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Preface

A conference on Quadratic forms and Related Topics was held at Louisiana
State University, Baton Rouge, Louisiana, USA, from March 26 to March 30,
2001. This meeting was jointly supported by the National Science Foundation,
the Louisiana Education Quality Support Fund, the LSU Office of Research and
Graduate Studies, the LSU College of Arts and Sciences, and the LSU Depart-
ment of Mathematics. The conference was organized by J. William Hoffman,
Jurgen Hurrelbrink, Jorge Morales, Robert Perlis, and Paul van Wamelen, all
at LSU.

This book is the volume of the proceedings for that meeting. The majority of
the articles published here record details of talks delivered at the conference.
All contributions have been refereed independently according to Documenta
Mathematica standards.

The papers in this volume are representative of the current state of the subject.
In the recent past, the field of Quadratic Forms has enjoyed breakthrough re-
sults such as the confirmation of the Milnor Conjecture on relations between the
theory of quadratic forms and algebraic K-theory. Topics of the articles in the
proceedings include Witt groups, Brauer groups, Galois cohomology, generic
splitting of quadratic forms, Hasse principles, and the theory of involutions.

It is a pleasure for us to give thanks to the agencies involved for their support
of this conference. We would also like to take the opportunity to thank our
colleagues, graduate students and staff at LSU for their untiring and alert
assistance before and during the meeting, and all speakers and participants for
their contributions to the success of the conference.

The Organizers
Baton Rouge, October 2001
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The Logo

It is a classical problem to determine the structure of the ideal class group of
a number field. Several students of the Algebraic Number Theory/Quadratic
Forms group at LSU have been working on this problem.

The students associated graphs to quadratic fields so that the properties of the
graphs yielded results about the ideal class groups. One of the graphs they
came across is this beautiful graph. Except for the isolated vertex, the graph is
the edge complement of the Petersen graph, one of the most fundamental and
well-known of all graphs.

The LSU Department of Mathematics has adopted this graph as the logo for its
website to symbolize the many years of achievement by its graduate students.

Editors

The proceedings are edited by the conference organizers J. W. Hoffman, J.
Hurrelbrink, J. Morales, R. Perlis, P. van Wamelen in cooperation with the
editors of Documenta Mathematica.
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Witt Groups of Projective Line Bundles

Jón Kr. Arason

Received: May 16, 2001

Communicated by Ulf Rehmann

Abstract. We construct an exact sequence for the Witt group of a
projective line bundle.

2000 Mathematics Subject Classification: 11E81, 19G12
Keywords and Phrases: Witt groups. Projective line bundles.

Let X be a noetherian scheme over which 2 is invertible, let S be a vector
bundle of rank 2 over X, and let Y = P(S) be the corresponding projective
line bundle in the sense of Grothendieck. The structure morphism f : Y → X
induces a morphism f∗ :W (X)→W (Y ) of Witt rings. In this paper we shall
show that there is an exact sequence

W (X)→W (Y )→M>(X)

where M>(X) is a Witt group of formations over X like the one defined by
Ranicki in the affine case. (Cf. [R].) The subscript is meant to show that in
the definition of M>(X) we use a duality functor that might differ from the
usual one.
In his work, Ranicki shows that in the affine case the Witt group M(X) of
formations is naturally isomorphic to his L-group L1(X). We therefore could
have used the notation L1

>(X). Furthermore, according to Walter,M(X) is also
the higher Witt group W−1(X) as defined by Balmer using derived categories.
(Cf. [B].) And Walter, [W], has announced very interesting results on higher
Witt groups of general projective space bundles over X of which our result is
just a special case.

The paper has two main parts. In the first one we study the obstruction for
an element in W (Y ) to come from W (X). In the second part we define and
study M>(X). In a short third part we prove our main theorem and make
some remarks.

Besides the notation already introduced, we shall use the following. We denote
by OY (1) the tautological line bundle on Y . We shall, of course, use the usual

Documenta Mathematica · Quadratic Forms LSU 2001 · 11–48



12 Jón Kr. Arason

notation for twistings by OY (1). We denote by ω the relative canonical bundle
ωY/X . We also write L = S ∧ S. Then ω = f∗(L)(−2). We shall write Sk for
f∗(OY (k)). In particular, S0 = OX and S1 = S.
There is a natural short exact sequence

0→ ω → f∗(S)(−1)→ OY → 0

that we shall use often. As other results that we need on algebraic geometry,
it can be found in [H].

Section 1.1

In this section we shall use higher direct images to check whether a symmetric
bilinear space over Y comes from X.
The main fact used is the corresponding result in the linear case. It must be
well known although we don’t have a reference handy. We shall, however, give
an elementary proof here.

Proposition 1: Let E be a coherent Y -module. If R1f∗(E(−1)) = 0 and
f∗(E(−1)) = 0 then the canonical morphism f ∗(f∗(E))→ E is an isomorphism.
Proof: Let E be a coherent Y -module. We look at the tensor product

0→ ω ⊗ E → f∗(S)(−1)⊗ E → E → 0

of E and the natural short exact sequence above. Twisting by k+1 and taking
higher direct images we get the exact sequence

0→ f∗(ω ⊗ E(k + 1))→ S ⊗ f∗(E(k))→ f∗(E(k + 1))

→ R1f∗(ω ⊗ E(k + 1))→ S ⊗R1f∗(E(k))→ R1f∗(E(k + 1))→ 0

From it we first get:
Fact 1: If R1f∗(E(k)) = 0 then also R1f∗(E(k + 1)) = 0.
Noting that ω ⊗ E(k + 1) = f∗(L)⊗ E(k − 1) we also get:
Fact 2: If R1f∗(E(k − 1)) = 0 then the natural morphism S ⊗ f∗(E(k)) →
f∗(E(k + 1)) is an epimorphism.
Using the two previous facts and induction on k we see that if R1f∗(E(−1)) = 0
then Sk ⊗ f∗(E)→ f∗(E(k)) is an epimorphism for every k ≥ 0. This implies:
Fact 3: If R1f∗(E(−1)) = 0 then the canonical morphism f ∗(f∗(E))→ E is an
epimorphism.
In the situation of Fact 3 we have a natural short exact sequence 0 → N →
f∗(f∗(E)) → E → 0. We note that N is coherent because f∗(E) is coherent.
Taking higher direct images, using that f∗(f∗(f∗(E))) → f∗(E) is an isomor-
phism and that R1f∗(f∗(f∗(E))) = 0, we get that f∗(N ) = 0 and R1f∗(N ) = 0.
Twisting the short exact sequence by −1 and then taking higher direct images,

Documenta Mathematica · Quadratic Forms LSU 2001 · 11–48



Projective Line Bundles 13

using that f∗(f∗(f∗(E))(−1)) = 0 and R1f∗(f∗(f∗(E))(−1)) = 0, we get that
R1f∗(N (−1)) is naturally isomorphic to f∗(E(−1)). So if f∗(E(−1)) = 0 then
R1f∗(N (−1)) = 0. As f∗(N ) = 0 it then follows from Fact 3 that N = 0. The
proposition follows.
Proposition 1, cntd: Furthermore, if E is a vector bundle on Y then f∗(E)
is a vector bundle on X.
Proof: Clearly, Y is flat over X, so E is flat over X. Using the Theorem of
Cohomology and Base Change, (cf. [H], Theorem III.12.11), we therefore see
that if E is a vector bundle on Y such that R1f∗(E) = 0 then f∗(E) is a vector
bundle on X.

Although we really do not need it here we bring the following generalization of
Proposition 1.

Proposition 2: Let E be a coherent Y -module. If R1f∗(E(−1)) = 0 then
there is a natural short exact sequence

0→ f∗(f∗(ω(1)⊗ E))(−1)→ f∗(f∗(E))→ E → 0

Proof: In the proof of Proposition 1 we had, even without the hypothesis
f∗(E(−1)) = 0, that f∗(N ) = 0 and R1f∗(N ) = 0. By Proposition 1 the
canonical morphism f∗(f∗(N (1))→ N (1) is therefore an isomorphism. Taking
the tensor product of this isomorphism with ω and using R1f∗ on the resulting
isomorphism, noting that R1f∗(ω ⊗ f∗(f∗(N (1)))) is naturally isomorphic to
f∗(N (1)), we see that f∗(N (1)) is naturally isomorphic to R1f∗(ω ⊗N (1)) =
L⊗R1f∗(N (−1)). But we saw in the proof of Proposition 1 that R1f∗(N (−1))
is naturally isomorphic to f∗(E(−1)), so this means that f∗(N (1)) is naturally
isomorphic to L ⊗ f∗(E(−1)). But L ⊗ f∗(E(−1)) = f∗(f∗(L) ⊗ E(−1)) =
f∗(ω(1)⊗ E). The proposition follows.
Proposition 2, cntd: Furthermore, if E is a vector bundle on Y then f∗(E)
and f∗(ω(1)⊗ E) are vector bundles on X.
Proof: Noting that f∗(ω(1)⊗ E) = L ⊗ f∗(E(−1)), this follows as in the proof
of Proposition 1.

We shall, however, use the following corollary of Proposition 1.

Proposition 3: Let E be a coherent Y -module. If R1f∗(E) = 0 and
f∗(E(−1)) = 0 then there is a natural short exact sequence

0→ f∗(f∗(E))→ E → f∗(R1f∗(ω(1)⊗ E))(−1)→ 0

Proof: We let C = f∗(E). From the canonical morphism f∗(f∗(E)) → E we
then get an exact sequence

0→ N → f∗(C)→ E → Q → 0

Documenta Mathematica · Quadratic Forms LSU 2001 · 11–48



14 Jón Kr. Arason

of coherent Y -modules. As the direct image functor is left-exact and the in-
duced morphism f∗(f∗(C))→ f∗(E) is an isomorphism, we see that f∗(N ) = 0.
We now break the exact sequence up into two short exact sequences

0→ N → f∗(C)→M→ 0

and
0→M→ E → Q→ 0

Using the hypothesis f∗(E(−1)) = 0, we get from the second short exact se-
quence that f∗(M(−1)) = 0. Using that and the fact that R1f∗(f∗(C)(−1)) =
0, we get from the first one that R1f∗(N (−1)) = 0. As we already saw that
f∗(N ) = 0, it follows from Proposition 2 that N = 0. (Fact 3 in the proof of
Proposition 1 suffices.) So we have the short exact sequence

0→ f∗(C)→ E → Q → 0

As R1f∗(E) = 0 and f∗(f∗(C)) → f∗(E) is an isomorphism, we get, using that
R1f∗(f∗(C)) = 0, that f∗(Q) = 0 and R1f∗(Q) = 0. By Proposition 1 this
means that the canonical morphism f ∗(f∗(Q(1))) → Q(1) is an isomorphism.
Writing B = f∗(Q(1)), we therefore get that Q ∼= f∗(B)(−1).
Taking the tensor product of the short exact sequence

0→ f∗(C)→ E → f∗(B)(−1)→ 0

with ω(1) and then taking higher direct images, noting that R1f∗(ω(1) ⊗
f∗(C)) = 0, we get that R1f∗(ω(1)⊗E)→ R1f∗(ω(1)⊗f∗(B)(−1)) is an isomor-
phism. But R1f∗(ω(1)⊗ f∗(B)(−1)) = R1f∗(ω ⊗ f∗(B)), which is canonically
isomorphic to B. So we have a natural isomorphism B ∼= R1f∗(ω(1)⊗ E).
Note: If E is a vector bundle on Y then we see as before that f∗(E) is a vector
bundle on X. But we don’t know whether R1f∗(ω(1) ⊗ E) is also a vector
bundle on X.

There is, in fact, a natural exact sequence

0→ f∗(f∗(ω(1)⊗ E))(−1)→ f∗(f∗(E))→ E
→ f∗(R1f∗(ω(1)⊗ E))(−1)→ f∗(R1f∗(E))→ 0

for any coherent Y -module E . But we do not need that here. What we need is
the following bilinear version of Proposition 1.

Proposition 4: Let (E , χ) be a symmetric bilinear space over Y . If
R1f∗(E(−1)) = 0 then there is a symmetric bilinear space (G, ψ) over X such
that (E , χ) ∼= f∗(G, ψ).
Proof: For any morphism f : Y → X of schemes and any Y -module F and
any X-module G there is a canonical isomorphism f∗(HomY (f

∗(G),F)) ∼=

Documenta Mathematica · Quadratic Forms LSU 2001 · 11–48
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HomX(G, f∗(F)). In our case f∗(OY ) = OX hence, in particular, there
is a canonical isomorphism f∗(f∗(G)∨) ∼= G∨. It then follows that there
are canonical isomorphisms HomY (f

∗(G), f∗(G)∨) ∼= HomX(G, f∗(f∗(G)∨)) ∼=
HomX(G,G∨).
In the case at hand we first note that as E is self dual, Serre duality shows that
R1f∗(E(−1)) = 0 implies that f∗(E(−1)) = 0. So we can use Proposition 1 to
write E ∼= f∗(G) with the vector bundle G = f∗(E) over X. The proposition
follows.

Section 1.2

In this section we shall prove a useful condition for the Witt class of a symmetric
bilinear space over Y to come from W (X).

Let (E , χ) be a symmetric bilinear space over Y and let U be a totally isotropic
subbundle of (E , χ). Denote by V the orthogonal subbundle to U in (E , χ) and
by F the quotient bundle of V by U . Then χ induces a symmetric bilinear form
ϕ on F and the symmetric bilinear space (F , ϕ) has the same class in W (Y )
as (E , χ). We also have the commutative diagram

0 0
↓ ↓

0 → U → V → F → 0
‖ ↓ ↓

0 → U → E → V∨ → 0
↓ ↓
U∨ = U∨
↓ ↓
0 0

with exact rows and columns. It is self-dual up to the isomorphisms χ and ϕ.
It is natural to say that (F , ϕ) is a quotient of (E , χ) by the totally isotropic
subbundle U . But then one can also say that (E , χ) is an extension of (F , ϕ)
by U . Extensions of symmetric bilinear spaces in this sense are studied in [A].
One of the main results there is that the set of equivalence classes of extensions
of (F , ϕ) by U is functorial in U .

Proposition 1: LetM be a metabolic space over Y . Then there is a metabolic
space N over X such thatM is a quotient of f ∗(N ).
Proof: M is clearly a quotient of M⊕ −M. As 2 is invertible over Y , this
latter space is hyperbolic. Hence it suffices to prove the assertion for hyperbolic
spaces H(U) over Y .
By Serre’s Theorem (cf. [H], Theorem III.8.8) and the Theorem of Coho-
mology and Base Change ([H], Theorem III.12.11), we have for every suf-
ficiently large N that f∗(U(N)) is locally free and that the canonical mor-
phism f∗(f∗(U(N))) → U(N) is an epimorphism. This means that there
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16 Jón Kr. Arason

is a vector bundle A = f∗(U(N)) over X such that U is a quotient of
f∗(A)(−N). But then, clearly, H(U) is, as a symmetric bilinear space,
a quotient of H(f∗(A)(−N)). Now, if N is sufficiently large, f∗(OY (N))
is locally free and f∗(f∗(OY (N))) → OY (N) is an epimorphism, hence
f∗(A∨)(N) = OY (N) ⊗OY

f∗(A∨) is a quotient of f∗(B) for the vector bun-
dle B = f∗(OY (N)) ⊗OX

A∨ over X. It follows that H(f∗(A)(−N)) =
H((f∗(A)(−N))∨) = H(f∗(A∨)(N)) is, as a symmetric bilinear space, a quo-
tient of H(f∗(B)) = f∗(H(B)). But then also H(U) is a quotient of f ∗(H(B)).

Corollary: Let F be a symmetric bilinear space over Y such that the class of
F inW (Y ) lies in the image of f∗ :W (X)→W (Y ). Then there is a symmetric
bilinear space G over X such that F is a quotient of f ∗(G).
Proof: Write F ⊕M1

∼= f∗(G0)⊕M2 with a symmetric bilinear space G0 over
X and metabolic spacesM1 andM2 over Y . Using the proposition onM2, we
get that F ⊕M1 is a quotient of f∗(G), where G = G0⊕N2 for some metabolic
space N2 over X. Then also F is a quotient of f∗(G).

In fact, the same proofs show that Proposition 1 and its Corollary hold for
every projective scheme Y over X which is flat over X. But in the case at
hand we can make the Corollary more specific:

Theorem 2: Let F be a symmetric bilinear space over Y such that the class
of F in W (Y ) lies in the image of f∗ : W (X) → W (Y ). Then there is a
symmetric bilinear space G over X and a vector bundle Z over X such that F
is a quotient of f∗(G) by f∗(Z)(−1).
Proof: By the Corollary to Proposition 1, there is a symmetric bilinear space G
over X such that F is a quotient of f∗(G). Let the diagram at the beginning of
this section be a presentation of E := f ∗(G) as an extension of F . As E comes
from X, we have R1f∗(E(−1)) = 0. It follows that also R1f∗(V∨(−1)) = 0
and R1f∗(U∨(−1)) = 0. From the latter fact it follows that f∗(U∨(−1)) is a
vector bundle over X. We let Z be the dual bundle, so that Z∨ = f∗(U∨(−1)).
From the canonical morphism f∗(f∗(U∨(−1))) → U∨(−1) we get a morphism
f∗(Z∨)(1)→ U∨. We let α : U → U1 := f∗(Z)(−1) be the dual morphism. By
[A], there is an extension E1 of F by U1 with a corresponding presentation

0 0
↓ ↓

0 → U1 → V1 → F → 0
‖ ↓ ↓

0 → U1 → E1 → V∨1 → 0
↓ ↓
U∨1 = U∨1
↓ ↓
0 0
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a commutative diagram

0 → U → V → F → 0
↓ α ↓ ‖

0 → U1 → V1 → F → 0

a vector bundle W over Y and a commutative diagram

0 → U → E → V∨ → 0
‖ ↑ ↑

0 → U → W → V∨1 → 0
↓ α ↓ ‖

0 → U1 → E1 → V∨1 → 0

where the middle row is also exact. From the dual of the former diagram we
get, after taking the tensor product with OY (−1) and taking higher direct
images, the commutative diagram

0 → f∗(F(−1)) → f∗(V∨(−1)) → f∗(U∨(−1))
‖ ↑ ↑

0 → f∗(F(−1)) → f∗(V∨1 (−1)) → f∗(U∨1 (−1))

→ R1f∗(F(−1)) → R1f∗(V∨(−1)) → R1f∗(U∨(−1)) → 0
‖ ↑ ↑

→ R1f∗(F(−1)) → R1f∗(V∨1 (−1)) → R1f∗(U∨1 (−1)) → 0

with exact rows. As already mentioned, R1f∗(V∨(−1)) = 0 and
R1f∗(U∨(−1)) = 0. Also, R1f∗(U∨1 (−1)) = R1f∗(f∗(Z∨)) = 0. Further-
more, the morphism f∗(U∨1 (−1)) → f∗(U∨(−1)) is, by construction, an
isomorphism. We conclude that R1f∗(V∨1 (−1)) = 0 and that the morphism
f∗(V∨1 (−1))→ f∗(V∨(−1)) is an isomorphism.
Doing the same with the latter diagram we get the commutative diagram

0 → f∗(U(−1)) → f∗(E(−1)) → f∗(V∨(−1))
‖ ↑ ↑

0 → f∗(U(−1)) → f∗(W(−1)) → f∗(V∨1 (−1))
↓ ↓ ‖

0 → f∗(U1(−1)) → f∗(E1(−1)) → f∗(V∨1 (−1))

→ R1f∗(U(−1)) → R1f∗(E(−1)) → R1f∗(V∨(−1)) → 0
‖ ↑ ↑

→ R1f∗(U(−1)) → R1f∗(W(−1)) → R1f∗(V∨1 (−1)) → 0
↓ ↓ ‖

→ R1f∗(U1(−1)) → R1f∗(E1(−1)) → R1f∗(V∨1 (−1)) → 0
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18 Jón Kr. Arason

with exact rows. Using that R1f∗(E(−1)) = 0, R1f∗(V∨1 (−1)) = 0, and that
the morphism f∗(V∨1 (−1)) → f∗(V∨(−1)) is an isomorphism, we see from the
upper half of this diagram that R1f∗(W(−1)) = 0.
The fact that R1f∗(U∨(−1)) = 0, in particular locally free, implies that the
Serre duality morphism R1f∗(ω ⊗ U(1)) → f∗(U∨(−1))∨ is an isomorphism.
The same applies to U1 instead of U . As the morphism f∗(U∨1 (−1)) →
f∗(U∨(−1)) is, by construction, an isomorphism, it follows that the induced
morphism R1f∗(ω ⊗ U(1)) → R1f∗(ω ⊗ U1(1)) is an isomorphism. But
ω ⊗ U(1) = f∗(L) ⊗ U(−1) and correspondingly for U1, and modulo the ten-
sor product with idf∗(L) the morphism R1f∗(ω ⊗ U(1)) → R1f∗(ω ⊗ U1(1))
is the morphism R1f∗(U(−1)) → R1f∗(U1(−1)) in the diagram. Hence
this is an isomorphism. Using that, and the fact that R1f∗(W(−1)) = 0
and R1f∗(V∨1 (−1)) = 0, we see from the lower half of the diagram that
R1f∗(E1(−1)) = 0. By Proposition 4 in Section 1.1, it follows that E1 = f∗(G1)
for some symmetric bilinear space G1 over X.

Section 1.3

In this section we shall show that every element in W (Y ) is represented by a
symmetric bilinear space over Y that has relatively simple higher direct images.

The natural short exact sequence 0→ ω → f ∗(S)(−1)→ OY → 0, representing
an extension of the trivial vector bundle OY by ω, played a major role in the
proof of Proposition 1 in Section 1.1. We next construct something similar for
symmetric bilinear spaces.
Using 1

2 times the natural morphism (S ⊗ S∨) × (S ⊗ S∨) → L ⊗ L∨ ∼= OX
induced by the exterior product, we get a regular symmetric bilinear form δ on
S ⊗ S∨. (The corresponding quadratic form on S ⊗ S∨ ∼= End(S) then is the
determinant.) In what follows S ⊗ S∨ carries this form.
We have natural morphisms ε : OX → S ⊗ S∨, mapping 1 to the element e
corresponding to the identity on S, and σ : S ⊗ S∨ → OX , the contraction
(corresponding to the trace). Furthermore, the composition σ ◦ ε is 2 times the
identity on OX . It follows that S ⊗S∨ is, as a vector bundle, the direct sum of
OXe and T , where T is the kernel of σ. Computations show that this is even a
decomposition of S ⊗ S∨ as a symmetric bilinear space (and that the induced
form on OX is the multiplication). We let −ψ0 be the induced form on T . In
what follows T carries the form ψ0.
From the dual morphism π∨ : OY → f∗(S∨)(1) to the morphism π :
f∗(S)(−1)→ OY of the natural short exact sequence we get a morphism

f∗(S)(−1) = f∗(S)(−1)⊗OY →

f∗(S)(−1)⊗ f∗(S∨)(1) = f∗(S)⊗ f∗(S∨) = f∗(S ⊗ S∨)
(Easy computations show that this makes f ∗(S)(−1) to a Lagrangian of
f∗(S ⊗ S∨).) This morphism, composed with the projection f ∗(S ⊗ S∨) ∼=
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f∗(OXe) ⊕ f∗(T ) → f∗(T ), gives us a morphism κ : f∗(S)(−1) → f∗(T ).
Computations show that κ ◦ ι : ω → f∗(T ) makes ω a totally isotropic sub-
bundle of f∗(T ) and that κ : f∗(S)(−1) → f∗(T ) makes f∗(S)(−1) the cor-
responding orthogonal subbundle. (By the way, the image of ω under the
morphism f∗(S)(−1) → f∗(S ⊗ S∨) is, in fact, contained in f∗(T ).) Compu-
tations now show that the induced bilinearform on Coker(ι) ∼= OY is precisely
the multiplication. This mean that

0 0
↓ ↓

0 → ω
ι−→ f∗(S)(−1) π−→ OY → 0

‖
yκ

yπ∨

0 → ω
κ◦ι−→ f∗(T ) κ∨◦ψ−→ f∗(S∨)(1) → 0

yι∨◦κ∨◦ψ
yι∨

ω∨ = ω∨

↓ ↓
0 0

is a presentation of the bilinear space f ∗(T ) as an extension of the unit bilinear
space OY by ω. Here we have written ψ for the morphism f ∗(ψ0).

For every symmetric bilinear space F over Y we get through the tensor product
a presentation

0 0
↓ ↓

0 → ω ⊗F → f∗(S)⊗F(−1) → F → 0
‖ ↓ ↓

0 → ω ⊗F → f∗(T )⊗F → f∗(S∨)⊗F∨(1) → 0
↓ ↓

ω∨ ⊗F∨ = ω∨ ⊗F∨
↓ ↓
0 0

of f∗(T )⊗F as an extension of F by ω ⊗F .

We now assume that k ≥ −1 and R1f∗(F(j)) = 0 for every j > k. We have
ω = f∗(L)(−2), hence

R1f∗(ω
∨ ⊗F∨(k)) = R1f∗(f

∗(L∨)⊗F∨(k + 2)) = L∨ ⊗R1f∗(F∨(k + 2)) = 0

as F∨ ∼= F . With the Theorem on Cohomology and Base Change it follows that
the coherent OX -module W := f∗(ω∨ ⊗ F∨(k)) is locally free. The canonical
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morphism f∗(W) = f∗(f∗(ω∨ ⊗ F∨(k))) → ω∨ ⊗ F∨(k) induces a morphism
f∗(W)(−k) → ω∨ ⊗ F∨. Using the dual morphism ω ⊗ F → f∗(W∨)(k) on
the extension of F by ω ⊗F described above, we get an extension

0 0
↓ ↓

0 → f∗(W∨)(k) → V1 → F → 0
‖ ↓ ↓

0 → f∗(W∨)(k) → E1 → V∨1 → 0
↓ ↓

f∗(W)(−k) = f∗(W)(−k)
↓ ↓
0 0

of F by f∗(W∨)(k) and a commutative diagram

0 → F → V∨1 → f∗(W)(−k) → 0
‖ ↓ ↓

0 → F → f∗(S∨)⊗F∨(1) → ω∨ ⊗F∨ → 0

Now, R1f∗(f∗(W)(j − k)) =W ⊗R1f∗(OY (j − k)) = 0 for j − k ≥ −1. From
the exactness of the upper row of this diagram it therefore follows at once that
also R1f∗(V∨1 (j)) = 0 for j > k. For j = k we get, as f∗(f∗(W)) = W, the
commutative diagram

W → R1f∗(F(k)) → R1f∗(V∨1 (k)) → 0
↓ ‖ ↓

f∗(ω∨ ⊗F∨(k)) → R1f∗(F(k)) → R1f∗(f∗(S∨)⊗F(k + 1)) →

with exact rows. As R1f∗(f∗(S∨)⊗F∨(k + 1)) = S∨ ⊗R1f∗(F∨(k + 1)) = 0,
the connecting morphism f∗(ω∨ ⊗ F∨(k)) → R1f∗(F(k)) is an epimorphism.
But, by construction, the morphism W → f∗(ω∨ ⊗ F∨(k)) is the identity, so
the connecting morphism W → R1f∗(F(k)) must also be an epimorphism. It
follows that even R1f∗(V∨1 (k)) = 0.
As R1f∗(f∗(W∨)(k+ j)) =W∨ ⊗R1f∗(OY (k+ j)) = 0 for k+ j ≥ −1, it now
follows from the exactness of the sequence 0 → f ∗(W∨)(k) → E1 → V∨1 → 0
that R1f∗(E1(j)) = 0 for j > k and that also R1f∗(E1(k)) = 0 if k ≥ 0.
By induction on k downwards to k = 0 we get:

Theorem 1: Any symmetrical bilinear space F over Y is equivalent to a
symmetric bilinear space E over Y with R1f∗(E(j)) = 0 for every j ≥ 0
Remark: We know that it follows that f∗(E(j)) is locally free for every j ≥ 0.
Using the duality, it follows that f∗(E(j)) = 0 and R1f∗(E(j)) is locally free
for every j ≤ −2

In the case k = −1 also we had R1f∗(V∨1 (−1)) = 0 (but not necessar-
ily R1f∗(E1(−1)) = 0). But by the remark above we have in that case
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that f∗(ω ⊗F) = 0 and R1f∗(ω ⊗ F) is locally free. As ω(1)⊗ f∗(W) =
f∗(L⊗W)(−1), we have f∗(ω(1)⊗ f∗(W)) = 0 and R1f∗(ω(1)⊗ f∗(W)) = 0.
From the tensor product of the short exact sequence 0 → F → V∨1 →
f∗(W)(1) → 0 and ω it therefore follows that also f∗(ω ⊗ V∨1 ) = 0 and that
R1f∗(ω ⊗ V∨1 ) is isomorphic to R1f∗(ω ⊗ F), hence locally free. We therefore
have:

Theorem 1, cntd.: Furthermore, E can be chosen to have a totally isotropic
subbundle U , isomorphic to f∗(A)(−1) for some vector bundle A over X, such
that R1f∗((E/U)(−1)) = 0 and f∗(ω ⊗ (E/U)) = 0 and such that R1f∗(ω ⊗
(E/U)) is locally free.
Remark: By Proposition 3 in Section 1.1 there is then a short exact sequence
0→ f∗(C)(1)→ E/U → f∗(B)→ 0 with vector bundles B and C over X. If X
is affine then it even follows that E/U ∼= f∗(B)⊕ f∗(C)(1).

Section 1.4

In this section we study higher direct images of the special representatives of
elements in W (Y ) gotten in the last section. We also study what happens for
these under extensions like those considered in Theorem 2 in Section 1.2.

An NN-pair is a pair ((E , χ), (A, µ)), where (E , χ) is a symmetric bilinear space
over Y , A is a vector bundle over X, and µ : f ∗(A)(−1)→ E is an embedding
of f∗(A)(−1) in E as a totally isotropic subbundle of (E , χ) such that for the
cokernel ρ : E → E we have R1f∗(E(−1)) = 0, f∗(ω ⊗ E) = 0 and R1f∗(ω ⊗ E)
is locally free. Note that it follows that R1f∗(E) = 0, hence R1f∗(E(j)) = 0 for
every j ≥ 0.
There is an obvious notion of isomorphisms of NN-pairs. Furthermore, we can
define the direct sum of two NN-pairs in an obvious way. It follows that we
have the Grothendieck group of isomorphism classes of NN-pairs. We denote
it here simply by K(NN).
Forgetting the second object in an NN-pair we get a morphism K(NN) →
W (X) of groups. By Theorem 1 in Section 1.3 this is an epimorphism.

Let ((E , χ), (A, µ)) be an NN-pair and let ρ : E → E be a cokernel of µ. We write
C = f∗(E(−1)) and B = R1f∗(ω⊗E). Then C and B are vector bundles over X
and there is a natural short exact sequence 0→ f ∗(C)(1)→ E → f∗(B)→ 0.
As f∗(A)(−1) is a totally isotropic subbundle of (E , χ), there is a unique mor-
phism τ : E → f∗(A∨)(1) making the diagram

E ρ−→ Eyχ
yτ

E∨ µ∨−→ f∗(A∨)(1)
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commutative. Using also the dual diagram, we get the commutative diagram

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0
yτ∨

yχ
yτ

0 → E∨ ρ∨−→ E∨ µ∨−→ f∗(A∨)(1) → 0

with exact rows, the second row being the dual of the first one.

We have f∗(E(−1)) = C andR1f∗(E(−1)) = 0. Using the dual of the short exact

sequence 0 → f∗(C)(1) → E → f∗(B) → 0, we see that f∗(E
∨
(−1)) = 0 and

that we can write R1f∗(E
∨
(−1)) = L∨ ⊗ C∨. Twisting the last diagram above

and taking higher direct images, we therefore get the commutative diagram

0 → f∗(E(−1)) → C → L∨ ⊗A → R1f∗(E(−1)) → 0
y∼= ↓ ↓

y∼=

0 → f∗(E∨(−1)) → A∨ → L∨ ⊗ C∨ → R1f∗(E∨(−1)) → 0

with exact rows.

We denote by α : C → L∨ ⊗ A the connecting morphism in the upper row
and by ε : C → A∨ the second vertical morphism. Then, by Serre duality, the
connecting morphism in the lower row is −1L∨ ⊗ α∨ : A∨ → L∨ ⊗ C∨ and the
third vertical morphism is 1L∨ ⊗ ε∨ : L∨ ⊗ A → L∨ ⊗ C∨. The exactness of

the diagram is therefore seen to mean that
[
α
ε

]
: C → (L∨ ⊗ A) ⊕ A∨ is an

embedding of C in (L∨⊗A)⊕A∨ as a Lagrangian of the hyperbolic L∨-valued
symmetric bilinear space

(
(L∨ ⊗A)⊕A∨,

[
0
1

1
0

])
.

Let ((E , χ), (A, µ)) be an NN-pair and let Z be a vector bundle over X. Let
(E1, χ1) be an extension of (E , χ) by f∗(Z)(−1) with presentation

0 0
↓ ↓

0 → f∗(Z)(−1) ι−→ V π−→ E → 0

‖
yκ

yπ∨◦χ

0 → f∗(Z)(−1) −→ E1 κ∨◦χ1−→ V∨ → 0
y

yι∨

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0
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From Proposition 1 in Section 1.1 it follows at once that any extension of
f∗(A)(−1) by f∗(Z)(−1) can be written as f∗(A1)(−1) for some vector bundle
A1 over X. It then comes from a unique extension

0 → Z ιA−→ A1
πA−→ A → 0

of vector bundles over X. Taking the pull-back of

f∗(A)(−1)
yµ

V π−→ E

we therefore get an exact commutative diagram

0 0
↓ ↓

0 → f∗(Z)(−1) f∗(ιA)(−1)−→ f∗(A1)(−1)
f∗(πA)(−1)−→ f∗(A)(−1) → 0

‖
yµV

yµ

0 → f∗(Z)(−1) ι−→ V π−→ E → 0
y

yρ

E = E
↓ ↓
0 0

uniquely determined up to an isomorphism of A1. As f∗(Z)(−1) is a totally
isotropic subbundle of (E1, χ1) and the quotient f∗(A)(−1) is a totally isotropic
subbundle of (E , χ), it is clear that the composition µ1 = κ◦µV : f∗(A1)(−1)→
E1 is an embedding of f∗(A1)(−1) in E1 as a totally isotropic subbundle of
(E1, χ1).
Taking the push-out of

V ρ◦π−→ Eyκ

E1
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we now get an exact commutative diagram

0 0
↓ ↓

0 → f∗(A1)(−1) µV−→ V ρ◦π−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0
yι∨◦κ∨◦χ1

yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

From the right hand column in this diagram we get, using our hypotheses on
E , that R1f∗(E1(−1)) = 0, f∗(ω⊗E1) = 0 and R1f∗(ω⊗E1) is locally free. (In
fact, R1f∗(ω ⊗ E1) is isomorphic to R1f∗(ω ⊗ E).) So ((E1, χ1), (A1, µ1)) is an
NN-pair.

In this situation we say that the NN-pair ((E1, χ1), (A1, µ1)) is an extension of
the NN-pair ((E , χ), (A, µ)) by Z.

Let the NN-pair ((E1, χ1), (A1, µ1)) be an extension of the NN-pair
((E , χ), (A, µ)). We keep the notations from above and extend them in
the obvious way. In particular, we have the short exact sequence

0 → Z ιA−→ A1
πA−→ A → 0

of vector bundles over X. Furthermore, by twisting and taking higher direct
images, the right hand column of the third big diagram induces a short exact
sequence

0 → C ιC−→ C1 πC−→ Z∨ → 0

of vector bundles over X.

We have τ1◦λ◦ρ◦π = τ1◦ρ1◦κ = µ∨1 ◦χ1◦κ = µ∨V ◦κ∨◦χ1◦κ = µ∨V ◦π∨◦χ◦π =
f∗(π∨A)(1) ◦ µ∨ ◦ χ ◦ π = f∗(π∨A)(1) ◦ τ ◦ ρ ◦ π. As ρ ◦ π is an epimorphism,
it follows that τ1 ◦ λ = f∗(π∨A)(1) ◦ τ . We also have f∗(ι∨A)(1) ◦ τ1 ◦ ρ1 =
f∗(ι∨A)(1)◦µ∨1 ◦χ1 = f∗(ι∨A)(1)◦µ∨V ◦κ∨ ◦χ1 = ι∨ ◦κ∨ ◦χ1 = σ ◦ρ1. As ρ1 is an
epimorphism, it follows that f∗(ι∨A)(1) ◦ τ1 = σ. This shows that the diagram

0 → E λ−→ E1 σ−→ f∗(Z∨)(1) → 0
yτ

yτ1 ‖

0 → f∗(A∨)(1) f∗(π∨A)(1)−→ f∗(A∨1 )(1)
f∗(ι∨A)(1)−→ f∗(Z∨)(1) → 0
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is commutative. Twisting by −1 and taking higher direct images, we therefore
get the commutative diagram

0 → C ιC−→ C1 πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨ π∨A−→ A∨1
ι∨A−→ Z∨ → 0

with exact rows.
We have the commutative diagram

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0
xf∗(πA)(−1)

xπ ‖

0 → f∗(A1)(−1) µV−→ V ρ◦π−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0

with exact rows. Twisting it by −1 and looking at the connecting morphisms
for the higher direct images, we get the commutative diagram

C α−→ L∨ ⊗A
‖

x1L∨⊗πA

C −→ L∨ ⊗A1yιC ‖

C1 α1−→ L∨ ⊗A1

It follows that the diagram

C α−→ L∨ ⊗A
yιC

x1L∨⊗πA

C1 α1−→ L∨ ⊗A1

is commutative.

We close this section with an example that we shall need later.

Let C be a vector bundle over X. We shall use the natural short exact sequence

0 → f∗(L ⊗ C)(−1) ι−→ f∗(S ⊗ C) π−→ f∗(C)(1) → 0
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of vector bundles over Y .

Let η : f∗(C)(1) → f∗(L∨ ⊗ C∨)(1) be a morphism. As morphisms from
f∗(S ⊗ C) are uniquely given by their direct images and as f∗(ι∨) is an isomor-
phism, there is a unique morphism ξ : f ∗(S ⊗ C) → f∗(S∨ ⊗ C∨) such that
ι∨ ◦ ξ = η ◦ π. Clearly, we then have ι∨ ◦ ξ ◦ ι = 0.
Conversely, if ξ : f∗(S⊗C)→ f∗(S∨⊗C∨) is a morphism such that ι∨◦ξ◦ι = 0
then, by the exactness of the natural sequence, there is a unique morphism
η : f∗(C)(1)→ f∗(L∨ ⊗ C∨)(1) such that ι∨ ◦ ξ = η ◦ π.

Let ξ : f∗(S ⊗ C) → f∗(S∨ ⊗ C∨) be given. Let η be the corresponding
morphism, so ι∨ ◦ ξ = η ◦ π. Also let η′ be the morphism corresponding to ξ∨,
so ι∨ ◦ ξ∨ = η′ ◦ π.
Write E = f∗(S ⊗ C)⊕ f∗(S∨ ⊗ C∨), A = L⊗ C, E = f∗(C)(1)⊕ f∗(S∨ ⊗ C∨),
µ =

[
ι
0

]
: f∗(A)(−1)→ E , and ρ =

[
π
0

0
1

]
: E → E . Then the sequence

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0

is exact. Furthermore, f∗(E(−1)) = C, R1f∗(f∗(A)(−2)) = L∨ ⊗ A = C and
the connecting morphism for this sequence twisted by −1 is 1C .

Let χ =
[
ξ
1

1
0

]
: E → E∨. Then χ is an isomorphism. Let τ = [η ι∨] : E →

f∗(A∨)(1) and τ ′ =
[
(η′)∨

ι

]
: f∗(A)(−1)→ E∨. Then we have the commutative

diagram

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0
yτ ′

yχ
yτ

0 → E∨ ρ∨−→ E∨ µ∨−→ f∗(A∨)(1) → 0

where the bottom row is the dual of the top one. Twisting by −1 and taking
higher direct images, we get the commutative diagram

C 1−→ Cyf∗(η(−1))
yR1f∗((η

′)∨(−1))

L∨ ⊗ C∨ −1−→ L∨ ⊗ C∨

for the connecting morphisms. This means that R1f∗((η′)∨(−1)) =
−f∗(η(−1)).
There are unique morphisms ε, ε′ : C → L∨⊗C∨ such that η = f∗(ε)(1) and η′ =
f∗(ε′)(1). Then f∗(η(−1)) = ε and R1f∗((η′)∨(−1)) = R1f∗(f∗((ε′)∨)(−2)) =
1L∨⊗(ε′)∨. So we have 1L∨⊗(ε′)∨ = −ε, which is equivalent to ε′ = −1L∨⊗ε∨.
We have ξ∨ = ξ if and only if η′ = η. But η′ = η means exactly that ε′ = ε.
We conclude that ξ∨ = ξ if and only if 1L∨ ⊗ ε∨ = −ε. In that case the

Documenta Mathematica · Quadratic Forms LSU 2001 · 11–48



Projective Line Bundles 27

computations above show that ((E , χ), (L ⊗ C, µ)) is an NN-pair such that the
corresponding α is the identity on C and the corresponding ε is the given one.

Section 1.5

In this section we show how to construct extensions with given behaviour, as
in Section 1.4, for the higher direct images. (This turned out to be the hardest
part of all.)

Let ((E , χ), (A, µ)) be an NN-pair. We keep the notations from Section 1.4.

Let A1 and C1 be vector bundles over X and let
[
α1

ε1

]
: C1 → (L∨ ⊗A1)⊕A∨1

be an embedding of C1 in (L∨ ⊗ A1) ⊕ A∨1 as a Lagrangian of the hyperbolic

L∨-valued symmetric bilinear space
(
(L∨ ⊗A1)⊕A∨1 ,

[
0
1

1
0

])
. Assume also

that there is a vector bundle Z over X and short exact sequences

0 → Z ιA−→ A1
πA−→ A → 0

and
0 → C ιC−→ C1 πC−→ Z∨ → 0

such that the diagrams

0 → C ιC−→ C1 πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨ π∨A−→ A∨1
ι∨A−→ Z∨ → 0

and
C α−→ L∨ ⊗A
yιC

x1L∨⊗πA

C1 α1−→ L∨ ⊗A1

are commutative.
We want to show that there is an extension ((E1, χ1), (A1, µ1)) of ((E , χ), (A, µ))
giving rise to this data as in Section 1.4.

As R1f∗(E(−1)) = 0, we have ExtY (f
∗(Z∨)(1), E) = ExtY (f

∗(Z∨), E(−1)) ∼=
ExtX(Z∨, f∗(E(−1))) = ExtX(Z∨, C). We therefore have a unique extension

0 → E λ−→ E1 σ−→ f∗(Z∨)(1) → 0

such that f∗(E1(−1)) = C1 and such that the given sequence 0 → C → C1 →
Z∨ → 0 is precisely the sequence of direct images for the twisted sequence
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0→ E(−1)→ E1(−1)→ f∗(Z∨)→ 0. It is clear that R1f∗(E(−1)) = 0 implies
that also R1f∗(E1(−1)) = 0. Looking at the tensor product 0 → ω ⊗ E →
ω⊗E1 → ω(1)⊗ f∗(Z∨)→ 0, we also get at once that f∗(ω⊗E1) ∼= f∗(ω⊗E)
and R1f∗(ω⊗E1) ∼= R1f∗(ω⊗E). In particular, f∗(ω⊗E1) = 0 and R1f∗(ω⊗E1)
is locally free.
Instead of E and the given sequence 0 → C → C1 → Z∨ → 0 we could have
used f∗(A∨)(1) and the dual of the given sequence 0 → Z → A1 → A → 0
in the construction above. But we know that the resulting extension then
is represented by 0 → f∗(A∨)(1) → f∗(A∨1 )(1) → f∗(Z∨)(1) → 0. By hy-
pothesis, ExtX(Z∨, ε) maps the class of 0 → C → C1 → Z∨ → 0 to the
class of 0 → A∨ → A∨1 → Z∨ → 0. As f∗(τ(−1)) = ε, it follows that
ExtY (f

∗(Z∨(1), τ) maps the class of 0 → E → E1 → f∗(Z∨)(1) → 0 to the
class of 0 → f∗(A∨)(1) → f∗(A∨1 )(1) → f∗(Z∨)(1) → 0. So we have a com-
mutative diagram

0 → E λ−→ E1 σ−→ f∗(Z∨)(1) → 0
yτ

yτ1 ‖

0 → f∗(A∨)(1) f∗(π∨A)(1)−→ f∗(A∨1 )(1)
f∗(ι∨A)(1)−→ f∗(Z∨)(1) → 0

Here τ1 is not uniquely determined. But using that the diagram

0 → C ιC−→ C1 πC−→ Z∨ → 0
yε

yε1 ‖

0 → A∨ π∨A−→ A∨1
ι∨A−→ Z∨ → 0

is commutative and that HomY (f
∗(Z∨)(1), f∗(A∨)(1)) ∼= HomX(Z∨,A∨), we

see that we can choose τ1 uniquely in such a way that f∗(τ1(−1)) = ε1.

We now use the results on “Special extensions” in the appendix to this section.
By hypothesis,

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0

corresponds to α : C → L∨ ⊗A. Of course, we let

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0

correspond to α1 : C1 → L∨ ⊗A1. We also let

0 → f∗(A1)(−1) µV−→ V ρV−→ E → 0

correspond to α1 ◦ ιC : C → L∨ ⊗A1 and

0 → f∗(A)(−1) µ̃V−→ Ṽ ρ̃V−→ E1 → 0
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correspond to (1L∨ ⊗ πA) ◦ α1 : C1 → L∨ ⊗ A. Using λ and f∗(πA)(−1) we
then get the commutative diagrams

0 → f∗(A1)(−1) µV−→ V ρV−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0
yf∗(πA)(−1)

yκ̃ ‖

0 → f∗(A)(−1) µ̃V−→ Ṽ ρ̃V−→ E1 → 0

and
0 → f∗(A1)(−1) µV−→ V ρV−→ E → 0

yf∗(πA)(−1)
yπ ‖

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0

‖
yπ̃

yλ

0 → f∗(A)(−1) µ̃V−→ Ṽ ρ̃V−→ E1 → 0

We also get that the compositions κ̃ ◦ κ and π̃ ◦ π are equal.

We know the kernel and cokernel of λ. Using that we can extend the bottom
half of the last diagram to the exact commutative diagram

0 0
↓ ↓

0 → f∗(A)(−1) µ−→ E ρ−→ E → 0

‖
yπ̃

yλ

0 → f∗(A)(−1) µ̃V−→ Ṽ ρ̃V−→ E1 → 0
yσ◦ρ̃V

yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Taking the composition of the right hand half of this diagram with the diagram
defining τ1 and using the exactness of the sequence

0 → E∨ χ−1◦ρ∨−→ E µ∨◦χ−→ f∗(A∨)(1) → 0
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noting that τ ◦ ρ = µ∨ ◦ χ, we get the exact commutative diagram

0 0
↓ ↓

0 → E∨ χ−1◦ρ∨−→ E τ◦ρ−→ f∗(A∨)(1) τo 0

‖
yπ̃

yf∗(π∨A)(1)

0 → E∨ π̃◦χ−1◦ρ∨−→ Ṽ τ1◦ρ̃V−→ f∗(A∨1 )(1) → 0
yσ◦ρ̃V

yf∗(ι∨A)(1)

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

In particular, the middle row is exact. Using that χ−1 ◦ ρ∨ ◦ τ∨ = µ, we now
have the commutative diagram

0 → f∗(A)(−1) µ̃V−→ Ṽ ρ̃V−→ E1 → 0
yτ∨ ‖

yτ1

0 → E∨ π̃◦χ−1◦ρ∨−→ Ṽ τ1◦ρ̃V−→ f∗(A∨1 )(1) → 0

with exact rows. Twisting by −1 and taking higher direct images we get the
commutative diagram

C1
(1L∨⊗πA)◦α1−→ L∨ ⊗A

yε1
y1L∨⊗ε∨

A∨1
α′−→ L∨ ⊗ C∨

where α′ is a connecting morphism. Now ε∨◦α1 = ι∨C ◦ε∨1 and (1L∨⊗ε∨1 )◦α1 =
−(1L∨ ⊗ α∨1 ) ◦ ε1, so this commutativity means that α′ ◦ ε1 = −(1L∨ ⊗ (α1 ◦
ιC)

∨) ◦ ε1. Twisting the commutative diagram

0 → E∨ χ−1◦ρ∨−→ E τ◦ρ−→ f∗(A∨)(1) τo 0

‖
yπ̃

yf∗(π∨A)(1)

0 → E∨ π̃◦χ−1◦ρ∨−→ Ṽ τ1◦ρ̃V−→ f∗(A∨1 )(1) → 0

by −1 and taking higher direct images, we get the commutative diagram

A∨ −1L∨⊗α∨−→ L∨ ⊗ C∨
yπ∨A ‖

A∨1
α′−→ L∨ ⊗ C∨
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for the connecting morphisms. As α = (1L∨ ⊗πA)◦α1 ◦ ιC , this commutativity
means that α′◦π∨A = −(1L∨⊗(α1◦ιC)∨)◦π∨A. It follows from the second diagram
in this section that [ε1 π∨A] is an epimorphism. From both these commutativity
relations for α′ we therefore get that α′ = −1L∨ ⊗ (α1 ◦ ιC)∨.
We now look at the dual sequence

0 → f∗(A1)(−1)
ρ̃∨V◦τ∨1−→ Ṽ∨ ρ◦χ−1◦π̃∨−→ E → 0

By Serre duality, the result just proved means that the connecting morphism
for this short exact sequence twisted by −1 equals α1 ◦ ιC . By our results on
“Special extensions” it follows that there is a unique isomorphism Ṽ∨ ∼= V such
that ρ̃∨V ◦ τ∨1 corresponds to µV and ρ ◦ χ−1 ◦ π̃∨ corresponds to ρV . Using the
commutativity of a diagram above, we also see that then χ−1 ◦ π̃∨ corresponds
to π.

We use this to identify Ṽ with V∨. Then τ1 ◦ ρ̃V = µ∨V , π̃ ◦ χ−1 ◦ ρ∨ = ρ∨V and
π̃◦χ−1 = π∨. The last equation means that π̃ = π∨ ◦χ. Using that, the second
one reduces to π∨ ◦ ρ∨ = ρ∨V , which we already knew.

We next do something similar for E1. Using the diagram defining κ, instead of
the one defining π̃, we first get the exact commutative diagram

0 0
↓ ↓

0 → f∗(A1)(−1) µV−→ V ρV−→ E → 0

‖
yκ

yλ

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0
yσ◦ρ1

yσ

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Using the exactness of the sequence

0 → E∨1
ρ̃∨V−→ V µ̃∨V−→ f∗(A∨)(1) → 0 cr

noting that τ ◦ ρV = τ ◦ ρ ◦ χ−1 ◦ π̃∨ = µ∨ ◦ π̃∨ = µ̃∨V , we get the exact
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commutative diagram

0 0
↓ ↓

0 → E∨1
ρ̃∨V−→ V τ◦ρV−→ f∗(A∨)(1) → 0

‖
yκ

yf∗(π∨A)(1)

0 → E∨1
κ◦ρ̃∨V−→ E1 τ1◦ρ1−→ f∗(A∨1 )(1) → 0

yσ◦ρ1
yf∗(ι∨A)(1)

f∗(Z∨)(1) = f∗(Z∨)(1)
↓ ↓
0 0

Using that κ ◦ ρ̃∨V ◦ τ∨1 = κ ◦ µV = µ1, we now have the commutative diagram

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0
yτ∨1 ‖

yτ1

0 → E∨1
κ◦ρ̃∨V−→ E1 τ1◦ρ1−→ f∗(A∨1 )(1) → 0

with exact rows. Twisting and taking higher direct images we now get the
commutative diagram

C1 α1−→ L∨ ⊗A1yε1
y1L∨⊗ε∨1

A∨1
α′1−→ L∨ ⊗ C∨1

where α′1 is a connecting morphism. As (1L∨⊗ε∨1 )◦α1 = −(1L∨⊗α∨1 )◦ε1, this
commutativity means that α′1 ◦ ε1 = −(1L∨ ⊗α∨1 ) ◦ ε1. Using the commutative
diagram

0 → E∨1
ρ̃∨V−→ V τ◦ρV−→ f∗(A∨)(1) → 0

‖
yκ

yf∗(π∨A)(1)

0 → E∨1
κ◦ρ̃∨V−→ Ṽ τ1◦ρ1−→ f∗(A>1 l)(1) → 0

we get the commutative diagram

A∨ −(1L∨⊗α∨1 )◦π∨A−→ L∨ ⊗ C1 dualyπ∨A ‖

A∨1
α′1−→ L∨ ⊗ C∨1

for connecting morphisms. So α′1 ◦ π∨A = −(1L∨ ⊗ α∨1 ) ◦ π∨A. As before we get
from these two commutativity relations for α′1 that α′1 = −1L∨ ⊗ α∨1 .
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We now look at the dual sequence

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨1−→ E∨1

ρ̃V◦κ∨−→ E1 → 0

By Serre duality, the result just proved means that the connecting morphism
for this short exact sequence twisted by −1 equals α1. It follows that there is
a unique isomorphism χ1 : E1 → E∨1 making the diagram

0 → f∗(A1)(−1) µ1−→ E1 ρ1−→ E1 → 0

‖
yχ1 ‖

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨1−→ E∨1

ρ̃V◦κ∨−→ E1 → 0

commutative.
We have κ̃∨◦µV = κ̃∨◦ ρ̃∨V ◦τ∨1 = ρ∨1 ◦τ∨1 . Furthermore, κ̃◦κ = π̃◦π = π∨◦χ◦π
is symmetric, hence ρ̃V ◦κ∨ ◦ κ̃∨ = ρ̃V ◦ κ̃ ◦κ = ρ1 ◦κ = λ ◦ ρV . So the diagram

0 → f∗(A1)(−1) µV−→ V ρV−→ E → 0

‖
yκ̃∨

yλ

0 → f∗(A1)(−1)
ρ∨1 ◦τ∨1−→ E∨1

ρ̃V◦κ∨−→ E1 → 0

is commutative. Because of the uniqueness of κ it follows that χ−11 ◦ κ̃∨ = κ,
i.e., κ̃ = κ∨ ◦ χ∨1 . We then get ρ̃V ◦ κ∨ ◦ χ∨1 = ρ̃V ◦ κ̃ = ρ1. We also have
χ∨1 ◦µ1 = χ∨1 ◦κ◦µV = χ∨1 ◦κ◦ρ̃∨V ◦τ∨1 = (ρ̃V ◦κ∨◦χ1)∨◦τ∨1 . As ρ̃V ◦κ∨◦χ1 = ρ1
by the above, we get χ∨1 ◦ µ1 = ρ∨1 ◦ τ∨1 . This shows that the diagram defining
χ1 remains commutative if we replace χ1 by χ∨1 . As χ1 is uniquely determined,
this means that χ∨1 = χ1. So (E1, χ1) is a symmetric bilinear space. Also note
that we can now write the identity κ̃ = κ∨ ◦ χ∨1 as κ̃ = κ∨ ◦ χ1.

It is now easy to check that ((E1, χ1), (A1, µ1)) is an NN-pair extending
((E , χ), (A, µ)) in the way we wanted.

Appendix on Special Extensions

Let X be a vector bundle over Y such that R1f∗(X (−1)) = 0. Let M be a
vector bundle over X. Then HomY (X , f∗(M)(−1)) = 0 and there is a nat-
ural isomorphism ExtY (X , f∗(M)(−1)) ∼= HomX(f∗(X (−1)),L∨ ⊗M). This
isomorphism maps the class of a short exact sequence

0→ f∗(M)(−1)→ Y → X → 0

to the connecting morphism

f∗(X (−1))→ R1f∗(f
∗(M)(−2)) = L∨ ⊗M
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for the short exact sequence twisted by −1.
There are various ways to prove this. One way is to use the natural short exact
sequence

0→ ω(1)⊗ f∗(f∗(X (−1)))→ f∗(f∗(X ))→ X → 0

given by Proposition 2 in Section 1.1 and the corresponding long exact sequence
of higher Ext groups.
Note that HomY (X , f∗(M)(−1)) = 0 implies that a short exact sequence as
above, representing a given element in ExtY (X , f∗(M)(−1)), is determined up
to a unique isomorphism of Y.

Let X1 andM1 be another pair satisfying the hypotheses above. Let the short
exact sequence

0→ f∗(M)(−1)→ Y → X → 0

correspond to α : f∗(X (−1))→ L∨ ⊗M and let

0→ f∗(M1)(−1)→ Y1 → X1 → 0

correspond to α1 : f∗(X1(−1))→ L∨⊗M1. Let ξ : X → X1 and µ :M→M1

be morphisms making the diagram

f∗(X (−1)) α−→ L∨ ⊗M
yf∗(ξ(−1))

y1⊗µ

f∗(X1(−1)) α1−→ L∨ ⊗M1

commutative. Then there is a unique morphism η : Y → Y1 making the
diagram

0 → f∗(M)(−1) → Y → X → 0
yf∗(µ)(−1)

yη
yξ

0 → f∗(M1)(−1) → Y1 → X1 → 0

commutative.
Indeed, the uniqueness follows from the fact that HomY (X , f∗(M1)(−1)) = 0.
The existence follows from the following commutative diagram.

0 → f∗(M)(−1) → Y → X → 0
yf∗(µ)(−1) ↓ ‖

0 → f∗(M1)(−1) → Z → X → 0

‖
y∼= ‖

0 → f∗(M1)(−1) → Z1 → X → 0

‖ ↓
yξ

0 → f∗(M1)(−1) → Y1 → X1 → 0
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Here the top part is gotten by a push-out and the bottom one by pull-back.
The middle part comes from the fact that both short exact sequences have the
same image in HomX(f∗(X (−1)),L∨ ⊗M1).

Section 2.1

In the affine case, Ranicki has defined the Witt group of formations and proved
that it is isomorphic to his group L1. (Cf [R].) Here we shall extend his defini-
tion to our case.

We shall use the duality functor > on vector bundles on X given by E> =
L∨ ⊗ E∨. But, in fact, what we do makes sense in any exact category with
duality.

A (non-singular) formation is a triple ((F , ϕ), (A, α), (C, γ)), where (F , ϕ) is a
symmetric bilinear space and α : A → F and γ : C → F are lagrangians of
(F , ϕ). Sometimes we simply say that (F , α, γ) is a formation.
There is an obvious notion of isomorphisms of formations. Furthermore, we
can define the direct sum of two formations in an obvious way. It follows that
we have the Grothendieck group of isomorphism classes of formations.

For any vector bundle Z we have the formation (H>(Z), (Z,
[
1
0

]
), (Z>,

[
0
1

]
)).

Ranicki uses direct sums of formations with these special formations to define
when the formations are stably isomorphic. As short exact sequences are not
necessarily split in our case, we have to use something more general than direct
sums.

Let ((F , ϕ), (A, α), (C, γ)) be a formation and let Z be a vector bundle. We
shall define what it means that a formation ((F1, ϕ1), (A1, α1), (C1, γ1)) is an
extension of ((F , ϕ), (A, α), (C, γ)) by Z.
The first condition is that (F1, ϕ1) is an extension of (F , ϕ) by Z. This means
that there is a commutative diagram

0 0
↓ ↓

0 → Z ι−→ V π−→ F → 0

‖
yκ

yπ>◦ϕ

0 → Z κ◦ι−→ F1 κ>◦ϕ1−→ V> → 0
yι>◦κ>◦ϕ1

yι>

Z> = Z>
↓ ↓
0 0
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with exact rows and columns. In a relaxed language this says that Z is a totally
isotropic subbundle of F1 with the orthogonal subbundle V and that F is the
quotient of V by Z with the induced form.

The second condition is thatA1 is an extension ofA by Z and C1 is an extension
of Z> by C. So we have short exact sequences

0 → Z ιA−→ A1
πA−→ A → 0

and

0 → C ιC−→ C1 πC−→ Z> → 0

Finally, these extensions are to be compatible in the following sense. The
embedding A1 → F1 factors as α1 = κ ◦ α with a morphism α : A1 → V such
that the diagram

0 → Z ιA−→ A1
πA−→ A → 0

‖
yα

yα

0 → Z ι−→ V π−→ F → 0

is commutative. Also, the embedding C → F factors as γ = π ◦ γ with a
morphism γ : C → V such that the diagram

0 → C ιC−→ C1 πC−→ Z> → 0
yγ

yγ1 ‖

0 → V κ−→ F1 ι>◦κ>◦ϕ1−→ Z> → 0

is commutative.

As we know the cokernels of α and γ1, we can, if the conditions above hold,
extend the last two diagrams to the commutative diagrams

0 0
↓ ↓

0 → Z ιA−→ A1
πA−→ A → 0

‖
yα

yα

0 → Z ι−→ V π−→ F → 0yα>◦ϕ◦π
yα>◦ϕ

A> = A>
↓ ↓
0 0
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and

0 0
↓ ↓

0 → C ιC−→ C1 πC−→ Z> → 0
yγ

yγ1 ‖

0 → V κ−→ F1 ι>◦κ>◦ϕ1−→ Z> → 0
yγ>1 ◦ϕ1◦κ

yγ>1 ◦ϕ1

C>1 = C>1
↓ ↓
0 0

with exact rows and columns. It then follows that we also have the commutative
diagrams

0 → A1
α1−→ F1

α>1 ◦ϕ1−→ A>1 → 0

‖
xκ

xπ>A

0 → A1
α−→ V α>◦ϕ◦π−→ A> → 0

yπA
yπ ‖

0 → A α−→ F α>◦ϕ−→ A> → 0

and

0 → C γ−→ F γ>◦ϕ−→ C> → 0

‖
xπ

xι>C

0 → C
γ
−→ V γ>1 ◦ϕ1◦κ−→ C>1 → 0

yιC
yκ ‖

0 → C1 γ1−→ F1
γ>1 ◦ϕ1−→ C>1 → 0

with exact rows.

Let (F , ϕ) be a symmetric bilinear space and let γ : C → F be a lagrangian of
(F , ϕ). We then might say that ((F , ϕ), (C, γ)) is a metabolic pair. Now let C1
be a vector bundle and let ιC : C → C1 be a morphism. Then there is, by [A], a
metabolic pair ((F1, ϕ1), (C1, γ1)), uniquely determined up to an isomorphism
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by the conditions that there is a commutative diagram

0 → C γ−→ F γ>◦ϕ−→ C> → 0

‖
xπ

xι>C

0 → C
γ
−→ V γ>1 ◦ϕ1◦κ−→ C>1 → 0

yιC
yκ ‖

0 → C1 γ1−→ F1
γ>1 ◦ϕ1−→ C>1 → 0

with exact rows and that κ> ◦ ϕ1 ◦ κ = π> ◦ ϕ ◦ π.
Now assume that we have a short exact sequence

0 → C ιC−→ C1 πC−→ Z> → 0

Then we can compute the kernels and cokernels of the vertical morphisms in
the double diagram above. It easily follows that (F1, ϕ1) is an extension of
(F , ϕ) by Z as in the definition above.
Now assume that α : A → F is also a lagrangian of (F , ϕ). Taking the “inverse
image” in V of the subbundle A of F we get a commutative diagram

0 → Z ιA−→ A1
πA−→ A → 0

‖
yα

yα

0 → Z ι−→ V π−→ F → 0

with exact rows. Letting α1 = κ ◦ α, one then checks that α1 : A1 → F1 is a
lagrangian of (F1, ϕ1). It then easily follows that by this we have constructed
an extension ((F1, ϕ1), (A1, α1), (C1, γ1)) of ((F , ϕ), (A, α), (C, γ)) by Z.
We conclude that there is a natural bijective correspondence between isomor-
phism classes of extensions of ((F , ϕ), (A, α), (C, γ)) by Z and isomorphism
classes of extensions of Z> by C. Of course, the latter correspond to isomor-
phism classes of extensions of C> by Z.
This makes it rather easy to work with extensions of formations. For exam-
ple, if C1 is the trivial extension of Z> by C, then ((F1, ϕ1), (A1, α1), (C1, γ1))
is the trivial extension of ((F , ϕ), (A, α), (C, γ)) by Z, i.e., the direct sum of

((F , ϕ), (A, α), (C, γ)) and (H>(Z), (Z,
[
1
0

]
), (Z>,

[
0
1

]
)). In particular, we get

nothing new in the affine case.
Using the concept of the direct sum of two extensions of C>, we get the following
lemma as another application.

Lemma 1: Let ((F1, ϕ1), (A1, α1), (C1, γ1)) be an extension of of
((F , ϕ), (A, α), (C, γ)) by Z1 and let ((F2, ϕ2), (A2, α2), (C2, γ2)) be an ex-
tension of of ((F , ϕ), (A, α), (C, γ)) by Z2. Then there is an extension
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((F3, ϕ3), (A3, α3), (C3, γ3)) of ((F , ϕ), (A, α), (C, γ)) by Z1 ⊕Z2 such that the
original extension of ((F , ϕ), (A, α), (C, γ)) are intermediate extensions in the
natural way.

We shall say that two formations are stably isomorphic if they have a common
extension. From the lemma it follows that this induces an equivalence relation
on the set of isomorphism classes of formations. This equivalence relation is
clearly compatible with direct sums.
By a remark above this coincides with Ranicki’s definition in the affine case.

We now say, as Ranicki, that two formations (F1, α1, γ1) and (F2, α2, γ2) are
equivalent if there is a spaceM1 with lagrangians u1, v1 and w1 and a space
M2 with lagrangians u2, v2 and w2 such that the direct sum

(F1, α1, γ1)⊕ (M1, u1, v1)⊕ (M1, v1, w1)⊕ (M2, u2, w2)

is stably isomorphic to the direct sum

(F2, α2, γ2)⊕ (M2, u2, v2)⊕ (M2, v2, w2)⊕ (M1, u1, w1)

It is easy to check that this is an equivalence relation on formations. The direct
sum induces a group structure on the set of equivalence classes. (We shall see,
in a moment, how additive inverses are found.) The resulting group is called
the Witt group of formations and is denoted M(X) or, if we want to stress the
duality functor used, M>(X).
In the affine case Ranicki shows that M(X) is isomorphic to L1(X), so we
might as well have used the notation L1(X) in our case.

An equivalent way to defineM(X) is to consider first the Grothendieck group of
isomorphism classes of formations and then to consider M(X) as the qoutiont
group gotten by demanding two formations to have the same class if one is
an extension of the other and that the direct sum (F , α, β)⊕ (F , β, γ) has the
same class as (F , α, γ).
In this formulation it is clear that the class of (F , α, α) is trivial and then that
the class of (F , γ, α) is the inverse of the class of (F , α, γ).

Section 2.2

A formation is said to be split if it is isomorphic to a formation of the type

(
(A⊕A>,

[
0

1

1

0

]
), (A,

[
1

0

]
), (C,

[
α

ε

]
)

)

In this section we study split formation and define a Witt group of these.
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A split-formation (over X) is a quadruple (A, C, α, ε), where A and C are vector
bundles over X and α : C → A and ε : C → A> are morphisms such that

[
α
ε

]
is

an embedding of C in A⊕A> as a Lagrangian of the hyperbolic >-symmetric
bilinear space H>(A). This means that

0 → C

[
α
ε

]

−→ A⊕A> [ε> α>]−→ C> → 0

is a short exact sequence.
There is an obvious notion of isomorphisms of split-formations. Furthermore,
we can define the direct sum of two formations in an obvious way. It follows
that we have the Grothendieck group of isomorphism classes of split-formations.

Let (A, C, α, ε) and (A1, C1, α1, ε1) be split-formations. We say that
(A1, C1, α1, ε1) is an extension of (A, C, α, ε) (by Z) and that (A, C, α, ε)
is a quotient of (A1, C1, α1, ε1) if there is a vector bundle Z over X and short
exact sequences

0 → Z ιA−→ A1
πA−→ A → 0

and
0 → C ιC−→ C1 πC−→ Z> → 0

such that the diagrams

0 → C ιC−→ C1 πC−→ Z> → 0
yε

yε1 ‖

0 → A> π>A−→ A>1
ι>A−→ Z> → 0

and
C α−→ AyιC

xπA

C1 α1−→ A1

are commutative.

We say that a split-formation (A, C, α, ε) is elementary if α is an isomorphism.
Indeed, we then may (up to an isomorphism of split-formations) assume that
C = A and α = 1A. The fact that (A, C, α, ε) is a split-formation then sim-
ply means that ε> = −ε, i.e., ε is >-skew-symmetric. It follows that the

“elementary” automorphism
[
1
ε

0
1

]
of H>(A) takes the canonical lagrangian

[
1
0

]
: A → A⊕A> to

[
α
ε

]
.

We say that a split-formation (A, C, α, ε) is metabolic if it has an elementary ex-
tension. It is clear that a direct sum of metabolic split-formations is metabolic.
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We define the Witt group M spl(X) of split-formations as the Grothendieck
group of split-formations modulo the subgroup generated by metabolic split-
formations.

Proposition 1: If the split-formation (A1, C1, α1, ε1) is an extension of the
split-formation (A, C, α, ε) then the direct sum (A1, C1, α1, ε1)⊕ (A, C, α,−ε) is
metabolic.

Proof: We shall use the notations used in the definition to describe
(A1, C1, α1, ε1) as an extension of (A, C, α, ε). We let Z̃ = A> ⊕ C1 and let

Ã = A1 ⊕A⊕A> ⊕ C1 be the direct sum of A1 ⊕A and Z̃. So ι̃A =

[
0
0

0
0

1
0

0
1

]

and π̃A =
[
1
0

0
1

0
0

0
0

]
. We also let C̃ = Ã and α̃ = 1. We now let

ε̃ =




0 0 −π>A ε1
0 0 −1 0
πA 1 0 −πA ◦ α1
−ε>1 0 α>1 ◦ π>A ε>1 ◦ α1




Then ε̃ is clearly >-skew-symmetric. (Recall that ε>1 ◦ α1 + α>1 ◦ ε1 = 0.) Also

ι̃C =



α1 0
0 α
0 ε
1 ιC




and

π̃C = ι̃>A ◦ ε̃ =
[
πA 1 0 −πA ◦ α1
−ε>1 0 α>1 ◦ π>A ε>1 ◦ α1

]

Easy computations then show that

ε̃ ◦ ι̃C =



ε1 0
0 −ε
0 0
0 0


 = π̃>A ◦

[
ε1 0
0 −ε

]

and, clearly, π̃A ◦ α̃ ◦ ι̃γ = π̃A ◦ ι̃γ =
[
α1

0
0
α

]
. To show that (Ã, C̃, α̃, ε̃) is an

extension of (A1, C1, α1, ε1)⊕ (A, C, α,−ε) there remains only to show that the
sequence

0 → C1 ⊕ C ι̃C−→ C̃ π̃C−→ Z̃> → 0

is exact. From the definition of π̃C and the fact that ε̃ ◦ ι̃C equals π̃>A ◦
[
ε1
0

0
−ε

]
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it follows that it is a zero sequence. We now use the commutative diagram

0 0 0
↓ ↓ ↓

0 → C1

[
α1

1

]

−→ A1 ⊕ C1
[1 −α1]−→ A1 τo 0

ynat.incl.
ynat.incl.

y
[
πA
−ε>1

]

0 → C1 ⊕ C ι̃C−→ C̃ π̃C−→ Z̃> → 0
ynat.proj.

ynat.proj.
y[ε> −ι>C ]

0 → C

[
α
ε

]

−→ A⊕A> [ε> α>]−→ Cδua → 0
↓ ↓ ↓
0 0 0

Obviously, the left hand column and the middle column are exact. Using the
dual of the commutative diagram connecting ε and ε1, one sees that the right
hand column is exact. The top row is clearly exact and the bottom one is exact
by the definition of a split-formation. As the middle row is a zero sequence, it
follows that it is exact too.

As any split-formation is trivially an extension of itself, we have the following
corollary.

Corollary 2: For any split-formation (A, C, α, ε) the direct sum (A, C, α, ε)⊕
(A, C, α,−ε) is metabolic.

It follows that any element in M spl(X) is represented by a split-formation.
It also follows that a split-formation (A, C, α, ε) has trivial class in M spl(X)
if and only if there is a metabolic split-formation (A0, C0, α0, ε0) such that
(A, C, α, ε) ⊕ (A0, C0, α0, ε0) is metabolic. (In fact, it can be shown that
(A, C, α, ε) is metabolic itself.)

Section 2.3

In this section we prove that there is a natural isomorphism from the Witt
group of split-formations to the Witt group of formations. For the proof we
need that 2 is invertible.

A split-formation (A, C, γ+, γ−) gives rise to the formation

(
(A⊕A>,

[
0

1

1

0

]
), (A,

[
1

0

]
), (C,

[
γ+

γ−

]
)

)

Going from split-formations to formations in this way clearly induces a mor-
phism of Grothendieck groups of isomorphism classes. It is also trivial to check
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that extensions of split-formations go to extension of formations. If a split-
formation is elementary then we may assume that it is of the type (A,A, 1, γ−)
with a skew-symmetric γ− : A → A>. The class of the corresponding formation

(
(A⊕A>,

[
0

1

1

0

]
), (A,

[
1

0

]
), (A,

[
1

γ−

]
)

)

is then the difference of the classes of the formations
(
(A⊕A>,

[
0

1

1

0

]
), (A,

[
1

0

]
), (A>,

[
0

1

]
)

)

and (
(A⊕A>,

[
0

1

1

0

]
), (A,

[
1

γ−

]
), (A>,

[
0

1

]
)

)

But the automorphism
[

1
γ−

0
1

]
of (A ⊕ A>,

[
0
1

1
0

]
) induces an isomorphism

from the former formation to the latter, so the difference of the classes is 0. It
follows that we get a natural morphism M spl(X)→M(X) of Witt groups.

