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Abstract

The main focus in this memoir is on Laplacians on both weighted graphs and weighted
metric graphs. Let us emphasize that we consider infinite locally finite graphs and do
not make any further geometric assumptions. Whereas the existing literature usu-
ally treats these two types of Laplacian operators separately, we approach them in
a uniform manner in the present work and put particular emphasis on the relation-
ship between them. One of our main conceptual messages is that these two settings
should be regarded as complementary (rather than opposite) and exactly their inter-
play leads to important further insight on both sides. Our central goal is twofold. First
of all, we explore the relationships between these two objects by comparing their
basic spectral (self-adjointness, spectral gap, etc.), parabolic (Markovian uniqueness,
recurrence, stochastic completeness, etc.), and metric (quasi-isometries, intrinsic met-
rics, etc.) properties. In turn, we exploit these connections either to prove new results
for Laplacians on metric graphs or to provide new proofs and perspective on the recent
progress in weighted graph Laplacians. We also demonstrate our findings by consid-
ering several important classes of graphs (Cayley graphs, tessellations, and antitrees).
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Chapter 1

Introduction

1.1 Introduction

The central object of this study is a Laplace-type operator either on a weighted graph
or on a metric graph. Both objects have a venerable history and enjoy deep connec-
tions to several diverse branches of mathematics and mathematical physics, placing
them at the intersection of many subjects in mathematics and engineering. It is impos-
sible to give even a very brief account on these matters. The key features of Laplacians
on metric graphs, which are also widely known as quantum graphs, include their
use as simplified models of complicated quantum systems and the appearance of
metric graphs in tropical and algebraic geometry, where they can be seen as non-
Archimedean analogs of Riemann surfaces (we only refer to a very brief selection of
recent monographs and collected works [11, 24, 25, 62, 67, 69, 182]). The subject of
discrete Laplacians on graphs is even wider and has been intensively studied from
several perspectives (a partial overview of the immense literature can be found in
[12, 43, 44, 91, 136, 212]).

Whereas the existing literature usually treats these two Laplacian-type opera-
tors separately, we approach them in a uniform manner in the present work and put
particular emphasis on the relationship between them. One of our main conceptual
messages is that these two settings should be regarded as complementary (rather than
opposite) and exactly their interplay leads to important further insight on both sides.
In fact, the idea of using metric graphs in context with studying random walks on
graphs can be traced back at least to the 1980s. Namely, there is a close relation-
ship between random walks on graphs and Brownian motion on metric graphs and,
for example, N. Th. Varopoulos used this in [205] to prove long-range estimates for
discrete time random walks by first establishing similar estimates for heat kernels on
specifically designed metric graphs (see also the recent works [13,15,20,72,154] for
further manifestations of this point of view). In more structural terms, difficulties in
analyzing random walks on graphs often stem from the fact that the Dirichlet form
associated with a weighted discrete Laplacian is non-local (e.g., no Leibniz rule),
whereas the corresponding quadratic form for metric graphs is, in general, a strongly
local Dirichlet form and hence many familiar tools from analysis are available. On
the other hand, having in mind a metric graph, it is rather natural to think of weighted
discrete Laplacians as discretizations and hence simplified models of quantum graphs
(replacing differential equations by difference equations, which is similar to triangu-
lations of surfaces, see, e.g., [44, Section 3.2]).
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Our main focus is on infinite graphs (with countably many vertices and edges),
however, we always restrict to locally finite graphs (for definitions we refer to the next
chapter). The study of Laplacians on weighted graphs, i.e., difference expressions of
the form

.Lf/.v/ D
1

m.v/

X
u2V

b.v; u/.f.v/ � f.u//; v 2 V ; (1.1)

has seen a tremendous progress during the last decade (see [136]). Whereas this set-
ting is rather general, most works on metric graph Laplacians impose strong restric-
tions on edge lengths (e.g., a strictly positive lower bound on edge lengths [25,182]),
which excludes a number of interesting models and phenomena. On a conceptual
level, removing these assumptions can be considered as similar to the case when the
difference expression (1.1) gives rise to an unbounded operator (i.e., the weighted
degree function (2.9) is unbounded on the vertex set). In fact, the arising difficul-
ties in both cases are of the same nature and, since we are considering unbounded
operators, one of the crucial issues is the correct choice of the domain of definition.
Namely, the first mathematical problem arising in any quantum mechanical model is
self-adjointness (see, e.g., [185, Chapter VIII.11]), that is, usually a formal symmet-
ric expression for the Hamiltonian has some natural domain of definition in a given
Hilbert space (e.g., pre-minimally or maximally defined Laplacians) and then one has
to verify that it gives rise to an (essentially) self-adjoint operator. Otherwise,1 there
are infinitely many self-adjoint extensions (or restrictions in the maximally defined
case) and one has to determine the right one which is the observable.

Let us put all that in a slightly different context. For a given metric measure space
.X; �/, denote the formal expression in question by �. Moreover, we shall assume
that � is formally symmetric and non-positive, that is, the corresponding quadratic
form QŒf � D h��f; f iL2.X I�/ is non-negative (one may think of X as either a man-
ifold or a graph/metric graph and then � is the corresponding Laplacian). Suppose
the evolution of a system is governed by one of the three most common equations –
heat, wave or Schrödinger equation – and one is lead to investigate the correspond-
ing Cauchy problem. For instance, in quantum mechanics, one is interested in the
solvability in L2 of the Cauchy problem for the Schrödinger equation

i@tu D ��u; ujtD0 D u0 2 L2.X I�/: (1.2)

It is exactly the self-adjointness of � defined on the maximal domain of definition
in L2.X I�/ which ensures the existence and uniqueness of solutions to (1.2). If the

1Of course, one needs to check whether the corresponding symmetric operator has equal
deficiency indices, which is always the case for Laplacians or, more generally, for symmetric
operators which are bounded from below or from above.
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maximally defined Laplacian is not a self-adjoint operator in L2.X I �/, then one
needs to impose additional boundary conditions on X . Similarly, the self-adjointness
of the maximally defined � ensures the solvability of the Cauchy problem in L2 for
both the heat and the wave equations. However, under the above assumptions on �,
the solvability of those two equations is in fact equivalent to the self-adjointness (see,
e.g., [23, Chapter 2.6.1] and [192, Section 1.1]).

When considering the Cauchy problem for the heat equation

@tu D �u; ujtD0 D u0 2 L2.X I�/;

and having in mind, for instance, either a Brownian motion on a manifold or a ran-
dom walk on a graph, one can be a bit more specific: the corresponding semigroup
.e�t /t>0 should be positivity preserving and L1 contractive, that is, the semigroup
possesses properties reflecting heat diffusion. Thus, one is interested in very specific
self-adjoint extensions – extensions enjoying the Markov property. According to the
Beurling–Deny criteria (see, e.g., [51]), the latter is equivalent to the fact that the
corresponding quadratic form is a Dirichlet form. Clearly, the self-adjoint unique-
ness implies Markovian uniqueness (i.e., the uniqueness of extensions enjoying the
Markov property), however, the converse is not true in general. Furthermore, if there
are several different Markovian extensions, one is led to the analogous question of
their description via additional boundary conditions on X .

On the other hand, both problems (self-adjoint and Markovian uniqueness) can
be restated in a more transparent way via solutions to the Helmholtz equation

�u D �u; � 2 R: (1.3)

Since � is assumed non-positive, the maximally defined operator is self-adjoint if
and only if for some (and hence for all) � > 0 equation (1.3) admits a unique solution
u 2 L2.X I�/ (which is clearly identically zero in this case). Moreover, Markovian
uniqueness can be expressed in these terms as well: the Helmholtz equation (1.3) for
� > 0 admits a unique solution u 2 L2.X I�/ having finite energy, that is, u has finite
Dirichlet integral QŒu� < 1. Recalling that in the context of both manifolds and
graphs functions satisfying (1.3) are called �-harmonic, the self-adjoint and Markov-
ian uniqueness can be seen as some kind of a Liouville-type property of X (e.g., L2

Liouville-type property [124, 153, 217])2 and this indicates their close connections
with the geometry of the underlying metric space (e.g., Gaffney-type theorems con-
necting completeness with Markovian and self-adjoint uniqueness [79]).

As it was mentioned already, one of the main objects under consideration in this
text is a Laplacian on an infinite metric graph. A metric graph G is a graph Gd D.V ;E/

2Under the positivity of the spectral gap one can in fact replace � > 0 by � D 0 and hence
in this case one is led to harmonic functions on X .
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whose edges e 2 E are assigned some lengths jej and hence can be considered as
intervals (for the sake of a clear exposition, Gd is assumed simple throughout the
present chapter; strict definitions of all objects can be found in Chapter 2). Let also
�; �W G ! .0; 1/ be edgewise constant weights. The corresponding Laplacian3 �

acts edgewise in L2.G I�/ as a Sturm–Liouville operator

1

�.e/

d
dxe

�.e/
d

dxe

; e 2 E: (1.4)

In order to reflect the underlying combinatorial structure, we impose the Kirchhoff
conditions (see (2.14) for details)8̂̂<̂

:̂
f is continuous at v;X
e�v

�.e/@ef .v/ D 0;
(1.5)

at all vertices. The second condition means that the sum of the slopes over all edges
emanating from a given vertex is zero and can be interpreted as a zero total flow
condition in vertices.4 The corresponding energy form in L2.X I�/ is given by

QŒf � D h��f; f iL2.X I�/ D

Z
G

jrf .x/j2�.dx/:

Our second object of interest is the weighted graph Laplacian L given by (1.1)
and acting in `2.V Im/, where mWV ! .0;1/ is a positive weight on V . The function
bWV �V ! Œ0;1/ is symmetric, has vanishing diagonal and also satisfies certain nat-
ural restrictions (e.g., local summability, see Section 2.2). The corresponding energy
form in `2.V Im/ is given by

qŒf� D hLf; fi`2.V Im/ D
1

2

X
u;v2V

b.u; v/jf.v/ � f.u/j2: (1.6)

One of the immediate ways to relate Laplacians on weighted metric and discrete
graphs is by noticing a connection between their harmonic functions. Despite being
elementary, this observation lies at the core of many of our considerations and hence
we briefly sketch it here. By (1.4), every harmonic function f on a weighted metric

3Here and in the following chapters, � shall always denote the Laplacian on a weighted
metric graph.

4On the one hand, (1.5) is just a conservation of the flow generated by the vector field �f 0

upon considering rW f 7! f 0 as the exterior derivative and hence interpreting f 0 as a 1-form,
that is, as a vector field with orientation (see also Remark 2.19). From this perspective (1.5) is
also reminiscent of the Kirchhoff laws for electric networks. On the other hand, if one speaks
about the quantum mechanical probability flow, its conservation at a given vertex is equivalent
to the self-adjointness of the corresponding vertex conditions, and Kirchhoff conditions (1.5) is
a particular case of this large family of boundary conditions.
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graph G (i.e., f satisfies �f D 0), must be edgewise affine. The Kirchhoff conditions
(1.5) imply that f is continuous and, moreover, satisfiesX

e�v

�.e/@ef .v/ D
X
u�v

�.eu;v/

jeu;vj
.f .u/ � f .v// D 0

at each vertex v 2 V . This suggests to consider a discrete Laplacian (1.1) with edge
weights given by

b.u; v/ D

´
�.eu;v/

jeu;v j
; u � v;

0; u 6� v;
.u; v/ 2 V � V : (1.7)

Indeed, then for every �-harmonic function f on the weighted metric graph G , its
restriction to vertices f WD f jV is an L-harmonic function, that is, it satisfies Lf D 0.
Moreover, the converse is also true. Phrased in a more formal way, the map

{V WC.G / ! C.V/;

f 7! f jV ;
(1.8)

when restricted further to the space of continuous, edgewise affine functions on G

becomes bijective and establishes a bijective correspondence between �-harmonic
and L-harmonic functions (this immediately connects, for instance, the correspond-
ing Poisson and Martin boundaries). Taking into account what we have said above
regarding the self-adjointness problem, this also indicates a possible connection be-
tween the self-adjoint uniqueness for the corresponding Laplacians on G and Gd ,
however, one also has to take into account the measures � and m, that is, we need to
connect the corresponding Hilbert spaces L2.G I�/ and `2.V Im/. It turns out that the
desired connection (under the additional assumption that .G ; �; �/ has finite intrinsic
size, see Definition 3.16) is given by

mW v 7!

X
u�v

jeu;vj�.eu;v/; v 2 V : (1.9)

This correspondence has been widely known for a quite long time in at least two par-
ticular cases. First of all, in the case of so-called unweighted equilateral metric graphs
(i.e., � D � D 1 on G and jej D 1 for all edges e), (1.1) with the coefficients (1.7)
and (1.9) turns into the normalized (or physical) Laplacian

.Lnormf/.v/ D
1

deg.v/

X
u�v

f.v/ � f.u/; v 2 V :

Connections between their spectral properties have been established in [171,207] for
finite metric graphs and then extended in [35, 41, 66] to infinite metric graphs, and in
fact one can even prove some sort of local unitary equivalence [179]. These results
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allow to reduce the study of Laplacians on equilateral metric graphs to a widely stud-
ied object – the normalized Laplacian Lnorm, the generator of the simple random walk
on Gd (see [12, 44, 195, 212]). The second well-studied case is a slight generalization
of the above setting: again, jej D 1 for all edges e, however, � D � on G (these are
named cable systems in the work of Varopoulos [205]). The corresponding Laplacian
L with the coefficients (1.7) and (1.9) is the generator of a discrete time random walk
on Gd with the probability of jumping from v to u given by

p.u; v/ D
�.eu;v/P

w�v �.eu;w/
when u � v;

and 0 otherwise. There is a close connection between this random walk and the
Brownian motion on the cable system and exactly this link has been exploited several
times in the literature (see [20, 205] as well as the recent works [13, 15, 64, 72, 154]).

In fact, the idea to relate the properties of � and L by taking into account the rela-
tionship between their kernels has its roots in the fundamental works of M. G. Krein,
M. I. Vishik and M. Sh. Birman in the 1950s. Indeed, it turns out that L serves as
a “boundary operator” for � (for the precise meaning see Proposition 3.11) and
exactly this fact allows to connect basic spectral properties of these two operators.
However, in order to make all that precise one needs to use the machinery of bound-
ary triplets and the corresponding Weyl functions, a modern language of extension
theory of symmetric operators in Hilbert spaces, which can be seen as far-reaching
development of the Birman–Krein–Vishik theory (see [55,56,191]). First applications
of this approach to finite and infinite metric graphs can be traced back to the 2000s
(see, e.g., [35, 67, 182]). One of its advantages is the fact that the boundary triplets
approach allows to treat metric graphs avoiding the standard assumptions on the edge
lengths [68, 143].

In order to make the above more precise, one of our main observations is the fol-
lowing connection between self-adjoint restrictions of the maximal Kirchhoff Laplac-
ian H (the maximal operator associated with � in L2.G I�/) and self-adjoint restric-
tions of the maximal graph Laplacian h (the maximal operator associated with L

in `2.V Im/, where b and m are defined by (1.7) and (1.9)). The map

zh 7! zH; dom.zH/ WD ¹f 2 dom.H/ W {V .f / 2 dom.zh/º; (1.10)

where {V is the restriction map (1.8), establishes a bijective correspondence between
the sets of self-adjoint restrictions of H and of self-adjoint restrictions of h (Lem-
ma 4.7). Moreover, it remains bijective upon further restricting it to certain classes
of self-adjoint extensions (e.g., non-negative, Markovian) and connects their basic
spectral and parabolic properties (e.g., positive spectral gap, discreteness, recurrence,
stochastic completeness, and on-diagonal heat kernel bounds). It should be men-
tioned that some of these connections are only valid after a suitable subdivision of
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edges, which can intuitively be understood as choosing a fine enough discretization
of a weighted metric graph.

In our opinion, a tremendous part of the progress during the last decade in the
study of non-local Dirichlet forms (1.6) (notice that (1.10) enables us to use these
results to investigate metric graph Laplacians) is connected with the successful intro-
duction and systematic use of the notion of an intrinsic metric in the discrete set-
ting (see [74, 129]). As it was underlined in the work of K.-T. Sturm in the 1990s
[198–200], it is exactly this instrument which allows to transfer many important
results from the manifold setting to the abstract setting of strongly local Dirichlet
forms (which of course includes metric graphs). Taking all this into account, one may
look at the restriction map (1.8) from a different perspective. First of all, every path
metric % on G induces a path metric on V in an obvious way:

%V .u; v/ WD %.u; v/; u; v 2 V : (1.11)

The crucial observation is that %V is intrinsic (in the sense of [74, 129]) for .V ; mI b/

with b and m defined by (1.7) and (1.9) if % is intrinsic for .G ;�;�/ (the precise mean-
ing of all these notions can be found in Section 6.4). What is more important, it turns
out that under certain natural assumptions every path metric, which is intrinsic with
respect to .V ; mI b/, can be obtained in this way (see Theorem 6.36). Recall also that
every regular Dirichlet form (no killing term) in `2.V Im/, where V is at most count-
able and m is a measure of full support, arises as a closure of (1.6) restricted to Cc.V/

(see [132, Section 2]). These facts, in combination with the results for strongly local
Dirichlet forms as well as with the correspondence (1.10), indicate that many of the
important principles extend from the manifold setting to the setting of weighted graph
Laplacians. The latter is by no means surprising, however, in our opinion this point
of view provides another natural motivation for the striking analogies between results
as in, e.g., [18, 129, 136] and the setting of manifolds.

A detailed description of the content of this memoir as well as of our main results
can be found in the next section. Let us emphasize that the main thrust of our inves-
tigations is conceptual in nature and for this reason we would like to conclude this
lengthy introduction with one more comment. Let us look at the map (1.8) and (1.11)
from the perspective of quasi-isometries (quite often going by the name of rough
isometries) [37, 175, 187]. It is straightforward to check that the metric spaces .G ; %/

and .V ; %V / are quasi-isometric (again, under the finite intrinsic size assumption,
which guarantees the net property) and this fact connects their large scale properties.
The notion of a quasi-isometry has its roots in the Švarc–Milnor lemma [54,175,187],
one of the most fundamental observations in geometric group theory. It is a stan-
dard practice to investigate a finitely generated group by turning its Cayley graph
into a length space, which is nothing but an equilateral metric graph (see, e.g., [187,
Remark 1.16]). Our results in Chapter 6 show that with any locally finite weighted
graph b over .V ; m/ equipped with an intrinsic path metric % one can associate a
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weighted metric graph .G ; �; �/, a cable system, whose intrinsic path metric %� is
such that % D %�jV and the metric spaces .V ; %/ and .G ; %�/ are quasi-isometric. One
immediate advantage is the fact that .G ; %�/ is a length space.5 Moreover, exactly this
correspondence provides, in our opinion, a transparent perspective on many results
for graph Laplacians obtained during the last decade. Let us stress that, although
quasi-isometric spaces are known to share many important properties (e.g., geomet-
ric properties such as volume growth and isoperimetric inequalities; Liouville-type
theorems for harmonic functions, etc.), most of these connections require additional
conditions on the local geometry of the spaces in question. On the other hand, in our
particular setting, the local structures of the spaces .G ; %�/ and .V ; %/ are connected
by (1.8) and (1.11) (at least they enjoy the same combinatorial structure), and exactly
this fact, in our opinion, enables us to prove a number of correspondences which are
not true in the general setting of quasi-isometric spaces.

1.2 Overview of the results

Let us now outline the content of this memoir as well as our main results.
Chapter 2 is of a preliminary character, where we introduce basic objects, notions

and facts. We begin with graph theoretic notions, metric graphs and graph ends
(Section 2.1). In the next section, following [132, 136], we present basic definitions
and facts about Laplacians on weighted graphs. Sections 2.3–2.4 are dedicated to
Laplacians on metric graphs. First, we recall the definitions of the most important
function spaces on metric graphs (Section 2.3). The minimal and maximal Kirchhoff
Laplacians are then defined in Section 2.4.1. Using the form approach, which can be
considered as a variational definition of a Laplacian on a metric graph, we introduce
Dirichlet and Neumann Laplacians, and also we define the so-called Gaffney Laplac-
ian (Section 2.4.2), which plays a crucial role in the study of Markovian extensions
of the minimal Kirchhoff Laplacian and also can be seen as the Hodge Laplacian on
a metric graph (Remark 2.19).

Chapter 3 provides the first major step towards establishing connections between
Kirchhoff Laplacians on metric graphs and graph Laplacians on locally finite graphs.
The main results of this chapter are Theorem 3.1 and also Theorem 3.22, which relate
basic spectral properties of Laplacians with ı-couplings at the vertices with those
of certain Schrödinger-type operators on the underlying combinatorial graph. Sec-
tion 3.1 states the central result, Theorem 3.1, and then Section 3.2 is dedicated to its

5In this text, we arrive at the definition of the intrinsic metric %� on a weighted metric graph
.G ; �; �/ from the perspective of Dirichlet forms. However, let us mention that %� also admits
a mechanical interpretation in terms of the wave equation and is known as the optical metric in
the physics literature, see Remark 6.20 for details.
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proof. Let us stress that the main tool is the concept of boundary triplets and the cor-
responding Weyl functions [55, 56, 86, 191]. The concluding Section 3.3 elaborates
further on the consequences of Theorem 3.1 in the case of Kirchhoff Laplacians.
First of all, every metric graph has infinitely many models and each such model
gives rise to a graph Laplacian. Thus we begin by discussing Theorem 3.1 from
this perspective. On the other hand, if the minimal Kirchhoff Laplacian is not self-
adjoint, then it admits infinitely many self-adjoint extensions. It is not at all surprising
that these extensions can be parameterized by means of self-adjoint extensions of
the corresponding minimal graph Laplacian (see Lemma 3.20). The latter allows
us to extend Theorem 3.1 to the case of non-trivial deficiency indices (see Theo-
rem 3.22). Let us also stress that this bijective correspondence between self-adjoint
extensions, according to Theorem 3.22, remains bijective upon restriction to certain
classes of self-adjoint extensions (e.g., semibounded or non-negative extensions),
however, some of these relations require a careful choice of the underlying model
for a given metric graph (e.g., for uniformly positive extensions the corresponding
model should have finite intrinsic size).

The main focus in Chapter 4 is on connections between parabolic properties of
Laplacians on weighted graphs and metric graphs. We begin by recalling the def-
inition of Markovian extensions and by underlining the role of the Dirichlet and
Neumann Laplacians (Section 4.1). Section 4.2 is of conceptual importance and gives
a good motivation for subsequent considerations. Namely, following [72], we review
some connections between transfer probabilities of a Brownian motion on a met-
ric graph and of a continuous time random walk on a weighted graph. Sections 4.3
and 4.4 form the core of this chapter. We begin with the study of the map {V defined
by (1.8). First of all, {V becomes injective when further restricted to the space of con-
tinuous, edgewise affine functions CA.G n V/ on a metric graph G . It turns out that
this map connects the corresponding energy forms as well, and even more, it allows to
describe the bijective correspondence (1.10) from Lemma 3.20 between self-adjoint
extensions of the minimal Kirchhoff and graph Laplacians in a much more transpar-
ent and concrete way (see Lemma 4.7). Moreover, the map (1.10) induces a bijection
between the sets of Markovian extensions (Section 4.4). These results enable us to
relate basic parabolic properties of Laplacians on metric and weighted graphs. More
precisely, Section 4.5 and Section 4.6 deal with transience/recurrence and stochas-
tic completeness, respectively. To a certain extent these connections are not new
and under some additional restrictions they have been discussed earlier in [72, 114]
(stochastic completeness) and [97, Chapter 4] (transience/recurrence). In Section 4.7,
we elaborate further on the relationship between spectral gaps of Laplacians on met-
ric and weighted graphs. We conclude this chapter by looking at ultracontractivity
estimates for heat semigroups on weighted graphs and metric graphs (Section 4.8).

Chapter 5 is dedicated to the simplest possible example – an infinite path graph.
Since this case can be thoroughly analyzed, it is a suitable toy model to demonstrate
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our findings from the previous two chapters. Indeed, in this case the corresponding
Laplacian (with ı-couplings at the vertices) is nothing but the Sturm–Liouville oper-
ator defined by the differential expression

� D
1

�.x/

�
�

d
dx

�.x/
d

dx
C

X
k�1

˛kı.x � xk/

�
; (1.12)

on the interval 	 WD Œ0;L/ with L2 .0;1�, where .xk/k�0 � 	 is a strictly increasing
sequence such that x0 D 0, xk " L and the weights �; �W	 ! R>0 are given by

�.x/ D
X
k�0

�k1Œxk ;xkC1/.x/; �.x/ D
X
k�0

�k1Œxk ;xkC1/.x/: (1.13)

If ˛ D .˛k/ � 0, then (1.12) is a Sturm–Liouville operator in the divergence form and
its basic spectral properties are rather well studied (let us only mention the contribu-
tions of H. Weyl [209], M. G. Krein and I. S. Kac [119, 120, 127]). The study of its
parabolic properties (recurrence, stochastic completeness) was initiated in the work of
W. Feller [70]. It is not at all surprising that, in this particular situation, one can obtain
a complete answer to most basic questions and we collect some of these results in
Section 5.1. In Section 5.2, we look at the corresponding difference expression asso-
ciated with (1.12) by means of Theorem 3.1. Looking at this difference operator in the
unweighted Hilbert space `2.Z�0/, we end up with the usual semi-infinite Jacobi (tri-
diagonal) matrix (5.23). If ˛ 6� 0, then we briefly demonstrate that the self-adjointness
problem for (1.12) is a rather complicated issue. Actually, in the unweighted case
� D � � 1, the corresponding results were obtained in [143] and even for this oper-
ator, known as the one-dimensional Schrödinger operator with ı-interactions [3],
a complete answer to the self-adjointness problem is not yet known. In Section 5.3,
we are interested in the following problem: How large is the set of Jacobi matrices
(5.23) arising as boundary operators for (1.12)?6 Proposition 5.18 shows that even
when restricting to the case of operators with � � 1, every Jacobi matrix can be
realized as a boundary operator for (1.12). The latter in particular implies that the
self-adjointness problem for the particular class of operators (1.12)–(1.13), which are
Laplacians on weighted path graphs, is equivalent to the self-adjointness problem for
Jacobi matrices, which is a classical problem in spectral theory and of vital impor-
tance in the classical moment problem [2].

When considering the boundary operator in the weighted space `2.Z�0Im/, that
is, a weighted graph Laplacian (1.1) on a path graph (which is known in the literature

6A possibility to exploit spectral properties of (1.12) in order to study the corresponding
properties of Jacobi matrices has already been emphasized in [4, Section 7]. Moreover, in 2010
during the OTAMP Conference in Bedlewo, Sergei Naboko (1950–2020) posed to one of us
(Aleksey Kostenko) exactly this question.
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as a Krein–Stieltjes string [2, Appendix], [120, Section 13]),

.�f /.k/ WD
1

m.k/

X
jn�kjD1

b.min¹n; kº/.f .k/ � f .n//; k 2 Z�0; (1.14)

the situation changes drastically. It turns out that the answer to the above question
depends on the weight m in a rather non-trivial way. Namely, (1.14) arises as a bound-
ary operator for some Sturm–Liouville operator (1.12) with the weights (1.13) if and
only if a positive sequence m D .mk/k�0 satisfies

nX
kD0

.�1/n�km.k/ > 0 (1.15)

for all n � 0 (see Proposition 5.20).
In Chapter 6 we study the problems raised in Section 5.3, however, for Laplac-

ians on arbitrary locally finite graphs. Surprisingly enough, the answers obtained
for a path graph extend to the general setting. Namely, if one looks at symmetric
Jacobi matrices on graphs (i.e., second order symmetric difference expressions on
graphs) acting in the unweighted space `2.V/, then every such operator can be real-
ized as a boundary operator (in the sense of Theorem 3.1) for a weighted metric
graph Laplacian with ı-couplings. For graph Laplacians (1.1) the situation is more
involved. There are two different cases. First of all, one may look only at simple
graphs and then the answer is very much similar to (1.15). Let us stress that M. Folz
faced precisely the same problem in [72]. The way to overcome this difficulty is to
allow loops. Namely, it is immediate to notice that the difference expression (1.1)
does not “see” loops in the coefficient b, however, loops enter the weight m in (1.9)
and exactly this observation allows to realize every locally finite graph .V ; mI b/ as
a boundary operator for some weighted metric graph Laplacian.

We begin Chapter 6 by introducing the notion of a cable system and a mini-
mal cable system (Definition 6.1) and then explicitly state the problems (see Prob-
lems 6.1–6.4). In Section 6.1, we provide several illustrative examples showing that
some important classes of graph Laplacians admit minimal cable systems (e.g., gen-
erators of discrete time random walks on graphs) and some of them do not (e.g.,
combinatorial Laplacians). The next section is dedicated to Problem 6.1, where we
demonstrate that the answer is very much similar to the case of a path graph. We also
recall here one interesting result due to H. Zaimi providing a combinatorial answer
to Problem 6.1 in the particular case of the combinatorial Laplacian (Lemma 6.13).
Section 6.3 answers Problem 6.2 in the affirmative (see also [72]). A solution to Prob-
lem 6.4 is contained Section 6.6.

Sections 6.4–6.5 attempt to deepen the connections established in Chapters 3–4.
More specifically, Section 6.4 provides a quasi-isometric perspective on the obtained
results. First, in Section 6.4.1 we recall the notion of the intrinsic metric %� on a
weighted metric graph .G ;�;�/. In Section 6.4.2, we briefly recall following [74,129]
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the notion of an intrinsic metric on a weighted graph. The intrinsic path metric %� on
G induces a path metric %V on V in an obvious way (see (1.11)). It then turns out that
the metric %V is intrinsic with respect to .V ;mIb/ if the graph b over .V ;m/ is related
to .G ; �; �/ in the sense of Chapter 3 (see Lemma 6.27). Moreover, we show that for
a locally finite weighted graph every intrinsic path metric of finite jump size arises
in this way (Lemma 6.33). In particular, imposing some natural restrictions on cable
systems (the so-called canonical cable systems), this correspondence between con-
tinuous and discrete intrinsic path metrics becomes bijective (Theorem 6.36). Notice
that .G ; %�/ and .V ; %V / are quasi-isometric metric spaces (Lemma 6.30) and hence
these results allow to associate to a discrete locally compact metric space a quasi-
isometric length space, which also respects its local combinatorial structure. For
example, in Section 6.4.5 we demonstrate these findings by looking at Hopf–Rinow-
type theorems, which connect completeness with bounded compactness and geodesic
completeness. Originally established for manifolds, the Hopf–Rinow theorem was
extended to length spaces by M. Gromov and the above connections enable us to
immediately extend it to the discrete setting. Of course, the discrete version of the
Hopf–Rinow theorem is by no means new [167], [115, Theorem A.1] (see also [129]).
Section 6.5 is dedicated to harmonic and sub-/superharmonic functions on graphs. As
it was mentioned already, there is a one-to-one correspondence between harmonic
functions. Moreover, this correspondence extends to sub- and superharmonic func-
tions on .G ; �; �/ which are assumed edgewise affine. The results of Section 4.3 and
Section 6.4 enable us to connect Liouville-type properties in discrete and continuous
settings (e.g., Yau’s Lp-Liouville-type theorems, see Section 6.5.3). Let us empha-
size once again that results of this type usually do not extend to the whole equivalence
class of quasi-isometric spaces (see, e.g., [47, 151, 160, 194]).

The aim of Chapter 7 is to employ the established connections in order to prove
new results for Laplacians on metric graphs, as well as to provide another perspective
on recent results for weighted graph Laplacians.

Section 7.1 deals with the self-adjointness problem. We start by proving the
Gaffney-type theorem for Kirchhoff Laplacians. On the one hand, this result seems
to be a folklore, however, it is hard to find its proof in the existing literature (actu-
ally, we are aware of only two such sources [97, Theorem 3.49] and [68]) and,
moreover, we provide a very short proof using the L2-Liouville theorem for met-
ric graphs from [198]). As an immediate corollary, we obtain a Gaffney-type theorem
for weighted graph Laplacians proved by a different approach than in [115, Theo-
rem 2]. On the other hand, one can use the results from [115] and [132] to prove
sufficient self-adjointness conditions for Kirchhoff Laplacians. Let us stress that The-
orem 7.7, first established in [68] for unweighted metric graphs, has an obvious analog
in the case of Sturm–Liouville operators, however, we are unaware of its analogs in
the manifold setting (Remark 7.8). Then we consider the self-adjointness problem
for Laplacians with ı-couplings. First, following [145] we present the Glazman–
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Povzner–Wienholtz theorem for metric graphs (Theorem 7.9), which also provides
another proof of Theorem 7.1, and then immediately obtain its analog for graph
Laplacians (Theorem 7.11). Moreover, we discuss semiboundedness and also relate
it with the notion of criticality on graphs [140].

Section 7.2 is dedicated to Markovian uniqueness. Here we extend the results
from [146] to the setting of weighted metric graphs. More specifically, using the
notion of finite volume graph ends introduced in [146], we are interested in condi-
tions on the edge weights � and � under which finite volume graph ends serve as the
proper boundary for Markovian extensions. Let us also mention that these results can
be seen as the study of self-adjointness for the Gaffney Laplacian [148].

We investigate spectral gap estimates in Section 7.3. Motivated by [147], we intro-
duce an isoperimetric constant for weighted metric graphs (Definition 7.31). First,
we prove the analogs of Cheeger and Buser estimates (Theorem 7.33). Taking into
account that the isoperimetric constant has a combinatorial flavor (which is in sharp
contrast with the case of finite metric graphs [172]), we are able to connect it with the
combinatorial isoperimetric constant (a classical widely studied object [212]) as well
as with isoperimetric constants for weighted graph Laplacians, recently introduced
in [18]. The section is concluded with a quick discussion of volume growth estimates.

The remaining two sections briefly touch the most important parabolic proper-
ties – recurrence and stochastic completeness (a.k.a. conservativeness). On the one
hand, we follow the road indicated in earlier work of M. Folz [72]. Namely, by com-
bining volume growth criteria for strongly local Dirichlet forms with the results from
Chapter 4, one can obtain volume growth criteria for weighted graph Laplacians. On
the other hand, let us mention one result, which seems to be new. Theorem 7.49 relates
recurrence of the Brownian motion on a weighted metric graph to that of a particular
discrete time random walk (reversible Markov chain) on a graph .V ; b/. Notice that
this fact can be seen as a significant improvement of the results in Section 4.5.

Chapter 8 continues along the lines of Chapter 7, however, here we restrict our-
selves to three particular classes of graphs.

Section 8.1 deals with antitrees. Imposing an additional radial symmetry assump-
tion, one can perform a very detailed analysis in this case since the Sturm–Liouville
operator (or weighted Laplacian on a path graph) studied in Section 5.1 plays a crucial
role in this analysis (see Theorem 8.2). Thus for this class of graphs we can obtain
complete answers to most basic questions (self-adjointness, Markovian uniqueness,
positive spectral gap, recurrence, stochastic completeness, etc.). However, we should
stress that removing the radial symmetry assumption makes the analysis much more
complicated and, for instance, the self-adjointness problem is widely open in this
case (Section 8.1.2). In Section 8.1.3 we collect some historical remarks and further
references to the existing literature.

Section 8.2 is dedicated to Cayley graphs. Taking into account that random walks
on groups is a classical subject, the results obtained in the previous chapters enable
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us to prove many new results for Laplacians on weighted metric Cayley graphs. First
of all, the classical theorems of H. Freudenthal, H. Hopf and J. R. Stallings about
ends of groups enable us to make a rather thorough study of the Markovian unique-
ness on metric Cayley graphs (Section 8.2.1). In sharp contrast to the Markovian
uniqueness, the self-adjointness depends on the choice of a generating set. In par-
ticular, the self-adjointness problem remains widely open for metric Cayley graphs
(see Remark 8.25). In Section 8.2.2, employing connections between isoperimetric
constants and amenability we, among other results, prove a metric graph analog
of Kesten’s amenability criterion (Corollary 8.31). Similarly, taking into account
the classification of recurrent groups, we prove a number of results regarding tran-
sience/recurrence on metric Cayley graphs (Section 8.2.4). In Section 8.2.5, we study
ultracontractivity estimates by employing the classical results of N. Th. Varopoulos,
which relate growth in groups with the decay rate of simple random walks. Moreover,
we use these results to establish Cwiekel–Lieb–Rozenblum-type estimates (Theo-
rem 8.42). Again, we conclude this part with some historical remarks and further
references to the existing literature (Section 8.2.6).

The aim of Section 8.3 is to discuss graphs arising in context with tessellations
(or tilings) of the Euclidean plane R2. In Section 8.3.1, we first observe that our
criteria for Markovian uniqueness become particularly transparent in this case (see
Corollary 8.47). Moreover, in the past several discrete curvature-like notions have
been introduced for plane graphs to study their geometric and spectral properties
(see [130] for an overview). In Section 8.3.2, we develop this approach in context
with weighted metric graphs and spectral gap estimates. We introduce a characteristic
value on edges of a weighted metric graph, which takes over the role of the classical
discrete curvature. Theorem 8.50 then provides a lower estimate on the isoperimetric
constant (and the spectrum of the Dirichlet Laplacian) in terms of the characteristic
values. Finally, Section 8.3.3 contains further historical remarks, references and a
discussion of the relation to other discrete curvature notions for plane graphs.

Finally, in order to make the exposition (reasonably) self-contained we provide
three appendices. Appendix A collects basic notions and facts on linear relations,
boundary triplets and the corresponding Weyl functions. Appendix B is dedicated to
Dirichlet forms. In Appendix C, we recall results relating ultracontractivity estimates
with Sobolev- and Nash-type inequalities.



Chapter 2

Laplacians on graphs

2.1 Combinatorial and metric graphs

2.1.1 Graphs

Let Gd D .V ; E/ be a (undirected) graph, that is, V is a finite or countably infinite set
of vertices and E is a finite or countably infinite set of edges. Two vertices u, v 2 V

are called neighbors and we shall write u � v if there is an edge eu;v 2 E connecting
u and v. For every v 2 V , we define Ev as the set of edges incident to v. We stress that
we allow multigraphs, that is, we allow multiple edges (two vertices can be joined by
several edges) and loops (edges from one vertex to itself). Graphs without loops and
multiple edges are called simple. Sometimes it is convenient to assign an orientation
on Gd : to each edge e 2 E one assigns the pair .e{ ; e� / of its initial e{ and terminal e�

vertices. We shall denote the corresponding oriented graph by EGd D .V ; EE/, where EE

denotes the set of oriented edges. Notice that for an oriented loop we do distinguish
between its initial and terminal vertices. Next, for every vertex v 2 V , set

EC
v D ¹.e{ ; e� / 2 EE W e{ D vº; E�

v D ¹.e{ ; e� / 2 EE W e� D vº; (2.1)

and let EEv be the disjoint union of outgoing EC
v and incoming E�

v edges,

EEv WD EC
v t E�

v D EEC
v [ EE�

v ; EE˙
v WD ¹.˙; e/ W e 2 E˙

v º:

We shall denote the elements of EEv by Ee. The (combinatorial) degree or valency of
v 2 V is defined by

deg.v/ WD #.EEv/ D #.EEC
v / C #.EE�

v / D #.Ev/ C #¹e 2 Ev W e is a loopº: (2.2)

Notice that if Ev has no loops, then deg.v/ D #.Ev/. The graph Gd is called locally
finite if deg.v/ < 1 for all v 2 V . If furthermore supv2V deg.v/ < 1, then Gd has
bounded geometry.

A sequence of (unoriented) edges P D .ev0;v1
; ev1;v2

; : : : ; evn�1;vn
/ is called

a path of (combinatorial) length n 2 Z�0 [ ¹1º. If v0 D vn and all other vertices as
well as all edges are distinct, then such a path is called a cycle1. Notice that for simple
graphs each path P can be identified with its sequence of vertices, i.e., P D .vk/n

kD0
.

A graph Gd is called connected if for any two vertices there is a path connecting them.

1Sometimes in the literature cycles are called loops and in such a case what we call a “loop”
is called a self-loop. On the other hand, in our terminology each loop is a cycle of length 1.
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We shall always make the following assumptions on the geometry of Gd :

Hypothesis 2.1. The graph Gd is connected and locally finite.

2.1.2 Metric graphs

Let us assign each edge e 2 E a finite length jej 2 .0; 1/. We can then naturally
associate with .Gd ; j � j/ D .V ; E; j � j/ a metric space G : first, we identify each edge
e 2 E with a copy of the interval 	e D Œ0; jej�, which also assigns an orientation on
E upon identification of e{ and e� with the left, respectively, right endpoint of 	e .
The topological space G is then obtained by “gluing together” the ends of edges
corresponding to the same vertex v (in the sense of a topological quotient, see, e.g.,
[37, Chapter 3.2.2]). The topology on G is metrizable by the length metric %0 – the
distance between two points x; y 2 G is defined as the arc length of the “shortest
path” connecting them (notice that G may not be a geodesic space, that is, such a path
does not necessarily exist and one needs to take the infimum over all paths connecting
x and y). Moreover, each point x 2 G has a neighborhood isometric to a star-shaped
set E.deg.x/; rx/ of degree deg.x/ 2 Z�1 (see Figure 2.1),

E.deg.x/; rx/ WD ¹z D re2� ik=deg.x/
W r 2 Œ0; rx/; k D 1; : : : ; deg.x/º � C: (2.3)

Notice that deg.x/ in (2.3) coincides with the combinatorial degree if x belongs to
the vertex set, and deg.x/ D 2 for every non-vertex point x of G .

Figure 2.1. Star shaped sets for deg.x/ D 1, 2, 3, 5 and 6.

A metric graph is a metric space G arising from the above construction for some
collection .Gd ; j � j/ D .V ; E; j � j/. More specifically, G is then called the metric real-
ization of .Gd ; j � j/. On the other hand, we will call a pair .Gd ; j � j/ whose metric
realization coincides with G a model of G .

Remark 2.1 (Metric graph as a length space). A metric graph G equipped with its
length metric %0 is a length space (see [37, Chapter 2.1] for definitions and further
details). Concerning terminology, let us only stress that the metric %0 is intrinsic in
the sense of [37, Definition 2.1.6], however, we are going to use the notion of an
intrinsic metric in a different context – intrinsic with respect to a Dirichlet form –
and in certain situations of interest %0 turns out to be intrinsic in both senses (see
Section 6.4 for further details).
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Remark 2.2 (Paths in metric graphs). Let us make one more convention. Usually,
for length spaces one introduces the class of admissible paths (e.g., rectifiable curves,
see [37]), however, taking into account the one-dimensional local structure of metric
graphs, we shall define a path P in G as a continuous map 
 W I ! G , which is
piecewise injective. Here I � R is an interval, that is, a connected subset of R, and
piecewise injectivity means that for any Œa; b� � I there is a finite partition

a D t0 < t1 < � � � < tn D b

such that 
 is injective on each open interval .tk�1; tk/, k 2 ¹1; : : : ; nº. Notice that
this definition of paths in G allows self-intersections and backtracking.

Clearly, different models may give rise to the same metric graph. Moreover, any
metric graph has infinitely many models (e.g., they can be constructed by subdividing
edges using vertices of degree 2). On this set we can introduce a partial order by
saying that a model .V 0;E 0; j � j0/ of G is a refinement of .V ;E; j � j/ if V �V 0. A model
.V ; E; j � j/ is called simple if the corresponding graph .V ; E/ is simple. In particular,
every locally finite metric graph has a simple model and hence this indicates that
restricting to simple graphs, that is, assuming in addition to Hypothesis 2.1 that Gd

has no loops or multiple edges, would not be a restriction at all when dealing with
metric graphs.

Let us emphasize that one can introduce metric graphs without the use of models.
From topological point of view, a locally finite metric graph is precisely a connected
(second countable and locally compact) Hausdorff space G such that each point x 2 G

has a neighborhood Ux homeomorphic to a star-shaped set Ex of the form (2.3). As
metric spaces, they are characterized by requiring additionally that the homeomor-
phism between Ux and the star Ex is an isometry and the metric on G coincides
with the associated path metric. Given a metric graph G , one can construct a model
.V ; E; j � j/ of G as follows: fix a discrete set V � G containing all the points x 2 G

with deg.x/ ¤ 2 and such that each connected component of G n V is isometric to
a bounded, open interval. The edge set E then consists of all connected components
of G nV and the edge length jej of e 2 E is chosen as the distance between the respec-
tive endpoints. For a thorough discussion of metric graphs as topological and metric
spaces we refer to [97, Chapter I].

Remark 2.3. In most parts of our monograph, we will consider a metric graph to-
gether with a fixed choice of its model. In this situation, we will usually be slightly
imprecise and do not distinguish between these two objects. In particular, we will
denote both objects by the same letter G and also write either G D .V ; E; j � j/ or
G D .Gd ; j � j/. However, for certain questions it is crucial to consider different models
of the same metric graph or even the whole set of its models. Whenever this is the
case, we will specifically indicate it in order to avoid a possible confusion.
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Remark 2.4 (Metric graph as a one-dimensional manifold with singularities). Let us
mention that one may also consider metric graphs as one-dimensional manifolds with
singularities. Since every point x 2 G has a neighborhood isomorphic to a star-shaped
set (2.3), one may introduce the set of tangential directions Tx.G / at x as the set of
unit vectors e2� ik=deg.x/, k D 1; : : : ; deg.x/. Then all vertices v 2 V with deg.v/ � 3

are considered as branching points/singularities and vertices v 2 V with deg.v/ D 1

as a boundary. Notice that for every vertex v 2 V the set of tangential directions
Tv.G / can be identified with EEv . If there are no loop edges at the vertex v 2 V , then
Tv.G / is identified with Ev in this way.

2.1.3 Graph ends

There are many different notions of graph boundaries. In this subsection we recall
basic facts about, perhaps, the simplest graph boundary – graph ends. The notion of
graph ends was introduced independently by H. Freudenthal [76] and R. Halin [102]
and its origins are closely related to the study of finitely generated groups [76,77,109]
(see Remark 8.19 for further information).

An infinite path P D .evn;vnC1
/n�0 without self-intersections (i.e., all vertices

.vn/n�0 are distinct) is called a ray. Two rays R1; R2 are called equivalent if there
is a third ray containing infinitely many vertices of both R1 and R2. An equivalence
class of rays is called a graph end of Gd .

Considering a metric graph G as a topological space, one can introduce topolog-
ical ends. Consider sequences U D .Un/ of non-empty open connected subsets of G

with compact boundaries and such that UnC1 � Un for all n � 0 and
T

n�0 Un D ¿.
Two such sequences U and U0 are called equivalent if for all n� 0 there exist j and k

such that Un �U 0
j and U 0

n �Uk . An equivalence class 
 of sequences is called a topo-
logical end of G and C.G / denotes the set of topological ends of G . There is a natural
bijection between topological ends of a locally finite metric graph G and graph ends
of the underlying combinatorial graph Gd : for every topological end 
 2 C.G / of G

there exists a unique graph end !
 of Gd such that for every sequence U D .Un/ rep-
resenting 
 , each Un contains a ray from !
 (see [212, Section 21], [58, Section 8.6
and also pp. 277–278] for further details).

One of the main features of graph ends is that they provide a rather convenient
way of compactifying graphs (see [58, Section 8.6], [212]). Namely, we introduce
a topology on yG WD G [ C.G / as follows. For an open subset U � G , denote its
extension yU to yG by

yU D U [ ¹
 2 C.G / W there exists U D .Un/ 2 
 such that U0 � U º:

Now we can introduce a neighborhood basis of 
 2 C.G / as follows:

¹ yU W U � G is open; 
 2 yU º:
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This turns yG into a compact topological space, called the end (or Freudenthal) com-
pactification of G .

Definition 2.5. An end ! of a graph Gd is called free if there is a finite set X of
vertices such that X separates ! from all other ends of the graph. Otherwise, ! is
called non-free.

Remark 2.6. Let us mention that by Halin’s theorem [102] every locally finite graph
Gd with infinitely many ends has at least one end which is not free.

2.2 Discrete Laplacians on graphs

There are several ways to introduce Laplacians on (combinatorial) graphs and here
we follow the approach from [132, 136]. Let V be a finite or countable set (one may
think of V as the set of vertices from the previous section). A function mWV ! .0;1/

defines a measure of full support on V in an obvious way. A pair .V ; m/ is called
a discrete measure space. The set of square summable functions

`2.V Im/ D

²
f 2 C.V/ W kf k

2
`2.V Im/

WD

X
v2V

jf .v/j2m.v/ < 1

³
has a natural Hilbert space structure. Here C.V/ denotes the space of all complex-
valued functions on V . Next, let cW V ! Œ0; 1/ and suppose bW V � V ! Œ0; 1/

satisfies the following conditions:

(i) symmetry: b.u; v/ D b.v; u/ for each pair .u; v/ 2 V � V ,

(ii) vanishing diagonal: b.v; v/ D 0 for all v 2 V ,

(iii) local summability:
P

v2V b.u; v/ < 1 for all u 2 V .

Following [132, 136], such a pair .b; c/ is called a (weighted) graph over V (or over
.V ; m/ if in addition a measure m of full support on V is given); b is called an edge
weight and c is a killing term. If c � 0, then we would say a graph b over V . To
simplify notation, we shall denote a graph b or .b; c/ over .V ; m/ by .V ; mI b/ or,
respectively, .V ; mI b; c/.

Remark 2.7. Let us quickly explain how the above notion is related to the previous
section. To any graph b over V , we can naturally associate a simple combinatorial
graph Gb . Namely, V is the vertex set of Gb and its edge set Eb is defined by calling
two vertices u;v2V neighbors, u�v, exactly when b.u;v/>0. Clearly, GbD.V ;Eb/

is an undirected graph in the sense of Section 2.1. Let us stress, however, that the
constructed graph Gb is always simple. Moreover, for a given metric graph G , each
model .V ; E; j � j/ can be seen as a weighted graph over V with edge weight 1

j�j
, which

further connects it with electrical networks when lengths are thought of as resistances
(see, e.g., [195]).
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With each graph .b; c/ one can associate the energy form qW C.V/ ! Œ0; 1�

defined by

qŒf � D qb;cŒf � WD
1

2

X
u;v2V

b.v; u/jf .v/ � f .u/j2 C

X
v2V

c.v/jf .v/j2:

Functions f 2 C.V/ such that qŒf � < 1 are called finite energy functions. The local
summability condition ensures that the set of compactly supported functions Cc.V/,
i.e., functions which vanish everywhere on V except finitely many vertices, is con-
tained in the set D.q/ of finite energy functions. If .b; c/ is a graph over .V ; m/,
introduce the graph norm

kf k
2
q WD qŒf � C kf k

2
`2.V Im/

for all f 2 D \ `2.V I m/ DW dom.q/. Clearly, dom.q/ is the maximal domain of
definition of the form q in the Hilbert space `2.V Im/; let us denote this form by qN .
Restricting further to compactly supported functions and then taking the graph norm
closure, we get another form:

qD WD q � dom.qD/; dom.qD/ WD Cc.V/
k�kq

:

It turns out that both qD and qN are Dirichlet forms (for definitions see Appendix B).
Moreover, qD is a regular Dirichlet form. The converse is also true (see [132, Theo-
rem 7]): Every regular Dirichlet form over .V ; m/ arises as the energy form qD for
some graph .b; c/ over .V ; m/.

Remark 2.8. The notion of irreducibility for Dirichlet forms on graphs correlates
with the notion of connectivity. Recall that a graph .b; c/ is called connected if
the corresponding graph Gb is connected, i.e., for any u; v 2 V there is a finite
set ¹v0; v1; : : : ; vnº � V such that u D v0, v D vn and b.vk�1; vk/ > 0 for all
k 2 ¹1; : : : ; nº. Then the regular Dirichlet form qD is irreducible exactly when the
underlying graph .b; c/ is connected (see, e.g., [136, Chapter 1.4]).

Using the representation theorems for quadratic forms (see, e.g., [126]) one can
associate in `2.V Im/ the self-adjoint operators hD and hN , the so-called Dirichlet
and Neumann Laplacians over .V ; m/, with, respectively, qD and qN . Usually, it is
a rather non-trivial task to provide an explicit description of the operators hD and,
especially, hN .2 Let us first introduce the formal Laplacian L D Lc;b;m associated to
a graph .b; c/ over the measure space .V ; m/:

.Lf /.v/ WD
1

m.v/

�X
u2V

b.v; u/.f .v/ � f .u// C c.v/f .v/

�
; v 2 V : (2.4)

2In fact, to decide whether hN and hD coincide, or equivalently that qN D qD , is already
a non-trivial and still open problem. This property is related to the uniqueness of a Markovian
extension (Section 4.1) and we shall return to this issue in Chapter 7.



Discrete Laplacians on graphs 21

It acts on functions f 2 Fb.V/, where

Fb.V/ D

²
f 2 C.V/ W

X
u2V

b.v; u/jf .u/j < 1 for all v 2 V

³
: (2.5)

This naturally leads to the maximal Laplacian h in `2.V Im/ defined by

h WD L � dom.h/; dom.h/ WD ¹f 2 Fb.V/ \ `2.V Im/ W Lf 2 `2.V Im/º: (2.6)

This operator is closed, however, if V is infinite, it is not symmetric in general (cf.
[132, Theorem 6]). On the other hand, one gets

hD D h � dom.hD/; dom.hD/ D dom.h/ \ dom.qD/; (2.7)

which also implies that hD is the Friedrichs extension of the adjoint h� to h.
In order to proceed further we need to make some additional assumptions on

the edge weight b. Namely, in contrast to the energy form q, compactly supported
functions are not necessarily in the domain of h, which does not allow us to define
the minimal operator in the standard way (i.e., to describe the adjoint h� to h). In
many situations of interest, in particular, it would be sufficient for the purposes of the
present text, it makes sense to assume that b is

(iv) locally finite: #¹u 2 V W b.u; v/ ¤ 0º < 1 for all v 2 V .

It is straightforward to verify that Cc.V/ � Fb.V/ for locally finite graphs. In this
case, the minimal Laplacian h0 is defined in `2.V I m/ as the closure of the pre-
minimal Laplacian

h0
WD L � dom.h0/; dom.h0/ WD Cc.V/: (2.8)

Then h0 � h0 � h and .h0/� D .h0/� D h.
Let us provide one transparent sufficient condition which ensures that all graph

Laplacians coincide (see, e.g., [53, Lemma 1], [131, Theorem 11], [201, Remark 1]).

Lemma 2.9. The Laplacian L D L0;b;m (with c � 0) is bounded on `2.V ; m/ if and
only if the weighted degree function DegWV ! Œ0;1/ given by

DegW v 7!
1

m.v/

X
u2V

b.u; v/ (2.9)

is bounded on V . In this case, h0 D hD D hN D h for any cWV ! Œ0;C1/.

A few remarks are in order.

Remark 2.10 (Schrödinger-type operators on graphs). The positivity restriction on
the killing term c comes from the theory of Dirichlet forms (or, equivalently, from
its probabilistic interpretation), however, it of course makes sense to consider the
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case when c takes values of both signs. Then L is usually called a Schrödinger-type
operator on a graph. To distinguish between the non-negative and sign indefinite
cases, we shall denote c in the latter case with ˛, that is, ˛W V ! R, and call it
a potential. In the locally finite case, the definitions of the pre-minimal, minimal
and maximal operators remain the same in the case of potentials. However, one very
important difference between these cases is that the quadratic form approach applies
only if the negative part of ˛ is not “too negative”. Let us mention that this also
allows to keep the positivity preserving property for the corresponding resolvent and
the semigroup, however, Lp-contractivity is lost once the potential is sign indefinite.

Remark 2.11 (Random walks on graphs). If the weighted degree function is bounded
by 1 on V ,

sup
v2V

Deg.v/ � 1;

then the graph Laplacian h is a generator of a discrete time random walk on a weighted
graph: for a vertex v 2 V , the jump probabilities are defined by (see, e.g., [12, Chap-
ter 1.2])

p.u; v/ D

8̂<̂
:

b.u; v/

m.v/
; u ¤ v;

1 � Deg.v/; u D v:

In particular, the probability p.v; v/ to stay at v equals 1 � Deg.v/ and hence, if
Deg.v/ < 1 for some vertex v 2 V , then p.v; v/ > 0, which can be interpreted as
a loop at v. The matrix P D .p.u; v//u;v2V is called the transition matrix of the
associated discrete time (reversible) Markov chain.

Remark 2.12 (Laplacians on multi-graphs). Remark 2.11 indicates that (2.4)–(2.8)
allow to treat weighted discrete Laplacians on multigraphs. Namely, for a multigraph
Gd D .V ; E/ and a given edge weight bE WE ! .0;1/, vertex weight mWV ! .0;1/

and killing term cWV ! Œ0;1/, the corresponding (minimal and maximal) Laplacians
are associated with the formal expression

.LG f /.v/ WD
1

m.v/

�X
u�v

X
e2Eu;v

bE.e/.f .v/ � f .u// C c.v/f .v/

�
; v 2 V ;

where Eu;v denotes the set of edges between the vertices u; v 2 V . Defining the func-
tion bWV � V ! Œ0;1/ as

b.u; v/ D

8̂<̂
:
X

e2Eu;v

bE.e/; u ¤ v;

0; u D v;

it is clear that LG D L (see (2.4)). However, notice that in general Gd ¤ Gb for the
simple graph Gb D .V ; Eb/ associated with b in Remark 2.7.
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2.3 Function spaces on metric graphs

Let G be a metric graph with a fixed model .V ; E; j � j/. Let also �WE ! .0;1/ be a
weight function assigning a positive weight �.e/ to each edge e 2 E . We shall assume
that edge weights are orientation independent and we set

�.Ee/ D �.e/

for all Ee 2 EEv , v 2 V . Identifying every edge e 2 E with a copy of 	e D Œ0; jej�,
we can introduce Lebesgue and Sobolev spaces on edges and also on G . First of
all, with the weight � we associate the measure � on G defined as the edgewise
scaled Lebesgue measure such that �.dx/ D �.e/dxe on every edge e 2 E . Thus,
we can define the Hilbert space L2.G I�/ of measurable functions f WG ! C which
are square integrable with respect to the measure � on G . Similarly, one defines the
Banach spaces Lp.G I�/ for any p 2 Œ1;1�. In fact, if p 2 Œ1;1/, then Lp.G I�/

can be seen as the edgewise direct sum of Lp spaces

Lp.G I�/ Š

²
f D .fe/e2E W fe 2 Lp.eI�/;

X
e2E

kfek
p

Lp.eI�/
< 1

³
;

where
kfek

p

Lp.eI�/
D

Z
e

jfe.xe/jp�.dxe/ D �.e/

Z
e

jfe.xe/jp dxe;

that is, Lp.eI �/ stands for the usual Lp space upon identifying e with 	e and �

with the scaled Lebesgue measure �.e/dxe on 	e . If �.e/ D 1, then we shall simply
write Lp.e/. The subspace of compactly supported Lp functions will be denoted
by L

p
c .G I�/. The space L

p
loc.G I�/ of locally Lp functions consists of all measurable

functions f such that fg 2 L
p
c .G I�/ for all g 2 Cc.G /. Notice that both L

p
loc and

L
p
c are independent of the weight �.

For edgewise locally absolutely continuous functions on G , let us denote by r

the edgewise first derivative,
rWf 7! f 0: (2.10)

Then for every edge e 2 E ,

H 1.e/ D ¹f 2 AC.e/ W rf 2 L2.e/º;

H 2.e/ D ¹f 2 H 1.e/ W rf 2 H 1.e/º;

are the usual Sobolev spaces (upon the identification of e with 	e D Œ0; jej�), and
AC.e/ is the space of absolutely continuous functions on e. Denote by H 1

loc.G n V/

and H 2
loc.G n V/ the spaces of measurable functions f on G such that their edgewise

restrictions belong to H 1, respectively, H 2, that is,

H
j
loc.G n V/ D ¹f 2 L2

loc.G / W f je 2 H j .e/ for all e 2 Eº



Laplacians on graphs 24

for j 2 ¹1; 2º. Clearly, for each measurable f 2 H 2
loc.G n V/ the quantities

f .e{/ WD lim
xe!e{

f .xe/; f .e� / WD lim
xe!e�

f .xe/;

and the normal derivatives

@f .e{/ WD lim
xe!e{

f .xe/ � f .e{/

jxe � e{ j
; @f .e� / WD lim

xe!e�

f .xe/ � f .e� /

jxe � e� j
;

are well defined for all edges e 2 E . We also need the following notation:

fEe.v/ WD

´
f .e{/; Ee 2 EEC

v ;

f .e� /; Ee 2 EE�
v ;

@Eef .v/ WD

´
@f .e{/; Ee 2 EEC

v ;

@f .e� /; Ee 2 EE�
v ;

for every v 2 V and Ee 2 EEv . In the case of a loopless graph, the above notation
simplifies since we can identify EEv with Ev for all v 2 V .

2.4 Laplacians on weighted metric graphs

Again, let G be a metric graph together with a fixed model .V ; E; j � j/. Suppose we
are also given two edge weights

�WE ! .0;1/; �WE ! .0;1/:

To motivate our definitions, let us look at r given by (2.10) as a differentiation oper-
ator on G acting on functions which are edgewise locally absolutely continuous and
also continuous at the vertices. Notice that when considering r as an operator acting
from L2.G I�/ to L2.G I �/, its formal adjoint r� acting from L2.G I �/ to L2.G I�/

acts edgewise as

r
�
Wf 7! �

1

�
.�f /0:

Thus, the weighted Laplacian � acting in L2.G I�/, written in the divergence form

�Wf 7! �r
�.rf /; (2.11)

acts edgewise as the following divergence form Sturm–Liouville operator:

�Wf 7!
1

�
.�f 0/0: (2.12)

The continuity assumption imposed on f results for � in a one-parameter family of
symmetric boundary conditions at each vertex v 2 V8̂<̂

:
f is continuous at v;X
Ee2EEv

�.e/@Eef .v/ D ˛.v/f .v/; (2.13)
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where ˛.v/ 2 R [ ¹1º, and ˛.v/ D1 should be understood as the Dirichlet bound-
ary condition at v. With the Laplacian � acting on G we shall always associate the
Kirchhoff boundary conditions38̂̂̂<̂

ˆ̂:
f is continuous at v;X
Ee2EEv

�.e/@Eef .v/ D 0;
v 2 V ; (2.14)

that is, conditions (2.13) with ˛.v/ D 0 for all v 2 V . Let us mention that for non-zero
˛WV ! R [ ¹1º, the Laplacian with boundary conditions (2.13) can be written as

�� C

X
v2V

˛.v/ıv (2.15)

(at least when � � 1), where ıv is the Dirac delta centered at v.

Remark 2.13. Of course, since both weights are edgewise constant, on every edge
e 2 E the corresponding differential expression for � simplifies to

�
�.e/

�.e/

d2

dx2
e

and then the definition of � looks simpler, especially if � D �. However, the form
(2.12) is important for us since it reflects, on the one hand, the choice of the Hilbert
space L2.G I�/ and, on the other hand, the proper choice of boundary conditions at
the vertices, see (2.14).

There are several standard ways to associate an operator with � in the Hilbert
space L2.G I�/ and this will be our main goal in the following subsections. Notice
that different definitions may lead to different operators (the choice of a domain of
definition is very important when dealing with unbounded operators) and each defi-
nition has its advantages and disadvantages.

2.4.1 (Weighted) Kirchhoff Laplacian

For every e 2 E consider the maximal operator He;max defined in L2.eI�/ by

He;max D �
1

�.e/

d
dxe

�.e/
d

dxe

; dom.He;max/ D H 2.e/: (2.16)

3It seems that there is no agreement in the literature regarding the name of the bound-
ary conditions (2.14). Sometimes they are called standard or Kirchhoff–Neumann boundary
conditions. The last name can be explained by looking at vertices with deg.v/ D 1, in which
case (2.14) is nothing but the usual Neumann condition @f .v/ D 0.
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Then one can define the maximal operator in L2.G I�/ as the edgewise direct sum

Hmax D

M
e2E

He;max:

However, the definition of Hmax does not reflect the underlying graph structure. More-
over, to make the maximal operator symmetric, one needs to impose appropriate
boundary conditions at the vertices. Imposing Kirchhoff boundary conditions on the
maximal domain yields the (maximal) Kirchhoff Laplacian:

H D �� � dom.H/; dom.H/ D ¹f 2 dom.Hmax/ W f satisfies (2.14) on Vº:

Restricting further to compactly supported functions we end up with the pre-minimal
operator

H0
D �� � dom.H0/; dom.H0/ D dom.H/ \ Cc.G /:

We shall call its closure H0 WD H0 in L2.G I�/ the minimal Kirchhoff Laplacian.
Integrating by parts one obtains

hH0f; f iL2 D

Z
G

jrf .x/j2 �.dx/ D krf k
2
L2.G I�/

DW QŒf � (2.17)

for each f 2 dom.H0/, and hence both H0 and H0 are non-negative symmetric oper-
ators. It is known that

H�
D H0:

The equality H0 D H holds if and only if H0 is self-adjoint (or, equivalently, H0 is
essentially self-adjoint).

Alongside the Kirchhoff boundary conditions (2.14) we are going to consider a
slightly more general class of boundary conditions (2.13). These vertex conditions
are interpreted as ı-couplings (or ı-interactions) of strength ˛ (see (2.15)).4 Indeed,
define the maximal operator

H˛ D �� � dom.H˛/;

dom.H˛/ D ¹f 2 dom.Hmax/ W f satisfies (2.13) on Vº;
(2.18)

and the pre-minimal operator

H0
˛ D �� � dom.H0

˛/; dom.H0
˛/ D dom.H˛/ \ Cc.G /: (2.19)

Integrating by parts, one obtains

hH0
˛f; f iL2 D

Z
G

jrf .x/j2 �.dx/ C
X
v2V

˛.v/jf .v/j2 DW Q˛Œf �

4In fact, one can interpret these boundary conditions as a perturbation of the Kirchhoff
Laplacian by ı-potentials, see [145, Remark 4.5].
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for all f 2 dom.H0
˛/, which implies that H0

˛ is a symmetric operator in L2.G I�/.
We define H0

˛ as the closure of H0
˛ . It is standard to show that

.H0
˛/� D H˛:

In particular, the equality H0
˛ D H˛ holds if and only if H˛ is self-adjoint (or, equiv-

alently, H0
˛ is essentially self-adjoint).

2.4.2 Gaffney Laplacian

One can also associate self-adjoint operators with the Laplacian � in a different way,
which to a certain extent can be interpreted as the quadratic form approach. Setting

H 1
loc.G / WD H 1

loc.G n V/ \ C.G /; H 1
c .G / WD H 1

loc.G n V/ \ Cc.G /;

let us introduce two (weighted) Sobolev spaces on G . First define

H 1.G / D H 1.G I�; �/ WD ¹f 2 H 1
loc.G / W f 2 L2.G I�/; rf 2 L2.G I �/º: (2.20)

Equipping H 1.G / with the graph norm

kf k
2
H 1.G /

WD kf k
2
L2.G I�/

C krf k
2
L2.G I�/

(2.21)

turns it into a Hilbert space. Next, we set

H 1
0 .G / D H 1

c .G /
k�k

H1
:

Notice that in contrast to H 1
c .G / and H 1

loc.G /, the Sobolev spaces H 1.G / and H 1
0 .G /

do depend on the weights � and �.
The Friedrichs extension of H0, let us denote it by HD , is defined as the operator

associated with the closure in L2.G I �/ of the quadratic form (2.17). Clearly, the
domain of the closure coincides with H 1

0 .G / and hence HD is given as the restriction
of H to the domain dom.HD/ WD dom.H/\H 1

0 .G / (see, e.g., [191, Theorem 10.17]).
On the other hand, the form Q is well defined on H 1.G / and, moreover, the form

QN Œf � WD QŒf �; f 2 dom.QN / D H 1.G /

is closed (since H 1.G / is a Hilbert space). The self-adjoint operator HN associated
with QN is usually called the Neumann extension of H0 or Neumann Laplacian.

Remark 2.14. By following the analogy with the Friedrichs extension, it might be
tempting to think that the domain of the Neumann Laplacian HN is given by the
set dom.H/ \ H 1.G /. However, the operator defined on this domain has a different
name – the Gaffney Laplacian – and it is not symmetric in general. Moreover, this
operator is not always closed (see [148]).
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In the Hilbert space L2.G I�/, we can associate (at least) two gradient operators
with r defined by (2.10). Namely, we define rD and rN as the operators

rD;rN WL2.G I�/ ! L2.G I �/;

f 7! rf

acting on the domains

dom.rD/ D H 1
0 .G /; dom.rN / D H 1.G /:

Both operators are closed and their importance stems from the following fact.

Lemma 2.15. Let HD and HN be the Friedrichs and the Neumann extensions of H0,
respectively. Then

HD D r
�
DrD; HN D r

�
NrN ; (2.22)

where � denotes the adjoint operator.5

Proof. Since H 1
0 .G / and H 1.G / are Hilbert spaces, both rD and rN are closed oper-

ators and hence, by von Neumann’s theorem (see [126, Chapter V.3.7] or [184, Theor-
em X.25]), r�

DrD and r�
NrN are self-adjoint non-negative operators in L2.G I�/.

The quadratic forms associated with r�
DrD and r�

NrN coincide with, respectively,
the quadratic forms of HD and HN and the claim now follows from the representation
theorem (see, e.g., [126, Chapter VI.2.1]).

Remark 2.16. A few remarks are in order.

(i) HD is often called the Dirichlet Laplacian, which explains the subscript.

(ii) Clearly, r and hence both rD and rN do depend on the choice of an
orientation on G . However, it is straightforward to see that the second order
operators HD and HN are orientation independent.

In the Hilbert space L2.G I�/, define the following operators:

HG;min D r
�
NrD; HG D r

�
DrN : (2.23)

Both operators act edgewise as the Laplacian �� and their domains are

dom.HG;min/ D ¹f 2 H 1
0 .G / W rf 2 dom.r�

N /º;

dom.HG/ D ¹f 2 H 1.G / W rf 2 dom.r�
D/º:

The operator HG is called the Gaffney Laplacian. We shall refer to HG;min as the
minimal Gaffney Laplacian.

5The product AB of two unbounded operators A, B in a Hilbert space H is understood as
their composition: .AB/.f / WD A.Bf / for all f 2dom.AB/ WD ¹f 2dom.B/ WBf 2dom.A/º.
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Remark 2.17. Notice that the above definition is not precisely the original definition
of M. P. Gaffney [79] for manifolds (roughly speaking H 1 was replaced by C 1 \ H 1

in [79, 80]). The obvious drawback is that the corresponding Laplacian in [79] is
always non-closed. Let us also stress that we are unaware of HG;min in the manifold
context and this natural, in our opinion, object seems to be new.

The following transparent description of HG will be useful.

Lemma 2.18. The domain of the maximal Gaffney Laplacian is given by

dom.HG/ D dom.H/ \ H 1.G / D ¹f 2 dom.H/ W rf 2 L2.G I �/º: (2.24)

Moreover, the minimal Gaffney Laplacian is closed in L2.G / and

HG;min D H�
G :

Proof. The inclusion
dom.HG/ � dom.H/ \ H 1.G /

follows from the definition of HG . The converse inclusion is immediate from the
following description of the adjoint r�

D to rD (see [148, Lemma 3.5]):

dom.r�
D/ D

²
f 2 H 1.G n V I�; �/ W

X
Ee2EEv

�.Ee/ EfEe.v/ D 0 for all v 2 V

³
;

which then makes the converse inclusion in (2.24) obvious. Here we employ the fol-
lowing notation:

EfEe.v/ D

´
fEe.v/; e 2 EEC

v ;

�fEe.v/; e 2 EE�
v ;

and

H 1.G n V I�; �/ WD ¹f 2 H 1
loc.G n V/ W f 2 L2.G I�/; rf 2 L2.G I �/º:

It is immediate from the above description that

H0 � HG;min � HG � H

and
HG;min � HD � HG ; HG;min � HN � HG :

Remark 2.19 (Hodge Laplacians). One can introduce 0-forms and 1-forms on G

(due to the local one-dimensional nature of metric graphs, the space of 2-forms on
G is trivial) and, upon assigning an orientation, both can be further identified with
functions. From this perspective the operator

E� D rNr
�
D



Laplacians on graphs 30

is a metric graph analog of the Hodge Laplacian on 1-forms (see [17, Section 5.1]
and [81, 181]). Indeed, the Hodge Laplacian on smooth k-forms on a Riemannian
manifold is given by

�k D ıkC1dk
C dk�1ık;

where dk is the exterior derivative (mapping k-forms to .k C 1/-forms) and the co-
differential ıkC1 is its formal adjoint (mapping .k C 1/-forms to k-forms). Working
in the L2-framework and replacing smooth by H 1 for metric graphs, one can identify
d0 D rN and ı1 D r�

D . In particular, the Gaffney Laplacian (2.23) can be viewed as
the Hodge Laplacian on 0-forms. Let us also stress that due to the supersymmetry,
the properties of HG and E� are closely connected.

2.4.3 Inessential vertices and models

So far we have defined (weighted) Laplacian operators by viewing a given metric
graph G as a metric realization of a fixed model .Gd ; j � j/. Of course, one can intro-
duce these operators also by starting with a given metric graph G , however, from
the metric space perspective. Moreover, as it was already mentioned, sometimes it
is important to consider different models of the same metric graph and hence we
need to introduce the following notions. Let G be a metric graph. A positive function
�W G ! .0; 1/ is called an edge weight if there is a discrete subset V� � G such
that V� contains all the points of G having degree not equal to 2 and, moreover, � is
constant on each connected component of G n V�. Clearly, for each model .Gd ; j � j/

of G , we can lift any function �E WE ! .0;1/ to an edge weight �WG ! .0;1/ in
an obvious way. Conversely, each edge weight �WG ! .0;1/ arises in this way.

Definition 2.20. A triple .G ; �; �/, where G is a metric graph and �, � are edge
weights, is called a weighted metric graph.

A collection .Gd ; j � j;�E ;�E/D .V ;E; j � j;�E ;�E/ is called a model of a weighted
graph .G ;�;�/ if .Gd ; j � j/ is a model of G and the weights �E , �E lifted to G coincide
with � and �, respectively.

For a given model .V ;E; j � j;�E ; �E/ of .G ;�;�/, a vertex v 2V is called inessen-
tial if deg.v/ D 2 and both � and � are constant in some neighborhood of v.

Notice that we can introduce a partial order on the set of models of .G ; �; �/ in
exactly the same way as for metric graphs: a model .V 0; E 0; j � j0; �E0 ; �E0/ is a refine-
ment of .V ; E; j � j; �E ; �E/ if V � V 0 .

Having introduced these notions, it is clear that the spaces H 1.G / and H 1
0 .G /

together with the Laplacian operators introduced in Sections 2.4.1–2.4.2 only depend
on the weighted metric graph .G ; �; �/ (and not the concrete choice of a model). For
instance, if v 2 V is an inessential vertex, then the differential expression remains
the same on its two adjacent edges and the corresponding Kirchhoff conditions (2.14)
turn into the usual continuity condition at v for f and its gradient. Therefore, replac-
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ing these two edges by a single edge whose length equals the sum of lengths and
also taking the same edge weights would not change the corresponding Kirchhoff
Laplacian.

Remark 2.21. A few remarks are in order.

(i) By construction, � enters the differential expression and � appears in (2.14)
(one can notice this also by looking at the graph norm (2.21), where � and
� enter the first and the second summand, respectively, on the right-hand
side of (2.21)).

(ii) If both edge weights � and � are constant on G , then each vertex of degree 2

is inessential.

(iii) We often abuse the notation and denote both a weighted metric graph and its
model by .G ; �; �/. However, when different models of the same weighted
metric graph or the whole set of its models are considered, we will specif-
ically indicate it in order to avoid a possible confusion. Moreover, some-
times we will call a model .V ; E; j � j; �E ; �E/ of .G ; �; �/ a (weighted)
metric graph over .V ; E/.

2.4.4 More general operators on graphs

As one may easily notice, our setting is rather restrictive from the perspective of dif-
ferential operators involved. Indeed, (2.16) is nothing but a divergence form Sturm–
Liouville differential expression with constant coefficients and, of course, one can
consider more general differential expressions on edges. The use of more general
operators can be justified from the quantum mechanical perspective (in particular,
this leads to the consideration of magnetic Schrödinger operators) as well as from the
Brownian motion perspective (which leads to the study of Sturm–Liouville expres-
sions with distributional coefficients, e.g., Krein strings which are also widely known
as Krein–Feller operators). Moreover, the one-parameter family of vertex conditions
(2.13) obviously does not cover all self-adjoint vertex conditions if the degree of a ver-
tex is greater than 1. However, some of our results (especially those in Chapter 3)
allow to treat both more general differential expressions (clearly, not all) and arbi-
trary self-adjoint vertex conditions, although this requires separate considerations.
One may even attempt to establish the analogs of some results regarding connections
between magnetic Schrödinger operators on graphs and metric graphs. We refer for
further details to [35, Section 3.5], [181] as well as to the case of one-dimensional
Schrödinger operators with point interactions [66, 143] (see also Remark 3.14).





Chapter 3

Connections via boundary triplets

To simplify the exposition, we begin by looking at a weighted metric graph .G ; �; �/

as a metric realization of one of its models, that is, we start with a given combina-
torial graph Gd D .V ; E/ equipped with edge lengths j � jWE ! .0;1/ and weights
�; �W E ! .0; 1/. Let also ˛W V ! R, that is, we are going to consider Laplac-
ians with ı-couplings (2.13) at vertices. The main results of this chapter (see The-
orem 3.1 and Theorem 3.22 below) relate basic spectral properties of the Laplacian
with ı-couplings H˛ with those of a certain Schrödinger-type operator on the cor-
responding combinatorial graph Gd . At the very end of this chapter, in Section 3.3,
we shall look at a weighted metric graph from the metric space perspective, which
allows to understand the whole family of graph Laplacians associated with the models
of a given weighted metric graph.

Let us stress once again that we always assume Hypothesis 2.1.

3.1 Spectral properties: Graph Laplacians vs. Kirchhoff Laplacians

To state the result, we first define the intrinsic edge length

�.e/ WD jej

s
�.e/

�.e/
; e 2 E; (3.1)

together with the quantity1

��.E/ WD sup
e2E

�.e/: (3.2)

Now introduce the edge weight r WE ! .0;1/ by distinguishing two cases:

• if the underlying model of a weighted metric graph satisfies ��.E/ < 1, then we
set

r.e/ D jej�.e/; e 2 E; (3.3)

• if ��.E/ D 1, we define the weight r by

r.e/ D

´
jej�.e/; �.e/ � 1;p

�.e/�.e/; �.e/ > 1:
(3.4)

1In Section 3.3, we shall call it the intrinsic size of a model and its meaning will be clarified
in Chapter 6 (see Remark 6.19).
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Next, with a given metric graph G and weights �; � we associate:

• the vertex weight mWV ! .0;1/,

m.v/ D
X
Ee2EEv

r.e/; v 2 V ; (3.5)

• the edge weight bWV � V ! Œ0;1/,

b.u; v/ D

8̂̂<̂
:̂

X
Ee2EEuWe2Ev

�.e/

jej
; u ¤ v;

0; u D v;

.u; v/ 2 V � V : (3.6)

It is straightforward to verify that b satisfies all properties (i)–(iv) of Section 2.2.
Since Gd is connected, so is the edge weight b. Moreover, the vertex weight m is
strictly positive on V and hence defines a measure of full support on V . Therefore,
following considerations in Section 2.2, with the discrete Schrödinger expression

.�f /.v/ WD
1

m.v/

�X
u2V

b.v; u/.f .v/ � f .u// C ˛.v/f .v/

�
; v 2 V ; (3.7)

we can associate in the weighted Hilbert space `2.V Im/ the minimal operator h0
˛ and

the maximal operator h˛ .
The main aim of this section is to prove the following result:

Theorem 3.1. Let H0
˛ be the minimal Laplacian on .G ; �; �/ equipped with the

ı-coupling conditions (2.13) at the vertices and let also h0
˛ be the corresponding

minimal discrete Schrödinger operator defined in `2.V Im/ by (3.7). Then:

(i) The deficiency indices of H0
˛ and h0

˛ are equal and

nC.H0
˛/ D n�.H0

˛/ D n˙.h0
˛/ � 1:

In particular, H˛ is self-adjoint if and only if h˛ is self-adjoint.

Assume in addition that H˛ (and hence also h˛) is self-adjoint. Then:

(ii) The operator H˛ is lower semibounded if and only if the operator h˛ is
lower semibounded.

(iii) The operator H˛ is non-negative if and only if h˛ is non-negative.

(iv) The total multiplicities of negative spectra of H˛ and h˛ coincide,

��.H˛/ D ��.h˛/:

(v) The spectrum of H˛ is purely discrete if and only if #¹e 2 E W �.e/ > "º is
finite for every " > 0 and the spectrum of h˛ is purely discrete.
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Assume also that ��.E/ D supe2E �.e/ < 1. Then:

(vi) The operator H˛ is positive definite if and only if h˛ is positive definite.

(vii) If, in addition, the operator h˛ is lower semibounded, then �ess
0 .H˛/ > 0

(�ess
0 .H˛/ D 0) exactly when �ess

0 .h˛/ > 0 (respectively, �ess
0 .h˛/ D 0).

(viii) Moreover, the equivalence

H�
˛ 2 Sp.L2/ ” h�

˛ 2 Sp.`2/

holds for all p 2 .0;1�. In particular, the negative spectrum of H˛ is dis-
crete if and only if so is the negative spectrum of h˛ .

Here and below for a self-adjoint operator T in a Hilbert space H, �0.T / and
�ess

0 .T / denote the bottoms of its spectrum, respectively, of its essential spectrum,

�0.T / D inf �.T /; �ess
0 .T / D inf �ess.T /:

Moreover,
T �

WD T 1.�1;0/.T /;

where 1.�1;0/.T / is the spectral projection on the negative subspace of T .
As an immediate corollary we obtain the following result for the Kirchhoff

Laplacian.

Corollary 3.2. Let H0 be the minimal Kirchhoff Laplacian on .G ; �; �/ and let also
h0 be the corresponding minimal weighted graph Laplacian defined in `2.V I m/

by (3.7) with ˛ � 0. Then:

(i) The deficiency indices of H0 and h0 are equal and

nC.H0/ D n�.H0/ D n˙.h0/ � 1:

In particular, H0 is self-adjoint if and only if h0 is self-adjoint.

Assume in addition that H0 is self-adjoint (and hence coincides with the maximal
Kirchhoff Laplacian H). Then:

(ii) The spectrum of H is purely discrete if and only if #¹e 2 E W �.e/ > "º is
finite for every " > 0 and the spectrum of the operator h is purely discrete.

Assume also that supe2E �.e/ < 1. Then:

(iii) The operator H is positive definite, �0.H/ > 0 if and only if the operator h
is positive definite, �0.h/ > 0.

(iv) �ess
0 .H/ > 0 exactly when �ess

0 .h/ > 0.

Proof. The proof is a straightforward application of Theorem 3.1 to the case ˛ � 0.
One only needs to take into account that both the minimal Kirchhoff Laplacian H0

and the minimal graph Laplacian h0 are non-negative operators.
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Remark 3.3. A few remarks are in order.

(i) In the case ��.E/ D 1 the weight r can be chosen in many different ways
by changing the threshold 1 in (3.4) to any positive number.

(ii) In the following specific case

inf
e2E

�.e/ > 0;

the choice of r can be further simplified to

r.e/ WD
p

�.e/�.e/; e 2 E:

Notice that if � D � � 1, the assumption infe2E �.e/ > 0 is equivalent to
infe2E jej > 0, which is the most common restriction in the spectral the-
ory of quantum graphs [25, 182]. In this case r.e/ � 1 for all e 2 E and
hence the vertex weight m given by (3.5) is nothing but the combinatorial
degree (2.2).

(iii) In the papers [68, 143] it is assumed that � D � � 1 and supe2E �.e/ D

supe2E jej < 1. Usually, the latter is not a restriction since this condition
can always be achieved by adding inessential vertices, that is by choosing
an appropriate model of a metric graph since this choice does not have any
impact on spectral properties of the corresponding Kirchhoff Laplacian (see
Section 2.4.3). However, this changes the combinatorial structure of the
underlying graph Gd , which is important for our future purposes. This will
be discussed in greater details in Section 3.3.

(iv) Let us also mention that the list of equivalences in Theorem 3.1 is not com-
plete and we refer to, e.g., [68] for further details.

3.2 Graph Laplacians as boundary operators

This section is devoted to the proof of Theorem 3.1, which is based on the boundary
triplets approach (see Appendix A) and essentially follows the lines of [68].

3.2.1 Edge-based boundary triplet

We begin with constructing a suitable boundary triplet for the operator Hmax. First of
all, the following simple fact holds true (cf. [68, Lemma 2.1]).

Lemma 3.4. Let He;max, e 2 E be the maximal operator (2.16). The triplet

z…e D ¹C2; z�0;e; z�1;eº;
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where the mappings z�0;e , z�1;eWH
2.e/ ! C2 are defined by

z�0;eWf 7!

 
f .e{/

f .e� /

!
; z�1;eWf 7!

 
�.e/@f .e{/

�.e/@f .e� /

!
; (3.8)

is a boundary triplet for He;max. The corresponding Weyl function is

zMeW z 7!
p

�.e/�.e/z

 
� cot.�.e/

p
z/ csc.�.e/

p
z/

csc.�.e/
p

z/ � cot.�.e/
p

z/

!
; z 2 C n R:

Next we proceed as follows (see, e.g., [143, Section 4] and also [68, Section 2]):
set

Re WD r.e/ I2; Qe WD lim
z!0

zMe.z/ D
�.e/

jej

�
�1 1

1 �1

�
; (3.9)

where r WE ! .0;1/ is given by (3.3), (3.4). Define the mappings

�0;e WD R1=2
e

z�0;e; �1;e WD R�1=2
e .z�1;e � Qe

z�0;e/;

that is, �0;e , �1;eWH
2.e/ ! C2 are given by

�0;eWf 7!
p

r.e/

 
f .e{/

f .e� /

!
; �1;eWf 7!

�.e/p
r.e/

0@@f .e{/ �
f .e� /�f .e{/

jej

@f .e� / C f .e� /�f .e{/
jej

1A : (3.10)

Clearly, …e D ¹C2; �0;e; �1;eº is also a boundary triplet for He;max. In addition, the
following claim holds (cf. [143, Theorem 4.1] and [68, Theorem 2.2]).

Proposition 3.5. The direct sum of boundary triplets

…E D

M
e2E

…e D ¹HE ; �E
0 ; �E

1 º;

where
HE D

M
e2E

C2; �E
0 WD

M
e2E

�0;e; �E
1 WD

M
e2E

�1;e;

is a boundary triplet for the operator Hmax D
L

e2E He;max.

Proof. Since H�
e;max is a positive symmetric operator for every e 2 E , so is H�

max.
Therefore, we need to apply Theorem A.11 and to verify conditions (A.7). Notice
that for each e 2 E , the corresponding Weyl function is given by

Me.z/ D R�1=2
e . zMe.z/ � Qe/R�1=2

e D
1

r.e/
zMe.z/ �

1

r.e/
Qe:

(i) First of all, straightforward calculations yield that for all e 2 E ,

Me.�1/ D

p
�.e/�.e/

r.e/

 
1

�.e/
� coth �.e/ 1

sinh �.e/
�

1
�.e/

1
sinh �.e/

�
1

�.e/
1

�.e/
� coth �.e/

!
;



Connections via boundary triplets 38

and

M 0
e.�1/ D

p
�.e/�.e/

r.e/

0@ coth �.e/ � �.e/

sinh2 �.e/

�.e/ cosh �.e/

sinh2 �.e/
�

1
sinh �.e/

�.e/ cosh �.e/

sinh2 �.e/
�

1
sinh �.e/

coth �.e/ � �.e/

sinh2 �.e/

1A ;

where r.e/ is given by (3.4). Clearly, kMe.�1/kDmax.j�C.Me/j; j��.Me/j/, where
�C.Me/ and ��.Me/ are the eigenvalues of Me.�1/ given explicitly by

�˙.Me/ D

p
�.e/�.e/

r.e/

�
1

�.e/
� coth �.e/ ˙

�
1

sinh �.e/
�

1

�.e/

��
:

Since j�C.Me/j > j��.Me/j, we get

kMe.�1/k D j�C.Me/j D

p
�.e/�.e/

r.e/

cosh �.e/ � 1

sinh �.e/
D

p
�.e/�.e/

r.e/
tanh

�
�.e/

2

�
:

Similarly, one obtains that

kM 0
e.�1/k D �C.M 0

e/ D

p
�.e/�.e/

r.e/

.sinh �.e/ C �.e//.cosh �.e/ � 1/

2 sinh2 �.e/
;

k.M 0
e.�1//�1

k D
1

��.M 0
e/

D
r.e/p

�.e/�.e/

2 sinh2 �.e/

.sinh �.e/ � �.e//.cosh �.e/ C 1/
;

where �C.M 0
e/ and ��.M 0

e/ are the eigenvalues of M 0
e.�1/.

(ii) Assume first that ��.E/ < 1. Then r.e/ D �.e/jej, e 2 E and in particular,

kMe.�1/k � sup
0<s���.E/

1

s
tanh

�
s

2

�
D sup

0<s���.E/

f .s/:

Since the function f .s/ defined by the right-hand side admits an analytic continuation
at 0, we conclude that supe Me.�1/ < 1. Similar considerations imply that

sup
e

.kM 0
e.�1/k C k.M 0

e.�1//�1
k/ < 1

and hence (A.7) holds true in this case.
(iii) Suppose now that ��.E/ D 1. If e 2 E is an edge with �.e/ > 1, then we

get r.e/ D
p

�.e/�.e/ and hence

kMe.�1/k � sup
s>1

tanh
�

s

2

�
D 1

and

kM 0
e.�1/k � sup

s>1

.sinh s C s/.cosh s � 1/

2 sinh2 s
< 1;

k.M 0
e.�1//�1

k � sup
s>1

2 sinh2 s

.sinh s � s/.cosh s C 1/
< 1:
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On the other hand, if �.e/ � 1, then r.e/ D �.e/jej as in (ii), and the same steps as
there give uniform bounds on kMe.�1/k, kM 0

e.�1/k andk.M 0
e.�1//�1k. Altogether,

we conclude that the condition (A.7) holds true and this completes the proof.

Remark 3.6. It is easy to see that Proposition 3.5 holds true if instead of (3.4) the
weight r is defined as in Remark 3.3 (i).

Clearly, the Weyl function corresponding to the boundary triplet constructed in
Proposition 3.5 has a very transparent form and enjoys some important properties.

Lemma 3.7. The Weyl function corresponding to the boundary triplet …E is given
by

ME.z/ D
M
e2E

Me.z/; Me.z/ D R�1=2
e . zMe.z/ � Qe/R�1=2

e : (3.11)

Moreover:

(i) ME.0/ D OHE
, where

ME.0/ WD s � R � lim
x"0

ME.x/:

(ii) ME.x/ uniformly tends to �1 as x ! �1, that is, for every N > 0 there
is xN < 0 such that for all x < xN , ME satisfies

ME.x/ < �N � IH :

Proof. First of all, (3.11) is immediate from Proposition 3.5. To prove (i), it suffices
to mention that Me.0/ D O2 for all e 2 E .

(ii) Denote by �C
e .x/ and ��

e .x/ the eigenvalues of Me.�x2/. Straightforward
calculations yield

�˙
e .x/ D �x

p
�.e/�.e/

r.e/
�

cosh.�.e/x/ � 1

sinh.�.e/x/
C

�.e/

jejr.e/
.1 � 1/;

and noting that �C
e .x/ < ��

e .x/ < 0 for all x > 0, we get

Me.�x2/ � ��
e .x/I2

D I2 �

8̂̂<̂
:̂

2

�.e/2
�

x

�.e/
coth

�
�.e/x

2

�
if r.e/ D jej�.e/;

2

�.e/
� x coth

�
�.e/x

2

�
if r.e/ D

p
�.e/�.e/:

For an e 2 E with r.e/ D
p

�.e/�.e/, we have �.e/ > 1 and one easily verifies

Me.�x2/ � .2 � x/I2:

If r.e/ D jej�.e/, then �.e/ � C for all such edges e and some uniform constant
C > 0 (e.g., take C D ��.E/ if ��.E/ <1 and C D 1 otherwise). Let us now proceed
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as in the proof of [143, Proposition 4.10] and consider the function

F.s/ D
coth.s/

s
�

1

s2
; s > 0:

Clearly, F is strictly positive and continuous on .0;1/. Moreover, F.s/D 1
3
CO.s2/

as s ! 0 and F 0.s/ D �
1
s2 C O.s�3/ as s ! C1 and hence

inf
s2.0;a/

F.s/ D F.a/ D
1

a
coth.a/ �

1

a2

for all sufficiently large a > 1. It remains to notice that

��
e .x/ D �

x2

2
F

�
�.e/x

2

�
and hence

��
e .x/ � �

x2

2
inf

s2.0;Cx=2/
F.s/ D �

x2

2
F

�
Cx

2

�
D

2

C 2
�

x

C
coth

�
Cx

2

�
� �

x

2C

for all sufficiently large x > 1. Taking into account (3.11), we get

ME.�x2/ � IH inf
e2E

��
e .x/ � �

x

2 max¹1; C º
IH

for all sufficiently large x > 1.

3.2.2 Vertex-based boundary triplet

It will be convenient for us to work with another boundary triplet for Hmax, which can
be obtained from the triplet …E by regrouping all its components with respect to the
vertices. Define

HV D

M
v2V

Cdeg.v/; �V
0 D

M
v2V

�0;v; �V
1 D

M
v2V

�1;v; (3.12)

where

�0;vf D
�p

r.e/fEe.v/
�
Ee2EEv

; (3.13)

�1;vf D

�
�.e/p
r.e/

�
@Eef .v/ � �v.Ee/

f .e� / � f .e{/

jej

��
Ee2EEv

; (3.14)

with �vW
EEv ! ¹�1; 1º denoting the orientation function

�v.Ee/ WD

´
1; Ee 2 EEC

v ;

�1; Ee 2 EE�
v :



Graph Laplacians as boundary operators 41

Corollary 3.8. The triplet …V D¹HV ;�V
0 ;�V

1 º given by (3.12)–(3.14) is a boundary
triplet for Hmax.

Proof. For fE D ..fe{
; fe�

//
e2EE

2 HE define the operator UG WHE ! HV by

UG WfE 7! ..fv;Ee/
Ee2EEv

/v2V ; fv;Ee WD

´
fe{

; Ee 2 EEC
v ;

fe�
; Ee 2 EE�

v ;
Ee 2 EEv; v 2 V : (3.15)

Clearly, UG is an isometric isomorphism. Moreover, it is straightforward to check that

�V
0 D UG �E

0 ; �V
1 D UG �E

1 ;

which completes the proof.

Let us also mention other important relations.

Corollary 3.9. The Weyl function MV corresponding to the boundary triplet (3.12)–
(3.14) is given by

MV .z/ D UG ME.z/U �1
G ; (3.16)

where ME is given by (3.11) and UG is the operator defined by (3.15). In particular,
s � R � limx"0 MV .x/ D OHV

and, moreover, MV .x/ uniformly tends to �1 as
x ! �1.

Proof. The proof is straightforward and the last claim is an immediate consequence
of Lemma 3.7 and equality (3.16).

Remark 3.10. Consider the mappings z�E
0 D

L
e2E

z�0;e and z�E
1 D

L
e2E

z�1;e given
by (3.8). If f 2 dom.Hmax/ \ Cc.G /, then

z�V
0 f WD UG

z�E
0 f; z�V

1 f WD UG
z�E

0 f; (3.17)

have the following form:

z�V
0 D

M
v2V

z�0;v and z�V
1 D

M
v2V

z�1;v;

where
z�0;vf D .fEe.v//

Ee2EEv
; z�1;vf D .�.e/@Eef .v//

Ee2EEv
: (3.18)

3.2.3 Boundary operators for Laplacians on metric graphs

Let ‚ be a linear relation in HV and define the following operator:

H‚ WD Hmax � dom.H‚/;

dom.H‚/ WD ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 ‚º;
(3.19)
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where the mappings �V
0 and �V

1 are defined by (3.12)–(3.14). Since …V is a boundary
triplet for Hmax, every proper extension of the operator Hmin has the form (3.19) (see
Theorem A.4) and hence so does H0

˛ . The next result provides the explicit form of
the linear relation parameterizing H0

˛ .

Proposition 3.11. Assume Hypotheses 2.1 and let …V be the boundary triplet (3.12)–
(3.14). Suppose ‚0

˛ is the boundary relation for the operator H0
˛ ,

dom.H0
˛/ D ¹f 2 dom.Hmax/ W .�V

0 f; �V
1 f / 2 ‚0

˛º: (3.20)

Then the operator part ‚
op
˛ of ‚0

˛ is unitarily equivalent to the operator h0
˛ D h0

˛

acting in `2.V Im/ and defined by (3.7) with (3.4), (3.5) and (3.6).

Proof. We divide its proof into several steps.
(i) For each vertex v 2 V , the boundary conditions (2.13) can be written as

zDv
z�1;vf D zCv

z�0;vf;

where we recall that (see (3.18))

z�0;vf D .fEe.v//
Ee2EEv

; z�1;vf D .�.e/@Eef .v//
Ee2EEv

;

and the matrices zCv , zDv 2 Cdeg.v/�deg.v/ are given by

zCv D

0BBBBB@
1 �1 0 : : : 0

0 1 �1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �1

˛.v/ 0 0 : : : 0

1CCCCCA ; zDv D

0BBBBB@
0 0 0 : : : 0

0 0 0 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 0

1 1 1 : : : 1

1CCCCCA :

It is straightforward to verify the Rofe–Beketov conditions (A.3), that is,

zCv
zD�

v D zDv
zC �

v ; rank. zCvj zDv/ D deg.v/;

holds for all v 2 V , and hence

z‚v WD ¹.f; g/ 2 Cdeg.v/
� Cdeg.v/

W zCvf D zDvgº

is a self-adjoint linear relation in Cdeg.v/. Now set

zC WD

M
v2V

zCv; zD WD

M
v2V

zDv:

Both zC and zD are closed operators in HV . Clearly, f 2 dom.Hmax/\Cc.G / satisfies

zDz�V
1 f D zC z�V

0 f
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if and only if f 2 dom.H0
˛/ D dom.H˛/ \ Cc.G /. In view of (3.17), we get

�V
0 f D RV

z�V
0 f; �V

1 f D R�1
V .z�V

1 � QV
z�V

0 /f

for all f 2 dom.Hmax/ \ Cc.G /, where

RV D UG REU �1
G ; QV D UG QEU �1

G ;

RE D
L

e2E R1=2
e , QE D

L
e2E Qe are defined by (3.9) and UG is given by (3.15).

Hence f 2 dom.H0
˛/ if and only if f 2 dom.Hmax/ \ Cc.G / satisfies

D�V
1 f D C �V

0 f;

where
D D zDRV ; C D . zC � zDQV /R�1

V :

The operators D and C are well defined on HV ;c , which consists of vectors of HV

having only finitely many non-zero coordinates.
(ii) Define the linear relation

‚0
˛ D ¹.f; g/ 2 HV ;c � HV ;c W Cf D Dgº (3.21)

and let H‚0
˛

be the corresponding restriction given by (3.19). By construction, ‚0
˛ is

symmetric and hence so is H‚0
˛

(see Theorem A.4 (i)). Moreover, H0
˛ � H‚0

˛
and it

is straightforward to check that H‚0
˛
� H0

˛ . Then, by Theorem A.4 (i), ‚0
˛ WD ‚0

˛ is
the boundary relation parameterizing (via (3.19)) the minimal operator H0

˛ .
(iii) To proceed further, let f D .fv/v2V 2 HV , where fv D .fv;Ee/

Ee2EEv
. For each

v 2 V , let us denote by Pv the orthogonal projection in HV onto Hv , the subspace
consisting of elements f D .fu/u2V 2 HV with all entries equal zero except fv ,
that is,

.Pvf /u D .ıvufu;Ee/
Ee2EEu

; ıvu D

´
1; u D v;

0; u ¤ v:

By construction, the operators zC , zD, RV (and hence D) commute with Pv . In partic-
ular,

RV D

M
v2V

Rv; Rv D diag
�p

r.e/
�
Ee2EEv

;

and
D D

M
v2V

Dv; Dv D zDvRv D zDv � diag
�p

r.e/
�
Ee2EEv

:

However, the form of QV (and hence of C ) is a bit more complicated:

QV D zQ0
�

M
v2V

Qv; Qv D diag
�

�.e/

jej

�
Ee2EEv

;
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where

.zQ0f /v;Ee D
�.e/

jej
fu;�Ee;

and u 2 V and �Ee 2 EEu are given by

u WD

´
e� ; Ee 2 EEC

v ;

e{ ; Ee 2 EE�
v ;

� Ee WD

´
.�; e/; Ee 2 EEC

v ;

.C; e/; Ee 2 EE�
v :

The operators PvC and PvD are finite rank and hence admit a bounded extension
onto HV . By abusing the notation, we shall denote these extensions by PvC and PvD

as well. It is straightforward to verify that f 2 dom.Hmax/ satisfies (2.13) exactly
when

PvD�V
1 f D PvC �V

0 f:

Therefore, combining the definition of H˛ (see (2.18)) with (A.4), we conclude that
the boundary relation ‚˛ parameterizing H˛ in the sense of (3.19) is explicitly given
by

‚˛ D ¹.f; g/ 2 HV � HV W PvCf D PvDg for all v 2 Vº: (3.22)

In particular, by Theorem A.4 (i), ‚˛ D .‚0
˛/� D .‚0

˛/�.
(iv) By (3.21), mul.‚0

˛/ D ker.D/ (notice that we consider D as the operator
defined only on HV ;c and hence ker.D/ is not closed). On the other hand, (3.22)
implies that

mul.‚˛/ D ¹f 2 HV W PvDf D 0 for all v 2 Vº; (3.23)
and hence

mul.‚˛/ D mul.‚0
˛/ D mul.‚0

˛/:

Therefore, ‚0
˛ is densely defined on H

op
V

WD mul.‚˛/? and hence admits the decom-
position (A.1), that is,

‚0
˛ D ‚0

op ˚ ‚mul; ‚mul D ¹0º � mul.‚˛/; (3.24)

where ‚0
op is the graph of a densely defined closed symmetric operator acting in H

op
V

.
Next observe that

H
op
V

D mul.‚˛/? D ker.D/? D ran.D�/ D span¹fv
ºv2V ;

where fv D .fv
u/u2V 2 Hv is given by

fv
u D .fv

u;Ee
/
Ee2EEu

; fv
u;Ee

D

´p
r.e/; u D v;

0; u ¤ v:
(3.25)

By construction, fv ? fu whenever v ¤ u and

kfv
k

2
D

X
Ee2EEv

r.e/ D m.v/ (3.26)

for all v 2 V .
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Let us now show that fv 2 dom.‚0
˛/ for every v 2 V . It is straightforward to

calculate that

.PuC fv/u D .Pu. zC � zDQV /R�1
V fv/u

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
0; 0; : : : ; 0; ˛.v/ C

X
w2V

b.v; w/„ ƒ‚ …
deg.v/

�
; u D v;

�
0; 0; : : : ; 0;�b.u; v/„ ƒ‚ …

deg.u/

�
; u ¤ v; u � v;

0; u ¤ v; u 6� v;

where bWV � V ! Œ0;1/ is the weight function given by (3.6). For g 2 HV ;c we
have

.PuDg/u D .Pu
zDRVg/u D

�
0; 0; : : : ; 0;

X
Ee2EEu

p
r.e/ gu;Ee

„ ƒ‚ …
deg.u/

�
:

Therefore, define gv D .gv
u/u2V 2 H

op
V

by

gv
u D .

p
r.e//

Ee2EEu
�

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

m.v/

�
˛.v/ C

X
w�v

b.v; w/

�
; u D v;

�
b.u; v/

m.u/
; u ¤ v; u � v;

0; u ¤ v; u 6� v:

(3.27)

Clearly, this implies the equality

C fv
D Dgv;

and hence fv 2 dom.‚0
˛/ � dom.‚0

˛/. Moreover, (3.27) immediately implies that

gv
D

1

m.v/

�
˛.v/ C

X
u�v

b.u; v/

�
fv

�

X
u�v

b.u; v/

m.u/
fu

DW ‚0
opfv:

Noting that by construction the family .fv/v2V is an orthogonal basis in H
op
V

and
taking into account (3.26), the above equality implies that the operator part ‚0

op of
‚0

˛ is unitarily equivalent to the minimal operator zh0
˛ defined in `2.V/ by

.z�f /.v/ D
1p

m.v/

�X
u2V

b.v; u/

�
f .v/p
m.v/

�
f .u/p
m.u/

�
C

˛.v/p
m.v/

f .v/

�
(3.28)
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for each vertex v 2 V . More specifically, as usual we define the operator zh0
˛ in `2.V/

as the closure in `2.V/ of the pre-minimal operator

zh0
˛W dom.zh0

˛/ ! `2.V/;

f 7! z�f;

where dom.h0
˛/ WD Cc.V/. It remains to notice that the operators zh0

˛ and h0
˛ are uni-

tarily equivalent. Indeed, it is easy to verify that h0
˛ D U�1zh0

˛U, where

UW `2.V Im/ ! `2.V/;

f 7!
p

mf;
(3.29)

is an isometric isomorphism.

Remark 3.12. In fact, one can write down explicitly the isometric isomorphism
ˆW `2.V I m/ ! H

op
V

relating ‚
op
˛ and h0

˛ . Indeed, we proved that the collection of
vectors .fv/v2V given by (3.25) forms an orthogonal basis in H

op
V

. Moreover, their
norms are given by (3.26), which immediately implies that the map

ˆW `2.V Im/ ! H
op
V

;

a 7!

X
v2V

avfv; (3.30)

is an isometric isomorphism. In particular, this implies the following representation:

‚op
˛ D ¹. f̂; ˆh0

˛f / W f 2 dom.h0
˛/º: (3.31)

3.2.4 Proof of Theorem 3.1

Now we have all the ingredients to finish the proof of the main result of this section.
It is analogous to the proof of [68, Theorem 2.9] and we provide the details for the
sake of completeness.

Proof of Theorem 3.1. Consider the vertex-based boundary triplet …V . Using Propo-
sition 3.11, item (i) follows from Theorem A.4 (iii).

Next, observe that
He;max � ker.�0;e/ DW HF

e

is the Friedrichs extension of He;min D .He;max/�, and hence we conclude that

Hmax � ker.�0/ D
M
e2E

HF
e (3.32)

is the Friedrichs extension of Hmin D .Hmax/�. Moreover,

�.HF
e / D

²
�2n2

�.e/2
W n 2 Z�1

³
; (3.33)
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and hence

inf �.HF / D inf
e2E

inf �.HF
e / D inf

e2E

�2

�.e/2
D

�2

.supe2E �.e//2
: (3.34)

Now item (ii) follows from Theorem A.9 and Corollary 3.9; items (iii)–(iv) as
well as items (vi) and (viii) follow from Theorem A.7 by taking into account Corol-
lary 3.9; item (vii) follows from Theorem A.10.

Finally, (3.32) and (3.33) imply that the spectrum of HF is purely discrete if and
only if #¹e 2 E W �.e/ > "º is finite for every " > 0. Moreover, HF can be written
in the form (3.19) with ‚mul D ¹0º � HV . By Theorem A.4 (iv), the difference of
resolvents satisfies

.H˛ � i/�1
� .HF

� i/�1
2 S1

exactly when .‚˛ � i/�1 � .‚mul � i/�1 is a compact operator. It remains to notice
that .‚mul � i/�1 D OHV

.

We finish this section with the following remark.

Remark 3.13. Notice that (3.19) establishes a bijective correspondence between the
set Ext.Hmin/ of proper extensions of Hmin and the set of all linear relations in HV . In
fact, Theorem 3.1 extends to all operators H‚ and it relates basic spectral properties
of the self-adjoint extension H‚ and the corresponding boundary relation ‚ (see, e.g.,
[68, Theorem 2.9]). In particular, this would be helpful in the treatment of the case
when H0 has non-trivial deficiency indices (cf. Theorem 3.1 (ii)–(viii)) and this will
be done in the next section.

Remark 3.14. Remark 3.13 indicates that the machinery developed in this section
enables us to consider all possible (self-adjoint) vertex conditions (for instance, two
other important families are ı0-couplings and symmetrized ı0-couplings). Moreover,
one may include more general differential expressions including magnetic Schrö-
dinger operators. However, the main difficulty is the search for a suitable boundary
operator, which usually requires separate considerations, and then the study of its
properties (cf., e.g., [143, Section 5-6]). Let us mention that there are strong indi-
cations that one may connect spectral properties (in the sense of Theorem 3.1) of
magnetic Schrödinger operators on metric graphs with those of weighted magnetic
Schrödinger operators on graphs (see [35, Section 3.5]). Moreover, it seems to us that
one may also establish similar connections between Laplacians with ı0-couplings and
symmetrized ı0-couplings and “weighted” Hodge Laplacians on graphs, respectively,
signless Laplacians on graphs (cf. [181]). However, all these require separate consid-
erations and will be done elsewhere.
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3.3 Spectral properties: Metric graphs and models

We restrict ourselves to the case ˛ � 0, that is, in this section we shall consider
Kirchhoff Laplacians only. Our main aim now is to look at Corollary 3.2 from the
continuous-to-discrete perspective. Let .G ; �; �/ be a given weighted metric graph,
that is, G is a locally finite metric graph (as a metric space) and �, � are two edge
weights on G . With each model .V ; E; j � j; �; �/ of .G ; �; �/ we can associate
a weighted graph Laplacian

.�f /.v/ D
1

m.v/

X
u2V

b.v; u/.f .v/ � f .u//; v 2 V ; (3.35)

where m and b are defined by (3.5) and (3.6), respectively. Thus we have the min-
imal Kirchhoff Laplacian H0 on G and the family of minimal graph Laplacians h0

associated with the models of .G ;�;�/. In this situation Corollary 3.2 (i) immediately
implies the following results.

Corollary 3.15. Let .G ; �; �/ be a weighted metric graph and let H0 be the corre-
sponding minimal Kirchhoff Laplacian. Then:

(i) For each model of .G ; �; �/, the deficiency indices of H0 and h0 are equal,

n˙.H0/ D n˙.h0/: (3.36)

(ii) If H0 is self-adjoint, then h0 is self-adjoint for each model. And conversely,
H0 is self-adjoint exactly when h0 is self-adjoint for one (and hence for all)
models of .G ; �; �/.

In order to preserve the equivalences further, the next results require a careful
choice of a model, which motivates the following definition.

Definition 3.16. For a given model .V ; E; j � j; �; �/ of .G ; �; �/, the quantity ��.E/

defined by (3.2) is called the intrinsic size of the model. A model has finite intrinsic
size if ��.E/ < 1. Otherwise, .V ; E; j � j; �; �/ is called a model of infinite intrinsic
size.

A weighted metric graph .G ; �; �/ has finite intrinsic size if all its models are of
finite intrinsic size. Otherwise, .G ; �; �/ has infinite intrinsic size.

We define the essential intrinsic size of a given model with edge set E by

��
ess.E/ WD inf

zE

sup
e2EnzE

�.e/;

where the infimum is taken over all finite subsets zE of E .

Remark 3.17. A few remarks are in order.

(i) The above definition becomes transparent when � D �. Indeed, in this case
�.e/ D jej for all e 2 E and the intrinsic size of a model is simply the length
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of its “longest” edge, that is, ��.E/ D `�.E/, where

`�.E/ D sup
e2E

jej:

In particular, such a model has infinite intrinsic size exactly when there is
an arbitrarily long edge. Similarly,

��
ess.E/ D `�ess.E/ WD inf

zE

sup
e2EnzE

jej;

where the infimum is taken over all finite subsets zE of E .

(ii) The function r in (3.5) is given by (3.3) if the model has finite size and by
(3.4) if it has infinite size.

(iii) The definition of essential intrinsic size can be understood as follows. For
any compact subgraph zG � G and every " > 0, one can always find an edge
in E n zE whose intrinsic length is at least ��

ess.E/ � ". Moreover, for any
" > 0, there is a compact subgraph zG such that the intrinsic length of every
edge e 2 E n zE is smaller than ��

ess.E/C ". In particular, ��
ess.E/ D 0 means

that for any " > 0 there is a compact subgraph zG such that all edges in E n zE

have intrinsic length less than ".

Corollary 3.18. