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PREFACE

Alexander Sergeevich Merkurjev — or just Sasha to his friends — was born
in 1955 in Leningrad (now St. Petersburg) Russia. His mathematical talents
manifested themselves at an early age. In 1972 he was a part of the eight
member Soviet team that won the first prize at the International Mathematics
Olympiad for high school students. (Sasha also won a silver medal for his
individual performance.)

In the early 1980s Sasha burst on the research scene, first with a proof of a
conjecture of John Tate about the K-theory of local fields, then with a proof of
a long-standing conjecture relating K5 of a field to the 2-torsion in its Brauer
group. Then, still in his 20s, Sasha (jointly with Andrei Suslin) strengthended
the latter result to settle a key conjecture in the theory of central simple alge-
bras. The theorem they proved, now known as the Merkurjev-Suslin theorem,
is generally recognized as a high point of 20th century algebra. It can be found
in many textbooks and has opened the door to many subsequent developments,
including Vladimir Voevodsky’s Fields medal winning proof of the Milnor Con-
jecture in the 1990s.

In the subsequent three decades Sasha has firmly established himself as one of
the world’s leading algebraists. He has made fundamental contributions in a
number of areas, including algebraic K-theory, quadratic forms, Galois coho-
mology, algebraic groups, arithmetic and algebraic geometry (including higher
class field theory and intersection theory), and essential dimension. His research
accomplishments, too numerous to detail here, have been recognized with a
prize of the St. Petersburg Mathematical Society (1982), a sectional lecture
at the International Congress of Mathematicians (1986), the Humboldt Prize
(1995), a plenary lecture at the European Congress of Mathematics (1996), the
AMS Cole Prize in algebra (2012) and a Guggenheim Fellowship (2013-14).
At 60, Sasha is full of creative energy. His lectures are crystal clear and effort-
lessly delivered, his papers are efficiently written and uniformly of the highest
quality. The three research monographs he has coauthored are standard ref-
erences in the subject. Sasha has been an inspiring thesis advisor to many
graduate students, both at St. Petersburg University and at UCLA, where he
has been on the faculty since 1997. According to the Mathematics Geneal-
ogy Project, eight students have written their Ph.D. dissertations under his
supervision at St. Petersburg University and fourteen at UCLA. Throughout
his career Sasha devoted a great deal of his time to organizing and running
high school mathematical competitions. He served as a member of the organiz-
ing committee for the St. Petersburg mathematical olympiad (in 1980-1999) as
well as of the national Soviet — and then Russian — olympiad (8 times).

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015)



2 PREFACE

We are happy to dedicate this volume to Sasha on the occasion of his 60th
birthday. DOCUMENTA MATHEMATICA is a particularly appropriate forum for
this volume in view of Sasha’s nearly 20 years of service as an editor, since
the first issue of DOCUMENTA in 1996. In addition to peer-reviewed papers
submitted by his friends and colleagues, this issue includes a new crossword
by one of Sasha’s PhD students who has published puzzles in venues such as
the New York Times, and also the first English translation of a brief note by
Merkurjev that has previously appeared only in Russian.

Happy birthday, Sashal

P. Balmer, V. Chernousov, I. Fesenko, E. Friedlander,
S. Garibaldi, U. Rehmann, Z. Reichstein

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015)
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At Mathematisches Forschungsinstitut Oberwolfach! in 1982

Lecturing at the Fields Institute thematic program Torsors,
Nonassociative Algebras and Cohomological Invariants in 2013.2

1 Author: George M. Bergman; Source: Archives of the Mathematisches Forschungsinsti-
tut Oberwolfach
2 Author: Nikolai Vavilov
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DOCUMENTA MATH.

ACROSS
1. " mial"
6. Burden

10. Singer Stefani

14. Sparkle, as in an eye

15. Prefix meaning "all"
16. "This is terrible!"

17. Merkurjev's favorite beer?

19. Encourage
20. Pelvic region

21. Mock-innocent question
22. Elman, Karpenko, and

Merkurjev, e.g.
25. Immediately

28. Princess's bane, in a fairy

tale

29. "The Annotated Flatland”

author Stewart

30. Merkurjev's favorite toolbox

item?

32. Ringmaster, for example
34. Lennart Carleson, for one

35. Brought into being

38. One doing the jitterbug,

maybe
42. Goods for sale
44, Chutzpah

45. Merkurjev's favorite rural

pastime?
50. Slippery swimmer
51. "___toit!"

52. Where we meet the
characters in a play
53. Berserk

54. Wedding locale, at times
56. "Man, it's sweltering today!

58. Svelte

59. Merkurjev's favorite formal

event?
64. Sao ___and Principe

65. Iron, Bronze, and Space,

notably

66. Root systems may be
simply, doubly, or triply

67. Actor McGregor
68. Left, on a ship

69. Marine mammal that floats

on its back

DOWN

1. ___ Grand (Las Vegas

casino)

2. "Float like a butterfly, sting

like a bee" speaker

MERKURJEV’S FAVES

ALEX BOISVERT

(Published via Across Lite)

3.

CoNona

10.
. Actress Goldberg of "Ghost"
12.
13.
18.
21.
22.
23.
24.
26.
. Workers on a ship
30.

31.
33.

Voice actor Blanc of
"Looney Tunes"

. Tropical smoothie staple

Love, in Latin
Nabokov novel
Foreboding

. Little worker
. Cube referenced in

probability classes
Vincent van ___

Tooth covering

"I reject your offer!"

Lion's yell

Glass-stomping occasion
Knots, as shoes
Wheelchair-friendly feature
Ancient Peruvian
Goings-on

"Hit Me With Your Best
Shot" singer Pat
Descartes's first name
"Groooooooss!"

36.

37.
39.
40.
41.
43.

45.
46.
47.
48.
49.

53.
. Prayer ender
57.

59.

60.
61.
62.
63.

"Etale Homotopy of
Simplicial Schemes" author
Friedlander

Section: Abbr.

Increased in size

At any time

Depend (on)

"Snape kills Dumbledore”,
e.g.

Pure

Empty on the inside

They may be global or local
Deepest

Soft drink brand with a
"Blue Ice Cream" flavor
Plate appearance

Site of an annual prize
announcement
Something a proof should
not have

In the past

Make a move

Jeans brand

One in charge, for short
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SECONDARY CHARACTERISTIC CLASSES

AND THE EULER CLASS

ARAVIND ASOK AND JEAN FASEL!

Received: September 18, 2014
Revised: March 10, 2014

ABsTRACT. We discuss secondary (and higher) characteristic classes f
algebraic vector bundles with trivial top Chern class. Wentlshow that

if X is a smooth affine scheme of dimensidmver a fieldk of finite 2-
cohomological dimension (witkhar(k) # 2) and E is a rankd vector
bundle overX, vanishing of the Chow-Witt theoretic Euler class Bfis
equivalent to vanishing of its top Chern class and theseghmiglasses. We
then derive some consequences of our main theorem Whsrof small
2-cohomological dimension.

2010 Mathematics Subject Classification: 14F42, 14C1510365S20

CONTENTS

1 INTRODUCTION 7
2 A MODIFICATION OF THE PARDON SPECTRAL SEQUENCE 11
3 SOME PROPERTIES OF THE DIFFERENTIALS 16

4 DIFFERENTIALS, COHOMOLOGY OPERATIONS AND THE EULER CLASS 24

1 INTRODUCTION

Supposek is a field having characteristic unequal 20 X = Spec(A) is a d-

dimensional smooth affinescheme and is a vector bundle of rankover X. There
is a well-defined primary obstruction tsplitting off a free ranki summand given
by “the” Euler class(&) of £ (see [Vlorl2, Theorem 8.2],fas0g Chapitre 13] and

1Aravind Asok was partially supported by National Scienceurfitation Awards DMS-0966589 and
DMS-1254892. Jean Fasel was partially supported by the DF@BIGFB Transregio 45.
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8 ARAVIND ASOK AND JEAN FaseL!

[AF13], which shows two possible definitions coincide for oriehteector bundles).
Whenr = d, Morel shows that this primary obstruction is the only obstion to
splitting off a trivial rankl summand, and we will focus on this case in this article.
Because the Euler class is defined using Chow-Witt theoryciwis not part of an
oriented cohomology theory (say in the senseldfl()7]), it is difficult to compute
in general. The vanishing of the Euler class implies the skiing of the top Chern
classcy(€) in CHY(X) [AF14q Proposition 6.3.1], though the converse is not true
in general. It is therefore natural to try to approximaté) using structures defined
only in terms of oriented cohomology theories. More prdgjs@e now explain the
strategy involved in studying such “approximations” aseleped in Sectio2.2

If X is as above, let us fix a line bundfeon X . One can define thé-twisted unram-
ified Milnor-Witt K-theory sheaflK}''V (L), which is a sheaf on the small Nisnevich

site of X. The £-twisted Chow-Witt groupC'H " (X, £) can be defined as the Nis-
nevich cohomology groupl¢(X, KXW (£)). With £ as above, the Euler clastf)
lives in this group withC = det £V.

If K} is the d-th unramified Milnor K-theory sheaf, then by Rost's formula
HYX,KY) = CHYX). There is a natural morphism of sheaves Xnof the

form KMW(£) — KM, which furnishes a comparison morphisﬁ/ﬁd(X, L) —
CHY(X) whose study is the main goal of this paper.

By a result of F. Morel, the kernel of the morphism of sheak®&$"V (£) — K3} is
the (d + 1)st power of the fundamental ideal in the Witt sheaf (twistgd’p, denoted
I9+1(£). The sheal?*! (L) is filtered by subsheaves of the folli( £) for r > d+1:

Loty c1tei L) L c 1 (L) c KYWY(L).
This filtration induces associated long exact sequencestinrnology and gives rise

to a spectral sequendg(£, MW )P-? computing the cohomology groups with coeffi-
cients inKXW(L).

When p = d = dim(X), we obtain a filtration of the group
HYX,KYW(L)) by subgroupsF"H(X,KMW (L)) for n € N such that
FOHYX,KNWY(L) = HYX,KYW(L)) and where the successive subquo-

tients FHY(X, KYW(£))/Fr T HY(X,KYW (L)) are computed by the groups
E(L,MW)Zd+n arising in the spectral sequence. If furthermaérdas finite 2-
cohomological dimension, then only finitely many of the gyei (£, MW)L4+" are
nontrivial and we obtain the following theorem.

THEOREM 1 (See Theorer®.2.9. Supposeé is a field having finit€-cohomological
dimension (and having characteristic unequa2jo Suppose&X is a smoothk-scheme
of dimensionZ and suppos€ is line bundle onX. For anya € H4(X,K}W (L)),
there are inductively defined obstructiohs (o) € E(£, MW)%+" for n > 0 such
thato = 0 if and only if U™ («) = 0 for anyn > 0.

The groupsF (£, MW)5'? are cohomology groups with coefficients eithei! or
in K§4/2 for j > d + 1, and thus they are theoretically easier to compute than the
cohomology groups with coefficients IlY"; this is the sense in which we have

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 7—-29



SECONDARY CHARACTERISTIC CLASSES . .. 9

“approximated” our original non-oriented computation yriented” computations.
The upshot is that it has finite2-cohomological dimension, we can use a vanishing
result from [AF141 (which appeals to Voevodsky’s resolution of the Milnor @t
ture on the mo@ norm-residue homomorphism) to establish the followingiltes

COROLLARY 2. Letk be a field havin@-cohomological dimensios (and having
characteristic unequal t@). If X is a smooth affiné-scheme of dimensiahand
¢ : &€ — X is arankd-vector bundle orX with ¢4(£) = 0, then& splits off a trivial
rank 1 summand if and only #™(£) = 0forn < s — 1.

The problem that arises then is to identify the differestialthe spectral sequence,
which provide the requisite “higher obstructions”, in cogte terms. To this end, we
first observe that there is a commutative diagram of filtregiby subsheaves

co——=1(L) — T (L) —— . ——= T (L) —= KW (L)

| |

oI (L) — s TN s TN (L) ———T4(L).

The filtration on the bottom gives rise to (a truncated versif) the spectral sequence
Pardon studiedHay; 0.13]; this spectral sequence was further analyzed inof.
Totaro showed that the differentials on the main diagon#iér’;-page of the Pardon
spectral sequence are given by Voevodsky's Steenrod sguapierationSq?. Using
the diagram above, we see that the differentials in the sgdesgquence we define
are essentially determined by the differentials in the Barspectral sequence, and
we focus on the latter. We extend Totaro’s results and olaailescription of the
differentials just above the main diagonal as well and, ngereerally, the differentials
in our L-twisted spectral sequence (see Theofleiny).

We identify, using the Milnor conjecture on the mddorm-residue homomorphism,
the (mod2) Milnor K-cohomology groups appearing in the pages of thectpal se-
guence above in terms of motivic cohomology groups. Via itiéstification, the
differentials appearing just above the main diagonal inspectral sequence can be
viewed as operations on motivic cohomology groups. Bilstaliperations of mod
2 motivic cohomology groups have been identified by Voevodsky:1( (if & has
characteristid®) or Hoyois-Kelly-@stvaeriK@13] (if k& has characteristic unequal
to 2). It follows from these identifications that the differeaifi in question are either
the trivial operation or the (twisted) Steenrod square. éati®n3.3 we compute
an explicit example to rule out the case that the operatidrivigl. Finally, we put
everything together in the last section to obtain, in patéig the following result.

THEOREM 3. Letk be a field havin@-cohomological dimensiofn(and having char-
acteristic unequal t@). SupposeX is a smooth affiné-scheme of dimensiahand

¢ : & = X is arankd-vector bundle onX with ¢4(€) = 0. The secondary obstruc-
tion ¥ () to £ splitting off a trivial rank1 summand is the class in the cokernel of
the composite map

2
N XK — B X, KRY2) O (xR /2),

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 7-29



10 ARAVIND ASOK AND JEAN FaseL!

(the first map is induced by reduction mgddefined as follows: choose a lift of the
classe(¢) € HY(X, 19 (det £)) and look at its image it (X, K}. | /2) under the
mapI®*!(det £)) — K}, /2. Furthermore: (i) ifk has cohomological dimensidn
then the secondary (and all higher) obstructions are autibeadly trivial and (ii) if &
has cohomological dimensi@ythen the triviality of the secondary obstruction is the
only obstruction tc&€ splitting off a trivial rank1l summand.

For the sake of perspective, recall that Bhatwadekar amth&ran asked whether the
only obstruction to splitting a trivial ranksummand off a rank2n + 1) vector bundle
£ on a smooth affing¢2n + 1)-fold X = Spec A is vanishing of a variant of the top
Chern class living in a groupy (A) [BS0Q Question 7.12]. The grou,(A) housing
their obstruction class is isomorphic to the Chow group-oficles orSpec A in some
cases; see, e.gB$99 Remark 3.13 and Theorem 5.5]. It is an open problem whether
the groupEy (A) is isomorphic to the Chow group of zero cycles in general. #re
byproduct of their question is whether (or, perhaps, whenjshing of the top Chern
class is sufficient to guarantee théatsplits off a free rankk summand. In view of
Theorem4.2.], the sufficiency of the vanishing of the top Chern class isvadent
to all the higher obstructions vanishing, which from ourrgaif view seems rather
unlikely. Nevertheless, Bhatwadekar, Das and Mandal hage/s that wherk = R,
there are situations when vanishing of the top Chern classfficient to guarantee
splitting [BDMO6, Theorem 4.30].

Remark4. Throughout this paper, we will assume tliahas characteristic unequal
to 2, but a result can be established:ihas characteristi2 as well. Indeed, one can
first establish a much stronger version of CorollanMore precisely, supposeis a
perfect field having characteristic If X is a smootht-scheme of dimensiod, and

¢ : & — X is arankd vector bundle onX, thene(¢) = 0 if and only if ¢4(§) = 0.
Establishing this result requires somewhat different arguts, and we will write a
complete proof elsewhere.

PRELIMINARIES

When mentioning motivic conomology, we will assurhés perfect. Thus, for sim-
plicity, the reader can assume thais perfect and has characteristic unequa®to
throughout the paper. The proof of Theordm.4in positive characteristic depends
on the main result of the preprintiK@13], which, at the time of writing, depends
on several other pieces of work that are still only availablpreprint form. We refer
the reader toffas0§ for results regarding Chow-Witt theoryl/[V\WO06] for general
properties of motivic conomology, antl![/99] for results about\!-homotopy theory.
We will consider cohomology of strictlys ' -invariant sheaves on a smooth schekhe
(see Sectio2.1for some recollections about the sheaves considered ipaipisr). In
the introduction, we considered these sheaves on the srisaléWch site ofX, but
below we will consider only sheaves in the Zariski topoloBy, e.g., [Vior12, Corol-
lary 5.43] the cohomology of a strictly!-invariant sheaf computed in the Zariski
topology coincides with cohomology computed in the Nisobwibpology.

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 7-29



SECONDARY CHARACTERISTIC CLASSES . .. 11

ACKNOWLEDGEMENTS

We thank Burt Totaro for a discussion related to the proof bédrem4.1.4 We
would also like to thank the referees for their thorough negaf the first version of
this paper and a number of useful remarks.

2 A MODIFICATION OF THE PARDON SPECTRAL SEQUENCE

In this section, we recall the definition of twisted Milnorit\K-theory sheaves and
various relatives. We then describe a standard filtratiotmested Milnor-Witt K-
theory sheaves and analyze the associated spectral sequenc

2.1 UNRAMIFIED POWERS OF THE FUNDAMENTAL IDEAL AND RELATED
SHEAVES

Let k& be a field of characteristic different frothand letSm,;, be the category of
schemes that are separated, smooth and have finite typ&euei). Let W be the
(Zariski) sheaf orsmy, associated with the preshe@f— W (X ), wherelV (X) is the
Witt group of X ([Kne77, [Knu91]). If X is a smooth connectddscheme, then the
restriction of W to the small Zariski site o\ admits an explicit flasque resolution,
the so called Gersten-Witt compléX X, W) ([BW02], [BGPWO032):

~ P Wnk(@) % @ Walk@) 2 @ Walk(z) -

zeXx ™) zeX () zeX®)

Here, Wy (k(z)) denotes the Witt group of finite lengttOx ,-modules
([Parg81,[BO87), which is a freelW (k(x))-module of rank one.

For anyn € Z, let I"(k(z)) C W (k(z)) be then-th power of the fundamental
ideal (with the convention that" (k(z)) = W (k(z)) if n < 0) and letl},(k(z)) :=
I"(k(x)) - Wri(k(x)). The differentialsi; of the Gersten-Witt complex respect the
subgroupd’y,; (k(z)) in the sense that; (1}, (k(z))) C [?l‘l(k(y)) foranyi € N,
re XD ye X0t andn € Z ([Gil07],[Fas08 Lemme 9.2.3]). This yields a
Gersten-Witt complex’ (X, I7):

= @ ket D ) = D
reX @) reX(2) zeX(3)

for any j € Z which provides a flasque resolution of the sh&afi.e., the sheaf
associated with the preshe&f — H°(C(X,17)). There is an induced filtration of
the shealW by subsheaves of the form:

.CclVclVlc...cIcWw,

the successive quotients are usually given special natalib := I/ /1+! for any
jeN.
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12 ARAVIND ASOK AND JEAN FaseL!

The exact sequence of sheaves
0— I 1 T —o0

yields an associated flasque resolutiorijoby complexes’ (X, T ) [Fas07 proof of
Theorem 3.24] of the form:

Phx)> P T k)2 @ T 2k@)> @ T k@) >....

reXx @) reX(2) reX(3)

The subscriptfi appearing in the notation above has been dropped in vieweof th
canonical isomorphism

T (k(2)) = I (k(2)) /T (k(x) — L3 (k(x)) /157 (k(2)) = T (k(z))

induced by any choice of a generator 16f;; (k(x)) as W (k(x))-module ([as0§
Lemme E.1.3, Proposition E.2.1]).

Suppose now thak is a smoothk-scheme and is a line bundle onX. One may
define the shea®W (L) on the category of smooth schemes o¥eas the sheaf asso-
ciated with the preshedff : Y — X} — W (Y, f*£), where the latter is the Witt
group of the exact category of coherent locally ffeg-modules equipped with the
duality Home (-, £). The constructions above extend to this “twisted” context a
we obtain sheaveF (£) for anyj € Z and flasque resolutions of these sheaves by
complexes that will be denoted( X, 17 (L)).

There are canonical isomorphisifis= 17 (£) /I7+! (£) and we thus obtain a filtration
.CU(L)cP (L) ... c (L) C W(L) and long exact sequences

0— (L) — V(L) —T — 0. (2.1.1)

Let F. be the class of finitely generated field extensionk.ofs usual, writel M (F')
for the n-th Milnor K-theory group as defined ir/[I70] (with the convention that
KM(F) = 0if n < 0). The assignment’ — KM (F) defines a cycle module in
the sense offfos96 Definition 2.1]. We denote b¥XM the associated Zariski sheaf
([Ros96 Corollary 6.5]), which has an explicit Gersten resolutigrnflasque sheaves
([Ros96 Theorem 6.1]). The same ideas apply for Milngrtheory modulo some
integer and, in particular, we obtain a sh&gf! /2.

For any FF € F, and anyn € N, there is a surjective homomorphissy :
KM(F)/2 — T"(F) which, by the affirmation of the Milnor conjecture on quadrat
forms [OVV07], is an isomorphism. The homomorphismsrespect residue homo-
morphisms with respect to discrete valuations (etgasp§ Proposition 10.2.5]) and
thus induce isomorphisms of shealt€¥' /2 — T" for anyn € N.

For anyn € Z, then-th Milnor-Witt K-theory sheaKMW can (and will) be defined
as the fiber product

K’rl\L/IW > "

|

KM T
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SECONDARY CHARACTERISTIC CLASSES . .. 13

where the bottom horizontal morphism is the compokifé¢ — KM /2 24 T" and
the right-hand vertical morphism is the quotient morphistriollows from [Mor04,
Théoreme 5.3] that this definition coincides with the oiveg in [Mor12, §3.2].

If £is aline bundle on some smooth scheMgthen we define th€-twisted sheaf
KMW(£) on the small Zariski site ok analogously using-twisted powers of the
fundamental ideal. Again, the resulting sheaf has an explisque resolution ob-
tained by taking the fiber products of the flasque resolutin@stioned above ffas07
Theorem 3.26]), or by using the Rost-Schmid complex'db12, §5]. The above
fiber product square yields a commutative diagram of shatiegequences of the
following form:

0 ——I"t (L) —= KMV (L) KM 0 (2.1.2)
0 ——I"t1(L) 1"(L) I 0.

2.2 THE PARDON SPECTRAL SEQUENCE

Continuing to assumkis a field having characteristic unequaltdet X be a smooth
k-scheme and suppogeis a line bundle oveX. The filtration

ULy cP L) C...cI(L) cW(L)

yields a spectral sequence that we will refer to asRhglon spectral sequenc&Ve
record the main properties of this spectral sequence taleyfng the formulation of
[TotO3 Theorem 1.1].

THEOREM 2.2.1 Assumek is a field having characteristic unequal &y X is a
smoothk-scheme, and’ is a line bundle onX. There exists a spectral sequence
E(L)>? = HP(X, 1) = HP(X,W(L)). The differentialsi(£), are of bidegree
(1,7 — 1) for r > 2, and the groupdi?(X, Tq) are trivial unlessd < p < ¢. There
are identificationsH?(X,T") = CH?(X)/2 and the differentiatly” : H?(X,T") —
HPHY(X, TPH) coincides with the Steenrod square operatiy? as defined by Vo-
evodsky ([oe03[) and Brosnan (Bro0d) when L is trivial. Finally, if £ has finite
2-cohomological dimension, the spectral sequence is balinde

Proof. All the statements are proved indi03 proof of Theorem 1.1] except the last
one, which follows from the cohomology vanishing statemamitained in fF14h
Proposition 5.1]. O
Remark 2.2.2 We will describe the differentiald(£)?” : H?(X,T') —
HP+Y(X, T for £ nontrivial in Theorens.4.1

SinceW(L£) = I°(£) by convention, truncating the above filtration allows us to
construct a spectral sequence abutting to the cohomolaljy 6§ for arbitrary; > 0:

eIty c1tTl L)y L. cPTH(L) c T (L).
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14 ARAVIND ASOK AND JEAN FaseL!

The resulting spectral sequenggL, j)P-? is very similar to the Pardon spectral se-
quence. IndeedE(L,j)5? = 0if ¢ < jandE(L,;)5? = E(L)5? otherwise.
Similarly d(£, j)5? = 0if ¢ < j andd(L,j)5? = d(L)5? otherwise. We call
this spectral sequence thidgruncated Pardon spectral sequeramed it will be one of
the main objects of study in this paper. Using the descipbibthe F»-page of this
spectral sequence and the associated differentials, tloé @irthe following lemma is
straightforward (and left to the reader).

LEemMmA 2.2.3 Assumeék is a field having characteristic unequal foand suppose
X is a smoothk-scheme of dimensio#. There are identifications (£, d)%? =
CH%(X)/2 and, for anyn > 1, E(L,d)%4" = E(L)L+7 if m < n + 1 and
exact sequences

d(c)yd-td
B(L) v —= B B(L, d)%3+" —— 0.

Using the monomorphisiti ™! (£) ¢ KW (L) described in the previous section, we
can consider the filtration df +*(£) as a filtration of K}V (£) of the form:

oIy T TNL) L c PR (L) c KYY(L).

Once again, the spectral sequeit{e, MW )?:? associated with this filtration is very
similar to thej-truncated Pardon spectral sequence. Indeed, there artéfiwigions
E(L,MW)5? = E(L,j)y?if ¢ # jand E(L,MW)y? = H?(X,K}"). In order
to describe the term&(L£, MW)Z¢ in the situation of interest, we first need a few
definitions.

Consider the commutative diagram of sheaves with exact fimas Diagram?2.1.2

0 — T (L) —KW(L) — K} —=0

L

0 —Tt(L) (L) T 0.

The right vertical homomorphisﬁ(y — T is described in the previous subsection
and yields, in particular, a homomorphisiV ! (X, K}) — H/~1(X,T') whose
image we denote by (j). Now, Hi-(X,T) = E(L,j)," = E(£),™"7 and
there is a differential

ALy, BL)y Y — B
We setG3(j) := Ga(j) Nker(d(£)} "7 and writeG(5) for its image inE(L); .
There is also a differential

d(Lyy s BLY T — B

and we seGy(j) := G3(j) Nker(d(£)} ") and defineG,(j) to be its image in
E(£),~"7. Continuing inductively, we can define a sequence of suggroy, (j) C
E(L£)i=13 for anyn > 2.
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LEMMA 2.2.4 If k is a field having characteristic unequal # and X is a smooth
k-scheme of dimensiafy then there are isomorphisnis(£, MW)4? = CHY(X),
and E(£, MW)3~ "% = H4-1(X K. Furthermore, for any integen > 1, there
are identifications? (£, MW)Ld+n = p(£)4d+m if i < n 4 1 and exact sequences
of the form

_ d(cyd e
Gri1(d) ——= E(L)y " —— B(L,MW)%+" ———0.

Proof. The morphism of sheavds}'V(£) — 1¢(L) is compatible with the filtra-
tions:

co—— 1) —— T (L) —— . ——= T (L) —= K}V (L)

| l

oI (L) TN L) — | ——T(L) ———T4(L)

In particular, the induced maps of quotient sheaves arelgiting identity map, except
at the last spot where they fit into the commutative diagram

0 —=I(L) —= KMV (L) — K} —=0

|

0 —> I¢t1(r) (L) T 0

The result now follows from the definition of the grou@s(d) and Lemm&.2.3 O

Remark 2.2.5 By construction, there are epimorphisnis(£, MW)L4 4 —
E(L,d)%L*" for anyn > 0. Indeed,G,1(d) is, by definition, a subgroup of
E(L)ijrll’d and the diagram

Gryi(d) — B(L) " —— B(L,MW)&5" —— 0

n+1
l/ ‘ |

I
E(L)y 1y — By —— E(L, d)&" " ——0

N

commutes.
Suppose thak is a smoothk-scheme of dimensiod such that the Chow group of
0-cyclesCH?(X) is 2-torsion free. In that case, we claim that the dotted arrow in
the above diagram is an isomorphism. To see this, observéhaxact sequence of
sheaves

0— 2K — K — KM/2 —0

yields an exact sequence

H (X, KM > H (X, KM /2) — HY(X, 2KM) —
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16 ARAVIND ASOK AND JEAN FaseL!
— HY(X,K}) — HY(X,K}'/2) — 0.

The epimorphismK}Y! N 2K} yields an isomorphismH?(X,KY) —
H?(X,2K}!) and we deduce the following exact sequence from Rost's famu
and the definition o7z (d):

0 — Go(d) = H*H(X, KN /2) = CHY(X) -2 CHY(X) — CHY(X)/2 — 0.

SinceCHY(X) is 2-torsion free, it follows thatis(d) = H4 (X, K} /2) and by
inspection we obtain an identificati@®, 1 (d) = E(ﬁ)ﬁ;ll’d. We therefore conclude
that the dotted arrow in the above diagram is an isomorphism.

THEOREM 2.2.6 Supposé: is a field having characteristic unequal foand finite
2-cohomological dimensionX is a smoothk-scheme of dimensiahand £ is a line
bundle overX . For anya € H4(X, K}W (L)) there are inductively defined obstruc-
tions U™ (o) € E(L,MW)%4+" for n > 0 such thatn = 0 if and only if U (a) = 0
for anyn > 0.

Proof. The filtration
oIty c1tiTl ) oL c 14T (L) < KYY (L)

to which the spectral sequendB(L, MW)P:? is associated yields a filtration
FrHY(X,KMW(L)) for n > 0 of the cohomology grougf (X, K}W (L)) with
FORY(X,K)W(L)) = (X, K}W(L)) and

FPHYX,KYW (L)) = Im(HYX, T4 (L)) — HYX,KYW (L))

for n > 1.  Further, F"HY(X,KYWY(L))/F" 1 HYX, KYWY(L) =
E(L,MW)%d+n and the cohomological vanishing statement &f{4h Propo-
sition 5.1] implies that only finitely many of the groups appag above can be
non-trivial. If we define the obstructions™(«) to be the image of in the successive
quotients, the result is clear. O

The above result gives an inductively defined sequence dfwti®ns to decide
whether an element off¢(X, K}W (L)) is trivial. Our next goal is to provide a
“concrete” description of the differentials appearinglie tspectral sequence. Lem-
mas2.2.3and2.2.4imply that these differentials are essentially the diffeias in the
Pardon spectral sequence, and it is for that reason that eus fan the latter in the
remaining sections.

3 SOME PROPERTIES OF THE DIFFERENTIALS

In this section, we establish some properties of the diffeas in the Pardon spectral
sequence and thus the spectral sequence constructed iretheus section abutting
to cohomology of twisted Milnor-Witt K-theory sheaves. Wesfirecall how these
differentials are defined and then show that, essentidlly tan be viewed as bi-
stable operations in motivic cohomology.
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SECONDARY CHARACTERISTIC CLASSES . .. 17

3.1 'THE OPERATION P, ;

SupposeX is a smoothk-scheme and is a line bundle onX. Recall that for any
j € N, the sheall’(£) comes equipped with a reduction mBg£) — I/ and that

there is a canonical isomorphiski)' /2 — T7; we use this identification without
mention in the sequel. The exact sequence

0— T (L) —TL) —T —0
yields a connecting homomorphism
Hi(X,T) 25 H (X, VT (L)).
The reduction map gives a homomorphism
HWN (X, PH(L) — HTH(X, TP,

Taking the composite of these two maps yields a homomorpttiatris precisely the
differentiald(L)5” . We state the following definition in order to avoid heavyatiin.

DErINITION 3.1.1 If X is a smooth scheme, audis a line bundle onX, write
;0 H(X, V) — HTH(X, T,

for the composite of the connecting homomorphi@mand the reduction map just
described. IfC is trivial, suppress it from the notation and wribg ; for the resulting
homomorphism. Anticipating Theorefh1.4 we sometimes refer t@; ; » as an
operation.

Wheni = j, via the identificationl’ =~ K}'/2, the map®;; can be viewed as
a morphismCh(X) — Ch*™(X), whereChi(X) = CH'(X)/2. As stated in
Theorem?2.2.1, Totaro identified this homomorphism &%2. More generally, we
observe that the homomorphisis; » are functorial with respect to pull-backs by
definition.

3.2 DBI-STABILITY OF THE OPERATIONS ®; ;

We now study bi-stability, i.e., stability with respect®d-suspension, of the opera-
tions®; ;. If X is a smooth scheme, we then need to compare an operati&neoml

a corresponding operation on the spateslP'. The reader unfamiliar to this nota-
tion can take the following ad hoc definition. B is a sheaf, thed/* (X, AP*, F) is
defined to be the cokernel of the pull-back homomorphism

HY(X,F) — H (X x PL,F).

In caseF = I/, we use the projective bundle formulalf-cohomology (see, e.g.,
[Fas138§4]) to identify this group in terms of cohomology oh. Indeed, we have an
identification

HY(X xP' V)= (X, V)o H (X, ™) & (0(-1)),
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18 ARAVIND ASOK AND JEAN FASEL!
whereé; (O(—1)) is the first Chern class @(—1) in H'(X, K} /2) = CH!(X)/2.
Unwinding the definitions, this corresponds to an isomaphof the form

HY (X APL V)= H-H X, T

that is functorial inX. Using this isomorphism, we can compare the operatipn
on H (X AP', I7) with the operatior®; 1 ;1 on H~1 (X, /1),

ProposiTION 3.2.1 There is a commutative diagram of the form

) R ) _.
Hi (X APV T) —2 Hit (X, AP, )

l |

Hifl(X, ijfl) Hi(X, ij)7

Pi1,5-1
where the vertical maps are the isomorphisms describedd#ie statement.

Proof. The operationd; ; is induced by the composite morphism of the connecting
homomorphism associated with the short exact sequence

0—TVH 1V 5T —0

and the reduction map ™! — I’+!. The contractions o andI’ are computed in
[AF148 Lemma 2.7 and Proposition 2.8] and our result follows imiatsdy from the
proofs of those statements. O

Remark3.2.2 Because of the above result, we will abuse terminology afet te
®, ; as a bi-stable operation.

3.3 NON-TRIVIALITY OF THE OPERATION ®; 1 ; »

Our goal in this section is to prove that the operatign, ; is nontrivial. By definition,
the operatior; _; ; can be computed as follows: given an elemermt H~!(X, I%),

we choose a lift taC*~1(X,I¢), apply the boundary homomorphism to obtain an
elementd; (o) € C(X,I‘) which becomes trivial under the homomorphism
CH(X,I') — CYX,I') (sincea is a cycle). There exists thus a unique lift of
d;—1(a) € CY(X,I"1), which is a cycle sincé;d;_; = 0. Its reduction inH*( X, I?)

is ®;_1 ; () by definition. We use the identificatidi’ 1 (X, T') = H*~ (X, KM/2)
and the computations of Suslin in the case whE€re- S L3 to provide explicit gen-
erators. More preciselyS[is91 Theorem 2.7] shows thdf ! (SL;, K3!/2) = Z/2,
H?(SL3, K} /2) = Z/2. We begin by finding explicit generators of the groups con-
sidered by Suslin and transfer those generators underdimoiphisms just described
to obtain explicit representatives of classed#ih(S L3, I%) and H?(S L3, I%). Then,
we explicitly compute the connecting homomorphism and éaiction. Our method
and notation will follow closely $us971 §2].

For anyn € N, let Q2,1 C A?" be the hypersurface given by the equation
Z?:l riy;, = 1. Let SL,, = SpeC(k[(ti]‘)lgiﬁjgn]/<det(ti]‘) — 1>) and write
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an = (tij)1<i,j<n for the universal matrix o L,,, and ("), <; j<,, for its inverse
a,l. Forn > 2, we embedSL, _; into SL,, as usual by mapping a matri¥’ to
diag(1, M), and we observe that the quotient is precisgly,_, by means of the ho-
momorphismf : SL, — Q2,1 given by f*(z;) = t1; and f*(y;) = t''. Now
Q2n,—1 is covered by the affine open subscherbgs:= D(z;) and the projection

f : SL, — Qa2,—1 splits over eactlV; by means of a matrix; € E,(U;) given

for instance in $us91 §2]. The only properties that we will use here are that these
sections induce isomorphisnfs * (U;) ~ U; x SL,_1 mapping(an)ufl(mm‘l to
diag(1, a,,—1). Recall next from il81, §2], that one can define Chern classes

ci i Ki(X) — HY(X,K}{,/2)

functorially in X. In particular, we have Chern classes : K;(SL,) —
H'(SL,,K},/2) and we setl; ,, := c;(a,).

The stage being set, we now proceed to our computations. Wenplicitly use the
Gersten resolution of the sheaud€$! /2 in our computations below. Observe first that
the equationss = ... = z,, = 0 define an integral subschen’g C Q»,_1, and
that the global section; is invertible onZ,,. It follows that it defines an element in
(K)/2)(k(Z,)) and a cycld,, € H" " (Qan—1, KM,

LemMA 3.3.1 For any smooth schem¥, the H*(X, KM /2)-moduleH * (Qay,—1 x
X, KM/2) is free with basid, 6,,.

Proof. Apply the proof of Fus9] Theorem 1.5] mutatis mutandis. O

Since@s = SL», we can immediately deduce a basis for the cohomology lof.
However, we can reinterprét as follows.

LEMMA 3.3.2 If X is a smooth scheme, theH*(SL, x X,KM/2) is a
free H*(X,KM/2)-module generated byy € H°(X,K}/2) and di» €
H'(SLy, K3 /2).

Proof. Again, this is essentially§us97] proof of Proposition 1.6]. O

Before stating the next lemma, recall that we have a praectiorphismf : SL; —
Qs, yielding a structure off *(Qs5, KM /2)-module on the cohomology &fL.

LeEMMA 3.3.3 The H*(Qs5, KM/2)-module H*(S L3, KM/2) is free with basisl
anddl,g.

Proof. Using Mayer-Vietoris sequences in the spirit 891 Lemma 2.2], we see
that it suffices to check locally thatandd; 5 is a basis. Let/; C (Q2,—1 be the open
subschemes defined above. We know that we have an isomorghisi;) ~ U; x
SLo mapping(a3)|f_1(Ui)7;1 to diag(1, a2). The Chern class; being functorial,
we have a commutative diagram

Cc1

K1(SLs) H'(SL;, K} /2)

‘| I

K\ (fHU:) —= HY(fH(U:). K3'/2)
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where the vertical homomorphisms are restrictions. We #eesthati*(dy, 3) =
i*(Cl((){g)) = Cl(i*(ag)). Since% S Eg(Ui), we see thaztl(i*(ag)) = Cl(p*OéQ) =
p*dy 2 wherep : f~1(U;) — SLs is the projection. The result now follows from
Lemma3.3.2 (|

Combining Lemmas.3.2and3.3.3 we immediately obtain the following result.

COROLLARY 3.3.4 We have/!(SLs, K3 /2) = Z/2-dy 3 and H?(SL3, K} /2) =
Z]2- f*(05s).

The cyclef*(03) is very explicit. Indeed, it can be represented by the cldsheo
global sectiort;; in (K} /2)(k(z1)) wherez; is given by the equations, = t13 =
0. We now makel; 3 more explicit. Recall thatvs = (¢;;) is the universal matrix
onSLz anday ! = (#¥9) is its inverse. In particular, we ha\E‘;?:l titih =6, =

St

Lemma 3.3.5 Ify; € SLY" is defined by the idedt!?) andy, € SL" is defined
by the ideal(t;2), then a generator for the groufl* (S L3, K3'/2) = Z/2, is given
by the class of the symbol

&= {t"*} + {t13}
in K3 (k(y1))/2 & KV (k(y2)) /2.

Proof. The image of{t13} under the boundary map in the Gersten complex is the
generator oK}/ (k(z1))/2 wherez; is the point defined by the idea] := (t12,t13),
while the image of{t?} is the generator oK}/ (k(z2))/2 where 2, is the point
defined by the ideall, := (t12,¢!3). It suffices then to check that = z, to conclude
that¢ is a cycle.

The equalityzi?:1 t1t;1 = 1 shows that!! is invertible modulal; and we deduce
from Z;’.’:ltljtﬂ = 0 thatt;» € L. Similarly, we deduce fronzj.’zltljtjg =0
thatt,3 € I, and thereford; C I,. Reasoning symmetrically we obtain tHatc I,
proving the claim.

Since¢ is a cycle, it defines a class #'(SLs, K)!/2) = 7/2 and it suffices thus
to show that the class df is non trivial to conclude. Consider the embedding (of
schemes, but not of group schemes)S L, — S L3 given by

" " 0 -1 0
( 1 12) = | U11 0 ui2 | .
U21 U222 Uoy 0

Since this morphism factors through the open subschﬁmﬁtl}l] = f~1(U;) and
the inverse of the above matrix is given by the matrix

0w —uie
1 0 0o |,
0 —w21 un
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it follows thatg*(¢) is represented by the class faf22} in K} (k(s))/2, wheres is
given byu;s = 0. One can then verify directly that this cycle equals the gatoe
dy,2 givenin LemmaB.3.2 and it follows that; # 0. O

ProrosiTiON 3.3.6 The operationP;_; ; is non-trivial.

Proof. We compute the effect of the operati®n » on elements of/!(S L3, K3!/2).
By definition, ®, » is the composite

H'(SL3,K}/2) = H'(SL3,1?) — H*(SL3,1%) —
— H*(SL3,T%) = H*(SL3,K3}'/2)

where the left-hand map is the boundary homomorphism essakcivith the exact
sequence of sheaves

0—I =1 =1 —0
and the right-hand map is the projection associated withntbephism of sheaves
I? — I3. We will show that®, » is an isomorphism by showing that the explicit
generator off 1 (SLs, K} /2) constructed in Lemma.3.5is mapped to the explicit
generator of72(SL3, K3!/2) constructed in Corollarg.3.4
Recall from Sectior2.1the Gersten resolutiofi( X, I/) of the sheal’, which takes
the form

BHX) = @ 17 6@) > @ 520@) = @ 1 k@) > .

reXx @) r€eX(2) zEX(3)

where X is a smooth scheme, anfd, ' (k(z)) = I~ (k(x)) - Wy (Ox ). Take
X =SLs.
An explicit lift of the generator of7!(S L3, K3!/2) given in Lemma3.3.5is of the
form

(1,82 - p1 + (=1, t13) - po
wherep; : Ek(y1) — Extggm1 (k(y1), Ox,y,) Is defined by mapping to the
Koszul complexKos(t13) associated with the regular sequertég and similarly
P2 k(y2) — Exto}“ (k(y2), Ox,y,) is defined byl — Kos(t12). Using [Fas0§
Section 3.5], the boundaty[ of the above generator is of the fown + v», where

v k(z) — Ext?gxyz(k(z), Ox,z)
is defined byl — Kos(t3,t2) and
vyt k(z) — Ext?gxyz(k(z), Ox,z)

is defined byl — Kos(ti2,t13). Recall from the proof of Lemma.3.5thatt!! €
0% . and it follows thus from the identitieEf:1 tt;, = 0 for k = 1,2 that we

have
t12 B _t32/t11 _t22/t11 t13
t13 - _t33/t11 _t23/t11 t12 .
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NOW t3ato3 — taotss = —t1t andt!it;; = 1 modulo(t'2,¢!3) and we therefore get
vi+ve = (1t1n) v =(1,1)+(=1,t11)) -1

A simple computation shows that, 1) - v, is the boundary of(1,t13) ® (1,%13)) -
p2 and therefore vanishes if?(SL3,I3). Now the class of(—1,¢;;) - vy in
H?(SL3, 1) = H?(SL3,K}!/2) is precisely a generator as shown by Corollary
3.3.4 Thus,®; 5 : H'(SL3, K /2) — H?(SL3,K}!/2) is an isomorphism. O

3.4 IDENTIFICATION OF ®; 1 ; »

If £ is a line bundle over our smooflischemeX, we writec; (£) for its first Chern
class inH' (X, KM/2) = CH'(X)/2.

THEOREM 3.4.1 For any smooth schem¥, anyi,j € N and any line bundle&
over X, we have
(I)i,j,ﬁ = (CI)Z‘J +51(£)U).

Proof. In outline, the proof will proceed as follows. We consideg tbtal space of
the line bundleL over X. By pull-back stability of the operation and homotopy in-
variance, we can relate the operatiby); » with the operatior; ; on the total space
of the line bundleZ, with a twist coming from the first Chern class of the line biend
via the various identifications. To establish the resultfraek the action ofd; ; » on
suitable explicit representatives of cohomology cladsemugh the identifications just
mentioned; for this, we use symmetric complexes and sonasioEBalmer.

As in the proof of Propositior3.3.6 we consider the Gersten-Witt complex &f
(filtered by powers of the fundamental ide@lj X, I/ (£)):

PO L @ Pk S @ Pk S

zeX @) zeX ()

In the case wherg = Ox, we will drop £ from the notation. Recall that there is an
exact sequence of complexes

0— C(X, (L)) — C(X, V(L)) — C(X,TV) — 0.

If « € HY(X,T’), then®, ; - («) is defined as follows. &' € C*(X,1/(L)) is any
lift of «, then its boundarg’ (/) € C**1(X,T7(L)) is the image of a unique cycle
B € CHYX,PH1(L)). The reduction of in C*H1(X, T/ +1) is precisely®; ; o (a).
Let us observe nextthatif: L — X is the total space of, thenp induces morphisms
of complexegp* ([Fas0§ Corollaire 9.3.2]) fitting into the following commutative
diagram:

00— C(X,T+1(L)) C(X, V(L)) —= O(X,T) —=0

I I I

0 —— C(L, UVt (p*L)) —= C(L,V(p*L)) — C(L,IV) —— 0.
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By homotopy invariance, the vertical morphisms induce isgrhisms on cohomol-
ogy groups by [fas08 Theoreme 11.2.9]. We use these identifications to replc
by L in what follows.

Now, let us recall how to obtain explicit representativesdtements ofH ‘(X I7);
this involves the formalism of{W/0Z]. Leta € H(X,T’) and leta’ € C*(X,17) be
a lift of «. Under the equivalences af{/02, Theorem 6.1, Proposition 7.1}, can
be seen as a compléx of finitely generated x -locally free modules, together with
a symmetric morphism (for theth shifted duality)

Y : Py — T'Hom(P,, Ox)

whose cone is supported in codimension + 1. By definition,d;(«’) is the local-
ization at the points of codimension+ 1 of the symmetric quasi-isomorphism on
the cone ofy) (constructed for instance if3[/VO2, Proposition 1.2]), after dévissage
([BWO2, Theorem 6.1, Proposition 7.1]).

The first Chern class qf* £ appears in a natural way using this language. We want
to choose a representative @f(p*£) in H'(L, K} /2) = H'(L,I). A lift of this
element toH ' (L, I(p* L)) can be described as follows. The zero section

5s: 0, —p*L

can be seen as a symmetric morphi®n — Home, (O, p*L), which is an iso-
morphism after localization at the generic pointigfand whose cone is supported in
codimensiori. It follows thats can be thought of as an element@t(L, W (p*L)).
The class oﬂg*ﬁ(s) can be viewed as an element@f (L,I(p*L)), and its projec-
tionin H'(L,I) = Pic(L)/2 is precisely the first Chern class gf£ ([Fas13 proof

of Lemma 3.1]).

To lift an elementy € H(X,17) to an elemend’ in C*(X, 1/ (L)), we will first find
alift o’ € C*(X,17) and then multiply bys in a sense to be explained more carefully
below to obtain our lifta’. A Leibniz-type formula can then be used to compute the
boundary of this product and derive the formula in the statgof our theorem.

Using the product structure (say the left one) on derivedgmies with duality of
[GNOJ, we can obtain an element 6f (L, I/ (p*£)) lifting p*« € H'(L,1’) using
the symmetric morphism

p @ s : p* Py — T'Hom(p* P, p*L).

The degeneracy locus pfv in the sense offjal05 Definition 3.2] is, by definition,
the support of its cone, which has codimension+ 1 in L. The degeneracy locus of
s has codimensiom in L and intersects the degeneracy locupaf transversally.
Now, we are in a position to apply the Leibniz formula 8|05 Theorem 5.2] (while
the hypotheses of the quoted result are not satisfied in ¢twatigin, the proof of
[Fas07 Propostion 4.7] explains why the formula continues to hiolthe case where
the intersection of degeneracy loci is transversal). Sivewill momentarily consider
the sheafl’ whose cohomology groups a2etorsion, we can ignore signs, in which
case the Leibniz formula gives the equality:

& @ ) = di(p") @ s +p" @ df (s) (3.4.1)
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in CH (L, T (p* L)).

Sincep*a € HY(L,T7) andp*y @ s lifts p*a in CY(L,17(p*L)) it follows that
d"“(p*y © s) actually belongs ta*+! (L, I+ (p*£)). For the same reason, we
haved, (p*¢) € C*T1(L, 1) and thend; (p*y)) ® s € C*HL(L, V1 (p*L)). Thus
P @ db F(s) is in CTFL(L, P+ (p*£)) as well. It follows that all three terms in
(3.4.7) define classes i1 (L, I7+1). The left term yields a class iH* ™! (L, ' +1)
which is ®; ; ,- £ (p*a) by definition. The middle term projects ; ;(p*a) and the
right-hand term to the clagg a - ¢; (p*£) in HiT(L, T7+1). O

4  DIFFERENTIALS, COHOMOLOGY OPERATIONS AND THE EULER CLASS

Having established the basic properties of the differé&nirathe Pardon spectral se-
guence, we now pass to their identification with known openaton motivic coho-
mology.

4.1 DIFFERENTIALS IN TERMS OF MOTIVIC COHOMOLOGY

Let us first recall some notation. Writé’ for the Zariski sheaf associated with the
presheat/ — H{(U,Z/2). For integer, ¢, write H?-9(X, Z/2) for the motivic co-
homology groups witlZ./2 coefficients as defined by Voevodsky (see, elg\/ V06,
Lecture 3]); these groups are by construction hypercohogyabf certain complexes
of Zariski sheaves. We begin by recalling a result of Totar(3 Theorem 1.3].

THEOREM 4.1.1 Supposé: is a field having characteristic unequal 2pand.X is a
smoothk-scheme. For any integer> 0, there is a long exact sequence of the form:

co—= HHI-Y X, 7)2) — HH I (X, 2)2) —
— HY(X,H?) — HHTIHLI-1 (X, 72/2) — ... ;
this exact sequence is functorial .

Comments on the proofThis result requires Voevodsky’s affirmation of Milnor'srco
jecture on the mod norm residue homomorphisrige034 as well as the Beilinson-
Lichtenbaum conjecture, which is equivalent to the Milnonjecture by results of
Suslin-Voevodsky and Geisser-Levine. The functorialigextion of the statement
is evident from inspection of the proof (it appears by takitygpercohomology of a
distinguished triangle). O

We will use the above exact sequence in the guise establistiee following result.

CoROLLARY 4.1.2 For anyi € N and any smooth schenié over a perfect field:
with char(k) # 2, the above sequence induces an isomorphism

H2i+1,i+1 (X, Z/2) ~ Hi (X7 iiJrl)

that is functorial inX.
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Proof. The exact sequence of Theordm.1reads as follows fof =i + 1

e ‘[':[21'Jr1,i()(7 Z/Q) . H2i+1,i+1(X7 Z/2) .

— HY(X, HH) — H> 29X, Z/2) — ...

Sincek is perfect, we havél?# (X, Z/2) = 0 for anyp > 2i + 1 by [MVWO06, The-
orem 19.3] and from this we can conclude that the middle aisoan isomorphism.
Since the exact sequence is functorialin it follows immediately that the isomor-
phism just mentioned has the same property. Now, the affiomaf the Milnor con-
jecture on the mo@ norm residue homomorphism also implies th@lﬁ{lﬂ can be
identified as a sheaf wit{!*!, while the affirmation of the Milnor conjecture on
quadratic forms yields an identification of shea¥€y , /2 = I'*!. Combining these
isomorphisms yields an isomorphiskit! = I'*! and therefore an identification of
cohomology with coefficients in these sheaves functorigh@input scheme. O

Voevodsky defined in \[oe0O3h p. 33] motivic Steenrod operationSg?
HP=244=1(X 7,/2) — HP4(X,7/2). The resulting operations are bi-stable in the
sense that they are compatible with-suspension in the same sense as described in
the previous section. Via the isomorphism of Corolldrg.2 we can viewSq? as an
operation

S¢®: H (X, I') — H'(X, T,

which is again bi-stable in the sense that it is compatibléh i'-suspension.
The algebra of bistable cohomology operations in motivihanology with Z/2-
coefficients was determined by Voevodsky in characterist[¢/oe1(] and extended
to fields having characteristic unequalxin [HK@13]. Using these results, we may
now identify the operatio®;_; ; described in Definitior3.1.1in more explicit terms.

COROLLARY 4.1.3 We have an identificatiof,_; ; = Sq2.

Proof. The operation®;_, ; is bistable by Propositios.2.], commutes with pull-
backs by construction, and changes bidegreé2hy) so it is pulled back from a
universal class on a motivic Eilenberg-Mac Lane space. ®mwther hand, the group
of bi-stable operations of bidegré® 1) is isomorphic tdZ/2 generated by ¢?: if &
has characteristic zero, this follows froivbe 10 Theorem 3.49], while it has char-
acteristic unequal t9, this follows from [HK@13, Theorem 1.1]. Since the operation
®,;_1,; is non-trivial by Propositior8.3.6 it follows that it must be equal t§¢>. [

The next result is an immediate consequence of Corofldry8and Theoren3.4.1
THEOREM 4.1.4 Supposé is a field having characteristic unequal 2pand X is a

smoothk-scheme. For any integér> 0, and any rank- vector bundl& : £ — X,
the operationSq? + ¢ (£)U) coincides WIth®; 1 5 det ¢
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4.2 THE EULER CLASS AND SECONDARY CLASSES

The Euler clasg(€) of a rankd vector bundl& : £ — X is the only obstruction
to splitting off a free rank summand, and it lives if/¢(X, KY'W (L)) where£ =
det £. Now, the Euler class is mapped to the top Chern ala&8) in C H?(X) under
the homomorphisnt/¢(X, KYW(£)) — HY(X,K}) = CHY(X) induced by the
morphism of sheaveK}"V(£) — KJ' and it follows that the vanishing of(&)
guarantees vanishing of;(£) in CHY(X) (see PF14¢ Proposition 6.3.1] for this
statement).

The vanishing of the top Chern class does not, in generalyiwgmishing of the Euler
class, as shown by the example of the tangent bundle to thalgedoraic sphere of
dimensior. For vector bundles with vanishing top Chern class, we canfbgeorem
2.2.6to decide whether its Euler class vanishes, provided we wogt a fieldk
of finite 2-cohomological dimension. In the next theorem, we denot@By€) the
obstruction classe®™(¢(€)) of Theorem2.2.6associated to the Euler clasg).

THEOREM 4.2.1 Supposek is a field having finit&2-cohomological dimension¥
is a smooth:-scheme of dimensiahand¢ : £ — X is a rankd vector bundle onX
with ¢4(€) = 0. The vector bundI€ splits off a trivial rankl summand if only if, in
addition,¥"(€) = 0 forn > 1.

As mentioned in the introduction, the advantage of the cdatfmn of these higher ob-
struction classes over the computation of the Euler clatstghe cohomology groups
involved are with coefficients in cycle modules in the serfdeast, which are a priori
more manageable than cohomology with coefficients in mootiesheaves such as
Milnor-Witt K'-theory. Moreover, Corollarg.1.2shows that the differentials, at least
in some range, can be identified with Steenrod operationghwdre arguably more
calculable. The obvious weakness of this approach is theaappce of the grou(gs;
defined in Sectior.2, though see Rematk2.5for a counterpoint. Continuing with
the assumption that our base fi¢lthas finite cohomological dimension one can show
that establishing the vanishing of finitely many obstrutsi¢depending on the coho-
mological dimension) are sufficient to guarantee vanisloihgll obstructions. The
next result completes the verification of Coroll&from the introduction.

COROLLARY 4.2.2 Assumek is a field of2-cohomological dimension, X is a
smoothk-scheme of dimensiahand¢ : £ — X is a rankd-vector bundle oveX
with ¢4(€) = 0. The vector bundI€ splits off a trivial rankl summand if and only if
U(€)=0forn <s-—1.

Proof. In view of the definition of the higher obstructiodg'(£), it suffices to show
that H¢(X,17) vanishes forj > d + r. This is [AF14h Proposition 5.2], together
with the identification of Nisnevich and Zariski conomologith coefficients inl’
explained in pPF14h §2]. O

Finally, combining all of the results established so farpar complete the verification
of Theorems.
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Completion of proof of TheoreB To identify the secondary obstruction! as the
composition in the statement, we begin by observing thagtbap £ (L, MW )Ld+1
is the cokernel of the composite map

Sq?+ei (L
HL(X,KY) )

H (X K /2) HY(X,K34,/2)

in view of Lemma2.2.4and Theorerd.1.4

If & has cohomological dimensiof 1, it follows immediately from Corollary.2.2
that the top Chern class is the only obstruction to splitérfgee rankl summand.

If £ has cohomological dimensiod 2, Theorem4.2.1says in this context that the
Euler class oft (takeL = det(E)) is trivial if and only if the top Chern class and the
first obstruction class it (£, MW)%4+1 vanish. O
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INTRODUCTION

A quadric surface bundle 7 : @ — S over a scheme S is the flat fibration
in quadrics associated to a line bundle-valued quadratic form ¢ : & — £ of
rank 4 over S. A natural class of quadric surface bundles over P? appearing
in algebraic geometry arise from cubic fourfolds Y C P® containing a plane.
Projection from the plane 7 : Y — P2, where Y is the blow-up of Y along the
plane, yields a quadric surface bundle with degeneration along a sextic curve
D C P2. If Y is sufficiently general then D is smooth and the double cover
T — P2 branched along D is a smooth K3 surface of degree 2. Over the surface
T, the even Clifford algebra % associated to m becomes an Azumaya quaternion
algebra representing a Brauer class 5 € oBr(T'). For Y even more sufficiently
general, the association Y + (T, 8) is injective: smooth cubic fourfolds Y and
Y giving rise to isomorphic data (7', 8) = (T, ') are linearly isomorphic. This
result was originally obtained via Hodge theory by Voisin [60] in the course of
her proof of the global Torelli theorem for cubic fourfolds.

In this work, we provide a vast algebraic generalization of this result to any
regular integral scheme 7" of dimension < 2, which is a finite flat double cover
T — S of a regular scheme S, such that the branch divisor D C S is regular.
We establish a bijection between the isomorphism classes of quadric surface
bundles on S having simple degeneration (see §1) with discriminant 7' — S and
the isomorphism classes of Azumaya quaternion algebras on 7" whose norm to
S is split (see §5). In one direction, the even Clifford algebra %, associated
to a quadric surface bundle on S with simple degeneration along D, gives rise
to an Azumaya quaternion algebra on 7. In the other, a generalization of
the classical algebra norm functor N7 /g, applied to an Azumaya quaternion
algebra on T" with split norm to S, gives rise to a quadric surface bundle on S.
Our main result is the following.

THEOREM 1. Let S be a regular integral scheme of dimension < 2 with 2
invertible and T — S a finite flat morphism of degree 2 with regular branch
divisor D C S. Then the even Clifford algebra and norm functors

.
-
Nr/s

simple degeneration along D algebras over T with

{ quadric surface bundles with } o { Azumaya quaternion }
and discriminant T — S split norm to S

give rise to mutually inverse bijections.

This result can be viewed as a significant generalization of the exceptional
isomorphism ?A; = Dy correspondence over fields and rings (cf. [41, IV.15.B]
and [43, §10]) to the setting of line bundle-valued quadratic forms with simple
degeneration over schemes. Most of our work goes toward establishing funda-
mental local results concerning quadratic forms with simple degeneration (see
§3) and the structure of their orthogonal group schemes, which are nonreduc-
tive (see §2). In particular, we prove that these group schemes are smooth
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(see Proposition 2.3) and realize a degeneration of exceptional isomorphisms
2A; = Ds to A; = B;. We also establish fundamental structural results con-
cerning quadric surface bundles over schemes (see §1) and the formalism of
gluing tensors over surfaces (see §4).

We also present two surprisingly different applications of our results. First,
in §6, we provide a class of geometrically interesting quadratic forms that are
counter-examples to the local-global principle to isotropy, with respect to dis-
crete valuations, over the function field of any surface over an algebraically
closed field of characteristic zero. This is made possible by the tight control
we have over the degeneration divisors of norm forms of unramified quaternion
algebras over function fields of ramified double covers of surfaces. Moreover,
our class of counter-examples exists even over rational function fields, where
the existence of such counterexamples was an open question.

Second, in §7, combining our main result with tools from the theory of moduli of
twisted sheaves, we are able to provide a new proof of the result of Voisin men-
tioned above, concerning general complex cubic fourfolds containing a plane.
Our method is algebraic in nature and could lead to similar results for other
classes of complex fourfolds birational to quadric surface bundles over surfaces.
Our perspective comes from the algebraic theory of quadratic forms. We employ
the even Clifford algebra of a line bundle-valued quadratic form constructed by
Bichsel [14]. Bichsel-Knus [15], Caenepeel-van Oystaeyen [16] and Parimala—
Sridharan [51, §4] give alternate constructions, which are all detailed in [3,
§1.8]. In a similar vein, Kapranov [39, §4.1] (with further developments by
Kuznetsov [44, §3]) considered the homogeneous Clifford algebra of a quadratic
form—this is related to the generalized Clifford algebra of [15] and the graded
Clifford algebra of [16]—to study the derived category of projective quadrics
and quadric bundles. We focus on the even Clifford algebra as a sheaf of
algebras, rather than its geometric manifestation as a relative Hilbert scheme
of lines in the quadric bundle, as in [60, §1] and [37, §5]. In this context,
we refer to Hassett—Tschinkel [36, §3] for a version of our result over smooth
projective curves over an algebraically closed field.

Finally, our work on degenerate quadratic forms may also be of independent in-
terest. There has been a recent focus on classification of degenerate (quadratic)
forms from various number theoretic directions. An approach to Bhargava’s
[13] seminal construction of moduli spaces of “rings of low rank” over arbitrary
base schemes is developed by Wood [62] where line bundle-valued degenerate
forms (of higher degree) are crucial ingredients. In this context, a correspon-
dence such as ours, established over Z, could facilitate density results for dis-
criminants of quaternion orders over quadratic extensions of number fields. In
related developments, building on the work of Delone-Faddeev [25] over Z and
Gross—Lucianovic [31] over local rings, Venkata Balaji [9], and independently
Voight [59], used Clifford algebras of degenerate ternary quadratic forms to
classify degenerations of quaternion algebras over arbitrary bases. In this con-
text, our main result can be viewed as a classification of quaternary quadratic
forms with squarefree discriminant in terms of their even Clifford algebras.
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1 REFLECTIONS ON SIMPLE DEGENERATION

Let S be a noetherian separated integral scheme. A (line bundle-valued)
quadratic form on S is a triple (&, q,.%), where & is a locally free &s-module
of finite rank and ¢ : & — £ is a morphism of sheaves, homogeneous of de-
gree 2 for the action of 0g, and such that the associated morphism of sheaves
by : & x & — £, defined on sections by by(v, w) = g(v+w)—q(v) —q(w), is Os-
bilinear. Equivalently, a quadratic form is an ¢s-module morphism ¢ : So& —
&, see [57, Lemma 2.1] or [3, Lemma 1.1]. Here, S%2& and S2& denote the
second symmetric power and the submodule of symmetric second tensors of &,
respectively. There is a canonical isomorphism S?(&) ® £ = #om(S:&, L.
A line bundle-valued quadratic form then corresponds to a global section

q € L(S, Hom (526, L)) 2T(S,5*(6Y) @ L) 2T(P(), Opsy5(2) @ p* L),

where p : P(&) = ProjS®(&Y) — S. There is a canonical Og-module po-
lar morphism 9, : & — Hom(&,L) associated to by. A line bundle-valued
quadratic form (&, ¢, %) is regular if 1, is an Os-module isomorphism. Other-
wise, the radical rad(&, ¢q,.%) is the sheaf kernel of 1),, which is a torsion-free
subsheaf of &. We will mostly dispense with the adjective “line bundle-valued.”
We define the rank of a quadratic form to be the rank of the underlying module.
A similarity (o, \,) : (&,q,Z) — (&',¢, L") consists of Og-module isomor-
phisms ¢ : & — &" and A\, : £ — £’ such that ¢/(¢(v)) = A\,0¢(v) on sections.
A similarity (¢, Ay) is an isometry if £ = £’ and A, is the identity map.
We write ~ for similarities and 2 for isometries. Denote by GO(&, ¢, ¥) and
O(&, q,.2) the presheaves, on the flat (fppf) site on 5, of similitudes and isome-
tries of a quadratic form (&, ¢, %), respectively. These are sheaves and are rep-
resentable by affine group schemes of finite presentation over S, indeed closed
subgroupschemes of GL(&). The similarity factor defines a homomorphism
A: GO(8,q,4) = Gy with kernel O(&,¢,.%). If (&,q,%) has even rank
n = 2m, then there is a homomorphism det /A" : GO(&,b,.Z) — pa, whose
kernel is denoted by GO™ (&, ¢, ) (this definition of GO™ assumes 2 is invert-
ible on S; in general it is defined as the kernel of the Dickson invariant). The
similarity factor A : GO (&, ¢, ) — G, has kernel denoted by Ot (&, ¢, ).
Denote by PGO(&, q,.Z) the sheaf cokernel of the central subgroup scheme
G, — GO(&,q, %) of homotheties; similarly define PGO™(&,q,.Z). At
every point where (&,¢q,%) is regular, these group schemes are smooth and
reductive (see [26, 11.1.2.6, IT1.5.2.3]) though not necessarily connected. In §2,
we will study their structure over points where the form is not regular.

The quadric bundle m : (Q — S associated to a nonzero quadratic form
(£,q,2) of rank n > 2 is the restriction of p : P(&) — S via the closed
embedding j : Q@ — P(&) defined by the vanishing of the global section
q € I's(P(&), Op(g)s(2) @ p* ). Write Oq,s(1) = j*Op(s)/s(1). We say
that (&, q,%) is primitive if ¢, # 0 at every point x of S, i.e.,if ¢: & = £ is
an epimorphism. If ¢ is primitive then @@ — P(&) has relative codimension 1
over S and 7 : @ — S is flat of relative dimension n — 2, cf. [46, 8 Thm. 22.6].
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We say that (&, ¢, %) is generically regular if ¢ is regular over the generic point
of S.

Define the projective similarity class of a quadratic form (&, ¢, £) to be the set
of similarity classes of quadratic forms (A ® &,id_ye> ®@ ¢, /' ®? ® ) ranging
over all line bundles .4/ on S. Equivalently, this is the set of isometry classes
(N RE, po(id_ye2®@q), L") ranging over all isomorphisms ¢ : A ¢?®.¥ — &’
of line bundles on S. This is referred to as a lax-similarity class in [10]. The
main result of this section shows that projectively similar quadratic forms yield
isomorphic quadric bundles, while the converse holds under further hypotheses.
Let n be the generic point of S and 7 : @ — S a quadric bundle. Restriction
to the generic fiber of 7 gives rise to a complex

0 = Pic(S) > Pic(Q) — Pic(Q,) — 0 (1)
whose exactness we will study in Proposition 1.6 below.

PROPOSITION 1.1. Let 7 : Q — S and 7' : Q' — S be quadric bundles associ-
ated to quadratic forms (&,q,%) and (&',¢',Z"). If (8,¢,L) and (&',¢', L")
are in the same projective similarity class then Q and Q' are S-isomorphic.
The converse holds if q is assumed to be generically reqular and (1) is assumed
to be exact in the middle.

Proof. Assume that (&£, q,.%) and (&', ¢, £") are projectively similar with re-
spect to an invertible &s-module .4/ and &s-module isomorphisms ¢ : & —
N @& and N\ 1 L — ND? ® L preserving the quadratic forms. Let
p: P& — S and p : P(&) — S be the associated projective bundles
and h : P(&") — P(A @ &) the S-isomorphism associated to ¢¥. There is
a natural S-isomorphism g : P(A ® &) — P(&) satistying ¢*Op(ey/s(1) =
Opsg.yy/s(1) @ p™* A, see [34, II Lemma 7.9]. Denote by f =goh:P(&") —
P(&) the composition. Then via the isomorphism

L(P(&"), [*(Ops)s(2) @ p* L)) = L(P(E"), Operyys(2) @ p* L)

induced by f*Ops)/s(2) = Open(2) @ (p'*A)®? and p*A 1 : (p* )2 ®
p*E — p* &', the global section f*s, is taken to the global section s/, hence
f restricts to a S-isomorphism Q' — Q. The proof of the first claim is complete.
Now assume that (&, ¢,.¢) is generically regular and that f: Q" — @ is an S-
isomorphism. First, we will prove that f can be extended to a S-isomorphism
f:P(&') = P(&) satisfying f o j’ = jo f. To this end, considering the long
exact sequence associated to applying p. to the short exact sequence

0= Op(syys(—1) @p" LY =5 Opisyys(1) = jubgs(1) = 0. (2)
and keeping in mind that R'p, Op(sy/s(—1) = 0 for i = 0,1, we arrive at an iso-
morphism p. Op(s) /(1) = 7. 0g/s(1). In particular, we have a canonical iden-

tification &V = m,.0¢,5(1). We have a similar identification &Y = 7, 0/, 5(1).
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We claim that f*0g/s(1) = Og//s(1) @ 7"*.A4" for some line bundle .4 on S.
Indeed, over the generic fiber, we have f*0q,s(1), = f;0q, (1) = Og, (1) by
the case of smooth quadrics (as ¢ is generically regular) over a field, cf. [28,
Lemma 69.2]. Then the exactness of (1) in the middle finishes the proof of the
present claim.

Finally, by the projection formula and our assumption that 7’ : @’ — S is of
positive relative dimension, we have that f induces an 0s-module isomorphism

EV QN 2, Og/s(1) @ma* N
= ful [ Ogs(1) @7 NY) =7 0g (1) = &

with induced dual isomorphism ¢ : & — A4 ®&. Now define f : P(&”) — P(&)
to be the composition of the morphism P(&”") — P(A4 ® &) defined by ¢V with
the natural S-isomorphism P(A4 ® &) — P(&), as earlier in this proof. Then
by the construction of f, we have that f* Op(sy)s(1) = Opsry/s(1) @ p"™* A and
that jo f= foj (an equality that is checked on fibers using [28, Thm. 69.3]).
Equivalently, there exists an isomorphism f*(Op(s)(2))s@p* L) = Op(sr)5(2)@
p'* 2" taking f*s, to s,. However, as f*(Op(g)(2)/s @ p*L) = Opsry/s(2) @
P H(AND? @ &), we have an isomorphism p'*.%" = p/*(/®? @ ). Upon
taking pushforward, we arrive at an isomorphism \ : &/ — A4 %2 @ Z. By
the construction of ¢ and A, it follows that (¢, \) is a similarity (&, ¢,.%) —
(&',q',¢"), proving the converse. O

DEFINITION 1.2. The determinant det 1), : det & — det &Y @ L™ gives rise
to a global section of (det&V)®? @ %" whose divisor of zeros is called the
discriminant divisor D. The reduced subscheme associated to D is precisely
the locus of points where the radical of g is nontrivial. If ¢ is generically regular,
then D C S is closed of codimension one.

DEFINITION 1.3. We say that a quadratic form (&, ¢,-%) has simple degener-
ation if
rkn(z) rad((g):m Q:m-fa;) <1
for every point = of S, where k() is the residue field of Og ;.
Our first lemma concerns the local structure of simple degeneration.

LEMMA 1.4. Let (&,q) be a quadratic form with simple degeneration over the
spectrum of a local ring R with 2 invertible. Then (&,q) = (&1,q1) L (R, <7>)
where (&1, q1) is regular and m € R.

Proof. Over the residue field k, the form (&, ¢) has a regular subform (&1, ;) of
corank one, which can be lifted to a regular orthogonal direct summand (&7, q1)
of corank 1 of (&,¢q), cf. [8, Cor. 3.4]. This gives the required decomposition.
Moreover, we can lift a diagonalization §; =<1, ...,u,—1 > with w; € k™, to
a diagonalization

qE<UL, ..y Up—1,T>,

with u; € R and 7 € R. O
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Let D C S be a regular divisor. Assuming that S is normal, the local ring
Os.p: at the generic point of a component D’ of D is a discrete valuation ring.
When 2 is invertible on S, Lemma 1.4 shows that a quadratic form (&, ¢, %)
with simple degeneration along D can be diagonalized over Og p/ as

q g<u17 s 7ur—17ur7re>

where u; are units and 7 is a parameter of Og p,. We call e > 1 the multiplicity
of the simple degeneration along D’. If e is even for every component of D, then
there is a birational morphism g : S — S such that the pullback of (&, ¢, %)
to S’ is regular. We will focus on quadratic forms with simple degeneration of
multiplicity one along (all components of) D.

We can give a geometric interpretation of simple degeneration.

PROPOSITION 1.5. Let w: @Q — S be the quadric bundle associated to a gener-
ically regular quadratic form (&,q,.£) over S and D C S its discriminant
divisor. Then:

a) q has simple degeneration if and only if the fiber Q. of its associated
quadric bundle has at worst isolated singularities for each closed point x

of S;

b) if 2 is invertible on S and D is reduced, then any simple degeneration
along D has multiplicity one;

¢) if 2 is invertible on S and D is regular, then any degeneration along D
is simple of multiplicity one;

d) if S is regular and q has simple degeneration, then D is regular if and
only if Q is reqular.

Proof. The first claim follows from the classical geometry of quadrics over a
field: the quadric of a nondegenerate form is smooth while the quadric of a form
with nontrivial radical has isolated singularity if and only if the radical has
rank one. As for the second claim, the multiplicity of the simple degeneration
is exactly the scheme-theoretic multiplicity of the divisor D. For the third
claim, see [20, §3], [37, Rem. 7.1], or [4, Rem. 2.6]. The final claim is standard,
cf. [11, I Prop. 1.2(iii)], [37, Lemma 5.2], or [4, Prop. 1.2.5]. O

We do not need the full flexibility of the following general result, but we include
it for completeness.

PROPOSITION 1.6. Let m : Q — S be a flat proper separated morphism with
geometrically integral fibers between noetherian integral separated locally facto-
rial schemes and let n be the generic point of S. Then the complex of Picard
groups (1) is exact.
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Proof. First, we argue that flat pullback and restriction to the generic fiber
give rise to an exact sequence of Weil divisor groups

0 = Div(S) == Div(Q) — Div(Q,) — 0. (3)

Indeed, as Div(Q,,) = ligDiv(QU), where the limit is taken over all dense open
sets U C S and we write Qu = Q x g U, the exactness at right of sequence (3)
then follows from the exactness of the excision sequence

Z%n 1 (S \U)) — Div(Q) — Div(Qu) — 0

cf. [30, 1 Prop. 1.8]. The sequence (3) is exact at left since 7 is surjective
on codimension 1 points, providing a retraction of 7*. As for exactness in
the middle, if a prime Weil divisor T" on @ has trivial generic fiber then it is
supported on the fibers over a closed subscheme of S not containing 7. Since
the fibers of 7 are irreducible, 7' must coincide with 7=!(Z) for some prime
Weil divisor Z of S. Thus T is in the image of 7*.

Second, we argue that there is an analogous exact sequence of principal Weil
divisor groups

0 — PDiv(S) =5 PDiv(Q) — PDiv(Q,) — 0. (4)

Indeed, since 7 is dominant, it induces an extension of function fields K¢ over
K, and hence a well defined 7* on principal divisors, which is injective. Since
Kq = Kg,, restriction to the generic point is surjective on principal divisors.
For the exactness in the middle, if divg(f), = 0 then f € I'(Q,, ﬁén), ie., f
has neither zeros nor poles on @,,. Since @, is a proper geometrically integral
Kg-scheme, TI'(Q,, @5”) = K7, and hence f € KJ. Thus divg(f) is in the
image of 7*.

The snake lemma then induces an exact sequence of Weil divisor class groups

0= CI(S) = ClQ) — CUQ,) — 0.

As 7 is separated with geometrically integral fibers, @, is separated and in-
tegral. As @ is a noetherian locally factorial scheme, @, is as well. Hence
all Weil divisor class groups coincide with Picard groups by [32, Cor. 21.6.10],
immediately implying that the complex (1) is exact. O

COROLLARY 1.7. Let S be a regular integral scheme with 2 invertible and
(&,q9,%) a quadratic form on S of rank > 4 having at most simple degen-
eration along a reqular divisor D C S. Let m: Q) — S be the associated quadric
bundle. Then the complex (1) is exact.

Proof. First, recall that a quadratic form over a field contains a nondegenerate
subform of rank > 3 if and only if its associated quadric is irreducible, cf. [34,
I Ex. 5.12]. Hence the fibers of 7 are geometrically irreducible. By Proposition
1.5, @ is regular. Quadratic forms with simple degeneration are primitive,
hence 7 is flat. Thus we can apply all the parts of Proposition 1.6. O
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We will define Quad”(S) to be the set of projective similarity classes of line
bundle-valued quadratic forms of rank n on S with simple degeneration of mul-
tiplicity one along an effective Cartier divisor D. An immediate consequence
of Propositions 1.1 and 1.5 and Corollary 1.7 is the following.

COROLLARY 1.8. For n >4 and D reduced, the set Quad? (S) is in bijection
with the set of S-isomorphism classes of quadric bundles of relative dimension
n — 2 with isolated singularities in the fibers above D.

DEFINITION 1.9. Let (&, ¢,.%) be a quadratic form of rank n on a scheme S,
and 6y = 6(&,q,-L) be its even Clifford algebra (see [15] or [3, §1.8]), and
¥ = Z(8,q,2) be its center. Then % is a locally free Og-algebra of rank
2n=1 cf. [40, IV.1.6]. The associated finite morphism f : 7' — S is called the
discriminant cover. We remark that if S is locally factorial and ¢ is generically
regular of even rank then % is a locally free &s-algebra of rank two, by (the
remarks preceding) [40, IV Prop. 4.8.3], hence the discriminant cover f : T'— S
is finite flat of degree two. Below, we will arrive at the same conclusion under
weaker hypotheses on S but assuming that ¢ has simple degeneration.

LEMMA 1.10 ([4, App. B]). Let (&,q,.Z) be a quadratic form of even rank
with simple degeneration of multiplicity one along D C S and f : T — S its
discriminant cover. Then f*O (D) is a square in Pic(T) and the branch divisor
of f is precisely D.

By abuse of notation, we also denote by 4y = %(&,q,-%) the Op-algebra
associated to the Z-algebra ¢y = €(8,q,-Z). The center Z is an étale algebra
over every point of S where (&, q,.%) is regular and %) is an Azumaya algebra
over every point of T lying over a point of S where (&, q,.%) is regular. Now
we prove [44, Prop. 3.13] over any integral scheme.

PROPOSITION 1.11. Let (&, q,-L) be a quadratic form of even rank with simple
degeneration over a scheme S with 2 invertible. Then the discriminant cover
T — S is finite flat of degree two and 6y is an Azumaya Or-algebra.

Proof. The desired properties are local for the étale topology, so we can assume
that S = Spec R for a local ring R with 2 invertible, we can fix a trivialization
of .Z, and by Lemma 1.4 we can write (&,q) = (&1,q1) L<7> with 7 € R
(not necessarily nonzero) and (&1,¢q1) =<1,—1,...,1,—1,1> a standard split
quadratic form of odd rank. We have that 6, (&1, 1) is (split) Azumaya over
Os and that €(< —n>) is Og-isomorphic to Z(&, q).

Since ¢ (< —m>) & R[y/—] is finite flat of degree two over S, the first claim is
verified. For the second claim, by [40, IV Prop. 7.3.1], there are then &s-algebra
isomorphisms

C0(€,q) = 6o(61,q1) ®os C(<—7>) Z6(61,q1) ®os Z(£,9).  (5)

Thus étale locally, 6p(&, q) is the base extension to Z(&,¢) of an Azumaya
algebra over g, hence can be regarded as an Azumaya Orp-algebra. O
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Over a field, we can now provide a strengthened version of [28, Prop. 11.6].

PROPOSITION 1.12. Let (V,q) be a quadratic form of even rank n = 2m over a
field k of characteristic # 2. If n > 4 then the following are equivalent:

a) The radical of q¢ has rank at most 1.

b) The center Z(q) C Co(q) is a k-algebra of rank 2.

¢) The algebra Co(q) is Z(q)-Azumaya of degree 2m~1.
If n =2, then Cy(q) is always commutative.

Proof. If ¢ is nondegenerate (i.e., has trivial radical), then it is classical that
Z(q) is an étale quadratic algebra and Cy(q) is an Azumaya Z(q)-algebra. If
rad(gq) has rank 1, generated by v € V, then a straightforward computation
shows that Z(q) = k[e]/(e?), where € € vCi(q) N Z(q) ~ k. Furthermore, we
have that Co(q) @xe/(2) k = Co(q)/vC1i(q) = Co(g/rad(q)) where g/rad(q) is
nondegenerate of rank n — 1, cf. [28, IT §11, p. 58]. Proposition 1.11 implies
that Cy(q) is Z(q)-Azumaya of degree 2™~ ! proving a) = ¢)

The fact that ¢) = b) is clear from a dimension count. To prove b) = a),
suppose that rky rad(¢g) > 2. In this case, the embedding A\’ rad(q) € Co(q)
is central (and does not contain the central subalgebra generated by V®"  as

¢ has rank > 2). More explicitly, if e, ea,...,e, is an orthogonal basis of
(V,q), then k @® key - - en & A°rad(q) C Z(q). Thus Z(q) has k-rank at least
2 4 ki \°rad(q) > 3. O

Finally, as a corollary of Proposition 1.12, we can deduce a converse to Propo-
sition 1.11.

PROPOSITION 1.13. Let (&,q,-%£) be a quadratic form of even rank on an in-
tegral scheme S with discriminant cover f : T — S. Then %y(&,q, %) is an
Azumaya Op-algebra if and only if (&,q,.ZL) has simple degeneration or has
rank 2 (and any degeneration).

2  ORTHOGONAL GROUPS WITH SIMPLE DEGENERATION

The main results of this section concern the special (projective) orthogonal
group schemes of quadratic forms with simple degeneration over semilocal prin-
cipal ideal domains.

Let S be a regular integral scheme. Recall, from Proposition 1.11, that if
(&, q,%) is a line bundle-valued quadratic form on S with simple degeneration
along a closed subscheme D of codimension 1, then the even Clifford algebra
%o(q) is an Azumaya algebra over the discriminant cover T — S. The main
result of this section is the following.
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THEOREM 2.1. Let S be a reqular scheme with 2 invertible, D a reqular divisor,
(&,q9,%) a quadratic form of rank 4 on S with simple degeneration along D,
T — S its discriminant cover, and 6y(q) its even Clifford algebra over T'. The
canonical homomorphism

¢: PGO™(¢q) = Ry sPGL(%(q)),
induced from the functor 6y, is an isomorphism of S-group schemes.

The proof involves several preliminary general results concerning orthogonal
groups of quadratic forms with simple degeneration and will occupy the re-
mainder of this section.

Let S = Spec R be an affine scheme with 2 invertible, D C S be the closed
scheme defined by an element 7 in the Jacobson radical of R, and let (V,q) =
(Vi,q1) L (R,<m>) be a quadratic form of rank n over S with ¢; regular and
V1 free. Let @1 be a Gram matrix of ¢;. Then as an S-group scheme, O(q) is
the subvariety of the affine space of block matrices

satisfying  A'Qiv +urw! =0 (6)

v viQiv = (1 —u?)r

<A v) At A+ mwlw = Q

where A is an invertible (n — 1) x (n — 1) matrix, v is an n x 1 column vector, w
is a 1 x n row vector, and u a unit. Note that since A and ) are invertible, the
second relation in (6) implies that v is determined by w and « and that 7 =0
over R/m. In particular, if 7 # 0 and R is a domain then the third relation
implies that %2 = 1 in R/7. Define O*(q) = ker(det : O(q) — Gn). If R is
an integral domain then det factors through ps and O™ (q) is the irreducible
component of the identity.

PROPOSITION 2.2. Let R be a regular local ring with 2 invertible, m € m a
nonzero element in the maximal ideal, and (V,q) = (Vi,q1) L (R,<7>) a
quadratic form with q1 regular of rank n — 1 of R. Then O(q) and O*(q) are
smooth R-group schemes.

Proof. Let K be the fraction field of R and k its residue field. First, we'll
show that the equations in (6) define a local complete intersection morphism
in the affine space A’j; of n x m matrices over R. Indeed, the condition that
the generic n x n matrix M over R[z1,...,x,2] is orthogonal with respect to
a given symmetric n X n matrix ) over R can be written as the equality of
symmetric matrices M'QM = Q over R[x1,...,2,2][(det M)~1], hence giving
n(n + 1)/2 equations. Hence, the orthogonal group is the scheme defined by
these n(n + 1)/2 equations in the Zariski open of A}; defined by det M.

Since ¢ is generically regular of rank n, the generic fiber of O(g) has dimension
n(n—1)/2. By (6), the special fiber of OT(q) is isomorphic to the group scheme
of rigid motions of the regular quadratic space (V1, ¢1), which is the semidirect

product
O (q) xr k= G % O(q1x) (7)
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where G~ ! acts in V; by translation and O(g; ) acts on G?~! by conjugation.
In particular, the special fiber of O (¢) has dimension (n—1)(n—2)/2+(n—1) =
n(n —1)/2, and similarly with O(q).

In particular, O(q) is a local complete intersection morphism. Since R
is Cohen-Macaulay (being regular local) then R[zi,...,x,z][(det M)~!] is
Cohen—-Macaulay, and thus O(q) is Cohen-Macaulay. By the “miracle flat-
ness” theorem, equidimensional and Cohen—Macaulay over a regular base im-
plies that O(¢) — Spec R is flat, cf. [32, Prop. 15.4.2] or [46, 8 Thm. 23.1].
Also OT(q) — Spec R is flat. The generic fiber of OT(gq) is smooth since ¢ is
generically regular while the special fiber is smooth since it is a (semi)direct
product of smooth schemes (recall that O(q;) is smooth since 2 is invertible).
Hence O (gq) — Spec R is flat and has geometrically smooth fibers, hence is
smooth. (|

PROPOSITION 2.3. Let S be a reqular scheme with 2 invertible and (&,q,-%)
a quadratic form of even rank on S with simple degeneration. Then the
group schemes O(q), Ot (q), GO(q), GO (q), PGO(q), and PGO™ (q) are
S-smooth. If T — S is the discriminant cover and %(q) is the even Clif-
ford algebra of (£,q,2) over T, then Rr;sGL1(%0(q)), Rr;sSL1(%0(q)), and
Rr,sPGL1(%0(q)) are smooth S-schemes.

Proof. The S-smoothness of O(q) and O (q) follows from the fibral criterion
for smoothness, with Proposition 2.2 handling points of S contained in the
discriminant divisor. As GO = (O(q)xGm)/p2, GOT(q) = (01 (q) x G/ 2,
PGO(q) 2 GO(q)/Gn, PGO™(q) 2 GO™(¢)/Gny are quotients of S-smooth
group schemes by flat closed subgroups, they are S-smooth. Finally, €,(q) is
an Azumaya Op-algebra by Proposition 1.11, hence GL1(%5(q)), SL1(%0(q)),
and PGL;(%o(q)) are smooth T-schemes, hence their Weil restrictions via the
finite flat map T'— S are S-smooth by [21, App. A.5, Prop. A.5.2]. O

Remark 2.4. If the radical of ¢; has rank > 2 at a point s of S, a calculation
shows that the fiber of O(q) — S over s has dimension > n(n — 1)/2. In
particular, if ¢ is generically regular over S then O(gq) — S is not flat. The
smoothness of O(q) is a special feature of quadratic forms ¢ with simple de-
generation. Over a complete discretely valued ring, such O7(q) can be viewed
as an explicit model for one of the quasisplit Bruhat-Tits groups of type 2D,,.

We will also make frequent reference to the classical version of Theorem 2.1 in
the regular case, when the discriminant cover is étale.

THEOREM 2.5. Let S be a scheme and (&,q,£) a regular quadratic form of
rank 4 with discriminant cover T'— S and even Clifford algebra €(q) over T
The canonical homomorphism

c: PGO+(q) — RT/SPGLl((gO(Q))a

induced from the functor 6y, is an isomorphism of S-group schemes.
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Proof. The proof over affine schemes S in [43, §10] carries over immediately.
See [41, IV.15.B] for the particular case of S the spectrum of a field. Also see
3, §5.3]. O

Finally, we come to the proof of the main result of this section.

Proof of Theorem 2.1. We will use the following fibral criteria for relative iso-
morphisms (cf. [32, IV.4 Cor. 17.9.5]): let g : X — Y be a morphism of S-
schemes locally of finite presentation over a scheme S and assume X is S-flat,
then g is an S-isomorphism if and only if its fiber g5 : X; — Y5 is an isomor-
phism over each geometric point s of S.

For each s in S\ D, the fiber ¢, is a regular quadratic form over k(s), hence the
fiber ¢, : PGO™(g,) — Ry/sPGL(%(gs)) is an isomorphism by Theorem 2.5.
We are thus reduced to considering the geometric fibers over points in D. Let
s = Spec k be a geometric point of D. By Proposition 1.12, there is a natural
identification of the fiber Ty = Spec k., where k. = k[e]/(€?).

We use the following criteria for isomorphisms of group schemes (cf. [41,
VI Prop. 22.5]): let g : X — Y be a homomorphism of affine k-group schemes
of finite type over an algebraically closed field k and assume that Y is smooth,
then g is a k-isomorphism if and only if g : X (k) — Y'(k) is an isomorphism on
k-points and the Lie algebra map dg : Lie(X) — Lie(Y') is an injective map of
k-vector spaces.

First, we shall prove that ¢ is an isomorphism on k& points. Applying cohomol-
ogy to the exact sequence

1 — o — O (q) = PGOT(q) — 1,

we see that the corresponding sequence of k-points is exact since k is alge-
braically closed. Hence it suffices to show that OT(q)(k) — PGL1(%0(q))(k)
is surjective with kernel po(k).

Write ¢ = ¢1 L< 0>, where ¢ is regular over k. Denote by E the unipotent
radical of O%(gq). We will now proceed to define the following diagram

|
¢

u
+

2

&E&l—\

! E 0%(g) ——— Olg) ——1

-

!
1 ——1+e€co(q) —=PGL(%5(q)) — PGL(%(q1)) —=1
|

—_—<

1

of groups schemes over k, and verify that it is commutative with exact rows
and columns. This will finish the proof of the statement concerning ¢ being an
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isomorphism on k-points. We have HZ (k,E) = 0 and also H}, (k, p2) = 0, as
k is algebraically closed. Hence it suffices to argue after taking k-points in the
diagram.

The central and right most vertical columns are induced by the standard action
of the (special) orthogonal group on the even Clifford algebra. The right most
column is an exact sequence

1= p2 — O(q1) = p2 x O (q1) = PGL1(6o(qr)) — 1

arising from the split isogeny of type A; = By, cf. [41, IV.15.A]. The central
row is defined by the map OT(q)(k) — O(qq)(k) defined by

(A U)'—)A
wou

in the notation of (6). In particular, the group E(k) consists of block matrices

of the form
I 0
w 1

for w € A3(k). Since O(q1) is semisimple, the kernel contains the unipotent
radical E, so coincides with it by a dimension count. The bottom row is defined
as follows. By (5), we have %4(q) = %o(q1) @k Z(q) = %o(q1) ®k k.. The map
PGL1(%0(q)) — PGL1(%0(q1) is thus defined by the reduction k. — k. This
also identifies the kernel as I + eco(gq), where co(q) is the affine scheme of
reduced trace zero elements of €, (q), which is identified with the Lie algebra of
PGL1(%0(q)) in the usual way. The only thing to check is that the bottom left
square commutes (since by (7), the central row is split). By the five lemma, it
will then suffice to show that E(k) — 1+ eco(¢)(k) is an isomorphism.

To this end, we can diagonalize ¢ =< 1,—1,1,0 >, since k is algebraically
closed of characteristic # 2. Let ej,...,e4 be the corresponding orthogonal
basis. Then %p(q1)(k) is generated over k by 1, ejea, eses, and ejes and we
have an identification ¢ : €o(q1)(k) — Ma(k) given by

1 1 0 . 0 1 . 1 0 . 0 1

Similarly, 65 (q) is generated over Z(q) = ke by 1, ejes, eses, and ejes, since
we have

€1€4 = €€2€3, €2€4 = €€1€3, €3€4 = €€1€29, €1€2€3€4 = €.
and we have an identification v : p(q) — Ma(k.) extending . With respect to
this k.-algebra isomorphism, we have a group isomorphism PGL1(%(q))(k) =

PGL;y(ke) and a Lie algebra isomorphism ¢o(q)(k) = sla(k), where sly is the
scheme of traceless 2 x 2 matrices. We claim that the map E(k) — I + esly(k)

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 31-70



QUADRIC SURFACE BUNDLES OVER SURFACES 45

is explicitly given by

(®)

QOO
O = O
o = O O
—_— o O O
~
N | —
a
S
o>
+ o
o
|
| <
e +
o
~~_

Indeed, let ¢qp,. € E(Sy) be the orthogonal transformation whose matrix is
displayed in (8), and o4 its image in I + esly(k), thought of as an automor-
phism of %4(q)(k.). Then we have

Oapceres) = erea + beeses — aceres
Oap,c(e2es) = eses + ceeres — beeres

Oapcl€1€3) = e1e3 + ceezes — acejen

and oq.p.c(€) = €. It is then a straightforward calculation to see that

1
Oabe = ad(l — 56(06162 + aeges — beleg)),

where ad is conjugation in the Clifford algebra, and furthermore, that ¢ takes
cejes + aeges — bejes to the 2 x 2 matrix displayed in (8). Thus the map
E(k) — I + esly(k) is as stated, and in particular, is an isomorphism. Thus
the diagram is commutative with exact rows and columns, and in particular,
c: PGO™(q) = PGL(%(q)) is an isomorphism on k-points.

Now we prove that the Lie algebra map dc is injective. Consider the commu-
tative diagram

11T +xso(q)(k) O*(q)(k[z]/(2?)) 0" (q)(k) —=1

lH—zdc lC(k[z]/(xz)) l

1 —TI+xg(k) — PGL1(%0(q)) (k[e, 2] /(¢*, 2%)) = PGL (%0(q)) (ke) > 1

where so0(g) and g are the Lie algebras of O"(q) and Ry, ;,PGL1(%((q)), re-
spectively.

The Lie algebra so(q1) of O(q1) is identified with the scheme of 3 x 3 matrices
A such that AQ; is skew-symmetric, where Q1 = diag(1,—1,1). It is then a
consequence of (6) that I + xso(q)(k) consists of block matrices of the form

I+zA 0
TWw 1

for w € A3(k) and A € so0(q1)(k). Since

I+xzA 0\ (I+2A 0 I 0\ (I O\ (I+zA 0
TW 1/ L 0 1/ \zw 1) \zw 1 0 1)’
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we see that I + zso(q) has a direct product decomposition E x (I + xso(ql)).
We claim that the map h — g is explicitly given by the product map

I+zA 0
Tw 1

) = (I —eBlaw)) (I — a(zA)) =1 — z(a(A) + ef(w))

where « : 50(q1) — slo is the Lie algebra isomorphism

0 a —-b 1 a bt
a 0 ¢ |—>§ bt e a
b ¢ O

induced from the isomorphism PSO(q;) = PGLy and 3 : A% — sly is the Lie

algebra isomorphism
1 a —b+c
(abc)»—>§<b+c —a)

as above. Thus dc : s0(q) — g is an isomorphism. O

Remark 2.6. The isomorphism of algebraic groups in the proof of Theorem 2.1
can be viewed as a degeneration of an isomorphism of semisimple groups of
type 2A; = Dy (on the generic fiber) to an isomorphism of nonreductive groups
whose semisimplification has type A; = By = C; (on the special fiber).

3 SIMPLE DEGENERATION OVER SEMI-LOCAL RINGS

The semilocal ring R of a normal scheme at a finite set of points of codimension
1 is a semilocal Dedekind domain, hence a principal ideal domain. Let R;
denote the (finitely many) discrete valuation overrings of R contained in the
fraction field K (the localizations at the height one prime ideals), R; their
completions, and I?i their fraction fields. If R is the completion of R at its
Jacobson radical rad(R) and K the total ring of fractions, then R = [], R; and
K= I K;. We call an element 7 € R a parameter if m = [[, m; is a product
of parameters m; of R;.

We first recall a well-known result, cf. [17, §2.3.1].

LEMMA 3.1. Let R be a semilocal principal ideal domain and K its field of
fractions. Let q be a reqular quadratic form over R and u € R* a unit. If u is
represented by q over K then it is represented by q over R.

We now provide a generalization of Lemma 3.1 to the case of simple degener-
ation.

PROPOSITION 3.2. Let R be a semilocal principal ideal domain with 2 invertible
and K its field of fractions. Let q be a quadratic form over R with simple
degeneration of multiplicity one and let w € R* be a unit. If u is represented
by q over K then it is represented by q over R.
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For the proof, we’ll first need to generalize, to the degenerate case, some stan-
dard results concerning regular forms. If (V, ¢) is a quadratic form over a ring
R and v € V is such that ¢(v) = u € R*, then the reflection r, : V. — V
through v given by

(W) = w —u" by (v, w) v

is an isometry over R satisfying r,(v) = —v and r,(w) = w if w € v*.

LEMMA 3.3. Let R be a semilocal ring with 2 invertible. Let (V, q) be a quadratic
form over R and w € R*. Then O(V,q)(R) acts transitively on the set of
vectors v € V' such that q(v) = u.

Proof. Let v,w € V be such that ¢(v) = g(w) = u. We first prove the lemma
over any local ring with 2 invertible. Without loss of generality, we can assume
that g(v —w) € R*. Indeed, ¢(v+w)+ q(v —w) = 4u € R* so that, since R is
local, either ¢(v+w) or g(v—w) is a unit. If ¢(v—w) is not a unit, then g(v+w)
is and we can replace w by —w using the reflection r,,. Finally, by a standard
computation, we have r,_,,(v) = w. Thus any two vectors representing u are
related by a product of at most two reflection.

For a general semilocal ring, the quotient R/rad(R) is a product of fields. By
the above argument, v can be transported to —w in each component by a
product T of at most two reflections. By the Chinese remainder theorem, we
can lift 7 to a product of at most two reflections 7 of (V, ¢) transporting v to
—w + z for some z € rad(R) ®r V. Replacing v by —w + 2z, we can assume
that v + w = 2z € rad(R) ®g V. Finally, q(v + w) 4+ ¢(v — w) = 4u and
q(v 4+ w) € rad(R), thus ¢(v — w) is a unit. As before, r,_,(v) = w. O

COROLLARY 3.4. Let R be a semilocal ring with 2 invertible. Then regular
forms can be canceled, i.e., if ¢1 and g2 are quadratic forms and q a regular
quadratic form over R with ¢1 L g = g2 L q, then q1 = gs.

Proof. Regular quadratic forms over a semilocal ring with 2 invertible are di-
agonalizable. Hence we can reduce to the case of rank one form ¢ = (R, <u>)
forue R*. Let ¢ : 1 L (Rwi,<u>) = qa L (Rwy,<u>) be an isometry.
By Lemma 3.3, there is an isometry ¢ of g2 L (Rws, <u>) taking p(wq) to
wy, so that ¥ o p takes w; to wy. By taking orthogonal complements, ¢ thus
induces an isometry ¢q; = ¢o. O

LEMMA 3.5. Let R be a complete discrete valuation ring with 2 invertible and
K its fraction field. Let q be a quadratic form with simple degeneration of
multiplicity one and let w € R*. If u is represented by q over K then it is
represented by q over R.

Proof. For a choice of parameter 7 of R, write (V,q) = (Vi,q1) L (Re, <7 >)
with ¢; regular. There are two cases, depending on whether g, is isotropic over
the residue field. First, if g; is anisotropic, then ¢; only takes values with even
valuation. Let v € Vi satisfy ¢|x(v) = w and write v = 7"v; + an™e with
v1 € V7 such that 77 # 0 and @ € R*. Then we have 72"q; (v1) + an®™ ! = u.
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By parity considerations, we see that n = 0 and m > 0 are forced, thus v € V
and wu is represented by ¢g. Second, R being complete, if g, is isotropic, then it
splits off a hyperbolic plane, so represents u. O

We now recall the theory of elementary hyperbolic isometries initiated by Eich-
ler [27, Ch. 1] and developed in the setting of regular quadratic forms over rings
by Wall [61, §5] and Roy [54, §5]. See also [48], [50], [56], and [8, III §2]. We
will need to develop the theory for quadratic forms that are not necessarily
regular.

Let R be a ring with 2 invertible, (V, ¢) a quadratic form over R, and (R?, h) the
hyperbolic plane with basis e, f. For v € V, define E, and E* in O(q L h)(R)

E,(w) = w+ b(v,w)e E}(w) =w+ b(v,w)f, forweV
E,(e) =e Ee) = —v—2"Yq(v)f +e
Ey(f) = —v—-2""q(v)e + f EN(f) = [

Define the group of elementary hyperbolic isometries EO(q, h)(R) to be the
subgroup of O(¢q L h)(R) generated by F, and E? for v € V.
For u € R*, define «,, € O(h)(R) by

ay(e) = ue, au(f)=u"tf

and 3, € O(h)(R) by

ﬂu(e) = U_1f7 Bu(f) = ue.

Then O(h)(R) = {a : u€ R*}U{B, : u € R*}. One can verify the following
identities:

aqlevau =FEy-14, ﬂ;lEvBu = E:;,
a'Efa, = Ef ., o, 'Er o, = E,.
Thus O(h)(R) normalizes EO(q, h)(R).

If R = K is a field and ¢ is nondegenerate, then EO(q, h)(K) and O(h)(K)
generate O(q L h)(K) (see [27, ch. 1]) so that

O(q L h)(K) = EO(q, h)(K) x O(h)(K). 9)

PROPOSITION 3.6. Let R be a semilocal principal ideal domain with 2 invertible
and K its fraction field. Let R be the completion of R at the radical and K
its fraction field. Let (V,q) be a quadratic form over R that is nondegenerate
over K. Then every element ¢ € O(q L h)(K) is a product oy, where
¢1 € O(q L h)(K) and O(q L h)(R).
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Proof. We follow portions of the proof in [50, Prop. 3.1]. As topological rings,
R is open in K , and hence as topological groups, O(qg L h)(ﬁ) is open in-
side O(q L h)(K). In particular, O(q L n)(R R) N EO(q, h)(K) is open in
EO(q, h)(K). Since R is dense in R, K is dense in K, V ®p K is dense in
V ®g K, and hence EO(q, h)(K) is dense in EO(q, h)(K).
Thus, by topological considerations, every element ¢’ of EO(g L h)(K) is a
product ¢} ¢}, where ¢, € EO(q, h)(K) and ¢}, € EO(q, h)(K)NO(q L h)(R).
Clearly, every element v of O(h)(K) is a product y1y2, where v, € O(h)(K)
and v, € O(h)(R).
The form ¢ L h is nondegenerate over K, so by (9), every ¢ € O(q L h)(K) is
a product ¢'v, where ¢’ € EO(g, h)(K) and v € O(h)(K). As above, we can
write

¢ = "7 = Piebmre = Pim (T b e
Since EO(g, h)(K) is a normal subgroup, 71 tohm € EO(q, h) (K K) and is thus a
product ¥1b2, where 11 € EO(q, h)(K) and v € EO(q, h)(K)NO(q L h)(R).
Finally, ¢ is a product (¢]71¢1)(1272) of the desired form. O

Proof of Proposition 3.2. Let R be the completion of R at the radical and K the
total ring of fractions. As g|x represents u, we have a splitting ¢|x = ¢1 L<u>.

We have that ¢|5 = [, q\ﬁi represents u over R= IL R\i, by Lemma 3.5, since
u is represented over K= IL I?z We thus have a splitting ¢z = g2 L<u>.
By Witt cancellation over K, we have an isometry ¢ : q1|z = ¢2|z, which by

patching defines a quadratic form ¢ over R such that gx = ¢1 and §|5 = go.
We claim that ¢ 1 <—u>2= ¢ L h. Indeed, as h =Z<u, —u>, we have isometries

V(g L<—u>)k = (G Lh)k,  ¢R:(gl<—u>)a=(GLh)s

By Proposmon 3.6, there exists 6, € O(q L h)(R R) and 65 € O(G L h)(K) such
that ¢R(wK) = 6, '0;. The isometries 019 and 029K then agree over K
and so patch to yleld an isometry ¢ : ¢ L<—u>= g L h.

As h =Z<wu,—u>, we have ¢ 1< —u>2=2 ¢ L<u,—u>. By Corollary 3.4, we
can cancel the regular form < —u >, so that ¢ = § L<u>. Thus g represents
u over R. O

LEMMA 3.7. Let R be a discrete valuation ring and (E,q) a quadratic form of
rank n over R with simple degeneration. If q represents uw € R* then it can be
diagonalized as q Z<u,ug,...,Up_1,7> for u; € R* and some parameter w.

Proof. If q(v) = u for some v € E, then ¢ restricted to the submodule Rv C E
is regular, hence (E, q) splits as (R, <u>) L (Rv,q|p,r). Since (Rvt, q|pyr)
has simple degeneration, we are done by induction. [l

COROLLARY 3.8. Let R be a semilocal principal ideal domain with 2 invertible
and fraction field K. If quadratic forms q and ¢' with simple degeneration and
multiplicity one over R are isometric over K, then they are isometric over R.
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Proof. Any quadratic form ¢ with simple degeneration and multiplicity one has
discriminant 7 € R/R*? given by a parameter. Since R*/R*? — K*/K*?
is injective, if ¢ is another quadratic form with simple degeneration and mul-
tiplicity one, such that ¢|x is isomorphic to ¢|%, then ¢ and ¢’ have the same
discriminant.

Over each discrete valuation overring R; of R, we thus have diagonalizations,

/ / li li /
qlr, <UL, U U1 T >, G R EL U, Uy, U U T >,

for a suitable parameter m; of R;, where uj7u;» € R*. Now, since ¢|x and
q'| i are isometric, ¢'|k represents u; over K, hence by Proposition 3.2, ¢'|g,

represents uy over R;. Hence by Lemma 3.7, we have a further diagonalization
/ / li / li
4R, E<uy, Uy .oy Uy, U UG - - Uy T >
with possibly different units u}. By cancellation over K, we have
~ / / / li
UL, -+ vy Up— 1, U - Up 1T > | < UY,  Up g, U - U T > | K
By an induction hypothesis over the rank of ¢, we have that
/ / / /
LUy ey U1, UL Up 1T > Uy ooy U, Uy ** - Uy T >

over R. By induction, we have the result over each R;. R
Thus q\A >~ ¢'| over R =[], R;. Consider the induced isometry o : (¢ L
h)|z = (¢' L h)|5 as well as the isometry % : (¢ L h)lk = (¢ L h)|x induced

from the given one. By Proposition 3.6, there exists of € O(g L h)(R) and
0K € O(q L h)(K) such that wR LK = 0ROK =1 The isometries wRHR and

X OK then agree over K and so patch to yield an 1sometry viqLlh=q Lh
over R. By Corollary 3.4, we then have an isometry ¢ = ¢'. [l

Remark 3.9. Let R be a semilocal principal ideal domain with 2 invertible,
closed fiber D, and fraction field K. Let QFP (R) be the set of isometry classes
of quadratic forms on R with simple degeneration of multiplicity one along D.
Corollary 3.8 says that QF”(R) — QF(K) is injective, which can be viewed
as an analogue of the Grothendieck-Serre conjecture for the (nonreductive)
orthogonal group of a quadratic form with simple degeneration of multiplicity
one over a discrete valuation ring. One might wonder if such a statement is
true for more general nonreductive smooth R-group schemes.

COROLLARY 3.10. Let R be a complete discrete valuation ring with 2 invertible
and K its fraction field. If quadratic forms q and q' of even rank n = 2m > 4
with simple degeneration and multiplicity one over R are similar over K, then
they are similar.

Proof. Let v : q|x ~ ¢'|k be a similarity with factor A = ur® where u € R*
and 7 is a parameter whose square class we can assume is the discriminant
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of ¢ and ¢'. If e is even, then 721 : q|x ~ ¢/|x has factor u, so defines an
isometry ¢|x = uq'|x. Hence by Corollary 3.8, there is an isometry ¢ = uq’,
hence a similarity ¢ ~ ¢/. If e is odd, then 7(¢=1/2¢K defines an isometry
qlx = urq|x. Writing ¢ & ¢1 L<am > and ¢ = ¢} L<br > for regular
quadratic forms ¢; and ¢} over R and a,b € R*, then mq|x = unq'|x =
umq; L<bu>. Comparing first residues, we have that g; and <bu> are equal
in W(k), where k is the residue field of R. Since R is complete, g1 splits off
the requisite number of hyperbolic planes, and so q; = h™~1 L<(—1)""ta>.
Now note that (—1)™ 17 is a similarity factor of the form ¢|x. Finally, we
have (—1)™ 7mq|x = q|x = unq'|k, so that ¢|x = (—=1)" 'uq’|x. Thus by
Corollary 3.8, ¢ = (—1)™uq’ over R, so there is a similarity ¢ ~ ¢’ over R. O

We need the following relative version of Theorem 2.1.

PROPOSITION 3.11. Let R be a semilocal principal ideal domain with 2 invertible
and K its fraction field. Let q and ¢’ be quadratic forms of rank 4 over R with
simple degeneration and multiplicity one. Given any R-algebra isomorphism
v :6o(q) 2 6o(q') there exists a similarity 1 : ¢ ~ ¢’ such that €o(¢) = .

Proof. By Theorem 2.5, there exists a similarity ¢ : ¢ ~ ¢ such that
©o(") = p|k. Thus over R = [[; R;, Corollary 3.10 applied to each compo-
nent provides a similarity p : q|5 ~ ¢'| 5. Now Go(p) "' o ¢ : 60(q)|5 = 60(9)| 5
isa R\—algebra isomorphism, hence by Theorem 2.1, is equal to %,(o) for some

similarity o : q|5 ~ ¢|5. Then Pf = poo:qls (g satisties G () = o] 5.
Let A € K* and u € R* be the factor of %% and %, respectively. Then
¢K|II(1 o Pz qlp ~ qlz has factor u=')\ € K*. But since ‘50(¢K\IZ(1 o
wﬁ”\f() = id, we have that wK\IZ(l owﬁ”\f{ is given by multiplication by u € K*.
In particular, u=*X\ = p? and thus the valuation of A € KX is even in every
R;. Thus A\ = vw? with v € R* and so w defines an isometry q|x = vq’|k.
By Corollary 3.8, there’s an isometry a : ¢ = vq/, i.e., a similarity o : ¢ ~ ¢'.
As before, 6y(a) ™ o ¢ : Go(q) = %o(q) is a R-algebra isomorphism, hence by
Theorem 2.1, is equal to %p(8) for some similarity 8 : ¢ ~ ¢. Then we can
define a similarity ¢ = « o 3 : ¢ ~ ¢’ over R, which satisfies 6, (v)) = . O

Finally, we need the following generalization of [19, Prop. 2.3] to the setting of
quadratic forms with simple degeneration.

PROPOSITION 3.12. Let S be the spectrum of a regular local ring (R, m) of di-
mension > 2 with 2 invertible and D C S a regular divisor. Let (V,q) be a
quadratic form over S such that (V,q)|s(m} has simple degeneration of mul-
tiplicity one along D ~ {m}. Then (V,q) has simple degeneration along D of
multiplicity one.

Proof. First note that the discriminant of (V,¢q) (hence the subscheme D) is
represented by a regular element 7 € m ~ m?. Now assume, to get a contra-
diction, that the radical of (V, q),(m), where x(m) is the residue field at m, has
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dimension r > 1 and let €1, ..., €, be a k(m)-basis of the radical. Lifting to uni-
modular elements ey, ..., e, of V, we can complete to a basis e, ..., e,. Since
by(ei,e;) € mforall 1 < ¢ <7 and 1 < j < n, inspecting the Gram matrix
M, of b, with respect to this basis, we find that det M, € m", contradicting
the description of the discriminant above. Thus the radical of (V,¢) has rank
1 at m and (V,¢) has simple degeneration along D. Similarly, (V,¢) also has
multiplicity one at m, hence on S by hypothesis. O

COROLLARY 3.13. Let S be a regular integral scheme of dimension < 2 with 2
invertible and D a regular divisor. Let (&, q,Z) be a quadratic form over S that
is reqular over every codimension 1 point of S~ D and has simple degeneration
of multiplicity one over every codimension one point of D. Then over S, the
quadratic form q has simple degeneration along D of multiplicity one.

Proof. Let U = S~ D. The quadratic form ¢|y is regular except possibly at
finitely many closed points. But regular quadratic forms over the complement
of finitely many closed points of a regular surface extend uniquely by [19,
Prop. 2.3]. Hence g|y is regular. The restriction ¢|p has simple degeneration
at the generic point of D, hence along the complement of finitely many closed
points of D. At each of these closed points, ¢ has simple degeneration by
Proposition 3.12. Thus ¢ has simple degeneration along D. O

4  GLUING TENSORS

In this section, we reproduce some results on gluing (or patching) tensor struc-
tures on vector bundles communicated to us by M. Ojanguren and inspired by
Colliot-Thélene—Sansuc [19, §2, §6]. As usual, any scheme S is assumed to be
noetherian.

LEMMA 4.1. Let S be a scheme of dimension n, U C S a dense open subset,
x € S\U a point of codimension 1 of S,V C S a dense open neighborhood of
x, and W C UNV a dense open subset of S. Then there exists a dense open
neighborhood V' of x such that V' NU C W.

Proof. The closed set Z = S~ W is of dimension n — 1, contains x, and has a
decomposition into closed sets Z = Z; U Zy, where Z; = Z N (S \ U) contains
x and Zy = ZNU. No irreducible component of Zs can contain x, otherwise
it would contain (hence coincide with) the dimension n — 1 set {x}. Setting
V' = 8~ Zy, then V' C S is a dense open neighborhood of z and satisfies
VinU cWw. O

Let 7 be a locally free 0s-module (of finite rank). A tensorial construction
t(7) in ¥ is any locally free Os-module that is a tensor product of modules
N, N(7Y), Si(V), or SI(¥V). Let £ be a line bundle on S. An .-
valued tensor (¥, q,.Z) of type t(¥) on S is a global section ¢ € T'(S, t(¥)®.%)
for some tensorial construction ¢(#') in ¥. For example, an .Z-valued quadratic
form is an #-valued tensor of type t(¥) = S?(#V); an Os-algebra structure
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on ¥ is an Og-valued tensor of type t(¥) = ¥V ¥V ¥. If U C S is an open
set, denote by (¥, ¢, )|v = (¥|u,qlu,ZL|v) the restricted tensor over U. If
D C S is a closed subscheme, let 05 p denote the semilocal ring at the generic
points of D and (¥,q,.Z)|p = (¥,q¢,-L) ®es Us,p the associated tensor over
Os p. If S is integral and K its function field, we write (¥, q,.Z)|x for the
stalk at the generic point.

A similarity between line bundle-valued tensors (¥, q,.%) and (¥”, ¢, Z’) con-
sists of a pair (o, \) where p : ¥ = ¥’ and \ : £ =2 ¥’ are Os-module isomor-
phisms such that t(¢) @ A : t(¥) @ L 2 (V') ® £’ takes ¢ to ¢'. A similarity
is an isomorphism if .Z = %" and \ = id.

PROPOSITION 4.2. Let S be an integral scheme, K its function field, U C S
a dense open subscheme, and D C S\ U a closed subscheme of codimension
1. Let (7Y, qY, £Y) be a tensor over U, (VP ,qP, £P) a tensor over Os p,
and (p,\) : (VY. ¢V, LYk ~ (VP,¢", LP)|k a similarity of tensors over
K. Then there exists a dense open set U' C S containing U and the generic
points of D and a tensor (”I/U/,qU/,ZU/) over U’ together with similarities
(V. v, 2Y) = (¢, ¢V, L)y and (VP ,qP, 2P) = (VY ¢V, 2V)|p.
A corresponding statement holds for isomorphisms of tensors.

Proof. By induction on the number of irreducible components of D, gluing
over one at a time, we can assume that D is irreducible. Choose an extension
(vV,q", 2LV of (¥P,qP, £P) to some open neighborhood V of D in S. Since
PV, gV, L)k ~ (VY,qY, 2LY)|Kk, there exists an open subscheme W C
U NV over which (¥V, ¢V, ZV)|w ~ (¥Y,qY, £Y)|lw. By Lemma 4.1, there
exists an open neighborhood V' C S of D such that V' NU C W. We can glue
(YU, qV, YY) and (¥V', ¢V, 2V") over UNV’ to get a tensor (YU, ¢V, 2V")
over U’ extending (¥Y,qV, £Y), where U’ = U U V’. But U’ contains the
generic points of D and we are done. O

For an open subscheme U C S, a closed subscheme D C S ~ U of
codimension 1, a similarity gluing datum (resp. gluing datum) is a triple
(7Y,qY, 29, (VP,qP, £P), ) consisting of a tensor over U, a tensor
over Ogp, and a similarity (resp. an isomorphism) of tensors (¢, \)
(VY qY, L)k ~ (VP qP, LP)|k over K. There is an evident notion of iso-
morphism between two (similarity) gluing data. Two isomorphic gluing data
yield, by Proposition 4.2, tensors (7/U/,qU/7$U/) and (7/U”7qU”7$U”) over
open dense subsets U’',U” C S containing U and the generic points of D such
that there is an open dense refinement U C U’ N U” over which we have
(nj/U/7qU/a "%U/)|U”’ = (nj/U”7qU”7°§’pU”)‘U’”~

Together with results of [19], we get a well-known result—purity for division
algebras over surfaces—which we state in a precise way, due to Ojanguren, that
is conducive to our usage. If K is the function field of a regular scheme S, we
say that 8 € Br(K) is unramified (along S) if it is contained in the image of
the injection Br(0s ;) — Br(K) for all codimension 1 points = of S.
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THEOREM 4.3. Let S be a regular integral scheme of dimension < 2, K its
function field, D C S a closed subscheme of codimension 1, and U =S\ D.

a) If Y is an Azumaya Oyr-algebra such that /Y |k is unramified along D
then there exists an Azumaya Os-algebra </ such that o |y = /Y.

b) If a central simple K-algebra A has Brauer class unramified over S, then
there exists an Azumaya Ogs-algebra &7 such that of | = A.

Proof. For a), since /Y| is unramified along D, there exists an Azumaya
Os p-algebra P with #|x Brauer equivalent to A.

We argue that we can choose %7 such that #”|x = A. Indeed, writing
BP |k = My, (A) for a division K-algebra A and choosing a maximal Os p-
order 2P of A, then M,,(2P”) is a maximal order of %7 |r. Any two maximal
orders are isomorphic by [7, Prop. 3.5], hence M,,(27) = %P. In particular,
2P is an Azumaya Og p-algebra. Finally writing A = M,,(A), then M, (2P)
is an Azumaya Og p-algebra and is our new choice for %% .

Applying Proposition 4.2 to &V and %P, we get an Azumaya Oy -algebra @V’
extending .27V, where U’ contains all points of S of codimension 1. Finally, by
[19, Thm. 6.13] applied to the group PGL, (where n is the degree of A), &7V’
extends to an Azumaya Og-algebra &7 such that «|y = &Y.

For b), the K-algebra A extends, over some open subscheme U C S, to an
Azumaya Oyp-algebra «/V. If U contains all codimension 1 points, then we
apply [19, Thm. 6.13] as above. Otherwise, D = S\ U has codimension 1 and
we apply part (1). O

Finally, we note that isomorphic Azumaya algebra gluing data on a regular
integral scheme S of dimension < 2 yield, by [19, Thm. 6.13], isomorphic
Azumaya algebras on S.

5 THE NORM FORM Np,g FOR RAMIFIED COVERS

Let S be a regular integral scheme, D C S a regular divisor, and f : T — S
a ramified cover of degree 2 branched along D. Then T is a regular integral
scheme. Let L/K be the corresponding quadratic extension of function fields.
Let U =S~ D, and for E= f~1(D),let V=T~ E. Then fly : V — U is
étale of degree 2. Let ¢ be the nontrivial Galois automorphism of 7'/S.

The following lemma is not strictly used in our construction but we need it for
the applications in §6.

LEMMA 5.1. Let S be a reqular integral scheme and f : T — S a finite flat cover
of prime degree ¢ with regular branch divisor D C S on which ¢ is invertible.
Let L/K be the corresponding extension of function fields. Let d be a positive
integer invertible on D.

a) The corestriction map Ny g : Br(L) — Br(K) restricts to a well-defined
map Nrjg : ¢Br(T) — 4Br(S).
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b) If S has dimension < 2 and A is an Azumaya Or-algebra of degree
d representing B € Br(T) then there exists an Azumaya Os-algebra of
degree d° representing Nrs(B) whose restriction to U coincides with the
classical étale norm algebra Ny By .

Proof. The hypotheses imply that T is regular integral and so by [6], we can
consider Br(S) C Br(K) and Br(7) C Br(L). Let £ be an Azumaya Op-
algebra of degree d representing 5 € Br(T). As V/U is étale of degree /,
the classical norm algebra Ny, (%|v) is an Azumaya Oy -algebra of degree d*
representing the class of N,k (3) € Br(K). In particular, N k() is unram-
ified at every point (of codimension 1) in U. As D is regular, it is a disjoint
union of irreducible divisors and let D’ be one such irreducible component. If
E' = f*D’', then Or g is totally ramified over g ps (since it is ramified of
prime degree). In particular, B’ C T is an irreducible component of £ = f*D.
The commutative diagram

aBr(0r, ) —— 4Br(L) — 2 . HY(x(E"),Z/dT)

Nr/x

v

4Br(Os.pr) 9

Br(K) —2 = HY(k(D'),Z/dZ)

of residue homomorphisms implies, since B is unramified along E’, that
Np/k(B) is unramified along D’. Thus N /x(B) is an unramified class in
Br(K), hence is contained in Br(S) by purity for the Brauer group (cf. [33,
Cor. 1.10]). This proves part a.

By Theorem 4.3, Ny, (#|v) extends (since by part a, it is unramified along
D) to an Azumaya Og-algebra of degree d*, whose generic fiber is N,/ ().
This proves part b. O

Remark 5.2. Following Deligne [2, Exp. XVII 6.3.13], for any finite flat mor-
phism f : T — S, there exists a natural trace morphism Try : f, Gy, — G
of sheaves of abelian groups on X. Taking flat (fppf) cohomology, we arrive
at a homomorphism H?(Try) : H*(T,Gy) — H?*(S,Gm). If we assume that
the Brauer group and cohomological Brauer group of S coincide (e.g., S has an
ample invertible sheaf [22] or is regular of dimension < 2 [33, Cor. 2.2]), then
we can refine this to a map Br(7') — Br(S). This map can be seen to coincide
with the one constructed in Lemma 5.1, under the different set of hypotheses
imposed there. We do not know how these norm constructions coincide with
that defined by Ferrand [29].

Suppose that S has dimension < 2. We are interested in finding a good ex-
tension of Ny, (Z#|v) to S. We note that if # has an involution of the first
kind 7, then the corestriction involution Ny,y7(7[v), given by the restriction of
LTy @ Tlv to Ny (| ), is of orthogonal type. If Ny (%|v) = End(&Y)
is split, then Ny, (7|v) is adjoint to a regular line bundle-valued quadratic
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form (&Y,qY, 2Y) on U unique up to projective similarity. The main re-
sult of this section is that this extends to a line bundle-valued quadratic form
(&,q,Z) on S with simple degeneration along a regular divisor D satisfying
60(&,q, L) = B.