Let ((F , ϕ), (A, α), (C, γ)) be a formation. Then the formation

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (C ⊕ A,

[
γ

0

0

α

]
), (F ,

[
1

1

]
)

)

is an extension of ((F , ϕ), (C, γ), (A, α)) by A. Indeed, the quotient of (F ⊕
F ,
[
ϕ
0

0
−ϕ

]
) by the sublagrangian

[
0
α

]
: A → F ⊕F is isomorphic to (F , ϕ) in

an obvious way. We also have the extensions

0 → A

[
0
1

]

−→ C ⊕A [1 0]−→ A → 0

and
0 → A α−→ F −α>◦ϕ−→ A> → 0

of vector bundles and it is trivial check that all this fits together. It follows
that the formation

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (F ,

[
1

1

]
), (C ⊕ A,

[
γ

0

0

α

]
)

)

has the same class as ((F , ϕ), (A, α), (C, γ)). As we are assuming that 2 is

invertible, we have the isomorphism
[

1
2

ϕ

1
2

−ϕ

]
from (F ⊕ F ,

[
ϕ
0

0
−ϕ

]
) to (F ⊕

F>,
[
0
1

1
0

]
). It follows that the former formation is isomorphic to

(
(F ⊕ F>,

[
0

1

1

0

]
), (F ,

[
1

0

]
), (C ⊕ A,

[
1
2γ

ϕ◦γ

1
2α

−ϕ◦α

]
)

)
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This is the formation arising from the split-formation

(F , C ⊕ A, [ 12γ 1
2α] , [ϕ◦γ −ϕ◦α])

It follows that our morphism M spl(X)→ M(X) of Witt groups is an epimor-
phism.

We want to show that M spl(X)→M(X) is an isomorphism. By mapping the
formation ((F , ϕ), (A, α), (C, γ)) to the split-formation

(F , C ⊕ A, [ 12γ 1
2α] , [ϕ◦γ −ϕ◦α])

we clearly get a morphism of Grothendieck groups of isomorphism classes. We
have to check that the defining relations for M(X) map to valid relations in
M spl(X).
We first look at extensions. So let ((F1, ϕ1), (A1, α1), (C1, γ1)) be an extension
of ((F , ϕ), (A, α), (C, γ)) by Z. We use the notations from the definition of such
an extension. Using the short exact sequences

0 → Z κ◦ι−→ F1 κ>◦ϕ1−→ V> → 0

and
0 → C ⊕A1

[
ιC
0

0
1

]

−→ C ⊕A [πC 0]−→ Z> → 0

one can see that

(V>, C ⊕ A1, [ 12κ
>◦ϕ1◦γ1ιC 1

2κ
>◦ϕ1◦α1] ,

[
γ −α

]
)

is a quotient of
(F1, C1 ⊕A1, [ 12γ1

1
2α1] , [ϕ1◦γ1 −ϕ1◦α1])

Using the short exact sequence

0 → C

[
γ
ιC

]

−→ F ⊕ C1
[π>◦ϕ −κ>◦ϕ1◦γ1]−→ V> → 0

and the short exact sequence that we get by adding C to the left hand part of
the short exact sequence

0 → A1

[
πA

γ>1 ◦ϕ1◦α1

]

−→ A⊕ C>1
[−γ>◦ϕ◦α ι>C ]−→ C> → 0

one can see that the direct sum

(F , C ⊕ A, [ 12γ 1
2α] , [ϕ◦γ −ϕ◦α])⊕

(
C1, C>1 , 0, 1

)

is an extension of

(V>, C ⊕ A1, [ 12κ
>◦ϕ1◦γ1◦ιC 1

2κ
>◦ϕ1◦α1] ,

[
γ −α

]
)
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As (C1, C>1 , 0, 1) clearly is an extension of the zero split-formation, we conclude
that

(F1, C1 ⊕A1, [ 12γ1
1
2α1] , [ϕ1◦γ1 −ϕ1◦α1])

and
(F , C ⊕ A, [ 12γ 1

2α] , [ϕ◦γ −ϕ◦α])

have the same class in M spl(X).
We now consider the additivity relations which we write as

[(F , ϕ), (A, α), (B, β)] + [(F , ϕ), (B, β), (C, γ)] = [(F , ϕ), (A, α), (C, γ)]

It is easy to see that these are equivalent to the relations

[(F , ϕ), (A, α), (B, β)] + [(F , ϕ), (B, β), (C, γ)] + [(F , ϕ), (C, γ), (A, α)] = 0

and
[(F , ϕ), (A, α), (A, α)] = 0

Writing (G, χ) = (F , ϕ)⊕ (F , ϕ)⊕ (F , ϕ), D = A⊕ B ⊕ C and δ = α⊕ β ⊕ γ,
the left hand side of the former relation is the class of ((G, χ), (D, δ), (D, σ ◦δ)),
where

σ =




0 1F 0
0 0 1F
1F 0 0




In fact, σ is an automorphism of (G, χ). Furthermore, σ3 = 1, hence (σ + 1) ◦
(σ2 − σ + 1) = 1 + 1. As 2 is invertible, it follows that σ + 1 is invertible. The
left hand side of the second relation is of the same type with the automorphism
of (F , ϕ) being the identity.
From these considerations it follows that it now suffices to prove that if α :
A → F is a lagrangian of (F , ϕ) and σ is an automorphism of (F , ϕ) such that
σ + 1 is invertible then the split-formation

(F ,A⊕A, [ 12σ◦α 1
2α] , [ϕ◦σ◦α −ϕ◦α])

is metabolic. Indeed, it is not too difficult to check that the elementary split-
formation

(
F ⊕A,F ⊕A,

[
1

0

0

1

]
,

[
2ϕ◦(σ−1)◦(σ+1)−1

α>◦ϕ

−ϕ◦α

0

])

is an extension. The corresponding short exact sequences are

0 → A

[
− 1

2α

1

]

−→ F ⊕A [1 1
2α]−→ F → 0

and

0 → A⊕A

[
1
2 (σ+1)◦α
−1

0
1

]

−→ F ⊕A [2α>◦ϕ◦(σ+1)−1 0]−→ A> → 0
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So we now also have a morphism M(X) → M spl(X). By construction, the
composition M(X) → M spl(X) → M(X) is the identity. To show that the
other composition is also the identity it suffices to show that for any split-
formation (A, C, α, ε) the split-formation

(
A⊕A>, C ⊕ A,

[
1
2α

1
2γ

1
2

0

]
,

[
γ

α

0

−1

])

is an extension. But that is easy.

0 → A>
[

0
−1

]

−→ A⊕A> [1 0]−→ F → 0

and
0 → C

[
1
α

]

−→ C ⊕A [−α 1]−→ A → 0

are corresponding short exact sequences.
This all proves that the natural morphism M spl(X) → M(X) of Witt groups
is an isomorphism.

We saw that the formation ((F , ϕ), (C, γ), (A, α)) has the same class as

(
(F ⊕ F ,

[
ϕ

0

0

−ϕ

]
), (C ⊕ A,

[
γ

0

0

α

]
), (F ,

[
1

1

]
)

)

(and this did not depend on 2 being invertible). Changing the order of the
summands in the first two components, we see that this formation is isomorphic
to (

(F ⊕ F ,
[
−ϕ

0

0

ϕ

]
), (A⊕ C,

[
α

0

0

γ

]
), (F ,

[
1

1

]
)

)

But, by the same argument as before, this last formation has the same class
as ((F ,−ϕ), (A, α), (C, γ)). This shows that we can also describe the inverse of
the class of ((F , ϕ), (A, α), (C, γ)) as the class of ((F ,−ϕ), (A, α), (C, γ)).

Conclusion and Remarks

In this concluding section we prove the main result of the paper, the following
theorem.

Theorem: There is a natural exact sequence

W (X)→W (Y )→M>(X)

of Witt groups.
Proof: Because of the results of Section 2.3 we may use M spl

> (X) instead of
M>(X).
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Computations in Section 1.4 show that to any NN-pair ((E , χ), (L ⊗ A, µ))
there is associated a split-formation (A, C, α, ε). This clearly gives rise to a
morphism from the Grothendieck group K(NN) of isomorphism classes of NN-
pairs to the Grothendieck group of isomorphism classes of split-formations.
Composing with the natural projection we get a natural morphism K(NN)→
M spl
> (X). The results in Section 1.4 also show that extensions of NN-pairs map

to extensions of split-formations (with the same vector bundle Z).
Now let ((E , χ), (L ⊗ A, µ)) be an NN-pair such that the corresponding split-
formation (A, C, α, ε) is metabolic. Then there is an extension (A1, C1, α1, ε1)
of (A, C, α, ε) with an isomorphism α1. By the result of Section 1.5 there is a
corresponding extension ((E1, χ1), (L⊗A1, µ1)) of ((E , χ), (L⊗A, µ)). But α1
being an isomorphism means exactly that f∗(E1(−1)) = 0 and R1f∗(E1(−1)) =
0. So, by Section 1.1, the space (E1, χ1) comes from X. As (E1, χ1) and (E , χ)
have the same class in W (Y ), it follows that the class of (E , χ) also lies in the
image of W (X) in W (Y ).

Assume now only that the split-formation (A, C, α, ε) corresponding to

((E , χ), (L⊗A, µ)) has trivial class inM spl
> (X). Then there is a metabolic split-

formation (A0, C0, α0, ε0) such that (A, C, α, ε) ⊕ (A0, C0, α0, ε0) is metabolic.
In an example at the end of Section 1.4 we saw, in the present parlance, that
any elementary split-formation is the formation corresponding to an NN-pair.
As quotients of split-formations correspond to quotients of NN-pairs, we con-
clude that any metabolic split-formation comes from an NN-pair. In partic-
ular, there is an NN-pair ((E0, χ0), (L ⊗ A0, µ0)) such that the corresponding
split-formation is (A0, C0, α0, ε0). Then our hypothesis says that the formation
corresponding to ((E , χ), (L⊗A, µ))⊕ ((E0, χ0), (L⊗A0, µ0)) is metabolic. By
the above, it follows that the classes of (E0, χ0) and (E , χ)⊕ (E0, χ0) in W (Y )
both come from W (X). We conclude that the class of (E , χ) in W (Y ) also
comes from W (X).

Now assume, conversely, that ((E , χ), (L ⊗ A, µ)) is an NN-pair such that the
class of (E , χ) inW (Y ) comes fromW (X). Let (A, C, α, ε) be the corresponding
split-formation. From Theorem 2 in Section 1.2 and results in Section 1.4
it follows that there is an extension ((E1, χ1), (L ⊗ A1, µ1)) of ((E , χ), (L ⊗
A, µ)) such that the symmetric bilinear space (E1, χ1) comes from X. Then
the corresponding split-formation is elementary. But that split-formation then
is an extension of (A, C, α, ε) so it follows that (A, C, α, ε) is metabolic.

We have now seen that the natural epimorphism K(NN) → W (Y ) maps the

kernel of our natural morphism K(NN)→ M spl
> (X) onto the image of W (X)

in W (Y ). This means that the morphisms K(NN) → W (Y ) and K(NN) →
M spl
> (X) induce a morphismW (Y )→M spl

> (X) making the sequenceW (X)→
W (Y )→M spl

> (X) exact.

This finishes the proof of the theorem. Note that we get, as a side result, that
if the formation (A, C, α, ε) has trivial class in M spl

> (X) then it is metabolic.

If the rank 2 vector bundle S over X has a quotient bundle of rank 1 then there
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is a section X → Y . It follows that W (X) → W (Y ) is a monomorphism. In
particular, this holds if Y = P1

X , the trivial projective line bundle over X.
According to Walter, [W], the natural morphism W (Y ) → M>(X) is an epi-
morphism in the case that S has a quotient bundle of rank 1. So in this case
there is a natural short exact sequence

0→W (X)→W (Y )→M>(X)→ 0

We have not yet been able to prove that with the methods of this paper. But
we can handle a special case, the case that X is affine and Y is the trivial
projective line bundle over X. In fact, this was one of our original result, back
in the early 1980’s. As the terminology of that proof is different from what has
been used here, we shall refrain from giving it.
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Abstract. This paper is intended to give a survey in the algebraic
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1 Introduction.

In his historical account on the algebraic theory of quadratic forms (s [Sch ]),
Scharlau remarks that fields of characteristic two have remained the pariahs of
the theory. Nevertheless, as he also mentions right before the above remark (s.
loc. cit.), some aspects of the theory over these fields are more interesting and
richer, because of the interplay of symmetric bilinear and quadratic forms, as
well as both separable and purely inseparable quadratic extensions have to be
considered. The purpose of this brief survey article is to show how these aspects
work, and how some questions related to Milnor’s conjecture for fields with
2 6= 0, can be answered in a more elementary way in the case of characteristic
two.

1Partially supported by Fondecyt 1000392 and Programa Formas Cuadraticas, Universi-
dad de Talca.
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We will focus our attention on the W (F )-module structure of Wq(F ), where
W (F ) is the Witt-ring of a field F with 2 = 0 and Wq(F ) is the Witt-group
of quadratic forms over F (s. [Mi]2, [Sa] and section 2). If I ⊂ W (F ) is the
maximal ideal of W (F ), then we have the graded Witt-ring

grIW (F ) =

∞⊕

n=0

In/In+1

and the graded grIW (F )- module

grIWq(F ) =

∞⊕

n=0

InWq(F )/I
n+1Wq(F ).

The structure of this module is explained in sections 3 and 4. Section 3 deals
with the relationship established by Kato between differential forms over F
and symmetric bilinear and quadratic forms. If k∗(F ) denotes Milnor’s graded
k-ring of F , we introduce in section 4 a graded k∗(F )-module, defined by gen-
erators and relations, which describes the graded grIW (F )-module grIWq(F ).
In section 5 we examine the behaviour of this module under certain field ex-
tensions, particularly function field extensions of quadrics defined by Pfister-
forms. As an application of these results we mention, how Knebusch’s degree
conjecture for fields with 2 = 0 follows from them. The results of section 5,
(c.f. (5.10), (5.11), (5.14), (5.16)), cited from [Ar-Ba]3 and [Ar-Ba]4 have not
been published yet, but these manuscripts can be found at the server ”Lin-
ear Algebraic Groups and Related Structures” http://www.mathematik.uni-
bielefeld.de/LAG/.

2 Basic definitions.

Let F be a field of characteristic two. A symmetric bilinear form b : V×V −→ F
defined on an n-dimensional F -vector space V is non-singular if b(x, y) = 0 for
all x ∈ V implies y = 0. (V, b) is anisotropic if b(x, x) 6= 0 for all x 6= 0,
and in this case it is easy to see that (V, b) admits an orthogonal basis (s.
[Mi]2 for example). If a ∈ F ∗ = F \ {0} we will denote by < a > the one
dimensional form axy, and by < a1, · · · , an > (ai ∈ F ∗) the orthogonal sum
< a1 >⊥ · · · ⊥< an > A non singular quadratic form on V is a map q : V −→ F
such that q(λx) = λ2q(x) and bq(x, y) = q(x+ y)− q(x)− q(y) is a symmetric
non singular bilinear form on V . Since bq(x, x) = 0, n must be even. The most
simple non singular quadratic forms over F are the forms ax2 + xy + by2 with
a, b ∈ F (i.e. q : Fe⊕ Ff −→ F, q(e) = a, q(f) = b, bq(e, f) = bq(f, e) =
1 ), which we will denote by [a, b]. Any non singular quadratic form over F is of
the form [a1, b1] ⊥ · · · ⊥ [am, bm]. Scaling a quadratic form q by a ∈ F ∗ means
(aq)(x) = aq(x). This extends to an operation of bilinear forms on quadratic
forms by < a1, · · · an > ·q = a1q ⊥ · · · ⊥ anq. Besides the dimension, the
most simple invariant of a symmetric bilinear form b =< a1, · · · an > is its
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discriminant d(b) = a1 · · · an ∈ F ∗/F ∗
2

If q = [a1, b1] ⊥ · · · ⊥ [an, bn] is a
quadratic form the analogue of the discriminant is its Arf-invariant A(q) =
a1b1 + · · ·+ anbn ∈ F/℘F , where ℘F = {a2 − a\a ∈ F}.
One can write [a, b] =< a > [1, ab] if a 6= 0, so that in general one usually
writes a quadratic form q as q =< a1 > [1, b1] ⊥ · · · ⊥< an > [1, bn], and
hence its Arf-invariant is A(q) = b1+ · · ·+ bn ∈ F/℘F (s. [A], [Ba]1, [Sa]). For
quadratic forms (V, q) we have also the Clifford - algebra C(q), which defines

an element w(q) ∈ Br(F ) = Brauer group of F . If q =
m

⊥
1
< ai > [1, bi],

then w(q) =
m
⊗
1

(ai, bi] ∈ Br(F ), where (a, b] denotes the quaternion algebra

F ⊕ Fe⊕ Ff ⊕ Fef with e2 = a, f2 + f = b, ef + fe = e.
A symmetric bilinear form (V, b) is called metabolic if V contains a subspace
W ⊆ V with W = W⊥ (dim W = 1

2 dim V ). Two bilinear forms b1, b2 are
Witt-equivalent if b1 ⊥ m1

∼= b2 ⊥ m2, where m1, m2 are metabolic. The set
of classes W (F ) of symmetric non singular bilinear forms is a ring, additively
generated by the classes < a >, a ∈ F ∗ with relations < a > + < b > =
< a + b > + < ab(a + b) > if a + b 6= 0, < a > + < a > = 0 and
< a > · < b > = < ab >. We denote by IF ⊂ W (F ) the maximal ideal of
even dimensional forms (s. [Mi]2, [Sa] for basic facts on W (F )). A quadratic
form (V, q) is hyperbolic if V contains a totally isotropic subspace W ⊂ V with
dim W = 1

2 dim V . The form [0, 0] = H is the hyperbolic plane and every
hyperbolic space is of the form H ⊥ . . . ⊥ H. The forms q1, q2 are Witt-
equivalent if q1 ⊥ r × H ∼= q2 ⊥ s × H (r, s ≥ 0) and we denote by Wq(F )
the Witt-group of such classes. The action defined above of bilinear forms on
quadratic forms induces a W (F )-module structure on Wq(F ).
IF is additively generated by the 1-fold Pfister forms < 1, a >, a ∈ F ∗,
so that for all n ≥ 1, InF is generated by the n-fold bilinear Pfister forms
¿ a1, · · · , an À = < 1, a1 > ⊗ · · · ⊗ < 1, an >. These ideals define submodules
InF ·Wq(F ) of Wq(F ), which are additively generated by the n-fold quadratic
Pfister forms ¿ a1, · · · an, a |] = ¿ a1, · · · an À ⊗[1, a], ai ∈ F ∗, a ∈ F (s.
[Ba]1, [Sa] for details on these forms).
Thus we have now two filtrations

W (F ) ⊇ IF ⊃ I2F ⊃ · · · ⊃ InF · · ·

Wq(F ) ⊇ IWq(F ) ⊃ I2Wq(F ) ⊃ · · · ⊃ InWq(F ) ⊃ · · ·

and we will be mainly concerned with the quotients InF /I
n+1
F and

InWq(F )/I
n+1Wq(F ) which we denote by I

n

F and InWq(F ) respectively.

One easily checks that dim : I
0

F
∼−→ Z/2Z, d : IF

∼−→ F ∗/F ∗
2

and A : I0Wq(F )
∼−→ F/℘F . The main result of [Sa] states that

w : IWq(F )
∼−→ Br(F )2 = 2-torsion part of Br(F ). The surjectivity of

w is a consequence of well-known results on p-algebras for p = 2 (s. [Al]), and
the injectivity is shown in [Sa] by an elementary induction argument (notice
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that the isomorphism IWq(F )
∼→ Br(F )2 is the analogue of Merkurjev’s result

I2F /I
3
F

∼→ Br(F )2 for fields with 2 6= 0).

The higher groups I
n

F and InWq(F ) will be studied in the next section.

3 Differential forms and its relationship to quadratic and bilin-
ear forms

The basic reference for what follows is Kato’s fundamental paper [Ka]1. Let
Ω1
F be the F -vector space generated (over F ) by the symbols da, a ∈ F , with

the relations d(ab) = bda + adb. In particular d(F 2) = 0, and hence the map
d : F −→ Ω1

F is F 2-linear. Let ΩnF =
∧n

Ω1
F be the F -space of n-differential

forms over F . The map d : F −→ Ω1
F extends to d : ΩnF −→ Ωn+1

F for all
n ≥ 1 by d(xdx1 ∧ · · · ∧ dxn) = dx∧ dx1 ∧ · · · ∧ dxn. Recall that a 2-basis of F

is a set {ai , i ∈ I} ⊂ F such that the elements {aε =
∏
i ∈ I aεii , ε = (εi, i ∈

I), εi ∈ {0, 1} and almost all εi = 0} form a F 2-basis of F . If {a1, a2, . . . } is
a 2-basis of F , then the forms

dai1
ai1
∧ . . . ∧ dain

ain
1 ≤ i1 < · · · < in form

a F -basis of ΩnF . Fixing such a 2-basis, we define

[ΩnF ]
2 = {

∑

i1<···<in
c2i1···in

dai1
ai1
∧ · · · ∧ dain

ain
, ci1···in ∈ F}

which depends on the choice of the 2-basis. Then in [Ca] it is shown that
the space ZnF = ker(d : ΩnF −→ Ωn+1

F ) has a direct-sum decomposition
ZnF = [ΩnF ]

2 ⊕ dΩn−1F .

One now defines a homomorphism
(3.1) C : ZnF −→ ΩnF

by

C(
∑

i1<···<in
c2i1···in

dai1
ai1
∧ · · · ∧ dain

ain
+ dη) =

∑

i1<···<in
ci1···in

dai1
ai1
∧ · · · ∧ dain

ain

C obviously does not depend on the choice of the 2-basis and induces an iso-
morphism C : ZnF /dΩ

n−1
F

∼−→ ΩnF of abelian groups.
We will call C the Cartier-operator. Let us define now the homomorphism

℘ = C
−1 − 1 : ΩnF −→ ΩnF /dΩ

n−1
F , which is given on generators by ℘(x dx1

x1
∧

· · · ∧ dxn
xn

) = (x2 − x)dx1

x1
∧ · · · ∧ dxn

xn
mod dΩn−1F .

One can define a 2-basis dependent homomorphism ℘ : ΩnF → ΩnF as follows.
Fix a 2-basis B = {a1, a2, · · · } of F . Then we set
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℘

( ∑

i1<···<in
ci1···in

dai1
ai1
∧ · · · ∧ dain

ain

)

=
∑

i1<···<in
(c2i1···in − ci1···in)

dai1
ai1
∧ · · · ∧ dain

ain
.

If for ω =
∑

i1<···<in
ci1···in

dai1
ai1
∧ · · · ∧ dain

ain
we set

ω[2] =
∑

i1<···<in
c2i1···in

dai1
ai1
∧ · · · ∧ dain

ain
,

then ℘ω = ω[2] − ω.
Obviously if we change the 2-basis, the image of ω ∈ ΩnF under the new ℘-
operator differs from ℘ω by an exact form. We will use this type of operator
in section 5.
Let νF (n) = Ker(℘) and Hn+1(F ) = Coker(℘), so that 0 → νF (n) → ΩnF

℘→
ΩnF /dΩ

n−1
F → Hn+1(F )→ 0 is exact. An obvious characterization of νF (n) is

the following

(3.2) Lemma. νF (n) = {ω ∈ ΩnF \dω = 0, C(ω) = ω}

In [Ka]1 it is shown that νF (n) is additively generated by the pure logarithmic
differentials dx1

x1
∧ · · · ∧ dxn

xn
, which is a direct consequence of lemma 2 in [Ka]2.

Since we will refer frequently to this lemma, we will state it explicitly. Let
B = {ai, i ∈ I} be a 2-basis of F and endow I with a totally ordering. For
any j ∈ I set Fi resp. F≤j for the subfield of F generated over F 2 by the
elements ai with i < j resp. i ≤ j. Endow with the lexicographic ordering
the set

∑
n of functions α : {1, · · ·n} → I with α(i) < α(j) whenever i < j.

Then {daα(1) ∧ · · · ∧ daα(n), α ∈
∑
n} is a F -basis of ΩnF and for any α ∈∑

n set ΩnF,α resp. ΩnF,<α for the subspace of ΩnF generated by the elements
daβ(1) ∧ · · · ∧ daβ(n) with β ≤ α resp. β < α. Then Kato’s lemma 2 in [Ka]2
asserts

(3.3) Lemma. Let y ∈ F, α ∈ ∑n and ωα =
daα(1)

aα(1)
∧ · · · ∧ daα(n)

aα(n)
∈ ΩnF , be

such that

(y2 − y)ωα ∈ ΩnF,<α + dΩn−1F .

Then there exist v ∈ ΩnF,<α and ai ∈ F ∗α(i), 1 ≤ i ≤ n, with
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yωα = v +
da1
a1
∧ · · · ∧ dan

an
.

It is clear that the last remark above follows immediately from this result,
which we will quote as Kato’s lemma in what follows.

One of the main results of [Ka]1 is the fact that there exist two natural isomor-
phisms

(3.4) αF : νF (n) −→ I
n

F

(3.5) βF : Hn+1(F ) −→ InWq(F )

given on generators by

αF

(
dx1
x1
∧ · · · ∧ dxn

xn

)
=¿ x1, · · ·xn À

βF

(
x
dx1
x1
∧ · · · ∧ dxn

xn

)
=¿ x1, · · ·xn, x |]

Thus α and β translate many questions on bilinear and quadratic forms to
corresponding problems in differential forms, which some times are easier to
handle, in particular if one is able to choose a suitable 2-basis of the field F .
Nevertheless the use of the isomorphism α can be some times difficult, since
in order to compute α(ω) one must first write ω ∈ νF (n) as a sum of pure
logarithmic differential forms.

4 Milnor’s K-theory.

For any field F Milnor defined in [Mi]1 its K-groups Kn(F ) in a purely al-
gebraic manner as follows (s. also Pfister’s survey [Pf] for more details).
Let K1(F ) be the multiplicative group of F written additively, i.e. l :
F ∗

∼→ K1(F ), l(ab) = l(a) + l(b) for a, b ∈ F ∗. Set K0(F ) = Z and
Kn(F ) = K1(F )

⊗n/In (n ≥ 2), where In is the subgroup of K1(F )
⊗n gen-

erated by elements of the form l(a1) ⊗ · · · ⊗ l(an) with ai + aj = 1 for some
i 6= j. Denote by l(x1) · · · l(xn) the image of l(x1)⊗· · ·⊗ l(xn). Thus the main
defining relation of these groups is l(a)l(1− a) = 0 in K2(F ) for a 6= 0, 1.

Let kn(F ) = Kn(F )/2Kn(F ) and form the commutative ring k∗(F ) = k0(F )⊕
k1(F ) ⊕ · · · with k0(F ) = Z/2Z, k1(F )

∼→ F ∗/F ∗
2

. Milnor defines epimor-
phisms sn : kn(F )→ I

n

F by
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sn(l(a1) · · · l(an)) =¿ a1, · · · an À

and conjectures that they are isomorphisms for all n. If 2=0 in F , then there
are also natural homomorphisms (s. [Ka]1)

d log : kn(F ) −→ νF (n)

given by d log(l(a1) · · · l(an)) =
da1
a1
∧ · · · ∧ dan

an
.

A consequence of Kato’s lemma is that d log is an epimorphism. In [Ka]1 it
is shown that d log is an isomorphism, which combined with the isomorphism
(3.3) gives us the following main result of [Ka]1
(4.1) Theorem (Kato) For any field F with 2=0 there is a commutative
diagram of isomorphisms

kn(F ) d log−−−−−→ νF (n)

Â
sn ↘

Á↙ αF
I
n

F

The defining relation l(a)l(a − 1) = 0 (a 6= 0, 1) of the groups kn(F ) corre-
sponds in the case 2 6= 0 to the basic fact that the quaternion algebra (a, 1−a)
splits. Here (x, y) denotes the quaternion algebra F ⊕ Fe ⊕ Ff ⊕ Fef, e2 =
x, f2 = y, ef = −fe.

But if 2=0 we do not have such interpretation and the groups kn(F ) are suitable
only to describe symmetric bilinear forms and for quadratic forms, we need
another universal object, which we introduce now. Thus in order to obtain
groups which are appropriate to describe the quotients InWq(F ) by generators
and relations one is led to alter Milnor’s definition of kn taking into account
the basic relations of quaternion algebras over a field with 2=0. This has been
done in [Ar-Ba]1. Let a ∈ F ∗, b ∈ F . The quaternion algebra (a, b] is the
algebra F ⊕Fe⊕Ff ⊕Fef with e2 = a, f2 + f = b and ef + fe = e. It holds
(ax2, b+ y + y2] ∼= (a, b], and (a, b] splits if and only if
a ∈ DF ([1, b]) = {x2 + xy + by2/ x, y ∈ F}, and a 6= 0. Thus the bilinear map

φ : F ∗/F ∗
2 × F/℘F −→ Br(F )2, φ(ā, b̄) = (a, b]

satisfies φ(ā, b̄) = 0 iff a ∈ DF ([1, b]). The universal symbol for φ can be

constructed as follows. Let k1(F ) = F ∗/F ∗
2

, h1(F ) = F/℘F and set
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h2(F ) =
k1(F )⊗ h1(F )

< l(a)⊗ t(b) a ∈ DF [1, b], a 6= 0 >

(here t(b) is the image of b in h1(F ) = F/℘F ).
Thus one obtains a natural homomorphism

φF : h2(F ) −→ Br(F )2

which is in fact an isomorphism (s. [Ar-Ba]1,[Sa]). On the other hand we also
have a bilinear map

k1(F )× h1(F ) −→ H2(F )

given by (l(a), t(b)) −→ b daa , which induce a natural homomorphism

d log : h2(F ) −→ H2(F ).

This homomorphism is also an isomorphism (s. loc. cit), so that the group
h2(F ), H

2(F ), Br(F )2, IW q(F ) are all isomorphic and we have a commuta-
tive diagram of isomorphisms

(4.2)

h2(F ) φF−→ Br(F )2

d log

y

x
ω

H2(F ) −→βF IW q(F )

Let now

hn(F ) = k1(F )
⊗(n−1) ⊗ h1(F )/Rn

where Rn is the subgroup generated by the elements l(a1)⊗· · ·⊗ l(an−1)⊗ t(b)
such that either ai + ai+1 = 1 for some i or ai ∈ DF [1, b]. We denote by
l(a1) · · · l(an−1)t(b) in hn(F ) the image of l(a1)⊗ · · · ⊗ l(an−1)⊗ t(b).
The natural product kr(F )× hs(F )→ hr+s(F ) induces a k∗(F )-module struc-
ture on h∗(F ) = h1(F )⊕ h2(F )⊕ · · · . There are natural epimorphisms

sn : hn(F ) −→ In−1W q(F )

d log : hn(F ) −→ Hn(F )
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given by

sn(l(a1) · · · l(an−1)t(b)) =¿ a1, · · · an−1, b |]

d log(l(a1) · · · l(an−1)t(b)) = b
da1
a1
∧ · · · ∧ dan−1

an−1

In [Ar-Ba]1 it is shown that d log is an isomorphism, and combining it with
Kato’s isomorphism βF , we conclude also that sn is an isomorphism. Thus we
have (s. [Ar-Ba]1 and [Ka]1)

(4.3) Theorem. For all n there is a commutative diagram of isomorphisms

hn(F ) sn−−−−−→ In−1W qF (n)

Â
d log ↘ Á↙ βF

Hn(F )

Remark. The groups kn(F ) and hn(F ) are related through Galois cohomology.
If Fs is a separable closure of F and GF = Gal(Fs/F ) then kn(Fs) is a GF -
module and it holds (s. [Ar-Ba]1)

H0(GF , kn(Fs)) ∼= kn(F )

H1(GF , kn(Fs)) ∼= hn+1(F )

(s. [Ar]).

5 Behaviour of quadratic and bilinear forms under field exten-
sions.

A natural question is the behaviour of the groups ΩnF , νF (n), H
n+1(F ) resp

I
n

F , I
nWq(F ) under field extensions. Since the isomorphisms αF , βF (s. (3.4)

and (3.5)) are functorial, we only need to study the behaviour of the groups
νF (n), H

n+1(F ), to get information about I
n

F and InWq(F ) (but, as men-
tioned before, care must be taken with the use of αF ). If L/F is a field
extension, we denote by ΩnL/F the kernel Ker(ΩnF → ΩnL), and similarly we

define νL/F (n), H
n+1(L/F ), I

n

L/F and InWq(L/F ). By the remark above

Documenta Mathematica · Quadratic Forms LSU 2001 · 49–63



58 Ricardo Baeza

αF : νL/F (n)
∼→ I

n

L/F and βF : Hn+1(L/F )
∼→ InWq(L/F ). The easiest group

to handle is ΩnL/F because a suitable choice (if possible!) of a 2-basis of F and
L gives quickly the answer. Since

(5.1) νL/F (n) = νF (n) ∩ ΩnL/F

one also gets information about νL/F (n) knowing ΩnL/F . Let us now review
what we know about these kernels for some field extensions.

(i) Purely Transcendental extensions. If L = F (X), X any set of
variables over F , and B is a 2-basis of F , then B∪{X} is a 2-basis of F (X). In
particular ΩnF → ΩnF (X) is injective and ΩnF (X)/F = 0. Hence νF (X)/F (n) = 0.

Using Kato’s lemma (3.3) one can also show Hn+1(F (X)/F ) = 0 (s. [Ar-Ba]3)

(ii) Quadratic extensions. Let L = F (
√
b), b ∈ F\F 2 be a purely insepa-

rable quadratic extension of F . Choose a 2-basis B = {bi, i ∈ I} with b = bi0 ,
some i0 ∈ I. Then {bi, i ∈ I −{i0},

√
b } is a 2-basis of F (

√
b) and it is easy to

check that

(5.2) Ωn
F (
√
b)/F

= Ωn−1F ∧ db
b

Hence νF (
√
b)/F (n) = {ω ∧ db

b / ω ∈ Ωn−1F , ω ∧ db
b ∈ νF (n)}. It follows from

(5.11) below that

(5.3) νF (
√
b)/F (n) = {ω ∧

db

b
/ ω ∈ Ωn−1F and ℘ω ∈ a[Ωn−1F ]2+

dΩn−2F +Ωn−2F ∧ da}

(s. section 3 for the definition of ℘ω).

The corresponding result for I
n
is now (s. (5.12) below for a more general

statement)

(5.4) I
n

F (
√
b)/F =

∑

x∈F 2(b)∗

I
n−1
F < 1, x >

Let us now examine the kernel Hn+1(F (
√
b)/F ).

We have (s.[Ar-Ba]3)

(5.5) Hn+1(F (
√
b)/F ) = Ωn−1F ∧ db

b

The proof of this fact is again based on Kato’s lemma and runs briefly as
follows. Take B = {b1 = b, b2, · · · } a 2-basis of F (one can assume w.l.o.g.
that B is enumerable or even finite), so that B′ = {

√
b1, b2, · · · } is a 2-basis
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of F (
√
b). ω ∈ Hn+1(F (

√
b)/F ) means ω ∈ ΩnF and ω = ℘u + dv with

u ∈ Ωn
F (
√
b)
, v ∈ Ωn−1

F (
√
b)
. Order B′ such that

√
b > bi, i = 2, 3 · · · . Since

Ωn−1F ∧ db
b ⊆ Hn+1(F (

√
b)/F ) we may assume that db does not appear in the

2-basis expansion of ω and let α ∈∑n be the leading index of ω (notice α(i) > 1
for all i = 1, · · ·n), and let β ∈ ∑n be the leading index of u. Using Kato’s
lemma one may assume β ≤ α, and we obtain

(℘uα + ωα)
dbα
bα
≡ dv mod Ωn

F (
√
b),<α

(here dbα
bα

means
dbα(1)

bα(1)
∧ · · · ∧ dbα(n)

bα(n)
)

with v ∈ Ωn−1
F (
√
b)
. Since bα(i) <

√
b for all i, we conclude comparing coefficients

that the leading coefficient of dv is in F , so that uα is defined over F . Thus v
may be taken also in Ωn−1F . Since Ωn

F (
√
b)/F

= Ωn−1F ∧ db
b , we conclude in ΩnF

ωα
dbα
bα
≡ ℘(uα)

dbα
bα

+ dv mod ΩnF,<α +Ωn−1F ∧ db
b

Inserting this relation in ω, we can lower the highest index in ω. This concludes
the proof of the claim.
The corresponding kernel for InWq is now

(5.6) InWq(F (
√
b)/F ) = ¿ bÀ In−1Wq(F )

For quadratic separable extensions of F the corresponding kernels are much
easier to compute. Let L = F (z), z2 + z = b (b /∈ ℘F ) be a quadratic
separable extension of F . Since we can alter b by elements of ℘F , we can
assume b ∈ F 2. Thus z ∈ L2 and we see that any 2-basis of F remains a 2-
basis of L. In particular ΩnL = ΩnF ⊕ z · ΩnF . Thus ΩnL/F = 0 and also νL/F = 0.

The computation of Hn+1(L/F ) is in this case also very easy. We claim

(5.7) Hn+1(L/F ) = bνF (n)

For the proof, take ω ∈ Hn+1(F ) with ω = ℘u+dv, u ∈ ΩnL, v ∈ Ωn−1L and set
u = u1 + zu2, v = v1 + zv2 with ui ∈ ΩnF , vi ∈ Ωn−1F . Inserting in the above
equation it follows ℘u2 = dv2 ∈ dΩn−1F , and this means u2 ∈ νF (n). Moreover

ω = bu
[2]
2 +℘u1 + dv1 in ΩnF . But u2 ∈ νF (n) implies u

[2]
2 ≡ u2 ( mod dΩn−1F )

and since b ∈ F 2, it follows ω ≡ bu2 mod (℘ΩnF + dΩn−1F ), ie ω = bu2. This
proves (5.7). The corresponding result for quadratic forms is

(5.8) InWq(L/F ) = InF · [1, b]

(iii) Function fields of Pfister forms. Let us fix an anisotropic bilin-
ear n-fold Pfister-form φ =¿ a1, · · · , an À. This means that {a1, · · · , an}
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are part of 2-basis of F . Let L = F (φ) be the function field of the quadric

{φ(x, x) = 0}. Thus L = F (X)(
√
T ), where X = {Xµ, µ ∈ Sn} and T =

∑
µ

aµX2
µ, aµ =

n

Π
i = 1

a
µ(i)
i , for all µ ∈ Sn where Sn denotes the set of maps

µ : {1, · · · , n} → {0, 1} whith some µ(i) = 1
In [Ar-Ba]3 it is shown that

(5.9) ΩmL/F = 0 if m < n

(5.10) ΩmL/F = Ωm−nF ∧ da1
a1
∧ · · · ∧ dan

an
if m ≥ n

In particular νL/F (m) = 0 if m < n. The case m ≥ n has been considered in
[Ar-Ba]4 and the result is:

(5.11) νL/F (m) = {ω ∧ da1

a1
∧ · · · ∧ dan

an
/ ω ∈ Ωm−nF , ℘ω ∈

∑
ε 6= 0 aε[Ωm−nF ]2+

dΩm−n−1F +
n∑

i = 1
Ωm−n−1F ∧ dai}

If m = n, this result looks nicer, namely

νL/F (n) = {a
da1
a1
∧ · · · ∧ dan

an
/ a2 − a ∈ F 2(a1, · · · an)′ }

where F 2(a1, · · · , an)′ ⊂ F 2(a1, · · · an) is the subgroup consisting in the ele-

ments
∑
ε 6= 0 c2εa

ε1
1 · · · aεnn , ε = (ε1, · · · εn) ∈ {0, 1}n.

The corresponding result for bilinear forms is

(5.12) ImL/F =
〈
ψ ¿ x1, · · ·xn À/ ψ ∈ I

m−n
F , x1, · · · , xn ∈ F 2(a1, · · · an)∗

〉

The case m = n is particularly interesting, because

I
n

L/F = {¿ x1, · · ·xn À/ xi ∈ F 2(a1, · · · an)∗}

implies the following corollary

(5.13) Corollary. Given x1, · · ·xn, y1, · · · yn ∈ F 2(a1, · · · an)∗, then there
exist z1, · · · zn ∈ F 2(a1, · · · an)∗ such that

¿ x1, · · · , xn À +¿ y1, · · · , yn À ≡¿ z1, · · · zn À mod In+1
F

This is a kind of relative n-linkage property of the subfields F 2(a1, · · · , an)
of F .
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Let us now turn our attention to Hn+1. The main result of [Ar-Ba]3 is

(5.14) Theorem. If φ =¿ a1, · · · an À is anisotropic over F , then

Hn+1(F (φ)/F ) = F
da1
a1
∧ · · · ∧ dan

an

The proof of this fact, although elementary, is rather long. For ω ∈
Hn+1(F (φ)/F ) we get an equation ω = ℘u+dv with u ∈ ΩnF (φ) and v ∈ Ωn−1F (φ).

Writing F (φ) = L(y), L = F (Xµ, µ ∈ Sn), y
2 = T =

∑

µ∈Sn
aµX2

µ, aµ =

a
µ(1)
1 · · · aµ(n)n , we choose a 2-basis B = {ai, i ∈ I} of F containing a1, · · · an,

so that B ∪ {Xµ, µ ∈ Sn} is a 2-basis of L and then we fix a 2-basis
B′ = B \ {a1} ∪ {Xµ, µ ∈ Sn} ∪ {y} of F (φ). We order the elements of
this basis such that all Xµ > B \ {a1} and y > Xµ for all µ (i.e. y is maximal).
Using these choices, and Kato’s lemma, one sees that u and v can be chosen free
of differentials of the form dXµ or dy, and moreover that the scalar coefficients
of u and v do not contain y in the 2-basis expansion. Thus u and v are defined

over L = F (Xµ). But since H
n+1(F (φ)/L) = Ωn−1L ∧ dT by (5.5),we have

(5.15) ω = ℘u+ dv + λ ∧ dT

in ΩnL, with some λ ∈ Ωn−1L . Expanding with respect to the 2-basis B∪{Xµ, µ ∈
Sn} and comparing coefficients, one can show that u, v, λ can be taken in
ΩnF ⊗M and Ωn−1F ⊗M respectively, where M = F (X2

µ, µ ∈ Sn). This is the
start for long descent argument which leads to an equation ω = ℘u0 + dv0 +
bda1 ∧ · · · ∧ dan whith b ∈ F and u0, v0 defined over F
The corresponding result for quadratic forms is

(5.16) Theorem

InWq(F (φ)/F ) = {¿ a1, · · · , an, a |] / a ∈ F}

As it is shown in [Ar-Ba]2, this result implies the following one. Let
p =¿ a1, · · · , an, a |] be now an anisotropic quadratic n-fold Pfister form and
let F (p) be the function field of the quadric {p(x) = 0}. Then

(5.17) Theorem

Hn+1(F (p)/F ) = {0, p̄}

Remark. One may expect that (5.14) generalizes to the following assertion

Hm+1(F (φ)/F ) = Ωm−nF ∧ da1
a1
∧ · · · ∧ dan

an
,m ≥ n.
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6 An application:

generic splitting of quadratic forms.
One can develop a generic splitting theory for non singular quadratic forms
over a field with 2 = 0 in the same way as it has been done for the case 2 6= 0
in [Kn]1,2, because in the case 2 = 0 one has:

(i) the analogue of Pfister’s subform theorem (s. [Am], [Ba]3 and [Le])

(ii) The analogue of Knebusch’s norm theorem (s. [Ba]2).

With these tools one defines a generic splitting tower of a non singular quadratic
form q over F and obtains a leading form, which is similar to a Pfister form.
The degree of this form is called the degree of q. Now define I(n) = {q̄ ∈
Wq(F ) /deg q ≥ n}. Then I(n) is a W (F )-submodule of Wq(F ) and one
easily sees that InWq(F ) ⊆ I(n). In [Ar-Ba]3 it is shown that the equality
I(n) = InWq(F ) for all n (over a field of any characteristic) is equivalent with
the statement of theorem (5.17) above for any n. Thus we have

(6.1) Theorem For any field F with 2 = 0, it holds

I(n) = InWq(F )

Remark. The corresponding result for (5.17) over fields with 2 6= 0 has been
announced by Orlov-Vishik-Voevodsky (s. [Pf]).
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Abstract. The level question is, whether there exists a field F with
finite square class number q(F ) := |F×/F×2| and finite level s(F )
greater than four. While an answer to this question is still not known,
one may ask for lower bounds for q(F ) when the level is given.

For a nonreal field F of level s(F ) = 2n, we consider the filtration of
the groups DF (2

i), 0 ≤ i ≤ n, consisting of all the nonzero sums of
2i squares in F . Developing further ideas of A. Pfister, P. L. Chang
and D. Z. Djoković and by the use of combinatorics, we obtain lower
bounds for the invariants qi := |DF (2

i)/DF (2
i−1)|, for 1 ≤ i ≤ n,

in terms of s(F ). As a consequence, a field with finite level ≥ 8 will
have at least 512 square classes. Further we give lower bounds on the
cardinalities of the Witt ring and of the 2-torsion part of the Brauer
group of such a field.

1 Introduction

Let F be a field. The level of F , denoted by s(F ), is defined as the least positive
integer m such that −1 is a sum of m squares in F whenever such an integer
exists and ∞ otherwise. For fields of positive characteristic this invariant can
take only the values 1 and 2, depending just on whether −1 is a square in F or
not. Fields of level ∞, i.e. in which −1 is not a sum of squares, are called real
fields and an equivalent condition to s(F ) =∞ is the existence of an ordering
on F . Fields of finite level are also called nonreal fields.
For a long time it has been an open question which values exactly occur as
the level of some field. The complete solution to this problem was given by
A. Pfister in [10] and it inspired a big part of later advances in the theory
of quadratic forms, e.g. the development of the theory of Pfister forms and
the investigation of isotropy behaviors of quadratic forms under function field
extensions.
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Pfister proved that the level of a nonreal field is always a power of 2 [10, Satz
4] and further that, if F is any real field (e.g. Q or R) and n ≥ 0, then the
function field of the projective quadric X2

0 + · · ·+X2
2n = 0 over F has level 2n

[10, Satz 5]. These were the first examples of nonreal fields of level greater than
4 and, actually, still no examples of an essentially different kind are known.
In general it remains a difficult problem to determine the level of a given field of
characteristic zero. For an overview on what is known about levels of common
types of fields we refer to [8, Chap. XI, Section 2]. In the same book T. Y. Lam
also mentions the following question [8, p. 333]:

1.1. Level Question. Does there exist a field F such that 4 < s(F ) < ∞
and such that F×/F×

2
is finite?

Here and in the sequel we denote by F× the multiplicative group of F and by
F×

2
the subgroup of nonzero squares in F . The quotient F×/F×

2
is called the

square class group of F . We call q(F ) := |F×/F×2| the square class number
of F . Another subgroup of F× of importance is the group of nonzero sums of
squares in F , denoted as

∑
F×

2
.

Further, for any m ∈ IN we denote by DF (m) the set of elements of F× which
can be written as a sum of m squares over F . Pfister has shown that DF (m)
is a group whenever m is a power of 2 [10, Satz 9]. We thus have the following

group filtration for
∑
F×

2
:

F×
2 ( DF (2) ( DF (4) ( · · · ( DF (2

i−1) ( DF (2
i) ( · · · ⊂∑F×

2
. (1.2)

If F is nonreal of level 2n then we actually have DF (2
n + 1) =

∑
F×

2
= F×.

For i ≥ 1 we define q̄i(F ) := |DF (2
i)/DF (2

i−1)|. Note that the quotients

F×/F×
2
and DF (2

i)/DF (2
i−1) are 2-elementary abelian groups. So q(F ) and

q̄i(F ) are each either a power of 2 or ∞.
From (1.2) we see that the inequality

q(F ) ≥ q̄1(F ) · · · q̄n(F ) (1.3)

holds for any n ≥ 1. We will use this in particular when s(F ) = 2n.

While an answer to the level question is still not known, one may look for lower
bounds on |F×/F×2| in terms of s(F ).
One approach is to search for lower bounds on the invariants q̄i(F ) and to use
then (1.3) to obtain a bound for q(F ). Following this idea, A. Pfister obtained
in [11, Satz 18.d] the following estimate for a field F of level 2n:

q(F ) ≥ 2
n(n+1)

2 . (1.4)

His proof (see also [8, p. 325]) actually shows for 1≤ i≤n that

q̄i(F )≥2n+1−i. (1.5)
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Our standard examples of fields of level 1, 2 and 4, respectively, are the field
of complex numbers C, the finite field F3 and Q2, the field of dyadic numbers.
These examples show that (1.4) is best possible for n ≤ 2. For higher n,
however, P. L. Chang has improved the bound using combinatorics. In [1] he
shows that q(F ) ≥ 128 for a field F of level eight and further that q(F ) ≥ 16· 2ss2
for any nonreal field F of level s ≥ 16. His approach has been refined by D. Ž.
Djoković in [2], leading to the following estimate:

q(F ) ≥ 2 ·
s/2∑

i=1

1

s+ 2− i

(
s+ 1
i

)
>

2s

s
. (1.6)

Their method does not provide any information about the invariants q̄i(F ).

The aim of the present work is to extend this method and to get lower bounds
for the invariants q̄i(F ) with respect to s(F ) which improve (1.5). The com-
binatorial aspect is postponed to the two appendices where a certain coloring
problem for (hyper-)graphs is considered.

We use common notations and results from quadratic form theory; the standard
references are [8] and [12]. (Note that the uncomfortable case of characteristic 2
is implicitly excluded whenever we deal with a field of level greater than 1.)
For isometry of quadratic forms we use the symbol ∼= . For a quadratic form ϕ
over F we denote by DF (ϕ) the set of nonzero elements of F represented by ϕ.
We sometimes say just “form” or “quadratic form” to mean “non-degenerate
quadratic form”.
A diagonalized quadratic form over F with coefficients a1, . . . , am ∈ F× is
denoted by 〈a1, . . . , am〉. An m-fold Pfister form is a quadratic form of the
shape 〈1, a1〉⊗ · · ·⊗ 〈1, am〉 and shortly written as 〈〈a1, . . . , am〉〉; its dimension
is 2m. A neighbor of an m-fold Pfister form π is a quadratic form ϕ which is
similar to a subform of π and of dimension greater than 2n−1. We know that
in this situation ϕ is isotropic if and only of π is hyperbolic.
ByW (F ) we denote the Witt ring of F , further by Br(F ) the Brauer group and
by Br2(F ) its 2-torsion part. In (3.1), (5.4) and (5.5) we shall use Milnor K-
theory. For definitions and properties of the Milnor ring k∗F and its homgenous
components kmF (m ≥ 0) we refer to [9] and [3]. However, we use the notation
{a1, . . . , am} instead of `(a1) · · · `(am) for a symbol in kmF . We recall that
this symbol is zero in kmF if and only if the corresponding m-fold Pfister
form 〈〈−a1, . . . ,−am〉〉 over F is hyperbolic (see [3, Main Theorem 3.2]). In
particular, s(F ) = 2n is equivalent to {−1}n 6= 0 and {−1}n+1 = 0 in k∗F .
Everywhere else in the text, {x1, . . . , xn} stands simply for the set of elements
x1, . . . , x1.
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2 Sums of squares in fields

Let F be a field. For an element x ∈ F we define its length (over F ) to be
the least positive integer m such that x can be written as a sum of m nonzero
squares over F if such an integer exists and ∞ otherwise (i.e. if x is not a
nontrivial sum of nonzero squares over F ). We denote this value in IN ∪ {∞}
by `F (x), or just by `(x) whenever the context makes clear over which field F
we are working. Obviously `F (x) depends on x only up to multiplication by a
nonzero square in F ; in other words, `F (x) is an invariant of the square class

xF×
2
whenever x 6= 0.

For m ≥ 1, DF (m) is by definition the set {x ∈ F× | `(x) ≤ m}. Our
investigation into lengths of field elements is based on the following famous
result [10, Satz 2]:

2.1. Theorem (Pfister). For any i ≥ 0, DF (2
i) is a subgroup of F×.

A simple proof within the theory of Pfister forms can be found in [12, 4.4.1.
Lemma]. As a consequence of this theorem one gets an inequality linking the
lengths of two elements to the length of their product. We include a proof of
this result, which is [10, Satz 3].

2.2. Lemma. For any x, y ∈ F we have the inequalities `(x+ y) ≤ `(x) + `(y)
and `(xy) ≤ `(x) + `(y)− 1.

Proof: The first inequality is obvious from the definition of the length.
The second inequality is trivial if xy is zero or if x or y is not a sum of squares.
So we may suppose that both x and y are nonzero sums of squares in F . Let
then r be the least nonnegative integer such that x, y ∈ DF (2

r). We will prove
`(xy) < `(x) + `(y) by induction on r. If r = 0 then x, y and xy are squares
in F and the inequality is clear. Suppose now that r > 0. Since DF (2

r) is a
group we know that `(xy) ≤ 2r. So the inequality is clear if 2r < `(x) + `(y).
Otherwise, we may suppose that `(y) ≤ 2r−1. By the choice of r we then have
2r−1 < `(x) ≤ 2r and may therefore write x = a + z with a, z ∈ F× such
that `(a) = 2r−1 and `(z) = `(x) − 2r−1 ≤ 2r−1. By the induction hypothesis
we have `(zy) < `(y) + `(z). As DF (2

r−1) is a group we have `(ay) ≤ 2r−1.
Since xy = ay+zy, using the first inequality of the statement we obtain finally
`(xy) ≤ `(ay) + `(zy) < 2r−1 + `(y) + `(z) = `(x) + `(y). ¤

According to the definition we gave in the introduction, the level of F is the
length of −1 in F . We may also conclude that `F (0) = s(F ) + 1. Therefore,
from any of the inequalities of the lemma we obtain immediately:

2.3. Corollary. For any x ∈ F we have `(x) + `(−x) ≥ s(F ) + 1. ¤

2.4. Corollary. Let a1, . . . , am∈F×. If the quadratic form 〈a1, . . . , am〉 over
F represents the element x ∈ F nontrivially then `(a1) + · · ·+ `(am) ≥ `(x).
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Proof: If the form 〈a1, . . . , am〉 represents x ∈ F nontrivially, this means that
there are x1, . . . , xm ∈ F , not all zero, such that a1x

2
1 + · · · + amx

2
m = x. We

may suppose that xi is nonzero for 1 ≤ i ≤ m′ and zero for m′ < i ≤ m. From
the first inequality of the lemma we obtain `(x) ≤ `(a1x21) + · · ·+ `(am′x2m′) =
`(a1) + · · ·+ `(am′). ¤

For i ≥ 0, we say that the elements a1, . . . , am ∈ F× are independent modulo
DF (2

i) if in F×/DF (2
i), considered as an F2-vectorspace, the classes repre-

sented by a1, . . . , am are F2-linear independent.

2.5. Proposition. For i ≥ 2, let a, b ∈ DF (3·2i−2)\DF (2
i−1) and c ∈ DF (2

i)
such that `(a + b + c) > 2i+1. Then the elements a, b and c of DF (2

i) are
independent modulo DF (2

i−1).

Proof: We have to show that a, b, c, ab, ac, bc, abc /∈ DF (2
i−1). For a and b this

is already given. We put x := a + b + c. Each of the quadratic forms 〈a, b, c〉,
〈a, b, abc〉, 〈1, ab, ac〉 and 〈ac, bc, 1〉 over F represents one of the elements x,
abx, ax and cx and neither of these elements lies in the group DF (2

i+1). We
obtain from (2.4) that each of the numbers `(a) + `(b) + `(c), `(a) + `(b) +
`(abc), 1 + `(ab) + `(ac) and `(ac) + `(bc) + 1 is greater than 2i+1. Since
`(a) + `(b) ≤ 3 · 2i−1 and ab, ac, bc ∈ DF (2

i) we obtain `(c), `(abc) ≥ 2i−1 and
further `(ab) = `(ac) = `(bc) = 2i. ¤

For the rest of this section we fix a sum of squares

x = x21 + · · ·+ x2l (2.6)

with x1, . . . , xl ∈ F×, x ∈ F and l = `F (x). For a subset I ⊂ {1, . . . , l} we
denote xI :=

∑
i∈I x

2
i . If I is not empty then we have `(xI) = |I|.

For a real number z we denote by dze the least integer ≥ z.

2.7. Theorem. Let I and J be nonempty proper subsets of {1, . . . , l}. Let r
be a nonnegative integer such that xIxJ ∈ DF (2

r). Then the following hold:

(i)
⌈
|I|
2r

⌉
=
⌈
|J|
2r

⌉
, in particular | |I| − |J | | < 2r,

(ii) |I \ J | , |J \ I| ≤ 2 `(xIxJ)− 1 < 2r+1,

(iii) |I ∪ J | − |I ∩ J | ≤ 2r+1 + `(xIxJ)− 1 ≤ 3 · 2r − 1.

Proof: The hypothesis implies that xI and xJ are nonzero elements of F . We
set m := `(xIxJ) and a := xJ

xI
. Then `(a) = m ≤ 2r.

If ν is an integer such that |I| ≤ ν2r then we can write xI as a sum of ≤ ν
elements of DF (2

r). As DF (2
r) is a group, xJ = axI can also be written as

a sum of ≤ ν elements of DF (2
r) which means that |J | = `(xJ) ≤ ν2r. By

symmetry we obtain for any ν ∈ IN that |I| ≤ ν2r if and only if |J | ≤ ν2r.
This shows (i).
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We compute xI∪J = xI\J + xJ = (1+a)xI\J + axI∩J and then substitute
y := (1+a)xI\J and z := axI∩J to have xI∪J = y + z.
If y 6= 0 then we have `(y) ≤ m + |I \ J | by (2.2), but also `(y) ≤ 2r+1

since DF (2
r+1) is a group. If z 6= 0 then (2.2) yields `(z) ≤ m + |I ∩ J | − 1.

Therefore, if at least one of y and z is nonzero then we obtain the inequalities
`(y+ z) ≤ |I|+2m− 1 and `(y+ z) ≤ 2r+1+m+ |I ∩J | − 1. Both inequalities
remain valid in the case y = z = 0, since then necessarily a = −1, whence
`(y+ z) = `(0) = m+1. As |I ∪J | = `(y+ z) we obtain (ii) by symmetry from
the first and (iii) from the second inequality. ¤

For m = 1 this leads to an observation made in the proof of [1, Theorem 1]:

2.8. Corollary (Chang). Let I and J be as in the theorem. If xI and xJ
lie in the same square class then both sets have the same cardinality and differ
by at most one element. ¤

2.9. Corollary. Let I and J be as in the theorem with |I| = |J | = 2i, i ≥ 2.
If xI and xJ represent the same class modulo DF (2

i−1) then |I ∩J | ≥ 2i−2+1.

Proof: If xI and xJ lie in the same class modulo DF (2
i−1) then `(xIxJ)≤ 2i−1.

Applying part (iii) of the theorem for r = i − 1 we obtain |I ∪ J | − |I ∩ J | ≤
3 ·2i−1−1. But our hypothesis here gives |I∪J | = 2 ·2i−|I∩J |. This together
implies |I ∩ J | > 2i−2. ¤

3 The invariants q̄i

For a nonreal field F of level 2n we are going to study the invariants q̄i(F ) =
|DF (2

i)/DF (2
i−1)| for 1 ≤ i ≤ n. In particular, we are interested to know

whether Pfister’s bounds (1.5) can be improved.

First we note that the bound q̄n(F ) ≥ 2, obtained from (1.5) for i = n,
just takes into account that −1 represents a nontrivial class in the group
DF (2

n)/DF (2
n−1). In spite of the simple argument, this bound is optimal

for every n ≥ 1. More precisely, for any n ≥ 1 there is a field F of level 2n such
that F× = DF (2

n−1)∪−DF (2
n−1). The construction of such an example will

be included in a forthcoming paper of the author.
We now turn to consider q̄n−1(F ). For i = n− 1, (1.5) gives q̄n−1(F ) ≥ 4. The
example F = Q2 shows that this bound is optimal for n = 2.

3.1. Theorem. Let F be a field of level 2n with n ≥ 3. Then q̄n−1(F ) ≥ 16.

Proof: Since `(0) = 2n+1 and n ≥ 3, we may choose elements a1, a2, a3 ∈ F×
such that a1 + a2 + a3 = 0 and 2n−2 + 1 ≤ `(ai) ≤ 3 · 2n−3 for i = 1, 2, 3.
Then by (2.5), a1, a2 and a3 are independent modulo DF (2

n−2). Let H be the
subgroup of DF (2

n−1) generated by DF (2
n−2) and the elements a1, a2 and a3.

Since |H/DF (2
n−2)| = 8 it remains to show that H 6= DF (2

n−1).
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To this aim, we will calculate in the Milnor ring k∗F . For i = 1, 2, 3 we
fix the symbols βi := {a1a2a3, ai} and γi := {−a1a2a3,−ai} in k2F . Let
ε denote the element {−1} in k1F . Since s(F ) = 2n we have εn 6= 0. As
a1, a2, a3 ∈ DF (2

n−1) we observe that β1+β2+β3 = {−1, a1a2a3} is annihilated
by εn−2 and that εn−2(βi+γi) = εn−2({a1a2a3,−1}+{−1, ai}+{−1,−1}) = εn

for i = 1, 2, 3.

If εn−2βi 6= 0 in knF for some i then by the above relations we may suppose
that εn−2βi 6= 0 for i = 1, 2 and εn−2β3 6= εn, i.e. εn−2γ3 6= 0. Using
that a1 + a2 + a3 = 0 we compute {−a2,−a3} = {a1,−a2a3} = β1 and equally
{−a1,−a3} = β2. Since none of β1, β2 and γ3 is annihilated by εn−2, the
symbols εn−2{−a2,−a3}, εn−2{−a1,−a3} and εn−2{−a1a2,−a3} in knF are
all nonzero. Therefore the Pfister forms 2n−2×〈〈a2, a3〉〉, 2n−2×〈〈a1, a3〉〉 and
2n−2×〈〈a1a2, a3〉〉 are anisotropic. Further, 2n−2×〈〈1, a3〉〉 ∼= 2n×〈1〉 is anisotropic
since s(F ) = 2n. This shows that −1,−a1,−a2,−a1a2 /∈ DF (2

n−2×〈〈a3〉〉). As
the group DF (2

n−2×〈〈a3〉〉) contains the subgroup DF (2
n−2) and the element

a3 we conclude that DF (2
n−2×〈〈a3〉〉) ∩ −H = ∅. On the other hand, since

`(−a3) ≤ `(a1)+`(a2) ≤ 3 ·2n−2 we can write −a3 = x+y with x ∈ DF (2
n−1),

y ∈ DF (2
n−2) and obtain −x = y + a3 ∈ DF (2

n−2×〈〈a3〉〉) ∩ −DF (2
n−1).

Now we study the case where εn−2βi = 0 for i = 1, 2, 3. As εn−2βi =
εn−2{−a1a2a3, ai}, this means that the Pfister form 2n−2 × 〈〈a1a2a3,−ai〉〉
is hyperbolic for i = 1, 2, 3. We conclude that H ⊂ DF (2

n−2 × 〈〈a1a2a3〉〉).
As the Pfister form 2n−1 × 〈〈a1a2a3〉〉 ∼= 2n × 〈1〉 is anisotropic we have
−1 /∈ DF (2

n−2 × 〈〈a1a2a3〉〉) and therefore DF (2
n−2 × 〈〈a1a2a3〉〉) ∩ −H = ∅.

Since −a1a2a3 = a21a2 + a22a1 we have `(−a1a2a3) ≤ `(a2) + `(a1) ≤ 3 · 2n−2
and may therefore write −a1a2a3 = x+y with x ∈ DF (2

n−1) and y ∈ DF (2
n−2)

to obtain this time −x = y + a1a2a3 ∈ DF (2
n−2 × 〈〈a1a2a3〉〉) ∩ −DF (2

n−1).

In both cases we have found an element x ∈ DF (2
n−1) \H. ¤

While the lower bound on q̄n−1 of the last theorem is based upon several
algebraic arguments, the improvement (with respect to (1.5)) for the lower
bounds on q̄i(F ) for 2 ≤ i ≤ n− 2 which we present now, is obtained by
combinatorial reasoning, developed in appendix A.

For integers 0 ≤ k ≤ l we denote by P lk the set of subsets of {1, . . . , l} with
exactly k elements.

3.2. Theorem. Let F be a field of level 2n. Then

q̄i(F ) ≥





27 for i = n−2 ≥ 3 ,

2(n−i)(2
n−i+1)+1 for n+1

2 < i ≤ n−3 ,
2(n−i)(2

i−2+1)+1 for 2 ≤ i ≤ n+1
2 .

Proof: We fix elements x1, . . . , x2n ∈ F× such that x21 + · · ·+ x22n = −1. For
a subset J ⊂ {1, . . . , 2n} we denote xJ :=

∑
j∈J x

2
j .

Let 2 ≤ i ≤ n+1
2 . We consider the map f : P2n

2i −→ DF (2
i)/DF (2

i−1) which
sends a 2i-subset J ⊂ {1, . . . , 2n} to the class xJDF (2

i−1). By (2.9), if J1, J2 ∈
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P2n

2i are such that f(J1) = f(J2) then |J1 ∩ J2| ≥ 2i−2 + 1. Therefore (A.8) in
appendix A shows |DF (2

i)/DF (2
i−1)| ≥ |Im(f)| > 2r for r := (n− i)(2i−2+1).

Since DF (2
i)/DF (2

i−1) is a 2-elementary abelian group it must then have at
least 2r+1 elements. This establishes the third case in the statement.
In the remaining cases we cannot apply (A.8) directly for i and m := n. In the
case n+1

2 <i≤n−3 we have n ≥ 8 and i ≥ 5 and define n′ := 2(n− i+ 1) and

i′ := n− i+ 2 = n′

2 + 1. In the case i = n− 2 and n ≥ 5 we set instead n′ := 5

and i′ := 3 = n′+1
2 . Note that in both cases n′ − i′ = n− i.

For 1 ≤ ν ≤ 2n
′

let Jν := {(ν−1) ·2n−n′+1, . . . , ν ·2n−n′} and yν := xJν . This
yields y1 + · · · + y2n′ = −1 and `(yν) = |Jν | = 2n−n

′

for 1 ≤ ν ≤ 2n
′

. Now

we consider the map f ′ : P2n
′

2i′
−→ DF (2

i)/DF (2
i−1) which sends a 2i

′

-subset

N ⊂ {1, . . . , 2n′} to the class (
∑
ν∈Nyν)DF (2

i−1).

Suppose that f ′(N1) = f ′(N2) for N1, N2 ∈ P2n
′

2i′
. For k = 1, 2 let Ik :=⋃

ν∈Nk
Jν ∈ P2n

2i . Since by hypothesis
∑
ν∈N1

yν = xI1 and
∑
ν∈N2

yν = xI2 lie

in the same class of DF (2
i)/DF (2

i−1), (2.9) shows that |I1∩ I2| ≥ 2i−2+1 and
it follows that |N1 ∩N2| ≥ 2i−2−(n−n

′) + 1 = 2i
′−2 + 1.

Having established this intersection property of f ′, we obtain from (A.8) that
|DF (2

i)/DF (2
i−1)| ≥ |Im(f ′)| > 2r

′

holds for r′ := (n′ − i′)(2i′−2 + 1). As
before, we conclude that |DF (2

i)/DF (2
i−1)| ≥ 2r

′+1. This finishes the proof
since r′ = 6 in case i = n− 2 and r′ = (n− i)(2n−i + 1) otherwise. ¤

4 Nonreal fields with q̄1 equal to the level

From (1.5) we know that q̄1(F ) ≥ s(F ) holds for any nonreal field F . This
bound is optimal for fields of level 1, 2 and 4 as the standard examples show
(see introduction). For nonreal fields of higher level, however, there is still no
known example where q̄1(F ) <∞.
We show that q̄1(F ) = s(F ) < ∞ is a rather strong condition, with several
consequences on the quadratic form structure of F . In particular, for s(F ) ≥ 8

it implies that q̄2(F ) ≥ s(F )2

2 (4.9).

Let ξ be an element of length l ≥ 3 of F . We fix a representation of ξ as a sum
of l squares

ξ = x21 + · · ·+ x2l (4.1)

with x1, . . . , xl ∈ F×. Let f : P l2 → DF (2)/F
×2

be the function which sends a
(nonordered) pair of distinct i, j ≤ l to the square class of x2i +x

2
j . Considering

the elements of DF (2)/F
×2

as a set of colors, we can interprete f as an edge-
coloring of a complete graph in l vertices v1, . . . , vl. We denote this graph
together with its edge-coloring f by G. If in this graph two edges [vi, vj ] and
[vi′ , vj′ ] are of the same color (with {i, j}, {i′, j′} ∈ P l2) this means that x2i +x

2
j
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and x2i′ + x2j′ lie in the same square class of F , which by (2.8) implies that the
sets {i, j} and {i′, j′} intersect. In other words, two edges of the same color in
G need to have a vertex in common, i.e. G is a CC-graph in the terminology of
appendix B.

We get from (B.1) that at least l − 2 colors appear in G. Furthermore, since
x21 + · · · + x2l is of length l, no sum x2i + x2j with i 6= j can be a square. This
gives a proof of [13, Theorem 1]:

4.2. Proposition (Tort). In (4.1), the partial sums x2i +x
2
j with 1≤ i<j≤ l

represent at least l − 2 different nontrivial classes of DF (2)/F
×2

. ¤

Let now F be a nonreal field of level s = 2n. We then can choose ξ := 0, which
is of length s+ 1 over F , and write (4.1) as

0 = x21 + · · ·+ x2s+1 . (4.3)

By the above proposition the partial sums x2i + x2j (with 1 ≤ i < j ≤ s + 1)

represent at least s− 1 nontrivial classes of DF (2)/F
×2

. This shows:

4.4. Corollary. Let F be a nonreal field of level s. Then q̄1(F ) ≥ s. More-
over, if q̄1(F ) = s then, given any representation (4.3) of zero as a sum of s+1

nonzero squares over F , every nontrivial class of DF (2)/F
×2

is represented by
a partial sum x2i + x2j with 1≤ i<j≤s+1. ¤

Given a subgroup G ⊂ F×/F×
2
of finite order 2m we may choose an irredun-

dant set of representatives a1, . . . , a2m ⊂ F× of the square classes in G and
define the quadratic form πG := 〈a1, . . . , a2m〉. Up to isometry, this form does
only depend on G and not on the particular choice of the ai. If we choose
the ai such that a1, . . . am are independent modulo F×

2
then πG is equal to

〈〈a1, . . . , am〉〉, hence πG is an m-fold Pfister form. If q̄1(F ) is finite we write

πD(2) for πG with G := DF (2)/F
×2

.

4.5. Proposition. Let F be a nonreal field with s(F ) > 1 and q̄1(F ) < ∞.
Then πD(2) is hyperbolic.

Proof: Let s := s(F ). Given a representation (4.3) of zero as sum of s + 1
squares over F we define ai := x22i−1 + x22i for 1 ≤ i ≤ s/2. By (2.8) the ai lie
in distinct nontrivial square classes. Since a1 + · · ·+ as/2 + x2s+1 = 0 the form
〈1, a1, . . . , as/2〉 is isotropic. On the other hand, this is a subform of the Pfister
form πD(2), which then must be hyperbolic. ¤

4.6. Lemma. Let H be a subgroup of F× containing F×
2
such that H/F×

2
is

of order 2m with m ≥ 2. If a, b, c, d ∈ H, lie in distinct square classes then
there are a3, . . . , am ∈ H such that πH = 〈a, b, c, d〉 ⊗ 〈〈a3, . . . , am〉〉.
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Proof: It is easy to verify that, given four distinct elements t, u, v, w in a
2-elementary abelian group G there exists a subgroup K of index 4 in G such
that t, u, v, w represent the four classes of G/K.

We apply this fact to the square classes aF×
2
, bF×

2
, cF×

2
and dF×

2
in G :=

H/F×
2
. A subgroup K with the stated property must have order 2m−2. We

choose elements a3, . . . , am ∈ F× such that their square classes form an F2-basis
of K. The rest is clear. ¤

4.7. Proposition. Let F be a field with q̄1(F ) = s(F ) = 2n, n ≥ 2, and let
a, b, c, d be elements of DF (2) which lie in distinct square classes.

(a) If a /∈ F×2
then DF (〈1, 1〉) ∩DF (〈1, a〉) = {1, a}F×2

.

(b) If x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) ∩DF (〈1, c〉) then `(−x) = 2n.

(c) DF (〈a, b〉) ∩DF (〈c, d〉) = ∅.

(d) If n ≥ 3 then DF (〈a, b〉) ∩DF (〈a, c〉) ∩DF (〈b, c〉) = ∅.

(e) If x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) then `(cx) = 4 or `(−x) ≥ 2n − 1.

