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PREFACE

This volume is dedicated to Professor John Coates, an outstanding collab-
orator, colleague, author, teacher, and friend. He has greatly contributed to
number theory, both through his fundamental mathematical works and through
his impressive mathematical school. He is a continuous source of tremendous
inspiration to students and colleagues. John Coates has been one of the leading
proponents of and contributors to Iwasawa theory and he is the founding father
of its recent development in the form of non-commutative Iwasawa theory.
We included in the volume the Japanese tanka ”Samegai’s Waters” which was
selected by John upon our request.
Prior to the Cambridge conference
http://www.maths.nott.ac.uk/personal/ibf/jhc.html
to mark the 60th birthday of John Coates, Sarah Zerbes and Vladimir Dok-
chitser had produced a diagramme of his mathematical family tree which is
included in the volume (next page).

I. Fesenko, S. Lichtenbaum, B. Perrin-Riou, P. Schneider
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Tim Dokchitser
Vladimir Dokchitser
Sarah LiviaZerbes

The John Coates mathematical family tree is reproduced here with the kind permission of its authors.
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FOREWORD

ANDREW WILES

I first met John Coates during my first year as a graduate student at Cam-
bridge. John was about to move back to Cambridge where he had been a
graduate student himself. It was at a point in his career when he was starting
a whirlwind of moves. Coming from Stanford he spent two years in Cambridge,
and one in Australia before making a longer stop in Paris at Orsay. Mathemat-
ically however he was just settling down to what has become his most serious
and dedicated study of the last thirty years, the arithmetic of elliptic curves.
Needless to say for those who have devoted some time to this subject, it is so
full of fascinating problems that it is hard to turn from this to anything else.
The conjecture of Birch and Swinnerton-Dyer, by then fifteen years old, had
made the old subject irresistible.

In the two years he was at Cambridge we wrote four papers on elliptic curves,
culminating in the proof of a part of the conjecture for elliptic curves with
complex multiplication which are defined over the rationals. When John had
been at Cambridge previously as a graduate student of Alan Baker he had
worked on questions about the bounding of integral points on curves. Siegel’s
proof of the finiteness of the number of integral points on curves of genus at
least one was not effective. Work of John’s, in collaboration with Baker, had
given the first proof of an effective bound on the size of the integral solutions of
a genus one curve. During his time in the U.S. John had been much influenced
by the work of Tate and of Iwasawa. The key insight of Iwasawa had been
to see how to translate the theorems of Weil, which related the characteristic
polynomial of Frobenius in certain [-adic representations to the zeta function,
from the function field case to the number field case. Of course this involved
the p-adic zeta function and not the classical one and even then only became a
translation from a theorem to a conjecture, but it became a guiding principle
in the study of the special values of the zeta function and has remained so to
this day. Tate had been studying the relation of K5 of the ring of integers of
a number field to Galois cohomology groups. Together with Lichtenbaum and
Sinnott John had developed and examined these conjectures about K-groups
using some of the ideas of Iwasawa.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006)



4 ANDREW WILES

When he returned to Cambridge John and I set about exploring how Iwasawa’s
approach would work in the case of elliptic curves with complex multiplication.
It worked wonderfully well! Although at that time Iwasawa’s main conjecture
seemed quite out of reach, even in the basic cyclotomic case, one could develop
enough using the methods of Iwasawa to get the first real theorems on the
Birch and Swinnerton-Dyer conjecture. Of course the search for a solution to
this conjecture remains elusive to this day but the progress has been enormous.
The theory of complex multiplication has to a large extent ceded its place to
the theory of modular forms but the basic idea has largely remained intact,
namely to relate the special values of L-functions to the points on the elliptic
curve via the class field theory of the division fields of those points.

The original work was all in the context of ordinary primes, these being primes
where the reduction of the elliptic curve is ordinary. Subsequently John and his
students have extended the study to try to understand first the supersingular
case, but still assuming the curve has complex multiplication, and then the
more general case where no complex multiplication is assumed. Meanwhile the
new ideas of Kolyvagin and of Gross and Zagier have to a large extent brought
the general case into line with the complex multiplication case. In the general
case where the curves are not assumed to have complex multiplication the fields
of division points are no longer abelian over a finite extension of the rationals.
To study these fields John and his coauthors have developed a non-abelian
version of Iwasawa theory.

This volume contains many papers on these and related topics. However no
tribute to John Coates could be complete without a testament to his continuing
generosity and skill as a teacher. Cambridge number theory seemed strongest
in bringing out the problem solver but one had a sense that in terms of modern
developments it was a little isolated. John’s arrival brought these two worlds
together, and made Cambridge and my own arrival in mathematics more ex-
citing than I could ever have anticipated. John’s return to Cambridge in 1986
has cemented his role as a teacher and inspiration to many more generations of
Cambridge number theorists, many of whom were present at his 60" birthday
celebrations in January of 2005.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006)
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SAMEGAI’S WATERS

Samegai’s waters:

Were I to cup them in my hands
And cleanse my impure heart,
Might I awaken from the dream
Of this transitory world?

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006)



musubu te ni
nigoru kokoro wo
susuginaba

ukiyo no yume ya
samegai no mizu.

Alphabetic transcription
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RING-THEORETIC PROPERTIES

OF IWASAWA ALGEBRAS: A SURVEY!
K. ARDAKOV AND K. A. BROWN

Received: November 7, 2005
Revised: January 22, 2006

ABSTRACT. This is a survey of the known properties of Iwasawa
algebras, i.e., completed group rings of compact p-adic analytic groups
with coefficients the ring Z, of p-adic integers or the field IF,, of p
elements. A number of open questions are also stated.

2000 Mathematics Subject Classification: 16L30, 16P40, 20C07,
11R23
Keywords and Phrases: Iwasawa algebra; compact p-adic analytic
group; complete noetherian semilocal ring; Auslander-Gorenstein con-
dition

1. INTRODUCTION

Noncommutative Iwasawa algebras form a large and interesting class of com-
plete semilocal noetherian algebras, constructed as completed group algebras
of compact p-adic analytic groups. They were defined and their fundamen-
tal properties were derived in M. Lazard’s monumental 1965 paper [23], but
in the twenty years from 1970 they were little studied. Interest in them has
been revived by developments in number theory over the past fifteen years, see
for example [17],[19] and [37]. Prompted by this renewed interest, and helped
of course by the better understanding of noncommutative noetherian algebra
gained since 1965, a number of recent papers have built on Lazard’s initial
work. The emerging picture is of a class of rings which in some ways look sim-
ilar to the classical commutative Iwasawa algebras, (which are rings of formal
power series in finitely many commuting variables over the p-adic integers), but
which in other respects are very different from their commutative counterparts.
And while some progress has been made in understanding these rings, many
aspects of their structure and representation theory remain mysterious.

It is the purpose of this article to provide a report of what is known about Iwa-
sawa algebras at the present time, and to make some tentative suggestions for

1Some of the work for this article was done in June 2005, when Ardakov was visiting the
University of Glasgow with the support of the Edinburgh Mathematical Society Research
Support Fund and the Glasgow Mathematical Journal Learning and Research Support Fund.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



8 K. ArRDAKOV AND K. A. BROWN

future research directions. We approach the latter objective through the listing
of a series of open questions, scattered throughout the text. In an attempt to
make the paper accessible to readers from as wide a range of backgrounds as
possible, we have tried to give fairly complete definitions of all terminology; on
the other hand, most proofs are omitted, although we have tried to give some
short indication of their key points where possible. An exception to the omis-
sion of proofs occurs in the discussion of maximal orders in (4.4)-(4.7) as well
as in the discussion of the canonical dimension in (5.4), where we include some
original material. These paragraphs can be omitted by a reader who simply
wants a quick overview of the subject; moreover, after Sections 2 and 3 the
remaining sections are reasonably independent of each other.

Fundamental definitions and examples are given in Section 2; in particular we
recall the definition of a uniform pro-p group in (2.4), and make the important
observation (2.3)(1) that every Iwasawa algebra can be viewed as a crossed
product of the Iwasawa algebra of a uniform group by a finite group. This has
the effect of focusing attention on the Iwasawa algebra of a uniform group - this
is filtered by the powers of its Jacobson radical, and the associated graded alge-
bra is a (commutative) polynomial algebra. This fact and its consequences for
the structure of the Iwasawa algebras of uniform groups are explored in Section
3; then in Section 4 we examine how properties of general Iwasawa algebras
can be deduced from the uniform case using (2.3)(1). Section 5 concerns di-
mensions: first, the global (projective) dimension and the injective dimension,
whose importance is enhanced because Iwasawa algebras satisfy the Auslander-
Gorenstein condition, whose definition and properties we recall. In particular,
Auslander-Gorenstein rings possess a so-called canonical dimension function;
we explain this and describe some of the properties of the canonical dimension
of an Iwasawa algebra in (5.3)-(5.5). The Krull-Gabriel-Rentschler dimension
is discussed in (5.7). Finally, our very sparse knowledge of the two-sided ideals
of Iwasawa algebras is summarised in Section 6.

2. KEY DEFINITIONS

Iwasawa algebras are completed group algebras. We begin by recalling which
groups are involved, then give the definition of the algebras.

2.1. COMPACT p-ADIC ANALYTIC GROUPS. Let p be a prime integer and let Z,
denote the ring of p-adic integers. A group G is compact p-adic analytic if it is
a topological group which has the structure of a p-adic analytic manifold - that
is, it has an atlas of open subsets of Zy, for some n > 0. Such groups can be
characterised in a more intrinsic way, thanks to theorems due to Lazard, dating
from his seminal 1965 paper [23]. Namely, a topological group G is compact
p-adic analytic if and only if G is profinite, with an open subgroup which is
pro-p of finite rank, if and only if G is a closed subgroup of GL4(Z,) for some
d > 1. Nowadays, these equivalences are usually viewed as being consequences
of deep properties of finite p-groups; a detailed account from this perspective
can be found in [20, Part II].

DOCUMENTA MATHEMATICA + EXTRA VOLUME COATES (2006) 7-33



RING-THEORETIC PROPERTIES OF IWASAWA ALGEBRAS: A SURVEY 9

ExaMPLES: (1) Every finite group is p-adic analytic, for every prime p.

(2) The abelian p-adic analytic groups are the direct products of finitely many
copies of the additive group of Z, with a finite abelian group [20, page 36].
(3) For any positive integer d the groups GL4(Z,) and SL4(Z,) are compact
p-adic analytic. More generally, given any root system X, one can form the
universal Chevalley group Gz,(Xy), [20, page 353]. This is a compact p-adic
analytic group. For more information about Chevalley groups, see [13].

(4) Let d and t be positive integers. The t-th congruence subgroup in SLq(Zpy)
is the kernel I't(SL4(Z,)) of the canonical epimorphism from SL4(Z,) to
SL4(Z,/p'Z,). One sees at once from the equivalences above that I';(SL4(Z,))
is compact p-adic analytic, as indeed are I'y(G Lq(Z,)) and I't(Gz, (X)) for any
root system Xp.

NoOTATION: When discussing a topological group G we shall use H to denote
the closure of a subset H of G in (G; and when we refer to, say, G as being
generated by elements {¢g1,. .., gq} we mean that G = (g1, ..., gq). In particular,
G is finitely generated if G = (X) for a finite subset X of G. For a subset X of
G, X? denotes the subgroup of G generated by the subset {z? : x € X} of G.

2.2. IWASAWA ALGEBRAS. Let G be a compact p-adic analytic group. The
Twasawa algebra of G is

A¢ = limZ,[G/N],

where the inverse limit is taken over the open normal subgroups N of G. Closely
related to Ag is its epimorphic image Q¢, defined as

Qe = lmF,[G/N],

where I, is the field of p elements. Often, a property of Ag can easily be
deduced from the corresponding property of {2, and vice versa; where this is
routine we will frequently save space by stating only one of the two variants.

2.3. CROSSED PRODUCTS. Recall [29, 1.5.8] that a crossed product of a ring R
by a group A is an associative ring R x A which contains R as a subring and
contains a set of units A = {@ : a € A}, isomorphic as a set to A, such that

e Rx Ais a free right R-module with basis A,

o forall z,y € A, TR = RT and T - yR = TyR.
Suppose that H is an open normal subgroup of the compact p-adic analytic
group G. Let Cy denote the set of open normal subgroups of G which are
contained in H; then clearly Ag = l(iﬂlZp[G/ U] where U runs over Cy. It

follows at once that Ag is a crossed product of Ay by the finite group G/H
and similarly that Q¢ is a crossed product of Qg by G/H:
(1) AG AH*(G/H),

Qa Qp * (G/H).
We shall see that, combined with a judicious choice of the subgroup H, the
isomorphism (1) reduces many questions about Ag and Q¢ to the analysis of

[t

DOCUMENTA MATHEMATICA + EXTRA VOLUME COATES (2006) 7-33



10 K. ArRDAKOV AND K. A. BROWN

certain crossed products of finite groups. Usually, the right subgroup H to
choose is a uniform one, defined as follows.

2.4. UNIFORM GROUPS. Let G be a pro-p group. Define P;(G) = G and
Pi11(G) = P,(G)?[Pi(G),G] for i > 1. The decreasing chain of characteris-
tic subgroups
G=Pi(G)2P(G)2--2P(G) 2 2N, P(G) =1
is called the lower p-series of G. The group G is powerful if G/GP is abelian
(for p odd), or G/G* is abelian (when p = 2). Finally, G is uniform if it is
powerful, finitely generated, and
G : P2(G)| = |Pi(G) : Pisa (G

for all + > 1.

Now we can add one further characterisation, also essentially due to Lazard,
to those given in (2.1): a topological group G is compact p-adic analytic if
and only if it has an open normal uniform pro-p subgroup of finite index, [20,
Corollary 8.34].

ExampLES: (1) Of course, (Z,)®¢ is uniform for all d > 1.
(2)The groups I'1(GL4(Z,)) (for p odd) and I's(GL4(Z2)) are uniform [20,
Theorem 5.2].

Let G be uniform, with |G : P»(G)| = p?. The non-negative integer d is called
the dimension of G; it is equal to the cardinality of a minimal set of (topologi-
cal) generators of G, [20, Definition 4.7 and Theorem 3.6]. More generally, we
can define the dimension of an arbitrary compact p-adic analytic group to be
the dimension of any open uniform subgroup; this is unambiguous [20, Lemma
4.6], and coincides with the dimension of G as a p-adic analytic manifold, [20,
Definition 8.6 and Theorem 8.36].

2.5. COMPLETED GROUP ALGEBRAS. In fact Ag and Qg are I-adic comple-
tions of the ordinary group algebras Z,[G] and F,[G], for suitable choices of
ideals I. It is most convenient for us to state the result for uniform groups,
although it can obviously be extended to the general case using (2.3)(1).

THEOREM. Let G be a uniform pro-p group, and let I denote the augmentation
ideal of F,[G]. Then Q¢ is isomorphic to the I-adic completion of Fp[G]. There
is a similar result for Z,[G].

Indeed the theorem follows quite easily from the observations that the lower
p-series P;(G) is coterminal with the family of all open normal subgroups of G,
and that the powers of I are coterminal with the ideals of F,,[G] generated by
the augmentation ideals of the subgroups P;(G), [20, §7.1].

3. THE CASE WHEN G IS UNIFORM

Throughout this section, we assume that G is a uniform pro-p group of dimen-
sion d. We fix a topological generating set {ay,...,aq} for G.

DOCUMENTA MATHEMATICA + EXTRA VOLUME COATES (2006) 7-33



RING-THEORETIC PROPERTIES OF IWASAWA ALGEBRAS: A SURVEY 11

3.1. THE “PBW” THEOREM. It follows at once from Theorem 2.5 that the
usual group algebra I, [G] embeds into Qg. Fori=1,...,d, let b; =a; — 1 €
F,[G] C Q¢. Then we can form various monomials in the b;: if & = (a1, ..., aq)
is a d-tuple of nonnegative integers, we define

b = b1 - b3 € Qg

Note that this depends on our choice of ordering of the b;’s, because Qg
is noncommutative unless G is abelian. The following basic result shows
that Qg is a “noncommutative formal power series ring”; it follows from the
strong constraints which the hypothesis of uniformity imposes on the quotients
P,(G)/P;4+1(G) of G, [20, Theorem 7.23].

THEOREM. Fvery element c of Q¢ is equal to the sum of a uniquely determined

convergent series
c= g Cob”

aeN?

where co € Fy, for all o € N?.

We record an immediate consequence of both this result and of Theorem 2.5:

COROLLARY. The Jacobson radical J of Q¢ is equal to
J=01Q¢+ -+ bsQc = Qb + - - + Qaby.

Hence Q¢ /J =T, so in the language of (4.1), Qg is a scalar local ring.

Proof. If ¢ € Q¢ is such that ¢y # 0, then 1 — ¢ is invertible with inverse
l+c+c2+---€Qq. O

Theorem 3.1 says that the monomials {b® : a € N} form a topological basis
for Q¢, and is thus analogous to the classical Poincaré-Birkhoff-Witt theorem
for Lie algebras g over a field k which gives a vector space basis for the univer-
sal enveloping algebra U(g) in terms of monomials in a fixed basis for g [21].
Nevertheless we should bear in mind that explicit computations in Qg are often
much more difficult than those in U(g), since the Lie bracket of two generators
b;, b; for Qg is in general an infinite power series with obscure coefficients.

3.2. EXAMPLE. Let p be odd for simplicity and let G = I'1(SL2(Z,)) be the
first congruence kernel of SLy(Z,). Then

= (% ) (3 ) 0= ()

is a topological generating set for G. Setting b; = a; — 1, elementary (but
tedious) computations yield

[bl, bg] = 2bg mod Jp+1
[b1,b5] = —2b5  mod JPt!
[bg, bg] = b;ll; mod Jp+1.

DOCUMENTA MATHEMATICA + EXTRA VOLUME COATES (2006) 7-33



12 K. ArRDAKOV AND K. A. BROWN

Here J = b1Q¢ + 02Q¢g + b3Q2¢ denotes the Jacobson radical of Qg. Using
Proposition 3.3 it is possible to produce more terms in the power series expan-
sion of [by,bs] and [by, bs]. However, we consider [bs,bs3] to be inaccessible to
computation.

3.3. SKEW POWER SERIES RINGS. It is well known that if g is a finite dimen-
sional soluble Lie algebra over a field k, then its universal enveloping algebra
U(g) can be thought of as an “iterated skew polynomial ring”:

U(g) = klx1;01,01][x2; 02, 02) - - - [Tn; O, O]

for some appropriate automorphisms o; and derivations d; (in fact, the o;s can
be chosen to be trivial). This is because any such Lie algebra g has a chain of
subalgebras

O=hoCh ChsC---Ch,=g

with h;—1 an ideal in b;, so choosing some z; € h;\h;_1 ensures that
Uhi) =U(Di—1)[x;04]

where §; is the derivation on U (h;—1) defined by §;(y) = z;y — yz;.
An analogous result holds for Iwasawa algebras. More precisely, we have the

PROPOSITION. Suppose that G has closed normal subgroup H such that G/H =
Zy. Then Qg is a skew power series ring with coefficients in Qr:

QG = QH[[t, g, (5]]
Proof. See [41, §4]. O

Schneider and Venjakob [41] establish a general theory of skew power series
rings S = R|[t; 0, d]] over a pseudocompact ring R. Here o can be any topo-
logical automorphism of R and § is a o-derivation in the sense of [29, 1.2.1],
satisfying some extra conditions which are required to make the relation

ta =o(a)t + d(a)

extend to a well-defined multiplication on S.

Consequently, the Iwasawa algebra Q¢ of any soluble uniform pro-p group G
can be thought of as an iterated skew power series ring over F,,.

For example, in Example 3.2, the topological subring of Q) generated by b; and
by is actually the Iwasawa algebra Qp where B = (a;,as) is a Borel subgroup
of GG. Since B is soluble with closed normal subgroup @, Qp is isomorphic
to the skew power series ring F,[[b2]][[b1; 0, d]] for some appropriate o and 4.
This justifies the claim that the commutator of b; and b, is at least partially
accessible to computation.

There is surely considerable scope to develop further the “abstract” theory of
skew power series algebras initiated in [41] - for instance, one could easily pose
skew power series versions of a number of the questions we list later, in Section
6. As a prompt for more work, here are two “general” questions:
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QUESTION A. (1) Are there conditions on R,o and 0 such that S = R[[t; o, 0]]
can be described without involving a derivation - that is, as S = R'[[t';0']],
possibly after some Ore localisation?!

(2) Are there conditions on R, and 0 such that every two-sided ideal of the
skew power series ring S = R|[[t;0,0]] is generated by central elements and
“polynomial” elements®?

3.4. THE J-ADIC FILTRATION. We remind the reader that a filtration on a ring
R is an ascending sequence

- CFRRCF L RC---

of additive subgroups such that 1 € FyR, F;R.IF;R C F; ;R for all ,j € Z,
and U;ez 3R = R.

Let J denote the Jacobson radical of Q. The J-adic filtration on Q¢ is defined
as follows: F;Qg = J " for i < 0 and F;Qg = Q¢ for i > 0; this is an example
of a negative filtration. The basic tool which allows one to deduce many ring-
theoretic properties of Iwasawa algebras is the following result, which can be
deduced from Theorem 3.1, see [20, Theorem 7.24 and remarks on page 160].
We denote the associated graded ring @, Fi119Q¢/FiQ2a by gr; Qq.

THEOREM. The graded ring of Qg with respect to the J-adic filtration is iso-
morphic to a polynomial ring in d = dim G variables:

ary QG = Fp[Xl, . 7Xd}-
Moreover, Q¢ is complete with respect to this filtration.

The J-adic filtration is quite different from the filtrations encountered when
studying algebras like universal enveloping algebras and Weyl algebras, which
are nearly always positive (that is, F_1 R = 0) and often satisfy the finiteness
condition dimy F; R < oo for all i € Z. In particular, there is no well-behaved
notion of the Gel’fand-Kirillov dimension for Iwasawa algebras, a theme we will
return to in §5.
However, we are still able to lift many properties of the graded ring back to
Qa, because the J-adic filtration is complete, meaning that Cauchy sequences
of elements in Q¢ converge to unique limits. More precisely, recall [26, page
83] that a filtration on a ring R is said to be Zariskian, whenever

e The Jacobson radical of FyR contains F_1 R, and

e The Rees ring R := @D,c, R -t C R[t,t'] is noetherian.
Many filtrations are Zariskian. For example, by [26, Chapter II, Proposition
2.2.1], any complete filtration whose associated graded ring is noetherian is
necessarily Zariskian. Since any positive filtration is complete, it follows that
if a filtration is positive and has noetherian associated graded ring, then it is
Zariskian. More importantly for us, for any uniform pro-p group G, the J-
adic filtration on Qg is clearly complete, thanks to Theorem 2.5; and gr; Qg is

lCompare with [14].
2By the latter, we mean elements of R[t; o, d].
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14 K. ArRDAKOV AND K. A. BROWN

noetherian by Theorem 3.4 and Hilbert’s basis theorem, so the J-adic filtration
is Zariskian.

3.5. THE m-ADIC FILTRATION ON Ag. There is an analogue of Theorem 3.4
for the Z,—version of Iwasawa algebras Ag. Recall from (2.3) the lower p-series
P (G) D P,(G) D ---2NX Pi(G) =1 of G and define an abelian group

_m b6
grG: 16291 PG’
There is a natural way of turning gr G into a Lie algebra over F,[t], the poly-
nomial ring in one variable over F,: the Lie bracket on gr G is induced from
the Lie bracket on G described in [20, §4.5], and the action of ¢ is induced from
the p-power map. Then gr G is a free [, [t]-module of rank equal to dim G. Let
m = ker(Ag — F,) be the F,-augmentation ideal of Ag, or equivalently, the
Jacobson radical of Ag.

THEOREM. The graded ring of Ag with respect to the m-adic filtration is iso-
morphic to the universal enveloping algebra of the T, [t]-Lie algebra gr G:

grm A = U(gr G),
Moreover, Ag is complete with respect to this filtration.

Proof. See [39, §3.3] and [23, Chapter III, Theorem 2.3.3]. O

3.6. LIFTING INFORMATION FROM THE GRADED RING. We recall here some
standard properties of a ring R. First, we say that R is prime if the product
of any two non-zero ideals of R is again non-zero. By Goldie’s theorem [29,
Theorem 2.3.6], if R is prime and (right) noetherian then it has a simple artinian
classical (right) quotient ring Q(R). If S is another ring with classical right
quotient ring Q(R), so that Q(R) = Q(S), we say that R and S are equivalent
if there are units a, b, c and d in Q(R) such that aRb C S and ¢Sd C R. Now
R is a mazimal (right) order if it is maximal (with respect to inclusion) within
its equivalence class, [29, 5.1.1]. (The adjective right is omitted if R is both a
maximal right order and a maximal left order.) The commutative noetherian
maximal orders are just the noetherian integrally closed domains [29, Lemma
5.3.3].

Let Rg denote the right R-module R. The Krull dimension K(M) of a finitely
generated (right) module M over a noetherian ring R is a well-defined ordinal,
bounded above by KC(Rpg); the precise definition can be found at [29, 6.2.2].
This concept generalises the classical commutative definition; like it, it mea-
sures the “size” of a module and is 0 if and only if the module is non-zero and
artinian.

The (right) global dimension of R is defined to be the supremum of the projec-
tive dimensions (denoted pd(—)) of the right R-modules, [29, 7.1.8]. When R
is noetherian, its right and left global dimensions are always equal, [29, 7.1.11].
We say that R has finite (right) injective dimension d if there is an injective
resolution of Rp of length d, but none shorter. If R is noetherian and has
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finite right and left injective dimensions, then these numbers are equal by [45,
Lemma A]. It is also well known [39, Remark 6.4] that if the (right) global
dimension of the noetherian ring R is finite, then it equals the (right) injective
dimension of R.

It has become apparent over the past 40 years that, when R is noncommutative
and noetherian, finiteness of the injective dimension of R is a much less strin-
gent condition than is the case for commutative noetherian rings - the structure
of (commutative) Gorenstein rings is rich and beautiful. An additional hypoth-
esis which, when coupled with finite injective dimension, has proved very useful
in the noncommutative world is the Auslander-Gorenstein condition. To recall
the definition, note first that, for every left R-module M and every non-negative
integer i, Ext’(M, R) is a right R-module through the right action on R. The
Auslander-Gorenstein condition on a noetherian ring R requires that, when
M is a finitely generated left R-module, i is a non-negative integer and N is
a finitely generated submodule of Ext’(M, R), then Ext? (N, R) is zero for all
j strictly less than 4; and similarly with “right” and “left” interchanged. We
say that R is Auslander-Gorenstein if it is noetherian, has finite right and left
injective dimensions, and satisfies the Auslander condition. Commutative noe-
therian rings of finite injective dimension are Auslander-Gorenstein. When R
is noetherian of finite global dimension and satisfies the Auslander-Gorenstein
condition it is called Auslander-regular.

THEOREM. Let R be a ring endowed with a Zariskian filtration FR; then R is
necessarily noetherian. Also, R inherits the following properties from gr R:

(1) being a domain,

(2) being prime,

(8) being a mazximal order,

(4) being Auslander-Gorenstein,

(5) having finite global dimension,

(6) having finite Krull dimension.

Proof. See [26]. O
We immediately obtain from Theorem 3.4, Theorem 3.6 and Corollary 3.1, the

COROLLARY. If G is a uniform pro-p group, then Qg is a noetherian,
Auslander-reqular, scalar local domain which is a maximal order in its quo-
tient division ring of fractions.

4. EXTENSIONS OVER FINITE INDEX

For an arbitrary p-adic analytic group G, many fundamental properties of Q¢
(and of Ag) can be analysed using Corollary 3.6 and (2.3)(1).

4.1. COMPLETE NOETHERIAN (SEMI)LOCAL RINGS. Recall that a ring R is
semilocal if the factor of R by its Jacobson radical J(R) is semisimple artinian.
It is local if R/J(R) is simple artinian, and scalar local if R/J(R) is a division
ring. For a crossed product R = S* H of a finite group H, like that in (2.3)(1),
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16 K. ArRDAKOV AND K. A. BROWN

it’s not hard to show that J(S) C J(R), [31, Theorem 1.4.2]. From this,
Theorem 2.5 and Corollary 3.6, and their analogues for Ag, we deduce (1) of
the following. Both it and (2) were known to Lazard.

THEOREM. Let G be a compact p-adic analytic group.

(1) Qg and Ag are complete noetherian semilocal rings.
(2) Q¢ and A are (scalar) local rings if and only if G is a pro-p group.

4.2. PRIMENESS AND SEMIPRIMENESS. Recall that a ring R is prime if the
product of two nonzero ideals is again nonzero and that R is semiprime if it
has no nonzero nilpotent ideals. A prime ring is always semiprime, but not
necessarily conversely.

The characterisations of these properties for Iwasawa algebras given in the
theorem below exactly parallel the results for ordinary group algebras proved
in the early 1960s by I.G. Connell and D.S. Passman [32, Theorems 4.2.10
and 4.2.14]. However, the proofs here are quite different from the classical
setting; that the stated conditions are necessary is easy to see, but sufficiency
in (1) and (2) depends on Corollary 3.6 to handle the uniform case, together
with non-trivial results on crossed products of finite groups. Part (3) is much
easier - one can simply appeal to the fact (a consequence of Maschke’s theorem)
that the group ring of a finite group over a commutative coefficient domain of
characteristic zero is semiprime, together with the fact that, by definition, Ag
is an inverse limit of such group rings.

THEOREM. Let G be a compact p-adic analytic group.
(1) [5] Q¢ and Ag are prime if and only if G has no non-trivial finite
normal subgroups.
(2) 5] Q¢ is semiprime if and only if G has no non-trivial finite normal
subgroups of order divisible by p.
(3) (Neumann, [30]) Ag is always semiprime.

4.3. ZERO DIVISORS. There is a method, familiar from the treatment of or-
dinary group rings, which allows one to use homological properties to deduce
results about the non-existence of zero divisors in certain noetherian rings. In
its simplest form, which is all that is needed here, the statement is due to Walker
[42]: if R is a scalar local noetherian semiprime ring of finite global dimension,
then R is a domain.® This yields the following result; it was proved by Neu-
mann [30] for Ag, but for Q¢ it was necessary to wait first for semiprimeness
to be settled, as in Theorem 4.2(2).

THEOREM. Let G be a compact p-adic analytic group. Then Qg and Ag are
domains if and only if G is torsion free.

Proof. If 1 # x € G with 2" = 1, then (1 —2)(1 + 2+ ---2"" 1) = 0, so the
absence of torsion is clearly necessary. Suppose that G is torsion free. Since G

3It is a famous and long-standing open question in ring theory whether “semiprime” is
necessary in Walker’s theorem.
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has a pro-p subgroup of finite index by (2.4), its Sylow g-subgroups are finite
for primes ¢ not equal to p. Since G is torsion free these subgroups are trivial,
so G is a pro-p group. Therefore Qg and Ag are scalar local and noetherian
by Theorem 4.1. The other conditions needed for Walker’s theorem are given
by Theorems 4.2(2) and (3) and Theorem 5.1. O

4.4. MAXIMAL ORDERS. It might seem natural to suppose, in the light of The-
orem 3.6(3), that whenever Ag or ¢ are prime then they are maximal orders.
This guess is wrong, though, as the following example shows. First, recall from
[29, 5.1.7] that if R is a ring and M is an R-module, then M is said to be reflex-
ive if the natural map M — M** = Hom(Hom(M, R), R) is an isomorphism.
Also, recall [29, Chapter 4] that the ideal I of R is said to be localisable if the
set Cr(I) of elements of R which are regular modulo I is an Ore set in R.

ExXAMPLE: Let D := Ax(y), where A is a copy of Zs and  is the automorphism
of order 2 sending each 2-adic integer to its negative. Since D is a pro-2 group
with no non-trivial finite normal subgroups, Theorems 4.1 and 4.2 show that
Qp and Ap are prime noetherian scalar local rings. But it’s not hard to see
that neither of these algebras is a maximal order: for 2, observe that it is local
with reflexive Jacobson radical J which is not principal, impossible for a prime
noetherian maximal order by [28, Théoreme IV.2.15]; for Ap, the kernel of the
canonical map to Z, is a reflexive prime ideal which is not localisable by [4,
Theorem A and Lemma 4.1], impossible in a maximal order by [28, Corollaire
IV.2.14]. We therefore ask:

QUESTION B. When are Q¢ and Ag mazimal orders?

Since the powerful structural results [15], which can be obtained for certain quo-
tient categories of the category of finitely generated modules over a noetherian
maximal order, are potentially important tools in arithmetic applications [18],
this question is of more than passing interest.

In the next three paragraphs we offer a conjecture for the answer to Question
B, and give some evidence in its support.

4.5. CONJECTURED ANSWER TO QUESTION B. We will need some group-
theoretic notions. Let H be a closed subgroup of a compact p-adic analytic
group G. We say that H is orbital if H has finitely many G-conjugates, or
equivalently if its normaliser N = Ng(H) has finite index in G. We say that
an orbital subgroup H is isolated if N/H has no non-trivial finite normal sub-
groups.

We will say that G is dihedral-free if, whenever H is an orbital closed subgroup
of G with dimH = 1, H is isomorphic to Z,. This seems to be the correct
generalisation of the definition in [9].

CONJECTURE. Let G be a compact p-adic analytic group, and suppose Qg is
prime. Then Q¢ is a maximal order if and only if G is dihedral-free.
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4.6. NECESSARY CONDITIONS ON . We fix a prime p and assume throughout
this paragraph that G is a compact p-adic analytic group.

PROPOSITION. Suppose Q¢ is a prime maximal order and let H be a closed
normal subgroup of G with dim H = 1. Then H is pro-p.

Proof. We may assume that H is isolated, so G/H has no non-trivial finite
normal subgroups. Hence, by Theorem 4.2(1), wy = ker(2e — Qg/g) is a
prime ideal of Q¢, and it is not hard to see that it is also a reflexive ideal.
Now because g is a maximal order and wpy is a prime reflexive ideal, it must
be localisable [28, Corollaire IV.2.14].

But the conditions needed for augmentation ideals to be localisable are known
[5, Theorem E]: H/F must be pro-p, where F is the largest finite normal p'-
subgroup of H. Since H is normal in G and G has no non-trivial finite normal
subgroups by Theorem 4.2(1), F = 1 and H is pro-p as required. O

We need the following group-theoretic lemma. We first set € to be 1 for p odd,
and € = 2 if p = 2, and define, for a closed normal uniform subgroup N of G,
Ec(N) to be the centraliser in G of N/NP°, [5, (2.2)].