THEOREM 5.3. Let S be a regular integral scheme of dimension < 2 with 2
invertible and f : T — S a finite flat cover of degree 2 with reqular branch
divisor D. Let B be an Azumaya quaternion Or-algebra with standard in-
volution 7. Suppose that Ny, (%B|v) is split and Ny, (t|v) is adjoint to a
reqular line bundle-valued quadratic form (&Y,qY, £Y) on U. There exists
a line bundle-valued quadratic form (&,q,£) on S with simple degeneration
along D with multiplicity one, which restricts to (§Y,qV, 2Y) on U and such
that 60(&,q9,2) = A.

First we need the following lemma. Let S be a normal integral scheme, K its
function field, D C S a regular divisor, and g p the the semilocal ring at the
generic points of D.

LEMMA 5.4. Let S be a normal integral scheme with 2 invertible, T — S
a finite flat cover of degree 2 with regular branch divisor D C S, and L/K
the corresponding extension of function fields. Under the restriction map
HL(U,Z/2Z) — HL(K,Z/2Z) = K*/K*2, the class of the étale quadratic
extension [V/U] maps to a square class represented by a parameter m € K* of
the semilocal ring Os p.

Proof. Consider any m € K* with L = K(y/7). For any irreducible component
D’ of D, if vp/(m) is even, then we can modify m up to squares in K so that
vpr(w) = 0. But then T/S would be étale at the generic point of D’, which
is impossible. Hence, vp () is odd for every irreducible component D" of D.
Since Og p is a principal ideal domain, we can modify 7 up to squares in K
so that vp/(7) = 1 for every component D’ of D. Under the restriction map
HL(U,Z/2Z) — HL(K,Z/2Z) = K*/K*?, the class [V/U] is mapped to the
class [L/ K], which corresponds via Kummer theory to the square class (7). O

Proof of Theorem 5.3. If D = UD; is the irreducible decomposition of D and
m; is a parameter of Og p,, then m = Hz m; is a parameter of g p. Choose
a regular quadratic form (&Y,qY, 2Y) on U adjoint to Nyys(oly). Since
Os.p is a principal ideal domain, modifying by squares over K, the form ¢V |x
has a diagonalization < aj,as,as,as >, where a; € Og p are squarefree. By
Lemma 5.4, we can choose m € K* so that [V/U] € H}, (U,Z/27Z) maps to the
square class (7). By Theorem 2.5, the class [V/U] maps to the discriminant of
qV|k. Since Og p is a principal ideal domain, a; - --ay4 = p’n, for some p €
Os,p. If m; divides p, then m; divides exactly 3 of a1, as, as, a4, so that clearing
squares from the entries of p < aj,as,as,as > yields a form < a,ab,ak, aly >
over Us p with simple degeneration along D, which over K, is isometric to
1qY | k. Define

(éaDa qugD) = (ﬁé,Dﬂ <a'1, a/Qﬂ aé, aﬁ1>’ ﬁS,D)'
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By definition, the identity map is a similarity ¢¥|x ~ ¢”|x with similarity
factor p (up to K*2). Our aim is to find a good similarity enabling a gluing
to a quadratic form over S with simple degeneration along D and the correct
even Clifford algebra.

First note that by the classical theory of 2A; = Dy over V/U (cf. Theorem
2.5), we can choose an 0y -algebra isomorphism @Y : 64(&Y, ¢V, £Y) — By .
Second, we can pick an O g-algebra isomorphism ¢? : 64 (qP) — B| g, where
E = f~!D. Indeed, by the classical theory of 2A; = Dy over L/K (cf. Theo-
rem 2.5), the central simple algebras %;(¢” )|, and 4| are isomorphic over L,
hence they are isomorphic over the semilocal principal ideal domain 07 . Now
consider the L-isomorphism ¥ = (oY|1)7 o ©P|r : 6o(qP)|L — Co(¢Y)|L.
Again by the classical theory of 2A; = Dy over L/K (cf. Theorem 2.5), this
is induced by a similarity % : ¢P|x — ¢Y|k, unique up to multiplica-
tion by scalars. By Proposition 4.2, the quadratic forms (&Y, ¢V, 2Y) and
(&P, ¢P, £P) glue, via the similarity %, to a quadratic form (&Y, ¢V, 2Y")
on a dense open subscheme U’ C S containing U and the generic points of
D, hence all points of codimension 1. By [19, Prop. 2.3], the quadratic form
(éaU/7qU/, .,?U/) extends uniquely to a quadratic form (&, ¢,Z) on S since the
underlying vector bundle &Y extends to a vector bundle & on S (because S is
a regular integral schemes of dimension < 2). By Corollary 3.13, this extension
has simple degeneration along D.

Finally, we argue that %y(q) = 4. We know that q|y = ¢V and ¢|p = ¢” and
we have algebra isomorphisms ¢V : 65(q)|v = %|v and o : 6o(q)|p = %|p
such that ¥ = (oY1) 1o P |r. Hence the gluing data (¢5(q)|v, 60(q)|p, ¢*)
is isomorphic to the gluing data (%|y, B|p,id). Thus €y(q) and A are iso-
morphic over an open subset U’ C S containing all codimension 1 points of S.
Hence by [19, Thm. 6.13], these Azumaya algebras are isomorphic over S. O

Finally, we can prove our main result.

Proof of Theorem 1. Theorem 5.3 implies that %j : Quad,(T/S) — Aza(T/S)
is surjective. To prove the injectivity, let (&1,q1,-%1) and (&3, g2, %) be line
bundle-valued quadratic forms of rank 4 on S with simple degeneration along D
of multiplicity one such that there is an Op-algebra isomorphism ¢ : 6o(¢q1) =
%o(q2). By the classical theory of 2A; = Dg over V/U (cf. Theorem 2.5), we
know that ¢|v : 6o(q1)|v = 6o(q2)|v is induced by a similarity transformation
WY gl ~ @l ® AY, for some line bundle .4V on U, which we can
assume is the restriction of a line bundle .4 on S. Replacing (&3, g2,-%>)
by (& @ N, qa® <1>, L ® A ®?), which is in the same projective similarity
class, we can assume that ¥V : qi|y ~ qo|v. In particular, Z|y = %|v so
that we have £ = % & 4 for some .|y = Oy by the exact excision sequence

A%(D) — Pic(S) — Pic(U) — 0

of Picard groups (really Weil divisor class groups), cf. [32, Cor. 21.6.10], [30,
1 Prop. 1.8].
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By Theorem 3.11, we know that ¢|p : 0(q1)|r = 60(g2)|£ is induced by some
similarity transformation ¥ : qi|p ~ g2|p. Thus & = (YP|x) "t oV |k €
GO(q1| k). Since 6o (¢Y | k) = 60 (¢¥P| k) = ¢| K, we have that & € GO(q1|k)
is a homothety, multiplication by A € K*. As in §4, define a line bundle &
on S by the gluing datum (O, Op,A\™! : Oy|k = Oplk). Then & comes
equipped with isomorphisms pY : 0y = 2|y and pP : Op = P|p with
(pP|r)"LopY|k = AL, Then we have similarities ¥V @p" : q1]v ~ q2|p® ZP|u
and P @ pP : q1|p =~ q2|p ® Z|p such that

WP @ p")" o (WY @ p") |k = WP 1KY k) (P15 07 |x) =" A =id

in GO(q1|x). Hence, as in §4, ¥V @ pV and ¢ @ pP glue to a similar-
ity (cg)l,ql,gl) ~ (5)2 R, <1>451 :@®2). Thus (éal,ql,gl) and
(&2, q2, %) define the same element of Quad,(7/S). O

6 FAILURE OF THE LOCAL-GLOBAL PRINCIPLE FOR ISOTROPY OF
QUADRATIC FORMS OVER SURFACES

In this section, we mention one application of the theory of quadratic forms
with simple degeneration over surfaces. Let S be a regular proper integral
scheme of dimension d over an algebraically closed field k of characteristic # 2.
For a point  of X, denote by K, the fraction field of the completion s, of
Us, at its maximal ideal.

LEMMA 6.1. Let S be a regular integral scheme of dimension d over an alge-
braically closed field k of characteristic # 2 and let D C S be a divisor. Fix
i>0. If (&,q,%) is a quadratic form of rank > 297" + 1 over S with sim-
ple degeneration along D then q is isotropic over K, for all points x of S of
codimension > 1.

Proof. The residue field x(z) of K, has transcendence degree < d — i over k
and is hence a Cy_;-field. By hypothesis, ¢ has, over K,, a subform ¢; of rank
> 2977 that is regular over ﬁAS,z. Hence ¢ is isotropic over x(x), thus ¢ is
isotropic over the complete field K. [l

As usual, denote by K = k(S) the function field. We say that a quadratic
form ¢ over K is locally isotropic if ¢ is isotropic over K, for all points x of
codimension one.

COROLLARY 6.2. Let S be a proper reqular integral surface over an algebraically
closed field k of characteristic # 2 and let D C S be a regular divisor. If
(&,q,2) is a quadratic form of rank > 4 over S with simple degeneration
along D then q over K is locally isotropic.

For a different proof of this corollary, see [49, §3]. However, quadratic forms
with simple degeneration are mostly anisotropic.
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THEOREM 6.3. Let S be a proper reqular integral surface over an algebraically
closed field k of characteristic # 2. Assume that 9Br(S) trivial. Let T — S
be a finite flat morphism of degree 2 with reqular branch divisor D C S. Then
each nontrivial class in 9Br(T') gives rise to a locally isotropic, yet anisotropic,
quadratic form over k(S), unique up to similarity.

Proof. Let L = k(T) and K = k(S). Let 8 € 2Br(T) be nontrivial. By a
result of Artin [1], the class | € 3Br(L) has index 2. Thus by purity for
division algebras over regular surfaces (Theorem 4.3), there exists an Azumaya
quaternion algebra % over T' whose Brauer class is #. Since Np,x(6|z) is
unramified on S, by Lemma 5.1, it extends to an element of oBr(.S), which is
assumed to be trivial. Hence #Z € Azy(T/S).

By the classical theory of 2A; = D3 over L/K (cf. Theorem 2.5), the quaternion
algebra |1 corresponds to a unique similarity class of quadratic form ¢ of
rank 4 on K. The crucial contribution of our work is that we can control the
degeneration divisor of an extension of g% to a quadratic form on S. Indeed, by
Theorem 1, & corresponds to a unique projective similarity class of quadratic
form (&, q,%) of rank 4 with simple degeneration along D that is generically
similar, by the compatibility of the norm constructions in Theorems 2.5 and
5.3, to ¢!*. Thus by Corollary 6.2, ¢¥¢ is locally isotropic.

A classical result in the theory of quadratic forms of rank 4 is that ¢ is isotropic
over K if and only if 45(¢®) splits over L (since L/K is the discriminant
extension of ¢¥¢), see [42, Thm. 6.3], [55, 2 Thm. 14.1, Lemma 14.2], or [8, IT
Prop. 5.3]. Hence ¢ is anisotropic since %5(¢%) = %1, has nontrivial Brauer
class 8 by construction. O

We can make Theorem 6.3 explicit as follows. Write L = K(v/d). Let %
be an Azumaya quaternion algebra over T', with %}, given by the quaternion
symbol (a,b) over L. Since Ny i (%) is trivial, the restriction-corestriction
sequence shows that 2|y, is the restriction of a class from »Br(K), so we can
choose a,b € K*. The corresponding quadratic form over K (from Theorem 1)
is then given, up to similarity, by < 1,a,b,abd >. Indeed, its similarity class
is uniquely characterized by having discriminant d and even Clifford invariant
(a,b) over L, see [42].

In order to produce counterexamples to the local-global principle for isotropy
of quadratic forms over a given surface, we need branched double covers with
nontrivial 2-torsion in their Brauer group. This always exists, at least assuming
characteristic zero.

PROPOSITION 6.4. Let S be a smooth projective surface over an algebraically
closed field k of characteristic zero. Then there exists a finite flat double cover
T — S with smooth branch divisor D C S such that 3Br(T) # 0.

Proof. Choose a very ample line bundle .4 on S. By Serre’s theorem [34,
IT Thm. 5.17], there exists ng such that wg @ A4 ®" is generated by global
sections for all n > ng. We are free to enlarge ng as we wish. Write .4 = 4 ®m0,
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Let ¢ : S — PV be the projective embedding associated to the very ample line
bundle .#Z®%. Then by Bertini’s theorem, there exists a hyperplane H C PV
such that D = HN S is a smooth divisor of S. As .#%? = 0g(D), there exists
a nonzero section s € I'(S, .#®?) with D as divisor of zeros. Then s defines an
Os-algebra structure on Og @ .#" and let f: T — S be the finite flat double
cover associated to its relative spectrum, i.e., the cyclic double cover taking a
square root of D. As D is smooth, T" is a smooth projective surface. We will
argue that taking the degree of the embedding ¢ large enough (i.e., taking ng
large enough) will suffice.

The double cover is tame, so we have wp & f*(wg ® .#). Then

HO(TaWT) = HO(Sa f*wT) = HO(vaS) D HO(SawS ®%)

is a k-vector space of positive dimension, since wg ® .# is generated by global
sections. Hence h*%(T) = dimy H°(T,wri;) > 0. In general, the Hodge num-
bers are defined as h?4(T') = dimy HY(T, €y, ). From the Kummer exact
sequence, we derive a short exact sequence

0 — Pic(T) ®z Zy — HZ(T, Z(1)) — Homz(Qy/Zo, H2 (T, G)) — 0.

As T is smooth and proper over a field, the 2-adic cohomology groups are of
cofinite type, thus we get isomorphisms of 2-primary torsion subgroups

Br(T)[2%] = H2(T, G )[2%] 2 (Qa/Z2)"> M7 x G,

for some finite group G, where by(T) = dimg, HZ (T,Zs) is the 2nd 2-adic
Betti number, and p(T) is the rank of the Néron-Severi group of T. By
the degeneration of the Hodge—de Rham spectral sequence for smooth pro-
jective varieties in characteristic zero, the Hodge decomposition yields by (7T") =
h20(T) + h1(T) + h%2(T) and we note that p(T) < hY'(T). Hence by con-
struction, by(T) — p(T) > 2h%°(T) > 0. In particular, we have oBr(T) # 0. O

We remark that the characteristic zero hypothesis can be relaxed to the condi-
tion that the Hodge-de Rham spectral sequence degenerates at the first page,
since all we used in the proof of Lemma 6.4 was the Hodge decomposition. By
[24], for a smooth surface S over a perfect field of characteristic # 2, it is suffi-
cient to assume that S admits a smooth lift to the Witt vectors Wy (k) of length
2. In any case, we wonder whether it is possible to remove the characteristic
zero hypothesis in general.

COROLLARY 6.5. Let K be a field finitely generated of transcendence degree
2 over an algebraically closed field k of characteristic zero. Then there exist
anisotropic quadratic forms q of rank 4 over K such that q, is isotropic for
every rank 1 discrete valuation v on K.

Proof. By resolution of singularities and Chow’s lemma, we can find a smooth
projective connected surface S over k with function field K. If sBr(S) # 0, then
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as before, by purity for division algebras (Theorem 4.3) and Artin’s result [1],
any nontrivial 8 in oBr(S) is represented by an Azumaya quaternion algebra
P over S. Then the norm form Nrd : Z — Oy is locally isotropic by Tsen’s
theorem (cf. Lemma 6.1) yet is globally anisotropic. Hence we can assume
that oBr(S) = 0. Appealing to Proposition 6.4, we have a finite flat morphism
T — S of degree 2 with regular branch divisor such that sBr(7") # 0. We then
apply Theorem 6.3 to provide the counterexamples. O

EXAMPLE 6.6. Let 7' — P? be a double cover branched over a smooth sextic
curve over an algebraically closed field of characteristic # 2. Then T is a
smooth projective K3 surface of degree 2. We remark that by(7) = 22 and
that p(T) < 20. In fact, S admits a smooth lift to the Witt vectors by [23].
In particular, oBr(T) = (Z/2Z)?*>=F # 0, so that T gives rise to 22277 — 1
similarity classes of locally isotropic yet anisotropic quadratic forms of rank 4
over K = k(P?). This proves that the explicit Brauer classes constructed in
[37] and [5] give rise to explicit quadratic forms that are counterexamples to
the local-global principle.

We remark that while counter-examples to the local-global principle for isotropy
of quadratic forms over the function field of a surfaces S could have previously
been constructed from unramified quaternion algebras on S (cf. [18, Prop. 11]),
such an approach cannot be used, for example, over rational surfaces.

7 A TORELLI THEOREM FOR GENERAL CUBIC FOURFOLDS CONTAINING A
PLANE

Let Y be a cubic fourfold, i.e., a smooth cubic hypersurface of P> = P(V') over
C. Let W C V be a vector subspace of dimension three, P = P(W) C P(V) the
associated plane, and P’ = P(V/W). If Y contains P, let Y be the blow-up of
Y along P and 7 : Y — P’ the projection from P. The blow-up of P° along P
is isomorphic to the total space of the projective bundle p : P(&) — P’, where
& =W®Op ®Op(—1), and in which 7 : Y — P’ embeds as a quadric surface
bundle. The degeneration divisor of 7 is a sextic curve D C P’. It is known
that D is smooth and 7 has simple degeneration along D if and only if Y does
not contain any other plane meeting P, cf. [60, §1, Lemme 2]. In this case,
the discriminant cover T — P’ is a K3 surface of degree 2. All K3 surfaces
considered will be smooth and projective.

We choose an identification P’ = P? and suppose, for the rest of this section,
that 7 : Y — P’ = P? has simple degeneration. If ¥ contains another plane
R disjoint from P, then R C Y is the image of a section of m, hence %y(m)
has trivial Brauer class over T" by a classical result concerning quadratic forms
of rank 4, cf. proof of Theorem 6.3. Thus if €(7) has nontrivial Brauer class
B € oBr(T), then P is the unique plane contained in Y.

Given a scheme T with 2 invertible and an Azumaya quaternion algebra % on
T, there is a standard choice of lift [%] € HZ (T, p2) of the Brauer class of 4,
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defined in [52] by taking into account the standard symplectic involution on 2.
Denote by ¢; : Pic(T) — HZ (T, u2) the mod 2 cycle class map arising from
the Kummer sequence.

DEerINITION 7.1. Let T be a K3 surface of degree 2 over k together with
a polarization %, i.e., an ample line bundle of self-intersection 2. For
B € HL(T,p2)/{c1(F)), we say that a cubic fourfold Y represents 3 if Y
contains a plane whose associated quadric bundle 7 : Y — P? has simple de-

generation and discriminant cover f : T — P? satisfying f*Op2(1) = .F and

[6o(m)] = 5.

Remark 7.2. For a K3 surface T' of degree 2 with a polarization .%, not every
class in HZ (T, p2)/{c1(F)) is represented by a cubic fourfold, though one can
characterize such classes. Consider the cup product pairing in étale cohomology
H2 (T, po) x HZ(T, po) — HL(T, u$?) = 7,/27. Define

B(T, %) = {z € Hi(T, o) /(2(F)) | 2 Uer(F) # 0},

Note that the natural map B(T,.%#) — oBr(T) is injective if and only if Pic(T)
is generated by .. A consequence of the global description of the period
domain for cubic fourfolds containing a plane is that for a K3 surface T' of
degree 2 with polarization .%, the subset of HZ (T, p2)/{c1(.F)) represented by
a cubic fourfolds containing a plane coincides with B(T', f) U {0}, cf. [58, §9.7]
and [37, Prop. 2.1].

We can now state the main result of this section. Using Theorem 1 and results
on twisted sheaves described below, we provide an algebraic proof of the fol-
lowing result, which is due to Voisin [60] (cf. [58, §9.7] and [37, Prop. 2.1]). See
[12, Prop. 6.3] for a related result.

THEOREM 7.3. Let T be a general K3 surface of degree 2 with a polarization
. Then each element of B(T, %) is represented by a single cubic fourfold
containing a plane up to isomorphism.

We now explain the interest in this statement. The global Torelli theorem for
cubic fourfolds states that a cubic fourfold Y is determined up to isomorphic
by the polarized Hodge structure on H*(Y,Z). Here polarization means a class
h? € HY(Y,Z) of self-intersection 3. Voisin’s approach [60] is to deal first
with cubic fourfolds containing a plane, then apply a deformation argument to
handle the general case. For cubic fourfolds containing a plane, we can give an
alternate argument in the general case, assuming the global Torelli theorem for
K3 surfaces of degree 2, which is a celebrated result of Piatetski-Shapiro and
Shafarevich [53].

PROPOSITION 7.4. Assuming the global Torelli theorem holds for K3 surfaces
of degree 2, the global Torelli theorem holds for general cubic fourfolds.

Proof. Let Y be a cubic fourfold containing a plane P with discriminant cover
f : T — P2 and even Clifford algebra %,. Consider the cycle class of P
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in HY(Y,Z). Then % = f*0p=(1) is a polarization on T, which together
with [¢y] € HZ(T, pa), determines the sublattice (h%, P)t C H*(Y,Z). The
key lattice-theoretic result we use is [60, §1, Prop. 3], which can be stated as
follows: the polarized Hodge structure H?(T,Z) and the class [6p] € HZ (T, p2)
determines the Hodge structure of Y'; conversely, the polarized Hodge structure
H*(Y,Z) and the sublattice (h?, P) determines the primitive Hodge structure
of T, hence T itself by the global Torelli theorem for K3 surfaces of degree
2. Furthermore, if Y (and hence T') is general, then H*(Y,Z) and (h?, P)
determines the Brauer class [4p] of the even Clifford algebra.

Now let Y and Y’ be cubic fourfolds containing a plane P with associated
discriminant covers 7' and 7" and even Clifford algebras % and 4. Assume
that ¥ : H*(Y,Z) = H*(Y,7Z) is an isomorphism of Hodge structures preserving
the polarization h%. By [35, Prop. 3.2.4], we can assume (by composing ¥ with
a Hodge automorphism fixing h?) that ¥ preserves the sublattice (h?, P). By
[60, §1, Prop. 3], ¥ induces an isomorphism 7' = T’  with respect to which
[60] = [6) = B € HZ (T, n2) = HZ (T, p2), for T general. Hence if there is at
most a single cubic fourfold representing 3 up to isomorphism then Y = Y’. O

The following lemma, whose proof we could not find in the literature, holds for
smooth cubic hypersurfaces Y C Pi”l containing a linear subspace of dimen-
sion 7 over any field k. Since Aut(P2 ') & PGLy, ;2 (k) acts transitively on
the set of linear subspaces in Pirﬂ of dimension r, any two cubic hypersurfaces
containing linear subspaces of dimension r have isomorphic representatives con-
taining a common such linear subspace.

LEMMA 7.5. Let Y7 and Ys be smooth cubic hypersurfaces in Pi”l containing a
linear space P of dimension r. The associated quadric bundles m : Y7 — P}, and

my : Yo — P} are P} -isomorphic if and only if the there is a linear isomorphism
Y1 2 Y5 fixing P.

Proof. Any linear isomorphism Y7 = Y5 fixing P will induce an isomorphism
of blow-ups Y1 = Y, commuting with the projections from P. Conversely,
assume that Y7 and Y5 are P}-isomorphic. Since PGLg,12(k) acts transitively
on the set of linear subspaces of dimension r, without loss of generality, we can
assume that P = {29 = --- = 2, = 0} where (zg : -~ 12, 1 yo : -+~ : yp) are
homogeneous coordinates on Pirﬂ. For [ = 1,2, write Y] as

Z ainnymyn + Z b;yp + =0
0<m<n<r 0<p<r
for homogeneous linear forms al,,,, quadratic forms bl and cubic forms ¢
k[zo,...,x,]. The blow-up of P¥"*! along P is identified with the total space
of the projective bundle 7 : P(&) — P}, where & = @;;1 ©® Op;(—1). The
homogeneous coordinates yq, ..., ¥y, correspond, in the blow-up, to a basis of
global sections of Op(s)(1). Let z be a nonzero global section of of line bundle

Uin
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Op(g)(1) @ 7 Opr (—1). Then z is unique up to scaling, as we have

L(P(&), Ops) (1) © 7" Opy (—1)) = T(Py, m Op(s) (1) @ Oy (—1))
=D(Py, 6 @ Opp (-1)) = k

by the projection formula. Thus (yo : --- : y, : z) forms a relative system of

homogeneous coordinates on P(&’) over P;. Then Y; can be identified with the
subscheme of P(&) defined by the global section

ayo, - Yr, 2) = Z ainnymyn + Z bf,ypz +d22=0
0<m<n<r 0<p<r

of Op(s)(2) @ 7 Opr (1). Under these identifications, m : Y, — P} can be iden-
tified with the restriction of 7 to }71, hence with the quadric bundle associated
to the line bundle-valued quadratic form (&, q, Opr(1)). Since Y} and P are

smooth, so is 57'1 Thus 7 : }N/l — P} is flat, being a morphism from a Cohen—
Macaulay scheme to a regular scheme. Thus by Propositions 1.1 and 1.6, the
P} -isomorphism Y; = Y5 induces a projective similarity 1) between ¢; and g¢».
But as & @ A" = & implies .4 is trivial in Pic(P},), we have that ¢ : ¢1 >~ ¢o s,
in fact, a similarity. In particular, ¢ € GL(&)(P},), hence consists of a block

matrix of the form
H v
0 wu

where H € GL(ﬁﬁ;{l)(P;) = GL,11(k) is a constant invertible matrix and
u € GL(Op; (—1))(P}) = Gu(P}) = k™ is an invertible constant element,
while v € Homg,, (Opr (1), ﬁ{,fg'l) =[P}, Opr (1))®0+1) consists of a vector of
linear forms in k[zo, ..., z,]. Let v = G-(xo,...,x,)! for amatrix G € M, (k).
Then writing H = (h;;) and G = (g;;), we have that 9 acts as

Ti — Tj, Yi Z (hijyj +gi_j$_j2)7 Z = uz
0<j<r

and satisfies QQ(¢<yO)7 s 7w(y’r’)a ’IIZJ(Z)) - AQ1(yO7 s Yrs Z) for some A € k.
Considering the matrix J € Mo, yo(k) with (r 4+ 1) x (r 4+ 1) blocks

ul 0
=( n)

as a linear automorphism of P{" !, then J acts on (o : -~ :ap 1y -+ & Yr)
as
T; UL, Yi — Z (hijy; + gi25),
0<j<r
and hence satisfies ¢2(J(yo),- .-, J(yr), 1) = uAq1(yo, - - -, Yr, 1) due to the ho-
mogeneity properties of x; and z. Thus J is a linear automorphism taking Y;
to Y5 and fixes P. O
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Let T be a K3 surface. We shall freely use the notions of S-twisted sheaves,
B-fields associated to 3, the g-twisted Chern character, and g-twisted Mukai
vectors from [38]. For a Brauer class § € 2Br(7') we choose the rational B-field
B/2 € H*(T,Q). The B-twisted Mukai vector of a S-twisted sheaf ¥ is

B (#) = chB(¥)y/Tdr = (tk ¥, B (¥), 1k ¥ + %cf (#)—B(¥)) € H*(T,Q)

where H*(T,Q) = EB?:O H?(T,Q). As in [47], one introduces the Mukai pair-
ing
(v,w) = vy Uwy — vg Uwyg — vg Uwyg 6H4(T,Q) =Q

for Mukai vectors v = (vg, va,v4) and w = (wg, wa, wy).

By [63, Thm. 3.16], the moduli space of stable S-twisted sheaves ¥ with Mukai
vector v = vB(¥) satisfying (v,v) = 2n is isomorphic to the Hilbert scheme
Hilbl}“. In particular, when (v,v) = —2, this moduli space consists of one
point; we give a direct proof of this fact inspired by [47, Cor. 3.6].

LEMMA 7.6. Let T be a K3 surface and 8 € 3Br(T) with chosen B-field. Let
v e H*(T,Q) with (v,v) = =2. If ¥ and V' are stable B-twisted sheaves with
VB(V) = 0B (V") = v then v = V.

Proof. Assume that -twisted sheaves ¥ and ¥ have the same Mukai vector
v € H*(T,Q). Since —2 = (v,v) = x(¥,¥) = x(¥,7"), a Riemann-Roch
calculation shows that either Hom (¥, #”) # 0 or Hom(¥,7") # 0. Without
loss of generality, assume Hom(?, ¥”) # 0. Since ¥ is stable, a nonzero map
¥ — ¥’ must be injective. Since ¥ is stable, the map is an isomorphism. O

LEMMA 7.7. Let T be a K3 surface of degree 2 and 3 € o9Br(T) with chosen B-
field. Let'Y be a smooth cubic fourfold containing a plane whose even Clifford
algebra €y represents § € oBr(T). If ¥ is a B-twisted sheaf associated to 6o
then (vVB(%),vB(%)) = —2. Furthermore, if T is general then ¥ is stable.

Proof. By the pg-twisted Riemann—Roch theorem, we have
2 .
— WP (1),0" (%)) = x(o. %) = > _ Bxty (%5, %0).
i=0
Then v?(¥#;) = 2 results from the fact that ¥ is a spherical object, i.e.,
Exth (%, %) = C for i = 0,2 and Ext'(%, %) = 0. Indeed, as in [45,

Rem. 2.1], we have Exth (%, %) = H*(P?, %)), which can be calculated di-
rectly using the fact that, as Opz-algebras,

G0 =2 Op> @ Op2(—3) © Op2(—1)> © Op2(—2)? (10)

If T is general, stability follows from [47, Prop. 3.14], cf. [63, Prop. 3.12]. O
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LEMMA 7.8. Let T be a K3 surface of degree 2. Let Y and Y’ be smooth cubic
fourfolds containing a plane whose respective even Clifford algebras €y and €
represent the same 8 € oBr(T'). If T is general then 6y = 6.

Proof. Let ¥, and ¥ be [-twisted sheaves associated to %y and %), respec-
tively. A consequence of [45, Lemma 3.1] and (10) is that v = vB(%) =
vB(¥§ @A) for some line bundle .4 on T. Replacing ¥ by ¥j ® 4, we can
assume that v2(7) = v (7). By Lemma 7.7, we have (v,v) = —2 and that
¥, and ¥ are stable. Hence by Lemma 7.6, we have #) = ¥ as S-twisted
sheaves, hence 6y = &nd(¥) = End(Y)) = 6. O

Proof of Theorem 7.3. Suppose that Y and Y’ are smooth cubic fourfolds con-
taining a plane whose associated even Clifford algebras % and % represent
the same class 8 € B(T,.%) C HZ(T, p2)/(c1(F)) = oBr(T). By Lemma 7.8,
we have 6 = 6. By Theorem 1, the quadric surface bundles 7 : Y — P2 and
7' Y’ — P? are P%-isomorphic. Finally, by Lemma 7.5, we have Y 2 Y’. O
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1 INTRODUCTION

Let F' be a number field of degree d, with ring of integers O and discriminant
Dp. We denote by K,,(Op) the n-th K-theory group of O, which was defined
by Quillen and showed by him to be finitely generated. The rank of K, (OF)
has been computed by Borel in [4]. In this article we consider the problem of
finding an upper bound — in terms of n, d and D — for the order of the torsion
part Ky (OF)tors- Such general bounds have been obtained by Soulé in [11].
Our Theorem 1.1 below sharpens Soulé’s results.

As in Soulé’s paper, our inequalities hold “up to small torsion”. To state this
precisely, for a finite abelian group A let us write cardy(A) for the order of
A/B, where B C A is the subgroup generated by elements of order < /.
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THEOREM 1.1. Let F # Q be a number field of degree d and with discriminant
Dp. Then for any n > 2 we have

log Ca]ﬁ'd[ Kn(OF)tors < (27’L+ 1)71n4d3 ) d293n5d5 ) |DF‘528n5d4 7

where £ = max(d+1,2n+ 2).

To improve the readability, we have not tried to state here the best possible
bounds that one could get with the method we use. We refer to the PhD
thesis of the third author [7, Theorem 4.3] — in which the result was originally
obtained — for slightly better estimates. However, it does not change the fact
that the upper bounds are huge, and — although explicit — certainly unusable
for practical computation. We shall insist here on the qualitative aspect of our
result, which could be stated as follows.

COROLLARY 1.2. There exist a and [3, both polynomials in n and d, such that
for any number field F of degree d > 2 we have

log cardy K, (O )tors < (nd)¥|Dp|?,
where { = max(d+1,2n+2) and n > 2.

Compared to [11], our result improves the bound by an exponential factor:
the previous bound for logcard, K, (OF) was at least exp(a|Dg|'/?), for some
polynomial = a(n,d) (see Proposition 4 in loc. cit. for the precise statement).
The strategy is the following. The group K, (Op) can be related — via the
Hurewicz map — to the integral homology H,,(GL(OFp)), and an upper bound
(up to small torsion) for the order of K, (Op) can then be obtained through
the study of the integral homology of GLy(OFp), with N =2n+1 (cf. Sec-
tion 3). The proof of Theorem 1.1 follows the method of Soulé, which uses
Ash’s well-rounded retract (cf. Section 2) to study these homology groups.
This reduces the problem to finding good estimates concerning the geometry of
hermitian lattices. Our approach to these estimates differs from that of Soulé
(cf. Section 4), leading to the improved bounds in Theorem 1.1.

For F'=Q our method does not bring any improvement, so that [11, Prop. 4 iv)]
is still the best available general bound for K,,(Z). We refer to [6, Theorem 1.3]
for a different approach to the same problem for K, which gives better result
than Corollary 1.2 in the case of totally imaginary fields. Note that all these
results remain very far from the general bound conjectured by Soulé in [11,
Sect. 5.1], which should take the following form for some constant C(n,d):

log card K, (OF )tors < C(n,d) log|Dp|. (1.1)
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2 HERMITIAN METRICS AND THE WELL-ROUNDED RETRACT

2.1 NOTATION

We keep the notation of the introduction. Let us denote by (r1,r2) the signature
of the number field F. Let us write Fr = R®g F. If ¥ denotes the set of field
embeddings o : F — C, then Fg can be identified with the subspace (C*)* C
C¥ invariant under the involution (x,) + (Zz), where @ denotes the complex
conjugation. This also provides an isomorphism Fg = R"™ x C2.

For x € Fg, written as = (24 )sex, we denote by T = (T,) the result of the
complex conjugation applied component-wise. We denote by Tr the trace map
from Fg to R, defined by Tr(z) = 5 2o. We will also use the absolute value
of the norm map: N'(z) =[], cx %o |-

We fix a free Op-lattice L of finite rank N > 1. Let V = F'®p, L and Vg =
R®qgV, so that Vg can be seen as a (left) Fr-module. Let I" be the group
GL(L) of automorphism of L. By fixing a basis of L, we have the identification
I' = GLNy(Op). Then T is a discrete subgroup of the reductive Lie group
GL(Vr) = GLy(Fr). We shall denote the latter by G, and we will let it act on
Vi on the left (and similarly for I" on L).

2.2  HERMITIAN METRICS

Let h: Vg x Vg — Fg be a hermitian form on Vg, that is, h = (hy)yex is Fr-
linear in the first variable and h(y,x) = h(z,y). The pair (L,h) is called a
hermitian lattice. When x =y, we also write h(z) = h(xz,x). Note that h(x)
has only real components, and we say that h is positive definite if hy(z,2) >0
for any nonzero x € Vg and all o € 3.

Let X be the (topological) space of positive definite hermitian forms on Vg.
The group G = GL(VR) acts transitively on X in the following way: the element
~v € G maps the form h € X to

(v-h)(z,y) = h(v " 2,77 1y). (2.1)
The space X can be identified with the set of positive definite symmetric N x N

matrices with coefficients in Fg. Using this identification, it is not difficult to
see that X is contractible.

To each h € X we associate the real quadratic form ¢, on Vi (seen as a real
vector space) defined for z € Vi by:

an(x) = Tr(h(x)). (2.2)

Such a quadratic form gj, : Vg — R for h € X will be called a hermitian metric.
Given h, we will denote by | - |5, the norm on Vg induced by gp,.
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2.3 ASH’S WELL-ROUNDED RETRACT

For h € X we set m(L,h) € Rsg to be the minimum of ¢ (x) over the nonzero
x € L CV, and define

M(L,h)={x € L|qn(x)=m(L,h)}. (2.3)

DEFINITION 2.1. We say that h € X (or (L,h)) is well rounded if m(L,h) =1
and M (L,h) generates V (as a vector space over F).

Let W C X be the subspace of well-rounded hermitian forms. Note that the
action defined by (2.1) restricts to an action of I' = GLy(Op) on W. In [2, p.
466-467], Ash defined a CW-complex structure on W that has the following
properties: two points kA and h’ of W belong to the interior of the same cell
C(h) =C(h') if and only if M(L,h) = M(L,1"), and C(h') C C(h) if and only
if M(L,h') D M(L,h). Moreover, we have that M(L,v-h)=~yM(L,h). Then

the action of I" on W' is compatible with the cell structure: an element v € I"
maps the cell C(h) to C(v-h).

THEOREM 2.2 (Ash). W is a deformation retract of X on which T' acts with
finite stabilizer T, for each cell o of W. The quotient T\W is compact, of
dimension dim(X)— N.

Proof. The proof of this statement follows from the argument of Ash given in
the proof of the main theorem of [2], page 462. More precisely, the argument

to prove that W is a deformation retract of X is the same as Ash uses for
W =W/T, in [2, §3 (i)]. The compactness of T\W is proved in §3 (ii) of loc.
cit., and the dimension is computed on page 466. (|

Let Co be the complex of cellular chains on I‘\W We can decompose it as
Co =CJ UC,, where T' preserves (resp. does not preserve) the orientation
of each o € Cf (resp. o € C.). It then follows from the spectral sequence
described in [5, VII (7.10)] that up to prime divisors of the finite stabilizers ',
the homology of C~ computes He(T"). In particular, one has the following (cf.
[11, Lemma 9]). See Section 1 for the definition of card,.

COROLLARY 2.3. Let £ =1+ max(d,N). Then for any n we have:
cardy H, (F)tors = cardy Hj, (C:r)torm

where Hy()tors denotes the torsion part of the integral homology.

3 BOUNDING TORSION HOMOLOGY AND K-THEORY

3.1 THE HUREWICZ MAP

For any n > 1 we consider the n-th Quillen K-group K,(Op) =
n(BGL(OF)™) (“plus construction”). The Hurewicz map relating ho-
motopy groups to homology provides a map K,(Op) — H,(GL(Op)") =
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H, (GL(OF)). We know (see for instance [1, Theorem 1.5]) that its kernel
does not contain elements of order p for p > ”TH Moreover, by a stability
result of van der Kallen and Maazen (cf. [12, Theorem 4.11]) the homology
of GL(Op) = liﬂGLN((’)F) is equal to the homology of GLx(Op) for any
N >2n+1. Let then N =2n+1, and consider I' = GLy(Op). We deduce

from Corollary 2.3 that for £ = max(d+ 1,2n+ 2) we have:

cardy K, (OF )tors < cardy Hp, (CH)tors- (3.1)

3.2 GABBER'S LEMMA

The abstract result that allows to obtain a bound for the right hand side of
(3.1) is the following lemma. It was discovered by Gabber, and first appeared
in Soulé [10, Lemma 1]. See Sauer [9, Lemma 3.2] for a more elementary proof.

LEMMA 3.1 (Gabber). Let A =7Z% with the standard basis (€;)i=1,..q and
B =17b so that B®R is equipped with the standard Euclidean norm || - ||.
Let ¢ : A — B be a Z-linear map and let o € R such that ||¢(e;)|| < a for each
i1=1,...,a. If we denote by Q the cokernel of ¢, then

‘Qtors‘ < amin(a,b) .

COROLLARY 3.2. Suppose that the cellular complex F\W has at most ay, faces
for any k>0, and that any k-cell has at most B codimension 1 faces. Then

Hk(cj)tors S B%min(ak+l7ak)~

Proof. For a cell ce C,:'er its image by the boundary map 0 is a sum of at most
B k-cells, so that [|0c|| < +/B. Thus, by Lemma 3.1 coker(d)iors is bounded by
B% min(ext1,9%) and a fortiori so is Hy(CJ )tors. O

3.3 COUNTING THE CELLS

Suppose that the finite subset ® C L has the following property:

for any well-rounded pair (L, h), there exists v € ' = GLy (Op) such
that yM(L,h) C ®.

In other words, ® contains a representative of every element of F\W Since
C(h) has codimension j, where N + j is the cardinality of M (L,h), it follows

immediately that the number of cells of codimension j in F\W is bounded by

C%‘ﬁ?)). For large card(®) we lose little by bound-

ing this binomial coefficient by card(®)¥*7. Recall that F\W has dimension

the binomial coefficient (
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dim(X) — N, so that for a k-cell of codimension j we have N+ j = dim(X ) — k.
For the dimension of X we have (where (r1,72) is the signature of F):

dim(X) =r LUV;_ b

SdN(]\;+1).

+roN? (3.2)

(3.3)

Thus, for the number of k-cells in I‘\W we can use the following upper bound:

d~N—(N2+—1)—k

oy, = card(®) (3.4)

By a similar counting argument, Soulé shows in [11, proof of Prop. 3] that
there are at most 3 = card(®)VN ! faces of codimension 1 in any given cell (not

necessarily top dimensional) on F\W

3.4 BOUNDS FOR K-THEORY IN TERMS OF &

Let ¢ = max(d+ 1,2n+2). By Corollary 3.2 and (3.1) we have that
cardy Ky, (OF)tors is bounded by B%O‘"H, where an41 and 8 can be chosen as

in Section 3.3 (with N =2n+1). This gives (using now logarithmic notation):
log cardy Kn (O )tors < (n+ 1) log(card(®)) card(®)¢(4™), (3.5)

where ® C L has the property defined in Section 3.3, and
e(d,n) =d(2n*+3n+1)—n—1. (3.6)

This reduces the problem to finding such a set ® C L of size as small as possible.
In [11] Soulé constructed a suitable set ® using the geometry of numbers. In
what follows, we will exhibit a smaller ® by using better estimates on hermitian
lattices.

4 HERMITIAN LATTICES AND BOUNDED BASES

The goal of this section is to construct in any well-rounded lattice (L, h) a basis
whose vectors have bounded length, with respect to the norm induced by h.
The method in an adaptation of the idea used by Soulé in [11] (see Section 4.3
below), in which we incorporate the results from [3], corresponding to the rank
one case.

4.1 GEOMETRY OF IDEAL LATTICES

Let I C Fr be a nonzero Op-submodule of the form I = xa, where x € Fr and a
is a fractional ideal of F'. We define the norm of I by the rule N'(I) = N (z) N (a).
Let gop be the standard (positive definite) hermitian metric on Fg, i.e., for
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x € Fr: q(z) = Tr(aT) . The pair (I,qo) is an ideal lattice (over F) in the sense
of [3, Def. 2.2]. Tts determinant is given by (see [3, Cor. 2.4]):

det(I,q0) = N'(1)?|Dp|. (4.1)

Let us denote by |- | the norm on Fg induced by the hermitian metric go.
Estimates for the geometry of ideal lattices have been studied in [3]. For our
particular case (I,qp), Proposition 4.2 in loc. cit. takes the following form.

PROPOSITION 4.1. Let F' of degree d, with discriminant D, and consider the
ideal lattice (I,qop). Then for any x € Fg there exists y € I such that || —y|| < R,
where

Vd
R= 7|DF|1/dN(1r)1/d.

4.2 THREE CONSEQUENCES

From Proposition 4.1 we deduce the three following lemmas.

LEMMA 4.2. Given x = (v,) € FR, there exists a € Op such that

>l —o(a)| < Co,

ceEX

where
d
Cr=1 |Dp |/ (4.2)

?:1 bf, which follows

Proof. First note the general inequality (Zle b))2<d-Y
from applying the summation ), ; on both sides of

2b;b; < b? + b?.

This implies that for a =y € I as in Proposition 4.1 with I = Op, we have

S foo —ofa)| < \/d- S foo —ofa)P?

ocEXD ceX
=Vd |z —a|
d
< Z|Dp|M
< 5|DFl
O
LEMMA 4.3. Given x = (v,) € FR, there exists a € Op such that
sup |o(a) x| < C3 N ()2,
ocEXD
where
C3=Vd-|Dp|". (4.3)
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Proof. We can suppose that x # 0. We consider the ideal lattice (I,qp) with
I =20Op. For R as in Proposition 4.1, we have that Fr = I + Bg(0), where
Br(0) is the closed ball of radius R with respect to |-||. In particular, the
smallest (nonzero) vector za € I = xOp has length <2R. That is, there exists
a € Of such that

sup [o(a) 2o | < [|zall
oEeY

<2R;

and the result follows. O

LEMMA 4.4. Let a be an ideal of Op. Then there exists a set R C Op of
representatives of Op/a such that for any x € R we have

> ()| < CoN(a)/ 4,

ceX

Proof. Let us consider the ideal lattice (I,q) = (a,q0), and let R be as in Propo-
sition 4.1. Then for any x € O C Fg, there exists y € I such that |z —y| < R.
But 2 —y=x (I), so that the closed ball Br(0) contains a representative of each
class of Op/a. The inequality is then obtained as in the proof of Lemma 4.2. O

4.3 EXISTENCE OF BOUNDED BASES

LEMMA 4.5 (Soulé). Let L=L1&®---® Ly be a decomposition of the hermitian
lattice (L,h) into rank one lattices, and suppose that each L; contains a vector
fi with |L;/Op fil <k and ||fi|ln < kA, for some k,\>1. Then L has a basis
€1,...,eN such that

leilln < A(1L+ Cy) T EdFDEN=1)
where t = |logy(N)| +1.

Proof. The statement and its proof is essentially contained in the proof of [11,
Prop. 1]. The main difference is that our constant Cy is now smaller than Co
in loc. cit. We can follow verbatim the same proof with the new Cy except for
the use of Lemma 6 (needed in Lemma 7) of loc. cit., which must be replaced
by Lemma 4.4. Accordingly, the factor (14 Cy™2) (where r = d) is replaced
by 1+ Cs. O

To obtain a bounded basis for (L,h) we need to find elements f; that satisfy
the condition of Lemma 4.5. This is done in the following proposition.

PROPOSITION 4.6. Let (L,h) be a free hermitian lattice over Op of rank N,
with F'# Q. We suppose that there exist e1,...,en € L that span V = F®@,, L
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and such that |le;|p <1 fori=1,...,N. Then there exists a decomposition
L=L1&---® Ly and elements f; € L; such that:

|Li/ fiOp| < C1C¢;
Ifilln < iC1C2CY,

where C1 = |Dp|'/?, and Cy (resp. C3) is defined in (4.2) (resp. (4.3)).

Proof. The proof proceeds by induction, and follows the line of argument of
[11, proof of Lemma 5]. Let N =1. By Lemma 1 in loc. cit., there exists z € L
such that |L/Opxz| < Cy = |Dp|'/2. Let us write # = a-e1 for a € F*, where
by assumption |le1]|, < 1. By Lemma 4.3 applied to a € Fg, there exists a € Op
such sup,, |o(aa)| < C3|N(a)[*/?. In particular,

N (ea) < (sup |o<aa)|)d

cEX
< C§|N(a)l,

so that |[N(a)| < C§. We set f1 =a-x. Then
IL/Orfi] = |N(a)|-|L/OFpz|
<cdoy.
For the norm we have:

If1l7 = Te(h(f1, f1))
= lo(@) holer,en)
oEY
2
< (sup o<a>) e[
oEY
< C3IN(a)/1,

Moreover, |L/Opz| = |N(a)|-|L/Opei], so that |[N(«)| < Ci. This shows that
I f1lln < C’gCll/d and thus concludes the proof for N = 1.

The induction step is done exactly as in loc. cit., adapting the constants when
necessary (C; to be replaced by C1C%), to obtain the desired f; € L;, i.e., with
(using F' # Q in the last inequality, so that Co > 1):

Ifilln < (i —1)C1C§C2 + Cscll/d
<iC1CCY.
O

We finally obtain the result about the existence of bounded bases. The as-
sumption N > 5 is only here in order to simplify the statement.
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PROPOSITION 4.7. Let (L,h) be a free hermitian lattice over Op of rank N > 5,
with F # Q, and such that the subset {x € L||z|p <1} spans V = F ®o, L.
Then there exists a basis e1,...,en of L such that ||e;|p < B for every i =
1,...,N, where

4N? 2
B= R d5Nd ‘DF‘GN(d-‘rl).

Proof. By Proposition 4.6 we can apply Lemma 4.5 with

k=C0¢;
A=NCo.
This shows the existence of a basis eq,...,exy with

leilln < N Co(1+Co) Llogg(N)J+2(Clcg)(d+1)(4N71)_

Since Cz > 1, we have (1+ Cq)™ < 2"C%. Moreover, for N > 5 we have
[logy(N)] 43 < N. We deduce:

leslln < AN2CN (C10F)@+DEN-1)
=ad’|Dp|7,
with (using N >5 and d > 2):

N2
d
B:N+§(d+1)(4N—1)
<5Nd?;
N 3
=—+—-(d+1)(4N -1
Y= 2+ S+ AN -1)
<6(d+1)N
This finishes the proof. O

5 IMPROVED ESTIMATES FOR K-GROUPS

5.1 A BOUNDED SET ®
The construction of a bounded set ® C L will follow from this proposition.

PROPOSITION 5.1. Let (L,h) be a free well-rounded Op-lattice of rank N > 5,
with F # Q. Let ey,...,en and B be defined as in Proposition 4.7, and for
x € M(L,h) write x =), x;e;, with v; € Op. Then for every i =1,...,N we
have:

S lo@)P <,

ceEX
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where
T— NNdd%Nd-HBZ(Nd—l) ‘DF‘2N.
Proof. Let x € M(L,h), i.e., h(x) =1. For each o € X let us consider the matrix

Hy = (ho(e4,€j)). Then the first argument in [11, proof of Prop. 2|, based on
the Hadamard inequality for positive definite matrix, shows that

lo(2:)]? < det(H Hh ej).
J#i
Since hy(e;) < |lej[|2 < B2, and similarly h,(z) < 1, we obtain:
> lo(@i))? < BN " det(H,) 7! (5.1)
oex oex

For Y°_det(H,)~! we can write, using the Hadamard inequality:

Zdet(H Z H det(Hy) H det(H,

oeD €Y \o'#0o olex

N
< (> II IIhe (e ] (H det(Ha)l>
o€X o'#o j=1 o€X
<d- BN T det(Hy) ™" (5.2)

cEX

According to Icaza [8, Theorem 1], there exists z € L such that

[T det(Ho)™" <ANN(h(2)~ N, (5.3)

oex
where (cf. [11, Equ. (21)]):
v < NDg|.

By applying Lemma 4.3 to h(z) € Fg, we find a € Op such that h,(az) =
o(a)hy(2) < C3N (h(2))Y/? for every o € X. Since (L,h) is well rounded, this
implies:

dC3s N (h(z))Y? > h(az) > 1, (5.4)

so that NV (h(z))~! < diC¢ = d7d|DF\ Using this with (5.1), (5.2) and (5.3),
this concludes the proof. [l

COROLLARY 5.2. Let L be a free Op-lattice of rank N > 5, with F'# Q. Then
there exists a subset ® C L with the property given in Section 3.3 and such that

card(®) < N3N?d® | gsNGat ‘DF|9N3d3.
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Proof. Let f1,...,fn be any basis of L, and set, for T" as in Proposition 5.1:

N
b= {szfz
1=1

According to [11, Lemma 8|, the number of elements z; € O with
Y peslo(@i)|? < T is at most T4/22043 5o that card(®) is bounded above
by TNd/29N(d+3) - Expanding the constants T and B as in the statements of
Propositions 5.1 and 4.7, we obtain the stated upper bound for card(®).

Let h be a well-rounded hermitian metric on L. We can apply Proposition 5.1
to write every x € M(L,h) as x = x;e; for a bounded basis e1,...,en of L.
The proposition implies that the transformation v € I' = GLy(Op) that sends
the basis (e;) to (f;) is such that v-2 € ®. This means that ® has the property
defined in Section 3.3. O

z; € Op with Z lo(z:)|? < T}.
oeX

5.2 UPPER BOUNDS FOR K, (OF)

We finally come to the bounds for the K-groups of Op, as stated in Theo-
rem 1.1. Let £ = max(d+ 1,2n+2). From Equation (3.5) we obtain

log cardy K (OF )tors < Card(tb)e(d’”)Jr”Jrl,

and note that for n > 2 we have e(d,n) +n+1 < 14—5n2d. Theorem 1.1 now
follows directly from Corollary 5.2, applied with N =2n+1 < %n
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ABSTRACT. A linear algebraic group G over a field k is called a
Cayley group if it admits a Cayley map, i.e., a G-equivariant birational
isomorphism over k between the group variety G and its Lie algebra
Lie(G). A prototypical example is the classical “Cayley transform”
for the special orthogonal group SO,, defined by Arthur Cayley in
1846. A linear algebraic group G is called stably Cayley if G x S is
Cayley for some split k-torus S. We classify stably Cayley semisimple
groups over an arbitrary field k of characteristic 0.
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Keywords and Phrases: Linear algebraic group, stably Cayley group,
quasi-permutation lattice.

To Alexander Merkurjev on the occasion of his 60th birthday

0 INTRODUCTION

Let k be a field of characteristic 0 and k a fixed algebraic closure of k. Let G be a

connected linear algebraic k-group. A birational isomorphism ¢: G . Lie(G)
is called a Cayley map if it is equivariant with respect to the conjugation action
of G on itself and the adjoint action of G on its Lie algebra Lie(G), respectively.
A linear algebraic k-group G is called Cayley if it admits a Cayley map, and
stably Cayley it G Xg (Gm,x)" is Cayley for some r > 0. Here G, j denotes
the multiplicative group over k. These notions were introduced by Lemire,
Popov and Reichstein [LPR]; for a more detailed discussion and numerous clas-
sical examples we refer the reader to [LPR, Introduction]. The main results
of [LPR] are the classifications of Cayley and stably Cayley simple groups over
an algebraically closed field k of characteristic 0. Over an arbitrary field k of
characteristic 0 stably Cayley simple k-groups, stably Cayley simply connected
semisimple k-groups and stably Cayley adjoint semisimple k-groups were clas-
sified in the paper [BKLR] of Borovoi, Kunyavskii, Lemire and Reichstein. In
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the present paper, building on results of [LPR] and [BKLR], we classify all sta-
bly Cayley semisimple k-groups (not necessarily simple, or simply connected,
or adjoint) over an arbitrary field &k of characteristic 0.

By a semisimple (or reductive) k-group we always mean a connected semisimple
(or reductive) k-group. We shall need the following result of [BKLR] extending
[LPR, Theorem 1.28].

THEOREM 0.1 ([BKLR, Theorem 1.4]). Let k be a field of characteristic 0 and
G an absolutely simple k-group. Then the following conditions are equivalent:

(a) G is stably Cayley over k;
(b) G is an arbitrary k-form of one of the following groups:
SL3, PGL2, PGL3, 1 (n > 1), SO, (n >5), Sp,, (n>1), Gg,
or an inner k-form of PGLa, (n > 2).

In this paper we classify stably Cayley semisimple groups over an algebraically
closed field k of characteristic 0 (Theorem 0.2) and, more generally, over an
arbitrary field k of characteristic 0 (Theorem 0.3). Note that Theorem 0.2 was
conjectured in [BKLR, Remark 9.3].

THEOREM 0.2. Let k be an algebraically closed field of characteristic 0 and G
a semisimple k-group. Then G is stably Cayley if and only if G decomposes
into a direct product G1 Xy -+ X Gs of its normal subgroups, where each G;
(i = 1,...,s) either is a stably Cayley simple k-group (i.e., isomorphic to
one of the groups listed in Theorem 0.1) or is isomorphic to the stably Cayley
semisimple k-group SOy.

THEOREM 0.3. Let G be a semisimple k-group over a field k of characteristic
0 (not necessarily algebraically closed). Then G is stably Cayley over k if and
only if G decomposes into a direct product Gy Xy, -+ X Gs of its normal k-
subgroups, where each G; (i = 1,...,s) is isomorphic to the Weil restriction
Ry, /Gy, for some finite field extension li/k, and each G, is either a stably
Cayley absolutely simple group over l; (i.e., one of the groups listed in Theorem
0.1) or an l;-form of the semisimple group SOy (which is always stably Cayley,
but is not absolutely simple and can be not l;-simple).

Note that the “if” assertions in Theorems 0.2 and 0.3 follow immediately from
the definitions.

The rest of the paper is structured as follows. In Section 1 we recall the
definition of a quasi-permutation lattice and state some known results, in par-
ticular, an assertion from [LPR, Theorem 1.27] that reduces Theorem 0.2 to an
assertion on lattices. In Sections 2 and 3 we construct certain families of non-
quasi-permutation lattices. In particular, we correct an inaccuracy in [BKLR];
see Remark 2.5. In Section 4 we prove (in the language of lattices) Theorem
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0.2 in the special case when G is isogenous to a direct product of simple groups
of type A, _1 with n > 3. In Section 5 we prove (again in the language of
lattices) Theorem 0.2 in the general case. In Section 6 we deduce Theorem
0.3 from Theorem 0.2. In Appendix A we prove in terms of lattices only, that
certain quasi-permutation lattices are indeed quasi-permutation.

1 PRELIMINARIES ON QUASI-PERMUTATION GROUPS AND ON CHARACTER
LATTICES

In this section we gather definitions and known results concerning quasi-
permutation lattices, quasi-invertible lattices and character lattices that we
need for the proofs of Theorems 0.2 and 0.3. For details see [BKLR, Sections
2 and 10] and [LPR, Introduction)].

1.1. By a lattice we mean a pair (I', L) where I is a finite group acting on a
finitely generated free abelian group L. We say also that L is a I'-lattice. A
I'-lattice L is called a permutation lattice if it has a Z-basis permuted by I
Following Colliot-Théléne and Sansuc [CTS], we say that two I'-lattices L and
L' are equivalent, and write L ~ L', if there exist short exact sequences

0—=L—-E—-P—=0 and 0L -E—=P =0

with the same I'-lattice F, where P and P’ are permutation I'-lattices. For a
proof that this is indeed an equivalence relation see [CTS, Lemma 8, p. 182] or
[Sw, Section 8]. Note that if there exists a short exact sequence of I-lattices

0—=+L—-L —-Q—0

where () is a permutation I'-lattice, then, taking in account the trivial short
exact sequence
0L =L —-0-0,

we obtain that L ~ L’. If T-lattices L, L', M, M’ satisfy L ~ L' and M ~ M’,
then clearly L& M ~ L' & M.

Definition 1.2. A T'-lattice L is called a quasi-permutation lattice if there exists
a short exact sequence
0—-L—P—P =0, (1.1)

where both P and P’ are permutation I'-lattices.

LEMMA 1.3 (well-known). A TD-lattice L is quasi-permutation if and only if
L ~0.

Proof. If L is quasi-permutation, then sequence (1.1) together with the trivial
short exact sequence
0-0—-P—-P—0
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shows that L ~ 0. Conversely, if L ~ 0, then there are short exact sequences
0-L—-FE—=P—=0 and 0—-0—-FE—=P =0,

where P and P’ are permutation lattices. From the second exact sequence
we have F = P’, hence F is a permutation lattice, and then the first exact
sequence shows that L is a quasi-permutation lattice. [l

Definition 1.4. A T'-lattice L is called quasi-invertible if it is a direct summand
of a quasi-permutation I'-lattice.

Note that if a I'-lattice L is not quasi-invertible, then it is not quasi-
permutation.

LEMMA 1.5 (well-known). If a T-lattice L is quasi-permutation (resp., quasi-
invertible) and L' ~ L, then L' is quasi-permutation (resp., quasi-invertible)
as well.

Proof. If L is quasi-permutation, then using Lemma 1.3 we see that L' ~ L ~ 0,
hence L' is quasi-permutation. If L is quasi-invertible, then L ® M is quasi-
permutation for some I'-lattice M, and by Lemma 1.3 we have L® M ~ 0. We
see that L' ® M ~ L & M ~ 0, and by Lemma 1.3 we obtain that L' & M is
quasi-permutation, hence L’ is quasi-invertible. O

Let Z[I'] denote the group ring of a finite group I'. We define the I'-lattice Jp
by the exact sequence

07570 = Jr =0,

where N is the norm map, see [BKLR, before Lemma 10.4]. We refer to [BKLR,
Proposition 10.6] for a proof of the following result, due to Voskresenskii [Vol,
Corollary of Theorem 7]:

PROPOSITION 1.6. Let I' = Z/pZ x Z/pZ, where p is a prime. Then the I'-
lattice Jr is not quasi-invertible.

Note that if ' = Z/27Z x Z/2Z, then rank Jr = 3.
We shall use the following lemma from [BKLR]:

LEMMA 1.7 ([BKLR, Lemma 2.8]). Let Wy,..., Wy, be finite groups. For each
i1=1,...,m, let V; be a finite-dimensional Q-representation of W;. Set V :=
Vid- @ Vi Suppose L C 'V is a free abelian subgroup, invariant under
W =Wy x -+ x Wy,. If L is a quasi-permutation W -lattice, then for each
i=1,...,m the intersection L; := L NV} is a quasi-permutation W;-lattice.

We shall need the notion, due to [LPR] and [BKLR], of the character lattice of a
reductive k-group G over a field k. Let k be a separable closure of k. Let T' C G
be a maximal torus (defined over k). Set T =T X, k, G = G X k. Let X(T)
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denote the character group of T := T x; k. Let W = W(G,T) := No(T)/T
denote the Weyl group, it acts on X(T). Consider the canonical Galois action
on X(T), it defines a homomorphism Gal(k/k) — Aut X(T). The image im p C
Aut X(T') normalizes W, hence imp - W is a subgroup of AutX(7). By the
character lattice of G we mean the pair X(G) := (imp - W, X(T)) (up to an
isomorphism it does not depend on the choice of T'). In particular, if k is

algebraically closed, then X(G) = (W, X(T)).

We shall reduce Theorem 0.2 to an assertion about quasi-permutation lattices
using the following result due to [LPR]:

PrOPOSITION 1.8 ([LPR, Theorem 1.27], see also [BKLR, Theorem 1.3]). A
reductive group G over an algebraically closed field k of characteristic 0 is stably
Cayley if and only if its character lattice X(G) is quasi-permutation, i.e., X(T)
is a quasi-permutation W (G, T)-lattice.

We shall use the following result due to Cortella and Kunyavskii [CK] and to
Lemire, Popov and Reichstein [LPR].

ProrosiTION 1.9 ([CK], [LPR]). Let D be a connected Dynkin diagram. Let
R = R(D) denote the corresponding root system, W = W (D) denote the Weyl
group, Q@ = Q(D) denote the root lattice, and P = P(D) denote the weight
lattice. We say that L is an intermediate lattice between QQ and P if Q C L C P
(note that L = Q and L = P are possible). Then the following list gives (up
to an isomorphism) all the pairs (D, L) such that L is a quasi-permutation
intermediate W (D)-lattice between Q(D) and P(D):

Q(A,), Q(By), P(C,), X(SOs,) (then D =D,,),

or D is any connected Dynkin diagram of rank 1 or 2 (i.e. Ay, Ay, Ba, or
G2) and L is any lattice between Q(D) and P(D), (i.e., either L = P(D) or
L=Q(D)).

Proof. The positive result (the assertion that the lattices in the list are indeed
quasi-permutation) follows from the assertion that the corresponding groups are
stably Cayley (or that their generic tori are stably rational), see the references
in [CK], Section 3. See Appendix A below for a proof of this positive result in
terms of lattices only. The difficult part of Proposition 1.9 is the negative result
(the assertion that all the other lattices are not quasi-permutation). This was
proved in [CK, Theorem 0.1] in the cases when L = @ or L = P, and in [LPR,
Propositions 5.1 and 5.2] in the cases when @Q C L C P (this can happen only
when D =A,, or D =D,). O

Remark 1.10. It follows from Proposition 1.9 that, in particular, the follow-
ing lattices are quasi-permutation: Q(A;), P(A1), P(As), P(B2), Q(Ca),
Q(Gz) = P(G2), Q(D3) = Q(A3), X(SLs/p2) = X(SOg).

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 85-112



90 M. Borovol AND B. KUNYAVSKII

2 A FAMILY OF NON-QUASI-PERMUTATION LATTICES

In this section we construct a family of non-quasi-permutation (even non-quasi-
invertible) lattices.

2.1. We consider a Dynkin diagram D U A (disjoint union). We assume that
D = | |;c; D; (a finite disjoint union), where each D; is of type By, (I; > 1) or
Dli (lz Z 2) (and where B1 = A17 B2 = CQ, D2 = A1 |_|1A17 and D3 = A3
are permitted). We denote by m the cardinality of the finite index set I. We
assume that A = | || A, (disjoint union), where A, is of type As,, 1, n, > 2
(A3 = D3 is permitted). We assume that m > 1 and g > 0 (in the case u =0
the diagram A is empty).

For each i € I we realize the root system R(D;) of type B, or D;, in the
standard way in the space V; := RY with basis (es)scs; where S; is an index
set consisting of I; elements; cf. [Bou, Planche II] for B; (I > 2) (the relevant
formulas for By are similar) and [Bou, Planche IV] for D; (I > 3) (again, the
relevant formulas for Do are similar). Let M; C V; denote the lattice generated
by the basis vectors (es)ses,. Let P, D M; denote the weight lattice of the
root system D;. Set S = ||, S; (disjoint union). Consider the vector space
V = @, V; with basis (es)ses. Let Mp C V denote the lattice generated by
the basis vectors (es)ses, then Mp = @, M;. Set Pp =P, P;.

For each ¢ = 1,..., u we realize the root system R(A,) of type Ay, —1 in the
standard way in the subspace V, of vectors with zero sum of the coordinates
in the space R?" with basis €, 1,...,&,20,; cf. [Bou, Planche I]. Let @, be the
root lattice of R(A,) with basise,1—¢€,2, €,2—€,3, -+, €,2n,—1 — E,,2n,, and
let P, D @, be the weight lattice of R(A,). Set Qa =D, Q., Pa =D, P..

Set
n

W= [[w) < [[W(a), L'=MpeQa=@Mae@Pa.

i€l =1 el =1

then W acts on L’ and on L' ®7 R. For each ¢ consider the vector

m:ZeSEMi,

s€S;
then %xz € P;. For each ¢ consider the vector
L =e1—€eates—¢cat e om—1—E2n €QL

then %& € P,; see [Bou, Planche I]. Write

& =ec1—¢c2 & =cz—cat -+ 2m-1—CE2m.,
then &, = & + &/, Consider the vector

1 1 & 1 1<
= ige S - dgerifeenen

el seS =1
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Set
L= (L), (2.1)

then [L : L'] = 2 because v € $L/ \ L’. Note that the sublattice L C Pp & Pa
is W-invariant. Indeed, the group W acts on (Pp & Pa)/(Mp @ Qa) trivially.

PRrOPOSITION 2.2. We assume that m > 1, m+ p > 2. If p = 0, we assume
that not all of D; are of types By or Da. Then the W-lattice L as in (2.1) is
not quasi-invertible, hence not quasi-permutation.

Proof. We consider a group I' = {e,y1,72,73} of order 4, where 71, 72,73 are
of order 2. The idea of our proof is to construct an embedding

=W

in such a way that L, viewed as a ['-lattice, is equivalent to its I'-sublattice
L1, and L, is isomorphic to a direct sum of a I'-sublattice Ly ~ Jr of rank 3
and a number of I'-lattices of rank 1. Since by Proposition 1.6 Jp is not quasi-
invertible, this will imply that L; and L are not quasi-invertible I'-lattices, and
hence L is not quasi-invertible as a W-lattice. We shall now fill in the details
of this argument in four steps.

Step 1. We begin by partitioning each S; for ¢ € I into three (non-overlapping)
subsets S; 1, Si2 and S; 3, subject to the requirement that

|Si,l| = |Si72| = |Si73| = ll (mod 2) if Dz is of type Dli- (22)
We then set U; to be the union of the S; 1, Uz to be the union of the S; 5, and
Us to be the union of the S; 3, as ¢ runs over I.

LeMMA 2.3. (1) If p > 1, the subsets Si1, Si2 and S; 3 of S; can be chosen,
subject to (2.2), so that Uy # 0.

(ii) If u =0 (and m > 2), the subsets S; 1, Si2 and S; 3 of S; can be chosen,
subject to (2.2), so that Uy, Us, Us # 0.

To prove the lemma, first consider case (i). For all ¢ such that D; is of type Dy,
with odd l;, we partition S; into three non-empty subsets of odd cardinalities.
For all the other ¢ we take S; 1 = S;, S;2 = Si3 = 0. Then Uy # () (note that
m > 1) and (2.2) is satisfied.

In case (ii), if one of the D; is of type Dy, where [; > 3 is odd, then we partition
S; for each such D; into three non-empty subsets of odd cardinalities. We
partition all the other S; as follows:

Si1=Si2=0and S;3=29;. (2.3)

Clearly Uy,Us, Us # () and (2.2) is satisfied.

If there is no D; of type D;, with odd I; > 3, but one of the D;, say for i = iy, is
D; with even ! > 4, then we partition S;, into two non-empty subsets .S;, 1 and
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Siy,2 of even cardinalities, and set S;, 3 = (). We partition the sets S; for ¢ # ig
as in (2.3) (note that by our assumption m > 2). Once again, Uy, Us, Us #
and (2.2) is satisfied.

If there is no D; of type D;, with I; > 3 (odd or even), but one of the D;, say
for i = 1o, is of type B; with [ > 2, we partition S;, into two non-empty subsets
Sio.1 and S;, 2, and set S;, 3 = (). We partition the sets S; for i # ip as in (2.3)
(again, note that m > 2). Once again, Uy, Us, Us # 0 and (2.2) is satisfied.

Since by our assumption not all of D; are of type By or D2, we have exhausted
all the cases. This completes the proof of Lemma 2.3. O

Step 2. We continue proving Proposition 2.2. We construct an embedding
I'—W.

For s € S we denote by cs the automorphism of L taking the basis vector

es to —es and fixing all the other basis vectors. For « = 1,..., u we define

12 = Transp((s, 1), (¢,2)) € W, (the transposition of the basis vectors e, 1

and €, 2). Set
772 = Transp((¢, 3), (t,4)) - --- - Transp((s, 2n, — 1), (t,2n,)) € W,.

Write T' = {e, 71, 72, 73} and define an embedding j: T' < W as follows:

w
jlm) = H cs HTL(lQ)TL>2;
=1

seS\U;
n
i) = [ e - J]7:
s€S\Us =1
n
J(ys) = H Cs - HTL>2~
s€S\Us =1

Note that if D; is of type Dy, then by (2.2) for »» = 1,2,3 the cardinality
#(S; \ S;,,.) is even, hence the product of ¢ over s € S; N\ S, .. is contained
in W(D;) for all such i, and therefore, j(v..) € W. Since j(v1), j(72) and
j(v3) commute, are of order 2, and j(y1)j(v2) = j(v3), we see that j is a
homomorphism. If 4 > 1, then, since 2n; > 4, clearly j(v,.) # 1 for c = 1,2, 3,
hence j is an embedding. If p = 0, then the sets S\ U, S \ Uz and S \ Us
are nonempty, and again j(7,.) # 1 for »x = 1,2,3, hence j is an embedding.

Step 3. We construct a I'-sublattice Lo of rank 3. Write a vector x € L as

pwo2n,
X = Z bses + Z Z /BL,V€L,V7
ses 1=1v=1
where b, 5, € %Z. Set n/ = ﬁ;l(m —1). Define a I'-equivariant homomor-

phism )
¢: L—z" , X (ﬂhQ}\fl + /BL,2/\)L:17...”U,, A=2,...,n,
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(we skip A = 1). We obtain a short exact sequence of I'-lattices

0Ly — L2577 -0,
where L; := ker ¢. Since I' acts trivially on 7", we have Ly ~ L. Therefore,
it suffices to show that L; is not quasi-invertible.
Recall that

1 1<
V= 5265+§Z§L.
=1

seS

Set v1 =71 - v, v =2 -V, vg =y3-v. Set

Lo = (v, v1,v2,03).

‘We have
DI DI DO
V1T = = s T 7 s 5 Ly
L= 92,575 T3
seUy s€U,UUs =1
whence
v+u = Z €s. (2.4)
seU;
We have
ne 3T ey T aridare)
2 2 s 2 s 2 v L)
seUsz seUUU3 =1
whence "
V4 vy = Z es + ZEZ’ (2.5)
seUs =1
We have
ne T ey X aridiE-o)
3 2 s 2 s 9 L L)
seUs seU1UUs =1
whence

m
v+vg = Z 654—262. (2.6)
=1

seUs
Clearly, we have
v+ v+ v2 +v3 =0.

Since the set {v,v1,v9,v3} is the orbit of v under T', the sublattice Ly =
(v,v1,v9,v3) C L is T-invariant. If g > 1, then U; # 0, and we see from
(2.4), (2.5) and (2.6) that rank Lo > 3. If p = 0, then Uy, Uz, Us # 0, and
again we see from (2.4), (2.5) and (2.6) that rank Ly > 3. Thus rank Ly = 3
and Ly ~ Jr, whence by Proposition 1.6 L¢ is not quasi-invertible.

Step 4. We show that Lo is a direct summand of Ly. Set m' = |5].
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First assume that g > 1. Choose uy € Uy C S. Set S = S~ {u1}. For
each s € S’ (i.e., s # u1) consider the one-dimensional (i.e., of rank 1) lattice
Xs = (es). We obtain m’ — 1 I'-invariant one-dimensional sublattices of L;.

Denote by T the set of pairs (1, ) such that 1 < ¢ < u, 1 < X\ < n,, and if
¢t =1, then X # 1,2. For each (¢, A) € T consider the one-dimensional lattice

EL7/\ = <EL72)\71 - EL72)\>'

We obtain —2 + Zf:l n, one-dimensional I'-invariant sublattices of L.

‘We show that

L=Le@PX.o P Zx (2.7)

s€S’ (LA)ET

Set Lll = <L0a (Xs)s;éula (EL,)\)(L,)\)ET >7 then

# # 0
rank L) < 3+(m’—1)—2+ZnL = m’—i—Z(QnL—l)—Z(nL—l) = rank L.
=1 =1 =1
(2.8)
Therefore, it suffices to check that Lj D Ly. The set

{viU{es | seStU{e,on1—eon | 1< <p,1<A<n}

is a set of generators of Ly. By construction v, vy, vs,v3 € Lo C Lj. We have
es € Xs C L} for s # u;. By (2.4) ZsEUl es € LY, hence e,, € L}. By
construction

€1,22—1 —E,2) € Lll, for all (L, )\) 75 (17 1), (172) .

From (2.6) and (2.5) we see that

©w

o
Z(EL71 - EL72) S Lll, Zgil S Lll .

=1 =1

Thus
! !
e11—€12€ Ly, e13—€e14€ L.

We conclude that L} D Ly, hence L1 = L}. From dimension count (2.8) we see
that (2.7) holds.

Now assume that ¢ = 0. Then for each » = 1,2,3 we choose an element
U, € Uy, and set UL, = U, ~{u,.}. Weset S' = UjUULUUL = S~ {u1,u2, us}.
Again for s € S’ (i.e., s # uy,uz,u3) consider the one-dimensional lattice
X;s = (es). We obtain m’—3 one-dimensional I'-invariant sublattices of L1 = L.
We show that
Li=Lie @ X,. (2.9)
ses’
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Set Lll = <L07 (XS)SES’>a then
rank L] <3+ m' —3 =m' =rank L. (2.10)

Therefore, it suffices to check that L} D Ly. The set {v} U{es | s € S} is a
set of generators of L1 = L. By construction v, vy, vs,v3 € L} and e; € L] for
s # u1,u2, uz. Wesee from (2.4), (2.5), (2.6) that es € L also for s = u1, ug, us.
Thus L} D L1, hence L} = L;. From dimension count (2.10) we see that (2.9)
holds.

We see that in both cases 4 > 1 and p = 0, the sublattice Ly is a direct
summand of L;. Since by Proposition 1.6 Ly is not quasi-invertible as a I'-
lattice, it follows that L, and L are not quasi-invertible as I'-lattices. Thus L
is not quasi-invertible as a W -lattice. This completes the proof of Proposition
2.2. O

Remark 2.4. Since II*(T, Jr) = Z/27 (Voskresenskii, see [BKLR, Section 10]
for the notation and the result), our argument shows that IIT*(T", L) = Z/27Z.

Remark 2.5. The proof of [BKLR, Lemma 12.3] (which is a version with y =0
of Lemma 2.3 above) contains an inaccuracy, though the lemma as stated is
correct. Namely, in [BKLR] we write that if there exists ¢ such that A; is of
type D;, where I; > 3 is odd, then we partition S; for one such ¢ into three
non-empty subsets S; 1, S; 2 and S; 3 of odd cardinalities, and we partition all
the other S; as in [BKLR, (12.4)]. However, this partitioning of the sets .S; into
three subsets does not satisfy [BKLR, (12.3)] for other i such that A; is of type
D;, with odd /;. This inaccuracy can be easily corrected: we should partition
S; for each i such that A; is of type D;, with odd I; into three non-empty
subsets of odd cardinalities.

3 MORE NON-QUASI-PERMUTATION LATTICES

In this section we construct another family of non-quasi-permutation lattices.

3.1. Fori =1,...,r let Q; = ZA,,_1 and P; = A,,, denote the root lattice
and the weight lattice of SL,,, respectively, and let W; = &,,, denote the
corresponding Weyl group (the symmetric group on n; letters) acting on P
and Q;. Set F; = P;/Q;, then W; acts trivially on F;. Set

Q=EPpae., pP=Fr, w=][w,
i=1 i=1 i=1
then @@ C P and the Weyl group W acts on @Q and P. Set
F=P/Q=(DF,
i=1
then W acts trivially on F'.
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We regard Q; = ZA,,,—1 and P, = A,, as the lattices described in Bourbaki
[Bou, Planche I]. Then we have an isomorphism F; & Z/n;Z. Note that for
each 1 <i <r, theset {a,.; | 1 < <n;—1} is a Z-basis of Q;.

Set ¢ = ged(na,...,n,); we assume that ¢ > 1. Let d > 1 be a divisor of c.
For each ¢ = 1,...,r, let v; € Z be such that 1 < v; < d, ged(v;,d) = 1, and
assume that 11 = 1. We write v = (v;)}_, € Z". Let U denote the image of v
in (Z/dZ)". Let S, C (Z/dZ)" C @®;_, Z/n;Z = F denote the cyclic subgroup
of order d generated by U. Let L, denote the preimage of S, C F in P under
the canonical epimorphism P — F, then Q C L, C P.

PROPOSITION 3.2. Let W and the W -lattice L,, be as in Subsection 3.1. In the
case d = 2° we assume that > n; > 4. Then L, is not quasi-permutation.

This proposition follows from Lemmas 3.3 and 3.8 below.

LEMMA 3.3. Let p|d be a prime. Then for any subgroup T' C W isomorphic
to (Z/pZ)™ for some natural m, the I'-lattices L, and Ly := L . 1) are
equivalent for any v = (v1,...,v.) as above (in particular, we assume that
vV = 1)

Note that this lemma is trivial when d = 2.

3.4. We compute the lattice L, explicitly. First let » = 1. We have Q = @1,
P = P;. Then P; is generated by )1 and an element w € P; whose image in
P1/Q1 is of order n;. We may take

1
w= n—[(nl —Dar+ (n1 —2)ag+ -+ + 2an, -2 + an, 1],
1

where aq,...,an,—1 are the simple roots, see [Bou, Planche I]. There exists
exactly one intermediate lattice L between Q1 and P; such that [L : Q1] = d,
and it is generated by Q1 and the element

n 1
w = Flw = E[(nl —Dar+ (n1 —2)ag + -+ + 2an,—2 + n, —1].

Now for any natural r, the lattice L, is generated by @) and the element
Wy =5 Z% n; —1)aq; + (ng —2)an; + -+ 200, -2 + Qny—1,4)-
In particular, Ly is generated by @ and

dz n; — Dag;+ (ng — 2)ag; + - + 20p,-2, + Qny—1.4]-
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3.5. Proof of Lemma 3.3. Recall that L, = (Q,w,) with
Q= {a,,;), where i=1,...,r, x=1,...,n; — 1.

Set Qv = (Vi ;). Denote by ¥, the endomorphism of ) that acts on @Q; by
multiplication by v;. We have @1 = Q, Q, =%, Q1, w, = T, wy. Consider

Tl = <QV7 wu>~

Clearly the W-lattices Ly and ¥, L are isomorphic. We have an embedding
of W-lattices @ — L,, in particular, an embedding () < L7, which induces an
embedding ¥,Q < ¥,L1. Set M, = L,,/%, L1, then we obtain a homomor-
phism of W-modules Q/%,Q — M, which is an isomorphism by Lemma 3.6
below.

Now let p|d be a prime. Let T' C W be a subgroup isomorphic to (Z/pZ)™
for some natural m. As in [LPR, Proof of Proposition 2.10], we use Roiter’s
version [Ro, Proposition 2] of Schanuel’s lemma. We have exact sequences of
I'-modules

0—>%,Ly > L, — M, =0,

O—>Q$—”>Q—>MV—>O.

Since all v; are prime to p, we have |I'| - M, = p™M, = M,, and by [Ro,
Corollary of Proposition 3] the morphisms of Z[I']-modules L, — M, and
Q — M, are projective in the sense of [Ro, §1]. Now by [Ro, Proposition
2] there exists an isomorphism of I'-lattices L, & Q ~ %,L1 & Q. Since Q
is a quasi-permutation W-lattice, it is a quasi-permutation I'-lattice, and by
Lemma 3.7 below, L,, ~ %, Ly as I'-lattices. Since ¥, L1 ~ Ly, we conclude
that L, ~ Ly. ([l

LEMMA 3.6. With the above notation L, /TyL1 ~ Q/%,Q = B._, Qi/viQ;.
Proof. We have T, L1 = (S,), where S, = {Vits; }i . U {wy}. Note that

dw, = Z vil(ni — D)o + (ni —2)ags + -+ - + 200, -2, + Qny—1,i)-
i=1

We see that dw, is a linear combination with integer coefficients of v;a. ; and
that au,, 1,1 appears in this linear combination with coefficient 1 (because 11 =
1) Set B{, = Su\{anl—l,l}a then <B;}> S Qpy—1,1, hence <B:,> = <S,,> = TVLl,
thus By, is a basis of ¥, L. Similarly, the set B, := {a,.i }i e U{wy }N{an,—11}
is a basis of L,. Both bases B, and B,, contain o 1,...,0n, 21 and w,. For
all i = 2,...,r and all s = 1,...,n; — 1, the basis B, contains «,, ;, while
B, contains v;a,. ;. We see that the homomorphism of W-modules Q/%,Q =
D, Qi/viQ; — L, /T, Ly is an isomorphism. O
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LEMMA 3.7. Let T be a finite group, A and A’ be T'-lattices. If A@B ~ A'@B’,
where B and B’ are quasi-permutation I-lattices, then A ~ A’.

Proof. Since B and B’ are quasi-permutation, by Lemma 1.3 they are equiva-
lent to 0, and we have

A=Ae0~A®B~A®dB ~Ad0=A4.
This completes the proof of Lemma 3.7 and hence of Lemma 3.3. O
To complete the proof of Proposition 3.2 it suffices to prove the next lemma.

LEMMA 3.8. Let p|d be a prime. Then there exists a subgroup I' C W isomor-
phic to (Z/pZ)™ for some natural m such that the T'-lattice Ly := Ly, 1y is
not quasi-permutation.

3.9. Denote by U; the space R™ with canonical basis €14, €24, ..., €n,,i . De-
note by V; the subspace of codimension 1 in U; consisting of vectors with zero
sum of the coordinates. The group W; = &,,, (the symmetric group) permutes
the basis vectors €1;, €24, ..., €n;,s and thus acts on U; and V;. Consider the
homomorphism of vector spaces

Ny Uz
xi: Ui =+ R, ZBA,i Exi ZBA,i
A=1 A=1
taking a vector to the sum of its coordinates. Clearly this homomorphism is
W;-equivariant, where W; acts trivially on R. We have short exact sequences
0=V, = U X5 R—0.

Set U=@,_,U;, V=e@D,_, Vi. The group W = [[;_, W, naturally acts on
U and V, and we have an exact sequence of W-spaces

0=V sU-25R -0, (3.1)

where x = (xi)i=1,...,» and W acts trivially on R".

Set n = >_i_, n;. Consider the vector space U := R™ with canonical basis
Z1,82,...,8n. Consider the natural isomorphism

@:UZGBUi:)U

that takes €1,1,€2,1,...,6n,,1 tO E1,€2,...,En,, takes €12,€22,...,6n,,2 tO
Enyd1sEny+2y - - > Eng+ng, and so on. Let V denote the subspace of codimen-
sion 1 in U consisting of vectors with zero sum of the coordinates. Sequence
(3.1) induces an exact sequence of W-spaces

05 (V) >V L5 R 25 R 0. (3.2)
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Here ¢ = (¥4)i=1,.,r, where 1 takes a vector Y'_, 8;; € V to
>N, Bridtetns_1+2, and the map X takes a vector in R” to the sum of its
coordinates. Note that W acts trivially on R” and R.

We have a lattice @; C V; for each ¢ = 1,...,r, a lattice Q@ = @, Q; C
@D, Vi, and a lattice Q := ZA,_; in V with basis & — &2,...,5p_1 — Ep.
The isomorphism ¢ induces an embedding of @ = €, @; into @. Under this
embedding

Q11— 01, Q21> 0y ey Qg 1,1 F> Opg—1,
al,? = a'r7,1—‘1-17 a2,2 = an1+27 sy an2—1,2 = an1+n2—17

a1y = an1+n2+---+nr,1+17 ceey Q1 — Qn—1,
while @, , Ony+nss -5 Onytng+-tn,._, are skipped.

3.10. We write L for Ly and w for wq € §Q7 where Q = @, Q;. Then

" 1
w = Zwi, w; = E[(nz —Dai;+ -+ an—1,4)-

Recall that
Qi =ZAn,—1 = {(a;) € 2™

Xl:aj = O}

j=1
Set

—_

aznﬂ
Set A, (d) = (Q, ™). Note that A, (d) = Qn(n/d) with the notation of [LPR,
Subsection 6.1]. Set
=(Q ®zR) N An(d) = (V) N An(d).
LEMMA 3.11. ¢(L) = N.

Proof. Write j1 = ny, jo =ni +n9, ..., jr—1 =n1+ -+ n,._1. Set J =
{1a27"'7n_1}\{j17j27"'7jr—1}~ Set
1 N B Tﬁln—ji_
p=g D (n=j)a ==y =
jeJ i=1

Note that d|n and d|j; for all i, hence the coefficients (n — j;)/d are integral,
and therefore p € A, (d). Since also p € ¢(Q ®z R), we see that p € N.

Let y € N. Then

n—1

y = bw + Z a; o
j=1
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where b,a; € Z, because y € A, (d). We see that in the basis @1, ..., @,—1 of
A, (d) ®z R, the element y contains @;, with coefficient

n—

b dji"‘r(lji.

Since y € p(Q ®z R), this coefficient must be 0:

Consider

r—1 . .
_ n—Jji_ _ b(n —Jji) _
y—buzy—b(w—‘ 7 aji> =y—bw+§ — %

i=1

_Za]a]—i—zbn_h Zajoz]7

jeJ

©
Il
i

where a; € Z. We see that y € (@; (j € J),p) for any y € N, hence N C
(@; (j € J),u). Conversely, p € N and @; € N for j € J, hence (@; (j €
J),u) C N, thus

N =@ (€ 7). (33)

Now

1 ni—1 na—1 ny—1
plw) = > (i —)a+ > (ng = §)an, 15+ + Z r = 30 i

j=1 j=1
while
1 ni—1 na—1 n,—1

N:E Z(n_j)aj+ Z(n_nl_j)anﬂr] -t Z _jajr 1+

=1 j=1
Thus

1—1 ng—1 n,—1

n—np _ n—m — Ng T, _
p=p(w)+ P Z aj Z Qg+ F a0 Z Q145
j=1

where the coefficients

n-—nq n—ny — N2 &
d ’ d U d
are integral. We see that
(@ (Ged), m=(a;(Ged) pw). (3.4)
From (3.3) and (3.4) we obtain that
N=(@;(Ged) p= @[ e) pw)=eL) O
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3.12. Now let p|ged(n, ..., n,). Recall that W = [];_; &,,. Since p|n; for all
i, we can naturally embed (&,)"/? into &,,. We obtain a natural embedding

[ := (Z/pZ)"'P — (&,)"/P — W.

In order to prove Lemma 3.8, it suffices to prove the next Lemma 3.13. Indeed,
if n has an odd prime factor p, then by Lemma 3.13 L is not quasi-permutation.
If n = 2%, then we take p = 2. By the assumptions of Proposition 3.2, n > 4 =
22 and again by Lemma 3.13 L is not quasi-permutation. This proves Lemma
3.8.

LEMMA 3.13. If either p odd or n > p?, then L is not quasi-permutation as a
I'-lattice.

Proof. By Lemma 3.11 it suffices to show that N is not quasi-permutation.
Since N = A,,(d) N ¢(V), we have an embedding

Ap(d)/N <= V/p(V).

By (3.2) V/p(V) ~ R™"! and W acts on V /p(V) trivially. Thus A,,(d)/N ~
7' and W acts on Z"! trivially. We have an exact sequence of W-lattices

0N —=A,(d)—Z1 =0,

with trivial action of W on Z"~!. We obtain that N ~ A, (d) as a W-lattice,
and hence, as a I-lattice. Therefore, it suffices to show that A, (d) = Q,(n/d)
is not quasi-permutation as a I'-lattice if either p is odd or n > p?. This is done
in [LPR] in the proofs of Propositions 7.4 and 7.8. This completes the proof of
Lemma 3.13 and hence those of Lemma 3.8 and Proposition 3.2. |

4  (QUASI-PERMUTATION LATTICES — CASE A, _1

In this section we prove Theorem 0.2 in the special case when G is isogenous
to a direct product of groups of type A, _1 for n > 3.

We maintain the notation of Subsection 3.1. Let L be an intermediate lattice
between @ and P, ie., Q C L C P (L = Q are L = P are possible). Let
S denote the image of L in F, then L is the preimage of S C F' in P. Since
W acts trivially on F, the subgroup S C F' is W-invariant, and therefore, the
sublattice L C P is W-invariant.

THEOREM 4.1. With the notation of Subsection 3.1 assume that n; > 3 for all
1=1,2,...,r. Let L between QQ and P be an intermediate lattice, and assume
that LNP; = Q; for alli such that n; = 3 orn; = 4. If L is a quasi-permutation
W -lattice, then L = Q.

Proof. We prove the theorem by induction on r. The case r = 1 follows from
our assumptions if n; = 3 or n; = 4, and from Proposition 1.9 if n; > 4.
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We assume that » > 1 and that the assertion is true for » — 1. We prove it for
T.

For 7 between 1 and r we set

Qi=@Pa;, F=@r F=@QF w=][[w,
i i i i

then Q) C Q, P/ C P, F/ C F and W] C W. If L is a quasi-permutation
W-lattice, then by Lemma 1.7 L N P/ is a quasi-permutation W/-lattice, and
by the induction hypothesis L N P! = Q..

Now let @ C L C P, and assume that LN P/ = Q) for all ¢ = 1,...,7. We
shall show that if L # @ then L is not a quasi-permutation W-lattice. This
will prove Theorem 4.1.

Assume that L # Q. Set S = L/Q C F, then S # 0. We first show that
(LN P})/Q, =8N F]. Indeed, clearly (LN P})/Q; C L/QN P}/Q; = SN EF].
Conversely, let f € SNF/, then f can be represented by some | € L and by some

€ P/,and ¢:=1—p € Q. Since L D Q, we see that p=1— ¢ € LN P/, hence
f € (LNP))/Q;, and therefore SNF} C (LNFP!)/Q;. Thus (LNP})/Q; = SNEF].

By assumption we have L N P/ = @}, and we obtain that S N F/ = 0 for all
i=1,...,r. Let S(;) denote the image of S under the projection F' — F;. We
have a canonical epimorphism p;: S — S(;) with kernel SNF]. Since SNF] =0,
we see that p;: S — S(;) is an isomorphism. Set ¢; = p; opflz Sy = Sqy, it
is an isomorphism.

We regard Q; = ZA,,,—1 and P, = A,,, as the lattices described in [Bou, Planche
I]. Then we have an isomorphism F; = Z/n;Z. Since S(;) is a subgroup of the
cyclic group F; = Z/n;7Z and S = S;), we see that S is a cyclic group, and we
see also that |S| divides n; for all i, hence d := |S]| divides ¢ := ged(ny, . .., ny).

We describe all subgroups S of order d in €_;Z/n;,Z such that S N
(EB#i Z/n;Z) = 0 for all i. The element a; := n;/d + n;Z is a generator
of Si;y C F; = Z/n;Z. Set b; = g;(a1). Since b; is a generator of S(;), we have
b; = U;a; for some U; € (Z/dZ)*. Let v; € Z be a representative of 7; such
that 1 <w; < d, then ged(v;,d) = 1. Moreover, since ¢; = id, we have b; = a4,
hence 73 = 1 and v; = 1. We obtain an element v = (v1,...,v,.). With the
notation of Subsection 3.1 we have S =S5, and L = L,,.

By Proposition 3.2 L, is not a quasi-permutation W-lattice. Thus L is not
quasi-permutation, which completes the proof of Theorem 4.1. [l

5 PROOF OF THEOREM 0.2

LEMMA 5.1 (well-known). Let Py and P> be abelian groups. Set P = Py ® Py =
Py x Py, and let m: P — Py denote the canonical projection. Let L C P be a
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subgroup. If m (L) = LN Py, then
L=(LNP)®(LNP).

Proof. Let © € L. Set 1 = m(z) € m1(L). Since m1(L) = L N Py, we have
r1 € LN Py. Set 9 = x — x1, then 29 € L N P,. We have x = x1 + x5. This
completes the proof of Lemma 5.1. O

5.2. Let I be a finite set. For any ¢ € I let D; be a connected Dynkin diagram.
Let D = | |, D; (disjoint union). Let @; and P; be the root and weight lattices
of D;, respectively, and W; be the Weyl group of D;. Set

Q=P p=r, w=][[w.

iel iel iel
5.3. We construct certain quasi-permutation lattices L such that Q C L C P.

Let {{i1,j1},-..,{is,Js} } be a set of non-ordered pairs in I such that D;, and
Dj, foralll =1,...,s are of type B; = Ay and all the indices i1, j1,. .., s, js
are distinct. Fix such anl. We write {7, j} for {i;, ji} and we set D; ; := D;UD;,
Qi = Qi®Qy, P :=F; ®P;. Weregard D;; as a Dynkin diagram of type
D,, and we denote by M;; the intermediate lattice between @;; and F;
isomorphic to X (SQy), the character lattice of the group SQy; see Section 1,
after Lemma 1.7. Let f; be a generator of the lattice Q; of rank 1, and let f;

be a generator of Q;, then P; = (3 f;) and P; = (3 f;). Set egl) = 3(fi+ fi),
ey = 2(fi — f;), then {e!", e} is a basis of M; ;, and

! 1, q I
M;,; = <mee§)>, P ;= <Mm7 5(65) +ed) > (5.1)

We have M; ; N P, = Q;, M;; N P; = Qj, and [M;; : Q; ;] = 2. Concerning
the Weyl group, we have
W(D@j) = W(DZ) X W(D]) = W(DQ) = 62 X {:l:l}7

where the symmetric group G2 permutes the basis vectors egl) and egl) of
M; ;, while the group {£1} acts on M, ; by multiplication by scalars. We
say that M;; is an indecomposable quasi-permutation lattice (it corresponds
to the semisimple Cayley group SO,4 which does not decompose into a direct
product of its normal subgroups).

Set I' = I~ Uj_1{i1, 51} For i € I' let M; be any quasi-permutation interme-
diate lattice between @; and P; (such an intermediate lattice exists if and only
if D; is of one of the types A,, B,, C,, D,, Ga, see Proposition 1.9). We
say that M; is a simple quasi-permutation lattice (it corresponds to a stably
Cayley simple group). We set

L=@ M, & @M. (5.2)
=1

iel’
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We say that a lattice L as in (5.2) is a direct sum of indecomposable quasi-
permutation lattices and simple quasi-permutation lattices. Clearly L is a quasi-
permutation W-lattice.

THEOREM 5.4. Let D,Q, P,W be as in Subsection 5.2. Let L be an interme-
diate lattice between Q and P, i.e., Q@ C L C P (where L = Q and L = P
are possible). If L is a quasi-permutation W -lattice, then L is as in (5.2).
Namely, then L is a direct sum of indecomposable quasi-permutation lattices
M; ; for some set of pairs {{i1,j1},...,{is,js} } and some family of simple
quasi-permutation intermediate lattices M; between Q; and P; fori e I'.

Remark 5.5. The set of pairs { {i1,71}, ..., {is, s} } in Theorem 5.4 is uniquely
determined by L. Namely, a pair {i,j} belongs to this set if and only if the
Dynkin diagrams D; and D; are of type B; = A; and

Proof of Theorem 5.4. We prove the theorem by induction on m = |I|, where
I is as in Subsection 5.2. The case m =1 is trivial.

We assume that m > 2 and that the theorem is proved for all m’ < m. We
prove it for m. First we consider three special cases.

Split case. Assume that for some subset A C I, A # I, A # (), we have T4 (L) =
LN Py, where Py = @ieA P; and m4: P — P4 is the canonical projection.
Then by Lemma 5.1 we have L = (LN P4) ® (LN Pa/), where A’ =T~ A. By
Lemma 1.7 L N P4 is a quasi-permutation Wa-lattice, where W4 = [];c 4 Wi.
By the induction hypothesis the lattice LN P4 is a direct sum of indecomposable
quasi-permutation lattices and simple quasi-permutation lattices. Similarly,
LN Py is such a direct sum. We conclude that L = (LN P4) @& (L N Py) is
such a direct sum, and we are done.

A,,_1-case. Assume that all D, are of type A,,_1, where n; > 3 (so A; is
not permitted). We assume also that when n; = 3 and when n; = 4 (that is,
for Ay and for A3 = D3) we have LN P; = Q; (for n; > 4 this is automatic
because L N P; is a quasi-permutation W;-lattice, see Proposition 1.9). In this
case by Theorem 4.1 we have L = Q = @ Q;, hence L is a direct sum of simple
quasi-permutation lattices, and we are done.

A;-case. Assume that all D; are of type A;. Then by [BKLR, Theorem 18.1]
the lattice L is a direct sum of indecomposable quasi-permutation lattices and
simple quasi-permutation lattices, and we are done.

Now we shall show that these three special cases exhaust all the quasi-
permutation lattices. In other words, we shall show that if Q C L C P and L
is not as in one of these three cases, then L is not quasi-permutation. This will
complete the proof of the theorem.

For the sake of contradiction, let us assume that ) C L C P, that L is not in one
of the three special cases above, and that L is a quasi-permutation W-lattice.
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We shall show in three steps that L is as in Proposition 2.2. By Proposition
2.2, L is not quasi—permutation, which contradicts our assumptions. This
contradiction will prove the theorem.

Step 1. For i € I consider the intersection L N P;, it is a quasi-permutation
Wi-lattice (by Lemma 1.7), hence D; is of one of the types A,,_1, B, C,,, Dy,
G (by Proposition 1.9). Note that m;(L) # L N P; (otherwise we are in the
split case).

Now assume that for some ¢ € I, the Dynkin diagram D; is of type Gq or C,,
for some n > 3, or D; is of type Ay and LN P; # @;. Then LN P; is a quasi-
permutation W;-lattice (by Lemma 1.7), hence L N P, = P; (by Proposition
1.9). Since P; D m(L) D LN P;, we obtain that m;(L) = L N P;, which is
impossible. Thus no D; can be of type Gs or C,,, n > 3, and if D; is of type
A, for some i, then L N P; = Q;.

Thus all D; are of types A,,—1, B,, or D,, and if D; is of type A, for some
i € I, then LNP; = @;. Since L is not as in the A,,_;-case, we may assume that
one of the D;, say D1, is of type B,, for some n > 1 (B; = A; is permitted), or
of type D,, for some n > 4, or of type D3 with LN P; # Q1. Indeed, otherwise
all D; are of type A,,_1 for n; > 3, and in the cases Az (n; = 3) and Aj
(n; = 4) we have LN P; = @, i.e., we are in the A,,_1-case, which contradicts
our assumptions.

Step 2. In this step, using the Dynkin diagram D; of type B,, or D,, from the
previous step, we construct a quasi-permutation sublattice L’ C L of index 2
such that L’ is as in (5.2). First we consider the cases B,, and D,, separately.

Assume that D; is of type B,, for some n > 1 (B; = A; is permitted). We
have [P, : Q1] = 2. Since P, D m(L) 2 LN P D @1, we see that w1 (L) = P,
and LN P, = Q1. Set M1 = Q1. We have m1(L) = P;, LN P, = M, and
[Pl : Ml] = 2.

Now assume that D is of type D,, for some n > 4, or of type D3 with LN P, #
Q1. Set My = LN Py, then M, is a quasi-permutation Wi-lattice by Lemma 1.7,
and it follows from Proposition 1.9 that (W7, M7) ~ X(SOg,,), where X(SOa3,,)
denotes the character lattice of SOs,,; see Section 1, after Lemma 1.7. It follows
that [M7 : Q1] =2 and [Py : My] = 2. Since Py D m(L) 2 LNP; = My, we see
that 7T1(L) = Pl. Again we have ﬂ'l(L) = Pl, LﬁPl = Ml, and [Pl : Mﬂ =2.

Now we consider together the cases when D; is of type B, for some n > 1
and when D; is of type D,, for some n > 3, where in the case D3 we have
LNP #Q;. Set

L' :=ker[L ™ P, — P/Mj].

Since m (L) = P1, and [Py : M;i] = 2, we have [L : L'] = 2. Clearly we have
7T1(L’) = Ml. Set
Ll :=ker[m: L - P]=LN P,
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where P/ = P, ;. Since L is a quasi-permutation W-lattice, by Lemma 1.7
the lattice LI is a quasi-permutation W{-lattice, where W} = [1izs Wi. By the

induction hypothesis, LJ{ is a direct sum of indecomposable quasi-permutation
lattices and simple quasi-permutation lattices as in (5.2). Since M; = LN Py,
we have My C L' P, and L' NP, C LNP, = My, hence L' NP, = M, =
m1(L'), and by Lemma 5.1 we have L' = M; ® LJ{. Since M is a simple quasi-
permutation lattice, we conclude that L’ is a direct sum of indecomposable
quasi-permutation lattices and simple quasi-permutation lattices as in (5.2),
and [L: L' =2.

Step 3. In this step we show that L is as in Proposition 2.2. We write

S

L= np,;) e P NP,

=1 iel’

where P;, j, = P;, ® Pj,, the Dynkin diagrams D;, and D, are of type Ay = By,
and L' N P;, j, = M;, j, asin (5.1). For any ¢ € I’, we have [m;(L) : m;(L")] < 2,
because [L : L'] = 2. Furthermore, for i € I’ we have
m(L'y=L' NP, Cc LNP; ¢ m(L),

hence [m;(L) : (LNP;)] =2 and L’'NP; = LNP;. Similarly, forany I =1,...,s,
if we write ¢ =14;, j = j;, then we have

MiJ‘ =L'N .Pi)j cLnN Pi7j - Wi)j(L) C Pi7j7 [.Pi)j : Miﬂ‘] =2,
whence Wi,j(L) = Pi,j7 LN Pi,j = Mi,j7 and therefore [Wi,j(L) : (L N Pi,j)] =
[.Pi)j : Miﬂ‘] =2and L'N .Pi)j = Mi)j =LN .Pi)j.

We view the Dynkin diagram D;, U Dj, of type A; LI Ay corresponding to the
pair {i;, 51} (I = 1,...,s) as a Dynkin diagram of type Dy. Thus we view
L' as a direct sum of indecomposable quasi-permutation lattices and simple
quasi-permutation lattices corresponding to Dynkin diagrams of type B,,, D,
and A,,.

We wish to show that L is as in Proposition 2.2. We change our notation in
order to make it closer to that of Proposition 2.2.

As in Subsection 2.1, we now write D; for Dynkin diagrams of types B;, and
D;, only, appearing in L', where By = A;, Bs = Cy, Dy = A; U A; and
D3 = Aj are permitted, but for D;, with [; = 2,3 we require that

LNP, =M, :=X(SOy,).

We write L, := LNP; = L'NP,. We have [m;(L) : L;] = 2, hence [P; : L}] > 2. If
D, is of type By,, then [P; : L] = 2. If D; is of type Dy,, then L, = LNP; # Q;,
for Dy and D3 by our assumption and for D;, with I; > 4 because LN F; is a
quasi-permutation W;-lattice (see Proposition 1.9); again we have [P; : L] = 2.
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We see that for all i we have [P; : L] = 2, m;(L) = P;, and the lattice L, = M;
is as in Subsection 2.1. We realize the root system R(D;) of type By, or Dy,
in the standard way (cf. [Bou, Planches II, IV]) in the space V; := R with
basis (es)ses,, then L, is the lattice generated by the basis vectors (es)ses, of
V;, and we have P; = (L}, 1;), where

mi:ZeSEL;.

sES;

In particular, when D; is of type D2 we have z; = egl) + egl)

of formula (5.1).

with the notation

As in Subsection 2.1, we write A, for Dynkin diagrams of type A, 1 appearing
in I, where n/ > 3 and for A3 = D3 we require that L N P, = @Q,. We write
Ll :=LNP =L NP, Then L, = Q, for all ¢, for Ay by Step 1, for Az by
our assumption, and for other An; _1 because L! is a quasi-permutation W,-
lattice; see Proposition 1.9. We have 7,(L) 2 LN P, = L} and [r,(L) : L]] =
[m,(L) : m,(L")] < 2 (because [L : L'] = 2). It follows that [r,(L) : L] = 2, i.e.,
[7,(L) : Q,] = 2. We know that P,/Q, is a cyclic group of order n|. Since it has
a subgroup m,(L)/Q, of order 2, we conclude that n/ is even, n, = 2n, (where
2n, > 4), and 7,(L)/Q, is the unique subgroup of order 2 of the cyclic group
P,/Q, of order 2n,. As in Subsection 2.1, we realize the root system A, of type
A, 1 in the standard way (cf. [Bou, Planche I]) in the subspace V, of vectors
with zero sum of the coordinates in the space R?™ with basis €1y -1E0,2m,-
We set

£L =E&,1 — &2 + €,3 €4 +---+ E12n,—1 —E12n,

then & € L] and ¢, € m,(L) \ L] (cf. [Bou, Planche I, formula (VI)]), hence
WL(L) = <L2, %§L>

Now we set

1 1

iel
We claim that
L= (L v).

Proof of the claim. Let w € L\ L', then L = (L', w), because [L : L'] = 2. Set
2z = gx; —m;(w), then z; € L} C L', because 3;, m;(w) € m;(L)~ L}. Similarly,
we set ¢, = 3§ — T, (w), then ¢, € L] C L'. We sce that

S DS 3
where ", z;+ >, (, € L', and the claim follows. O
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It follows from the claim that L is as in Proposition 2.2 (we use the assumption
that we are not in the Aj-case). Now by Proposition 2.2 L is not quasi-
invertible, hence not quasi-permutation, which contradicts our assumptions.
This contradiction proves Theorem 5.4. |

Proof of Theorem 0.2. Theorem 0.2 follows immediately from Theorem 5.4 by
virtue of Proposition 1.8. O

6 PROOF OF THEOREM 0.3

In this section we deduce Theorem 0.3 from Theorem 0.2.

Let G be a stably Cayley semisimple k-group. Then G := G xj, k is stably
Cayley over an algebraic closure k of k. By Theorem 0.2, Gj, = HjeJ G for
some finite index set .J, where each G| j, is either a stably Cayley simple group
or is isomorphic to SO, . (Recall that SO, j is stably Cayley and semisimple,
but is not simple.) Here we write G ;. for the factors in order to emphasize
that they are defined over k. By Remark 5.5 the collection of direct factors
G, % is determined uniquely by G. The Galois group Gal(k/k) acts on G,
hence on J. Let Q denote the set of orbits of Gal(k/k) in J. For w € € set
G¥ =Tl Gji» then G = [],cq G¥. Each G¥ is Gal(k/k)-invariant, hence
it defines a k-form G} of G¥. We have G =[] G¥-

For each w € Q choose j = j, € w. Let [;/k denote the Galois extension
in k corresponding to the stabilizer of j in Gal(k/k). The subgroup Giris
Gal(k/l;)-invariant, hence it comes from an I;-form G;,. By the definition of
Weil’s restriction of scalars (see e.g. [Vo2, Subsection 3.12]) G¥ = Ry, /1. Gj1;,
hence G = [[,,cq R, /kGji,- Each Gj; is either absolutely simple or an [;-form
of SO4

We complete the proof using an argument from [BKLR, Proof of Lemma 11.1].
We show that G, is a direct factor of Gy, := G X l;. It is clear from the defi-
nition that G j if a direct factor of G, with complement G}, = [Lics iy Gik-
Then G}, is Gal(k/l;)-invariant, hence it comes from some I;j-group G; . We
have Gy, = Gj1, Xy, G§j7 hence G, is a direct factor of G;.

Recall that G, is either a form of SO, or absolutely simple. If it is a form
of SOy, then clearly it is stably Cayley over l;. It remains to show that if
Gy, is absolutely simple, then Gy, is stably Cayley over [;. The group Gy
is stably Cayley over k. Since G, is a direct factor of the stably Cayley k-
group G}, over the algebraically closed field k, by [LPR, Lemma 4.7] G, is
stably Cayley over k. Comparing [LPR, Theorem 1.28] and [BKLR, Theorem
1.4], we see that G, is either stably Cayley over I; (in which case we are
done) or an outer form of PGLy,, for some n > 2. Thus assume by the way
of contradiction that G, is an outer form of PGLg, for some n > 2. Then
by [BKLR, Example 10.7] the character lattice of G, is not quasi-invertible,
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and by [BKLR, Proposition 10.8] the group Gj,;, cannot be a direct factor of a
stably Cayley [;-group. This contradicts the fact that G, is a direct factor of
the stably Cayley [;-group G;. We conclude that G ;, cannot be an outer form
of PGLg,, for any n > 2. Thus G}, is stably Cayley over [;, as desired. |

A APPENDIX: SOME QUASI-PERMUTATION CHARACTER LATTICES

The positive assertion of Proposition 1.9 above is well known. It is contained
in [CK, Theorem 0.1] and in [BKLR, Theorem 1.4]. However, [BKLR] refers to
[CK, Theorem 0.1], and [CK] refers to a series of results on rationality (rather
than only stable rationality) of corresponding generic tori. In this appendix for
the reader’s convenience we provide a proof of the following positive result in
terms of lattices only.

ProOPOSITION A.1. Let G be any form of one of the following groups
SLs, PGL,, (n odd), SO,, (n>3), Sp,y,,, Go

or an inner form of PGL,, (n even). Then the character lattice of G is quasi-
permutation.

Proof. SOg,4+1. Let L be the character lattice of SOg,,41 (including SO3).
Then the Dynkin diagram is D = B,,. The Weyl group is W = &,, x (Z/27Z)".
Then L = Z™ with the standard basis ej,...,e,. The group &,, naturally
permutes e, ...,e,, while (Z/27)™ acts by sign changes. Since W permutes
the basis up to =+ sign, the W-lattice L is quasi-permutation, see [Lo, §2.8].

SOay,, any form, inner or outer. Let L be the character lattice of SO4,, (includ-
ing SO4). Then the Dynkin diagram is D = D,,, with root system R = R(D).
We consider the pair (A, L) where A = Aut(R, L), then (A4, L) is isomorphic to
the character lattice of SOs,,41, hence is quasi-permutation.

Sp,,,- The character lattice of Sp,,, is isomorphic to the character lattice of
SO3, 41, hence is quasi-permutation.

PGL,,, inner form. The character lattice of PGL,, is the root lattice L = @
of A,,_1. It is a quasi-permutation &,-lattice, cf. [Lo, Example 2.8.1].

PGL,,, outer form, n odd. Let P be the weight lattice of A, _1, where n > 3
is odd. Then P is generated by elements ey, ..., e, subject to the relation

er+---+e,=0.

The automorphism group A = Aut(A,_1) is the product of &,, and &5. The
group A acts on P as follows: &,, permutes ey, ...,e,, and the nontrivial
element of &4 takes each e; to —e;.

We denote by M the A-lattice of rank 2n + 1 with basis s1,..., Sn,t1,. .-, tn, U.
The group &,, permutes s; and permutes ¢; (¢ = 1,...,n), and the nontrivial
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element of G5 permutes s; and t; for each i. The group A acts trivially on w.
Clearly M is a permutation lattice.

We define an A-epimorphism 7: M — P as follows:
T si— e, ti— —e;, u—0.

Set M’ = ker , it is an A-lattice of rank n+2. We show that it is a permutation
lattice. We write down a set of n + 3 generators of M':

pi=8i+ty, o=s1+-Fsp, T=ti+-Fin, U

There is a relation
ppt+- ot pp=0+T.

We define a new set of n 4 2 generators:

pi=pitu, o=0+"5u, T=T+"5uy,
where "T_l is integral because n is odd. We have
'51_|_..._|_'5n_5-_7~—:u7

hence this new set indeed generates M’, hence it is a basis. The group &,
permutes pi, ..., pn, while &3 permutes & and 7. Thus A permutes our basis,
and therefore M’ is a permutation lattice. We have constructed a left resolution
of P:

0—-M —-M— P —0,

(with permutation lattices M and M’), which by duality gives a right resolution
of the root lattice Q = PV of A,,_1:

0->Q— M — (M) =0
with permutation lattices MV and (M’)Y. Thus the character lattice Q of
PGL, is a quasi-permutation A-lattice for odd n.

The assertion that the character lattice of G is quasi-permutation in the re-
maining cases SL3 and Gs follows from the next Lemma A.2.

LeMMA A.2 ([BKLR, Lemma 2.5]). Let I' be a finite group and L be any I'-
lattice of rank r =1 or 2. Then L is quasi-permutation.

This lemma, which is a version of [Vo2, §4.9, Examples 6 and 7], was stated in
[BKLR] without proof. For the sake of completeness we supply a short proof
here.

We may assume that I' is a maximal finite subgroup of GL,.(Z). If r = 1, then
GL1(Z) = {£1}, and the lemma reduces to the case of the character lattice of
SO; treated above.
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Now let » = 2. Up to conjugation there are two maximal finite subgroups of
GLy(Z), they are isomorphic to the dihedral groups Dg (of order 8) and to D12
(of order 12), resp., see e.g. [Lo, § 1.10.1, Table 1.2]. The group Dy is the group
of symmetries of a square, and in this case it suffices to show that the character
lattice of SO5 is quasi-permutation, which we have done above. The group D15
is the group of symmetries of a regular hexagon, and in this case it suffices to
show that the character lattice of PGLj3 (outer form) is quasi-permutation,
which we have done above as well. This completes the proofs of Lemma A.2
and Proposition A.1. O
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1. INTRODUCTION

Given an equivariant algebraic oriented cohomology theory h over a base field
k, a split reductive group G over k, a maximal torus 7" in G and a parabolic
subgroup P containing T, we explain how, as a ring, hy(G/P) can naturally
be identified with an algebraic object D% introduced in [CZZ2]. This D% is the
dual of a coalgebra defined using exclusively the root datum of (G,T), a set
of simple roots E defining P and the formal group law F of h. In [CZZ2], we
studied the properties of this object and of some related operators by algebraic
and combinatorial methods, without any reference to geometry. The present
paper is a companion paper to [[IMSZ, CZ7, C772] that justifies the defini-
tions of D and of other related algebraic objects and operators by explaining
how to match them to equivariant cohomology rings endowed with operators
constructed using push-forwards and pull-backs along geometric morphisms.
The starting point of our approach are celebrated papers by Bernstein-Gelfand-
Gelfand and Demazure [BGG, D74] dedicated to (non-equivariant) Chow
groups and K-theory, which then were extended to the respective T-equivariant
setting by Arabia [Ar86, Arg9], Brion [Br97], Kostant, Kumar [KK86, KIK90]
and others. While the equivariant case looks more difficult, its big advantage is
that the T-fixed points embedding injects hp(G/P) into a very simple ring: a
direct product of a finite number of copies of hr(pt), where pt is Spec(k). This
important property was already apparent in [()71, Thm. 4.4] in the topological
context (see also [CS74, ABR4]). With this observation in hands, the study
of the multiplication of Schubert classes (one of the major goals of Schubert
calculus) turns into the study of the image of this injection, and then finding
a good description of classes of geometric interest in this image, i.e. classes of
Schubert varieties, or rather their Bott-Samelson desingularisations.

‘We would like to point out several places where the case of an oriented cohomol-
ogy theory with an arbitrary formal group law is significantly more complicated
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than the two classical cases of the additive law (Chow groups) and the multi-
plicative one (K-theory). First of all, in these two classical cases, the formal
group law is given by very simple polynomials; it is easy to conceive that the
computations increase in complexity with other formal group laws given by
powers series with an infinite number of nonzero coefficients. Secondly, in both
of these classical cases, the (non-equivariant) cohomology ring of a point is Z,
which is a regular ring, while in general, this base ring can be arbitrary. In
the work of Kostant and Kumar, the fraction field of the T-equivariant coho-
mology ring of the point is used as a crucial tool, but we are forced to invert
fewer elements and use a more subtle localization process, for fear of killing
everything in some cases (see the definition of @ from S in section 5). Thirdly,
an important result by Bressler and Evens | ] shows that the additive and
the multiplicative formal group laws are the only formal group laws for which
the elements X, and Y7, (see after Def. 5.2) are independent of the choice
of a reduced decomposition I, of w. Geometrically, this translates as the fact
that for Chow groups or K-theory, the class of a Bott-Samelson desingulariza-
tion corresponding to the reduced decomposition I, only depends on w, and
actually is the class of the (possibly singular) Schubert variety corresponding
to w in Chow groups and the class of its structural sheaf in K-theory. This
combinatorial /geometric independence plays a crucial role in the arguments
dealing with Chow groups or K-theory: see | , Thm. 1] and how it is used
in [D74, §4]; see also | , Prop. 4.2] and its corollary Prop. 4.3. For an arbi-
trary oriented cohomology theory, for example for algebraic cobordism, this is
simply not true: different desingularizations of the same Schubert variety give
different classes.

Let us mention some of the literature on cohomology theories that go beyond
Chow groups or K-theory. Using the Bernstein-Gelfand-Gelfand approach,
Bressler and Evens | , ] described bases of the (non equivariant) topo-
logical complex cobordism ring using Bott-Samelson classes and depending on
choosing a reduced decomposition for each Weyl group element. These results
were extended later to the algebro-geometric setting independently in [IK]

and | ]; in the latter, the approach is algebraic as in [D73, ] and an ef-
ficient algorithm for multiplying Bott-Samelson classes | , §15] is provided.
In | |, Harada, Henriques and Holm prove the injectivity of the pull-back

to fixed points map and the characterization of its image in the topological
context of generalized cohomology theories, under an assumption that certain
characteristic classes are prime to each other. Our Theorem 9.2 gives the pre-
cise cases when this happens; as all of our statements and proofs, it only relies
on algebro-geometric methods, with no input from topology.

In | , Thm. 5.1], a Borel-style presentation of equivariant algebraic cobor-
dism is obtained after inverting the torsion index. The improvement of our The-
orem 10.2 is that it applies to any oriented cohomology theory, and that, even
over a field of characteristic zero, over which algebraic cobordism is the uni-
versal oriented cohomology theory, it gives a finer result than what one would
get by specializing from cobordism, as one can see in the case of K-theory for
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which the Borel-style presentation always holds in the simply connected case,
without inverting the torsion index.

The techniques developed in the present paper (together with | L1 ]
and | ]) have been successfully applied to elliptic cohomology: see | 1,
where the Billey-Graham-Willems formulas for the localization of Schubert
classes at torus fixed points were extended to degenerate elliptic cohomology
case. In | ], the authors establish a residue interpretation of the formal
affine Hecke algebra Hp (a deformation of Dz), which coincides with the
residue construction of elliptic affine Hecke algebra of Ginzburg, Kapranov,
and Vasserot | ] for an arbitrary elliptic formal group law. They also
constructed an isomorphism between Hp and the equivariant oriented coho-
mology of the Steinberg variety.

Our main results (Theorems 8.11 and 9.1) identify the ring DE with the equi-
variant cohomology hr(G/P), within the fixed points ring Sty w. that is a
direct product of copies of hy(pt) and the image of the injective pull-back map
hr(G/P) — hp(G/B) (B is a Borel subgroup) as the subring hr(G/B)"= of
fixed elements under the parabolic Weyl group W= corresponding to P. In
Theorem 10.2 we provide a Borel-style presentation hr(pt) @y, (pt)w hr(pt) =~
hy(G/B) under certain conditions.

Other results are proved along the way: Theorem 9.2 gives an intrinsic char-
acterization of the above mentioned image in the Borel case. Diagram (8.3)
describes the push-forward map h(G/P’) — hy(G/P), induced by the projec-
tions G/ P’ — G/ P for parabolic subgroups P’ C P of G. Lemma 7.6 describes
the algebraic elements corresponding to Bott-Samelson classes, i.e. fundamen-
tal classes of desingularized Schubert varieties. Theorem 9.3 proves that the
pairing defined by product and push-forward to hr(pt) is non-degenerate.

The paper is organized as follows. First, we state the properties that we use
from equivariant oriented cohomology theories, in section 2. Then, in section
3, we describe hr(pt) as the formal group ring of | , Def. 2.4]. In section
4, we compute the case of hy(P!) when the action of T on the projective line
P! = (A? )\ {0})/G,, is induced by a linear action of 7" on A%. Tt enables
us to compute the pull-back of Bott-Samelson classes ¢; to hr((G/B)T) in
Lemma 7.6. By localization, some of these classes generate hy(G/B) and this
lets us prove the Borel case of Theorem 8.11. The parabolic cases are then
obtained in the remaining sections, as well as the Borel-style presentation. In
the last section, we explain how equivariant groups under subgroups of T' (and
in particular the trivial group which gives the non-equivariant case) can be
recovered out of the equivariant one.

2. EQUIVARIANT ORIENTED COHOMOLOGY THEORY

In the present section we recall the notion of an equivariant algebraic oriented
cohomology theory, essentially by compiling definitions and results of | 1,
[ 1, [ I, [ I, [ 1, [ I, [ ] and | ]. We present it here
in a way convenient for future reference.
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In this paper, k is always a fixed base field, and pt denotes Spec(k). By a
variety we mean a reduced separated scheme of finite type over k. Let G be a
smooth linear algebraic group over k, abbreviated as algebraic group. In this
paper we are mostly interested in the case G = T'. Let G-Var be the category of
smooth quasi-projective varieties over k endowed with an action of G, and with
morphisms respecting this action (i.e. G-equivariant morphisms). The tangent
sheaf Tx of any X € G-Var is locally free and has a natural G-equivariant
structure. The same holds for the (co)normal sheaf of any equivariant regular
embedding of a closed subscheme.

An equivariant oriented cohomology theory over k is an additive contravariant
functor hg from the category G-Var to the category of commutative rings with
unit for any algebraic group G (for an equivariant morphism f, the map heg(f)
is denoted by f* and is called pull-back) together with

e a morphism fi: hg(X) — hg(Y) of hg(Y)-modules (called push-forward)
for any projective morphism f: X — Y in G-Var (here hg(X) is an hg(Y)-
module through f*). That is, we have the projection formula

(2.1) (M (y)x) = yfu(o), mEhG(X)athG(Y)'

e a natural transformation of functors resy: hy — he oResy (called restric-
tion) for any morphism of algebraic groups ¢: G — H (here Resy: H-Var —
G-Var simply restricts the action of H to an action of G through ¢)

e a natural transformation of functors ¢“: Kg — hg (called the total equi-
variant characteristic class), where Kg(X) is the K-group of G-equivariant
locally free sheaves over X and hg(X) is the multiplicative group of the
polynomial ring hg(X)[t] (the coefficient at ¢' is called the i-th equivariant
characteristic class in the theory h and is denoted by cf)

that satisfy the following properties:
A 1 (Compatibility for push-forwards). The push-forwards respect composition
and commute with pull-backs for transversal squares (a transversal square is a

fiber product diagram with a nullity condition on Tor-sheaves, stated in | ,
Def. 1.1.1]; in particular, this condition holds for any fiber product with a flat

map).