Proof: (a) Given a and b lying in distinct nontrivial classes of DF (2)/F
×2

we may choose a3, . . . , a2n−1 ∈ DF (2) such that ϕ := 〈1, a, b, a3 . . . , a2n−1〉 is a
neighbor of the Pfister form πD(2) which is hyperbolic by the last proposition.
So ϕ is isotropic. Now b ∈ DF (〈1, a〉) would imply that ϕ is isometric to
〈1, 1, ab, a3 . . . , a2n−1〉 which is a subform of 2n × 〈1〉. This is impossible since
the latter form is anisotropic by the hypothesis that s(F ) = 2n.
(b) Let x ∈ DF (〈1, a〉)∩DF (〈1, b〉)∩DF (〈1, c〉) where a, b, c ∈ DF (2) are dis-
tinct modulo squares. Then clearly `(x) ≤ 3 and we have also x ∈ DF (〈1, abc〉)
(with −a,−b and −c also −abc lies in DF (〈1,−x〉)). It follows from (a) that
`(x) 6= 2. If x is a square then `(−x) = `(−1) = 2n. Otherwise we must have
`(x) = 3. Then none of a, b, c, abc can be a square. Further `(−x) ≥ 2n − 2 by
(2.3). Thus (4.2) shows that, in a representation of −x as sum of `(−x) squares
over F , the partial sums of length two lie in at least 2n − 4 distinct nontriv-
ial square classes. As |DF (2)/F

×2| = 2n by hypothesis, at least one of these
square classes must also be represented by one of a, b, c or abc. Without loss of
generality we may suppose that −x = y + at2 with `(y) = `(−x)− 2. Writing
x = u2 + av2 yields 0 = x − x = y + u2 + a(t2 + v2). Thus 2n + 1 ≤ `(y) + 3
and 2n ≤ `(y)+ 2 = `(−x). Then −x = (−1) ·x ∈ DF (2

n) implies `(−x) = 2n.
(c) By the above lemma there are a3, . . . , an ∈ DF (2) such that πD(2) is equal
to 〈a, b, c, d〉 ⊗ 〈〈a3, . . . , an〉〉.
Suppose now that there exists an x ∈ DF (〈a, b〉)∩DF (〈c, d〉). Then 〈a, b, c, d〉 ∼=
〈x, abx, x, cdx〉, which is similar to 〈1, 1, 1, abcd〉. Hence πD(2) is similar to
〈1, 1, 1, abcd〉 ⊗ 〈〈a3, . . . , an〉〉 ∼= 2n−1 × 〈1〉 ⊥ 〈〈abcd, a3, . . . , an〉〉. It follows that
the form (2n−1 + 1) × 〈1〉 is a Pfister neighbor of πD(2), hence isotropic since
πD(2) is hyperbolic. This is a contradiction to s(F ) = 2n.
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(d) After multiplying by a in the statement we may suppose that a = 1.
Suppose that there exists x ∈ DF (〈1, b〉) ∩ DF (〈1, c〉) ∩ DF (〈b, c〉). It fol-
lows −b,−c ∈ DF (〈1,−x〉), thus bc ∈ DF (〈1,−x〉) ∩DF (〈1, 1〉) ⊂ DF (〈1, x〉).
Therefore we have 〈1, b, c, bc〉 ∼= 〈1, x, bcx, bc〉 ∼= 〈bc, bcx, bcx, bc〉, whence
〈1, b, c, bc〉 ∼= 〈1, 1, x, x〉. Next we choose a3, . . . , an ∈ DF (2) such that
πD(2)

∼= 〈1, b, c, bc〉 ⊗ 〈〈a3, . . . , an〉〉 and obtain πD(2)
∼= 〈〈1, x, a3, . . . , an〉〉 ∼=

2n−1 × 〈〈x〉〉 ∼= 2n × 〈1〉, since a3, . . . , an ∈ DF (2), n ≥ 3 and x ∈ DF (4). This
is contradictory since πD(2) is hyperbolic but s(F ) = 2n.
(e) Let x ∈ DF (〈1, a〉) ∩ DF (〈1, b〉). Then, certainly, x and cx belong to
DF (4). If `(cx) ≤ 2 then `(x) ≤ 2 and (2.3) yields `(−x) ≥ 2n − 1. Suppose
now `(cx) = 3 and write cx = e + t2 with t ∈ F× and e ∈ DF (2). We
have cx ∈ DF (〈c, ac〉)∩DF (〈c, bc〉)∩DF (〈1, e〉). Since 1, c, ac and bc represent
distinct square classes, we conclude with (c) that e and c lie in the same square
class. Therefore x ∈ DF (〈1, a〉) ∩DF (〈1, b〉) ∩DF (〈1, c〉), which by (b) implies
`(−x) = 2n. ¤

4.8. Theorem. Let F be a nonreal field of level s, equal to q̄1(F ). Any re-
presentation (4.3) of zero as a nontrivial sum of s+ 1 squares over F may be
reordered in such way that the following holds: for {i, j}, {i′, j′} ∈ Ps+1

2 the
partial sums x2i + x2j and x2i′ + x2j′ lie in the same square class if and only if
max{i, j, 3} = max{i′, j′, 3}.

Proof: Let G be a complete graph in s+ 1 vertices v1, . . . , vs+1 and with the

edge-coloring given by f : Ps+1
2 → DF (2)/F

×2
, {i, j} 7→ (x2i + x2j )F

×2
(see at

the beginning of this section). We know from (4.4) that exactly s − 1 colors
appear in G. Further, G does not contain any triangle with three different
colors; indeed, such a triangle would correspond to a partial sum of three
squares x := x2i + x2j + x2k with 1 ≤ i < j < k ≤ s + 1 where a := x2i + x2j ,

b := x2i + x2k and c := x2j + x2k lie in three distinct square classes which is
impossible by part (b) of the last proposition since `(−x) = s − 2. Therefore
by (B.3), G is a total CC-graph.
Since G has precisely (s+1)− 2 colors we obtain from the definition of a total
CC-graph in appendix B and the subsequent remarks: the vertices in G (and
at the same time the xi) may be renumbered in such way that for {i, j} ∈ Ps+1

2

the color of the edge between vi and vj (i.e. the square class of x
2
i +x

2
j ) depends

precisely on max{i, j, 3}. ¤

4.9. Corollary. Let F be a nonreal field of level s = q̄1(F ) ≥ 8. Then

q̄2(F ) ≥ s2

2 .

Proof: Let 0 = x21 + · · ·+ x2s+1 be a representation of zero as a nontrivial sum
of s+ 1 squares over F . By the theorem we may, after reordering the indices,
suppose that for {i, j} ∈ Ps+1

2 the square class of x2i + x2j depends precisely on
max{i, j, 3}.
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Defining ai := x2i+1 + x2i+2 for 1 ≤ i ≤ s−1, we get a system of representatives

a1, . . . , as−1 of the s − 1 nontrivial classes of DF (2)/F
×2

. Further we set
cjk := x21 + x2j+2+ x2k+2 for 1 ≤ j < k ≤ s− 1.
Suppose now that b cjk = cj′k′ for b ∈ DF (2) and 1 ≤ j′ < k′ ≤ s − 1. Then
cj′k′ ∈ DF (〈1, aj′〉) ∩ DF (〈1, ak′〉) ∩ DF (〈b, b aj〉) ∩ DF (〈b, b ak〉). In view of

(b), (c) and (d) of the proposition this is only possible if b ∈ F×2
, j = j′ and

k = k′.
This shows that the elements cjk for 1 ≤ j < k ≤ s − 1 represent distinct
nontrivial classes of DF (4)/DF (2). Therefore q̄2(F ) >

(
s−1
2

)
. Since s is a power

of 2, at least 8, and q̄2(F ) is a power of 2 or infinite we obtain q̄2(F ) ≥ s2

2 . ¤

5 Lower bounds for the square class number

We start this section with Djoković’s proof of his bound (1.6), rephrased in the
terminology of appendix A.

5.1. Theorem (Djoković). If F is a nonreal field of level s ≥ 8 then

q(F ) ≥ 2 · |DF (s/2)/F
×2| ≥ 2 ·

s/2∑

i=1

1

s+ 2− i

(
s+ 1
i

)
.

Proof: The first inequality is clear since |F×/DF (s/2)| ≥ 2.
Next we consider a representation 0 = x21 + · · · + x2s+1 of zero as a sum of
s+1 nonzero squares over F . We denote by P the set of nonempty subsets
of {1, . . . , s + 1} of cardinality not greater than s/2. We define f : P →
DF (s/2)/F

×2
, J 7→ (

∑
j∈J x

2
j )F

×2
. For 1 ≤ k ≤ s/2 we write fk for the

restriction of f to Ps+1
k . By (2.8), for k 6= k′ the images of fk and fk′ are

disjoint. Also by (2.8), fk is (k−1)-connected for any k ≤ s/2 and therefore
|Im(fk)| ≥ 1

(s+1)−k+1

(
s+1
k

)
by (A.4, c). All together we obtain

|DF (s/2)/F
×2| ≥

s/2∑

k=1

|Im(fk)| ≥
s/2∑

k=1

1

s− k + 2

(
s+ 1

k

)

which shows the second inequality. ¤

5.2. Remark. For an integer s ≥ 8, let
∑

(s) denote the term on the right
hand side in the inequality of the above theorem. Djoković showed by an
elementary counting argument that

∑
(s) > 2s

s [2]. As was pointed out by
David B. Leep, the argument may be improved to obtain the bound

∑
(s) >

2s+1

s for every even s ≥ 8. Under the hypothesis of the last theorem one has

thus q(F ) > 2s+1

s ; further, since s = s(F ) is a power of 2 and q(F ) is also a

power of 2 or infinite, it follows that q(F ) ≥ 2s+2

s .
Our calculations have shown that, at least for s a power of 2 in the range

between 8 and 213, actually one has 2s+1

s <
∑

(s) ≤ 2s+2

s .
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However, for level 8 and 16 we get stronger bounds on q(F ).

5.3. Theorem. Let F be a field. If s(F ) = 8 then q(F ) ≥ 512. If s(F ) = 16
then q(F ) ≥ 215.

Proof: Under the hypothesis s(F ) = 8 we have q̄3(F ) ≥ 2, q̄2(F ) ≥ 16 (3.1)
and q̄1(F ) ≥ 8 (1.5). Moreover, by (4.9) one of the last two inequalities must

be proper. From |F×/F×2| ≥ q̄1(F ) · q̄2(F ) · q̄3(F ) we get therefore q(F ) ≥ 512,

since F×/F×
2
is an elementary abelian 2-group.

For s(F ) = 16 we have by the previous sections q̄4(F ) ≥ 2, q̄3(F ) ≥ 16,
q̄2(F ) ≥ 32 and q̄1(F ) ≥ 16 and one of the last two inequalities must be

proper. As |F×/F×2| ≥ q̄1(F ) · · · q̄4(F ) this leads to q(F ) ≥ 215. ¤

For s(F ) = 2n with n ≥ 5 the analogous arguments are not sufficient to improve
Djoković’s result. For s(F ) = 32, for example, we may get in this way q(F ) ≥
225 while (5.1) yields q(F ) ≥ 229.

5.4. Theorem. Let F be a field of level 2n with n ≥ 3. Then |kn−1F | ≥ 128.
More precisely, the subgroup {−1}n−2k1F of kn−1F is of index at least 4 and
order at least 32.

Proof: Again, we use the notation ε := {−1} ∈ k1F . The homomor-
phism F× → {−1}n−2k1F which maps x ∈ F× to the symbol εn−2 · {x},
has kernel DF (2

n−2). Since q̄n(F ) ≥ 2 and q̄n−1(F ) ≥ 16 by (3.1), we have
|F×/DF (2

n−2)| ≥ q̄n(F ) · q̄n−1(F ) ≥ 32. Therefore {−1}n−2k1F has at least
32 elements.
To show that the index of this group in kn−1F is at least 4 we just need to find
α, β, γ ∈ kn−1F \ {−1}n−2k1F such that α+ β + γ ∈ {−1}n−2k1F .
By the hypothesis there are a, b, c ∈ DF (3 · 2n−3) \ DF (2

n−2) such that
a + b + c = 0. In k2F we compute {−a,−b} + {−a,−c} + {−b,−c} =
{−a, bc} + {a,−bc} = {−1, abc}. Therefore we are finished if we show that
none of the symbols εn−3{−a,−b}, εn−3{−a,−c} and εn−3{−b,−c} in kn−1F
lies actually in {−1}n−2k1F .
If this is not true we may by case symmetry suppose that εn−3{−a,−b} =
εn−2{−x} for some x ∈ F×. Then the (n−1)-fold Pfister forms 2n−3 × 〈〈a, b〉〉
and 2n−2 × 〈〈x〉〉 over F are isometric, i.e. the quadratic form ϕ := 2n−3 ×
〈1, x, x,−a,−b,−ab〉 over F is hyperbolic. It follows that any subform of ϕ
of dimension greater than 1

2 dim(ϕ) = 3 · 2n−3 is isotropic. In particular, the
form 2n−2×〈−ax〉 ⊥ 2n−3×〈1〉 ⊥ 〈b〉, similar to a subform of ϕ, must be
isotropic. It follows that ax ∈ DF (2

n−2) · DF (2
n−3×〈1〉 ⊥ 〈b〉) ⊂ DF (2

n−1)
whence x ∈ DF (2

n−1). On the other hand, ϕ ∼= 2n−3 × 〈1, x, x, c, abc,−ab〉
shows that 2n−2×〈x〉⊥ 2n−3×〈1〉⊥ 〈c〉 is isotropic. This in turn implies that
−x ∈ DF (2

n−2) · DF (2
n−3×〈1〉 ⊥ 〈c〉) ⊂ DF (2

n−1). Together this leads to
−1 ∈ DF (2

n−1) which contradicts s(F ) = 2n. ¤
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5.5. Corollary. Let F be a nonreal field with s(F )≥8. Then |Br2(F )| ≥ 128
and |W (F )| ≥ 218.

Proof: If s(F ) = 8 then the theorem shows |k2F | ≥ 128. But this is also
true if s(F ) = 2n > 8 since then already the subgroup {−1}k1F , isomorphic
to F×/DF (2), has order at least q̄n(F ) · q̄n−1(F ) · q̄n−2(F ) which is sufficiently
large by the results of section 3. By Merkuriev’s theorem, Br2(F ) is isomorphic
to k2F , so in particular we have |Br2(F )| ≥ 128. (In fact, the arguments to
estimate the size of k2F work similarly for Br2(F ), so it is not necessary to
invoke Merkuriev’s theorem here.)
Let I denote the fundamental ideal ofW (F ) and let Īi := Ii/Ii+1 for i ≥ 0. For
i = 0, 1, 2 it follows from [9] that Īi ∼= kiF . Thus |Ī0| = 2, |Ī1| = q(F ) ≥ 512
and |Ī2| ≥ 128. Moreover, s(F ) ≥ 8 implies |Ī3| ≥ 2. Therefore |W (F )| ≥
|Ī0| · |Ī1| · |Ī2| · |Ī3| ≥ 218. ¤

A Hypergraphs with connected colorings

In this appendix t, k and n denote nonnegative integers with t ≤ k ≤ n. We
briefly say k-set for a set of cardinality k. A k-hypergraph is a systemH = (V, E)
where V is a set whose elements are called vertices and E a collection of distinct
k-subsets of V called edges. A graph in the usual sense is then just a 2-
hypergraph.
Let H = (V, E) be a k-hypergraph. Its number of vertices |V | is called the order
of H . We say that H is complete if each k-subset of V is actually an edge,
i.e. if E = {E ⊂ V | |E| = k}. By an edge-coloring of H we mean a function
f : E → C. We consider the elements of C as colors and for E ∈ E we call f(E)
the color of E. For t > 0 we say that the edge-coloring f is t-connected if any
two edges of the same color meet in at least t vertices, i.e. if for any E,E ′ ∈ E
with f(E) = f(E′) we have |E ∩ E′| ≥ t.

A.1. Problem. Let t, k, n be nonnegative integers with t ≤ k ≤ n. Let H =
(V, E) be a complete k-hypergraph of order n. What is the least integer m such
that there exists a t-connected edge-coloring f : E → C on H with |C| = m ?

The integer m which meets the condition in the problem depends only on the
values of t, k and n and will be denoted by M(t, k, n). We recall our notation
Pnk for the set of all k-subsets of {1, . . . , n}. A complete k-hypergraph of order
n is then given by Knk := ({1, . . . , n},Pnk ). SoM(t, k, n) is just the least integer
m such that there exists a function f : Pnk → C where |C| = m and such
that f(X) = f(X ′) implies |X ∩ X ′| ≥ t for any X,X ′ ∈ Pnk . To study
M(t, k, n) as a function in t, k and n we use the theory of intersecting families
in combinatorics.
Let F be a family of sets. We write

⋃F (resp.
⋂F) for the union (resp. the

intersection) of all sets belonging to F . If |U ∩V | ≥ t holds for every U, V ∈ F
then we say that the family F is t-intersecting (just intersecting for t=1). A
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coloring f : E → C of a k-hypergraph H = (V, E) is thus t-connected if and
only if f−1({c}) is a t-intersecting family for every c ∈ C.
The crucial result on intersecting families is the Erdös-Ko-Rado theorem [4]
which we state in the slightly stronger version of [14]:

A.2. Theorem (Erdös-Ko-Rado). Let n ≥ (k − t + 1)(t + 1). If F is a

t-intersecting family of k-subsets of an n-set then |F| ≤
(
n−t
k−t

)
.

This theorem gives the optimal bound. Indeed, if N is an n-set and T a t-subset
then F := {U ⊂ N | |U | = k, T ⊂ U} is a t-intersecting family with precisely(
n−t
k−t

)
elements. However, under the additional condition |⋂F| < t, better

bounds on |F| can be given. In the case t = 1 this is the following main result
of [6]. (A short proof of this can be found in [5] where the case t > 1 is also
treated.)

A.3. Theorem (Hilton-Milner). Let F be a family of pairwise intersecting

k-subsets of an n-set such that
⋂F = ∅. Then |F| ≤

(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1.

Now we begin with the investigation M(t, k, n) as a function in t, k and n with
0<t≤k≤n. We first treat the easy cases when t and k take extremal values.
Part (c) is implicitly shown in [2].

A.4. Proposition. (a) M(t, k, n) = 1 is equivalent to n ≤ 2k − t.

(b) M(t, k, n) =
(
n
k

)
is equivalent to k = t.

(c) M(k−1, k, n) =M(n−k−1, n−k, n) ≥ 1
n−k+1

(
n
k

)
for 1 ≤ k ≤ n/2.

Proof: (a) M(t, k, n) is equal to 1 if and only if Pnk is t-intersecting; this is
the case if and only if n ≤ 2k − t.
(b) Each condition holds if and only if any nonempty t-intersecting family of
k-subsets of {1, . . . , n} consists of just one k-set.
(c) It is quite obvious that a family F ⊂ Pnk is (k− 1)-intersecting if and
only if the family of complement sets {{1, . . . , n} \ U | U ∈ F} is (n−k−1)-
intersecting. So f : Pnk → C is (k−1)-connected if and only if f ′ : Pnn−k →
C, V 7→ f({1, . . . , n} \ V ) is (n−k−1)-connected. This shows in particular
M(k−1, k, n) =M(n−k−1, n−k, n).
For a (k−1)-intersecting family F ⊂ Pnk it is easy to check that either |⋂F| ≥
k−1 or |⋃F| ≤ k+1. In the first case we conclude |F| ≤ n− k + 1 and in the
second case |F| ≤ k + 1 ≤ n − k + 1. If now f : Pnk → C is (k−1)-connected
then Pnk is covered by the (k−1)-intersecting families f−1({c}) for c ∈ C, which
implies that

(
n
k

)
= |Pnk | ≤ (n− k + 1) · |C|. ¤

A.5. Examples. (1) The function f : Pnk → Pn−k+tt which associates to X ∈
Pnk the set of the t smallest numbers in X is a t-connected edge-coloring of Knk .
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(2) If n≥2k−1 then a 1-connected edge-coloring of Knk is given by

f : Pnk −→ {1, . . . , n−2k+2} , X 7−→ max (X ∪ {2k−1})− 2k + 2 .

(3) Let t < k < n. If f : Pnk → C be a t-connected edge-coloring of Knk and
g : Pnk+1 → C ′ is a (t+1)-connected edge-coloring of Knk+1, where C and C ′ are
disjoint sets, then a (t+1)-connected edge-coloring of Kn+1

k+1 is defined by

h : Pn+1
k+1 −→ C ∪ C ′ , X 7−→

{
f (X\{n+1}) if n+1 ∈ X,

g (X) otherwise.

From these examples we conclude:

A.6. Proposition. (a) M(t, k, n) ≤
(
n−k+t

t

)
.

(b) If n ≥ 2k − 1 then M(1, k, n) ≤ n− 2k + 2.

(c) If t<k<n then M(t+1, k+1, n+1) ≤M(t, k, n)+M(t+1, k+1, n).
¤

For lower bounds on M(t, k, n) we first consider the case t ≥ 2.

A.7. Theorem. Let 2 ≤ t < k. Then for n ≥ (k − t+ 1)(t+ 1) we have

M(t, k, n) ≥
t−1∏

i=0

n− i
k − i >

(n
k

)t
.

Proof: Let f : Pnk → C be a t-connected edge-coloring of Knk with n ≥
(k− t+1)(t+1). For each c ∈ C we have then by the Erdös-Ko-Rado theorem

|f−1({c})| ≤
(
n−t
k−t

)
. As Pnk =

⋃
c∈C f

−1({c}) we get
(
n
k

)
≤ |C| ·

(
n−t
k−t

)
.

Therefore |C| ≥ n
k · n−1k−1 · · · n−t+1

k−t+1 and an easy computation shows the second
inequality. ¤

For the purposes of section 3 we state the following particular case:

A.8. Corollary. Let i and m be positive integers satisfying either 2≤ i≤ m
2

or 3≤ i= m+1
2 or 5≤ i= m

2 +1. Then M(2i−2+1, 2i, 2m) > 2(m−i)(2
i−2+1). ¤

Now we come to the case t = 1.

A.9. Lemma. For k > 1 we define the polynomial

Fk(X) :=

k−1∏

i=0

(X−i)− k (X−2k+1)

(
k−1∏

i=1

(X−i)−
k−1∏

i=1

(X−k−i) + (k−1)!
)
.

If k ≤ n and f : Pnk → C is such that
⋂
f−1({c}) = ∅ for every c ∈ C then

either |C| ≥ n− 2k + 2 or Fk(n) ≤ 0.
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Proof: Suppose that f has the stated property. Then the Hilton-Milner

theorem implies
(
n
k

)
≤ |C| · [

(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1]. On the other hand,

(k!)−1 · Fk(n) =
(
n
k

)
− (n− 2k + 1) · [

(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1]. Thus Fk(n) > 0

implies |C| > (n− 2k + 1). ¤

A.10. Remark. The polynomial Fk defined in the lemma is monic of degree k.
In particular, we have Fk(n) > 0 for all n sufficiently large. Computation for
small values of k yields: F2(X) = X2 − 7X + 18, F3(X) = X3 − 21X2 +
140X − 240 and F4(X) = X4 − 54X3 +731X2 − 3534X +5880. Thus we have
F2(n) > 0 for any n ∈ IN, F3(n) > 0 for n ≥ 3 and F4(n) > 0 for n ≥ 37
whereas F4(36) < 0.

A.11. Theorem. For any k ≥ 1 there is a constant ck ≥ 2k − 2 such that for
all n ∈ IN sufficiently large we have

M(1, k, n) = n− ck.

For k ≤ 3 we have, more precisely, M(1, k, n) = n− 2k + 2 for n ≥ 2k − 1.

Proof: For k = 1 there is nothing to show since M(1, 1, n) = n. For k ≥ 2 let
Fk(X) be defined as in the lemma. By the above remark we may choose the
least integer nk ≥ 2k − 1 such that Fk(n) > 0 for all n ≥ nk − 1. In particular
we have n2 = 3 and n3 = 5. Let ck := nk −M(1, k, nk). Then (A.6, b) implies
ck ≥ 2k − 2 and we check that equality holds for k = 2, 3.
We want to prove by induction that M(1, k, n) = n − ck for n ≥ nk. For
n = nk this is trivial statement. Suppose it is true for n − 1 ≥ nk. Let
f : Pnk → C be a 1-connected edge-coloring of Knk . If

⋂
f−1({c}) = ∅ for each

c ∈ C then by the lemma we have |C| ≥ n − 2k + 2 ≥ n − ck. On the other
hand, if there is c ∈ C such that the intersection

⋂
f−1({c}) is not empty

then we may suppose that it contains the element n. Then the restriction
f ′ : Pn−1k → C \ {c} of f to Pn−1k is a 1-connected edge-coloring of Kn−1k . By
the induction hypothesis we have |C \ {c}| ≥ M(1, k, n − 1) = (n − 1) − ck
and thus |C| ≥ n − ck. This implies M(1, k, n) ≥ n − ck. But (A.6, c) shows
M(1, k, n) ≤M(1, k, n−1)+M(0, k−1, n−1) = n−ck sinceM(0, k−1, n−1) =
1. Hence M(1, k, n) ≥ n− ck which finishes the induction step. ¤

A.12. Question. Does M(1, k, n) = n− 2k + 2 hold for all n ≥ 2k − 1, even
if k > 3 ?

B CC-Graphs

In this appendix we study connected edge-colorings for usual complete graphs.
Here we are not only interested in the minimal number of colors but also in the
distribution of the colors in the graph.
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Let G denote a complete graph of order n with vertices v1, . . . , vn and colored
edges. The distribution of colors in G can be equivalently represented by an
edge-coloring of Kn2 (see appendix A), i.e. by a function f : Pn2 → C, where C
stands for the set of colors in G and f associates to {i, j} ∈ Pn2 the color of the
edge between the vertices vi and vj .
A set of all the edges of a certain color shall be called a color-component. If
such a color-component consists of r ≥ 3 edges all together having a vertex x
in common we call it an r-star and x its center. By a triangle in G we mean a
complete subgraph of order 3 of G. A triangle is said to be monochrome (resp.
three-colored) if the three edges are of the same color (resp. of three different
colors). A second complete colored graph G ′ of order n is said to be equivalent
to G if there is a bijection between the sets of vertices of G and G ′ such that
the induced bijection on the sets of edges preserves the color-components (in
both directions).
We call G color-connected or a CC-graph if in G any two edges of the same color
are adjacent. This is equivalent to the edge-coloring f being 1-connected. The
only possible color-components in G are then single edges, pairs of edges with
a vertex in common, stars and monochrome triangles.
Theorem (A.11) says that M(1, 2, n) = n− 2 for n ≥ 3. This corresponds to a
result of [13]. We rephrase it as follows and give a direct proof.

B.1. Proposition (Tort). A CC-graph of order n ≥ 3 has at least n − 2
colors.

Proof: For n = 3 the statement is trivial. If n > 3 and G has less than n
colors then one of its color-components must be a star. Deleting the center of
this star yields a CC-graph G ′ of order n − 1 with less colors. By induction
hypothesis G′ has at least n− 3 and therefore G at least n− 2 colors. ¤

For any n ≥ 3 the complete graph Kn2 , whose vertices are the integers
1, . . . , n, together with the 1-connected coloring fn : Pn2 → {1, . . . , n − 2},
{i, j} 7→ max{i, j, 3}−2 defines a particular CC-graph Gn of order n with n−2
colors (compare with example (A.5, 2)). The color-components of Gn are one
monochrome triangle and one i-star for each 3 ≤ i ≤ n−1. For 3 ≤ n ≤ 5,
every CC-graph with n−2 colors is equivalent to Gn. This is not true for n = 6,
since there is a CC-graph of order 6 with color-components a triangle and three
4-stars.

B.2. Proposition. Let G be a CC-graph with n ≥ 3 vertices and n−2 colors.
Then G has as color-components one monochrome triangle and n − 3 stars.
Moreover, each vertex of G lies either on the monochrome triangle or is the
center of exactly one star.

Proof: Let G′ be the complete subgraph spanned by all vertices of G which
are not the center of a star in G. We want to show that G ′ is a monochrome
triangle. Then the vertices of G outside of G ′ will be the centers of n− 3 stars
and as G has just n− 2 colors the entire statement follows.
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Let n′ be the order of G′. The n− n′ vertices of G outside of G ′ are all centers
of stars whose colors do not appear in G ′. As a consequence, G′ has at least
n− n′ colors less than G. Then by (B.1), G ′ has exactly n′ − 2 colors. Since G′
is a graph without stars each color appears at most three times, counting the

edges yields 3(n′ − 2) ≥ n′(n′−1)
2 whence n′ ≤ 5. As G′ has n′ − 2 colors and

contains no star, we have n′ = 3 and G′ is a monochrome triangle. ¤

A CC-graph G will be called total if there is a permutation σ ∈ Sn such that
for any {i, j} ∈ Pn2 the color of the edge between vi and vj depends only on
max{σ(i), σ(j)}. After renumbering the vertices G we may then suppose that
the permutation σ is the identity on {1, . . . , n}.
Let G be a total CC-graph of order n with vertices v1, . . . , vn enumerated in such
a way that the color of any edge linking vi and vj depends only on max{i, j}.
Then G has at most n−1 different colors. From (B.1) it follows that the number
of colors in G is either n − 2 or n − 1. Further, by (B.2) the number of colors
is n − 2 if and only if v1, v2 and v3 form a monochrome triangle and then the
color of the edge between vi and vj depends precisely on max{i, j, 3}. In both
cases the enumeration of the vertices is unique up to changing the first three
respectively the first two indices. Moreover, G contains exactly n − 3 stars.
More precisely, for each 4 ≤ i ≤ n there is exactly one (i−1)-star in G whose
center is vi. It is clear from the definition that a complete subgraph of a total
CC-graph is also a total CC-graph.

B.3. Proposition. A CC-graph G is total if and only if it contains no three-
colored triangle.

Proof: The necessity of the condition follows from the definition of a total
CC-graph. Suppose now that G is a CC-graph with n vertices with no three-
colored triangle. We show by induction on n that G is total. For n ≤ 3 this is
evident. If n ≥ 4 then any complete subgraph with 4 vertices contains a star
since otherwise it would contain a three-colored triangle. So we can choose an
r-star in G where r is as large as possible. For the ease of imagination say, it
is of red color. We may suppose that vn is the center of this star. Let G ′ be
the complete subgraph of G with all the vertices of G except vn. Then G′ is
also a CC-graph with n− 1 vertices and contains no three-colored triangle. So,
by the induction hypothesis, G ′ is total, i.e. its vertices can be enumerated as
v1, . . . , vn−1 in such a way that the color of an edge connecting vertices vi and
vj depends just on max{i, j}. This would still be true for the enumeration of
the vertices v1, . . . , vn of G, if vn is connected with each of the v1, . . . , vn−1 by
an edge of red color. So we just have to show that r = n − 1. Suppose that
r < n− 1. Then certainly n > 4 since r ≥ 3 by the definition of an r-star. But
vn−1 is the center of an n−2-star in G ′, say of blue color. By the maximality of
r we see that the edge between vn−1 and vn cannot be blue and that r = n−2.
So there must be exactly one vertex vk with 1 ≤ k ≤ n− 1 which is connected
with vn with an edge of color different from red. It cannot be of blue color
either so say that its color is green. Now we see that there is a triangle of colors
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red, blue and green contained in G, formed by vk, vn−1, vn if k < n− 1 and by
v1, vn−1, vn if k = n− 1, which gives the desired contradiction. ¤
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Université de Franche-Comté
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1 Introduction

Let E be an elliptic curve defined over a field K of characteristic different from
2 and given by an affine equation

y2 = f(x),

where f(x) is a unitary cubic polynomial over K without multiple roots. We
will say that E is split, semisplit or non-split if f(x) has 3, 1 or no roots in K
respectively.
Let BrE be the Brauer group of the curve E. The group BrE plays an impor-
tant role in arithmetic and algebraic geometry. For example, it can be used to
study arithmetical properties of elliptic surfaces and some other algebraic vari-
eties ( cf. [AM72], [CEP71], [CSS98], [S99] ). Another important application is
the construction of unirational varieties which are not rational. Let us describe
the last point in some more details. We follow the famous paper of Artin and
Mumford [AM72] slightly modifying their examples.
Let S be a smooth projective surface defined over an algebraically closed field
of characteristic 6= 2, say C for simplicity. Assume that S is a rational elliptic
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surface defined by a regular map π : S → P1 such that the generic fiber
Eξ = π−1(ξ) is an elliptic curve.
Given a quaternion algebra D = (d1, d2) over the function field L = C(S)
of the surface S, whose ramification curve has nonsingular components, one
can associate a smooth S-scheme φ : VD → S in a natural way, all of whose
geometric fibres are isomorphic to P1 or to P1∨P1 (the so-called Brauer-Severi
scheme). Let C be the ramification curve of D and let C = C1 ∪ . . .∪Cn be its
decomposition into irreducible components. The remarkable thing about VD is
that VD viewed as a variety over C is not rational if all components C1, . . . , Cn
are disjoint. Namely, Artin and Mumford [AM72] proved that under these
conditions VD has 2-torsion inH3(VD,Z). Since the torsion inH3 is a birational
invariant for complete smooth 3-dimensional varieties, VD is not rational.
On the other hand, it turns out that for many quaternion algebras D the
variety VD is unirational. To prove it we first remark that if we want to have
the ramification curve C of D with disjoint irreducible components it is natural
to take D such that C has vertical components (with respect to π) only. It
easily follows that all candidates for such D are among quaternion algebras
in the Brauer group of the generic fiber Eξ. As we show in this paper, there
are lots of non-trivial quaternion algebras in BrEξ. Taking the appropriate D
we may assume that C has ≥ 2 irreducible components. As it was said, this
implies that the corresponding VD is not rational.
Now let η be a generic point of S. Then Vη = φ−1(η) is a conic over C(η) =
C(S) = L. Consider the extension F/L of degree 4 corresponding to the

Kummer map Eξ
2→ Eξ. It kills D, hence the conic Vη has an F -point. In

particular Vη is rational over F , i.e. the function field F (Vη) is isomorphic to
F (z) over F , where z is a transcendental variable over F . Furthermore, since

F/L corresponds to the Kummer map, we have F
C(t)' C(t)(Eξ), hence

F (Vη)
F' F (z) C(t)' C(t)(Eξ)(z) = C(S)(z)

is a purely transcendental extension of C. Here we used the fact that S is
a rational surface. Finally, since C(VD) = L(Vη) is a subfield of F (Vη), VD
viewed as a 3-fold variety over C is unirational.

Our construction shows that if we want to produce an explicit example of an
unirational variety which is not rational, one needs to know the structure of
2-torsion of BrEξ. So it makes sense to get an explicit description of 2-torsion

2BrE of the Brauer group of an elliptic curve E defined over an arbitrary field
K. One of the main goals of this paper is to accomplish (to some extent) a
description of 2BrE in terms of generators and relations. The initial results
in this direction were obtained in [Pu98] where a description of quaternion
algebras over E is presented and in [GMY97] where an explicit description
of generators of 2BrE for a split elliptic curve is given. The second-named
author [G99] generalized the results of [GMY97] for semisplit elliptic curves.
Our paper, in fact, grew out of his preprint [G99] and here we go further and
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obtain more complete results that concern generators as well as relations for
arbitrary elliptic curves. Our arguments are elementary and based only on
using standard properties of restriction and corestriction maps for H1 with
coefficients in certain finite modules.

After this paper was released as a preprint [CG00] we learnt of the nice paper
[S99] of Skorobogatov where he gave, among other things, a description of
generators of the Brauer groups of algebraic varieties X defined over a field K

of characteristic 0 satisfying the condition H0(K,Gm) = K[X]× = K
×

where
K is an algebraical closure of K. In that paper the generators of BrX are
given in the form of the cup product of certain torsors over X and cocycles in
H1 with coefficients in finitely generated submodules of Pic (X). The proofs
in [S99] are based on the heavy machinery of homological algebra. However,
it seems worth while to have elementary constructions and proofs for elliptic
curves as well.

We proceed to describe our results. Let K be a separable closure of K and
E = E(K). The starting point of our consideration is the following exact
sequence:

0→ BrK −→ BrE
κ−→ H1(K,E)→ 0 . (1)

Since E(K) 6= ∅, the homomorphism κ has a section, so that (1) induces the
exact sequence

0→ 2BrK −→ 2BrE
κ−→ 2H

1(K,E)→ 0 ,

where the subscript 2 means the 2-torsion part.

The main result of the paper is formulated in Theorems 3.6, 4.12, 5.2 and 5.3.
After some preliminaries given in Section 2 we construct a section for κ in
an explicit form. This eventually enables us to give an explicit description of

2BrE in terms of generators and relations.

More exactly, let M be the 2-torsion part of E and let Γ = Gal (K/K). The
Kummer sequence

0→M −→ E
2−→ E → 0,

where the symbol 2 over the arrow means multiplication by 2, yields the exact
sequence

0→ E(K)/2
δ−→ H1(Γ,M)

ζ−→ 2H
1(Γ, E)→ 0 .

Here δ : E(K)/2 ↪→ H1(Γ,M) is a connecting homomorphism. In Sections 3
through 5 we show that there exists a homomorphism ε : H1(Γ,M) → 2BrE
with the properties

κ ◦ ε = ζ, ε (ker(ζ)) = 0. (2)

The second property implies that ε factors through 2H
1(Γ, E), i.e. there is a

unique homomorphism ε : 2H
1(Γ, E) → 2BrE such that ε ◦ ζ = ε, and the

first one shows that ε is a required section.
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If f(x) = (x−a)(x− b)(x− c) with a, b, c ∈ K, then M ' Z/2Z⊕Z/2Z; hence

H1(Γ,M) ' K∗/(K∗)2 ×K∗/(K∗)2.

It turns out that the map

ε : K∗/(K∗)2 ×K∗/(K∗)2 → 2BrE

which takes a pair (r, s) ∈ K∗ ×K∗ into the product (r, x − b) ⊗ (s, x − c) of
quaternion algebras over K(E) satisfies (2). Thus letting I = Im ε, we obtain
the natural isomorphism 2BrE ' 2BrK⊕I where, by construction, the second
summand I is generated by quaternion algebras over K(E) of the form (r, x−b)
and (s, x− c) with r, s ∈ K∗.
Assume that f(x) does not split over K. We denote the minimal extension of
K over which a section ε is already constructed by L. Then using standard
properties of restriction and corestriction maps we show that for a special map
τ : H1(K,M)→ H1(L,M) the composition ε = cor ◦ εL ◦ τ satisfies (2). As a
corollary of our construction, we again obtain the decomposition

2BrE ' 2BrK ⊕ cor (Im εL) . (3)

Note that in all cases the degree of L/K is either two or three. This fact
enables us to present generators of the second summand in (3) in an explicit
form. It turns out that all of them are tensor products of quaternion algebras
over K(E) of a very specific form.
It follows from the construction that all relations between our generators are
given by algebras from (ε ◦ δ)(E(K)/2). These algebras are also presented
in an explicit form in Theorems 3.6, 4.12, 5.2 and 5.3 and all of them are
parametrized by K-points of the elliptic curve E. This result shows that the
two problems of an explicit description of the 2-torsion part of BrE (of course,
modulo numerical algebras, i.e. algebras from 2BrK) and the group E(K)/2
are, in fact, equivalent. So, every time information about E(K)/2 is available
we can effectively describe 2BrE and vice versa.
In the second part of the paper we apply our results to the computation of

2BrE for an elliptic curve E over a local non-dyadic field K. In this case the
structure of the group E(K) is well understood. Applying known results we
easily construct generators of E(K)/2 in Sections 7 and 8. This, in turn, yields
an explicit description of 2BrE in the concluding Sections 8 and 9 very quickly.
Thus, we reopen a result of Margolin and Yanchevskii [YM96]. It seems that
in this part our argument is more natural and shorter (cp. loc. cit.).
Finally, we remark that by repeating almost verbatim our argument one can
describe in a similar way the 2-torsion part of BrX for a hyperelliptic curve
X defined over a field K such that X(K) 6= ∅. However, in order to keep the
volume reasonable we do not consider hyperelliptic curves in the present paper.

If A is an abelian group, A
2→ A denotes the homomorphism of multiplication

by 2 and 2A, A/2 are its kernel and cokernel respectively.
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|S| denotes the number of elements in a finite set S.
Throughout this paper all fields under consideration are of characteristic 6= 2.
For a field K denote by K a separable closure of K, K∗ its multiplicative group
and K∗2 the subgroup of squares. By abuse of language, we will write s for a
coset sK∗2, whenever there is no danger of confusion.
A variety is always a smooth projective and geometrically integral scheme over
a field K. For a variety X over K, we write K(X) for the function field of
X and X(K) for the set of its K-points. If L/K is a field extension, we put
XL = X ×SpecK SpecL. We also write X = X ×SpecK SpecK and for brevity
K-points of X will be denoted by the same symbol X.
In the paper we will consider quaternion algebras and their tensor products
only. If A is a central simple algebra over a field K then [A] means its class in
the Brauer group BrK. If a, b ∈ K∗ and (a, b) is a quaternion algebra, then,
for short, we write [a, b] instead of [(a, b)]. The group law in a Brauer group we
always write additively: if a, b, c, d ∈ F ∗, then [(a, b)⊗ (c, d)] = [a, b] + [c, d].
If Γ is a profinite group, then H∗(Γ,−) is a Galois cohomology functor. Let
Λ be a subgroup of finite index in Γ. Then res : H∗(Γ,−) → H∗(Λ,−) and
cor : H∗(Λ,−) → H∗(Γ,−) are the restriction and corestriction homomor-
phisms respectively. In particular, if Γ = Gal(K/K) and Λ corresponds to
a finite exension F/K then (using the cohomological description of Brauer
groups) we have the homomorphism of a scalar extension BrK → BrF and
the corestriction homomorphism corF/K : BrF → BrK. Thus, corF/K [A]
means the value of the homomorphism corF/K on the class [A] ∈ BrF .
If E is an elliptic curve over K, then its Brauer group is naturally isomorphic
to the unramified Brauer group Brnr(K(E)/K) (see [Lich69], [Co88]). So we
will always identify BrE with Brnr(K(E)/K).

Acknowledgements. The authors gratefully acknowledge the support of SFB
343 “Diskrete Strukturen in der Mathematik”, TMR ERB FMRX CT-97-0107
and the hospitality of the University of Bielefeld. We would like also to express
our thanks to H. Abels and U. Rehmann for support and encouragement during
the preparation of this paper and O. Izhboldin for useful discussions.

2 Preliminaries

Let E be an elliptic curve over a field K defined by an affine equation

y2 = f(x),

where f(x) is a unitary cubic polynomial over K without multiple roots. Let
O be the infinite point on E. On the set of K-points E(K) there is a natural
structure of an abelian group, such that O is a zero element. Throughout the
paper we denote the 2-torsion subgroup in E by M . Let Γ = Gal(K/K) be
the absolute Galois group of the ground field K. If

f(x) = (x− a)(x− b)(x− c)
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is the decomposition of f(x) over K, then

M = {O, (a, 0), (b, 0) (c, 0) }.

We say that E is split if a, b, c ∈ K. In this case M ⊂ E(K); hence M is a
trivial Γ-module. We say that E is semisplit if f(x) has one root in K only. If
f(x) is irreducible over K, then we say that E is non-split.
A starting point of our explicit description of 2BrE is the following exact
sequence:

0→ BrK
ι−→ BrE

κ−→ H1(Γ, E)→ 0 . (4)

Here the maps ι and κ are defined as follows (see details in [Fadd51], [Lich69],
[Mi81] or [Sch69]). Recall that we identify BrE with the unramified Brauer
group Brnr(K(E)/K). Then ι is induced by the scalar extension functor: if A
is a central simple algebra over K, then ι([A]) = [A⊗K K(E)].
Next let h ∈ BrE. By Tsen’s theorem (see [P82]), we have BrK(E) ∼=
H2(Γ,K(E)∗). Hence h can be viewed as an element in H2(Γ,K(E)∗). Let
Div E be the group of divisors on E and let P (E) be the group of principal
divisors on E. Let h′ be the image of h under the homomorphism

H2(Γ,K(E)∗) −→ H2(Γ,P (E))

induced by the map K(E)∗ → P (E) that takes a rational function f to its
divisor div(f). Since h belongs to the unramified subgroup of BrK(E) ∼=
H2(Γ,K(E)∗), it follows that h′ lies in the kernel of the homomorphism

H2(Γ,P (E)) −→ H2(Γ,Div(E)) (5)

induced by the embedding P (E)→ Div(E).
Let Div0(E) be the group of degree zero divisors on E. Clearly, H1(Γ,Z) = 0,
so that a natural homomorphismH2(Γ,Div0(E))→ H2(Γ,Div(E)) is injective.
Therefore, the kernel of (5) coincides with the kernel of

H2(Γ,P (E)) −→ H2(Γ,Div0(E))

and the last one coincides with the image of the connecting homomorphism

∂ : H1(Γ, E) −→ H2(Γ,P (E))

induced by the exact sequence

0→ P (E) −→ Div0(E) −→ E → 0 .

Since E(K) 6= ∅ and H1(Γ,Z) = 0, we easily get

H1(Γ,Div0(E)) = H1(Γ,Div(E)) = 1,

so that ∂ is injective. It follows that there exists a unique element h′′ ∈
H1(Γ, E) such that ∂(h′′) = h′. Then, by definition, κ(h) = h′′.
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We claim that sequence (4) splits. Indeed, if x ∈ E(K) and K(E)x is the
completion of K(E) at x, then BrK(E)x ∼= BrK ⊕Homcont(Γ,Q/Z). Let

ς : BrE −→ BrK

be the composition

BrE ↪→ BrK(E)→ BrK(E)x ∼= BrK ⊕Homcont(Γ,Q/Z)→ BrK

where the last homomorphism is the projection on the first summand. It is easy
to check that the composition ς ◦ ι is an identical map and the claim follows.
In view of splitness, (4) induces the exact sequence

0→ 2BrK
ι−→ 2BrE

κ−→ 2H
1(Γ, E)→ 0, (6)

which also splits. Since 2H
1(Γ, E) can be easily computed, we obtain that for

an explicit description of 2BrE it suffices to construct a section for κ. To do
it, we first consider the Kummer sequence

0→M −→ E
2−→ E → 0. (7)

It yields the exact sequence

0→ E(K)/2
δ−→ H1(Γ,M)

ζ−→ 2H
1(Γ, E)→ 0 (8)

where δ : E(K)/2 ↪→ H1(Γ,M) is a connecting homomorphism. In the next
three sections we will construct a homomorphism ε : H1(Γ,M)→ 2BrE with
the properties

κ ◦ ε = ζ, ε (ker(ζ)) = 0.

The second property implies that ε induces a unique homomorphism ε :

2H
1(Γ, E)→ 2BrE such that ε◦ζ = ε. Then it follows that κ◦ε◦ζ = κ◦ε = ζ.

Since ζ is surjective, we conclude that κ ◦ ε = 1, i.e. ε is a required section for
κ.
Letting I = Im ε, we have 2BrE ∼= I ⊕ Im ι ∼= I ⊕ 2BrK. As we see in
Sections 3, 4 and 5, elements in I are tensor product of quaternion algebras
over K(E) of a very specific form. So our construction eventually gives a
simple system of generators of 2BrE modulo numerical algebras (i.e. algebras
from Im ι) and according to the construction of the maps ε and ε all relations
between the generators are given by algebras from ε(ker(ζ)). Thus, to find all
relations explicitly, we first have to describe the subset Im δ ⊂ H1(Γ,M) and
then apply ε to its elements.
Since the structure of the group H1(Γ,M) (and hence the construction of ε)
depends on splitting properties of the polynomial f(x), to realize our program
we consider split, semisplit and non-split cases in the next three sections sepa-
rately.
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3 Split elliptic case

Let E be a split elliptic curve. Then M is a trivial Γ-module; hence we have

H1(Γ,M) = Hom (Γ,M) .

Fix two non-zero points in M , say (b, 0) and (c, 0). Considering them as gen-
erators of M we have an isomorphism

M ∼= Z/2⊕ Z/2 .

It induces the isomorphism

H1(Γ,M) = Hom(G,M) ∼= K∗/K∗2 ⊕K∗/K∗2 .

Consider a map
εb : K

∗/K∗2 −→ 2BrE

which takes s ∈ K∗ into the class [s, x − b]. Here and below, for an element
r ∈ K the polynomial x− r is considered as a rational function on E. Clearly,
the quaternion algebra (s, x − b) is unramified and εb is a homomorphism.
Analogously, consider a homomorphism

εc : K
∗/K∗2 −→ 2BrE

which takes s ∈ K∗ into the class [s, x− c]. Let now

ε = εb ⊕ εc : K∗/K∗2 ⊕K∗/K∗2 = Hom(Γ,M) −→ 2BrE . (9)

Using the description of κ given in Section 2 it is easy to show that κ ◦ ε = ζ.

Lemma 3.1 κ ◦ ε = ζ.

Proof. Let P be a non zero point in M . For any s ∈ K∗\K∗2 let φP,s be a ho-
momorphism from Γ intoM , such that φP,s(g) = P if g /∈ Us = Gal(K/K(

√
s))

and φs,b(g) = O otherwise. The group H1(Γ,M) = Hom(Γ,M) is generated
by the homomorphisms of type φP,s. Therefore it is sufficient to show that
(κ ◦ ε)(φP,s) = ζ(φP,s) for any P and s.
Let ΦP,s be a homomorphism from Γ into Div0(E), such that ΦP,s(g) = (P )−
(O) if g /∈ Us and Φs,b(g) = 0 otherwise. Let dΦP,s : Γ × Γ → Div0(E) be a
codifferential of ΦP,s, that is

(dΦP,s)(g1, g2) = g1ΦP,s(q2)− ΦP,s(g1g2) + ΦP,s(g2)

for any g1, g2 ∈ Γ. Then dΦP,s takes its values in P(E) and ∂(cls(φP,s)) =
cls(dΦP,s) where cls denotes a cohomology class of a cocycle. Using the above
formula for dΦP,s it is easy to compute that dΦP,s(g1, g2) = 2(P ) − 2(O) if
g1 and g2 lie in Γ\Us and dΦP,s(g1, g2) = 0 otherwise. Let x(P ) be the
x-coordinate of P and let ψP,s : Γ × Γ → K(E)∗ be a map, such that
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ΨP,s(g1, g2) = x − x(P ) if g1 and g2 lie in Γ\Us and dΦP,s(g1, g2) = 1 oth-
erwise. Then we see that the composition of ΨP,s with the natural homomor-
phism div : K(E)∗ → P(E) coincides with the homomorphism dΦP,s. There-
fore ∂(cls(φP,s)) = η(cls(ΨP,s)). Since ΨP,s is a cocycle of the unramified
quaternion algebra (s, x− x(P )), we see that κ([s, x− x(P )]) = cls(φP,s). But
[s, x−x(P )] is equal to ε(φP,s). So we have κ(ε(φP,s)) = cls(φP,s) = ζ(φP,s).

According to our plan we also need to make sure that ε(Im δ) = 0. The de-
scription of Im(δ) in the split case is well known. However for the reader’s
convenience we describe this image in details.
To ease notation, for a point (u, v) ∈ E(K) the coset (u, v) + 2E(K) will be
denoted by the same symbol (u, v). We start with a simple lemma which gives
a formula for dividing a point (u, v) ∈ E(K) in the group E by 2. Let

r =
√
u− a , s =

√
u− b , t =

√
u− c and w = r + s− t .

Let also

p =
1

2
(w2 − (r2 + s2 + t2)) + u = rs− rt− st+ u and q = w(p− u) + v .

Lemma 3.2 We have (p, q) ∈ E and 2(p, q) = (u, v).

Proof. This is a straightforward calculation (see also the proof of Theorem 4.1
on page 38 in [Hu87]) and we omit the details to the reader.

Proposition 3.3 Let (u, v) ∈ E(K). Then

δ(u, v) =





(u− c, u− b) if u 6= b and u 6= c,
(b− c, (b− c)(b− a)) if u = b,
((c− a)(c− b), c− b) if u = c,
(1, 1) if u =∞.

Proof. If u = b, then u 6= a and u 6= c and, analogously, if u = c, then u 6= a and
u 6= b. Therefore, by the symmetry argument, it suffices to prove the statement
in the case u 6= b and u 6= c. Moreover, we consider only “a generic case” where
u− b and u− c generate a subgroup in K∗/K∗2 of order 4, i.e. u− b and u− c
are nontrivial and different modulo squares. The other cases can be handled
in a similar way.
We keep the notation of Lemma 3.2. Since 2(p, q) = (u, v), the cocycle δ(u, v)
corresponds to the homomorphism φ(u,v) : Γ → M that takes γ to the point

(p, q)γ−(p, q). Let U = Gal(K/K(s)) and V = Gal(K/K(t)). We fix arbitrary
automorphisms

σ ∈ U\V and τ ∈ V \U .

Let ψ(u,v) ∈ Hom (Γ,M) be the homomorphism corresponding to the pair

(u− c, u− b). Clearly, φ(u,v)(γ) = ψ(u,v)(γ) = 0 for all γ ∈ Gal(K/K(s, t))
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and ψ(u,v)(σ) = b, ψ(u,v)(τ) = c. So it suffices to show that the abscissas of the
points (p, q)σ − (p, q) and (p, q)τ − (p, q) are b and c respectively.
Note that, by construction, we have

σ(r) = −r , σ(s) = s and σ(t) = −t .

Then it easily follows that (p, q)σ 6= ±(p, q). Denoting by m the abscissa of the
point (p, q)σ − (p, q) and taking into account the group law algorithm given on
p. 58 in [Sil85], we have

m =
(
q+σ(q)
σ(p)−p

)2
+ a+ b+ c− σ(p)− p

=
(
q+σ(q)
σ(p)−p

)2
+ 3u− r2 − s2 − t2 − σ(p)− p .

Since q = w(p− u) + v and p = rs− rt− st+ u , we can write

q + σ(q) = w(p− u) + v + σ(w)σ(p− u) + v
= w(p− u) + σ(w)σ(p− u) + 2v
= (r + s− t)(rs− rt− st) + (−r + s+ t)(−rs− rt+ st) + 2rst
= 2r2s− 4rst+ 2st2

= 2s(r − t)2 ,

and
σ(p)− p = −rs− rt+ st− rs+ rt+ st = 2s(t− r) .

Thus, we obtain

m =
(
(2s(r−t)2
2s(t−r)

)2
+ 3u− r2 − s2 − t2 + 2rt− 2u

= −s2 + u
= b .

The equality (p, q)τ − (p, q) = (c, 0) is proved in exactly the same fashion.

Proposition 3.4 ε(Im δ) = 0.

Proof. Let (u, v) ∈ E(K). Since κ ◦ ε = ζ, we have (κ ◦ ε) (δ(u, v)) = 0, i.e. the
algebra ε(δ(u, v)) is numerical. We claim that this algebra is trivial. Indeed,
we may assume that (u, v) is a point in E(K) such that u−b 6= 0 and u−c 6= 0.
Then the evaluation of the algebra

ε(δ(u, v)) = [u− c, x− b] + [u− b, x− c]

at the point (u, v) yields

[u− c, u− b] + [u− b, u− c] = 2[u− c, u− b] = 0 .

This implies that the algebra ε(δ(u, v)) is itself trivial, as required.

Summarizing the above results, we obtain the following
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Proposition 3.5 Let E/K be a split elliptic curve over K, charK 6= 2. Let
κ : 2BrE → 2H

1(Γ, E) be the homomorphism described in Section 2 and let
ζ : H1(Γ,M) → 2H

1(Γ, E) be the homomorphism induced by the embedding
M ⊂ E. Let also

ε : H1(Γ,M) −→ 2BrE

be the homomorphism defined by (9). Then

(i) κ ◦ ε = ζ .

(ii) There exists a unique homomorphism

ε : 2H
1(Γ, E) −→ 2BrE

such that ε ◦ ζ = ε and κ ◦ ε = 1
2H1(Γ,E) is an identical map.

Proof. The equality κ ◦ ε = ζ is proved in Lemma 3.1. Since ζ is the cokernel
of the homomorphism δ and, by Proposition 3.4, ε(Im δ) = 0, there exists a
unique homomorphism ε : 2H

1(Γ, E) → 2BrE, such that ε ◦ ζ = ε. Since
κ ◦ ε ◦ ζ = κ ◦ ε = ζ, we obtain that κ ◦ ε = 1

2H1(Γ,E) because ζ is an
epimorphism.

Reformulating the results of Proposition 3.5 in terms of central simple algebras
and using Proposition 3.3, we obtain

Theorem 3.6 Let E/K be a split elliptic curve defined by an affine equation

y2 = (x− a)(x− b)(x− c),

where a, b, c ∈ K and charK 6= 2. Let ε : 2H
1(Γ, E) → 2BrE be the section

for the homomorphism κ : 2BrE → 2H
1(Γ, E) constructed in Proposition 3.5

and let I = Im ε. Then

2BrE = 2BrK ⊕ I
and every element in I is represented by a biquaternion algebra

(r, x− b)⊗ (s, x− c)

with r, s ∈ K∗. Conversely, every algebra of such a type is unramified over E.
An algebra A = (r, x− b)⊗ (s, x− c) is trivial in I = Im (ε) if and only if A is
similar to an algebra of one of the three following types:

(i) an algebra
(u− c, x− b)⊗ (u− b, x− c),

where u is the abscissa of a point in E(K) such that u− b 6= 0 and u− c 6= 0;

(ii) an algebra
(b− c, x− b)⊗ ((b− c)(b− a), x− c) ;

(iii) an algebra
((c− a)(c− b), x− b)⊗ (c− b, x− c) .
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4 Semisplit elliptic case

Let E be a semisplit elliptic curve given by an affine equation

y2 = (x− w)(x2 − d),
where w, d ∈ K, charK 6= 2 and d is not a square in K∗. Let L = K(

√
d),

Γ = Gal (K/K) and Λ = Gal (K/L). Clearly, Λ is a subgroup of index two in
Γ and

M ∼=MΛ
Γ (Z/2),

where MΛ
Γ (Z/2) is an induced Γ-module. Therefore, by Shapiro’s lemma (see,

for example, [Serre64]), we have

H1(Γ,M) = H1(Γ,MΛ
Γ (Z/2)) ∼= H1(Λ,Z/2) ∼= L∗/L∗2 .

Let us consider the split elliptic curve EL = E ×K L over L. Fixing its points
(b, 0), (c, 0), where b =

√
d, c = −

√
d, we get the isomorphisms over L

M ∼= Z/2⊕ Z/2, H1(Λ,M) ∼= L∗/L∗2 ⊕ L∗/L∗2 .
Under these identifications the restriction map is given by the formula

res : H1(Γ,M)→ H1(Λ,M), l ∈ L∗/L∗2 → (lσ, l) ∈ L∗/L∗2⊕L∗/L∗2 (10)

where σ is the nontrivial automorphism L/K.
We denote the homomorphisms constructed in the previous section for the split
curve EL by the same symbols but equipped with the subscript L. Thus, we
have the homomorphisms

εL : H1(Λ,M) −→ 2Br (EL) ,

ζL : H1(Λ,M) −→ 2H
1(Λ, E)

and
εL : 2H

1(Λ, E) −→ 2Br (EL) .

Let
H1(Γ,M) ∼= L∗/L∗2

τ−→ L∗/L∗2 ⊕ L∗/L∗2 ∼= H1(Λ,M)

be the homomorphism which takes l into the pair (1, l). We define the homo-
morphism

ε : H1(Γ,M) −→ 2BrE

by means of the following commutative diagram

H1(Λ,M)
εL //

2Br (EL)

cor

²²
H1(Γ,M)

τ

OO

ε //
2BrE
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Proposition 4.1 Let E/K be a semisplit elliptic curve. Let ζ : H1(Γ,M) →
2H

1(Γ, E) be the homomorphism induced by the embedding M ⊂ E and let ε
be the above homomorphism. Then there exists a homomorphism

ε : 2H
1(Γ, E) −→ 2BrE

such that κ ◦ ε = 1
2H1(Γ,E) (i.e. ε is a section for the homomorphism κ) and

ε ◦ ζ = ε .

Proof. The proof is based on a diagram chase. We divide it into a sequence of
simple observations.

Lemma 4.2 The restriction homomorphism

H1(Γ,M)
res−→ H1(Λ,M)

is injective.

Proof. This easily follows from (10).

Lemma 4.3 The composition

H1(Γ,M)
τ−→ H1(Λ,M)

cor−→ H1(Γ,M)

coincides with the identical map 1H1(Γ,M).

Proof. By Lemma 4.2, the homomorphism res : H1(Γ,M) → H1(Λ,M) is
injective. Therefore, it is sufficient to prove that res ◦ cor ◦τ = res. Let l ∈ L∗.
Using (10) we have

(res ◦ cor ◦τ)(l) = (res ◦ cor)(1, l) = (1, l) + (1, l)σ =

(1, l) + (lσ, 1) = (lσ, l) = res(l) .

Lemma 4.4 κ ◦ ε = ζ .

Proof. The commutative diagram

H1(Λ,M)
ζL //

cor

²²

2H
1(Λ, E)

cor

²²

2Br (EL)
κLoo

cor

²²
H1(Γ,M)

ζ //
2H

1(Γ, E) 2BrE
κoo

and Lemma 4.3 imply

κ ◦ ε = κ ◦ cor ◦ εL ◦ τ = cor ◦κL ◦ εL ◦ ζL ◦ τ = cor ◦ ζL ◦ τ = ζ ◦ cor ◦ τ = ζ .
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Lemma 4.5 cor ◦ ζL ◦ τ = ζ .

Proof. Clearly, we have cor ◦ ζL = ζ ◦ cor. Multiplying from the right hand by
τ we obtain that cor ◦ ζL ◦τ = ζ ◦cor ◦ τ = ζ (the last equality holds by Lemma
4.3).

Lemma 4.6 ε (Im δ) ⊂ Im ι.

Proof. By Lemma 4.4, we have κ ◦ ε = ζ, hence

ε (Im δ) = ε (ker ζ) ⊂ ker κ = Im ι .

Lemma 4.7 Im ε ∩ Im ι = 0.

Proof. Our computations are illustrated by the following commutative diagram

2H
1(Λ, E)

εL

((RRRRRRRRRRRRRR

H1(Λ,M)

ζL
55kkkkkkkkkkkkkk

εL //
2BrEL

cor

²²

ςL
,,
2BrL

cor

²²

ιL
oo

H1(Γ,M)

τ

OO

ε //
2BrE

ς
,,
2BrKι

oo

Let b ∈ 2BrE be such that b = ε(h) = ι(a) for some h ∈ H1(Γ,M) and some
a ∈ 2BrK. Let c = ζL(τ(h)). Then

a = (ς ◦ ι)(a) = ς(b) = (ς ◦ cor ◦ εL)(c) = (cor ◦ ςL ◦ εL)(c) = 0,

because ςL ◦ εL = 0.

Lemma 4.8 ε (Im δ) = 0.

Proof. By Lemmas 4.6 and 4.7, we have ε (Im δ) ⊂ Im ε ∩ Im ι = 0.

We are now in the position to finish the proof of Proposition 4.1. Since
ε (Im δ) = ε (ker ζ) = 0, it follows that there exists a unique homomorphism
ε : 2H

1(Γ, E)→ 2BrE such that ε = ε ◦ ζ. Furthermore,

κ ◦ ε ◦ ζ = κ ◦ ε = κ ◦ cor ◦ εL ◦ τ = κ ◦ cor ◦ εL ◦ ζL ◦ τ =

cor ◦κL ◦ εL ◦ ζL ◦ τ = cor ◦ ζL ◦ τ = ζ ◦ cor ◦ τ = ζ .
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Since ζ is an epimorphism, it follows that κ ◦ ε = 1
2H1(Γ,E). Proposition 4.1 is

proved.

To reformulate the results of Proposition 4.1 in terms of central simple algebras
we need three well-known lemmas which describe images of quaternion algebras
under corestriction homomorphisms.

Lemma 4.9 Let F be a field and let P be a finite separable extension of F .
Then for elements a ∈ F and b ∈ P we have

corP/F [a, b] = [a,N P/F (b)]

in the Brauer group BrF .

Proof. This is a well-known fact (see, for instance, [Serre79], p. 209).

Lemma 4.10 Let F be a field and let P be a quadratic extension of F . Suppose
that P = F (

√
s), where s ∈ F . Then for elements a, b ∈ F with the property

a+ b 6= 0 we have

corP/F [a+
√
s, b−√s] = [a+ b, (a2 − s)(b2 − s)] .

Proof. Let

t =
a+
√
s

a+ b
and l =

b−√s
a+ b

.

Then t + l = 1, whence [t, l] = [t, 1 − t] = 0 in BrP . Substituting t and l, we
have

0 = [t, l] =

[
a+
√
s

a+ b
,
b−√s
a+ b

]
=

= [a+
√
s, b−√s] + [a+ b, b−√s] + [a+

√
s, a+ b] + [a+ b, a+ b].

Taking corP/F and using Lemma 4.9 we obtain that

0 = corP/F [a+
√
s, b−√s] + [a+ b, b2 − s] + [a2 − s, a+ b] + [a+ b, (a+ b)2] .

Therefore,

corP/F [a+
√
s, b−√s] = [a+ b, b2 − s] + [a2 − s, a+ b] .

Lemma 4.11 Let F be a field and let P = F (
√
s) be a quadratic extension of

F . Let u1, v1, u2, v2 ∈ F be such that v1 6= 0, v2 6= 0 and v1u2 6= u1v2. Then

corP/F [u1 + v1
√
s, u2 + v2

√
s] =

[v1, u
2
1 − v21s] + [−v2, u22 − v22s] + [v1u2 − u1v2, (u21 − v21s)(u22 − v22s)] .
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Proof. Let

a =
u1
v1

and b = −u2
v2

.

Then
[u1 + v1

√
s, u2 + v2

√
s] = [v1(a+

√
s),−v2(b−

√
s)] =

= [v1,−v2] + [a+
√
s, b−√s] + [v1, b−

√
s] + [a+

√
s,−v2] .

Lemmas 4.10 and 4.9 give

corD/F [u1 + v1
√
s, u2 + v2

√
s] =

[a+ b, (a2 − s)(b2 − s)] + [v1, b
2 − s] + [−v2, a2 − s]

and it remains to substitute a = u1/v1, b = −u2/v2.

Theorem 4.12 Let E be a semisplit elliptic curve over K, charK 6= 2, given
by an affine equation y2 = (x − w)(x2 − d), where w, d ∈ K and d is not a
square in K. Let ε : 2H

1(Γ, E)→ 2BrE be the section for the homomorphism
κ : 2BrE → 2H

1(Γ, E) constructed in Proposition 4.1 and let I = Im ε. Then

2BrE ∼= 2BrK ⊕ I

and every element in I is represented by either a quaternion algebra

(r, x− w),

where r ∈ K∗, or a biquaternion algebra

(t, r2 − t2d)⊗ (tx+ r, (r2 − t2d)(x2 − d))

where r, t ∈ K and t 6= 0. Conversely, every algebra of the above types is
unramified over E. It is trivial in I if and only if it is similar to a quaternion
algebra

(x+ u, (u− w)(x− w)),
where u is the abscissa of a point in E(K).

Proof. The first statement is trivial because ε is a section for the homomorphism
κ. To prove the second one we have to compute ε(h) in terms of quaternion
algebras for all h ∈ H1(Γ,M).
By definition, ε = cor ◦ εL ◦ τ , where L = K(

√
d). Recall that we identify

L∗/L∗2 ∼= H1(Γ,M) and L∗/L∗2⊕L∗/L∗2 ∼= H1(Λ,M) and that τ : L∗/L∗2 →
L∗/L∗2 ⊕ L∗/L∗2 takes l ∈ L∗/L∗2 into (1, l). Let l ∈ L∗. Then we have

(cor ◦ εL ◦ τ) (l) = (cor ◦ εL) (1, l) = corL(E)/K(E) [l, x−
√
d] .

Let l = r + t
√
d. If t = 0, then, by Lemma 4.9, we have

corL(E)/K(E) [r, x−
√
d] = [r, x2 − d] = [r, x− w] .

Documenta Mathematica · Quadratic Forms LSU 2001 · 85–120



The Brauer Group of an Elliptic Curve 101

If t 6= 0, then, by Lemma 4.11, we have

corL(E)/K(E)[r + t
√
d, x−

√
d] =

[t, r2 − t2d] + [1, x2 − d] + [tx+ r, (r2 − t2d)(x2 − d)] =
[t, r2 − t2d] + [tx+ r, (r2 − t2d)(x2 − d)] .

It remains to find out when an algebra b ∈ I = Im ε is trivial. Let b = ε (l). By
Proposition 4.1, we have ε = ε ◦ ζ and ker ε = 0. So b is trivial if and only if
l ∈ ker ζ = Im δ.
Let (u, v) ∈ E(K) and l = δ(u, v). The commutative square

E(L)/2 Â Ä δL // L∗/L∗2 ⊕ L∗/L∗2

E(K)/2

res

OO

Â Ä δ // L∗/L∗2

res

OO

shows that

(lσ, l) = res (l) = (res ◦ δ)(u, v) = (δL ◦ res) (u, v) = δL(u, v),

where σ is a unique nontrivial automorphism L/K. Proposition 3.3 gives

δL(u, v) = (u+
√
d, u−

√
d).

Thus, l = u−
√
d and finally we get

(ε ◦ δ) (u, v) = (corL/K ◦ εL ◦ τ) (l)
= (corL/K ◦ εL) (1, l)
= corL/K [u−

√
d, x+

√
d]

= [x+ u, (u2 − d)(x2 − d)]
= [x+ u, (u− w)(x− w)] .

The theorem is proved.

To consider the non-split case it is convenient to have a reformulation of the
last theorem without conditions on the equation of E. Let E be a semisplit
elliptic curve given by an affine equation

y2 = (x− a)g(x),

where a ∈ K and g(x) is a unitary irreducible polynomial over K. Denote the
roots of g(x) by b and c. Let also E ′ be a semisplit elliptic curve given by an
equation

y2 = (x− w)(x2 − d),

Documenta Mathematica · Quadratic Forms LSU 2001 · 85–120



102 V. Chernousov, V. Guletskǐı

where

w = a− b+ c

2
and d =

(b− c)2
4

.

Clearly, the map

E −→ E′

(u, v) 7→ (u− b+ c

2
, v)

is an isomorphism of elliptic curves. It induces the commutative diagram

0 //
2BrK //

2BrE
κ //

2H
1(Γ, E) // 0

0 //
2BrK //

2BrE
′ κ′ //

∼=

OO

2H
1(Γ, E

′
)

∼=

OO

// 0

Let ε′ : 2H
1(Γ, E

′
) → 2BrE

′ be the section for the homomorphism κ′ :

2BrE
′ → 2H

1(Γ, E
′
) described in Proposition 4.1. Let ε : 2H

1(Γ, E)→ 2BrE
be the section for the homomorphism κ : 2BrE → 2H

1(Γ, E) defined by the
following commutative square

2BrE 2H
1(Γ, E)ε

oo

2BrE
′

∼=

OO

2H
1(Γ, E

′
)

ε′
oo

∼=

OO

Theorem 4.13 Let E be a semisplit elliptic curve defined by an equation

y2 = (x− a)g(x),

where a ∈ K, g(x) is a unitary irreducible quadratic polynomial over K and
g(x) = (x− b)(x− c) over K. Let ε : 2H

1(Γ, E)→ 2BrE be the section for the
homomorphism κ : 2BrE → 2H

1(Γ, E) defined above and let I = Im ε. Then

2BrE ∼= 2BrK ⊕ I

and every element in I is represented by either a quaternion algebra of the form

(r, x− a),
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where r ∈ K∗, or a biquaternion algebra of the form

(t, r2 − h2t2)⊗ (t(x− h) + r, (r2 − t2h2)g(x)),
where h = (b+ c)/2 ∈ K, r, t ∈ K and t 6= 0. Conversely, every algebra of the
above types is unramified over E. It is trivial in I if and only if it is similar to
a quaternion algebra

(x− h+ u, (u+ h− a)(x− a)) ,
where u is the abscissa of a point in E(K).

Proof. All statements follow from Theorem 4.12.

5 Non-split elliptic case

In this section we consider a non-split elliptic curve E given by an affine equa-
tion

y2 = f(x),

where f(x) is an irreducible unitary polynomial without multiple roots. Let a
be a root of f(x). We define L = K(a) and Θ = Gal(K/L).
By construction, the curve EL = E×K L is either split or semisplit over L. Let

ζL : H1(Θ,M) −→ 2H
1(Θ, E)

be the homomorphism induced by the embedding M ⊂ E and let

κL : 2BrEL −→ 2H
1(Θ, E)

be the homomorphism defined either in Section 3 or 4. Let also

εL : H1(Θ,M) −→ 2BrEL

be the homomorphism defined either by formula (9) in the split case or by
means of the homomorphism τ in the semisplit case (see Section 4).
According to Propositions 3.5 and 4.1 there exists a section

εL : 2H
1(Θ, E) −→ 2BrEL

for the homomorphism κL, such that the composition εL ◦ ζL coincides with
εL. We are now in the position to prove the existence of ε and ε with the same
properties for the curve E/K in the non-split case.

Proposition 5.1 Let E be a non-split elliptic curve over K, charK 6= 2. Let
κ : 2BrE → 2H

1(Γ, E) be the homomorphism defined in Section 2 and let
ζ : H1(Γ,M) → 2H

1(Γ, E) be the homomorphism induced by the embedding
M ⊂ E. Let also ε be the composition

ε : H1(Γ,M)
res−→ H1(Θ,M)

εL−→ 2BrEL
cor−→ 2BrE

where εL is as above. Then there exists a homomorphism ε : 2H
1(Γ, E) −→

2BrE such that ε ◦ ζ = ε and κ ◦ ε = 1
2H1(Γ,E) is the identical map.
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Proof. This is entirely analogous to the proof of Proposition 4.1. The only
difference is that instead of τ we have to use the homomorphism H1(Γ,M)

res→
H1(Θ,M).

