extensions to Minoux’s seminal work that address one or more of three main
limitations: the path cost is not necessarily linear in the arc costs; all paths may
not be legal; there are extra constraints such as crew base constraints that may
limit the number of pairings that may be flown from a specific base.

The most common approach is dynamic programming on a shortest-path for-
mulation with side constraints to ensure accurate costing, legal paths and the
proper accounting of the extra constraints.

We use a variant of the shortest path column generation scheme. Like
Minoux[24], we use a duty tree with duty arcs and ground arcs, but carry a vector
of arc costs to enable the different ways of computing the cost. Using the set of
dual variables from a previously solved linear program, we reduce the arc costs
component-wise. We then perform a depth first traversal of the duty tree, ensuring
we are feasible as we proceed, and keeping a component-wise tally of the reduced
arc costs. We now add this tally to the cost of the shortest path from our location
to the end of the tree, again component-wise, and use the maximum of the com-
ponent sums as a lower bound on the true shortest path cost. If this lower bound
exceeds a threshold, then we backtrack. We ensure that every pairing we generate
will be feasible as we proceed, by ensuring that all constraints are satisfied as we
go along. This is in contrast with some earlier methods which generated a superset
of the feasible columns and then were filtered afterwards. Our method also avoids
the excessive memory requirements inherent in dynamic programming.

Each time we generate columns, we set a threshold and generate all columns
whose current costs will be less than this value. This value is changed during the
running of the method.
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4 Branching Methods

Normally, a branch and bound approach is used to repeatedly add constraints to
the linear programming relaxation until an integral optimum is found. A key to
the success of this approach is the method used to generate these constraints. We
use a method called branch on follow-ons, introduced by Ryan and Falkner [27].
A follow-on is the second of a pair of consecutive flights flown in a pairing. We
examine the solution obtained to a linear relaxation, and look for follow-ons which
occur in a set of pairings j for which

∑
xj is large, that is, close to 1. (Note that

the values xj will, in general, be fractional.) The sum is over all pairings j in the
optimum linear programming solution for which xj is positive. When we find such
a follow on, we fix it, that is, we force it to be part of the solution by creating
an artificial flight which combines the two consecutive flights, and reducing the
problem.

Note that the column generation phase will still consider the original set of
flights, so it is possible to recover from a bad choice.

5 The Volume Algorithm

Barahona and Anbil[6] developed an extension to the subgradient algorithm which
will produce approximate optimal feasible primal and dual solutions to a linear
program, much more quickly than solving it exactly. These methods yield signifi-
cant improvements to the running time of our crew pairing approach.

Since the early 1970’s, subgradient algorithms have been used to rapidly pro-
duce good lower bounds for linear programs, see for example Nemhauser and
Wolsey[25]. The method produces a sequence of feasible solutions to the dual
problem, which will converge to the optimum. Barahona and Anbil[6] present a
new method which also produces a feasible solution to the primal problem. It is
based on the following result:

Theorem 1 Consider the linear program Maximize z, subject to z+ aiπ ≤ bi, for
i = 1, ...,m, where π is a vector with n− 1 components. Let (ẑ, π̂) be an optimal
solution and suppose that the constraints 1, ...,m′,m′ ≤ m are active. Let z̄ < ẑ
and assume that z+aiπ ≤ bi, for i = 1, ...,m′; z ≥ z̄ defines a bounded polyhedron.
For 1 ≤ i ≤ m′, let γi be the volume between the face defined by z + aiπ ≤ bi

and the hyperplane defined by z = z̄. Then an optimal dual solution is given by

λi =
γi∑m′

j=1 γj
.

They also show how this theorem can be used to produce a feasible dual
solution which approximates the optimum.

We apply this method to the linear programs we encounter when solving
the crew pairing problem. In addition to the performance improvements, the
dual solutions produced tend to be very good for the column generation phase.
This is because they are highly nonbasic, that is, a large number of variables are
nonzero. Dual solutions obtained using the barrier or interior method for linear
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programming share this property. However, those used by the simplex algorithm
tend to be very sparse, and do not work as well.

We also use the volume algorithm as a crash procedure for the simplex method
when the Sprint method performs poorly. These situations arise after we generate
columns for a period of time using only duals from the Volume algorithm. The
table below summarizes runs on several problems obtained from US Airways and
Southwest Airlines. All times are CPU seconds on an RS6000/590.

Using the Volume algorithm dual solution to crash the dual simplex is, on
average, nine times faster than the dual simplex algorithm and two times faster
than the interior method. We did not consider the primal simplex algorithm, since
it performs very poorly for these problems.

No. of No. of No. of Primal-Dual Dual Volume plus
Rows Columns Elements Interior Simplex Dual Simplex
2504 53226 553148 1341 3747 320
2991 46450 502338 1984 6928 923
4810 95933 1009283 4165 25917 2576

6 Conclusions

The methods we have described here are used successfully by several airlines to
solve their monthly crew planning problems. In fact, it is part of a larger system
which combines management of a database of previously created good solutions,
used for warm starts, with interactive tools permitting the scheduler to manually
change the solutions produced.

Presently attention is switching to the schedule repair problem. This is the
operational problem which occurs when a schedule is disrupted, for example, due
to weather or mechanical problems, and it is desired to get back on schedule as
efficiently as possible. This problem is complicated by the fact that we must
produce feasible solutions in minutes, rather than hours, and by the problems of
aircraft availability as well as the possibility of canceling flights.
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Routing and Timetabling by Topological Search
Alexander Schrijver

Abstract. We discuss how decomposing the search space into homo-
topy classes can help in finding solutions to combinatorial optimization
problems. Searching any homotopy class then amounts to finding a group
function ψ on the arcs of a directed graph such that ψ is cohomologous
to a given function φ and such that ψ has values in a prescribed range.

We describe applications to two specific classes of NP-complete problems:
routing wires on a chip (where the main tool is solving the cohomology
problem in a free group, and a main result the polynomial-time solv-
ability of the wire-routing problem for any fixed number of modules),
and finding a periodic timetable (applied to the Dutch railway timetable,
where liftings of the period group C60 to the integers give the classes to
be searched).

The methods also imply a characterization of the existence of an isotopy
of a compact surface S that brings a given set of disjoint closed curve on
S to a given undirected graph embedded on S.

1991 Mathematics Subject Classification: 05C85, 05C90, 90B06, 90B10,
90B35
Keywords and Phrases: homotopy, disjoint paths, routing, timetabling,
closed curves, compact surface

1. Introduction

A basic technique in combinatorial optimization, and more generally, in inte-
ger programming, is to extend (‘relax’) the feasible solution set X ⊆ Zk to
conv.hull(X) ⊆ Rk, and to use the solution of the relaxed problem as a guideline
in an approximative method or in a branch and bound process. This is based on
the hope that a fractional solution is close to the integer solution, and on the idea
that the relaxed problem can be solved fast with linear programming techniques.

Mathematically, the idea can be described as embedding the group Zk into
the group Rk, where Zk is a ‘hard’ group, while Rk is a ‘tractable’ group (as long
as the feasible region is convex).

In this survey we describe a different technique of reducing problems on ‘hard’
groups to problems on ‘tractable’ groups. Instead of embedding the hard group
into a tractable group, we lift the hard group to a tractable group. We give two
examples where this technique can be applied successfully, although it is not as
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generally applicable as the embedding technique described above. We will not
venture upon describing the method in its full generality, but hope that the reader
will see that the frameworks we describe have a common underlying structure.

The type of problems where the technique applies can be described as follows.
Let D = (V,A) be a directed graph, and let G be a group. Call two functions
φ, ψ : A→ G cohomologous (denoted by φ ∼ ψ) if there exists a function p : V → G
such that for each arc a = (u, v) one has

ψ(a) = p(u)−1φ(a)p(v). (1)

Consider the following cohomology feasibility problem:

given: φ : A→ G and Ψ : A→ 2G,
find: ψ ∼ φ such that ψ(a) ∈ Ψ(a) for each a ∈ A.

(2)

This problem is in general hard to solve, even if G = C3. Then, if φ(a) := 1
and Ψ(a) := G \ {1} for a ∈ A (assuming that G is the multiplicative group with
three elements), the cohomology feasibility problem has a solution if and only if
the directed graph D is 3-vertex-colourable. As the latter problem is NP-complete,
the cohomology feasibility problem is NP-complete.

On the other hand, there are groups where the cohomology feasibility prob-
lem is solvable in polynomial time, provided that the sets Ψ(a) each are convex in
a certain sense. For instance, if G = Rk and each Ψ(a) is convex, the cohomol-
ogy feasibility problem can be solved in polynomial time by linear programming
methods (assuming that the Ψ(a) are appropriately described).

Another tractable group is the group Z of integers, where each Ψ(a) is a
convex subset of Z. The cohomology feasibility problem then can be solved with
a variant of the Bellman-Ford method for finding shortest paths.

As an extension of this, we have shown in [6] that if G is a free group, and
each Ψ(a) is hereditary (closed under taking contiguous subwords), then again the
cohomology feasibility problem is solvable in polynomial time. This holds more
generally for free partially commutative groups, if the subsets Ψ(a) are convex in
a certain sense — see Section 3 ([7]).

We give two applications in which the cohomology feasibility problem with a
hard group shows up (Zk, C60), and show how a lifting to a tractable group (the
free group, Z) can help in solving the problem. (In fact, Zk is a special case of a
free partially commutative group; however, the subsets in the application are not
of the prescribed type.)

2. Disjoint paths in directed planar graphs

The first application is that of routing the wires on a very large-scale integrated
(VLSI) circuit (a chip). If we restrict ourselves to one layer, the following k disjoint
paths problem emerges:

given: a planar directed graph D = (V,E), and distinct vertices
s1, t1, . . . , sk, tk of D;
find: pairwise disjoint directed paths P1, . . . , Pk, where Pi runs
from si to ti (i = 1, . . . , k).
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For general directed graphs, this problem is NP-complete even when fixing
k = 2 (Fortune, Hopcroft, and Wyllie [1]). This is in contrast with the undirected
case (for those believing NP 6=P), where Robertson and Seymour [4] showed that,
for any fixed k, the k disjoint paths problem is solvable in polynomial time for any
undirected graph (not necessarily planar).

Also, for directed planar graphs, the k disjoint paths problem is NP-complete
if we do not fix k (Lynch [2]). However, in [6] it is shown that for fixed k and for
directed planar graphs, it is solvable in polynomial time. We sketch the method.

For each i = 1, . . . , k, choose a simple curve Ci in R2 connecting si and ti,
in such a way that the Ci are pairwise disjoint. Now the following k disjoint
homotopic paths problem is solvable in polynomial time:

given: pairwise disjoint simple curves C1, . . . , Ck, where Ci con-
nects vertices si and ti of D (i = 1, . . . , k);
find: pairwise disjoint directed paths P1, . . . , Pk in D, such that Pi
is homotopic to Ci in the space R2 \ {s1, t1, . . . , sk, tk}.

The curves Ci can be described equivalently by a flow φ : A → FGk, where
FGk denotes the free group with k generators g1, . . . , gk. Thus at any vertex
v 6∈ {s1, t1, . . . , sk, tk}, the flow conservation law should hold; that is, if a1, . . . , an
are the arcs of D incident with v in clockwise order, then the product

φ(a1)
sign(a1,v) · . . . · φ(an) sign(an,v)

equals 1, where sign(a, v) = +1 if a enters v and sign(a, v) = −1 if a leaves v. If
v = si, the product should be a conjugate of g−1i , and if v = ti, a conjugate of gi.

Let us call a flow φ : A→ FGk feasible if for each arc a: φ(a) ∈ {1, g1, . . . , gk},
and for each vertex v and for each two faces f and g incident with v, if a1, . . . , am
are the arcs incident with v met when going from f to g around v in clockwise
order, then

φ(a1)
sign(a1,v) · . . . · φ(am) sign(am,v)

belongs to {1, g1, g−11 , . . . , gk, g
−1
k }.

So feasible flows correspond to solutions to the original k disjoint paths prob-
lem. Now given a flow φ : A → FGk, we can find in polynomial time a feasible
flow ψ : A→ FGk homotopic to φ, if it exists. Here φ and ψ are called homotopic
if there exists a function p : F → FGk such that for each arc a of D, if f and f ′

denote the faces incident with a at its left-hand and right-hand side, respectively,
then ψ(a) = p(f)−1φ(a)p(f ′). (Here F denotes the collection of faces of D.)

This follows from the polynomial-time solvability of the cohomology feasibility
problem for free groups, with each Ψ(a) hereditary. Indeed, by passing from the
graph D to its (planar) dual graph D∗, the problem of finding a feasible flow
homotopic to a given flow, is transformed to the cohomology feasibility problem.

The polynomial-time solvability of the k disjoint homotopic paths problem
implies that for fixed k, the k disjoint paths problem in directed planar graphs is
polynomial-time solvable: it can be shown that one can enumerate in polynomial
time (for fixed k) flows φ1, . . . , φN : A→ FGk with the property that each feasible
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flow is homotopic to at least one of φ1, . . . , φN . (The exponent of the polynomial
depends on k.) This is the proof method for:

Theorem 1. For each fixed k, the k disjoint paths problem in directed planar
graphs can be solved in polynomial time.

Note that the k disjoint paths problem asks for any flow; that is, one not restricted
by its homotopy class. In other words, we ask for a feasible flow φ : A→ Zk. (So
the generators may commute; this corresponds to the possibility that curves may
be shifted over each other.) Not fixing k, this is an NP-complete problem. By
lifting Zk to FGk, we restrict the solution set, and obtain a polynomial-time
solvable problem (also polynomial-time for nonfixed k). As the number of liftings
can be bounded by a polynomial for fixed k, we can solve the original problem for
fixed k in polynomial time. (In fact, generally there are infinitely many liftings,
but only a restricted number of them potentially gives a feasible solution.)

3. Free partially commutative groups

The algorithm for solving the cohomology feasibility problem for free partially
commutative groups (with convex sets Ψ(a)) implies a necessary and sufficient
condition for the existence of a solution ψ, which we describe now.

There is an obvious necessary condition for the existence of such a function ψ.
Let us denote a path P in D as a word a1 · · ·at over the alphabet {a, a−1|a ∈ A}.
In this way we indicate that P traverses the arcs a1, . . . , at in this order, where
ai = a−1 means that arc a is traversed in backward direction. A v − w path is a
path starting in v and ending in w.

Define φ(a−1) := φ(a)−1 and Ψ(a−1) := Ψ(a)−1. For any path P = a1 · · · at
define φ(P ) := φ(a1) · · ·φ(at) ∈ G and Ψ(P ) := Ψ(a1) · · ·Ψ(at) ⊆ G.

A necessary condition for the existence of ψ in the cohomology feasibility
problem (2) is:

for each v ∈ V and each v − v path P there exists an x ∈ G such
that x−1φ(P )x ∈ Ψ(P ).

(3)

Indeed, we can take x = p(v) where p is as in (1).
In some cases this condition is sufficient as well, for instance, if G is the infinite

group with one generator g and each Ψ(a) is convex (that is, if gi, gj ∈ Ψ(a) then
also gk ∈ Ψ(a) whenever k is inbetween i and j).

However, this condition generally is not sufficient. A stronger necessary con-
dition is:

for each v ∈ V and each two v − v paths P1, P2 there exists an
x ∈ G such that x−1φ(P1)x ∈ Ψ(P1) and x−1φ(P2)x ∈ Ψ(P2),

(4)

since again we can take x = p(v).
Now for free partially commutative groups, condition (4) is also sufficient,

for certain subsets Ψ(a). A free partially commutative group is constructed as
follows. Let g1, . . . , gk be generators, and let E be a collection of pairs {i, j} with
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i, j ∈ {1, . . . , k} and i 6= j. Then the group G = Gk,E is the group generated
by g1, . . . , gk with relations gigj = gjgi for each {i, j} ∈ E. So if E = ∅ then
Gk,E is the free group generated by g1, . . . , gk, while if E consists of all pairs from

{1, . . . , k} then Gk,E is isomorphic to Zk.

There is the following direct reduction rule for words over the ‘symbols’
g1, g

−1
1 , . . . , gk, g

−1
k : if symbol α commutes with each symbol occurring in word

y, then xαyα−1z = xyz. It can be shown that repeating this reduction as long as
possible starting with a word w, one reaches the empty word 1 if w equals 1 in the
group. So the word problem can be solved easily (cf. Wrathall [10]).

Applying this reduction to a general word w, one obtains a shortest possible
wordw′ (shortest among all wordsw′′ that are equal to w in the group). The length
of w′ is denoted by |w|. This defines a ‘norm’ onGk,E , satisfying |1| = 0, |u−1| = |u|
and |uw| ≤ |u|+ |w|. So we can define a distance function dist on G by:

dist(x, y) := |x−1y|

for x, y ∈ G. For x, y ∈ G let [x, y] be the set of all z ∈ G satisfying dist(x, z) +
dist(z, y) = dist(x, y). Call a subset H of G convex if 1 ∈ H, [x, y] ⊆ H for all
x, y ∈ H, [x, y] ⊆ H−1 for all x, y ∈ H−1.

Note that if G is the free group then H ⊆ G is convex if and only if H 6= ∅
and H is hereditary.

In [7] the following theorem is proved.

Theorem 2. Let G be a free partially commutative group and let each Ψ(a) be
convex. Then the cohomology feasibility problem (2) has a solution ψ if and only
if condition (4) is satisfied.

The proof is based on a polynomial-time algorithm giving either the function
ψ or a pair of paths P1, P2 violating (4). Therefore we also have:

Theorem 3. The cohomology feasibility problem (2) is solvable in polynomial time
if G is a free partially commutative group and each Ψ(a) is convex.

We assume here that membership of Ψ(a) of a given word can be checked in
polynomial time.

4. Disjoint closed curves in graphs on a compact surface

We describe a consequence of Theorem 2. Let S be a compact surface. A closed
curve on S is a continuous function C : S1 → S, where S1 is the unit circle in
C. Two closed curves C and C′ are called freely homotopic, in notation C ∼ C′,
if there exists a continuous function Φ : S1 × [0, 1]→ S such that Φ(z, 0) = C(z)
and Φ(z, 1) = C′(z) for each z ∈ S1.

For any pair of closed curves C,D on S, let cr(C,D) denote the number of
crossings of C and D, counting multiplicities. Moreover, mincr(C,D) denotes the
minimum of cr(C′, D′) where C′ and D′ range over closed curves freely homotopic
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to C and D, respectively. That is,

mincr(C,D) := min{cr(C′, D′)|C′ ∼ C,D′ ∼ D}.

Let G = (V,E) be an undirected graph embedded on S. (We identify G with its
embedding on S.) For any closed curve D on S, cr(G,D) denotes the number of
intersections of G and D (counting multiplicities):

cr(G,D) := |{z ∈ S1|D(z) ∈ G}|.

The following was shown in Schrijver [5] (motivated by Robertson and Sey-
mour [3]) — it can also be derived (with surface duality) from Theorem 2.

Theorem 4. Let G = (V,E) be an undirected graph embedded on a compact sur-
face S and let C1, . . . , Ck be pairwise disjoint simple closed curves on S, each non-
nullhomotopic. Then there exist pairwise vertex-disjoint simple circuits C′1, . . . , C

′
k

in G such that C′i ∼ Ci (i = 1, . . . , k), if and only if for each closed curve D on S:

cr(G,D) ≥
k∑

i=1

mincr(Ci, D),

with strict inequality if D is doubly odd.

Here we call a closed curve D on S doubly odd (with respect to G and
C1, . . . , Ck) if D is the concatenation D1 · D2 of two closed curves D1 and D2
such that D1(1) = D2(1) 6∈ G and such that

cr(G,Dj) 6≡
k∑

i=1

cr(Ci, Dj) (mod 2),

for j = 1, 2.
The essence of the theorem is sufficiency of the condition.
The theorem can be extended to directed circuits in directed graphs embedded

on a compact orientable surface, although the condition becomes more difficult to
describe. (For the torus, see Seymour [9].) In any case, the method yields a
polynomial-time algorithm finding the directed circuits.

5. Periodic timetabling

The cohomology feasibility problem also shows up in the problem of making the
timetable for Nederlandse Spoorwegen (Dutch Railways), a project currently per-
formed for NS by CWI (with Adri Steenbeek). The Dutch railway system belongs
to the busiest in the world, with several short distance trajectories, while many
connections are offered, with short transfer time.

Task is to provide algorithmic means to decide if a given set of conditions on
the timetable can be satisfied. In particular, the hourly pattern of the timetable
is considered. The basis of the NS-timetable is a periodic cycle of 60 minutes.
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How can this problem be modeled? First of all, each departure time to be
determined is represented by a variable vt. Here t is a train leg that should go
every hour once. So vt represents a variable in the cyclic group C60. Similarly, the
arrival time of leg t is represented by a variable at in C60.

In the problem considered, a fixed running time is assumed for each leg. This
implies that if train leg t has a running time of, say, 11 minutes, then at− vt = 11.
The waiting period of a train at a station is prescribed by an interval. E.g., if t
and t′ are two consecutive train legs of one hourly train, and if it is required that
the train stops at the intermediate station for a period of at least 2 and at most
5 minutes, then one poses the condition that vt′ − at ∈ [2, 5] (as interval of C60).

This gives relations between train legs of one hourly train. To make connec-
tions, one has to consider train legs of two different trains. So if one wants to make
a connection from leg t, arriving in Utrecht say, of one train, to a leg t′ departing
from Utrecht of another train, so that the transfer time is at least 3 and at most
7 minutes, then one gets the condition that vt′ − at ∈ [3, 7].

Finally, there is the condition that for safety each two trains on the same
trajectory should have a timetable distance of at least 3 minutes. That is, if train
leg t of one train and train leg t′ of another train run on the same railway section,
then one should pose the condition vt′ − vt ∈ [3, 57].

By representing each variable by a vertex, the problem can be modeled as
follows. Let D = (V,A) be a directed graph, and for each a ∈ A, let Ψ(a) be an
interval on C60. Find a function p : V → C60 such that p(w) − p(u) ∈ Ψ(a) for
each arc a = (u,w) of D.

This is a special case of the cohomology feasibility problem. Note that (as
C60 is abelian) one may equivalently find a ‘length’ function l : A→ C60 such that
l(a) ∈ Ψ(a) for each a ∈ A and such that each undirected circuit in D has length
0. (For arcs a in the circuit traversed backward one takes −l(a) for its length.)

It is not difficult to formulate this problem as an integer linear programming
problem. Indeed, if for any arc a = (u,w), Ψ(a) is equal to the interval [la, ua],
we can put:

la ≤ xw − xu + 60ya ≤ ua, (5)

where ya is required to be an integer. Thus we get a system of |A| linear inequalities
with |V | real variables xv and |A| integer variables ya. In fact, if there is a solution,
there is also one with the xv being integer as well (as the x variables make a network
matrix).

Now in solving (5), one may choose a spanning tree T in D, and assume that
ya = 0 for each arc a in T (cf. Serafini and Ukovich [8]). Alternatively, one may
consider the problem as follows.

A circulation is a function f : A→R such that the ‘flow conservation law’:

∑

a∈δ−(v)
f(a) =

∑

a∈δ+(v)
f(a)

holds for each vertex v of D. Here δ−(v) and δ+(v) denote the sets of arcs entering
v and leaving v, respectively.
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Let L be the lattice of all integer-valued circulations. Now one can describe
the problem as one of finding a linear function Φ : L→ Z such that there exist za
(for a ∈ A) with the properties that la ≤ za ≤ ua for each arc A and zTf = 60Φ(f)
for each f ∈ L.

The existence of such za can be checked in polynomial time, given the values
of Φ on a basis of L. Indeed, for a ∈ T let ya = 0, and for a 6∈ T let ya = φ(f),
where f is the incidence vector of the circuit in T ∪ {a} (so f is a circulation:
f(a′) = 1 on forward arcs a′ in the circuit, f(a′) = −1 on backward arcs a′ in
the circuit, and f(a′) = 0 on each other arc a′). Then for this fixed y we can test
(5) in polynomial time (with the Bellman-Ford method), which is equivalent to
finding z as required.

Hence, in searching a feasible timetable one can branch on choices of Φ. Each
Φ corresponds to a homotopy class of solutions of the timetable problem.

Again, this amounts to a lifting, now from C60 to Z. Indeed, we consider for
each arc a 6∈ T a translation by 60ya of the feasible interval, considered as interval
on Z, and try to solve the problem over Z.

We also note that, given Φ, if there exist za, one can optimize the za under
any linear (or convex piecewise linear) objective function (for instance, passenger
waiting time).

Typically, the problems coming from NS have about 3000 variables with about
10,000 constraints. In a straightforward way they can be reduced to about 200
variables with about 600 constraints. The above observations turn out to require
a too heavy framework in order to solve the problem fast in practice (although
they are of help in optimizing a given solution).

The package CADANS that CWI is developing for NS for solving the problem
above, is based on a fast constraint propagation technique and fast branching
heuristics designed by Adri Steenbeek. It gives, in a running time of the order of 1-
10 minutes either a solution (i.e., a feasible timetable), or an inclusionwise minimal
set of constraints that is infeasible. If CADANS gives the latter answer, the user
should drop, or relax, at least one of the constraints in the minimal set in order to
make the constraints feasible. Thus CADANS can be used interactively to support
the planner. Alternatively, it can uncover bottlenecks in the infrastructure, and
indicate where extra infrastructure (viaducts, flyovers, four-tracks) should be built
in order to make a given set of conditions feasible.
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Open Dynamical Systems and their Control
Jan C. Willems

Abstract. A mathematical framework for studying open dynamical
systems is sketched. Special attention is given in the exposition to linear
time-invariant differential systems. The main concepts that are intro-
duced are the behavior, manifest and latent variables, controllability,
and observability. The paper ends with a discussion of control, which is
viewed as system interconnection.

1991 Mathematics Subject Classification: 93B05, 93B07, 93B36, 93B51,
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controllability, observability, control, stabilization.

1 Introduction

The purpose of this presentation is to explain some of the main features of the
theory of open dynamical systems. The adjective ‘open’ refers to systems that
interact with their environment. This interaction may take the form of exchange
of a physical quantity as mass or energy, or it may simply consist of exchange
of information. Closed dynamical systems have been studied very extensively in
mathematics. Typically these lead to models of the general form d

dtx = f(x).
The evolution of such systems is completely determined by the dynamical laws
(expressed by the vector-field of f) and the initial state x(0). In open dynami-
cal systems, however, the evolution of the system variables is determined by the
dynamical laws, the initial conditions, and, in addition, by the influence of the
environment. This may for instance take the form of an external input function
that drives the system. Examples of application areas where this interaction with
the environment is essential are signal processing and control. Whereas in signal
processing it is reasonable to view the input function as a given (or stochastically
described) time-function, this is not the case in application areas as control, since
in this case the input function is usually generated by a mechanism which selects
the input on the basis of the evolution of output variables in the system itself.
This feature leads to ‘feedback’ which forms the central concept of control, ever
since the subject came into existence.
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2 Dynamical systems

A first goal is to put forward a notion that serves to describe open dynamical
systems mathematically. A framework that has shown to be quite effective, both
in terms of generality and applicability, is called the ‘behavioral approach’. One of
its main features is that it does not start from an input/output structure or map,
nor from a state space model. Instead, any family of trajectories parameterized by
time is viewed as a dynamical system. The theory underlying this approach has
been treated in [16, 17, 12]. Here we can only describe a few of the bare essentials.

A dynamical system Σ is triple Σ = (T,W,B) with T ⊂ R the time-set, W
the signal space, and B ⊂ WT the behavior. The intuition behind this definition
is that T is the set of relevant time-instances; W is the set in which the signals,
whose dynamic relation Σ models, take on their values; the behavior B specifies
which signals w : T → W obey the laws of the system. The time-set T equals
for example R or R+ in continuous-time, and Z or Z+ in discrete-time systems.
Important properties of dynamical systems are linearity and time-invariance; Σ is
said to be linear ifW is a vector space andB is a linear subspace ofWT, and time-
invariant (assuming T = R or Z) if σtB = B for all t ∈ T, where σt denotes the
t-shift (defined by (σtf)(t′) := f(t′ + t)). There is much interest in generalization
from a time-set that is a subset of R to domains with more independent variables
(e.g., time and space). These ‘dynamical’ systems have T ⊂ Rn, and are referred
to as n-D systems.

3 Differential systems

The ‘ideology’ of the behavioral approach is based on the belief that in a model of
a dynamical (physical) phenomenon, it is the behavior B, i.e., a set of trajectories
w : T→W, that is the central object of study. But, this set of trajectories must be
specified somehow, and it is here that differential (and difference) equations enter
the scene. Of course, there are important examples where the behavior is specified
in other ways (for example, in Kepler’s laws for planetary motion), but differential
equations are certainly the most prevalent specification of behaviors encountered
in applications. For T = R, B then consists of the solutions of a system of differ-

ential equations as f(w, ddtw, . . . ,
dN

dtN w) = 0. We call these differential systems.
Of particular interest (at least in control, signal processing, and circuit theory,
etc.) are systems with a signal space that is a finite-dimensional vector space and
behavior described by linear constant-coefficient differential equations. The fact
that non-trivial new things can be said about such systems, which from a mathe-
matical point of view may appear very simple, is due to the many meaningful new
concepts originating from the interaction of systems with their environment.

A linear time-invariant differential system is a dynamical system Σ =
(R,W,B), withW a finite-dimensional (real) vector space, whose behavior consists
of the solutions of

R(
d

dt
)w = 0, (1)

with R ∈ R•×•[ξ] a real polynomial matrix. Of course, the number of columns
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of R equals the dimension of W. The number of rows of R, which represents the
number of equations, is arbitrary. In fact, when the row dimension of R is less than
its column dimension, R( ddt )w = 0 is an under-determined system of differential
equations which is typical for models in which the influence of the environment is
taken into account. The definition of a solution of R( ddt)w = 0 is an issue. There is

much to be said for considering solutions in Lloc(R,W) and interpreting R( ddt)w as
a distribution. This allows steps, ramps, etc., which are often used in engineering
applications. Nevertheless, for ease of exposition, we define the behavior to be

{w ∈ C∞(R,W) | R(
d

dt
)w = 0}. (2)

We denote this behavior as ker(R( ddt )), the set of linear time-invariant differential
systems by L•, and those with dim(W) = w by Lw. Whence Σ = (R,Rw,B) ∈
Lw means that there exists a R ∈ R•×w[ξ] such that B = ker(R( ddt )). We call

R( ddt )w = 0 a kernel representation of Σ. Note that we may as well write B ∈ Lw,
instead of Σ ∈ Lw, since the time-axis (R) and the signal space (Rw) are evident
from this notation.

Let B ∈ Lw. Define the consequences of B to be the set NB := {n ∈ Rw[ξ] |
nT ( ddt)B = 0}. It is easy to see that NB is an R[ξ]-submodule of Rw[ξ], that for

B = ker(R( ddt )), NB equals the submodule spanned by the transposes of the rows
of R, and that there is a one-to-one relation between Lw and the R[ξ]-submodules
of Rw[ξ]. This property, however, depends on the fact that we used C∞-solutions.
The same one-to-one correspondence holds with distributional solutions, but not
with C∞- (or distributional) solutions with compact support. A problem that
remains unsolved is to give a crisp characterization for subspaces of C∞(R,Rw) to
be elements of Lw. In the discrete-time case, the analogous systems can be nicely
specified: B must be a linear, shift-invariant subspace of (Rw)Z, and closed in the
topology of point-wise convergence [16, 17].

The one-to-one relationship between certain classes of dynamical systems and
certain submodules has been studied in other situations as well [9, 11, 10]. For
example, it holds for constant-coefficient PDE ’s. Let R ∈ R•×w[ξ1, ξ2, . . . , ξn] be a
polynomial matrix in n variables. It induces the PDE

R(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
)w = 0 (3)

in the functions x = (x1, x2, . . . , xn) ∈ Rn 7→ (w1(x), w2(x), . . . , ww(x)) ∈ Rw.
Define the behavior of this PDE as

{w ∈ C∞(Rn,Rw) | R(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
)w = 0}. (4)

It turns out that, as in the case with one independent variable, there is again a
one-to-one relation between these behaviors and the R[ξ1, ξ2, . . . , ξn]-submodules
spanned by the rows of R [11]. Analogous, but technically more involved, results
have been obtained for time-varying linear systems with hyper-functions as solu-
tions and the ring of time-varying differential operators having coefficients in R(t)
without poles on the real axis [10].
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4 Latent variables and elimination

Mathematical models of complex systems are usually obtained by viewing the sys-
tem (often in a hierarchical fashion) as an interconnection of subsystems, modules
(standard components), for which a model can be found in a database. This prin-
ciple of tearing and zooming, combined with modularity, lies at the basis of what is
called object-oriented modelling, a very effective computer assisted way of model
building used in many engineering domains. An important aspect of these object-
oriented modelling procedures is that they lead to a model that relates the variables
whose dynamic relation one wants to model (we call these manifest variables) to
auxiliary variables (we call these latent variables) that have been introduced in
the modelling process, for example as variables that specify the interconnection
constraints. For differential systems this leads to equations as

f1(w,
d

dt
w, . . . ,

dN

dtN
w, ℓ,

d

dt
ℓ, . . . ,

dN

dtN
ℓ) = f2(w,

d

dt
w, . . . ,

dN

dtN
w, ℓ,

d

dt
ℓ, . . . ,

dN

dtN
ℓ),

relating the (vector of) manifest variables w to the (vector of) latent variables ℓ.
In the linear time-invariant case this becomes

R(
d

dt
)w = M(

d

dt
)ℓ, (5)

with R and M polynomial. Define the manifest behavior of (5) as

{w ∈ C∞(R,Rw) | ∃ℓ ∈ C∞(R,R•) such that R(
d

dt
)w = M(

d

dt
)ℓ}. (6)

We call (5) latent variable representation of (6). The question occurs whether (6)
is in Lw. This is the case indeed.

Theorem 1 : For any real polynomial matrices (R,M) with rowdim(R) =
rowdim(M), there exists a real polynomial matrix R′ such that the manifest be-
havior of R( ddt )w = M( ddt )ℓ has the kernel representation R

′( ddt )w = 0.

The above theorem is called the elimination theorem. Its relevance in object-
oriented modelling is as follows. A model obtained this way usually involves very
many variables and equations, among them many algebraic ones. The elimination
theorem tells that the latent variables may be eliminated and that the number of
equations can be reduced to no more than the number of manifest variables. Of
course, the order of the differential equation goes up in the elimination process.