A 2 (Compatibility for restriction). The restriction respects composition of
morphisms of groups and commutes with push-forwards.

A 3 (Localization). For any smooth closed subvariety i: Z — X in G-Var with
open complement u: U — X, the sequence

he(Z) 5 he(X) S he(U) — 0
s exact.

A 4 (Homotopy Invariance). Let p: X X A™ — X be a G-equivariant projection
with G acting linearly on A™. Then the induced pull-back hg(X) — ha(X x A™)
is an isomorphism.
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A 5 (Normalization). For any reqular embedding i: D C X of codimension 1
in G-Var we have ¢ (O(D)) = i.(1) in hg(X), where O(D) is the line bundle
dual to the kernel of the map of G-equivariant sheaves O — Op.

A 6 (Torsors). Let p: X — Y be in G-Var and let H be a closed normal
subgroup of G acting trivially on'Y such thatp: X — Y is a H-torsor. Consider
the quotient map v: G — G/H. Then the composite p* o res,: hg/u(Y) —
hg(X) is an isomorphism.

In particular, if H = G we obtain an isomorphism hi3(Y) ~ hg(X) for a
G-torsor X overY.

A 7. If G = {1} is trivial, then hyyy = h defines an algebraic oriented coho-
mology in the sense of | , Def. 1.1.2] (except that h takes values in rings,
not in graded rings) with push-forwards and characteristic classes being as in

[LMOT].

A 8 (Self-intersection formula). Let i : Y C X be a regular embedding of
codimension d in G-Var. Then the normal bundle to Y in X, denoted by
Ny/X is naturally G-equivariant and there is an equality i*i,(1) = ch(Ny/X)
m hg(Y).

A 9 (Quillen’s formula). If £1 and Lo are locally free sheaves of rank one, then
c1(Ly ® L) = c1(Ly) +F c1(L2),

where F is the formal group law of h (here G = {1} ).
As consequences of the projection formula (2.1), we have:
LEMMA 2.1. Letp: X — Y be a morphism in G-Var, with a section s : Y — X.
Then for any u € hg(Y), one has

(a) s*s.(u-v) =u-s*s,(v) if s is projective.

(b) pi(ss(u)™) = u-s*s.(u)"t for any n > 1 if furthermore p is projective.
Proof. Part (a) follows from
s*su(u-v) = s*s,(s*p*(u)-v) = s*(p*(u)-5.(v)) = s*p*(u) 55, (v) = u-s*5.(v)
and part (b) from
Pelse()") = pu (5 (w) -0 ()" 1) = p (s (" (s ()" 7) ) = wes”s ()"

O

This lemma applies in particular when p : X — pt is the structural morphism
of X and s is therefore a G-fixed point of X.

For any X € G-Var consider the ~-filtration on hg(X), whose i-th term
vihg(X) is the ideal of hg(X) generated by products of equivariant charac-
teristic classes of total degree at least i. In particular, a G-equivariant locally
free sheaf of rank n over pt is the same thing as an n-dimensional k-linear
representation of G, so 7' hg(pt) is generated by characteristic classes of such
representations. This can lead to concrete computations when the representa-
tions of G are well described.
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We introduce the following important notion

DEFINITION 2.2. An equivariant oriented algebraic cohomology theory is called
Chern-complete over the point for G, if the ring hg(pt) is separated and com-
plete with respect to the topology induced by the ~-filtration.

REMARK 2.3. Assume that the ring hg(pt) is separated for all G, and let
ha(pt)” be its completion with respect to the ~-filtration. We can Chern-
complete the equivariant cohomology theory by tensoring with — ®y (py)
he(pt)”. In this way, we obtain a completed version of the cohomology theory,
still satisfying the axioms. Note that this completion has no effect on the non-
equivariant groups, since in h(pt), the characteristic classes are automatically
nilpotent by | , Lemma 1.1.3].

Here are three well-known examples of equivariant oriented cohomology theo-
ries.

ExXAMPLE 2.4. The equivariant Chow ring functor hg = CHg was constructed
by Edidin and Graham in | ], using an inverse limit process of Totaro
[ ]. In this case the formal group law is the additive one F(z,y) = = + y,
the base ring CH(pt) is Z, and the theory is Chern-complete over the point for
any group G by construction.

ExXAMPLE 2.5. Equivariant algebraic K-theory and, in particular, Ky was con-
structed by Thomason | ] (see also [ ] for a good survey). The formal
group law is multiplicative F'(z,y) = x + y — xy, the base ring Ko(pt) is Z,
and the theory is not Chern complete: for example, (Ko)g,, (pt) =~ Z[t,t7}]
with the 7% generated by (1 — ¢)®. Observe that (Ko)g(pt) consists of classes
of k-linear finite dimensional representations of G.

EXAMPLE 2.6 (Algebraic cobordism). Equivariant algebraic cobordism was de-
fined by Deshpande | ], Malgén-Lépez and Heller | ] and Krishna
[ ]. The formal group law is the universal one over Q(pt) = L the Lazard
ring. The equivariant theory is Chern complete over the point for any group
G by construction.

By Totaro’s process one can construct many examples of equivariant theories,
such as equivariant connective K-theory, equivariant Morava K-theories, etc.
Moreover, in this way one automatically obtains Chern-complete theories.

3. TORUS-EQUIVARIANT COHOMOLOGY OF A POINT

From now on, T is always a split torus. In the present section we show that
the completed T-equivariant oriented cohomology ring of a point can be iden-
tified with the formal group algebra of the respective group of characters (see
Theorem 3.3).

Let A be the group of characters of T', which is therefore the Cartier dual of A.
Let X be a smooth variety over k endowed with a trivial T-action. Consider the
pull-back p*: hr(pt) — hr(X) induced by the structure map. Let 7} hr(X)
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denote the ideal in hy(X) generated by elements from the image of ~* hy(pt)
under the pull-back. Since any representation of 7' decomposes as a direct
sum of one dimensional representations, v hr(pt) is generated by products of
first characteristic classes ¢ (Ly), A € A. Since characteristic classes commute
with pull-backs, vét hy(X) is also generated by products of first characteristic
classes (of pull-backs p*Ly).

Let F' be a one-dimensional commutative formal group law over a ring R. We
often write x +p y (formal addition) for the power series F(x,y) defining F.
Following [ , §2] consider the formal group algebra R[A]p. It is an R-
algebra together with an augmentation map R[A]r — R with kernel denoted
by Zr, and it is complete with respect to the Zp-adic topology. Thus

R[A]r = @R[{A]}ﬁz},

and it is topologically generated by elements of the form z), A € A, which
satisfy xxy, = xx +r z,. By definition (see [ , 2.8]) the algebra R[A]r
is universal among R-algebras with an augmentation ideal I and a morphism
of groups A — (I,+r) that are complete with respect to the I-adic topology.
The choice of a basis of A defines an isomorphism

R[A]r ~ R[x1,...,Zxs],
where n is the rank of A.

Set R = h(X). Then hp(X) is an R-algebra together with an augmentation
map hr(X) — R via the restrictions induced by {1} — T — {1}. The assign-
ment A € A — ¢f(L,) induces a group homomorphism A — (I, +r), where
I is the augmentation ideal. Therefore, by the universal property of R[A]r,
there is a morphism of R-algebras

¢: R[Alr /T — br(X) /vpe e (X).
We claim that
LEMMA 3.1. The morphism ¢ is an isomorphism.

Proof. We proceed by induction on the rank n of A.

For n = 0, we have T = {1}, R = hp(X), T, = ~}, hr(X) = {0} and the map
¢ turns into an identity on R.

For rank n > 0 we choose a basis {A1,..., A} of A. Let {Lq,...,L,} be
the respective one-dimensional representations of 7. This gives isomorphisms
A~7Z" and T ~ G}, and G}, acts on L; by multiplication by the i-th coordi-
nate. Let G?, act on A’ by multiplication by the last coordinate. Consider the
localization sequence (A3)

hgn (X) — hgn (X x A’) — hgn (X x (A" {0})) — 0.
After identifying
hey (X) = hen (X X AY) and hgn (X x P71) Shep (X x (A7) {0}))
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via (A8) and (A6), we obtain an exact sequence

c1(Ly)?
1(Ly)

hgn (X) hgp (X) — hgn (X x P71) — 0.

where the first map is obtained by applying self-intersection (A5) and homotopy
invariance (A4) properties.

By definition, all these maps are R-linear, and the action of G*,~ on X x Pi~!
is the trivial one. Since the last map is given by pull-back maps and restrictions
(although not all in the same direction), and since equivariant characteristic
classes commute with these, one checks that it sends ¢1(L;) to ¢1(L;) for any
i <n—1and ci(Ly,) to c1(O(1)); this last case holds because O(1) on P~!
goes (by restriction and pull-back) to the equivariant line bundle on A%\ {0}
with trivial underlying line bundle, but where G}, acts by A, on fibers.

By the projective bundle theorem, we have R’ :=h(X x P~1) ~ R[y]/y* with
¢1(0O(1)) = y. By induction, we obtain for any 4 an isomorphism

hgn—1 (X x P71 /75y = R'IA]p/(Zp)'
where A’ = Z""1 and I}, is the augmentation ideal of R'[A’]r. Using the
isomorphisms R[A]r ~ R[z1,...,z,] and R'[A']r ~ R'[z1,...,2n—1] induced
by the basis of A, we are reduced to checking that
Rlz1,...,z.]/T6  — (Rl y)]z1, .- 2nall/T
z, ifi<n-1

y ifi=n.
is an isomorphism, when J = (Z)" + y - (Zr)""' + - - - + y*. The latter then
follows by definition. a
REMARK 3.2. Similar statements can be found in [ ,3.2.1] or | , 6.7],

but we gave a full proof for the sake of completeness.

We obtain a natural map of R-algebras

by (pt) — lim by (pt) /7" br(pt) ~ lim R[A]p/Z} = R[A]r

and, therefore, by Lemma 3.1, we have:

THEOREM 3.3. If h is (separated and) Chern-complete over the point for T,
then the natural map hy(pt) — R[A]r is an isomorphism. It sends the char-
acteristic class cF' (L)) € hr(pt) to xx € R[A]F.

4. EQUIVARIANT COHOMOLOGY OF P!

In the present section we compute equivariant cohomology hr (P(Vy & V3)) of a
projective line, where a split torus T acts on one-dimensional representations
V1 and V5 by means of characters Ay and As.

ASSUMPTION 4.1. For the rest of the paper we assume that the equivariant
cohomology of the point hr(pt) is (separated and) complete for the y-filtration
in the sense of Definition 2.2.
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Let X be a smooth T-variety. By section 3, the ring hy(X) can be considered
as a ring over S := R[A]F via the identification S ~ hp(pt) of Theorem 3.3
and the pull-back map hr(pt) — hr(X). By convention, we’ll use the same
notation for an element u of S and the element u -1 € hp(X), where 1 is the
unit of hp(X). Thus, for example, z) = ¢f' (L)) in hp(X).

Given a morphism f : X — Y in T-Var, the pull-back map f* is a morphism
of rings over S and the push-forward map f. (when it exists) is a morphism of
S-modules by the projection formula.

REMARK 4.2. Note that we are not claiming that S injects in hp(X) for all
X € T-Var; it will nevertheless hold when X has a k-point that is fixed by T',
as most of the schemes considered in this paper have.

We now concentrate on the following setting. Let A\; and Ay be characters of
T, and let V7 and V5 be the corresponding one dimensional representations of
T,ie. t € Tactsonv € V; by t-v = A\(t)v. Thus, the projective space
P(V1 @ V,) is endowed with a natural T-action, induced by the action of T' on
the direct sum of representations V; @ V. Furthermore, the line bundle O(—1)
has a natural T-equivariant structure, that can be described in the following
way: The geometric points of the total space of O(—1) are pairs (W, w) where
W is a rank one sub-vector space of V1 & V5 and w € W. The torus T acts by
t-(W,w) = (W), t(w)).
Two obvious embeddings V; C Vi & V5 induce two T-fixed points closed em-
beddings 01,02: pt — P(V; & V3). The open complement to o; is an affine
space isomorphic to V] ® V5’, with T-action by the character A\; — Ay. We set
« := Ag— A1. By homotopy invariance (A4) applied to the pull-back induced by
the structural morphism of V4, we have hr(pt) = hr(V;) with inverse given by
the pull-back ¢4 (which actually lands in V7). The exact localization sequence
(A3) can therefore be rewritten as

hr (pt) ~22% iy (P(Vh @ Va)) —2 hy(pt) —— 0
Using the structural map p : P(V; @ V3) — pt, we get a splitting p* of o5 and
a retract p, of (01)«. Thus, the exact sequence is in fact injective on the left,
and we can decompose hy(P(V; @ V3)) using mutually inverse isomorphisms

(%)
(4.1) hr(pt) ©hr(pt) by (P(V1 & V2))
((61)x, p*—=(01)«pxp™)

LEMMA 4.3. (a) As T-equivariant bundles, we have o} (O(—1)) =V;.
(b) We have (91).(1) = & (O(1)@p* (V2)) and (o). (1) = e1 (O(1)@p* (V1))
in by (P(V1 & V2)).
(¢) For any u € hp(pt), we have of(01)«(u) = zou, 05(02)«(u) = z_qu
and o5 (02)«(u) = 03(01)(u) = 0.
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Proof. The first part is easily checked on the geometric points of total spaces
and is left to the reader. The second part follows from (A5), given the exact
sequence of T-equivariant sheaves

0—0(-1)@p (V)Y =00, —0,

where Oy, is the structural sheaf of the closed subscheme given by ;. Again
this exact sequence is easy to check and we leave it to the reader. In the third
part, the last equality holds by transverse base change through the empty
scheme, while the first two follow from Lemma 2.1 and

o7 (01)(1) = 01e1 (O(1) @ p*(V2)) =
=1 (a1 () @p* (12))) = 1 (V¥ @ Va) = 2rg -
(02)«(1). O
LEMMA 4.4. If x, is not a zero divisor in S, then the push-forward

P« hp(P(Vi @ V2)) — hp(pt) satisfies p.(1) = i + L

T_q

or a symmetric computation for o3

(Observe that p.(1) € S by | , 3.12], where it is denoted by e,.)
Proof. By Lemma 4.3, we have

zo =c1(p'(Va ® 1)) = e1(0(1) @ p*(V2) ® (O(1) @ p" (V1)) ")

=c ((’)(1) ®p*(V2)) —FC (0(1) ®p*(V1)) = (01)«(1) —F (02)«(1).
By transverse base change, we have (01).(1) - (62)+(1) = 0, and therefore
(01)+(1) —=F (02):(1) = (01) (1) + (—F (02)4(1)).
Since x, is not a zero divisor in S, it suffices to prove that
To pe(l) =1+ JF,

where -7~ € S* is the power series %(x)
—a

Tape(1) = pu(a) = pe((00)o(1) + (~£(02),(1)))
= L pu(—p(o2)a(1)) = 14 2.

applied to r = z_,. Now,

where the last equality follows from Lemma 2.1, part (b). O

Let 0 = 01 Uoy: pt Upt — P(V; & V) be the inclusion of both T-fixed points.

LEMMA 4.5. If x, is not a zero divisor in S, the pull-back o* is injective, and
imo* = {(u,v) € hr(pt) Bhr(pt) | z_au + 0¥ € Tox—o - hr(pt)}.

Proof. Since hp(ptUpt) = hp(pt) Dhy(pt) identifies o* with (o7, 03), it suffices
to check that the composition

¥
91

((01)*7 P**(Ul)*P*P*) g;
hr(pt) © hy(pt) —— bhr(P(Vi @ V2)) — hr(pt) © hr(pt)
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is injective. Indeed, it is given by the matrix

oi(0). oip” —oi(e)pp’) _ (70 1—a-p(D)) _ (Ta —Z=
o5(o1)x  03p" = 05(01)«psp” 0 1 0 1
where in the first equality, we have used p o o; = id, Lemma 4.3 part (¢), to
get the 1’s and the 0, and then the projection formula p.p*(u) = u - p«(1) and
Lemma 2.1 to get o (01)«psp™(u) = xaps(1) - u. The last equality holds by

Lemma 4.4.
Finally, the image of this matrix is of the expected form. ]

Let S[i] be the localization of S at the multiplicative subset generated by .

Lo

Since -*o is invertible, there is a canonical isomorphism S[i] o~ S[i] We

consider the S[-1]-linear operator

A: S[i] @S[i} — S[i] given by (u,v) — 2t +

v
T_qo "

Note that by the previous lemma, it sends the image of ¢* to S inside S [i}

LEMMA 4.6. If x,, is not a zero divisor in S, the following diagram commutes.

hy (B(Vi V) —Z— hr(pt) hr(pt) «=— S @S <  S[1]® S[L]

l N P

hr(pt) — S

N
2
|>—‘

Proof. 1t suffices to check the equality of the two maps after precomposition
by the isomorphism hr(pt) @ hr(pt) — hy (P(Vy @ V2)) given in (4.1). Using
the matrix already computed in the proof of Lemma 4.5, one obtains that the
upper right composition sends (u,v) to u. The lower left composition sends
(u,v) to

P ((01) (1) + p*(v) = (01)apsp™(v)) = u+ pup*(v) — pup*(v) =u. O

5. ALGEBRAIC AND COMBINATORIAL OBJECTS

Let us now introduce the main algebraic objects D*, DZ, S, and Sy, .
that play the role of algebraic replacements for some equivariant cohomology
groups in the remaining of this paper. These objects were discussed in detail
in [CZ7] and | ], and we only give a brief overview here. Their geometric
interpretation will be explained in the next sections.

Let ¥ < AY, @+~ " be a root datum in the sense of | , Exp. XXI, §1.1].
Thus, A is a lattice and ¥ is a non-empty finite subset of A, called the set of
roots. The rank of the root datum is the dimension of Q ®z A, and elements
in X3 are called roots. The root lattice A, is the subgroup of A generated by
elements in X, and the weight lattice is defined as

Ay ={weQ®zA|a’(w)€Zforall a € 2}.
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We have A, C A C A,,. We always assume that the root datum is semisimple
(the ranks of A, A,, A, are equal and no root is twice any other root). The
root datum is called simply connected (resp. adjoint) if A = A,, (resp. A = A,)
and if it is furthermore irreducible of rank n, we use the notation D¢ (resp.
Dad) for its Dynkin type, with D among A, B, C, D, G, F, E.

The Weyl group W of the root datum is the subgroup of Autz(A) generated
by simple reflections

sa(A) =X —a’(Na, A€ A.
Fixing a set of simple roots I = {ay, ..., @, } induces a partition ¥ = LT UM~
where ¥ T is the set of positive roots and ¥~ = —X% is the set of negative
roots. The Weyl group W is actually generated by s; := sq4,, i =1,...,n

Let F' be a one-dimensional commutative formal group law over a commutative
ring R. Let S = R[A]r. From now on we always assume that

AssUMPTION 5.1. The algebra S is Y-regular, that is, z, is regular in S for all
a €3 (see [CZZ, Def. 4.4]).

This holds if 2 is regular in R, or if the root datum does not contain an irre-
ducible component of type C3° [ , Rem. 4.5].

The action of W on A induces an action of W on S, and let Sy be the R-algebra
defined as S ®p R[W] as an R-module, and with product given by

qawq/(sw/ = qw(q/)(sww’a q, q/ €5, w, w' e W.

Let Q = S[%m € Y] and Qw = Q ®g Sw, with ring structure given by the
same formula with ¢, ¢’ € Q. Then {0, }wew is an S-basis of Sy and a Q-basis
of Qw. There is an action of Qw on @, restricting to an action of Sy on 5,
and given by

90w ¢ =qu(q), q.¢d €Q weW.
Foreachaé&wedeﬁnena:a%—i——ES

DEFINITION 5.2. For any a € X, let

1 1 1 1
Xa:__adsaa Ya:Ra_Xa:E+E6saa

T

in Qyw, respectively called a formal Demazure element and a formal push-pull
element.

For each sequence (iy,...,ir) with 1 <i; < n, we define X; = X, o KXo,
and Y7 :Ym1 - Y,

Oéik'

DEFINITION 5.3. Let D be the R-subalgebra of Qw generated by elements
from S and the elements X,, a € 3.

Since 05, = 1 — o, Xa,;, we have Sy C D. By | , Prop. 7.7], D is a free
S-module and for any choice of reduced decompositions I,, for every element
w € W the family {X;, }wew is an S-basis of D.
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There is a coproduct structure on the @-module Qv defined by

QW — QW ®Q QW7 qaw — qaw & 61117

with counit Qw — @, o, — q. Here Qw ®¢g Qw is the tensor product of left
@-modules. By the same formula, one can define a coproduct structure on the
S-module Sy. The coproduct on Qw induces a coproduct structure on D as
a left S-module.

On duals S}, = Homg(Sw, S), D* = Homg(D, S) and @}, = Homg(Qw, Q)
(notice the different stars x for S-duality and * for @Q-duality), the respective
coproducts induce products. In Sj;, or Q7;,, this product is given by the simple
formula
fvfw = 552; fv

on the dual basis {f,}wew t0 {0w twew, with 65; the Kronecker delta. The
multiplicative identity is 1 = > .y fo. Let n be the inclusion Sy C D.
It induces an S-algebra map n* : D* — S}, which happens to be injective
[ , Lemma 10.2]. Furthermore, after localization, g : Qw — Q ®s D* is
an isomorphism and by freeness, we have Q@ ®s D* ~ Homg(Q ®s D, Q) and
thus Q ®s D* ~ Qjy, as left Q-rings.

There is a @-linear action of the R-algebra Qw on Q7 given by
(zo f)(Z) = f(2'2), 22 €Qw,f€Qy.

as well as S-linear actions of Sy on S}, and of D on D*, given by the same
formula. With this action, it is proved in | , Theorem 10.13] that D* is a
free D-module of rank 1 and any w € W gives a one-element basis {zr e f,}
of it, where zp = [[cx- Za-

The map cs : S — D* sending s to s e 1 is called the algebraic (equivariant)
characteristic map, and it is of special importance (see section 10).

We now turn to the setting related to parabolic subgroups. Let = C II be a
subset and let Wg be the subgroup of W generated by the s; with a; € Z. Let
Yz = {a € X|sq € Wz}, and define Z; =X NX¥z and ¥Z = X~ NXz. For
= CECII let Zg/a = EJEF\ZE, and EE/E, =X2\2z. In S, we set
Tzz = H To and zz = Tz

0462;/5,
Let Sy w. be the free S-module with basis {0z} scw/we and let Quw/w. =
Q ®s Sw/w= be its localization.

As on Qw, one can define a coproduct structure on Qw,/w. and Sy w., by
the same diagonal formula. Let

St ywe = Homs(Sw/w=,S) and  Qjy/n. = Homg(Qw/w=, Q)

be the respective dual rings of the corings Sy w. and Quw/w.. On the ba-
sis {fo}sew,/w= dual to the basis {0p}gecw/we, the unit element is 1= =
Zﬁew/WE fz, both in S;V/WE and in Q”{,V/WE.
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Assume =/ C Z. Let w € W/Wz and let @ denote its class in W/Wez. Consider
the projection and the sum over orbits

pz/z: Swywe, — Swywe and  dz= o Swywe = Swywe
5»@ — (511] 6@?) — Z 517
’UEYV/YVE/
with S-dual maps
PZyz  Swywe = Sy, and  dz = Siy ., = Siyywe -
fo > fe fo = fo
EEW/WE/

Note that p=,=/ respects coproducts, so p‘é/a, is a ring map while dé/a/ isn’t.

We set p= = pz/p. Let D= denote the image of D via p=. The coproduct
structure on Qu/w. induces an S-linear coproduct structure on Dz, so its
S-dual DZ has a ring structure.

In summary, we have the following diagram followed by its dualization

*

N=r * C M=/ * ( *
SW/WE/ C DE/( QW/WE/ DE’ W/ Wz QW/WE/
lps/s/ lps/s/ lpi/i/ P;/Ej pé/EJ Pé/sj
SW/WE( = DE( QW/WE DE(L SI’;V/WE(—> Q*W/WE

in which all horizontal maps become isomorphisms after tensoring by @ on the
left. Tt will receive a geometric interpretation as Diagram (8.2). Moreover,
by [ , Lemma 11.7], the image of p% in D* (or S}, @jy) is the subset of
Wz-invariant elements.
There is no ‘e’action of Sy /. on S;V/WE because Sy . is not a ring. But
since xry/z € SW= the element zp s= @ f is well-defined for any f € S;V/WE and
actually belongs to Dz inside S§, ., by | , Lemma 15.3]. This defines a
map DX — Sy w., interpreted geometrically in Diagram (8.1).
For a given set of representatives of W=/Wg we define the push-pull element
by
_ 1
Yeiz= ) Guits €Qw.

’UJEWE/E/
We set Yz = Yz/9. If £ = {a;}, then Y=z = Y,,. By | , Lemma 10.12],
Y=z € D.
Let
Azjz - QW)= = Q)™= and  Azjz: Qyywy, & Qi
[ o Yzmef froomdga (o f)

and respectively call them push-pull operator and push-forward operator. The
operator Az/=: is actually independent of the choice of representatives | ,
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Lem. 6.5]. We have Az /= ((D*)"=') = (D*)"= by | , Cor. 14.6] and Az /=
induces a map Az = : Df, — DE by | , Lemma 15.1]. These two operators
are related by the commutative diagram on the left below, becoming the one
on the right after tensoring by Q.

Again, when Z’ = (), we set Az = Agy and A= = Az .

6. FIXED POINTS OF THE TORUS ACTION

We now consider a split semi-simple algebraic group G over k containing T" as
a maximal torus, with character group A. Let W be the Weyl group associated
to (G, T), with roots ¥ C A. We choose a Borel subgroup B of G containing T'.
It defines a set II of simple roots in W. Given a subset = C II, the subgroup
generated by B and representatives in G(k) of reflections with respect to roots
in = is a parabolic subgroup, denoted by P=z. The map sending = to P= is a
bijection between subsets of II and parabolic subgroups of G containing B. Let
Wz be the subgroup of W generated by reflections with respect to roots in Z.
We will abuse the notation by also writing W (or Wz, etc.) when referring to
the constant finite algebraic group over pt whose set of points over any field is
wW.

For any parabolic subgroup P, the quotient variety G/P is projective and
we consider it in T-Var by letting 1" act on G by multiplication on the left.
After identifying W ~ Ng(T')/T, the Bruhat decomposition says that G/P =
|lyew= BwP=/P=, where the union is taken over the set W= of minimal left
coset-representatives of W/W=. It induces a bijection between k-points of G/ P=
that are fixed by 7" and the set W= (or W/Wz). In particular, fixed k-points
of G/B are in bijection with elements of W.

Let (G/P=)T = Upew /wa= Pty denote the closed subvariety of T*-fixed k-points,
then by additivity there is an S = hp(pt)-algebra isomorphism
O=z: hr((G/P=)") = ][] wrbote)= J[ S=Shwe
’lIJEW/WE ’LZ}EW/WE
If I = (), we denote © : hy((G/B)T) = hp (W) — S§y.

Let 1=: (G/P=)T < G/P= denote the (closed) embedding of the T-fixed locus,
and let +€: pty < G/Pz denote the embedding corresponding to w. Given
=/ C Z C II, we define projections

W=yl G/PE/ — G/PE and Pz W/WE/ — W/WE
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(here we view W/Wz as a variety that is a disjoint union of copies of pt indexed
by cosets). If = = {«a} consists of a single simple root «, we omit the brackets
in the indices, i.e. we abbreviate Wi,y as Wy, Ppay as Pa, etc. If 2 = (), we
omit the @) in the notation, i.e. T=/p = 7=, p=/p = p=, etc. By definition, we
have

(61) Oz o (pE/E/)* = dé/E’ o Oz and Oz o (pE/E/)* = pé/g/ 0 Oxz.

The following lemma is easy and well-known. We include a proof for the sake
of completeness.

LEMMA 6.1. Let w € W be a representative of w € W/Wz. The pull-pack
(12)*Ta/pe of the tangent bundle Tg p. of G/P= is the representation of T
(the T -equivariant bundle over a point) with weights {w(a) | a € EH/E}. (This
set is indeed independent of the choice of a representative w, e.g. by | ,
Lemma 5.1].)

Proof. Consider the exact sequence of T-representations at the neutral element
eceG
0= Tpee = Tge = Taypz,e — 0

(it is exact by local triviality of the right P=-torsor G — G/P=). By definition of
the root system associated to (G, T'), the roots ¥ are the characters of 7 .. By
definition of the parabolic subgroup P=, the characters of Tp. . are ¥ U XZ.
This proves the lemma when w = e. For an arbitrary w, we consider the
diagram

(2

pt. G w' G

P!

G/PELG/PE

which is T-equivariant if T" acts by multiplication on the left on the right column
and through conjugation by w™! and then by multiplication on the left on the
left column. Since 2 is the bottom composite from pt, to G/Ps, the fiber of
Ta)p- at w is isomorphic to its fiber at e, but for every character a, the action
of T is now by t(v) = a(w~tw) v = a(w™(t)) -v = w(a)(t) v, in other words
by the character w(«). O

me

PROPOSITION 6.2. We have (12)*(12').(1) = 0 if w # @' € W/Wz and
@) (8)(1) = []7w@ = wznz).

aEEH/E

Proof. The case w # @’ holds by transverse base change through the empty
scheme. Since the normal bundle to a point in G/Ps is the tangent bundle
of G/P= pulled back to that point, and since any T-representation splits into
one-dimensional ones, the case w = @’ follows from (A8) using Lemma 6.1 to
identify the characters. |
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REMARK 6.3. Note that in the Borel case, the inclusion of an individual fixed
point is local complete intersection as any other morphism between smooth
varieties, but not “global” complete intersection, in the sense that it is not the
zero locus of transverse sections of a globally defined vector bundle. Otherwise,
for Chow groups, such a point would be in the image of the characteristic map
as a product of first characteristic classes, and it isn’t for types for which the
simply connected torsion index isn’t 1. Locally, on an open excluding other
fixed points, it becomes such a product, as the previous proposition shows.

COROLLARY 6.4. We have O=(12)*(1z)+«(1) = zr/z @ 1=.

Proof. Since 1z = | |gcw,w, 12, we have

7. BOTT-SAMELSON CLASSES

In the present section we describe the Bott-Samelson classes in the 7T-
equivariant cohomology of G/ P=.

Let ZE C II as before. For each w € W/W= consider the B-orbit BwPs/Ps of
the point in G/ P= corresponding to w. It is isomorphic to the affine space A!®)
where v € W= is the representative of @ of minimal length [(v). Its closure
BwPs/ Pz is called the Schubert variety at @ with respect to = and is denoted
by X2, If 2 = (), we write X, for X?. Moreover, by Bruhat decomposition
the closed complement of BwPs=/P= is the union of Schubert varieties X with
@ < w for the Bruhat order on W/Wz. For any w € W, the projection map
G/B — G/ Pz induces a projective map X,, — X=. Moreover, if w € W=, then
the projection X,, — X= is (projective and) birational.

The variety X'= is not smooth in general, but it admits nice desingularizations,
that we now recall, following [D74]. Given a sequence of simple reflections
I =(s1,...,8) corresponding to simple roots (a1, ...,q;), the Bott-Samelson
desingularization of X; is defined as

X;=P, xBpP,xP...xP P, /B

where x® means the quotient by the action of B given on points by b -
(r,y) = (xb~1,by). By definition, the multiplication of all factors induces

a map gr: X7 — G/B which factors through a map p;: X — Xw([) where
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w(l) = s1---s;. It is easy to see that if I’ = (s1,...,8-1), the diagram

(7.1) X —25G/B

e

~ Mo, Oqrr

Xy —— G/Pal
is cartesian, when p’ is projection on the first [ — 1 factors. By induction
on [, the variety X; is smooth projective and the morphism u; is projective.
When furthermore I is a reduced decomposition of w(I), meaning that it is of
minimal length among the sequences J such that w(J) = w(I), the map pur
is birational (still by Bruhat decomposition). We can compose this map with
the projection to get a map X,, — XZ and thus when w € W=, we obtain a
(projective birational) desingularization Xy — XZ. Tt shows that, G/Pz has a
cellular decomposition with desingularizations, as considered just before | ,
Thm. 8.8], with cells indexed by elements of W/W=.

REMARK 7.1. The flag varieties, the Schubert varieties, their Bott-Samelson
desingularizations and the various morphisms between them that we have just
introduced are all B-equivariant when B acts on the left, and therefore are
T-equivariant.

DEFINITION 7.2. Let ¢ = 7=z o qr, let (¥ be the push-forward (¢7).(1) in
hy(G/Pz), and let ¢; = ¢? in hp(G/B).

Note that by definition, we have (7=).(¢;) = (5.

LEMMA 7.3. For any choice of reduced sequences {I,},ew=, the classes C]Ew
generate hr(G/Ps) as an S-module.

Proof. The proof of | , Theorem 8.8] goes through when h is replaced by
hp, since all morphisms involved are T-equivariant; it only uses homotopy
invariance and localization. O

Let Vp (resp. Vq) be the 1-dimensional representation of 7' corresponding to
the 0 (resp. «) character. Let o9 and o, be the inclusions of T-fixed points
corresponding to Vy and V, in P(Vy @ V) as in the setting of Section 4.
Consider the projection 7, : G/B — G/P,. Given an element w € W, with
image w in W/W,, and any lifting w’ of w in G, the fiber over the fixed point
1Y pty — G/ P, is w'P,/B.

LEMMA 7.4. There is a T-equivariant isomorphism w'Po /B ~ P(Vo ® V_yy(a)),
such that the closed fized point 1" : pt,, — w'P,/B — G/B (resp. 1""*« ) is sent
to oo: pt = P(Vo @ V_yy(a)) (resp. to o_ya)-

Proof. Multiplication on the left by w’ defines an isomorphism P,/B —
w' P, /B and it is T-equivariant if T acts by multiplication on the left on
w'P,/B and through conjugation by (w’)~! and then by multiplication on
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the left on P,/B. Thus, we can reduce to the case where w’ = e: the general
case follows by replacing the character a by w(«).

First, let us observe that PGLy acts on the projective space P! by projective
transformations, i.e.

@[x:y}:[tx+by:cx+dy}

with its Borel subgroup Bpgr, of upper triangular matrices fixing the point [1 :
0], which therefore gives an identification PGL2/BpgL, ~ P!. So, its maximal
torus G,, of matrices such that b=c=0and d=1acts by t[z : y] = [tz : y] =
[ : t71y]. Thus, as a G,,-variety, this P! is actually P(V; & Vp) ~ P(Vo © V_1).
The adjoint semi-simple quotient of P, is of rank one, so it is isomorphic to
PGL5. The maximal torus 7" maps to a maximal torus G,, and the Borel B to
a Borel in this PGL;y. Up to modification of the isomorphism by a conjugation,
we can assume that this Borel of PGLy is indeed Bpgr, as above. The map
T — Gy, is L« (the sign depends on how the maximal torus of PGL; is
identified with G,,,). Since P,/B ~ PGLy/BpgL,, we are done by the PGLy
case. (I

Recall the notation from section 5.

LEMMA 7.5. The following diagram commutes.

hr(G/B) ——hr(W) —— 55 < Qi

e (ﬂa)*l lAa

hr(G/B) —— by (W) —— S5, € Qiy

N

Proof. In view of Lemma 7.4, the strategy is to reduce to the case of Lemma
4.6 by restricting to the fiber over one fixed point of G/P, at a time.

We decompose Qfy = P, cppo(Q - fu @ Q - fus,) and note that A, preserves
this decomposition since

(fW+waa)7 Aa(fwsa): !

T —w(a) Tw(a)

Aa(fw) =

(.f’UJ +fwsa)

and A, is Q-linear. It therefore suffices to check the commutativity of the

diagram after extending both rows on the right by a projection Q3 — @ -

fw ® Q- fuws,, for all w € W. But then, the composite horizontal maps

hr(G/B) = Q- fu ® Q- fus, factor as

hr(G/B) = hp(PyawB/B) — hp(pt) @ hr(pt)~
~SepSCS]asS-1]Cceaq.

Tw (o) Lw (o)
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Using proper base change on the diagram
G/B+—w'P,/B

|

K3

G/ Py 2 Opt

and identifying w’ P,/ B with P(Vo @ V_y,(a)) by Lemma 7.4, we are reduced to
proving the commutativity of

hT(lP’(Vo@V,w(a)))"—*>hT(pt)@hT(pt)@S@S c St-l®S—1-]

Tw(a) Tw(a)

p*p*J lAa

*

hr (P(Vo & Vow(a))) ———hr(pt) ®hr(pt) +—— S &S ¢ S[——]a S[——]

T (o) T (o)

which immediately reduces to the diagram of Lemma, 7.5 followed by an obvious
commutative diagram involving pull-backs

hy (P(Vo & Viw(a))) —— hr(pt) @ hr(pt) ¢——S &S ¢ S[——] @ S[——]

Tw(a) Tw(a)

e (pt) = ]
in which A is the diagonal morphism. (I
LEMMA 7.6. For any sequence I = (i1,...,%;), the Bott-Samelson class {1 €

hr(G/B) maps to

© 0™ (¢r) = Aprev (mn . fe)
in Syy.
Proof. By induction using diagram (7.1), we have

G = 7, (Tau ) 0+ 0 (T )u 0 (1) (1).

Since ©1*(1°)+(1) = zr1 - fe by Proposition 6.2, the conclusion follows from
Lemma 7.5. O
8. PULL-BACK TO T-FIXED POINTS

In the present section we describe the T-equivariant cohomology of an arbitrary
split flag variety G/P= via the pull-back map to the cohomology of T-fixed
points.

First, consider the complete flag variety G/B.
PROPOSITION 8.1. For any choice of reduced decompositions (I,)wew, the fam-

ily (Cr, )wew form a basis of hp(G/B) over S = hr(pt).
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Proof. By Lemma 7.6, the element (;, pulls-back to Ajrev (;cn . fe) in Sy, and
these are linearly independent over S by | , Theorem 12.4]. They generate
hr(G/B) by Lemma 7.3. O

THEOREM 8.2. The pull-back map to fized points +* : hp(G/B) — hp(W)
is injective, and the isomorphism © : hp(W) ~ S}, identifies its image to
D* C Sy

Proof. This follows from Lemma 8.1 and the fact that the Apev (z1 - fe) form
a basis of D* as a submodule of S}, still by | , Theorem 12.4]. O

REMARK 8.3. We do not know a direct geometric proof that hp(G/B) injects
into hr((G/B)T), which is of course well known for Chow groups or K-theory.
To prove injectivity for Chow groups, one usually argues along the following
lines:

(a) the composition +* 02, becomes an isomorphism over @ (see Prop. 6.2);

(b) CHr(G/B) is a free CHrp(pt)-module of rank |W| and so is
CHr((G/B)T).

(¢) the pull-back Q ®s CH7(G/B) — Q ®s CH7((G/B)T) is an isomor-
phism as any surjection of free modules of the same rank over a noe-
therian ring (Q is a localization of CHy(pt) = Z[z1, . .., x4]).

However, in the general case, localization arguments only give generating fam-
ilies so the freeness part of (b) does not follow, and in (¢), @ is not noetherian
(e.g. the Lazard ring is not noetherian), so we need to look more carefully into
the structure of the image as a submodule of h7((G/B)T). This is done in the
algebraic world: the Bott-Samelson classes considered are linearly independent
when pulled to S}, and the map D* — S}, is indeed an injection by | ,
Lemma 10.2].

COROLLARY 8.4. The pull-back map +* : hp(G/B) — hp(W) becomes an iso-
morphism after localization at the multiplicative subset gemerated by all x4
where « is a root.

Proof. After localization at this subset, the inclusion D* C S}, becomes an
isomorphism (see | , Lemma 10.2]). O

LEMMA 8.5. The following diagram commutes
hy (W) —= hp(G/B)—— hp (W)

zl@ zl@ * :l@

zre(—)

Siy D

Proof. This follows from Corollary 6.4 and Theorem 8.2. ]

We now consider an arbitrary flag variety G/ Px=.
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LEMMA 8.6. The following diagram commutes.

N

hr(G/B) ——— hp(W) —o—— S5, Qi

(ml P

©= * *
hT(G/PE) —)hT(W/WE) TSW/WE c QW/WE

<
[ *

Proof. After tensoring the whole diagram with @ over S, the morphism ¢*

becomes an isomorphism by Corollary 8.4. The family ((zw)*(l))wew is a

Q-basis of Q ®s hp(G/B), since by Proposition 6.2, © o t* o (1), (1) is fy
multiplied by an element that is invertible (in @). It therefore suffices to check
the equality of both compositions in the diagram when applied to all (:*),(1)
with w € W:

Az 0001 0 (1) (1) = Az(w(zn) fu) = w(zn)A=(fu) =

(%) * ()W * w
= w(zn/z)fo = O=(:2)" (1)« (1) = O=(12)" (72)(+")«(1)
where equality (*) follows from the definition of Az=. O

COROLLARY 8.7. The following diagram commutes.
nr(G/B) ~—hr(W) —— Sty < Qi
(ﬂE)*(ﬂE)*l J/AE
hr(G/B) ——— (W) =— S5, € Qfy

Proof. Using equation (6.1), one easily checks the commutativity of diagram
involving pull-backs

hr(G/B) ———hp(W) —=—— S5, < Qi

o O= * *
hT(G/PE) —>hT(W/W5) TSW/WE c QW/WE

[ *
[+

where pz is the sum over orbits: p&(fs) = >.;_z fo- The result follows from
the combination of this diagram and the one of Lemma 8.6. O

LEMMA 8.8. For any sequence I = (iy,...,i), the Bott-Samelson class (¥ €
hr(G/Ps) maps to

© 0 (12)"(¢T) = Az 0 Aprev (wmfe)
in Sy .
Proof. We have
O(12)*(CE,) = ©(12)"(m2)«(¢1,) = Az 0 © 04" (¢1,) = Az 0 Aper (enfe)

using Lemma 8.6 and Lemma 7.6 for the last two equalities. (]
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PROPOSITION 8.9. For any choice of reduced decompositions (Ly)wew= for
elements minimal in their Wz-cosets, the classes CIEw form an S-basis of

hr(G/Px2).

Proof. By Lemma 7.3, the classes (7 generate hp(G/Pz=) as an S-module. We
have

Ou*(m2)*(CF,) = O (n=)* (7=2)«(Cr,) = A=00"(C1,,) = A=A (2 fe)

and these elements are linearly independent by | , Theorem 14.3]. (]

Let 2 CECII.

COROLLARY 8.10. The push-forward map (7=/=)« : hr(G/P=/) — hr(G/P=)
is surjective and the pull-back map (nz,=/)* : hr(G/P=) — hr(G/P=/) is in-
jective.

Proof. Surjectivity is obvious from the fact that {;, maps to the basis element

IE@ for any w € W= and injectivity can be seen in the proof of Proposition
8.9: the elements Ci stay independent when pulled back all the way to hp (W)
through hr(G/B). O

THEOREM 8.11. The pull-back map 1% : hp(G/Pz) — hp(W/Wz) is injective
and the isomorphism Oz : hp(W/Wz) = Sty we identifies its image to DZ C

*

Proof. As seen in the proof of Corollary 8.10, pulling back further to hp (W)
is injective, so injectivity of 1% is clear. By Lemma 8.8, for any w € W=, the
Bott-Samelson class ¢F is sent to Az Apev (zr/zfe). These elements form a
basis of DX by | , Theorem 14.3 and Lemma 15.1]. O

COROLLARY 8.12. The pull-back map % : hp(G/P=) — hp(W/W=) becomes
an isomorphism after localization at the multiplicative subset generated by all
T, where a is a root.

Proof. After localization at this subset, the inclusion DZ C Sy, . becomes
an isomorphism (see [ , Lemma 11.5]). O

As for G/B, we have the following commutative diagram

ho (W/Wa) ~25% b (G P2) 5 by (W) W)

(8~ 1) :l@g :l@g ﬁl@‘g
) *

:vH/EO(* Dé( = S;;V/WE
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LEMMA 8.13. The following diagram commutes.

(2=r)" O/ *
hT(G/PE/) —_— hT(W/WE/) —_— S;V/WE/ c QW/WE/

(WE/E/)*J
(22)” Oz «

hT(G/PE) E— hT(W/WE) — W/W= < Q*W/WE

~

137

Proof. By the surjectivity claim in Corollary 8.10, we can precompose the di-
agram by m=/. Since Az = Agz/z/ o A=/, the result follows from Lemma 8.6

applied first to 2’ and then to =.

d

Summarizing, we have the following commutative diagrams describing the cor-
respondence between the cohomology rings and their algebraic counterparts:

hy (W/War) ————— Siy

hy(G/P=/) Dz, (p=/=r)”

(8.2) (pa/m)*J
o= R
(‘“’=/=/) hT(W/WE) = SW/WE

(G ) - b
For push-forwards, instead, the morphism Az/= : Qy, W, QW We induces
a map Az/z : D, — DX by | , Lemma 15.1], and we have:
(8.3)

hT(G/P:/) Dé/ -AE/E/
Az =
O= *
(‘“’E/E/)* hT(W/WE) T> SW/WHQ QW/WE
/ X /

hT(G/PE)

~

Notice that on this diagram, there is no map from hp(W/Waz/) to hyp(W/W=),
nor from S;V/W:/ to S;V/WE because the operator Az,=/ is not defined at that

level.
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By (8.1) and the identity ;)= = @r/=7=/=/, we finally have the following.
(8.4)
Oz * *
hT(W/WE/) _ SW/WE/ —_— QW/WE/

’
~

y ZH/V
e

hr(G/P=/) j Dz, (d=/=/)" (d=/=)*
(p=/zr)«
l PRI AL
O=
(GEYEDP hT(W/W:) T> SI);V/WE e — Q*W/WE
(12)« /
QZH/E"—

O=

hr(G/Pz) D%

9. INVARIANT SUBRINGS AND PUSH-FORWARD PAIRINGS

We now describe how the Weyl group W, as an abstract group, acts on
hr(G/B), and how Wsz-invariant elements of this action are related to

hr(G/P=).

Since the projection G/T — G/B is an affine bundle, by homotopy invari-
ance the induced pull-back hr(G/B) = hy(G/T) is an isomorphism. The
Weyl group action is easier to describe geometrically on hp(G/T). Since
W =~ Ng(T)/T, multiplication on the right by w € W defines a right action of
W on G/T, by T-equivariant morphisms. Action by induced pull-backs, there-
fore, defines a left action of W on hp(G/T'). Similarly, a right action of W on the
T-fixed points (G/T)T = W induces a left action of W on hy (W), and the pull-
back hp(G/T) — hp(W) is W-equivariant. Identifying hp(G/T) ~ hr(G/B),
we obtain the Weyl group action on hp(G/B) with +*: hyp(G/B) — hp(W)
being W-equivariant.

One easily checks on S-basis elements f,, that through ©, this W-action on
h7 (W) corresponds to the W-action on S}, by the Hecke action w(z) = 6., ® 2,
as described in | , 84] (by definition, we have §,, ® f, = fou-1)-

THEOREM 9.1. The image of the injective pull-back map hr(G/Pz) —
hT(G/B) 18 hT(G/B)WE

Proof. In Diagram (8.2), the upper square is W-equviariant. Since * is both
W-equivariant and injective, we are reduced to showing that pZ identifies
St yw= to (S5)"=, which follows from [ , Lemma 11.7]. O
The following theorem generalizes | , Proposition 6.5.(i)]. According to the
irreducible Dynkin types of the group, regularity assumptions on elements of
the base ring R (or weaker assumptions on elements in R[z]) are needed. They
are carefully summarized in [ , Lemma 2.7], but as a first approximation,
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regularity in R of 2, 3 and divisors of |A,/A,| cover all types, except the C5¢
case, in which one needs 2 to be invertible.*

THEOREM 9.2. Under the regularity assumptions of | , Lemma 2.7], the
image of the injective pull-back +* : hp(G/B) — hr(W) = S5, is the set of
element Y v Gufuw such that o |(Gw — Gs.w) for all roots c.

Proof. If follows from | , Theorem 10.7]. O

We now describe the pairing given by multiplication and then push-forward to
the point, that we call the push-forward pairing. Let
(=)=
hT(G/PE) Rs hT(G/PE) — S
(o — (&)= = (=)« (€ €)
It is clearly S-bilinear and symmetric. Through the isomorphism ©, this pairing
corresponds to
(€,€)= = Any=(0=(¢) - 0=(¢))
by Diagram (8.3).

THEOREM 9.3. The push-forward pairing hr(G/Pz) ®shr(G/P=s) — hp(pt) ~
S, sending (£,£") to (£,£')= is non-degenerate.

Proof. This follows from | , Theorem 15.6]. O

REMARK 9.4. Note that in | , Theorem 15.5], we describe a basis that is
dual to the basis of Bott-Samelson classes for the push-forward pairing on G/B.
That dual basis can be very useful for algorithmic computations. However, it is
given in combinatorial terms, and we do not have a geometric interpretation of
its elements. When the formal group law is additive, this problem disappears
since the basis is auto-dual (up to a permutation), see [D74, Prop. 1, p. 69,
but for general formal group laws, this is not the case.

10. BOREL-STYLE PRESENTATION

The geometric (equivariant) characteristic map cq4 : hr(pt) — hr(G/B) is
defined as the composition

by (pt) = hrxc(G) ¢ ba(G/T) = br(G/T) & hr(G/B)

where the first two maps are isomorphisms from Axiom (AG), the third is the
restriction to the subgroup T of G and the fourth is the pull-back map, an
isomorphism by Axiom (A4) of homotopy invariance. In hrxg(G), the action
of T x G on G is by (t,9) - ¢ = gg't™*, and the other non-trivial actions
are by multiplication on the left. Note that ¢, is R = h(pt)-linear, although

4Regarding these assumptions, there is a slight omission in the statement of [ , Propo-
sition 6.5.(i)]. One needs to add that no root is divisible in the lattice for the statement to
hold integrally. Otherwise, for example, the product of all roots divided by 2 gives a counter-
example in the C5¢ case.
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not hp(pt)-linear. By restricting further to h(G/B), one obtains the non-
equivariant characteristic map ¢ : hp(pt) — h(G/B). Recall the algebraic
characteristic map cg : S — D*, sending s — s e 1, defined in section 5.

LEMMA 10.1. The algebraic and geometric characteristic maps coincide with
each other, up to the identifications S ~ hy(pt) of Theorem 3.3 and © :
hr(G/B) ~ D* of Theorem 8.2.

Proof. It suffices to show the equality after embedding in S}, ~ hy (W), which
decomposes as copies of S. In other words, it suffices to compare, for every
w € W, a map ¢, from S to itself, and a map 1, from hp(pt) to itself.
Both are continuous R-algebra maps, 1,, for the topology induced by the -
filtration and ¢,, for the Zp-adic topology, which correspond to each other
through S ~ hp(pt). Since S is (topologically) generated by elements xy,
corresponding to first characteristic classes of line bundles ¢ (Ly) in hr(pt),
it suffices to compare ¢, () and ¥, (cf (Ly)). By definition of cg, we have
P(xx) = Ty(n). Since ¢, is defined using only pull-back and restriction maps,
both commuting with taking characteristic classes, it suffices to verify that
when h = K, the Grothendieck group, we have t,([Lx]) = [Ly(n)]. This is
easily checked by using total spaces of bundles, and the formalism of points.
For this purpose, let us consider the following equivariant bundles:

e My, the T x G-equivariant line bundle over G, whose total space is
Ly x G mapping by the second projection to G, and with action given
on points by (¢, g) - (v, ¢') = (\(t)v, 99t );
e N, the G-equivariant line bundle over G /T, whose total space is G x
Ly, the quotient of G x Ly by the relation (gt,v) = (g, A(t)v), mapping
to G/T by the first projection, and with G action by g-(¢’,v) = (g¢’,v);
o M /’\7 the T' x G-equivariant line bundle over G, whose total space is
Gxgr G xT Ly, mapping to G by the first projection, with action of
T x G given by (t,9) - (91, 92,v) = (991t~ ", gg2,v).
It is clear that Ly restricts to T' x G and pulls-back over G to M. Similarly,
N restricts and pulls-back to M. But M, maps isomorphically to M} by the
map (v,g) + (g,g,v). Therefore, [L)] maps to [Ny] by the map Kr(pt) =
Krya(G) & Kg(G/T). Furthermore, Ny restricts and pulls-back as a T-
equivariant bundle to the fixed point w in G/T (or G/B) as wT xT Ly with
T-action on the left, isomorphic to L, y). This completes the proof. O

Let t be the torsion index of the root datum, as defined in [D73, §5]. See also
[ , 5.1] for a table giving the values of its prime divisors for each simply
connected type. For other types, one just needs to add the prime divisors
of |[Ay/A| by [D73, 85, Prop. 6]. Together with the previous lemma, | ,
Thm. 11.4] immediately implies a Borel-style presentation of hp(G/B). Let
7 : G/B — pt be the structural map.

THEOREM 10.2. If 2t is regular in R, then the map hr(pt) @, (ptyw hr(pt) —
h7(G/B) sending a ® b to m*(a)cy(b) is an hr(pt)-linear ring isomorphism if
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and only if the (non-equivariant) characteristic map ¢ : hr(pt) — h(G/B) is
surjective.

In particular, it will hold for K-theory, since the characteristic map is always
surjective for K-theory. It will also hold for any cohomology theory if t is in-

vertible in R, as | , Cor. 13.9] shows that the non-equivariant characteristic
map is then surjective.
As mentioned in the introduction, this presentation was obtained in | ] for

algebraic cobordism, with the torsion index inverted, and by using comparisons
with complex cobordism.

11. SUBGROUPS OF T'

Let H be a subgroup of T given by the embedding h : H < T'. For example H
could be the trivial group, a finite multiplicative group or a subtorus of 7. For
any X € T-Var, and thus in H-Var by restriction, there is a restriction ring
map resy : hy(X) — hy(X), in particular if X = pt, which induces a canonical
morphism h (pt) ®@n,.(pt) hr (X) — hy (X) of rings over hy (pt), sending a®b to
a-resp(b). This “change of coefficients” morphism is compatible with pull-backs
and push-forwards.

LEMMA 11.1. The morphism hg(pt) @n, (pt) hr(X) — hg(X) s an isomor-
phism when X = G/P=z or X = W/Wx=.

Proof. The case of X = W/Wxz is obvious, since as as scheme, it is simply
a disjoint union of copies of pt. If X = G/P=, the left-hand side is free,
with a basis of Bott-Samelson classes. So is the right-hand side: it is still
generated as an hy(pt)-module by the corresponding Bott-Samelson classes
because the proof of Lemma 7.3 works for H as well as for 7. Thus, the
change of coefficients is surjective. The push-forward pairing is perfect and
commutes to the restriction map from 7" to H, so these classes stay independent
in hy(G/Ps) (they have a dual family). Thus, the change of coefficients is
injective. (I

This shows that Diagram (8.2) for H is obtained by change of coefficients,
as well as Diagram (8.3) and Diagram (8.4) except their rightmost columns
involving (). Theorem 9.3 on the bilinear pairing stays valid for H instead
of T.
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ABSTRACT. For noetherian schemes of finite dimension over a field
of characteristic exponent p, we study the triangulated categories of
Z[1/p]-linear mixed motives obtained from cdh-sheaves with trans-
fers. We prove that these have many of the expected properties. In
particular, the formalism of the six operations holds in this context.
When we restrict ourselves to regular schemes, we also prove that
these categories of motives are equivalent to the more classical trian-
gulated categories of mixed motives constructed in terms of Nisnevich
sheaves with transfers. Such a program is achieved by comparing these
various triangulated categories of motives with modules over motivic
Eilenberg-MacLane spectra.
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The main advances of the actual theory of mixed motivic complexes over a
field come from the fact they are defined integrally. Indeed, this divides the
theory in two variants, the Nisnevich one and the étale one. With rational
coefficients, the two theories agree and share their good properties. But with
integral coefficients, their main success comes from the comparison of these two
variants, the so-called Beilinson-Lichtenbaum conjecture which was proved by
Voevodsky and gave the solution of the Bloch-Kato conjecture.

One of the most recent works in the theory has been devoted to extend the
definitions in order to get the 6 operations of Grothendieck and to check they
satisfy the required formalism; in chronological order: an unpublished work
of Voevodsky, [Ayo07a], [CDa]. While the project has been finally completely
realized with rational coefficients in [CDal, the case of integral coefficients re-
mains unsolved. In fact, this is half true: the étale variant is now completely
settled: see [Ayol4], [CDD].

But the Nisnevich variant is less mature. Markus Spitzweck [Spi] has con-
structed a motivic ring spectrum over any Dedekind domain, which allows to
define motivic cohomology of arbitrary schemes, and even triangulated cate-
gories of motives on a general base (under the form of modules over the pull-
backs of the motivic ring spectrum over Spec(Z)). However, at this moment,
there is no proof that Spitzweck’s motivic cohomology satisfies the absolute
purity theorem, and we do not know how to compare Spitzweck’s construction
with triangulated categories of motives constructed in the language of algebraic
correspondences (except for fields). What is concretely at stake is the theory
of algebraic cycles: we expect that motivic cohomology of a regular scheme in
degree 2n and twist n agrees with the Chow group of n-codimensional cycles
of X. Let us recall for example that the localization long exact sequence for
higher Chow groups and the existence of a product of Chow groups of regular
schemes are still open questions in the arithmetic case (i.e. for schemes of
unequal residual characteristics). For sake of completeness, let us recall that
the localization long exact sequence in equal characteristic already is the fruit
of non trivial contributions of Spencer Bloch [Blo86, Blo94] and Marc Levine
[Lev01]. Their work involves moving lemmas which are generalizations of the
classical moving lemma used to understand the intersection product of cycles
[Ful9sg].
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Actually, Suslin and Voevodsky have already provided an intersection theoretic
basis for the integral definition of Nisnevich motivic complexes: the theory of
relative cycles of [VSF00, chap. 2]. Then, along the lines drawn by Voevodsky,
and especially the homotopy theoretic setting realized by Morel and Voevodsky,
it was at least possible to give a reasonable definition of such a theory over an
arbitrary base, using Nisnevich sheaves with transfers over this base, and the
methods of A'-homotopy and P!-stabilization: this was done in [CDa, Sec. 7].
Interestingly enough, the main technical issue of this construction is to prove
that these motivic complexes satisfy the existence of the localization triangle:

g (M) = M — i 0" (M) — g1 j*(M)[1]

for any closed immersion ¢ with open complement j. This echoes much with
the question of localization sequence for higher Chow groups.

In our unsuccessful efforts to prove this property with integral coefficients, we
noticed two things: the issue of dealing with singular schemes (the property
is true for smooth schemes over any base, and, with rational coefficients, for
any closed immersion between excellent geometrically unibranch scheme); the
fact this property implies cdh-descent (i.e. Nisnevich descent together with
descent by blow ups). Moreover, in [CDb], we show that, at least for torsion
coeflicients, the localization property for étale motivic complexes is true without
any restriction, but this is due to rigidity properties (a la Suslin) which only
hold étale locally, and for torsion coefficients.

Therefore, the idea of replacing Nisnevich topology by a finer one, which al-
lows to deal with singularities, but remains compatible with algebraic cycles,
becomes obvious. The natural choice goes to the cdh-topology: in Voevod-
sky’s work [VSFO00], motivic (co)homology of smooth schemes over a field is
naturally extended to schemes of finite type by cdh-descent in characteristic
zero (or, more generally, if we admit resolution of singularities), and S. Kelly’s
thesis [Kell2] generalizes this result to arbitrary perfect fields of characteristic
p > 0, at least with Z[1/p]-linear coefficients.

In this work, we prove that if one restricts to noetherian schemes of finite
dimension over a prime field (in fact, an arbitrary perfect field) k, and if we
invert solely the characteristic exponent of k, then mixed motives built out of
cdh-sheaves with transfers (Definition 1.5) do satisfy the localization property:
Theorem 5.11. Using the work of Ayoub, it is then possible to get the complete
6 functors formalism for these cdh-motives. Note that we also prove that
these cdh-motives agree with the Nisnevich ones for regular k-schemes — hence
proving that the original construction done in [CDa, Def. 11.1.1] is meaningful
if one restricts to regular schemes of equal characteristic and invert the residue
characteristic (see Corollary 3.2 for a precise account).

The idea is to extend a result of Rondigs and @Dstveer, which identifies motivic
complexes with modules over the motivic Eilenberg-MacLane spectrum over a
field of characteristic 0. This was recently generalized to perfect fields of char-
acteristic p > 0, up to inverting p, by Hoyois, Kelly and @stveer [HKQ]. Our
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main result, proved in Theorem 5.1, is that this property holds for arbitrary
noetherian k-schemes of finite dimension provided we use cdh-motives and in-
vert the exponent characteristic p of k in their coefficients. For any noetherian
k-scheme of finite dimension X with structural map f : X — Spec(k), let us
put HZx, = Lf*(HZy). Then there is a canonical equivalence of triangulated
categories

HZx,[1/p]-Mod ~ DM.an(X, Z[1/p]) .
One of the ingredients is to prove this result for Nisnevich motivic complexes
with Z[1/p]-coefficients if one restricts to noetherian regular k-schemes of finite
dimension: see Theorem 3.1. The other ingredient is to use Gabber’s refinement
of de Jong resolution of singularities by alteration via results and methods from
Kelly’s thesis.
We finally prove the stability of the notion of constructibility for cdh-motives up
to inverting the characteristic exponent in Theorem 6.4. While the characteris-
tic 0 case can be obtained using results of [Ayo07a], the positive characteristic
case follows from a geometrical argument of Gabber (used in his proof of the
analogous fact for torsion étale sheaves). We also prove a duality theorem
for schemes of finite type over a field (7.3), and describe cycle cohomology of
Friedlander and Voevodsky using the language of the six functors (8.11). In
particular, Bloch’s higher Chow groups and usual Chow groups of schemes of
finite type over a field are are obtained via the expected formulas (see 8.12 and
8.13).

We would like to thank Offer Gabber for pointing out Bourbaki’s notion of
n-gonflement, 0 < n < oo, and Bradley Drew for having noticed a mistake in
an earlier version of the proof of Theorem 7.3. We also want to warmly thank
the referee for many precise and constructive comments and questions, which
helped us to greatly improve the readability of this article.

CONVENTIONS

We will fix a perfect base field k of characteristic exponent p — the case where k
is a prime field is enough. All the schemes appearing in the paper are assumed
to be noetherian of finite dimension.

We will fix a commutative ring R which will serve as our coefficient ring.

1. MOTIVIC COMPLEXES AND SPECTRA

In [VSFO00, chap. 5], Voevodsky introduced the category of motivic complexes
DM (S) over a perfect field with integral coefficients, a candidate for a con-
jectural theory described by Beilinson. Since then, several generalizations to
more general bases have been proposed.

In [CDa], we have introduced the following ones over a general base noetherian
scheme S:

1.1. The Nisnevich variant.— Let A be the localization of Z by the prime num-

bers which are invertible in R. The first step is to consider the category Smy’s
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whose ojects are smooth separated S-schemes of finite type and morphisms be-
tween X and Y are finite S-correspondences from X to'Y with coefficients in
A (see [CDa, Def. 9.1.8] with & the category of smooth separated morphisms
of finite type).? Taking the graph of a morphism between smooth S-schemes,
one gets a faithful functor v from the usual category of smooth S-schemes to
the category Sm{’g.

Then one defines the category Shi: (S, R) of sheaves with transfers over S as
the category of presheaves F' of R-modules over Sm{’s whose restriction to
the category of smooth S-schemes F oy is a sheaf for the Nisnevich topology.
Essentially according to the original proof of Voevodsky over a field (see [CDa,
10.3.3 and 10.3.17] for details), this is a symmetric monoidal Grothendieck
abelian category.

The category DM(S, R) of Nisnevich motivic spectra over S is defined by
applying the process of Al-localization, and then of P!-stabilization, to the
(adequate model category structure corresponding to the) derived category of
Shi7.. (S, R); see [CDa, Def. 11.1.1]. By construction, any smooth S-scheme X
defines a (homological) motive Mg(X) in DM(S, R) which is a compact object.
Moreover, the triangulated category DM(S, R) is generated by Tate twists of
such homological motives, i.e. by objects of the form Mg(X)(n) for a smooth
S-scheme X, and an integer n € Z.

Remark 1.2. When S = Spec(K) is the spectrum of a perfect field, the tri-
angulated category DM(S,Z) contains as a full and faithful subcategory the
category DM (K) defined in [VSF00, chap. 5]. This follows from the de-
scription of A'-local objects in this case and from the cancellation theorem of
Voevodsky [Voel0] (see for example [Dégll, Sec. 4] for more details).

1.3. The generalized variants.— This variant is an enlargement® of the previ-
ous context. However, at the same time, one can consider several possible
Grothendieck topologies t: the Nisnevich topology ¢ = Nis, the cdh-topology
t = cdh, the étale topology ¢t = ét, or the h-topology ¢ = h.

Instead of using the category Smy’, we consider the larger category yl()técw
made by all separated S-schemes of finite type whose morphisms are made by
the finite S-correspondences with coefficients in A as in the previous paragraph

2Recall: a finite S-correspondence from X to Y with coefficients in A is an algebraic cycle
in X Xg Y with A-coefficients such that:
(1) its support is finite equidimensional over X,
(2) it is a relative cycles over X in the sense of Suslin and Voevodsky (cf. [VSF00,
chap. 2]) - equivalently it is a special cycle over X (cf. [CDa, def. 8.1.28]),
(3) it is A-universal (cf. [CDa, def. 8.1.48]).
When X is geometrically unibranch, condition (2) is always fulfilled (cf. [CDa, 8.3.26]).
When X is regular of the characteristic exponent of any residue field of X is invertible in A,
condition (3) is always fulfilled (cf. [CDa, 8.3.29] in the first case). Everything gets much
simpler when we work locally for the cdh-topology; see [VSF00, Chap. 2, 4.2].
Recall also for future reference this definition makes sense even if X and Y are singular
of finite type over S.
3See [CDa, 1.4.13] for a general definition of this term.
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(see again [CDa, 9.1.8] with &2 the class of all separated morphisms of finite
type).

Then we can still define the category Sh!” (S, R) of generalized t-sheaves with
transfers over S as the category of additive presheaves of R-modules over
FI17 whose restriction to " is a sheaf for the cdh topology. This is again
a well suited Grothendieck abehan category (by which we mean that, using the
terminology of [CDal, when we let S vary, we get an abelian premotivic cate-
gory which is compatible with the topology ¢; see [CDa, Sec. 10.4]). Moreover
we have natural adjunctions:

(131) Sths(S R) Sths(Sv R)

p*

Sh cdh(S R)

where p* is the natural restriction functor and ay, is the associated cdh-sheaf
with transfers functor (see loc. cit.)

Finally, one defines the category DM;(S, R) of generalized motivic ¢-spectra
over S and coefficients in R as the triangulated category obtained by P!-
stabilization and A!-localization of the (adequate model category structure
corresponding to the) derived category of Shi"(S, R).

Note that in the generalized context, any S-scheme X defines a (homological) ¢-
motive Mg(X) in DM, (S, R) which is a compact object and depends covariantly
on X. This can even be extended to simplicial S-schemes (although we might
then obtain non compact objects). Again, the triangulated category DM, (S, R)
is generated by objects of the form Mg(X)(n) for a smooth S-scheme X and
an integer n € Z.

Thus, we have three variants of motivic spectra. Using the adjunctions (1.3.1)
(which are Quillen adjunctions for suitable underlying model categories), one
deduces adjunctions made by exact functors as follows:

La,
(1.3.2) DM(S, R) =—= DM(S, R) == DMa1(S, R)

Rp™*
The following assertions are consequences of the model category structures used
to get these derived functors:

(1) for any smooth S-scheme X and any integer n € Z, Lp (Ms(X)(n)) =
Ms(X)(n).

(2) for any S-scheme X and any integer n € Z, Laly, (Ms(X)(n)) =
Ms(X)(n).

The following proposition is a formal consequence of these definitions:

PROPOSITION 1.4. The category DMcan (S, R) is the localization of DM(S, R)
obtained by inverting the class of morphisms of the form:

Ms(Xa) £ Ms(X)

for any cdh-hypercover p of any S-scheme X. Moreover, the functor acqn is
the canonical projection functor.
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The definition that will prove most useful is the following one.

DEFINITION 1.5. Let S be any noetherian scheme.

One defines the triangulated category DMcqn (S, R) of cdh-motivic spectra, as
the full localizing triangulated subcategory of DM qn (S, R) generated by mo-
tives of the form M g(X)(n) for a smooth S-scheme X and an integer n € Z.

1.6. These categories for various base schemes S are equipped with a basic
functoriality (f*, fx, fy for f smooth, ® and Hom) satisfying basic properties.
In [CDal], we have summarized these properties saying that DM(—, R) is a
premotivic triangulated category — see 1.4.2 for the definition and 11.1.1 for the
construction.

2. MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA
2.a. SYMMETRIC TATE SPECTRA AND CONTINUITY.

2.1. Given a scheme X we write Spx for the category of symmetric T-spectra,
where T denotes a cofibrant resolution of the projective line P! over X (with
the point at infinity as a base point, say) in the projective model structure
of pointed Nisnevich simplicial sheaves of sets. We will consider Spy as
combinatorial stable symmetric monoidal model category, obtained as the T-
stabilization of the A!l-localization of the projective model category structure
on the category of pointed Nisnevich simplicial sheaves of sets on the site Smx
of smooth separated X-schemes of finite type. The corresponding homotopy
category
Ho(Spy) = SH(X)

is thus the stable homotopy category of schemes over X, as considered by
Morel, Voevodsky and various other authors. This defines a motivic triangu-
lated category in the sense of [CDal: in other words, thanks to Ayoub’s thesis
[Ayo07a, Ayo07b], we have the whole formalism of the six operations in SH.
We note that the categories SH(X) can be defined as the homotopy categories
of their (o0, 1)-categorical counterparts; see [Rob15, 2.3] and [Hoy14, Appendix
C].

2.2. In [CDa], we have introduced the notion of continuity for a premotivic
category T which comes from the a premotivic model category. In the se-
quel, we will need to work in a more slightly general context, in which we do
not consider a monoidal structure. Therefore, we will recast the definition of
continuity for complete triangulated Sm-fibred categories over Sch (see [CDa,
1.1.12, 1.3.13] for the definitions; in particular, the adjective ‘complete’ refers
to the existence of right adjoints for the pullback functors).

Here Sch will be a full subcategory of the category of schemes stable by smooth
base change and F will be a class of affine morphisms in Sch.*

4The examples we will use here are: Sch is the category of regular (excellent) k-schemes
or the category of all noetherian finite dimensional (excellent) k-schemes; F is the category
of dominant affine morphisms or the category of all affine morphisms.
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DEFINITION 2.3. Let 7 be a complete triangulated Sm-fibred category over
Sch and ¢ be a small family of cartesian sections (¢;);cr of T.

We will say that T is c-generated if, for any scheme X in Sch, the family
of objects ¢; x, i € I, form a generating family of the triangulated category.
We will then define 7.(X) as the smallest thick subcategory of 7(X) which
contains the elements of of the form f;f*(¢; x) = fi(ci,v), for any separated
smooth morphism f : Y — X and any ¢ € I. The objects of 7.(X) will be
called c-constructible (or simply constructible, when c is clearly determined by
the context).

Remark 2.4. If for any i € I, the objects ¢; x are compact, then 7.(X) is the
category of compact objects of 7(X) and so does not depend on c.

When T has a symmetric monoidal structure, or in other words, is a premotivic
category, and if we ask that c is stable by tensor product, then ¢ is what we
call a set of twists in [CDa, 1.1.d]. This is what happens in practice (e.g. for
T = SH, DM or DM_qy), and the family ¢ consists of the Tate twist 1x(n)
of the unit object for n € Z. Moreover, constructible objects coincide with
compact objects for SH, DM and DM_qy.

For short, a (Sch, F)-pro-scheme will be a pro-scheme (S5 )aca with values in
Sch, whose transition morphisms are in F, which admits a projective limit S
in the category of schemes such that S belongs to Sch. The following definition
is a slightly more general version of [CDa, 4.3.2].

DEFINITION 2.5. Let T be a c-generated complete triangulated Sm-fibred cat-
egory over Sch.
We say that T is continuous with respect to F, if given any (Sch, F)-pro-scheme
(Xq) with limit S, for any index «p, any object Eq, in T (X4, ), and any i € I,
the canonical map

%ﬂ HomT(Xa) (Ci,Xa s Ea) — HomT(X) (Ci7s, E),

a>ap
is bijective, where E, is the pullback of E,, along the transition morphism
Xo — Xay, while E is the pullback of E,, along the projection X — X,

Ezample 2.6. (1) The premotivic category SH on the category of noether-
ian finite dimensional schemes satisfies continuity without restriction
(i.e. F is the category of all affine morphisms). This is a formal con-
sequence of [Hoy14, Proposition C.12] and of [Lur09, Lemma 6.3.3.6],
for instance.

(2) According to [CDa, 11.1.4], the premotivic triangulated categories DM
and DM_cqy, defined over the category of all schemes, are continuous
with respect to dominant affine morphisms. (Actually, this example
is the only reason why we introduce a restriction on the transition
morphisms in the previous continuity property.)

The following proposition is a little variation on [CDa, 4.3.4], in the present
slightly generalized context:
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PROPOSITION 2.7. Let T be a c-generated complete triangulated Sm-fibred cat-
egory over Sch which is continuous with respect to F. Let (X) be a (Sch, F)-
pro-scheme with projective limit X and let fo, : X — X, be the canonical
projection.
For any index oy and any objects My, and Eo, in T(Sa,), if Ma, is c-
constructible, then the canonical map

lim Homys,)(Ma, Ea) — Homy(s)(M, E),

a>ap
is bijective, where M, and E, are the respective pullbacks of M, and E,, along
the transition morphisms So — Sa,, while M = f5 (Ma,) and E = f5 (Ea,)-
Moreover, the canonical functor:

, 2-limy (£)
2-lim 7 (Xo) —*— Te(X)

is an equivalence of triangulated categories.
The proof is identical to that of loc. cit.

ProposITION 2.8. Let f : X — Y be a regular morphism of schemes. Then
the pullback functor

[+ Spy — Spy
of the premotivic model category of Tate spectra (relative to simplicial sheaves)
preserves stable weak A'-equivalences as well as A'-local fibrant objects.

Proof. This property is local in X so that replacing X (resp. Y) by a suitable
affine open neighbourhood of any point € X (resp. f(x)), we can assume
that X and Y are affine.

Then, according to Popescu’s theorem (as stated in Spivakovsky’s article [Spi99,
Th. 1.1]), the morphism f can be written as a projective limit of smooth
morphisms f, : X, — Y. By a continuity argument (in the context of sheaves
of sets!), as each functor f* commutes with small limits and colimits, we see that
the functor f* commutes with small colimits as well as with finite limits. These
exactness properties imply that the functor f* preserves stalkwise simplicial
weak equivalences. One can also check that, for any Nisnevich sheaves F and
F on Smy, the canonical map

(2.8.1) f* Hom(E, F)) — Hom(f*(E), f*(F))

is an isomorphism (where Hom denotes the internal Hom of the category of
sheaves), at least when F is a finite colimit of representable sheaves. Since the
functor f* preserves projections of the form A! x U — U, this readily implies
that, if L denotes the explicit A'-local fibrant replacement functor defined in
[MV99, Lemma 3.21, page 93], then, for any simplicial sheaf E on Smy, the
map f*(E) — f*(L(E)) is an Al-equivalence with fibrant A'-local codomain.
Therefore, the functor f* preserves both A'-equivalences and A!'-local fibrant
objects at the level of simplicial sheaves. Using the isomorphism (2.8.1), it is
easy to see that f* preserves Al-local motivic Q-spectra. Given that one can
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turn a levelwise Al-local fibrant Tate spectrum into a motivic Q-spectrum by
a suitable filtered colimit of iterated T-loop space functors, we see that there
exists a fibrant replacement functor R in Spy- such that, for any Tate spectrum
E over Y, the map f*(E) — f*(R(E)) is a stable A'-equivalence with fibrant
codomain. This implies that f* preserves stable A'-equivalences. (I

COROLLARY 2.9. Let A be a commutative monoid in Sp,. Given a regular
k-scheme X with structural map f : X — Spec(k), let us put Ax = f*(R).
Then, for any k-morphism between reqular k-schemes ¢ : X — Y, the induced
map Lo*(Ay) — Ax is an isomorphism in SH(X).

Proof. Tt is clearly sufficient to prove this property when Y = Spec(k), in which
case this is a direct consequence of the preceding proposition. (I

We will use repeatedly the following easy fact to get the continuity property.

LemMmA 2.10. Let

T 2T s
be an adjunction of complete triangulated Sm-fibred categories. We make the
following assumptions:

(i) There is a small family ¢ of cartesian sections of T such that T is
c-generated.
(ii) The functor ¢, is conservative (or equivalently, T' is ©*(c)-generated;

by abuse, we will then write *(c) = ¢ and will say that T' is c-
generated).

(iii) The functor . commutes with the operation f* for any morphism f €
F.

Then, if T is continuous with respect to F, the same is true for T'.

Proof. Let ¢ = (¢;7)ier- For any morphism f : Y — X in F, any object
E € T'(X) and any i € I, one has a canonical isomorphism:

Homy vy (ciy, f*(E)) = Homp vy (0" (ciy), f*(E))
~ HomT(y) (ci,y e« f"(E))
~ HomT(y)(Ci,Y, frp«(E)).
This readily implies the lemma. -

Ezample 2.11. Let Reg, be the category of regular k-schemes with morphisms
all morphisms of k-schemes.

Let (Ax)xe Reg, e a cartesian section of the category of commutative monoids
in the category of Tate spectra (i.e. a strict commutative ring spectrum stable
by pullbacks with respect to morphisms in Reg,). In this case, we have defined
in [CDa, 7.2.11] a premotivic model category over Reg; whose fiber Ax-Mod
over a scheme X in Reg,, is the homotopy category of the symmetric monoidal
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stable model category of Ax-modules® (i.e. of Tate spectra over S, equiped
with an action of the commutative monoid Ayx). Since Corollary 2.9 ensures
that (Ax)xeReg, is a homotopy cartesian section in the sense of [CDa, 7.2.12],
according to [CDa, 7.2.13], there exists a premotivic adjunction:

LA :SH = A-Mod : OA

of triangulated premotivic categories over Reg,, such that Ls(FE) = Ag A E for
any spectrum F over a scheme S in Reg,. Lemma 2.10 ensures that A-Mod is
continuous with respect to affine morphisms in Regy,.

2.b. MoTivic EILENBERG-MACLANE SPECTRA OVER REGULAR k-SCHEMES.
2.12. There is a canonical premotivic adjunction:
(2.12.1) ¢* :SH=DM: ¢,

(see [CDa, 11.2.16]). It comes from an adjunction of the premotivic model
categories of Tate spectra built out of simplicial sheaves of sets and of complexes
of sheaves with transfers respectively (see 1.1):

(2.12.2) @*:Sp = Sp' : P

In other words, we have p* = Lg* and . = R, (strictly speaking, we can
construct the functors Lp* and Rp,. so that these equalities are true at the
level of objects). Recall in particular from [CDa, 10.2.16] that the functor @,
is composed by the functor 7, with values in Tate spectra of Nisnevich sheaves
of R-modules (without transfers), which forgets transfers and by the functor
induced by the right adjoint of the Dold-Kan equivalence. We define, for any
scheme X:

(2.12.3) HRx = ¢.(Rx).

This is Voevodsky’s motivic Eilenberg-MacLane spectrum over X, originally
defined in [Voe98, 6.1]. In the case where X = Spec(K) for some commutative
ring K, we sometimes write

(2.12.4) HRy = HRspeck -

According to [CDa, 6.3.9], the functor 7. preserves (and detects) stable Al-
equivalences. We deduce that the same fact is true for ¢.. Therefore, we have
a canonical isomorphism

HRX ~ (p*(Rx) ~ R¢*(Rx) .

The Tate spectrum HRyx is a commutative motivic ring spectrum in the strict
sense (i.e. a commutative monoid in the category Spy). We denote by
HR x-Mod the homotopy category of HRx-modules. This defines a fibred
triangulated category over the category of schemes; see [CDa, Prop. 7.2.11].

The functor @, being weakly monoidal, we get a natural structure of a commu-
tative monoid on @, (M) for any symmetric Tate spectrum with transfers M.

5In order to apply this kind of construction, we need to know that the model category
of symmetric Tate spectra in simplicial sheaves satisfies the monoid axiom of Schwede and
Shipley [SS00]. This is proved explicitely in [Hoyl5, Lemma 4.2], for instance.
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This means that the Quillen adjunction (2.12.2) induces a Quillen adjunction
from the fibred model category of HR-modules to the premotivic model cate-
gory of symmetric Tate spectra with transfers®, and thus defines an adjunction

(2.12.5) t*: HRx-Mod 2 DM(X, R) : t,

for any scheme X. For any object F of SH(X), there is a canonical isomorphism
t*(HRx ®% FE) = ¢*(E). For any object M of DM (X, R), when we forget the
HR x-module structure on t, (M), we simply obtain ¢, (M).

Let f: X — S be a regular morphism of schemes. Then according to Proposi-

tion 2.8, f* = Lf*. In particular, the isomorphism 7; of SH(X) can be lifted
as a morphism of strict ring spectra:

(2.12.6) 7~'f : f*(HRs) — HRx.
Let Reg,, be the category of regular k-schemes as in Example 2.11.

PROPOSITION 2.13. The adjunctions (2.12.5) define a premotivic adjunction
t* . HR-Mod = DM(—, R) : ¢,
over the category Reg,, of reqular k-schemes.

Proof. We already know that this is a an adjunction of fibred categories over
Reg,, and that t* is (strongly) symmetric monoidal. Therefore, it is sufficient
to check that ¢* commutes with the operations f; for any smooth morphism
between regular k-scheme f : X — S (via the canonical exchange map). For
this, it is sufficient to check what happens on free HRx-modules (because
we are comparing exact functors which preserve small sums, and because the
smallest localizing subcategory of HRx-Mod containing free HR x-modules is
HRx-Mod). For any object F of SH(X), we have, by the projection formula
in SH, a canonical isomorphism in HZg-Mod:

Lf;(HRx @ E) ~ HRs @V Lf;(E).

Therefore, formula t*(HRx @ E) = ¢*(E) tells us that t* commutes with f;
when restricted to free HR x-modules, as required. (I

3. COMPARISON THEOREM: REGULAR CASE
The aim of this section is to prove the following result:

THEOREM 3.1. Let R be a ring in which the characteristic exponent of k is in-
vertible. Then the premotivic adjunction of Proposition 2.13 is an equivalence
of premotivic categories over Reg,. In particular, for any reqular noetherian
scheme of finite dimension X over k, we have a canonical equivalence of sym-
metric monoidal triangulated categories

HRx-Mod ~ DM(X, R).

6The fact that the induced adjunction is a Quillen adjunction is obvious: this readily
comes from the fact that the forgetful functor from HR-modules to symmetric Tate spectra
preserves and detects weak equivalences as well as fibrations (by definition).
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The preceding theorem tells us that the 6 operations constructed on DM(—, R)
in [CDa, 11.4.5], behave appropriately if one restricts to regular noetherian
schemes of finite dimension over k:

COROLLARY 3.2. Consider the notations of paragraph 2.12.

(1) The functors ¢* and @, commute with the operations f*, f. (resp. pi,
p') for any morphism f (resp. separated morphism of finite type p)
between regular k-schemes.

(2) The premotivic category DM(—, R) over Reg, satisfies:

e the localization property;

e the base change formula (g*fi ~ flg"*, with notations of [CDa,
11.4.5, (4)));

e the projection formula (fi(M ® f*(N)) ~ fi(M) ® N, with nota-
tions of [CDa, 11.4.5, (5)]).

Proof. Point (1) follows from the fact the premotivic adjunction (Lggr, Onr)
satisfies the properties stated for (¢*,p.) and that they are true for (t*,t.)
because it is an equivalence of premotivic categories, due to Theorem 3.1. The
first statement of Point (2) follows from the fact that the localization property
over Reg,, holds in HR-Mod, and from the equivalence HR-Mod ~ DM(—, R)
over Reg,; the remaining two statements follow from Point (2) and the fact they
are true for SH (see [Ayo07a] in the quasi-projective case and [CDa, 2.4.50] in
the general case). O

The proof of Theorem 3.1 will be given in Section 3.c (page 165), after a few
preparations. But before that, we will explain some of its consequences.

3.3. Let f: X — S be a morphism of schemes. Since (2.12.1) is an adjunction
of fibred categories over the category of schemes, we have a canonical exchange
transformation (see [CDa, 1.2.5]):

(3.3.1) Ex(f*, px) : Lf*ou = @ Lf".

Evaluating this natural transformation on the object 1g gives us a map:
7s: Lf*(HRs) — HRx.

Voevodsky conjectured in [Voe02] the following property:

Conjecture (Voevodsky). The map 7y is an isomorphism.

When f is smooth, the conjecture is obviously true as Ez(f*, ¢,) is an isomor-
phism.

Remark 3.4. The preceding conjecture of Voevodsky is closely related to the
localization property for DM. In fact, let us also mention the following result
which was implicit in [CDa] — as it will not be used in the sequel we leave the
proof as an exercise for the reader.”

THint: use the fact that ¢, commutes with jg ([CDa, 6.3.11] and [CDa, 11.4.1]).
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Proposition 3.5. We use the notations of Par. 3.3. Let i : Z — S be a closed
immersion. Then the following properties are equivalent:

(i) The premotivic triangulated category DM satisfies the localization prop-
erty with respect to i (see [CDa, 2.3.2]).
(ii) The natural transformation Ex(i*,ps) is an isomorphism.

From the case of smooth morphisms, we get the following particular case of the
preceding conjecture.

COROLLARY 3.6. The conjecture of Voevodsky holds for any morphism f: X —
S of regular k-schemes.

Proof. By transitivity of pullbacks, it is sufficient to consider the case where
f = p is the structural morphism of the k-scheme S, with k a prime field (in
particular, with &k perfect). Since DM is continuous with respect to projective
systems of regular k-schemes with affine transition maps (because this is the
case for HR-modules, using Theorem 3.1), we are reduced to the case where S
is smooth over k, which is trivial. O

Remark 3.7. The previous result is known to have interesting consequences
for the motivic Eilenberg-MacLane spectrum HRx where X is an arbitrary
noetherian regular k-scheme of finite dimension.

For example, we get the following extension of a result of Hoyois on a theorem
first stated by Hopkins and Morel (for p = 1). Given a scheme X as above, the
canonical map

MGLx /(a1,as,...)[1/p] = HZx[1/p]

from the algebraic cobordism ring spectrum modulo generators of the Lazard
ring is an isomorphism up to inverting the characteristic exponent of k. This
was proved in [Hoy15], for the base field k, or, more generally, for any essentially
smooth k-scheme X.

This shows in particular that HZx[1/p] is the universal oriented ring Z[1/p]-
linear spectrum over X with additive formal group law.

All this story remains true for arbitrary noetherian k-schemes of finite dimen-
sion if we are eager to replace HZx by its cdh-local version: this is one of
the meanings of Theorem 5.1 below. Note that, since Spitweck’s version of
the motivic spectrum has the same relation with algebraic cobordism (see [Spi,
Theorem 11.3]), it coincides with the cdh-local version of HZx as well, at least
up to p-torsion.

DEFINITION 3.8. Let X be a regular k-scheme with structural map f: X —
Spec(k). We define the relative motivic Eilenberg-MacLane spectrum of X/k
by the formula

HRx i, = f*(HRgpec(k))

(where f* : Sp, — Spyx is the pullback functor at the level of the model
categories).
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Remark 3.9. By virtue of Propositions 2.8 and Corollary 3.6, we have canonical
isomorphisms

Lf*<HRSpec(Ic)) = HRx/k ~ HRx .

Note that, the functor f* being symmetric monoidal, each relative motivic
Eilenberg-MacLane spectrum HRx ), is a commutative monoid in Spy. This
has the following consequences.

ProproSITION 3.10. For any regular k-scheme X, there is a canonical equiva-
lence of symmetric monoidal triangulated categories

HRX/k—MOd ~ HRx—MOd .

In particular, the assignment X — HRx-Mod defines a premotivic symmet-
ric monoidal triangulated category HR-Mod over Reg,, which is continuous
with respect to any projective system of regular k-schemes with affine transi-
tion maps.

Moreover the forgetful functor

HR-Mod — SH

commutes with Lf* for any k-morphism f: X — Y between reqular schemes,
and with Lfy for any smooth morphism of finite type between regular schemes.

Proof. Since the canonical morphism of commutative monoids HR x/,, — HRx
is a stable Al-equivalence the first assertion is a direct consequence of [CDa,
Prop. 7.2.13]. The property of continuity is a particular case of Example 2.11,
with Rx = HRx/;. For the last part of the proposition, by virtue of the last
assertion of [CDa, Prop. 7.1.11 and 7.2.12] we may replace (coherently) HRx
by a cofibrant monoid Rx (in the model category of monoids in Spy ), in order
to apply [CDa, Prop. 7.2.14]: The forgetful functor from Rx-modules to Spy
is a left Quillen functor which preserves weak equivalences and commutes with
f* for any map f in Reg,: therefore, this relation remains true after we pass
to the total left derived functors. The case of Lf; is similar. O

We now come back to the aim of proving Theorem 3.1.

3.a. SOME CONSEQUENCES OF CONTINUITY.

LEMMA 3.11. Consider the cartesian square of schemes below.

X' % x
a4

Y' =Y

We assume that Y’ is the projective limit of a projective system of Y -schemes
(Y,) with affine flat transition maps, and make the following assumption. For
any index o, if po : Yo = Y denotes the structural morphism, the base change

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 145-194



160 DENIS-CHARLES CISINSKI, FREDERIC DEGLISE

morphism associated to the pullback square

X, 5 x

ga | ) V

Y, —

in DM(Yy, R) is an isomorphism: Rp}, Rf. ~ Rga . Lg).
Then the base change morphism Lp*Rf. — Rg.Lqg* is invertible in
DM(Y’, R).
Proof. We want to prove that, for any object E of DM(X, R), the map
Lp* Rf.(E) = Rg. Lq"(E)

is invertible. For this, it is sufficient to prove that, for any constructible object
M of DM(Y’, R), the map

Hom(M,Lp* Rf.(E)) — Hom(M,Rg. Lq*(F))
is bijective. Since DM(—, R) is continuous with respect to dominant affine
morphisms, we may assume that there exists an index ag and a constructible
object My, , such that M ~ Lp}, (M,,). For a > ap, we will write M,, for the

pullback of M, along the transition map Y, — Y,,. By continuity, we have a
canonical identification

hgnHom(Mm Lp! Rf«(E)) ~ Hom(M,Lp* Rf.(E)).

On the other hand, by assumption, we also have:

lim Hom(M,,, Lp’, R . (E)) = lim Hom (M, Rgo, . Lg;, (E))

~ l'$Hom(LgZ(M,l)7 Lgi(E)).

The flatness of the maps pg, ensures that the transition maps of the projective
system (X, ) are also affine and dominant, so that, by continuity, we get the
isomorphisms

lim Hom(Lg, (Ma), Lg, (E)) ~ Hom(Lg"(M), Lq" (E))

~ Hom(M, Ry, Lq* (E))
and this achieves the proof. (I
PROPOSITION 3.12. Let i : Z — S be a closed immersion between reqular k-
schemes. Assume that S is the limit of a projective system of smooth separated

k-schemes of finite type, with affine flat transition maps. Then DM(—, R)
satisfies the localization property with respect to i (c¢f. [CDa, Def. 2.3.2]).

Proof. According to [CDa, 11.4.2], the proposition holds when S is smooth of
finite type over k — the assumption then implies that Z is smooth of finite type
over k.
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According to [CDa, 2.3.18], we have only to prove that for any smooth S-scheme
X, putting X xg Z, the canonical map in DM(S, R)

(3.12.1) Ms(X/X — Xz) — in(Mz(X2))

is an isomorphism. This property is clearly local for the Zariski topology, so
that we can even assume that both X and S are affine.

Lifting the ideal of definition of Z, one can assume that Z lifts to a closed
subscheme i, : Z, < S,. We can also assume that i, is regular (apply [EGA4,
9.4.7] to the normal cone of the i,). Thus Z, is smooth over k. Because X/S
is affine of finite presentation, it can be lifted to a smooth scheme X, /S, and
because X/S is smooth we can assume X, /S, is smooth.

Put Xz, = Xo Xs, Zo. Then, applying localization with respect to i,, we
obtain that the canonical map:

(3.12.2) Ms, (Xa/Xo = Xz.0) = ias(Mz, (Xz,0))

is an isomorphism in DM(S,, R). Of course the analogue of (3.12.2) remains
an isomorphism for any ¢’ > «. Given o > «, let us consider the cartesian
square

1o/

Za/—>Sa/
of
Zo — S,

in which f: X, — X, denotes the transition map. Then according to [CDa,
Prop. 2.3.11(1)], the localization property with respect to i, and i, implies
that the canonical base change map f*iq .« — ia/+g" is an isomorphism. By
virtue of Lemma 3.11, if ¢ : S — S, denote the canonical projection, the
pullback square

¢$ ] ¢s0

Zo > S,
induces a base change isomorphism L¢*iy , — 4, L1*. Therefore, the image of
the map (3.12.2) by L¢* is isomorphic to the map (3.12.1), and this ends the
proof. O

3.b. MOTIVES OVER FIELDS. This section is devoted to prove Theorem 3.1
when one restricts to field extensions of k:

PRroproOSITION 3.13. Consider the assumptions of 3.1 and let K be an extension
field of k. Then the functor

t* : HRxg-Mod — DM(K, R)
is an equivalence of symmetric monoidal triangulated categories.

In the case where K is a perfect field, this result is proved in [HK@, 5.8] in a
slightly different theoretical setting. The proof will be given below (page 164),
after a few steps of preparation.
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3.14. In the end, the main theorem will prove the existence of very general
trace maps, but the proof of this intermediate result requires that we give a
preliminary construction of traces in the following case.

Let K be an extension field of k, and f : Y — X be a flat finite surjective mor-
phism of degree d between integral K-schemes. There is a natural morphism
tf: Rx — fy(Ry) in DM(X, R), defined by the transposition of the graph of
f- The composition

t
fi(By) = Rx =5 fy(Ry)

is d times the identity of f;j(Ry); see [CDa, Prop. 9.1.13]. Moreover, if f is
radicial (i.e. if the field of functions on Y is a purely inseparable extension of
the field of functions of X), then the composition

Rx -5 fi(Ry) L Ry

is d times the identity of Rx; see [CDa, Prop. 9.1.14]. In other words, in
the latter case, since p is invertible, the co-unit map f;(Ry) — Rx is an
isomorphism in DM(X, R).

LEMMA 3.15. Under the assumptions of the previous paragraph, if f is radicial,
then the pullback functor

Lf* : DM(X, R) — DM(Y, R)
is fully faithful.
Proof. As the inclusion DM(—, R) C DM(—, R) is fully faithful and commutes
with Lf*, it is sufficient to prove that the functor

f*: DM(X, R) - DM(Y, R)

is fully faithful. In other words, we must see that the composition of f* with
its left adjoint fy is isomorphic to the identity functor (through the co-unit of
the adjunction). For any object M of DM(X, R), we have a projection formula:

fof (M) = fy(Ry) ©F M.
Therefore, it is sufficient to check that the co-unit
fs(Ry) ~ Rx

is an isomorphism. Since f is radicial, its degree must be a power of p, hence
must be invertible in R. An inverse is provided by the map *f : Rx — f;(Ry).
|

3.16. These computations can be interpreted in terms of HR-modules as follows
(we keep the assumptions of 3.14).
Using the internal Hom of DM (X, R), one gets a morphism

T?"f : Rf*(Ry) — Rx

Since the right adjoint of the inclusion DM(—, R) C DM(—, R) commutes with
Rf., the map Try above can be seen as a map in DM (X, R). Similarly, since
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the functor t, : DM(—, R) — HR-Mod commutes with R f., we get a trace

morphism
TTf : Rf*HRy — HRx

in HRx-Mod. For any HR x-module E, we obtain a trace morphism
Try:RALf(E) = E

as follows. Since we have the projection formula

Rf*(HRY) = Rf*Lf*(HRX) = Rf*(]]-Y) ®L HRx )
the unit 1x — HRx induces a map

Try:Rf.(1y) > Rf.(1y)®" HRx ~ Rf.Lf*(HRx) ~ Rf.(HRy) — HRx.

For any HRx-module E, tensoring the map Tr ¢ with identity of £ and com-
posing with the action HRx ®* E — E leads to a canonical morphism in
HR x-Mod:

Try: RELY(E) ~Rfu(ly)@"E - E.
By construction of these trace maps, we have the following lemma.

LEMMA 3.17. Under the assumptions of paragraph 3.14, for any HRx-module

E, the composition of Try with the unit of the adjunction between Lf* and
Rf.
E—RELf(E) 25 B

is d times the identity of E. If, moreover, f is radicial, then the composition
RALf(E) % E - RELLf(E)
is also d times the identity of Rf.Lf*(E).

This also has consequences when looking at the HR x-modules associated to X
and Y. To simplify the notations, we will write

HR(U) = HRx @ 2> (U,)
for any smooth K-scheme U.

LEMMA 3.18. Under the assumptions of paragraph 3.14, if d is invertible in
R, and if both X and Y are smooth over K, then HR(X) is a direct factor of
HR(Y) in HR-Mod.

Proof. Let p: X — Spec(K) and ¢ : Y — Spec(K) be the structural maps of
X and Y, respectively. Since pf = ¢, for any HR-module E, we have:
Hom(HR(X), E) = Hom(HRx, p*(E))
Hom(HR(Y), E) = Hom(HRx,Rf.Lf*p*(E)).

Therefore, this lemma is a translation of the first assertion of Lemma 3.17 and
of the Yoneda Lemma. |
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Proof of Proposition 3.13. We first consider the case of a perfect field K. The
reference is [HK(, 5.8]. We use here a slightly different theoretical setting than
these authors so we give a proof to convince the reader.

Because t* preserves the canonical compact generators of both categories, we
need only to prove it is fully faithful on a family of compact generators of
HRk-Mod (see [CDa, Corollary 1.3.21]). For any HR x-modules E, F belonging
to a suitable generating family of HRx-Mod, and and any integer n, we want
to prove that the map

(3.18.1) Hom 12,c-Moa (B, Fln]) - Hompu iy (£ (E), * (F)[n])

For this purpose, using the method of [Rio05, Sec. 1], with a small change
indicated below, we first prove that HRx-Mod is generated by objects of the
form HR(X)(i) for a smooth projective K-scheme X and an integer . Since
these are compact, it is sufficient to prove the following property: for any
HR -module M such that

Hompr -Mod (HR(X)(p)lgl, M) =0

for any integers p and ¢, we must have M ~ 0. To prove the vanishing of M, it
is sufficient to prove the vanishing of M ®Z ) for any prime £ # p. On the other
hand, for any compact object C, the formation of Hom(C, —) commutes with
tensoring by Z); therefore, we may assume R to be a Z-algebra for some
prime number ¢ # p. Under this additional assumption, we will prove that, for
any smooth connected K-scheme X, the object HR(X) = HRy @ ¥°(X )
is in the thick subcategory P generated by Tate twists of HRpx-modules of
the form HR(W) for W a smooth projective K-scheme. Using the induction
principle explained by Riou in loc. cit., on the dimension d of X, we see that,
given any couple (Y, V), where Y is a smooth K-scheme of dimension d, and
V is a dense open subscheme of Y, the property that HR(Y') belongs to P is
equivalent to the property HR(V') belongs to P. Therefore, it is enough to
consider the case of a dense open subscheme of X which we can shrink at will.
In particular, applying Gabber’s theorem [ILO14, IX, 1.1], we can assume there
exists a flat, finite, and surjective morphism, f : ¥ — X which is of degree
prime to ¢, and such that Y is a dense open subscheme of a smooth projective
k-scheme. Since HR(Y') € P, Lemma 3.18 concludes.

We now are reduced to prove that the map (3.18.1) is an isomorphism when
E = HR(X)(i) and F = HR(Y)(j) for X and Y smooth and projective over K.
Say d is the dimension of Y. Then according to [Dég08a, Sec. 5.4], HRk(Y)
is strongly dualizable with strong dual HR(Y)(—d)[—2d]. Then the result
follows from the fact that the two members of (3.18.1) compute the motivic
cohomology group of X Xk Y in degree (n — 2d,j —i — d) (in a compatible
way, because the functor ¢* is symmetric monoidal). This achieves the proof of
Proposition 3.13 in the case where the ground field K is perfect.

Let us now consider the general case. Again, we are reduced to prove
the map (3.18.1) is an isomorphism whenever E and F are compact (hence
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constructible). Let K be a finite extension of k, and let L/K be a fi-
nite totally inseparable extension of fields, with corresponding morphism of
schemes f : Spec(L) — Spec(K). According to Lemma 3.15, the functor
Lf*: DM(K, R) — DM(L, R) is fully faithful. Moreover, the pullback functor
Lf*: HRx-Mod — HRp-Mod is fully faithful as well; see the last assertion
of Lemma 3.17 (and recall that the degree of the extension L/K must be a
power of p, whence is invertible in R). Thus, by continuity of the premotivic
categories DM(—, R) and HR-Mod (see Examples 2.6(2) and 2.11), Proposition
2.7 gives the following useful lemma:

LEMMA 3.19. Let K* be the inseparable closure of K (i.e. the biggest purely
inseparable extension of K in some algebraic closure of K ). Then the following
pullback functors:

DM.(K,R) - DM.(K®, R) and HRk-Mod. — HRk:-Mod,
are fully faithful.

With this lemma in hands, to prove that (3.18.1) is an isomorphism for con-
structible HR-modules E and F', we can replace the field K by the perfect
field K®, and this proves Proposition 3.13 in full generality. (]

3.c. PROOF IN THE REGULAR CASE. In the course of the proof of Theorem 3.1,
we wil use the following lemma:

LEMMA 3.20. Let T and S be regular k-schemes and f : T — S be a morphism
of k-schemes.

(1) If T is the limit of a projective system of S-schemes with dominant
affine smooth transition morphisms, then t, commutes with f*.

(2) If f is a closed immersion, and if S is the limit of a projective system
of smooth separated k-schemes of finite type with flat affine transition
morphims, then t,. commutes with f*.

(3) If f is an open immersion, then t, commutes with fi.

Proof. The forgetful functor Oggr : HR-Mod — SH is conservative, and it
commutes with f* for any morphism f and with j, for any open immersion;
see the last assertion of [CDa, Prop. 7.2.14]. Therefore, it is sufficient to check
each case of this lemma after replacing t. by ¢..

Then, case (1) follows easily by continuity of DM and SH with respect to
dominant maps, and from the case where f is a smooth morphism. Case (2)
was proved in Proposition 3.12. (taking into account 3.5). Then case (3) finally
follows from results of [CDa]: in fact ¢, is defined as the following composition:

DM(S, R) 2% Dai (S, R) 25 SH(S)

with the notation of [CDa, 11.2.16] (A = R). The fact K commutes with j is
obvious and for L., this is [CDa, 6.3.11]. O

To be able to use the refined version of Popescu’s theorem proved by Spi-
vakovsky (see [Spi99, Th. 10.1], “resolution by smooth sub-algebras”), we will

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 145-194



166 DENIS-CHARLES CISINSKI, FREDERIC DEGLISE

need the following esoteric tool extracted from an appendix of Bourbaki (see
[Bou93, IX, Appendice] and, in particular, Example 2).

DEFINITION 3.21. Let A be a local ring with maximal ideal m.

We define the co-gonflement (resp. n-gonflement) of A as the localization of
the polynomial A-algebra A[(z;)ien] (resp. A[(x:)o<i<n]) With respect to the
prime ideal m.A[z;,i € N] (resp. m.A[z;,0 < ¢ < n)).

3.22. Let B (resp. B,) be the oo-gonflement (resp. n-gonflement) of a local
noetherian ring A. We will use the following facts about this construction,
which are either obvious or follow from loc. cit., Prop. 2:

(1) The rings B and B,, are noetherian.

(2) The A-algebra B,, is the localization of a smooth A-algebra.
(3) The canonical map B,, — B,1 is injective.

(4) B= ligneN B,,, with the obvious transition maps.

We will need the following easy lemma:

LEMMA 3.23. Consider the notations above. Assume that A is a local henselian
ring with infinite residue field. Then for any integer n > 0, the A-algebra B,
is a filtered inductive limit of its smooth and split sub-A-algebras.

Proof. We know that B, is the union of A-algebras of the form
Alz1,...,zp][1/f] for a polynomial f € Alx1,...,x,] whose reduction modulo
m is non zero. Let us consider the local scheme X = Spec(A), s be its closed
point and put U, (f) = Spec(Alz1,...,z,][1/f]) for a polynomial f as above.
To prove the lemma, it is sufficient to prove that U, (f)/X admits a section.
By definition, the fiber U, (f)s of U,(f) at the point s is a non empty open
subscheme. As k(s) is infinite by assumption, U, (f)s admits a x(s)-rational
point. Thus U, (f) admits an S-point because X is henselian and U, (f)/X is
smooth (see [EGA4, 18.5.17]). O

Combining properties (1)-(4) above with the preceding lemma, we get the fol-

lowing property:
(G) Let A be a noetherian local henselian ring with infinite residue field,
and B be its co-gonflement. Then B is a noetherian A-algebra which is

the filtering union of a family (B )acr of smooth split sub-A-algebras
of B.

LEMMA 3.24. Consider the notations of property (G). Then the pullback along
the induced map p : X' = Spec(B) — X = Spec(A) defines a conservative
functor Lp* : SH(X) — SH(X").

Proof. Let E be an object of SH(X) such that Lp*(E) = 0 in SH(X'). We want
to prove that E = 0. For this, it is sufficient to prove that, for any constructible
object C of SH(X), we have

Hom(C,E) =0.
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Given the notations of property (G), and any index « € I, let C; and E; be
the respective pullbacks of C and F along the structural map p,, : Spec(By) —
Spec(A). Then, by continuity, the map

li%n Hom(Cy, Ey) — Hom(Lp*(C), Lp*(E))

is an isomorphism, and thus, according to property (G), the map

Hom(C, E) — Hom(Lp*(C),Lp*(E))
is injective because each map p, is a split epimorphism. (I
In order to use oco-gonflements in HR-modules without any restriction on the

size of the ground field, we will need the the following trick, which makes use
of transfers up to homotopy:

LEMMA 3.25. Let L/K be a purely transcendental extension of fields of tran-
scendence degree 1, with K perfect, and let p : Spec(L) — Spec(K) be the
induced morphism of schemes. Then, for any objects M and N of DM(K, R),
if M is compact, then the natural map
Hompy(k,r) (M, N) —

— HomDM(K,R) (]\47 Rp* p* (N)) = HomDM(K,R) (Lp* (M), Lp* (N))
is a split embedding. In particular, the pullback functor

Lp* : DM(K, R) — DM(L, R)

18 conservative.
Proof. Let I be the cofiltering set of affine open neighbourhoods of the generic
point of AL ordered by inclusion. Obviously, Spec(L) is the projective limit

of these open neighbourhoods. Thus, using continuity for DM with respect to
dominant maps, we get that:

Hom(M, Rp. Lp*(N)) = lim Hom(M (V),Hom(M, N)).
Veler

We will use the language of generic motives from [Dég08b]. Recall that M (L) =
“lim M (V)" is a pro-motive in DM(K), so that the preceding identification now
takes the following form.

Hom (M, Rp. Lp*(N)) = Hom(M (L), Hom(M, N)).

Since, according to [Dég08b, Cor. 6.1.3], the canonical map M (L) — M (K) is
a split epimorphism of pro-motives, this proves the first assertion of the lemma.
The second assertion is a direct consequence of the first and of the fact that
the triangulated category DM(K, R) is compactly generated. (]

Proof of Theorem 3.1. We want to prove that for a regular noetherian k-scheme
of finite dimension S, the adjunction:

t* : HRg-Mod = DM(S, R) : ¢,
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is an equivalence of triangulated categories. Since the functor t* preserves
compact objects, and since there is a generating family of compact objects
of DM(S, R) in the essential image of the functor t*, it is sufficient to prove
that ¢* is fully faithful on compact objects (see [CDa, Corollary 1.3.21]): we
have to prove that, for any compact HRg-module M, the adjunction map
o M — " (M) is an isomorphism.

First case: We first assume that S is essentially smooth — i.e. the localization
of a smooth k-scheme. We proceed by induction on the dimension of S. The
case of dimension 0 follows from Proposition 3.13.

We recall that the category HR-Mod is continuous on Reg;, (3.10). Let = be
a point of S and S, be the localization of S at z, p, : S — S the natural
projection. Then it follows from [CDa, Prop. 4.3.9] that the family of functors:

py : HRg-Mod — HRg, -Mod,z € S

is conservative.

Since p% commutes with ¢* (trivial) and with ¢, (according to Lemma 3.20),
we can assume that S is a local essentially smooth k-scheme.

To prove the induction case, let ¢ (resp. j) be the immersion of the closed
point z of S (resp. of the open complement U of the closed point of S). Since
the localization property with respect to i is true in HR-Mod (because it is
true in SH, using the last assertions of Proposition 3.10) and in DM (because
of Proposition 3.12 that we can apply because we have assumed that S is
essentially smooth), we get two morphisms of distinguished triangles:

J1j* (M) J\f ixi* (M) ——jij* (M)[1]
\ v v
313" (Eat™ (M) = tut™ (M) = i (88" (M) = " (82" (M))[1]
b | & b

Gitat* 7* (M) —> tt* (M) — iyt t*i* (M) — jit.t*5*(M)[1]

The vertical maps on the second floor are isomorphisms: both functors ¢*
and t, commute with j* (as t* is the left adjoint in a premotivic adjunction,
it commutes with j; and j5*, and this implies that t, commutes with j*, by
transposition); the functor ¢* commutes with i, because it commutes with ji,
j7* and 7*, and because the localization property with respect to i is verified in
HR-Mod as well as in DM); finally, applying the third assertion of Lemma 3.20
for f = 7, this implies that the functor ¢, commutes with ¢*. To prove that
the map 7y is an isomorphism, it is thus sufficient to treat the case of jin;- )
and of i.7;- (7). This means we are reduced to the cases of U and Spec(x(z)),
which follow respectively from the inductive assumption and from the case of
dimension zero.

General case: Note that the previous case shows in particular the theorem for
any smooth k-scheme. Assume now that S is an arbitrary regular noetherian
k-scheme. Using [CDa, Prop. 4.3.9] again, and proceeding as we already did
above (but considering limits of Nisnevich neighbourhoods instead of Zariski
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ones), we may assume that S is henselian. Let L = k(t) be the field of rational
functions, and let us form the following pullback square.

g—* .9

| g
Spec(k(t)) —— Spec(k)

Then the functor

Rp. Lp* : HRx-Mod — HRp-Mod
is conservative: this follows right away from Lemma 3.25 and Proposition 3.13.
This implies that the functor

Lq¢* : HRs-Mod — HRg/-Mod

is conservative. To see this, let us consider an object E of HRs-Mod such that
Lg*(E) = 0. To prove that E = 0, it is sufficient to prove that Hom(M, E) =0
for any compact object M of HRgs-Mod. Formula

Hom(HRy, Rfi.Hom(M, E)) ~ Hom(M, E)

implies that it is sufficient to check that R f, Hom(M, E) = 0 for any compact
object M (where Hom is the internal Hom of HRg-Mod).
Since the functor Rp. Lp* is conservative, it is thus sufficient to prove that

Rp.Lp*Rf.Hom(M,E) =0.

We thus conclude with the following computations (see [CDa, Propositions
4.3.11 and 4.3.14]).

Rp. Lp*Rf, Hom(M, F) ~ Rp. Rg. Lq¢* Hom(M, E)
~ Rp, Rg. Hom(L¢"(M),Lq*(E)) =0

In conclusion, since the functor Lg* commutes with ¢, (see Lemma 3.20 (1)),
we may replace S by S’ and thus assume that the residue field of S is infinite.
Let B be the co-gonflement of A = I'(S, Og) (Definition 3.21), and f : T =
Spec(B) — S be the map induced by the inclusion A C B. We know that the
functor
Lf*: HRg-Mod — HRp-Mod

is conservative: as the forgetful functor HR-Mod — SH is conservative and
commutes with Lf* this follows from Lemma 3.24 (or one can reproduce the
proof of this lemma, which only used the continuity property of SH with respect
to projective systems of schemes with dominant affine transition morphisms).
Similarly, it follows again from Lemma 3.20 (1) that the functor ¢, commutes
with Lf*. Asthe functor t* commutes with L f*, it is sufficient to prove that the
functor t* is fully faithful over T', and it is still sufficient to check this property
on compact objects. Since the ring B is noetherian and regular, and has a field
of functions with infinite transcendance degree over the perfect field k (see
3.22), it follows from Spivakovsky’s refinement of Popescu’s Theorem [Spi99,
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10.1] that B is the filtered union of its smooth subalgebras of finite type over k.
In other terms, 7' is the projective limit of a projective system of smooth affine
k-schemes of finite type (T,) with dominant transition maps. Therefore, by
continuity (see Examples 2.11 and 2.6(2)), we can apply Proposition 2.7 twice
and see that the functor

2- hﬂ HR7p -Mod, ~ HRp-Mod, — 2- ligDMc(Ta7 R) ~ DM.(T, R)
is fully faithful, as a filtered 2-colimit of functors having this property. O

4. MORE MODULES OVER MOTIVIC EILENBERG-MACLANE SPECTRA

4.1. Given a scheme X, let Mon(X) be the category of unital associative
monoids in the category of symmetric Tate spectra Spy. The forgetful functor

U: Mon(X) — Spx
has a left adjoint, the free monoid functor:
F:Spyxy — Mon(X).

Since the stable model category of symmetric Tate spectra satisfies the monoid
axiom (see [Hoy15, Lemma 4.2]), by virtue of a well known theorem of Schwede
and Shipley [SS00, Theorem 4.1(3)], the category Mon(X) is endowed with a
combinatorial model category structure whose weak equivalences (fibrations)
are the maps whose image by U are weak equivalences (fibrations) in Spy;
furthermore, any cofibrant monoid is also cofibant as an object of Sp .

4.2. We fix once and for all a cofibrant resolution
HR' — HRy,

of the motivic Eilenberg-MacLane spectrum HRj in the model category
Mon(k). Given a k-scheme X with structural map f : X — Spec(k), we
define
HRx, = f*(HR')

(where f* denotes the pullback functor in the premotivic model category
Sp). The family (HRx/;)x is a cartesian section of the Sm-fibred category
of monoids in Sp which is also homotopy cartesian (as we have an equality
Lf*(HRy) = HRx/). We write HRx/,-Mod for the homotopy category of
(left) HRx/i-modules.

This notation is in conflict with the one introduced in Definition 3.8. This
conflict disappears up to weak equivalence®: when X is regular, the comparison

8In the proof of Theorem 3.1, we used the fact that the spectra HRy y, as defined in
Definition 3.8, are commutative monoids of the model category of symmetric Tate spectra
(because we used Poincaré duality in an essential way, in the case where X is the spectrum of a
perfect field). This new version of motivic Eilenberg-MacLane spectra HR x /i is not required
to be commutative anymore (one could force this property by working with fancier model
categories of motivic spectra (some version of the ‘positive model structure’, as discussed in
[Hor13] for instance), but these extra technicalities are not necessary for our purpose. We
shall use Theorem 3.1 in a crucial way, though.

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 145-194



INTEGRAL MIXED MOTIVES IN EQUAL CHARACTERISTIC 171

map
fT(HR') — f*(HRy)
is a weak equivalence (Proposition 2.8). For X regular, HRx ;, is thus a cofi-
brant resolution of HRx in the model category Mon(X). In particular, in
the case where X is regular, we have a canonical equivalence of triangulated
categories:
HRx/;,-Mod ~ HR x-Mod .

PROPOSITION 4.3. The assignment X — HRx/,-Mod defines a motivic cate-
gory over the category of noetherian k-schemes of finite dimension which has
the property of continuity with respect to arbitrary projective systems with affine
transition maps. Moreover, when we let X wvary, both the free HRx i -algebra
(derived) functor

LHRX/k : SH(X) — HRx/k—MOd

and its right adjoint
Onry,, + HRx/-Mod — SH(X)

are morphisms of premotivic triangulated categories over the category of k-
schemes. In other words both functors commute with Lf* for any morphism of
k-schemes f, and with Lgy for any separated smooth morphism of k-schemes

g.

Proof. The first assertion comes from [CDa, 7.2.13 and 7.2.18], the one about
continuity is a direct application of Lemma 2.10, and the last one comes from
[CDa, 7.2.14]. O

Remark 4.4. Since the functor Oug,,, : HRx/r-Mod — SH(X) is conserva-
tive and preserves small sums, the family of objects of the form HRy QL
¥ (Y4 )(n), for any separated smooth X-scheme Y and any integer n, do
form a generating family of compact objects. In particular, the notions of
constructible object and of compact object coincide in HRx,;-Mod (see for
instance [CDb, Remarks 5.4.10 and 5.5.11], for a context in which these two
notions fail to coincide).

4.5. For any k-scheme X, we have canonical morphisms of monoids in Spy:
HRx i, — f*(HRy) — HRx .
In particular, we have a canonical functor
HRx/x-Mod — HRx-Mod , E — HRx @};Rm E.

If we compose the latter with the functor

HRx-Mod 5 DM(X, R) *” DM(X, R) ““ DMcqy,,

we get a functor
HRx/,-Mod — DM(X, R)
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which defines a morphism a premotivic categories. In particular, this functor
takes it values in DM¢qp (X, R), and we obtain a functor

T HRx/k—MOd — DMth(X, R) .

As 7* preserves small sums, it has a right adjoint 7., and we finally get a
premotive adjunction

T HR(_)/k—MOd = DMcdh(_7 R) DTk .

Moreover, the functor 7* preserves the canonical generating families of compact
objects. Therefore, the functor 7, is conservative and commutes with small
sums.

5. COMPARISON THEOREM: GENERAL CASE
The aim of this section is to prove:

THEOREM 5.1. Let k be a perfect field of characteristic exponent p. Assume
that p is invertible in the ring of coefficients R. For any noetherian k-scheme
of finite dimension X, the canonical functor

T HRx/k—MOd — DMth(X, R)
is an equivalence of categories.

The proof will take the following path: we will prove this statement in the
case where X is separated and of finite type over k. For this, we will use
Gabber’s refinement of de Jong’s resolution of singularities by alterations, as
well as descent properties for HRp-modules proved by Shane Kelly to see that
it is sufficient to consider the case of a smooth k-scheme. In this situation,
Theorem 5.1 will be a rather formal consequence of Theorem 3.1. The general
case will be obtained by a continuity argument.

5.2. Let £ be a prime number. Following S. Kelly [Kel12], one defines the ¢dh-
topology on the category of noetherian schemes as the coarsest Grothendieck
topology such that any cdh-cover is an ¢dh-cover and any morphism of the
form f: X — Y, with f finite, surjective, flat, and of degree prime to ¢ is an
£dh-cover. For instance, if {U; — X }ier is a cdh-cover, and if, for each i one
has a finite surjective flat morphism V; — U; of degree prime to ¢, we get an
¢dh-cover {V; = X };cr. In the case where X is noetherian, one can show that,
up to refinement, any ¢dh-cover is of this form; see [Kel12, Prop. 3.2.5]. We will
use several times the following non-trivial fact, which is a direct consequence
of Gabber’s theorem of uniformization prime to ¢ [ILO14, Exp. IX, Th. 1.1]:
locally for the ¢dh-topology, any quasi-excellent scheme is regular. In other
words, for any noetherian quasi-excellent scheme X (e.g. any scheme of finite
type over field), there exists a morphism of finite type p : X’ — X which is a
covering for the /dh-topology and has a regular domain.

PROPOSITION 5.3. Let F' be a cdh-sheaf with transfers over X which is Zy)-
linear. Then F is an £dh-sheaf and, for any integer n, the map

Hig, (X, F) — Hipg, (X, F)

C
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is an isomorphism.

Proof. See [Kell2, Theorem 3.4.17]. O

COROLLARY 5.4. Assume that X is of finite dimension, and let C' be a complex
of Zy)-linear cdh-sheaves with transfers over X. Then the comparison map of
hypercohomologies

can(X, C) = Hpg, (X, C)

is an isomorphism for all n.

Proof. Note that, for t = cdh or ¢t = {dh, the forgetful functor from Z)-linear
t-sheaves with tranfers to Z-linear ¢-sheaves on the big site of X is exact
(this follows from the stronger results given by [Kell12, Prop. 3.4.15 and 3.4.16]
for instance). Therefore, we have a canonical spectral sequence of the form

EPY = HP(X,HY(C),) = H'M(X,C).

As the cohomological dimension with respect to the cdh-topology is bounded
by the dimension, this spectral sequence strongly converges for ¢ = cdh. Propo-
sition 5.3 thus implies that, for ¢ = ¢dh, the groups E%? vanish for p < 0 or
p > dim X, so that this spectral sequence also converges in this case. There-
fore, as these two spectral sequences agree on the Fs term, we conclude that
they induce an isomorphism on Fo. O

COROLLARY 5.5. For X of finite dimension and R an Z)-algebra, any ob-
ject of the triangulated category DMcan (X, R) satisfies £dh-descent (see [CDa,
Definition 3.2.5)).

LEMMA 5.6. Assume that X is of finite type over the perfect field k. Consider
a prime £ which is distinct from the characteristic exponent of k. If R is a
Zy)-algebra, then any compact object of HRx /,-Mod satisfies £dh-descent.

Proof. As X is allowed to vary, it is sufficient to prove that, for any con-
structible HR y/;-modules M and any ¢dh-hypercover pe : Us — X, the map

(5.6.1) RI(X, M) = RUImRT(Uy, p;, M)
Ay

is an isomorphism. The category of compact objects of HR x-Mod is the thick
subcategory generated by objects of the form R f.HRy ;(p) for f : Y — X
a projective map and p an integer (this follows right away from the fact
that te analogous property is true in SH). We may thus assume that M =
Rf.HRy/,(p). We can then form the following pullback in the category of
simplicial schemes.

g

=

U

—
lp.
S5

Qe

~<
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Using the proper base change formula for HR(_)/-modules, we see that the
map (5.6.1) is isomorphic to the map
(5.6.2) RI(Y, HRy/k(p)) = RImRI(Vy,, HRy, /1 (p)) -

A

n

By virtue of Kelly’s ¢dh-descent theorem [Kell2, Theorem 5.3.7], the map
(5.6.2) is an isomorphism. O

LEMMA 5.7. Let X be a k-scheme of finite type. Assume that R is a Zy)-
algebra for ¢ a prime number distinct from the characteristic exponent of k.
Let M be an object of DM(X, R) satisfying ¢dh-descent on the site of smooth
k-schemes over X: for any X-scheme of finite type Y which is smooth over
k and any ¢dh-hypercover p : Uy — Y such that U, is smooth over k for any
n >0, the map

R Hompy(x,r)(R(Y), M(p)) = R lim R Hompy(x, r) (R(Un), M(p))
Ay

is an isomorphism in the derived category of R-modules. Then, for any X-
scheme Y which is smooth over k and any integer p, the canonical map

R Hompy(x,r)(R(Y), M(p)) — RHompy,, (x,7) (R(Y), Mcan(p))
is an isomorphism.