LEMMA. Suppose that G is a pro-p group of finite rank with no non-trivial
finite normal subgroups. Let N be a mazimal open normal uniform subgroup
of G. Then

Ec(N)=N.

Proof. Recall that E = Eg(IN) is an open normal subgroup of G containing N.
If F strictly contains N then E/N must meet the centre Z(G/N) non-trivially
since G/N is a finite p-group by [20, Proposition 1.11(ii)]. Pick 2 € E\N such
that N € Z(G/N); then H = (N, x) is normal in G by the choice of x, and
also H is uniform by [5, Lemma 2.3]. This contradicts the maximality of N. O

Recall from Example 4.4 that D denotes the pro-2 completion of the infinite
dihedral group.

COROLLARY. Let H be a pro-p group of finite rank with no non-trivial finite
normal subgroups. Suppose that dim H = 1. Then H = Z,, unless p = 2 and
H is isomorphic to D.

Proof. Choose a maximal open normal uniform subgroup N of H. By the
lemma, H/N < Aut(N/NP?°). If p is odd, [N : N?°| = p, so the latter au-
tomorphism group is just F,’. Since H/N is a p-group by [20, Proposition
1.11(ii)] again, H =N =Z,. If p=2and H > N, H= D. |

This gives us the following weak version of one half of the conjecture. To
improve the result from “normal” to “orbital” will presumably require some
technical work on induced ideals.

4One quick way to see this uses the canonical dimension from (5.4): since

Cdim(Qg/wy) = dim(G/H) = dimG — 1 and since Q¢ is Auslander-Gorenstein, wy is
reflexive by Gabber’s Maximality Principle [36, Theorem 2.2].
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COROLLARY. Suppose Qg is a prime mazximal order. Then any closed normal
subgroup H of G of dimension 1 is isomorphic to Zy.

Proof. When p is odd the statement is immediate from the proposition and
corollary above. So suppose that p = 2. We have to rule out the possibility
that H = D, so suppose for a contradiction that this is the case. Then, as
in the proof of the proposition, wy is a prime reflexive, and hence localisable,
ideal of Q2g. Let R denote the local ring (2G)w, , which has global dimension
one by [28, Théoreme IV.2.15]. Let C' = (c¢) be a copy of the cyclic group
of order 2 in H. Then FoC C Q¢ and Q¢ is a projective FoC-module by [11,
Lemma 4.5]. Thus R is a flat FoC-module. Since c+1 € J(R), the FoC-module
R/J(R) is a sum of copies of the trivial module, so

00 = pdy,(F2) = pdy,o(R/J(R)) < pdg(R/J(R)) = 1.
This contradiction shows that the only possibility for H is Zs. (I

4.7. SUFFICIENT CONDITIONS ON (. We use the following result, essentially
due to R. Martin:

PROPOSITION. [27] Let R be a prime noetherian maximal order and let F be a
finite group. Let S = R« F be a prime crossed product. Then S is a mazimal
order if and only if

(a) every reflexive height 1 prime P of S is localisable, and
(b) gld(Sp) < oo for all such P.

Proof. Conditions (a) and (b) hold in any prime noetherian maximal order, [28,
Théoreme IV.2.15]. Conversely, suppose that (a) and (b) hold. We use the Test
Theorem [27, Theorem 3.2]. Condition (i) of the Test Theorem is just condition
(a). We claim that if P is as in the theorem, then gld(Sp) = 1. It’s easy to
check that P N R is a semiprime reflexive ideal of R, so that the localisation
Rpnr exists and is hereditary by [28, Théoreme IV.2.15]. Thus Rpng * F' has
injective dimension 1 by [5, Corollary 5.4]. But Sp is a localisation of Rpng* F),
so - given (b) and the comments in (3.6) - gld(Sp) < 1. The reverse inequality is
obvious, so our claim follows. Condition (ii) now follows from [27, Proposition
2.7]. Condition (iii) follows from the proof of [27, Lemma 3.5] and condition
(iv) follows from [27, Remark 3.6 and Lemma 3.7]. O

LEMMA. Let G be a pro-p group of finite rank with no non-trivial finite normal
subgroups. Then every reflexive height 1 prime of Qg is localisable.

Proof. Let P be a reflexive height 1 prime of g. Choose an open normal
uniform subgroup N of G. Then Qy is a maximal order by Corollary 3.6. Set
G := G/N. Now let Q = PN Qy - it is easy to see [27, Remark 3.6] that this
is a height 1 reflexive G-prime ideal of Q. Indeed, Q is the intersection of a
G-orbit of reflexive prime ideals {Py, ..., P,} of Q.

Since each P; is localisable by [28, Théoréme IV.2.15], @ is localisable. In other
words, the subset C := Cq, (Q) = N™,Cay (P;) is a G-invariant Ore set in Q.
An easy calculation [32, proof of Lemma 13.3.5(ii)] shows that C is an Ore set
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in Qg. In other words, the semiprime ideal A = /Q¢ is localisable in Qg
and

(QN)Q * é =~ (Qg)A.
Since G is a p-group, A = P by [31, Proposition 16.4] and the result follows. [J

COROLLARY. Let G be a torsion free compact p-adic analytic group. Then Qg
is a prime maximal order.

Proof. Suppose that G is as stated. Since G has a pro-p open subgroup, the
Sylow g-subgroups of G are finite, and hence trivial, for all primes g not equal
to p. That is, G is a pro-p group. Thus the corollary follows from the lemma
and the proposition, since gld ()¢ is finite by Theorem 5.1. O

5. DIMENSIONS

5.1. GLOBAL DIMENSION. The situation as regards the global dimension of Q¢
and Ag is completely understood, and depends fundamentally on properties
of the cohomology of profinite groups - in particular behaviour under finite
extensions - due to Serre [34]. The result is due to Brumer [11, Theorem
4.1] who computed the global dimension of the completed group algebra of an
arbitrary profinite group G with coefficients in a pseudo-compact ring R. As a
consequence of his work, we have

THEOREM. Let G be a compact p-adic analytic group of dimension d. Then Qg
and Ag have finite global dimension if and only if G has no elements of order
p, and in this case

gld(Qg)=d and gld(Ag)=d+1.

5.2. AUSLANDER-GORENSTEIN RINGS. Recall that the group algebra of an ar-
bitrary finite group over any field is a Frobenius algebra [44, Proposition 4.2.6],
and thus is self-injective. It should therefore come as no surprise that injective
dimension is well-behaved for Iwasawa algebras. In fact, much more is true:

THEOREM. [5, Theorem J| Let G be a compact p-adic analytic group of dimen-
sion d. Then Qg and Ag are Auslander-Gorenstein rings of dimensions d and
d + 1 respectively.

This result was first proved by O. Venjakob [39] and is easy to deduce from
Theorem 3.6(4) and Theorem 5.1, as follows. Let H be an open uniform normal
subgroup of G. Then Qg and Ay are Auslander-Gorenstein by Theorem 3.6(4),
and the dimensions are given by Theorem 5.1. Now apply (2.3)(1): a simple
lemma [5, Lemma 5.4] shows that

(1) Extg,, (M, Qq) = Extg,, (M, Q)

for all ¢ > 0 and all Qg-modules M, with a similar isomorphism for A¢g, and
the result follows.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



RING-THEORETIC PROPERTIES OF IWASAWA ALGEBRAS: A SURVEY 21

5.3. DIMENSION FUNCTIONS FOR AUSLANDER-GORENSTEIN RINGS. We recall
from [24] the basics of dimension theory over an Auslander-Gorenstein ring R.
Write d for the injective dimension of R. The grade j(M) of a finitely generated
R-module M is defined as follows:

§(M) = min{j : Ext), (M, R) # 0}.

Thus j(M) exists and belongs to the set {0,...,d} U {4+o00}. The canonical
dimension of M, Cdim(M) is defined to be

Cdim(M) = d — j(M).

It is known [24, Proposition 4.5] that Cdim is an exact, finitely partitive di-
mension function on finitely generated R-modules in the sense of [29, §6.8.4].
That is,
e Cdim(0) = —o0;
e if0 — N — M — T — 0 is an exact sequence of finitely generated
modules, then Cdim(M) = max{Cdim(N), Cdim(T")};
e if MP =0 for a prime ideal P of R, and M is a torsion R/P-module,
then Cdim(M) < Cdim(R/P) — 1;
e if Cdim(M) =t then there is an integer n such that every descending
chain M = My 2D My O --- D M; 2 M;41--- of submodules of M has
at most n factors M;/M; 1 with Cdim(M;/M;+1) = t.

The ring R is said to be grade symmetric if

Cdim(gM) = Cdim(Mg)
for any R—R-bimodule M which is finitely generated on both sides.® The
triangular matrix ring (lg Z) over a field k gives an easy example of an

Auslander Gorenstein ring which is not grade symmetric.

The existence of an exact, finitely partitive, symmetric dimension function for
the finitely generated modules over a noncommutative noetherian ring R is a
very valuable tool which is often not available: the Gel’fand-Kirillov dimen-
sion [29, §8.1] - although symmetric - is often not defined; and although the
Krull dimension is always defined [29, §6.2], it is a long-standing open question
whether it is symmetric in general. As we shall see in the next paragraph, the
canonical dimension function fulfils these requirements for an Iwasawa algebra.
If 6 is a dimension function on finitely generated R-modules, we say that R is
Cohen-Macaulay with respect to ¢ if §(M) = Cdim(M) for all finitely generated
R-modules M.

This definition is consistent with, and therefore generalises, the definition from
commutative algebra. To see this, suppose that R is a commutative noetherian
ring of dimension d. Suppose that R is Cohen-Macaulay [12, Definition 2.1.1],
and let M be a finitely generated R-module with Krull dimension K(M). Note

5Alternatively, we can say in these circumstances that the dimension function Cdim is
symmetric.
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that if R is an affine (i.e. finitely generated) k-algebra, this equals the Gel’fand-
Kirillov dimension of M. Then

(1) J(M) +K(M) = d,

[12, Corollary 2.1.4 and Theorem 1.2.10(e)]. And conversely, if (1) holds for all
simple R-modules M, then R is Cohen-Macaulay [12, Theorem 1.2.5].

5.4. CANONICAL DIMENSION FOR {)g. We continue in this paragraph to as-
sume that G is a compact p-adic analytic group of dimension d. Fix an open
uniform normal subgroup H of G, and let M be a finitely generated 2g-module.
By Theorem 5.2 and paragraph (5.3), and with the obvious notation, Cdimg(—)
and Cdimpg (—) are well-defined dimension functions, and in fact (5.2)(1) shows
that

(1) Cdimy (M) = Cdimg (M).

In particular, in studying the canonical dimension we may as well assume that
G = H is uniform, which we now do. Hence, by Theorem 3.4, the graded ring
of ()¢ is a polynomial Fj-algebra in d variables.

Choose a good filtration for M (F,,M = MJ~" for n < 0 will do) and form
the associated graded module gr M. Because the J-adic filtration is Zariskian,
it follows from [8, Remark 5.8] that

(2) j(gr M) = j(M).
Moreover, from this and the concluding remarks of (5.3) we see that
(3) K(gr M) = Cdim(gr M) =d — j(M).

(This shows, incidentally, that K(gr M) is actually independent of the choice
of good filtration on M.)® Combining (2) and (3), we find that

Cdim(M) =d — j(M) = Cdim(gr M) = K(gr M) = GK(gr M)
for any choice of good filtration on M. This proves the last part of the

PROPOSITION. Let G be a compact p-adic analytic group.

(1) Q¢ is grade-symmetric.

(2) Q¢ is ideal-invariant with respect to Cdim.

(3) Suppose that G is uniform. Then for all finitely generated Qi-modules

M,
Cdim(M) = GK(grM).

Proof. (1) In view of (5.4)(1) we can and do assume that G is uniform. Write
J for the Jacobson radical of Q¢ and let M be a finitely generated Qg-
module. Then by the definition of the Gel’fand Kirillov dimension [29, §8.1.11],
GK(gr M) is the growth rate v(f) of the function

M

f(n) = dim M

6Consider (3) with M the trivial Qg-module Fp. Then K(gr M) = 0, so j(M) = d and
therefore the injective dimension of Qg actually equals d, providing another proof of the
numerical part of Theorem 5.1.
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note that this function is eventually polynomial because the finitely generated
gr Qa-module gr M has a Hilbert polynomial.

Now let N be an Qg-bimodule, finitely generated on both sides. Then NJ is a
sub-bimodule, and N/NJ is finite dimensional over F,, because N is a finitely
generated right Qg-module. Hence N/NJ is also a finite dimensional left Q-
module and as such is killed by some power of J, J® say. Thus J*N C NJ and
similarly there exists an integer b > 1 such that NJ® C JN. An easy induction
on n shows that

(1) J®"N C NJ™ C J"N
for all n > 0. Letting f(n) = dim NLJ,L and g(n) = dim J,LLN, we obtain
g9(n) < f(bn) < g(abn)

for all n > 0. It follows that Cdim(No,) = 7(f) = v(g9) = Cdim(q,|N),
proving part (1).

For part (2), recall [29, 6.8.13] that a ring R is said to be ideal-invariant with
respect to a dimension function ¢ if §(M Qg I) < §(M) for all finitely generated
right R-modules M and all two-sided ideals I of R and if the left-hand version
of this statement also holds.

In fact, we will show that

(4) Cdim(M ®q, N) < Cdim(M)

for any finitely generated Qg-module M and any Qg-bimodule N, finitely
generated on both sides.” Let M and N be as above, and let H be an open
uniform normal subgroup of G. Since there is an Q g-epimorphism M ®q, N —
M ®q. N, (5.2)(1) shows that we can replace G by H in proving (4); that is,
we now assume that G is uniform.

Choose the integer a as above so that J*"N C NJ" for all n > 0. Fix n and
let

f(n) = dim M ®ag N )

M
d =dim | ———
e oo g(n) im <(M Ban N).J"
Note that (M ®q. N).J" equals the image of M ®q. NJ" in M ®q. N so the
right-exactness of tensor product gives

N N M ®q., N
M _— M = c .
Poe (JcmN) = M ®aq <NJ”> (M @, N).J"
Now we have a natural isomorphism of right Q2g-modules
N M
M®0q Fay = apgon @0 N
and picking a finite generating set of size ¢ for the left Qg-module N shows

that
. M . M
dlm (W ®QG N> S <d1m MJ(ln> - t.

7Compare this with [29, Proposition 8.3.14].
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Hence
. M ®q., N . N
= —— | < M _— < .
g(n) dnn((M@QG N).J”) _d1m< ®a¢ (J‘"LN)) < f(an) -t
for all n > 0, so Cdim(M ®q, N) =~(9) < v(f) = Cdim(M) as required. O

The above proposition is due to the first author; it was inspired by a result of
S. J. Wadsley [43, Lemma 3.1].

5.5. CHARACTERISTIC VARIETIES. Assume in this paragraph that G is uni-
form. Let M be a finitely generated 2g-module. There is another way of
seeing that K(gr M) does not depend on the choice of good filtration for M, as
follows. It is well known [26, Chapter III, Lemma 4.1.9] that

J(M) :=+/Anng o (gr M)

is independent of this choice. Standard commutative algebra now gives

o (525).

as claimed.

The graded ideal J(M) is called the characteristic ideal of M, and the affine
variety Ch(M) defined by it is called the characteristic variety of M. Thus we
obtain yet another expression for the canonical dimension of M:

(2) Cdim(M) = dim Ch(M).

The characteristic variety is defined in an entirely analogous fashion for finitely
generated modules over enveloping algebras and Weyl algebras A,,(C). In that
setting it enjoys many pleasant properties, in addition to the simple formula
(2). In particular, there exists a Poisson structure on Ch(M), which gives more
information about M through the geometric properties of the characteristic va-
riety. For example, the fact that the characteristic variety of a finitely generated
A, (C)-module is integrable can be used to prove the Bernstein inequality.

QUESTION C. Is there a way of capturing more information about M in the
characteristic variety Ch(M)?

The naive method (mimicking the construction of the Poisson structure in the
enveloping algebra case) seems to fail because derivations are not sufficient
when studying algebras in positive characteristic: they kill too much. Pre-
sumably, if the answer to the above question is affirmative, then differential
operators in characteristic p will play a role.

5.6. No GK-DIMENSION. The theory outlined in the previous sections will
sound very familiar to the experts. However, Iwasawa algebras are not Cohen
Macaulay with respect to the GK dimension. This is easily seen by decoding
the definition of GK dimension in the case when G' = Z,: in this case, Qg is
isomorphic to the one-dimensional power series ring F,[[t]], which (being un-
countable) contains polynomial algebras over F,, of arbitrarily large dimension.
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Thus GK(Q¢g) = oo for any infinite G, since any such G will contain a closed
subgroup isomorphic to Z,.

If one tries to brush this problem away by replacing the GK dimension by the
canonical dimension, then one has to be careful not to fall into the following
trap.