The theoretical basis that underlies the elimination theorem is the funda-
mental principle. It gives necessary and sufficient conditions for solvability for
x ∈ C∞(R,R•) in the equation F ( ddt )x = y with F ∈ R•×•[ξ] and y ∈ C∞(R,R•)
given. Define the annihilators of F as KF := {n ∈ Rrowdim(F ) | nTF = 0}. The
fundamental principle states that F ( ddt )x = y is solvable if and only if nT ( ddt )y = 0
for all n ∈ KF . This immediately yields the elimination theorem. For the case at
hand, it is rather easy to prove the fundamental principle, but there are interest-
ing generalizations where it is a deep mathematical result. For example, for the
constant-coefficient PDE ’s, and for the time-varying linear systems discussed in
section 3. Thus the elimination theorem also holds for these classes of systems.
The elimination problem has also been studied For nonlinear systems [4].
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5 Controllability

An important property in the analysis and synthesis of open dynamical systems
is controllability. Controllability refers to be ability of transferring a system from
one mode of operation to another. By viewing the first mode of operation as
undesired and the second one as desirable, the relevance to control and other areas
of applications becomes clear. The concept of controllability has been introduced
around 1960 in the context of state space systems. It is one of the notions that is
endogenous to control theory. The classical definition runs as follows. The system
described by the controlled vector-field d

dtx = f(x, u) is said to be controllable

if ∀a, b, ,∃u and T ≥ 0 such that the solution to d
dtx = f(x, u) and x(0) = a

yields x(T ) = b. One of the elementary results of system theory [1] states that the
finite-dimensional linear system d

dtx = Ax + Bu is controllable if and only if the

matrix [B AB A2B · · ·Adim(x)−1B] has full row rank. Various generalizations of
this result to time-varying, to nonlinear (involving Lie brackets) [7, 8, 2, 15], and
to infinite-dimensional systems exist [3].

A disadvantage of the notion of controllability as formulated above is that it
refers to a particular representation of a system, notably a state space represen-
tation. Thus a system may be uncontrollable either for the intrinsic reason that
the control has insufficient influence on the system variables, or because the state
has been chosen in an inefficient way. It is clearly not desirable to confuse these
reasons. In the context of behavioral systems, a definition of controllability has
been put forward that involves the system variables directly.

Let Σ = (T,W,B) be a dynamical system with T = R or Z, and assume
that is time-invariant. Σ is said to be controllable if for all w1, w2 ∈ B there exists
T ∈ T, T ≥ 0 and w ∈ B such that w(t) = w1(t) for t < 0 and w(t) = w2(t−T ) for
t ≥ T . Thus controllability refers to the ability to switch from any one trajectory
in the behavior to any other one, allowing some time-delay.

Two questions that occur are the following: What conditions on the param-
eters of a system representation imply controllability? Do controllable systems
admit a particular representation in which controllability becomes apparent? For
linear time-invariant differential systems, these questions are answered in the fol-
lowing theorem.

Theorem 2 : Let Σ = (R,Rw,B) ∈ Lw. The following are equivalent:

1. The system Σ is controllable;

2. The polynomial matrix R in a kernel representation R( ddt )w = 0 of B satis-
fies rank(R(λ)) = rank(R) for all λ ∈ C;

3. The behavior B is the image of a linear constant-coefficient differential op-
erator, that is, there exists a polynomial matrix M ∈ Rw×•[ξ] such that
B = M( ddt)C

∞(R,Rcoldim(M));

4. The compact support trajectories of B are dense (in the C∞-topology) in B;

5. The R[ξ]-module Rw[ξ]/NB is torsion-free.
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There exist various algorithms for verifying controllability of a system Σ ∈ L•
starting from the coefficients of the polynomial matrix R in a kernel (or a latent
variable) representation of Σ, but we will not enter into these algorithmic aspects.

A point of the above theorem that is worth emphasizing is that controllable
systems admit a representation as the manifest behavior of the latent variable
system of the special form

w = M(
d

dt
)ℓ. (7)

We call this an image representation. It follows from the elimination theorem that
every system in image representation can be brought in kernel representation. But
not every system in kernel representation can be brought in image representation:
it is precisely the controllable ones for which this is possible.

The controllability issue has been pursued for many other classes of sys-
tems. In particular (more difficult to prove) generalizations have been derived
for differential-delay [14, 6], for nonlinear, for n-D systems [13, 9], and, as we will
discuss soon, for PDE ’s. Systems in an image representation have received much
attention recently for nonlinear differential-algebraic systems, where they are re-
ferred to as flat systems [5]. Flatness implies controllability, but the exact relation
remains to be discovered.

We now explain the generalization to constant-coefficient PDE ’s. Consider
the system defined by (3,4). This system is said to be controllable if for all w1, w2
in the behavior (4) and for all open subsets O1, O2 of Rn with disjoint closure,
there exists w in (4) such that w|O1 = w1|O1 and w|O2 = w2|O2 . The following
result has been obtained in [11].

Theorem 3 : The following statements are equivalent:

1. (3) defines a controllable system;

2. (4) admits an image representation, i.e., there exists a polynomial matrix
M ∈ Rw×•[ξ1, ξ2, . . . , ξn] such that (4) equals

M(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
)C∞(R,Rcoldim(M));

3. The trajectories of compact support are dense in (4).

It is a simple consequence of this theorem that a scalar PDE in one func-
tion (i.e., with rowdim(R) = coldim(R) = 1) with R 6= 0 cannot be control-
lable. It can be shown, on the other hand, that Maxwell’s equations (in which
case rowdim(R) = 8 and coldim(R) = 10) are controllable. Note that an image
representation corresponds to what in mathematical physics is the existence of a
potential function. An interesting aspect of the above theorem therefore is the fact
that it identifies the existence of a potential function with the system theoretic
property of controllability and concatenability of behaviors.
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6 Observability

The notion of observability was introduced hand in hand with controllability. In
the context of the input/state/output system d

dtx = f(x, u), y = h(x, u), it refers to
the possibility of deducing, using the laws of the system, the state from observation
of the input and the output. The definition that is used in the behavioral context
is more general in that the variables that are observed and the variables that need
to be deduced are kept general.

Let Σ = (T,W,B) be a dynamical system, and assume that W is a product
space: W =W1×W2. Then w1 is said to be observable from w2 in Σ if (w1, w

′
2) ∈

B and (w1, w
′′
2 ) ∈ B imply w′2 = w′′2 . Observability thus refers to the possibility

of deducing the trajectory w1 from observation of w2 and from the laws of the
system (B is assumed to be known).

The theory of observability runs parallel to that of controllability. We mention
only the result that for linear time-invariant systems, w1 is observable from w2
if and only if there exists a set of consequences of the system behavior of the
following form that puts observability into evidence: w1 = R′2(

d
dt )w2.

7 Control

In order to illustrate the idea of the nature of control that we would like to transmit
in this presentation, consider the system configuration depicted in figure 1. In the
top part of the figure, there are two systems, shown as proverbial black-boxes
with terminals. It is through their terminals that systems interact with their
environment. The black-box imposes relations on the variables that ‘live’ on its
terminals. These relations are formalized by the behavior of the system in the
black-box. The system to the left in figure 1 is called the plant, the one to the right
the controller. The terminals of the plant consist of to-be-controlled variables w,
and control variables c. The controller has only terminals with the control variables
c. In the bottom part of the figure, the control terminals of the plant and of the
controller are connected. Before interconnection, the variables w and c of the plant
have to satisfy the laws imposed by the plant behavior. But, after interconnection,
the variables c also have to satisfy the laws imposed by the controller. Thus, after
interconnection, the restrictions imposed on the variables c by the controller will
be transmitted to the variables w. Choosing the black-box to the right so that the
variables w have a desirable behavior in the interconnected black-box is, in our
view, the basic problem of control. This point of view is discussed with examples
in [18].

In the remainder of this paper we describe one simple controller design prob-
lem in this setting. Let the variables w be partitioned into two sets: w = (d, z)
with the d’s exogenous disturbances, and the z’s endogenous to-be-controlled vari-
ables. Assume that the plant is a linear time-invariant differential system with
behavior P ∈ Ld+z+c, called the plant behavior. Assume further that the exoge-
nous disturbances d are free in P, that is, that for all d ∈ C∞(R,Rd) there exist
(z, c) such that (d, z, c) ∈ P. Now consider the controller, also assumed to be a lin-
ear time-invariant differential system, with behavior C ∈ Lc, called the controller
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behavior. With the controller put into place, the behavior of the to-be-controlled
variables becomes

K = {(d, z) ∈ C∞(R,Rd+z) | ∃c ∈ C such that (d, z, c) ∈ P}. (8)

By the elimination theorem, K ∈ Ld+z. We call K the controlled behavior.

PLANT Controllerw

w PLANT Controller

c

Figure 1: Controller interconnection

The controller C usually has to satisfy certain practical implementability con-
straints, perhaps as a signal processor that transforms sensor outputs into actuator
inputs, or using physical energy-based constraints, etc. Here, we assume that the
controller can be any linear time-invariant differential system that leave the ex-
ogenous disturbances free. This is the case if and only if its behavior C has the
property that for all d ∈ C∞(R,Rd), there exists (z, c) such that both (d, z, c) ∈ P
and c ∈ C. We call this set of controllers admissible controllers, and denote it by
C.

The control problem that now emerges is that of choosing, for a given plant
P, an admissible controller C ∈ C such that the controlled behavior K meets
certain specifications. We consider pole placement, which, as we shall see, implies
stabilization. We now explain what this means. Consider the controlled system
K ∈ Ld+z. When the controller which generates K is admissible, d must be free
in K. This implies that K has a kernel representation P ( ddt)z = Q( ddt )d with P a
polynomial matrix of full row rank. Define the characteristic polynomial πK of K
as follows. If P is not square (and hence wide) πK := 0. Otherwise, πK = det(P )
where it is assumed that P is chosen such that det(P ) is monic. We call the roots
of πK the poles of K. If πK 6= 0, then the behavior K0 = {(d, z) ∈ K | d = 0} is
finite-dimensional, and the exponents of its exponential responses are the roots of
πK.

Note that controllability can be defined when there are more variables in the
model than just those that need to be concatenated. Similarly, observability can
also be defined when there are more variables in the model that just the observed
and the to-be-deduced ones. The definitions are evident. We now state necessary
and sufficient conditions for pole assignability.
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Theorem 4 : Let the plant behavior P ∈ Ld+z+c be given. Then there exists,
for any monic polynomial r ∈ R[ξ], an admissible controller C ∈ C such that the
resulting controlled system K ∈ Ld+z has πK = r if the exogenous to-be-controlled
variables z are (i) controllable in P0 := {(d, z, c) ∈ P | d = 0}, and (ii) observable
from c in P.

The controlled behavior K is said to be stable if (d, z) ∈ K and d = 0 implies
that w(t)→ 0 as t→∞. ObviouslyK is stable if and only if πK is a Hurwitz poly-
nomial. The above theorem gives controllability and observability conditions that
are sufficient for stabilizability. Pole placement and stabilization are very coarse
controller design specifications. But also other, more refined, design specifications,
for example H∞-control and robust stability, can be treated in this setting.

These results generalize the classical state space pole placement results in a
number of ways. However, we regard the main contribution of the above theorem
to be the underlying idea of control. We view interconnection as the principle
of control. It supersedes the special case of trajectory selection and optimization
(often called open-loop (optimal) control, and the (very important) special case
of feedback control (often called intelligent control), in which a signal processor
uses the plant sensor outputs in order to select the plant actuator inputs. The
latter area is the classical view of control and will undoubtedly gain in importance
for technological applications as logical devices and on-line computation becomes
cheaper, more reliable, and more powerful. However, by considering interconnec-
tion as the basic principle of control, the scope of the subject and its relevance
to the design of physical systems can be enhanced in meaningful directions, by
making the (optimal) design of subsystems, i.e., integrated system design, as the
aim and the domain of the subject.
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Free Material Optimization
Michal Kočvara and Jochem Zowe

Abstract. Free material design deals with the question of finding the
stiffest structure with respect to one or more given loads which can be
made when both the distribution of material and the material itself can be
freely varied. We consider here the general multiple-load situation. After
a series of transformation steps we reach a problem formulation for which
we can prove existence of a solution; a suitable discretization leads to a
semidefinite programming problem for which modern polynomial time
algorithms of interior-point type are available. Two numerical examples
demonstrates the efficiency of our approach.

1991 Mathematics Subject Classification: 73K40;90C90; 90C25
Keywords and Phrases: Structural optimization; Material optimization;
Topology optimization; Semidefinite programming

1 Problem Formulation

In this section we introduce the problem of free material optimization. Only basic
description of the problem is given; for more details the reader is refered to [2, 5, 1].
We study the optimization of the design of an elastic continuum structure that
is loaded by multiple independent forces. The material properties at each point
are the design variables. We start from the infinite-dimensional problem setting,
show the existence of a solution after a reformulation of the problem and, after
discretization, reach a finite-dimensional formulation expressed as a semidefinite
program, and as such accessible to modern numerical interior-point methods.

First we sketch the single-load model in the two-dimensional space. Let Ω ⊂
R2 be a bounded domain (the elastic body) with Lipschitz boundary Γ. The
standard notation [H1(Ω)]2 and [H10 (Ω)]2 for Sobolev spaces of functions v : Ω→
R2 is used. By u(x) = (u1(x), u2(x)) with u ∈ [H1(Ω)]2 we denote the displacement
vector at point x of the body under load. Further, let

eij(u(x)) =
1

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
for i, j = 1, 2

denote the (small-)strain tensor, and σij(x), i, j = 1, 2, the stress tensor. To
simplify the notation we will often skip the space variable x in u, e, etc.
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708 Michal Kočvara and Jochem Zowe

Our system is governed by linear Hooke’s law, i.e., the stress is a linear func-
tion of the strain

σij(x) = Eijkl(x)ekl(u(x)) (in tensor notation), (1)

where E(x) is the (plain-stress) elasticity tensor of order 4; this tensor character-
izes the elastic behaviour of material at point x. The strain and stress tensors are
symmetric and also E is symmetric in the following sense:

Eijkl = Ejikl = Eijlk = Eklij for i, j, k, l = 1, 2.

These symmetries allow us to and interpret the 2-tensors e and σ as vectors

e = (e11, e22,
√

2e12)
T ∈ R3, σ = (σ11, σ22,

√
2σ12)

T ∈ R3.

Correspondingly, the 4-tensor E can be written as a symmetric 3× 3 matrix

E =




E1111 E1122
√

2E1112
E2222

√
2E2212

sym. 2E1212


 . (2)

In this notation, equation (1) reads as σ(x) = E(x)e(u(x)). Henceforth, E will be
understood as a matrix and we will use double indices for its elements. To allow
switches from material to no-material, we work with E ∈ [L∞(Ω)]3×3.

We consider a partitioning of the boundary Γ into two parts: Γ = Γ1 ∪ Γ2,
where Γ1 and Γ2 are open in Γ and Γ1 ∩ Γ2 = ∅. Further we put

H = {u ∈ [H1(Ω)]
2 |ui = 0 on Γ1 for i = 1 or 2 or any combination},

i.e., [H10 (Ω)]
2 ⊂ H ⊂ [H1(Ω)]

2
. To exclude rigid-body movements, we assume

throughout that

{v ∈ H | vi = ai + bxi, ai ∈ R, i = 1, 2, b ∈ R arbitrary} = ∅.

For the elasticity tensor E and a given external load f ∈ [L2(Γ2)]
dim the

potential energy of an elastic body as a function of the displacement u ∈ H is
given by

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u) with F (u) :=

∫

Γ2

f · u dx. (3)

The system is in equilibrium for u∗ which maximizes (3), i.e., u∗ which solves

sup
u∈H

{
−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u)

}
. (4)

Under our assumptions, the supremum in (4) is equal to 1
2F (u∗); this value is

known as compliance. Now the role of the designer is to choose the material
function E such that the “sup” in (4) becomes as small as possible, that is, the
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body responds with minimal displacements in the direction of the load f . We
assume E(x) to be a symmetric and positive semidefinite matrix for almost all
x ∈ Ω (recall E ∈ L∞(Ω)), what we write as

E(x) = E(x)T � 0 a.e. in Ω. (5)

To introduce a resource (cost) constraint for E, we use the (invariant) trace of E

tr(E(x)) :=
3∑

i=1

Eii(x) (6)

and require with some given positive α that
∫

Ω

tr(E(x)) dx ≤ α. (7)

Further, to exclude singularities at isolated points (e.g., at boundary points of Γ2)
we demand that, with some fixed 0 < r+ ∈ L∞(Ω),

tr(E(x)) ≤ r+(x) a.e. on Ω. (8)

The feasible design functions are collected in a set

E :=

{
E ∈ [L∞]3×3(Ω) | E is of form (2) and

satisfies (5), (7) and (8)

}
. (9)

With this definition, the single-load problem becomes

inf
E∈E

sup
u∈H

{
−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F (u)

}
. (10)

Let us now assume that the structure must withstand a whole collection of
independent loads f1, . . . , fL from L2(Γ2), acting at different times; further, the
design should be the “best possible” one in this framework. This leads to the fol-
lowing multiple-load design (MLD) problem, in which we seek the design function
E which yields the smallest possible worst-case compliance

inf
E∈E

sup
ℓ=1,...,L

sup
u∈H

{
−1

2

∫

Ω

〈Ee(u), e(u)〉 dx+ F ℓ(u)

}
; (11)

here

F ℓ(u) :=

∫

Γ2

f ℓ · u dx for ℓ = 1, . . . , L. (12)

2 Existence of a solution

We first eliminate the discrete character of the “ sup
ℓ=1,...,L

” in (11). With a weight

vector λ for the loads, which runs over the unit simplex

Λ :=

{
λ ∈ RL |

L∑

ℓ=1

λℓ = 1, λℓ ≥ 0 for ℓ = 1, . . . , L

}
,
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710 Michal Kočvara and Jochem Zowe

we get from a standard LP-argument as reformulation of (11):

inf
E∈E

sup
λ∈Λ

sup
(u1,...,uL)∈H×···×H

L∑

ℓ=1

{
−1

2

∫

Ω

λℓ〈Ee(uℓ), e(uℓ)〉 dx+ λℓF
ℓ(uℓ)

}
. (13)

The objective function in (13) is linear (thus convex) in the inf-variable E; it is,
however, not concave in the sup-argument (λ;u1, . . . , uL). We will show that a
simple change of variable yields a convex-concave version of the problem.

First note that the inf-sup value in (13) remains the same when restricting λ
to the half-open set

Λ0 := {λ ∈ Λ | λℓ > 0 for ℓ = 1, . . . , L}

and then pass from the variable (λ;u1, . . . , uL) to

(λ; v1 := λ1u
1, . . . , vL := λLu

L).

This converts (13) to

inf
E∈E

sup
(v;λ)∈V

L∑

ℓ=1

{
−1

2

∫

Ω

λ−1ℓ 〈Ee(vℓ), e(vℓ)〉 dx+ F ℓ(vℓ)

}
, (14)

where we put v := (v1, . . . , vL) and

V :=
{

(v;λ) | v ∈ [H]L, λ ∈ Λ0
}
.

The objective function in (14)

F(E; (v;λ)) :=
L∑

ℓ=1

{
−1

2

∫

Ω

λ−1ℓ 〈Ee(vℓ), e(vℓ)〉 dx+ F ℓ(vℓ)

}
(15)

is now concave in (v;λ) = (v1, . . . , vL;λ) ∈ V and a result due to Moreau ([4])
yileds the following existence theorem.

Theorem 1 There exists E∗ ∈ E such that

sup
(v;λ)∈V

F(E∗; (v;λ)) = min
E∈E

sup
(v;λ)∈V

F(E; (v;λ)).

Further
inf
E∈E

sup
(v;λ)∈V

F(E; (v;λ)) = sup
(v;λ)∈V

inf
E∈E
F(E; (v;λ)).

3 Discretization and Semidefinite Reformulation

Using the well-known identity for the trace of the product of a d×d matrix A and
the rank-one matrix aaT with a ∈ Rd:

tr(A · aaT ) = 〈Aa, a〉 (16)
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we can rewrite the objective function (15) in (14) as

F(E; (v;λ)) = −1

2

∫

Ω

tr

(
E ·

L∑

ℓ=1

λ−1ℓ e(vℓ)e(vℓ)
T

)
dx+

L∑

ℓ=1

F ℓ(vℓ).

Due to Theorem 1, we may switch the order of “inf” and “sup” in (14); further,
in order to simplify, let us multiply (14) by −2 to get

inf
(v;λ)∈U

sup
E∈E

{∫

Ω

tr

(
E ·

L∑

ℓ=1

λ−1ℓ e(vℓ)e(vℓ)
T

)
dx− 2

L∑

ℓ=1

F ℓ(vℓ)

}
. (17)

For convenience, we will use the same symbols for the “discrete” objects
(vectors) as for the “continuum” ones (functions). Assume that Ω is partitioned
into M polygonal elements Ωm of volume ωm and let N be the number of nodes
(vertices of the elements). We approximate E by a function that is constant on
each element Ωm, i.e., E becomes a vector (E1, . . . , EM ) of 3× 3 matrices Em—
the values of E on the elements. The feasible set E is replaced by its discrete
counterpart

E :=



E ∈ R

3×3M |
Em = ETm � 0 and tr(Em) ≤ r+m for m = 1, . . . ,M
M∑
m=1

tr(Em)ωm ≤ α



 .

To avoid merely technical details we neglect in the following the constraint

tr(Em) ≤ r+m for m = 1, . . . ,M.

Further assume that the displacement vector uℓ corresponding to the load-case ℓ is
approximated by a continuous function that is bi-linear (linear in each coordinate)
on every element. Such a function can be written as

uℓ(x) =
N∑

n=1

uℓnϑn(x)

where uℓn is the value of uℓ at nth node and ϑn is the basis function associated
with this node (for details, see [3]). Recall that, at each node, the displacement
has 2 components, hence u ∈ RD, D ≤ 2N (D could be less than 2N because
of boundary conditions which enforce the displacements of certain nodes to lie in
given subspaces of R2).

For basis functions ϑn, n = 1, . . . , N , we define matrices

Bn(x) =




∂ϑn
∂x1

0

0 ∂ϑn
∂x2

1
2
∂ϑn
∂x2

1
2
∂ϑn
∂x1


 .
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For an element Ωm, let Dm be an index set of nodes belonging to this element.
The value of the approximate strain tensor e on element Ωm is then (we add the
space variable x as a subscript to indicate that ex(uℓ) is a function of x)

ex(uℓ) =
∑

n∈Dm
Bn(x)uℓn on Ωm.

Finally, the linear functional F ℓ(uℓ) reduces to (f ℓ)Tuℓ with some f ℓ ∈ RD.
As discrete version of (17) we thus obtain, after a simple manipulation,

inf
(v;λ)∈V

sup
E∈E

{
M∑

m=1

tr

(
Em ·

L∑

ℓ=1

λ−1ℓ

∫

Ωm

ex(vℓ)ex(vℓ)
T
dx

)
− 2

L∑

ℓ=1

F ℓvℓ

}
. (18)

Note that for each element Ωm the d × d matrices

∫

Ωm

ex(vℓ)ex(vℓ)
T
dx can be

computed explicitly using the Gaussian integration rule; namely, there exist points
xms ∈ Ωm and weights γ2ms for s = 1, . . . , S such that

∫

Ωm

ex(vℓ)ex(vℓ)
T
dx = ωm

S∑

s=1

γ2msexms(v
ℓ)exms(v

ℓ)
T
. (19)

For instance, for linear Bn(.) (i.e. bilinear ϑn) one takes S = 4. Hence (18)
becomes

inf
(v;λ)∈V

sup
E∈E

{
M∑

m=1

ωmtr(EmAm(v, λ)) − 2
L∑

ℓ=1

F ℓvℓ

}
(20)

where

Am := Am(v;λ) :=
L∑

ℓ=1

λ−1ℓ

S∑

s=1

γ2msexms(v
ℓ)exms(v

ℓ)
T
. (21)

We now make one further step and introduce a dummy variable ρm for tr(Em)
and m = 1, . . . ,M . Then the constraint E ∈ E in (20) splits into a global part
(the global material distribution)

ρ ∈ RM+ ,
M∑

m=1

ρmωm ≤ α

and a local one (the local material properties)

Em = ETm � 0, tr(Em) = ρm, for m = 1, . . . ,M.

The “sup” over the local part can be now put under the sum:

inf
(v;λ)∈V

sup
ρ∈RM+∑
ρmωm≤α





M∑

m=1

ωm sup
Em=E

T
m�0

tr(Em)=ρm

tr(Em · Am(v, λ))− 2
L∑

ℓ=1

F ℓvℓ




. (22)
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Now we will analytically perform the inner “sup”, thus finally reaching a
semidefinite programming formulation of the multiple-load problem.

Fix m ∈ {1, . . . ,M} and consider the inner “sup” in (22):

sup
Em=E

T
m�0

tr(Em)=ρm

tr(EmAm). (23)

We use Lagrange theory to write this as

inf
τ∈R
{τρm + sup

Em=ETm�0
tr(Em(Am − τId))} (24)

with the d × d identity matrix Id. The only τ for which the inenr “sup” is finite
are those with Am − τId 6� 0. Hence we get for (24)

sup
Em=E

T
m�0

tr(Em)=ρm

tr(EmAm) = ρm inf
τId−Am�0

τ. (25)

With
τm := inf

τId−Am�0
τ

our discretized problem (22) becomes (note that Am and thus τm depends on
(v;λ))

inf
(v;λ)∈V

sup
ρ∈RM+∑
ρmωm≤α

{
M∑

m=1

ρmωmτm − 2
L∑

ℓ=1

F ℓvℓ

}
.

The inner “sup” over ρ is a linear program for each fixed outer variable (v;λ).
Hence the “sup” is attained at an extreme point of the feasible ρ−set and we can
continue

inf
(v;λ)∈V

{ max
m=1,...,M

ατm − 2
L∑

ℓ=1

F ℓvℓ},

which in view of (3) is the same as

inf
(v;λ)∈V
τ∈R

ατ − 2
L∑

ℓ=1

F ℓvℓ

s.t.
τId −Am(v;λ) � 0 for m = 1, . . . ,M.

(26)

To emphasize the dependence of Am on (v;λ), we have again inserted the variables.
With the (d× LS)-matrix

Zm :=
[
γm1exm1(v

1), . . . , γmsexms(v
1), . . . . . . , γm1exm1(v

L), . . . , γmsexms(v
L)
]

and the (LS × LS)-matrix

Λ(λ) := diag(λ1, . . . , λ1, . . . . . . , λL, . . . , λL)
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the constraints in (26) become

τId − Zm(v)Λ(λ)−1Zm(v)T � 0

which, using a standard result on Shur complement, is equivalent to

(
τId Zm(v)

Zm(v)
T

Λ(λ)

)
� 0.

We end up with the announced semidefinite program for the discretization of (14)

inf
(v;λ)∈V
τ∈R

ατ − 2
L∑

ℓ=1

F ℓvℓ

s.t. (
τId Zm(v)

Zm(v)
T

Λ(λ)

)
� 0 for m = 1, . . . ,M.

(27)

The semidefinite program (27) can be efficiently solved by modern interior-
point polynomial time methods. The question of recovering the optimal elasticity
matrices E∗1 , . . . , E

∗
M from the solution of (27) is a bit technical; again we refer

the reader to [1].

4 Examples

Results of two numerical examples are presented in this section. The values of the
“density” function ρ are depicted by gradations of grey: full black corresponds to
high density, white to zero density (no material), etc.
Example 1. We consider a typical example of structural design: The two forces
(or force and fixed boundary) are opposite to each other and there is a hole in
between because of technological reasons. The geometry of domain Ω and the
forces are depicted in Figure 1. The body can be loaded either by the forces on
the left or on the right-hand side. Therefore this example has to be considered as
MLD (two-load case). Symmetry allows us to compute only one half of the original
domain. The resulting values of the “density” function ρ for 37×25 mesh are also
presented in Figure 1. Again, the figure is composed from two computational
domains to get the full body.
Example 2. In this example we try to model a wrench. The geometry of domain
Ω is depicted in Figure 2. The nut (depicted in full black in Figure 2) is considered
to present a rigid obstacle for the wrench. Hence the wrench is in unilateral contact
with the nut and there are no other boundary conditions. The loads are also shown
in Figure 2. Note that the problem is nonlinear because of the unilateral contact
conditions and that for positive vertical force we get a different design than for
a negative one; hence we have to consider these two forces as two independent
loads. The resulting values of the “density” function ρ for 37× 22 discretization
are shown in Figure 3.
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Figure 1: Example 1

Ω
rigid obstacle

1st load-case

2nd load case

Figure 2: Example 2

Figure 3: Example 2
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Mathematics Education: Reform or Renewal?
George E. Andrews

In considering the relationship between traditional methods of instruction and
reform proposals, we should first take into account the environment in which in-
struction takes place.

It is a sad fact that students in the U.S. today are on the average: (1) not
well prepared mathematically before entering college, (2) not studying very hard,
and (3) distracted by many absorbing extracurricular activities.

The reports of unpreparedness are legion. From the recent TIMSS report and
related sources, we find that primary and secondary mathematics education in
the U.S. is not doing well. Indeed this problem has prompted the N.C.T.M. to
produce (and then revise) a set of national standards for mathematics education
at the primary and secondary levels. Even those of us who have criticized this
project do recognize that it was undertaken in response to a real need.

Also there is much evidence that generally students do not study enough.
The Pace Report suggests that a majority study less than 15 hours a week. A
comparable study at my own university (Penn State) confirms this depressing
statistic. No published report I know indicates that students are putting in close
to the expected 30 hours a week that the old saying “two hours outside of class
for each hour in class“ suggests.

These factors must also be viewed against an even more disturbing aspect of
undergraduate life in the U.S.: alcohol consumption. Graham Spanier (President
of Penn State) is not someone with whom I always agree. However, he is making
an effort to draw attention to this problem, and he paints a troubling picture:

“A survey conducted by the Harvard School of Public Health in 1993 reported
nationally, 44 percent of all college students were binge drinkers, defined as con-
suming five or more drinks in a sitting for men and four or more drinks in a sitting
for women during a two week period.

About half of these binge drinkers, or about one in five students overall, were
frequent binge drinkers, drinking heavily three or more times in two weeks.

About two in five students drank without binging.
Only about one in six – 16 percent – were non-drinkers.
There are unmistakeable consequences of such behavioral patterns. Among

the Harvard Study respondents, frequent binge drinkers were 25 times more likely
than non-binge drinkers to report having had five or more problems such as doing
something they regretted, missing a class, forgetting where they were, getting
behind in school work,... and so on...

While only a fraction of one percent of the Harvard Study respondents consid-
ered themselves to be problem drinkers, 39 percent said they drink to get drunk.”
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Given these gargantuan problems, what then should we do for the improve-
ment of undergraduate mathematics education? The answers provided by the bulk
of the reform movement are:
Increased Use of:
(1) calculators
(2) computer laboratories
(3) group projects
(4) term papers
Decreased Use of:
(1) lectures
(2) paper and pencil work and drill
At first glance, these answers seem inappropriate to say the least. We are

faced with a large group of poorly prepared students with poor work habits who
are prone to difficulties with alcohol, and we proceed to set up a system where
“the students will learn by constructing calculus for themselves.”

However, the current popularity of reform, indeed its great appeal to many
administrators, may have more to do with certain unstated (perhaps unconscious)
secondary effects than with its ability to improve mathematics education.

Whatever the virtues of each of the first four items (and we often hear much
about their virtues), it is clear that each will serve to MASK THE PROBLEMS
alluded to earlier.

If you can’t multiply 8 times 7, if you don’t know that 1/2 = .5, if you can’t
divide 1000 by 10, the calculator is your salvation. If you’ve learned none of the
small bits of information that serve to reinforce and accompany the development
of mathematical maturity, have no fear; the calculator will come to your rescue.
If some sorehead tells you that you need to know a few of these things so that you
won’t think 1000 divided by 10 is 10000 because you typed “*” when you meant
“/”, don’t worry; just remember to type carefully.

The same can be said of computer laboratories, with the additional comment
that these machines seem to obviate any necessity of gaining facility with the
fundamentals of calculus. So what if I don’t know the derivative of x3; DERIVE
tells me that it is 3x2.

Group projects will, of course, assist the ill-prepared and not-so-hard-working
who will be able to do better than they otherwise might because they can be carried
along by the stronger members of the group.

Term papers are partly a response to the frequent observation that students
not only can’t calculate, they also can’t write. Again strugglers will have resources
available from a variety of sources to help hide their deficiencies.

Since we are awash in enthusiasm for calculators, computer laboratories, group
projects and term papers, it would be a serious mistake to ignore their quite obvi-
ous potential for abuse. This is important in a world where there is heavy pressure
on administrators to cover over problems they can’t solve directly. It is especially
important when the public will buy the idea that “reform” and “innovation” can
be expected to solve these problems eventually.

Does all this mean that all is right with the world of traditional instruction?
No, unfortunately! While we did not create the environment I described earlier,
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we traditionalists have behaved less than responsibly, or at least have not squarely
faced our dilemmas.

Do we as faculty members sometimes shortchange our students because math-
ematical research is so much more fun than office hours or lecture preparation?
You know the answer.

Do we put in front of our freshmen in the U.S. teaching assistants who are
uncomfortable with English? Of course! We reply in response that we are hard
pressed to avoid this because the pool of mathematically competent, native English
speakers in the U.S. is small. Nonetheless, this is a serious problem that can only
be mitigated if it is addressed directly.

Do we value research by an order of magnitude over teaching? Anyone who
says “no” is not living in the real world. Think about the colleagues in your
department who were courted by better universities. Was it their teaching that
Princeton was after? Give me a break! What message does this absolutely certain
fact of life send to everyone? Don’t misunderstand me. The tremendous value we
place on our research is positive overall; among other things it generally protects
us from the relativism that has undermined standards and pedagogy in so many
disciplines. However, although you and I may agree that excellence in research is
the core of our profession, we have a duty to address the resulting implications for
teaching. And teaching must be done well if we are to flourish.

Let me conclude with the words of Paul Halmos taken from his article “The
Calculus Turmoil”:

“Yes, there is a disease, but calculus is neither its cause nor its main symptom.
We mathematicians can do our small bit to cure it, but not by rewriting calculus
books. All that we can do, all that we are professionally able to do, is to insist
on raising the quality of primary and secondary education by establishing and
maintaining a high quality in college courses, by insisting on and strictly enforcing
severe prerequisites, and by encouraging and properly training prospective grade
school and high school teachers. That we can do, and I hope we will.”

Halmos is clearly calling for renewal rather than reform, and I could not agree
more.

George E. Andrews
Department of Mathematics
Pennsylvania State University
410 McAllister Building
University Park, PA 16802-6401
USA
andrews@math.psu.edu
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De la Comprehension des Processusd'Apprentissage a la Conceptionde Processus d'Enseignement
Michèle Artigue

I. Introduction

La recherche en didactique des mathématiques, par ses travaux théoriques et
expérimentaux nous donne aujourd’hui les moyens de mieux comprendre les pro-
cessus d’apprentissage en mathématiques, des premiers apprentissages de l’école
élémentaire à ceux en jeu à l’université, ainsi que de mesurer les effets des stratégies
d’enseignement usuelles. La question de savoir comment tirer parti de cette con-
naissance pour améliorer l’enseignement reste cependant largement ouverte. A
travers elle, se pose celle de l’utilité des recherches didactiques mais aussi celle des
cadres théoriques adéquats pour penser le fonctionnement de systèmes complexes
comme le sont les systèmes d’enseignement. C’est à ces questions que nous nous
intéressons dans ce texte, en privilégiant au niveau des exemples l’enseignement
des mathématiques à l’université ou à la transition lycée/université.

II. Qu’est-ce qu’apprendre des mathématiques ? Comment les
apprend-t-on ? La diversité des positions épistémologiques
Toute réflexion sur l’apprentissage ou l’enseignement des mathématiques s’appuie,
sur des présupposés épistémologiques, même si ces derniers restent souvent large-
ment implicites. Ces présupposés peuvent être, comme le montrent différents
travaux, relativement divers (Steiner, 1988). Ils jouent sans aucun doute un rôle
restreint dans le travail quotidien des mathématiciens mais ils façonnent leur vi-
sion de cette science, de ce qui fait sa spécificité, de ses rapports avec les autres
sciences mais aussi avec les pratiques sociales et donc, de ce fait, leur vision des
valeurs à transmettre dans l’enseignement.

Cette diversité des présupposés épistémologiques possibles se retrouve, tout
aussi grande, au niveau des théories de l’apprentissage. Les trente dernières
années ont été marquées sur ce plan, dans le monde de l’éducation, par une dom-
ination nette des approches constructivistes, issues de l’épistémologie génétique
piagétienne (Brun, 1996). Dans ces approches, l’apprentissage est conçu comme
un processus d’adaptation individuel, basé sur des processus d’assimilation et d’ac-
commodation conduisant à l’élaboration de schèmes. Il y a assimilation lorsque
les nouvelles situations rencontrées peuvent être prises en charge par de sim-
ples adaptations des schèmes cognitifs déjà construits, accommodation lorsqu’un
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déséquilibre cognitif important se fait jour, nécessitant une réorganisation struc-
turelle. La théorie piagétienne ne se réduit bien sûr pas à cela mais ses autres
dimensions n’ont pas eu en éducation mathématique une influence aussi durable.

Les approches constructivistes ont permis de porter un nouveau regard sur
l’apprentissage, en montrant qu’il n’est pas le fruit d’un simple processus de trans-
mission des savoirs. Elles ont permis de mieux appréhender la complexité des pro-
cessus cognitifs dont il résulte et de mettre en évidence le rôle joué dans ces proces-
sus par les connaissances antérieures du sujet, par ses conceptions initiales. Elles
sont cependant aujourd’hui de plus en plus considérées comme insuffisantes pour
modéliser, de façon satisfaisante, les processus d’apprentissage en mathématiques
car la dimension sociale et culturelle des apprentissages n’y est pas suffisamment
bien prise en compte.

Parallèlement à ce qui se produit dans les travaux d’histoire et de philosophie
des mathématiques, ce sont ces dernières dimensions que l’on essaie aujourd’hui de
mieux prendre en charge dans les cadres théoriques élaborés. Comme le soulignent
A. Sierpinska et S. Lerman (1996) dans leur revue de ces questions, ceci conduit
à des constructions diverses qui se différencient notamment par la façon dont
elles conçoivent les rapports entre l’individuel et le culturel dans l’apprentissage.
Ainsi, dans les approches qualifiées de socio-culturelles, l’apprentissage est d’abord
vu comme un processus d’enculturation. Il est social avant d’être intériorisé ;
les médiations de pairs et d’adultes, comme les médiations instrumentales par
des outils culturels y jouent un rôle fondamental. Les approches interactionistes,
quant à elles, ne veulent réduire l’apprentissage, ni à un processus d’adaptation
individuelle, ni à un processus d’enculturation dans une culture pré-établie. Ce qui
y devient central, ce sont les interactions entre individus à l’intérieur d’une culture
qui façonne ces interactions en même temps qu’elle est façonnée par elles. C’est à
partir de ces interactions que se construisent, via des processus d’interprétation,
les significations individuelles ; c’est le type de ces interactions qui conditionne les
formes de connaissance accessibles (Cobb, Bauersfeld, 1995).

Comme le soulignent également A. Sierpinska et S. Lerman, la recherche di-
dactique française a suivi depuis les années 70 un chemin analogue mais original.
Elle se situe au départ dans le paradigme constructiviste mais la théorie des situ-
ations (Brousseau, 1997), qui en est un des piliers, met au centre de l’analyse, non
le sujet apprenant mais les relations qu’il entretient avec le savoir mathématique,
ses pairs et l’enseignant, au sein de la situation d’enseignement. C’est l’étude de
ces relations qui permet de donner sens aux comportements observés et de les
interpréter en termes d’apprentissage. L’apprentissage de l’élève y est de plus
vu comme résultant d’un équilibre complexe, variable suivant les individus et
les contextes, entre une adaptation “ mathématique ” et une adaptation aux at-
tentes de l’enseignant et donc de l’institution, même si ces dernières restent large-
ment implicites. Cette dimension institutionnelle de l’apprentissage est prise en
compte de façon plus centrale dans l’approche anthropologique développée par Y.
Chevallard (1990). L’apprentissage, selon lui, va résulter des rapports aux objets
mathématiques que l’élève va nouer au sein des différentes institutions auxquelles
il appartient. Il ne se constitue pas non plus indépendamment des rapports à
d’autres objets : le rapport à l’Ecole, notamment. Le sujet est donc ici présent
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avec ses motivations, ses affects, mais ses apprentissages sont contraints par des
rapports institutionnels qui se constituent en normes, des normes qui peuvent être,
pour un même objet mathématique, sensiblement différentes d’une institution à
l’autre.

La diversité des constructions théoriques que nous venons d’évoquer n’exclut
pas, fort heureusement, les points de consensus. Sans rentrer plus avant dans
l’analyse comparée des différentes positions, nous voudrions en citer quelques uns :

1. L’apprentissage des mathématiques est un processus complexe dans lequel
s’imbriquent étroitement l’individuel, le social et le culturel.

2. L’apprentissage des mathématiques n’est pas un processus “ continu ”. Il
nécessite des reconstructions, réorganisations voire parfois de véritables ruptures
avec des connaissances et des modes de pensée antérieurs.

3. L’apprentissage des mathématiques ne peut être conçu comme une sim-
ple progression vers des niveaux croissants d’abstraction. Il met en jeu de façon
tout aussi essentielle la flexibilité du fonctionnement mathématique via notam-
ment l’articulation de points de vue, de registres de représentation, de cadres de
fonctionnement mathématique.

4. L’apprentissage des mathématiques est fortement dépendant des instru-
ments matériels et symboliques du travail mathématique. Cette dépendance,
qui concerne à la fois ce qui est appris et les modes d’apprentissage, est parti-
culièrement importante à prendre en compte aujourd’hui du fait de l’évolution
technologique.

Il s’agit là d’affirmations générales, tout comme le sont les différents cadres
théoriques que nous avons évoqués jusqu’ici. Percevoir leur intérêt réel pour l’étude
des processus d’apprentissage en mathématiques nécessite, nous semble-t-il, de
s’interroger sur des apprentissages précis. C’est ce que nous ferons dans les deux
paragraphes suivants, en privilégiant des domaines mathématiques qui posent des
problèmes d’enseignement reconnus au niveau universitaire : l’analyse et l’algèbre
linéaire. Cette particularisation nous servira également à souligner le rôle essen-
tiel joué dans le travail didactique par l’analyse épistémologique des domaines
mathématiques concernés. Vu les contraintes d’espace imposées à ce texte, nous
avons choisi de centrer l’exposé sur deux des points évoqués ci-dessus, à savoir les
points 2 et 3.

III-Reconstructions et ruptures dans l’apprentissage et l’enseigne-
ment mathématique
Si nous avons choisi ce point, c’est que l’enseignement, les recherches le montrent
clairement, tend à sous-estimer l’importance de ces reconstructions et ruptures
et les difficultés résistantes qu’elles posent à la majorité des élèves et étudiants
lorsqu’elles sont laissées à leur seule responsabilité. Nous l’aborderons à partir
d’exemples issus du champ de l’analyse élémentaire (“ Calculus ” dans la culture
anglo-saxone). Il montre bien, nous semble-t-il, la nécessité de telles reconstruc-
tions et la diversité de leurs types possibles. Les reconstructions vont concerner
tout d’abord des objets anciens qui existent pour les élèves avant que ne débute
l’enseignement de l’analyse. C’est le cas par exemple pour la notion de tangente
qui a été introduite dans un contexte géométrique et qui, pour entrer dans le
champ de l’analyse, doit perdre certains de ses attributs et en gagner d’autres,
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les représentations mentales associées devant se modifier en conséquence (Castela,
1995).

D’autres reconstructions vont s’avérer nécessaires parce que seules certaines
facettes d’un concept seront présentes dans un premier contact mais aussi parce
qu’il ne serait pas réaliste.de viser d’emblée les rapports les plus aboutis. H.
Poincaré le soulignait déjà au début du siècle, dans une conférence sur les
définitions en mathématiques (Poincaré, 1904). Y évoquant les notions de con-
tinuité, de dérivabilité et d’intégrabilité des fonctions, il rappelait combien l’intu-
ition avait été trompeuse pour les mathématiciens et il insistait sur le fait que ces
problèmes n’avaient pu être surmontés qu’en faisant primer la rigueur logique sur
l’intuition. Mais un tel choix lui semblait catastrophique pour un débutant et il
écrivait notamment :

“ Nous voilà donc obligés de revenir en arrière ; sans doute est-il dur pour un
mâitre d’enseigner ce qui ne le satisfait pas entièrement ; mais la satisfaction du
mâitre n’est pas l’unique objet de l’enseignement ; on doit d’abord se préoccuper
de ce qu’est l’esprit de l’élève et de ce qu’on veut qu’il devienne. ”

a. Les reconstructions internes au champ de l’analyse : le cas de l’intégrale

Le cas de l’intégrale nous parâit bien illustrer cette situation. En France et dans
de nombreux pays, l’intégrale est introduite dans l’enseignement secondaire via la
notion de primitive, donc comme processus inverse de la dérivation, puis appliquée
à des calculs simples d’aires et de volumes, en se basant sur un rapport intuitif
à ces notions. Ce n’est qu’au niveau universitaire qu’est introduite une théorie
de l’intégration, via l’intégrale de Riemann puis, à des niveaux plus avancés, la
théorie de la mesure et l’intégrale de Lebesgue. Il y a là nécessairement en jeu
des reconstructions successives et délicates du rapport à la notion d’intégrale. Les
recherches que nous avons menées sur les procédures différentielles et intégrales ont
montré les limites évidentes de l’enseignement usuel dans ce domaine (Alibert &
al., 1989). Certes les étudiants atteignaient un niveau de performance raisonnable
dans la résolution d’exercices mathématiques standard mais, ayant à décider, si
telle ou telle situation relevait ou non d’une procédure intégrale, par exemple
dans des problèmes de modélisation, ils se trouvaient complètement démunis, ne
devant leur salut qu’aux indices linguistiques dont les présentations scolaires de ce
genre de problème sont en général truffées (tranches, contributions élémentaires,
découpages infinitésimaux...). Pire, un certain nombre, interrogés, n’hésitaient
pas à déclarer que, dans ce domaine, le plus sûr était de s’abstenir d’essayer de
comprendre et de fonctionner mécaniquement.

La situation que nous allons présenter, élaborée par M. Legrand dans le cadre
de cette recherche, a été conçue pour faire face à ce problème, en faisant réellement
vivre aux étudiants le besoin de la procédure intégrale. Le problème posé est
le suivant : calculer l’intensité de la force d’attraction exercée par un barreau
homogène de 6 mètres de longueur, pesant 18kg, sur une masse ponctuelle de 2kg
située dans son prolongement, à 3 mètres de son extrémité. On rappelle au départ
aux étudiants l’expression de la force d’attraction entre masses ponctuelles.

Exploitée régulièrement depuis plus de dix ans, cette situation a fait la preuve
de son efficacité et de sa robustesse. Nous allons essayer d’en faire percevoir les
raisons en en démontant les ressorts didactiques. Les étudiants de première année
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d’université à qui elle est proposée ne reconnaissent pas d’emblée qu’il s’agit là d’un
problème relevant d’une procédure intégrale. Ils n’en sont pas pour autant bloqués,
notamment parce qu’ils disposent d’une stratégie pour attaquer le problème, in-
adaptée dans le cas présent mais souvent utilisée en physique : elle consiste à se
ramener au cas de l’attraction entre masses ponctuelles en concentrant la masse
de la barre en son centre de gravité. Dans les expérimentations, ce type de so-
lution correspond toujours à un pourcentage important de réponses. Mais, dans
un groupe de taille raisonnable, certains manifestent à coup sûr des doutes sur sa
validité. Comment la tester ? Un des intérêts de cette situation réside dans le
fait qu’un tel test est possible en appliquant la même méthode mais d’une autre
façon : si elle est valide, elle doit le rester si l’on partage la barre en deux et si
l’on applique le principe du centre de gravité séparément à chacun des morceaux.
L’invalidation qui en résulte permet de mettre le doigt sur un facteur clef : la con-
tribution d’un morceau du barreau dépend de sa distance à la masse ponctuelle
et, à défaut de valeur précise, de proposer un encadrement de la valeur de la force
cherchée. La technique à la base de l’invalidation peut alors être engagée dans un
processus de raffinement successif du découpage qui aboutit à la conviction que la
force, dont l’existence est physiquement assurée, peut être approchée d’aussi près
qu’on le veut. Ce que l’on a mis en jeu n’est autre que le processus fondamental
de la procédure intégrale. Il fonctionne ici comme “ outil implicite ” du travail
mathématique, au sens développé par R. Douady (1984).

Dans le scénario didactique élaboré, les étudiants sont ensuite appelés à tra-
vailler sur des situations qui, dans des contextes divers, mettent en jeu ce même
processus, puis à rechercher et expliciter les analogies existantes entre toutes ces
situations pour aboutir aux caractéristiques de la procédure intégrale, en faisant
ainsi un “ outil explicite ”. Ce n’est qu’à la suite de ce travail que tout ceci est
mis en forme dans le cadre de la théorie de l’intégrale de Riemann et qu’un travail
sur l’intégrale en tant qu’objet est développé. Les évaluations régulièrement faites
attestent de l’efficacité du dispositif global.

Nous voudrions insister sur le fait que l’efficacité de la situation décrite ci-
dessus n’est pas uniquement liée à ses caractéristiques mathématiques. Le scénario
didactique construit pour organiser la rencontre des étudiants avec cette nouvelle
facette de l’intégrale est tout aussi crucial. Ce scénario joue de façon essentielle
sur le caractère social de l’apprentissage : c’est par les débats au sein du groupe
(qui peut dépasser une centaine d’étudiants dans les expérimentations menées) que
se régule la situation ; c’est le jeu collectif qui permet de dépasser la stratégie du
centre de gravité pour aboutir à la procédure intégrale, dans un temps raisonnable,
sans que l’enseignant n’apporte lui-même la solution ; c’est le jeu collectif qui force
des régularités dans les déroulements qui seraient beaucoup moins assurées si les
étudiants étaient confrontés individuellement à la même situation et en fait sa
robustesse didactique. Il en va de même pour l’ensemble du processus d’enseigne-
ment construit.

b. Les reconstructions internes au champ de l’analyse : le cas du concept de limite

Le paysage que nous venons de décrire peut parâitre idyllique. Il faut toutefois
reconnâitre que toutes les reconstructions nécessaires au fil de l’apprentissage de
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l’analyse ne semblent pas aussi aisément gérables. Les différences sont par ex-
emple sensibles si l’on s’intéresse au concept de limite. Dans beaucoup de pays
aujourd’hui, une fois tirées les leçons de la période formaliste des mathématiques
modernes, on a renoncé dans l’enseignement secondaire à fonder l’enseignement de
l’analyse sur la notion formalisée de limite. Le premier contact avec ce domaine
mathématique s’appuie sur des explorations graphiques et numériques aisément
accessibles avec les calculatrices actuelles ; il est de l’ordre de l’empirique. On
se contente d’une conception dynamique intuitive de la notion de limite, de tech-
niques relevant d’une analyse algébrisée et de quelques théorèmes qui, une fois
admis, permettent de gérer des problèmes simples de variation et d’optimisation.
La transition vers une analyse formalisée, nécessite des reconstructions coûteuses,
à la fois conceptuelles et techniques.

Sur le plan conceptuel, il y a là un saut qualitatif. En effet, ce qui est en jeu,
épistémologiquement, à travers la formalisation du concept de limite, c’est avant
tout la réponse à des besoins de fondements, de structuration du savoir. Un tel
besoin est, les recherches l’attestent, difficile à faire ressentir aux étudiants via
des situations analogues à celle décrite ci-dessus pour l’intégrale ; y être sensible
nécessite déjà une culture mathématique certaine. C’est pourquoi des chercheurs
comme A. Robert préconisent ici des stratégies didactiques spécifiques qui perme-
ttent de mieux prendre en compte cette dimension culturelle, en jouant sur des
leviers métamathématiques (Robert et Robinet, 1996).

Mais la reconnaissance de ces difficultés de nature conceptuelle ne doit cepen-
dant pas conduire à sous-estimer les difficultés techniques de la reconstruction.
Dans l’analyse algébrisée des premiers contacts, le travail technique continue à se
situer dans la continuité des acquis algébriques. Le passage à une analyse for-
malisée suppose en particulier une reconstruction des rapports à l’égalité et des
modes de raisonnement. L’égalité de deux objets ne résulte plus généralement
d’équivalences successives, comme en algèbre, elle résulte d’une proximité à ǫ près,
pour tout ǫ > 0. La manipulation des inégalités prend d’ailleurs le pas sur celle
des égalités. Parallèlement, aux raisonnements par équivalences successives basés
sur la conservation d’égalités, se substituent des raisonnements par conditions suff-
isantes basés sur la perte contrôlée d’informations dans le traitement d’inégalités.
Il y a donc là tout un monde technique nouveau qu’il faut identifier et apprendre à
mâitriser. Dans le contexte de la massification de l’enseignement secondaire, une
telle reconstruction revient sans aucun doute aujourd’hui à la charge de l’univer-
sité, pour les filières où elle estime cette évolution de rapport nécessaire. Mais
elle doit être alors pensée dans la durée, car elle s’y inscrit nécessairement, vu sa
complexité.

Nous nous sommes dans cette partie exprimée en termes de “ reconstruction ”.
Nous voudrions cependant souligner que certains chercheurs s’expriment plus net-
tement en termes de rupture, en se référant à la notion d’obstacle épistémologique
empruntée au philosophe G. Bachelard (1938). C’est le cas par exemple dans
divers travaux concernant la notion de limite et l’on pourra sur ce point se référer
à la synthèse effectuée par B. Cornu (1991).

V. Flexibilité, apprentissage et enseignement
L’apprentissage mathématique est souvent perçu comme une spirale permettant
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d’accéder à des niveaux d’abstraction croissants. C’est cette vision que nous
voudrions relativiser ici, en mettant l’accent sur le rôle joué dans l’apprentissage
par l’articulation flexible entre cadres, registres de représentation, points de vue
et plus généralement entre formes de pensée mathématique (Dreyfus, Eisenberg,
1996). Ceci nous semble d’autant plus important que le développement de ces flex-
ibilités est, pour l’instant, comme le montrent les recherches, mal pris en charge
par l’enseignement usuel. Nous le ferons en privilégiant cette fois le domaine
de l’algèbre linéaire et en nous appuyant plus particulièrement sur la synthèse des
recherches didactiques dans ce domaine que présente l’ouvrage édité par J.L. Dorier
(1997). Comme le souligne cet auteur, l’algèbre linéaire trouve sa source dans
différents cadres mathématiques qu’elle a permis d’unifier : cadre géométrique,
cadre des équations linéaires, en dimension finie et infinie... Le développement
d’une articulation flexible entre ces différents cadres, comme entre chacun d’eux
et celui de l’algèbre linéaire abstraite qui permet de les réorganiser conceptuelle-
ment, apparâit alors comme une composante essentielle de l’apprentissage dans
ce domaine. Ce développement s’appuie sur des articulations entre modes de
raisonnement, niveaux de langage et de descriptions, points de vue, registres de
représentation dont l’apprentissage n’a rien d’évident. Dans l’ouvrage cité, J. Hillel
par exemple analyse les différents langages ou niveaux de représentations à l’oeuvre
en algèbre linéaire et leur interaction : le langage de la théorie générale, le langage
de Rn et le langage géométrique ; A. Sierpinska, A. Defence, T. Khatcherian et
L. Saldanha identifient, quant à eux, trois modes de raisonnement : synthétique-
géométrique, analytique-arithmétique et analytique structurel. Tout en soulignant
le rôle de l’interaction entre ces modes dans le développement de l’algèbre linéaire,
ils montrent, par une étude fine de situations de tutorat à l’université, que l’en-
seignement, tant par les activités qu’il propose, que par les formats d’interaction
enseignant-étudiant qu’il utilise favorise peu le développement d’une articulation
souple et cohérente de ces trois modes. Dans ce qui suit, nous évoquerons rapi-
dement, vu les contraintes d’espace, des flexibilités qui outillent en quelque sorte
les flexibilités précédentes et auxquelles l’enseignement usuel est tout aussi peu
sensible.

a. Flexibilité entre registres de représentations

Le travail en algèbre linéaire mobilise divers registres de représentations
sémiotiques (graphiques, tableaux, écriture symbolique, langue naturelle...).
Comme le souligne R. Duval (1996), les représentations sémiotiques sont absolu-
ment nécessaires à l’activité mathématique car ses objets ne sont pas directement
accessibles à la perception. Pourtant l’enseignement tend selon lui à les réduire
à un rôle d’extériorisation et de communication et à voir dans la capacité à re-
connâitre, former, traiter ou convertir dans un autre registre, des représentations
sémiotiques, un simple sous-produit de la conceptualisation. La recherche de K.
Pavlopoulou (1994) sur la coordination des registres de représentation en algèbre
linéaire met bien en évidence que les rapports entre appréhension conceptuelle
et appréhension sémiotique sont bien plus complexes. Le module d’enseignement
expérimental qu’elle a mis en place pour des étudiants redoublants tend de plus
à montrer que l’enseignement, lorsqu’il se veut sensible à la dimension sémiotique
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du travail mathématique, peut permettre de surmonter des difficultés pourtant
apparemment résistantes.

b. Flexibilité entre points de vue

Ce type de flexibilité intervient par exemple en algèbre linéaire dans les rapports
entre points de vue cartésien et paramétrique, qui renvoient respectivement, à des
caractérisations en termes de systèmes d’équations ou de systèmes de générateurs.
Le travail en algèbre linéaire met en effet en jeu régulièrement le passage d’un
point de vue à un autre, de façon explicite en dimension finie, de façon plus
métaphorique ensuite. La thèse de M. Alves Dias (1998), menée avec à la fois
des étudiants français et brésiliens de divers niveaux, met bien en évidence les
difficultés résistantes rencontrées par les étudiants à développer une articulation
efficace des deux points de vue. En témoignent par exemple les faibles pourcentages
de réussite obtenus à un exercice aussi banal que le suivant :

“ On considère dans R3 les vecteurs suivants : a=(2,3,-1) b=(1,-1,-2)
c=(5,0,7) d=(0,0,1). Trouver une représentation cartésienne de l’inter-
section des sous-espaces vectoriels E et F engendrés respectivement par
{a,b} et {c,d} ”,

et les nombreux dérapages formels qu’il occasionne (confusion coor-
données/paramètres conduisant à des intersections dans R2 ou R4, association
brutale d’équations à des vecteurs...), les anticipations et contrôles dans le cadre
géométrique ou dans celui des sytèmes linéaires n’étant visiblement ici d’aucun
secours pour les étudiants concernés.

Mais ce que montre également cette recherche, à travers l’analyse de manuels
représentatifs de l’enseignement dans les deux pays, c’est la très faible sensibilité
à ces difficultés que semble manifester l’enseignement. Certes les étudiants dis-
posent, via les techniques de résolution des systèmes linéaires, des moyens de gérer
techniquement l’articulation des points de vue, mais ceci ne suffit pas visiblement à
leur permettre de lui donner sens, à leur permettre de la gérer et contrôler de façon
efficace. La dualité, lorsqu’elle est introduite, devrait leur permettre de repenser
cette articulation et de mieux percevoir le rôle qu’y joue l’association vecteur /
équation. Mais les deux mondes restent, pour la plupart des étudiants, des mon-
des trop distants que l’enseignement ne leur donne pas les moyens de connecter de
façon efficace.

Cette faible prise en charge institutionnelle de l’articulation ne nous semble
pas un cas isolé. Elle semble considérée comme allant de soi, une fois que l’on a
“ compris ” la notion, comme s’il s’agissait d’une pure question d’intendance que
l’on pouvait laisser au travail privé de l’étudiant. Les recherches montrent que
ce n’est malheureusement pas le cas. La flexibilité n’est pas pour autant hors de
portée, si l’on est attentif à son développement. Les travaux déjà cités tendent à
le montrer en ce qui concerne l’algèbre linéaire. C’est aussi le cas si nous revenons
au champ de l’analyse. De nombreux travaux dans ce domaine montrent que les
technologies informatiques, si leur utilisation est soigneusement pensée, peuvent
jouer un rôle décisif dans le développement d’articulations flexibles ainsi que dans
une rééquilibration des rapports entre registre algébrique et graphique, faisant
de ce dernier un instrument réellement efficace de l’activité mathématique (Tall,
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1996). Nos propres recherches sur l’enseignement des équations différentielles vont
dans le même sens, tout en montrant combien le changement de statut du registre
graphique nécessaire à son opérationnalisation s’oppose aux rapports institution-
nels dominants et est, de ce fait, difficile à négocier (Artigue, 1992).

VI. Des connaissances à leur exploitation : quelques éléments de
réflexion
Nous avons essayé, dans ce qui précède, de montrer sur deux points très précis,
des types d’apports que pouvaient fournir les travaux didactiques. Ceci ne permet
bien sûr qu’une vision très partielle de la façon dont les questions d’apprentissage
sont abordées dans le champ didactique et des résultats auxquels elles ont permis
d’arriver. Mais ils nous serviront à revenir dans ce dernier paragraphe sur la
question des rapports possibles entre les connaissances acquises et l’action sur le
système d’enseignement. Comme nous l’avons souligné dans l’introduction, il ne
s’agit pas là d’une question facile.

Les résultats des recherches en didactique nous aident indubitablement à
mieux comprendre comment fonctionnent les élèves et étudiants, à identifier les dif-
ficultés qui jalonnent l’apprentissage, les raisons de résistances constatées à nos ef-
forts d’enseignants, à analyser les liens que peuvent avoir certaines de ces difficultés
avec les stratégies d’enseignement dominantes. Ils nous aident aussi, plus globale-
ment, à comprendre les modes de fonctionnement et les dysfonctionnements des
systèmes d’enseignement, à mettre en évidence, à ce niveau aussi, des régularités
intéressantes.

La connaissance de ces difficultés, de ces dysfonctionnements ne fournit pas
pour autant directement les moyens de les surmonter. Certes les travaux de
recherche, ne se bornent pas à effectuer des constats et diagnostics ; dans de
nombreux cas, ils ont conduit au développement de produits d’enseignement qui
ont été expérimentés et évalués. Mais si l’on considère ces produits, ils ne nous
permettent que rarement de penser que, par de minimes adaptations de notre
enseignement, nous pourrions obtenir des gains substantiels. En général, au con-
traire, ils requièrent de la part des enseignants un engagement plus lourd que l’en-
gagement standard et des changements substantiels de pratiques. Car ce qui est à
réorganiser, ce n’est pas seulement le contenu de l’enseignement, c’est globalement
l’ensemble des formes de travail de l’étudiant, pour lui permettre de rencontrer ces
contenus de façon satisfaisante, pour lui permettre d’apprendre. C’est sans doute
là le prix à payer pour trouver aux systèmes didactiques dans lesquels nous vivons
de meilleurs équilibres de fonctionnement, en particulier dans le contexte actuel
de massification de l’enseignement universitaire, mais montre clairement que la
réussite de l’action dépend de facteurs et contraintes qui échappent au contrôle de
la recherche.

A ceci s’ajoutent sans aucun doute, en particulier au niveau de l’enseignement
supérieur, des difficultés spécifiques liées à la complexité des connaissances en jeu.
Les apprentissages que nous avons évoqués dans ce texte, qu’il s’agisse de l’analyse
ou de l’algèbre linéaire, sont des apprentissages qui s’articulent nécessairement
avec de nombreux apprentissages antérieurs, des apprentissages qui ne peuvent
être pensés et organisés que dans le long terme. La définition même à ce niveau de
processus d’enseignement (en prenant donc en charge non seulement l’organisation
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des contenus mathématiques mais aussi leur gestion didactique) et leur évaluation
posent des problèmes qui restent aujourd’hui largement ouverts.

Enfin, il faut reconnâitre la complexité des systèmes dans lesquels s’inscrit
l’apprentissage et l’enseignement des mathématiques. Les connaissances sur le
fonctionnement de ces systèmes que nous pouvons inférer des recherches sont
bien trop partielles pour permettre d’en contrôler un fonctionnement qui restera
nécessairement fortement indéterminé. Ceci marque bien la nécessaire limite d’ac-
tions, même fondées sur la recherche, la prudence nécessaire dans les essais de
généralisations de dispositifs mis au point dans des conditions expérimentales par-
ticulières, l’importance de prévoir des systèmes de régulation de l’action qui per-
mettent de pallier les limites de nos capacités de prédiction. Les idées, mêmes
épistémologiquement et cognitivement les plus séduisantes, ne conduisent pas
nécessairement à des stratégies pédagogiques viables, dans un enseignement de
masse comme celui que nous connaissons aujourd’hui, dans un monde marqué par
les incertitudes sociales. C’est ce que nous avons essayé de montrer en analysant
l’évolution récente de l’enseignement secondaire de l’analyse en France (Artigue,
1996), c’est sans aucun doute aussi valable pour les enseignements universitaires.
Mais, qu’elles qu’en soient les limites, chaque progrès dans la connaissance que
nous avons du fonctionnement de cette complexité est précieux, il nous arme
pour la comprendre et la piloter, en nous adaptant à des conditions sans cesses
changeantes. Ces connaissances méritent d’être capitalisées. Elles le seront nous
semble-t-il d’autant plus efficacement que les cadres théoriques qui nous serviront
à les organiser ne réduiront pas trop drastiquement la complexité mais prendront
en compte l’enseignement, l’apprentissage et leurs rapports, de façon équilibrée,
dans leurs composantes non seulement cognitives et épistémologiques mais aussi
culturelles et sociales.
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Drawing Instruments:Theories and Practices from History to Didactics
Maria G. Bartolini Bussi

Abstract. Linkages and other drawing instruments constitute one of
the most effective fields of experience at secondary and university level
to approach the theoretical dimension of mathematics. The main thesis
of this paper is the following: By exploring, with suitable tasks and un-
der the teacher’s guidance, the field of experience of linkages and other
drawing instruments, secondary and university students can 1) relive the
making of theories in a paradigmatic case of the historical phenomenology
of geometry; 2) generate ‘new’ (for the learners) pieces of mathematical
knowledge by taking active part in the production of statements and the
construction of proofs in a reference theory 3) assimilate strategies for
exploration and representative tools (such as metaphors, gestures, draw-
ings, and argumentations) that nurture the creative process of statement
production and proof construction. This thesis will be defended by re-
ferring to research studies already published or in progress.
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1. Introduction.
In recent years several efforts have been made at the international level to clar-
ify the objects, the aims, the research questions, the methodologies, the findings
and the criteria to evaluate the results of research in didactics of mathematics (or
mathematics education, according to the name preferred in some countries). I may
quote the volume edited for the 20 years of work at the IDM, Bielefeld University,
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and Professor Hans-Georg Steiner’ s 65th birthday [BSSW] ; the ICMI Study held
in 1994 in Washington DC about ‘What is Research in Mathematics Education
and what are its Results’ [KS]; the Working Group 25 in ICME 8 [Mal]; the Inter-
national Handbook edited by Bishop [Bi]. Didactics of mathematics as a scientific
discipline is fairly young compared to other sciences, yet is deeply rooted in the
perennial effort of mathematicians to advance human understanding of mathemat-
ics and to transmit mathematics knowledge to future generations. It has become
clear that analytical tools are needed from different disciplines (such as epistemol-
ogy, history, psychology) to obtain results that can increase the knowledge of the
teaching and learning processes in the classroom, produce effective innovation in
schools and understand why some designed innovation works or does not work,
and, at a larger level, influence the development of school systems.

Analytical tools from history and epistemology are necessary to tackle one
issue which is perhaps crucial: the nature of mathematics knowledge. One of the
distinctive features of mathematics is theoretical organisation. This has created a
very specific mathematician’s style, with a very impressive form, that alternates
definitions and theorems. Yet, when a mathematician reads a theorem and, in
particular, its proof, it is not the form that commands most attention, but rather
the process by means of which mathematical ideas have been generated or have
been illuminated by the proof in a new way. If we look at the ‘confessions’ of
working mathematicians [T], we have an idea of a continuous (not always indi-
vidual) process: the major discontinuity seems to happen in the final phase of
written communication in Journals, where the leading ideas, the intuitions, the
associations, the metaphors or the explorations of special cases are hidden by the
formidable and conventional mathematician’s style. Unfortunately the curriculum
revolution of the sixties gave too much importance to the product (i. e. the form)
and put in shadow the process (i. e. the construction of reasoning and arguments).
But it was realised soon that teaching beginners the formalities of proof might be
very difficult (and, perhaps, meaningless). Instead of scrutinising the reason for
failure, what happens now is that, in some countries, proving processes are being
eliminated from mathematics curriculum, not taking into account that giving up
proofs for a sheer acquisition of isolated facts and notions hides the theoretical
organisation of mathematics (for a detailed discussion of these issues see [Ha]).

This is the scenario in which a collective project has been set some years ago
by a group of Italian researchers [MBBFG], [AMORP1]. The project highlights
the permanent value of proof in mathematics and didactics of mathematics and
aims to design, implement and analyse effective teaching experiments, that can
introduce students to the theoretical dimension of mathematical culture up to the
construction of theorems and proofs. As far as the activity of mathematicians is
concerned, from a didactic perspective, we are much more interested in the hidden
process of conjecture production and proof construction than in the final product:
this very process does offer suggestions on the way of organising effective class-
room activity. In particular, whenever the process of producing conjectures about
something may evolve continuously and smoothly into the process of constructing
proofs, the task of producing ‘new’ theorems is proved to be easier for students.
In confirmation of that, we may recall a typical strategy, used by good teachers.
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When a difficult and crucial theorem is introduced in the standard lecture format,
before giving the proof, the students are presented with examples, counterexam-
ples and reasons for the plausibility of the statement to make them relive the
intellectual experience of the prior inventor of the theorem, although they have
been deprived of the long process of generating the conjecture by themselves.