Proof. Let us denote by R{1} the complex
R{1} = R(1)[1] = ker(R(Ak — {0}) = R)
induced by the structural map A! — {0} x X — X. We may consider that
the object M is a fibrant R{1}-spectrum in the category of complexes of R-
linear sheaves with transfers on the category of X-schemes of finite type. In
particular, M corresponds to a collection of complexes of R-linear sheaves with
transfers (M,,)>o together with maps R{1} ® g M,, — M, 41 such that we have
the following properties.
(i) For any integer n > 0 and any X-scheme of finite type Y, the map
(Y, M,) — RI(Y, M,)
is an isomorphism in the derived category of R-modules (where RT
stands for the derived global section with respect to the Nisnevich
topology).
(ii) For any integer n > 0, the map
M, - RHom(R{1}, My, 4+1)

is an isomorphism in the derived category of Nisnevich sheaves with
tranfers (where R Hom stands for the derived internal Hom).

We can choose another R{1}-spectum N = (N,,),>0 of cdh-sheaves with trans-
fers, together with a cofibration of spectra M — N such that M,, — N, is a
quasi-isomorphism locally for the cdh-topology, and such that each IV,, satisfies
cdh-descent: we do this by induction as follows. First, Ny is any fibrant resolu-
tion of (Mp)can for the cdh-local model structure on the category of complexes
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of cdh-sheaves with transfers. If N, is already constructed, we denote by E the
pushout of M,, along the map R{1} ®r M,, — R{1} ®r N,,, and we factor the
map Feqn — 0 into a trivial cofibration followed by a fibration in the cdh-local
model structure.

Note that, for any X-scheme Y which is smooth over k, the map

HY(Y,M,) — H(Y,N,)

is an isomorphism of R-modules for any integers ¢ € Z and n > 0. Indeed, as,
by virtue of Gabber’s theorem of resolution of singularities by ¢dh-alterations
[[LO14, Exp. IX, Th. 1.1], one can write both sides with the Verdier formula
in the following way (because of our hypothesis on M and by construction of
N):

HY(Y,E) ~ liny Hi(R@r(Uj,Mn)) for E = M,, or E = N,
U.HY Aj

where U, — Y runs over the filtering category of ¢dh-hypercovers of Y such
that each U; is smooth over k. It is also easy to see from this formula that
each N, is Al-homotopy invariant and that the maps

N, — Hom(R{1}, Np41)

are isomorphisms. In other words, N satisfies the analogs of properties (i)
and (ii) above with respect to the cdh-topology. We thus get the following
identifications for p > 0:

L'y, Mp) = RHomm/{(xR) (R(Y'), M(p))
I'(Y, Np) = RHompy,, (x,r) (R(Y), Mcan(p)) -

The case where p < 0 follows from the fact that, for d = —p, R(Y)(d)[2d]
is then a direct factor of R(Y x P9) (by the projective bundle formula in
DM.an(X, R)). O

LEMMA 5.8. Let X be a smooth separated k-scheme of finite type. Assume
that R is a Z)-algebra for £ a prime number distinct from the characteristic
exponent of k. If M and N are two constructible objects of DM(X, R), then
the comparison map

R HomDM(X,R) (M, N) — R HomDMth(X,R) (]\47 N)
is an isomorphism in the derived category of R-modules.

Proof. 1t is sufficient to prove this in the case where M = R(Y)(p) for ¥ a
smooth X-scheme and p any integer. By virtue of Lemma 5.7, it is sufficient to
prove that any constructible object of DM(X, R) satisfies /dh-descent on the
site of X-schemes which are smooth over k. By virtue of Theorem 3.1, it is
thus sufficient to prove the analogous property for constructible HR x-modules,
which follows from Lemma 5.6. (]
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Proof of Theorem 5.1. 1t is sufficient to prove that the restriction of the com-
parison functor

(5.8.1) HRx/-Mod — DMcan(X, R) , M — 7*(M)

to constructible HRy/,-modules is fully faithful (by virtue of [CDa, Corollary
1.3.21], this is because both triangulated categories are compactly generated
and because the functor (5.8.1) preserves the canonical compact generators). It
is easy to see that this functor is fully faithful (on constructible objects) if and
only if, for any prime ¢ # p, its R ® Z)-linear version has this property (this
is because the functor (5.8.1) preserves compact objects, which implies that its
right adjoint commutes with small sums, hence both functors commute with
the operation of tensoring by Z)). Therefore, we may assume that a prime
number ¢ # p is given and that R is a Z)-algebra. We will then prove the
property of being fully faithful first in the case where X is of finite type over
k, and then, by a limit argument, in general.

Assume that X is of finite type over k, and consider constructible HRx -
modules M and N. We want to prove that, the map

(5.8.2) R Hompgy , -Mod(M, N) — RHomp,,, (x,7) (7" (M), 7*(N))

is an isomorphism (here all the R Hom’s take their values in the triangulated
category of topological S'-spectra; see [CDa, Theorem 3.2.15] for the existence
(and uniqueness) of such an enrichment). By virtue of Gabber’s theorem of
resolution of singularities by ¢dh-alterations [ILO14, Exp. IX, Th. 1.1], we can
choose an ¢dh-hypercover ps : Uy — X, with U, smooth, separated, and of
finite type over k for any non negative integer n. We then have the following
chain of isomorphisms, justified respectively by fdh-descent for constructible
HR x ;,-modules (Lemma 5.6), by the comparison theorem relating the category
of HR-modules with DM over regular k-schemes (Theorem 3.1), by Lemma 5.8,
and finally by the fact that any complex of R-modules with transfers on the
category of separated X-schemes of finite type which satisfies cdh-descent must
satisfy ¢dh-descent as well (Corollary 5.4):

R Hompp, ,, -Mod(M, N) =~ R'AﬁlRHomHRUn_l\/Iod(LprM7 Lp; N)
~ R;%ZRHomDMwn,R) (L, * (M), Ly ()
= Rl%f:lRHomDMcdh(UmR) (Lp;, (M), Lp;, 7*(N))
=~ RH;mDMcdh(X,R) (T*(M),7*(N)).

It remains to treat the case of an arbitrary noetherian k-scheme X. It is easy to
see that the property that the functor (5.8.1) is fully faithful (on constructible
objects) is local on X with respect to the Zariski topology. Therefore, we may
assume that X is affine with structural ring A. We can then write A as a filter-
ing colimit of k-algebras of finite type A; C A, so that we obtain a projective
system of k-schemes of finite type {X; = Spec A;}; with affine and dominant
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transition maps, such that X = @11 X;. But then, by continuity (applying
Proposition 2.7 twice, using Lemma 2.10 for HRx/,-Mod, and Example 2.6(2)
for DMcan(X, R)), we have canonical equivalences of categories at the level of
constructible objects:

HRx/i-Mod, = 2-liy HRy, -Mod
~ 2- hg DMth(Xia R)c

~ DMth(X, R)C .

In particular, the functor (5.8.1) is fully faithful on constructible objects, and
this ends the proof. O

COROLLARY 5.9. Let X be a reqular noetherian k-scheme of finite dimension.
Then the canonical functor

DM(X, R) — DMcan(X, R)
is an equivalence of symmetric monoidal triangulated categories.

Proof. This is a combination of Theorems 3.1 and 5.1, and of Proposition
3.10. 0

Remark that we get for free the following result, which generalizes Kelly’s £dh-
descent theorem:

THEOREM 5.10. Let k be a field of characteristic exponent p, { a prime number
distinct from p, and R a Z)-algebra. Then, for any noetherian k-scheme of
finite dimension X, any object of HRx/,-Mod satisfies £dh-descent.

Proof. This follows immediately from Theorem 5.1 and from Corollary 5.5. [
Similarly, we see that DM_qy, is continuous is a rather general sense.

THEOREM 5.11. The motivic category DMean(—, R) has the properties of local-
ization with respect to any closed immersion as well as the property of continuity
with respect to arbitrary projective systems with affine transition maps over the
category of noetherian k-schemes of finite dimension.

Proof. Since HR_)/,-Mod has these properties, Theorem 5.1 allows to transfer
it to DMth(—, R) O

6. FINITENESS

6.1. In this section, all the functors are derived functors, but we will drop L
or R from the notations. The triangulated motivic category DMcgn(—, R) is
endowed with the six operations ® g, Homp, f*, f, fi and f' which satisfy the
usual properties; see [CDa, Theorem 2.4.50] for a summary.

Recall that an object of DM qn(X, R) is constructible if and only if it is com-
pact. Here is the behaviour of the six operations with respect to constructible
objects in DMcqn(—, R), when we restrict ourselves to k-schemes (see [CDa,
4.2.5,4.2.6, 4.2.10, 4.2.12]):
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(i) constructible objects are stable by tensor products;

(ii) for any morphism f : X — Y, the functor f* : DMn(Y,R) —
DMe.an (X, R) preserves constructible objects;

(iii) The property of being constructible is local for the Zariski topology;

(iii) given a closed immersion i : Z — X with open complement j : U — X,
an object M of DMqn(X, R) is constructible if and only if ¢*(M) and
Jj*(M) are constructible;

(iv) the functor fi : DMcgn(X, R) — DMcan(Y, R) preserves constructible
objects for any separated morphism of finite type f: X — Y.

PROPOSITION 6.2. Let i : Z — X be a closed immersion of codimension c
between reqular k-schemes. Then there is a canonical isomorphism i!(RX) ~
Rz(—c)[—2c] in DMcan(Z, R).

Proof. In the case where X and Z are smooth over k, this is a direct conse-
quence of the relative purity theorem. For the general case, using the reformu-
lation of the absolute purity theorem of [CDb, Appendix, Theorem A.2.8(ii)],
we see that it is sufficient to prove this proposition locally for the Zariski topol-
ogy over X. Therefore we may assume that X is affine. Since DMcgn(—, R) is
continuous (5.11), using Popescu’s theorem and [CDa, 4.3.12], we see that it is
sufficient to treat the case where X is smooth of finite type over k. But then,
this is a direct consequence of the relative purity theorem. O

PropPOSITION 6.3. Let f : X — Y be a morphism of noetherian k-schemes.
Assume that both X and Y are integral and that f is finite and flat of degree
d. Then, there is a canonical natural transformation

Try:RfLf* (M) — M
for any object M of DMcan(X, R) such that the composition with the unit of
the adjunction (Lf*,Rf.)

M = RELF (M) s M
is d times the identity of M.

Proof. As in paragraphs 3.14 and 3.16 (simply replacing DM(X, R) and
DM(X, R) by DMcan (X, R) and DM.qn(X, R), respectively), we construct

T?”f : Rf*(Rx) = Rf*Lf*(Ry) — Ry

such that the composition with the unit

R Rf.(Rx) 25 Ry

is d. Then, since f is proper, we have a projection formula
Rf.(Rx) ®f M ~Rf.Lf*(M)
and we construct
Try :RfLf*(M) - M
as
M &% (Rf.(Rx) —5 Ry).
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This ends the construction of 77y and the proof of this proposition. O

THEOREM 6.4. The siz operations preserve constructible objects in
DMcan(—, R) over quasi-excellent k-schemes. In particular, we have the
following properties.

(a) For any morphism of finite type between quasi-excellent k-schemes, the
functor fi : DMcan(X, R) — DMcan(Y, R) preserves constructible ob-
jects.

(b) For any separated morphism of finite type between quasi-excellent k-
schemes f : X — Y, the functor f' : DMean(Y, R) — DMcan(X, R)
preserves constructible objects.

(¢) If X is a quasi-excellent k-scheme, for any constructible objects M and
N of DMcgn(M, N), the object Homp (M, N) is constructible.

Sketch of proof. It is standard that properties (b) and (c) are corollaries of
property (a); see the proof of [CDb, Cor. 6.2.14], for instance. Also, to prove
(a), the usual argument (namely [Ayo07a, Lem. 2.2.23]) shows that it is suf-
ficient to prove that, for any morphism of finite type f : X — Y, the object
f+(Rx) is constructible. As one can work locally for the Zariski topology on X
and on Y, one may assume that f is separated (e.g. affine) and thus that f = pj
with j an open immersion and p a proper morphism. As p; = p, is already
known to preserve constructible objects, we are thus reduced to prove that, for
any dense open immersion j : U — X, the object j.(Ry) is constuctible. This
is where the serious work begins. First, using the fact that constructible objects
are compact, for any prime £ # p, the triangulated category DMcan (X, R®Z(y))
is the idempotent completion of the triangulated category DMcan (X, R) ® Z(y).
Therefore, using [CDb, Appendix, Prop. B.1.7], we easily see that it is sufficient
to consider the case where R is a Z)-algebra for some prime £ # p. The rest
of the proof consists to follow word for word a beautiful argument of Gabber:
the very proof of [CDb, Lem. 6.2.7]. Indeed, the only part of the proof of loc.
cit. which is not meaningful in an abstract motivic triangulated category is
the proof of the sublemma [CDb, 6.2.12], where we need the existence of trace
maps for flat finite surjective morphisms satisfying the usual degree formula.
In the case of DMcan (X, R), we have such trace maps natively: see Proposition
6.3. O

7. DuALITY

In this section, we will consider a field K of exponential characteristic p, and
will focus our attention on K-schemes of finite type. As anywhere else in this
article, the ring of coefficients R is assumed to be a Z[1/p]-algebra.

PROPOSITION 7.1. Let f : X — Y be a surjective finite radicial morphism of
noetherian K-schemes of finite dimension. Then the functor

Lf* : DMth(Y, R) — DMth(X, R)

is an equivalence of categories and is canonically isomorphic to the functor f'.
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Proof. By virtue of [CDa, Prop. 2.1.9], it is sufficient to prove that pulling
back along such a morphism f induces a conservative functor Lf* (the fact
that Lf* ~ f' come from the fact that if Lf* is an equivalence of categories,
then so is its right adjoint fi ~ R f,, so that Lf* and f' must be quasi-inverses
of the same equivalence of categories). Using the localization property as well as
a suitable noetherian induction, it is sufficient to check this property generically
on Y. In particular, we may assume that ¥ and X are integral and that f is
moreover flat. Then the degree of f must be some power of p, and Proposition
6.3 then implies that the functor Lf* is faithful (and thus conservative). O

PROPOSITION 7.2. Let X be a scheme of finite type over K, and Z a fized
nowhere dense closed subscheme of X. Then the category of constructible mo-
tives DMcan,o(X, R) is the smallest thick subcategory containing objects of the
form fi(Ry)(n), where f : Y — X is a projective morphism with Y smooth
over a finite purely inseparable extension of K and such that f~(Z) is either
empty, the whole scheme Y itself, or the support of a strict normal crossing
divisor, while n is any integer.

Proof. Let G be the family of objects of the form fi(Ry)(n), with f:Y — X
a projective morphism, Y smooth over a finite purely inseparable extension of
K, f~1(Z) either empty or the support of a strict normal crossing divisor, and
n any integer. We already know that any element of G is constructible. Since
the constructible objects of DMcgn (X, R) precisely are the compact objects,
which do form a generating family of the triangulated category DMcqn (X, R),
it is sufficient to prove that the family G is generating. Let M be an object
of DMcan (X, R) such that Hom(C, M[i]) = 0 for any element C of G and any
integer ¢. We want to prove that M = 0. For this, it is sufficient to prove that
M ® Zy) = 0 for any prime ¢ which not invertible in R (hence, in particular,
is prime to p). Since, for any compact object C' of DMqn (X, R), we have

Hom(C’, M[Z]) & Z(@) ~ I‘IOIII(C'7 M ® Z(@) [ZD R

and since f; commutes with tensoring with Z) (because it commutes with
small sums), we may assume that R is a Z)-algebra for some prime number
¢ # p. Under this extra hypothesis, we will prove directly that G generates the
thick category of compact objects. Let T" be the smallest thick subcategory of
DM_qn(X, R) which contains the elements of G.

For Y a separated X-scheme of finite type, we put

MPM(Y/X) = fi(Ry)
with f : Y — X the structural morphism. If Z is a closed subscheme of ¥ with
open complement U, we have a canonical distinguished triangle
MPM(U/X) — MPM(Y/X) - MPM(Z/X) — MBM(Z/X)[1].
We know that the subcategory of constructible objects of DMecqn (X, R)

is the smallest thick subcategory which contains the objects of the form
MBM(Y/X)(n) for Y — X projective, and n € Z; see [Ayo07a, Lem. 2.2.23].
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By cdh-descent (as formulated in [CDa, Prop. 3.3.10 (i)]), we easily see that ob-
jects of the form MBM(Y/X)(n) for Y — X projective, Y integral, and n € Z,
generate the thick subcategory of constructible objects of DMcqn(X, R). By
noetherian induction on the dimension of such a Y, it is sufficient to prove
that, for any projective X-scheme Y, there exists a dense open subscheme U
in Y such that M B (U/X) belongs to T. By virtue of Gabber’s refinement of
de Jong’s theorem of resolution of singularities by alterations [ILO14, Exp. X,
Theorem 2.1], there exists a projective morphism Y’ — Y which is generically
flat, finite surjective of degree prime to £, such that Y’ is smooth over a finite
purely inseparable extension of K, and such that the inverse image of Z in Y’
is either empty, the whole scheme Y, or the support of a strict normal crossing
divisor. Thus, by induction, for any dense open subscheme V C Y’ the mo-
tive MBM(V/X) belongs to T. But, by assumption on Y’ — Y, there exists
a dense open subscheme U of Y such that, if V' denote the pullback of U in
Y’ the induced map V — U is a finite, flat and surjective morphism between
integral K-schemes and is of degree prime to ¢. By virtue of Proposition 6.3,
the motive MPM (U/X) is thus a direct factor of MBM(V/X), and since the
latter belongs to T, this shows that M B (Y/X) belongs to T as well, and this
achieves the proof. |

THEOREM 7.3. Let X be a separated K -scheme of finite type, with structural
morphism f : X — Spec(K). Then the object f'(R) is dualizing. In other
words, for any constructible object M in DMqqn(X, R), the natural map

(7.3.1) M — RHomp,(R Homp (M, f'(R), f'(R)))
is an tsomorphism. In particular, the natural map

(7.3.2) Rx — RHomp(f'(R), /'(R))

is an isomorphism in DMean(X, R).

Proof. By virtue of Proposition 7.2, it is sufficient to prove that the map (7.3.1)
is an isomorphism for M = p|(Ry) with p : ¥ — X projective and Y smooth
over a finite purely inseparable extension of K. We then have

R Homp (M, f'(R)) ~ pRHomg(Ry,p'f'(R)) = pp'(f'(R)) ,

hence
R Hom (R Hom (M, f'(R), f/(R)) ~ RHompg (pp'(f'(R)), f'(R))
~ p R Homg(p'f'(R),p f'(R)).

The map (7.3.1) is thus, in this case, the image by the functor p, of the map
Ry — RHomg(p'f'(R),p' f'(R)). In other words, it is sufficient to prove that
the map (7.3.2) is an isomorphism in the case where X is projective over K,
and smooth over a finite purely inseparable field extension L/K. In particular
we get the following factorization of f

X % Spec(L) LN Spec(K)
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such that ¢ is smooth and h surjective finite radicial. By virtue of Proposi-
tion 7.1, h'(R) = Rr. Moreover, if d is the dimension of X, since DMcqy is

oriented, we have a purity isomorphism ¢'(Rr) ~ Rx(d)(2d], Thus we get an
isomorphism f'(R) ~ Rx(d)[2d]. Since we obviously have the identification,
Rx ~ RHomp(Rx(d), Rx(d)), this achieves the proof. O

Remark 7.4. The preceding theorem means that, if we restrict to separated
K-schemes of finite type, the whole formalism of Grothendieck-Verdier duality
holds in the setting of R-linear cdh-motives. In other words, for a separated
K-scheme of finite type X with structural map f : X — Spec(K), we define
the functor Dx by
Dx (M) = RHomp(M, f'(R))

for any object M of DMcgn(X, R). We already know that Dx preserves con-
structible objects and that the natural map M — Dx(Dx(M)) is invertible
for any constructible object M of DM¢qn(X, R). For any objects M and N of
DMean (X, R), if N is constructible, we have a natural isomorphism

(7.4.1) R Homy (M, N) ~ Dx (M @% Dx(N)).

For any K-morphism between separated K-schemes of finite type f : Y — X,
and for any constructible objects M and N in DMcgn (X, R) and DMqqi(Y, R),
respectively, we have the following natural identifications.

(7.4.2) Dy (f*(M)) =~ f’(Dx(M))
(7.4.3) ( x(M)) = Dy (f(M))
(7.4.4) Dx (fi(N)) = f«(Dy(N))
(7.4.5) fi(Dy(N)) ~ Dx(f.(N))

8. BIVARIANT CYCLE COHOMOLOGY

PROPOSITION 8.1. Let K be a field of characteristic exponent p, and K?* its
inseparable closure.

(a) The map u : Spec(K*) — Spec(K) induces fully faithful functors
u* : DM (K, R) — DM®7 (K* R) and v* : DM (K, R) — DM (K* R).
(b) We have a canonical equivalence of categories
DM*Y (K* R) ~ DM (K* R).

(c) At the level of non-effective motives, we have canonical equivalences of
categories

DM(K, R) ~ DMcan (K, R) ~ DMcan (K, R) .
(d) The pullback functor
w* : DM(K, R) — DM(K®, R)

s an equivalence of categories.
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Proof. In all cases, u* has a right adjoint Ru, which preserves small sums
(because u* preserves compact objects, which are generators).
Let us prove that the functor

u* : DM (K) — DM (K¥)

is fully faithful. By continuity (see [CDa, Example 11.1.25]), it is sufficient
to prove that, for any finite purely inseparable extension L/K, the pullback
functor along the map v : Spec(L) — Spec(K),

v* : DM (K, R) - DM (L, R),
is fully faithful. As, for any field E, we have a fully faithful embedding
DM“Y (E, R) — DM*Y (E, R)

which is compatible with pulbacks (see [CDa, Prop. 11.1.19)), it is sufficient to
prove that the pullback functor

v* : DM* (K, R) — DM/ (L, R)

is fully faithful. In this case, the functor v* has a left adjoint vy, and we must
prove that the co-unit

ot (M) > M
is fully faithful for any object M of DM (K). The projection formula
vy v* (M) = vy(R) ®% M reduces to prove that the co-unit vy v*(R) — R is
an isomorphism, which follows right away from [CDa, Prop. 9.1.14]. The same
arguments show that the functor

u* : DM (K, R) — DM, (K*, R)

is fully faithful.
The canonical functor

DM (L, R) — DM (L, R)

is an equivalence of categories for any perfect field L of exponent characteristic
p by a result in Kelly’s thesis (more precisely the right adjoint of this functor
is an equivalence of categories; see the last assertion of [Kell2, Cor. 5.3.9]).
The fact that the functor

u* : DMy(K, R) — DM, (K*, R)

is an equivalence of categories follows by continuity from the fact that the
pullback functor
DM.(K, R) — DM.(L, R)

is an equivalence of categories for any finite purely inseparable extension L/K
(see [CDa, Prop. 2.1.9 and 2.3.9]). As the right adjoint of u* preserves small
sums, this implies that v* : DM(K, R) — DM(K?, R) is fully faithful. Since any
compact object of DM(K*®, R) is in the essential image and since DM(K*, R)
is compactly generated, this proves that u* : DM(K, R) — DM(K*, R) is an
equivalence of categories; see [CDa, Corollary 1.3.21].
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As we already know that the functor
DM(K, R) — DM.an(K, R)
is an equivalence of categories (Cor. 5.9), it remains to prove that the functor

DMth(K, R) — DMth(K, R)

is an equivalence of categories (or even an equality). Note that we have
DMcan(L, R) = DMcan(L, R)

for any perfect field of exponent characteristic p. This simply means that
motives of the form M(X)(n), for X smooth over L and n € Z, do form a
generating family of DM(L, R). To prove this, let us consider an object C' of
DMegn (L, R) such that

Hom(M (X)(n),C[i]) =0

for any smooth L-scheme X and any integers n and i. To prove that C' = 0,
since, for any compact object E and any localization A of the ring Z, the
functor Hom(E, —) commutes with tensoring by A, we may assume that R is
a Zy)-algebra for some prime number ¢ # p. Under this extra assumption,
we know that the object C' satisfies /dh-descent (see Corollary 5.5). Since, by
Gabber’s theorem, any scheme of finite type over L is smooth locally for the
{dh-topology, this proves that C' = 0.

Finally, let us consider an object C' of DM.qn(K, R) such that Hom(M,C) =0
for any object M of DMcqn (K, R). Then, for any object N of DMcqn (K3, R),
we have Hom(N, u*(C)) = 0: indeed, such an N must be of the form u* (M) for
some M in DMgqn(K, R), and the functor u* is fully faithful on DMcgn(—, R).
Since K*® is a perfect field, this proves that u*(C) = 0, and using the
fully faithfulness of u* one last time implies that C' = 0. This proves that
DM qn (K, R) = DMcqn(K, R) and achieves the proof of the proposition. O

COROLLARY 8.2. Let K be a field of exponent characteristic p. Then the infinite
suspension functor

£ : DM (K, R) — DMean(K, R) = DMcan (K, R)
is fully faithful.
Proof. Let K* be the inseparable closure of K. The functor
£ : DM (K*, R) — DMcan(K*, R) = DMean (K%, R)
is fully faithful: this follows from the fact that the functor
¥ : DM (K* R) - DM(K®, R)

is fully faithful (which is a reformulation of Voevodsky’s cancellation theorem
[Voel0]) and from assertions (b) and (c) in Proposition 8.1.
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Pulling back along the map u : Spec(K*) — Spec(K) induces an essentially
commutative diagram of the form

DM (K) —2> DMean(K) === DM.an (K, R)
DM, (K*) —=> DMean(K*) == DMan(K*, R)
and thus, Proposition 8.1 allows to conclude. (]

8.3. The preceding proposition and its corollary explain why it is essentially
harmless to only work with perfect ground fields?. From now on, we will focus
on our fixed perfect field k£ of characteristic exponent p, and will work with
separated k-schemes of finite type.

Let X be a separated k-scheme of finite type and r > 0 an integer. Let
Zequi(X, 1) be the presheaf with transfers of equidimensional relative cycles of
dimension r over k (see [VSF00, Chap. 2, page 36]); its evaluation at a smooth
k-scheme U is the free group of cycles in U x X which are equidimensionnal of
relative dimension r over k; see [VSF00, Chap. 2, Prop. 3.3.15]. If A® denotes
the usual cosimplicial k-scheme,

A"™ = Spec (k[to, - - .,tn}/(Zti =1)),

then, for any presheaf of ablian groups F', the Suslin complex C,(F) is the
complex associated to the simplicial presehaf of abelian groups F((—) x A®).
Let Y be another k-scheme of finite type. After Friedlander and Voevodsky,
for r > 0, the (R-linear) bivariant cycle cohomology of Y with coefficients in
cycles on X is defined as the following cdh-hypercohomology groups:

(8.3.1) A (Y, X)r = HL (Y, O, (Zequi (X, 7))ean @ R) .

Since Z(Y) is a compact object in the derived category of cdh-sheaves of
abelian groups, we have a canonical isomorphism

(8:3.2) RI(Y,C,(2equi(X,7))can ® R) = RI(Y, C, (2equi (X, 7))cdn) @ R

in the derived category of R-modules. We also put A4, ;(Y, X)r = 0 for r < 0.
Recall that, for any separated k-scheme of finite type X, we have its motive
M (X) and its motive with compact support M¢(X). Seen in DM(k, R), they
are the objects associated to the presheaves with transfers R(X) and R°(X) on
smooth k-schemes: for a smooth k-scheme U, R(X)(U) (resp. R(X)(U)) is the
free R-module on the set of cycles in U x X which are finite (resp. quasi-finite)
over U and dominant over an irreducible component of U. We will also denote
by M(X) and M¢(X) the corresponding objects in DMcqn(k, R) through the
equivalence DM(k, R) >~ DMcqn (k, R).

9Note however that the recent work of Suslin [Sus13] should provide explicit formulas
such as the one of Theorem 8.11 for separated schemes of finite type over non-perfect infinite
fields.
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THEOREM 8.4 (Voevodsky, Kelly). For any integers r,i € Z, there is a canon-
ical isomorphism of R-modules

Ari(Y, X)r ~ Hompy(k,ry (M (Y)(r)[2r + 1], M*(X)).

Proof. For R = Z, in view of Voevodsky’s cancellation theorem, this is a refor-
mulation of [VSF00, Chap. 5, Prop.4.2.3] in characteristic zero; the case where
the exponent characteristic is p, with R = Z[1/p], is proved by Kelly in [Kel12,
Prop. 5.5.11]. This readily implies this formula for a general Z[1/pl]-algebra R
as ring of coefficients, using (8.3.2). g

Remark 8.5. Let g : Y — Spec(k) be a separated morphism of finite type. The
pullback functor

(8.5.1) Lg* : DMcan(k, R) = DMcan (Y, R)
has a left adjoint
(852) Lgu : DMth(K R) — DMth(k', R) .

Indeed, this is obviously true if we replace DMy (—, R) by DMcan(—, R). Since
we have DM(k, R) >~ DMcqn(k, R) = DMcan(k, R) (8.1 (c)), the restriction of
the functor

Lg; : DMcan(Y, R) — DMcan(k, R)

to DMcan (Y, R) C DMcan (Y, R) provides the left adjoint of the pullback func-
tor Lg* in the fibred category DMcqn(—, R). This construction does not only
provide a left adjoint, but also computes it: the motive of Y is the image by
this left adjoint of the constant motive on Y:

(8.5.3) M(Y) = Lg;(Ry).

We also deduce from this description of Lgy that, for any object M of
DMecqn (k, R), we have a canonical isomorphism

(8.5.4) Rg.Lg*(M) ~ RHomp(M(Y), M)

(where Homp, is the internal Hom of DMcqn(k, R)): again, this readily follows
from the analogous formula in DMqn(—, R)).

If we wite z(X, r) for the cdh-sheaf asociated to zequi(X, ) (which is compatible
with the notations of Suslin and Voevodsky, according to [VSF00, Chap. 2,
Thm. 4.2.9]), we thus have another way of expressing the preceding theorem.

COROLLARY 8.6. With the notations of Remark 8.5, we have a canonical iso-
morphism of R-modules:

Api(Y, X) g = Hompwm,, (v,r) (Ry (r)[27 + 4], Lg™ (M“(X))) -

8.7. The preceding corollary is not quite the most natural way to express bi-
variant cycle cohomology A, ;(Y, X). Keeping track of the notations of Remark
8.5, we can see that there is a canonical isomorphism

(8.7.1) g19'(R)~ M(Y).
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Indeed, we have:
R Homp(gig'(R), R) = Rg.R Homp(¢'(R), ¢'(R)).
But Grothendieck-Verdier duality (7.3) implies that
Ry = RHomp(¢'(R), ¢'(R)),
and thus (8.5.4) gives:
R Homp(gig'(R), R) ~ Rg.Lg"(R) ~ RHomp(M(Y),R).
Since the natural map
M — R Hom (R Hom (M, R), R)
is invertible for any constructible motive M in DMcqy, (k, R), we obtain the iden-

tification (8.7.1) (note that M (Y") is constructible; see [Kell2, Lemma 5.5.2]).

COROLLARY 8.8. With the notations of Remark 8.5, we have a canonical iso-
morphism of R-modules:

Ari(Y, X)r = Hompn, (v,r) (9 (R) () [2r + ], ¢ (M©(X))) .

8.9. Let f: X — Spec(k) be a separated morphism of finite type. We want to
describe M¢(X) in terms of the six operations in DMcgn(—, R).

ProPoOSITION 8.10. With the notations of 8.9, there are canonical isomor-
phisms
M®(X) ~Rf. f'(R) ~ RHompg(fi(Rx), R)

in the triangulated category DMcan (k, R).

Proof. If f is proper, then fi(Rx) = Rf.(Rx), while M¢(X) = M(X) (we
really mean equality here, in both cases). Therefore, we also have

R Homp(M*(X), R) = RHomp(M(X), R) ~ Rf.(Rx) = fi(Rx)

in a rather canonical way: the identification R Homp(M(X),R) ~ Rf.(Rx)
can be constructed in DMqn (K, R), in which case it can be promoted to a
canonical weak equivakence at the level of the model category of symmetric
Tate spectra of complexes of (R-linear) cdh-sheaves with transfers over the
category of separated K-schemes of finite type. In particular, for any morphism
1:Z — X with g = fi proper, we have a commutative diagram of the form

R Hom, (M(X), R) —> Rf.(Rx)

/| E

R Hom, (M (Z), R) —~— Rg.(R)

in the (stable model category underlying the) triangulated category
DM_qn(X, R).

In the general case, let us choose an open embedding j : X — X with a proper
k-scheme ¢ : X — Spec(k), such that f = qj. Let 9X be a closed subscheme
of X such that X \ 0X is the image of j, and write r : X — Spec(k) for the
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structural map. What precedes means that there is a canonical identification
between the homotopy fiber of the restriction map

Rg.(Rx) = Rr.(Ryx)
and the homotopy fiber of the restriction map
R Homp(M(X),R) - RHomg(M(0X),R).

But, by definition of fi(Rx), and by virtue of [VSF00, Chap. 5, Prop. 4.1.5] in
characteristic zero, and of [Kell2, Prop. 5.5.5] in general, this means that we
have a canonical isomorphism

R Homp (M*(X), R) ~ fi(Rx).

By duality (7.3), taking the dual of this identification leads to a canonical
isomorphism R f, f'(R) ~ M¢(X). O

THEOREM 8.11. Let Y and X be two separated k-schemes of finite type with
structural maps g :' Y — Spec(k) and f : X — Spec(k). Then, for any r > 0,
there is a natural identification

A (Y, X)r ~ Hompw,, (e,7) (919 (R) (r)[2r + i, Rf. /' (R)) .

Proof. We simply put Corollary 8.8 and Proposition 8.10 together. (]

COROLLARY 8.12. Let X be an equidimensional quasi-projective k-scheme of
dimension n, with structural morphism f : X — Spec(k), and consider any
subring A C Q in which the characteristic exponent of k is invertible. Then,
for any integers i and j, we have a natural isomorphism

Hompy,, (x,0) (Ax (0)[5], f'A) = CH" /(X j — 20) @ A
(where CH"™*(X,j — 2i) is Bloch’s higher Chow group.

Proof. In the case where k is of characteristic zero, this is a reformulation of
the preceding theorem and of [VSF00, Chap. 5, Prop. 4.2.9]. For the proof of
loc. cit. to hold mutatis mutandis for any perfect field k of characteristic p > 0
(and with Z[1/p]-linear coefficients), we see that apart from Proposition 8.1
and Theorem 8.4 above, the only ingredient that we need is the Z[1/p]-linear
version of [VSF00, Theorem 4.2.2], which is provided by results of Kelly [Kel12,
Theorems 5.4.19 and 5.4.21]. O

COROLLARY 8.13. Let X be a separated k-scheme of finite type, with structural
morphism [ : X — Spec(k). For any subring A C Q in which p is invertible,
there is a natural isomorphism

CH,(X) ® A ~ Hompyy, (x,a)(Ax (n)[2n], f'A)
for any integer n (where CH, (X) is the usual Chow group of cycles of dimen-

sion n on X, modulo rational equivalence).
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Proof. Thanks to [VSF00, Chap. 4, Theorem 4.2] and to [Kell2, Theorem
5.4.19], we know that

CH,(X) ® A ~ A, o(Spec(k), X)a .
We thus conclude with Theorem 8.11 for » = n and 7 = 0. O

9. REALIZATIONS

9.1. Recall from paragraph 1.3 that, for a noetherian scheme X, and a ring a
coefficients A, one can define the A-linear triangulated category of mixed mo-
tives over X associated to the h-topology DMy, (X, A). The latter construction
is the subject of the article [CDb], in which we see that DM}, (X, A) is a suitable
version of the theory of étale mixed motives. In particular, we have a natural
functor induced by the h-sheafification functor:

(9.1.1) ]:)1\/.[(3(1}1()(7 A) — DMh(X, A) s M — M, .

These functors are part of a premotivic adjunction in the sense of [CDa,
Def. 1.4.6].
From now on, we assume that the schemes X are defined over a given field k and
that the characteristic exponent of k is invertible in A. Since both DMcq, and
DM, are motivic categories over k-schemes in the sense of [CDa, Def. 2.4.45]
(see Theorem 5.11 above and [CDb, Theorem 5.6.2], respectively), we have the
following formulas (see [CDa, Prop. 2.4.53]):
(9.1.2)

(M ®F N)p =
(9.1.3) (Lf*(M))n
(9.1.4) (Lf;(M))y =
(9.1.5)  (filtM))n =~ fi(My) (for any separated morphism of finite type f)

Note finally that the functor (9.1.1) has fully faithful right adjoint; its essential
image consists of objects of DM_.q, which satisfy the property of cohomological
h-descent (see [CDa, Def. 3.2.5]).

Mh ®% Np
f*(My) (for any morphism f)

| l

~L fu(Mh) (for any smooth separated morphism f)

LEMMA 9.2. Let f: X — Speck be a separated morphism of finite type. Then
the natural morphism

(Rf(Ax))n = Rf((Ax)n)
is invertible in DMy, (k, A).
Proof. We may assume that k is a perfect field (using Prop. 8.1 (d) as well as its
analogue for the h-topology (which readily follows from [CDb, Prop. 6.3.16])).
We know that DMcqn(k, A) = DMcan(k, A) by Prop. 8.1 (c), and similarly that
DMy (k, A) = DMy, (k, A) (since, by virtue of de Jong’s theorem of resolution of

singularities by alterations, locally for the h-topology, any k-scheme of finite
type is smooth). The functor

DMcdn(k,A) = DMy (k,A), M — My
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is symmetric monoidal and sends L f;(Ax) to Lfj((Ax)n). On the other hand,
the motive Lf;(Ax) =~ fi(f'(A)) is constructible (see (8.7.1) for ¢ = f and
Theorem 6.4), whence has a strong dual in DMcqp(k, A) (since objects with
a strong dual form a thick subcategory, this follows from Proposition 7.2, by
Poincaré duality; see [CDa, Theorems 2.4.42 and 2.4.50]). The functor M —
My, being symmetric monoidal, it preserves the property of having a strong dual
and preserves strong duals. Since Rf,(Ax) is the (strong) dual of Lf;(Ax)
both in DMcgn(k, A) and in DMy (k, A), this proves this lemma. O

LEMMA 9.3. Let f : X — Y be a k-morphism between separated k-schemes of
finite type. Then the functors

Rf.«: DMcgn(X,A) = DMcan(Y,A) and Rf. : DMu(X,A) = DML (Y, A)
commute with small sums.
Proof. In the case of cdh-motives follows from the fact that the functor
Lf* : DMean(Y, A) = DMcgn(X, A)

sends a family of compact generators into a family of compact objects. The
case of h-motives is proven in [CDb, Prop. 5.5.10]. O

ProproOSITION 9.4. Let f : X — Y be a k-morphism between separated k-
schemes of finite type. Then, for any object M of DMcan(X,A), the natural
map

Rf.(M)n — Rf. (M)
is invertible in DMy (Y, A).

Proof. The triangulated category DM qn (X, A) is compactly generated by ob-
jects of the form Rg.(Ax/(n) for g : X’ — X a proper morphism and n any
integer; see [CDa, Prop. 4.2.13], for instance. Since the lemma is already known
in the case of proper maps (see equation (9.1.5)), we easily deduce from Lemma
9.3 that we may assume M to be isomorphic to the constant motive Ax. In
this case, we conclude with Lemma 9.2. (Il

COROLLARY 9.5. Under the assumptions of paragraph 9.1, the restriction of
the motivic functor M — My (9.1.1) to constructible objects commutes with
the siz operations of Grothendieck over the category of separated k-schemes of

finite type.

Proof. After Proposition 9.4, we see that it is sufficient to prove the compati-
bility with internal Hom and with operations of the form ¢' for any morphism
g between separated k-schemes of finite type.

Let us prove that, for any separated k-scheme of finite type Y and any con-
structible objects A and N of DM qi(Y, A), the natural map

R Hom(A, N), — RHom(Ayp, Ny)
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is invertible in DMy (Y, A). We may assume that A = f3(Ax) for some smooth

morphism f: X — Y. Since we have the canonical identification
RHom(Lfy(Ax), N) ~ Rf. f*(N),

we conclude by using the isomorphism provided by Proposition 9.4 in the case

where M = f*(N).

Consider now a separated morphism of finite type f : X — Speck. For any

constructible objects M and N of DMcgn (X, A) and DM_qn(k, A), respectively,

we have:
|

Rf,(R Hom(My, f'(N)n)) ~ Rf.(R Hom(M, f'(N))n)
~ (Rf.R Hom(M, f(N)))
~ R Hom(f,(M), N)x
~ R Hom( fi(Mhn), Ni)
~ R f.(RHom(My, f'(Nn))).
Therefore, for any object C' of DMy (k, A), there is an isomorphism:
R Hom(Lf*(C) ®% My, /(N )n) ~ RHom(Lf*(C) @% My, f'(Ny)) .

Since the constructible objects of the form M) are a generating family of
DM, (k, A), this proves that the natural map

F (N = f'(Nn)
is an isomorphism. The functor M +— M) preserves internal Hom’s of con-
structible objects, whence it follows from Formula (7.4.1) that it preserves
duality. Therefore, Formula (7.4.2) shows that it commutes with operations of
the form ¢' for any morphism g between separated k-schemes of finite type. [

Remark 9.6. In the case where A is of positive characteristic, the trianguated
category DMy, (X, A) is canonically equivalent to the derived category D(Xgs, A)
of the abelian category of sheaves of A-modules on the small étale site of X;
see [CDb, Cor. 5.4.4]. Therefore, Corollary 9.5 then provides a system of tri-
angulated functors
Dl\/Ith()(7 A) — D()(ét7 A)

which preserve the six operations when restricted to constructible objects.
Moreover, constructible objects of DMy, (X, A) correspond to the full subcat-
egory Dl;tf(Xét7A) of the category D(X¢t, A) which consists of bounded com-
plexes of sheaves of A-modules over X with constructible cohomology, and
which are of finite tor-dimension; see [CDb, Cor. 5.5.4 (and Th. 6.3.11)]. There-
fore, for £ # p, using [CDb, Prop. 7.2.21], we easily get ¢-adic realizations which
are compatible with the six operations (on constructible objects) over separated
k-schemes of finite type:

DMcan (X, Z[1/p]) — D%(Xer, Ze) — DE(Xear, Qr) -

For instance, this gives an alternative proof of some of the results of Olsson
(such as [Ols15, Theorem 1.2]).
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Together with Theorem 8.11, Corollary 9.5 is thus a rather functorial way to
construct cycle class maps in étale cohomology (and in any mixed Weil coho-
mology, since they define realization functors of DMy (—, Q) which commute
with the six operations on constructible objects; see [CDa, 17.2.5] and [CDb,
Theorem 5.2.2]). This provides a method to prove independence of ¢ results
as follows. Let X be a separated k-scheme of finite type, with structural map
a: X — Speck, and f : X — X any k-morphism. Then f induces an en-
domorphism of Ra.(Z[1/p]x) in DMcan(k, Z[1/p]). Since the latter object is
constructible (by Theorem 6.4 (a)), it has a strong dual (as explained in the
proof of Lemma 9.2), and thus one can define the trace of the morphism in-
duced by f, which is an element of Z[1/p] (since one can identify Z[1/p] with
the ring of endomorphisms of the constant motive Z[1/p] in DMcan(k, Z[1/p])
using Corollary 8.13). Let ¢ be a prime number distinct from the characteristic
exponent of k. Since the ¢-adic realization functor is symmetric monoidal, it
preserves the property of having a strong dual and preserves traces of endo-
morphisms of objects with strong duals. Therefore, if k is any choice of an
algebraic closure of k, and if X = k ®;, X, the number

D (=)' Te[f*  Hy (X, Qo) — H (X, Q)]

i

is independent of ¢ and belongs to Z[1/p]: Corollary 9.5 implies that it is the
image through the unique morphism of rings Z[1/p] — Qy of the trace of the
endomorphism of the motive Ra.(Z[1/p]x) induced by f. This might be com-
pared with Olsson’s proof in the case where f is finite; see [Ols, Theorem 1.2].
One may also replace H'(X, Q) with the evaluation at X of any mixed Weil
cohomology defined on smooth k-schemes, and still use the same argument.

Remark 9.7. If the ring A is a Q-algebra, the functor M +— M), defines an
equivalence of categories DM qn (X, A) =~ DM, (X, A) (so that Corollary 9.5
becomes a triviality). This is because, under the extra hypothesis that Q C A,
the abelian categories of cdh-sheaves of A-modules with transfers and of h-
sheaves of A-modules are equivalent: by a limit argument, it is sufficient to
prove this when X is excellent, and then, this is an exercise which consists to
put together [CDa, Prop. 10.4.8, Prop. 10.5.8, Prop. 10.5.11 and Th. 3.3.30].
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DESCENTE GALOISIENNE SUR LE SECOND GROUPE DE CHOW :

MISE AU POINT ET APPLICATIONS
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RESUME. Le troisiéme groupe de cohomologie étale non ramifié d’une
variété projective et lisse, a coeflicients dans les racines de l'unité
tordues deux fois, intervient dans plusieurs articles récents, en par-
ticulier en relation avec le groupe de Chow de codimension 2. Des
résultats généraux ont été obtenus a ce sujet par B. Kahn en 1996. De
récents travaux, du coté des groupes algébriques linéaires d’une part,
du coté de la géométrie algébrique complexe d’autre part, m’incitent
a les passer en revue, et a les spécialiser aux variétés proches d’étre
rationnelles.

2010 Mathematics Subject Classification: 19E15, 14C35, 14C25

Dans tout cet article, on note F un corps de caractéristique zéro, F une
cloture algébrique de F et G = Gal(F/F). Soit X une F-variété lisse et
géométriquement intégre. On note X = X xp F. On note F(X) le corps des
fonctions rationnelles de X et F(X) le corps des fonctions rationnelles de X.
L’application naturelle entre groupes de Chow de codimension 2

CH*(X) — CH*(X)¢
n’est en général ni injective ni surjective, méme si 'on suppose que X est

projective et que 'ensemble X (F) des points rationnels de X est non vide — &
la différence du cas bien connu de CH'(X).
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Plusieurs travaux ont été consacrés a ’étude des noyau et conoyau de cette
application et aux liens entre le groupe de Chow de codimension deux et le
troisieme groupe de cohomologie non ramifiée de X a valeurs dans Q/Z(2),
groupe noté H3 (X,Q/Z(2)). Citons en particulier [6], Raskind et 'auteur [10],
Lichtenbaum [23], Kahn [19, 20], C. Voisin et auteur [11], Pirutka [29], Kahn
et Pauteur [8], Merkurjev [4, 24, 25, 26], Voisin [34].

Une des raisons de s’intéresser au groupe H2 (X, Q/Z(2)) est que c’est un inva-
riant F-birationnel des F-variétés projectives et lisses, réduit & H3(F,Q/Z(2))
si la F-variété X est F-birationnelle a un espace projectif.

Le résultat principal du présent article est le Théoreme 4.1, qui s’applique a
toute variété projective et lisse géométriquement rationnellement connexe, et
qui dans le cas particulier des variétés géométriquement rationnelles établit
(Corollaire 4.2) une suite exacte

Ker[CH*(X) — CH*(X)%] —» H'(G,Pic(X) @ F ") —
— H3 (X,Q/Z(2))/H*(F,Q/Z(2)) — Coker[CH*(X) — CH?*(X)“] —
H*(G,Pic(X)®F")

sous 'une des deux hypotheses supplémentaires :
(i) La F-variété X possede un F-point.
(ii) La dimension cohomologique de F est au plus 3.

Décrivons la structure de ’article.

Le §1 est consacré a des rappels de résultats fondamentaux sur la K-coho-
mologie, la cohomologie non ramifiée et la cohomologie motivique. On y rappelle
aussi (Prop. 1.3) un résultat de [8] apportant une correction a [20].

Au §2, sous I'hypothese que le groupe H°(X, K2) est uniquement divisible, on
établit par deux méthodes différentes (I'une K-théorique, 'autre motivique)
une suite exacte générale (Propositions 2.4 et 2.6). On suppose ici la variété X
lisse et géométriquement intégre, mais non nécessairement propre. Ceci s’ap-
plique en particulier aux espaces classifiants de groupes semisimples considérés
par Merkurjev [24].

La premiere méthode, a ’ancienne, via la K-cohomologie, est celle des articles
[10], [11]. La seconde méthode fait usage des groupes de cohomologie motivique
a coefficients Z(2), comme dans larticle [20] de Bruno Kahn. De ce point de vue,
on ne fait que généraliser [20, Thm. 1, Corollaire], avec la correction mentionnée
ci-dessus. Lorsque le corps de base est de dimension cohomologique au plus 1,
auquel cas la correction n’est pas utile, et lorsque de plus les variétés considérées
sont projectives, ces suites exactes ont déja été utilisées dans [11] et [8].

Au §3, pour X projective et lisse, on donne des conditions permettant de
controler le groupe H'(X, Ko) apparaissant dans les suites exactes du §2. On
donne une application aux surfaces K3 définies sur C((¢)).
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Au 84, on combine les résultats des paragraphes précédents pour établir les
résultats principaux de D’article, le théoreme 4.1 et son corollaire 4.2 cité ci-
dessus.

Au §5, on applique les résultats du §4 aux hypersurfaces de Fano complexes.
Pour X C Pg hypersurface lisse de degré d < n et F' corps quelconque conte-
nant C, on établit H2 (X r,Q/Z(2)) = H3(F,Q/Z(2)) dans chacun des cas sui-
vants : pour n > 5; pour n = 5 sous réserve que l'on ait H2 (X,Q/Z(2)) = 0;
pour n = 4 lorsqu’il existe un cycle universel de codimension 2. On fait le lien
avec les résultats de Auel, Parimala et I'auteur [2] et de C. Voisin [33, 34] sur les
hypersurfaces cubiques et sur les cycles universels de codimension 2, résultats
sur lesquels on donne un nouvel éclairage — la K-théorie algébrique remplacant
certains arguments de géométrie complexe (voir la démonstration du théoreme
5.4).

Par rapport a la premiere version de cet article, mise sur arXiv en février 2013,
cet article differe essentiellement par le contenu du présent §5, motivé par le
travail [2] et par les articles [33, 34] de C. Voisin.

Terminons cette introduction en indiquant ce qui n’est pas fait dans cet article.

(i) Je n’ai pas vérifié que les arguments dans la littérature utilisant les com-
plexes Z(2) de Voevodsky sont compatibles avec ceux utilisant le complexe
I'(2) de Lichtenbaum ou avec ceux utilisant les groupes de cycles supérieurs
de Bloch, dont il est fait usage dans [8]. Et je n’ai pas vérifié que dans les
suites exactes des Propositions 2.4 et 2.6, dont les termes sont identiques, les
fleches aussi coincident. Ceci n’affecte pas les principaux résultats de 'article.
Le lecteur vérifiera en effet que la Proposition 2.4, établie par des méthodes
a l'ancienne via la Proposition 1.3, suffit a établir tous les résultats des pa-
ragraphes 3, 4, 5, & P'exception du lemme 5.7 (ii), du théoréme 5.6 (viii) et
de I'assertion de surjectivité de 'application CH?*(X ) — CH?(X%)“ dans le
théoreme 5.8 (iii).

(ii) Les longues suites exactes des Propositions 2.4 et 2.6, le théoreme 4.1
et le corollaire 4.2 devraient se spécialiser en un certain nombre des longues
suites exactes pour les variétés classifiantes de groupes algébriques linéaires
connexes établies par Blinstein-Merkurjev [4] et par Merkurjev [24, 25]. Je me
suis contenté d’allusions a ces articles en divers points du texte.

(iii) Sur un corps de base de caractéristique positive, l'utilisation de la cohomo-
logie de Hodge-Witt logarithmique permet de donner des analogues de certains
des résultats du présent travail. Nous renvoyons pour cela aux articles [20] et
[8].

Remerciements. Cet article fait suite a des travaux et discussions avec Bruno
Kahn, et & des travaux de A. Merkurjev et de C. Voisin. Je remercie le rappor-

teur pour sa lecture critique du tapuscrit.
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1 RAPPELS, PROPRIETES GENERALES

On utilise dans cet article le complexe motivique Z(2) de faisceaux de co-
homologie étale sur les variétés lisses sur un corps, tel qu’il a été défini par
Lichtenbaum [22, 23].

Les groupes de cohomologie a valeurs dans le complexe Z(2) sont dans tout cet
article les groupes d’hypercohomologie étale. Ils sont notés H' (X, Z(2)).

Sur un schéma X, on note H*(X,K;) les groupes de cohomologie de Zariski &
valeurs dans le faisceau K; sur X associé au préfaisceau U — K;(H°(U, Ox)),
ou la K-théorie des anneaux est la K-théorie de Quillen.

Etant donné un module galoisien M, c’est-a-dire un G-module continu dis-
cret, on note tantot H'(G, M) tantét H'(F, M) les groupes de cohomologie
galoisienne a valeurs dans M.

On note Q/Z(2) le module galoisien lim | ud2.

On note K3Fjpgee := Coker[Kinor fp —y g@uitlen g,

On a les propriétés suivantes, conséquences de travaux de Merkurjev et Suslin
[27], de A. Suslin [30], de M. Levine [21], de S. Lichtenbaum [23], de B. Kahn

[19], [20, Thm. 1.1, Lemme 1.4].

HO(F, Z(2)) = 0.

H(F,Z(2)) = K3Findec.

H2(F,Z(2)) = K> F

H3(F, Z(2)) = 0.

HY(F,Z(2)) = H"YF,Q/Z(2)) si i > 4.

H(F,Z(2)) =0sii#1,2.

H' (F,7(2)) = K3(F)ingec est divisible, et sa torsion est Q/Z(2) (cf. [19, (1.2)]).
Il est donc extension d’un groupe uniquement divisible par Q/Z(2).
H2(F,7Z(2)) = K2(F) est uniquement divisible.

Soit X une F-variété lisse géométriquement integre, non nécessairement pro-
jective. On a :

H°(X,Z(2)) = 0.

HY(X,Z(2)) = K3,indecF (X).

HY(X,Z(2)) = K3,indecF(X) est extension d’'un groupe uniquement divisible
par Q/Z(2). Ceci résulte de la suite exacte [19, (1.2)] et de [30, Thm. 3.7]).
H?(X,Z(2)) = H*(X,Ka2).

H3(X,Z(2)) = HY(X, K2).

On a la suite exacte fondamentale (Lichtenbaum, Kahn [20, Thm. 1.1])

0— CH*(X) —» HY(X,Z(2)) - H?.(X,Q/Z(2)) = 0 (1.1)

ou
H; (X,Q/Z(2)) = H* (X, H*(X,Q/Z(2)))

est le sous-groupe de H?(F(X),Q/Z(2)) formé des éléments non ramifiés en
tout point de codimension 1 de X.
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Pour toute F-variété projective, lisse et géométriquement integre X, dans 'ar-
ticle [10] avec W. Raskind, on a établi que les groupes H°(X, K2) et H (X, K2)
sont chacun extension d’un groupe fini par un groupe divisible. Si la dimension
cohomologique de F satisfait cd(F') < 4, ceci implique que les groupes de co-
homologie galoisienne H" (G, H°(X,K3)) et H"(G, H*(X,K3)) sont nuls pour
r>1+ 1.

On a une suite spectrale
By = HP(G,HY(X,Z(2))) = H"(X, Z(2)).

Remarque 1.1. Pour X = Spec(F'), compte tenu des identifications ci-dessus,
cette suite spectrale donne une suite exacte

HY(G,Q/Z(2)) — KoF — KoF© — H2(G,Q/Z(2)) — 0.

Ceci est un cas particulier de [19, Thm. 2.1].

En comparant la suite exacte fondamentale (1.1) au niveau F' et au niveau F,
en prenant les points fixes de G agissant sur la suite au niveau F', et en utilisant
le lemme du serpent, on obtient :

PROPOSITION 1.2. Soit X une F'-variété lisse et géométriquement intégre. Sout
¢ HY(X,Z(2)) — H*(X,Z(2))¢. On a alors une suite ezacte

0 — Ker[CH?*(X) — CH?*(X)%] — Ker(p) —
— Ker[H,,, (X, Q/Z(2)) = H,,,.(X,Q/Z(2))] —
— Coker[CH?(X) — CH?*(X)®] — Coker(p).
Notons
N(X) := Ker|H*(G, K2(F(X)) » HYG, & F(m)X)] (1.2)
zex®
L’énoncé suivant est essentiellement établi dans [8].

PROPOSITION 1.3. Soit X une F-variété lisse et géométriquement integre.
(a) On a une suite exacte

H?(F,Q/Z(2)) — Ker[H,,.(X,Q/2(2)) — H;,.(X,Q/Z(2))] —
— N(X) = Ker[H'(F,Q/Z(2)) — H*(F(X),Q/Z(2))].
(b) Si X(F) #0 ou si cd(F) < 3, on a un isomorphisme
Ker[H,, (X, Q/Z(2))/H?(F,Q/Z(2)) — H;; (X, Q/Z(2))] = N (X).
(c) Si X est de dimension au plus 2, on a une suite exacte

HY(F,Q/Z(2)) — H3,(X,Q/Z(2) = N(X) -
— HY(F,Q/Z(2)) - H'(F(X),Q/Z(2)).
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Démonstration. L'énoncé (a) est [8, Prop. 6.1, Prop. 6.2]. L’énoncé (b) est une
conséquence facile de (a). La proposition 6.1 de [8] montre aussi que, si X est
de dimension au plus 2, alors le complexe

H(F,Q/Z(2) — Ker[H;,,. (X, Q/Z(2)) — H;,. (X, Q/Z(2))] —
— N(X) = HY(F,Q/Z(2)) — H*(F(X),Q/Z(2))

est une suite exacte

HP(F,Q/Z(2) = Hy\ (X, Q/Z(2)) —
— N(X) — H'(F,Q/Z(2)) — H'(F(X),Q/Z(2)).

En effet les groupes H3(As,Q/Z(2)) intervenant dans la proposition 6.1 de [8]
sont alors nuls : via la conjecture de Gersten, cela résulte du fait que le corps
des fractions de Ay est de dimension cohomologique 2, si bien que le complexe
de la proposition 6.1 de [8] est alors exact. O

2 LE CAS OU LE GROUPE H(X,K3) EST UNIQUEMENT DIVISIBLE

Le but de ce pagragraphe est d’établir la proposition 2.4. On le fait d’abord
par une méthode “K-théorique” (paragraphe 2.1) qui se préte plus aux calculs
explicites des fleches intervenant dans les suites exactes. La version “motivique”
(paragraphe 2.2) est plus souple quand il s’agit d’étudier la fonctorialité en la
F-variété X des suites concernées.

Dans ce paragraphe, on considere une F-variété X lisse et géométriquement
integre, telle que le groupe H°(X,Ks) est uniquement divisible, mais on ne
suppose pas X projective.

2.1 METHODE K-THEORIQUE

Pour 7 > 1, les fleches naturelles
HY(G,KyF(X)) - H (G, KyF(X)/KyF) - H (G, K,F(X)/H°(X,K3))

sont alors des isomorphismes.

D’aprés un théoréme de Quillen (conjecture de Gersten pour la K-théorie), le
complexe

K,F(X)— P Fa)*— P z
zexV zex®
est le complexe des sections globales d’une résolution flasque du faisceau Ko

sur la F-variété lisse X.

Ce complexe donne donc naissance & trois suites exactes courtes de modules
galoisiens :
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0— Ko2F(X)/H(X,Ks) = Z — HY(X,K) = 0
0=Z =0, soF@)* =10
02120, - CH (X) = 0.

En utilisant le théoreme 90 de Hilbert et le lemme de Shapiro, le théoréeme de
Merkurjev—Suslin et en particulier sa conséquence [6, Thm. 1] [30, 1.8]

K>yF(X)/KyF = (K,F(X)/K2F)°,

par des arguments classiques (cf. [10, 11]) de cohomologie galoisienne, on ob-
tient :

PROPOSITION 2.1. Soit X une F'-variété lisse et géométriquement integre telle
que le groupe HY(X, Ky) soit uniquement divisible. Soit N'(X) comme en (1.2).
On a alors une suite exacte

0— HYX,Ky) = HY(X,K2)¢ —
— HY (G, K»2F(X)) = Ker[CH*(X) — CH*(X)] —
— HYG, HY(X,K3)) = N(X) =
— Coker[CH?*(X) — CH*(X)®] — H*(G, H (X, K2)).

Pour toute F-variété X géométriquement integre, un théoreme de B. Kahn [19,
Cor. 2, p. 70] donne un isomorphisme

HY(G, K3 F(X)) = Ker[H?(F,Q/Z(2)) — H*(F(X),Q/Z(2))].
On a donc établi :

PROPOSITION 2.2. Soit X une F'-variété lisse et géométriquement integre telle
que le groupe H°(X,K2) soit uniquement divisible. Soit N'(X) comme en (1.2).
On a alors une suite exacte

0— HY(X,Ky) - HY(X,Kp)¢ —
— Ker[H*(F,Q/Z(2)) — H*(F(X),Q/Z(2))] —
— Ker[CH*(X) — CH*(X)] —» HY(G,H'(X,K3)) = N(X) —
— Coker[CH?*(X) — CH?*(X)%) — H*(G, H (X, K>)).

Remarque 2.3. Soit X un espace principal homogene d’un F-groupe semisimple
simplement connexe absolument presque simple. On a Ky(F) = H°(X,Ks), et
ce groupe est donc uniquement divisible. On a par ailleurs H'(X, K2) = Z avec
action triviale du groupe de Galois. L’image de 1 par I'application

H' (X, IC2)% — H*(F,Q/Z(2))

est (au signe pres) 'invariant de Rost de X. Pour tout ceci, voir [16, Part II, §6].
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En combinant les propositions 2.2 et 1.3 on trouve :

PROPOSITION 2.4. Soit X une F'-variété lisse et géométriquement intégre. Sup-
posons le groupe H°(X,K2) uniquement divisible. Sous 'une des hypothéses
X(F)#0 oucd(F) <3, on a une suite exacte

0— HYX,Kz) —» H'(X,K)¢ —
— Ker[H*(F,Q/Z(2)) — H*(F(X),Q/Z(2))] —
— Ker[CH*(X) —» CH*(X)®] - HY(G,H' (X, K3)) —
— Ker[H,,,.(X,Q/Z(2))/H*(F,Q/Z(2)) = H,,.(X,Q/Z(2))] —
— Coker[CH?*(X) — CH*(X)Y] = H*(G, H (X, K2)).

Sous Uhypothése X (F) # 0, le groupe
Ker[H?(F,Q/Z(2)) — H*(F(X),Q/Z(2))]
est nul.

Remarque 2.5. Sous 'hypothese Ko(F) = HO(X,Ks) et HS (X,Q/Z(2)) = 0,
on retrouve I’énoncé de B. Kahn [20, Thm. 1, Corollaire].

2.2 METHODE MOTIVIQUE

Toujours sous ’hypothése que le groupe H(X,Kq) ~ H?(X,Z(2)) est unique-
ment divisible, étudions la suite spectrale

EPY = HP(G,HY(X,Z(2))) = H"(X,Z(2)).

La page E5Y contient un certain nombre de zéros. Tous les termes E5° sont
nuls. Comme H?(X,Z(2)) est supposé uniquement divisible, tous les termes
EY* = H?(G,H?(X,Z(2))) pour p > 1 sont nuls. Les termes EY sont égaux &
HP(F,Q/Z(2)) pour p > 2, groupe qui coincide avec HP*1(F,Z(2)) pour p > 3.
La fleche EY? — E2', soit HY(X,Kq)¥ — H?(F,Q/Z(2)), est surjective, car il
en est déja ainsi de KoF — H2(F,Q/Z(2)) (Remarque 1.1).

Notons comme ci-dessus ¢ : H*(X, Z(2)) — H*(X,Z(2))¢. L’analyse de la suite
spectrale donne les énoncés suivants.

1) Il y a une suite exacte

0 — H3(X, Z(2)) — (H3(X,2(2))Y — HY(F,Z(2)) — Ker(p) —
— HY (G, H' (X, K2)) — Ker[H(F, Z(2)) — H° (X, Z(2))].

Ainsi il y a une suite exacte

0— HY(X,Ky) = (H'(X,K2))¢ = H3(F,Q/Z(2)) — Ker(p) —
— HY(G,H3(X,Z(2))) — Ker[HY(F,Q/Z(2)) — H*(F(X),Q/Z(2))].
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En particulier, si X (F) # @ ou si 'on a c¢d(F') < 3, alors on a une suite exacte
0— H'(X,K2) = (H(X,K2))% —
— H3(F,Q/Z(2)) — Ker(p) — H' (G, H* (X, K2)) — 0.

K2)
La fleche H?(F,Q/Z(2)) — Ker(p) est injective si X(F) # 0, ou si
H3(F,Q/Z(2)) est nul, par exemple si cd(F) < 2.

2) Pour le conoyau de ¢, on trouve une suite exacte
0 — D — Coker(p) — H*(G, H (X, K5))

ot D est un sous-quotient de Ker[H’(F,Z(2)) — H®(X,Z(2))]. Ce dernier
groupe est nul si le noyau de H*(F,Q/Z(2)) — H*(F(X),Q/Z(2)) est nul.
En particulier D = 0 si X (F) # 0, ou si H®>(F,Z(2)) = H*(F,Q/Z(2)) est nul,
par exemple si cd(F) < 3.

En utilisant la proposition 1.2, on voit que pour toute F-variété X lisse
géométriquement integre avec H?(X,K3) uniquement divisible, sous I’hy-
pothese que soit X (F') # 0 soit cd(F) < 3, on a une suite exacte

0 — Ker[CH?*(X) — CH?*(X)%] — Ker(p) —
— Ker[H;.(X,Q/Z(2)) — Hy,(X,Q/Z(2))] -
— Coker[CH?(X) — CH*(X)®] — H*(G, H (X, K2)).
et une suite exacte
H?(F,Q/Z(2)) — Ker(p) — H (G, H"(X,K2)) — 0.

Si 'on quotiente les deux termes Ker(p) C H4(X,Z(2)) et H3,(X,Q/Z(2)) par
I'image de H*(F,Z(2)) ~ H3(F,Q/Z(2)), ce qui par fonctorialité de la suite
spectrale appliquée au morphisme structural X — Spec(F') induit une fleche
Ker(p)/H*(F,Z(2)) — H3,(X,Q/Z(2))/H?(F,Q/Z(2)), on trouve :

PROPOSITION 2.6. Soit X une F'-variété lisse et géométriquement intégre. Sup-
posons que H°(X, K3) est uniquement divisible. Supposons en outre que l'on a
X(F)#0 oucd(F) < 3. On a alors une suite exacte

0— HYX,Ky) = H'(X,K)¢ —
— Ker[H*(F,Q/Z(2)) — H*(F(X),Q/Z(2))] —
— Ker[CH*(X) — CH*(X)®] - HY(G,H (X, K3)) —
— Ker[H,,,.(X,Q/Z(2))/H*(F,Q/Z(2)) — H,,.(X,Q/Z(2))] —
— Coker[CH?*(X) — CH*(X)®] — H*(G, H*(X, K2)).

Sous Uhypothése X (F) # 0, le groupe
Ker[H?(F,Q/Z(2)) — H®(F(X),Q/Z(2))]

est nul.
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Remarques 2.7. (a) La démonstration n’utilise ni le groupe N (X) défini en
(1.2) ni la proposition 1.3.

(b) L’énoncé de cette proposition est identique a celui de la proposition 2.4,
mais il n’est pas clair a priori que les fleches intervenant dans ces deux suites
exactes coincident.

2.3 COMPARAISON ENTRE LES DEUX METHODES

Supposons H°(X, K2) uniquement divisible. On a une suite exacte

Ker[CH?*(X) - CH*(X)] —» HYG, H*(X,Ky)) &
£ N(X) — Coker[CH?(X) — CH?*(X)%]

extraite de la proposition 2.2, et utilisée dans la démonstration de la proposi-
tion 2.4. On a une suite exacte

Ker[CH*(X) — CH*(X)] — Ker(p) >
% Ker[H2, (X, Q/Z(2)) — H2,.(X,Q/Z(2))] — Coker[CH?(X) — CH?*(X)¢]

extraite de la proposition 1.2 et utilisée dans la démonstration de la proposition
2.6. Les termes de gauche et de droite dans ces deux suites exactes coincident.
Sous réserve de vérification des commutativités des diagrammes, sur tout corps
F (sans condition de dimension cohomologique), le lien entre ces deux suites
est fourni par le diagramme de suites exactes verticales

H3(F,Q/7(2)) = H3(F,Q/Z(2))
o H3.(X,Q/7(2))—
Ker(y) Ker —H3, (Y,@/mn}

7Y(G, H\(X, K2)) ’ N(X)
H*(F\Q/Z(2 = H*(F,Q/Z(2
Ker | ¢ 4414((1)?7)0@/2(2))} Ker[ ( %414((1)““?)‘%@/2(2))]

ol la suite verticale de droite vaut pour toute F-variété lisse et géométri-
quement integre X ([8], voir la proposition 1.3 ci-dessus), et ou celle de gauche
est établie au début de la section 2.2 pour les F-variétés X telles que H° (X, KC2)
est uniquement divisible.
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2.4  VARIETES AVEC HY(X,K2) UNIQUEMENT DIVISIBLE
2.4.1 LES ESPACES CLASSIFIANTS DE GROUPES SEMISIMPLES

Soit H un F-groupe semisimple connexe, soit V une représentation linéaire
génériquement libre de H possédant un ouvert H-stable U C V, de
complémentaire un fermé de codimension au moins 3 dans V, et tel que que
l’on dispose d’une application quotient U — U/H qui soit un H-torseur. Soit
X := U/H. Soit H,. le revétement simplement connexe de H et soit C le
noyau de l'isogénie Hy. — H, puis C le module galoisien fini défini par son
groupe des caracteres. Comme le montre Merkurjev dans [24, Thm. 5.3], on a
des identifications
Ko(F) = H'(X,K>)

et
C(1) := Tor(C,Q/2(1)) ~ H (X, K»).

Le groupe Ks(F') est uniquement divisible. La F-variété X possede un point
F-rationnel.

La proposition 2.4 et la proposition 2.6 donnent donc chacune une suite exacte
longue

0 — Ker[CH*(X) — CH*(X)%] —» HY(G,C(1)) —
— Ker[H,,.(X,Q/Z(2))/H(F,Q/Z(2)) — H,,.(X,Q/Z(2))] =
— Coker[CH?(X) — CH?*(X)%] — H?(G,C(1)).

Il serait intéressant de déterminer le lien entre la suite exacte a 5 termes obtenue
par Merkurjev [25, Thm. 3.9] et les suites exactes & 5 termes ci-dessus. Elles
ont en commun leurs deux premiers termes, et leur dernier terme.

2.4.2 VARIETES PROJECTIVES

Pour F un corps algébriquement clos — toujours supposé de caractéristique
nulle — et Y une F-variété integre, projective et lisse, les propriétés suivantes
sont équivalentes :

(i) Le groupe de Picard Pic(Y) est sans torsion.

(ii) Pour tout entier n > 0, H (Y, 1) = 0.

(iii) HY(Y,Oy) = 0 et le groupe de Néron—Severi NS(Y') est sans torsion.

(iv) Le groupe H°(Y, K2) est uniquement divisible.

L’équivalence des trois premieres propriétés est classique. Pour I’équivalence
avec la quatrieme, voir [10, Prop. 1.13], qui s’appuie sur des résultats de Mer-
kurjev et de Suslin.

Les propriétés ci-dessus sont satisfaites par toute F-variété projective et lisse
géométriquement unirationnelle, mais aussi par toute surface K3 et par toute
surface projective et lisse dans I’espace projectif P3.

Pour une F-surface Y projective et lisse satisfaisant ces propriétés, la dualité
de Poincaré implique la nullité des groupes Hg’t (Y, ) pour tout n > 0. On sait
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(Bloch, Merkurjev—Suslin, cf. [10, (2.1)]) que la nullité de ces groupes implique
que le groupe de Chow CH?(Y) n’a pas de torsion.

Pour une F-surface X projective, lisse et géométriquement integre telle que
X satisfasse ces propriétés, le groupe Ker[CH?(X) — CH?(X)] coincide donc
avec le sous-groupe de torsion CH?(X)ors de CH?(X).

Sans hypothese supplémentaire sur X, il est difficile de controler le module
galoisien H'(X, K3) et I'application

CH?*(X)tors = Ker[CH*(X) — CH*(X)] — HY(G, H' (X, K>)).

Renvoyons ici le lecteur au délicat travail d’Asakura et Saito [1] qui établit que
pour un corps p-adique F' et une surface lisse dans P3,, de degré au moins 5
“tres générale”, le groupe

CH?*(X)tors € HY(G, HY(X,K5))

est infini.
Au paragraphe suivant, on donnera des hypotheses restrictives permettant de
facilement controler le module H'(X,Kz) et sa cohomologie galoisienne.

3 LE MODULE GALOISIEN H!(X,K>)
On considere la fleche naturelle
PicX) @ F " — H'(X,Ks).
PRrROPOSITION 3.1. Soit X une F-variété projective, lisse et géométriquement

intégre. Supposons H*(X,Ox) = 0 et supposons que les groupes H3 (X, Zy)
sont sans torsion. Alors pour tout i > 2, la fléche

H(G,Pic(X)®F ") — H(G,H' (X, K3))
est un isomorphisme.
Démonstration. D’apres [10, Thm. 2.12], la fleche Galois équivariante
Pic(X) @ F " — HY(X,K,)

a alors noyau et conoyau uniquement divisibles. Elle induit donc un isomor-
phisme sur H*(G, ) pour i > 2. O

Remarque 3.2. L’hypothese que les groupes Hg’t(Yﬁg) sont sans torsion est
équivalente & I’hypotheése que le groupe de Brauer Br(X) est un groupe divisible.

PROPOSITION 3.3. Soit X une F-variété projective, lisse et géométriguement
integre. Supposons qu’il existe une courbe V. C X telle que sur un domaine
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universel Q0 Uapplication CHo(Va) — CHo(Xq) est surjective, et supposons
que les groupes H3, (X, Z¢) sont sans torsion. Alors pour tout i > 1, la fleche

H(G,Pic(X)®F ) — H(G,H (X, K3))
est un isomorphisme.

Démonstration. D’apres [10, Thm. 2.12; Prop. 2.15], sous les hypotheses de la
proposition, la fleche Galois-équivariante

Pic(X) @ F " — H (X, K,)
est surjective et a un noyau uniquement divisible. Elle induit donc un isomor-
phisme sur H*(G, o) pour i > 1. O

Remarques 3.4. Rappelons que ’on suppose car(F) = 0.

(a) L’hypothese sur le groupe de Chow des zéro-cycles faite dans la proposition
3.3 implique H (X, Ox) = 0 pour i > 2. Elle implique que le groupe de Brauer
Br(X) est un groupe fini. Elle est satisfaite pour les variétés X dominées ration-
nellement par le produit d’une courbe et d’un espace projectif, en particulier
elle est satisfaite pour les variétés géométriquement unirationnelles.

(b) Sous les hypotheses de la proposition 3.3, on a Br(X) = 0.

(¢c) Toutes les hypotheses de la proposition 3.3 sont satisfaites pour une variété
X qui est facteur direct birationnel d’une variété rationnelle.

La proposition suivante (cf. [11, Prop. 8.10]) s’applique par exemple aux sur-
faces K3 sur F' corps de fonctions d’une variable sur C, ou sur F' = C((t)).

PROPOSITION 3.5. Supposons le corps F' de dimension cohomologique au plus 1.
Soit X une F-surface projective, lisse, géométriquement connexe, satisfaisant
HY(X,0x) = 0. Supposons le groupe Pic(X) = NS(X) sans torsion. On a
alors un homomorphisme surjectif

H2 .(X,Q/Z(2)) — Coker[CH*(X) — CH?*(X)“].

Si Vindice I(X) de X, qui est le pged des degrés sur F' des points fermés de X,
n’est pas égal a 1, alors H2 (X, Q/Z(2)) # 0.

Démonstration. Sous les hypotheses de la proposition, le groupe H°(X, Ko) est
uniquement divisible [10, Cor. 1.12]. Le groupe H!(X, K2) est extension d'un
groupe fini par un groupe divisible [10, Thm. 2.2], donc H*(G, H*(X, K3)) = 0.
Comme X est une surface, on a H3, (X, Q/Z(2)) = 0. La surjection résulte alors
de la proposition 2.4 (ou de la proposition 2.6). Pour la surface X, on a la suite
exacte de modules galoisiens

0— Ag(X) - CH*(X) = Z — 0,
ot la flecche CH?(X) — 7 est donnée par le degré ' des zéro-cycles. L’hy-
pothése H'(X,0x) = 0 implique que le groupe Ag(X) est uniquement di-
visible (théoréme de Roitman). L’application induite CH?(X)“ — Z est donc

surjective, et le groupe Coker[CH?(X) — CH?(X)%] a pour quotient le groupe
Z/1(X). 0
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Ezemple 3.6. Soit F' = C((t)). Soient n > 0 un entier et X C P% la surface
définie par ’équation homogene

xf +tot + 2al + 32 = 0.

D’apres [13, Prop. 4.4], pour n = 4 (surface K3) et pour n premier & 6, on a
I(X) # 1. La proposition ci-dessus donne alors H> (X, Q/Z(2)) # 0.

4 VARIETES A PETIT MOTIF SUR UN CORPS NON ALGEBRIQUEMENT CLOS

Commengons par un énoncé général mais peut-étre un peu lourd.

THEOREME 4.1. Soit X une F-variété projective, lisse et géométriquement
intégre.

Supposons satisfaites les conditions :

(i) Sur un domaine universel 2, le degré CHy(Xq) — Z est un isomorphisme.
(i3) Le groupe Pic(X) = NS(X) est sans torsion.

(iii) Pour tout ¢ premier, le groupe H3 (X, Z¢) est sans torsion.

(iv) On a au moins l'une des propriétés : X (F) # 0 ou cd(F) < 3.

Alors on a une suite exacte

Ker[CH?(X) — CH?*(X)%)-5HY(G,Pic(X) 0 F ) —
— Ker[H;,(X,Q/Z(2))/H*(F,Q/Z(2)) = H,.(X,Q/Z(2))] —
— Coker[CH2(X) — CH2(X)%]-H2(G, Pic(X) @ F ).
Sous Uhypothése X (F) # 0 ou cd(F) < 2, la flcche o est injective.

Démonstration. Comme on a supposé car(F) = 0, d’apres [5], I'hypothese (i)
implique que tous les groupes H*(X,Ox) pour i > 1 sont nuls, que I'on a
Pic(X) = NS(X), et que le groupe de Brauer Br(X) s’identifie au groupe fini
®eH3 (X, Z4)tors- Sous I'hypothese (i), 'hypothese (iii) est donc équivalente &
Br(X) = 0.

Sous les hypotheses (i) et (iii), la proposition 3.3 donne

HY(G,Pic(X)oF ") 3 H(G, H (X,Ks))

pour tout ¢ > 1.

Sous les hypotheses (i) et (ii), d’apres [10, Prop. 1.14], on a Ko F = H(X, Ks).
Le groupe K> F étant uniquement divisible, on peut appliquer la Proposition
2.4 (ou la proposition 2.6). O

COROLLAIRE 4.2. Soit X une F-variété projective, lisse et géométriquement
intégre.

Supposons X (F) # (§ ou cd(F) < 3.

Supposons satisfaite l'une des hypothéses suivantes :

(i) la variété X est rationnelle ;
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(ii) la variété X est rationnellement connexe, et l'on a Br(X) = 0 et
13, (X,Q/2(2)) = B

(iii) la variété X est de dimension 3, rationnellement connexe, et Br(X) =0;
(iv) la variété X est de dimension 3, unirationnelle, et Br(X) = 0.

Alors on a une suite exacte

Ker[CH?(X) — CH*(X)%]-5HY (G, Pic(X) @ F ) —

= Hyo (X, Q/Z(2))/HY(F, Q/Z(2)) —

— Coker[CH2(X) — CH2(X)%]-H2(G, Pic(X) @ F ).
Sous Uhypothése X (F) #£ 0 ou cd(F) < 2, la fleche a est injective.
Démonstration. Le cas (iv)_est un cas particulier du cas (iii). Sous 'hypothese
(i), tous les groupes H: (X,Q/Z(2)) sont nuls pour i > 1. Pour i = 1, cela
établit que Plc(X) est sans torsion et donc Pic(X) = NS(X). Pour i = 2, cela
établit Br(X) = 0 et donc H3 (X, Z¢)tors = 0 pour tout premier .
Sous I'hypothese (iii), on a H3 (X,Q/Z(2)) = 0. Cette annulation vaut en
effet pour tout solide uniréglé [11, Cor. 6.2], c’est un corollaire d’un théoréeme

de C. Voisin.
L’énoncé est alors une conséquence immédiate du théoreme 4.1. O

Remarques 4.3. (a) Dans le cas particulier o X est une F-compactification
lisse équivariante d’un F-tore, le corollaire 4.2 est tres proche d’un résultat de
Blinstein et Merkurjev ([4, Prop. 5.9]). Dans ce cas, le groupe CH?(X) est sans
torsion, le groupe

Ker[CH?*(X) — CH?*(X)“]

coincide donc avec CH 2(X )tors. Par ailleurs, U'intersection des cycles
Pic(X) x Pic(X) — CH?*(X)
induit une application naturelle surjective ([15, §5.2, Proposition, p. 106])

Sym? (Pic(X)) — CH*(X).

(b) Soit X une F-compactification lisse d'un F-tore. La fleche
H'(GPic(X) © F") = H;,(X,Q/Z(2))/H*(F.Q/Z(2))

intervient dans ’étude de I'approximation faible pour X sur le corps F' des
fonctions d’une courbe sur un corps p-adique (Harari, Scheiderer, Szamuely
[18, Thm. 4.2]). Pour X une F-compactification lisse d’un espace principal
homogene d’un F-tore, il conviendrait de comparer la fleche

HY(G,Pic(X) @ F ") — H2 (X,Q/Z(2))/H?(F,Q/Z(2))
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ici obtenue (le corps F' satisfaisant cd(F) < 3) avec 'application (19) utilisée
dans [17, Thm. 5.1].

(c) Soit X/F une surface projective, lisse, géométriquement rationnelle

possédant un zéro-cycle de degré 1, et telle que le module galoisien Pic(X)
soit un facteur direct d’un module de permutation. Le corollaire ci-dessus im-
plique alors H3(F,Q/Z(2)) = H32,(X,Q/Z(2)). C’est un cas particulier d'une
remarque générale pour toute telle surface. Si le module galoisien Pic(X) est
un facteur direct d’'un module de permutation, alors, d’apres [6, Prop. 4, p. 12],
sur tout corps L contenant F', Papplication degré CHy(X1) — Z est un iso-
morphisme. Ceci implique H*(F,Q/Z(2)) = H.,(X,Q/Z(2)) pour tout entier i
(cas particulier d’un théoréme de Merkurjev, cf. [2, Thm. 1.4]).

(d) Dans larticle [9] avec Madore, on a construit des exemples de corps F
de dimension cohomologique 1 et de surfaces X/F projectives, lisses,
géométriquement rationnelles sans zéro-cycle de degré 1. Pour de telles sur-
faces, le corollaire 4.2 ci-dessus donne

Hy,(X,Q/Z(2)) = H,,.(X,Q/Z(2))/ H?(F,Q/Z(2)) # 0.

(e) Pour X une F-variété projective, lisse, géométriquement connexe quel-
conque, chacun des trois groupes suivants est un invariant F-birationnel de X :
—le groupe Ker[CH?(X) — CH?*(X)%]

~ le groupe HY (G, Pic(X) @ F")

—le groupe H? (X,Q/Z(2)).

Si la dimension cohomologique de F' est au plus 1, le groupe

Coker[CH?(X) — CH2(X)C]

est un invariant F-birationnel, comme on voit en considérant la situation de
I’éclatement en une sous-variété lisse. En général, ce groupe n’est pas un inva-
riant birationnel, comme on peut voir en éclatant P% en une F-conique lisse
sans F-point. Ceci montre aussi que ’application

3 : Coker[CH*(X) — CH?(X)%] — H?(G,Pic(X) @ F ")

n’est pas toujours nulle.

5 VARIETES A PETIT MOTIF SUR LE CORPS DES COMPLEXES

5.1 RAPPELS

Pour tout corps F contenant C, on note A*(X) le sous-groupe de CH?(Xr)
formé des classes de cycles qui sur une cloture algébrique F de F sont
algébriquement équivalents a zéro.

La proposition suivante rassemble des résultats connus, utiles pour la suite de
ce paragraphe.
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PROPOSITION 5.1. Soit X une variété connexe, projective et lisse sur le corps
des complexes. Supposons que Uapplication degré CHy(X) — Z est un isomor-
phisme.

Alors

(i) On a H(X,Ox) =0 pouri > 1.

(ii) Pour tout corps F' contenant C, les applications de restriction

Pic(X) — Pic(Xp) — Pic(X%)

sont des isomorphismes, et Pic(X) = NS'(X) = H3,,;,(X,Z).

), Equivalence homologique et équivalence algébrique coincident sur le groupe
de Chow CH*(X).

(i) Le quotient NS*(X) := CH?*(X)/A%(X) C Hp.;;(X,Z) est un groupe
abélien de type fini. Pour tout corps algébriqguement clos F contenant C, on a
NS?(X) 5 NS*(Xp).

(v) Il existe une variété abélienne B sur C qui est un représentant algébrique
de A%(X), au sens de Murre ([28], cf. [3, Déf. 3.2]). Pour tout corps F conte-
nant C, on a un homomorphisme A*(Xr) — B(F) fonctoriel en F, et cet
homomorphisme est un isomorphisme si F est algébriquement clos.

(vi) Sl existe un premier | avec H3 ,,.(X,Z/1) = 0, alors A>(X) =0, on a
une inclusion CH*(X) < Hp,,,:(X,Z), et ces groupes sont sans l-torsion.

Démonstration. Pour les énoncés (i), (iii), (iv), (v), dus essentiellement & Bloch
et Srinivas, et reposant sur des théoremes de Merkujev—Suslin et de Murre
[28], voir [5, Thm. 1] et [31]. L’énoncé (ii) est une conséquence connue de
H'(X,0x) = 0. Le dernier énoncé de (iv) est une propriété générale des quo-
tients des groupes de Chow modulo I’équivalence algébrique. Pour I’énoncé (vi),
les travaux de Bloch et de Merkurjev—Suslin montrent que le sous-groupe de
I-torsion CH?(X)[l] de CH?(X) est un sous-quotient de H_,,,(X,Z/l). On a
donc CH?(X)[l] = 0 et a fortiori A%(X)[l] = 0, donc BJ[l] = 0, donc la variété
abélienne B est triviale et A%(X) = 0. O

Remarques 5.2. (a) Si X est une variété rationnellement connexe, alors ’ap-
plication degré CHy(X) — Z est un isomorphisme, les propriétés (i) a (v) sont
donc satisfaites.

(b) Les énoncés (iii) & (v) valent sous 'hypothese plus faible qu’il existe une
courbe projective et lisse C' et un morphisme C' — X qui induise une surjection

5.2 CYCLE DE CODIMENSION 2 UNIVERSEL

Soient F' un corps, X et Y deux F-variétés projectives, lisses, géométriquement
connexes. Soit z € CH?(X xp Y) une classe de cycle de codimension 2. La
théorie des correspondances [14] donne une application bilinéaire

CHy(Y) x CH*(Y xp X) — CH?*(X).
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Le sous-groupe Aq(Y') des zéro-cycles de degré 0 est formé de classes géomé-
triquement algébriquement équivalentes & zéro. Un élément z € CH?(Y x p X)
définit donc un homomorphisme

CHy(Y) = CH?*(X)

envoyant le groupe Ag(Y) dans le sous-groupe A?(X) C CH?(X) défini au
début du §5. Cette application est fonctorielle en le corps de base F. Via la
fleche évidente Y (F) — C'Hy(Y') envoyant un point rationnel sur sa classe dans
le groupe de Chow, elle induit une application Y (F) — CH?(X) qui ne saurait
étre qu’ensembliste. Si Y est muni d’un point rationnel noté O, en envoyant P
sur la classe de P — O, on définit une fleche ensembliste

0, :Y(F)— A*(X)
envoyant O sur 0.

Soient X et B comme dans la proposition 5.1. On note O ’élément neutre de de
B(C). La définition suivante est une variante de celle donnée par Claire Voisin
34, Dét. 0.5].

DEFINITION 5.3. Pour X et B comme ci-desssus, on dit qu’il existe un cycle
de codimension 2 universel sur X s’il existe un cycle z € CH?(B x X) tel que,
sur tout corps F' contenant C, 1’ application ensembliste

6. : B(F) — A*(XF)
définie ci-dessus satisfasse la propriété : L’application composée
B(F) — A*(Xr) — B(F)
est 'identité sur B(F).

Le théoréme ci-dessous est une variante d’un résultat de C. Voisin [34, Thm. 2.1,
Cor. 2.3]. La démonstration ici proposée differe sensiblement de celle donnée
dans [34].

THEOREME 5.4. Soit X une variété connexe, projective et lisse sur C. Suppo-
sons les conditions suivantes satisfaites.

(i) L’application degré CHy(X) — Z est un isomorphisme.

(ii) Les groupes H%,,.:(X,Z) et H3 ,,;(X,7Z) sont sans torsion.

(iii) On a H3 (X,Q/Z(2)) = 0.

Alors : (1) Pour tout corps F contenant C, on a une suite exacte

0— H2 . (Xr,Q/Z(2))/H?(F,Q/Z(2)) —

Coker[CH2(Xp) — CH?(X5)%]- S H2(G, Pic(X) @ FF).  (5.4)

(2) Soit B le représentant algébrique de A%2(X) (Prop. 5.1 (v)). S’il existe un
cycle de codimension 2 universel dans CH?*(B x X), alors pour tout corps F
contenant C, on a H3(F,Q/Z(2)) = H?,.(Xr,Q/Z(2)).
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Note : Sous I'hypothese CHo(X) = Z, la condition H3 (X,Q/Z(2)) = 0 est,
d’apres [11, Thm. 1.1], équivalente au fait que la conjecture de Hodge entiere
vaut en degré 4, i.e. pour les cycles de codimension 2.

Démonstration. Soit F un corps contenant C. Soit F une cloture algébrique de
F et G = Gal(F/F). D’apres le théoreme 4.1 appliqué a la F-variété Xp :=
X xc¢ F, on a une suite exacte

HY(G,Pic(Xz) @ F ) —
— Ker[H;, (Xr, Q/Z(2))/H*(F,Q/Z(2)) = H,, (X7, Q/Z(2))] —

— Coker[CH2(Xf) — CH2(X5)%)-5H2(G, Pic(Xz) @ F )

On sait [7, Thm. 4.4.1] que la cohomologie non ramifiée est invariante par
extension de corps de base algébriquement clos. Sous I’hypothese (iii), on a
donc H3 (X7,Q/Z(2)) = 0. Sous les hypotheses (i) et (ii), les applications de
restriction Pic(X) — Pic(Xp) — Pic(X4) sont des isomorphismes de réseaux
(Proposition 5.1 (ii)). L’action de Gal(F/F) sur le réseau Pic(X%) est donc
triviale. Le théoreme 90 de Hilbert donne alors

H'Y(G,Pic(X)®F ) =0.

Ceci donne la suite exacte (5.4).

Supposons qu’il existe un cycle de codimension 2 universel. Alors, sur tout
corps F contenant C, on dispose de 'application ensembliste B(F) — A?(Xf)
qui composée avec I'application A?(Xr) — B(F) est Iidentité. Ceci implique
que ’homomorphisme A%(Xr) — A2(XF)G est une surjection. L’application
composée NS?(X) — NS?*(X5) est surjective, car NS*(X) — NS?(X5) est un
isomorphisme (Prop. 5.1 (iv)). Ainsi CH?*(X) — CH?*(X7)¢ est surjectif, et
de la suite exacte (5.4) on déduit H3(F,Q/Z(2)) = H3 (Xr,Q/Z(2)). O

Remarque 5.5. Sous des hypotheses additionnelles, C. Voisin [34, Thm. 2.1,
Cor. 2.3] établit une réciproque du théoreme 5.4. Il serait souhaitable d’établir
une telle réciproque par les méthodes plus K-théoriques du présent article,
en utilisant la suite exacte (5.4) pour le corps des fonctions F' = C(B) du
représentant algébrique B de A?(X).

5.3 TROISIEME GROUPE DE COHOMOLOGIE NON RAMIFIEE DES HYPERSUR-
FACES DE FANO

THEOREME 5.6. Soit n > 4. Soit X C P une hypersurface lisse de degré
d<n.

(i) La fiéche degré CHo(X) — Z est un isomorphisme.

(ii) On a Pic(X) = NS(X) = H%,,,,(X,Z) = Z, et ce groupe est engendré par
la classe d’une section hyperplane.

(iii) Le groupe H3,,,,..(X,Z) est sans torsion, et nul pour n > 5.
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(iv) Pour n > 5, équivalences rationnelle, algébrique et homologique coincident
sur les cycles de codimension 2 sur X, et on a une injection de réseauz
CH*(X) < Hpei (X, Z).

(v) Pour n #5, Hy,,..(X,Z) = Z, et Uapplication

CH*(X) = Hpeyy(X,Z) =7

est surjective, et est un isomorphisme pour n > 5.

(vi) Pourn =4 etn >5, on a H3 (X,Q/Z(2)) = 0.

(vii) Pour n > 5, pour tout corps F contenant C, de cloture algébrique F, avec
G := Gal(F/F), la fleche naturelle

CH?*(Xp) — CH?*(X5)“
est surjective, et on a une suite exacte naturellement scindée
0 — H*(F,Q/Z(2)) - Hp\ (XF, Q/Z(2)) — Hy, (X5 Q/Z(2)) — 0.
Pour n > 5,0n a
HY(F,Q/Z(2)) = Hy.(Xp, Q/Z(2)).

(viii) Pour n = 4, soit B le représentant algébrique de A?(X). S’il existe
un cycle universel de codimension 2 dans CH?(B x X), alors pour tout
corps F contenant C, on a H3(F,Q/Z(2)) = H3 (Xp,Q/Z(2)), et Uapplication
CH?*(Xp) — CH*(X3)Y est surjective.

\ 8

Démonstration. Les énoncés (i) & (v) sont bien connus. Comme ils sont utilisés
pour établir les points suivants, donnons quelques rappels a leur sujet.
L’hypothese d < n assure CHy(X) = Z, soit (i). C’est un théoreme de Roit-
man, que 'on peut aussi voir comme un cas particulier du théoreme de Cam-
pana et Kollar-Miyaoka-Mori assurant qu'une variété de Fano est rationnelle-
ment connexe. L’énoncé (ii) vaut pour toute hypersurface lisse dans Pg, n > 4.
Pour n > 5, les théoremes de Lefschetz donnent H3.,,.(X,Z) = 0 et
H}_,..(X,Z/1) = 0 pour tout | premier. L’énoncé (i) et la proposition 5.1
donnent alors (iv).

Pour n =4, H},_,,.(X,Z) est sans torsion. Par ailleurs Hg_,,;,(X,Z) = Z (par
dualité de Poincaré), la restriction Z = Hp_,,; (P4, Z) — Hp i (X, Z) = Z est
I'identité sur Z.

Pour n > 3, toute hypersurface X C Pg de degré d < n contient une droite de
P{. C’est un résultat classique mais délicat dans le cas d = n (voir [12]). Pour
d < n, cela résulte d’un calcul immédiat de dimension, qui montre que par tout
point de X il passe une droite de P¢ contenue dans X.

Soit n = 4. L’hypersurface X contient une droite de P¢. La classe de cette
droite dans CH?(X) engendre donc Hy,,,;,(X,Z) = Z.

Pour n > 6, les théoremes de Lefschetz donnent que la fleche de restriction

Z= ngtti(PEﬂ Z) — ngtti(X’ Z)
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est un isomorphisme. Le diagramme commutatif

CH? (X) =  Hpuw(X,Z)
) N )
CH*(PE) > Hpy,(PE,Z)

donne alors CH?(X) = Hg,,,;(X,Z) = Z, la conjecture de Hodge entiere en
degré 4 vaut donc pour X, et la théorie de Bloch-Ogus ou [11, Thm. 1.1]
donnent alors H32, (X,Q/Z(2)) = 0 soit (vi) pour n > 6. Le méme argument
vaut pour n = 4 et d < 4, puisque I'application CH?(X) — H},,,;(X,Z) = Z
est surjective. Ceci établit (v) et (vi). Pour n = 4, (vi) est un cas particulier
d’un résultat de C. Voisin [11, Cor. 6.2].

Etablissons les points (vii) et (viii).

Pour tout n > 4, Pour tout corps F' contenant C, on a

Pic(X) = Pic(Xp) = Z,

le groupe étant engendré par la classe d’une section hyperplane (théoréeme
de Max Noether). On a donc H'(G,Pic(XF) ® F) = HY(G,F") = 0
(théoreme 90 de Hilbert). Les énoncés déja établis et le le théoreme 4.1 donnent
alors une suite exacte

0 — H*(F,Q/Z(2)) — Ker[H,,,(XF, Q/Z(2)) — H,, (X7, Q/Z(2))] —

— Coker[CH2(Xf) — CH2(X7)%) 23 H2(G, Pic(Xp) ® F)  (5.6)

Pour n > 5, d’apres (iv), équivalence rationnelle et équivalence algébrique sur
les cycles de codimension 2 de X coincident sur un corps algébriquement clos.
Pour une variété projective, lisse, connexe, sur un corps algébriquement clos, les
groupes d’équivalence de cycles modulo I’équivalence algébrique sont, comme
c’est bien connu et facile a établir, invariants par extension du corps de base a
un autre corps algébriquement clos. Ainsi la fleche composée

CH?*(X) — CH*(Xp) — CH*(X4)

est I'identité, donc l'application CH?(Xp) — CH?(X7)¢ est surjective. On
obtient donc dans ce cas une suite exacte

0 — H*(F,Q/Z(2)) — H,,(Xr,Q/Z(2)) — H,. (X7, Q/Z(2)).

D’aprés [7, Thm. 4.4.1], on a H2,(X,Q/Z(2)) = H2,. (X%, Q/Z(2)), si bien que
la suite ci-dessus se complete en une suite exacte naturellement scindée

0 — H*(F,Q/Z(2)) = H,,(Xp,Q/Z(2)) —» Hp. (X7, Q/Z(2)) = 0.
Pour n > 5, une application de (vi) acheve alors d’établir 'énoncé (vii).
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Pour n = 4, on a déja établi H2 (X,Q/Z(2)) =0 et
H*(F,Q/Z(2)) = H,,(Xr,Q/Z(2))

pour tout F contenant C. La deuxiéme partie de I’énoncé (viii) résulte alors de
la suite exacte (5.6) et du lemme 5.7 (b) ci-apres. O

LEMME 5.7. Soient n > 4 et X C P¢ une hypersurface lisse de degré d < n.
(a) Pour tout corps F contenant C, la fleche naturelle

Pic(X7) © F — H' (X7, Ks)

est un isomorphisme

(b) On a un isomorphisme
Ker[H,, (Xr, Q/Z(2))/H*(F,Q/Z(2)) — H;, (X7 Q/Z(2))] =
= Coker[CH*(XF) — CH*(X3)¢).
Démonstration. Pour tout corps F' contenant C, on a
Pic(X) = Pic(XFp) = Z,

le groupe étant engendré par la classe d'une section hyperplane (théoréme de

Max Noether). Comme on a CHy(X) = Z et que les groupes H,,,; (X, Z) sont
sans torsion, d’apres [10, Thm. 2.12; Prop. 2.15], la fleche naturelle

Pic(X7) © F — H' (X7, Ks)

est surjective.
On a vu ci-dessus que X contient une droite de P", soit ¥ € X C P¢. La

restriction
7, = Pic(Xf) — Pic(Yf) =7

est l'identité sur Z, car le groupe Pic(X3) est engendré par la classe d’une
section hyperplane. Donc la fleche

Pic(X7) © F — Pic(Yz) @ F
est un isomorphisme. Pour la droite Y, application
FX = PIC(YF) (9 FX — .I:II(YYF7 ICQ)

est un isomorphisme. L’inclusion Y C X induit un diagramme commutatif

Pic(X7) ©@ F —= Pic(Yp) @ F

| |

H' (X5, K2) —— H' (Y5, K2)
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dans lequel la fleche horizontale supérieure est un isomorphisme, la fleche ver-
ticale de droite aussi, et la fleche verticale de gauche est surjective. La fleche

Pic(X%) ® F* = H'(X%, K2) est donc un isomorphisme F'5 HY (X%, K2),
ce qui établit (a) et montre que la fleche de restriction

Hl(Xfa ’CQ) — Hl(YF7 K:Q)

est un isomorphisme.
Considérons la suite exacte (5.6). Pour m > 5, nous avons établi
Coker[CH?*(XFr) — CH?(X%)%] = 0, et donc la fleche

B+ Coker[CH2(X ) — CH2(X5)% S H2(G, Pic(X7) @ F )

dans cette suite est nulle.
Montrons que 'on a encore 5 = 0 dans le cas n = 4. Nous avons ici recours
au point de vue motivique, i.e. a la proposition 2.6. L’application 8 est induite
par I'application composée

CH*(X7)% — H' (X7, 2(2))° — H(G,H* (X7, Z(2))).

Chacune des deux applications intervenant ici est définie pour toute variété
lisse X, et leur formation est fonctorielle en la variété lisse X : la seconde
application vient de la suite spectrale considérée a la section 2.2.

Soit Y C X C Pg une droite. Comme la restriction

HY (X7, K2) = H' (Y&, K>)
est un isomorphisme, la fleche
B : Coker[CH?*(Xr) — CH*(X7)] — H*(G, H'(XF,K2))

se factorise par Coker[CH?(Yr) — CH?(Y%)%] = 0 et donc est nulle, ce qui
via la suite exacte (5.6) établit I’énoncé (b). O

Pour les hypersurfaces cubiques, un résultat de Claire Voisin permet de
compléter le théoreme 5.6 dans le cas n = 5.

THEOREME 5.8. Soit X C PZ, n > 4 une hypersurface cubique lisse.
(i) On a H;, (X, Q/Z(2)) = 0.
(ii) Pour tout entier n > 5, pour tout corps F' contenant C, la fleche

H*(F,Q/Z(2)) — Hy,(Xr, Q/Z(2))
est un isomorphisme, et l'application
CH*(Xrp) — CH*(X%)“

est surjective.

(iii) Pour n = 4, soit B le représentant algébrique de A*(X) (Prop. 5.1 (v)).
S’il existe un cycle universel de codimension 2 dans CH?*(B x X), alors pour
tout corps F contenant C on a H*(F,Q/Z(2)) = H3 (X, Q/Z(2)), et appli-
cation CH*(Xr) — CH?*(X3)Y est surjective.
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Démonstration. Pour n # 5, ceci est un cas particulier du théoréeme 5.6. Soit
donc n = 5. C. Voisin a établi la conjecture de Hodge entiere en degré 4
pour toute hypersurface cubique lisse X C P2 [32], [33, Thm. 0.4, Thm. 2.11].
D’apres le théoréme [11, Thm. 1.1], ceci implique H2 (X, Q/Z(2)) = 0, et donc,
d’apres [7, Thm. 4.4.1], H3 (X7, Q/Z(2)) = 0 pour tout corps algébriquement
clos F contenant C. L’énoncé (ii) est alors une conséquence du théoreme 5.6
(vii). O

Remarque 5.9. Soit n = 5. Si 'hypersurface cubique X C P2 contient un plan,
on peut fibrer X en quadriques au-dessus du plan. L’énoncé (i) résulte alors de
[11, Cor. 8.2], qui repose seulement sur le calcul de la cohomologie non ramifiée
des quadriques de dimension 2 sur un corps quelconque (cas particulier des
résultats de Kahn, Rost, Sujatha sur les quadriques de dimension quelconque).
Pour les hypersurfaces cubiques lisses X C P2 trés générales contenant un
plan, 'isomorphisme

H*(F,Q/Z(2)) = H},(XFr,Q/Z(2))

dans la proposition 5.8 (ii) fut d’abord établi par des méthodes de K-théorie et
de formes quadratiques, en collaboration avec Auel et Parimala [2]. Pour toute
hypersurface cubique lisse X C P2, il fut ensuite établi par C. Voisin [34, Thm.
2.1, Example 2.2], par une méthode différente de celle proposée ici.

Remarque 5.10. Soit n = 4. Si pour une hypersurface cubique X C P(‘é et
un corps F on avait H? (Xr,Q/Z(2)) # H?(F,Q/Z(2)), alors X ne serait pas
stablement rationnelle. Un tel exemple n’est pas connu. Dans [35, Thm. 4.5], C.
Voisin montre qu’il existe des hypersurfaces cubiques dans Pé pour lesquelles
le groupe de Chow des zéro-cycles est universellement trivial, résultat plus fort
que H3 (Xp,Q/Z(2)) = H3(F,Q/Z(2)) pour tout F.
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ABSTRACT. This is a twin article of [H14b]|, where we study the
projective limit of the Mordell-Weil groups (called pro A-MW groups)
of modular Jacobians of p-power level. We prove a control theorem of
an ind-version of the K-rational A-MW group for a number field K. In
addition, we study its p-adic closure in the group of Kp-valued points
of the modular Jacobians for a p-adic completion K, for a prime p|p
of K. As a consequence, if K, = QQp, we give an exact formula for the
rank of the ordinary/co-ordinary part of the closure.
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1. INTRODUCTION

Consider a p-adic ordinary family of modular eigenforms of prime-to-p level
N. This is an irreducible scheme Spec(I) which is finite torsion-free over the
Iwasawa algebra Z,[[T]], and whose points P of codimension one and not in
the special fiber correspond to ordinary p-adic modular eigenforms fp. Among
those points, many corresponds to modular classical eigenforms of weight 2 and
level Np" (for variable r), and such points are Zariski dense in Spec(I). An old,
well-known, and fundamental construction of Eichler—-Shimura attaches to any
modular cuspidal eigenform f of weight 2 an abelian variety Ay defined over
Q, of dimension the degree of the field generated by the coefficients of f over
Q. For these abelian varieties Ay, one can consider the Mordell-Weil group
Af(Q) and more generally, Af(k) for k a fixed number field, which are finitely
generated abelian groups. Let us set A\f(k) = A¢(k) ®z Z,. We consider the
following natural question: how does the Mordell-Weil group A ¢(k) varies as
f varies among those cuspidal eigenforms of weight 2 in the family? We give a
partial answer to this question in the form of control theorems (Theorems 1.1
and 6.6) for these Mordell-Weil groups. An analogous result is proved when

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 221-264



222 Haruzo HibA

the number field & is replaced by an [-adic field k;, and also a consequence
concerning the image of Ay (k) in Af(ki).

Fix a prime p. This article concerns the p-slope 0 Hecke eigen cusp forms of
level Np" for r > 0 and p t N, and for small primes p = 2,3, they exists
only when N > 1; thus, we may assume Np” > 4. Then the open curve
Y1(Np") (obtained from X;(Np") removing all cusps) gives the fine smooth
moduli scheme classifying elliptic curves E' with an embedding pnp,r — E.
Anyway for simplicity, we assume that p > 3, although we indicate often any
modification necessary for p = 2. A main difference in the case p = 2 is that
we need to consider the level Np” with r > 2, and whenever the principal ideal
(fyppl — 1) shows up in the statement for p > 2, we need to replace it by
(v*""" — 1) (assuming r > 2), as the maximal torsion-free subgroup of ZJ is
1+22Z>. We applied in [H86b] and [H14a] the techniques of U (p)-isomorphisms
to p-divisible Barsotti—-Tate groups of modular Jacobian varieties of all p-power
level (with a fixed prime-to-p level N) in order to get coherent control under
diamond operators. In this article, we apply the same techniques to Mordell-
Weil groups of the Jacobians and see what we can say. We hope to study
U (p)-isomorphisms of the Tate—Shafarevich groups of the Jacobians in a future
article.

Let X, = X1(Np") /g be the compactified moduli of the classification problem
of pairs (E, ¢) of elliptic curves E and an embedding ¢ : pun, < E[Np'] as
finite flat group schemes. Since Aut(y,-) = (Z/p"Z)*, z € Z, acts on X, via
¢ — ¢ oz for the image zZ € (Z/p"Z)*. We write X! (s > r) for the quotient
curve X /(14 p"Zp). The complex points X7 (C) contains I';\$) as an open
Riemann surface for I'y = I'o(p*) N T'1(Np"). Write J, g (resp. J{ ) for the
Jacobian of X, (resp. X7) whose origin is given by the infinity cusp co of
the modular curves. We regard J, as the degree 0 component of the Picard
scheme of X,.. For a number field k, we consider the group of k-rational points
Jr(k). The Hecke operator U(p) and its dual U*(p) act on J,.(k) and their
p-adic limit e = lim,, oo U(p)™ and e* = lim,, o, U*(p)™ are well defined on
the Barsotti-Tate group J,[p™]. For a general abelian variety over a number
field k, we put X (k) = X (k) ®z Z,, (though we give the definition of the sheaf
X in the following section for global and local field k£ and if & is local, X may
not be the tensor product as above).

By Picard functoriality, we have injective limits Joo(k) = mri(k) and
Joo[p] (k) = lim Jr[p>](k), on which e acts. Here J,[p>] is the p-divisible
Barsotti-Tate group of J, over Q). Write G = e(J[p°°]), which is called the A-
adic Barsotti-Tate group in [H14a] and whose integral property was scrutinized
there. We define the p-adic completion of Ju (k):

Joo (k) = i oo () /p" oo (k).

These groups we call ind (limit) MW-groups. Since projective limit and in-
jective limit are left-exact, the functor R — Joo(R) is a sheaf with values in
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abelian groups on the fppf site over Q (we call such a sheaf an fppf abelian
sheaf).

Adding superscript or subscript “ord” (resp. “co-ord”), we indicate the image
of e (resp. e*). The compact cyclic group I' = 1 + pZ, C Z, acts on these
modules by the diamond operators. In other words, we identify canonically
Gal(X,/Xo(Np")) for modular curves X, and Xo(Np") with (Z/Np"Z)*, and
the group I' acts on J,. through its image in Gal(X,/Xo(Np")). We study
control of Ju (k)°"d under diamond operators.

A compact or discrete Zy-module M is called an Iwasawa module if it has a
continuous action of the multiplicative group I' = 1 + pZ,, with a topological
generator v = 1 4+ p. If M is given by a projective or an injective limit of
naturally defined compact Z,[I'/T'?"]-modules M,., we say M has exact control
if M, = M/(y?" —1)M in the case of a projective limit and M, = M[y*" —1] =
{x € M|(y*" — 1)z = 0} in the case of an injective limit. If M is compact and
M/(y — 1)M is finite (resp. of finite type over Z,), M is A-torsion (resp. of
finite type over A), where A = Z,[[[']] = Wm_ 7, [[/T?"] (the Iwasawa algebra).
When p = 2, we need to take I' = 1+ p?Zs and v = 1 +4 = 5 € I'. In addition,
we need to assume often s > r > 1 in place of s > r > 0 for odd primes.

The big ordinary Hecke algebra h (whose properties we recall at the end of this
section) acts on J4 and J'¢ as endomorphisms of functors. Let k be a number
field or a finite extension of ; for a prime [. Write Bp for Shimura’s abelian
variety quotient of J, in [Sh73] and Ap for his abelian subvariety Ap C J,
[IAT, Theorem 7.14] associated to a Hecke eigenform fp in an analytic family
of slope 0 Hecke eigenforms {fp|P € Spec(I)} (for an irreducible component
Spec(I) of Spec(h) for the big ordinary Hecke algebra h). Here we assume that
fp has weight 2 and is a p-stabilized new form of level Np" with r = r(P) > 0.
Let Spec(T) C Spec(h) be the connected component containing Spec(I). For
any h-module, we write Mt (or MT) for the T-eigen component 1t - M =
M ®p T for the idempotent 17 of 7" in h. Suppose that P is a principal ideal
generated by a € T (regarding as P € Spec(T)). This principality assumption
holds most of the cases (see Proposition 5.1). Then we may assume that o =
Hm o (as an endomorphism of the fppf abelian sheaf J,) for as € End(Jy),
Bp = J,./a,(J;), and the abelian variety Ap is the connected component of
Jrla] = Ker(ay,.). For a finite extension k of Q or Q; (for a prime [), we show
in Section 4 that the Pontryagin dual Gr(k)Y is often a finite module and at
worst is a torsion A-module of finite type.

In this paper as Proposition 6.4, we prove the following exact sequence:

(11) ;{P(k)ordﬂf Li> joo(k)ord,']r i> joo(k)ord,']r’

where Ker(to) is finite and Coker(a) is a Zp-module of finite type with free
rank less than or equal to dimg, B, (k) ®z, Qp. The main result Theorem 6.6 of
this paper is basically the Z,-dual version of Proposition 6.4 for Joo(lc)(’;mT =

Homy, (Joo (k)'*T,Z,). Here is a shortened statement of our main theorem
(Theorem 6.6 in the text):
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THEOREM 1.1. The sequence Z,-dual to the one in (1.1):
(1.2) 0 — Coker()3 = Joo(K)ira,r = Joo (K)irar = Ap(K)irar = 0
is exact up to finite error.

In Theorem 6.6, we give many control sequences similar to (1.2) for other
incarnations of Joo (k)54 1

These modules joo(k):rd,'ﬂ“ are modules over the big ordinary Hecke algebra h.
We cut down these modules to an irreducible component Spec(I) of Spec(h).
In other words, we study the following I-modules:

Joo (k)94 = Joo (k)" @, L.

We could ask diverse questions out of our control theorem. For example, when
is Ap(k) dense in Ap(ky) for a prime p|p of a number field K7 We can answer
this question for almost all P if k, = Q, and dimg Ap, (k) ®z Q > 0 for one
sufficiently generic Py (see Corollary 7.2). In [H14b], we extend the control
result to the projective limit Jim jr(k)%rd. In a forthcoming paper [H14c],
we prove “almost” constancy of the Mordell-Weil rank of Shimura’s abelian
variety in a p-adic analytic family.

Our point is that we have a control theorem of the limit Mordell-Weil groups
(under mild assumptions) which is possibly smaller than the Selmer groups
studied more often. We hope to discuss the relation of our result to the limit
Selmer group studied by Nekovér in [NO6] in our future paper.

The control theorems for h proven for p > 5 in [H86a] and [H86b] and in
[GME, Corollary 3.2.22] for general p assert that, for p > 2, the quotient
h/(’ypp1 — 1)h is canonically isomorphic to the Hecke algebra h, (r > 0) in
Endyz, (J,[p>]°") generated over Z, by Hecke operators T'(n) (while for p = 2,

h/(v*"* = 1)h = h, for r > 2). By this control result, we showed that h is a
free of finite rank over A (see [GK13] for the treatment for p = 2).

We recall succinctly how these control theorems were proven in [H86b] (and in
[H86a]) for p > 5, as it gives a good introduction to the methods used in the
present paper. The arguments in these papers work well for p = 2,3 assuming
that Np"™ > 4 (see [GK13] for details in the case of p = 2). We have a well
known commutative diagram of U(p®~")-operators:

JnR i> ;R
(1.3) lu o L

™

Jeorn  —  Jgips
where the middle v’ is given by UZ(p°~") and u and u” are U(p°~"). These
operators comes from the double coset I ((1) pqu) IV for T =T7 = Toh(p®) N
[ (Np") and IV = I, for suitable s > r,s' > r/. Note that U(p") = U(p)".
Then the above diagram implies

(14) JT/Q[poo]ord gjr/Q[poo]ord and JT/Q(k)Ord gjg/Q(k)Ord.

S
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The commutativity of the diagram (1.3) and the level lowering (1.4) are uni-
versally true even when we replace the fppf abelian sheaf J,. by any fppf sheaf
with reasonable U (p)-action compatible with the modular tower --- — X, —
= X

For computational purpose, in [H86b], we identified J(C) with a subgroup
of HYT,T) (for the Imodule T := R/Z with trivial [-action). Since
' >T' (Np®), we may consider the finite cyclic quotient group C := %1\;175) =
et / e By the inflation restriction sequence, we have the following com-
mutative diagram with exact rows, writing H*(?,T) as H*(?):

HY(C) —=— H\(I7) —— H{(Ty(Np*))" =1 —— H%(C)

I !l Jo I

? —— J(C) —— LOK -1 —
Since H?(C,T) = 0 and U(p)* "(H*(C,T)) = 0, we have the control of
Barsotti-Tate groups (see [H86b] and more recent [H14a, §4-5]):

r—1
Jslp™l™ = 15 = T )5

Out of this control by the I'-action of the ordinary Barsotti-Tate groups
J-[p>®]°*d, we proved the control of h (cited above) by the diamond opera-
tors.
A suitable power of U(p)-operator killing the kernel and cokernel of the restric-
tion maps in (1) should be also universally true not just over C but over smaller
rings. We will study almost the same diagram obtained by replacing H!(?,T)
for ? = T1(Np®) and T by Hf, ((X/q,0%) = Picxjq for X = X, and X].
In an algebro-geometric way, we verify that an appropriate power of the U (p)-
operator kills the corresponding kernel and cokernel. Technical points aside,
this is a key to the proof of Theorem 1.1. This principle should hold for more
general sheaves (under a Grothendieck topology) with U(p)-action compatible
with the modular tower, and the author plans to present many other examples
of such in his forthcoming papers. _
We call a point P € Spec(h)(Q,) an arithmetic point of weight 2 if P(y?' —1) =
0 for some integer 5 > 0. Though the construction of the big Hecke algebra
is intrinsic, to relate an algebra homomorphism A : h — @p killing fypr_l -1
for sufficiently large r > 0 to a classical Hecke eigenform, we need to fix (once

and for all) an embedding Q RN @p of the algebraic closure Q in C into a fixed
algebraic closure @p of Qp.
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3. U(p)-isomorphisms 231
4. Structure of A-BT groups over number fields and local fields 239

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 221-264



226 Haruzo HibA

5. Abelian factors of modular Jacobians 243
6. Structure of ind-A-MW groups over number fields and local field 246
7. Closure of the global A-MW group in the local one 259
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2. SHEAVES ASSOCIATED TO ABELIAN VARIETIES

Let k be a finite extension of Q or the l-adic field Q;. In this section, we set
the notation used in the rest of the paper and present a general fact about an
exact sequence of abelian varieties. Let 0 - A — B — C — 0 be an exact
sequence of algebraic groups proper over the field k. We assume that B and C
are abelian varieties. However A can be an extension of an abelian variety by
a finite (étale) group.

If £ is a number field, let S be a finite set of places where all members of the
above exact sequence have good reduction outside S; so, all archimedean places
are included in S. Let K = k° (the maximal extension unramified outside S).
If k is a finite extension of Q;, we put K = k (an algebraic closure of k). A
general field extension of k is denoted by x. We consider the étale topology, the
smooth topology and the fppf topology on the small site over Spec(k). Here
under the smooth topology, covering families are made of faithfully flat smooth
morphisms.

We want to define p-adically completed sheaves X for X = A, B,C as above
defined over these sites. The word “p-adically completed” does not always mean
X(R) is given by the projective limit Jm X (R)/p"X(R), and the definition
depends on the choice of k. For the moment, assume that k£ is a number
field. In this case, for an extension X of abelian variety defined over k£ by a
finite flat group scheme, we define X (F) := X(F) ®z Z, for an fppf extension
F over k. We may regard its p-adic “completion” 0 — A5 B—>C =0
as an exact sequence of fppf/smooth/étale abelian sheaves over k (or over
any subring of k over which B and C extend to abelian schemes). Here the
word “completion” means tensoring with Z, over Z. Indeed, for any ring R
of finite type over k, R — C(R) := C(R) ®z Zy is an exact functor from the
category of abelian fppf/smooth/étale sheaves into itself; therefore, the tensor
construction gives C(k) = Hm C(r)/p"C(k) if k is a field of finite type, since
C(k) is an abelian group of finite type by a generalized Mordell-Weil theorem
(e.g., [RTP, IV]). Let € denote the dual number. Then we have a canonical
identification Lie(C'),, = Ker(C(xle]) — C(k)) (e.g. [EAL §10.2.4]), and hence
Lie(C) @z Z, = Ker(C(k]e]) — C(k)) is the p-adic completion of the -vector
space Lie(C) if k is a finite extension of k. Since we find a complementary
abelian subvariety C’ of B such that C’ is isogenous to C and B = A + C’
with finite A N C’, adding the primes dividing the order |A N C'| to S, the
intersection A N C" = Ker(C' — () extends to an étale finite group scheme
outside S; so, C'(K) — C(K) is surjective. Thus we have an exact sequence
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of Gal(K/k)-modules
0— AK)— B(K) = C(K)—=0

Note that E(K) = AK) ®z Zy == Up E(F) for F' running over all finite
extensions of k inside K. Then we have an exact sequence

(2.1) 0 A(K) = B(K) = C(K) = 0

Now assume that k is a finite extension of Q;. We put K = k (an algebraic
closure of k). Suppose that F is a finite extension of k. Then A(F) = O¢m4 g
Ap for a finite group Ap and the [l-adic integer ring Op of F (see [M55]

t [T66]). Now suppose [ # p. For an fppf extension R/, we define again
A(R) = Ap™|(R) = lig_A[p"] for Ap") == Ker(A(R) > A(R)). Then we
have A(F) = lim A(F)/p"A(F) = Ap,, := Ap ®2 Zy, and we have A(K) =
lim A(F) = A[p*>](K), and A, B and C are identical to the fppf/smooth/étale
abelian sheaves A[p™], B[p>°] and C[p>], where X [p™] := han[p"] as an
ind finite flat group scheme with X[p"] = Ker(p" : X — X) for X = A, B,C.
We again have the exact sequence (2.1) of Gal(k/k)-modules:

0— A(K) — B(K) = C(K) = 0
and an exact sequence of fppf/smooth/étale abelian sheaves
0+A—-B—-C—0

whose value at finite extension x/Q; coincides with the projective limit X (k) =
lim X(k)/p"X (k) for X = A,B,C.
Suppose [ = p. For any module M, we define M) by the maximal prime-
to-p torsion submodule of M. For X = A, B,C and an fppf extension R/,
the sheaf R — X®)(R) = @MNX[N](R) is an fppf/smooth/étale abelian
sheaf. Then we define the fppf/smooth/étale abelian sheaf X by the sheaf
quotient X/X®). Since X(F) = Of™X @ X[p™](F) @ XP)(F) for a finite
extension F, on the étale site over k, X is the sheaf associated to a presheaf
R +— X(R)/XP(R) = Of™X @ X[p>](R). If X has semi-stable reduction
over Op, we have X(F) = X°(Op) + X[p*°|(F) C X(F) for the formal group
X° of the identity connected component of the Néron model of X over Op.
Since X becomes semi-stable over a finite Galois extension Fy/k, in general
X(F) = HY(Gal(FoF/F), X(FyF)) for any finite extension F, (or more gen-
erally for each finite ’etale extension F); so, F )?(F) is a sheaf over

the étale site over k. Thus by [ECH, II.1.5], the sheafication coincides over
the étale site with the presheaf F' +— m X(F)/p"X(F). Thus we conclude

X(F) = Hm X(F)/p"X(F) for any étale finite extensions Fy,. Moreover
)/(:(K) =UpX (F) Applying the snake lemma to the commutative diagram
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with exact rows (in the category of fppf/smooth/étale abelian sheaves):

A = o gl = o)
] ] ]
A = B — C,

the cokernel sequence gives rise to an exact sequence of fppf/smooth/étale
abelian sheaves over k: N R
0-A—-B—-C—0
and an exact sequence of Gal(k/k)-modules
0— A(K) = B(K) —» C(K) = 0

In this way, we extended the étale sheaves ;1\ E C defined on the étale site over
Spec(k) to an abelian sheaves on the smooth, fppf and étale sites keeping the
exact sequence A < B — C intact. However note that our way of defining
X for X = A, B,C depends on the base field k = Q,Q,,Q;. In summary, we
have, for fppf algebras R/;:

~ X(R) ®z Zy if [k: Q] < o0,
(S)  X(R) = { X[p>](R) if [k: Qi) < oo (I #p),
(X/X®)(R) as a sheaf quotient if [k : Q,] < oo.

LEMMA 2.1. Let the notation be as above (in particular, X is an extension of an
abelian variety over k by a finite étale group scheme). If k is either an integral
domain or a field of finite type over k and either k is a number field or a local
field with residual characteristic | # p, we have )?(/{) = lim )?(/{)/p")?(n) If
K 1s an €étale extension of finite type over k and k is a p-adic field, we again
have X (k) = Jm X(r)/p"X ().

Proof. First suppose that k is a number field. If x is a field extension of fi-
nite type over k, by [RTP, IV], X(k) is a Z-module of finite type; so, we
have X (k) = X (k) ®z Zp = lim X (k)/p"X (k). Here the first identity is just
by the definition. More generally, if x/k is a Krull domain of finite type
over k, r is a normal noetherian domain; and x = (1), V for discrete valua-
tion ring V' in Q(k) containing k. By projectivity of the abelian variety, we
have X(V) = X(Q(k) (by the valuative criterion of properness), which implies
X(k) =Ny X(V) = X(Q(k)) (so, X (k) = X(Q(k))) for the quotient field
Q(k) of k. In particular, if x is a smooth extension of finite type, an the re-
sult follows, Since the normalization % of x in Q(k) is a Krull domain, we find
X(k) € X(R) = X(Q(r)); so, X(x) is an abelian group of finite type as long
as k is an integral domain of finite type over k (and hence is a reduced algbera
of finite type over k).

If k is local of residual characteristic [ # p, we have X=X [p™]. If K is an
integral domain of finite type over k, then X (k) is a finite p-group, and the
result is obvious.
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The case where k is local of residual characteristic p is already dealt with before
the lemma. 0

For a sheaf X under the topology ?, we write Hy (X)) for the cohomology group
H3} (Spec(k), X) under the topology ?. If we have no subscript, H'(X) means
the Galois cohomology H*(Gal(K/k), X) for the Gal(K/k)-module X.

LEMMA 2.2. Let X be an extension of an abelian variety over k by a finite étale
group scheme of order prime to p. For any intermediate extension K/k/k, We
have a canonical injection

lim £(:)/p" X () < b H' (X[p"):

Similarly, for any fppf, smooth or étale extension k/k of finite type which is an
integral domain, we have an injection

lim X () /p" X (1) = lim H} (X[p"])

for ? = fppf, sm or ét according as x/k is an fppf extension or a smooth
extension.
By Lemma 2.1, we have X (k) = Jm X(k)/p"X (k) in the following cases:
(2.2)

[k : Q] < oo and & is an integral domain of finite type over k

[k : Q] < oo with [ # p and & is an integral domain of finite type over k

[k : Qp] < 0o and & is a finite algebraic extension over k.

Proof. We consider the sheaf exact sequence under the topology 7 = fppf or
sm or étale on Spec(k)

0—X[p"] - X2 X,
We want to show that the multiplication by p™ is surjective. If our cohomology

theory is Galois cohomology (or equivalently ? = étale), we have an exact
sequence

0= X[p"](K) > X (K) 25 X(K) - 0.
Since X (K) = X(K) ®z Z,, the desired exactness follows.

Let k be an fppf extension of k. Then for each z € X (k), we consider the

Cartesian diagram
X, — X

! L

Spec(k) —— X.

Then X, = X[p"] as schemes over k; so, X, = Spec(R) for an étale finite
extension R of k, which is obviously smooth and also fppf extension of k. Thus
over the covering R/k, x is the image of the point given by Spec(R) < X. Then

by [ECH, 11.2.5 (¢)], X P Xisan epimorphism of sheaves under étale, smooth
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and also fppf topology. If k is a number field, we have X (k) = X (k) ®z Ly, we
get the exactness of X [p"] < X — X from the exactness of X[p"] < X — X.
If k isa finite extension of QQ; for [ # p, we can argue as above replacing X
by X = X[p™] and get the exactness of X[p"] < X — X. Suppose that k
is a finite extension of Q,. Then X = X/X® as a 7-sheaf. Take z € X (k).
Then by definition, we have an 7-extension R of x such that z is the image of
y € X(R). Then as above we can find a ?-extension R’/R such that y = p™y’ for
y' € X(R'). Then for the image 2’ of y' € X(R') in X(R'), we have p"z/ = .

n

Thus again X2 Xisan epimorphism of sheaves under the topology 7.
Thus we can apply Kummer theory to the sheaf exact sequence

0= Xp' X2 X 50
with respect to the topology given by 7?7, we have an inclusion
X(k)/p"X (k) — H}(X[p"]). Passing to the limit with respect to n, we
have 4 : lim | X(r)/p"X (k) — L H}(X[p"]). Since taking projective limit is
a left exact functor, § is mJectlve as desired. O

Taking instead an injective limit, we get

LEMMA 2.3. Let A be an abelian variety over k. For any intermediate extension
K/k/k, we have an exact sequence

0 — A(rk) ®z, T, — H(A]p™]) — H}(A) =0

for 7 = fppf, sm or ét according as k/k is an fppf extension, a smooth extension
or an étale extension. In particular, the Pontryagin dual of H}(ﬁ) 15 a Zy-
module of finite type; so, Hr}(;l\) has the form (Qp,/Z,)? ® A for some 0 < j € Z
and a finite p-group A.

Proof. Since any smooth covering has finer étale covering, we have Hs'm(ﬁ) =
He't(ﬁ) (cf. [ECH, IIL.3.4 (c)]). Since an étale covering is covered by a finer étale
finite coverings, Hgt(;l\) and H9(A) for ¢ > 0 is a torsion module. This torsion-
ness is well known for Galois cohomology (as the Galois group is profinite; see
[CNF, (1.6.1)]).

Pick any z € A(x). We can find an étale finite extension x’/k such that
p"y = x for some y € ﬁ(n’). Then y is unique modulo g[p"](n’). Therefore,
the sheaf quotient (A JA[p™])(k) is p-divisible and torsion-free; so, is a sheaf of
Qyp-vector spaces. In other words, E/A[p“’] is isomorphic to the sheaf tensor
product A ®z, Qp. Thus we have an exact sequence

0— Alp °°]—>/A1—>ﬁ®z Q, — 0.

Since H;} (A ®z, Qp) is a Q,-vector space, the image in H; (A ®z, Qp) of the
torsion module H 1(A) vanishes. Thus we have an exact sequence

0 — A(r) ®z, Ty, — Hy (A]p™]) = H}(A) = 0.
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Since 0 — A(k) ®z, Z/pZ — H}(A]p]) — HI(A)[p] — 0 is exact, by the
finiteness of H(A[p]) = H*(A[p]) (see [ADT, L5]), the last assertion for Galois
cohomology follows. Then using the comparison theorem (cf. [ECH, II1.3.4 (c)
and II1.3.9]), we conclude the same for other topologies. (]

3. U(p)-ISOMORPHISMS

We recall the results in [H14b, §3] with detailed proofs for some results and
a brief account for some others (as [H14b] is being written along with this

paper). For Z[U]-modules X and Y, we call a Z[U]-linear map X Lya
U-injection (resp. a U-surjection) if Ker(f) is killed by a power of U (resp.
Coker(f) is killed by a power of U). If f is both U-injection and U-surjection,
we call f is a U-isomorphism. Thus, f is a U-injection (resp. a U-surjection, a
U-isomorphism) if after tensoring Z[U, U 1], it becomes an injection (resp. a
surjection, an isomorphism). In terms of U-isomorphisms, we describe briefly
the facts we study in this article (and in later sections, we fill in more details
in terms of the ordinary projector e).

Let N be a positive integer prime to p. We assume Np” > 4 (without losing any
generality as remarked in the introduction). We consider the (open) modular
curve Y1 (Np") ;o which classifies elliptic curves £ with an embedding ¢ : pu,r <
E[p"] = Ker(p" : E — E). Let R; = Z)[1pi], Ki = Qlupi], Roo = J; Ri CQ
and K, = Uz K; c Q. For a valuation subring or a subfield R of K., over
Zpy with quotient field K, we write X, g for the normalization of the j-line
P(j)/r in the function field of Y1 (Np"),x. The group z € (Z/p"Z)* acts on
X, by ¢ = ¢poz, as Aut(unyr) = (Z/Np"Z)*. Thus I = 1+pZ, = v%» acts on
X, (and its Jacobian) through its image in (Z/Np"Z)*. Only in the following
section, we need the result over a discrete valuation ring R. Hereafter, in most
cases, we take U = U(p) for the Hecke-Atkin operator U(p) (though we take
U = U*(p) sometimes for the dual U*(p) of U(p)).

Let J,/p = Picg(T/R be the connected component of the Picard scheme. We
state a result comparing J, g and the Néron model of J,. ,x over R. Thus
we assume that R is a valuation ring. By [AME, 13.5.6, 13.114], X, g is
regular; the reduction X, ® I, is a union of irreducible components, and the
component containing the co cusp has geometric multiplicity 1. Then by [NMD,
Theorem 9.5.4], J,/p gives the identity connected component of the Néron
model of the Jacobian of X, ,r. We write Xf,/R for the normalization of the
j-line in the function field of the canonical Q-curve associated to the modular
curve of the congruence subgroup I', = T'y (Np") NTo(p®) (for 0 < r < s). The
open curve Yo = X7, — {cusps} classifies triples (E,C, ¢ : unpr — E) with
a cyclic subgroup C of order p® containing the image ¢(upr ).

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 221-264



232 Haruzo HibA

We denote Picg{; /r by JJ . Similarly, as above, J{,p is the connected com-
ponent of the Néron model of XST/K. Note that

(3.1) TALL(§,%0 ) T (Np")
={(3,%) o mod p7} = i NN (3,00 ) Ta (VD).

Write Uz (p*™") : J g = Jry/g for the Hecke operator of Ias_.I1(Np") for

Q= ((1) an ) Strictly speaking, the Hecke operator induces a morphism of the

generic fiber of the Jacobians and then extends to their connected components

of the Néron models by the functoriality of the model (or equivalently by Picard

functoriality). Then we have the following commutative diagram from the

above identity, first over C, then over K and by Picard functoriality over R:
Jer T g

(3.2) Ju / u o Lu”

J’I‘/R —> Js/R’

where the middle u' is given by UZ(p*~") and u and u” are U(p*~"). Thus
(ul) 7 : Joyr = J{,p is a U(p)-isomorphism (for the projection 7 : X —
X,).
Taking the dual U*(p) of U(p) with respect to the Rosati involution associated

to the canonical polarization on the Jacobians. We have a dual version of the
above diagram for s > r > 0:

s

Joyrp TR

(3.3) R AR VA T

T

Jor & T

Here the superscript “x” indicates the Rosati involution corresponding to the
canonical divisor on the Jacobians, and u* = U*(p)*~" for the level I’y (Np")
and u”"* = U*(p)*~" for I'". Note that these morphisms come from the following
double coset identity:

(34) TL% (7,7 9) Du(Np')
= {7y ¢) o mod p=} = eV N (V) (757 0) T (V).
From this, we get

(u*1) 7y : Jor = Jryrisa U*(p)-isomorphism, where 7, is the dual of 7*.

In particular, if we take the ordinary and the co-ordinary projector e =
lim,, oo U(p)™ and e* = lim,, oo U*(p)™ on J[p™] for J = JT/R,JS/R7JST/R,
noting U(pm) =U(p)™, we have
or ~ rord oo r,co-ord[ oo CO-OT
TR = IR ] and mo: JDE ) 2= e p>]
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where “ord” (resp. “co-ord”) indicates the image of the projector e (resp. €*).
ord

For simplicity, we write G,/ g := JT/R[p“’]/R.

Suppose that we have morphisms of three noetherian schemes X = Y % §
with f = gow. We look into

Hiyoo(T, R .Gn) = R [.OX(T) = Picx;s(T)
for S-scheme T' and the structure morphism f : X — S (see [NMD, Chapter 8]).

Suppose that f and g have compatible sections S 2 Y and S 25 X so that
mo sy =38y Then we get (e.g., [NMD, Section 8.1])

Picy,s(T) = Ker(s} : Hi, (( X7, 0%) — Hy f(T, OF))
Picy,s(T') = Ker(s; : H, (Yr, O3, ) = Hi, (T, 0F))

for any S-scheme T', where s% : H{ (Xr,0%,) — Hf «(T,07) and sy :
HE (Yr,0y. ) — Hy (T, Or) are morphisms induced by sy and s, respec-
tively. Here we wrote X = X xgT and Ypr = Y xgT. We suppose that
the functors Picx,s and Picy,s are representable by smooth group schemes
(for example, if X,Y are curves and S = Spec(k) for a field k; see [NMD,
Theorem 8.2.3 and Proposition 8.4.2]). We then put J, = Picg/s ?=X)Y).
Anyway we suppose hereafter also that X,Y, S are varieties (in the sense of
[ALG, 11.4)).

For an fppf covering Y — Y and a presheaf P = Py on the fppf site over Y,
we define via Cech cohomology theory an fppf presheaf U — H?(U, P) denoted
by H'(Py) (see [ECH, II1.2.2 (b)]). The inclusion functor from the category
of fppf sheaves over Y into the category of fppf presheaves over Y is left exact.
The derived functor of this inclusion of an fppf sheaf F' = Fy is denoted by
H*(Fy) (see [ECH, IIL.L5 (c)]). Thus H*(G,,/y)(U) = Hf,(U,0F) for a
Y-scheme U as a presheaf (here U varies in the small fppf site over V).
Assuming that f, g and 7 are all faithfully flat of finite presentation, we use
the spectral sequence of Cech cohomology of the flat covering 7 : X — Y in
the fppf site over Y [ECH, II1.2.7]:

(3.5) H?(Xp Y, B (Gyy)) = Hiyp(Yr, O3,) = H" (Y1, 05 )

for each S-scheme T. Here F' — H{ (Yr,F) (vesp. F — H"(Yr,F)) is
the right derived functor of the global section functor: F' +— F(Yr) from the
category of fppf sheaves (resp. Zariski sheaves) over Yr to the category of
abelian groups. The canonical isomorphism ¢ is the one given in [ECH, I11.4.9].
By the sections s, we have a splitting H?(Xr, 0%, ) = Ker(s}) ® HY(T,O7)
and H"(Yr,Oy ) = Ker(sy) @ H"(T,0r). Write Hy, for H*(G,,/y,) and
H‘(ﬂng) for H‘(YT/XT,ﬂg/T). Since
Picx,s(T) = Ker(s} p : H' (X7, 0%,) = H(T,05))

for the morphism f : X — S with a section [NMD, Proposition 8.1.4], from

this spectral sequence, we have the following commutative diagram with exact

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 221-264



234 Haruzo HibA

rows, writing }Vlo(f,—:,?) as HO(?) and H'(T,05) as H'(O}):
(3.6)

7 E— Hl(ﬂg)/T) — Hl(ﬂg)/T)
n
Picy ®Jy(T) ——— Picr @ Picy,s(T) ——— H'(O}) ® Ker(s}, 1)
c b a

Picr ®HO(Jx(T)) ——  HO°(Picy (T))

T
&
B
3

=

?2 — HQ(E?/T) HQ(E(;/T%

where we have written J, = Pic) /s (the identity connected component of
Picy/g). Here the vertical exactness at the right two columns follows from
the spectral sequence (3.5) (see [ECH, Appendix B]).

We now recall the definition of the Cech cohomology: for a general S-scheme
T and Cech cochain Cig,....ig € HO(XF}qH), 0> ),

X;q+1)

@ﬂ<mégwwwm=

{(Cioyeori) TL (g 5, i Opio...%j,,,iq“)(_l)] =1}
{dbig..iy = T1, iy 5 i 0 Pio 5,0 )0 Mgy 5, s € HOXAD, 0% )}

i 80 0j...0 (q)
J q 0.5 XT

where we agree to put H 0(XZSP)7 Og?;) = 0 as a convention,

q

X:(FQ):XXYXXY~-~><YX><ST,

q

0 Ox Xoy Ox X0y -+ X0y Ox X0407,

() =
XTq

the identity [];(cop;,

X}QH) — Xq(fﬁ'l) is the projection to the product of X the j-th factor removed.
q

(=17 = 1 takes place in Oy (a+2) and p;,
T

"'ij~~~iq+1) R

Since T'x 7T = T canonically, we have Xéq)

of fiber product.
Take a correspondence U C Y xgY given by two finite flat projections 7y, 75 :
U — Y of constant degree (i.e., 7 .Oy is locally free of finite rank deg(m;) over

& Xp X7 --- Xp Xp by transitivity
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Oy ). Consider the pullback Ux C X xg X given by the Cartesian diagram:

UX:UXYXSy(XXSX) —_— XXSX

| !

U L)YXsY

Let mjx =mj xg7m:Ux - X (j =1,2) be the projections.

We describe the correspondence action of U on H°(X,O0%) in down-to-earth
terms. Consider a € H%(X,0x). Then we lift 7} ya = aomx €
H°(Ux,Ouy ). Put ay := 7} xa. Note that 73 x Oy, is locally free of rank
d = deg(ms) over Oy, the multiplication by «y has its characteristic polynomial
P(T) of degree d with coefficients in Ox. We define the norm Ny (ay) to be
the constant term P(0). Since « is a global section, Ny (ay) is a global section,
as it is defined everywhere locally. If « € H(X, 0%), Nu(av) € H°(X,0%).
Then define U(a) = Ny (o), and in this way, U acts on H°(X, 0%).

For a degree ¢ Cech cohomology class [c] € Hq(X/Y,ﬂO(Gm/y)) of a Cech
g-cocycle ¢ = (c4.....i,), U([c]) is given by the cohomology class of the Cech co-
cycle U(c) = (Ulci,....i,)), where U(cy,,....s,) is the image of the global section
Cig,...,i; under U. Indeed, (wvacio,wiq) plainly satisfies the cocycle condition,
and (Ny (WT)XCiO7,,,)iq)) is again a Cech cocycle as Ny is a multiplicative homo-
morphism. By the same token, we see that this operation sends coboundaries
to coboundaries and obtain the action of U on the cohomology group.

LEMMA 3.1. Let the notation and the assumption be as above. In particular,
m: X — Y is a finite flat morphism of geometrically reduced proper schemes
over S = Spec(k) for a field k. Suppose that X and Ux are proper schemes
over a field k satisfying one of the following conditions:

(1) Ux is geometrically reduced, and for each geometrically connected com-
ponent X° of X, its pull back to Ux by mo x 1is also connected; i.e.,
(X)) 25 20(Ux);

(2) (fomex)«Ovy = fuOx.

If 7o : U = Y has constant degree deg(ms), the action of U on H°(X,O%)
factors through the multiplication by deg(me) = deg(ma,x).

T2, X,

Proof. By properness, under (1) or (2), H'(Ux,Op,) ="~ HY(X, (’)X)(@
k™ (X)) for the set of connected components 7°(X) of X. In particular, we see
ay € H(Ux, Oy, ) = HY(X, Ox), which tells us that Ny (ay) = a?,eg(M), and
the result follows. O

Consider the iterated product m; x@) = T x Xy -+ Xy T x : U)((q) — X
q

(i =1,2). Here U)(f) =Ux xy Ux Xy --- Xy Ux. We plug in U)(g) in the first
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j slots of the fiber product (for 0 < j < ¢) and consider

(q) (q)
U)(gil) Xy X (a—i+1) <—ﬂ1?j U; = U)(g) Xy x (a—7) —>ﬂ2?j U)(gil) Xy X (a—i+1)

which induces a correspondence U; in (U)(g_l) xy X(@=3+1D) (U)(g_l) Xy

X(@=73+1)) " Here m;,; restricted to first j — 1-factors Ux is the identity idy,;
the last ¢g—j factors is the identity id x and at the j-th factor, it is the projection
m; (i =1,2). For example, if ¢ = 3 and i = 2, we have

-

Ux xy Ux xy Ux ———————— Ux Xy Ux xy X
idU XidU X2

i) )
2,2 2,1
Ux Xy X Xy X ————— X Xy xyX.
idU ><7T2><idx 7T2><idx Xidx

Naturally my x factors through the following ¢ consecutive coverings U, LLN

Uy 2% 0 25 X@ for p; = ﬂ'éqj) Note that the norm map Ny, =

. X X
: 7r2,X(‘1>,*OUq — OX(«J)

Ny, =NgoNyg_10---0Ny,

where N; is the norm map with respect to U; — U;_;. The last norm is
essentially the product of Ny and the identity of X (=1 corresponding to
U xy XY — X@_ In particular, p;.(Op,) = T2.x.+(Ovy) @0y Oxa-n
and

Ty %@ factors through the corresponding norm maps:

qg—1
(f 201)«(Ov,) = (f o 7m2,x)«(Ovy) ®oy f+Ox R0y -+ ®oy fxOx .

Thus if the assumption (2) in Lemma 3.1 is satisfied, the corresponding assump-
tion for Uy is satisfied. The assumption (1) implies (2) which is really necessary
for the proof of Lemma 3.1. Applying the argument proving Lemma 3.1 to the
correspondence U7 and the last factor Ny of the norm, we get

COROLLARY 3.2. Let the notation and the assumption be as in Lemma 3.1.
Then the action of U@ on H(X, (’))X((q)) factors through the multiplication by
deg(m2) = deg(ma,x).

Here is a main result of this section:

PROPOSITION 3.3. Suppose that S = Spec(k) for a field k. Letm : X — Y
be a finite flat covering of (constant) degree d of geometrically reduced proper
varieties over k, and let Y <~ U 2%Y be two finite flat coverings (of constant
degree) identifying the correspondence U with a closed subscheme U Ay X g
Y. Writemjx : Ux =U xy X — X be the base-change to X. Suppose one of
the conditions (1) and (2) of Lemma 3.1 for (X,U). Then
(1) The correspondence U CY xgY sends HI(HY) into deg(mo)(HY(HY))
for all ¢ > 0.
(2) If d is a p-power and deg(my) is divisible by p, HI(HY) for ¢ > 0 is
Killed by UM if pM > d.
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(3) The cohomology HI(HY) with q > 0 is killed by d.

Proof. The first assertion follows from Corollary 3.2. Indeed, by (3.7), U (@) acts
on each Cech g-cocycle, through an action factoring through the multiplication
by deg(ms,x) = deg(m2) by Corollary 3.2.

Now we regard X > Y as a correspondence of YV (with multiplicity d)
by the projection m; = m = 7 : X — Y. Then [X](¢) = dec for
c € HY(X/Y,H°(G,,/y)). On the other hand, by the definition of the cor-
respondence action, [X] factors through H%(X/X, H*(G,,/y)) = 0, and hence
dx = 0. This shows that if X/Y is a covering of degree d, H9(X/Y, ﬂO(Gm/y))
is killed by d proving (3), and the assertion (2) follows from the first (1). O

We apply the above proposition to (U, X,Y) = (U(p), Xs, X%) with U given
by U(p) C XI x X7 over Q. Indeed, U := U(p) C XI x X corresponds
to X(I') given by I' = T'1(Np") N Ty(p**!) and Ux is given by X (I') for
I = T (Np®) NTo(p**!) both geometrically irreducible curves. In this case
m is induced by z — % on the upper complex plane and 7y is the natural

projection of degree p. In this case, deg(X,/X?) = p*" and deg(ms) = p.

Assume that a finite group G acts on Xy faithfully. Then we have a natural
morphism ¢ : X x G = X xy X given by ¢(z,0) = (x,0(x)). In other words,
we have a commutative diagram

(z,0)—0o(x)

X x@G

X
(z,a)l—)zl l
Y,

X —

which induces ¢ : X x G — X Xy X by the universality of the fiber product.
Suppose that ¢ is surjective; for example, if YV is a geometric quotient of X
by G; see [GME, §1.8.3]). Under this map, for any fppf abelian sheaf F', we
have a natural map H(X/Y,F) — H°(G,F(X)) sending a Cech 0-cocycle
c € HY(X,F) = F(X) (with pic = pic) to ¢ € H(G, F(X)). Obviously, by
the surjectivity of ¢, the map H°(X/Y, F) — H°(G, F(X)) is an isomorphism
(e.g., [ECH, Example II1.2.6, page 100]). Thus we get

LEMMA 3.4. Let the notation be as above, and suppose that ¢ is surjective. For
any scheme T fppf over S, we have a canonical isomorphism: HY(X7/Yr, F) &
HY(G,F(X7)).

We now assume S = Spec(k) for a field k and that X and Y are proper reduced
connected curves. Then we have from the diagram (3.6) with the exact middle
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two columns and exact horizontal rows:

T degTonto degTonto T

H'(HY,) —— Picy;s(T) —— H°(3%,Picy;s(T)) —— H?*(HY)

I | Je I

o —— KT —— HU3E,Ix(T) —— 7

Thus we have ?; = HI(HY) (j = 1,2).

By Proposition 3.3, if ¢ > 0 and X/Y is of degree p-power and p|deg(ms),
H(HY) is a p-group, killed by UM for M > 0. Taking (X,Y, U)/s to be
(XS/Q,X;"/Q,U(p))/Q for s >r >1for podd and s > r > 2 for p = 2, we get
for the projection 7 : Xg — X

COROLLARY 3.5. Let F' be a number field or a finite extension of Q; (for a
prime | not necessarily equal to p). Then we have

* r & r ) r—1 -
(W) 7+ ] (F) > HOX, /X0, Tuyg(F) 2 o)™ — 1] s a U(p)-
isomorphism,
where JS/Q(F)[’YPP1 — 1] =Ker(v?" ' —1: J,(F) — J(F)).
From these, we got the following facts as [H14b, Lemma 3.7]

LEMMA 3.6. We have morphisms

r—1 * r r—1
vg s Jspol? =1 — J:/Q and (0% o0 = Jsio/ (Y = 1)(Js/0)
satisfying the following commutative diagrams:
The = Jyeh? =1
(3.8) lu Lu”
Tie T Jyeb? T -1,

and

T & Jya/0P = 1)(Jora)
(3.9) Tur o b '
T r—1
Tyg ¢ g/ = 1),
where u and u” are U(p*~") = U(p)*™" and u* and u"" are U*(p*~") =
U*(p)*~". In particular, for an fppf extension T)q, the evaluated map at T':
T T r * r—1 .
(Jspo/(VP = 1)(Jsyo)N(T) == JE(T) (resp. JI(T) — Js[y*  —1)(T)) is a
U*(p)-isomorphism (resp. U(p)-isomorphism).

r—1

REMARK 3.7. Note here that the natural morphism:

e = (/07 = DU
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may have non-trivial kernel and cokernel which may not be killed by a power
of U*(p). In other words, the left-hand-side is an fppf presheaf (of T') and the
right-hand-side is its sheafication. On the other hand, T — J; [*ypr_l —1(T)
is already an fppf abelian sheaf; so, J,.(T') LA Js[fyprf1 — 1|(T) is a U(p)-
isomorphism without ambiguity by the above Lemma 3.6 and Corollary 3.5
combined. Also, as remarked in the introduction, we need to replace 'ypT_l -1
in the above statement by 7’“72 —lifp=2.

4. STRUCTURE OF A-BT GROUPS OVER NUMBER FIELDS AND LOCAL FIELDS

ord

Let G/p.. = @T Jr [p°°]/R007 which is a A-BT group in the sense of [H14a,
Sections 3 and 5] with a canonical h-action. Here for an abelian variety A g,

A[p"] = Ker(A = A) and A]p™];p = lim A[p"] (the p-divisible Barsotti-
Tate group of A over R). For an h-algebra A, we put G4 = G ®, A. Pick a
reduced local ring T of h and write a(I™) for the image in T of U(I™) or T'(I"™)
for a prime [ according as {|Np or [ t Np and my for the maximal ideal of T.
Since Gr is a A-BT group in the sense of [H14a, Theorem 5.4, Remark 5.5], we
have the connected-étale exact sequence over Z, [ju,e|:

0— Gp — Gr — G — 0,

where Gy is the connected component of the flat group Gr and g;’;t is the quotient
of Gr by G3. The étale group Gr/q over Q is a A-BT group over Q (in the sense
of [H14a, §4]) on which Z) act by diamond operators. The entire group Gr
extends to a A-BT group over Zy|p,e] (see [H14a, Remark 5.5]). The Q,-points
of this sequence descent to @, giving an exact sequence:

0— g’lo‘(@p) - gT(@p) — g%t(@p) —0

with G&(Q,) = Ho(I,,G1r(Q,)) for the inertia group I, C Gal(Q,/Q,).

We know that G9 and G& are well controlled, and the Pontryagin dual modules
of G2(Q) and G&(Q) are A-free modules of (equal) finite rank (see [H86b, §9]
or [H1l4a, Sections 4-5]). Here we equip these A-divisible modules with the
discrete topology. Take a field k as a base field. Pick a T-ideal a. Write Gr[a]

for the kernel of a:
Gr[a](R) = {z € Gr(R)|ax = 0 Va € a},

where R is an fppf extension of k. Write a(p) for the image of U(p) in T.

For the moment, assume that k is a finite extension k£ of Q, with p-adic integer
ring W. If the residual degree of k is f and a(p)/ # 1 mod mr for the maximal
ideal mr of T, we have

Gr[mz]* (k) =0,
since the action of Frob, on Gr[mr]®(Q,) is given by multiplication by a(p). On

the other hand, the action of Gal(k/k) on e - Joo[p™]°(k) @n T factors through
Gal(k[pp]/k) = Z; — A, where the factor I' = 1 +pZ, of )} =T x 1,1 is
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embedded into A = Z,[[I']] by natural inclusion and ¢ € p,—1 is sent to ¢* for
some 0 < a =: a(T) = ax(T) < p—1. Thus if a(T) # 0, we have G3[mr](k) = 0.
We have a natural projection 7 = 7% : G, := Js[p“’]%1 — G, for s > r (see
[H13a, Section 4] where 7, is written as N;?). This induces a projective system
of Tate modules {TG;1 := TG ®n T}, and {Tg;T} for ? = o,ét. We put
TGy =1lim TG (Q) for ? = nothing, o or ét. They are A-free modules with a
continuous action of Gal(Q/Q). Write py for the Galois representation realized
on TGy, and put pp = pr mod P acting on TGr/PTGr for P € Spec(T). In
particular, we simply write p = Py = pm, for the maximal ideal mp of T.

If T is a Gorenstein ring, then for the Tate modules T'Gr, TGS and TGS as
above, we have

TGr = T? and TG = T = TGS
as T-modules (e.g., [H13a, Section 4]), and if py(I,) contains a non-trivial

unipotent element for the inertia group I, in Gal(@p/k), again we have
G&tmr](k) = 0. Thus we get

LEmMMA 4.1. Let kg, in @p be a finite extension and T be a reduced local
ring of h. Assume that k has residual degree f and one of the following two
conditions:

(1) ax(T) # 0 and a(p)’ #1 mod mr,
(2) T is a Gorenstein ring, and pr(Ip) has non-trivial unipotent element
for the inertia group I, of Gal(@p/k).
Then we have Gr(k) = 0.

Proof. Let V be the A-dual of T'Gr, which is also the Pontryagin dual of Gr.
Then we have Hy(k,V/mpV) = Grlmr|(k) = HO(k, Gr[mz]). By the assumption
(1) or (2), we have the vanishing Gr[mr|(k) = 0. Look into the following exact
sequence of sheaves
0= Grlme] = Gr 5 P Gr
acl

with p(z) = (az)q for a finite set I = {a}, of generators of my. Taking the
Gal(k/k)-invariant, we get another exact sequence

0 — Gr[mr](k) — Gr(k) 25 @D Gr (k).
acl

Since Ker(¢x) = Gr(k)[mr], we conclude (Gr(k))[my| = Gr[mg](k) = 0. Taking
the Pontryagin dual module written as M"Y for a compact or discrete module

M, we have, setting V = Gr(Q)V,
Ho(k, V) /myHo(k, V) 2 (G (k)Y /mn(Ge (k)Y = (Gr(k)[mr])¥ =0,

which implies Gr(k)Y = Hg(k,V) = 0 by Nakayama’s lemma, and hence
Gr(k) = 0. This proves the assertion under (1) or (2). O

In the I # p case, we remark the following fact:
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LEMMA 4.2. Let kg, in Q, be a finite extension for a prime | # p and T be a
reduced local ring of h. If the semi-simplification of Gr[mr] as a representation
of Gal(Q,/k) does not contain the identity representation, then Gr(k) = 0. In
general, Gr(k)V is always a torsion A-module of finite type.

Proof. If the semi-simplification of Gr[my] as a representation of Gal(Q;/k)
does not contain the identity representation, we have HY(k,Gr[mz]) = 0; so,
Hy(k,V/mpV) =0 for V = QT(@)V Writing mr = («;)ies for o; € T with a
finite index set I, we have an exact sequence:

0 = Gr[mg] @) — G2(@) % (DG (@)

i€l

Taking the Pontryagin dual we have another exact sequence of Galois modules:

0 V/mgV v &2 Ty,
el

Since Galois homology functor is right exact, the above exact sequence implies
Hy(k,V) @1 T/my = Ho(k,V/mpV) = 0.

Then by Nakayama’s lemma, we get Ho(k, V') = 0, which implies Gr(k) = 0.
Let f be the residual degree of k as before. Consider the Hecke polynomial
Hp(X) = X% — A(IN)X + 1/ (1)/, where A(17) is determined by the following
recurrence relation: A(l) = a(l) and A(I™) = a(I™) — I{l)a(I™"1) for m >
2. If I ¥ Np, Gr is unramified over k. By the Eichler-Shimura congruence
relation (e.g. [GME, Theorem 4.2.1]), if [ ¥ Np, for the I-Frobenius element
¢ € Gal(k/k), the linear operator Hy;(¢) annihilates Gy. Thus if Hy(X)
mod my is not divisible by X — 1, Gr[mr] as a representation of Gal(Q,/k) does
not contain the identity representation.

For an arithmetic prime P, Hy;(X) mod P does not have a factor X — 1.
Thus after the localization at P of the Pontryagin dual (Gr(k)Y)p is killed by
Hyi(¢) and ¢ — 1, and hence Gr(k)Y is a torsion A-module.

Now assume that {|N. By the solution of the local Langlands conjecture (see
[C86] and [AAG]), after replacing k by its finite extension, the Galois module
Gr[P] for an arithmetic point P becomes unramified unless pp is Steinberg at
[ (i.e., is multiplicative type at l). Suppose that we have a non-Steinberg P.
Then characteristic polynomial H(X) of ¢ modulo P is prime to X — 1 (as
H(X) mod P has Weil numbers of weight f as its roots). Then by the same
argument, we conclude the torsion property.

Suppose that all arithmetic point of Spec(T) is Steinberg at [ (this often hap-
pens; see a remark below Conjecture 3.4 of [H11, §3]). Write pp for the 2-
dimensional Galois representation realized on (Gr(Q;)V) ®1 x(P). Again by
Langlands-Carayol, pp(I;) for the inertia group I; C Gal(Q,/k) contains a
non-trivial unipotent element. Thus pp does not have a quotient on which I;
acts trivially. This shows again the A-torsion property. (I
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Let Spec(I) C Spec(T) be an irreducible component. Without assuming the
Gorenstein condition, we have (T'Gy)p = I3 for almost all height one primes
P € Spec(A); so, we have pp with values in GLy(Ip) for most of P. We call I a
CM component if py 2 Indy, ¥ for a Galois character ¥ : Gal(Q/M) — TS (for
an imaginary quadratic field M). If T is not a CM component, again for almost
all P, by [Z14], pr(I,) contains an unipotent element conjugate to (§ %) with
non-zero-divisor u € Tj. In this case, we have Ho(Gal(k/k), TGr)p = 0; so,
Gi(k) is a co-torsion A-module.

LEMMA 4.3. Let kq, in @p be a finite extension with residual degree f and T
be a reduced local ring of h. Then the Pontryagin dual Gr(k)Y of Gr(k) is a
torsion A—module of finite type.

Proof. We may suppose either a(p)f =1 mod mr or ax(T) = 0, as otherwise
Gr(k) = 0 by Lemma 4.1. Replacing T by its irreducible component I, we only
need to prove torsion-ness for Gr(k)¥. Write V for the A-torsion free quotient
of TGy. Then for any P € Spec(A)(Q,), we have Vp = (T'Gr)p (as the reflexive
closure in [BCM, Chapter 7] of I is A-free).

If T is not a CM component (i.e., py is not an induced representation from the
Galois group over an imaginary quadratic field), the assertion follows from the
same argument proving Lemma 4.1 replacing mt by PTp and T by Tp. Indeed,
taking an arithmetic point P of weight 2. Then by [Z14], we have u € Tj. Then
H%(k,Vp/PVp) is a submodule of H°(I,Vp/PVp) (for the inertia group I at
p) killed by a(p)/ — 1. Since P is an arithmetic point of weight 1, we may
choose P so that a(p) mod P is a Weil number of weight 1 (indeed, we only
need to assume that the Neben character of fp is non-trivial at p; see [MFM,
Theorem 4.6.17]), and hence a(p)f # 1 mod P. Thus H°(k,Vp/PVp) = 0.
This implies Gr(k)[P] is a finite module; so, Gy(k)" is a torsion A-module.
Now assume that I is a CM component with py = Ind%[ U. Define ¥¢(o) =
U(coc™1) for a complex conjugation c. In the imaginary quadratic field M, p
splits into a product of two primes pp as pr is ordinary. For any arithmetic
point P € Spec(I)(Q,) Vs := ¥ mod P ramifies at p and its restriction to
the inertia group at p has infinite order, and W€ is unramified at p with infinite
order ¥¢(Frob,) (from an explicit description of ¥; cf, [H13a, §3]). Then we
have Vg = V @1 Iy = ]L%}. Thus replacing £ by the composite kM,, we have
Vip = U @ ¢ over Gal(Q,/k). Since ¥¢ is unramified at p and g (Froby) has
infinite order. This shows that H(k, Vi /PBVy) = 0, and again we find that
Gy’ (k) is a torsion I-module and hence a torsion A-module. (]

COROLLARY 4.4. If k is a number field or a finite extension of Qq, the local-
ization of Gr(k)V at an arithmetic prime of weight 2 vanishes.

Proof. We only need to prove this for a finite extension k& of Q;. Write W
for the integer ring of k. Replacing k by its finite extension, we may assume
that Ap has semi-stable reduction over W for an arithmetic prime at P. If
Ap has good reduction and [ # p, the [-Frobenius acts on T,Ap by a Weil
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number of weight > 1, and then Ap[p>](k) is finite; so, Gr[P](k) is finite. If
| = p, by [Z14], the inertia image in Aut(T,Ap) contains a non-trivial unipotent
element, and hence again Ap[p>](k) is finite, and the result follows. If Ap has
multiplicative reduction, Ap[p>°](k) is finite by a theorem of Tate-Mumford as
the Tate period of Ap is non-trivial. This shows that Gr[P](k) is finite, and
hence the result follows. O

5. ABELIAN FACTORS OF MODULAR JACOBIANS

Let h,-(Z) be the subalgebra generated by T'(n) (including U () for {|Np) of
End(J,/q). Then h,.(Zy) = h.(Z) ®z Z, is canonically isomorphic to the Z,-
subalgebra of End(J,[p>]) generated by T'(n) (including U(!) for I|Np). Then
h, = h,(Z,)°*? by the control theorems in [H86a] and [H86b).
As before, let k& be a finite extension of Q inside Q or a finite extension of
Q; inside Q;. Let A, be a abelian subvariety of .J,. defined over k. Write A,
(s > r) for the image of A, in Js; under the morphism 7* : J. — Js given
by Picard functoriality from the projection 7 : Xy — X,. If A, is Shimura’s
abelian subvariety attached to a Hecke eigenform f, we sometimes write Ay g
for A, to indicate this fact. Hereafter we assume
(A) We have a coherent sequence o € End(Jy,q) (for all s > r) having the
limit o = lim a, € End(Ju @) such that
(a) As is the connected component of J,[a,] with J, = Ag + as(Js) so
that the inclusion: A4[p™] = J,[as][p™] is a U(p)-isomorphism,
(b) the restriction ag|a,(s,) € End(as(Js)) is a self-isogeny.

Here for s’ > s, coherency of a; means the following commutative diagram:

Jy —— Jy

o | e

Jg —— Jy
T

The Rosati involution h — h* and T'(n) — T*(n) (with respect to the canonical

divisor on .J,.) brings h,.(Z) to h)(Z) C End(J,q). Define A} to be the identity

connected component of J[a*]. The condition (A) is equivalent to

(B) The abelian quotient map J, — B, = Coker(as) dual to AF C J;

induces an U (p)-isomorphism of Tate modules: T}, (Js/as(Js)) — TpBs
and a; induces an automorphism of the Q,-vector space Tpo(Js) @z,
Qp.

Again if A, is Shimura’s abelian subvariety of J,. associated to a Hecke eigen-

form f, we sometimes write By, for By as above. The condition (A) (and

hence (B)) is a mild condition. Here are sufficient conditions for («, A, Bs) to

satisfy (A) (and (B)):

PROPOSITION 5.1. Let Spec(T) be a connected component of Spec(h) and
Spec(I) be an irreducible component of Spec(T). Then the condition (A) holds
for the following choices of (a, As, Bs):
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(P1) Fizr > 0. Then ag = a for a factor a|y?" —1in A, Ay = J,[a]°
(the identity connected component) and Bs = Pic?qs/@ for all s > r.

(P2) Suppose that an eigen cusp form f = fp new at each prime [|N belongs
to Spec(T) and that T =1 is regular (or more generally a unique fac-
torization domain). Then writing the level of fp as Np”, the algebra
homomorphism X : T — Q, given by f|T(I) = MT(1))f gives rise to
the prime ideal P = Ker(\). Since P is of height 1, it is principal
generated by ww € T. This w has its image ws € Ty = T ®@p A for
A, = A/(’yps_1 —1). Sincehy, =h®ps A = Ts®Xs as an algebra direct
sum, End(J,/q) ®z Zp D hs(Zy) = Ty @ Ys with Y projecting down
onto Xs. Then, we can approximate as = ws ® 15 € hs(Zp) for the
identity 15 of Yy by as € hs(Z) so that ashs(Zy) = ashs(Zy) (hereafter
we call as “sufficiently close” to as if ashs(Zy) = ashs(Zy)). For this
choice of as, As := As s and By := By .

(P3) More generally than (P2), we pick a general connected component
Spec(T) of Spec(h). Pick a (classical) Hecke eigenform f = fp (of
weight 2) for P € Spec(T). Assume that hs (for every s > r) is re-
duced and P = (w) for w € T, and write ws for the image of w in
hs(Zy). Take the complementary direct summand Ys of Ts in hs(Z,)
and approzimate as = ws P 1, in he(Zy) to get o sufficiently close to
as. Then for this choice of as, As := Ay s and Bs := By ;.

(P4) Suppose that T/(w) for a non-zero divisor w € T is a reduced algebra
of characteristic 0 factoring through h, = h/(vpr_1 — 1h for some
r > 0. Assume that T is reduced for every s > r, and write ws for the
image of w in Ts. Then approximating as = ws B 1 by as € hs(Z)
sufficiently closely for each s > r, we define Ag to be the connected
component of Jslas] and By to be its dual quotient.

Proof. We first prove (P4). Since «j is sufficiently close to as, we have the
identity ashs(Z,) = ashs(Zy) of ideals. By reducedness of T,, we have an
algebra product decomposition: hs(Qp) := hs(Zy) ®z, Qp = as(Ts) @z, Qp x Zs
for the complementary Q,-subalgebra Z,, which is given by (Ts/(ws)) ®z, Q,.
Write the idempotent of Zs as €5 € Zs. Then €, + a; is invertible in hg(Qyp).
For some positive integer My, Bs := U(p)Mse, € hy(Z) C End(Js). Then by
€s + as € hs(Qp)*, the connected component A of Js[a] is given by 54(Js),
Js = Bs(Js) + as(Js) = As + a(Js), and the inclusion map Ay — Js[as] is
an U (p)-isomorphism. Since a is invertible in as(hs(Qp)), @ induces a self-
isogeny of «(Js). Thus the triple satisfies (A). Since wy hy (Z,) surjects down
to wshs(Zy) for all s’ > s, we can adjust «, inductively to have a projective
system {as € End(Js)}s>r. Thus a = Hm o € End(J) does the job. This
proves (P4). The assertions (P2) and (P3) are direct consequences of (P4).
As for (P1), since a\(’ypT_l - 1)|(7ps_1 — 1) in the unique factorization domain
A, factoring v*° — 1 = a,f, the ideals () and (Bs) are co-prime in the
unique-factorization domain A. From this, we have J; = Bs(Js) + a(Js) =
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As+a(Js), and alq(,) is a self isogeny of a(Js) as alq(s,) is a non-zero-divisor
in End(a(Js)). O

REMARK 5.2. (i) Under (P2), all arithmetic points P of weight 2 in Spec(I)
satisfies (A).

(ii) For a given weight 2 Hecke eigenform f, for density 1 primes p of Q(f), f is
ordinary at p (i.e., a(p, f) Z 0 mod p; see [H13b, §7]). Except for finitely many
primes p as above, f belongs to a connected component T which is regular (see
[F02, §3.1]); so, (P2) is satisfied for such T.

(iii) If N is square-free (as assumed for simplicity in the introduction), hg
is reduced [H13a, Corollary 1.3]; so, if an arithmetic prime P € Spec(h,) is
principal, o, as in (P3) satisfies (A).

If A, = Ay, is Shimura’s abelian subvariety associated to a primitive form f
as in [IAT, Theorem 7.14], its dual quotient J, — B, = By, is also associated
to f in the sense of [Sh73]. However, if A, is not associated to a new form, the
dual quotient may not be associated to the Hecke eigen form f. To clarify this
point, we introduce an involution of J,. We fix a generator ( of the Z,-module
Zy(1) = W papn (Q); so, ( is a coherent sequence of generators (pn of pyn (Q)

(i.e., sz:"“ = (pn for all n > 0). We also fix a generator (ny of pn(Q), and
put (npr = (n(pr. Identify the étale group scheme Z/Np"Zgicy ,¢,n] With
pnpn by sending m € Z to (37, Then for a couple (E, ¢npr @ pinpr < E)
for a Qunpr]-algebra K, let ¢* : E[Np"| - Z/Np"Z be the Cartier dual of
¢npr- Then ¢* induces E[Np"]/Im(¢pnyr) = Z/Np"Z. Define i : Z/p"Z =
(E/Im(¢npr))[Np"] by the inverse of ¢*. Then we define pnpr @ pnpr —
E/Tm(¢nyr) by onpr @ pinpr = Z/Np"Z = (E/ Tm(¢npr])[p7] © B/ T (e ).
This induces an involution w, of X, defined over Q[unpr], which in turn induces
an automorphism w, of JT/Q[CN;DT]'

Let P € Spec(h)(Q,) be an arithmetic point of weight 2. Then we have a p-
stabilized Hecke eigenform form fp associated to P;i.e., fp|T(n) = P(T(n))fp
for all n. Suppose f = fp and write Ar, = Ap. Then f} = w,(fp) is the
dual common eigenform of T%(n). If fp is new at every prime {|Np, f} is a
constant multiple of the complex conjugate f§ of fp (but otherwise, it could
be different). Then the abelian quotient associated to f} is the dual abelian
variety of Ap. Thus if f is not constant multiple of f{, By, is not assocaited
to fj (see a remark at the end of [H14b, §6] for more details of this fact).
Pick an automorphism o € Gal(Q(un,r)/Q) with (§,r = (X, for 2z €
(Z/Np"Z)*. Since wy is defined with respect to (%, = (i, we find
w? = (z) ow,. By this formula, if * € Ap(Q) and o € Gal(Q/Q) with (7 = ¢*
for = € Z) x (Z/NZ)* = @S(Z/NpsZ)X7 we have w,(2)7 = (2)(w,(z?)).
Thus w? = (2) o w, = wy o (271) (see [MWS6, page 237] and [MW84, 2.5.6]).
Let 75« : Jo = Jp for s > r be the morphism induced by the covering map
Xs — X, through Albanese functoriality. Then we define 7] = w, o 4y 0 Ws.
Then (77)7 = w,{z" )7 r4(2)ws = 77 for all ¢ € Gal(Q(unp:)/Q); thus, 77
is well defined over Q, and satisfies T'(n) o 7% = «” o T'(n) for all n prime to
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Np and U(q) ol = 7t o U(q) for all q|Np (as w? o h owy = h* for h € h(Z)
(? = s,7) by [MFM, Section 4.6]. Since w? = 1, {Js, 7" } s>, form a Hecke equi-
variant projective system of abelian varieties defined over Q. We then define as
described in (S) just above Lemma 2.1 an fppf abelian sheaf X for any abelian
variety quotient or subvariety X of J,;, over the fppf site over k = Q and Q
(note here the definition of X depends on k).

In general, for Ay in (A), we have A% = ws(A4;) C Js because T'(n) o ws =
ws o T*(n) for all n (see [MFM, Theorem 4.5.5]). Thus (Bs,n?%) in (B) gives
rise to a natural projective system of abelian variety quotients of J;.

6. STRUCTURE OF IND-A-MW GROUPS OVER NUMBER FIELDS AND LOCAL
FIELD

We return to the setting of Section 2; so, K/k is the infinite Galois extension
defined there. In this section, unless otherwise mentioned, we often let x denote
an intermediate finite extension of k inside K (although the results in this
section are valid for s satisfying (2.2) unless otherwise mentioned).

We assume (A) in Section 5 for (as, A, Bs). By (A), the inclusion A,[p*>] —
Jslos][p>] is a U(p)-isomorphism; so, we have the identity of the ordinary
parts: A% = Jord[q,]. From the exact sequence

0—>Js[a5}—>JS ng_)BS—}Oa
we get the following exact sequence of sheaves:
(6.1) 0 — ACrd _y Jord 2y Jord _y gord _,

This is because tensoring Z, (or taking the p-primary part X/X®) as in (S))
is an exact functor. Since taking injective limit is an exact functor, writing
Xod = l.ﬂs X°rd we get the following exact sequence of sheaves:

(6.2) 0— AL — JZ4 5 J2d = BXY — 0.

First, we shall describe A%Y and B in terms of A, and B,. The Picard
functoriality induces a morphism = ;@ J, — Js. This gives a Hecke equivariant
inductive system {J,, 7y }s>, of abelian varieties defined over Q. Since the
two morphisms J, — JI and JI — J, W’PI — 1] (Picard functoriality) are
U (p)-isomorphisms of fppf abelian sheaves by (ul) and Corollary 3.5 (see also
Remark 3.7), we get the following two isomorphisms of fppf abelian sheaves:
(63) A [poo]ord A Lpoo]ord and Aord Aord

. Y . . . Y T . T r—1 .
since A% is the isomorphic image of A% C J, in Js[y**  —1]. Since w, o

T(n) = T*(n)ow, (by [MFM, Theorem 4.5.5]), twisting Cartier duality pairing
[,] + Jr[p"] x Jr[p"] — ppr coming from the canonical polarization, we get a
perfect pairing () Jo[p"] x L[] — e with (a[T(n),y) = (z,y/T(n))
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(e.g., [H14a, Section 4]). By this w-twisted Cartier duality applied to the first
identity of (6.3), we have

(64) Bs [pOO]Ord ; BT‘ [p:x)]ord.

s

Thus, by Kummer sequence, we have the following commutative diagram

B () © Z/p"Z = (By(w) @ Z/p" )" ——— H(B,[p"]")

ﬂ:J{ 2l(6.4)

Byrd(s) © Z/p™Z = (B (x) ® Z/p"2)" ——— H'(B,[p"]")

This shows

BY(k) @ Z/p" L = B (k) @ Z/p" L.
Passing to the limit, we get
(6.5) BOfd ~ B and (B, ®z T)”" =5 (B, ®z T,)*™

as fppf abelian sheaves. As long as k is either a field extension of finite type of
a number field or a finite extension of Q; (I # p) or a finite algebraic extension
of Q,, the projective limit of By(k) ® Z/p™Z (with respect to m) is equal to
B> (by Lemma 2.1). In short, we get

LEMMA 6.1. Assume k to be given either by a field extension of finite type of
k if k is a finite extension of Q or Q; (I # p) or by a finite algebraic extension
of k if [k : Qp] < co. Then we have the following isomorphism

A\r( )ord A( )ord and B\s( )ord —>B( )ord

foralls >r includmg s = 00.

By computation, we get g om; = p*~"U(p*~"). To see this, as Hecke opera-
tors, 7 . = [['}], T s« = [[';]. Thus we have

(6.6) 7 om, = 2] ws - [0 wy = 0] fwgw,] - 1]
= [0z ns (5,00 ) T = U,

Then we have the commutative diagram of fppf abelian sheaves for s’ > s
Aord ¢ ~ Aord

7‘5/

(6.7) F:/l J/ps/fsU(p)s/,s
E(S)rd ¢ ~ A\grd.

*
Tr,s

Note that As and B, are mutually (w-twisted) dual as abelian varieties (see
Section 5), and the w-twisted duality is compatible with Hecke operators. Thus
B, [p"] is the w-twisted Cartier dual of A4[p"]. The w-twisted Cartier duality
pairing in [H14a, Section 4] satisfies (z|X,y) = (z,y|X) for X = T(n),U(q),
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and 77 and 7, ; are adjoint each other under this duality. Then we have the
dual commutative diagram of fppf abelian sheaves:
Eord ~ éord
s’ ” r
s

s/

(6.8) ”T %S’*SU@)S'*S

Rord ~ pord
BS T BT' .

By (6.7) and (6.8), we have the following four exact sequences of fppf abelian
sheaves:

r

O%As[ps—r]ord _)As[poo]ord ﬂ—S>AT[p°°]0rd —)O,

(6.9) .
0 _)Br[ps—r]ord N Br[poo}ord T, Bs[poo}ord =0
and
0 = A, [p*7]erd = Aord T2y Jord
(6.10)

P
0 =B, [p* ] — Bord =5 Bord 0.

LEMMA 6.2. Let the notation and assumtions be as in Lemma 6.1. Then we
have a canonical isomorphism

lim By(k) = lim BY(k) = B(k) @z, Qp.
5,5 s s,ps~TU(p)s~"

Proof. Tdentifying the left and the right column of (6.8), we have the cohomol-
ogy exact sequence of the second exact sequence of (6.10):

(6.11) 0 — B, [p* 17 (r) "5 B(k) %5 BO(k) — HI(B,[p*]Y).
Passing to the inductive limit of {B,[p*~"]% p* U (p)* "},
{B, (k)" p*"U(p)*"}s and {Bs,7},}s, we have the following commu-
tative diagram with exact rows:

lim Bed(x) — lim Be(x) — lim H}(B[p*"]o")
(6.12) | | g

g Bed(n) - lm BU(r) o Hi(im BT,
Here the last isomorphism comes from the commutativity of injective limit and
cohomology.

For a free Z,-module F' of finite rank, we suppose to have a commutative
diagram:
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Thus we have @nw»—)p"w F= @mz»—)p—um pEEF ®Zp QP' If T is a torsion
Zy-module with pPT = 0 for B > 0, we have lim .. T =0. Thus for
n,r—pnx

general M = F @& T, we have @n7prnzM = M ®z, Qp. Applying this

consideration to M = B,(k), we get

lim  B,(k) = B, (k) @z, Qp.

s,x—=p3U(p)sz

Similarly, Mn,zl—)p”U(p)"m B.[p"](k) = hﬂn,sznU(p)% B,[p"](K) = 0. Thus
from the above diagram (6.12), we conclude the lemma. O

Consider the composite morphism w; : As < Js — B, of fppf abelian sheaves.
Since By = Js/as(Js) and J; = As + as(Js) with finite intersection J; =
Ag Xy, as(Js), we have a commutative diagram with exact rows in the category
of fppf abelian sheaves:

o Jy) ~~ Jy —— B,

(6.13) o o] T

O—)Oé(JS)XJS As As
—

We have this diagram over Ry := Z)[up] (not just over Q) by taking the
connected components of the Néron models of Js, As and B,. The intersection
a(Js) X, As = Ker(ws) is an étale finite group scheme over Q. These abelian
varieties are known to have semi-stable reduction over R4 by the good reduction
theorem of Carayol-Langlands. If the character Z,; > z + (2) € End(As)* is

non-trivial, we may replace J; by its complement JSSO) of the image of J? in J;.
Under this circumstance, «(Js) X j, As = Ker(ws) is a finite flat group scheme
over Rs. Since Ag and B, has good reduction over R,., Ker(wy) is a finite flat
group scheme defined over R,.. We consider the exact sequence

0 — Ker(w,) = A, = B, — 0.

which is an exact sequence of fppf abelian sheaves over R, (and smooth abelian
sheaves over Q or Z[l—l)]) From this, writing Cs for the p-primary part of
Ker(ws), we have an exact sequence of fppf abelian sheaves over R, (and
smooth abelian sheaves over Q or Z[=]):

1
P

0—>CS—>AS—>J§S—>O.
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We have the following commutative diagram with exact rows:

As[ps—r]ord ~ s As[ps—r]ord — s 0

! | !

C;)rd ngrd Egrd
— —»
! I
Cgrd Agrd Bgrd .
— —»

By the snake lemma applied to the right two exact columns of the above dia-
gram, we get the following exact sequence:

(6.14) 0— A, [p* 7] — cord 5 o 5

: hcord A ocolord ﬂ-:vs A ocolord
with O — Ag[p™]or «+—— A, [p>]°e.

~

PROPOSITION 6.3. We have the following exact sequence under the 7-topology
over k, where 7 = sm, étale, nothing and fppf:

(6.15) 0— A2 — Jord 2 gord 2=, Berd @y Q, — 0

with A2/ A%[p) 2 B @y, Q.

Proof. By (6.13), C°™ is equal to A% N &(Jo ). Since A, is the connected
component of Js[a] with U(p)-isomorphism Ay < Js[as], we have Co*d =

a(f;’rd){a}. Since « is an isogeny on «(Js), we have an exact sequence of
sheaves indexed by s under ?-topology

0— O — (™) 25 a(J) = 0.
Passing to the inductive limit of these exact sequences (and noting ligs cord =
A, [p>®]°*d by (6.14)), we get another exact sequences:
0 — A [pe] = a(JLY) % a(J2) — 0.

Therefore by (6.14), we get the following exact sequences (indexed by s) of
sheaves under ?-topology:

(6.16) 0 — € — (A% x o(JO")) — Jod 0.

Passing again to the inductive limit of these exact sequences (and noting ﬁ;’rd =
A by 7y, and li Cord = A,.[p>®]°*d), we get the top and the bottom exact
sequences of the following commutative diagram:

App>] —— (A7d x a(JgY) —— I

o] d ‘|

Aprdp] —— (A7 x a(Jgh) —— JL.
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Applying the snake lemma (noting that the connection map is the zero map),
we get

Coker(J&d 25 o) = Aord /Ao [p™).
Thus we have the following exact sequence of sheaves:

(6:17) 0= At = gt o I A /A ] = 0.

There is another way to see (6.17). Passing to the inductive limit of the exact
sequences of sheaves

0 — AZd — Jord 2oy Jord Lo, Bord ),
we get the following exact sequence of sheaves:

0 — Aord 5 jord &, jord Poo, limy B 0
s,w—p* U (p) ="
as A\;’rd = A\‘;rd by .. This combined with (6.17) and Lemma 6.2 proves
the exact sequence in (6.15). By (6.16), we have A% M a(Jo) = Cord; thus
Ker(Ad — Bd) = €™ with lim O™ = A, [p>]°", passing to the inductive
limit we again get the identity of sheaves:
lim By AYYA ) = By g, Q.
s,@—=p =T U(p)* ="

This finishes the proof. O
We have two exact sequences of sheaves:

6.18) 0 A — Jord 2, a(Jgéj) —0,

0 —a(JEh) — J2d 2= B @y, Q, — 0.

These leave us to study the two error terms
By (k) = a(J29) (k) /a(J2(k)) and Ey(k) i= B (k) @z, Qp/poo(JL(1)):
Let Ef(r) = a(J&)(k)/a(Jo (k) and E3(k) = B(k)/ps(J (k) =
Coker(ps) for ps : JO*(k) — B%™(k). Note that
B} (w)(— H} (AYY) = H} (A7) ©2.Z,)
and E3(r) = Bg"(k)/ps(J3" (k) (= H (a(J5™))[a])
are p-torsion finite modules as long as s is finite. Note that alq(s,) is a self
isogeny; so,
0 — a(Jy)[a]? = (T 25 o(J) = 0

ord

is an exact sequence of sheaves. Since a(Js)[a]°™d = C*¢ we have another

exact sequence:

0 = a(J) (k) /a(a(To) (k) — H}(CUY) — H(a(J))[a] — 0.
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We have the following commutative diagram with exact rows and exact
columns:

Bi(r)  —— H}AY) ——  H}(J)

] 1 1

Tord N N
a?iiffsu?fﬁ?» —— H}(C") —— Hj(a(J"))la]

&ST T TU

j\grd(ﬁ) Ps pord s
aor o B /= Bi(W).

The left column is exact by definition. The middle column is the part of the long
exact sequence attached to the short one C9™9 ﬁ;’rd — E;’rd, and the right
column is the same for a(Jo'd) — Jord — Bord. Note lim Cord = A,.[p>]°rd.
Passing to the limit, we have the limit commutative diagram with exact rows
and exact columns:

Ei(k) ——  H}AM)  ——  H}(JIY)
=]

onto | |

a(J2Y (s ocolor - or
(619) a(og(jg)ord))((’g)) - H'}(Ar[p } d) I H'}(a(‘]ood))[a]
g o] I
ord K o AOI‘
a&]jg;d()()ﬁ) : Br d(/q) ®ZP Qp T> EQ(BJ).

We have seen, A\ﬂrd/AT [pee]ord = B, ®z, Qp as sheaves of Q,-vector space; so,
H} (Ao /A, [p]ord) s a Qp-vector space. On the other hand, H?l(;l\ﬁrd) is a
p-torsion module (e.g., Lemma 2.2). Therefore the natural map H} (Aordy
H} (A4 /A, [p>]°"d) is the zero map. Thus by long exact sequence attached to
0 — A [pe]ord — Ard — A4 /A[p>] — 0, the morphism 7p is onto. Since
A (k) ®z Ty = By(k) ®z Tp, the map dp factors through the Kummer map
A (k) ®z T, — HY (A [p>®]°*?). Thus

Ker(dp) = Im(A, (k) — B.(k) ®z, Q,) = Ker(a@),
where the last identity follows from the snake lemma applied to the above

diagram.
Consider the following exact sequence:

Ei(r)[p"] = Tot} (Eq (k), Z/p"Z) 2 a(J2(x)) © Z/p"Z
— a(J;’;d)(/i) QRZL/p"ZL — Ey (k) Z/p"Z — 0,
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which produces the following commutative diagram with exact rows for n > m:

in a ord P in o ord P — n
El(“){pn} (Joe (k) J (J2) (k) El(li) ®Z/p 7

pra(JgZd (k) pra(JE) (k)

! | | !

m im a Jgo"l K jm « Jg;d K m
El(li)[p ] p7nfl(Jgé-(<i(),3)) ? meX(J&')d()(L) N El(li) X Z/p Z

This in turn produces two commutative diagrams with exact rows:

in a ord K ) .
Ey(k)[p"] an{OJogé'f(i(’)i))) Coker(iy,) = Im(j,) — 0

(6.20) l J l

im a ord K . .
Ey(k)[p™] pmfj(‘f;’g;d ();-3)) Coker(in) = Im(j,,) — 0

and

0 — Ker(in) — Ei(k)[p"] —2— Im(i,) — 0

(6.21) l l
K)

0 — Ker(im,) — En(

i

[p"] —=— Im(iy,) — 0.

Since the diagram of (6.21) is made of finite modules (as Ey(x) C H*(A°rd);
Lemma 2.3), projective limit is an exact functor (from the category of compact
modules), and passing to the limit, we get

) - 1] 2D
]%nIm(zn) =TIm(i : L%lEl(’i)[P = L%lm).

By the snake lemma (cf. [BCM, 1.1.4.2 (2)]) applied to (6.20), Im(j,) — Im(jm)
is a surjection for all n > m. Thus the projective system of the following exact
sequences:

a(J%) (k)
pra(Jgd) (k)
satisfies the Mittag—Leffler condition. Passing to the projective limit, we get
the exact sequence

0— a(jgéd(f{)) =Im(joo) — a(jgéd)(/i) — @El(/{) ®Z/p"Z — 0.

{0 = Im(j,) — — E1(k) QZ/p"Z — 0},

Since E1 (k) = (Qp/Zy) R & A — H} (A,)°r for a finite group A and an integer
R >0 (by Lemma 2.3), lim | E1(k) ® Z/p"Z is a finite group isomorphic to the
torsion subgroup A of Fj (k). Thus

(6.22) Jo (k) & a(J2Y) (k) has finite cokernel A,

and A is isomorphic to the maximal torsion submodule of E;(x)Y.

Consider the “big” ordinary Hecke algebra h given by @S h; as in the in-
troduction. For a A-algebra homomorphism h — R and an h-module M,
we put Mg = M ®n R. Take a connected component Spec(T) of Spec(h)
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such that a in (A) restricted to Spec(T) is a non-unit; so, ﬁgrd(K)T £ 0.
Note that Mt is a direct summand of M; so, the above diagrams and ex-
actness are valid after tensoring T over h (attaching subscript T). Note that

a(Joo) ™ [p™] (k) C JZ P> (k) = G(k).
Since Im(poo)r is a direct summand in Joo(x)r and a(J(k)r)[p?] =
Tor?p (a(JLY(K)T), Z/p"Z), we have the following exact sequences:
(6.23)

A ISR o el (k)r)
prAod(k)y PR (R)r  pra(JEd(k)T)
0 —a(JoYK)p) @ Z/p"Z — J&YK)r @ Z/p"Z — Im(poo)T @ Z/p"Z — 0.

—0

a(JE (k))[p"] =

The module a(J24(k)7)[p"] is killed by the annihilator a of Gr(k)Y in A which
is prime to v?" — 1 (note that 4*" — 1 kills A%9(k)). Thus the image of
a(Jo (k) p)[p"] in A% (k)p ® Z/p"Z is killed by % = a + (v*" —1) C A.
Since A/2l is a finite ring and Gy is a A-module of finite type, we get

(6.24) | Ker(A% (k)r @ Z/p"Z — J2Y(k)r © Z/p"Z)| < B

for a constant B > 0 independent of n.
Applying the snake lemma to the following commutative diagram with exact
rOWS:

pr A (k) —— A% (k)y —— AX(k)y ® Z/p"Z

l | l

p"IE (k)T - IS k)r ——— IR @ Z/p"Z,

we have an isomorphism, for F,, := p"J4(k)p N A% (k)r,
Fou /" A% (1)1 = Ker(A%Y (k)1 ® Z/p"Z — J2Y (k)1 ® Z/p"Z)

whose right-hand-side is finite with bounded order independent of n by (6.24).
Consider the two filters on A% (k)7:

Fi={Fu = 0" & (k)r 0 A (R)7)}n and {p" A7 (k) 7}

with F, D p"A%4(x)p. On the free quotient A% (k) /A% [p>](k)r, the two
filters induce the same p-adic topology. Writing Avgrd(li)']r for the completion of
A\grd(:‘{)'ﬂ‘ with respect to F, therefore we find

(6.25)

the natural surjective morphism: A\grd(li)']r — Avgrd(li)']r has finite kernel.
This shows that the following sequence is exact by [CRT, Theorem 8.1 (ii)]:
(6.26) 0 — A% (k) = J&Y (k) X a(JUY(k)T) — 0.

By this sequence combined with finiteness of Ker(A%(k)r — A%9(k)1), we
get
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PROPOSITION 6.4. Take a connected component Spec(T) of Spec(h) with
A‘Sj)r% # 0. Then we have the following exact sequence:

0 — A% (k)r — JLY (k) = JLY (k)
where Coker(c) is a Zyp-module of finite type with dimg, Coker(a) ®z, Q, <
dimg, By (k)r ®z, Qp. Moreover we have a ncituml surjection: Aord(g)p —
A (k) with finite kernel. If Gr(k) = 0, then A% (k) =2 A% (k)

We will see that the torsion submodule of Coker(«) is isomorphic to the max-
imal p-torsion submodule of E; (x)V.

Proof. The second sequence of (6.18) evaluated at x produces the following
exact sequence:

0= (L) (s)r = JEk)r 2= B (w)r 9z, Q.
By the exact sequence of the bottom row in the diagram (6.19), the image
Im(poo) is embedded into (B, ® Q,)(k)r, and thus Im(ps) = Q) & ZJ with

i+ 7 < dim ET(H)T ®z, Qp. Thus we get the following exact sequences indexed
by n:

0 = Im(poo) [p"] & Tor(” (Im(pec), Z/p"Z) — a(JLY) (w)r ®3z, Z/p"Z
— Jgéd(/i)qr ®z, Z/p"Z — Im(poo)T ®z, Z]p"7 = (Z/p"Z)j — 0.

Since these sequences satisfy the Mittag—Leffler condition, passing to the limit,
we get another exact sequence:

0 — a(JEY (k) = JOY (k) 22 Z{, — 0.
Then the assertion follows from (6.22).
We can check the last assertion by scrutinizing our computation, but here is a

short cut. Since Ker(A%9(k)r — A%(k)r) is a submodule of A[p>]°r (k) C
Gr(k) = 0. Thus the morphism has to be an isomorphism.

LEMMA 6.5. Let £ be as in Lemma 6.1. Then the mazimal torsion submodule
of Joo (k)4 is equal to Gr(k) if Gr(k) is finite. Otherwise, it is killed by p?
for some 0 < B € Z.

Proof. By definition, the maximal torsion submodule of j;(li)%rd = (Js(k) @z
Z,)S"4 for finite s is given by Gs(k)1 = Js[p™](x)¥. For s = oo, the maximal
T ord

torsion submodule of J (k)T = limy Js(k)F¢ is given by G(x)r. Thus we have
an exact sequence for finite s:

0= Go(rk)r = Jo(K)Fd = Fy = 0

for the maximal Z,-free quotient Fy := @(K)%rd/gs(n)qr. This is a split ex-
act sequence as the right term Jg(k)9%/Gs(k)r is Zp-free. By taking p-adic
completion: M +— M = lgln M/p" M, we get a split exact sequence for finite
s

0 — Gs(rk)r — Js(k)F4 — Fy — 0.
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This shows GS(H)T = Gs(k)r for finite s, and GS(K)T is a finite module if & is as
in Lemma 6.1. Since Fy is Zy-flat for all s > r, F' = lim F} is a Z,-flat module.
For s = 0o, we have the limit exact sequence (noting G(x)1 = Goo (K)T)

0= G(k)r = Joo(k)F = F -0,

and F = Joo (k)9'Y/G (k). By Z,-flatness of F, after tensoring Z/p"Z over Z,,
we still have an exact sequence (cf. [BCM, 1.2.5]) indexed by 0 < n € Z:

0— G(k)1r/p"G(K)T — Joo(n)%rd ®z, L/p"Z — F/p"F — 0,

which obviously satisfies the Mittag—Leffler condition (with respect to n). Pass-
ing to the projective limit with respect to n, we get the limit exact sequence:

0= G(k)T = Joo(k)F = F >0,

Since F is Z,-flat, F' is torsion-free (and hence Z,-flat by [BCM, 1.2.4]). Indeed,
we have the following commutative diagram with exact rows:

Torz, (F/pF,Z/p"Z) —— F/p"F =% F/p"F —— F/pF

! ] ] I

F/pF —— F/p"F =% F/p"F —— F/pF.
—

mn—)pm

Regard this as a projective system of exact sequences indexed by 0 < n € Z.
Then the transition maps of F'/pF at the extreme right end is the identity and
at the extreme left end is multiplication by p (i.e., the zero map). Passing to

the limit, from left exactness of projective limit, we get an exact sequence
0= lim F/pF — F L220 f,

T px

and hence F is p-torsion-free. §
If G(k) is killed by p? for some 0 < B € Z, we still have G(rk)r = G(k)r.
Otherwise, for some 0 < j € Z, G(x)r fits into the following split exact sequence
by Lemmas in Section 4,

0= (Qp/Zp) —= Gk)r = G(R)F" =0

for G(rk)4" killed by p® for some 0 < B € Z. Thus G(k)r = G(k)X", which is
the maximal torsion submodule of Jo (k). O

We put M* = Homg, (M, Z,) for a Z,-module M and
X,r(k)fq = Homg, (X, (k)$9,Z,) and X, r(k)iq := Homg, (X, (k)39 Z,)

with s = r,r+1,...,00 for X = J, A, B. The algebra hvacts on J., natu-
rally. As before, we write for an h- algebra R, Joo (k)% = Joo (k)" @p R and
Joo(k)ord, 1 = Joo(k)}q @n R.

Assume the condition (A) in Section 5 for («, Ag, Bs). Take a connected com-
ponent Spec(T) of Spec(h) in which the image of « is non-unit. Replacing a by
lra for the idempotent 1y of T, we may assume that a € T as in the setting of
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(P4) in Proposition 5.1. Recall Gr(k),,,. is the maximal Z,-torsion submodule

of Gr(k)Y. We now state the principal result of this paper:

THEOREM 6.6. Let k be either a number field or a finite extension of Q; for a
prime l. Then we get

(1) Consider the following sequence Z,-dual to the one in Proposition 6.4:

0 — Coker(a)s = Joo (B)inar = Joo(B)ipar ~= Ay (k)i — 0.

Then

(a) If Gr(k) = 0, the sequence is exact except that Ker(ck )/ Im(a*) is
finite;

(b) If Gr(k)y,, = 0, the sequence is exact except that Ker(:%,)/ Im(a*)
and Coker(i%,) are both finite;

(¢) If Gr(k)y,, # 0, the sequence is exact up to finite error.

(d) The module Gr (k). is killed by pP for some finite 0 < B € Z, and
the cokernel Coker(1%,) is finite and is killed by p®. In particular,
after localizing the sequence by any prime divisor P € Spec(A),
the sequence is exact.

(2) After tensoring Q, with the sequence (1), the following sequence

0 — Coker(a)r ®z, Q, — joo(k)zrd,qr ®z, Qp
- jw(k):rd,il‘ ®Zp Qp - A\r(k):rd, T ®Zp Qp -0
is an ezxact sequence of p-adic Qp-Banach spaces (with respect to the
Banach norm having the image of joo(k)zmhT m Joo(k)f,rdm ®z, Qp as

its closed unit ball).
(3) The compact module Joo (k)5 qr s a A-module of finite type, and

jOO(k):rd,T ®z, Qp is a A[%]-module of finite type.

Proof. We prove the exactness of the sequence (1). Since A\grd(li)']r — A (k)p
has finite kernel and is an isomorphism if Gr(k) = 0 by Proposition 6.4, we only
need to prove the various exactness of (1). By Proposition 6.4, the following
sequence is exact:

0= A0 (k)r L2 T (k)9 % Tao (k)9 T2 X 0
for X = Coker(a)). We consider the short exact sequence:
0 — A% (k) <=5 Joo (k)3 — Coker(too) — 0

and another exact sequence:

*

0 — Coker(tog) % Joo (k)24 == X — 0.

Applying the dualizing functor: M +— M* := Homgz, (M, Z,), we get the fol-
lowing exact sequences:

0 = Coker(toe)* = Joo(k)ixar > Ap(K)ipqr — Exth (Coker(ie), Zp),
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X* o Joo(K)fpan 2 Coker(ioe)™ — Ext} (X, Z,) = Exth (Joo (k)47 Z,).
Thus Ext%p (X,Zp) contains Ker(:% )/ Im(a*). Computing Ext%p(M, Zp) by

the injective resolution 0 — Z, — Q, = Q,/Z, — 0 (see [MFG, (4.10)]), we
find

Exty (M, Z,) = Coker(Homz, (X,Q,) ~ Homg, (X, Q,/Zy)) = M[p™]".

Since X is a Z,-module of finite type by Proposition 6.4, Ext%p (X,Z,) =
X[p>=]Y is finite. Similarly Ext%p(joo(k)ord*T,Zp) = Joo (k)T [pe]V
Gr(k)y,, and hence if Gr(k)y,,. = 0, Ext%p (X,Zp) = Ker(ek,)/Im(a*). Any-
way, Ker(:%,)/Im(a*) is finite.

We have Coker(too) « Joo (k)3". Again, we get, as A-modules,

Exty, (Coker(too), Zyp) = Coker(too) [p™]"
which is a quotient of Gr(k);,, (see Lemmas 4.2, 4.3 and 6.5). Indeed, as-

tor
suming finiteness of Gr(k), the torsion part of Ju,(k)$"? is isomorphic to a
submodule of Gr(k) by Lemma 6.5; in particular, it has finite torsion (this
proves (la)). Without assuming finiteness of Gr(k), the p-torsion part of
Coker(ioo) is a A-submodule of a bounded p-torsion A—module Gr(k)ior by
Lemma 6.5. Thus Extép(Coker(Loo), Zyp) is is a quotient of Gr(k),,, and killed
by p? for some 0 > B € Z (and this proves (1b)). In addition, Coker(i* ) =
Coke]r(joo(k;);“)rdJT — gr(k)zrd,qr) factors through the Z,-module Zr(k;)j‘)rdJT of
finite type, which lands in the bounded p-torsion module Coker(is)[p>°]" (by
Lemma 6.5); so, Coker(i%,) must have finite order (this shows (1c)). There-
fore, the error term Coker(i%,) is a pseudo-null A-module, it is killed after
localization at prime divisors of Spec(A). Thus we get all the assertions in (1).

The exact sequence in (1) tells us that joo(k)zrd, T/a(joo(k)zrd, 1) is isomorphic
(up to finite modules) to the Z,-module A\T(k);rd’ ¢ of finite type, which is a
torsion A-module of finite type. Then by Nakayama’s lemma, joo(k)zrd, o isa
A-module of finite type. This proves the assertion (3).

The extension modules appearing in the above proof of (1) is p-torsion A-
module of finite type. Thus the sequence

0— X" — joo(k):rd, T joo(k):rd, T A\T’(k):rd, T—0
is exact up to p-torsion error. By tensoring Q over Z, we get the exact sequence
(2):
X*®z, Qp — joo(k):rd, T ®z, Qp = Joo(k)f;rd, T ®z, Qp > A\T’(k):rd, T ®z, Qp.

The above sequence is the p-adic Banach dual sequence of the following exact
sequence obtained from the sequence in (1) by tensoring Q:

A ()29 @2, Qp =5 Jue (1) 3, Qp 2 Joo(B)F 02, Qp = X 2, Q.

Indeed, equipping joo(k)%rd ®z, Qp with the Banach p-adic norm so that the
closed unit ball is given by the image of Joo(k)$ in Juo (k)3 ®7, Qp, the
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sequence is continuous (the first and the last term are finite dimensional Q,-
vector spaces; so, there is a unique p-adic Banach space structure on them).
The dual space of bounded functionals of each term is given by the Q,-dual
of the corresponding space before tensoring Q, which is given by Y ®z, Q, for

Y = A\r(k)zrd, T Jvoo(lf)f;rd’T and X*, respectively. This proves (2). O

COROLLARY 6.7. Let the notation be as in (1) of Theorem 6.6. Consider the
set Q C T of prime factors (in A) of v*" —1 forn=0,1,2,...,00. Except for
finitely many o € Q, we have Coker(a); @a Ap = 0 for P = (a) € Spec(A),
where Ap is the localization of A at P.

Proof. Note that o € Q (regarded as a € T) satisfies the assumption (A)

by Proposition 5.1 (P1) and that A[%] is a principal ideal domain (as A is

a unique factorization domain of dimension 2; see [CRT, Chapter 7]). Pick

an isomorphism Juo (k)%q 1 ®z Q = A[%]R & X} of A[%]—modules with torsion

A[L]-module X}. Then for P outside the support of the A[1]-module X}, by
P P

Theorem 6.6 (2),

K :=Ker(a : Joo(k)5ar = Joo(k)ira1)

is killed by some p-power. Then by the assertion (1) of the above theorem, K
is a Zp-module of finite type; hence K is finite. This shows the result. O

7. CLOSURE OF THE GLOBAL A-MW GROUP IN THE LOCAL ONE

Let x be a number field and & = &, be the p-adic completion of x for a
prime plp of k. Write W for the p-adic integer ring of k, and let @ be the
quotient field of A. By [M55] or [T66], for an abelian variety A, of dimension

g, A\(k) = A(k) ®z Z, has torsion free part A\(k)f isomorphic to the additive
group W9, and the torsion part A(k)ior is a finite group.
Write F' = k or k. Recall the T-component

j (F)ord']I‘ - ‘] ( )ord ®hT
for a connected component Spec(T) of Spec(h). By Theorem 6.6 (3),
Joo (F)5rar @z, Qp is a T ®z, Qp-module of finite type. For simplicity, write
JT( ) J ( )ordT®Zp QP

Let the notation be as in Corollary 6.7; in particular, £ is the set of prime
factors (in A) of 4P" —1forn=1,2,...,00. Note that a € Q C T satisfies the
condition (A) by Proposition 5.1 (P1). Then by Theorem 6.6 (2), this implies

Jo(F)/a(Jx(F)) 2 A%Y(F); @z, Qp.

Further localizing at each arithmetic point P € Spec(h)(Q,) with P| (' -1),
we get, for Jr,(F) = Jp(F) & Tp for the localization Tp at P,

Jrp (F) /a1, (F)) = AX(F); @z, Q.
Since A[] is a principal ideal domain, Jr(F) is isomorphic to A[Z]™" & X}
for a torsion A[%]—module X Put Xp = X, @ G2(k)Y and decompose
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Xp =@y [ 1/Br ) for maximal ideals P of A[ J. Put Chary1,(Xr) =
[y Per P If P € Spec(A)(Q,) is prime to Chary1)(XF),

Jr(F)/a(Jr(F)) = (A/P)™F @z, Qp.
In other words, the Ap/P-dimension of Jr(F)/a(Jr(F)) is independent of P
for most of P. We formulate this fact for F' = k as follows:

THEOREM 7.1. Let the notation be as above. Write W for the p-adic inte-
ger ring of k and Q for the quotient field of A. Then the Q-vector space
Joo (k) srar @A Q has dimension equal to g = rankgz, W - rank T.

Proof. We use the notation introduced in Corollary 6.7. Pick a € Q, and let
A C J,[a] be the identity connected component. Define J, — B to be the dual
quotient of A < J,.. By the control Theorem 6.6 (2), we have Jr(k)/aJr(k) =
A(k)zrd,qr ®z, Qp for all o € Q. Moreover, we have dim,p) Jr(k)/aJr(k) =
my, outside a finite set S C Q. The set S is made of prime factors in Q of
CharA[ 1(Xi). Note that my, = rankA 1dr(k) = dimg joo(k):;rdm ®A Q; so, we
compute rank 1 1 (k).

By [M55] or [T66]7 we have A(k) = WdimA4 x A for a finite p-abelian group A.
Regarding A(k) as a p-adic Lie group, we have a logarithm map log : A(k) —
Lie(Ay). For a ring R, write h(R) (resp. h,(R)) for the scalar extension to R
of

Z[T(n)ln=1,2,...] C End(A4,p) = End(B/q)
(resp. Z[T'(n)|ln = 1,2,...] C End(J, q)).

The Lie algebra Lie(A/q,) is the dual of Qp/q, -
Note that Qo = Qx, /g (e.g., [GME, Theorem 4.1.7]). By g-expansion at the

infinity cusp, we have an embedding i : Qx /o < Q[[¢]] sending w to i(w )‘Zq
Writing i(w) = Y-, a(n,w)q™, we have a(m,w|T(n)) = 2_0<d|(m,n),(d,Np)=1 4"
a(%zt,w|(d)) for the diamond operator (d) associated to d € (Z/Np"Z)*. From
this, the pairing (-, -) : h,.(Q) x Qx, /o — Q given by (H,w) = a(1,w|H) is non-
degenerate (see [GME, §3.2.6]). Thus we have

Q. /k = Homy (hy(k),k) and Q4 = Homg(h(k), k) as modules over h,(k),

since h(k) is naturally a quotient of h,.(k) and B = J./«a(J,) for (a) =
Ker(h,(Zy) — h(Zp)) in hy(Zy). By the duality between Lie(A/;) and Q4 x,
we have

Lie(A);) = h(k) as an h(k)-module.
This leads to an isomorphism of A-modules:

A(R)2 ®z, k % Lie(Ap)r = (T/(0)T) @z, k

as T/(a)T is canonically isomorphic to a ring direct summand h(Z,)94 of
h(Z,)°™d as Z,-algebras by the control theorem (cf. [GME, §3.2.6]). Thus

ranky A(k)9d = [k : Qpranky /(o) T/(a)T = [k : Q,] ranka T.
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This proves the desired assertion, as [k : Q,] = rankz, W. O

We have a natural A-linear map

Too (R 5 Joo ()2 and Joo(K)sea, 7 2, @p = T (W)ina, 1 02, Qp.
We would like to study their kernel and cokernel.
Take a reduced irreducible component Spec(I) € Spec(T). Let I be the nor-
malization of I, and write Q(I) for the quotient field of I. Then Jp :=
joo(F)Zrd,i ®z, Qp is a E[%]—module of finite type for F = k,k. Note that

ﬁ[%] is a Dedekind domain. This we can decompose Jr = Lr @ X for a locally
free ﬁ[%]—module L of finite constant rank and a torsion module Xr isomor-
phic to Py E[%]/‘BGF@) for finitely many maximal ideals 5 of f[%] We put
Charp(Xp) = [Ty B ®).

For an abelian variety A over r, write A(k) C A(k) for the p-adic closure of the
image of A(k) in A(k). Pick an arithmetic point P € Spec(h)(Q,) of weight 2.
Suppose that the abelian variety Ap is realized in J,. and satisfies the condition
(A). By Theorem 6.6 (2), the natural map

Jp/Plp — EP(F):rdj@Zp Qp

is an isomorphism. Thus as long as P { Char(X}) - Char(X,), we have a
surjective linear map

(71)  Ap(R), 1 ©2, Qp = Ap(R)o 192, Qp = p(Jk/PIK)

Qp-dual to the inclusion
————ord -~
Ap(k)y ®z, Qp C Ap(k))2™ ®z, Qp,

where ¢ = * ®id : J ®n h/P = I /PIy — A\p(li)ord 7®z, Qp induced by ¢*.
Put
rip(F;1) = dimQ(H) Jr ®f[%] Q) = rankﬂ%] Jr

for the quotient field Q(I) of L.
We now assume

(a) Taking r = r(P) and A, to be Ap, the condition (A) holds for Ap for

almost all arithmetic points P € Spec(I) of weight 2.

By Proposition 5.1 (P2), the condition (A) holds for “all” arithmetic points
P € Spec(I) of weight 2 if T =1 and p is unramified in T/P for one arithmetic
point P € Spec(T)(Q,). Indeed, as shown in [F02, Theorem 3.1], T is regular
under this assumption (and the regularity guarantees the validity of (A) by
Proposition 5.1 (P2)).
Pick a base arithmetic point Py € Spec(]I)(@p) of weight 2. The point Py gives
rise to f = fp, € S2(T1(Np™*1)) with By = Bp, and Ag = Ap, satisfying
fIT(n) = Py(T(n))f for all n > 0. By Theorem 6.6 (2), we have for F = k, &,

(ct) Jp/PoJp is isomorphic to the Q,-dual of Ag(F)2! @z, Q.
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Choosing Py outside Chary(X,) - Charp(Xy), we may assume the following con-
dition for F' = k, k:

(dim) dime(f) ,]]F/P()JF =Tk (F; ]I).
Here Q,(f) is the quotient field of I/ Pyl and is generated by Py(T'(n)) for all
n over Q.
Since Ag(k) ®z Q is a Q(f) vector space, if Ag(k) ® Q # 0, we have
dimg(sy Ao(k) ® Q > 0, which implies that Ag(k) ®z, Q, # 0. Suppose

k= Q, and (Ao(r)2" @z, Q) # 0.
Then (Ao(k) ®z, Qp)ﬁqrd is a finite dimensional vector subspace over Q, of
Ao (k) ®z, Qp stable under T'(n) for all n. Let us identify Py(T'(n)) € Q,

with a system of eigenvalues of T'(n) occurring on A\o(/i)%d ®z, Qp. Then
(Ao (k) ®z, (@p)%rd and ﬁo(k)‘fnd ®z, Qp are Q,(f)-vector spaces. Thus we
conclude

0< dime(f)(Ao(li) ®z, Qp)%rd < dime(f)(A\o(k) ®z, Qp)ﬁqrd =1,
which implies

0< dime(f)(Ao(/i) ®Zp @p)%)rd — dime(f) A\O(k)(frd ®Zp @p -1
By (7.1), we get

dimg, tp, (Jx/Podx)

= dimg, (Ao(r) ®z, @p) = dimg, (Ao(Qy) ®z, Q) = dimg, Qy(f).
In other words, by Theorem 6.6 (2), the kernel of the map ¢*: K := Ker(.* :

Jr — J,) for k = Q, is a torsion i[%]—module. Now we move weight 2 arithmetic

points P € Spec(I)(Q,) C Spec(T)(Q,). Then Kp = K/PK covers surjectively
Ker(tp : Ji/PIk — Ji/Pls).

By ]I[%]—torsion property of K, K/PK = 0 for almost all points in Spec(I)(Q,)),

and we get

COROLLARY 7.2. Let the notation and the assumption be as above. Suppose
the condition (a), (dim), k = k, = Q, and

dim@(f) Ao(l{) > 0.

Then except for finitely many arithmetic points of Spec(I)(Q,) weight 2, we
have dimgs,) Ap(k) > 0 and

dimg, (7 (Ap(R)" @1/p Qp(fp)) = dimg, Qp(fr)-

For general abelian variety A,g, an estimate of dimg, A(Q) ®z, Q, relative
to dimg A(Q) ®z Q and a conjecture is given in [W11]. Here we studied the
dimension over a family and showed its co-ordinary (or ordinary) part stays
maximal for most of members of the family if one is maximal.
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ABSTRACT. A result by Vishik states that given two anisotropic
quadratic forms of the same dimension over a field of characteristic
not 2, the Chow motives of the two associated projective quadrics
are isomorphic iff both forms have the same Witt indices over all
field extensions, in which case the two forms are called motivically
equivalent. Izhboldin has shown that if the dimension is odd, then
motivic equivalence implies similarity of the forms. This also holds for
even dimension < 6, but Izhboldin also showed that this generally fails
in all even dimensions > 8 except possibly in dimension 12. The aim of
this paper is to show that motivic equivalence does imply similarity for
fields over which quadratic forms can be classified by their classical
invariants provided that in the case of formally real such fields the
space of orderings has some nice properties. Examples show that
some of the required properties for the field cannot be weakened.
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1. INTRODUCTION

Throughout this note, we will consider only fields of characteristic not 2. By a
form over F' we will mean a finite dimensional nondegenerate quadratic form
over F, and by a quadric over F' a smooth projective quadric X, = {¢ = 0}
for some form ¢ over F.

An important theme in the theory of quadratic forms is the study of forms
in terms of geometric properties of their associated quadrics. Suppose, for
example, that for two given forms ¢ and 1 over I’ one has that the motives
M(X,) and M(Xy) are isomorphic in the category of Chow motives, in which

case we call ¢ and ¥ motivically equivalent and we write ¢ ot 1. Does this
already imply that the quadrics are isomorphic as projective varieties? The
converse is of course trivially true. It is well known that the quadrics X, and
Xy are isomorphic iff ¢ and 1 are similar (see, e.g. [18, Th. 2.2]), i.e. there
exists ¢ € F* = [\ {0} with ¢ 2 ¢ in which case we write ¢ ~' 1. The above
question then reads as follows: Let ¢ and 1 be forms of the same dimension
over F. Does ¢ ot Y imply ¢ "~ ) ?

In fact, Izhboldin has shown that the answer is yes if dim ¢ is odd ([14, Cor. 2.9])
or even and at most 6 ([14, Prop. 3.1]), and that there are counterexamples in
every even dimension > 8 except possibly 12 over suitably chosen fields ([15,
Th. 0.1]). To our knowledge, it seems to be still open if such counterexamples
exist in dimension 12.

The purpose of the present note is to give criteria for fields that guarantee
that motivic equivalence implies similarity in all dimensions. We show that it
holds for fields over which forms of a given dimension can be classified by their
classical invariants determinant, Clifford invariant and signatures provided that
in the case of formally real fields the space of orderings satisfies a certain
property called effective diagonalization ED (which will be defined below). We
show furthermore that there are counterexamples once the condition ED is only
slightly weakened.

Rather than working with motives of quadrics, we will use an alternative crite-
rion for motivic equivalence due to Vishik [24, Th. 1.4.1] (see also Vishik [25,
Th. 4.18] or Karpenko [16, §5]). If we denote the Witt index of a form ¢ by
iw (), this important criterion reads as follows.

VISHIK’S CRITERION 1.1. Let ¢ and ¢ be forms over F with dim ¢ = dim .
Then ¢ ARy, if and only if iw (vE) = iw (VE) for every field extension E/F.

Let us remark that while Vishik formulated his criterion in terms of integral
Chow motives, it still holds for Chow motives with Z/2Z coefficients, see [8].
The proofs of our results will concern mainly formally real fields (in the sequel
we will call such fields real for short). For nonreal fields, the results are still
valid but can often be shown in a much quicker and simpler fashion. The real
case will involve various arguments concerning the space of orderings Xr of a
real field and the signatures sgnp(¢) of a form ¢ over F' with respect to an
ordering P € Xp.
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Consider the Witt ring WF and the torsion ideal Wi F' (we have WF = W, F
iff F' in nonreal). By Pfister’s local-global principle (see, e.g., [20, Ch. VIII,
Th. 3.2]), a form ¢ is torsion iff sgnp(p) = 0 for all P € Xp. We call a form
totally indefinite if |sgnp(p)| < dim for all P € Xp. Also, we will use the
fact that the Witt ring only contains 2-primary torsion.

Let IF be the fundamental ideal in W F' generated by even-dimensional forms
in F and let I"F = (IF)". We define I'F = I"F N W, F. A real field F
is said to satisfy effective diagonalization (ED) if any form ¢ over F has a
diagonalization (aq,...,a,) such that for all 1 <4 < n and for all P € X one
has a; <p 0 = a;41 <p 0 (see [26] or [23]). Recall that the u-invariant and
the Hasse number @ are defined as follows:

u(F) = sup{dime | is anisotropic and ¢ € W, F'}
w(F) = sup{dimep |y is anisotropic and totally indefinite}

For nonreal F', we thus have u(F) = @(F). It is also well known that these
invariants cannot take the values 3,5, 7 (see [5, Ths. F-G] for the more involved
case @ for real fields).

Our main result reads as follows.

MAIN THEOREM 1.2. Let F' be an ED-field and let ¢, 1 be anisotropic forms

over F of the same dimension. If ¢ £ ¥ then there erists x € F* such that

o L —xp € IPF.

COROLLARY 1.3. Let F be an ED-field with I} F = 0 and let @, 1) be anisotropic
forms over I of the same dimension. Then ¢ ot Y if and only if ¢ "~ 4.

Recall that fields with I3 F = 0 are exactly those fields over which quadratic
forms can be classified by their classical invariants dimension, (signed) deter-
minant, Clifford invariant and signatures, see [4].

Now fields with finite @ are always ED (see, e.g., [7, Th. 2.5]). By the Arason-
Pfister Hauptsatz (see, e.g., [20, Ch. X, 5.1]) we thus get

COROLLARY 1.4. Let F be a field with a(F) < 6 and let v, ¥ be anisotropic
forms over I of the same dimension. Then ¢ ot Y if and only if ¢ "~ 4.

This corollary applies to global fields for which @ = 4 (this follows from the
well known Hasse-Minkowski theorem) and fields of transcendence degree one
over a real closed field for which @ = 2 (see, e.g., [5, Th. I]). However, for each
ke {2n|n € N} U{oo} there exist ED-fields F' (in fact, fields F' with a unique
ordering) with @(F) = k and I}F = 0 (see [13, Th. 2.7] or [11, Th. 3.1]) to
which Corollary 1.3 can still be applied.

In §2, we investigate how determinants and Clifford invariants behave under
motivic equivalence. The third section does the same for signatures and there
we also prove the main theorem by putting all this together. In §4, we give a
few examples that show that under weakening some of the imposed conditions,
one cannot expect any longer that motivic equivalence implies similarity.
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2. COMPARING DETERMINANTS AND CLIFFORD INVARIANTS

We will freely use without reference various basic facts from the algebraic theory
of quadratic forms in characteristic # 2. All such facts and any unexplained
terminology can be found in the books [20] or [3]. If ¢ is a form defined on an
F-vector space V', we put Dp(p) = {¢(x) |2 € VINF*. We use the convention
(a1, ..., an) to denote the n-fold Pfister form (1, —a1)®...® (1, —a,). A form
@ over a field F is called a Pfister neighbor if there exists a Pfister form 7 over
F and some a € F* such that ap is a subform of 7 (i.e. there exists another
form ¢ over F' with ap L ¥ = 7) and 2dim¢ > dim 7. Since such a Pfister
form 7 is known to be either anisotropic or hyperbolic, it follows that a Pfister
neighbor ¢ of 7 is anisotropic iff 7 is anisotropic. We call two forms ¢ and ¢
over F' half-neighbors if there exist an integer n > 0, a,b € F* and an (n+ 1)-
fold Pfister form 7 such that dim¢ = dimvy = 2" and ap L —bp = w. Now
in this situation, if E is any field extension of F' over which ¢ or 1) is isotropic
then 7y is hyperbolic and thus apg = by and it readily follows that ¢ et (I
Thus, a good way to construct examples of nonsimilar motivically equivalent
forms is to find nonsimilar half-neighbors, see § 4. The function field F(¢) of a
form ¢ is defined to be the function field of the associated quadric F(X,) (we
put F(p) = F if dimp =1 or ¢ a hyperbolic plane).

In the sequel, we state some definitions and facts concerning generic splitting
of quadratic forms. We refer to Knebusch’s original paper [17] on that topic
for details.

Let ¢ be a form over F'. The generic splitting tower of ¢ is constructed
inductively as follows. Let F' = Fy and ¢y = @an be its anisotropic part
over F. Suppose that for ¢ > 0 we have constructed the field extension
F;/F. Consider the anisotropic form ¢; = (¢g,)an. If dime; > 2 we put
Fiy1 = Fi(pi) and @iy1 = (@F,,, )an. Note that if dimy; > 2, we have
2iw (pr,) = dimp — dim ¢; < 2iw (¢F,,,) or, equivalently, dim ¢; > dim ;1.
The smallest h such that dimp, < 1 is called the height of ¢. The generic
splitting tower of ¢ is then given by

F=FKhchkhcCc..CF,1CkEy.
Fy,_4 is called the leading field of . It is known that

Su(p) :={iw(pgr)| E/F field extension} = {iyw (¢r,)

We call &,(p) the absolute splitting pattern of . In the literature, it has often
proved to be of advantage to consider instead the relative splitting pattern
G, (p) defined as follows. If S,(¢) = {i¢r = iw(vr,)|0 < £ < h}, then put
Jm = tm — tm—1, 1 < m < h, the increase of the Witt index at the m-th step
in the splitting tower. Then &,.(¢) = (j1,...,7n) as an ordered sequence, but
we won’t need this here.

0<i<h}.
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The degree deg(p) is defined as follows. If the dimension of ¢ is odd, then
deg(p) = 0. If ¢ is hyperbolic one defines deg(y) = oco. So suppose ¢ is
not hyperbolic and dim ¢ is even. Then the anisotropic form ¢p_1 over Fj_1
becomes hyperbolic over its own function field Fy, = Fj,_1(¢n—1) and is thus
similar to an n-fold Pfister form for some n > 1. We then define deg(y) = n.
Now the above implies that if ¢ is not hyperbolic then

29¢8(%) — min{dim(¢g)an | E/F is a field extension with ¢g not hyperbolic} ,

and it follows that if dim(pg)an = 2deg(¢)  then (¢E)an is similar to an n-fold
Pfister form over E. An important and deep theorem which we will also use
states that I"F = {p € WF | degy > n}, see [22, Th. 4.3].

While part (i) of the following lemma is rather trivial, part (ii) is a bit less so and
seems to be due to Izhboldin (see [16, Remark 2.7]) but to our knowledge a proof
was not yet in the literature, so we included one for the reader’s convenience.

LEMMA 2.1. Let ¢ and ¥ be anisotropic forms over F with ¢ et Y. Then

(i) deg(p) = deg(y);
(ii) For every a € F* we have deg(p L —ap) > deg(yp).

Proof. Part (i) follows immediately from the definition of degree and Vishik’s
criterion for motivic equivalence.

Let now deg(p) = deg(y) = n. Part (ii) is trivial for n = 0, so assume n > 1.
If ¢ L —at is hyperbolic there is nothing to show. So assume 7 = (¢ L
—at))an # 0. By the degree characterization of I"F', we have 7 € I"F and
hence deg(7) > n. Suppose deg(7) = n. Let E/F be the leading field of ¢. By
what was said preceding the lemma, (¢g)an and (¥g)an are anisotropic n-fold
Pfister forms which are clearly motivically equivalent and thus similar (this
follows readily from, e.g., [20, Ch. X, Cor. 4.9]). Hence, there exist an n-fold
Pfister form 7 over E and x,y € E* such that in WE, pp = xm, ¥p = yn.
Thus, 75 = (z, —ay) @7 € I""1E and therefore deg(7) =n < n+1 < deg(7g).
But this implies deg(p) < n — 2 by [1, Satz 19], a contradiction. O

The signed determinant of a form ¢ over F' will be denoted by d(y). For
a diagonalization ¢ = (ay,...,a,) we have d(¢) = (—1)"("=V/2[]" a; €
F*/F*2 and the map ¢ + d(¢) induces an isomorphism I F/I?F — F* /F*2,
The Clifford invariant ¢(¢) of ¢ is defined as follows. The Clifford algebra
C(¢) is a central simple algebra over F if dim ¢ is even, and its even part
Co(y) is central simple if dim¢ is odd. In both cases, these algebras are
Brauer-equivalent to a tensor product of quaternion algebras and thus their
classes lie in the 2-torsion part Bra(F') of the Brauer group of F. One defines

_ [C( )} € Br (F) if dim ¢ even
o) = { [Co((pw)} € Big(F) if dimi odd

By Merkurjev’s theorem [21], ¢ induces an isomorphism I2F/I*F — Bry(F).
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COROLLARY 2.2. Let ¢ and ¢ be forms over F of even dimension dimp =
dim. Letd=d(p) € F*/F*? and K = F ifd =1 and K = F(v/d) ifd # 1.

If ¢ "' then d = d(p) = d(v)) and c(¢x) = (V).

Proof. We have ¢,1 € IF and also ¢ L —1) € I’F and thus ¢ = ¢ mod I*F

since ¢ ot ) and by Lemma 2.1. The above isomorphism I F/I?F = F* | F*2
immediately implies d(¢) = d(¢)).

Now over K we then have ¢,k € I2K since d(px) = d(1x) = 1. This time,
Lemma 2.1 yields g = ¢ mod I3K and by invoking Merkurjev’s theorem
we readily get ¢(px) = c(VK). O

COROLLARY 2.3. Let ¢ and ¢ be forms over F of even dimension dimp =
dim. Let d = d(p) € F*/F*2 and suppose that o "' ).

(i) There exists a € F* such that ¢ 1 —¢ = (a,d)) mod I*F.

(i) With a as in (i), if b€ F*, then ¢ L —bp = {(ab,d)) mod I3F.
In particular, with a as before, we have ¢ L —ap € IF.

Proof. (i) If d = 1 then Corollary 2.2 together with Merkurjev’s theorem implies
0,0 € I*’F and ¢ 1L —¢ = 0mod I?F. The result follows since {(a,d)) =
{@,1)) = 0in WF for any a € F*.

If d # 1, we still have ¢ 1 —¢ € I?F since d(¢)) = d and this time for
K = F(Vd) that (¢ L —¢)x € I°K. Hence, the central simple F-algebra
C(p L —) splits over the quadratic extension K, so its index is at most 2 and
it is well known that then there exists a quaternion algebra (a,d)r for some
a € F* such that C(p L —¢) ~ (a,d)r in Bry(F). Hence, it follows again
readily from Merkurjev’s theorem and the fact that ¢({a,d)) = [(a,d)F] that
we have ¢ 1 — = (a,d)) mod I*F.

(ii) We have ¢ | —,9 L —byp € I?F and —¢) L ¢ =0 € WF. Furthermore,
by denoting the class of a quaternion algebra by its own symbol and using well
known rules for manipulating Clifford invariants (see, e.g., [20, p. 118]), we get

ol =by) = cleLl—v Lyl -by)
el L —)e(y L —by)
(a,d) pe(¥)c(—dbi)

(av d)Fc(w)C(¢)(_dbv d)r
= (ab7 d)F .

We conclude as in (i) that now ¢ L —byp = (@b, d)) mod I*F. O

3. COMPARING SIGNATURES AND PROOF OF THE MAIN THEOREM
The following lemma compares signatures of motivically equivalent forms.

LEMMA 3.1. Let ¢ and v be forms of the same dimension over a real field F.

mot

If ¢ '~ 4 then |sgnp(p)| = |sgnp(¥)| for all P € Xp.

Proof. We first note that if v is any form of dimension > 2 over any real
field K and if Q € Xk, then for L = K(y) we have that @ extends to an
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ordering Q" € Xy, iff 7 is indefinite at @, i.e. dim~y > [sgng(v)| (see, e.g. [6,
Th. 3.5]). In this case, we clearly have sgng(v) = sgng,(yz) which implies
dim(yz Jan > | sgney (v2)] = | sgno (7))

Applied to ¢, ¥ and P € Xp, it now follows readily that there exists an
extension E/F with F in the generic splitting tower of ¢ such that P extends
to P’ € Xg and

dim(¢pg)an = |sgnp (pr)| = [sgnp(p)| -
By motivic equivalence, we have dim(pg)an = dim(¢¥g)an and hence

[sgnp(p)| = dim(¢p)an > |sgup V| = [sgnp | .
By symmetry, we also have |sgnp ¢| > |sgnp(p)|. O

Remark 3.2. The above proof also shows that 1 (dim¢ — |sgnp(p)|) € Sa(yp),
a fact that was already noticed in [9, Prop. 2.2].

We need a few properties regarding spaces of orderings of real fields. For more
details regarding the following, we refer to [19], [7], [23]. Recall that the space
of orderings X is a topological space whose topology has as sub-basis the so-
called Harrison sets H(a) = {P € Xp|a >p 0} for a € F*. These are clopen
sets, and F' has the strong approximation property SAP if each clopen set is a
Harrison set. F' has the property S if every binary torsion form represents a
totally positive element. SAP and S; together are equivalent to ED, see [23,
Th. 2].

LEMMA 3.3. Let F be a real SAP field and let ¢ and i be forms over F

of the same dimension with ¢ ot . Then there exist a,b € F* such that
sgnp(ap) =sgnp(by) >0 for all P € Xp.

Proof. Let U = {P € Xp|sgnp(p) < 0}. Then U C Xp is clopen and SAP
implies that there exists a € F* with U = H(—a). Then sgnp(ap) > 0 for all
P € Xp. Similarly, there exists b € F* with sgnp(byy) > 0 for all P € Xp.
Since ap " o "' " by, we have sgnp(ap) = sgnp(by) for all P € Xp by
Lemma 3.1. O

Let > F? denote the set of nonzero sums of squares in F. If F' is nonreal,
then it is well known that F'X = >_* F2.

LEMMA 3.4. Let F be a real Sy field and let ¢ and 1 be forms over F of the
same dimension with ¢ "=° ¢ and sgnp(p) = sgup(v) for all P € Xp. Then
there exists s € 3. F? with p 1 —si) € IDF.

Proof. Note first that the signatures don’t change by scaling with an s €
S F2. Hence ¢ L —st has total signature zero for any such s and thus
(2] 1 —51/1 € WtF

On the other hand, by Corollary 2.3, there exists a € F* with ¢ L —¢ =
{a,d)) mod I*F where d = d(p) = d(¢)) € F*/F*2. Now if P € X and if 7
is an n-fold Pfister form over F, then sgnp(w) € {0,2"}, hence, for 7 € I"F

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 265-275



272 DETLEV W. HOFFMANN

we have sgnp(7) = 0 mod 2". Now comparing signatures mod 8 immediately
yields that {a,d)) = (1, —a, —d,ad) has total signature zero and is therefore
torsion.

Consider the n-fold Pfister form o,, 2 2™ x (1). For n large enough, the (n+2)-
fold Pfister form o, ® (1,—a,—d,ad) will now be hyperbolic, so its Pfister
neighbor o, ® (1, —d) L (—a) will be isotropic. It follows readily that there
exist u,v € Dg(0,) C Y° F? with (u, —a, —dv) isotropic, so in particular,
au € Dp ({1, —duv)). Since uv € 3™ F?, we can apply the characterization of
Sy in [12, Lemma 2.2(iii)] to find ¢ € 3. F? such that aut € Dr((1, —d)). But
then s := ut € Y.” F? and (1, —as, —d) is isotropic. Therefore the Pfister form
(as, d) is hyperbolic, i.e. ((as,d) =0in WF.

By the above and Corollary 2.3, we now have ¢ | —syp € W, F N I*F = IJF
as desired. O

Proof of Main Theorem 1.2. Let F' be an ED-field and let ¢, ¥ be anisotropic

forms over F' of the same dimension n with ¢ £ 1. We have to show that
there exists € F* such that ¢ L —x¢) € IJF.

The theorem is trivial for odd n by Izhboldin’s result because it implies ¢ "~ ).
So we may assume that n is even.

If F is nonreal (in which case I} F = I*F and ED is an empty condition), the
result follows already from Corollary 2.3 with x = b = a.

So suppose that F' is real. Now ED is equivalent to SAP plus S;. Because of
SAP, we may assume by Lemma 3.3 that, possibly after scaling, sgnp(p) =
sgnp(v) for all P € Xp. Since we also have Sq, we can apply Lemma 3.4 to
conclude. (]

4. EXAMPLES

The following two examples show that in Corollary 1.3 the condition I} F = 0
does not suffice for motivic equivalence to imply similarity once the condition
ED is only slightly weakened.

Ezample 4.1. Let F = R((z))((y) be the iterated power series field in two
variables x,y over the reals. It is well known that S = {£1, +z, +y, +ay} is
a set of representatives of F*/F*2. Let 7, = n x (1) (where we allow the
0-dimensional form 79). Then Springer’s theorem implies that up to isometry

the anisotropic forms over F are exactly the forms of type
€1Tn, L €27y, L e3ymn, L eaxyty,

with €; € {1} and n; > 0, and that the isometry type is uniquely determined
by the four pairs (e;,n;) (see, e.g., [20, Ch. VI, Cor. 1.6, Prop 1.9]).

Since u(R) = 0, it also follows from the above that u(F) = 0, in particular
W, F = I} F = 0. Now consider the anisotropic forms

e=(,1,1L,z,2,2,yy and ¢ =(1,1,y,y 2y Y, TY,TY) -

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 265-275



MoTIviIC EQUIVALENCE AND SIMILARITY OF QUADRATIC FORMS 273

We have ¢ L ¢ = (—1,—1,—z, —y)), so ¢ and ¢ are half-neighbors and thus

¢ "' 4h. However, one also readily sees that there is no s € S with sp = 1),

hence ¢ 72" 1.

Of course, it is also well known that F' lacks the property SAP and thus ED as,
for example, the totally indefinite form (1, z,y, —zy) is not weakly isotropic.
We can be more precise. Recall that the reduced stability index st(F') of a field
F can be characterized as the least n such that "1 F = 2I™F mod W, F, and
that SAP is equivalent to st(F) <1 (see [2]).

For F = R((«))((y)), we trivially have property Sy since W, F' = 0, and one also
readily sees that st(F) = 2.

Now Corollary 1.3 applies to fields with I}F = 0, S; and st(F) < 1, but the
above shows that generally, it cannot be extended to fields satisfying I} F = 0,
Sy and st(F) = 2. O

In [7], the property S; has been generalized as follows. A field F is said to have
property S, for n > 1 if for every n-fold Pfister form 7 = (1) L #«’ over F' and
every a € ZX F? there exists an m > 1 with

Dr((1,—a)) N Dp({1,...., ) @) £0 .

m

Ezample 4.2. Tt is not difficult to construct real fields K with |K*/K*?| = 4
and where the square classes are represented by {£1,£2} (see, e.g., [20, Re-
mark I1.5.3]). Clearly, K is uniquely ordered and u(K) = @(K) = 2. Consider
F = K((t)). Then u(F) = 4, so in particular I F = 0, F has two orderings (see,
e.g., [20, Prop. VIIL.4.11]) and thus is SAP. Furthermore, one readily checks
that F' has property So.

Now consider the anisotropic forms

0 (1,1,1,1,1,1) L #(1,2) and = (1,1) L#(1,1,1,1,1,2).
Since (1,1) =2 (2,2) we have ¢ L ¢ = (—1,—-1,—-1,—t). So ¢ and 1 are half-
neighbors and hence ¢ ot . On the other hand, since 2 ¢ F*2, it follows
readily that 58" .
Hence, in general, Corollary 1.3 cannot be extended to fields satisfying I3 F = 0,
Sy and SAP (i.e. st(F) <1). O

Note that the two forms in the previous example also provide motivically equiv-
alent nonsimilar forms over Q((¢)), a field that also satisfies Ss and SAP. How-
ever, this would give a weaker counterexample in the sense that I}Q((t)) = 0
but I}Q((t)) # 0 as can be readily seen.

Ezample 4.3. If F is nonreal and u(F) < 2”1 then (n + 1)-fold Pfister forms
will always be hyperbolic over F' and thus half-neighbors of dimension 2™ will
always be similar. However, in [10, Cor. 3.6], it was shown that for any n > 3
there exist nonreal fields F' with u(F) = 2""! over which one can find nonsim-
ilar half-neighbors of dimension 2". In fact, one can take any nonreal field £
with w(F) = 4 and take F = E((21)) ... (zn—1)). As a consequence, there exist
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nonreal fields F' with u(F) = 16 and motivically equivalent nonsimilar forms
of dimension 8. O

It should be noted that to our knowledge, all constructions of nonsimilar mo-
tivically equivalent forms over nonreal fields (e.g. in [15]) require the existence
of anisotropic 4-fold Pfister forms, so for these fields one would have I*F # 0
and in particular u(F') > 16. Thus, also in view of the above examples, we ask
the following.

Question 4.4. Are there fields F' with w(F) < 16 which in the real case also
satisfy ED, such that there exist nonsimilar motivically equivalent forms over
F?
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INTRODUCTION

Let @ be a functor from the category of smooth proper varieties over a field F
to the category of sets. We say that & is birational if it transforms birational
morphisms into isomorphisms. In characteristic 0, examples of such functors
are obtained by choosing a function field K/F and defining ®x(X) = X(K)/R,
the set of R-equivalence classes of K-rational points [5, Prop. 10]. One of the
main results of this paper is that any birational functor ® is canonically a direct
limit of functors of the form ® k.

This follows from Theorem 1 below via the complement to Yoneda’s lemma
([SGA4, Exp. I, Prop. 3.4 p. 19] or [28, Ch. III, §, Th. 1 p. 76]). Here is the
philosophy which led to this result and others presented here:

Birational geometry over a field F' is the study of function fields over F', viewed
as generic points of algebraic varieties?, or alternately the study of algebraic
F-varieties “up to proper closed subsets”. In this context, two ideas seem
related:

e places between function fields;

e rational maps.
The main motivation of this paper has been to understand the precise rela-
tionship between them. We have done this by defining two rather different
“birational categories” and comparing them.
The first idea gives the category place (objects: function fields; morphisms: F'-
places), that we like to call the coarse birational category. For the second idea,
one has to be a little careful: the naive attempt at taking as objects smooth
varieties and as morphisms rational maps does not work because, as was pointed
out to us by Hélene Esnault, one cannot compose rational maps in general. On
the other hand, one can certainly start from the category Sm of smooth F-
varieties and localise it (in the sense of Gabriel-Zisman [12]) with respect to the
set S, of birational morphisms. We like to call the resulting category S, 'Sm
the fine birational category. By hindsight, the problem mentioned by Esnault
can be understood as a problem of calculus of fractions of S; in Sm.
In spite of the lack of calculus of fractions, the category S, 'Sm was studied
in [21] and we were able to show that, under resolution of singularities, the
natural functor S; 'SmP°? — S, 'Sm is an equivalence of categories, where
SmP™P denotes the full subcategory of smooth proper varieties (loc. cit. |,
Prop. 8.5).
What was not done in [21] was the computation of Hom sets in Sb*lSm. This
is the first main result of this paper:

THEOREM 1 (¢f. Th. 6.6.3 and Cor. 6.6.4). Let X,Y be two smooth F-
varieties, with Y proper. Then,
a) In Sb_lsm, we have an isomorphism

Hom(X,Y) ~ Y (F(X))/R

2By convention all varieties are irreducible here, although not necessarily geometrically
irreducible.
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where the right hand side is the set of R-equivalence classes in the sense of
Manin.
b) The natural functor

Sb_lsmﬁfmp — Sl:lSm
is fully faithful. Here SmP™P is the full subcategory of Sm with objects those

smooth proper varieties whose function field has a cofinal set of smooth proper
models (see Definition 4.2.1).

For the link with the result mentioned at the beginning of the introduction,
note that SmP™? = SmP™°P in characteristic 0, and any birational functor on
smooth proper varieties factors uniquely through S, 1SmP™P by the universal
property of the latter category.

Theorem 1 implies that X +— X(F)/R is a birational invariant of smooth
proper varieties in any characteristic (Cor. 6.6.6), a fact which seemed to be
known previously only in characteristic 0 [5, Prop. 10]. It also implies that one
can define a composition law on classes of R-equivalence (for smooth proper
varieties), a fact which is not at all obvious a priori.

The second main result is a comparison between the coarse and fine birational
categories. Let dv be the subcategory of place whose objects are separably
generated function fields and morphisms are generated by field extensions and
places associated to “good” discrete valuation rings (Definition 6.1.1).

THEOREM 2 (¢f. Th. 6.5.2 and 6.7.1). a) There is an equivalence of categories
U :(dv/h)°P = S 'Sm

where dv /W' is the quotient category of dv by the equivalence relation generated
by two elementary relations: homotopy of places (definition 6.4.1) and “having
a common centre of codimension 2 on some smooth model”.

b) If char F = 0, the natural functor dv /h' — place /h" is an equivalence of
categories, where W' is generated by homotopy of places and “having a common
centre on some smooth model”.

(See §1.2 for the notion of an equivalence relation on a category.)

Put together, Theorems 1 and 2 provide an answer to a question of Merkurjev:
given a smooth proper variety X/F, give a purely birational description of the
set X(F)/R. This answer is rather clumsy because the equivalence relation h’
is not easy to handle; we hope to come back to this issue later.

Let us introduce the set S, of stable birational morphisms: by definition, a
morphism s : X — Y is in .S, if it is dominant and the function field extension
F(X)/F(Y) is purely transcendental. We wondered about the nature of the
localisation functor S, 'Sm — S;!Sm for a long time, until the answer was
given us by Colliot-Thélene through a wonderfully simple geometric argument
(see Appendix A):

THEOREM 3 (cf. Th. 1.7.2). The functor S, 'Sm — S;*Sm s an equivalence
of categories.
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This shows a striking difference between birational functors and numerical bi-
rational invariants, many of which are not stably birationally invariant (for
example, plurigenera).
Theorems 1 and 2 are substantial improvements of our results in the first version
of this paper [22], which were proven only in characteristic 0: even in charac-
teristic 0, Theorem 2 is new with respect to [22]. Their proofs are intertwined
in a way we shall describe now.
The first point is to relate the coarse and fine birational categories, as there
is no obvious comparison functor between them. There are two essentially
different approaches to this question. In the first one:
e We introduce (Definition 2.2.1) an “incidence category” SmP, whose
objects are smooth F-varieties and morphisms from X to Y are given by
pairs (f, A), where f is a morphism X — Y, Ais a place F(Y) ~ F(X)
and f, A are compatible in an obvious sense. This category maps to both
place®® and Sm by obvious forgetful functors. Replacing Sm by SmP
turns out to have a strong rigidifying effect.
e We embed place® in the category of locally ringed spaces via the
“Riemann-Zariski” variety attached to a function field.

In this way, we obtain a naturally commutative diagram

S, 'SmProrp

N

op —1 prop
place; Sy Sm}

@
K /
—1Q - proj
S, "SmbP

where place, denotes the full subcategory of place consisting of the function
fields of varieties in SmY™P (compare Theorem 1). Then J is an equivalence of
categories® and the induced functor

*) U, : place® — S, 'SmP™P

is full and essentially surjective (Theorems 4.2.3 and 4.2.4).

This is more or less where we were in the first version of this paper [22], except
for the use of the categories Sm, and place, which allow us to state results in
any characteristic; in [22], we also proved Theorem 1 when char F' = 0, using
resolution of singularities and a complicated categorical method.*

The second approach is to construct a functor dv°® — S~ 'Sm directly. Here
the new and decisive input is the recent paper of Asok and Morel [1], and
especially the results of its §6: they got the insight that, working with discrete

380 is By
4 Another way to prove Theorem 1 in characteristic 0, which was our initial method, is

to define a composition law on R-equivalence classes by brute force (still using resolution of
singularities) and to proceed as in the proof of Proposition 6.4.3.
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valuations of rank 1, all the resolution that is needed is “in codimension 2”.
We implement their method in §6 of the present paper, which leads to a rather
simple proof of Theorems 1 and 2 in any characteristic. Another key input is
a recent uniformisation theorem of Knaf and Kuhlmann [23].

Let us now describe the contents in more detail. We start by setting up notation
in Section 1, which ends with Theorem 3. In Section 2, we introduce the
incidence category SmP sitting in the larger category VarP, the forgetful
functors VarP — Var and VarP — place®®, and prove elementary results
on these functors (see Lemmas 2.3.2 and 2.3.4). In Section 3, we endow the
abstract Riemann variety with the structure of a locally ringed space, and
prove that it is a cofiltered inverse limit of proper models, viewed as schemes
(Theorem 3.2.8): this ought to be well-known but we couldn’t find a reference.
We apply these results to construct in §4 the functor (*), using calculus of
fractions. In section 5, we study calculus of fractions in greater generality; in
particular, we obtain a partial calculus of fractions in S;ISm* in Proposition
5.4.1.

In §6, we introduce a notion of homotopy on place and the subcategory dv.
We then relate our approach to the work of Asok-Morel [1] to prove Theorems
1 and 2. We make the link between the first and second approaches in Theorem
6.7.1 = Theorem 2 b).

Section 7 discusses variants of Kollar’s notion of rational chain connectedness
(which goes back to Chow under the name of linear connectedness), recalls
classical theorems of Murre, Chow and van der Waerden, states new theorems of
Gabber including the one proven in Appendix B, and draws some consequences
in Theorem 7.3.1. Section 8 discusses some applications, among which we like
to mention the existence of a “universal birational quotient” of the fundamental
group of a smooth variety admitting a smooth compactfication (§8.4). We finish
with a few open questions in §8.8.

This paper grew out of the preprint [20], where some of its results were initially
proven. We decided that the best was to separate the present results, which
have little to do with motives, from the rest of that work. Let us end with
a word on the relationship between S, 1Sm and the A'-homotopy category
of schemes H of Morel-Voevodsky [32]. One of the main results of Asok and
Morel in [1] is a proof of the following conjecture of Morel in the proper case
(loc. cit. Th. 2.4.3):

CONJECTURE 1 ([31, p. 386]). If X is a smooth variety, the natural map
X (F) — Homy, (Spec F, X)

is surjective and identifies the right hand side with the quotient of the set X (F')
by the equivalence relation generated by

(x~y) <= Fh:A' = X | h(0) =2 and h(1) = y.

(Note that this “A!-equivalence” coincides with R-equivalence if X is proper.)
Their result can then be enriched as follows:
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THEOREM 4 ([4]). The Yoneda embedding of Sm into the category of simplicial
presheaves of sets on Sm induces a fully faithful functor

S, 'Sm — S, 'H
where Sy Y9 is a suitable localisation of H with respect to birational morphisms.
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CONVENTIONS. F'is the base field. “Variety” means irreducible separated F-
scheme of finite type. All morphisms are F-morphisms. If X is a variety, nx
denotes its generic point.

1. PRELIMINARIES AND NOTATION

In this section, we collect some basic material that will be used in the paper.
This allows us to fix our notation.

1.1. LOCALISATION OF CATEGORIES AND CALCULUS OF FRACTIONS. We refer
to Gabriel-Zisman [12, Chapter I] for the necessary background. Recall [12, 1.1]
that if C is a small category and S is a collection of morphisms in C, there is a
category C[S™!] and a functor C — C[S™!] which is universal among functors
from C which invert the elements of S. When S satisfies calculus of fractions
[12, 1.2] the category C[S™!'] is equivalent to another one, denoted S~!'C by
Gabriel and Zisman, in which the Hom sets are more explicit.

If C is only essentially small, one can construct a category verifying the same
2-universal property by starting from an equivalent small category, provided S
contains the identities. All categories considered in this paper are subcategories
of Var(F) (varieties over our base field F) or place(F) (finitely generated
extensions of F', morphisms given by places), hence are essentially small.

We shall encounter situations where calculus of fractions is satisfied, as well as
others where it is not. We shall take the practice to abuse notation and write
S~1C rather than C[S™!] even when calculus of fractions is not verified.

1.1.1. NotaTION. If (C,S) is as above, we write (S) for the saturation of S:
it is the set of morphisms s in C which become invertible in S~'C. We have
S~1C = (9)~IC and (S) is maximal for this property.

Note the following easy lemma:

1.1.2. LEMMA. Let T': C — D be a full and essentially surjective functor. Let
S € Ar(C) be a set of morphisms. Then the induced functor T : S71C —
T(S)~1D is full and essentially surjective.
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Proof. Essential surjectivity is obvious. Given two objects X, Y € S7IC, a
morphism from T'(X) to T(Y) is given by a zig-zag of morphisms of D. By
the essential surjectivity of T, lift all vertices of this zig-zag, then lift its edges
thanks to the fullness of T'. a

1.2. EQUIVALENCE RELATIONS.

1.2.1. DEFINITION. Let C be a category. An equivalence relation on C consists,
for all X,Y € C, of an equivalence relation ~x y=~ on C(X,Y) such that
f~g= fh~ghandkf ~ kg whenever it makes sense.

In [28, p. 52], the above notion is called a ‘congruence’. Given an equivalence
relation ~ on C, we may form the factor category C/ ~, with the same objects as
C and such that (C/ ~)(X,Y) =C(X,Y)/ ~. This category and the projection
functor C — C/ ~ are universal for functors from C which equalise equivalent
morphisms.

1.2.2. Ezample. Let A be an Ab-category (sets of morphisms are abelian groups
and composition is bilinear). An ideal Z in A is given by a subgroup Z(X,Y) C
A(X,Y) for all X,Y € A such that ZA C Z and AZ C Z. Then the ideal
defines an equivalence relation on A, compatible with the additive structure.

Let ~ be an equivalence relation on the category C. We have the collection
S~ ={f €C| fisinvertible in C/ ~}. The functor C — C/ ~ factors into a
functor SZ1C — C/ ~. Conversely, let S C C be a set of morphisms. We have
the equivalence relation ~g on C such that f ~g g if f = ¢g in S7!C, and the
localisation functor C — S~!C factors into C/ ~g— S~C. Neither of these
two factorisations is an equivalence of categories in general; however, [15, Prop.
1.3.3] remarks that if f ~ g implies f = g in SZ!C, then SJIC — C/ ~ is an
isomorphism of categories.

1.2.3. Exercise. Let A be a commutative ring and I C A an ideal.
a) Assume that the set of minimal primes of A that do not contain I is fi-
nite (e.g. that A is noetherian). Show that the following two conditions are
equivalent:
(i) There exists a multiplicative subset S of A such that A/I ~ S~1A
(compatibly with the maps A — A/I and A — S~1A).
(ii) I is generated by an idempotent.

(Hint: show first that, without any hypothesis, (i) is equivalent to

(iii) For any a € I, there exists b € I such that ab = a.)
b) Give a counterexample to (i) = (ii) in the general case (hint: take A = kN,
where k is a field).

1.3. PLACES, VALUATIONS AND CENTRES [40, Ch. VI], [2, Ch. 6]. Recall
[2, Ch. 6, §2, Def. 3] that a place from a field K to a field L is a map
A: KU{oc0} - LU{oo} such that A(1) = 1 and X preserves sum and product
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whenever they are defined. We shall usually denote places by screwdriver
arrows:
A K~ L.
Then Oy = A™'(L) is a valuation ring of K and Xp, factors as
Oy —» k(A\) = L

where k()) is the residue field of O,. Conversely, the data of a valuation ring
O of K with residue field £ and of a field homomorphism x« — L uniquely
defines a place from K to L (loc. cit. , Prop. 2). It is easily checked that the
composition of two places is a place.

1.3.1. Caution. Unlike Zariski-Samuel [40] and other authors [39, 23], we com-

pose places in the same order as extensions of fields: so if K ALY M are
two successive places, their composite is written pA in this paper. We hope
this will not create confusion.

If K and L are extensions of F', we say that X\ is an F-place if \|p = Id and
then write F'()\) rather than x(\).

In this situation, let X be an integral F-scheme of finite type with function
field K. A point « € X is a centre of a valuation ring O C K if O dominates
the local ring Ox ;. If O has a centre on X, we sometimes say that O is finite
on X. As a special case of the valuative criterion of separatedness (resp. of
the valuative criterion of properness), = is unique (resp. and exists) for all O
if and only if X is separated (resp. proper) [16, Ch. 2, Th. 4.3 and 4.7].

On the other hand, if A : K ~» L is an F-place, then a point x € X (L) is a
centre of X if there is a map ¢ : Spec Oy — X letting the diagram

Spec Oy <—— Spec K

AN

Spec L —* X

commute. Note that the image of the closed point by ¢ is then a centre of the
valuation ring O, and that ¢ uniquely determines z.

In this paper, when X is separated we shall denote by cx(v) € X the centre
of a valuation v and by cx(A) € X (L) the centre of a place A, and carefully
distinguish between the two notions (one being a scheme-theoretic point and
the other a rational point).

We have the following useful lemma from Vaquié [39, Prop. 2.4]; we reproduce
its proof.

1.3.2. LEMMA. Let X € Var, K = F(X), v a valuation on K with residue field
k and ¥ a valuation on k. Let v/ = v owv denote the composite valuation.

a) If v’ is finite on X, s0 is v.

b) Assume that v is finite on X, and let Z C X be the closure of its centre (so
that F(Z) C k). Then v' is finite on X if and only if [the restriction to F(Z)
of] v is finite on Z, and then c¢(v) € Z equals c¢(v') € X.
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Proof. We may assume that X = Spec A is an affine variety. Denoting re-
spectively by V, V',V and m,m’,m the valuation rings associated to v,v’,
and their maximal ideals, we have (0) C m Cc w/ C V/ ¢ V C K and
mCcV=V/mCcK=V/m.

a) v is finite on X if and only if A C V', which implies A C V.

b) The centres of the valuations v and v' on X are defined by the prime ideals
p = ANmand p’ = ANm’ of A, and the centre of the valuation ¥ on Z = Spec A,
with A = A/p is defined by the prime ideal p = ANm of A. Then the claim is
a consequence of the equality p = p’/p. O

1.4. RATIONAL MAPS. Let X,Y be two F-schemes of finite type, with X inte-
gral and Y separated. Recall that a rational map from X to Y is a pair (U, f)
where U is a dense open subset of X and f : U — Y is a morphism. Two ratio-
nal maps (U, f) and (U’, f') are equivalent if there exists a dense open subset
U" contained in U and U’ such that fjy» = fI/U”' We denote by Rat(X,Y)

the set of equivalence classes of rational maps, so that
Rat(X7 Y) = hgl’l Ma‘pF(U7 Y)

where the limit is taken over the open dense subsets of X. There is a largest
open subset U of X on which a given rational map f : X --» Y is defined
[16, Ch. I, Ex. 4.2]. The (reduced) closed complement X — U is called the
fundamental set of f (notation: Fund(f)). We say that f is dominant if f(U)
is dense in Y.

Similarly, let f : X — Y be a birational morphism. The complement of the
largest open subset of X on which f is an isomorphism is called the exceptional
locus of f and is denoted by Exc(f).

Note that the sets Rat(X,Y") only define a precategory (or diagram, or diagram
scheme, or quiver) Rat(F'), because rational maps cannot be composed in
general. To clarify this, let f : X --» Y and g : Y --+ Z be two rational
maps, where XY, Z are varieties. We say that f and g are composable if
f(nx) ¢ Fund(g), where nx is the generic point of X. Then there exists an
open subset U C X such that f is defined on U and f(U) N Fund(g) = 0, and
g o f makes sense as a rational map. This happens in two important cases:

e f is dominant;

e ¢ is a morphism.
This composition law is associative wherever it makes sense. In particular,
we do have the category Ratqom(F') with objects F-varieties and morphisms

dominant rational maps. Similarly, the category Var(F) of 1.7 acts on Rat(F)
on the left.

1.4.1. LEMMA ([21, Lemma 8.2]). Let f,g: X — Y be two morphisms, with X
integral and Y separated. Then f = g if and only if f(nx) = g(nx) =:y and
f,g induce the same map F(y) — F(X) on the residue fields. |
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For X,Y as above, there is a well-defined map
(1.1) Rat(X,)Y) - Y(F(X))
(Uv f) — flnx

where nx is the generic point of X.
1.4.2. LEMMA. The map (1.1) is bijective.

Proof. Surjectivity is clear, and injectivity follows from Lemma 1.4.1. a

1.5. THE GRAPH TRICK. We shall often use this well-known and basic device,
which allows us to replace a rational map by a morphism.

Let U,Y be two F-varieties. Let j : U — X be an open immersion (X a
variety) and g : U — Y a morphism. Consider the graph I'y C U x Y. By the
first projection, I'y — U. Let I'y be the closure of Iy in X x Y, viewed as
a reduced scheme. Then the rational map g : X --» Y has been replaced by

g' : Ty =Y (second projection) through the birational map p : I'y — X (first
projection). Clearly, if Y is proper then p is proper.

1.6. STRUCTURE THEOREMS ON VARIETIES. Here we collect two well-known
results, for future reference.

1.6.1. THEOREM (Nagata [34]). Any variety X can be embedded into a proper
variety X. We shall sometimes call X a compactification of X.

1.6.2. THEOREM (Hironaka [17]). If char F =0,

a) For any variety X there exists a projective birational morphism f : X =
X with X smooth. (Such a morphism is sometimes called a modification.)
Moreover, f may be chosen such that it is an isomorphism away from the
inverse image of the singular locus of X . In particular, any smooth variety X
may be embedded as an open subset of a smooth proper variety (projective if X
is quasi-projective).

b) For any proper birational morphism p : Y — X between smooth varieties,
there exists a proper birational morphism p : Y — X which factors through p
and is a composition of blow-ups with smooth centres.

In some places we shall assume characteristic 0 in order to use resolution of
singularities. We shall specify this by putting an asterisk to the statement of
the corresponding result (so, the asterisk will mean that the characteristic 0
assumption is due to the use of Theorem 1.6.2).

1.7. SOME MULTIPLICATIVE SYSTEMS. Let Var(F) = Var be the category of
F-varieties: objects are F-varieties (i.e. integral separated F-schemes of finite
type) and morphisms are all F-morphisms. We write Sm(F) = Sm for its
full subcategory consisting of smooth varieties. As in [21], the superscripts
ap Prop proj pegpectively mean quasi-projective, proper and projective.

As in [21], we shall use various collections of morphisms of Var that are to be
inverted:
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e Birational morphisms Sp: s € Sy if s is dominant and induces an
isomorphism of function fields.
e Stably birational morphisms S,: s € S, if s is dominant and induces a
purely transcendental extension of function fields.
In addition, we shall use the following subsets of Sp:
e S,: open immersions
e S} proper birational morphisms
and of S,
e SP: proper stably birational morphisms
e S),: the projections pry : X x P! — X,
We shall need the following lemma:

1.7.1. LEMMA. a) In Var and Sm, we have (Sy) = (S,) and (S,) = (Sp U Sp)
(see Notation 1.1.1).

b) We have (S?) = (S¥ U Sy) in Var, *and also in Sm under resolution of
singularities.

Proof. a) The first equality is left to the reader. For the second one, given a
morphism s : ¥ — X in S, with X,Y € Var or Sm, it suffices to consider a

commutative diagram

X x (PhH»

\/

with t,u € S,, ¥ a common open subset of ¥ and X x (P1)".

b) For a morphism s : Y — X in SP with X,Y € Var, we get a diagram (1.2),
this time with ¢,u € S? and Y obtained by the graph trick. If X,V € Sm, we
use resolution to replace Y by a smooth variety. |

(1.2)

Here is now the main result of this section.

1.7.2. THEOREM. In Sm, the sets Sy, and S, have the same saturation. *This
is also true for St and SP under resolution of singularities.

In particular, the obvious functor Sb_lsm — S71Sm is an equivalence of cat-
€gories.

Proof. Let us prove that Sy is contained in the saturation of S}, hence in the
saturation of S,. Let Y be smooth variety, and let f : Y x P — Y be the
first projection. We have to show that f becomes invertible in (S})~'Sm.
By Yoneda’s lemma, it suffices to show that F(f) is invertible for any (repre-
sentable) functor F : (S7)~'Sm°® — Sets. This follows from taking the proof
of Appendix A and “multiplying” it by Y.
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To get Theorem 1.7.2, we now apply Lemma 1.7.1 a) and b). (Applying b) is
where resolution of singularities is required.) |

1.7.3. Remark. Theorem 1.7.2 is also valid in Var, without resolution of singu-
larities hypothesis (same proof). Recall however that the functor S, 'Sm —
Sy !'Var induced by the inclusion Sm < Var is far from being fully faithful
21, Rk. 8.11].

2. PLACES AND MORPHISMS

2.1. THE CATEGORY OF PLACES.

2.1.1. DEFINITION. We denote by place(F) = place the category with objects
finitely generated extensions of F' and morphisms F-places. We denote by
field(F) = field the subcategory of place(F') with the same objects, but in
which morphisms are F-homomorphisms of fields. We shall sometimes call the
latter trivial places.

2.1.2. Remark. If A : K ~~ L is a morphism in place, then its residue field F'()\)
is finitely generated over F, as a subfield of the finitely generated field L. On
the other hand, given a finitely generated extension K/F, there exist valuation
rings of K /F with infinitely generated residue fields as soon as trdeg(K/F) > 1,
¢f. [40, Ch. VI, §15, Ex. 4].

In this section, we relate the categories place and Var. We start with the main
tool, which is the notion of compatibility between a place and a morphism.

2.2. A COMPATIBILITY CONDITION.

2.2.1. DEFINITION. Let X,Y € Var, f : X --» Y a rational map and v :
F(Y) ~ F(X) a place. We say that f and v are compatible if

e v is finite on Y (i.e. has a centre in V).
e The corresponding diagram

nx U—> Spec O,

! !

v —1 Y
commutes, where U is an open subset of X on which f is defined.

2.2.2. PROPOSITION. Let X,Y,v be as in Definition 2.2.1. Suppose that v is
finite on Y, and let y € Y (F (X)) be its centre. Then a rational map f: X --»
Y is compatible with v if and only if

e y= f(nx) and
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e the diagram of fields

commutes.

In particular, there is at most one such f.

Proof. Suppose v and f compatible. Then y = f(nx) because v*(nx) is the
closed point of Spec O,,. The commutativity of the diagram then follows from
the one in Definition 2.2.1. Conversely, if f verifies the two conditions, then it
is obviously compatible with v. The last assertion follows from Lemma 1.4.1.0

2.2.3. COROLLARY. a) Let Y € Var and let O be a valuation ring of F(Y)/F
with residue field K and centrey € Y. Assume that F(y) — K. Then, for any
rational map f : X --»Y with X integral, such that f(nx) =y, there exists a
unique place v : F(Y') ~ F(X) with valuation ring O which is compatible with
I

b) If f is an immersion, the condition F(y) — K is also necessary for the
existence of v.

¢) In particular, let f : X --» Y be a dominant rational map. Then f is
compatible with the trivial place F(Y) — F(X), and this place is the only one
with which f is compatible.

Proof. This follows immediately from Proposition 2.2.2. O

2.2.4. PROPOSITION. Let f: X =Y, g:Y — Z be two morphisms of varieties.
Letv: F(Y) ~ F(X) and w : F(Z) ~ F(Y) be two places. Suppose that f
and v are compatible and that g and w are compatible. Then go f and v ow
are compatible.

Proof. We first show that v o w is finite on Z. By definition, the diagram

Ny SN Spec O,

! !

SpeC Ov —_— SpeC Ovow

is cocartesian. Since the two compositions

Ny w—> Spec O, — Z

and
ny — Spec O, Y Lz
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coincide (by the compatibility of g and w), there is a unique induced (dominant)
map Spec Oyoy — Z. In the diagram

nx U—) Spec O, ——— Spec Oyow

| | |

x 1, v 2, z

the left square commutes by compatibility of f and v, and the right square
commutes by construction. Therefore the big rectangle commutes, which means
that g o f and v o w are compatible. |

2.3. THE CATEGORY VarP.

2.3.1. DEFINITION. We denote by VarP(F) = VarP the following category:
e Objects are F-varieties.
e Let X, Y € VarP. A morphism ¢ € VarP(X,Y) is a pair (A, f) with
f: X — Y amorphism, A : F(Y) ~» F(X) aplace and A, f compatible.
e The composition of morphisms is given by Proposition 2.2.4.

If C is a full subcategory of Var, we also denote by CP(F) = CP the full
subcategory of VarP whose objects are in C.

We now want to do an elementary study of the two forgetful functors appearing
in the diagram below:

VarP — 21 place®”
(2.1) ®, l

Var .

Clearly, ®; and ®5 are essentially surjective. Concerning ®5, we have the
following partial result on its fullness:

2.3.2. LEMMA. Let f : X --+ Y be a rational map, with X integral and Y
separated. Assume thaty = f(nx) is a regular point (i.e. A= Oy, is reqular).
Then there is a place v : F(Y') ~ F(X) compatible with f.

Proof. By Corollary 2.2.3 a), it is sufficient to produce a valuation ring O
containing A and with the same residue field as A.

The following construction is certainly classical. Let m be the maximal ideal of
A and let (aq,...,aq) be a regular sequence generating m, with d = dim A =
codimy y. For 0 <i < j<d+1,let

Aij = (A/(aj,...,ad))p

where p = (ai41,...,a;-1) (for ¢ = 0 we invert no ax, and for j = d+ 1 we
mod out no ay). Then, for any (4,5), A;; is a regular local ring of dimension
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j—1i—1. In particular, F; = A; ;41 is the residue field of A4; ; for any j > i+ 1.
We have Ay 411 = A and there are obvious maps

A; ;= Aip1;  (injective)
Aij — Aij—1  (surjective).

Consider the discrete valuation v; associated to the discrete valuation ring
A; iy2: it defines a place, still denoted by v;, from Fj; to F;. The composition
of these places is a place v from F; = F(Y) to Fy = F(y), whose valuation ring
dominates A and whose residue field is clearly F(y). O

2.3.3. Remark. In Lemma 2.3.2, the assumption that y is a regular point is
necessary. Indeed, take for f a closed immersion. By [2, Ch. 6, §1, Th.
2], there exists a valuation ring O of F(Y") which dominates Oy, and whose
residue field & is an algebraic extension of F(y) = F(X). However we cannot
choose O such that x = F(y) in general. The same counterexamples as in [21,
Remark 8.11] apply (singular curves, the point (0,0,...,0) on the affine cone
23+ 23+ +22 =0 over R for n > 3).

Now concerning ®;, we have:

2.3.4. LEMMA. Let X,Y be two varieties and X : F(Y) ~ F(X) a place.
Assume that X is finite on Y. Then there exists a unique rational map [ :
X --»Y compatible with .

Proof. Let y be the centre of Oy on Y and V' = Spec R an affine neighbourhood
of y, so that R C Oy, and let S be the image of R in F(\). Choose a finitely
generated F-subalgebra T' of F(X) containing S, with quotient field F(X).
Then X’ = SpecT is an affine model of F(X)/F. The composition X’ —
Spec S — V — Y is then compatible with v. Its restriction to a common open
subset U of X and X’ defines the desired map f. The uniqueness of f follows
from Proposition 2.2.2. O

2.3.5. Remark. Let Z be a third variety and u : F(Z) ~ F(Y) be another
place, finite on Z; let g : Y --+ Z be the rational map compatible with pu.
If f and g are composable, then g o f is compatible with A o u: this follows
easily from Proposition 2.2.4. However it may well happen that f and g are
not composable. For example, assume Y smooth. Given p, hence g (that we
suppose not to be a morphism), choose y € Fund(g) and find a A\ with centre
y, for example by the method in the proof of Lemma 2.3.2. Then the rational
map f corresponding to A has image contained in Fund(g).

We conclude this section with a useful lemma which shows that places rigidify
the situation very much.

2.3.6. LEMMA. a) Let Z,Z' be two models of a function field L, with Z' sep-
arated, and v a valuation of L with centres z,z' respectively on Z and Z'.
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Assume that there is a birational morphism g: Z — Z'. Then g(z) = 2’.
b) Consider a diagram

Z/
with g a birational morphism. Let K = F(X), L = F(Z) = F(Z') and suppose
gwen a place v : L ~ K compatible both with f and f’. Then f' =go f.

Proof. a) Let f : Spec O, — Z be the dominant map determined by z. Then
f' = go f is a dominant map Spec O, — Z’. By the valuative criterion of
separatedness, it must correspond to z’. b) This follows from a) and Proposition
2.2.2. O

3. PLACES, VALUATIONS AND THE RIEMANN VARIETIES

In this section, we give a second categorical relationship between the idea of
places and that of algebraic varieties. This leads us to consider Zariski’s “ab-
stract Riemann surface of a field” as a locally ringed space. We start by giving
the details of this theory, as we could not find it elaborated in the literature®.
We remark however that the study of ‘Riemann-Zariski spaces’ has recently
been revived by different authors independently (see [10], [36], [37], [39]).

3.1. STRICT BIRATIONAL MORPHISMS. It will be helpful to work here with the
following notion of strict birational morphisms:

S, = {s € Sy | s induces an equality of function fields}

In fact, the difference between Sy, and S, is immaterial in view of the following

3.1.1. LEMMA. Any birational morphism of (separated) varieties is the compo-
sition of a strict birational morphism and an isomorphism.

Proof. Let s : X — Y be a birational morphism. First assume X and Y affine,
with X = Spec A and Y = Spec B. Let K = F(X) and L = F(Y), so that K is
the quotient field of A and L is the quotient field of B. Let s* : L — K be the
isomorphism induced by s. Then A’ =+ A = s*(A), hence s may be factored

u

as X -5 X 5 Y with X' = Spec A’, where s’ is strict birational and u is an
isomorphism. In the general case, we may patch the above construction (which
is canonical) over an affine open cover (U;) of Y and an affine open cover of X
refining (s=(U;)). m|

5Except for a terse allusion in [17, 0.6, p. 146]: we thank Bernard Teissier for pointing
out this reference.
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3.2. THE RIEMANN-ZARISKI VARIETY AS A LOCALLY RINGED SPACE.

3.2.1. DEFINITION. We denote by R(F) = R the full subcategory of the cat-
egory of locally ringed spaces such that (X,0x) € R if and only if Ox is a
sheaf of local F-algebras.

(Here, we understand by “local ring” a commutative ring whose non-invertible
elements form an ideal, but we don’t require it to be Noetherian.)

3.2.2. LEMMA. Cofiltering inverse limits exist in R. More precisely, if
(X, Ox,)icr is a cofiltering inverse system of objects of R, its inverse limit
is represented by (X,0x) with X = l'&nXi and Ox = liﬂpf(’)xw where
p;i : X = X, is the natural projection.

Sketch. Since a filtering direct limit of local rings for local homomorphisms is
local, the object of the lemma belongs to R and we are left to show that it
satisfies the universal property of inverse limits in R. This is clear on the space
level, while on the sheaf level it follows from the fact that inverse images of
sheaves commute with direct limits. a

Recall from Zariski-Samuel [40, Ch. VI, §17] the abstract Riemann surface Sk
of a function field K/F: as a set, it consists of all nontrivial valuations on
K which are trivial on F'. It is topologised by the following basis £ of open
sets: if R is a subring of K, finitely generated over F, E(R) € £ consists of all
valuations v such that O, O R.

As has become common practice, we slightly modify this definition:

3.2.3. DEFINITION. The Riemann variety ¥k of K is the following ringed space:
e As a topological space, X = Sk U {nx} where nk is the trivial valu-
ation of K. (The topology is defined as for Sk.)
e The set of sections over E(R) of the structural sheaf of Xk is the
intersection () O, i.e. the integral closure of R.
vEE(R)
3.2.4. LEMMA. The stalk at v € X of the structure sheaf is O,. In particular,
Yk €R.

Proof. Let x1,...,2, € O,. The subring F[z1,...,x,] is finitely generated
and contained in O,, thus O, is the filtering direct limit of the R’s such that
v € E(R). O

Let R be a finitely generated F-subalgebra of K. We have a canonical morphism
of locally ringed spaces cr : E(R) — Spec R defined as follows: on points we
map v € E(R) to its centre cr(v) on Spec R. On the sheaf level, the map is
defined by the inclusions Ox ¢y (v) C Oy.

We now reformulate [40, p. 115 ff] in scheme-theoretic language. Let X € Var
be provided with a dominant morphism Spec K — X such that the corre-
sponding field homomorphism F(X) — K is an inclusion (as opposed to a
monomorphism). We call such an X a Zariski-Samuel model of K; X is
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a model of K if, moreover, F(X) = K. Note that Zariski-Samuel mod-
els of K form a cofiltering ordered set. Generalising F(R), we may define
E(X) ={v € £k | v is finite on X} for a Zariski-Samuel model of K; this is
still an open subset of X, being the union of the E(U;), where (U;) is some
finite affine open cover of X. We still have a morphism of locally ringed spaces
¢x : E(X) — X defined by glueing the affine ones. If X is proper, E(X) = X
by the valuative criterion of properness. Then:

3.2.5. THEOREM (Zariski-Samuel). The induced morphism of ringed spaces
Yk — I&H X

where X runs through the proper Zariski-Samuel models of K, is an isomor-
phism in R. The generic point ni ts dense in X .

Proof. Zariski and Samuel’s theorem [40, th. VI.41 p. 122] says that the un-
derlying morphism of topological spaces is a homeomorphism; thus, by Lemma
3.2.2, we only need to check that the structure sheaf of ¥ is the direct limit
of the pull-backs of those of the X. This amounts to showing that, for v € Y,
O, is the direct limit of the Ox . (v)-

We argue essentially as in [40, pp. 122-123] (or as in the proof of Lemma 3.2.4).
Let x € O,, and let X be the projective Zariski-Samuel model determined by
{1,z} as in loc. cit. , bottom p. 119, so that either X ~ P or X = Spec F’
where F’ is a finite extension of F' contained in K. In both cases, ¢ = cx (v)
actually belongs to Spec F[z] and z € Ox . C O,.

Finally, nx is contained in every basic open set, therefore is dense in Y. O

3.2.6. DEFINITION. Let C be a full subcategory of Var. We denote by C the
full subcategory of R whose objects are cofiltered inverse limits of objects of C

under morphisms of Sy (¢f. §1.7). The natural inclusion C C C is denoted by
J.

Note that, for any function field K/F, Yk € VarPop by Theorem 3.2.5. Also,
for any X € Var, the function field F(X) is well-defined.

3.2.7. LEMMA. Let X € Var and K = F(X).
a) For a finitely generated F-algebra R C K, the set
Ex(R)={re€ X | RCOx,}

is an open subset of X. These open subsets form a basis for the topology of X .
b) The generic point ng € X is dense in X, and X is quasi-compact.

Proof. a) If X is a variety, then Ex(R) is open, being the set of definition of
the rational map X --» Spec R induced by the inclusion R C K. In general,
let (X,0x) = l'&na(Xm(’)Xa) with the X, varieties and let p, : X — X, be
the projection. Since R is finitely generated, we have

Ex(R) =Jpa'(Ex, (R))
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which is open in X.

Let x € X: using Lemma 3.2.2, we can find an « and an affine open U C X,
such that x € p;1(U). Writing U = Spec R, we see that z € Ex (R), thus the
Ex(R) form a basis of the topology of X.

In b), the density follows from a) since clearly nx € Ex(R) for every R.
The space X is a limit of spectral spaces under spectral maps, and hence
quasi-compact. Alternately, X is compact in the constructible topology as
compactness is preserved under inverse limits, and hence quasi-compact in the
weaker Zariski topology. O

We are grateful to M. Temkin for pointing out an error in our earlier proof of
quasi-compactness and providing the proof of b) above.

3.2.8. THEOREM. Let X = @Xa, Y = @Yg be two objects of Var. Then
we have a canonical isomorphism

Var(X,Y) ~ Li?mlignVar(Xa, Y3).

Proof. Suppose first that Y is constant. We then have an obvious map

lim Var(X,,Y) — Var(X,Y).

Injectivity follows from Lemma 1.4.1. For surjectivity, let f : X — Y be
a morphism. Let y = f(nk). Since nx is dense in X by Lemma 3.2.7 b),
f(X) C {y}. This reduces us to the case where f is dominant.
Let z € X and y = f(z). Pick an affine open neighbourhood Spec R of y
in Y. Then R C Ox,, hence R C Ox,, 4, for some o, where zo = pao(z),
Pa : X — X, being the canonical projection. This shows that the rational
map fo : Xo —-+ Y induced by restricting f to the generic point is defined at
x4, for a large enough.
Let U, be the set of definition of f,. We have just shown that X is the
increasing union of the open sets p,1(U,). Since X is quasi-compact, this
implies that X = p,1(U,) for some a, i.e. that f factors through X, for this
value of a.
In general we have

Var(X,Y) Li?m\//'eﬁ'(X, Y3)
by the universal property of inverse limits, which completes the proof. O

3.2.9. Remark. Let prog, —Var be the full subcategory of the category of pro-
objects of Var consisting of the (X, ) in which the transition maps X, — Xpg
are strict birational morphisms. Then Theorem 3.2.8 may be reinterpreted as
saying that the functor

@1 : prog, ~Var — Var

is an equivalence of categories.
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3.3. RIEMANN VARIETIES AND PLACES. We are going to study two functors
Spec : field°® — Var
Y : place®® — Var

and a natural transformation n : Spec = ¥ o, where ¢ is the embedding
field°? — place®’.

The first functor is simply K — Spec K. The second one maps K to the
Riemann variety Y. Let A : K ~ L be an F-place. We define \* : ¥ — Yk
as follows: if w € ¥, we may consider the associated place @ : L ~» F(w);
then A*w is the valuation underlying w o A.

Let E(R) be a basic open subset of X . Then

1] ifRSZOA

() THE(R) = {E(A(R)) if RC O,

Moreover, if R C O,, then A maps Oy« to O, for any valuation w €
(A*)"LE(R). This shows that A\* is continuous and defines a morphism of
locally ringed spaces. We leave it to the reader to check that (uoA)* = A* o pu*.
Note that we have for any K a morphism of ringed spaces

(3.1) NK : Spec K — Yk

with image the trivial valuation of ¥ i (which is its generic point). This defines
the natural transformation n we alluded to.

3.3.1. PROPOSITION. The functors Spec and X are fully faithful; moreover, for
any K, L, the map

Var (Y., Sk) % Var(Spec L, Sx)
is bijective.

Proof. The case of Spec is obvious. For the rest, let K, L € place(F) and
consider the composition

place(K, L) =, @‘(Eb Sk) L \/fa\r(Spec L,Y¥k).

It suffices to show that nj is injective and nj o ¥ is bijective.

Let ¢1,10 € @(ZL, Y k) be such that nji1 = nj1s. Pick a proper model
X of K; by Theorem 3.2.8, cx o t1 and cx o ¥y factor through morphisms
fi,f2 'Y = X for some model Y of L. By Lemma 1.4.1, fi = fo, hence
cx o1 = cx oy and finally Y = 12 by Theorem 3.2.5. Thus nj is injective.
On the other hand, let ¢ € \/fa\r(Spec L, ¥ k) and v = ¢(Spec L): then ¢ induces
a homomorphism O, — L, hence a place A : K ~» L and clearly ¢ = n} o 3()).
This is the only place mapping to . This shows that the composition 7} o X
is bijective, which concludes the proof. |
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4. TWO EQUIVALENCES OF CATEGORIES

In this section, we compare the localised categories S ! place and a suitable
version of S, 'SmP™P by using the techniques of the previous section. First,
we prove in Theorem 4.2.3 that a suitable version of the functor ®; of (2.1)
becomes an equivalence of categories after we invert birational morphisms.
Next, we construct a full and essentially surjective functor

place? — S, 'SmP™P

in Corollary 4.2.4, where SmE™P is the full subcategory of Sm formed of smooth
varieties having a cofinal system of smooth proper models, and place, C place
is the full subcategory of their function fields.

4.1. THE BASIC DIAGRAM. We start from the commutative diagram of functors

(4.1) VarP

>

5]
place®
X

where @1, &5 are the two forgetful functors of (2.1). Note that ¥ takes values

x
Var
/

—

Var

in Vﬁp, so this diagram restricts to a similar diagram where Var is replaced
by VarP™P,

We can extend the birational morphisms S, to the categories appearing in this
diagram:

4.1.1. DEFINITION (cf. Theorem 3.2.8). Let X,Y € Var, with X = lim X,
Y = @Yg. A morphism s : X — Y is birational if, for each (3, the projection
X 25 Y — Y} factors through a birational map s, 5 : X4 — Y3 for some
(this does not depend on the choice of a)). We denote by S, C Ar(\//'a}) the
collection of these morphisms.

In Var P, we write S, for the set of morphisms of the form (u, f) where u is
an isomorphism of function fields and f is a birational morphism. In place,
we take for Sp the set of isomorphisms.

4.2. MAIN RESULTS.

4.2.1. DEFINITION. Let

e place, be the full subcategory of place formed of function fields which
have a cofinal system of smooth proper models.

e SmMP™P C SmP™P be the full subcategory of those X such that, for any
Y € Var®™P birational to X, there exists X’ € SmP™P and a (proper)
birational morphism s : X’ — Y.
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Note that SmP™? = SmP™P in characteristic 0 and that X € Sm”*P? = X €
SmP™P if dim X < 2 in any characteristic. On the other hand, it is not clear
whether SmP™? is closed under products, or even under product with P*.
The following lemma is clear:

4.2.2. LEMMA. a) If X, X' € SmP™P are birational, then X € SmP'? —
X’ € SmP™P,

b) K € place, <= K has a model in SmL™? and then any smooth proper
model of K is in Smb™P. |

If X € SmY™P, we have F(X) € place,, hence with these definitions, (4.1)
induces a commutative diagram of localised categories:

(4.2) S;1SmPPP

4.2.3. THEOREM. In (4.2), J and B, are equivalences of categories.

Composing ¥ with a quasi-inverse of .J, we get a functor
(4.3) U, : place?® — S, 'SmP™P.

This functor is well-defined up to unique natural isomorphism, by the essential
uniqueness of a quasi-inverse to J.

4.2.4. THEOREM. a) The functor U, is full and essentially surjective.
b) Let K, L € place, and \, u € place, (K, L). Suppose that A and u have the
same centre on some model X € SmL™P of K. Then U, (\) = W, (u).
¢) Let S, C place, denote the set of field extensions K — K (t) such that K €
place, and K(t) € place,. Then the composition place;’ BN S, 'SmProP —
S, 'Sm factors through a (full) functor, still denoted by W.:

v, : Sfl place’ — Sb_lsm.

The proofs of Theorems 4.2.3 and 4.2.4 go in several steps, which are given in
the next subsections.

4.3. PROOF OF THEOREM 4.2.3: THE CASE OF J. We apply Proposition 5.10
b) of [21]. To lighten notation we drop the functor J. We have to check
Conditions (bl), (b2) and (b3) of loc. cit. , namely:

(bl) Given two maps Xi;Y in SmY™ and a map s: Z = WmZ, — X in
g

Sy C S@p, fs=gs = f =g. This is clear by Lemma 1.4.1, since
by Theorem 3.2.8 s factors through some Z,,, with Z, — X birational.
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(b2) For any X = lim X, € S@p, there exists a birational morphism
s: X — X' with X’ € SmE™P. It suffices to take X' = X, for some a.
(b3) Given a diagram

X1

3

X =lmX, —1— v

with X € SmE™P X1, € SmP™P and s; € Sy, there exists so : X —
Xo in Sy, with X9 € SMP™P | covering both s1 and f. Again, it suffices
to take Xy = X, for a large enough (use Theorem 3.2.8).

4.4. CALCULUS OF FRACTIONS.

4.4.1. PROPOSITION. The category SmY* PP admits a calculus of right fractions
with respect to SY. In particular, in (SY)~'SmP*PP, any morphism may be
written in the form fp~! with p € SY. The latter also holds in (S¥)~!SmP™P.

Proof. Consider a diagram
Y/

(4.4) Sl

X ——Y
in SmY™PP, with s € SJ. Let A : F(Y) ~» F(X) be the place compatible
with w which is implicit in the statement. By Proposition 2.2.2, X has centre
z =u(nx) on Y. Since s is proper, A therefore has also a centre z’ on Y’. By
Lemma 2.3.6 a), s(z’) = z. By Lemma 2.3.4, there exists a unique rational
map ¢ : X --» Y’ compatible with A, and s o ¢ = v by Lemma 2.3.6 b). By
the graph trick, we get a commutative diagram

’
u

X — Y

(4.5) s/l Sl

X ==Y
in which X" € X xy Y’ is the closure of the graph of ¢, s’ € S} and ' is
compatible with A\. Since X € SmP™P, we may birationally dominate X’ by
an X" € SmP™P by Lemma 4.2.2, hence replace X’ by X” in the diagram.
Since @7 is full by Lemma 2.3.2, the same construction works in Sm%"?, hence
the structure of morphisms in (S7)~'SmY™ PP and (SF)~1Smb™P.
Let now

X % Y Sy
be a diagram in SmP™PP with s € S, such that sf = sg. By Corollary 2.2.3
¢), the place underlying s is the identity. Hence the two places underlying f
and g must be equal. But then f = g by Proposition 2.2.2. O
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4.4.2. PROPOSITION. a) Consider a diagram in SmP*°PP
(4.6) 7z
N
X Y
N
Z/

where p,p’ € SV. Let K = F(Z) = F(Z') = F(X), L = F(Y) and
suppose given a place X : L ~ K compatible both with f and f'. Then
(A Sp™h) = (A S ) in (S]) 7' SmE PP,

b) Consider a diagram (4.6) in SmP™P. Then fp~t = f'p'"" in (SP)~tSmbrp
if (f,p) and (f',p’) define the same rational map from X toY.

Proof. a) By the graph trick, complete the diagram as follows:
(4.7) 7z

N

X z" Y

el A
Z/
with p1,p) € Sf and Z” € SmY™PP. Since X € SmL™P, we may take Z” in
Sm?P™P . Then we have
ppL=p'P,  fp1=f'P
(the latter by Lemma 2.3.6 b)), hence the claim.
b) If (f,p) and (f’,p’) define the same rational map, then arguing as in a) we

get a diagram (4.7) in SmP™P hence fp~' = f'p'~" in (SF) " SmP™P. O

4.5. THE MORPHISM ASSOCIATED TO A RATIONAL MAP. Let X,Y € Smb™P,
and let ¢ : Y --» X be a rational map. By the graph trick, we may find
p: Y’ — Y proper birational and a morphism f : Y’ — X such that ¢ is
represented by (f,p); since Y € SmP*P we may choose Y’ in SmP*P. Then
fp~t € (SP)~'SmP™P does not depend on the choice of Y’ by Proposition 4.4.2
b): we simply write it ¢.

4.6. PROOF OF THEOREM 4.2.4. Let K, L € place, and A € place, (K, L).
Put X = U, (K),Y = ¥,(L), so that X (resp. Y) is a smooth proper model
of K (resp. L) in Sm, (see 4.2.1). Since X is proper, A is finite on X and by
Lemma 2.3.4 there exists a unique rational map ¢ : Y --+ X compatible with
A, that we view as a morphism in (S7)~*Sm.™P by §4.5.

4.6.1. LEMMA. With the above notation, we have ¥, (\) = .
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Proof. Consider the morphisms (A, f) € SmY™PP(Y’, X) and (1.,s) €
SmYPP(Y')Y). In (4.2) ®F sends the first morphism to A and the second
one to 1y, while ®5 sends the first morphism to f and the second one to s.
The conclusion now follows from the commutativity of (4.2) and the construc-
tion of W.,. O

We can now prove Theorem 4.2.4:

a) The essential surjectivity of U, is tautological. Let now X = ¥, (K),Y =
V. (L) for some K, L € place, and let ¢ € (S7)~'SmP™P(X,Y). By Propo-
sition 4.4.1, we may write ¢ = fs~! where f, s are morphisms in Sm?"? and
s€ S). Let ¢: X --» Y be the corresponding rational map. By Lemma 2.3.2,
f is compatible with some place A and by Corollary 2.2.3 c), s is compatible
with the corresponding isomorphism ¢ of function fields. Then ¢ is compatible
with t =), and W, (:~*)\) = ¢ by Lemma 4.6.1. This proves the fullness of U,.
(One could also use Lemma 1.1.2.)

b) By Lemma 4.6.1, ¥, (\) and ¥, (u) are given by the respective rational maps
frg: (L) --» U (K) compatible with A, u. By the definition of Sm.™ P we
can find a model X’ € SmY™P of K and two birational morphisms s : X’ — X,
t: X' — U,(K). The hypothesis and Lemma 2.3.4 imply that st~ f = st~ 1g,
hence f =g in Sl)_lSmf:rOp.

¢) The said composition sends morphisms in S, to morphisms in S,, hence
induces a functor

S ! place?® — S, 'Sm.

But S, 'Sm -~ S 'Sm by Theorem 1.7.2.

4.7. PROOF OF THEOREM 4.2.3: THE CASE OF 5’{. Essential surjectivity is
obvious by definition of place,. Let X,Y € Sm{™PP, and K = ®7(X),L =
®1(Y). By Lemma 2.3.4, a place A : L ~» K is compatible with a (unique)
rational map ¢ : X --» Y. Since X € SmP P, we may write ¢ = fs~! with
f: X' =Y for X € SmP™ and s: X’ — X is a birational morphism. This
shows the fullness of ;.

We now prove the faithfulness of ®,. Let (A1,1), (A2,%2) be two morphisms
from X to Y in (S7)"'SmP™PP having the same image under &,. By Propo-
sition 4.4.1, we may write v; = fip;1 with f;, p; morphisms and p; € Sp. As
they have the same image, it means that the places A; and Ay from F(Y) to
F(X) are equal. By Lemma 2.3.4, (f1,p1) and (f2,p2) define the same ra-
tional map ¢ : X --» Y. Therefore ¢4 = 1o by Proposition 4.4.2 b), and
(A1, 91) = (A2, ¢2).

4.8. DOMINANT RATIONAL MAPS. Recall from Subsection 1.4 the category
Ratyom of dominant rational maps between F-varieties. Writing Vargqy, for
the category of F-varieties and dominant maps, we have inclusions of categories

(4.8) Var D Vargom AN Ratgom -
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Recall [16, Ch. I, Th. 4.4] that there is an anti-equivalence of categories

(4.9) Ratgom — field°P
X = F(X).
Actually this follows easily from Lemma 1.4.2. We want to revisit this theorem

from the current point of view. For simplicity, we restrict to smooth varieties
and separably generated extensions of F. Recall:

4.8.1. LEMMA. A function field K/F has a smooth model if and only if it is
separably generated.

Proof. Necessity: let p be the exponential characteristic of F. If X is a smooth
model of K/F, then X ®@pFY/? is smooth over F1/? and irreducible, hence K@ p
F1/? is still a field. The conclusion then follows from Mac Lane’s separability
criterion [27, Chapter 8, §4]

Sufficiency: if K/F is separably generated, pick a separable transcendence
basis {z1,...,2,}. Writing F(x1,...,2,) = F(A"™), we can find an affine
model of finite type X of K/F with a dominant generically finite morphism
f: X — A" By generic flatness [EGA4, 11.1.1], there is an open subset U C
A" such that f~}(U) — U is flat. On the other hand, since K/F(x1,...,xy)
is separable, there is another open subset V' C A™ such that Q}f—l(v)/v = 0.
Then f~1(U NV) is flat and unramified, hence étale, over U NV, hence is
smooth over F since U NV is smooth [EGA4, 17.3.3]. O

Instead of (4.1) and (4.2), consider now the commutative diagrams of functors

(4 10) Smdom

P

ﬁeld;’p Sl'ndom

—_—

Smdom

S, 'Smgom P

y w

field?” Sy ' Smom.

Spec y
—

-1
Sb Smdom

Here, field, C field is the full subcategory of separably generated extensions,
Smg,, P is the subcategory of VarP given by varieties in Sm and morphisms
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are pairs (A, f) where f is dominant (so that X\ is an inclusion of function
fields) and @1 ,dom, P2,dom are the two forgetful functors of (2.1), restricted to
Smyo, P. Similarly, Jgom is the analogue of J for Smgey,. We extend the
birational morphisms Sy, as in Definition 4.1.1.

4.8.2. THEOREM. In the top diagram of (4.10), ®2 dom s an isomorphism of
categories. In the bottom diagram, all functors are equivalences of categories.

Proof. The first claim follows from Corollary 2.2.3 ¢). In the right diagram, the
proofs for Jgom and @1 4om are exactly parallel to those of Theorems 4.2.3 and
4.2.4 with a much simpler proof for the latter. As 527d0m is an isomorphism of
categories, the 4th functor Spec is an equivalence of categories as well. O

In Theorem 4.8.2, we could replace Smgom by Vargem or Varh °P (proper

varieties) and field by field (same proofs).® Since ®3 qom is an isomorphism
of categories in both cases, we directly get a naturally commutative diagram
of categories and functors

S, 'Smyom —— field?”

(4.11) l l

Syt vark P = Sl Vargy, —— field” .
where the horizontal ones are equivalences.
To make the link with (4.9), note that the functor p of (4.8) sends a birational

morphism to an isomorphism. Hence p induces functors
(4.12) Syt Varh? — S, Vargom — Ratqom

dom

whose composition with the second equivalence of (4.11) is (4.9).

4.8.3. PROPOSITION. Let S =S,, Sy or S}.
a) S admits a calculus of right fractions within Vargom .
b) The functors in (4.12) are equivalences of categories.

Proof. a) For any pair (u, s) of morphisms as in Diagram (4.4), with s € S and
u dominant, the pull-back of s by u exists and is in S. Moreover, if sf = sg
with f and g dominant and s € S, then f = g.

b) This follows from (4.11) and (4.9). m|

Taking a quasi-inverse of (4.11), we now get an equivalence of categories
(4.13) Ugom : field?? = S, ' Smyom
which will be used in Section 6.

4.8.4. Remark. The functor (S¥)~! Varqom — field®® is not full (hence is not
an equivalence of categories). For example, let X be a proper variety and Y
an affine open subset of X, and let K be their common function field. Then
the identity map K — K is not in the image of the above functor. Indeed,

6We could also replace dominant morphisms by flat morphisms, as in [19].
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if it were, then by calculus of fractions it would be represented by a map of
the form fs=! where s : X’ — X is proper birational. But then X’ would be
proper and f : X’ — Y should be constant, a contradiction.

It can be shown that the localisation functor

(SP)~! Vargom — S, ! Vardom
has a (fully faithful) right adjoint given by

(S~ VarkP — (SP)~! Vargom

dom

via the equivalence (Sf)~! Varf'? =5 S;"! Varqon given by Proposition 4.8.3
b). The proof is similar to that of Theorem 5.3.1 (ii) below.

4.9. RECAPITULATION. We constructed a full and essentially surjective functor
(Theorem 4.2.4)

v, : ST_1 place}X — S;ISm
and an equivalence of categories (4.13)

Uhom = Jo.b o Spec : field?? =5 S, 1Sm gom.

dom

Consider the natural functor
(4.14) 0: S, 'SmP™P — S,"'Sm.

In characteristic zero, 6 is an equivalence of categories by [21, Prop. 8.5],
noting that in this case SmP"°? = SmP"P by Hironaka. Let ¢ be the inclusion
field;® — place,’. Then the natural transformation n : Spec = X of (3.1)
provides the following naturally commutative diagram

Yaom

(4.15) field?P > S, 'Smyom — S, 'Sm

l /
t ~
S; ! placel? —— S, 'SmP™P.

(Note that 7 induces a natural isomorphism 7 : Spec = ¥..)

We can replace PP by P in all this story.

In characteristic p, we don’t know if field, C place,: to get an analogue of
(4.15) we would have to take the intersection of these categories. We shall do
this in Section 6 in an enhanced way, using a new idea (Lemma 6.3.4 a)). As a
byproduct, we shall get the full faithfulness of 6 in any characteristic (Corollary
6.6.4)

5. OTHER CLASSES OF VARIETIES

In this section we prove that, given a full subcategory C of Var satisfying
certain hypotheses, the functor

Sb_1CP — place?
induced by the functor ®; of Diagram (4.1) is fully faithful.
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5.1. THE . CONSTRUCTION. We generalise Definition 4.2.1 as follows:

5.1.1. DEFINITION. Let C be a full subcategory of Var. We write C, for the
full subcategory of C with the following objects: X € C, if and only if, for
any Y € VarP™P birational to X, there exists X’ € C and a proper birational
morphism s: X’ — Y.

5.1.2. LEMMA. a) C, is closed under birational equivalence.

b) We have C. = C for the following categories: Var, Norm *and Sm,Sm
if char F = 0.

¢) We have C, N CP™P = (CP™P),  where CP*P := Var™ P NC.

Proof. a) is tautological. b) is trivial for Var, is true for Norm because normal-
isation is finite and birational in Var, and follows from Hironaka’s resolution
for Sm. Finally, c) is trivial. O

5.1.3. LEMMA. Suppose C verifies the following condition: given a diagram

X — 4 X

d

with X,X € C,, p € SP,jeS, and X proper, we have X' € C. (This holds in
the following special cases: C C Var® P or C stable under open immersions.)
a) Let X € C.. Then the following holds: for any s : Y — X with Y € Var
and s € Sy, there exists t : X' =Y with X' € C, and t € S}.

b) Let X, Y € C. withY proper, and let v : X --+ Y be a rational map. Then
there exists X' € Cy, s : X' — X in S} and a morphism f: X" =Y such that

v=fs""

Proof. a) By Nagata’s theorem, choose a compactification Y of Y. By hy-
pothesis, there exists X’ € C and a proper birational morphism ¢ : X’ — Y.
If X' = t’fl(Y), then ¢t : X’ — Y is a proper birational morphism. The
hypothesis on C then implies that X’ € C, hence X’ € C, by Lemma 5.1.2 a).

b) Apply a) to the graph of v, which is proper over X. a

5.2. CALCULUS OF FRACTIONS.

5.2.1. PROPOSITION. Under the condition of Lemma 5.1.3, Propositions 4.4.1
and 4.4.2 remain valid for C,P. In particular, any morphism in (Sf)_lc*P or
(SPY71C, is of the form fp~!, with f € C.P or C, and p € SY.

Proof. Indeed, the only fact that is used in the proofs of Propositions 4.4.1 and
4.4.2 is the conclusion of Lemma 5.1.3 a). O

To go further, we need:
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5.2.2. PROPOSITION. In (SP)"'C.P, S, admits a calculus of left fractions. In

particular (cf. Proposition 5.2.1), any morphism in Sljlc*P may be written as
J7 g, with j €S, and g € SY.

Proof. a) Consider a diagram in (S7)~'C.P

X Lo x

!

with j € S,. By Proposition 5.2.1, we may write ¢ = fp~! with p € S? and f a
morphism of C.P (f,p originate from some common X). We may embed Y as
an open subset of a proper Y. This gives us a rational map X’ --» Y. Using the
graph trick, we may “resolve” this rational map into a morphism g : X' =Y,
with X’ € Var provided with a proper birational morphism ¢ : X’ — X',
Since Y € C., we may assume X’ € C. Let 1) = gg=* € (S¥)"'C.P. Then the
diagram in (S?)"'C.P
T

A
commutes because the following bigger diagram commutes in C,.P:

’

X r X" r "/
N\ ]
AX -4 x p
Y - Y

thanks to Lemma 2.3.6, for suitable X" € C, and r,7’ € Sy
b) Counsider a diagram

x4 xly
g

in (S?)7'C.P, where j € S, and fj = gj. By Proposition 5.2.1, we may write
f=fptand g =gp ', where f,§ are morphisms in C,P and p: X — X
is in S}. Let U be a common open subset to X’ and X: then the equality
fj = gj implies that the restrictions of f and § to U coincide as morphisms of
(SY )~1C.P. Hence the places underlying f and g are equal, which implies that
f = § (Proposition 2.2.2), and thus f = g. |
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5.2.3. Remark. S, does not admit a calculus of right fractions, even in
(SP)~! VarP. Indeed, consider a diagram in (S7)~! VarP

Y’
E

f
X——Y

where j € S, and, for simplicity, f comes from VarP. Suppose that we can
complete this diagram into a commutative diagram in (S7)~* VarP

X/

with p € S? and g comes from VarP. By Proposition 2.2.2 the localisation
functor VarP — (S?)~! VarP is faithful, so the diagram (without ¢) must
already commute in VarP. If f(X)NY’ = {, this is impossible.

5.3. GENERALISING THEOREM 4.2.3.

5.3.1. THEOREM. Let C be a full subcategory of Var. In diagram (4.1),

a) J induces an equivalence of categories S;lC' — S;l(f'.

b) Suppose that C wverifies the condition of Lemma 5.1.3. Consider the string
of functors

(spy~terorp 55 (s9y~1e, P -y 571e,P - place™ .
where S and T are the obvious ones and @T’{ 1s induced by ®1. Then

(i) S is fully faithful and T is faithful.
(ii) For any X € (S)71C.P and Y € (SF)~1CE™°PP, the map

(5.1) T : Hom(X, S(Y)) — Hom(T(X),TS(Y))

18 an tsomorphism.
(iii) TS is an equivalence of categories.
(iv) @75 is fully faithful.

Proof. a) It is exactly the same proof as for the case of J in Theorem 4.2.3.
b) In 4 steps:

A) We run through the proof of Theorem 4.2.3 given in §4.7 for ®f in the case
C = SmP™P. In view of Proposition 5.2.1, the proof of faithfulness for ®T
goes through verbatim. The proof of fullness for 7S also goes through (note
that in loc. cit. , we need Y to be proper in order for A to be finite on it). It
follows that S is fully faithful and T is faithful.
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B) By A), (5.1) is injective. Let ¢ € Hom(7T(X),TS(Y)). By Proposition
522, o =7 'fp~! with j € S, and p € S. Since Y is proper, j is necessarily
an isomorphism, which shows the surjectivity of (5.1). This proves (ii).

C) It follows from A) and B) that T'S is fully faithful. Essential surjectivity
follows from Lemma 5.1.2 a) and ¢) plus Nagata’s theorem. This proves (iii).
D) We come to the proof of (iv). Since ®{T'S is faithful (see A)) and T'S is
an equivalence, CPT’{ is faithful. To show that it is full, let X,Y € C,P and
A: F(Y) ~ F(X) a place. Let Y — Y be a compactification of Y. By
Definition 5.1.1, we may choose Y’ —+ Y with s € Sf and Y’ € CY*°P. Then
A is finite over Y’/. By Lemma 2.3.4, there is a rational map f : X --» Y’
compatible with A\. Applying Lemma 5.1.3 b) to the rational maps X --» Y’
and Y --» Y’, we find a diagram in C,

f t/

X ——Y' <Y’

T

with t,s' € SP (and t' € Sp). Then ¢ = &'t/ 'ft=' : X — Y is such that
Pi(p) = A O

5.3.2. COROLLARY. The localisation functor T has a right adjoint, given ex-
plicitly by (TS)"1o S. O

Consider now the commutative diagram of functors:
(5.2)

(sy-iererp 5, (sl — T S7Ie,P —"1 place®™

l l ! H

(SPYy~! varP™r p LN (S)~! VarP -, S, ! VarP N place®® .
5.3.3. COROLLARY. All vertical functors in (5.2) are fully faithful.

Proof. For the first and third vertical functors, this is a byproduct of Theorem
5.3.1. The middle one is faithful by the faithfulness of 7' and ®} in Theorem
5.3.1. For fullness, let X,Y € (S7)"'C,P and ¢ : X — Y be a morphism in
(SP)~! VarP. By Proposition 5.2.1, we may write ¢ = fp~!, with p: X — X
proper birational. By Lemma 5.1.3 a), we may find p/ : X’ — X proper
birational with X’ € C,, and replace fp~' by fp/(pp’)~". O

5.3.4. Remarks. 1) Take C = Var in Theorem 5.3.1 and let X,Y €
(SP)~! VarP. Then the image of Hom(X,Y) in Hom(®{7T(Y), ®{T(X)) via
&7 is contained in the set of places which are finite on Y. If X and Y are
proper, then the image is all of Hom(®T(Y), ®;T(X)). On the other hand,
if X is proper and Y is affine, then for any map ¢ = fp~!' : X — Y, the

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 277-334



BIRATIONAL GEOMETRY AND LOCALISATION OF CATEGORIES 309

source X’ of p is proper hence f(X’) is a closed point of Y, so that the image
is contained in the set of places from F(Y') to F(X) whose centre on Y is a
closed point (and one sees easily that this inclusion is an equality). In general,
the description of this image seems to depend heavily on the geometric nature
of X and Y.

2) For “usual” subcategories C C Var, the functors ®F, ®;7T and ®;7TS of
Theorem 5.3.1 b) are essentially surjective (hence so are those in Corollary
5.3.3): this is true for C = Var or Norm (any function field has a normal
proper model), and for C = Sm in characteristic 0. For C = Sm in positive
characteristic, the essential image of these functors is the category placel’ of
Definition 4.2.1.

5.4. LOCALISING Cy. In Theorem 5.3.1, we generalised Theorem 4.2.3 which
was used to construct the functor ¥, of (4.3). A striking upshot is Corollary
5.3.3. What happens if we study S, 'C, instead of S, 'C.P?

This was done previously in [21, §8], by completely different methods. The two
main points were:

e In characteristic 0, we have the following equivalences of categories:
(5.3) S, tSmP™ &~ S SmPTP ~ S SmP ~ S, ' Sm

induced by the obvious inclusion functors [21, Prop. 8.5].

e Working with varieties that are not smooth or at least regular leads
to pathologies: for example, the functor S, 1Sm — Sy ! Var is neither
full nor faithful [21, Rk. 8.11]. This contrasts starkly with Corollary
5.3.3. The issue is closely related to the regularity condition appearing
in Lemma 2.3.2; it is dodged in [21, Prop. 8.6] by restricting to those
morphisms that send smooth locus into smooth locus.

Using the methods of [21], one can show that the functor
(5.4) (SP)y~tepror = s teprp — §1e,

is an equivalence of categories for any C C Var satisfying the condition of
Lemma 5.1.3. For this, one should use [21, Th. 5.14] under a form similar to
that given in [21, Prop. 5.10]. One can then deduce from Corollary 5.3.2 that
the localisation functor

(sP'c, 5 st
has a right adjoint given (up to the equivalence (5.4)) by (S7)~'CP™P N

(SP)~'C, (in particular, S is fully faithful): indeed, the unit and counit of the
adjunction in Corollary 5.3.2 map by the essentially surjective forgetful functors

(5.5) S, e P — S, 'C.,  ete.

to natural transformations which keep enjoying the identities of an adjunction.
Note however that (5.5) is not full unless C C Sm (see Lemma 1.1.2 and Lemma
2.2.2 for this case).

For C = Sm or Sm, the equivalence (5.4) extends a version of (5.3) to positive
characteristic. We won’t give a detailed proof however, because it would be
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tedious and we shall obtain a better result later (Corollary 6.6.4) by a different
method.

The proofs given in [21] do not use any calculus of fractions. In fact, S} does
not admit any calculus of fractions within Var, contrary to the case of VarP
(¢f. Proposition 4.4.1). This is shown by the same examples as in Remark
2.3.3. If we restrict to Sm,, we can use Proposition 4.4.1 and Lemma 2.3.2 to
prove a helpful part of calculus of fractions:

5.4.1. PROPOSITION. a) Let s : Y — X be in Sy, with X smooth. Then s is an
envelope [9]: for any extension K/F, the map Y (K) — X (K) is surjective.

b) The multiplicative set S} verifies the second aziom of calculus of right frac-
tions within Sm,.

¢) Any morphism in S,;ISm* may be represented as j'fp~
and p € S.

L where j € S,

Proof. a) Base-changing to K, it suffices to deal with K = F. Let x € X (F).
By lemma 2.3.2, there is a place X of F/(X) with centre z and residue field F.
The valuative criterion for properness implies that A has a centre y on Y; then
s(y) = = by Lemma 2.3.6 and F(y) C F(A\) = F.

b) We consider a diagram (4.4) in Sm,, with s € S}. By a), z = u(nx) has
a preimage 2’ € Y’ with same residue field. Let Z = {2} and Z’ = {2/}: the
map Z' — Z is birational. Since the map @ : X — Z factoring u is dominant,
we get by Theorem 4.8.3 b) a commutative diagram like (4.5), with s’ proper
birational. By Lemma 5.1.3 a), we may then replace X’ by an object of Sm,.
¢) As that of Proposition 5.2.2. O

5.4.2. Remark. On the other hand, S} is far from verifying the third axiom
of calculus of right fractions within Sm,. Indeed, let s : Y — X be a proper
birational morphism that contracts some closed subvariety ¢ : Z C Y to a
point. Then, given any two morphisms f,g : Y' = Z, we have sif = sig. But
if ift = igt for some t € S}, then if = ig (hence f = g) since ¢ is dominant.

6. HOMOTOPY OF PLACES AND R-EQUIVALENCE

In this section, we do several things. In Subsection 6.1 we prove elementary
results on divisorial valuations with separably generated residue fields. In Sub-
section 6.2 we introduce a subcategory dv of place, where morphisms are
generated by field inclusions and places given by discrete valuation rings. We
relate it in Subsection 6.3 with a construction of Asok-Morel [1] to define a
functor

¥:S 'dv — S, 'Sm
extending the functor Wgon, of (4.13). This functor is compatible with the
functor ¥, of Theorem 4.2.4. We then show in Proposition 6.4.3 that the

localisation place — S !place is also a quotient by a certain equivalence
relation h; although remarkable, this fact is elementary.
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Next, we reformulate a result of Asok-Morel to enlarge the equivalence rela-
tion h to another, h', so that the functor ¥ factors through an equivalence of
categories

dv/h' = S, 'Sm.
Finally, we use another result of Asok-Morel to compute some Hom sets in

Sy 'Sm as R-equivalence classes: in the first version of this paper, we had
proven this only in characteristic 0 by much more complicated arguments.

6.1. GOOD DVR’S.

6.1.1. DEFINITION. A discrete valuation ring (dvr) R containing F' is good if
its quotient field K and its residue field F are finitely and separably generated
over F, with trdeg(E/F) = trdeg(K/F) — 1.

6.1.2. LEMMA. A dur R containing F' is good if and only if there exist a smooth
F-variety X and a smooth divisor D C X such that R~ Ox p.

Proof. Sufficiency is clear by Lemma 4.8.1. Let us show necessity. The con-
dition on the transcendence degrees means that R is divisorial = a “prime
divisor” in the terminology of [40]. By loc. cit. , Ch. VI, Th. 31, there exists
then a model X of K/F such that R = Ox , for some point = of codimension
1. (In particular, granting the finite generation of K, that of E is automatic.)
Furthermore, the separable generation of E yields a short exact sequence

0= m/m* = Qp p @r E = Qp/p — 0

where m is the maximal ideal of R (see Exercise 8.1 (a) of [16, Ch. IIJ).
Therefore dimp Qp . @ g E = trdeg(K/F) = dimg Qf . ®r K, thus Qp . is
free of rank trdeg(K/F) and x is a smooth point of X. Shrinking X around
r, we may assume that it is smooth; if D = m7 it is generically smooth by
Lemma 4.8.1, hence we may assume D is smooth up to shrinking X further. O

6.1.3. LEMMA. Let R be a good dvr containing F, with quotient field K and
residue field E, and let Ko/ F be a subextension of K/F. Then RN K is either
Ky or a good dvr.

Proof. By Mac Lane’s criterion, K is separably generated, and the same ap-
plies to the residue field £y C E of RN Ky if the latter is a dvr. O
6.2. THE CATEGORY dv.

6.2.1. DEFINITION. Let K/F and L/F be two separably generated extensions.
We denote by dv(K, L) the set of morphisms in place(X, L) of the form

(6.1) K~ Ky~ ... K,—1L
where for each i, the place K; ~ K;1 corresponds to a good dvr with quotient

field K; and residue field K;11. (Compare [40, Ch. VI, §3].)
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6.2.2. LEMMA. Indv(K, L), the decomposition of a morphism in the form (6.1)
is unique. The collection of the dv (K, L)’s defines a subcategory dv C place,
with objects the separably generated function fields.

Proof. Uniqueness follows from [40, p. 10]. To show that Ar(dv) is closed
under composition, we immediately reduce to the case of a composition

(6.2) K<L,

where (L, L) correspond to a good dvr R. Then the claim follows from apply-
ing Lemma 6.1.3 to the commutative diagram in place

L — I,

(6.3) T T

K -2 K

where K is the residue field of R N K if this is a dvr, and K; = K otherwise
(and then )\ is a trivial place). O

We shall need the following variant of a theorem of Knaf and Kuhlmann [23,
Th. 1.1] (compare loc. cit. , pp. 834/835):

6.2.3. THEOREM. Let X : K ~» L be a morphism in dv. Then X\ is finite over a
smooth model of K. Moreover, let K' C K be a subextension of K, and let Z be
a model of K' on which N\ g+ has a centre z. Then there is a smooth model X
of K on which X\ has a centre of codimension n, the rank of A, and a morphism
X — Z inducing the extension K/K'.

Proof. This actually follows from [23, Th. 1.1]7: let U be an open affine neigh-
bourhood of z and let E := {y1,...,y,} be a set of generators of the F-algebra
Oz(U) (ring of sections). Then by [23, Th. 1.1], there exists a model Xy of
K/F such that:

e )\ is centred at a smooth point z of Xy,

e dimOx, , =n=dimO,,

e [ is contained in the maximal ideal of Ox, ..
Hence Oz(U) € Ox,(X) for some open affine neighbourhood X of z, which
yields a morphism X — U that maps x to z. O

6.3. RELATIONSHIP WITH THE WORK OF ASOK AND MOREL. In [1, §6], Asok
and Morel prove closely related results: let us translate them in the present
setting.

Let us write C¥ for the category of presheaves of sets on a category C. In [1],
the authors denote the category (S 1Sm)Y by Shv}Al. Similarly, they write
Fl. — Set for the category consisting of objects of (field;")Y provided with

"We thank Hagen Knaf for his help in this proof.
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“specialisation maps” for good dvrs. In [1, Th. 6.1.7], they construct a full
embedding

(6.4) ShulA' = Fr, — Set

(evaluate presheaves on function fields), and show that its essential image con-
sists of those functors S € Fj. — Set satisfying a list of axioms (Al) — (A4)
(ibid., Defn. 6.1.6).

The proof of Lemma 6.2.2 above shows that Conditions (Al) and (A2) mean

that S defines a functor dv°® — Set, and Condition (A4) means that S factors
through S dv°P. In other words, they essentially® construct a functor

(S71Sm)Y — (St dvP)Y.
We now check that this functor is induced by a functor
(6.5) S tdv® — S, 'Sm.
For this, we need a lemma:

6.3.1. LEMMA. Let Sm®® be the category of irreducible separated smooth F-
schemes essentially of finite type. Then the full embedding Sm — Sm®® in-
duces an equivalence of categories

S, 'Sm 5 S, 'Sm®.
Proof. We use again the techniques of [21], to which we refer the reader: actu-
ally the first part of the proof of [21, Prop. 8.4] works with a minimal change.
Namely, with notation as in loc. cit. , there are 3 conditions (bl) — (b3) to
check:

(bl) Given f,g: X = Y in Sm and s : Z — X in Sm® with s € Sp,
fs=gs = f = g: this follows from Lemma 1.4.1 (birational morphisms
are dominant).

(b2) follows from the fact that any essentially smooth scheme may be em-
bedded in a smooth scheme of finite type by an “essentially open im-
mersion”.

(b3) We are giveni: X — X and j : X — Y where X € Sm®**, X, Y € Sm
and i € Sp; we must factor i and j through X —» U with U in Sm
and s, U = X in S,. We take for U the smooth locus of the closure of
the diagonal image of X in X x Y.

O

To define ¥, it is now sufficient to construct it as a functor ¥ : St dv°® —
S, 1Sm®s. We first construct ¥ on dv°® by extending the functor W4on, of
(4.13) from fieldJ® to dv°P. For this, we repeat the construction given on [1,
p. 2041]: if K € dv and O is a good dvr with quotient field K and residue
field E, then the morphism Spec K — Spec O is an isomorphism in Sl:lSmess,
hence the quotient map O — FE induces a morphism Spec £ — Spec K.

8Essentially because Condition (A1) of [1, §6] only requires a commutation of diagrams
coming from (6.3) when the ramification index is 1.
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By Lemma 6.2.2, any morphism in dv has a unique expression in the form
(6.1), which extends the definition of ¥ to all morphisms. To show that ¥
is a functor, it now suffices to check that it converts any diagram (6.3) into
a commutative diagram, which is obvious by going through its construction.
Finally, ¥ factors through S, ! dv°? thanks to Theorem 1.7.2. It is now clear
that the dual of ¥ gives back the Asok-Morel functor (6.4).

As in §4.5, we associate to a rational map f between smooth varieties a mor-
phism in S, 1Sm, still denoted by f. We need the following analogue of Lemma
4.6.1:

6.3.2. PROPOSITION. Let A : K ~~ L be a morphism in dv. Then, for any
smooth model X of K on which X is finite, we have W(\) = st~ f, where f :
U(L) --» X is the corresponding rational map and s : U — ¥(K), t: U — X
are open immersions of a common open subset U.

Proof. We proceed by induction on the length n of a chain (6.1): If n = 0 the
claim is trivial and if n = 1 it is true by construction. If n > 1, break A as

K3 K, 2K, L

where \; has rank n — 1 and Ay has rank 1. We now apply Lemma 1.3.2: since
A is finite on X, so is A1, and if we write Z for the closure of ¢x (A1), then
z = ¢cx(A) = cz(A2). If n = 0 the claim is trivial and if n = 1 it is true by
construction. If n > 1, Theorem 6.2.3 provides us with 7 : X,,_1 — Z, X,,_1
smooth with function field K, _1 on which Ay has a centre of codimension 1.
Then we have a diagram

WE)  U(Kal) WK
tl tn—1 tnl
X \)(”1 Xn
Z

where i is the closed immersion Z < X, s, s,_1, Sn, t, t,_1 are open immersions
and g is the closed immersion of a smooth divisor obtained by applying Lemma
6.1.2 after possibliy shrinking X,,_1. Thus (gt,, s,) represents the rational map
given by the centre of Ao on X,,_;. The rational map corresponding to A is
represented by (fn—1,8,—1) with

fnfl = imtp—1
and the one corresponding to Ag A1 is represented by (f,, s,) with

fn=1imgty
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because this is compatible with As A1 by Proposition 2.2.4 (also use the unique-
ness in Lemma 2.3.4).
By induction and definition, we have

T(\) = st qs ! T(Ag) = sn,ltgilgtnsgl

n—1»
so we have to show that
Stflfn—137_Li18n—1t;ilgtn851 = stilfns,fl
or
fn—lt;ilgtn = fn =imgtn
which is true because f,_1 = imt,—1. This concludes the proof. O

6.3.3. Remark. In this proof, there is no codimension condition on cx (). So
Theorem 6.2.3 is used twice in a weak form: once, implicitly, to ensure the
existence of X. Then a second time, to deal with Z. But here Ay is a discrete
valuation of rank 1, so this special case can perhaps already be obtained by
examining the proof of [40, Th. 31] (which may have been a source of inspiration
for [23].)

6.3.4. LEMMA. a) Let dv, be the full subcategory of dv whose objects are in
place,. Then the diagram of functors

v
-1 op * —1 prop
S, " place}” —— S, "Sm}

|

—1 JyOP
SHdvy

|

S-tdveP

Sb_lsm

is naturally commutative.

b) Let K,L € dv and A\, € dv(K,L) with the same residue field K' C L.
Suppose that A\ and p have a common centre on some smooth model of K.
Then W(A) = U(u).

Proof. a) Same argument as in §4.9, using the natural transformation Spec = ¥
of (3.1). b) follows from Proposition 6.3.2 (compare proof of Theorem 4.2.4 b)
in §4.6). O

6.4. HOMOTOPY OF PLACES.

6.4.1. DEFINITION. Let K,L € place. Two places A\g,\; : K ~» L are
elementarily homotopic if there exists a place p : K ~» L(t) such that
s;ou = N,i = 0,1, where s; : L(t) ~ L denotes the place corresponding
to specialisation at i.
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The property of two places being elementarily homotopic is preserved under
composition on the right. Indeed if A\g and A; are elementarily homotopic and
if 4 : M ~~ K is another place, then obviously so are Ag o and A o . If on
the other hand 7 : L ~» M is another place, then 7 o A\g and 7 o Ay are not in
general elementarily homotopic (we are indebted to Gabber for pointing this
out), as one can see for example from the uniqueness of factorisation of places
[40, p. 10].

Consider the equivalence relation h generated by elementary homotopy (cf.
Definition 1.2.1). So h is the coarsest equivalence relation on morphisms in
place which is compatible with left and right composition and such that two
elementarily homotopic places are equivalent with respect to h.

6.4.2. DEFINITION (c¢f. Def. 1.2.1). We denote by place /h the factor category
of place by the homotopy relation h.

Thus the objects of place /h are function fields, while the set of morphisms
consists of equivalence classes of homotopic places between the function fields.
There is an obvious full surjective functor

IT : place — place /h.

The following proposition provides a more elementary description of S;~! place
and of the localisation functor.

6.4.3. PROPOSITION. There is a unique isomorphism of categories
place /h — S, ! place
which makes the diagram of categories and functors
place
P

place /h = S ! place

commutative. In particular, the localisation functor S; ' is full and its fibres
are the equivalence classes for h. These results remain true when restricted to
the subcategory dv.

Proof. © We first note that any two homotopic places become equal in
S 1place. Clearly it suffices to prove this when they are elementarily homo-
topic. But then sg and s; are left inverses of the natural inclusion ¢ : L — L(t),
which becomes an isomorphism in S; ! place. Thus so and s; become equal in
S 1place. So the localisation functor place — S;~! place canonically factors
through II into a functor place /h — S ! place.

On the other hand we claim that, with the above notation, i o0sg : L(t) ~ L(t)
is homotopic to 17(+) in place. Indeed they are elementarily homotopic via the
trivial place L(t) ~ L(t,s) that is the identity on L and maps ¢ to st. Hence

9See also [15, Remark 1.3.4] for a closely related statement.
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the projection functor II factors as S~ ! place — place /h, and it is plain that
this functor is inverse to the previous one.

The claim concerning dv is clear since the above proof only used good dvr’s.
O

6.5. ANOTHER EQUIVALENCE OF CATEGORIES. In this subsection, we study
the “fibres” of the functor ¥ of (6.5) in the light of the last condition of [1, §6],
(A3). Using Proposition 6.4.3, we may view ¥ as a functor

¥ :(dv /h)°? — S, 'Sm.

Condition (A3) of [1, §6] for a functor S € Fj — Set requires that for any
X € Sm with function field K, for any z € X (with separably generated
residue field) and for any y1,y2 € X () both specialising to z, the compositions

S(K) = S(F(y:)) = S(z), i=1,2

are equal. We can interpret this condition in the present context by introducing
the equivalence relation haj; in dv generated by h and the following relation

Given K, L € dv and two places A1, s : K ~» L of the form

K"Kk 2L
K 2 K, 2L

where py,v1, o, vy stem from good dvr’s, Ay = Ao if A\ and
A2 have a common centre with residue field L on some smooth
model of K.

By Yoneda’s lemma, [1, Th. 6.1.7] then yields an equivalence of categories
(6.7) (dv /han)® = S, 'Sm.

Here we implicitly used Lemma 6.3.4 b) and Theorem 6.2.3 to see that the
functor (dv /h)°® — S, 'Sm factors through haas, as well as the following
lemma:

6.5.1. LEMMA. Let ¢p : C — D be a functor such that the induced functor
P* : DY — CY is an equivalence of categories. Then 1 is fully faithful, hence
an equivalence of categories if it is essentially surjective.

(Note that the essential surjectivity of (6.7) is obvious.)

Proof. By [SGA4, 1.5.3], ¢* has a left adjoint ¢, which commutes naturally with
1 via the Yoneda embeddings yc,yp. Since ¥* is an equivalence of categories,
so is ¢y; the conclusion then follows from the full faithfulness of y¢ and yp. O

We now slightly refine the equivalence (6.7):
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6.5.2. THEOREM. a) The functor ¥ induces an equivalence of categories:
¥ :(dv/h')°? = S, 'Sm

where h' is the equivalence relation generated by h and the relation (6.6) re-
stricted to the tuples (u1,v1, po,v2) such that vo is of the form sg : L(t) ~ L
(specialisation at 0). In particular, U is full.

b) Any morphism of dv /W' may be written in the form .= f for f a morphism
of the form (6.2) and ¢ a rational extension of function fields.

Proof. a) Let us show that h' =hau. Starting from K, A\; and Ay as above, we
get a smooth model X of K and z,y1,y2 € X with z of codimension 2, such that
1; is specialisation to y; and v; is specialisation from y; to z. Shrinking, we may
assume that the closures Z, Y7, Y5 of 2,41, y2 are smooth. Let X’ = Blz(X) be
the blow-up of X at Z and let Y/, Y] be the proper transforms of ¥; and Y
in X’. The exceptional divisor P is a projective line over Z and Z; = PNY/
maps isomorphically to Z for ¢ = 1,2. We then get new places

;,L/ ]//
MK M !

L

(6.8) ,
Ny K 2 M
where M = F(P), L = F(Z) and X, = \,.
In dv /h ~ S dv, the morphisms v/ and v} are inverse to the rational exten-
sion L < L(t) ~ M, hence are equal, which concludes the proof that h' = h ;.
The fullness of ¥ now follows from the obvious fullness of dv — dv /h’.

The argument in the proof of a) shows in particular that any composition vo
of two good dvr’s is equal in dv /h’ to such a composition in which v is inverse
to a purely transcendental extension of function fields: b) follows from this by
induction on the number of dvr’s appearing in a decomposition (6.1). O

’
Yy

L

6.5.3. Remarks. 1) Via W, Theorem 6.5.2 yields a structural result for mor-
phisms in Sb_lsm7 closely related to Proposition 5.4.1 ¢) but weaker. See
however Theorem 6.6.3 below.

2) We don’t know any example of an object in Fj. — Set which verifies (A1),
(A2) and (A4) but not (A3): it would be interesting to exhibit one.

6.6. R-EQUIVALENCE. Recall the following definition of Manin:

6.6.1. DEFINITION. a) Two rational points xg, 21 of a (separated) F-scheme X
of finite type are directly R-equivalent if there is a rational map f : P! --» X
defined at 0 and 1 and such that f(0) = zo, f(1) = ;.

b) R-equivalence on X (F) is the equivalence relation generated by direct R-
equivalence.

Recall that, for any XY, we have an isomorphism
(6.9) (X xY)(F)/R -~ X(F)/RxY(F)/R.
The proof is easy.
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If X is proper, any rational map as in Definition 6.6.1 a) extends to a morphism;
the notion of R-equivalence is therefore the same as Asok-Morel’s notion of Al-
equivalence in [1]. Another of their results is then, in the above language:

6.6.2. THEOREM ([1, Th. 6.2.1]). Let X be a proper F-scheme. Then the rule
Y — X(F(Y))/R
defines a presheaf of sets Y(X) € (S, *Sm)V.

Note that X — T(X) is obviously functorial.

The main point is that R-equivalence classes on X specialise well with respect
to good discrete valuations. Such a result was originally indicated by Kollar [25,
p. 1] for smooth proper schemes over a discrete valuation ring R, and proven
by Madore [29, Prop. 3.1] for projective schemes over R. Asok and Morel’s
proof uses Lipman’s resolution of 2-dimensional schemes as well as a strong
factorisation result of Lichtenbaum; as hinted by Colliot-Thélene, it actually
suffices to use the more elementary results of Safarevié [35, Lect. 4, Theorem
p. 33].

Let X be proper and smooth. Its generic point nx € X(F (X)) defines by
Yoneda’s lemma a morphism of presheaves

(6.10) n(X):y(X) = T(X)

where y(X) € (S, 'Sm)V is the presheaf of sets represented by X; 7 : X +
7(X) is clearly a morphism of functors.

6.6.3. THEOREM. n is an isomorphism of functors. FEzxplicitly: for Y € Sm,
n(X) induces an isomorphism

(6.11) S, 'Sm(Y, X) = X(F(Y))/R.

Proof. Since K — X (K) is a functor on dv°® (compare [1, Lemma 6.2.3]), we
have a commutative diagram for any ¥ € Sm:

(6.12) dvP(F(Y), F(X)) S X(F(Y))

\yl / lﬂ
Sy 'Sm(Y, X) ——= X (F(Y))/R.

Here 77 is obtained from nx by Yoneda’s lemma in the same way as (6.10),
U is (obtained from) the functor of (6.5), 7 is the natural projection and
€ associates to a rational map its class in Sl:lSm(Y, X) (see comment just
before Proposition 6.3.2). Here the commutativity of the top triangle follows
from Proposition 6.3.2. The surjectivity of m shows the surjectivity of . Note
further that ¥ is surjective by Theorem 6.5.2 a). This shows that € is also
surjective.

To conclude, it suffices to show that ¢ factors through =, thus yielding an
inverse to n. If xg, 21 € X(F(Y)) are directly R-equivalent, up to shrinking Y’
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we have a representing commutative diagram

v x

Py

with so, s1 the inclusions of 0 and 1. But if we view X (F(Y)) and S, 'Sm(Y, X)
as functors of F(Y) € dv°® (the second one via ¥), then ¢ is checked to be
a natural transformation: indeed, this is easy in the case of an inclusion of
function fields and follows from the properness of X in the case of a good
dvr. Hence we get (z9) = &(21) since S, 'Sm(Y, X) — S, 'Sm(P}, X) by
Theorem 1.7.2. O

6.6.4. COROLLARY. The functor 6 : S, 'SmP? — S,'Sm of (4.14) is fully
faithful.

Proof. For X,Y € Sm{™P, we have a commutative diagram similar to (6.12)
replacing dv by place, and Sm by SmY™P. The map 7, corresponding to 7
is obtained from (6.12) by composition, while the map 7, corresponding to 7
exists because K + X (K) is a functor on place®” by the valuative criterion
of properness. Further, the map corresponding to ¢ is well-defined thanks to
Proposition 4.4.2 b) and the top triangle commutes thanks to Lemma 4.6.1.
The natural map from this diagram to (6.12) yields a commutative diagram
thanks to Lemma 6.3.4. Moreover, the map corresponding to ¥ is surjective
thanks to Theorem 4.2.4 a). The same reasoning as above then shows that 7.
is bijective: we just have to replace “up to shrinking Y” by “up to replacing Y’
by a birationally equivalent smooth projective variety”, using the graph trick
and the definition of SmY™P. The graph trick can also be used to reduce the
verification that ¢ is natural to the case where the rational maps involved are
in fact morphisms. Hence the conclusion. |

6.6.5. Remark. One could replace Sm{™ by SmP™ in Corollary 6.6.4, thus
getting a full embedding S, 'SmP™ < S, 'SmP"P.

The following corollary generalises [5, Prop. 10] to any characteristic:

6.6.6. COROLLARY. Let s:Y --» X be a rational map, with X,Y € SmP™P,
Then s induces an map s, : Y(K)/R — X(K)/R for any K € dv. Moreover,
S« 1s a bijection for any K € dv if and only if the morphism § associated to s
m S;ISm (see comment just before Proposition 6.3.2) is an isomorphism.

In particular, s, : Y(K)/R — X(K)/R for any K € dv when s is dominant
and the field extension F(Y)/F(X) is rational.

Proof. The morphism 5 induces a morphism Sljl(U,Y) — S;I(U,X) for any
U € Sm, hence the first claim follows from Theorem 6.6.3. “If” is obvious, and

“only if” follows from Yoneda’s lemma. Finally, Theorem 1.7.2 implies that 5
is an isomorphism under the last hypothesis on s, hence the conclusion. O
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See Theorem 7.3.1 for a further generalisation.

6.7. CORONIDIS LOCO. Let us go back to the diagram in Lemma 6.3.4 a). Let
h’, be the equivalence relation on dv, defined exactly as h’ on dv (using objects
of dv., instead of objects of dv). On the other hand, let h” be the equivalence
relation on place, generated by h and

For \p: K ~ L, A\~ p if X and p have a common centre on
some model X € SmY™P of K.

Clearly, the restriction of h” to dv, is coarser than h’; hence, using Theo-
rem 4.2.4 b) and Proposition 6.4.3, we get an induced naturally commutative
diagram:

*

(place, /h')°P LN S, 'SmProp

d

(dv. /1)eP 0

|

(dv /b)) —Y > §-1Sm.

In this diagram, W, is full and essentially surjective by Theorem 4.2.4 a), ¥
is an equivalence of categories by Theorem 6.5.2 a) and 6 is fully faithful by
Corollary 6.6.4. Moreover, a is full by Lemma 2.3.4 and the proof of Lemma
2.3.2, and essentially surjective by defnition. All this implies:

6.7.1. *THEOREM. If chark =0, all functors in the above diagram are equiva-
lences of categories.

Proof. If chark = 0, dv, = dv hence b is the identity functor. In view of the
above remarks, the diagram then shows that a is faithful, hence an equivalence
of categories. It follows that W, is also an equivalence of categories. Finally @
is essentially surjective, which completes the proof. O

As an application, we get a generalisation of the specialisation theorem to
arbitrary places (already obtained in [20, Cor. 7.1.2]):

6.7.2. *COROLLARY. Suppose char F = 0. Let X € Var®™? K L € place,
and X\ : K ~ L be a place. Then X induces a map

At X(K)/R — X(L)/R.
If p: L ~ M is another place, with M € place,, then (uX)« = pxAs.

Proof. By Theorem 6.6.2, K +— X(K)/R defines a presheaf on (dv /h')°P,
which extends to a presheaf on (place, /h”)°? by Theorem 6.7.1. ]
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7. LINEAR CONNECTEDNESS OF EXCEPTIONAL LOCI

7.1. LINEAR CONNECTEDNESS. We have the following definition of Chow [3]:

7.1.1. DEFINITION. A (separated) F-scheme X of finite type is linearly con-
nected if any two points of X (over a universal domain) may be joined by a
chain of rational curves.

Linear connectedness is closely related to the notion of rational chain-
connectedness of Kollar et al., for which we refer to [7, p. 99, Def. 4.21].
In fact:

7.1.2. PROPOSITION. The following conditions are equivalent:

(i) X is linearly connected.
(ii) For any algebraically closed extension K/F, X(K)/R is reduced to a
point.
If X is a proper F-variety, these conditions are equivalent to:
(iii) X is rationally chain-connected.

Proof. (ii) = (i) is obvious by definition (take for K a universal domain). For
the converse, let xg, z1 € X (K). Then xg and x; are defined over some finitely
generated subextension E/F. By assumption, there exists a universal domain
1 D E such that zp and z; are R-equivalent in X (£2). Then the algebraic
closure E of E embeds into 2 and K. If 2y and z; are R-equivalent in X (E),
so are they in X (K); this reduces us to the case where K C .

Let y1,.0yYn : P%z --+ Xgq be a chain of rational curves linking xy and z; over
Q. Pick a finitely generated extension L of K over which all the v; are defined.
We may write L = K(U) for some K-variety U. Then the ~; define rational
maps 7; : UxP! --» X. Since each v; is defined at 0 and 1 with ;(1) = ;11(0),
we may if needed shrink U so that the domains of definition of all the 4; contain
U x {0} and U x {1}. Moreover, these restrictions coincide in the same style as
above, since they do at the generic point of U. Pick a rational point u € U(K):
then the fibres of the 7; at u are rational curves defined over K that link z( to
xI.

A rationally chain connected F-scheme is a proper variety by definition; then
(i) < (iii) if F is uncountable by [7, p. 100, Remark 4.22 (2)]. On the
other hand, the property of linear connectedness is clearly invariant under alge-
braically closed extensions, and the same holds for rational chain-connectedness
by [7, p. 100, Remark 4.22 (3)]. Thus (i) <= (iii) holds in general. O

We shall discuss the well-known relationship with rationally connected varieties
in §8.5.
Proposition 7.1.2 suggests the following definition:

7.1.3. DEFINITION. A separated F-scheme X of finite type is strongly linearly
connected if X(K)/R = * for any separable extension K/F.
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7.2. THEOREMS OF MURRE, CHOW, VAN DER WAERDEN AND GABBER. We
start with the following not so well-known but nevertheless basic theorem of
Murre [33], which was later rediscovered by Chow and van der Waerden |3, 38].

7.2.1. THEOREM (Murre, Chow, van der Waerden). Let f : X — Y be a
projective birational morphism of F-varieties and y € Y be a smooth rational
point. Then the fibre f~1(y) is linearly connected. In particular, by Proposition

7.1.2, f~Yy)(K)/R is reduced to a point for any algebraically closed extension
K/F.

For the sake of completeness, we give the general statement of Chow, which
does not require a base field:

7.2.2. THEOREM (Chow). Let A be a regular local ring and f : X — Spec A be
a projective birational morphism. Let s be the closed point of Spec A and F its
residue field. Then the special fibre f=1(s) is linearly connected (over F).

Gabber has recently refined these theorems:

7.2.3. THEOREM (Gabber). Let A, X, f, s, F be as in Theorem 7.2.2, but assume
only that f is proper. Let Xieg be the regular locus of X and f~1(s)™& =
F7H(s) N Xyeg, which is known to be open in f~'(s). Then, for any extension
K/F, any two points of f~1(s)**8(K) become R-equivalent in f~1(s)(K).

In particular, if X is regular, then f~1(s) is strongly linearly connected.

See Appendix B for a proof of Theorem 7.2.3.

7.2.4. THEOREM (Gabber [11]). If F is a field, X is a regular irreducible F-
scheme of finite type and K/F a field extension, then the map

lim X'(K)/R — X (K)/R

has a section, which is contravariant in X and covariant in K. The limit is
over the proper birational X' — X.

7.3. APPLICATIONS. The following theorem extends part of Corollary 6.6.6 to
a relative setting:

7.3.1. THEOREM. a) Let s : Y — X be in S, with X,Y regular. Then the
induced map Y(K)/R — X (K)/R is bijective for any field extension K/F. If
K is algebraically closed, the hypothesis “Y regular” is not necessary.

b) Let f :Y --» Z be a rational map with Y reqular and Z proper. Then there
is an induced map f. : Y(K)/R — Z(K)/R, which depends functorially on
K/F.

Proof. a) As in the proof of Proposition 5.4.1 a), it suffices to deal with K = F'.
By this proposition, we have to show injectivity.

We assume that s € S}. Let yo,y1 € Y(F). Suppose that s(yo) and s(y1)
are R-equivalent. We want to show that yo and y; are then R-equivalent. By
definition, s(yo) and s(y1) are connected by a chain of direct R-equivalences.
Applying Proposition 5.4.1 a), the intermediate rational points lift to Y (F).
This reduces us to the case where s(yo) and s(y1) are directly R-equivalent.
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Let v : P! -—s X be a rational map defined at 0 and 1 such that (i) = s(y;).
Applying Proposition 5.4.1 a) with K = F(t), we get that ~ lifts to a rational
map 7 : P! -——» Y. Since s is proper, 7 is still defined at 0 and 1. Let
yl = 7(i) € Y(F): then y;,y. € s7(s(y;)). If F is algebraically closed, they
are R-equivalent by Theorem 7.2.1, thus yy and y; are R-equivalent. If F' is
arbitrary but Y is regular, then we appeal to Theorem 7.2.3.

b) By the usual graph trick, as Z is proper, we can resolve f to get a morphism

Y/?\Z

such that p is a proper birational morphism. By Theorem 7.2.4, the map
ps 1 Y(K)/R — Y(K)/R has a section which is “natural” in p (i.e. when we
take a finer p, the two sections are compatible). The statement follows. O

7.3.2. Remark. Concerning Theorem 7.2.3, Fakhruddin pointed out that f~1(s)
is in general not strongly linearly connected, while Gabber pointed out that
f71(s)™8(F) may be empty even if X is normal, when F is not algebraically
closed. Here is Gabber’s example: in dimension 2, blow-up the maximal ideal
of A and then a non-rational point of the special fiber, then contract the proper
transform of the special fiber. Gabber also gave examples covering Fakhrud-
din’s remark: suppose dim A = 2 and start from Xy = the blow-up of Spec A
at s. Using [8], one can “pinch” Xy so as to convert a non-rational closed
point of the special fibre into a rational point. The special fibre of the resulting
X — Spec A is then a singular quotient of PL, with two R-equivalence classes.
He also gave a normal example [11].

8. EXAMPLES, APPLICATIONS AND OPEN QUESTIONS

In this section, we put together some concrete applications of the above results
and list some open questions.

8.1. COMPOSITION OF R-EQUIVALENCE CLASSES. As a by-product of Theo-
rem 6.6.3, one gets for three smooth proper varieties X,Y,Z over a field of
characteristic 0 a composition law

(8.1) Y(F(X))/Rx Z(F(Y))/R— Z(F(X))/R
which is by no means obvious. As a corollary, we have:

8.1.1. COROLLARY. Let X be a smooth proper variety with function field K.
Then X(K)/R has a structure of a monoid with nx as the identity element.O
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8.2. R-EQUIVALENCE AND BIRATIONAL FUNCTORS. Here is a more concrete
reformulation of part of Theorem 6.6.3 and Corollary 6.6.4:

8.2.1. COROLLARY. Let
P:Sm— A

be a functor to some category A. Suppose that P is a birational functor. Then
if X,Y are two smooth varieties with X proper, any class x € X(F(Y))/R
induces a morphism x, : P(Y) — P(X). This assignment is compatible with
the composition of R-equivalence classes from (8.1).

In particular, for two morphisms f,g:Y — X, P(f) = P(g) as soon as f(ny)
and g(ny) are R-equivalent.

The same statement holds for a birational functor P : SmP™ — A, with
X,Y € SmP™Pr.

Theorem 6.6.3 further says that R-equivalence is “universal” among birational
functors.

8.3. ALGEBRAIC GROUPS AND R-EQUIVALENCE. As a special case of Corollary
8.1.1, we consider a connected algebraic group G defined over F'. Recall that
for any extension K/F, the set G(K)/R is in fact a group. Let G denote a
smooth compactification of G over F' (we assume that there is one). It is known
(P. Gille, [13]) that the natural map G(F)/R — G(F)/R is an isomorphism if
F has characteristic zero and G is reductive.

Let K denote the function field F(G). By the above corollary, there is a com-
position law o on G(K)/R. On the other hand, the multiplication morphism

m:GxG— G
considered as a rational map on G x G induces a product map (Theorem 7.3.1)
G(K)/R x G(K)/R — G(K)/R

which we denote by (g, h) — g-h; this is clearly compatible with the correspond-
ing product map on G(K')/R obtained using the multiplication homomorphism
on G. Thus we have two composition laws on G(K)/R.

The following lemma is a formal consequence of Yoneda’s lemma:

8.3.1. LEMMA. Let g1,92,h € G(K)/R. Then we have (g1 - g2) oh = (g1 o h) -
(g20h). O

In particular, let us take G = SL; 4, where A is a central simple algebra over
F. Tt is then known that G(K)/R ~ SK;(Ak) for any function field K. If
char F' = 0, we may use Gille’s theorem and find that, for K = F(G), SK1(Ak)
admits a second composition law with unit element the generic element, which
is distributive on the right with respect to the multiplication law. However, it
is not distributive on the left in general:

Note that the natural map Hom(Spec F,G) = G(F)/R — G(K)/R =
Hom(G, G) is split injective, a retraction being induced by the unit section
Spec F' — G — G. Now let g € G(F); for any ¢ € G(K) = Rat(G,G), we
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clearly have [g] o [p] = [g]. In particular, [g] o ([¢] - [¢']) # ([g] o [¢]) - ([g] o [¢'])
unless [g] = 1. (This argument works for any group object in a category with
finite products.)

8.4. KAN EXTENSIONS AND II;. Let as before Sm, denote the full subcategory
of Sm given by those smooth varieties which admit a cofinal system of smooth
proper compactifications: then the functor 6 of Corollary 6.6.4 induces an
equivalence of categories S, 'SmP™® % S -'Sm,. Suppose we are given a
functor F' : Sm, — C whose restriction to SmP*? is birational. We then get
an induced functor F : Sy 1Sm, — C plus a natural transformation

px : F(X) — F(X)

for any X € Sm,.
To construct F', we set - ~
F(X) = lim F(X)
X

where the limit is on the category of open immersions j : X — X with X €
Sm}™P: this is an inverse limit of isomorphisms, hence makes sense without
any hypothesis on C and may be computed by taking any representative X. To

construct px, an open immersion j : X < X as above yields a map F(X) £G)
F(X) ~ F(X), and one checks that this does not depend on the choice of j.
This is an instance of a left Kan extension [28, Ch. X, §3], compare [21, §3]
and [18, lemme 6.5].

We may apply this to F' = II;, the fundamental groupoid'’ (here C is the
category of groupoids): the required property is [SGA1, Exp. X, Cor. 3.4]. As
an extra feature, we get that the universal transformation p is an epimorphism,
because I1; (U) —» II; (X) if U — X is an open immersion of smooth schemes.
Thus, IT; (X) has a “universal birational quotient” which is natural in X.

As another application, we get that for X € SmP™P, the “section map” (subject
to a famous conjecture of Grothendieck when X is a curve)

(8.2) X (F) — Homypy, (spec 7y (I1 (Spec F'), IT; (X))

factors through R-equivalence. On the other hand, if X is projective and Y
is a smooth hyperplane section, then IT;(Y) — TI;(X) as long as dim X > 2
by [SGA2, Exp. XII, Cor. 3.5]; so there are more morphisms to invert if one
wishes to study (8.2) for dim X > 1 by the present methods.

8.5. STRONGLY LINEARLY CONNECTED SMOOTH PROPER VARIETIES. One nat-
ural question that arises is the following: characterise morphisms f: X — Y
between smooth proper varieties which become invertible in the category

Sy 'Sm. Here we shall study this question only in the simplest case, where
Y = SpecF.

8.5.1. THEOREM. a) Let X be a smooth proper variety over F'. Consider the
following conditions:

10Rather than fundamental group, to avoid the choices of base points.
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(1) p: X — Spec F is an isomorphism in S;ISm.

(2) p is an isomorphism in S, 'Sm.

(3) For any separable extension E/F, X(E)/R has one element (i.e. X is

strongly linearly connected according to Definition 7.1.3).

(4) Same, for E/F of finite type.

(5) X(F)#0 and X(K)/R has one element for K = F(X).

(6) X(F) # 0 and, given zo € X(F), there exists a chain of rational
curves (f; : Pt — Xg)", such that f1(0) = nx, fi+1(0) = fi(1) and
fn(1) = x0. Here K = F(X) and nx 1is the generic point of X.

(7) Same as (6), but with n = 1.

Then (1) <= (2) < (3) < (4) = (b)) < (6) = (7).

b) If char F = 0, X satisfies Conditions (1) — (6) and is projective, it is ratio-

nally connected.

Proof. a) (1) = (2) is trivial and the converse follows from Theorem 1.7.2.
Thanks to Theorem 6.6.3, (2) <= (4) is an easy consequence of the Yoneda
lemma. The implications (3) = (4) = (5) = (6) < (7) are trivial and (4) =
(3) is easy by a direct limit argument. To see (6) = (1), note that by Theorem
6.6.3 (6) implies that 1y = xgop in S; 'Sm(X, X), hence p is an isomorphism.
b) This follows from Proposition 7.1.2 plus the famous theorem of Kollar-
Miyaoka-Mori [24, Th. 3.10], [7, p. 107, Cor. 4.28]. O

8.5.2. Remark. The example of an anisotropic conic shows that, in (5), the
assumption X (F') # () does not follow from the next one.

8.5.3. Question. In the situation of Theorem 8.5.1 b), does X verify condition
(7)? We give a partial result in this direction in Proposition 8.6.2 below. (The
reader may consult the first version of this paper for a non-conclusive attempt
to answer this question in general.)

8.6. RETRACT-RATIONAL VARIETIES. Recall that, following Saltman, X
(smooth but not necessarily proper) is retract-rational if it contains an open
subset U such that U is a retract of an open subset of A”. When F' is infinite,
this includes the case where there exists Y such that X x Y is rational, as in
[5, Ex. A. pp. 222/223].

We have a similar notion for function fields:

8.6.1. DEFINITION. A function field K/F is retract-rational if there exists an
integer n > 0 and two places A : K ~» F(ty,...,tn), p: F(t1,...,tn) ~ K
such that pA = 1x.

Note that this forces A to be a trivial place (i.e. an inclusion of fields). Using
Lemma 2.3.2, we easily see that X is retract-rational if and only if F(X) is
retract-rational.

8.6.2. PROPOSITION. If X is a retract-rational smooth variety, then X —
Spec F' in Sl:lSm. If moreover X is proper and F is infinite, then X wverifies
Condition (7) of Theorem 8.5.1 for a Zariski dense set of points xg.
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Proof. The first statement is obvious by Yoneda’s lemma. Let us prove the
second: by hypothesis, there exist open subsets U C X and V C A" and
morphisms f: U — V and g : V — U such that gf = 1y. This already shows
that U(F) is Zariski-dense in X. Let now zy € U(F), and let K = F(X).
Consider the straight line v : AL — A% such that v(0) = f(z0) and (1) =
f(nx). Then g o~ links z( to nx, as desired. |

8.6.3. COROLLARY. We have the following implications for a smooth proper
variety X over a field F' of characteristic 0: retract-rational = strongly linearly
connected = rationally connected.

Proof. The first implication follows from Theorem 8.5.1 and Proposition 8.6.2;
the second implication follows from the theorem of Kollar-Miyaoka-Mori al-
ready quoted. O

8.6.4. Remark. In characteristic 0, if X is a smooth compactification of a torus,
then it verifies Conditions (1) — (6) of Theorem 8.5.1 if and only if it is retract-
rational, by [6, Prop. 7.4] (i.e. the first implication in the previous corollary
is an equivalence for such X). This may also be true by replacing “torus” by
“connected reductive group”: at least it is so in many special cases, see [14,
Th. 7.2 and Cor. 5.10].

8.7. S,-LOCAL OBJECTS. Recall:

8.7.1. DEFINITION. Let C be a category and S a family of morphisms of C. An
object X € C is local relatively to S or S-local (left closed in the terminology
of [12, Ch. 1, Def. 4.1 p. 19)]) if, for any s : Y — Z in S, the map

C(Z,X) % C(Y, X)
is bijective.
In this rather disappointing subsection, we show that there are not enough of
these objects. They are the exact opposite of rationally connected varieties.

8.7.2. DEFINITION. A proper F-variety X is nonrational if it does not carry any
nonconstant rational curve (over the algebraic closure of F'), or equivalently if
the map B B

X(F) = X(F(t))
is bijective.
8.7.3. LEMMA. a) Nonrationality is stable by product and by passing to closed
subvarieties.
b) Curves of genus > 0 and torsors under abelian varieties are nonrational.

¢) Nonrational smooth projective varieties are minimal in the sense that their
canonical bundle is nef.

Proof. a) and b) are obvious; c¢) follows from the Miyaoka-Mori theorem ([30],
see also [26, Th. 1.13] or [7, Th. 3.6]). O
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On the other hand, an anisotropic conic is not a nonrational variety. This is
also true for some minimal models in dimension 2, even when F' is algebraically
closed.

Smooth nonrational varieties are the local objects of Sm with respect to S, in
the sense of Definition 8.7.1:

8.7.4. LEMMA. a) A proper variety X is nonrational if and only if, for any
morphism f:Y — Z between smooth varieties such that f € S, the map

[ Map(Z, X) — Map(Y, X)

is bijective.
b) A smooth proper nonrational variety X is stably minimal in the following
sense: any morphism in S, with source X is an isomorphism.

Proof. a) Necessity is clear (take f : P! — Spec F). For sufficiency, f* is
clearly injective since f is dominant, and we have to show surjectivity. We
may assume F' algebraically closed. Let U be a common open subset to Y and
Z x P™ for suitable n. Let ¢ : Y — X. By [26, Cor. 1.5] or [7, Cor. 1.44],
Yy extends to a morphism ¢ on Z x P". But for any closed point z € Z,
©({z} x PY) is a point, where P! is any line of P". Therefore p({z} x P") is
a point, which implies that ¢ factors through the first projection.

b) immediately follows from a). O

8.7.5. LEMMA. If X is nonrational, it remains nonrational over any extension
K/F.

Proof. 1t is a variant of the previous one: we may assume that F is algebraically
closed and that K/F is finitely generated. Let f: P} — Xk. Spread f to a
U-morphism f :U x P! - U x X and compose with the second projection.
Any closed point u € U defines a map f, : P! — X, which is constant, hence
ps o f factors through the first projection, which implies that f is constant. O

8.8. OPEN QUESTIONS. We finish by listing a few problems that are not an-
swered in this paper.

(1) Compute Hom sets in S, ' Var. In [21, Rk. 8.11], it is shown that
the functor S 'Sm — Sy ! Var is neither full nor faithful and that the
Hom sets are in fact completely different.

(2) Compute Hom sets in (S7)~'Sm.

(3) Let d<,Sm be the full subcategory of Sm consisting of smooth varieties
of dimension < n. Is the induced functor SgldSnSm — Sb*lSm fully
faithful?

(4) Give a categorical interpretation of rationally connected varieties.

(5) Finally one should develop additional functoriality: products and in-
ternal Homs, change of base field.
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APPENDIX A. INVARIANCE BIRATIONNELLE ET INVARIANCE HOMOTOPIQUE

par Jean-Louis Colliot-Thélene
14 septembre 2006.

Soit k un corps. Soit F' un foncteur contravariant de la catégorie des k-schémas
vers la catégorie des ensembles. Si sur les morphismes k-birationnels de sur-
faces projectives, lisses et géométriquement connexes ce foncteur induit des
bijections, alors Uapplication F(k) — F(PL) est une bijection.

Démonstration. Toutes les variétés considérées sont des k-variétés. On écrit
F(k) pour F(Spec(k)). Soit W I'éclaté de P* x P! en un k-point M. Les
transformés propres des deux génératrices L, et Lo passant par M sont deux
courbes exceptionnelles de premiere espece B ~ P! et Fy ~ P! qui ne se
rencontrent pas. On peut donc les contracter simultanément, la surface que
I’'on obtient est le plan projectif P2. Notons M; et My les k-points de P2 sur
lesquels les courbes F et Ey se contractent.

On réalise facilement cette construction de maniere concrete. Dans P! x P! xP?
avec coordonnées multihomogenes (u, v;w, z; X, Y, T) on prend pour W la sur-
face définie par l'idéal (uT —v X, wT —2Y"), et on considere les deux projections
W — Pl xPlet W — P2

On a un diagramme commutatif de morphismes

E1—> w

| !

Ly —— P! xPL

Le composé de l'inclusion L; — P! x P! et d’une des deux projections P! x
P! — P! est un isomorphisme. Par fonctorialité, la restriction F(P! x P1) —
F(Ly) est donc surjective. Par fonctorialité, le diagramme ci-dessus implique
alors que la restriction F(W) — F(F1) est surjective.

Considérons maintenant la projection W — P2. On a ici le diagramme com-
mutatif de morphismes

E1—>W

! |

M, —— P2,

Par I’hypothese d’invariance birationnelle, on a la bijection F(P?) — F(W).
Donc la fleche composée F(P?) — F(W) — F(E) est surjective. Mais par le
diagramme commutatif ci-dessus la fleche composée se factorise aussi comme
F(P?) —» F(M;) — F(Ey). Ainsi F(M;) — F(E1), c’est-a-dire F(k) —
F(P'), est surjectif. L’injectivité de F(k) — F(P?!) résulte de la fonctorialité
et de la considération d’un k-point sur P!.
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APPENDIX B. A LETTER FROM O. GABBER

June 12, 2007
Dear Kahn,

I discuss a proof of

B.0.1. THEOREM. Let A be a reqular local Ting with residue field k, X' — X =
Spec(A) a proper birational morphism, X, . the reqular locus of X', X. the

reg

special fiber of X', X[ ., o = X{N X, which is known to be open in X{, F

a field extension of k, then any two points of X;., ;(F) are R-equivalent in

The proof I tried to sketch by joining centers of divisorial valuations has a gap
in the imperfect residue field case. It is easier to adapt the proof by deformation
of local arcs.

(1) T Y’ = Y is proper surjective map between separated k-schemes of finite
type whose fibers are projective spaces then for every F/k, Y'(F)/R — Y (F)/R
is bijective. In particular the theorem holds if X’ is obtained from X by a
sequence of blow-ups with regular centers.

(2) If A is a regular local ring of dimension > 1 with maximal ideal m, U an
open non empty in Spec(A), then there is f € m —m? s.t. the generic point of
V(f)isin U.

This is because U omits only a finite number of height 1 primes and there are
infinitely many possibilities for V(f), e.g. V(x — y*) where z,y is a part of a
regular system of parameters.

Inductively we get that there is P € U s.t. A/P is regular 1-dimensional.

(3) If A is a regular local ring and P, P’ different prime ideals with A/P and
A/ P’ regular one dimensional, then there is a prime ideal @ C P N P’ with
A/Q regular 2-dimensional.

Indeed let z1,...,x, be a minimal system of generators of P; their images in
A/ P’ generate a principal ideal; we may assume this ideal is generated by the
image of x1, and then we can substract some multiples of z; from zs,...,z,
so that the images of 2o, ..., z, are 0; take Q = (22,...,zp).

To prove the theorem we may assume F' is a finitely generated extension of
k, so F is a finite extension of a purely transcendental extension k' of k. We
replace A by the local ring at the generic point of the special fiber of an affine
space over A that has residue field k’. So we reduce to F/k finite. Let z,y be
F-points of X/ centered at closed points a,b at which X’ is regular. Let U be
dense open of X above which X’ — X is an isomorphism. Let X’(a), X'(b) be
the local schemes (Spec of the local rings at a and b). There are regular one
dimensional closed subschemes

C C X'(a),C" € X'(b)

whose generic points map to U.
By EGA 0777 10.3 there are finite flat D — C, D’ — C” which are Spec(F)
over the closed points of C,C’. Then D,D’ are Spec’s of DVRs essentially
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of finite type over A (localization of finite type A-algebras). We form the
pushout of D «+ Spec(F) — D', which is Spec of a fibered product ring, which
by some algebraic exercise is still an A-algebra essentially of finite type. The
pushout can be embedded as a closed subscheme in Spec of a local ring of an
affine space over A and then by (3) in some Y a 2-dimensional local regular
A-scheme essentially of finite type. Now D, D’ are subschemes of Y. We have
a rational map Y — X’ defined on the inverse image of U and in particular at
the generic points of D and D’. By e.g. Theorem 26.1 in Lipman’s paper on
rational singularities (Publ. IHES 36) there is Y’ — Y obtained as a succession
of blow-ups at closed points s.t. the rational map gives a morphism Y’ — X',
Then z,y are images of F-points of Y’ (closed points of the proper transforms
of D,D')and by (1) any two F-points of the special fiber of Y/ — Y are
R-equivalent.

Sincerely,
Ofer Gabber
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ABSTRACT. For an additive Waldhausen category linear over a ring
k, the corresponding K-theory spectrum is a module spectrum over
the K-theory spectrum of k. Thus if £ is a finite field of characteristic
p, then after localization at p, we obtain an Eilenberg-Mac Lane spec-
trum — in other words, a chain complex. We propose an elementary
and direct construction of this chain complex that behaves well in
families and uses only methods of homological algebra (in particular,
the notions of a ring spectrum and a module spectrum are not used).
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INTRODUCTION.

Various homology and cohomology theories in algebra or algebraic geometry
usually take as input a ring A or an algebraic variety X, and produce as
output a certain chain complex; the homology groups of this chain complex are
by definition the homology or cohomology groups of A or X. Higher algebraic
K-groups are very different in this respect — by definition, the groups K, (A)
are homotopy groups of a certain spectrum KC(A). Were it possible to represent
K., (A) as homology groups of a chain complex, one would be able to study it by
means of the well-developed and powerful machinery of homological algebra.
However, this is not possible: the spectrum K(A) is almost never a spectrum
of the Eilenberg-Mac Lane type.

If one wishes to turn K(A) into an Eilenberg-Mac Lane spectrum, one needs
to complete it or to localize it in a certain set of primes. The cheapest way
to do it is of course to localize in all primes — rationally, every spectrum is
an Eilenberg-Mac Lane spectrum, and the difference between spectra and com-
plexes disappears. The groups K, (A) ® Q are then the primitive elements in
the homology groups H,(BGLx(A),Q), and this allows for some computations
using homological methods. In particular, K, (A) ® Q has been computed by
Borel when A is a number field, and the relative K-groups K,(4,I) ® Q of a
Q-algebra A with respect to a nilpotent ideal I C A have been computed in
full generality by Goodwillie [Go].

However, there is at least one other situation when /C(A) becomes an Eilenberg-
Mac Lane spectrum after localization. Namely, if A is a finite field &k of char-
acteristic p, then by a famous result of Quillen [Q], the localization K(A)y
of the spectrum K(A) at p is the Eilenberg-MacLane spectrum H(Z,)) cor-
responding to the ring Z,). Moreover, if A is an algebra over k, then K(A)
is a module spectum over KC(k) by a result of Gillet [Gi]. Then K(A)(, is a
module spectrum over H(Z,)), thus an Eilenberg-Mac Lane spectrum corre-
sponding in the standard way ([Sh, Theorem 1.1]) to a chain complex K, (A) )
of Z,-modules. More generally, if we have a k-linear exact or Waldhausen
category C, the p-localization KC(C)(,) of the K-theory spectrum K(C) is also
an Eilenberg-Mac Lane spectrum corresponding to a chain complex K, (C) ;).

Moreover, if we have a nilpotent ideal I C A in a k-algebra A, then the relative
K-theory spectrum K(A4, I) is automatically p-local. Thus K(A, I) = K(A, I) )
is an Eilenberg-Mac Lane spectrum “as is”, without further modifications.
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Unfortunately, unlike in the rational case, the construction of the chain com-
plex K,(C)(y) is very indirect and uncanonical, so it does not help much in
practical computations. One clear deficiency is insufficient functoriality of the
construction that makes it difficult to study its behaviour in families. Namely,
a convenient axiomatization of the notion of a family of categories indexed by
a small category C is the notion of a cofibered category C’'/C introduced in
[Gr]. This is basicaly a functor m : ' — C satisfying some conditions; the
conditions insure that for every morphism f : ¢ — ¢ in C’, one has a natural
transition functor f, : 771(c) — 7 1(c’) between fibers of the cofibration 7.
Cofibration also behave nicely with respect to pullbacks — for any cofibered
category C'/C and any functor v : C; — C, we have the induced cofibration
~*C" — C1. Within the context of algebraic K-theory, one would like to start
with a cofibration 7 : ' — C whose fibers 771(c), ¢ € C, are k-linear additive
categories, or maybe k-linear exact or Waldhausen categories, and one would
like to pack the individual complexes K, (7~ *(c))(,) into a single object

K(C'/C)(p) € D(C, L))

in the derived category D(C,Z,)) of the category of functors from C to Z)-
modules. One would also like this construction to be functorial with respect to
pullbacks, so that for any functor v : C; — C, one has a natural isomorphism

Y K(C'/C)p) = K(v*C'/C1) )

In order to achieve this by the usual methods, one has to construct the chain
complex K,(C)() in such a way that it is exactly functorial in C. This is
probably possible but extremely painful.

The goal of this paper, then, is to present an alternative very simple construc-
tion of the objects K(C'/C),) € D(C,Z)) that only uses direct homological
methods, without any need to even introduce the notion of a ring spectrum.
The only thing we need to set up the construction is a commutative ring k£ and
a localization R of the ring Z in a set of primes S such that K;(k) ® R = 0
for i > 1, and Ky(k) ® R = R. Starting from these data, we produce a family
of objects KT*(C'/C) € D(C, R) with the properties listed above, and such that
if C is the point category pt, then K%(C’/pt) is naturally identified with the
K-theory spectrum K(C’) localized in S.

Although the only example we have in mind is & a finite field of characteristic
p, R = Zy), we formulate things in bigger generality to emphasize the essential
ingredients of the construction. We do not need any information on how the
isomorphism Ky(k) ® R = R comes about, nor on why the higher K-groups
vanish. As our entry point to algebraic K-theory, we use the formalism of
Waldhausen categories, since it is the most general one available. However,
were one to wish to use, for example, Quillen’s @Q-construction, everything
would work with minimal modifications.

Essentially, our approach is modeled on the approach to Topological Hochschild
Homology pioneered by M. Jibladze and T. Pirashvili [JP]. The construction
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itself is quite elementary. The underlying idea is also rather transparent and
would work in much larger generality, but at the cost of much more technology
to make things precise. Thus we have decided to present both the idea and
its implementation but to keep them separate. In Section 1, we present the
general idea of the construction, without making any mathematical statements
precise enough to be proved. The rest of the paper is completely indepedent of
Section 1. A rather long Section 2 contains the list of preliminaries; everything
is elementary and well-known, but we need to recall these things to set up the
notation and make the paper self-contained. A short explanation of what is
needed and why is contained in the end of Section 1. Then Section 3 gives the
exact statement of our main result, Theorem 3.4, and Section 4 contains its
proof.

ACKNOWLEDGEMENTS. It is a pleasure and an honor to dedicate the paper
to Sasha Merkurjev, as a birthday present. This is my first attempt to prove
anything in algebraic K-theory, a subject I have always regarded with a lot of
respect and a bit of trepidation, and if the resulting paper amuses him, I will
be very happy. I am grateful to the referee for a thoughtful report and many
useful suggestions.

1 HEURISTICS.

Assume given a commutative ring R, and let M (R) be the category of finitely
generated free R-modules. It will be useful to interpret M (R) as the category
of matrices: objects are finite sets S, morphisms from S to S’ are R-valued
matrices of size S x §’. .

Every R-module M defines a R-linear additive functor M from M(R) to the
category of R-modules by setting

M(Ml) :HomR(Mf7M) (11)
for any M; € M(R), where we denote by M{ = Homp(M;, R) the dual R-
modules. This gives an equivalence of categories between the category R-mod
of R-modules, and the category of R-linear additive functors from M (R) to
R-mod.
Let us now make the following observation. If we forget the R-module structure
on M and treat it as a set, we of course lose information. However, if we do it
pointwise with the functor M, we can still recover the original R-module M.
Namely, denote by Fun(M(R), R) the category of all functors from M (R) to
R-mod, without any additivity or linearity conditions, and consider the functor
R-mod — Fun(M (R), R) that sends M to M. Then it has a left-adjoint functor

Addg : Fun(M(R), R) — R-mod,
and for any M € R-mod, we have
M = Addg(R[M)), (1.2)
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where R[M ] € Fun(M(R),R) sends My € M(R) to the free R-module
R[M (M)] generated by M (M;). Indeed, by adjunction, Addz commutes with
colimits, so it suffices to check (1.2) for a finitely generated free R-module M;
but then R[M] is a representable functor, and (1.2) follows from the Yoneda
Lemma.

The functor Addr also has a version with coefficients. If we have an R-algebra
R/, then for any R’-module M, the functor M defined by (1.1) is naturally a
functor from M (R) to R’-mod. Then by adjunction, we can define the functor

Addg g : Fun(M(R), R') — R'-mod,
and we have an isomorphism
Addg r/(R'[M]) = M ®r R' (1.3)

for any flat R-module M.

What we want to do now is to obtain a homotopical version of the construction
above. We thus replace sets with topological spaces. An abelian group structure
on a set becomes an infinite loop space structure on a topological space; this
is conveniently encoded by a special I'-space of G. Segal [Se]. Abelian groups
become connective spectra. Rings should become ring spectra. As far as 1
know, Segal machine does not extend directly to ring spectra — to describe ring
spectra, one has to use more complicated machinery such as “functors with
smash products”, or an elaboration on them, ring objects in the category of
symmetric spectra of [HSS]. However, in practice, if we are given a connective
spectrum X represented by an infinite loop space X, then a ring spectrum
structure on X gives rise to a multiplication map p : X x X — X, and in
ideal situation, this is sufficiently associative and distributive to define a matrix
category Mat(X) analogous to M (R). This should be a small category enriched
over topological spaces. Its objects are finite sets .S, and the space of morphisms
from S to S’ is the space X5%5" of X-valued matrices of size S x S, with
compositions induced by the multiplication map p: X x X — X.

Ideal situations seem to be rare (the only example that comes to mind readily
is a simplicial ring treated as an Eilenberg-Mac Lane ring spectrum). How-
ever, one might relax the conditions slightly. Namely, in practice, infinite loop
spaces and special I'-spaces often appear as geometric realizations of monoidal
categories. The simplest example of this is the sphere spectrum S. One starts
with the groupoid T of finite sets and isomorphisms between them, one treats
it as a monoidal category with respect to the disjoint union operation, and one
produces a special I'-space with underlying topological space ||, the geometric
realization of the nerve of the category I'. Then by Barratt-Quillen Theorem,
up to a stable homotopy equivalence, the corresponding spectrum is exactly S.
The sphere spectrum is of course a ring spectrum, and the multiplication op-
eration p also has a categorical origin: it is induced by the cartesian product
functor ' x ' — T'. This functor is not associative or commutative on the
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nose, but it is associative and commutative up to canonical isomorphisms. The
hypothetical matrix category Mat(|T|) is then easily constructed as the geo-
metric realization |QT'| of a strictification of a 2-category QI' whose objects are
finite sets S, and whose category QT'(5,S’) of morphisms from S to S’ is the

groupoid IR Equivalently, OT'(S,S") is the category of diagrams

S l g r S/ (14)

of finite sets, and isomorphisms between these diagrams. Compositions are
obtained by taking pullbacks.

Any spectrum is canonically a module spectrum over S. So, in line with the
additivization yoga described above, we expect to be able to start with a con-
nective spectrum X’ corresponding to an infinite loop space X, produce a func-
tor X, from |QI| to topological spaces sending a finite set S to X, and then
recover the infinite loop space structure on X from the functor X,.

This is exactly what happens — and in fact, we do not need the whole 2-category
9T, it suffices to restrict our attention to the subcategory in QI' spanned by
diagrams (1.4) with injective map I. Since such diagrams have no non-trivial
automorphisms, this subcategory is actually a 1-category. It is equivalent to
the category I'y of pointed finite sets. Then restricting X, to I'y produced a
functor from I'; to topological spaces, that is, precisely a I'-space in the sense
of Segal. This I'-space is automatically special, and one recovers the infinite
loop space structure on X by applying the Segal machine.

