


































































































































































































































































































































































































































































































































































































































































































































The Princess and Infinite-Dimensional Optimization 353

Figure 6: Dido purchases land for the foundation of Carthage, engraving by
Mathias Merian the elder from Historische Chronica, Frankfurt a.M., 1630.

There bought a space of Ground, which ‘Byrsa’ call’d
From the Bull’s hide, they first inclos’d, and wall’d.

or in an older translation by the sixteenth century authors Thomas Phaer and
Thomas Twyne:

Than past they forth and here they came, where now thou shalt espie
The hugy walles of new Carthage that now they rere so hie.
They bought the soile and Birsa it cald whan first they did begin,
As much as with a bull hide cut they could inclose within.

3 Florescence in mathematics today

Back to present and future: What is the optimal shape of a very fast aircraft,
say which is able to fly at supersonic speed with minimal drag? Indeed, that
is a modern version of Dido’s problem. Figure 8 shows effects of aerodynamic
drag minimizing on airfoil and body of a supersonic cruise transporter due to
Brezillon and Gauger (2004).
More challenges are waiting such as fuel optimization of aircraft using lam-

inar flow airfoils with blowing and sucking devices or using morphing shape
airfoils with smart materials and adaptive structures built-in. Figure 9 shows
the, in this sense, non-optimized flow around the Airbus A 380 computed by
numerical simulation. Optimization with those respects may be next steps for
which infinite-dimensional optimization in various specifications must be em-
ployed: optimal control of ordinary and partial differential equations as well as
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Figure 7: Hypathia, detail of The Schooll of Athens’ by Raphael

shape and topology optimization. Their roots can be traced, tongue-in-cheek,
to the renaissance of mathematics with the invention of calculus and even as
far as to the geometricians in antiquity.

Figure 8: Drag minimization for the EUROSUP SCT (supersonic cruise trans-
porter) at Mach number 2: Optimized shape geometry (upper wing) versus ini-
tial design (lower wing) with local flow Mach number distribution. The strong
shock on the wing could be reduced. [Brezillon, Gauger (2004)] (Copyright:
Prof. Dr. Nicolas Gauger, Head of Computational Mathematics Group, De-
partment of Mathematics and Center for Computational Engineering Science,
RWTH Aachen University, Aachen, Germany)
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Figure 9: Numerical flow simulation for the Airbus A380 (picture credit: Airbus.
Copyright: Dr. Klaus Becker, Senior Manager Aerodynamic Strategies, EGAA,
Airbus, Bremen, Germany)

Mathematical optimization has become and will continue to be an important
tool in modern high technology. Mathematics in total has even become a key
technology by itself.
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Computing Stories

Optimization theory has existed before computers were invented, but the ex-
pansion of optimization and its wide range of applications was only possible
due to the enormous growth and accessibility of modern computing machinery.

To address the importance of computing theory and practice for optimiza-
tion I have asked four authors to cover some of these aspects. One article is
on the history of NP-completeness where, for instance, some new insights into
the prehistory of this important concept can be found. Another article is on
the history of optimization modeling systems which are tools helping users to
employ optimization algorithms efficiently. This is an area usually neglected
by academic researchers but of high relevance for practitioners. A third ar-
ticle deals with the history of the reverse mode of differentiation, which is
a methodology supporting, in particular, continuous optimization techniques
by improving the information flow, memory management, sensitivity analysis,
error estimation, conditioning, etc. Finally, the history of “Moore’s Law” is re-
viewed that describes/postulates the exponential growth of computing power.
How long will it stay alive?
The history of computing hardware is long and surveyed in many books and

articles. One driving force of the computing machine development has always
been the aim to reduce the effort necessary to carry out long calculations.
Leibniz, for instance, stated: “It is unworthy of excellent men to lose hours like
slaves in the labor of calculation which could safely be relegated to anyone else
if machines were used.” Leibniz himself made significant contributions to the
design of mechanical computing devices.
Today, it is generally accepted that Konrad Zuse (1910–1995) built the first

program-controlled computing machine in the world. Zuse studied civil en-
gineering and earned his Diploma in 1935 at Technische Hochschule Berlin-
Charlottenburg (today TU Berlin). He was annoyed by the repetitive statics
calculations and decided to automate these procedures. His first computer, the
Z1 finished in 1938, was mechanical. His Z3 was operational in 1941; it had the
same logic design as the Z1, but used electrical components. It was a fully digi-
tal, floating-point, programmable machine. There are various Internet archives
that document Zuse’s achievements in detail. I recommend http://www.zib.

de/zuse/home.php, maintained by Raul Rojas, and the Web page http://

www.zuse.org of Horst Zuse, Konrad’s son, that also provides numerous doc-
uments about his father and the computer technology he invented. Konrad

Documenta Mathematica · Extra Volume ISMP (2012) 357–358

http://www.zib.de/zuse/home.php
http://www.zib.de/zuse/home.php
http://www.zuse.org
http://www.zuse.org


358 Martin Grötschel

Figure 1: Zuse memorial plate
http://en.wikipedia.org/wiki/File:

Gedenktafel_Methfesselstr_10_(Kreuzb)_Konrad_Zuse.JPG

Zuse did most of his work in the prewar time in the living room of his parents,
see Fig. 1, in intellectual isolation, assisted and financially supported by his
family and a few friends only. Zuse has been honored, e.g., by naming the
Konrad-Zuse-Zentrum für Informationstechnik Berlin after him.

Martin Grötschel
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A Brief History of NP-Completeness, 1954–2012
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The year 2012 marks the 40th anniversary of the publication of the influen-
tial paper “Reducibility among combinatorial problems” by Richard Karp [37].
This paper was the first to demonstrate the wide applicability of the concept
now known as NP-completeness, which had been introduced the previous year
by Stephen Cook and Leonid Levin, independently. 2012 also marks the 100th
anniversary of the birth of Alan Turing, whose invention of what is now known
as the “Turing machine” underlay that concept. In this chapter, I shall briefly
sketch the history and pre-history of NP-completeness (with pictures), and
provide a brief personal survey of the developments in the theory over the
last 40 years and their impact (or lack thereof) on the practice and theory of
optimization. I assume the reader is familiar with the basic concepts of NP-
completeness, P, and NP, although I hope the story will still be interesting to
those with only a fuzzy recollection of the definitions.

The New Prehistory

When the Garey & Johnson book Computers and Intractability: A Guide to
the Theory of NP-Completeness [23] was written in the late 1970s, the sources
of the theory were traced back only to 1965. In particular, we cited papers
by Cobham [13] and Edmonds [18], which were the first to identify the class
of problems solvable in polynomial time as relevant to the concept of efficient
solvability and worthy of study. We also cited a second paper of Edmonds
[17], which in a sense introduced what was later to be called the class NP, by
proposing the notion of a problem having a “good characterization.”

It turns out, however, that a pair of eminent mathematicians had touched on
the issues involved in NP-completeness over a decade earlier, in handwritten
private letters that took years to come to light. The first to be rediscovered
(and the second to be written) was a letter from Kurt Gödel to John von Neu-
mann, both then at the Institute for Advanced Study in Princeton, New Jersey.
Gödel is perhaps most famous for his 1931 “Incompleteness Theorems” about
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mathematical logic. His letter, written in German and dated 20 March 1956,
was not publicized until 1989, when Juris Hartmanis published a translation
and commentary [27].

In this letter, Gödel considered first a problem of finding proofs in a given
proof system: Given a first order formula F and an integer n, is there is a proof
of F having length no more than n? Let A be a Turing machine that solves this
problem, and, following Gödel, let ψA(F, n) denote the number of steps that A
takes when applied to the instance consisting of formula F and bound n. Now
let φA(n) be the worst-case value of ψA(F, n) over all formulas F of length n.
Note that a Turing machine A performing exhaustive search would have a value
for φA(n) that was no worse than exponential in n. Gödel pointed out how
wonderful it would be if there were an A with φA(n) = O(n) or even O(n2),
observing that such a speedup had already been observed for the problem of
computing the quadratic residue symbol. Finally, he asked “how strongly in
general” one could improve over exhaustive search for combinatorial problems,
in particular mentioning the problem of primality testing (a problem whose
worst-case complexity remained open for almost 50 more years, until it was
shown to be polynomial-time solvable by Agrawal, Kayal, and Saxena in 2002
[3]).

Note that Gödel did not make the generalization from O(n) and O(n2) to
polynomial time. He was more interested in algorithms that might plausibly
be practical. He was also not measuring running time in terms of the modern
concept of “input length”. For that he would have had to explicitly specify
that n was written in unary notation. (If n were written in standard binary
notation, then exhaustive search for his problem might have been doubly expo-
nential in the input size.) On the other hand, he does seem to have assumed
binary, or at least decimal, input size when he discussed primality testing.
Moreover, he used the idea of worst-case running time analysis for algorithms
and problems, something that was not all that common at the time, and which
dominates algorithmic research today. And he does seem to have an idea of
the class of problems solvable by exhaustive search, which can be viewed as a
generalization of NP, and his final question hints at the question of P versus
NP. At any rate, Gödel’s letter, once discovered, was immediately recognized
as an important precursor to the theory of NP-completeness. When an an-
nual prize for outstanding journal papers in theoretical computer science was
established in 1992, it was only natural to name it the Gödel Prize. More re-
cently, the letter has even lent its name to a well-written and popular blog on
algorithms and computational complexity (Gödel’s Lost Letter and P = NP,
http://rjlipton.wordpress.com).

The other famous mathematician whose letters foreshadowed the theory of
NP-completeness was John Nash, Nobel Prize winner for Economics and sub-
ject of both the book and the movie A Beautiful Mind. In 1955, Nash sent
several handwritten letters about encryption to the United States National Se-
curity Agency, which were not declassified and made publicly available until
2012 [1]. In them, he observes that for typical key-based encryption processes,
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Figure 1: Stephen Cook, Richard Karp, and Leonid Levin, photographed in
the 1980s

if the plain texts and encrypted versions of some small number of messages
are given, then the key is determined. This is not technically correct, since in
addition there must be sufficient entropy in the plain texts, but Nash’s argu-
ments apply as well to the problem of finding some key consistent with the
encryptions. His central observation was that even if the key is determined, it
still may not be easy to find.

If the key is a binary string of length r, exhaustive search will work (as
it did for Gödel), but takes time exponential in r. For weak cryptosystems,
such as substitution ciphers, there are faster techniques, taking time O(r2) or
O(r3), but Nash conjectured that “for almost all sufficiently complex types of
enciphering,” running time exponential in the key length is unavoidable.

This conjecture would imply that P 6= NP, since the decryption problem he
mentions is polynomial-time equivalent to a problem in NP: Given the data
on plain and encrypted texts and a prefix x of a key, is there a key consistent
with the encryptions which has x as a prefix? It is a stronger conjecture,
however, since it would also rule out the possibility that all problems in NP
can, for instance, be solved in time nO(logn), which, although non-polynomial,
is also not what one typically means by “exponential.” Nash is also making a
subsidiary claim that is in essence about the NP-hardness of a whole collection
of decryption problems. This latter claim appears to be false. Nash proposed
an encryption scheme of the type he specified, but the NSA observed in private
notes that it provided only limited security, and since the publication of the
letters modern researchers have found it easy to break [2]. Also, like Gödel,
Nash did not make the leap from low-order polynomial time to polynomial time
in general. He did however, correctly foresee the mathematical difficulty of the
P versus NP problem. He admitted that he could not prove his conjecture, nor
did he expect it to be proved, even if it were true.
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Cook, Karp, and Levin

The theory of NP-completeness is typically traced back to Steve Cook’s 1971
paper “The complexity of theorem-proving procedures” [14], which provided
the first published NP-completeness results. However, Leonid Levin, then a
student in Moscow, proved much the same results at roughly the same time,
although his results were not published until 1973. Over the years, the con-
temporaneous and independent nature of Levin’s accomplishment have come
to take precedence over publication dates, and what used to be called “Cook’s
Theorem” is now generally referred to as the “Cook-Levin Theorem.” Let me
say a bit about these two parallel developments.

When Cook wrote his paper, he was an Associate Professor in the Computer
Science Department of the University of Toronto, where he is now a Univer-
sity Professor. Earlier, he had received his PhD from Harvard in 1966, and
spent four years as an Assistant Professor in the Mathematics Department of
University of California, Berkeley, which foolishly denied him tenure. Cook’s
paper appeared in the proceedings of the 1971 ACM Symposium on Theory
of Computing (STOC), and there are apocryphal stories that it almost was
not accepted. This seems unlikely, although it wouldn’t be the first time a
major breakthrough was not recognized when it occurred. The paper’s sig-
nificance was certainly recognized as soon as it appeared. Not only did the
paper prove that satisfiability is NP-complete (in modern terminology), but
it also proved the same for 3SAT, and hinted at the broader applicability of
the concept by showing that the same also holds for subgraph isomorphism
(more specifically, the special case now known as the clique problem). I was a
grad student at MIT at the time, and Albert Meyer and Mike Fischer included
these results in their Fall 1971 Algorithms course. Others had also been busy,
as became clear at the March 1972 conference on “Complexity of Computer
Computations” at the IBM T.J. Watson Research Center in Yorktown Heights,
NY, where Richard Karp presented his famous paper.

Karp was also a Harvard PhD recipient (1959), and after an 11-year stint
at the same IBM Research Center that housed the conference, had moved to
a professorship at UC Berkeley in 1968, where he remains today, after a brief
sojourn to the University of Washington in Seattle. Karp’s paper showed that
19 additional problems were NP-complete, including such now-famous char-
acters as vertex cover, chromatic number, the directed and undirected
hamiltonian circuit problems, subset sum, and the knapsack problem.
Most of the proofs were due to Karp himself, but a few were attributed to
Gene Lawler, Bob Tarjan, and “the Algorithms Seminar at Cornell.” The pa-
per appears to be the first to use the notations P and NP, although its term
for “NP-complete” was “polynomial complete,” a locution used in several early
papers before the modern terminology took hold. The paper also introduced
the distinction between a polynomial transformation, where an instance of the
first problem is transformed into one of the second that has the same yes-no
answer, and a polynomial reduction, in which the first problem is solved using
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one or more calls to a subroutine that solves the second. Cook had stated his
results in terms of the latter notion, but his proofs had essentially relied only
on the first.

This was the first conference that I had attended, and I was suitably awed by
all the famous participants whom I was meeting for the first time - including
John Hopcroft, Michael Rabin, Bob Tarjan, Jeff Ullman, and Richard Karp
himself. I even got to sit across the table from Dick at one lunch. I took
the opportunity to mention to him that I had already proved one polynomial
completeness result myself, that for bin packing, the problem that was to be
the topic of my thesis. Albert Meyer had proposed I work on it just a month
earlier, saying “This is perfect for you, Johnson. You don’t need to know
anything – you just have to be clever.” Albert had learned about the problem
from a preprint of a 1972 STOC paper by Garey, Graham, and Ullman [21].
In the problem, one is given a sequence of numbers a1, a2, . . . , an ∈ (0, 1] and
a target k, and asked if the numbers be partitioned into k sets, each summing
to no more than 1. Dick showed polite interest, but, as the words came out of
my mouth, I was embarrassed to realize how trivial my proof was compared to
the ones in his paper (subset sum is the special case of bin packing where
k = 2 and the

∑n
i=1 ai = 2.)

In addition to many other interesting papers, the conference included a lively
panel discussion, a transcript of which is contained in the proceedings [45].
It covered issues raised by many of the preceding talks, but the discussion
kept coming back to the P versus NP question. The most remembered (and
prescient) comment from the panel was by John Hopcroft. He observed that,
although a consensus seemed to be forming that the two classes were not equal,
for all we currently knew, every problem in NP could be solved in linear time.
He concluded that it would be “reasonably safe” to conjecture that, within
the next five years, no one would prove that any of the polynomial complete
problems even required more than quadratic time. It is now 40 years and
counting, and we still have yet to see any such proofs.

Meanwhile, in a much different world, Leonid Levin was thinking about the
same issues, but not getting nearly the same publicity. In the Soviet Union
at the time, many researchers were considering questions related to the P ver-
sus NP question. In particular, there was the notion of the class of problems
that could only be solved by perebor, the Russian name for algorithms that
were essentially based on exhaustive search [52]. Levin was a PhD student
at the University of Moscow. In 1971, he completed a thesis on Kolmogorov
complexity, but although it was approved by Kolmogorov (his advisor) and
by his thesis committee, the authorities refused to grant the degree for po-
litical reasons. (Levin admits to having been a bit intractable himself when
it came to toeing the Soviet line [51, 151–152].) Levin continued to work on
other things, however, in particular perebor, coming up with his version of
NP-completeness that same year, and talking about it at various seminars in
Moscow and Leningrad [52]. He also wrote up his results, submitting them
for publication in June 1972 [52], although the paper did not appear until the
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second half of 1973. Its title, translated into English, was “Universal sequential
search problems” [42] (“Sequential search” was a mistranslation of perebor).
The 2-page paper was brief and telegraphic, a trait shared by many of Levin’s

subsequent papers (e.g., see [55, 43]), omitting proofs entirely. A corrected
translation appears as an appendix in [52]. In his paper, Levin deals with the
generalization of NP to search problems: Relations A(x, y) on strings, such
that for all pairs (x, y) such that A(x, y) holds, the length of y is polynomially
bounded in the length of x, and such that for all pairs (x, y), one can determine
in polynomial time whether A(x, y) holds. Here x stands for an instance of the
problem, and y a corresponding “solution.” The search problem for A is, given
x, find a y such that A(x, y) holds. The corresponding problem in NP is, given
x, does there exist a y such that A(x, y) holds. Levin mentions this version,
calling it a “quasi-search” problem, but concentrates on the search problem
version. He describes what we would now view as the standard notion of a
polynomial reduction from one search problem A to another one, and calls a
problem a “universal search problem” if there exist polynomial reductions to it
from all the search problems in the above class. He then goes on to list six search
problems that he can prove are universal search problems. These include the
search versions of satisfiability, set cover, and subgraph isomorphism,
along with others that were not on Karp’s list, such as the following tiling
problem: Given a square grid whose boundary cells each contain an integer
in the range from 1 to 100, together with rules constraining the contents of
interior cells, given the contents of the four neighboring cells (to the left, right,
top, and bottom), find a legal tiling that agrees with the given assignment to
the boundary cells.
Those who heard Levin speak about these results were immediately im-

pressed. Trakhtenbrot [52] quotes Barzdin, who heard Levin speak in Novosi-
birsk in April, 1972, as saying “Just now Levin told me about his new results;
it is a turning point in the topic of perebor !” Note that this is clear evidence
that the work of Cook and Karp had not yet received wide attention in Russia.
However, neither did the work of Levin. In 1973, when Russian theoreticians
finally did take up NP-completeness, it was mainly through the Cook and Karp
papers [25]. Levin’s impact appears not to have spread much beyond those who
had heard him speak in person.
In 1978, Levin emigrated to the US, where I first met him while visiting

MIT. There he finally received an official PhD in 1979, after which he took up
a position at Boston University, where he is now a Full Professor. He has made
many additional contributions to complexity theory, including

• A theory of average case completeness [43], using which he shows that a
variant of his above-mentioned tiling problem, under a natural notion of a
uniform distribution for it, cannot be solved in polynomial expected time
unless every other combination of a problem in NP with a reasonably
constrained probability distribution can be so solved.

• A proof that the one-way functions needed for cryptography exist if and
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only if pseudorandom number generators exist that cannot in polynomial
time be distinguished from true random number generators [28].

• A proof that a 1965 precursor of the ellipsoid algorithm, in which simplices
play the role of ellipses, also runs in polynomial time [55] (thus there is
a simplex algorithm that runs in polynomial time . . . ).

Cook and Karp also have made significant contributions to complexity theory
since their original breakthroughs. Karp’s many contributions are well known
in the mathematical programming community and too extensive to list here.
Cook’s main work has been in the study of proof complexity, but he is respon-
sible for introducing at least one additional complexity class, one that provides
an interesting sidelight on NP-completeness.
This is the class SC, the set of decision problems that can be solved by al-

gorithms that run in polynomial time and require only polylogarithmic space,
that is, use O(logk n) space for some fixed k. Here “SC” stands for “Steve’s
Class,” the name having been suggested by Nick Pippenger in recognition of
Steve’s surprising 1979 result that deterministic context-free languages are in
this class [15], but also in retaliation for Steve’s having introduced the terminol-
ogy “NC” (“Nick’s Class”) for the set of decision problems that can be solved
in polylogarithmic time using only a polynomial number of parallel processors
[26]. The significance of these two classes is that, although it is easy to see that
each is contained in P, one might expect them both to be proper subclasses
of P. That is, there are likely to be problems in P that cannot be solved in
polynomial time if restricted to polylog space, and ones that cannot be solved
in polylog time if restricted to a polynomial number of processors. By anal-
ogy with NP-completeness, one can identify candidates for such problems by
identifying ones that are “complete for P” under appropriate reductions. One
famous example, complete for P in both senses, is linear programming [16].
Both Cook and Karp have won multiple prizes. Cook won the 1982 ACM

Turing Award (the top prize in computer science) and the 1999 CRM-Fields
Institute Prize (the top Canadian award for research achievements in the math-
ematical sciences). Karp won the Lanchester Prize in 1977, the Fulkerson Prize
in discrete mathematics in 1979, the ACM Turing Award in 1985, the ORSA-
TIMS von Neumann Theory Prize in 1990, and many others. Levin is long
overdue for his own big award, although I expect this will come soon. And, of
course, the biggest prize related to NP-completeness is still unawarded: The
question of whether P equals NP is one of the six remaining open problems for
the resolution of which the Clay Mathematics Institute is offering a $1,000,000
Millenium Prize.