The issue of continuity between the production of conjectures and the con-
struction of proofs has been raised from a cognitive perspective in a study carried
out in the 8th grade [GBLM], concerning the production of a theorem of geometry
about a problem situation in the field of sunshadows. The authors have described
the cognitive continuity as a process with the following characteristics. During
the production of the conjecture, the student progressively works his/her state-
ment through an intense argumentative activity; during the subsequent statement
proving stage, the student links up with this process in a coherent way, organising
some of the justifications (‘arguments’) produced during the construction of the
statement according to a logical chain. The construct of cognitive continuity, fur-
ther developed by Arzarello & al. [AMORP1] to include also the case of advanced
learners has proved to be useful to interpret existing teaching experiments and to
design new ones.

In recent years several experiments in different fields have been carried out at
very different school level, from primary to tertiary education (primary school :
[B2], [BBFG]; middle school: [BGM], [GBLM], [BPR1], [BPR2]; secondary school:
[B1], [BP], [Mar], [AMORP2] [MB]; tertiary: [AMORP1]). Some characteristics
are shared by nearly all the experiments: 1) the selection, on the basis of historic-
epistemological analysis, of fields of experience, rich in concrete and semantically
pregnant referents (e. g. perspective drawing; sunshadows; Cabri-constructions;
gears; linkages and drawing instruments); 2) the design of tasks, which require
the students to take part in the whole process of production of conjectures, of
construction of proofs and of generation of theoretical organisation; 3) the use
of a variety of classroom organisation (e. g. individual problem solving, small
group work, classroom discussion orchestrated by the teacher, lectures); 4) the
explicit introduction of primary sources from the history of mathematics into the
classroom at any school level.

In my own research, I have found that linkages and other drawing instruments
might be one of the most effective fields of experience at secondary and university
level. In the following I shall give some details on this case, by analysing the
activities designed and implemented for approaching mathematical theorems and
more generally the theoretical organisation of mathematics.

2. Linkages and Drawing Instruments: An Historical Digression.

In this section, I shall outline the history of linkages and other drawing instru-
ments by using the metaphor of a theatre play. Only planar drawing instruments
will be considered; however spatial drawing instruments such as perspectographs
have also played a relevant role in specific practices (e. g. painting, architec-
ture) and have given rise to specific theories (such as projective geometry). But
this is another story and, maybe, the topic of a different paper (examples in
http://www.museo.unimo.it/labmat/)
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2. 1. The Prologue : Euclid and the Classical Age. Drawing instruments
have been considered in geometry treatises from the time of Euclid, whose first
postulates implicitly define the kind of instruments that are allowed for geometrical
constructions [He] : ‘1) Let the following be postulated : to draw a straight line
from any point to any point; 2) To produce a finite straight line continuously in a
straight line ; 3) To describe a circle with any centre and distance.’

Even if the description is supposed to recall a practical use of instruments,
there is no doubt that the intention is theoretical. Actually the instruments are
never quoted directly, not even in the large number of constructions that are
discussed in the following books. Moreover, the problem is never to find the
approximate solution that could be useful for applications: rather a theoretical
solution by straight lines and circles is looked for. Other drawing instruments
(and curves) were known at the time of Euclid, yet not included in the set of
accepted theoretical tools (e. g. the conchoid of Nicomedes, [He]). They were
rather used to solve practical problems. For instance, by means of the conchoid it
is possible to find two mean proportionals between two straight lines and, hence,
to construct a cube which is in any given ratio to a given cube. This allows to find
a set of weights in given proportion to calibrate catapults.

2.2. The First Act : Descartes and Seventeen Century Geometers.
Descartes, like most scientists of his age, was deeply involved in the study of
mechanisms for either practical or theoretical purposes. A famous example of the
former kind (i. e. the machine to cut hyperbolic lenses) is described in the ‘Diop-
trique’. The latter issue forms the core of the ‘Géométrie’, where two methods of
representing curves are clearly stated: the representation by a continuous motion
and the representation by an equation [Bos]. Descartes deals with the following
question: ‘Which are the curved lines that can be accepted in geometry? (p. 315)’
and gives an answer (or, better, two answers) different from the one of classical
geometers : 1) ‘[...] we can imagine them as described by a continuous motion, or
by several motions following each other, the last of which are completely regulated
by those which precede. For in this way one can always have an exact knowledge
of their measure (Géométrie p. 316)’; 2) ‘[...] those which admit some precise and
exact measure, necessarily have some relation to all points of a straight line, which
can be expressed by some equation, the same equation for all points (Géométrie,
p. 319)’ The goal of Descartes was related to the very foundations of geometry: if
a curve (e. g. a conic or a conchoid) is to be accepted as a tool to solve geomet-
rical problems, one must be sure that, under certain conditions, the intersection
points of two such curves exist. Hence, pointwise generation is not sufficient and
the continuum problem is called into play: by the standards of the seventeenth
century mathematicians, it is solved by referring to one of the most primitive in-
tuitions about the continuum, i. e. the movement of an object. Descartes did not
confront the question whether the two given criteria - i. e. the mechanical and
the algebraic - are equivalent or not. This problem actually requires constructing
more advanced algebraic tools and, what is more important, changing the status
of drawing instruments from tools for solving geometric problems to objects of a
theory. The importance of the generation of curves by movement is proved by the
flourish of innumerable treatises of ‘organic’ geometry (i. e. geometry developed
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by instruments), thanks to leading mathematicians, such as Cavalieri , L’Hospital,
Newton, or van Schooten. They designed and studied dozens of different draw-
ing instruments for algebraic curves (incidentally, in the same age when the very
concept of algebraic curve started to be worked out).

2.3. The Second Act : Kempe and the Nineteenth Century Geometers.
In the nineteenth century there was a shift from studying individual drawing in-
struments to developing a theory of drawing instruments, in the special case of
linkages. On the one side, geometers started to study which curves could be drawn
by any n-bar linkage; on the other side they asked which linkages could be used
to draw any curve. The curve that resisted longest the attack of geometers was
the simplest one, i. e. the straight line. After the approximate 3-bar solution
offered by Watt in 1784 (that is still used in nearly every beam-engine), only in
1864 Peaucellier presented a 7-bar linkage, that embodies a rigorous solution based
on the properties of circular inversion [K2]. The general problem of drawing any
algebraic curve of any degree was temporarily solved by Kempe, a few years later
(1876), with the paper entitled ‘On a General Method of Describing Plane Curves
of the nth Degree by Linkwork’ [K1]. The structure of Kempe’s proof is quite
interesting. Starting from the equation F(x,y)=0 of any plane algebraic curve and
from a particular point P of the curve, the polynomial is expanded into a linear
combination of cosines of suitable angles. For each element of the sum, an elemen-
tary linkage is provided. By combining such linkages, a new linkwork is obtained,
that has the effect of ‘drawing’ the given curve in the neighbourhood of P. Rather
than an actual linkwork, the theorem gives an algorithm to construct a (virtual)
linkwork, that depends on the equation of the curve.

2.4. The Third Act : Modern Revival of Curve Drawing Devices. The
study of linkages is reconsidered in today’s mathematics from two different, yet
related, perspectives. The problem of drawing curves is reread as the problem of
forcing a point of a robot to execute a given trajectory [Ba], [HJW]. The study
of abstract linkages and their realisation is related to the study of algebraic vari-
eties and of immersed submanifolds of Euclidean space [GN], [KM]. According to
Kapovich & Millson, a major role in the revival of this field of research has been
played by Thurston, who has given lectures on this topic since the late seven-
ties. The new theory is completely algebraized and, at a first glance, has nothing
to share with the problems that have been described in the previous acts. Yet,
the very theorem of Kempe, combined with the work of today’s mathematicians,
has lead to proving general realizability theorems for vector-valued polynomial
mappings, real-algebraic sets and compact smooth manifolds by moduli spaces
of planar linkages. Kempe’s proof has been carefully scrutinised, revealing some
weakness related for instance to the presence of some ‘degenerate’ configurations
of linkages appearing during the movement. However, the structure of the proof,
based on the recourse to elementary linkages as building blocks, is still the original
one. Hence Kempe’s theorem might be considered an hinge: on the one side it
closes Descartes’ implicit problem to relate motion of instruments and equations
and on the other side it opens the way to the modern theory of abstract linkages.

2.5. The History Goes On: The Critical Impact of Drawing Instru-
ments. The historical analysis sketched in the previous ‘acts’ suggests that in the
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domain of geometry the relationship between theoretical and practical issues has
always been very rich and complex. On the one side, drawing instruments, inti-
mately connected with the development of algebraic tools, are theoretical products
of the continuous modelling effort, that aims at rationalising the perception and
the production of shapes. On the other side, drawing instruments are physical
objects of the world to be modelled: to understand their functioning means to be
able to design instruments which fulfil a desired action. Theories and practices
might have been developed for some time independently, but in each age they
happen to nurture each other: a double arrow describes the dialectic relationship
between them, that is constructed anew repeatedly with shifts of meaning. In
the teaching of mathematics such general complex ideas are to be translated into
ordered activities for the classroom. If the ideas are interconnected as in a loop,
as in this case, an apparently obvious solution is supposed to be to cut the loop
somewhere, so that the double arrow becomes a single arrow from theories to prac-
tices (i. e. practices are applications of theories) or from practices to theories (i.
e. practices are motivations for theories). These are the most common options.
It is far beyond the scope of this paper to discuss them in detail. I intend to
defend a different option: to put drawing instruments in the centre and to use
them as mediators for both theories and practices. This idea is not new: drawing
instruments were part of the education of gentlemen in arts such as the military
art or the art of navigating since the 17th century [Tu]; they were used in pres-
tigious Institutes of Mathematics (e. g. Goettingen [Mu]) to educate generations
of leading mathematicians; drawing instruments are even on show in Scientific
Museums for the popularisation of mathematics. In each of these uses, the vis-
ibility of theoretical aspects is surely different, because, when concrete referents
come into play, the risk is always that the attention is captured by isolated facts
and that the argument, if any, is not detached from everyday styles of reasoning
[S]. For instance, the very possibility of making ‘infinitely many’ experiments by
dynamic exploration might help, on the one side, the production of conjectures,
but, on the other side, might render things self-evident and destroy the need of
constructing proofs. If the theoretical aspects of mathematics are central in di-
dactics of mathematics, as we have argued in the introduction, a careful didactic
treatment of concrete referents is always needed. Whether an object is considered
from a practical or from a theoretical perspective depends on the habits of the
students, acquired through a slow process, on the types of exploration tasks and
on the issues raised by the teacher in the classroom interaction. This is true for
drawing instruments too, for both the material copies and the virtual copies of
ancient instruments produced by computer (such as the simulations produced by
means of software with graphic interface - such as Cabri - or by means of Java)
and for the computer itself considered as the most flexible drawing instrument.
In this part of the study, the function of analytical tools from the psychology of
mathematics education appears to be relevant.

3. Drawing Instruments in the Classroom.

3. 1. Exploring Linkages. This example concerns the study of one of the
pantographs (i. e. the pantograph of Sylvester), which were designed in the 19th
century to realise elementary geometric transformations and to give the elemen-
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tary blocks of Kempe’s theorem. The study was originally carried out with 11th
graders [B1],[ BP], but we have collected later items of anedoctal evidence that
confirm the emergence of similar processes (with the same slowness) when similar
tasks are given to undergraduate students, to graduate students or to teachers of
mathematics or mathematics educators. Hence, what follows is supposed to apply
to both novices and expert explorers. The pantograph of Sylvester is an 8-bar
linkage (see the figures).

P

OO

P

A

B

B

P’

C
A

P’

C

figure 2b

figure  2

figure  2a

The students had already been given an introductory lecture concerning the
early history of drawing instruments in Euclid’s age. They were given a specimen
of the pantograph and a set of eight tasks to guide the exploration in small group
work. Two tasks are especially relevant for our discussion [B1]: ‘1) Represent the
linkage with a schematic figure and describe it to somebody who has to build a
similar one on the basis of your description alone; 2) Are there any geometric prop-
erties that are related to all the configurations of the linkage? State a conjecture
and try to prove your statement’.

The first task aimed at encouraging students’ manipulation of the linkage. It
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has to be said that the tradition of abstract and symbolic work has often the effect
of inhibiting recourse to manipulation in mathematics lessons. In this case, on
the contrary, the students had to measure bars and angles and to try to connect
these empirical data with the pieces of geometrical knowledge that were part of
their past experience. Actually the small group debated for a long time whether
the imaginary addressee had to build an ‘equal’ linkage (i. e. with the same
measure) or a ‘similar’ one (i. e. capable for working in the same way). In the
first case, it would have been enough to write down the length of each bar and to
give the instructions for assembling the linkage. When they decided for the second
solution, they had to cope with the problem of identifying the structural features
of the linkage (i. e. the presence of a parallelogram and of two similar isosceles
triangles) from the empirical evidence offered by perception and by measuring.
The process of solving the second task resulted in three interlaced phases: (1)
producing the conjecture; (2) arguing about the conjecture; (3) constructing a
proof.

Producing the conjecture was difficult and slow. The linkage actually realises
a rotation as for every configuration, a) OP=OP’; b) POP’ = PAB = BCP’. Yet
the rotation is approached at as a correspondence between two points that has
no transparent relationships with the motion of the linkage. The teacher had a
helping attitude, but the whole exploring process was carried out by the students,
who at the end agreed with the proposal of one of them, who had ‘seen’ suddenly
the invariant during the exploration. The suggestion was checked experimentally
in different configurations and then accepted by the whole group.

Arguing about the conjecture and constructing the proof were actually inter-
laced processes. The students were helped by the large amount of exploration they
had made before. For instance the observation of an intermediate limit case (figure
2b when two sides of the parallelogram and two sides of the triangles are aligned)
was considered empirical evidence that the triangles POP’, PAB and BCP’ are
similar. While trying to defend the conjecture by arguments, the students mixed
continuously experimental data (obtained by direct manipulation of the mecha-
nism) and statements deduced logically from already accepted statements. Whilst
the verbal proof was eventually complete, the process of polishing the entire rea-
soning in order to give it the form of a logical chain and to write it down was slow
and not complete, as the students’ text shows:

‘Thesis: POP’ is constant (see figure 2 for notation).

The angle POP’ is constant as the triangles POP’ obtained by means of the
deformations of the mechanism are always similar, whatever the position of P
and P’. In fact OP=OP’, because the triangles OCP’ and OAP are congruent,
as CP’=OA,CO=AP and OCP’=OAP (BCO=OAB and P’CB=BAP). The above
triangles are also similar to a third triangle PBP’, because, as the triangles BCP’
and BAP are similar, it follows that BP’ : BP = CP’ : CO and the angle P’BP =
OCP’ as (setting CP’B = CBP’ = a and CBA = b) we have PBP’ = 360 - (2a+b);
OCP’ = 360 - (2a+b).

This is true because prolonging the line BC from the side of C the angle
supplementary to BCP’ is equal to 2a and the angle supplementary to BCO is
equal to b as two contiguous angles of a parallelogram are always supplementary’.
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Surely this written text in neither complete nor well ordered, according to the
mathematician’s style: the order of the steps recalls the sequence of production of
statements, as observed during the small group work, rather than the logical chain
that could have been used by an expert. Nevertheless it was easily transformed
later with the teacher’s help into the accepted format with reference to elementary
euclidean geometry; yet, what is important, the time given to laboriously produce
their own proof ensured that the final product in the mathematician’s style, where
the genesis of the proof was eventually hidden, retained meaning for the students.

3.2. Theoretical Framing of Drawing Instruments and Linkages. The
small group study was only one step in a long term teaching experiment. The
study was done in the frame of Euclid’s elementary geometry. From a cultural
perspective, students must be introduced to the different theories which have been
invented later, with their own goals and objects, and to the different practices
which have been developed, from beam-engines to robotics, otherwise we would
have relapsed into the standard linear teaching path from concrete referents to
a geometrical study framed by Euclid’s geometry, where practices are only the
starting point, i. e. motivations for theories.

The students who had realised the study of the pantograph, together with
their schoolfellows who had studied other pantographs according to the same tasks,
took part in lessons where each small group presented the results of the guided
study. The teacher related the different pantographs to each other, generating an
embryo of a theory of linkages, where the same proof could be applied, with small
adaptations, to different instruments [BP]. The shifts in meaning from considering
an individual linkage to developing a theory of linkages was introduced by means
of guided reading of some historical sources, like the ones quoted in the theatre
play of the section 2; historical sources were assimilated by students, producing
explorations and proofs according to the inquiry style of each age.

This is only a prototype of teaching experiments which are made every year
with secondary school students (by Marcello Pergola) and with university students
(by the author). The difference between secondary school and university students
concerns the length of the play: the second act is within the reach of secondary
school students, whilst university students can understand the whole play.

3.3. Some Issues to be Deepened. In the above sections, a complex teaching
experiment has been outlined. Different classroom organisations have been shown
with different roles for the teacher: lectures, small group works, whole class dis-
cussions. In small group work phases of joint activity between the teacher and the
students were accomplished. In the theoretical framing the teacher acted, by his
own words or by quoting historical sources, as a cultural mediator. The study of
the teacher’s role is a crucial problem of didactics of mathematics, whose discussion
is far beyond the scope of this paper: it is related to the possibility of reproducing
the teaching experiments in different classrooms. For a partial account about this
issue, the interested reader could refer to [MB] for the analysis of the teacher’s role
in a classroom discussion when the object is the theoretical meaning of geometric
construction. Further investigations are planned.

In the theoretical framing episode students coped with a cultural problem,
i. e. the construction of a balanced image of mathematics, where theories and
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practices are strictly intertwined yet not confused. In the direct and guided ma-
nipulation of instruments, students experienced, at an appropriate slow pace, the
continuous and smooth transition from physical experience (gestures and manip-
ulation) to the production of their own conjectures and to the construction of a
proof. In this process, they used different linguistic tools to express their ideas,
from the metaphors taken from everyday language to the fixation of the proce-
dures according to the speech genre of elementary geometry. The study of student
processes is a crucial problem of the psychology of mathematics education. Finer
grain analyses are an unavoidable part of each of the research studies quoted in
the introduction and of ongoing research.

4. Some Implications for Teaching.

The case of linkages and other drawing instruments gives only one among several
examples of teaching experiments about the theoretical organisation of mathe-
matics and the approach to theorems. Systematic experiments in this field have
been carried out mainly at secondary and university levels, but the activity with
drawing instruments has proven to be effective with younger students too, because
the difference between a practical and a theoretical use of instruments might be
approached (yet is seldom emphasised) also in primary school. For instance, in an
experiment carried out in primary school [BBFG], pupils have become aware that
they can use a compass in two very different ways: 1) to imitate a round shape
(practical use); 2) to construct (if possible) a triangle with sides of given length
(theoretical use). In the former case the focus is on a careful use of compass that
assures the precision of the drawing. In the latter case the focus is on the definition
of the circle: even a free-hand rough sketch could be effective as the compass is
meant as a mental instrument.

What implications for curricula could the quoted experiments have? To give
an answer, we can contrast our approach to geometry with the traditional one in
a very special case: the case of conics. When this topic is considered, it is usually
introduced according to some standard steps: 1) A short introduction, concerning
the space generation of conics as conic sections, limited to explaining the origin
of the name. 2) A metric definitions of conics as loci determined by the focal
properties; in this case a particular drawing instrument for obtaining the so-called
gardener ellipse is described. 3) The canonical equations; then every problem is
considered in this analytic setting. From a cultural perspective, this path conveys
a one-sided image of mathematics, i. e. the physical generation of conics (as conic
sections or as drawings by instruments) is nothing but a rough introduction to the
very important things, that are, on the contrary, metric definitions and equations.
What is even more disappointing is the cognitive counterpart: by this approach
(even if it is completed by a careful study of quadratic forms, as in the case of
university students of mathematics), students do nor learn how to relate their
spatial intuitions (on which heuristics might be based) with the plane synthetic or
analytic study [BM].

In this paper I have proposed an alternative approach with two different, yet
related, arguments. The cultural argument: for centuries curves have been consid-
ered as trajectories determined by linkages and other drawing instruments; only
later, the mechanical study has been complemented by the algebraic study, arous-
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ing theories which retain the links with the spatial referents and which has proven
to be relevant for the development of today mathematics The cognitive argument:
the very manipulation of drawing instruments provides students with heuristics
and representative tools (such as metaphors, gestures, drawings and arguments)
that foster the production of conjectures and the construction of related proofs
within a reference theory, with a slow and laborious process that recalls the one of
professional mathematicians. Reliving the making of theories and producing one’s
own theorems is a way to appreciate and assimilate the theoretical dimension of
mathematics.
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Difficulties in the Passagefrom Secondary to Tertiary Education
Miguel de Guzmán, Bernard R. Hodgson,

Aline Robert and Vinicio Villani

Abstract. For an important part of those students who take math-
ematics courses at the tertiary level, the transition from secondary to
tertiary education presents major difficulties. This is true whether the
students are specializing in mathematics or are registered in a program
for which mathematics is a service subject. The purpose of this paper is
to identify some relevant difficulties related to this passage and to exam-
ine possible causes. Such a study can be done from a broad spectrum of
perspectives which will be commented briefly: epistemological and cogni-
tive, sociological and cultural, didactical. We also consider actions which
could help to improve the situation.

1991 Mathematics Subject Classification: 00
Keywords and Phrases: Mathematics education, tertiary education,
secondary-tertiary transition, teaching and learning contexts.

The passage from secondary to tertiary mathematics education is determined by
procedures varying considerably from one country to the other, and even within
one country, from one institution to another. But whatever the context, this
transition often presents major difficulties for an important part of those students
who take mathematics courses at the tertiary level. This is true whether the
students being considered are specializing in mathematics or are registered in a
program for which mathematics is a service subject.

The problem of the transition to the post-secondary level in by no means
a new issue in mathematics education. For instance, the very first volume in
the Unesco series New Trends in Mathematics Teaching includes a report from a
conference devoted to this problem (see [18]). This same topic was also discussed
in various settings at ICME congresses — see for instance the paper by Cross [5]
presented at ICME-4, as well as the report [13] of Action Group 5 at ICME-6.
But still today the secondary–tertiary transition can be seen as a major stumbling
block in the teaching of mathematics.

This paper, prepared in connection with a round-table discussion at ICM’98,
is concerned with various groups of students taking mathematics courses at the
university level: students of science (vg, mathematics, physics, chemistry), en-
gineering, economics, preservice secondary school teacher education, etc. After
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presenting an overview of the respective points of view of the student and of the
teacher on the passage from secondary to tertiary education in mathematics, we
shall consider three different types of difficulties then encountered by students:
epistemological/cognitive; sociological/cultural; didactical. We conclude the pa-
per with some possible actions, both from an institutional and from a pedagogical
perspective, which could help to improve the conditions under which the transition
takes place.

1 The point of view of the student

In order to better assess the perception that students may have of the transition
from secondary to tertiary mathematics, a questionnaire was recently given to
various first-year groups in our respective universities, asking students for their
opinion about three possible types of sources for the difficulties they might have
encountered with university mathematics: (i) difficulties linked to the way teachers
present mathematics at the university level and to the organization of the class-
room; (ii) difficulties coming from changes in the mathematical ways of thinking
at the higher level; and (iii) difficulties arising from the lack of appropriate tools
to learn mathematics. Students were asked to express their degree of agreement
with various statements on a five-item Likert scale (from 1/total disagreement/ to
5/total agreement/, 3 being a neutral point). Here are some of the outcomes of
this informal survey.

First, it should be stressed that the perception of students can vary consid-
erably according to the type of mathematics they are taking and the program of
study to which they belong. This is the case for instance for the results obtained
at Université Laval when students were asked for their overall perception of how
they went themselves through the secondary-tertiary transition. From a cohort
of 250 students, 91 (36%) were in partial or total agreement (items 4 and 5 on
the Likert scale) with the statement “Transition to university mathematics was
difficult for me”, while 127 (51%) expressed disagreement (items 1 and 2 on the
Likert scale). However if the results are considered according to the program of
study of the students, the picture gets quite diversified. In the following table, we
compare three different groups of students from Université Laval, namely1

• Group I: students specializing in mathematics (first-year and final-year);

• Group II: preservice secondary school mathematics teachers (first-year);

• Group III: engineering students (first-year).

1 It should be noted that transition to university education in Québec typically happens as
students are age 19, after a two-year intermediate level following secondary school (the so-called
“cégep” level). Students entering university are divided into groups, already in their first year,
according to their specific domain (mathematics, physics, engineering, etc.).
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“Transition to university mathematics
was difficult for me.”

Likert
scale

Group I Group II Group III Totals

1 7 (12%) 3 (4%) 35 (30%) 45 (18%)
2 17 (28%) 19 (26%) 46 (39%) 82 (33%)
3 14 (23%) 5 (7%) 11 (9%) 30 (12%)
4 17 (28%) 37 (51%) 15 (13%) 69 (28%)
5 5 (8%) 8 (11%) 9 (8%) 22 (9%)

no reply 0 (0%) 0 (0%) 2 (2%) 2 (1%)

Totals 60 (100%) 72 (100%) 118 (100%) 250 (100%)

One notes that 22 out of 60 mathematics students (37%) agree that the transition
was difficult for them (items 4 and 5 on the Likert scale), as opposed to 45 out of
72 (63%) for the preservice teachers and only 24 out of 118 (20%) in the case of
engineering students. Analogous differences can be seen when considering other
items of the scale.

The three groups often reacted also quite differently to more targeted ques-
tions. For instance,

• more than 85% of the students of mathematics and 75% of the preservice
secondary school teachers from Université Laval see assessment at the uni-
versity level as bearing upon more abstract mathematics than previously
(the replies from these two cohorts give a mean of 4,2 on a scale of 5), as
opposed to only 38% of the engineering students (mean of 3,0);

• similarly, more than 55% of the non-engineers see the mathematics problems
they have to solve at the university level as substantially more difficult than
at the secondary level (mean of 3,5), which is the case for only 28% of the
engineering students (mean of 2,7).

In fact, a clear outcome of the data from Université Laval is that the transition to
university mathematics appears much smoother for engineering students than for
preservice secondary school teachers or for students of the mathematics program.
(The same questionnaire was used with first-year and final-year students of the
undergraduate mathematics program; although the answers were not identical, the
variations observed appear far less significant than when comparing with future
engineers or secondary school teachers.)

The questionnaire was used in France (Université de Versailles and Université
de Montpellier) but gave rise to a somewhat different response from the students:
much less diversity was observed in the patterns of answers than at Université
Laval. Possibly this results from the fact that the French education system attracts
a majority of the best students in special classes (“classes préparatoires”) leading to
the “grandes écoles”, so that university-bound students form a rather homogeneous
group. It is interesting to note that, from a cohort of 190 university students in the
first year of a scientific program, more than 70% are in partial or total agreement
with the following statements:
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• I am not used to proofs and abstract developments;

• I would prefer to have a textbook, as in secondary school ;
and more than 66% agree with the statements:

• it is not always clear what is expected of me regarding what is seen in the
classroom;

• we are not indicated what is essential and what is accessory;

• teachers are too abstract, they don’t care to present concrete examples;
and, more surprisingly,

• there is not enough time spent in the classroom.

Two groups of students from the Universidad Complutense de Madrid were
given the questionnaire, namely some 70 students from the first three years at
the Facultad de Matemáticas and 100 first-year and fifth-year students from the
Facultad de Ciencias Económicas. The answers collected are quite similar to those
from France, the statements receiving a degree of agreement greater than 3,5 on
the Likert scale being those which deal with such aspects as: the high level of
abstraction, the use of proofs in the mathematical development, the lecturing
style (the fast pace, the ignorance of where it is heading), the abstract nature of
part of what is being assessed on exams, the need for textbooks.

The questionnaire invited students to write comments on their own. Needless
to say, the spectrum of opinions expressed is extremely wide, but it is interesting
to consider a few comments made spontaneously by students of Université Laval.
Some are quite severe on the university teachers:

• Many university teachers do not care whether we understand or not what
they are teaching us.

• A majority of teachers do not understand that we do not understand.

• It is hard for them to make us understand what is evident for them.

• Passing from secondary school to university mathematics was not as hard
as I was told. But what makes it somewhat hard are the changes in the
teachers: many of them are not at all suited for teaching. Here, we have
teachers who are topnotch mathematicians. But their pedagogical skills will
never outmatch those of my high school teachers.

Other comments have to do with the background of the students or the autonomy
expected of them:

• It seems that I am lacking a lot of prerequisites. It is as if I should know
100% of my high school maths.

• In high school, I never learned to do proofs, and now it seems to be taken for
granted that we know how to do proofs.
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• My answers to these questions would vary considerably according to the
courses and the instructors. But a general trend is that courses include
many many topics which are covered very quickly, so that we need to work a
lot on our own outside the classroom.

But quite a few students did express a positive opinion about their encounter with
university mathematics, reflecting the fact that the transition gives no or little
problems to a number of students:

• I appreciate much more university math, because we try to understand where
the results we are using, and were using in high school, come from.

• Going from high school to university did not raise special problems for me,
as the level of difficulty of high school math prepared us well for that.

2 Perceptions of the university teacher

When seen from the point of view of the university teacher, the transition from
secondary to tertiary mathematics is considered to be problematic for a majority
of students. Such is the observation we have made from an informal survey of a
small number of teachers regularly involved in the teaching of first-year university
mathematics. We think that this survey, however limited, still provides us with a
good idea of the perceptions of a lot of our university colleagues.

Those involved in the teaching of first-year university mathematics are often
rather dissatisfied with the weaknesses they perceive in their students. Many have
the feeling that students are not interested in the mathematics itself covered in a
course, but only in succeeding at the exams — this might be especially the case
in contexts where mathematics is used as a sieve for accessing to other profes-
sional fields, for instance for admission to the medicine or law school. University
teachers deplore the lack of prerequisite knowledge which makes the beginning at
the tertiary level painful and difficult for many of their students; even the con-
tents indicated in the secondary syllabi (where there is such a thing common to
secondary school students) cannot be taken as understood and mastered. They
also deplore the learning style of students, many of whom have concentrated in
the past on the acquisition of computational skills (often, it must be said, so to
meet the requirements of university entrance examinations). They lament over
the thinking and working habits of their students in mathematics, their lack of
organization and of mathematical rigour, as well as their difficulty in acquiring
and consolidating knowledge through personal work.

Acquisition of a certain level of autonomy in learning is often seen by uni-
versity teachers as the main stumbling block in the secondary-tertiary passage.
Zucker [27] has expressed as follows the idea that significant individual activity
outside the mathematics class becomes an absolute necessity when moving to the
higher level: “The fundamental problem is that most of our current high school
graduates don’t know how to learn or even what it means to learn (a fortiori to
understand) something. In effect, they graduate high school feeling that learning
must come down to them from their teachers. [. . . ] That the students must also
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learn on their own, outside the classroom, is the main feature that distinguishes
college from high school.”

3 Types of difficulties in the secondary-tertiary transition

The nature of the difficulties related to the passage from secondary to post-
secondary mathematics and the reasons for their occurrences can be seen from
a broad spectrum of perspectives.

3.1 Epistemological and cognitive difficulties

As shown by many research works, an important conceptual leap takes place, with
respect to the mathematical contents taught and asked practices, when passing
from the secondary to the tertiary level. This transition corresponds to a signifi-
cant shift in the kind of mathematics to be mastered by students: the mathematics
is different not only because the topics are different, but more to the point because
of an increased depth, both with respect to the technical abilities needed to ma-
nipulate the new objects and to the conceptual understanding underlying them.
This shift has sometimes been described as corresponding to a move from elemen-
tary to advanced mathematical thinking (see Tall [23]) : secondary school students
often succeed in mathematics by relying on their ability to perform algorithms
and in spite of a lack of a real understanding of the mathematical concepts with
which they are working; they may then experience substantial difficulties, when
moving to the tertiary level, in being able to participate by themselves in the pro-
cess of mathematical thinking, and not merely learn to reproduce mathematical
information. In a word, they may have problems in becoming autonomous, math-
ematically speaking. Moreover, it is no more possible to limit themselves to put
isolated theorems in practice, they need to enter into deeper and richer thought
processes.

A word of caution is in order here: in a given course, the needs of the students,
as perceived by them, are dictated mainly by the exams. In a context where
assessment is not congruent with the intended level of the course, being in fact
lower, then it would be totally possible for the students, should this be known to
them, to succeed in the course without entering into more advanced mathematical
thinking. Success in such a context would by no means testify to adequate learning.
What we have in mind here is a system where the gap between the level of the
course and that of assessment is not too important.

In many countries, the passage to tertiary mathematics coincide with the
introduction of new abstract notions such as vector spaces or formalized limits.
This is a difficult step because these notions are not in the strict continuity of what
students already know (even though vector spaces take their origin in the “spaces
of (physical) vectors” R2 or R3). We can speak of these notions as “unifying
and generalizing concepts”, in the following sense (see [7]): such concepts unify
and generalize different methods, tools and objects existing previously in a variety
of settings; they are formal concepts which unify the various objects from which
they have been abstracted. They have not necessarily been created to solve new
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problems, but to make the solution of many problems easier or more similar to each
other. Moreover, these concepts represent a change of perspective which induces
a sophisticated change of level in mental operations.

Other concepts are acquiring a different status, when passing from one level of
education to another. For instance, the equality of elementary arithmetic becomes
in high school algebra a notion of identity. And in analysis equality incorporates
the complex idea of “local infinite proximity”, i.e., of an arbitrarily good approxi-
mation, such as in the expression limx→a f(x) = L. The manipulation of equalities
in such a context rests in an essential way on inequalities, which fact contributes
to the difficulties linked to the passage from algebraic to analytic thinking (see
Artigue [1]).

Students entering tertiary education are facing, in the words of Tall [24,
p. 495], “a difficult transition, from a position where concepts have an intuitive ba-
sis founded on experience, to one where they are specified by formal definitions and
their properties reconstructed through logical deductions”. Consequently proofs
acquire a new and important status. They have to be complete and established
through logical deductions from the formal definitions and properties. Only el-
ementary logic is necessary for overcoming this difficulty, but this is far above
what is being asked in secondary mathematics. Moreover, the basic logic one uses
in mathematics is different from the ordinary logic of everyday life, just as the
mathematical language differs from the natural language.

Even for those students already familiar with proofs, new difficulties may
arise. For instance existence proofs are notoriously difficult for most students:
on the one hand, it is not easy for them to recognize their need, as this type of
situation is rarely raised in secondary mathematics — when given a problem, high
school students can (almost) always take it for granted that it has a solution; and
also existence questions are difficult to solve because one often has to imagine a
certain mathematical object — an analysis-synthesis approach can be useful here,
but is not always easy to implement. Sufficiency arguments are generally difficult
because there is often a choice to be made. Sometimes, a proof requires not only
to apply directly a theorem in a particular case, but also to adapt or even to
transform a theorem before recognizing and/or using it. In other occasions, a
proof involves a multi-stage process. For instance one often encounters situations
in analysis where in order to find a limit, a given expression (vg, a sum or an
integral) must be “broken” into two parts to be treated separately by different
methods; a strong qualitative intuition is essential for one to succeed in such an
approach.