Recall [29, Lemma 8.1.13(ii)] that if R C S are affine k-algebras over a field &,
then for any finitely generated S-module M,

(3) GK(N) < GK(M)

whenever N is a finitely generated R-submodule of M. This enables one to
“pass to subalgebras of smaller dimension” and use inductive arguments on the
GK dimension - a ploy used, for example, in the computation of the Krull di-
mension of U (sl2(C)) by S.P. Smith [29, Theorem 8.5.16]. Another consequence
of this property of GK dimension is that it is impossible to find an embedding
R — S of k-algebras such that GK(R) > GK(S5).

Unfortunately, (3) fails for Iwasawa algebras, if one tries to replace the GK
dimension by the canonical dimension. This is due to the following pathological
example:

ExXAMPLE. [38, Chapter VII, page 219] There exists a continuous embedding
of Fp-algebras

Qe — Qg
where dim G = 3 and dim H = 2.

Proof. Let G = Zi’, and H = Zg. By Theorem 3.1 we can identify Q¢ with
the three-dimensional power series ring Fp[[z,y,2]] and Qg with the two-
dimensional power series ring F,[[a, ]].

Because F,[[a]] is uncountable, we can find an element u = u(a) € aFp[[a]] such
that the [Fp-algebra generated by a and w is isomorphic to the two-dimensional
polynomial ring F,[a,u]. Define 0 : Fy[[z,y, 2]] — F,[[a,b]] to be the unique
continuous [Fp-algebra map such that

O(x)=0b, O(y)=ab, 6(z)=ub.
We have

oo
0 g r>\7lt7ux)‘y“z” :5 b E T ppalu’
n=0

A, veEN Atpt+v=n
This shows that € is an injection, as required. (I
One can of course concatenate these embeddings and produce a continuous

embedding of Q¢ into F,[[a, b]] for abelian uniform pro-p groups G of arbitrarily
large dimension. Here is the actual counterexample to the analogue of (3).

EXAMPLE. There exist uniform pro-p groups H C G, a finitely generated
Qa-module M and a finitely generated Qp-submodule N of M such that
Cdim(M) = 2, but Cdim(N) = 3.
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Proof. Let R = Fplla,b,c,d]] and S = Fp[[b,c,d]]. Let I be the ideal of R
generated by ¢ — ab and d — u(a)b where u(a) is chosen as in the previous
example and let M = R/I. By construction, the graded ideal gr I is generated
by the symbols of ¢ and d, so

Cdim(M) = K(gr M) = 2.

Now if r € INS, then O(r) = 0, letting 6 : F,[[b, ¢, d]] — F,[[a, b]] be as above.
Hence r = 0, so S — R/I = M. Therefore the cyclic S-submodule N of M
generated by 1+ I is actually free, so Cdim(N) = 3. O

5.7. KRULL DIMENSION. The Krull-(Gabriel-Rentschler) dimension of Q¢ was
first studied by one of the authors in [1]. An immediate upper bound of dim G
can be obtained using Theorem 3.6, or if one prefers, using [7, Corollary 1.3].
Here is a result covering a large number of cases.

THEOREM. [1, Theorem A and Corollary C] Let G be a compact p-adic analytic
group, and let g be the Qp,-Lie algebra of an open uniform subgroup of G. Let ¢
denote the soluble radical of g and suppose that the semisimple part g/t of g is
a direct sum of some number of copies of 5l2(Q,). Then

K(Q¢) = dim G.

In particular, £(2g) equals dim G whenever G is soluble-by-finite. The main
idea in the proof is to obtain a lower bound on the Krull dimension of 4 for
any compact p-adic analytic group G. Namely, with g as in the theorem, and
writing A(g) for the length of the longest chain of subalgebras of g, we have

AMg) < K(Qq).
QUESTION D. With the above notation, is K(2g) = A(g) in general?

It is easy to see that A\(g) = A(n) + A(g/n) whenever n is an ideal of g. Let N
be a closed uniform subgroup of G with Lie algebra n.

QUESTION E. Is K(Q¢) = K(Qn) + K(Qa/n)?

Aside from its intrinsic interest, an affirmative answer to Question E would
obviously reduce Question D to the study of almost simple groups G, (where
we say that a uniform pro-p group G is almost simple provided its Lie algebra
has no non-trivial ideals).

The classical split simple Lie algebras are the first examples to study. Given
such a Lie algebra g, choose a Borel subalgebra b and a Cartan subalgebra t.
Then it is easy to produce a chain of subalgebras of g of length dim b + dim t.

QUESTION F. For G almost simple and split, is K(Q¢g) = dim b + dimt ¢

Question F has an affirmative answer in the two smallest cases: g = sl3(Q,)
and g = s(3(Q,). In particular,

THEOREM. [1, Theorem B)]. Let G be a uniform pro-p group with Q,-Lie alge-
bra sl3(Qp). Then Q¢ is a scalar local complete noetherian domain of global

dimension 8, with
KQg)=T.
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The main idea of the proof of this last result is to show that ()¢ has no finitely
generated modules whose canonical dimension equals precisely 1; that is, there
is a “gap” at Cdim = 1.8 The extra dim t term in our conjectured formula for
K(Q¢) comes from the fact that Q¢ is scalar local - this fact is used crucially
in the proof of the lower bound for the Krull dimension of Q.

6. TWO-SIDED IDEAL STRUCTURE

6.1. One of the first questions asked when studying a noetherian algebra R
is “what are its two-sided ideals?” It is usually sensible to focus first on the
prime ideals of R.

One way of answering the above question is to give a reduction to the commuta-
tive case. This is a recurring theme in noncommutative algebra. For example,
if R = k[G] is the group algebra of a polycyclic group G over a field k, the
paper [33] by J. E. Roseblade achieves this, “to within a finite group”.? Similar
results hold for universal enveloping algebras U(g) of finite dimensional soluble
Lie algebras over a field k: see [21] and [29, Chapter 13]. As for the case when
g is semisimple, one can view the huge body of research on the primitive ideals
of U(g) as an analysis of the failure of the naive hope that these primitive ideals
should be generated by their intersection with the centre of U(g), [21]. And
for quantised function algebras of semisimple groups, and many related quan-
tum algebras, there are “stratification theorems” which describe their prime
and primitive spectra as finite disjoint unions of affine commutative pieces, [10,
Theorem 11.2.13].

Unfortunately, no such results are currently known for Iwasawa algebras - see
below for a summary of what little is known. Alleviation of this state of gross
ignorance would seem to be the most pressing problem in the subject.
Because of the crossed product decomposition (2.3)(1) and the going up and
down theorems for crossed products of finite groups [31, Theorem 16.6], one
should naturally first concentrate on the case when G is uniform.

6.2. IDEALS ARISING FROM SUBGROUPS AND FROM CENTRES. Since centrally
generated one-sided ideals are necessarily two-sided, it helps to know the centre
of the ring in question. However the centre of Iwasawa algebras is not very big:

THEOREM. [2, Corollary A] Let G be a uniform pro-p group and let Z be its
centre. Then the centre of Qg equals Q7 and the centre of Ag equals Az.

Thus when the centre of G is trivial (and this happens frequently), Q¢ has no
non-trivial centrally generated ideals. This is one place where the analogy with
enveloping algebras of semisimple Lie algebras breaks down.

8A similar idea was used by Smith [35] in giving an upper bound for the Krull dimension
of U(g) when g is a complex semisimple Lie algebra. We note in passing that K(U/(g)) when
g is complex semisimple has been recently proved to be equal to dim b by Levasseur [25],
answering a long-standing question in the affirmative.

9See [31, Chapter 5] for more details.
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One can also produce two-sided ideals by using normal subgroups. Certainly
when H is a closed normal subgroup of G, the augmentation ideal

wy = ker(Qg — Qa/m)

is a two-sided ideal of Q¢ and we can tell whether it is prime or semiprime using
Theorem 4.2. As for Ag, H yields two augmentation ideals: the inverse image
vy of wy under the natural projection Ag — Qg and “the” augmentation
ideal

IH = ker(AG - AG/H)

The behaviour of these ideals regarding localisation is quite well understood:

THEOREM. Let H be a closed normal subgroup of the compact p-adic analytic
group G and let F be the largest finite normal subgroup of H of order coprime
to p. Then

(1) [5] wg and vy are localisable if and only if H/F' is pro-p,

(2) [4] Iy is localisable if and only if H is finite-by-nilpotent.

These results were prompted by the formulation of the Iwasawa Main Conjec-
ture by Coates et al in [19]. Localisation techniques play an important role
in the construction of characteristic elements for suitable Ag-modules. For
number-theoretic reasons, it is assumed in [19] that the subgroup H actually
satisfies G/H = Z,: in arithmetic applications, G arises as the Galois group of
a certain extension K of @ containing the cyclotomic Z,-extension Q%°, and
H is taken to be Gal(K/Q%°). The characteristic elements all lie inside the
Kj-group of the localisation of Ag at the Ore set

Cag(von) x {L,p,p% ..},

where N is the largest closed normal pro-p subgroup of G which is open in H.
For more details, see [19, §2], [6] and [5, Theorem GJ.

Notwithstanding the above, the most embarrassing aspect of the state of our
knowledge about ideals of Iwasawa algebras is the lack of examples. In particu-
lar, we’ve noted that central elements and closed normal subgroups give rise to
ideals. This suggests the following improperly-posed question, for which we’ll
suggest more precise special cases in the succeeding paragraphs.

QUESTION G. Is there a mechanism for constructing ideals of Iwasawa algebras
which involves neither central elements nor closed normal subgroups?

One way to begin the study of prime ideals is to look first at the smallest
non-zero ones - that is, the prime ideals of height one. With one eye on the
commutative case and another on the results of (4.4) on maximal orders, one
can ask when they are all principal. Here are two slightly more precise ways to
ask this question:

QUESTION H. When is Q¢ a unique factorisation ring in the sense of [16]?
QUESTION 1. When G is uniform, is every reflexive prime ideal of Q¢ princi-

pal?
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6.3. THE CASE WHEN G IS ALMOST SIMPLE. Recall that the compact p-adic
analytic group G is almost simple if every non-trivial closed normal subgroup
of G is open (5.7). For such groups the constructions of (6.2) do not produce
anything interesting because Q¢ /wpy is artinian and hence finite dimensional
over I, for any closed normal subgroup H # 1. So Question G specialises here
to

QUESTION J. Let G be an almost simple uniform pro-p group and let P be a
nonzero prime ideal of Q. Must P be the unique maximal ideal of Qg ?

We remind the reader that x € Q¢ is normal if Qg = Qgx. Another closely
related question is

QUESTION K. Let G be as in Question J, with G % Z,. Must any nonzero
normal element of Qg be a unit?

In [22], M. Harris claimed that, for G as in Question J, any closed subgroup
H of G with 2dim H > dim G gives rise to a non-zero two-sided ideal in Qg,
namely the annihilator of the “Verma module” constructed by induction from
the simple Qy-module. Unfortunately his paper contains a gap, so Question J
remains open. Some slight evidence towards a positive answer is provided by

THEOREM. [3, Theorem A] Suppose that G is an almost simple uniform pro-p
group and that the Lie algebra of G contains a copy of the two-dimensional
non-abelian Lie algebra. Then for any two-sided ideal I of Q¢,

K(Qa/I) # 1.

Recall [29, §6.4.4] that if R is a noetherian ring with K(R) < oo, the classical
Krull dimension dim R of R is the largest length of a chain of prime ideals of
R. We always have dim R < IC(R); an easy consequence of the above result is

dim(Qg) < dim G
whenever G satisfies conditions of the Theorem.

6.4. THE CASE WHEN G IS NILPOTENT. Towards the opposite end of the
“spectrum of commutativity” from the almost simple groups lie the nilpotent
groups. Motivated by analogous results for enveloping algebras of nilpotent
Lie algebras [21, Chapter 4] and for group algebras k[G] of finitely generated
nilpotent groups G [33, Theorem E], we ask

QUESTION L. Let G be a nilpotent uniform pro-p group with centre Z and let
I be a nonzero ideal of Q. Does I contain a non-zero central element? That
is, is I N Qyz nonzero?

S. J. Wadsley has shown that Question L has an affirmative answer in the
case when G is one of the simplest possible nonabelian nilpotent uniform pro-p
groups:

THEOREM. [43, Theorem 4.10] Let G be a uniform Heisenberg pro-p group with
centre Z and let I be a nonzero two-sided ideal of Qg. Then I NQz # 0.
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A uniform pro-p group G is said to be Heisenberg provided its centre Z is
isomorphic to Z, and G/Z is abelian. The main idea of the proof of the above
result is to show that for any integer ¢, any finitely generated Qg-module M
satisfying Cdim(M) < dimG/Z — t is actually finitely generated over “most”
subalgebras Qg satisfying Z < H and dim G/H =t [43, Theorem 3.10].

In a more precise version of Question L, one might also hope that, when G is
nilpotent, “small” prime ideals I in Qg are controlled by €z; that is

I= (Iﬂ Qz)Qg.

Question O suggests a more general version of this.

Moreover, one might even hope that arbitrary ideals of these Iwasawa alge-
bras of nilpotent groups are constructed by means of a sequence of centrally
generated ideals - that is, one can ask:

QUESTION M. Suppose that G is a nilpotent uniform pro-p group. If I is an
ideal of Q¢ strictly contained in J(Q2q), is there a non-zero central element in
J(Qg) /12 10

6.5. THE CASE WHEN G 1S SOLUBLE. Given the parallels pointed out in (3.3)
between the Iwasawa algebras of uniform soluble groups and the enveloping
algebras of finite dimensional complex soluble Lie algebras, it is natural to
wonder whether properties known for the latter case might also be valid in the
former. We give two sample questions of this sort. Recall for the first that a
prime ideal P of the ring R is completely prime if R/P is a domain.

QUESTION N. Let G be a soluble uniform pro-p group.
(i) Is every prime ideal of Qg completely prime? !

(ii) Is the prime spectrum of Q¢ the disjoint union of finitely many commu-

tative strata (along the lines of [10, Theorem I1.2.13], but with necessarily

non-affine strata)?
The simple possible nonabelian soluble case has been studied by O. Venjakob:

THEOREM. [40, Theorem 7.1] Let G = X XY be a nonabelian semidirect product
of two copies of Z,. Then the only prime ideals of Q¢ are 0,wx and J(Qg),
and each one is completely prime. Moreover, wx is generated by a normal
element.

An example of such a nonabelian semidirect product is provided by the group
B = (a1, as) considered in Example 3.2.

Following J. E. Roseblade and D. S. Passman [33, §1.5], we define the Zalesskii
subgroup A of the soluble uniform pro-p group G to be the centre of the largest
nilpotent closed normal subgroup H of G. We say that an ideal I of Q¢ is
faithful if G acts faithfully on the quotient Qg /I. If Question L has a positive
answer, then it’s possible that a more general statement is true:

10Gompare with [21, Proposition 4.7.1(i)].
HGompare with [21, Theorem 3.7.2].
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QUESTION O. Let G be a soluble uniform pro-p group. Is every faithful prime
ideal of Qg controlled by the Zalesskii subgroup A of G?
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ABSTRACT. In this paper we investigate the image of the [-adic represen-
tation attached to the Tate module of an abelian variety over a number
field with endomorphism algebra of type I or I in the Albert classifica-
tion. We compute the image explicitly and verify the classical conjectures
of Mumford-Tate, Hodge, Lang and Tate for a large family of abelian va-
rieties of type I and II. In addition, for this family, we prove an analogue
of the open image theorem of Serre.
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1. INTRODUCTION.

Let A be an abelian variety defined over a number field F. Let [ be an odd
prime number. In this paper we study the images of the /-adic representation
pi: Gp — GL(T;(A)) and the mod | representation p, : Gp — GL(A[l]) of
the absolute Galois group G = G(F/F) of the field F, associated with the
Tate module, for A of type I or II in the Albert classification list cf. [M]. In
our previous paper on the subject cf. [BGK], we computed the images of the
Galois representations for some abelian varieties with real (type I) and complex
multiplications (type IV) by the field E=Endr(A) ® Q and for [ which splits
completely in the field E loc. cit., Theorem 2.1 and Theorem 5.3.

In the present paper we extend results proven in [BGK] to a larger class (cf.
Definition of class A below) of abelian varieties which includes some varieties
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with non-commutative algebras of endomorphisms, and to almost all prime
numbers [. In order to get these results, we had to implement the Weil re-
striction functor Ry k for a finite extension of fields L/K. In section 2 of the
paper we give an explicit description of the Weil restriction functor for affine
group schemes which we use in the following sections. In a very short section
3 we prove two general lemmas about bilinear forms which we apply to Weil
pairing in the following section. Further in section 4, we collect some auxiliary
facts about abelian varieties. In section 5 we obtain the integral versions of the
results of Chi cf. [C2], for abelian varieties of type II and compute Lie algebras
and endomorphism algebras corresponding to the A-adic representations related
to the Tate module of A. In section 6 we prove the main results of the paper
which concern images of Galois representations p;, p; ® Q; : Gp — GL(V;(A)),
the mod I-representation p; and the associated group schemes Qlalg, G?lg and
G(1)™9, respectively.

The main results proven in this paper concern the following class of abelian
varieties:

DEFINITION OF CLASS A.
We say that an abelian variety A/F, defined over a number field F' is of class
A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g

(ii) R = Endp(A) = Endp(A) and the endomorphism algebra D = R®zQ,
is of type I or II in the Albert list of division algebras with involution
(cf. [M], p. 201).

(iii) the field F is such that for every | the Zariski closure G of p;(G) in
GLy,/Q is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d*> = [D : E].

Let us recall the definition of abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201. Let E C D =
Endi(A) ®z Q be the center of D and F be a totally real extension of Q of
degree e.  Abelian varieties of type I are such that D = E. Abelian varieties
of type II are those for which D is an indefinite quaternion algebra with the
center E, such that D ®g R = [[{_, M3 (R).

We have chosen to work with principal polarizations, however the main results
of this paper have their analogs for any simple abelian variety A with a fixed
polarization, provided A satisfies the above conditions (ii), (iii) and (iv). The
most restrictive of the conditions in the definition of class A is condition (iv) on
the dimension of the variety A. We need this condition to perform computations
with Lie algebras in the proof of Lemma 5.33, which are based on an application
of the minuscule conjecture cf. [P]. Note that due to results of Serre, the
assumption (iii) is not very restrictive. It follows by [Sel] and [Se4] that for an
abelian variety A defined over a number field K, there exists a finite extension
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Keem /K for which the Zariski closure of the group p;(Ggeonn) in GL is a
connected variety for any prime /. Hence, to make A meet the condition (iii),
it is enough to enlarge the base field, if necessary. Note that the field K<™
can be determined in purely algebraic terms, as the intersection of a family of
fields of division points on the abelian variety A cf. [LP2], Theorem 0.1.

MAIN RESULTS

THEOREM A. [Theorem 6.9]
If A is an abelian variety of class A, then for [ > 0, we have equalities of group
schemes:

(67" = [ Ressi(Sp2n)
A

(GW19) =TT Buae,(Span).
M1

where G’ stands for the commutator subgroup of an algebraic group G, and
Ry i (—) denotes the Weil restriction functor.

THEOREM B. [Theorem 6.16]
If A is an abelian variety of class A, then for [ > 0, we have:

p1(G) = [] Spen(kx) = Span(Or/10k)
All

p(Gr) = H Span(Ox) = Span(Or ®z Zy),
Al

where Gijp is the closure of G’ in the profinite topology in Gp.

As an application of Theorem A we obtain:

THEOREM C. [Theorem 7.12]
If A is an abelian variety of class A, then

G = MT(A) ® Q,

for every prime number |, where MT(A) denotes the Mumford-Tate group of
A, i.e., the Mumford -Tate conjecture holds true for A.

Using the approach initiated by Tankeev [Ta5] and Ribet [R2], futher developed
by V.K. Murty [Mu] combined with some extra work on the Hodge groups in
section 7, we obtain:
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THEOREM D. [Theorems 7.34, 7.35]
If A is an abelian variety of class A, then the Hodge conjecture and the Tate
conjecture on the algebraic cycle maps hold true for the abelian variety A.

In the past there has been an extensive work on the Mumford-Tate, Tate and
Hodge conjectures for abelian varieties. Special cases of the conjectures were
verified for some classes of abelian varieties, see for example papers: [Ab], [C2],
[Mu], [P], [Po], [R2], [Sel], [Se5], [Tal], [Ta2], [Ta3]. For an abelian variety
A of type I or II the above mentioned papers consider the cases where A is
such that End(A) ® Q is either Q or has center Q. The papers [Tad], [C1] and
[BGK] considered some cases with the center larger than Q. For more complete
list of results concerning the Hodge conjecture see [G]. In the current work we
prove the conjectures in the case when the center of End(A)®Q is an arbitrary
totally real extension of Q. To prove the conjectures for such abelian varieties
we needed to do careful computations using the Weil restriction functor.

Moreover, using a result of Wintenberger (cf. [Wi], Cor. 1, p.5), we were able
to verify that for A of class A, the group p;(GFr) contains the group of all the
homotheties in G Lz, (4)(Z;) for [ > 0, i.e., the Lang conjecture holds true for
A cf. Theorem 7.38.

As a final application of the method developed in this paper, we prove an
analogue of the open image theorem of Serre cf. [Sel] for the class of abelian
varieties we work with.

THEOREM E. [Theorem 7.42]

If A is an abelian variety of class A, then for every prime number [, the image
pi(Gr) is open in the group Cr(GSp(a, y))(Z:i) of Z-points of the commutant
of R=End A in the group GSp(s,y) of symplectic similitudes of the bilinear
form ¢ : A Xx A — 7Z associated with the polarization of A. In addition, for
> 0 we have:

pi(Gr) = Cr(Spa,w))(Zy).

As an immediate corollary of Theorem E we obtain that for any A of class A
and for every [, the group p;(Gr) is open in gl‘”g (Z;) (in the l-adic topology),
where gﬁlg is the Zariski closure of p;(GF) in GLag/Z;. cf. Theorem 7.48.
Recently, the images of Galois representations coming from abelian varieties
have also been considered by A.Vasiu (cf. [Val],[Va2]).

2. WEIL RESTRICTION FUNCTOR RE/K FOR AFFINE SCHEMES AND LIE AL-
GEBRAS.

In this section we describe the Weil restriction functor and its basic properties
which will be used in the paper c.f. [BLR], [V1], [V2,pp. 37-40], [W1] and
[W2,pp. 4-9]. For the completeness of the exposition and convenience of
the reader we decided to include the results although some of them might be
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known to specialists. Let E/K be a separable field extension of degree n. Let
{01,092, ...,0,} denote the set of all imbeddings F — E’ C K fixing K. Define
M to be the composite of the fields E7¢

M = E°* ... E".

Let X = [z1,22,...x,] denote a multivariable. For polynomials f = fx(X) €
E[X],1 < k < s, we denote by I = (f1, f2,..., fs) the ideal generated by
the fi’s and put 17 = (f7*(X), f5'(X),..., f7(X)) for any 1 < i < n. Let
A = E[X]/I. Define E-algebras A% and A as follows:

A" = A®p,,, M = MIX]/ I M[X],

A=A Qp - Qp A7
Let X791, ..., X denote the multivariables

o
X% = [in,l, $i727 e 7Z‘i77.]

on which the Galois group G = G(M/K) acts naturally on the right. Indeed
for any imbedding o; and any ¢ € G the composition o; o o, applied to F
on the right, gives uniquely determined imbedding o; of E into K, for some
1 < j < n. Hence we define the action of G(M/K) on the elements X% in the
following way:

(X797 = X,

We see that -
A MXo . X (I + -+ 1),

where Iy = M[X7*, ..., X[y and Iy = (f7*(X7%),..., fJ*(X7*)), for any
1<k<n.
LEMMA 2.1. G B

A Qg M = A.
Proof. Let aq,...,a, be a basis of E¥ over K. It is clear that

n
R —a
Za?’X‘“ € A
i=1
Since [a7]; ; is an invertible matrix with coefficients in M, we observe that

Xt,..., X% are in the subalgebra of A generated by M and ac, But
X1 ..., X% and M generate A as an algebra. 0O

n

REMARK 2.2. Notice that the elements ) ;" a7 X7/ for j = 1,...,n generate

A% asa K-algebra. Indeed if C denotes the K-subalgebra of a¢ generated by
these elements and if C' were smaller than ZG, then C ® x M would be smaller
than ZG ®x M, contrary to Lemma 2.1.
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DEFINITION 2.3. PutV = spec A, and W = specZG. Weil’s restriction functor
R,k is defined by the following formula:

Rp/g(V)=W.

Note that we have the following isomorphisms:

I

Wex M = spec(ZG@)KM) =~ spec A

spec (A @pr - @m A7) =2 (VQpo, M)y - Qm (V Qp,s, M),

hence

Rpk(V)@x M = (V Qpo M)@wm - @u (V ®p,q, M).

LEMMA 2.4. Let V' C V be a closed imbedding of affine schemes over E. Then
Rg/k (V') C Rg/k(V) is a closed imbedding of affine schemes over K.

Proof. We can assume that V' = spec (E[X]/I) and V' = spec (E[X]/J) for two
ideals I C J of E[X]. Put A= E[X]/I and B= E[X]|/Jandlet ¢ : A— B
be the natural surjective ring homomorphism. The homomorphism ¢ induces
the surjective F-algebra homomorphism

¢:A—B
which upon taking fix points induces the K-algebra homomorphism

-G =G =G
(2.5) o . A% - BC.

7G .
By Remark 2.2 we see that B~ is generated as a K-algebra by elements

. —G G
> o' X7 (more precisely their images in B). Similarly A~ is generated as
; . . -

a K-algebra by elements > " | o' X7 (more precisely their images in A™). It
. —G ) —G . ) —=G
is clear that ¢ sends the element > | af* X7 € A” into > ;" af* X7 € B,

-G .
Hence ¢ is onto. [J

Let ay,...,a, be a basis of E over K and let (y,..., 3, be the corresponding
dual basis with respect to Trg, k. Define block matrices:

oL ol ... ot gL B, ... B,
W agljr Oég2lr agnL_ | B ﬂi‘?[r ﬁ;.QIr ﬁg‘?Ir
agl, ag2l, ... ad°l, eI, BoI. ... B9,
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Notice that by definition of the dual basis AB = BA = I,.,. Define block
diagonal matrices:

Xor ol. ... Ol Yeor 0ol. ... 0l
oI, X°2 ... 0I, oI, Y°2 ... O0I
X= . ) . , Y= . . . ,
or. 0oL ... X% or. 01, ... Y°»
where Y1, ... Y’ and X?!,..., X9, are multivariables written now in a form
of r X r matrices indexed by o1,...,0,. Let T;; and S;;, forall 1 <i<n, 1 <

j < n, be r x r multivariable matrices. Define block matrices of multivariables:

Ty Tz ... Ty Sui Sz ... Sin

Tor Top ... Ty Sa1 Sa2 ... Sop
T= ) : . , S= . . .

Tnl Tn2 s Tnn Snl Sn? s Snn

Notice that:

Yo (arfr)7i X 3T (afB2) 7 X doio(a13,)7i X%
Z?:l(a2/31)UJXUJ Z?:l(OZZﬁZ)UJXU’ Z?:l(cwﬁn)UJXgJ
AX]B = . . .
En:1(anﬂl)o7XUJ Z?:1(O‘nﬂ2)dj X Z;L:1(anﬂn)ag X
Yoo (i)Y 30 (anfB)? Y 3 (1 fn) Y
AVE Diea(aefr) YT 3 (anBe)Y T L 3T ()Y

Z?zl(anﬁl)aj Yi Z?:I(QTIﬁQ)JJ Y i . E?:l(anﬁn)oj Y i
Observe that the entries of AXB and AYB are G-equivariant. Hence, there is
a well defined homomorphism of K-algebras
(2.6) ® : K[T,S]/(TS—1Ip, ST—1I,.,) — (M[X7 Y/ (XY -1, YX—IW))G

T — AXB
S — AYB

The definition of ® and the form of the entries of matrices AXB and AYB show
(by the same argument as in Lemma 2.4) that the map & is surjective. Observe
that

GL.,/K = spec K[T,S]/(TS — Iy, ST — I-p,),

GL,/E = spec E[X,Y]/(XY —I,, YX — I,),

where X and Y are r x r multivariable matrices.
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LEMMA 2.7. Consider the group scheme GL,/E. The map ® induces a nat-
ural isomorphism Rp,x(GL,) = Cg(GLy,/K) of closed group subschemes of
GL,,/K, where Cg(GL,,/K) is the commutant of E in GL,,, /K.

Proof. Observe that there is a natural M-algebra isomorphism
MK, Y]/ (XY = Iy, YX = L) 2 A7 @pp -+ @ AT,
where in this case
A=M[X,Y]/(XY—-I,, YX-1)2M[X Y] /(X9Y% -1, Y7 X9 —1,).
Hence, by Definition 2.3 we get a natural isomorphism of schemes over K :
Rpx(GL,) = spec (M[X, Y] /(XY — I, YX — I,,,))¢

and it follows that ® induces a closed imbedding of schemes Rp,x(GL,) —
GL,, over K. Moreover we easily check that Ker ® is generated by elements
aoT—Toa and aoS—Soa for all « € F, where o denotes the multiplication
in GL,,/K. Note that Cg(GL,/K) is equal to

spec K[T,S]/(TS—IM, ST -1, aoT—Toa, aoS—Soaq, Vack). |

REMARK 2.8. Let E/K be an unramified extension of two local fields. Hence
the extension of rings of integers Og/Ok has an integral basis a,...,a, of
Op over Ok such that the corresponding dual basis 1, ..., 3, with respect to
Trg/k is also a basis of Op over O see [A], Chapter 7. Let Rp, 0, be the
WEeil restriction functor defined analogously to the Weil restriction functor for
the extension E/K. Under these assumptions the following Lemmas 2.9 and
2.10 are proven in precisely the same way as Lemmas 2.4 and 2.6.

LEMMA 2.9. Let V' C V be a closed imbedding of affine schemes over OF.
Under the assumptions of Remark 2.8 Rp, /0, (V') C Ro, /0, (V) is a closed
imbedding of affine schemes over Ok .

LEMMA 2.10. Consider the group scheme GL,/Og. Under the assumptions of
Remark 2.8 there is a natural isomorphism Ro /0, (GL;) = Co,(GLrn/Ok)
of closed group subschemes of GL..,/Ok, where Co,(GL.,/Ok) is the com-
mutant of Og in GL,,/Ok.

We return to the case of the arbitrary separable field extension E/K of degree n.
Every point of Xy € GL,.(FE) is uniquely determined by the ring homomorphism

hx, : EIX,Y]/(XY -1,,YX-1,) > E
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X~ Xo, Y = Yo,
where Y is the inverse of X. This gives immediately the homomorphism
hr, : K[T,S]/(TS — Iy, ST — I,.p,)) — K
T — To = AXOB,
S — SO = AYOB

where
Xgt oI, ... 0I, Yyt oL ... 0l
oI, Xg* ... O0I, oI, Yy ... 0
Xp = ) ) ) , Yg= ) } ) ;
oI, 0L ... XJ» 0. 01, ... Yy~

and the action of o; on X and Yj is the genuine action on the entries of X
and Yp. Obviously hy, determines uniquely the point Ty € GL,.,(K) with the
inverse Sy.

DEFINITION 2.11. Assume that Z = {Xy; t € T} C GL,.(F) is a set of points.
We define the corresponding set of points:

Ze = {T;=AX;B; teT} C GLn(K),
where
X7t oI, ... 0,
oI, X/* ... 0I,
Xy = . ) )
or, or. ... X/

We denote by Z®9 the Zariski closure of Z in GL,/E and by Z3 the Zariski
closure of Zg in GL,., /K.

PRrROPOSITION 2.12. We have a natural isomorphism of schemes over K :

Rpx(2°19) = 23"

Proof. Let
J=XY-L,YX-1 X-X,Y-Y)

be the prime ideal of E[X,Y] corresponding to the point X; € GL,.(E). Let

J= ﬂ J;.

teT
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By definition Z%9 = spec (E[X,Y]/J). Let
Js = (TS — Iy, ST — I,,, T — AX,B, S — AY,B)

be the prime ideal in K[T,S]/(TS — I,,,, ST — I,.,,) corresponding to the point
AXyB € GL,,(K). Define
J=[) I

teT

By definition Z29 = spec (K[T,S]/J). Put A = E[X,Y]/(XY — I, YX — I,).

Observe that the ring ZG is generated as a K-algebra by AXB and AYB, since
A is generated by X and Y as an M-algebra. Define

J, = (AXB — AX;B, AYB — AY;B)
which is an ideal of ZG. Put

=5

teT

We have the following isomorphism induced by .

(2.13) K[T,S|/J, = A°/J, ~ K.

Hence, @7 1(J}) = J; and ® (J') = J. This gives the isomorphism
(2.14) K[T,8]/3 =~ A9/7.

Let B = E[X,Y]/J. There is a natural surjective homomorphism of K-algebras
coming from the construction in the proof of Lemma 2.4 (see (2.5)):

(2.15) A%y - B¢

induced by the quotient map A — B. We want to prove that (2.15) is an
isomorphism. Observe that there is natural isomorphism of K-algebras:

— —a
(2.16) A°1 =~ 475° = K.
Consider the following commutative diagram of homomorphisms of K-algebras:
3¢ /T . 5
(2.17) l l

HteTA /J,@ — HteTA/Jt

The left vertical arrow is an imbedding by definition of J' and the bottom
horizontal arrow is an isomorphism by (2.16). Hence the top horizontal arrow
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is an imbedding, i.e., the map (2.15) is an isomorphism. The composition of
maps (2.14) and (2.15) gives a natural isomorphism of K-algebras

(2.18) KI[T,s)/J = BC.

But Z3" spec(K|T,S]/]). In addition, Z%9 = specB, hence
Rp Kk (Z) = specEG and Proposition 2.12 follows by (2.18). O

REMARK 2.19. If Z is a subgroup of GL,(E), then Zg is a subgroup of
GL,,(K). In this case Z%9 is a closed algebraic subgroup of GL,/E and Zglg
is a closed algebraic subgroup of GL,, /K.

DEFINITION 2.20. Let H = spec A be an affine algebraic group scheme defined
over I/ and b its Lie algebra. We define g = R kb to be the Lie algebra
obtained from § by considering it over K with the same bracket.

LEMMA 2.21. There is the following equality of Lie algebras
Lie(Rg/xH) = Rp/kbh.

Proof. Let n = [E : K] and G = Gal(E/K). Since H is an algebraic group
h = Der(A) is the Lie algebra of derivations of the algebra A of functions on

H [ H1]. Let ¢ : Der(A) — Der(A) be the homomorphism of Lie algebras
(considered over E) given by the following formula:

PO =" id® - Qid® 6 Qid® - ®id,

where §; = 0®1 as an element of Der(A%). Recall that A% = AQg ,, M.Ifo €
Gando(a1®---®ay) = o(ay, )@ --®@c(ax, ) one readily sees that d;(c(ax;)) =
0(0k, (ax,;)) and therefore ¢(8) is G-equivariant i.e., ¢(8) € Der(AY). It is easy
to see that ¢(d) as an element of Der(A) is nontrivial if § is nontrivial. Since
#(8) is M-linear and A°®@x M = A, we see that ¢(d) is a nontrivial element of
Der(A®) = Lie(Rp i H). On the other hand, observe that

Eie(RE/KH)(@KR = ﬁie(RE/KH@)KK) =
:Eie(ﬁXK---XKFI):(EBK))(@EK:Q@KK.

This shows that Lie(Rg kH ) and Rp kb have the same dimensions and there-
fore are equal. [

LEMMA 2.22. Let g be a Lie algebra over E and let g’ be its derived algebra.
Then

Rp/k(9') = (Re/x(9))

Proof. This follows immediately from the fact that Rg,x(g) and g have the
same Lie bracket (cf. Definition 2.20) O

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 35-75



46 G. Banaszak, W. GAJDA, P. KRASON

LEMMA 2.23. If G is a connected, algebraic group over E of characteristic 0,
then

Rp/k(G') = (Rp/kG)’
Proof. We have the following identities:

Lie((Rg/k(G))") = (Lie(Rp/k(G))) = (Rg/k (Lie(G)))" =
= Rp/k((Lie(G))') = Rp/k (Lie(G")) = Lie(Rp/x (G"))

The first and the fourth equality follow from Corollary on p.75 of [H1]. The
second and fifth equality follow from Lemma 2.21. The third equality follows
from Lemma 2.22. The Lemma follows by Theorem on p. 87 of [H1] and
Proposition on p. 110 of [H1]. O

3. SOME REMARKS ON BILINEAR FORMS.

Let E be a finite extension of Q of degree e. Let E; = EQQ; and O, = OpR®Z;.
Hence E; = HMl Ey and O, = HAU Ox. Let O}, be the dual to Oy with respect
to the trace T, /g, For I > 0 we have O} = Oj see [A], Chapter 7. From now
on we take [ big enough to ensure that O} = O, for all primes X in Og over [
and that an abelian variety A we consider, has good reduction at all primes in

Op over [. The following lemma is the integral version of the sublemma 4.7 of
[D].

LEMMA 3.1. Let T} and T3 be finitely generated, free Op,-modules. For any
Z;-bilinear (resp. nondegenerate Z;-bilinear ) map

Py Ty x Ty — 7y

such that 1 (evi,va) = ¥ (v1,evq) for all e € Og,,v1 € T1,ve € Ty, there is a
unique OF,-bilinear (resp. nondegenerate O, -bilinear ) map

¢Z:T1XT2*>OEZ

such that Trg, /q,(¢1(v1,v2)) = Vi (v1,ve) for all vy € Ty and vy € T.

Proof. Similary to Sublemma 4.7, [D] we observe that the map
Trp, g « Homog (Th ®op, T2 ;Or,) — Homg, (Ty @0y, T2 Z)
is an isomorphism since it is a surjective map of torsion free Z;-modules of the

same Z;-rank. The surjectivity of T'rg, ,q, can be seen as follows. The Z;-basis
of the module T1®0g, T3 is given by

B=((0,...,0,a3,0,...,0)e; ® €)
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where (0, ... ,0,0[2‘,0, ...,0) € HA\I O, and 042 is an element of a basis of Oy
over Z; and e; (resp. e;-) is an element of the standard basis of T} (resp. T»)
over Og,. Let w,?)i’j € Homg, (Ty ®op, T2; Z;) be the homomorphism which
takes value 1 on the element (0,...,0,a7,0,...,0)e; ® e; of the basis B and
takes value 0 on the remaining elements of the basis B. Let us take ¢;; €

Homoy, (Th ®0,, T2 ; Op,) such that

1 ifi=randj=s

.. Y —
Gigler @ e;) {0 ifitrorj#s

Then for each k there exist elements (the dual basis) 3} € O, such that
Tre, (ﬂ,ﬁ‘aﬁ) = 0f,n. If we put ¢§\,j,k =(0,...,0, 62‘, 0,...,0)¢; ; then clearly

Tre, g, (¢, x(t1,t2)) = ¥7; 1 (t1, t2). Hence the proof is finished since the ele-

ments ¢i>:j,k(t17 t2) form a basis of Homg, (Th @0y, T2 :Zy) over Z,. O

Consider the case Ty = Ty and put 7 = Ty = T5. Assume in addition that ¢
is nondegenerate. Let

v, T 1Ty x Ty 1Ty, — Z]1
be the Z/I-bilinear pairing obtained by reducing the form v; modulo I. Define
In=eT =T ®o, O

W =T\ ®o, Ex

where e} is the standard idempotent corresponding to the decomposition Og, =
[, Ox. Let my : Op, — Oy be the natural projection. We can define an Oy-
nondegenerate bilinear form as follows:

P Th x T — O,

Ya(eavr, exvz) = ma(di(v1, v2))

for any vy,ve € Tj. Put ky = Ox/AO,. This gives the ky-bilinear form ¢, =
P ®o, ka
@/\ : T)\/)\T)\ X T)\/)\T/\—>/€)\.

We also have the F-bilinear form 1/)9\ =Y\ ®o, Ex

YS 2 Vi x Vi — Ey.
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LEMMA 3.2. Assume that the form v, is nondegenerate. Then the forms ),
1 and 1/)9\ are nondegenerate for each A|l.

Proof. First we prove that v, is nondegenerate for all A|l. Assume that 1, is
degenerate for some A. Without loss of generality we can assume that the left
radical of ¢, is nonzero. So there is a nonzero vector exvy € Ty (for some
v € T;) which maps to a nonzero vector in Ty /AT such that 1y (exvo, exw) €
A O, for all w € T;. Now use the decomposition 7; = T, Lemma 3.1 and
the Op,-linearity of ¢; to observe that for each w € T;

Yi(exvo, w) = Trg, jq,(¢i(exvo, Zexw)) =Trp, ;g ¥r(exvo, exw) € 1Z;.
A/

This contradicts the assumption that 1, is nondegenerate.
Similarly, but in an easier way, we prove that v, is nondegenerate. From this
it immediately follows that 1/)9\ is nondegenerate. [

4. AUXILIARY FACTS ABOUT ABELIAN VARIETIES.
Let A/F be a principally polarized, simple abelian variety of dimension g
with the polarization defined over F. Put R = Endz(A) We assume that
Endp(A) = Endp(A), hence the actions of R and G on A(F) commute. Put
D = Endp(A) ®z Q. The ring R is an order in D. Let E;y be the center of D
and let

E:={a€ Ey; d =a},

where 7 is the Rosati involution. Let Rp be a maximal order in D containing
R. Put O% := RNE. The ring OY, is an order in E. Take [ that does not divide
the index [RD : R] Then Rp Rz Z; = R ®z Z; and O Qyz Z; = OOE Rz L

The polarization of A gives a Z;-bilinear, nondegenerate, alternating pairing

Because A has the principal polarization, for any endomorphism o € R we get
o’ € R, (see [Mi] chapter 13 and 17) where ' is the image of « by the Rosati
involution. Hence for any v,w € T;(A) we have ¢;(av, w) = (v, &’ w) (see loc.
cit.).

REMARK 4.2. Notice that if an abelian variety were not principally polarized,
one would have to assume that [ does not divide the degree of the polarization
of A,toget & ®1 € R®Z; for a € R.

By Lemma 3.1 there is a unique nondegenerate, O,-bilinear pairing
(4.3) ¢« Ti(A) x Ti(A) — Op,
such that Trg, /g, (¢1(v1,v2)) = ¥1(v1,v2). As in the general case define

Th(A) = exT;(A) 2 T;(A) ®og, O\
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A(A) =Ty (A) ®o, Ex.

Note that Ty (A)/ATA(A) = A[A] as kx[Gp]-modules.
Again as in the general case define nondegenerate, Oy-bilinear form

(44) ¢>\ : T)\(A) X T)\(A) — 0)\

Pa(eavr, exve) = ma(¢i (v, v2))

for any vy,vy € T;(A), where 7y : O, — O, is the natural projection. The
form 1, gives the forms:

(4.5) Dy 0 AN x AN — k.

(46) ’(ﬁg : V)\(A) X V)\(A) — E)\.

Notice that all the bilinear forms vy, and ¥ are alternating forms. For
[ relatively prime to the degree of polarization the form 1), is nondegenerate.
Hence by lemma 3.2 the forms ¥y, and w?\ are nondegenerate.

LEMMA 4.7. Let x) : Ggp — Z; C Oy be the composition of the cyclotomic
character with the natural imbedding Z; C O}.

(i) For any o € Gp and all v1,ve € Ty(A)
Ua(ovy, ov2) = Xa(0)Ya(v1,v2).
(ii)  For any o € R and all vi,vs € Th(A)

Ya(awr, va) = Py (v1, &'va).

Proof. The proof is the same as the proof of Lemma 2.3 in [C2]. O

REMARK 4.8. After tensoring appropriate objects with Q; in lemmas 3.1 and
4.6 we obtain Lemmas 2.2 and 2.3 of [C2].

Let A/F be an abelian variety defined over a number field F such that
Endz(A) = Endp(A). We introduce some notation. Let Gi=, Gi, GV de-
note the images of the corresponding representations:
p1 : Gp — GL(T1(A)) = GLoy(Zy),
71 : Gp — GL(A[l]) = GLoy(Fy),
p®@Q : Gp — GL(Vi(A)) = GL2g(Qy).
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Let gl‘”g , (G?lg resp.) denote the Zariski closure of the image of the represen-
tation p;, (pr ® Qy, resp.) in GLay/Z, (GLay/Qy, resp). We define G(1)%9 to
be the special fiber of the Z;—scheme gl‘”g )

Due to our assumptions on the Gp-action and the properties of the forms
¥, ¥, and ¢ we get:

(4.9) G~ C G(2Z) C [] GSpry)(0x) € GLya(Z1)
All

(4.10) G C GW)™EF) C [] GSpap(kr) C GLay(F)
All

(4.11) G C G1(Q) C ] GSpraay(Er) € GLyya)(Q).
i

Before we proceed further let us state and prove some general lemmas con-
cerning l-adic representations. Let K/Q; be a local field extension and Ok the
ring of integers in K. Let T' be a finitely generated, free Ox-module and let
V =T ®p, K. Consider a continuous representation p : Gp — GL(T) and
the induced representation p° = p@ K : Gr — GL(V). Since G is compact
and p° is continuous, the subgroup p°(Gr) of GL(V) is closed. By [Se7], LG.
4.5, p°(GF) is an analytic subgroup of GL(V).

LEMMA 4.12. Let g be the Lie algebra of the group p°(Gr)
(i)  There is an open subgroup Uy C p°(GF) such that

Endy, (V) = Endg (V).
(i)  For all open subgroups U C p(Gr) we have
Endy (V) C Endg (V).

(ili)  Taking union over all open subgroups U C p°(Gr) we get

U Endy (V) = Endg (V).
U
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Proof. (i) Note that for any open subgroup U of g we have
(4.13) Endg; (V) = Endg (V)
because KU = g. By [B], Prop. 3, III.7.2, for some open U C g, there is an
exponential map ~
exp : U — p°(Gr)
which is an analytic isomorphism and such that exp (U ) is an open subgroup of
p°(GF). The exponential map can be expressed by the classical power series for
exp (t). On the other hand by [B], Prop. 10, I11.7.6, for some open U C p°(Gr),
there is a logarithmic map
log: U — g

which is an analytic isomorphism and the inverse of exp. The logarithmic map
can be expressed by the classical power series for In¢. Hence, we can choose Uy
such that Uy = exp (Up) and log (Uy) = Uy. This gives
(4.14) Endy, (V) = Endg, (V).
and (i) follows by (4.13) and (4.14).
(ii) Observe that for any open U C p°(GFr) we have

Endy (V) C EndUOmU (V)
Hence (ii) follows by (i).

(iii) Follows by (i) and (ii). O

LEMMA 4.15. Let A/F be an abelian variety over F such that Endp (A) =
Endg (A). Then
Endg, (Vi(A)) = Endg, (Vi(4)).
Proof. By the result of Faltings [Fa], Satz 4,
Endr (A) @ Q; = Endg, (Vi(A4))
for any finite extension L/F. By the assumption Endp (A) = Endy, (A). Hence
Endg, (Vi(A)) = Endy: (Vi(4))
for any open subgroup U’ of Gg. So the claim follows by Lemma 4.12 (iii). O

Let A be a simple abelian variety defined over F' and F be the center of the
algebra D = Endp(A) ® Q. Let Al be a prime of O over [. Consider the
following representations.

px : Grp — GL(Tx\(4)),
7%+ G — GL(A),
pxr o, Ex + Gr — GL(VA(A)),
where A|l. Let G5, (G5 resp.) denote the Zariski closure of the image of the
representation px, (px® Ex resp.) in GLp, 4)/Ox, ( GLy, (a)/Ex resp.) We
define G(\)™9 to be the special fiber of the Oy-scheme G4
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THEOREM 4.16. Let A be a simple abelian variety with the property that
R = Endp(A) = Endp(A). Let Ry = R®(90E O, and let Dy = D Qg E,.
Then
(i) Endo,jc.) (Th(4)) = R
(i) EndRA[GF]( A(A)) = Dy
(iii)  Endg,g.) (A[N]) = R ®o, kx for 1> 0.

Proof. Tt follows by [Fal, Satz 4 and [Za], Cor. 5.4.5. O

LEMMA 4.17. Let K be a field and let R be a unital K-algebra. Put D =
Endr(M) and let L be a subfield of the center of D. Assume that L/K is a
finite separable extension. If M is a semisimple R-module then M is also a
semisimple R ® g L-module with the obvious action of R @ L on M.

Proof. Take o € L such that L = K(«). Let [L : K] = n. Let us wrlte M =
@®;M; where all M; are simple R modules. For any ¢ we put M; = Sore o ak M;.
Then M; is an R®@ g L-module. Because M; is a simple R-module we can write

m—1
M; = @ " M;,
k=0

for some m. Observe that if mn = 1, then M; is obviously a simple R ®x L-
module. If m>1, we pick any simple R-submodule N; C M;, N; # M;. There
is an R- isomorphism ¢ : M; — N; by semisimplicity of M;. We can write
M = M;®N;®M’', where M’ is an R-submodule of M. Define ¥ € Autr(M) C
Endr(M) by Uy, = ¢, YN, = ¢~ ! and U = Idpsr. Note that

m—1

1
(4.18) EB o M;) né} a* N;
= k=0

since a is in the center of D. Hence M; @k o ' o N; by the classification
of semisimple R-modules. We conclude that M; is a simple R @ L-module.
Indeed, if N C M were a nonzero R ® g L-submodule of M then we could
pick any simple R—submodule N; C N. It N; = M; then N = M;. If N; # M;
then by (4.18) M; = @, "ok N; ¢ N. Since M = > M;, we see that M is a
semisimple R ® g L-module. [

THEOREM 4.19. Let A be a simple abelian variety with the property that
R = Endp(A) = E’I’LdF(A) Let Ry = R®O% Oy and let Dy = D®pg E\. Then
Gr acts on Vy(A) and A[\] semisimply and G and G(\)™9 are reductive
algebraic groups. The scheme Q;lg is a reductive group scheme over O, for [

big enough.

Proof. Tt follows by [Fa], Theorem 3 and our Lemma 4.17. The last statement
follows by [LP1], Proposition 1.3, see also [Wi], Theoreme 1. [
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5. ABELIAN VARIETIES OF TYPE [ AND II.

In this section we work with abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201, ie. EC D =
Endp(A) ®z Q is the center of D and F is a totally real extension of Q of
degree e. To be more precise D is either E (type I) or an indefinite quaternion
algebra with the center E, such that D®@gR = []7_, M2 »(R) (type II). In the
first part of this section we prove integral versions of the results of Chi [C2]
for abelian varieties of type II. Let [ be a sufficiently large prime number that
does not divide the index [Rp : R] and such that D ® g E splits over E) for
any prime X in Og over {. Hence, Dy = Ms 2(Ey). Then by [R, Corollary 11.2
p. 132 and Theorem 11.5 p. 133] the ring R, is a maximal order in D). So by
[R] Theorem 8.7 p. 110 we get Ry = M 2(O,), hence Ry\®o, kx = Ma2(ky).
Similarly to [C2] we put

(%) ()

Let e = £(1+1), f = 3(1+u), X =eT\(A),Y = (1—e)Ta(A), X' = fT\(A),
y/ = (1 — f)TA(A) Put X = X®O>\E>\, X' = X’®(9XE)\, Y = y@OAE,\,
Y =Y ®0,Ex, X = X@0,kx, X = X'®0,kx, Y = VR0,kx, V = Y ®0, k.
Because ueu = 1 — e, the matrix u gives an O)[Gg]-isomorphism between
X and ), hence it yields an F)[Gg]-isomorphism between X and Y and a
k|G F]-isomorphism between X and ). Multiplication by ¢ gives an O,[GF]-
isomorphism between X’ and )’, hence it yields an E)[Gr]-isomorphism be-
tween X’ and Y’ and a k) [G p|-isomorphism between X' and yl. Observe that

(5.1) End(g/\[GF] (X) = End(g/\[GF](X/) = O>\
(5.2) Endg, 6. (X) = Endg, (¢,(X) = Ex
(5.3) Endy, () (X) = Endy, 6,)(X) = Fy.

So the representations of Gz on the spaces X,Y, X', Y (resp. X, Y, X, ) are
absolutely irreducible over E, (resp. over k). Hence, the bilinear form 9
cf. (4.4) (resp. ¥y cf. (4.5)) when restricted to any of the spaces X, X', YY",
(resp. spaces X, X ,Y,)) is either nondegenerate or isotropic.

We obtain the integral version of Theorem A of [C2].

THEOREM 5.4. If A is of type II, then there is a free Ox-module Wy (A) of
rank 2h such that
(i) we have an isomorphism of O5[Gr|- modules Tx(A) = Wi (A) ® Wy (A4)
(ii) there is an alternating pairing ¥y : Wx(A) x Wy (4) — O,
(ii’) the induced alternating pairing 1% : Wx(A) x W(A) — E, is nonde-
generate, where Wy (A) = Wy (4) ®co, Ex
(ii”) the induced alternating pairing ¥, : Wx(A) x Wx(A) — ky is nonde-
generate, where Wy (A) = Wy (4) ®o, ka.
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The pairings in (ii), (ii’) and (ii”) are compatible with the Gp-action in the
same way as the pairing in Lemma 4.7 (i).

Proof. (ii’) is proven in [C2], while (i) and (ii) are straightforward generaliza-
tions of the arguments in loc. cit. The bilinear pairing ¢; is nondegenerate,
hence the bilinear pairing ¢, is nondegenerate, since the abelian variety A is
principally polarized by assumption. (Actually ¢; is nondegenerate for any
abelian variety with polarization degree prime to [). So, by Lemma 3.2 the
form 1), is nondegenerate for all A hence simultaneously the forms ¥ and Py

are nondegenerate. Now we finish the proof of (ii”) arguing for A[A] similarly
as it is done for V) in [C2], Lemma 3.3. O

From now on we work with the abelian varieties of type either I or II. We
assume that the field F' of definition of A is such that G?lg is a connected
algebraic group.

Let us put

T\(4) if Ais of type I
(5.5) T\ =
Wi(A), if A is of type II

Let V\ =T\ ®o, Ex and Ay = V) /T). With this notation we have:

SIS if A is of type I
(5.6) Vi(A) =
@MZ(VA @ VA) , if Ais of type II

(5.7) Vi = Pwn

Y[
Let Vg, be the space V) considered over Q;. We define pg,(9) = Th =
A X,\B,, where X € GL(V,) is such that py(g) = X,. ( cf. the definition

of the map ® in (2.6) for the choice of Ay and By). Proposition 2.12 motivates
the definition of pg,. We have the following equality of Q;-vector spaces:

(5.8) Vi = @V,

The [l-adic representation
(5.9) o i Gr — GL(Vi(4))
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induces the following representations (note that we use the notation p; for both
representations (5.9) and (5.10) cf. Remark 5.13 ):

(5.10) pi: Gp — GL(V))
(5.11) Hp,\ :Grp — H GL(V»)
A
(5.12) [Ire.: Gr— H%GL(V%)

REMARK 5.13. In the case of abelian variety of type II we have V;(A) = V@V,
and the action of Gp on the direct sum is the diagonal one as follows from
Theorem 5.4. Hence, the images of the Galois group via the representations
(5.9), (5.10) and (5.12) are isomorphic. Also the Zariski closures of the images
of these three representations are isomorphic as algebraic varieties over Q; in
the corresponding GL-groups. Similarly, V)(A) = V) & V) with the diagonal
action of Gg on the direct sum by Theorem 5.4. Hence, the images of the
representations given by Gg-actions on V) and V) (A) are isomorphic and so
are their Zariski closures in corresponding G L-groups. For this reason, in the
sequel, we will identify the representation of G on V;(A) (respectively on
VA(A)) with its representation on V; (resp. Vy).

By Remark 5.13 we can consider G?lg (resp. Gilg) to be the Zariski closure
in GLy, (resp. GLy,) of the image of the representation p; of (5.10) (resp. pa
of (5.11)). Let Ggff denote the Zariski closure in GLy, of the image of the
representation pg, of (5.12). Let g; be the Lie algebra of Glalg, g be the Lie

algebra, of Gilg and let go, be the Lie algebra of G;lf . By definition, we have
the following inclusions:

alg alg
(5.14) G C HWG%
(5.15) @y < I1,,Ga))
(5.16) u < D, g0
(5.17) g;° C @Allgfg.
The map (5.14) gives a map

al al

(5.18) Gl — Gg?,

which induces the natural map of Lie algebras:

(5.19) 8 = 9o,
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LEMMA 5.20. The map (5.19) of Lie algebras is surjective for any prime A|l.
Hence the following map of Lie algebras:

(5.21) gi° — 03,

is surjective.

Proof. We know by the result of Tate, [T2] that the Q;[GFr]-module V;(A4) is
of Hodge-Tate type for any prime v of Op dividing [. Hence by the theorem of
Bogomolov cf. [Bo] we have

g = Lie (p(Gr)).
Since each Q|G g]-module Vg, is a direct summand of the Q;[GF]-module V;,

then the Q;[G g]-module Vg, is also of Hodge-Tate type for any prime v of Op
dividing . It follows by the theorem of Bogomolov, [Bo| that

ga, = Lie (pa, (GF)).

But the surjective map of l-adic Lie groups p;(Gr) — pe, (Gr) induces the
surjective map of [-adic Lie algebras Lie (p;(Gr)) — Lie (ps, (Gr)). O

LEMMA 5.22. Let A/F be an abelian variety over F of type I or II such that
Endp (A) = Endg (A). Then

(523) E’I’Ldg)\ (V)\) = EndE)\[GF] (V)\) = E)\

(5.24) Endg% (Vo,) = E’I’Ld@l[GF] (Vo,) = Ei.

Proof. By [F], Theorem 4, the assumption Endp (A) = Endy, (A) for any finite
extension L/F, Theorem 4.16 (ii), the equality (5.2) and Theorem 5.4 we get

(5.25) E\ = Endg, (g (VA) = Endp,c,) (Va).
This implies the equality
Endg, (V\) = Endy (V)
for any open subgroup U of Gp. Hence, the equality (5.23) follows by

Lemma 4.12 (iii). For any FF C L C F we have Ms(Endg,q,1(Vi)) =
End@l[GL](Vlz) = EndQZ[GL](W(A)) and

(526) EndQl[GL](Vl(A)) = HD)\ = HM272(E)\).
All All
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On the other hand

(5.27) [I1 8 = [ Ende,o.)(Va) € Endgye, (Vh).
A Al

Hence, comparing the dimensions over Q; in (5.26) and (5.27) we get

(528) HEndEA[GL](VA) = End@z[GL](W)'
Al

By (5.28) we clearly have

(5.29) HEndQl [GL](V‘I’)\) C Endg, [GL]<W) = HE/\’
A A1

and

(5.30) E’I’LdE/\[GL](V,\) C EndQL[GL](Vq)A)'

It follows by (5.25), (5.29) and by (5.30) that for any finite field extension

F C L contained in F' we have

(5.31) Endy,ic,)(Va,) = Endg,|g,)(Va) = Ex.
The isomorphisms (5.31) imply that

(5.32) Endg, (Ve,) = Endy (Va, )

for any open subgroup U of G . The isomorphism (5.24) follows by (5.32) and
Lemma 4.12 (iii). O

LEMMA 5.33. g3° = span(E)).

Proof. In the proof we adapt to the current situation the argument from [BGK],
Lemma 3.2. The only thing to check is the minuscule conjecture for the A-adic
representations pr : Ggp — GL(V)). By the work of Pink cf. [P], Corollary
5.11, we know that gi* ® Q; may only have simple factors of types A, B,C or
D. By the semisimplicity of gj* and Lemma 5.20 the simple factors of g3’ Q

are of the same types. By Proposition 2.12 and Lemmas 2.21, 2.22, 2.23 we get

(5.34) 93, = Rp, /0%

Since - _ _
gf{i Qo Q = Q§S®Ex Ex®q,Q = @ g§S®E*Q
Ex—Q,

we see that the simple factors of g§f®EA@ are of types A, B,C or D. The rest
of the argument is the same as in the proof of Lemma 3.2 of [BGK]. O
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LEMMA 5.35. There are natural isomorphisms of (Q;-algebras.

(536) Endg% (V@A) =~ E’I’Ldgis (V)\) = E)\

Proof. Since gy is reductive and it acts irreducibly on the module V) (cf.
Lemma 5.33) by [H2], Prop. p. 102 we have:

(5.37) gx = Z(gx) ® oy’
and Z(gx) =0 or Z(gx) = E\. This gives
(5.38) Endgs: (Vi) = Endg, (V).

The WEeil restriction functor commutes with the operation of taking the center
of a Lie algebra, hence we get Z(ggs,) = 0 or Ey and by (5.34):

g, = Z(82,) © 05, -
Since go, = Rp, /g,0x, it is clear that

Ends:

ss
gqp)\

(V‘Px) = EndgxbA (V‘i’x)'

The lemma follows now from Lemma 5.22. O

PROPOSITION 5.39. There is an equality of Lie algebras:

(5.40) o° =P o3,

Al

Proof. Put Vi=Vi®y Q, Va=Woe Q, §° =g°2qyQ, 7y =
03, ®qg, Q- By (5.34) we get

(5.41) §g, = o) @p, Er©q Q = H 03’ ®p, Q = H sp (V)

Erx—0Q, Ex—Q,
By Corollary 1.2.2 of [C1] we have g; = Q; @ g¢;°, hence
Endgss (Vi(A)) = Endg, (Vi(A)).

By Lemmas 5.20 and 5.35

(542)  J[Ex = HEndgg} (Va,) = ] Endgss(Va,) C Endges (V).
Al Al Al
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But by assumption on [ and (5.42)

[I1Dx = [[Ma2(Ey) = Mas(J] Ex) € Maa(Endgs: (Vi) =
Al Al All

(5.43) = Endg(Vi(A)) = Endg,(Vi(A)) = []Da.
All
Comparing dimensions in (5.43) we get

(5.44) Endgss (Vi) = [] Ex.
Al

Hence we get

(5.45) Endg;: (Vi) = Endge (M)2qQ = [[Fr2e@ = [[ [ @

i PV N

(5.46) End@l[(}p] (V)\) = Endg, gy (V) ®g, @l = E\Qg, @l = @l'

(5.47) V) = @ Va®q Q @ @ V.

All All By —Q,

By (5.21) the map of Lie algebras g;* — g%, is surjective. Isomorphisms (5.45),
(5.46) and (5.47) show that the simple g;® modules g5° ®x, Q;, for all Al and

all Ey — @Q, are pairwise nonisomorphic submodules of §;*. Hence by [H2],
Theorem on page 23

(5.48) D D enl g

Al Ex—0Q,

Tensoring (5.17) with Q; and comparing with (5.48) we get

(5.49) P P oven @ =8>
Al Bx—Q
Hence for dimensional reasons (5.17), (5.41) and (5.49) imply (5.40). O

COROLLARY 5.50. The representations pg,, for M|l are pairwise nonisomor-
phic. The representations of the Lie algebra g;* on Vg, are pairwise noniso-
morphic over Q.

Proof. Tt follows by Lemmas 5.20 and 5.22 and equalities (5.8), (5.36),
(5.44). O

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 35-75



60 G. Banaszak, W. GAJDA, P. KRASON

COROLLARY 5.51. There is an equality of ranks of group schemes over Q;:

(5.52) rank (G9) = rank H Rg, /q,(Sp2n/Ex).
Al

Proof. The Corollary follows by Lemma 5.33, equality (5.40), the isomorphism
(5.34) and Lemma 2.21. [

Taking into account (4.10), (4.11) and Remark 5.13 we get:

(5.53) GO < [ Re/r(GSpayin) = ] Risye(GSpan)
A All
(5.54) 6" < T]Reya(GSpvy) = T] Reyjo(GSpan).
Al Al

6. COMPUTATION OF THE IMAGES OF THE (GALOIS REPRESENTATIONS pP1 AND
Pr-
In this section we explicitly compute the images of the l-adic representations

induced by the action of the absolute Galois group on the Tate module of a
large class of abelian varieties of types I and IT described in the definition below.

DEFINITION OF CLASS A. We say that an abelian variety A/F, defined over a
number field F) is of class A, if the following conditions hold:
(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = Endp(A) = Endp(A) and the endomorphism algebra D = R®QzQ,
is of type I or I1 in the Albert list of the division algebras with involution
cf. [Mu], p. 201
(iii) the field F is such that for every | the Zariski closure Gy* of p/(G) in
GLsy/Q is a connected algebraic group
(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d*> = [D : E.

Let L be a local field with the ring of integers Oy, with maximal ideal m;, = m
and the residue field k£ = O /m.

LEMMA 6.1. Let

(6.2) G —— Gy
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be a closed immersion of two smooth, reductive group schemes over Op. Let
(6.3) G —— Gy
be the base change to L of the arrow (6.2) and let
(6.4) Gi(m) &—— Go(m)

be the base change to k of the arrow (6.2). If rankGy = rank Gy then
rank G1(m) = rank Gg(m).

Proof. By [SGA3, Th. 2.5 p. 12] applied to the special point of the scheme
spec O, there exists an étale neighborhood S’ — spec O, of the geometric point
over the special point such that the group schemes Gi g+ = G1 Xgpeco, S’ and
Ga.sr = G2 Xspeco, S’ have maximal tori 77 ¢+ and 77 g respectively. By
[SGA3] XXII, Th. 6.2.8 p. 260 we observe (we do not need it here but in the
Theorem 6.6 below) that (G; s/)' N 7; s is a maximal torus of (G; g/)'. By the
definition of a maximal torus and by [SGA3] XIX, Th. 2.5, p. 12 applied to the
special point of spec O, we obtain that the special and generic fibers of each
scheme G, s have the same rank. But clearly the generic (resp. special) fibers
of schemes G; v and G; have the same rank for ¢ = 1,2. Hence going around
the diagram

GG — G

(6.5) G &—— Go

G1 (m) (G G2 (m)

and taking into account the assumptions that the ranks of the upper corners
are the same we get rank Gi(m) = rank Go(m). O

THEOREM 6.6. Let A/F be an abelian variety of class A. Then for all | > 0,
we have equalitiy of ranks of group schemes over F;:

(6.7) rank (G(1)™9)" = rank H Ry, v, (Sp2n)
All

Proof. By [LP1] Prop.1.3 and by [Wi], Th.1 and 2.1, for [ > 0 the group
scheme Qlalg over specZ; is smooth and reductive. For such an [ the struc-
ture morphism (gflg ) — specZ; is the base change of the smooth morphism
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G — Dy, (Dg,(GM"9)) via the unit section of Dy, (Dz,(G")), see [SGA3]
XXIIL, Th. 6.2.1, p. 256 where Ds(G) = Homg_,,.(G, Gy s) for a scheme S.
Hence, the group scheme (G{"?)’ is also smooth over Z;. By [SGA3] loc. cit,
the group scheme (gl‘”g ) is semisimple. We finish the proof by taking L = Q,
G = (Qlalg)', G2 = [I\; Ro,/z(Sp2n) in Lemma 6.1 and applying Corollary
5.51. O

REMARK 6.8. If G is a group scheme over Sy then the derived subgroup G’ is
defined as the kernel of the natural map

G — Ds,(Ds,(G))

[V], [SGA3]. Since this map is consistent with the base change, we see that for
any scheme S over Sy we get

G xs5,59 = (Gxg,9).