It is also instructive to do the versions with coefficients, with R being the
sphere spectrum, and R’ being the Eilenberg-MacLane ring spectrum H(A)
corresponding to a ring A. Then module spectra over H(A) are just com-
plexes of A-modules, forming the derived category D(A) of the category A-mod,
and functors from 'y to H(A)-module spectra are complexes in the cate-
gory Fun(I'y, A) of functors from I'y to A-mod, forming the derived category
D(T'4, A) of the abelian category Fun(I';, A). One has a tautological functor
from A-mod to Fun(I';, A) sending an A-module M to M e Fun(T';, A) given
by M(S) =M [S], where S C S is the complement to the distinguished element
o € S. This has a left-adjoint functor

Add : Fun(T';, A) — A-mod,

with its derived functor L' Add : D(T'y, A) — D(A). The role of the free
A-module A[S] generated by a set S is played by the singular chain complex
C.(X,A) of a topological space, and we expect to start with a special T-space
X4 : Ty — Top, and obtain an analog of (1.3), namely, an isomorphism

L Add(C, (X4, A)) = H,(X, A),

where H, (X, A) are the homology groups of the spectum X corresponding to
X with coefficients in A (that is, homotopy groups of the product X A A).
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Such an isomorphism indeed exists; we recall a precise statement below in
Lemma 4.1.

Moreover, we can be more faithful to the original construction and avoid re-
stricting to I';. C QI'. This entails a technical difficulty, since one has to explain
what is a functor from the 2-category QI' to complexes of A-modules, and de-
fine the corresponding derived category D(QI', A). It can be done in several
equivalent ways, see e.g. [Ka2, Section 3.1], and by [Ka2, Lemma 3.4(i)], the
answer remains the same — we still recover the homology groups H, (X, A).

Now, the point of the present paper is the following. The K-theory spectrum
K(k) of a commutative ring k also comes from a monoidal category, namely,
the groupoid Iso(k) of finitely generated projective k-modules and isomorphisms
between them. Moreover, the ring structure on KC(k) also has categorical origin
— it comes from the tensor product functor Iso(k) x Iso(k) — lIso(k). And if
we have some k-linear Waldhausen category C, then the infinite loop space
corresponding to the K-theory spectrum K(C) is the realization of the nerve of
a category SC on which Iso(k) acts. Therefore one can construct a 2-category
Mat(k) of matrices over Iso(k), and C defines a 2-functor Vect(SC) : Mat(k) —
Cat to the 2-category Cat of small categories. At this point, we can forget all
about ring spectra and module spectra, define an additivization functor

Add : D(Mat(k), R) — D(R),

and use an analog of (1.3) to recover if not IC(C) then at least K(C) Axc(xy H(R),
where H(R) is the Eilenberg-Mac Lane spectrum corresponding to R. This is
good enough: if R is the localization of Z in a set of primes S such that (k)
localized in S'is H(R), then K(C) Ax(xy H(R) is the localization of (C) in S.
The implementation of the idea sketched above requires some preliminaries.
Here is a list. Subsection 2.1 discusses functor categories, their derived cate-
gories and the like; it is there mostly to fix notation. Subsection 2.2 recalls the
basics of the Grothendieck construction of [Gr]. Subsection 2.3 contains some
related homological facts. Subsection 2.4 recalls some standard facts about
simplicial sets and nerves of 2-categories. Subsection 2.5 discusses 2-categories
and their nerves. Subsection 2.6 constructs the derived category D(C, R) of
functors from a small 2-category C to the category of modules over a ring R;
this material is slightly non-standard, and we have even included one state-
ment with a proof. We use an approach based on nerves, since it is cleaner
and does not require any strictification of 2-categories. Then we introduce the
2-categories we will need: Subsection 2.7 is concerned with the 2-category OI'
and its subcategory I'y C QI', while Subsection 2.8 explains the matrix 2-
categories Mat(k) and the 2-functors Vect(C). Finally, Subsection 2.9 explains
how the matrix and vector categories are defined in families (that is, in the
relative setting, with respect to a cofibration in the sense of [Gr]).

Having finished with the preliminaries, we turn to our results. Section 3 con-
tains a brief recollection on K-theory, and then the statement of the main
result, Theorem 3.4. Since we do not introduce ring spectra, we cannot really
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state that we prove a spectral analog of (1.3). Instead, we construct directly
a map K(C) — K to a certain Eilenberg-Mac Lane spectrum K, and we prove
that the map becomes an isomorphism after the appropriate localization. The
actual proof is contained in Section 4.

2 PRELIMINARIES.

2.1 HOMOLOGY OF SMALL CATEGORIES. For any two objects ¢,¢’ € C in
a category C, we will denote by C(c,c’) the set of maps from ¢ to ¢/. For
any category C, we will denote by C° the opposite category, so that C(c,c¢’) =
C°(d,c), ¢,c € C. For any functor 7 : C; — Ca, we denote by 7° : C{ — C§ the
induced functor between the opposite categories.
For any small category C and ring R, we will denote by Fun(C, R) the abelian
category of functors from C to the category R-mod of left R-modules, and we
will denote by D(C, R) its derived category. The triangulated category D(C, R)
has a standard t¢-structure in the sense of [BBD] whose heart is Fun(C, R). For
any object ¢ € C, we will denote by R. € Fun(C, R) the representable functor
given by

R.(¢") = R[C(c, )], (2.1)

where for any set S, we denote by R[S] the free R-module spanned by S.
Every object E € D(C, R) defines a functor D(E) : C — D(R) from C to the
derived category D(R) of the category R-mod, and by adjunction, we have a
quasiisomorphism

D(E)(c) =2 RHom' (R, E) (2.2)

for any object ¢ € C (we will abuse notation by writing E(c) instead of
D(E)(c)). Any functor v : C — C’ between small categories induces an ex-
act pullback functor v* : Fun(C’, R) — Fun(C,R) and its adjoints, the left
and right Kan extension functors v, 7y, : Fun(C, R) — Fun(C’, R). The derived
functors L'y, Ry« : D(C,R) — D(C’, R) are left resp. right-adjoint to the
pullback functor v* : D(C’, R) — D(C, R). The homology resp. cohomology of
a small category C with coefficients in a functor F € Fun(C, R) are given by

H;(C,E) = L'nFE, H'(C,E) = R'1,E, i>0,

where 7 : C — pt is the tautological projection to the point category pt.
Assume that the ring R is commutative. Then for any E € Fun(C,R), T €
Fun(C?, R), the tensor product E ®c¢ T is the cokernel of the natural map

P E) or () LD, D Be) 0p T(e

fie—c! ceC

Sending E to F ®¢ T gives a right-exact functor from Fun(C, R) to R-mod; we
denote its derived functors by Tor (E,T),i>1, and we denote by E é T the
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derived tensor product. If T'(c) is a free R-module for any ¢ € C, then — ®¢ T
is left-adjoint to an exact functor Hom (T, —) : R-mod — Fun(C, R) given by

Hom(T, E)(c) = Hom(T (c), E), ce€C,E € R-mod. (2.3)
Being exact, Hom (T, —) induces a functor from D(R) to D(C, R); this functor

L
is right-adjoint to the derived tensor product functor — ®¢ T'. For example, if
T = R is the constant functor with value R, then we have

H.(C,E) = Tor*(E, R)
for any E € Fun(C, R).

2.2  GROTHENDIECK CONSTRUCTION. A morphism f : ¢ — ¢ in a category
C’ is called cartesian with respect to a functor = : C’ — C if any morphism
fi:e1 = ¢ in ¢’ such that «(f) = w(f1) factors uniquely as f; = fog for some
g:c1— c. Afunctor w: C' — C is a prefibration if for any morphism f : ¢ — ¢/
in C and object ¢j € C’ with 7(c}) = ¢, there exists a cartesian map f1 : ¢c1 — ¢}
in ¢’ with 7(f1) = f. A prefibration is a fibration if the composition of two
cartesian maps is cartesian. A functor F' : C' — C” between two fibrations
C',C"/C is cartesian if it commutes with projections to C and sends cartesian
maps to cartesian maps. For any fibration ¢’ — C, a subcategory Cj C C’ is
a subfibration if the induced functor C) — C is a fibration, and the embedding
functor Cj — C’ is cartesian over C.

A fibration m : C' — C is called discrete if its fibers 7. = 7 1(c), ¢ € C
are discrete categories. For example, for any ¢ € C, let C/c be the category
of objects ¢’ € C equipped with a map ¢ — ¢. Then the forgetful functor
¢ : C/c— Csending ¢ — cto ¢ is a discrete fibration, with fibers ¢.» = C(¢/, ¢),
¢ eC.

For any functor F' : C° — Cat to the category Cat of small categories, let Tot(F)
be the category of pairs (¢, s) of an object ¢ € C and an object s € F(c), with
morphisms from (¢, s) to {¢/, s’} given by a morphism f : ¢ = ¢’ and a morphism
s = F(f)(s'). Then the forgetful functor 7 : Tot(F) — C is a fibration, with
fibers . & F(c), c € C. If F' is a functor to sets, so that for any ¢ € C, F(c) is
a discrete category, then the fibration 7 is discrete.

Conversely, for any fibration m : C' — C with of small categories, and any
object ¢ € C, let Gr(m)(c) be the category of cartesian functors C/c — C’. Then
Gr()(e) is contravariantly functorial in ¢ and gives a functor Gr(w) : C° — Cat.
The two constructions are inverse, in the sense that we have a natural cartesian
equivalence Tot(Gr(w)) = C’ for any fibration 7’ : ¢’ — C, and a natural
pointwise equivalence F' — Gr(Tot(F')) for any F : C° — Cat. In particular,
we have equivalences

e 2 Gr(m)(c), ceC.

These equivalences of categories are not isomorphisms, so that the fibers 7.
themselves do not form a functor from C° to Cat — they only form a pseud-
ofunctor in the sense of [Gr] (we do have a transition functor f* : mo — .
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for any morphism f : ¢ — ¢ in C, but this is compatible with compositions
only up to a canonical isomorphism). Nevertheless, for all practical purposes, a
fibered category over C is a convenient axiomatization of the notion of a family
of categories contravariantly indexed by C.

For any fibration 7w : C’ — C of small categories, and any functor v : C; — C
from a small category Ci, we can define a category v*C’ and a functor my :
~v*C' — C1 by taking the cartesian square

'V*C/ v c’

”ll lw (2.4)

¢, X ¢

in Cat. Then m; is also a fibration, called the induced fibration. The corre-
sponding pseudofunctor Gr(m) : C{ — Cat is the composition of the functor -y
and Gr(n).

For covariantly indexed families, one uses the dual notion of a cofibration: a
morphism f is cocartesian with respect to a functor = if it is cartesian with
respect to 7°, a functor 7 is a cofibration if 7° is a fibration, a functor F' : ¢’ —
C" between two cofibrations is cocartesian if F° is cartesian, and a subcategory
C{, C C' is a subcofibration if (C})° C (C')° is a subfibration. The Grothendieck
construction associates cofibrations over C to functors from C to Cat. We have
the same notion of an induced cofibration. Functors to Sets C Cat correspond
to discrete cofibrations; the simplest example of such is the projection

pe:c\C—C (2.5)

for some object ¢ € C, where ¢\C = (C°/c)° is the category of objects ¢’ € C
equipped with a map ¢ — ¢'.

2.3 BASE CHANGE. Assume given a cofibration 7 : ¢’ — C of small categories
and a functor v : C; — C, and consider the cartesian square (2.4). Then the
isomorphism v * o m* = 7} o v* induces by adjunction a base change map

L o*y/* — o L'm.

This map is an isomorphism (for a proof see e.g. [Kal]). In particular, for
any object ¢ € C, any ring R, and any E € Fun(C’, R), we have a natural
identification

L'mE(c) & H, (7, E|.), (2.6)

where E|. € Fun(m, R) is the restriction to the fiber . C C'. If the cofibration
7 is discrete, then this shows that L'mFE = 0 for 4 > 1, and

mE(c) = @ E().

c'ene
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For example, for the discrete cofibration p. of (2.5) and the constant functor
R € Fun(c\C, R), we obtain an identification

R. = paR = L'pch, (2.7)

where R. € Fun(C, R) is the representable functor (2.1). For fibrations, we
have exactly the same statements with left Kan extensions replaced by right
Kan extensions, and sums replaced by products.

Moreover, assume that R is commutative, and assume given an object T €
Fun((C’)°, R) that inverts all maps f in C’' cocartesian with respect to m — that
is, T'(f) is invertible for any such map. Then we can define the relative tensor
product functor — ®, T : Fun(C’, R) — Fun(C, R) by setting

(E®xT)(c) = Ele @r, T

for any E € Fun(C’, R). This has individual derived functors Tor” (—,T) and
the total derived functor — éﬁ T. For any c € C, we have

(E ®x T)(c) = Bl ®r, T|.. (2.8)
If T'(c) is a free R-module for any ¢ € C’, then we also have the relative version

Hom(T,—) : Fun(C, R) — Fun(C’, R)

of the functor (2.3); it is exact and right-adjoint to — ®, T', resp. — QL@,, T. In

the case T' = R, we have FE éﬂ R = L'mE, and the isomorphism (2.8) is the
isomorphism (2.6).

2.4 SIMPLICIAL OBJECTS. As usual, we denote by A the category of finite
non-empty totally ordered sets, a.k.a. finite non-empty ordinals, and somewhat
unusually, we denote by [n] € A the set with n elements, n > 1. A simplicial
object in a category C is a functor from A° to C; these form a category denoted
A°C. For any ring R and E € Fun(A°, R) = A°R-mod, we denote by C,(E)
the normalized chain complex of the simplicial R-module E. The homology
of the complex C,(F) is canonically identified with the homology H,(A°, E)
of the category A° with coefficients in E. Even stronger, sending E to C,(E)
gives the Dold-Kan equivalence

N : Fun(A° R) — C>o(R)

between the category Fun(A°, R) and the category C>o(R) of complexes of R-
modules concentrated in non-negative homological degrees. The inverse equiv-
alence is given by the denormalization functor D : Cs¢(R) — Fun(A°, R)
right-adjoint to N.

For any simplicial set X, its homology H, (X, R) with coefficients in a ring R
is the homology of the chain complex

C.(X,R) = C.(R[X]),

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 335-365



346 D. KALEDIN

where R[X] € Fun(A° R) is given by R[X]|([n]) = R[X([n])], [n] € A. By
adjunction, for any simplicial set X and any complex E, € C>¢(R), a map
C.(X,R) — E, gives rise to a map of simplicial sets

X —— R[X] —— D(E.), (2.9)

where we treat simplicial R-modules R[X] and D(E,) as simplicial sets. Con-
versely, every map of simplicial sets X — D(E,) gives rise to a map C, (X, R) —
E,. In particular, if we take X = D(E,), we obtain the assembly map

C.(D(E.),R) — E.. (2.10)

The constructions are mutually inverse: every map of complexes of R-modules
C.(X,R) — E, decomposes as

C.(X,R) —— C.(D(E.),R) —— E., (2.11)

where the first map is induced by the tautological map (2.9), and the second
map is the assembly map (2.10).

Applying the Grothendieck construction to a simplicial set X, we obtain a
category Tot(X) with a discrete fibration 7w : Tot(X) — A. We then have a
canonical identification

H.(Tot(X)°, R) = H,(A°,mR) = H,(A°, R[X]), (2.12)

so that H, (X, R) is naturally identified with the homology of the small category
Tot(X)° with coefficients in the constant functor R.

The nerve of a small category C is the simplicial set N(C) € A° Sets such that
for any [n] € A, N(C)([n]) is the set of functors from the ordinal [n] to C.
Explicitly, elements in N(C)([n]) are diagrams

c1 Cn (2.13)

in C. We denote by N(C) = Tot(N(C)) the corresponding fibered category over
A. Then by definition, objects of N(C) are diagrams (2.13), and sending such
a diagram to ¢, gives a functor

q: N(C)—C. (2.14)

Say that a map f : [n] — [m] in A is special if it identifies [n] with a terminal
segment of the ordinal [m]. For any fibration = : ¢’ — A, say that a map
fin C’ is special if it is cartesian with respect to m and 7(f) is special in A,
and say that a functor F' : ' — £ to some category E is special if it F(f) is
invertible for any special map f in C’. Then the functor ¢ of (2.14) is special,
and any special functor factors uniquely through ¢. In particular, Fun(C, R)
is naturally identified the full subcategory in Fun(N(C), R) spanned by special
functors. Moreover, on the level of derived categories, say that E € D(C’, R)
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is special if so is D(E) : ¢’ — D(R), and denote by D;,(C’, R) C D(C', R) the
full subcategory spanned by special objects. Then the pullback functor

¢ : D(C,R) —» D(N(C), R) (2.15)

induces an equivalence between D(C, R) and Ds,(N(C), R). In particular, we
have a natural isomorphism

H.(C,R)= H.(N(C),R), (2.16)

and by (2.12), the right-hand side is also canonically identified with the homol-
ogy H,(N(C), R) of the simplicial set N(C).

The geometric realization functor X — |X| is a functor from A° Sets to the
category Top of topological spaces. For any simplicial set X and any ring R,
the homology H, (X, R) is naturally identified with the homology H,(|X|, R)
of its realization, and the isomorphism (2.16) can also be deduced from the
following geometric fact: for any simplicial set X, we have a natural homotopy
equivalence

|N(Tot(X))| = | X].

Even stronger, the geometric realization functor extends to a functor from
A° Top to Top, and for any small category C equipped with a fibration 7 : C —
A, we have a natural homotopy equivalence

IN(C)] = [[N(Gr(m)]], (2.17)

where N(Gr(m)) : A° — A°Sets is the natural bisimplicial set corresponding
to 7, and || — || in the right-hand side stands for the geometric realization of its
pointwise geometric realization. Geometric realization commutes with products
by the well-known Milnor Theorem, so that in particular, (2.17) implies that
for any self-product C X a --- XA C, we have a natural homotopy equivalence

IN(C xa - XaC)|Z|N(C)| x -+ x|N(C)| (2.18)

2.5 2-CATEGORIES. We will also need to work with 2-categories, and for this,
the language of nerves is very convenient, since the nerve of a 2-category can
be converted into a 1-category by the Grothendieck construction.

Namely, recall that a 2-category? C is given by a class of objects ¢ € C, a
collection of morphism categories C(c,c’), ¢, € C, a collection of identity
objects id. € C(c, ¢) for any ¢ € C, and a collection of composition functors

Me,erer 2 Cle,d) x C(c, ") — Cle, "), e, ecC (2.19)

equiped with associativity and unitality isomorphisms, subject to standard
higher contraints (see [Be]). A 1l-category is then a 2-category C with discrete

2We use “2-category” to mean “weak 2-category” a.k.a. “bicategory”; we avoid current
usage that seems to reserve “2-category” for “strict 2-category”, a rather unnatural notion
with no clear conceptual meaning.
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C(e,d), ¢,c € C. For any 2-category C and any [n] € A, one can consider the
category

N©C)p = H Cler,ea) X - X Clep—1,cn)-

C1,..,Cn €C

If C is a small 1-category, then N(C), = N(C)([n]) is the value of the nerve
N(C) € A°Sets at [n] € A, and the structure maps of the functor N(C) : A° —
Sets are induced by the composition and unity maps in C. In the general case,
the composition and unity functors turn N(C) into a pseudofunctor from A°
to Cat. We let

N(C) = Tot(N(C))

be the corresponding fibered category over A, and call it the nerve of the
2-category C.

The associativity and unitality isomorphisms in C give rise to the compatibility
isomorphisms of the pseudofunctor N(C), so that they are encoded by the
fibration MV (C) — A. One can in fact use this to give an alternative definition
of a 2-category, see e.g. [Ka3], but we will not need this. However, it is useful to
note what happens to functors. A 2-functor F' : C — C’ between 2-categories C,
C’ is given by a map F between their classes of objects, a collection of functors

F(c,d):C(c,d') = C'(F(c), F()), e, €C, (2.20)
and a collection of isomorphisms F(c, ¢)(id.) = idp (., ¢ € C, and
Mp(e),F(e),Fen © (Fle,d) x F(d, ") = F(e,d") omeer en, c,c,d' e,

again subject to standard higher constraints. Such a 2-functor gives rise to
a functor N(F) : N(C) — N(C’) cartesian over A, and the correspondence
between 2-functors and cartesian functors is one-to-one.

The category Cat is a 2-category in a natural way, and the Grothendieck con-
struction generalizes directly to 2-functors from a 2-category C to Cat. Namely,
say that a cofibration m : C' — N(C) is special if for any special morphism
fic— in N(C), the transition functor f; : 7. — 7 is an equivalence. Then
2-functors F : C — Cat correspond to special cofibrations Tot(F) — N(C),
and the correspondence is again one-to-one. If C is actually a 1-category,
then a 2-functor F' : C — Cat is exactly the same thing as a pseudofunctor
F : C — Cat in the sense of the usual Grothendieck construction, and we have
Tot(F) = ¢* Tot(F), where ¢ is the functor of (2.14) (one easily checks that
every special cofibration over N'(C) arises in this way).

The simplest example of a 2-functor from a 2-category C to Cat is the functor
C(c,—) represented by an object ¢ € C. We denote the corresponding special
cofibration by

pe : N(c\C) = N(C). (2.21)

If C is a 1-category, then p. = ¢*p., where p. is the discrete cofibration (2.5)
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2.6 HOMOLOGY OF 2-CATEGORIES. To define the derived category of functors
from a small 2-category C to complexes of modules over a ring R, we use its
nerve N(C), with its fibration 7 : N(C) — A and the associated notion of a
special map and a special object.

DEFINITION 2.1. For any ring R and small 2-category C, the derived category
of functors from C to R-mod is given by

D(C,R) = Dsp(N(C), R).

Recall that if C is a 1-category, then D, (N (C), R) is identified with D(C, R) by
the functor ¢* of (2.15), so that the notation is consistent. Since the truncation
functors with respect to the standard ¢-structure on D(N(C), R) send special
objects to special objects, this standard t-structure induces a t-structure on
D(C,R) C D(N(C),R) that we also call standard. We denote its heart by
Fun(C, R) C D(C, R); it is equivalent to the category of special functors from
N(C) to R-mod. If C is a 1-category, every special functor factors uniquely
through ¢ of (2.14), so that the notation is still consistent.

LEMMA 2.2. For any 2-category C, the embedding D(C,R) C D(N(C), R) ad-
mits a left and a right-adjoint functors L°P, R*? : D(N(C), R) — D(C, R). For
any object ¢ € C with the correspoding object n(c) € N(C)1 C N(C), we have

LRy = L' paR,

where p. is the special cofibration (2.21), and R in the right-hand side is the
constant functor.

Proof. Say that a map f in D(N(C)) is co-special if 7(f) : [n] — [n'] sends
the initial object of the ordinal [n] to the initial object of the ordinal [n/].
Then as in the proof of [Ka2, Lemma 4.8], it is elementary to check that
special and co-special maps in A'(C) form a complementary pair in the sense
of [Ka2, Definition 4.3], and then the adjoint functor L*? is provided by [Ka2,
Lemma 4.6]. Moreover, L°? o L*? = [P and L*P is an idempotent comonad
on D(N(C), R), with algebras over this comonad being exactly the objects of
D(C, R). Moreover, by construction of [Ka2, Lemma 4.6], L*? : D(N(C), R) —
D(N(C), R) has a right-adjoint functor R*? : D(N(C), R) — D(N(C), R). By
adjunction, R*P is an idempotent monad, algebras over this monad are objects
in D(C, R), and R*P factors through the desired functor D(N(C, R)) — D(C, R)
right-adjoint to the embedding D(C, R) C D(N(C), R). Finally, the last claim
immediately follows by the same argument as in the proof of [Ka2, Theorem
42). O

For any 2-functor F' : C — C’ between small 2-categories, the corresponding
functor N (F) sends special maps to special maps, so that we have a pullback
functor

F*=N(F)" : D', R) = D(C,R).
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By Lemma 2.2, F* has a left and a right-adjoint functor Fi, Fi, given by
F=L"%ocL'N(F), F. =R?o R°N(F)..
For any object ¢ € C, we denote
R. = LR, = L' paR € D(C,R). (2.22)

If C is a 1-category, then this is consistent with (2.1) by (2.7). In the general
case, by base change, we have a natural identification

R.(d)= H,(C(c,d),R) (2.23)

for any ¢’ € C, an analog of (2.1). Moreover, by adjunction, we have a natural
isomorphism
E(c) = Hom(R,, F) (2.24)

for any E € D(C, R), a generalization of (2.2).

2.7 FINITE SETS. The first example of a 2-category that we will need is the
following. Denote by I' the category of finite sets. Then objects of the 2-
category QI are finite sets S € I', and for any two 51,52 € I', the category
OI'(S1, S2) is the groupoid of diagrams

[P AL L SN K (2.25)

in I’ and isomorphisms between them. The composition functors (2.19) are
obtained by taking fibered products.

We can also define a smaller 2-category I'y C QI by keeping the same objects
and requiring that I'y (S1,.S2) consists of diagrams (2.25) with injective map I.
Then since such diagrams have no non-trivial automorphisms, I'y is actually
a l-category. It is equivalent to the category of finite pointed sets. The equiv-
alence sends a set S with a disntiguished element o € S to the complement
S =5\ {o}, and amap f:S — S’ goes to the diagram

—/

St gy L5 7,

where i : f~1(S') — S is the natural embedding. For any n > 0, we denote
by [n]+ € T'; the set with n non-distinguished elements (and one distinguished
element o). In particular, [0]+ = {o} is the set with the single element o.

To construct 2-functors from QI' to Cat, recall that for any category C, the
wreath product C 1T is the category of pairs (S, {cs}) of a set S € ' and a
collection of objects ¢; € C indexed by elements s € S. Morphisms from
(S, {cs}) to (S7,{c.}) are given by a morphism f : S — S’ and a collection of
morphisms c¢s — c}(s), s € S. Then the forgetful functor p : C:I' — T' is a

fibration whose fiber over S € T'is the product C° of copies of the category
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C numbered by elements s € S, and whose transition functor f* : 52 — C*
associated to a map f :S; — Ss is the natural pullback functor.
Assume that the category C has finite coproducts (including the coproduct of
an empty collection of objects, namely, the initial object 0 € C). Then all the
transition functors f* of the fibration p have left-adjoint functors fi, so that p
is also a cofibration. Moreover, for any diagram (2.25) in I', we have a natural
functor

rol*: 05 — %, (2.26)

This defines a 2-functor Vect(C) : QI' — Cat — for any finite set S € TI', we
let Vect(C)(S) = C%, and for any S;,S52 € I, the functor Vect(C)(S1,S2) of
(2.20) sends a diagram (2.25) to the functor induced by (2.26). Moreover,
for any subcategory w(C) C C with the same objects as C and containing all
isomorphisms, the collection of subcategories Vect(w(C))(S) = w(C)® c C°
defines a subfunctor Vect(w(C)) C Vect(C).

Restricting the 2-functor Vect(C) to the subcategory I'y C OI' and applying
the Grothendieck construction, we obtain a cofibration over I'; that we denote
by pt : (C1T)4y — I'y. For any subcategory w(C) with the same objects an
containng all isomorphisms, we can do the same procedure with the subfunctor
Vect(w(C)) C Vect(C); this gives a subcofibration (w(C)T')+ C (CT)4, and
in particular, p4 restricts to a cofibration

py (WCT), — T (2.27)

Explicitly, the fiber of the cofibration p. over a pointed set S € I'; is identified

with w(C)®, where S C S is the complement to the distiguished element. The
transition functor corresponding to a pointed map f: S — S " sends a collection
{es} € w(C)®, s € S to the collection ¢, s’ € S’ given by

= P e (2.28)
sef~1(s’)

where @ stands for the coproduct in the category C.

2.8 MATRICES AND VECTORS. Now more generally, assume that we are given
a small category Cy with finite coproducts and initial object, and moreover, Cg
is a unital monoidal category, with a unit object 1 € Cy and the tensor product
functor — ® — that preserves finite coproducts in each variable. Then we can
define a 2-category Mat(Cp) in the following way:

(i) objects of Mat(Cy) are finite sets S € T,

(ii) for any Si, S5 € T', Mat(Co)(S1,S2) C C51%52 is the groupoid of isomor-
phisms of the category C51%52,

(iii) for any S € T', ids € Mat(Cp)(S,S) is given by ids = & (p*(1)), where
p : S — ptis the projection to the point, and 6 : S — S x S is the
diagonal embedding, and
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(iv) for any Si, Sa,S2 € T, the composition functor msg, s, ,s, of (2.19) is given
by
ms, 8,55 = P21 © 03,
where ps : S7 X Sy x S3 — 51 x S3 is the product ps = id xp X id, and
analogously, 2 = id x§ X id.

In other words, objects in Mat(Cy)(S1, S2) are matrices of objects in C indexed
by S1 x Sa, and the identity object and the composition functors are induces
by those of C by the usual matrix multiplication rules. The associativity and
unitality isomorphisms are also induced by those of Cy. It is straightforward to
check that this indeed defines a 2-category; to simplify notation, we denote its
nerve by
Mat(Co) = N (Mat(Cy)).

Moreover, assume given another small category C with finite coproducts, and
assume that C is a unital right module category over the unital monoidal cat-
egory Cop — that is, we have the action functor

—®—:CxCy—C, (2.29)

preserving finite coproducts in each variable and equipped with the rele-
vant unitality and asociativity isomorphism. Then we can define a 2-functor
Vect(C,Cp) from Mat(Cp) to Cat that sends S € T' to C¥, and sends an object
M € Mat(Cy)(S1, S2) to the functor C5t — C52 induced by (2.29) via the usual
rule of matrix action on vectors. We denote the corresponding special cofibra-
tion over Mat(Co) by Vect(C,Co). Moreover, given a subcategory w(C) C C
with the same objects and containing all the isomorphisms, we obtain a sub-
functor Vect(w(C),Co) C Vect(C,Cp) given by

Vect(w(C),Co)(S) = w(C)® C C¥ = Vect(C,Co)(S).
We denote the corresponding subcofibration by
Vect(w(C),Co) C Vect(C,Co).

If we take Cop = I', and let — ® — be the cartesian product, then Mat(Cy) is
exactly the category QI of Subsection 2.7. Moreover, any category C that has
finite coproducts is automatically a module category over I with respect to the
action functor
c®S=E e, cecCSeT,
sesS

and we have Vect(C,T') = Vect(C), Vect(w(C),T') = Vect(w(C)). This example
is universal in the following sense: for any associative unital category Cy with
finite coproducts, we have a unique coproduct-preserving tensor functor I' —
Co, namely S +— 1® S, so that we have a canonical 2-functor

e : QT — Mat(Co). (2.30)

For any Cp-module category C with finite coproducts, we have a natural equiv-
alence e o Vect(C,Cp) = Vect(C), and similarly for w(C).
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2.9 THE RELATIVE SETTING. Finally, let us observe that the 2-functors
Vect(C,Cp), Vect(w(C),Cp) can also be defined in the relative situation. Namely,
assume given a cofibration m : C — C’ whose fibers 7., ¢ € C’ have finite
coproducts. Moreover, assume that C is a module category over Cp, and
the action functor (2.29) commutes with projections to C’, thus induces Cop-
module category structures on the fibers m. of the cofibration 7. Further-
more, assume that the induced action functors on the fibers m. preserve fi-
nite coproducts in each variable. Then we can define a natural 2-functor
Vect(C/C’,Cy) : Mat(Cyp) — Cat by setting

Vect(C/C',Co)(S) =C x¢r -+ x¢ C (2.31)

where the terms in the product in the right-hand side are numbered by elements
of the finite set S. As in the absolute situation, the categories Mat(Cy)(S1, S2)
act by the vector multiplication rule. We denote by

Vect(C/C',Co) — Mat(Co)

the special cofibration corresponding to the 2-functor Vect(C/C’,Cp), and we
observe that the cofibration 7 induces a natural cofibration

Vect(C/C',Co) — C (2.32)

whose fiber over ¢ € C is naturally identified with Vect(mw.,Co). Moreover, if
we have a subcategory w(C) C C with the same objects that contains all the
isomorphisms, and w(C) C C is a subcofibration, then we can let

Vect(w(C)/C',Co)(S) = w(C) x¢r -+ xer w(C) C Vect(C/C',Co)(S)
for any finite set S € T', and this gives a subfunctor Vect(w(C)/C’,Cy) C

Vect(C/C’,Cy) and a subcofibration Vect(w(C)/C',Co) C Vect(C/C',Cy). The
cofibration (2.32) then induces a cofibration

Vect(w(C)/C',Co) — C (2.33)
whose fibers are identified with Vect(w(n.),Co), ¢ € C. As in the absolute
case, in the case Cyp = I, we simplify notation by setting Vect(w(C)/C’) =
Vect(w(C)/C',T'), and we denote by

(w(€)/C)1T)4 =T (2.34)

the induced cofibration over I'y C OI'.

Analogously, if m : C — C’ is a fibration, then the same constructions go
through, except that w(C) C C has to be a subfibration, and the functors
(2.32), (2.33) are also fibrations, with the same identification of the fibers.
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3 STATEMENTS.

3.1 GENERALITIES ON K-THEORY. To fix notations and terminology, let us
summarize very briefly the definitions of algebraic K-theory groups.
First assume given a ring k, let k-mod’? C k-mod be the category of finitely
generated projective k-modules; and let Iso(k) C k-mod’? be the groupoid of
finitely generated projective k-modules and their isomorphisms. Explicitly, we
have

so(k)= [  [pt/Aut(P)],

Pek-modf?

where the sum is over all isomorphism classes of finitely generated projective
k-modules, Aut(P) is the automorphism group of the module P, and for any
group G, [pt/G] stands for the groupoid with one object with automorphism
group G. The category k-mod”? is additive. In particular, it has finite coprod-
ucts. Since Iso(k) C k-mod/? contains all objects and all the isomorphisms, we
have the cofibration

P+ (lSO(k) 2F)+ — F+
of (2.27). Its fiber (p )1y, over the set 1] € 'y is Iso(k), and the fiber (p)s

over a general S € T', is the product Iso(k)®. Applying the Grothendieck
construction and taking the geometric realization of the nerve, we obtain a
functor

[N (Gr(p4))| : Ty = Top

from I'; to the category Top of topological spaces, or in other terminology, a I'-
space. Then (2.28) immediately shows that this I’-space is special in the sense
of the Segal machine [Se], thus gives rise to a spectrum (k). The algebraic K-
groups K, (k) = m,K(k) are by definition the homotopy groups of this spectrum.
For a more general K-theory setup, assume given a small category C with
the subcategories ¢(C),w(C) C C of cofibrations and weak equivalences, and
assume that (C, ¢(C), w(C)) is a Waldhausen category. In particular, C has finite
coproducts and the initial object 0 € C. Then one lets EC be the category of
pairs ([n], ) of an object [n] € A and a functor ¢ : [n] — C, with morphisms
from ([n], ) to ([n'], ") given by a pair (f, a) of amap f : [n] — [n/] and a map
a: ¢ o f — . Further, one lets SC C EC be the full subcategory spanned
by pairs ([n],¢) such that ¢ factors through ¢(C) C C and sends the initial
object o € [n] to 0 € C. The forgetful functor s : SC — A sending ([n], ) to
[n] is a fibration; explicitly, its fiber over [n] € A is the category of diagrams
(2.13) such that all the maps are cofibrations, and ¢; = 0. Finally, one says
that a map f in SC is admissible if in its canonical factorization f =go f' with
s(f) = s(f") and f’ cartesian with respect to s, the morphism ¢ pointwise lies
in w(C) € C. Then by definition, SC C SC is the subcategory with the same
objects and admissible maps between them. This is again a fibered category
over A, with the fibration SC — A induced by the forgetful functor s. The
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K-groups K, (C) are given by
Ki(C) = mipa (IN(SC)[),  i>0.

Moreover, since C has finite coproducts, the fibers of the fibration SC — A
also have finite coproducts, and since SC C SC contains all objects and all
isomorphisms, we can form the cofibration

p+: ((SC/A)T) 4 — Ty (3.1)
of (2.34). Its fibers are the self-products SC xa - -+ xa SC. Then by (2.18),
IN(Gr(p;))] : T — Top

is a special I'-space, so that |N(SC)| has a natural infinite loop space structure

and defines a connective spectrum. The K-theory spectrum K(C) is given by
K(C) = QIN(SC)].

REMARK 3.1. Our definition of the category SC differs from the usual one in
that the fibers of the fibration s are opposite to what one gets in the usual
definition. This is harmless since passing to the opposite category does not
change the homotopy type of the nerve, and this allows for a more succint
definition.

The main reason we have reproduced the S-construction instead of using it as
a black box is the following observation: the construction works just as well in
the relative setting. Namely, let us say that a family of Waldhausen categories
indexed by a category C’ is a category C equipped with a cofibration 7 : C — C’
with small fibers, and two subcofibrations ¢(C), w(C) C C such that for any
¢ € C', the subcategories

c(me) = ¢(C) Nwe C 7, w(me) = w(C) Nme C me

in the fiber 7. of the cofibration 7 turn it into a Waldhausen category. Then
given such a family, one defines the category EC exactly as in the absolute case,

and one lets S@?’) C EC be the full subcategory spanned by Sr. C Em. C

—_~—

EC, ¢ € C'. Further, one observes that the forgetful functor s : S(C/C’) — A

—~

is a fibration, and as in the absolute case, one let S(C/C’) C S(C/C’) be the
subcategory spanned by maps f in whose canonical factorization f = go f/ with
s(f) = s(f’') and f’ cartesian with respect to s, the morphism ¢ pointwise lies
inw(C) C C. One then checks easily that the cofibration 7 induces a cofibration

sc/e) —c

whose fiber over ¢ € C’ is naturally identified with Sm.. This cofibration is
obviously functorial in C’: for any functor v : C” — C’ with the induced
cofibration v*C — C”, we have S(y*C/C") = 4*S(C/C’).
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3.2 THE SETUP AND THE STATEMENT. Now assume given a commutative
ring k, so that k-mod”? is a monoidal category, and a Waldhausen category
C that is additive and k-linear, so that C is a module category over k-mod/?.
Then all the fibers of the fibration SC — A are also module categories over
k-mod’?. To simplify notation, denote

Mat(k) = Mat(k-mod’?), K(C,k) = Vect(SC/A, k-mod’?).

More generally, assume given a family 7 : C — C’ of Waldhausen categories,
and assume that all the fibers of the cofibration 7 are additive and k-linear, and
transition functors are additive k-linear functors. Then C is a k-mod/P-module
category over C, and we can form the cofibration

K(C/C', k) = Vect(S(C/C") /A, k-mod’P) — C' x Mat(k).
Denote by
7:K(C/C k)= C,  p:K(C/C k) — Mat(k) (3.2)

its compositions with the projections to C’ resp. Mat(k). Then the fiber of
the cofibration 7 over ¢ € C’ is naturally idenitified with the category K(m., k).

DEFINITION 3.2. Let R be the localization of Z in a set of primes. A commu-
tative ring k is R-adapted if K;(k) @ R=0"for i > 1, and Ko(k) ® R= R as a
ring.

EXAMPLE 3.3. Let k be a finite field of characteristic char(k) = p, and let
R = Z,) be the localization of Z in the prime ideal pZ C Z. Then k is
R-adapted by the famous theorem of Quillen [Q].

Assume given an R-adapted commutative ring k. Any additive map Ko(k) — R
induces a map of spectra
K(k) — H(R), (3.3)

where H(R) is the Eilenberg-Mac Lane spectrum corresponding to R, so that
fixing an isomorphism Ko(k) ® R = R fixes a map (3.3). Do this, and for
any P € k-mod/?, denote by rk(P) € R the image of its class [P] € Ko(k) ® R
under the isomorphism we have fixed. Let M (R) be the category of free finitely
generated R-modules, and let T' € Fun(M (R)°, R) be the functor sending a free
R-module M to M* = Hompg(M, R). Equivalently, objects in M (R) are finite
sets S, and morphisms from S; to Ss are elements in the set R[S} x S3]. In this
description, sending P € k-mod’? to rk(P) defines a 2-functor 7% : Mat(k) —
M (R). By abuse of notation, we denote

rk = qo N (rk) : Mat(k) - N(M(R)) = M(R).

Since the projection ¢ of (3.2) obviously inverts all maps cocartesian with
respect to the cofibration 7, the pullback ¢°* rk* T" € Fun(K(C/C', k), R) also
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inverts all such maps. Therefore we are in the situation of Subsection 2.3, and
we have a well-defined object

KR(C/C' k) = Z &= ¢°* k> T € D(C', R), (3.4)

where 7Z on the left-hand side of the product is the constant functor with
value Z. If ¢’ = pt is the point category, we simplify notation by letting
KR, k) = KE(C/pt,k). The object K*(C/C' k) is clearly functorial in C’:
for any functor v : C” — C’, we have a natural isomorphism

VKRC/C' k)= KR(y*C/C" k).

In particular, the value of KX(C/C’, k) at an object ¢ € C’ is naturally identified
with K(nm., k). Here is, then, the main result of the paper.

THEOREM 3.4. Assume given a k-linear additive small Waldhausen category
C, and a ring R that is k-adapted in the sense of Definition 3.2, and let K®(C, k)
be the Eilenberg-Mac Lane spectum associated to the compler KE(C, k) of (3.4).
Then there exists a natural map of spectra

v:K(C) = KR(C,k)
that induces an isomorphism of homology with coefficients in R.

Here a “spectrum” is understood as an object of the stable homotopy category
without choosing any particular model for it. In practice, what we produce in
proving Theorem 3.4 is two special I'-spaces in the sense of the Segal machine
representing the source and the target of our map v, and we produce v as a map
of I'-spaces. Note that our complex K(C, k) is concentrated in non-negative
homological degrees. For such a complex, the simplest way to construct the
corresponding Eilenberg-Mac Lane spectrum is to apply the Dold-Kan equiv-
alence, and take the realization of the resulting simplicial abelian group — it
is then trivially a special I'-space. This is exactly what we do. As usual, we
define “homology with coefficients in R” of a spectrum X by

H.(X,R) = m.(X A H(R)).

If R is the localization of Z in the set of primes S, then by the standard
spectral sequence argument, Theorem 3.4 implies that v becomes a homotopy
equivalence after localizing at the same set of primes S.

4 PROOFS.

4.1 ADDITIVE FUNCTORS. Before we prove Theorem 3.4, we need a couple
of technical facts on the categories D(Mat(k), R), D(M(R), R). Recall that we
have a natural 2-functor e : QI' — Mat(k) of (2.30). Composing it with the
natural embedding I'y — OI', we obtain a 2-functor

i: Ty — Mat(k).
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Composing further with the 2-functor 7 : Mat(k) — M (R), we obtain a functor
i:Ty — M(R).
Explicitly, 7 sends a finite pointed set S to its reduced span
i(S) = RIS] = RIS|/R - {o}.

where o € S is the distinguished element. The object T' € Fun(M (R)°, R) gives
by pullback objects rk°* 7' € Fun(Mat(k)°,R), i T € Fun(I'%., R). For any
E € D(I'4, R), denote

HY(E) = Torl+(E,7'T). (4.1)

Say that an object E € D(I'y, R) is pointed if E([0]+) = 0, where [0]+ = {0} €
I'; is the pointed set consisting of the distinguished element.

LeEMMA 4.1. (i) For any two pointed objects E1,Es € D(I'y, R), we have
HY(By & Ey) = 0.

(ii) Assume given a spectrum X represented by a T'-space |X| : T'y — Top
special in the sense of Segal, and let C,(|X|,R) € D(T'y, R) be the ob-
ject obtained by taking pointwise the singular chain homology complex
C.(—,R). Then there exists a natural identification

H!(C.(|X|,R)) = H,(X,R).

Proof. Although both claims are due to T. Pirashvili, in this form, (i) is [Ka4,
Lemma 2.3], and its corollary (ii) is [Ka4, Theorem 3.2]. O

The category I'y has coproducts — for any S, S’ € Ty, their coproduct SV S’ €
I is the disjoint union of S and S’ with distinguished elements glued together.
The embedding S — SV S’ admits a canonical retraction p : Sv S — §
identical on S and sending the rest to the distiguished element, and similarly,
S’ — SV S’ has a canonical retraction p’ : SV S’ — 5.

DEFINITION 4.2. An object E € D(T'y, R) is additive if for any S, S’ € Ty, the
natural map
E(SvS")— E(S)® E(S) (4.2)

induced by the retractions p, p’ is an isomorphism. An object E in the category
D(Mat(k), R) resp. D(M(R), R) is additive if so is i*E resp. i E.

We denote by Dyga(T+, R), Daaa(Mat(k), R), Daaa(M(R), R) the full subcat-
egories in D(I'y, R), D(Mat(k), R), D(M(R), R) spanned by additive objects.
In fact, Dyqa(T'+, R) is easily seen to be equivalent to D(R). Indeed, [0]4+ € '+
is a retract of [1]4+ € I'4, so that we have a canonical direct sum decomposition

RiZtd Ry
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for a certain t € Fun(T';, R), where to simplify notation, we denote R, =
Ry, € Fun(I'y, R), n > 0. Then for any pointed ' € D(I'y, R), the adjunc-
tion map induces a map

to M — E, (4.3)

where M = E([1])+ € D(R). Any additive object is automatically pointed,
and the map (4.3) is an isomorphism if and only if F is additive. We actually
have t@ M = Hom(i" T, M) =7 Hom(T, M), so that the equivalence D(R) =
Dudda(T+, R) is realized by the functor

i oHom(T,—) : D(R) = Daaq(T'4, R) € D(I'y, R).

4.2  ADJUNCTIONS. By definition, i and i* preserve additivity — namely, 7
sends Dyge(M(R),R) C D(M(R),R) into Dgga(T'+,R) C D'+, R), and i*
sends Dyqq(Mat(k), R) C D(M(R), R) into Dagq(T'+, R) C D(I'y+, R). It turns
out that their adjoint functors R'i,, i, also preserve additivity.

LEmMA 4.3. (i) For any additive E € D(I4,R), the objects R i,E €
D(M(R),R) and i.E € D(Mat(k), R) are additive.

(ii) For any additive E € Fun(Mat(k), R) C D(Mat(k), R), the adjunction
unit map E — 1.4%F is an isomorphism in homological degree 0 with
respect to the standard t-structure.

Proof. For the first claim, let E = Ri,E, and note that we may assume that

E =17 Hom(T,M) for some M € D(R). Then by adjunction, for any finite
set S, we have

= Hom(i" R;g), E) = Hom(H! (i Ry(g)), M),

where Rg is the representable functor (2.1), and H!'(—) is as in (4.1). Thus to
to check that (4.2) is an isomorphism, we need to check that the natural map

H.F(E*RE(S)) & H.F(E*RE(S/)) - H.F(R{(Svsq)

induced by the projections p, p’ is an isomorphism. For any S,S; € T'y, we
have

iRy 5)(S1) = R[S x 51]. (4.4)

In particular, E*Rg( S)([O]+) =~ R indepedently of S, and the tautological pro-
jection S — [0]+ induces a functorial map

in Fun(T'y, R) identical after evaluation at [0]4+ € I'+. Moreover, we have

E*RE(S\/S/) % E*R;(S) ® E*RE(S’V (45)
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and under these identifications, the projections p, p’ induce maps id @t resp.
t ® id. Then to finish the proof, in suffices to invoke Lemma 4.1 (i).

For the object i,E, the argument is the same, but we need to replace the
representable functors Rygy, Rjgy: Rygysr) by their 2-category versions of
(2.22), and (4.4) becomes the isomorphism

i"Ri(s) = H.(Iso(k)**™', R)

provided by (2.23). The corresponding version of (4.5) then follows from the
Kinneth formula.

For the second claim, note that since we have already proved that i,i*FE is
additive, it suffices to prove that the natural map

E([]4) = wa"E([1]4)

is an isomorphism in homological degree 0. Again by Lemma 4.1 (ii) and
adjunction, this amount to checking that the natural map

Ho(K(k),R) - R

induced by the rank map rk is an isomorphism. This follows from Definition 3.2
and Hurewicz Theorem. (]

By definition, the functor rk* also sends additive objects to additive objects,
but here the situation is even better.

LEMMA 4.4. The functor rk, : D(Mat(k),R) — D(M(R),R) sends additive
objects to additive objects, and rk™, rk, induce mutually inverse equivalences
between Dyqq(Mat(k), R) and Dyqa(M(R), R).

Proof. Assume for a moment that we know that for any additive £ €
D(Mat(k), R), rk, E is additive, and the adjunction counit map rk* rk, E — F
is an isomorphism. Then for any additive E' € Dgqq(M (R), R), the cone of the
adjunction unit map E — rk, rk* E is annihilated by rk*. Since the functor rk*
is obviously conservative, E — rk, rk* E then must be an isomorphism, and
this would prove the claim.

It remains to prove that for any E € Dgqq(Mat(k), R), rky E is additive, and
the map rk* rk, E — E is an isomorphism. Note that we have

E2lim' 7>, E,
n -

where 7>_, F is the truncation with respect to the standard ¢-structure. If E is
additive, then all its truncations are additive, and by adjunction, rk, commutes
with derived inverse limits. Moreover, since derived inverse limit commutes
with finite sums, it preserves the additivity condition. Thus it suffices to prove
the statement under assumption that F is bounded from below with respect
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to the standard ¢-structure. Moreover, it suffices to prove it separately in each
homological degree n.

Since rk* is obviously exact with respect to the standard t-structure, rk,
is right-exact by adjunction, and the statement is trivially true for E €
D="*t1(Mat(k), R). Therefore by induction, we may assume that the state-
ment is proved for E € DEJ;H (Mat(k), R) for some m, and we need to prove it
for £ € DEJZ(Mat(/ﬂ), R). Let E =4*E. Since F is additive, E is also additive,
so that i, E is additive by Lemma 4.3 (i). The functor i, is also right-exact
with respect to the standard ¢-structures by adjunction, and by Lemma 4.3 (ii),
the cone of the adjunction map

E— i FE=i.F

lies in Dfﬂ“(Mat(lﬂ), R). Therefore it suffices to prove the statement for i B

instead of E. Since rk,i.E = R"i,E is additive by Lemma 4.3 (i), it suffices
to prove that the adjunction map

tk* 1, F 22 rk* rky i, E — i E

is an isomorphism. Moreover, since both sides are additive, it suffices to prove
it after evaluating at 4([1],). We may assume that E = Hom (i T, M) for some
M € D(R), so that by adjunction, this is equivalent to proving that the natural
map
L% T =*
H, (i"Riy,)) = H, (i Ripq,))

is an isomorphism. But as in the proof of Lemma 4.3, this map is the map

HI(C.(Iso(k)®, R)) — HI (R[S])

induced by the functor rk, and by Lemma 4.1 (ii), it is identified with the map
of homology
H.(K(k),R) — H.(H(R), R)

induced by the map of spectra (3.3). This map is an isomorphism by Defini-
tion 3.2. (]

4.3 PROOF OF THE THEOREM. We can now prove Theorem 3.4. We begin
by constructing the map. To simplify notation, let K = K(C, k) € D(R), and
let

E = L 7R € D(Mat(k),Z) C D(Mat(k),Z).

Then by the projection formula, we have a natural quasiisomorphism

L
K = E @ parr) kT,
so that by adjunction, we obtain a natural map

v:E— Hom(rk T, K). (4.6)
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Restricting with respect to the 2-functor i : 'y — Mat(k), we obtain a map
T:E — i*Hom(rk* T, K) = Hom(i"'T, K), (4.7)

where we denote E = i*E. Now note that over i(N(I'y)) C Mat(k), the cofi-
bration ¢ : K(C, k) — Mat(k) restricts to the special cofibration corresponding
to the cofibration p, of (3.1). Therefore by base change, we have £ = L' p | R.
Then to compute E, we can apply the Grothendieck construction to the cofibra-
tion py and use base change; this shows that E € D(I'y, R) can be represented
by the homology complex

E. = C.(N(Gr(ps)), R).

Choose a complex K, representing Hom(i T,K) € D(I', R) in such a way
that the map v of (4.7) is represented by a map of complexes

7. E, > K,..

Replacing K, with its truncation if necessary, we may assume that it is con-
centrated in non-negative homological degrees. Applying the Dold-Kan equiv-
alence pointwise, we obtain a functor D(K,) from I'; to simplicial abelian
groups. We can treat it as a functor to simplicial sets, and take pointwise the
tautological map (2.9); this results in a map

7: N(Gr(py)) — D(K.) (4.8)

of functors from I'; to simplicial sets. Taking pointwise geometric realization,
we obtain a map of I'-spaces, hence of spectra. By definition, the I'-space
|N(Gr(ps))| corresponds to the spectrum K(C). Since K, represents the ad-
ditive object i° Hom(T,K) € D(I'y, R), the isomorphisms (4.2) induce weak
equivalences of simplicial sets

D(K.)(S Vv S8') = D(K.)(S) x D(K.)(5),

so that the I'-space | D(K,)| is special. It gives the Eilenberg-Mac Lane spec-
trum K corresponding to K = K,([1]+) € D(R). Thus the map of spectra
induced by 7 of (4.8) reads as

K(C) — K. (4.9)
This is our map.

To prove the theorem, we need to show that the map 7 induces an isomorphism
on homology with coefficients in R. Let S € D(I'y, R) be the object represented
by the chain complex C,(D(K,), R). Then by Lemma 4.1 (ii), it suffices to
prove that the map

HY(E) - HF(S) (4.10)
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induced by (4.8) is an isomorphism. Moreover, note that we can apply the
procedure above to the map v of (4.6) instead of its restriction T of (4.7). This
results in a map of functors

N(Gr(p)) — D(K.),

where K, is a certain complex representing Hom (rk* T, K) € D(Mat(k), R). If
we denote by S € D(Mat(k), R) the object represented by C,(D(K,), R) and
let

v:E—S (4.11)

be the map induced by the map v, then we have Sy = ¢*S, i*v is the map
induced by 7 of (4.8), and (4.10) becomes the map

HI(i*v) : HY (*E) — HY (i*S).

By adjunction and Lemma 4.3 (i), it then suffices to prove that for any additive
N € D(Mat(k), R), the map

Hom(S, N) — Hom(E, N)

induced by the map v : E — § is an isomorphism. By Lemma 4.4, we may
assume that N = rk™ N for some additive N € D(M(R), R), and by induction
on degree, we may further assume that N lies in a single homological degree.
But since R is a localization of Z, any additive functor from M (R) to R-modules
is R-linear, thus of the form Hom(T, M) for some R-module M. Thus we may
assume N = Hom(T, M) for some M € D(R). Again by adjunction, it then
suffices to prove that the map

E é/\/lat(k) kT — S é/\/lat(k) rk®* T

induced by the map v of (4.11) is an isomorphism. But the adjunction map v
of (4.6) has the decomposition (2.11) that reads as

E——5 S "5 Hom(rk™ T, K),

where k is the assembly map (2.10) for the complex K,. Thus to finish the
proof, it suffices to check the following.

LEMMA 4.5. For any object K € D(R) represented by a complex K, of flat

R-modules concentrated in non-negative homological degrees, denote by S €
D(M(R), R) the object represented by the complex C,(D(Hom(T, K,)), R), let

S =rk*S, and let
rk* k8 — rk* Hom (T, K) = Hom(rk®* T, K)
be the pullback of the assembly map K : S = Hom(T, K). Then the map
S  ptar(y KT = K

adjoint to rk™ k is an isomorphism in D(R).
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Proof. For any M € R-mod, we can counsider the functor Hom(T, M) as a
functor from M (R) to sets, and we have the assembly map

R[Hom(T,M)] — Hom(T, M). (4.12)
If M is finitely generated and free, then by definition, we have

R[Hom(T, M)]|(M,) = R[Hom(T, M)(M,)] = R[Hom(M;, M)]
=~ R[Hom(M™*, My)]

for any My € M(R), so that R[Hom (T, M)] = R+ is a representable functor.
Therefore TorlM(R)(R[’Hom(T, M)], T) vanishes for ¢ > 1, and the map

R[Hom(T, M)] @1y T = R[Hom(T, M)] @py(my T — M

adjoint to the assembly map (4.12) is an isomorphism. Since — ® — commutes
with filtered direct limits, the same is true for an R-module M that is only flat,
not necessarily finitely generated or free.

Moreover, consider the product A° x M(R), with the projections 7 : A° x
M(R) = M(R), 7" : A° x M(R) — A°. Then for any simplicial pointwise flat
R-module M € Fun(A°, R), the map

a: R[Hom(r*T, M)] @r 7T — M (4.13)

adjoint to the assembly map R[Hom(m*T,M)] — Hom(7*T, M) is also an
isomorphism. Apply this to M = D(K,), and note that we have

K~L'nM, S=L nRHom(r*T, M),

and the map §(§L§>M(R) T — K adjoint to the assembly map & is exactly L° 1 (a),
where a is the map (4.13). Therefore it is also an isomorphism.
To finish the proof, it remains to show that the natural map

S @y T — k" S Opariry K T = S Optanry 1k T
is an isomorphism. By adjunction, it suffices to show that the natural map
Hom(S, E) — Hom(S, rk, rk* E) = Hom(S, rk* E)
is an isomorphism for any additive E € D(M(R), R), and this immediately
follows from Lemma 4.4. O
REFERENCES

[BBD] A. Beilinson, J. Bernstein, and P. Deligne, Faiscauz pervers, Astérisque
100, Soc. Math. de France, 1983.

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 335-365



[Be]

[Gi]

[Go]

[Gr]
[HSS]

[JP]

Kal]

Ka2]

[Ka3]
[Ka4]

K-THEORY AS AN EILENBERG-MAC LANE SPECTRUM 365

J. Bénabou, Introduction to bicategories, Lecture Notes in Math. 47,
Springer-Verlag, 1967; 1-77.

H. Gillet, Riemann-Roch theorems for higher algebraic K -theory, Adv.
in Math, 40 (1981), 203—289.

T. Goodwillie, Relative Algebraic K-Theory and Cyclic Homology, Ann.
of Math., 124 (1986), 347-402.

A. Grothendieck, SGA I, Exposé VI

M. Hovey, B. Shipley, and J. Smith, Symmetric spectra, J. AMS 13
(2000), 149-208.

M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, J. of
Algebra, 137 (1991), 253-296.

D. Kaledin, Non-commutative Hodge-to-de Rham degeneration via the
method of Deligne-Illusie, Pure Appl. Math. Q. 4 (2008), 785-875.

D. Kaledin, Derived Mackey functors, Mosc. Math. J., 11 (2011), 723—
803.

D. Kaledin, Trace functors and localization, arXiv:1308.3743.

D. Kaledin, Homology of infinite loop spaces, in Derived categories in
algebraic geometry (Tokyo, 2011), eds. Yujiro Kawamata, EMS, 2012,
111-121.

D. Quillen, On the Cohomology and K-Theory of the General Linear
Groups Over a Finite Field, Ann. of Math., 96 (1972), 552-586.

G. Segal, Categories and cohomology theories, Topology 13 (1974), 293~
312.

B. Shipley, HZ-algebra spectra are differential graded algebras, Amer.
J. Math. 129 (2007), 351-379.

Steklov Math Institute, Algebraic Geometry Section Moscow, Russia

and

IBS Center for geometry and Physics, Pohang, Rep. of Korea

E-mail address: kaledin®@mi.ras.ru

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015) 335-365



366

DOCUMENTA MATHEMATICA - EXTRA VOLUME MERKURJEV (2015)



DOCUMENTA MATH.

=W

MINIMAL CANONICAL DIMENSIONS

OF QUADRATIC FORMS
FO6unero Anercannpa CepreeBuda MOCBSAMAETCS
NIKITA A. KARPENKO!

Received: September 11, 2013
Revised: January 7, 2014

ABSTRACT. Canonical dimension of a smooth complete connected
variety is the minimal dimension of image of its rational endomor-
phism. The i-th canonical dimension of a non-degenerate quadratic
form is the canonical dimension of its i-th orthogonal grassmannian.
The maximum of a canonical dimension for quadratic forms of a fixed
dimension is known to be equal to the dimension of the corresponding
grassmannian. This article is about the minima of the canonical di-
mensions of an anisotropic quadratic form. We conjecture that they
equal the canonical dimensions of an excellent anisotropic quadratic
form of the same dimension and we prove it in a wide range of cases.
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1. INTRODUCTION

The canonical dimension cd(X) of a smooth complete connected algebraic va-
riety X over a field F' is the minimum of dimension of the image of a rational
map X --» X. This integer depends only on the class of field extensions L/F
with X (L) # (). We refer to [9] and [16] for interpretations and basic properties
of cd(X). We will also use a 2-local version cdy(X) of ¢cd(X) called canonical
2-dimenston.

All fields here are of characteristic # 2. (The questions we are discussing can
be raised in characteristic 2 as well, but all results we get are for characteristic
# 2 mainly because their proofs need the Steenrod operations on Chow groups
modulo 2 which are not available in characteristic 2.)

Let ¢ be a non-degenerate quadratic form over a field F. (Our general reference
for quadratic forms is [3].) For any integer ¢ lying in the interval [1, (dim ¢)/2],
the é-th canonical dimension cd[é](¢) is defined as the canonical dimension of
the orthogonal grassmannian of i-dimensional totally isotropic subspaces of ¢
(i-grassmannian of ¢ for short). A little care should be given to the case of
i = (dim ¢)/2 because the corresponding i-grassmannian is not connected if
the discriminant of ¢ is trivial. However, the (two) connected components it
has are isomorphic to each other so that we can define the canonical dimension
by taking any of them.

For arbitrary ¢ and a given field extension L/F', the i-grassmannian of ¢ has
an L-point if and only if the Witt index ig(pr) is at least 4. Therefore, cd[i](¢)
is an invariant of the class of field extensions L/F satisfying io(¢r) > i.
Similarly, the i-th canonical 2-dimension cdz[i](¢) is the canonical 2-dimension
of the i-grassmannian. Since in general, canonical 2-dimension is a lower bound
for canonical dimension, we have cd[i](¢) > cda[i](¢) for any . This is known
to be equality for ¢ = 1 (see Section 5) and no example when this inequality is
not an equality (for some ¢ > 1) is known.

The study of canonical dimensions of quadratic forms naturally commences
with the question about the range of their possible values for anisotropic qua-
dratic forms of a fixed dimension (over all fields or over all field extensions of
a given field). It has been shown in [12] (see also [13]) that the evident upper
bound on cd[i](¢) and cdz[i](¢), given by the dimension of the i-grassmannian,
is sharp. Here is a formula for this dimension:
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i(i —1)/2 + i(dim ¢ — 27).
The question on the sharp upper bound being therefore closed, the present
paper addresses the question about the sharp lower bound. Natural candidates
are canonical dimensions of excellent quadratic forms. We do not really have a
strong evidence supporting this, but we may, for instance, recall [3, Theorem
84.1] where the excellent forms appear in the answer to the question about the
minimal height of quadratic forms.
For any n > 1 and any i € [1, n/2], we write cd[i](n) (resp., cdz[i](n)) for the i-
th canonical (2-)dimension of an anisotropic excellent n-dimensional quadratic
form over some field. Note that cd[i](n) depends only on i,n and coincides
with cda[i](n) (see Section 2).
The following conjecture therefore gives a complete answer to the question
about the sharp lower bound on canonical dimension and canonical 2-dimension
of anisotropic quadratic forms:

CONJECTURE 1.1. Let ¢ be an anisotropic quadratic form over a field F' satis-
fying dim ¢ > 2i for some i > 1. Then cdz[i](p) > cd[i](dim ¢).

The reason of excluding the case 2i = dim ¢ in the statement is that in this
case cdsali](p) = cdai — 1](pg) and cd[i](¢) = cd[i — 1](¢E), where E/F is
the discriminant field extension of ¢ (E = F' if the discriminant of ¢ is trivial)
and ¢ > 2. So, understanding of cda[i](¢) and cd[i](¢) for i < (dim ¢)/2 would
provide their understanding for ¢ = (dim ¢)/2 and, on the other hand, using
these relations it is easy to get counter-examples to the formula of Conjecture
1.1 with ¢ = (dim ¢)/2 (see Section 9).

In this paper we prove Conjecture 1.1 for “small” values of 7, namely, for i not
exceeding the 2-nd absolute Witt index of ¢ (see Theorem 6.1) as well as for
1 <5 (see Theorems 7.1, 10.1 and 11.1). Finally, we prove Conjecture 1.1 with
arbitrary ¢ for all quadratic forms of height < 3 (see Theorem 8.2).

The proofs make use of a wide spectrum of modern results on quadratic forms
and Chow motives (the question seems to be a good testing ground for them).
However most of the results under use already became “classical” at least in
the sense that they have been exposed in a book (in [3] in most of the cases).
For instance, we are using only a part of Excellent Connections Theorem [20,
Theorem 1.3], called Outer, which was available already before the whole result
and is exposed in [3, Corollary 80.13].

The most recent (and certainly yet non-classical) tool is a kind of going down
principle for Chow motives due to Charles De Clercq [2], used in the proofs of
Theorem 3.2 and (in a slightly different situation) Theorem 8.2. Applications
of some particular cases of this principle exist already in the literature (see,
e.g., [4]). We are using it here (in the proof of Theorem 3.2) in a new situation
(still not in its full generality but in the biggest generality which may occur in
the case of projective homogeneous varieties). This principle generalizes [10,
Proposition 4.6], this older result is not sufficient for our purposes here.
Those methods can certainly be used to prove a bit more of Conjecture 1.1,
but it seems that something is missing for a complete solution.
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One could expect that the case of maximal ¢ should be more accessible because
maximal orthogonal grassmannians are so well-understood (mainly due to re-
sults of [19] also exposed in [3, Chapter XVI]). Though in our approach we
have to go through all values of i in order to get to the maximal one.

This paper is an extended version of [6].

For more introduction see §12.

ACKNOWLEDGEMENTS. This work has been initiated during my stay at the
Fields Institute for Research in Mathematical Sciences in Spring 2013. I thank
the Fields Institute for hospitality and perfect working conditions.

2. EXCELLENT FORMS

Here we recall some standard facts about excellent forms needed to complete
the statement of Conjecture 1.1. Proofs (along with a definition) can be found,
e.g., in [3, §28].

Every positive integer n is uniquely representable in the form of an alternating
sum of 2-powers:

n=2P0 _9PL L QP2 _ ... (_1)7’—12197«_1 4 (_1)7’2197«

for some integers r > 0 and pg, p1,...,p, satisfying pg > p1 > -+ > pr—1 >
pr+1>0.
For any integer 7 € [1, n/2], we define an integer cd[i](n) as

cd[i](n) := 2P—171 — 1,
where s is the minimal positive integer with
n— 2> 2P — 2Pt 4.4 (—1)T 520,
Note that cd[i](n) > cd[i +1](n) (for any i,n such that both sides are defined).

LEMMA 2.1. For any field k and any positive integer n, there exists an n-

dimensional anisotropic quadratic form @ over an appropriate extension field
F/k such that

cd[i)(p) = cda[i](p) = cd[i)(n)
for any i € [1, n/2].

Proof. One may take as F' a field extension of k generated by pg algebraically
independent elements. (For k& C R one may simply take F' = R.) Then there
exists an anisotropic pg-fold Pfister form over F' and therefore an anisotropic
excellent quadratic form ¢ of dimension n. (For F = R, the unique up to
isomorphism anisotropic n-dimensional quadratic form is excellent.) We claim
that canonical dimensions of such ¢ are as required. Indeed, for i € [1, n/2]
let s be the defined above integer. Then by [3, Theorem 28.3], there exists
a ps—1-fold Pfister form p over F such that for any field extension L/F the
condition ip(¢r) > i is equivalent to isotropy of pr. It follows that cds[i](¢) =
ed[i](¢) = 2Ps—171 — 1. O
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3. UPPER MOTIVES

By motives we always mean the Chow motives with coefficients in Fy := Z/27Z;
we use related terminology and notation as in [3, Chapter XII]. In particular,
M (X) is the motive of a variety X; the motive M (Spec F') and all its shifts
M (Spec F)(i), i € Z, are called Tate motives. If M is a motive over F, M is
the corresponding motive over an algebraic closure of F'.

Let ¢ be a non-degenerate quadratic form over a field F. For an integer ¢ with
0 <i<dimep/2, let X; = X;(p) be the i-grassmannian of ¢. In particular, Xy
is the point and X := X; is the projective quadric of ¢.

According to the general notion of upper motive, introduced in [14] and [11], the
upper motive U(X;) of the variety X; is the unique summand in the complete
motivic decomposition of X with the property that U(X;) contains a Tate
summand with no shift (i.e., with the shift 0). According to the general criterion
of isomorphism for upper motives, U(X;) ~ U(X;) if and only if

o(pr) >i <= o(pr) >J

for any extension field L/F. This means that ¢ and j are in the same semi-open
interval (j,—1, j,] for some r > 0, where j, is the r-th absolute Witt index of ¢
and j_1 1= —o0.

According to the general [11, Theorem 1.1], applied to quadrics, any summand
of the complete motivic decomposition of X is a shift of U(X;) for some i or —
in the case of even-dimensional ¢ with non-trivial discriminant — U (Spec E),
where E/F is the quadratic discriminant field extension. Shifts of U((X;)g),
which may a priori appear by [11, Theorem 1.1], aren’t possible because for
any j # (dim X)/2 the motive M (X) contains at most one Tate summand with
the shift j while U((X;)g) contains two Tate summands without shift and two
Tate summands with the shift dim U((X;)g).

A more precise information can be derived from [18, §4] (see also [3, §73]):
if a shift of U(X;) for some i € (jy—1, jr] with » > 1 really appears in the
decomposition (note that this is always the case for r = 1), then it appears
precisely i, :=j,—j,_1 times and the shifting numbers are j,_1,j—1+1,...,j-—
1. A shift of U(Spec E) appears if and only if ¢ is hyperbolic in which case it
appears only once and with the shifting number (dim X)/2. Note that U(Xj;)
for ¢ < jg is just the motive of a point (= the Tate summand with no shift),
it appears precisely 2jy times and the shifting numbers are 0,...,jo — 1 and
dimX,...,dim X — (jo — 1).

Given any ¢ and setting Y := X, one can answer the question, whether a shift
of U(Y) does appear, in terms of canonical dimension. First of all we have

THEOREM 3.1 ([9, Theorem 5.1]). cd2(Y) = dim U(Y).

The following result is new. It provides a criterion of appearance of U(Y) and
is proved with a help of the going down principle of [2].

THEOREM 3.2. Assume that i € (jr—1, jr] for somer > 1 and set T := X, _,,
Y = X;. A shift of U(Y) appears in the complete motivic decomposition of X
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if and only if
CdQ(Y) = CdQ(YF(T)).

REMARK 3.3 (cf. §5). cdo(Yp(ry) = dim¢ — 2j, 1 —i, — 1.
REMARK 3.4. Note that cda(Y) > cd2(Yp(r)) in general, [16].

REMARK 3.5. As already mentioned, for ¢ = jq, the i; shifts of U(X;) appear
always.

REMARK 3.6. Sufficient criteria of appearance given in [18, Theorems 4.15 and
4.17] are easily derived from Theorem 3.2.

Proof of Theorem 3.2. By Theorem 3.1, we may replace cda(Y) with dim U (Y")
as well as cda (Yp(ry) with dim U (Yp(ry) in the statement.

If a shift of U(Y) does appear, then dimU(Y) = dimU(Yp(r)) by [18, §4]
(see also [3, §73]). This proves one (“easy”) direction of Theorem 3.2. Let us
concentrate on the opposite direction.

Note that a shift of U(Yr(ry) is a summand in M (Xg(ry) (see Remark 3.5).
If dimU(Y) = dimU(Yp(7)), then we conclude by [2, Theorem 1.1] that the
same shift of U(Y) is a summand in M (X). O

4. SOME TOOLS

In this section we recall some results which appear most frequently in the proofs
below.

4a. OUTER EXCELLENT CONNECTIONS. The following statement is a part of
[20, Theorem 1.3]. It is also proved in [3, Corollary 80.13].

THEOREM 4.1 (Outer Excellent Connections). Let X be the quadric of an
anisotropic quadratic form of dimension 2" + m with n > 1 and m € [1, 27].
Let M be a summand of the complete motivic decomposition of X. If M con-
tains a Tate summand with a shift i < m, then it also contains a Tate summand
with the shift 2" —1+i=dimX — (m — 1) + 1.

Using Theorem 4.1, we will be able to see that no shift of U(Y) is a summand of
M (X)) for certain concrete X and Y as in Theorem 3.2. The latter theorem will
then tell us that cda(Y) > cd2(Yp(7)) (see Remark 3.4). Afterwards, we usually
get even a sharper lower bound on ¢d2(Y') using the motivic decomposition
described right below.

4b. A MOTIVIC DECOMPOSITION. Let ¢ be a non-degenerate quadratic form
over F' of dimension n and let Y be the ig-grassmannian of ¢. A variety is
called anisotropic if all its closed points are of even degree.

LEMMA 4.2 ([7, Theorem 15.8 and Corollary 15.14] or [1]). The motive of Y
decomposes in a sum of shifts of motives of some anisotropic varieties plus

é_éo M(T,) (i(i —1)/2+i(n— 210))7
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where T'; is the i-grassmannian of an ig-dimensional vector space (T and T'y,
are points, I'y and T'y,—1 — projective spaces).

COROLLARY 4.3. The motive of Y does not contain any Tate summand with a
positive shift strictly below n — 2iy.

Proof. By preceding Lemma, the motive of ¥ decomposes in a sum of shifts
of motives of certain varieties. Those summands of this motivic decomposition
which are motives of isotropic varieties? (and therefore can contain Tate sum-
mands while the motives of anisotropic varieties cannot, see, e.g., [14, Lemma
2.21]) come with shifts i(i — 1)/2 + i(n — 2ig), ¢« > 0. For ¢ = 0 the shifting
number is 0 and the corresponding variety is just the point. For ¢ > 1 the
shifting numbers are at least n — 2ig. O

4c. MAXIMAL ORTHOGONAL GRASSMANNIAN. Let ¢ be a non-degenerate qua-
dratic form of dimension 2n+ 1 and let Y = X,(¢) be the maximal orthogonal
grassmannian of ¢. Let e; € Chi(Y), 1 =0,1,...,e9n-1,1, be the standard
generators of the modulo 2 Chow ring Ch(Y) defined as in [3, §86]. We say
that e; is rational if it is in the image of the change of field homomorphism
Ch*(Y) — Ch*(Y); otherwise is irrational. We recall [3, Theorem 90.3] stating
that cd2(Y") is equal to the sum of all j such that e; is irrational.

4d. VALUES OF FIRST WITT INDEX. By [3, Proposition 79.4 and Remark 79.5],
the first Witt index i; of an anisotropic quadratic form of dimension d > 2
satisfies the relations

i1=d (mod2") and 1<i; <27
for some integer r > 0 with 2" < d.

4e. DIMENSIONS OF FORMS IN I". By [3, Proposition 82.1], dimension d of
an anisotropic quadratic form in I"™ (the n-th power of the fundamental ideal
in the Witt ring of the base field), where n > 1, is either > 27*1 or equals
27+tl _ 2% with 1 < 4 < n + 1. Actually, apart from the old Arason-Pfister
Hauptsatz (saying that d &€ (0, 2™)), we are only using the statement about
the “first hole”, saying that d is outside of the open interval (27, 2" + 2n~1)
and proved earlier ([18, Theorem 6.4]).

5. LEVEL 1

We explain here that Conjecture 1.1 is actually already known in “level 17,
that is, for ¢ not exceeding the first Witt index of ¢.

It is well-known that ed[1](¢) = eda[1](¢) > cd[1](dim ¢) for any anisotropic .
This is a consequence of the formula cd[1](¢) = cda[1](p) = dim e — i1(¢) — 1
([3, Theorem 90.2]) and the fact that the first Witt index of an excellent form is
maximal among the first Witt indexes of quadratic forms of a given dimension
([5, Corollary 1]).

2A variety is isotropic here if it has a closed point of odd degree.
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As an immediate consequence, we get the following, formally more general
statement — (a bit more than) the “level 1”7 case of Conjecture 1.1:

PROPOSITION 5.1. Let ¢ be an anisotropic quadratic form over F of height
> 1. For any i <i1(p) one has cd[i](v) = cda[i](¢) > cd[i](dim ¢).

Proof. cd[i|(¢) = cda[i](¢) = cd2[1](v) > cd[1](dim ¢) > cd[i](dim ¢). O
6. LEVEL 2
In this Section we prove (a bit more than) the “level 2”7 case of Conjecture 1.1:

THEOREM 6.1. Let ¢ be an anisotropic quadratic form over F of height > 2.
For any positive integer i < i1(p) +ia(p) one has cdz[i](¢) > cd[i](dim ¢).

COROLLARY 6.2. Let ¢ be an anisotropic quadratic form over I of dimension
dimp > 4. Then cdz2[2](¢) > cd[2](dim ¢). O

COROLLARY 6.3. Let ¢ be an anisotropic quadratic form over F of height < 2.
Then cdz[i](¢) > cd[i](dim ) for any i € [1, (dim¢)/2]. O

Proof of Theorem 6.1. We write iy for i;(p) and iz for ix(¢). By Proposition
5.1, we may assume that i € (iy, i + iz].

Let us write dim ¢ = 2" +m with n > 1 and m € [1, 2"]. In the case of i; = m
we have

cda[il() = edali = m](p1) = cdfi — m](dim ¢1) = cd[i}(dim ),

where 1 is the 1-st anisotropic kernel of ¢, [3, §25]. The first inequality here
is a particular case of the general principle saying that c¢d2(77) < cdo(T) for a
variety T over F and a field extension L/F', [16]. The second inequality holds
by Proposition 5.1.

Below we are assuming that i; < m and we have to show that cda[i](¢) > 2" —1.
In the case of iy < m/2 we have

edai](i9) = cda[L](p1) > cd[1](2" +m — 20, (p)) = 2" — 1.

Below we are assuming that m/2 < i; < m. It follows by §4d that i; = m/2
(in particular, m is > 2 and even). This implies that iy < 271,

If iy +1i2 < m, then i; +1i2 < m —i; by [17, Theorem 1.2] which is impossible
with iy = m/2. Therefore i; + iy > m and it follows by Theorem 4.1 that
U(Y)(i1) is not a direct summand of the motive of X, where X is the quadric
of ¢ and Y is the (jo =iy + i2)-th grassmannian of (.

Since cdai](p) = cda(Y), all we need to show is cda(Y) > 2™ — 1.

First of all we have cd2(Y) > cd2(Yr(x)) by Theorem 3.2 and Remark 3.4.
Now we claim that the complete decomposition of M (Yr(x)) does not contain
a summand U (Yp(x))(j) with j inside of the open interval

(07 2" +m — 2(11 + 12))

Indeed, if U(Yp(x))(j) with some j is there, then M (Yp(y)) contains a Tate
summand with the shift j. By Corollary 4.3 we necessarily have j = 0 or
j>2"+m—2(i; +i2), and the claim is proved.
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By [9, Proposition 5.2], the complete decomposition of U(Y)p(x) ends with
a summand U(Yp(x))(j) with some j > 0. (We say “ends” meaning that
dimU(Y)px) = dimU(Yr(x)) + j.) By the first claim, j # 0. It follows by
the second claim that j > 2™ +m — 2(i; +1i2). Thus
CdQ(Y) = dlm U(Y) = dlm U(Y)F(X) = dlm U(YF(X))+] - Cdg[l](ﬁpl)+j =
(2"+m—il —1)+] > (2"—|—m—i1—1)+(2"+m—2(11 +12)) =
2" L om — 3iy — 2ip — 1 =2"T £ m/2 — 2iy — 1> 2"

The last inequality here holds because iy < 277! and m > 2 (see above). The
very first equality holds by Theorem 3.1. (]

7. THIRD CANONICAL DIMENSION

THEOREM 7.1. For any positive integer i < 3 and any anisotropic quadratic
form ¢ of dimension > 2i, one has cdz[i](¢) > cd[i](dim ¢).

PROPOSITION 7.2. In order to prove Theorem 7.1, one only needs to show that
cda[3](p) = 2"—1 for p satisfying dim ¢ = 2"+3 (n > 2) and iy (¢) = ia(p) = 1.

Proof. We are reduced to the case of i = 3 and of ¢ of height > 3 with
i1(p) =1i2(¢) = 1 by Theorem 6.1.

So, we assume that dim ¢ > 6. Having written dim ¢ = 2"+m with m € [1, 2"]
(where n > 2), we get

eda3]() = cda[2)(p1) = cd2](2" +m —2) =

2" — 1 = cd[3](dim ¢) provided that m > 4;
2=l — 1 > cd[3](dim ) for m = 1,2 and
2n=l —1 <27 — 1 =cd[3](dim¢p) for m = 3.

So, the only problematic value of m is 3. O

Proof of Theorem 7.1. We are showing that cda[i](¢) > 2" — 1 for ¢ as in
Proposition 7.2. Let X be the quadric of ¢, T the 2-grassmannian of ¢, and
Y its (2 +i3)-grassmannian, where i3 = i3(¢) is the third Witt index of ¢. We
have to show that cda(Y) > 2™ — 1.
We claim that cdz(Y) > cda(Yp(ry). We get the claim as a consequence of
Theorem 3.2 because by Theorem 4.1, U(Y)(2) is not a summand of M (X).
By §4b, the complete motivic decomposition of M (Yp(y)) does not contain a
Tate summand with a positive shift strictly below

dimy — 4 — 2i3 =2" — 1 — 2i3.
Since cda(Yp(ry) = dimp — 4 — i3 — 1 = 2" — 2 — i3, it follows that

CdQ(Y) > (2" -2 13) + (2" —1- 213)

Therefore c¢da(Y) > 2™ — 1 provided that 3iz < 2™ — 2.
The integer i3 is the first Witt index i;(p2) of the anisotropic quadratic form
2 (the 2-nd anisotropic kernel of ¢) of dimension 2" — 1. Tt follows by §4d
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that i3 = 2”71 — 1 or i3 < 2”72 — 1. In the second case we are done and we are
considering the first case below.

The equality i3 = 2"~ ! — 1 we are assuming now means that ¢ is a (2" + 3)-
dimensional anisotropic quadratic form of height 3 with the splitting pattern
(i1,i2,13) = (1,1,2"~! —1). This is actually possible only for n =2 and n = 3
(see [18, §7.2] for n < 4), but we will not use this fact because our argument
will work for arbitrary n.

Note that the variety Y is now the maximal grassmannian of ¢. Therefore
cda(Y) can be computed as in §4c in terms of the generators e; € Ch'(Y),
1=0,1,...,eqn-147.

Note that ¢ is a (2™ — 1)-dimensional form of height 1. So, 5 is similar to a
1-codimensional subform of an anisotropic n-fold Pfister form. It follows by [3,
Example 88.10] that egn-1_1 is irrational.

As can be easily deduced from [3, Corollary 88.6], the homomorphism Ch(Y) —
Ch(Yp(ry) is surjective in codimensions < 2n=1 1. Consequently, if both egn—1
and egn-141 are rational, then cda(Yp(r)) = cd2(Y") contradicting the proved
above claim. So, at least one of these two standard generators is irrational and
it follows that cda(Y) > (271 — 1)+ 271 =27 — 1. O

8. HEIGHT 3

We prove (a bit more than) Conjecture 1.1 for all forms ¢ of height < 3 in this
Section.

We recall the classification of splitting patterns of quadratic forms of height 2
first (for reader’s convenience, we include a proof):

THEOREM 8.1 ([21, Theorem 2]). Let ¢ be a non-zero anisotropic quadratic
form of height < 2 over a field of characteristic # 2 with a non-excellent split-
ting pattern. Then

(1) either dim @ = 2"t and i1 () = 2"~ = is3(p) for some n >0 or

(2) dimp = 2" +2"71 i;(p) =272, and iz(p) = 2" for some n > 1.

Proof. By [3, Theorem 84.1], the height of ¢ is at least the height of an
anisotropic excellent form of dimension dim . Moreover, for odd dim ¢ this
is an equality by [3, Remark 84.6]. It follows that either dim ¢ = 2™ for some
n >0, or dimg = 2™ — 2"~ for some m >n > 1, or dimg = 2™ — 2" + 1 for
some m > n > 1. To finish, it suffices to look at the possible values of i;(¢)
satisfying the condition of §4d together with the condition that dim ¢ — 2i; (¢)
is 2" or 271 — 1 for some r > 1. The latter condition comes from the classical
[15, Theorem 5.8] giving the list of possible dimensions of height 1 anisotropic
quadratic forms. O

THEOREM 8.2. Let ¢ be an anisotropic quadratic form over F of height < 3.
For any positive integer i < (dim)/2 one has cdz[i](¢) > cd[i](dimp). In
particular, Conjecture 1.1 holds for all ¢ of height < 3.

Proof. By Theorem 6.1, we only need to consider ¢ of precisely height 3. Let
n = va(dim ¢).
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EVEN-DIMENSIONAL . We assume that n > 1 here. We have to show that
cda[m](p) > on—l 1,

where m = (dim ¢)/2.

If 2771| i;, then 2"| dim¢; and we are done. Otherwise, by §4d, i; = 2" for
some 0 < r < n — 2. Since ¢; is of height 2, it follows by Theorem 8.1 that
dim p = 2™.

If r = n—2then iy = 2”72 and iy = iz = 2"73. It follows by [3, Corollary 83.4]
that dim ¢ —1i; is a 2-power which is false. Therefore r < n—3 and we have iy =
on—l_9rt+l js =927 or r =n—3 and iy = 2" 3, i3 = 272, In the first case, it
follows by [18, Theorem 7.7] as well as by [3, Theorem 83.3] that U (Yp(x))(i1 +
i2) is a summand of M (Xp(x)), where X is the projective quadric and Y the m-
grassmannian of ¢. On the other hand, U(Y')(i; +i2) is not a summand of M (X)
by Theorem 4.1. It follows by [2, Theorem 1.1] that cdz(Yp(x)) < cd2(Y).
Therefore the standard generator of maximal codimension egn-1_; € Ch(Y) is
irrational and it follows that cda(Y) > 2"~ — 1. So, cda[m](p) > 2" — 1 as
required.

In the second case, we simply have

cda(Y) = cda[2" 73 + 1](p1) > cd[2" 3 +1](2" L +2772) =271 — 1.

ODD-DIMENSIONAL ¢. Here we assume that n = 0. By [3, Theorem 84.1
and Remark 84.6], the height of an anisotropic excellent quadratic form of
dimension dim¢ is 1 or 3. In the first case we have dim ¢ = 2" — 1 for some
n > 2 and we need to show that cda[2"~1 — 1](p) > 271 — 1.

By §4d, iy = 2" —1 for some 1 < r <n—1. Moreover, r < n— 2 because height
of ¢ is 3. It follows that dim (p; = 2" —2"T141. Since ¢, is of height 2, it has an
excellent splitting pattern by Theorem 8.1 so that we have i, = 27~1 —27+1 1
and i3 = 2" — 1.

Note that n > 3 at this stage. If n = 3 then we are done by Theorem 7.1.
Assuming that n > 4, we claim that U(Yp(x))(i1 + i2) is a summand of
M (Xp(x)), where X is the quadric and Y the maximal grassmannian of ¢.
For » < n — 3, this is a consequence of the inequality i3 > i3 and [18, Theorem
7.7]. For the remaining case of r = n — 2 we have iz = 1 and the above argu-
ment does not work. However, Theorem 4.1 ensures that the first shell of ¢ is
connected with the third one. Since i1 = 2" — 1 > iy = 1, the first shell is not
connected with the second one, and the claim follows.

Using the claim, we finish the proof of the current case the way we did it above
for even-dimensional .

It remains to consider the case when the height of an anisotropic excellent
quadratic form of dimension dim ¢ is 3. This means that dim ¢ = 270 — 2"t +
2"2 — 1 for some integers ng > ny > ny > 2.

The first Witt index i; should satisfy §4d and in the same time be such that
the height of the integer® dim ¢; = dim ¢ — 2i; is 2. It follows that dimp; =

3As in [3, §84], by the height of a positive integer we mean the height of an anisotropic
excellent quadratic form of dimension equal this integer.
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2m — 272 + 1 or dim ¢ = 2™ — 2" 4 1. In both cases we have
cda[m](p) = cda[ma](p1) = cd[mi](dim ;) > cd[m](dim ¢),
where m := (dim¢ — 1)/2 and m; := (dim ¢y — 1)/2. O

9. “COUNTER-EXAMPLE” WITH MAXIMAL GRASSMANNIAN

Surprisingly, we didn’t exclude i = (dim¢)/2 in any case of Conjecture 1.1
proved so far. So, let us produce a “counter-example” to the case i = (dim¢)/2
of Conjecture 1.1. By Theorem 7.1, 7 should be at least 4 and therefore dim ¢
should be at least 8. We produce it in dimension 8.

Let us find a field F' and quadratic forms ¢ and 1 such that ¢ is 4-dimensional of
discriminant a, qp(, /) is anisotropic, 9 is 4-dimensional and divisible by ((a)),
and, finally, ¢ := ¢l is anisotropic. For instance, taking F' := k(a,b,c,d,e)
with any field k& and variables a,b,c,d, e, we can take ©» = {(a,b)) and ¢ =
(¢, d, e,acde). Then

cd[4](¢) = cd2[4](¢) = cd[2](gp(ya)) = 1 < 3 = cd[4](dim ¢).
10. FOURTH CANONICAL DIMENSION
THEOREM 10.1. Conjecture 1.1 holds for i = 4.

PRrROPOSITION 10.2. It suffices to prove Theorem 10.1 only for ¢ of dimension
2" +4 (n > 3), of height at least 4, and of Witt indexes satisfying either
W=l =li3=1;0rip =1,ip =2; oriy = 2,iy = 1. More precisely, it suffices
to prove that cda[4](p) > 2™ — 1 for such .

Proof. Note that Conjecture 1.1 for ¢ = 4 is only about quadratic forms ¢ of
dimension > 9. We may assume that i; < 2 (Theorem 6.1) and that the height
of ¢ is at least 4 (Theorem 8.2). Moreover, we may assume that i; +is+i3 =3
or iy +1iz = 3 (Theorem 7.1). Therefore, we have either iy =iy = i3 = 1; or
il = 1712 = 2; or il = 2,i2 =1.

Let us write dimy = 2" +m with n > 3 and 1 < m < 2". Assuming that
iy = 1, we have

cda[4](p) > cd[3](2" + m — 2) = 2" — 1 = cd[4](dim ¢)
for m > 5. On the other hand,
cda[4](p) > cd[3](2" +m — 2) = 2"! — 1 = cd[4](dim ¢)

for m < 3. So, the only problematic value of m is 4.
Assuming that i; = 2, we have

cda[4](p) > cd[2](2" + m — 4) = 2" — 1 = cd[4](dim ¢)
for m > 6. On the other hand,
cda[4](¢) > cd[2](2" +m —4) = 2" — 1 = cd[4](dim ¢)

for m < 3. Moreover, since i; = 2, m is necessarily even (§4d). So, the only
problematic value of m is again 4. (I
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Proof of Theorem 10.1. Let ¢ be a quadratic form as in Proposition 10.2. Let
r be the integer € {3,4} such that i; +---+1i,_1 = 3 (more concretely, r := 3 if
i1+ie = 3, r :=4if iy +is+i3 = 3). Let X be the quadric, T the 3-grassmannian,
and Y the (3 + i, )-grassmannian of ¢. Since cdz[4](p) = cda2(Y), it suffices to
prove that cda(Y) > 2™ — 1.

By Theorem 4.1, the motive U(Y)(3) is not a summand of M (X). It follows
by Theorem 3.2 that cd2(Y) > cda(Yp(7)).

Now, using §4b in the standard way, we get that

CdQ(Y) Z CdQ(YF(T)) + (d1m<p — 2(i1 +---+ lr)) =
(2" =3 —i,) + (2" — 2 —2i,) = 2"t — 5 — 3i,.

So, the inequality cdy(Y) > 2" — 1 holds if 2"*! — 5 — 3i, > 2" — 1, or,
equivalently, if

(10.3) 2" > 3i, + 4.

Since the integer i, is the first Witt index of the quadratic form ¢, _; of dimen-
sion dim¢,_; = dimp — 6 = 2" — 2, we have i, = "=l _20ri, <272_-2
or i, = 1 (the last case is not included in the previous one if n = 3). The
inequality (10.3) does not hold only in the case of i, = 2"~! — 2 which we
consider now.

Recall that now our anisotropic quadratic form ¢ is of dimension 2" +4 (n > 3)
and has the splitting pattern

either (1,1,1,2"7' —2,1), or (1,2,2"* —2,1), or (2,1,2" 7! —2,1).

Let d € F* represents the discriminant of ¢. We evidently have Prva) € .
It follows that the Clifford algebra C(y) is Brauer-equivalent to a quaternion
algebra (¢, d) with some ¢ € F*. Let ¢ := pLc{(d). Then disc(v)) is trivial and
it follows by [3, Lemma 14.2] that the Clifford invariant of ¢ is trivial as well,
so that ¢ € I3. Let us show that 1) € I". We know this already for n = 3. To
show this for n > 4, it suffices to show that 1, is hyperbolic for any extension
field L/F such that dim(¢p)an < 2771, Since dim = 2" + 6, the condition
on L ensures that ig(¢r) > 2772+ 3. Since ¢ is a subform in 9 of codimension
2, i0(¢r) > 2772 + 1 which is > 4 because n > 4. It follows that ig(pr) > 4
and therefore > 2"~ + 1 so that dim(¢r)an < 2 and dim(¢r,)an < 4. Since the
discriminant and the Clifford invariant of vy are trivial, it follows that v is
hyperbolic.

We have shown that ¢ € I"™. On the other hand, 2" + 2 < dim Y., < 2™ 46 so
that for n > 4 we get a contradiction with §4e.

We proved that none of the above splitting patterns of ¢ is possible in the case
of n > 4. It remains to consider the case of n = 3, that is, of dimyp = 12.
The splitting patterns of 12-dimensional anisotropic quadratic forms have been
classified in [18, §7.3]. In particular, it has been shown there that only the first
of our three splitting patterns is possible. For ¢ of this possible splitting pattern
(1,1,1,2,1), the above procedure provides us with an anisotropic quadratic
form 1)’ := )., € I? of dimension 14 or 12 such that for any extension field
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L/F the condition ig(¢r) > 4 holds if and only if iy(¢07) > 4 is hyperbolic. It
follows that cda[4](¢) = cda[4](¥)’). Since the height of ¢’ is < 3, it follows by
Theorem 8.2 that c¢da[4](¢)') > cd[4](dimy’) =7=2" — 1. O

11. FIFTH CANONICAL DIMENSION

THEOREM 11.1. Conjecture 1.1 holds for i = 5.
ProproSITION 11.2. [t suffices to prove Theorem 11.1 only for ¢ of height at
least 4 and with iy + - - - + i, = 4 for some r, having one of the following types:
(1) dimp=2"4+5 (n>3) and iy = 1;
(2) dimp=2"46 (n>3) and iy =2;
(3) dimp=2"4+7 (n>3) and i; = 3.
More precisely, it suffices to prove that cda[4](p) > 2™ — 1 for above .

Proof. Note that Conjecture 1.1 for ¢ = 5 is only about quadratic forms ¢ of
dimension > 11. We may assume that i; < 3 (Theorem 6.1) and that the height
of ¢ is at least 4 (Theorem 8.2). Also we may assume that i; + -+ +1, = 4 for
some r (Theorem 10.1).

Let us write dimp =2" +m withn >3 and 1 <m < 2™

Assuming that i; = 1, we have

cdz[5](p) > cd[4](2" +m — 2) = 2" — 1 = cd[5](dim ¢)
for m > 6. On the other hand,
cda[5](¢) > cd[4](2" +m —2) = 2" — 1 = cd[5](dim ¢)

for m < 4. So, the only problematic value of m is 5.
Assuming that i; = 2, we have

cdz[5](¢) > cd[3](2" + m — 4) = 2" — 1 = cd[5](dim )
for m > 7. On the other hand,
cdz[5](¢) > cd[3](2" +m —4) = 2" — 1 = cd[5](dim @)

for m < 4. Moreover, since i; = 2, m is necessarily even (§4d). So, the only
problematic value of m is 6.
Finally, assuming that i; = 3, we have

cda[5](¢) > cd[2](2" + m — 6) = 2" — 1 = cd[5](dim )
for m > 8. On the other hand,
cda[5](¢) > cd[2](2" +m — 6) = 2" — 1 = cd[5](dim ¢)

for m < 4. Moreover, since iy = 3, m is necessarily odd (§4d). So, the only
problematic values of m are 5 and 7. Since 3 cannot be the first Witt index of
an anisotropic quadratic form of dimension 2" + 5 (§4d again), the value 5 is
not possible for m. O
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Proof of Theorem 11.1. Let ¢ be a quadratic form as in Proposition 11.2. Let
r be the integer such that i +--- +1i,_1 = 4. Let X be the quadric, T the 4-
grassmannian, and Y the (4+i,)-grassmannian of ¢. Since cda[5](y) = cda(Y),
it suffices to prove that cda(Y) > 2™ — 1.

By Theorem 4.1, the motive U(Y')(4) is not a summand of M (X). It follows
by Theorem 3.2 that cd2(Y) > cda(Yp(r)).

Now, using §4b in the standard way, we get that

CdQ(Y) Z CdQ(YF(T)) + (d1m<p — 2(i1 + -+ lr)) Z
2" 4+m—9—i.)+ (2" +m—8—2i,) =2"" £ 2m — 17 — 3i,.

So, the inequality cda(Y) > 2™ — 1 holds if 27+ +2m — 17 — 3i, > 2" — 1, or,
equivalently, if

(11.3) 2" > 3i, 4+ 16 — 2m.

Since the integer i, is the first Witt index of the quadratic form ¢, _; of dimen-
sion 2" +m — 8, we have i, =214 m_8ori, <224+ m-—8 Forn=3
and m = 6, there is an additional case of i, = 1. The inequality 11.3 does not
hold only in the case of i, = 2"~! +m — 8 which we consider now.

Let us start with the case of m = 5. So, ¢ is of dimension 2™ + 5 and has the
splitting pattern (...,2"~1 —3,1).

First we consider the case of n = 3. In this case we have cda(Yp()) = 3,
cda(Y') > 6, and §4b tells us that in the complete decomposition of M (Yp(y)
there is only one Tate summand with the shift 3. On the other hand, if
cda(Y) = 6, then U(Y)p(r) contains summands U(Yp(r)) and U(Ypr))(3)
so that there are two Tate summands with the shift 3 in the complete decom-
position of M (Yp(yy). It follows that cd2(Y') > 7 and we are done in the case
of n =3 and m = 5.

In the case of n > 4 and m = 5, the splitting pattern of ¢ is impossible.
Indeed, the anisotropic part of a (2" 4 6)-dimensional quadratic form of trivial
discriminant containing ¢ is in /™ and has dimension 2™ 4 6 or 2" + 4.

We go ahead to the case m = 7. Now ¢ is of dimension 2" + 7 and has the
splitting pattern (3,1,27~% — 1). This is only possible for n = 3, but anyway,
the height of ¢ is 3 so that we don’t need to do anything more here.

The remaining value of m is 6 so that dimy = 2™ + 6 now. The splitting
pattern of ¢ is either (2,1,1,2""1 —2,1) or (2,2,2" 1 —2,1). Adding to ¢ an
appropriate binary quadratic form of discriminant disc(y), we get a (2" + 8)-
dimensional quadratic form v lying in I® and therefore in I™. The anisotropic
part of ¢ has dimension 2™ + 8, 2™ + 6 or 2" 4+ 4 and it follows that n is 3 or 4.
Note that for any field extension L/F, the condition ip(¢r) > 5 is equivalent
to io(vr) > 5 so that cdz[5](p) = cda[5](¥).

If n = 4, then 1) is anisotropic (of dimension 24) and of height 2. Therefore we
have cdz[5](¢) > cd[5](24) = 15 and the case is closed.

If n = 3, then the anisotropic part v’ of 1 has dimension 12, 14, or 16. If
dimv’ = 12, then cda[5](¢) = cda[3](¥') > ¢d[3](12) = 7. If dim¢' = 14,
then cda[5](¢) = cda[4](¥') > cd[4](14) = 7. Finally, if dimy’ = 16, i.e., if ¢
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is anisotropic, then either the height of ¥ is < 3 or i1(¢)) = 1. If the height
is < 3, then cda[5](v0) > cd[5](16) = 7. If the first Witt index is 1, then
cda[5](¥) > eda[4](v1) > cd[4](14) = 7. (]

COROLLARY 11.4. Conjecture 1.1 holds in full for ¢ of dimension < 13.

Proof. We only need to consider cdz2[6](¢) for a 13-dimensional ¢. But
cd[6](13) = 1 so that the statement to prove is trivial. O

REMARK 11.5. To prove Conjecture 1.1 for 14-dimensional ¢, one “only” needs
to check that cdz[6](¢) > 7.

12. FINAL COMMENTS

The material of this section has been added on the suggestion of the editors.
The following proposition justifies appearance of excellent forms in the state-
ment of Conjecture 1.1. It also answers a question raised by H. Bermudez dur-
ing my talk at the International Conference on the Algebraic and Arithmetic
Theory of Quadratic Forms (Puerto Natales, Patagonia, Chile) in December
2013.

PROPOSITION 12.1. Let ¢ be an anisotropic quadratic form over F such that
for any integer i with 1 < i < (dim ¢)/2, the i-th canonical dimension of p is
minimal among the i-th canonical dimensions of anisotropic quadratic forms

(over field extensions of F') of dimension dim .
Then

(1) the higher Witt indexes of ¢ are excellent , i.e., ¢ has the same height
and the same higher Witt indexes as any anisotropic excellent quadratic
form of the same dimension;

(2) cdfi](p) = cd[i](dim ), i.e. Conjecture 1.1 holds for quadratic forms
of dimension dim ¢;

(3) the quadric of ¢ has excellent motivic decomposition type;

(4) assuming an open [8, Conjecture 1.8], ¢ is excellent.

The statement of (3) will be explained in the proof. Since we do not know if
such ¢ exists (in arbitrary dimension), (2) does not prove Conjecture 1.1. If
the i-th canonical dimension cd[i](¢) of a given anisotropic quadratic form ¢
is minimal for some value of ¢, it is not necessarily minimal for other values of
i. For instance, for any r > 2 and any positive m < 2"~!, we may find a field
F and an m-dimensional quadratic form ¢ over F' such that the even Clifford
algebra of 1 is a division algebra and 1 is a subform of an anisotropic r-fold
Pfister form 7. Then the i-th canonical dimension cd[i](p) of the complement ¢
of ¢ in 7 is minimal for ¢ = 1,...,j1(¢). For the remaining values of i however,
cd[i] () coincides with cd[i —j1(¢)](¢/) which is equal to dim X;_;, (,)(¢) by
[13]. In particular, cd[i](¢) is not minimal in general because cd[i](dim @) =
cd[i —j1(p)](dim ¢)).
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Proof of Proposition 12.1. We write j, for j,(¢). Since cd[1](y) is minimal, the
first Witt index of ¢ is excellent and (2) holds for ¢ up to j; by the results listed
in §5.

If we already know for some r > 1 that the first 7 — 1 higher Witt indexes of
¢ are excellent and (2) holds for ¢ up to j,—_1, the inequality cd[j,—1 + 1](¢) >
cd[1](¢r—1) (which is an equality for ¢ replaced by an anisotropic excellent
form of the same dimension) tells us that j, = ji1(pr—1) is excellent and (2)
holds for 7 up to j,.

We proved (1) and (2) at this point. As a byproduct, we see that the above
inequality is in fact an equality, which means by Theorem 3.2 that a shift (and
therefore precisely j, —jr—1 shifts) of U(Xj,) appear(s) in the complete motivic
decomposition of the quadric. Having this for every r and counting the ranks of
the motives over an algebraic closure, we see that each undecomposable sum-
mand of the motive of the quadric is binary, i.e. becomes over an algebraic
closure a sum of two Tate motives. More precisely, every indecomposable sum-
mand looks over an algebraic closure precisely the same as the corresponding
summand in the complete motivic decomposition of an anisotropic excellent
quadric of the same dimension. This is what (3) means.

Finally, [8, Conjecture 1.8] produces Pfister forms out of the binary motives
and allows one to show that ¢ is excellent. In more details, since U(X7) is
binary, [8, Conjecture 1.8] implies that ¢ is a neighbor of a Pfister form 7. By
similar reason, the complement of ¢ in 7 is also a Pfister neighbor. Continuing
this way, we eventually see that ¢ is excellent. O

ExAMPLE 12.2. To visualize the statement of Conjecture 1.1, it is probably
a good idea to draw the graph of the function ¢ — cd[¢](n) for some concrete
value of n. For n = 60 = 2% — 22, the function is constantly 31 = 26! — 1 on
the interval [1, 28] and takes the value 1 = 2271 — 1 at 29. As for arbitrary n,
it is piecewise constant (with values given by some powers of 2 minus 1) and
decreasing. Conjecture 1.1 claims that for any 60-dimensional anisotropic ¢,
the graph of the function i — cd[é](y) is over the graph just described. We know
that it is under the parabola ¢ — dim X;(¢) = i(i—1)/2+4(60—27). In contrast
with the above lower bound, this piece of the parabola (constituting the upper
bound for cd[i](¢)) is not monotone: it increases until 19 and decreases after
20.

One may view Conjecture 1.1 as an analogue of the Outer Excellent Connec-
tion Theorem for quadrics, where the quadrics are replaced by higher orthog-
onal grassmannian. Note that according to Theorem 3.1, Conjecture 1.1 is a
statement about the structure of the Chow motives of higher orthogonal grass-
mannians. As such, it clearly affects our understanding of their Chow groups.
Finally, orthogonal grassmannians constitute a special and important case of a
flag variety under a semisimple algebraic group; Conjecture 1.1 is to consider
in this general context.
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1. INTRODUCTION

Let Gy be an adjoint Chevalley group of type Dy over a field F. Since the
automorphism group of the Dynkin diagram of type D4 is isomorphic to the
symmetric group &3, there is a split exact sequence of algebraic groups

(1) 1—>Go—2> Aut(Gp) —>S3—>1.

Thus, Aut(Gy) = Gy x G3; in particular Gy admits outer automorphisms of
order 3, which we call trialitarian automorphisms. Adjoint algebraic groups of
type D4 over F are classified by the Galois cohomology set H*(F, Gy x G3) and
the map induced by 7 in cohomology

Te: HY(F,Go x 63) — H'(F, G3)

associates to any group G of type Dy the isomorphism class of a cubic étale
F-algebra L. The group G is said to be of type 'Dy if L is split, of type 2Dy if
L = F x A for some quadratic separable field extension A/F, of type 3Dy if L is
a cyclic field extension of F and of type 6Dy if L is a non-cyclic field extension.
An easy argument given in Proposition 4.2 below shows that groups of type
2D, and ®Dy4 do not admit trialitarian automorphisms defined over the base
field. Trialitarian automorphisms of groups of type Dy were classified in [3],
and by a different method in [2]: the adjoint groups of type !D4 that admit
trialitarian automorphisms are the groups of proper projective similitudes of
3-fold Pfister quadratic spaces; their trialitarian automorphisms are shown in
[3, Th. 5.8] to be in one-to-one correspondence with the symmetric composi-
tion structures on the quadratic space. In the present paper, we determine
the simple groups of type 3Dy that admit trialitarian automorphisms, and we
classify those automorphisms up to conjugation.

Our main tool is the notion of a trialitarian algebra, as introduced in [9, Ch. X].
Since these algebras are only defined in characteristic different from 2, we as-
sume throughout (unless specifically mentioned) that the characteristic of the
base field F is different from 2. In view of [9, Th. (44.8)], every adjoint simple
group G of type Dy can be represented as the automorphism group of a triali-
tarian algebra T' = (E, L, 0, ). In the datum defining T, L is the cubic étale
F-algebra given by the map m, above, F is a central simple L-algebra with
orthogonal involution o, known as the Allen invariant of G (see [1]), and «
is an isomorphism relating (E, o) with its Clifford algebra C(FE, o) (we refer
to [9, §43] for details). We show in Proposition 4.2 that if G admits an outer
automorphism of order 3 modulo inner automorphisms, then L is either split
(i.e., isomorphic to F' x F' x F), or it is a cyclic field extension of F (so G is
of type Dy or 3Dy), and the Allen invariant E of G is a split central simple
L-algebra. This implies that T has the special form T'= End I" for some cyclic
composition I'. We further show in Theorem 4.3 that if G carries a trialitarian
automorphism, then the cyclic composition I is induced, which means that it is
built from some symmetric composition over F', and we establish a one-to-one
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correspondence between trialitarian automorphisms of G up to conjugation and
isomorphism classes of symmetric compositions over F' from which T' is built.

Note that we only consider outer automorphisms of order 3, hence we do not
investigate the weaker property considered by Garibaldi in [6], about the ex-
istence of outer automorphisms whose third power is inner. Nevertheless, our
Theorem 4.3 has bearing on it, in view of a result recently announced by
Garibaldi and Petersson [7], establishing the existence of outer automorphisms
whose third power is inner for any group of type 3D4 with trivial Allen invari-
ant. If T is a cyclic composition that is not induced (examples are given in
Remark 2.1), the group of automorphisms of EndI' does not admit trialitar-
ian automorphisms, but the Garibaldi—Petersson result shows that it has outer
automorphisms whose third power is inner.

The notions of symmetric and cyclic compositions are recalled in §2. Triali-
tarian algebras are discussed in §3, which contains the most substantial part
of the argument: we determine the trialitarian algebras that have semilinear
automorphisms of order 3 (Theorem 3.1) and we classify these automorphisms
up to conjugation (Theorem 3.5). The group-theoretic results follow easily
in §4 by using the correspondence between groups of type Dy and trialitarian
algebras.

Notation is generally as in the Book of Involutions [9], which is our main refer-
ence. For an algebraic structure S defined over a field F, we let Aut(S) denote
the group of automorphisms of S, and write Aut(S) for the corresponding
group scheme over F'.

We gratefully thank Vladimir Chernousov, Alberto Elduque, and Sasha
Merkurjev for their help during the preparation of this paper. We are also
grateful to Skip Garibaldi for his comments on a preliminary version of the
paper, and to an anonymous referee for their careful reading.

2. CYCLIC AND SYMMETRIC COMPOSITIONS

Cyclic compositions were introduced by Springer in his 1963 Gottingen lecture
notes ([11], [12]) to get new descriptions of Albert algebras. We recall their
definition from [12]' and [9, §36.B], restricting to the case of dimension 8.

Let F be an arbitrary field (of any characteristic). A cyclic composition (of
dimension 8) over F is a 5-tuple I' = (V, L, Q, p, *) consisting of

a cubic étale F-algebra L;

a free L-module V of rank 8;

a quadratic form @Q: V — L with nondegenerate polar bilinear form
bo;

an F-automorphism p of L of order 3;

an F-bilinear map *: V x V' — V with the following properties: for all
z,y,z€Vand X € L,

(@) xy = (@xy)p(N),  wx(yA) = (@xy)p*(N),

LA cyclic composition is called a normal twisted composition in [11] and [12].
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Qz xy) = p(Qx)) - p*(QW)),

bo(z xy,2) = p(bo(y * 2,2)) = p*(bg(z * ,y)).
These properties imply the following (see [9, §36.B] or [12, Lemma 4.1.3]): for
allz, y e V,

(2) (zry)xz=yp*(Q(x)) and zx(y*z)=yp(Q(z)).

Since the cubic étale F-algebra L has an automorphism of order 3, L is ei-
ther a cyclic cubic field extension of F', and p is a generator of the Galois
group, or we may identify L with F' x F' x F' and assume p permutes the com-
ponents cyclically. We will almost exclusively restrict to the case where L is a
field; see however Remark 2.3 below.

Let IV = (V/,L',Q’, p',+') be also a cyclic composition over F. An isotopy?
I' — I" is defined to be a pair (v, f) where v: (L, p) = (L', p') is an isomorphism
of F-algebras with automorphisms (i.e., vop = p'ov)and f: V 5 V'is a
v-semilinear isomorphism for which there exists u € L™ such that

Q' (f(@) = v(p(u)p*(n) - Qx)) and  f(x)* fly) = fz*y)v(n)
for z, y € V. The scalar p is called the multiplier of the isotopy. Isotopies with
multiplier 1 are isomorphisms. When the map v is clear from the context, we
write simply f for the pair (v, f), and refer to f as a v-semilinear isotopy.

Examples of cyclic compositions can be obtained by scalar extension from sym-
metric compositions over F, as we now show. Recall from [9, §34] that a
symmetric composition (of dimension 8) over F' is a triple ¥ = (.S, n, %) where
(S,n) is an 8-dimensional F-quadratic space (with nondegenerate polar bilinear
form b,) and *: S x S — S is a bilinear map such that for all z, y, 2 € S

n(zxy) =n(@)n(y) and by(xxy,z)=by(z,yx*2).

If ¥ = (9, n/,%’) is also a symmetric composition over F, an isotopy ¥ — X’
is a linear map f: S — S’ for which there exists A € F* (called the multiplier)
such that

n'(f(z)) = Nn(z) and f(z)« f(y) = flxxy)A forz, yeS.

Note that if f: ¥ — ¥/ is an isotopy with multiplier ), then A~'f: ¥ — ¥’ is
an isomorphism. Thus, symmetric compositions are isotopic if and only if they
are isomorphic. For an explicit example of a symmetric composition, take a
Cayley (octonion) algebra (C,-) with norm n and conjugation map —. Letting
xxy ==y for z, y € C yields a symmetric composition C= (C,n,*), which
is called a para-Cayley composition (see [9, §34.A]).

Given a symmetric composition ¥ = (S,n,*) and a cubic étale F-algebra L
with an automorphism p of order 3, we define a cyclic composition ¥ ® (L, p)
as follows:

Y®(L,p)=(S®r L,L,ng,p,*)

2The term used in [9, p. 490] is similarity.
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where ny, is the scalar extension of n to L and * is defined by extending x
linearly to S ® p L and then setting

zxy = (Idg ®p)(x) * (Ids @p*)(y) for z, y € S®p L.

(See [9, (36.11)].) Clearly, every isotopy f: ¥ — X’ of symmetric compositions
extends to an isotopy of cyclic compositions (Idz, f): Z® (L, p) = ¥’ ® (L, p).
Observe for later use that the map p = Ids ®p € Endp(S ®p L) defines a
p-semilinear automorphism

(3) p:Y®(L,p) =>X®(L,p)

such that p® = Id.

We call a cyclic composition that is isotopic to ¥ ® (L, p) for some symmetric
composition ¥ induced. Cyclic compositions induced from para-Cayley sym-
metric compositions are called reduced in [12].

Remark 2.1. Induced cyclic compositions are not necessarily reduced. This
can be shown by using the following cohomological argument. We assume for
simplicity that the field F' contains a primitive cube root of unity w. There is a
cohomological invariant g3(I') € H3(F,Z/3Z) attached to any cyclic composi-
tion I". The cyclic composition I" is reduced if and only if g3(I") = 0 (we refer to
[12, §8.3] or [9, §40] for details). We construct an induced cyclic composition I
with g3(T") # 0. Let a, b € F* and let A(a,b) be the F-algebra with generators
a, B and relations o® = a, 8% = b, Ba = waB. The algebra A(a,b) is central
simple of dimension 9 and the space A° of elements of A(a,b) of reduced trace
zero admits the structure of a symmetric composition ¥(a,b) = (A% n,*) (see
[9, (34.19)]). Such symmetric compositions are called Okubo symmetric compo-
sitions. From the Elduque-Myung classification of symmetric compositions [5,
p. 2487] (see also [9, (34.37)]), it follows that symmetric compositions are either
para-Cayley or Okubo. Let L = F(v) with v3 = ¢ € F'X be a cubic cyclic field
extension of F', and let p be the F-automorphism of L such that v — wy. We
may then consider the induced cyclic composition I'(a, b, ¢) = X(a,b) ® (L, p).
Its cohomological invariant gs(I'(a,b,c)) can be computed by the construc-
tion in [12, §8.3]: Using w, we identify the group us of cube roots of unity
in F with Z/3Z, and for any u € F* we write [u] for the cohomology class
in H'(F,Z/3Z) corresponding to the cube class uF*3 under the isomorphism
F*/F*3 = HY(F, u3) arising from the Kummer exact sequence (see [9, p. 413]).
Then gs(T'(a,b,c)) is the cup-product [a] U [b] U [] € H3(F,Z/3Z). Thus any
cyclic composition I'(a, b, ¢) with [a] U [b] U [c] # 0 is induced but not reduced.
Another cohomological argument can be used to show that there exist cyclic
compositions that are not induced. We still assume that F' contains a primitive
cube root of unity w. There is a further cohomological invariant of cyclic
compositions f3(I') € H3(F,Z/27) which is zero for any cyclic composition
induced by an Okubo symmetric composition® and is given by the class in
H3(F,Z/27) of the 3-fold Pfister form which is the norm of C if " is induced

3The fact that F contains a primitive cubic root of unity is relevant for this claim.
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from the para-Cayley C' (see for example [9, §40]). Thus a cyclic composition I’
with f3(T") # 0 and g3(T") # 0 is not induced. Such examples can be given with
the help of the Tits process used for constructing Albert algebras (see [9, §39
and §40]). However, for example, cyclic compositions over finite fields, p-adic
fields or algebraic number fields are reduced, see [12, p. 108].

Ezamples 2.2. (i) Let F = F, be the field with ¢ elements, where ¢ is odd
and ¢ = 1 mod 3. Thus F' contains a primitive cube root of unity and we are
in the situation of Remark 2.1. Let L = F s be the (unique, cyclic) cubic field
extension of F, and let p be the Frobenius automorphism of L/F. Because
H3(F,Z/37Z) = 0, every cyclic composition over F is reduced; moreover every
3-fold Pfister form is hyperbolic, hence every Cayley algebra is split. There-
fore, up to isomorphism there is a unique cyclic composition over F' with cubic
algebra (L, p), namely I' = C ® (L, p) where C is the split para-Cayley sym-
metric composition. If ¥ denotes the Okubo symmetric composition on 3 x 3
matrices of trace zero with entries in F, we thus have I' ® ¥ ® (L, p), which
means that I' is also induced by ¥X. By the Elduque-Myung classification of
symmetric compositions, every symmetric composition over F' is isomorphic
either to the Okubo composition 3 or to the split para-Cayley composition C'.
Therefore, I' is induced by exactly two symmetric compositions over F' up to
isomorphism.

(ii) Assume that F' contains a primitive cube root of unity and that F' carries
an anisotropic 3-fold Pfister form n. Let C' be the non-split Cayley algebra
with norm n and let C be the associated para-Cayley algebra. For any cubic
cyclic field extension (L, p) the norm ny, of the cyclic composition C @ (L, p)
is anisotropic. Thus it follows from the Elduque-Myung classification that any
symmetric composition X such that ¥ @ (L, p) is isotopic to C'® (L, p) must be
isomorphic to C.

(iii) Finally, we observe that the cyclic compositions of type I'(a, b, ¢), described
in Remark 2.1, have invariant g3 equal to zero if ¢ = a. Since the fs-invariant
is also zero, they are all isotopic to the cyclic composition induced by the
split para-Cayley algebra. Thus we can get (over suitable fields) examples
of many mutually non-isomorphic symmetric compositions Y.(a, b) that induce
isomorphic cyclic compositions I'(a, b, ¢).

Of course, besides this construction of cyclic compositions by induction from
symmetric compositions, we can also extend scalars of a cyclic composition: if
I'=(V,L,Q,p,*) is a cyclic composition over F' and K is any field extension
of F, then T'x = (V®r K,L®r K,Qk,p ®Idk, *x) is a cyclic composition
over K.

Remark 2.3. Let T' = (V, L, Q, p, ) be an arbitrary cyclic composition over F
with L a field. Write 6 for p?. We have an isomorphism of L-algebras

v: L®p L S LxLxL given by {1 ® ly — (6162,/)(61)62,9(61)62).
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Therefore, the extended cyclic composition I';, over L has a split cubic étale
algebra. To give an explicit description of I'z, note first that under the iso-
morphism v the automorphism p ® Idy, is identified with the map p defined by
p(ly, 02, 03) = (£2,¢3,¢1). Consider the twisted L-vector spaces *V, ?V defined
by

V=Arr|zecV}, V={%|zecV}
with the operations
P(x+y) = a+Py, *(z+y) = "o+, and #(aX) = ("z)p(N), *(z) = (“2)0(\)

for 2, y € V and A € L. Define quadratic forms *Q: ?V — L and ?Q: °V — L
by

"Q(z) = p(Q(z) and “Q(°z) = 6(Q(z) fora €V,
and L-bilinear maps
#a: PV XV =V, 5,V XV 5PV, % VX PV = 0V
by
Peway=axy, wx,y="(xxy), wxe’y="(xxy) forz,ycV.
We may then consider the quadratic form
QxPQx%Q:VxPVxV 5 LxLxL

and the product o: (V x PV x V) x (V x PV x °V) — (V x PV x V) defined
by

($7 Pm’ G'r) ¢ (y’ p% Qy) = (p'r *1d 0% g'r *p Y, T *g Py)
Straightforward calculations show that the F-vector space isomorphism
f:V®pL—VxPV x?V given by

flz@0) = (zt,(Px)L, (Pz)0) forxeVandleL

defines with v an isomorphism of cyclic compositions

I 5 (VxPV x%, LxLxL, Qx*Qx°Q, p, o).

3. TRIALITARIAN ALGEBRAS

In this section, we assume that the characteristic of the base field F' is different
from 2. Trialitarian algebras are defined in [9, §43] as 4-tuples T' = (E, L, 0, )
where L is a cubic étale F-algebra, (E,o) is a central simple L-algebra of
degree 8 with an orthogonal involution, and « is an isomorphism from the
Clifford algebra C(E, o) to a certain twisted scalar extension of E. We just
recall in detail the special case of trialitarian algebras of the form EndI for I" a
cyclic composition, because this is the main case for the purposes of this paper.
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Let T'= (V, L,Q, p, *) be a cyclic composition (of dimension 8) over F', with L a
field, and let @ = p?. Let also o denote the orthogonal involution on Endz V
adjoint to Q). We will use the product * to see that the Clifford algebra C(V, Q)
is split and the even Clifford algebra Cy(V, Q) decomposes into a direct prod-
uct of two split central simple L-algebras of degree 8. Using the notation of
Remark 2.3, to any x € V' we associate L-linear maps

L PV =%V and 1. 0V =PV
defined by
l(Py) =x %Py ="(xxy) and 71,(%2) =%2%,2="(2x2)

for y, z € V. From (2) it follows that for z € V the L-linear map
a(z) = (E(i T ) Ve’V 5PV e’V given by (py,ez) — (rz(ez),ﬁw(py))

satisfies . (2)? = Q(x) Id. Therefore, there is an induced L-algebra homomor-

phism
(4) . C(V,Q) — End(°V @ V).

This homomorphism is injective because C(V, Q) is a simple algebra, hence it is
an isomorphism by dimension count. It restricts to an L-algebra isomorphism

0: Co(V,Q) = EndL (V) x End (°V),

see [9, (36.16)]. Note that we may identify Endy (?V) with the twisted algebra
?(Endgz, V) (where multiplication is defined by ?f1 - ? fo = #(f1 0 f2)) as follows:
for f € Endy V, we identify #f with the map ?V — PV such that ?f(Pz) =
P(f(x)) for x € V. On the other hand, let og be the orthogonal involution
on Endy V adjoint to Q. The algebra Cy(V, Q) is canonically isomorphic to
the Clifford algebra C(Endy, V,o0q) (see [9, (8.8)]), hence it depends only on
Endz V and og. We may regard a.o as an isomorphism of L-algebras

o C(Endy V,0g) = #(Endy V) x *(End V).
Thus, ayo depends only on Endz, V' and og. The trialitarian algebra EndI is
the 4-tuple
EndT' = (End. V, L, 0@, o).
An isomorphism of trialitarian algebras EndI' = EndI”, for I' =
(V. L', Q" p',+') a cyclic composition, is defined to be an isomorphism of F-

algebras with involution ¢: (Endy V,oq) = (Endg V’,0q) subject to the
following conditions:

(i) the restriction of ¢ to the center of EndyV is an isomorphism
¢le: (L,p) = (L',p"), and
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(i) the following diagram (where 6 = p’*) commutes:

C(Endy V,00) —==—?(End;, V) x *(End; V)

C(s@)l l“wxgso

C(Endy V', 00/) —% ¢ (Endy, V') x ¢ (End V')

For example, it is straightforward to check that every isotopy (v, f): T' — I
induces an isomorphism EndI" — End " mapping g € Endy V to fogo f=! €
Endy, V’. As part of the proof of the main theorem below, we show that every
isomorphism EndI" = EndI” is induced by an isotopy; see Lemma 3.4. (A
cohomological proof that the trialitarian algebras EndI", End I are isomorphic
if and only if the cyclic compositions I', I are isotopic is given in [9, (44.16)].)