Research shows that when facing a new complex mathematical task or notion
for which intuition may not be sufficient to represent the situation, some students
react by introducing simplistic procedures, like trying to reduce everything to
algorithms, or by developing for themselves simplistic models — such is the case
for instance with the notion of limit, as observed by Robert [19]. Other students’
errors are more linked to the mathematical domain involved. For example, many
difficulties encountered by students in analysis have to do with the structure of R,
especially the order relation. In algebra, students do not realize all the consequence
of structures in terms of the constraints thus being introduced, because structures
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refer to a new idea. For instance, they are surprised (and even bewildered) by the
proof — and even more by the need of a proof — of the fact that in a group there
exists only one identity element, which is at the same time the only “left” and
the only “right” identity element; or by the fact that there is only one group with
three elements. This latter example indicates that students are often unaware of
the impact of a given definition on the “degree of freedom” of the elements: in a
group with three elements, there is simply no room for freedom!

The above comments deal with epistemological and cognitive difficulties
which, in a certain way, are “intrinsic” to mathematics, since they concern the
change in the type of mathematics to be mastered by students as they move to
tertiary education. We would now like to consider some “extrinsic” difficulties.

One such difficulty has to do with the students themselves: there is a substan-
tial heterogeneity in the mathematical background of students entering university
education. Some students are fully ready for the transition to the tertiary level,
but others are not. And university teachers often do not care to make sure, at the
entrance to university, that each one of them masters the basic notions and skills
required for an understanding of their course.

Other difficulties concern more directly the university teachers; for instance,
the expectations they might have regarding their students: many university teach-
ers develop a distorted image of students and tend to identify their “average” stu-
dent with an ideal student who has successfully attended a highly scientific track
in one of the best secondary schools. But in an actual class this kind of student
may be only a very small minority, or even not exist at all. Teachers must also be
sensitive to the importance of making explicit to the students what exactly they
are doing and learning, and where they are heading. In other words, they must
provide students with identifiable goals, not expecting such insights to emerge
naturally by themselves.

Another difficulty concerning university teachers is that they expect students
to develop from the beginning an active attitude toward “doing mathematics”.
But students are often not prepared for this kind of work. The situation is vividly
documented in an inquiry which involved several classes of Italian first-year uni-
versity students enrolled in scientific faculties [2]. More than one third of these
students (who had learned many proofs in elementary geometry during their sec-
ondary school years) share the belief that if a proof of some theorem in elementary
geometry has been produced by a secondary school pupil (say in grade 9 or 10), then
even a clever university student is not entitled to check the correctness or the in-
correctness of the proposed proof, without the help of books or experts. They believe
that the authority of a professional mathematician is needed, since only he knows
whether the proposed argument is true.

A last type of cognitive difficulties we would like to consider is linked to an
indispensable organization (or reorganization) of knowledge by students. In order
to reach the “advanced mathematical thinking” capacities which are expected of
them, students must acquire “the ability to distinguish between mathematical
knowledge and meta-mathematical knowledge (e.g. of the correctness, relevance,
or elegance of a piece of mathematics)” [21, p. 131], they must come to stand
back from the computations and to contemplate the relations between concepts.
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It is not possible for students, even through extensive personal work, to have met
all possible types of problems pertaining to a specific topic. They thus need to
develop a global view bringing forth the connections they need to make. But
even when students expect that they will have to modify their view of certain
mathematical objects and establish links between them, they often encounter great
difficulty in doing so because of a lack of organization of their knowledge. A typical
instance of such a situation is found in linear algebra. Students may have learned
to solve f(u) = ku using determinants, and also to find eigenvalues. But they
may well be unable to recognize these concepts in other situations. For instance
they may directly meet the equation f(w) = qw arising from a certain context
not immediately linked to eigenvalues; but in order to solve this equation with the
techniques they now know, they need to recognize that the crux of the problem
has to do with eigenvalues. Still more difficult, after having studied straight lines
invariant under an affine application, they must learn to link this problem to the
eigenvalues of the associated linear application.

3.2 Sociological and cultural difficulties

A second type of difficulties concerns sociological and cultural factors, especially
as seen from an institutional point of view. There is a great diversity of such diffi-
culties and local differences can be quite important, which makes it very difficult
to present regularities. We limit ourselves here to a few aspects.

More often than not the size of groups at the tertiary level can be very large,
especially in the first year, so that a student is often only one in a crowd. For
many students, this represents a major change with respect to secondary school,
as was clearly shown in the answers to our questionnaire mentioned in Section 1.
While some students deal quite easily with the new environment, others find that
moving from a “human-size” high school, where most people know each other, to
the anonymity of a large university campus is quite a frightful experience. It is
only in the rare case that the student will be known as an individual to the teacher.
Moreover, groups may be re-formed every semester, so that there is often little or
no “sense of community” developed in the classroom. As a consequence, it is very
difficult for students to receive help either from the teacher, who frequently has
very little time available, or from peer students. And in contexts where students
have access to teaching assistants, this systems often prove to be rather unreliable
for a variety of reasons (lack of familiarity of the assistant with the content of
the course, lack of perspective, problems of communication because of a language
barrier, etc.).

Moreover, notwithstanding the size of groups, some students are not comfort-
able with the climate which may prevail in the classroom. Here is what Tobias
writes about science students who do not pursue science study — but this may
well apply to mathematics students: “Some students don’t decide to reject science
per se. They reject the culture of competition that they see as an unavoidable
aspect of undergraduate science study. These students don’t drop science because
they fail in the competition. Often they do very well. Rather for them issues of
‘culture’ [. . . ] are as important as the actual subject matter of their studies. They
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value such qualities as love for one’s subject and intrinsic motivation in one’s work,
and want these qualities to be part of their academic efforts. They see the culture
of college science study, in contrast, as emphasizing extrinsic rewards like getting
good grades, and objective goals like getting into graduate or medical school.” [25,
p. 74] In such a competitive atmosphere, the attention of students concentrates on
success at the exams, and not on learning.

In many countries, the democratization of teaching has had as a consequence
that many weak students are getting access to university. For such students, their
relation to knowledge is often not up to what is being expected of them: they meet
difficulties in reaching the required level of abstraction and they confine themselves
in mere actions and applications of recipes, unaware of the conceptual shift they
must accomplish. As a result of this fragility, these students are in a great need
of a highly personalized relationship with their instructor, which would allow for
the numerous explanations they require. But the current structure of university
makes almost impossible such a contact.

A frequent difficulty with students taking mathematics as a service subject is
their underestimation of the role of mathematics with respect to their future career
(we do not have in mind here the screening role sometimes forced upon mathemat-
ics in certain fields). Many students will have chosen a field of specialization in
university in which they were not expecting to have to study mathematics. They
will often be at a loss to relate their calculus or linear algebra course to their fore-
seen profession. The instructor needs to address this issue and convince students
of the importance of mathematics for their career.

A final cultural difficulty we would like to mention concerns the general con-
ception of the task of teachers at the university level. The lack of pedagogical
awareness of some teachers may stem from the fact that they “are expected to
conduct research, and thus their motivation and commitment to teaching may
not be as strong as that of secondary school teachers, whose sole responsibility is
teaching.” [9, p. 676] Moreover university teachers, in most cases, have received
their professional training as if their only occupation in mathematics is research.
Consequently, they have to develop by themselves the pedagogical and communi-
cation capabilities they need with their students — and this is an arduous task!
The professional reward system in university mathematics is almost universally
focused on success in research, and not in pedagogy. The situation is surely much
less dramatic in “teaching-oriented” than in “research-oriented” universities, but
still this can be seen as a major impediment to the pedagogical dedication of
university teachers on a large scale.

3.3 Didactical difficulties

In this Section we ask ourselves to what point the style of teaching and the per-
formance of teachers, at the university level, might be the cause for difficulties
experienced by students. It is quite clear that some of these difficulties arise from
the way students have been practicing and learning mathematics at the secondary
level; for instance, many students arriving at university do not know how to take
notes during a lecture, how to read a textbook, how to plan for the study of a
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topic, which questions to ask themselves before they get asked by the teacher. The
solution is not for university teachers to get closer to the secondary style of teach-
ing in this respect, as students would not get prepared to become autonomous
learners. It would take us too far to discuss here how the teaching and learning of
mathematics in the secondary school could be changed to improve the situation;
moreover, most of the people taking part in this round-table in one way or another
are much nearer to university teaching than to teaching at the secondary level.

Among the various circumstances related to university teachers that might
cause some problems to their students, we consider the following.

• Lack of pedagogical and didactical abilities. “I know the subject and this
is sufficient” is here the customary underlying philosophy. In many places it is
a rather common belief among university teachers that all one needs in order to
teach mathematics at the university level is to deeply know and understand the
subject. However, the one who teaches well a subject at any level is not necessarily
the one who knows it the most deeply, but the one who achieves that students learn
those ideas and methods they should learn. This requires from the teacher many
different skills (mathematical as well as didactical ones) that are rarely present in
a spontaneous form. It is very important for teachers to be aware of their own
possible deficiencies and to try to remedy them.

• Lack of adequate models. It often happens that the university teacher, espe-
cially the young one — who is usually also the one charged with the responsibility
of teaching entering students —, looks at the university professor as an exam-
ple to imitate. But much too often this is rather a counterexample showing how
not to teach mathematics. Our university culture has stimulated in many places
mathematicians to disregard, if not to despise, any preoccupation about teaching.

• Disregard for the importance of the methodology of the subject. Study and
work in mathematics require a different kind of approach than study of, say, history
or chemistry. Perhaps it belongs to the secondary school teacher to introduce the
student to the style of work needed in each one of the subjects. But since this is
usually not done, this specificity should be contemplated during the initial years
at the tertiary level.

• Lack of innovative teaching methods. Many teachers tend to confine them-
selves to “unimaginative teaching methods” [21, p. 129], the style of teaching most
frequently practiced at the university level being that of a lecture presentation of
polished mathematics (“the teacher talks and the student takes notes”). It is
sad that many university teachers have never heard, for instance, of the so-called
“Moore method” or possible modifications of it (see [4]), or of many other different
ways to actively engage students, individually or in groups, in the “discovery” and
the development of the subject. Such approaches can give a much more exact
measure of what each student is able to do and moreover motivate them more
intensely towards the study of mathematics. Finally, it has to be acknowledged
that while the recent developments in computer hardware and software (vg, sym-
bolic and/or graphical software) have led quite a few teachers to rethink, totally or
partially, their approach to various topics in mathematics, a majority of teachers
have never considered seriously how these new tools could be used so to foster
students participation, inside and outside the classroom.
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• Carelessness in the design of the course. University teachers often pay little
attention to the actual knowledge and preparation of their students and do not care
about the pace which would be at every concrete moment the most adequate for
the majority of the students. They may offer no clear guidelines about the course
content or the exact objectives their students have to meet. Students sometimes
miss well-defined material support (vg, a textbook or duplicated lecture notes) on
which to rely — it seems that any decent support may be better, for the profit of
the student, than the best set of notes the student would have to take hastily in
class, thereby loosing opportunity for active learning. Teachers often offer little
help to students, through frequent examples, exercises or problems, for digesting
the subject and acquiring a concrete idea about the really important concepts and
problems of the subject.
• Lack of feedback procedures. In the typical university classroom, there is not

much interaction which might help the teacher to know, while the course is still in
progress, to what extent what has been “taught” has really been “learned”, and
why it is so. Due to a lack of know-how (or perhaps of interest), it is often only at
the very end of the course that teachers get a picture of their groups, sometimes to
find out, perhaps by means of some rather unrealistic examination, that almost all
of what they thought students had learnt is completely absent from their minds.
• Lack of assessment skills. A crucial component of the process of teaching

and learning mathematics is to resort to an adequate way of assessing students’
work, designed for their benefit and stimulus. But such an assessment scheme is
far from trivial to implement. It is sad to observe that many university teachers
make no effort to familiarize themselves with different ways of evaluating students,
while many others perhaps learn such methods just after many years of ad-hoc
experimentation. Very seldom are alternate assessment processes used, such as
portfolios, oral interviews, discussions, proposals of open-ended questions given in
advance to students so they have the opportunity to think about the problems in
an autonomous study, etc. The easiest solution to evaluation, and possibly the
poorest one, is of course the written examination — eventually, for large groups,
one which the machine can take care of.

4 Possible actions in order to help alleviating these difficulties

We would like to conclude this paper by listing possible actions which might help
alleviating the difficulties in the passage from secondary to tertiary mathematics
education. We do not claim that all these actions can actually be implemented,
nor that they should have the desired effect. Still it is our hope that such a list,
however limited and succinct, can foster discussion around the issues raised in
the paper. Some of these actions concern institutional aspects surrounding the
transition, while others deal with pedagogical ones.
• Establish a better dialogue between secondary educators and tertiary edu-

cators. Such a dialogue can (and must) take place both inside and outside “formal
channels” of communication. An interesting example of such a dialogue on a na-
tional level is provided by the interest recently aroused in the USA mathematical
community by the undergoing revision of the so-called “NCTM Standards” (see

Documenta Mathematica · Extra Volume ICM 1998 · III · 747–762



Passage from Secondary to Tertiary Education 759

[10]). A more local example is to be found in [6].

• Provide students with orientation activities. This can begin already in
secondary school, for example by setting up activities in order to help students
individually to choose the track that seems the most appropriate for them, in the
perspective of their future university career. In-coming university students should
be welcomed with information helping them to better understand the place of
mathematics in their university education. In a given course, an orientation doc-
ument can allow to make explicit to the students the expectations of the teacher,
for example that students should work right from the very first day of classes. An
example of such a document distributed to students in a first-year calculus course
is given in [27, p. 865].

• Provide students with individualized help. One possible solution to the fact
that teachers of large groups are often totally unable to provide individual support
to students is to create a “Students Help Center” in mathematics. The fact that
this becomes a highly visible institutionalized activity could make it a little easier
to find the necessary financial support.

• Disseminate information about “success stories”. A number of institu-
tions are renowned for their exceptional pedagogical performance. Such situations
should be better documented, so to help others to develop the necessary local
“culture” (commitment to graduating the students admitted, support provided to
students, accessibility of professors, etc.) Successful programs in undergraduate
mathematics in the USA are presented in [17] and [26].

• Change the context of the transition step. For instance, have the secondary
school courses in the upper grades be delivered at a “higher” and more abstract
level, so to get closer to the university teaching style. Or, in the opposite direction,
make the first-year university courses closer to secondary school teaching style, i.e.,
delivered at a “lower” and more intuitive level. Or even have both secondary and
university courses change drastically in style and content, taking into account, for
instance, the possibilities offered by new technologies and the emerging needs of
society (see [12] and [15]). Another approach is to create “bridge courses” for
specific groups of students, between secondary and tertiary education, in order to
help them to fill their gaps with regard to content, methodology and skills. Or
still to introduce selective entrance examination to university, in order to ensure
a more homogeneous audience for mathematics classes. A report on the use of a
diagnostic placement testing in helping entering university students to choose an
appropriate sequence of calculus courses is given in [14].

• Create a context propitious to faculty development. Universities have the
responsibility of providing faculty members with a context fostering their general
pedagogical development, and especially their awareness of the difficulties expe-
rienced by students. Those interested in changing their teaching practices need
support, training, team-work, access to forums where pedagogical issues are dis-
cussed, etc. It is important that teachers be encouraged to take lots of small
initiatives that work — eventually the process will lead to a larger result.

• Help students use resources. All the information cannot come from the
teacher in the classroom. Students must get used to choosing, reading and un-
derstanding on their own appropriate mathematical information in various forms:
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textbooks, library materials, internet, etc.

• Change the “culture” of the students. Whether they are specializing in
mathematics or taking mathematics as a service subject, students must come to
appreciate the mode of thought specific to mathematics. They need to learn why
pure mathematics is at least as important as applied mathematics, and that many
of the connections between science and mathematics involve theoretical concepts
better understood from the point of view of mathematics. They must realize that
mathematics is above all a question of ideas and insight, and not mere techniques
— although technical skills do play an important role. Teachers must be aware
of the need for students to develop insight; they should not expect that this will
come naturally by itself from the experience of solving quantitative problems.

• Change the “culture” of the teachers. Traditional lecturing is just one
style of teaching — and often not the most appropriate one. Using different
ways of teaching can help students develop different ways of learning. One can
propose students alternative types of work, like small group discussions; knowledge
understood by the best students can be shared with the others, not in order to give
the solutions to problems, but to illustrate what it means to do mathematics. In
aiming at helping students change their perception of mathematics and make the
transition to “advanced mathematical thinking”, teachers must realize that “the
formalizing and systematizing of the mathematics is the final stage of mathematical
thinking, not the total activity”. [24, p. 508–509]

• Establish a better dialogue between mathematicians and users of mathemat-
ics. The case of mathematics taught as a service subject (see [3] and [11]) needs
special attention. Mathematics should be taught to, say, engineering students by
someone who has an adequate understanding of the role played by mathematics
in engineering and who can relate mathematics to the interests of the students.
Contacts with specialists of the specific domain is essential. It was remarked by
Murakami [16, p. 1680] that “it is difficult to see how people of such profile might
easily come out of the present educational establishment in any significant num-
bers”.

• Meta-cognitive actions. Students’ success is linked to a great extent to
their capacity of developing “meta-level” skills allowing them, for instance, to
self-diagnose their difficulties and to overcome them, to ask proper questions to
their tutors, to optimize their personal resources, to organize their knowledge, to
learn to use it in a better way in various modes and not only at a technical level
(see [7], [8], [20], [22]). For this to happen, teachers have to make explicit to the
students the emergence of new “rules” in mathematics (vg, new concepts) and in
learning (vg, need for organization instead of pure memory). Teachers also have to
build problems adapted to the various modes of thinking they want the students
to acquire, and not only present them problems dealing with technical aspects or
preparing for the examination day.

• “Less is more.” Decrease the quantity of content covered (provided the
teacher does have some control over the content of a course), and engage students
in a deeper and more adequate understanding.
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Mathematics Instructionin the Twenty-first Century
D. J. Lewis1
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For the past fifty years, mathematics and science education in the United States,
both collegiate and precollegiate, have been criticized as being inadequate and fre-
quently irrelevant. Much of the criticism has focussed on the instruction provided
in the elementary and secondary schools and the criticism gets quite intense each
time there is an international study of student achievements. Considering the low
standing of US students in these comparative studies, it should not be surprising
there is discontent with the quality of instruction provided. In the last fifteen
years the criticism has been expanded to include mathematics and science instruc-
tion at the collegiate level. Here we shall restrict one attention to post-secondary
instruction, although what happens in the elementary and secondary schools has
a decided impact on the instruction at the next level and the teachers in these
schools are educated by the collegiate faculty.

The instructional problems facing the mathematical faculty are not different
from that facing science educators in general. Consider the following paragraphs2

written by Purnell W. Choppin, M.D, President, Howard Hughes Medical Insti-
tute.

“There are two revolutions going on in science education these days. One
concerns how teachers teach and students learn, the other concerns technology.
As with all revolutions, they carry with them a certain uproar and sense of
unease.

In the first revolution – changing how students learn science and how
teachers teach science – debate has been raging among those who advocate
a more inquiry-based, problem-solving approach to education and those who
believe that content should prevail above all else. Obviously, the ideal lies
somewhere in between. Students must learn how to solve problems, but they
must also respect that there is a clearly defined body of facts and principles that
guide thinking and the pursuit of truth. And let it not be forgotten that what
drives most scientists to their work is not the desire to merely ask questions,

1 This discussion is from a US perspective, since that is what we know. While the
situation varies from country to country, the evolution occuring worldwide in educational
systems suggests many of the problems facing US mathematical educators will probably
become universal.
2 Making New Connections in Science Education, 1997, Howard Hughes Medical In-

stitute.
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but to find answers about some part of the world that fascinates them and
captures their interest. It is the content, after all, that gives meaning to our
investigations.

The second revolution concerns the set of powerful new computer-based
tools available in a growing number of education settings. It is not that these
technologies necessarily change how we learn, but they can transform the speed,
intensity, and environment in which we master our universe. Grappling with
how to integrate these innovations into the classroom and assess their impact
is an exercise we can expect to engage in for some time.

When these revolutions flow together, and they increasingly do, they force
us to re-evaluate so many aspects of education that it can, at times seem
overwhelming. We want to know if computer-based instruction can draw out
talents in students who have been previously difficult to engage. We want to
know if student-centered learning via the Internet will satisfy our desire that
content be mastered. And we are concerned about conveying the message that
learning is always fun, because sometimes it is very hard work. Science is a
rigorous endeavor.

Teachers who use technology tell us that its integration into their class-
rooms has forced a sometimes painful transition in the way they teach, but one
that they now feel was worth the effort. In the Institute’s undergraduate and
precollege education programs we have witnessed firsthand the fruits of these
labors; elegant education software, large networks of teachers working together
on line, and research products of students who have been guided in the use of
these tools for their own learning.

The challenge for science educators is to find the balance between content
and pedagogy to ensure that we reach the desired educational outcomes for our
children – scientific literacy and finely tuned analytical skills.”

Certainly the US mathematical educators face the two revolutions identified
by Dr. Choppin and have been struggling with how to reconcile the two. Indeed
much of the debate that has arisen is around this reconciliation, and much of
the criticism is whether the students do develop “finally tuned analytic skills.”
Mathematical instruction in the US faces a more complicated situation than do
the sciences.

The bulk of US collegiate mathematics instruction deals with the calculus
and linear algebra, and with still lower level courses in the case of many state
universities, especially regional ones. Too many students are admitted with low
mathematical credentials – a fault of the institutions, but a political reality given
that a college education is the path to well paying positions. While typically the
number of faculty in a US mathematics department is large compared to other
countries, the ratio of students to faculty is extremely large; large even when
one includes the very substantial numbers of part-timers and graduate student
assistants. Engineering, all the sciences (biological, physical, social and financial)
and many professional schools require competency in the calculus, linear algebra,
and frequently statistics. Mathematics has become intrinsic to all these disciplines
and they demand competency on the part of students. As a consequence 70-90%
of first-year students will enroll in a mathematics course. The top 10-20% of these
students will have completed their study of the calculus in high school, so the
mathematical ability of those enrolled in the calculus is not the best, and their
motivation is quite varied. In contrast to the past, today’s students do not accept
the concept of deferred gratification; they demand to know that mathematics is
relevant to their career goals.
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The mathematical instructors have diligently striven to provide meaningful
instruction to these masses of students, trying to meet contradictory goals arising
from the students and the various nonmathematics faculties. A very fundamental
issue for the faculty are the demands that calculus be presented as a basic tool for
science and engineering and their own desire to show it as the great intellectual
achievement that it is. Thus we find some instructors treat the calculus and linear
algebra as an algorithmic tool; others will present it as a theory, but usually
only with heuristic justifications; others will provide a highly rigorous Satz-Beweis
course in analysis; and still others, responding to the revolutions described by
Dr. Choppin, will emphasize real world modeling and problem solving. The use
of technology varies greatly from no use to extensive use of symbolic packages.
There are those who do all the instruction via the computer, allowing students to
go at their own pace and attempting to combine Dr. Choppin’s two revolutions.

Clearly there is merit in each approach and to present calculus and linear
algebra maximally one needs to involve all these approaches. This can seldom be
done since time allocated to these subjects is limited by the various curriculums.
As might be expected, the various approaches have strong advocates, which has
made for stringent debate. Despite the tensions, a very positive outcome is that
pedagogy and content of first and second year collegiate mathematics instruction
is being seriously examined and discussed. Teaching has become an important
issue even in the most sophisticated and research intensive departments. A major
problem is that there has been little in depth longitudinal evaluations of any of
the approaches and there has been little use of cognitive studies to justify any
approach. Without such, the debate is mostly opinion.

From my perspective, the American faculty are held to too great a respon-
sibility for what the student learns. This is oxymoron. The faculty can present
material, but it falls to the student to do the learning. From my observation,
the more the responsibility is laid on the student, the more the course has been
deemed a success, whatever the approach.

There is mounting pressure that US research university instruction should be
based on discovery learning guided by mentoring rather than on the transmission
of knowledge,3 and that before graduating the student should have experience in
research. The motivation for this approach comes from the repeated observation
that “the teacher who puts his hand on your shoulder is the one who has had
an impact on your life.” Given the large number of students enrolled and the
rather low preparation with which they arrive and the pressure on the faculty to
do research, this may be wishful thinking on the part of our academic leaders. But
given the outlook of young Americans, it probably will be the only way to attract
and retain the very best students in mathematics and science. I would expect a
research experience that goes beyond the current undergraduate expository thesis,

3 Reinventing Undergraduate Education, Boyer Commission on the Education of Un-
dergraduates in the Research University, Carnegie Foundation for the Advancement of
Teaching, 1998. This report is highly critical of the education undergraduates receive at
US Research Universities, and it includes suggestions for improvement.
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will become the norm for the honor’s students. These developments suggest that
the discussion is about to expand to all undergraduate instruction.

The US academic community faces many challenges in the 21st Century. As
higher education becomes more universal world-wide, it is likely some of the chal-
lenges will come to others.

D. J. Lewis
National Science Foundation
Arlington VA 22230
USA
dlewis@nsf.gov
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Aspects of the Nature and State ofResearch in Mathematics Education
Mogens Niss

Abstract. This paper offers an outline and a characterisation of the
didactics of mathematics, alias the science of mathematics education, as
a scientific and scholarly discipline. It further presents a number of ma-
jor, rather aggregate findings in the discipline, including the astonishing
complexity of mathematical learning, the key role of domain specificity,
obstacles produced by the process-object duality, students’ alienation
from proof and proving, and the marvels and pitfalls of information tech-
nology in mathematics education.

1991 Mathematics Subject Classification: 00A35, 00–02
Keywords and Phrases: the didactics of mathematics, mathematics edu-
cation research

1 Introduction

During the last three decades or so mathematics education has become estab-
lished as an academic discipline on the international scene. This discipline is given
slightly different names in different quarters, such as mathematics education re-
search, science of mathematics education, and the didactics of mathematics. In
the following I shall use the names interchangeably.

What are the issues and research questions of the didactics of mathematics,
what are its methodologies, and what sorts of results or findings does it offer? In
this paper attempts will be made to characterise this discipline, in particular as
regards its nature and state, and to present and discuss some of its major findings.
I shall begin by offering a definition of the field.

2 Characterising the field

A definition

Subject The didactics of mathematics, alias the science of mathematics educa-
tion, is the scientific and scholarly field of research and development which
aims at identifying, characterising, and understanding phenomena and pro-
cesses actually or potentially involved in the teaching and learning of math-
ematics at any educational level.
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Endeavour As particularly regards ‘understanding’ of such phenomena and pro-
cesses, attempts to uncover and clarify causal relationships and mechanisms
are in focus.

Approaches In pursuing these tasks, the didactics of mathematics addresses all
matters that are pertinent to the teaching and learning of mathematics, irre-
spective of which scientific, psychological, ideological, ethical, political, social,
societal, or other spheres this may involve. Similarly, the field makes use of
considerations, methods, and results from other fields and disciplines when-
ever this is deemed relevant.

Activities The didactics of mathematics comprises different kinds of activities,
ranging from theoretical or empirical fundamental research, over applied
research and development, to systematic, reflective practice.

It is important to realise a peculiar but essential aspect of the didactics of
mathematics: its dual nature. As is the case with any academic field, the didac-
tics of mathematics addresses what we may call descriptive/explanatory issues,
in which the generic questions are ‘what is (the case)?’ and ‘why is this so?’.
Objective, neutral answers are sought to such questions by means of empirical and
theoretical data collection and analysis without any intrinsic involvement of values
(norms). However, by its nature mathematics education implies the fundamen-
tal presence of values and norms. So, in addition to its descriptive/explanatory
dimension, the didactics of mathematics also has to contain a normative dimen-
sion, in which the generic questions are ‘what ought to be the case?’ and ‘why
should this be so?’. Both dimensions are essential constituents of the science of
mathematics education, but they should not be confused with one another.

In a brief outline of the main areas of investigation the two primary ones are
the teaching of mathematics, and the learning of mathematics. A closely related
area of investigation is the outcomes (results and consequences) of the teaching
and the learning of mathematics, respectively.

We may depict, as in Figure 1, these areas in a ‘ground floor’. The investi-
gation of these areas leads to derived needs to investigate certain auxiliary areas
related to the primary ones but not in themselves of primary didactic concern,
such as aspects of mathematics as a discipline, of cognitive psychology, or of cur-
riculum design. As is the case with any new or established scientific field, the
didactics of mathematics reflects on its own nature, issues, methods, and results
(e.g., Grouws, 1992; Biehler et al., 1994; Bishop et al., 1996; Sierpinska & Kil-
patrick, 1998). Theoretical or empirical studies in which the field as such is made
subject of investigation form part of the field itself, although at a meta-level, which
we depict as an ‘upper floor’ plane. We may think of it as being transparent so as
to allow for contemplation of the ground floor from above. Finally, let us imagine
a vertical plane cutting both floors as a common wall. The two half-spaces thus
created may be thought of as representing the descriptive/explanatory and the
normative dimensions, respectively. If we imagine the vertical wall to be transpar-
ent as well, it is possible to look into each dimension from the perspective of the
other.
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Figure 1: Survey map

Let us sum up the ultimate goals of the didactics of mathematics as follows:
We want to be able to specify and characterise satisfactory learning of mathe-
matics, including the mathematical competencies we should like to see different
categories of individuals possessing. We want to be able to devise and implement
effective mathematics teaching that can serve to bring about satisfactory learn-
ing. We finally want to construct and implement valid and reliable ways to detect
and assess, without destructive side effects, the results of learning and teaching of
mathematics.

For all this to be possible we have to be able to identify and understand the
role of mathematics in science and society; what learning of mathematics is, what
its conditions are, how it may take place, how it may be hindered, how it can
be detected, and how it can be influenced, all with respect to different categories
of individuals. We further have to understand what takes place in existing forms
mathematics teaching, both as regards the individual student, groups of students,
and entire classrooms. We have to invent and investigate new modes of teaching.
We have to investigate the relationships between teaching modes and learning
processes and outcomes, and the influence of teachers’ backgrounds, education,
and beliefs on their teaching. We have to examine the properties and effects of
established and experimental modes of assessment in mathematics education, with
particular regard to the ability to provide valid insight into what students know,
understand, and can do.

Traditionally, fields of research within the sciences produce either empirical
findings of facts’, through some form of data collection assisted by theoretical
considerations, or they produce theorems, i.e. statements derived by means of
logical deduction from a collection of ‘axioms’. If we go beyond the predominant
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paradigms in the sciences and look at the humanities and the social sciences, other
aspects have to be added to the ones just considered. In philosophical disciplines,
the proposal and analysis of distinctions and concepts, and concept clusters, in-
troduced to specify and represent matters from the real world, serve to create
a platform for discussion of these matters in a clear and systematic way. Such
disciplines often produce notions, distinctions, terms, amalgamated into concepts,
or extensive hierarchical networks of concepts connected by formal or material
reasoning, called theories. Disciplines dealing with human beings, as individuals,
as members of different social and cultural groups, and as citizens, or with com-
munities and societies at large, primarily produce interpretations and models, i.e.
hypotheses of individual or social forces and mechanisms that may account for phe-
nomena and structures observed in the domain under consideration. Sometimes
sets of interpretations are organised and assembled into systems of interpretation,
also called ‘theories’ which we shall refer to as interpretative theories. Finally,
there are disciplines within all scientific spheres that produce designs (and even-
tually constructions) for which the ultimate test is their functioning in the realm
in which they are put into practice. However, as designs and constructions are
often required to have certain properties before installation, design disciplines are
scientific only to the extent they can provide well-founded reasons to believe that
their designs possess certain such properties to a satisfactory degree.

The didactics of mathematics contains instances and provides findings of all
the categories of disciplines mentioned, but to strongly varying degrees. There
are empirical findings as well as ‘theorems’ (but, in the honour of truth, these
are derived within mathematics itself). There are terms, concepts and theories
for analysis of a philosophical nature, and there are models, interpretations and
interpretative theories of a pscyhological, sociological or historical nature. Finally
there are multitudes of designs and constructions of curricula, teaching approaches,
instructional sequences, learning environments, and materials.

Some researchers in mathematics education are hesitant to use the term ‘find-
ing’, in order to avoid too narrow expectations of what the field has to offer. They
prefer to see the didactics of mathematics as providing generic tools for analysing
teaching/learning situations. Others emphasise that the field offers illuminating
case studies which are not necessarily generalisable beyond the cases themselves,
but are nevertheless stimulating for thought and practice. However, as long as
we keep in mind that the notion of finding is a broad one, I don’t see any severe
problems in using this term in the didactics of mathematics.

A major portion of recent research has focused on students’ learning processes
and products as manifested on the individual, small group, and classroom levels,
and as conditioned by a variety of factors such as mathematics as a discipline;
curricula; teaching; tasks and activities; materials and resources, including text
books and information technology; assessment; students’ beliefs and attitudes;
educational environment, including classroom communication and discourse; social
relationships amongst students and between students and teacher(s); teachers’
education, backgrounds, and beliefs; and so forth. The typical findings take the
shape of models, interpretations, and interpretative theories, but often also of
solid empirical facts. We know a lot about the possible mathematical learning
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processes of students and about how these may take place within different areas
of mathematics and under different circumstances and conditions, as we know a
lot about factors that may hinder or simply prevent successful learning.

We have further come to know a great deal about what happens in actual
mathematics teaching in classrooms at different levels and in different places (Cobb
& Bauersfeld, 1995). However, we are still left with hosts of unanswered questions
as to how to design, organise, and carry out teaching-learning environments and
situations that to a reasonable degree of certainty lead to satisfactory learning
outcomes for various categories of students. This is not to say that we don’t
know anything in this respect, but as yet our knowledge is more punctual and
scattered than is the case with our insights into students’ mathematical learning.
Based on our growing insight into mathematical learning processes and teaching
situations, we know more and more about what is not effective teaching vis-à-vis
various groups of recipients. Moreover, the didactic literature displays numerous
examples of experimental teaching designs and practices that are judged highly
successful, without this success being easily analysed and documented in scientific
terms.

3 Examples of major findings

In this section, we shall consider a few significant findings, of a pretty high level
of aggregation, which can serve to illustrate the range and scope of the field. As
it is not possible here to provide full documentation of the findings selected, a few
recent references, mainly of survey or review type, have to suffice.

The astonishing complexity of mathematical learning An individual
student’s mathematical learning often takes place in immensely complex ways,
along numerous strongly winding and frequently interrupted paths, across many
different sorts of terrain. Some elements are shared by large classes of students,
whereas others are peculiar to the individual.

Students’ misconceptions and errors tend to occur in systematic ways in reg-
ular and persistent patterns, which can often be explained by the action of an
underlying tacit rationality put to operation on a basis which is distorted or in-
sufficient.