Keeping the above notation we may reformulate Proposition 5.1 in terms of
central simple algebras. We distinguish two cases.

Theorem 5.2 Suppose that the curve EL is split. Let f(x) = (x−a)(x−b)(x−
c), where a, b, c ∈ L = K(a). Let ε : 2H

1(Γ, E)→ 2BrE be the section for the
homomorphism κ described in Proposition 5.1 and I = Im ε. Then

2BrE ∼= 2BrK ⊕ I

and any element in I has the form

corL/K [(r, x− b)⊗ (s, x− c)]

where r, s ∈ L∗. Conversely, any such a class of algebras is unramified over
K(E) and it is trivial in I if and only if it coincides with a class

corL/K [(u− c, x− b)⊗ (u− b, x− c)],

where u is the abscissa of a point in E(K).

Proof. Since ε is the composition

H1(Γ,M)
res−→ H1(Θ,M)

εL−→ 2BrEL
cor−→ 2BrE ,

it follows that ε is the composition

2H
1(Γ, E)

res−→ 2H
1(Θ, E)

εL−→ 2BrEL
cor−→ 2BrE

(an easy diagram chase). Hence

I = Im ε = cor(Im εL) .

According to Theorem 3.6 any element in Im εL is represented by an algebra
of type (r, x − b) ⊗ (s, x − c) where r, s ∈ L∗. Hence an element in I has the
form corL/K [(r, x− b)⊗ (s, x− c)] for some r, s ∈ L∗.
Let r, s ∈ L∗. Consider the algebra (r, x − b) ⊗ (s, x − c) over L(E). It is un-
ramified because its class lies in the image of the homomorphism εL. Therefore
the class

α = corL/K [(r, x− b)⊗ (s, x− c)] ∈ BrK(E)

is also unramified. Assume that α ∈ I. If

α = corL/K [(u− c, x− b)⊗ (u− b, x− c)]

where u is the abscissa of a point in E(K), then α = 0 because

[(u− c, x− b)⊗ (u− b, x− c)] = 0
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in Im εL, by Theorem 3.6. Conversely, if α = 0 in I then α grows up (via ζ and
ε) from the image of the connecting homomorphism δ. By the construction all
homomorphisms δ, ζ, ε commute with restriction homomorphisms. It follows
that α is equal to a class of algebras coming from E(K)/2, that is of type
corL/K [(u− c, x− b)⊗ (u− b, x− c)] where u is the abscissa of a point in E(K).

Theorem 5.3 Suppose that the curve EL is semisplit. Let f(x) = (x−a)g(x),
where a ∈ L, g(x) is an irreducible quadratic polynomial over L and g(x) =
(x − b)(x − c) over K. Let ε : 2H

1(Γ, E) → 2BrE be the section for the
homomorphism κ described in Proposition 5.1 and I = Im ε. Then

2BrE ∼= 2BrK ⊕ I

and every element in I is represented either by a class

corL/K [r, x− a],

where r ∈ L∗, or a class of the form

corL/K
[
(t, r2 − h2t2)⊗ (t(x− h) + r, (r2 − t2h2)g(x))

]

where h = (b+ c)/2 ∈ L, r, t ∈ L and t 6= 0. Conversely, every such a class is
unramified over K(E). It is trivial in I if and only if it coincides with a class

corL/K [x− h+ u, (u+ h− a)(x− a)]

where u is the abscissa of a point in E(K).

Proof. The proof is similar to that of Theorem 5.2. The difference is just
that we use Proposition 4.13 instead of Proposition 3.6. Indeed, we have I =
cor(Im εL). According to Theorem 4.13 any element in Im εL is represented
by either a quaternion algebra of the form A = (r, x − a), where r ∈ K∗, or a
biquaternion algebra of the form

B = (t, r2 − h2t2)⊗ (t(x− h) + r, (r2 − t2h2)g(x)),

where h = (b + c)/2 ∈ K, r, t ∈ K and t 6= 0. Therefore an element in I is
equal to either corL/K [A] or corL/K [B].
An algebra of the types A or B lies in Im εL and hence it is unramified. There-
fore, classes corL/K [A] and corL/K [B] are also unramified. They are trivial in
I if and only if they come from the image of the connecting homomorphism
δ via the homomorphisms ζ and ε. Since δ, ζ and ε commute with the corre-
sponding restriction homomorphisms, it follows (using the second assertion of
Proposition 4.13) that the classes corL/K [A] and corL/K [B] are trivial in I if
and only if they coincide with a class

corL/K [x− h+ u, (u+ h− a)(x− a)] ,
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where u is the abscissa of a point in E(K).

The generators of 2BrE given in Theorems 5.2 and 5.3 are represented as
classes corL/K [A], where A is a quaternion or biquaternion algebra over the
cubic extension L(E)/K(E). We close this section by showing how one can
rewrite these generators as tensor products of quaternion algebras defined over
K(E).
Let P/K be a cubic extension and let P = K(s) for some element s ∈ P .
Lemma 5.4 Every element a ∈ P can be written in the form

a =
θ1 + θ2s

θ3 + θ4s
,

where θ1, θ2, θ3, θ4 ∈ K.

Proof. Let V = {θ1 + θ2s | θ1, θ2 ∈ K} be a two-dimensional vector space over
F . Since aV is also a two-dimensional vector space over K, the intersection
V ∩ aV has dimension at least one. Let b ∈ V ∩ aV be a non-zero element.
Then there exists θ1, θ2, θ3, θ4 ∈ K such that

b = θ1 + θ2s = (θ3 + θ4s)a.

It follows that

a =
θ1 + θ2s

θ3 + θ4s
,

as required.

Lemma 5.5 Let a, b ∈ K be such that a+ b 6= 0. Then

corP/K [a+ s, b− s] =
[
a+ b, (a+ b)NP/K((a+ s)(b− s))

]
.

Proof. Let

t =
a+ s

a+ b
and l =

b− s
a+ b

.

Then t+ l = 1, whence [t, l] = [t, 1− t] = 0 in BrP . Substituting t, l, we have

0 = [t, l] =

[
a+ s

a+ b
,
b− s
a+ b

]
=

[a+ s, b− s] + [a+ b, b− s] + [a+ s, a+ b] + [a+ b, a+ b] .

Taking corP/F and using Lemma 4.9 we obtain that

0 = corP/K [a+ s, b− s] + [a+ b,NP/K(b− s)]+

[NP/K(a+ s), a+ b] + [a+ b, (a+ b)3] .

Therefore,

corP/F [a+ s, b− s] = [a+ b,NP/K(b− s)]+ [NP/K(a+ s), a+ b] + [a+ b, a+ b] ,

as required.
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Lemma 5.6 Let u1, v1, u2, v2 ∈ K, v1 6= 0, v2 6= 0 and v1u2 6= u1v2. Then

corP/K [u1 + v1s, u2 + v2s] =
[
v1(v1u2 − u1v2),NP/K(u1 + v1s)

]
+

[
v2(u1v2 − v1u2), v1(v1u2 − u1v2)NP/K(u2 + v2s)

]
.

Proof. This is entirely analogous to the proof of Lemma 4.11 and so we omit
the details to the reader.

Using Lemmas 5.4, 4.9, 5.5 and 5.6 one can easily produce explicit formulas to
compute all algebras in Theorems 5.2 and 5.3. However we do not present them
because of their bulk.

6 Elliptic curves over local fields

In the next few sections we demonstrate the efficiency of the above cohomolog-
ical methods by considering an elliptic curve E defined over a local non-dyadic
field K. To get an explicit description of 2BrE, by Theorems 3.6, 4.13, 5.2
and 5.3, we only need to explicitly describe all relations between the generators
indicated in these theorems which is equivalent to the description of the image
of the boundary map δ : E(K)/2→ H1(Γ,M).

For an elliptic curve over local fields there is a natural p-adic filtration on the
group of K-points with finite quotients. Examining each quotient individually
one can very quickly find generators for the group E(K)/2. This leads in turn
to the required description of Im δ. All necessary facts for our further argument
can be easily elicited from standard textbooks, for example from [Hu87] and
[Sil85]. For the convenience of the reader we start with recalling them.

For the rest of the paper we use the following specific notation:

K – a local non-dyadic field, i.e. a finite extension of the p-adic field Qp, p 6= 2;

v – the discrete valuation on K;

O = OK – the ring of integers of K;

O
∗ = O

∗
K – the unit group of O;

α = αK ∈ O
∗ – a non-square element;

π = πK – a uniformizer for O;

k = O/πO – the residue field of K.

Theorem 6.1 There is a natural isomorphism

H1(Γ, E) ∼= Homcont(E(K),Q/Z) .

Proof. See [Tate57] or [Mi86].

Corollary 6.2 | 2BrE| = 2 ·
√
|H1(Γ,M)| .
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Proof. By Theorem 6.1, we have

| 2H1(Γ, E)| = | 2Homcont(E(K),Q/Z)| =

|Homcont(E(K)/2,Q/Z)| = |E(K)/2| .
On the other hand, sequence (8) shows that

| 2H1(Γ, E)| = |H1(Γ,M)|/|E(K)/2| .

Therefore,
|E(K)/2|2 = |H1(Γ,M)|

and the result follows.

Proposition 6.3 Let n be a natural number. Then

|E(K)/nE(K)| = |nE(K)| · |O/nO|.

Proof. See, for example, [Mi86], p. 52.

Corollary 6.4 Let E be a non-split elliptic curve defined over a local non-
dyadic field K. Then 2BrE = 2BrK.

Proof. Clearly, we have

| 2BrE | = | 2BrK | · | 2H1(Γ, E) | = | 2BrK | · |E(K)/2 | .

Since E is non-split, it follows that every nontrivial element from M is not
defined over K. Therefore, 2E(K) = 0 and, by Proposition 6.3, we obtain that
E(K)/2 = 0. This implies that | 2BrE | = | 2BrK |, as required.
Let E be an elliptic curve over K and let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be a Weierstrass equation for the curve E/K with all coefficients ai ∈ O.
Since its discriminant ∆ is also an integer and since v is discrete we can look
for an equation with v(∆) as small as possible. A Weierstrass equation is
called a minimal equation for E if v(∆) is minimized subject to the condition
a1, a2, a3, a4, a6 ∈ O.
It is known (see [Sil85], Proposition 1.3, p. 172) that a minimal (Weierstrass)
equation is unique up to a change of coordinates

x = u2x′ + r , y = u3y′ + u2sx′ + t

with u ∈ O
∗ and r, s, t ∈ O. Since, by our assumption, 2 ∈ O

∗, a coordinate
change y → y′ = y + (a1x + a3)/2 shows that we may always assume that
a1 = a3 = 0, i.e. E is given by a minimal equation of the form

y2 = x3 + a2x
2 + a4x+ a6 . (11)
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Later we need to know when (11) is a minimal equation for E. Let

b2 = 4a2 , b4 = 2a4 , b6 = 4a6 , b8 = 4a2a6 − a24 ,

c4 = b22 − 24b4 , c6 = b32 + 36b2b4 − 216b6

be the usual combinations of the ai‘s and let

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

be the discriminant of equation (11) (see [Sil85], p. 46).

Proposition 6.5 Equation (11) with integer coefficients a2, a4, a6 is minimal
if and only if either v(∆) < 12 or v(c4) < 4.

Proof. See [Sil85], page 186, Exercises 7.1.

We assume that our elliptic curve E is given by a minimal equation (11).

Reducing its coefficients modulo π we obtain the curve (possibly singular) Ẽ
over k:

y2 = x3 + ã2x
2 + ã4x+ ã6 .

The curve Ẽ is called the reduction of E modulo π.
Next let P ∈ E(K). We can find homogeneous coordinates P = [x0, y0, z0]
with integers x0, y0, z0 such that at least one of them is in O

∗. Then the
reduced point P̃ = [x̃0, ỹ0, z̃0] is in Ẽ. This gives a reduction map

E(K) −→ Ẽ(k), P −→ P̃ .

Since the curve Ẽ can be singular, we denote its set of nonsingular points by
Ẽns(k) and we put

E0(K) = {P ∈ E(K) | P̃ ∈ Ẽns(k)}

E1(K) = {P ∈ E(K) | P̃ = Õ} .

Proposition 6.6 The following natural sequence of abelian groups

0→ E1(K) −→ E0(K) −→ Ẽns(k)→ 0

is exact.

Proof. See [Sil85], Proposition 2.1, p. 174.

Proposition 6.7 The group E1(K) is uniquely divisible by 2; in particular,
we have E1(K) = 2E1(K).
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Proof. See [Hu87], Corollary 1.3, p. 264.

Let E/K be an elliptic curve and let Ẽ/k be the reduced curve for a minimal
Weierstrass equation. One says that

(a) E has good reduction over K if Ẽ is nonsingular;

(b) E has multiplicative reduction over K if Ẽ has a node; in this case the
reduction is said to be split (respectively non-split) if the slopes of the tangent
lines at the node are in k (respectively not in k);

(c) E has additive reduction over K if Ẽ has a cusp.

Proposition 6.8 Let E/K be an elliptic curve given by a minimal Weierstrass
equation (11).

(a) E has good reduction if and only if v(∆) = 0;
(b) E has multiplicative reduction if and only if v(∆) > 0 and v(c4) = 0;
(c) E has additive reduction if and only if v(∆) > 0 and v(c4) > 0.

Proof. See [Sil85], Proposition 5.1, p. 180.

7 Generators of E(K)/2 for a split elliptic curve over a local field

Let E be a split elliptic curve given by a minimal equation (11). Since M is
a trivial Γ-module, it follows that all roots of the cubic polynomial f(x) =
x3 + a2x

2 + a4x+ a6 are in K. Then these roots, clearly, belong to O, so that
we may assume that E is given by a minimal equation of the form

y2 = (x− a)(x− b)(x− c) (12)

with all a, b, c in O. In this coordinate system M consists of the points

O, P = (a, 0), Q = (b, 0), T = (c, 0) .

Recall also that, by Proposition 6.3, we have |E(K)/2| = |M | = 4.

7.1 Additive reduction

Lemma 7.1 The group E0(K) is divisible by 2.

Proof. Since E has additive reduction, we have E0(K)/E1(K) ∼= k+; in partic-
ular the finite group E0(K)/E1(K) is divisible by 2. Then the result follows
from Proposition 6.7.

Proposition 7.2 The elements O, P, Q, T are representatives of E(K)/2.

Proof. In view of Lemma 7.1 we have E0(K) ⊂ 2E(K) ⊂ E(K) and by [Sil85],
Theorem 6.1, p. 183, the group E(K)/E0(K) is finite of order at most 4. Since
|E(K)/2| = 4, we get E0(K) = 2E(K) and it remains to note that the points
P, Q, T do not belong to E0(K).
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7.2 Multiplicative reduction

By our assumption, among the residues ã, b̃, c̃ there are exactly two coinciding
elements; say ã = b̃. Changing coordinates, if necessary, we may assume that
E is given by a minimal equation of the form

y2 = x(x+ πmβ)(x+ γ)

with β ∈ O
∗, m ≥ 1 and γ ∈ O

∗. Recall that in the case of non-split reduction
γ coincides modulo squares with α; otherwise γ is a square in O

∗.

Lemma 7.3 There exists a point R1 = (u, v) ∈ E0(K) such that

u = αt2 , u+ πmβ = αq2 , u+ γ = s2 , v = α t q s

with t, q, s in O
∗.

Proof. The proof is easy. Namely, we have to find a solution of the system
{
αx2 + πmβ = αy2

αx2 + γ = z2

According to standard facts from the theory of quadratic forms over finite and
local fields the quadratic form α̃x2 − z2 represents −γ ∈ k∗, whence, by the
Hensel lemma, we can pick units t, s ∈ O

∗ satisfying the second equation.
Substitute t in the first equation. Since the residues of the elements αt2+πmβ
and α coincide modulo squares, again, applying the Hensel lemma we can find
q ∈ O

∗ satisfying the equation αt2 + πmβ = αy2.

Remark 7.4 Since the abscissa u of R1 is not a square in K∗, Proposition 3.3
shows that δ(R1) 6= (1, 1). Then it follows that R1 6∈ 2E(K).

Lemma 7.5 There exists a point R2 = (u, v) ∈ E(K) \ E0(K) with u = πd,
d ∈ O, and such that its image in the group E(K)/E0(K) is not divisible by 2.

Proof. The abscissa of every point from E(K)\E0(K) is of the form πd with d ∈
O because its residue is the node. Further, we have ∆ = 16(πmβγ(πmβ − γ))2
and πmβ− γ ∈ O

∗, so that v(∆) is even. Then, by [Hu87], p. 266, the order of
the finite group E(K)/E0(K) is divisible by 2, whence such a point exists.

Remark 7.6 If the reduction is non-split, we can take R2 = (0, 0), because
in this case the group E(K)/E0(K) has order 2 (loc. cit.) and, of course,
R2 = (0, 0) 6∈ E0(K).

Proposition 7.7 The points R1, R2 from the above two lemmas are genera-
tors of E(K)/2E(K).

Proof. Since |E(K)/2| = 4, we have E(K)/2E(K) ∼= Z/2 × Z/2. By our
construction and by Remark 7.4, the images of R1, R2 in E(K)/2E(K) are not
trivial and they do not coincide.
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8 Generators of E(K)/2 for a semisplit elliptic curve over a local field

We may assume that E is given by a minimal equation of the form

y2 = (x− a)(x2 − d), (13)

where a, d ∈ O and the polynomial g(x) = x2 − d is irreducible over K. Let
L = K(

√
d) be its splitting field and let Λ = Gal (K/L). As it was mentioned

in Section 4, the module M is isomorphic to the induced module MΛ
Γ (Z/2).

This gives the isomorphisms

H1(Γ,M) ∼= L∗/L∗2 , H1(Λ,M) ∼= L∗/L∗2 × L∗/L∗2 .

Recall also that under this identification the restriction map H1(Γ,M) →
H1(Λ,M) is given by the formula l → (lσ, l), where l ∈ L∗ and σ is the
nontrivial automorphism L/K; in particular, res is injective (see Section 4). It
then follows from the commutative square

E(L)/2
Â Ä δL // L∗/L∗2 ⊕ L∗/L∗2

E(K)/2

η

OO

Â Ä δ // L∗/L∗2
?Â

res

OO

that η : E(K)/2 → E(L)/2 is also injective. Applying Proposition 6.3 we
have |E(K)/2| = | 2E(K)| = 2. Now we want to explicitly describe the image
η(E(K)/2). The answer depends on the type of reduction.

8.1 Multiplicative reduction.

For an elliptic curve given by (13) one has ∆ = 64d(a2 − d)2 and c4 = 16(a2 +
3d). Since, by Proposition 6.8, v(∆) > 0 and v(c4) = 0, we obtain that v(d) > 0
and a ∈ O

∗. Then, according to Proposition 6.5, (13) is a minimal equation for
EL. Hence EL has multiplicative reduction (again by Proposition 6.8). Note
that in view of v(d) > 0 and a ∈ O

∗ we have a2− d ∈ O∗, whence v(∆) = v(d).
We say that we are in case:

(M1) if either v(d) is odd or 4 divides v(d) and E has non-split multiplicative
reduction;

(M2) if v(d) is even and either E has split multiplicative reduction or 4 does
not divide v(d).

Proposition 8.1 Let R1, R2 be the points in E(L) introduced in 7.2. Then
in case (M1) the nontrivial element of η(E(K)/2) coincides with R1 + 2E(L)
and in case (M2) it coincides with R2 + 2E(L).
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Proof. Consider case (M1). If v(d) is odd, then by, [Hu87], p. 266, the group
E(K)/E0(K) has an odd order. So we may choose a representative R of a
unique nontrivial element in E(K)/2 among elements of E0(K). Since E0(K) ⊂
E0(L) and η is injective, R coincides with R1 modulo 2E(L).

Next suppose that 4 divides v(d) and E has non-split multiplicative reduction.
Since v(d) is even, the extension L/K is unramified, so that [kL : k] = 2,
where kL is the residue field of the local field L. It follows that EL has split
multiplicative reduction and, by [Hu87], p. 266, the group E(L)/E0(L) is cyclic
of order v(∆L) = v(∆K) = v(d); in particular, 4 divides |E(L)/E0(L)|.
Let R be a representative of the nontrivial element of E(K)/2. Since E has
non-split multiplicative reduction, it follows that |E(K)/E0(K)| = 2 (loc. cit.),
hence R can be chosen among elements E(K)\E0(K). To show that η(R) coin-
cides with R1 modulo 2E(L) consider the 2-Sylow subgroup G in E(L)/E0(L).
It is clear that R + E0(L) ∈ G and it has order 2. Then R + E0(L) is
divisible by 2 in G and so in E(L)/E0(L). But, by our construction (see
Lemma 7.5), the element R2 is not divisible by 2 in E(L)/E0(L), so we obtain
R+2E(L) 6= R2+2E(L) and similarly we have R+2E(L) 6= R1+R2+2E(L).
It follows that R+ 2E(L) = R1 + 2E(L), as required.

Consider case (M2). We have already mentioned that (13) is a minimal equation
for EL. It follows that E0(K) ⊂ E0(L) and that the natural embedding E(K) ⊂
E(L) induces the injection ψ : E(K)/E0(K)→ E(L)/E0(L).

Suppose that E has split multiplicative reduction and v(d) is even. Then
L/K is unramified and again, by [Hu87], p. 266, the groups E(K)/E0(K) and
E(L)/E0(L) are cyclic of the same order v(∆) = v(∆L) = v(d) implying ψ is a
bijection. Since v(d) is even, we can choose a representative R of the nontrivial
element of E(K)/2 such that R+E0(K) is not divisible by 2 in E(K)/E0(K).
Then it is not divisible by 2 in E(L)/E0(L); hence R+ 2E(L) = R2 + 2E(L).

Suppose that E has non-split multiplicative reduction. Then according to
[Hu87], p. 266, we have |E(K)/E0(K)| = 2 and |E(L)/E0(L)| = v(d). Since
4 does not divide v(d), the group ψ (E(K)/E0(K)) is a 2-Sylow subgroup in
E(L)/E0(L). Hence again picking an element R with the same property as
above we easily get R+ 2E(L) = R2 + 2E(L).

8.2 Additive reduction

Proposition 8.2 (1) If L/K is unramified, then E(K)/2 is generated by P =
(a, 0).

(2) Let L/K be ramified. If a −
√
d is not a square in L∗, then E(K)/2 is

again generated by P = (a, 0). If a −
√
d = s2, s ∈ L∗, then E(K)/2 is

generated by the point U = (u,w) ∈ E(K), where u = NL/K(s) + a and w =

NL/K(s)TrL/K(s).

Proof. First let L/K be unramified. Then EL has additive reduction and by
Proposition 7.2, we have P 6∈ 2E(L). It follows that P 6∈ 2E(K), as required.
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Next let L/K be ramified. Recall that, by Lemma 7.1, we have E0(K) ⊂ 2E(K)
and that E(K)/E0(K) is a group of order at most 4 (see [Sil85], p. 183).
If a−

√
d is not a square in L∗, then, by Proposition 3.3, δL(P ) 6= (1, 1), hence

P 6∈ 2E(L) and the result follows.
Let a−

√
d = s2, s ∈ L∗. Then it is easy to check that 2U = P . This implies that

P ∈ 2E(K) \ E0(K) and so |2E(K)/E0(K)| ≥ 2. But |E(K)/2E(K)| = 2 and
|E(K)/E0(K)| ≤ 4. It follows that |2E(K)/E0(K)| = 2, whence U 6∈ 2E(K),
as required.

For the description of 2BrE we will also need to know whether (δL◦η) (E(K)/2)
belongs to the unramified part of the subset res (L∗/L∗2) ⊂ L∗/L∗2 ×L∗/L∗2.
In other words, we will need to know whether vL(a+

√
d) and vL(u+

√
d) are

odd or even. Here u is the abscissa of the above point U . It turns out that the
answer depends on the coefficients of the minimal equation (13) only.
Let a = πma′, d = π2k+λd′ with a′, d′ ∈ O

∗ and λ = 0, 1. Using Propositions
6.5 and 6.8 one can easily make sure that m > 0, 2k + λ > 0 and that m = 1
or 2k + λ ≤ 3. We will say that we are in case:

(A1) if one of the following conditions holds:
(a) λ = 0, i.e. L/K is unramified,
(b) λ = 1, m = 1, k = 0,
(c) λ = 1, m > 1;

(A2) if λ = 1, m = 1, k ≥ 1 and a−
√
d 6∈ L∗2.

(A3) if λ = 1, m = 1, k ≥ 1 and a−
√
d ∈ L∗2,

Lemma 8.3 (i) In case (A1) the group E(K)/2 is generated by P and vL(a+√
d) is odd.

(ii) In case (A2) the group E(K)/2 is generated by P and vL(a+
√
d) is even.

(iii) In case (A3) the group E(K)/2 is generated by U and vL(u+
√
d) is odd.

Proof. First examine case (A1).
(a) Here L/K is unramified and at least one of the numbers k and m equals 1.
So, obviously, vL(a+

√
d) = 1.

(b) Since L/K is ramified, we have vL(a) = vL(π) = 2 and vL(
√
d) = 1. So

vL(a+
√
d) = 1.

(c) We have vL(a) = 2m ≥ 4 and vL(
√
d) = 2k+1. Since 2k+λ ≤ 3, we obtain

that vL(a+
√
d) = vL(d) = 2k + 1 is odd.

Case (A2). Since L/K is ramified, we have vL(a) = vL(π) = 2 and vL(
√
d) =

2k + 1 ≥ 3. It follows that vL(a+
√
d) = 2.

Case (A3). Keeping the notation of Proposition 8.2 we have a−
√
d = s2 and

u = NL/K(s) + a. It easily follows that vL(s) = 1. Further, letting σ be the
nontrivial automorphism L/K we have

u+
√
d = NL/K(s) + a+

√
d = ssσ + sσsσ = (s+ sσ)sσ.

Therefore, vL(u+
√
d) = vL(s+ sσ) + 1 and it remains to note that vL(s+ sσ)

is even because s+ sσ ∈ K.
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9 Computing 2BrE over non-dyadic local fields: split case

Putting together the results of the previous sections one can easily obtain
an explicit and very short description of the 2-torsion subgroup of BrE for
split and semisplit elliptic curves (note that for non-split curves it was done
in Corollary 6.4). Namely, let δ : E(K)/2 → H1(Γ,M) be the boundary
map. The description of generators of E(K)/2 and their images under the
map δ given in Sections 7 and 8 enables us to explicitly construct a subgroup
in H1(Γ,M) that complements δ(E(K)/2). If we then restrict the section
ε : H1(Γ,M) → 2BrE constructed in Sections 3 and 4 at this subgroup, we
immediately obtain a description of the second summand in the decomposition

2BrE = 2BrK ⊕ Im ε as, by Proposition 3.4, and Lemma 4.8, the equality
ε (Im δ) = 0 holds.
In this section we consider a split elliptic curve E given by a minimal equation
of the form

y2 = x(x− b)(x− c) , (14)

with b, c in the integer ring O. Its 2-torsion consists of the points O, P = (0, 0),
Q = (b, 0) and T = (c, 0). As in Section 3, we may identify

M = 〈Q〉 ⊕ 〈T 〉 ∼= Z/2⊕ Z/2

and
H1(Γ,M) ∼= K∗/K∗2 ⊕K∗/K∗2 .

According to Proposition 3.3 the connecting homomorphism

δ : E(K)/2 ↪→ K∗/K∗2 ⊕K∗/K∗2

is given by the formula

δ(u, v) =





(u− c, u− b) if u 6= b and u 6= c,
(b− c, b(b− c)) if u = b,
(c(c− b), c− b) if u = c,
(1, 1) if u =∞,

(15)

where (u, v) ∈ E(K). Let

Cα = [α, x−c] , Cπ = [π, x−c] , Bα = [α, x−b] and Bπ = [π, x−b] (16)

be the classes of quaternion algebras over K(E). We distinguish the following
three cases.

9.1 Good reduction

We start with the following

Lemma 9.1 δ(E(K)/2) is generated by the pairs (α, 1) and (1, α).
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Proof. Let Knr/K be a maximal unramified extension. It suffices to show that
the images of our pairs under the natural map ζ : H1(Γ,M)→ 2H

1(Γ, E) are
trivial. To do so, first recall that, by [LT58] and [L56], we have

H1(Gal (Knr/K), E(Knr)) = H1(Gal (k/k), Ẽ) = 0 .

This implies that res : H1(Γ, E)→ H1(Knr, E) is injective. On the other hand,
obviously we have (res ◦ζ)(α, 1) = (res ◦ζ)(1, α) = 1, so the result follows.

Proposition 9.2 We have

2BrE = 2BrK ⊕ {0, Bπ, Cπ, Bπ + Cπ} .

Proof. It suffices to note that the subgroup generated by the pairs (π, 1) and
(1, π) complements the subgroup δ(E(K)/2) and that ε takes these pairs to the
classes Bπ and Cπ.

9.2 Additive reduction

We may assume that v(b) ≥ 1, v(c) ≥ 1 and that at least one of these numbers
is 1. Let b = πmd and c = πe, where d and e are units and m ≥ 1. Proposition
7.2 shows that E(K)/2 is generated by the points P, Q, T . Applying (15) we
get

Lemma 9.3 δ(E(K)/2) is generated by the pairs

δ(P ) = (−πe,−πmd) and δ(T ) = (πe(πe− πmd), πe− πmd) .

Proposition 9.4 We have

2BrE = 2BrK ⊕ {0, Bα, Cα, Bα + Cα} .

Proof. It easily follows from Lemma 9.3 that the subgroup generated by the
pairs (α, 1) and (1, α) complements δ(E(K)/2) in K∗/K∗2 ⊕ K∗/K∗2 and it
remains to note that ε takes these pairs to the classes Bα and Cα.

9.3 Non-split multiplicative reduction

We may assume that E is given by a minimal equation of the form

y2 = x(x+ πmβ)(x+ α) ,

with m ≥ 1 and β ∈ O. Note that in the notation of formulas (15) and (16) we
have that

b = −πmβ and c = −α .
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Lemma 9.5 δ(E(K)/2) is generated by the pairs (1, α) and (α, πmβ).

Proof. Let R1, R2 be two points introduced in 7.2. It then follows from
Lemma 7.3, Remark 7.6 and formula (15) that δ(R1) = (1, α) and δ(R2) =
(α, πmβ), as required.

Proposition 9.6 We have

2BrE = 2BrK ⊕ {0, Bπ, Cπ, Bπ + Cπ} .

Proof. The subgroup generated by the pairs (π, 1) and (1, π) complements
δ(E(K)/2), so the result follows.

9.4 Split multiplicative reduction

We may assume that E is given by a minimal equation of the form

y2 = x(x+ πmβ)(x+ 1).

Lemma 9.7 δ(E(K)/2) is generated by the pairs (1, α) and (1, π).

Proof. As above, we have δ(R1) = (1, α). Further, it follows from the construc-
tion that the abscissa of the point R2 = (u, v) is of the form u = πd. So applying
formula (15), we obtain that δ(R2) = (1, πu + πmβ). But |δ(E(K)/2)| = 4,
whence v(πu+ πmβ) is odd and the result follows.

Proposition 9.8 We have

2BrE = 2BrK ⊕ {0, Bα, Bπ, Bαπ} .

Proof. This follows from the fact that the subgroup generated by the pairs
(α, 1) and (π, 1) complements δ(E(K)/2).

10 Computing 2BrE over non-dyadic local fields: semisplit case

We keep the notation introduced in Section 8. Assume that E is given
by a minimal equation of the form (13). Then E(K)/2 and H1(Γ,M) are
groups of order 2 and 4 respectively, so that δ(E(K)/2) can be comple-
mented inside H1(Γ,M) by a single element. We will find such an element
among elements cor (H1(Λ,M)). Recall that δL denotes the homomorphism
E(L)/2 ↪→ H1(Λ,M).

Lemma 10.1 Let θ ∈ H1(Λ,M) satisfies the condition (res ◦ cor) (θ) 6∈ (δL ◦
res) (E(K)/2). Then cor (θ) complements δ (E(K)/2).

Documenta Mathematica · Quadratic Forms LSU 2001 · 85–120



118 V. Chernousov, V. Guletskǐı

Proof. By our assumption,

res (cor (θ)) 6∈ (δL ◦ res) (E(K)/2) = (res ◦δ) (E(K)/2) ,

so that cor (θ) does not lie in δ(E(K)/2).

Let αL and πL be a non-square unit and a uniformizer of the integer ring OL

of L = K(
√
d) respectively.

10.1 Good Reduction

Proposition 10.2 2BrE = 2BrK ⊕ {0, [π, x− a]}.

Proof. Clearly, (δL ◦ res) (E(K)/2) belongs to the unramified part of
H1(Λ,M) ∼= L∗/L∗2 ⊕ L∗/L∗2. Since we have good reduction, d is a unit,
whence πL = π. We put θ = (1, π). The equation (res ◦ cor)(θ) = (π, π) shows
that θ satisfies the condition of Lemma 10.1. It then follows from Theorem 4.12
that 2BrE is generated by 2BrK and

(cor ◦ εL) [1, π] = cor [π, x+
√
d] = [π, x2 − d] = [π, x− a].

10.2 Additive reduction

Proposition 10.3 (1) In cases (A1) and (A3) we have

2BrE = 2BrK ⊕ {0, cor [αL, x−
√
d]}.

(2) In case (A2) we have

2BrE = 2BrK ⊕ {0, cor [πL, x−
√
d]}.

Proof. It suffices to note that, by Lemma 8.3, in the first (resp. second) case
the pair θ = (1, αL) (resp. θ = (1, πL)) satisfies the condition of Lemma 10.1.

10.3 Multiplicative Reduction

Proposition 10.4 In case (M1) we have

2BrE = 2BrK ⊕ {0, cor [πL, x−
√
d]}.

and in case (M2) we have

2BrE = 2BrK ⊕ {0, cor [αL, x−
√
d]} .
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Proof. Denote a representative of a unique nontrivial element in E(K)/2E(K)
by R. Consider first case (M1). Let Lnr be a maximal unramified extension
of L. According to Proposition 8.1 we have η(R) = R1 + 2E(L). Since, by
construction, R1 ∈ E0(L) and E0(L

nr)/2E0(L
nr) = 0 (see [Sil85], p. 187), it

follows that δL(η(R)) belongs to the unramified part of the group H1(Λ,M) ∼=
L∗/L∗2 ⊕ L∗/L∗2. Therefore one can take θ = (1, πL) and the result follows.
In case (M2) we have η(R) = R2 + 2E(L). Since v(d) is even, the extension
L/K is unramified and EL has split multiplicative reduction. We know that the
abscissa u of R2 is of the form u = πu′, so that δL(R2) = (πu′+

√
d, πu′−

√
d).

It is easy to make sure that v(πu′ +
√
d) is odd. Then θ = (1, αL) satisfies the

condition of Lemma 10.1 and the result follows.
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[G99] Guletskǐı, V.: Algebras of Exponent 2 over an Elliptic Curve.
Preprint 99 – 112, Universität Bielefeld (1999)
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Abstract. The close relationship between the theory of quadratic
forms and distance analysis has been known for centuries, and the the-
ory of metric spaces that formalizes distance analysis and was devel-
oped over the last century, has obvious strong relations to quadratic-
form theory. In contrast, the first paper that studied metric spaces as
such – without trying to study their embeddability into any one of the
standard metric spaces nor looking at them as mere ‘presentations’ of
the underlying topological space – was, to our knowledge, written in
the late sixties by John Isbell. In particular, Isbell showed that in the
category whose objects are metric spaces and whose morphisms are
non-expansive maps, a unique injective hull exists for every object, he
provided an explicit construction of this hull, and he noted that, at
least for finite spaces, it comes endowed with an intrinsic polytopal
cell structure.

In this paper, we discuss Isbell’s construction, we summarize the his-
tory of — and some basic questions studied in — phylogenetic analysis,
and we explain why and how these two topics are related to each other.
Finally, we just mention in passing some intriguing analogies between,
on the one hand, a certain stratification of the cone of all metrics de-
fined on a finite set X that is based on the combinatorial properties of
the polytopal cell structure of Isbell’s injective hulls and, on the other,
various stratifications of the cone of positive semi-definite quadratic
forms defined on Rn that were introduced by the Russian school in
the context of reduction theory.
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Keywords and Phrases: injective hull, tight span, phylogenetic tree,
quadratic form

1 Introduction

The close relationship between distance analysis and quadratic-form theory
was known already in pre-Pythagorean times: A ceramic slab found in the
near east, for instance, presents the triples of integers 3,4,5; 5,12,13; 7,24,25; ...
and it is very likely that these integers were of interest to Babylonean builders
as they allowed to build walls at right angles without any particular tool except
a long string with 12 = 3+4+5 or 30 = 5+12+13 or ... equidistant nodes (see
Figure 1).
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Figure 1: The figure shows how a wall can be built at a right angle with a
string of length 12.

The Pythagorean Theorem puts this knowledge into more formal terms. And
since then, the analysis of distance relationships has always been closely
intertwined with that of quadratic forms. The development of differential
geometry since Gauss as well as the development of geometric algebra in the
19th century — culminating in the definition of Clifford and Cayley algebras
and Hamilton’s definition of quarternian fields — clearly testifies to this fact.

In the early 20th century, attempts to develop appropriate conceptual frame-
works for dealing with topological phenomena led Frechet to the definition
of metric spaces. While this caused most mathematicians to think of metric
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spaces as just a rather convenient tool to define and to deal with topological
spaces, a few began to study metric spaces for their own sake. Menger and
Blumenthal in particular began developing distance geometry providing and
investigating necessary and sufficient conditions for a given metric space to be
isometrically embeddable into standard metric spaces, e.g. the n-dimensional
Euclidean or some hyperbolic, elliptic, or Lp space — rediscovering, by the way,
an important result of Cayley’s regarding the significance of the now famous
Cayley-Menger determinants in this context3. While, at their time, this effort
did not stimulate much of a response among their fellow mathematicians, it
turned out to be crucial later on for developing algorithms that would identify
the spatial structure of proteins from two-dimensional NMR data (cf. [7]).

2 John Isbell’s Contribution

Perhaps the first paper that studied metric spaces as such – without trying to
study their embeddability into standard metric spaces nor looking at them as
mere ‘presentations’ of the underlying topological space – was, to our knowl-
edge, written in the late sixties by John Isbell (cf. [23]). Trying to capture the
decisive aspects of distance relationships, he proposed to define the category of
metric spaces as follows: Its objects — for sure — are the metric spaces. But,
noting that

• using continuous maps as morphisms would create too flexible a category,
overemphasizing the topological aspects and neglecting the true metric
structure (e.g. any bijection between two finite metric spaces would then
be an isomorphism)

while

• using isometries only would result in too rigid a category without enough
morphisms,

he proposed to use the non-expansive maps from a metric space A into a metric
space B as the set of morphisms from A to B, that is, those maps f : A→ B
for which the distance in B between the image f(a) and f(a′) of two points
a and a′ from A never exceeds their distance in A (or, in other words, the
continuous maps from A to B for which the Weierstrass δ can always be chosen
to be equal to the Weierstrass ε).

Isbell then went on to show that a unique injective hull exists in this category
for every one of its objects, providing an explicit construction of this hull for
all spaces and noting that it comes endowed, at least for finite spaces, with an

3Actually, Cayley’s original paper dealing with these determinants was the first to intro-
duce the present notation for determinants.
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intrinsic polytopal structure.

More precisely, Isbell presented the following intriguing observations:

(i) There exist injective metric spaces, that is, metric spaces X = (X, d) =
(X, d : X×X → R) such that, for every isometric embedding α : X ↪→ X ′

of (X, d) into another metric space (X ′, d′), there exists a non-expansive
retract α′ : X ′ → X, that is, a non-expansive map α′ from X ′ into X
with α′ ◦ α = IdX .

(ii) Every metric space (X, d) can be embedded isometrically into an injective

metric space (X̂, d̂).

(iii) Given any such isometric embedding α : X ↪→ X̂ of a metric space (X, d)

into an injective metric space (X̂, d̂), there exists a unique smallest injec-

tive subspace (X̄, d̄) of (X̂, d̂) containing α(X). This subspace depends
– up to isometry – only on (X, d):

• The map

X̄ → RX : x̄ 7→ (hx̄ : X → R : x 7→ d̄(α(x), x̄))

is easily seen to define an isometric embedding of X̄ into the set RX
of all maps from X into R endowed with the supremum norm (or
l∞metric)

||f, g||∞ := sup(|f(x)− g(x)| : x ∈ X) (f, g ∈ RX).

• And its image consists exactly of all those maps f ∈ RX that satisfy
the condition

f(x) = sup(d(x, y)− f(y) : y ∈ X)

for all x ∈ X}.

In [9], this subset of RX has also been called the tight span T (X, d) of
(X, d) — a tradition that we will follow is in this paper, too.

(iv) In addition, the above embedding identifies X with the set

{hx : X → R : y 7→ d(y, x) : x ∈ X}

and, hence, with the subset

T 0(X, d) := {f ∈ T (X, d) : 0 ∈ f(X)}

of T (X, d).
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(v) The above definition/construction of T (X, d) identifies it with a subset
of the convex set

P (X, d) := {f ∈ RX : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X},

more precisely, it identifies it with the set of all minimal maps in P (X, d)
(relative to the partial order P (X, d) inherits from the partial order of
RX defined, as usual, by f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ X). Thus, it
consists of a locally finite collection of (low-dimensional) faces of P (X, d)
whenever this convex set is actually a convex polytope (i.e. determined
by a ‘locally finite’ collection of half spaces) which is surely the case if X
itself is finite.

(v) T (X, d) is always contractible. More precisely, there exists always a con-
tinuous family ft (t ∈ [0, 1]) of non-expansive maps

ft : T (X, d)→ T (X, d)

with f0 = IdT (X,d) and #f1(T (X, d)) = 1.

Although these notions may appear to be somewhat strange at first, the tight
span of small metric spaces (X, d) can be described in simple geometric terms
as follows: In case X consists of just two points of distance c, its tight span
is exactly the interval of length c, its end points being just the two points
from X (thus the name “tight span”). In case X consists of just three points
of distance c1, c2, c3, its tight span is the union of three intervals of length
(c1+c2−c3)/2, (c1+c3−c2)/2, and (c2+c3−c1)/2, respectively, all identified
at one end point while the other three end points are the three points from X.
In Figure 2, we picture the tight span of a generic 4-point metric space:
In general, the tight span of a finite metric space (X, d) coincides exactly with
the union of all compact faces of the polytope P (X, d). Using this fact, it is
possible to determine the polytopal structure of the tight span for a generic
metric space of cardinality up to 5, cf. [9]. For finite metric spaces of larger
cardinality, it is also possible in principle to determine their tight span, though
it can be a tricky combinatorial problem to do this explicitly for any particular
given metric space (see e.g.[11, 20]).
It is worthwhile to note that Isbell’s construction does not really need a metric
d to perform its task. It also works just as well for every map D from the set
Pfin(X) of all finite subsets of a set X into R := R ∪ {−∞} (rather than only
the map D = Dd : Pfin(X)→ R defined by D(Y ) := d(x, y) in case Y = {x, y}
for some x, y in X, and D(Y ) := −∞ else): Indeed, if such a map D is given,
we may define

P (X,D) := {f ∈ RX :
∑

x∈Y
f(x) ≥ D(Y ) for all Y ∈ Pfin(X)}

and
T (X,D) :=
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y

u

w

v

Figure 2: The tight span of a generic metric d on the set {u, v, w, y} for which
d(u,w) + d(v, y) is the largest of the three sums d(u,w) + d(v, y), d(u, v) +
d(w, y), and d(u, y) + d(v, w); it consists of eight 0-cells, eight 1-cells, and one
2-cell.

{f ∈ RX : f(x) = sup(D(Y ∪ {x})−
∑

y∈Y
f(y)) for all Y ∈ Pfin(X − {x})}

just as before (so that P (X,Dd) = P (X, d) and T (X,Dd) = T (X, d) holds for
every metric d and the map Dd associated with it according to the definition
above). It is then not too difficult to establish, in this much more general
setting, most of the results collected above in the special case considered
originally by John Isbell.

Perhaps a bit surprisingly, this generalization can be used to construct affine
buildings of GL-type. Assume that K is field with a valuation

val : K → R

that satisfies the usual conditions

(i) val(x) = −∞ ⇐⇒ x = 0,

(ii) val(xy) = val(x) + val(y),

(iii) val(x+ y) ≤ max(val(x), val(y))

for all x, y ∈ K and consider, for some natural number n, the set X := Kn and
the map D : Pfin(X)→ R defined by

D(Y ) := val(det(x1, ..., xn))

if Y = {x1, ..., xn} and n = #Y , and

D(Y ) = −∞
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else (Y ∈ Pfin(X)). Then, it is easily seen that T (X,D) coincides — together
with its induced polytopal structure – with the affine building associated with
GL(n,K) provided the valuation in question is discrete while, in general,
it provides at least a useful generalization that should also coincide with
generalizations proposed so far for non-discrete valuations [15].

We expect that, in addition, the following example is of relevance in the context
of symplectic and orthogonal groups: Let X be any vector space over K on
which a sesqui-linear form 〈 · | · 〉 from X×X into K is defined and assume that
〈 · | · 〉 is also “almost symmetric” (i.e. that 〈x | y 〉 = 0 ⇐⇒ 〈 y |x 〉 = 0 holds
for all x, y in X). It is then easy to see that the map D defined by

D(Y ) := val(det(〈xi|xj〉)i,j=1,... ,n)

if Y = {x1, . . . , xn} and n = #Y holds, defines indeed a well-defined map from
Pfin(X) into R to which Isbell’s construction can be applied. We have not yet
checked, but expect T (X,D) to coincide with the corresponding affine building
of the symplectic group Sp(2n,K) if X is of dimension 2n and the form 〈 · | · 〉 is
non degenerate and skew-symmetric. We are not so sure about what happens
in case 〈 · | · 〉 is non degenerate and symmetric. But we know, of course, that
Isbell’s construction at least provides in any case a nice contractible space on
which the symmetry group of (X, 〈 · | · 〉) acts in a canonical fashion (cf. [9]).

3 Phylogenetic Analysis

Isbell’s construction was rediscovered in 1982 (see [9]) when the process of
(re)constructing phylogenetic trees from distance data was scrutinized to
develop methods for checking the suitability of data for and to improve the
reliability of phylogenetic analysis (and, curiously enough, it was rediscovered
again in 1994 in a completely different context, cf. [6]).

The goal of phylogenetic analysis is to derive a complete, consistent and,
hopefully, true picture of the evolutionary branching process that produced
a class of present — and, sometimes also some extinct — species from their
last common ancestor, e.g. the evolution of all the various forms of tetrapodes
from the first amphibia-like beings crawling out of the sea around 400 million
years ago.

The first such phylogenetic tree encompassing all plant and animal kingdoms
then known was constructed in 1866 (see Figure 3) just seven years after the
publication, in 1859, of Charles Darwin’s (1809-1882) The Origin of Species4

by the German biologist Ernst Haeckel (1834-1919), the most ardent supporter
of Darwin in that time in Germany. While Darwin never made much effort

4 or, more correctly, On the Origin of Species by Means of Natural Selection, or the

Preservation of Favored Races in the Struggle for Life
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to construct phylogenetic trees explicitly (even though he was, of course, fully
aware that his theory implies the existence of such a tree and remarked “As
we have no record of the lines of descent, the pedigree can be discovered only
by observing the degrees of resemblance between the beings which are to be
classed”), it was not too difficult for Ernst Haeckel to design his tree. All he
had to do was to give a Darwinian dynamic interpretation of the static systems
previously put forward (in form of tableaux) by Carolus Linnaeus (1707-1778),
Georges Cuvier (1769-1832) and others.

Linnaeus had become famous very early in his life for his analysis of gender in
plants, thus recognizing an amazing universality of certain basic laws of life in
the then known living world. In his Systema Naturae, Sive Regna Tria Naturae
Systematice Proposita5, published in 1735 in Leiden, Linnaeus followed the
most rigorous scientific traditions of his time. These had been established by
John Ray (1628-1705) in his writings since 1660, culminating in his Methodus
Plantorum Nova from 1682 and his posthumously published Synopsis Avium
et Piscium from 1713. Ray was probably the first scientist to recognize and to
conceptualize the invariance of species as the fundamental basis of life science.
Linnaeus followed Ray’s insights and constructed a whole binary hierarchy of
phyla, kingdoms, genera, families, subfamilies etc. to classify biological species
according to their intrinsic similarities.

These ideas were then taken up by scientists like August Quirinus Rivinus
(1652-1723) in Germany and Joseph Pitton de Tournefort (1656-1708) in
France as well as, a little later, by Linnaeus in Sweden. Like Ray, Linnaeus
insisted that the living world (except for a few species doomed by the great
deluge and documented in the fossil record) had been created in that very
order in which it presents itself to us today and that the task of taxonomy
was to search for a “natural system” that would reflect the Divine Order of
creation. Darwin’s ideas allowed to reinterpret Linnaeus’ classes as clades,
i.e. as collections of all those species derived from one common ancestor. Thus,
the static Linnaean system could immediately be transformed into Haeckel’s
dynamic tree.

However, there are always many details in such trees that are hotly debated,
and the evidence that can be used for tree (re)construction is often scarce,
inconsistent and contradictory. For instance, it is not yet fully known whether
the monotremata — the Australian duck-billed platypus and the spiny anteaters
(echidna aculeata and echidna Bruynii) — are more closely related to the mar-
supalia (opossums, kangaroos, etc.) than to us (the placental mammals or
eutheria) or whether, the third alternative, the placental mammals and the
marsupalia are more closely related to each other than both are to the platypus
and the echidnas (even though the most recent molecular data appears to sup-

5The System of Nature, or the Three Kingdoms of Nature Presented Systematically
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Figure 3: Haeckel’s tree of life (1866).
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port the first alternative). And even less clear are at present the phylogenetic
relationships among the various groups of placental mammals (cf. [28] and
also http://phylogeny.arizona.edu/tree for fascinating up to date information
regarding the present view of Haeckel’s Tree of Life6).

Consequently, biologists have always been looking for further evidence – in
addition to morphological evidence, from all parts of the organism in all stages
of its development, and metabolic peculiarities – on which phylogenetic con-
clusions could be based. So, when the amino acid sequence of closely related
proteins from distinct species (and encoded by related though not identical
genes all supposedly derived from one common ancestral gene by accumulating
successive mutations) became known in sufficient abundance in the late 1960’s,
some biologists realized quickly that such documents of molecular evolution
might provide the most convincing evidence on which to build phylogenetic
trees.

The first paper exploiting this idea that appeared in Science was written by
Walter Fitch and Emanuel Margoliash almost thirty five years ago. It was
entitled simply Construction of Phylogenetic Trees (cf. [19]) and it caused a
revolution in taxonomy. It used the amino acid sequences of cytochrom C, a
protein of decisive importance in oxygen metabolism in all eucariots, derived
from more than 20 species from all eucariot kingdoms. Fitch and Margoliash
estimated the genetic distance d(S1, S2) between any two of these sequences
S1 and S2 in terms of the easily computed number of mismatches between S1
and S2 relative to a multiple alignment of all of the sequences in question that
had been constructed simply by hand — in this specific case a comparatively
simple task in view of the large overall similarity of the sequences.
They then constructed their tree automatically by employing the following very
simple standard algorithm from cluster-analysis textbooks:
Given a finite set X together with a symmetric map d from X × X into R,
one defines the set V (X, d) of nodes of the tree TF&M (X, d) to be constructed
to consist of those subsets Y of X that constitute, for some real number c,
a connected component of the graph Γc := (X,Ec) whose vertex set is the
given set X and whose edges consist of all pairs of elements x, y from X with
d(x, y) ≤ c. And two such nodes Y1, Y2 are connected by an edge if and only
if Y1 ⊂ Y2 holds and there is no Y in V (X, d) with Y1 ⊂ Y ⊂ Y2 — or,
equivalently, if #{Y ∈ V (X, d) : Y1 ⊆ Y ⊆ Y2} = 2 holds.
At that time, most taxonomists were appalled by this approach. The definitive
result of a scholar’s whole life of research could apparently now be produced
in less than a minute by an insightless machine. Others, impressed by the
obvious potential of this new approach (which had almost simultaneously also
been conceived independently by at least one further research group) took

6Or just visit the American Museum of Natural History in New York where the fourth
floor has been devoted to actually spreading out all along the floor our present version (or
vision?) of that tree!
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immediately to the road to visit the authors of that paper.

Today, essentially every paper dealing with phylogenetics offers trees produced
automatically from sequence data by appropriate computer programs. It also
became obvious in the mean time that such trees are not the end of scientific
investigation in taxonomy. Rather to the contrary, it needs the full knowledge
and expertise of experienced scientists to discuss the computer-generated trees
and to point out their weak as well as their strong points.

Clearly, the obvious idea any tree-reconstruction algorithm must use is that,
given any three sequences that have been derived by the process of replication,
mutation, and selection from one common ancestral sequence, the last com-
mon ancestral sequence of the two more similar among those three sequences
should have existed later than the last common ancestral sequence of all three
sequences. This suggests the following tree-construction algorithm: First,
identify each sequence S from the set X of sequences in question with the
corresponding one-element clade {S} consisting of S, only. Then, using any
appropriately defined dissimilarity measure d : X ×X → R (e.g. the mismatch
or Hamming distance employed by Fitch and Margoliash), search for those two
sequences S1, S2 that have minimal dissimilarity and, supposing that no other
sequence in X can be an offspring of the last common ancestral sequence of
S1 and S2, fuse S1 and S2 into one larger d-clade {S1} ∪ {S2}. Then replace
the set X by a smaller set X ′ representing all maximal, presently identified
(d-)clades (that is, the one d-clade of cardinality 2 and the additional, not yet
processed single-element clades at that stage) and define a new dissimilarity
measure on those clades by defining the distance d(Y1, Y2) of any two such
clades Y1, Y2 to be some function of the dissimilarities d(y1, y2) with y1 ∈ Y1
and y2 ∈ Y2. And then, repeat the above process to identify the next two
clades that are to be fused into one new, larger d-clade, and so on. Obviously,
if d(Y1, Y2) is defined by d(Y1, Y2) := min{d(y1, y2)|y1 ∈ Y1, y2 ∈ Y2} for any
two d-clades Y1, Y2, this will lead exactly to the tree TF&M (X, d) described
above.

However, this procedure is obviously bound to make mistakes: Assume, we
have four sequences S1, S2, S3, S4 and that, during the evolution of those four
sequences from their common ancestor sequence S, there were first two distinct
offsprings sequences S′, S′′ of S so that S1 and S2 were later derived from S′

and S3 and S4 from S′′. Assume furthermore that S1 remained very similar
to S′ and S3 remained very similar to S′′ and S2 as well as S4 diverged very
far from their respective ancestor sequences. Then, the above algorithm will
inevitably form a wrong clade {S1, S3} (see Figure 4).

Many algorithms have therefore been designed to deal with this particular
problem. And quite a few of them accept the dissimilarities computed from
the input sequences as a starting point, yet they search for a tree that provides
the best global approximation of the given dissimilarity pattern, i.e. a tree
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Figure 4: As explained in the text, the incorrect clade {S1, S3} is formed by
the agglomeration algorithm and the ’true topology’ of the tree is not found.

whose leaves are labeled by the elements from X, and to whose branches
appropriate edge lengths are attached so that the resulting induced tree metric
(that associates to any pair of elements x, y from X the total length of the
unique path from the two leaves labeled with x and y) matches the given
dissimilarities in toto as closely as possible.

To imagine the task one has to perform using the approach it is worthwhile to
observe that the space of all possible dissimilarities that can be defined on an
n-set X has dimension

(
n
2

)
while the subspace of tree-like dissimilarities that

can be defined on X has dimension 2n − 3 (the maximal number of branches
in a tree with n leaves) and forms a rather complex low-dimensional network
of large codimension

(
n
2

)
− 2n+3 within this cone. Consequently, while trying

to identify the best global ‘tree-like’ approximation of the given dissimilarity
pattern, there may be many rather distinct, yet essentially equally good
tree-like approximations to a given arbitrary dissimilarity d and to find the
best one will naturally be very hard (e.g. the tree-like dissimilarities form a
space of dimension 17 and, hence, of codimension 28 in the 45-dimensional
space of all dissimilarities that can be defined on a set of 10 points — so its
much worse than looking for a needle in the hay stack, a codimension 2 (or, at
most, 3) problem — or than trying to find the closest river mouth to a given
point on earth).
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4 Tree Reconstruction and the Tight Span

Nevertheless, this approach suggests a number of interesting, purely mathe-
matical questions which to pursue might still be helpful in this context: E.g., it
leads to the question which dissimilarities are tree like dissimilarities, i.e. which
dissimilarities would fit exactly into a tree, and whether that tree would be
completely determined by those dissimilarities. Fortunately, these two ques-
tions have simple answers that have been discovered in the sixties and seventies
of the last century independently by various mathematicians (cf. [5, 29, 30]):

(i) A dissimilarity d is tree like if and only if

d(x, y) + d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, u)}

holds for all x, y, u, v from X.

(ii) If this condition is fulfilled, there is only one tree that fits the given
dissimilarity (up to isomorphism, and except for additional branches not
involved with the given data).

Remarkably, once we define a metric on all points of that tree (whether a
branching point, an end point, or just a point somewhere on some branch) by
associating again to any two such points x, y the total length of the unique
path from x to y, the resulting metric space, necessarily an R−tree (by the
very definition of R−trees) actually coincides with the injective hull of the
metric defined on its leaves. This establishes not only the uniqueness of the
tree in question; it can also be used to study the structure of that tree in
terms of the metric defined on its leaves. More importantly, it suggests to use
the injective hull in any case, whether or not the input dissimilarities satisfy
the above four-point condition, as a good substitute for the tree in question
— at least, it is always simply connected (though not always of dimension one).

In particular, if there exists some subset K of small diameter within this
injective hull T not containing any leaf, yet such that its complement T −K
has several connected components, the (labels of the) leaves in at least all but
one of these components have a good chance to form one of those clades within
X that phylogenetic analysis is designed to find.

It was exactly this observation which lead to the rediscovery of Isbell’s
construction in 1982 mentioned above. And it also motivated and initi-
ated many further investigations regarding the structure of injective metric
spaces and their relevance in phylogenetic analysis (cf. [10, 11, 13, 14]).
In particular, the analysis of injective hulls of finite metric spaces made it
obvious that the injective hull of a sum d = d1 + d2 + . . . + dk of k metrics
d1, d2, . . . , dk defined on a finite set X is closely related to that of the sum-
mands d1, d2, . . . , dk provided these metrics form a coherent decomposition
of the metric d, i.e. provided there exist, for every map f : X → R with
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f(x) + f(y) ≥ d1(x, y) + d2(x, y) + . . . + dk(x, y) for all x, y ∈ X, some maps
f1, f2, . . . , fk : X → R such that fi(x) + fi(y) ≥ di(x, y) holds for all x, y ∈ X
and for all i = 1, 2, . . . , k (cf. [2, 24, 25, 26]).

Moreover, defining a metric d to be

- a split — or a cut — metric if there are exactly two subsets of X in the
set X/d of equivalence classes of elements of X relative to the equivalence
relation ' defined on X by x ' y ⇔ d(x, y) = 0, and

- a split-prime metric if it cannot be decomposed into a coherent sum of a
split metric and another metric,

it could be shown that

- every metric d defined on a finite set X has a unique coherent decompo-
sition — also called the canonical split decomposition of d — into a sum
d = d1 + d2 + . . .+ dk + d0 of pairwise linearly independent split metrics
d1, d2, . . . , dk and a split-prime metric d0 (possibly the 0-metric),

- the metrics d1, d2, . . . , dk occurring in this decomposition are always lin-
early independent (as elements in the vector space of all maps from X×X
into R) — and so are d1, d2, . . . , dk, d0 if d0 6= 0 holds,

- the metrics d1, d2, . . . , dk occurring in this decomposition are – up to
scaling – exactly those split metrics d′ defined on X for which d − d′ is
also a metric and the two metrics d′, d−d′ form a coherent decomposition
of d,

- if d is a tree-like metric, then the split-prime metric d0 in the correspond-
ing canonical coherent decomposition d = d1 + d2 + . . . + dk + d0 of d
into a sum of pairwise linearly independent split metrics d1, d2, . . . , dk
and a split-prime metric d0 vanishes while the split metrics d1, d2, . . . , dk
correspond in a one-to-one fashion to the branches of the associated tree
(cf. Figure 5).

This was of considerable interest within the context of phylogenetic analysis:
If a split metric d′ occurs as a summand in a coherent component of a metric
d derived from a family of phylogenetically related sequences, there is a good
chance that at least one of the two equivalence classes in X/d′ is one of those
clades within X that we want to find.

In particular, given any metric d defined on a set X of cardinality n, the linear
independence of the split metrics occurring in the canonical decomposition of
d implies that there exist, up to scaling, at most

(
n
2

)
split metrics d′ such that

(i) d − d′ is also a metric and (ii) the two metrics d′, d − d′ are coherent, –
clearly too many to fit into a tree (because a tree with n leaves has at most
2n − 3 edges), but surely much less than 2n−1 − 1, the number of all split
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Figure 5: A tree with leaves labeled by the finite set {1, 2, 3, 4, 5}. The branch
separating the vertices 1, 2 from the vertices 3, 4, 5 corresponds to a split metric
d′ with X/d′ = {{1, 2}, {3, 4, 5}}.

metrics that, up to scaling, can be defined on an n-set.

In addition, it might even be helpful when analyzing a given data set to realize
that several competing evolutionary interpretations of the data are possible
(as indicated by the existence of two split metrics d′, d′′ in the canonical
decomposition of d for which #(X/(d′+ d′′)) = 4 holds) or that, at least, some
additional feature (e.g. some sort of convergence) might be present in the data.

Consequently, algorithms were developed to compute, given any metric D,
all split metrics d for which the above conditions are fulfilled as well as to
visualize the resulting split network (cf. [3, 12, 22]). The resulting SplitsTree
program has proven useful in diverse phylogenetic applications. Moreover, as
Figure 6 shows, it can as well be applied to all sorts of distance data: The split
networks in Figure 6(left) was computed for the distances between the towns
of Wellington on the North Island, and Christchurch, Greymouth etc. on the
South Island of New Zealand that were taken from a mileage chart. If one
compares this graph with a map of New Zealand a good correlation between
the distribution of vertices and the geographical locations of the towns is
observed. It has also been applied to analyze the perceived similarity of colors
and — in stemmatology — the “kinship” relations between the various hand-
written versions of Chaucer’s Canterbury tales written by Geoffrey Chaucer
about 100 years before book printing was invented (in central Europe) (cf. [4]).

These examples illustrate that split networks can give meaningful represen-
tations of data even if they are not necessarily tree-like in character. Within
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Figure 6: Split networks for a mileage chart of New Zealand (left) and a
hepatitis C virus data set (right).

biology, non tree-like distances often arise when analyzing viral data sets, a
phenomenon that is probably caused by more complex evolutionary processes
such as recombination. In Figure 6 (right), we present a split network that
was computed for a hepatitis C data set which was presented in [1]. In this
graph, a complex relationship between various viral sequences (represented by
the labeled vertices) is observed. However, there is a clear separation between
the three sets of vertices labeled with prefixes 204, 77, and 24, and indeed
this reflects the fact that the viruses corresponding to vertices prefixed by 204
and 77 were taken from recipients of blood transfusions from a donor who was
infected with the viruses corresponding to the vertices prefixed by 24.

For more applications of the SplitsTree program to biological data see e.g.
[8, 12, 16, 21, 27]. The latest version of SplitsTree, written by Daniel Huson,
can be obtained from:

http://www.mathematik.uni-bielefeld.de/∼huson

There is also a www version of the program running at:

http://bibiserv.techfak.uni-bielefeld.de/splits

Some further references and discussions of related topics can be found on the
following www pages:

http://www.fmi.mh.se/∼vince/publications/publications.html
http://www.mathematik.uni-bielefeld.de/∼terhalle
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and further phylogenies by Haeckel can be found on the following web pages:

http://www.boga.ruhr-uni-bochum.de/spezbot/Folien/
Abb1 Stammbaum Haeckel.html

http://genome.imb-jena.de/stammbaum.html

5 Back to Mathematics and Quadratic forms

In addition to these applications, there are also striking analogies between
split-decomposition theory and the theory of positive semi-definite quadratic
forms as developed by the Russian school: In both fields, one considers a large
convex cone (either consisting of all metrics defined on a finite set or consisting
of all positive semi-definite quadratic forms defined on some finite-dimensional
vector space), one has good reasons to decompose this cone — in one way
or the other — into a family of finitely generated convex subcones, and one
wants to understand the combinatorics of the resulting stratification of the
large cone. In split-decomposition theory, it is the concept of coherence that
gives rise to the stratification in question: given any two metrics d and d′,
defined on a fixed finite set X, one may define the metric d′ to be a coherent
specialization of the metric d if there exists some positive real number ρ
such that d′′ := ρd − d′ is also a metric and the two metrics d′, d′′ form a
coherent decomposition of d. One can show that, given any metric d defined
on X, the collection of metrics d′ that are coherent specializations of d forms
a finitely generated convex subcone C(d) of the cone of all metrics defined
on X. Moreover, some (not at all obvious) conditions on d are known from
split-decomposition theory which imply that C(d) is a simplicial cone while
this does not seem to hold in general for every metric d.

Very similar problems have been (and still are being) studied in the theory of
positive semi-definite quadratic forms while trying to understand the process
of reduction of quadratic forms (cf. [17, 18]). And in both areas, the extremals
of the convex cones in question — the positive semi-definite quadratic forms
of rank one on the one hand and the split metrics as well as some further, not
yet well understood metrics on the other — appear to be of special significance.

Thus, it might prove rather useful trying not only to develop both theories
in parallel, but also to understand the deeper reason for the striking analogy
between them.

Acknowledgment The authors would like to thank Olaf Breidbach for his
very helpful comments on the historical part of this note.
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Abstract. We consider reduced Witt rings of finite chain length. We
show there is a bound, in terms of the chain length and maximal signature,
on the dimension of anisotropic, totally indefinite forms. From this we get
the ascending chain condition on principal ideals and hence factorization
of forms into products of irreducible forms.
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R will denote a (real) reduced Witt ring. A form q ∈ R is totally indefinite
if |sgnαq| < dim q for all orderings α of R. It is well-known that such a form
need not be isotropic. However, when R has finite chain length, cl(R), we
show there are restrictions on the possible dimensions of anisotropic, totally
indefinite forms. To be specific,

dim q ≤ 1
2cl(R)max

α
{| sgnαq|2},

unless R = Z and q is one-dimensional. The proof depends on Marshall’s
classification of reduced Witt rings of finite chain length.
This bound allows us to show that R, of finite chain length, satisfies the as-
cending chain condition on principal ideals. One consequence of this result is
that chains of basic clopen sets H(a1, . . . , an), for fixed n, stabilize. Another
consequence is that non-zero, non-units of R factor into a finite product of ir-
reducible elements (in the sense of Anderson and Valdes-Leon). This had been
previously known only for odd dimensional forms in rings with only finitely
many orderings.
Conversely, we show, for a wide class of reduced Witt rings R, that the ascend-
ing chain condition on principal ideals implies R has finite chain length. The
proof relies on Marshall’s notion of a sheaf product. We close with examples of
factorization into irreducible elements. These illustrate how the factorization
of even dimensional forms is less well behaved than the factorization of odd
dimensional forms studied in [8].
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We set some of the notation. R will be an abstract Witt ring, in the sense
of Marshall [11], and reduced. The main case of interest is the Witt ring of a
Pythagorean field. XR, or just X if the ring is understood, denotes the set of
orderings (equivalently, signatures) on R. We always assume X is non-empty.
For a form q ∈ R and ordering α ∈ X, the signature of q at α will be denoted
by either sgnαq or q̂(α).
We let GR, or just G when R is understood, denote the group of one-
dimensional forms of R. When R is the Witt ring of a field, G = F ∗/F ∗2.
Forms in R are written as 〈a1, . . . , an〉, with each ai ∈ G. An n-fold Pfister
form is a product 〈1, a1〉〈1, a2〉 · · · 〈1, an〉, denoted by 〈〈a1, a2, . . . , an〉〉. The
set of orderings X has a topology with basic clopen sets

H(a1, . . . , an) = {α ∈ X : ai >α 0 for all i},

where each ai ∈ G. The chain length of R, denoted by cl(R), is the supremum
of the set of integers k for which there is a chain

H(a0) ( H(a1) ( · · · ( H(ak)

of length k (each ai ∈ G).
A subgroup F ⊂ G is a fan if it satisfies : any subgroup P ⊃ F such that
−1 /∈ P and P has index 2 in G is an ordering. The index of the fan is [G : F ].
The set of orderings P that contain F is denotedX/F . Note that |X/F | = 2n−1

if F has index 2n. The stability index of R, denoted by st(R), is the supremum
of log2 |X/F | over all fans in G.
If R1 and R2 are reduced Witt rings then so is the product

R1 uR2 = {(r1, r2) : r1 ∈ R1, r2 ∈ R2 and dim r1 ≡ dim r2 (mod 2)}.

E will always denote a group of exponent 2. If R is a reduced Witt ring then so
is the group ring generated by E, denoted by R[E]. Ek will denote the group
of exponent 2 and order 2k. We will always take t1, . . . , tk as generators of Ek
(except when k = 1 when we use just t). For an arbitrary E we use t1, t2, . . . as
generators. When E is uncountable we are assuming the use of infinite ordinals
as indices. Lastly, if S ⊂ G we write sp(S) for the subgroup generated by S.

1. Isotropy.
Over R a form q is hyperbolic iff sgn q = 0 and isotropic iff |sgn q| < dim q. The
first statement holds for any reduced Witt ring but not the second. Our goal is
to find a limit on the difference between |sgn q| and dim q for anisotropic forms.
We restrict ourselves to reduced Witt rings with a finite chain length. Recall
[12, 4.4.2] ([5] in the field case) that such rings are built up from copies of Z
by finite products and arbitrary group ring extensions. The decomposition is
unique except that Z u Z = Z[E1].
We introduce some notation. Recall that Ek is generated by t1, . . . , tk. We
fix a listing x1, . . . , x2k of the elements of Ek as follows. The list for E1 is
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1, t1. The list for Ek+1 is the list of Ek followed by tk+1 times the list for Ek.
We also fix a listing α1, . . . , α2n of the orderings on Z[Ek]. For the k = 1 we
take α1 to be the ordering with t1 positive and α2 to be the ordering with t1
negative. The list for Z[Ek+1] consists of the orderings on Z[Ek] extended by
taking tk+1 positive, followed by the extensions with tk+1 negative. Lastly, we
define Pk to be the 2k × 2k-matrix whose (i, j) entry is the sign of xj at the αi

ordering. Thus P1 =
(
1 1

1 −1

)
.

Lemma 1.1. For each k ≥ 1

(1) Pk is symmetric.
(2) P 2

k = 2kI.
(3) For q =

∑
nixi ∈ Z[Ek] let si = q̂(αi). Set n̄ = (n1, . . . n2k)

T , where T
denotes the transpose, and s̄ = (s1, . . . , s2k)

T . Then Pkn̄ = s̄.

Proof. We use induction on k to prove (1) and (2). Both are clear for k = 1.
By our construction,

Pk+1 =

(
Pk Pk
Pk −Pk

)
.

Thus Pk symmetric implies Pk+1 is also. And

P 2
k+1 =

(
2P 2

k 0
0 2P 2

k

)
= 2k+1I.

Statement (3) is simple to check. ¤

The reader may notice that each Pk is a Hadamard matrix, indeed the sim-
plest examples of Hadamard matrices, namely Kronecker products of copies of(
1 1

1 −1

)
.

Notation. Let M(q) = max{|q̂(α)| : α ∈ X}.
Proposition 1.2. Let R = Z[E], where E is an arbitrary group of exponent
two. Suppose q ∈ R is anisotropic. Then dim q ≤M(q)2.

Proof. We may assume q ∈ Z[Ek] for some k. Write q =
∑
nixi where ni ∈ Z

and the xi form the list of the elements of Ek described above. Let n̄ and s̄ be
as in (1.1). Then:

Pkn̄ = s̄

2kn̄ = P 2
k n̄ = Pks̄

∑
n2i = n̄T n̄ =

1

22k
s̄TPTk Pks̄

=
1

2k
s̄T s̄ =

1

2k

∑
s2i .

Now for each i we have s2i ≤ M(q)2. So
∑
n2i ≤ M(q)2. Further, |ni| ≤ n2i so

dim q =
∑ |ni| ≤M(q)2. ¤
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Remarks. (1) The bound in (1.2) is sharp infinitely often. Let ε = (ε1, . . . , εk)
be a choice of signs, that is, each εi = ±1. Pick a one-to-one correspondence
between the 2k many sign choices and the elements of sp{tk+1, . . . , t2k}, say
ε 7→ xε. Then consider

q =
∑

ε

xε〈〈ε1t1, . . . , εktk〉〉 ∈ Z[E2k],

where the sum is over all possible sign choices. At each ordering of Z[Ek]
exactly one of the Pfister forms has signature 2k, the others having signature
zero. In any extension of this ordering to Z[E2k] we get sgn q = ±2k. Thus q
is anisotropic, dim q = 22k and M(q) = 2k. Hence dim q =M(q)2.

(2) The bound of (1.2) is not sharp forM ’s that are not 2-powers. For instance,
suppose q is anisotropic and M(q) = 3. We may assume (see (2.6)) that q has
signature 3 or −1 at each ordering. Let q0 = (q − 1)an, the anisotropic part.
Then M(q0) = 2 and so dim q0 ≤ 4. Thus dim q ≤ 5 < M(q)2.

