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Preface

When in danger of turning this preface into an essay about why it is important

to know the history of optimization, I remembered my favorite Antoine de

Saint-Exupery quote: “If you want to build a ship, don’t drum up the men to

gather wood, divide the work and give orders. Instead, teach them to yearn

for the vast and endless sea.” Optimization history is not just important; it is

simply fascinating, thrilling, funny, and full of surprises. This book makes an

attempt to get this view of history across by asking questions such as:

• Did Newton create the Newton method?

• Has Gauss imported Gauss elimination from China?

• Who invented interior point methods?

• Was the Kuhn-Tucker theorem of 1951 already proved in 1939?

• Did the Hungarian algorithm originate in Budapest, Princeton or Berlin?

• Who built the first program-controlled computing machine in the world?

• Was the term NP-complete created by a vote initiated by Don Knuth?

• Did the Cold War have an influence on the maximum principle?

• Was the discovery of the max-flow min-cut theorem a result of the Second

World War?

• Did Voronoi invent Voronoi diagrams?

• Were regular matroids characterized by a code breaking chemist?

• Did an archaeologist invent the Hamming distance and the TSP?

• What has the Kepler conjecture to do with “mathematical philosophy”?

• Have you ever heard of an Italian named Wilfried Fritz, born in France and

deceased in Switzerland?

• What does the electrification of South-Moravia have to do with spanning

trees?

• Did Euler cheat Russia and Prussia concerning stolen horses?

• And why did Omar Khayyam compute the third convergent of a continued

fraction?

Interested? How many of these questions can you answer? Some of them touch

fundamental issues of optimization, others appear anecdotal or even somewhat

obscure, but there may be more behind them than you think. The forty-one

articles in this book and my introductions to the sections provide some full and

some partial answers. Just glance through the book, and I hope you will get

stuck and start reading.
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2 Martin Grötschel

Why is the book not entitled Optimization History? Well, this would have

put in a serious claim that I did not want to meet. This book is not intended

to compete with scholarly historical research. A few articles, though, get close

to that. No article is fiction; all are based on solid historical information. But I

have asked the authors to present also their particular views, and if something

is historically not clear, to present their own opinions. Most of all, I requested

to write in an entertaining way addressing the casual reader.

The articles in this book are not meant for the rare quiet moments in a

study. You can read them on a train or plane ride; and I do hope that you get

excited about some of the topics presented and start investigating their history

by digging deeper into the subject. The references in the articles show you how

to do that.

Berlin, August 2012 Martin Grötschel

Documenta Mathematica · Extra Volume ISMP (2012) 1–2
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Introduction

When an International Symposium on Mathematical Programming is hosted in
Berlin and when Leonhard Euler is one of the local (and global) mathematical
heroes, one cannot resist the temptation to begin the introduction by quoting
an Euler statement from 1744 that every optimizer loves:

Cum enim mundi universi fabrica sit perfectissima atque a Creatore

sapientissimo absoluta, nihil omnino in mundo contingit, in quo

non maximi minimive ratio quaepiam eluceat; quamobrem dubium

prorsus est nullum, quin omnes mundi effectus ex causis finalibus

ope methodi maximorum et minimorum aeque feliciter determinari

queant, atque ex ipsis causis efficientibus.

Briefly and very freely translated: Nothing in the world takes place without
optimization, and there is no doubt that all aspects of the world that have a
rational basis can be explained by optimization methods. It is not so bad to
hear such a statement from one the greatest mathematicians of all time.

Optimization is a mathematical discipline that differs considerably from
other areas of mathematics. Practical problems, more generally, classes of
problems, usually arising in fields outside of mathematics, are in the center,
and mathematical models are invented that somehow grasp the essence of the
problems. Then mathematical theory is developed to understand the structure
of the models. And here, every branch of mathematics that helps provide in-
sight is welcome to support the investigations. Optimization is, thus, influenced
in many ways from many sources and has no unified theory, although there ex-
ist “core technologies” such as linear, nonlinear, combinatorial and stochastic
optimization, each with a rich body of results. But it is not unusual that all of
a sudden, methods, appearing far removed at first sight, start playing impor-
tant roles. The ultimate goal of optimization is not just a good understanding
of models; the research has to yield algorithms that efficiently solve the prob-
lems one has started from. And this ties optimization with the computational
sciences.
One can infer from these introductory remarks that the historic roots of op-

timization are manifold and widespread and that there is no straight line of
development. And this makes the history of optimization even more interest-
ing. Most optimizers I know are not so keen on really thorough and scholarly

Documenta Mathematica · Extra Volume ISMP (2012) 3–5



4 Martin Grötschel

historical articles. That is why I thought that the best way to popularize the
history of optimization is by presenting brief entertaining and easy to read
articles with a clear and narrow focus.
The articles in this book are of three types. The first type, and the majority

of articles belongs to this group, is about a person (usually a famous mathe-
matician, or sometimes a not so well-known person who deserves to come to the
fore) and about one major achievement (e.g., Cauchy and the gradient method,
Flinders Petrie and the TSP, or Karush and the KKT theorem). Such articles
contain a brief CV of the person (unless he is too well known like Euler or
Leibniz) and then discuss the particular result, algorithm, or achievement that
is important for the history of optimization. I have asked the authors to also
add “personal flavor”, for instance, in cases where the authors had personal
encounters with or have private information about the colleague portrayed.

The second type of articles is of the sort “Who invented . . . ?”. In many
cases it is not really obvious who did what first, and thus, the task of this
article type is to explore the contributions and come to a conclusion. And a
few articles survey certain developments such as Moore’s Law, the history of
column generation or of NP-completeness.
I wrote to the authors on February 22, 2012 when the serious work on this

book began:

I am not requesting a completely thorough account of the history of
a certain optimization subject or a perfect CV of a great optimizer.
I would like the articles to be appetizers. They should show, in
particular the younger colleagues, that optimization is a fascinating
human endeavor and that there are lots of interesting stories that
happen in the development of our field. There can be surprises,
funny and even tragic stories. There has to be serious and correct
information, of course, but some human touch and/or humor should
show.

In my opinion almost all authors have achieved this goal.
My initial favorite for the book title was “Short Optimization Histories”. I

wanted to have short articles on focused aspects of the history of optimization
that should present good stories and should have the flavor of a short story
in fiction literature. I considered this title a nice play with words but was
defeated by my colleagues. After long discussions, even including a vote, the
current title was selected. I hope it carries the desired connotations.
I am happy to mention that this book has a predecessor. For the ISMP in

Amsterdam in 1991, J. K. Lenstra, A. Rinnoy Kan, and A. Schrijver edited the
book History of Mathematical Programming: A Collection of Personal Remi-

niscences (CWI and North-Holland, 1991). This book contains an outstanding
collection of articles by the pioneers of optimization themselves on their own
achievements. Great reading, try to get a copy of this book! This present book
complements the ISMP 1991 volume; it is broader in scope and provides an
outside view.

Documenta Mathematica · Extra Volume ISMP (2012) 3–5
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Finally, I would like to thank Christoph Eyrich for all the (in the end very
hectic) typesetting work and Ulf Rehmann for his help in editing the book
in Documenta Mathematica style and his efficient handling of the publishing
process. Believe it or not, the last article and the last requests for corrections
arrived on July 24, 2012. I am confident that the printed volume is ready for
distribution on August 20.
Another final remark which occurred to me while proof-reading this intro-

duction: Did you notice that Euler used in the text quoted, the words maxima
and minima, but not optimization (as I did in my rough translation)? Where
is the first appearance of the term optimization (in any language) – in the
mathematical sense? One can easily find a quote from 1857, but is this the
first? I do not know. If you have a clue, please, send me an email.
And the final final remark: Some authors suggested opening Wikis (or some-

thing like that) on some of the topics discussed in this book. This issue will be
explored in the near future. The history of the usage of the term optimization
could, in fact, be a good “starting Wiki”.

Martin Grötschel

Documenta Mathematica · Extra Volume ISMP (2012) 3–5
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Stories about the Old Masters of Optimization

I believe that optimization is in some way “built into nature”. In many of their
approaches to understand nature, physicists, chemists, biologists, and others
assume that the systems they try to comprehend tend to reach a state that
is characterized by the optimality of some function. In statistical mechanics,
e.g., the consensus is that the systems considered develop in the direction of an
energy minimal configuration, called ground state. I also think that, in many
of their activities, humans have the desire to be efficient and save resources. I
therefore reckon that, beginning with the origin of our species, humans have
attempted to be unwasteful whenever strenuous efforts lay ahead. I am very
sure that our very ancient forefathers planned travel routes along short or safe
paths, organized their hunting endeavors carefully, tried to reduce the work
involved in ploughing and harvesting, and meticulously designed the logistics
needed for the construction of buildings.
There are no traces that these desires to be efficient were considered a math-

ematical endeavor. If one looks back at the development of our field, it is the
middle of the 20th century when optimization (or mathematical programming,
which is the term mostly used until recently) took off. But some of the great
old masters have, of course, investigated optimization questions and laid the
foundations of several of the subfields of today’s optimization theory. It is
beyond the scope of this book to survey these contributions in great detail.
Instead, I decided to cover only a few historically interesting cases and to mix
these with some anecdotes.
The problem of solving linear equations comes up almost everywhere in math-

ematics; many optimization algorithms need fast subroutines for this task. It
is hence not surprising that many algorithms for solving linear equations have
been designed throughout history; and it is not so clear who invented what first
and which algorithm version should carry which name. The most prominent
algorithm is often called Gaussian elimination, although Gauss never claimed
to have invented this method. One article in this section highlights the appear-
ance of Gaussian elimination in China more than 2000 years ago.
Another important algorithm is the Newton method. Many algorithms in

optimization try to mimic this method in some way with the aim to avoid its
unwanted properties and to maintain its quadratic convergence speed. One

Documenta Mathematica · Extra Volume ISMP (2012) 7–8



8 Martin Grötschel

article tries to clarify whether Newton really invented the algorithm named
after him.
It is impossible to omit the birth of the calculus of variations in a book

like this. And therefore, the interesting story around the invention of the
brachistochrone is outlined. All this happened in 1696 and was induced by a
challenge put by Johann Bernoulli to his fellow mathematicians. Similarly, the
birth of graph theory in 1736 cannot by skipped. Euler, though, missed to view
the Königsberg bridges problem as an optimization problem and thus did not
become the father of combinatorial optimization. It is somewhat surprising to
learn that it took more than 200 years until an optimization version of Euler’s
graph problem was considered. This happened in China.
It is outside the scope of this book to sketch the monumental contributions

of giants such as Euler and Leibniz. Many voluminous books cover aspects of
their work. Three more articles, two on Euler and one on Leibniz, of this section
on the old masters are of somewhat anecdotal nature. Two articles discuss the
struggle of Euler and Leibniz with “infinity” and one displays a slight human
weakness of Euler. Did he cheat a bit in dealing with state authorities?

Martin Grötschel

Documenta Mathematica · Extra Volume ISMP (2012) 7–8
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Jiu Zhang Suan Shu and

the Gauss Algorithm for Linear Equations

Ya-xiang Yuan

2010 Mathematics Subject Classification: 01A25, 65F05
Keywords and Phrases: Linear equations, elimination, mathematics
history, ancient China

Jiu Zhang Suan Shu, or The Nine Chapters on the Mathematical Art, is an
ancient Chinese mathematics book, which was composed by several generations
of scholars from the tenth to the second century BC. Liu Hui (225–295), one of
the greatest mathematicians of ancient China, edited and published The Nine
Chapters on the Mathematical Art (Jiu Zhang Suan Shu) in the year 263. In
the preface of that book [5], Liu Hui gave a detailed account of the history of
the book, including the following sentences:

When Zhou Gong1 set up the rules for ceremonies, nine branches of
mathematics were emerged, which eventually developed to the Nine
Chapters of the Mathematical Art. Brutal Emperor Qin Shi Huang2

burnt books, damaging many classical books, including the Nine
Chapters. Later, in Han Dynasty, Zhang Cang3 and Geng Shou
Chang were famous for their mathematical skills. Zhang Cang and
others re-arranged and edited the Nine Chapters of Mathematical
Art based on the damaged original texts.

From what Liu Hui recorded, we can clearly infer that Zhang Cang played an
important role in composing The Nine Chapters of Mathematical Art, and that
the current version of the book remains more or less the same as it was in
the 2nd century BC, but may not be the same as it had been before the Qin
Dynasty.
The contents of The Nine Chapters of Mathematical Art are the followings:

1Zhou Gong, whose real name was Ji Dan, was the fourth son of the founding King of the
Zhou Dynasty, Zhou Wen Wang (C. 1152BC – 1056BC).

2Qin Shi Huang (259BC – 210BC) was the first emperor of China, whose tomb in XiAn
is famous for its annex Terracotta Army.

3Zhang Cang (256BC – 152BC), was a politician, mathematician and astronomer. He was
once the prime minister of Western Han.

Documenta Mathematica · Extra Volume ISMP (2012) 9–14



10 Ya-xiang Yuan

Figure 1: Liu Hui (225–295)

• Chapter 1, Fang Tian (Rectangular field).

• Chapter 2, Su Mi (Millet and rice).

• Chapter 3, Cui Fen (Proportional distribution).

• Chapter 4 Shao Guang (Lesser breadth).

• Chapter 5, Shang Gong (Measuring works).

• Chapter 6, Jun Shu (Equitable transportation).

• Chapter 7, Ying Bu Zu (Surplus and deficit).

• Chapter 8, Fang Cheng (Rectangular arrays).

• Chapter 9, Gou Gu (Base and altitude).

Many elegant mathematical techniques are discussed in The Nine Chapters
on the Mathematical Art. For example, Chapter 9 is about problems of mea-
suring length or height of objects by using properties of right-angled triangles.
The main theorem of Chapter 9 is the Gou Gu theorem, which is known in the
West as the Pythagorean theorem.
Chapter 8 of the book, Fang Cheng, is dedicated to solve real-life problems

such as calculating yields of grain, numbers of domestic animals, and prices
of different products by solving linear equations. There are 18 problems in
the chapter. Problem 13 is essentially an under-determined linear system (6
variables and 5 equations), the other 17 problems are problems which can be
formulated as well-defined linear equations with variables ranging from 2 to 5.

Documenta Mathematica · Extra Volume ISMP (2012) 9–14



Jiu Zhang Suan Shu and the Gauss Algorithm 11

Figure 2: Problem 1, Chapter 8 of Jiu Zhang Suan Shu

The technique given in the chapter for solving these problems is elimination,
which is exactly the same as the so-called Gauss elimination in the West. For
example, Problem 1 in the chapter states as follows:

Problem I. There are three grades of grain: top, medium and low.
Three sheaves of top-grade, two sheaves of medium-grade and one
sheaf of low-grade are 39 Dous4. Two sheaves of top-grade, three
sheaves of medium-grade and one sheaf of low-grade are 34 Dous.
One sheaf of top-grade, two sheaves of medium-grade and three
sheaves of low-grade are 26 Dous. How many Dous does one sheaf
of top-grade, medium-grade and low-grade grain yield respectively?

In the book, the solution is given right after the problem is stated. After-
wards, Liu Hui gave a detailed commentary about the algorithm for solving
the problem. The algorithm described in the book is as follows.

Putting three sheaves of top-grade grain, two sheaves of medium-
grade grain, and one sheaf of low-grade grain and the total 39 Dous
in a column on the right, then putting the other two columns in the
middle and on the left.

4
Dou, a unit of dry measurement for grain in ancient China, is one deciliter.

Documenta Mathematica · Extra Volume ISMP (2012) 9–14



12 Ya-xiang Yuan

This gives the following array:

1 2 3
2 3 2
3 1 1
26 34 39

Then, the algorithm continues as follows.

Multiplying the middle column by top-grade grain of the right col-
umn, then eliminating top-grade grain from the middle column by
repeated subtracting the right column.

This gives the following tabular:

1 2× 3 3
2 3× 3 2
3 1× 3 1
26 34× 3 39

=⇒

1 6− 3− 3 3
2 9− 2− 2 2
3 3− 1− 1 1
26 102− 39− 39 39

=⇒

1 3
2 5 2
3 1 1
26 24 39

From the above tabular, we can see that the top position in the middle column
is already eliminated. Calculations in ancient China were done by moving
small wood or bamboo sticks (actually, the Chinese translation of operational
research is Yun Chou which means moving sticks), namely addition is done by
adding sticks, and subtraction is done by taking away sticks. Thus, when no
sticks are left in a position (indicating a zero element), this place is eliminated.
The algorithm goes on as follows.

Similarly, multiplying the right column and also doing the subtrac-
tion.

The above sentence yields the following tabular:

1× 3− 3 3
2× 3− 2 5 2
3× 3− 1 1 1
26× 3− 39 24 39

=⇒

3
4 5 2
8 1 1
39 24 39

Then, multiplying the left column by medium-grade grain of the mid-
dle column, and carrying out the repeated subtraction.

3
4× 5− 5× 4 5 2
8× 5− 1× 4 1 1
39× 5− 24× 4 24 39

=⇒

3
5 2

36 1 1
99 24 39

Now the remaining two numbers in the left column decides the yield
of low-grade grain: the upper one is the denominator, the lower one
is the numerator.

Documenta Mathematica · Extra Volume ISMP (2012) 9–14



Jiu Zhang Suan Shu and the Gauss Algorithm 13

Figure 3: Algorithm descriptions, Chapter 8 of Jiu Zhang Suan Shu

Thus, the yield of low-grade grain = 99/36 = 2 3

4
Dous. The algorithm contin-

ues as follows.

Now, to obtain the yield of medium-grade grain from the middle
column, the denominator is the top number, and the numerator is
the bottom number minus the middle number times the yield of low-
grade grain.

Therefore, the yield of medium-grade grain = [24− 1× 2 3

4
]/5 = 4 1

4
Dous.

To calculate the yield of top-grade grain by the right column, the
denominator is the top number, and the numerator is the bottom
number minus the second number times the yield of medium-grade
grain and the third number times the yield of low-grade grain.

Consequently, the yield of top-grade grain = [39 − 2 × 4 1

4
− 1 × 2 3

4
]/3 = 9 1

4

Dous.
It is easy to see that the above procedure is exactly the same as the Gauss

elimination [2] for the following linear equations:

3x+ 2y + z = 39

2x+ 3y + z = 34

x+ 2y + 3z = 26

Documenta Mathematica · Extra Volume ISMP (2012) 9–14



14 Ya-xiang Yuan

The only difference is the way in which the numbers are arranged in the arrays.
To be more exact, if we rotate all the above rectangular arrays anti-clockwise
90 degree, we obtain the corresponding matrices of the Gauss elimination. This
is not unexpected, as in ancient China, people wrote from top to bottom, and
then from right to left, while in the West, people write from left to right and
then from top to bottom.
Thus, from the algorithm description in Chapter 8 of The Nine Chapters on

the Mathematical Art, we conclude that the Gauss elimination was discovered
at least over 2200 years ago in ancient China. Recently, more and more western
scholars [1, 6] credit this simple yet elegant elimination algorithm to ancient
Chinese mathematicians. For detailed history of the Gauss elimination, there
are two very good review papers [3, 4], where many interesting stories are told.

Acknowledgement. I would like to my colleague, Professor Wenlin Li for
providing all the pictures used in this article.
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Leibniz and the Brachistochrone

Eberhard Knobloch

2010 Mathematics Subject Classification: 01A45, 49-03
Keywords and Phrases: Leibniz, Johann Bernoulli, Galileo, cycloid,
calculus squabble

1696 was the year of birth of the calculus of variations. As usual in those days,
the Swiss mathematician Johann Bernoulli, one of Leibniz’s closest friends
and followers, issued a provocative mathematical challenge in the scholarly
journal Acta Eruditorum (Transactions of scholars) in June 1696 inviting the
mathematicians to solve this new problem:

Given two points A and B in a vertical plane, find the path AMB

down which a movable point M must by virtue of its weight fall from

A to B in the shortest possible time.

In order to encourage “the enthusiasts of such things” (harum rerum amatores)
Bernoulli emphasized the usefulness of the problem not only in mechanics but
also in other sciences and added that the curve being sought is not the straight
line but a curve well-known to geometers. He would publicize it by the end
of the year if nobody should publicize it within this period. When Bernoulli
published his challenge he did not know that Galileo had dealt with a related
problem without having in mind Bernoulli’s generality. And he could not know
that his challenge would lead to one of the most famous priority disputes in
the history of mathematics.
He communicated the problem to Leibniz in a private letter, dated June

19, 1696 and dispatched from Groningen in the Netherlands, asking him to
occupy himself with it. Leibniz sent him his answer, together with the correct
solution, just one week later on June 26 from Hannover. He proposed the
name tachystoptota (curve of quickest descent), avowing that the problem is
indeed most beautiful and that it had attracted him against his will and that
he hesitated because of its beauty like Eve before the apple. He deduced
the correct differential equation but failed to recognize that the curve was a
cycloid until Bernoulli informed him in his answer dating from July 31. He
took up Leibniz’s biblical reference adding that he was very happy about this
comparison provided that he was not regarded as the snake that had offered
the apple. Leibniz must certainly have been happy to hear that the curve is the
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Figure 1: Bernoulli’s figure of the brachistochrone (Die Streitschriften von
Jacob und Johann Bernoulli, Variationsrechnung. Bearbeitet und kommentiert
von Herman H. Goldstine, mit historischen Anmerkungen von Patricia Radelet-
de Grave. Basel-Boston-Berlin 1991, 212)

cycloid, for which Huygens had shown the property of isochronism. For that
reason he, Bernoulli, had given it the name brachystochrona. Leibniz adopted
Bernoulli’s description.

On June 28 he had already communicated the problem to Rudolf Christian
von Bodenhausen in Florence, again praising its extraordinary beauty in order
to encourage the Italian mathematicians to solve it. In Switzerland Jacob
Bernoulli, and in France Pierre Varignon, had been informed. He asked Johann
Bernoulli to extend the deadline until June 1697 because in late autumn 1696
the existence of only three solutions, by Johann and his elder brother Jacob
Bernoulli and by himself, were known. Bernoulli agreed insofar as he published
a new announcement in the December issue of the Acta Eruditorum that he
would suppress his own solution until Easter 1697. In addition to that he wrote
a printed leaflet that appeared in January 1697.

The May 1697 issue of the Acta Eruditorum contained an introductory his-
torical paper by Leibniz on the catenary and on the brachistochrone. He re-
nounced the publication of his own solution of the brachistochrone problem
because it corresponded, he said, with the other solutions (cum caeteris consen-
tiat). Then the five known solutions by Johann, Jacob Bernoulli, the Marquis
de l’Hospital, Ehrenfried Walther von Tschirnhaus, and Isaac Newton were
published or reprinted (Newton). Newton had not revealed his name. But
Johann Bernoulli recognized the author, “from the claw of the lion” (ex ungue
leonem), as he said.
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Figure 2: Galileo’s figure regarding the fall of a particle along a circular polygon
(Galileo Galilei: Le opere, vol. VIII, Firenze 1965, 262)

Leibniz made some statements in his paper that are worth discussing. First
of all he maintained that Galileo had already dealt with the catenary and with
the brachistochrone as well, without being able to find the correct solution.
He had falsely identified the catenary with a parabola and the brachistochrone
with a circular arc. Unfortunately Johann Bernoulli relied on Leibniz’s false
statement and repeated it in June 1697, and later so did many other authors up
to the present time. Neither the one nor the other assertion is in reality true.
What had Galileo really said in his Discorsi? He had rightly emphasized the
similarity between the catenary and a parabola. He did not and could not look
for the curve of quickest descent, that is, for the brachistochrone. Such a general
problem was still beyond the mathematical horizon of the mathematicians of
his time.

He had considered an arc of a circle CBD of not more than 90° in a vertical
plane with C the lowest point on the circle, D the highest point and B any
other point on the arc of the circle. He proved the correct theorem that the
time for a particle to fall along the broken line DBC is less than the time for
it to descend along the line DC. Let us enlarge the number of points on the
circle between D and C. The larger the number of points is, the less is the
time for the particle to descend along the broken line DEFG . . . C. For Galileo
a circle was a polygon with infinitely many, infinitely small sides. Hence he
rightly concluded that the swiftest time of fall from D to C is along a portion
of the circle. Galileo only compared the times of fall along the sides of circular
polygons the circle being the limit case of them.

Secondly, Leibniz said that the only mathematicians to have solved the prob-
lem are those he had guessed would be capable of solving it; in other words,
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only those who had suffiently penetrated in the mysteries of his differential
calculus. This he had predicted for the brother of Johann Bernoulli and the
Marquis de l’Hospital, for Huygens if he were alive, for Hudde if he had not
given up such pursuits, for Newton if he would take the trouble. The words
were carelessly written because their obvious meaning was that Newton was
indebted to the differential calculus for his solution. Even if Leibniz did not
want to make such a claim, and this is certain in 1697, his words could be
interpreted in such a way. There was indeed a reader who chose this interpre-
tation: the French emigrant Nicolas Fatio de Duillier, one of Newton’s closest
followers. Fatio was deeply offended at not having been mentioned by Leibniz
among those authors who could master the brachistochrone problem. In 1699
he published a lengthy analysis of the brachistochrone. Therein he praised his
own mathematical originality and sharply accused Leibniz of being only the
second inventor of the calculus. Fatio’s publication was the beginning of the
calculus squabble. But this is another story.
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Basel-Boston-Berlin 1991, pp. 1–113.

[2] E. Knobloch, Le calcul leibnizien dans la correspondance entre Leibniz et
Jean Bernoulli. in: G. Abel, H.-J. Engfer, C. Hubig (eds.), Neuzeitliches
Denken, Festschrift für Hans Poser zum 65. Geburtstag, W. de Gruyter,
Berlin-New York 2002, pp. 173–193.

[3] Eberhard Knobloch, Galilei und Leibniz, Wehrhahn, Hannover 2012.

[4] Jeanne Peiffer, Le problème de la brachystochrone à travers les relations
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The German universal genius Gottfried Wilhelm Leibniz was born in Leipzig on
the 21st of June according to the Julian calendar (on the 1st of July according
to the Gregorian calendar) 1646. From 1661 he studied at the universities of
Leipzig and Jena. On February 22, 1667 he became Doctor of Laws at the
university of Nürnberg-Altdorf. He declined the professorship that was offered
to him at this university. For a short time he accepted a position at the court
of appeal of Mainz. From 1672 to 1676 he spent four years in Paris where he
invented his differential and integral calculus in autumn 1675.
From 1676 up to the end of his life he earned his living as librarian at the court

of the duke, then elector, of Hannover. In 1700 he was appointed president of
the newly founded Electoral Academy of Sciences of Berlin. He contributed
to nearly all scientific disciplines and left the incredibly huge amount of about
200 000 sheets of paper. Less than one half of them have been published up to
now.
In Paris he became one of the best mathematicians of his time within a few

years. He was especially interested in the infinite. But what did he mean
by this notion? His comments on Galileo’s Discorsi give the answer. Therein
Galileo had demonstrated that there is a one-to-one correspondence between
the set of the natural numbers and the set of the square numbers. Hence in his
eyes the Euclidean axiom “The whole is greater than a part” was invalidated in
the sense that it could not be applied there: infinite sets cannot be compared
with each other with regard to their size. Leibniz contradicted him. For him it
was impossible that this axiom failed. This only seemed to be the case because
Galileo had presupposed the existence of actually infinite sets. For him the
universal validity of rules was more important than the existence of objects, in
this case of actually infinite numbers or actually infinite sets. Hence Leibniz
did not admit actual infinity in mathematics. “Infinite” meant “larger than
any given quantity”. He used the mode of possibility in order to characterize
the mathematical infinite: it is always possible to find a quantity that is larger
than any given quantity.
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Figure 1: Portrait of Leibniz by A. Scheit, 1703 (By courtesy of the Gottfried
Wilhelm Leibniz Library, Hannover)

By using the mode of possibility he consciously imitated ancient models
like Aristotle, Archimedes, and Euclid. Aristotle had defined the notion of
quantity in his Metaphysics: quantity is what can be divided into parts being
in it. Something (a division) can be done in this case. If a division of a certain
object is not possible, the object cannot be a quantity. In the 17th and 18th
centuries mathematics was the science of quantities. Hence it could not handle
non-quantities. Hence Leibniz avoided non-quantities in mathematics by all
means.

Indivisibles were non-quantities by definition: they cannot be divided. Yet
they occurred even in the title of Bonaventura Cavalieri’s main work Geometry
developed by a new method by means of the indivisibles of continua. Cavalieri’s
indivisibles were points of a line, straight lines of a plane, planes of a solid.
Leibniz amply used this notion, for example in the title of the first publication
of his integral calculus Analysis of indivisibles and infinites that appeared in
1686. But according to his mathematical convictions he had to look for a
suitable, new interpretation of the notion.

From 1673 he tried different possibilities like smallest, unassignable magni-
tude, smaller than any assignable quantity. He rightly rejected all of them
because there are no smallest quantities and because a quantity that is smaller
than any assignable quantity is equal to zero or nothing. In spring 1673 he
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finally stated that indivisibles have to be defined as infinitely small quantities
or the ratio of which to a perceivable quantity is infinite. Thus he had shifted
the problem. Now he had to answer the question: What does it mean to be in-
finitely small? Still in 1673 he gave an excellent answer: infinitely small means
smaller than any given quantity. He again used the mode of possibility and
introduced a consistent notion. Its if-then structure – if somebody proposes a
quantity, then there will be a smaller quantity – rightly reminds the modern
reader of Weierstraß’s ǫ-δ-language. Leibniz’s language can be translated into
Weierstraß’s language.
Leibniz used this well-defined notion throughout the longest mathematical

treatise he ever wrote, in his Arithmetical quadrature of the circle, of the ellipse,
and of the hyperbola. Unfortunately it remained unpublished during his life-
time though he wrote it already in the years 1675/76. Only in 1993 did the
first printed version appear in Göttingen.
For this reason Leibniz has been falsely accused of neglecting mathematical

rigour again and again up to the present day. His Arithmetical quadrature
contains the counterdemonstration of that false criticism. Therein theorem 6
gives a completely rigorous foundation of infinitesimal geometry by means of
Riemannian sums. Leibniz foresaw its deterrent effect saying:

The reading of this proposition can be omitted if somebody does not
want supreme rigour in demonstrating proposition 7. And it will be
better that it be disregarded at the beginning and that it be read
only after the whole subject has been understood, in order that its
excessive exactness does not discourage the mind from the other, far
more agreeable, things by making it become weary prematurely. For
it achieves only this: that two spaces of which one passes into the
other if we progress infinitely, approach each other with a difference
that is smaller than any arbitrary assigned difference, even if the
number of steps remains finite. This is usually taken for granted,
even by those who claim to give rigorous demonstrations.

Leibniz referred to the ancients like Archimedes who was still the model of
mathematical rigour. After the demonstration Leibniz stated: “Hence the
method of indivisibles which finds the areas of spaces by means of sums of lines
can be regarded as proven.” He explicitly formulated the fundamental idea of
the differential calculus, that is, the linearization of curves:

The readers will notice what a large field of discovery is opened up
once they have well understood only this: that every curvilinear
figure is nothing but a polygon with infinitely many infinitely small
sides.

When he published his differential calculus for the first time in 1684 he repeated
this crucial idea. From that publication he had to justify his invention. In 1701
he rightly explained:
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Figure 2: First page of Leibniz’s treatise Arithmetical quadrature of the circle
etc. (By courtesy of the Gottfried Wilhelm Leibniz Library, Hannover. Shelf
mark LH XXXV 2,1 folio 7r)
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Because instead of the infinite and the infinitely small one takes
quantities that are as large or as small as it is necessary so that the
error is smaller than the given error so that one differs from the
style of Archimedes only by the expressions which are more direct
in our method and more suitable for the art of invention.

The story convincingly demonstrates the correctness of his saying: “Those who
know me only by my publications don’t know me.”
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If an algorithm converges unreasonably fast,
it must be Newton’s method.

John Dennis (private communication)

It is an old dream in the design of optimization algorithms, to mimic Newton’s
method due to its enticing quadratic convergence. But: Is Newton’s method
really Newton’s method?

Linear perturbation approach

Assume that we have to solve a scalar equation in one variable, say

f(x) = 0

with an appropriate guess x
0 of the unknown solution x

∗ at hand. Upon
introducing the perturbation

∆x = x
∗
− x

0
,

Taylor’s expansion dropping terms of order higher than linear in the perturba-
tion, yields the approximate equation

f
′(x0)∆x

.
= −f(x0) ,

which may lead to an iterative equation of the kind

x
k+1 = x

k
−

f(xk)

f ′(xk)
, k = 0, 1, . . .
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assuming the denominator to be non-zero. This is usually named Newton’s

method. The perturbation theory carries over to rather general nonlinear op-

erator equations, say

F (x) = 0, x ∈ D ⊂ X, F : D → Y,

where X,Y are Banach spaces. The corresponding Newton iteration is then
typically written in the form

F
′(xk)∆x

k = −F (xk), x
k+1 = x

k +∆x
k
, k = 0, 1, . . .

For more details and extensions see, e.g., the textbook [1] and references
therein.

Convergence

From the linear perturbation approach, local quadratic convergence will be
clearly expected for the scalar case. For the general case of operator equa-
tions F (x) = 0, the convergence of the generalized Newton scheme has first
been proven by two Russian mathematicians: In 1939, L. Kantorovich [5] was
merely able to show local linear convergence, which he improved in 1948/49 to
local quadratic convergence, see [6, 7]. Also in 1949, I. Mysovskikh [9] gave a
much simpler independent proof of local quadratic convergence under slightly
different theoretical assumptions, which are exploited in modern Newton algo-
rithms, see again [1]. Among later convergence theorems the ones due to J.
Ortega and W.C. Rheinboldt [11] and the affine invariant theorems given in
[2, 3] may be worth mentioning.

Geometric approach

The standard approach to Newton’s method in elementary textbooks is given
in Figure 1. It starts from the fact that any root of f may be interpreted as the
intersection of the graph of f(x) with the real axis. In Newton’s method, this
graph is replaced by its tangent in x0; the first iterate x1 is then defined as the
intersection of the tangent with the real axis. Upon repeating this geometric
process, a close-by solution point x∗ can be constructed to any desired accuracy.
On the basis of this geometric approach, this iteration will converge globally

for convex (or concave) f .

At first glance, this geometric derivation seems to be restricted to the scalar
case, since the graph of f(x) is a typically one-dimensional concept. A careful
examination of the subject in more than one dimension, however, naturally
leads to a topological path called Newton path, which can be used for the
construction of modern adaptive Newton algorithms, see again [1].
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f

0

f(x0)

x0

x∗ x

Figure 1: Newton’s method for a scalar equation

Historical road

The long way of Newton’s method to become Newton’s method has been well
studied, see, e.g., N. Kollerstrom [8] or T.J. Ypma [13]. According to these
articles, the following facts seem to be agreed upon among the experts:

• In 1600, Francois Vieta (1540–1603) had designed a perturbation tech-
nique for the solution of the scalar polynomial equations, which supplied
one decimal place of the unknown solution per step via the explicit cal-
culation of successive polynomials of the successive perturbations. In
modern terms, the method converged linearly. It seems that this method
had also been published in 1427 by the Persian astronomer and math-
ematician al-Kāsh̄ı (1380–1429) in his The Key to Arithmetic based on
much earlier work by al-Biruni (973–1048); it is not clear to which ex-
tent this work was known in Europe. Around 1647, Vieta’s method was
simplified by the English mathematician Oughtred (1574–1660).

• In 1664, Isaac Newton (1643–1727) got to know Vieta’s method. Up to
1669 he had improved it by linearizing the successively arising polyno-
mials. As an example, he discussed the numerical solution of the cubic
polynomial

f(x) := x
3
− 2x− 5 = 0 .

Newton first noted that the integer part of the root is 2 setting x0 = 2.
Next, by means of x = 2 + p, he obtained the polynomial equation

p
3 + 6p2 + 10p− 1 = 0 .

He neglected terms higher than first order setting p ≈ 0.1. Next, he
inserted p = 0.1 + q and constructed the polynomial equation

q
3 + 6.3q2 + 11.23q + 0.061 = 0 .

Again neglecting higher order terms he found q ≈ −0.0054. Continuation
of the process one further step led him to r ≈ 0.00004853 and therefore
to the third iterate

x3 = x0 + p+ q + r = 2.09455147 .
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Note that the relations 10p − 1 = 0 and 11.23q + 0.061 = 0 given above
correspond precisely to

p = x1 − x0 = −f(x0)/f
′(x0)

and to
q = x2 − x1 = −f(x1)/f

′(x1) .

As the example shows, he had also observed that by keeping all decimal
places of the corrections, the number of accurate places would double per
each step – i.e., quadratic convergence. In 1687 (Philosophiae Naturalis
Principia Mathematica), the first nonpolynomial equation showed up: it
is the well-known equation from astronomy

x− e sin(x) = M

between themean anomaly M and the eccentric anomaly x. Here Newton
used his already developed polynomial techniques via the series expansion
of sin and cos. However, no hint on the derivative concept is incorporated!

• In 1690, Joseph Raphson (1648–1715) managed to avoid the tedious com-
putation of the successive polynomials, playing the computational scheme
back to the original polynomial; in this now fully iterative scheme, he
also kept all decimal places of the corrections. He had the feeling that
his method differed from Newton’s method at least by its derivation.

• In 1740, Thomas Simpson (1710–1761) actually introduced derivatives
(‘fluxiones’) in his book ‘Essays on Several Curious and Useful Subjects in
Speculative and Mix’d Mathematicks [No typo!], Illustrated by a Variety
of Examples’. He wrote down the true iteration for one (nonpolynomial)
equation and for a system of two equations in two unknowns thus making
the correct extension to systems for the first time. His notation is already
quite close to our present one (which seems to date back to J. Fourier).

The interested reader may find more historical details in the book by H. H.
Goldstine [4] or even try to read the original work by Newton in Latin [10];
however, even with good knowledge of Latin, this treatise is not readable to
modern mathematicians due to the ancient notation. That is why D.T. White-
side [12] edited a modernized English translation.

What is Newton’s method?

Under the aspect of historical truth, the following would come out:

• For scalar equations, one might speak of the Newton–Raphson method.

• For more general equations, the name Newton–Simpson method would
be more appropriate.
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Under the convergence aspect, one might be tempted to define Newton’s
method via its quadratic convergence. However, this only covers the pure New-
ton method. There are plenty of variants like the simplified Newton method,
Newton-like methods, quasi-Newton methods, inexact Newton methods, global
Newton methods etc. Only very few of them exhibit quadratic convergence.
In fact, even the Newton–Raphson algorithm for scalar equations as realized
in hardware within modern calculators converges only linearly due to finite
precision, which means they asymptotically implement some Vieta algorithm.
Hence, one will resort to the fact that Newton methods simply exploit deriva-
tive information in one way or the other.
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The famous Swiss mathematician Leonhard Euler was born in Basel on the 15th
of April 1707. Already in 1720 when he was still a thirteen-year-old boy, he
enrolled at the University of Basel. One year later, he obtained the Bachelor’s
degree. In 1723 when he was sixteen years old, he obtained his Master’s degree
(A. L. M. = Master of Liberal Arts).
In 1727 without ever having obtained the Ph. D. degree he submitted a short

habilitation thesis (consisting of fifteen pages); that is, a thesis in application
for the vacant professorship of physics at the University of Basel. At that time
he had published two papers, one of them being partially faulty. No wonder
that the commission which looked for a suitable candidate for the professorship
did not elect him. Yet Euler was very much infuriated by this decision. Still
in 1727, he went to St. Petersburg in order to work at the newly founded
Academy of Sciences. He never came back to Switzerland. Between 1741 and
1766 he lived and worked in Berlin at the reformed Academy of Sciences and
Literature of Berlin. In 1766 he returned to St. Petersburg where he died on
the 18th of September 1783.
The complete title of his habilitation thesis reads:

May it bring you happiness and good fortune – Physical dissertation

on sound which Leonhard Euler, Master of the liberal arts submits

to the public examination of the learned in the juridical lecture-room

on February 18, 1727 at 9 o’clock looking at the free professorship

of physics by order of the magnificent and wisest class of philoso-

phers whereby the divine will is nodding assent. The most eminent

young man Ernst Ludwig Burchard, candidate of philosophy, is re-

sponding.

As we know, all imploring was in vain: Euler did not get the position. The
thesis is all the more interesting because Euler had added a supplement in which
he formulated six statements regarding utterly different subjects. For example
he maintained that Leibniz’s theory of preestablished harmony between body
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Figure 1: Leonhard Euler (1707–1783) (L. Euler, Opera omnia, series I, vol. 1,
Leipzig – Berlin 1911, Engraving after p. I)

and soul is false, without mentioning the name of his illustrious predecessor.
Another statement prescribed the construction of a ship mast.

The third statement considered a thought experiment: What would happen
at the centre of the earth if a stone were dropped into a straight tunnel drilled
to the centre of the earth and beyond to the other side of the planet?

Euler distinguished between exactly three possiblities: Either the stone will
rest at the centre or will at once proceed beyond it or it will immediately return
from the centre to us. There is no mention of speed. Euler just stated that
the last case will take place. No justification or explanation is given, though
none of these three possibilities had the slightest evidence. What is worse, a
far better answer had been already given by Galileo in 1632.

In the second day of his Dialogue about the two main world systems Galileo
discussed this thought experiment in order to refute Aristotle’s distinction be-
tween natural and unnatural motions. The natural motion of heavy bodies
is the straight fall to the centre of the earth. But what about a cannon ball
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Figure 2: Title page of Euler’s Physical dissertation on sound (L. Euler, Opera

omnia, series III, vol. 1, Leipzig – Berlin 1926, p. 181)

that has dropped into such an earth tunnel? Even the Aristotelian Simplicio
avowed that the cannon ball would reach the same height from which it had
dropped into the tunnel in the other half of the tunnel. The natural motion
would change into an unnatural motion.

Galileo erroneously presupposed a constant gravitation. But he rightly de-
duced an oscillating motion of the cannon ball. Euler did not mention the Ital-
ian mathematician. Presumably he did not know his solution of the thought
experiment. Nine years later he came back to this question in his Mechanics or

the science of motion set forth analytically. Now he explicitly concluded that
the speed of the falling stone will become infinitely large in the centre of the
earth. Nevertheless it will immediately return to the starting-point.

Euler admitted:

This seems to differ from truth because hardly any reason is obvious
why a body, having infinitely large speed that it has acquired in C,
should proceed to any other region than to CB, especially because
the direction of the infinite speed turns to this region. However
that may be, here we have to be conf́ıdent more in the calculation
than in our judgement and to confess that we do not understand at
all the jump if it is done from the infinite into the finite.
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Figure 3: L. Euler, Mechanics, vol. 1, 1736, § 272 (Explanation 2) (L. Euler,
Opera omnia, series II, vol. 1, Leipzig – Berlin 1912, p. 88)

Euler’s result was the consequence of his mathematical modelling of the sit-
uation (an impermissible commutation of limits). When in 1739 Benjamin
Robbins wrote his review of Euler’s Mechanics he put as follows:

When y, the distance of the body from the center, is made negative,
the terms of the distance expressed by yn, where n may be any num-
ber affirmative, or negative, whole number or fraction, are some-
times changed with it. The centripetal force being as some power of
the fraction; if, when y is supposed negative, yn be still affirmative,
the solution gives the velocity of the body in its subsequent ascent
from the center; but if yn by this supposition becomes also nega-
tive, the solution exhibits the velocity, after the body has passed
the center, upon condition, that the centripetal force becomes cen-
trifugal; and when on this supposition yn becomes impossible, the
determination of the velocity beyond the center is impossible, the
condition being so.

The French physicist Pierre-Louis Moreau de Maupertuis was the president of
the Academy of Sciences and of Literature in Berlin at the beginning of Euler’s
sojourn in Berlin. He unfortunately proposed to construct such an earth tunnel.
His proposal was ridiculed by Voltaire on the occasion of the famous quarrel
about the principle of least action between Maupertuis, Euler, and the Prussian
king Frederick the Great on the one side and the Swiss mathematician Samuel
König on the other side. Thus Euler’s curious statement about the dropping
stone had a satirical aftermath. In 1753 Voltaire published his Lampoon of
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Doctor Akakia. Therein he made Euler regret that he had more conf́ıdence in
his calculation than in human judgement. In truth Euler never recanted his
solution.
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Euler and Variations
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When Euler came to Berlin in 1741, accepting the offer of the Prussian king
Frederick II. to work at the Berlin academy of sciences, the king himself was
at the first Silesian war with Austria. It was only the first of three wars that
he waged. Two years later Euler bought a house in the centre of Berlin in the
“Bärenstraße”, today “Behrenstraße” number 21. There he lived up to 1766
when he left Berlin in order to return to St. Petersburg.
Yet already in those days, life was expensive in a city like Berlin. Hence

in 1753 he bought an estate outside Berlin in the small village of Lietzow,
belonging to the administrative district of Charlottenburg, that is to-day a part
of a district of the city of Berlin. He paid 6000 Imperial Taler (Reichsthaler)
for it. From then onward his large family lived on this estate, including his
widowed mother, while he himself remained in Berlin.
Whenever he had Russian students of mathematics they too lived in the house

in Berlin: from 1743 to 1744 Kirill Grigorevich Rasumovskii, later president
of the Russian Academy of Sciences in St. Petersburg, and Grigorii Nikolae-
vich Teplov, from 1752 to 1756 Semen Kirillovich Kotelnikov, in 1754 Michail
Sofronov, from 1754 to 1756 Stepan Yakovlevich Rumovskii. It did not happen
by chance that 1756 was the year of departure. In 1756 Frederick II. began
the Seven-Years War by penetrating into Saxony. His Prussian troops fought
against the allied Russian, Saxon, and Austrian troops.
Euler carried on sending scientific manuscripts to St. Petersburg – that

is, to Russia – and kept his good relations with the academy there. Yet he
secretly helped the Prussian king with his knowledge of the Russian language
by translating intercepted Russian messages. If the time did not suffice for
a diligent translation he offered to summarize the content. For example in
September 1758 a courier of the Russian guard was taken captive together
with two Cossacks near to Neustettin. They carried seventy-nine letters for the
Russian court. Euler’s translation of the report of a Russian agent and of the
statements of two Prussian deserters is still kept in the archives of the Berlin-
Brandenburg Academy of Sciences and Humanities (http://euler.bbaw.de/
euleriana/ansicht.php?seite=216).
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The following years became very difficult for the Prussian king. In 1759 the
allied Austrian and Russian troops defeated the troops of Frederick II. in the
neighbourhood of Kunersdorf. On October 9, 1760 Russian and Saxon troops
temporarily occupied Berlin and plundered the surrounding villages, especially
Lietzow, and including Euler’s estate. The command of the Russian Count
Chernishef to spare this estate from plunder came too late.

Just nine days later, on October 18, 1760 Euler wrote to the historian Ger-
hard Friedrich Müller in St. Petersburg, since 1754 perpetual secretary of the
Russian Academy of Sciences, in order to complain about this robbery and
to make a claim for damages. “I have always wished that Berlin should be
occupied by Russian troops if it should be ever occupied by foreign troops”,
he wrote, “yet the visit of the Russian officers entailed considerable damage.”
He told Müller that he had bought an estate for 6000 Imperial Taler in Char-
lottenburg that was well-known to Mr. Kotelnikov and to Mr. Rumovskii.
On the occasion of that visit everything was removed or devastated. Then he
enumerated the losses:

I have lost four horses, twelve cows, many head of livestock, much
oats and hay. All of the furniture of the house has been ruined.
This damage is more than 1100 Imperial Taler according to an
exact calculation...All in all the damage is at least 1200 roubles.

He asked Müller to inform his former student, then president of the Russian
Academy, Count Rasumovskii, about his situation and to support his request.
He was indeed amply recompensed by the Russian general and by the Russian
tsarina Elisabeth.

By chance Euler’s statements about his losses can be checked because the
mayor of Charlottenburg elaborated a specification of damages for Lietzow and
Charlottenburg that has been preserved in the Main Archives of the country
Brandenburg of the Federal Republic of Germany in Potsdam. On October 24,
1760, the mayor sent a letter to the responsible Privy Councillor of War and
of Domain (Geheimder Krieges und Domainen Rath) saying:

As we have been ordered we have added and would like to most
obediently submit the specification of money, grain, and cattle that
the city of Charlottenburg has lost by the Russian invasion.
[Anbefohlener Maßen haben Wir angeschlossen die Specification so
wohl an baaren Gelde als an Getreyde und Vieh was die Stadt Char-
lottenburg durch die Russischen Invasion verlohren haben gehor-
samst einreichen sollen.]

The list consists of nine columns. They enumerate the names of the twelve
families concerned from the village of Lietzow and the robbery of cash currency,
rye, barley and oat, hay, horses, cows, pigs, and sheep. The fourth line mentions
Euler’s losses reading:
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Figure 1: Letter of the mayor of Charlottenburg dating from October 24, 1760
(By courtesy of the Brandenburgisches Landeshauptarchiv Potsdam, Rep. 2
Kurmärkische Kriegs- und Domänenkammer Nr. S 3498)

Professor Euler: no cash currency; 1 Wispel, 5 Scheffel rye (1 Wispel
= 24 Scheffel, 1 Scheffel = 54,73 litres); 1 Wispel, 6 Scheffel barley
and oat; 30 metric hundred-weight of hay; two horses; thirteen cows;
seven pigs; twelve sheep.
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Figure 2: List of damages regarding the village Lietzow (By courtesy of the
Brandenburgisches Landeshauptarchiv Potsdam, Rep. 2 Kurmärlische Kriegs-
und Domänenkammer Nr. S 3498)

The astonished reader notices at once that Euler has doubled the number of
stolen horses. In 1763 he had already negotiated with the Russian Academy
of Sciences for his return to St. Petersburg, which indeed took place in 1766.
For that reason he sold his estate in Charlottenburg for 8500 Imperial Taler,
that is, at a profit of more than forty per cent, thus practising again his private
calculus of variations. All in all he made a good profit out of his estate.
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Figure 3: Title page of Euler’s book on the calculus of variations (L. Euler,
Opera omnia, series I, vol. 24, Bern 1952, p. 1)

Thanks to a letter from Euler to the president Maupertuis of the Berlin
Academy of Sciences and Fine Arts from March 14, 1746 we know that Euler
had written his official, famous book on the calculus of variations, his Method
of finding curves with an extreme property or the solution of the isoperimetric
problem understood in the broadest sense, already in St. Petersburg, that is,
in spring 1741 at the latest. It appeared in Lausanne in 1744 including the
appendix II with Euler’s explanation of the principle of least action. Constantin
Carathéodory called the book one of the most beautiful mathematical works
that has ever been written. But that is another story.
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Looking at the world’s history, nothing very important happened in 1736.
There was one exception, at least for mathematicians. Leonhard Euler wrote
an article [3] with the title “Solutio Problematis ad Geometriam Situs Pertinen-
tis”, a paper of 13 pages with 21 short paragraphs, published in St. Petersburg,
Russia. The paper looks like treating a certain puzzle, and it did not receive
much attention for a long period of time. Moreover, in his own research Eu-
ler never returned to this particular topic. In retrospect, his article on the
bridges of Königsberg laid the foundations of graph theory, a new branch of
mathematics, that is today permeating almost every other science, is employed
even in daily life, has become a powerful modeling language and a tool that
is of particular importance in discrete mathematics and optimization. Euler
could have become the father of combinatorial optimization, but he missed this
opportunity. A young Chinese mathematician was the first to consider an opti-
mization version of Euler’s bridges problem which was later called the Chinese
Postman Problem in his honor.
Readers interested in graph theory papers of historic relevance should consult

[1] which contains a collection of 37 important articles, translated into English;
[3] is the first one in this collection.

Leonhard Euler: When did he solve the Königsberg bridges prob-
lem?

We refrain from saying here more than a few words about the life of Leonhard
Euler. Almost infinitely many books and papers describe aspects of his work.
The article [5] in this book sketches some of the important steps of his ca-
reer. Clifford Truesdell’s (1919-2000) estimate that Euler produced about one
third of all the mathematical literature of the 18th century indicates his dis-
tinguished role. But Euler’s interests went far beyond mathematics. He made
significant contributions to engineering, cartography, music theory, philosophy,
and theology.
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Figure 1: Ehler’s drawing of Königsberg, 1736

There is almost no book in graph theory today that does not show a copy of
the map of Regiomonti in Borussia (Königsberg in Prussia, today, Kaliningrad
in Russia) that one can find in Euler’s article and that explains how Euler
abstracted the concept of a graph from this map. Fig. 1 shows the real original
drawing that we obtained from W. Velminski who made a copy for his book [9]
in the St. Petersburg archive from the original Ehler letter mentioned below.

It is not known for sure when and from whom Euler learned about the
Königsberg bridges for the first time. (Euler, as far as one knows, never vis-
ited Königsberg.) What is known is that he corresponded with Karl Leonhard
Gottlieb Ehler about this problem (variations of the name in the literature:
Carl instead of Karl and Ehlers instead of Ehler), where Ehler acted as an in-
termediary between Euler and the mathematician Heinrich Kühn from Danzig.
Ehler was a mathematics enthusiast; and he was the mayor of Danzig from
1740 to 1753. A list of 20 letters exchanged in the period 1735 to 1742 between
these two can be found at http://eulerarchive.maa.org/correspondence/
correspondents/Ehler.html. The article [8] investigates three letters that
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deal with the Königsberg bridges and also shows a copy of Fig. 1. This draw-
ing is from the first of these letters, dated March 9, 1736. One may infer from
this letter that Euler and Ehler had already discussed the bridges problem, but
if Euler had known the details of the problem, it would not have been necessary
for Ehler to produce this drawing. And so it is not unreasonable to assume
that Euler learned the problem through this letter. This reasoning, though,
contradicts the statement in the minutes of the St. Petersburg Academy that
Euler presented the Königsberg bridges problem to the Academy on August
26, 1735. Velminski claims in [9] that this date may be a misprint.

Confusion occurs also with respect to the publication date of Euler’s paper.
It is contained in the 1736 Academy volume, but the publication was delayed
so that the volume only appeared in 1741. What is known, due to still existing
letters, see [8], is that Euler outlined his solution of the problem in letters to
Giovanni J. Marinoni (March 13, 1736) and to Ehler (April 3, 1736). And so we
prefer to regard 1736 as the birth year of graph theory in which the following
problem was addressed:

The Königsberg Bridges Problem (briefly KBP):
Is it possible for a pedestrian to walk across all seven bridges in Königsberg

without crossing any bridge twice?

Euler could have worked hard to solve this particular problem instance by
checking cases, but he, and this distinguishes true mathematicians from puz-
zle solvers, tries to solve this problem type, once and for all, for all possible
instances and not just for Königsberg. He, thus, formulated what we call the

Eulerian Path (or Walk) Problem (briefly EPP):
Is it possible to traverse a graph passing through every edge exactly once?

Euler’s results

Here is a sketch of what Euler did in his paper.

Euler mentions the “almost unknown” geometriam situs, a term introduced
by Leibniz and today usually translated into topology or graph theory, and says
that “this branch is concerned only with the determination of position and its
properties; it does not involve distances, nor calculations made with them.” He
claims that the bridges problem belongs to this area.

He states the EPP verbally, introduces the symbols a, b, c. . . for the bridges
(the edges of the graph) and the symbols A, B, C,. . . for the areas of Königsberg
linked by the bridges (the nodes of the graph). (The terms graph, node, vertex,
and edge did not exist yet.) He also denotes an edge by a pair of nodes, such
as a=AB, introduces the notation ABD for a path that links the nodes A and
D via the sequence of edges AC and CD, and defines path length. He even
discusses notational difficulties with parallel edges. Graph theory notation and
notational trouble have not much changed since 1736!
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Euler also states that solving the problem for Königsberg by enumeration is
possible but too laborious and hopeless for EPP in general.
Euler then argues that a solution of KBP must have a representation by

a sequence AB. . . of 8 letters/nodes from the 4 letters A,B,C,D (with side
constraints) and counts node degrees along a path. Degree counting for KBP
results in: node A must appear 3 times in the sequence (path), nodes B, C,
D must appear twice each, but the sequence must have length 8. This is a
contradiction, and KBP is solved. There is no such path!
Now follows a verbal statement of what we today call

Euler’s Theorem:
A graph has an Eulerian path if and only if it has 0 or 2 nodes of odd degree.

Euler does not mention connectivity, it appears that he assumes that a graph
has to be connected.
Afterwards Euler discusses various cases and a more general example. And

then he states and proves what one can truly call the

First Theorem of Graph Theory:
In any graph, the sum of node degrees is equal to twice the number of edges.

And he continues with the

Second Theorem of Graph Theory:
In any graph, the number of nodes of odd degree is even.

Euler remarks that KBP could be solved if all bridges were doubled, and
then states his theorem formally, copied from [3]:

Euler, though, has shown so far only that if a graph has more than two nodes
of odd degree then there is no Eulerian path. He then argues:

When it has been determined that such a journey can be made,

one still has to find how it should be arranged. For this I use

the following rule: let those pairs of bridges which lead from one
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area to another mentally be removed (deletion of pairs of paral-
lel edges), thereby considerably reducing the number of bridges; it

is then an easy task to construct the required route across the re-

maining bridges, and the bridges which have been removed will not

significantly alter the route found, as will become clear after a little

thought. I do not therefore think it worthwhile to give any further

details concerning the finding of the routes.

We do not doubt that Euler knew how to construct an Eulerian path, but the
text above is not what one could call a proof. Those who have taught Euler’s
theorem in class know the problem. It is really difficult to provide a short
sequence of convincing arguments. Hand waving in front of the blackboard
usually does the trick! The theory of algorithms did not exist in his time,
and Euler did not have the concept of recursion, for instance, to describe his
thoughts. In a formal sense, thus, Euler did not prove his characterization of
Eulerian graphs. It took 140 further years to get it done.

Carl Hierholzer

The final step of the proof has an interesting story of its own. The first full
proof of Euler’s theorem was given by C. Hierholzer (1840–1871). He outlined
his proof in 1871 to friends but passed away before he had written it up.
Christian Wiener re-composed the proof from memory with the help of Jacob
Lüroth. The resulting paper [4] was published in 1873 and contains what is now
sometimes called the Hierholzer algorithm for the construction of an Eulerian
path or cycle.

Euler and optimization

If one glances through Euler’s publications, it looks like one topic seems to have
permeated his work: the idea of minima and maxima. Just read the introduc-
tion to this book. One could have guessed that, after having characterized the
existence of an Eulerian path or cycle in a graph, he would have raised (and
tried to answer) one of the questions: How many edges does one have to add
to a graph or how many edges does one have to double so that an Eulerian
path or cycle exist? More generally, if one considers walking distances in ad-
dition, Euler could have asked: What is the shortest walk covering every edge
at least once? He came close to this issue, since he mentioned that one can
solve KBP by doubling all edges. If he had done this next step, we could call
Euler rightfully the “father of combinatorial optimization”. Euler missed this
opportunity. It took 224 years until an optimization version of the Eulerian
graph problem was considered, and this was in China.
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Figure 2: Mei-Ko Kwan

Mei-Ko Kwan and the Chinese Postman Problem

Before going to 1960 we take a step back in history. The great Chinese philoso-
pher Confucius (551 BC– 479 BC) was born in the city of Qufu in Shandong
Province. As the homeland of Confucius, Shandong has played a major role in
Chinese history. During the Great Leap Forward movement (1958-1960), Chi-
nese scientists were encouraged to solve real-world problems to help Chairman
Mao’s ambitious campaign to rapidly transform the country from an agrarian
economy into a modern communist society. At that time, many mathematicians
in China were engaged in real-world applications, and in particular, carried out
operations research (OR) activities, focusing on problems such as transporta-
tion and production planning. Shandong, one of the few provinces where early
Chinese OR application activities took place, is in fact the birthplace of the
Chinese Postman Problem.
In 1960, the 26 years old Mei-Ko Kwan (modern PinYin spelling: Mei-Gu

Guan), a young lecturer at Shandong Normal University, published his paper
[6], in which he stated the following problem.

Chinese Postman Problem:
A postman has to deliver letters to a given neighborhood. He needs to walk

through all the streets in the neighborhood and back to the post-office. How can

he design his route so that he walks the shortest distance?

Due to this paper and other contributions to optimization, Mei-Ko Kwan
became one of the leading experts on mathematical programming in China.
He was, for instance, the president of Shandong Normal University from 1984
to 1990, and from 1990 to 1995, director of the OR department of Fudan
University, the best university in Shanghai. In 1995, Mei-Ko Kwan moved to
Australia and has worked at the Royal Melbourne Institute of Technology.
By calling a node of a graph odd or even if the number of edges incident to

the node is odd or even, Kwan converted the Chinese postman problem into
the following optimization problem on a graph:
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PROBLEM
Given a connected graph where 2n of the nodes are odd and all other nodes

are even. Suppose we need to add some edges to the graph with the following

property: the number of edges added to any odd node is odd and that added

to any even node is even. We need to minimize the total length of the added

edges.

The main theoretical result Kwan proved in [6] is the following theorem:

Theorem:
For a set of added edges it is necessary and sufficient to be an optimal solution

for the above problem if the following two conditions hold:

(1) Between any two nodes, no more than one edge is added.

(2) In any cycle of the extended graph, the total length of the added edges is

not greater than half of the total length of the cycle.

His proof is constructive; this way Kwan [6] also proposed a method for
finding a solution to the Chinese Postman Problem. Fig. 3 shows two drawings
copied from his original paper [6]. In the left diagram, the dotted lines are the
added edges, while the right diagram shows an optimal solution:

Figure 3

Kwan’s original paper was published in Chinese. Two years later the pa-
per [6] was translated into English [7], which attracted the attention of Jack
Edmonds. Edmonds was the one who introduced this interesting problem to
the optimization community outside China, and he was also the first person to
name it Chinese Postman Problem. Moreover, J. Edmonds and E. L. Johnson
proved in a beautiful paper [2] that the Chinese Postman Problem can be re-
duced to matching, and thus, that it is solvable in polynomial time. This result
was out of reach for mathematicians of the 18th century; even for Kwan this
was not an issue since modern complexity theory did not yet exist in 1960.

But if Euler had known linear programming and complexity theory, who
knows?
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Linear Programming Stories

The history of polyhedra, linear inequalities, and linear programming has many
diverse origins. Polyhedra have been around since the beginning of mathemat-
ics in ancient times. It appears that Fourier was the first to consider linear
inequalities seriously. This was in the first half of the 19th century. He in-
vented a method, today often called Fourier-Motzkin elimination, with which
linear programs can be solved, although this notion did not exist in his time. If
you want to know anything about the history of linear programming, I strongly
recommend consulting Schrijver’s book [5]. It covers all developments in deep-
est possible elaborateness.
This section of the book contains some aspects that complement Schrijver’s

historical notes. The origins of the interior point method for linear program-
ming are explored as well as column generation, a methodology that has proved
of considerable practical importance in linear and integer programming. The
solution of the Hirsch conjecture is outlined, and a survey of the development
of computer codes for the solution of linear (and mixed-integer) programs is
given. And there are two articles related to the ellipsoid method to which I
would like to add a few further details.
According to the New York Times of November 7, 1979: “A surprise discov-

ery by an obscure Soviet mathematician has rocked the world of mathematics

. . . ”. This obscure person was L. G. Khachiyan who ingeniously modified an
algorithm, the ellipsoid method, developed for nonlinear programming by N. Z.
Shor, D. B. Yudin, and A. S. Nemirovskii and proved in a very short paper [3]
that this method solves linear programs in polynomial time. This was indeed
a sensation. The ellipsoid method is a failure in practical computation but
turned out to be a powerful tool to show the polynomial time solvability of
many optimization problems, see [2].
One step in the ellipsoid method is the computation of a least volume ellipsoid

containing a given convex body. The story of the persons behind the result that
this ellipsoid, the Löwner-John ellipsoid, is uniquely determined and has very
interesting properties, is told in this section. A second important ingredient of
Khachiyan’s modification is “clever rounding”. A best possible approximation
of a real number by a rational number with a bounded denominator can be
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achieved by computing a continued fraction. The history and some applications
of this technique are covered also in a subsequent article.
When L. Lovász, A. Schrijver, and I were working on our book [2] we wanted

to eliminate some “dirty tricks” that were needed to make the original version of
the ellipsoid method work. The ellipsoid method produces successively shrink-
ing ellipsoids containing the given polyhedron. It terminates due to a volume
criterion, and thus it can only be applied to full-dimensional polyhedra. Since
one usually does not know whether a given polyhedron is full-dimensional, one
has to blow it up appropriately. How can one avoid this artificial blow up?
If a polyhedron is not full-dimensional (let us assume its dimension is one

less than the space dimension), then it must lie in some hyperplane H. One
observation is that, in such a case, the ellipsoid method produces shrinking
ellipsoids that get very flat in the direction perpendicular to H. This means that,
for these flat ellipsoids, the symmetry hyperplane belonging to the shortest axis
must be very close to H. Is it possible to identify H by rounding the equation
of this symmetry hyperplane? An immediate idea is to round each coefficient
of the equation (using continued fractions), but this does not deliver what
one wants. Simultaneous rounding, more precisely simultaneous Diophantine
approximation, is needed. We searched all number theory books. There are
important results of Dirichlet that could be applied, but no polynomial time
algorithms. We were stuck. Then I obtained the following letter from Laci
Lovász:

Laci’s algorithm is based on an idea for finding short vectors in a lattice. At
about the same time, several other mathematicians were addressing completely
different problems that lead to the same type of questions Lovász answered.
Among these were the brothers Arjen and Hendrik Lenstra with whom Laci
teamed up and wrote the famous paper [4]. The algorithm described in [4]
is now called LLL algorithm; it spurred enormous interest in many different
areas of mathematics and computer science and found various extensions and
improvements. The LLL algorithm virtually created a very lively subfield of
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mathematics, lattice basis reduction, and is already the subject of textbooks,
see [1].
The brief story sketched here is nicely presented, including many other angles

of this development and persons involved, in [6] and describes, in particular,
the way the brothers Lenstra and some others recognized the importance of
algorithmic basis reduction. From my personal point of view, this important
development began with the successful attempt to handle an annoying detail
of a linear programming algorithm.

Martin Grötschel
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The controversy

Thomas Edison is regarded by many as the greatest inventor in American
history. While most people know that he invented the first long-burning incan-
descent light bulb and the phonograph, the claim is based more generally on
the 1093 patents he was granted. The assumption is that the person receiving
a patent is legally certified as the inventor of the device which is the subject of
the patent.
The invention of the stored program computer during and in the period

immediately following World War II vastly expanded the range of practical
mathematical problems which could be solved numerically. A particular form
of problem which received great interest is the linear programming problem,
which allocates resources optimally subject to constraints. George Dantzig’s
development of the simplex method [5], provided the computational tool still
prominent in the field today for the solution of these problems. Continuous
development of variants of the simplex method has led to contemporary codes
that are quite efficient for many very large problems. However, as the simplex
method proceeds from one vertex of the feasible region defined by the con-
straints to a neighboring vertex, the combinatorial analysis indicates it can be
quite inefficient for some problems. In [14], Klee and Minty showed that, in the
worst case, the method has exponential complexity in the size of the problem.
The question that then presented itself is whether there is another algorithm

for linear programming which has polynomial complexity. This question was
first answered positively in 1979 by Khachian [13], who adapted the ellipsoid
method of Shor [18] and showed that the complexity of the resulting algorithm
was polynomial of order

(

mn
3 + n

4
)

L, where n represents the number of rows
in A, m the number of columns, and L the length of the data. This result was
an extremely important theoretical advance. It also created intense interest
as a possible computational technique, including a wildly misinformed article
in the New York Times claiming it solved the traveling salesman problem.
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However, despite numerous attempts by many in the broad math programming
community to implement a viable algorithm, it quickly became apparent that
it was an extremely inefficient algorithm for computational work.

One interpretation of the simplex method is to consider what is purported
to be the Norbert Wiener method of negotiating the halls of the massive main
building at MIT. Not wishing to be distracted from thinking by watching where
he was going, he simply dragged his hand along the wall, never removing it until
he reached his destination. This algorithm clearly would eventually get him to
where he was going, provided he began on the correct floor (an initial feasible
point). I am not sure how he decided he had arrived, but in general this is akin
to the simplex algorithm. A better method is to pay attention to where you
are and take the best route. Interior-point algorithms attempt to emulate this
strategy.
In a 1984 paper, Karmarkar [11] considered the linear programming problem

in the form

minimize c
T
x

subject to Ax = 0,

e
T
x = 1,

x ≥ 0.

He began with an initial point x
0 that satisfied the constraints and used the

projective transformation

T (x) =
X

−1

0
x

eTX
−1

0
x

where X0 is the diagonal matrix xjj = x
0

j
. The current point x0 is transformed

to the point 1

n
e, which is the central point of the constraints eTx = 1, x0 ≥ 0.

Then, any vector in the null space of the matrix

[

AX0

e
T

]

in particular

δ = −γ
[

I −B
T (BB

T )
−1

B
]

X0c,

can be used to reduce the objective function while remaining in the interior of
the feasible region. Here, γ is a step length parameter to keep the step in the
interior of the feasible region, which is accomplished by letting

ξ =
1

n
e+ δ

and the new estimate to the solution is

x
1 =

X0ξ

eTX0ξ
.
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Karmarkar demonstrated the complexity of this method is of order (mn
2+n

3)L,
but the proof required that cTx∗ = 0, where x

∗ denotes the optimal solution.
Todd and Burrell [19] dealt with this restriction by noting that if v∗ is the
optimal value of the objective function then

c
T
x = (c− v

∗
e)

T
x

is 0 at the optimal point. They then use duality theory to obtain a convergent
sequence of estimates to v

∗. Note that doing so adds a parameter to the
sequence of estimates that will emerge in a different context shortly.

The originality of the use of projective transformations and the much stronger
complexity results justifiably created a great deal of interest in the method.
This interest, however, was mild compared to the interest created by a sequence
of claims by Karmarkar and supported by Bell Labs, Karmarkar’s employer,
that an algorithm implementing the method was vastly superior to the simplex
method.
A simpler transformation of the current point into the interior of the feasible

region is the basis of the affine scaling method where instead of a projective
transformation, the simple linear transformation was proposed by Barnes [2]
and Vanderbei et al. [20]. Here, the standard form of the linear programming
problem defined by

minimize c
T
x

subject to Ax = b,

x ≥ 0

is used and the transformation becomes

ξ = X
−1

0
x.

Here, the sequence of iterates is defined by

x
1 = x

0 + γ∆x,

where again γ is chosen to assure that the iterates do not touch the boundary
of the feasible region and

∆x =
[

D −DA
T (ADA

T )
−1

AD
]

c,

where
D = X

2

0
.

It was later discovered that this work was originally published in 1967 by Dikin
[6] who in 1974 proved convergence of the method [7]. No strong complexity
bound equivalent to Karmarkar’s is known for this algorithm.

Both of the above algorithms create room to move entirely in the interior
of the feasible region by transforming the space. A more general method for
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Figure 1: Anthony V. Fiacco (left) and Garth McCormick in 1967 in Fiacco’s
office at Research Analysis Corporation (RAC) in McLean, VA (Photo printed
with the permission of John McCormick).

remaining in the interior was studied prior to either of these methods. An alter-
native method for remaining interior to the feasible region is to add a compo-
nent to the objective function which penalizes close approaches to the bound-
ary. This method was first suggested in 1955 in an unpublished manuscript by
Frisch [9] and developed in both theoretical and computational detail by Fi-
acco and McCormick [8] in 1968. Applied to the linear programming problem
in standard form, the problem is transformed to

minimize c
T
x− µ

n
∑

i=1

?ln(xi ),

subject to Ax = b.

Here, the method is akin to the invisible fence that is used to keep dogs in
an unfenced yard. The closer the dog gets to the boundary, the more he feels
shock. Here the amount of shock is determined by the parameter µ, and as µ
tends to 0, the boundary, in this case where the solution lies, is approached.

The above reformulation is a nonlinear programming problem, and the first-
order conditions may be derived by forming the Lagrangian and differentiating.
The resulting step directions are

∆x = −
1

µ0

X0PX0c+X0Pe,
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Figure 2: Garth McCormick at the desk in his office (Photo printed with the
permission of John McCormick).

where

P =
[

I −X0A
T (AX2

0
A

T )
−1

AX0

]

,

and as before

x
1 = x

0 + γ∆x.

Fiacco and McCormick actually developed this method for the much harder
general nonlinear programming problem. They showed that for a sequence
of µ’s which decreases monotonically to 0, the sequence of solutions for each
value of µ converges to the solution of the problem. Their book noted that it
applied as well to the linear programming problem, but did not further study
this particular line of development as at the time they developed this work they
felt the algorithm would not be competitive with the simplex method.

In 1985 at the Boston ISMP meeting, Karmarkar gave a plenary lecture in
which he claimed his algorithm would be 50 or 100 times faster than the best
simplex codes of that period. This was greeted with a great deal of skepticism
and more that a little annoyance by many in the audience.
At the same meeting, Margaret Wright presented the results in Gill et al. [8]

that showed there existed values for µ and v
∗ that make Karmarkar’s algorithm

a special case of the logarithmic barrier method of Fiacco and McCormick. This
observation led to a major outpouring of theoretical papers proving order n3

L

complexity for a wide variety of choices for the sequence of µ’s and the search
parameter γ. It also led to implementation work on numerical algorithms. An
early example of this was the implementation of a dual-affine scaling algorithm
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(derived by applying the affine variant to the dual problem) of Adler et al.
[1]. I was personally involved, first with Roy Marsten, in creating a dual-affine
scaling implementation. We later joined with Irv Lustig to create an imple-
mentation of the primal-dual interior-point code [17] based on an algorithm
published by Kojima et al. [15] which assumed the knowledge of an initial
feasible point. We addressed initial feasibility using the analysis of Lustig [16].
We later discovered that the implemented algorithm can be derived directly by
applying the Fiacco and McCormick logarithmic barrier method to the dual of
the problem in standard form and applying Newton’s method to the first order
conditions.

Meanwhile, AT&T had begun development of the KORBX commercial pack-
age which included an eight processor supercomputer and an interior point code
to be marketed at a multimillion dollar price. AT&T continued to claim (but
not publish) strong computational results for their product. In 1988, they an-
nounced that they had obtained a patent on Karmarkar’s method to protect
their investment [11]. This patent in and of itself created quite a stir in the
mathematics community, as up until that time mathematics was considered not
patentable. However, the value of mathematical algorithms in the workplace
was changing this view, and continues to do so today.

Irv, Roy and I meanwhile completed our first implementation of the primal-
dual method [17], and in the fall of 1989 presented a computational comparison
of our code with KORBX on a set of results which had finally appeared in
publication [4]. The comparison was not favorable to KORBX. We distributed
free of charge source of our OB1 code to researchers, but were marketing it to
industry through XMP Software, a company Roy had started. Shortly after
the presentation of the comparative results, we received a letter from AT&T
informing us that, while they encouraged our promoting research in this area,
we were not to market our code as they owned the patent on all such algorithms.
This led us to carefully study the patent. The abstract of the patent follows.

A method and apparatus for optimizing resource allocations is dis-
closed which proceeds in the interior of the solution space polytope
instead of on the surface (as does the simplex method), and instead
of exterior to the polytope (as does the ellipsoid method). Each
successive approximation of the solution point, and the polytope,
are normalized such that the solution point is at the center of the
normalized polytope. The objective function is then projected into
the normalized space and the next step is taken in the interior of
the polytope, in the direction of steepest-descent of the objective
function gradient and of such a magnitude as to remain within the
interior of the polytope. The process is repeated until the opti-
mum solution is closely approximated. The optimization method is
sufficiently fast to be useful in real time control systems requiring
more or less continual allocation optimization in a changing envi-
ronment, and in allocation systems heretofore too large for practical
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implementation by linear programming methods.

While the patent is for the Karmarkar algorithm, consequent discussions with
AT&T patent lawyers made it clear that they were claiming that Karmarkar
had invented interior point methods and they held the patent more broadly.
The claim was obviously ridiculous, as there is a full chapter entitled Interior

Point Algorithms in the Fiacco and McCormick book, which was published and
won the Lancester prize in 1968. The people we were dealing with at AT&T
seemed totally unaware of the existence of this book, despite its prominence
in the mathematical programming community. The AT&T patent was granted
in 1988, and there is a rule that nothing can be patented that has been in the
public domain for a year or more prior to filing an application for the patent.
Thus by the Edison criterion, Karmarkar invented the interior point method,
but in fact he was well behind the true pioneers.
Meanwhile AT&T continued to claim to Roy, Irv and me that their patent

applied to our code. After we consulted our own patent lawyer and were told
what of the great expense of challenging the patent, we accepted a licensing
agreement with AT&T. For a variety of reasons, the agreement proved to be
unworkable, and we shut down XMP Optimization. We then joined with CPlex
to create the CPlex barrier code. This code was derived by applying Newton’s
method to the log-barrier method of Fiacco and Mccormick applied to the
dual problem. It is equivalent to an interior-point method, but using the term
barrier rather than interior-point did not fall within the linguistic purview of
the AT&T patent.It eventually became clear that AT&T had finally understood
that the idea of interior-point methods did not originate with Karmarkar, and
to the best of my knowledge they have never again tried to enforce the patent.
There is a further irony in AT&T receiving the Karmarkar patent. That

patent is specifically for the projective transformation algorithm. Yet Bob
Vanderbei, who was a member of the AT&T KORBX team, has told me that
the method implemented in KORBX was the affine scaling method, which
was also not eligible to be patented as Dikin’s paper was published in 1967.
AT&T did patent several techniques involved in the implementation of the
affine scaling method [21], [22], such as how to incorporate bounds and ranges,
but not the affine scaling interior point itself. Thus the only patent granted
specifically for an interior point method was granted to the one algorithm that
to the best of my knowledge has never been successfully implemented.

Who did invent interior-point methods?

With any invention that has proved highly successful, there is never a simple
single answer to this question. A case can be made that Orville and Wilbur
Wright invented the airplane. It is impossible to credit them alone with the
creation of the Boeing 787. Further, in building the plane that made the
first powered flight, they undoubtedly learned a great deal from others whose
attempts had failed.
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In a letter to Robert Hooke on February 15, 1676, Isaac Newton said “If I have
seen further it is by standing on ye sholders of Giants.” Personally, I fully credit
Fiacco and McCormick with the invention of interior point methods, and as
the result of many discussions with them over the years, I know that they fully
agreed with Newton. Indeed a prominent giant in the development of interior
point methods is clearly Newton himself, for all of the complexity results for
linear programming depend on using Newton’s method to solve the first order
equations, and current nonlinear programming algorithms depend on Newton’s
method to find a search direction. Another such giant is Lagrange. Both
are easy choices, as most methods for solving continuous math programming
problems are highly reliant on their work.
On more recent work, both Frisch [9] and Carrol [3] must be credited with

suggesting two different penalty functions to keep the iterates within the fea-
sible region. Fiacco and McCormick certainly credited them. However, only
Fiacco and McCormick developed a whole complete theory of interior point
methods, including convergence results and a wealth of ideas for numerical
implementation. They did not, however, analyze computational complexity.
This field was really just beginning at the time of their work. The book con-
tains many hidden gems, and as Hande Benson, a young colleague of mine has
recently discovered, is still totally relevant today.
In addition, Fiacco and McCormick also developed the SUMT code to imple-

ment the general nonlinear programming algorithm documented in the book.
Unfortunately, this was not the success that their theoretical work was. The
difficulties encountered in attempting to solve many applications led some peo-
ple to dismiss the practical value of interior point methods. The problem was
simply that the theory was well in advance of computational tools developed
later.
One particular difficulty was devising a good method to compute the de-

creasing sequence of µ’s. This was greatly improved by the analysis done when
applying the algorithm to linear programming. A good sequence is dependent
on the measure of complementarity.
Another difficulty was nonconvexity of the objective function in nonlinear

programming. The vast later research in trust region methods greatly improved
the algorithms, and research on this continues today.
The algorithm of SUMT was a pure primal algorithm. The use of the interior

point theory to derive primal-dual algorithms produced much better estimates
of the Lagrange multipliers.
Central to applying the method to very large linear programming problems

was the development of efficient sparse Cholesky decompositions to solve the
linear equations. The computers at the time this research was done had such
limited memories that this work had not yet been undertaken. At that time, it
was believed that only iterative methods could be used to solve very large
linear systems. The development of almost unlimited computer memories
and the development of sparsity preserving ordering algorithms has allowed
for very rapid solution of large sparse linear systems. These advances have
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also been applied to the solution of large sparse nonlinear programming prob-
lems.
Interior point algorithms require an initial feasible point x0. Finding such

a point for pure primal methods such as SUMT is often as difficult as solv-
ing the optimization problem. Development of primal-dual algorithms led to
reformulation of the problem in such a way that a feasible initial point is eas-
ily found for the reformulated problems [16], [17]. The resulting algorithm
approach feasibility and optimality simultaneously. This approach is now the
standard approach in modern interior-point linear programming codes. It has
also proved particularly important in improving interior-point algorithms for
nonlinear programming, the problem that originally interested Fiacco and Mc-
Cormick.
The salient point is that any great piece of original work is never close to

a finished product, but rather a starting point from which improvements can
be made continuously. It can also be extended to new areas of application.
Certainly the work of Fiacco and McCormick meets that test of time. I know
of no even vaguely comparable work on this topic.
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1 The beginning – linear programming

Column generation refers to linear programming (LP) algorithms designed to
solve problems in which there are a huge number of variables compared to the
number of constraints and the simplex algorithm step of determining whether
the current basic solution is optimal or finding a variable to enter the basis is
done by solving an optimization problem rather than by enumeration.
To the best of my knowledge, the idea of using column generation to solve

linear programs was first proposed by Ford and Fulkerson [16]. However, I
couldn’t find the term column generation in that paper or the subsequent two
seminal papers by Dantzig and Wolfe [8] and Gilmore and Gomory [17,18].
The first use of the term that I could find was in [3], a paper with the title “A
column generation algorithm for a ship scheduling problem”.

Ford and Fulkerson [16] gave a formulation for a multicommodity maximum

flow problem in which the variables represented path flows for each commodity.
The commodities represent distinct origin-destination pairs and integrality of
the flows is not required. This formulation needs a number of variables ex-
ponential in the size of the underlying network since the number of paths in
a graph is exponential in the size of the network. What motivated them to
propose this formulation? A more natural and smaller formulation in terms of
the number of constraints plus the numbers of variables is easily obtained by
using arc variables rather than path variables. Ford and Fulkerson observed
that even with an exponential number of variables in the path formulation,
the minimum reduced cost for each commodity could be calculated by solving
a shortest path problem, which was already known to be an easy problem.
Moreover the number of constraints in the path formulation is the number of
arcs, while in the arc formulation it is roughly the (number of nodes)x(number
of commodities) + number of arcs. Therefore the size of the basis in the path
formulation is independent of the number of commodities and is significantly
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smaller when the number of commodities is large. This advantage in size they
claimed might make it possible to solve instances with a large number of com-
modities with the simplex method. Modestly, they stated that they really had
no idea whether the method would be practical since they had only solved a
few small instances by hand.
It must have been so frustrating to try to do algorithmic research when it

was so difficult to test if your ideas could yield practical algorithms. The value
of some of these brilliant ideas proposed in the infancy of mathematical pro-
gramming would not be proven for decades. Much of this early work was done
at the RAND Corporation with its ‘all star’ team of applied mathematicians in-
cluding Bellman (dynamic programming), Ford and Fulkerson (network flows),
Dantzig (linear programming) and many others. As a sports fan, this reminds
me of the great baseball teams of the New York Yankees, basketball teams of
the Boston Celtics and soccer teams of Manchester United.
I was Ray Fulkerson’s colleague at Cornell in the 1970s. I have no mem-

ory of him giving an opinion of the significance of the arc-path formulation of
the multicommodity flow problem. Even if he thought this was a fundamental
contribution, his modesty would have prevented him from saying so. How-
ever I think that this early work influenced his later contributions on blocking
and anti-blocking pairs of polyhedra [15], which studies polyhedra associated
with combinatorial optimization problems that frequently have an exponential
number of variables and provided a basic theory of integral polyhedra.
Another way to derive Ford and Fulkerson’s path formulation is to begin with

the arc formulation and note that the arc capacity constraints link all of the
variables while the flow balance constraints can be separated by commodity.
For each commodity the extreme points of the flow balance constraints are
the origin-destination simple paths for that commodity. Feasible solutions to
the whole problem are convex combinations of these extreme flows that satisfy
the arc capacity constraints. So if we begin with a so-called master LP that
just contains a few of these extreme flows for each commodity and solve it to
optimality, we can use an optimal dual solution to price out the extreme flows
not yet considered by solving a shortest path problem for each commodity.
This is precisely what Ford and Fulkerson proposed simply beginning with the
path formulation.
This idea can be generalized to yield an algorithm for solving any LP by

partitioning the constraints into a set of master constraints and a set of sub-
problem constraints. The resulting algorithm is what we call Dantzig–Wolfe

decomposition [8]. I think it is rather odd that George Dantzig did not get his
name attached to the simplex method but to this very important contribution
still of surely lessor stature. Dantzig and Wolfe say:

Credit is due to Ford and Fulkerson for their proposal for solv-
ing multicommodity network problems as it served to inspire the
present development.

However the contribution of Dantzig–Wolfe decomposition is very significant
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in its own right since it does not depend on beginning with the exponential
formulation. It could arise from an appropriate partition of the constraints
into a small number that involved all of the variables and the rest that could
be decomposed into individual subproblems involving only a relatively small
subset of the variables. Think, for example, of a multiperiod problem with
a few budget constraints involving variables from all of the periods and sub-
problems for each period, or a resource allocation problem involving a few
constraints coupling all of the variables globally together with subproblems
for each region. For these structures, and other similar ones, using Dantzig–
Wolfe decomposition, a large LP can be decomposed into a master problem
with a small number of constraints and an exponential number of variables
corresponding to the extreme points of the subproblems, the solution of which
represents convex combinations of these extreme points that satisfy the master
constraints. Optimal dual solutions of the master problem provide prices to the
subproblems, whose solutions yield new extreme point variables for the master.

2 Next steps – integer subproblems

The previous work relied only on LP. The multicommodity flow problem re-
quires the generation of integer vectors that are incidence vectors of paths, but
they can be found without the explicit imposition of integrality constraints.
The first column generation work that involved integer variables appears to

have been done by Gilmore and Gomory [17]. They studied the cutting stock

problem: given a positive integer number d(i) of items of integer size a(i), de-
termine the minimum number of stock rolls of integer size b needed to pack all
of the items. Gilmore and Gomory proposed a model in which there is an inte-
ger variable corresponding to every possible way to cut a roll. Since a solution
to the cutting of a single roll is a solution of an integer knapsack problem (a
single constraint integer program (IP)), which can have an exponential number
of solutions, this model contains an exponential number of variables. However,
when the LP relaxation of the model is solved over a subset of variables, opti-
mality can be proved or new columns can be added to improve the solution by
solving an integer knapsack problem with objective function specified by the
dual variables in an optimal LP solution and constraint specified by the item
and role sizes. The knapsack problem can be solved reasonably efficiently by
dynamic programming or branch-and-bound even though it is NP-hard. The
application of this work described in [18] appears to be the first use of column
generation in a practical problem. Gilmore and Gomory’s work on the cutting
stock problem led to their work on the knapsack problem [19], and motivated
Gomory’s work on the group problem [20], which has had a significant impact
on the field of integer programming.
Gilmore and Gomory only use the LP relaxation of their formulation of the

cutting stock problem. They simply propose to round up the variables in an
optimal LP solution to obtain a feasible solution to the IP. But this heuristic
can be justified by the fact that, in general, the optimal LP solution value
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provides a very tight bound on the optimal number of rolls. In fact, it has been
shown empirically in [29] that for a very large number of randomly generated
instances the difference is always less than one. Carefully contrived instances
with a difference greater than one are known [25, 30], but it is not known
whether a difference of two or larger can be obtained. Although rounding up a
fractional solution can increase the objective function by the number of items
(number of basic variables), it has been observed in [4] that the increase is no
more than 4% of the number of items.

The whole point of this discussion is to emphasize that the Gilmore–Gomory
formulation of the cutting stock problem provides a very tight relaxation. This
is typically the case for such formulations leading to a tradeoff between a tight
bound from an exponential formulation that can be challenging to solve and a
compact (polynomial size) formulation with a much weaker bound. Although
not stated by Gilmore and Gomory, and then lost in translation when the
cutting stock problem is presented in basic operations research textbooks, there
is a straightforward compact formulation of the cutting stock problem. Begin
with an upper bound on the number of rolls required and a binary variable for
each roll that is equal to one if the roll is used and zero otherwise. There are
identical knapsack constraints for each potential roll with right-hand side b if
its binary variable equals one, and zero otherwise and additional constraints
requiring that the amount d(i) of the ith item must be cut. The LP relaxation
of this formulation is terrible. It gives no information since it is easy to show
that the bound is the total amount to be cut divided by b. Furthermore if this
LP relaxation is used in a branch-and-bound algorithm, the performance is
terrible not only because of the weak bound, but also because of the symmetry
of the formulation since all rolls are the same. In fact, a compact formulation
similar to the one above was given by Kantorovich [23] who introduced the
cutting stock problem in 1939!

The Gilmore–Gomory formulation applied to the bin packing specialization
of the cutting stock problem in which d(i) = 1 for all i yields a set partitioning
problem: given a ground set S and a set of subsets S(j), j = 1, . . ., n, find
a minimum cardinality set of disjoint subsets whose union is S. In the bin
packing problem S is the set of items and S(j) is a subset that fits into a
bin. |S| = m is typically small, but n is exponential in m. This form of set
partitioning and set covering (disjointness is not required) models arises in
many combinatorial optimization problems. For example, in node coloring S

is the set of nodes and S(j) is a subset of nodes that is a stable set (a set of
nodes that can receive the same color since no pair of them is joined by an
edge). Thus column generation for the LP relaxation of the node coloring set
partitioning formulation involves solving a minimum weight stable set problem,
where the node weights correspond to the dual variables in an optimal LP
solution. Note that the column generation formulation eliminates the symmetry
possessed by a compact formulation in which there is a variable for each node-
color pair. The absence of symmetry is a very important property of the
exponential formulation since symmetry is a major nemesis of branch-and-
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bound algorithms.

These models appear in many practical applications as well. Perhaps the one
that has received the most attention in the literature is airline crew scheduling

[6, 21], but there are many other applications to all kinds of transportation
routing problems, scheduling problems, districting problems, coloring prob-
lems, etc. In the crew scheduling problem S is a set of flights that need to be
flown over a given time horizon, say a day or a week, and S(j) is a subset of
flights that can be flown by a single crew. The cost of using the subset S(j) is
c(j). This cost function complicates the model introduced for bin packing and
graph coloring since the objective function of total minimum cost is no longer a
minimum cardinality objective function and a set of allowable flights is subject
to complex rules concerning safety and other factors. Nevertheless, feasible
subsets, which are called pairings, can be generated as constrained paths in a
network and minimum cost constrained shortest paths for column generation
can be generated as well.

The first published paper that appears to discuss such a model in detail
is [5]. It reports on crew scheduling methods used by airlines in the 1960s,
several of whom were already using a set partitioning model. Some were trying
to solve the IP by optimization algorithms using branch-and-bound or cutting
planes. They recognized that the algorithms could only deal with a small
number of pairings. So pairings were generated up front and then a subset
was heuristically chosen to include in the IP model. A significant improvement
to the approach of a single round of pairing generation followed by a single
round of optimization was proposed in [27]. Given a feasible solution, a better
solution might be found by a neighborhood search that selects a small subset
of flights, generates all of the pairings that only cover these flights and then
solves a set partitioning problem defined by these flights and pairings. If an
improvement is found, this solution replaces the current pairings that cover
these flights. The neighborhood search can be iterated until no improvements
are found. This quasi-column generation process was used by many airlines
throughout the 1980s and even later [1]. Nevertheless it could only achieve a
local optimum, and although the solution quality might be good, optimality
could not be claimed. Other approaches solved the full LP relaxation by some
form of column generation, but only provided a subset of columns to the IP
solver. Even without an exponential number of columns these IP can be difficult
to solve. Standard branching on binary variables is not very effective since the
branch with the binary variable at zero hardly restricts the problem.

A branching rule proposed in [28], unrelated to column generation at the
time, called follow-on branching, helped to alleviate this difficulty. In a sim-
plified version of the rule, two adjacent arcs in the flight network associated
with a fractional pairing are identified and then, on one branch, pairings that
contain both of these flights are excluded, and on the other branch, pairings
that contain one of them are excluded. It can be shown that such a pair of arcs
exists in a fractional solution, and the fractional solution is excluded on both
branches. This rule divides the solution space much more evenly than variable
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branching. As we shall see, generalizations of this rule are very useful when
column generation is incorporated in a branch-and-bound search.

3 Branch-and-price: solving integer programs by column gener-
ation

If a tree search (branch-and-bound) algorithm for an IP with an implicit expo-
nential number of variables is designed to produce an optimal solution or even
one with a prescribed optimality tolerance, it is necessary to do column gener-
ation throughout the tree. To the best of our knowledge, the first appearance
in the literature of column generation within branch-and-bound is in [13].

There are interesting challenges in applying column generation to problems
associated with nodes within the search tree. Foremost is that standard branch-
ing on variables, besides being inefficient, can complicate column generation.
Consider a set partitioning problem where we branch on a single binary vari-
able corresponding to some subset. The branch where the variable is fixed to
one does not create a problem since we now have a smaller set partitioning
problem. But in the branch where the variable is set to zero we need to impose
on the column generation solver a constraint saying that this subset is not fea-
sible. Such constraints will significantly hamper the efficiency of the column
generator.
However, a generalized version of the follow-on branching idea for crew

scheduling makes it possible to preserve the efficiency of the column generation
solver and also reasonably balances the solutions between the two newly cre-
ated nodes. Consider a fractional column (subset) in an optimal solution of the
LP relaxation. It can be shown that there are two elements in the column such
that there is another fractional column containing only one of these elements.
On one branch we exclude columns containing only one of these elements and
on the other branch we exclude columns containing both. Not allowing only
one of the elements to appear, i.e., both must appear together, amounts to
combining the elements, while not allowing both to appear together involves
adding a simple constraint. For example, in a node coloring problem where
the elements are nodes and a feasible subset is a stable set, both appearing
together is accomplished by replacing the two nodes by a super node with an
edge from the super node to all other nodes that were connected to one or both
or the original nodes, and not allowed to appear together is accomplished by
adding an edge between the two nodes. We can think of this type of branching
as branching on the variables from the original compact formulation instead
of branching on the variables in the exponential set partitioning formulation.
For example in the node coloring problem, the branching is on node variables.
On one branch we require two nodes to have the same color and on the other
the two nodes must get different colors. Early use of this branching rule are
given in [10] for urban transit crew scheduling, [14] for vehicle routing, [2] for
airline crew scheduling, [31] for bin packing, [11] for a survey of routing and
scheduling applications and [26] for node coloring. Vanderbeck and Wolsey [34]
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studies column generation branching with general integer variables.

Barnhart et al. [7] unified this early literature by presenting a general
methodology for column generation in IP and named the general technique
branch-and-price. Vanderbeck [32] presents a general treatise on branching in
column generation and gives some interesting new branching ideas in [33]. In
the last decade there have been many successful applications of branch-and-
price algorithms to practical problems and a completely different use in choos-
ing neighborhoods for local search algorithms [22]. More information about
column generation and branch-and-price algorithms can be found in Desrosiers
and Lübbecke [12], who present a primer on column generation, in a chapter of
a collection of articles on column generation [9], and Lübbecke and Desrosiers
[24], who present a survey of techniques and applications of column generation
in IP.
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1 Warren M. Hirsch, who posed the Hirsch conjecture

In the section “The simplex interpretation of the simplex method” of his 1963
classic “Linear Programming and Extensions”, George Dantzig [5, p. 160] de-
scribes “informal empirical observations” that

While the simplex method appears a natural one to try in the n-
dimensional space of the variables, it might be expected, a priori, to
be inefficient as tehre could be considerable wandering on the out-
side edges of the convex [set] of solutions before an optimal extreme
point is reached. This certainly appears to be true when n−m = k

is small, (. . . )

However, empirical experience with thousands of practical problems
indicates that the number of iterations is usually close to the num-
ber of basic variables in the final set which were not present in the
initial set. For an m-equation problem with m different variables in
the final basic set, the number of iterations may run anywhere from
m as a minimum, to 2m and rarely to 3m. The number is usually
less than 3m/2 when there are less than 50 equations and 200 vari-
ables (to judge from informal empirical observations). Some believe
that on a randomly chosen problem with fixed m, the number of
iterations grows in proportion to n.

Thus Dantzig gives a lot of empirical evidence, and speculates about random
linear programs, before quoting a conjecture about a worst case:
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Warren M. Hirsch (1918–2007) (http://thevillager.com/villager_223/
warrenhirsch.html)

This is reiterated and also phrased geometrically in the problems for the same
section [5, p. 168]:

13. (W. M. Hirsch, unsolved.) Does there exist a sequence of m
or less pivot operations, each generating a new basic feasible
solution (b.f.s.), which starts with some given b.f.s. and ends
at some other given b.f.s., wherem is the number of equations?
Expressed geometrically :
In a convex region in n − m dimensional space defined by n

halfplanes, is m an upper bound for the minimum-length chain
of adjacent vertices joining two given vertices?

This is the “Hirsch conjecture” – a key problem in the modern theory of poly-
hedra, motivated by linear programming, backed up by a lot of experimental
evidence. Dantzig thus gives credit to Warren M. Hirsch, who had gotten his
Ph.D. at New York University’s Courant Institute in 1952, was on the faculty
there from 1953 to his retirement 1988. We may note, however, that Hirsch
has lasting fame also in other parts of science: Obituaries say that he is best
known for his work in mathematical epidemiology.
With hindsight, Dantzig’s two renditions of the problem point to many dif-

ferent facets of the later developments. In particular, random linear programs
are mentioned – for which good diameter bounds were later proved in cele-
brated work by Karl Heinz Borgwardt [4]. As the present writer is a geometer
at heart, let us translate Dantzig’s geometric version into current terminology
(as in [21, Sect. 3.3]):

The Hirsch conjecture:
For n ≥ d ≥ 2, let ∆(d, n) denote the largest possible diameter
of the graph of a d-dimensional polyhedron with n facets. Then
∆(d, n) ≤ n− d.
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2 A first counterexample

We now know that the Hirsch conjecture – as stated by Dantzig – is false:
The credit for this result goes to Victor Klee and David W. Walkup, who in
Section 5 of their 1967 Acta paper [15] indeed gave an explicit example of a
simple 4-dimensional polyhedron P4 with n = 8 facets and 15 vertices whose
graph diameter is equal to δ(P4) = 5. Thus, indeed,

∆(4, 8) = 5,

which disproved the Hirsch conjecture.
Kim & Santos [12, Sect. 3.3] explain nicely how this polyhedron can be

derived from a (bounded!) polytope Q4 of dimension 4 with 9 facets – found
also by Klee & Walkup – that has two vertices x and y of distance 5, by moving
the facet that does not meet x or y to infinity by a projective transformation.
From much later enumerations by Altshuler, Bokowski & Steinberg [1] we now
know that Q4 is unique with these properties among the 1142 different simple
4-dimensional polytopes with 9 facets. What a feat to find this object!
However, instead of just celebrating their example and declaring victory, Klee

and Walkup mounted a detailed study on a restricted version of the Hirsch con-
jecture, which considers (bounded) polytopes in place of (possibly unbounded)
polyhedra:

The bounded Hirsch conjecture:
For n ≥ d ≥ 2, let ∆b(d, n) denote the largest possible diame-
ter of the graph of a d-dimensional polytope with n facets. Then
∆b(d, n) ≤ n− d.

As a consequence of the Klee–Walkup example, also using projective transfor-
mations, Mike Todd observed that the monotone version of the Hirsch conjec-
ture is false even for polytopes: There is a simple 4-dimensional polytope with

Victor L. Klee (1925–2007) (Photo: L. Danzer, Bildarchiv des Mathematischen
Forschungsinstituts Oberwolfach)
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George Dantzig (1914–2005) (http://lyle.smu.edu/~jlk/personal/
personal.htm)

8 facets, such that from a specified starting vertex and objective function every
pivot sequence to the optimum needs at least 5 steps.

3 The Hirsch conjecture, Dantzig figures, and revisits

Published only one year after his classic book, Dantzig [6] presented the follow-
ing as the first of his “Eight unsolved problems from mathematical program-
ming”:

a. Let Cn be an n-dimensional bounded polyhedral convex set
defined by 2n distinct faces, n of which determine the extreme point
p1 and the remaining n of which determine the extreme point p2.
Does there always exist a chain of edges joining p1 to p2 such that
the number of edges in the chain is n?

Dantzig did not mention Hirsch in this connection, but he also did not give
any references, not even his own book which must just have been published
when he compiled the problems. But clearly this is a special case of the Hirsch
conjecture, with two restrictions, namely to the case of bounded polytopes with
n = 2d facets, and with two antipodal vertices that do not share a facet. This
is what Klee and Walkup call a “Dantzig figure.”
Klee and Walkup clarified the situation, by proving that the following three

fundamental conjectures on convex polytopes are equivalent:

The Hirsch conjecture for polytopes:
For all d-dimensional bounded polyhedra with n facets, n > d ≥ 2,
∆b(d, n) ≤ n− d.
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Dantzig’s bounded d-step conjecture:
For all d-dimensional simple polytopes with 2d facets, the distance
between any two complementary vertices that don’t share a facet
is d, for d ≥ 2.

The nonrevisiting conjecture, by V. Klee and P. Wolfe:
From any vertex of a simple convex polytope to any other vertex,
there is a path that does not leave a facet and then later come back
to it.

Some of these implications are quite obvious: For example, a nonrevisiting path
starts on a vertex that lies on (at least) d facets, and in every step it reaches a
new facet, so its length clearly cannot be more than n− d. Other implications
are harder, and in particular they were not established on a dimension-by-
dimension basis (but rather for fixed m = n− d).
The restriction to simple polytopes in all these constructions (that is, d-

dimensional polytopes such that every vertex lies on exactly d facets) appears
at the beginning of the fundamental Klee–Walkup paper. Indeed, right after
introduction and preliminaries, Section 2 “Some reductions” starts with the
observation

2.1. It is sufficient to consider simple polyhedra and simple poly-
topes when determining ∆(d, n) and ∆b(d, n).

This is, as we will see, true, easy to eastablish, fundamental – and was quite
misleading.

4 Francisco Santos solved the Hirsch conjecture

In May 2010, Francisco Santos from the University of Cantabria in Santander,
submitted the following abstract to the upcoming Seattle conference “100 Years
in Seattle: the mathematics of Klee and Grünbaum” dedicated to the out-
standing geometers Victor Klee (who had passed away in 2007) and Branko
Grünbaum (famous for his 1967 book on polytopes [9], which carried a chapter
by V. Klee on diameters of polytopes):

Title: "A counter-example to the Hirsch conjecture"

Author: Francisco Santos, Universidad de Cantabria

Abstract: I have been in Seattle only once, in

November 2003, when I visited to give a seminar talk

at U of W. Victor Klee was already retired (he was 78

at that time), but he came to the department. We had

a nice conversation during which he asked "Why don’t

you try to disprove the Hirsch Conjecture"? Although

I have later found out that he asked the same to many
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Francisco “Paco” Santos (*1968)

people, including all his students, the question and

the way it was posed made me feel special at that time.

This talk is the answer to that question. I will

describe the construction of a 43-dimensional polytope

with 86 facets and diameter bigger than 43. The proof

is based on a generalization of the d-step theorem of

Klee and Walkup.

Francisco “Paco” Santos, *1968, was known in the polytopes community as
an outstanding geometer, who had previously surprised the experts with con-
structions such as a 6-dimensional triangulation that does not admit a single
“bistellar flip.” Thus, as a preprint of his paper was first circulating among
a few experts, and then released on the arXiv [18], there was no doubt that
this would be correct. Indeed, the announcement contained only one mistake,
which was soon corrected: His visit to Seattle had not been in 2003, but in
2002.

This is not the place to even sketch Santos’ magnificent construction. Let us
just say that his starting point is a generalization of Dantzig’s d-step conjecture:
Santos calls a spindle a polytope with two vertices x and y such that all facets
contains one of them (but not both). If the polytope has dimension d, then it
has n ≥ 2d facets. If such a spindle is simple, then n = 2d: This is the case of
a Dantzig figure. So the key for Santos’ approach is to not do the reduction to
simple polytopes, but to consider spindles that are not simple.

The d-step conjecture for spindles asks for a path of length d between the
vertices x and y in any spindle. This happens to exist for d = 3 (exercise for
you), and also for d = 4 (not so easy – see Santos et al. [20]). But for d = 5
there is a counterexample, which Santos devised using intuition from a careful

Documenta Mathematica · Extra Volume ISMP (2012) 75–85



Who Solved the Hirsch Conjecture? 81

A Santos spindle, from [19]

analysis of the Klee–Walkup example P4, and which he cleverly explained and
visualized in 2- and 3-dimensional images. This example can then be lifted,
using Klee–Walkup type “wedging” techniques, to yield a counterexample to
the d-step conjecture (and hence the Hirsch conjecture), for d = 43:

∆(43, 86) > 43.

Later “tweaking” and “optimization” yielded counterexamples in lower dimen-
sions, arriving at an explicit example of a 20-dimensional Dantzig figure with
40 facets and 36,425 vertices and graph diameter 21 – proving that

∆(20, 40) > 21.

See Matschke, Santos & Weibel [16].

5 If there is a short path, there must be a way to find it

If you want to prove the Hirsch conjecture, or at least prove good upper bounds
for the diameter of polytopes, one natural approach is to ask for numerical or
combinatorial strategies to find short paths.

Indeed, the interest from linear programming certainly is not to only establish
the existence of short paths, but to specify pivot rules that find one. Certainly
the expectation of Hirsch, Dantzig, and others was that the usual pivot rules
used for linear programming (at the time) would not need more than a linear
number of steps, which, a fortiori, would establish the existence of “reasonably”
short paths.

That hope was seriously damaged by a seminal paper by Victor Klee and
George Minty from 1972, with the innocuous title “How good is the simplex
algorithm?” [14]. The answer was “It is bad”: Klee and Minty constructed
linear programs, certain d-dimensional “deformed cubes,” soon known as the
“Klee–Minty cubes”, on which the usual largest coefficient pivot rule would
take 2d steps.
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Zadeh’s letter to Victor Klee ( c©G. M. Ziegler [22], http://www.scilogs.de/
wblogs/blog/mathematik-im-alltag/)

But would a different pivot rule be better? Linear? Establish the Hirsch con-
jecture? The Klee–Minty breakthrough started a sequence of papers that con-
structed variants of the “deformed cube” construction, on which the classical
pivot rules for lineare programming, one by one, were shown to be exponential
in a worst case – an industry that Manfred Padberg criticised as worstcasitis in
[17, p. 70]. (The geometric background was formalized as “deformed products”
in Amenta & Ziegler [2].)

Two pivot rules remained, and defied all attacks, namely

• random pivots, and

• minimizing revisits.

The latter idea, perhaps inspired by Robert Frost’s famous “road less travelled
by,” was proposed by the mathematician (and now controversial businessman)
Norman Zadeh, who had once offered $ 1000 for a proof or disproof that his
“least entered rule” was polynomial:

This prize was finally in January 2011 collected, at IPAM, by a doctoral
student, Oliver Friedman from Munich, who had used game-theoretic methods
to construct linear programs on which Zadeh’s rule is exponential [7].

At the same time, Friedmann, Hansen & Zwick also showed that the “random
pivot” rule is exponential [8], thus for the time being destroying all hopes for
any “reasonable” pivot rule for the simplex algorithm with polynomial worst-
case behaviour.
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Oliver Friedmann (Photo: E. Kim)

6 The Hirsch conjecture is not solved

Clearly, Hirsch and Dantzig were interested in an upper bound on the maximal
number of pivots for the simplex algorithm. Santos’ example shows that the
upper bound ∆b(d, n) ≤ n−d does not hold in general, but all the lower bounds
we have right now are quite weak: From glueing techniques applied to Santos’
examples we get linear lower bounds of the type

∆b(d, n) ≥
21
20
(n− d)

for very large n and d, while the best available upper bounds by Kalai &
Kleitman [11] resp. by Barnette and Larman [3]

∆(d, n) ≤ n
log

2
2d and ∆(d, n) ≤ 1

12
2dn

are very mildly sub-exponential, resp. linear in n but exponential in d (and
hence, for example, exponential for the case n = 2d of the d-step conjecture).
The huge gap between these is striking. And if we interpret Hirsch’s question

as asking for a good (linear?) upper bound for the worst-case behaviour of the
Hirsch conjecture, then all we can say as of now is: We honestly don’t know.

Much more could be said – but we refer the readers to Santos’ paper [18],
to the surveys by Klee & Kleinschmidt [13] and Kim & Santos [12], and to Gil
Kalai’s blog [10] instead.

References

[1] Amos Altshuler, Jürgen Bokowski, and Leon Steinberg. The classification
of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes.
Discrete Math., 31:115–124, 1980.

[2] Nina Amenta and Günter M. Ziegler. Deformed products and maximal
shadows. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances

Documenta Mathematica · Extra Volume ISMP (2012) 75–85



84 Günter M. Ziegler

in Discrete and Computational Geometry (South Hadley, MA, 1996), vol-
ume 223 of Contemporary Mathematics, pages 57–90, Providence RI, 1998.
Amer. Math. Soc.

[3] David W. Barnette. An upper bound for the diameter of a polytope.
Discrete Math., 10:9–13, 1974.

[4] Karl Heinz Borgwardt. The Simplex Method. A Probabilistic Analysis,
volume 1 of Algorithms and Combinatorics. Springer-Verlag, Berlin Hei-
delberg, 1987.

[5] George B. Dantzig. Linear Programming and Extensions. Princeton Uni-
versity Press, Princeton, 1963. Reprint 1998.

[6] George B. Dantzig. Eight unsolved problems from mathematical program-
ming. Bulletin Amer. Math. Soc., 70:499–500, 1964.

[7] Oliver Friedmann. A subexponential lower bound for Zadeh’s pivoting
rule for solving linear programs and games. In In Proceedings of the
15th Conference on Integer Programming and Combinatorial Optimiza-
tion, IPCO’11, New York, NY, USA, 2011.

[8] Oliver Friedmann, Thomas Hansen, and Uri Zwick. Subexponential lower
bounds for randomized pivoting rules for the simplex algorithm. In In Pro-
ceedings of the 43rd ACM Symposium on Theory of Computing, STOC’11,
San Jose, CA, USA, 2011.
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Pope Gregory, the Calendar,

and Continued Fractions

Friedrich Eisenbrand

Abstract. The success of many activities of modern civilization cru-
cially depends on careful planning. Some activities should be carried
out during a certain period of the year. For example: When is the
right time of the year to sow, when is the right time to plow? It is
thus no surprise that calendars are found in literally every ancient
civilization.
The earth revolves around the sun in about 365.2422 days. An accu-
rate calendar can thus not provision the same number of days every
year if the calendar should be synchronous with the seasons. This
article is about the problem of approximating a given number by a ra-
tional number with small denominator, continued fractions and their
relationship to the Gregorian calendar with its leap-year rule that is
still in use today and keeps the calendar synchronized for a very long
time.

2010 Mathematics Subject Classification: 11J70, 11Y16, 11A55
Keywords and Phrases: Calendar, Diophantine approximation, con-
tinued fractions

The Julian calendar and Gregory’s reform

The number 365.2422 is close to 365 + 1/4. If this was precisely the duration
of one year in days, then the following rule would result in an exact calendar.

Each year that is divisible by 4 consists of 366 days and each other
year consists of 365 days.

The mean duration of a calendar year is thus 365 + 1/4. In other words, each
year that is divisible by 4 will be a leap year. This leap year rule was imposed
by Julius Cesar in 45 B.C. Already at this time, astronomers calculated the
duration of a year in days fairly accurately and it was clear that the calendar
would be behind by one day in roughly 130 years.
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In 1582, when the Julian calendar was evidently out of sync by a large extent,
pope Gregory the XIII imposed the following calendar reform. As before, every
year that is divisible by 4 is a leap-year, except for those divisible by 100 but
not by 400. The mean duration of a year of the Gregorian calendar is thus
365 + 97/400.

Best approximations

What is the mathematical challenge behind the design of an accurate leap-year
rule? The task is to approximate the number 0.2422 by a rational number p/q
with p, q ∈ N+ such that q as well as the error E = |.2422− p/q| is small. The
mean duration of a calendar year is then 365+ p/q if the calendar provisions p
leap years every q years. The smaller the q, the simpler should be the leap-year
rule. In the Julian calendar, p/q = 1/4. The rule “Each year divisible by four
is a leap year” is easy to remember. In 1/E years, the calendar will then be
ahead by one day or behind by one day depending on whether p/q is smaller
or larger than 0.2422.
Finding a convenient and sufficiently accurate leap-year rule is related to

approximating a real number α ∈ R≥0 by a rational number p/q in a good way.
In the following we always assume that p is a natural number or 0 and that q
is a positive natural number when we speak about the representation p/q of a
rational number. The rational number p/q is a best approximation of α if for
any other rational number p′/q′ 6= p/q one has

|α− p/q| < |α− p
′
/q

′
|

if q′ ≤ q. Going back to the calendar problem, this makes sense. If there exists
an approximation p

′
/q

′ of 0.2422 with q
′
≤ q that results in a smaller error,

then we could hope that we can find a leap year rule that accommodates for p′

leap years in q
′ years instead of the one that accommodates for p leap years in

q years that is just as easy to remember. Furthermore, the calendar would be
more accurate.

Continued fractions

Continued fractions have been used to approximate numbers for a very long
time and it seems impossible to attribute their first use to a particular re-
searcher or even to a particular ancient civilization. Keeping the best approxi-
mation problem in mind however, the application of continued fractions seems
natural.
Suppose our task is to approximate α ∈ R≥0 by a rational number with small

denominator. If α is not a natural number then we can re-write

α = ⌊α⌋+ (α− ⌊α⌋)

= ⌊α⌋+
1

1/(α− ⌊α⌋)
.
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The number β = 1/(α− ⌊α⌋) is larger than one. If β is not a natural number,
one continues to expand the number β and obtains

α = ⌊α⌋+
1

⌊β⌋+
1

1/(β − ⌊β⌋)

.

The continued fraction expansion of α is inductively defined as the sequence α if
α ∈ N and ⌊α⌋, a1, a2, . . . otherwise, where a1, a2, . . . is the continued fraction
expansion of 1/(α − ⌊α⌋). On the other hand, a finite sequence of integers
b0, . . . , bn, all positive, except perhaps b0 gives rise to the continued fraction

〈b0, . . . , bn〉 = b0 +
1

b1 +
1

. . . +
1

bn

.

If the sequence a0, a1, . . . is the continued fraction expansion of α ∈ R≥0 and
if its length is at least k + 1, then the k-th convergent of α is the continued
fraction

〈a0, . . . , ak〉 = a0 +
1

a1 +
1

. . . +
1

ak

Let us compute the first convergents of the number α = 365.2422. Clearly,
a0 is 365. To continue, it is convenient to represent α as a rational number
α = 1826211/5000. Clearly α−⌊α⌋ is the remainder of the division of 1826211
by 5000 divided by 5000. One has

1826211 = 5000 · 365 + 1211.

Thus we continue to expand 5000/1211 and obtain a1 = 4. The remainder of
the division of 5000 by 1211 is 156 which means that we next expand 1211/156
which results in a2 = 7. The remainder of this division is 119 and we next
expand 156/119 resulting in a3 = 1, then 119/37 yielding a4 = 3 and 37/8
yields a5 = 4.

At this point we can record an important observation. If α = p/q is a
rational number, then its continued fraction expansion is precisely the sequence
of quotients of the division-with-remainder steps that are carried out by the
Euclidean algorithm on input p and q. Also, for arbitrary real α ∈ R≥0, the
function fk(x) = 〈a0, . . . , ak−1, x〉 defined for x > 0 is strictly increasing in x

if k is even and decreasing if k is odd. Furthermore, if k is even, then ak is
the largest integer with 〈a0, . . . , ak〉 ≤ α and if k is odd then ak is the largest
integer such that 〈a0, . . . , ak〉 ≥ α.
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The quality of the Gregorian calendar

The third convergent of 365.2422 is

365 +
1

4 +
1

7 +
1

1

= 365 + 8/33.

According to Rickey [6], the Persian mathematician, philosopher and poet
Omar Khayyam (1048 - 1131) suggested a 33-year cycle where the years
4, 8, 12, 16, 20, 24, 28 and 33 should be leap years. Thus the mean-duration
of a year according to his suggestion would be exactly the value of the third
convergent. How does this compare to the mean duration of a year of the
Gregorian calendar. We calculate both error terms

E1 = |365.2422− 365 + 8/33| = 0.000224242424242432

E2 = |365.2422− 365 + 97/400| = 0.000299999999999995

and surprisingly, one finds that Omar Khayyam’s leap-year rule is more ac-
curate. Using the third convergent, his calendar will be imprecise by one day
in roughly 4459.45 years, whereas Gregory’s calendar will be off by one day
in “only” 3333.33 years. Still the leap-year rule of the Gregorian calendar is
convenient, as it relates nicely with our decimal number system and is simple
to remember. However, why is it a good idea to approximate a number by its
convergent? What is the relation of the convergents of a number with its best
approximations?

Best approximations and convergents

We now explain the relationship of convergents of α ∈ R≥0 and best approx-
imations. The subject is nicely treated in [2]. Let a0, a1, . . . be a sequence of
natural numbers where again all are positive except perhaps a0 and consider
the two sequences gk and hk that are inductively defined as

(

g−1 g−2

h−1 h−2

)

=

(

1 0
0 1

)

,

(

gk gk−1

hk hk−1

)

=

(

gk−1 gk−2

hk−1 hk−2

)(

ak 1
1 0

)

, k ≥ 0.

(1)
It follows from a simple inductive argument that, if βk is the number βk =
gk/hk, then one has 〈a0, . . . , ak〉 = βk for k ≥ 0.

Now the process of forming convergents admits a nice geometric interpreta-
tion. Notice that, since the ai are integers and since the determinant of

(

gk gk−1

hk hk−1

)

(2)
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vk−1

vk

h = α · g

g

h
0 hk−1

Figure 1: An illustration of the geometric interpretation of convergents

is 1, such a matrix (2) is a basis of the standard lattice Z2. This means
that each vector in Z2 can be obtained by multiplying the matrix (2) with an
integral 2-dimensional vector and conversely, the result of such a multiplication
is always an integral 2-dimensional vector. If vk =

( gk
hk

)

then the line with slope
α through 0 is sandwiched between the vectors vk and vk−1 in the positive
orthant, see Figure 1. In Figure 1, the rational number gk−1/hk−1 is larger
than α. Since there is no integer point in the shaded region, any other rational
number p/q ≥ α with p/q−α ≤ gk−1/hk−1 −α must have a denominator that
is larger than hk−1. One says that gk−1/hk−1 is a best approximation from
above. Similarly, gk/hk is a best approximation from below. At this point it is
already clear that one of the convergents is a best approximation.

Next we show that the following best approximation problem can be solved
in polynomial time.

Given a rational number α ∈ Q>0 and a positive integer M , com-
pute the best approximation of α with denominator bounded by M ,
i.e., compute a rational number p/q with p ≤ M such that |α−p/q|

is minimum.

The algorithm is described in [2], see also [1], and is as follows. One computes
the convergents α as long as the denominator (h-component) of the latest
convergent is bounded by M . Since the denominators double every second
round, the number of steps is bounded by the encoding length of M . Suppose
that this is the k-th convergent and we denote the columns of the matrix (2)
again by vk and vk−1. In the next round, the new first column would be
vk−1 + ak+1 · vk but the h-component of this vector exceeds M . Instead, one
computes now the largest µ ∈ N0 such that the h-component of vk−1 + µ · vk

does not exceed M . If we denote the resulting vector by u then still u, vk is
a basis of Z2 but the second component of u + vk exceeds M . The situation
is depicted in Figure 2. Any rational number p/q that approximates α better
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u

vk

h ≤ M

h = α · g

0

g

h

Figure 2: An illustration of the algorithm solving the best approximation prob-
lem

than u and vk is in the cone C spanned by u and vk

C = {λ1u+ λ2vk : λ1, λ2 ≥ 0}.

But if this rational number is different from the one represented by u and v,
then λ1 and λ2 must be strictly positive. However, since u and vk form a
lattice-basis, λ1 and λ2 are positive integers and thus the h-component q of
the corresponding vector exceeds M . Thus u or vk is a solution to the best-
approximation problem.

Further historical remarks

Continued fractions are a true classic in mathematics and it is impossible to give
a thorough historical account. In this final section I content myself with a very
brief discussion of computational issues related to best approximations and con-
tinued fractions and some recent results. The simultaneous best approximation
problem is the high-dimensional counterpart to the best approximation problem
that we discussed. Here, one is given a rational vector and a denominator bound
and the task is to find another rational vector where each component has the
same denominator that is bounded by the prescribed denominator bound. The
objective is to minimize the error in the ℓ∞-norm. Lagarias [3] has shown that
this problem is NP-hard and applied the LLL-algorithm [4] to approximate this
optimization problem. Variants of this simultaneous best approximation prob-
lem are also shown to be hard to approximate [7]. Schönhage [8] showed how
to compute convergents in a quasilinear amount of bit-operations. Recently
Novocin, Stehlé and Villard [5] have shown that a variant of LLL-reduction
depends on the bit-size of the largest input coefficient in a similar way.
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1 The men behind the ellipsoids

Before giving the mathematical description of the Löwner–John ellipsoids and
pointing out some of their far-ranging applications, I briefly illuminate the
adventurous life of the two eminent mathematicians, by whom the ellipsoids
are named: Charles Loewner (Karel Löwner) and Fritz John.

Karel Löwner (see Figure 1) was born into a Jewish family in Lány, a small
town about 30 km west of Prague, in 1893. Due to his father’s liking for German

Figure 1: Charles Loewner in 1963 (Source: Wikimedia Commons)
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style education, Karel attended a German Gymnasium in Prague and in 1912
he began his studies at German Charles-Ferdinand University in Prague, where
he not only studied mathematics, but also physics, astronomy, chemistry and
meteorology. He made his Ph.D. in 1917 under supervision of Georg Pick on a
distortion theorem for a class of holomorphic functions.

In 1922 he moved to the University of Berlin, where he made his Habil-
itation in 1923 on the solution of a special case of the famous Bieberbach
conjecture. In 1928 he was appointed as non-permanent extraordinary profes-
sor at Cologne, and in 1930 he moved back to Prague where he became first
an extraordinary professor and then a full professor at the German University
in Prague in 1934. After the complete occupation of Czech lands in 1939 by
Nazi Germany, Löwner was forced to leave his homeland with his family and
emigrated to the United States. From this point on he changed his name to
Charles Loewner. He worked for a couple of years at Louisville, Brown and
Syracuse University, and in 1951 he moved to Stanford University. He died
in Stanford in 1968 at the age of 75. Among the main research interests of
Loewner were geometric function theory, fluid dynamics, partial differential
equations and semigroups. Robert Finn (Stanford) wrote about Loewner’s sci-
entific work: “Loewners Veröffentlichungen sind nach heutigen Maßstäben zwar
nicht zahlreich, aber jede für sich richtungsweisend.”1

Fritz John2 was born in Berlin in 1910 and studied mathematics in Göttingen
where he was most influenced by Courant, Herglotz and Lewy. Shortly after
Hitler had come to power in January 1933, he – as a Non-Aryan – lost his
scholarship which gave him, in addition to the general discrimination of Non-
Aryans, a very hard financial time. In July 1933, under supervision of Courant
he finished his Ph.D. on a reconstructing problem of functions, which was sug-
gested to him by Lewy. With the help of Courant he left Germany in the
beginning of 1934 and stayed for one year in Cambridge. Fortunately, in 1935
he got an assistant professorship in Lexington, Kentucky, where he was pro-
moted to associate professor in 1942. Four years later, 1946, he moved to New
York University where he joined Courant, Friedrichs and Stoker in building the
institute which later became the Courant Institute of Mathematical Sciences.
In 1951 he was appointed full professor at NYU and remained there until his
retirement 1981. He died in New Rochelle, NY, in 1994 at the age of 84. For
his deep and pioneering contributions to different areas of mathematics which
include partial differential equations, Radon transformations, convex geome-
try, numerical analysis, ill-posed problems etc., he received many awards and
distinctions.

For detailed information on life and impact of Karel Löwner and Fritz John
we refer to [16, 25, 27, 35, 36, 37, 39, 40].

1“Compared to today’s standards, Loewner’s publications are not many, yet each of them
is far reaching.”

2For a picture see the article of Richard W. Cottle [13] in this volume.
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2 The ellipsoids

Before presenting the Löwner–John ellipsoids let me briefly fix some notations.
An ellipsoid E in the n-dimensional Euclidean space Rn is the image of the
unit ball Bn, i.e., the ball of radius 1 centered at the origin, under a regular
affine transformation. So there exist a t ∈ Rn, the center of the ellipsoid, and
a regular matrix T ∈ Rn×n such that

E = t + T Bn = {t + T y : y ∈ Bn}

= {x ∈ Rn : ||T−1(x− t)|| ≤ 1},
(1)

where || · || denotes the Euclidean norm.
By standard compactness arguments it can be easily seen that every convex

body K ⊂ Rn, i.e., convex compact set with interior points, has an inscribed
and circumscribed ellipsoid of maximal and minimal volume, respectively.

Figure 2: Maximal inscribed ellipse of a flat diamond, and minimal circum-
scribed ellipse (circle) of a regular triangle

To prove, however, that these extremal volume ellipsoids are uniquely de-
termined requires some work. In the planar case n = 2, this was shown by
F. Behrend3 in 1937/38 [7, 8]. O.B. Ader, a student of Fritz John in Kentucky,
treated a special 3-dimensional case [1], and the first proof of uniqueness of
these ellipsoids in general seems to have been given by Danzer, Laugwitz and
Lenz in 1957 [14] and independently by Zaguskin [45].

In his seminal paper Extremum problems with inequalities as subsidiary con-
ditions [26], Fritz John extends the Lagrange multiplier rule to the case of
(possibly infinitely many) inequalities as side constraints. As an application of
his optimality criterion he shows that for the minimal volume ellipsoid t+T Bn,
say, containing K it holds

t +
1

n
T Bn ⊂ K ⊆ t + T Bn. (2)

In other words, K can be sandwiched between two concentric ellipsoids of ratio
n. According to Harold W. Kuhn [30], the geometric problem (2) and related
questions from convex geometry were John’s main motivation for his paper [26].
John also pointed out that for convex bodies having a center of symmetry, i.e.,

3Felix Adalbert Behrend was awarded a Doctor of Science at German University in Prague
in 1938 and most likely, he discussed and collaborated with Karel Löwner on the ellipsoids.
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Figure 3: Minimal volume ellipses together with their concentric copies scaled
by 1

2 for the triangle and by 1√
2

for the square

there exists a c ∈ Rn such that K = c −K = {c − y : y ∈ K}, the factor 1/n
can be replaced by 1/

√

n and that both bounds are best possible as a simplex
and a cube show (see Figure 3).

Actually, his optimality criterion gives more information about the geom-
etry of minimal (or maximal) volume ellipsoids and together with a refine-
ment/supplement by Keith Ball from 1992 [3] (see also Pe lczyński [38] and
[4, 21, 29]) we have the following beautiful characterization:

Theorem 2.1 (John). Let K ⊂ Rn be a convex body and let K ⊆ Bn. Then
the following statements are equivalent:

i) Bn is the unique minimal volume ellipsoid containing K.

ii) There exist contact points u1, . . . , um ∈ bdK ∩ bdBn, i.e., lying in the
boundary of K and Bn, and positive numbers λ1, . . . , λm, m ≥ n, such
that

m
∑

i=1

λi ui = 0 and In =
m
∑

i=1

λi(ui u
⊺

i ),

where In is the (n× n)- identity matrix.

For instance, let Cn = [−1, 1]n be the cube of edge length 2 centered at the
origin. Cn is contained in the ball of radius

√

n centered at the origin, i.e.,
√

nBn, which is the minimal volume ellipsoid containing Cn. To see this, we
observe that the statement above is invariant with respect to scalings of Bn.
Thus it suffices to look for contact points in bdCn ∩ bd

√

nBn satisfying ii).
Obviously, all the 2n vertices ui of Cn are contact points and since

∑

ui = 0
and

∑

(ui u
⊺

i ) = 2n In we are done. But do we need all of them? Or, in
general, are there upper bounds on the number of contact points needed for
the decomposition of the identity matrix in Theorem 2.1 ii)? There are! In
the general case the upper bound is n(n + 3)/2 as it was pointed out by John.
For symmetric bodies we can replace it by n(n + 1)/2. Hence we can find at
most n(n+ 1)/2 vertices of the cube such that the unit ball is also the minimal
volume ellipsoid of the convex hull of these vertices. For the number of contact
points for “typical” convex bodies we refer to Gruber [22, 23].
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Löwner–John Ellipsoids 99

For maximal volume inscribed ellipsoids we have the same characterization
as in the theorem above. Hence we also see that Bn is the maximal volume
ellipsoid contained in Cn. Here we take as contact points the unit vectors (see
Figure 3).

According to Busemann [11], Löwner discovered the uniqueness of the mini-
mal volume ellipsoid but “did not publish his result” (see also [12, p. 90]), and
in honor of Karel Löwner and Fritz John these extremal volume ellipsoids are
called Löwner–John ellipsoids.

Sometimes they are also called John-Löwner ellipsoids (see, e.g., [9]), just
John-ellipsoids, when the emphasis is more on the decomposition property
ii) in Theorem 2.1 (see, e.g., [19, 4]), or it also happens that the maximal
inscribed ellipsoids are called John-ellipsoids and the Löwner-ellipsoids are the
circumscribed ones (see, e.g., [24]).

3 Ellipsoids in action

From my point of view the applications can be roughly divided into two classes,
either the Löwner–John ellipsoids are used in order to bring the body into a
“good position” by an affine transformation or they serve as a “good&easy”
approximation of a given convex body.

I start with some instances of the first class, since problems from this class
were the main motivation to investigate these ellipsoids. To simplify the lan-
guage, we call a convex body K in Löwner–John-position, if the unit ball Bn

is the minimal volume ellipsoid containing K.

Reverse geometric inequalities. For a convex body K ⊂ Rn let r(K)
be the radius of a largest ball contained in K, and let R(K) be the radius of
the smallest ball containing K. Then we obviously have R(K)/r(K) ≥ 1 and,
in general, we cannot bound that ratio from above, as, e.g., flat or needle-like
bodies show (see Figure 2). If we allow, however, to apply affine transformations
to K, the situation changes. Assuming that K is in its Löwner–John-position,
by (2) we get R(K)/r(K) ≤ n and so (cf. [33])

1 ≤ max
K convex body

min
α regular affine transf.

R(α(K))

r(α(K))
≤ n.

The lower bound is attained for ellipsoids and the upper bound for simplices.
The study of this type of reverse inequalities or “affine invariant inequalities”
goes back to the already mentioned work of Behrend [7] (see also the paper of
John [26, Section 3]) and is of great importance in convex geometry.

Another, and more involved, example of this type is a reverse isoperimetric
inequality. Here the ratio of the surface area F(K) to the volume V(K) of a
convex body K is studied. The classical isoperimetric inequality states that
among all bodies of a given fixed volume, the ball has minimal surface area,
and, again, flat bodies show that there is no upper bound. Based on John’s
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Theorem 2.1, however, Ball [2] proved that simplices give an upper bound,
provided we allow affine transformations. More precisely, we have

F(Bn)
1

n−1

V(Bn)
1

n

≤ max
K convex body

min
α regular affine transf.

F(α(K))
1

n−1

V(α(K))
1

n

≤
F(Sn)

1

n−1

V(Sn)
1

n

,

where Sn is a regular n-simplex. For more applications of this type we refer to
the survey [17].

Faces of symmetric polytopes. One of my favorite and most surprising
applications is a result on the number of vertices f0(P ) and facets fn−1(P ),
i.e., (n− 1)-dimensional faces, of a polytope P ⊂ Rn which is symmetric with
respect to the origin. For this class of polytopes, it is conjectured by Kalai that
the total number of all faces (vertices, edges, . . . , facets) is at least 3n − 1, as
for instance in the case of the cube Cn = [−1, 1]n. So far this has been verified
in dimensions n ≤ 4 [41], and not much is known about the number of faces of
symmetric polytopes in arbitrary dimensions. One of the very few exceptions
is a result by Figiel, Lindenstrauss and Milman [15], where they show

ln(f0(P )) ln(fn−1(P )) ≥
1

16
n.

In particular, either f0(P ) or fn−1(P ) has to be of size ∼ e
√
n. For the proof

it is essential that in the case of symmetric polytopes the factor n in (2) can
be replaced by

√

n. For more details we refer to [5, pp. 274].

Preprocessing in algorithms. Also in various algorithmic related prob-
lems in optimization, computational geometry, etc., it is of advantage to bring
first the convex body in question close to its Löwner–John-position, in order
to avoid almost degenerate, i.e., needle-like, flat bodies. A famous example
in this context is the celebrated algorithm of Lenstra [34] for solving integer
programming problems in polynomial time in fixed dimension. Given a ratio-
nal polytope P ⊂ Rn, in a preprocessing step an affine transformation α is
constructed such that α(P ) has a “spherical appearance”, which means that
R(α(P ))/r(α(P )) is bounded from above by a constant depending only on n.
Of course, this could be easily done, if we could determine a Löwner–John
ellipsoid (either inscribed or circumscribed) in polynomial time. In general
this seems to be a hard task, but there are polynomial time algorithms which
compute a (1 + ǫ)-approximation of a Löwner–John ellipsoid for fixed ǫ. For
more references and for an overview of the current state of the art of computing
Löwner–John ellipsoids we refer to [44] and the references therein.

In some special cases, however, we can give an explicit formula for the min-
imal volume ellipsoid containing a body K, and so we obtain a “good&easy”
approximation of K. This brings me to my second class of applications of
Löwner–John ellipsoids.
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t
H

PH
+

Figure 4: The Löwner–John ellipse of a half-ellipse

Khachiyan’s ellipsoid allgorithm. The famous polynomial time algo-
rithm of Khachiyan for solving linear programming problems is based on the
idea to construct a sequence of ellipsoids of strictly decreasing volume contain-
ing the given polytope until either the center of an ellipsoid lies inside our given
polytope or the volume of the ellipsoids is so small that we can conclude that
the polytope must be empty (roughly speaking). This “ellipsoid method” goes
back to works of N. Z. Shor [43] and Judin and Nemirovskĭı [28] (see also the
articles of Robert E. Bixby [10] and David Shanno [42] in this volume).

Assuming that our polytope P is contained in an ellipsoid t + T Bn, say, we
are faced with the question what to do if t /∈ P . But then we know that one
of the inequalities describing our polytope P induces a hyperplane H passing
through the center t, such that P is entirely contained in one of the halfspaces
H

+, say, associated to H. Hence we know

P ⊂ (t + T Bn) ∩H
+
,

and in order to iterate this process we have to find a “small” ellipsoid containing
the half-ellipsoid (t + T Bn) ∩ H

+. Here it turns out that the Löwner–John
ellipsoid of minimal volume containing (t + T Bn) ∩H

+ (see Figure 4) can be
explicitly calculated by a formula (see, e.g., [20, p. 70]) and the ratio of the
volumes of two consecutive ellipsoids in the sequence is less than e−1/(2n). To
turn this theoretic idea into a polynomial time algorithm, however, needs more
work. In this context, we refer to [20, Chapter 3], where also variants of this
basic ellipsoid method are discussed.

Extremal geometric problems. In geometric inequalities, where one is
interested in maximizing or minimizing a certain functional among all convex
bodies, the approximation of the convex body by (one of) its Löwner–John
ellipsoids gives a reasonable first (and sometimes optimal) bound. As an ex-
ample we consider the Banach–Mazur distance d(K,M) between two convex
bodies K,M ⊂ Rn. Here, d(K,M) is the smallest factor δ such that there exist
an affine transformation α and a point x ∈ Rn with K ⊆ α(M) ⊆ δ K + x.
This distance is symmetric and multiplicative, i.e.,

d(K,M) = d(M,K) ≤ d(M,L) d(L,K).

Of course, this distance perfectly fits to Löwner–John ellipsoids and by (2) we
have d(Bn,K) ≤ n for every convex body K. So we immediately get that the
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Banach-Mazur distance between any pair of convex bodies is bounded, namely

d(K,M) ≤ d(Bn,K) d(Bn,M) ≤ n
2
.

But how good is this bound? This is still an open problem and for the current
best lower and upper bounds as well as related questions on the Banach-Mazur
distance we refer to [19, Sec. 7.2].

4 Beyond Ellipsoids

Looking at (2) and Theorem 2.1, it is quite natural to ask, what happens if we
replace the class of ellipsoids, i.e., the affine images of Bn, by parallelepipeds,
i.e., the affine images of the cube Cn, or, in general, by the affine images of a
given convex body L. This question was studied by Giannopoulos, Perissinaki
and Tsolomitis in their paper John’s theorem for an arbitrary pair of convex
bodies [18]. They give necessary and sufficient conditions when a convex body
L has minimal volume among all its affine images containing a given body K

which nicely generalize Theorem 2.1. One consequence is that for every convex
body K, there exists a parallelepiped t + T Cn such that (cf. (2) and see also
Lassak [31])

t +
1

2n− 1
T Cn ⊂ K ⊂ t + T Cn.

Observe, that in this more general setting we lose the uniqueness of an opti-
mal solution. Another obvious question is: what can be said about minimal
circumscribed and maximal inscribed ellipsoids when we replace the volume
functional by the surface area, or, in general, by so the called intrinsic vol-
umes? For answers in this context we refer to Gruber [23].

In view of (2), ellipsoids E = T Bn with center 0 may be described by an
inequality of the form E = {x ∈ Rn : p2(x) ≤ 1}, where p2(x) = x

⊺
T

−⊺
T

−1
x ∈

R[x] is a homogeneous non-negative polynomial of degree 2. Given a convex
body K symmetric with respect to the origin, the center t in (2) of the minimal
volume ellipsoid is the origin and so we can restate (2) as follows: for any 0-
symmetric convex body K there exists a non-negative homogeneous polynomial
p2(x) of degree 2 such that

(

1

n
p2(x)

)
1

2

≤ |x|K ≤ p2(x)
1

2 for all x ∈ Rn
, (3)

where |x|K = min{λ ≥ 0 : x ∈ λK} is the gauge or Minkowski function of K.
In fact, this formulation can also be found at the end of John’s paper [26].

Since | · |K defines a norm on Rn and any norm can be described in this
way, (3) tells us, how well a given arbitrary norm can be approximated by a
homogeneous polynomial of degree 2, i.e., by the Euclidean norm. So what can
we gain if we allow higher degree non-negative homogeneous polynomials? In
[6], Barvinok studied this question and proved that for any norm | · | on Rn and
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any odd integer d there exists a non-negative homogeneous polynomial p2d(x)
of degree 2d such that

(

1
(

d+n−1
d

) p2d(x)

)
1

2d

≤ |x| ≤ p2d(x)
1

2d for all x ∈ Rn
.

Observe, for d = 1 we get (3) and thus (2) for symmetric bodies, but in general
it is not known whether the factor

(

d+n−1
d

)

is best possible. Barvinok’s proof
is to some extent also an application of John’s theorem as in one step it uses
(2) in a certain

(

d+n−1
d

)

-dimensional vector space. In [6] there is also a variant
for non-symmetric gauge functions (non-symmetric convex bodies) which, in
particular, implies (2) in the case d = 1.

In a recent paper Jean B. Lasserre [32] studied the following even more
general problem: Given a compact set U ⊂ Rn and d ∈ N, find a homogeneous
polynomial g of degree 2d such that its sublevel set G = {x ∈ Rn : g(x) ≤ 1}
contains U and has minimum volume among all such sublevel sets containing
U . It turns out that this is a finite-dimensional convex optimization problem
and in [32, Theorem 3.2] a characterization of the optimal solutions is given
which “perfectly” generalizes Theorem 2.1. In particular, the optimal solutions
are also determined by finitely many “contact points”.
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[7] F. Behrend. Über einige Affininvarianten konvexer Bereiche. Math. An-
nalen, 113:713–747, 1937.

[8] F. Behrend. Über die kleinste umbeschriebene und die größte einbe-
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[38] A. Pe lczyński. Remarks on John’s theorem on the ellipsoid of maximal vol-
ume inscribed into a convex symmetric body in R

n. Note di Matematica,
10(suppl. 2):395–410, 1990.

[39] M. Pinl. Kollegen in einer dunklen Zeit. Jber. Deutsch. Math.-Verein,
72:176, 1970.

Documenta Mathematica · Extra Volume ISMP (2012) 95–106



106 Martin Henk

[40] M. Pinl. Kollegen in einer dunklen Zeit. Schluss. Jber. Deutsch. Math.-
Verein, 75:166–208, 1973.

[41] R. Sanyal, A. Werner, and G.M. Ziegler. On Kalai’s Conjectures Concern-
ing Centrally Symmetric Polytopes. Discrete Comp. Geom., 41(2):183–
198, 2008.

[42] D. Shanno Who invented the interior-point method?, this volume.
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The early years

For many of us, modern-day linear programming (LP) started with the work of
George Dantzig in 1947. However, it must be said that many other scientists
have also made seminal contributions to the subject, and some would argue
that the origins of LP predate Dantzig’s contribution. It is matter open to
debate [36]. However, what is not open to debate is Dantzig’s key contribution
to LP computation. In contrast to the economists of his time, Dantzig viewed
LP not just as a qualitative tool in the analysis of economic phenomena, but as
a method that could be used to compute actual answers to specific real-world
problems. Consistent with that view, he proposed an algorithm for solving
LPs, the simplex algorithm [12]. To this day the simplex algorithm remains a
primary computational tool in linear and mixed-integer programming (MIP).
In [11] it is reported that the first application of Dantzig’s simplex algorithm

to the solution of a non-trivial LP was Laderman’s solution of a 21 constraint,
77 variable instance of the classical Stigler Diet Problem [41]. It is reported
that the total computation time was 120 man-days!
The first computer implementation of an at-least modestly general version

of the simplex algorithm is reported to have been on the SEAC computer
at the then National Bureau of Standards [25]. (There were apparently some
slightly earlier implementations for dealing with models that were “triangular”,
that is, where all the linear systems could be solved by simple addition and
subtraction.) Orchard-Hays [35] reports that several small instances having as
many as 10 constraints and 20 variables were solved with this implementation.

The first systematic development of computer codes for the simplex algo-
rithm began very shortly thereafter at the RAND Corporation in Santa Mon-
ica, California. Dantzig’s initial LP work occurred at the Air Force following
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the end of World War II, influenced in part by military logistics problems that
arose during the war. In 1952 Dantzig moved from the Air Force to the RAND
Corporation, apparently with the specific purpose of focusing on the further
development of his fundamental new ideas. Part of the effort was to build
computer implementations of the simplex algorithm, and Orchard-Hays was
assigned the task of working with Dantzig. The result was a four-year collab-
oration at RAND that laid the foundation for the computational development
of the subject.

The start did not go smoothly. The simplex algorithm was at that point far
from a well-defined computational procedure, and the computers of the day
were nothing like what we think of as a computer today. Their first implemen-
tation used a device known as a Card Programmable Calculator (CPC). As the
name suggests, it wasn’t really a computer, but as Orchard-Hays [35] described
it “an ancient conglomeration of tabulating equipment, electro-mechanical stor-
age devices, and an electronic calculator (with tubes and relays), long since for-
gotten. One did not program in a modern sense, but wired three patch-boards
which became like masses of spaghetti”. The first implementation computed
an explicit inverse at each iteration, and Dantzig was appalled when he saw
the result [35]; the future of the simplex algorithm didn’t look promising. He
then recalled an idea proposed to him by Alex Orden, the product-form of the
inverse. This method, which remained a staple of simplex implementations
for over twenty years, was the starting point for a second and more successful
CPC implementation. It was reportedly capable of handling LPs with up to
45 constraints and 70 variables and was used to solve a 26 constraint, 71 vari-
able instance of the Stigler model. Total computation time was reported to be
about 8 hours, a good portion of that time being spent manually feeding cards
into the CPC. That was 1953.

In 1954–55 the algorithms were improved and re-implemented on an IBM
701, IBM’s first real “scientific computer”. This implementation could handle
LPs with 101 constraints, and was used in extensive computations on a model
devised by the economist Alan Manne. This appears to have been the first real
application of the simplex algorithm.

The 701 implementation was followed in 1955–56 by an implementation for
the IBM 704. This code was capable of handling LPs with up to 255 con-
straints, including explicit constraints for any upper bounds. It became known
as RSLP1, and seems to have been the first code to be distributed for use by a
wider audience. It was later improved to handle 512 constraints, and released
for use by CEIR, Inc. around 1958-59 under the name of SCROL. LP was
coming of age and beginning to enjoy significant use in the oil industry.

Orchard-Hays moved from RAND to CEIR in Arlington, Va., in 1956 and
began the development of the LP/90 code for the IBM 7090. It was capable of
handling up to 1024 constraints. LP/90 was released in 1961-62, with improve-
ments continuing into 1963. This code was followed by LP/90/94 for the IBM
7094, released in 1963/64. This code was then taken over by CEIR, Ltd. in the
UK. The LP/90/94 code can fairly be characterized as the culmination of the
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first-generation of LP codes, and this seems to be the last really successful code
over which Orchard-Hays had significant influence. With it a new generation
of developers emerged to continue the computational development of LP and,
in the not-to-distant future, MIP. A key figure in motivating these develop-
ments was E. M. L. (Martin) Beale in the UK. Among those who worked with
Beale and were influenced by his vision of mathematical programming were R.
E. Small and Max Shaw, followed by John Tomlin and John Forrest, both of
whom continue to influence the field to this day.
LP/90/94 was also a milestone because it became, by all accounts, the first

commercially used MIP code based upon branch-and-bound [9]. The conversion
of this code to handle mixed-integer problems seems to have been initiated
around 1964–65 by Beale and Small [4]. They used an approach suggested by
Land and Doig [29] with dichotomous branching as proposed by Dakin [14].
This code was then taken over by Max Shaw in 1965 [39]:

Back in the 60s the IBM 7094 was a 36 bit word machine with
32K words of storage. It was nevertheless a super computer of its
time. A team in the USA at CEIR INC. lead by William Orchard-
Hays wrote a standalone LP system (LP 90/94) that mixed linear
programming with brilliant system design that could solve LP prob-
lems up to 1000 rows or so. This code was written exclusively in
7094 machine code and used all manner of advanced techniques to
maximise computing efficiency. I never met Bill Orchard-Hays and
his team but when I studied their code I was most impressed.

The revised simplex method of George Dantzig was implemented
such that the transformation vectors (we called them etas) were held
on tape and were read forward to update vectors being expressed in
terms of the basis, added to etas for vectors brought into the basis,
and read backward to compute the price or feasibility advantage of
vectors to be brought into the solution.

Shaw reports that this code was used in the first successful applications of
MIP, which included:

• Re-location of factories in Europe by Philips Petroleum

• The selection of ships and transport aircraft to support deployment of
UK military assets

• Refinery infrastructure investments by British Petroleum

• Selecting coal mines for closure by the UK National Coal Board

In his own words:

There was some excitement for customers using the LP 90/94 sys-
tem in 1967-8 as they had never been able earlier to get optimal
results to their mixed-integer models.
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This really demonstrated for the first time, contrary to common belief, that a
search procedure based on branch-and-bound could be used to solve real-world
MIPs to optimality. That was true in spite of the fact that the algorithmic
opportunities on the machines of the day were severely limited. Again, quoting
Shaw:

The version of the 7094 used by CEIR only had tape storage. This
caused us to search to the bottom of each branch of the tree of
bounded solutions until we got an integer value; and then track
back up the tree using the bound obtained from the best integer
solution so far.

The 70s and 80s: The next generation

This brings us to the 1970s. The computational aspects of the subject were now
close to twenty years old and both LP simplex codes and branch-and-bound
codes for MIP, though primitive, were available. It was in a very real sense
the end of the Orchard-Hays era, one strongly influenced by his pioneering
implementations of the simplex algorithm. It also marked the introduction of
the IBM 360 class of computers. The expanded capabilities of these machines
meant not only that problems could be solved more quickly, but perhaps more
importantly that new ideas and methods could be tried that would have been
unworkable on the previous generation of computers. It was also the beginning
of a period of great promise for linear and mixed-integer programming.
For LP, important ideas such as the implicit treatment of bounds within

the simplex algorithm, which reduced the number of explicit constraints in
the model, the use of LU-factorizations, the use of sophisticated LU-updates,
based upon the Forrest-Tomlin [18] variant of the Bartels-Golub [3] update,
and improved variable-selection paradigms such as devex pricing, as proposed
by Paula Harris at British Petroleum [24]. The dual simplex algorithm, pro-
posed by Lemke in 1954 [30] also became a fairly standard part of LP codes,
though its use was restricted almost exclusively to re-optimization within MIP
branch-and-bound trees (amazingly, the ability to explicitly deal with dual in-
feasibilities does not seem to have emerged until the mid-1990s). The basic
form of these algorithms, developed in the early 70s, seems to have remained
more-or-less constant into the mid-1980s. The implementations were almost
exclusively written in assembler code and highly tuned to exploit the specific
characteristics of the target machine.
On the integer programming side there was also major progress. A number

of completely new codes were introduced. These new codes offered a tight inte-
gration between the underlying LP solver and MIP code. And the MIP codes
themselves became much more sophisticated. Tree search moved beyond the
very inefficient LIFO search dictated by earlier computer architectures. So-
phisticated node and variable selection procedures were developed, including
the important notion of pseudo-costs, still heavily in use today. Many of these
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developments are nicely documented in [19] and [28]. The net result was that
MIP was developing into a more powerful tool beginning to see more exten-
sive applications in practice. However, while these codes did continue to be
refined and improved, at a certain fundamental level they also remained in a
largely unchanged form. Indeed, they remained largely unchanged until the
late-1990s! This is a remarkable testimony to their effectiveness. However,
it was also a form of roadblock to further developments in the subject: they
made MIP a viable practical tool for the first time, but they also helped create
totally unrealistic expectations for what remained fundamentally a primitive
technology.

The first generation of these new codes, developed and/or released around
1970, included FMPS [40], UMPIRE [17], MPSX [5], MPS III, and APEX.
These were followed by the introduction of MPSX/370 (for the IBM 370)
around 1974 [6], an improved version of MPSX, SCICONIC around 1976, an
improved version of UMPIRE, and finally APEX III, the final version of the
APEX codes, released around 1982. (See [19] and [28] for further details on
these systems.) And in 1980 the Whizard extension of MPS III was developed
at Ketron, which had earlier purchased MPS III from Management Science.
Whizard was developed jointly by Eli Hellerman and Dennis Rarick, but also
worked on extensively by John Tomlin and Jim Welch among others at Ketron
[43]. It was a remarkable LP code for its time, including very efficient LU-
factorization and LU-update capabilities, and among the first really successful
presolve and postsolve capabilities for LP, based to some extent on ideas from
the apparently quite advanced FMPS presolve implementation [43].

During this period, two additional important developments occurred. In
1977, the MINOS code, developed at Stanford primarily by Michael Saunders,
was released. This was primarily a non-linear programming code, but included
a very good, stable implementation of the primal simplex algorithm. Around
the same time, in 1979, the XMP code developed by Roy Marsten, using the
Harwell LA05 linear-algebra routines, was also released [32]. Both codes were
written in portable FORTRAN, and were among the first portable codes in
general use. (Some earlier versions of FMPS and UMPIRE were also written
in FORTRAN.) Moreover, XMP had an additional, important property: it was
written with the idea that it could be embedded in other codes, and thus used
as a LP-solving-subroutine in “larger” LP-based algorithmic procedures. The
most powerful solvers of the day, written largely as closed systems, were not
easily used in this way and represented a serious hindrance most particularly to
research in integer programming. This situation is well described by remarks of
Grötschel and Holland [21], commenting on their use of MPSX/370 in work on
the traveling salesman problem. They note that if the LP-package they were
using had been “better suited for a row generation process than MPSX is, the
total speed-up obtained by faster (cut) recognition procedures might be worth
the higher programming effort”.

Another key development during this period was the introduction around
1980 of the IBM personal computer (PC). Personal computers were not new
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at that time, but the release of the IBM PC marked the beginnings of the
business applications of PCs, and it was the event that led to the realization
that PCs could be used as platforms for the development of practical LP and
MIP codes. It was several years before widely-available MIP codes for PCs were
developed, but LP codes began to emerge rather quickly, probably as early as
1983. Sharda and Somarajan [38] report on several such codes, including early
versions for the still commonly used LINDO code. The first versions of the
XpressMP [15] code were also finding industry use [2] in 1983.
Of course the PCs available in those days were a mere shadow of the pow-

erful desktop computers now available. In [38] computational results were re-
ported for a number of PC codes, including LINDO, comparing these codes to
MPSX/370 on a small set of LP test problems. The PC codes were run on an
IBM PC with an 8087 math co-processor and 640K of RAM. MPSX was run on
an IBM 3081D mainframe. LINDO was written in FORTRAN, as presumably
were most of the PC codes of that time. Based upon the LINPACK benchmarks
for those machines (http://www.netlib.org/benchmark/performance.pdf), one
could estimate that the 3081D was roughly 15 times faster than the PC being
used. The largest instances used in [38] had roughly 1000 constraints and 1000
variables. LINDO solved 14 of the 16 instances, the best of any of the PC codes
tested, taking 5100 seconds in one case, while MPSX was never slower than
13 seconds on any of the models, and solved all 16. Based upon the geometric
means of the ratios of the solution times for LINDO versus MPSX/370, LINDO
was slightly more than 166 times slower! A fair conclusion from these numbers
was that PC codes did, in some cases, provide a useful alternative to the power-
ful mainframe codes of the day, but were still far behind in overall performance,
even taking into account the differences in machine speed. These results seem
to confirm the general feeling at the time that LP codes had reached a final
level of maturity. Machines would no doubt get faster, but after nearly 40 years
of development, the simplex algorithm was viewed as not likely to see further
significant improvements. Events were to prove this belief to be totally wrong.
Two additional developments occurred during this period that would have

fundamental effects on the future of LP (and hence MIP). In 1979, L. Khachiyan
[27] showed for the first time that LPs could be solved in polynomial time. This
was not an unexpected result, given the fact that LP was known to be in NP
and co-NP; nevertheless, it was a fundamental advance, not least of which
because of its important theoretical implications in the theory of combinatorial
optimization [22]. The applicability to LP computation was however limited
and this use of Khachiyan’s algorithm was quickly abandoned.

Modern LP codes

The work of Khachiyan was followed in 1984 by the paper of N. Karmarkar [26].
Karmarkar used projective transformations to demonstrate a polynomial-time
bound for LP that was not only far better than the bounds for Khachiyan’s
method, it also corresponded to a computational approach that was applicable
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in practice. Karmarkar’s paper led to a remarkable flurry of theoretical work
in linear programming and related areas that, in many ways, continues to this
day in convex programming and related subjects [37].
On the computational side, AT&T developed the KORBX system [8], in

what turned out to be a largely unsuccessful attempt to commercially exploit
Karmarkar’s breakthrough. However, at the same time, researchers were quick
to recognize the connections between Karmarkar’s theoretical contribution and
earlier work of Fiacco and McCormick on log-barrier methods. This realization
eventually led to the development of a class of algorithms known as primal-dual
log-barrier algorithms. These results are well documented on the computational
side in the work of Lustig, Marsten, and Shanno [31], who developed the OB1
FORTAN code implementing early versions of this log-barrier algorithm. This
code was generally available around 1991 and together with the improvements
happening during that same period with simplex algorithms – in codes such as
CPLEX and OSL – this spelled the end for the KORBX code. While OB1 itself
also failed to be commercially successful, it nevertheless was the leading barrier
code of its day and generated an enormous amount of interest and activity.

The period around 1990 was a remarkably active period in LP. The work of
Karmarkar had stimulated a rebirth of interest in LP, both on the theoretical
and computation sides. Not only did this lead to a better understanding and
improved implementations of barrier algorithms, it also led to a rebirth of
interest in simplex algorithms and is responsible to a degree for some of the
early developments in the CPLEX LP code, first released in 1988. At about
the same time, IBM also released its OSL code, the designated replacement for
MPSX/370, developed primarily by John Forrest and John Tomlin. These two
codes – CPLEX and OSL – were the dominant LP codes in the early 1990s,
and included implementations of both primal and dual simplex algorithms as
well as, eventually, barrier algorithms. For the CPLEX code, many of these
developments are documented in [7]. Among the most important advances that
occurred during this time were the following:

• The emergence of the dual simplex algorithm as a general purpose solver
(not just restricted to use in branch-and-bound algorithms)

• The development of dual steepest-edge algorithms (using a variant pro-
posed in [16])

• Improved Cholesky factorization methodology for barrier algorithms and
the introduction of parallelism in these algorithms

• Vastly improved linear algebra in the application of simplex algorithms
for large, sparse models [20].

In [7] I reported in detail on the overall improvements in the CPLEX LP
code from 1988 through 2002, and subsequently updated these results in 2004.
The following is a summary of these results:
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Improvement factor

Algorithmic improvement (machine independent)
Best of barrier, primal simplex, and dual simplex: 3300×

Machine improvement: 1600×
Total improvement (3300 · 2000): 5,280,000×

These results show that in a period of sixteen years, from 1988 to 2004, by
at least some measure, the average speed of at least one LP code – indepen-
dent of any machine effects – improved by a factor of roughly 3300, far in
excess of the improvements in the speed of computing machines over that same
period; moreover, combining the effects of the algorithms and the machines
gives an improvement factor exceeding six orders of magnitude, nothing short
of remarkable.

Note that we have used here as our algorithm the best of barrier, primal, and
dual. One can argue whether this is a legitimate approach, but it is the one
that I have used. It means that, for each model in the test set, each of the three
algorithms was run, and the solution time of the fastest of the three was taken
as the solution time for the model. It should also be noted that crossover to a
basis was used in all cases when the barrier algorithm was applied. This was
done in large part because, in all of the major commercial implementations of
barrier algorithms, crossover is considered an integral part of the algorithm. It
serves to compensate for the numerical difficulties often encountered by barrier
algorithms. In addition, the vast majority of LPs that are solved from scratch
in practice are the root solves of MIPs, and a basis is then essential to exploit
the advanced-start capabilities of simplex algorithms in the branch-and-bound
(or now more correctly, branch-and-cut) search tree. Using barrier algorithms
within the tree is generally impractical.

The above results represent a fundamental change in a subject that twenty-
five years ago was considered fully mature. It is interesting to also examine in
more detail what is behind these numbers. One finds that of the three listed al-
gorithms, primal simplex is now rarely the winner. Dual and barrier dominate;
moreover, because of current trends in computing machinery, with individual
processors making relatively little progress, and most increased power coming
from increasing the number of cores per CPU chip, the ability to exploit paral-
lelism is becoming more and more important. Barrier algorithms can and have
been very effectively parallelized, while there has been essentially no success
in parallelizing simplex algorithms. The result is that barrier algorithms are
increasingly the winning algorithm when solving large linear programs from
scratch. However, since crossover to a basis is an essential part of barrier al-
gorithms, and this step is fundamentally a simplex computation and hence
sequential, the fraction of time taken by crossover is ever increasing.

The improvements we have seen in LP computation are clearly good news
for the application of these technologies. Indeed, this has led to the common
view among practitioners that LP is a “solved problem”: it is now common
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that LPs with several hundred thousand constraints and variables are solved
without difficulty. However, there remains considerable room for improvement.
The numerical difficulties that are often encountered with barrier algorithms
and particularly in the subsequent crossover step represent a major hurdle;
moreover, for integer programming (a subject we will return to shortly) com-
putational tests show that, in current practice, roughly 2% of real-world MIPs
are blocked in their solution by the difficulty of the underlying LPs. This com-
bined with the fact that since 2004 there have been essentially no improvements
in the standard LP algorithms, means that LP is threatening in the future to
again become a significant bottleneck in our ability to solve real-world problems
of interest.

Modern MIP codes

Let me now return to the topic of computation in MIP. While LP is a funda-
mental technique in the modern application of quantitative techniques to the
solution of real-world problems, in the context of optimization, it is MIP that
dominates.
As previously noted in this paper, MIP codes passed an important milestone

in the early 1970’s with the introduction of several powerful new codes – notably
SCICONIC, MPSX/370 and MPS III with Whizard – using what were then
state-of-the art implementations of simplex algorithms tightly integrated with
LP based branch-and-bound, and combined with a wide variety of generally
simple, but very effective heuristic techniques to improve the overall search.
That was an important step forward in the field. However, the dominance of
these codes also led to stagnation in the field.
In the years between mid-60s and the late 90s, there was a steady stream

of fundamental theoretical work in integer programming and related areas of
combinatorial optimization. Important parts of this work were motived by the
seminal paper of Dantzig, Fulkerson and Johnson in 1954 [13].
Other fundamental contributions in this period included the work of Gomory

on pure integer programs, the work on Edmonds on matching and polyhedral
combinatorics, subsequent work by Padberg, Grötschel, Wolsey and others de-
veloping and applying cutting-plane techniques (with roots in the paper of
Dantzig, Fulkerson and Johnson [13] as well as the work of Edmonds), and a
substantial body of theory of disjunctive programming developed primarily by
Balas. In addition, there were very important papers by Crowder, Johnson, and
Padberg for 0/1 pure integer programs [10] and Van Roy and Wolsey for general
MIP [42] that demonstrated the practical effectiveness of cutting-plane tech-
niques and MIP presolve reductions in solving collections of real-world MIPs,
MIPs that appeared intractable using traditional branch-and-bound. Indeed,
in both of these cases, existing commercial codes (in the first case MPSX/370
and in the second SCICONIC) were directly modified to demonstrate the ef-
ficacy of these ideas. In spite of that fact, there was no real change in the
generally available commercial codes. They got faster, but only because ma-
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chines got faster and LP algorithms improved. The basic MIP algorithms in
use remained largely those developed in the 70s.

To complete our story of the evolution of MIP software to the present, let
me now return to some of the important codes that were developed subsequent
to the developments in the 70s. There is a long list, but foremost among these
have been XpressMP, the first MIP version being released in 1989, CPLEX
MIP, with the first release in 1991, and much more recently, the Gurobi [23]
mixed-integer solver, first released in 2009. It should also be mentioned that
during this period there was also another solver that was influential to the
development of the subject, the MINTO code developed at Georgia Tech [34]
and first released around 1991. This code was not intended to be a competitor
to commercial solvers, and it was never really used widely in applications.
However, it was a milestone in the sense that it was the first general purpose
MIP code to make systematic use of cutting-plane techniques, a set of methods
that have subsequently proved to be fundamental in the development of MIP.
Moreover, though this code was a research code, it was clearly well implemented
and provided an important test of the efficacy of these methods.

Another key software development in this period was the introduction of the
concept of a callable library as first realized in the initial versions of CPLEX.
The idea behind this structure, which involved an early example of what was
effectively an object-oriented design, was to treat LP as a kind of black-box
tool that could be used as an embedded solver in the development of other
algorithmic techniques, most importantly in algorithms for solving integer pro-
grams. This callable library approach was enormously successful, and became
the model for essentially all future codes in this domain.

Let me now turn to a discussion of the computational progress that has
occurred since the early 90s. In late 2007, I undertook a massive computa-
tional test using the CPLEX codes that had been released over the years. This
test made use of an extensive library of real-world problems that had been
collected from academic and industry sources over a period of almost twenty
years. From this extensive library, a test set of 1892 representative models was
selected. Using these models, and using a bank of identical computing ma-
chines, I recompiled each of the corresponding twelve CPLEX released versions
– from Version 1.2 (the first version having MIP) through CPLEX 11 – to run
on the target machine. I then ran each of the 1892 models with each different
CPLEX version, using a time limit of 30,000 seconds, roughly 1/3 of a day. I
then compared consecutive versions by taking each model that was solved to
optimality by at least one of the two versions, computing the ratios of the solve
times (using the time limit for models that did not solve to optimality), and
then computing the geometric means of these ratios. The results of these tests
are summarized in the chart below:

This chart can be read as follows. The scale on the left refers to the bars in the
chart and the scale on the right to the piecewise-linear line through the middle.
First looking at the bars, we see, for example that in this test CPLEX 2.1
was approximately 3.1 times faster than CPLEX 1.2, and that each subsequent
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version, with the arguable exception of CPLEX 6.0, represented a significant
improvement over the previous version. Two particular bars in this chart stand
out, the one comparing CPLEX 3.0 to 2.1 and the one comparing CPLEX 6.5
to 6.0. The first of these, representing an improvement factor of nearly 5.5,
corresponds to the maturity of the dual simplex algorithm.

The second and by far the biggest improvement occurred in 1998, a speedup
exceeding a factor of 10.0. How and why did this happen? The way I like to
describe it is as follows. As noted above, the late 90s were preceded by a period
of some thirty years of important theoretical and computational developments,
many clearly relevant to MIP computation, but virtually none of which had
been implemented in commercial codes. The conclusion was clear. It was time
to change that. With CPLEX version 6.5 a systematic program was undertaken
to include as many of these ideas as possible. You see the result in the chart.
The net effect was that in 1998 there was a fundamental change in our ability
to solve real-world MIPs. With these developments it was possible, arguably
for the first time, to use an out-of-the box solver together with default settings
to solve a significant fraction of non-trivial, real-world MIP instances. I would
venture to say that if you had asked any of the top MIP researches in the field
prior to that time if that would have been possible, they would have said no.

The subject had changed, and changed fundamentally. The piecewise-linear
line through the graph is an attempt to capture the overall magnitude of that
change. It was computed by multiplying the effects of the individual improve-
ments, producing a projected, machine-independent improvement of a factor
of over 29,000.

And, this trend has continued. Tests carried out in 2009 using public bench-
marks maintained by Hans Mittelmann at the University of Arizona [33] indi-
cated that Gurobi 1.0, the first release of the Gurobi solver, had performance
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that was roughly equivalent to that of CPLEX 11.0. Since the release of Gurobi
1.0, we have measured the improvements for subsequent releases, up through
the current 5.0 release. Using the standard approach of taking ratios of solve
times and computing geometric means, the total improvement was a factor of
16.2, and this on top of the factor of 29,000 in the period prior to 2009, yielding
a combined machine-independent factor far exceeding that for LP; moreover,
this phenomenon is not restricted to CPLEX and Gurobi. The recent Mittel-
mann benchmarks demonstrate equally impressive performance by other codes,
notably XpressMP and the open-source solver SCIP [1]. It’s a great story for
the future of our subject, and it shows no signs of stopping.
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Discrete Optimization Stories

There are a number of very good surveys of the history of combinatorial op-
timization (briefly CO). I want to recommend to the reader two outstanding
articles: [5] covers the area until 1960 and [2] the history of integer program-
ming in the last ∼ 50 years. And there is the encyclopedic 3-volume book
[6] which is an unsurpassable source book for the historical development of
CO. Nevertheless, the articles in this section shed some new light on certain
historical aspects of CO.
The original plan of this book included further remarkable CO-stories. They

had to be abandoned for space reasons. But I want to mention two of them
in this introduction because there are good sources available where the details
can be found.
Let me begin with a most astonishing discovery. One of the first algorithms of

CO I heard about was the Hungarian method which has been viewed by many
as a prototype of algorithm design and efficiency. Harold Kuhn presented it
in 1955 in [3]. Having used ideas and results of J. Egerváry and D. Kőnig,
he gave his algorithm (generously) the name Hungarian method. In 2004 the
journal Naval Research Logistics Quarterly (briefly NRL) established a new
“best paper award” to recognize outstanding research published in NRL. [3]
was selected as the best paper published since 1954 in NRL, and A. Frank [2]
wrote a moving paper about “Kuhn’s Hungarian Method” in NRL. In 2005
A. Frank organized a conference in Budapest entitled “Celebration Day of the
50th Anniversary of the Hungarian Method” at which I highlighted the role
the Hungarian algorithm has played in practical applications such as vehicle
scheduling. Soon thereafter, on March 9, 2006 I received an e-mail from Harold
Kuhn that started as follows:

Dear Friends:

As participants in the 50th Birthday celebration of the

Hungarian Method, you should be among the first to know

that Jacobi discovered an algorithm that includes both

Koenig’s Theorem and the Egervary step. I was told

about Jacobi’s paper by Francois Ollivier who has a

website with the original papers and French and English

translations. They were published in Latin after his

death and so the work was done prior to 1851!!!
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Figure 1: Carl G. J. Jacobi
( c© BBAW)

Figure 2: Jacobi’s grave
( c© Iris Grötschel)

What a surprise! The Hungarian method had appeared for the first time in
a paper, written in Latin, attempting to establish a bound on the degree of a
system of partial differential equations and which was only published posthu-
mously in Jacobi’s collected works. The original manuscript can be found in
the “Jacobi Nachlass” of the BBAW archive in Berlin. I will not go into the
details of the story since Harold Kuhn has written up all the circumstances
in his recent article [4], where one can find all the relevant references. I just
want to remark that the Jacobi mentioned is Carl Gustav Jacob Jacobi, see
Fig. 1, after whom the Jacobi matrix is named. Jacobi was born in Potsdam
in 1804, became Professor in Königsberg in 1826, moved to Berlin in 1843, and
died in 1851. Jacobi has an “honorary grave” (Ehrengrab) on the “Friedhof
der Berliner Dreifaltigkeitsgemeinde” in Berlin, see Fig. 2.
The second story is of completely different nature. It is about mathematics

done under extreme circumstances. I just want to quote pieces of a paper [7]
written by Paul Turán, one of the great Hungarian figures of combinatorics,
about some of his experiences in World War II.
In 1940 Turán had to work on railway building in a labor camp in Transyl-

vania and proved what we call Turàns theorem today. In his words:

. . . I immediately felt that here was the problem appropriate to the

circumstances. I cannot properly describe my feelings during the

next few days. The pleasure of dealing with a quite unusual type of

problem, the beauty of it, the gradual nearing of the solution, and

finally the complete solution made these days really ecstatic. The

feeling of some intellectual freedom and being, to a certain extent,

spiritually free of oppression only added to this ecstasy.

The second experience I want to mention is about Turán’s discovery of the
crossing number. He writes:
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In July 1944 the danger of deportation was real in Budapest, and

a reality outside Budapest. We worked near Budapest, in a brick

factory. There were some kilns where the bricks were made and

some open storage yards where the bricks were stored. All the kilns

were connected by rail with all the storage yards. The bricks were

carried on small wheeled trucks to the storage yards. All we had to

do was to put the bricks on the trucks at the kilns, push the trucks

to the storage yards, and unload them there. We had a reasonable

piece rate for the trucks, and the work itself was not difficult; the

trouble was only at the crossings. The trucks generally jumped the

rails there, and the bricks fell out of them; in short this caused a lot

of trouble and loss of time which was rather precious to all of us (for

reasons not to be discussed here). We were all sweating and cursing

at such occasions, I too; but nolens-volens the idea occurred to me

that this loss of time could have been minimized if the number of

crossings of the rails had been minimized. But what is the minimum

number of crossings?

Let us all hope that mathematics discoveries will never again have to be made
under such circumstances.

Martin Grötschel
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1 Introduction

In this paper we discuss the early history of Minimum Spanning Tree problem
and its solution. The MST problem is a corner stone of combinatorial opti-
mization and its history is rich. It has been described in detail in several places,
for example, one can mention [22] which gives a general overview of the his-
tory of combinatorial optimization; historically exhaustive paper [9]; another
historical paper which contains the first commented translation of the origi-
nal papers of Bor̊uvka into English [19]; the paper [13] which deals with early
papers by Jarńık; and papers [18] and particularly [16], which cover the later
rich development from contemporary perspective. Here we complement this by
concentraiting on the very early beginning of this development before 1930. It
is accepted by now that two papers [1], [2] by Bor̊uvka in 1926 and Jarńık [11]
in 1930 are the first papers providing a solution to Minimum Spanning Tree
problem. We document this together with remarks illustrating the milieu of
this discovery and personalities of both authors (and Bor̊uvka in particular).

2 Paper No. 1

Otakar Bor̊uvka published three papers in 1926, two of which are our optimiza-
tion papers: the paper [2] appeared in a local mathematical journal in Brno and
the other in an engineering magazine Elektrotechnický obzor [1] (Electrotech-
nical Overview). The paper [2] has 22 pages and it was repeatedly described
as unnecessary complicated. Paper [1] has a single page and it is little known
(for example, it is not listed among his scientific works neither in [20] nor [4]).
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However we believe that this is the key paper. It demonstrates how clearly
Bor̊uvka understood the problem and its algorithmic solution. The paper is
very short and thus we can include the English translation in full (the original
paper was written in Czech).

2.1 Translation of “Př́ıspěvek k řešeńı otázky ekonomické stavby
elektrovodných śıt́ı”

Dr. Otakar Bor̊uvka

A CONTRIBUTION TO THE SOLUTION OF A PROBLEM

OF ECONOMIC CONSTRUCTION OF ELECTRIC

POWER-LINE NETWORKS

In my paper “On a certain minimal problem”(to appear in Práce

moravské př́ırodovědecké společnosti) I proved a general theorem,

which, as a special case, solves the following problem:

There are n points given in the plane (in the space) whose mutual

distances are all different. We wish to join them by a net such that

1. Any two points are joined either directly or by means of some

points, 2. The total length of the net would be the shortest possible.

It is evident that a solution of this problem could have some im-

portace in electricity power-line network design; hence I present the

solution briefly using an example. The reader with a deeper interest

in the subject is referred to the above quoted paper.

I shall give a solution of the problem in the case of 40 points given

in Fig. 1. I shall join each of the given points with the nearest

neighbor. Thus, for example, point 1 with point 2, point 2 with

point 3, point 3 with point 4 (point 4 with point 3), point 5 with

point 2, point 6 with point 5, point 7 with point 6, point 8 with

point 9, (point 9 with point 8), etc. I shall obtain a sequence of

polygonal strokes 1, 2, . . . , 13 (Fig. 2).

I shall join each of these strokes with the nearest stroke in the short-

est possible way. Thus, for example, stroke 1 with stroke 2, (stroke
2 with stroke 1), stroke 3 with stroke 4, (stroke 4 with stroke 3), etc.
I shall obtain a sequence of polygonal strokes 1, 2, . . . , 4 (Fig. 3) I

shall join each of these strokes in the shortest way with the nearest

stroke. Thus stroke 1 with stroke 3, stroke 2 with stroke 3 (stroke 3
with stroke 1), stroke 4 with stroke 1. I shall finally obtain a single

polygonal stroke (Fig. 4), which solves the given problem.

2.2 Remarks on “Př́ıspěvěk k řešeńı problému ekonomické kon-
strukce elektrovodných śıt́ı”

The numbering of Figures is clear from a copy of the original article which we
include below.
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Figure 1: Bor̊uvka’s short paper [1]

This paper is written in a nearly contemporary style. An example given (40
cities) is derived from the original motivation of Bor̊uvka’s research which was
a problem related to the electrification of south-west Moravia. (See Section 6
about further details of Bor̊uvka’s motivation.) Paper [2] contains yet another
example with 74 cities. The electrification of South-Moravia was an actual
topic in the early 20th century and it was very close to the editors of the Elek-
trotechnický obzor. (Note also that South-Moravia is one of the developed and
cultured parts of Europe. It is and has been for centuries fully industrialized
and yet a wine growing, rich and beautiful country. The core part of it is now
protected by UNESCO.)
As a good analyst Bor̊uvka viewed the assumption on distinct distances as

unimportant. Once he told us: “if we measure distances, we can assume that
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they are all different. Whether distance from Brno to Břeclav is 50 km or 50

km and 1 cm is a matter of conjecture” [5].
We tried to keep the view of the original article. A careful reader can observe

that the last figure (Fig. 4) in Bor̊uvka’s paper [1] is reversed. This was noted
already by Bor̊uvka in 1926 as seen from our depicted copy which he mailed to
Prof. Bydžovský).
Of course, the Elektrotechnický obzor is not a mathematical journal. Yet,

this was a proper place to publish the result. The magazine was founded in
1910 (and it has been published by that name until 1991 when it merged with
other journals under the name Elektro). It was the first Czech journal focussed
on electricity. It was founded by Vladimı́r List, engineer and professor in
Brno (who served as president of the Czech Technical University in Brno and,
among other things, was Chairman of the International standards organization
ISA). He advocated the systematic electrification of Moravia and convinced
authorities to build public high voltage trasmission lines. Bor̊uvka began his
studies at the the Technical University in Brno.

3 Contemporary setting

Before discussing the paper [2] let us include, for comparision, the well known
contemporary formulations of the Minimum Spanning Tree problem, Bor̊uvka’s
algorithm and the proof, see, e.g., [23].

Problem (MST). Let G = (V,E) be an undirected connected graph with n

vertices and m edges. For each edge e let w(e) be a real weight of the edge e and
let us assume that w(e) 6= w(e′) for e 6= e

′. Find a spanning tree T = (V,E′)
of the graph G such that the total weight w(T ) is minimum.

Bor̊uvka’s algorithm
1. Initially all edges of G are uncolored and let each vertex of G be a trivial

blue tree.
2. Repeat the following coloring step until there is only one blue tree.
3. Coloring step: For every blue tree T , select the minimum-weight uncolored

edge incident to T . Color all selected edges blue.

Proof (Correctness of Bor̊uvka’s algorithm). It is easy to see that at the end
of Bor̊uvka’s algorithm the blue colored edges form a spanning tree (in each step
the distinct edge-weights guarantee to get a blue forest containing all vertices).
Now we show that the blue spanning tree obtained by Bor̊uvka’s algorithm is
the minimum spanning tree and that it is the only minimum spanning tree of
the given graph G. Indeed, let T be a minimum spanning tree of G and let T ∗

be the blue spanning tree obtained by the algorithm. We show that T = T
∗.

Assume to the contrary T 6= T
∗. Let e

∗ be the first blue colored edge of T ∗

which does not belong to T . Let P be the path in T joining the vertices of
e
∗. It is clear that at the time when the edge e

∗ gets blue color at least one of
the edges, say e, of P is uncolored. By the algorithm w(e) > w(e∗). However,
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Figure 2: Last pages of paper [2]

then T − e+ e
∗ is a spanning tree with smaller weight, a contradiction. Thus

T = T
∗.

This algorithm is called parallel merging or forest growing. It needs only log
| V | iterations while each iteration needs | E | steps. The speed up of this
(and other MST) algorithm was intensively studied, see, e.g., [16] for a survey.

4 Bor̊uvka’s paper [2]

In the present terminology [1] is an outline of [2], and [2] is the full version of
[1]. [2] is written in Czech with an extensive (6 pages) German summary. This
also contributed to the fact that [2] is better known than [1]. The following is
the translation of the beginning of the paper.

Dr. Otakar Bor̊uvka

ON A CERTAIN MINIMUM PROBLEM

In this article I am presenting a solution of the following problem:

Let a matrix M of numbers rαβ(α, β = 1, 2, . . . , n; n ≥ 2), all

positive and pairwise different, with the exception of rαβ = 0 and
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rαβ = rβα be given. From this matrix a set of nonzero and pairwise

different numbers should be chosen such that

(1) For any p1, p2 mutually different natural numbers ≤ n, it would

be possible to choose a subset of the form

rp1c2 , rc2c3 , rc3c4 , . . . , rcq−2cq−1
, rcq−1p2

.

(2) The sum of its elements would be smaller than the sum of el-

ements of any other subset of nonzero and pairwise different

numbers, satisfying the condition (1).

Paper [2] then proceeds by constructing the solution. What was written in [1]
in an easy way, takes in this paper a very complicated form and Bor̊uvka needs
four full pages (pages 37–40) to elaborately explain the first iteration of his
algorithm.

Why does it take so long? In a private conversation Bor̊uvka explained this
in a contextual way: “I have been young, this was a very new and non-standard

topic and thus I have been afraid that it will not be published. So I made it a

little more mathematical”, [5]. That, of course, may be a part of the truth.
Another reason is certainly the absence of good notation and mainly special
notions (such as chain, path, or connectivity). Bor̊uvka elaborately constructs
each component of the first iteration by describing the corresponding forest
by means of (sort of) a pointer machine: first he finds a maximum path P

containing a given point then he starts with a new vertex and finds a maximum
path P

′ which either is disjoint with P or terminates in a vertex of P and so
on. Then he combines these paths to tree-components.

In the iterative step he already proceeds more easily (page 41). The final set
is denoted by J . The author then verifies all the properties of the set J . This
is (on page 41) divided into 5 theorems (numbered I, II, III, IV, V) which are
proved in the rest of the paper on p. 43–52. The proofs, of course, follow the
elaborate construction of the set J .

The paper ends (p. 51) with a remark on a geometric interpretation (in k-
dimensions) of the result and an example of the solution for a particular planar
set with 74 points is given. The German summary covers the construction of
the set J and states Theorems I, II, III, IV, V.

It is interesting to note that at three places of the article (in the proof
of Theorem III) he arrives on p. 46 to the exchange axiom in the following
rudimental form

K
′′
≡ K

′
− [mq], [mn].

He does not, of course, mention cycles (as in Whitney) or more general algebraic
setting (as in Van der Waerden). That had to wait another decade (and this
is covered in another article of this book, see [7]).

Bor̊uvka’s approach is a brute force approach par excellence. Not knowing
any related literature (and there was almost none, graph theory and even al-

Documenta Mathematica · Extra Volume ISMP (2012) 127–141



Minimal Spanning Tree Algorithm 133

Figure 3: Proof of Theorem III, paper [2]

gorithms were not yet born1) and feeling that the problem is very new, he
produced a solution. On the way he arrived at the key exchange axiom which
is in the heart of all greedy-type algorithms for MST. He was just solving a
concrete engineering problem and in a stroke of a genius he isolated the key
statement of contemporary combinatorial optimization. But he certainly was
not a Moravian engineer (as it is sometimes erroneously claimed). He was
rather an important and well connected mathematician (see Section 6).

5 Vojtěch Jarńık [11]

Bor̊uvka was lucky. His contribution was recognised and his article [2] has
been quoted by both Kruskal [14] and Prim [19] – papers which became the
standard references in the renewed interest in the MST in sixties. [2] became
the most quoted paper of Bor̊uvka. The first reaction to Bor̊uvka came however
almost immediately from Vojtěch Jarńık [11]. Paper [11] published in the same
journal, has the same title as [2] which is explained by its subtitle “from a letter

1For comparison, König’s book appeared in 1936. It is interesting to note that König
describes his book as “absolute graph theory” and neither optimization (i.e., MST) nor
enumeration is covered by this book.
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to O. Bor̊uvka‘”2. This paper has only five pages with two pages of German
summary. The paper begins as follows:

In your article “About a minimum problem” (Práce moravské

př́ırodovědecké společnosti, svazek III, spis 3) you solved an inter-

esting problem. It seems to me that there is yet another, and I

believe, simpler solution. Allow me to describe to you my solution.

Let n elements be given, I denote them as numbers 1, 2, . . . , n. From
these elements I form 1

2
n(n − 1) pairs [i, k], where i 6= k; i, k =

1, 2, . . . , n. I consider the pair [k, i] identical with pair [i, k]. To

every pair [i, k] let there be associated a positive number ri,k(ri,k =
rk,i). Let these numbers be pairwise different.

We denote by M the set of all pairs [i, k]. For two distinct natural

numbers p, q ≤ n, I call a chain (p, q) any set of pairs from M of

the following form:

[p, c1], [c1, c2], [c2, c3], . . . , [cs−1, cs], [cs, q] (1)

Also a single pair [p, q] I call a chain (p, q).

A subset H of M I call a complete subset (kč for short) if for any

pair of distinct natural numbers p, q ≤ n, there exists a chain (p, q)
in H (i.e., a chain of form (1) all of whose pairs belong to H).

There are kč; as M itself is kč.

If

[i1, k1], [i2, k2], . . . , [it, kt] (2)

is a subset K of set M , we put

t
∑

j=1

rij ,kj
= R(K).

If for a complete set K the value R(K) is smaller than or equal

to the values for all other complete sets , then I call K a minimal

complete set in M (symbolically mkč). As there exists at least one

kč and there are only finitely many kč, there exists at least one mkč.

The problem, which you solved in your paper, can be formulated as

follows:

Problem: Prove that there exists a unique mkč and give a formula

for its construction.

Remark: Sets satisfying (1) are, of course now, called path, trail, walk;
Jarńık considers (1) as a family – repetitions are allowed). Of course kč cor-
responds to spanning connected subgraphs and mkč corresponds to minimum

2This also explains an unusual “Ich form” of the article.
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Figure 4: Jarńık’s formula for MST

spanning tree. There is no mention of trees in this paper. However, in the
proof Jarńık defines “connected set of entries‘”. These definitions are key to
his simplification of Bor̊uvka. On p. 60 Jarńık begins to decribe his solution:

Let us now introduce a certain subset J of M as follows:

Definition of set J . J = [a1, a2], [a3, a4], . . . , [a2n−3, a2n−2]
where a1, a2, . . . are defined as follows:

First step. Choose as a1 any of elements 1, 2, . . . , n. Let a2 be

defined by the relation

ra1,a2
= min ra1,l (l = 1, 2, . . . , n; l 6= a1).

k-th step. Having defined

a1, a2, a3, . . . , a2k−3, a2k−2(2 ≤ k < n) (5)
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we define a2k−1, a2k by ra2k−l,a2k
= min ri,j where i ranges over

all numbers a1, a2, . . . , a2k−2 and j ranges over all the remaining

numbers from 1, 2, . . . , n. Moreover, let a2k−1 be one of the numbers

in (5) such that a2k is not among the numbers in (5). It is evident

that in this procedure exactly k of the numbers in (5) are different,

so that for k < n the k-th step can be performed.

The solution of our problem is then provided by the following:

Proposition:

1. J is mkč.

1. There is no other mkč.

1. J consists of exactly n− 1 pairs.

This construction is today called the tree growing procedure. It is usually called
Prim’s algorithm [20]; to establish justice we call this in [17] (and elsewhere)
the Jarńık-Prim algorithm.
Jarńık (1897–1970) was less lucky than Bor̊uvka in the credits to his work

in combinatorial optimization. His solution was almost entirely neglected until
very recently, [6] being perhaps the earliest exception. Even more so: the same
negligence (see, e.g., [8]) relates to his joint paper with Kössler [12] which is
probably the earliest paper dealing with the Steiner Tree Problem (see [13]
for history and additional information on this part of Jarńık’s work). This is
surprising because Jarńık was (and still is) a famous mathematician. Already
in 1930 (after two years in Göttingen with E. Landau) he was well known (and
better known than Bor̊uvka). It is interesting to note how quickly Jarńık re-
acted to the “exotic” Bor̊uvka paper. One can only speculate that this probably
motivated him to continue (with Kössler) with the “Steiner tree problem” [12].
Like Bor̊uvka, he never returned to these problems again.

6 Bor̊uvka’s century

At the end of the last millenium more authors (e.g., G. Grass, I. Kĺıma, B.-H.
Lévy) attempted to summarize the passing century as “my” century. But in a
way, this was Bor̊uvka’s century: born in 1899 he died in 1995. He was born
to a middle class Czech family. His father Jan Bor̊uvka was a respected school
principal at his birthplace in Uherský Ostroh. He was elected a honorable
citizien of the town. The school garden, which he founded, was a safe haven for
young Otakar. He attended the school of his father and later the gymnasium
in Uherské Hradǐstě. He excelled in all subjects. This was already during
the First World War (1914–1918) and on the advice of his parents, Bor̊uvka
switched to the military gymnasium in Hranice and then to military academy
in Mödling (near Vienna). As he recollects, the sole reason of this was to escape
the military draft during the war. While he respected good teachers at both
institutions, he did not like this period very much (riding a horse being an
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Figure 5: Otakar Bor̊uvka (archive of the authors)

exception). So immediatelly after the end of the war he resigned and returned
home to independent Czechoslovakia. He continued his studies at the Technical
University in Brno and then at the Masaryk University in Brno. It is there
where he met professor Matyáš Lerch. Lerch (1860–1922) was perhaps the first
modern Czech mathematician who obtained the prestigeous Grand Prix de
Academie de Paris in 1900, published over 230 papers and was in contact with
leading mathematicians of his time (he also attended the old gymnasium in
Rakovńık, a dear place to the authors of this article). Lerch chose Bor̊uvka as
his assistant in 1921 and had a profound influence on him. Bor̊uvka writes that
possibly thanks to Lerch he became a mathematician. He considered himself
as the heir to Lerch’s legacy and initiated in 1960 the installment of Lerch’s
memorial plaque in Brno. Unfortunately, Lerch died early in 1922. However,
at that time Bor̊uvka was fortunate to meet another strong mathematician,
Eduard Čech (1893–1960), and he became his assistant in 1923. Čech, a few
years Bor̊uvka’s senior and very active person in every respect, suggested to him
to start working in differential geometry. Čech asked Bor̊uvka to complete some
computations in his ongoing work and to become acquainted with what was
then a very new method of rapère mobile of Elie Cartan. Bor̊uvka succeeded
and was rewarded by Čech who arranged his stay in Paris during the academic
year 1926/27.

Before this, in winter 1925/26, Bor̊uvka met Jindřich Saxel, an employee of
Západomoravské elektrárny (West-Moravian Powerplants), who was not aca-
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demically educated and yet suggested to Bor̊uvka a problem related to electri-
fication of South-West Moravia. Bor̊uvka remembers ([4], p. 52) that in the
solution he was inspired by Lerch’s attitude towards applications and that he
worked intensively on the problem. We already know the outcome of this. In
spring 1927 Bor̊uvka lectured in Paris about [2] at a seminar (of Cambridge
mathematician J. L. Coolidge). He writes: “despite (and perhaps because of)

this very unconventional topic, the lecture was received very well with an active

discussion” ([4], p. 59). In Paris he worked intensively with E. Cartan and be-
came a lifelong friend of Cartan’s family (particularly of his son Henri, future
president of IMU, whom Bor̊uvka invited to Brno in 1969).

Back in Brno, in winter 1927/28, Bor̊uvka passed a habilitation (with a thesis
on the Γ-function and, again on a suggestion of E. Čech, obtained a Rockefeller
scholarship to Paris for the academic year 1929/30. In Paris he continued his
research motivated by intensive contacts with E. Cartan and met other leading
mathematicians of his time (J. Hamadard, B. Segre, É. Picard, M. Fréchet,
É. Goursat, H. Lebesgue). After one year in Paris he received (thanks to
involvement of E. Cartan “in whose interest it was to expand his methods to
Germany” [4], p. 67) the Rockefeller scholarship to Hamburg.

In Hamburg he visited W. Blaschke but Bor̊uvka mentions also E. Artin, H.
Zassenhaus, E. Kähler and E. Sperner. It is interesting to note that S. S. Chern
followed Bor̊uvka’s path a few years later (from Hamburg 1934, to Paris 1936).
Chern quoted Bor̊uvka and “even called some statements by my name” ([4], p.
67). This is also the case with, e.g., the Frenet-Bor̊uvka theorem, see [10].

In 1931 Bor̊uvka returned to Brno and stayed there basically for the rest of
his life. He was then 32, had spent at least four years abroad meeting many of
the eminent mathematicians of his time. He was an individualist (typically not
writing joint papers). This is illustrated by the fact that although Čech invited
him to take part in his newly founded (and later internationally famous) topo-
logical seminar in Brno, he declined. But Bor̊uvka was an influential teacher.
He progressed steadily at the university and in the society. However, the war
which broke out in 1939 brought many changes to Bor̊uvka’s life. All Czech
universities were closed by the Nazis. Bor̊uvka and his circle of friends were
arrested by the Gestapo at Christmas 1941. In his memoirs [4], he recalls this
at length in the chapter called “On the threshold of death”. Among others,
his friend Jindřich Saxel was executed in 1941. It is interesting to note, that
the West-Moravian Powerplants recollected Bor̊uvka’s work on MST and made
him a generous job offer (which he declined).

During his life, Bor̊uvka changed his research topic several times. He was
fully aware of his position in Brno and took responsibility for the future devel-
opment there. He wrote basic books on group theory and groupoids (during the
World War II). After the war he started his seminar on differential equations.
[4] contains contributions of his students in all areas of his activities.

Due to the space limitations and the scope of this article we end the his-
torical overview of Bor̊uvka’s century here. Bor̊uvka was deeply rooted in the
Moravian soil. For Brno mathematics he was the founding father. Not in the
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Figure 6: Bor̊uvka’s grave at the Central Cemetery in Brno

sense of politics (which he luckily avoided most of his life) but in the sense
of scientific activity which by far transcended the provincial focus of Brno of
his time. In this respect he can be compared, e.g., to Leoš Janáček. This is
not a mere speculation: Bor̊uvka played several instruments and the conductor
Zdeněk Chalabala was a close friend to both Janáček and Bor̊uvka.

The authors of this text knew Bor̊uvka in his last years. He was a grand old
man, yet modest, and still interested in the new developments. He was aware
of his MST fame. He would be certainly pleased to know that the late J. B.
Kruskal immediately replied to an invitation to write a memorial article on
Bor̊uvka [15]. The quiet strength of Bor̊uvka is felt even posthumously. Fig. 6
depicts Bor̊uvka’s remarkable grave at the Central Cemetery in Brno.

Acknowledgement. Supported by the grant ERC-CZ 1201 CORES.
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Introduction

In 1964, thirty years after their introduction, and having lived a quiet life until
then, matroids began to get the attention of optimizers. Just a few years later,
as a result of exciting research achievements as well as enthusiastic promotion,
the theory of matroids and submodular functions had become an integral part
of discrete optimization.

Whitney

Matroid theory starts with the paper [22] of Hassler Whitney in 1935. A
matroid may be defined to be a family of “independent” subsets of a finite
ground set S, satisfying

• Every subset of an independent set is independent

• For any A ⊆ S all maximal independent subsets of A (called bases of A)
have the same cardinality (called the rank r(A) of A).

Of course, if we take S to be the set of columns of a matrix, and the independent
sets to be the ones that are linearly independent, we get a first example, called
a linear matroid. Another important class consists of the graphic ones – here
S is the set of edges of a graph G and a subset is independent if it forms a
forest.
Whitney established some equivalent versions of the axioms, highlighted the

above two examples, and proved several basic results. In particular, he showed
that, given a matroid M , one gets a second dual matroid M∗ by declaring
independent all the sets whose deletion from S do not lower its rank. This
generalizes the notion of duality in planar graphs. In addition, he observed
that the rank function r satisfies what we now call the submodular property:
For all subsets A,B of S

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).
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There were other researchers who suggested ideas similar to Whitney’s. None
of these early papers appears to contain any suggestion of a connection with
optimization. In retrospect, one might observe that the definition implies that
a certain trivial algorithm solves the optimization problem of finding a largest
independent set.

Rado

In the next twenty years, there was little in the way of followup work to Whit-
ney’s paper. One exception, not widely appreciated at the time, was a paper
[14] of Richard Rado in 1942. Rado gave a matroid generalization of Hall’s
theorem on matching. This famous theorem says that if G is a bipartite graph
with parts S, T , then T can be matched into S if and only if for every subset
A of T , |N(A)| ≥ |A|. (Here N(A) denotes the neighbourset of A.) Rado’s
“Independent Transversal Theorem” is perhaps the first significant result in
matroid theory.

Theorem 1. Let G be a bipartite graph with parts S, T , and let M be a matroid

on S. Then T can be matched to an independent set of M , if and and only if,

for every subset A of T , r(N(A)) ≥ |A|.

Tutte

In the late fifties Bill Tutte published several deep results on matroid theory
[18], [19]. Tutte’s background is interesting. A chemistry student at the begin-
ning of the war, he was recruited to the Bletchley Park codebreaking project.
His brilliant contributions to that effort were kept secret for more than fifty
years. See Copeland [1] for details. At the end of the war Tutte returned to
Cambridge as a mathematician, and a Fellow of Trinity College; the fellow-
ship was a partial reward for his war work. In his thesis he studied “nets”,
a generalizations of graphs, which he has described [21] as being “half-way to
matroids”. He eventually published much of this work in the setting of matroid
theory.

Tutte solved several of the fundamental problems suggested by the work of
Whitney. These included characterizing the matroids that are graphic, those
that arise from matrices over the binary field, and those that are regular (that
is, arise from matrices over every field). These basic results are already of
importance to optimizers. Understanding the graphic matroids, is the key to
understanding which linear programming problems are reducible, by row op-
erations and variable-scaling, to network flow problems. Moreover, as Tutte
showed, the regular matroids are precisely the ones realizable by totally uni-
modular matrices, which Tutte characterized. However, Tutte’s matroid papers
were difficult and their connections with optimization were not immediately
recognized.
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The Sixties

It was in the 1960’s that matroids and submodularity became an important
subject in optimization. The dominant figure of the period was Jack Edmonds.
Not only did he discover beautiful theorems and algorithms. He also cham-
pioned his subject tirelessly, defining a vocabulary that is still in use, and an
agenda – efficient algorithms and polyhedral descriptions – that is still being
followed. By 1969 Edmonds and his work had been featured at a major inter-
national conference, and he had written for its proceedings the milestone paper
[2].

Edmonds, Lehman, and Matroid Partition

Like Tutte, Jack Edmonds had an interesting background; see his own lively
account in [3]. After his undergraduate years, which included study at two
universities and a year out of school, he enrolled in the graduate program in
mathematics at the University of Maryland. He completed a master’s thesis,
in which he proved a fundamental result in topological graph theory, but left
Maryland before completing the doctoral program. He was fortunate to obtain
a position in the Applied Mathematics Division of the National Bureau of
Standards in Washington. Here, in an operations research group headed by
Alan Goldman, he was exposed to problems in combinatorial optimization.
Edmonds has written “That is where graduate school started for me, with
Alan Goldman”.

In 1961, while participating in a workshop at the Rand Corporation, he dis-
covered the key idea that led to his solution of the matching problem. Over
the next couple of years, he worked out algorithms and polyhedral descriptions
for matching and degree-constrained subgraphs (for more on this, see Pulley-
blank [13]). Since Tutte had proved the basic existence theorem in matching
theory, Edmonds was certainly aware of his work. However, he credits Alfred
Lehman for inspiring him to consider matroids as a natural setting for posing
and attacking algorithmic problems. The two met in spring 1964, shortly after
Lehman solved the Shannon switching game, a game played on a graph. In
fact, Lehman [10] had invented and solved a more general game, played on a
matroid. His solution did not however, provide efficient algorithms to decide
which player had the winning strategy.

For one variant of Lehman’s game, the condition for a certain player to have
a winning strategy is that the ground set have two disjoint bases. Edmonds
characterized this property, and more generally solved the problem of finding in
a matroid M a largest set that is the union of k independent sets, at the same
time providing an algorithm. The algorithm is efficient, assuming that there
is an efficient algorithm to recognize independence in M . This and related
results completed the solution of Lehman’s game. Then with Ray Fulkerson,
Edmonds solved a yet more general problem, as follows. Suppose that we are
given matroidsM1, . . . ,Mk on S. Call a set I partitionable if it can be expressed
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as the union of k sets Ii, where Ii is independent in Mi for each i.

Theorem 2 (Matroid Partition Theorem). The maximum size of a set I par-

titionable with respect to M1, . . . ,Mk is equal to the minimum, over subsets A

of S, of

|S\A|+
k

∑

i=1

ri(A).

Here ri denotes the rank function of Mi. Their proof is an efficient algorithm
to find the optimal I and A. It is easy to obtain from the Matroid Partition
Theorem a formula for the maximum number of disjoint bases of a given ma-
troid, and for the minimum number of independent sets that cover S. In fact,
the technique provides many applications to packing and covering.

The First Conference

Jack Edmonds organized the first conference on matroids. It was called a “Sem-
inar on Matroids” and was held at NBS August 31 to September 11, 1964. He
has written [4] that, when organizing the meeting, he “could not find more than
six people who had heard the term” matroid. But there, according to Tutte
[21], “the theory of matroids was proclaimed to the world”. Edmonds arranged
for Tutte to give a series of lectures on his work, and to write for publication a
new exposition [20] of his main structural results. Edmonds presented his own
work related to partitioning and Lehman’s game. Participants included Ray
Fulkerson and Gian-Carlo Rota; the latter campaigned to change the term “ma-
troid” to “combinatorial geometry”. Tutte and Edmonds were not convinced,
and the movement was ultimately not successful, but there was a period in the
seventies when it seemed the new term might be winning out. One paper [9]
suggested that was the case, and tut-tutted that the term “matroid” was “still

Figure 1: The Seminar on Matroids, NBS, 1964. First row, second from left,
Ray Fulkerson, third from left, Bill Tutte. (Photo courtesy of William Pulley-
blank)
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Figure 2: The Seminar on Matroids, NBS, 1964. First row, right, Jack Ed-
monds, third from right, Gian-Carlo Rota. (Photo courtesy of William Pulley-
blank)

used in pockets of the tradition-bound British Commonwealth”. (At that time
both Tutte and Edmonds were in Waterloo.)

Matroid Intersection

There are several theorems essentially equivalent to the Matroid Partition The-
orem, and they are important in their own right. These equivalent statements
serve to emphasize the power of the theorem and algorithm. However, almost
inevitably there have been independent discovery and rediscovery of results. In
fact Rado’s Theorem 1 is one of these. Another of the equivalent theorems is
known as Tutte’s Linking Theorem; see [12]. Tutte called it Menger’s Theorem
for Matroids. But for optimizers, undoubtedly the most important of these
versions is Edmonds’ Matroid Intersection Theorem, which he discovered by
applying the Matroid Partition Theorem to M1 and the dual of M2.

Theorem 3 (Matroid Intersection Theorem). Let M1, M2 be matroids on S.

The maximum size of a common independent set is equal to the minimum over

subsets A of S of

r1(A) + r2(S\A).

This theorem generalizes the famous Kőnig min-max theorem for the maxi-
mum size of a matching in a bipartite graph. Since the more general weighted
version of that problem (essentially, the optimal assignment problem) was well
known to be solvable, Theorem 3 cries out for a weighted generalization. So,
given two matroids on S and a weight vector c ∈ RS , can we find a common
independent set of maximum weight? Or, can we describe the convex hull of
common independent sets? First, let’s back up and deal with a single matroid.
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The Matroid Polytope

By 1964 Jack Edmonds had already solved the weighted matching problem,
in the process, proving the matching polyhedron theorem. The fact that a
greedy algorithm finds an optimal spanning tree of a graph was well known. Its
proof did not require polyhedral methods, but Alan Goldman asked a natural
question – can we describe the convex hull of spanning trees? By this time
Edmonds was well into matroids, and realized (this was also known to Rado
[15]) that the greedy algorithm finds a maximum weight basis of a matroid. So
getting the polytope of independent sets was a breeze.

Theorem 4 (Matroid Polytope Theorem). Let M be a matroid on S with rank

function r. The convex hull of characteristic vectors of independent sets is

P (M) = {x ∈ RS : x ≥ 0, x(A) ≤ r(A) for all A ⊆ S}.

Edmonds proved the theorem by proving that, for any weight vector c ∈ RS ,
the LP problem maximize cTx subject to x ∈ P (M) is solved by the greedy
algorithm. We will see his method in more detail shortly.

Edmonds’ Amazing Theorem

Now suppose we have two matroids M1,M2 on S and we want to describe
the convex hull of common independent sets, which we write, with abuse of
notation, as P (M1 ∩ M2). Clearly, every common extreme point of any two
polyhedra is an extreme point of their intersection. In general, there will be
other extreme points as well. It would be a rare situation indeed for the two
polyhedra to fit together so neatly, that the only extreme points of the intersec-
tion were the common extreme points. But this is the case if the two polyhedra
are matroid polyhedra! In lectures, Edmonds sometimes referred to his result
– indeed, deservedly – as “my amazing theorem”.

Theorem 5 (Matroid Intersection Polytope Theorem). Let M1,M2 be ma-

troids on S. Then

P (M1 ∩M2) = P (M1) ∩ P (M2).

Now, having generalized from one matroid to two, and from maximum car-
dinality to maximum weight, Edmonds went further, generalizing the matroid
concept. The polyhedron P (M) has the property that for every weight vec-
tor c, the greedy algorithm optimizes cTx over P (M). Edmonds discovered a
more general class of polyhedra having this property. And, one that permits
generalization of the Amazing Theorem, too.

Polymatroids

Edmonds considered nonempty polyhedra of the form P (f) = {x ∈ RS :
x ≥ 0, x(A) ≤ f(A) for all A ⊆ S}, where f is submodular. He called
such a polyhedron a polymatroid. It turns out that any such P (f) can be
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described by an f which is also increasing and satisfies f(∅) = 0. Such functions
are now called polymatroid functions. Of course, matroid rank functions are
polymatroid functions, and matroid polyhedra are polymatroids.

Generalizing his method for matroids, he considered the dual LP problems

max cTx : x ≥ 0, x(A) ≤ f(A) for all A ⊆ S (1)

min
∑

(f(A)yA : A ⊆ S) (2)

subject to
∑

(yA : A ⊆ S, e ∈ A) ≥ ce, for all e ∈ S

yA ≥ 0, for all A ⊆ S.

Now order S as e1 . . . , en such that ce1 ≥ · · · ≥ cem ≥ 0 ≥ cem+1
≥ · · · ≥ cen ,

and define Ti to be {e1, . . . , ei} for 0 ≤ i ≤ n.
The greedy algorithm is: Put xei = f(Ti) − f(Ti−1) for 1 ≤ i ≤ m and
xj = 0 otherwise.
The dual greedy algorithm is: Put yTi

= cei − cei+1
for 1 ≤ i ≤ m − 1,

put yTm
= cem and put all other yA = 0.

The resulting solutions satisfy the LP optimality conditions for (1) and (2).
It is also clear that if f is integral, then so is x, and if c is integral, then so is
y. In particular, this proves a significant generalization of Theorem 4. As we
shall see, it proves much more.

Polymatroid Intersection

Now here is the topper – Edmonds puts all three directions of generalization
together.

Theorem 6 (Weighted Polymatroid Intersection). Let f1, f2 be polymatroid

functions on S, and let c ∈ RS. Consider the LP problem

max cTx (3)

x(A) ≤ f1(A), for all A ⊆ S

x(A) ≤ f2(A), for all A ⊆ S

xe ≥ 0, for all e ∈ S.

and its dual problem

min
∑

(r1(A)y
1

A + r2(A)y
2

A : A ⊆ S) (4)

subject to
∑

(y1A + y2A : A ⊆ S, e ∈ A) ≥ ce, for all e ∈ S

y1A, y
2

A ≥ 0, for all A ⊆ S.
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(a) If f1, f2 are integer-valued, then (3) has an integral optimal solution.

(b) If c is integral, then (4) has an integral optimal solution.

We will sketch Edmonds’ ingenious proof. Consider an optimal solution
ŷ1, ŷ2 of (4). The problem of optimizing over y1 while keeping y2 fixed at ŷ2

is an LP problem of the form (2), which can be optimized by the dual greedy
algorithm. Therefore, we can replace ŷ1 by the output of that algorithm. Now
we can fix y1 and similarly replace ŷ2.

We conclude that (4) has an optimal solution that is an optimal solution to a
problem in which the constraint matrix has a very special structure. Namely, its
columns split into two sets, each of which consists of the characteristic vectors
of a telescoping family of subsets of S. Edmonds proved – it is a nice exercise
– that such a matrix is totally unimodular. It follows that (4) has an optimal
solution that is integral, assuming that c is integral, proving (b). Now with the
benefits of hindsight, we can invoke the theory of total dual integrality, and (a)
is proved. In fact, Edmonds did not have that tool. He used another argument,
again a clever indirect use of total unimodularity, to prove (a).

There are several important consequences of the above theorem. For exam-
ple, taking f1, f2 to be matroid rank functions, we get the Amazing Theorem.
Taking each cj = 1, we get the following important result.

Theorem 7 (Polymatroid Intersection Theorem). Let f1, f2 be polymatroid

functions on S. Then

max(x(S) : x ∈ P (f1) ∩ P (f2)) = min(f1(A) + f2(S\A) : A ⊆ S).

Moreover, if f1, f2 are integer-valued, then x can be chosen integral.

Postlude

In the years since the sixties, much progress has been made, far too much to
summarize here. I mention a few highlights, relating them to the work of the
sixties. The books of Frank [6] and Schrijver [17] can be consulted for more
detail.

Submodularity and Convexity

Let us call a function f supermodular if −f is submodular, and call it modular

if it is both submodular and supermodular. It is easy to see that a function f

is modular if and only if it satisfies f(A) = m(A) + k for some m ∈ RS and
k ∈ R. Then we have the beautiful Discrete Separation Theorem of Frank [5].

Theorem 8. Let f, g be functions defined on subsets of S such that f is sub-

modular, g is supermodular, and f ≤ g. Then there exists a modular function

h such that f ≤ h ≤ g. Moreover, if f and g are integer-valued, then h may be

chosen integer-valued.
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In fact, this theorem can be proved from the Polymatroid Intersection The-
orem 7, and conversely. Its first part resembles a well-known result about the
separation of convex and concave functions by an affine function. Actually,
there is a connection. Lovász [11] defined the extension f̂ to RS

+
of a set func-

tion f , using ideas suggested by the dual greedy algorithm. He then proved
that f̂ is convex if and only if f is submodular. Using this, one can derive the
first part of Frank’s theorem from the convexity result.

Submodular Function Minimization

The problem of minimizing a submodular function (given by an evaluation
oracle) is fundamental. Its special cases include finding a minimum capacity
s, t-cut in a directed graph, and (in view of the Matroid Intersection Theorem)
finding the maximum size of a common independent set of two given matroids.

A good characterization of the minimum follows from the work of Edmonds
[2]. One way to describe it is this. One can reduce the problem of minimizing
a submodular function g to the problem of minimizing f(A) + u(S\A), where
u ≥ 0 and f is a polymatroid function. But

max(x(S) : x ∈ P (f), x ≤ u) = min(f(A) + u(S\A) : A ⊆ S).

This is a special case of the Polymatroid Intersection Theorem 7, but it can
easily be proved directly. Now suppose we have A and x giving equality above.
Then x ∈ P (f) can be certified by expressing it as the convex combination
of a small number of extreme points of P (f), and each extreme point can be
certified by the polymatroid greedy algorithm.

So much for characterizing the minimum. What about an algorithm to find
the minimum? The first efficient algorithm was found by Grötschel, Lovász and
Schrijver [7], based essentially on the equivalence, via the ellipsoid method, of
separation and optimization. More recently, Iwata, Fleischer, and Fujishige
[8] and Schrijver [16] gave combinatorial algorithms. Both use explicitly the
method of certifying membership in P (f) described above.

Weighted Polymatroid Intersection

The problem of finding an efficient algorithm for weighted polymatroid inter-
section, and other closely related models such as optimal submodular flows,
was left open by Edmonds. (He, and also Lawler, did solve the special case
of weighted matroid intersection.) Efficient combinatorial algorithms now ex-
ist. One may summarize their development as follows. Lawler and Martel and
also Schönsleben gave efficient algorithms for the maximum component-sum
problem. Cunningham and Frank combined this with a primal-dual approach
to handle general weights. These algorithms need as a subroutine one of the
above algorithms for submodular function minimization.
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Matroid Intersection and Matching

Weighted versions of matroid intersection and matching have a common special
case, optimal bipartite matching. In addition they share similar attractive
results – polyhedral descriptions, and efficient solution algorithms. It is natural,
therefore, to ask whether there exists a common generalization to which these
results extend. Several candidates have been proposed. The most important
one, proposed independently by Edmonds and Lawler, has several equivalent
versions, one of which goes as follows. Given a graph G and a matroid M on
its vertex-set, a matroid matching is a matching of G whose covered vertices
form an independent set in M . It turned out that finding a maximum-weight
matroid matching, even when the weights are all 1, is a hard problem. However,
in the late seventies Lovász found an efficient algorithm and a min-max formula
for the case where M arises from a given linear representation. Recently, Iwata
and Pap independently have found efficient algorithms for the weighted version,
answering a question that was open for more than thirty years.

References

[1] J. Copeland, Colossus: The Secrets of Bletchley Park’s Codebreaking Com-

puters, Oxford University Press, 2006.

[2] J. Edmonds, Submodular functions, matroids, and certain polyhedra in: R.
Guy et al. (eds) Combinatorial Structures and their Applications, Gordon
and Breach, New York, 1970, 69–87.

[3] Edmonds, Jack, A glimpse of heaven, in: J.K. Lenstra et al. (eds), History
of Mathematical Programming North-Holland, Amsterdam, 1991. 32–54.

[4] J. Edmonds, Matroid partition, in: M. Juenger et al. (eds.) Fifty Years of

Integer Programming Springer Verlag, Heidelberg, 2010, 199–217.

[5] A. Frank, An algorithm for submodular functions on graphs, Ann. Discrete
Math 16 (1982), 97–210.

[6] A. Frank, Connections in Combinatorial Optimization, Oxford, U.K., 2011.

[7] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its
consequences in combinatorial optimization, Combinatorica 1 (1981), 169–
197.

[8] S. Iwata, L. Fleischer, and S. Fujishige, A Combinatorial strongly polyno-
mial algorithm for minimizing submodular functions, J. ACM 48 (2001),
761–777.

[9] D.G. Kelly and G.-C. Rota, Some problems in combinatorial theory, in:
A Survey of Combinatorial Theory North-Holland, Amsterdam, 1973, pp.
309–312.

Documenta Mathematica · Extra Volume ISMP (2012) 143–153



The Coming of the Matroids 153

[10] A. Lehman, A Solution of the Shannon switching game, J. SIAM 12 (1964).
687–725.

[11] L. Lovász, Submodular functions and convexity in: Bachem et al. (eds.)
Mathematical Programming: The State of the Art, Springer Verlag 1982.

[12] J. Oxley, Matroid Theory, Oxford University Press, Oxford, 2011.

[13] W.R. Pulleyblank, Edmonds, matching, and the birth of polyhedral com-
binatorics, this volume.

[14] R. Rado, A theorem on independence relations, Quarterly J. Math. Oxford
(2) 13(1942), 83–89.

[15] R. Rado, Note on independence functions, Proc. London Math Soc (3)
7(1957), 300–320.

[16] A. Schrijver, A combinatorial algorithm minimizing submodular functions
in polynomial time, J. Comb. Theory B 80(2000), 346–355.

[17] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
Springer-Verlag Berlin, 2003.

[18] W.T. Tutte, A homotopy theorem for matroids, I and II, Trans. AMS
88(1958), 153–184.

[19] W.T. Tutte, Matroids and graphs, Tran. AMS 89(1959), 527–552.

[20] W.T. Tutte, Lectures on matroids, J. Res. NBS 69B (1965), 1–47.

[21] W.T. Tutte, The coming of the matroids, Surveys in Combinatorics, LMS
Lecture Note Series 267 (1999), 3–14.

[22] H. Whitney, The abstract properties of linear dependence, Am. J.Math.
57(1935), 509–533.

William H. Cunningham
Department of Combinatorics
& Optimization

University of Waterloo
Waterloo, ON
Canada, N2L 3G1
whcunnin@uwaterloo.ca

Documenta Mathematica · Extra Volume ISMP (2012) 143–153

mailto:whcunnin@uwaterloo.ca


154

Documenta Mathematica · Extra Volume ISMP (2012)



Documenta Math. 155

On the History of the Shortest Path Problem

Alexander Schrijver

2010 Mathematics Subject Classification: 01A60, 05-03, 05C38,
05C85, 90C27
Keywords and Phrases: Shortest path, algorithm, history

It is difficult to trace back the history of the shortest path problem. One can
imagine that even in very primitive (even animal) societies, finding short paths
(for instance, to food) is essential. Compared with other combinatorial opti-
mization problems, like shortest spanning tree, assignment and transportation,
the mathematical research in the shortest path problem started relatively late.
This might be due to the fact that the problem is elementary and relatively
easy, which is also illustrated by the fact that at the moment that the problem
came into the focus of interest, several researchers independently developed
similar methods.
Yet, the problem has offered some substantial difficulties. For some consider-

able period heuristical, nonoptimal approaches have been investigated (cf. for
instance Rosenfeld [1956], who gave a heuristic approach for determining an
optimal trucking route through a given traffic congestion pattern).

Path finding, in particular searching in a maze, belongs to the classical graph
problems, and the classical references are Wiener [1873], Lucas [1882] (describ-
ing a method due to C.P. Trémaux), and Tarry [1895] – see Biggs, Lloyd, and
Wilson [1976]. They form the basis for depth-first search techniques.
Path problems were also studied at the beginning of the 1950’s in the con-

text of ‘alternate routing’, that is, finding a second shortest route if the shortest
route is blocked. This applies to freeway usage (Trueblood [1952]), but also to
telephone call routing. At that time making long-distance calls in the U.S.A.
was automatized, and alternate routes for telephone calls over the U.S. tele-
phone network nation-wide should be found automatically. Quoting Jacobitti
[1955]:

When a telephone customer makes a long-distance call, the major
problem facing the operator is how to get the call to its destination.
In some cases, each toll operator has two main routes by which
the call can be started towards this destination. The first-choice
route, of course, is the most direct route. If this is busy, the second
choice is made, followed by other available choices at the operator’s
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discretion. When telephone operators are concerned with such a
call, they can exercise choice between alternate routes. But when
operator or customer toll dialing is considered, the choice of routes
has to be left to a machine. Since the “intelligence” of a machine
is limited to previously “programmed” operations, the choice of
routes has to be decided upon, and incorporated in, an automatic
alternate routing arrangement.

Matrix methods for unit-length shortest path 1946–1953

Matrix methods were developed to study relations in networks, like finding
the transitive closure of a relation; that is, identifying in a directed graph the
pairs of points s, t such that t is reachable from s. Such methods were studied
because of their application to communication nets (including neural nets) and
to animal sociology (e.g. peck rights).
The matrix methods consist of representing the directed graph by a matrix,

and then taking iterative matrix products to calculate the transitive closure.
This was studied by Landahl and Runge [1946], Landahl [1947], Luce and Perry
[1949], Luce [1950], Lunts [1950, 1952], and by A. Shimbel.
Shimbel’s interest in matrix methods was motivated by their applications

to neural networks. He analyzed with matrices which sites in a network can
communicate to each other, and how much time it takes. To this end, let S be
the 0, 1 matrix indicating that if Si,j = 1 then there is direct communication
from i to j (including i = j). Shimbel [1951] observed that the positive entries
in S

t correspond to pairs between which there exists communication in t steps.
An adequate communication system is one for which the matrix S

t is positive for
some t. One of the other observations of Shimbel [1951] is that in an adequate
communication system, the time it takes that all sites have all information, is
equal to the minimum value of t for which S

t is positive. (A related phenomenon
was observed by Luce [1950].)
Shimbel [1953] mentioned that the distance from i to j is equal to the number

of zeros in the i, j position in the matrices S0
, S

1
, S

2
, . . . , S

t. So essentially he
gave an O(n4) algorithm to find all distances in a directed graph with unit
lengths.

Shortest-length paths

If a directed graph D = (V,A) and a length function l : A → R are given, one
may ask for the distances and shortest-length paths from a given vertex s.
For this, there are two well-known methods: the ‘Bellman-Ford method’ and

‘Dijkstra’s method’. The latter one is faster but is restricted to nonnegative
length functions. The former method only requires that there is no directed
circuit of negative length.
The general framework for both methods is the following scheme, described

in this general form by Ford [1956]. Keep a provisional distance function d.
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Initially, set d(s) := 0 and d(v) := ∞ for each v 6= s. Next, iteratively,

choose an arc (u, v) with d(v) > d(u) + l(u, v) and reset d(v) := d(u) + l(u, v).
(1)

If no such arc exists, d is the distance function.
The difference in the methods is the rule by which the arc (u, v) with d(v) >

d(u) + l(u, v) is chosen. The Bellman-Ford method consists of considering all
arcs consecutively and applying (1) where possible, and repeating this (at most
|V | rounds suffice). This is the method described by Shimbel [1955], Bellman
[1958], and Moore [1959].
Dijkstra’s method prescribes to choose an arc (u, v) with d(u) smallest (then

each arc is chosen at most once, if the lengths are nonnegative). This was
described by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957]
and Dijkstra [1959]. A related method, but slightly slower than Dijkstra’s
method when implemented, was given by Dantzig [1958], and chooses an arc
(u, v) with d(u) + l(u, v) smallest.

Parallel to this, a number of further results were obtained on the shortest
path problem, including a linear programming approach and ‘good characteri-
zations’. We review the articles in a more or less chronological order.

Shimbel 1955

The paper of Shimbel [1955] was presented in April 1954 at the Symposium
on Information Networks in New York. Extending his matrix methods for
unit-length shortest paths, he introduced the following ‘min-sum algebra’:

Arithmetic
For any arbitrary real or infinite numbers x and y

x+ y ≡ min(x, y) and

xy ≡ the algebraic sum of x and y.

He transferred this arithmetic to the matrix product. Calling the distance
matrix associated with a given length matrix S the ‘dispersion’, he stated:

It follows trivially that S
k
k ≥ 1 is a matrix giving the shortest

paths from site to site in S given that k − 1 other sites may be
traversed in the process. It also follows that for any S there exists
an integer k such that Sk = S

k+1. Clearly, the dispersion of S (let
us label it D(S)) will be the matrix S

k such that Sk = S
k+1.

This is equivalent to the Bellman-Ford method.
Although Shimbel did not mention it, one trivially can take k ≤ |V |, and

hence the method yields an O(n4) algorithm to find the distances between all
pairs of points.
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1 Shortest path as linear programming problem 1955–1957

Orden [1955] observed that the shortest path problem is a special case of a
transshipment problem (= uncapacitated minimum-cost flow problem), and
hence can be solved by linear programming. Dantzig [1957] described the
following graphical procedure for the simplex method applied to this problem.
Let T be a rooted spanning tree on {1, . . . , n}, with root 1. For each i =
1, . . . , n, let ui be equal to the length of the path from 1 to i in T . Now if
uj ≤ ui + di,j for all i, j, then for each i, the 1− i path in T is a shortest path.
If uj > ui + di,j , replace the arc of T entering j by the arc (i, j), and iterate
with the new tree.
Trivially, this process terminates (as

∑n
j=1

uj decreases at each iteration, and
as there are only finitely many rooted trees). Dantzig illustrated his method
by an example of sending a package from Los Angeles to Boston. (Edmonds
[1970] showed that this method may take exponential time.)
In a reaction to the paper of Dantzig [1957], Minty [1957] proposed an ‘analog

computer’ for the shortest path problem:

Build a string model of the travel network, where knots represent
cities and string lengths represent distances (or costs). Seize the
knot ‘Los Angeles’ in your left hand and the knot ‘Boston’ in your
right and pull them apart. If the model becomes entangled, have an
assistant untie and re-tie knots until the entanglement is resolved.
Eventually one or more paths will stretch tight – they then are
alternative shortest routes.

Dantzig’s ‘shortest-route tree’ can be found in this model by weight-
ing the knots and picking up the model by the knot ‘Los Angeles’.

It is well to label the knots since after one or two uses of the model
their identities are easily confused.

A similar method was proposed by Bock and Cameron [1958].

Ford 1956

In a RAND report dated 14 August 1956, Ford [1956] described a method to
find a shortest path from P0 to PN , in a network with vertices P0, . . . , PN ,
where lij denotes the length of an arc from i to j. We quote:

Assign initially x0 = 0 and xi = ∞ for i 6= 0. Scan the network
for a pair Pi and Pj with the property that xi − xj > lji. For this
pair replace xi by xj + lji. Continue this process. Eventually no
such pairs can be found, and xN is now minimal and represents the
minimal distance from P0 to PN .

So this is the general scheme described above (1). No selection rule for the arc
(u, v) in (1) is prescribed by Ford.
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Ford showed that the method terminates. It was shown however by Johnson
[1973a, 1973b, 1977] that Ford’s liberal rule can take exponential time.

The correctness of Ford’s method also follows from a result given in the
book Studies in the Economics of Transportation by Beckmann, McGuire, and
Winsten [1956]: given a length matrix (li,j), the distance matrix is the unique
matrix (di,j) satisfying

di,i = 0 for all i, (2)

di,k = min
j

(li,j + dj,k) for all i, k with i 6= k.

Good characterizations for shortest path 1956-1958

It was noticed by Robacker [1956] that shortest paths allow a theorem dual to
Menger’s theorem: the minimum length of an P0 − Pn path in a graph N is
equal to the maximum number of pairwise disjoint P0−Pn cuts. In Robacker’s
words:

the maximum number of mutually disjunct cuts of N is equal to
the length of the shortest chain of N from P0 to Pn.

A related ‘good characterization’ was found by Gallai [1958]: A length function
l : A → Z on the arcs of a directed graph (V,A) does not give negative-length
directed circuits, if and only if there is a function (‘potential’) p : V → Z such
that l(u, v) ≥ p(v)− p(u) for each arc (u, v).

Case Institute of Technology 1957

The shortest path problem was also investigated by a group of researchers at the
Case Institute of Technology in Cleveland, Ohio, in the project Investigation
of Model Techniques, performed for the Combat Development Department of
the Army Electronic Proving Ground. In their First Annual Report, Leyzorek,
Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] presented their results.

First, they noted that Shimbel’s method can be speeded up by calculating S
k

by iteratively raising the current matrix to the square (in the min-sum matrix
algebra). This solves the all-pairs shortest path problem in time O(n3 log n).

Next, they gave a rudimentary description of a method equivalent to Dijk-
stra’s method. We quote:

(1) All the links joined to the origin, a, may be given an outward
orientation. [. . . ]

(2) Pick out the link or links radiating from a, aaα, with the small-
est delay. [. . . ] Then it is impossible to pass from the origin to
any other node in the network by any “shorter” path than aaα.
Consequently, the minimal path to the general node α is aaα.
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(3) All of the other links joining α may now be directed outward.
Since aaα must necessarily be the minimal path to α, there is
no advantage to be gained by directing any other links toward
α. [. . . ]

(4) Once α has been evaluated, it is possible to evaluate immedi-
ately all other nodes in the network whose minimal values do
not exceed the value of the second-smallest link radiating from
the origin. Since the minimal values of these nodes are less than
the values of the second-smallest, third-smallest, and all other
links radiating directly from the origin, only the smallest link,
aaα, can form a part of the minimal path to these nodes. Once
a minimal value has been assigned to these nodes, it is possible
to orient all other links except the incoming link in an outward
direction.

(5) Suppose that all those nodes whose minimal values do not ex-
ceed the value of the second-smallest link radiating from the
origin have been evaluated. Now it is possible to evaluate the
node on which the second-smallest link terminates. At this
point, it can be observed that if conflicting directions are as-
signed to a link, in accordance with the rules which have been
given for direction assignment, that link may be ignored. It will
not be a part of the minimal path to either of the two nodes it
joins. [. . . ]

Following these rules, it is now possible to expand from the second-
smallest link as well as the smallest link so long as the value of the
third-smallest link radiating from the origin is not exceeded. It is
possible to proceed in this way until the entire network has been
solved.

(In this quotation we have deleted sentences referring to figures.)

Bellman 1958

After having published several papers on dynamic programming (which is, in
some sense, a generalization of shortest path methods), Bellman [1958] eventu-
ally focused on the shortest path problem by itself, in a paper in the Quarterly
of Applied Mathematics. He described the following ‘functional equation ap-
proach’ for the shortest path problem, which is the same as that of Shimbel
[1955].

There are N cities, numbered 1, . . . , N , every two of which are linked by a
direct road. A matrix T = (ti,j) is given, where ti,j is time required to travel
from i to j (not necessarily symmetric). Find a path between 1 and N which
consumes minimum time.

Bellman remarked:
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Since there are only a finite number of paths available, the problem
reduces to choosing the smallest from a finite set of numbers. This
direct, or enumerative, approach is impossible to execute, however,
for values of N of the order of magnitude of 20.

He gave a ‘functional equation approach”

The basic method is that of successive approximations. We choose

an initial sequence {f
(0)

i }, and then proceed iteratively, setting

f
(k+1)

i = Min
j 6=i

(tij + f
(k)
j ], i = 1, 2, · · · , N − 1,

f
(k+1)

N = 0,

for k = 0, 1, 2 · · · , .

As initial function f
(0)

i Bellman proposed (upon a suggestion of F. Haight)

to take f
(0)

i = ti,N for all i. Bellman noticed that, for each fixed i, starting

with this choice of f
(0)

i gives that f
(k)
i is monotonically nonincreasing in k, and

stated:

It is clear from the physical interpretation of this iterative scheme
that at most (N − 1) iterations are required for the sequence to
converge to the solution.

Since each iteration can be done in time O(N2), the algorithm takes time
O(N3). As for the complexity, Bellman said:

It is easily seen that the iterative scheme discussed above is a fea-
sible method for either hand or machine computation for values of
N of the order of magnitude of 50 or 100.

In a footnote, Bellman mentioned:

Added in proof (December 1957): After this paper was written,
the author was informed by Max Woodbury and George Dantzig
that the particular iterative scheme discussed in Sec. 5 had been
obtained by them from first principles.

Dantzig 1958

The paper of Dantzig [1958] gives an O(n2 log n) algorithm for the shortest
path problem with nonnegative length function. It consists of choosing in (1)
an arc with d(u) + l(u, v) as small as possible. Dantzig assumed

(a) that one can write down without effort for each node the arcs
leading to other nodes in increasing order of length and (b) that it
is no effort to ignore an arc of the list if it leads to a node that has
been reached earlier.

He mentioned that, beside Bellman, Moore, Ford, and himself, also D. Gale and
D.R. Fulkerson proposed shortest path methods, ‘in informal conversations’.
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Dijkstra 1959

Dijkstra [1959] gave a concise and clean description of ‘Dijkstra’s method’,
yielding an O(n2)-time implementation. Dijkstra stated:

The solution given above is to be preferred to the solution by L.R.
Ford [3 ] as described by C. Berge [4 ], for, irrespective of the
number of branches, we need not store the data for all branches
simultaneously but only those for the branches in sets I and II, and
this number is always less than n. Furthermore, the amount of work
to be done seems to be considerably less.

(Dijkstra’s references [3] and [4] are Ford [1956] and Berge [1958].)

Dijkstra’s method is easier to implement (as an O(n2) algorithm) than
Dantzig’s, since we do not need to store the information in lists: in order to
find a next vertex v minimizing d(v), we can just scan all vertices. Later, using
the more efficient data structures of heaps and Fibonacci heaps, one realized
that Dijkstra’s method has implementations with running times O(m log n) and
O(m+n log n) respectively, where m is the number of arcs (Johnson [1972] and
Fredman and Tarjan [1987]).

Moore 1959

At the International Symposium on the Theory of Switching at Harvard Uni-
versity in April 1957, Moore [1959] of Bell Laboratories, presented a paper
“The shortest path through a maze”:

The methods given in this paper require no foresight or ingenuity,
and hence deserve to be called algorithms. They would be especially
suited for use in a machine, either a special-purpose or a general-
purpose digital computer.

The motivation of Moore was the routing of toll telephone traffic. He gave
algorithms A, B, C, and D.

First, Moore considered the case of an undirected graph G = (V,E) with no
length function, in which a path from vertex A to vertex B should be found
with a minimum number of edges. Algorithm A is: first give A label 0. Next
do the following for k = 0, 1, . . .: give label k + 1 to all unlabeled vertices that
are adjacent to some vertex labeled k. Stop as soon as vertex B is labeled.

If it were done as a program on a digital computer, the steps given
as single steps above would be done serially, with a few operations
of the computer for each city of the maze; but, in the case of com-
plicated mazes, the algorithm would still be quite fast compared
with trial-and-error methods.
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In fact, a direct implementation of the method would yield an algorithm with
running time O(m). Algorithms B and C differ from A in a more economical
labeling (by fewer bits).

Moore’s algorithm D finds a shortest route for the case where each edge of
the graph has a nonnegative length. This method is a refinement of Bellman’s
method described above: (i) it extends to the case that not all pairs of vertices
have a direct connection; that is, if there is an underlying graph G = (V,E)
with length function; (ii) at each iteration only those di,j are considered for
which ui has been decreased at the previous iteration.

The method has running time O(nm). Moore observed that the algorithm is
suitable for parallel implementation, yielding a decrease in running time bound
to O(n∆(G)), where ∆(G) is the maximum degree of G. Moore concluded:

The origin of the present methods provides an interesting illustra-
tion of the value of basic research on puzzles and games. Although
such research is often frowned upon as being frivolous, it seems
plausible that these algorithms might eventually lead to savings
of very large sums of money by permitting more efficient use of
congested transportation or communication systems. The actual
problems in communication and transportation are so much com-
plicated by timetables, safety requirements, signal-to-noise ratios,
and economic requirements that in the past those seeking to solve
them have not seen the basic simplicity of the problem, and have
continued to use trial-and-error procedures which do not always give
the true shortest path. However, in the case of a simple geometric
maze, the absence of these confusing factors permitted algorithms
A, B, and C to be obtained, and from them a large number of
extensions, elaborations, and modifications are obvious.

The problem was first solved in connection with Claude Shannon’s
maze-solving machine. When this machine was used with a maze
which had more than one solution, a visitor asked why it had not
been built to always find the shortest path. Shannon and I each
attempted to find economical methods of doing this by machine.
He found several methods suitable for analog computation, and I
obtained these algorithms. Months later the applicability of these
ideas to practical problems in communication and transportation
systems was suggested.

Among the further applications of his method, Moore described the example of
finding the fastest connections from one station to another in a given railroad
timetable. A similar method was given by Minty [1958].

In May 1958, Hoffman and Pavley [1959] reported, at the Western Joint Com-
puter Conference in Los Angeles, the following computing time for finding the
distances between all pairs of vertices by Moore’s algorithm (with nonnegative
lengths):
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It took approximately three hours to obtain the minimum paths for
a network of 265 vertices on an IBM 704.
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On the History of the Transportation

and Maximum Flow Problems

Alexander Schrijver

Abstract. We review two papers that are of historical interest for
combinatorial optimization: an article of A.N. Tolstŏı from 1930, in
which the transportation problem is studied, and a negative cycle
criterion is developed and applied to solve a (for that time) large-scale
(10×68) transportation problem to optimality; and an, until recently
secret, RAND report of T. E. Harris and F. S. Ross from 1955, that
Ford and Fulkerson mention as motivation to study the maximum
flow problem. The papers have in common that they both apply their
methods to the Soviet railway network.

2010 Mathematics Subject Classification: 01A60, 05-03, 05C21,
05C85, 90C27
Keywords and Phrases: Maximum flow, minimum cut, transporta-
tion, algorithm, cycle cancelling, history

1 Transportation

The transportation problem and cycle cancelling methods are classical in op-
timization. The usual attributions are to the 1940’s and later1. However,
as early as 1930, A.N. Tolstŏı [1930]2 published, in a book on transportation
planning issued by the National Commissariat of Transportation of the Soviet
Union, an article called Methods of finding the minimal total kilometrage in

cargo-transportation planning in space, in which he studied the transportation
problem and described a number of solution approaches, including the, now
well-known, idea that an optimum solution does not have any negative-cost

1The transportation problem was formulated by Hitchcock [1941], and a cycle criterion for
optimality was considered by Kantorovich [1942] (Kantorovich and Gavurin [1949]), Koop-
mans [1948] (Koopmans and Reiter [1951]), Robinson [1949, 1950], Gallai [1957, 1958], Lur’e
[1959], Fulkerson [1961], and Klein [1967].

2Later, Tolstŏı described similar results in an article entitled Methods of removing irra-

tional transportations in planning [1939], in the September 1939 issue of Sotsialisticheskĭı

Transport.
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cycle in its residual graph3. He might have been the first to observe that the
cycle condition is necessary for optimality. Moreover, he assumed, but did
not explicitly state or prove, the fact that checking the cycle condition is also
sufficient for optimality.
Tolstŏı illuminated his approach by applications to the transportation of salt,

cement, and other cargo between sources and destinations along the railway
network of the Soviet Union. In particular, a, for that time large-scale, instance
of the transportation problem was solved to optimality.
We briefly review the article. Tolstŏı first considered the transportation

problem for the case where there are only two sources. He observed that in
that case one can order the destinations by the difference between the distances
to the two sources. Then one source can provide the destinations starting from
the beginning of the list, until the supply of that source has been used up. The
other source supplies the remaining demands. Tolstŏı observed that the list is
independent of the supplies and demands, and hence it

is applicable for the whole life-time of factories, or sources of pro-
duction. Using this table, one can immediately compose an optimal
transportation plan every year, given quantities of output produced
by these two factories and demands of the destinations.

Next, Tolstŏı studied the transportation problem in the case when all sources
and destinations are along one circular railway line (cf. Figure 1), in which case
the optimum solution is readily obtained by considering the difference of two
sums of costs. He called this phenomenon circle dependency.

Finally, Tolstŏı combined the two ideas into a heuristic to solve a concrete
transportation problem coming from cargo transportation along the Soviet rail-
way network. The problem has 10 sources and 68 destinations, and 155 links
between sources and destinations (all other distances are taken to be infinite),
as given in the following table.
Tolstŏı’s heuristic also makes use of insight in the geography of the Soviet

Union. He goes along all sources (starting with the most remote sources),
where, for each source X, he lists those destinations for which X is the closest
source or the second closest source. Based on the difference of the distances to
the closest and second closest sources, he assigns cargo from X to the destina-
tions, until the supply of X has been used up. (This obviously is equivalent
to considering cycles of length 4.) In case Tolstŏı foresees a negative-cost cycle
in the residual graph, he deviates from this rule to avoid such a cycle. No
backtracking occurs.
In the following quotation, Tolstŏı considers the cycles Dzerzhinsk-

Rostov-Yaroslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk and Dzerzhinsk-
Nerekhta-Yaroslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk. It is the sixth

3The residual graph has arcs from each source to each destination, and moreover an arc
from a destination to a source if the transport on that connection is positive; the cost of the
‘backward’ arc is the negative of the cost of the ‘forward’ arc.

Documenta Mathematica · Extra Volume ISMP (2012) 169–180



Transportation and Maximum Flow Problems 171

Table 1: Table of distances (in kilometers) between sources and destinations,
and of supplies and demands (in kilotons). (Tolstŏı did not give any distance
for Kasimov. We have inserted a distance 0 to Murom, since from Tolstŏı’s
solution it appears that Kasimov is connected only to Murom, by a waterway.)
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Demand

Agryz 709 1064 693 2
Aleksandrov 397 1180 4
Almaznaya 81 65 1.5
Alchevskaya 106 114 4
Baku 1554 1563 10
Barybino 985 968 2
Berendeevo 135 430 10
Bilimbai 200 59 1
Bobrinskaya 655 663 10
Bologoe 389 1398 1
Verkhov’e 678 661 1
Volovo 757 740 3
Vologda 634 1236 2
Voskresensk 427 1022 1005 1
V.Volochek 434 1353 1343 5
Galich 815 224 1056 0.5
Goroblagodatskaya 434 196 0.5
Zhlobin 882 890 8
Zverevo 227 235 5
Ivanovo 259 6
Inza 380 735 1272 2
Kagan 2445 2379 0.5
Kasimov 0 1
Kinel’ 752 1208 454 1447 2
Kovylkino 355 1213 2
Kyshtym 421 159 3
Leningrad 1237 709 1667 1675 55
Likino 223 328 15
Liski 443 426 1
Lyuberdzhy 268 411 1074 1
Magnitogorskaya 932 678 818 1
Mauk 398 136 5
Moskva 288 378 405 1030 1022 141
Navashino 12 78 2
Nizhegol’ 333 316 1
Nerekhta 50 349 5
Nechaevskaya 92 0.5
N.-Novgorod 32 25
Omsk 1159 904 1746 5
Orenburg 76 1.5
Penza 411 1040 883 1023 7
Perm’ 1749 121 1
Petrozavodsk 1394 1
Poltoradzhk 1739 3085 1748 4
Pskov 1497 1505 10
Rostov/Don 287 296 20
Rostov/Yarosl 56 454 2
Rtishchevo 880 863 1
Savelovo 325 1206 1196 5
Samara 711 495 1406 7
San-Donato 416 157 1
Saratov 1072 1055 15
Sasovo 504 1096 1079 1
Slavyanoserbsk 119 115 1.1
Sonkovo 193 1337 0.5
Stalingrad 624 607 15.4
St.Russa 558 1507 1515 5
Tambov 783 766 4
Tashkent 3051 1775 3
Tula 840 848 8
Tyumen’ 584 329 6
Khar’kov 251 259 60
Chelyabinsk 511 257 949 2
Chishmy 1123 773 889 0.5
Shchigry 566 549 4
Yudino 403 757 999 0.5
Yama 44 52 5
Yasinovataya 85 93 6

Supply 5 11.5 8.5 12 100 12 15 314 10 55 543
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Figure 1: Figure from Tolstŏı [1930] to illustrate a negative cycle

step in his method, after the transports from the factories in Iletsk, Sverdlovsk,
Kishert, Balakhonikha, and Murom have been set:

6. The Dzerzhinsk factory produces 100,000 tons. It can forward
its production only in the Northeastern direction, where it sets its
boundaries in interdependency with the Yaroslavl’ and Artemovsk
(or Dekonskaya) factories.

From Dzerzhinsk From Yaroslavl’
Difference
to Dzerzhinsk

Berendeevo 430 km 135 km −295 km
Nerekhta 349 ,, 50 ,, −299 ,,
Rostov 454 ,, 56 ,, −398 ,,

From Dzerzhinsk From Artemovsk
Difference
to Dzerzhinsk

Aleksandrov 397 km 1,180 km +783 km
Moscow 405 ,, 1,030 ,, +625 ,,

The method of differences does not help to determine the boundary
between the Dzerzhinsk and Yaroslavl’ factories. Only the circle
dependency, specified to be an interdependency between the Dz-
erzhinsk, Yaroslavsl’ and Artemovsk factories, enables us to exactly
determine how far the production of the Dzerzhinsk factory should
be advanced in the Yaroslavl’ direction.
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Suppose we attach point Rostov to the Dzerzhinsk factory; then,
by the circle dependency, we get:

Dzerzhinsk-Rostov 454 km −398 km Nerekhta 349 km −299 km
Yaroslavl’- ,, 56 ,, ,, 50 ,,
Yaroslavl’-Leningrad 709 ,, +958 ,, These points remain
Artemovsk- ,, 1,667 ,, unchanged because only the
Artemovsk-Moscow 1,030 ,, −625 ,, quantity of production sent
Dzerzhinsk- ,, 405 ,, by each factory changes

Total −65 km +34 km

Therefore, the attachment of Rostov to the Dzerzhinsk factory
causes over-run in 65 km, and only Nerekhta gives a positive sum of
differences and hence it is the last point supplied by the Dzerzhinsk
factory in this direction.

As a result, the following points are attached to the Dzerzhinsk
factory:

N. Novgorod 25,000 tons
Ivanova 6,000 ,,
Nerekhta 5,000 ,,
Aleksandrov 4,000 ,,
Berendeevo 10,000 ,,
Likino 15,000 ,,
Moscow 35,000 ,, (remainder of factory’s production)

Total 100,000 tons

After 10 steps, when the transports from all 10 factories have been set, Tolstŏı
“verifies” the solution by considering a number of cycles in the network, and
he concludes that his solution is optimum:

Thus, by use of successive applications of the method of differences,
followed by a verification of the results by the circle dependency, we
managed to compose the transportation plan which results in the
minimum total kilometrage.

The objective value of Tolstŏı’s solution is 395,052 kiloton-kilometers. Solv-
ing the problem with modern linear programming tools (CPLEX) shows that
Tolstŏı’s solution indeed is optimum. But it is unclear how sure Tolstŏı could
have been about his claim that his solution is optimum. Geographical insight
probably has helped him in growing convinced of the optimality of his solution.
On the other hand, it can be checked that there exist feasible solutions that
have none of the negative-cost cycles considered by Tolstŏı in their residual
graph, but that are yet not optimum4.

4The maximum objective value of a feasible solution, whose residual graph does not
contain any nonnegative-cost cycle of length 4, and not any of the seven longer nonnegative-
length cycles considered by Tolstŏı (of lengths 6 and 8), is equal to 397,226.
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2 Max-Flow Min-Cut

The Soviet rail system also roused the interest of the Americans, and again it
inspired fundamental research in optimization.
In their basic paper Maximal Flow through a Network (published first as a

RAND Report of November 19, 1954), Ford and Fulkerson [1954] mention that
the maximum flow problem was formulated by T.E Harris as follows:

Consider a rail network connecting two cities by way of a number
of intermediate cities, where each link of the network has a number
assigned to it representing its capacity. Assuming a steady state
condition, find a maximal flow from one given city to the other.

In their 1962 book Flows in Networks, Ford and Fulkerson [1962] give a more
precise reference to the origin of the problem:5

It was posed to the authors in the spring of 1955 by T.E. Harris,
who, in conjunction with General F. S. Ross (Ret.), had formulated
a simplified model of railway traffic flow, and pinpointed this par-
ticular problem as the central one suggested by the model [11].

Ford-Fulkerson’s reference 11 is a secret report by Harris and Ross [1955] en-
titled Fundamentals of a Method for Evaluating Rail Net Capacities, dated
October 24, 19556 and written for the US Air Force. At our request, the
Pentagon downgraded it to “unclassified” on May 21, 1999.
As is known (Billera and Lucas [1976]), the motivation for the maximum flow

problem came from the Soviet railway system. In fact, the Harris-Ross report
solves a relatively large-scale maximum flow problem coming from the railway
network in the Western Soviet Union and Eastern Europe (‘satellite countries’).
Unlike what Ford and Fulkerson say, the interest of Harris and Ross was not to
find a maximum flow, but rather a minimum cut (‘interdiction’) of the Soviet
railway system. We quote:

Air power is an effective means of interdicting an enemy’s rail sys-
tem, and such usage is a logical and important mission for this
Arm.

As in many military operations, however, the success of interdic-
tion depends largely on how complete, accurate, and timely is the
commander’s information, particularly concerning the effect of his
interdiction-program efforts on the enemy’s capability to move men
and supplies. This information should be available at the time the
results are being achieved.

5There seems to be some discrepancy between the date of the RAND Report of Ford and
Fulkerson (November 19, 1954) and the date mentioned in the quotation (spring of 1955).

6In their book, Ford and Fulkerson incorrectly date the Harris-Ross report October 24,
1956.
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The present paper describes the fundamentals of a method intended
to help the specialist who is engaged in estimating railway capabil-
ities, so that he might more readily accomplish this purpose and
thus assist the commander and his staff with greater efficiency than
is possible at present.

First, much attention is given in the report to modeling a railway network:
taking each railway junction as a vertex would give a too refined network (for
their purposes). Therefore, Harris and Ross propose to take ‘railway divisions’
(organizational units based on geographical areas) as vertices, and to estimate
the capacity of the connections between any two adjacent railway divisions. In
1996, Ted Harris remembered (Alexander [1996]):

We were studying rail transportation in consultation with a retired
army general, Frank Ross, who had been chief of the Army’s Trans-
portation Corps in Europe. We thought of modeling a rail system as
a network. At first it didn’t make sense, because there’s no reason
why the crossing point of two lines should be a special sort of node.
But Ross realized that, in the region we were studying, the “di-
visions” (little administrative districts) should be the nodes. The
link between two adjacent nodes represents the total transportation
capacity between them. This made a reasonable and manageable
model for our rail system.

The Harris-Ross report stresses that specialists remain needed to make up the
model (which is always a good tactics to get a new method accepted):

The ability to estimate with relative accuracy the capacity of sin-
gle railway lines is largely an art. Specialists in this field have no
authoritative text (insofar as the authors are informed) to guide
their efforts, and very few individuals have either the experience or
talent for this type of work. The authors assume that this job will
continue to be done by the specialist.

The authors next dispute the naive belief that a railway network is just a set
of disjoint through lines, and that cutting these lines would imply cutting the
network:

It is even more difficult and time-consuming to evaluate the capac-
ity of a railway network comprising a multitude of rail lines which
have widely varying characteristics. Practices among individuals
engaged in this field vary considerably, but all consume a great
deal of time. Most, if not all, specialists attack the problem by
viewing the railway network as an aggregate of through lines.

The authors contend that the foregoing practice does not portray
the full flexibility of a large network. In particular it tends to gloss
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over the fact that even if every one of a set of independent through
lines is made inoperative, there may exist alternative routings which
can still move the traffic.

This paper proposes a method that departs from present practices
in that it views the network as an aggregate of railway operating
divisions. All trackage capacities within the divisions are appraised,
and these appraisals form the basis for estimating the capability of
railway operating divisions to receive trains from and concurrently
pass trains to each neighboring division in 24-hour periods.

Whereas experts are needed to set up the model, to solve it is routine (when
having the ‘work sheets’):

The foregoing appraisal (accomplished by the expert) is then used in
the preparation of comparatively simple work sheets that will enable
relatively inexperienced assistants to compute the results and thus
help the expert to provide specific answers to the problems, based
on many assumptions, which may be propounded to him.

For solving the problem, the authors suggested applying the ‘flooding tech-
nique’, a heuristic described in a RAND Report of August 5, 1955 by A.W.
Boldyreff [1955a]. It amounts to pushing as much flow as possible greedily
through the network. If at some vertex a ‘bottleneck’ arises (that is, more
trains arrive than can be pushed further through the network), the excess
trains are returned to the origin. The technique does not guarantee optimality,
but Boldyreff speculates:

In dealing with the usual railway networks a single flooding, fol-
lowed by removal of bottlenecks, should lead to a maximal flow.

Presenting his method at an ORSA meeting in June 1955, Boldyreff [1955b]
claimed simplicity:

The mechanics of the solutions is formulated as a simple game which
can be taught to a ten-year-old boy in a few minutes.

The well-known flow-augmenting path algorithm of Ford and Fulkerson [1955],
that does guarantee optimality, was published in a RAND Report dated only
later that year (December 29, 1955). As for the simplex method (suggested
for the maximum flow problem by Ford and Fulkerson [1954]) Harris and Ross
remarked:

The calculation would be cumbersome; and, even if it could be per-
formed, sufficiently accurate data could not be obtained to justify
such detail.
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Figure 2: From Harris and Ross [1955]: Schematic diagram of the railway
network of the Western Soviet Union and Eastern European countries, with a
maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut
of capacity 163,000 tons indicated as “The bottleneck”.

The Harris-Ross report applied the flooding technique to a network model of the
Soviet and Eastern European railways. For the data it refers to several secret
reports of the Central Intelligence Agency (C.I.A.) on sections of the Soviet and
Eastern European railway networks. After the aggregation of railway divisions
to vertices, the network has 44 vertices and 105 (undirected) edges.
The application of the flooding technique to the problem is displayed step

by step in an appendix of the report, supported by several diagrams of the
railway network. (Also work sheets are provided, to allow for future changes
in capacities.) It yields a flow of value 163,000 tons from sources in the So-
viet Union to destinations in Eastern European ‘satellite’ countries (Poland,
Czechoslovakia, Austria, Eastern Germany), together with a cut with a capac-
ity of, again, 163,000 tons. So the flow value and the cut capacity are equal,
hence optimum.
In the report, the minimum cut is indicated as ‘the bottleneck’ (Figure 2).

While Tolstŏı and Harris-Ross had the same railway network as object, their
objectives were dual.
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1 Summer of 1961, a Workshop at RAND

In the summer of 1961, Jack Edmonds, a twenty-seven year old mathemati-
cian, was attending a high powered workshop on combinatorics at the Rand
Corporation in Santa Monica, California. His participation had been arranged
by Alan Goldman, his manager at the National Bureau of Standards (now
NIST), supported by Edmonds’ Princeton mentor, A.W. Tucker. It seemed to
Edmonds that every senior academician doing combinatorics was there. This
included such luminaries as George Dantzig, Alan Hoffman, Ray Fulkerson,
Claude Berge and Bill Tutte. The only “kids” participating were Michel Balin-
ski, Larry Brown, Chris Witzgall, and Edmonds, who shared an office during
the workshop.
Edmonds was scheduled to give a talk on his research ideas. At that time, he

was working on some big questions. He had become intrigued by the possibility
of defining a class of algorithms which could be proven to run more efficiently
than exhaustive enumeration, and by showing that such algorithms existed.
This was a novel idea. At this time, people were generally satisfied with al-
gorithms whose running times could be proved to be finite, such as Dantzig’s
Simplex Algorithm for linear programming. In 1958, Ralph Gomory [14], [15]
had developed an analogue of the Simplex Algorithm that he showed solved
integer programs in finite time, similar to the Simplex Algorithm. Many peo-
ple in the Operations Research community viewed a problem as “solved” if it
could be formulated as an integer programming problem. However, unlike the
Simplex Algorithm, Gomory’s integer programming algorithm seemed to take
so long on some problems that it was often unusable in practice.
At this time, the combinatorics community was not very interested in al-

gorithms. Generally, graphs considered were finite and so most problems had
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Jack Edmonds 1957 (courtesy Jeff Edmonds)

trivial finite solution methods. In 1963, Herb Ryser [23] published his mono-
graph which noted that there were two general types of problems appearing
in the combinatorics literature: existence problems (establish conditions char-
acterising whether a desired structure exists) and enumeration problems (if a
structure exists, determine how many of them there are). (A decade later, in
1972, Ryser, speaking at a conference on graph theory, added a third type of
problem: develop an efficient algorithm to determine whether a desired object
exists.)

Earlier, in 1954, Dantzig, Fulkerson and Selmer Johnson [4] had published
what proved to be a ground breaking paper. They showed that a traveling
salesman problem, looking for a shortest tour visiting the District of Columbia
plus a selected major city in each of the (then) 48 states, could be solved to
provable optimality by combining the ideas of linear and integer programming.
They did not make any claims as to the efficiency of their solution method.
What they did show was that it was possible to present an optimal solution to
an instance of a combinatorial optimization problem, and a proof of optimality,
that required much less time to check than it would have taken to try all possible
solutions.

Through the 1950s, the world was seeing rapid development in the power and
availability of digital computers. This provided another impetus to algorithmic
development. Many combinatorial optimization problems were recognized as
having practical applications. However even with the speed of the “high per-
formance” computers of the day, it was recognized that improved algorithms
were needed if problems of realistic size were to be solved in practice.
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What Edmonds wanted was a specific concrete open example for which he
could produce a better than finite algorithm and thereby illustrate the power
and importance of his ideas.
The perfect matching problem in a graph G = (V,E) is to determine whether

there exists a set of edges meeting each node exactly once. If the graph is bipar-
tite – its nodes can be partitioned into V1∪V2 and every edge joins a node in V1

to a node of V2 – then a rich theory had already been developed which not only
characterized those bipartite graphs which had perfect matchings (Hall, [17]),
but showed that this problem could be formulated as a small linear program.
However, the more general case of nonbipartite graphs, graphs that contain
odd cardinality cycles, seemed different. A necessary condition was that the
number of nodes had to be even, but that was far from sufficient. Tutte [25]
in 1947 had proved a generalization of Hall’s theorem to nonbipartite graphs.
However, it did not seem to lead to an algorithm more efficient than simply
trying all possible subsets of the edges in hope that one would be a perfect
matching.
A matching M in a graph G is a set of edges which meets each node at most

once. M is perfect if it meets every node. Let U be the set of nodes not met
by edges in M . An augmenting path with respect to M in G is a simple path
joining two nodes of U whose edges are alternately not in M and in M . If an
augmenting path exists, then a matching can be made larger – just remove the
edges of the path that are in M and add to M the edges of the path not in M .
In 1957 Claude Berge [1] showed that this characterized maximum matchings.

Theorem 1 (Berge’s augmenting path theorem). A matching M in a graph G

is of maximum size if and only if there exists no augmenting path.

This result was not only simple to prove, but also applied both to bipartite
and nonbipartite graphs. However, whereas there were efficient methods for
finding such augmenting paths, if they existed, in bipartite graphs, no such
algorithms were known for nonbipartite graphs.
The night before his scheduled talk, Edmonds had an inspiration with pro-

found consequences. A graph is nonbipartite if and only if it has an odd cycle.
It seemed that it was the presence of these odd cycles that confounded the
search for augmenting paths. But if an odd cycle was found in the course of
searching for an augmenting path in a nonbipartite graph, the cycle could be
shrunk to form a pseudonode. Thereby the problem caused by that odd cycle
could be eliminated, at least temporarily. This simple and elegant idea was the
key to developing an efficient algorithm for determining whether a nonbipartite
graph had a perfect matching. Equally important, it gave Edmonds a concrete
specific example of a problem that could illustrate the richness and the power of
the general foundations of complexity that he was developing. This became the
focal point of his talk the next day which launched some of the most significant
research into algorithms and complexity over the next two decades.
Alan Hoffman recounted an exchange during the discussion period following

Edmonds’ lecture. Tutte’s published proof of his characterization of nonbipar-
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tite graphs having perfect matchings was an ingenious application of matrix
theory. Responding to a question, Edmonds ended a sentence by saying “using
methods known only to Tutte and God”. Tutte rarely made comments at the
end of another person’s lecture. There was a pause, at which point it was ap-
propriate for Tutte to say something, but he said nothing. Hoffman intervened,
asking “Would either of those authors care to comment?” Tutte did respond.

2 Context I: Bipartite graphs and the Hungarian method

The problem of determining whether a bipartite graph had a perfect matching
had already been encountered in many different guises, and there were several
equivalent characterizations of bipartite graphs having perfect matchings. See
Schriver [24].
A node cover is a set C of nodes such that each edge is incident with at least

one member of C. Each edge in any matching M will have to be incident with
at least one member of C, and no member of C can be incident with more
than one member of M . Therefore, the size of a largest matching provides a
lower bound on the size of a smallest node cover. In 1931, Dénes Kőnig [18]
had published a min-max theorem showing that these values are equal.

Theorem 2 (Kőnig’s Bipartite Matching Theorem). The maximum size of a
matching in a bipartite graph G = (V,E) equals the minimum size of a node
cover.

In 1935, in the context of transversals of families of sets, Phillip Hall [17]
proved the following:

Theorem 3 (Hall’s Bipartite matching Theorem). A bipartite graph G =
(V,E) has a perfect matching if and only if, for every X ⊆ V , the number
of isolated nodes in G−X is at most |X|.

These two theorems are equivalent, in that each can be easily deduced from
the other. (Deducing Hall’s Theorem from Kőnig’s Theorem is easier than
going the other direction.)
If a bipartite graph G has no perfect matching, then either of these provides

a guaranteed simple way of showing that this is the case. We can exhibit a
node cover of size less than |V |/2 or exhibit a set X ⊆ V such that G−X has
at least |X|+ 1 isolated nodes. (For now, do not worry about the time that it
takes to find the cover or the set X.)
Note how these contrast with Berge’s augmenting path theorem. Berge’s

theorem does suggest an approach for constructing a perfect matching if one
exists, but if we wanted to use it to show that G had no perfect matching, we
would have to start with a less-than-perfect matching in G and somehow prove
that no augmenting path existed. How could this be done?
In 1931, Jenő Egerváry [12] published an alternate proof and a weighted

generalization of Kőnig’s theorem. (See [24].) Suppose that we have a bipartite
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graph G = (V,E) and a real edge weight cj for each j ∈ E. The weight of a
matching is the sum of the weights of its edges. He proved a min-max theorem
characterizing the maximum possible weight of a matching in G by showing
that it was equal to the minimum weight of a weighted node cover of the edges
of G.

Theorem 4 (Egerváry’s Theorem). Let G = (V,E) be a bipartite graph and let
(cj : j ∈ E) be a vector of edge weights. The maximum weight of a matching in
G equals the minimum of

∑

v∈V
yv, where y = (yv : v ∈ V ) satisfies yu+yv ≥ cj

for every j = {u, v} ∈ E.

This implied that the existence of a perfect matching in a bipartite graph
G = (V,E) could be determined by solving a linear system. For each edge
j ∈ E, define a variable xj . Then x = (xj : j ∈ E) is a real vector indexed by
the edges of G.
Consider the following system of linear equations and (trivial) inequalities:

∑

(xj : j ∈ E incident with v) = 1 for each node v ∈ V, (1)

xj ≥ 0 for each j ∈ E. (2)

If G has a perfect matching M , we can define x̂j = 1 for j ∈ M and x̂j = 0
for j ∈ E\M . Then x̂ is a feasible solution to this linear system. Conversely, if
we have an integer solution to this linear system, all variables will have value
0 or 1 and the edges with value 1 will correspond to the edges belonging to a
perfect matching of G.

Theorem 5. A bipartite graph G = (V,E) has a perfect matching if and only
if the linear system (1), (2) has an integer valued solution.

However, in general there also exist fractional solutions to this system. Could
there exist fractional solutions to this linear system but no integer valued solu-
tions? In this case, the solution to the linear system might not tell us whether
the graph had a perfect matching. Egerváry’s Theorem showed that this was
not the case.
Egerváry’s Theorem is not true in general for nonbipartite graphs. It already

fails for K3. In this case, the linear system has a solution obtained by setting
xj = 1/2 for all three edges, but there is no integer valued solution. (The
conditions of Hall’s and Kőnig’s Theorems also fail to be satisfied for K3.)

Egerváry’s Theorem showed that the maximum weight matching problem for
bipartite graphs could be solved by solving the linear program of maximizing
∑

(xj · cj : j ∈ E) subject to (1), (2). The dual linear program is to minimize
∑

v∈V
yv, where y = (yv : v ∈ V ) satisfies yu+yv ≥ cj for every j = {u, v} ∈ E.

His proof showed how to find an integer x and (possibly) fractional y which
were optimal primal and dual solutions.
In 1955, Harold Kuhn [19] turned Egerváry’s proof of his theorem into an

algorithm which would find a maximum weight matching in a bipartite graph.
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The algorithm was guaranteed to stop in finite time. In 1957, James Munkres
[20] showed that this algorithm, called “The Hungarian Method”, would ter-
minate in time O(n4) for a simple bipartite graph with n vertices.

3 Context II: Tutte’s theorem and the Tutte–Berge formula

In 1947, William Tutte [25] had generalized Hall’s theorem to nonbipartite
graphs. He proved that replacing “isolated nodes” by “odd cardinality com-
ponents” yielded a characterization of which nonbipartite graphs have perfect
matchings.

Theorem 6 (Tutte’s matching Theorem). A (nonbipartite or bipartite) graph
G = (V,E) has a perfect matching if and only if, for every X ⊆ V , the number
of odd cardinality components of G−X is at most |X|.

As in the case of Hall’s Theorem, the necessity of the condition is straightfor-
ward. If there exists a perfect matching M , then an edge of M must join some
node of each odd component of G−X to a node of X, since it is impossible to
pair off all the nodes of an odd component K using only edges with both ends
in K. The important part of the theorem is the sufficiency, which asserts that
if G does not have a perfect matching, then there exists an X whose removal
creates more than |X| odd cardinality components.

Hall’s Theorem does strengthen Tutte’s theorem in the bipartite case as
follows. It shows that, in this case, we can restrict our attention to components
of G − X which consist of single nodes, rather than having to consider all
possible components. But Tutte’s theorem works for all graphs. For example,
whereas Hall’s condition is not violated for K3, Tutte’s Theorem shows that
no perfect matching exists, by taking X = ∅.

In 1958, Berge [2] noted that Tutte’s theorem implied a min-max theorem
for ν(G), the size of a largest matching in a graph G = (V,E). For any X ⊆ V ,
we let odd(X) be the number of odd cardinality components of G−X.

Theorem 7 (Tutte–Berge Formula). For any graph G = V,E,

ν(G) =
1

2
(|V | −min(odd(X)− |X| : X ⊆ V )).

The formula shows that the smallest number of nodes which must be left
unmet by any matching equals the largest possible difference between odd(X)
and |X|.

Here then were the challenges: Could the notion of “efficient” be made precise
mathematically? Was it possible to develop an efficient algorithm for determin-
ing whether an arbitrary graph had a perfect matching? Given an arbitrary
graph G = (V,E), could you either find a perfect matching or find a set X ⊆ V

for which |X| < odd(X)?
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4 Paths, Trees and Flowers; P and NP

Edmonds’ landmark paper [5], Paths, Trees and Flowers, evolved from the talk
that he presented at Rand in 1961. His algorithm for determining whether a
nonbipartite graph G = (V,E) has a perfect matching can be summarized as
follows.
Start with any matching M . If M is perfect, then the algorithm is done. If

not, some node r is not met by any edge of M . In this case, grow an alternating
search tree T rooted at r which will either find an augmenting path, enabling
the matching to be made larger, or find a set X ⊆ V for which |X| < odd(X).
The search tree initially consists of just the root node r. Each node v of T

is classified as even or odd based on the parity of the length of the (unique)
path in T from r to v. The algorithm looks for an edge j of G that joins an
even node u of T to a node w which is not already an odd node of T . If such
a j exists, there are three possibilities.

1. Grow Tree: If w is met by an edge k of M , then T is grown by adding
j, k and their end nodes to T .

2. Augment M : If w is not met by an edge of M , then we have found
an augmenting path from r to w. We augment M using this path, as
proposed by Berge, and select a new r if the matching is not perfect.

3. Shrink: If w is an even node of T , then adding j to T creates a unique
odd cycle C. Shrink C by combining its nodes to form a pseudonode.
The pseudonode C will be an even node of the tree created by identifying
the nodes of G belonging to C.

If no such j exists, then let X be the set of odd nodes of T . Each even node
w of T will correspond to an odd cardinality component of G − X. If w is a
node of G, then the component consists of the singleton w. If w was formed by
shrinking, then the set of all nodes of G shrunk to form w will induce an odd
component of G.
If G is bipartite, then the Shrink step will not occur and the algorithm

reduces to a previously known matching algorithm for bipartite graphs.
One point we skipped over is what happens to an augmenting path when it

passes through a pseudo-node. It can be shown that by choosing an appropri-
ate path through the odd cycle, an augmenting path in a graph obtained by
shrinking can be extended to an augmenting path in the original graph. See
Edmonds [5] or Cook et al [3] for details.
Edmonds [5] presents his algorithm for the closely related problem of finding

a maximum cardinality matching in an arbitrary graph. If the above algorithm
terminates without finding a perfect matching, then he calls the search tree T

Hungarian. He lets G
′ be the graph obtained from G by deleting all vertices

in T or contained in pseudonodes of T . He shows that a maximum matching
of G′, combined with a maximum matching of the subgraph of G induced by
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the nodes belonging to T or contained in pseudonodes of T , forms a maximum
matching of G.