The learning processes and products of the student are strongly influenced by
a number of crucial factors, including the epistemological characteristics of math-
ematics and the student’s beliefs about them; the social and cultural situations
and contexts of learning; primitive, relatively stable implicit intuitions and models
that interact, in a tacit way, with new learning tasks; the modes and instruments
by which learning is assessed; similarities and discrepancies between different ‘lin-
guistic registers’.

This over-arching finding is an agglomeration of several separate findings,
each of which results from extensive bodies of research. The roles of epistemolog-
ical issues and obstacles in the acquisition of mathematical knowledge have been
studied, for instance, by Sierpinska and others (for an overview, see Sierpinska &
Lerman, 1996). Social, cultural, and contextual factors in mathematical learning
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have been investigated from many perspectives, e.g. Bishop, 1988, and Cobb &
Bauersfeld, 1995. Pehkonen (e.g. Pehkonen & Törner, 1996), among others, have
investigated students’ (and teachers’) belief’s. Fischbein and his collaborators have
studied the influence of tacit models on mathematical activity (Fischbein, 1989).
The influence of assessment on the learning of mathematics has been subject of
several theoretical and empirical studies (e.g. Niss 1993). The same is true with
the role of language and communication (see Ellerton & Clarkson, 1996, for an
overview).

The studies behind these findings teach us to be cautious when dealing with
students’ learning of mathematics. Neither processes nor outcomes of mathemati-
cal learning are in general logically ordered. For instance, research has shown that
many students who are able to correctly solve an equation such as 7x−3 = 13x+15
are unable to subsequently correctly decide whether x = 10 is a solution. The ex-
planation normally given to this phenomenon is that solving equations resides in
one domain, strongly governed by rules and procedures with no particular atten-
tion being paid to the objects involved, whereas examining whether or not a given
element solves the equation requires an understanding of what a solution means.
So, the two facets of the solution of equations, intimitely linked in the mind of the
mature knower, need not even both exist in the mind of the novice mathematical
learner, let alone be intertwined.

The key role of domain specificity For a student engaged in learning
mathematics, the specific nature, content and range of a mathematical concept
that he or she is acquiring or building up are, to a large part, determined by the
set of specific domains in which that concept has been concretely exemplified and
embedded for that particular student.

The finding at issue is closely related to the finding that students’ concept
images are not identical with the concept definitions they are exposed to (for
overviews, see Vinner, 1991, and Tall, 1992). The concept images are generated
by previous notions and experiences as well as by the examples against which the
concept definitions have been tested.

The range and depth of the instances of this finding have far-reaching bear-
ings on the teaching and learning of mathematics. Thus, not only are most ‘usual’
students unable to grasp an abstract concept, given by a definition, in and of it-
self unless it is elucidated by multiple examples (which is well known), but, more
importantly, the scope of the notion that a student forms is often barred by the
very examples studied to support that notion. For example, even if students who
are learning calculus or analysis are presented with full theoretical definitions, say
of ǫ − δ type, of function, limit, continuity, derivative, and differentiability, their
actual notions and concept images will be shaped, and limited, by the examples,
problems, and tasks on which they are actually set to work. If these are drawn
exclusively from objects given as standard expressions of familiar, well-behaved
objects, the majority of students will gradually tie their notions more and more
closely to the specimens actually studied. Thus, the general concept image be-
comes equipped with properties resulting from an over-generalisation of proper-
ties held by the special cases but not implied by the general concept. Remarkably
enough, this does not prevent many of the very same students from correctly re-
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membering and citing general theoretical definitions. These definitions seem to
just be parked in mental compartments detached from the ones activated in the
study of the cases. In other words, if average students are to understand the range
of a mathematical concept, they have to experience this range by exploring a large
variety of manifestations of the concept in various domains.

The danger of forming too restricted images of general concepts seems to be
particularly manifest in domains — such as arithmetic, calculus, linear algebra,
statistics — that lend themselves to an algorithmic ‘calculus’, in a general sense.
In such domains, algorithmic manipulations — procedures — tend to attract the
main part of students’ attention so as to create a ‘concept filter’: Only those
instances (and aspects) of a general concept that are relevant in the context of
the ’calculus’ are preserved in students’ minds. In severe cases an over-emphasis
in instruction on procedures may even prevent students from developing further
understanding of the concepts they experience through manipulations only.

The present finding shows that it is a non-trivial matter of teaching and learn-
ing to establish mathematical concepts with students so as to be both sufficiently
general and sufficiently concrete. Research further suggests that for this to hap-
pen, several different representations (e.g. numerical, verbal, symbolic, graphical,
diagrammatical) of concepts and phenomena are essential, as are the links and
transitions between these representations.

There is a large and important category of mathematical concepts of which the
acquisition becomes particularly complex and difficult, namely concepts generated
by encapsulating specific processes into objects. Well-known examples of this are
the concept of function as an object, encapsulating the mechanisms that produce
the values of the function into an entity, and the concept of derivative, encapsu-
lating the processes of differentiating a function pointwise, and of amalgamating
the outcomes into a new function. This process-object duality, so characterstic of
many mathematical concepts, is referred to in the research literature by different
terms, such as ‘tool-object’ (Douady, 1991), ‘reification’ (Sfard, 1991), ‘procept’,
a hybrid of process and concept, (Tall, 1991, Chapter 15). It constitutes the
following finding:

Obstacles produced by the process-object duality The process-object
duality of mathematical concepts that are constituted as objects by encapsula-
tion/reification of specific processes, typically gives rise to serious learning ob-
stacles for students. They often experience considerable problems in leaving the
process level and entering the object level.

For example, many students conceive of an equation as signifying a prompt
to perform certain operations, without holding any conception of an equation as
such, distinct from the operations to be performed. To them, an equation simply
does not constitute a mathematical entity, such as a statement or a predicate.

Undoubtedly, the notions of mathematical proof and proving are some of
the most crucial, demanding, complex, and controversial, in all of mathematics
education. Deep scientific, philosophical, psychological, and educational issues
are involved in these notions. Hence it is no wonder that they have been made
subject of discussion and study in didactic research to a substantial extent over the
years (for a recent discussion, see Hanna & Jahnke, 1996). Here, we shall confine

Documenta Mathematica · Extra Volume ICM 1998 · III · 767–776



774 Mogens Niss

ourselves to indicating but one finding pertinent to proof and proving.

Students’ alienation from proof and proving There is a wide gap be-
tween students’ conceptions of mathematical proof and proving and those held
by the mathematics community. Typically, students experience great problems in
understanding what a proof is supposed to be, and what its purposes and func-
tions are, as they have substantial problems in proving statements themselves.
Research further shows that many students who are able to correctly reproduce a
(valid) proof, do not see the proof to have, in itself, any bearing on the truth of
the proposition being proved.

The fact that proof and proving represent such great demands and challenges
to the learning of mathematics implied that proof and proving have received, in
the ’80’s and ’90’s, a reduced emphasis in much mathematics teaching. However,
there seems to be a growing recognition that there is a need to revitalise them
as central components in mathematics education. Also there is growing evidence
that it is possible design and stage teaching-learning environments and situations
so as to successfully meet parts of the demands and challenges posed by proof and
proving.

The last finding to be discussed here, briefly, is to do with the role and impact
of information technology on the teaching and learning of mathematics. This is
perhaps the single most debated issue in mathematics education during the last
two decades, and one which has given rise to large amounts of research (for recent
overviews, see Balacheff & Kaput, 1996; and Heid, 1997). The following finding
sums up the state-of-the-art:

The marvels and the pitfalls of information technology in mathe-
matics education Information technology has opened avenues to new ways
of teaching and learning which may help to greatly expand and deepen students’
mathematical experiences, insights, and abilities. However, this does not happen
automatically but requires the use of technology to be embedded, with reflection
and care, as one element amongst others into the overall design and implemen-
tation of teaching-learning environments and situations. The more students can
do in and with information technology in mathematics, the greater is the need for
their understanding and critical analysis of what they are doing.

One pitfall of information technology indicated in the research literature is
that the technological system itself can form a barrier and an obstacle to learning,
either by simply becoming yet another topic in the curriculum, or by distracting
students’ attention to the system and away from the learning of mathematics.
Once again, for this to be avoided it is essential that information technology be
assigned a role and place in the entire teaching- learning landscape on the basis of
an overall reflective and analytic strategy.

In other words, it is not a simple matter to make information technology as-
sume a role in mathematics education which serves to extend and amplify students’
general mathematical capacities rather than replacing their intellects. There is am-
ple research evidence for the claim that when it is no longer our task to train the
‘human calculator’, some of the traditional drill does becomes obsolete. However,
we have yet to see research pointing out exactly what and how much procedural
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ability is needed for understanding the processes and products generated by the
information technology.

4 Conclusion

In a short paper it is not possible to do justice to then entire field of the didactics of
mathematics. Instead of the few findings put forward here, hosts of other findings
could equally well have been selected in their place.

Important findings concerning the demands and potentials of problem solving
and applications and modelling ; the problems and potentials of assessment; the
values and efficiency of collaborative learning and innovative teaching approaches
and forms of study, such as project work; the significance of carefully balanced, in-
novative multifaceted curricula, elucidating historical, philosophical, societal, and
applicational aspects of mathematics; the impact of social, cultural and gender
factors on mathematics education; and many others, have not, regrettably, been
given their due shares in this presentation. The same is true with the findings
contributed by impressive bodies of research on the teaching and learning of spe-
cific mathematical topics, such as arithmetic, abstract and linear algebra, calcu-
lus/analysis, geometry, discrete mathematics, and probability and statistics, and
with the findings represented by the instrumental interpretative theories. Also the
extensive and elaborate examples of didactical engineering (design and construc-
tion) contributed by a number of research and development centres in different
countries have been left out of this survey.

Nevertheless, the findings which we have been able to present suffice to teach
us two lessons which we might want to call super-findings. If we want to teach
mathematics to students other than the rather few who can succeed without being
taught, or the even fewer who cannot learn mathematics irrespective of how they
are taught, two matters have to be kept in mind at all times:

1. We have to be infinitely careful not to jump to conclusions and make false
inferences about the processes and outcomes of students’ learning of mathematics.

2. If there is something we want our students to know, understand, or be able
to do, we have to make it object of explicit and carefully designed teaching. There
is no such thing as guaranteed transfer of knowledge, insight and ability from one
context or domain to another, it has to be cultivated.
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Renewal in Collegiate Mathematics Education
To the memory of James R. C. Leitzel

David A. Smith

Abstract. The content and pedagogy of college courses in mathemat-
ics and science are not well aligned with the desired outcomes of college
education. This is due in part to a professoriate that is largely unaware
of pedagogical “best practice.” Recent research on neurobiology confirms
research on the psychology of learning, and both support best practice in
pedagogy. The Calculus Reform Movement has developed courses that
focus on student-centered learning and show that new knowledge can
be translated into effective learning programs. Computer and calcula-
tor technologies offer opportunities to rethink a mathematics curriculum
heavily weighted with pre-computer techniques, to create learning envi-
ronments that accord with best practice, and to shift the primary focus
in our courses from manipulation to thinking.

1991 Mathematics Subject Classification: 00A35
Keywords and Phrases: Calculus reform, student-centered learning, cog-
nitive psychology, neurobiology, good practice in pedagogy, Kolb learning
cycle, instructional technology

1 Calculus: Reform or Renewal?

“The great obstacle to progress is not ignorance but the illusion of knowledge.”1

The primary qualification for teaching mathematics in an American university
or college is a Ph.D. in mathematics. We take for granted that anyone who has
mastered the subject at this level is prepared to teach. If we do what our teachers
did, we will be successful — it worked for us. This is not ignorance but a dangerous
illusion of knowledge: Good teaching engendered learning in us, so our job is good
teaching — learning will follow. If it doesn’t, the students must be at fault.

In the mid-1980’s there was widespread recognition that something was wrong
with this theory, at all levels of mathematics education. Calculus was chosen as
the first target for “reform” because it was both the capstone course for secondary
education and the entry course for collegiate mathematics. Thus was born the

1Daniel Boorstin, former director of the Library of Congress ([2], p. 57).
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Calculus Reform Movement, whose history, philosophy, and practice are described
in [9], [11], [13].

The first National Science Foundation calculus grants were awarded 10 years
ago. Since then we have seen development and implementation of several new
approaches to teaching calculus, with widespread acceptance on some campuses,
and rejection and backlash on others. Our own approach is to treat calculus as
a laboratory science course that emphasizes real-world problems, hands-on ac-
tivities, discovery learning, writing, teamwork, intelligent use of tools, and high
expectations of students.

At the time of development, we had little or no theoretical support for our
choice of strategies. In place of theory, we relied on careful empirical work. The
following sections develop the theoretical base that we lacked 10 years ago. The
results from cognitive psychology were in the literature then but unknown to us
and most of the other developers. The results from neurobiology have come to
fruition just in this decade, and they confirm the cognitive theories that fit with
our empirical observations. Thus, we are replacing the illusion of knowledge with
real knowledge about learning and the teaching strategies that engender learning.

In hindsight, “reform” was not a good choice of name. The word has stuck,
and most people recognize the course types to which it refers. However, it is an
emotionally charged word — in the area of religion, wars have been fought over it.
One source of the current controversy is that people with deeply held beliefs feel
they are under attack. “Renewal” would be a better descriptor — perhaps we can
discuss rationally whether the new aspects are also good, and whether renewal of
pedagogical strategies from time to time is itself a good thing to do.

2 Who studies calculus and why

Some 700,000 students enroll in college-level calculus courses in the U. S. in any
given year. Of these, 100,000 are in Advanced Placement courses in high schools,
125,000 in two-year colleges, and the rest in four-year colleges or universities [11].
A very small percentage of these students intend to take any mathematics be-
yond calculus, let alone major in mathematics or do graduate study or become a
mathematician. Most of this enrollment is generated either by general education
requirements or by prerequisites for subsequent course work. To cite just one ex-
ample, Duke University has 24 major programs that require one or more semesters
of calculus. Even though many students enter with Advanced Placement credits,
some 80% of our first-year students take a calculus course. About 2% of each class
graduates with a major in mathematics. Thus, most students are not motivated
to study calculus except as it serves some other goal — e.g., keeping open options
for a major.

American colleges provide liberal, vocational, and/or pre-professional edu-
cation to students who overwhelmingly see themselves as participants in pre-
professional or vocational programs. A small percentage contemplate academic
graduate study, but only the tiniest fraction have any concept of liberal education
and its potential importance in their lives. Parents usually see things the same
way: The objective is for their child to become productive and self-supporting.
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Potential employers of graduates at all levels have definite expectations for the
skills and abilities of their employees. Collectively, these employers influence sup-
port for and accountability from institutions of higher education, public or private.
Here is what they want, expressed in seven “skill groups” [1]:

1. The foundation: knowing how to learn
2. Competence: reading, writing, and computation
3. Communication: listening and speaking
4. Adaptability: creative thinking and problem-solving
5. Personal management: self esteem, goal setting and motivation,

personal and career development
6. Group effectiveness: interpersonal skills, negotiation, and

teamwork
7. Influence: organizational effectiveness and leadership

Students enter college lacking most of these skills, so college must be where
they learn them. Indeed, this list defines the goals of higher education in the broad
sense: liberal, vocational, and pre-professional. The job of teaching these skills
belongs to the entire faculty, including the Mathematics Department — and not
just for “computation” and “problem-solving.” To get a consistent message from
the faculty and to have a good chance of graduating with these skills in place,
students must encounter most of them in almost every course.

3 Problems with American collegiate education in mathematics

What was wrong with mathematics education in colleges and universities in the
1980’s that led to a perceived need for reform? Many have described the turned-off
students and jaded faculty in our classrooms and lecture halls, usually with the in-
tention of blaming someone — teachers at a lower level, society, administrators, or
the students themselves. A more constructive description appears in a recent essay
[8], a product of discussions among a group of 35 science and mathematics faculty,
administrators, foundation officers, and program directors. Their thesis is that
there is broad consensus on what constitutes effective science education, but in-
stitutional barriers to change have thus far prevented widespread implementation.
We quote selected parts of their description of the problem. (The word “science”
here is shorthand for “science, mathematics, engineering, and technology.”)

“The traditional approach is to conceive of science education as a
process that sifts from the masses of students a select few deemed suit-
able for the rigors of scientific inquiry. It is a process that resembles
what most science faculty remember from their own experiences, begin-
ning with the early identification of gifted students before high school,
continuing with the acceleration of those students during grades 9 to 12,
fostering in them the disciplined habits of inquiry through their under-
graduate majors, and culminating in graduate study and the earning of
a Ph.D. Forgotten . . . are most students for whom a basic knowledge of
science is principally a tool for citizenship, for personal enlightenment,

Documenta Mathematica · Extra Volume ICM 1998 · III · 777–786



780 David A. Smith

for introducing one’s own children to science, and for fulfilling employ-
ment. Forgotten as well are those students who will become primary
and secondary school teachers and, as such, will be responsible for the
general quality of the science learning most students bring with them
to their undergraduate studies. . . .

“Although it is widely recognized that an inquiry-based approach
to science increases the quality of learning, introductory-level students
are often not given to understand what it means to be a scientist at
work. . . .

“. . . science faculty have at times openly acknowledged their ten-
dency to gear instruction to the top 20 percent of the class — to those
students whose native ability and persistence enable them to keep pace
with the professor’s expectations. The fact that others are falling be-
hind and then dropping out is seen not as a failure of pedagogy but as
an upholding of standards.”

In short, when we use ourselves as models for our students, we get it all
wrong. Hardly any entry-level mathematics and science students are like us. In
particular, most students in most calculus courses are in their last mathematics
course. And these students are the next generation’s parents, workers, employers,
doctors, lawyers, schoolteachers, and legislators. It matters to us how they regard
mathematics.

It’s not hard to trace how we got out of touch with the needs of our students.
Those of us educated in the Sputnik era were in the target population of that “tra-
ditional approach” — just at the end of a time when it didn’t matter much that
the majority of college graduates (an elite subset of the population) didn’t know
much about science or mathematics. As we became the next generation of faculty,
the demographics of college-going broadened significantly, new money flowed to
support science, and broad understanding of science became much more impor-
tant. The reward structure for faculty was significantly altered in the direction
of research — away from teaching — just when we were confronted with masses of
students whose sociology was quite different from our own.

This oversimplifies a complex story, but our response was to water down
expectations of student performance, while continuing to teach in the only way
we knew how. We created second-tier courses (e.g., calculus for business and life
sciences), we wrote books that students were not expected to read, and we dropped
test questions we didn’t dare ask. The goal for junior faculty was to become senior
faculty so we wouldn’t have to deal with freshman courses. Along the way, we
produced high-quality research and excellent research-oriented graduate students
to follow in our footsteps. But seldom was there any opportunity or incentive to
learn anything about learning — in particular, about how our students learn.

4 Messages from cognitive psychology

In 1987, Chickering and Gamson [2], building on an exhaustive review of “50
years of research on the way teachers teach and students learn,” enunciated Seven
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Principles of Good Practice in Undergraduate Education:

1. Encourages student-faculty contact.
2. Encourages cooperation among students.
3. Encourages active learning.
4. Gives prompt feedback.
5. Emphasizes time on task.
6. Communicates high expectations.
7. Respects diverse talents and ways of learning.

They also published detailed inventories for faculty and administrators ([2],
Appendices B and C) to assess the extent to which a school, its departments, and
its faculty do or do not follow these principles. One does not need an inventory to
see that much of the traditional teaching practice in mathematics is not in accord
with these principles. But it doesn’t have to be that way. Indeed, [2] is a handbook
for implementing these principles.

Research in cognitive psychology has been sending us consistent messages for
a half-century, but few mathematicians were listening until the current decade. As
Chickering and Gamson summarize,

“While each practice can stand on its own, when they are all
present, their effects multiply. Together, they employ six powerful
forces in education:
• Activity
• Cooperation
• Diversity
• Expectations
• Interaction
• Responsibility.”

Another result from cognitive research is the Kolb learning cycle ([6], pp.
128-133). The four stages of this cycle are

• Concrete Experience (CE)
• Reflection/Observation (RO)
• Abstract Conceptualization (AC)
• Active Experimentation (AE)

The ideal learner cycles through these stages in each significant learning ex-
perience. The AE stage represents testing in new situations the implications of
concepts formed at the AC stage. Depending on the results of that testing, the
cycle starts over with a new learning experience or with a revision of the current
one. The ideal learning environment is designed to lead the learner through these
stages and not allow “settling” in a preferred stage. But there are few ideal learn-
ers. Most have preferred learning activities and styles, and they are not all alike.
This is one reason why learning experiences work better for everyone in a diverse,
cooperative, interactive group.
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The action-reflection axis (AE-RO) and the concrete-abstract axis (CE-AC)
divide the Kolb cycle into four quadrants associated with the four dominant learn-
ing styles ([6], pp. 131-132): Converger (AC, AE),Diverger (CE, RO), Assimilator
(AC, RO), and Accommodator (CE, AE). Most people are not rooted at a single
point in the learning style plane, but rather move around in some subset of this
plane, depending on the task at hand. However, most mathematicians spend most
of their time in the Assimilator quadrant, whereas the students in a calculus class
are likely to come from at least three quadrants. If our pedagogical strategies ad-
dress only the students who are “like us,” we are not likely to succeed in reaching
all of them.

5 Messages from modern brain research

This is the Decade of the Brain, an exciting period of advances in neurobiol-
ogy. This work builds on research with animal models and with epileptics af-
ter split-brain surgery, but the most exciting advances have come from imaging
techniques — CAT, PET, MRI. We can now study functioning human brains for
biological insights into the processes of reasoning, memory, and learning in the
normal brain.

An important message of brain research for learning is “selection, not instruc-
tion” [4]. Evolutionary theory tells us that at birth we have our entire neural
system — and it has not changed significantly in the last 10,000 years. Learning
takes place by construction of neural networks. External challenges (sensory in-
puts) select certain neural connections to become active. Inputs enter the brain
through old networks — there aren’t any others. Each input can trigger memory
if it is not new or learning if it is new. The cognitive term for this process is
constructivism: The learner builds knowledge on what is already known, but only
in response to a challenge. In particular, knowledge is not a commodity that can
be transferred from knower to learner.

Selection also means that some potential neural pathways are not selected,
that is, they become dormant through lack of use. The message for collegiate
education: If we want to foster such skills as problem solving, creative thinking,
and critical thinking, our task is much easier if educational challenges have been
developing these skills from infancy. We have a stake in what happens at all levels
before college.

Memory is an intricate collection of neural networks. Most experiences ini-
tially form relatively weak neural connections in “working memory,” necessarily
of short duration. The biochemical connections become stronger with use, weaker
with disuse. The stabilized networks of long-term memory are accessed mainly by
numerous connections to the emotional centers of the brain, but working memory
has hardly any connections to the emotional brain. That is, working memory is not
related to emotions — just facts — but formation of long-term memory strongly in-
volves emotion [3], [7]. The message: We need to stimulate emotional connections
to our subject matter if we expect it to transfer to long-term memory.

Similarly, there are strong connections between the emotional and rational
centers in the brain. Indeed, emotional pathways can sometimes direct rational
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decision making before the learner is consciously aware of the decision process. It’s
not hard to see the evolutionary connection here. Since all of these structures are
10,000 years old, they are intimately related to fight-or-flight reactions and other
survival strategies [3].

Just as emotion is linked in the brain to learning, memory, and rationality, so
are the motor centers of the brain, and by extension, the rest of the body. Body
movement facilitates learning — sitting still inhibits learning [5].

We have already linked brain research to constructivism. Now we connect
with Kolb’s learning cycle. The concrete experience (CE) phase is input to the
sensory cortex of the brain: hearing, seeing, touching, body movement. The re-
flection/observation (RO) phase is internal, mainly right-brain, producing context
and relationship, which we need for understanding. Because the right brain is
slower than the left, this takes time. The abstract conceptualization (AC) phase
is left-brain activity, developing interpretations of our experiences and reflections.
These are action plans, explanations to be tested. They place memories and re-
flections in logical patterns, and they trigger use of language. Finally, the active
experimentation (AE) phase calls for external action, for use of the motor brain.
Deep learning, based on understanding, is whole brain activity. Effective teaching
must involve stimulation of all aspects of the learning cycle [12], [14].

6 Technology and learning

In the minds of many, “reform” is strongly associated with introduction of elec-
tronic technologies: graphing calculators, symbolic computer systems, the Inter-
net. These technologies have become widely available, increasingly powerful, and
increasingly affordable during the same decade as reform efforts. Is this good or
bad or neutral for education? The short answer is “yes” — that is, use of technol-
ogy is good or bad or neutral, depending on who’s doing what. There is already
an embarrassingly large literature addressing such questions as “Do students learn
better with calculators (or Maple, or whatever)?”, questions that are just as mean-
ingless as they would have been for earlier technologies, such as blackboards, pencil
and paper, slide rules, textbook graphics, or overhead projectors. There are also
substantial numbers of thoughtful papers that compare particular classroom tech-
nology experiments with traditionally taught classes and measure whatever can be
measured. The typical conclusion is that students in the experimental group did
as well (or only slightly worse) on traditional skills, and they learned other things
as well.

There are also costs associated with new technologies, just as there were with
older technologies that we now take for granted. We don’t know much about
cost-effectiveness of new (or old) technologies, because we don’t have good ways
to measure effectiveness of education. Our effectiveness at addressing the goals
in Section 2 may not be known until long after the students have left us, and
maybe not even then. A more productive line of inquiry is to examine the costs
of not using technology, in light of the current context of education, of reasonable
projections about the world our students will live in, and of what we now know
about learning.
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Technology is a fact of life for our students — before, during, and after college.
Most students entering college now have experience with a graphing calculator, and
a growing percentage of students have computer experience as well. Many colleges
require computer purchase or at least expect use of technology in a variety of
courses. After graduation, it is virtually certain that, whatever the job is, there
will be a computer close at hand. And there is no sign that increase in power or
decrease in cost will slow down any time in the near future. We know these tools
can be used stupidly or intelligently, and intelligent choices often require knowledge
of mathematics, so this technological environment is our business. Since most of
our curriculum was assembled in a pre-computer age, we need to rethink whether
this curriculum still addresses the right issues in the right ways.

But calculus renewal is not primarily about whether we have been teaching
the “right stuff.” Rather, it is about what students are learning and how we can
tell. To review, we have seen that the external world (employers) has certain
expectations that turn out to be highly consistent with both learning theories and
good practice. Neurobiologists have provided the biological basis for accepting
sound learning theories and practices, while rejecting unsound ones. What does
technology have to do with this?

Looking first at the Kolb cycle, we see that computers and calculators can
facilitate the concrete experience (CE) and active experimentation (AE) phases —
but not the other two phases, which are right brain and left brain activities. Thus,
if the activity allows the student to go directly from CE to AE without engaging
the brain, it may do more harm than good. Well designed learning activities
usually involve the entire cycle. Technology can also support each of the Seven
Principles.

7 Technology and curriculum

Developers of new curricula have found most of the traditional content still to
be relevant, but not necessarily in the same order or with the same emphases or
with the same allotment of time. Here is an example of how technology permits
rethinking content and pedagogy in accord with sound theory and good practice.

The raison d’etre of calculus is differential equations. Never mind that most
calculus students never get there — the interesting problems involve ODE’s. Tradi-
tionally, understanding ODE’s required lots of technique, and that in turn required
practically all of Calculus I and II. Now we can pose the problem embodied in a
differential equation on Day 1 of a calculus course: The time-rate of change of
some important quantity has a certain form — what can we say about the time-
evolution of the quantity? We can also draw a picture of the problem: a slope
field. The meaning of solution is then clear: We seek a function whose graph fits
the slope field. Even the essential content of the existence-uniqueness theorem is
intuitively clear — the details can wait for that course in ODE’s. By that time,
the survivors will have a clear idea of what that course is going to be about and
why the details matter.

To be more specific, suppose our question is “What can we say about growth
of the human population, past, present, and future?” Students recognize that this
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is important, and they start to engage with ideas. They can make conjectures
about growth rates, such as proportionality to the population, and explore where
they lead. They can trace solutions using the same technique as for the slope
field: That’s Euler’s Method. Observing that human population is changing more
or less “continuously,” they are led naturally to the derivative concept and to
what’s “natural” about the natural exponential function.

There are many models students might pose for population growth, but we
don’t have to keep guessing. We have 1000 years of more or less reliable data to
which we can fit a model. Using logarithmic graphing, we can find that the historic
data are not exponential. Rather, the growth rate is proportional to the square
of the population, so the data fit a hyperbola with a vertical asymptote — which
occurs within their lifetime (about 2030). Then they really have to think about
what all this means. (See [10], Chapter 7 Lab Reading.)

The details involve substantial mathematics — numerical, symbolic, and
graphical. Note the echoes of the Kolb cycle: concrete experience with data plots,
reflective observation about what the plots mean, abstraction in the symbolic
models and their solutions, and active testing of the symbolic solutions against
the reality of the data. Then the cycle starts again with the vertical asymptote:
What does it mean? How can we fit it into an abstract scheme? How can we test
whether our scheme fits with reality?

8 Renewal in calculus courses

It would be foolish to pretend that reformed calculus courses were designed to
implement the messages of cognitive psychology or neurobiology. Few of the de-
velopers a decade ago had any knowledge of these subjects. Rather, we had some
instinctive ideas about what to try. Some of those ideas were reinforced by our
experiences and became the basis of our courses. Some ideas didn’t work and were
quickly forgotten. This is selection at work — but, in order for it to work, we had
to challenge our prior knowledge.

Reformers became committed constructivists, even though few of us knew
that word (in the cognitive sense). In varying degrees, we discovered empirically
all seven principles of good practice. Our best materials encourage students to
complete the learning cycle — often. Our best programs incorporate in some mea-
sure all seven of the skill groups identified by employers. And we have learned
appropriate ways to use technology to serve learning objectives.
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History of Mathematics in China:A Factor in World Historyand a Source for New Questions
Karine Chemla

Keywords and Phrases: Cultural history of mathematics from an inter-
national perspective

In the last decades much research has been devoted to the Jiuzhang suanshu or The
nine chapters on mathematical procedures (hereafter abbreviated The nine chap-
ters), a book which played a crucial role in the mathematical traditions written
in Chinese characters, quite comparable to that of Euclid’s Elements of geometry
in the West. Compiled during the Han dynasty (206 B.C.E. – 221 C.E.), around
the beginning of the common era, after the unification of the Chinese empire, the
book was to become a “Classic” from which most subsequent Chinese mathemati-
cians drew inspiration. It constitutes the earliest known Chinese source devoted to
mathematics to have been handed down by a written tradition. With the discov-
ery, in a grave, of a Book on mathematical procedures from the first half of the 2nd
century B. C. E., archeologists have recently started to unearth documents that
survived in an entirely different way. When they become available, we may expect
our understanding of mathematics in early China to be radically changed, espe-
cially as regards the background of the composition of The nine chapters during
the Han dynasty and the modalities of its compilation.

As with all other writings which were granted the status of “Classics” in
China, commentaries were composed on The nine chapters, some of which were
selected to be handed down together with the book. This is how commentaries
ascribed to Liu Hui (third century) and Li Chunfeng (seventh century) survived
until today.

This paper presents some recent observations on the book itself and its com-
mentaries1. It then discusses how the mathematical results obtained in ancient
China can be embedded in a world history of mathematics. The examples selected

1Since 1984, Professor Guo Shuchun and myself have been collaborating on a critical edition
and a French translation of The nine chapters and its commentaries within the framework of an
agreement between the Academia Sinica (Beijing, China) and the CNRS (France) *18. My ideas
on the topic certainly benefited from this joint work, and I am pleased to express my gratitude
towards Prof. Guo. Given the limits of this paper, I can unfortunately not do justice to all
publications on the subject. The reader is referred to the bibliography in *18. I list below only
critical editions of the text published recently *20, 23*, and the references for ideas sketched
here. It is my pleasure to thank B. Belhoste, F. Bray, B. Chandler and J. Peiffer for very helpful
discussions.
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give various reasons why only an international approach to history of mathematics
can provide an adequate framework to capture the historical processes which have
constituted mathematical lores around the world. Finally, some new questions for
the study of mathematical activity raised by research on The nine chapters are
discussed.

I. Algorithms and their proofs in Early Imperial China

The nine chapters consist of problems and general algorithms with which to solve
them. Their terms regularly evoke concrete questions with which the bureaucracy
of the Han dynasty was faced, and, more precisely, questions that were the respon-
sability of the “Grand Minister of Agriculture” (dasinong), such as remunerating
civil-servants, managing granaries or enacting standard grain measures. Moreover,
the sixth of The nine chapters takes its name from an economic measure actually
advocated by a Grand Minister of Agriculture, Sang Hongyang (152-82 B.C.E.),
to levy taxes in a fair way, a program for which the Classic provides mathematical
procedures. These echoes between the duties of specific sectors of the bureaucracy
and some of the mathematical problems tally with the fact that several scholars
known in Han times for their ability in mathematics are also recorded as having at
some point worked for this very administration. One of them, Geng Shouchang,
is one of the two to whom Liu Hui’s preface ascribes the composition of The nine
chapters, whereas the other, Zhang Cang, also dealt with accounting and finance
at high levels of the bureaucracy. Hence mathematics seem to have historically
developed in Han dynasty China in relation with an administration in charge of
economic matters *15. On another hand, some problems of The nine chapters were
read by later scholars in ancient China to relate to astronomical questions *19.
These practitionners hence identified within the book a reflection of an interaction
between astronomy and mathematics, long stressed as crucial for the way in which
the latter developed in China. Sources also record that both Zhang Cang and
Geng Shouchang worked in astronomy.

However, the problems that evidence shows were quoted in the context of
astronomical discussions may be perceived as recreational by some readers of today,
because of the terms in which they are cast. The historian is thus warned against
the assumption that the category of “mathematical problem” remained invariant
in time, and is instead invited to describe the practice of problems with respect to
which a text was written, before setting out to read it *16. In our case, despite the
fact that The nine chapters usually present a problem within a particular concrete
context, the first readers that we can observe, namely the commentators, read it as
exemplifying a set of problems sharing a similar structure and solved by the same
algorithm. They felt free to have a problem “circulate” between different contexts,
without reformulating it either in other concrete terms or in abstract ones. Such a
historical reconstruction guards us from mistaking a problem as merely particular
or practical, when Chinese scholars read it as general and meaningful beyond
its own context, or mistaking it as merely recreational when it was put to use in
concrete situations. This is a crucial point, since it prevents us from jumping to the
conclusion that mathematics in China was merely practical, simply because ancient
Chinese texts attest to ways of managing the relationships between abstraction and
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generality, between pure and practical mathematics, which are different from those
we expect.

If a problem was not presented abstractly, that seemingly did not affect the
value of generality attached to it. But the commentators expected that the algo-
rithm given for solving it be general, if not abstract. For Liu Hui would criticize
an algorithm provided, if it appeared to be less general than it could be and if it
made use of inessential particular circumstances in the problem *16. In such cases,
and within the framework of the same problem, he would restate a more general
algorithm. Presumably, an algorithm’s efficiency should extend as widely as pos-
sible beyond the scope of the problem for which it was formulated. Generality was
thus expected for the operations rather than the situations themselves, and the
commentators read the algorithm as determining the domain of problems which a
particular one was exemplifying. Moreover, the Classic displays a rational archi-
tecture in nine chapters, based on the constitution of the algorithms, and not on
the themes of the problems *12. This again highlights the authors’ main emphasis
on operations. The nine chapters thus articulate, within a theoretical framework,
problems still bearing the marks of the contexts in which they were put to use or
for which specific algorithms were developed. In the authors’ opinion, the flavour
of practice seemingly did not deprive theory of its glamour.

Mathematical knowledge was cast under the form of algorithms, for arithmeti-
cal as well as geometrical matters (computing the area of a circle or the volume of a
pyramid). Inspired by Donald Knuth, who suggested reading Old-Babylonian clay-
tablets from the point of view of algorithmic theory, Wu Wenjun initiated a new
approach to ancient Chinese mathematical sources along similar lines *29. The
properties that the algorithms in The nine chapters display confirm that they con-
stituted a basis for mathematical effort. For instance, algorithms given for square
and cube root extractions of integers and fractions bring into play the place-value
decimal numeration system representing numbers on a counting board on which
mathematics was practised: the sophistication of resources to which their descrip-
tion testifies – assignment of variables, conditionals, iterations – implies that lists
of operations as such were compared, rewritten to be unified *1. This conclusion,
drawn by observing how the algorithms are described, fits with what was noted
above: an algorithm should be written so as to work for as many situations as
possible. Moreover, should the algorithm not have exhausted the integer N when
the units of the root are obtained, the Classic prescribed that the result must be
given as “side of N”, i. e.

√
N *27, 22, 4.

Again, the algorithm to solve systems of n simultaneous linear equations with
n unknowns, amounting to “Gauss elimination method” *22, 21*, puts into play a
place-value notation for the equations on the counting board, and its description
displays the same properties as listed above *9. It brings in marked numbers
(“positive”, “negative”) and “missing” coefficients, as well as rules for computing
with them, to achieve the utmost efficiency *7. First introduced in the flow of the
computations, such numbers were then reused to represent any linear equation
on the board and have the algorithm cover all possible such systems of linear
equations. This way of instituting the general linear equation evokes how quadratic
equations appear in The nine chapters: the algorithm for square root equation
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deprived of a first step, as well as the state of the counting board at this point of the
computation, were granted autonomy, the latter yielding the concept of quadratic
equation, the former, the algorithm to compute “its” root *7. Both cases attest to
the same specific way of defining new objects: algorithms operate on configurations
of numbers on the board, and, in both cases, some of their temporary states as well
as the part of the algorithm flowing from them received the status of autonomous
mathematical objets. Algebraic equations were to develop in China in that way,
exclusively as numerical operations depending on n-th root extraction, until the
13th century.

The positive and negative numbers introduced, however, differ in nature from
the quadratic irrationals mentioned above: the results could not be such marked
numbers, which also betrays that they differ from the modern concepts. They
functioned rather as algorithmic marks, exclusively within the context of systems
of linear equations, and it was as such that in the 13th century they were ex-
ported into a second mathematical domain: used to represent the coefficients of
any algebraic equation, they provided the basis for extending the Ruffini-Horner
algorithm to obtain “the” root in the most general case *7. The treatment of alge-
braic equations was thus completed within the framework in which these equations
had appeared in The nine chapters.

A last group of algorithms, the “rules of false double position”, which have
disappeared from today’s mathematics, betray in yet another way the Classic’s
interest in algorithms encompassing the widest range of situations possible. A
common list of operations is obtained to solve problems of two intrinsincally dif-
ferent types. It takes different meanings when applied to these different cases, but
formal identity of the solving procedures served as a basis for a unique algorithm
in The nine chapters. Again the result of a formal work on operations themselves,
such a property epitomizes the development, within this algorithmic framework,
of a kind of algebra *3.

In contrast with The nine chapters themselves, the commentaries explicitly set
out to prove the correctness of the algorithms provided by the Classic. Since they
systematically dealt with algorithms, their proofs developed within a context dif-
fering from what can be found in Greek texts of Antiquity, where mathematicians
addressed establishing the truth of statements. The description of these proofs,
besides acquainting us further with the conception of algorithms in ancient China,
brings to light what constituted an original practice of proof *3, 14. When proving
that the given algorithm for the area of the circle or the volume of the pyramid is
correct, Liu Hui brings into play infinitesimal reasonings, using inscribed polygons
for the circle, and smaller and smaller similar solids for the pyramid *28, 22, 21.
Their detailed structural similarity indicates that these reasonings may have been
ruled by patterns or fulfilled constraints *10. Concluding his proof that the algo-
rithm for the circle (i.e. “multiplying half the circumference by half the diameter,
one obtains the area of the circle”) works, Liu Hui stresses that this algorithm,
correct when it involves the actual dimensions of the circle, allows no computation.
This singular situation induces him to make explicit a distinction crucial for us to
understand how an algorithm was conceived, since he contrasts the algorithm as
prescription for computation –to produce a value–, from the algorithm as relation
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of transformation between magnitudes, essential for the proofs *10. As regards
the area of the circle, where the two do not run in parallel, this causes a division
in the proof. Liu Hui first addresses the latter aspect, before turning to the former
and examining how computations can provide approximations. More generally,
the problem after which an algorithm is stated offers a context of interpretation of
its operations as relations of transformation, which the commentators may bring
into play in the proof *16. In the course of proving that an algorithm works, prob-
lems occur in another way. Willing to establish that an algorithm actually yields
the sought-for unknown, Liu Hui may first himself produce a list of computations
performing the same task as follows: he decomposes it into a sequence of auxiliary
tasks in which he recognizes known problems and concatenates the algorithms for
their solution. The second part of the proof then consists in transforming the
algorithm obtained into equivalent ones, until he gets to the algorithm he was
originally considering. To this end, Liu Hui applies rules of rewriting to lists of
operations, which include: deleting inverse operations such as division and multi-
plication; reversing the order of operations; merging multiplications and divisions
together; inverting algorithms. This kind of formal transformations, operating on
an algorithm as such, attests to the development of a form of algebraic proof again
within an algorithmic framework. The key point here is that Liu Hui relates the
validity of this form of proof to the fact that various kinds of numbers were intro-
duced by the Classic (fractions and quadratic irrationals) to provide divisions and
root extractions with exact results *17. This makes the opposition between mul-
tiplication and division operate with full generality and efficiency in mathematics
*12. The interest in pairs of opposed but complementary operations echoes the
numerous quotations from the Yijing (Classic of changes) in the commentaries.
Considering, further, that Liu Hui refers to algorithms – the core of mathematical
activity – as embodying change (bianhua) within mathematics, we may conjecture
that philosophical inquiries into change in ancient China influenced mathematical
research or benefited from meditating on mathematics *14, 15.

II. A Factor in World History

Embedding Chinese sources in the world corpus of mathematical writings discloses
that their authors shared topics of interest and results with other communities on
the planet. This raises various kinds of question. The nine chapters share with
the earliest extant Indian mathematical writing (6th c.) basic common knowledge,
among which is the use of a place-value decimal numeration system. Such evidence
allows no conclusion as to where this knowledge originated, a question which the
state of the remaining sources may prevent us from ever answering. Instead, it
suggests that, from early on, communities practising mathematics in both areas
must have established substantial communication.

Later on, Arab scholars became interested in this scientific world through
India. This is documented. However, several elements common to Chinese and
Arabic sources from the 9th century onwards, and so far not found in the known
Indian sources, seem to indicate that there were also direct contacts between the
Chinese- and Arabic-speaking intellectual communities. One of these, the topic
of a treatise by Qusta ibn-Luqa (9th c.) before spreading westwards, was the set
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of rules of false double position. Interacting with their new intellectual context,
these rules were proved with Euclidean geometry, which required drawing a di-
agram representing the relation between what goes in and out of an algorithm
*13. Some centuries later, several similarities occur between Chinese and Arabic
sources. As-Samawa’l (1172) extracted a 5-th root with a Ruffini-Horner algo-
rithm *25*, as Jia Xian (11th c.) did *6*, and considered polynomials written in
a place-value notation for the powers of the indeterminate, which is similar to the
notation for polynomials found in sources from Northern China in the 13th cent.
On equations, by Sharaf-al-Din al Tusi (12th c.), articulates improving approaches
to quadratic and cubic equations previously developed in Arabic with finding roots
using tabular, numerical algorithms cognate to those traditionally used in China
*8* and later to be used by Viète *24. Of course, the earliest evidence available
today proves nothing about where a result was obtained. Such a conclusion might
be contradicted by finding new manuscripts. However, another type of conclusion
can more safely be drawn: some Chinese and Arabic mathematical communities
must have been in close enough contact to share a whole group of results *6.
These contacts were probably not very intimate, since we have no evidence that
Euclidean geometry as widely practised then in the Arab world received mathe-
maticians’ attention in China before the arrival of European missionaries at the
end of 16th century. Conversely, we so far have found no echo in Arabic sources
of the algorithms for solving systems of linear equations which were continuously
used in China.

The history of algebraic equations, however, raises many general issues other
than the question of “transmission”. The sources prior to Tusi’s On equations in
which we recognize such equations and modes of resolution, be they Babylonian,
Greek, Chinese, Indian, or Arabic, attest in fact to different concepts and prac-
tices, presenting, despite the transformations they underwent, stable features over
long periods of time *8. Hence different mathematical traditions elaborated in di-
verse ways an object that today’s readers recognize as the same. The description
of these different elaborations, all the more precise when it involves comparing the
various treatments to distinguish them, displays the conceptual variety likely to
affect what we would conceive of as a unique mathematical object. Considering
these sources as a whole, we also see that the approach to equations devised in
China can be found in no other corpus of ancient texts. As a result, this gives
us a precious piece of historical information which enables us to tackle questions
of transmission with greater precision. In another respect, some of these sources
display concepts of equation that in turn become ingredients that other sources
articulate in their own treatment of equation. For instance, Tusi inherited al-
Khwarizmi’s theory of quadratic equations (9th century), itself a framework based
on blending two different ingredients: Babylonian algorithms solving particular
equations by radicals and Diophantos (ca. 2nd c.)’ Arithmetics’ handling of equa-
tions as statements of equality involving an unknown. Onto this, Tusi articulated
Khayyam (11th c.)’s geometrical theory of cubic equations – an elaboration merg-
ing al-Khwarizmi’s concept and framework for equations with Greek approaches
using conics to problems only later conceived of as equations *24* – and numeri-
cal algorithms echoing with Chinese sources. Tusi’s On equations attests to new
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developments concerning equations not only because it systematically provided
the numerical algorithms with proofs and conceptually improved the geometrical
approach to equations *26*, but also because it bears witness to a synthesis of dif-
ferent concepts and approaches to equations. The mathematical work required to
perform this synthesis also needs to be stressed and studied for itself as, more gen-
erally, one kind of the processes forming mathematical knowledge *5. It demanded
that mathematical bridges be built between different concepts, thus the concepts
were melted into a unique one. Such a work, however, may become invisible today
to those who inherited concepts depending on this synthesis. Cumulative progress
is by no means the only process accounting for the constitution of mathematical
knowledge. Non-linear processes took place, the study of which requires that all
traditions be taken into account and that the old and yet too widespread global
framework of the history of mathematics, drawing a line between the Greeks and
the so-called “Renaissance”, be revised. The new picture may well bring to light
the crucial part played by Arabic-speaking mathematicians of the Middle Ages in
bringing together traditions from everywhere, carrying out synthesis of this type
and elaborating on them, thereby changing the nature of mathematics *5.

The rules of false double position show the limits of an account in terms of cu-
mulative progress from another perspective. If Western sources in which they could
be found after the 9th century enriched them with proofs in the Euclidean manner,
they lost the subtelty of The nine chapters, since they no longer presented algo-
rithms able to solve problems of two kinds. In fact, these Western sources (Arabic
writings and European commercial arithmetics of the Middle Ages) contained only
problems of one kind. However, transmission was not smoother in China, where,
at the end of 16th century, after a period of mathematical decline, the algorithms
were used only for the second kind of problems. When Jesuits brought European
mathematical writings to China, Chinese scholars found themselves confronted
with cognate algorithms applied to different kinds of problem and coming from
two different sources, and could not figure out their relation. They gathered them
together again and concluded that Western mathematics was superior *13, 9!

III. New questions

Even though The nine chapters contain concepts and results, the international
circulation of which shows their potential universality, the Classic adheres in sev-
eral ways to the local cultural contexts within which it was produced and handed
down. We saw above how the emphasis placed on algorithms and on opposed
operations might relate to a wider interest in change. In another respect, the
status of “Classic” granted to the book refers to a category of writings typical
of the history of Chinese literature. It implies that the book was to be treated
in a special way and called for peculiar modes of reading from its commentators.
In yet another respect, specific literary techniques were used in writing The nine
chapters: The algorithms for square and cube root extraction were described, sen-
tence by sentence, in parallel with each other, thus bringing to light the ways in
which the operations could be considered as analogous to each other. This relates
to the fact that, more generally, Chinese texts abound in such parallel sentences
which correspond to each other character by character and are read as expressing
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a correspondence between their topics *2. Chinese mathematical writings hence
demonstrate that they stick to, and benefit from, a given set of common scholarly
practices. The historian must take into account the adherence to scholarly prac-
tices in order to interpret mathematical texts in a better way. Conversely, because
of the characteristics of the subject, mathematical writings could provide a useful
observatory to describe widespread scholarly practices *2, 11, 16. This delineates a
research program for the study of mathematics as part of a wider cultural context.

These facts cast light on a more general phenomenon: The nine chapters at-
test to a specific concrete work environment for practising mathematics. Ways of
dealing with problems and algorithms, of using visual aids, of handling the count-
ing board also demonstrate specific features in the way mathematicians used them
in ancient China. On another hand, characteristic interests (in algorithms with an
emphasis on generality, or in opposed operations) coalesce with specific features of
the mathematical objects (recurring place-value notations *11*, singular concepts
like equations as numerical operations, designed as a temporary state in a flow of
computation) to form the image of a particular mathematical world. This raises
two kinds of problems. How was the work environment designed and used to pur-
sue specific interests? How far can we correlate the questions raised and the means
designed to tackle them with the specificities of the notations, concepts and re-
sults produced? The case of the counting board yields interesting elements in both
respects. A surface handled according to strict and particular rules, this board
offers positions where numbers can be placed and transformed in order to carry
out computations. For example, multiplication and division both require three
positions (top, middle, bottom). The key point is that these positions appear to
be subjected to either opposed or the same sequences of events when multiplying
or dividing *12. A kind of object, consisting of a position and the sequence of
events to which it is subjected in the concrete course of a computation, draws
our attention. This kind of object enabled one to display in a specific way the
opposition between operations on the board. But it is also involved in working
out the similarity between square and cube root extractions, or root extractions
and division *2. There, the same names are conferred to positions affected by
similar sequences of events: the nature of some basic concepts seems to originate
from observing mathematical reality as given shape through computations on the
board. The Ruffini-Horner algorithms found in 11th century China make sense in
relation to this context too: this way of carrying out root extraction reduces the
algorithm to repeating, on a succession of positions, the same sequences of events
as found in either a division or a multiplication *6. This again emphasizes the
interest in finding out a list of operations the applicability of which is as broad as
possible. Moreover such positions enable root extraction to appear as composed
of alternately opposed operations, and they eventually formed the place-value no-
tation for algebraic equations and polynomials as they appear in 13th century
texts *11. The hypothesis that algorithms were worked out on the board through
such objects as positions and the sequence of events on them thus ties together
features which we underlined: the interest in generality of the algorithms, in op-
posed operations, in results such as Ruffini-Horner algorithms, and the recurring
of place-value notations over centuries *11. It links the specific practice of math-
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ematics to the concepts and results on which mathematicians focused in ancient
China. However, this is not peculiar to China: more generally, the products of
mathematical activity that eventually become universal are worked out by resort-
ing to specific forms of practice, partly inherited, partly reworked according to the
problems addressed or the conditions available. Clearly, describing such regimes
of mathematical activity and their relations to the mathematical results produced
is an agenda for which ancient China provides a unique contribution.

Elements of bibliography

1. Chemla, K., “Should they read FORTRAN as if it were English ?”, Bulletin of
Chinese Studies, 1, 1987, 301–16.
2. — “Qu’apporte la prise en compte du parallélisme dans l’étude de textes
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Marx, Mao and Mathematics:The Politics of Infinitesimals
Joseph W. Dauben

Abstract. The “Mathematical Manuscripts” of Karl Marx were first
published (in part) in Russian in 1933, along with an analysis by S. A.
Yanovskaya. Friedrich Engels was the first to call attention to the exis-
tence of these manuscripts in the preface to his Anti-Dühring [1885]. A
more definitive edition of the “Manuscripts” was eventually published,
under the direction of Yanovskaya, in 1968, and subsequently numerous
translations have also appeared. Marx was interested in mathematics
primarily because of its relation to his ideas on political economy, but he
also saw the idea of variable magnitude as directly related to dialectical
processes in nature. He regarded questions about the foundations of the
differential calculus as a “touchstone of the application of the method of
materialist dialectics to mathematics.” Nearly a century later, Chinese
mathematicians explicitly linked Marxist ideology and the foundations
of mathematics through a new program interpreting calculus in terms
of nonstandard analysis. During the Cultural Revolution (1966–1976),
mathematics was suspect for being too abstract, aloof from the concerns
of the common man and the struggle to meet the basic needs of daily life
in a still largely agrarian society. But during the Cultural Revolution,
when Chinese mathematicians discovered the mathematical manuscripts
of Karl Marx, these seemed to offer fresh grounds for justifying abstract
mathematics, especially concern for foundations and critical evaluation
of the calculus. At least one study group in the Department of Math-
ematics at Chekiang Teachers College issued its own account of “The
Brilliant Victory of Dialectics - Notes on Studying Marx’s ‘Mathematical
Manuscripts’.” Inspired by nonstandard analysis, introduced by Abra-
ham Robinson only a few years previously, some Chinese mathematicians
adapted the model Marx had laid down a century earlier in analyzing the
calculus, and especially the nature of infinitesimals in mathematics, from
a Marxist perspective. But they did so with new technical tools available
thanks to Robinson but unknown to Marx when he began to study the
calculus in the 1860s. As a result, considerable interest in nonstandard
analysis has developed subsequently in China, and almost immediately
after the Cultural Revolution was officially over in 1976, the first all-
China conference on nonstandard analysis was held in Xinxiang, Henan
Province, in 1978.
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Chinese Versions of the “Mathematical Manuscripts” of Karl Marx

There were two editorial groups working in the early 1970s on Chinese translations
of Marx’s “Mathematical Manuscripts,” one in Shanghai, the other in Beijing; the
Shanghai group was the first to publish trial editions and then excerpts of Marx’s
“Mathematical Manuscripts.” Working initially from a Japanese translation, the
“Fu Dan University Scientific Reference Section”( ) com-
pleted a first draft which was circulated for discussion in 1971. Two years later,
with a copy of the Russian-German edition in hand (which provided transcriptions
of the original manuscripts in German), a revised trial edition was printed and in
1974, translations of Marx’s essays on derivatives, differentials, and the history
of the calculus were published in two successive issues of the Shanghai journal,
Dialectics of Nature( ). A year later, the entire translation appeared
as a special edition( ) of the Journal of Fu Dan University( ), along
with a brief “Remark on the Translation”( ). Meanwhile, in the same
year that the Shanghai edition of the manuscripts was printed, a study group at
Beijing University published its own translation of three of Marx’s essays on the
history of the differential calculus, interpreted specifically within a Marxist frame-
work as a “stage in the development of history.” When these appeared in the Acta
Mathematica Sinica in 1975, they were preceded by a half-page of explanatory re-
marks from the “main editorial committee,” wherein it was emphasized that this
was a proletarian work, published by the People’s Press( ), and meant
to contribute to the socialist revolution and to socialist reconstruction:

To promote the great campaign criticizing Lin Biao( ) and Confu-
cius, the Mathematical Manuscripts of [Karl] Marx, who inspired the proletar-
ian revolution, were translated and edited by the Mathematical Manuscripts
Study Group of Beijing University, and published by the People’s Press

( ). This is a great event on our ideological battlefield.

Lenin pointed out that “with material dialectics to improve essentially
the entire political economy, using dialectical materialism to elucidate history,
natural science, philosophy, and the policies and strategies of the working class
is the most important thing of concern to Marx and Engels, whereby they made
their most important and novel contributions, and brilliantly took a giant step
in revolutionary intellectual history.”

Marx, the preface points out, used dialectical materialism to evaluate the
history of the calculus, and was especially critical of what he took to be its ide-
alistic, metaphysical foundations. Chairman Mao himself emphasized repeatedly
that dialectics was the key to proper understanding of the sciences. Dialectical
materialism was the weapon, literally, that Mao expected Chinese revisionists to
use-even revisionist mathematicians-to root out any bourgeois elements and ad-
vance mathematics down “Chairman Mao’s revolutionary route.” Mathematicians
thus took their publication of the mathematical manuscripts of Karl Marx as the
perfect blueprint showing how their own criticism of mathematics should proceed:

The great leader, Chairman Mao, has written that “you who study the
natural sciences should learn how to use dialectics.” By studying Marx’sMath-
ematical Manuscripts, our theoretical understanding will reach a higher level,
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and will help us to take hold of the perfect weapons, advancing criticism of re-
visionism and of bourgeois world outlooks, [thereby] joining the battlefield with
Marxism. People who study or teach mathematics should study and use dialec-
tical materialism, which is clarified in the Mathematical Manuscripts of [Karl]
Marx, to guide their practice and conscientiously improve their world outlooks,
pushing the study of mathematics very quickly along Chairman Mao’s revo-
lutionary route, making a greater contribution to the socialist revolution and
socialist construction.

Within months the Beijing University study group was satisfied that its entire
translation was ready for publication, and in July of 1975 issued its definitive edi-
tion which included photocopies of several pages from Marx’s original manuscripts.
Part II reproduced verbatim the sections already issued previously that year. Al-
though the Beijing translation differs in choice of words from time to time from the
Shanghai translation, what sets the Beijing edition apart is its inclusion of explana-
tory terms from the original German version from which the Beijing translation
was made. For example, terms like “Differentiation,” “abgeleitete Funktion,” and
“Grenzwert” appear, parenthetically, to explain Chinese terminology when new
terms/characters are first introduced.

First reactions to publication of the mathematical manuscripts

No sooner had the first two parts of the translation of the manuscripts by the
Shanghai group appeared in print than the editors of the Journal of the Dialec-
tics of Nature ( ) began to receive letters from a wide variety
of readers. The next number of the journal to appear contained a selection of
these letters in a section entitled “Discussion of Problems Concerning Differentials
and Limits” ( ). This began with a note from
the editors explaining all of the mail the journal had received. Several letters
were then published in their entirety, with excerpts from a number of others. The
first letter was from a second-year student at Beijing Middle School No. 144,
He Fang( ), who asked “How Should the Concept of Limit be Understood?”
( ?). The next contribution was from a worker at Factory
No. 5703 in Shanghai, Fu Xi-tao ( ), who was interested in: “Trying to
Say Something Concerning my Feelings About Improving Teaching of the Cal-
culus Using Dialectics”( ). Fu Xi-tao
explained how dialectics could be applied to reform calculus teaching. A third let-
ter came from Zheng Li-xing( ) of the Fujian Electrical Engineering School
( ) in Fuzhou, Fujian Province. Zheng took up one side of the de-
bate over whether the differential dx was zero or not, arguing: “The Differential
is Comparable to Zero,”( ).

Along with their publication of “Selections from Manuscripts Received”
( ), the editors of Dialectics of Nature included excerpts from letters
by readers who had studied the translation of the mathematical manuscripts pub-
lished in the preceding two issues of the journal. The first was taken from a
letter by Xu Ting-dong( ), who identified himself as a young worker in the
Qing-Hai Tractor Factory( ). His comments were devoted to
“The Differential is a Unity of Zero and Non-Zero”( ),
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and drew on similar dialectical criticism of the foundations of the calculus already
raised by Zheng Li-xing. But Xu Ting-dong also considered the calculus applied to
motion, and was especially interested in discussing acceleration and the derivative.
The next letter, attributed to Wu Guang-xia( )of Bao Tou Teachers School
( ) in Inner Mongolia, was also concerned with the zero/non-zero
aspect of the differential. Another letter along these same lines came from Chen
Ke-jian ( ), a “knowledgeable youth” ( ) from Shang Shan Xia
Xiang( ). Again, his analysis was devoted to considering the differential
as “zero” and “non-zero,” interpreting the calculus as it applied to motion and
the paradoxes that arise from trying to consider a moving point as being in any
“one” place.

From Harbin Industrial University ( ), Shen Tian-ji
( ) wrote to suggest that “The Differential Reflects Quantitative Change
from (Two) Different Points of View” ( ).
Here the two different points of view were of ∆x versus δx, and the difference
between non-zero and zero, as well as the meaning of δy = f(x)∆x. The last
letter in this collection of differing points of view prompted by publication of the
“Mathematical Manuscripts” was from a young worker at a Shanghai machine
packing plant, Chen Li-qin( ), who insisted that “The Differential Must
be Considered as Zero”( ). Chen’s argument was based on

his understanding of the limit: lim
∆x→0

=
∆y

∆x
=
dy

dy
= f ′(x).

Mathematicians begin to respond

Thus in 1975, two definitive editions of Marx’s “Mathematical Manuscripts” ap-
peared in Chinese. The Beijing edition differed only slightly from the Shang-
hai version, and in some cases they paralleled each other verbatim in the Chi-
nese. But with the entire collection of Marx’s “Mathematical Manuscripts”
now at their disposal, it was not only high school students and factory work-
ers who took an interest, but so too professional mathematicians. For exam-
ple, writing in the Journal of Beijing Normal University, Zhi Zhou( ) of the
Philosophy Department explained “How to Understand Derivatives ( )—
Notes on studying Marx’s Mathematical Manuscripts” ( —

≪ ≫ ). In his introduction, Zhi Zhou explained that
whereas the calculus as a scientific subject came into being at the end of the
17th century, it did not develop into a satisfactory theory until the middle of the
19th century. As a result of work done in the 17th and 18th centuries, when
metaphysical concepts dominated the natural sciences, the fundamental concept
of the calculus, namely the derivative, was also subjected to strong metaphysical
influences. In the 1870s, the revolutionary teachings of Marx severely criticized
such metaphysical foundations for the derivative, and advocated a correct inter-
pretation on the basis of dialectical materialism. In the first section of his paper,
Zhi Zhou examined the history of the derivative, and explained how Newton and
Leibniz had introduced the concept as a ratio of differentials. He added that
according to Bishop Berkeley ( ), a representative of “English subjective
idealism” ( ), the differential dx was literally, in Chinese,
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exactly what Berkeley had said it was in English, “the ghost of a departed quan-
tity” ( ) [Zhi Zhou 1975, p. 19]. Zhi Zhou also considered both
d’Alembert’s approach to the calculus in terms of differences ∆t and differentials
dt, as well as Lagrange’s approach expanding functions in terms of their Taylor
series, for which the derivative was taken as the coefficient of the linear term of
the infinitesimal h, i.e.:

f(x+ h) = f(x) + hp1(x) + h2p2(x)/2! + h3p3(x)/3! + . . .

where p1(x) was taken to define the derivative, i.e. f ′(x) = p1(x). But whereas
Marx stopped with his analysis of the historical development of the calculus at this
point, Zhi Zhou went further to consider the contributions made by the French
mathematician Cauchy( ), specifically the definition of the limit that Cauchy
gave in his Cours d’analyse of 1821( ). This was all discussed expressly
in terms that Engels had used in 1830 in his Dialectics of Nature. Although
Zhi Zhou was aware of the fact that Marx never expressly mentioned Cauchy
by name, he could not believe that Marx was unaware of the basic ideas used
by Cauchy, since Cauchy’s point of view was represented in many of the most
popular scientific books of his day. Zhi Zhou, who asks why Cauchy did not
permit the variable x to actually reach or attain the limit x = 0, explained that
it was because he feared this would lead to the “monster”( ) 0/0. He notes
that later, in the 1850s, the ǫ−δ method of proof appeared, and a few decades
later, in the 1870s, this was linked to a thorough critique of the real numbers
( ). Nevertheless, the first person to “strip away the appearances” and
submit the concept of the derivative( ) to a thorough metaphysical analysis
was, in Zhi Zhou’s opinion, none other than Karl Marx. Zhi Zhou devoted the
second part of his paper to describing Marx’s analysis of the derivative, especially
the differential quotient dy/dx in terms of the paradoxical nature of 0/0, which
strictly speaking was undefined, or could represent any value at all. He concluded
his essay by returning to the founders of the calculus, to Newton and Leibniz. The
characterization was classic Marxism: “Newton’s and Leibniz’s contributions to
the calculus, are great pioneering works in the development of mathematics, but
due to the constraints of metaphysical ideology, their works could not avoid being
colored by mysticism( ).” From Newton until the time of Marx, although
the calculus underwent considerable development, and despite the fact that the
concept of the derivative also had a rich dialectical context, it was still trapped
in a web of metaphysical ideology. Owing to the constraints of metaphysics, and
even though they raised their voices against “old fashioned orthodox schools of
thought,” mathematicians could find no alternatives:

(Our) revolutionary leader Marx, because of his deep grasp of the method
of dialectical materialism, thus focused on the idea of the derivative and ad-
vanced a series of brilliant dialectical thoughts, even though over the past 200
years mathematicians have been working but have not yet been able to make
a great contribution.

Marx’s “Mathematical Manuscripts” are one part of a brilliant, monu-
mental mathematical work, and are a precious scientific legacy Marx has left
to us. It is not only part of the mathematical writings, but is also a part
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of his philosophy which uses the methods of dialectics as a model for study-
ing mathematics. Teaching and studying the “mathematical manuscripts” is
necessary for today’s revolution in education, and is needed in the battle to
conquer mathematics.

Scientists and especially mathematicians, from the study and research
of the “Mathematical Manuscripts,” [have] a powerful ideological weapon to
transform directly the old mathematical system and to reform the study and
teaching of mathematics.

Journal of Fu Dan University( )—1975

Meanwhile, in Shanghai the editors of the Journal of Fu Dan University continued
to publish new manuscripts submitted in the wake of their publication of theMath-
ematical Manuscripts of Karl Marx. In the second number of 1975, for example,
Ou Yang Guang-zhong( )and Zhu Xue-yan( )offered a “Discus-
sion on some Ways of Looking at the Calculus of Functions of Several Variables”
( ). Ou Yang was a prominent mathemati-
cian who published a considerable amount during the Cultural Revolution; the
article begins with strong praise for Marx:

One hundred years ago the great revolutionary teacher Marx wrote
his mathematical manuscripts, and although in the course of these hun-
dred years mathematics has undergone tremendous development, Marx’s
mathematical manuscripts nevertheless still shine with a brilliant radi-
ance. Marx in his mathematical manuscripts used the special materialist
dialectics of Marxism to criticize every shade of idealist metaphysics,
tearing the mysterious veil from the deceptive derivatives and differen-
tials, and bringing to light their true essence, thereby setting a brilliant
example for us.

In addition to political rhetoric, Ou Yang provided some sophisticated math-
ematics as well. This was more technical than anything written to this point in
connection with the mathematical manuscripts of Karl Marx, for Ou Yang con-
sidered vector analysis, potential differences, gradients, the Poisson integral, triple
integrals, and a host of related subjects. On a more elementary level, in the next
issue of the Journal of Fu Dan University, a mathematician by the name of Shu
Zuo( ) offered a paper meant to serve as “A Starting Point for Calculating
with Differentials,”( ). Here the name “Shu Zuo” was not only
a pseudonym, but also a play on words and characters, for the characters
(“Shu Zuo”) literally mean “Unfold the Left,” but with a slightly different change
in tone, the characters (also “Shu Zuo”) mean “Do Mathematics”:

In the midst of the movement to study the theory of the dictatorship
of the proletariat now surging forward with great momentum, publication
of the translation of Marx’s Mathematical Manuscripts is of great signif-
icance. “The proletariat must include in its superstructure( )

all areas of culture to exercise its dictatorship in every respect over the
bourgeoisie.” While in practice the domain of natural sciences is opposed
to the universal dictatorship of the bourgeoisie, it is necessary to submit
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the development of the domain of the [sciences] to the great revolutionary
criticism. Marx’s mathematical manuscripts constitute a brilliant model
for our great revolutionary criticism of the development of the domain of
this subject.

After a study of the derivative, the very popular example y = x3, and the
problem of how to interpret dy/dx as 0/0, Shu Zuo’s paper draws to a close with a
citation from the well-known letter Engels wrote to Marx on November 21, 1882,
in which he discussed the meaning of x+ h as a point moving from position x to
x1. The paper ends on a typically Marxist note:

We certainly must take this sharp weapon of dialectical materialism,
to develop the great revolutionary criticism of the domain of our subject,
dare to revolt, and know how to revolt! We are full of confidence that
the mysterious veil of every shade enshrouding the natural sciences will
certainly be torn away completely, and the domination of the natural
sciences by idealism and metaphysics of the past systems will be thor-
oughly smashed, and the red flag of Marxism, Leninism and the thoughts
of Mao Zedong will flutter high above the front position of the natural sci-
ences. This is the universal truth that enlightens us by studying Marx’s
“Mathematical Manuscripts.”

Shu Zuo’s paper was immediately followed by another concerned with the
“Mathematical Manuscripts,” this one by Wu Wen-jing ( ) who identi-
fied himself as a worker at the Birch Woods Rubber Factory in Mu Dan Jiang
( ), a town in the North-East of China. Wu Wen-jing’s pa-
per was devoted to “The Differential and Dialectics”( ), and inter-
preted dialectics in terms of change, translated into an analysis of the mathematics
of motion, a favorite Maoist theme among Marxist mathematicians. The paper
discusses velocity and acceleration in terms of derivatives. Through a proper ap-
plication of dialectical materialism, Wu Wen-jing insisted that a critical evaluation
of the calculus would reveal its true essence. He also introduced another familiar
theme as well, that it was the forces of production in society that spurred de-
velopment of the natural sciences, in the course of which mathematics changed
from a study of constants to variables, from static situations to ones that were
dynamic and constantly changing. The last paper to be discussed here that was
devoted to Marx’s “Mathematical Manuscripts” in the 1975 issue of the Journal of
Fu Dan University was a contribution by Yan Shao-zong( ), who presented
his thoughts on “Basing the Concept of the Derivative on the Law of Opposites”
( ≪ ≫ ). Here “ ,” the popu-
lar Maoist expression meaning “the unity of opposites,” was nothing other than
the familiar Hegelian or Marxist doctrine of the dialectical polarities of antithe-
sis/synthesis. Yan asked the usual question, “What is to be understood by dy/dx?”
Yan also cited Marx and the problem of interpreting 0/0, and then took up the
ubiquitous analysis of the equation y = x3, in terms of which he discussed deriva-
tives and distinguished between quotients of differences ∆y/∆x and differentials
dy/dx.
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Chairman Mao speaks!

In 1975 a special issue of the journal Practice and Understanding of Mathematics
( ) opened with two slogans from The Collected Sayings of
Chairman Mao( ):

From a certain point of view, the most talented and able soldier is
one who has had the most practical experience.

Our improvement is improvement on the basis of popularization; our
popularization is popularization under the guidance of improvement.

These slogans were meant to reflect the ideology of the journal, as well as
the articles in an issue devoted to popularizing mathematics while emphasizing
its practical applications. The opening contribution was by the pseudonymous
Shu Zuo ( ), who also contributed a paper that year to the Journal of Fu
Dan University. This time his article was devoted to a report of a meeting held
to study the mathematical manuscripts of Karl Marx, in the spirit of popular-
ization that Chairman Mao himself had admonished everyone to pursue, all of
which was reflected directly in the aphorism at the head of the journal. Another
attempt to present the basic ideas found in Marx’s “Mathematical Manuscript-
s” to a wider audience was a series of lectures devoted to “Studying Marx’s
Mathematical Manuscripts” that appeared in the popular journal, Chinese Sci-
ence( ). The first of these was written by Shu Li( ) from Beijing
University, and was devoted to “Using Marxism to Conquer the Battlefield of
Mathematics” ( ). The allusion to conquering
the battlefield was a rhetorical flourish drawing on language Mao himself often
used in referring to the struggles China had to face on all fronts. In this case,
the point was to advance the battle using dialectical materialism to criticize and
revise the foundations of mathematics.

1976—Year of the dragon

On January 8, 1976, Premier Zhou Enlai died. Six months later, on July 28,
the industrial and mining city of T’ang-Shan was destroyed by a major earth-
quake, killing 655,000 people and leaving more than a million people homeless.
The third cataclysmic event that year occurred on September 9, when Chairman
Mao died. The cover of the journal Practice and Understanding of Mathematics
( ) immediately carried a portrait of the Chairman, adorned
with the slogan “Eternal Glory to the Mighty Leader and Teacher Chairman Mao
Ze-Dong!” ( !).

The opening paper in this memorial issue commemorating Chairman Mao
was a joint work from the study group for Marx’s “Mathematical Manuscript-
s” in the Department of Mathematics at Beijing Normal Teacher’s College. The
article, “Studying Different World Outlooks from Two Different Mathematical Ap-
proaches”( ), contrasted d’Alembert’s
approach to the calculus with the foundations advocated by Marx. Admittedly
a preliminary study, it was based on a “first reading” of the “Mathematical
Manuscripts,” but nevertheless reflected a remarkably sophisticated view of the
historical differences between d’Alembert’s theory of limits and the critical views
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of foundations of the calculus held by Marx. The same slogan—“Eternal Glory
to the Mighty Leader and Teacher Chairman Mao Ze-Dong!”—also ran across
the cover of the third number of the Journal of Central China Industrial Col-
lege( ), atop its third issue for 1976, along with the same por-
trait of Chairman Mao that appeared virtually everywhere throughout China.
Inside, however, a paper said to have been written by Shu Xuan( ) in Wuhan
was devoted to “Continuing to Use Marxism to Study Nonstandard Analysis”
( ). Although this article does not go into
the technicalities of nonstandard analysis with actual applications to mathematics,
pure or applied, it does try to develop the value of using nonstandard analysis in
a spirit of evaluation and criticism of mathematics compatible with the views of
Marx and Engels, both of whom are cited extensively in the article. The main
point Shu Xuan makes here is that despite its suspect ideology, nonstandard anal-
ysis is nevertheless an important tool in reevaluating calculus along lines inspired
by Marx and Engels.

Serious notice of nonstandard analysis

1976, the Year of the Dragon, was also the first in which a serious attempt was
made in China to relate the technical details of Abraham Robinson’s nonstandard
analysis to proper understanding of the calculus. Written under a pseudonym,
Shu Ji ( ), an article appeared in the Journal of North-West University
( ) devoted to: “Discussing the Physical Origins of the Mathemat-
ical Structure of *R”( *R ). The major point of this
paper was to introduce the nonstandard continuum *R, which included both in-
finitesimals and transfinite numbers as legitimate real numbers. Shu Ji sought
to justify these, as well as nonstandard analysis in general, in terms of Marxist
dialectical materialism. Once the theory was on firm ideological ground, the ar-
ticle proceed with deeper technical discussion of nonstandard analysis on its own
terms. The article itself, and the views it introduced concerning nonstandard
analysis, were prompted, Shu Ji notes, by opinions formed “after studying the
dialectics of nature and Marx’s mathematical manuscripts.”

Shu Ji( ) devotes an entire section of his article to arguing that “the in-
finitely small (large) really are real numbers” ( ( ) ),
where “really are real” means that the real numbers are ontologically
real, concrete—in physical, material terms. After quoting from Marx’s
mathematical manuscripts, Engels’ Dialectics of Nature, and Chairman
Mao’s “On the Correct Handling of Contradictions Among the People”
( ), Shu Ji claims that Robinson him-
self recognized that nonstandard analysis was grounded in a concrete, material
way in so far as the usefulness of infinitesimals was best seen in applications to
real-world problems.

1977

In 1977 the first draft of a course of lectures given at Beijing Normal Univer-
sity were published by Huang Shun-Ji( ) and Wu Yan-Fu( ) in the
journal Understanding and Practice of Mathematics. The opening lecture began
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with an introduction to studying the “Mathematical Manuscripts,” noting that
these constituted a “brilliant document” using dialectical materialism to analyze
mathematics, and were a “treasure trove”( ) of dialectics. The first lecture
follows Marx very closely in offering a critical analysis of the foundations of the
calculus through its historical development. The authors point out that studying
the “Mathematical Manuscripts” confirms what Engels said at Marx’s graveside:
that Marx had a special interest in mathematics and made fundamental contribu-
tions of his own to the subject. The contributions were primarily in applications
to Marx’s theory of surplus value, and in applications revealing the special laws
of change underlying the evolution of capitalism and patterns of development re-
flected in modern society. As Huang and Wu emphasized in their introduction:

The times we are facing today “are times when everything is
turned upside down, to which nothing in past history can compare.”
To strengthen and reinforce the dictatorship of the proletariat, using
Marxist-Leninism, the thoughts of Mao Ze-dong have taken command of
every position, pioneered study of the manuscripts and research of very
important practical significance.

The authors’ introductory lecture is divided into four parts, the first devoted
to describing the aims Marx had in mind when he wrote the manuscripts. Then
comes a section devoted to the major contents and basic ideas of the manuscripts,
followed by a third section explaining the process of writing and publishing the
manuscripts. The last and most interesting part of this introduction to Marx’s
mathematical manuscripts considers their practical significance. Here Huang and
Wu list a number of major practical results that follow from study of the “Math-
ematical Manuscripts.” Above all, they note that in every branch of science the
manuscripts may be used as “a pioneering weapon of revolutionary criticism.”

The final article to be discussed here was published by Zhou Guan-xiong
( ) in 1977: “Using the Philosophy of Marxism to Evaluate Nonstandard
Analysis”( ). This appeared in the
Journal of Central China Industrial College, and summarized its main argument
as follows:

The study and discussion of Marx’s “Mathematical Manuscripts” are
of real and profound value in helping us to understand dialectical materi-
alism, and in studying mathematics using Marxism. . . . Chairman Mao’s
directive identifies how we should approach our study of foreign things,
how the accounts of Marx, Engels, Lenin and Mao of the infinite and
of higher mathematics supply theoretical weapons for evaluating non-
standard analysis. In his “Mathematical Manuscripts,” Marx traced the
history of the calculus from Newton to Lagrange, acknowledging their
contributions and pointing out their idealistic and metaphysical errors.

Marx also analyzed the concepts of derivative, differential, differen-
tial operations, etc. Using his own philosophy, Marx outlines a series of
very important results, which constitute a glorious model for examining
nonstandard analysis. . . .

Documenta Mathematica · Extra Volume ICM 1998 · III · 799–809



Marx, Mao and Mathematics . . . 809

The core of nonstandard analysis provides a foundation for higher
mathematics [with] infinitesimals. In [his] nonstandard analysis, [Abra-
ham] Robinson( shows there is a certain infinitesimal between
zero and any positive number using the methods of mathematical logic.
The entire theory of nonstandard analysis constructs a mathematical sys-
tem based on infinitesimals. The system provides another interpretation
for the [viability] of the calculus, and another (mathematical) method
distinct from the method of limits. We should accept the contributions
Robinson has made, but object to the influence of Robinson’s formalism,
which in a system of natural science has its limitations. We must criticize
Robinson’s idealism as it appears in his works.

Conclusion

Since the founding of the People’s Republic of China in 1949, Chinese scholars
have produced a series of studies meant to explain, popularize and establish the
methods and philosophy of dialectical materialism in virtually every field of study.
In the sciences this has led to criticism, if not condemnation, of Mendelian ge-
netics, of physics in both its Newtonian and Einsteinian interpretations, and in
mathematics, of Euclidean geometry and—as has been described in some detail
here—of the infinitesimal calculus. But unlike many of their colleagues in the So-
viet Union, the Chinese avoided the disastrous consequences of Lysenko’s triumph
over Mendel by allowing that successful scientists, despite faulty philosophies,
nevertheless unconsciously must have used dialectical materialism in guiding their
research.

Throughout the Cultural Revolution (1966-1976), Mao Ze-dong promoted
Marxism and dialectics to encourage reforms in all fields of endeavor, including the
sciences. In mathematics, this encouraged, as it had Marx, an appreciation (with
criticism) of the infinitesimal calculus. For Chinese mathematicians, application
of Abraham Robinson’s newly created nonstandard analysis not only rehabilitated
infinitesimals in a technical sense, but (when understood within an appropriate
materialist framework), could be used to justify and promote two new fields of
study in China—model theory and nonstandard analysis.

[A complete text of this paper, including notes and bibliography, is available
upon request from the author].

Joseph W. Dauben
Herbert H. Lehman College and
Ph.D. Program in History,
The Graduate Center
The City University of New York
New York, NY, USA
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The Riemann-Roch Theorem and Geometry, 1854-1914
Jeremy J Gray

Abstract. The history of the Riemann-Roch Theorem, from its discov-
ery by Riemann and Roch in the 1850’s to its use by Castelnuovo and
Enriques in from 1890 to 1914, offers one of the most instructive examples
in the history of mathematics of how a result stays alive in mathemat-
ics by admitting many interpretations. Various mathematicians over the
years took the theorem to be central to their researches in complex func-
tion theory, and in the study of algebraic curves and surfaces in a variety
of algebraic and geometric styles. In surveying their interpretations and
extensions of the theorem, the historian traces the creation of a gen-
eral theory of complex algebraic curves and surfaces in the period, and
uncovers lively agreements and disagreements. This paper provides an
overview of the field; the Congress lecture will concentrate on the route
from Riemann and Roch via Brill and Noether to Castelnuovo and En-
riques. For reasons of space a number of the better-known developments
have been omitted. One may consult Dieudonné [1976].

1991 Mathematics Subject Classification: 1, 14, 30
Keywords and Phrases: Riemann-Roch Theorem, algebraic curve, alge-
braic surface

1 Curves

In the 1850s (see his [1857] and Laugwitz [1996]) Riemann put together a theory
of complex functions defined on some 2-dimensional domain, which might be
any simply-connected domain, or the whole complex z-sphere (what we call the
Riemann sphere) or a finite covering of the z-sphere branched over some points
(what we call a Riemann surface). He showed how to define such a function
with poles on a patch using his version of the Dirichlet principle. His motivation
was the example of algebraic curves, and the outstanding topic of abelian integrals.

He established the existence of complex functions on a surface with no bound-
ary by the Riemann inequality - his contribution to the Riemann-Roch Theorem.
His imprecise argument retains its heuristic value. He supposed the surface was
(2p + 1)-fold connected, which means that it is rendered simply-connected by
2p cuts, when it forms a 4p-sided polygon. He showed that there are p linearly
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independent everywhere holomorphic functions defined inside the polygon by con-
sidering what would happen if the real parts of their periods all vanished (using
the Dirichlet principle again). Later he showed that the differentials of these
functions are everywhere-defined holomorphic integrands. Then he specified d
points at which the function may have simple poles, again imposing the condition
that the functions jump by a constant along the cuts. Now he argued that to
create functions with only simple poles and constant jumps one took a sum of
p linearly independent functions with no poles plus functions of the form 1

z at
one of the specified points, and added a constant term. The resulting expression
depends linearly on p + d + 1 constants. The jumps therefore depend linearly
on p + d + 1 constants, and there are 2p of them to be made to vanish (if the
function is single-valued as required). So there will be non-constant meromorphic
functions when p + d + 1 − 2p ≥ 2, i.e. d > p. This result, today called the
Riemann inequality, says there is a linear space of complex functions of dimension
h0 ≥ d+ 1− p, and this contains non-constant functions as soon as d+ 1− p > 1,
or d > p.

Roch was a gifted student of Riemann who died of tuberculosis in 1866 aged
only 26. He was able to interpret analytically the difference d + 1 − p as the
dimension of a certain space of holomorphic integrands, those that vanish at some
of the points where the function may have poles. This implies that the difference
h1 = h0−(d+1−p) is an analytically meaningful quantity. In Roch’s terminology:
if a function w has d simple poles, and if q linearly independent integrands can van-
ish at these poles, then w depends on d−p+q+1 arbitrary constants (Roch [1865]).

Riemann showed that any two meromorphic functions on an algebraic curve
are algebraically related, whence a theorem establishing that a ‘Riemann surface’
branched like an algebraic curve over the Riemann sphere can be mapped into the
projective plane. This established a close relationship between intrinsic curves
and embedded curves, and Riemann showed that any two polynomial equations
for the same algebraic curve are birationally related (the variables in one equation
for the curve are rational functions of the variables in any other equation for the
curve). He also used his inequality to calculate that the dimension of the moduli
space of algebraic curves of genus p > 1 is 3p− 3.

The approach of Riemann and Roch was aimed at extending complex func-
tion theory. It made abundant use of the Dirichlet principle (which Riemann
attempted to prove; his proof was refuted by Prym in 1870). But by directing
attention to a theory based on a topological concept of connectivity, Riemann
opened the way to elucidate intrinsic properties of curves independent of their
embeddings in the plane.

Riemann died in 1866. His eventual successor at Göttingen was Clebsch,
who had already pioneered the application of Riemann’s ideas to geometry in
his [1863]. His initial response to these ideas had been to find them very hard
- the topological nature of a Riemann surface was difficult to grasp and the
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Dirichlet principle appeared confusing - and Roch’s paper struck him as almost
incomprehensible. So he initially defined the genus of a curve as the number of
linearly independent holomorphic integrands on it. If the curve is non-singular,
these, he observed, are integrands of the form φdz/∂F∂w where φ(z, w) is of degree
at most n − 3. The condition on the degree of φ arises by considering what
happens at infinity, and was dealt with by passing to homogeneous coordinates.
If the curve has a k-fold point (it passes k times through a point) then the curve
φ = 0 is required to pass k − 1 times through that singular point (such curves are
called adjoint curves). In his book of 1866 with Paul Gordan, Clebsch restricted
his attention to curves having only double points and cusps, for which a purely
algebraic definition of the number p (called the genus by Clebsch) is possible:
p = 1

2 (n − 1)(n − 2) − d − r where n is the degree of the defining equation, d is
the number of double points and r the number of simple cusps.

The response of Riemann’s former student Prym was harsh. He wrote to
Casorati (2 December 1866): ”They would never have dared publish the foreword
in Riemann’s lifetime. The attempt to base function theory on algebra can be
regarded as completely useless . . . . On the contrary, algebra is an outcome
of function theory and not the other way round. (In Neuenschwander, [1978],
p. 61). But Clebsch was a charismatic teacher, Klein [1926, p. 297] called him
divinely inspired in that respect, and when he too died young, in 1872, he left
behind a vigorous group of mathematicians who were to become the custodians of
the Riemann-Roch Theorem. They regarded him as having led German mathe-
maticians into the newer geometry and algebra - precisely the subjects, one might
note, upon which Gauss did not work.

Prominent among them were Brill and Noether, and their critique of Clebsch-
Gordan was that it had not gone far enough in embracing algebra. For them
algebra was the source of rigour, and moreover, in Brill’s opinion Riemann’s work
on the Riemann-Roch Theorem was in a form foreign to geometry. This was
a sound, critical response, but the price was high: the very definition of genus
became entangled with the nature of the singular points a plane curve might
have, and the invariance of genus under birational transformations now had to
be proved. Clebsch and Gordan had given such a geometric proof by means of a
subtle elimination process, which Brill and others wanted to simplify.

The first problem is to define the multiplicity of a singular point on an alge-
braic curve, the second is to show that by suitable birational transformations any
curve can be reduced to one having only what were called ordinary singularities,
that is, singular points where all the tangent directions are distinct. Such a point
was said to be of multiplicity k if there are k branches at that point. Noether
broached the first of these topics in his paper of 1873 with a theorem which gave
conditions for a curve that passes through the common points of two curves with
equations F = 0 and G = 0 to have an equation of the form AF +BG = 0, where
A, B, F , and G are polynomials in the complex variables x and y. It is indicative
of the subtleties involved that the English mathematician F.S. Macaulay in the
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1890s was among the first to pay scrupulous attention to the cases where the
tangent directions are not separated.

The second problem is also difficult. It must be shown that a birational
transformation can be found to simplify any given singularity, which is not obvi-
ous, and then, since the transformation necessarily introduces new singular points
on the transformed curve, it must be shown that these can be made ordinary
singularities. The consensus in the literature as to when this was achieved is as
late as Walker’s (unpublished) Chicago thesis of 1906. There is a significant papers
on the topic by Bertini in 1888, and Bliss made it the subject of a Presidential
address as late as 1923.

Brill and Noether were the first to call the Riemann-Roch Theorem by
that name, in their [1874]. They took from Clebsch the idea that it was to be
studied geometrically, that is, in terms of a linear family of adjoint curves. It
followed from their definition of the genus (a generalisation of the Clebsch-Gordan
definition to a curve having arbitrary ordinary singularities) that the number of
free coefficients in the equation for an adjoint curve of degree n− 3 is p− 1. The
total number of intersection points of the curve and its adjoint apart from the
multiple points is 2p − 2, so at most p − 1 of these are determined by the rest,
equivalently, at least 2p− 2− (p− 1) = p− 1 can be chosen arbitrarily. It follows
that q, the dimension of the space of adjoint curves of order n− 3 that cut out a
set of Q points, satisfies the inequality q ≥ Q− p+ 1.

Using induction on q and Q, Brill and Noether proved the converse: there is
a family of dimension q of adjoint curves of degree n− 3 that cut out a set of Q
points, provided q ≥ Q − p + 1. This is their version of the Riemann inequality.
They now came to their version of the Riemann-Roch Theorem, which they
stated in terms of what they called special families. By definition a special family
satisfies the strict inequality q > Q − p + 1. The Brill-Noether version of the
Riemann-Roch Theorem then says: If an adjoint curve of order n − 3 is drawn
through a special set of Q points in a q-dimensional family of points, for which
q = Q− p+ 1 + r (where 0 < r < p− 1), then this curve meets the given curve in
2p− 2−Q = R further points that themselves belong to a special set of R points
in an r-dimensional family, where r = R− p+ 1 + q.

Their strong preference for algebra and geometry over function theory was
criticised by Klein in his [1892]. Relations between Klein and the followers of
Clebsch became strained as he moved in the late 1880s to adopt the mantle of
Riemann and became his true successor at Göttingen. His enthusiasm for intuitive
geometry clashed with their preference for the certainties of algebra.

For Brill and Noether, the Riemann-Roch Theorem was a theorem about
families of plane curves. The first to use higher-dimensional geometry in this
context were L. Kraus (who had studied under Klein and Weierstrass and died
at the age of 27) and E.B. Christoffel, although credit has usually been given to
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Noether. All started from the observation that an algebraic curve of genus p > 1
has a p-dimensional space of holomorphic 1-forms. While Christoffel and Noether
pursued the analytic implications of taking a basis for these 1-forms, say ω1,. . .,ωp,
Kraus [1880] thought of the p-tuple (ω1(z), . . .,ωp(z)) = (f1(z)dz, . . ., fp(z)dz) as
giving a map from the curve to a projective space of dimension p−1 : z −→ [f1(z),
. . ., fp(z)]. That this map is well-defined (independent of the coordinate system
used) and is a map into projective space (the fi never simultaneously vanish)
was fudged by Kraus, (a modern simple proof uses the Riemann-Roch Theorem).
That the degree of the map is 2p− 2 was explicit in Riemann’s work. As Kraus
saw, the case where the curve is hyper-elliptic also causes problems: here one
gets a 2-1 map from the curve to the Riemann sphere. The novelty of Kraus’s
insight, which Klein appreciated, is the emphasis on higher-dimensional geometry.
Whenever there is such a map, questions about the curve, or whole families of
curves, are reduced to questions in projective geometry.

First Dedekind and Weber [1882] then Hensel and Landsberg (see Gray
[1997]) took up the study of algebraic curves via their associated function fields.
Landsberg’s [1898a] gave a new proof of the Riemann-Roch theorem, as he put
it ‘in full generality and without birational transformations’. In the same issue
of Mathematische Annalen Lansdberg also formulated and proved what he called
an analogue of the Riemann-Roch Theorem in the theory of algebraic numbers,
and observed that Hilbert had told him that an analogous result held for alge-
braic number fields. In 1902 Hensel and Landsberg published their joint book
on the subject, which was to be the foundation of subsequent work in this direction.

The weak point of this approach is that it does not generalise automatically
to algebraic surfaces. Nonetheless in his [1909] (corrected and simplified in his
[1910a, b]) Heinrich Jung was able to extended the ideas of Hensel and Landsberg
to cover function fields in two variables, and in this way he was able to obtain
a Riemann-Roch theorem within the arithmetic tradition (see Gray [1994b]).
As he pointed out, his proof was not that different from the Italian one, except
that it also applied to divisors that were not integral, which in his view was an
improvement.

The markedly algebraic approaches just described were different in spirit from
those adopted by Klein and Poincaré, who hewed more closely to the ideas first
elaborated by Riemann. The uniformisation theorem, conjectured by Poincaré
and Klein in 1881 and eventually proved by

Poincaré and Koebe in 1907, (see Gray [1994a]) opened another route, if one
could count the free constants in the Fuchsian functions having at most m poles
on a given Riemann surface. The first to try was a former student of Klein’s,
Ernst Ritter, who made a spirited attempt in his [1894] to connect Klein’s work to
Poincaré’s. Ritter was led to what he called an extended Riemann-Roch Theorem
not for functions but for pairs of automorphic forms of particular kinds, and for-
mulated for fractional divisors (a concept first introduced by Klein in his lectures
[1892, p.65]). Ritter died age 28, but his ideas were taken up by Robert Fricke

Documenta Mathematica · Extra Volume ICM 1998 · III · 811–822



816 Jeremy J Gray

and incorporated into the second volume of Fricke-Klein [1912]. Hermann Weyl,
in his famous [1913], proved both the usual Riemann-Roch Theorem and what he
called Ritter’s extended Riemann-Roch Theorem. The first to give a proof of the
Riemann-Roch Theorem using the uniformisation theorem was probably Osgood,
who communicated such a proof to his Harvard colleague Coolidge in 1927 and
later published it in the second volume of his Funktiontheorie, 1929.

2 Surfaces

In the wake of work by Cayley and Clebsch (see Gray [1989]) Noether defined
what became known as the arithmetic genus of a surface of degree n in his
[1871]. It was a number, pa, obtained by counting coefficients, which was re-
lated to the dimension of the space of adjoint surfaces of order n − 4 passing
(i − 1)-times through each i-fold curve of F and (k − 2)-times through each
k-fold point. Zeuthen had shown it was a birational invariant, and so one
which would survive attempts to resolve the singularities. In his [1875], Noether
defined the surface genus, later called the geometric genus, pg, as the actual
number of linearly independent surfaces of degree n − 4 adjoint to a surface
F of degree n. He called the genus of the intersection of F with an adjoint
surface the linear genus and showed that surfaces with small values of these
genera yielded immediately to classification, as surfaces defined by a polynomial
equation of a certain degree with such-and-such double curves and multiple points.

Then in a short paper of 1886 Noether gave the first statement of a Riemann-
Roch theorem for algebraic surfaces. Although hopelessly flawed, Noether’s mis-
takes give a good indication of the difficulties inherent in the new subject. Noether
took a curve C of genus π on a surface F , and supposed it belongs to an r-
dimensional linear system, |C|, of curves of the same order, and that C meets a
generic curve of this system in a set, Gs, of s points (called the characteristic series
on C). This set of points belongs to a linear series on the curve C of dimension
r− 1. If ρ denotes the dimension of the space of adjoints of degree n− 4, that also
pass through C, then Noether’s Riemann-Roch theorem asserts that

r ≥ pg + s− π − ρ+ 1,

where pg is the geometric genus of the surface F . For, by the Riemann-Roch
theorem on the curve C, there is a linear system |C′| residual to |C| that cuts C
in point group consisting of 2π − 2 − s points. This residual linear system has
dimension d = r − s + π − 1, and arises by cutting C with adjoint surfaces that
pass through a fixed Gs. These include a fixed surface through the Gs and a linear
system of free surfaces adjoint to F of dimension pg − ρ. Therefore, said Noether,

r − s+ π − 1 ≥ pg − ρ.

As Enriques and Castelnuovo showed, Noether’s account rests on two crucial,
and doubtful, statements. First, the application of the Riemann-Roch theorem
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on C assumed that the characteristic series Gs was complete (i.e. of maximal
dimension), but this not obvious, and indeed is not always true. One can only say
that d = r−s+π−1+δ , for some δ ≥ 0. Second, Noether’s claim that d = pg−ρ,
is again neither obvious nor always true. One can only say that the dimension d
is pg − ρ+ η, where η ≥ 0. Consequently one only has

r = s− π + pg + 1− ρ− δ + η,

which is a disaster, because the correction terms δ and η, each non-negative, enter
with opposite signs, and not even an inequality can be disentangled from the
correct formula. In the absence of a Noether Nachlass, we may never know why
Noether offered only this brief, and flawed, sketch.

Another approach to the study of algebraic surfaces was initiated by the
Italian mathematician Veronese, who in his [1881] used the method of projection
and section to show how curves and surfaces in the plane or in 3-space with singu-
larities could profitably thought of a non-singular objects in a higher-dimensional
space; the singularities were the result of the projection of the object into 3-space.
Veronese’s insight, together with that of Kraus as taken up by Klein, suggested
to Corrado Segre that the best approach to surfaces would be to study them
birationally, and to look for families of curves sufficiently well behaved to yield an
embedding of the surface in some suitable projective space. So Segre advocated
a third approach to the Riemann-Roch Theorem, also algebrao-geometrical, but
with the emphasis on higher-dimensional projective geometry, which was to prove
characteristically Italian. On this approach all birational images of a surface in
any projective space were treated equally.

The aim became to find systems of canonical curves on an algebraic surface
that yield embeddings in some projective space. Canonical curvesK on the surface
should be cut out by appropriate adjoint surfaces (as in Noether’s approach). The
adjoint, A(C), of a curve C should be the sum C +K. A suitable generalisation
of the Riemann-Roch Theorem should apply to the surface and a curve C or the
maximal linear system |C| to which C belongs and evaluate dimensions of linear
systems of curves. In particular, if the dimension of the space of canonical curves
(or some multiple of them) is large enough, the adjoint surfaces will yield an
embedding of the surface in projective space.

However, as Enriques observed in his first major paper, his [1893], Noether’s
definition of an adjoint surface invokes the degree, so it is projective but not
birational. Another definition of the terms ‘adjoint’ and ‘canonical’ must be
sought. Moreover, linear families of curves on the surface will yield maps to
projective space, but if the curves have base points (points common to all the
curves), the image of the surface that they provide will have new singularities
(the base points will ‘blow up’ into curves). Similarly components common to
all curves of a family may blow down to points. So a way must be found of
controlling, and ideally eliminating, these exceptional curves.
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In an interesting split in the development of the theory, Italian algebraic
geometers offered definitions that had nothing to do with holomorphic integrands,
whereas the study of single and double integrals on an algebraic surface (1-
and 2-forms) was energetically taken up by the French, notably Picard but also
Humbert (see Houzel [1991]). The algebraic and transcendental theories were
developed in parallel, with each side reading the other’s work, but not merged.

When Castelnuovo and Enriques began their work, little was known about the
nature of algebraic surfaces, and there was no method available for the resolution
of their possible singularities (one was later developed in Jung [1908]). Much
of their work behind the scenes is documented in the recently published letters
of Enriques to Castelnuovo (see Bottazzini et al, [1996]). They came to favour
a characterisation of surfaces in terms of integers, generalising the arithmetic
and geometric genera, and the crucial result that gave them control over these
numbers was their formulation of a Riemann-Roch Theorem.

To produce birationally invariant definitions in his [1893], Enriques excluded
irregular surfaces (those for which the geometric genus exceeds the arithmetic
genus, such as ruled surfaces) and surfaces of genus 0. For regular algebraic surfaces
of genus greater than zero he could give quite general conditions that ensured that
the characteristic series was complete. Under these conditions he considered a
curve C of genus π on the surface that belongs to a linear system of curves of
dimension r, such that C meets a generic curve of |C| in s points. If the system
|C| is not contained in the canonical system he supposed that through the points
common to two curves |C| there passed a space of adjoint curves of dimension
2p + ω; he called the non-negative number ω the super-abundance of |C|. If
the system |C| is contained in the canonical system and the residual system has
dimension i − 1, the space of adjoint curves has dimension 2p + ω − i. He then
established the first Riemann-Roch Theorem for algebraic surfaces:

r = s− π + pg + 1 + ω − i,
by an ingenious application of the Riemann-Roch theorem on the curve C. His
friend Castelnuovo then showed how irregular surfaces could be treated, in his
[1896].

Enriques soon became dissatisfied with the arithmetic and geometric genera,
because they did not characterise surfaces. In 1896 (see Bottazzini et al [1996, p.
278]) Enriques considered a tetrahedron in CP3 and observed that there was a
surface of degree 6 which had the edges of the tetrahedron as its double curves.
Its adjoint surfaces must be of degree 6 - 4 = 2, and must pass through the double
curves of the surface. But plainly there is no quadric surface through the 6 edges
of a tetrahedron. However, there is a surface of degree 2(n − 4) = 2.(6 − 4) = 4
which passes twice through the edges of the tetrahedron: the surface composed
of the four planes that form the faces of the tetrahedron. So the surface of degree
6 has no adjoint surface and its genus is zero, but it does have what is called
a bi-adjoint surface and its bi-genus, the dimension of the space of bi-adjoint
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surfaces, is P2 is 1, not zero. In his [1896] Castelnuovo showed that a surface with
arithmetic and geometric genera equal to zero and bi-genus P2 = 0 is indeed a
rational surface. This was the first birational characterisation of a surface. It also
marks the moment when the so-called plurigenera decisively enter the analysis.
The ith plurigenus, Pi, is defined as one more than the dimension of the ith mul-
tiple of the canonical system, |iK|. In their [1901] Castelnuovo and Enriques used
the Riemann-Roch Theorem to obtain lower bounds on the plurigenera (see below).

Enriques’ [1896] marks a considerable advance on his [1893] in its level of
generality. Irregular surfaces could now be treated, because of recent discoveries
by Castelnuovo in his [1896], and a Riemann-Roch Theorem proved about them.
The characteristic property of a canonical curve was now that it was a residual
curve of any linear system |C| with respect to the adjoint system A(C). Enriques
pointed out that this indirect definition had the advantage of being independent
of the nature of the fundamental curves of |C| which were therefore subject to no
restriction. In his opinion, this made it most appropriate to a birational theory of
surfaces.

In their [1901] Castelnuovo and Enriques made notable simplifications to the
theory, when they showed that a non-ruled surface can be transformed to one
without exceptional curves (curves obtained as the blow-up of points under a bi-
rational transformation). This established the existence and uniqueness of what
became called minimal models. For surfaces without exceptional curves, Castel-
nuovo’s formula for the plurigenera applied to linear system |C| of genus π and
degree n, for which n < 2π− 2 (the genus of |C| is the genus of a generic member
of |C|, the degree the number of points in the generic intersection of two members
of |C|). It asserts that

Pi ≥ pa +
1

2
i(i− 1)(p(1) − 1) + 1,

for all i > 1. The number p(1) is Noether’s linear genus of the surface, but with
a new birational definition that applies where Noether’s does not, as Castelnuovo
and Enriques pointed out. The formula indicates that the cases p(1) > 1 and
p(1) ≤ 1 will be very different. In fact, the plurigenera can grow in essentially
four ways: they might all be 0, they might be 0 or 1, they might grow linearly
with i or quadratically with i. This distinction lies at the heart of the subsequent
classification of algebraic surfaces.

Castelnuovo and Enriques now gave a preliminary classification of surfaces,
characterising rational and ruled surfaces in terms of the values of p(1) and the
plurigenera. In 1905 Enriques characterised ruled surfaces in similar terms as the
surfaces for which pg = 0 = P4 = P6. In his [1906] Enriques characterised his
sextic surface birationally as the only surface for which pa = 0 = P3, P2 = 1.
This characterised the class of surfaces nowadays called Enriques surfaces. In his
[1906] with Castelnouvo (published as an appendix in the second volume of Picard
and Simart’s book) and again in his [1907b] Enriques analysed surfaces for which
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p(1) = 1, and connected the values of p(1) and pg to growth of the plurigenera.

In his [1914a, b] Enriques turned back to the study and classification of
algebraic surfaces. He reported in more detail in his essay with Castelnuovo
published in the Encyklopädie der Mathematischen Wissenschaften for 1914. The
behaviour of the plurigenera led him to argue now that the crucial feature was the
value of P12. If P12 = 0 the surface was ruled; if P12 = 1 then p(1) = 1 and many
of the surfaces discovered by Enriques and Severi, Picard, and Bagnera and de
Francis belong in this family. If P12 > 1 and p(1) > 1 then the surface has effective
canonical and pluri-canonical curves of some positive order (which in turn meant
that it could be embedded in some projective space). Or rather, a model of the
surface containing no exceptional curves could be mapped birationally onto its
image in a projective space of an appropriate dimension. The classification is
actually somewhat finer, but it is clear that the broad outlines of the classification
are provided by numbers determined, in fair part, by the Riemann-Roch Theorem.

I wish to thank A. Beardon, D. Eisenbud, G.B. Segal, N.I. Shepherd-Barron,
and M.H.P. Wilson for commenting helpfully on various versions of this paper.
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der birationalen Transformationen aus, in Encyklopädie der Mathematischen Wis-
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algébriques, Comptes rendus, 103 734-7.
Osgood, W. F. 1929 Lehrbuch der Funktionentheorie, 2.1, Teubner, Leipzig,
Chelsea, New York, 1965
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