The bound of (1.2) can also be improved if k is fixed. For instance, one can
show for anisotropic q ∈ Z[E3] that dim q ≤ 5

2M(q).

Theorem 1.3. Suppose R is a reduced Witt ring of finite chain length. Let
q ∈ R be anisotropic. Then dim q ≤ 1

2cl(R)M(q)2, unless R = Z and q is
one-dimensional.

Proof. The result is clear if dim q = 1 so assume dim q ≥ 2. We may thus
ignore the exceptional case. We will prove the result for R = S[E], any E, by
induction on the chain length of S. Say cl(S) = 1 so that S = Z. If E = 1 then
dim q = M(q) ≤ 1

2M(q)2 as dim q ≥ 2. If E 6= 1 then we are done by (1.2) as
cl(Z[E]) = 2.

In the general case we may assume S = S1 u S2, with at least one of S1 or S2
not Z. Then both S1 and S2 have smaller chain length than S and so we are
assuming the result holds for Si[E], i = 1, 2 and any E.

First suppose E = 1. Write q = (a, b) with a ∈ S1 and b ∈ S2. We may assume
that dim a ≥ dim b. Then dim q = dim a. We have by induction

dim q = dim a ≤ 1
2cl(S1)M(a)2

≤ 1
2cl(R)M(a)2, since cl(R) = cl(S1) + cl(S2)

≤ 1
2cl(R)M(q)2,

as q̂(α) = â(α) or b̂(α) for every α ∈ X so that M(a) ≤M(q).

Next suppose E 6= 1. Since q has only finitely many entries we may assume
that q ∈ (S1 u S2)[Ek], for some k. Write q =

∑
(ai, bi)xi, where each ai ∈ S1

and bi ∈ S2 and the xi’s are our listing of the elements of Ek. Set

ϕ = (
∑

aixi, 0) + r(0,
∑

bixi) ∈ (S1[Ek] u S2[Ek])[E1].
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Now

dim q =
∑

i

max{dim ai,dim bi}

dimϕ =
∑

dim ai +
∑

dim bi ≥ dim q.

We check the signatures. If α ∈ XS1
and αε is an extension of α to R =

(S1 u S2)[Ek] then q̂(αε) =
∑
âi(α)εi (here εi = ±1 depending on the sign of

xi in the extension). Similarly, if β ∈ XS2
and βε is an extension to R then

q̂(βε) =
∑
b̂i(β)εi.

We may also view αε as an extension of α to S1[Ek] and hence to S1[Ek]uS2[Ek].
Let αε+ denote the further extension to (S1[Ek] u S2[Ek])[E1] with r positive.
We also have the other extensions αε−, βε+ and βε−. Then:

ϕ̂(αε+) =
∑

âi(α)εi

ϕ̂(αε−) =
∑

âi(α)εi

ϕ̂(βε+) =
∑

b̂i(β)εi

ϕ̂(βε−) = −
∑

b̂i(β)εi.

Thus M(ϕ) =M(q).
Set ϕ1 =

∑
aixi ∈ S1[Ek] and ϕ2 =

∑
bixi ∈ S2[Ek]. Then by induction we

have:

dimϕ1 ≤ 1
2cl(S1)M(ϕ1)

2

dimϕ2 ≤ 1
2cl(S2)M(ϕ2)

2.

The previous computation shows that for any ordering γ of (S1[Ek]uS2[Ek])[E1]
that ϕ̂(γ) equals ϕ̂1(α) or ±ϕ̂2(β) where γ restricts to either α on S1[Ek] or β
on S2[Ek]. Thus M(ϕi) ≤M(ϕ) for i = 1, 2. We obtain

dimϕ = dimϕ1 + dimϕ2 ≤ 1
2 (cl(S1) + cl(S2))M(ϕ)2

= 1
2cl(R)M(ϕ)2,

using [12, 4.2.1]. Lastly, we have already checked that dim q ≤ dimϕ and
M(q) =M(ϕ), giving the desired bound. ¤

Remarks. (1) The bound of (1.3) is sometimes achieved. For example, in

R = (Z[E2] u Z[E2] u Z[E2])[E2],

where the last E2 is generated by s1, s2, let ϕ = 〈1, t1, t2,−t1t2〉 and set q =
(ϕ, 0, 0) + s1(0, ϕ, 0) + s2(0, 0, ϕ). Then q is anisotropic, dim q = 12, M(q) = 2
and cl(R) = 6. Thus dim q = 1

2cl(R)M(q)2.
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(2) Bröcker [3] has a result that looks similar to (1.3) but is apparently unre-
lated. There, in the version of [12, 7.7.3], if q is anisotropic, q̂(α) = ±2k for
all α and Y = {α : q̂(α) = 2k} is the union of basic open sets each of stability
index at most k + 1, then dim q ≤ 22k =M(q)2.
(3) Bonnard [2] also has a result that looks like (1.3), which in fact uses
Bröcker’s result in the proof. In our notation, her result is: if R has finite
stability index s and q ∈ R is anisotropic then dim q ≤ 2s−1M(q). Her bound
is slightly better than this. Chain length and stability index are independent in-
variants so again there is no apparent connection between (1.3) and Bonnard’s
result.
Recall that a form q is weakly isotropic if mq is isotropic for some m ∈ N.
Corollary 1.4. Let R be a real Witt ring (not necessarily reduced) of fi-
nite chain length. Let q ∈ R be a form of dimension at least 2. If dim q >
1
2cl(R)M(q)2 then q is weakly isotropic.

Proof. Let qr = q + Rt ∈ Rred, the reduced Witt ring. Then qr is isotropic
by (1.3). Hence qr ' 〈1,−1〉 + ϕr, for some form ϕr = ϕ + Rt ∈ Rred. Then
2kq ' 2k〈1,−1〉+ 2kϕ, for some k, and so q is weakly isotropic. ¤

2. Chains of principal ideals.
We use the standard abbreviation ACC for ascending chain condition.

Proposition 2.1. If ACC holds for the principal ideals of R then R has finite
chain length.

Proof. Suppose we have a tower

H(a1) ⊇ H(a2) ⊇ · · · ⊇ H(an) ⊇ · · · .

Set qn = 〈1, 1, an〉. Then q̂n(α) is 1 or 3, with q̂n(α) = 3 iff α ∈ H(an). In
particular, for every n we have q̂n+1(α) divides q̂n(α), for every α ∈ X. Then
qn+1 divides qn by [7, 1.7]. Thus we have a tower of principal ideals :

(q1) ⊆ (q2) ⊆ · · · ⊆ (qn) ⊆ · · · .

The ACC implies there exists a N such that (qN ) = (qm) for all m > N . Then
q̂N (α) divides q̂m(α) for all α ∈ X and so H(aN ) = H(am), for all m > N . ¤

We need some technical terms for the next result.

Definitions. A fan tower is a strictly decreasing tower of fans F1 > F2 >
· · · > Fn > · · · , each of finite index plus a fixed choice of complements Cn
where G = Cn × Fn. We set F∞ = ∩Fn. A separating set of fan towers is a
finite set of fan towers s1, . . . , s`, with si = {Fin} such that

(1) Given any q ∈ R there exists m, possibly depending on q, such that all
entries of q are in CimFi∞, for each i between 1 and `.
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(2) Given K ⊂ Z and forms q1, q2 ∈ R, there exists N , depending on q1
and q2 but not K, such that if for some n > N

q̂−11 (K) ∩ (X/Fin) = q̂−12 (K) ∩ (X/Fin)

for all i then q̂−11 (K) = q̂−12 (K).

Example. For a simple example, let R = Z[E] with E countably infinite. Let
Fi = sp{ti+1, ti+2, . . . } and Ci = sp{−1, t1, . . . , ti}. Then each Fi is a fan of
finite index, each Ci is a complement and the Fi are strictly decreasing. Hence
{Fi} is a fan tower. Note that here F∞ = 1. This fan tower is a separating
(singleton) set of fan towers. A given form q has entries involving only a finite
number of ti’s and so its entries lie in some Cm; this is the first condition. If we
are given two forms q1 and q2 then again all of their entries lie in some CN . So
the signatures of the qi depend only on the signs of t1, . . . tN in that ordering.
Hence if q̂1 and q̂2 agree on X/FN then they agree at every ordering. This is
the second condition.
Roughly, our fan towers will look like this example. When there is a product
we will need one tower in each coordinate, hence a separating set.

Lemma 2.2. If R has finite chain length then R has a separating set of fan
towers.

Proof. We prove this by induction on the chain length. When cl(R) = 1 then
R = Z and the result is clear. We first consider the case R = S1 u S2. Write
G1 and X1 for GS1

and XS1
and similarly for G2 and X2. Let {s11, . . . , s1`1}

be a separating set of fan towers for S1. Here s1k = {F 1
ki} with complements

C1
ki. Set Fki = F 1

ki × G2, which is a fan in G = G1 × G2 with complement
Cki = C1

ki × 1. Then for 1 ≤ k ≤ `1, rk = {Fki} is a fan tower. Note that
Fk∞ = F 1

k∞ ×G2.
Similarly, let {s21, . . . , s2`2} be a separating set of fan towers for S2, with

s2k = {F 2
ki} and complements C2

ki. Set F`1+k i = G1×F 2
ki and C`1+k i = 1×C2

ki.
Then for 1 ≤ k ≤ `2, r`1+k = {F`1+k i} is a fan tower. We check that
r1, . . . , r`1 , r`1+1, . . . , r`1+`2 is a separating set of fan towers for R.
We check the first condition. We are given a form q = 〈(a1, b1), . . . , (an, bn)〉 ∈
R. By induction, there exists a m1 such that a1, . . . , an ∈ C1

km1
F 1
k∞ for all k.

So
(a1, b1), . . . , (an, bn) ∈ Ckm1

Fk∞ = C1
km1

F 1
k∞G2,

for all k with 1 ≤ k ≤ `1. Similarly, there exists a m2 such that b1, . . . , bn ∈
C2
km2

F 2
k∞, for all 1 ≤ k ≤ `2. Hence (a1, b1), . . . , (an, bn) ∈ Ckm2

Fk∞ for all k
with `1 < k ≤ `1 + `2. So take m to be the maximum of m1 and m2.
We next check the second condition. We are given K ⊂ Z and forms q1 =
(u1, v1) and q2 = (u2, v2). Note that q̂−11 (K) = û−11 (K)∪ v̂−11 (K) ⊂ X1 ∪X2, a
disjoint union. By induction there exists a N1 satisfying the second condition
for K, u1 and u2 and a N2 satisfying the second condition for K, v1 and v2.
Let N be the maximum of N1 and N2. Suppose for some n > N we have

q̂−11 (K) ∩ (X/Fkn) = q̂−12 (K) ∩ (X/Fkn),
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for all 1 ≤ k ≤ `1 + `2. For 1 ≤ k ≤ `1 we have:

q̂−11 (K) ∩ (X/Fkn) = q̂−11 (K) ∩ (X1/F
1
kn)

= û−11 (K) ∩ (X1/F
1
kn).

We thus obtain

û−11 (K) ∩ (X1/F
1
kn) = û−12 (K) ∩ (X1/F

1
kn),

for all 1 ≤ k ≤ `1. By the second condition on S1 we have û−11 (K) = û−12 (K).
Similarly, v̂−11 (K) = v̂−12 (K) and so q̂−11 (K) = q̂−12 (K).
Now suppose R = S[E]. Set Ti = sp{ti+1, ti+2, . . . }. Let {s1, . . . , s`} be a
separating set of fan towers for S where sk = {F ′ki} and the complements are
C ′ki. Then Fki = F ′kiTi is a fan of finite index in R with complement Cki =
C ′kisp{t1, . . . , ti}. Then rk = {Fki} is a fan tower. Note that Fk∞ = F ′k∞. We
show that {r1, . . . , r`} is a separating set of fan towers for R.
For the first condition we are given a form q ∈ R = S[E]. There exists a p such
that q ∈ S[Ep]. Write q =

∑
aixi where each ai ∈ S and the xi’s are some list

of the elements of Ep. By induction, for each i there exists a m(i) such that
every entry of ai is in C

′
km(i)F

′
k∞ for all k, 1 ≤ k ≤ `. Let m be the maximum

of the m(i) and p. Then every entry of every ai lies in C ′kmF
′
k∞ ⊂ CkmFk∞

and each xi lies in sp{t1, . . . , tp} ⊂ Ckm. So every entry of q lies in CkmFk∞,
for all k.
For the second condition we are given K ⊂ Z and two forms q1, q2 ∈ R. Again
there exists a p such that q1, q2 ∈ S[Ep]. Write q1 =

∑
aixi and q2 =

∑
bixi

with ai, bi ∈ S and the xi as before. Let ε ∈ {±1}p be a choice of sign for
t1, . . . , tp. Let ε(xi) be the resulting sign of xi. Set:

qε1 =
∑

aiε(xi) qε2 =
∑

biε(xi),

both forms in S. For each ε there exists a Nε so that condition 2 holds for qε1
and qε2. Let N be the maximum of the Nε and p.
If α ∈ XS we let αε be the extension of α to S[Ep] with ti > 0 iff ε(ti) = 1.
Then we claim that:

q̂−11 (K) ∩XS[Ep] =
⋃

ε

[(q̂ε1)
−1(K)]ε.

Namely if αε ∈ XS[Ep] and q̂1(α
ε) ∈ K then

q̂1(α
ε) =

∑
âi(α)ε(xi) = q̂ε1(α).

Hence αε ∈ (q̂ε1)
−1(K)ε. The reverse inclusion is similar.
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Now let αεe denote any extension of αε to R = S[E]. Then by the claim we
have:

(2.3) q̂−11 (K) =
⋃

e

(⋃

ε

[(q̂ε1)
−1(K)]ε

)e

So q̂−11 (K) ∩ (X/Fkn) = q̂−12 (K) ∩ (X/Fkn) implies that

(q̂ε1)
−1(K) ∩ (Xs/F

′
kn) = (q̂ε2)

−1(K) ∩ (Xs/F
′
kn),

for all sign choices ε. Hence by condition 2 applied to S we obtain (q̂ε1)
−1(K) =

(q̂ε2)
−1(K) for all ε. Then (2.3) gives q̂−11 (K) = q̂−12 (K). ¤

Lemma 2.4. Suppose R has a separating set of fan towers {s1, . . . , s`}. Let
q ∈ R and K ⊂ Z. Let m be the index such that every entry of q lies in
CkmFk∞, for all 1 ≤ k ≤ `. Let n > m. Then for each k we have:

|q̂−1(K) ∩ (X/Fkn)| =
|X/Fkn|
|X/Fkm|

|q̂−1(K) ∩ (X/Fkm)|.

Proof. Pick a k with 1 ≤ k ≤ `. Fkn ⊂ Fkm are both fans of finite index
so we can write Fkm = H × Fkn with H spanned by h1, . . . , hp, where 2p =
|X/Fkn|/|X/Fkm|. Every α ∈ X/Fkm has 2p extensions to X/Fkn, one for each
choice of signs (±1) for the hi. Specifically, if ε is a sign choice for the hi and
h ∈ H, let ε(h) be the resulting sign of h. Since G = CkmHFkn, the extension
of α ∈ X/Fkm to X/Fkn via ε is: αε(chf) = α(c)ε(h), where c ∈ Ckm, h ∈ H
and f ∈ Fkn. We thus have

X/Fkn =
⋃

ε

(X/Fkm)ε.

Write q = 〈a1, a2, . . . 〉. By assumption, each ai is in CkmFk∞ ⊂ CkmFkn.
Hence αε(ai) = α(ai). Thus :

q̂−1(K) ∩ (X/Fkn) =
⋃

ε

(
q̂−1(K) ∩ (X/Fkm)

)ε
.

So |q̂−1(K) ∩ (X/Fkn) = 2p|q̂−1(K) ∩ (X/Fkm)|, and the result follows. ¤

Lemma 2.5. Let q ∈ R be a form of dimension n. Let F be a fan of finite
index and let K ⊂ Z. Then :

|q̂−1(K) ∩ (X/F )| = k

2n
|X/F |,
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for some integer k, 0 ≤ k ≤ 2n.

Proof. Write q = 〈a1, . . . , an〉. Then q̂−1(K) is a disjoint union of
H(ε1a1, . . . , εnan) for various choices of ε = (ε1, . . . , εn) ∈ {±1}n. Set
ρε = 〈〈ε1a1, . . . , εnan〉〉. Then by the easy half of the representation theorem

∑

α∈X/F
ρ̂ε(α) ≡ 0 (mod |X/F |)

2n|H(ε1a1, . . . , εnan) ∩ (X/F )| = kε|X/F |,

for some non-negative integer kε. Then :

|q̂−1(K) ∩ (X/F )| =
∑

ε

kε
2n
|X/F | = k

2n
|X/F |,

for some non-negative integer k. ¤

The following is essentially from [9]. For a form q = 〈a1, . . . , an〉 the dis-
criminant is dis q = (−1)n(n−1)/2a1 · · · an. This is sometimes called the signed
discriminant.

Lemma 2.6. Let q be an odd dimensional form.

(1) dis q >α 0 iff q̂(α) ≡ 1 (mod 4).
(2) sgnαdis(q)q ≡ 1 (mod 4) for all α ∈ X.

(3) If 0 6= a = bc and â(α) = ±b̂(α) for all α ∈ X with â(α) 6= 0 then there
exists d ∈ G such that 〈d〉a = b.

Proof. (1) Suppose n = dim q. Let s = q̂(α). If r is the number of α-negative
entries in q then

sgnαdis q = (−1)n(n−1)/2(−1)r = (−1)
n(n−1)

2 +
n−s
2 = (−1)(n2−s)/2.

This is positive iff n2−s ≡ 0 (mod 4). As n is odd we get that the discriminant
is positive iff q̂(α) = s ≡ n2 ≡ 1 (mod 4).
(2) is easy to check. For (3), let A = {α ∈ X : â(α) 6= 0}. Then ĉ(α) = ±1
for all α ∈ A. In particular c is odd dimensional and â(α) = 0 iff b̂(α) = 0.Let
d = dis c. Then 〈d〉c has signature 1 for all α ∈ A by (2). Hence 〈d〉bc and b
have the same signature at each α ∈ B, and also at each α /∈ A (as both have
signature 0 there). Thus 〈d〉a = 〈d〉bc = b. ¤

Theorem 2.7. Let R be a reduced Witt ring. Then ACC holds for principal
ideals iff the chain length of R is finite.

Proof. (2.1) gives (−→). For the converse, let (q) ⊂ (q1) ⊂ (q2) ⊂ · · · be an
ascending chain of principal ideals in R. Note that as each qi divides q we have
M(qi) ≤ M(q). Let M = M(q). Then (1.3) gives dim qi ≤ 1

2cl(R)M
2 for all i

(note q is not one-dimensional else all (qi) = R).
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We begin with some simple reductions. If all qi are 0 then the result is clear. If
some qi is not zero then all the later qi’s are not zero. We may start our tower
there, that is, we may assume q 6= 0. For a non-zero form ϕ define degϕ to be
the largest d such that 2d divides ϕ̂(α) for all α ∈ X. Since qi+1 divides qi we
have deg qi+1 ≤ deg qi. Let d0 be the minimum of the degrees of the qi. We
may start our tower at a qj of minimal degree, that is, we may assume that
deg q = deg qi for all i. Now we may write q = qiϕi for some form ϕi. We check
that ϕi is odd dimensional. If instead ϕi is even dimensional then 2 divides
ϕ̂i(α) for all α and so 2d+1 divides q̂(α) for all α, contradicting our reduction
to a tower of uniform degree. Hence ϕi is odd dimensional. In particular,
q̂(α) = 0 iff q̂i(α) = 0.

Let D be the set of integers d > 1 that divide some non-zero q̂(α), α ∈ X.
Write D = {d1, . . . , dz} with d1 < d2 < · · · < dz. Set A(i, dj) = q̂−1i (±dj).
Let dk be the largest element of D (if any) for which {A(i, dk) : i ≥ 1} is not
finite. Our goal is to show that there is in fact no such dk. Our assumption on
dk means that for each j > k we have a tj such that A(t, dj) = A(tj , dj) for all
t ≥ tj . Let T be the maximum of the tj , j > k. Then by starting our tower of
ideals with qT , we may assume A(i, dj) = A(1, dj) for all j > k and all i ≥ 1.

We first check that A(i + 1, dk) ⊂ A(i, dk) for any i. Namely, qi = qi+1ϕ for
some form ϕ. So if α ∈ A(i+ 1, dk) then ±dk divides q̂(α). Also |q̂i(α)| is not
of the dj with j > k else α ∈ A(i, dj) = A(i + 1, dj), which is impossible as
α ∈ A(i+ 1, dk). Thus |q̂i(α)| ≤ dk and is divisible by dk. Hence q̂i(α) = ±dk
and α ∈ A(i, dk) as desired.
Let s = {Fm} be one fan tower in a separating set of fan towers for R (which
exists by (2.2)). The first condition for a separating set, plus a simple induction
argument, shows that for each i there exists a least m(i) with every entry of
q1, . . . , qi in Cm(i)F∞. Note that m(i + 1) ≥ m(i). Let p(i) be the number of
distinct values of

|A(j, dk) ∩ (X/Fm(i))|
|X/Fm(i)|

≡ γ(i, j),

over j with 1 ≤ j ≤ i. Now, by (2.4)

γ(i+ 1, j) =
|A(j, dk) ∩ (X/Fm(i+1))|

|X/Fm(i+1)|

=
|X/Fm(i+1)|
|X/Fm(i)|

|A(j, dk) ∩ (X/Fm(i))|
|X/Fm(i+1)|

= γ(i, j).

Hence p(i+ 1) ≥ p(i), with only γ(i+ 1, i+ 1) possibly being a new value.

Since every dim qi ≤ 1
2cl(R)M

2, (2.5) implies each p(i) ≤ 2cl(R)M
2/2+1. Hence

there is a t0 such that p(t) = p(t0) for all t ≥ t0. Let p = p(t0) and m = m(t0).
Say γ(t0, j1), . . . , γ(t0, jp) are the distinct γ-values over 1 ≤ j ≤ t0. Let t > t0
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and set n = m(t). Then γ(t, t) = γ(t0, js) for some js. That is,

|A(t, dk) ∩ (X/Fn)|
|X/Fn|

=
|A(js, dk) ∩ (X/Fm)|

|X/Fm|

=
|A(js, dk) ∩ (X/Fn)|

|X/Fn|
,

using (2.4) again. Further, A(t, dk) ⊂ A(t0, dk) ⊂ A(js, dk) so that we have

|A(t, dk) ∩ (X/Fn)| = |A(t0, dk) ∩ (X/Fn)|,

and this holds for all t ≥ t0.
We can repeat this argument for each fan tower in the separating set. Let
{s1, . . . , s`} be the separating set and let si = {Fin}. Hence there exist an N
and a T such that |A(t, dk) ∩ (X/Fin)| = |A(T, dk) ∩ (X/Fin)| for all 1 ≤ i ≤ `
and all t ≥ T . By the second property of a separating set we have A(t, dk) =
A(T, dk) for all t ≥ T . This contradicts our choice of dk.
Hence we have a T such that A(t, dj) = A(T, dj) for all t ≥ T and all dj ∈ D.
Thus q̂t(α) = ±q̂T (α) for all α in the union of the A(T, dj), that is, for all
α with q̂(α) 6= 0. By our early reduction, q̂(α) 6= 0 iff q̂T (α) 6= 0. Thus
q̂t(α) = ±q̂T (α) for all α with q̂T (α) 6= 0 and also qt divides qT . By (2.6) we
obtain (qt) = (qT ), for all t ≥ T . ¤
Corollary 2.8. Let R be a real (but necessarily reduced) Witt ring. If R
has finite chain length then ACC holds for principal ideals generated by odd
dimensional forms.

Proof. Every ideal containing an odd dimensional form contains the torsion
ideal Rt by [7, 1.5]. Hence passing to the reduced Witt ring maintains a tower
of principal ideals generated by odd dimensional forms. This reduced tower
stabilizes by (2.7). Hence the original tower stabilizes. ¤

Corollary 2.9. Let (G,X) be a space of orderings. Let S denote the collec-
tion of subsets of G of order n. If X has finite chain length then any tower

H(S1) ⊂ H(S2) ⊂ · · ·H(Sk) ⊂ · · · .

with each S ∈ S, stabilizes.
Proof. Suppose Si = {ai1, . . . , ain}. Set qi = 〈〈ai1, . . . , ain〉〉 + 1. Then
q̂i(X) = {1, 2n + 1} and q̂−1i (2n + 1) = H(Si). Thus q̂i+1(α) divides q̂i(α)
for all α ∈ X. So qi+1 divides qi by [7, 1.7]. We thus have a tower of principal
ideals (q1) ⊂ (q2) ⊂ · · · . This stabilizes by (2.7) and so the tower of H(Si)’s
also stabilizes. ¤
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3. Factorization.
Anderson and Valdes-Leon [1] have several notions of an associate in a commu-
tative ring R. We need three of these. Two elements a and b are associates if
their principal ideals are equal, (a) = (b). They are strong associates if a = bu,
for some unit u ∈ R. Lastly, a and b are very strong associates if (a) = (b) and
either a = b = 0 or a 6= 0 and a = br implies r is a unit.
An non-unit a is irreducible if a = bc implies either b or c is an associate
of a. Similarly, a is strongly irreducible (very strongly irreducible) if a = bc
implies either b or c is a strong associate (respectively, very strong associate)
of a. Lastly, R is atomic if every non-zero non-unit of R can be written as a
finite product of irreducible elements. Define strongly atomic and very strongly
atomic similarly.

Proposition 3.1. Let R be a reduced Witt ring and let a, b ∈ R. Then a, b
are associates iff a, b are strong associates. In particular, R is atomic iff R is
strongly atomic.

Proof. Strong associates are always associates so we check the converse. Sup-
pose (a) = (b). Write a = bx and b = ay. Then a = axy and a(1 − xy) = 0.
Let Z = {α ∈ X : â(α) = 0}. Then for all α /∈ Z we have x̂(α) = ±1. From
a = bx and (2.6) we get 〈d〉a = b for some d ∈ G. Clearly 〈d〉 is a unit. ¤

Strong associates need not be very strong associates in a reduced Witt ring. If
±1 6= g ∈ G then 〈1, g〉 is not even a very strong associate of itself. Namely,
〈1, g〉 = 〈1, g〉〈1, 1,−g〉 and 〈1, g〉 6= 0 and 〈1, 1,−g〉 is not a unit. So, except
for R = Z, R will not be very strongly atomic.

Corollary 3.2. Let R be a real Witt ring (not necessarily reduced) and sup-
pose R has finite chain length.

(1) Every odd dimensional form can be written as a finite product of irre-
ducible forms.

(2) If R is reduced then R is atomic.

Proof. These are standard consequences of (2.8) and (2.7), see [1, 3.2]. ¤

We are unable to prove the converse to (3.2)(2) for all reduced Witt rings R.
However, we can prove the converse for a wide class of rings. For this we need
Marshall’s notion of a sheaf product [11]. Start with a non-empty Boolean
space I, a collection of reduced Witt rings RC , one for each clopen C ⊂ I
and a collection of ring homomorphisms resC.D : RC → RD, defined whenever
D ⊂ C are clopen in I. We assume the usual sheaf properties, namely,

(1) R∅ = Z/2Z and RC 6= Z/2Z if C 6= ∅.
(2) resC,C is the identity map on C.
(3) If E ⊂ D ⊂ C then resC,E = resD,EresC,D.
(4) If C = ∪jCj and if rj ∈ Rj are given such that

resCj ,Cj∩Ck(rj) = resCk,Cj∩Ck(rk),
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for all j, k, then there exists a unique r ∈ RC such that resC,Cj (r) = rj ,
for all j.

For fixed i ∈ I we form the stalk

Ri = lim−→
i∈C

RC .

Each Ri is a reduced Witt ring. We call the reduced Witt ring RI the sheaf
product of the Ri’s and write RI =

∏
i∈I Ri. When I is finite and discrete this

is the usual product of Witt rings.
We next define a sequence of classes of reduced Witt rings (which is slightly
different from the sequence of Marshall [11, p. 219]). Let C1 denote the class
of finitely generated reduced Witt rings. Inductively define Cn to be sheaf
products of Ri[E

i], where Ei is a group of exponent two (not necessarily finite)
and Ri ∈ Cm for some m < n. Lastly, let Cω be the union of all Cn. This is a
large class. Already C2 contains all SAP reduced Witt rings and Cω contains all
reduced Witt rings where X has only a finite number of accumulation points
[11, 8.17].
We will prove that R ∈ Cω atomic implies R has finite chain length. We begin
with a lemma.

Lemma 3.3. Let S = R[E] and let T ⊂ GS be a fan of finite index. Set
T0 = T ∩GR.

(1) T0 is a fan in GR.
(2) Suppose XR/T0 = {P,Q}. Then XS/T consists of extensions of P,Q to

S. If x ∈ GS \GR then either none, exactly half or all of the extensions
of P that lie in XS/T make x positive.

Proof. (1) Write T = T0H for some subgroup H of GS with H ∩ GR = 1.
Extend H to subgroup L of GS such that GS = GR × L. Suppose P ⊂ GR is
a subgroup of index 2, containing T0 but not −1. Then PL is a subgroup of
index at most 2 containing T . If −1 ∈ PL then for some p ∈ P and y ∈ L we
have −p = y ∈ P ∩ L = 1. But then −1 = p ∈ P , a contradiction. Thus PL is
an ordering in GS . It is easy to check that P is then an ordering in GR. This
shows T0 is a fan.
(2) The first statement is clear. Suppose P1, . . . Pm, Q1, . . . , Qm are the exten-
sions of P,Q that lie in XS/T . Pick a ∈ GR with â(P ) = 1 and â(Q) = −1.
Let k be the number of Pi for which x is positive. From the easy half of the
Representation Theorem [11, 7.13]

∑

α∈XS/T

sgnα〈〈a, x〉〉 ≡ 0 (mod 2m)

4k ≡ 0 (mod 2m).

So m divides 2k and clearly k ≤ m. Hence k = 0, 12m or m. ¤
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Our proof that R ∈ Cω atomic implies finite chain length is not the usual
induction argument since we are unable to show R[E] atomic implies R atomic.
Instead we explicitly construct a form which does not factor into a finite product
of irreducibles. Unfortunately, the construction requires considerable notation.
We introduce this notation by first looking at a special case. Let ∗ denote a
group ring extension. A ring in Cn looks like

R =
∏

α∈A1

W (α)∗

=
∏

α∈A1

( ∏

β∈A2(α)

W (α, β)∗
)∗

=
∏

α∈A1

( ∏

β∈A2(α)

( ∏

γ∈A3(α,β)

W (α, β, γ)∗
)∗)∗

,

where each A1, A2(α) and A3(α, β) is a Boolean space and each W (α, β, γ) is
in Cm, for some m ≤ n− 3.
Suppose we want to single out the product over A3(α0, β0), for some particular
α0 and β0. We set :

R1 =
∏

γ∈A3(α0,β0)

W (α0, β0, γ)
∗

R2 =
∏

β∈A2(α0)
β 6=β0

( ∏

γ∈A3(α0,β)

W (α0, β, γ)
∗
)∗

R3 =
∏

α∈A1
α6=α0

( ∏

β∈A2(α)

( ∏

γ∈A3(α,β)

W (α, β, γ)∗
)∗)∗

.

Then R = ((R∗1 uR∗2)∗ uR∗3)∗.
We will want to single out the first infinite sheaf product. We have:

R = ((. . . ((R∗1 uR∗2)∗ uR∗3)∗ u . . . )∗ uR∗s)∗,

with R1 an infinite sheaf product, say

R1 =
∏

δ∈A
W (δ)∗,

and each W (δ) in some Cm, m ≤ n− s. We will need explicit extension groups.
We use the notation

R = (. . . ((R1[E
1] uR2[F

1])[E2] uR3[F
2])[E3] u . . . uRs[F s−1])[Es].

We further take {tij} as generators of Ei.
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Lastly, we need notation to express the orderings on R. Let Xi denote XRi
.

Let X1(ε1) denote the extensions of X1 to R1[E
1]. Here ε1 is an arbitrary

choice of signs. The extension is determined by the values ε1(t
1
j ) ∈ {±1}.

To save on indices we will write ε1(j) for ε1(t
1
j ). Next, X2(η1) denotes the

extensions from R2 to R2[F
1]. X1(ε1, ε2) denotes the extensions from R1 to

(R1[E
1]uR1[F

1])[E2], with ε2 a sign choice for E2. Continue with this pattern.
We obtain for XR

⋃

ε,η

[X1(ε1, . . . , εs) ∪X2(η1, ε2, . . . , εs) ∪X3(η2, ε3, . . . , εs) ∪ . . . ∪Xs(ηs−1, εs)].

Theorem 3.4. Suppose R ∈ Cω. The following are equivalent:

(1) R has finite chain length.
(2) R has ACC on principal ideals.
(3) R is atomic.

Proof. We need only show R atomic implies R has finite chain length, by (2.7)
and (3.2). Suppose R ∈ Cn and let s be the first level (if any) with an infinite
sheaf product. We follow the above notation. Fix some δ0 ∈ A and define
a ∈ GR1

with −1 in the δ0 coordinate and 1 in the other coordinates. Set

b = ((. . . (a,−1),−1), . . . ),−1) ∈ GR,

and set q = 〈b, t11, bt11〉.
Let Xδ be the orderings on W (δ)∗ so that X1 = ∪Xδ. Set C = q̂−1(3). Then:

C =
⋃

ε,η
ε1(1)=1



( ⋃

δ 6=δ0
Xδ

)
(ε1, . . . , εs) ∪X2(η1, ε2, . . . , εs) ∪ . . . ∪Xs(ηs−1, εs))


 .

We are assuming R is atomic, so let q = ϕ1 · · ·ϕr with each ϕi irreducible. We
may assume ϕ̂i(X) = {3,−1} by (2.6). Set Di = ϕ̂−1i (3). Note Di ⊂ C. We
will show that in fact one of the ϕi factors and hence that no sheaf product in
R is infinite.
Our first goal is to show that each Di consists of all extensions, with t

1
1 positive,

of some subset of X1. Pick P ∈ Xδ0 and Q ∈ Xδ with δ 6= δ0. Fix some k and
j. Let

ek = sp{tk1 , . . . , tkj−1, tkj+1, . . . }
e1 = sp{t12, t13, . . . }.

Let T be the fan

(. . . (((P ∩Q)[e1] uGR2
[F 1])[E2] . . . )[ek] u . . . uGRs

[F s−1])[Es].
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ThenX/T has 8 orderings, namely the extensions of P andQ with all ti` positive

except possibly t11 and tjk. Write these orderings as P (±1,±1) and Q(±1,±1),
where the first coordinate gives the sign of t11 and the second gives the sign of
tkj .
C ∩ (X/T ) = {Q(1,±1)} so that |C ∩ (X/T )| = 2. To ease notation slightly,
write D for one of the Di. Let w = |D ∩ (X/T )|. Then by the easy part of the
Representation Theorem we have:

∑

γ∈X/T
ϕ̂(γ) ≡ 0 (mod |X/T |)

3w − (8− w) ≡ 0 (mod 8)

w ≡ 0 (mod 2).

As D ∩ (X/T ) ⊂ C ∩ (X/T ) we have D ∩ (X/T ) is either empty or all of
C ∩ (X/T ).
Suppose for some k and j we are in the second case, D ∩ (X/T ) = C ∩ (X/T ).
Choose another pair g, h. Pick the fan T ′ generated over P ∩ Q by Ei for
i 6= 1, k, g, the same e1 as before and

ek
′

= sp{tk1 , . . . , tkj−1,−tkj , tkj+1 . . . }
eg

′

= sp{tg1, . . . , tgh−1, t
g
h+1, . . . }.

Then X/T ′ has 8 orderings, namely the extensions of P and Q with all ti`
positive except tkj negative and t11, t

g
h arbitrary. Write these as P (±1,−1,±1)

andQ(±1,−1,±1) with the first coordinate the sign of t11, the second coordinate
indicating that tkj is negative and the third coordinate the sign of tgh.
Again C ∩ (X/T ′) consists of two orderings, Q(1,−1,±1). And as before we
get that D∩ (X/T ′) is either empty or all of C ∩ (X/T ′). But Q(1,−1, 1) is the
same ordering that was denoted by Q(1,−1) before (that is, with t11 positive, tkj
negative and all other t’s positive). Hence we have D ∩ (X/T ′) = C ∩ (X/T ′).
We continue to assume D ∩ (X/T ) = C ∩ (X/T ). If we repeat this argument
( first with a fan having tkj and tgh negative) we get that any extension Q with

t11 positive and only a finite number of ti` negative is in D. Now D = ϕ̂−1(3)
and the entries of ϕ involve only a finite number of ti`. Hence we have that any
extension of Q with t11 positive is in D.
The assumption that D ∩ (X/T ) 6= ∅ means we are assuming some extension
of Q with t11 positive is in D. From this we conclude that all such extensions
are in D.
Let X∗1 denote the orderings on R1[E

1], namely the extensions ε1 of X1. Write
D|X∗1 for the orderings in D restricted to R1[E

1]. We have shown that D|X∗1
consists of all extensions, with t11 positive, of some subset (call it D|X1) of X1.
Each factor ϕi of q has its set Di. We have C = ∪Di and

∪(Di|X1) = C|X1 =
⋃

δ∈A
δ 6=δ0

Xδ.
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A is infinite so some Di|X1 meets at least two Xδ’s. For simplicity, call this Di

simply D and the corresponding form ϕ. Suppose D|X1 meets Xδ1 and Xδ2 ,
δ1 6= δ2. Set

D0 =
⋃

ε(1)=1

[(D|X1) ∩Xδ1 ](ε1) ⊂ X∗1 .

In words, D0 consists of the extensions for Xδ1 that lie in D|X∗1 . We will use
D0 to construct a factor of ϕ.
Let f : X∗1 → Z by f(P ) = 3 if P ∈ D0 and f(P ) = −1 if P /∈ D0. We want to
use the Representation Theorem [11,7.13] to show f is represented by a form
in R1[E

1]. Let T ⊂ GR1
E1 be a fan of finite index. Then T1 = T ∩ GR1

is a
fan in GR1

by (3.3)
Case 1 : (X1/T1) ⊂ Xδ for some δ ∈ A.
Here X∗1/T = (Xδ/T1)(ε), over some set of extensions ε to E1. If δ 6= δ1 then
f(P ) = −1 for all P ∈ (X∗1/T ) since D0 only has extensions from Xδ1 . Thus

∑

P∈X∗
1 /T

f(P ) = −|X∗1/T | ≡ 0 (mod |X∗1/T |).

If δ = δ1 then P ∈ D0 iff P ∈ D|X∗1 iff some (equivalently, every) extension,
with t11 positive, of P to XR lies in D iff ϕ̂(P ) = 3. So f(P ) = ϕ̂(P ) for all
P ∈ X∗1/T . We obtain

∑

P∈X∗
1 /T

f(P ) =
∑

P∈X∗
1 /T

ϕ̂(P ) ≡ 0 (mod |X∗1/T |).

Case 2 : (X1/T1) 6⊂ Xδ for some δ ∈ A.
Here we must have |X1/T1| = 2 by [11, 8.12] Write X1/T1 = {Pα, Pβ} where
α, β are distinct elements of A and Pα ∈ Xα and Pβ ∈ Xβ . Then X

∗
1/T consists

of some set of extensions, to E1, applied to Pα and Pβ .
Again, if neither α nor β are δ1 then all f(P ) = −1 and we are done. So
say α = δ1 (and so β 6= δ1). If Pα /∈ D|X1 then no extension is in D0 and
all f(P ) = −1 again. So suppose Pα ∈ (D|X1) ∩ Xδ1 . Since Pβ /∈ Xδ1 no
extension of Pβ in X∗1/T is in D0. This is half of X∗1/T . The other half
consists of extensions of Pα and by (3.3) either none, exactly half or all of these
extensions make t11 positive, and hence lie in D0. Thus |D0∩ (X∗1 )| = d|X∗1/T |,
where d is either (i) 0, or (ii) 1

4 or (iii) 1
2 . In case (i) we have

∑

P∈X∗
1

f(P ) = −|X∗1/T | ≡ 0 (mod |X∗1/T |).

In case (ii) we have

∑

P∈X∗
1

f(P ) = 1
4 |X∗1/T | · 3 + 3

4 |X∗1/T | · (−1) ≡ 0 (mod |X∗1/T |).
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In case (iii) we have

∑

P∈X∗
1

f(P ) = 1
2 |X∗1/T | · 3 + 1

2 |X∗1/T | · (−1) ≡ 0 (mod |X∗1/T |).

Thus in all cases we have
∑
f(P ) ≡ 0 (mod |X∗1/T |). By the non-trivial half

of the Representation Theorem we have f = ψ̂ for some form ψ ∈ R1[E
1]. By

construction ψ̂(X∗1 ) = {3,−1} and ψ̂−1(3) = D0 < D. Hence by [7, 1.7] ψ is a
proper divisor of ϕ. Hence ϕ is not irreducible, a contradiction.
We thus have if R ∈ Cn is atomic then all sheaf products are finite. Hence
cl(R) <∞, using [12, 4.2.1]. ¤

Corollary 3.5. Let R ∈ Cω. If R[E] is atomic then so is R.

Proof. R[E] atomic implies R[E] has finite chain length by (3.4). Then , as
cl(R[E]) = cl(R), R has finite chain length and so is atomic by (3.2). ¤

It is unknown if the reduced Witt rings of finite stability index lie in Cω so the
following may improve (3.4), although (3.4) includes many atomic Witt rings
with X infinite.

Proposition 3.6. Suppose R has finite stability index. The following are
equivalent:

(1) R has finite chain length.
(2) R has ACC on principal ideals.
(3) R is atomic.
(4) X is finite.

Proof. (1) and (4) are equivalent by [10] (first shown, in the field case in [4]).
As in the proof of (3.4) we need only show (3) implies (1). Suppose the stability
index of R is n. We can find a prime p congruent to 1 mod 2n by Dirichlet’s
Theorem. R is atomic so p = ϕ1 · · ·ϕt for some irreducible elements ϕi. Note
that for each i we have |ϕ̂i(X)| = {p, 1}. Let Ai = ϕ̂−1i (±p). The Ai’s form a
clopen cover of X.
We wish to show R has finite chain length. So suppose we have a tower

H(a1) > H(a2) > H(a3) > · · · .

First suppose there is an s, 1 ≤ s ≤ t and a k such that As ∩ H(ak) is a
non-empty, proper subset of As. Define f : X → Z by

f(α) =

{
p, if α ∈ As ∩H(ak)

1, if α /∈ As ∩H(ak).

Let T be a fan, |X/T | = 2m, where m ≤ n by definition of the stability index.
Set w = |As ∩H(ak) ∩ (X/T )|. Then

∑

α∈X/T
f(α) = wp+ (2m − w) = w(p− 1) ≡ 0 (mod 2m),
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since p − 1 is a multiple of 2n. By the Representation Theorem, f = ψ̂ for

some form ψ. Then ψ̂(α) divides ϕ̂s(α) for all α and for α ∈ As \ H(ak),

ψ̂(α) 6= ±ϕ̂s(α). So, using [7, 1.7], we have ψ is proper divisor of ϕs, which is
impossible.
Thus there does not exists a pair s, k such that H(ak) ∩ As is a non-empty,
proper subset of As. That is, for all i, j we have H(ai) ∩ Aj 6= ∅ implies
Aj ⊂ H(ai). The Aj ’s cover X so each H(ai) is a union of Aj ’s. Let n(i) be
the number of Aj ’s required to cover H(ai). Then 1 ≤ n(i+ 1) < n(i) ≤ t for
all i. Thus the tower is finite and we are done. ¤

4. Irreducible elements.
We look at some examples to illustrate factorization in reduced Witt rings.

Proposition 4.1. If 1 6= a ∈ G then 〈1,−a〉 is irreducible in R.

Proof. Suppose 〈1,−a〉 = qϕ in R. We may assume q is even dimensional and
ϕ is odd dimensional. If a <α 0 then 2 = q̂(α)ϕ̂(α). Thus q̂(α) = ±2 =
±sgnα〈1,−a〉, for all α with sgnα〈1,−a〉 6= 0. By (2.6) there exists a d ∈ G
such that 〈d〉〈1,−a〉 = q and so q is an associate of 〈1,−a〉. ¤
Example. If R 6= Z then factorization into irreducible elements is not unique.
Namely, if a 6= ±1 then 〈1,−a〉〈1,−a〉 = 〈1, 1〉〈1,−a〉 gives two different fac-
torizations of the Pfister form. This is quite different from the case of factoring
odd dimensional forms. When X is finite there is unique factorization of odd
dimensional forms if the ideal class group of R is trivial or, equivalently, the
stability index is at most 2, by [6, 2.7] and [7, 1.17].

We next find the irreducible elements in Z[E1]. Note that any form q in this
ring is associate to some n+mt with n ≥ |m|.
Proposition 4.2. Let q = n+mt ∈ Z[E1] with n ≥ |m|. Then q is irreducible
iff (n,m) or (n,−m) equals one of the following:

(1) (1, 1)
(2) (2k + 1, 2k − 1), for some k ≥ 0
(3) ( 12 (p+ 1), 12 (p− 1)), for some odd prime p.

Proof. Let q be irreducible. First suppose q is even dimensional. If both n and
m are even then 2 is a factor of q. So we have n and m odd. If n = ±m then n
is a factor of q and we must have n = 1. Thus (n,m) = (1,±1). We may thus
suppose n+m and n−m are non-zero. Write n+m = 2gh and n−m = 2k`
with h and ` odd and g, k ≥ 1. Set

ϕ1 = 1
2 (2

g + 2k) + 1
2 (2

g − 2k)t

ϕ2 = 1
2 (h+ `) + 1

2 (h− `)t.

Then q = ϕ1ϕ2 and ϕ2 is odd dimensional and so not an associate of q. Thus
ϕ1 is an associate of q. If α is the ordering with t positive then n+m = q̂(α) =
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±ϕ̂1(α) = ±2g. Since n ≥ −m we obtain n +m = 2g and h = 1. Similarly,
taking signatures at the ordering β with t negative gives ` = 1. If both g and k
are at least 2 then n and m are even which is not possible. Suppose n+m = 2g

and n−m = 2. Then we get case (2). The reverse , n+m = 2 and n−m = 2k

gives case (2) for the pair (n,−m).
Now suppose q is odd dimensional. If n+m is composite, say n+m = ab with
a, b > 1, then set

ϕ1 = 1
2 (a+ 1) + 1

2 (a− 1)t

ϕ2 = 1
2 (b+ n−m) + 1

2 (b− n+m)t.

Then q = ϕ1ϕ2. Neither ϕ1 nor ϕ2 is an associate of q as q̂(α) = ab while
ϕ̂1(α) = a and ϕ̂2(α) = b. Hence n +m is not composite. Similarly, n −m is
not composite. If both n+m and n−m are prime then set

ϕ1 = 1
2 (n+m+ 1) + 1

2 (n+m− 1)t

ϕ2 = 1
2 (n−m+ 1) + 1

2 (1− n+m)t.

We have q = ϕ1ϕ2. Neither ϕ1 nor ϕ2 is an associate of q as q̂(α) = n+m while
ϕ̂2(α) = 1 and q̂(β) = n−m while ϕ̂1(β) = 1. Thus we must have n+m = p,
p an odd prime, and n−m = 1 (or the reverse). This gives case (3).
It is straightforward to check the forms in cases (1) - (3) are irreducible. ¤

Example. Already for Z[E1], and in fact for any R 6= Z, the number of irre-
ducible factors in factorization of a given element can be arbitrarily large. For
instance, 〈1, 1, t〉 is irreducible (take p = 3 in (4.2)(3)) and 〈1,−t〉〈1, 1, t〉 =
〈1,−t〉. Hence

〈〈1,−t〉〉 = 〈1, 1〉〈1, 1, t〉n〈1,−t〉
is a factorization into irreducible elements for any n. Again the situation is quite
different if we consider only factorizations of odd dimensional forms. WhenX is
finite, the number of irreducible factors in a factorization is uniquely determined
iff the stability index is at most 3 and R has no factor of the type (Zs)[E2],
with s ≥ 3, see [7].

Notice that the even prime of Z remains irreducible in Z[E1] while the odd
primes of Z all factor in Z[E1]. This holds more generally.

Proposition 4.3. Let q ∈ R be irreducible.

(1) If q is even dimensional then q remains irreducible in R[E1].
(2) If q is odd dimensional then q remains irreducible in R[E1] iff q is not

associate to 1 + 2q0, for some q0 ∈ R.

Proof. First say q = 1 + 2q0, for some q0 ∈ R. Since q is not a unit, there
exists an α ∈ XR with q̂(α) 6= ±1. Let α+ and α− denote the extensions of α
to R[E1] with, respectively, t positive and t negative. Now

q = (1 + q0〈1, t〉)(1 + q0〈1,−t〉).
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Neither factor is an associate of q as the first has signature 1 at α− and the
second has signature 1 at α+. Thus q is not irreducible in R[E1].
Now suppose we have an irreducible q that factors in R[E1]. We want to show
q is odd dimensional and associate to some 1+ 2q0. Write q = (a+ b〈1, t〉)(c+
d〈1,−t〉), with a, b, c, d ∈ R and neither factor an associate of q. The coefficient
of t, namely bc− ad, must be zero and so q = ac+ ad+ bc. Then

q = ac+ 2bc = c(a+ 2b)(4.4)

= ac+ 2ad = a(c+ 2d).(4.5)

As q is irreducible in R, (4.4) shows that either c or a+2b is an associate of q.
We may assume c is the associate of q. Namely, if a+ 2b is the associate then
rewrite q as

q = ((c+ 2d) + (−d)〈1, t〉)((a+ 2b) + (−b)〈1,−t〉)
≡ (a′ + b′〈1, t〉)(c′ + d′〈1,−t〉).

Then c′ = a+ 2b is associate to q.
Write uq = c for some unit c ∈ R. Equation (4.5) shows that either a or c+2d
is an associate of q. Assume by way of contradiction that vq = c+2d for some
unit v ∈ R. Note (v − u)q = 2d; set χ = v − u. Let Z = {α ∈ XR : q̂(α) 6= 0}.
From (4.4), q = qu(a + 2b) so that û = â + 2b̂ on Z. Similarly, from (4.5)

q = qva so that v̂ = â on Z. Thus, on Z, χ̂ = v̂ − û = −2b̂. Now u and v are
units and so have signatures ±1 at all orderings. Thus χ̂(XR) ⊂ {2, 0,−2}. If

b is even dimensional then we must have b̂ = 0 on Z. Then χ̂ = 0 on Z and
0 = qχ = 2d. But then d = 0 and the second factor of q, c+ d〈1,−t〉 = c = uq
is an associate of q, a contradiction. Hence b is odd dimensional. In particular,

b̂ is never zero. So v̂ − û is not zero on Z. We must have v̂ = −û (as û and v̂
are always ±1). So χ̂ = 2v̂ on Z. Then 2vq = qχ = 2d and vq = d. But then
the second factor of q is c+ d〈1,−t〉 = uq + vq〈1,−t〉 = q(u+ v − vt) = −vtq,
an associate of q. This is impossible.
Hence we must have that q is an associate of a as well as c. Write uq = c and
vq = a for units u, v ∈ R. Equation (4.4) gives q = uq(a + 2b). If q is even
dimensional then a + 2b is odd dimensional and so a is odd dimensional. But
a is an associate of the even dimensional q so a must be even dimensional, a
contradiction.
We have then that q is odd dimensional. Then q = uq(a+2b) implies u(a+2b) =
1. So uvq = ua = 1− 2ub, as desired. ¤

It can be shown that a + bt ∈ R[E1] is irreducible if a + b is irreducible in R
and a − b is a unit. Thus in the factorization of (4.3) 1 + 2q0 = (1 + q0 +
q0t)(1 + q0 − q0t), both factors are irreducible. However, not every irreducible
a + bt ∈ R[E1] satisfies a + b irreducible and a − b a unit. For instance, one
may easily check that q = 〈1〉 + 〈〈t1, t2, t3〉〉 ∈ Z[E3] is irreducible. As a form
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in R[E1], where R = Z[E2], we have q = a + bt3 with a = 〈1〉 + 〈〈t1, t2〉〉 and
b = 〈〈t1, t2〉〉. Then a− b is a unit but a+ b = 1+ 2〈〈t1, t2〉〉 = (1− 〈〈t1, t2〉〉)2.
In fact, we have been unable to determine the irreducible elements of R[E1]
in terms of the irreducibles of R. For products, we can determine only the
irreducible odd dimensional forms.

Proposition 4.6. If R = R1 u R2 and (a, b) ∈ R is odd dimensional then
(a, b) is irreducible iff a is irreducible in R and b is a unit or the reverse, a is
a unit and b is irreducible.

Proof. We have (a, b) = (a, 1)(1, b). So (a, b) irreducible implies either a or b
is a unit. Say b is a unit. If a = xy then (a, b) = (x, b)(y, 1), so a must be
irreducible in R. ¤
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Abstract. Zassenhaus [17] constructed a decomposition for any el-
ement in the orthogonal group of a non-degenerate quadratic space
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central role in the study of question of the length of an element in
the commutator subgroup of the orthogonal group with respect to
the generating set of all elementary commutators of hyperplane re-
flections. See Hahn [6]. The current article develops the fundamental
properties of the Zassenhaus decomposition, e.g., those of uniqueness
and conjugacy, and applies them to sharpen and expand the analysis
of [6].

2000 Mathematics Subject Classification: 20G15, 20G25, 20F05.

1. Introduction. We begin with a discussion of the length question just
mentioned. For the moment, consider any group G along with a set of gen-
erators A (not containing the identity element of G) that satisfies A−1 = A.
Of all the factorizations of an element σ ∈ G as a product of elements from A
choose one that involves the smallest number of factors. This smallest number
is defined to be the length `(σ) of σ. One very basic question - necessarily in
the context of specific examples - is this: are there parameters attached to σ
from which `(σ) can be read off?

A number of theorems have responded to this question. For G a Weyl group
- or more generally a Coxeter group - and A an appropriate set of hyperplane
reflections, see Humphreys [7]. Refer to Dyer [3] for a recent result in this

1The author wishes to thank the algebraists of Louisiana State University for their splendid
organization of Quadratic Forms 2001 and their warm hospitality throughout the conference.
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context. For G a classical group and A a set of canonical elements coming from
the underlying geometry, see Hahn-O’Meara [5] for a comprehensive treatment
of the theorems of Dieudonné, Wall, and others. For G a classical group and
A a set of generators coming from a single conjugacy class of elements, see
Ellers-Malzan [2] and Knüppel [10]. In a related direction, interesting codes
have been constructed starting with G = SL2(Z) and carefully selected A.
See Margulis [12, 13] and Rosenthal-Vontobel [16] for details. The connection
with the length problem is provided by the associated Cayley graph and its
diameter.

Example 1. Let G be the symmetric group on {1, . . . , n} and let A be the
set of transpositions. Let k(σ) be the the number of cycles of σ including the
trivial cycles. Then `(σ) = n− k(σ).

The fact that `(σ) ≤ n − k(σ) follows from the decomposition of σ into its
disjoint cycles. The other inequality is a consequence of the fact that k(στ) =
k(σ) ± 1 for any transposition τ . A similar (but more complicated) argument
provides

Example 2. Let G be the alternating group on {1, . . . , n} and let A be the
set of three cycles, or equivalently, the set of elementary commutators of trans-
positions. This time, let k(σ) be the number of cycles of odd cardinality again
including the trivial cycles. Then n− k(σ) is even and `(σ) = 1

2 (n− k(σ)).

We now turn to the orthogonal group and begin by recalling some of the basics.
For the details, see [5], especially Sections 5.2A, 5.2B, Chapter 6 (all specialized
to the orthogonal case Λ = 0) and Section 8.2A.

Let V be a non-zero, non-degenerate, n−dimensional quadratic space with
symmetric bilinear form B over a field F with char(F ) 6= 2. Denote B(x, x)
by Q(x) and 1

2Q(x) by q(x). Check that B(x, y) = q(x + y) − q(x) − q(y).
Two vectors x and y are orthogonal if B(x, y) = 0. A non-zero vector x in
V that is orthogonal to itself is isotropic and it is anisotropic otherwise. A
non-degenerate plane that contains isotropic vectors is a hyperbolic plane and
an orthogonal sum of hyperbolic planes is a hyperbolic space. If U and W are
orthogonal subspaces that intersect trivially, then U ⊕ W is denoted U ⊥ W .
The orthogonal complement of a subspace U of V is denoted by U⊥, and the
radical of U is defined by Rad U = U ∩ U⊥. If W is a complement of Rad U
in U , then W is non-degenerate and U = Rad U ⊥ W is a radical splitting of
U . Any two such complements of Rad U are isometric.

Let On(V ) be the orthogonal group of V . For σ ∈ On(V ), let S be the subspace
S = (σ − 1V )V of V . This S is the space of σ. Intuitively, this is where the
”action” of σ is. In particular, there is no action on the orthogonal complement
S⊥ of S; the fact is that S⊥ = {x ∈ V | σ(x) = x}. Clearly, σ = 1V if and
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only if S = 0. It turns out that dim S is even if and only if σ ∈ O+
n (V ), the

subgroup of On(V ) consisting of the elements of determinant 1. If η ∈ On(V )
commutes with σ, then ηS = S. We will ”transfer” properties of S to σ. For
example, σ is non-degenerate, degenerate, or totally degenerate, if S is non-
degenerate, degenerate, or totally degenerate, that is, if the radical RadS of S
is, respectively, zero, non-zero, or S. In the same way, σ is anisotropic if S is
anisotropic.

An element σ ∈ On(V ) is an involution if σ2 = 1. It is easy to see that σ is
an involution if and only if σ

S
= −1S . In particular, involutions have the form

σ = −1S ⊥ 1S⊥ and are non-degenerate. Let v be an anisotropic vector and
define τv in On(V ) by

τv(x) = x−B(x, v)q(v)−1v for all x ∈ V .

Check that the space of τv is Fv and that τv
Fv

= −1Fv. So τv is an involution.

These involutions are the hyperplane reflections or symmetries.

Theorem 1. (Cartan-Scherk-Dieudonné) Let G be the group On(V ) and let
A be the set of hyperplane reflections. If σ is not totally degenerate, then
`(σ) = dim S. If σ is totally degenerate, then `(σ) = dim S + 2.

Theorem 1 in combination with Examples 1 and 2 calls attention to the length
problem in the situation where G is the commutator subgroup Ωn(V ) of On(V )
and A the set of elementary commutators of symmetries. It seems surprising
that this question did not receive scrutiny until recently. John Hsia first called
attention to it in the case of a non-dyadic local field and it was solved in this
context in Hahn [6]. The answer is not simply a modification of the conclusion
of Theorem 1, as a comparison of Examples 1 and 2 might suggest. We will see
that, unlike Theorem 1, it depends critically on the arithmetic of the field F .

2. The Zassenhaus Decomposition. An element σ in On(V ) is unipotent
if its minimal polynomial has the form (X − 1)m for some positive integer
m. A non-trivial unipotent element is degenerate and can, therefore, exist
only if V is isotropic. The elements with minimal polynomial (X − 1)2 are
precisely the non-trivial totally degenerate elements. A degenerate element σ
with dim S = 2 is an Eichler transformation. Let S be a degenerate plane and
put S = Fu ⊥ Fv with u ∈ Rad S and v ∈ S. Define Σu,v ∈ On(V ) by

Σu,v(x) = x+B(x, v)u−B(x, u)v − q(v)B(x, u)u for all x ∈ V .

Then Σu,v is an Eichler transformation and all Eichler transformations have
this form. A totally degenerate Eichler transformation has minimal polynomial
(X−1)2 and one that is not totally degenerate has minimal polynomial (X−1)3.
In particular, all Eichler transformations are unipotent.
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Let σ be any element in On(V ). Consider the subspace

X = {x ∈ V | (σ − 1V )
jx = 0 some j}

of V . This unique largest space on which σ acts as a unipotent transformation
turns out to be non-degenerate. Let R = X⊥. Then R is non-degenerate and
X = R⊥. Notice that σR⊥ = R⊥. So σR = R and hence σ = σ

R⊥
⊥ σ

R
. Put

µ = σ
R⊥
⊥ 1R and ρ = 1R⊥ ⊥ σ

R
. Then

σ = µ · ρ
with µ unipotent and ρ non-degenerate with space R. This is the Zassenhaus
decomposition or splitting of σ. Note that µ and ρ commute.

To develop the essential properties of the Zassenhaus splitting, we need the
Wall form. Let σ ∈ On(V ). Define

( , )σ : S × S −→ F

by the equation (σx − x, σy − y)σ = B(σx − x, y) for all σx − x and σy − y
in S. This is the Wall form on S. It is non-degenerate and bilinear, but it
is almost never symmetric. In fact, ( , )σ is symmetric if and only if σ is an
involution, and in this case, (s, s′)σ = − 1

2B(s, s′) for all s, s′ in S. Also, ( , )σ
is alternating if and only if σ is totally degenerate.

The space S is now equipped with both the Wall form ( , )σ and the restriction
of B. When the focus is on ( , )σ, then S is denoted by Sσ. Similarly, the space
S1 of σ1 in On(V ) is written Sσ1

when ( , )σ1
is under consideration, and

analogously for σ2. The spaces of orthogonal transformations µ, ρ, µ′, ρ′ and
so on, will be denoted by U,R,U ′, R′ and so on, with appropriate subscripts
when the focus is on the Wall form.

The key facts are these. Let S1 be a non-degenerate subspace of Sσ. Then
there is a unique σ1 ∈ On(V ) - the transformation belonging to S1 - such
that Sσ1

= S1. Let S2 be the right complement of S1 in Sσ. Then S2 is
non-degenerate. If σ2 is the transformation belonging to S2, then σ = σ1σ2.
Conversely, if σ = σ1σ2 with S1 ∩ S2 = 0, then Sσ = Sσ1

⊥ Sσ2
. This means

that the Wall forms of both Sσ1
and Sσ2

are obtained by restricting the Wall
form ( , )σ and that (s1, s2)σ = 0 for all s1 ∈ S1 and s2 ∈ S2 (but it is not
required that (s2, s1)σ = 0). For example, if σ = µρ is the Zassenhaus splitting
of σ, then because µ and ρ commute,

Sσ = Uµ ⊥ Rρ = Rρ ⊥ Uµ .
Another important fact asserts that elements σ and σ1 in On(V ) are conjugate
in On(V ) if and only if the spaces Sσ and Sσ1

are isometric.

To conclude this discussion of the Wall form, we note that the map

Θ : O+
n (V ) −→

∗
F/

∗
F 2
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defined by Θ(σ) = (disc Sσ)
∗
F 2, where disc Sσ is the discriminant of the space

Sσ, provides one of the (equivalent) definitions of the spinor norm. Its kernel
is denoted by O′n(V ). All unipotent elements are in O′n(V ). It is clear that
O′n(V ) ⊇ Ωn(V ) and it is a standard fact that if V is isotropic, then O′n(V ) =
Ωn(V ). A formula useful for computations is

Θ(σ) = Θ(ρ) = det (ρ− 1V )
R
disc R ,

where ρ is the non-degenerate component of the Zassenhaus decomposition of

σ and disc R ∈
∗
F/

∗
F 2 is the discriminant of the space R relative to the form

B.

Proposition 1. Let σ = µρ be the Zassenhaus splitting of an element σ ∈
On(V ). Then S = U ⊥ R, and

i) σ is in Ωn(V ) if and only if both µ and ρ are in Ωn(V ).

ii) An element in On(V ) commutes with σ if and only if it commutes with
both µ and ρ.

Proof: Recall that On(V ) has non-trivial unipotent elements only if V is
isotropic. So any non-trivial unipotent element of On(V ) is in O′n(V ) = Ωn(V ).
This implies (i). As to (ii), observe that if η ∈ On(V ) commutes with σ, then
η stabilizes X = R⊥. So η = η

R⊥
⊥ η

R
and it follows that η commutes with

both µ and ρ. QED.

We next consider the question of the uniqueness of the Zassenhaus splitting. It
is not difficult to construct situations of the following sort: a non-degenerate
element σ and a non-trivial unipotent element µ0 with U0 ⊆ S such that µ0
commutes with σ and the space of ρ0 = µ−10 σ is S. In such a situation,
σ = 1V σ = µ0ρ0 are two different ways of writing σ as a commuting product of
a unipotent element and a non-degenerate element. We will see that such situ-
ations are in essence the only obstruction to the uniqueness of the Zassenhaus
splitting.

Let σ = µρ be the Zassenhaus splitting of σ ∈ On(V ). Suppose that σ = µ′ρ′

is any factorization of σ with µ′ unipotent, ρ′ non-degenerate, and such that
µ′ and ρ′ commute.

Denote by W the orthogonal complement W = R′
⊥

of the space R′ of ρ′. By
an application of Proposition 1 (ii), the elements µ, µ′, ρ, and ρ′ all commute
with each other. In particular, σ commutes with ρ′. So σR′ = R′ and hence
σW = W . Therefore, σ = σ

W
⊥ σ

R′
. The fact that ρ′

W
= 1W , tells us

that σ
W

= µ′
W
. So σ is unipotent on W and hence W ⊆ R⊥. Therefore,

R′ = W⊥ ⊇ R. Let T be the orthogonal complement of R in R′. Because R′
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and R are both non-degenerate, R′ = T ⊥ R with T non-degenerate. Because
R⊥ is the largest space on which σ is unipotent, T is the largest space on which
σ
R′

is unipotent. So

σ
R′

= (µ
T
⊥ 1R)(1T ⊥ ρ

R
)

is the Zassenhaus splitting of σ
R′
. Notice that 1T ⊥ ρ

R
= ρ

R′
and hence that

µ
T
⊥ 1R = µ

R′
. Since µ′ and ρ′ commute with with both ρ′ and ρ, it follows

that µ′ and ρ′ stabilize the spaces R′, R, and therefore T . So

µ
T
= σ

T
= (µ′

T
)(ρ′

T
) .

Therefore, ρ′
T
is a product of two commuting unipotent transformations. So

ρ′
T
is unipotent. If T where to be non-zero, then ρ′ would fix a non-zero vector

in T . But this is impossible, because ρ′ is non-degenerate with space R′. So
T = 0. Hence R′ = R and W = R⊥. This means that µ′

R⊥
= σ

R⊥
= µ

R⊥

and hence that µ′ = µ
R⊥
⊥ µ′

R
. Because µ′

R
· ρ′

R
= σ

R
= ρ

R
, it follows

that ρ′ = 1R⊥ ⊥ (µ′
R
)−1(ρ

R
). Therefore the obstruction to the uniqueness of

the Zassenhaus splitting is as described earlier.

Notice that U ′ ∩ R′ = U ′ ∩ R = 0 if and only if µ′
R

= 1R. In this case,

µ′ = µ and ρ′ = ρ. If R is anisotropic, then Or(R) has no non-trivial unipotent
elements, and this condition is met. The following uniqueness criterion is a
special case of our discussion.

Proposition 2. (Uniqueness) Let σ = µρ be the Zassenhaus splitting of
σ ∈ On(V ). Suppose that σ = µ′ρ′ where µ′ is unipotent, ρ′ non-degenerate,
and S = U ′ ⊥ R′. Then

µ′ = µ and ρ′ = ρ .

Proposition 3. (Conjugacy) Let σ and σ1 be elements in On(V ) and let
σ = µρ and σ1 = µ1ρ1 be their Zassenhaus splittings. Then σ1 is conjugate to
σ if and only if µ1 is conjugate to µ and ρ1 is conjugate to ρ.

Proof: If σ1 is conjugate to σ then by an application of Proposition 2, µ1 is
conjugate to µ and ρ1 is conjugate to ρ. As to the converse, observe first that
Sσ = Uµ ⊥ Rρ = Rρ ⊥ Uµ and similarly for Sσ1

. If µ1 is conjugate to µ and
ρ1 is conjugate to ρ, then Uµ1

is isometric to Uµ and Rρ1 is isometric to Rρ.
Therefore Sσ1

is isometric to Sσ, and hence σ1 is conjugate to σ. QED.

3. Application to the Length Problem. Our study of the length problem
for the group Ωn(V ) and its set of generators

A = {τvτwτvτw|τv and τw non-commuting hyperplane reflections in On(V )}
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will expand on the results of Hahn [6].

Let σ ∈ Ωn(V ) be arbitrary. Note that the typical element τvτwτvτw in A is
equal to τvττw(v) = τvτv′ where Fv 6= Fv′ and Q(v) = Q(v′). Conversely, any
such product is an element in A. It is a direct consequence of this fact and
Theorem 1, that

`(σ) ≥ 1

2
dim S.

We will therefore define σ ∈ Ωn(V ) to be short if `(σ) = 1
2 dim S and long if

`(σ) > 1
2 dim S.

Our goal is the same as that of Theorem 1, namely the complete description of
the long elements of Ωn(V ) and the determination of their lengths.

Let σ in Ωn(V ) be an involution. By an application of the Wall form, σ is short
if and only if S = W1 ⊥ · · · ⊥ Wk with dim Wi = 2 and disc Wi = 1. Totally
degenerate elements are in Ωn(V ). It follows from Theorem 1 that they are
long. We now focus on the elements in Ωn(V ) that are neither involutions nor
totally degenerate.

Theorem 2. Let σ ∈ Ωn(V ) be long with σ neither totally degenerate nor an
involution. Let σ = µρ be the Zassenhaus splitting of σ. Then

i) The space of µ satisfies U = RadU ⊥ T with T anisotropic. The element
µ is a product of 1

2 (dim U) commuting Eichler transformations, exactly
dim T of which are not totally degenerate. In particular, (µ− 1V )

3 = 0.

ii) The element ρ is long and its space R is anisotropic.

iii) (Splicing Condition) The space T ⊥ R is anisotropic.

Finally, if V is isotropic, then `(σ) = 1
2 dim S + 1.

Proof: In view of Hahn [6] and in particular Proposition 15, only the existence
of the factorization in (i) requires proof. By the same proposition, we know
that (µ − 1V )U ⊆ Rad U. If T = 0, then µ is totally degenerate. By Hahn-
O’Meara [5], µ is a product of 1

2 (dim U) totally degenerate commuting Eichler
transformations. So we may assume that T 6= 0. Let w1 ∈ T be non-zero.
If µw1 = w1, then w1 is in the fixed space U⊥ of µ. But this implies that
w1 ∈ U ∩ U⊥ = Rad U , a contradiction. So µw1 − w1 is a non-zero vector in
Rad U . Put µw1 = u1 + w1 with u1 ∈ Rad U . Note that µ(Fu1 ⊥ Fw1) =
Fu1 ⊥ Fw1 and (because µ is unipotent) that the restriction of µ to this
plane has determinant 1. Let α1 = B(w1, w1)

−1 and consider the Eichler
transformation Σu1,α1w1

. Check that Σu1,α1w1
(u1) = u1 and Σu1,α1w1

(w1) =
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w1 + u1. Observe that µΣ−1u1,α1w1
(Fu1⊥Fw1)

= 1(Fu1⊥Fw1). By 8.2.16 of [5],

µ commutes with Σ−1u1,α1w1
. Put µ1 = Σ−1u1,α1w1

µ. By general facts, U1 ⊆
(Fu1 ⊥ Fw1) + U ⊆ U . Because µ1 fixes w1 while µ does not, the fixed
space U⊥1 of µ1 strictly contains the fixed space U⊥ of µ. It follows that
dim U1 = dim U − 2. Because µ = Σu1,α1w1

· µ1, U ⊆ (Fu1 ⊥ Fw1) + U1.
By dimensions, U = (Fu1 ⊥ Fw1) ⊕ U1. Since Σu1,α1w1

commutes with µ,
it commmutes with µ1. Therefore, U = (Fu1 ⊥ Fw1) ⊥ U1. Note that
Rad U = Fu1 ⊥ Rad U1. Put U1 = Rad U1 ⊥ T1. Because

U = (Fu1 ⊥ Rad U1) ⊥ (Fw1 ⊥ T1)

is a radical splitting of U we know that Fw1 ⊥ T1 is isometric to T and hence
that T1 is anisotropic. The element µ1 is unipotent because it is a product of
two commuting unipotent elements. An induction completes the proof. QED.

Remark: By dimension considerations, the spaces of the Eichler transfor-
mations in Theorem 2 (i) are planes with trivial intersection. Because these
Eichler transformations commute, these planes are orthogonal. Observe also
that 1

2dim U ≥ dim T , and hence that dim Rad U ≥ dim T .

The next two results will show that the limitations that Theorem 2 imposes
on the components µ and ρ of the Zassenhaus splitting of a long element σ are
considerable.

Let p(X) = akX
k + · · · + a1X + a0 be a polynomial in F [X]. We call p(X)

symmetric if the two sequences of coefficients ak, . . . , a0 and a0, . . . , ak are
identical.

Theorem 3. Let σ ∈ Ωn(V ) be long. Then the prime decomposition of the
minimal polynomial of σ has the form

(X − 1)m p1(X) · · · pj(X)

where 0 ≤ m ≤ 3 and the pi(X) are distinct, monic, symmetric, and irreducible.

Proof: If σ is an involution or totally degenerate, this is clear. So assume that
Theorem 2 applies to σ. Consider ρ

R
. Because R is anisotropic, any non-zero

subspace W of R is non-degenerate. It follows that R =W1 ⊥ · · · ⊥Wj where
each Wi is invariant under ρ, but ρ

Wi

has no non-trivial invariant subspaces.