We show that the trialitarian algebra EndI' admits a p-semilinear automor-
phism of order 3 if and only if I" is induced. More precisely:

THEOREM 3.1. LetI' = (V,L,Q, p, *) be a cyclic composition over F, with L a
field.

(i) If ¥ is a symmetric composition over F and f: ¥ ® (L,p) = T is an
L-linear isotopy, then the automorphism 7(s; 5y = Int(fopo FY)|End, v
of EndT, where p is defined in (3), is such that 7'(3Z n = Id and
Ts,ple= p. The automorphism 7(s 5y only depends, up to conjuga-
tion in Autgp(EndT), on the isomorphism class of X.

(ii) If EndT carries an F-automorphism T such that 7|, = p and 73 = 1d,
then T is induced. More precisely, there exists a symmetric composition
Y over F and an L-linear isotopy f: X ® (L,p) — T such that 7 =
T(2,6)-

Proof. (i) It is clear that T(?’E’f) = Id and 7(x, 5)|r= p. For the last claim, note
that if g: X ® (L, p) — T is another L-linear isotopy, then fog~! is an isotopy
of T', hence Int(f o g~!) is an automorphism of End ", and
Tw.p) = Int(fog ") or(m gy o t(fog™ )",

The proof of claim (ii) relies on three lemmas. Until the end of this section, we
fix a cyclic composition I' = (V, L, Q, p, %), with L a field. We start with some
general observations on p-semilinear automorphisms of Endy V. For this, we
consider the inclusions

L EndyV < Endp V.

The field L is the center of Endy V, hence every automorphism of Endy V'
restricts to an automorphism of L.

LEMMA 3.2. Let v € {Idg,p,0} be an arbitrary element in the Galois group
Gal(L/F). For every F-linear automorphism ¢ of Endy V such that o|r = v,
there exists an invertible transformation u € Endp V such that o(f) = uo fou™*
for all f € Endp V. The map u is uniquely determined up to a factor in L*;
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it is v-semilinear, i.e., u(z\) = u(x)v(\) for all x € V and X\ € L. Moreover,
if poog = o0g o, then there exists ;1 € L* such that

Qu(z)) =v(p-Qz)) forallz eV.

Proof. The existence of u is a consequence of the Skolem—Noether theorem,
since Endy V' is a simple subalgebra of the simple algebra Endp V: the au-
tomorphism ¢ extends to an inner automorphism Int(u) of Endp V for some
invertible v € Endp V. Uniqueness of u up to a factor in L™ is clear because L
is the centralizer of Endy V' in Endg V', and the v-semilinearity of u follows
from the equation ¢(f) = uo f ou~! applied with f the scalar multiplication
by an element in L.

Now, suppose ¢ commutes with o¢, hence for all f € Endy V

(5) uoog(f)out =og(uo fou ).

Let Tr.(Q) denote the transfer of @ along the trace map Trp,p, so
Tr.(Q): V — F is the quadratic form defined by Tr.(Q)(z) = Trp,p(Q(z)).
The adjoint involution oy, (g) coincides on Endy V' with og, hence from (5)
it follows that o, (@)(u)u centralizes Endy, V. Therefore, oy, (q)(u)u = u for
some pu € L*. We then have by (q)(u(z),u(y)) = br.(q)(z,yp) for all z,
y € V, which means that

(6) Trp e (bg(u(@), u(y))) = Trrr(ubo(z. y)).

Now, observe that since u is v-semilinear, the map c¢: V x V — L defined by
c(z,y) = v (bo(u(x),u(y))) is L-bilinear. From (6), it follows that ¢ — ubg
is a bilinear map on V that takes its values in the kernel of the trace map. But
the value domain of an L-bilinear form is either L or {0}, and the trace map
is not the zero map. Therefore, ¢ — ubg = 0, which means that

v (bo(u(z),u(y))) = pbo(z,y) forallz,y eV,
hence Q(u(z)) =v(pu-Q(x)) for all z € V. O

Note that the arguments in the preceding proof apply to any quadratic space
(V,Q) over L. By contrast, the next lemma uses the full cyclic composition
structure: Let again v € {Idy, p,0}. Given an invertible element v € Endp V
and p € L™ such that for all z € V and A € L

w(@) = u(@p(\) and Q(u(x)) = v(u- Qx)),
we define an L-linear map S3,: ¥V — Endz (°V @ V) by

-1
Bu (V) = (g ?a:) v(n) 0 r“(m)) €End (V& V) forzeV.

Then from (2) we get B,(z)* = v(Q(z)) = “Q(“z). Therefore, the map 3,
extends to an L-algebra homomorphism

Bu: C(*V,"Q) — Endp(PV @ V).
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Just like v, in (4), the homomorphism 3, is an isomorphism. We also have
an isomorphism of F-algebras C'(V-): C(V,Q) — C(*V,”Q) induced by the F-
linear map = — Y for x € V, so we may consider the F-automorphism ), of
Endy (°V @ ?V) that makes the following diagram commute:

C(V,Q) ——=End.(*V & V)
(7) cml lwu

C(V, Q) —2s Endp(°V & V)
LEMMA 3.3. The F-algebra automorphism i, restricts to an F-algebra auto-
morphism .0 of Endr(PV) x Endr(°V). The restriction of .o to the center
L x L is either v X v or (v X v) og where € is the switch map (£1,02) — ({2, 41).
Moreover, if YuolLxr =V X v, then there exist invertible v-semilinear transfor-
mations uy, us € Endp V' such that
-1
Gu(f) = (" W )ofo (p"(; uo_) for all f € Endy (°V & V).
For any pair (u1,us) satisfying this condition, we have
us(z*y) = u(z)*ui(y) and ui(vxy) = (ua(x)*u(y))Ov(p) =" for allz, y € V.

Proof. The maps a, and (3, are isomorphisms of graded L-algebras for the
usual (Z/2Z)-gradings of C'(V, Q) and C'(*V,*Q), and for the “checker-board”
grading of Endz(°V @ V) defined by
End (°V @ °V)o = End.(°V) x End (V)
and ,
0 Homp (YV, V)
P 6 _ L )
Therefore, 1, also preserves the grading, and it restricts to an automorphism
Yy of the degree 0 component. Because the map C(¥-) is v-semilinear, the
map 1, also is v-semilinear, hence its restriction to the center of the degree 0
component is either v x v or (v X V) oe.
Suppose Yuo|rxz, = v x v. By Lemma 3.2 (applied with ?V &%V instead of V),
there exists an invertible v-semilinear transformation v € Endp(?V @ %V) such
that ¢, (f) =vo fouv™! for all f € Endp(?V & V). Since 1y fixes (v 0,
the element v centralizes ('%v 0), hence v = (pgl QZQ) for some invertible u1,
us € Endp V. The transformations u; and us are v-semilinear because v is
v-semilinear. From the commutativity of (7) we have v o a.(x) = By (Yx) ov =

s (u(m)) ow for all z € V. By the definition of a, it follows that
ur(z*x) = 0v " (1) (uz(2) *u(z)) and up(z*y) = u(z) xuy(y) for all y, 2 € V.
O

LEMMA 3.4. Let v € {Idy, p,0}. For every F-linear automorphism ¢ of EndT’
such that | = v, there exists an invertible transformation u € EndpV,
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uniquely determined up to a factor in L*, such that o(f) =wuo fou=! for all
f € Endp V. Every such u is a v-semilinear isotopy I' — I.

Proof. The existence of w, its uniqueness up to a factor in L*, and its v-
semilinearity, were established in Lemma 3.2. It only remains to show that u
is an isotopy.

Since ¢ is an automorphism of EndI', it commutes with o, hence Lemma 3.2
yields o € L* such that Q(u(z)) = v(u-Q(z)) for all z € V. We may therefore
consider the maps 3, and %, of Lemma 3.3. Now, recall from [9, (8.8)] that
Co(V,Q) = C(Endy V,0q) by identifying = -y for z, y € V with the image in
C(Endg V,0q) of the linear transformation « ® y defined by z — z - bo(y, 2)
for z € V. We have

plr@y)=uo(r®@y)ou ': 2z u(m : bQ(y7u*1(z))) forxz,y, z€V.
Since u is v-semilinear and Q (u(z)) = v(u- Q(x)) for all z € V, it follows that
u(@ - bo(y,u™'(2))) = u(x) - v(bo(y,u™'(2))) = u(x) - (1) bg(uly), 2).

Therefore, p(r ® y) = u(r) @ u(y)v(u)~! for z, y € V, hence the following
diagram (where 3, and C’("-) are as in (7)) is commutative:

"Ieov.@)

Co(V, Q) Co("V,"Q)
C(Sﬂ)l lﬁulco(vvy@)
Co(V,Q) —=°~ End . (?V) x End.(°V)

On the other hand, the following diagram is commutative because ¢ is an
automorphism of End I':

Co(V, Q) 2> End(°V) x Endy (V)

C(Sﬂ)l lptpxgtp

Co(V, Q) ==~ End(°V) x End (?V)

Therefore, Bulc,(v,rq) © C(V)loyv,Q) = (P9 % “p) 0 aso. By comparing with
(7), we see that 1,0 = ¢ x Y, hence 1y0|rLx1, = v x v. Lemma 3.3 then yields
v-semilinear transformations ui, us € Endg V' such that

Gu(f) = ("0 Yo fo (”“01‘1 Buo,l) for all f € Endz(°V & °V),

hence 1,0 = Int(Pu;) xInt(%us). But we have ¥,0 = Pox %@ = Int(°u) xInt(Pu).
Therefore, multiplying (u1,uz2) by a scalar in L*, we may assume u = u; and
ug = ul for some ¢ € L*. Lemma 3.3 then gives

u(zxy)¢ = u(z) *u(y) and u(z*y) = ((Cu(z)) *u(y))dv(p)~' forall z, y € V.

The second equation implies that u(z * y) = (u(z) * u(y ))p(()@u(,u)’l. By
comparing with the first equation, we get p(¢)fv(p)~' = (1, hence v(u) =
p(€)0(¢). Therefore, (v,u) is an isotopy I' = I’ with multlpher v=10). O
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We start with the proof of claim (ii) of Theorem 3.1. Suppose 7 is an F-
automorphism of EndT" such that 7|, = p and 73 = Id. By Lemma 3.4,
we may find an invertible p-semilinear transformation ¢ € Endp V' such that
7(f) = to fot ! for all f € EndyV, and every such t is an isotopy of T
Since 73 = Id, it follows that t3 lies in the centralizer of End;, V in Endp V,
which is L. Let t3 = £ € L*. We have p(¢) = tét=1 = £, hence £ € FX. The
F-subalgebra of Endr V' generated by L and ¢ is a crossed product (L, p, £); its
centralizer is the F-subalgebra (Endy V)7 fixed under 7, and we have

EndF V= (L7p7 6) RF (EHdL V)T

Now, deg(L, p,§) = 3 and deg(Endy, V)™ = 8, hence (L, p, ) is split. Therefore
§ = Np,r(n) for some n € L*. Substituting n~1t for t, we get t> = Idy, and t
is still a p-linear isotopy of I'. Let € L* be the corresponding multiplier, so
that for all z, y € V'

8) Q=) = p(p(WB(W)Q(x)) and t(x)*t(y) = t(z *y)p(k).

From the second equation we deduce that ¢3(z) * ¢3(y) = t3(x * y) N p (1) for
all z, y € V, hence Ny /p(u) = 1 because ¢* = Idy. By Hilbert’s Theorem 90,
we may find ¢ € L* such that p = ¢0(()~*. Define Q" = p(¢)0(¢)Q and let
xx'y=(z*xy)C for z, y € V. Then Idy is an isotopy I' = TV = (V, L, Q’, p, ')
with multiplier ¢, and (8) implies that

Q' (t(z)) =p(Q'(z)) and t(z)+"t(y) =t(x+'y) forallz, yeV.

Now, observe that because t is p-semilinear and ¢ = Idy, the Galois group of
L/F acts by semilinear automorphisms on V', hence we have a Galois descent
(see [9, (18.1)]): the fixed point set S = {z € V | t(z) = z} is an F-vector
space such that V = S ®p L. Moreover, since Q'(t(z)) = p(Q’'(z)) for all
x € V, the restriction of Q' to S is a quadratic form n: S — F, and we have
Q' = ny. Also, because t(x " y) = t(x) * t(y) for all z, y € V, the product *’
restricts to a product x on S, and ¥ = (S, n,*) is a symmetric composition
because I' is a cyclic composition. The canonical map f: S®p L — V yields an
isomorphism of cyclic compositions f: ¥ ® (L, p) = I, hence also an isotopy
f:Y® (L,p) - T. We have t = fopo f~! hence 7 is conjugation by
fopoft O

THEOREM 3.5. The assignment ¥ — T(x y) induces a bijection between the
isomorphism classes of symmetric compositions % for which there exists an
L-linear isotopy f: X ® (L,p) — T and conjugacy classes in Autp(EndT) of
automorphisms 7 of End T such that 7 = 1d and 7| = p.

Proof. We already know by Theorem 3.1 that the map induced by ¥+ 75 )
is onto. Therefore, it suffices to show that if the automorphisms 75 ) and
T(sr,s7) associated to symmetric compositions ¥ and X' are conjugate, then
¥ and ¥’ are isomorphic. Assume 7(s/ ;) = @ 0 T(x f) 0 ! for some ¢ €
Autp(EndT), and let t = fopo f~', ¢ = flopo f/ ' € EndT be the
p-semilinear transformations such that 7(x sy = Int(t)|gnd, v and 7z ) =
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Int(t')|gnd, v- By Lemma 3.4 we may find an isotopy (v,u): I' — T such
that ¢ = Int(u)|gna, v. The equation 7(sy p1y = @ o 7z ) 0 ¢~ ! then yields
Int(#')|gna, v = Int(u ot o u™!)|gna, v, hence there exists £ € L* such that
wotou ! = £'. Because t3 = #* = Idy, we have Np/r(§) = 1, hence
Hilbert’s Theorem 90 yields n € L* such that & = p(n)n~!. Then n~lu: T — T
is a v-semilinear isotopy such that (n~'u)oto (n~'u)~! = #/, and we have a
commutative diagram

The restriction of f’f1 o(n~tu)o f to ¥ is an isotopy of symmetric compositions
¥ — ¥': a scalar multiple of this map is an isomorphism ¥ = 3. O

4. TRIALITARIAN AUTOMORPHISMS OF GROUPS OF TYPE Dy

Let F be a field of characteristic different from 2. By [9, (44.8)], for every
adjoint simple group G of type Dy over F' there is a trialitarian algebra T' =
(E, L,0,a) such that G is isomorphic to Auty (7).

PROPOSITION 4.1. The natural map ® : Autp(T) — Aut(G) induced by con-
jugation is an isomorphism of group schemes.

Proof. The group G is the connected component of Auty(7T) by construction.
By [4, Exp. XXIV, Th. 1.3], the group Aut(G) is a smooth algebraic group
scheme, and the conjugation homomorphism & is a homomorphism of algebraic
groups. Since G is adjoint semisimple the restriction of ® to the connected
component is an injective homomorphism G — Aut(G), hence by [9, (22.2)]
the differential d® is injective. On the other hand, since the correspondence
between trialitarian algebras and adjoint simple groups of type Dy is actually
shown in [9, (44.8)] to be an equivalence of groupoids, over an algebraic closure
Fag the map ®,15: Autp(T)(Fag) — Aut(G)(Fayg) is an isomorphism. By [9,
(22.5)] it follows that @ is an isomorphism of group schemes. (]

We thus have a commutative diagram with exact rows:
1——= Aut (T) ——= Autp(T) —— Autp(L) ——=1
) | |o
1 G Aut(G) —— (63), —1

where (&3), is a (non-constant) twisted form of the symmetric group &3. Here
Autp(L) is the group scheme given by Autp(L)(R) = Autp.aiz(L ®F R) for
any commutative F-algebra R. Thus, the type of the group G is related as
follows to the type of L and to Autp(L):
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(i) type 'D4: L2 F x F x F and Autp(L)(F) = Gs;
(ii) type 2D4: L = F x A (with A a quadratic field extension of F) and
Autp(L)(F) = Gy;
(iii) type 3D4: L a cyclic cubic field extension of F and Autg(L)(F) =
Z/3Z;
(iv) type ®Dy: L a non-cyclic cubic field extension of F' and Autp(L)(F) =
1.

PROPOSITION 4.2. Let G be an adjoint simple group of type Dy over F. If
Aut(G)(F) contains an outer automorphism o such that o3 is inner, then G
is of type 'Dy or 3Dy, and in the trialitarian algebra T = (E, L, o, ) such that
G = Aut(T), the central simple L-algebra E is split.

Proof. The exactness of the bottom row of (9) implies the exactness of

(10) 1 G(F) Aut(G)(F)——(63)L(F)

Since the image 7(¢) € (63)r(F) has order 3, Aut (L) (F) must be isomorphic
to &3 or to Z/3Z and hence the cases 2Dy and 9Dy can be ruled out from the
characterization of the various types above. Therefore the type of G is 'Dy4 or
3Dy4. If G is of type Dy, then the algebra E is split by [6, Example 17] or by
[2, Theorem 13.1]. If G is of type 3Dy, then after scalar extension to L the
group G has type Dy, so E ®p L is split. Therefore, the Brauer class of E
has 3-torsion since it is split by a cubic extension. But it also has 2-torsion
since F carries an orthogonal involution, hence F is split. (I

For the rest of this section, we focus on trialitarian automorphisms (i.e., outer
automorphisms of order 3) of groups of type 3D4. Let G be an adjoint simple
group of type 3Dy over F', and let L be its associated cyclic cubic field extension
of F. Thus,
(63)L(F) =Gal(L/F) = 7/37Z.

If G carries a trialitarian automorphism ¢ defined over F', then the map
m: Aut(G)(F) — Gal(L/F) is a split surjection, hence Aut(G)(F) = G(F) x
(Z/3Z). Therefore, it is easy to see that for any other trialitarian automorphism
¢' of G defined over F, the elements ¢ and ¢’ are conjugate in Aut(G)(F) if
and only if there exists g € G(F') such that ¢’ = Int(g) o ¢ o Int(g)~'. When
this occurs, we have 7(¢) = w(¢).

THEOREM 4.3. (i) Let G be an adjoint simple group of type 3Dy over F.
The group G carries a trialitarian automorphism defined over F' if and
only if the trialitarian algebra T = (E,L,o,«) (unique up to isomor-
phism) such that G = Autp(T) has the form T = EndI for some
induced cyclic composition T'.

(ii) Let G = Auty(EndT') for some induced cyclic composition I'. Every
trialitarian automorphism ¢ of G has the form ¢ = Int(7) for some
uniquely determined F-automorphism T of EndT such that 7 = Id
and 7| = w(p). For a given nontrivial p € Gal(L/F), the assignment
Y = Int(r(s,f)) defines a bijection between the isomorphism classes
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of symmetric compositions for which there exists an L-linear isotopy
f:X®(L,p) = T and conjugacy classes in Aut(G)(F) of trialitarian
automorphisms ¢ of G such that w(p) = p.

Proof. Suppose first that ¢ is a trialitarian automorphism of G, and let G =
Aut(T) for some trialitarian algebra T' = (E, L, 0, ). Proposition 4.2 shows
that the central simple L-algebra E is split, hence by [9, (44.16), (36.12)],
we have T = EndT for some cyclic composition I' = (V, L, Q, p, *) over F.
Substituting ¢? for ¢ if necessary, we may assume 7(¢) = p. The preimage
of ¢ under the isomorphism ®z: Auty(T)(F) = Aut(G)(F) (from (9)) is an
F-automorphism 7 of T such that ¢ = Int(7), 72 = Id, and 7|, = p. Since ®p
is a bijection, 7 is uniquely determined by ¢. By Theorem 3.1(ii), the existence
of 7 implies that the cyclic composition I' is induced.

Conversely, if T is induced, then by Theorem 3.1(i), the trialitarian algebra
EndT carries automorphisms 7 such that 7 = Id and 7| # Id;. For any
such 7, conjugation by 7 is a trialitarian automorphism of G.

The last statement in (ii) readily follows from Theorem 3.5 because trialitarian
automorphisms Int(7), Int(7") are conjugate in Aut(G)(F) if and only if 7, 7/
are conjugate in Auty(EndT). ]

The following proposition shows that the algebraic subgroup of fixed points un-
der a trialitarian automorphism of the form Int (75 f)) is isomorphic to Aut(X),
hence in characteristic different from 2 and 3 it is a simple adjoint group of
type Ga or As, in view of the classification of symmetric compositions (see [3,

§9])-

PROPOSITION 4.4. Let G = Auty (End(S ® (L, p))) for some symmetric com-
position X = (S,n,x) over F and some cyclic cubic field extension L/F with
nontriwvial automorphism p. The subgroup of G fized under the trialitarian
automorphism Int(p) is canonically isomorphic to Aut(X).

Proof (Sketch). Mimicking the construction of the map as in (4), we may use
the product * to construct an F-algebra isomorphism

a,: C(S,n) = Endp(S @ S)

such that o, (2)(y, z) = (zxz,zxy) for , y, z € S. This isomorphism restricts
to an isomorphism

[e 00(57 ’I’L) :> (EndF S) X (EndF S)

Let Aut(End X)) be the group scheme whose rational points are the F-algebra
automorphisms ¢ of (Endg S, 0,,) that make the following diagram commute:

C(Endp S,0,) —2> (Endr S) x (Endr S)

C(so)l lsﬂXsa

C(Endp S,0,) —2> (Endr S) x (Endr S)
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Arguing as in Lemma 3.4, one proves that every such automorphism has the
form Int(u) for some isotopy u of ¥. But if u is an isotopy of ¥ with multiplier u,
then p~'u is an automorphism of ¥.. Therefore, mapping every automorphism u
of ¥ to Int(u) yields an isomorphism Aut(X) = Aut(EndX). The extension
of scalars from F' to L yields an isomorphism

PGL(S) 3 Ry/p(PGL(S @ L)™',
which carries the subgroup Aut(End ¥) to G, O

To conclude, we briefly mention without proof the analogue of Theorem 4.3 for
simply connected groups, which we could have considered instead of adjoint
groups. (Among simple algebraic groups of type Dy, only adjoint and simply
connected groups may admit trialitarian automorphisms.)

THEOREM 4.5. (i) For any cyclic composition T' = (V, L, Q, p,*) over F,
with L a field, the group Auty(T) is simple simply connected of type
3Dy, and there is an exact sequence of algebraic groups

1—>p2— > Aut, (1)~ Aut (End ') —1.

(i) A simple simply connected group of type *Dy admits trialitarian auto-
morphisms defined over F' if and only if it is isomorphic to the automor-
phism group of an induced symmetric composition T' = (V, L, Q, p, *),
with L a field. Conjugacy classes of trialitarian automorphisms of
Autp(T") defined over F are in bijection with isomorphism classes of
symmetric compositions ¥ for which there is an isotopy Y& (L, p) — T.

Theorems 4.3 and 4.5 apply in particular to show that over a finite field of
characteristic different from 2 and 3, every simple adjoint or simply connected
group of type 2Dy admits trialitarian automorphisms. This follows because the
Allen invariant is trivial and cyclic compositions are reduced, see [12, §4.8].
Note that the property holds without restriction on the characteristic (needed
for the arguments in [12, §4.8]), and is a particular case of a more general result:
every simple adjoint or simply connected linear algebraic group over a finite
field is quasi-split by a theorem of Lang [10, Prop. 6.1], and therefore Aut(Q)
is a semidirect product, see [4, Exp. XXIV, 3.10] or [9, (31.4)].%

Ezamples 4.6. (i) Let F' = F, be the field with ¢ elements, where ¢ is odd
and ¢ = 1 mod 3. As observed in Example 2.2(i), every symmetric composi-
tion over F' is isomorphic either to the Okubo composition ¥ or to the split
para-Cayley composition C, and (up to isomorphism) there is a unique cyclic
composition I' 2 C @ (L, p) 2 ¥ ® (L, p) with cubic algebra (L, p). Therefore,
the simply connected group Auty,(I") and the adjoint group Auty,(EndT") have
exactly two conjugacy classes of trialitarian automorphisms defined over F'. See
also [8, (9.1)].

4We are indebted to Skip Garibaldi for this observation.
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(ii) Example 2.2(ii) describes a cyclic composition induced by a unique (up to
isomorphism) symmetric composition. Its automorphism group is a group of
type 3D, admitting a unique conjugacy class of trialitarian automorphisms.

(iii) In contrast to (i) and (ii) we get from Example 2.2(iii) examples of groups
of type 3Dy with many conjugacy classes of trialitarian automorphisms.
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ABSTRACT. Let z1,z2,... be a system of homogeneous polynomial
generators for the Lazard ring L* = MU?* and let MGLg denote
Voevodsky’s algebraic cobordism spectrum in the motivic stable ho-
motopy category over a base-scheme S [Vo98]. Relying on Hopkins-
Morel-Hoyois isomorphism [Hoy] of the Oth slice so M G Lg for Voevod-
sky’s slice tower with M GLg/(z1, 2, ...) (after inverting all residue
characteristics of S), Spitzweck [S10] computes the remaining slices of
MGLg as s, MGLg = 0. HZRL ™" (again, after inverting all residue
characteristics of S). We apply Spitzweck’s method to compute the
slices of a quotient spectrum M GLg/({x; : i € I}) for I an arbitrary
subset of N, as well as the mod p version MGLgs/({p,z; : i € I})
and localizations with respect to a system of homogeneous elements
in Z[{z; : j ¢ I}]. In case S = Speck, k a field of characteristic zero,
we apply this to show that for £ a localization of a quotient of MGL
as above, there is a natural isomorphism for the theory with support

Q(X) @ E72077 (k) = EXV T (M)

for X a closed subscheme of a smooth quasi-projective k-scheme M,
m = dimy M.

407

To Sasha Merkurjev with warmest regards on his 60th birthday

CONTENTS

Introduction

> Ut W e

Quotients and homotopy colimits in a model category
Slices of effective motivic module spectra

The slice spectral sequence

Slices of quotients of MGL

Modules for oriented theories

Applications to quotients of M GL

References

IBoth authors wish to thank the Humboldt Foundation for financial support

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 407-442

408
409
418
424
426
430
438
440



408 MARC LEVINE, GIRJA SHANKER TRIPATHI

INTRODUCTION

This paper has a two-fold purpose. We consider Voevodsky’s slice tower on the
motivic stable homotopy category SH(S) over a base-scheme? S [Vo00]. For &
in SH(S), we have the nth layer s,€ in the slice tower for £. Let M GL denote
Voevodsky’s algebraic cobordism spectrum in SH(S) [Vo98] and let 1, xa, ...
be a system of homogeneous polynomial generators for the Lazard ring L. Via
the classifying map for the formal group law for M GL, we may consider z; as
an element of MGL™?"7%(S), and thereby as a map z; : ¥**MGL — MGL,
giving the quotient MGL/(x1,x2,...). Spitzweck [S10] shows how to build on
the Hopkins-Morel-Hoyois isomorphism [Hoy]

MGL/(ml,mg, .. ) = SoMGL

to compute all the slices s, MGL of MGL. Our first goal here is to extend
Spitzweck’s method to handle quotients of M GL by a subset of {1, 22, ...}, as
well as localizations with respect to a system of homogeneous elements in the
ring generated by the remaining variables; we also consider quotients of such
spectra by an integer. Some of these spectra are Landweber exact, and the
slices are thus computable by the results of Spitzweck on the slices of Landweber
exact spectra [S12], but many of these, such as the truncated Brown-Peterson
spectra or Morava K-theory, are not.
The second goal is to extend results of [DL14, 109, L15], which consider the
“geometric part” X ~ £2%*(X) of the bi-graded cohomology defined by an
oriented weak commutative ring T-spectrum £ and raise the question: is the
classifying map

E* (k) @ Q" = &F
an isomorphism of oriented cohomology theories, that is, is the theory £* a
theory of rational type in the sense of Vishik [Vil2]? Starting with the case
& = MGL, discussed in [L09], which immediately yields the Landweber exact
case, we have answered this affirmatively for “slice effective” algebraic K-theory
in [DL14], and extended to the case of slice-effective covers of a Landweber
exact theory in [L15]. In this paper, we use our computation of the slices of a
quotient of M GL to show that the classifying map is an isomorphism for the
quotients and localizations of M GL described above.
The paper is organized as follows: in §1 and §2, we abstract Spitzweck’s method
from [S10] to a more general setting. In §1 we give a description of quotients in
a suitable symmetric monoidal model category in terms of a certain homotopy
colimit. In §2 we begin by recalling some basic facts and the slice tower and its
construction. We then apply the results of §1 to the category of R-modules for
R € SH(S) a commutative ring T-spectrum (with some additional technical
assumptions), developing a method for computing the slices of an R-module
M, assuming that R and M are effective and that the Oth slice sgM is of
the form M/({x; : i € I}) for some collection {[z;] € R™24~%(S),d; < 0}

2In this paper a “scheme” will mean a noetherian separated scheme of finite Krull
dimension.
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of elements in R-cohomology of the base-scheme S; see theorem 2.3. We also
discuss localizations of such R-modules and the mod p case (corollary 2.4 and
corollary 2.5). We discuss the associated slice spectral sequence for such M
and its convergence properties in §3, and apply these results to our examples
of interest: truncated Brown-Peterson spectra, Morava K-theory and connec-
tive Morava K-theory, as well as the Landweber exact examples, the Brown-
Peterson spectra BP and the Johnson-Wilson spectra F(n), in §4.

The remainder of the paper discusses the classifying map from algebraic cobor-
dism 2, and proves our results on the rationality of certain theories. This is
essentially taken from [L15], but we need to deal with a technical problem,
namely, that it is not at present clear if the theories [MGL/({z; : i € I})]***
have a multiplicative structure. For this reason, we extend the setting used in
[L15] to theories that are modules over ring-valued theories. This extension is
taken up in §5 and we apply this theory to quotients and localizations of MG L
in §6.

We are grateful to the referee for suggesting a number of improvements to an
earlier version of this paper, especially for pointing out to us how to use works
of Spitzweck to extend many of our results to an arbitrary base-scheme.

1. QUOTIENTS AND HOMOTOPY COLIMITS IN A MODEL CATEGORY

In this section we consider certain quotients in a model category and give a
description of these quotients as a homotopy colimit (see proposition 1.9). This
is an abstraction of the methods developed in [S10] for computing the slices of
MGL.

In what follows, we use the term “fibrant replacement” of an object = in a
model category C to mean a morphism « : x — 2/ in C, where z/ is fibrant
and « is a cofibration and a weak equivalence. A cofibrant replacement of x is
similarly a morphism g : ¢ — z in C with z¢ cofibrant and § a fibration and
a weak equivalence.

Let (C,®, 1) be a closed symmetric monoidal simplicial pointed model category
with cofibrant unit 1. We assume that 1 admits a fibrant replacement ac: 1 — 1
such that 1 is a l-algebra in C, that is, there is an associative multiplication
map p1 : 1 ®1 — 1 such that uy o (¢ ®id) and pq o (id ® «) are the respective
multiplication isomorphisms 1®1 — 1, 1®1 — 1. We assume in addition that
the functor K — 1 ® K, giving part of the simplicial structure, is a symmetric
monoidal left Quillen functor.

For a cofibrant object T'in C, the map T' = T'®1 1482 7®1 is a cofibration and
weak equivalence. Indeed, the functor T'® (—) preserves cofibrations, and also
maps that are both a cofibration and a weak equivalence, whence the assertion.

Remark 1.1. We will be applying the results of this section to the following
situation: M is a cofibrantly generated symmetric monoidal simplicial model
category satisfying the monoid axiom [ScSh, definition 3.3]; ; we assume in
addition that the functor K — e A K, e the unit in M, giving part of the
simplicial structure, is a symmetric monoidal left Quillen functor. We fix in
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addition a commutative monoid R in M, cofibrant in M, and C is the category
of R-modules in M, with model structure as in [ScSh, §4], that is, a map is a
fibration or a weak equivalence in C if and only if it is so as a map in M, and
cofibrations are determined by the LLP with respect to acyclic fibrations. By
[ScSh, theorem 4.1(3)], the category R-Alg of monoids in C has the structure of
a cofibrantly generated model category, with fibrations and weak equivalence
those maps which become a fibration or weak equivalence in M, and each
cofibration in R-Alg is a cofibration in C. The unit 1 in C is just R and we
may take o : 1 — 1 to be a fibrant replacement in R-Alg.

Let {; : T; = 1| i € I} be a set of maps with cofibrant sources T;. We assign
each T; an integer degree d; > 0.

Let 1/(x;) be the homotopy cofiber (i.e., mapping cone) of the map z; : 1&T; —
1 and let p; : 1 — 1/(x;) be the canonical map.

Let A= {i1,...,i;} be a finite subset of I and define 1/({x; : i € A}) as

1/({zi:i€ A}))i=1/(2:) ®...®1/(xs,).

Of course, the object 1/({z; : ¢ € A}) depends on a choice of ordering of the
elements in A, but only up to a canonical symmetry isomorphism. We could
for example fix the particular choice by fixing a total order on A and taking
the product in the proper order. The canonical maps p;, ¢« € I composed with
the map 1 — 1 give rise to the canonical map

pr:l— 1/({.’1311614})
defined as the composition

-1 Pi1 X...Qp;
18 5 1®k @k 22,

1/({x; :i € A}).
For finite subsets A C B C I, define the map
PACB : 1/({% NS A}) — 1/({% NS B})

as the composition

1(fzs i€ A) 21/ (s ic Aol
MOPENA (i€ AY) @1/ (s i€ B\ AY) = 1/({z; :i € B}).

where the last isomorphism is again the symmetry isomorphism.
Because C is a symmetric monoidal category with unit 1, we have a well-defined
functor from the category Py, (I) of finite subsets of I to C:

1/(=): Pan(d) = C
sending A C I to 1/({x; : i € A}) and sending each inclusion A C B to pacs.
DEFINITION 1.2. The object 1/({z; : ¢ € I'}) of C is defined by
1/({x:}) = Bo%olir}l) 1/({x; :i € A}).

fin
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More generally, for M € C, we define M/({x; : i € I}) as
M/({z;:iel})=1/({z;:i€I})®@QM,

where QM — M is a cofibrant replacement for M. In case the index set I is
understood, we often write these simply as 1/({z;}) or M/({x;}).

Remark 1.3. 1. The object 1/(z;) is cofibrant and hence the objects 1/({x; :
i € A}) are cofibrant for all finite sets A. As a pointwise cofibrant diagram has
cofibrant homotopy colimit [Hir03, corollary 14.8.1, example 18.3.6, corollary
18.4.3], 1/({z; : i € I}) is cofibrant. Thus M/({z; : i € I}) :=1/({z; : i €
I}) ® QM is also cofibrant.

2. We often select a single cofibrant object T' and take T := T®% for certain
integers d; > 0. As T is cofibrant, so is 7%%. In this case we set degT = 1,
deg T®% = d;.

We let [n] denote the set {0, . ..,n} with the standard order and A the category
with objects [n], n = 0,1, ..., and morphisms the order-preserving maps of sets.
For a small category A and a functor F' : A — C, we let hocolimy4 F} denote
the standard simplicial object of C whose geometric realization is hocolimy4 F,
that is

hocoli = .
ocghan \/ F(0(0))

o:n]—A
LEMMA 14. Let {a; : T; > 1:i€ L1}, {w;: T; — 1:i € I} be two sets of
maps in C, with cofibrant sources T;, and with Iy, Iy disjoint index sets. Then
there is a canonical isomorphism

Proof. The category Pan(I1 11 I3) is clearly equal to Pgn(l1) X Pan(l2). For
functors F; : A; — C, i = 1,2, [hocolim 4, x 4, F1 ® F3], is the diagonal sim-
plicial space associated to the bisimplicial space (n,m) + [hocolim4, Fi], ®
[hocolim 4, Fb]pm. Thus

hocohm e F hocf?lim[hog?lim F]® Fs.
2 1

A1 x Az
This gives us the isomorphism
1/({.731 1 e lb HIQ})

= hocolim 1/{z;:ie A1/ {x;:i€ A
= QS iy H @1/ 2})

=~ hocolim 1 i€ A hocolim 1 i1 €A
Jocolim /{zii€ Ai})® Docolim /({2 i € As})

=1/{z;:i€e[})@1/({x; i € Ix}).

Remark 1.5. Via this lemma, we have the isomorphism for all M € C,
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Let T be the category of formal monomials in {x;}, that is, the category of
maps N : I — N, ¢ — N;, such that N; = 0 for all but finitely many i € I, and
with a unique map N — M if N; > M, for all i € I. As usual, the monomial in
the z; correspondlng to a given N is [, 2;"", written 2. The index N =0,
corresponding to 20 = 1, is the final object of 7.

Take an i € I. For m > k > 0 integers, define the map

xz" P 1@ TP 5 10 T
as the composition

idq ®2};®7nik®idT®k

1QTE™ = 10TP" FoTE Ly 19kl g ek KO, 4 ook
K3 1 K3 N
In case k = 0, we use 1 instead of 1 ® 1 for the target; we define x2° to be the
identity map. The associativity of the maps 1 shows that xa"~ ko xxp " =

Xz k¥ hence the maps x ' all commute with each other.

Now suppose we have a monomial in the z;; to simplify the notation, we write
the indices occurring in the monomial as {1,...,r} rather than {é1,...,%,}.
This gives us the monomial zV := 2 . ... . 2N, Define

T§:=1®T§Nl®...®1®T§M®1;

in case N; = 0, we replace ... ©1@101@T ' @. .. with .. .@10T5) "'®. ..,
and we set T := 1.

Let N — M be a map in Z, that is N; > M; > 0 for all i. We again write the
relevant index set as {1,...,r}. Define the map

xgN=M . N _, M

as the composition
Yy
i %mn@% ®.. @10 TV g1 L%, 7M.
the map pps is a composition of ®-product of multiplication maps pu1 : 1®1 —
1, with these occurring in those spots with M; = 0. In case N; = M; = 0, we
simply delete the term xz? from the expression.
The fact that the maps uq satisfy associativity yields the relation

xgM—E o xgN=M — o N-K

and thus the maps xzN =M all commute with each other.

Defining D, (N) := TN and D,(N — M) = xzN~M gives us the Z-diagram
D,:1—C.

We consider the following full subcategories of Z. For a monomial M let Z>
denote the subcategory of monomials which are divisible by M, and for a
positive integer n, recalling that we have assigned each T; a positive integral
degree d;, let Zgqeg>n denote the subcategory of monomials of degree at least
n, where the degree of N := (Ny,...,Ng) is N1dy + - - + Ngdg. One defines
similarly the full subcategories Z- ps and Zgeg>n-
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Let Z° be the full subcategory of Z of monomials N # 0 and 72, C Z° be
the full subcategory of monomials N for which N; < 1 for all i. We have the
corresponding subdiagrams D, : Z° — C and D, : 22, = C of D,. For J C I
a subset, we have the corresponding full subcategories 7 C Z, J° C I° and
J2, C Z2, and corresponding subdiagrams D,. If the collection of maps z; is
understood, we write simply D for D,.

Let F : A — C be a functor, a an object in C, ¢, : A — C the constant
functor with value @ and ¢ : F — ¢, a natural transformation. Then ¢
induces a canonical map ¢ : hocolimg F' — a in C. As in the proof of [S10,
Proposition 4.4], let C(A) be the category A with a final object * adjoined and
C(F,p) : C(A) — C the functor with value a on *, with restriction to A being
F, and which sends the unique map y — * in C(A), y € A, to ¢(y). Let [0, 1]
be the category with objects 0,1 and a unique non-identity morphism 0 — 1,
and let C(A)" be the full subcategory of C(A) x [0,1] formed by removing
the object * x 1. We extend C(F, ) to a functor C(F,¢)' : C(A)' — C by
C(F, )" (y x 1) = pt, where pt is the initial/final object in C.

LEMMA 1.6. There is a natural isomorphism in C

hocolim C(F, ¢)"" = hocofib(¢ : hocolim F .
g(gg)lrm (F, ) ocofib(p ocolim —a)

Proof. For a category A we let N'(A) denote the simplicial nerve of A. We
have an isomorphism of simplicial sets N(C(A)) = Cone(N(A),*), where
Cone(N(A), %) is the cone over N'(A) with vertex *. Similarly, the full subcat-
egory A x [0,1] of C(A)" has nerve isomorphic to A'(4) x A[1]. This gives an
isomorphism of N'(C(A)") with the push-out in the diagram

N(A)———— Cone(N(A4), %)
idxéo\[‘
N(A) x A[1].

This in turn gives an isomorphism of the simplicial object
hocolimg (4)r C(F, )L with the pushout in the diagram

*

hocolim 4 F———— C'(hocolimy F, a)

C(hocolim 4 F, pt).
This gives the desired isomorphism. (I

LEMMA 1.7. Let J C K C I be finite subsets of I. Then the map

hocco)lim D, — hocglim D,
<1 <1

induced by the inclusion J C K is a cofibration in C.
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Proof. We give the category of simplicial objects in C, C2™, the Reedy model
structure, using the standard structure of a Reedy category on A°P. By [Hir03,
theorem 19.7.2(1), definition 19.8.1(1)], it suffices to show that

hocglim D, — hocglim D.
<1 <1

is a cofibration in C2™, that is, for each n, the map

@p  hocolimD,, I hocolim ;o D, L™ hocolim D, — hocolim D,,
<1 st K2y <1
is a cofibration in C, where L™ is the nth latching space.
We note that

hocolim D,, = \/ D(0(0)),
T4 cEN(TS))n

where we view o € N(J2,), as a functor o : [n] — J2;; we have a similar
description of hocolimys  Dyp. The latching space is

L" hogolim D, = \/  D(o(0)),
=t TEN (T2, )8

where NV (J2,)4¢ is the subset of N'(J2,)n consisting of those o which contain
an identity morphism; L" hocolim;ccé . Ds has a similar description. The maps

L" hocolim D, — hocolim D,,, L™ hocolim D, — L" hocolim Dx,
21 21 21 21
L ho’(czg)lim D, — hocg)lim D, hogglim D, — hocg)lim D,

<1 <1 <1 <1

are the unions of identity maps on D(o(0)) over the respective inclusions of the
index sets. As N'(K2,)39 NN (T2, )n = N (T2,)5¢, we have

hocolim Dy, Hpn hocolim ;o . L™ hocolim D, = hocolim D,, \/ C,
T2 <1 K2q TS

where
C= V D(0(0)),
CEN (KL )RINN(T2,)ne?
and the map to hocolimge Dy, is the evident inclusion. As D(N) is cofibrant
for all N, this map is clearly a cofibration, completing the proof. O

We have the n-cube (0", the category associated to the partially ordered set of
subsets of {1,...,n}, ordered under inclusion, and the punctured n-cube OIf

of proper subsets. We have the two inclusion functors i} i~ : 0"~ — O",
i (1) :=IU{n}, 1, (I) = I and the natural transformation v, : i,, — ;" given
as the collection of inclusions I C I U{n}. The functor i, induces the functor
Qo O = Op.

For a functor F : 0™ — C, we have the iterated homotopy cofiber, hocofib,, F,
defined inductively as the homotopy cofiber of hocofib,,_1(F (1)) : hocofib(Fo

i,,) — hocofib(F o4;). Using this inductive construction, it is easy to define
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a natural isomorphism hocofib,, F' = hocolingH F', where F o 110 = I and
F(I)=ptifnel.

The following result, in the setting of modules over a model of MGL as a
commutative S-algebra, is proven in [S10, Lemma 4.3 and Proposition 4.4]. We
give here a somewhat different proof in our context, which allows for a wider
application.

LEMMA 1.8. Assume that I is countable. Then there is a canonical isomor-
phism in HoC

1/({z; |iel}) = hocoﬁb[hoczcllisz — hocglisz].

Proof. As 1 is the final object in Z, the collection of maps xa™ : TN — 1
defines a weak equivalence 7 : hocolimz D, — 1. In addition, for each N € Z°,
the comma category N/Z2, has initial object the map N — N, where N; = 1
if N; > 0, and N; = 0 otherwise. Thus 72, is homotopy right cofinal in Z°
(see e.g. [Hir03, definition 19.6.1]). Since D, is a diagram of cofibrant objects
in C, it follows from [Hir03, theorem 19.6.7] that the map hocolimze D, —
hocolimzo D, is a weak equivalence. This reduces us to identifying 1/({z;})
with the homotopy cofiber of 7TOS1 : hocoling1 D, — 1, where 7r°§1 is the
composition of © with the natural map : hocoling1 D, — hocolimz D,.

Next, we reduce to the case of a finite set I. Take I = N. Let Pp(I)
be the category of finite subsets of I, ordered by inclusion, consider the full
subcategory Pme(I) of Pfin(I) consisting of the subsets I, := {1,...,n}, n =
1,2..., and let ) -y C Z2, be the full subcategory with all indices in I,,. As
Pﬁn(l) is cofinal in Py;n(I), we have

colim hocolim D, = hocolim D,,.
n <1 21

Take n < m. By lemma 1.7 the the map hocolimze _ D, — hocolimze _ D,
is a cofibration in C. Thus, using the Reedy model structure on CN with N
considered as a direct category, the N-diagram in C, n — hocolimze _ D, is a
cofibrant object in CN. As N is a direct category, the fibrations in CY are the
pointwise ones, hence N has pointwise constants [Hir03, definition 15.10.1] and
therefore [Hir03, theorem 19.9.1] the canonical map

hocolim hocolim D,, — colim hocolim D,
neN In<1 neN  I7

is a weak equivalence in C. This gives us the weak equivalence in C

hocolim hocolim D, — hocolim D,,.
n <1 21
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Since N is contractible, the canonical map hocolimy 1 — 1 is a weak equivalence
in C, giving us the weak equivalences

hocofib[hocolim D, — 1]
72,

~ hocofiblhocolim hocolim D, — hocolim 1]
neN I < neN
~ hocggm[hocoﬁb[hogolim D, — 1]].

n,<1

Thus, we need only exhibit isomorphisms in HoC

pn : hocofiblhocolim D, — 1] — 1/(z1,...,2n) == 1/(21) @ ... ®@ 1/(wy),

17 <1

which are natural in n € N.
By lemma 1.6 we have a natural isomorphism in C,

hocofiblhocolim D, — 1] = hocolim C(D,;, )L

1< O )b

However, Z° ., is isomorphic to Of by sending N = (Ny,...,N,) to
I(N) == {i | N; = 0}. Similarly, C(Z3 ;) is isomorphic to 0", and
C(Z; <,)" is thus isomorphic to ogtt. From our discussion above, we see
that h?)colimo(zgyg)r C(D,,n)" is isomorphic to hocofib,,C(D,, ), so we need

only exhibit isomorphisms in Ho C
pn + hocofib,C(Dy, 1) = 1/(21) @ ... @ 1/(xy,)

which are natural in n € N.

We do this inductively as follows. To include the index m in the nota-
tion, we write C(Dy,7), for the functor C(Dy,n) : O" — C. For n = 1,
hocofib; C(D,, 7)1 is the mapping cone of p1o(xz;®id) : 1®@7T;®1 — 1, which
is isomorphic in HoC to the homotopy cofiber of xx; : 1 ® T3 — 1. As this
latter homotopy cofiber is equal to 1/(x1), so we take p; : hocofib; C(D,, 7)1 —
1/(z1) to be this isomorphism. We note that C(Dy, ), 0 i}t = C(Dy,7)n-1
and C(Dy,m)p 0, = C(Dy,m)p_1®T, 1.

Define C(D,, )}, by C(Dy, 7)) 00, = C(Dyy T)n—1®@1T, @1, C(Dy, )00 =
C(Dy,T)n—1 ® 1, with the natural transformation C(Dy, )], o 1, given as

O(DI, ﬂ')n_l 2107, ®1 (id®p)o(id® Xz, ®idy)

O(DI, 7T)n_1 (24 1.

The evident multiplication maps give a weak equivalence C(D,,7),, —
C(Dy,7)n, giving us the isomorphism in HoC

pn : hocofib,C(Dy, )y, = 1/(21) ® ... @ 1/ ()
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defined as the composition
hocofib,,C(D,, 7), = hocofib,,C (D, 7)1,

= hocofib(hocofib,,—1(C (D, T)pn-1 @ 1 @ Ty,)
hocofib,,—1 (id® Xz )

hocofib,,—1(C(Dy, 7)p—1 @ 1))
= hocofib(hocofib,—1(C(Dy, )pn-1) @1 @ T),

id@x@n, hocofib,—1(C(Dz, 7)n-1) ® 1)

= hocofiby,—1(C(Dg, T)n—1) ® hocofib(xzy, : 1 @ T, — 1)
= hocofib,—1(C(Dy, m)n-1) @ 1/(x4,)
(

2 (@) ® ... ® 1/ (a-1) © 1/ (20).

Via the definition of hocofib,,,

hocofib,,C(D,, ), = hocofiblhocofib,,_1(C(Dy, 7)n 0 i), )
hocofiby,,— 1 (C(Dg,m)n—1(¢n))

hocofib,, (C(Dy, ), 0]

and the identification C(D,, ), o i} = C(Dy,7)n—1, we have the canonical
map hocofib,,_1(C(Dy,m)n—1) — hocofib, (C(D,,),). One easily sees that
the diagram

hocofiblhocolimze D, — 1] hocofiblhocolimze _ D, — 1]

Nl lN

hocofib,—1(C(Dy, 7)n—1) hocofib, (C(Dy, )n)

1/(21)®...®1/(zn_1) 1/(21) ®...®1/(zn)

commutes in HoC, giving the desired naturality in n. ([

Now let M be an object in C, let QM — M be a cofibrant replacement and
form the Z-diagram D, @ QM : Z — C, (D, @ QM )(N) = D,(N) @ QM.

PRrROPOSITION 1.9. Assume that I is countable. Let M be an object in C. Then
there is a canonical isomorphism in HoC

M/({z; | iel}) = hocoﬁb[ho%%lim D, ® QM — hocglim D, ® QM].

Proof. This follows directly from lemma 1.8, noting the definition of
M/({z; | i € I}) as [1/({z; | ¢ € I})] ® QM and the canonical isomor-
phism

hocoﬁb[hoczcllim D, QM — hocglim D, ® QM|
= hocoﬁb[hoczcglim D, — hocglim D, ® QM.
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d

PROPOSITION 1.10. Let F : Zgeg>n — C be a diagram in a cofibrantly generated
model category C. Suppose for every monomial M of degree n the natural map
hocolim F|z_,, — F(M) is a weak equivalence. Then the natural map

hocolim F|geg>n+1 — hocolim F
is a weak equivalence.

Proof. This is just [S10, lemma 4.5], with the following corrections: the state-
ment of the lemma in loc. c¢it. has “hocolim Flz.,, — F(M) is a weak
equivalence” rather than the correct assumption “hocolim Flz_,, — F(M)
is a weak equivalence” and in the proof, one should replace the object Q(M)
with colim Q|7 as rather than with colim Q|r> - O

2. SLICES OF EFFECTIVE MOTIVIC MODULE SPECTRA

In this section we will describe the slices for modules for a commutative and
effective ring T-spectrum R, assuming certain additional conditions. We adapt
the constructions used in describing slices of M GL in [S10].

Let us first recall from [Vo00] the definition of the slice tower in SH(S). We
will use the standard model category Mot := Mot(S) of symmetric T-spectra
over S, T := A'/Al\ {0}, with the motivic model structure as in [J00], for
defining the triangulated tensor category SH(S) := Ho Mot(5).

For an integer g, let E%S?—leff(S) denote the localizing subcategory of SH(S)
generated by S, := {ZL¥X¥X, | p > ¢, X € Sm/S}, that is, ZLSH/(S)
is the smallest triangulated subcategory of SH(S) which contains S; and is
closed under direct sums and isomorphisms in SH(S). This gives a filtration
on SH(S) by full localizing subcategories

< C DI SHA(S) € BLSHAT(S) € RITISHII(S) ¢ - € SH(S).

The set S is a set of compact generators of £1.57(S) and the set UyS, is sim-
ilarly a set of compact generators for SH(S). By Neeman’s triangulated ver-
sion of Brown representability theorem [N97], the inclusion 7, : ©L.SHIT(S) —
SH(S) has a right adjoint 7, : SH(S) — SLSHT(S). Welet f, := izor,. The
inclusion DL SHF(S) — BLSH(S) induces a canonical natural transfor-
mation f;41 — f;. Putting these together forms the slice tower

(2.1) s fgp1 = fq s —id

For each ¢ there exists a triangulated functor s, : SH(S) — SH(S) and a
canonical and natural distinguished triangle

fa11(E) = f(€) = 54(€) = Tf g1 ()

in SH(S). In particular, s,(&) is in SLSH/(S) for each & € SH(S).

Pelaez has given a lifting of the construction of the functors f; to the model
category level. For this, he starts with the model category Mot and forms
for each n the right Bousfield localization of Mot with respect to the objects

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 407-442



QUOTIENTS OF M GL, THEIR SLICES AND GEOMETRIC PARTS 419

YPF, X4 with m —n > ¢ and X € Sm/S. Here F, X is the shifted T-
suspension spectrum, that is, ¥7' 7" X in degree m > n, pt in degree m < n,
and with identity bonding maps. Calling this Bousfield localization Mot,, the
functor ry is given by taking a functorial cofibrant replacement in Mot,. As the
underlying categories are all the same, this gives liftings fq of f, to endofunctors
on Mot. The technical condition on M ot invoked by Pelaez is that of cellularity
and right properness, which ensures that the right Bousfield localization exists;
this follows from the work of Hirschhorn [Hir03]. Alternatively, one can use the
fact that Mot is a combinatorial right proper model category, following work
of J. Smith, detailed for example in [B10].
The combinatorial property passes to module categories, and so this approach
will be useful here. The category Mot is a closed symmetric monoidal simplicial
model category, with cofibrant unit the sphere (symmetric) spectrum Sg and
product A. Let R be a commutative monoid in Mot. We have the model
category C := R-Mod of R-modules, as constructed in [ScSh]. The fibrations
and weak equivalences are the morphisms which are fibrations, resp. weak
equivalences, after applying the forgetful functor to Mot; cofibrations are those
maps having the left lifting property with respect to trivial fibrations. This
makes C into a pointed closed symmetric monoidal simplicial model category;
C is in addition cofibrantly generated and combinatorial. Assuming that R
is a cofibrant object in Mot, the free R-module functor, & — R A &, gives
a left adjoint to the forgetful functor and gives rise to a Quillen adjunction.
For details as to these facts and a general construction of this model category
structure on module categories, we refer the reader to [ScSh]; another source
is [Hov], especially theorem 1.3, proposition 1.9 and proposition 1.10.
The model category R-Mod inherits right properness from Mot. We may there-
fore form the right Bousfield localization C, with respect to the free R-modules
RAXPE, Xy with m—n > qgand X € Sm/S, and define the endofunctor ff
on C by taking a functorial cofibrant replacement in C,. By the adjunction,
one sees that HoC, is equivalent to the localizing subcategory of HoC (com-
pactly) generated by {RAXPE, X, | m—n> ¢, X € Sm/S}. We denote this
localizing subcategory by ¥%.Ho Ceff, or HoC®f' for ¢ = 0. We call an object
M of C effective if the image of M in HoC is in HoC®//, and denote the full
subcategory of effective objects of C by C¢//.

R .

Just as above, Neeman’s results give a right adjoint er to the inclusion i;" :
Z%Ceff — C and the composition fgz = iZf o er is represented by ff One
recovers the functors f, and fq by taking R = Sg.

LEMMA 2.1. Let R be a cofibrant commutative monoid in Mot. The functors
fgz :HoC — HoC and their liftings fgz have the following properties.

(1) Each fF is idempotent, i.e., (fR)* = fF.
(2) fRYL =%LfR | forneZ.

(3) Fach ff commutes with homotopy colimits.
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(4) Suppose that R is in SHI(S). Then the forgetful functor U : Ho R-
Mod — SH(S) induces an isomorphism U o fR = f, 0 U as well as an
isomorphism U o s?f = s,0U, forall g € Z.

Proof. (1) and (2) follow from universal property of triangulated functors f.
In case R = Sg, (3) is proved in [S10, Cor 4.6]; the proof for general R is the
same. For (4), it suffices to prove the result for f, and ff. Take M € C. We
check the universal property of Uff/\/l — UM: Since R is in S’Heff(S) and
the functor — A R is compatible with homotopy cofiber sequences and direct
sums, — AR maps Y4SH '/ (S) into itself for each ¢ € Z. As U(RAE) = RAE,
it follows that U(2%Ho R-Mod®/) ¢ ©28#/7(S) for each ¢q. In particular,
U(fR(M)) is in SLSH/(S). For p > ¢, X € Sm/S, we have

Homgy(s)(E5F Xy, U(qu(M))) = Hompoc(R A XEEF X, qu(M))
= HOmHoc(R A E%E%OX_H M)
= Homgy(s) (3757 X4, U(M)),

so the canonical map U (fJ(M)) — fq(U(M)) is therefore an isomorphism. [

From the adjunction Home (R, M) = Hompsot(Ss, M) and the fact that Sg
is a cofibrant object of Mot, we see that R is a cofibrant object of C. Thus
C is a closed symmetric monoidal simplicial model category with cofibrant
unit 1 := R and monoidal product ® = Ag. Similarly, Tr := R AT is a
cofibrant object of C. Abusing notation, we write ¥p(—) for the endofunctor
A— A®Tr of C. The compatibility of the simplicial monoidal structure with
monoidal structure of C follows directly from the construction of C.

We recall that the category Mot satisfies the monoid axiom of Schwede-Shipley
[ScSh, definition 3.3]; the reader can see for example the proof of [Hoy, lemma
4.2]. Following remark 1.1, there is a fibrant replacement R — 1 in C such that
1 is an R-algebra; in particular, R — 1 is a cofibration and a weak equivalence
in both C and in Mot, and 1 is fibrant in in both C and in Mot.

For each # € R~2%~4(S), we have the corresponding element & : Tg* — R in
Ho C, which we may lift to a morphism « : ng — 1in C. Thus, for a collection
of elements {z; € R™2%~4:(S) | i € I}, we have the associated collection of
maps in C, {z; : T%’di — 1 | ¢ € I} and thereby the quotient object 1/({x;})
in C. Similarly, for M an R-module, we have the R-module M /({x;}), which
is a cofibrant object in C. We often write R/({z;}) for 1/({x;}).

LEMMA 2.2. Suppose that R is in SH'/(S). Then for any set
{z; e R720-4i(8) | i e I,d; >0}

of elements of R-cohomology, the object R/({x;}) is effective. If in addition
M is an R-module and is effective, then M/({x;}) is effective.

Proof. This follows from lemma 2.1 since f* is a triangulated functor and C/f
is closed under homotopy colimits. (I
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Let A be an abelian group and SA the topological sphere spectrum with A-
coefficients. For a T-spectrum & let us denote the spectrum £ A SA by € ® A.
Of course, if A is the free abelian group on a set S, then £ ® A = ®4esf.

Let {z; € R™24:=4(S) | i € I,d; > 0} be a set of elements of R-cohomology,
with I countable. Suppose that R is cofibrant as an object in Mot and is in
SHT(S). Let M be in €7 and let QM — M be a cofibrant replacement.
By lemma 1.8, we have a homotopy cofiber sequence in C,

hocIoolisz RQOQM — QM — M/({x;}).

Clearly hocolimze D, ® QM is in ¥1.Ho C¢'f hence the above sequence induces
an isomorphism in HoC

so M 5 sT(M/({2i})-
Composing the canonical map M/ ({z;}) — s{¥(M/({z;})) with o, gives the
canonical map
T s M/ ({xi}) = sEM
in HoC. Applying the forgetful functor gives the canonical map in SH(.S)
T s UM/ ({)) = U(sFM) =2 so(UM).

This equal to the canonical map U(M/({z;})) — so(U(M/({x;}))) composed
with the inverse of the isomorphism so(UM) — so(U(M/({z;}))).

THEOREM 2.3. Let R be a commutative monoid in Mot(S), cofibrant as an ob-
ject in Mot(S), such that R is in SH/(S). Let X = {z; ¢ R=2%—4(S) | i ¢
1,d; > 0} be a countable set of elements of R-cohomology. Let M be an R-
module in C¢f and suppose that the canonical map o : UM/({x;})) —
s0(UM) is an isomorphism. Then for each n > 0, we have a canonical iso-
morphism in HoC,
SRM =2 SR M @ Z[X],,

where Z[ Xy, is the abelian group of weighted-homogeneous degree n polynomials
over Z in the variables {x;,i € I}, degx; = d;. Moreover, for each n, we have
a canonical isomorphism in SH(S),

$aUM 2 S250UM @ Z[X],.

Proof. Replacing M with a cofibrant model, we may assume that M is cofi-
brant in C; as R is cofibrant in Mot, it follows that UM is cofibrant in M ot.
Since mo = U(7Ry), our assumption on maq is the same as assuming that
”/734 is an isomorphism in HoC. By construction, 77}3[ extends to a map of
distinguished triangles

(hocolimze D) ® M ——= M —— M/({x;}) —— X(hocolimz. D,) ® M

] a

fEM M sy M SEM,
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and thus the map « is an isomorphism. We note that « is equal to the canonical
map given by the universal property of fM — M.

We will now identify f®M in terms of the diagram D, |z texsn @ M, proving by
induction on n > 1 that the canonical map hocolim D, ® M|dqeg>n — fRM in
HoC is an isomorphism.

As 7T° = Zgeg>1, the case n = 1 is settled. Assume the result for n. We claim
that the diagram

FR D2 © Mlacgzn] : Tacgzn — C

satisfies the hypotheses of proposition 1.10. That is, we need to verify that for
every monomial M of degree n the natural map

hocolim f%, | [Dsar @ M] — fR,[D(M) @ M]
is a weak equivalence in C. This follows by the string of isomorphisms in HoC

hocolim £ 1 [Dx 1 ® M] = hocolim f%, | [SF Dgeg>1 ® M|
= hocolim X% fR [Dyeg>1 @ M|
=~ 31 ¥ hocolim[Dyeg>1 © M]
= SR M
= 3 fR M
= foa M
>~ (R [D(M)® M.

Applying proposition 1.10 and our induction hypothesis gives us the string of
isomorphisms in HoC

RAM X R FRM = R hocolim[D, @ M |deg>n]

= hocolim f§+1[Dz ® M |deg>n] = hocolim ~§+1[Dz Q@ M|deg>n+1]

= hocolim Dy @ M|deg>n+1,

the last isomorphism following from the fact that D, (™) ® M is in S}Vcef7,
and hence the canonical map ffﬁrl[Dx ® M] — D, @ M is an objectwise weak
equivalence on Zgeg>n41-
For the slices s,, we have

sM := hocofib(fR M — fRM) 2 hocofib(fR, | fRM — fRM)
= hocofib(hocolim f,ﬁl[Ddean ® M] — hocolim Dyeg>n ® M)
= hocolim hocofib(£/%, 1 [Daeg>n @ M] = Diegsn @ M).

At a monomial of degree greater than n, the canonical map ffﬂ[Ddean ®
M] = Dyeg>n ® M is a weak equivalence, and at a monomial M of degree n
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the homotopy cofiber is given by

hocofib(f%,,[D(M) @ M] — D(M) @ M) = hocofib((f%.;[S2M] — S-M)
= hocofib(X% fRM — M) = 22 M

Let 5% be the functor on C/f| N — hocofib(fRN — N), and let F,M :
Taeg>n — C¢’f be the diagram

Fo(M) = pt for deg M > n
" C | ZRERM for deg M = n.

We thus have a weak equivalence of pointwise cofibrant functors
hOCOﬁb(f§+1[Ddeg2n M] — Dyeg>n @ M) = F, : Zaeg>n — C,
and therefore a weak equivalence on the homotopy colimits. As we have the

evident isomorphism in HoC

hocolim F;, = @ pr,deg M= nETSO M,
Zaeg>n

this gives us the desired isomorphism s*M = ¥2s*M ® Z[X], in HoC.
Applying the forgetful functor and using lemma 2.1 gives the isomorphism

UM = 525U M @ Z[X],, in SH(S). O

COROLLARY 2.4. Let R, X and M be as in theorem 2.3. Let Z = {z; € Z[X],}
be a collection of homogeneous elements of Z[X], and let M[Z~'] € C be the

localization of M with respect to the collection of maps xz; : M — .9 M.
Then there are natural isomorphisms

swM[Z71 = Shsf M @ ZIX][ 27w,
snUM[Z7Y 2 S8sgUM @ Z[X][Z 7).
Proof. Each map xz; : M — ¥,;“M induces the isomorphism xz;

M[Z7Y] — Bp9M[Z7Y in HoC, with inverse xz;' : B9 M[Z71] —
M([Z~1]. Applying fF gives us the map in HoC

G fRM = RS M =S R M.

As [ M is in Zq+e] HoC/, both L;%fR M and fRM are in
Y7 Ho C%/. The composition
—1
—e. . Xz,

SrfR e M = ST M —— M[Z7Y
gives via the universal property of fX the map %% gﬁ_e M = fRM[Z7Y].
Setting |N| = Zj Njej, this extends to give a map of the system of monomial
multiplications

N—M [V [M]| R

XN MR M M M
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to ff/\/l[Z ~11; the universal property of the truncation functors f, and of
localization shows that this system induces an isomorphism

. —|N| R ~ R -1
hj(\),(éozlgnET fornM = fEMIZT]

in HoC. As the slice functors s, are exact and commute with hocolim, we have
a similar collection of isomorphisms

hocolim =715, M = 5, (M(Z 7))

Theorem 2.3 gives us the natural isomorphisms
~IN ~
ET| |‘9(71z+|N|/\/l > NTsEM @ L X gy 5

via this isomorphism, the map Xxz; goes over to idqusgz M @ Xz, which yields
the result. (I

COROLLARY 2.5. Let R, X and M be as in theorem 2.5. Let Z = {z; € Z[X], }
be a collection of homogeneous elements of Z[X], and let M[Z~] € C be the
localization of M with respect to the collection of maps xz; : M — X% M. Let
m > 2 be an integer. We let M[Z~1]/m := hocofib x m : M[Z71] — M[Z71].
Then there are natural isomorphisms

SREM[Z7Y/m =2 ShsiM/m @ Z[X][Z7H,,
sy UM[Z7Y/m = 2hsoUM/m @ Z[X][Z7 Y.

This follows directly from corollary 2.4, noting that s® and s,, are exact func-
tors.

Remark 2.6. Let P be a multiplicatively closed subset of Z. We may replace
Mot with its localization Mot[P~1] with respect to P in theorem 2.3, corol-
lary 2.4 and corollary 2.5, and obtain a corresponding description of s* M and
s,UM for a commutative monoid R in Mot[P~1] and an effective R-module
M.

For P =Z\{p",n =1,2,...}, we write Mot ® Z,) for Mot[P~'] and SH(S)®
Z(p) for Ho Mot ® Z(p).

3. THE SLICE SPECTRAL SEQUENCE

The slice tower in SH(.S) gives us the slice spectral sequence, for £ € SH(S),
X €Sm/S, neZ,

(3.1) EP9(n) = (5-¢(E))PT1"(X) = EPTIM(X).

This spectral sequence is not always convergent, however, we do have a con-
vergence criterion:

LEMMA 3.1 ([L15, lemma 2.1]). Suppose that S = Speck, k a perfect field.
Take £ € SH(S). Suppose that there is a non-decreasing function f : Z — Z
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with lim, o f(n) = oo, such that mq4p € = 0 for a < f(b). Then the for all
Y, and all n € Z, the spectral sequence (3.1) is strongly convergent.’

This yields our first convergence result. For & € SH(S),Y € Sm/S, p,q,n € Z,
define

HP (Y, 7 (€) (n — q)) := Homgp(s) (SF Vs, SPH07s_, (€)).

Here X% is suspension with respect to the sphere S%? = §3=0 A GNP, This
notation is justified by the case S = Speck, k a field of characteristic zero. In
this case, there is for each ¢ a canonically defined object 74 (&) of Voevodsky’s
“big” triangulated category of motives DM (k), and a canonical isomorphism

EM (£ (€)) 2 S, (€),

where EM a1 : DM (k) — SH(k) is the motivic Eilenberg-MacLane functor.
The adjoint property of EM 41 yields the isomorphism

HPZA(Y, 7l (€)(n = q)) = Homp s () (M (Y), 72, (€)(n — ¢)[p — q])
=~ Homsy(s)(SF Y, BP0 s_¢(€)).
We refer the reader to [P11, RO08, Vo04] for details.

PROPOSITION 3.2. Let R be a commutative monoid in Mot(S), cofibrant as
an object in Mot(S), with R in SHY/(S). Let X := {&; € R™2~4(S)}
be a countable set of elements of R-cohomology, with d; > 0. Let P be a
multiplicatively closed subset of Z and let M be an R[P~']-module, with UM &
SH(S)*/F[P~1]. Suppose that the canonical map

UM/{zi})) = soUM

is an isomorphism in SH(S)[P~']. Then
1. The slice spectral sequence for M**(Y') has the following form:

E3(n) = H'™ (Y, 7§ (M) (n — q)) @z Z[X] g => MPTI"(Y).

2. Suppose that S = Speck, k a perfect field. Suppose further that there is an
integer a such that M?™+57(Y) =0 for allY € Sm/S, allr € Z and all s > a.
Then the slice spectral sequence converges strongly for allY € Sm/S, n € Z.

Proof. The form of the slice spectral sequence follows directly from theo-
rem 2.3, extended via remark 2.6 to the P-localized situation. The conver-
gence statement follows directly from lemma 3.1, where one uses the function
flry=r—a. O

We may extend the slice spectral sequence to the localizations M[Z~!] as in
corollary 2.4.

3As spectral sequence {EF?} = GP1T9 converges strongly to G* if for each n, the spectral
sequence filtration F*G™ on G™ is finite and exhaustive, there is an r(n) such that for all
p and all r > r(n), all differentials entering and leaving EX" " are zero and the resulting

maps EP"P — ER"P = Grl,G™ are all isomorphisms.
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PROPOSITION 3.3. Let R, X, P and M be as in proposition 3.3 and assume
that all the hypotheses for (1) in that proposition hold. Let Z = {z; € Z[X],}
be a collection of homogeneous elements of Z[X], and let M[Z~] € C be the
localization of M with respect to the collection of maps xz; : M — E;ej/\/l.
Then the slice spectral sequence for M[Z~1**(Y) has the following form:

EY(n) = HP™9(Y, 15 (M)(n — q)) @2 ZIX][Z7 ] g = M[Z7PHE"(Y).
Suppose further that S = Speck, k a perfect field, and there is an integer a

such that M +57(Y) =0 for allY € Sm/S allr € Z and all s > a. Then the
slice spectral sequence converges strongly for all Y € Sm/S, n € Z.

The proof is same as for proposition 3.2, using corollary 2.4 to compute the
slices of M[Z71].

Remark 3.4. Let R be a commutative monoid in Mot, with R € SH(S).
Suppose that there are elements a; € R*/#+/i(S),i=1,2,..., f; <0, so that M
is the quotient module R/({a;}). Suppose in addition that there is a constant ¢
such that R?"**7(Y) =0 forallY € Sm/S, r € Z, s > ¢. Then M?"+57(Y) =
OforallY € Sm/S, r € Z, s > ¢. Indeed

M :=hocolimR/(ay,as, ..., an),

so it suffices to handle the case M = R/(a1,az,...,a,), for which we may use
induction in n. Assuming the result for ' := R/(a1,az,...,a,_1), we have
the long exact sequence (f = f,)

o NPRREAET (v X0 Apa(y) o MPA(Y) o NPERILH (v)

Thus the assumption for A/ implies the result for M and the induction goes
through.

4. SLICES OF QUOTIENTS OF MGL

The slices of a Landweber exact spectrum have been described by Spitzweck
in [S12, S10], but a quotient of MGL or a localization of such is often not
Landweber exact. We will apply the results of the previous section to describe
the slices of the motivic truncated Brown-Peterson spectra BP(n), effective
motivic Morava K-theory k(n) and motivic Morava K-theory K (n), as well as
recovering the known computations for the Landweber examples [S12], such as
the Brown-Peterson spectra BP and the Johnson-Wilson spectra E(n).

Let MGL, be the commutative monoid in Mot ® Z,) representing p-local al-
gebraic cobordism, as constructed in [PPR, §2.1]%. As noted in loc. cit., MGL,
is a cofibrant object of Mot ® Z,). The motivic BP was first constructed by
Vezzosi in [Ve0l] as a direct summand of M GL,, by using Quillen’s idempotent
theorem. Here we construct BP and BP(n) as quotients of M GL,; the effec-
tive Morava K-theory k(n) is similarly a quotient of MGL,/p. Our explicit

4This gives MGL as a symmetric spectrum, we take the image in the p-localized model
structure to define MGLy,.
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description of the slices allows us to describe the Es-terms of slice spectral
sequences for BP and BP(n).

The bigraded coefficient ring 7, «MGL,(S) contains mo, MU =~ L., localized
at p, as a graded subring of the bi-degree (2%, x) part, via the classifying map
for the formal group law of M GL; see for example [Hoy, remark 6.3]. The ring
L.p = L. ®z Z(p) is isomorphic to polynomial ring Z,)[z1, 22, - - -] [A95, Part
I1, theorem 7.1], where the element z; has degree 2i in w, MU, degree (2i,1) in
Ty« MGL, and degree i in L,.

The following result of Hopkins-Morel-Hoyois [Hoy] is crucial for the application
of the general results of the previous sections to quotients of M GL and MGL,,.

THEOREM 4.1 ([Hoy, theorem 7.12]). Let p be a prime integer, S an essentially
smooth scheme over a field of characteristic prime to p. Then the canonical
maps MGLy,/({z; : i =1,2,...}) = soMGL, — HZ) are isomorphisms in
SH(S). In case S = Speck, k a perfect field of characteristic prime to p, the
inclusion L.y, C mo. « MGLy(S) is an equality.

This has been extended by Spitzweck. He has constructed [S13] a motivic
Eilenberg-MacLane spectrum HZ in Sptp:(X) with a highly structured mul-
tiplication, for an arbitrary base-scheme X. For X smooth and of finite type
over a Dedekind domain, HZ represents motivic cohomology defined as Bloch’s
higher Chow groups [Vo02]; this theory agrees with Voevodsky’s motivic co-
homology for smooth schemes of finite type over a perfect field. In addition,
Spitzweck has extended theorem 4.1 to an arbitrary base-scheme.

THEOREM 4.2 ([S13, theorem 11.3], [S14, corollary 6.6]). Let p be a prime inte-
ger and let S be a scheme whose positive residue characteristics are all prime to
p. Then the canonical maps MGL,/({x;:1=1,2,...}) = soMGL, — HZ)
are isomorphisms in SH(S). In case S = Spec A, A a Dedekind domain with
all residue characteristics prime to p and with trivial class group, the inclusion
L.p C mox « MGL,(S) is an equality.

We define a series of subsets of the set of generators {x; | i =1,2...},
BS={m;:i#p"—1k>1},
By ={x;i:i=p"—1,k>1},
Bln)y ={z; i #p" ~ 1,1 <k <n},
B<n>p:{$i1i:pk—171 <k <n},
k(n)p = {apn 1}

We also define

k(n), = {wii#p" —1and zo =p} C{p,zi [i=1,2.. .}

DEFINITION 4.3 (BP, BP{n) and E(n)). The Brown-Peterson spectrum BP
is defined as

BP := MGL,/({z; | i € B}),
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the truncated Brown-Peterson spectrum BP(n) is defined as
BP(n):= MGLy/({x; | i € B(n),})
and the Johnson-Wilson spectrum E(n) is the localization
E(n) := BP(n}[m;nlfl}.
DEFINITION 4.4 (Morava K-theories k(n) and K(n)). Effective Morava K-
theory k(n) is defined as
k(n) := MGL,/({z; | i € k(n)p}) = BP(n)/(p-1,...,Tpn-1_1,D).
Define Morava K-theory K(n) to be the localization
K(n):= k(n)[x;nl_l}

The spectra BP, BP{(n), E(n),k(n) and K(n) are MGLy,-modules. BP and
E(n) are Landweber exact. We let C denote the category of M GL,-modules.

LEMMA 4.5. The MGL,-module spectra BP,BP(n) and k(n) are effective.
BP and E(n) have the structure of oriented weak commutative ring T-spectra

in SH(S).

Proof. The effectivity of these theories follows from lemma 2.2 and the fact
that homotopy colimits of effective spectra are effective. The ring structure for
BP and E(n) follows from the Landweber exactness (see [NSO09)]). O

We first discuss the effective theories BP, BP(n) and k(n).

PROPOSITION 4.6. Let p be a prime and S a scheme with all residue charac-
teristics prime to p. Then in SH(S):

1. The zeroth slices of both BP and BP{n) are isomorphic to p-local motivic
FEilenberg-MacLane spectrum HZy, and the zeroth slice of k(n) is isomorphic
to HZ/p.

2. The quotient maps from MGL, induce isomorphisms

$0BP ~ (soMGL), ~ soBP(n),
sok(n) =~ (soMGL),/p.

3. The respective quotient maps from BP, BP(n) and k(n) induce isomor-
phisms

BP/({x; : x; € Bp}) ~ soBP,
BP(n)/({zi : x; € B(n)p}) ~ soBP(n),
k(n)/(xpn—1) ~ sok(n).

Proof. By theorem 4.1 (in case S is essentially smooth over a field) or theo-
rem 4.2 (for general S), the classifying map MGL — HZ for motivic cohomol-
ogy induces isomorphisms

MGLy/({zi:i=1,2,...}) = soMGL, = HZ,

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 407-442



QUOTIENTS OF M GL, THEIR SLICES AND GEOMETRIC PARTS 429

Now let & C N be a subset and S¢ its complement. By remark 1.5, we have an
isomorphism

(MGL,/({z; :i € 8Y))/({zi i € S}) = MGL,/({z; : i € N}).

Also, as z; is a map X**'MGL, - MGL,, i > 0, the quotient map MGL, —
MGL,/({x; : i € §}) induces an isomorphism

soMGLy, — sog[MGL,/({x; : i € S°Y})].
This gives us isomorphisms
(MGLy/({x; i € 8Y)/({z: : i € S}) =
> 50[MGL,/({x; :i € §})] = soMGL,,
with the first isomorphism induced by the quotient map
MGL,/({z;:i€ 8 - (MGLy/({z; : i € §°}))/({z: : 1 € S}).

Taking S = By, B{n),, {xyn—1} proves the result for BP, BP(n) and k(n),
respectively. (I

For motivic spectra & = BP, BP(n), k(n), E(n) and K(n) defined in 4.3 and
4.4 let us denote the corresponding topological spectra by £%°P. The graded

coefficient rings EL7 of these topological spectra are
Zplv1, va, -] £=BP
Zplv1, va, -+ ,Un] & = BP(n)
ELP = { Zplvr, vay -y U, v Y] E=E(n)
Z/plv,] E=k(n)
Z/plvn, vyl E=K(n)

where degv, = 2(p" — 1). The element v, corresponds to the element Z, €
MGL*™ " (k).

COROLLARY 4.7. Let p be a prime integer and let S be a scheme whose positive
residue characteristics are all prime to p. Then in SH(S), the slices of Brown-
Peterson, Johnson-Wilson and Morava theories are given by

5.8 ~ Sk Hz, ® £57 & = BP, BP(n) and E(n)
T Sy Hy, @EXP & =k(n) and K (n)

where 5;?19 is degree 2i homogeneous component of coefficient ring of the cor-
responding topological theory.

Proof. The statement for BP and BP(n) follows from theorem 2.3, and re-
mark 2.6. The case of E(n) follows from corollary 2.4 and the cases of k(n)
and K (n) follow from corollary 2.5. O

THEOREM 4.8. Let p be a prime integer and let S be a scheme whose positive
residue characteristics are all prime to p. The slice spectral sequence for any
of the spectra € = BP, BP(n), k(n), E(n) and K(n) in SH(S) has the form

EPU(X,m) = HP™9(X, Z(m — q)) @z %, = EPHE™(X),
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where Z = Z, for € = BP, BP(n) and E(n), and Z = Z/p for £ = k(n)
and K(n). In case S = Speck and k is perfect, these spectral sequences are all
strongly convergent.

Proof. The form of the slice spectral sequence for £ follows from corollary 4.7.
The fact that the slice spectral sequences strongly converge for S = Speck, k
perfect, follows from remark 3.4 and the fact that MGL* ™" (Y) = 0 for all
Y € Sm/S, r € Z and s > 1. This in turn follows from the Hopkins-Morel-
Hoyois spectral sequence

ENY(n) = HP (Y, Z(n — q)) ® L_, = MGLPT?™(Y),
which is strongly convergent by [Hoy, theorem 8.12]. d

5. MODULES FOR ORIENTED THEORIES

We will use the slice spectral sequence to compute the “geometric part” £2**
of a quotient spectrum & = MGL,/({x;;}) in terms of algebraic cobordism,
when working over a base field k of characteristic zero. As the quotient spectra
are naturally M G L,-modules but may not have a ring structure, we will need
to extend the existing theory of oriented Borel-Moore homology and related
structures to allow for modules over ring-based theories.

5.1. ORIENTED BOREL-MOORE HOMOLOGY. We first discuss the extension
of oriented Borel-Moore homology. We use the notation and terminology of
[LMO09, §5]. Let Sch/k be the category of quasi-projective schemes over a field
k and let Sch/k’ denote the subcategory of projective morphisms in Sch/k.
Let Ab., denote the category of graded abelian groups, Ab., the category of
bi-graded abelian groups.

DEFINITION 5.1. Let A be an oriented Borel-Moore homology theory on Sch/k
[LMO9, definition 5.1.3]. An oriented A-module B is given by

(MD1) An additive functor B, : Sch/k’ — Ab,, X — B.(X).
(MD2) For each l.c.i. morphism f:Y — X in Sch/k of relative dimension d,
a homomorphism of graded groups f* : By(X) — Biya(Y).
(MD3) For each pair (X,Y) of objects in Sch/k a bilinear graded pairing

A (X)®@B.(Y) = Bu(X X3, Y)

UV U XV

which is associative and unital with respect to the external products in the
theory A.
These satisfy the conditions (BM1), (BM2), (PB) and (EH) of [LM09, defini-
tion 5.1.3]. In addition, these satisfy the following modification of (BM3).

(MBM3) Let f : X’ — X and g : Y/ — Y be morphisms in Sch/k. If
f and g are projective, then for v’ € A,(X’), v' € B.(Y"'), one has

(f x @)u(u' xv") = fu(u) x g«(v").
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If f and g are 1. c.i. morphisms, then for u € A,(X), v € B,(Y), one has
(f x9)"(uxv) = fulu) X g«(v).

Let f: A — A’ be a morphism of Borel-Moore homology theories, let B be an
oriented A-module, B’ an oriented A’-module. A morphism g : B — B’ over
f is a collection of homomorphisms of graded abelian groups gx : B«(X) —
B.(X), X € Sch/k such that the gx are compatible with projective push-
forward, 1. c.i. pull-back and external products.

We do not require the analog of the axiom (CD) of [LMO09, definition 5.1.3];
this axiom plays a role only in the proof of universality of )., whereas the
universality of Q for A-modules follows formally from the universality for €
among oriented Borel-Moore homology theories (see proposition 5.3 below).

EXAMPLE 5.2. Let N, be a graded module for the Lazard ring L. and let A, be
an oriented Borel-Moore homology theory. Define AN (X) := A,(X) ®L, N..
Then with push-forward fV = f2 ®idy,, pull-back f5 := fi ® idy,, and
product u x (v ®@n) := (u x v) @n, for u € A.(X), v € A.(Y), n € N,, AY
becomes an oriented A-module. Sending N, to AY gives a functor from graded
L.-modules to oriented A-modules.

In case k has characteristic zero, we note that, for A, = ., we have a canonical
isomorphism Oy, : Q¥+(k) = N,, as the classifying map L, — Q. (k) is an
isomorphism [LMO09, theorem 1.2.7].

Just as for a Borel-Moore homology theory, one can define operations of A, (Y)
on B.(Z) via a morphism f : Z — Y, assuming that Y is in Sm/k: for
a€A(Y),be B,(Z), define ang b € B,(Z) by

aNgb:=(f,idz)*(a x b),

where (f,idz) : Z — Y Xy, Z is the (transpose of) the graph embedding. As
Y is smooth over k, (f,idz) is an 1. c.i. morphism, so the pullback (f,idz)* is
defined. Similarly, B.(Y) is an A, (Y)-module via

a Uy b:= 65 (a x b).

These products satisfy the analog of the properties listed in [LMO09, §5.1.4,
proposition 5.2.1].

PROPOSITION 5.3. Let A be an oriented Borel-Moore homology theory on Sch/k
and let B be an oriented A-module. Let 94 : Q. — A, be the classifying

map. There is a unique morphism 04,p : Qf*(k) — B, over ¥4 such that

0a/B(k) : Q*B*(k)(k) — B.(k) is the canonical isomorphism 0p, (1)
Proof. For X € Sch/k, b € B.(k) and u € Q.(X), we define 04,5(u ® b) :=
Pa(u) x b € Bu(X xi k) = B«(X). It is easy to check that this defines a

morphism over ¥4. Uniqueness follows easily from the fact that the product
structure in A and 2 is unital. O
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5.2. ORIENTED DUALITY THEORIES. Next, we discuss a theory of modules for
an oriented duality theory (H, A). We use the notation and definitions from
[LO8]. In particular, we have the category SP of smooth pairs over k, with
objects (M, X), M € Sm/k, X C M a closed subset, and where a morphism
f:(M,X)— (N,Y) is a morphism f: M — N in Sm/k such that f~1(Y) C
X.

DEFINITION 5.4. Let A be a bi-graded oriented ring cohomology theory, in
the sense of [LO08, definition 1.5, remark 1.6]. An oriented A-module B is a
bi-graded cohomology theory on SP, satisfying the analog of [L08, definition
1.5], that is: for each pair of smooth pairs (M, X), (N,Y) there is a bi-graded
homomorphism

X AY (M) ® By (N) = BY v (M xi N)

satisfying
(1) associativity: (a x b) x ¢ = a x (b x¢) for a € AY(M), b € AP (N),
c € By (P).

(2) unit: 1 x a=a.
(3) Leibniz rule: Given smooth pairs (M, X), (M, X’), (N,Y) with X c X’

we have

OmxN,x'xN,xxN(a X b) =0 x x(a) xb
for a € A, x(M\ X), b € By*(N). For a triple (N,Y”,Y) with
Y CY'CN,a€ Ay (M), be Byi\y (N \Y) we have

OMxN,Mxy',Mxy(a xb) = (=1)"a x Ony y(b).

We write a Ub € Bxny (M) for 03,(a x b), a € A (M), b€ By (M).

In addition, we assume that the “Thom classes theory” [P09, lemma 3.7.2]
arising from the orientation on A induces an orientation on B in the following
sense: Let (M, X) be a smooth pair and let p : E — M be a rank r vector
bundle on M. Then the cup product with the Thom class th(E) € A7 (E)

th(E)U

* % * * % (*) Tk, -k
BY(M) %= Bi*i ) (B) ——— BY TTT(E)

is an isomorphism.

We call an orientation on A that induces an orientation on B as above an
orientation on (A, B), or just an orientation on B.

Given an orientation w on A, one has 1st Chern classes in A for line bundles,
where for L — M a line bundle over M € Sm/k with zero section s : M — L,
one defines ¢1(L) € A*}(X) as s*(th(L)).

Let SP’ be the category with the same objects (M, X) as in SP, where a
morphism f : (M, X) — (N,Y) is a projective morphism f : M — N such that
f(X) C Y. One proceeds just as in [LO8] to show that the orientation on B
gives rise to an integration on B. To describe this more precisely, we first need
to extend the notion of an integration with support [LO8, definition 1.8] to the
setting of bi-graded A-modules.
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The discussion in [L0§] is carried out in the setting of an ungraded cohomology
theory; we modify this by introducing a bi-grading on the cohomology theory
A as well as on the A-module B as above. An integration with supports for the
pair (A, B) is defined by modifying the axioms of [L08, definition 1.8] as follows.
We first discuss the modifications for A. The bi-grading is incorporated in that
the pushforward map F, associated to a morphisms F : (M,X) — (N,Y)
in SP’ has the form F, : A%(M) — AL 2" 4N) | where d = dimy M —
dimg N. With this refinement, the remaining parts of definition 1.8 for A
remain the same. For the module B, one requires as above that one has for each
morphism F : (M, X) — (N,Y) in SP’ a pushforward map F, : B¥(M) —
By 2*~4(N). In addition, one modifies the multiplicative structure f*(—)U
and U for A in definition 1.8(2) of loc. cit. to bi-graded products

fr(=)U: A7 (M) @ By (N) = By 1) (N)

and
U: A*Z*(M) ® B;(*(M) — Bsz(M),

and, with these changes, we require that B satisfies the conditions of definition
1.8(2) of loc. cit. We call such a structure an integration with supports on
(A, B).
Given an integration with supports on (A4, B) and an orientation w on (4, B) we
say (as in [LO8, definition 1.11]) that the integration with supports is subjected
to w if for each smooth pair (M, X) and each line bundle p : L — M with zero
section s : M — L, the compositions

A (M) =5 AT (E) S AR,

p~H(X)
By (M) =5 By, (L) S BY " 7H(M)

are given by respective cup product with ¢;(L).
We have the analog of [L08, theorem 1.12] in the setting of oriented modules.

THEOREM 5.5. Let A be a bi-graded ring cohomology theory with orientation w
and let B be an oriented A-module with orientation induced by w. Then there
is a unique integration with supports on (A, B) subjected to the orientation w.

The proof is exactly the same way as the proof of theorem 1.12 of loc. cit. We
now extend the notion of an oriented duality theory to the setting of modules.

DEFINITION 5.6. Let (H, A) be an oriented duality theory, in the sense of [L0S,
definition 3.1]. An oriented (H, A)-module is a pair (J, B), where

(D1) J: Sch/k" — Ab,, is a functor.

(D2) B is an oriented A-module.

(D3) For each open immersion j : U — X there is a pullback map j* : J (X) —
Jex(U).

(D4) i. For each smooth pair (M, X) and each morphism f : Y — M in Sch/k,
there is a bi-graded cap product map

FN:Ax(M) @ HY) — H(f7H(X)).
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ii. For X, Y € Sch/k, there is a bi-graded external product
X Hi(X) @ Jou (V) = Ju(X X Y).
(D5) For each smooth pair (M, X), there is a graded isomorphism
Barx : Juw(X) = B3 (M);  d = dimy, M.
(D6) For each X € Sch/k and each closed subset Y C X, there is a map
6X7y : J*_;_L*(X \ Y) — J**(Y)
These satisfy the evident analogs of properties (A1l)-(A4) of [LO8, definition
3.1], where we make the following changes: Let d = dimy, M, e = dimj, N. One
replaces H with J,.. throughout (except in (A3)(ii)), and
e in (Al) one replaces Ay(N), Ax(M) with B % *(N),
B ),
e in (A2) ome replaces Ay(N), Ax(M) with By ““*(N),
BY (),
o in (A3)(i) one replaces Ay (M) with By ™97*(M) and Ayns-1(x)(N)
. 2e—x,e—x*
with By 5 ) (NV),
e in (A3)(ii) one replaces Ay (M) with B2~ *°*(N) and Ax xy (M x N)
with BX4T=dte=(\f« N), H(X) with H,.(X), H(Y) with J,.(Y)
and H(X x Y) with J.. (X x V),

e in (A4) one replaces Ax\y (M \Y) with Bid\fy*’d**(M \Y).

Remark 5.7. Let (H, A) be an oriented duality theory on Sch/k, for k a field
admitting resolution of singularities. By [L08, proposition 4.2] there is a unique
natural transformation

19}'—] : Q* — H2*7*
of functors Sch/k’ — Ab, compatible with all the structures available for
Ha, . and, after restriction to Sm/k is just the classifying map Q* — A%** for
the oriented cohomology theory X + A?**(X). We refer the reader to [LOS,
§4] for a complete description of the properties satisfied by Jp.
Via g and the ring homomorphism pg : L. — Q. (k) classifying the formal
group law for Q,, we have the ring homomorphism py : L. — Ha. (k). If
(J,B) is an oriented (H, A)-module, then via the Hy, .(k)-module structure
on Ja. «(k), pg makes Jax . (k) a Li-module. We write J, for the L.-module
Jox (k).

PROPOSITION 5.8. Let k be a field admitting resolution of singularities. Let
(H,A) be an oriented duality theory and (J,B) an oriented (H,A)-module.
There is a unique natural transformation Vg : QJ — Jou . from Sch/k' —
Ab., satisfying

(1) Ygyy is compatible with pullback maps j* for j : U — X an open

immersion in Sch/k.
(2) Yy is compatible with fundamental classes.
(3) Yy is compatible with external products.
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(4) Vg is compatible with the action of 1st Chern class operators.
(5) Identifying QJ*(k) with Jau (k) via the product map Qu.(k) ®r.
Jow (k) = Jauu(k), Opyg (k) QL (k) — Joux is the identity map.

Proof. For X € Sch/k, we define ¥y, ;(X) by
Vpyg(u®j) =9 (u) X j € Jow (X Xp Speck) = Jou (X)),

foru®j € Q< (X) := Q.(X)®L, Jox (k). The properties (1)-(5) follow directly
from the construction. As 2, (X) is generated by push-forwards of fundamental
classes, the properties (2), (3) and (5) determine ¥f,; uniquely. O

Remark 5.9. Let k, (H, A) and (J, B) be as in proposition 5.8. Suppose that
Jy := Ja. s« has external products x s and there is a unit element 1; € Jo(k)
for these external products. Suppose further that these are compatible with
the external products H.(X) ® J.(Y) — J.(X X; Y), in the sense that

(thJ) XJbZhXbGJ*(XXkY)

for h € H.(X), b € J.(Y), and that 1z x 15 = 1;. Then ¥y, is compatible
with external products and is unital. This follows directly from our assumptions
and the identity

Oy ((w@h) x (' @) = Or(u) x Vpys(u' @ (b x ).

5.3. MODULES FOR ORIENTED RING SPECTRA. We now discuss the oriented
duality theory and oriented Borel-Moore homology associated to a module
spectrum for an oriented weak commutative ring T-spectrum.

Let ph be the two-sided ideal of phantom maps in SH(S), where a phantom
map is a map f : &€ — F such that f og = 0 for each compact object A in
SH(S) and each morphism g : A — £. Let £ be a weak commutative ring
T-spectrum, that is, there are maps p: EAE = &, n: Sg — & in SH(S)
that satisfy the axioms for a monoid in SH(S)/ph. An £-module is similarly
an object N' € SH(S) together with a multiplication map p : E AN — € in
SH(S) that makes A into a unital &-module in SH(S)/ph (see for example
[NSO09, §8], where a weak commutative ring T-spectrum is referred to as a
T-spectrum & with a quasi-multiplication u: EAE — E).

Suppose that (£,c¢) is an oriented weak commutative ring T-spectrum in
SH(k), k a field admitting resolution of singularities. We have constructed
in [LO8, theorem 3.4] a bi-graded oriented duality theory (£.,,E**) by defin-
ing &, ,(X) = Y= m=Y(M), where M € Sm/k is a chosen smooth quasi-
projective scheme containing X as a closed subscheme and m = dimg M. Let
N be an £-module. For E — M a rank r vector bundle on M € Sm/k
and X C M a closed subscheme, the Thom classes for £ give rise to a Thom
isomorphism N5* (M) — Ny T4 (E).

Using these Thom isomorphisms, the arguments used to construct the ori-
ented duality theory (€.,,E**) go through without change to give AN/** the
structure of an oriented £**-module, and to define an oriented (E.,,E**)-

module (N, N**), with canonical isomorphisms N ,(X) = NEm=am=bpry,
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m = dimy M, and where the cap products are induced by the £-modules struc-
ture on N.

5.4. GEOMETRICALLY LANDWEBER EXACT MODULES.

DEFINITION 5.10. Let (€,¢) be a weak oriented ring T-spectrum and let N be
an E-module. The geometric part of £** is the (2%, *)-part £* := £2%* of £**,
the geometric part of A is the £*-module AN?**, and the geometric part of N
is similarly given by X ~ N[(X) := N3, .(X). This gives us the Z-graded
oriented duality theory (£.,E*) and the oriented (€], E*)-module (N, N*).
Let (&, ¢) be a weak oriented ring T-spectrum and let N be an £-module. By
proposition 5.8, we have a canonical natural transformation

195//N/ . Qi\/*(k) — ./\/:
satisfying the compatibilities listed in that proposition.

We extend the definition of a geometrically Landweber exact weak commutative
ring T -spectrum (see [L15, definition 3.7]) to the case of an £-module:

DEFINITION 5.11. Let (€,c¢) be a weak oriented ring T-spectrum and let A/
be an £-module. We say that N is geometrically Landweber ezact if for each
point n € X € Sm/k

i.  The structure map p, : n — Speck induces an isomorphism
p;k] ZNQ*’*(]C) —>N2*’*(T})

ii. The product map U, : EY'(n) ® N?*(n) — NZTL*F1(n) induces a
surjection k(n)* @ N25*(n) — N2 HLx+1(y).

Here we use the canonical natural transformation tg : G,, — EY1(—) de-
fined in [L15, remark 1.5] to define the map k(n)* — EL1(n) needed in
(ii).

The following result generalizes [L.15, theorem 6.2] from oriented weak commu-
tative ring T-spectra to modules:

THEOREM 5.12. Let k be a field of characteristic zero, N' an M GL-module in
SH(k), (NL,,N**) the associated oriented (MGL',,, MGL"**)-module, and N

the geometric part of N'. Suppose that N is geometrically Landweber exact.
Then the classifying map

7

N (k
Unar,n + S RSN i
is an isomorphism.
Remark 5.13. Let k be a field of characteristic zero, let (€,¢) be an oriented
weak commutative ring T-spectrum in SH(S), and let A be an £-module. Via
the classifying map ¢g . : MGL — £, N becomes an M GL-module. In addi-

tion, the classifying map d¢ : Q, — &, is induced from ¢¢ . and the classifying
map Iy qr. v factors through the classifying map Jgr /a7 : ELN*(’C) — N/ as
Unar, N = e a0 (Pe,e @ idar(r))-

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 407-442



QUOTIENTS OF M GL, THEIR SLICES AND GEOMETRIC PARTS 437

Thus, theorem 5.12 applies to £-modules for arbitrary (&, ¢). Moreover, if (€, ¢)
is geometrically Landweber exact in the sense of [L15, definition 3.7], the map
Ver f® &, is an isomorphism ([L.15, theorem 6.2]) hence the map ¥¢/ /a7
is an isomorphism as well.

Proof of theorem 5.12. The proof of theorem 5.12 is essentially the same as
the proof of [L15, theorem 6.2]. Indeed, just as in loc. cit., one constructs a
commutative diagram (see [L09, (6.4)])

(5.1)
Div N/ - N/ i* N
Brex o k(M) Nz —2 0O (X) 2 0 (X) > Bpex ,, 2 () —0

mnl 79(;0{ al

Due o k() @ N_gi1 57 NoUL(X) — N (X) = Bnex gy Mo (7) —= 0
where we write N/ for N (k), d is the maximum of dimj, X; as X; runs over the
irreducible components of X, and NQ/S,)F(X) is the colimit of N3, (W), as W

runs over closed subschemes of X containing no dimension d generic point of
X. A similarly defined colimit of the Qi\/*/ (W) gives us Qi\/*/(l)(X). The maps
M, Y(X) and 9 are all induced by the classifying map Upasgr; /a7. The top
row is a complex and the bottom row is exact; this latter fact follows from the
surjectivity assumption in definition 5.11(ii). The map ¥ is an isomorphism by
part (i) of definition 5.11 and 9" is an isomorphism by induction on d. To
show that ¥(X) is an isomorphism, it suffices to show that the identity map
on @pN|_y,4 ®k(n)* extends diagram (5.1) to a commutative diagram.

To see this, we note that the map divys is defined by composing the boundary
map

1
0: @neX@Né*H,*(’?) - N2/>(¢<,>)¢<(X)

with the sum of the product maps MGLY, 4 1(n) QN _; 1 (k) = N3,y . (n)
and the canonical map tyar(n) : k(n)* — MGL"*(n) = MGL'Qd_Ld_l(n) (see
[L09, remark 1.5]). For MGL', we have the similarly defined map

divmer : ©nex k()™ @ Ligr1 — MGL;(37)*(X)7

after replacing MGL!_, (k) with L,_441 via the classifying map L, —
MGL (k). We have as well the commutative diagram (see [L09, (5.4)])

Div
@neX<d)k(77)X ® Lu—d+1 Q>('<1)(X)

(1)
| s

@nex<d) k(n) X X ]L*,d+1 - MGL’z(*l))* (X)7

divyrer
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which after applying — ®r, N gives us the commutative diagram

Div, N/
(5.2) Bnex k(1) © Nogin ——— 00(X)
H iﬁgél)cL@ld
EBWEX(d)k.< ) ®N —d+1 —>MGL2* *( ) ®]L* Nﬂ{
divmarL

The Leibniz rule for 9 gives us the commutative diagram

div
(5.3) Brex o k)X @ Neeayr =% MGLYY. (X) @1, N

| |

Byex o k) ON!_ 4 ————= N3\ (X);

divar

combining diagrams (5.2) and (5.3) yields the desired commutativity. O

6. APPLICATIONS TO QUOTIENTS OF MGL

We return to our discussion of quotients of M GL, and their localizations. We
select a system of polynomial generators for the Lazard ring, L, = Z[z1, 22, . . ],
deg z; = i. Let S C N, §¢ its complement and let Z[S¢] denote the graded
polynomial ring on the z;, i € 8¢, dega; = i. Let Sg C Z[S] be a collection
of homogeneous elements, Sy = {z; € Z[S%], }, and let Z[S°][S; '] denote the
localization of Z[S¢] with respect to S.

We consider a quotient spectrum MGL,/(S) := MGL,/({z; | i € S}) or an
integral version MGL/(S) := MGL/({z; | © € S}). We consider as well the
localizations

MGL,/(S)[Sy '] == MGL,/(S)[{z" | 2 € So}],
MGL/(8)[Sy") == MGL/(S){z" | 2 € So}l.
and the mod p version
MGL/(S.p)[Sy '] := MGL,/(S)[Sy '1/p.

PROPOSITION 6.1. Let p be a prime, and let S = Speck, k a perfect field
with exponential characteristic prime to p. Let S be a subset of N and Sy a
set of homogeneous elements of Z[S¢]. Then the spectra MGL,/(S)[S; '] and
MGL,/(S,p)[S;'] are geometrically Landweber evact. In case chark = 0,
MGL/(S)[Sy"] is geometrically Landweber exact.

Proof. We discuss the cases MGL,/(S)[S; '] and MGL,/(S,p)[S;']; the case
of MGL/(S)[Sy '] is exactly the same.

Let A be a finitely generated abelian group and let 1 be a point in some
X € Sm/k. Then the motivic cohomology H*(n, A(x)) satisfies

H?" (1, A(r)) = H*" 1 (1, A(r +1)) = 0
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for r # 0,
HO(U’A(O)) :A’ Hl(nvA(l)) = k(n)x ®z A.
We consider the slice spectral sequences
E(n) := H"™(n, Z(n — q)) @ Z[S)[Sy '] g = (MGL,/(S)[S; )" 4" (n)
and
EDI(n) = HP~(n, Z/p(n—q)) ®Z[S°][Sy |- = (MGL,/(S,p)[Sy ') 4™ ()

given by proposition 3.3. As in the proof of theorem 4.8, MGLZQ,"“l’"(n) =0 for
a > 0 and n € Z, and thus by remark 3.4, the convergence hypotheses in propo-
sition 3.3 are satisfied. Thus, these spectral sequences are strongly convergent.
As discussed in the proof of [L15, proposition 3.8], the only non-zero Es term
contributing to (MGL,/(S)[S;])?™™(n) or to (MGL,/(S,p)[S;*])?"™(n) is
E3"(n), the only non-zero Ey term contributing to (M GL,/(S)[Sy *])** "™ (n)
or contributing to (MGL,/(S,p)[Sy )"~ 1" (n) is Ey"" " (n), and all differen-
tials entering or leaving these terms are zero.

This gives us isomorphisms

(MGLy/(S)[Sy D> (n) = Ly [S°][S ' )-n

(MGLy/(S,p)ISy N> (n) = Z/(p)[S°][S5 ] -n
(MGLy/(8)[S5 ' ))*" 1" (n) = Ly [S°NSg ' |1—n @ k()™
(MGL,/(S,p)[Sy )™~ 1"(77)’52/(2?)[3][50 Nien ® k()™

from which it easily follows that MGL,/(S)[Sy '] and MGL,/(S,p)[Sy '] are
geometrically Landweber exact. (I

COROLLARY 6.2. Let S = Speck k a field of characteristic zero. Fix a prime
p and let N = MGL/(S)[Sy'], MGL,/(S)[Sy'] or MGL,/(S,p)[Sy ], let
(N, N) be the associated (MGL’ MGL)-module and N the geometric part of
N.,.. Then the classifying map

19/\/;(19) : Qi\/’:(k) —>N,ﬁ
is an isomorphism of ().-modules.

This follows directly from theorem 5.12 and proposition 6.1. As an immediate
consequence, we have

COROLLARY 6.3. Let S = Speck, k a field of characteristic zero. Fiz a prime
p and let N = BP, BP(n), E(n), k(n) or K(n), let (N",N') be the associated
(MGL', MGL)-module and N the geometric part of N.,. Then the classifying
map

19/\/4(;9) : in*(k) —>N,ﬁ
is an isomorphism of Q.-modules. In case N' = BP or E(n), Onr k) is com-
patible with external products.

DOCUMENTA MATHEMATICA + EXTRA VOLUME MERKURJEV (2015) 407-442



440 MARC LEVINE, GIRJA SHANKER TRIPATHI

Remark 6.4. Suppose that the theory with supports N'?** has products and a
unit, compatible with its M GL****-module structure. Then by remark 5.9, the
classifying map ¥/ (1) is also compatible with products.

In the case of a quotient & of MGL or MGL, by a subset {x; : i € I} of
the set of polynomial generators, the vanishing of MGL* ™" (k) for s > 0
shows that £2*(k) = MGL**(k)/({x; : i € I}), which has the evident ring

structure induced by the natural MGL**(k)-module structure. Thus, the
£.(k)

rational theory €2y has a canonical structure of an oriented Borel-Moore
homology theory on Sch/k; the same holds for £ a localization of this type of
£, (k)

quotient. The fact that the classifying homomorphism ¢ : €25 — &l is an
isomorphism induces on £, the structure of an oriented Borel-Moore homology
theory on Sch/k; it appears to be unknown if this arises from a multiplicative
structure on the spectrum level.
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ABSTRACT. In this paper we fix a central simple F-algebra A of prime
power degree and consider separable algebras over extensions K/F,
which embed in Ax. We study the minimal number of independent
parameters, called essential dimension, needed to define these separa-
ble algebras. In case the index of A does not exceed a certain bound,
the task is equivalent to the problem of computing the essential di-
mension of the algebraic groups (PGLy)™ X S,,, which is extremely
difficult in general. In the other case, however, we manage to compute
the exact value of the essential dimension of the given class of sepa-
rable algebras, except in one case for A of index 2, which we study in
greater detail.

2010 Mathematics Subject Classification: 16W10, 16K20
Keywords and Phrases: essential dimension, central simple algebras,
separable algebra, étale algebras, non-split algebraic group

1. INTRODUCTION

Central simple algebras over fields are at the core of non-commutative algebra.
Their history is rooted in the middle of the 19th century, when W. Hamilton
discovered the quaternions over the real numbers. In the early 20th century
J. Wedderburn gave a classification of finite dimensional semisimple algebras
by means of division rings and subsequently R. Brauer introduced the Brauer
group of a field, which lead to diverse research in algebra and number theory.
Moreover central simple algebras and the Brauer group arise naturally in Galois
cohomology and are therefore central for the theory of algebraic groups over
fields. We refer to [2, 1] for surveys on these topics, including discussion of open
problems.

1F’artially supported by the Deutsche Forschungsgemeinschaft, GI 706/2-1
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Essential dimension is a more recent topic, introduced around 1995 by J. Buhler
and Z. Reichstein [4] and in full generality by A. Merkurjev [3]. The essential
dimension of a functor F: Fieldsp — Sets from the category of field extensions
of a fixed base field F' to the category of sets is defined as the least integer n,
such that every object a € F(K) over a field extension K/F is defined over a
subextension Ko/ F of transcendence degree at most n. Here a € F(K) is said
to be defined over Kj if it lies in the image of the map F(Ky) — F(K) induced
by the inclusion Ky — K. The functors F we are mostly interested in take a
field extension K/F to the set of isomorphism classes of algebraic objects over
K of some kind. The essential dimension of F is then roughly the number of
independent paramters needed to define these objects.

The essential dimension of an algebraic group G over a field F is defined as the
essential dimension of the Galois cohomology functor

H'(—,G): Fieldsp — Sets, K — H'(K,G).

It is denoted by ed(G) and measures the complexity of G-torsors up to iso-
morphism, and hence of isomorphism classes of certain objects such as central
simple algebras (for projective linear groups), quadratic forms (for orthogo-
nal groups), étale algebras (for symmetric groups) etc. See [21, 17] for recent
surveys on the topic.

Two of the motivating problems in essential dimension are the computation of
the essential dimension of the projective linear group PGL,4 and the symmetric
group Sy, since they provide insight to the structure of central simple algebras
(of degree d) and étale algebras (of dimension n), respectively. The first problem
goes back to C. Procesi [19], who asked for fields of definition of the universal
division algebra and discovered, in modern terms, that ed(PGLy) < d?. This
upper bound has been improved after the introduction of essential dimension,
but it is still quadratic in d. See Remark 4.5 for details. A recent breakthrough
has been made by A. Merkurjev [16] for a lower bound on ed(PGL,). Namely,
if d = p® for some prime p different from char(F'), he showed that ed(PGLy) >
(a—1)p®+1. In fact he established this lower bound for the essential p-dimension
of PGLy, denoted ed,(PGL,), which measures complexity of degree d central
simple algebras up to prime to p field extensions, and showed in particular
that ed,(PGL,2) = p? + 1 when char(F) # p [15]. For exponent a > 3 the
problem of computing ed,(PGL,.) is still wide open. Moreover even the value
of ed(PGL,) is unknown for any prime p > 5 and related to the long-standing
cyclicity-conjecture of degree p division algebras due to Albert.

The second problem is related to classical work of F. Klein, C. Hermite and
F. Joubert on simplifying minimal polynomials of generators of separable field
extensions (of degree n = 5 and 6) by means of Tschirnhaus-transformations,
and was the main inspiration of [4]. In our language Hermite and Joubert
showed that ed(S5) < 2 and ed(Sg) < 3 (over a field F' of characteristic zero),
and Klein proved that ed(S5) > 1, hence ed(S5) = 2. The gap between the best
lower bound (roughly %) and the best upper bound n — 3 on ed(S,,) for n > 5
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is still quite large in general. See [7], where it is also proven that ed(S7) =4 in
characteristic zero.

In this paper we study separable algebras B. A (finite-dimensional) algebra B
over a field is called separable, if it is semisimple (i.e., its Jacobson radical is
trivial) and remains semisimple over every field extension. This includes both
the case of central simple algebras and étale algebras. We restrict our attention
to those separable K-algebras which embed in Ay = A®p K for a fixed central
simple F-algebra A. Here F is our base field and K/F a field extension. This
originates in my earlier paper [13], which covers the case where A is a division
algebra. The aim in this paper is to prove results for lower index of A.

Throughout A is a central simple algebra over a field FF and B C A a
separable subalgebra. The type of B in A is defined as the multiset 0 =
[(r1,d1), ..., (Tm,dm)] such that the algebra B and its centralizer C = C4(B)
have the form

Biep & Ma, (Fiep) X -+ X Ma,, (Faep),  Csep = My, (Fiep) X -+ X My, (Fiep)

over a separable closure Fg,. Note that central simple and étale subalgebras
are those of type 0 = [(d, )] (with d = deg(B)) and 5 = [(1,71), ..., (1,7m)]
(with m = dim(B)), respectively. We will assume throughout that the type 05
of B is constant, i.e. g = [(d,7),...,(d,r)] (m-times) for some r,d,m > 1.
This assumption is automatically satisfied if A is a division algebra. By [13,
Lemma 4.2(a)] the product drm is the degree of A.

Denote by Forms(B): Fieldsp — Sets the functor that takes a field extension
K/F to the set of isomorphism classes of K-algebras B’ which become isomor-
phic to B over a separable closure of K and by Forms’ (B) the subfunctor of
Forms(B) formed by those isomorphism classes B’ of forms of B which admit
an embedding in A of type 5. We are interested in ed(Forms’(B)). By [13,
Lemma 4.6] we have a natural isomorphism

Forms® (B) ~ H'(—,G),
of functors Fieldsp — Sets, where G is the normalizer
G = NGLI(A)(GLI(B))~

Our main result is the following theorem, which shows an interesting dichotomy
between the case where the index of A exceeds the bound % and when it does
not. The case where A is a division algebra is [13, Theorem 4.10]. As there
we get examples of algebraic groups, where ed(G) is determined explicitly,

but ed(Gayg) is unknown. Here we see that the mystery starts exactly once
ind(A) < 7.

THEOREM 1.1. Let G = Ngr,(a)(GL1(B)) with A central simple and B C A
a separable subalgebra of type Op = [(d,r),...,(d,r)] (m-times). Suppose that
deg(A) = drm is a power of a prime p and that d < r, so that d|r. Then ezxatly
one of the following cases occurs:
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(a) ind(A) < Z: Then Forms’)(B) = Forms(B) and the three functors
H'(—,G), Forms(B) and H'(—,(PGLy)™ % S,,) are naturally iso-
morphic. In particular

ed(G) = ed(Forms(B)) = ed((PGLy)™ % Sp,).
(b) ind(A) > 5: Then
ed(G) = ed(Forms’ (B)) = deg(4) ind(A) — dim(G),
= drmind(A) — m(r* +d* - 1).
except possibly when d =r > 1 and ind(A) = 2.
Note that the assumption r < d is harmless. Indeed since

Nar,(4)(GL1(B)) € Nav, (4)(GL1(Ca(B))) € Nar,(4)(GL1(Ca(Ca(B))))

and C4(Cx(B)) = B by the double centralizer property of semisimple sub-
algebras [8, Theorem 4.10] we can always replace B by its centralizer (which
amounts to switching r and d) without changing ed(G).

There is a big contrast between the two cases in Theorem 1.1. In case (a)
the computation of ed(G) = ed((PGLg)™ % S;,) = ed(Forms(B)) is very
hard in general. For instance when B is central simple (i.e., m = 1), we have
ed(G@) = ed(PGL,) with d = deg(B), and in case B is étale (i.e., d = 1),
ed(G@) = ed(S,,) where m = dim(DB).

In contrast the above theorem gives the precise value of ed(G) in case (b) with
only a small exception. The exception occurs when d = r > 1 and ind(A) = 2,
i.e., when A ~ M/5(Q) for a non-split quaternion F-algebra @ and B and
the centralizer C' = C4(B) become isomorphic to (Mg(Fsep))™ over Fyep. Note
that we then automatically have p = 2, so r = d and m are 2-primary. This
special case will be treated separately. We will provide lower bounds and upper
bounds on ed(G). When m = 1 the set H!(K, G) then classifies central simple
K-algebras B’ of degree d, whose tensor product with a fixed quaternion algebra
over F is not division (see Example 4.1). In particular we will prove that ed(G)
is either 2 or 3 when r =d = 2 and m = 1 (see Corollary 4.6).

The rest of the paper is structured as follows. In section 2 we study represen-
tations of G = Ngr,,(4)(GL1(B)) with respect to generic freeness. This is used
in section 3 to prove that ed(G) does not exceed the value suggested in The-
orem 1.1(b). We will conclude the proof of the whole theorem in that section.
It remains to study the case excluded from Theorem 1.1, where A has index 2
and r = d > 1. This is finally done in section 4.

2. RESULTS ON THE CANONICAL REPRESENTATION

The group G' = Ngr, (4)(GL1(B)), as every subgroup of GL;(4), has a canon-
ical representation defined as follows:
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DEFINITION 2.1. Let H be a subgroup of GL;(A) for a central simple alge-
bra A. Let D be a division F-algebra representing the Brauer class of A. Fix
an isomorphism A ® p D°P ~ End(V') for an F-vector space V. We call the
representation

H < GL;y(A) = GL1 (A ®p D) ~ GL(V)

the canonical representation of H, denoted pZ : H — GL(V).

Clearly pH  is faithful of dimension deg(A)ind(A) and its equivalence class
does not depend on the chosen isomorphism A ®p D°P ~ End(V). Strictly
speaking pX depends on the embedding of H in GLi(A). However it will

always be clear from the context, which embedding is meant.

Recall that a representation H — GL(W) of an algebraic group H over F in
a F-vector space W is called generically free, if the affine space A(WW) contains
a non-empty H-invariant open subset U on which H acts freely, i.e., any u €
U(Fayg) has trivial stabilizer in Hayg := Hp,,. By stabilizer we will always
mean the scheme-theoretic stabilizer (whose group of R-rational points for any
commutative Fyg-algebra R is the subgroup of H(R) = Hag(R) formed by
those h € H(R) satisfying hu = u). Generic freeness of W can be tested over
a separable or algebraic closure. In fact if U C A(W)g,,, is an H,jg-invariant
nonempty open subset with free Hyig-action then the union of all Gal(Fag/F)-
translates of U descends to a nonempty H-invariant open subset with free
H-action, see [23, Prop. 11.2.8].

Every generically free representation is faithful, but the converse need not be
true. In particular, every generically free representation V' of H has dimen-
sion dim(V) > dim(H) and when ed(H) > 0 this inequality is strict by [3,
Proposition 4.11].

The main result of this section is the following Theorem:

THEOREM 2.2. Assume that d divides r. Then the canonical representation of
G = N, (4)(GL1(B)) is generically free if and only if the index of A satisfies

2, ifd=r=1m>1,
ind(A) > 3, z'fd:r>17
T, ifd=m=1

o+1, dfd<rand(d>1orm>1).

In order to prove Theorem 2.2 we start with a couple of intermediate results.
We will need the notion of stabilizer in general position, abbreviated SGP.
An SGP for an action of an algebraic group H (over a field F) on a geo-
metrically irreducible F-variety X is a subgroup S of H with the property
that there exists a non-empty open subscheme U of X such that all points
u € U(Flg) have (scheme-theoretic) stabilizers conjugate to Sag = Sp,,. We
can always make such a subscheme U invariant under H as follows: Consider
U= UheH(Falg) hU.g, which is a nonempty H,j,-invariant open subscheme of
Xalg- By construction the stabilizer of every u € U’(Falg) is conjugate to Saig.
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Now U’(FlLyg) is also invariant under the action of the absolute Galois group of
F'. Therefore, by [23, Prop. 11.2.8] it descends to an H-invariant open subset
of X with the same properties as U.

Clearly a representation of H is generically free, if and only if it the trivial
subgroup of H is an SGP for that action. Moreover if H acts on X with kernel
N, then S is an SGP for the H-action on X if and only if S contains N and
S/N is an SGP for the (faithful) H/N-action on X.

The following lemma is well known for algebraically closed fields of character-
istic 0. We adapt the proof of [18, Proposition 8] to our more general situation,
when F' is an arbitrary field.

LEMMA 2.3. Let H act on two geometrically irreducible F-varieties X and Y .
Suppose that Sy is an SGP for the H-action on X and Sy is an SGP for the
Si-action on'Y . Then Ss is an SGP for the H-action on X XY .

Proof. First by replacing X with a suitable non-empty H-invariant open sub-
variety we may assume that every x € X(Fl,;) has stabilizer conjugate to
(Sl)alg in Hag. Let Uy be a non-empty Si-invariant open subset of Y such
that all u € Uy(Fag) have stabilizer conjugate to (S2),, in (S1),, Let
C = H- (X% x Uﬁ"‘) denote the set-theoretical image of (X1 x U52) in
X x Y under the action map H x (X xY) — X x Y. Endow the closure Z := C
with the reduced scheme structure and consider the morphism px: Z — X of
schemes given by the composition Z < X x Y =3 X. The fiber of px over any
x € X (Fag) has dimension equal to dimY". In fact if h, € H(Faig) is such that
(Halg)z = hm(Sl)alghgl then py' (z)(Fayg) contains {x} x h,Uy (Fay), as one
easily checks. Therefore by the fiber dimension theorem dim Z = dim X +dim Y
and it follows that C' is dense in X x Y. Since C is constructible (by Cheval-
ley’s Theorem) there exists a non-empty open subset U C X X Y contained
in C. The stabilizer of every u € U(Fayg) is conjugate to (52),,, since this is
obviously true for elements of (X5 x U32)(Fyg). Therefore So is an SGP for
the H-action on X x Y. (]

The following proposition will be the key step in order to establish the case of
Theorem 2.2, where m = 1.

PROPOSITION 2.4. Let V be a vector space over a field F', whose dual we denote
by V*, and let

H = GL(V*) x GL(V).

For any commutative F-algebra R and ¢ € End(Vg) denote by ¢* € End(V})
the dual endomorphism (given by the formula (¢*(f))(v) = f(p(v)) forv € Vg,
fe Vﬁ = HOHIR(VR,R)).

(a) The image S ~ GL(V') of the homomorphism
GL(V) = H, ¢ = ((¢") "1, 9)
is an SGP for the natural H-action on V* @ V.
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(b) Let E be a mazimal étale subalgebra of End(V). Then the image T ~
GL:(F) of the homomorphism
GL(E) = H, o= ((¢") 1, 9)
is an SGP for the natural H-action on (V* @p V)92,
(¢c) Let Z(H) ~ G,, X G, denote the center of H. The image of the ho-
momorphism
G, —ZH)CH, M= M\1H)\
is an SGP for the natural H-action on (V* @p V)¥3.
(d) Suppose V =V @p Vo and consider the subgroup
H' = GL(V}") x GL(V)
of H=GL(V*) x GL(V). Let t = dim(V3). Then the image S’ of the
homomorphism
GL(Vi) = H', o= ((¢")1,9)
is an SGP for the natural H'-action on (Vi* @ V).
Moreover if t > 1, the image of the homomorphism
G, = ZH)CH, A= O\1N
is an SGP for the natural H' -action on (Vi @p V)P,

Proof. (a) We use the canonical identification of V*®@pr V' with the underly-
ing F-vector space of the F-algebra Endg(V*), where a pure tensor f®uv
corresponds to the endomorphism of V* defined by f' — f/(v)f. The
H-action on (the affine space associated with) V* @ p V' = Endp(V*)
is then given by the formula

(¥,0) - p = thpe™.
Let U = GL(V*) C A(End(V*)), which is a non-empty and H-invariant
open subset. The stabilizer of p € U(F.ig) in Hag is given by the image
of the homomorphism

GL(V)alg - Halga p = (p(SO*)7 p717 90)

which is a conjugate of Saz over Fyis. This shows the claim.

(b) Let S be the subgroup of H from part (a). By Lemma 2.3 it suf-
fices to show that T is an SGP for the S-action on V* ®r V. Let
U CAV*®rp V) = AEnd(V*)) be as in part (a). Identify (V*)*
with V in the usual way, so that ¥* € End(V) for ¢ € End(V*). For
any p € U(Fayg) the stabilizer of p in Saig is the image of the central-
izer Cgr(v),, (p") under the homomorphism GL(V),, — Sag, ¢ —

((¢*)71, ). When p* is semisimple regular Cerwv),, (p*) is a maximal

1

alg

torus of GL(V),,. Now the claim follows from the well known facts
that all maximal tori of GL(V),,
regular elements in A(End(V*)) form a non-empty open subset.

are conjugate and the semisimple
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