THEOREM 6.9. Let A/F be an abelian variety of class A. Then for all [ > 0,
we have equalities of group schemes:

(6.10) (G = [ Re, /o (Span)
Al

(6.11) (GW*19) = T] Ruy /e (Sp2n)
All

Proof. The proof is similar to the proof of Lemma 3.4 of [BGK]. We prove the
equality (6.11). The proof of the equality (6.10) is analogous. Let

p, : G)™ — GLy,

denote the representation induced by the inclusion G(1)*9 C GLa,. By the re-
sult of Faltings cf. [Fa], the representation , is semisimple and the commutant

of &(G(l)“lg) in the matrix ring Mag 24 is Endz(A) ®z F;. The representation
P, factors through the imbedding (5.53). Projecting onto the A component in

(5.53) we obtain the representation

(6.12) Py, G()™ — Ry, 5, (GSpapy) = Ry, (GSpan).
This map corresponds to the map

(6.13) G(1)¥ @, kyx — GSpap.
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By Remark 6.8 restriction of the the map (6.13) to the derived subgroups gives
the following map:

(6.14) (G()™9) @5, kx — Spon
which in turn gives the representation

Py, - (G)™) — Ry, v, (Span).-

A
Now by (5.3) we have the natural isomorphisms:

II B = kvonFi 2 Endy, g, 56,0 (AN @5, Fr) =

kx—T,;

= Bndy, g, 5 (AN @k, kx @5, Fi) =

(6.15) = [ Ends,g, (AN @k, Fo).

k,\‘ﬁﬁl

Note that Z(Spap) = pe and this isomorphism holds over any field of definition.
The isomorphisms (6.15) imply by the Schur’s Lemma:

Py (ZUGW)™))) C Ri i, (12)-

Hence

Z(GW™)) € I Riea e (12) = Z(] | Bin 5, (Sp2n)).-
All All

Observe that both groups (G(1)*9)" and [T Ry /r, (Sp2n) are reductive. Now
the proof is finished in the same way as the proof of Lemma 3.4 in [BGK]. O

THEOREM 6.16. Let A/F be an abelian variety of class A. Then for I > 0, we
have:

(6.17) p1(Gr) = [ Span(kr) = Spen(Og/10g),
Al

(6.18) pi(G) = ] Sp2m(Ox) = Span(Op @2 1),
Al

where py is the representation p; mod 1 and Giﬁ,, is the closure of the commutator
subgroup G» C G computed with respect to the natural profinite topology
of GF

Proof. To prove the equality (6.17), note that the group scheme
H)\‘IRICA/]Fl(szh) is simply connected, since its base change to [F; is
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Hx\\lnkx—ﬁz Spon/F;, which is clearly simply connected. From now on
the argument is the same as in the proof of Theorem 3.5 in [BGK].
Namely: it follows by (6.11) that (G(1)*9)" is simply connected. So
(G()™9)'(F;) = (G(1)™9)'(F;),. Hence, by a theorem of Serre (cf. [Wi],
Th.4) we get

(GO (®) < @i(Gr) = pl(GF)-
On the other hand, by definition of the group G(1)%%9, it is clear that

pi(Gr) = (pi(Gp)) C (G (F).

As for the second equality in (6.18) we have

(6.19) p(Gr) = (m(Gr)) C [ Span(On),
All

where (p;(GF))’ denotes the closure of (p;(Gr))’ in the natural (A-adic in each
factor) topology of the group [| Al Spap(O,). Using equality (6.17) and Lemma

6.20 stated below, applied to X = (p;(GF))’, we finish the proof. O

LEMMA 6.20. Let X be a closed subgroup in [, Sp2n(Ox) such that its image
via the reduction map

[15p21(02) = ] Span(ky)

All Al

is all of [T, Span(kx). Then X =[]y, Span(Ox).

Proof. The proof is similar to the proof of Lemma 3 in [Se] chapter IV, 3.4. O

7. APPLICATIONS TO CLASSICAL CONJECTURES.

Choose an imbedding of F into the field of complex numbers C. Let V =
H'(A(C),Q) be the singular cohomology group with rational coefficients. Con-
sider the Hodge decomposition

VeeC=H" e H",
where HPY = HP(A; 9?4/@) and HP-9 = H?P. Observe that H?? are invariant
subspaces with respect to D = Endz(A) ® Q action on V ®g C. Hence, in
particular HP'? are E-vector spaces. Let

P VXV -Q
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be the Q-bilinear, nondegenerate, alternating form coming from the Riemann
form of A. Since A has a principal polarization by assumption, the form v is
given by the standard matrix

_ 0 I
/= (_Ig 0 ) .
Define the cocharacter

Moo Gm((c) - GL(V ®Q (C) = GLQQ(C)

such that, for any z € C*, the automorphism i (z) is the multiplication by z
on H'® and the identity on H?!.

DEFINITION 7.1. The Mumford-Tate group of the abelian variety A/F is
the smallest algebraic subgroup MT(A) C GLsg, defined over Q, such that
MT(A)(C) contains the image of ji. The Hodge group H(A) is by definition
the connected component of the identity in MT(A) N SLy = MT(A) N SLy,.

We refer the reader to [D] for an excellent exposition on the Mumford-Tate
group. In particular, MT(A) is a reductive group loc. cit. Since, by definition

oo (C™) C GSp(v, 4)(C) = GSpay(C),

it follows that the group MT(A) is a reductive subgroup of the group of sym-
plectic similitudes GSp(v, ) = GSpz, and that

(7.2) H(A) C Sp,y) = Spag-

REMARK 7.3. Let V be a finite dimensional vector space over a field K such
that it is also an R-module for a K-algebra R. Let G be a K-group subscheme
of GLy. Then by the symbol Cr(G) we will denote the commutant of R in
G. The symbol C%(G) will denote the connected component of identity in
Cr(G). Let 8 : V xV — K be a bilinear form and let G(y,3 C GLy be
the subscheme of G Ly of all isometries with respect to the bilinear form 3. It
is easy to check that Cr(G(v,3)) ®x L = Crexr(GvexL,seoxr)) Note that
MT(A) C Cp(GSpv,)) by definitions.

DEFINITION 7.4. The algebraic group L(A) = Cp(Spv,y)) is called the Lef-

schetz group of a principally polarized abelian variety A. Note that the group
L(A) does not depend on the form v cf. [R2].

By [D], Sublemma 4.7, there is a unique E-bilinear, nondegenerate, alternating
pairing

¢ :VxV > E
such that Trg/q(¢) = 1. Taking into account that the actions of H(A) and
L(A) on V commute with the E-structure, we get
(7.5) H(A) C L(A) C RE/QSP(V, ¢ C Sp(v’w).
But Rg/q(Sp(v,¢)) = Ce(SP(v,s)) hence Cp(RE/q(Sp(v,¢))) = Cp(Spv,4))
SO

(7.6) H(A) C L(A) = Cp(Rpo(Spv,4))) C Cp(Re/0(Spv,¢)))-
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DEFINITION 7.7. If L/Q is a field extension of Q we put

MT(A)g = MT(A) ®g L, H(A) = H(A)®g L, L(A)L = L(A)®g L.

CONJECTURE 7.8 (MUMFORD-TATE CF. [SE5], C.3.1). If A/F is an abelian
variety over a number field F', then for any prime number [

(79) (Ggllg)o = MT(A)QZ’

where (G?lg )° denotes the connected component of the identity.
THEOREM 7.10 (DELIGNE [D], I, PrROP. 6.2). If A/F is an abelian variety
over a number field F' and | is a prime number, then

(7.11) (G9)° € MT(A)q,-

THEOREM 7.12. The Mumford-Tate conjecture holds true for abelian varieties
of class A defined in the beginning of Section 6.

Proof. By [LP1], Theorem 4.3, it is enough to verify (7.9) for a single prime
[ only. We use the equality (6.10) for a big enough prime I. The proof goes
similarly to the proof of Theorem 3.6 in [BGK]. In the proof we will make some
additional computations, which provide an extra information on the Hodge
group H(A). The Hodge group H(A) is semisimple (cf. [G], Prop. B.63) and
the center of MT(A) is G, (cf. [G], Cor. B.59). Since MT(A) = G,,H(A),
we get

(7.13) (MT(A)g,)" = (H(A)g,)" = H(A)g,-

By (7.11), (7.13) and (6.10)

(7.14) 11 Be. o (Spevs0) = [ ] Rewse, (Span) € H(A)g, .
Al All

On the other hand by (7.6)
(7.15) H(A)q, C L(A)g, C Cp(Re/(Spv,4)) ® Q.

Since Rg/q(Sp(v,¢)) = C(SP(v,)), by Remark 7.3, formulae (7.14) and (7.15)
we get:

(7.16) H R, 0, (SP(VMpg)) C H Cp, (REA/QL (Sp(VA(A), ng)))-
A A

For A of type I, Dy = E) and V)(A) = V) hence, trivially, the inclusion
(7.16) is an equality. Assume that A is of type II. Since V) (A) = V) @ V}, and
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Dy = M3 5(E)), evaluating both sides of the inclusion (7.16) on the Q;-points,
we get equality with both sides equal to

II II Spovaoniv,)(@)
All Eyr—Q

which is an irreducible algebraic variety over Q,;. Then we use Prop. II, 2.6 and
Prop. II, 4.10 of [H] in order to conclude that the groups H(A)@l, L(A)@l and

Cp(Re/(Spv, ) ®q Q, are connected. Hence all the groups H(A), L(A)
and Cp(Rg/q(Sp(v,))) are connected, and we have
(7.17) H RE)\/QZ (Sp(V/\@A\V/\)) = H RE/\/QZ (Sp2n) =
All Al

= H(A)g = L(A)g, = Cp(REe/q(Sp(v,¢))) @0 Q-
By (6.10), (7.17) and [Bo], Corollary 1. p. 702 we get
(7.18) MT(A)g, = G H(A)g, = Gn(GH9) c G,
The Theorem follows by (7.11) and (7.18). O
COROLLARY 7.19. If A is an abelian variety of class A, then
(7.20) H(A)g = L(A)g = Cp(RE/o(Spv, ¢))) = Co(Spv, v))-

Proof. Taking Lie algebras of groups in (7.17) we deduce by a simple dimension
argument that

(721) Lie H(A) = Lie L(A) = Lie CD (RE/Q(S]D(V7 ¢)))
In the proof of Theorem 7.12 we have showed that the groups H(A), L(A)

and Cp(Rg/q(Sp(v,4))) are connected. Hence, by Theorem p. 87 of [H1] we
conclude that

(7.22) H(A) = L(A) = Cp(Rg/o(Spv,¢)).- O
COROLLARY 7.23. If A is an abelian variety of class A, then for all I:
(7.24) H(A)g, = H Cp, (R, /0 (Sp(VA(A): ¢®@Ex)))'

All

In particular, for | > 0 we get

(7.25) H(A)g, = [[ Rev e, (Sps, 6004))-
1

Proof. Equality (7.24) follows immediately from Corollary 7.19. Equality (7.25)
follows then from (7.17). O

We have:
H'(A(C);R) @ V®gR = EB V®Eg..R.
o:E—R
Put V,(A) =V ®g - R and let ¢, be the form

¢ Qg0 R : Vo(A)@rVs(A) — R.
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LEMMA 7.26. If A is simple, principally polarized abelian variety of type II,
then for each o : E — R there is an R-vector space W,(A) of dimension

g _ 4dimA .
¢ = D:G] such that:

(i) Vo(A) =Wo(A) D W, (A),
(ii) the restriction of ¢ ®@gR to W, (A) gives a nondegenerate, alternating
pairing

Yo Wo(A) x W,(A) = R.

Proof. Using the assumption that D ®g R = M, o(R) the proof is similar to
the proof of Theorem 5.4. O

We put
Vo(A) if Aisof type I
Woo,a =
Wy(A), if Aisof type IT
and
e if A is of type I
¢a =
bolw, (a), if Ais of type IL
Observe that
279 = 2[%:7:’@‘]4 if Ais of type I
dimR WOO,U =

g = 4[21}:'?@’]4 , if A is of type IL

COROLLARY 7.27. If A is an abelian variety of class A, then

(7.28) HAr =LAz = [] SPwe.,v0)
o:E—R
(7.29) HA)c=L(A)c = [] Spw...scc, vo0:0)-
ocE—R

Proof. 1t follows from Lemma 7.26 and Corollary 7.19. O

We recall the conjectures of Tate and Hodge in the case of abelian varieties.
See [G], [K] and [T1] for more details.

CONJECTURE 7.30 (HODGE). If A/F is a simple abelian variety over a number
field F, then for every 0 < p < g the natural cycle map induces an isomorphism

(7.31) AP(A) = H*(A(C); Q) N HP?,
where AP(A) is the Q-vector space of codimension p algebraic cycles on A

modulo the homological equivalence.
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CONJECTURE 7.32 (TATE). If A/F is a simple abelian variety over a number
field F' and l is a prime number, then for every 0 < p < g the cycle map induces
an isomorphism:

(7.33) AP(A) @ Qi = HZ(4; Qu(p))°r

where A = A®p F.

THEOREM 7.34. The Hodge conjecture holds true for abelian varieties of class
A.

Proof. By [Mu], Theorem 3.1 the Hodge conjecture follows from the equality
(7.20) of Corollary 7.19. O

THEOREM 7.35. The Tate conjecture holds true for abelian varieties of class
A.

Proof. 1t is known (see Proposition 8.7 of [C1]) that Mumford-Tate conjec-
ture implies the equivalence of Tate and Hodge conjectures. Hence the Tate
conjecture follows by Theorems 7.12 and 7.34. [

CONJECTURE 7.36 (LANG). Let A be an abelian variety over a number field
F. Then for I > 0 the group p;(Gr) contains the group of all homotheties in
G Ly a)(Zy).

THEOREM 7.37 (WINTENBERGER [WI1], COR. 1, P. 5). Let A be an abelian
variety over a number field F'. The Lang conjecture holds for such abelian
varieties A for which the Mumford-Tate conjecture holds or if dim A < 5.

THEOREM 7.38. The Lang’s conjecture holds true for abelian varieties of class

A.
Proof. 1t follows by Theorem 7.12 and Theorem 7.37. O

We are going to use Theorem 7.12 and Corollary 7.19 to prove an analogue of
the open image Theorem of Serre cf. [Se8]. We start with the following remark
which is a plain generalization of remark 7.3.

REMARK 7.39. Let By C Bs be two commutative rings with identity. Let A be
a free, finitely generated Bi-module such that it is also an R-module for a B;-
algebra R. Let G be a By-group subscheme of GL . Then Cr(G) will denote the
commutant of R in G. The symbol C%,(G) will denote the connected component
of identity in Cr(G). Let 3 : A x A — By be a bilinear form and let G, g) C
GL, be the subscheme of GL, of the isometries with respect to the form g.
Then we check that CR(G(A’Q)) ®pB, B2 = CR®3132 (G(A®Bl Bs, B® 3, Bg))~
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Consider the bilinear form:
(7.40) Y AXA—7Z

associated with the variety A. Abusing notation sligthly, we will denote by 1
the Riemann form ¢ ®z Q, i.e., we put:

Y VxV — Q.
Consider the group scheme Cr(Sp(a,y)) over SpecZ. Since Cr(Sp(a,y)) @z
Q = Cp(Spv,y)) (see Remark 7.39), there is an open imbedding in the [-adic
topology:
(7.41) Cr(SPA, ¢))(Zi) C Cp(Sp(v, 4))(Q1).

Note that the form ; of (4.1) is obtained by tensoring (7.40) with Z;.

THEOREM 7.42. If A is an abelian variety of class A, then for every prime
number I, p;(G ) is open in the group

Cr(GSpa, ) (Z1) = Cre,z, (GSP(Ty(A), v1) ) (Z1)-

In addition, for [ > 0 we have:

(7.43) pi(G) = Cr(Spea, ) (Zs).

Proof. For any ring with identity R the group GSpag(R) is generated by sub-

groups Spag(R) and
al, 0 ) x
‘ ;a€ R™}.
(v )

One checks easily that the group Z;Spsy(Z;) has index 2 (index 4 resp.)
in GSpay(Zy), for I > 2 (for I = 2 resp.). Here the symbol Z stands
for the subgroup of homotheties in GLog(Z;). Since by assumption A has
a principal polarization, Spag(Z;) = Spa,y))(Zi). By [Bo], Cor. 1. on
p. 702, there is an open subgroup U C Z; such that U C pi(Gp).
Hence U Cr(Sp,v))(Zi1) = Cr(USp, ) (Zy)) is an open subgroup of
Cr(GSp, ))(Zy) = Cr(GSpa,v)(Z1)). By [Bo], Th. 1, p. 701, the group
pi(GF) is open in G?lg((@l). By Theorem 7.12, Corollary 7.19 and Remark 7.3

U Cr(Sp, ) (Z1) € Q) Cp(Spv, ) (@) =

(7.44) = Gm(Q)H(A)(Q) C MT(A)(Q) = G (Q).
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Hence, UCR(Sp(A,¢))(Zl) N pi(Gr) is open in UC'R(S[)(A7 w))(Zl) and we get
that p;(Gr) is open in Cr(GSp(a, y))(Z:). Using Remark 7.39 and the univer-
sality of the fiber product, we observe that

(7.45) Cr(Spa, v))(Z1) = Creyz, (Sp(zy (), v))(Z1)-

For [ > 0 we get

Creuz (SP(1y(A), 1) = Or@.2: (Copeuz (SP(T(4),v1)) =

(7‘46) = CR@ZZZ(H ROA/ZZ(SP(TA(A)vwk)))'
All

Evaluating the group schemes in (7.46) on SpecZ; we get

Creuz (Sperya), v0)(Z1) = Creuz ([ Rosjz (Spaay,vn)(Z1) =
All

(7.47) = HCRXSP(TX(A)VQ/,A)(O)\ HSp(TA wA 0)\ Hspgh O)\)

Al Al Al

Hence by (7.45), (7.46), (7.47), (6.18) and Theorem 7.38, we conclude that for
[ > 0 the equality (7.43) holds. O

THEOREM 7.48. If A is an abelian variety of class A, then for every prime
number [, the group p;(Gr) is open in the group gl‘”-‘?(Zl) in the l-adic topology.

Proof. By Theorem 7.42 the group p;(G ) is open in Cre,z, (GSp(1,(a), ) (Z1)
in the l-adic topology, so p;(Gr) has a finite index in the group
Creuz (GSP(1,(A), 1)) (Z1). By the definition of G, we have:

p1(Gr) C GM(Z) C Crenz, (GSper(ay, ) (Za).-

Hence, p;(Gr) has a finite index in G '9(7,), and the claim follows since
Cre,2,(GSP(1,(A), 1)) (Z1) is a profinite group. [
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