By applying the results of Huppert, e.g., Satz 2.4 of [8] and Satz 4.1 of [9],
(also see the references to Cikunov in Milnor [14]), we see that the minimal
polynomial of ρ

Wi

is symmetric and irreducible. QED.

Proposition 4. Let i be the Witt index of V . Let σ ∈ Ωn(V ) be a unipotent
element with minimal polynomial (X − 1)m.
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i) If V is hyperbolic, then m ≤ 2i− 1.

ii) If V is not hyperbolic, then m ≤ 2i+ 1.

In either case, there exist unipotent elements such that equality holds.

Proof: The inequalities follow by induction on i. The case i = 0 is the
anisotropic case, where we already know that 1V is the only unipotent element.
So assume that i ≥ 1. Now refer to case (2) of the proof of Theorem 2.4 of
[4] and in particular to the unipotent element τ = σY ∈ Ωn−2(X). Let k be
the degree of the minimal polynomial of τ . Notice that V = Z ⊥ X with Z
a hyperbolic plane. So the Witt index of X is i − 1. Applying the induction
hypothesis to τ , provides the inequality k ≤ 2(i − 1) − 1 = 2i − 3 if X is
hyperbolic and k ≤ 2(i− 1) + 1 = 2i− 1 if not. It follows from the way σ and
τ are related that m ≤ k + 2. This completes the proof of the inequalities.
The construction of the required elements also follows inductively. If V is a
hyperbolic plane, then 1V is the only unipotent element and it satisfies the
equality trivially. Note next that a hyperbolic space of Witt index i contains a
non-degenerate space of Witt index i − 1 that is not hyperbolic. This implies
that it suffices to carry out the construction of the required unipotent element
in case (ii). So suppose that V is not hyperbolic with Witt index i. To get the
induction off the ground, take i = 1. Let σ = Σu,v be a non-degenerate Eichler
transformation. Then m = 3 = 2i + 1 as required. It is also easy to check
that (σ − 1V )

2V = Fu. Because V is spanned by isotropic vectors, there is an
isotropic vector w in V such that (σ − 1V )

2w = u. Because i = 1, it follows
that B(σ(σ − 1V )

2w,w) = B(u,w) 6= 0.
Suppose that i ≥ 2 and let V = H ⊥ W with H a hyperbolic plane. Note
that W is not hyperbolic and that it has Witt index i − 1. For the induction
hypothesis, assume that τ is a unipotent element in Ωn−2(W ) and that the
minimal polynomial of τ is (X − 1)k with k = 2(i − 1) + 1 = 2i − 1. Assume
further that (τ −1W )k−1W is a line spanned by (τ −1W )k−1w with w isotropic
and B(τ(τ − 1)k−1w,w) 6= 0. Put H = Fu ⊕ Fv with u and v isotropic and
B(u, v) = 1. To complete the proof, we will show that σ = Σu,w · (1H ⊥ τ) is a
unipotent element in Ωn(V ) that satisfies all the properties of τ with k + 2 in
place of k. ¿From the defining equation of Σu,w we see that σu−u = 0, σv−v =
w, and that

σx− x = τx− x+B(τx, w)u for all x ∈W .

This formula and an induction shows that

(σ − 1V )
jx = (τ − 1W )jx+B(τ(τ − 1W )j−1x,w)u for all x ∈W and j ≥ 1 .

We claim that σ has minimal polynomial (X − 1)k+2, that (σ − 1V )
k+1V is

spanned by (σ−1V )k+1v, and that B(σ(σ−1V )k+1v, v) 6= 0. To see this, observe
first that (σ − 1V )

k+1x = 0 for all x ∈ W . Because (σ − 1V )u = 0, it follows
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that (σ − 1V )
k+1V is spanned by (σ − 1V )

k+1v. Recall that (σ − 1V )v = w.
Therefore,

(σ − 1V )
k+1v = (σ − 1V )

kw

= (τ − 1W )kw +B(τ(τ − 1W )k−1w,w)u

= B(τ(τ − 1W )k−1w,w)u 6= 0 .

Because σu = u, we see that (σ − 1V )
k+2v = 0 and hence that σ has min-

imal polynomial (X − 1)k+2. Finally, B(σ(σ − 1V )
k+1v, v) = B(B(τ(τ −

1W )k−1w,w)u, v) = B(τ(τ − 1W )k−1w,w)B(u, v) 6= 0. The proof is complete.
QED.

The elements of Theorem 2 can be constructed as follows: Start with a long
anisotropic ρ in Ωn(V ). Choose a subspace U = Rad U ⊥ T in R⊥ such that
T ⊥ R is anisotropic and dim Rad U ≥ dim T . Split U into an orthogonal sum
of degenerate planes. For each plane choose an Eichler transformation that has
the plane as its space. Let µ be the product of these Eichler transformations and
set σ = µρ. This - by its uniqueness property - is the Zassenhaus decomposition
of σ. Therefore, the description of the long elements of Ωn(V ) has been reduced
to the following two problems:

A. Classify all long anisotropic elements ρ in Ωn(V ) and compute their
lengths in the case of an anisotropic V .

B. Determine which of the elements in Theorem 2 are actually long.

Notice that the conjugates of a long element in Ωn(V ) are long elements
of Ωn(V ). If the long element is anisotropic, then the conjugates are also
anisotropic. Thus, the problem of classifying long elements calls for the classi-
fication of their conjugacy classes.

4. Local Fields. The study of the arithmetic theory of quadratic forms
flows classically via the progression

C, R, finite fields, local fields, and global fields

from the easy situations to the hard ones. The theory over local fields makes
use of that over finite fields (via the residue class field) and the theory over
global fields - in characteristic zero these are the finite extensions of Q - is
based via local/global principles on the theory over local fields and C and R.

The benefit of hindsight, namely that the length problem that is being consid-
ered depends on the arithmetic of the field, suggests that its analysis should
proceed along the same path. Theorem 4 below is a routine application of
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Theorem 1. See Hahn [6] for the details. Observe that it applies at once to
C, R, and finite fields.

Theorem 4. Suppose that card
∗
F/

∗
F 2 ≤ 2. Then the totally degenerate ele-

ments σ are the only long elements in Ωn(V ), and for these `(σ) = 1
2 dim S + 1.

Let’s turn next to the case of a local field. R+ be the set of positive real
numbers. A local field is a field F that has a valuation

| | : F −→ R+ ∪ {0}

which satisfies the strong triangle inequality and with respect to which |
∗
F | is

discrete and F is complete. Let

o = {α ∈ F | |α| ≤ 1}

be the valuation ring of F and p = {α ∈ F | |α| < 1} its unique maximal
ideal. As part of the definition of local field, the residue class field o/p is
assumed to be finite. We continue the assumption that char F 6= 2. Denote
by u = {ε ∈ o | |ε| = 1} the group of invertible elements of o. Because the
maximal ideal p is principal, p = oπ for some π ∈ o. Any such π is a prime
element in o. Note that |π| is the largest value such that |π| < 1.

We refer to O’Meara [15] for the notation and the basic properties of local
fields, their quadratic forms and orthogonal groups. Two important facts about
quadratic forms over local fields are these: any non-degenerate quadratic space
of dimension five or more is isotropic, and there is, up to isometry, a unique
anisotropic four dimensional quadratic space.

It will be necessary to distinguish non-dyadic local fields from dyadic local
fields. The local field F is non-dyadic if 2 is invertible in o and dyadic if not.
So F is non-dyadic if |2| = 1 and dyadic if |2| < 1. If V is the unique 4-
dimensional anisotropic quadratic space, then Ω4(V ) has index two in O′4(V )
if F is non-dyadic, and Ω4(V ) = O′4(V ) if F is dyadic.

Consider a long element σ ∈ Ωn(V ) that is neither totally degenerate nor
an involution and return to the properties of the Zassenhaus decomposition
σ = µρ provided by Theorem 2. The fact that ρ is long implies that dim R ≥ 4.
Therefore,

4 ≤ dim R ≤ dim (T ⊥ R) ≤ 4 .

So T = 0, and µ is totally degenerate. In reference to Theorem 3, it follows
that the bound on m is 0 ≤ m ≤ 2. Also, dim R = 4 and R is the unique
4-dimensional anisotropic space over F . What else can be said about ρ?
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Proposition 5. Let ρ in Ωn(V ) be anisotropic with dim R = 4. Then ρ
R
∈

O′4(R), and

i) If F is non-dyadic, then ρ is long if and only if n ≥ 5 and ρ
R
∈ O′4(R)−

Ω4(R) .

ii) If F is dyadic, then ρ is long if and only if ρ
R
∈ O′4(R) = Ω4(R) is long.

This initial answer to Question A is proved in [6]. Suppose that F is non-dyadic.
Then Proposition 5 together with Theorem 2 tell us that `(σ) = 1

2dim S+1 for
any long element σ. Proposition 5 also provides a complete answer to Question
B. See Theorem 3 of [6]. It asserts that the long elements in Ωn(V ) that are not
involutions and not totally degenerate are those of Theorem 2, namely they are
precisely the elements with Zassenhaus decomposition σ = µρ, where µ = 1V
or µ is totally degenerate and ρ satisfies (i) above. If F is dyadic, then Question
B is as yet not resolved. However, it is known that `(σ) = 1

2dim S + 1 for all
long elements σ.

Let V be the anisotropic 4-dimensional space over F . In view of Proposition 5
we will analyze the elements σ in O′4(V ) that satisfy

(a) σ in O′4(V )− Ω4(V ) if F is non-dyadic, and

(b) σ a long element in O′4(V ) = Ω4(V ) if F is dyadic.

Is there a criterion that pinpoints when an element in O′4(V ) satisfies (a) or
(b)? A theorem of Milnor [14] tells us where to look.

Theorem 5. Let V be an n-dimensional, non-degenerate quadratic space over
a local field F . Let m(X) be a monic, irreducible polynomial in F [X] and let
deg m(X) = k. Assume that m(X) is neither X − 1 nor X + 1.

i) m(X) is the minimal polynomial of an element of On(V ) if and only if k is

even and divides n, m(X) is symmetric, and disc V = (m(1)m(−1)) nk
∗
F 2.

ii) Given such a polynomial m(X) there is precisely one conjugacy class of
elements in On(V ) with minimal polynomial m(X).

Milnor’s result no longer holds when m(X) is reducible. Any Eichler transfor-
mation that is not totally degenerate has minimal polynomial (X − 1)3 and
provides an example showing that (i) no longer holds. The nontrivial totally
degenerate elements - all of which have minimal polynomial (X − 1)2 - show
that (ii) fails. Let µ and µ1 be totally degenerate elements. Then µ is conjugate
to µ1 if and only if their respective spaces U and U1 have the same dimension.
This follows from the conjugacy criterion given by the Wall form and the fact
Uµ and Uµ1

are both alternating.
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Let σ ∈ O′4(V ) and let m(X) be its minimal polynomial. Milnor’s theorem sug-
gests that it should be possible to look at m(X) and decide whether σ satisfies
condition (a) or (b) or not. In reference to Theorem 3, we are interested in
precise information about the product p1(X) · · · pk(X). In the discussion that
follows, only the arithmetic aspects of the proofs will be provided.

Proposition 6. Let V be anisotropic with dim V = 4 and let σ ∈ O′4(V ).
Then σ satisfies (a) or (b) if and only if σ satisfies the long criterion:

Q(σx− x) = −β2xQ(x) for all x ∈ V and some βx ∈
∗
F .

Suppose that m(X) has a factor of the form X − a. So σx = ax for some
non-zero x in V . Because x is anisotropic, a = ±1. Since σx = x violates the
long criterion, we must have σx = −x. So a = −1. Therefore, X + 1 is the
only possible monic linear factor of m(X). If (X + 1)2 is a factor of m(X),
then −σ is a non-trivial unipotent element on some subspace of V . But this is
impossible, because V is anisotropic.

1. Suppose deg m(X) = 1. This implies that m(X) = X +1 and hence that
σ = −1V . Because disc V = 1, −1V ∈ O′4(V ). Check that σ = −1V
satisfies the long criterion precisely when −1 ∈

∗
F 2.

2. Suppose deg m(X) = 2. Observe that m(X) must be irreducible. By
Theorem 5, m(X) = X2 − cX + 1 for some c ∈ F . Notice that c 6=
±2. Every line of V contains a plane that is invariant under σ. Let

W be any such plane. By Theorem 5, disc W = −(c − 2)(c + 2)
∗
F 2.

Because V is anisotropic, W is not a hyperbolic plane, and therefore,

(c−2)(c+2) /∈
∗
F 2. Again by Theorem 5, there is precisely one conjugacy

class of such elements σ for a given c. A spinor norm computation shows

that Θ(σ) = (c− 2)2
∗
F 2 =

∗
F 2. So any σ with minimal polynomial of this

form is in O′4(V ). It turns out that σ satisfies the long criterion if and

only if c− 2 ∈
∗
F 2.

3. Suppose deg m(X) = 3. By Theorem 5, m(X) is reducible. It follows
that m(X) = (X + 1)(X2 − cX + 1) with X2 − cX + 1 irreducible.
Again, c 6= ±2. Let p1(X) = X + 1 and p2(X) = X2 − cX + 1. Put
U = p2(σ)V and W = p1(σ)V . Observe that U and W are planes that
are invariant under σ, that V = U ⊥ W , that σ

U
= −1U , and that

σ
W

has minimal polynomial X2 − cX + 1. As in the previous case,

disc W = −(c− 2)(c+ 2)
∗
F 2 and (c− 2)(c+ 2) /∈

∗
F 2. By Theorem 63:20

of [15], there are two isometry classes of anisotropic planes of a given
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discriminant. An application of Theorem 5 implies that there are two
conjugacy classes of σ for a given c. By a spinor norm computation,

Θ(σ) = −(c − 2)
∗
F 2. So σ ∈ O′4(V ) if and only −(c − 2) ∈

∗
F 2 and

−(c + 2) /∈
∗
F 2. The analysis of the long criterion for σ ∈ O′4(V ) will

follow shortly. We will see that if it holds, then −1 ∈
∗
F 2 and c− 2 ∈ 4u2.

This implies in turn that c ∈ 2u. If F is non-dyadic, the converse is true.

Namely, −1 ∈
∗
F 2 and c− 2 ∈ u2 together imply the long criterion.

4. Suppose deg m(X) = 4. In this case, either

m(X) = (X2− cX+1)(X2−dX+1) with distinct irreducible factors,
or

m(X) = X4 − cX3 − dX2 − cX + 1 is irreducible.

The first case is very similar to case (3). The second seems complicated
and is as yet not completely understood.

We now return to case (3) and to the analysis of the long criterion. Let U̇ and
Ẇ denote the non-zero elements of U and W and let

C = Q(Ẇ )/Q(U̇) .

The set C is closed under multiplication by squares and hence under taking
inverses.

Assume that the long criterion holds. Applying it to U and W we get that

(i) − 1 and c− 2 are both in
∗
F 2.

Put −1 = i2 and c− 2 = s2 and let t = −2is−1. Applying the long criterion to
the vectors x = u+ w with u ∈ U and w ∈W , tells us that

(ii)
1 + γt2

1 + γ
∈

∗
F 2 for all γ ∈ C .

Conversely, the long criterion is equivalent to the combination of (i) and (ii).

We assume that (i) and (ii) hold and consider the consequences for the constant
c. We show first that t ∈ u. It follows from the discussion in paragraph 63.C of
O’Meara [15] that C contains a prime element π. Therefore C contains πi for
any odd i either positive or negative. Put t = δπk with δ ∈ u. Taking γ = π
we get,

1 + γt2

1 + γ
=

1 + δ2π2k+1

1 + π
.
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If k < 0, then 2k + 1 < 0, and |1+δ2π2k+1|
|1+π| = |π|2k+1 by the Principle of

Domination. Because 2k + 1 is odd, the element above cannot be a square.
This contradicts (ii). If k > 0, a similar contradiction is obtained by taking
γ = π−1. Therefore, k = 0 and t ∈ u as required. Let ε = −it−1 ∈ u. Because
s = 2ε, we get

c− 2 = 4ε2.

Therefore, c − 2 ∈ 4u2 as asserted earlier. Note that c = 2(2ε2 + 1). If F is
dyadic, then by domination, c ∈ 2u. This is also true in the non-dyadic case. If
c /∈ u, then c ∈ p. But this would imply by Hensel’s Lemma that X2 − cX + 1
is reducible.

We now explore the converse. Assume both −1 ∈
∗
F 2 and c − 2 ∈ 4u2. Does

σ ∈ O′4(V ) with such a c satisfy the long criterion, or equivalently, conditions
(i) and (ii)? Condition (i) holds trivially, so the focus is on (ii). Put c−2 = 4ε2

with ε ∈ u. Set s = 2ε and t = −2is−1 = −iε−1. Notice that t ∈ u. Because C

is closed under taking inverses, (ii) is equivalent to 1 + t2−1
1+γ ∈

∗
F 2 for all γ in

C. Check that t2 − 1 = − 4+s2

s2 = − c+2
c−2 = − c+2

4ε2 . So the question is this: Is it
the case that

(iii) 1 − c+ 2

4ε2(1 + γ)
∈

∗
F 2

for all γ ∈ C?

The first step toward the answer is the observation that {|1 + γ| | γ ∈ C} is
bounded below by |4|. For suppose that |1 + γ| ≤ |4π| for some γ ∈ C. Then

1 + γ = 4απ for some α ∈ o. But this means that −γ = 1− 4απ ∈
∗
F 2 by the

Local Square Theorem. Because C is closed under multiplication by squares,
−γ ∈ C. But this implies that the intersection Q(U̇) ∩ Q(Ẇ ) is not empty.

This would mean that V contains a plane of discriminant
∗
F 2 = −

∗
F 2, i.e., a

hyperbolic plane. This is not possible because V is anisotropic. Now assume
that |c + 2| < |4|3. Given the bound just established, | c+2

4ε2(1+γ) | < |4| for all

γ ∈ C. Therefore by another application of the Local Square Theorem,

1 − c+ 2

4ε2(1 + γ)
∈

∗
F 2

for all γ in C.

We conclude the discussion of the converse by assuming that F is non-dyadic.
In this case (iii) is satisfied for any c (such that c−2 ∈ 4u2). Because |4| = 1, we
already know that (iii) holds when c+2 ∈ p. Since c+2 ∈ o, only the case c+2 ∈
u remains. Instead of (iii), we will verify the equivalent condition (ii). Recall
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from the beginning of the analysis of case (3) that disc W = −(c− 2)(c+2)
∗
F 2

and −(c+2) /∈
∗
F 2. So disc W = −(c+2)

∗
F 2 and, by an application of Example

63:15 of [15], C = πu
∗
F 2. Let γ = πδα2 ∈ C with δ ∈ u and α ∈

∗
F be arbitrary.

If |α| ≤ 1, then |γ| < 1. So 1 + γ and 1 + t2γ are both in
∗
F 2 by the Local

Square Theorem. Therefore (ii) holds. Suppose |α| > 1. Now |γ| > 1 and the
Local Square Theorem tells us that 1 + γ−1 and 1 + t−2γ−1 are both squares.

So 1+t−2γ−1

1+γ−1 is a square. Therefore 1+γt2

1+γ is a square as well and (ii) holds in
this case also. The proof of the converse in the non-dyadic case is complete.
The dyadic situation is much more delicate and is not completely settled.

5. Global Fields. Let F be a global field, let V be a non-degenerate
quadratic space over F , and consider the group Ωn(V ). Not much is known
about the length question in this situation, but it is clear that local-global
considerations are relevant. Let p be a prime - Archimedean or not - and
consider the completion Vp. The first indication is the theorem that tells us
that σ ∈ Ωn(V ) if and only if σp ∈ Ωn(Vp) for all p. Another is the fact
(analogous to what was observed in the local case) that the analysis of the
anisotropic long elements in Ωn(V ) reduces to the 4-dimensional anisotropic
long elements. This is true not only in the situation where F is a function field
or a totally complex number field (in these situations there are no anisotropic
spaces of dimension 5 or more) but in general. More precisely, if σ is an
anisotropic long element, then

σ = ω1 · · ·ωkσ1,

where all ωi are elementary commutators of hyperplane reflections, the space
S =W1 ⊕ · · · ⊕Wk ⊕ S1, and σ1 is long with dim S1 = 4.
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Abstract. By a theorem of Elman and Lam, fields over which qua-
dratic forms are classified by the classical invariants dimension, signed
discriminant, Clifford invariant and signatures are exactly those fields
F for which the third power I3F of the fundamental ideal IF in the
Witt ring WF is torsion free. We study the possible values of the u-
invariant (resp. the Hasse number ũ) of such fields, i.e. the supremum
of the dimensions of anisotropic torsion (resp. anisotropic totally in-
definite) forms, and we relate these invariants to the symbol length
λ, i.e. the smallest integer n such that the class of each product of
quaternion algebras in the Brauer group of the field can be repre-
sented by the class of a product of ≤ n quaternion algebras. The
nonreal case has been treated before by B. Kahn. Here, we treat the
real case which turns out to be considerably more involved.
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1. Introduction

Let F be a field of characteristic 6= 2. An important topic in the algebraic
theory of quadratic forms over F is the determination of the supremum of
the dimensions of certain types of anisotropic quadratic forms over F . For a
general survey on this problem, see [H4]. In the present article, we focus on the
u-invariant and the Hasse number ũ of F , where u(F ) (resp. ũ(F )) is defined
as the supremum of the dimensions of anisotropic forms which are torsion in
the Witt ring of F (resp. totally indefinite, i.e. indefinite with respect to each
ordering on F ). By Pfister’s local-global principle, torsion forms are exactly
those forms which have signature 0 with respect to each ordering, they are in
particular totally indefinite (or t.i. for short). Hence, u(F ) ≤ ũ(F ). In the
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absence of orderings, i.e. for nonreal fields, every form is a torsion form and the
two definitions coincide with what was originally called the u-invariant, namely
the supremum of the dimensions of anisotropic forms over F .

We will relate these two invariants to another one, the so-called symbol
length λ, which is defined to be the smallest n (if such an n exists) such that
any tensor product of quaternion algebras over F is Brauer-equivalent to a
tensor product of ≤ n quaternion algebras. λ(F ) ≤ 1 is equivalent to saying
that the classes of quaternion algebras form a subgroup of the Brauer group
Br(F ). In this case, the field is called linked. It should be remarked that by
Merkurjev’s theorem [M1], the classes of products of quaternion algebras are
exactly the elements in Br2(F ), i.e. the elements of exponent ≤ 2 in the Brauer
group Br(F ).

Perhaps the first result relating the u-invariant and the Hasse number to
the symbol length is due to Elman and Lam [EL2], [E] who determined the
values of u and ũ for linked fields. Their result reads as follows.

Theorem 1.1. Let F be a linked field. Then u(F ) = ũ(F ) ∈ {0, 1, 2, 4, 8}. In
particular, I4t F = 0. Furthermore, for 1 ≤ n ≤ 3, u(F ) = ũ(F ) ≤ 2n−1 iff
Int F = 0.

In the wake of Merkurjev’s construction of fields with u = 2n for any positive
integer n ([M2]) which is based on his index reduction results and its conse-
quences (see Lemma 2.2(iii)) and on a simple fact concerning Albert forms (see
Lemma 2.2(i)), it has been noted by Kahn that for nonreal fields, a lower bound
for u can easily be given in terms of λ. More precisely, Kahn [Ka, Th. 2] shows
the following.

Theorem 1.2. Let F be a nonreal field. Then

(i) λ(F ) = 0 iff u(F ) ≤ 2.
(ii) If λ(F ) ≥ 1 then u(F ) ≥ 2λ(F ) + 2.
(iii) If λ(F ) ≥ 1 and I3F = 0, then u(F ) = 2λ(F ) + 2.

(In Kahn’s original statement, it was implicitly assumed that λ(F ) ≥ 1, and
only parts (ii) and (iii) were stated.)

The aim of the present paper is to generalize this result to real fields, in
particular to real fields with I3t F = 0. Since the quaternion algebra (−1,−1)F
will always be a division algebra over any given real field F , we will always have
λ(F ) ≥ 1. By Elman and Lam’s theorem 1.1 we know for real F that λ(F ) = 1
implies u(F ) = ũ(F ) ∈ {0, 2, 4, 8} and that in this case u(F ) = ũ(F ) ∈ {0, 2, 4}
iff I3t F = 0. Thus, we are mainly interested in the case F real and λ(F ) ≥ 2.

Now fields with I3t F = 0 are also interesting from a different point of view
as by another theorem of Elman and Lam [EL3] these are exactly the fields over
which quadratic forms can be classified by the classical invariants dimension,
signed discriminant, Clifford invariant, and signatures.

Our first main result is the analogue for real fields of Kahn’s theorem above,
but now in terms of the Hasse number.
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Theorem 1.3. Let F be a real field with λ = λ(F ) ≥ 2. Then the following
holds.

(i) ũ(F ) ≥ 2λ+ 2.
(ii) If I3t F = 0 and ũ(F ) <∞, then ũ(F ) = 2λ+ 2.

The situation for the u-invariant seems to be more complicated. We could
prove an analogue of Kahn’s theorem only under invoking rather restrictive
additional hypotheses on the space of orderings XF of the field. Recall that the
reduced stability index st(F ) of a real F can be defined as follows : st(F ) = 0 if
F is uniquely ordered; otherwise, st(F ) is the smallest integer s ≥ 0 such that
for each basic clopen set H(a1, · · · , an) ⊂ XF there exist bi ∈ F ∗, 1 ≤ i ≤ s,
such that H(a1, · · · , an) = H(b1, · · · , bs). st(F ) ≤ 1 is equivalent to F being
SAP (cf. [KS, Kap. 3, § 7, Satz 3]).

Theorem 1.4. Let F be a real field with λ = λ(F ) ≥ 2.

(i) If st(F ) ≤ 1 then u(F ) ≥ 2λ.
(ii) If I3t F = 0 and st(F ) ≤ 2, then u(F ) ≤ 2λ+ 2.

These results will be shown in the next section.
In [M2], Merkurjev constructed to each n ≥ 1 fields with u(F ) = 2n and

I3F = 0. It has been shown by Hornix [Hor, Th. 3.5] and Lam [L2] that for
each n ≥ 3 there exist real fields F , F ′ such that u(F ) = ũ(F ) = 2n and
u(F ′)+ 2 = ũ(F ′) = 2n. Note that in [L2], it was in addition shown that there
exist such fields which are uniquely ordered, but nothing was said about I3t F ,
whereas in [Hor] it was shown that one can construct such fields with I3t = 0,
but there were no statements made on the space of orderings of such fields.

For the reader’s convenience, we will give a proof of these results by Hornix
resp. Lam in section 3. Our constructions are slightly different from those
given by Hornix and Lam but, just as theirs, rely heavily on Merkurjev’s index
reduction results as stated in Lemma 2.2. In our constructions, we will also
combine the properties of F having I3t F = 0 and of F being uniquely ordered
in the case ũ <∞.

In fact, we will put these results into a larger context where we classify all
realizable values for the invariants λ, u and ũ (and their interdependences) for
real fields with I3t F = 0 which are SAP. Since the values of u and ũ for fields
(real or not) with λ ≤ 1 are covered by Elman and Lam’s theorem 1.1 (note
that these fields are always SAP since for them ũ will be finite, [EP, Theorem
2.5]), and since the case of nonreal fields is treated in Kahn’s Theorem 1.2, we
will only consider the case of real SAP fields with I3t F = 0 and λ(F ) ≥ 2.

Theorem 1.5. Let M = {(n, 2n, 2n + 2), (n, 2n + 2, 2n + 2); n ≥ 2} ∪
{(n, 2n,∞), (n, 2n+ 2,∞);n ≥ 2} ∪ {(∞,∞,∞)}.
(i) Let F be a real SAP field such that λ(F ) ≥ 2 and I3t F = 0. Then

(λ(F ), u(F ), ũ(F )) ∈M.
(ii) Let (λ, u, ũ) ∈ M. Then there exists a real SAP field F with I3t F = 0

and (λ(F ), u(F ), ũ(F )) = (λ, u, ũ). In the case where ũ < ∞ or λ = ∞,
there exist such fields which are uniquely ordered.
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As a consequence, we obtain

Corollary 1.6. Let F be a real field with I3t F = 0. Then

(u(F ), ũ(F )) ∈ {(2n, 2n); n ≥ 0} ∪ {(2n,∞); n ≥ 0} ∪ {(2n, 2n+ 2); n ≥ 2} .
All pairs of values on the right hand side can be realized as pairs (u(F ), ũ(F ))
for suitable real F .

As far as notation, terminology and basic results from the algebraic theory
of quadratic forms is concerned, we refer to the books by Lam [L1] and Scharlau
[S]. In particular, ϕ ∼= ψ (resp. ϕ ∼ ψ) denotes isometry (resp. equivalence in
the Witt ring) of the forms ϕ and ψ.

∑
F 2 denotes all nonzero sums of squares

in F . The signed discriminant (resp. Clifford invariant) of a form ϕ will be
denoted by d±ϕ (resp. c(ϕ)), and we write ϕan for the anisotropic part of ϕ.
An n-fold Pfister form is a form of type 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, ai ∈ F ∗, and
we write 〈〈a1, · · · , an〉〉 for short. The set of forms isometric (resp. similar) to
n-fold Pfister forms will be denoted by PnF (resp. GPnF ). I

n
t F is the torsion

part of InF , the n-th power of the fundamental ideal IF of classes of even-
dimensional forms in the Witt ringWF of the field F . The space of orderings of
a real field F will be denoted by XF . General references for the SAP property
and the reduced stability index are the book by Knebusch and Scheiderer [KS],
and the articles [P], [ELP], [EP]. Another property in this context is the so-
called ED property (effective diagonalization). It is known that ED implies
SAP (but not conversely in general), and that fields with finite ũ have the ED
property. Cf. [PW] for more details on ED.

2. Fields with torsion-free I3

Definition 2.1. (i) Let A be a central simple algebra over F (CSA/F ) such
that its Brauer class [A] is in Br2(F ). The symbol length t(A) of A is
defined as

t(A) = min{n | ∃ quaternion algebras Qi/F , 1 ≤ i ≤ n, s.t. [A] = [
⊗n

i=1Qi]} .
(ii) The symbol length λ(F ) of the field F is defined as

λ(F ) = sup{t(A) |A CSA/F , [A] ∈ Br2(F )} .
(iii) Let ϕ be a form over F . Let A be a CSA/F such that c(ϕ) = [A] ∈

Br2(F ), where c(ϕ) denotes the Clifford invariant of ϕ. Then t(ϕ) :=
t(A).

The following lemma compiles some well known results and some special
cases of Merkurjev’s index reduction theorem which we will use in this and the
following section. We refer to [M2], [T] for details (see also [L1, Sect. 3, Ch. V]
for basic results on Clifford invariants and how to compute them).

Lemma 2.2. (i) Let Qi = (ai, bi), 1 ≤ i ≤ n, be quaternion algebras over F
with associated norm forms 〈〈ai, bi〉〉 ∈ P2F . Let A =

⊗n
i=1Qi (over F ).

Then there exist ri ∈ F ∗, 1 ≤ i ≤ n, and a form q ∈ I2F , dim q = 2n+2
such that c(q) = [A] ∈ Br2 F and q ∼ ∑n

i=1 ri〈〈ai, bi〉〉 in WF . (We will
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call such a form q an Albert form associated with A.) Furthermore, if
t(A) = n (in particular if A is a division algebra), then every Albert form
associated with A is anisotropic.

(ii) If q is a form over F with either dim q = 2n+2 and q ∈ I2F , or dim q =
2n+ 1, or dim q = 2n and d±q 6= 1, then there exist quaternion algebras
Qi = (ai, bi), 1 ≤ i ≤ n, such that for A =

⊗n
i=1Qi we have c(q) = [A],

and there exists an Albert form ϕ associated with A such that q ⊂ ϕ.
(iii) If A as in (i) is a division algebra and if ψ is a form over F of one of

the following types:
(a) dimψ ≥ 2n+ 3,
(b) dimψ = 2n+ 2 and d±ψ 6= 1,
(c) dimψ = 2n+ 2, d±ψ = 1 and c(ψ) 6= [A] ∈ Br2 F ,
(d) ψ ∈ I3F ,
then A stays a division algebra over F (ψ).

The next result will be used in the proofs of Theorem 1.4(ii) and of
Lemma 2.4(ii), which in turn will be used in the proof of Theorem 1.3(ii).

Lemma 2.3. Let n ≥ 1 and suppose that In+1
t F = 0. Let ϕ be a form over F

of dimension > 2n. Suppose that either

• ϕ ∈ Int F , or
• ϕ is t.i. and F is ED.

If there exists ρ ∈ GPnF such that ρ ⊂ ϕ, then ϕ is isotropic.

Proof. Write ϕ ∼= ρ ⊥ ψ. By assumption, dimψ ≥ 1. After scaling, we may
assume that ρ ∈ PnF . Note that sgnP ρ ∈ {0, 2n} for all P ∈ XF . Let
Y = {P ∈ XF | sgnP (ρ) = 2n}.

If ρ is torsion, i.e. if Y is empty, then for any x represented by ψ we have
that ρ ⊗ 〈〈−x〉〉 ∈ Pn+1F ∩ WtF ⊂ In+1

t F = 0. Thus, the Pfister neighbor
ρ ⊥ 〈x〉 is isotropic. Hence, ϕ is isotropic as it contains ρ ⊥ 〈x〉 as subform.

So assume that Y 6= ∅. First, suppose that ϕ ∈ Int F . Then we have
sgnP ψ = −2n for all P ∈ Y and hence dimψ ≥ 2n. Now 〈1, 1〉 ⊗ϕ ∈ In+1

t F =
0, hence 〈1, 1〉 ⊗ ρ ∼ −〈1, 1〉 ⊗ ψ in WF . By β-decomposition (cf. [EL1,
p. 289]), we can write ψ ∼= γ ⊥ σ with 〈1, 1〉 ⊗ γ ∼ 0 (in particular, γ ∈WtF ),
dimσ = dim ρ = 2n and 〈1, 1〉⊗ ρ ∼= −〈1, 1〉⊗σ. Comparing signatures, we see
that sgnP ρ = − sgnP σ ∈ {0, 2n}. Now let x ∈ F ∗ be any element represented
by σ. The above shows that x <P 0 for all P ∈ Y . For all other P ∈ XF , ρ is
indefinite. This yields that ρ ⊥ 〈x〉 is t.i. and a Pfister neighbor of ρ ⊗ 〈〈−x〉〉
which is therefore torsion. We conclude as before that ϕ is isotropic.

Finally, suppose that ϕ is t.i. and that F is ED. Since ρ is positive definite
at all orderings P ∈ Y , and since ϕ ∼= ρ ⊥ ψ is t.i., ED implies that ψ represents
an x ∈ F ∗ such that x <P 0 for all P ∈ Y . Then ρ ⊥ 〈x〉 is t.i. and a Pfister
neighbor contained in ϕ, and we conclude as before that ϕ is isotropic.

For later purposes, we now state some useful facts on u and ũ of real fields
with I3t F = 0.
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Lemma 2.4. Let F be a field with I3t F = 0. Then the following holds.

(i) If 2 < u(F ) < ∞, then there exists an anisotropic form ϕ ∈ I2t F such
that dimϕ = u(F ).

(ii) If ũ(F ) < ∞, then ũ(F ) is even. Furthermore, if 2 < ũ(F ) < ∞, then
there exists an anisotropic t.i. form ϕ ∈ I2F such that dimϕ = ũ(F ) and
sgnP (ϕ) ∈ {0, 4} for all P ∈ XF .

Proof. (i) See [EL1, Prop. 1.4].
(ii) See [ELP, Th. H] for a proof that ũ(F ) is even if it is finite. Now suppose

ϕ is anisotropic, t.i. and dimϕ = ũ(F ) ≥ 4. Since ũ(F ) is finite, F has ED
and one easily sees that ϕ contains a 3-dimensional t.i. subform τ ′. Then τ ′

is a Pfister neighbor of some anisotropic torsion τ ∈ P2F . Thus, if ũ(F ) = 4,
this τ is the desired form. So we may assume that ũ(F ) ≥ 6.

Since F is SAP, we may scale ϕ so that sgnP ϕ ≥ 0 for all P ∈ XF . Consider
the clopen set Y = {P ∈ XF | sgnP ϕ ≥ 5}. Since F is SAP, there exists a 3-fold
Pfister form π such that sgnP π = 8 for all P ∈ Y and sgnP π = 0 otherwise.
Consider ϕ1 = x(ϕ ⊥ −π)an, where x ∈ F ∗ is chosen so that sgnP ϕ1 ≥ 0 for
all P ∈ XF . By construction, 0 ≤ sgnP ϕ1 ≤ max{4, | sgnP ϕ − 8|} < dimϕ.
If dimϕ1 > dimϕ, then ϕ1 would be an anisotropic t.i. form of dimension ≥
ũ(F )+2, clearly a contradiction. If dimϕ1 < dimϕ, then ϕ and π would contain
a common 5-dimensional subform which, being a Pfister neighbor, would in turn
contain a subform ρ ∈ GP2F . Since F is ED as ũ(F ) < ∞, Lemma 2.3 then
implies that ϕ is isotropic, a contradiction. It follows that dimϕ1 = dimϕ.
By repeating this construction, we get a sequence of anisotropic t.i. forms
ϕ0 = ϕ,ϕ1, · · · , ϕr such that for i ≥ 1 we have dimϕi = dimϕ, 0 ≤ sgnP ϕi ≤
max{4, | sgnP ϕi−1 − 8|} and 0 ≤ sgnP ϕr ≤ 4 for all P ∈ XF .

Hence, we may assume that ϕ is anisotropic t.i., dimϕ = ũ(F ) and 0 ≤
sgnP ϕ ≤ 4 for all P ∈ XF . Let d = d±ϕ and consider ψ = (ϕ ⊥ 〈1,−d〉)an.
Note that ψ ∈ I2F and therefore sgnP ψ ≡ 0 mod 4. Since 0 ≤ sgnP ϕ ≤ 4 and
sgnP 〈1,−d〉 ∈ {0,±2} for all P ∈ XF , it follows readily that sgnP ψ ∈ {0, 4}.
We also have that dimϕ− 2 ≤ dimψ ≤ dimϕ+ 2.

If dimψ = dimϕ + 2, then ψ ∼= ϕ ⊥ 〈1,−d〉 would be an anisotropic t.i.
form of dimension ũ(F ) + 2, clearly a contradiction.

If dimψ = dimϕ − 2, then ϕ ∼= ψ ⊥ 〈d,−1〉. Since sgnP ψ ≥ 0 for all
P ∈ XF and because of ED, we have that ψ represents some a ∈∑F 2. Then
ψ ⊥ −aψ is a torsion form in I3F and thus hyperbolic. But ψ ⊥ −aψ contains
the subform ψ ⊥ 〈−1〉 which by dimension count must be isotropic. Hence ϕ
is isotropic, a contradiction. Thus dimψ = dimϕ = ũ(F ) and ψ is the desired
form.

Remark 2.5. (i) If u(F ) =∞, then there exist anisotropic torsion forms in I2F
of arbitrarily large dimension. Indeed, let ϕ ∈WtF be anisotropic of dimension
≥ 2n + 2. Let d = d±ϕ and consider ψ = (ϕ ⊥ 〈1,−d〉)an. Then one readily
checks that dimψ ≥ 2n and ψ ∈ I2t F .
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(ii) If ũ(F ) =∞, then there exist anisotropic t.i. forms in I2F of arbitrarily
large dimension. Indeed, let ϕ be any anisotropic t.i. form of dimension 4n+3
for any n ≥ 1 (such ϕ exists by [ELP, Th. A]). Let d be such that ϕ ⊥ 〈d〉 ∈ I2F .
Let ψ = (ϕ ⊥ 〈d〉)an. Then ψ ∈ I2F and dimψ ∈ {4n+ 2, 4n+ 4}. If dimψ =
4n+ 4 then ψ ∼= ϕ ⊥ 〈d〉 is t.i.. If dimψ = 4n+ 2, then sgnP ψ ≡ 0 mod 4 for
all P ∈ XF as ψ ∈ I2F , and therefore | sgnP ψ| ≤ 4n < 4n+ 2 = dimψ for all
P ∈ XF . Again, ψ is t.i..

Let us now turn to the proof of part (ii) of Theorem 1.4 where we assume
that I3t F = 0 and st(F ) ≤ 2. In [KS, Kap. 3, § 7, Korollar], one finds different
characterizations of F having reduced stability index ≤ s for an integer s ≥ 1.
The one we are interested in is the following : st(F ) ≤ s is equivalent to
(Is+1F )red = 2(IsF )red, i.e. for each form ϕ ∈ Is+1F there exists a form
ψ ∈ IsF such that sgnP ϕ = sgnP (〈1, 1〉 ⊗ ψ) for all P ∈ XF . If Is+1

t F = 0,
then st(F ) ≤ s is therefore equivalent to Is+1F = 2IsF . By [Kr, Prop. 1], we
thus get

Lemma 2.6. Let s ≥ 1 be an integer and let F be a real field with Is+1
t F = 0.

Then the following are equivalent :

(i) st(F ) ≤ s;
(ii) Is+1F = 2IsF ;
(iii) Is+1F (

√
−1) = 0.

Now Is+1F (
√
−1) = 0 implies Is+1

t F = 0, [Kr, Prop. 1], and in view of this
lemma, we may replace the hypotheses I3t F = 0 plus st(F ) ≤ 2 by I3F (

√
−1) =

0. We then get the following result which holds for any field (not just for real
fields) and which implies the second part of Theorem 1.4.

Theorem 2.7. Suppose that I3F (
√
−1) = 0. Then

u(F ) ≤ min{4λ(F (
√
−1)) + 2, 2λ(F ) + 2} .

Proof. First, we prove that u(F ) ≤ 2λ(F ) + 2. If the level s(F ) of F is finite,
i.e. F is nonreal, then this follows from Kahn’s theorem 1.2.

So assume that F is a real field with I3F (
√
−1) = 0. We will show that

if ϕ ∈ I2t F with t(ϕ) = t, then dimϕ > 2t + 2 implies that ϕ is isotropic.
This then implies readily u(F ) ≤ 2λ(F ) + 2. Indeed, this follows from the
fact that there always exists an anisotropic form in I2t F of dimension u(F ) if
u(F ) is finite (Lemma 2.4(i)), resp. of arbitrarily large dimension if u(F ) is
infinite (Remark 2.5(i)), and the fact that in the case of a real F with I3t F = 0,
st(F ) ≤ 2 is equivalent to I3F (

√
−1) = 0 by Lemma 2.6.

Now let ϕ ∈ I2t F with t(ϕ) = t and dimϕ > 2t + 2. We will prove by
induction on t that ϕ is isotropic. If t = 0 then ϕ ∈ I3t F = 0 and ϕ is in
fact hyperbolic. If t = 1 then there exists (an anisotropic) τ ∈ P2F such that
c(ϕ) = c(τ). By Merkurjev’s theorem, ϕ ≡ τ mod I3F . Since sgnP τ ∈ {0, 4}
and 0 = sgnP ϕ ≡ sgnP τ mod 8 for all P ∈ XF , we see that τ ∈ WtF , hence
ϕ ≡ τ mod I3t F and thus ϕ ∼ τ ∈ WF as I3t F = 0. Hence dimϕ > dimϕan =
dim τ = 4 and ϕ is isotropic.
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Let t ≥ 2. By Lemma 2.2(i), there exists an anisotropic (2t+2)-dimensional
form τ ∈ I2F such that ϕ ≡ τ mod I3F . Let d ∈ F ∗ such that τF (

√
d) is

isotropic. Let τ ′ ∈ I2F (
√
d) such that (τF (

√
d))an

∼= τ ′. Then dim τ ′ ≤ 2t.

Hence, t(τ ′) ≤ t−1. (In fact, one can readily show that dim τ ′ = 2t and t(τ ′) =
t−1, but we won’t need this here.) Also, ϕF (

√
d) ≡ τ ′ mod I3F (

√
d). By [EL3,

Th. 3] and [EL4, Cor. 4.6], we have that I3t F (
√
d) = 0 and I3F (

√
d)(
√
−1) = 0.

By induction hypothesis, we have dim(ϕF (
√
d))an ≤ 2(t − 1) + 2 = 2t. Now

dimϕ ≥ 2t + 4, hence there exist a, b ∈ F ∗ such that 〈a, b〉 ⊗ 〈1,−d〉 ⊂ ϕ (cf.
[L1, Ch. VII, Lemma 3.1]). Now 〈a, b〉 ⊗ 〈1,−d〉 ∈ GP2F , and by Lemma 2.3,
ϕ is isotropic.

Let us now show that u(F ) ≤ 4λ(F (
√
−1)) + 2. This is trivially true for

s(F ) = 1 as in this case we have F = F (
√
−1) and already u(F ) ≤ 2λ(F ) + 2.

So suppose that s(F ) ≥ 2. We put L = F (
√
−1) and we may assume that

λ = λ(L) < ∞. Since I3t F = 0, we have 〈1, 1〉I2t F = 0. Hence, ann(〈1, 1〉) ∩
I2F = ann(〈1, 1〉) ∩ I2t F = I2t F . Consider the Scharlau transfer s∗ : WL →
WF induced by the F -linear map L→ F defined by 1 7→ 0 and

√
−1 7→ 1. Note

that for any form ρ over L there exists a form σ over F such that dimσ ≤ 2 dim ρ
and s∗(ρ) ∼ σ in WF .

By [AEJ, Prop. 1.24], we have s∗(I2L) = ann(〈1, 1〉) ∩ I2F and thus
s∗(I2L) = I2t F . Now let ψ be any form in I2L. By Lemma 2.2(i), there
exists a form η ∈ I2L such that dim η ≤ 2λ + 2 and c(ψ) = c(η) ∈ Br2 L.
After scaling, we may assume that η ∼= 〈1〉 ⊥ η′. In particular, there ex-
ists a form γ ∈ I3L such that η ∼ ψ + γ in WL. Now s∗(γ) ∈ I3t F = 0.
Hence s∗(ψ) = s∗(η) = s∗(〈1〉) + s∗(η′) ∼ σ for some form σ over F with
dimσ ≤ 2 dim η′ ≤ 4λ+ 2.

Now let ϕ ∈ I2t F . Since s∗(I2L) = I2t F , the above shows that ϕ ∼ µ in
WF for some form µ over F with dimµ ≤ 4λ + 2. Hence, if ϕ is anisotropic
we necessarily have dimϕ ≤ 4λ+ 2.

Suppose u(F ) = ∞. Then there exists some anisotropic form τ ∈ WtF
with dim τ ≥ 4λ + 6 and dim τ even. Let d = d±τ . Then one easily sees that
τ ⊥ 〈1,−d〉 ∈ I2t F , and its anisotropic part must therefore be of dimension
≤ 4λ+ 2, a contradiction to τ being anisotropic and dim τ ≥ 4λ+ 6.

Hence u(F ) < ∞. Then Lemma 2.4(i) and the above imply that u(F ) ≤
4λ+ 2.

Remark 2.8. Let F be such that s(F ) ≥ 2 and let L = F (
√
−1). Define

u′(F ) = sup{dimϕ |ϕ anisotropic form/F and 〈1, 1〉 ⊗ ϕ = 0 ∈WF}. It was
shown in [Pf, Ch. 8, Th. 2,12] that u′(F ) ≤ 2u(L) − 2. Now if I3t F = 0, then
one readily verifies that u(F ) = u′(F ) (see also [Pf, Ch. 8, Prop. 2.6]). Hence,
this would imply that u(F ) ≤ 2u(L) − 2. Note, however, that I3L need not
be zero and that therefore u(L) > 2λ(L) + 2 might very well be possible (cf.
Theorem 1.2), in which case our bound u(F ) ≤ 4λ(L) + 2 would be better.
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Corollary 2.9. (See also [Pf, Ch. 8, Th. 2,12], [EL1, Th. 4.11].) Let F be a
field with s(F ) ≥ 2 and let L = F (

√
−1). Let n ∈ {1, 2, 3}. Then u(L) ≤ 2n

implies u(F ) ≤ 4n−2. Furthermore, if u(L) = 1 then F is real and pythagorean
(i.e. u(F ) = 0).

Proof. If u(L) ≤ 2n, 1 ≤ n ≤ 3, then I3L = 0 and thus I3t F = 0 (cf. [Kr,
Prop. 1]). Theorem 1.2 yields λ(L) ≤ n−1. Hence u(F ) ≤ 4λ(L)+2 ≤ 4n−2.
The second part is left to the reader.

To prove Theorems 1.3 and 1.4(i), we will need the following lemma.

Lemma 2.10. Let n ≥ 1 and suppose that F is SAP.

(i) Let πi ∈ PnF , 1 ≤ i ≤ r. Then there exists a form ϕ ∈ InF such that
sgnP ϕ ∈ {0, 2n} for all P ∈ XF , and ϕ ≡

∑r
i=1 πi mod In+1F .

(ii) If In+1
t F = 0, and if ϕ ∈ InF such that sgnP ϕ ∈ {0, 2n} for all P ∈ XF ,

then ϕ ∼= ϕt ⊥ ϕ0 with ϕt ∈WtF and dimϕ0 ∈ {0, 2n}.
(iii) If In+1

t F = 0, then the form ϕ in part (i) can be chosen so as to have
dimension ≤ r2n − 2r + 2.

Proof. (i) We use induction on r. If r = 1 then ϕ = π1 will do. So suppose r ≥
2. By induction hypothesis, there exists a form ψ such that ψ ≡∑r−1

i=1 πi mod
In+1F and sgnP ψ ∈ {0, 2n} for all P ∈ XF . Let ϕ̂ = ψ ⊥ −πr. Since
sgnP πr ∈ {0, 2n}, we have sgnP ϕ̂ ∈ {0,±2n}. Since F is SAP, there exists
an x ∈ F ∗ such that ϕ = xϕ̂ has sgnP ϕ ∈ {0, 2n} for all P ∈ XF . Clearly,
ϕ ≡∑r

i=1 πi mod In+1F .

(ii) Suppose now that In+1
t F = 0. Consider the clopen set Y = {P ∈

XF | sgnP ϕ = 2n} in XF . If Y is empty then ϕ ∈ Wt and there is nothing
to show. So suppose Y 6= ∅. Let σ ∈ PnF be such that sgnP σ = 2n if
P ∈ Y , and sgnP σ = 0 otherwise. Such σ exists as F is SAP. It follows that
〈1, 1〉⊗ϕ ≡ 〈1, 1〉⊗σ mod In+1

t F (both forms are in In+1
t F and have the same

signatures). Now In+1
t F = 0 and thus 〈1, 1〉 ⊗ ϕ ∼ 〈1, 1〉 ⊗ σ. (Note that

〈1, 1〉 ⊗ σ is anisotropic because sgnP 〈1, 1〉 ⊗ σ = dim 〈1, 1〉 ⊗ σ = 2n+1 for
all P ∈ Y 6= ∅.) Comparing dimensions and using β-decomposition (cf. [EL1,
p. 289]), we see that ϕ ∼= ϕt ⊥ ϕ0 with ϕt ∈WtF and dimϕ0 = dimσ = 2n.

(iii) We use a similar induction argument as in (i), but we assume in addition
that the form ψ there is of dimension ≤ (r−1)2n−2(r−1)+2. By (ii), we can
write ψ ∼= ψt ⊥ ψ0 with dimψ0 ∈ {0, 2n}, ψt ∈ WtF , and dimψ0 = 2n only if
there exists some P ∈ XF with sgnP ψ = 2n. Let y ∈ D(ψ0) if dimψ0 = 2n, and
let y ∈ D(ψ) otherwise. One readily checks that sgnP yψ = sgnP ψ ∈ {0, 2n}
and that yψ ∼= 〈1〉 ⊥ ψ′. Let now πr ∼= 〈1〉 ⊥ π′r and let ϕ′ = ψ′ ⊥ −π′r.
Note that dimϕ′ ≤ r2n − 2r + 2. As in the proof of (i), sgnP ϕ

′ ∈ {0,±2n},
and after scaling, we obtain the form ϕ with sgnP ϕ ∈ {0, 2n} for all P ∈ XF ,
dimϕ = dimϕ′ ≤ r2n − 2r + 2, and ϕ ≡∑r

i=1 πi mod In+1F .

Proof of Theorem 1.3. (i) If F is not SAP, then ũ(F ) =∞ and there is nothing
to show. So suppose that F is SAP. Let A = Q1⊗ · · · ⊗Qt ∈ Br2F , where the
Qi are quaternion algebras such that t(A) = t ≥ 2, and consider the norm forms
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πi ∈ P2F associated with Qi. By Lemma 2.10(i), there exists an anisotropic

form ϕ ∈ I2F such that ϕ ≡∑t
i=1 πi mod I3F and sgnP ϕ ∈ {0, 4}. Note that

c(ϕ) = [A]. If dimϕ ≤ 2t then, by Lemma 2.2(ii), c(ϕ) could be represented
by a product of fewer than t quaternion algebras, a contradiction to t(A) = t.
Hence dimϕ ≥ 2t+ 2. Note that ϕ is t.i. provided t ≥ 2.

If λ(F ) = ∞, then for any t ≥ 1 there exists an A ∈ Br2F with t(A) = t,
and the above shows that ũ(F ) = ∞. If λ(F ) < ∞, then choose A as above
such that t(A) = λ(F ). The above shows that ũ(F ) ≥ 2λ(F ) + 2.

(ii) By Lemma 2.4(ii), we may assume that there exists an anisotropic t.i.
form ϕ ∈ I2F with dimϕ = ũ(F ) and sgnP ϕ ∈ {0, 4} for all P ∈ XF . Let
t(ϕ) = t ≤ λ and let c(ϕ) = Q1 ⊗ · · · ⊗ Qt ∈ Br2F . With πi the norm forms

associated with Qi, we get ϕ ≡∑t
i=1 πi mod I3F .

By Lemma 2.10(iii), there exists a form ψ ∈ I2F , dimψ ≤ 2t + 2 such
that sgnP ψ ∈ {0, 4} for all P ∈ XF and such that ϕ ≡ ψ mod I3F . Since
sgnP ϕ ≡ sgnP ψ mod 8, this readily yields ϕ ⊥ −ψ ∈ I3t F = 0. The anisotropy
of ϕ then shows that ũ(F ) = dimϕ ≤ 2t+ 2 ≤ 2λ(F ) + 2, which together with
(i) yields ũ(F ) = 2λ(F ) + 2.

Proof of Theorem 1.4(i). Let A = Q1 ⊗ · · · ⊗ Qt ∈ Br2F , where the Qi are
quaternion algebras such that t(A) = t ≥ 2. As in part (i) of the proof of
Theorem 1.3, there exists an anisotropic form ϕ ∈ I2F such that c(ϕ) = [A],
sgnP ϕ ∈ {0, 4}, dimϕ ≥ 2t+ 2.

Now let π ∈ P2F be such that sgnP ϕ = sgnP π for all P ∈ XF . (Such
π exists as F is SAP and sgnP ϕ ∈ {0, 4}.) Consider ψ = (ϕ ⊥ −π)an. By
construction, ψ ∈ I2t F and dimψ ≥ dimϕ− 4 = 2t− 2. Suppose that dimψ =
dimϕ − 4. Then ϕ ∼= ψ ⊥ π and we have ψ, π ∈ I2F , c(ϕ) = c(ψ)c(π). By
dimension count and Lemma 2.2(ii), we have t(ψ) ≤ t − 2, t(π) ≤ 1, and
therefore t(ϕ) = t(A) = t ≤ t(ψ) + t(π) ≤ t − 1, a contradiction. Hence,
dimψ ≥ dimϕ− 2 = 2t.

If λ(F ) = ∞, then for any t ≥ 1 there exists an A ∈ Br2F with t(A) = t,
and the above shows that u(F ) =∞.

If λ(F ) < ∞, then choose A as above such that t(A) = λ(F ). The above
then shows that u(F ) ≥ 2λ(F ).

Since fields with finite ũ are always SAP, the following is an immediate
consequence of Theorems 1.3, 1.4.

Corollary 2.11. Let F be a real field with I3t F = 0 and ũ(F ) < ∞. Then
ũ(F ) = 2λ(F ) + 2 ∈ {u(F ), u(F ) + 2}.

Example 2.12. The condition in Theorem 1.4(i) that F be SAP seems to be
quite restrictive. However, we will certainly need some sort of additional as-
sumption on F besides I3t F = 0 to get the lower bound u(F ) ≥ 2λ(F ). To see
what can go wrong when one drops the assumption that F is SAP, consider
the following example. Let F = R((t1)) · · · ((tn)) be the iterated power series
field in n variables over the reals. Then, by Springer’s theorem, u(F ) = 0. In
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particlar, I3t F = 0. For n ≥ 2, F is not SAP as for example 〈1, t1, t2,−t1t2〉
is not weakly isotropic. However, one can show that λ(F ) = [n/2] + 1. The
value t(A) = [n/2] + 1 can be realized, for example, by the multiquaternion
division algebra A = (−1,−1) ⊗ (t1, t2) ⊗ · · · (tm−1, tm) where m = [n/2] (i.e.
n ∈ {2m, 2m+ 1}).

As for the upper bound for u(F ) for a field with I3t F = 0, we proved in
Theorem 1.4 that u(F ) ≤ 2λ(F ) + 2 under the assumption that st(F ) ≤ 2.
We believe that this additional assumption is in fact superfluous, but we were
unable to get this upper bound without it.

Conjecture 2.13. Let F be real with I3t F = 0. Then u(F ) ≤ 2λ(F ) + 2.

In support of this conjecture, we can prove that it holds for small values of
λ(F ).

Proposition 2.14. Let F be real with I3t F = 0. If λ = λ(F ) ≤ 4 then u(F ) ≤
2λ+ 2.

Proof. We will show that if ϕ is an anisotropic form in I2t F with 1 ≤ t(ϕ) =
t ≤ 4, then dimϕ ≤ 2t + 2 and thus dimϕ = 2t + 2 by Lemma 2.2(ii), which
by Lemma 2.4(i) immediately yields the desired result. (Note that t(ϕ) = 0
implies that ϕ ∈ I3t F = 0, i.e. ϕ is hyperbolic.)

So let ϕ ∈ I2t F and suppose that 1 ≤ t(ϕ) = t ≤ 4 and dimϕ ≥ 2t + 4.
By Lemma 2.2(i), there exists a form ψ ∈ I2F with dimψ = 2t + 2 such that
ϕ ≡ ψ mod I3F . Now 〈1, 1〉 ⊗ ϕ ∈ I3t F = 0 and 〈1, 1〉 ⊗ (ϕ ⊥ −ψ) ∈ I4F ,
hence 〈1, 1〉 ⊗ ψ ∈ I4F . We have dim 〈1, 1〉 ⊗ ψ = 4t+ 4 ≤ 20. By the Arason-
Pfister Hauptsatz and [H1, Main Theorem], there exists ρ ∈ GP4F such that
〈1, 1〉 ⊗ ψ ∼ ρ in WF . After scaling, we may assume that ρ ∈ P4F . Since ρ is
divisible by 〈1, 1〉, there exists σ ∈ P3F such that ρ ∼= 〈1, 1〉 ⊗ σ. Comparing
signatures, we see that sgnP ψ = sgnP σ for all P ∈ XF . Thus, ϕ ⊥ −ψ ⊥ σ ∈
I3t F = 0. Thus, in WF we get ϕ ⊥ σ ∼ ψ. Now dim(ϕ ⊥ σ) ≥ 2t + 12 and
dimψ = 2t + 2, hence iW (ϕ ⊥ σ) ≥ 5. Therefore, ϕ contains a 5-dimensional
Pfister neighbor of σ. Since 5-dimensional Pfister neighbors always contain a
subform in GP2F , we have that there exists τ ∈ GP2F such that τ ⊂ ϕ. Thus,
ϕ is isotropic by Lemma 2.3.

3. Construction of fields with prescribed invariants

We will now focus on the realizability of given triples (λ, u, ũ) for nonlinked
SAP-fields with I3t = 0. Let us restate the corresponding theorem from the
introduction, whose proof will take up most of the remainder of this section.

Theorem 3.1. Let M = {(n, 2n, 2n + 2), (n, 2n + 2, 2n + 2); n ≥ 2} ∪
{(n, 2n,∞), (n, 2n+ 2,∞);n ≥ 2} ∪ {(∞,∞,∞)}.
(i) Let F be a real SAP field such that λ(F ) ≥ 2 and I3t F = 0. Then

(λ(F ), u(F ), ũ(F )) ∈M.
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(ii) Let (λ, u, ũ) ∈ M. Then there exists a real SAP field F with I3t F = 0
and (λ(F ), u(F ), ũ(F )) = (λ, u, ũ). In the case where ũ < ∞ or λ = ∞,
there exist such fields which are uniquely ordered.

Proof. (i) This follows immediately from Theorems 1.3, 1.4.

(ii) We fix once and for all a real field F0. Our constructions will be divided
into three cases : Finite λ and finite ũ, finite λ and infinite ũ, and infinite λ.

The case 2 ≤ λ <∞ and ũ <∞
Put n = λ+1. We have to construct fields F , F ′ with (λ(F ), u(F ), ũ(F )) =

(n− 1, 2n, 2n) and (λ(F ′), u(F ′), ũ(F ′)) = (n− 1, 2n− 2, 2n).
Let F1 = F0(x1, x2, · · · , y1, y2, · · · ) be the rational function field in an infi-

nite number of variables xi, yj over F0. Consider the multiquaternion algebras
An = (1 + x21, y1)⊗ · · · ⊗ (1 + x2n−1, yn−1) and Bn = An−1 ⊗ (−1,−1), n ≥ 2,
which are division algebras (cf. [H2, Lemma 2(iv)]). Let ψn be a 2n-dimensional

Albert form of An such that ψn ∼
∑n−1
i=1 ci〈〈1 + x2i−1, yi−1〉〉 in WF1 for suit-

able ci ∈ F ∗1 , and let ψ′n be a 2n-dimensional Albert form of Bn such that
ψ′n ∼ 〈〈−1,−1〉〉 + cψn−1 for suitable c ∈ F ∗1 . Since sgnP 〈〈1 + x2i−1, yi−1〉〉 = 0
and sgnP 〈〈−1,−1〉〉 = 4 for each P ∈ XF1

, we have sgnP ψn = 0 and
sgnP ψ

′
n = 4 for all P ∈ XF1

. Now fix any ordering P1 ∈ XF1
.

Suppose that L is a field such that (An)L (resp. (Bn)L) is a division algebra
and such that P1 extends to an ordering P ∈ XL. Consider the following classes
of forms over L :

C1(L) = {α |α form/L, dimα = 2n+ 1, α indefinite at P}
C2(L) = {α |α form/L, α ∈ I3L, sgnP α = 0}
C3(L) = {α |α form/L, dimα = 2n, sgnP α = 0}

We construct an infinite tower of fields F1 ⊂ F2 ⊂ · · · and F1 = F ′1 ⊂ F ′2 ⊂
· · · as follows. Suppose we have constructed Fi (resp. F ′i ), i ≥ 1 such that
(An)Fi (resp. (Bn)F ′

i
) are division algebras and such that P1 extends to an

ordering Pi ∈ XFi (resp. X
′
Fi
).

Let Fi+1 (resp. F ′i+1) be the compositum of all function fields Fi(α) (resp.
F ′i (α)) where α ∈ C1(Fi) ∪ C2(Fi) (resp. C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i )).

Since an ordering P of a field L extends to an ordering of the function field
L(α) of a form α over L if and only if α is indefinite at P , we see that there
exists an ordering on Fi+1 (resp. F ′i+1) extending the ordering Pi since we only
take function fields of forms in the Ci, and all these forms are indefinite at Pi
(cf. [ELW, Th. 3.5 and Rem. 3.6]). We will fix such an ordering and call it
Pi+1. Note that no other ordering on Fi (resp. F

′
i ) will extend to Fi+1 (resp.

F ′i+1). Indeed, let Q be any ordering on Fi+1 (resp. F ′i+1) and let b ∈ F ∗i (resp.
F ′∗i ) be such that b <Pi 0 and b >Q 0. Then 2n×〈1〉 ⊥ 〈b〉 is in C1 and definite
at Q, which shows that Q will not extend.

Next, we show that An (resp. Bn) stays a division algebra over Fi+1 (resp.
F ′i+1). If α ∈ C1(L)∪C2(L) and An (resp. Bn) is division over L, then it follows
immediately from Lemma 2.2(iii), parts (a) and (d) that An (resp. Bn) stays
division over L(α). In particular, this shows that (An)Fi+1

will be division.
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To show that Bn stays a division algebra over F ′i+1, it remains to show that
if P1 extends to an ordering P on L and Bn is division over L, then Bn stays
a division algebra over L(α) for α ∈ C3(L). If d±α 6= 1, this follows from
Lemma 2.2(iii), part (b). If d±α = 1, then α ∈ I2L, and by Lemma 2.2(iii),
part (c) it suffices to show that c(α) 6= [(Bn)L] in Br2 L. Suppose c(α) =
[(Bn)L]. Since c((ψ′n)L) = [(Bn)L], we have by Merkurjev’s theorem that
α ≡ (ψ′n)L mod I3L and hence 0 = sgnP α ≡ sgnP (ψ

′
n)L ≡ 4 mod 8, clearly a

contradiction.
With the Fi and their orderings Pi constructed for all i, we now put F =⋃∞

i=1 Fi (resp. F ′ =
⋃∞
i=1 F

′
i ) and P =

⋃∞
i=1 Pi. P will then be the unique

ordering on F (resp. F ′) (see also the proof of [H3, Th. 2]). It is also obvious
from our construction that I3t F = 0 and that indefinite forms of dimension
2n+1 will be isotropic. The latter implies by [ELP, Th. A] that ũ(F ), ũ(F ′) ≤
2n. Also, An (resp. Bn) will stay a division algebra over F (resp. F ′). In
the case of F , this means that the form (ψn)F will be a 2n-dimensional torsion
form which is anisotropic by Lemma 2.2(i). Hence u(F ) ≥ 2n and thus u(F ) =
ũ(F ) = 2n. In the case of F ′, we have by a similar reasoning that (ψ′n)F ′ is a
2n-dimensional indefinite anisotropic form (recall that dim(ψ′n)F ′ = 2n ≥ 6 >
4 = sgnP (ψ

′
n)F ′). Hence ũ(F ′) = 2n. However, by construction, torsion forms

of dimension 2n will be isotropic and thus u(F ′) ≤ 2n− 2. On the other hand,
Bn = An−1⊗ (−1,−1) will stay a division algebra over F ′ and thus also An−1.
Hence, just as before, we will now have the anisotropic (2n − 2)-dimensional
torsion form (ψn−1)F ′ , which shows that u(F ′) = 2n− 2.

The fact that λ(F ) = λ(F ′) = n− 1 follows from Corollary 2.11.

The case 2 ≤ λ <∞ and ũ =∞
With F0 as above, we let now F1 = F0(x1, x2, · · · , y1, y2, · · · )((t)), but we

keep the definitions of An, Bn, ψn, ψ
′
n from above. Let L be any extension

of F1 such that all orderings of F1 extend to L and such that An (resp. Bn)
is division over L. This time, we consider the following classes of quadratic
forms, where n = λ+ 1 ≥ 3.

C1(L) = {α |α form/L, dimα ≥ 2n+ 2,
α ∼= α0 ⊥ αt, αt ∈WtL, dimα0 ∈ {0, 4}}

C2(L) = {α |α = 〈1, 1〉 ⊗ 〈1, x, y,−xy〉, x, y ∈ L∗}
C3(L) = {α |α form/L, α ∈ I3t L}
C4(L) = {α |α form/L, dimα = 2n, α ∈WtL}

Again, we construct infinite towers of fields F1 ⊂ F2 ⊂ · · · and F1 = F ′1 ⊂
F ′2 ⊂ · · · . Suppose we have constructed Fi resp. F

′
i , i ≥ 1. Then we let Fi+1

(resp. F ′i+1) be the compositum of all function fields Fi(α) (resp. F
′
i (α)) where

α ∈ C1(Fi) ∪ C2(Fi) ∪ C3(Fi) (resp. C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i ) ∪ C4(F ′i )).
We then put F =

⋃∞
i=1 Fi (resp. F

′ =
⋃∞
i=1 F

′
i ). Note that since we only

take function fields of t.i. forms, all orderings of F1 extend to F , resp. F ′. In
particular, F , F ′ will be real.
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Now a field F is SAP if and only if all forms of type 〈1, a, b,−ab〉 are
weakly isotropic, i.e. there exists an n such that the n-fold orthogonal sum
n × 〈1, a, b,−ab〉 is isotropic (cf. [P, Satz 3.1], [ELP, Th. C]). Thus, taking
function fields of forms of type 〈1, 1〉 ⊗ 〈1, x, y,−xy〉 assures that F (resp.
F ′) is SAP. Taking function fields of forms in I3t yields that I3t F = 0 (resp.
I3t F

′ = 0).
We now show that (Bn)K is a division algebra for K = F , F ′. This then im-

plies that λ(K) ≥ n− 1. Let L be an extension of F1 such that all orderings of
F1 extend to L and suppose we have that (Bn)L is division. Then Bn stays di-
vision over L(α) for α ∈ Cj(L), j = 1, 3, 4, by a reasoning similar to above after
invoking Lemma 2.2(iii). Also, Bn stays division over K = L(〈〈−1,−x,−y〉〉)
for all x, y ∈ L∗ by part (d) of Lemma 2.2(iii). Now α = 〈1, 1〉 ⊗ 〈1, x, y,−xy〉
contains the Pfister neighbor 〈1, 1〉 ⊗ 〈1, x, y〉 of 〈〈−1,−x,−y〉〉, therefore α be-
comes isotropic over K, hence K(α)/K is purely transcendental and Bn stays
division over K(α) = L(〈〈−1,−x,−y〉〉)(α) and therefore over L(α).

This shows that (Bn)K is a division algebra for K = F , F ′. Hence, λ(K) ≥
n− 1. By a similar reasoning, (An)F is a division algebra.

Suppose that λ(K) ≥ n. Then there exists C ∈ Br2(K) such that t(C) = n.
Now K is SAP and I3tK = 0. Hence, by Lemma 2.2(i) and Lemma 2.10(iii),
there exists an anisotropic Albert form α of dimension 2n+ 2 associated with
C such that α ∼= α0 ⊥ αt with αt ∈ WtF and dimα0 ∈ {0, 4}. But such an α
is by construction isotropic (consider the forms in C1 above !), a contradiction.
Hence λ(K) = n− 1. By Theorem 1.4, we get u(K) ∈ {2n− 2, 2n}.

Now over F ′, we have by construction that all torsion forms of dimension 2n
are isotropic (consider the forms in C4 above !). Thus, u(F ′) = 2n−2 = 2λ(F ′).

We already remarked that (An)F is a division algebra. Hence, its associated
Albert form (ψn)F is anisotropic and torsion. Therefore, u(F ) ≥ 2n and we
necessarily have u(F ) = 2n.

It remains to show that ũ(F ) = ũ(F ′) =∞. Let m be a positive integer and
let µm = m×〈1〉 ⊥ t〈1,−(1 + x21)〉 over F1. Sincem×〈1〉 and 〈1,−(1 + x21)〉 are
anisotropic over F0(x1, x2, · · · , y1, y2, · · · ), it follows from Springer’s theorem
[L1, Ch. VI, Prop. 1.9] that µm is anisotropic. Furthermore, µm is t.i. as
〈1,−(1 + x21)〉 is a binary torsion form. Thus, if we can show that µm stays
anisotropic over F (resp. F ′) for all m, then ũ(F ), ũ(F ′) ≥ 2m + 2 for all m
and thus ũ(F ) = ũ(F ′) =∞.

We now construct a tower of fields L1 ⊂ L2 ⊂ · · · such that Li will be the
power series field in the variable t over some L′i, Li = L′i((t)), such that Fi ⊂ Li
(resp. F ′i ⊂ Li), and (µm)Li anisotropic for all m ≥ 0 and all i ≥ 1. This
then shows that (µm)Fi (resp. (µm)F ′

i
) is anisotropic for all m ≥ 0, i ≥ 1, and

therefore (µm)F (resp. (µm)F ′) will be anisotropic for all m ≥ 0.
Suppose we have constructed Li = L′i((t)). Note that necessarily Li is real

as (µm)Li is anisotropic for all m ≥ 0. Let Pi ∈ XL′i
be any ordering and M ′

i

be the compositum over L′i of the function fields of all forms (defined over L′i)
in

C′(L′i) = {α |α indefinite at Pi, dimα ≥ 3} .
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Let Mi =M ′
i((t)).

Now let ρ ∈ Cj(Fi) (resp. Cj(F ′i )), 1 ≤ j ≤ 4. By Springer’s theorem,
ρLi
∼= ρ1 ⊥ tρ2 with ρk, k = 1, 2, defined over L′i. We will show that ρk ∈ C′(L′i)

for at least one k ∈ {1, 2}.
First, note that forms in Cj(Fi) (resp. Cj(F ′i )), 1 ≤ j ≤ 4, are of dimension

≥ 6 (recall that 2 ≤ λ = n−1). Thus, dim ρk ≥ 3 for at least one k ∈ {1, 2}. If
ρLi is isotropic, then over L′i we have 〈1,−1〉 ⊂ ρk for at least one k ∈ {1, 2},
and since 〈1,−1〉 ∼= t〈1,−1〉, we may “shift” the hyperbolic plane from one ρk
to the other if necessary to obtain the desired result, namely that ρk ∈ C′(L′i)
for at least one k ∈ {1, 2}.

Let us therefore assume that ρLi is anisotropic.
Suppose ρ ∈ C1(Fi) (resp. C1(F ′i )). Then dim ρ ≥ 8, and we can write

ρ ∼= η ⊥ τ over Fi, with τ torsion and dim τ ≥ 4. Now τLi
∼= τ1 ⊥ tτ2 with

τk, k = 1, 2, defined over L′i. Since τ is torsion, we have that τ1 and τ2 are
torsion. Now τk ⊂ ρk over L′i by Springer’s theorem as ρLi is anisotropic, and a
simple dimension count shows that there exists at least one k ∈ {1, 2} such that
dim τk ≥ 2 and dim ρk ≥ 4, which implies that for this k we have ρk ∈ C′(L′i).

Suppose ρ ∼= 〈1, 1〉 ⊗ 〈1, x, y,−xy〉 ∈ C2(Fi) (resp C2(F ′i )). Then either
ρLi is already defined over L′i, in which case it is a t.i. form of dimension 8
and thus in C′(L′i). Or there exist a, b ∈ L′∗i such that ρLi

∼= 〈1, 1〉 ⊗ 〈1, a〉 ⊥
bt〈1, 1〉⊗〈1,−a〉. then either 〈1, 1〉⊗〈1, a〉 is indefinite at Pi and thus in C′(L′i),
or 〈1, 1〉 ⊗ 〈1,−a〉 is indefinite at Pi and thus in C′(L′i).

Finally, if ρ ∈ Cj(Fi) (resp. ρ ∈ Cj(F ′i )), j = 3, 4, then ρ is already torsion of
dimension ≥ 6 (for j = 3 this follows from the Arason-Pfister Hauptsatz), but
then ρ1 and ρ2 are torsion over L′i, and since at least one of them is necessarily
of dimension ≥ 4, the result follows.

Thus, each ρ ∈ Cj(Fi) (resp. Cj(Fi)), 1 ≤ j ≤ 4 has the property that
ρLi
∼= ρ1 ⊥ tρ2 with ρk, k = 1, 2, defined over L′i and ρk ∈ C′(L′i) for at

least one k. But then, (ρk)M ′
i
is isotropic by construction, hence also ρMi

. In

particular, Mi(ρ)/Mi is a purely transcendental extension.
Let us now show that (µm)F is anisotropic for allm. Let Ni be the composi-

tum of the function fields of all forms αMi
with α ∈ C1(Fi) ∪ C2(Fi) ∪ C3(Fi).

By the above, Ni/Mi is purely transcendental. Let B be a transcendence
basis so that Ni = Mi(B) = M ′

i((t))(B). We now put L′i+1 = M ′
i(B) and

Li+1 = L′i+1((t)) = M ′
i(B)((t)). There are obvious inclusions Fi+1 ⊂ Ni =

M ′
i((t))(B) ⊂M ′

i(B)((t)) = Li+1. Since M
′
i is obtained from L′i by taking func-

tion fields of forms indefinite at Pi, we see that Pi extends to an ordering on
M ′
i and thus clearly also to orderings on L′i+1.
To show that (µm)F is anisotropic, it thus suffices to show that if µm is

anisotropic over Li, then it stays anisotropic over Li+1. Now m×〈1〉 is clearly
anisotropic over the real field L′i+1. Also, 〈1,−(1 + x21)〉, which is anisotropic
over L′i by assumption, stays anisotropic over L′i+1 as L′i+1 is obtained by
taking function fields of forms of of dimension ≥ 3 over L′i followed by a purely
transcendental extension. By Springer’s theorem, (µm)Li+1

= (m × 〈1〉 ⊥
t〈1,−(1 + x21)〉)Li+1

is anisotropic.
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The proof for F ′ is the same as above except that we have to take Ni
above to be the compositum of the function fields of all forms αMi

with α ∈
C1(F ′i ) ∪ C2(F ′i ) ∪ C3(F ′i ) ∪ C4(F ′i ).

The case λ = u = ũ =∞
This can be done by the same type of construction as above, but this time

we only consider function fields of forms of the following types :

C1(L) = {α |α = 〈1, 1〉 ⊥ 〈1, x, y,−xy〉, x, y ∈ L∗}
C2(L) = {α |α form/L, α ∈ I3t L}

The field F we will obtain has, just as before, the property SAP and I3t F =
0. Furthermore, the algebra An will stay a division algebra over F for all
n ≥ 3. Hence λ(F ) = ∞ and it follows immediately that u(F ) = ũ(F ) = ∞.
(Note that for each n ≥ 2 the form (ψn)F will be an anisotropic 2n-dimensional
torsion form.)

Now we can prove Corollary 1.6 from the introduction, which we restate in
a more detailed version for the reader’s convenience.

Corollary 3.2. Let F be a real field with I3t F = 0. Then

(u(F ), ũ(F )) ∈ {(2n, 2n);n ≥ 0} ∪ {(2n,∞);n ≥ 0} ∪ {(2n, 2n+ 2);n ≥ 2} .
All pairs of values on the right hand side can be realized as pairs (u(F ), ũ(F ))
for suitable real F with I3t F = 0. Furthermore, there exist such F which are
SAP with the only exceptions being the pairs (0,∞), (2,∞).

Proof. Let us first show that no other values are possible. By Lemma 2.4,
u and ũ are always even or infinite. If F in non-SAP, then ũ(F ) = ∞. So
suppose that F is SAP. If u(F ) ≤ 2, then ũ(F ) ≤ 2 by [ELP, Theorems E,F],
and it follows readily that u(F ) = ũ(F ) ∈ {0, 2}. Note that this also shows
that (0,∞), (2,∞) cannot be realized by SAP-fields. If F is linked, then by
Theorem 1.1, u(F ) = ũ(F ) ∈ {0, 2, 4, 8}. If, however F is non-linked, then
Theorem 1.5 (3.1) shows that there can be no other pairs (u, ũ) than the ones
in the statement of the corollary.

The pairs (u, ũ) = (0, 0) (resp. (2, 2)) can be realized by R (resp. the
rational function field in one variable over the reals, R(X)). Real global fields
have (u, ũ) = (4, 4). (u, ũ) = (0,∞) is realized by R((X))((Y )), see also Example
2.12. Examples of fields with (u, ũ) = (2,∞) can be found in [EP, Cor. 5.2]. All
other combinations have been realized in Theorem 1.5 (3.1) by SAP-fields.
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16 route de Gray
F-25030 Besançon Cedex
detlev@math.univ-fcomte.fr

Documenta Mathematica · Quadratic Forms LSU 2001 · 183–200



Documenta Math. 201

Quadratic Quaternion Forms,

Involutions and Triality

Max-Albert Knus and Oliver Villa

Received: May 31, 2001

Communicated by Ulf Rehmann

Abstract. Quadratic quaternion forms, introduced by Seip-Hornix
(1965), are special cases of generalized quadratic forms over algebras
with involutions. We apply the formalism of these generalized qua-
dratic forms to give a characteristic free version of different results
related to hermitian forms over quaternions:
1) An exact sequence of Lewis
2) Involutions of central simple algebras of exponent 2.
3) Triality for 4-dimensional quadratic quaternion forms.

1991 Mathematics Subject Classification: 11E39, 11E88
Keywords and Phrases: Quadratic quaternion forms, Involutions, Tri-
ality

1. Introduction

Let F be a field of characteristic not 2 and letD be a quaternion division algebra
over F . It is known that a skew-hermitian form over D determines a symmetric
bilinear form over any separable quadratic subfield of D and that the unitary
group of the skew-hermitian form is the subgroup of the orthogonal group
of the symmetric bilinear form consisting of elements which commute with a
certain semilinear mapping (see for example Dieudonné [3]). Quadratic forms
behave nicer than symmetric bilinear forms in characteristic 2 and Seip-Hornix
developed in [9] a complete, characteristic-free theory of quadratic quaternion
forms, their orthogonal groups and their classical invariants. Her theory was
subsequently (and partly independently) generalized to forms over algebras
(even rings) with involution (see [11], [10], [1], [8]).
Similitudes of hermitian (or skew-hermitian) forms induce involutions on the
endomorphism algebra of the underlying space. To generalize the case where
only similitudes of a quadratic form are considered, the notion of a quadratic
pair was worked out in [6]. Relations between quadratic pairs and generalized
quadratic forms were first discussed by Elomary [4].
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202 Max-Albert Knus and Oliver Villa

The aim of this paper is to apply generalized quadratic forms to give a charac-
teristic free presentation of some results on forms and involutions. After briefly
recalling in Section 2 the notion of a generalized quadratic form (which, follow-
ing the standard literature, we call an (ε, σ)-quadratic form) we give in Section
3 a characteristic-free version of an exact sequence of Lewis (see [7], [8, p. 389]
and the appendix to [2]), which connects Witt groups of quadratic and quater-
nion algebras. The quadratic quaternion forms of Seip-Hornix are the main
ingredient. Section 4 describes a canonical bijective correspondence between
quadratic pairs and (ε, σ)-quadratic forms and Section 5 discusses the Clifford
algebra. In particular we compare the definitions given in [10] and in [6]. In Sec-
tion 6 we develop triality for 4-dimensional quadratic quaternion forms whose
associated forms (over a separable quadratic subfield) are 3-Pfister forms. Any
such quadratic quaternion form θ is an element in a triple (θ1, θ2, θ3) of forms
over 3 quaternions algebras D1, D2 and D3 such that [D1][D2][D3] = 1 in the
Brauer group of F . Triality acts as permutations on such triples.

2. Generalized quadratic forms

Let D be a division algebra over a field F with an involution σ : x 7→ x. Let V
be a finite dimensional right vector space over D. An F -bilinear form

k : V × V → D

is sesquilinear if k(xa, yb) = ak(x, y)b for all x, y ∈ V , a, b ∈ D. The additive
group of such maps will be denoted by Sesqσ(V,D). For any k ∈ Sesqσ(V,D)
we write

k∗(x, y) = k(y, x).

Let ε ∈ F× be such that εε = 1. A sesquilinear form k such that k = εk∗

is called ε-hermitian and the set of such forms on V will be denoted by
Hermε

σ(V,D). Elements of

Altεσ(V,D) = {g = f − εf∗ | f ∈ Sesqσ(V,D)}.
are ε-alternating forms. We obviously have Alt−εσ (V,D) ⊂ Hermε

σ(V,D). We
set

Qεσ(V,D) = Sesqσ(V,D)/Altεσ(V,D)

and refer to elements of Qε
σ(V,D) as (ε, σ)-quadratic forms. We recall that

(ε, σ)-quadratic forms were introduced by Tits [10], see also Wall [11], Bak [1] or
Scharlau [8, Chapter 7]. For any algebra A with involution τ , let Symε(A, τ) =
{a ∈ A | a = ετ(a)} and Altε(A, τ) = {a ∈ A | a = c − ετ(c), c ∈ A}. To
any class θ = [k] ∈ Qεσ(V,D), represented by k ∈ Sesqσ(V,D), we associate a
quadratic map

qθ : V → D/Altε(D,σ), qθ(x) = [k(x, x)]

where [d] denotes the class of d in D/Altεσ(D). The ε-hermitian form

bθ(x, y) = k(x, y) + εk∗(x, y) = k(x, y) + εk(y, x)
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depends only on the class θ of k in Qε
σ(V,D). We say that bθ is the polarization

of qθ.

Proposition 2.1. The pair (qθ, bθ) satisfies the following formal properties:

qθ(x+ y) = qθ(x) + qθ(y) + [bθ(x, y)]

qθ(xd) = dqθ(x)d

bθ(x, x) = qθ(x) + εqθ(x)

(1)

for all x, y ∈ V , d ∈ D. Conversely, given any pair (q, b), q : V →
D/Altε(D,σ), b ∈ Hermε

σ(V,D) satisfying (1), there exist a unique θ ∈
Qεσ(V,D) such that q = qθ, b = bθ.

Proof. The formal properties are straightforward to verify. For the converse
see [11, Theorem 1].

Example 2.2. Let D = F , σ = IdF and ε = 1. Then sesquilinear forms are
F -bilinear forms, Altε(D,σ) = 0 and a (σ, ε)-quadratic form is a (classical)
quadratic form. We denote the set of bilinear forms on V by Bil(V, F ). Ac-
cordingly we speak of ε-symmetric bilinear forms instead of ε-hermitian forms.

Example 2.3. Let D be a division algebra with involution σ and let D be a
finite dimensional (right) vector space over D. We use a basis of V to identify
V with Dn and EndD(V ) with the algebra Mn(D) of (n × n)-matrices with
entries in D. For any (n×m)-matrix x = (xij), let x

∗ = xt, where t is transpose
and x = (xij). In particular the map a 7→ a∗ is an involution of A =Mn(D). If
we write elements of Dn as column vectors x = (x1, . . . , xn)

t any sesquilinear
form k over Dn can be expressed as k(x, y) = x∗ay, with a ∈ Mn(D), and
k∗(x, y) = x∗a∗y. We write Altn(D) = {a = b − εb∗} ⊂ Mn(D), so that
Qεσ(V,D) =Mn(D)/Altn(D).

Example 2.4. Let D be a quaternion division algebra, i.e. D is a central
division algebra of dimension 4 over F . Let K be a maximal subfield of D
which is a quadratic Galois extension of F and let σ : x 7→ x be the nontrivial
automorphism of K. Let j ∈ K \F be an element of trace 1, so that K = F (j)
with j2 = j + λ, λ ∈ F . Let ` ∈ D be such that `x`−1 = x for x ∈ K,
`2 = µ ∈ F×. The elements {1, j, `, `j} form a basis of D and D = K ⊕ `K is
also denoted [K,µ). The F -linear map σ : D → D, σ(d) = TrdD(d) − d = d
is an involution of D (the “conjugation”) which extends the automorphism
σ of K. The element N(d) = dσ(d) = σ(d)d is the reduced norm of d. We
have Alt−1σ (D) = F and (σ,−1)-quadratic forms correspond to the quadratic
quaternion forms introduced by Seip-Hornix in [9]. Accordingly we call (σ,−1)-
quadratic forms quadratic quaternion forms.

The restriction of the involution τ to the center Z of A is either the identity
(involutions of the first kind) or an automorphism of order 2 (involutions of the
second kind). If the characteristic of F is different from 2 or if the involution
is of second kind there exists an element j ∈ Z such that j + σ(j) = 1. Under
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such conditions the theory of (σ, ε)-quadratic forms reduces to the theory of
ε-hermitian forms:

Proposition 2.5. If the center of D contains an element j such that j+σ(j) =
1, then Herm−εσ (V,D) = Altεσ(V,D) and a (σ, ε)-quadratic form is uniquely
determined by its polar form bθ.

Proof. If k = −εk∗ ∈ Herm−εσ (V,D), then k = 1k = jk + jk = jk − jεk∗ ∈
Altεσ(V,D). The last claim follows from the fact that polarization induces an

isomorphism Sesqσ(V,D)/Herm−εσ (V,D)
∼−→ Qεσ(V,D).

For any left (right) D-space V we denote by σV the space V viewed as right
(left) D-space through the involution σ. If σx is the element x viewed as an
element of σV , we have σxd =σ

(
σ(d)x

)
. Let V ∗ be the dual σHomD(V,D) as

a right D-module, i.e., (σfd)(x) = σ(df)(x), x ∈ V , d ∈ D. Any sesquilinear

form k ∈ Sesqσ(V,D) induces a D-module homomorphism k̂ : V → V ∗, x 7→
k(x,−). Conversely any homomorphism g : V → V ∗ induces a sesquilinear
form k ∈ Sesqσ(V,D), k(x, y) = g(x)(y) and the additive groups Sesqσ(V,D)

and HomD(V, V
∗) can be identified through the map h 7→ k̂. For any f :

V → V ′, let f∗ : V ′∗ → V ∗ be the transpose, viewed as a homomorphisms
of right vector spaces. We identify V with V ∗∗ through the map v 7→ v∗∗,
v∗∗(f) = f(v). Then, for any f ∈ HomD(V, V

∗), f∗ is again in HomD(V, V
∗)

and k̂∗ = k̂∗. A (σ, ε)-quadratic form qθ is called nonsingular if its polar form bθ
induces an isomorphism b̂θ. A pair (V, qθ) with qθ nonsingular is called a (σ, ε)-
quadratic space. For any vector space W , the hyperbolic space V = W ⊕W ∗

equipped with the quadratic form qθ, θ = [k] with

k
(
(p, q), (p′, q′)

)
= q(p′),

is nonsingular. There is an obvious notion of orthogonal sum V ⊥ V ′ and
a quadratic space decomposes whenever its polarization does. Most of the
classical theory of quadratic spaces extends to (σ, ε)-quadratic spaces. For
example Witt cancellation holds and any (σ, ε)-quadratic space decomposes
uniquely (up to isomorphism) as the orthogonal sum of its anisotropic part with
a hyperbolic space. Moreover, if we exclude the case σ = 1 and ε = −1, any
(σ, ε)-quadratic space has an orthogonal basis. A similitude of (σ, ε)-quadratic

spaces t : (V, q)
∼−→ (V ′, q′) is a D-linear isomorphism V

∼−→ V ′ such that
q′(tx) = µ(t)q(x) for some µ(t) ∈ F×. The element µ(t) is called the multiplier
of the similitude. Similitudes with multipliers equal to 1 are isometries. As in
the classical case there is a notion of Witt equivalence and corresponding Witt
groups are denoted by W ε(D,σ).

3. An exact sequence of Lewis

Let D be a quaternion division algebra. We fix a representation D = [K,µ) =
K ⊕ `K, with `2 = µ, as in (2.4). Let V be a vector space over D. Any
sesquilinear form k : V × V → D can be decomposed as

k(x, y) = P (x, y) + `R(x, y)
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with P : V × V → K and R : V × V → K. The following properties of P and
R are straightforward.

Lemma 3.1. 1) P ∈ Sesqσ(V,K), R ∈ Sesq1(V,K) = Bil(V,K).

2) k∗ = P ∗ − `Rt, where P ∗(x, y) = P (y, x) and Rt(x, y) = R(y, x).

The sesquilinearity of k implies the following identities:

R(x`, y) = −P (x, y), R(x, y`) = P (x, y)

P (x`, y) = −µR(x, y), P (x, y`) = µR(x, y)

P (x`, y`) = −µP (x, y), R(x`, y`) = −µR(x, y)
(2)

Let V 0 be V considered as a (right) vector space over K (by restriction of
scalars) and let T : V 0 → V 0, x 7→ x`. The map T is a K-semilinear automor-
phism of V 0 such that T 2 = µ. Conversely, given a vector space U over K,
together with a semilinear automorphism T such that T 2 = µ ∈ F×, we define
the structure of a right D-module on U , D = [K,µ), by putting x` = T (x).

Lemma 3.2. Let V be a vector space over D. 1) Let f1 : V 0 × V 0 → K be a
sesquilinear form over K. The form

f(x, y) = f1(x, y)− `µ−1f1(Tx, y)

is sesquilinear over D if and only if f1(Tx, Ty) = −µf1(x, y).
2) Let f2 : V 0 × V 0 → K be a bilinear form over K. The form

f(x, y) = −f2(Tx, y) + `f2(x, y)

is sesquilinear over D if and only if f2(Tx, Ty) = −µf2(x, y).

Proof. The two claims follow from the identities (2).

Let f be a bilinear form on a space U over K and let λ ∈ K×. A semilinear
automorphism t of U such that f(tx, ty) = λf(x, y) for all x ∈ U is a semilinear
similitude of (U, f), with multiplier λ. In particular Tx = x` is a semilinear
similitude of R on V 0, such that T 2 = µ and with multiplier −µ. The following
nice observation of Seip-Hornix [9, p. 328] will be used later:

Proposition 3.3. Let R be a K-bilinear form over U and let T be a semilinear
similitude of U with multiplier λ ∈ K× and such that T 2 = µ. Then:
1) µ ∈ F ,
2) For any ξ ∈ K and x ∈ U , let ρξ(x) = xξ. There exists ν ∈ K× such that

T ′ = ρν ◦ T satisfies T ′2 = µ′ and R(T ′x, T ′y) = −µ′R(x, y).

Proof. The first claim follows from µ = λλ. For the second we may assume that
λ 6= µ (if λ = µ replace T by T ◦ ρk for an appropriate k). For ν = (1− µλ−1)
we have µ′ = 2µ− λ− λ.
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Assume that k ∈ Sesqσ(V,D) defines a (σ, ε)-quadratic space [k] on V over
D. It follows from (3.1) that P defines a (σ, ε)-quadratic space [P ] on V 0 over
K and R a (Id,−ε)-quadratic space [R] on V 0 over K. Let K = F (j) with
j2 = j + λ. Let r(x, y) = R(x, y)− εR(y, x) be the polar of R.

Proposition 3.4. 1) q[P ](x) = εj[r(x, Tx)]
2) q[k](x) = εj[r(x, Tx)] + `q[R](x)

3) The map T is a semilinear similitude of
(
q[R], V

0
)
with multiplier −µ.

Proof. It follows from the relations (2) that

P (x, x) + εP (x, x) = R(x, Tx)− εR(Tx, x) = r(x, Tx)(3)

and obviously this relation determines P (x, x) up to a function with values in
Sym−ε(K,σ). Since Sym−ε(K,σ) = Alt+ε(K,σ) by (2.5), [P ] is determined by

(3). Since r(x, Tx) = εr(x, Tx) by (2), we have εjr(x, Tx) + ε
(
εjr(x, Tx)

)
=

r(x, Tx) and 1) follows. The second claim follows from 1) and 3) is again a
consequence of the identities (2).

Corollary 3.5. Any pair
(
[R], T

)
with [R] ∈ Qε1(U,K) and T a semilinear

similitude with multiplier −µ ∈ F× and such that T 2 = µ, determines the
structure of a (σ, ε)-quadratic space on U over D = [K,µ).

Proposition 3.6. The assignments h 7→ P and h 7→ R induce homomor-
phisms of groups π1 : W ε(D,−) → W ε(K,−) and π2 : W−ε(D,−) →
W ε(K, Id).

Proof. The assignments are obviously compatible with orthogonal sums and
Witt equivalence.

We recall that W ε(K,−) can be identified with the corresponding Witt group
of ε-hermitian forms (apply (2.5)). However, it is more convenient for the
following computations to view ε-hermitian forms over K as (σ, ε)- quadratic
forms. Let i ∈ K× be such that σ(i) = −i (take i = 1 if CharF = 2). The map

k 7→ ik induces an isomorphism s : W ε(K,−) ∼−→ W−ε(K,−) (“scaling”). For
any space U over K, let UD = U ⊗K D. We identify UD with U ⊕ U` through
the map u ⊗ (x + `y) 7→ (ux, uyl) and get a natural D-module structure on
UD = U ⊕ U`. Any K-sesquilinear form k on U extends to a D-sesquilinear
form kD on UD through the formula

kD(x⊗ a, y ⊗ b) = ak(x, y)b

for x, y ∈ U and a, b ∈ D.

Lemma 3.7. The assignment k 7→ (ik)D induces a homomorphism

β :W ε(K,−)→W−ε(D,−)

Proof. Let k̃ = (ik)D. We have (k̃)∗ = −k̃∗.
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Theorem 3.8 (Lewis). With the notations above, the sequence

W ε(D,−) π1−−−−→ W ε(K,−) β−−−−→ W−ε(D,−) π2−−−−→ W ε(K, Id)

is exact.

Proof. This is essentially the proof given in Appendix 2 of [2] with some changes
due to the use of generalized quadratic forms, instead of hermitian forms. We
first check that the sequence is a complex. Let [k] ∈ Qε

σ(V,D) and let V 0 = U .
We write elements of UD = U⊕U` as pairs (x, y`) and decompose kD = P+`R.
By definition we have βπ1([k]) = [β(P )] and

β(P )
(
(x1, y1), (x2, y2)

)
= i

(
P (x1, x2) + P (x1, y2)`+ `P (y1, x2)

+`P (y1, y2)`
)
.

Let (x`, x`) ∈ U ⊕ U`. We get β(P )
(
(x`, x`), (x`, x`)

)
= 0 hence W =

{(x`, x`)} ⊂ U ⊕ U` is totally isotropic. It is easy to see that W ⊂ W⊥,
so that [β(P )] is hyperbolic and β ◦ π1 = 0. Let [g] ∈ Qεσ(U,K). The sub-
space W = {(x, 0) ∈ U ⊕ U`} is totally isotropic for π2β([g]) and W ⊂ W⊥.
Hence π2β([g]) = 0. We now prove exactness at W ε(K,−). Since the claim
is known if Char 6= 2, we may assume that Char = 2 and ε = 1. Let
[g] ∈ Qεσ(U,K) be anisotropic such that β([g]) = 0 ∈ W−ε(D,−). In par-
ticular β([g]) ∈ Q−εσ (UD, D) is isotropic. Hence the exist elements x1, x2 ∈ U
such that [g̃]

(
(x1, x2`), (x1, x2`)

)
= 0. This implies (in Char 2) that

g(x1, x1) + µg(x2, x2) ∈ F, g(x1, x2)`+ `g(x2, x1) = 0.(4)

Let V1 be the K-subspace of V generated by x1 and x2. Since [g] is anisotropic,
[g] = [g1] ⊥ [g2] with g1 = g|V1

. We make V1 into a D-space by putting

(x1a1 + x2a2)` = µx2a1 + x1a2

To see that the action is well-defined, it suffices to show that dimK V1 = 2.
The elements x1 and x2 cannot be zero since [g] is anisotropic, so assume
x2 = x1c, c ∈ K×. Then (4) implies g(x1, x1) + µccg(x1, x1) ∈ F , which

contradicts the fact that g is anisotropic. Let g1(x1, x1)+µg1(x2, x2) = z ∈ F .
Let f ∈ Sesqσ(V1,K). Replacing g1 by g1 + f + f∗ defines the same class in
Qεσ(V1,K) (recall that CharF = 2). Choosing f as

f(x1, x1) = jz, f(x2, x2) = 0, f(x1, x2) = f(x2, x1) = 0,

we may assume that

g1(x1, x1) + µg1(x2, x2) = 0, g1(x1, x2)`+ `g1(x2, x1) = 0.(5)

By (3.2) we may extend g1 to a sesquilinear form

g′(x, y) = g1(x, y) + `µ−1g1(x`, y)

over D if g1 satisfies

g1(x`, y`) = −µg1(x, y)
This can easily be checked using (5) (and the definition of x`). Then g1 is in the
image of π1. Exactness atW

ε(K,−) now follows by induction on the dimension
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of U . We finally check exactness at W−ε(D,−). Let [k] be anisotropic such
that π2([k]) = 0 in W−ε(K, Id). In particular π2([k]) is isotropic; let x 6= 0
be such that π2k(x, x) = 0 and let W be the D-subspace of V generated by x.
Since [k] is anisotropic, [k′] = [k|W ] is nonsingular and [k] = [k′] ⊥ [k′′]. The
condition π2k(x, x) = 0 implies k(x, x) ∈ K. Let W1 be the K-subspace of W
generated by x. Define g : W1 ×W1 → K by g(xa, xb) = k(xa, xb)i−1 for a,
b ∈ K. Then clearly [g] defines an element of W ε(K,−) and β(g) = k′. Once
again exactness follows by induction on the dimension of V .

4. Involutions on central simple algebras

LetD be a central division algebra over F , with involution σ and let b : V ×V →
D be a nonsingular ε-hermitian form on a finite dimensional space over D. Let
A = EndD(V ). The map σb : A→ A such that σb(λ) = σ(λ) for all λ ∈ F and

b
(
σb(f)(x), y) = b

(
x, f(y)

)

for all x, y ∈ V , is an involution of A, called the involution adjoint to b. We

have σb(f) = b̂−1f∗b̂, where b̂ : V
∼−→ V ∗ is the adjoint of b. Conversely,

any involution of A is adjoint to some nonsingular ε-hermitian form b and b is
uniquely multiplicatively determined up to a σ-invariant element of F×.
Any automorphism φ of A compatible with σb, i.e., σb

(
φ(a)

)
= φ

(
σb(a)

)
, is of

the form φ(a) = uau−1 with u : V
∼−→ V a similitude of b. We say that an invo-

lution τ of A is a q-involution if τ is adjoint to the polar bθ of a (σ, ε)-quadratic
form θ. We write τ = σθ. Two algebras with q-involutions are isomorphic if the
isomorphism is induced by a similitude of the corresponding quadratic forms.
Over fields q-involutions differ from involutions only in characteristic 2 and for
symplectic involutions. In view of possible generalizations (for example rings in
which 2 6= 0 is not invertible) we keep to the general setting of (σ, ε)-quadratic
forms. Let F0 be the subfield of F of σ-invariant elements and let TF/F0

be the
corresponding trace.

Lemma 4.1. The symmetric bilinear form on A given by Tr(x, y) =
TF/F0

(
TrdA(xy)

)
is nonsingular and Sym(A, τ)⊥ = Alt(A, τ).

Proof. If τ is of the first kind F0 = F and the claim is (2.3) of [6]. Assume that τ
is of the second kind. Since the bilinear form (x, y)→ TrdA(xy) is nonsingular,
Tr is also nonsingular and it is straightforward that Alt(A, τ) ⊂ Sym(A, τ)⊥.
Equality follows from the fact that dimF0

Alt(A, τ) = dimF0
Sym(A, τ) =

dimF A.

Proposition 4.2. Let (V, θ), θ = [k] be a (σ, ε)-quadratic space over D and

let h = k̂ + εk̂∗ : V
∼−→ V ∗. The F0-linear form

fθ : Sym(A, σθ)→ F0, fθ(s) = Tr(h−1k̂s), s ∈ Sym(A, σθ)

depends only on the class θ and satisfies fθ
(
x+ σθ(x)

)
= Tr(x).
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Proof. The first claim follows from (4.1) and the fact that if k ∈ Altεσ(V,D)

then h−1k̂ ∈ Alt1σθ (V,D). For the last claim we have:

fθ
(
x+ σθ(x)

)
= Tr

(
h−1k̂(x+ σθ(x)

)

= Tr
(
h−1k̂x

)
+Tr

(
h−1k̂h−1x∗h

)

= Tr
(
h−1k̂x

)
+Tr

(
k̂h−1x∗

)

= Tr
(
h−1k̂x

)
+Tr

(
x(h−1)∗k̂∗

)

= Tr
(
h−1k̂x

)
+Tr

(
h−1εk̂∗x

)
= Tr(x).

Lemma 4.3. Let τ be an involution of A = EndD(V ) and let f be A F0-linear
form on Sym(A, τ) such that f

(
x+ τ(x)

)
= Tr(x) for all x ∈ A. There exists

an element u ∈ A such that f(s) = Tr(us) and u + τ(u) = 1. The element u
is uniquely determined up to additivity by an element of Alt(A, τ). We take
u = 1/2 if CharF 6= 2.

Proof. The proof of (5.7) of [6] can easily be adapted.

Proposition 4.4. Let τ be an involution of A = EndD(V ) and let f be A
F0-linear form on Sym(A, τ) such that f

(
x+ τ(x)

)
= Tr(x) for all x ∈ A.

1) There exists a nonsingular (σ, ε)-quadratic form θ on V such that τ = σθ
and f = fθ.
2) (σθ, fθ) = (σθ′ , fθ′) if and only if θ′ = λθ for λ ∈ F0.
3) If τ = σθ and f = fθ with fθ(s) = Tr(us), the class of u in A/Alt(A, σθ) is
uniquely determined by θ.

Proof. Here the proof of (5.8) of [6] can adapted. We prove 1) for completeness.

Let τ(x) = h−1x∗h, h = εh∗ : V
∼−→ V ∗. Let f(s) = Tr(us) with u+ τ(u) = 1

and let k ∈ Sesqσ(V,D) be such that k̂ = hu : V → V ∗. We set θ = [k]. It is
then straightforward to check that h = k + εk∗.

Proposition 4.5. Let φ :
(
EndD(V ), σθ

) ∼−→
(
EndD(V

′), σθ′
)
be an isomor-

phism of algebras with involution. Let fθ(s) = Tr(us) and fθ′(s
′) = Tr(u′s′).

The following conditions are equivalent:
1) φ is an isomorphism of algebras with q-involutions.
2) fθ′

(
φ(s)

)
= fθ(s) for all s ∈ Sym

(
EndD(V ), σθ

)
.

3) [φ(u)] = [u′] ∈ EndD(V
′)/Alt

(
EndD(V

′), σθ′
)
.

Proof. The implication 1) ⇒ 2) is clear. We check that 2) ⇒ 3). Let φ be

induced by a similitude t : (V, bθ)
∼−→ (V ′, bθ′). Since fθ′(φs) = fθ(s), we

have Tr(t−1u′ts) = Tr(u′tst−1) = Tr(us) for all s ∈ Sym
(
EndD(V ), σθ

)
, hence

[φ(u)] = [u′]. The implication 3) ⇒ 1) follows from the fact that u can be

chosen as h−1k̂, h = k̂ + εk̂∗.
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Remark 4.6. We call the pair (σθ, fθ) a (σ, ε)-quadratic pair or simply a qua-
dratic pair. It determines θ up to the multiplication by a σ-invariant scalar
λ ∈ F×. In fact σθ determines the polar bθ up to λ and fθ determines u. We

have θ = [̂bθu].

Example 4.7. Let q : V → F be a nonsingular quadratic form. The polar bq
induces an isomorphism ψ : V ⊗F V ∼−→ EndF (V ) such that σq

(
ψ(x ⊗ y)

)
=

ψ(y⊗x). Thus ψ(x⊗x) is symmetric and fq
(
ψ(x⊗x)

)
= q(x) (see [6, (5.11)].

More generally, if V is a right vector space over D, we denote by ∗V the space

V viewed as a left D-space through the involution σ of D. The adjoint b̂θ of a
(σ, ε)-quadratic space (V, θ) induces an isomorphism ψθ : V⊗D σV

∼−→ EndD(V )
and ψθ(xd⊗ x) is a symmetric element of

(
EndD(V ), σθ

)
for all x ∈ V and all

ε-symmetric d ∈ D. One has fθ
(
ψ(xd⊗ x)

)
= [dk(x, x)], where θ = [k] (see [4,

Theorem 7]).

5. Clifford algebras

Let σ be an involution of the first kind on D and let θ be a nonsingular
(σ, ε)-quadratic form on V . Let σθ be the corresponding q-involution on A =

EndD(V ). We assume in this section that over a splitting A⊗F F̃ ∼−→ EndF̃ (M)

of A, θF̃ = θ ⊗ 1F̃ is a (Id, 1)-quadratic form q̃ over F̃ , i.e. θF̃ is a (classical)
quadratic form. In the terminology of [6] this means that σθ is orthogonal
if Char 6= 2 and symplectic if Char = 2. From now on we call such forms
over D quadratic forms over D, resp. quadratic spaces over D if the forms are
non-singular.
Classical invariants of quadratic spaces (V, θ) are the dimension dimD V and
the discriminant disc(θ) and the Clifford invariant associated with the Clifford
algebra. We refer to [6, §7] for the definition of the discriminant. We recall the
definition of the Clifford algebra Cl(V, θ), following [10, 4.1]. Given (V, θ) as

above, let θ = [k], k ∈ Sesqσ(V,D), bθ = k + εk∗ and h = b̂θ ∈ HomD(V, V
∗).

Let A = EndD(V ), B = Sesqσ(V,D) and B′ = V ⊗D σV . We identify A with
V ⊗D σV ∗ through the canonical isomorphism (x⊗ σf)(v) = xf(v) and B with

V ∗⊗D σV ∗ through (f ⊗ σg)(x, y) = g(x)f(y). The isomorphism h can be used
to define further isomorphisms:

ϕθ : B
′ = V ⊗D σV

∼−→ A = EndD(M), ϕθ : x⊗ y 7→ x⊗ h(y)
and the isomorphism ψθ already considered in (4.7):

ψθ : A
∼−→ B, ψθ : x⊗ σf 7→ h(x)⊗ σf.

We use ϕθ and ψθ to define maps B′ ×B → A, (b′, b) 7→ b′b and A×B′ → B′,
(a, b′) 7→ ab′:

(x⊗ σy)(h(u)⊗ g) = xb(y, u)⊗ σf and (x⊗,σf)(u⊗,σv) = xf(u)⊗ σh(v)

Furthermore, let τθ = ϕ−1θ σθϕθ : B′ → B′ be the transport of the involution
σθ on A. We have τθ(x⊗ σy) = εy⊗ σx. Let S1 = {s1 ∈ B′ | τθ(s1) = s1}. We
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have S1 =
(
Altε(V,D)

)⊥
for the pairing B′ ×B → F, (b′, b) 7→ TrdA(b

′b). Let
Sand be the bilinear map B′⊗B′×B → B′ defined by Sand(b′1⊗b′2, b) = b′2bb

′
1.

The Clifford algebra Cl(V, θ) of the quadratic space (V, θ) is the quotient of the
tensor algebra of the F -module B′ by the ideal I generated by the sets

I1 = {s1 − TrdA(s1k)1, s1 ∈ S1}
I2 = {c− Sand(c, k) | Sand

(
c,Altε(V,D)

)
= 0}.

The Clifford algebra Cl(V, θ) has a canonical involution σ0 induced by the

map τ . We have Cl(V, θ)⊗F F̃ = Cl(V ⊗F F̃ , θ⊗ 1F̃ ) for any field extension F̃
of F and Cl(V, q) is the even Clifford algebra C0(V, q) of (V, q) if D = F ([10,
Théorème 2]). The reduction is through Morita theory for hermitian spaces
(see for example [5, Chapter I, §9] for a description of Morita theory). In [6,
§8] the Clifford algebra C(A, σθ, fθ) of the triple (A, σθ, fθ) is defined as the
quotient of the tensor algebra T (A) of the F -space A by the ideal generated
by the sets

J1 = {s− TrdA(us), s ∈ Sym(A, σθ)}
J2 = {c− Sand′(c, u), c ∈ A with Sand′

(
c,Alt(A, σθ)

)
= 0}

where u = b̂θ
−1
k and Sand′ : (A⊗A,A)→ A is defined as Sand′(a⊗b, x) = axb.

The two definitions give in fact isomorphic algebras:

Proposition 5.1. The isomorphism ϕθ : V ⊗D σV
∼−→ EndD(V ) induces an

isomorphism Cl(V, θ)
∼−→ C(A, σθ, fθ).

Proof. We only check that ϕθ maps I1 to J1. By definition of τ and S1, s =
ϕθ(s1) is a symmetric element of A. On the other hand we have by definition
of the pairing B′ ×B → A,

TrdA(s1k) = TrdA
(
ϕθ(s1)ψ

−1
θ (k)

)

= TrdA
(
sh−1k̂

)
= TrdA(su) = TrdA(us),

hence the claim.

In particular we have C
(
EndF (V ), σq, fq

)
= C0(V, q) for a quadratic space

(V, q) over F . It is convenient to use both definitions of the Clifford algebra of
a generalized quadratic space.

LetD = [K,µ) = K⊕`K be a quaternion algebra with conjugation σ. Let V be
a D-module and let V 0 be V as a right vector space over K (through restriction
of scalars). Let T : V 0 → V 0, Tx = x`. We have EndD(V ) ⊂ EndK(V 0) and

EndD(V ) = {f ∈ EndK(V 0) | fT = Tf}.
Let θ = [k] be a (σ,−1)-quadratic space and let k(x, y) = P (x, y) + `R(x, y) as
in Section 3. It follows from (3.1) that R defines a quadratic space [R] on V 0

over K.

Proposition 5.2. We have σ[R]|EndD(V ) = σθ and fθ = f[R]|EndD(V ).
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Proof. We have an embedding D ↪→ M2(K), a+ `b 7→
(
a µb
b a

)
and conjuga-

tion given by x 7→ x∗ = c−1xtc, c =

(
0 1
−1 0

)
. The choice of a basis of V over

D identifies V with Dn, V 0 with K2n, EndD(V ) with Mn(D) and EndK(V 0)
with M2n(K), where n = dimD V . We further identify V and V ∗ through the
choice of the dual basis. We embed any element x = x1 + `x2 ∈ Mk,l(D),

xi ∈ Mk,l(K) in M2k,2l(K) through the map ι : x 7→ ξ =

(
x1 µx2
x2 x1

)
. In

particular Dn is identified with a subspace of the space of (2n × 2)-matrices
over K. Then D ⊂M2(K) operates on the right through (2× 2)-matrices and
Mn(D) ⊂ M2n(K) operates on the left through (2n× 2n)-matrices. With the
notations of Example (2.3) we have ι(x∗) = Int(c−1)(xt). Any D-sesquilinear
form k on Dn can be written as k(x, y) = x∗ay, where a ∈Mn(D), as in (2.3).
Let a = a1 + `a2, ai ∈Mn(K) and let

α = ι(a) =

(
a1 µa2
a2 a1

)
.

Let η = ι(y), y = y1 + `y2. We have

k(x, y) = x∗ay = ξ∗αη =

(
x1 µx2
x2 x1

)∗(
a1 µa2
a2 a1

)(
y1 µy2
y2 y1

)
.

On the other side it follows from h = P + `R that R(x, y) = ξtρη with

ρ =

(
a2 a1
−a1 −µa2

)
.

Assume that θ = [k] , so that σθ corresponds to the involution Int(γ−1) ◦ ∗,
where γ = α − α∗. Similarly σ[R] corresponds to the involution Int(ρ̃−1) ◦ t
where ρ̃ = ρ + ρt. We obviously have ρ = cα with c =

(
0 1
−1 0

)
, so that

ρt = αtct = −αtc = −ca∗ and ρ+ρt = c(α−α∗) or cγ = ρ̃. Now ∗ = Int(c−1)◦t
implies σ[R]|Mn(D) = σθ. We finally check that fθ = f[R]|Sym(Mn(D),σθ). We

have fθ(s) = TrdMn(D)(γ
−1αs) and f[R](s) = TrdM2n(K)(ρ̃

−1ρs), hence the

claim, since ρ = cα and ρ̃ = cγ implies γ−1α = ρ̃−1ρ.

Corollary 5.3. The embedding EndD(V ) ↪→ EndK(V 0) induces

1) an isomorphism
(
EndD(V ), σθ, fθ

)
⊗K ∼−→

(
EndK(V 0), σ[R], f[R]

)
,

2) an isomorphism C
(
EndD(V ), σθ, fθ

)
⊗K ∼−→ C0(V

0, [R]).

In view of (2) the semilinear automorphism T : V 0 ∼−→ V 0, Tx = x`, is a
semilinear similitude with multiplier −µ of the quadratic form [R], such that
T 2 = µ.

Lemma 5.4. The map T induces a semilinear automorphism C0(T ) of
C0(V

0, R) such that

C0(T )(xy) = (−µ)−1T (x)T (y) for x, y ∈ V 0
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and C0(T )
2 = Id.

Proof. This follows (for example) as in [6, (13.1)]

Proposition 5.5.

C
(
EndD(V ), σθ, fθ

)
= {c ∈ C0(V

0, R) | C0(T )(c) = c}.

Proof. The claim follows from the defining relations of C
(
EndD(V ), σθ, fθ

)
and

the fact that

EndD(V ) = {f ∈ EndK(V 0) | T−1fT = f}.

We call C
(
EndD(V ), σθ, fθ

)
or equivalently Cl(V, θ) the Clifford algebra of the

quadratic quaternion space (V, θ).

Let t be a semilinear similitude of a quadratic space (U, q) of even dimen-
sion over K. Assume that disc(q) is trivial, so that C0(U, q) decomposes as
product of two K-algebras C+(U, q) and C−(U, q). We say that t is proper if
C0(t)

(
C±(U, q)

)
⊂ C±(U, q) and we say that t is improper if C0(t)

(
C±(U, q)

)
⊂

C∓(U, q). In general we say that t is proper if t is proper over some field exten-
sion of F which trivializes disc(q). For any semilinear similitude t, let d(t) = 1
is t if proper and d(t) = −1 if t is improper.

Lemma 5.6. Let ti be a semilinear similitude of (Ui, qi), i = 1, 2. We have
d(t1 ⊥ t2) = d(t1)d(t2).

Proof. We assume that disc(qi), i = 1, 2, is trivial. Let ei be an idempotent
generating the center Zi of C0(qi). We have ti(ei) = ei if ti is proper and
ti(ei) = 1−ei if ti is improper. The idempotent e = e1+e2−2e1e2 ∈ C0(q1 ⊥ q2)
generates the center of C0(q1 ⊥ q2) (see for example [5, (2.3), Chap. IV] ) and
the claim follows by case checking.

Lemma 5.7. Let V , θ, V 0, R and T be as above. Let dimK V
0 = 2m. Then T

is proper if m is even and is improper if m is odd.

Proof. The quadratic space (V, θ) is the orthogonal sum of 1-dimensional spaces
and we get a corresponding orthogonal decomposition of

(
V 0, [R]

)
into sub-

spaces (Ui, qi) of dimension 2. In view of (5.6) it suffices to check the case

m = 1. Let α = a = a1 + `a2 ∈ D and ρ =

(
a2 a1
−a1 −µa2

)
. We choose µ = 1,

a1 = j (j as in (2.4)), put i = 1 − 2j, so that i = −i and choose a2 = 0. Let
x = x1e1+x2e2 ∈ V 0, so [R](x1, x2) = ix1x2 and C([R]) is generated by e1, e2
with the relations e21 = 0, e22 = 0, e1e2 + e2e1 = i. The element e = i−1e1e2 is
an idempotent generating the center. Since T (x1e1 + x2e2) = x2e1 + x1e2, we
have C0(T )(e1e2) = −e2e1 and C0(T )(e) = 1− e. Thus T is not proper.
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Of special interest for the next section are quadratic quaternion forms [k] such
that the induced quadratic forms π2([k]) are Pfister forms. For convenience
we call such forms Pfister quadratic quaternion forms. Hyperbolic spaces of
dimension 2n are Pfister forms, hence spaces of the form β([b]), b a hermitian
form over K, are Pfister, in view of the exactness of the sequence of Lewis [7].
It is in fact easy to give explicit examples of Pfister forms using the following
constructions:

Example 5.8 (CharF 6= 2). Let q =< λ1, . . . , λn > be a diagonal quadratic
form on Fn, i.e., q(x) =

∑
λix

2
i . Let [k] onD

n be given by the diagonal form `q.
Then the corresponding quadratic form [R] on K2n is given by the diagonal
form < 1,−µ > ⊗q. In particular we get the 3-Pfister form << a, b, µ >>
choosing for q the norm form of a quaternion algebra (a, b)F .

Example 5.9 (CharF = 2). Let b =< λ1, . . . , λn > be a bilinear diagonal
form on Fn, i.e., b(x, y) =

∑
λixiyi. Let k = (j + `)b on Dn. Then the

corresponding quadratic form [R] over K = R(j), j2 = j + λ, is given by
the form [R] = b ⊗ [1, λ] where [ξ, η] = ξx21 + x1x2 + ηx2

2. In particular, for
b =< 1, a, c, ac >, we get the 3-Pfister form << a, c, λ]] with the notations of
[6], p. xxi.

6. Triality for semilinear similitudes

Let C be a Cayley algebra over F with conjugation π : x 7→ x and norm
n : x 7→ xx. The new multiplication x ? y = x y satisfies

x ? (y ? x) = (x ? y) ? x = n(x)y(6)

for x, y ∈ C. Further, the polar form bn is associative with respect to ?, in the
sense that

bn(x ? y, z) = bn(x, y ? z).

Proposition 6.1. For x, y ∈ C, let rx(y) = y ? x and `x(y) = x ? y. The map
C→ EndF (C⊕ C) given by

x 7→
(
0 `x
rx 0

)

induces isomorphisms α :
(
C(C, n), τ

) ∼−→
(
EndF (C⊕ C), σn⊥n

)
and

α0 :
(
C0(C, n), τ0

) ∼−→
(
EndF (C), σn

)
×
(
EndF (C), σn

)
,(7)

of algebras with involution.

Proof. We have rx
(
`x(y)

)
= `x

(
rx(y)

)
= n(x) · y by (6). Thus the existence

of the map α follows from the universal property of the Clifford algebra. The
fact that α is compatible with involutions is equivalent to

bn
(
x ? (z ? y), u

)
= bn

(
z, y ? (u ? x)

)
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for all x, y, z, u in C. This formula follows from the associativity of bn. Since
C(C, n) is central simple, the map α is an isomorphism by a dimension count.

Assume from now on that C is defined over a field K which is quadratic Galois
over F . Any proper semilinear similitude t of n induces a semilinear automor-
phism C(t) of the even Clifford algebra

(
C0(C, n), τ0

)
, which does not permute

the two components of the center of C0(C, n). Thus α0 ◦ C0(t) ◦ α−10 is a pair
of semilinear automorphisms of

(
EndK(C), σn

)
. It follows as in (4.5) that, for

any quadratic space (V, q), semilinear automorphisms of (EndK(V ), σq, fq) are
of the form Int(f), where f is a semilinear similitude of q. The following result
is due to Wonenburger [12] in characteristic different from 2:

Proposition 6.2. For any proper semilinear similitude t1 of n with multiplier
µ1, there exist proper semilinear similitudes t2, t2 such that

α0 ◦ C0(t1) ◦ α−10 =
(
Int(t2), Int(t3)

)

and

µ−13 t3(x ? y) = t1(x) ? t2(y),
µ−11 t1(x ? y) = t2(x) ? t3(y),
µ−12 t2(x ? y) = t3(x) ? t1(y).

(8)

Let t1 be an improper similitude with multiplier µ1. There exist improper simil-
itudes t2, t3 such that

µ−13 t3(x ? y) = t1(y) ? t2(x),
µ−11 t1(x ? y) = t2(y) ? t3(x),
µ−12 t2(x ? y) = t3(y) ? t1(x).

The pair (t2, t3) is determined by t1 up to a factor (λ, λ−1), λ ∈ K×, and we
have µ1µ2µ3 = 1.
Furthermore, any of the formulas in (8) implies the two others.

Proof. The proof given in [6, (35.4)] for similitudes can also be used for semi-
linear similitudes.

Remark 6.3. The class of two of the ti, i = 1, 2, 3, modulo K× is uniquely
determined by the class of the third ti.

Corollary 6.4. Let T1 be a proper semilinear similitude of (C, n) such that
T 2
1 = µ1, µ1 ∈ K× and with multiplier −µ1. There exist elements ai ∈ K×,
i = 1, 2, 3, and proper semilinear similitudes Ti of (C, n), with T

2
i = µi, µi ∈

K× and with multiplier −µi, i = 2, 3, such that aiaiµi = µi+1µi+2 and

a3T3(x ? y) = T1(x) ? T2(y)
a1T1(x ? y) = T2(x) ? T3(y)
a2T2(x ? y) = T3(x) ? T1(y
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The class of any Ti modulo K× determines the two other classes and the µi’s
are determined up to norms from K×. Furthermore any of the three formulas
determines the two others.

Proof. Counting indices modulo 3, we have relations

Ti(x) ? Ti+1(y) = bi+2Ti+2, bi ∈ K×

in view of (6.2). If we replace all Tj by Tj ◦ρνj , νj ∈ K×, we get new constants
ai. The claim then follows from (3.3).

7. Triality for quadratic quaternion forms

Let D1 = K⊕`1K = [K,µ1) be a quaternion algebra over F and let (V1, qθ1) be
a quaternion quadratic space of dimension 4 over D1. Let θ1 = [h1], h1(x, y) =
P1(x, y) + `R1(x, y), so that [R1] = π2(θ1) corresponds to a 8-dimensional
(classical) quadratic form on V 0

1 over K. The map T1 : V 0
1 → V 0

1 , T1(x) =
x`1, is a semilinear similitude of

(
V 0
1 , [R1]

)
with multiplier −µ1 and such that

T 2
1 = µ1. We recall that by (3.5) it is equivalent to have a quadratic quaternion

space (V1, qθ1) or a pair
(
V 0
1 , [T1]

)
. We assume from now on that the quadratic

form q[R1] is a 3-Pfister form, i.e.,the norm form n of a Cayley algebra C over
K. In view of (6.4) T1 induces two semilinear similitudes T2, resp. T3, with
multipliers µ2, resp. µ3, which in turn define a quaternion quadratic space
(V2, θ2) of dimension 4 over D2 = [K,µ2), resp. a quaternion quadratic space
(V3, θ3) of dimension 4 over D3 = [K,µ3). Let Br(F ) be the Brauer group of
F .

Proposition 7.1. 1) [D1][D2][D3] = 1 ∈ Br(F ),

2) The restriction of α : C0

(
C, n)

) ∼−→ EndK(C) × EndK(C) to C(Vi, Di, θi)
induces isomorphisms

αi :
(
C(Vi, Di, θi), τ

) ∼−→
(
EndDi+1

(Vi+1), σθi+1

)
×
(
EndDi+2

(Vi+2), σθi+2

)

Proof. The first claim follows from the fact that µ1µ2 = µ3NrdD3
(a3) and the

second is a consequence of (5.5), (3.5) and the definition of α.

Example 7.2. Let C0 be a Cayley algebra over F and let C = C0⊗FK. For
any c ∈ C0 such that c2 = µ1 ∈ F×, T1 : C→ C given by T1(k ⊗ x) = k ⊗ xc is
a semilinear similitude with multiplier −µ1 such that T 2

1 = µ1. The Moufang
identity (cx)(yc) = c(xy)c in C implies that

(xc) ? (cy) = c(x ? y)c.

Thus T2(k ⊗ y) = k ⊗ cy and T3(k ⊗ z) = ik ⊗ czc (where i ∈ K× is such
that i = −i) satisfy (6.4). The corresponding triple of quaternion algebras is(
[K,µ1), [K,µ1), [K, iiµ

2
1)
)
, the third algebra being split.

Example 7.3. Let Di, i = 1, , 2, 3, be quaternion algebras over F such that
[D1][D2][D3] = 1 ∈ Br(F ). We may assume that the Di contain a common
separable quadratic field K and that Di = [K,µi), µi ∈ F× such that µ1µ2µ3 ∈
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F×
2
. In [6, (43.12)] similitudes Si with multiplier µi, i = 1, 2, 3, of the split

Cayley algebra Cs over F are given, such that 1) µ−13 S3(x ? y) = S1(x) ? S2(y)
and 2) S2

i = µi. Let C = K ⊗ Cs. Let u ∈ K× be such that u = −u. The

semilinear similitudes Ti(k ⊗ x) = uk ⊗ Si(x), i = 1, 2, 3, satisfy

a3T3(x ? y) = T1(x) ? T2(y)

with a3 = uµ−13 (we use the same notation ? in Cs and in C). Thus there exist
a triple of quadratic quaternion forms (θ1, θ2, θ3) corresponding to the three
given quaternion algebras. We hope to describe the corresponding quadratic
quaternion forms in a subsequent paper.
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1. Introduction

Soit F un corps commutatif de caractéristique différente de 2. Dans ce papier
on s’intéresse au problème suivant:

Problème 1.1. Pour ϕ une F -forme quadratique anisotrope de dimension ≥
2, quelles sont les F -formes quadratiques ψ pour lesquelles ϕ devient isotrope
sur F (ψ) le corps des fonctions de la quadrique projective d’équation ψ = 0?

Une n-forme de Pfister est une forme de type 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 avec
a1, · · · , an ∈ F ∗, qu’on note 〈〈a1, · · · , an〉〉. Une 0-forme de Pfister est une
forme de dimension 1. Fixons quelques notations:

Notations 1.2. Pour n,m ≥ 0 deux entiers, on note:

1. Pn(F ) l’ensemble des n-formes de Pfister et GPn(F ) = F ∗Pn(F ).
2. (Pn(F ))

′ = {π′ | 〈1〉 ⊥ π′ ∈ Pn(F )} et (GPn(F ))′ = F ∗(Pn(F ))′.
3. Ln,m(F ) = {π ⊥ τ | π ∈ GPn(F ), τ ∈ GPm(F )}.
4. (Ln,m(F ))′ = {π ⊥ τ | π ∈ (GPn(F ))

′, τ ∈ (GPm(F ))′}.
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Une forme quadratique ψ est dite une sous-forme de ϕ et on note ψ ⊂ ϕ s’il
existe une forme quadratique ξ telle que ϕ ∼= ψ ⊥ ξ où ∼= et ⊥ désignent
respectivement l’isométrie et la somme orthogonale des formes quadratiques.

Le but de ce papier est d’étudier le problème précédent lorsque ϕ ∈ Ln,m(F )
ou (Ln,m(F ))′. En général, il est très difficile de faire cela de façon complète.
En ce qui concerne les formes de Ln,m(F ), notre stratégie consiste à associer à
une forme ϕ ∈ Ln,m(F ) un corps Fε qui apparâıt dans la tour de déploiement
générique d’une forme liée à ϕ. Le corps Fε est indépendant de l’écriture
de ϕ et que la forme ϕFε devient une sous-forme d’une forme de GPn+1(Fε)
(propositions 2.2, 2.7). On conjecture que ϕFε est anisotrope et on fait le lien
avec d’autres conjectures (propositions 2.12, 2.16). On va discuter de manière
générale ces conjectures et ce en répondant au problème 1.1 dès que ces conjec-
tures sont vérifiées (théorème 2.19). Entre autre, on étudie de manière réelle
l’isotropie d’une forme de Ln,1(F ) et d’une forme de Ln,m(F ) qui est divisible
par une (m−1)-forme de Pfister, et cette étude est plus détaillée lorsque n = 3
et m = 2. Pour ce qui est de l’isotropie d’une forme de (Ln,m(F ))′, l’étude
se ramène souvent à celle d’une forme de Ln,m(F ) qui la contient (proposition
3.2). Mais, en général, l’isotropie des formes de (Ln,m(F ))′ reste plus com-
pliquée que celle des formes de Ln,m(F ). On se limite à étudier l’isotropie de
certaines formes de (Ln,m(F ))′ avec n ≥ 3 et m = 1, 2.

Rappelons que dans la proposition 2.16 et les théorèmes 2.19, 4.1 on suppose
dans certains cas que F est de caractéristique 0. Cela est dû au fait qu’on se
base sur des résultats d’Orlov-Vishik-Voevodsky [31] qui sont établis en cette
caractéristique. Plus précisément, par [38] et [31, Theorem 2.1] on déduit qu’on
a le résultat suivant:

(R1) Pour m ≥ n ≥ 1 et π ∈ GPnF , on a Ker(HmF −→ HmF (π)) =
en(π) ·Hm−nF

où en est le n-ième invariant d’Arason et HnF est le n-ième groupe de co-
homologie galoisienne à coefficients dans Z/2 (voir la section 4 pour plus de
détails sur l’invariant en). Aussi par [38] et [31, Theorem 2.10] on a un autre
résultat:

(R2) Pour h ∈ HnF non nul, il existe K/F une extension telle que hK soit un
symbole non nul

où un symbole désigne un élément de HnF de type (a1) · . . . · (an) avec (ai) est
la classe de ai ∈ F ∗ dans H1F et · est le cup-produit. Comme conséquence du
résultat (R2) on obtient:

(R3) Pour ϕ de dimension > 2n, on a Ker(HnF −→ HnF (ϕ)) = {0}.
Aussi on mentionne un autre résultat important [18, fin de la page 166], [30]:

(R4) Pour n ≥ 0, en induit un isomorphisme entre InF/In+1F et HnF .

Lorsque la caractéristique n’est pas nécessairement 0, les résultats (R1), (R3)
et (R4) sont vrais comme suit:
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1. Le résultat (R1) est vrai pour m ≤ 4: Arason [1] pour m = 2, 3; Kahn-
Rost-Sujatha [17, Corollary 2] pour m = 4 et n = 3; Kahn-Sujatha [19,
Theorem 2] pour m = 4 et n = 2.

2. Le résultat (R3) est vrai pour n ≤ 4: Arason [1] pour n ≤ 3; Kahn-Rost-
Sujatha [17, Corollary 2] pour n = 4.

3. Le résultat (R4) est vrai pour n ≤ 4: Evident pour n = 0; Par la théorie de
Kummer pour n = 1; Merkur’ev [28] pour n = 2; Merkur’ev-Suslin/Rost
[29], [33] pour n = 3; Rost (non publié) et Szyjewski [37] pour n = 4.

On dit qu’une forme ϕ est voisine s’il existe une n-forme de Pfister π telle que
dimϕ > 2n−1 et aπ ∼= ϕ ⊥ ξ pour certains a ∈ F ∗ et ξ une forme quadratique.
Dans ce cas, les formes π et ξ sont uniques, et pour toute extension de corps
K/F on a que ϕK est isotrope si et seulement si πK l’est aussi. La forme ξ est
appelée la forme complémentaire de ϕ.

Si ϕ est voisine de π ∈ PnF , en particulier si ϕ ∈ Ln,0(F ), alors par le théorème
de la sous-forme (théorème 1.4) on répond au problème 1.1 de façon complète:

ϕF (ψ) est isotrope ⇔ πF (ψ) est isotrope
⇔ aψ ⊂ π pour un certain a ∈ F ∗ (1)

Ainsi pour la suite de ce papier et dans le cas des formes de Ln,m(F ), on va
considérer uniquement celles de Ln,m(F ) avec m ≥ 1.

L’isotropie d’une forme de L1,1(F ) a été étudiée par Leep [27] et Shapiro [35];
l’isotropie d’une forme de L2,1(F ) a été étudiée par Hoffmann [7] et Izhboldin-
Karpenko [13]; l’isotropie d’une forme de L2,2(F ) a été étudiée par l’auteur
[22], [23].

Plus généralement, le problème précédent a été aussi étudié par Hoffmann pour
une forme de dimension 5 [6]; par Leep [27] et Merkur’ev [26] pour une forme
d’Albert (c’est-à-dire une forme de dimension 6 et de discriminant à signe −1);
par l’auteur [24] et Izhboldin-Karpenko [12] pour des formes de dimension 6
qui ne sont pas nécessairement dans L2,1(F ); par l’auteur pour une forme de
dimension 8 et de discriminant à signe 1 mais qui n’est pas nécessairement dans
L2,2(F ), et pour certaines formes de dimension 7.

Si K/F est une extension de corps, alors on notera W (K/F ) le noyau de
l’homomorphisme W (F ) −→ W (K) induit par l’inclusion F ⊂ K. Pour deux
formes ϕ1 et ϕ2, on note ϕ1 ∼ ϕ2 si ϕ1 ⊥ −ϕ2 est hyperbolique. On dit
que ϕ1 et ϕ2 sont semblables si ϕ1

∼= aϕ2 pour un certain scalaire a ∈ F ∗. La
partie anisotrope ϕan d’une forme quadratique ϕ est l’unique forme quadratique
anisotrope telle que ϕ ∼ ϕan. On dit que ϕ est divisible par ψ si on a ϕ ∼= ψ⊗ρ
pour une certaine forme quadratique ρ.

On désigne par C(ϕ) (resp. C0(ϕ)) l’algèbre de Clifford de ϕ (resp. l’algèbre de
Clifford paire de ϕ). L’invariant de Clifford de ϕ est désigné par c(ϕ). On note
DF (ϕ) = {a ∈ F ∗|∃x ∈ V, ϕ(x) = a} où V est l’espace vectoriel sous-jacent à
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ϕ, et GF (ϕ) = {a ∈ F ∗|aϕ ∼= ϕ}. On rappelle que DF (π) = GF (π) pour toute
forme de Pfister π et on dit que dans ce cas que π est multiplicative.

Pour A une F -algèbre simple centrale de dimension finie, on désigne par ind A
l’indice de Schur de A.

Les deux théorèmes suivants seront utilisés de manière fréquente. On y fera
référence respectivement par les noms “Hauptsatz” et “le théorème de la sous-
forme”.

Théorème 1.3. (Arason-Pfister) Si ϕ ∈ InF anisotrope, alors dimϕ ≥ 2n.

Théorème 1.4. (Cassels-Pfister) Soient ϕ et ψ deux formes quadratiques
anisotropes telles que 1 ∈ DF (ψ) et que ϕF (ψ) soit hyperbolique. Alors, pour
tout α ∈ DF (ϕ) on a αψ ⊂ ϕ. En particulier, dimϕ ≥ dimψ.

2. Les formes quadratiques de Ln,m(F )

Le long de cette section on va fixer les notations suivantes:

(∗)





π ∈ Pn(F ), τ ∈ Pm(F ) avec n ≥ m ≥ 1
ϕ = aπ ⊥ bτ ∈ Ln,m(F ) avec a, b ∈ F ∗
η = π ⊥ −τ
π0 = π ⊥ abπ ∈ Pn+1(F ).

Faisons remarquer qu’avec la multiplicativité d’une forme de Pfister, on déduit
que si ϕ est anisotrope alors π0 est aussi anisotrope.

2.1. Quelques résultats préliminaires. Par la théorie générique de Kneb-
usch [20], [21], on associe à une forme quadratique ϕ non nulle une suite
de formes quadratiques et d’extensions de F , appelée la tour de déploiement
générique de ϕ, de la manière suivante:

F0 = F, ϕ0 = ϕan

et pour n ≥ 1, on définit par récurrence

Fn = Fn−1(ϕn−1) et ϕn = ((ϕn−1)Fn)an.

La hauteur de ϕ, notée h(ϕ), est le plus petit entier h tel que dimϕh ≤ 1.
Pour j ∈ {0, · · · , h}, on note ij(ϕ) l’indice de Witt de ϕFj . On a 0 ≤ i0(ϕ) <
· · · < ih(ϕ). On appelle (i0(ϕ), · · · , ih(ϕ)) la suite des indices de déploiement
de ϕ (splitting patterns [10]), et (ϕ0, · · · , ϕh) (resp. (F0, · · · , Fh)) la suite des
noyaux (resp. la suite des extensions) de la tour de déploiement générique
de ϕ. Si dimϕ est paire, alors ϕh−1 est semblable à une forme de Pfister
ρ ∈ PdFh−1 qu’on appelle la forme dominante de ϕ (Knebusch [20, Theorem
5.8] et Wadsworth [39]). L’entier d s’appelle le degré de ϕ, qu’on note deg(ϕ).
Lorsque dimϕ est impaire, on dit que ϕ est de degré 0. Le corps Fh s’appelle
le corps de déploiement générique de ϕ.

On commence par rappeler un résultat.
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Proposition 2.1. (Elman-Lam [3, 4.5]; Kahn [15, Remarque, Page 61]) Soient
π ∈ PnF , τ ∈ PmF anisotropes et a, b ∈ F ∗. Soit i le plus grand entier tel que
π et τ soient divisibles par une i-forme de Pfister. Alors, iW (aπ ⊥ bτ) = 0
ou 2i. De plus, si iW (aπ ⊥ bτ) = 2i alors il existe ρ ∈ PiF , µ ∈ Pn−iF et
ν ∈ Pm−iF telles que π ∼= ρ⊗ µ et τ ∼= ρ⊗ ν.
La proposition suivante est liée au déploiement générique de η.

Proposition 2.2. On garde les mêmes notations que dans (∗). Soient
(Fi)0≤i≤h(η) (resp. (ij(η))0≤j≤h(η)) la suite des extensions de la tour de
déploiement générique de η (resp. la suite des indices de déploiement de η).
Alors:
(1) Il existe ε ∈ {0, · · · ,h(η)} tel que iε(η) = 2m.
(2) Pour ε ∈ {0, · · · ,h(η)} comme dans l’assertion (1), on a:
(i) aϕFε ⊂ (π0)Fε ,
(ii) Si iW (η) = 2m−1, alors ε = 1 c’est-à-dire Fε = F (ηan),
(iii) Si iW (η) = 2m, alors ε = 0 c’est-à-dire Fε = F .
(iv) Si n > m, alors l’extension Fε(π)/F (π) est transcendante pure.

Démonstration. (1) Voir [11, Theorem 2.8].

(2)(i) Puisque iε(η) = 2m, on déduit que τFε ⊂ πFε . Ainsi, aϕFε ⊂ (π0)Fε .
(ii) Il existe ρ ∈ Pm−1F , µ = µ′ ⊥ 〈1〉 ∈ Pn−m+1F et d ∈ F ∗ tels que π ∼= ρ⊗µ
et τ ∼= ρ ⊗ 〈1,−d〉. On a ηan = ρ ⊗ (µ′ ⊥ 〈d〉). Comme iW (ηF (ηan)) est une

puissance de 2 (proposition 2.1) strictement supérieure à 2m−1, on a i1(η) = 2m.
Ainsi, ε = 1 c’est-à-dire Fε = F (ηan).
(iii) Evident.
(iv) On a ηF (π) ∼ (−τ)F (π). Par le théorème de la sous-forme, τF (π) est

anisotrope, et donc (ηF (π))an ∼= (−τ)F (π). Ainsi, iW (ηF (π)) = 2n−1 ≥ 2m =
iε(η). D’après [20, Remark 5.5] on a que Fε(π)/F (π) est transcendante pure.

Remarque 2.3. Avec les notations de la proposition 2.2 et lorsque n = m,
le corps Fε n’est autre que le corps de déploiement générique de η c’est-à-dire
ε = h(η).

Définition 2.4. ([21, Definition 7.7]) Toute forme de dimension ≤ 1 est dite
excellente. Une forme ϕ de dimension ≥ 2 est dite excellente si elle est voisine
et sa forme complémentaire est excellente.

La condition iW (η) = 2m peut être vue autrement:

Proposition 2.5. On garde les mêmes notations que dans (∗) et on suppose
que ϕ est anisotrope. On a équivalence entre:
(1) ϕ est une voisine d’une (n+ 1)-forme de Pfister,
(2) ϕ est divisible par une m-forme de Pfister,
(3) ϕ est excellente.
(4) τ ⊂ π.
Démonstration. Les implications (3) =⇒ (1) et (4) =⇒ (2) sont évidentes.
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(1) =⇒ (4) Puisque aπ ⊥ 〈b〉 est une voisine de π0 contenue dans ϕ, on déduit
que ϕ est une voisine de π0. Par multiplicativité aϕ ⊂ π0. Ainsi, τ ⊂ π.
(2) =⇒ (3) Soit ρ ∈ Pm(F ) divisant ϕ. Alors, aπF (ρ) ∼ −bτF (ρ) puisque
ϕF (ρ) ∼ 0. Si n > m on obtient πF (ρ) ∼ τF (ρ) ∼ 0. Ainsi, ρ ∼= τ et πF (τ) ∼ 0.
Soit λ ∈ Pn−m(F ) tel que π ∼= τ ⊗ λ. On a ϕ ∼= τ ⊗ (aλ ⊥ 〈b〉) qui est bien
une forme excellente. Si n = m on obtient que ϕ ∈ GPn+1(F ) qui est aussi
excellente.

Définition 2.6. (1) Deux corps K et L contenant F sont dits F -équivalents
(au sens de Knebusch) s’il existe une F -place de l’un vers l’autre et inverse-
ment.
(2) Deux suites croissantes de corps (F0 = F, . . . , Fr) et (G0 = F, . . . , Gs)
sont dites F -équivalentes si:
(i) r = s,
(ii) Pour tout i ∈ {0, . . . , r} les corps Fi et Gi sont F -équivalents.

La proposition suivante sera démontrée au début de la section 5.

Proposition 2.7. On garde les mêmes notations que dans (∗). Soient ζ ∈
PnF , σ ∈ PmF et c, d ∈ F ∗ de sorte que

ϕ ∼= cζ ⊥ dσ
soit une autre écriture de ϕ. Soient δ = ζ ⊥ −σ et (Fi, ηi)0≤i≤h(η) (resp.
(Gi, δi)0≤i≤h(δ)) la tour de déploiement générique de η (resp. la tour de
déploiement générique de δ). Soit ε ∈ {0, · · · ,h(η)} (resp. ν ∈ {0, · · · ,h(δ)})
tel que iW (ηFε) = 2m (resp. iW (δGν

) = 2m).
(1) Si n > m, alors les suites (F0, . . . , Fε) et (G0, . . . , Gν) sont F -équivalentes.
En particulier, ε = ν et les corps Fε et Gν sont F -équivalents.
(2) Si n = m, alors les corps Fε et Gν sont aussi F -équivalents.
Ainsi, à F -équivalence près, le corps Fε ne dépend pas de l’écriture de ϕ.

Définition 2.8. Avec les mêmes notations et hypothèses que dans la proposi-
tion 2.2, on appelle Fε le corps de voisinage de ϕ.

2.2. Isotropie des formes quadratiques de Ln,m(F ). Soient ϕ comme
dans (∗) et Fε son corps de voisinage. Comme on va le voir l’isotropie de ϕ
est liée à la question de savoir si ϕFε reste anisotrope lorsque ϕ est anisotrope.
Sur cette question on pose la conjecture suivante:

Conjecture 2.9. On garde les mêmes notations que dans (∗) et on suppose
que ϕ est anisotrope. Soit Fε le corps de voisinage de ϕ. Alors, (π0)Fε est
anisotrope. En particulier, π0 6∈W (Fε/F ).

De manière équivalente, la conjecture dit que ϕFε est anisotrope du fait que
aϕFε ⊂ (π0)Fε et 2 dimϕ > dimπ0.

Plus généralement sur l’ensemble Pn+1F ∩ W (Fε/F ) on pose la conjecture
suivante:
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Conjecture 2.10. Avec les mêmes hypothèses que dans la conjecture 2.9 et
pour ρ ∈ Pn+1(F ), on a:

ρ ∈W (Fε/F )⇔
{
ρ ∼= π ⊥ rπ avec r ∈ DF (−τ) si n > m

ρ ⊥ −(η ⊥ αη) ∈ In+2F pour α ∈ F ∗ si n = m.

Dans la proposition qui suit on mentionne quelques inclusions qui sont toujours
vraies dans la conjecture 2.10.

Proposition 2.11. Avec les mêmes notations que dans (∗), on a:
(1) {π ⊥ rπ | r ∈ DF (−τ)} ⊂ Pn+1F ∩W (Fε/F ).
(2) Si n > m, alors Pn+1F ∩W (Fε/F ) ⊂ {π ⊥ rπ | r ∈ F ∗}.
(3) Si n = m, alors
{ρ ∈ Pn+1F | ρ ⊥ −(η ⊥ αη) ∈ In+2F, α ∈ F ∗} ⊂ Pn+1F ∩W (Fε/F ).

Démonstration. (1) Si r ∈ DF (−τ), alors on a:

η ⊥ rη ∼ π ⊥ −τ ⊥ −rτ ⊥ rπ
∼ π ⊥ −τ ⊥ τ ⊥ rπ
∼ π ⊥ rπ ∈ In+1F.

Puisque dim(ηFε)an = 2n − 2m, on a dim((η ⊥ rη)Fε)an ≤ 2n+1 − 2m+1. Par le
Hauptsatz , on déduit que π ⊥ rπ ∈W (Fε/F ).
(2) Si ρ ∈ Pn+1F ∩W (Fε/F ), alors ρFε(π) ∼ 0. Par la proposition 2.2(iv) on a
que Fε(π)/F (π) est transcendante pure, et donc ρF (π) ∼ 0. D’où le résultat.
(3) C’est une conséquence du Hauptsatz et du fait que ηFε ∼ 0 (remarque 2.3).

Proposition 2.12. La conjecture 2.10 implique la conjecture 2.9.

Voici quelques cas où la conjecture 2.10 est vérifiée:

Proposition 2.13. La conjecture 2.10 est vraie si iW (η) ∈ {2m, 2m−1}.
Comme un corollaire immédiat on a:

Corollaire 2.14. La conjecture 2.10 est vraie pour ϕ ∈ Ln,1(F ).
En caractéristique 0 lorsque n ≥ 4 et avec le résultat (R4) la conjecture 2.9 dit
de manière équivalente que en+1(π0) 6∈ Hn+1(Fε/F ). Plus généralement, on
pose une conjecture sur le noyau Hn+1(Fε/F ):

Conjecture 2.15. Avec les mêmes hypothèses que dans la conjecture 2.9, on
a:

Hn+1(Fε/F ) =

{
{en(π) · (r) | r ∈ DF (τ)} si n > m

en(η) ·H1F si n = m.

Entre les conjectures 2.10 et 2.15 on a les liens suivants:

Proposition 2.16. On suppose que F est de caractéristique 0 lorsque n ≥ 4.
On a:
(1) Si n > m, alors les conjectures 2.10 et 2.15 sont équivalentes.
(2) Si n = m, alors la conjecture 2.15 implique la conjecture 2.10.
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Théorème 2.17. La conjecture 2.15 est vraie dans les cas suivants:
(1) n = m ≤ 2.
(2) iW (η) ∈ {2m−1, 2m} en supposant que F est de caractéristique 0 lorsque
(n > m et n ≥ 4) ou (n = m ≥ 4 et iW (η) = 2m−1).

Démonstration. (1) La conjecture a été prouvée dans [1] lorsque (n = m = 1)
et (n = m = 2 avec iW (η) = 2); et dans [32] lorsque n = m = 2 avec iW (η) = 1
(en fait dans ce dernier cas la conjecture se déduit de [32] comme cela est fait
dans [22, Corollaire 6]).
(2) (i) Si n > m et iW (η) ∈ {2m, 2m−1}, alors la conjecture est une conséquence
de la proposition 2.16(1) et la proposition 2.13.
(ii) Si n = m et iW (η) = 2m, alors la conjecture est évidente car η ∼ 0 et donc
Fε = F .
(iii) Si n = m et iW (η) = 2m−1, alors ηan ∈ GPnF et par la proposition 2.2
Fε = F (ηan). La conjecture est une conséquence du résultat (R1).

On combine les propositions 2.13, 2.16 et le théorème 2.17 pour obtenir:

Corollaire 2.18. La conjecture 2.10 est vraie dans les cas suivants:
(1) n = m ≤ 2;
(2) iW (η) ∈ {2m−1, 2m} en supposant que F est de caractéristique 0 lorsque
(n > m et n ≥ 4) ou (n = m ≥ 4 et iW (η) = 2m−1).

Maintenant on énonce nos principaux résultats sur l’isotropie d’une forme
quadratique de Ln,m(F ). Dans le théorème suivant et lorsque n = m ≥ 4
on suppose que F est de caractéristique 0.

Théorème 2.19. Soit ϕ comme dans (∗) et qu’on suppose anisotrope et soit
ψ une forme quadratique de dimension ≥ 2n+1. On suppose que la conjecture
2.10 est vraie pour ϕ lorsque n > m, et que la conjecture 2.15 est vraie pour ϕ
lorsque n = m. On a:
(1) Si dimψ > 2n+1, alors ϕF (ψ) est anisotrope.

(2) Si n > m et dimψ = 2n+1, alors on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une (n+ 1)-forme de Pfister dont ϕ contient une voisine.
(3) Si n = m, dimψ = 2n+1 avec F de caractéristique 0 lorsque n ≥ 4, alors
on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une (n + 1)-forme de Pfister dont ϕ contient une voisine,
ou ϕ ⊥ αψ ∈ In+2F pour un certain α ∈ F ∗.
Le corollaire suivant se déduit du théorème 2.19 et du corollaire 2.14.

Corollaire 2.20. Soient n ≥ 2 un entier et ϕ ∈ Ln,1(F ) anisotrope. Soit ψ
une forme quadratique de dimension 2n+1. Alors, on a équivalence entre:
(1) ϕF (ψ) est isotrope;
(2) ψ est voisine d’une (n+ 1)-forme de Pfister dont ϕ contient une voisine.

Comme dans le corollaire 2.20 et lorsque n = 3, on obtient:
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Corollaire 2.21. Soit ϕ ∈ L3,1(F ) anisotrope et ψ une forme quadratique
telle que 11 ≤ dimψ ≤ 16. On suppose que ϕ n’est pas voisine et indC0(ψ) ≤ 2
lorsque dimψ = 11. Alors, on a équivalence entre:
(1) ϕF (ψ) est isotrope;
(2) ψ est voisine d’une 4-forme de Pfister dont ϕ contient une voisine.

On introduit les notations suivantes:

Notations 2.22. Soient n ≥ m ≥ 1 deux entiers. A un entier l tel que m ≥
l ≥ 0, on associe les ensembles suivants:

1. Ln,m,l(F ) est l’ensembles des formes απ ⊥ βτ anisotropes avec α, β ∈ F ∗,
π ∈ PnF , τ ∈ PmF et iW (π ⊥ −τ) = 2l.

2. (Ln,m,l(F ))
′ est l’ensemble des formes απ′ ⊥ βτ ′ anisotropes avec α, β ∈

F ∗, π = 〈1〉 ⊥ π′ ∈ PnF , τ = 〈1〉 ⊥ τ ′ ∈ PmF et iW (π ⊥ −τ) = 2l.

Pour le cas des formes de Ln,m,m−1(F ), on combine la proposition 2.13 et les
théorèmes 2.17, 2.19 pour obtenir:

Corollaire 2.23. Soit ϕ ∈ Ln,m,m−1(F ) anisotrope et soit ψ une forme
quadratique de dimension 2n+1. Alors on a:
(1) Si n > m, alors on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une (n+ 1)-forme de Pfister dont ϕ contient une voisine.
(2) Si n = m et F est de caractéristique 0 lorsque n ≥ 4, alors on a équivalence
entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une (n + 1)-forme de Pfister dont ϕ contient une voisine,
ou ϕ ⊥ αψ ∈ In+2F pour un certain α ∈ F ∗.
Pour le cas des formes de L3,2,1(F ) on obtient:

Théorème 2.24. On garde les mêmes notations que dans (∗). On suppose que
ϕ ∈ L3,2,1(F ) est anisotrope mais non voisine. Soit ψ une forme quadratique
telle que 11 ≤ dimψ ≤ 16.
(1) Si dimψ ≥ 13, alors on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une 4-forme de Pfister dont ϕ contient une voisine.
(2) Si dimψ = 12, alors on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ψ est voisine d’une 4-forme de Pfister dont ϕ contient une voisine ou il
existe c ∈ F ∗, r ∈ DF (τ) tels que abπ ⊥ −ψ ⊥ cη ⊥ rπ ∈ I5F .
(3) Si dimψ = 11 et indC0(ψ) ≤ 2, alors on a équivalence entre:
(i) ϕF (ψ) est isotrope,
(ii) ϕF (ψ′) est isotrope où ψ′ = ψ ⊥ 〈−d±ψ〉.

3. Les formes quadratiques de (Ln,m(F ))′

Voici certains cas où l’isotropie d’une forme ϕ ∈ (Ln,m(F ))′ a été étudiée:
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1. Si m = 1, alors ϕF (
√
u) ∈ GPnF (

√
u) pour un certain u ∈ F ∗. Dans ce

cas, l’isotropie de ϕ a été étudiée par Hoffmann [9].
2. Si n = m = 2, alors l’isotropie de ϕ a été étudiée par Hoffmann [7],

l’auteur [24] et Izhboldin-Karpenko [12], [13].

Lemme 3.1. ([8, Lemma 3]) Soient ϕ et ψ des formes quadratiques telles que
ψ ⊂ ϕ et dimψ ≥ dimϕ− iW (ϕ) + 1. Alors, ψ est isotrope.

La proposition suivante précise que dans certains cas l’isotropie d’une forme de
(Ln,m(F ))′ se ramène à celle d’une forme de Ln,m(F ) qui la contient.

Proposition 3.2. Soient ϕ′ ∈ (Ln,m,l(F ))
′ et ϕ ∈ Ln,m,l(F ) qui contient ϕ′

comme une sous-forme. Si l ≥ 2, alors pour toute extension de corps K/F on
a ϕK isotrope si et seulement si ϕ′K isotrope.

Démonstration. Puisque ϕ ∈ Ln,m,l(F ), alors ϕ est divisible par une l-forme de
Pfister. Ainsi, iW (ϕF (ϕ)) ≥ 2l. Puisque dimϕ = 2n+2m, dimϕ′ = 2n+2m−2
et l ≥ 2, on vérifie bien que dimϕ′ ≥ dimϕ− iW (ϕF (ϕ)) + 1. Par le lemme 3.1
on a ϕ′F (ϕ) isotrope. Puisque ϕF (ϕ′) est isotrope, le résultat se déduit de [20,

Theorem 3.3].

Pour la suite de cette section, on va se limiter à étudier l’isotropie des formes
de (Ln,2,1(F ))

′ avec n ≥ 3.

Soient π = π′ ⊥ 〈1〉 ∈ PnF (avec n ≥ 3), τ = τ ′ ⊥ 〈1〉 ∈ P2F et b ∈ F ∗.
On suppose iW (π ⊥ −τ) = 2. Par la proposition 2.1, il existe d, d′ ∈ F ∗ et
π1 = 〈1〉 ⊥ π′1 ∈ Pn−1F tels que π ∼= 〈〈d〉〉 ⊗ π1 et τ ∼= 〈〈d, d′〉〉.
On fixe les notations suivantes:

(∗∗)





ϕ = π′ ⊥ bτ ′
η = −bd′ 〈1,−d〉 ⊗ π′1 ⊥ 〈1, bd〉
π0 = π ⊥ −bd′π.

On suppose que ϕ est anisotrope.

Lemme 3.3. Avec les mêmes notations et hypothèses que dans (∗∗), on a:
(1) ηF (π) est isotrope.
(2) La forme π0 est anisotrope.
(3) Si ϕ n’est pas voisine, alors η est anisotrope.

Démonstration. Soit ξ = −bd′ 〈1,−d〉 ⊗ π′1.
(1) On a ξ ⊂ η et −bd′ξ ⊂ π. Puisque n ≥ 3, on a dim ξ > 2n−1 et donc ξF (π)
est isotrope. Ainsi, ηF (π) est aussi isotrope.
(2) La forme ϕ est anisotrope et π′ ⊥ −bd′ 〈1,−d〉 est une sous-forme de π0 et
ϕ, de dimension > 2n. Ainsi, π0 est anisotrope.
(3) Supposons que ϕ ne soit pas une voisine et que η soit isotrope. Clairement,
on a {

π0 = π′ ⊥ −bd′ 〈1,−d〉 ⊥ ξ ⊥ 〈1〉
ϕ = π′ ⊥ −bd′ 〈1,−d〉 ⊥ 〈−bd〉 (2)
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La forme ξ ⊥ 〈1〉 est anisotrope car c’est une sous-forme de π0. Puisque η
est isotrope, on obtient 〈−bd〉 ⊂ ξ ⊥ 〈1〉, et par (2) on voit bien que ϕ ⊂ π0.
Comme dimϕ > 2n on déduit que ϕ est une voisine de π0, une contradiction.

Définition 3.4. On garde les mêmes notations et hypoths̀es que dans (∗∗).
On définit S(ϕ) comme étant l’ensemble des scalaires α ∈ F ∗ pour lesquels les
deux formes τ ⊥ απ et d′ 〈1, b〉 ⊥ (τ ⊥ απ)an sont isotropes.

Proposition 3.5. Avec les mêmes notations et hypoths̀es que dans (∗∗), on a:
(1) L’ensemble S(ϕ) est non vide.
(2) Si α ∈ S(ϕ), alors dim(d′ 〈1, b〉 ⊥ (τ ⊥ απ)an)an ≤ 2n.
(3) On a Pn+1F ∩W (F (η)/F ) = {π ⊥ απ | α ∈ S(ϕ)}.
Concernant l’isotropie de ϕ (ϕ comme dans (∗∗)), on a le théorème suivant:

Théorème 3.6. On garde les mêmes notations et hypothèses que dans (∗∗).
Soit ψ une forme quadratique de dimension 2n+1. Alors, on a équivalence
entre:
(1) ϕF (ψ) est isotrope;
(2) Il existe s ∈ S(ϕ) telle que ψ soit semblable à π ⊥ sbd′π.
Lorsque n = 3, on obtient:

Théorème 3.7. On garde les mêmes notations et hypothèses que dans (∗∗).
On suppose que n = 3. Soit ψ une forme quadratique telle que 11 ≤ dimψ ≤ 16
et indC0(ψ) = 2 lorsque dimψ = 11. On a équivalence entre:
(1) ϕF (ψ) est isotrope;
(2) ψ est voisine d’une 4-forme de Pfister ρ telle que ϕF (ρ) soit isotrope.

4. Quelques résultats cohomologiques

D’après Arason [1] il existe une application ẽn de PnF vers HnF , définie par
ẽn(〈〈a1, . . . , an〉〉) = (a1) · . . . · (an). L’application ẽn se prolonge en un homo-
morphisme en de InF/In+1F versHnF pour n = 0, 1, 2. On a e0(ϕ) = dimϕ ∈
H0F ' Z/2, e1(ϕ) = d±ϕ ∈ H1F ' F ∗/F ∗2, e2(ϕ) = c(ϕ) ∈ H2F ' Br2(F )
où Br2(F ) est la 2-torsion du groupe de Brauer Br(F ) de F . e0, e1 sont des
isomorphismes. Lorsque n = 3, 4 l’application ẽn se prolonge en un homomor-
phisme de InF/In+1F vers HnF (Arason [1] pour n = 3 et Jacob-Rost [14]
pour n = 4).

Dans le théorème suivant, on calcule le noyau H i(Fε/F ) lorsque i ≤ n:
Théorème 4.1. On garde les mêmes notations que dans (∗). On suppose que
ϕ est anisotrope et que F est de caractéristique 0 lorsque n ≥ 5. Soit Fε le
corps de voisinage de ϕ. Alors | H i(Fε/F ) |≤ 2 pour i ≤ n. Plus précisément:

Hi(Fε/F ) =

{
{0} si n > i

{0, en(η)} si n = i = m.

Si n = i > m, alors H i(Fε/F ) ⊂ {0, en(π)} et ce noyau est nul si la conjecture
2.9 est vraie.
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Pour la preuve de ce théorème on commence par un lemme préliminaire.

Lemme 4.2. Soit η comme dans (∗) qu’on suppose non nulle, et soit
(Fi, ηi)0≤i≤h(η) sa tour de déploiement générique. On supposons que n = m et
que F est de caractéristique 0 lorsque n ≥ 5. Alors:
(1) deg(η) = n.
(2) Si h(η) ≥ 2, alors:
(i) Pour tout i ∈ {0, · · · ,h(η)− 2} la forme (ηi)Fi(τ) est isotrope.
(ii) Pour tout (i, j) ∈ {0, · · · ,h(η)− 1} × {0, · · · , n}, on a

Ker(HjF −→ HjFi) = {0}.

Démonstration. Puisque η 6∼ 0, on a h := h(η) ≥ 1.
(1) On a η ∈ InF et dim ηan < 2n+1 ce qui implique deg(η) = n.
(2) (i) Puisque deg(η) = n, on obtient dim ηi > 2n pour tout i ∈ {0, · · · , h −
2}. De la relation ηF (τ) ∼ πF (τ) on déduit (ηi)Fi(τ) ∼ πFi(τ). Par raison de
dimension la forme (ηi)Fi(τ) est isotrope pour i ∈ {0, · · · , h− 2}.
(ii) Soient (i, j) ∈ {0, · · · , h− 1} × {0, · · · , n} et x ∈ Ker(H jF −→ HjFi). Le
résultat est évident pour i = 0. Supposons i ≥ 1. Par (i) l’extension Fi(τ)/F (τ)
est transcendante pure. Ainsi, x ∈ Ker(HjF −→ HjF (τ)). Si j < n on déduit
par (R3) que x = 0. Si j = n on déduit par (R1) que x ∈ {0, en(τ)}. Si
x = en(τ), alors par (R4) et le Hauptsatz τFi ∼ 0. Par récurrence il suffit
de considérer le cas τF1

hyperbolique. Ceci implique par le théorème de la
sous-forme que τ ∼ 0 puisque h(η) ≥ 2 et donc dim η > 2n, une contradiction.
Ainsi, x = 0.
Démonstration du théorème 4.1. Si η ∼ 0, alors Fε = F et le théorème est
évident. Pour la suite, on suppose que η 6∼ 0 et donc h(η) ≥ 1. Soit (η0 =
ηan, . . . , ηh(η)) la suite des noyaux de la tour de déploiement générique de η.
Lorsque n = m, on a deg(η) = n par le lemme 4.2(1) et ε = h(η) par la
remarque 2.3. Soit x ∈ H i(Fε/F ).

(1) Supposons n > i.

(i) Si n > m, alors Fε(π)/F (π) est transcendante pure. Ainsi, x ∈ H i(F (π)/F ).
Puisque dimπ = 2n > 2i, on déduit par (R3) que x = 0.

(ii) Si n = m. On a ηε−1 ∈ GPn(Fε−1). Puisque Fε = Fε−1(ηε−1) et xFε−1
∈

Hi(Fε/Fε−1), on obtient par (R3) que x ∈ H i(Fε−1/F ). Si ε = 1, alors x = 0,
sinon on déduit par le lemme 4.2(2) que x = 0.

(2) Supposons n = i = m. Puisque xFε−1
∈ Hn(Fε/Fε−1) et ηε−1 ∈ GPnFε−1,

on déduit par (R1) que xFε−1
∈ {0, en(η)Fε−1

} (car en(η)Fε−1
= en(ηε−1)). Soit

y ∈ HnF une classe définie comme suit:

y =

{
x si xFε−1

= 0
x+ en(η) si xFε−1

= en(η)Fε−1
.

On a y ∈ Hn(Fε−1/F ). Si ε = 1, alors y = 0, sinon le lemme 4.2(2) implique
que y = 0.
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(3) Supposons n = i > m. Comme dans le cas (1)(i) x ∈ Hn(F (π)/F ) =
{0, en(π)}. Si de plus la conjecture 2.9 est vraie alors πFε est anisotrope et
donc par le Hauptsatz πFε 6∈ In+1F . Par (R4) on a en(π)Fε 6= 0 et donc x = 0.

Proposition 4.3. On garde les mêmes notations que dans (∗). On suppose
que n = m et que F est de caractéristique 0 lorsque n ≥ 5. Soit ψ une forme
quadratique telle que ψFε ∈ In+1Fε. Alors, ψ ∈ InF .

Démonstration. Par hypothèse ei(ψFε) = 0 pour i ≤ n. On affirme que si
ϕ ∈ IjF pour un certain j ∈ {1, · · · , n − 1}, alors ψ ∈ Ij+1F . En effet,
puisque ej(ψ)Fε = 0 on obtient par le théorème 4.1 que ej(ψ) = 0 et par (R4)
ψ ∈ Ij+1F . Comme ψ ∈ IF , on déduit par itération que ψ ∈ InF .

5. Démonstrations

5.1. Démonstration de la proposition 2.7.

Lemme 5.1. On garde les mêmes notations et hypothèses que dans la proposi-
tion 2.7. Pour K/F une extension, on a:
(1) Si n > m: ϕK ∼ 0 ⇐⇒ πK ∼ τK ∼ 0 (⇐⇒ ζK ∼ σK ∼ 0).
(2) Si n = m: ϕK est voisine ⇐⇒ πK ∼= τK (⇐⇒ ζK ∼= σK).

Démonstration. (1) C’est une simple conséquence de l’hypothèse n > m et du
fait qu’une forme de Pfister isotrope est hyperbolique.
(2) Dans ce cas dimϕ = 2n+1. Il est clair que πK ∼= τK implique que ϕK ∈
GPn+1K. Réciproquement, si ϕK ∈ GPn+1K alors ϕK(π) ∼ 0 et donc τK(π) ∼
0. On conclut par le théorème de la sous-forme et la multiplicativité d’une
forme de Pfister.
Démonstration de la proposition. (1) Supposons n > m. Pour i ∈ {0, · · · , ε}
(resp. j ∈ {0, · · · , ν}) soit ri (resp. sj) tel que 2ri = iW (ηFi) (resp. 2sj =
iW (δGj

)). Puisque 2ri = iW (ηFi), on obtient par la proposition 2.1 que les
formes πFi et τFi sont divisibles par une forme de PriFi. Par le lemme 5.1, on
déduit que pour i ∈ {0, · · · , ε} on a iW (ηFi) = iW (δFi), et donc 2

ri appartient à
la suite des indices de déploiement de δ. De même pour j ∈ {0, · · · , ν} l’entier
2sj appartient à la suite des indices de déploiement de η. Remarquons aussi que
2ri , 2sj ≤ 2m pour tout (i, j) ∈ {0, · · · , ε} × {0, · · · , ν}. Ainsi, on déduit qu’on
a nécessairement ν = ε et par [21, Remark 5.5] on a que Fi est F -équivalent à
Gi pour tout i ∈ {0, · · · , ε}.
(2) Supposons n = m. Par le lemme 5.1 on a ζFε

∼= σFε et πGν
∼= τGν

. Ainsi,
iW (ηGν

) = iW (δFε) = 2m. Par [21, Remark 5.5] on a que Fε est F -équivalent
à Gν .

5.2. Démonstration de la proposition 2.12. Supposons que ϕFε soit
isotrope. Par la proposition 2.2(i) (π0)Fε ∼ 0.
(i) Supposons n > m. Par la conjecture 2.10, on a π0 ∼= π ⊥ rπ pour un certain
r ∈ DF (−τ). Par simplification, on a aπ ∼= brπ. Ainsi, ϕ ∼= brπ ⊥ bτ ∼= brπ ⊥
−brτ . Une contradiction car ϕ est anisotrope.
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(ii) Supposons n = m. Par la conjecture 2.10 il existe α ∈ F ∗ tel que π0 ⊥
−(η ⊥ αη) ∈ In+2F . Ainsi, abπ ⊥ τ ⊥ −αη ∈ In+2F . Par le Hauptsatz
abπ ⊥ τ = bϕ est isotrope, une contradiction.

5.3. Démonstration de la proposition 2.13. (1) Si iW (π ⊥ −τ) = 2m,
alors par la proposition 2.2(iii) Fε = F et la proposition est évidente.
(2) Si iW (π ⊥ −τ) = 2m−1. Soient ρ ∈ Pm−1F , µ = 〈1〉 ⊥ µ′ ∈ Pn−m+1F et
d ∈ F ∗ tels que π ∼= ρ ⊗ µ et τ ∼= ρ ⊗ 〈〈d〉〉. On a ηan = ρ ⊗ (µ′ ⊥ 〈d〉) et
Fε = F (ηan). Soit δ ∈ Pn+1F ∩W (Fε/F ).
(i) Si n > m, alors par la proposition 2.2(iv) δF (π) ∼ 0. Ainsi, δ ∼= π ⊥ απ
pour un certain α ∈ F ∗. Par le théorème de la sous-forme, on a π ⊥ απ ∼=
sρ ⊗ (µ′ ⊥ 〈d〉) ⊥ ξ pour s ∈ F ∗ et ξ une forme de dimension 2n. Soit
e ∈ DF (ρ⊗ µ′) ⊂ DF (π). Puisque e, es ∈ DF (π ⊥ απ), on peut supposer, par
multiplicativité, que s = 1. Par simplification on a τ ⊥ απ ∼ ξ. Par comparai-
son des dimensions, on a τ ⊥ απ isotrope. Ainsi, il existe r ∈ DF (−τ)∩DF (απ).
On a alors δ ∼= π ⊥ rπ avec r ∈ DF (−τ).
(ii) Si n = m, alors ηan ∈ GPmF . Ainsi, il existe x, y ∈ F ∗ tels que δ ∼=
〈x, y〉 ⊗ ηan. On a bien δ ⊥ −(η ⊥ xyη) ∈ In+2F .

5.4. Démonstration de la proposition 2.16. (1) Supposons n > m:
(i) Supposons que la conjecture 2.10 soit vraie. Soit x ∈ Hn+1(Fε/F ). Puisque
Fε(π)/F (π) est transcendante pure, on déduit que x ∈ Hn+1(F (π)/F ). Par
(R1) il existe α ∈ F ∗ tel que x = en+1(π ⊥ απ). Puisque xFε = 0, on
a en+1((π ⊥ απ)Fε) = 0. Par (R4) on a (π ⊥ απ)Fε ∈ In+2Fε. Par le
Hauptsatz, on a π ⊥ απ ∈W (Fε/F ). D’après la conjecture 2.10, on déduit que
π ⊥ απ ∼= π ⊥ −rπ avec r ∈ DF (τ). Ainsi, x = en(π)(r) avec r ∈ DF (τ).
(ii) Supposons que la conjecture 2.15 soit vraie. Soit ρ ∈ Pn+1F ∩W (Fε/F ).
Alors, en+1(ρ) ∈ Hn+1(Fε/F ). Par la conjecture 2.15 on a en+1(ρ) = en(π)(r)
avec r ∈ DF (τ). Par (R4) on a ρ ⊥ −(π ⊥ −rπ) ∈ In+2F . Puisque dim(ρ ⊥
−(π ⊥ −rπ))an < 2n+2, le résultat se déduit par le Hauptsatz.
(2) Supposons n = m:
Supposons que la conjecture 2.15 soit vraie. Soit δ ∈ Pn+1F ∩ W (Fε/F ).
Alors, en+1(δ) ∈ Hn+1(Fε/F ). Par la conjecture 2.15 il existe s ∈ F ∗ tel que
en+1(δ) = en(η)(−s). Par (R4) on obtient δ ⊥ −(η ⊥ sη) ∈ In+2F .

5.5. Démonstration du théorème 2.19. (1) C’est une conséquence de [8,
Theorem 1].

Puisque la conjecture 2.10 implique la conjecture 2.9, on déduit qu’on a par
hypothèse (π0)Fε anisotrope.
(ii) =⇒ (i) Si ψ ∈ Pn+1F et ϕ contient une voisine de ψ, alors on sait que ϕF (ψ)
est isotrope. Si ϕ ⊥ αψ ∈ In+2F , alors par le Hauptsatz on a (ϕ ⊥ αψ)F (ψ) ∼ 0
et donc ϕF (ψ) est isotrope.

(i) =⇒ (ii) Soit ψ de dimension 2n+1 tel que ϕF (ψ) soit isotrope. En particulier,
(π0)Fε(ψ) est isotrope et donc hyperbolique. On peut supposer que 1 ∈ DF (ψ).
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Ainsi,

ψFε
∼= (π0)Fε (3)

• Si n > m: Par la proposition 2.2(iv) et l’équation (3) ψ ∈ W (F (π)/F ).
Ainsi, ψ ∼= π ⊥ απ pour un certain α ∈ F ∗. Par l’équation (3), on a απ ⊥
−abπ ∈ W (Fε/F ). Par la conjecture 2.10, π ⊥ −abαπ ∼= π ⊥ rπ pour un
certain r ∈ DF (−τ). Par la simplification de Witt, on a abαπ ∼= −rπ. Ainsi,
ϕ ∼= −br(απ ⊥ τ). Puisque ψ ∼= π ⊥ απ, on voit que −br(απ ⊥ 〈1〉) est une
voisine de ψ contenue dans ϕ. Donc l’assertion (2) est prouvée.
• Si n = m: Puisque ψFε ∈ In+1Fε on déduit par la proposition 4.3 que ψ ∈
InF . Ainsi, en(ψ) ∈ Hn(Fε/F ). Par le théorème 4.1, on a en(ψ) ∈ {0, en(η)}.
(i) Si en(ψ) = en(η), alors ψ ⊥ −η ∈ In+1F par (R4). On a en+1(ψ ⊥ −η)Fε =
en+1(ψFε) (car ηFε ∼ 0). Par l’équation (3) on a en+1(ψ ⊥ −η)Fε = en+1(π0)Fε .
Par la conjecture 2.15 on a en+1(ψ ⊥ −η) + en+1(π0) = en+1(η ⊥ rη) pour
un certain r ∈ F ∗. Par (R4) on a ψ ⊥ −η ⊥ π0 ⊥ η ⊥ rη ∈ In+2F . Après
simplification et puisque π0 ⊥ rπ0 ∈ In+2F , on obtient ψ ⊥ −rbϕ ∈ In+2F .
(ii) Si en(ψ) = 0, alors ψ ∈ In+1F et donc ψ ∈ Pn+1F . Par l’équation (3)
en+1(ψ ⊥ −π0) ∈ Hn+1(Fε/F ). Par la conjecture 2.15 il existe s ∈ F ∗ tel que
en+1(ψ ⊥ −π0) = en+1(η ⊥ sη). Par (R4) on a ψ ⊥ −π0 ⊥ η ⊥ sη ∈ In+2F .
Après simplification, on a ψ ⊥ −bϕ ⊥ sη ∈ In+2F . Puisque η est isotrope, on
a dim(−bϕ ⊥ sη)an < 2n+2. Par le Hauptsatz on a (−bϕ ⊥ sη)F (ψ) ∼ 0. Par

conséquent, −bϕ ⊥ sη ∼ uψ pour un certain u ∈ F ∗. On a dim ηan < 2n+1.
Ainsi, iW (−bϕ ⊥ −uψ) > 2n, et donc les formes −bϕ et uψ contiennent en
commun une sous-forme µ de dimension > 2n c’est-à-dire ϕ contient une voisine
de ψ. Donc l’assertion (3) est prouvée.

5.6. Démonstration du corollaire 2.21. Dans ce cas, ϕFε est une voisine
anisotrope de (π0)Fε .
(2) =⇒ (1) Evident.
(1) =⇒ (2) Puisque ϕ n’est pas voisine, on a iW (η) = 1 et donc ηan est de
dimension 8. Par la proposition 2.2(ii) on a Fε = F (ηan). Supposons que ϕF (ψ)
soit isotrope et 1 ∈ DF (ψ). Alors, ψFε est une sous-forme de (π0)Fε . On écrit
(π0)Fε

∼= ψFε ⊥ ξ′ avec ξ′ est une Fε-forme quadratique.
(i) Si dimψ ≥ 13, alors dim ξ′ ≤ 3. D’après [16, Theorem 2] il existe δ1 une
F -forme telle que ξ′ ∼= (δ1)Fε . On pose ψ1 = ψ ⊥ δ1. On a (π0)Fε

∼= (ψ1)Fε .
D’après les propositions 2.13 et 2.12, on obtient ϕF (ψ1) isotrope.

(ii) Si dimψ = 12, alors dim ξ′ = 4. On a ηan 6∈ I2F . D’après [16, Theorem 6]
il existe δ2 une F -forme telle que ξ′ ∼= (δ2)Fε . On pose ψ2 = ψ ⊥ δ2. Comme
dans le cas (i) ϕF (ψ2) est isotrope.
(iii) Si dimψ = 11 et ind C0(ψ) ≤ 2. Comme c(ψ)Fε = c(ξ′) et dim ξ′ = 5,
on déduit que ξ′ ∼= 〈d′〉 ⊥ τ pour τ ∈ GP2Fε et d′ = d±ξ′ = −d±ψ [21, Page
10]. D’après [16, Theorem 6] il existe δ3 ∈ GP2F telle que τ ∼= (δ3)Fε . On pose
ψ3 = ψ ⊥ 〈d′〉 ⊥ δ3. Comme dans le cas (i) ϕF (ψ3) est isotrope.
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Dans chacun des trois cas précédents, on obtient par le théorème 2.19 que
ψi ∈ GPn+1F et ϕ contient une voisine de ψi pour i = 1, 2, 3. Par conséquent,
ψ est voisine d’une 4-forme de Pfister dont ϕ contient une voisine.

5.7. Démonstration du théorème 2.24. On suppose 1 ∈ DF (ψ). Puisque
iW (η) = 2, on a dim ηan = 8, et par la proposition 2.2(ii) Fε = F (ηan). Dans
ce cas la conjecture 2.10 est vraie (proposition 2.13). Ainsi, ϕFε est une voisine
anisotrope de (π0)Fε . Posons d = d±ψ.
Supposons que ϕF (ψ) soit isotrope. Alors, (π0)Fε(ψ) ∼ 0, et par conséquent

(π0)Fε
∼= ψFε ⊥ ξ (4)

pour ξ une Fε-forme quadratique.
(1) On suppose que dimψ ≥ 13. Dans ce cas on reprend la même méthode que
celle utilisée dans la démonstration du corollaire 2.21 pour montrer qu’il existe
ψ′ ∈ GP4F tel que ψ ⊂ ψ′ et ϕ contient une voisine de ψ′.
(2) On suppose que dimψ = 12. On a c(dψ)Fε = c(ξ) et c(ηan) = c(τ).
(i) Si d 6= 1, alors d’aprés [16, Théorème 2], il existe ξ′ une F -forme de di-
mension 4 telle que ξ = (ξ′)Fε . Puisque (π0)Fε

∼= (ψ ⊥ ξ′)Fε , on déduit par la
proposition 2.13 que π0 est isotrope sur F (ψ ⊥ ξ′). Par le théorème 2.19 on a
ψ ⊥ ξ′ ∈ GP4F et ϕ contient une voisine de ψ ⊥ ξ′.
(ii) Si d = 1 et c(ψ) 6= c(τ). Alors, c(ψ)Fε 6= c(τ)Fε car H2(Fε/F ) = {0}
(théorème 4.1). Ainsi, c(ξ) 6= c(τ)Fε . De nouveau par [16, Théorème 2] il
existe ξ′′ une F -forme de dimension 4 telle que ξ ∼= ξ′′Fε . Comme dans le cas (i)
on a ψ ⊥ ξ′′ ∈ GP4F et ϕ contient une voisine de ψ ⊥ ξ′′.
(iii) Si d = 1 et c(ψ) = c(τ), alors ξ est semblable à τ . Ainsi, (π0)Fε(τ) ∼ 0
et donc ψFε(τ) ∼ 0. Comme Fε(π)/F (π) est transcendante pure, on obtient
ψF (π)(τ) ∼ 0.
• Si ψF (τ) ∼ 0, alors ψ est divisible par τ et donc voisine d’une 4-forme de
Pfister ρ. Par conséquent, ϕF (ρ) est isotrope et par le théorème 2.19 ϕ contient
une voisine de ρ.
• Si ψF (τ) 6∼ 0. Alors ψF (τ) ∼ λπ pour un certain λ ∈ F (τ)∗. Par l’excellence
de F (τ)/F ([2], [34]) il existe π1 une F -forme quadratique de dimension 8
telle que ψF (τ) ∼ (π1)F (τ). Puisque c(π1)F (τ) = 0, on peut supposer que

π1 ∈ GP3F [4, 2.10]. Puisque ψ ⊥ −π1 ⊥ τ ∈ I3F , on obtient que e3(ψ ⊥
−π1 ⊥ τ) ∈ H3(F (τ)/F ) = c(τ) · H1F [1]. Ainsi, il existe c ∈ F ∗ tel que
e3(ψ ⊥ −π1 ⊥ τ) = c(τ) · (c) = e3(τ ⊥ −cτ). Par conséquent,

ψ ⊥ −π1 ⊥ cτ ∈ I4F (5)

Soit α ∈ DF (π1). Puisque λπ ∼= (π1)F (τ), on a πF (τ) ∼= (απ1)F (τ). Ainsi,
(π ⊥ −απ1)F (τ) ∼ 0. Comme dim(π ⊥ −απ1)an ≤ 14 et c(π ⊥ −απ1) = 0, on
obtient

π ⊥ −απ1 ∼ ρ′ ⊗ τ (6)

pour ρ′ une forme quadratique de dimension paire ≤ 2. Des équations (5) et
(6) et modulo I4F , on obtient

ψ ⊥ −π ⊥ (ρ′ ⊥ 〈c〉)⊗ τ ∈ I4F (7)

Documenta Mathematica · Quadratic Forms LSU 2001 · 219–240



Certaines Combinaisons de Deux Formes de Pfister · · · 235

Soit e ∈ F ∗ tel que (ρ′ ⊥ 〈c〉) ⊗ τ ⊥ eτ ∈ I4F . De l’équation (7) on a
ψ ⊥ −π ⊥ −eτ ∈ I4F . Avec l’équation (4) on a

(abπ)Fε ⊥ −ξ ⊥ (−eτ)Fε ∈ I4Fε (8)

En particulier, (abπ)Fε ⊥ −ξ ⊥ (−eτ)Fε ∈ GP4Fε. Ainsi, πFε
∼= τFε ⊥ eξ. Par

conséquent, (eη)Fε ∼ ξ et par l’équation (4) (π0)Fε ∼ (ψ ⊥ eη)Fε . Comme µ :=
π0 ⊥ −ψ ⊥ −eη ∈ I3F (car d’invariant de Clifford trivial), on a e3(µ)Fε = 0.
Puisque ηan n’est pas voisine, on a H3(Fε/F ) = {0} [1]. Par conséquent µ ∈
I4F et donc e4(µ) ∈ H4(Fε/F ). D’après les propositions 2.13 et 2.16, il existe
r ∈ DF (τ) tel que e

4(µ) = e3(π) · (r). Par (R4) abπ ⊥ −ψ ⊥ −eη ⊥ rπ ∈ I5F .
D’où le résultat.
Réciproquement, supposons qu’il existe x ∈ F ∗, y ∈ DF (τ) tels que abπ ⊥
−ψ ⊥ xη ⊥ yπ ∈ I5F . Alors, π0 ⊥ −ψ ⊥ xη ⊥ −(π ⊥ −yπ) ∈ I5F .
Par la proposition 2.11(1) on a π ⊥ −yπ ∈ W (Fε/F ). Ainsi, (π0 ⊥
−ψ ⊥ xη)Fε ∈ I5Fε. Puisque dim(ηFε)an = 4, on obtient ν := (π0 ⊥
−ψ)Fε ⊥ ((xη)Fε)an ∈ GP5Fε. Par le Hauptsatz, νFε(ψ) ∼ 0 c’est-à-dire
(π0)Fε(ψ) ∼ ψFε(ψ) ⊥ −((xη)Fε(ψ))an. Ainsi, (π0)Fε(ψ) est isotrope. On ap-
plique successivement les propositions 2.13 et 2.12 pour déduire que ϕF (ψ) est
isotrope.
(3) On suppose que dimψ = 11:
Puisque indC0(ψ) ≤ 2, on a aussi indC0(ξ) ≤ 2 et donc ξ = 〈d〉 ⊥ ξ′ pour une
certaine ξ′ ∈ GP2Fε [21, Page 10] (c’est-à-dire ξ est voisine). Par conséquent,
(π0)Fε(δ) ∼ 0 où δ = ψ ⊥ 〈d〉. On applique successivement les propositions 2.13
et 2.12 pour déduire que ϕF (δ) est isotrope.

5.8. Démonstration de la proposition 3.5.

Lemme 5.2. On garde les mêmes notations que dans (∗∗). Soit η1 = 〈1,−d〉⊗
π′1 ⊥ 〈−dd′〉 et η′ = η1 ⊥ 〈d′〉. Alors, on a:
(1) W (F (η)/F ) ⊂W (F (η1)/F ).
(2) c(η′) = c(τ), η′ ∈ I2F et les corps F (η1) et F (η′) sont F -équivalents. En
particulier, W (F (η)/F ) ⊂W (F (η′)/F ).
(3) La forme η1 n’est pas une voisine.

Démonstration. (1) Puisque η1 ⊂ −bd′η, on a que ηF (η1) est isotrope et donc
il existe une F -place de F (η) vers F (η1) [20, Theorem 3.3]. Par conséquent,
W (F (η)/F ) ⊂W (F (η1)/F ).
(2) On vérifie facilement que c(η′) = c(τ). Il est clair que η′ = 〈1,−d〉 ⊗ (π′1 ⊥
〈d′〉). Ainsi, η′ ∈ I2F et iW (η′F (η′)) ≥ 2. Par le lemme 3.1 η1 est isotrope

sur F (η′). Puisque η′ est isotrope sur F (η1), les corps F (η
′) et F (η1) sont F -

équivalents et doncW (F (η1)/F ) =W (F (η′)/F ). Par l’assertion (1) on obtient
W (F (η)/F ) ⊂W (F (η′)/F ).
(3) Si η1 était voisine, on aurait η′ ∈ GPnF (car dim η′ = 2n) et donc c(η′) =
c(τ) = 0, une contradiction.
Le théorème suivant jouera un rôle important dans la démonstration.
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Théorème 5.3. (Fitzgerald [5, Proposition 1.4])
Soient ϕ une forme quadratique voisine d’une n-forme de Pfister ρ et ϕ′ =
ϕ ⊥ 〈y〉 pour y ∈ F ∗. Supposons que ϕ′ ne soit pas voisine de ρ. Soit ϕ′′ ∈
W (F (ϕ′)/F ). Alors, ϕ′′ ∼= π1 ⊥ · · · ⊥ πs pour un certain entier s ≥ 1 et
πi ∈ GPn+1F ∩W (F (ϕ′)/F ) pour tout i ∈ {1, · · · , s}.
Démonstration de la proposition. (1) On a −1 ∈ S(ϕ). En effet, il est clair
que τ ⊥ −π est isotrope. Puisque iW (τ ⊥ −π) = 2, on déduit que (τ ⊥
−π)an = 〈〈d〉〉 ⊗ (−π′1 ⊥ 〈−d′〉) et donc −d′ ∈ DF ((τ ⊥ −π)an). Ainsi,
d′ 〈1, b〉 ⊥ (τ ⊥ −π)an est isotrope.
(2) Puisque τ ⊥ απ est isotrope, alors (τ ⊥ απ)an est semblable à (τ ⊥ −π)an
qui est de dimension 2n. Puisque d′ 〈1, b〉 ⊥ (τ ⊥ απ)an est isotrope, le résultat
s’en déduit.
(3) Soit ρ ∈ Pn+1F ∩W (F (η)/F ) anisotrope. Puisque η est isotrope sur F (π)
(lemme 3.3), on déduit que ρF (π) ∼ 0. Alors,

ρ ∼= π ⊥ απ
pour α ∈ F ∗. Par le théorème de la sous-forme on a

ρ ∼= −bd′η ⊥ ξ
pour ξ une forme de dimension 2n. La simplification de Witt dans la relation
ρ ∼= π ⊥ απ ∼= −bd′η ⊥ ξ implique

〈1,−d〉 ⊥ απ ∼= 〈−bd′,−dd′〉 ⊥ ξ (9)

Par le lemme 5.2(2) on a ρF (η′) ∼ 0, et par le théorème de la sous-forme on a
ρ ∼= η′ ⊥ ξ′ pour ξ′ une forme quadratique de dimension 2n (η′ comme dans le
lemme 5.2). La simplification de Witt dans la relation ρ ∼= −bd′η ⊥ ξ ∼= η′ ⊥ ξ′
implique

ξ ∼ d′ 〈1, b〉 ⊥ ξ′ (10)

Des équations (9) et (10) on obtient

τ ⊥ απ ∼ ξ′.
On substitue dans l’équation (10) pour obtenir ξ ∼ d′ 〈1, b〉 ⊥ (τ ⊥ απ)an.
Par comparaison des dimensions on a d′ 〈1, b〉 ⊥ (τ ⊥ απ)an isotrope. D’où le
résultat.
Réciproquement, soit α ∈ S(ϕ) et ρ = π ⊥ απ ∈ Pn+1F . On vérifie facilement
les relations

−bd′η ∼ 〈1,−d〉 ⊗ π′1 ⊥ 〈−bd′,−dd′〉 (11)

π ⊥ −τ ∼ 〈1,−d〉 ⊗ π′1 ⊥ d′ 〈1,−d〉 (12)

Des relations (11) et (12) on a

−bd′η ∼ (π ⊥ −τ)an ⊥ −d′ 〈1, b〉 (13)
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Puisque ρ ∼ (π ⊥ −τ)an ⊥ (τ ⊥ απ)an, on a par l’équation (13) que

ρ ∼ −bd′η ⊥ (d′ 〈1, b〉 ⊥ (τ ⊥ απ)an)an.

Puisque dim η = 2n et dim(d′ 〈1, b〉 ⊥ (τ ⊥ απ)an)an ≤ 2n, on déduit que ρF (η)
est isotrope.

5.9. Démonstration du théorème 3.6.

Proposition 5.4. La forme ϕF (η) est une voisine anisotrope de (π0)F (η).

Démonstration. Comme dans la démonstration de l’assertion (3) du lemme 3.3
on a ϕF (η) ⊂ (π0)F (η). Si (π0)F (η) est isotrope, alors on obtient par le théorème
de la sous-forme

π ⊥ −bd′π ∼= xη ⊥ ξ
pour ξ une forme quadratique de dimension 2n et x ∈ F ∗. Soit β ∈ DF (π

′
1).

Alors, −bd′β ∈ DF (η)∩DF (π ⊥ −bd′π). Comme −xbd′β ∈ DF (xη) ⊂ DF (π ⊥
−bd′π), on peut supposer, par multiplicativité, que x = 1. Par simplification,
on obtient que ϕ ∼ ξ. Une contradiction, car ϕ est anisotrope.
Démonstration du théorème. On suppose que 1 ∈ DF (ψ).
(1) =⇒ (2) Puisque ϕF (ψ) est isotrope, on déduit que ϕF (η)(ψ) est isotrope
et donc (π0)F (η)(ψ) ∼ 0. Comme (π0)F (η) est anisotrope (proposition 5.4),
on a par le théorème de la sous-forme (π0)F (η) ∼= ψF (η). Ainsi, π0 ⊥ −ψ ∈
W (F (η)/F ). On a dim(π0 ⊥ −ψ)an ≤ 2n+2−2 < 2n+2. Soit η1 comme dans le
lemme 5.2. PuisqueW (F (η)/F ) ⊂W (F (η1)/F ) et η1 n’est pas voisine (lemme
5.2), il existe par le théorème 5.3 une forme ρ ∈ GPn+1F ∩W (F (η1)/F telle
que

(π0 ⊥ −ψ)an ∼ ρ (14)

Comme π0, ρ ∈ Pn+1F , on a ψ ∈ In+1F et donc ψ ∈ Pn+1F . On a aussi
ρF (η) ∼ 0 (car (π0 ⊥ −ψ)F (η) ∼ 0). Par la proposition 3.5, il existe s ∈ S(ϕ),
u ∈ F ∗ tels que ρ ∼= u(π ⊥ sπ). De l’équation (14) on a π0 ⊥ −ρ isotrope.
Soit v ∈ DF (π0) ∩DF (ρ). Alors, π0 ⊥ −ρ ∼ v(π0 ⊥ −(π ⊥ sπ)) ∼ ψ. Ainsi,
ψ ∼= −vs(π ⊥ sbd′π).
(2) =⇒ (1) Soit s ∈ S(ϕ) tel que ψ soit semblable à ρ := π ⊥ sbd′π. On a
π0 ⊥ −ρ ∼ −bd′(π ⊥ sπ). D’après la proposition 3.5, on déduit que (π0 ⊥
−ρ)F (η) ∼ 0. Ainsi, (π0)F (η) ∼= ρF (η). Par la proposition 5.4, on déduit que
ϕF (ρ) est isotrope et donc ϕF (ψ) l’est aussi.

5.10. Démonstration du théorème 3.7. Par la proposition 5.4, on a que
ϕF (ψ) est isotrope si et seulement si ψF (η) est semblable à une sous-forme de

(π0)F (η). La forme η 6∈ I2F car sinon par un simple calcul on aurait ϕ isotrope.
Puisque η est de dimension 8 on peut utiliser les mêmes techniques de descente
que dans la démonstration du corollaire 2.21, et on finit la preuve en utilisant
le théorème 3.6.
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degré 3 (en russe), Izv. Akad. Nauk SSSR 54 (1990), 339–356. Traduction
anglaise: Math. USSR Izv. 36 (1991), 349–367.

[30] F. Morel, Suite spectrale d’Adams et invariants cohomologiques des formes
quadratiques, C. R. Acad. Sci. Paris 328 (1999), 963–968.

[31] D. Orlov, A. Vishik, V. Voevodsky: An exact sequence
for Milnor’s K-theory with applications to quadratic forms,
http://www.math.uiuc.edu/K-theory/454/.

[32] E. Peyre, Products of Severi–Brauer varieties and Galois cohomology,
Proceedings of Symposia in Pure Mathematics, AMS Summer Research
Institute, Santa Barbara, 1992. Volume 58.2, 369–401.

[33] M. Rost, Hilbert’s theorem 90 for KM
3 for degree-two extensions,
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Abstract. The notions of totally indefinite and weakly isotropic
algebras with involution are introduced and a proof is given of the
fact that a field satisfies the Effective Diagonalization Property (ED)
if and only if it satisfies the following weak Hasse principle: every
totally indefinite central simple algebra with involution of the first
kind over the given field is weakly isotropic. This generalizes a known
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1. Introduction

Let F be a field of characteristic different from two and let (A, σ) be a central
simple algebra over F with involution of the first kind (i.e. σ|F = 1F ). Recall
that σ is called orthogonal (resp. symplectic) if σ is adjoint to a symmetric
(resp. skew-symmetric) bilinear form, after scalar extension to a splitting field
of A.
The connection between orthogonal involutions and quadratic forms has been
a motivation for extending quadratic form theoretic concepts and theorems to
the realm of algebras with involution (of any kind). For example, the classical
invariants (discriminant, Clifford algebra, signature) of quadratic forms have
been defined for algebras with involution (see [7]) and classification theorems
à la Elman and Lam [5] have been obtained by Lewis and Tignol [14]. Some
more examples include: a Cassels-Pfister theorem [19], an orthogonal sum for
Morita-equivalent algebras with involution [2] and analogues of the Witt ring
[12, 3].
In this paper we will examine the extension to central simple algebras with
an involution of the first kind of the following weak Hasse principle for weak
isotropy:

(WH): Every totally indefinite quadratic form over F is weakly isotropic
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and prove an analogue of the following theorem due to Prestel [15] and Elman
et al. [4]:

Theorem 1.1. F satisfies (WH) ⇐⇒ F satisfies the Strong Approximation
Property.

In particular, we will show that every totally indefinite central simple F -algebra
with involution of the first kind is weakly isotropic if and only if F satisfies the
Effective Diagonalization Property. Our result can also be re-interpreted to
give a partial generalization of a theorem of Lewis [11] on sums of squares
representing zero in a central simple algebra.
We mention that there is a refined (and more difficult) version of Theorem 1.1,
which holds for arbitrary base fields, due to Bröcker [1, 3.9] and Prestel [16, p.
93]. It says that if φ is a totally indefinite quadratic form over a field F , and if
for every valuation with real residue class field, at least one residue class form
of φ is weakly isotropic, then φ is weakly isotropic. This statement can also be
found in [18, 3.7.12]. Its converse is easily seen to be true.
All involutions on central simple algebras considered in this paper are of the first
kind and all forms (quadratic, hermitian, . . . ) are assumed to be nonsingular.
Standard references are [8] and [18] for the theory of quadratic forms, [7] for
central simple algebras with an involution and [16] for real fields.

2. Weakly isotropic and totally indefinite algebras

In this section we will generalize the notions of totally indefinite and weakly
isotropic quadratic forms to the setting of central simple algebras (A, σ) with
an involution of the first kind over a field F of characteristic 6= 2. We denote
the space of orderings of F by XF and an arbitrary ordering of F by P .

Definition 2.1. Let (A, σ) be a central simple F -algebra with involution of
the first kind. A right ideal I in A is called isotropic (with respect to the
involution σ) if for all x and y in I we have that σ(x)y = 0. The algebra with
involution (A, σ) is called isotropic if A contains a nonzero isotropic right ideal,
or equivalently, if there exists an idempotent e 6= 0 in A such that σ(e)e = 0
(see [7, 6.A]). We also say that (A, σ) is anisotropic if for x ∈ A, σ(x)x = 0
implies x = 0.

Recall that a quadratic form q over F is weakly isotropic if there exists an
n ∈ N such that n× q is isotropic.

Definition 2.2. The algebra with involution (A, σ) is called weakly isotropic
if there exist nonzero x1, . . . , xn ∈ A such that σ(x1)x1 + · · · + σ(xn)xn = 0
and strongly anisotropic otherwise.

Remark 2.3. In [21] an n-fold orthogonal sum ¢n(A, σ) is defined and it is
shown there that ¢n(A, σ) ∼= (Mn(F ), t)⊗F (A, σ), where t denotes the trans-
pose involution. This is on the one hand in accordance with Dejaiffe’s [2]
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construction of an orthogonal sum of two Morita-equivalent algebras with invo-
lution and on the other hand what one would expect since n×q = 〈1, . . . , 1︸ ︷︷ ︸

n×

〉⊗q

and ¢n(A, σ) reduces to n×q in the split case when σ is adjoint to a quadratic
form q. In analogy with the quadratic form case, one could define (A, σ) to
be weakly isotropic by requiring that ¢n(A, σ) is isotropic for some positive
integer n and it is easy to see that this condition is equivalent with the one
given in Definition 2.2.

Let (D,ϑ) be a central division algebra over F with involution of the first kind
and (V, h) an ε-hermitian form over (D,ϑ), ε = ±1. Recall [7, 4.A] that the
adjoint involution σh of h on EndD(V ) is implicitly defined by

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
for x, y ∈ V and f ∈ EndD(V )

and that σh is also of the first kind.
Just as for quadratic forms, we say that the ε-hermitian form h is weakly
isotropic if there exists a positive integer n such that n× h is isotropic.

Lemma 2.4. Let (D,ϑ), (V, h) and σh be as above. Then (EndD(V ), σh) is
weakly isotropic if and only if h is weakly isotropic. More precisely, there exist
f1, . . . , fn ∈ EndD(V ) such that σh(f1)f1 + · · · + σh(fn)fn = 0 if and only if
there exist x1, . . . , xn ∈ V such that h(x1, x1) + · · ·+ h(xn, xn) = 0.

Proof. The lemma is folklore, and we only give the argument since we couldn’t
find a suitable reference. It suffices to show that (EndD(V ), σh) is isotropic if
and only if h is isotropic.
If σh is isotropic, there is 0 6= f ∈ EndD(V ) with σh(f)f = 0. Choose v ∈ V
with f(v) 6= 0. Then

0 = h
(
σh(f)(f(v)), v

)
= h

(
f(v), f(v)

)

shows that h is isotropic. Conversely, if h(v, v) = 0 for some v ∈ V , then
σh(f)f = 0 for any f ∈ EndD(V ) with f(V ) ⊂ vD.

Corollary 2.5. Let (EndF (V ), σq) be a split algebra with involution, adjoint
to a quadratic form q on V . Then there exist f1, . . . , fn ∈ EndF (V ) such that
σq(f1)f1 + · · · + σq(fn)fn = 0 if and only if there exist x1, . . . , xn ∈ V such
that q(x1) + · · ·+ q(xn) = 0.

Now suppose that F is a real field and that P is an ordering of F . In [13]
Lewis and Tignol defined the signature of an algebra (A, σ) with involution of
the first kind as

sigP σ =
√

sigP Tσ,

where Tσ is the involution trace form, defined by Tσ(x) := TrdA(σ(x)x),∀x ∈
A. If (A, σ) is split with orthogonal involution, (A, σ) ∼= (EndF (V ), σq), then
Lewis and Tignol showed that sigP σq = | sigP q|.
Recall that a quadratic form q over F is called totally indefinite if it is indefinite
for each ordering P of F , i.e. | sigP q| < dim q for each P .
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Definition 2.6. The algebra with involution (A, σ) is called indefinite for the
ordering P of F if sigP σ < degA and totally indefinite if it is indefinite for
each ordering P of F .

3. The weak Hasse principle

We now have all the ingredients ready to generalize (WH) to:

(WHA): Every totally indefinite algebra with involution of the first

kind over F is weakly isotropic.

In [20, Ch. 5] Unger showed that (WHA) holds for fields with a unique order-
ing, algebraic number fields and R(t). These fields are some of the standard
examples of SAP fields, as described below.

Definition 3.1. The field F satisfies the Strong Approximation Property (or
is SAP, for short) if the following equivalent conditions hold:

(i) Every clopen subset of XF has the form {P ∈ XF | a >P 0} for some
a ∈ F×.

(ii) For all a, b ∈ F× the quadratic form 〈1, a, b,−ab〉 is weakly isotropic.
(iii) Every quadratic form q such that a power of q is weakly isotropic, is itself

weakly isotropic.
(iv) For any two disjoint closed subsets X,Y of XF , there exists an a ∈ F×

such that a >P 0,∀P ∈ X and a <P 0,∀P ∈ Y .
(v) For every (Krull) valuation v : F× ³ Γ with value group Γ and real

residue class field F v, either (a) or (b) holds:
(a) Γ = 2Γ;
(b) |Γ/2Γ| = 2 and F v has a unique ordering.

Condition (iv) is the original definition of SAP fields, due to Knebusch et al.
[6, Thm. 12]. The equivalence (i) ⇐⇒ (iv) is given in [6, Thm. 12, Cor.
13]. Prestel [15, (2.2), (3.1)] showed (ii) ⇐⇒ (iii) ⇐⇒ (v) ⇐⇒ F is a
Pasch field, while the equivalence F is SAP ⇐⇒ F is Pasch can be found in
[4, Thm. C]. The notion of a Pasch field was first introduced by Prestel; for a
definition we refer the reader to [15]. Additional references for SAP fields are
the monographs by Lam [9] and Prestel [16].

Example 3.2. Here are some examples of SAP fields:

(1) Fields with only one ordering.
(2) Algebraic number fields.
(3) Fields of transcendence degree ≤ 1 over a real-closed field, e.g. R(t).
(4) F ((t)) if F has at most one ordering.

The following fields are not SAP:

(5) The rational function field Q(x).
(6) The rational function field F (x, y), where F is any real field.

Based on the results in [20, Ch. 5] it was tempting to think that (WHA)
would hold for all SAP fields. The Strong Approximation Property is definitely
required, for if F is not SAP, we can construct a counterexample as follows:
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There exist a, b ∈ F× such that q := 〈1, a, b,−ab〉 is strongly anisotropic. Hence
the algebra (A, σ) = (EndF (F

4), σq) is strongly anisotropic by Corollary 2.5.
However, the form Tσ = q ⊗ q is equal to

q ⊗ q = q ⊥ aq ⊥ bq ⊥ −abq
= 〈1, a, b,−ab, a, 1, ab,−b, b, ab, 1,−a,−ab,−b,−a, 1〉
= 6× 〈1,−1〉 ⊥ 〈1, 1, 1, 1〉,

so Tσ is in fact isotropic and hence totally indefinite. Therefore the orthogonal
involution σ is totally indefinite.
For quadratic forms, this argument was of course already known in the 1970’s,
as testified by Theorem 1.1. We merely presented it from the point of view of
algebras with involution.
A counterexample in the symplectic case can be constructed by tensoring the
previous algebra with the quaternion division algebra (−1,−1)F equipped with
the canonical (symplectic) involution, which is strongly anisotropic.
As it turns out, a property stronger than SAP is needed, the Effective Diago-
nalization Property, first defined by Ware [22], which we will describe now.

Definition 3.3. A quadratic form 〈a1, . . . , an〉 is effectively diagonalizable if
it is isometric to a form 〈b1, . . . , bn〉 satisfying bi ∈ P =⇒ bi+1 ∈ P for all
1 ≤ i < n and all P ∈ XF . The field F satisfies the Effective Diagonalization
Property (or is ED, for short) if every quadratic form over F is effectively
diagonalizable.

The class of ED fields is a proper subclass of the class of SAP fields.

Example 3.4. The field Q((t)) is SAP, but not ED.

Prestel and Ware [17] proved the following characterization theorem:

Theorem 3.5. F is ED if and only if for every (Krull) valuation v : F× ³ Γ
with value group Γ and real residue class field F v, we have |Γ/2Γ| ≤ 2 and F v
is euclidean in case |Γ/2Γ| = 2.

(Recall that a field is euclidean if it is uniquely ordered and every positive
element is a square.) They also showed:

Theorem 3.6. If F is ED then every 2-extension of F is also ED. (In partic-
ular, the pythagorean closure of F is ED.)

(Recall that an extension K of F is called a 2-extension of F if K is contained
in the quadratic closure of F .)

Remark 3.7. The ED property also played an important role in the classifica-
tion theorems of Lewis and Tignol [14].

Our generalization of Theorem 1.1 reads:

Theorem 3.8. F is ED ⇐⇒ F satisfies (WHA).

The proof will follow from the results below (Theorems 3.11 and 3.12).
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Lemma 3.9. Let (A, σ) be a central simple algebra with involution of the first

kind over F . Let d ∈ F be a sum of squares, and let K = F (
√
d). Suppose that

(A⊗F K,σK) is weakly isotropic. Then (A, σ) is weakly isotropic.

Proof. We may assume that (A⊗F K,σK) is isotropic. Hence there exist x, y ∈
A, not both zero such that

(
σ(x) + σ(y)

√
d
)(
x+ y

√
d
)
= 0.

Separating, this implies σ(x)x + dσ(y)y = 0. Suppose d = d21 + · · · + d2r with
di ∈ F , then

σ(x)x+ σ(d1y)(d1y) + · · ·+ σ(dry)(dry) = 0,

i.e. (A, σ) is weakly isotropic.

Lemma 3.10. Let F be a pythagorean SAP field and A a central simple algebra
of exponent 2 over F . Then A is Brauer-equivalent to a quaternion division
algebra (−1, f)F for some f ∈ F×.

Proof. By a well-known theorem of Merkurjev, A is Brauer-equivalent to a
tensor product of finitely many quaternion division algebras over F . Without
loss of generality, we may assume that A is Brauer-equivalent to (a, b)F ⊗F
(a′, b′)F for certain a, a′, b, b′ ∈ F×, and that (a, b)F and (a′, b′)F do not split.
Since (a, b)F is a division algebra, its norm form 〈1,−a,−b, ab〉 is anisotropic.
Hence 〈a, b,−ab〉 is anisotropic. Since F is SAP, the quadratic form 〈1, a, b,−ab〉
is weakly isotropic, and thus isotropic, since F is pythagorean. Hence
〈1, a, b,−ab〉 ' 〈1,−1, c, d〉 for certain c, d ∈ F×. Comparing determinants,
we get 〈1, a, b,−ab〉 ' 〈1,−1, c, c〉, which implies 〈a, b,−ab〉 ' 〈−1, c, c〉, and
thus (a, b)F ∼= (−1, c)F .
Similarly, (a′, b′)F ∼= (−1, c′)F for some c ∈ F×, and so A is Brauer-equivalent
to (−1, cc′)F .

Theorem 3.11. Assume that F is ED, then F satisfies (WHA).

Proof. Let (A, σ) be totally indefinite. We will show that (A, σ) is weakly
isotropic.
If A is split, the theorem is true by Theorem 1.1 (when σ is orthogonal) or
trivial (when σ is symplectic).
If the degree of A is odd, then A is split and σ is orthogonal. So we are done
in this case. Hence we may assume that A is not split and degA = n = 2m is
even.
Since F is ED, its pythagorean closure is ED. By Lemma 3.9 we may replace
F by its pythagorean closure. (The pythagorean closure Fpyth is in general an
infinite extension of F but, for any given algebra A, we only need to pass to a
finite extension of F , sitting inside Fpyth. Then we apply Lemma 3.9 finitely
many times.) So we assume from now on that F is a pythagorean ED field.
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By Lemma 3.10, A is Brauer-equivalent to a quaternion division algebra D :=
(−1, f)F for some f ∈ F×. So now we have

(A, σ) ∼= (EndD(D
m), σh) ∼= (Mm(D), σh),

where σh is the adjoint involution of a form h : Dm × Dm −→ D, which is
hermitian or skew-hermitian with respect to quaternion conjugation on D,
according to whether σ is symplectic or orthogonal.
Suppose first that σ is symplectic, so that h is hermitian. By [18, 7.6.3] there
exists a basis {e1, . . . , em} of Dm over D which is orthogonal with respect to
h. Let λi = h(ei, ei) for i = 1, . . . ,m. Lewis and Tignol [13, Cor. 2] showed
that λi ∈ F for all i = 1, . . . ,m and that

Tσ = 〈2〉 ⊗N ⊗ Λ⊗ Λ

where N is the norm form of D and Λ = 〈λ1, . . . , λm〉. By assumption Tσ
is totally indefinite, and hence weakly isotropic. Then N ⊗ Λ ⊗ Λ is weakly
isotropic and so N ⊗ N ⊗ Λ ⊗ Λ is weakly isotropic. Since F is SAP, this
implies (by Definition 3.1(iii)) that N ⊗ Λ is weakly isotropic. Since h(x, x) =
λ1N(x1) + · · · + λmN(xm) for x = (x1, . . . , xm) ∈ Dm, this implies that the
hermitian form h is weakly isotropic over D and hence that (A, σ) is weakly
isotropic.
Suppose next that σ is orthogonal, so that h is skew-hermitian. Put K =
F (
√
f) (note that f is not a square, since D is a division algebra). Over K, the

algebra A splits. Since (A, σ) is totally indefinite, it is clear that (A, σ)⊗F K
is also totally indefinite. Being a 2-extension of the ED field F , the field K
is SAP and, by Theorem 1.1, it follows that (A, σ) ⊗F K is weakly isotropic,
since A ⊗F K is split. This implies that the skew-hermitian form h becomes
weakly isotropic over K (i.e. as a form over DK

∼=M2(K)). ¿From this we will
now deduce that that the form h itself is weakly isotropic, i.e. that the algebra
(A, σ) is weakly isotropic.
Replacing h byN×h forN À 0 if necessary, there are x, y ∈ Dm, not both zero,
such that hK(x + y

√
f, x + y

√
f) = 0. This implies h(x, x) + fh(y, y) = 0. If

h(y, y) = 0, it follows that h is (weakly) isotropic and we are done. Otherwise,
u := h(y, y) ∈ D is a non-zero pure quaternion (since h is skew-hermitian) and
h has a diagonalization

h ' 〈−fu, . . .〉.
Now let d := u2 = −Nrd(u) ∈ F×. Then d < 0 on {P ∈ XF |f <P 0} and
therefore DFP

∼= (d, f)FP for all orderings P ∈ XF (here FP denotes the real
closure of F with respect to P ). Hence D ∼= (d, f)F by Pfister’s local-global
principle (note that the Witt ring of F is torsion free, since F is pythagorean;
see [18, 2.4.10–11]), and there exists a pure quaternion v ∈ D with

v2 = −Nrd(v) = f and uv + vu = 0.

Thus v = Nrd(v)v−1 = −fv−1, and so

vuv = −fv−1uv = −f(−u) = fu.
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Therefore h(yv, yv) = vuv = fu and h also has a diagonalization

h ' 〈fu, . . .〉.
This implies that h ⊥ h ' 〈−fu, fu, . . .〉, which is isotropic. In other words, h
is weakly isotropic and hence σ is weakly isotropic. We are done.

Theorem 3.12. For any non-ED field F , there is an algebra (A, σ) with invo-
lution of the first kind (and of either type) over F which is strongly anisotropic
but totally indefinite.

Proof. The statement is clear if the field is not SAP (there is an involution
which is totally indefinite and strongly anisotropic, as explained just after Ex-
ample 3.2), so we concentrate on the case of a SAP field which is not ED.
Let F be such a field. Then F has a (Krull) valuation v whose value group
Γ satisfies Γ/2Γ = Z/2Z, and whose residue field F v is real without being
euclidean (this follows from Definition 3.1(v) and Theorem 3.5). Let π ∈ F×
with v(π) /∈ 2Γ, and let a ∈ F× be a v-unit whose residue class in F v is a sum of
squares but not a square. We choose a such that a is a sum of squares in F , and
consider the quaternion (division) algebra A = (a, π) over F . Let 1, i, j, k = ij
be the standard F -basis of A, satisfying i2 = a, j2 = π and k2 = −aπ. Let h
be the (diagonal) skew-hermitian form h = 〈j, k〉 over (A, ) (where denotes
the standard (symplectic) involution on A), and let σ be the adjoint involution
of h on M2(A). We claim that σ is totally indefinite, but not weakly isotropic.

To show this, let L = F (
√
a). We fix the splitting φ : AL

∼−→ M2(L) over L
given by

i 7→
(√

a 0
0 −√a

)
and j 7→

(
0 1
π 0

)
.

Under φ, h corresponds to a similarity class of quadratic forms q (of rank 4)
over L. We are going to calculate q.
For x ∈ A× with x+x = 0, let σx be the (orthogonal) involution on A given by
σx(z) = x−1zx. Under φ, σx ⊗ 1 corresponds to a similarity class of quadratic

forms qx over L. Writing J :=

(
0 −1
1 0

)
we have qx = J · φ(x). In particular,

taking x = j and x = k, we find

qj = 〈−π, 1〉 and qk = 〈π√a,√a〉.
Thus

q ' 〈1,√a,−π, π√a〉.
The form q is totally indefinite. Since the extension L/F is totally real, the
involution trace form Tσ (over F ) is totally indefinite as well and hence σ is
totally indefinite.
On the other hand, the residue forms of q with respect to v are 〈1,

√
a〉 and

〈−1,
√
a〉 (note that denotes taking residue classes here). Neither of them

is totally indefinite. Hence q is strongly anisotropic. Therefore σ cannot be
weakly isotropic.
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The symplectic case can be treated again by tensoring our algebra with the
quaternion division algebra (−1,−1)F , equipped with quaternion conjugation.

Putting everything together now yields a proof of Theorem 3.8.

4. Sums of hermitian squares

In [11], Lewis proved the following theorem, settling a conjecture of Leep
et al. [10].

Theorem 4.1. Let A be a central simple algebra over a field F of characteristic
6= 2. Then 0 is a nontrivial sum of squares, i.e. there exist nonzero x1, . . . , x` ∈
A such that 0 = x21+· · ·+x2` , if and only if the trace form TA is weakly isotropic.

The natural adaptation of this theorem in the setting of algebras with involution
of the first kind is an easy consequence of the work we have done hitherto:

Definition 4.2. Let (A, σ) be a central simple algebra with involution of the
first kind over a field F and x ∈ A. Then σ(x)x is called a hermitian square
in A.

Theorem 4.3. Let (A, σ) be a central simple algebra with involution of the first
kind over an ED-field F . Then 0 is a nontrivial sum of hermitian squares, i.e.
there exist nonzero x1, . . . , x` ∈ A such that 0 = σ(x1)x1 + · · · + σ(x`)x`, if
and only if the involution trace form Tσ is weakly isotropic.

Proof. The necessary condition follows trivially (and does not require ED) by

simply taking the reduced trace of both sides of 0 =
∑`
i=1 σ(xi)xi.

For the sufficient condition, suppose that Tσ is weakly isotropic. Then Tσ, and
hence σ, is totally indefinite. Therefore σ is weakly isotropic (since F is ED), i.e.
there exist nonzero x1, . . . , x` ∈ A such that σ(x1)x1 + · · ·+ σ(x`)x` = 0.

Remark 4.4. For several special classes of algebras with involution of the first
kind, the condition on F can be relaxed and the conclusion of Theorem 4.3 will
still hold. This happens for example

(1) when (A, σ) is an algebra of index 2 with symplectic involution over a
SAP field F ;

(2) when (Q, σ) is a quaternion algebra with involution of the first kind over
a field F of characteristic not 2;

(3) when (A, σ) ∼= (Q1, σ1) ⊗F · · · ⊗F (Q`, σ`) is a multi-quaternion algebra
over a field F of characteristic not 2 and each σi is an arbitrary involution
of the first kind.

For proofs, see [20, Ch. 5].

Finally, we obtain a version of Springer’s theorem for strongly anisotropic in-
volutions:
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Corollary 4.5. Let (A, σ) be a central simple algebra with involution of the
first kind over an ED-field F and let K/F be any finite extension of odd degree.
If (A, σ) is strongly anisotropic, then (A⊗F K,σK) is (strongly) anisotropic.

Proof. Since σ is strongly anisotropic, Tσ is strongly anisotropic by Theo-
rem 4.3. By Springer’s theorem (see e.g. [18, 2.5.3]), (Tσ)K = TσK is strongly
anisotropic over K. Hence σK is strongly anisotropic by contraposition of the
trivial direction of Theorem 4.3.
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