The second section of Edmonds [5] is entitled “Digression”. This section
began by arguing that finiteness for an algorithm was not enough. He defined
a good algorithm as one whose worse case runtime is bounded by a polynomial
function of the size of the input. This criteria is robust, it is independent
of the actual computing platform on which the algorithm was run. Also, it
has the attractive feature that good algorithms can use other good algorithms
as subroutines and still be good. He stressed that this idea could be made
mathematically rigorous.

The maximum matching algorithm, which Edmonds (conservatively) showed
had run time O(|V |

4), provided an initial case study. This was the first known
algorithm for maximum matching in nonbipartite graphs with a running time
asymptotically better than trying all possible subsets. The bound on the run-
ning time was about the same as the bound on solving the matching problem
for a bipartite graph.

One concern raised about Edmonds’ notion of a good algorithm was that a
good algorithm with a high degree polynomial bound on its run times could
still take too long to be practical. Edmonds stressed that his goal was to de-
velop a mathematically precise measure of running times for algorithms that
would capture the idea of “better than finite”. A second concern arose from
the simplex algorithm for linear programming. This algorithm was proving
itself to be very effective for solving large (at the time) linear programs, but
no polynomial bound could be proved on its running time. (It would be al-
most two decades later that a good algorithm would be developed for linear
programming.) So the concept of “good algorithm” was neither necessary nor
sufficient to characterize “efficient in practice”. But there was a high degree
of correlation, and this concept had the desired precision and concreteness to
form a foundation for a study of worst case performance of algorithms.

Part of the reason for the lasting significance of [5] is that the paper promoted
an elegant idea – the concept of a good (polynomially bounded) algorithm. It
also gave the first known such algorithm for the matching problem in nonbipar-
tite graphs, a fundamental problem in graph theory. Edmonds also raised the
question of whether the existence of theorems like Tutte’s Theorem or Hall’s
Theorem – min-max theorems or theorems characterizing the existence of an
object (a perfect matching in a bipartite graph) by prohibiting the existence of
an obstacle ( a set X ⊂ V for which G−X has at least |X|+1 isolated nodes)
– could enable the construction of efficient algorithms for finding the objects
if they existed. He had shown how this worked in the case of matchings in
bipartite graphs and his algorithm had extended this to nonbipartite graphs.
He called these sorts of theorems good characterizations.

Some people argued that nobody could possibly check all subsets X and see
how many isolated nodes existed in G − X. There were simply too many of
them; the number grew exponentially with the size of G. What did this have
to do with answering the original question?
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But here was the point. Consider the question: does G have a perfect match-
ing? If the answer is “Yes”, we can prove this by exhibiting a perfect matching
M . If the answer is “No”, then we can prove this by exhibiting a single X ⊆ V

for which G−X has at least |X|+1 isolated nodes. This has not yet described
an effective method for finding M or X, but at least it provided a polynomi-
ally bounded proof for either alternatives. It gave a stopping criterion for an
algorithm.
A decade later, these concepts were essential ideas embodied in the classes P

andNP . The question Edmonds asked relating the existence of good character-
izations to the existence of good algorithms became what is now recognized as
the most important open question in theoretical computer science: Is P = NP?

5 Weighty matters

Edmonds quickly generalized his nonbipartite matching algorithm to the cor-
responding edge weighted problem (Edmonds [6]). (Recall, each edge j is given
a cost cj and the algorithm constructs a matching M for which

∑

(cj : j ∈ M)
is maximum.) He did this by an elegant extension of Egerváry’s approach that
had worked for bipartite graphs. He showed how to use the primal-dual method
for linear programming and the operation of shrinking to extend the cardinality
case to the weighted case.
Edmonds began by formulating the maximum weight matching problem as

a linear programming problem:

Maximize
∑

(cjxj : j ∈ E)

subject to
∑

(xj : j ∈ E incident with v) ≤ 1 for each node v ∈ V, (3)
∑

j∈E

(xj : j has both ends in S) ≤ (|S| − 1)/2 for each S ⊆ V

such that |S| ≥ 3 is odd,
(4)

xj ≥ 0 for each j ∈ E. (5)

This was really an audacious idea. The number of inequalities (4) grows ex-
ponentially with the number of nodes of G. No available linear programming
code could read and store the set of constraints for a moderate sized weighted
matching problem, let alone solve the problem. However Edmonds’ idea was
this: the real value of linear programming for a problem like weighted matching
is not the simplex algorithm. It is that linear duality theory provides a method
of giving a short proof of optimality.
His algorithm constructed a vector x = (xj : j ∈ E) which was the (0-1)-

incidence vector of a matching in G. It also constructed a feasible solution to the
dual linear program to maximizing c · x subject to (3), (4) and (5). Moreover,
x and the dual solution would satisfy the complementary slackness conditions
of linear programming which established their optimality.
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The algorithm had essentially the same bound on its run time as the maxi-
mum cardinality algorithm. There was a minor complication. The bound had
to take into account the complexity of arithmetic operations on the costs cj .
These operations were addition, subtraction, comparison and division by 2.
This required either the introduction in the bound of a factor

∑

j∈E
log(cj) or

else a “fixed word” assumption that all costs were within some bounded range.

6 Generality and extensions

Soon after this, Ellis L. Johnson, a recent Berkeley PhD student of Dantzig,
began to work with Edmonds. They wanted to see how much they could
generalize this theory of matchings in general graphs, in the context of linear
and integer programming. They extended the algorithm to accommodate the
following extensions (see [8]):

6.1 General degree constraints

Generalize the constraints (3) to

∑

(xj : j ∈ E incident with v) ≤ bv for each node v ∈ V, (6)

where, for each v ∈ V , bv is a nonnegative integer. This extends the graph
theoretic idea of a matching to a vector x = (xj : j ∈ E) of nonnegative
integers such that, for each v ∈ V , the sum of the xj on the edges j is at most
bv. Such a vector x is called a b-matching. If bv = 1 for all v ∈ V , then a
b-matching is the incidence vector of a matching. Let b(V ) denote

∑

v∈V
bv.

Tutte [26] had already shown that this problem could be transformed into a
matching problem in which bv = 1 for all v ∈ V by replacing each vertex for
which bv > 1 by |bv| new vertices, and each edge j = {u, v} with a complete
bipartite graph joining the sets of new vertices corresponding to u and v. For
a b matching x, the deficiency d(x, v) of x at vertex v is defined as bv −

∑

(xj :
j ∈ E, j incident with v). The deficiency D(x) of x is defined as

∑

v∈V
d(x, v).

The Tutte–Berge Formula generalizes to b-matchings as follows: For each
X ⊆ V , let K0(X) be the nodes belonging to one node components of G−X;
let odd(X) be the number of components K of G − X having at least three
nodes for which

∑

i∈V (K)
bi is odd.

Theorem 8 (Tutte–Berge Formula for b-matchings). For any graph G = V,E

and any vector b = (bv : v ∈ V ) of nonnegative integers,

min (D(x) : x is a b−matching of G)

= max(
∑

v∈K0(X)

bv + odd(X)−
∑

v∈X

bv : X ⊆ V ).

Edmonds’ matching algorithm, described in Section 4, generalized to a di-
rect algorithm for finding a maximum weight b-matching. It used a similar
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primal/dual framework to reduce the weighted problem to a cardinality prob-
lem. It started with an arbitrary b-matching x̄ and defined a node v to be
unsaturated if

∑

(x̄j : j ∈ E incident with v) < bv. Now an augmenting path
became a path in G joining two unsaturated nodes such that for each even edge
j in the path, x̄j > 0. This would enable an augmentation to be made by in-
creasing x̄j for the odd edges in the path and decreasing x̄j for the even edges.
Similar to before, the algorithm grew an alternating search tree T rooted at an
unsaturated node r. If it found an unsaturated even node of T other than r, it
augmented the b-matching. If an edge j was found joining two even nodes of
T , then it had found an odd cycle which it shrunk. But in this case any nodes
of the tree joined to the odd cycle by paths in the tree for which every edge j

had x̄j > 0 were also shrunk with the odd cycle. Set bv = 1 for the resulting
pseudonode v.

Let x̄ be the initial b-matching. This algorithm had worst case running time
of O(D(x̄) · |V |

2). The bound came from the fact that each augmentation
reduced the sum of the deficiencies by at least 2, and the time taken to find an
augmentation, if one existed, was O(|V |

2). If we started with x̄ = 0, then the
bound was O(b(V ) · |V |

2).

This created a potential problem. The length of a binary encoding of the in-
put was polynomial in |V | and

∑

v∈V
log bv. However, b(V ) grows exponentially

with
∑

v∈V
log bv and so the bound on the run time was growing exponentially

with the size of a “natural” encoding of the input. How could it be made into
a good algorithm?

Creating a good algorithm for finding a maximum (or minimum) weight

perfect b-matching required three ideas. First, for each v ∈ V , let b̂v be the
largest even integer no greater than bv. The resulting b̂-matching problem can
be transformed into a network flow problem in a bipartite directed graph G

′

having 2|V | nodes. For each node v ∈ V , create two nodes v′ and v
′′ in G

′ and
for each edge {u, v} in G, create two directed arcs (u′

, v
′′) and (v′, u′′) in G

′.
Let b′

v
= bv/2 and let b′′

v
= −bv/2. Edmonds and Richard Karp [11] created a

good algorithm for finding a maximum flow in G
′ having maximum cost. By

adding together the flows in the arcs (u′
, v

′′) and (v′, u′′) for each edge {u, v}

of G, we get a b̂-matching x̄ of G having minimum deficiency with respect to b̂.

Second, use x̄ as a starting matching to find a maximum weight b-matching
in G.

The third idea was to show that the deficiency of x̄ cannot be too large. let
R be the set of nodes v for which bv is odd. By the Tutte-Berge formula for
b-matchings, if the deficiency of x̄ is greater than |R|, then G does not have a
perfect b-matching. Otherwise, the weighted b-matching algorithm performs at
most |R| augmentations, so the bound on the running time becomes O(|R|·|V |

2)
and we have a good algorithm.

See Gerards [13].
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6.2 Edge capacities

For each edge j ∈ E, let uj be an integral upper bound and let lj be an integral
lower bound on the value of xj for the edge j. That is, the inequalities (5) are
replaced with

lj ≤ xj ≤ uj for each j ∈ E. (7)

The constraints (3) and (5) of the original weighted matching problem forced
every edge j to have a value 0 or 1. However we now permit xj to be any integer
in the range [lj , uj ]. If we add this to the b-matching problem, we obtain the
capacitated b-matching problem.
In the special case that lj = 0 and uj = 1 for all j ∈ E, we obtain a factor

problem. Now we want to find a maximum weight subset of the edges that
meet each vertex v at most bv times. We have now gone to a significantly more
general set of linear constraints on our problem.
The case bv = 2 for all v ∈ V and cj = 1 for all j ∈ E is particularly

interesting. This is the maximum 2-factor problem – find a set of vertex disjoint
cycles in a graph that contain the maximum possible number of vertices.

6.3 Bidirected graphs

Edmonds and Johnson recognized that they could develop a unified model
that included matching in general undirected graphs as well as network flow
problems in directed graphs by introducing the idea of bidirected graphs. Each
edge of the graph will have one or two ends. Each end will be either a head
or a tail. Some edges will have a head and a tail. These are called directed
edges. Some will have two heads or two tails. These are called links. An edge
with one end is called a slack and that end can be either a head or a tail. The
constraints (6) are now changed to the following:

∑

(xj : j ∈ E, j has a head incident with v)

−

∑

(xj : j ∈ E, j has a tail incident with v) = bv for every node v ∈ V.

If all edges are links with both ends heads, then this becomes the capacitated
b-matching problem. If all edges are directed, then this becomes a network
flow problem. However, allowing a mixture of links, slacks and arcs provides a
mixture of the two models, plus more. Note that by allowing slacks, all degree
constraints can be turned into equations.
Combining these extensions, Edmonds and Johnson had developed a good

algorithm for integer programming problems,

maximize cx

subject to

Ax = b

l ≤ x ≤ u
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where b, l, and u are integral, A is a matrix all of whose entries are 0, 1,−1, 2,−2
and, for each column of A, the sum of the absolute values of the entries is at
most 2.

6.4 Parity constraints

Edmonds and Johnson [9] also extended the idea of capacitated b-matching to
allow so called parity constraints at the nodes. For each v ∈ V, bv = 0 or 1.
The constraints (6) became:

∑

(xj : j ∈ E incident with v) ≡ bv mod 2 for each node v ∈ V.

This enabled the so-called Chinese Postman Problem or T -join problem to be
formulated as a capacitated b-matching problem. They provided both a direct
algorithm and a reduction to this problem. See also Grötschel and Yuan [16].
At this time, Edmonds, Johnson and Scott Lockhart [10] developed a FOR-

TRAN computer code for the weighted capacitated b-matching problem in
bidirected graphs. This showed convincingly that this algorithm was a prac-
tical way to solve very large matching problems. It also provided a concrete
instantiation of the algorithm which enabled precise calculation of an upper
bound on its running time as a function of the input size.
Part of the motivation for doing this appeared in Section 2 of [5]. The de-

scribed FORTRAN machine was an alternative to a Turing machine, a widely
adopted model of computation for theoretical computing science. The FOR-
TRAN machine was very close to the machine architectures of the day, and
there existed a good algorithm for a FORTRAN machine if and only if there
existed a good algorithm for a Turing machine. Also, the upper bound of the
run time on a FORTRAN machine was much lower than for a Turing machine.

Edmonds and Johnson [8] also described reductions that enabled these ex-
tensions to be transformed to weighted matching problems in larger graphs.

7 Combinatorial polyhedra

In the early 1960s, it was recognized that a great many combinatorial opti-
mization problems could be formulated as integer linear programs. It was
also known that an integer linear program could be transformed into a linear
program by adding a sufficient set of additional inequalities, called cuts, that
trimmed the polyhedron of feasible solutions so that all vertices were integer
valued, without removing any feasible integer solutions. Gomory’s algorithm
for integer programming gave a finite procedure for solving any integer pro-
gram by successively adding cuts and re-solving until an optimum solution was
found which was integer valued. His algorithm seemed to be a simple extension
of the simplex algorithm for linear programming. However it had already been
observed empirically that whereas the simplex algorithm was very successful
for linear programs, Gomory’s algorithm often failed to obtain a solution to an
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integer program in an acceptable amount of time. The only bound on the num-
ber of cuts that might be generated was exponential. This supported Edmonds’
view that “finite was not good enough”.

There were classes of integer programs for which no cuts needed to be added,
for example, network flow problems and maximum weighted matching in bi-
partite graphs. Most of these classes of problems had total unimodularity at
the core. A matrix A = (aij : i ∈ I, j ∈ J) is totally unimodular if for any
square submatrix M of A, det(M) = 0, 1, or − 1. Note that this implies that
all entries of A have value 0, 1, or − 1. Suppose that A is totally unimodular
and b is integral valued. It follows directly from Cramer’s rule that, for any c,
if the linear program maximize cx subject to Ax = b, x ≥ 0 has an optimum
solution, then it has one that is integer valued. It was well known that if G
was a bipartite graph, then the matrix A defined by (1) is totally unimodular,
so a maximum matching in a bipartite graph could be obtained by solving the
linear program of maximizing cx subject to (3) and (2). If A was the node-arc
incidence matrix of a directed graph, then the maximum flow problem could
be formulated as a linear program with a totally unimodular matrix implying
that if the node demands and arc capacities were integral, then there existed
an integral optimal flow. See Cook et al [3].

It was well known that the weighted matching problem could be formulated
as the integer linear programming problem of maximizing

∑

(cjxj : j ∈ E)
subject to (3) and xj ≥ 0, integer for all j ∈ E. Edmonds had shown that the
weighted matching algorithm correctly solved the problem by showing that it
gave an integer valued optimum solution to the linear programming problem
of maximizing

∑

(cjxj : j ∈ E) subject to (3), (4) and (5). That is, he had
shown that the integrality constraint could be replaced by adding the cuts (4).

This was the first known example of a general combinatorial problem which
could be formulated as a linear programming problem by adding an explicitly
given set of cuts to a natural integer programming formulation. Dantzig et
al [4] had shown that a particular instance of a traveling salesman problem
could be solved starting from an integer programming formulation by adding
a small set of cuts. What Edmonds had shown was that for any maximum
weight matching problem, by adding the cuts (4), the integer program could
be transformed to a linear program. He and Johnson had also shown for all
the extensions in the previous section that the same paradigm worked. They
gave explicit sets of cuts that, when added, transformed the problem to a linear
programming problem.

This motivated further research on other problems amenable to this ap-
proach. It worked in many cases (for example, matroid optimization, matroid
intersection, optimum branchings, triangle-free 2-matchings) but there are still
many natural problems for which no explicit set of cuts is known.

The matching polyhedron M(G) is the convex hull of the incidence vectors of
the matchings of a graphG = (V,E). Edmonds showed thatM(G) = {x ∈ ℜ

E :
x satisfies (3), (4) and (5)}. This problem of finding a linear system sufficient
to define a polyhedron defined by a combinatorial optimization problem – or
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equivalently, formulating the problem as a linear program – became a very
active area of research through the 1970s, building on the successes obtained
with matching problems.
The fundamental role of shrinking in solving nonbipartite matching problems

had another interesting consequence. In general, not all constraints (4) are
necessary to obtain a linear system sufficient to define M(G). For example, if
|S| is odd, but G[S], the subgraph of G induced by S, is not connected, then
the constraint (4) corresponding to S is unnecessary. It is implied by these
constraints for the nodesets of the odd cardinality connected components of
G[S]. Edmonds and Pulleyblank [22] showed that the essential constraints (4)
for M(G) correspond to those sets S ⊆ V for which G[S] is 2-connected and is
shrinkable. Shrinkable means that G[S] will be reduced to a single pseudonode
if the maximum matching algorithm is applied to it. Equivalently, a graph
G[S] is shrinkable if and only if G[S] has no perfect matching, but for every
node v ∈ S, the graph obtained from G[S] by deleting v and all incident edges
does have a perfect matching. The generalizations to b-matching appeared in
Pulleyblank’s PhD thesis [21], prepared under the supervision of Edmonds.

The problem of determining the essential inequalities to convert an inte-
ger program to a linear program is called facet determination. This became
an active research area over the 1970s and 1980s – determining the facets of
combinatorially defined polyhedra.
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[18] D. Kőnig, Graphok és matrixok, Matematikai és Fizikai Lapok 38 (1931)
116–119.

[19] H.W. Kuhn, The Hungarian method for the assignment problem, Naval
Research Logistics Quarterly 2 (1955) 83–97.

[20] J. Munkres, Algorithms for the assignment and transportation problems,
J. of Soc. for Industrial and Applied Mathematics 5 (1957) 32–38.

[21] W.R. Pulleyblank, Faces of Matching Polyhedra, PhD Thesis, University
of Waterloo (1973).

Documenta Mathematica · Extra Volume ISMP (2012) 181–197



The Birth of Polyhedral Combinatorics 197

[22] W.R. Pulleyblank and J. Edmonds, Facets of 1-matching polyhedra, in
Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri, eds.) Springer,
Berlin (1974) pp. 214–242.

[23] H.J. Ryser, Combinatorial Mathematics, Math. Assoc. of America, John
Wiley and Sons, Inc. (1963).

[24] A. Schrijver, Combinatorial Optimization, Springer Verlag (2003).

[25] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22
(1947) 107–111.

[26] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canadian
J. of Math. 6 (1954) 347–352.

William R. Pulleyblank
Department of
Mathematical Sciences

United States Military
Academy, West Point

West Point, NY 10996, USA
William.Pulleyblank@usma.edu

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

mailto:William.Pulleyblank@usma.edu


198

Documenta Mathematica · Extra Volume ISMP (2012)



Documenta Math. 199

Flinders Petrie, the Travelling Salesman Problem,

and the Beginning of Mathematical Modeling

in Archaeology

Thomas L. Gertzen and Martin Grötschel

Abstract. This article describes one of the first attempts to use
mathematical modeling and optimization in archaeology. William
Matthew Flinders Petrie (1853–1942), eminent British archaeologist,
excavating a large graveyard at Naqada in Upper Egypt suggested in
his article “Sequences in Prehistoric Remains” [17] to employ a “dis-
tance function” to describe the “closeness of graves in time”. Petrie’s
grave distance is known today as Hamming metric, based on which
he proposed to establish the chronology of the graves, i.e., the correct
sequence of points in time when the graves were built (briefly called se-
riation). He achieved this by solving a graph theoretic problem which
is called weighted Hamiltonian path problem today and is, of course,
equivalent to the symmetric travelling salesman problem. This paper
briefly sketches a few aspects of Petrie’s biographical background and
evaluates the significance of seriation.

2010 Mathematics Subject Classification: 01A55, 05-03, 90-03, 90C27
Keywords and Phrases: Travelling salesman problem, seriation, Ham-
ming metric, archaeology

Introduction

When the second author of this article wrote his PhD thesis on the travelling
salesman problem (TSP) more than thirty-five years ago, he came across two
articles by D. G. Kendall [12] and A. M. Wilkinson [23], respectively investigat-
ing the TSP in connection with archaeological seriation. Since he was interested
in solving large-scale TSP instances (and in archaeology), he tried to find the
original data of the Naqada-graves, based upon which W. M. Flinders Petrie
established the prehistoric chronology of Egypt. His search was unsuccessful.
In 2011, planning this Optimization Stories book, the second author ap-

proached the director of the German Archaeological Institute in Cairo, S. Sei-
dlmayer. He suggested contacting the first author, who had recently finished
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his Master thesis, entitled: “Methodik und wissenschaftsgeschichtlicher Hinter-
grund der Arbeiten von Sir W. M. Flinders Petrie”.

Asking for the original Petrie papers on Naqada, the second author learned
from the first that these materials, according to E. Baumgartel, referring to a
conversation with M. Murray, were no longer existent:

She answered that when they had to give up the Egyptian Depart-

ment, one room [. . . ] was filled from top to bottom with Petrie’s

papers. She had worked through them with some students who

showed her the papers. She said ‘published, destroy, unpublished

keep.’ Well, Naqada was published. (See [2, p. 6].)

In order to be absolutely sure, the first author contacted the curator of the
Petrie Museum London, S. Quirke, who informed him that certain Petrie ma-
terials had been rediscovered within the archives of the museum recently, among
others, the original “Naqada-slips”, to be explained below. The Petrie Museum
staff kindly provided digitized images of the material in spring 2012.

Originally, the two authors planned to jointly reprocess Petrie’s data, in order
to determine optimum solutions for his seriation problems and to publish their
results in this article.

However, it turned out that Petrie’s materials only represent a rough sketch
and show certain inconsistencies, which require careful additional archaeological
investigation and also a certain amount of science historical interpretation. This
time consuming work is currently carried out and is going to be published in
the near future.

Instead, this paper briefly outlines Petrie’s modeling concept and the method
he applied to solve the mathematical problem he formulated. This very much
resembles the engineering approach to combinatorial optimization still prevail-
ing in industry today: Employ experience/knowledge based heuristics skillfully.

The beginning of mathematical modeling in archaeology

Archeology originally was a field dominated by art historians and linguists. The
use of methods from the natural sciences and mathematics began slowly. One
of the pioneers of this approach to archaeology was Petrie, one of the most em-
inent Egyptologists of the late 19th century. To sequence graves in Naqada he
developed a mathematical “Ansatz” which has led to mathematical objects such
as matrices with the consecutive ones property, Petrie-matrices, the travelling

salesman problem, and data mining. Petrie outlined his approach in archaeo-
logical terms and made no formal mathematical definitions or investigation, but
he was aware that he was utilizing mathematical techniques. He already intro-
duced and employed concepts, such as the Hamming distance, before they were
formally defined in other areas of mathematics and the information sciences
and which have completely different applications nowadays.
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The travelling salesman problem

There is an almost infinite number of articles on the travelling salesman prob-
lem, many of these describe some of the origins of the TSP and its great variety
of applications. (We recommend Chapters 1 and 2 of [1] for an excellent survey
of these two topics.) Since the TSP is usually introduced as the task to find a
shortest round trip through a given number of cities, the TSP applications are
often associated with vehicle routing, optimal machine control, and the like.
One “origin” of the TSP that is often forgotten in overviews is archaeology.
That is why we highlight here the independent invention of the TSP in this
field. In fact, Petrie also invented a distance measure between graves, which
constitutes what we call Hamming metric today.

The Hamming metric

In mathematics, the Hamming distance of two vectors in some vector space is
equal to the number of components where the two vectors have different entries.
This distance function is clearly non-negative, symmetric, zero only when the
two vectors are identical, and obeys the triangle inequality. In other words, it is
a metric. A computer scientist would say that the Hamming distance between
two strings of symbols is the number of positions at which the corresponding
symbols disagree. This distance is named after Richard Hamming, who intro-
duced it in his fundamental paper [5] on what we now call Hamming codes.
The Hamming distance is, e.g., used in communication to count the number of
flipped bits in a transmitted word (in order to estimate errors occurring), and
plays an important role in information and coding theory, and cryptography.

Sir William Matthew Flinders Petrie

The excellent biography [3] provides a detailed account of the life and the
achievements of Petrie who was born in 1853 near London, died 1942 in
Jerusalem and held the first chair of Egyptology (at the University College
London) in the United Kingdom. We provide only a few details relevant for
the topic addressed here.
Petrie, a grandson of Matthew Flinders, surveyor of the Australian coastline,

was tutored at home and had almost no formal education. His father William
Petrie, an engineer who held several patents and had great interest in science,
taught his son to survey accurately, laying the foundation for his career in
archaeology.
William Matthew Flinders Petrie is described by many as a “brilliant” ex-

traordinary individual, one of the leading Egyptologists of his time. Notwith-
standing his archaeological discoveries, the fact that he set new standards in
painstaking recording of excavations and care of artifacts – thereby inaugurat-
ing what might be correctly termed as ‘modern’ archaeology –, high honors such
as a knighthood bestowed upon him and honorary memberships in innumerable
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Figure 1: Sir William Matthew Flinders Petrie ( c© Courtesy of the Egypt
Exploration Society, London)

British and international learned societies, Petrie remains a controversial figure
due to his right-wing views on social topics and his belief in eugenics, see [19].
Upon his death, he donated his skull to the Royal College of Surgeons London,
in particular, to be investigated for its high intellectual capacity in the field of
mathematics, see [21].

Petrie and mathematics

William Petrie wrote about his son when Matthew was not yet ten:

He continues most energetically studying [. . . ] chemicals and min-

erals. [. . . ] we gave him a bit of garden ground to cultivate, to

induce him not to spend too long a time in reading his chemical

books and making – considering his age – very deep arithmetical

calculations . . . . (See [3, p. 17].)

Matthew’s scientific approach and mathematical mind, basically self-taught,
except for two university courses in algebra and trigonometry – but only at
the age of twenty-four –, shaped his archaeological career. Having, already
at the age of 19, made attempts to understand the geometry of Stonehenge,
Petrie applied the same techniques in his 1880–1882 survey of the Pyramids
at Giza. His report on his measurements and his analysis of the architecture
of the pyramids are till today a prime example of adequate methodology and
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accuracy. The results of the work published in [14]; [15], and [16] helped to
refute a number of mysticism theories linked to ancient monuments.

Petrie’s work on the relative chronological ordering of archaeological artifacts
showed already a deep understanding of the mathematics behind the seriation
problem and was praised in [12, p. 213] as follows:

While his writings are not easy to follow, they make fascinating

reading for a mathematician, [. . . ], and in my view Petrie should

be ranked with the great applied mathematicians of the nineteenth

century. [. . . ] his writings contain what must surely be the first

‘mathematical model’ [. . . ] in the literature of archaeology.

Seriation

If in some old country mansion one room after another had been

locked up untouched at the death of each successive owner, then on

comparing all the contents it would easily be seen which rooms were

of consecutive dates; and no one could suppose a Regency room to

belong between Mary and Anne, or an Elizabethan room to come

between others of George III. The order of rooms could be settled to

a certainty on comparing all the furniture and objects. Each would

have some links of style in common with those next to it, and much

less connection with others which were farther from its period. And

we should soon frame the rule that the order of the rooms was that

in which each variety or article should have as short a range of

date as it could. Any error in arranging the rooms would certainly

extend the period of a thing over a longer number of generations.

This principle applies to graves as well as rooms, to pottery as well

as furniture. (Petrie, 1899 quoted in [3, p. 254])

Below we review and comment Petrie’s fundamental publication [18] of 1901.
All quotes (written in italic) are from this paper.

Being confronted with the task of establishing a prehistoric chronology of
Egypt, based on the finds from his excavations at Naqada, Petrie had to find a
way of dealing “simultaneously with records of some hundreds of graves” from
the cemeteries. He therefore developed a method of abstract classification of
objects – mainly ceramics. The pottery was divided into nine distinct cate-
gories, subdivided into several type-variations. Fig. 2 shows an example of
such a classification. This typology was recorded in alphanumerical codes.
The inventory of the graves Petrie excavated was subsequently written

on a separate slip of card for each [individually numbered] tomb.

[. . . ] All the slips were ruled in nine columns, one of each kind

of pottery. Every form of pottery found in a given tomb was then

expressed by writing the number of that form in the column of that

kind of pottery.
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Figure 2: Types of pottery [18] http://archive.org/stream/

diospolisparvac01macegoog#page/n8/mode/2up

Figure 3 shows the scan of such slips, provided by the Petrie Museum. The
first slip is the “header slip”. The first entry indicates that in all “tomb slips”
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Figure 3: Paper-slips ( c© Courtesy of the Petrie Museum, London)

the first entry is the individual alphanumerical code of the tomb represented by
the slip. The following nine entries of the header slip contain the abbreviated
names of Petrie’s classification of pottery.
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The second slip of Fig. 3 records the inventory of the grave encoded by B 130
(first entry). Six of the following nine entries of the slip are void, indicating that
no objects of these six pottery categories were found. The other three entries
show that tomb number B 130 contains B(black-topped), F(fancy formed) and
N(incised black) pottery, tomb number U 115 contains no N but P(polished
red) pottery as well. The entry in column B of row B 130 records the types
22a, 25c and 25f.
What we see here is a data structure which we would call today “sparse ma-

trix representation” or “linked list”. Petrie explains that he came up with this
representation in order to avoid producing large tables with many empty en-
tries. One can interpret Petrie’s data structure as an implicitly defined “grave-
pottery type incidence matrix”. Each row of this matrix represents a grave.
The nine columns B, F, P, . . . , L of his slips have to be expanded so that each
column corresponds to one type variation of the nine pottery categories. The
entry aij of such an incidence matrix A is equal to “1” if the grave represented
by row i contains the pottery type variation represented by column j. In this
way every grave is represented by a 0/1-vector describing its pottery contents.
Grave B 130, for instance, would have a coefficient “1” in the components rep-
resenting the pottery type variations B22a, B25c, B25f, F14, N34, and N37, all
other components are “0”.
In order to pre-arrange the material, Petrie sorted the slips according to

stylistic criteria:

The most clear series of derived forms is that of the wavy-handled

vases [W]. Beginning almost globular, [. . . ] they next become more

upright, then narrower with degraded handles, then the handle be-

comes a mere wavy line, and lastly an upright cylinder with an

arched pattern or a mere cord line around it

Petrie also knew that: “there is a class [. . . ] we have seen to be later [L] than
the rest, as it links on to the forms of historic age.” and arranged his slips
accordingly.
After this first arrangement of material (modern algorithmic term: knowl-

edge based preprocessing), Petrie considered the other types of pottery, trying
to establish a rough relative chronological order, according to the principles of
the Hamming metric, cited above:

This rough placing can be further improved by bringing together as

close as may be the earliest and the latest examples of any type;

as it is clear that any disturbance of the original order will tend to

scatter the types wider, therefore the shortest range possible for each

type is the probable truth.

Looking at what Petrie has actually done, one can conclude that this constitutes
the simultaneous introduction of the Hamming metric and the TSP. In his
chronological arrangement, Petrie considered the closeness of two graves as
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Figure 4: Petrie’s arrangement of slips, partial view. ( c© Courtesy of the Petrie
Museum, London)

the number of different entries in the 0/1-vector encoding the graves, which is
exactly the Hamming distance of the two grave incidence vectors. Moreover, he
claimed that finding an overall arrangement of all graves such that the sum of
the Hamming distances between two consecutive graves is as small as possible,
would solve his chronological ordering (seriation) problem. And this is nothing
but the formulation of the TSP in archaeological terms. Petrie was aware that
the available data are imprecise, and that hence the mathematically obtained
chronological ordering is only approximate (“probable truth”) so that further
archaeological “post processing” is necessary.

Having come up with this mathematical model of chronological ordering,
Petrie noticed that the amount of data would be outside of his computational
capacities. So he applied data reduction and decreased the number of graves
according to their statistical relevance: “In this and all the later stages only

graves with at least five different types of pottery were classified, as poorer

instances do not give enough ground for study.”

And thus he began to arrange the 900 remaining paper-slips according to
the relative order of appearance of different types of pottery and determined
a heuristic solution of a “900-city-TSP”. He succeeded in a “satisfactory” ar-
rangement of 700 slips and subsequently made: “a first division into fifty equal

stages, numbered 30 to 80, termed sequence dates or S.D. and then [made] a

list of all the types of pottery, stating the sequence date of every example that

occurs in theses graves.” By this he was able to provide a relative chronology,
without having to name absolute chronological dates. In other words: Petrie
made 49 “cuts” into the list of 700 graves, thereby defining 50 time-periods
without giving absolute dates, that are identified by the simultaneous appear-
ance of very similar pottery. This also enabled him to introduce and indicate
in his publications periods of appearance of certain pottery types. “Now on the

basis of the list made [. . . ] we incorporate all the other graves which contain

enough pottery to define their position.”

In modern TSP-terminology Petrie did the following: He started out with a
large number of cities and dispensed those who were irrelevant for the problem,
due to insufficient data, to reduce the TSP-instance to a manageable size. (We
call this data reduction today). Then he identified a certain subset of cities for
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which he was able to identify a satisfactory solution (identification of important
cities for which a good solution can be found). After that he used a clustering-
based insertion-method to produce a feasible and hopefully good solution of
the overall problem. A piece of the final sequence of graves (TSP solution) is
shown in Fig. 4.

Final remarks

Petrie’s sequence dates, which are an outcome of his TSP-approach to seriation,
constitute a true paradigm change within the field of archaeology, rendering a
scholarly subject, dominated by art historians and linguists, a veritable “scien-
tific” discipline. Pioneering as it was, Petrie’s method had and has been further
developed and complemented by later archaeologists.
Mathematically speaking, other researchers suggested to replace the Ham-

ming distance by weighted versions and other metrics, taking for instance into
account spatial distribution, by dissimilarity coefficients, obtained from statis-
tical analysis of grave contents, and so on. In most of these cases the result
was a mathematical model that is equivalent to the TSP with an objective
function describing some grave-relationship. A brief survey of these and other
approaches, the definition of Petrie matrices, and related concepts can be found
in [20].
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1 Introduction

D. Ray Fulkerson (1922–1976) made fundamental and lasting contributions to
combinatorial mathematics, optimization, and operations research [2]. He is
probably best known for his work on network flows and in particular for the
famous max flow–min cut theorem, stating that the maximum amount of a flow
from a node s to a node t in a directed graph equals the minimum capacity of
a cut separating s from t.
Less known is the fact that he also made important contributions to project

scheduling. One deals with time-cost tradeoff analysis of project networks,
which he solved with min-cost flow techniques. This method has meanwhile
entered standard text books such as [1] (often as an exercise of application of
flow methods) and will not be discussed here.
The much less known contribution concerns project planning when the in-

dividual job times are random variables. Fulkerson was one of the first to

Figure 1: Ray Fulkerson at Robert Bland’s wedding

Documenta Mathematica · Extra Volume ISMP (2012) 211–219



212 Rolf H. Möhring

Figure 2: Polaris A-3 at Cape Canaveral ( c©Wikimedia Commons)

recognize the deficiency of the then state-of-the-art operations research tech-
niques, and he developed a method for better analysis that has started a whole
stream of research on risk analysis in project planning.
This chapter tells the story of this contribution.

2 The background [10, 3]

During the Cold War, around the late fifties and early sixties, Lockheed Corpo-
ration developed and built the first version of the Polaris missile for the United
States Navy as part of the United States arsenal of nuclear weapons. It was
a two-stage solid-fuel nuclear-armed submarine-launched intercontinental bal-
listic missile with a range of 4.600 km that replaced the earlier cruise missile
launch systems based on submarines [3].
The complexity of this and similar projects required new planning tools that

could deal with research and development programs for which time is an un-
certain but critical factor. To support the Polaris project, the Navy’s Spe-
cial Projects Office developed the Program Evaluation and Review Technique
(PERT), which still is applied as a decision-making tool in project planning.
Willard Fazar, Head of the Program Evaluation Branch of the Special Projects
Office [4] recalls:

The Navy’s Special Projects Office, charged with developing the
Polaris-Submarine weapon system and the Fleet Ballistic Missile
capability, has developed a statistical technique for measuring and
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forecasting progress in research and development programs. This
Program Evaluation and Review Technique (code-named PERT) is
applied as a decision-making tool designed to save time in achiev-
ing end-objectives, and is of particular interest to those engaged
in research and development programs for which time is a critical
factor.

The new technique takes recognition of three factors that influence
successful achievement of research and development program ob-
jectives: time, resources, and technical performance specifications.
PERT employs time as the variable that reflects planned resource-
applications and performance specifications. With units of time as
a common denominator, PERT quantifies knowledge about the un-
certainties involved in developmental programs requiring effort at
the edge of, or beyond, current knowledge of the subject – effort for
which little or no previous experience exists.

[. . . ]

The concept of PERT was developed by an operations research team
staffed with representatives from the Operations Research Depart-
ment of Booz, Allen and Hamilton; the Evaluation Office of the
Lockheed Missile Systems Division; and the Program Evaluation
Branch, Special Projects Office, of the Department of the Navy.

I will explain the main idea underlying PERT in the next section. Fulkerson
noticed that PERT makes a systematic error, as it generally underestimates
the expected makespan of a project. He worked at the RAND Cooperation at
that time and wrote in research memorandum RM-3075-PR prepared for the
United States Air Force [6] and later published in slightly revised form in [5]:

The calculation of project duration times and project cost by
means of network models has become increasingly popular within
the last few years. These models, which go by such names as
PERT (Program Evaluation Review Technique), PEP (Program
Evaluation Procedure), Critical Path Scheduling, Project Cost
Curve Scheduling, and others, have the common feature that un-
certainties in job times are either ignored or handled outside the
network analysis, usually by replacing each distribution of job times
by its expected value.

He continues his criticism of PERT in the follow-up report RM-3075-PR [7]:

The PERT model of a project usually assumes independent random
variables for job times, instead of deterministic times [. . . ]. But the
usual practice has been to replace these random variables by their
expected values, thereby obtaining a deterministic problem. The
solution of this deterministic problem always provides an optimistic
estimate of the expected length of the project.
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[. . . ]

Although the analysis of a PERT model, with fixed job times, is
trivial from the mathematical point of view, the model itself appears
to be a useful one, judging from its widespread acceptance and use
throughout industry today. But it should be added that it is difficult
to assess the usefulness of PERT on this basis alone, since the model
has been the subject of much hard-sell advertising and exaggerated
claims.

Fulkerson instead suggests an algorithm that uses discrete random job times
and calculates a much better lower bound on the expected project makespan
than the one obtained by the PERT. It was published in 1962 [5] and has
become one of the fundamental papers in the area of project risk analysis.

I will outline some of the underlying mathematics of this development in the
next section. Part of that exposition is taken from [11].

3 Coping with uncertainty in scheduling: The math

In real-life projects, it usually does not suffice to find good schedules for fixed
deterministic processing times, since these times mostly are only rough esti-
mates and subject to unpredictable changes due to unforeseen events such as
weather conditions, obstruction of resource usage, delay of jobs and others.
In order to model such influences, PERT assumes that the processing time

of a job j ∈ V = {1, . . . , n} is assumed to be a random variable pj . Then
p = (p1,p2, . . . ,pn) denotes the (random) vector of job processing times, which
is distributed according to a joint probability distribution Q. This distribution
Q is assumed to be known, though sometimes, also partial information may
suffice. In general, Q may contain stochastic dependencies, but most methods
require that the job processing times are stochastically independent. (Fulkerson
allows some dependencies in his method, see below.))
Jobs are subject to precedence constraints given by a directed acyclic graph

G = (V,E). We refer to G also as the project network. Now consider a
particular realization p = (p1, . . . , pn) of the random processing time vector
p = (p1,p2, . . . ,pn). Since there are no resource constraints, every job j can
complete at its earliest possible completion time Cj = Cj(p), which is equal to
the length of a longest path in G that ends with j, where the length of a job j

is its processing time pj .
The earliest project completion or makespan for the realization p is then

Cmax(p) := maxjCj(p) = maxP
∑

j∈P pj , where P ranges over all inclusion-
maximal paths of G. Since the processing times pj are random, the
makespan Cmax is also a random variable, and it may be written as Cmax =
maxP

∑

j∈P pj , i.e., as the maximum of sums over subsets of a common set of
random variables. An example is given in Figure 3.
The main goal of project risk analysis is to obtain information about the

distribution of this random variable Cmax.
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Cmax = max { p1 + p3 + p6 ,

p1 + p5 + p7 ,

p2 + p4 + p6 , 

p2 + p4 + p7 ,

p2 + p5 + p7   }

G

1

2

3

4

5

6

7

Figure 3: An example project network and its makespan Cmax

Fulkerson noticed the systematic underestimation

Cmax

(

E(p1), . . . , E(pn)
)

≤ E
(

Cmax(p1, . . . ,pn)
)

when one compares the “deterministic makespan” Cmax(E(p1), . . . , E(pn)) ob-
tained from the expected processing times E(pj) with the expected makespan
E(Cmax(p)). This error may in fact become arbitrarily large with increasing
number of jobs or increasing variances of the processing times [9]. Equal-
ity holds if and only if there is one path that is the longest with probabil-
ity 1, see Theorem 1 below. The error becomes even worse if one compares
the deterministic value Cmax(E(p1), . . . , E(pn)) with quantiles tq such that
Prob{Cmax(p) ≤ tq} ≥ q for large values of q (say q = 0.9 or 0.95).

A simple example is given in Figure 4 for a project with n parallel jobs that
are independent and uniformly distributed on [0,2]. Then the deterministic
makespan Cmax(E(p1), . . . , E(pn)) = 1, while Prob(Cmax ≤ 1) → 0 for n →

∞. Similarly, all quantiles tq → 2 for n → ∞ (and q > 0).

This is the reason why good practical planning tools should incorporate
stochastic methods.

0 1 2

1

q

t

Prob(Cmax≤ t)

Figure 4: Distribution function of the makespan for n = 1, 2, 4, 8 parallel jobs
that are independent and uniformly distributed on [0,2].
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Theorem 1. Let G = (V,E) be a project network with random processing time

vector p. Then

Cmax

(

E(p1), . . . , E(pn)
)

≤ E(Cmax

(

p1, . . . ,pn)
)

.

Equality holds iff there is one path that is the longest with probability 1.

Proof. Since Cmax is the maximum of sums of processing times, it is obviously a
convex function of p. Thus the inequality is a special case of Jensen’s inequality
for convex functions. We give here an elementary proof for Cmax.
Let P1, . . . , Pk be the inclusion-maximal paths of G and let Y1, . . . , Yk denote

their (random) length, i.e., Yi :=
∑

j∈Pi
pj. Then Cmax = maxi Yi, and

Cmax(E(p)) = max
i

∑

j∈Pi

E(pj) = max
i

E(
∑

j∈Pi

pj) = max
i

E(Yi)

= E(Yi0) assume that the maximum is attained at i0

≤ E(max
i

Yi) since Yi0 ≤ max
i

Yi as functions of p

= E(Cmax(p)).

Now assume that Y1 is the longest path with probability 1. Then, with prob-
ability 1, Cmax = Y1 ≥ Yi. Hence E(Cmax) = E(Y1) ≥ E(Yi) and the above
calculation yields Cmax(E(p)) = maxi E(Yi) = E(Y1) = E(Cmax).
In the other direction assume that E(Cmax(p)) = Cmax(E(p)). Let w.l.o.g.

P1 be the longest path w.r.t. expected processing times E(pj). Then E(Y1) =
E(Cmax(p)) and

0 = E
(

Cmax(p)
)

− Cmax

(

E(p)
)

= E
(

max
i

Yi −maxE(Yi)
)

= E(maxE(Yi)− Y1) =

∫

(

maxE(Yi)− Y1

)

dQ.

Since the integrand in non-negative, it follows that it is 0 with probability 1.
Hence Y1 = maxE(Yi) = Cmax with probability 1.

The probabilistic version of PERT is based on the second statement of this
theorem. It only analyzes the distribution of the path with the longest expected
path length. It thus fails when there are many paths that are critical with high
probability.
The algorithm of Fulkerson uses the arc diagram of the precedence graph

G, which is common also to PERT. It considers jobs of a project as arcs of
a directed graph instead of vertices. This construction uses a directed acyclic
graph D = (N,A) with a unique source s and a unique sink t. Every job j of G
is represented by an arc of D such that precedence constraints are preserved,
i.e., if (i, j) is an edge of G, then there is a path from the end node of i to
the start node of j in D. Figure 5 gives an example. Such a representation
is called an arc diagram (sometimes also PERT network) of the project. In
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Arc diagram

jobs are arcs of digraph D

G

1

2

3

4

5

6

7

Node diagram

jobs are nodes of 

digraph G dummy arcs              may be necessary

1

4

6

7

5

3

2

D

Figure 5: Arc diagram of the project network of Figure 3

general, one needs additional arcs (so-called dummy arcs) to properly represent
the precedence constraints. Arc diagrams are thus not unique, but as dummy
arcs obtain processing time 0, this ambiguity has no influence on the makespan.
Fulkerson assumes that stochastic dependencies may only occur in job bun-

dles, where a bundle consists of all jobs with the same end node in the arc
diagram. His algorithm then computes for each node v a value tv that is iter-
atively obtained along a topological sort of the arc diagram as

tv = EQv

(

max
(u,v)∈E

{tu + p(u,v)}
)

,

where Qv is the joint distribution of the processing times in the bundle of jobs
ending in v, and the maximum is taken over all arcs in this bundle. A simple
inductive argument shows that this gives indeed a lower bound on the expected
makespan.
Fulkerson applies this to discrete job processing times, and so his algorithm

is exponential in the maximum size of a bundle. He already noticed that it is
computationally difficult to compute the exact value of the expected makespan,
which was later mathematically confirmed by Hagstrom [8]. Hagstrom consid-
ers the following two problems:

Mean: Given a project network with discrete, independent pro-
cessing times pj , compute the expected makespan E(Cmax(p)).

DF: Given a project network with discrete, independent processing
times pj and a time t, compute the probability Prob{Cmax(p) ≤ t}

that the project finishes by time t.

She shows thatDF and the 2-state versions of Mean, in which every processing
time pj has only two discrete values, are #P-complete.
The complexity status of the general version of Mean is open (only the

2-state version, which has a short encoding, is known to be #P-complete).
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If the processing times pj may take more than 2 values, the problem has a
longer encoding that in principle could admit a polynomial algorithm for solving
Mean. However, Hagstrom provides some evidence that problems with a long
encoding may still be difficult, since Mean and DF cannot be solved in time
polynomial in the number of values of Cmax(p) unless P = NP.

These results show that efficient methods for calculating the expected make-
span or quantiles of the distribution function of the makespan are very unlikely
to exist, and thus justify the great interest in approximate methods such as
bounds, simulation etc. that started with the work of Fulkerson. The search
for “expected completion time” +network in Google Scholar currently shows
more than 1,500 results.
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The story of Gomory cuts is characterized by swings between great acclaim in
the early days, near oblivion for decades and an amazing come back in the last
20 years. These cuts have been described as “elegant”, “disappointing” and
“the clear winner” at various times over the last 55 years. This essay retraces
that roller coaster.
Ralph Gomory’s paper “Early Integer Programming” recounts his discovery

of fractional cuts. It is a few years after he wrote his doctoral dissertation on
nonlinear differential equations that he heard of linear programming for the
first time. He was working for the Navy at the time. In one particular in-
stance, it would have been preferable to have solutions in integers. Gomory
thought that, somehow, one should be able to accomplish this. Within a few
days he had invented fractional cuts. His approach was to first solve the linear
program and then, using appropriate integer linear forms, to generate valid
linear inequalities cutting off the undesirable fractional solution. By adding
these cuts to the linear program, solving again using the simplex algorithm
and iterating, Gomory could solve by hand any small integer linear program
that he tried. However, he did not have a finiteness proof yet. At this point,
he happened to run into Martin Beale in the halls of Princeton University in
late 1957 and mentioned that he could solve linear programs in integers. When
Beale immediately responded “but that’s impossible”, Gomory realized that
he was not the first to think about this problem. As it turns out, Dantzig,
Fulkerson, and Johnson had pioneered the cutting plane approach in a seminal
paper published in 1954. They devised special-purpose cuts for the traveling
salesman problem and, as a result, were able to solve to optimality an instance
with 48 cities. However, Gomory’s goal was different and more ambitious. His
fractional cuts were general-purpose cuts that applied to all integer linear pro-
grams. In his reminiscences “Early Integer Programming”, Gomory recounts
the excitement that followed his encounter with Beale.

During the exciting weeks that followed, I finally worked out a finite-
ness proof and then programmed the algorithm on the E101, a pin
board computer that was busy during the day but that I could use
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late at night. The E101 had only about 100 characters of memory
and the board held only 120 instructions at a time, so that I had to
change boards after each simplex maximization cycle and put it in a
new board that generated the cut, and then put the old board back
to remaximize. It was also hard work to get the simplex method
down to 120 E101 instructions. But the results were better and
more reliable than my hand calculations, and I was able to steadily
and rapidly produce solutions to four- and five-variable problems.

When Gomory presented his results in early 1958, the impact was enormous
and immediate. Gomory had achieved the impossible: reducing integer linear
programming to a sequence of linear programs. This was a great theoretical
breakthrough. The next logical step was to try turning this work into a practical
algorithm. In the summer of 1958, Gomory programmed his fractional cutting
plane algorithm in FORTRAN (a new computer language at the time). He
says

Most of the problems ran quickly but one went on and on . . . it was
the first hint of the computational problems that lay ahead . . . In
the summer of 1959, I joined IBM Research and was able to compute
in earnest . . . We started to experience the unpredictability of the
computational results rather steadily.

In 1960, Gomory [6] extended his approach to mixed-integer linear programs
(MILPs), inventing the “mixed-integer cuts”, known today as GMI cuts (the
acronym stands for Gomory mixed-integer cuts). GMI cuts are remarkable on
at least two counts: 1) They are stronger than the fractional cuts when applied
to pure integer programs; 2) They apply to MILPs, a crucial feature when
generating cutting planes in an iterative fashion because pure integer programs
typically turn into MILPs after adding cuts. Three years later, in 1963, Gomory
[7] states that these cuts are “almost completely computationally untested.”
Surprisingly, Gomory does not even mention GMI cuts in his reminiscences in
1991.

In the three decades from 1963 to 1993, Gomory cuts were considered imprac-
tical. Several quotes from the late 80s and early 90s illustrate this widely held
view. Williams [11]: “Although cutting plane methods may appear mathemat-
ically fairly elegant, they have not proved very successful on large problems.”
Nemhauser and Wolsey [9]: “They do not work well in practice. They fail
because an extremely large number of these cuts frequently are required for
convergence.” Padberg and Rinaldi [10]:

These cutting planes have poor convergence properties . . . classical
cutting planes furnish weak cuts . . . A marriage of classical cutting
planes and tree search is out of the question as far as the solution
of large-scale combinatorial optimization problems is concerned.
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By contrast, the Dantzig, Fulkerson, Johnson strategy of generating special-
purpose cuts had gained momentum by the early 90s. Padberg and Rinaldi
[10] obtained spectacular results for the traveling salesman problem using this
approach. It was applied with a varying degree of success to numerous other
classes of problems. The effectiveness of such branch-and-cut algorithms was
attributed to the use of facets of the integer polyhedron.

Was this view of cutting planes justified? Despite the bad press Gomory cuts
had in the research community and in textbooks, there was scant evidence in
the literature to justify this negative attitude. Gomory’s quote from thirty years
earlier was still current: GMI cuts were “almost completely computationally
untested.” In 1993 I convinced Sebastian Ceria, who was a PhD student at
Carnegie Mellon University at the time, to experiment with GMI cuts. The
computational results that he obtained on MIPLIB instances were stunning
[1]: By incorporating GMI cuts in a branch-and-cut framework, he could solve
86% of the instances versus only 55% with pure branch and bound. For those
instances that could be solved by both algorithms, the version that used GMI
cuts was faster on average, in a couple of cases by a factor of 10 or more. This
was a big surprise to many in the integer programming community and several
years passed before it was accepted. In fact, publishing the paper reporting
these results, which so strongly contradicted the commonly held views at the
time, was an uphill battle (one referee commented “there is nothing new” and
requested that we add a theoretical section, another so distrusted the results
that he asked to see a copy of the code. The associate editor recommended
rejection, but in the end the editor overruled the decision, and the paper [1]
was published in 1996).

Our implementation of Gomory cuts was successful for three main reasons:

• We added all the cuts from the optimal LP tableau (instead of just one
cut, as Gomory did).

• We used a branch-and-cut framework (instead of a pure cutting plane
approach).

• LP solvers were more stable by the early 1990s.

Commercial solvers for MILPs, such as Cplex, started incorporating GMI cuts
in 1999. Other cutting planes were implemented as well and solvers became
orders of magnitude faster. Bixby, Fenelon, Gu, Rothberg and Wunderling
[3] give a fascinating account of the evolution of the Cplex solver. They view
1999 as the transition year from the “old generation” of Cplex to the “new
generation”. Their paper lists some key features of a 2002 “new generation”
solver and compares the speedup in computing time achieved by enabling one
feature versus disabling it, while keeping everything else unchanged. The table
below summarizes average speedups obtained for each feature on a set of 106
instances.
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Feature Speedup factor

Cuts 54
Presolve 11
Variable selection 3
Heuristics 1.5

The clear winner in these tests was cutting planes. In 2002 Cplex imple-
mented eight types of cutting planes. Which were the most useful? In a
similar experiment disabling only one of the cut generators at a time, Bixby,
Fenelon, Gu, Rothberg and Wunderling obtained the following degradation in
computing time.

Cut type Factor

GMI 2.5
MIR 1.8
Knapsack cover 1.4
Flow cover 1.2
Implied bounds 1.2
Path 1.04
Clique 1.02
GUB cover 1.02

Even when all the other cutting planes are used in Cplex (2002 version), the
addition of Gomory cuts by itself produces a solver that is 2.5 times faster! As
Bixby and his co-authors conclude “Gomory cuts are the clear winner by this
measure”. Interestingly the MIR (Mixed Integer Rounding) cuts, which come
out second in this comparison, turn out to be another form of GMI cuts!

However, that’s not the end of the story of Gomory cuts. More work is
needed on how to generate “safe” Gomory cuts: The textbook formula for gen-
erating these cuts is not used directly in open-source and commercial software
due to the limited numerical precision in the computations; solvers implement
additional steps in an attempt to avoid generating invalid cuts. Despite these
steps, practitioners are well aware that the optimal solution is cut off once in a
while. More research is needed. Another issue that has attracted attention but
still needs further investigation is the choice of the equations used to generate
GMI cuts: Gomory proposed to generate cuts from the rows of the optimal sim-
plex tableau but other equations can also be used. Balas and Saxena [2], and
Dash, Günlük and Lodi [4] provide computational evidence that MILP formu-
lations can typically be strengthened very significantly by generating Gomory
cuts from a well chosen set of equations. But finding such a good family of
equations “efficiently” remains a challenge.
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The branch-and-bound method consists of the repeated application of a process
for splitting a space of solutions into two or more subspaces and adopting a
bounding mechanism to indicate if it is worthwhile to explore any or all of the
newly created subproblems. For example, suppose we need to solve an integer-
programming (IP) model. A bounding mechanism is a computational technique
for determining a value B such that each solution in a subspace has objective
value no larger (for maximization problems) than B. For our IP model, the
objective value of any dual feasible solution to the linear-programming (LP)
relaxation provides a valid bound B. We can compute such a bound with
any LP solver, such as the simplex algorithm. The splitting step is called
branching. In our IP example, suppose a variable xi is assigned the fractional
value t in an optimal solution to the LP relaxation. We can then branch by
considering separately the solutions having xi ≤ ⌊t⌋ and the solutions having
xi ≥ ⌊t⌋ + 1, where ⌊t⌋ denotes t rounded down to the nearest integer. The
two newly created subproblems need only be considered for further exploration
if their corresponding bound B is greater than the value of the best known
integer solution to the original model.
Branch and bound is like bread and butter for the optimization world. It

is applied routinely to IP models, combinatorial models, global optimization
models, and elsewhere. So who invented the algorithm? A simple enough
question, but one not so easy to answer. It appears to have three origins,
spread out over four years in the mid to late 1950s.
As the starting point, the notion of branch and bound as a proof system for

integer programming is laid out in the 1957 Econometrica paper “On the solu-
tion of discrete programming problems” by Harry Markowitz and Alan Manne
[17]. Their description of the components of branch and bound is explicit, but
they note in the paper’s abstract that the components are not pieced together
into an algorithm.
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We do not present an automatic algorithm for solving such prob-
lems. Rather we present a general approach susceptible to individ-
ual variations, depending upon the problem and the judgment of the
user.

The missing algorithmic glue was delivered several years later by Ailsa Land
and Alison Doig in their landmark paper “An automatic method of solving
discrete programming problems” [12], published in the same journal in 1960.
The Land-Doig abstract includes the following statement.

This paper presents a simple numerical algorithm for the solution of
programming problems in which some or all of the variables can take
only discrete values. The algorithm requires no special techniques
beyond those used in ordinary linear programming, and lends itself
to automatic computing.

Their proposed method is indeed the branch-and-bound algorithm and their
work is the starting point for the first successful computer codes for integer pro-
gramming. There is a further historical twist however. Sandwiched in between
Markowitz-Manne and Land-Doig is the 1958 Harvard Ph.D. thesis of Willard
Eastman titled Linear Programming with Pattern Constraints [5]. Eastman de-
signed algorithms for several classes of models, including the traveling salesman
problem (TSP). Page 3–5 of his thesis gives the following concise description
of the heart of his technique.

It is useful, however, to be able to establish lower-bounds for the
costs of solutions which have not yet been obtained, in order to
permit termination of any branch along which all solutions must
exceed the cost of some known feasible solution.

His methods, too, are early implementations of branch and bound. So
Markowitz-Manne or Eastman or Land-Doig? Fortunately there is no need
to make a choice: we can give branch-and-bound laurels to each of these three
groups of researchers.

1 Markowitz and Manne (1957)

The Markowitz-Manne paper is one of the earliest references dealing with gen-
eral integer programming. The paper was published in Econometrica in 1957,
but an earlier version appeared as a 1956 RAND research paper [16], where the
order of the authors is Manne-Markowitz. Even further, George Dantzig’s 1957
paper [1] cites the Manne-Markowitz report as having been written on August
1, 1955. This is indeed at the beginning of the field: Dantzig, Fulkerson, and
Johnson’s classic paper on the TSP is typically cited as the dawn of integer
programming and it appeared as a RAND report in April 1954 [2].

Markowitz-Manne, or Manne-Markowitz, discuss in detail two specific ap-
plications: a production-planning problem and an air-transport problem. A
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Left: Harry Markowitz, 2000 (Photograph by Sue Clites). Right: Alan Manne
(Stanford University News).

fascinating thing is their inclusion of two appendices, one for each of the mod-
els, having subsections labeled “Proof” and “Verification” respectively. The
“Proofs” consist of branch-and-bound subproblems and the “Verifications” ex-
plain why steps taken in the creation of the subproblems are valid.

The general mixed IP model considered by Markowitz-Manne is to maximize
a linear function π over a set D(0) wherein some or all variables take on integral
values. For a nonempty set S in the same space as D(0), π(S) is defined to be
max(π(X) : X ∈ S) if the maximum exists and otherwise π(S) ≡ ∞. Quoting
from their paper, Markowitz-Manne lay out the following branch-and-bound
framework.

At each step s we have:

(a) a best guess X(s)
(b) one or more sets D1(s), . . . , DK(s) such that

D(0) ⊃ Dk(s) k = 1, . . . ,K,

π
(

D(0)
)

= π
(

D1(s) ∪D2(s) · · · ∪DK(s) ∪X(s)
)

and
(c) polyhedral sets Lk(s), such that

Lk(s) ⊃ Dk(s) k = 1, . . . ,K

Clearly

π
(

∪k Lk(s) ∪X(s)
)

= max
(

π
(

L1(s)
)

, . . . , π
(

LK(s)
)

, π
(

X(s)
)

)

≥ π
(

D(0)
)

≥ π
(

X(s)
)

.

The general strategy is to reduce the size of the sets ∪Dk and ∪Lk,
and to bring together the lower and upper bounds on π(D(0)).

Documenta Mathematica · Extra Volume ISMP (2012) 227–238



230 William Cook

The “best guess” is the currently best-known solution X(s) ∈ D(0). If X(s)
is itself not optimal, then the union of the sets Dk(s) is known to contain an
optimal solution. The sets Lk(s) are LP relaxations of the discrete sets Dk(s),
thus the upper bound

max
(

π
(

L1(s)
)

, . . . , π
(

LK(s)
)

, π
(

X(s)
)

)

on the IP objective can be computed via a sequence of LP problems.
In just a few lines, Markowitz-Manne summed up much of the branch-and-

bound theory we use today! Indeed, they incorporate the idea of improving the
LP relaxations Lk(s) from one step to the next, as is now done in sophisticated
branch-and-cut algorithms. Moreover, their steps to create subregions Dk(s)
involve the concept of branching on hyperplanes, that is, splitting a k− 1 level
subregion into a number of k-level subregions by enforcing linear equations
c(X) = ti for appropriate values of ti.

The “Proof” subsections consist of explicit listings of the sets Dk(s) and
Lk(s) used at each level in the example models, and the “Verifications” sub-
sections explain why the adopted cutting planes are valid and how hyperplanes
are used to subdivide subregions into further subregions. These appendices are
amazingly complete formal proofs of the optimality of proposed solutions to the
two applied problems. It would be beautiful if we could somehow recapture
such formal correctness in current computational claims for optimal solutions
to large-scale IP models.

Julia Robinson and the TSP

Markowitz and Manne carried out their work at the famed RAND Corporation,
home in the 1950s of what was far and away the world’s top center for the study
of mathematical optimization. They introduce their general branch-and-bound
framework as follows [17].

Our procedure for handling discrete problems was suggested by that
employed in the solution of the ‘traveling-salesman’ problem by
Dantzig, Fulkerson, and Johnson.

We have already mentioned that the 1954 TSP work of Dantzig et al. is viewed
as the dawn of IP research. Their LP-approach to the TSP actually goes back
a bit further, to the 1949 RAND report by Julia Robinson [23] and important
follow-up studies in the early 1950s by Isidor Heller [8] and Harold Kuhn [9].
Robinson studied an algorithm for the assignment-problem relaxation of the

TSP while Heller and Kuhn began investigations of linear descriptions of the
convex hull of TSP tours, considering tours as characteristic vectors of their
edge sets. In notes from a George Dantzig Memorial Lecture delivered in 2008
[10], Kuhn writes the following concerning his TSP study.

We were both keenly aware of the fact that, although the complete set
of faces (or constraints) in the linear programming formulation of
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the Traveling Salesman Problem was enormous, if you could find an
optimal solution to a relaxed problem with a subset of the faces that
is a tour, then you had solved the underlying Traveling Salesman
Problem.

It is clear the researchers knew that LP relaxations could be a source of lower
bounds for the TSP, but neither Heller nor Kuhn consider the bounding prob-
lem as a means to guide a search algorithm such as in branch and bound.

In the case of Robinson’s work, it is tempting to read between the lines and
speculate that she must have had some type of enumerative process (like branch
and bound) in mind. Why else would she use the title “On the Hamiltonian
game (a traveling salesman problem)” for a paper covering a solution method
for the assignment problem? It is difficult to guess what she had in mind, but
the introduction to the paper suggests she was trying for a direct solution to
the TSP rather than an enumerative method through bounding.

An unsuccessful attempt to solve the above problem led to the solu-
tion of the following . . .

The “problem” in the quote is the TSP and the “following” is a description of
the assignment problem.
Thus, it appears that early TSP researchers had bounding techniques at their

disposal, but were hopeful of direct solution methods rather than considering
a branch-and-bound approach.

Bounds and reduced-cost fixing by Dantzig-Fulkerson-Johnson

Dantzig et al. began their study of the TSP in early 1954. Their successful
solution of a 49-city instance stands as one of the great achievements of integer
programming and combinatorial optimization. But the main body of work did
not make use of the LP relaxation as a bounding mechanism. Indeed, the
preliminary version [2] of their paper describes their process as follows, where
C1 denotes the solution set of the LP relaxation, Tn denotes the convex hull of
all tours through n cities, and dij is the cost of travel between city i and city j.

What we do is this: Pick a tour x which looks good, and consider
it as an extreme point of C1; use the simplex algorithm to move to
an adjacent extreme point e in C1 which gives a smaller value of
the functional; either e is a tour, in which case start again with this
new tour, or there exists a hyperplane separating e from the convex
of tours; in the latter case cut down C1 by one such hyperplane that
passes through x, obtaining a new convex C2 with x as an extreme
point. Starting with x again, repeat the process until a tour x̂ and
a convex Cm ⊃ Tn are obtained over which x̂ gives a minimum of
∑

dijxij.

They do not actually solve the LP relaxations in their primal implementation
of the cutting-plane method, carrying out only single pivots of the simplex
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algorithm. Thus they do not have in hand a lower bound until the process has
actually found the optimal TSP tour.

In a second part of their paper, however, they work out a method that can
take possibly infeasible values for the LP dual variables and create a lower
bound B on the cost of an optimal tour. They accomplish this by taking
advantage of the fact that the variables in the TSP relaxation are bounded
between 0 and 1. The explicit variable bounds correspond to slack and surplus
variables in the dual, allowing one to convert any set of dual values into a dual
feasible solution by raising appropriately either the slack or surplus for each
dual constraint.

Dantzig et al. use this lower bound to eliminate variables from the problem
by reduced-cost fixing, that is, when the reduced cost of a variable is greater
than the difference between the cost of a best known tour and the value of B
then the variable can be eliminated.

During the early stages of the computation, E may be quite large
and very few links can be dropped by this rule; however, in the
latter stages often so many links are eliminated that one can list all
possible tours that use the remaining admissible links.

A general method for carrying out this enumeration of tours is not given, but
in [4] an example is used to describe a possible scheme, relying on forbidding
subtours. Their description is not a proper branch-and-bound algorithm, how-
ever, since the bounding mechanism is not applied recursively to the examined
subproblems. Nonetheless, it had a direct influence on Dantzig et al.’s RAND
colleagues Markowitz and Manne.

2 Eastman (1958)

It is in the realm of the TSP where we find the first explicit description of
a branch-and-bound algorithm, namely Eastman’s 1958 Ph.D. thesis. The
algorithm is designed for small instances of the asymmetric TSP, that is, the
travel cost between cities i and j depends on the direction of travel, either from
i to j or from j to i. The problem can thus be viewed as finding a minimum
cost directed circuit that visits each city.

In Eastman’s algorithm, the lower bound on the cost of a TSP tour is pro-
vided by the solution to a variant of the assignment problem that provides a
minimum cost collection of circuits such that each city is in exactly one of the
circuits in the collection. If there is only one circuit in the collection, then
the assignment problem solves the TSP. Otherwise, Eastman chooses one of
the circuits having, say, m edges, then in a branching step he creates m new
subproblems by setting to 0, one at a time, each of the variables corresponding
to the edges in the circuit.

Eastman describes and illustrates his process as a search tree, where the
nodes of the tree are the subproblems.
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Willard Eastman (Photograph courtesy of Willard Eastman)

This process can be illustrated by a tree in which nodes correspond
to solutions and branches to excluded links. The initial solution
(optimal for the unrestricted assignment problem) forms the base of
the tree, node 1. Extending from this node are m branches, cor-
responding to the m excluded links, and leading to m new nodes.
Extending from each of these are more branches, corresponding to
links excluded from these solutions, and so forth.

This is very similar to how branch-and-bound search is usually viewed today:
we speak of the size of the search tree, the number of active tree nodes, etc.

Eastman clearly has a full branch-and-bound algorithm for the TSP and he
illustrates its operation on a ten-city example. He also applies his framework
to other combinatorial problems, including a transportation model with non-
linear costs and a machine-scheduling model. His work does not include general
integer programming, but it is an important presentation of branch-and-bound
techniques.

3 Land and Doig (1960)

General mixed integer programming, where only some of the variables are re-
quired to take on integer values, is the domain of Land and Doig. Their branch-
and-bound paper played a large role in the rapid rise of mixed IP as an applied
tool in the 1960s and 70s.
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Left: Ailsa Land, Banff, 1977 (Photograph courtesy of Ailsa Land). Right:
Alison Doig, The Sun, October 21, 1965. (Courtesy of Alison (Doig) Harcourt)

The methods of Markowitz-Manne and Land-Doig are on opposite sides of
the algorithmic spectrum: whereas Markowitz-Manne is best viewed as a flex-
ible proof system, Land-Doig is a detailed algorithm designed for immediate
implementation. In a memoir [13] published in 2010, Land and Doig write the
following.

We were very well aware that the solution of this type of problem
required electronic computation, but unfortunately LSE at that time
did not have any access to such a facility. However, we had no doubt
that using the same approach to computing could be achieved, if
rather painfully, on desk computers, which were plentifully available.
We became quite skillful at doing vector operations by multiplying
with the left hand, and adding and subtracting with the right on
another machine! Storage of bases and intermediate results did not
present a limitation since it was all simply recorded on paper and
kept in a folder.

The reference to “bases” is indicative of the details given in the paper: the
description of the general flow of the algorithm is intertwined with its imple-
mentation via the simplex algorithm, where the variables taking on fractional
values in a solution are known to lie within the set of basic variables in the
final simplex iteration.
The Land-Doig algorithm follows the quick outline for IP branch and bound

we mentioned in the introduction to this article: use the LP relaxation as a
bounding mechanism and a fractional-valued variable as the means to create
subproblems. The algorithm differs, however, in the manner in which it searches
the space of solutions. Indeed, Land-Doig considers subproblems created with
equality constraints xi = k, rather than inequality constraints, at the expense
of possibly building a search tree with nodes having more than two child nodes,
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that is, corresponding to a range of potential integer values k for the branching
variable xi.

Besides the nicely automated method, a striking thing about the paper is
the computational tenacity of the authors. Although they worked with hand
calculators, Land and Doig explored numerous disciplines for running their
algorithm, including a variable selection rule that is similar in spirit to current
“strong-branching” techniques.

Land was also involved in very early work on the TSP, writing a paper with
George Morton in 1955 [19], but combinatorial problems are not considered in
the Land-Doig paper. In an email letter from June 9, 2012, Land confirmed
that at the time she had not considered the application of branch and bound
to the TSP.

I only got involved in applying B&B to the TSP when Takis Miliotis
was doing his PhD under my supervision.

The thesis work of Miliotis [18] was carried out in the 1970s and Land herself
authored a computational TSP paper in 1979 [11], but there is no direct con-
nection between Eastman’s work at Harvard and the Land-Doig algorithm for
general integer programming.

4 Coining the term branch and bound

The concise and descriptive name “branch and bound” has likely played a role
in unifying the many diverse implementations of the algorithmic framework. On
this point, however, our three pioneering teams cannot take credit. Markowitz
and Manne modestly refer to their process as “a general approach” or “our
method”. Eastman called his algorithm “the method of link exclusion” in
reference to the fact that his branches are determined by excluding certain
edges, that is, by setting the corresponding variables to the value zero. Land
and Doig provide the following discussion of their procedure’s name [13].

We did not initially think of the method as ‘branch and bound’,
but rather in the ‘geometrical’ interpretation of exploring the con-
vex feasible region defined by the LP constraints. We are not sure
if ‘branch and bound’ was already in the literature, but, if so, it
had not occurred to us to use that name. We remember Steven
Vajda telling us that he had met some French people solving ILPs
by ‘Lawndwa’, and realizing that they were applying a French pro-
nunciation to ‘Land-Doig’, so we don’t think they knew it as branch
and bound either.

It was John Little, Katta Murty, Dura Sweeney, and Caroline Karel who in 1963
coined the now familiar term. Here are the opening lines from the abstract to
their TSP paper [15].
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A ‘branch and bound’ algorithm is presented for solving the traveling
salesman problem. The set of all tours (feasible solutions) is broken
up into increasingly small subsets by a procedure called branching.
For each subset a lower bound on the length of the tours therein is
calculated. Eventually, a subset is found that contains a single tour
whose length is less than or equal to some lower bound for every
tour.

In a recent note [20], Murty further pinpointed the naming of the algorithm,
giving credit to his coauthor Sweeney.

Later in correspondence John Little told me that one of his students
at MIT, D. Sweeney, suggested the name “Branch and Bound” for
the method . . .

So while the origin of the algorithm is complicated, the origin of the name is
at least clear!

5 Branch-and-cut algorithms

The Markowitz-Manne framework includes the idea of improving an LP relax-
ation Lk(s) of a subproblem by the addition of linear inequalities satisfied by
all solutions in Dk(s). This incorporates into branch and bound the technique
that was so successful in the Dantzig et al. TSP study. In fact, the Markowitz-
Manne paper may contain the first published use of the term “cutting plane”
to refer to such valid linear inequalities.

We refer to (3.7) as a cutting line (when N > 2, a cutting plane).

Cutting planes, of course, appear in the starring role in the 1958 integer-
programming algorithm of Ralph Gomory [6], but the idea did not work its
way into the Land-Doig computational procedure. Concerning this, Ailsa Land
and Susan Powell [14] make the following remark in a 2007 paper.

While branch and bound began to be built into computer codes, the
cutting plane approach was obviously more elegant, and we spent a
great deal of time experimenting with it. (. . . ) Work was done, but
it was not published because as a method to solve problems branch
and bound resoundingly won.

The combination of branch-and-bound and cutting planes, as outlined in
Markowitz-Manne, eventually became the dominant solution procedure in inte-
ger programming and combinatorial optimization. The first big successes were
the 1984 study of the linear-ordering problem by Martin Grötschel, Michael
Jünger, and Gerhard Reinelt [7] and the late 1980s TSP work by Manfred
Padberg and Giovanni Rinaldi [21, 22],
It was Padberg and Rinaldi who coined the term branch and cut for the pow-

erful combination of the two competing algorithms. Land and Powell conclude
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their 2007 paper with the fitting statement “It is gratifying that the combina-
tion, ‘branch and cut’, is now often successful in dealing with real problems.”
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Ronald Graham:

Laying the Foundations of Online Optimization

Susanne Albers

Abstract. This chapter highlights fundamental contributions made
by Ron Graham in the area of online optimization. In an online
problem relevant input data is not completely known in advance but
instead arrives incrementally over time. In two seminal papers on
scheduling published in the 1960s, Ron Graham introduced the con-
cept of worst-case approximation that allows one to evaluate solutions
computed online. The concept became especially popular when the
term competitive analysis was coined about 20 years later. The frame-
work of approximation guarantees and competitive performance has
been used in thousands of research papers in order to analyze (online)
optimization problems in numerous applications.

2010 Mathematics Subject Classification: 68M20, 68Q25, 68R99,
90B35
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An architect of discrete mathematics

Born in 1935, Ron Graham entered university at age 15. Already at that time
he was interested in a career in research. He first enrolled at the University
of Chicago but later transferred to the University of California at Berkeley,
where he majored in electrical engineering. During a four-year Air Force service
in Alaska he completed a B.S. degree in physics at the University of Alaska,
Fairbanks, in 1958. He moved back to the University of California at Berkeley
where he was awarded a M.S. and a Ph.D. degree in mathematics in 1961 and
1962, respectively.
Immediately after graduation Ron Graham joined Bell Labs. Some friends

were afraid that this could be the end of his research but, on the contrary,
he built the labs into a world-class center of research in discrete mathematics
and theoretical computer science. Ron Graham rose from Member of Technical
Staff to Department Head and finally to Director of the Mathematics Center
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Figure 1: Ron Graham at work and at leisure. Pictures taken in New Jersey
in the late 1060s and mid 1970s, respectively. Printed with the permission of
Ron Graham.

at Bell Labs. After establishment of AT&T Labs Research he served as the
first Vice President of the Information Sciences Research Lab and later became
the first Chief Scientist of AT&T Labs. After 37 years of dedicated service he
retired from AT&T in 1999. Since then he has held the Jacobs Endowed Chair
of Computer and Information Science at the University of California at San
Diego.

Ron Graham is a brilliant mathematician. He has done outstanding work
in Ramsey Theory, quasi-randomness, the theory of scheduling and packing
and, last not least, computational geometry. The “Graham scan” algorithm
for computing the convex hull of a finite set of points in the plane is standard
material in algorithms courses. His creativity and productivity are witnessed
by more than 300 papers and five books. Ron Graham was a very close friend
of Paul Erdős and allowed to look not only after his mathematical papers but
also his income. Together they have published almost 30 articles. Ron Graham
is listed in the Guinness Book of Records for the use of the largest number
that ever appeared in a mathematical proof. He has many interests outside
mathematics and, in particular, a passion for juggling. It is worth noting that
he served not only as President of the American Mathematical Society but also
as President of the International Jugglers’ Association.

Ron Graham has received numerous awards. He was one of the first recipients
of the Pólya Prize awarded by the Society for Industrial and Applied Math-
ematics. In 2003 he won the Steele Prize for Lifetime Achievement awarded
by the American Mathematical Society. The citation credits Ron Graham as
“one of the principle architects of the rapid development worldwide of discrete
mathematics in recent years” [2].
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Scheduling and performance guarantees

The technical results presented in this chapter arose from extensive research
on scheduling theory conducted at Bell Labs in the mid 1960s. Even today
they exhibit some remarkable features: (1) They can be perfectly used to teach
the concepts of provably good algorithms and performance guarantees to non-
specialists, e.g., high school students or scientists from other disciplines. (2)
The specific scheduling strategies are frequently used as subroutines to solve
related scheduling problems. (3) The results stimulate ongoing research; some
major problems are still unresolved.
Consider a sequence σ = J1, . . . , Jn of jobs that must be scheduled on m

identical machines operating in parallel. Job Ji has a processing time of pi,
1 ≤ i ≤ n. The jobs of σ arrive one by one. Each job Ji has to be assigned
immediately and irrevocably to one of the machines without knowledge of any
future jobs Jk, k > i. Machines process jobs non-preemptively: Once a machine
starts a job, this job is executed without interruption. The goal is to minimize
the makespan, i.e. the maximum completion time of any job in the schedule
constructed for σ.
The scheduling problem defined above is an online optimization problem.

The relevant input arrives incrementally. For each job Ji an algorithm has to
make scheduling decisions not knowing any future jobs Jk with k > i. Despite
this handicap, a strategy should construct good solutions. Graham [5] proposed
a simple greedy algorithm. The algorithm is also called List scheduling, which
refers to the fact that σ is a list of jobs.

Algorithm List: Schedule each job Ji on a machine that currently
has the smallest load.

The load of a machine is the sum of the processing times of the jobs presently
assigned to it.
A natural question is, what is the quality of the solutions computed by

List. Here Graham introduced the concept of worst-case approximation. For
any job sequence σ, compare the makespan of the schedule constructed by
List to that of an optimal schedule for σ. How large can this ratio grow, for
any σ? Formally, let List(σ) denote the makespan of List ’s schedule for σ.
Furthermore, let OPT(σ) be the makespan of an optimal schedule for σ. We
would like to determine

c = sup
σ

List(σ)

OPT (σ)
,

which gives a worst-case performance guarantee for List. In online optimization
such a guarantee is called competitive ratio. Following Sleator and Tarjan [8],
an online algorithm A is c-competitive if, for any input, the cost of the solution
computed by A is at most c times that of an optimal solution for that input.
Graham [5] gave an elegant proof that List is (2− 1/m)-competitive, i.e. re-

markably List achieves a small constant performance ratio. For the proof, fix an
arbitrary job sequence σ and consider the schedule computed by List. Without
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Figure 2: Analysis of List

loss of generality, number the machines in order of non-increasing load. Hence
machine 1 is one having the highest load and defines the makespan. Figure 2
depicts an example. In the time interval [0,List(σ)) machine 1 continuously
processes jobs. Any other machine j, 2 ≤ j ≤ m, first processes jobs and then
may be idle for some time. Let Ji0 be the job scheduled last on machine 1. We
observe that in List ’s schedule Ji0 does not start later than the finishing time
of any machine j, 2 ≤ j ≤ m, because List assigns each job to a least loaded
machine. This implies that the idle time on any machine j, 2 ≤ j ≤ m, cannot
be higher than pi0 , the processing time of Ji0 . Considering the time interval
[0,List(σ)) on all the m machines we obtain

mList(σ) ≤

n
∑

i=1

pi + (m− 1)pi0 .

Dividing by m and taking into account that pi0 ≤ max1≤i≤n pi, we obtain

List(σ) ≤
1

m

n
∑

i=1

pi + (1−
1

m
) max
1≤i≤n

pi.

A final argument is that the optimum makespan OPT (σ) cannot be smaller
than 1

m

∑n
i=1

pi, which is the average load on the m machines. Moreover,
obviously OPT (σ) ≥ max1≤i≤n pi. We conclude that List(σ) ≤ OPT (σ) +
(1− 1/m)OPT (σ) = (2− 1/m)OPT (σ).
Graham [5] also showed that the above analysis is tight. List does not achieve

a competitive ratio smaller than 2− 1/m. Consider the specific job sequence σ
consisting of m(m− 1) jobs of processing time 1 followed by a large job having
a processing time of m. List distributes the small jobs evenly among the m

machines so that the final job cause a makespan of m − 1 + m = 2m − 1.
On the other hand the optimum makespan is m because an optimal schedule
will reserve one machine for the large job and distribute the small jobs evenly
among the remaining m − 1 machines. Figure 3 shows the schedules by List
and OPT.
The above nemesis job sequence motivated Graham to formulate a second

algorithm. Obviously List ’s performance can degrade if large jobs arrive at
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Figure 3: The worst-case performance of List. Online schedule (left) and an
optimal schedule (right).

the end of the input sequence. Why not sort the jobs initially? Graham [6]
proposed a Sorted List algorithm that first sorts the jobs in order of non-
increasing processing time and then applies List scheduling. Of course Sorted
List is not an online algorithm because the entire job sequence must be known
and rearranged in advance.

Graham [6] proved that Sorted List achieves a worst-case approximation
ratio of 4/3− 1/(3m). The analysis is more involved than that of List but the
global idea can be described in one paragraph: Consider an arbitrary sorted job
sequence σ and assume without loss of generality that the last job of σ defines
Sorted List ’s makespan. If this is not the case, then one can consider the prefix
sequence σ′ such that the last job of σ′ defines Sorted List ’s makespan for σ′ and
σ. It suffices to consider two cases. (1) If the last job Jn of σ has a processing
time pn of at most OPT (σ)/3, then using the same arguments as above one
can establish a performance factor of 4/3 − 1/(3m). (2) If pn > OPT (σ)/3,
then all jobs of σ have a processing time greater than OPT (σ)/3. Hence in
an optimal schedule each machine can contain at most two jobs and n ≤ 2m.
Assume for simplicity n = 2m. One can show that there exists an optimal
schedule that pairs the largest with the smallest job, the second largest with
the second smallest job and so on. That is, the pairing on the m machines is
(J1, J2m), (J2, J2m−1), . . . , (Jm, Jm+1). If n = 2m − k, for some k ≥ 1, then
there is an optimal schedule that is identical to the latter pairing except that
J1, . . . , Jk are not combined with any other job. Sorted List produces a schedule
that is no worse than this optimal assignment, i.e., in this case the performance
ratio is equal to 1.

The above results led to a considerable body of further research. It was open
for quite some time if online algorithms for makespan minimization can attain
a competitive ratio smaller than 2−1/m. It turned out that this is indeed pos-
sible. Over the past 20 years the best competitiveness of deterministic online
strategies was narrowed down to [1.88, 1.9201]. More specifically, there exists a
deterministic online algorithm that is 1.9201-competitive, and no deterministic
online strategy can attain a competitive ratio smaller than 1.88. If job pre-
emption is allowed, i.e., the processing of a job may be stopped and resumed
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later, the best competitiveness drops to e/(e− 1) ≈ 1.58. The book chapter [7]
contains a good survey of results.

During the last few years researchers have explored settings where an on-
line algorithm is given extra information or ability to serve the job sequence.
For instance, on online algorithm might be able to migrate a limited number
of jobs or alternatively might know the total processing time of all jobs in
σ. In these scenarios significantly improved performance guarantees can be
achieved. Using limited job migration, the competitiveness reduces to approx-
imately 1.46. The recent manuscript [1] points to literature for these extended
problem settings. Nonetheless a major question is still unresolved. What is the
best competitive ratio that can be achieved by randomized online algorithms?
It is known that no randomized online strategy can attain a competitiveness
smaller than e/(e−1). However, despite considerable research interest, no ran-
domized online algorithm that provably beats deterministic ones, for general
m, has been devised so far.

Finally, as mentioned above, the design and analysis of online algorithms
has become a very active area of research. We refer the reader to two classical
books [3, 4] in this field.
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Continuous Optimization Stories

Sometimes mathematicians coin terms and define relations between them that
are “somewhat inconsistent”. Nonlinear programming is one such ill-defined
term, since linear programming is considered a special case of nonlinear pro-
gramming. Even someone not exceling in logic may find this strange. I there-
fore try to use continuous optimization instead of nonlinear programming, al-
though I am aware that combinatorial optimization can be viewed as nonlinear
programming but not necessarily as continuous optimization. Optimization
may, in fact, be in need of a new consistent nomenclature. The Mathemati-
cal Programming Society has already made a small step by renaming itself into
Mathematical Optimization Society in order to avoid confusions with computer
programming.
My original intention for the contents of this chapter was to highlight the

contributions to optimization of mathematicians that have some relation to
Berlin. Due to intensive discussions with potential authors, the section devel-
oped differently and now contains wonderful survey articles on a wide range
of exciting developments in continuous optimization. It begins with the his-
tory of the gradient method, discusses the origins of the KKT theorem, the
Nelder-Mead simplex algorithm, various aspects of subgradient techniques and
nonsmooth optimization, updating techniques, the influence of the Cold War
on the maximum principle, and the arrival of infinite-dimensional optimization.
As the ISMP 2012 takes place in Berlin, I feel obliged, however, to provide

at least some condensed information about mathematics and mathematicians
who contributed to optimization and spent some time in Berlin. (I also use
this opportunity to thank my wife for providing me with many of the details.
She wrote a book [1], directed at a non-mathematical readership, that covers
the history of all aspects of mathematics in Berlin.)
We have already encountered Gottfried Wilhelm Leibniz. Mathematics in

Berlin began with him. He initiated the foundation of the predecessor of what is
today called Berlin-Brandenburgische Akademie der Wissenschaften (BBAW).
The academy was officially opened in 1700 and has experienced many name
changes in its more than 300 years of existence. Leibniz was the first academy
president. Optimization would not exist without his development of calculus
(there were other founders as well) and, in particular, his notational inventions.
The integral sign is one of these.
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Pierre Louis Moreau de Maupertuis came to Berlin in 1740, stayed for 17
years and was also president of the academy. Maupertuis developed a “principle
of least action” that states that in all natural phenomena a quantity called
‘action’ tends to be minimized. His work was highly controversial, though.
Leonhard Euler is the star of mathematics of the 18th century. Born in 1707

in Basel, he accepted an offer from the academy in St. Petersburg in 1727 and
came to Berlin in 1741, he stayed until 1766 to return to St. Petersburg, where
he died in 1783. Most of his gigantic mathematical production was carried out
at the academy in Berlin.
Another giant of optimization, Joseph Louis Lagrange, whose name is en-

coded in many terms of our field, spent 20 of his most productive years in
Berlin. In 1766 he became Euler’s successor as the director of the mathemati-
cal class of the academy.
Carl Gustav Jacobi, a mathematical household name, whom we encountered

in this book in connection with the Hungarian method (Introduction to Discrete
Optimization Stories), was born in 1804 in Potsdam, was privately tutored
until the age of 12 and graduated at age 13. In 1821 he was allowed to start
studying at Berlin University, passed his teacher examination at the age of
19 and obtained his PhD and habilitation in 1825. He became professor in
Königsberg in 1826 and returned to Berlin in 1844 as a member of the academy.
He died in 1851 in Berlin.
Johann Peter Gustav Lejeune Dirichlet was mentioned in this book in the

discussion of the LLL algorithm (Introduction to Linear Programming Stories).
He was the first outstanding mathematician at Berlin University whose founda-
tion in 1810 was initiated by Wilhelm von Humboldt. This university carried
the name Friedrich-Wilhelms-Universität from 1828 to 1945 and was renamed
Humboldt-Universität in 1949, after the brothers Wilhelm and Alexander von
Humboldt. Dirichlet was born in Düren in 1805, came to Berlin in 1827 and
stayed until 1855 when he accepted an offer from Göttingen to succeed Gauss.
He died in 1859.
Karl Theodor Weierstraß (1815–1897), also written Weierstrass, was one

of the dominating figures of the 19th century mathematics in Berlin. He is
known to every mathematician for bringing highest standards of rigor to anal-
ysis (e.g., the (ǫ, δ)-definition of continuity); many theorems carry his name.
Every calculus student learns a result formulated by Weierstraß, namely, that
every continuous function from a compact space to the real numbers attains
its maximum and minimum. The Weierstraß Institut für Angewandte Analysis
und Stochastik is named after him. His grave is shown in Fig. 2.
My wife and I live close to Waldfriedhof Heerstraße, a beautiful cemetery

near the Olympic Stadium in Berlin. One day, my wife showed me the joint
grave of Hermann Minkowski (1864–1909) and his brother Oskar (1858–1931). I
was very astonished that the Minkowski brothers had an Ehrengrab (honorary
grave maintained by the city of Berlin), see Fig. 1. I knew that Minkowski
had studied in Berlin (under Weierstraß and Kummer) and had worked in
Königsberg, Zürich, and finally in Göttingen where he died. (Minkowski is
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Figure 1: Minkowski’s grave
( c© Iris Grötschel)

Figure 2: Weierstrass’ grave
( c© Iris Grötschel)

my academic great great grandfather.) Minkowski will forever be known as
the person who coined the name spacetime, but for optimizers his work on
convexity that arose via his studies of the geometry of numbers, an area he
created, is of particular importance. This work is excellently surveyed in [2]
and in chapter 0 (and several other chapters) of the handbook [3]. The idea
to edit this book on optimization history, in fact, arose when my wife and I
tried to find out more about Minkowski’s grave. One remark only: The city of
Berlin decided on March 22, 1994 to declare the graves of Karl Weierstraß and
Hermann Minkowski as honorary graves.

Martin Grötschel
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Any textbook on nonlinear optimization mentions that the gradient method is
due to Louis Augustin Cauchy, in his Compte Rendu à l’Académie des Sciences

of October 18, 18471 (needless to say, this reference takes a tiny place amongst
his fundamental works on analysis, complex functions, mechanics, etc. Just
have a look at http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_CAUCHY_1_
10: a paper every week).
Cauchy is motivated by astronomic calculations which, as everybody knows,

are normally very voluminous. To compute the orbit of a heavenly body, he
wants to solve not the differential equations, but the [algebraic] equations rep-

resenting the motion of this body, taking as unknowns the elements of the orbit

themselves. Then there are six such unknowns.2. Indeed, a motivation related
with operations research would have been extraordinary. Yet, it is interesting to
note that equation-solving has always formed the vast majority of optimization
problems, until not too long ago.
To solve a system of equations in those days, one ordinarily starts by reducing

them to a single one by successive eliminations, to eventually solve for good the

resulting equation, if possible. But it is important to observe that 1◦ in many

cases, the elimination cannot be performed in any way; 2◦ the resulting equation

is usually very complicated, even though the given equations are rather simple.3

Something else is wanted.
Thus consider a function

u = f(x, y, z, . . .)

1“Méthode générale pour la résolution des systèmes d’équations simultanées”
2non plus aux équations diffŕentielles, mais aux équations finies qui représentent le mou-

vement de cet astre, et en prenant pour inconnues les éléments mêmes de l’orbite. Alors les
inconnues sont au nombre de six.

3on commence ordinairement par les réduire à une seule, à l’aide d’éliminations successives,
sauf à résoudre définitivement, s’il se peut, l’équation résultante. Mais il importe d’observer,
1◦ que, dans un grand nombre de cas, l’élimination ne peut s’effectuer en aucune manière ;
2◦ que l’équation résultante est généralement très-compliquée, lors même que les équations
données sont assez simples.
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Augustin Louis Cauchy, 1789–1857 (Wikimedia, Cauchy Dibner-Collection
Smithsonian Inst.)

of several variables, which never becomes negative, and stays continuous. To

find the values of x, y, z, . . . satisfying the equation

u = 0 ,

it will suffice to let indefinitely decrease the function u, until it vanishes.4

Start from particular values x, y, z, . . . of the variables x, y, z; call u the cor-
responding value of u and

X = f ′x, Y = f ′y, Z = f ′z, . . .

the derivatives.5 Let α, β, γ, . . . be small increments given to the particular
values x, y, z, . . .; then there holds approximately

f(x + α, y + β, z + γ, · · · ) = u + Xα+Yβ + Zγ + · · · .

Taking θ > 0 and

α = −θX, β = −θY, γ = −θZ, . . . ,

we obtain approximately

f(x− θX, y − θY, z− θZ, . . .) = u− θ(X2 +Y2 + Z2 + · · · ) . (1)

4Pour trouver les valeurs de x, y, z, . . ., qui vérifieront l’équation u = 0, il suffira de faire
décrôıtre indéfiniment la fonction u, jusqu’à ce qu’elle s’évanouisse.

5Already in those times, one carefully distinguishes a function from a value of this func-
tion. Observe also that Cauchy cares about continuity but not differentiability . . .
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It is easy to conclude that the value Θ of u, given by the formula

Θ = f(x− θX, y − θY, z− θZ, . . .) (2)

will become smaller than u if θ is small enough. If, now, θ increases and if,

as we assumed, the function f(x, y, z, · · · ) is continuous, the value Θ of u will

decrease until it vanishes, or at least until it coincides with a minimal value,
given by the univariate equation6

Θ′
θ = 0 . (3)

One iteration of the gradient method is thus stated, with two variants: (2)
(Armijo-type line-search) or (3) (steepest descent). A third variant, valid when
u is already small, is defined by equating (1) to 0:

θ =
u

X2 +Y2 + Z2 + · · ·
.

Other remark: when good approximate values are already obtained, one may
switch to Newton’s method. Finally, for a system of simultaneous equations

u = 0, v = 0, w = 0, . . . ,

just apply the same idea to the single equation7

u
2 + v

2 + w
2 + · · · = 0 . (4)

Convergence is just sloppily mentioned: If the new value of u is not a minimum,

one can deduce, again proceeding in the same way, a third value still smaller;

and, so continuing, smaller and smaller values of u will be found, which will

converge to a minimal value of u. If our function u, assumed not to take

negative values, does take null values, these will always be obtained by the above

method, provided that the values x, y, z, . . . are suitably chosen.8

According to his last words, Cauchy does not seem to believe that the method
always finds a solution; yet, he also seems to hope it: see the excerpt of foot-
note 4. Anyway a simple picture reveals that the least-squares function in (4)

6Il est aisé d’en conclure que la valeur Θ de u déterminée par la formule (2), deviendra
inférieure à u, si θ est suffisamment petit. Si, maintenant, θ vient à crôıtre, et si, comme nous
l’avons supposé, la fonction f(x, y, z, . . .) est continue, la valeur Θ de u décrôıtra jusqu’à
ce qu’elle s’évanouisse, ou du moins jusqu’à ce qu’elle cöıncide avec une valeur minimum,
déterminée par l’équation à une seule inconnue (3).

7Here we have an additional proposal: least squares, which is some 50 years old. Inci-
dentally, its paternity provoked a dispute between Legendre and Gauss (who peremptorily
concluded: I did not imagine that Mr Legendre could feel so strongly about such a simple

idea; one should rather wonder that nobody had it 100 years earlier).
8Si la nouvelle valeur de u n’est pas un minimum, on pourra en déduire, en opérant

toujours de la même manière, une troisième valeur plus petite encore ; et, en continuant ainsi,
on trouvera successivement des valeurs de u[sic] de plus en plus petites, qui convergeront vers
une valeur minimum de u[sic]. Si la fonction u, qui est supposée ne point admettre de valeurs
négatives, offre des valeurs nulles, elles pourront toujours être déterminées par la méthode
précédente, pouru que l’on choisisse convenablement les valeurs de x, y, z, . . ..
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may display positive local minima, playing the role of “parasitic” solutions.
On the other hand, he seems convinced that, being decreasing, the sequence of
u-values has to converge to a (local) minimum, or at least a stationary point.
Thus, the above excerpt is fairly interesting, coming from a mathematician

among the most rigorous of his century. Admittedly, Cauchy has not given
deep thought to the problem: I’ll restrict myself here to outlining the principles

underlying [my method ], with the intention to come again over the same subject,

in a paper to follow.9 However, the “paper to follow” does not seem to exist.
Let us bet that he has underestimated the difficulty and eventually not been
able to crack this tough nut. In fact, we are now aware that some form of
uniformity is required from the objective’s continuity – not mentioning the
choice of a “small enough” θ, which is also delicate.
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1 Prologue

This chapter is mainly about William Karush and his role in the Karush-Kuhn-
Tucker theorem of nonlinear programming. It tells the story of fundamental
optimization results that he obtained in his master’s thesis: results that he
neither published nor advertised and that were later independently rediscov-
ered and published by Harold W. Kuhn and Albert W. Tucker. The principal
result – which concerns necessary conditions of optimality in the problem of
minimizing a function of several variables constrained by inequalities – first
became known as the Kuhn–Tucker theorem. Years later, when awareness of
Karush’s pioneering work spread, his name was adjoined to the name of the
theorem where it remains to this day. Still, the recognition of Karush’s discov-
ery of this key result left two questions unanswered: why was the thesis not
published? and why did he remain silent on the priority issue? After learning
of the thesis work, Harold Kuhn wrote to Karush stating his intention to set
the record straight on the matter of priority, and he did so soon thereafter. In
his letter to Karush, Kuhn posed these two questions, and Karush answered
them in his reply. These two letters are quoted below.

Although there had long been optimization problems calling for the maxi-
mization or minimization of functions of several variables subject to constraints,
it took the advent of linear programming to inspire the name “nonlinear pro-
gramming.” This term was first used as the title of a paper [30] by Harold
W. Kuhn and Albert W. Tucker. Appearing in 1951, the paper contained
many results, but interest focused on the one declaring conditions that must
be satisfied by a solution of the

Maximum Problem. To find an x
0 that maximizes g(x) con-

strained by Fx ≥ 0, x ≥ 0.
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In this formulation of the problem, Fx denotes a mapping from R
n to R

m

with component functions fi, i = 1, . . . ,m. The function g and the fi were all
assumed to be differentiable.
A further assumption was immediately imposed. Kuhn and Tucker called

it the constraint qualification. The precise statement of the Kuhn-Tucker con-
straint qualification is somewhat complicated, but it’s purpose is easy enough
to understand. It is used in assuring the existence of the nonnegative Lagrange
multipliers, u1, . . . , um, which appear in the theorem statement. A simpler con-
straint qualification is the condition that the gradients of the active constraints
at x0 be linearly independent. Citing a paper of Fritz John [16] at this point,
Kuhn and Tucker then went ahead and constructed the Lagrangian function

φ(x, u) = g(x) + u
′
Fx

in which u denotes a vector of nonnegative Lagrange multipliers. With these
assumptions in place, and the symbols φ0

x and φ
0

u denoting the partial gradients
of φ at (x0

, u
0) with respect to x and u, their result was

Theorem 1. In order that x
0 be a solution of the maximum problem, it is

necessary that x0 and some u
0 satisfy conditions

φ
0

x ≤ 0, φ
0′
x x

0 = 0, x
0
≥ 0 (1)

φ
0

u ≥ 0, φ
0′
u u

0 = 0, u
0
≥ 0 (2)

for φ(x, u) = g(x) + u
′
Fx.

The equations and inequalities stated in (1) and (2) became known as the
Kuhn–Tucker conditions for the stated maximum problem while the result itself
became known as the Kuhn–Tucker theorem.
Unbeknownst to Kuhn and Tucker, their theorem and several others in their

paper had been establlshed in 1939 by William Karush in his master’s degree
thesis [18]. At that time, Karush was a graduate student at the University of
Chicago mathematics department which was noted for its preoccupation with
a topic called the calculus of variations.
The fundamental problem in the calculus of variations is to find a function

ϕ(x) belonging to an admissible set of functions that minimizes the integral

I =

∫ X̄

X

F
(

x, ϕ(x), ϕ′(x)
)

dx (3)

where X, Y, X̄, Ȳ with X < X̄ are given real numbers, such that ϕ(X) = Y ,
ϕ(X̄) = Ȳ , and F (x, y, z) is a given function of three independent variables.
With each admissible function ϕ(x) there is an associated real number I. Ac-
cordingly, when ϕ is regarded as an independent variable, I is a functional: a
numerical-valued function of ϕ. (See Pars [34].)

Much of the research in the calculus of variations concentrated on necessary
and sufficient conditions for relative minima in (specializations of) these prob-
lems. Karush’s master’s thesis dealt with a truly finite-dimensional version
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of this class of problems. He called the work “Minima of Functions of Sev-
eral Variables with Inequalities as Side Conditions.” In stating the problems
he proposed to analyze, Karush first made reference to those of the familiar
Lagrangian type where a point x = (x1, x2, . . . , xn) satisying a system of equa-
tions

gα(x) = 0 (α = 1, 2, . . . ,m)

is to be found so as to minimize a given function f(x1, x2, . . . , xn). Say-
ing that the necessary and sufficient conditions for a relative minimum in
this equality-constrained minimization problem had already been satisfacto-
rily treated, Karush then announced

This paper proposes to take up the corresponding problem in the
class of points x satisfying the inequalities

gα(x) ≥ 0 (α = 1, 2, . . . ,m)

where m may be less than, equal to, or greater than n.

Karush’s minimization problem is clearly one of nonlinear programming in the
sense of Kuhn and Tucker. It takes only a little bit of elementary manipulation
and notation changing to cast the Kuhn–Tucker maximization problem in the
form of a minimization problem studied by Karush. One slight (and insignif-
icant) difference between the two papers is that Karush seems to assume his
functions are of class C1 (or C2 for second-order results).
The precursor of (Kuhn and Tucker’s) Theorem 1 appears in Karush’s thesis

as Theorem 3.2. Both the Kuhn–Tucker paper and the Karush paper point
out the importance of the gradients of the active constraints (those satisfied
as equations) at a relative maximum or minimum, respectively. Both papers
make use of the notion of admissible arcs, both papers make use of linear
inequality theory (even Farkas’s lemma), and both papers address the need for
a constraint qualification. Where the papers differ is that the Kuhn–Tucker
paper was published and Karush’s was not submitted for publication. Instead,
it remained almost totally unknown for close to 30 years. This article tells
more of the story about William Karush, his master’s thesis, and its place in
optimization.

2 Introduction

For roughly four decades, the result originally known as the Kuhn–Tucker (KT)
Theorem has been called the Karush-Kuhn–Tucker (KKT) Theorem in recog-
nition of the fact that in 1939 William Karush had produced the same result in
his Master of Science degree thesis [18] at the mathematics department of the
University of Chicago.1 The Kuhn–Tucker paper [30] containing the epony-
mous theorem was published in 1951 having been presented the preceding year

1Actually, both the thesis and the KT paper contain separate theorems on first-order and
second-order necessary conditions and sufficient conditions for local optimality.
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at the Symposium on Mathematical Statistics and Probability held at the Uni-
versity of California, Berkeley.
Nearly every textbook covering nonlinear programming relates this fact but

gives no more information than what is stated above. There are, however,
publications that give a much more specific account of this history. For in-
stance, Harold Kuhn (coauthor of the Kuhn–Tucker paper [30]) has written
at least three others [27], [28], and [29] in which he “sets the record straight”
about the earlier work by Karush in his master’s thesis. In these three articles2

Kuhn relates that he first became aware of Karush’s earlier work from Akira
Takayama’s 1974 monograph Mathematical Economics [36]. Kuhn has much
more to say than just this. He gives a brief overview of publications prior
to 1974 that cite the work of Karush. These include Pennisi [35], El-Hodiri
[10], [11], and Fiacco and McCormick [13]. Both Takayama [36, pages 61 and
101], [37, pages 65 and 105], and Kuhn [27, pp. 10–11] present the key points
regarding literature that very well could have influenced Karush.
Moreover, it is worth reiterating a point already plain by Kuhn: namely, that

Karush’s MS thesis also contains what we know today as Fritz John’s Theorem,
a result that appeared in a 1948 paper [16] later cited by Kuhn and Tucker [30]
but not actually declared there because it was inserted when the paper was
in galley proof. John makes no mention of Karush’s work even though his
research might be viewed as close to the mathematical school of thought from
which Karush emerged. Kuhn [27, p. 15] tells the interesting story of John’s
experience in the process of attempting to publish his paper. The three cited
papers by Kuhn are very informative, yet somewhat limited in scope. There
is more to say on how Takayama became aware of Karush’s Master of Science
thesis – and about the thesis itself.
I am grateful to Professor Kuhn for introducing me to the writings of Pro-

fessor Tinne Hoff Kjeldsen, a professor of mathematics and historian of math-
ematical science at the University of Roskilde in Roskilde, Denmark. I wrote
to her at once. She soon replied and kindly sent me a batch of her papers [23],
[24], [25], and [26] on this subject. For most people, the most easily found of
these papers is certain to be the rewarding journal article [24].

Professor Kjeldsen provided something else of enormous interest. In Febru-
ary 1975, as Harold Kuhn was preparing for his first historic effort to set the
priority record straight, he wrote to William Karush announcing this intention.
Copies of their correspondence were given to Kjeldsen when she visited Kuhn
at Princeton to gather information for her doctoral dissertation. In 2012, when
I came along requesting copies of this correspondence, they were no longer in
Kuhn’s possession, having been discarded in the process of vacating his math-
ematics department office at Princeton. Fortunately, Professor Kjeldsen had
copies of this valuable correspondence and graciously shared them with me.
On March 7, 2012 I returned them (electronically) to Professor Kuhn. Among

2Except for their typesetting method and their Introductions, the first two of these articles
are very much alike; the third is more autobiographical in nature. Here, for reasons of brevity
and historical precedence, the earliest one [27] will be used for most citations.
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other things, this correspondence addresses two questions that virtually all ob-
servers would ask: why didn’t Karush publish his MS thesis and why didn’t
he make its existence known after the appearance of the Kuhn–Tucker paper,
some 11 or 12 years later? Kuhn covers the main facts on this story in [27].
Karush’s answers to these and other questions from Kuhn are revealed below.3

What else does this chapter have to offer? In light of the widely known
and available literature on nonlinear programming and the herein repeatedly
cited historical papers by Kuhn and Kjeldsen, it seems unnecessary to spell
out all the Karush-Kuhn–Tucker theorems with an analysis of whose paper
had what, especially because Kuhn has so usefully reproduced the similar con-
tent of Karush’s thesis in [27]. And because the published Kuhn–Tucker pa-
per can be found in many university libraries as well as online at https://

projecteuclid.org, I have chosen to concentrate on a few other aspects of
Karush’s MS thesis. To obtain a proper appreciation of this work, one must
consider it as a product of the milieu in which it was created, namely the re-
search of the University of Chicago mathematicians devoted to the calculus of
variations. Some of this has been done in [36], [27], and [24]. In truth, the
exposition given here is much briefer than it could be.

Quite a lot has been written about the careers of Harold W. Kuhn and
Albert W. Tucker (see, for example, [24, p. 342], [2, Chapters 29 and 6], and
a multitude of web sites including [38]), what then remains to be given is
a bio-sketch of William Karush. Even this can be found on the web, but
primarily in thumbnail form. The bio-sketch of Karush in this paper includes
his image (which cannot ordinarily be seen elsewhere). As a bonus, the paper
also exhibits an image of Fritz John (one can be found on the web). While
both the biographical information and the concluding reference list provided
here are necessarily condensed, they may prove to be the main contributions of
this article and provide an incentive to explore this subject in greater depth.

3 On Karush’s Master’s Thesis

Dated December, 1939, the body of William Karush’s master’s thesis is a 25-
page document centered between two pages of front matter (the title page and
table of contents) and two pages of back matter (the list of references and
a half-page vita). In the vita Karush provides information on his date and
place of birth, his prior education, and the (sur)names of ten faculty members
under whom he studied at the University of Chicago. He acknowledges them all
for “the helpful part they played in his mathematical development” and then
singles out Professor Lawrence M. Graves, thanking him “for his guidance as
a teacher and in the writing of this dissertation.” The work is composed of six
sections, of which the first is an introduction to the class of problems under
investigation, and the second presents preliminary results on systems of linear
inequalities (about eight pages in all). The remaining four sections take up

3Kjeldsen [24, pp. 337–338] quotes a portion of this correspondence as well.
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necessary conditions and sufficient conditions involving only first derivatives
and then the same issues involving second derivatives.
Karush’s results are given in the Appendix of Kuhn’s paper [27]. Not given,

however, is Karush’s list of references. The following is a replica thereof.

LIST OF REFERENCES

1. Bliss, G. A., Normality and Abnormality in the Calculus of

Variations, Transactions of the American Mathematical

Society, vol. 43 (1938), pp. 365-376.

2. Dines, L. L., Systems of Linear Inequalities, Annals of

Mathematics, vol. 23 (1922), p. 212.

3. Dines and McCoy, On Linear Inequalities, Transactions of the

Royal Society of Canada, vol. 27 (1933), pp. 37-70.

4. Farkas, J. I., Theorie der einfachen Ungleichungen, Crelle,

vol. 124 (1902), p. 1.

Stylistic inconsistency aside, three aspects of this list are peculiar. The first
is that it contains only one publication from the calculus of variations. To a
slight extent, this topic will be discussed in another section of this article. The
second is that W.B. Carver, not L.L. Dines, is the author of the paper listed as
Reference 2. The third (very minor) oddity is the insertion of a middle initial on
the name of Farkas. His forename is given as “Julius” on the original German
language paper, though in his native Hungary it would have been “Gyorgy.”
And speaking of names, “Crelle” is a common nickname used for “Journal für
die reine und angewandte Mathematik” which in 1826 was founded and edited
by August Leopold Crelle in Berlin.
As stated above, the questions of why the thesis was not published and why

its author remained silent on the subject after the publication of the Kuhn–
Tucker paper were discussed in very cordial correspondence between Harold
Kuhn and William Karush. I now take the liberty of quoting from some (almost
the entirety) of it. On February 4, 1975 Kuhn wrote:

In March I am talking at an AMS Symposium on “Nonlinear Pro-
gramming - A Historical View.” Last summer I learned through
reading Takayama’s Mathematical Economics of your 1939 Mas-
ter’s Thesis and have obtained a copy. First, let me say that you
have clear priority on the results known as the Kuhn–Tucker con-
ditions (including the constraint qualification). I intend to set the
record as straight as I can in my talk. You could help me if you
would be kind enough to give me whatever details you remember
regarding the writing of your thesis. Of special interest to me would
be answers to the following questions: Who was your advisor (or
other faculty influences)? Who set the problem? Why was the the-
sis never published? (One possibility would be to attempt (at least
partial) publication as an appendix to my survey.)

Documenta Mathematica · Extra Volume ISMP (2012) 255–269



William Karush and the KKT Theorem 261

Dick Cottle, who organized the session, has been told of my plans
to rewrite history and says “you must be a saint” not to complain
about the absence of recognition. Al Tucker remembers you from
RAND, wonders why you never called this to his attention and
sends his best regards,

In his friendly reply, dated February 10, 1975, Karush said:

Thank you for your most gracious letter. I appreciate your thought-
fulness in wanting to draw attention to my early work. If you ask
why I did not bring up the matter of priority before, perhaps the
answer lies in what is now happening – I am not only going to get
credit for my work, but I am going to crowned a “saint”!

I wrote my master’s thesis at the University of Chicago under
Lawrence M. Graves, who also proposed the problem. Those were
the final years of the school of classical calculus of variations at
the University and I suppose that the problem was given to me
as a finite-dimensional version of research going on in the calculus
of variations with inequalities as side conditions. Gilbert A. Bliss
was chairman of the department, and Magnus R. Hestenes was a
young member of the faculty; both of these men influenced me, and
in fact I wrote my doctoral thesis later under Hestenes on isoperi-
metric problems and index theorems in the calculus of variations
(this work was published after the war). The thought of publication
never occurred to me at the time I wrote the master’s thesis. I was
a struggling graduate student trying to meet the requirements for
going on to my Ph.D. and Graves never brought up the question of
publication. I imagine nobody at that time anticipated the future
interest in the problem,

That does not answer the question of why I did not point to my
work in later years when nonlinear programming took hold and
flourished. The thought of doing this did occur to me from time to
time, but I felt rather diffident about that early work and I don’t
think I have a strong necessity to be “recognized”. In any case, the
master’s thesis lay buried until a few years ago when Hestenes urged
me to look at it again to see if it shouldn’t receive its proper place
in history – he expressed an interest in setting the record straight in
some publication of his own. So I did look at the thesis again, and
I looked again at your work with Tucker. I concluded that you two
had exploited and developed the subject so much further than I,
that there was no justification for announcing to the world, “Look
what I did, first.” I expressed my feelings to Magnus Hestenes in
the past year and that closed the matter as far as I was concerned.
I will tell Magnus of your AMS Symposium talk and I am sure he
will be glad of it.
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This refreshing exchange of letters would seem to represent the last word on
the subject. In the period from 1939 to 1942: Karush was, as he testified, busy
working on a doctoral thesis and WWII broke out. It has been asserted that
publication was curtailed during the war due to a shortage of paper. In any case,
[18] was just a master’s thesis, part of the degree requirements, and was a finite-
dimensional version of results already in print. As Kjeldsen’s contextualized
historical analysis [24] of the matter emphasizes, it was a little ahead of its
time, particularly of the post-WWII period.

There remains the question: How did Takayama learn of Karush’s work?
Takayama’s book [36], and subsequently Kuhn’s papers [27], [28], and [29]
suggest how this happened. Takayama heard about it from Mohamed A. El-
Hodiri [12] who (in 1963) had found a reference to [18] in a paper by Louis
L. Pennisi [35]. El-Hodiri related this information to Leo Hurwicz among others
and incorporated the Karush/John/Kuhn–Tucker results into his own writings
[10], [11]. Strangely missing from the literature of the 1960s is a reference to
Karush’s MS thesis (and the KT paper) in the book [14] by Magnus Hestenes.
Nine years later, Hestenes’s book [15] gave Karush his due.

4 The Chicago School

William Karush began his undergraduate education in Chicago at Central
Y.M.C.A. College.4 He spent two years there after which he transferred to
the University of Chicago, receiving the Bachelor of Science degree there in
June, 1938. His graduate studies began there in October that same year. The
mathematics department at the University of Chicago was known as a bastion
of the study of the calculus of variations. The history of the department and
this powerful tradition have been chronicled in numerous articles, many avail-
able online. For our purposes, the works of Kuhn [27] and Kjeldsen [24] are
more than adequate starting points, relating directly as they do to our subject.
Kjeldsen’s article in particular goes into greater detail about the history and
reputation of the department. She reports how it was thought (even by some
Chicago mathematicians) to be exceptionally narrow with its concentration on
the calculus of variations.

Nevertheless, the Chicago mathematics department maintained a grand her-
itage. It is instructive (one might say fruitful) to trace a portion of the math-
ematical tree that leads to William Karush’s master’s thesis. As stated above,
the problem was set Lawrence M. Graves, and the work was carried out un-
der his supervision. Graves’s Ph.D. thesis advisor was Gilbert A. Bliss who
was Chairman of the mathematics department at the time. Bliss was a pow-
erful figure in the study of calculus of variations. He supervised the Ph.D.
theses of many other mathematicians who are well known in mathematical
programming circles today. They include, Lloyd Dines, Magnus Hestenes, Al-
ston Householder, Edward McShane, and Frederick Valentine (who was advised

4In 1945, this institution became Roosevelt University.

Documenta Mathematica · Extra Volume ISMP (2012) 255–269



William Karush and the KKT Theorem 263

by Graves in addition to Bliss). Bliss’s Ph.D. thesis was supervised by Oskar
Bolza whose Ph.D. was obtained in Göttingen under the supervision of C. Fe-
lix Klein. Three more such steps lead us from Klein to Julius Plücker and
Rudolf Lipschitz (jointly) to Christian Ludwig Gerling to Carl Friedrich Gauß.
This impressive lineage can be reconstructed using the Mathematics Genealogy
Project [33].
Returning now to the master’s thesis of Karush, it is important to note

that the results have been described by Takayama [36, pages 61] as a finite-
dimensional versions of counterparts from Valentine’s doctoral dissertation [40]
completed in 1937. Indeed, even Karush (in his previously quoted letter to
Kuhn) said, “I suppose that the problem was given to me as a finite-dimensional
version of research going on in the calculus of variations with inequalities as
side conditions.” Pennisi was, it seems, the first to cite Karush’s thesis, albeit
briefly. In [35, section 3] which is called “The problem with a finite number of
variables”, Pennisi asserts

For the normal case, which is the only one we consider, our results
are more general than those of Karush.

Pennisi refers to Valentine’s Ph.D. thesis [40], but does not speak of [18] as
a finite-dimensional version of it, Nonetheless, it is interesting to note that
Valentine, Karush, and Pennisi were all supervised by Graves at the University
of Chicago.
The title of Valentine’s doctoral dissertation “The Problem of Lagrange with

Differential Inequalities as Added Side Conditions” uses some rather common
terminology of the time. Many research papers focused on “The Problem of
Lagrange.” Another commonly treated subject was “The Problem of Bolza.”
The phrase “added side conditions” is how these contemporary mathematicians
spoke of what we call “constraints.” This kind of terminology is found in the
title of Fritz John’s paper as well.
More broadly the introduction of inequalities as “side conditions” had been

going on for some time at the University of Chicago and elsewhere, and not just
by Fritz John. In the calculus of variations literature, one finds inequalities as
side conditions in Bolza’s 1913 paper [7]. Moreover, as noted by Kuhn [27], the
type of modified Lagrangian function that we associate with Fritz John had
been used by Bliss [5] many years earlier. In fact, Bliss himself used it well
before 1938, for example, in the notes for his lectures [3] given in the Summer
Quarter of 1925. Before that, Courant and Hilbert [9, p. 143] used this type of
Lagrangian function and commented that if the multiplier associated with the
minimand (objective function) is nonzero, then the conventional Lagrangian
function can be recovered.

5 A Biographical Sketch of William Karush

William Karush was born in Chicago, Illinois on March 1, 1917. His parents
Sam and Tillie (formerly Shmuel and Tybel) were fairly recent immigrants,
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William Karush, circa 1987 Fritz John at NYU, circa 1987

Harold Kuhn and Albert Tucker, 1980
at von Neumann Prize presentation

(Printed with permission of Larry Karush; NYU; Harold Kuhn and Alan Tucker.)

having come to the United States from Bialystok which was then under Russian
control. (It is now in Poland.) As a child, William was known as “Willie;”
his older brother Fred was called “Freddie” [39]. They eventually had two
younger siblings, Jack and Esther. Of the four, only Esther is still living. Willie
outgrew this diminutive name and became known as “Will.” He attended
public schools in Chicago, graduating from Murray F. Tuley High School in
June, 1934. From that point on, his Bachelor of Science, Master of Science,
and Doctor of Philosophy were all earned at the University of Chicago in 1938,
1939, and 1942, respectively [18].

Based on an entry in the 17th Edition of American Men & Women of Science

[1, p. 215], the table below gives a summary of the positions held by William
Karush. The table does not make explicit the fact that during World War
II, Karush worked on the Manhattan Project which culminated in the atomic
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Table 1: Employment Chronology of William Karush [1]

Year Position Employer

1942–43 Mathematician Geographical Laboratory, Carnegie Inst. of
Washington

1943–45 Physicist Metallurgical Laboratory, University of
Chicago

1945–56 Instructor to Associate
Professor

Mathematics Deptartment, University of
Chicago

1956–57 Member, Senior Staff Ramo-Wooldridge Corporation
1958–62 Sr. Operations Research

Scientist
System Development Corporation

1962–67 Principal Scientist System Development Corporation
1967–87 Professor of Mathematics California State University, Northridge
1987–97 Emeritus Professor of

Mathematics
California State University, Northridge

Concurrent Positions

1949–52 Mathematician Inst. Numerical Anal., Nat. Bur. Standards,
UCLA

1953 Member, Technical Staff Research & Development Labs., Hughes
Aircraft

1954–55 Member, Technical Staff Ramo-Wooldridge Corporation

1955–56 Ford Faculty Fellow University of California, Los Angeles

bombs that the United States used on Hiroshima and Nagasaki, Japan. As it
happens, though, William Karush was one of 155 scientists of the Manhattan
Project of Oak Ridge, Tennessee who in 1945 put their names to the so-called
Szilárd Petition which was drafted by physicist Léo Szilárd “and asked Presi-
dent Harry S. Truman to consider an observed demonstration of the power of
the atomic bomb first, before using it against people” [41]. The petition never
reached Truman. In later years, Will Karush became an outspoken peace advo-
cate [32]. The portrait of him presented here shows Karush wearing a “Beyond
War” pin on his shirt collar.

In general, William Karush listed his research interests as belonging to oper-
ations research, calculus of variations, and applied mathematics. His published
works in operations research include papers in mathematical programming,
queueing, and dynamic programming. He is also known for having edited two
different dictionaries of mathematics [20], [22].

As is evident from the table above, Karush had a varied career: part of it
in industry, and a somewhat larger part in academia. At the University of
Chicago (1945–56) he rose from instructor to associate professor. He took a
leave of absence in southern California and never returned to the University of
Chicago. Eleven years later, he joined the faculty of California State University
(at the time called “San Fernando Valley College”) as a full professor where his
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duties involved the teaching of undergraduate-level mathematics. He taught
there until 1987 at which time he retired and became an emeritus professor.

Will Karush and his wife, Rebecca, were close friends of Richard E. Bellman
of dynamic programming fame. For a number of years, Rebecca was a technical
typist for Bellman. Will and Rebecca had two children, Larry and Barbara,
both of whom live in California. Larry is a musician (see [17]). Barbara is a
retired school teacher. In January 1991, Will and Rebecca took a short vacation
in Palm Springs, California. One evening after dinner, Rebecca was struck by
a car and fatally injured. Will Karush lived until February 22, 1997, one week
before his 80th birthday. He died of complications from surgery.
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In the mid-1960s, two English statisticians working at the National Vegetable
Research Station invented the Nelder–Mead “simplex” direct search method.
The method emerged at a propitious time, when there was great and grow-
ing interest in computer solution of complex nonlinear real-world optimization
problems. Because obtaining first derivatives of the function f to be optimized
was frequently impossible, the strong preference of most practitioners was for
a “direct search” method that required only the values of f ; the new Nelder–
Mead method fit the bill perfectly. Since then, the Nelder–Mead method has
consistently been one of the most used and cited methods for unconstrained
optimization.
We are fortunate indeed that the late John Nelder1 has left us a detailed

picture of the method’s inspiration and development [11, 14]. For Nelder, the
starting point was a 1963 conference talk by William Spendley of Imperial
Chemical Industries about a “simplex” method recently proposed by Spend-
ley, Hext, and Himsworth for response surface exploration [15]. Despite its
name, this method is not related to George Dantzig’s simplex method for lin-
ear programming, which dates from 1947. Nonetheless, the name is entirely
appropriate because the Spendley, Hext, and Himsworth method is defined by
a simplex; the method constructs a pattern of n + 1 points in dimension n,
which moves across the surface to be explored, sometimes changing size, but
always retaining the same shape.
Inspired by Spendley’s talk, Nelder had what he describes as “one useful new

idea”: while defining each iteration via a simplex, add the crucial ingredient
that the shape of the simplex should “adapt itself to the local landscape” [12].
During a sequence of lively discussions with his colleague Roger Mead, where
“each of us [was] able to try out the ideas of the previous evening on the other
the following morning”, they developed a method in which the simplex could
“elongate itself to move down long gentle slopes”, or “contract itself on to the
final minimum” [11]. And, as they say, the rest is history.

18 October 1924 – 7 August 2010.
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The 1965 Nelder–Mead paper [12] appeared in the Computer Journal, a pres-
tigious publication of the British Computer Society. Implementations and nu-
merical testing followed almost immediately in which the Nelder–Mead method
performed well compared to existing algorithms. In addition, one should not
underestimate the degree to which the Nelder–Mead method appealed to prac-
titioners because its moves are easy to describe. The Nelder–Mead simplex
can change in five different ways during an iteration, as illustrated here in two
dimensions. Except in the case of a shrink, the worst vertex of the simplex at
iteration k (the point p3 in the figure) is replaced at iteration k + 1 by one of
the reflection, expansion, or contraction points. Based on this picture, users
felt (and feel) that they understand what the method is doing. As Nelder said
while trying to explain the method’s popularity [11], “. . . the underlying ideas
are extremely simple – you do not have to know what a Hessian matrix is to
understand them”.

Nelder’s recollection of events [11] following publication of the Nelder–Mead
paper is that some “professional optimizers” were “surprised” because they
“had convinced themselves that direct search methods . . . were basically un-
promising”. Nelder notes with relish that “our address (National Vegetable
Research Station) also caused surprise in one famous US laboratory,2 whose
staff clearly doubted if turnipbashers could be numerate”.

The Nelder–Mead paper has been cited thousands of times, and qualified
by the late 1970s as a “Science Citation Classic”. The Nelder–Mead method
soon became so much more popular than other simplex-based methods that
it began to be called “the” simplex method, in the context of unconstrained
optimization.3

The story of the subsequent position of the Nelder–Mead method in main-
stream optimization clearly illustrates a sea change, sometimes called “math-

2To the present author’s knowledge, this laboratory has never been identified.
3Because the LP simplex method is much better known, the Nelder–Mead method is

sometimes lightheartedly called “the other simplex method”.
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ematization”, that has taken place since the 1960s and early 1970s. A 1972
survey paper by Swann [16, page 28] concludes by saying

Although the methods described above have been developed heuris-
tically and no proofs of convergence have been derived for them, in
practice they have generally proved to be robust and reliable . . .

The lack of theoretical foundations and motivation would almost certainly be
regarded as unacceptable in an optimization journal today.
As optimization became more mathematical, by the late 1970s textbooks

tended to dismiss the Nelder–Mead method (and other direct search methods)
as “ad hoc” or “heuristic”. Of course there were a small number of scholarly
works about the Nelder–Mead method (see the references in [20, 6]). Among
these, the analysis of [4] is of particular interest.
Of equal or (to some) greater concern, the Nelder–Mead method was well

known to experience practical difficulties ranging from stagnation to failure.
As a result, even in its early years papers were published that described how
the Nelder–Mead method could be modified so that it would work well on a
particular problem.
Although not center stage in mainstream optimization, direct search methods

other than Nelder–Mead were being studied and implemented, especially in
China and the Soviet Union, but the associated work was not well known
in the West. (Several references to these papers are given in [20, 6].) This
situation changed significantly in 1989, when Virginia Torczon, a PhD student
at Rice University advised by John Dennis, published a thesis [17] that not
only proposed a direct search method (“multidirectional search”), but also
provided a proof that, under various conditions, lim inf ‖∇f‖ → 0, where f is
the function to be optimized.
Once rigorous convergence results had been established for one method, the

floodgates opened, and since 1989 there has been a subsequent (and still on-
going) renaissance of interest in derivative-free methods. The level of intensity
has been especially high for research on model-based derivative-free methods,
which (unlike Nelder–Mead and other direct search methods) create evolving
simple models of f . A nice discussion of the different classes of derivative-free
methods can be found in [2].
How does the Nelder–Mead method fit into today’s landscape of derivative-

free methods? It is fair to describe Nelder–Mead as a far outlier, even a singu-
larity, in the emerging families of mathematically grounded direct search meth-
ods such as generalized pattern search and generating set search [2]. Hence the
position of the Nelder–Mead method in mainstream nonlinear optimization is
anomalous at best, and is subject to a wide range of attitudes.

From the positive end, several researchers have created modified Nelder–
Mead methods with the goal of retaining the favorable properties of the original
while avoiding its known deficiencies. See, for example, [19, 5, 18, 10, 13, 1].
Strategies for remedying the defects of the original Nelder–Mead include using
a “sufficient decrease” condition for acceptance of a new vertex (rather than
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simple decrease) and restarting when the current simplex becomes excessively
ill-conditioned.
Taking a negative view, some researchers believe that Nelder–Mead is passé

because modern derivative-free methods are consistently better:

The Nelder-Mead algorithm, however, can work very well and it is
expected to survive a very long time. Nevertheless, it is seriously
defective: it is almost never the best method and indeed it has no
general convergence results . . . we believe that ultimately more
sophisticated and successful methods will earn their rightful place
in practical implementations . . . [2, page 7].

Whichever view prevails in the long run, as of 2012 the Nelder–Mead method
is not fading away. As in its early days, it remains remarkably popular with
practitioners in a wide variety of applications. In late May 2012, Google Scholar
displayed more than 2,000 papers published in 2012 that referred to the Nelder–
Mead method, sometimes when combining Nelder–Mead with other algorithms.
In addition, certain theoretical questions remain open about the original

Nelder–Mead method. Why is it sometimes so effective (compared to other
direct search methods) in obtaining a rapid improvement in f? One failure
mode is known because Ken McKinnon produced a fascinating family of strictly
convex functions in two dimensions for which Nelder–Mead executes an infinite
sequence of repeated inside contractions and thereby fails to converge to the
minimizer from a specified starting configuration [9] – but are there other failure
modes? An initial exploration of the effects of dimensionality [3] provides some
insights, but there is more to be learned. Why, despite its apparent simplicity,
should the Nelder–Mead method be difficult to analyze mathematically? (See
[7, 8].) One can argue that, before the original method is retired, we should
achieve the maximum possible mathematical understanding of how and why it
works.
In an interview conducted in 2000, John Nelder said about the Nelder–Mead

method:

There are occasions where it has been spectacularly good . . . Math-
ematicians hate it because you can’t prove convergence; engineers
seem to love it because it often works.

And he is still right.
We end with a picture of John Nelder and George Dantzig, fathers of two dif-

ferent simplex methods, together at the 1997 SIAM annual meeting at Stanford
University:
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John Nelder and George Dantzig, Stanford University, 1997, photographed by
Margaret Wright
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1 Introduction

Convex nondifferentiable, also known as convex nonsmooth, optimization
(NDO) looks at problems where the functions involved are not continuously
differentiable. The gradient does not exist, implying that the function may
have kinks or corner points, and thus cannot be approximated locally by a
tangent hyperplane, or by a quadratic approximation. Directional derivatives
still exist because of the convexity property.
NDO problems are widespread, often resulting from reformulations of

smooth, or linear problems, that are formulated in a space with much smaller
number of variables than in the original problem. Examples of this are the
reformulation implicit in Dantzig-Wolfe decomposition or column generation
[4] and [5], which are equivalent by duality to Cheney’s cutting plane method
[20]. These methods do not work well if an aggregated formulation is used.
Shor’s subgradient method [35, 36] provided a superior alternative, leading to
a true Soviet revolution. His work was expanded both in theory and in prac-
tice by numerous authors. Held and Karp [17], unaware of the work of Shor,
developed a method for the traveling salesman problem that uses subgradient
optimization to compute a bound in a Lagrangean relaxation scheme. This
seminal contribution also led to a huge following; see for instance Fisher [11].

2 Basic definitions

The basic nondifferentiable optimization problem takes the form

[NDO] min
x∈Rn

f(x)

Documenta Mathematica · Extra Volume ISMP (2012) 277–290



278 Jean-Louis Goffin

where f is a real-valued, continuous, convex, and nondifferentiable function.
Sometimes there is a restriction that x ∈ X, a closed convex set, for which a
projection map is available:

x
∗(x) = ΠX(x) =

{

x̄ : ‖x̄− x‖ ≤ ‖y − x‖, ∀y ∈ X
}

;

and the problem becomes:

[NDOc] min
x∈X

f(x).

The convexity of f implies that it has at least one supporting hyperplane at
every point of Rn. The subdifferential is the set of such slopes, i.e.,

∂f(x) =
{

ξ : f(x) + 〈ξ, (y − x)〉 ≤ f(y), ∀y ∈ R
n
}

.

At differentiable points there is a unique supporting hyperplane whose slope is
the gradient. At nondifferentiable points, there is an infinite set of subgradients
and, hence, an infinite set of supporting hyperplanes.
The derivative in the direction d is given by:

f
′(x; d) = sup

{

ξ
T
d : ξ ∈ ∂f(x)

}

and the direction of steepest descent is given by d
∗:

min
‖d‖=1

f
′(x; d) = f

′(x; d∗);

it can be shown that if 0 /∈ ∂f(x) and d̂ is the element of minimum norm in
the subdifferential ∂f(x), then

d
∗ = −

d̂

‖d̂‖
.

The use of the steepest descent method with exact line searches is not recom-
mended as:
1. The steepest descent method with exact line searches may converge to a

nonoptimum point, see Wolfe [43];
2. In the frequent case where f(x) = maxi∈I{〈ai, x〉 + bi}, and the set I is

computed by an oracle or subroutine, an LP or an IP, the cardinality of I
may be exponential, and the subdifferential is given by:

∂f(x) =
{

∑

i∈I(x)

αiai :

∑

i∈I(x)

αi = 1, αi ≥ 0
}

,

I(x) =
{

i : 〈ai, x〉+ bi = f(x)
}

;

so that it is unrealistic to expect that the full subdifferential will be available.
In NDO, one assumes that the function f is given by an oracle which for

every value of x returns the value of f , i.e., f(x), and one arbitrary subgradient
ξ(x) ∈ ∂f(x).
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3 Subgradient methods: The Soviet revolution

Subgradient methods were developed by Shor [35] and [36] in the 1960’s.
To quote from a paper by B.T. Polyak [33] delivered at the Task Force on

nondifferentiable optimization organized at IIASA by Lemaréchal and Mifflin,
(this paper also includes an excellent bibliography of work done in the USSR
before 1977):

The subgradient method was developed in 1962 by N.Z. Shor and
used by him for solving large-scale transportation problems of linear
programming [35]. Altough published in a low-circulation publica-
tion, this pioneering work became widely known to experts in the
optimization area in the USSR. Also of great importance for the
propagation of nondifferentiable concepts were the reports by the
same author presented in a number of conferences in 1962–1966.

Publication of papers by Ermoliev [9], Polyak [30] and Ermoliev
and Shor [10] giving a precise statement of the method and its
convergence theorems may be regarded as the culmination of the
first stage in developing subgradient techniques.

All of their massive contributions to the field are well reported in their two
books Shor[40] and Polyak[32], as well as in the second book by Shor[41]; see
also the book by Nesterov [27].
So subgradient optimization simply moves the current iterate in the direction

of a scaled subgradient by a stepsize that is decided a prori:

xk+1 = ΠX

(

xk − tk
ξk

‖ξk‖

)

,

where xk is the current point, ξk ∈ ∂f(xk) is an arbitrary subgradient of f at
xk, tk is a stepsize and ΠX is the projection map on the constraint set X. It is
assumed that the projection map is easily computed, such as if X is a sphere,
a box or a simplex. A subgradient is not a direction of descent for the function
f but it is one for the distance to the optimal set.
Shor [35] states that a constant stepsize tk = t does not converge, as the

example of f(x) = |x| clearly shows. He also shows that the iterates eventually
reach an O(t) neighborhood of the optimum.
This follows from an equivalent proof, extended to the case of a constraint

set:

Theorem 3.1 (Nesterov [27]). Let f be Lipschitz continuous on B2(x
∗
, R) with

constant M and x0 ∈ B2(x
∗
, R). Then

f
∗
k − f

∗
≤ M

R
2 +

∑k
i=0

h
2

i

2
∑k

i=0
hi

. (1)
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In this statement f∗
k = minki=0

f(xk) and f
∗ = minx∈X f(x).

It follows that if the sequence tk is chosen as tk = Rǫ, ∀k = 1, . . . , N , and
N = ⌈

1

ǫ2 ⌉ then: f∗
N − f

∗
≤ MRǫ; see also Shor [40] pp. 23–24.

This means that subgradient optimization is an optimal algorithm, uniformly
in the dimension of the problem, see Nemirovski and Yudin [25]. Almost quot-
ing from Polyak again [33]:

Reference [35] has described the following way of stepsize regulation
resting upon this result, although it is not entirely formalized. A
certain ǫ is chosen and the computation proceeds with tk = Rǫ until
the values of f(xk) start to oscillate about a certain limit. After
this ǫ is halved and the process is repeated.

This leads readily to the divergent series of stepsizes, suggested by Polyak [30]
and Ermoliev[9], and studied in Shor and Ermoliev [10]:

∞
∑

k=0

tk = ∞, tk → 0 tk > 0.

Theorem 3.2. Theorem 3.1 shows that f∗
k converges to f

∗.

An often used stepsize is tk = R√
k+1

, which guarantees convergence in

O
∗( 1√

k+1
) steps [27], where O

∗ means the term of higher order, ignoring lower

order terms; the proof of this can be improved, see Nemirovski [26], who shows
that εN ≤ O(1)RM√

N
, where εN = f

∗
N − f

∗.

Unfortunately, the divergent stepsize rule can and is extremely slow. So the
question arose, as to whether geometric convergence can be obtained.

The answer is given in the following theorem, proved only in the uncon-
strained case:

Theorem 3.3 (Shor [40] pp. 30–31). Let f be a convex function defined on

R
n. Assume that for some ϕ satisfying 0 ≤ ϕ < π/2, and for all x ∈ R

n the

following inequality holds:

〈

ξ(x), x− x
∗(x)

〉

≥ cosϕ‖ξ(x)‖ ‖x− x
∗(x)‖, (2)

where ξ(x) ∈ ∂f(x), and x
∗(x) is the point in the set of minima that is nearest

to x. If for a given x0 we choose a stepsize t1 satisfying:

t1 ≥

{

‖x
∗(x0)− x0‖ cosϕ for π/4 ≤ ϕ < π/2

‖x
∗(x0)− x0‖/(2 cosϕ) for 0 ≤ ϕ < π/4,

define {tk}
∞
k=1

by

tk+1 = tkr(ϕ), k + 1, . . . ,∞

where

r(ϕ) =

{

sinϕ for π/4 ≤ ϕ < π/2
1/(2 cosϕ) for 0 ≤ ϕ < π/4

}

,
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and generate {xk}
∞
k=0

according to the formula

xk+1 = xk − tk+1

ξ(xk)

‖ξ(xk)‖
.

Then either ξ(x∗
k) = 0 for some k

∗, i.e., x
∗
k is a minimum point, or for all

k = 1, . . . ,∞ the following inequality holds

‖xk − x
∗(xk)‖

{

tk+1/ cosϕ for π/4 ≤ ϕ < π/2

2tk+1 cosϕ for 0 ≤ ϕ < π/4

This theorem was first proved in this form by Shor and Gamburd [38] and
by Shor [39]. An earlier version that used the asphericity σ of the level set of
f instead of cosϕ was proved by Shor [37]. This is a slightly weaker result as
cosϕ ≥ 1/σ.
In practice, a most widely used stepsize is tk = λ(f(xk)− f̄)/||ξk|| where λ ∈

(0, 2) and f̄ is expected to be a good estimate of the optimal value f(x∗). It can

be either the exact optimum f
∗, an overestimate f̂ > f

∗, or an underestimate
f̌ < f

∗. This was suggested and studied by Polyak, see for instance [32].
The most general theorem is due to Nemirovski [26], under the assumption

that f̄ = f
∗:

εN ≤ M‖x0 − x
∗
‖N

−1/2
.

Polyak [31], see also Shor [40] shows that if in addition to the Lipschitz condition
on f one has a lower bound on the variation of f such as

f(x) ≥ md(x,X∗)α

where d(x,X∗) is the distance to the optimal set X∗ and α = 1 or 2 then:

‖xk − x
∗
‖ ≤ q

k
‖x0 − x

∗
‖,

where q =
√

1− λ(2− λ)m2

M2 .

The more practical case of f̄ < f
∗, as an underestimate of f∗, can be com-

puted by getting a feasible dual solution, was studied by Eremin [6, 7, 8] who
studied the Chebyshev solution to an infeasible system of linear inequalities:

P =
{

x : 〈ai, x〉+ bi ≤ 0, ∀i ∈ I
}

.

This is equivalent to minimizing the function f(x) = maxi∈I{< ai, x > +bi},
where f

∗
> 0, and taking the stepsize tk = λkf(xk)/‖ξk‖. He shows conver-

gence of (xk)k=1,...,∞ to a point in X
∗ if (λk) k=0,...,∞ > 0 is a divergent series

that converges to 0.
From a practical point of view subgradient optimization has solved quite suc-

cessfully a wide range of problems. This means that many problems are quite
surprisingly well conditioned. Subgradient optimization fails miserably on ill
conditioned problems such as highly nonlinear multicommodity flow problems.
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4 Sources of NDO problems

Nonsmooth problems are encountered in many disciplines. In some instances,
they occur naturally and in others they result from mathematical transforma-
tions.

The most complete reference on NDO problems is Chapter 5 of Shor’s book
[40]. In Shor original work [35], he mentions solving the transportation problem
using subgradient optimization.

A standard transportation problem is a special case of an NDO that occurs
when optimizing the Lagrangean dual of a constrained optimization problem:

min 〈c, y〉

s.t. Ay ≥ b

By ≥ d

Dualizing the first set of constraints, with dual variables x, one gets the partial
dual:

f(x) = max
x≥0

(〈b, x〉+min
y∈Y

〈c−A
T
x, y〉),

where Y = {y : By ≥ d} is a polyhedron, assumed to be compact, and with a
set of extreme points given by{yi : i ∈ I}.

One subgradient is thus any b−Ay
i(x) where yi(x) is a minimizer of miny∈Y <

c−A
T
x, y >. The formulation with an objective variable:

min 〈b, x〉+ w

s.t. w ≤ 〈c−A
T
x, y

i
〉∀i ∈ I

is the dual of the extended form of the Dantzig-Wolfe decomposition reformu-
lation.

5 Other contributions

The seminal contribution by Held and Karp [17] on the traveling salesman
problem introduced Lagrangean relaxation and the solution of the partial La-
grangean dual by subgradient optimization. They were not aware at that time
of the Soviet revolution in this field, so they developed subgradient optimiza-
tion from scratch. The symmetric traveling-salesman problem seeks to find a
minimum cost tour in a complete undirected graph. A minimum tour k

∗ can
be shown to be a 1-tour k with the added constraint that every node has degree
2. A 1-tree consists of a tree on the vertex set {2, 3, . . . , n}, together with two
distinct edges at vertex 1. Therefore a formulation of the TSP is:

mink ck

s.t. : di,k = 2

Documenta Mathematica · Extra Volume ISMP (2012) 277–290



Subgradient Optimization in Nonsmooth Optimization 283

and di,k is the degree of vertex i in the k
th 1-tree, and ck is the cost of the

1-tree. Dualizing the degree constraints with multipliers πk leads to:

f(π) = min
k

{

ck +

n
∑

i=1

(di,k − 2)πi

}

The cost of a minimum cost tour C
∗ is greater than or equal to maxπ f(π),

which provides a lower bound on C
∗. The computation of f(π) and a subgra-

dient ξ involves the computation of a minimum cost 1-tree which can be done
in O(n) steps. This formulation can be solved by the dual of Dantzig-Wolfe
decomposition; this method shows the long tail typical of DW when no disag-
gregation is available, as seems the case here. Held and Karp [17] suggested
the use of subgradient optimization, i.e.,

π
m+1 = π

m + tmξ
m
,

and proved a result analogous to Shor’s [35], with a constant tm = t̄ and
convergence to within O(t̄) of the optimum is achieved. The solution of the
TSP by branch and bound, using the bound computed here, was extremely
successful, and led the authors to claim that:

In fact, this experience with the traveling-salesman problem indi-
cates that some form of the relaxation method may be superior
to the simplex method for linear programs including a very large
number of inequalities.

The authors sought the wisdom of Alan Hoffman, who advised them that the
method they just developed was closely related to the relaxation method for
linear inequalities due to Agmon [1], and Motzkin and Schoengerg [23]. The
relaxation method attempts to solve a system of linear inequalities {x : 〈ai, x〉+
bi ≤ 0 : i ∈ I} by projecting, in the case of Agmon, or reflecting in the case
of Motzkin and Schoenberg on the most distant inequality. This amounts to
minimizing the convex function

f(x) = max

{

0,max
i∈I

{

< ai, x > +bi

‖ai‖

}}

,

by using what became known as subgradient optimization with a stepsize that
uses the information that f

∗ = 0. The algorithm is thus xk+1 = xk + λkξk,
where

ξk =
aī

‖aī‖
,

with ī one of the indices that satisfies 〈ai,x〉+bi
‖ai‖

= f(x).

Agmon [1] showed that for λ = 1 the convergence to a feasible point x
∗
∈

P = {x : f(x) = 0} is geometric at a rate
√

1− µ∗2, unless finite convergence
occurs. Motzkin and Schoenberg [23] showed that if P is full-dimensional, finite

Documenta Mathematica · Extra Volume ISMP (2012) 277–290



284 Jean-Louis Goffin

convergence occurs if λ = 2. It was shown by the author [14] that Agmon’s
definition of µ∗ can be written as µ

∗ = infx 6∈P f(x)/d(x, P ), where d(x, P ) is
the distance from x to P . It can also be shown [14] that µ∗ = cosϕ as defined
by Shor and Gamburd in Theorem 3.3.
The works by Agmon and Motzkin and Schoenberg may be viewed as a

precursors to the Soviet revolution.
The successful solution of the traveling-salesman problem by computing

bounds using subgradient optimization led to a true explosion of works in
Lagrangean relaxation in the West; for example Fisher [11] and the many ref-
erences therein.
Karp, who was my thesis adviser, asked me to read the Held and Karp [17]

paper as well as the ones by Agmon [1] and Motzkin and Schoenberg [23],
and apply subgradient optimization to the transportation problem, and see if
something could be done to explain the success of subgradient optimization.
He also mentioned that the simplex method when applied to a “normallly”
formulated system of equalities converges in a number of iterations which is
a small multiple of the number of constraints, but that in the case where the
number of variables is exponential, as in Dantzig-Wolfe decomposition, this
estimate does not hold, thus requiring another solution technique. I engaged
in a thorough review of the Soviet literature, and found the works of Eremin
and Polyak, but missed the huge contributions by Shor.
My 1971 thesis, published later as Goffin [12], has the following result, ex-

tending Motzkin and Schoenberg: the relaxation method converges finitely to
a point x∗

∈ P , where P is assumed to be full dimensional, if

λ ∈ [1, 2] if P is obtuse

λ ∈

[ 2

1 + 2ν(P )
√

1− ν2(P )
, 2
]

, if ν(P ) <
√

2/2,

where the condition number ν(P ) equals the minimum over all tangent cones
to P of the sine of the half aperture of the largest spherical cone included in
a tangent cone. It is easy to show that µ∗

≥ ν(P ), and that if the constraints
defining every tangent cone are linearly independent then µ

∗ = ν(P ).
Unfortunately, both ν(P ) and µ

∗ are not polynomial, showing that the re-
laxation method is not a polynomial algorithm; see, for instance, Todd [42].
An unpublished result by the author shows that if {ai : i ∈ I} forms a totally
unimodular matrix, then ν(P ) ≥ 1/n.
The author then extended this convergence theory to subgradient optimiza-

tion [13], and at the IIASA meeting in 1977, B.T. Polyak mentioned the work
by Shor and Gamburd [38], and helped translate it, showing that this author’s
results were essentially identical to that work. A very nice extension of the
geometric convergence to the case of functional constraints has been published
by Rosenberg [34], extending also results by Polyak [30].
A thorough study of subgradient optimization and its applications was per-

formed by Held, Wolfe and Crowder [18]. They cite Polyak [30, 31] and
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Shor [36]. As stepsize they use an underestimate f̄ of the function minimum
f
∗ = minx∈X f(x) and use the Agmon relaxation step for an infeasible system:

xk+1 = ΠX

(

xk − λk
f(xk)− f̄

‖ξk‖
2

ξk

)

(3)

where ξk ∈ ∂f(xk). Paraphrasing from the Held et al. [18] paper on the “Val-
idation of Subgradient Optimization”: We observed that the results did not
seem to depend critically on the exact value of f̄ . Of course it is necessary that
the stepsize converges to 0, which we will not accomplish, with an underesti-
mate f̄ , unless we choose a sequence λk which tends to zero. Generally (but
not always) a good rule is to set λ = 2 for 2n iterations (where n is a measure
of the problem size), and then successively halve both the value of λ and the
number of iterations until the number of iterations reaches some threshold z.
λ is then halved every z iterations until the resulting λk is sufficiently small.
It is thus possible to converge to a point not in the optimal set, altough in our
work that almost never happened. We would particularly point out choice of
stepsize as an area which is imperfectly understood.
The answers provided to that question did not appear in the works of Shor

[40] or Polyak [31], who prove rather weak results. The following result which
extends [12] for Part 1 and Eremin [6, 7] for Part 2 appears in Allen et al. [2]:

Theorem 5.1. In algorithm (3),

1. given δ > 0 and 0 < λk = λ < 2, there is some K such that

f(xK) ≤ f
∗ +

(

λ/(2− λ)
)

(f∗
− f̄) + δ;

2. if
∞
∑

k=1

λk = ∞, and λk → 0, then f
∗
K =

K
min
k=1

f(xk) converges to f
∗.

This shows that the strategy of using λk → 0 is the correct one. The stepsize
chosen by Held et al. [18] was, towards the end of the sequence, a halving
of λ at each five iterations. This is equivalent to r(ϕ) = ( 1

2
)1/5 ∼= .85, where

r(ϕ) is defined in Shor’s theorem (3.3), assuming that Shor’s result of (3.3)
applies in this case, which nobody has proven, but which seems quite likely to
be provable.
Held et al. [18] experimented with great success on a variety of problems,

including the assignment problem, the multicommodity flow problems and the
TSP, concluding:

Briefly, we think that subgradient optimization holds promise for
alleviating some of the computational difficulties of large-scale opti-
mization. It is no panacea, though, and needs careful work to make
it effective, but its basic simplicity and its wide range of applicabil-
ity indicate that it deserves to be more widely studied.

Further developments include:
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1. An updating procedure for the target f̄ which can be either an overestimate
f̄ > f

∗ or an underestimate f̄ < f
∗, which now becomes a variable f̄k

to be adjusted depending on the behaviour of the sequence f(xk). Both
Ahn et al. [21] and [15] show an updating rule for f̄k that guarantees that
f∞ = infk f(xk) = f

∗.
2. The computation of the primal variables y in section 4 can be done in the

limit. This was shown by Shor [40] pp. 117–118 and improved by Anstreicher
and Wolsey [3] and Nesterov [28]. Define the subgradient optimization by
the recursive relation:

xk+1 = ΠX(xk − tkξk),

and the convex combination

t̄
k
i =

ti
∑k

j=1
tj

.

Then the sequence defined by

ȳk =

k
∑

i=1

t̄
k
i y

i

has the following properties
Theorem 5.2. Let the sequence xk in the problem of section 4 be generated

according to the formulae above, and

ti → 0,
∞
∑

i=1

ti = ∞, and

∞
∑

i=1

t
2

i < ∞.

Then xk → x
∗
∈ X

∗, and any accumulation point of ȳk is in the optimal set

Y
∗.

3. Nedic and Berstsekas [24] showed how to use the disaggregation structure,
often available in problems obtained from Dantzig-Wolfe decomposition, by
introducing an incremental subgradient method that cycles between the sub-
gradients of the individual functions.

4. A recent paper by Nesterov [29] shows how to use subgradient optimization
successfully on huge-scale problems, by using sparse updates of the subgra-
dient, leading to excellent computational results.

6 Conclusions

From my doctoral thesis:

“To simplex, to relax: This thesis’ question
Whether ’tis faster on P to iterate
On the narrowing edge slung between vertices
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Or to take the normal against a sea of planes
And by opposing it, to leap to end today.”1

Silly and somewhat arrogantly optimistic. But as we have seen in this journey,
subgradient optimization outperforms the simplex method in many instances.
When it is good it’s very good, but when it is bad it is very bad, as is the case of
ill-conditioned problems, or in the terminolgy of Shor, gully shaped functions.
This has given rise to a set of more complex methods that deal well with ill
conditioned problems. Among them are:
1. The r-algorithm due to Shor [40], which introduces a variable metric on top

of the subgradient; it worked quite well with a heuristic choice of pararme-
ters, until a theoretically selected choice of the parameters by Yudin and
Nemirovksi [25] led to the ellipsoid method and its deep theoretical signifi-
cance

2. The mirror descent method of Yudin and Nemirovski [25]
3. The bundle method developed by Lemaréchal and Kiwiel and many others,

about which a chapter appears in this book by Mifflin and Sagastizabal [22]
4. The analytic center cutting plane method by Goffin and Vial [16]

Acknowledgments. The author’s research has been funded by the Natural
Research Council in Science and Engineering of Canada for 39 years. I sincerely
apologize to the many friends whose work I could not cite.
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Warning to the reader: despite its title, this story has no otherworldly planets,
robots or galactic monsters; just a collection of fading memories confirming that
optimization research is a perfect example of human synergy and persistence.

As in a fairy tale, this story starts in a castle, Schloss Laxenburg, one of the res-
idences of the imperial Habsburg family located south of Vienna. In fact, it was
one of Maria Theresa’s summer houses. Many long years ago (forty plus) there
once was a meeting of representatives from the Eastern and Western blocks
which begat an international research organization to be located in Laxenburg,
Austria. The International Institute for Applied Systems Analysis (IIASA) was
thus created, with the purpose of building bridges across the Iron Curtain by
means of scientific cooperation. This global, rather than nationalistic, goal was
very bold and innovative.
Since its creation, IIASA has pursued the above goal and today it is focused

on issues such as energy use and climate change, food and water supplies,
poverty and equity, population aging, and sustainable development. The insti-
tute’s research is independent of political or national interests; and the motto
“Science for global insight” appears in its logo. But this is another story; here,
we will rather look back, all the way to the IIASA beginnings and somewhat
before to 1959, in order to give an answer to the question of whether or not,
superlinear convergence for nonsmooth optimization is science fiction, as nicely
phrased by Claude Lemaréchal in the 1970s.

The Founding Fathers

Before 1975 Claude Lemaréchal and Philip Wolfe independently created bundle
methods that minimize a convex function f for which only one subgradient at a
point is computable. The work of both authors appears in a 1975 Mathematical
Programming Study.
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Bundle methods are based on and improve on cutting-plane methods due to
E. W. Cheney and A. A. Goldstein (1959) and to J. E. Kelley (1960). But this
primal interpretation came much later. At first, a dual view was predominant:
algorithms were designed to approximate a subdifferential set in such a way as
to asymptotically satisfy (the nondifferentiable version of) Fermat’s condition,
0 ∈ ∂f(x̄) where x̄ is a minimizer. Since the new methods seemed to resem-
ble conjugate gradient ones, they were called conjugate subgradient methods
by Wolfe. The same algorithms were named extended Davidon methods by
Lemaréchal, possibly with the hope for rapid convergence in mind.
Indeed, after W. Davidon (1959) and R. Fletcher and M. Powell (1963) devel-

oped superlinearly convergent quasi-Newton methods for smooth minimization,
rapid convergence was on everyone’s mind. For nonsmooth functions, however,
this goal was seen as a wondrous grail, the object of an extended and difficult
quest, which would take more than 30 years to achieve.
When Robert Mifflin heard about the new methods, he gave up on an al-

gorithm that moved and shrank an n-dimensional simplex, because bundle
methods use previously generated subgradient information in a more efficient
manner. He then defined a large class of nonconvex functions, called semis-
mooth, and a dual-type bundle algorithm that achieved convergence to sta-
tionary points for such functions. All of the above research provided a way
to solve dual formulations of large-scale optimization problems where under-
lying special structure could be exploited through the future use of parallel
computing.
In view of the new advances in the area, Wolfe influenced IIASA to form

a nonsmooth optimization (NSO) task-force, including Lemaréchal, Mifflin,
and certain Russians and Ukrainians. Among the latter, E. A. Nurminskii
was expected at the beginning, but, probably due to the actions of Soviet
authorities, could not make it to Laxenburg until one year after the departure
of Lemaréchal and Mifflin.
With the support of Michel Balinski (Chairman of the System and Decision

Sciences Area at IIASA), the task-force organized at Laxenburg in 1977 a two
week long participant-named “First World Conference on Nonsmooth Opti-
mization”. From the Soviet side, there were B.T. Polyak and B.N. Pshenich-
nyi, while the West was represented by R. Fletcher, J. Gauvin, J.-L. Goffin, A.
Goldstein, C. Lemaréchal, R. Marsten, R. Mifflin and P. Wolfe. Most of the
participants wrote articles published in a 1978 IIASA Proceedings Series book.
At those times when politics mixed with science, researchers were warned

that their phones might be tapped and looked for hidden microphones in their
table lamps. So this first international workshop was viewed as going beyond
mathematics and, in his opening speech, Lemaréchal, feeling the importance of
the moment, welcomed the participants with the words, To begin, let us break
the glass. His emotion made his French (glace) supersede his English (ice)!1

1At a later Cambridge meeting Claude topped that slip of the tongue with the line “Now, I
am only speaking in words” rather than the English equivalent “roughly speaking”, meaning
here, “without mathematical precision”.
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At the meeting, each participant presented his work during a three hour pe-
riod in the morning, and the afternoon was devoted to brainstorming. These
exchanges increased the participants’ awareness of the strong connections be-
tween nonlinear programming and nonsmooth optimization. In particular, Roy
Marsten explained boxstep methods, and Boris Pshenichnyi’s talk suggested a
link with Sequential Quadratic Programming, hinting at the possibility of su-
perlinear convergence.
The new conjugate-subgradient-like methods were the subject of many dis-

cussions during this first workshop. Their novelty was in that, unlike most
subgradient methods that could be thought of as being forgetful and also dif-
ferent from smooth algorithms, the new methods kept past basic information
in memory. Indeed, for progressing from the current iterate to the next one,
a direction is defined by solving a quadratic program with data consisting of
function and subgradient values from several past points. It is precisely this
collection of information generated at previous iterations that is referred to as
“the bundle”. Actually, the terminology was born during a workshop lunch:

• bundle in English;

• faisceau in French, a word that raised some concerns among English
speaking participants, who wondered if it would connote fascism (it does
not); and

• Schar in German.

As noted by Wolfe (while chewing Wiener Schnitzel mit Spätzle), the German
word sounds close to Shor. In those times, the r-algorithm of N. Z. Shor
was the bête noire of NSO researchers, because of its reported success in many
practical applications. This is, in spite of the method (a combination of steepest
descent and conjugate gradients) lacking a general convergence proof. When
there is convergence little is known about its rate, except for a recent (2008)
work by Jim Burke, Adrian Lewis and Michael Overton, interpreting the r-
algorithm as a variable metric method that does not satisfy the secant equation
(a partial convergence rate result is given, for a convex quadratic function of
two variables). This interpretation could help in unveiling today’s mystery
behind the excellent performance of the r-algorithm.
The r-algorithm is a space-dilation method, a family of (not so amnesic!)

subgradient algorithms using information from both a current and a previous
iterate, and usually having excellent numerical behavior. This family includes
a variant related to the symmetric rank-one quasi-Newton method. It was this
type of recurrent finding that kept alive the quest for rapid convergence.

The ε-subdifferential and the road to implementation

A second international workshop took place at IIASA in 1980, with contri-
butions from Y.M. Ermoliev, J.-L. Goffin, C. Lemaréchal, R. Mifflin, E.A.
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Nurminskii, R.T. Rockafellar, A. Ruszczynski, and A.P. Wierzbicki. In the
conference book, Terry Rockafellar wrote about the important class of lower
C2 functions, calling them particularly amenable to computation;2 ten years
before he had introduced the concept of approximate subgradients, which was
extended to nonconvex functions by Al Goldstein in 1977. In 1991, after many
years of joint climbing trips in the Dolomites with discussions on this subject,
C. Lemaréchal and Jochem Zowe came up with the eclipsing concept, aimed at
defining a first-order approximation of a multi-valued mapping.
The idea of an approximate subdifferential turned out to be fundamental

for nonsmooth optimization. In particular, it is crucial for the effectiveness of
bundle methods for large problems, but this is not its only important property.
Indeed, on the theoretical side, the incorporation of an “expansion” parame-
ter ε makes the multifunction ∂εf(x) both inner and outer semicontinuous in
the variables ε and x. For the exact subdifferential, the latter semicontinuity
property holds (the subdifferential has a closed graph).
Inner semicontinuity is of paramount importance, since it guarantees that

having sequences xk
→ x̄ and ε

k
→ 0, and a zero subgradient, 0 ∈ ∂f(x̄), there

exists an approximate subgradient sequence g
k converging to zero: ∂εkf(x

k) ∋
g
k
→ 0. Since the goal of any sound optimization method is to asymptotically

satisfy Fermat’s condition, without inner continuity there is no hope. Now, this
essential property holds only for approximate subgradients, but the available
information is from exact subgradients. What to do? Here arises an important
algorithmic consequence of the concept, known in the area as a transportation
formula, introduced by Lemaréchal in his Thèse d’État from 1980. This simple,
yet powerful, formula for convex functions relates exact subgradients (at one
point) to inexact ones (at another point), as follows:

g
i
∈ ∂f(xi) =⇒ g

i
∈ ∂ε̂f(x̂) for ε̂ = f(x̂)− f(xi)−

〈

g
i
, x̂− x

i
〉

.

By means of this relation, bundle methods relate past exact subgradient infor-
mation to a special ε-subgradient at a so-called serious point x̂, a point which
gives significant progress towards the goal of minimizing the objective function
(in bundle jargon, non-serious points are called null). This special subgradient
and its corresponding ε̂ are called the aggregate subgradient and error, respec-
tively. Together with a serious subsequence of iterates, these aggregate objects
ensure limiting satisfaction of Fermat’s condition.
The notion of an approximate subdifferential was algorithmically exploited

for the first time by Dimitri Bertsekas and S. Mitter, early on in 1971. In
1974 Rockafellar visited Kiev and gave a talk on the subject which was trans-
lated into Russian by Pshenichnyi. This made it possible for Evgenii Nurmin-
skii to learn about the subject. He then started to study the semicontinu-
ity properties of this new set-valued operator and, after some joint work with

2These functions had been introduced in 1974 by Robert Janin in his University of Paris
IX PhD dissertation Sur la dualité et la sensibilité dans les problèmes de programmation

mathématique.
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Lemaréchal, eventually established its continuity. A comprehensive set of useful
ε-subdifferential calculus rules was developed by Jean-Baptiste Hiriart-Urruty.

An interesting application of the ε-subdifferential, significant for numerical
performance, is that past bundle information can be “compressed” into the
aggregate subgradients and errors, without loss of global convergence. The
compression mechanism allows for discarding bundle information, keeping only
enough to construct the last bundle subproblem solution, for example, only
the solution itself. This makes the next direction defining subproblem easier to
solve, a feature that is not present in the original cutting-plane method, which
has to keep all of the past information for the sake of convergence. For this
reason cutting-plane methods often suffer from a slow tailing-off convergence
effect.
Thanks to their potential for practical implementation, bundle methods were

considered in several variants in the early 1990s. Trust region bundle methods
and zig-zag searches were developed for convex and nonconvex functions by
Zowe and his PhD student H. Schramm. Level variants were brought from
Moscow to Paris by Arkadi Nemirovski and Yuri Nesterov, who wrote a pa-
per with Lemaréchal on this subject. The development of technical tools for
showing convergence of bundle methods and incorporating a compression mech-
anism in the algorithmic process is due to Krzysztof Kiwiel. He also developed
a very efficient quadratic programming solver for the bundle direction subprob-
lems, and systematically extended the methodology to different cases such as
nonconvex and constrained ones.

The first VU and the primal view

The issue of increasing convergence speed of NSO methods was a recurrent
obsession.
For single variable problems, a superlinearly convergent method was devised

by Lemaréchal and Mifflin in 1982. It has a very simple rule for deciding if,
near a serious point, the function’s graph looks V-shaped (nonsmooth piecewise
linear), or U-shaped (smooth quadratic). In the former case, a V-model, made
from two cutting planes, is used to approximate the function. In the latter
case, the difference of two “serious-side” derivatives is used to give second-order
information for creating a quadratic U-model. Since cutting-plane methods are
known to have finite termination for piecewise affine functions, these cases are
solved efficiently with V-model minimizers. The same holds for smooth cases,
because they are handled well via quasi-Newton moves.
Nevertheless, this fast algorithm had the handicap of not extending directly

to functions of several variables. The difficulty with extending VU-concepts to
multidimensional problems was eventually solved, but it took almost 20 years
to find the right objects, after a detour involving work descending from that of
J.-J. Moreau and K. Yosida.
The challenge was to find a generalization for the notion of a Hessian which

is adequate for a black-box setting, that is, one that could be constructed from
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bundle information consisting of function and single subgradient values at each
computed point. At this stage, the primal interpretation of bundle methods
became handy, since when considered as a stabilized cutting-plane method,
there is a direct link between certain bundle iterates and the proximal point
theory initiated by B. Martinet in 1970. After the seminal work on this subject
by Terry Rockafellar in 1976, theoretical proximal results blossomed during
the 1980s and 90s. An important step towards practical implementation was
taken by Masao Fukushima and Alfred Auslender, who independently showed
that by not stopping bundling with a serious point one produced a sequence
converging to a proximal point. Ending null steps with a serious step leads to
an approximation of a proximal point.
In 1993 Claude Lemaréchal and Claudia Sagastizábal interpreted the bun-

dle direction as coming from a preconditioned gradient direction for minimiz-
ing the Moreau-Yosida regularization function associated with the proximal
points. This interpretation led to a BFGS proximal approach opening the way
to variable prox-metric bundle methods, which made quasi-Newton updates
for a Moreau-Yosida regularization that was not fixed (the proximal parameter
varies with the iterations). So the approach looked, in fact, like a dog chasing
its tail.
The smoothing effect of the Moreau-Yosida operator led to the belief that the

key to defining an appropriate Hessian was to find proper proximal parameters
(as in the BFGS proximal approach). This was a false track; in 1997 Lemaréchal
and Sagastizábal showed that for the Moreau-Yosida regularization to have a
Hessian everywhere, the (nonsmooth!) function f needed to be sufficiently
smooth and have a Hessian itself . . . once again, the elusive rapid convergence
seemed out of reach.

Moving fast is possible, if in the right subspace

In their negative results from 1997, when studying the Moreau-Yosida Hessian,
Lemaréchal and Sagastizábal noticed that a nonsmooth function f exhibits
some kind of second order behavior when restricted to a special subspace. More
precisely, the function has kinks on (a translation of) the tangent cone to ∂f(x̄)
at the zero subgradient and appears smooth or “U-shaped” on (a translation
of) the normal cone. Under reasonable assumptions related to the minimizer
x̄ being nondegenerate, the cones above are in fact complementary subspaces,
called V and U , because they concentrate, respectively, all of the nonsmooth-
ness and smoothness of f near x̄. In the same work it was noticed that a
Newton step based on the Hessian of the Moreau-Yosida regularization has no
V-subspace component.

The seed of just dropping off the regularization began to germinate.

In the period 1984–96 Mifflin came up with similar concepts and conclusions in a
different manner based on the bundle algorithm itself. The algebra associated
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with the bundle method subproblem solution naturally breaks it into local
V and U components with all the active subgradients having the same U-
component, which suggests that U is the space of differentiability. Associated
with this he also developed the idea of an algorithm step being the sum of a
bundle serious step and a U-Newton step.
The U-Lagrangian from 2000, defined by Lemaréchal, François Oustry, and

Sagastizábal, proved useful as a theoretical tool to extract implicitly second or-
der information from a nonsmooth function without resorting to the Moreau-
Yosida regularization. Its associated U-Hessian turns out to be the correct
second order object for NSO, akin to the projected Hessian in smooth non-
linear programming. In some favorable cases (involving strong minimizers) a
conceptual VU-Newton step, constructed from the sum of a V-step and a U-step
depending on the result of the V-step, can produce a superlinearly convergent
sequence of iterates. Paraphrasing Lemaréchal words: with the U-Lagrangian
came the realization that, when moving along a V-shaped valley of nondiffer-
entiability which is tangent to the U-subspace at the minimizer, a Newton-like
method could drive the algorithm convergence with the desired speed.

The jackpot had been finally hit!

Or not yet? In a manner similar to the proximal point algorithm, the U-
Lagrangian superlinear scheme was highly conceptual, as it depended on in-
formation at the minimizer being sought, i.e. assuming the dog had already
caught its tail.
It would take some more years of hard work to produce implementable VU-

versions. The process was started by Oustry, who produced a rapidly conver-
gent VU-algorithm with dual steps for the special case of a max-eigenvalue
function. Two quadratic programming problems needed to be solved per it-
eration, instead of only one, as in classical bundle algorithms. Unfortunately,
the method, tailored for eigenvalue optimization, used rich black-boxes that
computed more than one subgradient at each point.
Mifflin and Sagastizábal developed VU-theory further, defining a class of

functions structured enough to generate certain primal and dual tracks (the
class includes the max-eigenvalue case). In the meantime, the importance of
structure producing nonsmoothness was noticed by Lewis, whose partly smooth
functions formalize, in a general nonconvex setting, VU structure. This was
followed by works by Aris Daniilidis, Warren Hare, Jerôme Malick and others.
A nice connection between U-Lagrangian methods and Sequential Quadratic
Programming was given by Scott Miller and J. Malick.
By relating primal and dual tracks to U-Lagrangians and proximal points,

Mifflin and Sagastizábal succeeded in creating a superlinearly convergent VU
algorithm for very general convex functions. The method also sequentially
solves pairs of quadratic programs, corresponding to finding approximations in
both the primal and dual tracks. This culminated over 30 years of effort by
many researchers, not limited to the ones mentioned here, and brought us to
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Figure 1: Sublinear, linear, and supernatural convergence

our current realization of science fiction: Figure 1 shows rapid convergence of
a quasi-Newton version of the VU-algorithm.
The half-and-half function f(x) =

√

xTAx+x
T
Bx was created by Lewis and

Overton to analyze BFGS behavior when minimizing a nonsmooth function.
The 8-variable example in the figure has a matrix A with all elements zero,
except for ones on the diagonal at odd numbered locations (A(i, i) = 1 for
i = 1, 3, 5, 7). The matrix B is diagonal with elements B(i, i) = 1/i2 for
i = 1, . . . , 8. The minimizer of this partly smooth convex function is at x̄ = 0,
where the V and U subspaces both have dimension 4; hence, the name half-
and-half.
Each graph in the figure shows function values from all points generated

by its corresponding algorithm starting from the point having all components
equal to 20.08. The top curve was obtained with a proximal bundle method,
implemented in the code N1CV2 by Lemaréchal and Sagastizábal. The mid-
dle curve corresponds to the BFGS implementation by Overton, who adapted
the method for nonsmooth functions via a suitable line search developed with
Lewis. They argue that the linear convergence of “vanilla BFGS” as exhibited
by this example is surprisingly typical for nonsmooth optimization. However,
so far this has been proved only for a two variable example with the use of
exact line searches, i.e., by exploiting nonsmoothness. It pays to exploit non-
smoothness, even in more than one dimension, and it can be done implicitly
as shown by the (supernatural) curve at the bottom of the figure. This one
results from the quasi-Newton VU algorithm that uses a BFGS update formula
to approximate U-Hessians. Only its serious point subsequence has proven Q-
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superlinear convergence.3 The tops of the ending “humps” in this graph are
due to “clumps” of null steps.
In the bundle business, null steps remain the hard cookies to digest. Null

points can be thought of as intermediate unavoidable steps, needed to make the
bundle “sufficiently rich”, until enough progress is achieved and an iterate can
be declared serious. This fact was also commented on by Stephen Robinson,
who in 1999 proved R-linear convergence of ε-subgradient descent methods (in-
cluding the serious subsequence of proximal bundle algorithms), for functions
satisfying a certain inverse growth condition. The feature of eliminating un-
necessary null steps is yet to be found in NSO, because it is not known what
unnecessary means. An empirical observation of how the algorithmic process
drives the aggregate gradient and error to zero shows that, in general, the aggre-
gate error goes to zero fast, while it takes long time (including many null steps)
for the aggregate gradient to attain a small norm. This phenomenon suggests
there is a minimal threshold, which cannot be avoided, for the number of null
steps between two serious iterates. But except for complexity results (referring
to a worst case that is rare in practice), there is not yet a clear understanding
of how to determine a realistic value for the threshold. Maybe in another 30
or 40 years the answer will be spoken in words in a future ISMP Optimization
History book. In the meantime the quest continues with the search for rapid
convergence to local minimizers for nonconvex functions.

Concluding remarks

The astute reader probably noticed that IIASA was not directly involved in
VU theory and algorithm developments. The reason is that the institution
discontinued support for nonsmooth optimization when its last man standing,
Vladimir Demyanov, left IIASA in 1985. He had organized the last IIASA
Workshop on Nondifferential Optimization, held in Sopron, Hungary in 1984,
and was a very early contributor to the field with a minimax paper in 1968.
The same reader of this article will notice a lack of references as the authors

are “only speaking in words” to minimize the level of technicality. This choice
was made to avoid the embarrassment of missed citations.

3However, one can envision a smooth outer envelope function, starting at about evaluation
number 37, which touches some points, is strictly concave and has an ending slope looking
very close to minus infinity. It empirically shows R-superlinear convergence of the qNVU
algorithm.
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Broyden Updating, the Good and the Bad!
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So far so good! We had an updating procedure (the ’full’ secant
method) that seemed to work provided that certain conditions of
linear independence were satisfied, but the problem was that it
did not work very well. In fact it proved to be quite numerically
unstable.
Charles Broyden in On the discovery of the ‘good Broyden’ method

[6].

The idea of secant updating

As Joanna Maria Papakonstantinou recounted in her comprehensive historical
survey [29], regula falsi and other variants of the secant method for solving one
equation in one variable go back to the Babylonian and Egyptian civilizations
nearly 4000 years ago. They may be viewed just as a poor man’s version of
what is now known as Newton’s method, though we should also credit Al Tusi
[20]. During antiquity the very concept of derivatives was in all likelihood
unknown, and in modern times the evaluation (and in the multivariate case
also factorization) of Jacobian matrices is frequently considered too tedious
and computationally expensive.
The latter difficulty was certainly the concern of Charles Broyden in the

sixties, when he tried to solve nonlinear systems that arose from the discretiza-
tion of nonlinear reactor models for the English Electric Company in Leicester
[6]. Now we know that, due to diffusion, the resulting system of ODEs must
have been rather stiff, but that property was only identified and analyzed a
few years later by Dahlquist. Nevertheless, Broyden and his colleagues already
used some implicit time integration schemes, which required solving sequences
of slightly perturbed nonlinear algebraic systems F (x) = 0 for F : Rn

7→ Rn.
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Broyden noted that one could avoid the effort of repeatedly evaluating and
factoring the system Jacobian by exploiting secant information, i.e., function
value differences

yi ≡ Fi − Fi−1 with Fj ≡ F (xj) for j ≤ i

Here, xi ∈ Rn denotes the current iterate and xj , for j < i, disctinct points
at which F has been evaluated previously. With si ≡ xi − xi−1 the new
approximation Bi to the Jacobian F

′(xi) ∈ Rn×n

Bisi = yi = F
′(xi)si + o(‖si‖) (1)

The first order Taylor expansion on the right is valid if F has a Jacobian F
′(x) ∈

Rn×n that varies continuously in x. We will tacitly make this assumption
throughout so that F ∈ C

1(D) on some open convex domain D ⊂ Rn containing
all evaluation points of interest.
In the univariate case of n = 1, one can divide by si to obtain Bi = yi/si ≈

F
′(xi) uniquely. In the multivariate case, the secant condition merely imposes

n conditions on the n
2 degrees of freedom in the new approximating Jacobian

Bi. A natural idea is to remove the indeterminacy by simultaneously imposing
earlier secant conditions Bisj = yj , for j = i − n + 1 . . . i. The resulting
matrix equation for Bi has a unique solution provided the n+1 points xi−n+j ,
for j = 0 . . . n, are in general position, i.e., do not belong to a proper affine
subspace of Rn. Theoretically, that happens with probability 1, but in practice
the step vectors sj , for j = i− n+ 1 . . . i, are quite likely to be nearly linearly
dependent, which leads to the observation of instability by Broyden cited above.
Rather than recomputing Bi from scratch, Broyden reasoned that the pre-

vious approximation Bi−1 should be updated such that the current secant
condition is satisfied, but Biv = Bi−1v in all directions v ∈ Rn orthogonal to
si. As he found out ‘after a little bit of scratching around’, these conditions
have the unique solution [2]

Bi = Bi−1 + ris
⊤
i

/

s
⊤
i si, with ri ≡ yi −Bi−1si (2)

Here the outer product Ci ≡ ris
⊤
i /s

⊤
i si of the column vector ri and the row

vector s
⊤
i represent a rank one matrix. This formula became known as the

good Broyden update, because it seemed to yield better numerical performance
than the so-called bad formula (6) discussed below. For a recent review of
quasi-Newton methods see the survey by J.M. Martinez [25].
Broyden stated that the fact that Ci = Bi − Bi−1 turned out to be of rank

one was pure serendipity. Even though he claimed ’When I was at University

they did not teach matrices to physicists’, he realized right away that the low
rank property could be used to reduce the linear algebra effort for computing
the next quasi-Newton step

si+1 = −B
−1

i Fi
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to O(n2). That compares very favourably with the n
3
/3 arithmetic operations

needed for a dense LU factorization of the new Jacobian F
′(xi) to compute the

Newton step −F
′(xi)

−1
Fi. If the previous step is given by si = −B

−1

i−1
Fi−1,

one can easily check that the secant error vector ri defined in (2) is identical
to the new residual, i.e., ri = Fi, which we will use below.
Tacking on a sequence of rank one corrections to an initial guess B0, and

reducing the linear algebra effort in the process looks more like an engineering
trick than an algorithmic device of mathematical interest. Yet after a few years
and in close collaboration with his coauthors John Dennis and Jorge Moré, a
beautiful theory of superlinear convergence theory emerged [7], which was later
built upon by other researchers and extended to many update formulas. For a
much larger class of methods named after Charles Broyden and his coauthors
Abbaffy and Spedicato, see [1].

Least change interpretation

John Dennis credits Jorge Moré with a short argument showing that the good
Broyden formula is a least change update. Specifically, if we endow the real
space of n× n matrices A with the inner product

〈A,B〉 ≡ Tr(A⊤
B) = Tr(B⊤

A)

then the corresponding norm

‖A‖F ≡

√

〈A,A〉 ≥ ‖A‖ (3)

is exactly the one introduced by Frobenius. It is bounded below by the consis-
tent matrix norm ‖A‖ induced by the Euclidean vector norm ‖v‖ on Rn. The
affine variety

[yi/si] ≡

{

B ∈ Rn×n : Bsi = yi

}

has the n(n − 1) dimensional tangent space [0/si] and the n dimensional or-
thogonal complement

[0/si]
⊥

≡

{

vs
⊤
i ∈ Rn×n : v ∈ Rn

}

Hence, the smallest correction of Bi−1 to obtain an element of [yi/si] is given
by the correction

Ci = ris
⊤
i /s

⊤
i si ∈ [ri/si] ∩ [0/si]

⊥

For formal consistency we will set Ci = 0 if si = 0 = yi, which may happen for
all i ≥ j if we have finite termination, i.e., reach an iterate xj with Fj = 0.

The geometry is displayed below and yields for any other element Ai ∈ [yi/si]
by Pythagoras

‖Bi−1 −Ai‖
2

F − ‖Bi −Ai‖
2

F = ‖Ci‖
2

F
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In particular, we have the nondeterioration property

‖Bi −Ai‖F ≤ ‖Bi−1 −Ai‖F

This to hold for all Ai ∈ [yi/si] is in fact equivalent to the least change property
of the update. Broyden stated this property apparently for the first time in his
survey paper [4], which he rarely cited afterwards. Moreover, nondeterioration
can be equivalently stated in the operator norm as

‖Bi −Ai‖ ≤ ‖Bi−1 −Ai‖ (4)

which makes sense even on an infinite dimensional Hilbert space where ‖ · ‖F

is undefined.

Sequential properties in the affine case

So far we have described the single least change update Ci = ris
⊤
i /s

⊤
i si, but

the key question is of course how a sequence of them compound with each
other. One can easily check that Bi+1 = Bi + Ci+1 = Bi−1 + Ci + Ci+1

satisfies the previous secant condition Bi+1si = yi only if si and si+1 are
orthogonal so that Ci+1si = 0. In fact, exactly satisfying all n previous secant
conditions is not even desirable, because that would lead back to the classical
multivariate secant method, which was found to be rather unstable by Broyden
and others. However, successive updates do not completely undo each other
and thus eventually lead to good predictions Bi−1si ≈ yi.

Now we will briskly walk through the principal arguments for the case when
F is affine on a finite dimensional Euclidean space. Later we will discuss
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whether and how the resulting relations extend to nonlinear systems and infinite
dimensional Hilbert spaces. Suppose for a moment that our equation is in fact
affine so that

F (x) = Ax+ b with A ∈ Rn×n and b ∈ Rn
.

Then the secant conditions over all possible steps si = −B
−1

i−1
Fi−1 are satisfied

by the exact Jacobian A ∈ [yi/si] since yi = Aisi by definition of F . Moreover,
let us assume that A and all matrices B with ‖B−A‖ ≤ ‖B0−A‖ have inverses
with a uniform bound ‖B

−1
‖ ≤ γ. This holds by the Banach Perturbation

Lemma [27] for all B0 that are sufficiently close to a nonsingular A.
Then we can conclude, as Broyden did in [3], that all Bi are nonsingular

and, consequently, all steps si = −B
−1

i−1
Fi−1 are well defined and bounded by

‖si‖ ≤ γ‖Fi−1‖. Repeatedly applying Pythagoras’ identity we obtain for any i

the telescoping result that

i
∑

j=1

‖Cj‖
2

F = ‖B0 −A‖
2

F − ‖Bi −A‖
2

F ≤ ‖B0 −A‖
2

F .

Hence, we derive from Cjsj = rj and the fact that the Frobenius norm is
stronger than the operator norm that

lim
j

‖Cj‖F → 0 and lim
j

‖rj‖/‖sj‖ ≤ lim
j

‖Cj‖ = 0. (5)

Whereas these limits remain valid in the nonlinear case considered below, they
hold in a trivial way in the affine case considered so far. This follows from the
amazing result of Burmeister and Gay [12] who proved that Broyden’s good
method reaches the roots of affine equations exactly in at most 2n steps. The
proof appears a little like an algebraic fluke and there is nothing monotonic
about the approach to the solution. Moreover, the restriction that the ball
with radius ‖B0 − A‖ contains no singular matrix can be removed by some
special updating steps or line-searches as, for example, suggested in [26], [17],
and [23], also for the nonlinear case.

The glory: Q-superlinear convergence

The property ‖rj‖/‖sj‖ → 0 was introduced in [8] and is now generally known
as the Dennis and Moré characterization of Q-superlinear convergence. The
reason is that it implies, with our bound on the stepsize, that ‖rj‖/‖Fj−1‖ ≤

γ
−1

‖rj‖/‖sj‖ → 0 and thus

‖Fi+1‖

‖Fi‖
→ 0 ⇐⇒

‖xi+1 − x∗‖

‖xi − x∗‖
→ 0

The equivalence holds due to the assumed nonsingularity of A so that, in any
pair of norms, the residual size ‖F (x)‖ is bounded by a multiple of the distance
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Charles Broyden and his fellow quasi-Newton musketeers, J. Dennis and J.
Moré

‖x−x∗‖ and vice versa. Correspondingly, the central concept of Q-superlinear
convergence is completely invariant with respect to the choice of norms, a
highly desirable property that is not shared by the weaker property of Q-linear
convergence, where the ratio of successive residual norms ‖F (xj)‖ or solution
distances ‖xi − x∗‖ is merely bounded away from 1.

Under certain initial assumptions Q-superlinear convergence is also achieved
in the nonlinear case, and under a compactness condition even in infinite di-
mensional space. All this without any exact derivative information or condition
that the sequence of steps be in some sense linearly independent.

Originally, it was widely believed that to ensure superlinear convergence
one had to establish the consistency condition that the Bi converge to the
true Jacobian F

′(x∗). In fact, these matrices need not converge at all, but,
theoretically, may wander around F

′(x∗) in a spiral, with the correction norms
‖Cj‖ square summable but not summable. This means that the predicted
increments Bi−1si/‖si‖ in the normalized directions si/‖si‖ cannot keep being
substantially different from the actual increments yi/‖si‖ because the si/‖si‖

belong to the unit sphere, which is compact in finite dimensions.

The seemingly counterintuitive nature of the superlinear convergence proof
caused some consternation in the refereeing process for the seminal paper by
Broyden, Dennis and Moré [7]. It eventually appeared in the IMA Journal
of Applied Mathematics under the editorship of Mike Powell. Broyden had
analyzed the affine case, John Dennis contributed the concept of bounded de-
terioration on nonlinear problems and Jorge Moré contributed the least change
characterization w.r.t. the Frobenius norm leading to the proof of superlinear
convergence. All this is not just for good Broyden, but for a large variety of
unsymmetric and symmetric updates like BFGS, where the Frobenius norms
must be weighted, which somewhat localizes and complicates the analysis.

More specifically, suppose one starts at x0 in the vicinity of a root x∗ ∈
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F
−1(0) near which the Jacobian is nonsingular and Lipschitz continuous. Then

the nondeterioration condition (4) becomes a bounded deterioration condition
with Ai replaced by F

′(x∗) and a multiplicative factor 1+O(‖xi−x∗‖) as well
as an additive term O(‖xi − x∗‖) on the right-hand side. From that one can
derive Q-linear convergence provided B0 is close enough to F

′(x∗), which, in
turn, implies Q-superlinear convergence by the perturbed telescoping argument.
More generally, we have the chain of implications

Bounded deterioration

=⇒ Linear Convergence

=⇒ Q-superlinear Convergence.

Actually, R-linear convergence is enough for the second implication. This mod-
ularization of the analysis is a very strong point of the Broyden-Dennis-Moré
framework [7] and has allowed many other researchers to communicate and
contribute in an economical fashion.

Bad Broyden by inverse least change

The BDM mechanism also applies to so-called inverse updates, especially Broy-
den’s second unsymmetric formula. It can be derived by applying the least
change criterion to the approximating inverse Jacobian

Hi = B
−1

i with Hi yi = si

The equation on the right is called the inverse secant condition, which must
be satisfied by Hi if Bi = H

−1

i is to satisfy the direct secant condition (1).
After exchanging si and yi and applying the good Broyden formula to Hi one
obtains the inverse update on the left, which corresponds to the direct update
of Bi on the right

Hi = Hi−1 +
(si −Hi−1yi)y

⊤
i

y⊤i yi
⇐⇒ Bi = Bi−1 +

riy
⊤
i

y⊤i si
(6)

The correspondence between the two representations can be derived from the
so-called Sherman–Morrison–Woodbury formula [13] for inverses of matrices
subject to low rank perturbations.
Broyden suggested this formula as well, but apparently he and others had

less favourable numerical experience, which lead to the moniker Bad Broyden

update. It is not clear whether this judgement is justified, since the formula has
at least two nice features. First, the inverse is always well defined, whereas the
inverse of the good Broyden update can be seen to blow up if y⊤i Bi−1si = 0.
Second, the bad Broyden update is invariant with respect to linear variable
transformations in that applying it to the system F̃ (x̃) ≡ F (T x̃) = 0 with
det(T ) 6= 0 leads to a sequence of iterates x̃i related to the original ones by
xi = T x̃i, provided one initializes x̃0 = T

−1
x0 and B̃0 = B0T . The good
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Broyden formula, on the other hand, is dependent on the scaling of the variables
via the Euclidean norm, but is independent of the scaling of the residuals,
which strongly influences the bad Broyden formula. However, even for quasi-
Newton methods based on the good Broyden update, the squared residual
norm often enters through the back door, namely as merit function during
a line-search. The resulting stabilized nonlinear equation solver is strongly
affected by linear transformations on domain or range. In this brief survey we
have only considered full step iterations and their local convergence properties.

Whether or not one should implement quasi-Newton methods by storing and
manipulating the inverses Hi is a matter for debate. Originally, Broyden and
his colleagues had apparently no qualms about this, but later it was widely
recommended, e.g., by the Stanford school [14], that one should maintain a
triangular factorization of the Bi for reasons of numerical stability. Now it
transpires that the required numerical linear algebra games, e.g., chasing sub-
diagonal entries, are rather slow on modern computer architectures. In any
case, the trend is to limited memory implementations for large scale applica-
tions, in view of which we will first try to study the influence of the variable
number n on Broyden updating.

Estimating the R-order and efficiency index

One might fault the property of Q-superlinear convergence for being not suf-
ficiently discriminating, because it can be established for all halfway sensible
updating methods. In view of the limiting case of operator equations on
Hilbert spaces to be considered later, one may wonder how the convergence
rate of quasi-Newton methods depends on the dimension n. A finer measure
of how fast a certain sequence xi → x∗ convergences is the so-called R-order

ρ ≡ lim inf
i

|log ‖xi − x∗‖|
1/i

The limit inferior on the right reduces to a proper limit when the sequence
xi → x∗ satisfies ‖xi − x∗‖ ∼ ‖xi−1 − x∗‖

ρ. This is well known to hold with
ρ = 2 for all iterations generated by Newton’s method from an x0 close to a
regular root x∗. Generally, the R-order [27] of a method is the infimum over ρ
for all locally convergent sequences (xi)i=1...∞.

The result of Burmeister and Gay implies 2n step quadratic convergence of
Broyden’s good method on smooth nonlinear equations. That corresponds to
an R-order of 2n

√

2 = 1 + 1/(2n) + O(1/n2). We may actually hope for just
a little more by the following argument adapted from a rather early paper of
Janina Jankowska [21]. Whenever a Jacobian approximation Bi is based solely
on the function values Fi−j = F (xi−j) , for j = 0 . . . n, its discrepancy to
the Jacobian F

′(x∗) is likely to be of order O(‖xj−n − x∗‖). Here we have
assumed that things are going well in that the distances ‖xi − x∗‖ decrease
monotonically towards 0, so that the function value at the oldest iterate xi−n

contaminates Bi most. Then the usual analysis of Newton-like iterations [9]
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yields the proportionality relation

‖xi+1 − x∗‖ ∼ ‖xi−n − x∗‖ ‖xi − x∗‖

The first term on the right represents the error in the approximating Jacobian
Bi multiplied by the current residual Fi of order ‖xi − x∗‖. Substituting the

ansatz ‖xi − x∗‖ ∼ c
ρi

for some c ∈ (0, 1) into the recurrence and then taking
the log base c one obtains immediately the relations

ρ
i+1

∼ ρ
i−n + ρ

i =⇒ 0 = Pn(ρ) ≡ ρ
n+1

− 1− ρ
n

Hence, we can conclude that the best R-order we may expect from Broyden
updating is the unique positive root ρn of the polynomial Pn(ρ).

For n = 1, both Broyden updating methods reduce to the classical secant
scheme, which is well known [27] to have the convergence order ρ1 = (1+

√

5)/2.
The larger n, the smaller ρn, and it was shown in [19] that asymptotically

P
−1

n (0) ∋ ρn ≈ 1 + ln(n)/n ≈
n
√

n

Here an ≈ bn means that the ratio an/bn tends to 1 as n goes to infinity. The
second approximation means that we may hope for n step convergence of order
n rather than just 2n step convergence of order 2 as suggested by the result of
Burmeister and Gay.

The first approximation implies that the efficiency index [28] in the sense of
Ostrowski (namely the logarithm of the R-order divided by the evaluation cost
and linear algebra effort per step) satisfies asymptotically

ln(ρn)

OPS(F ) +O(n2)
≈

ln(n)/n

OPS(F ) +O(n2)
≥

ln(2)

nOPS(F ) +O(n3)

The lower bound on the right-hand side represents Newton’s method with di-
vided difference approximation of the Jacobian, and dense refactorization at
each iteration. As we can see there is a chance for Broyden updating to yield
an efficiency index that is ln(n)/ ln(2) = log

2
n times larger than for Newton’s

method under similar conditions.

This hope may not be in vain since it was shown in [19] that the R-order
ρn is definitely achieved when the Jacobian is updated by the adjoint Broyden

formula

Bi = Bi−1 + rir
⊤
i (F

′(xi)−Bi−1)
/

r
⊤
i ri

However, this rank-one-update is at least twice as expensive to implement since
it involves the transposed product F

′(xi)
⊤
ri, which can be evaluated in the

reverse mode of Algorithmic Differentiation. The latter may be three times as
expensive as pure function evaluation, so that the efficiency gain on Newton’s
method can be bounded below by (log

2
n)/4 = log

16
n.
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Whether or not simple Broyden updating itself achieves the optimal R-order
ρn has apparently not yet been investigated carefully. To be fair, it should be
noted that taking roughly n/ log(n) simplified Newton steps before reevaluat-
ing and refactorizing the Jacobian in the style of Shamanskĭı [22], yields the
convergence order near 1 + n/ log(n) for any such cycle and the corresponding
effort is approximately [nOPS(F ) + O(n3)][1 + 1/ log(n)]. The resulting effi-
ciency index is asymptotically identical to the optimistic estimate for Broyden
updating derived above.

Pushing n to infinity

While Broyden updating is well established in codes for small and medium
scale problems, its usefulness for large dimensional problems is generally in
doubt. The first author who applied and analyzed Broyden’s method to a
control problem in Hilbert space was Ragnar Winther [31]. Formally, it is easy
to extend the Broyden method to an operator equation y = F (x) = 0 between
a pair of Hilbert spaces X and Y . One simply has to interpret transposition
as taking the adjoint so that v

⊤ represents a linear function in X = X
∗ such

that v⊤w ≡ 〈v, w〉 yields the inner product. The Good Broyden Update is still
uniquely characterized by the nondeterioration condition (4) in terms of the
operator norm ‖ · ‖. This implies bounded nondeterioration in the nonlinear
case and everything needed to derive local and linear convergence goes through.
However, the least change characterization and its consequences cannot be

extended, because there is no generalization of the Frobenius norm (3) and the
underlying inner product to the space B(X,Y ) of bounded linear operators.
To see this, we simply have to note that, in n dimensions, the Frobenius norm
of the identity operator is n, the sum of its eigenvalues. That sum would be
infinite for the identity on l

2, the space of square summable sequences to which
all separable Hilbert spaces are isomorphic. There is apparently also no other
inner product norm on B(X,Y ) that is at least as strong as the operator norm
so that the implication (5) would work.
These are not just technical problems in extending the superlinear result,

since X is infinite dimensional exactly when the unit ball and, equivalently,
its boundary, the unit sphere, are not compact. That means one can keep
generating unit directions s̄i ≡ si/‖si‖ along which the current approximation
Bi is quite wrong. Such an example with an orthogonal sequence of si was
given by Griewank [18]. There, on an affine bicontinuous problem, Broyden’s
method with full steps converges only linearly or not at all.
To derive the basic properties of Broyden’s method in Hilbert space we con-

sider an affine equation 0 = F (x) ≡ Ax− b with a bounded invertible operator
A ∈ B(Y,X). Then we have the discrepancies

Di = A
−1

Bi − I ∈ B(X,Y ) and Ei ≡ D
⊤
i Di ∈ B(X)

where D
⊤
i ∈ B(Y,X) denotes the adjoint operator to Di and we abbreviate

B(X) ≡ B(X,X) as usual. By definition, Ei is selfadjoint and positive semidef-
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inite. Now the Broyden good update can be rewritten as

Di+1 = Di

(

I − s̄is̄
⊤
i

)

=⇒ Ei+1 ≡ Ei − r̄ir̄i

with r̄i ≡ A
−1

ri/‖si‖.
In the finite dimensional case one could show that the Frobenius norm of the

Di decreases monotonically. Now we see that the operators Ei are obtained
from the E0 = D

⊤
0
D0 by the consistent subtraction of rank-one terms. Hence,

they have a selfadjoint semidefinite limit E∗. This implies, by a generalization
of the interlacing eigenvalue theorem, that the eigenvalues (λj(Ei))j=1...∞ of Ei

are monotonically declining towards their limits (λj(E∗))j=1...∞. Correspond-

ingly, we find for the singular values σj(Di) =
√

λj(Ei) of the Di that

σj(Di+1) ≤ σj(Di) and σj(Di) →
√

λj(E∗) for i → ∞

Similarly, it was proven by Fletcher that the BFGS update monotonically moves

all eigenvalues of the symmetric discrepancy B
−1/2
∗ BiB

−1/2
∗ − I between the

Hessian B∗ and its approximations Bi towards zero. With regards to conver-
gence speed it was shown in [18] for C

1,1 operator equations that Broyden’s
method yields locally

lim sup
i→∞

‖A
−1

Fi+1‖

/

‖A
−1

Fi‖ ≤ σ∞(D0) ≡ lim
j→∞

σj(D0)

In other words, the Q-factor is bounded by the essential spectrum σ∞(D0)
of the initial relative discrepancy D0 = A

−1
B0 − I. Hence, we must have

Q-superlinear convergence if D0 or, equivalently, just B0 − A is compact, an
assumption that is of course trivial in finite dimensions. Equivalently, we can
require the preconditioned discrepancy D0 to be compact or at least to have a
small essential norm. Thus we can conclude that Broyden updating will yield
reasonable convergence speed in Hilbert space if D0 is compact or has at least
a small essential norm σ∞(D0) = σ∞(Dj). It is well known that the essential
norm is unaffected by modifications of finite rank. On the other hand, all
singular values σj(D0) > σ∞(D0) are effectively taken out as far as the final
rate of convergence is concerned.

Limited memory and data sparse

For symmetric problems the idea of limited memory approximations to the
Hessian of the objective [24] has been a roaring success. In the unsymmetric
case things are not so clear. Whereas in the unconstrained, quadratic optimiza-
tion case conjugate gradients generates the same iterates as BFGS in an almost
memoryless way, there is, according to a result of Faber and Manteuffel [11],
no short recurrence for unsymmetric real problems. Correspondingly, the more
or less generic iterative solver GMRES for linear problems requires 2 i vectors
of storage for its first i iterations. The same appeared be true of Broyden’s
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method, where starting from a usually diagonal B0, one could store the secant
pairs (sj , yj) for j = 1 . . . i.

The same appeared be true for Broyden’s method in inverse form, where
starting from an usually diagonal H0 = B

−1

0
one could store the secant pairs

(sj , zj) with zj ≡ Hj−1yj for j = 1 . . . i. Then the inverse Hessian approxima-
tions have the product representation

Hi =

[

Hi−1 +
(si − zi)s

⊤
i Hi−1

s⊤i zi

]

=

i
∏

j=1

[

I +
(sj − zj)s

⊤
j

s⊤j zj

]

H0

Deuflhard et al. noticed in [10] that for the fullstep iteration successive sj

and sj+1 = −HjFj satisfy the relation sj+1 = (sj − zj)‖sj‖
2
/s

⊤
i zj . Hence,

one only needs to store the sj and one can then cheaply reconstruct the zj

for applying the inverse in product form to any vector v usually the current
residual Fi. Hence the storage requirement is only i + O(1) vectors of length
n up to the i-th iteration. In contrast the storage requirement for i iterations
of Bad Broyden appears to be twice as large [10], so at least in that sense the
derogatory naming convention is justified. In either case, one normally wishes
to limit the number of vectors to be stored a priori and thus one has to develop
strategies for identifying and discarding old information. This issue has been
extensively studied for the limited memory BFGS method and for Broyden
updating it has been the focus of a recent PhD thesis [30]. Usually one wishes
to get rid of information from earlier iterates because nonlinearity may render
it irrelevant or even misleading near the current iterates. On discretizations of
infinite dimensional problems, one may wish to discard all corrections of a size
close to the essential norm σ∞(D0), since no amount of updating can reduce
that threshhold.
In good Broyden updating the correction made to any row of the approxi-

mating Jacobian is completely independent of what goes on in the other rows.
In other words we are really updating the gradients ∇Fk of the component
functions Fk independently. That shows immediately that one can easily use
the method for approximating rectangular Jacobians F

′(x) for F : Rn
7→ Rm

with m independent of n. Also in updating the k−th row one can disregard all
variables that have no impact on Fk so that the corresponding Jacobian entries
are zero. The resulting sparse update is known as Schubert’s method [5]. The
least change characterization now applies in the linear subspace of matrices
with the appropriate sparsity pattern, and the whole BDM locally linear and
Q-superlinear convergence goes through without any modification. However,
since the update matrices Cj are now of high rank, there is no longer any ad-
vantage compared to Newton’s method with regards to the linear algebra effort
per step.
On the other hand, large sparse Jacobians can often be evaluated exactly,

possibly using algorithmic differentiation [16], at an entirely reasonable cost. In
particular it was found that none of the constraint Jacobians in the optimization
test collection CUTEr takes more than 18 times the effort of evaluating the
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vector functions of constraints themselves. Since the sparsity patterns also
tend to be quite regular, no methods based on Broyden type updating [15] can
here compete with methods based on exact derivatives values.

Whether or not that situation is really representative for problems from
applications is not entirely clear.
In any case we have to count the inability to effectively exploit sparsity as

part of the Bad about Broyden updating. Still, there is a lot of Good as well,
for which we have to thank primarily Charles Broyden, who passed away last
year at the age of 78 after an eventful life with various professional roles and
countries of residence.

Acknowledgement. The author is indebted to Jorge Moré, Trond Steihaug,
and other colleagues for discussions on the historical record.
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Carathéodory on the Road to the Maximum Principle

Hans Josef Pesch

Abstract. On his Royal Road of the Calculus of Variations1 the
genious Constantin Carathéodory found several exits – and missed at
least one – from the classical calculus of variations to modern optimal
control theory, at this time, not really knowing what this term means
and how important it later became for a wide range of applications.
How far Carathéodory drove into these exits will be highlighted in
this article. These exits are concerned with some of the most promi-
nent results in optimal control theory, the distinction between state
and control variables, the principle of optimality known as Bellman’s
equation, and the maximum principle. These acchievements either
can be found in Carathéodory’s work or are immediate consequences
of it and were published about two decades before optimal control the-
ory saw the light of day with the invention of the maximum principle
by the group around the famous Russian mathematician Pontryagin.

2010 Mathematics Subject Classification: 01A60, 49-03, 49K15
Keywords and Phrases: History of calculus of variations, history of
optimal control, maximum principle of optimal control, calculus of
variations, optimal control

1 On the road

Carathéodory’s striking idea was to head directly for a new sufficient condition
ignoring the historical way how the necessary and sufficient conditions of the
calculus of variations, known at that time, had been obtained.

This article contains material from the author’s paper: Carathéodory’s Royal Road of the

Calculus of Variations: Missed Exits to the Maximum Principle of Optimal Control Theory,
to appear in Numerical Algebra, Control and Optimization (NACO).

1Hermann Boerner coined the term “Königsweg der Variationsrechnung” in 1953; see
H. Boerner: Carathéodorys Eingang zur Variationsrechnung, Jahresbericht der Deutschen
Mathematiker Vereinigung, 56 (1953), 31–58. He habilitated 1934 under Carathéodory.
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Figure 1: Constantin Carathéodory – ΚωνσταντÐνος Καραθεοδορ¨ (1938)
(Born: 13 Sept. 1873 in Berlin, Died: 2 Feb. 1950 in Munich, Germany) and
Constantin Carathéodory and Thales from Milet on a Greek postage stamp
(Photograph courtesy of Mrs. Despina Carathéodory-Rodopoulou, daugh-
ter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-
Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκ-
δìσεις Κακτος, Athens, 2001.)

We follow, with slight modifications of the notation,2 Carathéodory’s book
of 1935, Chapter 12 “Simple Variational Problems in the Small” and Chap-
ter 18 “The Problem of Lagrange”.3

We begin with the description of Carathéodory’s Royal Road of the Calculus
of Variations directly for Lagrange problems that can be regarded as precursors
of optimal control problems. We will proceed only partly on his road, in partic-
ular we are aiming to Carathéodory’s form of Weierstrass’ necessary condition
in terms of the Hamilton function. For the complete road, see Carathéodory’s
original works already cited. Short compendia can be found in Pesch and Bu-
lirsch (1994) and Pesch (to appear), too.

Let us first introduce a C1-curve x = x(t) = (x1(t), . . . , xn(t))
⊤
, t′ ≤ t ≤ t

′′,
in an (n+ 1)-dimensional Euclidian space Rn+1. The line elements (t, x, ẋ) of
the curve are regarded as elements of a (2n+ 1)-dimensional Euclidian space,
say S2n+1.
Minimize

I(x) =

∫ t2

t1

L(t, x, ẋ) dt (1)

2We generally use the same symbols as Carathéodory, but use vector notation instead of
his component notation.

3The book was later translated into English in two parts (1965–67). The German edition
was last reprinted in 1994.
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subject to, for the sake of simplicity, fixed terminal conditions x(t1) = a and
x(t2) = b, t′ < t1 < t2 < t

′′, and subject to the implicit ordinary differential
equation

G(t, x, ẋ) = 0 (2)

with a real-valued C
2-function L = L(t, x, ẋ)4 and a p-vector-valued C

2-
functionG = G(t, x, ẋ) with p < n, both defined on an open domainA ⊂ S2n+1.
It is assumed that the Jacobian of G has full rank,

rank

(

∂Gk

∂ẋj

)

k=1,...,p
j=1,...,n

= p . (3)

1st Stage: Definition of extremals. Carathéodory firstly coins the term
extremal in a different way than today. According to him, an extremal is a
weak extremum of the problem (1), (2).5 Hence, it might be either a so-called
minimal or maximal.

2nd Stage: Legendre-Clebsch condition. Carathéodory then shows the
Legendre-Clebsch necessary condition

Lẋ ẋ(t, x, ẋ) must not be indefinite.

Herewith, positive (negative) regular, resp. singular line elements (t, x0, ẋ0) ∈ A

can be characterized by Lẋ ẋ(t, x0, ẋ0) being positive (negative) definite, resp.
positive (negative) semi-definite. Below we assume that all line elements are
positive regular. In today’s terminology: for fixed (t, x) the map v 7→ L(t, x, v)
has a positive definite Hessian Lvv(t, x, v).

3rd Stage: Existence of extremals and Carathéodory’s sufficient
condition. We consider a family of curves which is assumed to cover simply
a certain open domain of R ⊂ Rn+1 and to be defined, because of (3), by the
differential equation ẋ = ψ(t, x) with a C1-function ψ so that the constraint (2)
is satisfied. Carathéodory’s sufficient condition then reads as follows.

Theorem 1 (Sufficient condition). If a C
1-function ψ and a C

2-function

S(t, x) can be determined such that

L(t, x, ψ)− Sx(t, x)ψ(t, x) ≡ St(t, x), (4)

L(t, x, x′)− Sx(t, x)x
′
> St(t, x) (5)

4The twice continuous differentiability of L w. r. t. all variables will not be necessary right
from the start.

5In Carathéodory’s terminology, any two competing curves x(t) and x̄(t) must lie in a
close neighborhood, i.e., |x̄(t)− x(t)| < ǫ and |

˙̄x(t)− ẋ(t)| < η for positive constants ǫ and η.
The comparison curve x̄(t) is allowed to be continuous with only a piecewise continuous
derivative; in today’s terminology x̄ ∈ PC

1([t1, t2],Rn). All results can then be extended to
analytical comparison curves, if necessary, by the well-known Lemma of Smoothing Corners.
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Figure 2: Constantin Carathéodory as a boy (1883), as élève étranger of the
École Militaire de Belgique (1891), a type of military cadet institute, and
together with his father Stephanos who belonged to those Ottoman Greeks
who served the Sublime Porte as diplomats (1900) (Photographs courtesy of
Mrs. Despina Carathéodory-Rodopoulou, daughter of Carathéodory. See: ∆.
Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-Βασβατèκη: ΚωνσταντÐνος Καρα-
θεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκδìσεις Κακτος, Athens, 2001.)

for all x′, which satisfy the boundary conditions x′(t1) = a and x′(t2) = b and

the differential constraint G(t, x, x′) = 0, where |x′−ψ(t, x)| is sufficiently small

with |x
′
−ψ(t, x)| 6= 0 for the associated line elements (t, x, x′), t ∈ (t1, t2), then

the solutions of the boundary value problem ẋ = ψ(t, x), x(t1) = a, x(t2) = b

are minimals of the variational problem (1), (2).

2 Exit to Bellman’s Equation

Carathéodory stated verbatim (translated by the author from the German edi-
tion of 1935, p. 201 [for the unconstrained variational problem (1)]: According
to this last result, we must, in particular, try to determine the functions ψ(t, x)
and S(t, x) so that the expression

L
∗(t, x, x′) := L(t, x, x′)− St(t, x)− Sx(t, x)x

′
, (6)

considered as a function of x′, possesses a minimum for x′ = ψ(t, x), which,
moreover, has the value zero. In today’s terminology:

St = min
x′

{L(t, x, x′)− Sx x
′
} ; (7)

see also the English edition of 1965, Part 2) or the reprint of 1994, p. 201. This
equation became later known as Bellman’s equation and laid the foundation of
his Dynamic Programming Principle; see the 1954 paper of Bellman.6

6In Breitner: The Genesis of Differential Games in Light of Isaacs’ Contributions, J. of
Optimization Theory and Applications, 124 (2005), p. 540, there is an interesting comment
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Actually, the principle of optimality traces back to the founding years of
the Calculus of Variations,7 to Jacob Bernoulli. In his reply to the famous
brachistochrone problem8 by which his brother Johann founded this field in
16969, Jacob Bernoulli wrote:

Si curva ACEDB talis sit, quae requiritur, h.e. per quam descen-

dendo grave brevissimo tempore ex A ad B perveniat, atque in illa

assumantur duo puncta quantumlibet propinqua C & D: Dico, pro-

portionem Curvae CED omnium aliarum punctis C & D termi-

natarum Curvarum illam esse, quam grave post lapsum ex A bre-

vissimo quoque tempore emetiatur. Si dicas enim, breviori tem-

pore emetiri aliam CFD, breviori ergo emetietur ACFDB, quam

ACEDB, contra hypoth. (See Fig. 3.)

If ACEDB is the required curve, along which a heavy particle de-
scends under the action of the downward directing gravity from A

to B in shortest time, and if C andD are two arbitrarily close points
of the curve, the part CED of the curve is, among all other parts
having endpoints C and D, that part which a particle falling from A

under the action of gravity traverses in shortest time. Viz., if a dif-
ferent part CFD of the curve would be traversed in a shorter time,
the particle would traverse ACFDB in a shorter time as ACEDB,
in contrast to the hypothesis.

Jacob Bernoulli’s result was later formulated by Euler10 (Carathéodory: in one

of the most wonderful books that has ever been written about a mathematical

subject) as a theorem. Indeed, Jacob Bernoulli’s methods were so powerful and
general that they have inspired all his illustrious successors in the field of the
calculus of variations, and he himself was conscious of his outstanding results
which is testified in one of his most important papers (1701)11 (Carathéodory:

by W. H. Flemming: Concerning the matter of priority between Isaacs’ tenet of transition

and Bellman’s principle of optimality, my guess is that these were discovered independently,

even though Isaacs and Bellman were both at RAND at the same time . . . In the context of

calculus of variations, both dynamic programming and a principle of optimality are implicit

in Carathéodory’s earlier work, which Bellman overlooked. For more on Bellmann and his
role in the invention of the Maximum Principle, see Plail (1998) and Pesch and Plail (2009,
2012)

7For roots of the Calculus of Variations tracing back to antiquity, see Pesch (2012).
8Bernoulli, Jacob, Solutio Problematum Fraternorum, una cum Propositione reciproca

aliorum, Acta Eruditorum, pp. 211–217, 1697; see also Jacobi Bernoulli Basileensis Opera,
Cramer & Philibert, Geneva, Switzerland, Jac. Op. LXXV, pp. 768–778, 1744.

9Bernoulli, Johann, Problema novum ad cujus solutionem Mathematici invitantur, Acta
Eruditorum, pp. 269, 1696; see also Johannis Bernoulli Basileensis Opera Omnia, Bousquet,
Lausanne and Geneva, Switzerland, Joh. Op. XXX (pars), t. I, p. 161, 1742.

10Euler, L., Methodus inveniendi Lineas Curvas maximi minimive proprietate gaudentes,

sive Solutio Problematis Isoperimetrici latissimo sensu accepti, Bousquet, Lausanne and
Geneva, Switzerland, 1744; see also Leonhardi Euleri Opera Omnia, Ser. Prima, XXIV (ed.
by C. Carathéodory), Orell Fuessli, Turici, Switzerland, 1952.

11Bernoulli, Jacob, Analysis magni Problematis Isoperimetrici, Acta Eruditorum, pp. 213–
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Figure 3: Jacob Bernoulli’s figure for the proof of his principle of optimality

eine Leistung allerersten Ranges) not only by the dedication to the four math-
ematical heroes Marquis de l’Hôspital, Leibniz, Newton, and Fatio de Duillier,
but also by the very unusual and dignified closing of this paper:

Deo autem immortali, qui imperscrutabilem inexhaustae suae sapi-

entiae abyssum leviusculis radiis introspicere, & aliquousque rimari

concessit mortalibus, pro praestita nobis gratia sit laus, honos &

gloria in sempiterna secula.

Trans.: Verily be everlasting praise, honor and glory to eternal God

for the grace accorded man in granting mortals the goal of intro-

spection, by faint (or vain) lines, into the mysterious depths of His

Boundless knowledge and of discovery of it up to a certain point. –
This prayer contains a nice play upon words: radius means ray or
line as well as drawing pencil or also the slat by which the antique

mathematicians have drawn their figures into the green powdered

glass on the plates of their drawing tables.

For the Lagrange problem (1), (2), Eq. (7) reads as

St = min
x′ such that
G(t,x,x′)=0

{L(t, x, x′)− Sx x
′
} ; (8)

compare Carathéodory’s book of 1935, p. 349. Carathéodory considered only
unprescribed boundary conditions there.
Carathéodory’s elegant proof relys on so-called equivalent variational prob-

lems and is ommitted here; cf. Pesch (to appear).

3 On the road again

4th Stage: Fundamental equations of the calculus of variations.
This immediately leads to Carathéodory’s fundamental equations of the calcu-
lus of variations, here directly written for Lagrangian problems: Introducing

228, 1701; see also Jacobi Bernoulli Basileensis Opera, Cramer & Philibert, Geneva, Switzer-
land, Jac. Op. XCVI, pp. 895–920, 1744.
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the Lagrange function

M(t, x, ẋ, µ) := L(t, x, ẋ) + µ
⊤
G(t, x, ẋ)

with the p-dimensional Lagrange multiplier µ, the fundamental equations are

Sx =Mẋ(t, x, ψ, µ) , (9)

St =M(t, x, ψ, µ)−Mẋ(t, x, ψ, µ)ψ, (10)

G(t, x, ψ) = 0 . (11)

These equations can already be found in Carathéodory’s paper of 1926, al-
most 30 years prior to Bellman’s version of these equations. They constitute
necessary conditions for an extremal of (1), (2).

5th Stage: Necessary condition of Weierstrass. Replacing ψ by ẋ in
the right hand sides of (9)–(11), Weierstrass’ Excess Function for the Lagrange
problem (1), (2) is obtained as

E(t, x, ẋ, x′, µ) =M(t, x, x′, µ)−M(t, x, ẋ, µ)−Mẋ(t, x, ẋ, µ) (x
′
− ẋ) (12)

with line elements (t, x, ẋ) and (t, x, x′) both satisfying the constraint (2). By a
Taylor expansion, it can be easily seen that the validity of the Legendre-Clebsch
condition in a certain neighborhood of the line element (t, x, ẋ) is a sufficient
condition for the necessary condition of Weierstrass,

E(t, x, ẋ, x′, µ) ≥ 0 . (13)

The Legendre–Clebsch condition can then be formulated as follows: The min-
imum of the quadratic form

Q = ξ
⊤
Mẋ ẋ(t, x, ẋ, µ) ξ ,

subject to the constraint
∂G

∂ẋ
ξ = 0

on the sphere ‖ξ‖2 = 1, must be positive. This immediately implies
(

Mẋ ẋ G
⊤
ẋ

Gẋ 0

)

must be positive semi-definite . (14)

This result will play an important role when canonical coordinates are now
introduced.

6th Stage: Canonical coordinates and Hamilton function. New
variables are introduced by means of

y :=M
⊤
ẋ (t, x, ẋ, µ) , (15)

z := G(t, x, ẋ) =M
⊤
µ (t, x, ẋ, µ) . (16)
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Figure 4: Constantin Carathéodory in Göttingen (1904), his office in his home
in Munich-Bogenhausen, Rauchstraße 8, and in Munich (1932) in his home of-
fice (Photographs courtesy of Mrs. Despina Carathéodory-Rodopoulou, daugh-
ter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-
Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκ-
δìσεις Κακτος, Athens, 2001.)

Because of (14), these equations can be solved for ẋ and µ in a neighborhood
of a “minimal element” (t, x, ẋ, µ),12

ẋ = Φ(t, x, y, z) , (17)

µ = X(t, x, y, z) . (18)

Defining the Hamiltonian in canonical coordinates (t, x, y, z) by

H(t, x, y, z) = −M(t, x,Φ, X) + y
⊤ Φ+ z

⊤
X , (19)

the function H is at least twice continuously differentiable and there holds

Ht = −Mt , Hx = −Mx , Hy = Φ⊤
, Hz = X

⊤
. (20)

Letting H(t, x, y) = H(t, x, y, 0), the first three equations of (20) remain
valid for H instead of H. Alternatively, H can be obtained directly from
y = M

⊤
ẋ (t, x, ẋ, µ) and 0 = G(t, x, ẋ) because of (14) via the relations

ẋ = φ(t, x, y) and µ = χ(t, x, y),

H(t, x, y) = −L(t, x, φ(t, x, y)) + y
⊤
φ(t, x, y) . (21)

12Carathéodory has used only the term extremal element (t, x, ẋ, µ) depending whether the
matrix (14) is positive or negative semi-definite. For, there exists a p-parametric family of
extremals that touches oneself at a line element (t, x, ẋ). However, there is only one extremal
through a regular line element (t, x, ẋ).
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Note that φ is at least of class C1 because L ∈ C
2, hence H is at least C1, too.

The first derivatives of H are, by means of the identity y = L
⊤
ẋ (t, x, ẋ)

⊤,

Ht(t, x, y) = −Lt(x, y, φ) , Hx(t, x, y) = −Lx(t, x, φ),

Hy(t, x, y) = φ(t, x, y)⊤.

Therefore, H is even at least of class C2. This Hamilton function can also serve
to characterize the variational problem completely.

4 Missed exit to optimal control

7th Stage: Carathéodory’s closest approach to optimal control.
In Carathéodory’s book of 1935, p. 352, results are presented that can be in-
terpreted as introducing the distinction between state and control variables in
the implicit system of differential equations (2). Using an appropriate numera-
tion and partition x = (x(1), x(2)), x(1) := (x1, . . . , xp), x

(2) := (xp+1, . . . , xn),
Eq. (2) can be rewritten due to the rank condition (3):13

G(t, x, ẋ) = ẋ
(1)

−Ψ(t, x, ẋ(2)) = 0 .

By the above equation, the Hamiltonian (21) can be easily rewritten as

H(t, x, y) = −L̄(t, x, φ(2)) + y
(1)⊤

φ
(1) + y

(2)⊤
φ
(2) (22)

with L̄(t, x, φ(2)) := L(t, x,Ψ, φ(2))

and ẋ(1) = Ψ(t, x, φ(2)) = φ
(1)(t, x, y) and ẋ(2) = φ

(2)(t, x, y). This is exactly
the type of Hamiltonian known from optimal control theory. The canonical
variable y stands for the costate and ẋ

(2) for the remaining freedom of the
optimization problem (1), (2) later denoted by the control.
Nevertheless, the first formulation of a problem of the calculus of variations

as an optimal control problem, which can be designated justifiably so, can be
found in Hestenes’ RAND Memorandum of 1950. For more on Hestenes and
his contribution to the invention of the Maximum Principle, see Plail (1998)
and Pesch and Plail (2009, 2012).

8th Stage: Weierstrass’ necessary condition in terms of the
Hamiltonian. From Eqs. (13), (15), (16), (19), and (20) there follows
Carathéodory’s formulation of Weierstrass’ necessary condition which can be
interpreted as a precursor of the maximum principle

E = H(t, x, y)−H(t, x, y′)−Hy(t, x, y
′) (y − y

′) ≥ 0 , (23)

13The original version is Γk′ (t, xj , ẋj) = ẋk′ − Ψk′ (t, xj , ẋj′′ ) = 0, where k
′ = 1, . . . , p,

j = 1, . . . , n, j′′ = p+ 1, . . . , n. Note that Carathéodory used Γ in his book of 1935 instead
of G which he used in his paper of 1926 and which we have inherit here.
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where (t, x, y) and (t, x, y′) are the canonical coordinates of two line ele-
ments passing through the same point. This formula can already be found
in Carathéodory’s paper of 1926.
From here, there is only a short trip to the maximum principle, however

under the strong assumptions of the calculus of variations as have been also
posed by Hestenes (1950). For the general maximum principle see Bolyanskii,
Gamkrelidze, and Pontryagin (1956).

5 Side road to a maximum principle of Optimal Control Theory

In Pesch, Bulirsch (1994), a proof for the maximum principle was given for an
optimal control problem of type

∫ t2

t1

L(t, z, u) dt
!
= min subject to ż = g(t, z, u)

starting with Carathéodory’s representation of Weierstrass’ necessary condi-
tions (23) in terms of a Hamiltonian.
In the following we pursue a different way leading to the maximum principle

more directly, still under the too strong assumptions of the calculus of variations
as in Hestenes (1950). Herewith, we continue the tongue-in-cheek story on 300
years of Optimal Control by Sussmann and Willems (1997) by adding a little
new aspect.
Picking up the fact that ẋ = v(t, x) minimizes v 7→ L

∗
v(t, x, v), we are led

by (6) to the costate p = L
⊤
v (t, x, ẋ) [as in (15), now using the traditional

notation] and the Hamiltonian H,

H(t, x, p) = min
ẋ

{L(t, x, ẋ) + p
⊤
ẋ} .

Then Carathéodory’s fundamental equations read as follows

p = −S
⊤
x (t, x) , St = H(t, x, S⊤

x ) .

This is the standard form of the Hamiltonian in the context of the calculus of
variations leading to the Hamilton–Jacobi equation.
Following Sussmann and Willems (1997) we are led to the now maximizing

Hamiltonian (since we are aiming to a maximum principle), also denoted by H,

H(t, x, u, p) = −L(t, x, u) + p
⊤
u

with p = L
⊤
u (t, x, u) defined accordingly and the traditional notation for the

degree of freedom, the control ẋ = u, when we restrict ourselves, for the sake
of simplicity, to the most simplest case of differential constraints.
It is then obvious that H⊤

p = u as long as the curve x satisfies

ẋ(t) = H
⊤
p

(

t, x(t), ẋ(t), p(t)
)

. (24)
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By means of the Euler-Lagrange equation

d

dt
Lu(t, x, ẋ)− Lx(t, x, ẋ) = 0

and because of Hx = −Lx, we obtain

ṗ(t) = −H
⊤
x (t, x, ẋ, p(t)) . (25)

Furthermore, we see H⊤
u = −L

⊤
u + p = 0. Since the Hamiltonian H(t, x, u, p)

is equal to −L(t, x, u) plus a linear function in u, the strong Legendre–Clebsch
condition for now maximizing the functional (1) is equivalent to Huu < 0.
Hence H must have a maximum with respect to u along a curve (t, x(t), p(t))
defined by the above canonical equations (24), (25).
If L depends linearly on u, the maximization of H makes sense only in the

case of a constraint on the control u in form of a closed convex set Uad of
admissible controls, which would immediately yield the variational inequality

Hu(t, x, ū, p) (u− ū) ≤ 0 ∀u ∈ Uad (26)

along a candidate optimal trajectory x(t), p(t) satisfying the canonical equa-
tions (24), (25) with ū denoting the maximizer. That is the maximum principle
in its known modern form.
A missed exit from the royal road of the calculus of variations to the maxi-

mum principle of optimal control? Not at all! However, it could have been at
least a first indication of a new field of mathematics looming on the horizon.
See also Pesch (to appear).

6 Résumé

With Carathéodory’s own words:

I will be glad if I have succeeded in impressing the idea that it is not

only pleasant and entertaining to read at times the works of the old

mathematical authors, but that this may occasionally be of use for

the actual advancement of science. [. . . ] We have seen that even

under conditions which seem most favorable very important results

can be discarded for a long time and whirled away from the main

stream which is carrying the vessel science. [. . . ] It may happen

that the work of most celebrated men may be overlooked. If their

ideas are too far in advance of their time, and if the general public

is not prepared to accept them, these ideas may sleep for centuries

on the shelves of our libraries. [. . . ] But I can imagine that the

greater part of them is still sleeping and is awaiting the arrival of

the prince charming who will take them home.14

14On Aug. 31, 1936, at the meeting of the Mathematical Association of America in Cam-
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Figure 5: Constantin Carathéodory on a hike with his students at
Pullach in 1935 (Photographs courtesy of Mrs. Despina Carathéodory-
Rodopoulou, daughter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆.
ΒλαχοστεργÐου-Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του
Μον�χου, Εκδìσεις Κακτος, Athens, 2001.)
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The Cold War and

the Maximum Principle of Optimal Control

Hans Josef Pesch and Michael Plail

Abstract. By the end of World War II, the next global confronta-
tion emerged: the confrontation between the USA and the USSR and
their allies, so between the West and the East with their antagonistic
fundamental political values and their ideological contradiction. This
development may be seen as a consequence of Marxism-Leninism and
its claim for the world revolution or as a consequence of the political
and economical structure of the USA with its permanent pursuit of
new markets. All this had had also consequences for mathematicians,
because the flow of information, though not completely cut, was not
as easy as before. Looking positively at side effects, however, the
isolated research may have not been burdened by traditional think-
ing and that may have been fruitful. Russian mathematicians around
Pontryagin in the Steklov Institute got, with the maximum princi-
ple, new results beyond former frontiers while the Americans around
Hestenes at the RAND corporation were captured by the tradition of
the Chicago School of the Calculus of Variations. Nevertheless, both
groups paved the way for a new field in mathematics called Optimal
Control – and their protagonists fell out with each other inside their
groups.

2010 Mathematics Subject Classification: 01A60, 01A72, 01A79, 49-
03, 49K15, 00A06
Keywords and Phrases: History of optimal control, maximum princi-
ple of optimal control, optimal control

With the advent of the Cold War mathematicians were immediately involved
in the new global confrontation. A mathematical challenge of those times with

This article is an easy-to-read and considerably shortened version of the authors’ paper
entitled The Maximum Principle of Optimal Control: A History of Ingenious Ideas and

Missed Opportunities [see Pesch and Plail (2009)], enriched by some anectodes. The con-
clusions therein and also here are extracted from the second author’s monograph on the
development of optimal control theory from its commencements until it became an indepen-
dent discipline in mathematics; see Plail (1998).
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Figure 1: Johann Bernoulli’s price question of 1696 and its solution which
was realized in the Zernike Science Park of the University of Groningen. This
monument was erected in 1996 to honor one of the most famous former members
of its faculty, Johann Bernoulli, who had been a professor there from 1695 to
1705.

which they were confronted was: What is the optimal trajectory of an aircraft
that is to be steered from a given cruise position into a favorable position
against an attacking hostile aircraft? This problem became later known as
the minimum-time-to-climb problem. It is the problem of determining the
minimum-time aircraft trajectory between two fixed points in the range-altitude
space.
On the first glance, the answer to this question seems be easy. Every math-

ematician would immediately recognize its similarity to the famous prize ques-
tion of Johann Bernoulli from 1696: what is the curve of quickest descent
between two given points in a vertical plane (Fig. 1).1 This problem is con-
sidered to be the foundation stone of the Calculus of Variations to which so
many famous mathematicians have contributed as the Bernoulli brothers Ja-
cob and Johann, Euler, Lagrange, Legendre, Jacobi, Weierstrass, Hilbert, and
Carathéodory to mention only a few. Hence the calculus of variations should
help to find a solution. On the other hand there was something hidden in
those problems which was new and could not be revealed by the calculus of
variations.

1Bernoulli, Johann, Problema novum ad cujus solutionem Mathematici invitantur, Acta
Eruditorum, pp. 269, 1696; see also Johannis Bernoulli Basileensis Opera Omnia, Bousquet,
Lausanne and Geneva, Switzerland, Joh. Op. XXX (pars), t. I, p. 161, 1742.
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The following historical development will show that it is sometimes better
to know too little than too much. Unbelievable? In mathematics?

1 The protagonists

Who were the mathematicians in this competition? Well, there were Magnus
R. Hestenes (1906–1991), Rufus P. Isaacs (1914–1981), and Richard E. Bellman
(1920–1984) in the “blue corner” (see Fig. 2) and Lev Semyonovich Pontryagin
(1908–1988), Vladimir Grigorevich Boltyanskii (born 1925), and Revaz Valeri-
anovich Gamkrelidze (born 1927) in the “red corner” (see Fig. 3).

All members of the blue corner later complained about their missed oppor-
tunities. In contrast, the names of all members of the red corner will for ever
be connected with the maximum principle, since the proof of the maximum
principle designated the birth of a new field in applied mathematics named op-
timal control, which has, and continues to have, a great impact on optimization
theory and exciting applications in almost all fields of sciences.

2 How did it happen?

Initially, engineers attempted to tackle such minimum-time interception prob-
lems for fighter aircraft. Due to the increased speed of aircraft, nonlinear terms
no longer could be neglected. However, linearisation was not the preferred
method. The engineers confined themselves to simplified models and achieved
improvements step by step. For example, Angelo Miele’s (born 1922) solution
for a simplified flight path optimization problem from the 1950s (with the flight
path angle as control variable) exhibits an early example what later became
known as bang – singular – bang switching structure (in terms of aerospace
engineering: vertical zoom climb – a climb along a singular subarc – verti-
cal dive). As early as 1946, Dmitry Yevgenyevich Okhotsimsky (1921–2005)
solved the specific problem of a vertically ascending rocket to achieve a given
final altitude with a minimum initial mass.2 His solution consists of a motion
with maximum admissible thrust, an ascent with an optimal relation between
velocity and altitude, and finally a phase with thrust turned off.3

However, mathematicians like to have general solution methods, or at least
solution methods for a large class of equivalent problems.

2This problem was firstly posed by Georg Karl Wilhelm Hamel (1877–1954) in 1927.
Hamel’s and Okhotsimsky’s problem has to be distinguished from Robert Goddard’s (1882–
1945) earlier problem of 1919. In his problem the maximum altitude was sought which a
rocket can reach with a given initial mass. The rocket pioneer Goddard is the eponym of the
Goddard Space Flight Center in Greenbelt, Maryland.

3Okhotsimsky contributed to the planning of multiple space missions including launches
to Moon, Mars and Venus – and the launch of the first Sputnik satellite in 1957.
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Figure 2: The mathematicians at RAND: Magnus R. Hestenes, Rufus P. Isaacs,
and Richard E. Bellman (Credits: Magnus R. Hestenes: Thanks to Dr. Ronald
F. Boisvert, Mathematical and Computational Science Division of the Informa-
tion Technology Laboratory at the National Institute of Standards and Tech-
nology in Gaithersburg, Maryland, who got this photo as part of a collection
of photographs owned by John Todd (1911–2007), a professor of mathematics
and a pioneer in the field of numerical analysis. John Todd worked for the
British Admiralty during World War II. One of Todd’s greatest achievements
was the preservation of the Mathematical Research Institute of Oberwolfach in
Germany at the end of the war. Rufus P. Isaacs: Painting by Esther Freeman.
Thanks to Mrs. Rose Isaacs, Po-Lung Yu, and Michael Breitner; see P. L. Yu:
An appreciation of professor Rufus Isaacs. Journal of Optimization Theory and

Applications 27 (1), 1979, 1–6. Richard E. Bellman: http://www.usc.edu/

academe/faculty/research/ethical_conduct/index.html.)

3 The traditionalists

After the end of World War II, the RAND coorporation (Research ANd De-
velopment) was set up by the United States Army Air Force at Santa Monica,
California, as a nonprofit think tank focussing on global policy issues to offer
research and analysis to the United States armed forces. Around the turn of the
decade in 1950 and thereafter, RAND employed three great mathematicians,
partly at the same time.

3.1 Magnus R. Hestenes

Around 1950, Hestenes wrote his two famous RAND research memoranda
No. 100 and 102; see Hestenes (1949, 1950). In these reports, Hestenes de-
veloped a guideline for the numerical computation of minimum-time aircraft
trajectories. In particular, Hestenes’ memorandum RM-100 includes an early
formulation of what later became known as the maximum principle: the opti-
mal control vector (the angle of attack and the bank angle) has to be chosen
in such a way that it maximizes the so-called Hamiltonian function along a
minimizing trajectory.
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In his report, we already find the clear formalism of optimal control problems
with its separation into state and control variables. The state variables are
determined by differential equations, here the equations of motion of an aircraft.
The control variables represent the degrees of freedom which the pilot has in
hand to steer the aircraft – and, if mathematicians are sitting behind him, to
do this in an optimal way.
In the language of mathematics, Hestenes’ problem reads as follows:

d

dt
(m~v) = ~T + ~L+ ~D + ~W ,

dw

dt
= Ẇ (v, T, h) ,

where the lift vector ~L and the drag vector ~D are known functions of the
angle of attack α and the bank angle β; engineers have to give mathematicians
this information. The weight vector ~W has the length w, m is the vehicle’s
mass assumed to be constant due to the short maneuver time. The thrust
vector T is represented as a function of velocity v = |~v| and altitude h. Then
the trajectory is completely determined by the initial values of the position
vector ~r, the velocity vector ~v and the norm w of ~W as well as by the values
of α(t) and β(t) along the path.
The task now consists of determining the functions α(t) and β(t), t1 ≤ t ≤ t2,

in such a way that the flight time t2 is minimized with respect to all paths
which fulfill the differential equations and have prescribed initial and terminal
conditions for ~r(t1), ~v(t1), w(t1), ~r(t2), ~v(t2), and w(t2).

3.2 Richard E. Bellman and Rufus P. Isaacs

Also in the early 1950s, Richard Bellman worked at RAND on multi-stage
decision problems. Extending Bellman’s principle of optimality,4 it is possible
to derive a form of a maximum principle. Bellman in his autobiography:

I should have seen the application of dynamic programming to con-

trol theory several years before. I should have, but I did not.

One of Bellman’s achievements is his criticism of the calculus of variations
because of the impossibility of solving the resulting two-point boundary-value
problems for nonlinear differential equations at that time.
Finally, Isaacs, the father of differential games, complained with respect to

his “tenet of transition” from the early 1950s:

Once I felt that here was the heart of the subject . . . Later I felt that

it . . . was a mere truism. Thus in (my book) “Differential Games”

it is mentioned only by title. This I regret. I had no idea, that Pon-

tryagin’s principle and Bellman’s maximal principle (a special case

4based on Bellman’s equation which can already be found in Carathéodory’s earlier work
of 1926. See Pesch (2012) and the references cited therein.

Documenta Mathematica · Extra Volume ISMP (2012) 331–343



336 Hans Josef Pesch and Michael Plail

of the tenet, appearing little later in the RAND seminars) would

enjoy such widespread citation.

Indeed, Isaacs’ tenet represents an even more general minimaximum principle.
However, he had the greatness to understand:

The history of mathematics has often shown parallel evolution when

the time was ripe.

3.3 Priority quarrel in the blue corner

Concerning the matter of priority between Isaacs’ tenet of transition and Bell-
man’s principle of optimality, there was some level of contention between Isaacs
and Bellman, as the following personal remembrance of Isaacs’ colleague at
RAND, Wendell H. Fleming, indicates:

One day in the early 1950s, Bellman was giving a seminar at RAND

in which he solved some optimization problems by dynamic program-

ming. At the end of Bellman’s seminar lecture, Isaacs correctly

stated that this problem could also be solved by his own methods.

Bellman disagreed. After each of the two reiterated his own opinion

a few times, Isaacs said: “If the Bellman says it three times, it must

be true.” This quote refers to a line from Lewis Carroll’s nonsense

tail in verse “The Hunting of the Snark”. One of the main (and

other absurd) characters in this tale is called the Bellman.5

Last but not least, Hestenes also claimed in a letter to Saunders MacLane:

It turns out that I had formulated what is now known as the general

optimal control problem. I wrote it up as a RAND report and it

was widely circulated among engineers. I had intended to rewrite

the results for publication elsewhere and did so about 15 years later.

As a reason for the delay, he mentioned his workload as chairman at the Uni-
versity of Southern California and his duties at the Institute for Numerical
Analysis.

3.4 Sometimes it may be better to know less

Hestenes was a student of Gilbert Ames Bliss (1876–1951) and an academic
grandchild of Oskar Bolza (1857–1942)6 from the famous Chicago School of

5The Hunting of the Snark (An Agony in 8 Fits) is usually thought of as a nonsense
poem written by Lewis Carroll, the author of Alice’s Adventures in Wonderland. This
poem describes with infinite humour the impossible voyage of an improbable crew to find an

inconceivable creature; cf. Martin Gardner: The Annotated Snark, Penguin Books, 1974.
6Mathematicians like to track their academic relationships; cf. the Mathematics Genealogy

Project: http://genealogy.math.ndsu.nodak.edu/.
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the Calculus of Variations. Bolza in turn was a student of Felix Christian
Klein (1849–1925) and Karl Theodor Wilhelm Weierstrass (1815–1897). He
had attended Weierstrass’ famous 1879 lecture course on the calculus of vari-
ations. This course might have had a lasting effect on the direction Bolza’s
mathematical interests have taken and that he has passed on to his descen-
dants. In this tradition, Hestenes’ derivation of his maximum principle fully
relied on Weierstrass’ necessary condition (and the Euler-Lagrange equation),
in which the control functions are assumed to be continuous and to have val-
ues in an open control domain. These assumptions were natural for Hestenes’
illustrative example of minimum time interception, but have obfuscated the
potential of this principle.
It may be that Hestenes’ deep knowledge of the calculus of variations, stand-

ing in the tradition of the Chicago School, was his drawback. This may have
caused Hestenes not to find the hidden secrets behind those problems. Since
certain optimal control problems such as Hestenes’ interception problem can
be classified as problems of the calculus of variations, this may have prevented
him from separating his solution from that environment and generalizing his
idea to problems with bounded controls. A major concerns namely was that, in
aerospace engineering, the admissible controls cannot be assumed to lie always
in open sets. The optimal controls may also run partly along the boundaries
of those sets. This kind of problems were solved with short delay in the USSR.

Hence, it seems that sometimes it may be better to know less!

3.5 Merits

More important are Hestenes’ merits. Hestenes indeed expressed Weierstrass’
necessary condition as a maximum principle for the Hamiltonian. Herewith
he had observed the importance of Weierstrass’ condition for the theory of
optimal control. Six years before the work at the Steklov Institute in Moscow
began, the achievement of introducing a formulation that later became known
as the general control problem was adduced by Hestenes in his Report RM-100.
Nevertheless, this often has been credited to Pontryagin.7

Hestenes’ report was considered to be hardly distributed outside RAND.
However, there were many contacts between staff members of RAND engaged in
optimal control and those “optimizers” outside RAND. Therefore, the content
of RM-100 cannot be discounted as a flower that was hidden in the shade.
The different circulation of Hestenes’ RM-100 compared to Isaacs’ RM-257,
1391, 1399, 1411, and 1486 may have been caused by the fact that Hestenes’
memorandum contains instructions for engineers while Isaacs’ memoranda were
considered to be cryptic. To this Wendell H. Fleming meant:8

7First attemps to distinguish between state and control variables although not named this
way can be found in Carathéodory’s work; see Pesch (2012) and the references cited therein.

For an extensive estimation of Hestenes’ work considerating his surroundings and precon-
ditions see Plail (1998).

8on the occasion of the bestowal of the Isaacs Award by the International Society of
Dynamic Games in Sophia-Antipolis, France, in July 2006
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Figure 3: The mathematicians at Steklov: Lev Semyonovich Pontrya-
gin, Vladimir Grigor’evich Boltyanskii, and Revaz Valerianovich Gamkre-
lidze (Credits: Lev Semyonovich Pontryagin: http://www-history.mcs.

st-andrews.ac.uk/PictDisplay/Pontryagin.html. Vladimir Grigor’evich
Boltyanskii: From Boltyanskii’s former homepage at the Centro de Investi-
gación en Matemáticas, Guanajuato, Mexico. Revaz Valerianovich Gamkre-
lidze: Photo taken by the first author at the Banach Center Conference on 50
Years of Optimal Control in Bedlewo, Poland, September, 2008.)

One criticism made of Isaacs’ work was that it was not mathemat-

ically rigorous. He worked in the spirit of such great applied math-

ematicians as Laplace, producing dramatically new ideas which are

fundamentally correct without rigorous mathematical proofs.

4 The advant-gardists

4.1 Lev Semyonovich Pontryagin

Lev Semyonovich Pontryagin (1908–1988),9 already a leading mathematician
on the field of topology, decided to change his research interests radically
towards applied mathematics around 1952. He was additionally encouraged
by the fact that new serendipities in topology by the French mathematicians
Leray, Serre and Cartan came to the fore. In addition, he also was pressured
by M. V. Keldysh, director of the department of applied mathematics of the
Steklov Institute, and by the organisation of the Communist Party at the insti-
tute to change his research direction. Maybe they wanted these mathematicians
eventually to work for something more meaningful for the workers’ and peas-
ants’ state than topology. Contact was then made with Colonel Dobrohotov,
a professor at the military academy of aviation. In 1955, Pontryagin’s group
got together with members of the air force. As in the US, minimum time
interception problems were discussed.

9Pontryagin lost his eyesight as the result of an explosion at the age of about 14. His
mother wrote down his mathematical notes. Since she did not know the meaning or names
of all these mathematical “hieroglyphs”, they used a kind of a secret language to name them.
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Already prepared since 1952 by a seminar on oscillation theory and automatic
control that was conducted by Pontryagin and M. A. Aizerman, a prominent
specialist in automatic control, it was immediately clear that a time optimal
control problem was at hand there. However, to strengthen the applications,
engineers were also invited. In particular, A. A. Fel’dbaum and A. J. Lerner
focussed the attention on the importance of optimal processes of linear systems
for automatic control.

Pontryagin quickly noticed that Fel’dbaum’s method had to be generalized
in order to solve the problems posed by the military. The first important step
towards a solution was done by Pontryagin “during three sleepless nights”. A
little later already the first results could be published by Pontryagin and his
co-workers Boltyanskii and Gamkrelidze in 1956.

Their early form of the maximum principle (of 1956) presents itself in the
following form: Given the equations of motion

ẋ
i = f

i(x1, . . . , xn, u1, . . . , ur) = f
i(x, u)

and two points ξ0, ξ1 in the phase space x1, . . . , xn, an admissible control
vector u is to be chosen10 in such way that the phase point passes from the
position ξ0 to ξ1 in minimum time.

In 1956, Pontryagin and his co-workers wrote:

Hence, we have obtained the special case of the following general

principle, which we call maximum principle: the function

H(x, ψ, u) = ψα f
α(x, u)

shall have a maximum with respect to u for arbitrary, fixed x and ψ,

if the vector u changes in the closed domain Ω̄. We denote the

maximum by M(x, ψ). If the 2n-dimensional vector (x, ψ) is a

solution of the Hamiltonian system

ẋ
i = f

i(x, u) =
∂H

∂ψi
, i = 1, . . . , n ,

ψ̇i = −
∂f

α

∂xi
ψα = −

∂H

∂xi
,

and if the piecewise continuous vector u(t) fulfills, at any time, the

condition

H
(

x(t), ψ(t), u(t)
)

=M
(

x(t), ψ(t)
)

> 0 ,

then u(t) is an optimal control and x(t) is the associated, in the

small, optimal trajectory of the equations of motion.

10The letter u stands for the Russian word for control: upravlenie.

Documenta Mathematica · Extra Volume ISMP (2012) 331–343



340 Hans Josef Pesch and Michael Plail

-10

-5

0

5

10

-10 -5 0 5 10
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Figure 4: Phase diagram: optimal solution of the minimum-time harmonic
oszillator problem: minimize the terminal time tf subject to the differen-
tial equation ẍ + x = u with boundary conditions x(0) = x0, ẋ(0) = ẋ0,
x(tf ) = 0, and ẋ(tf ) = 0, and control constraint |u| ≤ 1. The problem al-
lows a complete analytical solution and, moreover, a synthesis, i.e., for any
given initial point (x(0) = x0 , ẋ(0) = ẋ0) in the phase plane, the orig-
ine (x(tf ) = 0 , ẋ(tf ) = 0) can be reached in minimum time tf by a finite
number of switches of the control u being of bang-bang type, i.e., it switches
when ever the trajectories cross the garland-like switching curve. Thereby, the
optimal control law satisfies a feedback law: the optimal value of u is −1 above
and +1 below the switching curve while the phase trajectories piecewise consist
of circles with shrinking radii.

This condition was immediately verified to be successful by means of problems
of the Bushaw-Fel’dbaum type, e.g., ẍ+ x = u. Such dynamical systems have
to be steered from any point of the phase plane ẋ vs. x to its origin in minimum
time, where the set of admissible control values is bounded by |u| ≤ 1. Just
take x to be the distance between the aircraft and the missile, you immediately
get an abstract planar aircombat problem. Its solution is described by Fig. 4.

4.2 Vladimir Grigor’evich Boltyanskii and Revaz Valerianovich
Gamkrelidze

Their first theorem on the Maximum Principle was not correct in general cases.
It is a necessary and sufficient condition only for linear problems (as proved by
Gamkrelidze, 1957, 1958). Later in 1958 Boltyanskii showed that the maximum
principle is only a necessary condition in the general case. He published the
proof first separately, later on together with Pontryagin and Gamkrelidze in
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1960. Boltyanskii’s proof was very intricate and required substantial knowledge
of different fields of mathematics. Indeed, Boltyanskii’s proof greatly influenced
the later development of the modern theory of extremal problems.11

The research efforts at the Steklov Institute led to a series of publications and
culminated in their famous book of 1961 which became a standard work of opti-
mal control theory until today. In 1962, Pontryagin, Boltyanskii, Gamkrelidze,
and the fourth author of that book, Evgenii Frolovich Mishchenko (1922–2010),
received the Lenin prize for their work.

Both Boltyanskii and Gamkrelidze concur in statements to the authors,
that the somehow comparable conditions of the calculus of variations were
not known during the development phase of the maximum principle, although
Bliss’ monograph of 1946 existed in a Russian translation from 1950.

Fortunately, the Pontryagin group did no know too much about the calculus
of variations.

4.3 Priority quarrel in the red corner

Boltyanskii claimed the version of the maximum principle as a necessary con-
dition to be his own contribution and described how Pontryagin hampered his
publication. He said Pontryagin intended to publish the results under the name
of four authors. After Boltyanskii refused to do so, he was allowed to publish
his results in 1958 but said that he had to praise Pontryagin’s contribution dis-
proportionally and had to call the principle Pontryagin’s maximum principle.
According to Boltyanskii, Rozonoér, an engineer, was encouraged to publish
a tripartite work on the maximum principle in Avtomatika i Telemekhanika

in 1959, in order to disseminate the knowledge of the maximum principle in
engineering circles and to contribute this way to the honour of Pontryagin as
discoverer of the maximum principle.

This priority argument may be based on the fact that Pontryagin wanted
to aim for a globally sufficient condition after Gamkrelidze’s proof of a locally
sufficient condition, and not to a necessary condition as it turned out to be after
Boltyanskii’s proof. Boltyanskii may have felt very uncomfortable to write in
his monograph:

The maximum principle was articulated as hypothesis by Pontrya-

gin. Herewith he gave the decisive impetus for the development of

the theory of optimal processes. Therefore the theorem in question

and the closely related statements are called Pontryagin’s maximum

principle in the entire world – and rightly so.

Boltyanskii felt suppressed and cheated of the international recognition of his
achievements. After the break-up of the USSR, Boltyanskii was able to extend
his fight for the deserved recognition of his work.

11For precursors of Boltyankii’s proof and their influences see Plail (1998).
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Gamkrelidze held a different view:12

My life was a series of missed opportunities, but one opportunity, I

have not missed, to have met Pontryagin.

For traces of the Maximum Principle before the time covered here, see
Plail (1998), Pesch and Plail (2009) as well as Pesch (2012) and the references
cited therein.

4.4 Distinctions

Pontryagin received many honours for his work. He was elected a member of
the Academy of Sciences in 1939, and became a full member in 1959. In 1941 he
was one of the first recipients of the Stalin prize (later called the State Prize).
He was honoured in 1970 by being elected Vice-President of the International
Mathematical Union.

5 Résumé

Hestenes, Bellman, and Isaacs as well as Pontryagin and his co-workers Boltyan-
skii and Gamkrelidze have not exclusively contributed to the development of
optimal control theory, but their works were milestones on the way to modern
optimal control theory. Their works are examples for demanding mathematical
achievements with a tremendous application potential, today no longer solely
in the military sector or in aeronautics, but also for many industrial appli-
cations. Today the second step after the numerical simulation of complicated
nonlinear processes often requires an optimization post-processing. Not seldom
side conditions as differential equations and other constraints must be taken
into account for real-life models. Optimal control definitely is the germ cell
of all those new fields in continuous optimization that have recently developed
such as optimal control with partial differential equations or shape, respectively
topology optimization, which are continuously contributing to the accretive role
of mathematics for the development of present and future key technologies.
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The Princess and Infinite-Dimensional Optimization

Hans Josef Pesch

Abstract. Traces of infinite-dimensional optimization can be
sourced to ancient Greek mathematics. According to a legend the
knowledge about the solution of such kind of problems helped on
the foundation of Carthage, and today’s new subfields of infinite-
dimensional optimization such as optimal control, shape or topology
optimization are indispensable in propelling present and future tech-
nological developments.

2010 Mathematics Subject Classification: 00A05, 01A20, 01A45, 49-
03, 49J27
Keywords and Phrases: Ancient Greek mathematics, infinite-
dimensional optimization, calculus of variations, optimal control,
shape optimization

The wish for optimization seems to be deeply grounded in mankind. How often
somebody says proudly: “Now I have optimized it again!” [for example, the
author’s spouse or colleagues from engineering departments, etc. The author
will not comment here on the word “again”.] Hence there must be traces of
optimization deep in human history.
Like most mathematicians, the author likes to trace the roots of his own

research area and to search for his scientific ancestors and funny stories around
them. Therefore, this article tries to answer the question “What is the first
infinite-dimensional constrained optimization problem?”. But the reader may
be warned. The answer may come from a subjective viewpoint and may be
affected by the “optimization of the attractiveness” of the stories behind these
questions.
For the non-experts, in infinite-dimensional optimization we want to find

optimal solutions of problems where the optimization variables are elements of
infinite-dimensional spaces or even more complicated objects such as functions,
curves, sets, shapes, topologies etc. The search for extremal points of real-
valued functions of real variables known from school is not meant. At a first
glance, this may indicate that we cannot go back farther than to the invention
of calculus by Leibniz and Newton at the end of the 17th century. However,
this is not true as we will see.
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1 Renaissance in mathematics

Johann Bernoulli’s price question (acutissimis qui toto Orbe florent mathe-
maticis, for the most astucious mathematicians of the entire globe)1 may come
into mind first: “What is the curve of quickest descent between two given
fixed points in a vertical plane?” (1696) and Newton’s problem: “What is
the shape of a body of minimum resistance?” (1687).2 The first problem was
created by Johann Bernoulli to tease his older brother Jacob from whom he
knew that he was working on those kind of problems and Johann hoped that
his brother and teacher would not be able to find an answer. He erred; see,
e.g., Goldstine (1980).
Both problems are typical infinite-dimensional problems. Their analytical

solution is even today not possible without a solid knowledge of calculus, a few
years earlier invented by Leibniz (1684),3 resp. Newton (1736).4

Johann Bernoulli’s problem reads as follows, cp. Fig. 1:

inf
y∈Yad

1
√

2 g

∫ xB

0

√

1 + (y′(x))2
√

−y(x)
dx ,

where the set of admissible functions Yad is defined by

Yad :=
{

y is continuous on [0, xB ] and continuously differentiable on (0, xB)

with prescribed boundary conditions y(0) = 0 and y(xB) = yB

}

.

Here g denotes the Earth’s gravitational acceleration.
Sir Isaac Newton’s problem reads as follows: the total resistance of particles

that hit the body (nose of the aircraft or its airfoils; see Fig. 9) exactly once
and transfer their momentum to the body, is the sum over the body of these
transfers of momentum:

inf
y∈Yad

∫

Ω

dx

1 + ‖∇y(x)‖22
,

with

Yad := {y : Ω → [0,M ] ⊂ R : Ω ⊂ R2 bounded and y concave} .

1Bernoulli, Johann, Problema novum ad cujus solutionem Mathematici invitantur, Acta
Eruditorum, pp. 269, 1696; see also Johannis Bernoulli Basileensis Opera Omnia, Bousquet,
Lausanne and Geneva, Switzerland, Joh. Op. XXX (pars), t. I, p. 161, 1742.

2Newton, Isaac: Philosophiae Naturalis Principia Mathematica, submitted 1686 to the
Royal Society, published 1687, 2nd ed. 1713, 3rd ed. 1726, commented 3rd ed. by the Fran-
ciscans Thomas Le Seur and François Jacquier using Leibniz’ calculus (!), 1739–1742.

3Leibniz, Gottfried Wilhelm: Nova methodus pro maximis et minimis, itemque tangen-

tibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi

genus, Acta Eruditorum, 1984.
4Newton, Isaac: The method of Fluxions and Infinite Series with its Application to the

Geometry of Curve-lines, 1736. Newton’s work was already existent and ready for press in
1671 (in Latin). The English translation, however, appeared not until 1736 after Newton’s
death. This has contributed to the priority quarrel between Newton and Leibniz; see, e.g.,
Wußing (2009), p. 471ff, and the references cited therein.
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x

xB

y

yB

A(0, 0)

B(xB , yB)

s

∆s

∆x

∆y

time t

time t+∆t

Pythagoras:

∆s =
√

∆x2 +∆y2 =

√

1 + ∆y
∆x

2
∆x (∆x 6= 0)

Galilei:

v = ∆s
∆t =

√

2 g
√

−y

Time of fall:

∆t = 1√
2 g

∆s√
−y

= 1√
2 g

√

1+(∆y

∆x )
2

√
−y

∆x

Figure 1: Bernoulli’s Brachistochrone Problem: Pythagoras’ theorem, Galilei’s
law of free fall and a summation over all infinitesimal time intervals ∆t yields
the minimization problem. For its solution, Johann Bernoulli applied the idea
of discretization and associated the curve of quickest descent with a ray of
light through layers of different media and the fall velocity with the speed
of light. By Fermat’s principle of least time, resp. Snell’s law of refraction,

Johann Bernoulli derived the differential equation y(x)
(

1 + (y′(x))
2
)

= −2 r,

r > 0, as necessary condition, the solutions of which were known to be cycloids:
x(θ) = r (θ − sin θ), y(θ) = −r (1− cos θ), 0 ≤ θ ≤ θB , with r and θB defined
by the terminal conditions x(θB) = xB and y(θB) = yB .

Newton: I reckon that this proposition will be not without application in the
building of ships.2

This old problem is still inspiring current research; see, e.g., Buttazzo
et. al. (1993) and Lachand-Robert and Peletier (2001).

In his famous reply5 to the problem of his younger brother Johann, Jacob
Bernoulli posed the following even more difficult problem: “What is the shape
of the planar closed curve, resp. of the associated bounded set surrounded by

5Bernoulli, Jacob, Solutio Problematum Fraternorum, una cum Propositione reciproca
aliorum, Acta Eruditorum, pp. 211–217, 1697; see also Jacobi Bernoulli Basileensis Opera,
Cramer & Philibert, Geneva, Switzerland, Jac. Op. LXXV, pp. 768–778, 1744.
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this curve that contains the maximum area while its perimeter is restricted?”,

inf
γ∈Γad

∫ b

a

(

x
dy

dt
− y

dx

dt

)

dt ,

where the set Γad of admissible curves is given by

Γad :=







γ : [a, b] ∋ t 7→

(

x(t)
y(t)

)

∈ R2 :

∫ b

a

√

(

dy

dt

)2

+

(

dy

dt

)2

dt = L > 0







.

Or, more generally, in modern mathematical language

sup
Ω∈Oad

∫

Ω

dx

with the set Oad of all admissible sets given by

Oad := {Ω ⊂ Rn : Ω bounded , n ∈ N , and

∫

∂Ω

ds = L > 0} .

Here, ∂Ω denotes the (sufficiently smooth) boundary of the set Ω, and L is a
given positive constant determining the perimeter, resp. surface.

In all these problem statements, we are searching for a minimizer or max-
imizer being an element of an infinite-dimensional (huge) “something” where
the criterion which is to be optimized depends on those objects. In addition,
restrictions must be obeyed. Using an appropriate interpretation, all these
problems can be considered to be the mother problems of important fields of
continuous optimization: the classical Calculus of Variations, a playground of
such mathematical heros like Euler, Lagrange, Legendre, Jacobi, Weierstrass,
Hilbert, and Carathéodory, and the modern theories of optimal control (Fig. 2),
an offspring of the Cold War [Pesch and Plail (2012)], and the rather current
fields shape, resp. topology optimization.
This first so-called isoperimetric problem of Jacob Bernoulli is known as

Dido’s problem in the mathematical literature. This points to an antique origin
even far before the turn from the 17th to the 18th century, far before the times
of those mathematical pioneers Leibniz, Newton, and the Bernoulli brothers.
Hence this problem, at least a simplified version of it, must be solvable by
geometric means, too.

2 Florescence in mathematics in antiquity

Indeed, the first isoperimetric problem, more complicated than Euclid’s earlier
theorem6 saying that the rectangle of maximum area with given perimeter is

6Little is known about Euclid’s life, but we have more of his writings than of any other
ancient mathematician. Euclid was living in Alexandria about 300 B.C.E. based on a passage
in Proclus’ Commentary on the First Book of Euclid’s Elements; cp. http://aleph0.clarku.
edu/~djoyce/java/elements/Euclid.html.
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x1

x1B

x2

x2B

A(0, 0)

B(x1B , x2B)

vx1(t)

vx2(t)

u(t)

v(t)

local horizontal

M at time t

Formulation as optimal control:

minu∈Uad

∫ tf
0

1 dt

subject to the constraints:

ẋ1(t) =
√

2 g
√

−x2(t) cosu(t)

ẋ2(t) =
√

2 g
√

−x2(t) sinu(t)

x1(0) = 0 , x2(0) = 0

x1(tf ) = x1B , x2(tf ) = x2B

Figure 2: The Brachistochrone problem formulated as problem of optimal
control with the class Uad of admissible controls (slopes) defined by Uad :=
{u : [0, tf ] → (0, 2π) : u continuous}. The optimal control u∗ is determined
by the minimum principle: u∗(t) = argminu∈Uad

H(x(t),p(t), u) with the state
vector x := (x1, x2)

⊤ and the adjoint state vector p := (p1, p2)
⊤. Hereby, the

Hamiltonian is defined by H(x,p, u) := 1 +
√

2 g
√

−x2 (p1 cosu+ p2 sinu)
and the adjoint state vector p must satisfy the canonical equation ṗ = −Hx.

the square, came down to us in written form by Theon Alexandreus7 in his
commentaries on Klaudios Ptolemaios’8 Mathematical Syntaxis, a handbook of
astronomy called Almagest.9 In this syntaxis one can find a theorem which is

7Theon Alexandreus: ∗ about 335 C.E. probably in Alexandria, † ca. 405 C.E.; see. e.g.,
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Theon.html.
He edited Euclid’s Elements, published around 364 C.E., authoritative into the 19th century.
His daughter Hypatia (∗ about 351 C.E., about † ca. 370 C.E.; cf. Fig. 7) also won fame as
the first historically noted women in mathematics. She was murdered by a Christian mob
after being accused of witchcraft.
For more see http://www-history.mcs.st-and.ac.uk/Biographies/Hypatia.html.

8Klaudios Ptolemaios: ∗ about. 85–100 C.E. in Upper Egypt, † about 165–
180 C.E. in Alexandria; see, e.g., http://www-groups.dcs.st-andrews.ac.uk/~history/

Mathematicians/Ptolemy.html. In contrast to Aristarchos of Samos and Seleukos of Se-
leukia, who both already pleaded the heliocentric system, Ptolemaios held on the geocentric
system.

9See http://en.wikipedia.org/wiki/Almagest.
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Figure 3: Zenodoros’ theorem in a fourteenth century manuscript of the city
library of Nuremberg (Cod. Nür. Cent. V App. 8, detail of p. 58r).

accredited to Zenodoros, but may be even older.10 See also Heath (1981).
It is cited there from Zenodoros’ treatise “ΠερÈ Êσοµèτρων σχηµ�των” (On

isometric figures) of about the 2nd century B.C.E.:
In the middle of the antepenultimate line of Fig. 3, we can read:

ÃΩσαÔτως δ' îτι τÀν Òσην περÐµετρον âχìντων σχηµ�των διαφìρων,
âπειδ� µεÐζον� âστι τ� πολυγωνι¸τερα, τÀν µàν âπιπèδων å κÔκλος
[ligature ⊙] γÐνεται µεÐζων, τÀν δà στερεÀν � σφαØρα [ligature ˜⊕].
Ποιησìµεθα δ� τ�ν τοÔτων �πìδειcιν âν âπιτοµ ù̈ âκ τÀν Ζηνοδ¸ρωú
δεδειγµèνων âν τÀú `ΠερÈ Êσοµèτρων σχηµ�των'.

Just as well, since those of different figures which have the same
contour are larger which have more angles, the circle is larger than
the (other) plane figures and the sphere than the (other) solids. We
are going to present the proof for this in an extract of the arguments
as has been given by Zenodoros in his work ‘On isometric figures’.

Figure 4 shows the entire page No. 58r with Zenodoros’ theorem in a fourteenth
century manuscript of the city library of Nuremberg. The reverse side shows his
proof whose elegance was praised by Carathéodory.11 For Zenodoros’ proof in
modern mathematical language and other proofs of his theorem, it is referred
to Bl̊asjö (2005). This ancient problem also still inspires mathematicians until
today; see, e.g., Almeida et. al. (2012) for a very recent contribution.
This codex was in possession of the Lower-Franconian mathematician and

astronomer Johannes Müller better known as Regiomontanus,12 who received

10Zenodoros: ∗ about 200 B.C.E. in Athen, † about 140 B.C. in Greece; see. e.g., http://
www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Zenodorus.html.

11Carathéodory, C.: Basel und der Beginn der Variationsrechnung, publication in honor
of the sixtieth birthday of Professor Dr. Andreas Speiser, Zürich, Switzerland, 1945; see also
Carathéodory, C.: Gesammelte Mathematische Schriften 2, C. H. Beck’sche Verlagsbuch-
handlung, Munich, Germany, pp. 108–128, 1955.

12Johannes Müller (Regiomontanus): ∗ 1436 in Königsberg in Bavaria, † 1476 in
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Figure 4: Zenodoros’ theorem in a fourteenth century manuscript of the city
library of Nuremberg (Cod. Nür. Cent. V App. 8, p. 58r), entire page.

it as a gift from his patron Cardinal Johannes Bessarion, titular patriarch of
Constantinople. The codex served as the original printing copy for the editio
princeps of 1538 published in Basel.
Already hundreds of years before Zenodoros’ theorem was proven, “engineer-

ing intuition” brought the Phoenician princess Elissa (Roman: Dido) of Tyros,
today Sur, Lebanon, to take advantage of it. According to a legend,13 Dido
was on the run from her power-hungry brother Pygmalion, who already had
ordered the murder of her husband Acerbas and strived for her life and wealth.
Dido with her abiders came, on a sail boat, to the shores of North Africa in
the region of today’s Tunis, Tunesia at around 800 B.C.E. The local habitans
were friendly, but did not want to have the armed strangers in their vicinity

Rome; see, e.g., http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/

Regiomontanus.html.
Regiomontanus is the Latin word for his native town Königsberg (it is not the famous Königs-
berg in Prussia, today’s Kaliningrad, Russia, which gave Euler’s Problem of the Seven Bridges
of Königsberg its name.

13The legend seems to be apocryphal and may be fictious, but very appropriately invented
for the Ionian-Greek word � βÜρσα meaning oxhide.
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Figure 5: The Punic Carthage and Zenodoros’ optimal solution as realized by
Dido. Surely Dido has chosen a piece of land by the coast so as to exploit the
shore as part of the perimeter

permanently. Therefore the resourceful princess asked the local king Iarbas for
a small amount of grassland for their livestock, only so small that it can be cov-
ered by an oxhide. Iarbas laughed and could not refuse Dido’s modest request.
Dido then cut the hide into thin strips (Fig. 6), encircled a large area (Fig. 5)
on which their fellows erected the new city Qart-Hadašt (Phoenician for new
city) with the citadel Byrsa, from which the ancient superpower Carthage later
developed.
So far the first part of the legend. We will omit here the tragic lovestory

between Dido and the Trojan hero Aeneas, who came to Dido’s adopted home
after his fly from Troja. He left her by command of Jupiter whereupon Dido
threw herself into the flames of the fire by which she burned all things that
Aeneas and his compagnions left behind. This curse is said to be the source for
the later enmity between Rome and Carthage.
The legend of the founding of Carthage was sung by Publius Vergilius Maro14

in his famous Aeneid (book one, verses 365–368):

devenere locos, ubi nunc ingentia cernis
moenia surgentemque novae Karthaginis arcem,
mercatique solum, facti de nomine Byrsam,
taurino quantum possent circumdare tergo.

and in English verses, perpetuating the hexameter, from the translation of the
famous English poet John Dryden, a contemporary of the Bernoulli Brothers:

At last they landed, where from far your Eyes
May view the Turrets of new Carthage rise:

14Publius Vergilius Maro, Roman poet: ∗ 70 B.C.E. in Andes (Pietole?) near Mantua,
† 19 B.C.E. in Brundisium (Brindisi)
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Figure 6: Dido purchases land for the foundation of Carthage, engraving by
Mathias Merian the elder from Historische Chronica, Frankfurt a.M., 1630.

There bought a space of Ground, which ‘Byrsa’ call’d
From the Bull’s hide, they first inclos’d, and wall’d.

or in an older translation by the sixteenth century authors Thomas Phaer and
Thomas Twyne:

Than past they forth and here they came, where now thou shalt espie
The hugy walles of new Carthage that now they rere so hie.
They bought the soile and Birsa it cald whan first they did begin,
As much as with a bull hide cut they could inclose within.

3 Florescence in mathematics today

Back to present and future: What is the optimal shape of a very fast aircraft,
say which is able to fly at supersonic speed with minimal drag? Indeed, that
is a modern version of Dido’s problem. Figure 8 shows effects of aerodynamic
drag minimizing on airfoil and body of a supersonic cruise transporter due to
Brezillon and Gauger (2004).
More challenges are waiting such as fuel optimization of aircraft using lam-

inar flow airfoils with blowing and sucking devices or using morphing shape
airfoils with smart materials and adaptive structures built-in. Figure 9 shows
the, in this sense, non-optimized flow around the Airbus A 380 computed by
numerical simulation. Optimization with those respects may be next steps for
which infinite-dimensional optimization in various specifications must be em-
ployed: optimal control of ordinary and partial differential equations as well as
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Figure 7: Hypathia, detail of The Schooll of Athens’ by Raphael

shape and topology optimization. Their roots can be traced, tongue-in-cheek,
to the renaissance of mathematics with the invention of calculus and even as
far as to the geometricians in antiquity.

Figure 8: Drag minimization for the EUROSUP SCT (supersonic cruise trans-
porter) at Mach number 2: Optimized shape geometry (upper wing) versus ini-
tial design (lower wing) with local flow Mach number distribution. The strong
shock on the wing could be reduced. [Brezillon, Gauger (2004)] (Copyright:
Prof. Dr. Nicolas Gauger, Head of Computational Mathematics Group, De-
partment of Mathematics and Center for Computational Engineering Science,
RWTH Aachen University, Aachen, Germany)
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Figure 9: Numerical flow simulation for the Airbus A380 (picture credit: Airbus.
Copyright: Dr. Klaus Becker, Senior Manager Aerodynamic Strategies, EGAA,
Airbus, Bremen, Germany)

Mathematical optimization has become and will continue to be an important
tool in modern high technology. Mathematics in total has even become a key
technology by itself.
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Computing Stories

Optimization theory has existed before computers were invented, but the ex-
pansion of optimization and its wide range of applications was only possible
due to the enormous growth and accessibility of modern computing machinery.

To address the importance of computing theory and practice for optimiza-
tion I have asked four authors to cover some of these aspects. One article is
on the history of NP-completeness where, for instance, some new insights into
the prehistory of this important concept can be found. Another article is on
the history of optimization modeling systems which are tools helping users to
employ optimization algorithms efficiently. This is an area usually neglected
by academic researchers but of high relevance for practitioners. A third ar-
ticle deals with the history of the reverse mode of differentiation, which is
a methodology supporting, in particular, continuous optimization techniques
by improving the information flow, memory management, sensitivity analysis,
error estimation, conditioning, etc. Finally, the history of “Moore’s Law” is re-
viewed that describes/postulates the exponential growth of computing power.
How long will it stay alive?
The history of computing hardware is long and surveyed in many books and

articles. One driving force of the computing machine development has always
been the aim to reduce the effort necessary to carry out long calculations.
Leibniz, for instance, stated: “It is unworthy of excellent men to lose hours like
slaves in the labor of calculation which could safely be relegated to anyone else
if machines were used.” Leibniz himself made significant contributions to the
design of mechanical computing devices.
Today, it is generally accepted that Konrad Zuse (1910–1995) built the first

program-controlled computing machine in the world. Zuse studied civil en-
gineering and earned his Diploma in 1935 at Technische Hochschule Berlin-
Charlottenburg (today TU Berlin). He was annoyed by the repetitive statics
calculations and decided to automate these procedures. His first computer, the
Z1 finished in 1938, was mechanical. His Z3 was operational in 1941; it had the
same logic design as the Z1, but used electrical components. It was a fully digi-
tal, floating-point, programmable machine. There are various Internet archives
that document Zuse’s achievements in detail. I recommend http://www.zib.

de/zuse/home.php, maintained by Raul Rojas, and the Web page http://

www.zuse.org of Horst Zuse, Konrad’s son, that also provides numerous doc-
uments about his father and the computer technology he invented. Konrad
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Figure 1: Zuse memorial plate
http://en.wikipedia.org/wiki/File:

Gedenktafel_Methfesselstr_10_(Kreuzb)_Konrad_Zuse.JPG

Zuse did most of his work in the prewar time in the living room of his parents,
see Fig. 1, in intellectual isolation, assisted and financially supported by his
family and a few friends only. Zuse has been honored, e.g., by naming the
Konrad-Zuse-Zentrum für Informationstechnik Berlin after him.

Martin Grötschel
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A Brief History of NP-Completeness, 1954–2012

David S. Johnson

2010 Mathematics Subject Classification: 68-03, 68Q17, 68Q25,
68W25, 90C05, 90C22
Keywords and Phrases: NP-completeness, polynomial time, approxi-
mation algorithms, bin packing, unique games conjecture

The year 2012 marks the 40th anniversary of the publication of the influen-
tial paper “Reducibility among combinatorial problems” by Richard Karp [37].
This paper was the first to demonstrate the wide applicability of the concept
now known as NP-completeness, which had been introduced the previous year
by Stephen Cook and Leonid Levin, independently. 2012 also marks the 100th
anniversary of the birth of Alan Turing, whose invention of what is now known
as the “Turing machine” underlay that concept. In this chapter, I shall briefly
sketch the history and pre-history of NP-completeness (with pictures), and
provide a brief personal survey of the developments in the theory over the
last 40 years and their impact (or lack thereof) on the practice and theory of
optimization. I assume the reader is familiar with the basic concepts of NP-
completeness, P, and NP, although I hope the story will still be interesting to
those with only a fuzzy recollection of the definitions.

The New Prehistory

When the Garey & Johnson book Computers and Intractability: A Guide to
the Theory of NP-Completeness [23] was written in the late 1970s, the sources
of the theory were traced back only to 1965. In particular, we cited papers
by Cobham [13] and Edmonds [18], which were the first to identify the class
of problems solvable in polynomial time as relevant to the concept of efficient
solvability and worthy of study. We also cited a second paper of Edmonds
[17], which in a sense introduced what was later to be called the class NP, by
proposing the notion of a problem having a “good characterization.”

It turns out, however, that a pair of eminent mathematicians had touched on
the issues involved in NP-completeness over a decade earlier, in handwritten
private letters that took years to come to light. The first to be rediscovered
(and the second to be written) was a letter from Kurt Gödel to John von Neu-
mann, both then at the Institute for Advanced Study in Princeton, New Jersey.
Gödel is perhaps most famous for his 1931 “Incompleteness Theorems” about
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mathematical logic. His letter, written in German and dated 20 March 1956,
was not publicized until 1989, when Juris Hartmanis published a translation
and commentary [27].

In this letter, Gödel considered first a problem of finding proofs in a given
proof system: Given a first order formula F and an integer n, is there is a proof
of F having length no more than n? Let A be a Turing machine that solves this
problem, and, following Gödel, let ψA(F, n) denote the number of steps that A
takes when applied to the instance consisting of formula F and bound n. Now
let φA(n) be the worst-case value of ψA(F, n) over all formulas F of length n.
Note that a Turing machine A performing exhaustive search would have a value
for φA(n) that was no worse than exponential in n. Gödel pointed out how
wonderful it would be if there were an A with φA(n) = O(n) or even O(n2),
observing that such a speedup had already been observed for the problem of
computing the quadratic residue symbol. Finally, he asked “how strongly in
general” one could improve over exhaustive search for combinatorial problems,
in particular mentioning the problem of primality testing (a problem whose
worst-case complexity remained open for almost 50 more years, until it was
shown to be polynomial-time solvable by Agrawal, Kayal, and Saxena in 2002
[3]).

Note that Gödel did not make the generalization from O(n) and O(n2) to
polynomial time. He was more interested in algorithms that might plausibly
be practical. He was also not measuring running time in terms of the modern
concept of “input length”. For that he would have had to explicitly specify
that n was written in unary notation. (If n were written in standard binary
notation, then exhaustive search for his problem might have been doubly expo-
nential in the input size.) On the other hand, he does seem to have assumed
binary, or at least decimal, input size when he discussed primality testing.
Moreover, he used the idea of worst-case running time analysis for algorithms
and problems, something that was not all that common at the time, and which
dominates algorithmic research today. And he does seem to have an idea of
the class of problems solvable by exhaustive search, which can be viewed as a
generalization of NP, and his final question hints at the question of P versus
NP. At any rate, Gödel’s letter, once discovered, was immediately recognized
as an important precursor to the theory of NP-completeness. When an an-
nual prize for outstanding journal papers in theoretical computer science was
established in 1992, it was only natural to name it the Gödel Prize. More re-
cently, the letter has even lent its name to a well-written and popular blog on
algorithms and computational complexity (Gödel’s Lost Letter and P = NP,
http://rjlipton.wordpress.com).

The other famous mathematician whose letters foreshadowed the theory of
NP-completeness was John Nash, Nobel Prize winner for Economics and sub-
ject of both the book and the movie A Beautiful Mind. In 1955, Nash sent
several handwritten letters about encryption to the United States National Se-
curity Agency, which were not declassified and made publicly available until
2012 [1]. In them, he observes that for typical key-based encryption processes,
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Figure 1: Stephen Cook, Richard Karp, and Leonid Levin, photographed in
the 1980s

if the plain texts and encrypted versions of some small number of messages
are given, then the key is determined. This is not technically correct, since in
addition there must be sufficient entropy in the plain texts, but Nash’s argu-
ments apply as well to the problem of finding some key consistent with the
encryptions. His central observation was that even if the key is determined, it
still may not be easy to find.

If the key is a binary string of length r, exhaustive search will work (as
it did for Gödel), but takes time exponential in r. For weak cryptosystems,
such as substitution ciphers, there are faster techniques, taking time O(r2) or
O(r3), but Nash conjectured that “for almost all sufficiently complex types of
enciphering,” running time exponential in the key length is unavoidable.

This conjecture would imply that P 6= NP, since the decryption problem he
mentions is polynomial-time equivalent to a problem in NP: Given the data
on plain and encrypted texts and a prefix x of a key, is there a key consistent
with the encryptions which has x as a prefix? It is a stronger conjecture,
however, since it would also rule out the possibility that all problems in NP
can, for instance, be solved in time nO(logn), which, although non-polynomial,
is also not what one typically means by “exponential.” Nash is also making a
subsidiary claim that is in essence about the NP-hardness of a whole collection
of decryption problems. This latter claim appears to be false. Nash proposed
an encryption scheme of the type he specified, but the NSA observed in private
notes that it provided only limited security, and since the publication of the
letters modern researchers have found it easy to break [2]. Also, like Gödel,
Nash did not make the leap from low-order polynomial time to polynomial time
in general. He did however, correctly foresee the mathematical difficulty of the
P versus NP problem. He admitted that he could not prove his conjecture, nor
did he expect it to be proved, even if it were true.
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Cook, Karp, and Levin

The theory of NP-completeness is typically traced back to Steve Cook’s 1971
paper “The complexity of theorem-proving procedures” [14], which provided
the first published NP-completeness results. However, Leonid Levin, then a
student in Moscow, proved much the same results at roughly the same time,
although his results were not published until 1973. Over the years, the con-
temporaneous and independent nature of Levin’s accomplishment have come
to take precedence over publication dates, and what used to be called “Cook’s
Theorem” is now generally referred to as the “Cook-Levin Theorem.” Let me
say a bit about these two parallel developments.

When Cook wrote his paper, he was an Associate Professor in the Computer
Science Department of the University of Toronto, where he is now a Univer-
sity Professor. Earlier, he had received his PhD from Harvard in 1966, and
spent four years as an Assistant Professor in the Mathematics Department of
University of California, Berkeley, which foolishly denied him tenure. Cook’s
paper appeared in the proceedings of the 1971 ACM Symposium on Theory
of Computing (STOC), and there are apocryphal stories that it almost was
not accepted. This seems unlikely, although it wouldn’t be the first time a
major breakthrough was not recognized when it occurred. The paper’s sig-
nificance was certainly recognized as soon as it appeared. Not only did the
paper prove that satisfiability is NP-complete (in modern terminology), but
it also proved the same for 3SAT, and hinted at the broader applicability of
the concept by showing that the same also holds for subgraph isomorphism
(more specifically, the special case now known as the clique problem). I was a
grad student at MIT at the time, and Albert Meyer and Mike Fischer included
these results in their Fall 1971 Algorithms course. Others had also been busy,
as became clear at the March 1972 conference on “Complexity of Computer
Computations” at the IBM T.J. Watson Research Center in Yorktown Heights,
NY, where Richard Karp presented his famous paper.

Karp was also a Harvard PhD recipient (1959), and after an 11-year stint
at the same IBM Research Center that housed the conference, had moved to
a professorship at UC Berkeley in 1968, where he remains today, after a brief
sojourn to the University of Washington in Seattle. Karp’s paper showed that
19 additional problems were NP-complete, including such now-famous char-
acters as vertex cover, chromatic number, the directed and undirected
hamiltonian circuit problems, subset sum, and the knapsack problem.
Most of the proofs were due to Karp himself, but a few were attributed to
Gene Lawler, Bob Tarjan, and “the Algorithms Seminar at Cornell.” The pa-
per appears to be the first to use the notations P and NP, although its term
for “NP-complete” was “polynomial complete,” a locution used in several early
papers before the modern terminology took hold. The paper also introduced
the distinction between a polynomial transformation, where an instance of the
first problem is transformed into one of the second that has the same yes-no
answer, and a polynomial reduction, in which the first problem is solved using
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one or more calls to a subroutine that solves the second. Cook had stated his
results in terms of the latter notion, but his proofs had essentially relied only
on the first.

This was the first conference that I had attended, and I was suitably awed by
all the famous participants whom I was meeting for the first time - including
John Hopcroft, Michael Rabin, Bob Tarjan, Jeff Ullman, and Richard Karp
himself. I even got to sit across the table from Dick at one lunch. I took
the opportunity to mention to him that I had already proved one polynomial
completeness result myself, that for bin packing, the problem that was to be
the topic of my thesis. Albert Meyer had proposed I work on it just a month
earlier, saying “This is perfect for you, Johnson. You don’t need to know
anything – you just have to be clever.” Albert had learned about the problem
from a preprint of a 1972 STOC paper by Garey, Graham, and Ullman [21].
In the problem, one is given a sequence of numbers a1, a2, . . . , an ∈ (0, 1] and
a target k, and asked if the numbers be partitioned into k sets, each summing
to no more than 1. Dick showed polite interest, but, as the words came out of
my mouth, I was embarrassed to realize how trivial my proof was compared to
the ones in his paper (subset sum is the special case of bin packing where
k = 2 and the

∑n
i=1 ai = 2.)

In addition to many other interesting papers, the conference included a lively
panel discussion, a transcript of which is contained in the proceedings [45].
It covered issues raised by many of the preceding talks, but the discussion
kept coming back to the P versus NP question. The most remembered (and
prescient) comment from the panel was by John Hopcroft. He observed that,
although a consensus seemed to be forming that the two classes were not equal,
for all we currently knew, every problem in NP could be solved in linear time.
He concluded that it would be “reasonably safe” to conjecture that, within
the next five years, no one would prove that any of the polynomial complete
problems even required more than quadratic time. It is now 40 years and
counting, and we still have yet to see any such proofs.

Meanwhile, in a much different world, Leonid Levin was thinking about the
same issues, but not getting nearly the same publicity. In the Soviet Union
at the time, many researchers were considering questions related to the P ver-
sus NP question. In particular, there was the notion of the class of problems
that could only be solved by perebor, the Russian name for algorithms that
were essentially based on exhaustive search [52]. Levin was a PhD student
at the University of Moscow. In 1971, he completed a thesis on Kolmogorov
complexity, but although it was approved by Kolmogorov (his advisor) and
by his thesis committee, the authorities refused to grant the degree for po-
litical reasons. (Levin admits to having been a bit intractable himself when
it came to toeing the Soviet line [51, 151–152].) Levin continued to work on
other things, however, in particular perebor, coming up with his version of
NP-completeness that same year, and talking about it at various seminars in
Moscow and Leningrad [52]. He also wrote up his results, submitting them
for publication in June 1972 [52], although the paper did not appear until the
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second half of 1973. Its title, translated into English, was “Universal sequential
search problems” [42] (“Sequential search” was a mistranslation of perebor).
The 2-page paper was brief and telegraphic, a trait shared by many of Levin’s

subsequent papers (e.g., see [55, 43]), omitting proofs entirely. A corrected
translation appears as an appendix in [52]. In his paper, Levin deals with the
generalization of NP to search problems: Relations A(x, y) on strings, such
that for all pairs (x, y) such that A(x, y) holds, the length of y is polynomially
bounded in the length of x, and such that for all pairs (x, y), one can determine
in polynomial time whether A(x, y) holds. Here x stands for an instance of the
problem, and y a corresponding “solution.” The search problem for A is, given
x, find a y such that A(x, y) holds. The corresponding problem in NP is, given
x, does there exist a y such that A(x, y) holds. Levin mentions this version,
calling it a “quasi-search” problem, but concentrates on the search problem
version. He describes what we would now view as the standard notion of a
polynomial reduction from one search problem A to another one, and calls a
problem a “universal search problem” if there exist polynomial reductions to it
from all the search problems in the above class. He then goes on to list six search
problems that he can prove are universal search problems. These include the
search versions of satisfiability, set cover, and subgraph isomorphism,
along with others that were not on Karp’s list, such as the following tiling
problem: Given a square grid whose boundary cells each contain an integer
in the range from 1 to 100, together with rules constraining the contents of
interior cells, given the contents of the four neighboring cells (to the left, right,
top, and bottom), find a legal tiling that agrees with the given assignment to
the boundary cells.
Those who heard Levin speak about these results were immediately im-

pressed. Trakhtenbrot [52] quotes Barzdin, who heard Levin speak in Novosi-
birsk in April, 1972, as saying “Just now Levin told me about his new results;
it is a turning point in the topic of perebor !” Note that this is clear evidence
that the work of Cook and Karp had not yet received wide attention in Russia.
However, neither did the work of Levin. In 1973, when Russian theoreticians
finally did take up NP-completeness, it was mainly through the Cook and Karp
papers [25]. Levin’s impact appears not to have spread much beyond those who
had heard him speak in person.
In 1978, Levin emigrated to the US, where I first met him while visiting

MIT. There he finally received an official PhD in 1979, after which he took up
a position at Boston University, where he is now a Full Professor. He has made
many additional contributions to complexity theory, including

• A theory of average case completeness [43], using which he shows that a
variant of his above-mentioned tiling problem, under a natural notion of a
uniform distribution for it, cannot be solved in polynomial expected time
unless every other combination of a problem in NP with a reasonably
constrained probability distribution can be so solved.

• A proof that the one-way functions needed for cryptography exist if and
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only if pseudorandom number generators exist that cannot in polynomial
time be distinguished from true random number generators [28].

• A proof that a 1965 precursor of the ellipsoid algorithm, in which simplices
play the role of ellipses, also runs in polynomial time [55] (thus there is
a simplex algorithm that runs in polynomial time . . . ).

Cook and Karp also have made significant contributions to complexity theory
since their original breakthroughs. Karp’s many contributions are well known
in the mathematical programming community and too extensive to list here.
Cook’s main work has been in the study of proof complexity, but he is respon-
sible for introducing at least one additional complexity class, one that provides
an interesting sidelight on NP-completeness.
This is the class SC, the set of decision problems that can be solved by al-

gorithms that run in polynomial time and require only polylogarithmic space,
that is, use O(logk n) space for some fixed k. Here “SC” stands for “Steve’s
Class,” the name having been suggested by Nick Pippenger in recognition of
Steve’s surprising 1979 result that deterministic context-free languages are in
this class [15], but also in retaliation for Steve’s having introduced the terminol-
ogy “NC” (“Nick’s Class”) for the set of decision problems that can be solved
in polylogarithmic time using only a polynomial number of parallel processors
[26]. The significance of these two classes is that, although it is easy to see that
each is contained in P, one might expect them both to be proper subclasses
of P. That is, there are likely to be problems in P that cannot be solved in
polynomial time if restricted to polylog space, and ones that cannot be solved
in polylog time if restricted to a polynomial number of processors. By anal-
ogy with NP-completeness, one can identify candidates for such problems by
identifying ones that are “complete for P” under appropriate reductions. One
famous example, complete for P in both senses, is linear programming [16].
Both Cook and Karp have won multiple prizes. Cook won the 1982 ACM

Turing Award (the top prize in computer science) and the 1999 CRM-Fields
Institute Prize (the top Canadian award for research achievements in the math-
ematical sciences). Karp won the Lanchester Prize in 1977, the Fulkerson Prize
in discrete mathematics in 1979, the ACM Turing Award in 1985, the ORSA-
TIMS von Neumann Theory Prize in 1990, and many others. Levin is long
overdue for his own big award, although I expect this will come soon. And, of
course, the biggest prize related to NP-completeness is still unawarded: The
question of whether P equals NP is one of the six remaining open problems for
the resolution of which the Clay Mathematics Institute is offering a $1,000,000
Millenium Prize.

Garey, Johnson, and Computers and Intractability

My own most influential connection to the theory of NP-completeness is un-
doubtedly the book Computers and Intractability: A Guide to the Theory of
NP-completeness, which I wrote with Mike Garey and which was published in
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Figure 2: Michael Garey and David Johnson in 1977

1979. At the time, we optimistically promised the publishers that we would sell
5,000 copies, but it has now sold over 50,000, picking up some 40,000 citations
along the way, according to Google Scholar.
My early involvement with the theory, beyond the lunchtime conversation

mentioned above, mainly concerned one of the methods for coping with NP-
completeness: Designing and analyzing approximation algorithms. While at
MIT I wrote a PhD thesis on approximation algorithms for the bin packing
problem [32] and a paper exploring how the same approach could be extended
to other problems, such as graph coloring, set covering, and maximum satisfi-
ability [33].
On the strength of this research, I was recruited to come to work at Bell

Labs by Ron Graham and Mike Garey, whose initial paper on bin packing
had introduced me to the topic. After receiving my PhD in June 1973, I
moved to New Jersey and began my Bell Labs/AT&T career. One of my
first collaborations with Mike was in producing a response to a letter Don
Knuth had written in October to many of the experts in the field. The letter
sought a better name than “polynomial complete” for the class of problems
that Cook and Karp had identified. Knuth asked for a vote on three terms
he was proposing (“Herculean,” “formidable,” and “arduous”). We did not
particularly like any of Knuth’s alternatives, and proposed “NP-complete” as
a write-in candidate. We were not the only ones, and when Knuth announced
the results of his poll in January 1974 [41], he gave up on his original proposals,
and declared “NP-complete” the winner, with “NP-hard” chosen to designate
problems that were at least as hard as all the problems in NP, although possibly
not in NP themselves. See Knuth’s article or [23] for an amusing summary of
some of the other proposals he received.
Mike and I also began an active research collaboration, covering both bin

packing and scheduling algorithms and the proof of new NP-completeness re-
sults. When Karp wrote a journal article [38] derived from his original proceed-
ings paper, his expanded list, now of 25 problems, included some of our new
results. This set the stage for our book [23], with its much longer list, although
the actual genesis of the book was more happenstance. In April 1976, Mike
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and I attended a conference at Carnegie-Mellon University on “New Directions
and Recent Results in Algorithms and Complexity,” where I gave a talk on the
various types of approximation guarantees we had seen so far. Afterwards, at
a coffee break, an editor for the Prentice-Hall publishing company came up to
me and suggested that Mike and I write a book on approximation algorithms.
In thinking about that proposal, we realized that what was needed, before any
book on approximation algorithms, was a book on NP-completeness, and by
the time we left the conference we were well on our way to deciding to write
that book ourselves.

One of my tasks was to collect NP-completeness results for our planned list,
which in those days before personal computers meant writing the details by
hand onto file cards, stored in plastic box. At that time, it was still possible to
aim for complete coverage, and our eventual list of some 300 problems covered
most of what had been published by the time we finished our first draft in mid-
1978, including many results we came up with ourselves when we identified
interesting gaps in the literature, and for which we provided the unhelpful
citation “[Garey and Johnson, unpublished].” We did keep notes on the proofs,
however (in that same plastic box), and most can still be reconstructed . . .
After detailed discussions about what we wanted to say, I wrote first drafts of
the chapters, with Mike then clarifying and improving the writing. (A quick
comparison of the writing in [23] with that in this memoir will probably lead
most readers to wish Mike were still doing that.)

We did resort to computers for the actual typesetting of the book, although
I had to traipse up to the 5th floor UNIX room to do the typing, and put up
with the invigorating smell of the chemicals in the primitive phototypesetter
there. Because we were providing camera-ready copy, we had the final say on
how everything looked, although our publisher did provide thorough and useful
copy-editing comments, including teaching us once and for all the difference be-
tween “that” and “which.” There was only one last-minute glitch, fortunately
caught before the book was finalized – the cover was supposed to depict the
graph product of a triangle and a path of length two, and the initial artist’s
rendering of this was missing several edges.

Over the years, the book has remained unchanged, although later printings
include a 2-page “Update” at the end, which lists corrigenda and reports on
the status of the twelve open problems listed in Appendix A13 of the book. As
of today only two remain unresolved: graph isomorphism and precedence
constrained 3-processor scheduling. Of the remaining ten, five are now
known to be polynomial-time solvable and five are NP-complete. For details,
see [35, 46]. A second edition is perpetually planned but never started, although
I have resumed my NP-completeness column, now appearing on a sporadic basis
in ACM Transactions on Algorithms, as groundwork for such an undertaking.

We never did write that book on approximation algorithms, and indeed no
such book seems to have appeared until Dorit Hochbaum’s Approximation Al-
gorithms for NP-Hard Problems [29] appeared in 1997. This was an edited
collection, to which Mike, Ed Coffman, and I contributed a chapter. The first
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textbook on approximation algorithms was Vijay Vazirani’s Approximation Al-
gorithms [53], which did not appear until 2001. Although Mike and I never got
around to writing a second book, there is a second “Garey and Johnson” book
of a sort. In 1990, our wives, Jenene Garey and Dorothy Wilson, respectively
a Professor of Nutrition at NYU and a school teacher, coauthored The Whole
Kid’s Cookbook, copies of which were sold to raise funds for the Summit Child
Care Center, a local institution where Dorothy had worked.

The Last Forty Years: Hardness of Approximation

It would be impossible, in the limited space left to me, to give a thorough
history of the developments in the theory of NP-completeness since the 1970s,
so in this section I shall restrict myself to just one thread: applying the theory
to approximation algorithms.
An approximation algorithm does not necessarily return an optimal solution,

but settles for some feasible solution which one hopes will be near-optimal. A
standard way to evaluate an approximation algorithm A is in terms of the
“worst-case guarantee” it provides. Let us suppose for simplicity that the
problem X for which A is designed is a minimization problem. Then A pro-
vides a worst-case guarantee equal to the maximum, over all instances I of
the problem, of A(I)/OPT (I), where A(I) is the value of the solution that
algorithm yields for instance I, and OPT (I) is the optimal solution value. For
example, Christofides’ algorithm for the Traveling Salesman Problem (TSP)
has a worst-case guarantee of 3/2 if we restrict attention to instances satisfying
the triangle inequality [12].
We are of course most interested in approximation algorithms for NP-hard

problems that run in polynomial time. Unfortunately, it turns out that some-
times designing such an approximation algorithm can be just as hard as finding
an optimal solution. The first paper to make this observation appeared in 1974,
written by Sahni and Gonzalez [49]. They showed, for example, that if one does
not assume the triangle inequality, then for any constant k, the existence of a
polynomial-time approximation algorithm for the TSP with worst-case guaran-
tee k or better would imply P = NP. The proof involves a “gap” construction,
by transforming instances of HAMILTON CIRCUIT to TSP instances whose op-
timal tours have length n if the Hamilton Circuit exists, and otherwise have
length greater than kn (for example by letting the distance between u and v
be 1 if {u, v} is an edge in the original graph, and kn otherwise).
By the time our NP-completeness book appeared, there were a few more re-

sults of this type. Of particular interest were results ruling out “approximation
schemes.” A polynomial-time approximation scheme (PTAS) for a problem is
a collection of polynomial-time algorithms Aǫ, where Aǫ has a worst-case guar-
antee of 1+ ǫ or better. In 1975, Sahni [48] showed that the Knapsack Problem
has such a scheme. His algorithms, and many like them, were seriously imprac-
tical, having running times exponential in 1/ǫ, although for any fixed ǫ they
do run in polynomial time. Nevertheless, over the years much effort has been

Documenta Mathematica · Extra Volume ISMP (2012) 359–376



A Brief History of NP-Completeness 369

devoted to finding such schemes for a wide variety of problems.

Given how impractical PTASs tend to be, one could perhaps view this ever-
popular pastime of designing them as providing “negative-negative” results,
rather than positive ones. One can rule out the existence of such a scheme
(assuming P 6= NP) by proving that there exists an ǫ such that no polynomial-
time approximation can have a worst-case guarantee of 1 + ǫ or better unless
P = NP. This is trivially true for bin packing, since if an algorithm could
guarantee a ratio less than 3/2, then one could use it to solve the subset sum
problem. The existence of a PTAS for a problem thus merely shows that there
is no ǫ such that one can prove a 1 + ǫ inapproximability result.

There is one particular type of PTAS, however, that can perhaps be viewed
more positively. Shortly after Sahni’s knapsack PTAS appeared, Ibarra and
Kim [31] significantly improved on it, designing what we now call a fully
polynomial-time approximation scheme (FPTAS): An algorithm A that takes
as input both an instance I and an ǫ > 0, returns a solution that is no worse
than (1+ ǫ)OPT (I), and runs in time bounded by a polynomial not just in the
size of I, but also in 1/ǫ.

Unfortunately, it was quickly realized that FPTASs were much less common
than ordinary PTASs. In particular, the TSP with the triangle inequality could
not have an FPTAS unless P 6= NP, something that could not then be ruled
out for ordinary PTASs. This was because it was “NP-hard in the strong
sense,” which means it was NP-hard even if we restrict all numbers in the
input (in this case the inter-city distances) to integers that are bounded by
some fixed polynomial in the input length, rather than the exponentially large
values normally allowed by binary notation. It is an easy result [22] that no
optimization problem that is strongly NP-hard can have an FPTAS unless P
= NP (in which case none is needed).

On the other end of the scale (problems for which no algorithms with a
bounded performance guarantee could exist, or at least were known), there
were fewer results, although the best performance guarantee then available for
the SET COVER problem was H(n) =

∑∞
i=1 1/i ∼ lnn [33, 44], and no algo-

rithms for clique were known with guarantees better than O(n/polylog(n))
[33]. Whether this was best possible (assuming P 6= NP) was unknown, and
the field remained in this state of ignorance for more than a decade. Indeed,
although there was the occasional interesting problem-specific result, approxi-
mation algorithms remained only a minor thread of algorithms research until
1991, when a seemingly unrelated result in NP-completeness theory suddenly
gave them an explosive new life.

This result was the discovery of a new characterization of NP, in terms of
“probabilistically checkable proofs” (PCPs). A PCP is a proof whose validity
can be estimated by looking at only a few, randomly chosen, bits. If the proof
is valid, then any choice of those bits will support this fact. If it is defective,
than a random choice of the bits to be examined will, with probability 1/2
or greater, confirm that the proof is not valid. This basic concept developed
out of a series of papers, starting with the study of interactive proofs involving
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multiple provers and one verifier. (These papers include one with Leonid Levin
as a co-author [10].)
If f(n) and g(n) are two functions from the natural numbers to them-

selves, let PCP(f, g) denote that class of all problems that have PCPs us-
ing O(f(n)) random bits and looking at O(g(n)) bits of the proof. In late
1991, Feige, Goldwasser, Lovász, Safra, and Szegedy [20] showed that NP ⊆

PCP(log n log log n, log n log log n) and that, surprisingly, this highly-technical
result implied that clique could not be approximated to any constant factor
unless NP ⊆ DTIME[nO(log logn)]. This is a weaker conclusion than P = NP,
but not much more believable, and in any case, the implication was strength-
ened to P = NP in early 1992, when Arora and Safra [7] showed that NP
= PCP(log n, log n). Shortly thereafter, Arora, Lund, Motwani, Sudan, and
Szegedy [5] improved this to NP = PCP(log n, 1), which had even stronger
consequences for approximation. In particular, it implied that many famous
problems could not have PTASs, including max 2-sat, vertex cover, and
the triangle-inequality TSP. There is not room here to give the details of the
proofs of these results or all the references, but the key idea was to produce a
gap construction for the problem in question, based on the relation between the
random bits used by the verifier in a PCP for 3sat, and the proof bits at the
addresses determined by those random bits. For a contemporaneous survey,
providing details and references, see [34].
In the twenty years since these breakthrough results, there has been an ex-

plosion of inapproximability results exploiting variants and strengthenings of
the original PCP results, and based on a variety of strengthenings of the hy-
pothesis that P 6= NP. For surveys, see for instance [36, 54]. Today we know
that clique cannot be approximated to a factor n1−ǫ for any constant ǫ > 0
unless P = NP [56]. We also know that the Greedy algorithm for set cover,
mentioned above, cannot be bettered (except in lower-order terms) unless NP
⊆ DTIME[nO(log logn)] [19].
Other hypotheses under which hardness of approximation results have been

proved include NP * DTIME[nO(log log logn)], NP * ∪k>0 DTIME[nlog
k n], NP

* ∩ǫ>0 DTIME[2n
ǫ

], and NP * BPP, the latter a class of problems solvable
by randomized algorithms in polynomial time. Currently, the most popular
hypothesis, however, is the “Unique Games Conjecture” (UGC) of Subhash
Khot [39]. Suppose we are given a prime q, a small ǫ > 0, and a list of
equations of the form xj − xk = ch (mod q) in variables xi and constants ch.
The conjecture says that it is NP-hard to distinguish between the case where
at least a fraction 1 − ǫ of the equations can be simultaneously satisfied and
the case when no more than a fraction ǫ of the equations can – a very large
gap. As with the PCP results, this conjecture initially came from a problem
involving multiple prover systems, and it was in this context that it obtained
its name.
The reason this rather specialized hypothesis has garnered attention is that

it implies that for many important problems, our currently best approxima-
tion algorithms cannot be improved upon unless P = NP . For instance, no
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polynomial-time approximation algorithm for vertex cover can guarantee
better than the factor of 2 already guaranteed by several simple approxima-
tion algorithms [9]. Similarly, the Goemans-Williamson algorithm [24] for max
cut, which exploits semidefinite programming and randomized rounding and
has a worst-case guarantee of (2/π)/(min0<θ≤π((1−cos(θ))/θ)) ∼ .878, cannot
be improved upon by any polynomial-time algorithm [40]. More generally, for
any Constraint Satisfaction Problem (CSP) where the goal is to find an assign-
ment to the variables that satisfies a maximum number of the constraints, it
can be shown that a standard algorithm, based on semidefinite programming
and rounding, achieves the best possible worst-case approximation ratio of any
polynomial-time algorithm, assuming P 6= NP and the UGC [47], and even
though for many such problems we do not at this point know what that ratio
is.
Whether the UGC is true is, of course, an open question, and researchers

tend to be more skeptical of this than of P 6= NP. Moreover, its impact seems
restricted to problems where approximation algorithms with finite worst-case
ratios exist, while the other conjectures mentioned above have led to many
nonconstant lower bounds, such as the roughly lnn lower bound for set cover.
This has had the interesting side effect of making algorithms with non-constant
worst-case ratios more respectable – if one cannot do better than Ω(log n),
then maybe O(log2 n) isn’t so bad? Indeed, a recently well-received paper had
the breakthrough result that the label cover problem had a polynomial-
time approximation algorithm with an O(n1/3) worst-case ratio, beating the
previous best of O(n1/2) [11].
Let me conclude by addressing the obvious question. All this definitely makes

for interesting theory, but what does it mean for practitioners? I believe that
the years have taught us to take the warnings of NP-completeness seriously. If
an optimization problem is NP-hard, it is rare that we find algorithms that,
even when restricted to “real-world” instances, always seem to find optimal
solutions, and do so in empirical polynomial time. Even that great success of
optimization, the concorde code for optimally solving the TSP [4], appears to
have super-polynomial running time, even when restricted to simple instances
consisting of points uniformly distributed in the unit square, where its median
running time seems to grow exponentially in

√

n [30].
Thus, the classical justification for turning to approximation algorithms re-

mains valid. How that is refined by our hardness-of-approximation results is
less clear. Many approximation algorithms, such as the greedy algorithm for
set cover, seem to come far closer to optimal than their worst-case bounds
would imply, and just because a problem is theoretically hard to approximate
in the worst case does not mean that we cannot devise heuristics that find rel-
atively good solutions in practice. And frankly, once exact optimization runs
out of gas, what other choice do we have but to look for them?
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[30] H. H. Hoos and T. Stützle, 2009. Private Communication.

[31] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knap-
sack and sum of subset problems. J. ACM, 22(4):463–468, 1975.

[32] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, 1973.

[33] D. S. Johnson. Approximation algorithms for combinatorial problems. J.
Comp. Syst. Sci., 9:256–278, 1974.

[34] D. S. Johnson. The NP-completeness column: An ongoing guide – the tale
of the second prover. J. Algorithms, 13:502–524, 1992.

[35] D. S. Johnson. The NP-completeness column. ACM Trans. Algorithms,
1(1):160–176, 2005.

[36] D. S. Johnson. The NP-completeness column: The many limits on ap-
proximation. ACM Trans. Algorithms, 2(3):473–489, 2006.

[37] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103, New York, 1972. Plenum Press.

[38] R. M. Karp. On the computational complexity of combinatorial problems.
Networks, 5:45–68, 1975.

Documenta Mathematica · Extra Volume ISMP (2012) 359–376



A Brief History of NP-Completeness 375

[39] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, pages 767–
775, New York, 2002. Association for Computing Machinery.

[40] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapprox-
imability results for MAX-CUT and other 2-variable CSPs? SIAM J.
Comput., 37(1):319–357, 2007.

[41] D. E. Knuth. A terminological proposal. SIGACT News, 6(1):12–18, 1974.

[42] L. A. Levin. Universal sequential search problems. Problemy Peredachi
Informatskii, 9(3):115–116, 1973.

[43] L. A. Levin. Average case complete problems. SIAM J. Comput.,
15(1):285–286, 1986.

[44] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Math., 13:383–s 390, 1975.

[45] R. E. Miller and J. W. Thatcher, editors. Complexity of Computer Com-
putations. Plenum Press, New York, 1972.

[46] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J.
ACM, 55(2):Article A11, 2008.

[47] P. Raghavendra. Optimal algorithms and inapproximability results for
every CSP? In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, pages 245–154, New York, 2008. Association for Computing
Machinery.

[48] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM,
22(1):115–124, 1975.

[49] S. Sahni and T. Gonzalez. P-complete problems and approximate so-
lutions. In Proc. 15th Ann. IEEE Symp. on Foundations of Computer
Science, pages 28–32, Los Alamitos, CA, 1974. IEEE Computer Society.
A journal article expanding on the inapproximability results of this paper
appears as [50].

[50] S. Sahni and T. Gonzalez. P-complete approximation problems. J. ACM,
23(3):555–565, 1976.

[51] D. Shasha and C. Lazere. Out of their Minds. Copernicus, New York,
1995.

[52] B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-
force search) algorithms. Ann. History of Computing, 6:384–400, 1984.

[53] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

Documenta Mathematica · Extra Volume ISMP (2012) 359–376



376 David S. Johnson

[54] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, New York, 2011.

[55] B. Yamnitsky and L. A. Levin. An old linear programming algorithm
runs in polynomial time. In Proc. 23rd Ann. IEEE Symp. on Founda-
tions of Computer Science, pages 327–328, Los Alamitos, CA, 1982. IEEE
Computer Society.

[56] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 681–690, New York, 2006.
Association for Computing Machinery.

David S. Johnson
AT&T Labs – Research
180 Park Avenue
Florham Park, NJ 07932-
0971
dsj@research.att.com

Documenta Mathematica · Extra Volume ISMP (2012) 359–376

mailto:dsj@research.att.com


Documenta Math. 377

On the Evolution of Optimization Modeling Systems

Robert Fourer

2010 Mathematics Subject Classification: 90-04
Keywords and Phrases: Optimization, mathematical programming,
modeling languages, matrix generators

After a promising start in the 1950s, enthusiasm for the practical potential of
linear programming systems seemed to fade. By the end of the 1970s it was
not unusual to encounter sentiments of the following sort:

We do not feel that the linear programming user’s most pressing
need over the next few years is for a new optimizer that runs twice
as fast on a machine that costs half as much (although this will
probably happen). Cost of optimization is just not the dominant
barrier to LP model implementation. The process required to man-
age the data, formulate and build the model, report on and analyze
the results costs far more, and is much more of a barrier to effective
use of LP, than the cost/performance of the optimizer.

Why aren’t more larger models being run? It is not because they
could not be useful; it is because we are not successful in using them
. . . They become unmanageable. LP technology has reached the
point where anything that can be formulated and understood can
be optimized at a relatively modest cost. [13]

This was written not by a frustrated user, but by the developers of an advanced
LP system at one of the major computer manufacturers. Similar sentiments
were expressed by others who were in a position to observe that the power-
ful techniques of computational optimization were not translating to powerful
applications, at least not nearly as readily as expected.
Advanced software for optimization modeling was a response to this malaise

and a key factor in bringing mathematical programming to a new period of
enthusiasm. This article is intended as a brief introduction and history, par-
ticularly as reflected in writings by some of the pioneers and in my own early
experiences. A detailed survey appears in [14], and extensive observations on
the subject by many of the major participants have been collected in [11] and
[12].
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The history of optimization modeling systems can be viewed roughly as be-
ginning with matrix generators and then expanding to modeling languages,
and this account is organized accordingly. At the end I add a few reflections on
more recent developments. In giving a historical account it is hard to avoid the
use of “mathematical programming” to refer to what has since become more
straightforwardly known as “optimization,” and so these terms appear more-or-
less interchangeably in my account. On the other hand “linear programming”
or “LP” is still the term of choice of the special case of linear objectives and
constraints.

Matrix generators

Almost as soon as computers were successfully used to solve linear programming
problems, communication with the optimization algorithms became a bottle-
neck. A model in even a few kinds of variables and constraints, with perhaps
a half-dozen modest tables of data, already gave rise to too many coefficients,
right-hand sides, and bounds to manage by simply having a person enter them
from a keyboard of some kind. Even if the time and effort could be found to
key in all of these numbers, the process would not be fast or reliable enough
to support extended development or deployment of models. Similar problems
were encountered in examining and analyzing the results. Thus it was evident
from the earliest days of large-scale optimization that computers would have
to be used to create and manage problems as well as to solve them.
Because development focused initially on linear programming, and because

the greatest work of setting up an LP is the entry of the matrix of coeffi-
cients, computer programs that manage optimization modeling projects be-
came known as matrix generators. To make good use of computer resources,
LP algorithms have always operated on only the nonzero coefficients, and so
matrix generators also are concerned not with an explicit matrix but with a
listing of its nonzero elements. The key observation that makes efficient matrix
generators possible is that coefficients can be enumerated in an efficient way:

Anyone who has been taught that linear programming is a way to
solve problems such as Minimize Minimize x1+2x2+4x3+x4+3x5

. . . may wonder how any computer program can help to assemble
such a meaningless jumble of coefficients. The point is that prac-
tical linear programming problems are not like this. Although the
range of problems to which mathematical programming is applied
is very wide and is continuing to expand, it seems safe to claim that
there is some coherent structure in all applications. Indeed, for a
surprisingly wide class of applications the rows (or constraints) can
be grouped into five categories and the columns (or variables) into
three categories . . . When a problem has been structured in this
way, one can see how a computer program can be devised to fill in
the details from a relatively compact set of input data. [1]
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This explanation comes from Martin Beale’s paper “Matrix Generators and
Output Analyzers” in the proceedings of the 6th Mathematical Programming
Symposium, held in 1967. Already at that point much had been learned about
how best to write such programs. In particular Beale describes the practice of
building short character strings to uniquely identify variables and constraints.
These encoded names, typically 8 characters or less, were a central feature
of the (nearly) standard MPS format adopted for the representation of linear
programs.
A skilled programmer could get quite good at writing matrix generators. In

the same article Beale states:

I should like to dispel the illusion that a FORTRAN matrix gener-
ator is necessarily a very cumbersome affair by pointing out that I
once wrote one before breakfast one Sunday morning. (Although it
did contain one mistake which had to be corrected after going on
the computer.)

The inclusion of such a disclaimer suggests that this activity did pose challenges
to some modelers of optimization problems. In fact matrix generators are
inherently difficult to write, and that difficulty derives most significantly from
the challenges of debugging them. The following account describes procedures
that persisted through much of the 1970s:

. . . the debugging process . . . was basically the same one that
had been used since the introduction of mathematical programming
(MP) systems. When a model run was completed, the complete so-
lution was printed along with a report. The output was examined to
determine if the run passed the “laugh test”, that is, no infeasibles
and no “outrageous” values. If the laugh test failed, the solution
print would be examined by paper clip indexing and manual pag-
ing. Frequently, the solution print was not enough to determine the
problem and the matrix had to be printed. For large mathematical
programs, the two printouts could be 6 inches thick. Nevertheless,
the information needed to detect and correct the error took no more
than a page. The trick was to know where to look and have facility
with 6 inches of printout. [15]

This account, from a project at the U.S. Federal Energy Administration, sug-
gests the kinds of difficulties that prompted the malaise described out the outset
of this article. With computers becoming more powerful and attempts at opti-
mization modeling becoming correspondingly more widespread and ambitious,
the supply of sufficiently skilled debuggers — and debugging time — could not
keep up.
A direct solution, pursued by the FEA project, was to get the computer to do

some of the work of paging through the printout. This led to the development
of progressively more sophisticated systems known as PERUSE and ANALYZE
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[9] that worked with information from the 8-character names and searched for
patterns associated with errors and infeasibility.

Another approach was based on making matrix generators more reliable.
The essence of the debugging problem can be viewed as a gap between repre-
sentations: a high-level, structured concept of the optimization problem, which
is natural for human modelers to work with, is replaced by a computer program
whose output is a list of coefficients in a form suitable for fast processing by
a solver’s algorithms. It is understandably hard for a human analyst to tell
from looking at the coefficient list whether the program is running correctly,
or why the results are wrong. So if the matrix generator can be written in a
higher-level language that deals more directly with the concepts of LP formu-
lation, then at least the chances of errors due to low-level programming bugs
will be reduced. Indeed because such a program deals in terms closer to the
modeler’s original conception, one can expect that it will be easier to write,
verify, maintain, and fix over the lifetime of the model.

The same proceedings in which Beale describes matrix generators pro-
grammed in a general-purpose language (Fortran) contain this abstract of a
talk on a special-purpose matrix-generation language:

The approach used in MaGen is based on a recognition that math-
ematical models consist of activities and constraints on these activ-
ities, and that both the activities and constraints can be grouped
into classes. The generation of the matrix is carried out by FORM
VECTOR statements under control of a DICTIONARY which de-
fines the classes and provides mnemonic names for use in the model,
and a Data section which provides the numerical information. [10]

Languages like MaGen, here described by its creator Larry Haverly, did much
to structure the matrix generation process. They supported the small tables
of data from which LPs were built, and incorporated intuitive syntactic forms
for creation of unique 8-character names by concatenation of table row and
column labels.

My own introduction to matrix generators was through one of these lan-
guages. In 1974 I joined the Computer Research Center set up in Cambridge,
Massachusetts by the National Bureau of Economic Research (NBER). Al-
though the center’s focus was on statistical and data analysis software, it had
recently brought in Bill Orchard-Hays to lead a development effort in the rather
different area of linear programming. Orchard-Hays had taken the unusual
(for the time) job of programmer at the RAND corporation in the early 1950s,
shortly before George Dantzig’s arrival gave impetus to an effort to program
machines to do linear programming. Out of this collaboration came practical
implementations of Dantzig’s simplex method, initially on a card-programmed
calculator and then on the first IBM scientific computer.

The early days of linear programming were an exciting time to be working
with computers:
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mathematical programming and computing have been contempo-
rary in an almost uniquely exact sense. Their histories parallel
each other year by year in a remarkable way. Furthermore, math-
ematical programming simply could not have developed without
computers. Although the converse is obviously not true, still linear
programming was one of the important and demanding applications
for computers from the outset. [17]

These comments are from a detailed retrospective article in which Orchard-
Hays describes implementing a series of progressively more ambitious math-
ematical programming systems over a span of nearly three decades. By the
time that our paths crossed, however, he had more the outlook of a former
revolutionary, as this excerpt from the same article suggests:

. . . the nature of the computing industry, profession, and technol-
ogy has by now been determined – all their essential features have
existed for perhaps five years. One hopes that some of the more
recent developments will be applied more widely and effectively but
the technology that now exists is pretty much what will exist, leav-
ing aside a few finishing touches to areas already well developed,
such as minicomputers and networks.

This is perhaps a reminder that some fundamental aspects of computing and
of optimization have hardly changed since that time, though in other respects
today’s environment is unimaginably different. The Mathematical Program-
ming (now Mathematical Optimization) Society later fittingly named its prize
in computational mathematical programming after Beale and Orchard-Hays.

I was fortunate to learn linear programming from Orchard-Hays’s book [16]
in which it was described how the simplex method was implemented for com-
puters. Had I read one of the standard textbooks I would have learned a quite
impractical version that was motivated by a need to assign little LPs for so-
lution by hand. Among the components of the Orchard-Hays system that I
encountered was a matrix generation and reporting language; working with
two analysts at the U.S. Department of Transportation, I used it to develop
a network LP application involving the assignment of railroad cars to a train
schedule [6].

Modeling languages

The logical alternative to making matrix generation programs easier to debug
was to make them unnecessary to write, by instead designing a kind of language
that expressed the human modeler’s formulation of an optimization problem
directly to a computer system. The result was the concept of a modeling

language.
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Just as there are diverse ways to conceive of an optimization problem, there
are potentially diverse designs for modeling languages. However for general-
purpose modeling – not tied to any one application type or area – the one most
widely implemented and used approach is based on the variables and equations
familiar to any student of algebra and calculus. A generic optimization problem
may be viewed as the minimization or maximization of some function of decision
variables, subject to equations and inequalities involving those variables. So if
you want to

Minimize

n
∑

j=1

cjxj

where each xj the quantity of one n of things to be bought, and cj is its unit
cost, then why not present it to the modeling software in a similar way, only
using a standard computer character set? In the resulting algebraic modeling
language, it could come out like this:

minimize TotalCost: sum j in 1..n c[j] * x[j];

Of course for input to computer software one must be quite explicit, so addi-
tional statements are needed to declare that n and the c[j] are data values,
while the x[j] are variables on an appropriate domain — since they represent
things to buy, most likely nonnegative values or nonnegative integers.

Early, less ambitious modeling language designs called for linear expressions
to be written in a simpler syntax, which might express an objective as

min 2.54 x1 + 3.37 x2 + 0.93 x3 + 7.71 x4 + 7.75 x5 + 2.26 x6 + ...

Although superficially this is also algebraic, it is no different in concept from
the aforementioned MPS file or any listing of nonzero coefficients. What most
importantly distinguishes the previous description of TotalCost is that it’s
symbolic, in that it uses mathematical symbols to describe a general form of
objective independently of the actual data. Whether n is 7 or a 7 thousand or
7 million, the expression for TotalCost is written the same way; its description
in the modeling language does not become thousands or millions of lines long,
even as the corresponding data file becomes quite large.
The same ideas apply to constraints, except that they express equality or

inequality of two algebraic expressions. So if in another model one wants to
state that

∑

p∈P

(1/aps)yp ≤ bs for all s ∈ S

it could be written, after some renaming of sets, parameters, and variables to
make their meanings clearer, as

subject to Time {s in STAGE}:

sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
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Constraints usually occur in indexed collections as in this case, rather than in-
dividually as in our example of an objective. Thus the advantage of a symbolic
description is even greater, as depending on the data one constraint description
can represent any number of constraints, as well as any number of coefficients
within each constraint.

A well-written matrix generator also has the property of data independence,
but the advantages of modeling languages extend further. Most important, a
modeling language is significantly closer to the human analyst’s original con-
ception of the model, and further from the detailed mechanisms of coefficient
generation:

Model building in a strategic planning environment is a dynamic
process, where models are used as a way to unravel the complex
real-world situation of interest. This implies not only that a model
builder must be able to develop and modify models continuously in
a convenient manner, but, more importantly, that a model builder
must be able to express all the relevant structural and partition-
ing information contained in the model in a convenient short-hand
notation. We strongly believe that one can only accomplish this
by adhering to the rigorous and scientific notation of algebra. . . .
With a well-specified algebraic syntax, any mode representation can
be understood by both humans and machines. The machine can
make all the required syntactical and semantic checks to guarantee
a complete and algebraically correct model. At the same time, hu-
mans with a basic knowledge of algebra can use it as the complete
documentation of their model. [2]

This introduction by Bisschop and Meeraus to the GAMS modeling language
reflects a development effort begun in the 1970s, and so dates to the same
period as the quote that led off this article. Although its focus is on the
needs of optimization applications that the authors encountered in their work
at the World Bank, its arguments are applicable to optimization projects more
generally.

I also first encountered modeling languages in the 1970s, while working at
NBER. I do not recall how they first came to my attention, but as the Com-
puter Research Center’s mission was the design and development of innovative
modeling software, ideas for new languages and tools were continually under
discussion; naturally the younger members of the linear programming team
began to consider those ideas in the context of LP software:

Popular computer packages for linear programming do not differ
much in concept from ones devised ten or twenty years ago. We pro-
pose a modern LP system – one that takes advantage of such (rel-
atively) new ideas as high-level languages, interactive and virtual
operating systems, modular design, and hierarchical file systems.
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Particular topics include: computer languages that describe opti-
mization models algebraically; specialized editors for models and
data; modular algorithmic codes; and interactive result reporters.
We present specific designs that incorporate these features, and dis-
cuss their likely advantages (over current systems) to both research
and practical model-building. [7]

This was the abstract to a report on “A Modern Approach to Computer Sys-
tems for Linear Programming,” which I had begun writing with Michael J.
Harrison by the time that I left for graduate school in 1976. Algebraic model-
ing languages played a prominent role in our proposals, and an example from
a prototype language design was included.
“A Modern Approach . . . ” was completed at NBER’s Stanford office and

appeared in the M.I.T. Sloan School’s working paper series. After complet-
ing my PhD studies at Stanford and moving to Northwestern, an attempt to
submit it for publication made clear that some of its central assertions were
considerably less obvious to others than they had been to me. In particular we
had started off the description of our modeling language by stating that,

Models are first written, and usually are best understood, in alge-
braic form. Ideally, then, an LP system would read the modeler’s
algebraic formulation directly, would interpret it, and would then
generate the appropriate matrix.

Reviewers’ reactions to this claim suggested that there were plenty of adher-
ents to the traditional ways of mathematical programming, who would settle
for nothing less than a thorough justification. Thus I came to write a dif-
ferent paper, focused on modeling languages, which investigated in detail the
differences between modeler’s and algorithm’s form, the resulting inherent diffi-
culties of debugging a matrix generator, and many related issues. Additionally,
to confirm the practicality of the concept, I collected references to 13 modeling
language implementations, with detailed comparisons of the 7 that were so-
phisticated enough to offer indexed summations and collections of constraints.
Most have been forgotten, but they did include GAMS, which remains one of
the leading commercial modeling language systems, and LINDO, which gave
rise to another successful optimization modeling company.
The publication of this work as “Modeling Languages versus Matrix Gen-

erators” [3] was still not an easy matter. As I recall it was opposed by one
referee initially and by the other referee after its revision, but never by both
at the same time . . . and so a sympathetic editor was able to recommend it,
and after a further examination the editor-in-chief concurred. It appeared in a
computer science journal devoted to mathematical software, which at the time
seemed a better fit than the journals on operations research and management
science.
Subsequently a chance encounter led to my greatest adventure in modeling

languages. I had known Dave Gay when he was an optimization researcher
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at NBER, but by the time we met at the 1984 TIMS/ORSA conference in
San Francisco he had moved to the Computing Sciences Research Center at
Bell Laboratories. The Center’s researchers had developed Unix and the C
programming language among many innovations, and were given a free hand
in initiating new projects. Dave graciously invited me to spend a sabbatical
year there without any particular commitments, and as it happened my arrival
coincided with the completion of Brian Kernighan’s latest computer language
project. A fresh attempt at designing an algebraic modeling language seemed
like a great fit for the three of us.
Thus did AMPL get its start. We aimed to make it a declarative modeling

language in a rigorous way, so that the definition of a variable, objective, or
constraint told you everything you needed to know about it. In a constraint
such as Time above, you could assign or re-assign any parameter like rate[p,s]
or avail[s], or even a set like STAGE, and the resulting optimization problem
would change implicitly. A lot of our initial work went into the design of
the set and indexing expressions, to make them resemble their mathematical
counterparts and to allow expressions of full generality to appear anywhere in
a statement where they logically made sense.
The naming of software was taken very seriously at Bell Labs, so the choice

of AMPL, from A Mathematical Programming Language (with a nod to APL),
came well after the project had begun. By the late 1980s the concept of mod-
eling languages had become much more established and a paper on AMPL’s
design [4] was welcomed by Management Science. The referees did object that
our reported times to translate sophisticated models were often nearly as great
as the times to solve them, but by the time their reports came in, the translator
logic had been rewritten and the times were faster by an order of magnitude.
AMPL had a long gestation period, being fundamentally a research project

with a few interested users for its first seven years. Bell Labs provided an ideal
environment for innovation but not a clear path for disseminating the resulting
software. There was a strong tradition of disseminating written work, however,
so we proposed to write an AMPL book [5] that happened to have a disk in
the back. It started with a tutorial chapter introducing a basic model type
and corresponding language forms, which expanded to a four-chapter tutorial
covering a greater range of model types and language features. At that point
there seemed no good reason to abandon the tutorial approach, and subsequent
chapters eventually introduced all of the more advanced features using progres-
sively more advanced versions of the same examples. This approach paid off in
popularizing the modeling language approach beyond what a straightforward
user’s manual could have done.
The AMPL book’s design was commissioned by the publisher as part of a

projected series in which volumes on different software systems would be asso-
ciated with different animals, but beyond that we have no specific explanation
for the cat that appears on the cover.
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Reflections

Algebraic modeling languages have long since become an established approach
rather than a “modern” departure. Four general-purpose languages – AIMMS,
AMPL, GAMS, MPL – and their associated software have been in active devel-
opment for two decades or more, each by a small company devoted to optimiza-
tion. The similarity of their names notwithstanding, the stories of how these
language came about are all quite different; and although based on the same
underlying concept, they differ significantly in how the concept is presented
to users. Moreover a comparable variety of algebraic modeling languages have
developed for dedicated use with particular solvers.

Freedom from programming the generation of matrix coefficients has indeed
proved to be a powerful encouragement to applied optimization. Modeling
languages have lowered the barrier to getting started, particularly as the popu-
lation of technically trained computer users has expended far beyond the com-
munity of practiced programmers. Applications of optimization models have
spread throughout engineering, science, management, and economics, reflected
in hundreds of citations annually in the technical literature.

Modeling languages’ general algebraic orientation also has the advantage of
allowing them to express nonlinear relations as easily as linear ones. The ben-
efits of avoiding programming are particularly great in working with nonlinear
solvers that require function values and derivative evaluations, which modeling
language systems can determine reliably straight from the algebraic descrip-
tions. In fact the advent of efficiently and automatically computed second
derivatives (beginning with [8]) was a significant factor in advancing nonlinear
solver design.

And what of matrix generators? They have by no means disappeared, and
will surely maintain a place in optimization modeling as long as there are tal-
ented programmers. They have particular advantages for tight integration of
solver routines into business systems and advanced algorithmic schemes. And
modeling languages have greatly influenced the practice of matrix generation
as well, with the help of object-oriented programming. Through the creation
of new object types and the overloading of familiar operators, it has become
possible to use a general programming language in a way that looks and feels
a lot more like a modeling language declaration. Even the symbolic nature of
a model can be preserved to some degree. Thus the process of creating and
maintaining a generator can be made more natural and reliable, though diffi-
culties of disentangling low-level programming bugs from higher-level modeling
errors are still a powerful concern.

Whatever the choice of language, it seems clear that developments over four
decades have realized much of the vision of letting people communicate opti-
mization problems to computer systems in the same way that people imagine
and describe optimization problems, while computers handle the translation to
and from the forms that algorithms require. And still, anyone who has pro-
vided support to modeling language users is aware that the vision has not been
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entirely realized, and that modelers even now need to do a certain amount of
translating from how they think of constraints to how modeling languages are
prepared to accept them. Replies that begin, “First define some additional
zero-one variables . . . ”, or “You could make the quadratic function convex if
. . . ”, remain all too common; the conversions implied by these statements have
been addressed to some extent in some designs, but not yet in a truly thorough
manner applicable both to a broad range of models and a variety of solvers.
In conclusion it is reasonable to say that optimization modeling is considered

challenging today just as it was in the 1970s, but that he experience of creating
an application has changed for the better. Just as in the case of solver software,
improvements in modeling software have occurred partly because computers
have become more powerful, but equally because software has become more
ambitious and sophisticated. The malaise of earlier times seems much less
evident, and there is arguably a better balance between what can be formulated
and understood and what can be optimized.
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Prologue

Nick Trefethen [13] listed automatic differentiation as one of the 30 great nu-
merical algorithms of the last century. He kindly credited the present author
with facilitating the rebirth of the key idea, namely the reverse mode. In fact,
there have been many incarnations of this reversal technique, which has been
suggested by several people from various fields since the late 1960s, if not ear-
lier.
Seppo Linnainmaa (Lin76) of Helsinki says the idea came to him on a sunny

afternoon in a Copenhagen park in 1970. He used it as a tool for estimating
the effects of arithmetic rounding errors on the results of complex expressions.
Gerardi Ostrowski (OVB71) discovered and used it some five years earlier in the
context of certain process models in chemical engineering. Here and throughout
references that are not listed in the present bibliography are noted in paren-
theses and can be found in the book [7].
Also in the sixties Hachtel et al. [6] considered the optimization of electronic

circuits using the costate equation of initial value problems and its discretiza-
tions to compute gradients in the reverse mode for explicitly time-dependent
problems. Here we see, possibly for the first time, the close connection between
the reverse mode of discrete evaluation procedures and continuous adjoints of
differential equations. In the 1970s Iri analyzed the properties of dual and
adjoint networks. In the 1980s he became one of the key researchers on the
reverse mode.
From a memory and numerical stability point of view the most difficult aspect

of the reverse mode is the reversal of a program. This problem was discussed
in the context of Turing Machines by Benett (Ben73), who foreshadowed the
use of checkpointing as a tradeoff between numerical computational effort and
memory requirement.
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Motivated by the special case of back-propagation in neural networks, Paul
Werbos (Wer82) compared the forward and reverse propagation of derivatives
for discrete time-depedent problems with independent numbers of input, state,
and output variables. He even took into account the effects of parallel compu-
tations on the relative efficiency.

Many computer scientists know the reverse mode as the Baur-Strassen

method (BS83) for computing gradients of rational functions that are eval-
uated by a sequence of arithmetic operations. For the particular case of matrix
algorithms Miller et al. proposed the corresponding roundoff analysis [10].
Much more general, Kim, Nesterov et al. (KN+84) considered the composi-
tion of elementary functions from an arbitrary library with bounded gradient
complexity.

Bernt Speelpenning (Spe80) arrived at the reverse mode via compiler opti-
mization when Bill Gear asked him to automatically generate efficient codes for
Jacobians of stiff ODEs. I myself rediscovered it once more in the summer of
1987 when, newly arrived at Argonne, I was challenged by Jorge Moré to give
an example of an objective function whose gradient could not be evaluated at
about the same cost as the function itself.

One of the earliest uses of the reverse mode was in data assimilation in
weather forecasting and oceanography. This was really just a history match by
a weighted least squares calculation on a time-dependent evolution, where the
parameters to be approximated include the present state of the atmosphere.
The recurrent substantial effort of writing an adjoint code for geophysical mod-
els eventually spawned activities to generate adjoint compilers such as Tape-
nade (HP04) and TAF (GK98).

The first implementations of the reverse mode based on the alternative soft-
ware technology of operator overloading was done in PASCAL-SC, an extension
of PASCAL for the purposes of interval computation. The corresponding veri-
fied computing community has later included the revers mode in their analysis
and some but not all of the software [8].

Relevance to Optimization

The eminent optimizer Phil Wolfe made the following observation in a TOMS
article (Wol82):

There is a common misconception that calculating a function of n
variables and its gradient is about (n + 1) times as expensive as
just calculating the function. This will only be true if the gradi-
ent is evaluated by differencing function values or by some other
emergency procedure. If care is taken in handling quantities, which
are common to the function and its derivatives, the ratio is usually
1.5, not (n + 1), whether the quantities are defined explicitly or
implicitly, for example, the solutions of differential equations . . .
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Obviously this Cheap Gradient Principle is of central importance for the
design of nonlinear optimization algorithms and, therefore, fits very well into
this volume. Even now it is generally not well understood that there is no
corresponding Cheap Jacobian Principle, which one might have hoped to obtain
by computing Jacobians row-wise. On the other hand, many of the authors
mentioned above noted that Hessian times vector products and other higher

order adjoint vectors can be obtained roughly with the same complexity as the
underlying scalar and vector functions.
The salient consequence of the cheap gradient principle for nonlinear opti-

mization is that calculus-based methods can, in principle, be applied to large-
scale problems in thousands and millions of variables. While there are chal-
lenges with regards to the memory management and the software implementa-
tion, we should not yield to the wide spread engineering practice of optimizing
only on reduced order models with derivative free direct search methods. On a
theoretical level there has been a lot of activity concerning the use of continuous
and discrete adjoints in PDE constrained optimization [1] recently .
If everything is organized correctly, the cheap gradient principle generalizes

to what one might call the holy grail of large scale optimization, namely

Cost(Optimization)

Cost(Simulation)
∼ O(1)

By this we mean that the transition from merely simulating a complex system
(by evaluating an appropriate numerical model) to optimizing a user specified
objective (on the basis of the given model) does not lead to an increase in
computational cost by orders of magnitude. Obviously, this is more a rule of
thumb than a rigorous mathematical statement.
The selective name-dropping above shows that, especially from 1980 onwards,

there have been many developments that cannot possibly be covered in this
brief note. Since we do not wish to specifically address electronic circuits or
chemical processes we will describe the reverse mode from Seppo Linnainmaa’s
point of view in the following two sections. In the subsequent sections we
discuss temporal and spatial complexity of the reverse mode. In the final
section we draw the connection to the adjoint dynamical systems, which go
back to Pontryagin.

Round-off Analysis á la Linnainmaa

Seppo Linnainmaa was neither by training nor in his later professional career
primarily a mathematician. In 1967 he enrolled in the first computer science
class ever at the University of Helsinki. However, since there were still only
very few computer science courses, much of his studies were in mathematics.
Optimization was one of the topics, but did not interest him particularly. His
supervisor Martti Tienari had worked for Nokia until he became an associate
professor of computer science in 1967. The local system was an IBM 1602 and
for heavy jobs one had to visit the Northern European Universities Computing
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Figure 1

Center at Copenhagen, which had an IBM 7094. All computer manufacture
had their own floating point system.
After finishing his Master Thesis concerning the Estimation of Rounding

Errors in 1970 he obtained, four years later, the first doctorate ever awarded
in computer science at Helsinki University. In 1977 he got a Finnish grant as a
visiting scholar with William Kahan at Berkeley, whose group was instrumental
in developing the later IEEE Standard 754. Linnainmaa does not think that
the results of his thesis had any specific impact on the development of the
standard.
Moreover, he did not market his approach as a method for cheaply evaluating

gradients either, so there was little resonance until I called him up from Argonne
in the late eighties. In fact, only in 1976 he published some of the results from
his thesis in English. In Figure 1 one sees him holding up a reprint of this
BIT paper inside his house in Helsinki in March this year. After continuing his
work in numerical analysis he became, a few years later, primarily interested in
artificial intelligence. Curiously, as he describes it, this meant at that time the
simulation and optimization of complex transport systems, so he might have
felt at home in todays Matheon application area B. Later on he worked in other
areas of artificial intelligence and was a long time employee of the Technical
Research Centre of Finland.
His motivation was classical numerical analysis in the sense of floating point

arithmetic. On the right-hand side of Figure 1, we took from his BIT paper
the interpretation of a simple evaluation process

u2 = ϕ2(u0, u1); u3 = ϕ3(u1, u2); u4 = ϕ4(u2, u3);

as a computational graph, drawn bottom up. Here the binary functions ϕi()
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for i = 2, 3, 4 might be arithmetic operations and the arcs are annotated by the
partial derivatives dij .

More generally, Linnainmaa assumed that the vector function F̃ : D ⊂ Rn
→

Rm in question is evaluated by a sequence of assignments

ui = ϕi(vi) with vi ≡ (uj)j≺i for i = n . . . l

Here the elemental functions ϕi are either binary arithmetic operations or unary
intrinsic functions like

ϕi ∈ Φ ≡ {rec, sqrt, sin, cos, exp, log, . . .}

The precedence relation ≺ represents direct data dependence and we combine
the arguments of ϕi to a vector vi. Assuming that there are no cyclic depen-
dencies, we may order the variables such that j ≺ i ⇒ j < i. Then we can
partition the sequence of scalar variables ui into the vector triple

(x, z,y) = (u0, . . . , un−1, un, . . . , ul−m, ul−m+1, . . . , ul) ∈ Rn+l

such that x ∈ Rn is the vector of independent variables, y ∈ Rm the vector of
dependent variables, and z ∈ Rl+1−m−n the (internal) vector of intermediates.
In a nonlinear optimization context the components of the vector function
F may represent one or several objectives and also the constraints that are
more or less active at the current point. In this way one may make maximal
use of common subexpressions, which can then also be exploited in derivative
evaluations.
In finite precision floating point arithmetic, or due to other inaccuracies, the

actual computed values ũi will satisfy a recurrence

ũi = ũj ◦ ũk + δi or ũi = ϕi(ũj) + δi for i = n . . . l

Here δ ≡ (δi)i=0...l ∈ Rl+1 is a vector of hopefully small perturbations. The
first n perturbations δi are supposed to modify the independents so that ũi−1 =
xi + δi−1 for i = 1 . . . n. Now the key question is how the perturbations will
effect the final result

ỹ ≡ (ũi)i=l−m+1...l ≡ F̃(x, δ)

When the perturbations δi vanish we have obviously F̃(x, 0) = F(x) and, as-
suming all elemental functions to be differentiable at their respective (exact)
arguments, there must be a Taylor expansion

F̃(x, δ) = F(x) +

l
∑

i=0

ūi δi + o(‖δ‖)

Here the coefficients

ūi ≡ ūi(x) ∈ Rm
≡

∂F(x, δ)

∂δi

∣

∣

∣

∣

δ=0
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are variously known as adjoints or impacts factors. They may be thought of
as partial derivatives of the end result ỹ with respect to the intermediates ui

for i = n . . . l and the independents uj−1 = xj for j = 1 . . . n. The latter form
clearly the Jacobian

F′(x) ≡
∂F(x)

∂x
≡

(

ū⊤
j−1

)

j=1...n
∈ Rm×n

Moreover, provided the m dependent variables do not directly depend on each
other so that j ≺ i ⇒ j ≤ l −m, we have

(

ū⊤
l−m+i

)

i=1...m
= I = (e⊤i )i=1...m,

which is used as initialization in the recursive procedures below.
For discretizations of ODEs or PDEs the perturbations δi may also be inter-

preted as discretization errors. Controlling them in view of the adjoints ūi by
mesh adaptions is called the dual weighted residual approach [4]. In that con-
text the ūi are usually computed by solving discretizations of the corresponding
adjoint ODE or PDE, which are always linear. Questions of the commutativity
of discretization and adjoining or at least consistency to a certain order have
been considered by Hager and Walther, for recent developments see [2].
When the perturbations are exclusively produced by rounding and there is

no exponent overflow, we may estimate the perturbations by |δi| ≤ |ṽi|eps,
with eps denoting the relative machine precision. Following Linnainmaa we
obtain from the triangle inequality the estimates

‖F̃(x, δ)− F(x)‖ .

l
∑

i=0

‖ūi‖|δi| . eps

l
∑

i=0

‖ūi‖|ui|

where we have replaced ũi by ui in the last approximate relation. This estimate
of the conditioning of the evaluation process was applied to matrix algorithms
in (Stu80) and [10]. It was also studied by Iri, whose results can be traced
backward from (ITH88). Koichi Kubota [9] developed and implemented a
strategy for adaptive multi-precision calculations based on the impact factors
ūi.

Jacobian accumulation

Now we turn to the aspect of Seppo Linnainmaa’s thesis that is most interesting
to us, namely the fact that he proposed what is now known as the reverse mode
for calculating the adjoint coefficients ūi.
Assuming that all elementary functions ϕi are continuously differentiable at

the current argument, we denote their partial derivatives by di j = ∂ϕi/ ∂uj ∈

R. These scalars di j are directly functions of ui and indirectly functions of the
vector of independents x.

The partial ordering ≺ allows us to interpret the variables ui as nodes of
a directed acyclical graph whose edges can be annotated by the elementary
partials di j . For the tiny example considered above this so-called Kantorovich
graph (see [3]) is depicted on the right-hand side of Figure 1. It is rather
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important to understand that DAGs are not simply expression trees, but that
there may be diamonds and other semi-cycles connecting certain pairs of nodes
uj and ui. It is intuitively clear that the partial derivative of any dependent
variable yi ≡ vl−m+i with respect to any independent variable xj ≡ uj−1 is
equal to the sum over all products of partials di j belonging to edge disjoint
paths that connect the pair (xj ,yi) in the computational graph. The resulting
determinant-like expression is usually called Bauer’s formula ([3]). In the tiny
example above we obtain the two gradient components

∂u4/ ∂u0 = d4 2 d2 0+d4 3 d3 2 d2 0; ∂u4/ ∂u1 = d4 2 d2 1+d4 3 d3 2 d2 1+d4 3 d3 1

In general, the direct application of Bauer’s formula to accumulate complete
Jacobians involves an effort that is proportional to the length of an explicit al-
gebraic representation of the dependents y in terms of the independents x. As
this effort typically grows exponentially with respect to the depth of the compu-
tational graph, one can try to reduce it by identifying common subexpressions,
which occur even for our tiny example. Not surprisingly, absolutely minimizing
the operations count for Jacobian accumulation is NP hard (Nau06).
However, if the number m of dependents is much smaller than the num-

ber n of independents, Jacobians should be accumulated in the reverse mode
as already suggested by Linnainmaa. Namely, one can traverse the computa-
tional graph backward to compute the adjoint vectors ūi defined above by the
recurrence

ūj =
∑

i≻j

ūi di j ∈ Rm for j = l −m. . . 0

This relation says that the (linearized) impact of the intermediate or inde-
pendent variable uj on the end result y is given by the sum of the impact
factors over all successors {ui}i≻j weighted by the partials di j . Note that the
ūj are computed backward, starting from the terminal values ūl−m+i = ei for
i = 1 . . .m. For the tiny example depicted above, one would compute from
ū4 = 1 the adjoint intermediates

ū3 = 1 · d4 3; ū2 = 1 · d4 2 + ū3 d3 2; ū1 = ū2 d2 1 + ū3 d3 1; ū0 = ū2 d2 0

Note that there is a substantial reduction in the number of multiplications
compared to Bauer’s formula above and that the process proceeds backward,
i.e., here downward through the computational graph, which was drawn buttom
up for the evaluation itself. Since function evaluations are usually defined in
terms of predecessor sets {j : j ≺ i} rather than successor sets {i : i ≻ j}, the
accumulation of adjoints is usually performed in the incremental form

v̄i += ūi ∇ϕi(vi) ∈ Rm×ni for i = l . . . n

where ∇ϕi(vi) ≡ (di j)j≺i is a row vector and the matrices of adjoints v̄i ≡

(ūj)j≺i ∈ Rm×ni are assumed to be initialized to zero for i ≤ l −m. For the
tiny example above we obtain the statements

v̄4 += 1 · (d4 2, d4 3); v̄3 += ū3 (d3 1, d3 2); v̄2 += ū2 (d2 0, d2 1)
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where v̄4 ≡ (ū2, ū3), v̄3 ≡ (ū1, ū2) and v̄2 ≡ (ū0, ū1).

Temporal complexity

The mathematically equivalent incremental form shows very clearly that each
elemental function ui = ϕi(vi) spawns a corresponding adjoint operation v̄i +=
ūi ∇ϕi(vi). The cost of this operation scales linearly with respect to m, the
number of dependent variables. Hence, for a fixed library Φ there is a common
constant ω such that for all i

OPS{+= ūi ∇ϕi(vi)} ≤ mω OPS{ui = ϕi(vi)}.

Here OPS is some temporal measure of computational complexity, for example
the classical count of arithmetic operations. This implies for the composite
function F and its Jacobian that

OPS{F′(x)} ≤ mω OPS{F(x)}

The constant ω depends on the complexity measure OPS and the computing
platform. If one considers only polynomial operations and counts the number
of multiplications, the complexity ratio is exactly ω = 3. This is exemplified
by the computation of the determinant of a dense symmetric positive matrix
via a Cholesky factorization. Then the gradient is the adjugate, a multiple of
the transposed inverse, which can be calculated using exactly three times as
many multiplications as needed for computing the determinant itself.

The linear dependence on m cannot be avoided in general. To see this,
one only has to look at the trivial example F(x) = b sin(a⊤x) with constant
vectors b ∈ Rm and a ∈ Rn. Here the operations count for F is essentially
n+m multiplications and for F′(x) it is clearly nm multiplications so that for
the multiplicative complexity measure OPS{F′(x)} & 0.5m OPS{F(x)} provided
m ≤ n. Hence, the cheap gradient principle does not extend to a cheap Jacobian
principle. Note that this observation applies to any conceivable method of
computing F′(x) as an array of n×m usually distinct numbers.

The memory issue

For general F the actual runtime ratio between Jacobians and functions may
be significantly larger due to various overheads. In particular, it has been well
known since Benett [5] that executing the reverse loop in either incremental
or nonincremental form requires the recuperation of the intermediate values
ui in the opposite order to that in which they were generated initially by the
forward evaluation loop. The simplest way is to simply store all the interme-
diate values onto a large stack, which is accessed strictly in a first-in last-out
fashion. Speelpenning [12] depicted the sequential storage of all intermediate
operations as shown in Figure 2. This picture quite closely reflects the storage
in other AD-tools such as ADOL-C.
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Figure 2

Since we have to store some information for every single operation performed,
we obtain the spatial complexity

MEM{F′(x)} ∼ OPS{F(x)} & MEM{F(x)}

Note that this memory estimate applies to the vector and scalar cases m > 1
and m = 1 alike. Hence, from a memory point of view it is advantageous to
propagate several adjoints simultaneously backward, for example in an opti-
mization calculation with a handful of active constraints.
Originally, the memory usage was a big concern because memory size was

severely limited. Today the issue is more the delay caused by large data move-
ments from and to external storage devices, whose size seems almost unlimited.
As already suggested by Benett and Ostrowski et al. the memory can be re-
duced by orders of magnitude through an appropriate compromise between
storage and recomputation of intermediates, described as checkpointing in [7].
One possibility in a range of trade-offs is to realize a logarithmic increase for
both spatial and temporal complexity

MEM{F′(x)}

MEM{F(x)}
∼ log(OPS{F(x)}) ∼

OPS{F′(x)}

OPS{F(x)}m

Gradients and adjoint dynamics

Disregarding the storage issue we obtain, for the basic reverse mode for the
scalar case m = 1 with f(x) = F(x), the striking result that

OPS{∇f(x)} ≤ ω OPS{f(x)}

In other words, as Wolfe observed, gradients can ‘always’ be computed at a
small multiple of the cost of computing the underlying function, irrespective
of n the number of independent variables, which may be huge. Since m = 1,
we may also interpret the scalars ūi as Lagrange multipliers of the defining
relations ui − ϕi(vi) = 0 with respect to the single dependent y = ul viewed
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as objective function. This interpretation was used amongst others by the
oceanographer Thacker in (Tha91). It might be used to identify critical and
calm parts of an evaluation process, possibly suggesting certain simplifications,
e.g., the local coarsening of meshes.
As discussed in the prologue, the cheapness of gradients is of great importance

for nonlinear optimization, but still not widely understood, except in the time
dependent context. There we may have, on the unit time interval 0 ≤ t ≤ 1,
the primal dual pair of evolutions

u̇(t) ≡ ∂u(t)/∂t = F(u(t)) with u(0) = x,

˙̄u(t) ≡ ∂ū(t)/∂t = F′(u(t))⊤ū(t) with ū(1) = ∇f(u(1))

Here the state u belongs to some Euclidean or Banach space and ū to its topo-
logical dual. Correspondingly, the right-hand side F(u) and its dual F′(u)⊤ū
may be strictly algebraic or involve differential operators.
Then it has been well understood since Pontryagin that the gradient of a

function y = f(u(1)) with respect to the initial point x is given by ū(0). It can
be computed at maximally ω = 2 times the computational effort of the forward
calculation of u(t) by additionally integrating the second, linear evolution equa-
tion backward. In the simplest mode without checkpointing this requires the
storage of the full trajectory u(t), unless the right-hand side F is largely linear.
Also for each t the adjoint states ū(t) represent the sensitivity of the final value
y = f with respect to perturbations of the primal state u(t). Of course, the
same observations apply to appropriate discretizations, which implies again the
proportionality between the operations count of the forward sweep and mem-
ory need of the reverse sweep for the gradient calculation. To avoid the full
trajectory storage one may keep only selected checkpoints during the forward
sweep as mentioned above and then recuperate the primal trajectory in pieces
on the way back, when the primal states are actually needed.
In some sense the reverse mode is just a discrete analogue of the extremum

principle going back to Pontryagin. Naturally, the discretizations of dynamical
systems have more structure than our general evaluation loop described on
page 4, but the key characteristics of the reverse mode are the same.

Summary and outlook

The author would have hoped that the cheap gradient principle and other
implications of the reverse mode regarding the complexity of derivative cal-
culations were more widely understood and appreciated. However, as far as
smooth optimization is concerned most algorithm designers have always as-
sumed that gradients are available, notwithstanding a very substantial effort
in derivative-free optimization over the last couple of decades.
Now, within modeling environments such as AMPL and GAMS, even second

derivatives are conveniently available, though one hears occasionally complaints
about rather significant runtime costs. That is no surprise since we have seen
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that without sparsity, complete Jacobians and Hessians may be an order of
magnitude more expensive than functions and gradients, and otherwise, one
finds that the evaluation of sparse derivatives may entail a significant interpre-
tative overhead.
Further progress on the reverse mode can be expected mainly from the de-

velopment of an adjoint calculus in suitable functional analytical settings. So
far there seems to be little prospect of a generalization to nonsmooth problems
in a finite dimensional setting. The capability to quantify the rounding error
propagation and thus measure the conditioning of numerical algorithms, which
played a central role in the evolution of the reverse mode, awaits further ap-
plication. In contrast, checkpointing or windowing as it is sometimes called in
the PDE community, is being used more and more to make the reverse mode
applicable to really large problems.
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Gordon Moore and His Law:

Numerical Methods to the Rescue

Raúl Rojas

Abstract. In this chapter we review the protracted history of
“Moore’s Law”, that is, the expected doubling of the number of tran-
sistors in semiconductor chips every 18 months. Such an exponential
increase has been possible due to steady improvements in optical imag-
ing methods. The wavelength of light used for photolithography has
been reduced every decade, but it is reaching tough limits. Mathe-
matical methods capable of simulating optical systems and their inter-
ference properties play now a significant role in semiconductor design
and have kept Moore’s Law alive for at least the last ten years. As
we show, advances in semiconductor integration and numerical opti-
mization methods act synergistically.

2010 Mathematics Subject Classification: 00A69, 01A61
Keywords and Phrases: Fourier optics, photolithography, Moore’s
law, numerical simulation

1 Introduction

The number of transistors in a modern chip doubles every 18 months : this is
the most common mentioned variation of Moore’s Law. Actually, what Gordon
Moore postulated in 1965 was an annual doubling of electronic components
in semiconductor chips. He was talking about resistances, capacitors, and,
of course, logic elements such as transistors [10]. In his now famous paper
he compared different manufacturing technologies at their respective life-cycle
peaks, that is, when they reached minimal production cost. Fig. 1 is the
famous graph from Moore’s paper. Notice that he extrapolated future growth
based on just a few empirical points.
Moore corrected his prediction ten years later, when, looking back to the

previous decade, he modified his prediction to a doubling of electronic compo-
nents every 24 months: “The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year” [11]. Finally, the com-
munity of semiconductor experts settled somehow on a doubling period of 18

Documenta Mathematica · Extra Volume ISMP (2012) 401–415



402 Raúl Rojas

Figure 1: The extrapolated growth curve from Moore’s paper of 1965 [10].
Originally Gordon Moore proposed a doubling of components on a chip every
12 months.

months (referring now just to transistors on a chip), which is the modern ver-
sion of Moore’s Law [4]. This prediction has proved very resilient and has been
applied to memory chips, microprocessors, and other components, so that we
are really faced with a “family” of Laws, all postulating an exponential increase
in the number of components per chip (see Fig. 2).

Although more and more transistors can be integrated on a chip every year,
and a specific mix of technologies has been responsible for this achievement
(for example by designing three-dimensional semiconductor structures [12]),
the width of the smallest structures that can be “engraved” on a chip is still
the most important parameter in the semiconductor industry. We then talk
about chips built with 200 nm, or 100 nm, or even 22 nm technologies. What
we mean by this is that photolithographic methods can project small details of
that width on layer after layer of semiconductors. The desired two-dimensional
logical components are projected on the silicon wafer using a mask and light.
Chemicals are used to dissolve, or preserve, the portions of the wafer exposed
to light. This so-called photolithography allows engineers to build a chip step
by step, like a sandwich of materials and interconnections. The whole process
resembles the old photographic methods where an image was produced by
exposing the substrate to light, and then chemicals were applied in order to
obtain the finished picture. Such projection-processing steps are repeated for
different layout masks until a memory chip or microprocessor is packaged.

The problem with optical lithography is that it requires high-quality and
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Figure 2: The modern Moore’s law interpolated from the transistor count of
popular microprocessors (illustration from Wikipedia)

extremely accurate lenses. It is also hampered by the wavelength of the light
used for projecting the masks. The width of the current smallest structures
projected on commercial chips (22 nm) is already much smaller than the wave-
length of the exposure light. For example, for structures of 22nm width a laser
of 193nm wavelength can be used. That is almost a factor eight larger than
the details size! It is like writing thin lines using a pencil with a tip eight
times wider than the lines. It is no wonder that the demise of Moore’s Law
has been postulated again and again, in view of the physical limits that optical
lithography seems to be reaching. However, the death of optical lithography
has been greatly exaggerated, as Mark Twain would say, and mathematical
methods play an important role in the longevity and endurance of the law.
In fact, physicists and engineers have found new techniques for exploiting the
interference and wave properties of light in order to produce sharp image de-
tails. Now, before a chip is manufactured, extensive optical simulations of the
complete imaging process are run on powerful computers. Moore’s Law would
have stopped being valid a long time ago, were it not for the numerical methods
being used today. Thousands and thousands of CPU hours go into the design
and optimization of the lithography masks. The whole process is now called
“computer lithography”.
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2 Interference properties of light

The optical imaging difficulties stem from the wave properties of light. In
Newton’s time there was an intensive discussion about the nature of light.
Newton thought that light consists of corpuscles which are so small that they
do not make contact. They behaved otherwise as bodies possessing a certain
small mass and even a form. Curiously, it was Einstein who in 1905 vindicated
Newton, to a certain extent, when he explained the photoelectric effect as
interaction of materials with photons behaving as particles.

But it was the wave theory of light which gained prominence due mostly to
the work of the Dutch scientist Christiaan Huygens. He could explain phe-
nomena such as reflection, diffraction and refraction of light in a unified way,
making use of what we now call “Huygens principle”. Huygens worked out
this rule in 1690 in his “Traité de la lumière‘”, postulating that every point
in a wave front can be conceived, and can be treated, computationally, as the
source of a new secondary wave. The interference of the phases of the many
point sources produces the observed expansion of the wave front. Fig. 3 shows
an illustration from Huygens’ book, where we can see points along a spherical
wave acting as the source of new secondary spherical waves.

Light is electromagnetic radiation and each wave can interfere with another.
Each wave has a phase (like in a sine curve) and two waves can interfere con-
structively or destructively. Two waves from a coherent source displaced by
half a wavelength can “erase” each other. Adding up secondary waves cor-
responds to computing every possible interference. Mathematically, all this
summing up of secondary waves is equivalent to computing the expected tra-

Figure 3: Huygens principle as illustrated in Traité de la Lumière (1690). Each
point on a spherical wave is a source for secondary waves. Their interference
produces the further progress of the wave front.
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jectory of photons going in all possible directions, with changing phases along
their trajectory.
Diffraction produced by small slits is especially important in photolithogra-

phy. Light “bends” around obstacles and the smaller the slit, the larger the
effect. Photolithographic masks with millions of details can be thought of as
millions of small slits and the diffracted light has to be captured by lenses in
order to reconstruct the image through controlled refraction. No image fre-
quencies should get lost in the process.

3 The Rayleigh limit and the “Moore gap”

The layout of modern chips looks like a picture of a city, with millions of
“streets” connecting millions of components. The chip components must be
projected as tiny as possible on the wafer substrate. Smaller elements mean
smaller connections and smaller details. The question then is whether opti-
cal lithography can still provide the sharp resolution needed (at some point
the industry could shift to electron lithography and use electrons as imaging
source, for example). Photolithography is the inverse problem to microscopy:
in the latter we want to see the smallest details, in the first we want to recreate
them by projection. In both cases expensive and accurate systems of lenses
are needed. Fig. 4 shows an example of the tower of lenses needed in today’s
optical lithography. Projection errors, such as chromatic or spherical aberra-
tions, are corrected by the stack of lenses, each of them contributing one small
modification to the final light trajectory. Such lens systems are heavy and very
expensive.
Two factors are relevant when considering the optical resolution of lenses:

the size of the smallest details which can be seen through the system and the
depth of focus of the projection (since the chips are planar and the details
have to be focused precisely on the surface of the chip). In optics there is an
expression for the resolution limit called the Rayleigh limit. This is expressed
as

d = k
λ

NA

where λ is the wavelength of the exposure light, NA the so called numerical
aperture, and k a constant related to the production process. For lithography,
d is the width of the smallest structures that can be brought into focus. If we
want to reduce d, we must increase NA or use a smaller wavelength. In the
previous decades it was cheaper to move to progressively smaller wavelengths.
Now, economics dictates that wavelength reductions are coupled to much higher
costs, so that instead of moving to 157 nm exposure wavelength, for example,
the industry is still working with the 193 nm alternative. Therefore, NA and
k must be optimized. In both cases we have been stretching the limits of the
technology for several years now.
Rayleigh’s optical resolution limit arises from the interplay of the refracted

light waves. Interference effects conspire to wash out the resolution of the
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Figure 4: Diagram from a patent application for lithography lenses. The light
traverses the system of lenses from left to right. The stack of lenses is positioned
vertically in the lithography machine [5].

image when the details are of the same order of magnitude as the wavelength
of the light being used. In the past, lithographic equipment had just progressed
from one wavelength to the next. The industry moved from light from mercury
lamps and 436 nm wavelength, to 365 nm (the i-line of mercury lamps), then
further to 248 nm (KrF laser), and down to today’s 193 nm wavelength (Argon-
Fluoride). Also, now lasers, not just lamps, are being used, that is, coherent
light sources, allowing a more precise control of the projected shapes. The next
step would be moving to Extreme Ultraviolet lithography (EUV) with 13.5 nm
wavelength, or still further to X-rays of smaller wavelength. However EUV light
is absorbed in the air and the optics, so that the whole process would have to
take place in vacuum and employ special lenses combined with mirrors. Glass,
for example, is opaque to X-rays, so that no affordable projection systems exist
for both kinds of electromagnetic radiation.
Fig. 5 is very interesting in this respect because it shows the gap between the

growth trend of Moore’s law and the integration effect of smaller wavelengths
[9]. The vertical scale is logarithmic, so that Moore’s law appears as a linear
increase. The effects of improvements in wavelength have not kept pace with
Moore’s law, so that something different has to be made: instead of just re-
ducing the laser wavelength, the production process must be modified, so that
smaller structures can be imaged by means of the same exposure wavelength.
Here is where improvements in the optics and tools require numerical methods.
Moore’s gap is mathematics’ opportunity.

4 Immersion-lithography increases the numerical aperture

One production improvement which gave 193 nm lasers an edge over 157 nm
lasers is immersion lithography, now almost universally used. Light is focused
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Figure 5: The “Moore gap”. The growth in the number of components (pro-
portional to the so-called amount of information) surpasses the growth of wave-
length lithographic improvements alone [9]. The gap must be closed using novel
techniques.

using lenses but some image frequencies are lost at the interface air-glass-air.
Remember that the image produced by a spherical lens at the focal plane can be
interpreted as a Fourier decomposition of the image. Lower image frequencies
are collected near the optical axis, higher frequencies toward the periphery of
the lenses. Some of the frequencies, lost due to the finite size of the lenses,
can be kept in the system by moving from a glass-air interface to a glass-water
interface. Water has almost the same refraction index as glass (1.44 against
1.5–1.6 for light of 193 nm wavelength). That limits the reflections on the lens
surface (internal and external). Fig. 6 shows the trajectory of exposure light
in both cases, with a glass-air or a glass-water interface at the wafer. The
semiconductor is immersed in water; the water layer between the glass and
silicon serves the purpose of capturing the high image frequencies so that the
projection is sharper. Immersion lithography can be done with light of 193 nm
wavelength but at 157 nm water becomes opaque and cannot be used as shown
in Fig. 6. Obviously, introducing water between the lenses and the wafer leads
to all kinds of manufacturing problems, but they were quickly sorted out so
that the semiconductor industry moved to the new technology in just two years
(between 2002 and 2003). Water is also not the last word: better liquids are
being sought and could lead to further improvements of the optical process [14].

As Fig. 6 shows, immersion lithography improves mainly the so-called nu-
merical aperture (NA) in Rayleigh’s limit expression. The numerical aperture
is directly proportional to the refraction index between the lenses and the wafer.
NA is also directly proportional to the sine of the maximum projection angle
(the angle between the vertical and the rightmost ray in Fig. 6). Since the
projection angle cannot be larger than 90 degrees (whose sine is 1), further
improvements of NA are limited by the geometrical constraints. This parame-
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Figure 6: Immersion lithography is used on the right side, there is a glass-air
interface on the left side. Undesired reflections at the glass-air interface (left)
lead to poor resolution due to the loss of high image frequencies. Adapted from
[13].

ter has already given most of what it can provide – alternative optimizations
become indispensable.

5 Enter computer lithography

We are left with the constant k in the Rayleigh expression. Numerical methods
and computers can contribute now. It is ironic that Moore’s Law has led to
the fast processors we have now on every desktop, but that the law itself is
now dependent on these very same computers in order to continue being valid.
Here we have a truly positive feedback system, where synergy between two
seemingly separate fields can lead to exponential improvements in each one.

The idea of computer lithography is easy to explain using an example. Since
light is diffracted by the structures on the projections masks for chips, what we
can do is calculate in advance the effect of interference and modify the shape
etched on the mask, so that we obtain the desired sharp image projection.
That is, the mask is morphed in such a way that the diffraction, especially at
corners, is taken into account from the beginning. Instead of trying to avoid
interference, apply it, and make sure that constructive interference happens
where you need it, while destructive interference erases undesired “shadows”.

An embodiment of this idea is “optical proximity correction” (OPC). Con-
nections with sharp corners can be obtained by adding “serifs” to the mask
pattern. Fig. 7 shows an example. We want to obtain a structure shaped like
an inverted L. The mask used has the wiggled form shown (in green) which
looks like an L with some embellishments at the corners (the serifs). The imag-
ing result is the somewhat rounded L, which is not perfect, but comes very near
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Figure 7: An example of Optical Proximity Correction. The green mask
produces the red structure after photolithographic imaging (illustration from
Wikipedia).

to the desired inverted L shape. The effect of the serifs is to produce the re-
quired interference. In order to produce such effects some rules of thumb or
heuristics can be followed, but a really good result can only be obtained by
simulating the outcome of Huygen’s principle in advance.

6 Phase-shift masks and double patterning

It is also possible to manipulate directly the phase of the projected light. In
order to do this, the mask has to be manufactured with materials that produce
the phase-shift, or it can be manufactured with varying material thickness. A
small step protuberance can be embedded in the mask with the only purpose
of shifting the phase of the light going through each side of the step. Light
waves coming from both step sides interfere then in controllable way. Fig. 8
shows an example. On the right, a mask with a small phase-shifting step has
been exposed to a laser. Light going through the mask emerges with different
phases on each side of the small step. The final illumination intensity produced
by interference is such that total destructive interference can be obtained in
the middle of the detail. On the left you can see what happens when no phase-
shifting is used and the mask detail is smaller than the wavelength of the light
used: the light bends around the obstacle and the detail almost disappears
in the resulting low-contrast exposure: The wafer is being illuminated with
almost the same intensity everywhere. On the right, on the contrary, a small
detail of almost any width can be produced by adjusting the threshold of the
photochemical reaction (that is, exposure to how many photons dissolves the
material or not). The optical problem becomes manageable and the problem
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Figure 8: Without phase-shift, a mask produces the illumination shape shown
on the left. The small detail in the middle is not projected with enough contrast
on the wafer. A phase-shift mask (right side) uses a small step which shifts the
phase of the incoming light. The interference effect is such that a sharp edge
with high contrast is produced. Adjusting the illumination threshold a bar
with any possible small width can thus be imaged on the wafer, theoretically.

is now to find the materials with the right photochemical properties for the
obtained imaging contrast [3].

The design problem for the photolithography masks becomes now compli-
cated. Phase-shifted masks represent the state of the art in the semiconductor
industry. However, if phase-shifting is used everywhere in the mask, we are left
with a combinatorial problem. The phase-shifting steps have to be distributed
across the mask, using just two different mask levels. Special software must
keep track of the areas where phase-shifting has occurred. Therefore, the lay-
out of the mask must be planned very carefully. Usually, multiple masks are
designed and the exposure steps are combined, leading to multiple exposures.
Especially thin details can be produced by so-called double patterning [8], in
which thin parallel connections are handled by exposing first the even numbered
lines, and then the odd numbered ones (if you think of such parallel connec-
tions as having been numbered sequentially). The number of lithographic steps
increases, and sometimes auxiliary structures become necessary, which have to
be dissolved later (think of scaffolding during construction work). There are
two main methods for integrating and dissolving the auxiliary structures, called
respectively LELE und LFLE (for Lithography-Etch and Lithography-Freeze,
and their combinations).

7 Structured light and quantum lithography

There is still another technique used to increase the captured high frequency
components in the projected image. The idea is to use “structured light” when
illuminating the photomask. This is an old proposal that was first applied to
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Figure 9: Iris shapes for modern photolithography

microscopy, and which consists in illuminating not along the optical axis of
the lenses but from the side. The same effect can be achieved if the light is
first passed through an “iris”, that is, an opening with a certain shape. The
idea is to diffract the exposure light so that customized wavefronts reach the
optics, that is, wavefronts capable of preserving more detail from the mask.
Fig. 9 shows four examples of the type of irises used in photolithography for
projecting light “structured” in such a way as to preserve more high-frequency
details of the mask.

Quantum lithography is also a novel idea that would allow having access
to smaller effective wavelengths without having to change the optical system.
It consists of producing entangled photons so that they behave like a single
quantum mechanical system. It is then possible to produce virtual particles
with twice or thrice the energy of the original single photons. The virtual
wavelength is reduced by a factor of two or three, as if we were using light
of smaller wavelength. However, each particle can still be focused with the
same kind of lenses as we have now, so that the problem of glass opacity at
higher energies does not arise. The materials on the chip must be exposed
in such a way that two or three photons are needed to produce the necessary
photochemical reaction. It sounds like a good idea for the future, but low
temperatures and very accurate equipment are needed, so that more research
is still needed if quantum photolithography is ever to become reality.

8 Koomey’s law and the power problem

A negative effect of Moore’s law is the increase in heat released pro square mil-
limeter in every chip. Microprocessors can become so hot, that enormous heat
exchangers or water cooling becomes necessary. In 2009, Jonathan Koomey
studied the historical development of the energy efficiency of computers and
came to the conclusion that another power law is here at work. It is interest-
ing that Koomey included in his analysis not just modern microprocessors but
also very old machines, trying to find out how much energy has been used per
computation in every historical period.

What Koomey found is that the number of operations per kWh follows the
following rule: The number of logical operations that one can obtain for a watt-

hour doubles every 18 months [6]. This rule of thumb is now called “Koomey’s
Law”. If we would consume the same number of operations per second every
year, the battery in new laptops would last twice as long as before. We know,
however, that new software executes more operations per second so that the
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annual battery life gains are certainly lower. However, without Kommey’s law
many mobile applications would not be possible today.
Koomeys law, as first postulated, refers to the number of operations per

second. That is not a good metric for comparing microprocessors since some
processors can work with simpler instructions as others. Mobile processors, for
example, are usually simpler than desktop computers. A better metric is to
use the benchmarks produced by the Standard Performance Evaluation Corpo-

ration (SPEC), an organization whose mission is to provide a set of executable
programs which represents real workloads for computer systems. The SPEC
benchmarks compare execution times of realistic workloads and allow users to
determine whether a processor is really faster than another.
In 2008, the SPEC organization released a new set of benchmarks for mea-

suring the energy consumed by computer systems while executing typical work-
loads (graphic operations, data bank accesses, and so on). The SPEC Power
Benchmarks are a basket of executable programs tested under three different
conditions (10%, 20% and 100% processor load). The idea is to test whether
a processor which is working only at 10% capacity is maybe consuming 50% of
the peak energy, for example. At the end, the SPEC Power benchmark shows
how much processing the processor can deliver and at what energy cost (energy
is measured by plugging the computer to appropriate measuring instruments).

There were 280 reports in the database of the SPEC organization in 2011.
Fig. 10 shows the result of plotting this data. The vertical axis shows the
SPEC-index (operations for kWh) for every processor and the horizontal axis
the introduction year for the processors tested. The line represents the trend
of all these measurements.
The graph shows that the operations per Watt have increased continually

since 2007 (with a large spread). There are some very efficient processors,
i.e., those near the 4500 SPEC power index, and some others which are cer-
tainly rather power hungry. The trend in the graph corresponds very closely
to Koomey’s law though. The SPEC power data shows a doubling of energetic
efficiency every 18.8 months, very close to the expected doubling postulated by
Koomey. In a certain sense, this law is a complement to Moore’s law since not
only more transistors per chip are important, but less energy for every logical
computation makes many new applications possible.

9 The limits of photolithography

This short review of photolithographic “tricks of the trade” shows that the
semiconductor industry has been extremely innovative every time it seems as
if the physical limits of the production methods are about to be reached. Mod-
ern lithography must be described now using many adjectives: what we have
is phase-shifted-double-patterning immersion lithography, based on resolution
enhanced technologies (RET), such as Optical proximity correction and struc-
tured light. The whole process has to be extensively optimized and tested using
computer simulations [12].
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Figure 10: SPEC-Power results (December 2007 to December 2011). Each
point corresponds to a processor and the date of the SPEC test. Some pro-
cessors were tested after their introduction date, producing thus a significant
spread of the data.

Photolithography will be further enhanced by using new materials whose
photochemical properties can be tuned to the number of photons captured
by the material. Low optical contrast can be enhanced using longer imaging
periods, so as to be able to produce smaller and smaller structures. Some
physicists are now of the opinion that there are no physical limits for optical
lithography [1].
Moore’s law could however hit a wall of a different nature: heat production

in modern chips is already a problem, as Moore predicted in 1965 (notwith-
standing Koomey’s law), but more important than that is the fact that 22nm
structures contain just around 220 atoms. If we reduce the number of atoms
in transistors and connections, it could be that we start seeing uncontrollable
non-linear effects. Fortunately, the physical limit seems to be still far away,
having been reported recently that nanoconnectors with just four atoms still
obey Ohm’s law [2].
Therefore, the most important obstacle in the horizon seems to be of eco-

nomic nature. EUV lithography has been postponed due to the enormous costs
of the equipment. All new semiconductor factories are ultramodern buildings
where hundreds or thousands o production steps must be planned and per-
formed exactly. Intel’s newest semiconductor fab is totally robotized and cost
billions of dollars.
Physicists are already looking for alternatives, for a new age in which two-

dimensional structures will not be enough. Moore’s Law could get more oxygen
– the production methods and materials used for semiconductors will then
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change radically within the next twenty years. But one thing is sure: numerical
methods and simulation will be even more important in that future. Moore’s
Law has made numerical methods faster and more powerful, but numerical
methods keep now Moore’s law alive.
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More Optimization Stories

I have claimed in this book several times that optimization is around every-
where in nature and in all kinds of human endeavor. It is therefore impossible
to cover in a book like this one all aspects of optimization. This final section
serves as a pointer to further areas that have close connections to optimization
but can only be treated peripherally.
Voronoi diagrams and Delaunay triangulations are examples of structures

that can be defined by concepts of optimization theory. Today these are often
considered as objects of computational geometry and play an important role in
algorithm design. It is amazing to see how many other disciplines have arrived
at these concepts from quite different initial questions.
Optimization is a field that employs ideas from many areas of mathematics.

It is sometimes really surprising to see that results that may be viewed by some
“hard core optimizers” as “esoteric pure mathematics” have significant bearing
on optimization technology. One such example is Hilbert’s 17th problem that
plays an important role in the representation of sets of feasible solutions by
polynomials.
Optimization methods are also important tools in proofs. The correctness of

a claim may depend on a large number of runs of optimization algorithms. Can
we trust these results? A prime example is the proof of the Kepler conjecture
that, in fact, gives rise to philosophical questions about mathematical proofs
relying on computer runs.
The last two articles in this section build a bridge to economics. Optimizers

usually assume that one objective function is given; but in reality there are often
more goals that one wants to achieve – if possible simultaneously. Economists
were the first to consider such issues and to formulate concepts of multi-criteria
(or multi-objective) optimization.
The final article of this book touches upon several aspects not treated else-

where in this book. One is stochastic optimization where optimization problems
are considered for which information about a problem to be solved is partially
unknown or insecure, or where only certain probabilities or distributions are
known. The article starts with a game and “expected payoff”, introduces util-
ity functions (instead of objective functions) and ends with highly complex
optimization questions in financial mathematics.
The relation of optimization with economics and management science is (for

space reasons) underrepresented in this book. That is why I finish here with a
few words about it.
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Mathematicians have, for a long time, struggled mainly with the character-
ization of the solution set of equations. Economists have always considered
questions such as the efficient allocation of scarce resources. The mathemati-
cal description of sets defined via the possible combination of resources under
scarcity constraints naturally needs inequality constraints. That is one rea-
son why the initial development of optimization in the middle of the twenti-
eth century was strongly influenced by economists; and influential economists
promoted the mathematical optimization approach to deal with such issues.
Around the same time, game theory was developed (that should have also
been treated in this book). The outstanding book by J. von Neumann and O.
Morgenstern had a significant impact. The relations between questions and so-
lution concepts in game theory to linear, nonlinear, and integer programming
were worked out, and mutual significant influence became visible. The im-
portance of linear programming for economics was recognized by the award of
Nobel Prizes in Economic Sciences to L. V. Kantorovich and T. C. Koopmans
in 1975. Several further Nobel Prizes recognizing contributions to game theory,
auction theory, mechanism design theory and financial mathematics followed.
All these areas have close connections to optimization.
Science is carried out to increase our understanding of the world and to use

the information obtained to improve our well-being. I view the development of
optimization theory and of its algorithmic methods as one of the most impor-
tant contributions of mathematics to society in the 20th century. Today, for
almost every good on the market and almost every service offered, some form of
optimization has played a role in their production. This is not too well-known
by the general public, and we optimizers should make attempts to make the
importance of our field for all aspects of life more visible. History stories such
as the ones presented in this book may help to generate attention and interest
in our work.

Martin Grötschel
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Voronoi Diagrams and Delaunay Triangulations:

Ubiquitous Siamese Twins
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2010 Mathematics Subject Classification: 01A65, 49-03, 52C99, 68R99,
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flip-graphs

1 Introduction

Concealing their rich structure behind apparent simplicity, Voronoi diagrams
and their dual Siamese twins, the Delaunay triangulations constitute remark-
ably powerful and ubiquitous concepts well beyond the realm of mathematics.
This may be why they have been discovered and rediscovered time and again.
They were already present in fields as diverse as astronomy and crystallography
centuries before the birth of the two Russian mathematicians whose names they
carry. In more recent times, they have become cornerstones of modern disci-
plines such as discrete and computational geometry, algorithm design, scientific
computing, and optimization.
To fix ideas, let us define their most familiar manifestations (in the Euclidean

plane) before proceeding to a sketch of their history, main properties, and
applications, including a glimpse at some of the actors involved.
A Voronoi diagram induced by a finite set A of sites is a decomposition of

the plane into possibly unbounded (convex) polygons called Voronoi regions,
each consisting of those points at least as close to some particular site as to the
others.
The dual Delaunay triangulation associated to the same set A of sites is ob-

tained by drawing a triangle edge between every pair of sites whose correspond-
ing Voronoi regions are themselves adjacent along an edge. Boris Delaunay has
equivalently characterized these triangulations via the empty circle property,
whereby a triangulation of a set of sites is Delaunay iff the circumcircle of none
of its triangles contains sites in its interior.
These definitions are straightforwardly generalizable to three and higher di-

mensions.
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Figure 1: From left to right: Johannes Kepler, René Descartes, Carl Friedrich
Gauss, Johann Peter Gustav Lejeune Dirichlet, John Snow, Edmond Laguerre,
Georgy Feodosevich Voronoi, and Boris Nikolaevich Delone. The first seven
pictures have fallen in the public domain, and the last one was kindly provided
by Nikolai Dolbilin.

One may wonder what Voronoi and Delaunay tessellations have to do in this
optimization histories book. For one they are themselves solutions of optimiza-
tion problems. More specifically, for some set of sites A, the associated Delau-
nay triangulations are made up of the closest to equilateral triangles; they are
also the roundest in that that they maximize the sum of radii of inscribed circles
to their triangles. Moreover, they provide the means to describe fascinating
energy optimization problems that nature itself solves [37, 18]. Furthermore
Voronoi diagrams are tools for solving optimal facility location problems or
finding the k-nearest and farthest neighbors. Delaunay triangulations are used
to find the minimum Euclidean spanning tree of A, the smallest circle enclos-
ing the set, and the two closest points in it. Algorithms to construct Voronoi
diagrams and Delaunay triangulations are intimately linked to optimization
methods, like the greedy algorithm, flipping and pivoting, divide and conquer
[31]. Furthermore the main data structures to implement geometric algorithms
were created in conjunction with those for Voronoi and Delaunay tessellations.
Excellent sources on the notions of Voronoi diagrams and Delaunay triangu-

lations, their history, applications, and generalizations are [12, 2, 3, 28].

2 A glance at the past

The oldest documented trace of Voronoi diagrams goes back to two giants of
the Renaissance: Johannes Kepler (1571 Weil der Stadt – 1630 Regensburg)
and René Descartes (1596 La Haye en Touraine, now Descartes – 1650 Stock-
holm). The latter used them to verify that the distribution of matter in the
universe forms vortices centered at fixed stars (his Voronoi diagram’s sites), see
figure 2 [9]. Several decades earlier, Kepler had also introduced Voronoi and
Delaunay tessellations generated by integer lattices while studying the shapes
of snowflakes and the densest sphere packing problem (that also led to his fa-
mous conjecture). Two centuries later, the British physician John Snow (1813
York – 1858 London) once more came up with Voronoi diagrams in yet a totally
different context. During the 1854 London cholera outbreak, he superposed the
map of cholera cases and the Voronoi diagram induced by the sites of the water
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Figure 2: Left: a Voronoi diagram drawn by René Descartes [9], and its recalcu-
lation displaying yellow Voronoi regions, with the dual Delaunay triangulation
in blue. Right: The Voronoi region centered on Broad Street pump, sketched
by John Snow [33] using a dotted line.

pumps, see figure 2 [33], thereby identifying the infected pump, thus proving
that Voronoi diagrams can even save lives. His diagram is referred to in [26] as
the most famous 19th century disease map and Snow as the father of modern
epidemiology.
Around the time when John Snow was helping to fight the London cholera

epidemic, the eminent mathematician Johann Peter Gustav Lejeune Dirichlet
(1805 Düren – 1859 Göttingen) was in Berlin, producing some of his seminal
work on quadratic forms. Following earlier ideas by Kepler (see above) and Carl
Friedrich Gauss (1777 Braunschweig -1855 Göttingen), he considered Voronoi
partitions of space induced by integer lattice points as sites [10]. Therefore, to
this day, Voronoi diagrams are also called Dirichlet tesselations. Thirty years
later, Georges Voronoi (1868 Zhuravky – 1908 Zhuravky) extended Dirichlet’s
study of quadratic forms and the corresponding tessellations to higher dimen-
sions [34]. In the same paper, he also studied the associated dual tessellations
that were to be called Delaunay triangulations. Voronoi’s results appeared in
Crelle’s journal in 1908, the year of his untimely death at the age of 40. He
had been a student of Markov in Saint Petersburg, and spent most of his ca-
reer at the University of Warsaw where he had become a professor even before
completing his PhD thesis. It was there that young Boris Delone – Russian
spelling of the original and usual French Delaunay – (1890 Saint Petersburg
– 1980 Moscow) got introduced to his father’s colleague Voronoi. The latter
made a lasting impression on the teenager, profoundly influencing his subse-
quent work [11]. This may have prompted the Mathematical Genealogy Project

[25] to incorrectly list Voronoi as Delone’s PhD thesis advisor just as they did
with Euler and his “student” Lagrange. Actually, Lagrange never obtained a
PhD, whereas Delone probably started to work on his thesis, but definitely
defended it well after Voronoi’s death. Delone generalized Voronoi diagrams
and their duals to the case of irregularly placed sites in d-dimensional space.
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He published these results in a paper written in French [7], which he signed
Delaunay. During his long life spanning nearly a whole century, he was not only
celebrated as a brilliant mathematician, but also as one of Russia’s foremost
mountain climbers. Indeed, aside from his triangulations, one of the highest
peaks (4300m) in the Siberian Altai was named after him too. For a detailed
account of Boris Delaunay’s life, readers are referred to the beautiful biography
written by Nikolai Dolbilin [11]. Delaunay’s characterization of his triangula-
tions via empty circles, respectively empty spheres in higher dimensions later
turned out to be an essential ingredient of the efficient construction of these
structures (see in section 4 below).
At least half a dozen further discoveries of Voronoi diagrams in such miscel-

laneous fields as gold mining, crystallography, metallurgy, or meteorology are
recorded in [28]. Oddly, some of these seemingly independent rediscoveries ac-
tually took place within the same fields of application. In 1933, Eugene Wigner
(1902 Budapest – 1995 Princeton) and Frederick Seitz (1911 San Francisco –
2008 New York City) introduced Voronoi diagrams induced by the atoms of a
metallic crystal [36]. Previously Paul Niggli (1888 Zofingen - 1953 Zürich) [27]
and Delaunay [6] had studied similar arrangements and classified the associated
polyhedra. To this day, physicists indifferently call the cells of such Voronoi
diagrams Wigner-Seitz zones, Dirichlet zones, or domains of action.

It should be underlined that, over the last decades, Voronoi diagrams and De-
launay triangulations have also made their appearance in the fields of scientific
computing and computational geometry where they play a central role. In par-
ticular, they are increasingly applied for geometric modeling [4, 24, 1, 32] and
as important ingredients of numerical methods for solving partial differential
equations.

3 Generalizations and applications

As described by Aurenhammer [3], ordinary Voronoi diagrams can be inter-
preted as resulting from a crystal growth process as follows: “From several
sites fixed in space, crystals start growing at the same rate in all directions and
without pushing apart but stopping growth as they come into contact. The
crystal emerging from each site in this process is the region of space closer to
that site than to all others.”
A generalization in which crystals do not all start their growth simultaneously

was proposed independently by Kolmogorov in 1937 and Johnson and Mehl in
1939 [20]. In the planar case, this gives rise to hyperbolic region boundaries.
On the other hand, if the growth processes start simultaneously but progress

at different rates, they yield the so-called Apollonius tessellations, with spheri-
cal region boundaries, resp. circular in the plane. These patterns can actually
be observed in soap foams [35]. Apollonius tesselations are in fact multiplica-
tively weighted Voronoi diagrams in which weights associated to each site mul-
tiply the corresponding distances.
These types of Voronoi diagram patterns are also formed by mycelia as they
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Figure 3: Simulated hyphal growth. Left: Initially ten numerical spores us-
ing self-avoidance grow and occupy the surrounding two-dimensional medium,
defining a Voronoi diagram. Right: Hyphal wall growth model using piecewise
flat surfaces and Voronoi diagrams thereon.

evolve from single spores and compete for territory (see figure 3). The mycelium
is the part of the fungus that develops underground as an arborescence whose
successive branches are called hyphae [18]. Certain molds actually exhibit an
essentially planar growth. Hyphal growth in its interaction with the surround-
ing medium can be modeled using the assumption that as they grow, hyphae
secrete a substance that diffuses into the medium, whose concentration they
can detect and try to avoid, thereby both avoiding each other and also accel-
erating their own circularization. Thus the relationship to Voronoi diagrams
becomes apparent. At a more microscopic level, growth of hyphal walls can
be simulated by modeling them as piecewise flat surfaces that evolve according
to biologically and mechanically motivated assumptions [18]. Therein, Delau-
nay triangulations and Voronoi diagrams on piecewise linear surfaces are useful
tools.

Laguerre diagrams (or tesselations) are additively weighted Voronoi diagrams
already proposed by Dirichlet [10] decades before Edmond Nicolas Laguerre
(1834 Bar-le-Duc – 1886 Bar-le-Duc) studied the underlying geometry. In
the early nineteen eighties, Franz Aurenhammer, who calls Laguerre diagrams
power diagrams, wrote his PhD thesis about them, resulting in the paper [2],
which to this date remains an authoritative source on the subject. They had
previously also been studied by Laszlò Fejes Toth (1915 Szeged – 2005 Bu-
dapest) in the context of packing, covering, and illumination problems with
spheres [14, 15].

Power diagrams yield a much richer class of partitions of space into convex
cells than ordinary Voronoi diagrams. They are induced by a set of positively
weighted sites, the weights being interpreted as the squared radii of spheres
centered at the sites. The region induced by some weighted site i.e. sphere
consists of those points whose power with respect to that sphere is smaller or
equal to that with respect to all others [15, 12, 3]. Note that some spheres
may generate an empty region of the power diagram, which has to do with
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Figure 4: The growth of a polycrystal modeled using dynamic power diagrams.
From left to right, larger monocrystalline regions grow, eating up the smaller
ones

the fact that the power with respect to a sphere is not a metric since it can
be negative. The dual triangulations of power diagrams are called weighted

Delaunay triangulations, or regular triangulations. These objects can be defined
in Euclidean spaces of arbitrary dimension.

Laguerre tessellations turn out to be very powerful modeling tools for some
physical processes, as for instance metal solidification or ceramics sintering.
During the production of ceramic materials, a polycrystalline structure forms
starting from, say alumina powder (Al2SO3). With the help of time, heat and
pressure, the polycristal, which is a conglomerate of unaligned crystalline cells
undergoes a process in which larger cells grow at the expense of the smaller ones
(see figure 4). It has been shown that at any point in time, three-dimensional
Laguerre tessellations are adequate representations of such self-similar evolv-
ing polycrystalline structures [37]. Their growth is driven by surface energy
minimization, the surface being the total surface between adjacent crystalline
regions. Not only is it easy to compute this surface in the case of Laguerre
tessellations, but also its gradient when the parameters defining the generat-
ing spheres evolve. With the use of the chain rule, it is thus possible to set
up motion equations for the generating spheres of the Laguerre tessellation,
that reflect the energy minimization. They remain valid as long as there is no
topological transformation of this tesselation (such a transformation consisting
either in a neighbor exchange or a cell vanishing). Whenever such a transfor-
mation takes place, the tessellation and motion equations have to be updated
and integrated until detection of the following topological transformation, and
so on. This process can go on until the polycrystalline structure becomes a
mono-crystal. The growth of foams can be modeled in a similar fashion. All
this has been implemented in two and three dimensions for very large cell pop-
ulations, and periodic boundary conditions. The latter imply a generalization
of Laguerre tessellations to flat tori. Such simulations remain the only way to
follow the dynamic phenomena taking place in the interior of three-dimensional
polycrystals.
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Another application, close to that in [15] comes up in the numerical simula-
tion of granular media where the behavior of assemblies of macroscopic grains
like sand, corn, rice, coke is studied by replicating trajectories of individual
grains. Increased computing power in conjunction with the power supplied by
mathematics now allows simulation of processes involving hundreds of thou-
sands of grains. The main challenge involved is threefold:

• realistic modeling of individual grain shapes beyond simple spheres;

• realistic physical modeling of the interaction between contacting bodies;

• efficient contact detection method.

The latter is where Delaunay triangulations are used. Indeed, they yield meth-
ods that permit to efficiently test contacts within very large populations of
spherical grains. The underlying property being that whenever two spherical
grains are in contact, their centers are linked by an edge of the associated regu-
lar triangulation. Using this method requires an efficient and numerically stable
updating procedure of regular triangulations associated to dynamically evolving
sites. Using sphero-polyhedral grains (a sphero-polyhedron is the Minkowski
sum of a sphere with a convex polyhedron), this procedure can be straight-
forwardly generalized to such quite arbitrarily shaped non-spherical grains.
With this approach, large-scale simulations of grain crystallization, mixing and
unmixing, and compaction processes in nature and technology have been per-
formed (see figure 5).
In principle, Voronoi diagrams can be defined for sets of sites on arbitrary

metric spaces, such as giraffe and crocodile skins, turtle shells, or discrete ones
such as graphs with positive edge weights satisfying the triangle inequality,
giving rise to classical graph optimization problems.

4 Geometry and algorithms

The previously introduced d-dimensional power diagrams and the associated
regular triangulation can also be viewed as the projections to Rd of the lower
boundaries of two convex (d+1)-dimensional polyhedra. In fact, this projective
property can be used as a definition. In other words, a subdivision of Rd into
convex cells is a power diagram if and only if one can define a piecewise-linear
convex function from Rd to R whose regions of linearity are the cells of the
diagram (see [3], and the references therein). The same equivalence is also
true for regular triangulations, where the given function is defined only on the
convex hull of the sites and has simplicial regions of linearity.

In this light, regular triangulations can be interpreted as a proper subclass
of the power diagrams. In other words, they are the power diagrams whose
faces are simplices. Note that by far, not every partition of space into convex
polyhedral cells can be interpreted as an ordinary Voronoi diagram. As shown
by Chandler Davis [5], power diagrams constitute a much richer class of such
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Figure 5: Granular media simulation using regular triangulations. Left: All the
contacts occurring in a set of two-dimensional discs are detected by testing the
edges of a regular triangulation. This triangulation is depicted in black and its
dual power diagram in light gray. Right: Simulation of the output of a funnel
with very low friction, involving about 100 000 spherical particles. Contacts
are tested using regular triangulations.

partitions. In fact, in dimension higher than 2, every simple convex partition
is a power diagram. In analogy to simple polytopes, simple partitions consist
of regions such that no more than d of them are adjacent at any vertex. In this
context it is interesting to note that Kalai has shown that the Hasse diagram of
a simple polytope can actually be reconstructed from its 1-skeleton [22]. Recall
that the 1-skeleton of a polytope is the graph formed by its vertices and edges.
Hence the same also holds for simple power diagrams.

An important implication of the projection property is that software for
convex hull computation can be directly used to compute power diagrams [16].
Since the nineteen-seventies, many other specialized algorithms have been de-
veloped that compute these diagrams. Today, constructing a 2-dimensional
Voronoi diagram has become a standatd homework exercise of every basic
course in algorithms and data structures. In fact, the optimal divide and

conquer algorithm by Shamos can be considered as one of the cornerstones
of modern computational geometry (see [31]). In this recursive algorithm of
complexity O(n log(n)), the set of n sites is successively partitioned into two
smaller ones, whereupon their corresponding Voronoi diagrams are constructed
and sewn together. Unfortunately, no generalization of this algorithm to higher
dimensions or to power diagrams is known.

Several algorithms that compute regular triangulations are known, though,
and by duality, one can easily deduce the power diagram generated by a set
of weighted sites from its associated regular triangulation. Note in particular
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Figure 6: Four types of flips in 2-dimensions (left) and 3-dimensions (right).
The flips at the top insert or remove edge {b, d} and the flips at the bottom
insert or remove vertex d.

that one obtains the Hasse diagram of a power diagram by turning upside down
that of the corresponding regular triangulation.

Plane Delaunay triangulations can be constructed using flip algorithms such
as first proposed by Lawson [23]. While their worst-case complexity is O(n2),
in practical cases they are not only a lot faster than that, but also have other
desirable numerical properties. Consider a triangulation of a set of n points in
the plane. Whenever two adjacent triangular cells form a convex quadrilateral,
one can find a new triangulation by exchanging the diagonals of this quadrilat-
eral. Such an operation is called an edge flip and the flipped edges are called
flippable (see figure 6). A quadrilateral with a flippable edge is called illegal if
the circumcircle of one of its triangles also contains the third vertex of the other
in its interior. Otherwise, it is legal. It is easy to see that a flip operation on an
illegal quadrilateral makes it legal and vice-versa. The simple algorithm that
consists in flipping all illegal quadrilaterals to legality, one after the other in
any order, always converges to a Delaunay triangulation. Testing the legality
of a quadrilateral amounts to checking the sign of a certain determinant. Along
with the flip operation, this determinant-test generalizes to higher dimensions
[8]. Moreover, the aforementioned flip-algorithm can be generalized to regular
triangulations – with weighted sites – by simply introducing an additional type
of flip to insert or delete (flip in/flip out) vertices (see figure 6) and testing a
slightly modified determinant. Unfortunately, in this case, this algorithm can
stall without reaching the desired solution. For rigorous treatment of flips using
Radon’s theorem on minimally affinely dependent point sets, see [8].

The incremental flip algorithm [19] for the construction of regular triangu-
lations is a method that always works. Therein, a sequence of regular trian-
gulations is constructed by successively adding the sites in an arbitrary order.
An initial triangulation consists of a properly chosen sufficiently large artificial
triangle that will contain all given sites in its interior and will be removed once
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the construction is finished. At any step a new site is flipped in (see figure 6),
subdividing its containing triangle into three smaller ones, the new triangula-
tion possibly not being a Delaunay triangulation yet. However, as shown in
[19], it is always possible to make it become one by a sequence of flips. This
incremental flip algorithm has been generalized in [13] to the construction of
regular triangulations in arbitrary dimension.
Any pair of regular triangulations of a given set of sites is connected by a

sequence of flips [8]. If at least one of the triangulations is not regular, this
need not be the case. This issue gives rise to interesting questions that will
be the mentioned in this last paragraph. Consider the graph whose vertices
are the triangulations of a finite d-dimensional set of sites A, with an edge
between every pair of triangulations that can be obtained from one another
by a flip. What Lawson proved [23] is that this graph, called the flip-graph of
A, is connected when A is 2-dimensional. The subgraph induced by regular
triangulations in the flip-graph of A is also connected (it is actually isomorphic
to the 1-skeleton of the so-called secondary polytope [17]). Furthermore, so is
the larger subgraph induced in the flip-graph of A by triangulations projected
from the boundary complex of (d + 2)-dimensional polytopes [29]. To this
date, it is not known whether the flip graphs of 3- or 4-dimensional point sets
are connected, and point sets of dimension 5 and 6 were found whose flip-
graph is not connected [8] (the latter having a component consisting of a single
triangulation!). Finally, it has been shown only recently that the flip-graph of
the 4-dimensional cube is connected [30].

5 Conclusion

This chapter has described a few milestones on a journey that started when
Kepler and Descartes used what were to become Voronoi diagrams to study the
universe from snowflakes to galaxies. These diagrams and their dual Delaunay
triangulations have meanwhile become powerful engineering design, modeling,
and analysis tools, have given rise to many interesting questions in mathematics
and computer science, and have helped solving others (in particular, Kepler’s
conjecture! See for instance [21])). The journey is by far not ended and will
certainly lead to still other fascinating discoveries.

References

[1] N. Amenta, S. Choi, R. K. Kolluri, The power crust, unions of balls, and
the medial axis transform, Comput. Geom. 19, 127–153 (2001)

[2] F. Aurenhammer, Power diagrams: properties, algorithms and applica-
tions, SIAM J. Comput. 16, 1, 78–96 (1987)

[3] F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric
data structure, ACM Computing Surveys 23, 3, 345–405 (1991)

Documenta Mathematica · Extra Volume ISMP (2012) 419–431



Voronoi Diagrams and Delaunay Triangulations 429

[4] CGAL, Computational Geometry Algorithms Library, http://www.cgal.
org

[5] C. Davis, The set of non-linearity of a convex piecewise-linear function,
Scripta Math. 24, 219–228 (1959)

[6] B.N. Delaunay, Neue Darstellung der geometrischen Kristallographie, Z.
Kristallograph. 84, 109–149 (1932)

[7] B. N. Delaunay, Sur la sphère vide, Bull. Acad. Science USSR VII: Class.
Sci. Math., 193–800 (1934)

[8] J. A. de Loera, J. Rambau, F. Santos, Triangulations: structures for al-
gorithms and applications, Algorithms and Computation in Mathematics
25, Springer (2010)

[9] R. Descartes, Principia philosophiae (1644)
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The starting point of the history of Hilbert’s 17th problem was the oral de-
fense of the doctoral dissertation of Hermann Minkowski at the University of
Königsberg in 1885. The 21 year old Minkowski expressed his opinion that
there exist real polynomials which are nonnegative on the whole Rn and can-
not be written as finite sums of squares of real polynomials. David Hilbert was
an official opponent in this defense. In his “Gedächtnisrede” [6] in memorial
of H. Minkowski he said later that Minkowski had convinced him about the
truth of this statement. In 1888 Hilbert proved in a now famous paper [4] the
existence of a real polynomial in two variables of degree six which is nonnega-
tive on R2 but not a sum of squares of real polynomials. Hilbert’s proof used
some basic results from the theory of algebraic curves. Apart from this his
construction is completely elementary. The first explicit example of this kind
was given by T. Motzkin [10] only in 1967. It is the polynomial

M(x, y) = x
4
y
2 + x

2
y
4 + 1− 3x2

y
2
.

(Indeed, the arithmetic-geometric mean inequality implies that M ≥ 0 on R2.
Assume to the contrary that M =

∑

j f
2

j is a sum of squares of real polyno-
mials. Since M(0, y) = M(x, 0) = 1, the polynomials fj(0, y) and fj(x, 0) are
constants. Hence each fj is of the form fj = aj + bjxy + cjx

2
y + djxy

2. Then
the coefficient of x2

y
2 in the equality M =

∑

j f
2

j is equal to −3 =
∑

j b
2

j . This
is a contradiction.)
A nice exposition around Hilbert’s construction and many examples can be

found in [16]. Hilbert also showed in [4] that each nonnegative polynomial in
two variables of degree four is a finite sum of squares of polynomials.
As usual we denote by R[x1, . . . , xn] and R(x1, . . . , xn) the ring of polynomi-

als resp. the field of rational functions in x1, . . . , xn with real coefficients.
The second pioneering paper [5] of Hilbert about this topic appeared in

1893. He proved by an ingenious and difficult reasoning that each nonnegative
polynomial p ∈ R[x, y] on R2 is a finite sum of squares of rational (!) functions
from R(x, y). Though not explicitly stated therein a closer look at Hilbert’s
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proof shows even that p is a sum of four squares. For Motzkin’s polynomial
one has the identity

M(x, y) =
x
2
y
2(x2 + y

2 + 1)(x2 + y
2
− 2)2 + (x2

− y
2)2

(x2 + y2)2

which gives a representation of M as a sum of four squares of rational functions.
Motivated by his previous work Hilbert posed his famous 17th problem at

the International Congress of Mathematicians in Paris (1900):

Hilbert’s 17th problem:
Suppose that f ∈ R(x1, . . . , xn) is nonnegative at all points of Rn where f is
defined. Is f a finite sum of squares of rational functions?

A slight reformulation of this problem is the following: Is each polynomial
f ∈ R[x1, . . . , xn] which is nonnegative on Rn a finite sum of squares of ra-
tional functions, or equivalently, is there an identity q

2
f =

∑

j p
2

j , where
q, p1, · · · , pk ∈ R[x1, . . . , xn] and q 6= 0. In the case n = 1 this is true, since the
fundamental theorem of algebra implies that each nonnegative polynomial in
one variable is a sum of two squares of real polynomials. As noted above, the
case n = 2 was settled by Hilbert [5] itself. Hilbert’s 17th problem was solved
in the affirmative by Emil Artin [1] in 1927. Using the Artin-Schreier theory
of ordered fields Artin proved

Theorem 1. If f ∈ R[x1, · · · , xn] is nonnegative on Rn, then there are poly-
nomials q, p1, . . . , pk ∈ R[x1, · · · , xn], q 6= 0, such that

f =
p
2

1
+ · · ·+ p

2

k

q2
.

Artin’s proof of this theorem is nonconstructive. For strictly positive polyno-
mials f (that is, f(x) > 0 for all x ∈ Rn) a constructive method was developed
by Habicht [3]. It is based on Polya’s theorem [13] which states that for each ho-
mogeneous polynomial p such that p(x1, . . . , xn) > 0 for all x1 ≥ 0, · · · , xn ≥ 0
and (x1, . . . , xn) 6= 0, there exists a natural number N such that all coefficients
of the polynomial (x1 + · · · + xn)

N
p are positive. A quantitative version of

Polya’s theorem providing a lower estimate for the number N in terms of p was
recently given by Powers and Reznick [14].
There is also a quantitative version of Hilbert’s 17th problem which asks how

many squares are needed. In mathematical terms it can be formulated in terms
of the pythagoras number. For a ring K, the pythagoras number p(K) is the
smallest natural numberm such that each finite sum of squares of elements ofK
is a sum of m squares. If there is no such number m we set p(K) = ∞. Clearly,
p(R[x]) = p(R(x)) = 2. Recall that Hilbert [5] had shown that p(R(x, y)) ≤ 4.
The landmark result on the quantitative version of Hilbert’s 17th problem was
published in 1967 by A. Pfister [11] who proved

Theorem 2. p(R(x1, · · · , xn)) ≤ 2n.
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That is, by Theorems 1 and 2, each nonnegative polynomial f ∈ R[x1, . . . , xn]
is a sum of at most 2n squares of rational functions. Pfister’s proof was based
on the theory of multiplicative forms (see, e.g., [12]), now also called Pfister
forms.
The next natural question is: What is value of the number p(R(x1, . . . , xn))?

For n ≥ 3 this is still unknown! It is not difficult to prove that the sum
1 + x

2

1
+ · · · + x

2

n of n+ 1 squares is not a sum of m squares with m < n+ 1.
Therefore

n+ 1 ≤ p(R(x1, . . . , xn)) ≤ 2n.

Using the theory of elliptic curves over algebraic function fields it was shown in
[2] that Motzkin’s polynomial is not a sum of 3 squares. Hence p(R(x1, x2)) = 4.
Artin’s theorem triggered many further developments. The most important

one in the context of optimization is to look for polynomials which are nonneg-
ative on sets defined by polynomial inequalities rather than the whole Rn. To
formulate the corresponding result some preliminaries are needed. Let us write
∑

2

n for the cone of finite sums of squares of polynomials from R[x1, . . . , xn].
In what follows we suppose that F = {f1, . . . , fk} is a finite subset of

R[x1, . . . , xn]. In real algebraic geometry two fundamental objects are asso-
ciated with F . These are the basic closed semialgebraic set

KF = {x ∈ Rn : f1(x) ≥ 0, · · · , fk(x) ≥ 0}

and the preorder

TF :=

{

∑

εi∈{0,1}

f
ε1
1

· · · f
εk
k σε; σε ∈

∑2

n

}

.

Note that the preorder TF depends on the set F of generators for the semial-
gebraic set KF rather than the set KF itself.
Obviously, all polynomials from TF are nonnegative on the set KF , but

in general TF does not exhaust the nonnegative polynomials on KF . The
Positivstellensatz of Krivine-Stengle describes all nonnegative resp. positive
polynomials on the semialgebraic set KF in terms of quotients of elements of
the preorder TF .

Theorem 3. Let f ∈ R[x1, . . . , xn].
(i) f(x) ≥ 0 for all x ∈ KF if and only if there exist p, q ∈ TF and m ∈ N

such that pf = f
2m + q.

(ii) f(x) > 0 for all x ∈ KF if and only if there are p, q ∈ TF such that
pf = 1 + q.

This theorem was proved by G. Stengle [19], but essential ideas were already
contained in J.-L. Krivine’s paper [8]. In both assertions (i) and (ii) the ‘if’
parts are almost trivial. Theorem 3 is a central result of modern real algebraic
geometry. Proofs based on the Tarski-Seidenberg transfer principle can be
found in [15] and [9].
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Let us set f1 = 1 and k = 1 in Theorem 3(i). Then KF = Rn and TF =
∑

2

n. Hence in this special case Theorem 3(i) gives Artin’s Theorem 1. The
Krivine–Stengle Theorem 3(i) expresses the nonnegative polynomial f on KF

as a quotient of the two polynomials f
2m + q and p from the preorder TF .

Simple examples show that the denominator polynomial p cannot be avoided
in general. For instance, if f1 = 1, k = 1, the Motzkin polynomial M is
nonnegative on KF = Rn, but it is not in the preorder TF =

∑

2

n. Replacing

M by the polynomial M̃(x, y) := x
4
y
2 + x

2
y
4 +1− x

2
y
2 we even get a strictly

positive polynomial of this kind. (One has M̃(x, y) ≥ 26

27
for all (x, y) ∈ R2.)

Letting f1 = (1 − x
2)3, k = n = 1, the semialgebraic set KF is the interval

[−1, 1] and the polynomial f = 1−x
2 is obviously nonnegative on KF . Looking

at the orders of zeros of f at ±1 one concludes easily that f is not in TF . In view
of these examples it seems to be surprising that strictly positive polynomials on
a compact basic closed semialgebraic set always belong to the preorder. This
result is the Archimedean Positivstellensatz which was proved by the author
[17] in 1991.

Theorem 4. Suppose that f ∈ R[x1, . . . , xn]. If the set KF is compact and
f(x) > 0 for all x ∈ KF , then f ∈ TF .

The original proof given in [17] (see also [18], pp. 344–345) was based on
the solution of the moment problem for compact semialgebraic sets. The first
algebraic proof of Theorem 4 was found by T. Wörmann [20], see, e.g., [15] or
[9].

By definition the preorder TF is the sum of sets f
ε1
1

· · · f
εk
k

∑

2

n . It is natural
to ask how many terms of this kind are really needed. This question is answered
by a result of T. Jacobi and A. Prestel in 2001. Let g1, . . . , glk denote the first
lk := 2k−1 + 1 polynomials of the following row of mixed products with no
repeated factors of the generators f1, . . . fk:

1, f1, . . . , fk, f1f2, f1f3, . . . , fk−1fk, f1f2f3, . . . , fk−2fk−1fk, f1f2 · · · fk.

Let SF be the sum of sets gj
∑

2

n, where j = 1, . . . , lk. Then Jacobi and Prestel
[7] proved the following

Theorem 5. If KF is compact and f ∈ R[x1, . . . , xn] satisfies f(x) > 0 for all
x ∈ KF , then f ∈ SF .

We briefly discuss this result. If k = 3, then lk = 5 and SF =
∑

2

n +f1
∑

2

n +f2
∑

2

n +f3
∑

2

n +f1f2
∑

2

n, that is, the sets g
∑

2

n for g =
f1f3, f2f3, f1f2f3 do not enter in the definition of SF . If k = 4, then no
products of three or four generators occur in the definition of SF . Thus, if
k ≥ 3, Theorem 5 is an essential strengthening of Theorem 4.
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In layman’s terms the Kepler Conjecture from 1611 is often phrased like “There
is no way to stack oranges better than greengrocers do at their fruit stands” and
one might add: all over the world and for centuries already. While it is not far
from the truth this is also an open invitation to a severe misunderstanding. The
true Kepler Conjecture speaks about infinitely many oranges while most grocers
deal with only finitely many. Packing finitely many objects, for instance, within
some kind of bin, is a well-studied subject in optimization. On the other hand,
turning the Kepler Conjecture into a finite optimization problem was a first
major step, usually attributed to László Fejes Tóth [5]. Finally, only a little bit
less than 400 years after Johannes Kepler, Thomas C. Hales in 1998 announced
a complete proof which he had obtained, partially with the help of his graduate
student Samuel P. Ferguson [7]. There are many very readable introductions
to the proof, its details, and the history, for instance, by Hales himself [8] [10].
Here I will make no attempt to compete with these presentations, but rather I
would like to share an opinion on the impact of the Kepler Conjecture and its
history for mathematics in general.

1 Packing Spheres

Yet we should start with the formal statement. In the following we will encode
a packing of congruent spheres in 3-space by collecting their centers in a set
Λ ⊂ R3. If B(x, r) is the ball with center x ∈ R3 and radius r > 0 and if c > 0
is the common radius of the spheres in the packing then

δ(r,Λ) =
3

4πr3

∑

x∈Λ

vol(B(0, r) ∩B(x, c)) ,

the fraction of the ball B(0, r) covered by the balls in the packing Λ, is the
finite packing density of Λ with radius r centered at the origin. Now the upper
limit

δ(Λ) = limr→∞δ(r,Λ)

does not depend on the constant c, and it is called the packing density of Λ.
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Theorem (Kepler Conjecture). The packing density δ(Λ) of any sphere pack-
ing Λ in R3 does not exceed

π
√

18
≈ 0.74048 .

It remains to explain where the oranges are. The standard pattern originates
from starting with three spheres whose centers form a regular triangle and
putting another on top such that it touches the first three. This can be extended
indefinitely in all directions. One way of describing this sphere packing in an
encoding like above is the following:

Λfcc = {a(1, 0, 0) + b(0, 1, 0) + c(1, 1, 1) | a, b, c ∈ Z} ,

This amounts to tiling 3-space with regular cubes of side length 2 and placing
spheres of radius 1/

√

2 on the vertices as well as on the mid-points of the
facets of each cube. This is why Λfcc is called the face-centered cubical packing.
Figure 1 (left) shows 14 spheres (significantly shrunk for better visibility) in
the cube, the black edges indicate spheres touching. To determine the packing
density it suffices to measure a single fundamental domain, that is, one of the
cubes. Each sphere at a vertex contributes 1/8 to each of the eight cubes which
contain it while each sphere on a facet contributes 1/2. We obtain

δ(Λfcc) = (8 ·
1

8
+ 6 ·

1

2
) ·

4π

3(
√

2)
3 ·

1

23
= 4 ·

2π

3
√

2
·
1

8
=

π

3
√

2
=

π
√

18
.

One thing which is remarkable about the Kepler Conjecture is that the optimum
is attained at a lattice packing, that is a sphere packing whose centers form a
Z3-isomorphic subgroup of the additive group of R3. This means that the
optimum is attained for a packing with a great deal of symmetry while the
statement itself does not mention any symmetry. It was already known to
Carl Friedrich Gauß that Λfcc is optimal among all lattice packings, but the
challenge for Hales to overcome was to show that there is no non-lattice packing
which is more dense.
As already mentioned I will not try to explain the proof, not even its overall

structure, but I would like to point out a few aspects. What also contributes
to the technical difficulty is that Λfcc is by no means the only sphere packing
with the optimal density π/

√

18. There are infinitely many others, including
another well-known example which is called the hexagonal-close packing. This
means that the naively phrased optimization problem

sup
{

δ(Λ)
∣

∣ Λ is a sphere packing in R3
}

(1)

has infinitely many optimal solutions.
A key concept in discrete geometry is the Voronoi diagram of a set Λ of

points, say in R3. The Voronoi region of x ∈ Λ is the set of points in R3 which
is at least as close to x as to any other point in Λ. This notion makes sense for
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Figure 1: 14 balls of Λfcc in a cube and corresponding Voronoi regions

finite as well as infinite sets Λ. If Λ is finite or if the points are “sufficiently
spread out” then the Voronoi regions are convex polyhedra. The Voronoi di-
agram is the polyhedral complex formed from these polyhedra. For example,
the Voronoi region of any point in the face-centered cubical lattice Λfcc is a
rhombic dodecahedron, a 3-dimensional polytope whose twelve facets are con-
gruent rhombi. Figure 2 shows the rhombic dodecahedron, and Figure 1 (right)
shows how it tiles the space as Voronoi regions of Λfcc. Some 2-dimensional
cells (facets of Voronoi regions) are also shown in Figure 1 (left) to indicate
their relative position in the cube.
Here comes a side-line of the story: The volume of the rhombic dodecahedron

with inradius one equals
√

32 ≈ 5.65685, and this happens to be slightly larger
than the volume of the regular dodecahedron of inradius one, which amounts
to

10

√

130− 58
√

5 ≈ 5.55029 .

A potential counter-example to the Kepler Conjecture would have Voronoi
regions of volume smaller than

√

32. The statement that, conversely, each unit
sphere packing should have Voronoi regions of volume at least the volume of
the regular dodecahedron of inradius one, is the Dodecahedral Conjecture of
L. Fejes Tóth from 1943. This was proved, also in 1998, also by Hales together
with Sean McLaughlin [12, 13]. Despite the fact that quantitative results for one
of the conjectures imply bounds for the other, the Kepler Conjecture does not
directly imply the Dodecahedral Conjectures or conversely. Not surprisingly,
however, the proofs share many techniques.
We now come back to the Kepler Conjecture. The reduction of the infinite-

dimensional optimization problem (1) to finite dimensions is based on these
Voronoi regions. The observation of L. Fejes Tóth in 1953 was that in an opti-
mal sphere packing only finitely many different combinatorial types of Voronoi
regions can occur. This resulted in a non-linear optimization problem over a
compact set. Hales simplified this non-linear problem using linear approxima-
tions. In this manner each candidate for a sphere packing more dense than
the face-centered cubical packing gives rise to a linear program. Its infeasibil-
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Figure 2: Rhombic dodecahedron

ity refutes the potential counter-example. This idea was improved and further
extended by Hales and his co-authors such that this approach resulted in a
managable computation, albeit an enormous one.
What differs mathematics fundamentally from other fields of science is the

concept of a proof. A sequence of statements which establish the claim in a
step-by-step manner by applying the rules of logic to trace the result back to
a set of axioms. Once the proof is there the result holds indefinitely. The
traditional way to accept a proof is to have it scrutinized by peers who review
the work prior to publication in a mathematical journal. While neither the
author of a proof nor its reviewers are perfect it is rather rare that results are
published with a severe error. The mathematical community was content with
this proof paradigm for more than 100 years, since the logical foundations of
mathematics were laid at the turn from the 19th to the 20th century. The main
impact of Hales’ proof to mathematics in its generality is that it is about to
change this paradigm, most likely forever.
After obtaining his computer-based proof Hales submitted his result to the

highly esteemed journal Annals of Mathematics. The journal editors initiated
the reviewing process which involved a team of more than a dozen experts on
the subject, lead by Gábor Fejes Tóth, the son of László Fejes Tóth. It took
more than seven years until an outline version of the proof was finally accepted
and published [9]. To quote the guest editors of a special volume of Discrete &
Computational Geometry on more details of the proof, Gábor Fejes Tóth and
Jeffrey C. Lagarias [4]:

The main portion of the reviewing took place in a seminar run at
Eötvos University over a 3 year period. Some computer experi-
ments were done in a detailed check. The nature of this proof,
consisting in part of a large number of inequalities having little in-
ternal structure, and a complicated proof tree, makes it hard for
humans to check every step reliably. Detailed checking of specific
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assertions found them to be essentially correct in every case tested.
The reviewing process produced in the reviewers a strong degree of
conviction of the essential correctness of this proof approach, and
that the reduction method led to nonlinear programming problems
of tractable size. [. . . ] The reviewing of these papers was a partic-
ularly enormous and daunting task.

The standard paradigm for establishing proofs in mathematics was stretched
beyond its limits. There is also a personal aspect to this. Hales and his co-
authors had devoted a lot to the proof, and after waiting for a very long time
they had their papers published but only with a warning. The referees had
given up on the minute details and said so in public. The referees cannot be
blamed in any way, to the contrary, their effort was also immense. This was
widely acknowledged, also by Hales. But for him to see his results published
with the written hint that, well, a flaw cannot be entirely excluded, must have
been quite harsh nonetheless.

2 The Subsequent Challenge

It was David Hilbert who initiated a quest for provably reliable proofs in the
1920s. Ideally, he thought, proofs should be mechanized. The first trace to
what later became famous as the “Hilbert Program” is maybe the following
quote [16, p. 414]:

Diese speziellen Ausführungen zeigen [. . .], wie notwendig es ist,
das Wesen des mathematischen Beweises an sich zu studieren, wenn
man solche Fragen, wie die nach der Entscheidbarkeit durch endlich
viele Operationen mit Erfolg aufklären will.1

Hilbert’s work on this subject resulted in two books with his student Paul
Bernays [17, 18]. It is widely believed that the incompleteness theorems of Kurt
Gödel [6] put an end to Hilbert’s endeavor. However, this is not completely
true.
After his proof was published with disclaimers Hales set out to start the

Flyspeck project [2]. Its goal is to establish a formal proof of the Kepler
Conjecture, quite to Hilbert’s liking. The idea is to formalize the proof in
a way that it can be verified by a theorem prover. Hales settled for John
Harrison’s HOL Light [14] and now also uses Coq [1] as well as Isabelle [20].
A theorem prover like HOL Light is a program which takes a human-written

proof and validates that the rules of propositional logic are correctly applied
to obtain a chain of arguments from the axioms to the claim, without any
gap. In this way a theorem prover assists the mathematician in proving rather
than finding a proof on its own. Of course, such a theorem prover itself is a

1These special arguments show [. . .], how necessary it is to study the genuine nature of the
mathematical proof, if one wants to clarify questions like the decidability by finitely many
operations.
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piece of software which is written by humans. So, where is the catch? The
actual core of a theorem prover is very small, small enough to be verified by
a human, and this core verifies the rest of the system in a bootstrapping like
fashion. This is already much better in terms of reliability. Moreover, if this is
not enough, it is even possible to use several independent theorem provers for
mutual cross-certification. This way theorem provers help to establish proofs
in mathematics with a reliability unprecedented in the history of the subject.
For an introduction to automated theorem proving see [21].
To get an idea how such a formal proof may look alike, for example, here is

the HOL Light proof [15, p. 75] that
√

2 is irrational:

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN

DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN

ASM_REWRITE_TAC[ARITH_RULE

‘q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>

(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q‘] THEN

ASM_MESON_TAC[LE_MULT2; MULT_EQ_0;

ARITH_RULE ‘2 * x <= x <=> x = 0‘]);;

Modern theorem provers are already powerful enough to allow for formal proofs
of very substantial results such as the Jordan Curve Theorem or the Funda-
mental Theorem of Algebra. However, they are nowhere near to formally verify
large pieces of software such as a solver for linear programs. Yet an essential
step in the proof of the Kepler Conjecture is to verify the infeasibility of thou-
sands of linear programs. One good thing about linear programming is that
infeasibility has a certificate via Farkas’ Lemma. Now the idea is to check those
certificates from an external LP solver (which is allowed to be unreliable) via
formally verified interval arithmetic. Even if the formal proof of the Kepler
Conjecture is still incomplete it is now within reach.2 A revised version of the
proof which also describes the formalization aspects appeared in 2010 [11]. An
even newer approach to the Kepler conjecture, due to Christian Marchal [19]
reduces the number of cases to check but still requires computer support.
Here is a side remark which may sound amusing if you hear it for the first

time: Gödel’s first incompleteness theorem itself has been formalized in nqthm

by Natarajan Shankar in 1986 [3]. John Harrison’s HOL Light version of that
statement (without the proof) reads as follows:

2The Flyspeck web site claims 65% completeness of the proof of the Kepler Conjecture
by June 2010 [2].
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|- !A. consistent A /\

complete_for (SIGMA 1 INTER closed) A /\

definable_by (SIGMA 1) (IMAGE gform A)

==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\

(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))

3 Conclusion

A minimalistic way to tell the story about the Kepler Conjecture is: “Kepler
meets Hilbert twice”. The first encounter is Hilbert’s 1900 address in Paris,
where he specifically mentioned the Kepler Conjecture in his 18th problem.
This way the Kepler Conjecture was ranked among the most eminent math-
ematical problems of the time. Later, at various stages in the history of the
proof several different flavors of mathematical software systems played and still
play a key role. The downside of the current state of affairs is that a computer
based proof seems to be unavoidable. The upside, however, is that a reliable
version of such a machine-assisted proof is, in fact, possible. Quite close to
what Hilbert had imagined.

Acknowledgment: I would like to thank Martin Henk and Günter M.
Ziegler for helpful comments.
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A multi-objective optimization problem consists in the simultaneous optimiza-
tion of p objective functions f1, . . . , fp subject to some constraints, which I will
just write as x ∈ X , where X is a subset of Rn

. It is usually assumed that there
does not exist any x ∈ X such that all functions fk attain their minimima at x.
Hence, due to the absence of a total order on Rp, it is necessary to define the
minimization with respect to partial orders. So let Y := {f(x) : x ∈ X} be the
set of outcome vectors. To compare elements of Y, I will follow the definition
of Koopmans (1951). Let y1, y2 ∈ Y. Then y

1 ≦ y
2 if and only if y1k ≦ y

2

k for
all k = 1, . . . p; y1 ≤ y

2 if and only if y1 ≦ y
2, but y1 6= y

2 and y
1
< y

2 if and
only if y1k < y

2

k for all k = 1, . . . p.
It is here that Pareto makes his appearance. In countless books and articles

on multi-objective optimization, one can find a definition like this:

Definition 1. Let X ⊂ Rn be a non-empty set of feasible solutions and f =
(f1, . . . fp) : R

n
→ Rp be a function. Feasible solution x̂ ∈ X is called a Pareto

optimal solution of the multi-objective optimization problem

min{f(x) : x ∈ X} (1)

if and only if there does not exist any x ∈ X such that f(x) ≤ f(x̂).

Sometimes Pareto optimality is defined with respect to outcome vectors.

Definition 2. Let Y ∈ Rp be a non-empty set of outcome vectors. Outcome
vector ŷ ∈ Y is called Pareto optimal if and only if there does not exist any
y ∈ Y such that y ≤ ŷ.

Where does the name Pareto optimal come from? Vilfredo Pareto and Fran-
cis Ysidro Edgeworth are often called as the fathers of multi-objective opti-
mization. Sentences like the “introduction of the Pareto optimal solution in
1896” (Chen et al., 2005, p. VII); “The concept of noninferior solution was in-
troduced at the turn of the century [1896] by Pareto, a prominent economist”
(Chankong and Haimes, 1983, p. 113); “Edgeworth and Pareto were probably
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the first who introduced an optimality concept for such problems” (Jahn, 2004,
p. 113); “wurden besonders von F.Y. Edgeworth (1845–1926) and V. Pareto
(1848–1929 [sic!]) hinreichende Bedingungen für Paretomaximalität bzw. Gle-
ichgewichtsbedingungen angegeben.” (Göpfert and Nehse, 1990, p. 9) or “The
foundations are connected with the names of Vilfredo Pareto (1848–1923) and
Francis Ysidro Edgeworth (1845–1926)” (Löhne, 2011, p. 1) abound in text-
books. The International Society on Multiple Criteria Decision Making bestows
the Edgeworth–Pareto award “upon a researcher who, over his/her career, has
established a record of creativity to the extent that the field of MCDM would
not exist in its current form without the far-reaching contributions from this dis-
tinguished scholar”, see http://www.mcdmsociety.org/intro.html#Awards.

Edgeworth was an influential Professor of Economics at King’s College Lon-
don and from 1891 Professor of Political Economy at Oxford University. In his
best known book Mathematical Psychics (Edgeworth, 1881) he applied formal
mathematics to decision making in economics. He developed utility theory,
introducing the concept of indifference curve and is best known for the Edge-

worth box. But because multi-objective optimization is concerned with Pareto
optimality rather than Edgeworth optimality, this story focuses on his contem-
porary.

Fritz Wilfried Pareto

According to Yu (1985, p. 49) Pareto “was a famous Italian engineer” but he
is certainly much better known as an economist. The following information
is taken from Stadler (1979) and the wikipedia entry (http://en.wikipedia.
org/wiki/Vilfredo_Pareto) on Pareto.

Vilfredo Federico Damaso Pareto was born on 15 July 1848 in Paris as Fritz
Wilfried Pareto, son of a French woman and an Italian civil engineer, who was
a supporter of the German revolution of 1848. His name was changed to the
Italian version when his family moved back to Italy in 1855 (or 1858). In 1870
he graduated from Polytechnic Institute of Turin with a dissertation entitled
“The Fundamental Principles of Equilibrium in Solid Bodies”. He then worked
as an engineer and manager for an Italian railway company. He was very
politically active, an ardent supporter of free market economy. He obtained a
lecturer position in economics and management at the University of Florence
in 1886 (according to wikipedia). Eventually he resigned from his positions in
1889. During the 1880s he became acquainted with leading economists of the
time and he published many articles by 1893 (not all academic, though). In
1893 he moved to Lausanne where he lectured at the University of Lausanne
and became the successor of Léon Walras as Professor of Political Economy. In
his later years he mainly worked in Sociology. Vilfredo Pareto died at Célégny,
Switzerland, on 19 August 1923. The University of Lausanne still has a Centre
d’études interdisciplinaires Walras Pareto (http://www.unil.ch/cwp). Apart
from Pareto optimality, Pareto’s name is attached to the Pareto principle (or
80–20 rule), observing in 1906 that 80% of the property in Italy was owned by
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Figure 1: Vilfredo Pareto 1848–1923 (Picture scanned from the second French
edition of Pareto (1906) published in 1927.)

20% of the population and the Pareto distribution, a power law probability
distribution.

Pareto Optimality

The origin of the term Pareto optimality goes back to the following text from
Pareto (1906, Chapter VI, Section 33).

Principeremo col definire un termine di cui è comodo fare uso per
scansare lungaggini. Diremo che i componenti di una collettività
godono, in una certa posizione, del massimo di ofelimità, quando
è impossibile allontanarsi pochissimo da quella posizione giovando,
o nuocendo, a tutti i componenti la collettività; ogni piccotissimo
spostamento da quella posizione avendo necessariamente per effetto
di giovare a parte dei componenti ta collettività e di nuocere ad altri.

Or in the English translation (Pareto, 1971, p. 261):
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We will begin by defining a term which is desirable to use in order to
avoid prolixity. We will say that the members of a collectivity enjoy
maximum ophelimity in a certain position when it is impossible to
find a way of moving from that position very slightly in such a
manner that the ophelimity enjoyed by each of the individuals of
that collectivity increases or decreases. That is to say, any small
displacement in departing from that position necessarily has the
effect of increasing the ophelimity which certain individuals enjoy,
and decreasing that which others enjoy, of being agreeable to some
and disagreeable to others.

Of course, Pareto here refers to the distribution of utility (ophelimity) among
individuals in an economy rather than solutions of an optimization problem.
Multi-objective optimization or mathematical optimization in general as we
know it today, did not exist during Pareto’s lifetime, it only developed in
the 1940s. And it is some of the founding works of Operations Research and
optimization that need to be cited here. Nobel Laureate in Economics T.C.
Koopmans (1951) formally studied production as a resource allocation problem
and the combination of activities to represent the output of commodities as a
function of various factors. In this work he introduced the following definition
of efficient vector (p. 60). “A point y in the commodity space is called efficient

if it is possible [i.e., if y ∈ (A)], and if there exists no possible point ȳ ∈ (A) such
that ȳ − y ≥ 0.” Note that (A) is what I called Y in Definition 2, i.e., possible
means that there is some x such that y = Ax. Koopmans does hence only talk
about efficient vectors in terms of the outcome set. He proves necessary and
sufficient conditions for efficiency, but he does not refer to Pareto, nor does he
talk about Pareto optimal solutions as in Definition 1 – instead he refers to “an
activity vector x (that) shall lead to an efficient point y = Ax”.

Another classic reference in optimization is the seminal paper by
Kuhn and Tucker (1951). They refer to the “vector maximum of Koop-
mans’ efficient point type for several concave functions g1(x), . . . , gp(x)”. This
seems to be the earliest reference to the optimization of several functions in
mathematics. Kuhn and Tucker cite Koopmans (1951) when they talk about
vector maximum. They also apply the term efficient to the solutions of vector
optimization problems (i.e., in decision space) and introduce the notion of
proper efficiency. But, again, no mention of Pareto. Kuhn and Tucker (1951)
cite another Nobel Laureate in Economics who contributed to the foundations
of multi-objective optimization, Kenneth J. Arrow.

Arrow discusses Pareto extensively in his economical work and statements of
the impossibility theorem today usually refer to Pareto optimality as one of the
axioms that cannot be jointly satisfied by a social choice function, but this term
does not appear in Arrow’s original formulation (Arrow, 1951). Arrow’s impor-
tant contribution to multi-objective optimization (Arrow et al., 1953) starts as
follows “A point s of a closed convex subset S of k-space is admissible if there is
no t ∈ S with ti ≤ si for all i = 1, . . . , k, t 6= s.” This is, of course, the same as
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Koopmans’ definition of efficient point (whose paper Arrow et al. (1953) cite),
and again is relevant in the outcome set of a multi-objective problem rather
than the set of feasible solutions – no trace of Pareto here, either.
There are a number of other definitions of Pareto optimal, efficient, or admis-

sible points. Zadeh (1963) defines “A system S0 ∈ C is noninferior in C if the
intersection of C and Σ>(S0) is empty.” Σ>(S0) is the set of all systems which
are better than S0 with respect to a partial order ≥. Chankong and Haimes
(1983) later use the same definition. While Zadeh cites Koopmans and Kuhn
and Tucker, Pareto remains notably absent. The final term that is common
today is that of a nondominated point.

Multiobjective Optimization and Economics

When did the term Pareto optimal first appear in the literature? As we have
seen, it was not used in early mathematical works on multi-objective optimiza-
tion. The answer is once again in economics. Little (1950, p. 87) in a discussion
of the distribution of income (i.e., in the same context as Pareto himself) uses
the term Pareto ‘optimum’ (with the quotation marks). The origin of the term
is, therefore, clearly found in economics. It has then apparently mostly been
used in economics, appearing in journals such as Public Choice and Journal

of Economic Theory. As shown above, it was not used by the economists
who are credited with having contributed to the origins of the mathematical
theory of multi-objective optimization, but migrated to mathematics later on.
The first journal articles that I could find are Basile and Vincent (1970) and
Vincent and Leitmann (1970). These articles also used the term undominated

as an alternative. This then turned to nondominated in Yu and Leitmann
(1974).
Economics had a strong influence on the early history of multi-objective op-

timization, especially Pareto’s original definition of the term maximum ophe-

limity and the origin of the term Pareto optimum in Little (1950). The move
into mathematics and optimization coincides with the mathematization of eco-
nomics by scholars such as Koopmans and Arrow and finally the introduction
of the topic into mathematical optimization by Kuhn and Tucker. It seems
to have taken quite a while for Pareto’s name to appear in the mathematical
optimization literature.
The consequence of the history of Pareto optimality outlined above, is that

at present there are quite a few terms (efficient, noninferior, nondominated,
admissible, Pareto optimal) that express the same idea. Since multi-objective
optimization often distinguishes between decision vectors x ∈ X and outcome
vectors y ∈ Y, one can find a large number of combinations of these terms
in the literature used in parallel today, such as Pareto optimal decisions and
efficient outcomes.
It turns out that the history of multi-objective optimization (vector optimiza-

tion) is quite an interesting read, and I would like to refer interested readers
to Stadler (1979) as a starting point. The history of multiple criteria deci-
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sion making in general is the topic of the book Köksalan et al. (2011). These
works also consider roots of multi-objective optimization in game theory and
the theory of ordered spaces and vector norms.
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The story begins in St. Petersburg in 1738. There Daniel Bernoulli proposed a
solution to the “St. Petersburg Paradox” by introducing the notion of a utility

function.
The problem is formulated in somewhat flowery terms as a game. It was

proposed by Nicholas Bernoulli, a cousin of Daniel, in a letter from 1713 to
Pierre Raymond de Montmort. Suppose I offer you a random sum of money
where the amount is determined from subsequent tosses of a fair coin in the
following way. The payoff equals 2n ducats if the first heads appears on the
n’th toss. Of course, this event has probability 2−n, so that the expected value
of the payoff equals

1
2
× 2 + 1

4
× 4 + . . .+ 1

2n
2n + . . . = ∞. (1)

Here is the question: how much would you be willing to pay to me as a fixed

price for obtaining this kind of lottery ticket?
It is instructive to discuss this question with students in a class and to ask

for bids. One rarely gets a bid higher than, say, 10 ducats.
This is remarkably far away from the expected payoff of the game which

is infinity. Clever students quickly ask a crucial question: are we allowed to
play this game repeatedly? This would change the situation dramatically! The
law of large numbers, which was already well understood in Daniel Bernoulli’s
times, at least in its weak form, tells you that in the long run the average win
per game would indeed increase to infinity. Hence in this case, clever students
would be willing to pay quite an elevated fixed price for the game.

But the flavor of the problem is that you are only offered to play the game
once. How to determine a reasonable value of the game?
Daniel Bernoulli proposed not to consider the nominal amount of money but

rather to transform the money scale onto a different scale, namely the utility

which a person draws from the money. For a good historic account we refer
to [4]. Daniel Bernoulli proposed to take U(x) := log(x) as a measure of the
utility of having an amount of x ducats. And he gives good reasons for this
choice: think of a person, an “economic agent” in todays economic lingo, who
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manages to increase her initial wealth w > 0 by 10%. Measuring utility by the
logarithm then yields that the increase in utility is independent of w, namely
log( 11w

10
)− log(w) = log( 11

10
).

Bernoulli therefore passes from the expected nominal amount (1) of the game
to the expected utility of the wealth of an agent after receiving the random
amount of the game, i.e.,

1
2
log(w − c+ 2) + 1

4
log(w − c+ 4) + . . .+ 1

2n
log(w − c+ 2n) + . . . , (2)

where w denotes the initial wealth of the agent and c the price she has to pay
for the game. Of course, this sum now converges. For example, if w − c = 0,
the sum equals log(4). This allows for the following interpretation: suppose the
initial wealth of the agent equals w = 4. Then c = 4 would be a reasonable
price for the game, as in this case the agent who uses expected log-utility as a
valuation of the payoff, is indifferent between the following two possibilities:
(1) not playing the game in which case the wealth remains at w = 4, yielding

a certain utility of log(4).
(2) Playing the game and paying c = 4 for this opportunity. This yields, by

the above calculation, also an expected utility of log(4).
The above method today is known as “utility indifference pricing”. We have

illustrated it for initial wealth w = 4, as the calculations are particularly easy
for this special value. But, of course, the same reasoning applies to general
values of w. It is immediate to verify that this pricing rule yields a price c(w)
in dependence of the initial wealth w which is increasing in w. In economic terms
this means that, the richer an agent is, the more she is willing to pay for the
above game. This does make sense economically. In any case, the introduction
of utility functions opened a perspective of dealing with the “St. Petersburg
Paradox” in a logically consistent way.
Let us now make a big jump from 18’th century St. Petersburg to Vienna

in the 1930’s. The young Karl Menger started with a number of even younger
mathematical geniuses the “Mathematische Colloquium”. Participants were,
among others, Kurt Gödel, Olga Taussky, Abraham Wald, Franz Alt. There
also came international visitors, e.g., John von Neumann or Georg Nöbeling. In
this colloquium a wide range of mathematical problems were tackled. Inspired
by an open-minded banker, Karl Schlesinger, the Colloquium also dealt with
a basic economic question: How are prices formed in a competitive economy?
As a toy model think about a market place where “many” consumers can buy
apples, bananas, and citruses from “many” merchants. We assume that the
consumers are well informed, that they want to get the best deal for their
money, and that there are no transaction costs.
This assumption implies already that the prices πa, πb, πc of these goods have

to be equal, for each merchant. Indeed, otherwise merchants offering higher
prices than their competitors could not sell their fruits.
For each of the consumers the market prices πa, πb, πc are given and, de-

pending on their preferences and budgets, they make their buying decisions
as functions of (πa, πb, πc). On the other hand, the merchants decide on these
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prices. For example, if the current prices are such that the apples are imme-
diately sold out, while few people want to buy the bananas, it seems obvious
that the price πa should go up, while πb should go down. This seems quite
convincing if we only have apples and bananas, but if there are more than two
goods, it is not so obvious any more how the prices for the apples and the
bananas relate to the demand for citruses.
This question was already treated some 50 years earlier by Léon Walras,

who was Professor of economics in Lausanne. He modeled the situation by
assuming that each agent is endowed with an initial wealth w and a utility

function U assigning to each combination (xa, xb, xc) of apples, bananas, and
citruses a real number U(xa, xb, xc). For given prices (πa, πb, πc), each of the
agents optimises her “portfolio” (xa, xb, xc) of apples, bananas, and citruses.
In this setting, we call a system of prices (πa, πb, πc) an equilibrium if “markets
clear”, i.e., if for each of the three goods the total demand equals the total
supply.
The obvious question is: Is there an equilibrium? Is it unique?
Léon Walras transformed the above collection of optimisation problems,

which each of the “many” agents has to solve for her specific endowment and
utility function, into a set of equations by setting the relevant partial deriva-
tives zero. And then he simply counted the resulting number of equations and
unknowns and noted that they are equal. At this point he concluded – more or
less tacitly – that there must be a solution which, of course, should be unique
as one can read in his paper “Die Gleichungen des Tausches” from 1875.
But, of course, in the 1930’s such a reasoning did not meet the standards

of a “Mathematische Colloquium” any more. Abraham Wald noticed that the
question of existence of an equilibrium has to be tackled as a fixed point problem
and eventually reduced it to an application of Brouwer’s fixed point theorem.
He gave a talk on this in the Colloquium and the paper was announced to
appear in the spring of 1938. However, the paper was lost in the turmoil of
the “Anschluss” of Austria, when the Colloquium abruptly ended, and most
participants had other worries, namely organising their emigration. It was only
after the war that this topic was brought up again with great success, notably
by the eminent economists Kenneth Arrow and Gerard Debreu.
Finally, we make one more big jump in time and space, this time to Boston

in the late 1960’s. The famous economist Paul Samuelson at MIT had become
interested in the problem of option pricing. Triggered by a question of Jim
Savage, Paul Samuelson had re-discovered the dissertation of Louis Bachelier,
entitled “Théorie de la spéculation”, which Bachelier had defended in 1900 in
Paris. Henri Poincaré was a member of the jury. In his dissertation Bachelier
had introduced the concept of a “Brownian motion” (this is today’s terminol-
ogy) as a model for the price process of financial assets. He thus anticipated
the work of Albert Einstein (1905) and Marian Smoluchowski (1906) who in-
dependently applied this concept in the context of thermodynamics.
Paul Samuelson proposed a slight variant of Bachelier’s model, namely
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putting the Brownian motion W on an exponential scale, i.e.,

dSt = Stµdt+ StσdWt, 0 ≤ t ≤ T. (3)

Here St denotes the price of a “stock” (e.g. a share of Google) at time t. The
initial value S0 is known and the above stochastic differential equation models
the evolution of the stock price in time. The parameter µ corresponds to the
drift of the process, while σ > 0 is the “volatility” of the stock price, which
models the impact of the stochastic influence of the Brownian motion W .

This model is called the “Black-Scholes model” today, as Fisher Black and
Myron Scholes managed in 1973 to obtain a pricing formula for options on the
stock S which is solely based on the “principle of no arbitrage”. This result
was obtained simultaneously by Robert Merton, a student of Paul Samuelson.
The “Black-Scholes formula” earned Myron Scholes and Robert Merton a No-
bel prize in Economics in 1997 (Fisher Black unfortunately had passed away
already in 1995).
Here we want to focus on a slightly different aspect of Robert Merton’s work,

namely dynamic portfolio optimisation, which he started to investigate in the
late sixties [3]. Imagine an investor who has the choice of investing either into a
stock which is modeled by (3) above, or into a bond which earns a deterministic
fixed interest rate, which we may assume (without loss of generality) to be
simply zero. How much of her money should she invest into the stock and how
much into the bond? The dynamic aspect of the problem is that the investor
can – and, in fact, should – rebalance her portfolio in continuous time, i.e., at
every moment.
To tackle this problem, Merton fixed a utility function U : R+ → R modeling

the risk aversion of the investor. A typical choice is the “power utility”

U(x) = xγ

γ , x > 0, (4)

where γ is a parameter in ]−∞, 1[ \ {0}. Of course, the case γ = 0 corresponds
to the logarithmic utility. One thus may well-define the problem of maximising

the expected utility of terminal wealth at a fixed time T , where we optimise over
all trading strategies. A similar problem can be formulated when you allow for
consumption in continuous time.
Here is the beautiful result by Robert Merton. Fixing the model (3) and the

utility function (4), the optimal strategy consists of investing a fixed fraction

m of one’s total wealth into the stock (and the remaining funds into the bond).
The value m of this fraction can be explicitly calculated from the parameters
appearing in (3) and (4).
To visualize things suppose that m = 1

2
, so that the investor always puts half

of her money into the stock and the other half into the bond. This implies that
the investor sells stocks, when their prices go up, and buys them when they go
down. A remarkable feature is that she should do so in continuous time which
– in view of wellknown properties of Brownian trajectories – implies that the
total volume of her trading is almost surely infinite, during each interval of
time!
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The method of Merton is dynamic programming. He defines the Hamilton–
Jacobi–Bellman value-function corresponding to the above problem. In this
setting he manages to explicitly solve the PDE which is satisfied by this value-
function.
Of course, this so-called “primal method” is not confined to the special set-

ting analysed by Robert Merton. It can be – and was – extended to many
variants and generalisations of the above situation.
There is also a dual approach to this family of problems which was initi-

ated in a different context by J.-M. Bismut [1]. In the Mathematical Finance
community this approach is also called the “martingale method”. Speaking
abstractly, Merton’s problem is just a convex optimisation problem over some
infinite-dimensional set, namely the set of all “admissible” trading strategies.
As is very wellknown, one may associate to each convex optimisation prob-
lem a “dual” problem, at least formally. The method consists in introducing
(an infinite number of) Lagrange multipliers and to find a saddle point of the
resulting Lagrangian function. This leads to an application of the minmax
theorem. Eventually one has to optimize the Legendre transform of U over an
appropriate “polar” set.
To make this general route mathematically precise, one has to identify appro-

priate regularity conditions, which make sure that things really work as they
should, e.g., existence and uniqueness of the primal and dual optimizer as well
as their differential relations. In the present case, there are two aspects of regu-
larity conditions: on the one hand side on the model of the stock price process,
e.g., (3), and on the other hand on the choice of the utility function, e.g., (4).
In order to develop a better understanding of the nature of the problem, from
a mathematical as well as from an economic point of view, it is desirable to
identify the natural regularity assumptions. Ideally, they should be necessary
and sufficient for a good duality theory to hold true.
In [2] this question was answered in the following way. As regards the choice

of the model S for the stock price process, virtually nothing has to be assumed,
except for its arbitrage freeness, which is very natural in the present context.
As regards the utility function U one has to impose the condition of “reasonable
asymptotic elasticity”,

lim sup
x→∞

xU
′(x)

U(x)
< 1, (5)

which is reminiscent of the ∆2 condition in the theory of Orlicz spaces. The
name “asymptotic elasticity” comes from the fact that the derivative U

′(x),
normalised by U(x) and x as in (5), is called the “elasticity” of U in eco-
nomics. To get a feeling for the significance of condition (5), note that for
a concave, increasing function U the above limit is always less than or equal
to 1. In the case of power utility (4) this limit equals γ < 1. Considering
U(x) = x

log(x) , for x > x0, we find an example where the above limit equals

1, i.e., a utility function U which fails to have “reasonable asymptotic elastic-
ity”.
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It turns out that condition (5) is a necessary and sufficient condition for the
duality theory to work in a satisfactory way. If it is violated, one can find a
stock price process S – in fact a rather simple and regular one – such that the
duality theory totally fails. On the other hand, if it holds true, the duality
theory, as well as existence and uniqueness of the primal and dual optimiser
etc, works out well, even for very general stock price processes S.
There is a lot of further research on its way on related issues of portfolio

optimisation. As an example, we mention the consideration of proportional
transaction costs (e.g., Tobin tax) in the above problem of choosing an opti-
mal dynamic portfolio. Of course, the most fruitful approach is the interplay
between primal and dual methods.
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