Garey, Johnson, and Computers and Intractability

My own most influential connection to the theory of NP-completeness is un-
doubtedly the book Computers and Intractability: A Guide to the Theory of
NP-completeness, which I wrote with Mike Garey and which was published in
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Figure 2: Michael Garey and David Johnson in 1977

1979. At the time, we optimistically promised the publishers that we would sell
5,000 copies, but it has now sold over 50,000, picking up some 40,000 citations
along the way, according to Google Scholar.
My early involvement with the theory, beyond the lunchtime conversation

mentioned above, mainly concerned one of the methods for coping with NP-
completeness: Designing and analyzing approximation algorithms. While at
MIT I wrote a PhD thesis on approximation algorithms for the bin packing
problem [32] and a paper exploring how the same approach could be extended
to other problems, such as graph coloring, set covering, and maximum satisfi-
ability [33].
On the strength of this research, I was recruited to come to work at Bell

Labs by Ron Graham and Mike Garey, whose initial paper on bin packing
had introduced me to the topic. After receiving my PhD in June 1973, I
moved to New Jersey and began my Bell Labs/AT&T career. One of my
first collaborations with Mike was in producing a response to a letter Don
Knuth had written in October to many of the experts in the field. The letter
sought a better name than “polynomial complete” for the class of problems
that Cook and Karp had identified. Knuth asked for a vote on three terms
he was proposing (“Herculean,” “formidable,” and “arduous”). We did not
particularly like any of Knuth’s alternatives, and proposed “NP-complete” as
a write-in candidate. We were not the only ones, and when Knuth announced
the results of his poll in January 1974 [41], he gave up on his original proposals,
and declared “NP-complete” the winner, with “NP-hard” chosen to designate
problems that were at least as hard as all the problems in NP, although possibly
not in NP themselves. See Knuth’s article or [23] for an amusing summary of
some of the other proposals he received.
Mike and I also began an active research collaboration, covering both bin

packing and scheduling algorithms and the proof of new NP-completeness re-
sults. When Karp wrote a journal article [38] derived from his original proceed-
ings paper, his expanded list, now of 25 problems, included some of our new
results. This set the stage for our book [23], with its much longer list, although
the actual genesis of the book was more happenstance. In April 1976, Mike
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and I attended a conference at Carnegie-Mellon University on “New Directions
and Recent Results in Algorithms and Complexity,” where I gave a talk on the
various types of approximation guarantees we had seen so far. Afterwards, at
a coffee break, an editor for the Prentice-Hall publishing company came up to
me and suggested that Mike and I write a book on approximation algorithms.
In thinking about that proposal, we realized that what was needed, before any
book on approximation algorithms, was a book on NP-completeness, and by
the time we left the conference we were well on our way to deciding to write
that book ourselves.

One of my tasks was to collect NP-completeness results for our planned list,
which in those days before personal computers meant writing the details by
hand onto file cards, stored in plastic box. At that time, it was still possible to
aim for complete coverage, and our eventual list of some 300 problems covered
most of what had been published by the time we finished our first draft in mid-
1978, including many results we came up with ourselves when we identified
interesting gaps in the literature, and for which we provided the unhelpful
citation “[Garey and Johnson, unpublished].” We did keep notes on the proofs,
however (in that same plastic box), and most can still be reconstructed . . .
After detailed discussions about what we wanted to say, I wrote first drafts of
the chapters, with Mike then clarifying and improving the writing. (A quick
comparison of the writing in [23] with that in this memoir will probably lead
most readers to wish Mike were still doing that.)

We did resort to computers for the actual typesetting of the book, although
I had to traipse up to the 5th floor UNIX room to do the typing, and put up
with the invigorating smell of the chemicals in the primitive phototypesetter
there. Because we were providing camera-ready copy, we had the final say on
how everything looked, although our publisher did provide thorough and useful
copy-editing comments, including teaching us once and for all the difference be-
tween “that” and “which.” There was only one last-minute glitch, fortunately
caught before the book was finalized – the cover was supposed to depict the
graph product of a triangle and a path of length two, and the initial artist’s
rendering of this was missing several edges.

Over the years, the book has remained unchanged, although later printings
include a 2-page “Update” at the end, which lists corrigenda and reports on
the status of the twelve open problems listed in Appendix A13 of the book. As
of today only two remain unresolved: graph isomorphism and precedence
constrained 3-processor scheduling. Of the remaining ten, five are now
known to be polynomial-time solvable and five are NP-complete. For details,
see [35, 46]. A second edition is perpetually planned but never started, although
I have resumed my NP-completeness column, now appearing on a sporadic basis
in ACM Transactions on Algorithms, as groundwork for such an undertaking.

We never did write that book on approximation algorithms, and indeed no
such book seems to have appeared until Dorit Hochbaum’s Approximation Al-
gorithms for NP-Hard Problems [29] appeared in 1997. This was an edited
collection, to which Mike, Ed Coffman, and I contributed a chapter. The first
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textbook on approximation algorithms was Vijay Vazirani’s Approximation Al-
gorithms [53], which did not appear until 2001. Although Mike and I never got
around to writing a second book, there is a second “Garey and Johnson” book
of a sort. In 1990, our wives, Jenene Garey and Dorothy Wilson, respectively
a Professor of Nutrition at NYU and a school teacher, coauthored The Whole
Kid’s Cookbook, copies of which were sold to raise funds for the Summit Child
Care Center, a local institution where Dorothy had worked.

The Last Forty Years: Hardness of Approximation

It would be impossible, in the limited space left to me, to give a thorough
history of the developments in the theory of NP-completeness since the 1970s,
so in this section I shall restrict myself to just one thread: applying the theory
to approximation algorithms.
An approximation algorithm does not necessarily return an optimal solution,

but settles for some feasible solution which one hopes will be near-optimal. A
standard way to evaluate an approximation algorithm A is in terms of the
“worst-case guarantee” it provides. Let us suppose for simplicity that the
problem X for which A is designed is a minimization problem. Then A pro-
vides a worst-case guarantee equal to the maximum, over all instances I of
the problem, of A(I)/OPT (I), where A(I) is the value of the solution that
algorithm yields for instance I, and OPT (I) is the optimal solution value. For
example, Christofides’ algorithm for the Traveling Salesman Problem (TSP)
has a worst-case guarantee of 3/2 if we restrict attention to instances satisfying
the triangle inequality [12].
We are of course most interested in approximation algorithms for NP-hard

problems that run in polynomial time. Unfortunately, it turns out that some-
times designing such an approximation algorithm can be just as hard as finding
an optimal solution. The first paper to make this observation appeared in 1974,
written by Sahni and Gonzalez [49]. They showed, for example, that if one does
not assume the triangle inequality, then for any constant k, the existence of a
polynomial-time approximation algorithm for the TSP with worst-case guaran-
tee k or better would imply P = NP. The proof involves a “gap” construction,
by transforming instances of HAMILTON CIRCUIT to TSP instances whose op-
timal tours have length n if the Hamilton Circuit exists, and otherwise have
length greater than kn (for example by letting the distance between u and v
be 1 if {u, v} is an edge in the original graph, and kn otherwise).
By the time our NP-completeness book appeared, there were a few more re-

sults of this type. Of particular interest were results ruling out “approximation
schemes.” A polynomial-time approximation scheme (PTAS) for a problem is
a collection of polynomial-time algorithms Aǫ, where Aǫ has a worst-case guar-
antee of 1+ ǫ or better. In 1975, Sahni [48] showed that the Knapsack Problem
has such a scheme. His algorithms, and many like them, were seriously imprac-
tical, having running times exponential in 1/ǫ, although for any fixed ǫ they
do run in polynomial time. Nevertheless, over the years much effort has been
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devoted to finding such schemes for a wide variety of problems.

Given how impractical PTASs tend to be, one could perhaps view this ever-
popular pastime of designing them as providing “negative-negative” results,
rather than positive ones. One can rule out the existence of such a scheme
(assuming P 6= NP) by proving that there exists an ǫ such that no polynomial-
time approximation can have a worst-case guarantee of 1 + ǫ or better unless
P = NP. This is trivially true for bin packing, since if an algorithm could
guarantee a ratio less than 3/2, then one could use it to solve the subset sum
problem. The existence of a PTAS for a problem thus merely shows that there
is no ǫ such that one can prove a 1 + ǫ inapproximability result.

There is one particular type of PTAS, however, that can perhaps be viewed
more positively. Shortly after Sahni’s knapsack PTAS appeared, Ibarra and
Kim [31] significantly improved on it, designing what we now call a fully
polynomial-time approximation scheme (FPTAS): An algorithm A that takes
as input both an instance I and an ǫ > 0, returns a solution that is no worse
than (1+ ǫ)OPT (I), and runs in time bounded by a polynomial not just in the
size of I, but also in 1/ǫ.

Unfortunately, it was quickly realized that FPTASs were much less common
than ordinary PTASs. In particular, the TSP with the triangle inequality could
not have an FPTAS unless P 6= NP, something that could not then be ruled
out for ordinary PTASs. This was because it was “NP-hard in the strong
sense,” which means it was NP-hard even if we restrict all numbers in the
input (in this case the inter-city distances) to integers that are bounded by
some fixed polynomial in the input length, rather than the exponentially large
values normally allowed by binary notation. It is an easy result [22] that no
optimization problem that is strongly NP-hard can have an FPTAS unless P
= NP (in which case none is needed).

On the other end of the scale (problems for which no algorithms with a
bounded performance guarantee could exist, or at least were known), there
were fewer results, although the best performance guarantee then available for
the SET COVER problem was H(n) =

∑∞
i=1 1/i ∼ lnn [33, 44], and no algo-

rithms for clique were known with guarantees better than O(n/polylog(n))
[33]. Whether this was best possible (assuming P 6= NP) was unknown, and
the field remained in this state of ignorance for more than a decade. Indeed,
although there was the occasional interesting problem-specific result, approxi-
mation algorithms remained only a minor thread of algorithms research until
1991, when a seemingly unrelated result in NP-completeness theory suddenly
gave them an explosive new life.

This result was the discovery of a new characterization of NP, in terms of
“probabilistically checkable proofs” (PCPs). A PCP is a proof whose validity
can be estimated by looking at only a few, randomly chosen, bits. If the proof
is valid, then any choice of those bits will support this fact. If it is defective,
than a random choice of the bits to be examined will, with probability 1/2
or greater, confirm that the proof is not valid. This basic concept developed
out of a series of papers, starting with the study of interactive proofs involving
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multiple provers and one verifier. (These papers include one with Leonid Levin
as a co-author [10].)
If f(n) and g(n) are two functions from the natural numbers to them-

selves, let PCP(f, g) denote that class of all problems that have PCPs us-
ing O(f(n)) random bits and looking at O(g(n)) bits of the proof. In late
1991, Feige, Goldwasser, Lovász, Safra, and Szegedy [20] showed that NP ⊆

PCP(log n log log n, log n log log n) and that, surprisingly, this highly-technical
result implied that clique could not be approximated to any constant factor
unless NP ⊆ DTIME[nO(log logn)]. This is a weaker conclusion than P = NP,
but not much more believable, and in any case, the implication was strength-
ened to P = NP in early 1992, when Arora and Safra [7] showed that NP
= PCP(log n, log n). Shortly thereafter, Arora, Lund, Motwani, Sudan, and
Szegedy [5] improved this to NP = PCP(log n, 1), which had even stronger
consequences for approximation. In particular, it implied that many famous
problems could not have PTASs, including max 2-sat, vertex cover, and
the triangle-inequality TSP. There is not room here to give the details of the
proofs of these results or all the references, but the key idea was to produce a
gap construction for the problem in question, based on the relation between the
random bits used by the verifier in a PCP for 3sat, and the proof bits at the
addresses determined by those random bits. For a contemporaneous survey,
providing details and references, see [34].
In the twenty years since these breakthrough results, there has been an ex-

plosion of inapproximability results exploiting variants and strengthenings of
the original PCP results, and based on a variety of strengthenings of the hy-
pothesis that P 6= NP. For surveys, see for instance [36, 54]. Today we know
that clique cannot be approximated to a factor n1−ǫ for any constant ǫ > 0
unless P = NP [56]. We also know that the Greedy algorithm for set cover,
mentioned above, cannot be bettered (except in lower-order terms) unless NP
⊆ DTIME[nO(log logn)] [19].
Other hypotheses under which hardness of approximation results have been

proved include NP * DTIME[nO(log log logn)], NP * ∪k>0 DTIME[nlog
k n], NP

* ∩ǫ>0 DTIME[2n
ǫ

], and NP * BPP, the latter a class of problems solvable
by randomized algorithms in polynomial time. Currently, the most popular
hypothesis, however, is the “Unique Games Conjecture” (UGC) of Subhash
Khot [39]. Suppose we are given a prime q, a small ǫ > 0, and a list of
equations of the form xj − xk = ch (mod q) in variables xi and constants ch.
The conjecture says that it is NP-hard to distinguish between the case where
at least a fraction 1 − ǫ of the equations can be simultaneously satisfied and
the case when no more than a fraction ǫ of the equations can – a very large
gap. As with the PCP results, this conjecture initially came from a problem
involving multiple prover systems, and it was in this context that it obtained
its name.
The reason this rather specialized hypothesis has garnered attention is that

it implies that for many important problems, our currently best approxima-
tion algorithms cannot be improved upon unless P = NP . For instance, no
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polynomial-time approximation algorithm for vertex cover can guarantee
better than the factor of 2 already guaranteed by several simple approxima-
tion algorithms [9]. Similarly, the Goemans-Williamson algorithm [24] for max
cut, which exploits semidefinite programming and randomized rounding and
has a worst-case guarantee of (2/π)/(min0<θ≤π((1−cos(θ))/θ)) ∼ .878, cannot
be improved upon by any polynomial-time algorithm [40]. More generally, for
any Constraint Satisfaction Problem (CSP) where the goal is to find an assign-
ment to the variables that satisfies a maximum number of the constraints, it
can be shown that a standard algorithm, based on semidefinite programming
and rounding, achieves the best possible worst-case approximation ratio of any
polynomial-time algorithm, assuming P 6= NP and the UGC [47], and even
though for many such problems we do not at this point know what that ratio
is.
Whether the UGC is true is, of course, an open question, and researchers

tend to be more skeptical of this than of P 6= NP. Moreover, its impact seems
restricted to problems where approximation algorithms with finite worst-case
ratios exist, while the other conjectures mentioned above have led to many
nonconstant lower bounds, such as the roughly lnn lower bound for set cover.
This has had the interesting side effect of making algorithms with non-constant
worst-case ratios more respectable – if one cannot do better than Ω(log n),
then maybe O(log2 n) isn’t so bad? Indeed, a recently well-received paper had
the breakthrough result that the label cover problem had a polynomial-
time approximation algorithm with an O(n1/3) worst-case ratio, beating the
previous best of O(n1/2) [11].
Let me conclude by addressing the obvious question. All this definitely makes

for interesting theory, but what does it mean for practitioners? I believe that
the years have taught us to take the warnings of NP-completeness seriously. If
an optimization problem is NP-hard, it is rare that we find algorithms that,
even when restricted to “real-world” instances, always seem to find optimal
solutions, and do so in empirical polynomial time. Even that great success of
optimization, the concorde code for optimally solving the TSP [4], appears to
have super-polynomial running time, even when restricted to simple instances
consisting of points uniformly distributed in the unit square, where its median
running time seems to grow exponentially in

√

n [30].
Thus, the classical justification for turning to approximation algorithms re-

mains valid. How that is refined by our hardness-of-approximation results is
less clear. Many approximation algorithms, such as the greedy algorithm for
set cover, seem to come far closer to optimal than their worst-case bounds
would imply, and just because a problem is theoretically hard to approximate
in the worst case does not mean that we cannot devise heuristics that find rel-
atively good solutions in practice. And frankly, once exact optimization runs
out of gas, what other choice do we have but to look for them?
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After a promising start in the 1950s, enthusiasm for the practical potential of
linear programming systems seemed to fade. By the end of the 1970s it was
not unusual to encounter sentiments of the following sort:

We do not feel that the linear programming user’s most pressing
need over the next few years is for a new optimizer that runs twice
as fast on a machine that costs half as much (although this will
probably happen). Cost of optimization is just not the dominant
barrier to LP model implementation. The process required to man-
age the data, formulate and build the model, report on and analyze
the results costs far more, and is much more of a barrier to effective
use of LP, than the cost/performance of the optimizer.

Why aren’t more larger models being run? It is not because they
could not be useful; it is because we are not successful in using them
. . . They become unmanageable. LP technology has reached the
point where anything that can be formulated and understood can
be optimized at a relatively modest cost. [13]

This was written not by a frustrated user, but by the developers of an advanced
LP system at one of the major computer manufacturers. Similar sentiments
were expressed by others who were in a position to observe that the power-
ful techniques of computational optimization were not translating to powerful
applications, at least not nearly as readily as expected.
Advanced software for optimization modeling was a response to this malaise

and a key factor in bringing mathematical programming to a new period of
enthusiasm. This article is intended as a brief introduction and history, par-
ticularly as reflected in writings by some of the pioneers and in my own early
experiences. A detailed survey appears in [14], and extensive observations on
the subject by many of the major participants have been collected in [11] and
[12].
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The history of optimization modeling systems can be viewed roughly as be-
ginning with matrix generators and then expanding to modeling languages,
and this account is organized accordingly. At the end I add a few reflections on
more recent developments. In giving a historical account it is hard to avoid the
use of “mathematical programming” to refer to what has since become more
straightforwardly known as “optimization,” and so these terms appear more-or-
less interchangeably in my account. On the other hand “linear programming”
or “LP” is still the term of choice of the special case of linear objectives and
constraints.

Matrix generators

Almost as soon as computers were successfully used to solve linear programming
problems, communication with the optimization algorithms became a bottle-
neck. A model in even a few kinds of variables and constraints, with perhaps
a half-dozen modest tables of data, already gave rise to too many coefficients,
right-hand sides, and bounds to manage by simply having a person enter them
from a keyboard of some kind. Even if the time and effort could be found to
key in all of these numbers, the process would not be fast or reliable enough
to support extended development or deployment of models. Similar problems
were encountered in examining and analyzing the results. Thus it was evident
from the earliest days of large-scale optimization that computers would have
to be used to create and manage problems as well as to solve them.
Because development focused initially on linear programming, and because

the greatest work of setting up an LP is the entry of the matrix of coeffi-
cients, computer programs that manage optimization modeling projects be-
came known as matrix generators. To make good use of computer resources,
LP algorithms have always operated on only the nonzero coefficients, and so
matrix generators also are concerned not with an explicit matrix but with a
listing of its nonzero elements. The key observation that makes efficient matrix
generators possible is that coefficients can be enumerated in an efficient way:

Anyone who has been taught that linear programming is a way to
solve problems such as Minimize Minimize x1+2x2+4x3+x4+3x5

. . . may wonder how any computer program can help to assemble
such a meaningless jumble of coefficients. The point is that prac-
tical linear programming problems are not like this. Although the
range of problems to which mathematical programming is applied
is very wide and is continuing to expand, it seems safe to claim that
there is some coherent structure in all applications. Indeed, for a
surprisingly wide class of applications the rows (or constraints) can
be grouped into five categories and the columns (or variables) into
three categories . . . When a problem has been structured in this
way, one can see how a computer program can be devised to fill in
the details from a relatively compact set of input data. [1]
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This explanation comes from Martin Beale’s paper “Matrix Generators and
Output Analyzers” in the proceedings of the 6th Mathematical Programming
Symposium, held in 1967. Already at that point much had been learned about
how best to write such programs. In particular Beale describes the practice of
building short character strings to uniquely identify variables and constraints.
These encoded names, typically 8 characters or less, were a central feature
of the (nearly) standard MPS format adopted for the representation of linear
programs.
A skilled programmer could get quite good at writing matrix generators. In

the same article Beale states:

I should like to dispel the illusion that a FORTRAN matrix gener-
ator is necessarily a very cumbersome affair by pointing out that I
once wrote one before breakfast one Sunday morning. (Although it
did contain one mistake which had to be corrected after going on
the computer.)

The inclusion of such a disclaimer suggests that this activity did pose challenges
to some modelers of optimization problems. In fact matrix generators are
inherently difficult to write, and that difficulty derives most significantly from
the challenges of debugging them. The following account describes procedures
that persisted through much of the 1970s:

. . . the debugging process . . . was basically the same one that
had been used since the introduction of mathematical programming
(MP) systems. When a model run was completed, the complete so-
lution was printed along with a report. The output was examined to
determine if the run passed the “laugh test”, that is, no infeasibles
and no “outrageous” values. If the laugh test failed, the solution
print would be examined by paper clip indexing and manual pag-
ing. Frequently, the solution print was not enough to determine the
problem and the matrix had to be printed. For large mathematical
programs, the two printouts could be 6 inches thick. Nevertheless,
the information needed to detect and correct the error took no more
than a page. The trick was to know where to look and have facility
with 6 inches of printout. [15]

This account, from a project at the U.S. Federal Energy Administration, sug-
gests the kinds of difficulties that prompted the malaise described out the outset
of this article. With computers becoming more powerful and attempts at opti-
mization modeling becoming correspondingly more widespread and ambitious,
the supply of sufficiently skilled debuggers — and debugging time — could not
keep up.
A direct solution, pursued by the FEA project, was to get the computer to do

some of the work of paging through the printout. This led to the development
of progressively more sophisticated systems known as PERUSE and ANALYZE
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[9] that worked with information from the 8-character names and searched for
patterns associated with errors and infeasibility.

Another approach was based on making matrix generators more reliable.
The essence of the debugging problem can be viewed as a gap between repre-
sentations: a high-level, structured concept of the optimization problem, which
is natural for human modelers to work with, is replaced by a computer program
whose output is a list of coefficients in a form suitable for fast processing by
a solver’s algorithms. It is understandably hard for a human analyst to tell
from looking at the coefficient list whether the program is running correctly,
or why the results are wrong. So if the matrix generator can be written in a
higher-level language that deals more directly with the concepts of LP formu-
lation, then at least the chances of errors due to low-level programming bugs
will be reduced. Indeed because such a program deals in terms closer to the
modeler’s original conception, one can expect that it will be easier to write,
verify, maintain, and fix over the lifetime of the model.

The same proceedings in which Beale describes matrix generators pro-
grammed in a general-purpose language (Fortran) contain this abstract of a
talk on a special-purpose matrix-generation language:

The approach used in MaGen is based on a recognition that math-
ematical models consist of activities and constraints on these activ-
ities, and that both the activities and constraints can be grouped
into classes. The generation of the matrix is carried out by FORM
VECTOR statements under control of a DICTIONARY which de-
fines the classes and provides mnemonic names for use in the model,
and a Data section which provides the numerical information. [10]

Languages like MaGen, here described by its creator Larry Haverly, did much
to structure the matrix generation process. They supported the small tables
of data from which LPs were built, and incorporated intuitive syntactic forms
for creation of unique 8-character names by concatenation of table row and
column labels.

My own introduction to matrix generators was through one of these lan-
guages. In 1974 I joined the Computer Research Center set up in Cambridge,
Massachusetts by the National Bureau of Economic Research (NBER). Al-
though the center’s focus was on statistical and data analysis software, it had
recently brought in Bill Orchard-Hays to lead a development effort in the rather
different area of linear programming. Orchard-Hays had taken the unusual
(for the time) job of programmer at the RAND corporation in the early 1950s,
shortly before George Dantzig’s arrival gave impetus to an effort to program
machines to do linear programming. Out of this collaboration came practical
implementations of Dantzig’s simplex method, initially on a card-programmed
calculator and then on the first IBM scientific computer.

The early days of linear programming were an exciting time to be working
with computers:
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mathematical programming and computing have been contempo-
rary in an almost uniquely exact sense. Their histories parallel
each other year by year in a remarkable way. Furthermore, math-
ematical programming simply could not have developed without
computers. Although the converse is obviously not true, still linear
programming was one of the important and demanding applications
for computers from the outset. [17]

These comments are from a detailed retrospective article in which Orchard-
Hays describes implementing a series of progressively more ambitious math-
ematical programming systems over a span of nearly three decades. By the
time that our paths crossed, however, he had more the outlook of a former
revolutionary, as this excerpt from the same article suggests:

. . . the nature of the computing industry, profession, and technol-
ogy has by now been determined – all their essential features have
existed for perhaps five years. One hopes that some of the more
recent developments will be applied more widely and effectively but
the technology that now exists is pretty much what will exist, leav-
ing aside a few finishing touches to areas already well developed,
such as minicomputers and networks.

This is perhaps a reminder that some fundamental aspects of computing and
of optimization have hardly changed since that time, though in other respects
today’s environment is unimaginably different. The Mathematical Program-
ming (now Mathematical Optimization) Society later fittingly named its prize
in computational mathematical programming after Beale and Orchard-Hays.

I was fortunate to learn linear programming from Orchard-Hays’s book [16]
in which it was described how the simplex method was implemented for com-
puters. Had I read one of the standard textbooks I would have learned a quite
impractical version that was motivated by a need to assign little LPs for so-
lution by hand. Among the components of the Orchard-Hays system that I
encountered was a matrix generation and reporting language; working with
two analysts at the U.S. Department of Transportation, I used it to develop
a network LP application involving the assignment of railroad cars to a train
schedule [6].

Modeling languages

The logical alternative to making matrix generation programs easier to debug
was to make them unnecessary to write, by instead designing a kind of language
that expressed the human modeler’s formulation of an optimization problem
directly to a computer system. The result was the concept of a modeling

language.
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Just as there are diverse ways to conceive of an optimization problem, there
are potentially diverse designs for modeling languages. However for general-
purpose modeling – not tied to any one application type or area – the one most
widely implemented and used approach is based on the variables and equations
familiar to any student of algebra and calculus. A generic optimization problem
may be viewed as the minimization or maximization of some function of decision
variables, subject to equations and inequalities involving those variables. So if
you want to

Minimize

n
∑

j=1

cjxj

where each xj the quantity of one n of things to be bought, and cj is its unit
cost, then why not present it to the modeling software in a similar way, only
using a standard computer character set? In the resulting algebraic modeling
language, it could come out like this:

minimize TotalCost: sum j in 1..n c[j] * x[j];

Of course for input to computer software one must be quite explicit, so addi-
tional statements are needed to declare that n and the c[j] are data values,
while the x[j] are variables on an appropriate domain — since they represent
things to buy, most likely nonnegative values or nonnegative integers.

Early, less ambitious modeling language designs called for linear expressions
to be written in a simpler syntax, which might express an objective as

min 2.54 x1 + 3.37 x2 + 0.93 x3 + 7.71 x4 + 7.75 x5 + 2.26 x6 + ...

Although superficially this is also algebraic, it is no different in concept from
the aforementioned MPS file or any listing of nonzero coefficients. What most
importantly distinguishes the previous description of TotalCost is that it’s
symbolic, in that it uses mathematical symbols to describe a general form of
objective independently of the actual data. Whether n is 7 or a 7 thousand or
7 million, the expression for TotalCost is written the same way; its description
in the modeling language does not become thousands or millions of lines long,
even as the corresponding data file becomes quite large.
The same ideas apply to constraints, except that they express equality or

inequality of two algebraic expressions. So if in another model one wants to
state that

∑

p∈P

(1/aps)yp ≤ bs for all s ∈ S

it could be written, after some renaming of sets, parameters, and variables to
make their meanings clearer, as

subject to Time {s in STAGE}:

sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
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Constraints usually occur in indexed collections as in this case, rather than in-
dividually as in our example of an objective. Thus the advantage of a symbolic
description is even greater, as depending on the data one constraint description
can represent any number of constraints, as well as any number of coefficients
within each constraint.

A well-written matrix generator also has the property of data independence,
but the advantages of modeling languages extend further. Most important, a
modeling language is significantly closer to the human analyst’s original con-
ception of the model, and further from the detailed mechanisms of coefficient
generation:

Model building in a strategic planning environment is a dynamic
process, where models are used as a way to unravel the complex
real-world situation of interest. This implies not only that a model
builder must be able to develop and modify models continuously in
a convenient manner, but, more importantly, that a model builder
must be able to express all the relevant structural and partition-
ing information contained in the model in a convenient short-hand
notation. We strongly believe that one can only accomplish this
by adhering to the rigorous and scientific notation of algebra. . . .
With a well-specified algebraic syntax, any mode representation can
be understood by both humans and machines. The machine can
make all the required syntactical and semantic checks to guarantee
a complete and algebraically correct model. At the same time, hu-
mans with a basic knowledge of algebra can use it as the complete
documentation of their model. [2]

This introduction by Bisschop and Meeraus to the GAMS modeling language
reflects a development effort begun in the 1970s, and so dates to the same
period as the quote that led off this article. Although its focus is on the
needs of optimization applications that the authors encountered in their work
at the World Bank, its arguments are applicable to optimization projects more
generally.

I also first encountered modeling languages in the 1970s, while working at
NBER. I do not recall how they first came to my attention, but as the Com-
puter Research Center’s mission was the design and development of innovative
modeling software, ideas for new languages and tools were continually under
discussion; naturally the younger members of the linear programming team
began to consider those ideas in the context of LP software:

Popular computer packages for linear programming do not differ
much in concept from ones devised ten or twenty years ago. We pro-
pose a modern LP system – one that takes advantage of such (rel-
atively) new ideas as high-level languages, interactive and virtual
operating systems, modular design, and hierarchical file systems.
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Particular topics include: computer languages that describe opti-
mization models algebraically; specialized editors for models and
data; modular algorithmic codes; and interactive result reporters.
We present specific designs that incorporate these features, and dis-
cuss their likely advantages (over current systems) to both research
and practical model-building. [7]

This was the abstract to a report on “A Modern Approach to Computer Sys-
tems for Linear Programming,” which I had begun writing with Michael J.
Harrison by the time that I left for graduate school in 1976. Algebraic model-
ing languages played a prominent role in our proposals, and an example from
a prototype language design was included.
“A Modern Approach . . . ” was completed at NBER’s Stanford office and

appeared in the M.I.T. Sloan School’s working paper series. After complet-
ing my PhD studies at Stanford and moving to Northwestern, an attempt to
submit it for publication made clear that some of its central assertions were
considerably less obvious to others than they had been to me. In particular we
had started off the description of our modeling language by stating that,

Models are first written, and usually are best understood, in alge-
braic form. Ideally, then, an LP system would read the modeler’s
algebraic formulation directly, would interpret it, and would then
generate the appropriate matrix.

Reviewers’ reactions to this claim suggested that there were plenty of adher-
ents to the traditional ways of mathematical programming, who would settle
for nothing less than a thorough justification. Thus I came to write a dif-
ferent paper, focused on modeling languages, which investigated in detail the
differences between modeler’s and algorithm’s form, the resulting inherent diffi-
culties of debugging a matrix generator, and many related issues. Additionally,
to confirm the practicality of the concept, I collected references to 13 modeling
language implementations, with detailed comparisons of the 7 that were so-
phisticated enough to offer indexed summations and collections of constraints.
Most have been forgotten, but they did include GAMS, which remains one of
the leading commercial modeling language systems, and LINDO, which gave
rise to another successful optimization modeling company.
The publication of this work as “Modeling Languages versus Matrix Gen-

erators” [3] was still not an easy matter. As I recall it was opposed by one
referee initially and by the other referee after its revision, but never by both
at the same time . . . and so a sympathetic editor was able to recommend it,
and after a further examination the editor-in-chief concurred. It appeared in a
computer science journal devoted to mathematical software, which at the time
seemed a better fit than the journals on operations research and management
science.
Subsequently a chance encounter led to my greatest adventure in modeling

languages. I had known Dave Gay when he was an optimization researcher
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at NBER, but by the time we met at the 1984 TIMS/ORSA conference in
San Francisco he had moved to the Computing Sciences Research Center at
Bell Laboratories. The Center’s researchers had developed Unix and the C
programming language among many innovations, and were given a free hand
in initiating new projects. Dave graciously invited me to spend a sabbatical
year there without any particular commitments, and as it happened my arrival
coincided with the completion of Brian Kernighan’s latest computer language
project. A fresh attempt at designing an algebraic modeling language seemed
like a great fit for the three of us.
Thus did AMPL get its start. We aimed to make it a declarative modeling

language in a rigorous way, so that the definition of a variable, objective, or
constraint told you everything you needed to know about it. In a constraint
such as Time above, you could assign or re-assign any parameter like rate[p,s]
or avail[s], or even a set like STAGE, and the resulting optimization problem
would change implicitly. A lot of our initial work went into the design of
the set and indexing expressions, to make them resemble their mathematical
counterparts and to allow expressions of full generality to appear anywhere in
a statement where they logically made sense.
The naming of software was taken very seriously at Bell Labs, so the choice

of AMPL, from A Mathematical Programming Language (with a nod to APL),
came well after the project had begun. By the late 1980s the concept of mod-
eling languages had become much more established and a paper on AMPL’s
design [4] was welcomed by Management Science. The referees did object that
our reported times to translate sophisticated models were often nearly as great
as the times to solve them, but by the time their reports came in, the translator
logic had been rewritten and the times were faster by an order of magnitude.
AMPL had a long gestation period, being fundamentally a research project

with a few interested users for its first seven years. Bell Labs provided an ideal
environment for innovation but not a clear path for disseminating the resulting
software. There was a strong tradition of disseminating written work, however,
so we proposed to write an AMPL book [5] that happened to have a disk in
the back. It started with a tutorial chapter introducing a basic model type
and corresponding language forms, which expanded to a four-chapter tutorial
covering a greater range of model types and language features. At that point
there seemed no good reason to abandon the tutorial approach, and subsequent
chapters eventually introduced all of the more advanced features using progres-
sively more advanced versions of the same examples. This approach paid off in
popularizing the modeling language approach beyond what a straightforward
user’s manual could have done.
The AMPL book’s design was commissioned by the publisher as part of a

projected series in which volumes on different software systems would be asso-
ciated with different animals, but beyond that we have no specific explanation
for the cat that appears on the cover.
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Reflections

Algebraic modeling languages have long since become an established approach
rather than a “modern” departure. Four general-purpose languages – AIMMS,
AMPL, GAMS, MPL – and their associated software have been in active devel-
opment for two decades or more, each by a small company devoted to optimiza-
tion. The similarity of their names notwithstanding, the stories of how these
language came about are all quite different; and although based on the same
underlying concept, they differ significantly in how the concept is presented
to users. Moreover a comparable variety of algebraic modeling languages have
developed for dedicated use with particular solvers.

Freedom from programming the generation of matrix coefficients has indeed
proved to be a powerful encouragement to applied optimization. Modeling
languages have lowered the barrier to getting started, particularly as the popu-
lation of technically trained computer users has expended far beyond the com-
munity of practiced programmers. Applications of optimization models have
spread throughout engineering, science, management, and economics, reflected
in hundreds of citations annually in the technical literature.

Modeling languages’ general algebraic orientation also has the advantage of
allowing them to express nonlinear relations as easily as linear ones. The ben-
efits of avoiding programming are particularly great in working with nonlinear
solvers that require function values and derivative evaluations, which modeling
language systems can determine reliably straight from the algebraic descrip-
tions. In fact the advent of efficiently and automatically computed second
derivatives (beginning with [8]) was a significant factor in advancing nonlinear
solver design.

And what of matrix generators? They have by no means disappeared, and
will surely maintain a place in optimization modeling as long as there are tal-
ented programmers. They have particular advantages for tight integration of
solver routines into business systems and advanced algorithmic schemes. And
modeling languages have greatly influenced the practice of matrix generation
as well, with the help of object-oriented programming. Through the creation
of new object types and the overloading of familiar operators, it has become
possible to use a general programming language in a way that looks and feels
a lot more like a modeling language declaration. Even the symbolic nature of
a model can be preserved to some degree. Thus the process of creating and
maintaining a generator can be made more natural and reliable, though diffi-
culties of disentangling low-level programming bugs from higher-level modeling
errors are still a powerful concern.

Whatever the choice of language, it seems clear that developments over four
decades have realized much of the vision of letting people communicate opti-
mization problems to computer systems in the same way that people imagine
and describe optimization problems, while computers handle the translation to
and from the forms that algorithms require. And still, anyone who has pro-
vided support to modeling language users is aware that the vision has not been
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entirely realized, and that modelers even now need to do a certain amount of
translating from how they think of constraints to how modeling languages are
prepared to accept them. Replies that begin, “First define some additional
zero-one variables . . . ”, or “You could make the quadratic function convex if
. . . ”, remain all too common; the conversions implied by these statements have
been addressed to some extent in some designs, but not yet in a truly thorough
manner applicable both to a broad range of models and a variety of solvers.
In conclusion it is reasonable to say that optimization modeling is considered

challenging today just as it was in the 1970s, but that he experience of creating
an application has changed for the better. Just as in the case of solver software,
improvements in modeling software have occurred partly because computers
have become more powerful, but equally because software has become more
ambitious and sophisticated. The malaise of earlier times seems much less
evident, and there is arguably a better balance between what can be formulated
and understood and what can be optimized.
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Prologue

Nick Trefethen [13] listed automatic differentiation as one of the 30 great nu-
merical algorithms of the last century. He kindly credited the present author
with facilitating the rebirth of the key idea, namely the reverse mode. In fact,
there have been many incarnations of this reversal technique, which has been
suggested by several people from various fields since the late 1960s, if not ear-
lier.
Seppo Linnainmaa (Lin76) of Helsinki says the idea came to him on a sunny

afternoon in a Copenhagen park in 1970. He used it as a tool for estimating
the effects of arithmetic rounding errors on the results of complex expressions.
Gerardi Ostrowski (OVB71) discovered and used it some five years earlier in the
context of certain process models in chemical engineering. Here and throughout
references that are not listed in the present bibliography are noted in paren-
theses and can be found in the book [7].
Also in the sixties Hachtel et al. [6] considered the optimization of electronic

circuits using the costate equation of initial value problems and its discretiza-
tions to compute gradients in the reverse mode for explicitly time-dependent
problems. Here we see, possibly for the first time, the close connection between
the reverse mode of discrete evaluation procedures and continuous adjoints of
differential equations. In the 1970s Iri analyzed the properties of dual and
adjoint networks. In the 1980s he became one of the key researchers on the
reverse mode.
From a memory and numerical stability point of view the most difficult aspect

of the reverse mode is the reversal of a program. This problem was discussed
in the context of Turing Machines by Benett (Ben73), who foreshadowed the
use of checkpointing as a tradeoff between numerical computational effort and
memory requirement.
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Motivated by the special case of back-propagation in neural networks, Paul
Werbos (Wer82) compared the forward and reverse propagation of derivatives
for discrete time-depedent problems with independent numbers of input, state,
and output variables. He even took into account the effects of parallel compu-
tations on the relative efficiency.

Many computer scientists know the reverse mode as the Baur-Strassen

method (BS83) for computing gradients of rational functions that are eval-
uated by a sequence of arithmetic operations. For the particular case of matrix
algorithms Miller et al. proposed the corresponding roundoff analysis [10].
Much more general, Kim, Nesterov et al. (KN+84) considered the composi-
tion of elementary functions from an arbitrary library with bounded gradient
complexity.

Bernt Speelpenning (Spe80) arrived at the reverse mode via compiler opti-
mization when Bill Gear asked him to automatically generate efficient codes for
Jacobians of stiff ODEs. I myself rediscovered it once more in the summer of
1987 when, newly arrived at Argonne, I was challenged by Jorge Moré to give
an example of an objective function whose gradient could not be evaluated at
about the same cost as the function itself.

One of the earliest uses of the reverse mode was in data assimilation in
weather forecasting and oceanography. This was really just a history match by
a weighted least squares calculation on a time-dependent evolution, where the
parameters to be approximated include the present state of the atmosphere.
The recurrent substantial effort of writing an adjoint code for geophysical mod-
els eventually spawned activities to generate adjoint compilers such as Tape-
nade (HP04) and TAF (GK98).

The first implementations of the reverse mode based on the alternative soft-
ware technology of operator overloading was done in PASCAL-SC, an extension
of PASCAL for the purposes of interval computation. The corresponding veri-
fied computing community has later included the revers mode in their analysis
and some but not all of the software [8].

Relevance to Optimization

The eminent optimizer Phil Wolfe made the following observation in a TOMS
article (Wol82):

There is a common misconception that calculating a function of n
variables and its gradient is about (n + 1) times as expensive as
just calculating the function. This will only be true if the gradi-
ent is evaluated by differencing function values or by some other
emergency procedure. If care is taken in handling quantities, which
are common to the function and its derivatives, the ratio is usually
1.5, not (n + 1), whether the quantities are defined explicitly or
implicitly, for example, the solutions of differential equations . . .
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Obviously this Cheap Gradient Principle is of central importance for the
design of nonlinear optimization algorithms and, therefore, fits very well into
this volume. Even now it is generally not well understood that there is no
corresponding Cheap Jacobian Principle, which one might have hoped to obtain
by computing Jacobians row-wise. On the other hand, many of the authors
mentioned above noted that Hessian times vector products and other higher

order adjoint vectors can be obtained roughly with the same complexity as the
underlying scalar and vector functions.
The salient consequence of the cheap gradient principle for nonlinear opti-

mization is that calculus-based methods can, in principle, be applied to large-
scale problems in thousands and millions of variables. While there are chal-
lenges with regards to the memory management and the software implementa-
tion, we should not yield to the wide spread engineering practice of optimizing
only on reduced order models with derivative free direct search methods. On a
theoretical level there has been a lot of activity concerning the use of continuous
and discrete adjoints in PDE constrained optimization [1] recently .
If everything is organized correctly, the cheap gradient principle generalizes

to what one might call the holy grail of large scale optimization, namely

Cost(Optimization)

Cost(Simulation)
∼ O(1)

By this we mean that the transition from merely simulating a complex system
(by evaluating an appropriate numerical model) to optimizing a user specified
objective (on the basis of the given model) does not lead to an increase in
computational cost by orders of magnitude. Obviously, this is more a rule of
thumb than a rigorous mathematical statement.
The selective name-dropping above shows that, especially from 1980 onwards,

there have been many developments that cannot possibly be covered in this
brief note. Since we do not wish to specifically address electronic circuits or
chemical processes we will describe the reverse mode from Seppo Linnainmaa’s
point of view in the following two sections. In the subsequent sections we
discuss temporal and spatial complexity of the reverse mode. In the final
section we draw the connection to the adjoint dynamical systems, which go
back to Pontryagin.

Round-off Analysis á la Linnainmaa

Seppo Linnainmaa was neither by training nor in his later professional career
primarily a mathematician. In 1967 he enrolled in the first computer science
class ever at the University of Helsinki. However, since there were still only
very few computer science courses, much of his studies were in mathematics.
Optimization was one of the topics, but did not interest him particularly. His
supervisor Martti Tienari had worked for Nokia until he became an associate
professor of computer science in 1967. The local system was an IBM 1602 and
for heavy jobs one had to visit the Northern European Universities Computing

Documenta Mathematica · Extra Volume ISMP (2012) 389–400



392 Andreas Griewank

Figure 1

Center at Copenhagen, which had an IBM 7094. All computer manufacture
had their own floating point system.
After finishing his Master Thesis concerning the Estimation of Rounding

Errors in 1970 he obtained, four years later, the first doctorate ever awarded
in computer science at Helsinki University. In 1977 he got a Finnish grant as a
visiting scholar with William Kahan at Berkeley, whose group was instrumental
in developing the later IEEE Standard 754. Linnainmaa does not think that
the results of his thesis had any specific impact on the development of the
standard.
Moreover, he did not market his approach as a method for cheaply evaluating

gradients either, so there was little resonance until I called him up from Argonne
in the late eighties. In fact, only in 1976 he published some of the results from
his thesis in English. In Figure 1 one sees him holding up a reprint of this
BIT paper inside his house in Helsinki in March this year. After continuing his
work in numerical analysis he became, a few years later, primarily interested in
artificial intelligence. Curiously, as he describes it, this meant at that time the
simulation and optimization of complex transport systems, so he might have
felt at home in todays Matheon application area B. Later on he worked in other
areas of artificial intelligence and was a long time employee of the Technical
Research Centre of Finland.
His motivation was classical numerical analysis in the sense of floating point

arithmetic. On the right-hand side of Figure 1, we took from his BIT paper
the interpretation of a simple evaluation process

u2 = ϕ2(u0, u1); u3 = ϕ3(u1, u2); u4 = ϕ4(u2, u3);

as a computational graph, drawn bottom up. Here the binary functions ϕi()
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for i = 2, 3, 4 might be arithmetic operations and the arcs are annotated by the
partial derivatives dij .

More generally, Linnainmaa assumed that the vector function F̃ : D ⊂ Rn
→

Rm in question is evaluated by a sequence of assignments

ui = ϕi(vi) with vi ≡ (uj)j≺i for i = n . . . l

Here the elemental functions ϕi are either binary arithmetic operations or unary
intrinsic functions like

ϕi ∈ Φ ≡ {rec, sqrt, sin, cos, exp, log, . . .}

The precedence relation ≺ represents direct data dependence and we combine
the arguments of ϕi to a vector vi. Assuming that there are no cyclic depen-
dencies, we may order the variables such that j ≺ i ⇒ j < i. Then we can
partition the sequence of scalar variables ui into the vector triple

(x, z,y) = (u0, . . . , un−1, un, . . . , ul−m, ul−m+1, . . . , ul) ∈ Rn+l

such that x ∈ Rn is the vector of independent variables, y ∈ Rm the vector of
dependent variables, and z ∈ Rl+1−m−n the (internal) vector of intermediates.
In a nonlinear optimization context the components of the vector function
F may represent one or several objectives and also the constraints that are
more or less active at the current point. In this way one may make maximal
use of common subexpressions, which can then also be exploited in derivative
evaluations.
In finite precision floating point arithmetic, or due to other inaccuracies, the

actual computed values ũi will satisfy a recurrence

ũi = ũj ◦ ũk + δi or ũi = ϕi(ũj) + δi for i = n . . . l

Here δ ≡ (δi)i=0...l ∈ Rl+1 is a vector of hopefully small perturbations. The
first n perturbations δi are supposed to modify the independents so that ũi−1 =
xi + δi−1 for i = 1 . . . n. Now the key question is how the perturbations will
effect the final result

ỹ ≡ (ũi)i=l−m+1...l ≡ F̃(x, δ)

When the perturbations δi vanish we have obviously F̃(x, 0) = F(x) and, as-
suming all elemental functions to be differentiable at their respective (exact)
arguments, there must be a Taylor expansion

F̃(x, δ) = F(x) +

l
∑

i=0

ūi δi + o(‖δ‖)

Here the coefficients

ūi ≡ ūi(x) ∈ Rm
≡

∂F(x, δ)

∂δi

∣

∣

∣

∣

δ=0
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are variously known as adjoints or impacts factors. They may be thought of
as partial derivatives of the end result ỹ with respect to the intermediates ui

for i = n . . . l and the independents uj−1 = xj for j = 1 . . . n. The latter form
clearly the Jacobian

F′(x) ≡
∂F(x)

∂x
≡

(

ū⊤
j−1

)

j=1...n
∈ Rm×n

Moreover, provided the m dependent variables do not directly depend on each
other so that j ≺ i ⇒ j ≤ l −m, we have

(

ū⊤
l−m+i

)

i=1...m
= I = (e⊤i )i=1...m,

which is used as initialization in the recursive procedures below.
For discretizations of ODEs or PDEs the perturbations δi may also be inter-

preted as discretization errors. Controlling them in view of the adjoints ūi by
mesh adaptions is called the dual weighted residual approach [4]. In that con-
text the ūi are usually computed by solving discretizations of the corresponding
adjoint ODE or PDE, which are always linear. Questions of the commutativity
of discretization and adjoining or at least consistency to a certain order have
been considered by Hager and Walther, for recent developments see [2].
When the perturbations are exclusively produced by rounding and there is

no exponent overflow, we may estimate the perturbations by |δi| ≤ |ṽi|eps,
with eps denoting the relative machine precision. Following Linnainmaa we
obtain from the triangle inequality the estimates

‖F̃(x, δ)− F(x)‖ .

l
∑

i=0

‖ūi‖|δi| . eps

l
∑

i=0

‖ūi‖|ui|

where we have replaced ũi by ui in the last approximate relation. This estimate
of the conditioning of the evaluation process was applied to matrix algorithms
in (Stu80) and [10]. It was also studied by Iri, whose results can be traced
backward from (ITH88). Koichi Kubota [9] developed and implemented a
strategy for adaptive multi-precision calculations based on the impact factors
ūi.

Jacobian accumulation

Now we turn to the aspect of Seppo Linnainmaa’s thesis that is most interesting
to us, namely the fact that he proposed what is now known as the reverse mode
for calculating the adjoint coefficients ūi.
Assuming that all elementary functions ϕi are continuously differentiable at

the current argument, we denote their partial derivatives by di j = ∂ϕi/ ∂uj ∈

R. These scalars di j are directly functions of ui and indirectly functions of the
vector of independents x.

The partial ordering ≺ allows us to interpret the variables ui as nodes of
a directed acyclical graph whose edges can be annotated by the elementary
partials di j . For the tiny example considered above this so-called Kantorovich
graph (see [3]) is depicted on the right-hand side of Figure 1. It is rather

Documenta Mathematica · Extra Volume ISMP (2012) 389–400



Who Invented the Reverse Mode of Differentiation? 395

important to understand that DAGs are not simply expression trees, but that
there may be diamonds and other semi-cycles connecting certain pairs of nodes
uj and ui. It is intuitively clear that the partial derivative of any dependent
variable yi ≡ vl−m+i with respect to any independent variable xj ≡ uj−1 is
equal to the sum over all products of partials di j belonging to edge disjoint
paths that connect the pair (xj ,yi) in the computational graph. The resulting
determinant-like expression is usually called Bauer’s formula ([3]). In the tiny
example above we obtain the two gradient components

∂u4/ ∂u0 = d4 2 d2 0+d4 3 d3 2 d2 0; ∂u4/ ∂u1 = d4 2 d2 1+d4 3 d3 2 d2 1+d4 3 d3 1

In general, the direct application of Bauer’s formula to accumulate complete
Jacobians involves an effort that is proportional to the length of an explicit al-
gebraic representation of the dependents y in terms of the independents x. As
this effort typically grows exponentially with respect to the depth of the compu-
tational graph, one can try to reduce it by identifying common subexpressions,
which occur even for our tiny example. Not surprisingly, absolutely minimizing
the operations count for Jacobian accumulation is NP hard (Nau06).
However, if the number m of dependents is much smaller than the num-

ber n of independents, Jacobians should be accumulated in the reverse mode
as already suggested by Linnainmaa. Namely, one can traverse the computa-
tional graph backward to compute the adjoint vectors ūi defined above by the
recurrence

ūj =
∑

i≻j

ūi di j ∈ Rm for j = l −m. . . 0

This relation says that the (linearized) impact of the intermediate or inde-
pendent variable uj on the end result y is given by the sum of the impact
factors over all successors {ui}i≻j weighted by the partials di j . Note that the
ūj are computed backward, starting from the terminal values ūl−m+i = ei for
i = 1 . . .m. For the tiny example depicted above, one would compute from
ū4 = 1 the adjoint intermediates

ū3 = 1 · d4 3; ū2 = 1 · d4 2 + ū3 d3 2; ū1 = ū2 d2 1 + ū3 d3 1; ū0 = ū2 d2 0

Note that there is a substantial reduction in the number of multiplications
compared to Bauer’s formula above and that the process proceeds backward,
i.e., here downward through the computational graph, which was drawn buttom
up for the evaluation itself. Since function evaluations are usually defined in
terms of predecessor sets {j : j ≺ i} rather than successor sets {i : i ≻ j}, the
accumulation of adjoints is usually performed in the incremental form

v̄i += ūi ∇ϕi(vi) ∈ Rm×ni for i = l . . . n

where ∇ϕi(vi) ≡ (di j)j≺i is a row vector and the matrices of adjoints v̄i ≡

(ūj)j≺i ∈ Rm×ni are assumed to be initialized to zero for i ≤ l −m. For the
tiny example above we obtain the statements

v̄4 += 1 · (d4 2, d4 3); v̄3 += ū3 (d3 1, d3 2); v̄2 += ū2 (d2 0, d2 1)
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where v̄4 ≡ (ū2, ū3), v̄3 ≡ (ū1, ū2) and v̄2 ≡ (ū0, ū1).

Temporal complexity

The mathematically equivalent incremental form shows very clearly that each
elemental function ui = ϕi(vi) spawns a corresponding adjoint operation v̄i +=
ūi ∇ϕi(vi). The cost of this operation scales linearly with respect to m, the
number of dependent variables. Hence, for a fixed library Φ there is a common
constant ω such that for all i

OPS{+= ūi ∇ϕi(vi)} ≤ mω OPS{ui = ϕi(vi)}.

Here OPS is some temporal measure of computational complexity, for example
the classical count of arithmetic operations. This implies for the composite
function F and its Jacobian that

OPS{F′(x)} ≤ mω OPS{F(x)}

The constant ω depends on the complexity measure OPS and the computing
platform. If one considers only polynomial operations and counts the number
of multiplications, the complexity ratio is exactly ω = 3. This is exemplified
by the computation of the determinant of a dense symmetric positive matrix
via a Cholesky factorization. Then the gradient is the adjugate, a multiple of
the transposed inverse, which can be calculated using exactly three times as
many multiplications as needed for computing the determinant itself.

The linear dependence on m cannot be avoided in general. To see this,
one only has to look at the trivial example F(x) = b sin(a⊤x) with constant
vectors b ∈ Rm and a ∈ Rn. Here the operations count for F is essentially
n+m multiplications and for F′(x) it is clearly nm multiplications so that for
the multiplicative complexity measure OPS{F′(x)} & 0.5m OPS{F(x)} provided
m ≤ n. Hence, the cheap gradient principle does not extend to a cheap Jacobian
principle. Note that this observation applies to any conceivable method of
computing F′(x) as an array of n×m usually distinct numbers.

The memory issue

For general F the actual runtime ratio between Jacobians and functions may
be significantly larger due to various overheads. In particular, it has been well
known since Benett [5] that executing the reverse loop in either incremental
or nonincremental form requires the recuperation of the intermediate values
ui in the opposite order to that in which they were generated initially by the
forward evaluation loop. The simplest way is to simply store all the interme-
diate values onto a large stack, which is accessed strictly in a first-in last-out
fashion. Speelpenning [12] depicted the sequential storage of all intermediate
operations as shown in Figure 2. This picture quite closely reflects the storage
in other AD-tools such as ADOL-C.
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Figure 2

Since we have to store some information for every single operation performed,
we obtain the spatial complexity

MEM{F′(x)} ∼ OPS{F(x)} & MEM{F(x)}

Note that this memory estimate applies to the vector and scalar cases m > 1
and m = 1 alike. Hence, from a memory point of view it is advantageous to
propagate several adjoints simultaneously backward, for example in an opti-
mization calculation with a handful of active constraints.
Originally, the memory usage was a big concern because memory size was

severely limited. Today the issue is more the delay caused by large data move-
ments from and to external storage devices, whose size seems almost unlimited.
As already suggested by Benett and Ostrowski et al. the memory can be re-
duced by orders of magnitude through an appropriate compromise between
storage and recomputation of intermediates, described as checkpointing in [7].
One possibility in a range of trade-offs is to realize a logarithmic increase for
both spatial and temporal complexity

MEM{F′(x)}

MEM{F(x)}
∼ log(OPS{F(x)}) ∼

OPS{F′(x)}

OPS{F(x)}m

Gradients and adjoint dynamics

Disregarding the storage issue we obtain, for the basic reverse mode for the
scalar case m = 1 with f(x) = F(x), the striking result that

OPS{∇f(x)} ≤ ω OPS{f(x)}

In other words, as Wolfe observed, gradients can ‘always’ be computed at a
small multiple of the cost of computing the underlying function, irrespective
of n the number of independent variables, which may be huge. Since m = 1,
we may also interpret the scalars ūi as Lagrange multipliers of the defining
relations ui − ϕi(vi) = 0 with respect to the single dependent y = ul viewed
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as objective function. This interpretation was used amongst others by the
oceanographer Thacker in (Tha91). It might be used to identify critical and
calm parts of an evaluation process, possibly suggesting certain simplifications,
e.g., the local coarsening of meshes.
As discussed in the prologue, the cheapness of gradients is of great importance

for nonlinear optimization, but still not widely understood, except in the time
dependent context. There we may have, on the unit time interval 0 ≤ t ≤ 1,
the primal dual pair of evolutions

u̇(t) ≡ ∂u(t)/∂t = F(u(t)) with u(0) = x,

˙̄u(t) ≡ ∂ū(t)/∂t = F′(u(t))⊤ū(t) with ū(1) = ∇f(u(1))

Here the state u belongs to some Euclidean or Banach space and ū to its topo-
logical dual. Correspondingly, the right-hand side F(u) and its dual F′(u)⊤ū
may be strictly algebraic or involve differential operators.
Then it has been well understood since Pontryagin that the gradient of a

function y = f(u(1)) with respect to the initial point x is given by ū(0). It can
be computed at maximally ω = 2 times the computational effort of the forward
calculation of u(t) by additionally integrating the second, linear evolution equa-
tion backward. In the simplest mode without checkpointing this requires the
storage of the full trajectory u(t), unless the right-hand side F is largely linear.
Also for each t the adjoint states ū(t) represent the sensitivity of the final value
y = f with respect to perturbations of the primal state u(t). Of course, the
same observations apply to appropriate discretizations, which implies again the
proportionality between the operations count of the forward sweep and mem-
ory need of the reverse sweep for the gradient calculation. To avoid the full
trajectory storage one may keep only selected checkpoints during the forward
sweep as mentioned above and then recuperate the primal trajectory in pieces
on the way back, when the primal states are actually needed.
In some sense the reverse mode is just a discrete analogue of the extremum

principle going back to Pontryagin. Naturally, the discretizations of dynamical
systems have more structure than our general evaluation loop described on
page 4, but the key characteristics of the reverse mode are the same.

Summary and outlook

The author would have hoped that the cheap gradient principle and other
implications of the reverse mode regarding the complexity of derivative cal-
culations were more widely understood and appreciated. However, as far as
smooth optimization is concerned most algorithm designers have always as-
sumed that gradients are available, notwithstanding a very substantial effort
in derivative-free optimization over the last couple of decades.
Now, within modeling environments such as AMPL and GAMS, even second

derivatives are conveniently available, though one hears occasionally complaints
about rather significant runtime costs. That is no surprise since we have seen
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that without sparsity, complete Jacobians and Hessians may be an order of
magnitude more expensive than functions and gradients, and otherwise, one
finds that the evaluation of sparse derivatives may entail a significant interpre-
tative overhead.
Further progress on the reverse mode can be expected mainly from the de-

velopment of an adjoint calculus in suitable functional analytical settings. So
far there seems to be little prospect of a generalization to nonsmooth problems
in a finite dimensional setting. The capability to quantify the rounding error
propagation and thus measure the conditioning of numerical algorithms, which
played a central role in the evolution of the reverse mode, awaits further ap-
plication. In contrast, checkpointing or windowing as it is sometimes called in
the PDE community, is being used more and more to make the reverse mode
applicable to really large problems.
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Gordon Moore and His Law:

Numerical Methods to the Rescue

Raúl Rojas

Abstract. In this chapter we review the protracted history of
“Moore’s Law”, that is, the expected doubling of the number of tran-
sistors in semiconductor chips every 18 months. Such an exponential
increase has been possible due to steady improvements in optical imag-
ing methods. The wavelength of light used for photolithography has
been reduced every decade, but it is reaching tough limits. Mathe-
matical methods capable of simulating optical systems and their inter-
ference properties play now a significant role in semiconductor design
and have kept Moore’s Law alive for at least the last ten years. As
we show, advances in semiconductor integration and numerical opti-
mization methods act synergistically.

2010 Mathematics Subject Classification: 00A69, 01A61
Keywords and Phrases: Fourier optics, photolithography, Moore’s
law, numerical simulation

1 Introduction

The number of transistors in a modern chip doubles every 18 months : this is
the most common mentioned variation of Moore’s Law. Actually, what Gordon
Moore postulated in 1965 was an annual doubling of electronic components
in semiconductor chips. He was talking about resistances, capacitors, and,
of course, logic elements such as transistors [10]. In his now famous paper
he compared different manufacturing technologies at their respective life-cycle
peaks, that is, when they reached minimal production cost. Fig. 1 is the
famous graph from Moore’s paper. Notice that he extrapolated future growth
based on just a few empirical points.
Moore corrected his prediction ten years later, when, looking back to the

previous decade, he modified his prediction to a doubling of electronic compo-
nents every 24 months: “The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year” [11]. Finally, the com-
munity of semiconductor experts settled somehow on a doubling period of 18
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402 Raúl Rojas

Figure 1: The extrapolated growth curve from Moore’s paper of 1965 [10].
Originally Gordon Moore proposed a doubling of components on a chip every
12 months.

months (referring now just to transistors on a chip), which is the modern ver-
sion of Moore’s Law [4]. This prediction has proved very resilient and has been
applied to memory chips, microprocessors, and other components, so that we
are really faced with a “family” of Laws, all postulating an exponential increase
in the number of components per chip (see Fig. 2).

Although more and more transistors can be integrated on a chip every year,
and a specific mix of technologies has been responsible for this achievement
(for example by designing three-dimensional semiconductor structures [12]),
the width of the smallest structures that can be “engraved” on a chip is still
the most important parameter in the semiconductor industry. We then talk
about chips built with 200 nm, or 100 nm, or even 22 nm technologies. What
we mean by this is that photolithographic methods can project small details of
that width on layer after layer of semiconductors. The desired two-dimensional
logical components are projected on the silicon wafer using a mask and light.
Chemicals are used to dissolve, or preserve, the portions of the wafer exposed
to light. This so-called photolithography allows engineers to build a chip step
by step, like a sandwich of materials and interconnections. The whole process
resembles the old photographic methods where an image was produced by
exposing the substrate to light, and then chemicals were applied in order to
obtain the finished picture. Such projection-processing steps are repeated for
different layout masks until a memory chip or microprocessor is packaged.

The problem with optical lithography is that it requires high-quality and
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Figure 2: The modern Moore’s law interpolated from the transistor count of
popular microprocessors (illustration from Wikipedia)

extremely accurate lenses. It is also hampered by the wavelength of the light
used for projecting the masks. The width of the current smallest structures
projected on commercial chips (22 nm) is already much smaller than the wave-
length of the exposure light. For example, for structures of 22nm width a laser
of 193nm wavelength can be used. That is almost a factor eight larger than
the details size! It is like writing thin lines using a pencil with a tip eight
times wider than the lines. It is no wonder that the demise of Moore’s Law
has been postulated again and again, in view of the physical limits that optical
lithography seems to be reaching. However, the death of optical lithography
has been greatly exaggerated, as Mark Twain would say, and mathematical
methods play an important role in the longevity and endurance of the law.
In fact, physicists and engineers have found new techniques for exploiting the
interference and wave properties of light in order to produce sharp image de-
tails. Now, before a chip is manufactured, extensive optical simulations of the
complete imaging process are run on powerful computers. Moore’s Law would
have stopped being valid a long time ago, were it not for the numerical methods
being used today. Thousands and thousands of CPU hours go into the design
and optimization of the lithography masks. The whole process is now called
“computer lithography”.
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2 Interference properties of light

The optical imaging difficulties stem from the wave properties of light. In
Newton’s time there was an intensive discussion about the nature of light.
Newton thought that light consists of corpuscles which are so small that they
do not make contact. They behaved otherwise as bodies possessing a certain
small mass and even a form. Curiously, it was Einstein who in 1905 vindicated
Newton, to a certain extent, when he explained the photoelectric effect as
interaction of materials with photons behaving as particles.

But it was the wave theory of light which gained prominence due mostly to
the work of the Dutch scientist Christiaan Huygens. He could explain phe-
nomena such as reflection, diffraction and refraction of light in a unified way,
making use of what we now call “Huygens principle”. Huygens worked out
this rule in 1690 in his “Traité de la lumière‘”, postulating that every point
in a wave front can be conceived, and can be treated, computationally, as the
source of a new secondary wave. The interference of the phases of the many
point sources produces the observed expansion of the wave front. Fig. 3 shows
an illustration from Huygens’ book, where we can see points along a spherical
wave acting as the source of new secondary spherical waves.

Light is electromagnetic radiation and each wave can interfere with another.
Each wave has a phase (like in a sine curve) and two waves can interfere con-
structively or destructively. Two waves from a coherent source displaced by
half a wavelength can “erase” each other. Adding up secondary waves cor-
responds to computing every possible interference. Mathematically, all this
summing up of secondary waves is equivalent to computing the expected tra-

Figure 3: Huygens principle as illustrated in Traité de la Lumière (1690). Each
point on a spherical wave is a source for secondary waves. Their interference
produces the further progress of the wave front.
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jectory of photons going in all possible directions, with changing phases along
their trajectory.
Diffraction produced by small slits is especially important in photolithogra-

phy. Light “bends” around obstacles and the smaller the slit, the larger the
effect. Photolithographic masks with millions of details can be thought of as
millions of small slits and the diffracted light has to be captured by lenses in
order to reconstruct the image through controlled refraction. No image fre-
quencies should get lost in the process.

3 The Rayleigh limit and the “Moore gap”

The layout of modern chips looks like a picture of a city, with millions of
“streets” connecting millions of components. The chip components must be
projected as tiny as possible on the wafer substrate. Smaller elements mean
smaller connections and smaller details. The question then is whether opti-
cal lithography can still provide the sharp resolution needed (at some point
the industry could shift to electron lithography and use electrons as imaging
source, for example). Photolithography is the inverse problem to microscopy:
in the latter we want to see the smallest details, in the first we want to recreate
them by projection. In both cases expensive and accurate systems of lenses
are needed. Fig. 4 shows an example of the tower of lenses needed in today’s
optical lithography. Projection errors, such as chromatic or spherical aberra-
tions, are corrected by the stack of lenses, each of them contributing one small
modification to the final light trajectory. Such lens systems are heavy and very
expensive.
Two factors are relevant when considering the optical resolution of lenses:

the size of the smallest details which can be seen through the system and the
depth of focus of the projection (since the chips are planar and the details
have to be focused precisely on the surface of the chip). In optics there is an
expression for the resolution limit called the Rayleigh limit. This is expressed
as

d = k
λ

NA

where λ is the wavelength of the exposure light, NA the so called numerical
aperture, and k a constant related to the production process. For lithography,
d is the width of the smallest structures that can be brought into focus. If we
want to reduce d, we must increase NA or use a smaller wavelength. In the
previous decades it was cheaper to move to progressively smaller wavelengths.
Now, economics dictates that wavelength reductions are coupled to much higher
costs, so that instead of moving to 157 nm exposure wavelength, for example,
the industry is still working with the 193 nm alternative. Therefore, NA and
k must be optimized. In both cases we have been stretching the limits of the
technology for several years now.
Rayleigh’s optical resolution limit arises from the interplay of the refracted

light waves. Interference effects conspire to wash out the resolution of the
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Figure 4: Diagram from a patent application for lithography lenses. The light
traverses the system of lenses from left to right. The stack of lenses is positioned
vertically in the lithography machine [5].

image when the details are of the same order of magnitude as the wavelength
of the light being used. In the past, lithographic equipment had just progressed
from one wavelength to the next. The industry moved from light from mercury
lamps and 436 nm wavelength, to 365 nm (the i-line of mercury lamps), then
further to 248 nm (KrF laser), and down to today’s 193 nm wavelength (Argon-
Fluoride). Also, now lasers, not just lamps, are being used, that is, coherent
light sources, allowing a more precise control of the projected shapes. The next
step would be moving to Extreme Ultraviolet lithography (EUV) with 13.5 nm
wavelength, or still further to X-rays of smaller wavelength. However EUV light
is absorbed in the air and the optics, so that the whole process would have to
take place in vacuum and employ special lenses combined with mirrors. Glass,
for example, is opaque to X-rays, so that no affordable projection systems exist
for both kinds of electromagnetic radiation.
Fig. 5 is very interesting in this respect because it shows the gap between the

growth trend of Moore’s law and the integration effect of smaller wavelengths
[9]. The vertical scale is logarithmic, so that Moore’s law appears as a linear
increase. The effects of improvements in wavelength have not kept pace with
Moore’s law, so that something different has to be made: instead of just re-
ducing the laser wavelength, the production process must be modified, so that
smaller structures can be imaged by means of the same exposure wavelength.
Here is where improvements in the optics and tools require numerical methods.
Moore’s gap is mathematics’ opportunity.

4 Immersion-lithography increases the numerical aperture

One production improvement which gave 193 nm lasers an edge over 157 nm
lasers is immersion lithography, now almost universally used. Light is focused
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Figure 5: The “Moore gap”. The growth in the number of components (pro-
portional to the so-called amount of information) surpasses the growth of wave-
length lithographic improvements alone [9]. The gap must be closed using novel
techniques.

using lenses but some image frequencies are lost at the interface air-glass-air.
Remember that the image produced by a spherical lens at the focal plane can be
interpreted as a Fourier decomposition of the image. Lower image frequencies
are collected near the optical axis, higher frequencies toward the periphery of
the lenses. Some of the frequencies, lost due to the finite size of the lenses,
can be kept in the system by moving from a glass-air interface to a glass-water
interface. Water has almost the same refraction index as glass (1.44 against
1.5–1.6 for light of 193 nm wavelength). That limits the reflections on the lens
surface (internal and external). Fig. 6 shows the trajectory of exposure light
in both cases, with a glass-air or a glass-water interface at the wafer. The
semiconductor is immersed in water; the water layer between the glass and
silicon serves the purpose of capturing the high image frequencies so that the
projection is sharper. Immersion lithography can be done with light of 193 nm
wavelength but at 157 nm water becomes opaque and cannot be used as shown
in Fig. 6. Obviously, introducing water between the lenses and the wafer leads
to all kinds of manufacturing problems, but they were quickly sorted out so
that the semiconductor industry moved to the new technology in just two years
(between 2002 and 2003). Water is also not the last word: better liquids are
being sought and could lead to further improvements of the optical process [14].

As Fig. 6 shows, immersion lithography improves mainly the so-called nu-
merical aperture (NA) in Rayleigh’s limit expression. The numerical aperture
is directly proportional to the refraction index between the lenses and the wafer.
NA is also directly proportional to the sine of the maximum projection angle
(the angle between the vertical and the rightmost ray in Fig. 6). Since the
projection angle cannot be larger than 90 degrees (whose sine is 1), further
improvements of NA are limited by the geometrical constraints. This parame-
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Figure 6: Immersion lithography is used on the right side, there is a glass-air
interface on the left side. Undesired reflections at the glass-air interface (left)
lead to poor resolution due to the loss of high image frequencies. Adapted from
[13].

ter has already given most of what it can provide – alternative optimizations
become indispensable.

5 Enter computer lithography

We are left with the constant k in the Rayleigh expression. Numerical methods
and computers can contribute now. It is ironic that Moore’s Law has led to
the fast processors we have now on every desktop, but that the law itself is
now dependent on these very same computers in order to continue being valid.
Here we have a truly positive feedback system, where synergy between two
seemingly separate fields can lead to exponential improvements in each one.

The idea of computer lithography is easy to explain using an example. Since
light is diffracted by the structures on the projections masks for chips, what we
can do is calculate in advance the effect of interference and modify the shape
etched on the mask, so that we obtain the desired sharp image projection.
That is, the mask is morphed in such a way that the diffraction, especially at
corners, is taken into account from the beginning. Instead of trying to avoid
interference, apply it, and make sure that constructive interference happens
where you need it, while destructive interference erases undesired “shadows”.

An embodiment of this idea is “optical proximity correction” (OPC). Con-
nections with sharp corners can be obtained by adding “serifs” to the mask
pattern. Fig. 7 shows an example. We want to obtain a structure shaped like
an inverted L. The mask used has the wiggled form shown (in green) which
looks like an L with some embellishments at the corners (the serifs). The imag-
ing result is the somewhat rounded L, which is not perfect, but comes very near
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Figure 7: An example of Optical Proximity Correction. The green mask
produces the red structure after photolithographic imaging (illustration from
Wikipedia).

to the desired inverted L shape. The effect of the serifs is to produce the re-
quired interference. In order to produce such effects some rules of thumb or
heuristics can be followed, but a really good result can only be obtained by
simulating the outcome of Huygen’s principle in advance.

6 Phase-shift masks and double patterning

It is also possible to manipulate directly the phase of the projected light. In
order to do this, the mask has to be manufactured with materials that produce
the phase-shift, or it can be manufactured with varying material thickness. A
small step protuberance can be embedded in the mask with the only purpose
of shifting the phase of the light going through each side of the step. Light
waves coming from both step sides interfere then in controllable way. Fig. 8
shows an example. On the right, a mask with a small phase-shifting step has
been exposed to a laser. Light going through the mask emerges with different
phases on each side of the small step. The final illumination intensity produced
by interference is such that total destructive interference can be obtained in
the middle of the detail. On the left you can see what happens when no phase-
shifting is used and the mask detail is smaller than the wavelength of the light
used: the light bends around the obstacle and the detail almost disappears
in the resulting low-contrast exposure: The wafer is being illuminated with
almost the same intensity everywhere. On the right, on the contrary, a small
detail of almost any width can be produced by adjusting the threshold of the
photochemical reaction (that is, exposure to how many photons dissolves the
material or not). The optical problem becomes manageable and the problem
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Figure 8: Without phase-shift, a mask produces the illumination shape shown
on the left. The small detail in the middle is not projected with enough contrast
on the wafer. A phase-shift mask (right side) uses a small step which shifts the
phase of the incoming light. The interference effect is such that a sharp edge
with high contrast is produced. Adjusting the illumination threshold a bar
with any possible small width can thus be imaged on the wafer, theoretically.

is now to find the materials with the right photochemical properties for the
obtained imaging contrast [3].

The design problem for the photolithography masks becomes now compli-
cated. Phase-shifted masks represent the state of the art in the semiconductor
industry. However, if phase-shifting is used everywhere in the mask, we are left
with a combinatorial problem. The phase-shifting steps have to be distributed
across the mask, using just two different mask levels. Special software must
keep track of the areas where phase-shifting has occurred. Therefore, the lay-
out of the mask must be planned very carefully. Usually, multiple masks are
designed and the exposure steps are combined, leading to multiple exposures.
Especially thin details can be produced by so-called double patterning [8], in
which thin parallel connections are handled by exposing first the even numbered
lines, and then the odd numbered ones (if you think of such parallel connec-
tions as having been numbered sequentially). The number of lithographic steps
increases, and sometimes auxiliary structures become necessary, which have to
be dissolved later (think of scaffolding during construction work). There are
two main methods for integrating and dissolving the auxiliary structures, called
respectively LELE und LFLE (for Lithography-Etch and Lithography-Freeze,
and their combinations).

7 Structured light and quantum lithography

There is still another technique used to increase the captured high frequency
components in the projected image. The idea is to use “structured light” when
illuminating the photomask. This is an old proposal that was first applied to
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Figure 9: Iris shapes for modern photolithography

microscopy, and which consists in illuminating not along the optical axis of
the lenses but from the side. The same effect can be achieved if the light is
first passed through an “iris”, that is, an opening with a certain shape. The
idea is to diffract the exposure light so that customized wavefronts reach the
optics, that is, wavefronts capable of preserving more detail from the mask.
Fig. 9 shows four examples of the type of irises used in photolithography for
projecting light “structured” in such a way as to preserve more high-frequency
details of the mask.

Quantum lithography is also a novel idea that would allow having access
to smaller effective wavelengths without having to change the optical system.
It consists of producing entangled photons so that they behave like a single
quantum mechanical system. It is then possible to produce virtual particles
with twice or thrice the energy of the original single photons. The virtual
wavelength is reduced by a factor of two or three, as if we were using light
of smaller wavelength. However, each particle can still be focused with the
same kind of lenses as we have now, so that the problem of glass opacity at
higher energies does not arise. The materials on the chip must be exposed
in such a way that two or three photons are needed to produce the necessary
photochemical reaction. It sounds like a good idea for the future, but low
temperatures and very accurate equipment are needed, so that more research
is still needed if quantum photolithography is ever to become reality.

8 Koomey’s law and the power problem

A negative effect of Moore’s law is the increase in heat released pro square mil-
limeter in every chip. Microprocessors can become so hot, that enormous heat
exchangers or water cooling becomes necessary. In 2009, Jonathan Koomey
studied the historical development of the energy efficiency of computers and
came to the conclusion that another power law is here at work. It is interest-
ing that Koomey included in his analysis not just modern microprocessors but
also very old machines, trying to find out how much energy has been used per
computation in every historical period.

What Koomey found is that the number of operations per kWh follows the
following rule: The number of logical operations that one can obtain for a watt-

hour doubles every 18 months [6]. This rule of thumb is now called “Koomey’s
Law”. If we would consume the same number of operations per second every
year, the battery in new laptops would last twice as long as before. We know,
however, that new software executes more operations per second so that the
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annual battery life gains are certainly lower. However, without Kommey’s law
many mobile applications would not be possible today.
Koomeys law, as first postulated, refers to the number of operations per

second. That is not a good metric for comparing microprocessors since some
processors can work with simpler instructions as others. Mobile processors, for
example, are usually simpler than desktop computers. A better metric is to
use the benchmarks produced by the Standard Performance Evaluation Corpo-

ration (SPEC), an organization whose mission is to provide a set of executable
programs which represents real workloads for computer systems. The SPEC
benchmarks compare execution times of realistic workloads and allow users to
determine whether a processor is really faster than another.
In 2008, the SPEC organization released a new set of benchmarks for mea-

suring the energy consumed by computer systems while executing typical work-
loads (graphic operations, data bank accesses, and so on). The SPEC Power
Benchmarks are a basket of executable programs tested under three different
conditions (10%, 20% and 100% processor load). The idea is to test whether
a processor which is working only at 10% capacity is maybe consuming 50% of
the peak energy, for example. At the end, the SPEC Power benchmark shows
how much processing the processor can deliver and at what energy cost (energy
is measured by plugging the computer to appropriate measuring instruments).

There were 280 reports in the database of the SPEC organization in 2011.
Fig. 10 shows the result of plotting this data. The vertical axis shows the
SPEC-index (operations for kWh) for every processor and the horizontal axis
the introduction year for the processors tested. The line represents the trend
of all these measurements.
The graph shows that the operations per Watt have increased continually

since 2007 (with a large spread). There are some very efficient processors,
i.e., those near the 4500 SPEC power index, and some others which are cer-
tainly rather power hungry. The trend in the graph corresponds very closely
to Koomey’s law though. The SPEC power data shows a doubling of energetic
efficiency every 18.8 months, very close to the expected doubling postulated by
Koomey. In a certain sense, this law is a complement to Moore’s law since not
only more transistors per chip are important, but less energy for every logical
computation makes many new applications possible.

9 The limits of photolithography

This short review of photolithographic “tricks of the trade” shows that the
semiconductor industry has been extremely innovative every time it seems as
if the physical limits of the production methods are about to be reached. Mod-
ern lithography must be described now using many adjectives: what we have
is phase-shifted-double-patterning immersion lithography, based on resolution
enhanced technologies (RET), such as Optical proximity correction and struc-
tured light. The whole process has to be extensively optimized and tested using
computer simulations [12].
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Figure 10: SPEC-Power results (December 2007 to December 2011). Each
point corresponds to a processor and the date of the SPEC test. Some pro-
cessors were tested after their introduction date, producing thus a significant
spread of the data.

Photolithography will be further enhanced by using new materials whose
photochemical properties can be tuned to the number of photons captured
by the material. Low optical contrast can be enhanced using longer imaging
periods, so as to be able to produce smaller and smaller structures. Some
physicists are now of the opinion that there are no physical limits for optical
lithography [1].
Moore’s law could however hit a wall of a different nature: heat production

in modern chips is already a problem, as Moore predicted in 1965 (notwith-
standing Koomey’s law), but more important than that is the fact that 22nm
structures contain just around 220 atoms. If we reduce the number of atoms
in transistors and connections, it could be that we start seeing uncontrollable
non-linear effects. Fortunately, the physical limit seems to be still far away,
having been reported recently that nanoconnectors with just four atoms still
obey Ohm’s law [2].
Therefore, the most important obstacle in the horizon seems to be of eco-

nomic nature. EUV lithography has been postponed due to the enormous costs
of the equipment. All new semiconductor factories are ultramodern buildings
where hundreds or thousands o production steps must be planned and per-
formed exactly. Intel’s newest semiconductor fab is totally robotized and cost
billions of dollars.
Physicists are already looking for alternatives, for a new age in which two-

dimensional structures will not be enough. Moore’s Law could get more oxygen
– the production methods and materials used for semiconductors will then
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change radically within the next twenty years. But one thing is sure: numerical
methods and simulation will be even more important in that future. Moore’s
Law has made numerical methods faster and more powerful, but numerical
methods keep now Moore’s law alive.
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More Optimization Stories

I have claimed in this book several times that optimization is around every-
where in nature and in all kinds of human endeavor. It is therefore impossible
to cover in a book like this one all aspects of optimization. This final section
serves as a pointer to further areas that have close connections to optimization
but can only be treated peripherally.
Voronoi diagrams and Delaunay triangulations are examples of structures

that can be defined by concepts of optimization theory. Today these are often
considered as objects of computational geometry and play an important role in
algorithm design. It is amazing to see how many other disciplines have arrived
at these concepts from quite different initial questions.
Optimization is a field that employs ideas from many areas of mathematics.

It is sometimes really surprising to see that results that may be viewed by some
“hard core optimizers” as “esoteric pure mathematics” have significant bearing
on optimization technology. One such example is Hilbert’s 17th problem that
plays an important role in the representation of sets of feasible solutions by
polynomials.
Optimization methods are also important tools in proofs. The correctness of

a claim may depend on a large number of runs of optimization algorithms. Can
we trust these results? A prime example is the proof of the Kepler conjecture
that, in fact, gives rise to philosophical questions about mathematical proofs
relying on computer runs.
The last two articles in this section build a bridge to economics. Optimizers

usually assume that one objective function is given; but in reality there are often
more goals that one wants to achieve – if possible simultaneously. Economists
were the first to consider such issues and to formulate concepts of multi-criteria
(or multi-objective) optimization.
The final article of this book touches upon several aspects not treated else-

where in this book. One is stochastic optimization where optimization problems
are considered for which information about a problem to be solved is partially
unknown or insecure, or where only certain probabilities or distributions are
known. The article starts with a game and “expected payoff”, introduces util-
ity functions (instead of objective functions) and ends with highly complex
optimization questions in financial mathematics.
The relation of optimization with economics and management science is (for

space reasons) underrepresented in this book. That is why I finish here with a
few words about it.
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Mathematicians have, for a long time, struggled mainly with the character-
ization of the solution set of equations. Economists have always considered
questions such as the efficient allocation of scarce resources. The mathemati-
cal description of sets defined via the possible combination of resources under
scarcity constraints naturally needs inequality constraints. That is one rea-
son why the initial development of optimization in the middle of the twenti-
eth century was strongly influenced by economists; and influential economists
promoted the mathematical optimization approach to deal with such issues.
Around the same time, game theory was developed (that should have also
been treated in this book). The outstanding book by J. von Neumann and O.
Morgenstern had a significant impact. The relations between questions and so-
lution concepts in game theory to linear, nonlinear, and integer programming
were worked out, and mutual significant influence became visible. The im-
portance of linear programming for economics was recognized by the award of
Nobel Prizes in Economic Sciences to L. V. Kantorovich and T. C. Koopmans
in 1975. Several further Nobel Prizes recognizing contributions to game theory,
auction theory, mechanism design theory and financial mathematics followed.
All these areas have close connections to optimization.
Science is carried out to increase our understanding of the world and to use

the information obtained to improve our well-being. I view the development of
optimization theory and of its algorithmic methods as one of the most impor-
tant contributions of mathematics to society in the 20th century. Today, for
almost every good on the market and almost every service offered, some form of
optimization has played a role in their production. This is not too well-known
by the general public, and we optimizers should make attempts to make the
importance of our field for all aspects of life more visible. History stories such
as the ones presented in this book may help to generate attention and interest
in our work.

Martin Grötschel
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Voronoi Diagrams and Delaunay Triangulations:

Ubiquitous Siamese Twins

Thomas M. Liebling and Lionel Pournin
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90C99, 70-08, 82-08, 92-08
Keywords and Phrases: Voronoi, Delaunay, tesselations, triangulations,
flip-graphs

1 Introduction

Concealing their rich structure behind apparent simplicity, Voronoi diagrams
and their dual Siamese twins, the Delaunay triangulations constitute remark-
ably powerful and ubiquitous concepts well beyond the realm of mathematics.
This may be why they have been discovered and rediscovered time and again.
They were already present in fields as diverse as astronomy and crystallography
centuries before the birth of the two Russian mathematicians whose names they
carry. In more recent times, they have become cornerstones of modern disci-
plines such as discrete and computational geometry, algorithm design, scientific
computing, and optimization.
To fix ideas, let us define their most familiar manifestations (in the Euclidean

plane) before proceeding to a sketch of their history, main properties, and
applications, including a glimpse at some of the actors involved.
A Voronoi diagram induced by a finite set A of sites is a decomposition of

the plane into possibly unbounded (convex) polygons called Voronoi regions,
each consisting of those points at least as close to some particular site as to the
others.
The dual Delaunay triangulation associated to the same set A of sites is ob-

tained by drawing a triangle edge between every pair of sites whose correspond-
ing Voronoi regions are themselves adjacent along an edge. Boris Delaunay has
equivalently characterized these triangulations via the empty circle property,
whereby a triangulation of a set of sites is Delaunay iff the circumcircle of none
of its triangles contains sites in its interior.
These definitions are straightforwardly generalizable to three and higher di-

mensions.
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Figure 1: From left to right: Johannes Kepler, René Descartes, Carl Friedrich
Gauss, Johann Peter Gustav Lejeune Dirichlet, John Snow, Edmond Laguerre,
Georgy Feodosevich Voronoi, and Boris Nikolaevich Delone. The first seven
pictures have fallen in the public domain, and the last one was kindly provided
by Nikolai Dolbilin.

One may wonder what Voronoi and Delaunay tessellations have to do in this
optimization histories book. For one they are themselves solutions of optimiza-
tion problems. More specifically, for some set of sites A, the associated Delau-
nay triangulations are made up of the closest to equilateral triangles; they are
also the roundest in that that they maximize the sum of radii of inscribed circles
to their triangles. Moreover, they provide the means to describe fascinating
energy optimization problems that nature itself solves [37, 18]. Furthermore
Voronoi diagrams are tools for solving optimal facility location problems or
finding the k-nearest and farthest neighbors. Delaunay triangulations are used
to find the minimum Euclidean spanning tree of A, the smallest circle enclos-
ing the set, and the two closest points in it. Algorithms to construct Voronoi
diagrams and Delaunay triangulations are intimately linked to optimization
methods, like the greedy algorithm, flipping and pivoting, divide and conquer
[31]. Furthermore the main data structures to implement geometric algorithms
were created in conjunction with those for Voronoi and Delaunay tessellations.
Excellent sources on the notions of Voronoi diagrams and Delaunay triangu-

lations, their history, applications, and generalizations are [12, 2, 3, 28].

2 A glance at the past

The oldest documented trace of Voronoi diagrams goes back to two giants of
the Renaissance: Johannes Kepler (1571 Weil der Stadt – 1630 Regensburg)
and René Descartes (1596 La Haye en Touraine, now Descartes – 1650 Stock-
holm). The latter used them to verify that the distribution of matter in the
universe forms vortices centered at fixed stars (his Voronoi diagram’s sites), see
figure 2 [9]. Several decades earlier, Kepler had also introduced Voronoi and
Delaunay tessellations generated by integer lattices while studying the shapes
of snowflakes and the densest sphere packing problem (that also led to his fa-
mous conjecture). Two centuries later, the British physician John Snow (1813
York – 1858 London) once more came up with Voronoi diagrams in yet a totally
different context. During the 1854 London cholera outbreak, he superposed the
map of cholera cases and the Voronoi diagram induced by the sites of the water
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Figure 2: Left: a Voronoi diagram drawn by René Descartes [9], and its recalcu-
lation displaying yellow Voronoi regions, with the dual Delaunay triangulation
in blue. Right: The Voronoi region centered on Broad Street pump, sketched
by John Snow [33] using a dotted line.

pumps, see figure 2 [33], thereby identifying the infected pump, thus proving
that Voronoi diagrams can even save lives. His diagram is referred to in [26] as
the most famous 19th century disease map and Snow as the father of modern
epidemiology.
Around the time when John Snow was helping to fight the London cholera

epidemic, the eminent mathematician Johann Peter Gustav Lejeune Dirichlet
(1805 Düren – 1859 Göttingen) was in Berlin, producing some of his seminal
work on quadratic forms. Following earlier ideas by Kepler (see above) and Carl
Friedrich Gauss (1777 Braunschweig -1855 Göttingen), he considered Voronoi
partitions of space induced by integer lattice points as sites [10]. Therefore, to
this day, Voronoi diagrams are also called Dirichlet tesselations. Thirty years
later, Georges Voronoi (1868 Zhuravky – 1908 Zhuravky) extended Dirichlet’s
study of quadratic forms and the corresponding tessellations to higher dimen-
sions [34]. In the same paper, he also studied the associated dual tessellations
that were to be called Delaunay triangulations. Voronoi’s results appeared in
Crelle’s journal in 1908, the year of his untimely death at the age of 40. He
had been a student of Markov in Saint Petersburg, and spent most of his ca-
reer at the University of Warsaw where he had become a professor even before
completing his PhD thesis. It was there that young Boris Delone – Russian
spelling of the original and usual French Delaunay – (1890 Saint Petersburg
– 1980 Moscow) got introduced to his father’s colleague Voronoi. The latter
made a lasting impression on the teenager, profoundly influencing his subse-
quent work [11]. This may have prompted the Mathematical Genealogy Project

[25] to incorrectly list Voronoi as Delone’s PhD thesis advisor just as they did
with Euler and his “student” Lagrange. Actually, Lagrange never obtained a
PhD, whereas Delone probably started to work on his thesis, but definitely
defended it well after Voronoi’s death. Delone generalized Voronoi diagrams
and their duals to the case of irregularly placed sites in d-dimensional space.
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He published these results in a paper written in French [7], which he signed
Delaunay. During his long life spanning nearly a whole century, he was not only
celebrated as a brilliant mathematician, but also as one of Russia’s foremost
mountain climbers. Indeed, aside from his triangulations, one of the highest
peaks (4300m) in the Siberian Altai was named after him too. For a detailed
account of Boris Delaunay’s life, readers are referred to the beautiful biography
written by Nikolai Dolbilin [11]. Delaunay’s characterization of his triangula-
tions via empty circles, respectively empty spheres in higher dimensions later
turned out to be an essential ingredient of the efficient construction of these
structures (see in section 4 below).
At least half a dozen further discoveries of Voronoi diagrams in such miscel-

laneous fields as gold mining, crystallography, metallurgy, or meteorology are
recorded in [28]. Oddly, some of these seemingly independent rediscoveries ac-
tually took place within the same fields of application. In 1933, Eugene Wigner
(1902 Budapest – 1995 Princeton) and Frederick Seitz (1911 San Francisco –
2008 New York City) introduced Voronoi diagrams induced by the atoms of a
metallic crystal [36]. Previously Paul Niggli (1888 Zofingen - 1953 Zürich) [27]
and Delaunay [6] had studied similar arrangements and classified the associated
polyhedra. To this day, physicists indifferently call the cells of such Voronoi
diagrams Wigner-Seitz zones, Dirichlet zones, or domains of action.

It should be underlined that, over the last decades, Voronoi diagrams and De-
launay triangulations have also made their appearance in the fields of scientific
computing and computational geometry where they play a central role. In par-
ticular, they are increasingly applied for geometric modeling [4, 24, 1, 32] and
as important ingredients of numerical methods for solving partial differential
equations.

3 Generalizations and applications

As described by Aurenhammer [3], ordinary Voronoi diagrams can be inter-
preted as resulting from a crystal growth process as follows: “From several
sites fixed in space, crystals start growing at the same rate in all directions and
without pushing apart but stopping growth as they come into contact. The
crystal emerging from each site in this process is the region of space closer to
that site than to all others.”
A generalization in which crystals do not all start their growth simultaneously

was proposed independently by Kolmogorov in 1937 and Johnson and Mehl in
1939 [20]. In the planar case, this gives rise to hyperbolic region boundaries.
On the other hand, if the growth processes start simultaneously but progress

at different rates, they yield the so-called Apollonius tessellations, with spheri-
cal region boundaries, resp. circular in the plane. These patterns can actually
be observed in soap foams [35]. Apollonius tesselations are in fact multiplica-
tively weighted Voronoi diagrams in which weights associated to each site mul-
tiply the corresponding distances.
These types of Voronoi diagram patterns are also formed by mycelia as they
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Figure 3: Simulated hyphal growth. Left: Initially ten numerical spores us-
ing self-avoidance grow and occupy the surrounding two-dimensional medium,
defining a Voronoi diagram. Right: Hyphal wall growth model using piecewise
flat surfaces and Voronoi diagrams thereon.

evolve from single spores and compete for territory (see figure 3). The mycelium
is the part of the fungus that develops underground as an arborescence whose
successive branches are called hyphae [18]. Certain molds actually exhibit an
essentially planar growth. Hyphal growth in its interaction with the surround-
ing medium can be modeled using the assumption that as they grow, hyphae
secrete a substance that diffuses into the medium, whose concentration they
can detect and try to avoid, thereby both avoiding each other and also accel-
erating their own circularization. Thus the relationship to Voronoi diagrams
becomes apparent. At a more microscopic level, growth of hyphal walls can
be simulated by modeling them as piecewise flat surfaces that evolve according
to biologically and mechanically motivated assumptions [18]. Therein, Delau-
nay triangulations and Voronoi diagrams on piecewise linear surfaces are useful
tools.

Laguerre diagrams (or tesselations) are additively weighted Voronoi diagrams
already proposed by Dirichlet [10] decades before Edmond Nicolas Laguerre
(1834 Bar-le-Duc – 1886 Bar-le-Duc) studied the underlying geometry. In
the early nineteen eighties, Franz Aurenhammer, who calls Laguerre diagrams
power diagrams, wrote his PhD thesis about them, resulting in the paper [2],
which to this date remains an authoritative source on the subject. They had
previously also been studied by Laszlò Fejes Toth (1915 Szeged – 2005 Bu-
dapest) in the context of packing, covering, and illumination problems with
spheres [14, 15].

Power diagrams yield a much richer class of partitions of space into convex
cells than ordinary Voronoi diagrams. They are induced by a set of positively
weighted sites, the weights being interpreted as the squared radii of spheres
centered at the sites. The region induced by some weighted site i.e. sphere
consists of those points whose power with respect to that sphere is smaller or
equal to that with respect to all others [15, 12, 3]. Note that some spheres
may generate an empty region of the power diagram, which has to do with
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Figure 4: The growth of a polycrystal modeled using dynamic power diagrams.
From left to right, larger monocrystalline regions grow, eating up the smaller
ones

the fact that the power with respect to a sphere is not a metric since it can
be negative. The dual triangulations of power diagrams are called weighted

Delaunay triangulations, or regular triangulations. These objects can be defined
in Euclidean spaces of arbitrary dimension.

Laguerre tessellations turn out to be very powerful modeling tools for some
physical processes, as for instance metal solidification or ceramics sintering.
During the production of ceramic materials, a polycrystalline structure forms
starting from, say alumina powder (Al2SO3). With the help of time, heat and
pressure, the polycristal, which is a conglomerate of unaligned crystalline cells
undergoes a process in which larger cells grow at the expense of the smaller ones
(see figure 4). It has been shown that at any point in time, three-dimensional
Laguerre tessellations are adequate representations of such self-similar evolv-
ing polycrystalline structures [37]. Their growth is driven by surface energy
minimization, the surface being the total surface between adjacent crystalline
regions. Not only is it easy to compute this surface in the case of Laguerre
tessellations, but also its gradient when the parameters defining the generat-
ing spheres evolve. With the use of the chain rule, it is thus possible to set
up motion equations for the generating spheres of the Laguerre tessellation,
that reflect the energy minimization. They remain valid as long as there is no
topological transformation of this tesselation (such a transformation consisting
either in a neighbor exchange or a cell vanishing). Whenever such a transfor-
mation takes place, the tessellation and motion equations have to be updated
and integrated until detection of the following topological transformation, and
so on. This process can go on until the polycrystalline structure becomes a
mono-crystal. The growth of foams can be modeled in a similar fashion. All
this has been implemented in two and three dimensions for very large cell pop-
ulations, and periodic boundary conditions. The latter imply a generalization
of Laguerre tessellations to flat tori. Such simulations remain the only way to
follow the dynamic phenomena taking place in the interior of three-dimensional
polycrystals.
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Another application, close to that in [15] comes up in the numerical simula-
tion of granular media where the behavior of assemblies of macroscopic grains
like sand, corn, rice, coke is studied by replicating trajectories of individual
grains. Increased computing power in conjunction with the power supplied by
mathematics now allows simulation of processes involving hundreds of thou-
sands of grains. The main challenge involved is threefold:

• realistic modeling of individual grain shapes beyond simple spheres;

• realistic physical modeling of the interaction between contacting bodies;

• efficient contact detection method.

The latter is where Delaunay triangulations are used. Indeed, they yield meth-
ods that permit to efficiently test contacts within very large populations of
spherical grains. The underlying property being that whenever two spherical
grains are in contact, their centers are linked by an edge of the associated regu-
lar triangulation. Using this method requires an efficient and numerically stable
updating procedure of regular triangulations associated to dynamically evolving
sites. Using sphero-polyhedral grains (a sphero-polyhedron is the Minkowski
sum of a sphere with a convex polyhedron), this procedure can be straight-
forwardly generalized to such quite arbitrarily shaped non-spherical grains.
With this approach, large-scale simulations of grain crystallization, mixing and
unmixing, and compaction processes in nature and technology have been per-
formed (see figure 5).
In principle, Voronoi diagrams can be defined for sets of sites on arbitrary

metric spaces, such as giraffe and crocodile skins, turtle shells, or discrete ones
such as graphs with positive edge weights satisfying the triangle inequality,
giving rise to classical graph optimization problems.

4 Geometry and algorithms

The previously introduced d-dimensional power diagrams and the associated
regular triangulation can also be viewed as the projections to Rd of the lower
boundaries of two convex (d+1)-dimensional polyhedra. In fact, this projective
property can be used as a definition. In other words, a subdivision of Rd into
convex cells is a power diagram if and only if one can define a piecewise-linear
convex function from Rd to R whose regions of linearity are the cells of the
diagram (see [3], and the references therein). The same equivalence is also
true for regular triangulations, where the given function is defined only on the
convex hull of the sites and has simplicial regions of linearity.

In this light, regular triangulations can be interpreted as a proper subclass
of the power diagrams. In other words, they are the power diagrams whose
faces are simplices. Note that by far, not every partition of space into convex
polyhedral cells can be interpreted as an ordinary Voronoi diagram. As shown
by Chandler Davis [5], power diagrams constitute a much richer class of such
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Figure 5: Granular media simulation using regular triangulations. Left: All the
contacts occurring in a set of two-dimensional discs are detected by testing the
edges of a regular triangulation. This triangulation is depicted in black and its
dual power diagram in light gray. Right: Simulation of the output of a funnel
with very low friction, involving about 100 000 spherical particles. Contacts
are tested using regular triangulations.

partitions. In fact, in dimension higher than 2, every simple convex partition
is a power diagram. In analogy to simple polytopes, simple partitions consist
of regions such that no more than d of them are adjacent at any vertex. In this
context it is interesting to note that Kalai has shown that the Hasse diagram of
a simple polytope can actually be reconstructed from its 1-skeleton [22]. Recall
that the 1-skeleton of a polytope is the graph formed by its vertices and edges.
Hence the same also holds for simple power diagrams.

An important implication of the projection property is that software for
convex hull computation can be directly used to compute power diagrams [16].
Since the nineteen-seventies, many other specialized algorithms have been de-
veloped that compute these diagrams. Today, constructing a 2-dimensional
Voronoi diagram has become a standatd homework exercise of every basic
course in algorithms and data structures. In fact, the optimal divide and

conquer algorithm by Shamos can be considered as one of the cornerstones
of modern computational geometry (see [31]). In this recursive algorithm of
complexity O(n log(n)), the set of n sites is successively partitioned into two
smaller ones, whereupon their corresponding Voronoi diagrams are constructed
and sewn together. Unfortunately, no generalization of this algorithm to higher
dimensions or to power diagrams is known.

Several algorithms that compute regular triangulations are known, though,
and by duality, one can easily deduce the power diagram generated by a set
of weighted sites from its associated regular triangulation. Note in particular
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Figure 6: Four types of flips in 2-dimensions (left) and 3-dimensions (right).
The flips at the top insert or remove edge {b, d} and the flips at the bottom
insert or remove vertex d.

that one obtains the Hasse diagram of a power diagram by turning upside down
that of the corresponding regular triangulation.

Plane Delaunay triangulations can be constructed using flip algorithms such
as first proposed by Lawson [23]. While their worst-case complexity is O(n2),
in practical cases they are not only a lot faster than that, but also have other
desirable numerical properties. Consider a triangulation of a set of n points in
the plane. Whenever two adjacent triangular cells form a convex quadrilateral,
one can find a new triangulation by exchanging the diagonals of this quadrilat-
eral. Such an operation is called an edge flip and the flipped edges are called
flippable (see figure 6). A quadrilateral with a flippable edge is called illegal if
the circumcircle of one of its triangles also contains the third vertex of the other
in its interior. Otherwise, it is legal. It is easy to see that a flip operation on an
illegal quadrilateral makes it legal and vice-versa. The simple algorithm that
consists in flipping all illegal quadrilaterals to legality, one after the other in
any order, always converges to a Delaunay triangulation. Testing the legality
of a quadrilateral amounts to checking the sign of a certain determinant. Along
with the flip operation, this determinant-test generalizes to higher dimensions
[8]. Moreover, the aforementioned flip-algorithm can be generalized to regular
triangulations – with weighted sites – by simply introducing an additional type
of flip to insert or delete (flip in/flip out) vertices (see figure 6) and testing a
slightly modified determinant. Unfortunately, in this case, this algorithm can
stall without reaching the desired solution. For rigorous treatment of flips using
Radon’s theorem on minimally affinely dependent point sets, see [8].

The incremental flip algorithm [19] for the construction of regular triangu-
lations is a method that always works. Therein, a sequence of regular trian-
gulations is constructed by successively adding the sites in an arbitrary order.
An initial triangulation consists of a properly chosen sufficiently large artificial
triangle that will contain all given sites in its interior and will be removed once
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the construction is finished. At any step a new site is flipped in (see figure 6),
subdividing its containing triangle into three smaller ones, the new triangula-
tion possibly not being a Delaunay triangulation yet. However, as shown in
[19], it is always possible to make it become one by a sequence of flips. This
incremental flip algorithm has been generalized in [13] to the construction of
regular triangulations in arbitrary dimension.
Any pair of regular triangulations of a given set of sites is connected by a

sequence of flips [8]. If at least one of the triangulations is not regular, this
need not be the case. This issue gives rise to interesting questions that will
be the mentioned in this last paragraph. Consider the graph whose vertices
are the triangulations of a finite d-dimensional set of sites A, with an edge
between every pair of triangulations that can be obtained from one another
by a flip. What Lawson proved [23] is that this graph, called the flip-graph of
A, is connected when A is 2-dimensional. The subgraph induced by regular
triangulations in the flip-graph of A is also connected (it is actually isomorphic
to the 1-skeleton of the so-called secondary polytope [17]). Furthermore, so is
the larger subgraph induced in the flip-graph of A by triangulations projected
from the boundary complex of (d + 2)-dimensional polytopes [29]. To this
date, it is not known whether the flip graphs of 3- or 4-dimensional point sets
are connected, and point sets of dimension 5 and 6 were found whose flip-
graph is not connected [8] (the latter having a component consisting of a single
triangulation!). Finally, it has been shown only recently that the flip-graph of
the 4-dimensional cube is connected [30].

5 Conclusion

This chapter has described a few milestones on a journey that started when
Kepler and Descartes used what were to become Voronoi diagrams to study the
universe from snowflakes to galaxies. These diagrams and their dual Delaunay
triangulations have meanwhile become powerful engineering design, modeling,
and analysis tools, have given rise to many interesting questions in mathematics
and computer science, and have helped solving others (in particular, Kepler’s
conjecture! See for instance [21])). The journey is by far not ended and will
certainly lead to still other fascinating discoveries.
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The starting point of the history of Hilbert’s 17th problem was the oral de-
fense of the doctoral dissertation of Hermann Minkowski at the University of
Königsberg in 1885. The 21 year old Minkowski expressed his opinion that
there exist real polynomials which are nonnegative on the whole Rn and can-
not be written as finite sums of squares of real polynomials. David Hilbert was
an official opponent in this defense. In his “Gedächtnisrede” [6] in memorial
of H. Minkowski he said later that Minkowski had convinced him about the
truth of this statement. In 1888 Hilbert proved in a now famous paper [4] the
existence of a real polynomial in two variables of degree six which is nonnega-
tive on R2 but not a sum of squares of real polynomials. Hilbert’s proof used
some basic results from the theory of algebraic curves. Apart from this his
construction is completely elementary. The first explicit example of this kind
was given by T. Motzkin [10] only in 1967. It is the polynomial

M(x, y) = x
4
y
2 + x

2
y
4 + 1− 3x2

y
2
.

(Indeed, the arithmetic-geometric mean inequality implies that M ≥ 0 on R2.
Assume to the contrary that M =

∑

j f
2

j is a sum of squares of real polyno-
mials. Since M(0, y) = M(x, 0) = 1, the polynomials fj(0, y) and fj(x, 0) are
constants. Hence each fj is of the form fj = aj + bjxy + cjx

2
y + djxy

2. Then
the coefficient of x2

y
2 in the equality M =

∑

j f
2

j is equal to −3 =
∑

j b
2

j . This
is a contradiction.)
A nice exposition around Hilbert’s construction and many examples can be

found in [16]. Hilbert also showed in [4] that each nonnegative polynomial in
two variables of degree four is a finite sum of squares of polynomials.
As usual we denote by R[x1, . . . , xn] and R(x1, . . . , xn) the ring of polynomi-

als resp. the field of rational functions in x1, . . . , xn with real coefficients.
The second pioneering paper [5] of Hilbert about this topic appeared in

1893. He proved by an ingenious and difficult reasoning that each nonnegative
polynomial p ∈ R[x, y] on R2 is a finite sum of squares of rational (!) functions
from R(x, y). Though not explicitly stated therein a closer look at Hilbert’s
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proof shows even that p is a sum of four squares. For Motzkin’s polynomial
one has the identity

M(x, y) =
x
2
y
2(x2 + y

2 + 1)(x2 + y
2
− 2)2 + (x2

− y
2)2

(x2 + y2)2

which gives a representation of M as a sum of four squares of rational functions.
Motivated by his previous work Hilbert posed his famous 17th problem at

the International Congress of Mathematicians in Paris (1900):

Hilbert’s 17th problem:
Suppose that f ∈ R(x1, . . . , xn) is nonnegative at all points of Rn where f is
defined. Is f a finite sum of squares of rational functions?

A slight reformulation of this problem is the following: Is each polynomial
f ∈ R[x1, . . . , xn] which is nonnegative on Rn a finite sum of squares of ra-
tional functions, or equivalently, is there an identity q

2
f =

∑

j p
2

j , where
q, p1, · · · , pk ∈ R[x1, . . . , xn] and q 6= 0. In the case n = 1 this is true, since the
fundamental theorem of algebra implies that each nonnegative polynomial in
one variable is a sum of two squares of real polynomials. As noted above, the
case n = 2 was settled by Hilbert [5] itself. Hilbert’s 17th problem was solved
in the affirmative by Emil Artin [1] in 1927. Using the Artin-Schreier theory
of ordered fields Artin proved

Theorem 1. If f ∈ R[x1, · · · , xn] is nonnegative on Rn, then there are poly-
nomials q, p1, . . . , pk ∈ R[x1, · · · , xn], q 6= 0, such that

f =
p
2

1
+ · · ·+ p

2

k

q2
.

Artin’s proof of this theorem is nonconstructive. For strictly positive polyno-
mials f (that is, f(x) > 0 for all x ∈ Rn) a constructive method was developed
by Habicht [3]. It is based on Polya’s theorem [13] which states that for each ho-
mogeneous polynomial p such that p(x1, . . . , xn) > 0 for all x1 ≥ 0, · · · , xn ≥ 0
and (x1, . . . , xn) 6= 0, there exists a natural number N such that all coefficients
of the polynomial (x1 + · · · + xn)

N
p are positive. A quantitative version of

Polya’s theorem providing a lower estimate for the number N in terms of p was
recently given by Powers and Reznick [14].
There is also a quantitative version of Hilbert’s 17th problem which asks how

many squares are needed. In mathematical terms it can be formulated in terms
of the pythagoras number. For a ring K, the pythagoras number p(K) is the
smallest natural numberm such that each finite sum of squares of elements ofK
is a sum of m squares. If there is no such number m we set p(K) = ∞. Clearly,
p(R[x]) = p(R(x)) = 2. Recall that Hilbert [5] had shown that p(R(x, y)) ≤ 4.
The landmark result on the quantitative version of Hilbert’s 17th problem was
published in 1967 by A. Pfister [11] who proved

Theorem 2. p(R(x1, · · · , xn)) ≤ 2n.
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That is, by Theorems 1 and 2, each nonnegative polynomial f ∈ R[x1, . . . , xn]
is a sum of at most 2n squares of rational functions. Pfister’s proof was based
on the theory of multiplicative forms (see, e.g., [12]), now also called Pfister
forms.
The next natural question is: What is value of the number p(R(x1, . . . , xn))?

For n ≥ 3 this is still unknown! It is not difficult to prove that the sum
1 + x

2

1
+ · · · + x

2

n of n+ 1 squares is not a sum of m squares with m < n+ 1.
Therefore

n+ 1 ≤ p(R(x1, . . . , xn)) ≤ 2n.

Using the theory of elliptic curves over algebraic function fields it was shown in
[2] that Motzkin’s polynomial is not a sum of 3 squares. Hence p(R(x1, x2)) = 4.
Artin’s theorem triggered many further developments. The most important

one in the context of optimization is to look for polynomials which are nonneg-
ative on sets defined by polynomial inequalities rather than the whole Rn. To
formulate the corresponding result some preliminaries are needed. Let us write
∑

2

n for the cone of finite sums of squares of polynomials from R[x1, . . . , xn].
In what follows we suppose that F = {f1, . . . , fk} is a finite subset of

R[x1, . . . , xn]. In real algebraic geometry two fundamental objects are asso-
ciated with F . These are the basic closed semialgebraic set

KF = {x ∈ Rn : f1(x) ≥ 0, · · · , fk(x) ≥ 0}

and the preorder

TF :=

{

∑

εi∈{0,1}

f
ε1
1

· · · f
εk
k σε; σε ∈

∑2

n

}

.

Note that the preorder TF depends on the set F of generators for the semial-
gebraic set KF rather than the set KF itself.
Obviously, all polynomials from TF are nonnegative on the set KF , but

in general TF does not exhaust the nonnegative polynomials on KF . The
Positivstellensatz of Krivine-Stengle describes all nonnegative resp. positive
polynomials on the semialgebraic set KF in terms of quotients of elements of
the preorder TF .

Theorem 3. Let f ∈ R[x1, . . . , xn].
(i) f(x) ≥ 0 for all x ∈ KF if and only if there exist p, q ∈ TF and m ∈ N

such that pf = f
2m + q.

(ii) f(x) > 0 for all x ∈ KF if and only if there are p, q ∈ TF such that
pf = 1 + q.

This theorem was proved by G. Stengle [19], but essential ideas were already
contained in J.-L. Krivine’s paper [8]. In both assertions (i) and (ii) the ‘if’
parts are almost trivial. Theorem 3 is a central result of modern real algebraic
geometry. Proofs based on the Tarski-Seidenberg transfer principle can be
found in [15] and [9].
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Let us set f1 = 1 and k = 1 in Theorem 3(i). Then KF = Rn and TF =
∑

2

n. Hence in this special case Theorem 3(i) gives Artin’s Theorem 1. The
Krivine–Stengle Theorem 3(i) expresses the nonnegative polynomial f on KF

as a quotient of the two polynomials f
2m + q and p from the preorder TF .

Simple examples show that the denominator polynomial p cannot be avoided
in general. For instance, if f1 = 1, k = 1, the Motzkin polynomial M is
nonnegative on KF = Rn, but it is not in the preorder TF =

∑

2

n. Replacing

M by the polynomial M̃(x, y) := x
4
y
2 + x

2
y
4 +1− x

2
y
2 we even get a strictly

positive polynomial of this kind. (One has M̃(x, y) ≥ 26

27
for all (x, y) ∈ R2.)

Letting f1 = (1 − x
2)3, k = n = 1, the semialgebraic set KF is the interval

[−1, 1] and the polynomial f = 1−x
2 is obviously nonnegative on KF . Looking

at the orders of zeros of f at ±1 one concludes easily that f is not in TF . In view
of these examples it seems to be surprising that strictly positive polynomials on
a compact basic closed semialgebraic set always belong to the preorder. This
result is the Archimedean Positivstellensatz which was proved by the author
[17] in 1991.

Theorem 4. Suppose that f ∈ R[x1, . . . , xn]. If the set KF is compact and
f(x) > 0 for all x ∈ KF , then f ∈ TF .

The original proof given in [17] (see also [18], pp. 344–345) was based on
the solution of the moment problem for compact semialgebraic sets. The first
algebraic proof of Theorem 4 was found by T. Wörmann [20], see, e.g., [15] or
[9].

By definition the preorder TF is the sum of sets f
ε1
1

· · · f
εk
k

∑

2

n . It is natural
to ask how many terms of this kind are really needed. This question is answered
by a result of T. Jacobi and A. Prestel in 2001. Let g1, . . . , glk denote the first
lk := 2k−1 + 1 polynomials of the following row of mixed products with no
repeated factors of the generators f1, . . . fk:

1, f1, . . . , fk, f1f2, f1f3, . . . , fk−1fk, f1f2f3, . . . , fk−2fk−1fk, f1f2 · · · fk.

Let SF be the sum of sets gj
∑

2

n, where j = 1, . . . , lk. Then Jacobi and Prestel
[7] proved the following

Theorem 5. If KF is compact and f ∈ R[x1, . . . , xn] satisfies f(x) > 0 for all
x ∈ KF , then f ∈ SF .

We briefly discuss this result. If k = 3, then lk = 5 and SF =
∑

2

n +f1
∑

2

n +f2
∑

2

n +f3
∑

2

n +f1f2
∑

2

n, that is, the sets g
∑

2

n for g =
f1f3, f2f3, f1f2f3 do not enter in the definition of SF . If k = 4, then no
products of three or four generators occur in the definition of SF . Thus, if
k ≥ 3, Theorem 5 is an essential strengthening of Theorem 4.
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In layman’s terms the Kepler Conjecture from 1611 is often phrased like “There
is no way to stack oranges better than greengrocers do at their fruit stands” and
one might add: all over the world and for centuries already. While it is not far
from the truth this is also an open invitation to a severe misunderstanding. The
true Kepler Conjecture speaks about infinitely many oranges while most grocers
deal with only finitely many. Packing finitely many objects, for instance, within
some kind of bin, is a well-studied subject in optimization. On the other hand,
turning the Kepler Conjecture into a finite optimization problem was a first
major step, usually attributed to László Fejes Tóth [5]. Finally, only a little bit
less than 400 years after Johannes Kepler, Thomas C. Hales in 1998 announced
a complete proof which he had obtained, partially with the help of his graduate
student Samuel P. Ferguson [7]. There are many very readable introductions
to the proof, its details, and the history, for instance, by Hales himself [8] [10].
Here I will make no attempt to compete with these presentations, but rather I
would like to share an opinion on the impact of the Kepler Conjecture and its
history for mathematics in general.

1 Packing Spheres

Yet we should start with the formal statement. In the following we will encode
a packing of congruent spheres in 3-space by collecting their centers in a set
Λ ⊂ R3. If B(x, r) is the ball with center x ∈ R3 and radius r > 0 and if c > 0
is the common radius of the spheres in the packing then

δ(r,Λ) =
3

4πr3

∑

x∈Λ

vol(B(0, r) ∩B(x, c)) ,

the fraction of the ball B(0, r) covered by the balls in the packing Λ, is the
finite packing density of Λ with radius r centered at the origin. Now the upper
limit

δ(Λ) = limr→∞δ(r,Λ)

does not depend on the constant c, and it is called the packing density of Λ.
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Theorem (Kepler Conjecture). The packing density δ(Λ) of any sphere pack-
ing Λ in R3 does not exceed

π
√

18
≈ 0.74048 .

It remains to explain where the oranges are. The standard pattern originates
from starting with three spheres whose centers form a regular triangle and
putting another on top such that it touches the first three. This can be extended
indefinitely in all directions. One way of describing this sphere packing in an
encoding like above is the following:

Λfcc = {a(1, 0, 0) + b(0, 1, 0) + c(1, 1, 1) | a, b, c ∈ Z} ,

This amounts to tiling 3-space with regular cubes of side length 2 and placing
spheres of radius 1/

√

2 on the vertices as well as on the mid-points of the
facets of each cube. This is why Λfcc is called the face-centered cubical packing.
Figure 1 (left) shows 14 spheres (significantly shrunk for better visibility) in
the cube, the black edges indicate spheres touching. To determine the packing
density it suffices to measure a single fundamental domain, that is, one of the
cubes. Each sphere at a vertex contributes 1/8 to each of the eight cubes which
contain it while each sphere on a facet contributes 1/2. We obtain

δ(Λfcc) = (8 ·
1

8
+ 6 ·

1

2
) ·

4π

3(
√

2)
3 ·

1

23
= 4 ·

2π

3
√

2
·
1

8
=

π

3
√

2
=

π
√

18
.

One thing which is remarkable about the Kepler Conjecture is that the optimum
is attained at a lattice packing, that is a sphere packing whose centers form a
Z3-isomorphic subgroup of the additive group of R3. This means that the
optimum is attained for a packing with a great deal of symmetry while the
statement itself does not mention any symmetry. It was already known to
Carl Friedrich Gauß that Λfcc is optimal among all lattice packings, but the
challenge for Hales to overcome was to show that there is no non-lattice packing
which is more dense.
As already mentioned I will not try to explain the proof, not even its overall

structure, but I would like to point out a few aspects. What also contributes
to the technical difficulty is that Λfcc is by no means the only sphere packing
with the optimal density π/

√

18. There are infinitely many others, including
another well-known example which is called the hexagonal-close packing. This
means that the naively phrased optimization problem

sup
{

δ(Λ)
∣

∣ Λ is a sphere packing in R3
}

(1)

has infinitely many optimal solutions.
A key concept in discrete geometry is the Voronoi diagram of a set Λ of

points, say in R3. The Voronoi region of x ∈ Λ is the set of points in R3 which
is at least as close to x as to any other point in Λ. This notion makes sense for
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Figure 1: 14 balls of Λfcc in a cube and corresponding Voronoi regions

finite as well as infinite sets Λ. If Λ is finite or if the points are “sufficiently
spread out” then the Voronoi regions are convex polyhedra. The Voronoi di-
agram is the polyhedral complex formed from these polyhedra. For example,
the Voronoi region of any point in the face-centered cubical lattice Λfcc is a
rhombic dodecahedron, a 3-dimensional polytope whose twelve facets are con-
gruent rhombi. Figure 2 shows the rhombic dodecahedron, and Figure 1 (right)
shows how it tiles the space as Voronoi regions of Λfcc. Some 2-dimensional
cells (facets of Voronoi regions) are also shown in Figure 1 (left) to indicate
their relative position in the cube.
Here comes a side-line of the story: The volume of the rhombic dodecahedron

with inradius one equals
√

32 ≈ 5.65685, and this happens to be slightly larger
than the volume of the regular dodecahedron of inradius one, which amounts
to

10

√

130− 58
√

5 ≈ 5.55029 .

A potential counter-example to the Kepler Conjecture would have Voronoi
regions of volume smaller than

√

32. The statement that, conversely, each unit
sphere packing should have Voronoi regions of volume at least the volume of
the regular dodecahedron of inradius one, is the Dodecahedral Conjecture of
L. Fejes Tóth from 1943. This was proved, also in 1998, also by Hales together
with Sean McLaughlin [12, 13]. Despite the fact that quantitative results for one
of the conjectures imply bounds for the other, the Kepler Conjecture does not
directly imply the Dodecahedral Conjectures or conversely. Not surprisingly,
however, the proofs share many techniques.
We now come back to the Kepler Conjecture. The reduction of the infinite-

dimensional optimization problem (1) to finite dimensions is based on these
Voronoi regions. The observation of L. Fejes Tóth in 1953 was that in an opti-
mal sphere packing only finitely many different combinatorial types of Voronoi
regions can occur. This resulted in a non-linear optimization problem over a
compact set. Hales simplified this non-linear problem using linear approxima-
tions. In this manner each candidate for a sphere packing more dense than
the face-centered cubical packing gives rise to a linear program. Its infeasibil-
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Figure 2: Rhombic dodecahedron

ity refutes the potential counter-example. This idea was improved and further
extended by Hales and his co-authors such that this approach resulted in a
managable computation, albeit an enormous one.
What differs mathematics fundamentally from other fields of science is the

concept of a proof. A sequence of statements which establish the claim in a
step-by-step manner by applying the rules of logic to trace the result back to
a set of axioms. Once the proof is there the result holds indefinitely. The
traditional way to accept a proof is to have it scrutinized by peers who review
the work prior to publication in a mathematical journal. While neither the
author of a proof nor its reviewers are perfect it is rather rare that results are
published with a severe error. The mathematical community was content with
this proof paradigm for more than 100 years, since the logical foundations of
mathematics were laid at the turn from the 19th to the 20th century. The main
impact of Hales’ proof to mathematics in its generality is that it is about to
change this paradigm, most likely forever.
After obtaining his computer-based proof Hales submitted his result to the

highly esteemed journal Annals of Mathematics. The journal editors initiated
the reviewing process which involved a team of more than a dozen experts on
the subject, lead by Gábor Fejes Tóth, the son of László Fejes Tóth. It took
more than seven years until an outline version of the proof was finally accepted
and published [9]. To quote the guest editors of a special volume of Discrete &
Computational Geometry on more details of the proof, Gábor Fejes Tóth and
Jeffrey C. Lagarias [4]:

The main portion of the reviewing took place in a seminar run at
Eötvos University over a 3 year period. Some computer experi-
ments were done in a detailed check. The nature of this proof,
consisting in part of a large number of inequalities having little in-
ternal structure, and a complicated proof tree, makes it hard for
humans to check every step reliably. Detailed checking of specific
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assertions found them to be essentially correct in every case tested.
The reviewing process produced in the reviewers a strong degree of
conviction of the essential correctness of this proof approach, and
that the reduction method led to nonlinear programming problems
of tractable size. [. . . ] The reviewing of these papers was a partic-
ularly enormous and daunting task.

The standard paradigm for establishing proofs in mathematics was stretched
beyond its limits. There is also a personal aspect to this. Hales and his co-
authors had devoted a lot to the proof, and after waiting for a very long time
they had their papers published but only with a warning. The referees had
given up on the minute details and said so in public. The referees cannot be
blamed in any way, to the contrary, their effort was also immense. This was
widely acknowledged, also by Hales. But for him to see his results published
with the written hint that, well, a flaw cannot be entirely excluded, must have
been quite harsh nonetheless.

2 The Subsequent Challenge

It was David Hilbert who initiated a quest for provably reliable proofs in the
1920s. Ideally, he thought, proofs should be mechanized. The first trace to
what later became famous as the “Hilbert Program” is maybe the following
quote [16, p. 414]:

Diese speziellen Ausführungen zeigen [. . .], wie notwendig es ist,
das Wesen des mathematischen Beweises an sich zu studieren, wenn
man solche Fragen, wie die nach der Entscheidbarkeit durch endlich
viele Operationen mit Erfolg aufklären will.1

Hilbert’s work on this subject resulted in two books with his student Paul
Bernays [17, 18]. It is widely believed that the incompleteness theorems of Kurt
Gödel [6] put an end to Hilbert’s endeavor. However, this is not completely
true.
After his proof was published with disclaimers Hales set out to start the

Flyspeck project [2]. Its goal is to establish a formal proof of the Kepler
Conjecture, quite to Hilbert’s liking. The idea is to formalize the proof in
a way that it can be verified by a theorem prover. Hales settled for John
Harrison’s HOL Light [14] and now also uses Coq [1] as well as Isabelle [20].
A theorem prover like HOL Light is a program which takes a human-written

proof and validates that the rules of propositional logic are correctly applied
to obtain a chain of arguments from the axioms to the claim, without any
gap. In this way a theorem prover assists the mathematician in proving rather
than finding a proof on its own. Of course, such a theorem prover itself is a

1These special arguments show [. . .], how necessary it is to study the genuine nature of the
mathematical proof, if one wants to clarify questions like the decidability by finitely many
operations.
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piece of software which is written by humans. So, where is the catch? The
actual core of a theorem prover is very small, small enough to be verified by
a human, and this core verifies the rest of the system in a bootstrapping like
fashion. This is already much better in terms of reliability. Moreover, if this is
not enough, it is even possible to use several independent theorem provers for
mutual cross-certification. This way theorem provers help to establish proofs
in mathematics with a reliability unprecedented in the history of the subject.
For an introduction to automated theorem proving see [21].
To get an idea how such a formal proof may look alike, for example, here is

the HOL Light proof [15, p. 75] that
√

2 is irrational:

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,

MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN

DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN

ASM_REWRITE_TAC[ARITH_RULE

‘q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>

(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q‘] THEN

ASM_MESON_TAC[LE_MULT2; MULT_EQ_0;

ARITH_RULE ‘2 * x <= x <=> x = 0‘]);;

Modern theorem provers are already powerful enough to allow for formal proofs
of very substantial results such as the Jordan Curve Theorem or the Funda-
mental Theorem of Algebra. However, they are nowhere near to formally verify
large pieces of software such as a solver for linear programs. Yet an essential
step in the proof of the Kepler Conjecture is to verify the infeasibility of thou-
sands of linear programs. One good thing about linear programming is that
infeasibility has a certificate via Farkas’ Lemma. Now the idea is to check those
certificates from an external LP solver (which is allowed to be unreliable) via
formally verified interval arithmetic. Even if the formal proof of the Kepler
Conjecture is still incomplete it is now within reach.2 A revised version of the
proof which also describes the formalization aspects appeared in 2010 [11]. An
even newer approach to the Kepler conjecture, due to Christian Marchal [19]
reduces the number of cases to check but still requires computer support.
Here is a side remark which may sound amusing if you hear it for the first

time: Gödel’s first incompleteness theorem itself has been formalized in nqthm

by Natarajan Shankar in 1986 [3]. John Harrison’s HOL Light version of that
statement (without the proof) reads as follows:

2The Flyspeck web site claims 65% completeness of the proof of the Kepler Conjecture
by June 2010 [2].

Documenta Mathematica · Extra Volume ISMP (2012) 439–446



From Kepler to Hales 445

|- !A. consistent A /\

complete_for (SIGMA 1 INTER closed) A /\

definable_by (SIGMA 1) (IMAGE gform A)

==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\

(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))

3 Conclusion

A minimalistic way to tell the story about the Kepler Conjecture is: “Kepler
meets Hilbert twice”. The first encounter is Hilbert’s 1900 address in Paris,
where he specifically mentioned the Kepler Conjecture in his 18th problem.
This way the Kepler Conjecture was ranked among the most eminent math-
ematical problems of the time. Later, at various stages in the history of the
proof several different flavors of mathematical software systems played and still
play a key role. The downside of the current state of affairs is that a computer
based proof seems to be unavoidable. The upside, however, is that a reliable
version of such a machine-assisted proof is, in fact, possible. Quite close to
what Hilbert had imagined.

Acknowledgment: I would like to thank Martin Henk and Günter M.
Ziegler for helpful comments.
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A multi-objective optimization problem consists in the simultaneous optimiza-
tion of p objective functions f1, . . . , fp subject to some constraints, which I will
just write as x ∈ X , where X is a subset of Rn

. It is usually assumed that there
does not exist any x ∈ X such that all functions fk attain their minimima at x.
Hence, due to the absence of a total order on Rp, it is necessary to define the
minimization with respect to partial orders. So let Y := {f(x) : x ∈ X} be the
set of outcome vectors. To compare elements of Y, I will follow the definition
of Koopmans (1951). Let y1, y2 ∈ Y. Then y

1 ≦ y
2 if and only if y1k ≦ y

2

k for
all k = 1, . . . p; y1 ≤ y

2 if and only if y1 ≦ y
2, but y1 6= y

2 and y
1
< y

2 if and
only if y1k < y

2

k for all k = 1, . . . p.
It is here that Pareto makes his appearance. In countless books and articles

on multi-objective optimization, one can find a definition like this:

Definition 1. Let X ⊂ Rn be a non-empty set of feasible solutions and f =
(f1, . . . fp) : R

n
→ Rp be a function. Feasible solution x̂ ∈ X is called a Pareto

optimal solution of the multi-objective optimization problem

min{f(x) : x ∈ X} (1)

if and only if there does not exist any x ∈ X such that f(x) ≤ f(x̂).

Sometimes Pareto optimality is defined with respect to outcome vectors.

Definition 2. Let Y ∈ Rp be a non-empty set of outcome vectors. Outcome
vector ŷ ∈ Y is called Pareto optimal if and only if there does not exist any
y ∈ Y such that y ≤ ŷ.

Where does the name Pareto optimal come from? Vilfredo Pareto and Fran-
cis Ysidro Edgeworth are often called as the fathers of multi-objective opti-
mization. Sentences like the “introduction of the Pareto optimal solution in
1896” (Chen et al., 2005, p. VII); “The concept of noninferior solution was in-
troduced at the turn of the century [1896] by Pareto, a prominent economist”
(Chankong and Haimes, 1983, p. 113); “Edgeworth and Pareto were probably
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the first who introduced an optimality concept for such problems” (Jahn, 2004,
p. 113); “wurden besonders von F.Y. Edgeworth (1845–1926) and V. Pareto
(1848–1929 [sic!]) hinreichende Bedingungen für Paretomaximalität bzw. Gle-
ichgewichtsbedingungen angegeben.” (Göpfert and Nehse, 1990, p. 9) or “The
foundations are connected with the names of Vilfredo Pareto (1848–1923) and
Francis Ysidro Edgeworth (1845–1926)” (Löhne, 2011, p. 1) abound in text-
books. The International Society on Multiple Criteria Decision Making bestows
the Edgeworth–Pareto award “upon a researcher who, over his/her career, has
established a record of creativity to the extent that the field of MCDM would
not exist in its current form without the far-reaching contributions from this dis-
tinguished scholar”, see http://www.mcdmsociety.org/intro.html#Awards.

Edgeworth was an influential Professor of Economics at King’s College Lon-
don and from 1891 Professor of Political Economy at Oxford University. In his
best known book Mathematical Psychics (Edgeworth, 1881) he applied formal
mathematics to decision making in economics. He developed utility theory,
introducing the concept of indifference curve and is best known for the Edge-

worth box. But because multi-objective optimization is concerned with Pareto
optimality rather than Edgeworth optimality, this story focuses on his contem-
porary.

Fritz Wilfried Pareto

According to Yu (1985, p. 49) Pareto “was a famous Italian engineer” but he
is certainly much better known as an economist. The following information
is taken from Stadler (1979) and the wikipedia entry (http://en.wikipedia.
org/wiki/Vilfredo_Pareto) on Pareto.

Vilfredo Federico Damaso Pareto was born on 15 July 1848 in Paris as Fritz
Wilfried Pareto, son of a French woman and an Italian civil engineer, who was
a supporter of the German revolution of 1848. His name was changed to the
Italian version when his family moved back to Italy in 1855 (or 1858). In 1870
he graduated from Polytechnic Institute of Turin with a dissertation entitled
“The Fundamental Principles of Equilibrium in Solid Bodies”. He then worked
as an engineer and manager for an Italian railway company. He was very
politically active, an ardent supporter of free market economy. He obtained a
lecturer position in economics and management at the University of Florence
in 1886 (according to wikipedia). Eventually he resigned from his positions in
1889. During the 1880s he became acquainted with leading economists of the
time and he published many articles by 1893 (not all academic, though). In
1893 he moved to Lausanne where he lectured at the University of Lausanne
and became the successor of Léon Walras as Professor of Political Economy. In
his later years he mainly worked in Sociology. Vilfredo Pareto died at Célégny,
Switzerland, on 19 August 1923. The University of Lausanne still has a Centre
d’études interdisciplinaires Walras Pareto (http://www.unil.ch/cwp). Apart
from Pareto optimality, Pareto’s name is attached to the Pareto principle (or
80–20 rule), observing in 1906 that 80% of the property in Italy was owned by
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Figure 1: Vilfredo Pareto 1848–1923 (Picture scanned from the second French
edition of Pareto (1906) published in 1927.)

20% of the population and the Pareto distribution, a power law probability
distribution.

Pareto Optimality

The origin of the term Pareto optimality goes back to the following text from
Pareto (1906, Chapter VI, Section 33).

Principeremo col definire un termine di cui è comodo fare uso per
scansare lungaggini. Diremo che i componenti di una collettività
godono, in una certa posizione, del massimo di ofelimità, quando
è impossibile allontanarsi pochissimo da quella posizione giovando,
o nuocendo, a tutti i componenti la collettività; ogni piccotissimo
spostamento da quella posizione avendo necessariamente per effetto
di giovare a parte dei componenti ta collettività e di nuocere ad altri.

Or in the English translation (Pareto, 1971, p. 261):
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We will begin by defining a term which is desirable to use in order to
avoid prolixity. We will say that the members of a collectivity enjoy
maximum ophelimity in a certain position when it is impossible to
find a way of moving from that position very slightly in such a
manner that the ophelimity enjoyed by each of the individuals of
that collectivity increases or decreases. That is to say, any small
displacement in departing from that position necessarily has the
effect of increasing the ophelimity which certain individuals enjoy,
and decreasing that which others enjoy, of being agreeable to some
and disagreeable to others.

Of course, Pareto here refers to the distribution of utility (ophelimity) among
individuals in an economy rather than solutions of an optimization problem.
Multi-objective optimization or mathematical optimization in general as we
know it today, did not exist during Pareto’s lifetime, it only developed in
the 1940s. And it is some of the founding works of Operations Research and
optimization that need to be cited here. Nobel Laureate in Economics T.C.
Koopmans (1951) formally studied production as a resource allocation problem
and the combination of activities to represent the output of commodities as a
function of various factors. In this work he introduced the following definition
of efficient vector (p. 60). “A point y in the commodity space is called efficient

if it is possible [i.e., if y ∈ (A)], and if there exists no possible point ȳ ∈ (A) such
that ȳ − y ≥ 0.” Note that (A) is what I called Y in Definition 2, i.e., possible
means that there is some x such that y = Ax. Koopmans does hence only talk
about efficient vectors in terms of the outcome set. He proves necessary and
sufficient conditions for efficiency, but he does not refer to Pareto, nor does he
talk about Pareto optimal solutions as in Definition 1 – instead he refers to “an
activity vector x (that) shall lead to an efficient point y = Ax”.

Another classic reference in optimization is the seminal paper by
Kuhn and Tucker (1951). They refer to the “vector maximum of Koop-
mans’ efficient point type for several concave functions g1(x), . . . , gp(x)”. This
seems to be the earliest reference to the optimization of several functions in
mathematics. Kuhn and Tucker cite Koopmans (1951) when they talk about
vector maximum. They also apply the term efficient to the solutions of vector
optimization problems (i.e., in decision space) and introduce the notion of
proper efficiency. But, again, no mention of Pareto. Kuhn and Tucker (1951)
cite another Nobel Laureate in Economics who contributed to the foundations
of multi-objective optimization, Kenneth J. Arrow.

Arrow discusses Pareto extensively in his economical work and statements of
the impossibility theorem today usually refer to Pareto optimality as one of the
axioms that cannot be jointly satisfied by a social choice function, but this term
does not appear in Arrow’s original formulation (Arrow, 1951). Arrow’s impor-
tant contribution to multi-objective optimization (Arrow et al., 1953) starts as
follows “A point s of a closed convex subset S of k-space is admissible if there is
no t ∈ S with ti ≤ si for all i = 1, . . . , k, t 6= s.” This is, of course, the same as

Documenta Mathematica · Extra Volume ISMP (2012) 447–453



Vilfredo Pareto and Multi-objective Optimization 451

Koopmans’ definition of efficient point (whose paper Arrow et al. (1953) cite),
and again is relevant in the outcome set of a multi-objective problem rather
than the set of feasible solutions – no trace of Pareto here, either.
There are a number of other definitions of Pareto optimal, efficient, or admis-

sible points. Zadeh (1963) defines “A system S0 ∈ C is noninferior in C if the
intersection of C and Σ>(S0) is empty.” Σ>(S0) is the set of all systems which
are better than S0 with respect to a partial order ≥. Chankong and Haimes
(1983) later use the same definition. While Zadeh cites Koopmans and Kuhn
and Tucker, Pareto remains notably absent. The final term that is common
today is that of a nondominated point.

Multiobjective Optimization and Economics

When did the term Pareto optimal first appear in the literature? As we have
seen, it was not used in early mathematical works on multi-objective optimiza-
tion. The answer is once again in economics. Little (1950, p. 87) in a discussion
of the distribution of income (i.e., in the same context as Pareto himself) uses
the term Pareto ‘optimum’ (with the quotation marks). The origin of the term
is, therefore, clearly found in economics. It has then apparently mostly been
used in economics, appearing in journals such as Public Choice and Journal

of Economic Theory. As shown above, it was not used by the economists
who are credited with having contributed to the origins of the mathematical
theory of multi-objective optimization, but migrated to mathematics later on.
The first journal articles that I could find are Basile and Vincent (1970) and
Vincent and Leitmann (1970). These articles also used the term undominated

as an alternative. This then turned to nondominated in Yu and Leitmann
(1974).
Economics had a strong influence on the early history of multi-objective op-

timization, especially Pareto’s original definition of the term maximum ophe-

limity and the origin of the term Pareto optimum in Little (1950). The move
into mathematics and optimization coincides with the mathematization of eco-
nomics by scholars such as Koopmans and Arrow and finally the introduction
of the topic into mathematical optimization by Kuhn and Tucker. It seems
to have taken quite a while for Pareto’s name to appear in the mathematical
optimization literature.
The consequence of the history of Pareto optimality outlined above, is that

at present there are quite a few terms (efficient, noninferior, nondominated,
admissible, Pareto optimal) that express the same idea. Since multi-objective
optimization often distinguishes between decision vectors x ∈ X and outcome
vectors y ∈ Y, one can find a large number of combinations of these terms
in the literature used in parallel today, such as Pareto optimal decisions and
efficient outcomes.
It turns out that the history of multi-objective optimization (vector optimiza-

tion) is quite an interesting read, and I would like to refer interested readers
to Stadler (1979) as a starting point. The history of multiple criteria deci-
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sion making in general is the topic of the book Köksalan et al. (2011). These
works also consider roots of multi-objective optimization in game theory and
the theory of ordered spaces and vector norms.
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The story begins in St. Petersburg in 1738. There Daniel Bernoulli proposed a
solution to the “St. Petersburg Paradox” by introducing the notion of a utility

function.
The problem is formulated in somewhat flowery terms as a game. It was

proposed by Nicholas Bernoulli, a cousin of Daniel, in a letter from 1713 to
Pierre Raymond de Montmort. Suppose I offer you a random sum of money
where the amount is determined from subsequent tosses of a fair coin in the
following way. The payoff equals 2n ducats if the first heads appears on the
n’th toss. Of course, this event has probability 2−n, so that the expected value
of the payoff equals

1
2
× 2 + 1

4
× 4 + . . .+ 1

2n
2n + . . . = ∞. (1)

Here is the question: how much would you be willing to pay to me as a fixed

price for obtaining this kind of lottery ticket?
It is instructive to discuss this question with students in a class and to ask

for bids. One rarely gets a bid higher than, say, 10 ducats.
This is remarkably far away from the expected payoff of the game which

is infinity. Clever students quickly ask a crucial question: are we allowed to
play this game repeatedly? This would change the situation dramatically! The
law of large numbers, which was already well understood in Daniel Bernoulli’s
times, at least in its weak form, tells you that in the long run the average win
per game would indeed increase to infinity. Hence in this case, clever students
would be willing to pay quite an elevated fixed price for the game.

But the flavor of the problem is that you are only offered to play the game
once. How to determine a reasonable value of the game?
Daniel Bernoulli proposed not to consider the nominal amount of money but

rather to transform the money scale onto a different scale, namely the utility

which a person draws from the money. For a good historic account we refer
to [4]. Daniel Bernoulli proposed to take U(x) := log(x) as a measure of the
utility of having an amount of x ducats. And he gives good reasons for this
choice: think of a person, an “economic agent” in todays economic lingo, who
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manages to increase her initial wealth w > 0 by 10%. Measuring utility by the
logarithm then yields that the increase in utility is independent of w, namely
log( 11w

10
)− log(w) = log( 11

10
).

Bernoulli therefore passes from the expected nominal amount (1) of the game
to the expected utility of the wealth of an agent after receiving the random
amount of the game, i.e.,

1
2
log(w − c+ 2) + 1

4
log(w − c+ 4) + . . .+ 1

2n
log(w − c+ 2n) + . . . , (2)

where w denotes the initial wealth of the agent and c the price she has to pay
for the game. Of course, this sum now converges. For example, if w − c = 0,
the sum equals log(4). This allows for the following interpretation: suppose the
initial wealth of the agent equals w = 4. Then c = 4 would be a reasonable
price for the game, as in this case the agent who uses expected log-utility as a
valuation of the payoff, is indifferent between the following two possibilities:
(1) not playing the game in which case the wealth remains at w = 4, yielding

a certain utility of log(4).
(2) Playing the game and paying c = 4 for this opportunity. This yields, by

the above calculation, also an expected utility of log(4).
The above method today is known as “utility indifference pricing”. We have

illustrated it for initial wealth w = 4, as the calculations are particularly easy
for this special value. But, of course, the same reasoning applies to general
values of w. It is immediate to verify that this pricing rule yields a price c(w)
in dependence of the initial wealth w which is increasing in w. In economic terms
this means that, the richer an agent is, the more she is willing to pay for the
above game. This does make sense economically. In any case, the introduction
of utility functions opened a perspective of dealing with the “St. Petersburg
Paradox” in a logically consistent way.
Let us now make a big jump from 18’th century St. Petersburg to Vienna

in the 1930’s. The young Karl Menger started with a number of even younger
mathematical geniuses the “Mathematische Colloquium”. Participants were,
among others, Kurt Gödel, Olga Taussky, Abraham Wald, Franz Alt. There
also came international visitors, e.g., John von Neumann or Georg Nöbeling. In
this colloquium a wide range of mathematical problems were tackled. Inspired
by an open-minded banker, Karl Schlesinger, the Colloquium also dealt with
a basic economic question: How are prices formed in a competitive economy?
As a toy model think about a market place where “many” consumers can buy
apples, bananas, and citruses from “many” merchants. We assume that the
consumers are well informed, that they want to get the best deal for their
money, and that there are no transaction costs.
This assumption implies already that the prices πa, πb, πc of these goods have

to be equal, for each merchant. Indeed, otherwise merchants offering higher
prices than their competitors could not sell their fruits.
For each of the consumers the market prices πa, πb, πc are given and, de-

pending on their preferences and budgets, they make their buying decisions
as functions of (πa, πb, πc). On the other hand, the merchants decide on these
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prices. For example, if the current prices are such that the apples are imme-
diately sold out, while few people want to buy the bananas, it seems obvious
that the price πa should go up, while πb should go down. This seems quite
convincing if we only have apples and bananas, but if there are more than two
goods, it is not so obvious any more how the prices for the apples and the
bananas relate to the demand for citruses.
This question was already treated some 50 years earlier by Léon Walras,

who was Professor of economics in Lausanne. He modeled the situation by
assuming that each agent is endowed with an initial wealth w and a utility

function U assigning to each combination (xa, xb, xc) of apples, bananas, and
citruses a real number U(xa, xb, xc). For given prices (πa, πb, πc), each of the
agents optimises her “portfolio” (xa, xb, xc) of apples, bananas, and citruses.
In this setting, we call a system of prices (πa, πb, πc) an equilibrium if “markets
clear”, i.e., if for each of the three goods the total demand equals the total
supply.
The obvious question is: Is there an equilibrium? Is it unique?
Léon Walras transformed the above collection of optimisation problems,

which each of the “many” agents has to solve for her specific endowment and
utility function, into a set of equations by setting the relevant partial deriva-
tives zero. And then he simply counted the resulting number of equations and
unknowns and noted that they are equal. At this point he concluded – more or
less tacitly – that there must be a solution which, of course, should be unique
as one can read in his paper “Die Gleichungen des Tausches” from 1875.
But, of course, in the 1930’s such a reasoning did not meet the standards

of a “Mathematische Colloquium” any more. Abraham Wald noticed that the
question of existence of an equilibrium has to be tackled as a fixed point problem
and eventually reduced it to an application of Brouwer’s fixed point theorem.
He gave a talk on this in the Colloquium and the paper was announced to
appear in the spring of 1938. However, the paper was lost in the turmoil of
the “Anschluss” of Austria, when the Colloquium abruptly ended, and most
participants had other worries, namely organising their emigration. It was only
after the war that this topic was brought up again with great success, notably
by the eminent economists Kenneth Arrow and Gerard Debreu.
Finally, we make one more big jump in time and space, this time to Boston

in the late 1960’s. The famous economist Paul Samuelson at MIT had become
interested in the problem of option pricing. Triggered by a question of Jim
Savage, Paul Samuelson had re-discovered the dissertation of Louis Bachelier,
entitled “Théorie de la spéculation”, which Bachelier had defended in 1900 in
Paris. Henri Poincaré was a member of the jury. In his dissertation Bachelier
had introduced the concept of a “Brownian motion” (this is today’s terminol-
ogy) as a model for the price process of financial assets. He thus anticipated
the work of Albert Einstein (1905) and Marian Smoluchowski (1906) who in-
dependently applied this concept in the context of thermodynamics.
Paul Samuelson proposed a slight variant of Bachelier’s model, namely
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putting the Brownian motion W on an exponential scale, i.e.,

dSt = Stµdt+ StσdWt, 0 ≤ t ≤ T. (3)

Here St denotes the price of a “stock” (e.g. a share of Google) at time t. The
initial value S0 is known and the above stochastic differential equation models
the evolution of the stock price in time. The parameter µ corresponds to the
drift of the process, while σ > 0 is the “volatility” of the stock price, which
models the impact of the stochastic influence of the Brownian motion W .

This model is called the “Black-Scholes model” today, as Fisher Black and
Myron Scholes managed in 1973 to obtain a pricing formula for options on the
stock S which is solely based on the “principle of no arbitrage”. This result
was obtained simultaneously by Robert Merton, a student of Paul Samuelson.
The “Black-Scholes formula” earned Myron Scholes and Robert Merton a No-
bel prize in Economics in 1997 (Fisher Black unfortunately had passed away
already in 1995).
Here we want to focus on a slightly different aspect of Robert Merton’s work,

namely dynamic portfolio optimisation, which he started to investigate in the
late sixties [3]. Imagine an investor who has the choice of investing either into a
stock which is modeled by (3) above, or into a bond which earns a deterministic
fixed interest rate, which we may assume (without loss of generality) to be
simply zero. How much of her money should she invest into the stock and how
much into the bond? The dynamic aspect of the problem is that the investor
can – and, in fact, should – rebalance her portfolio in continuous time, i.e., at
every moment.
To tackle this problem, Merton fixed a utility function U : R+ → R modeling

the risk aversion of the investor. A typical choice is the “power utility”

U(x) = xγ

γ , x > 0, (4)

where γ is a parameter in ]−∞, 1[ \ {0}. Of course, the case γ = 0 corresponds
to the logarithmic utility. One thus may well-define the problem of maximising

the expected utility of terminal wealth at a fixed time T , where we optimise over
all trading strategies. A similar problem can be formulated when you allow for
consumption in continuous time.
Here is the beautiful result by Robert Merton. Fixing the model (3) and the

utility function (4), the optimal strategy consists of investing a fixed fraction

m of one’s total wealth into the stock (and the remaining funds into the bond).
The value m of this fraction can be explicitly calculated from the parameters
appearing in (3) and (4).
To visualize things suppose that m = 1

2
, so that the investor always puts half

of her money into the stock and the other half into the bond. This implies that
the investor sells stocks, when their prices go up, and buys them when they go
down. A remarkable feature is that she should do so in continuous time which
– in view of wellknown properties of Brownian trajectories – implies that the
total volume of her trading is almost surely infinite, during each interval of
time!
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The method of Merton is dynamic programming. He defines the Hamilton–
Jacobi–Bellman value-function corresponding to the above problem. In this
setting he manages to explicitly solve the PDE which is satisfied by this value-
function.
Of course, this so-called “primal method” is not confined to the special set-

ting analysed by Robert Merton. It can be – and was – extended to many
variants and generalisations of the above situation.
There is also a dual approach to this family of problems which was initi-

ated in a different context by J.-M. Bismut [1]. In the Mathematical Finance
community this approach is also called the “martingale method”. Speaking
abstractly, Merton’s problem is just a convex optimisation problem over some
infinite-dimensional set, namely the set of all “admissible” trading strategies.
As is very wellknown, one may associate to each convex optimisation prob-
lem a “dual” problem, at least formally. The method consists in introducing
(an infinite number of) Lagrange multipliers and to find a saddle point of the
resulting Lagrangian function. This leads to an application of the minmax
theorem. Eventually one has to optimize the Legendre transform of U over an
appropriate “polar” set.
To make this general route mathematically precise, one has to identify appro-

priate regularity conditions, which make sure that things really work as they
should, e.g., existence and uniqueness of the primal and dual optimizer as well
as their differential relations. In the present case, there are two aspects of regu-
larity conditions: on the one hand side on the model of the stock price process,
e.g., (3), and on the other hand on the choice of the utility function, e.g., (4).
In order to develop a better understanding of the nature of the problem, from
a mathematical as well as from an economic point of view, it is desirable to
identify the natural regularity assumptions. Ideally, they should be necessary
and sufficient for a good duality theory to hold true.
In [2] this question was answered in the following way. As regards the choice

of the model S for the stock price process, virtually nothing has to be assumed,
except for its arbitrage freeness, which is very natural in the present context.
As regards the utility function U one has to impose the condition of “reasonable
asymptotic elasticity”,

lim sup
x→∞

xU
′(x)

U(x)
< 1, (5)

which is reminiscent of the ∆2 condition in the theory of Orlicz spaces. The
name “asymptotic elasticity” comes from the fact that the derivative U

′(x),
normalised by U(x) and x as in (5), is called the “elasticity” of U in eco-
nomics. To get a feeling for the significance of condition (5), note that for
a concave, increasing function U the above limit is always less than or equal
to 1. In the case of power utility (4) this limit equals γ < 1. Considering
U(x) = x

log(x) , for x > x0, we find an example where the above limit equals

1, i.e., a utility function U which fails to have “reasonable asymptotic elastic-
ity”.
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It turns out that condition (5) is a necessary and sufficient condition for the
duality theory to work in a satisfactory way. If it is violated, one can find a
stock price process S – in fact a rather simple and regular one – such that the
duality theory totally fails. On the other hand, if it holds true, the duality
theory, as well as existence and uniqueness of the primal and dual optimiser
etc, works out well, even for very general stock price processes S.
There is a lot of further research on its way on related issues of portfolio

optimisation. As an example, we mention the consideration of proportional
transaction costs (e.g., Tobin tax) in the above problem of choosing an opti-
mal dynamic portfolio. Of course, the most fruitful approach is the interplay
between primal and dual methods.
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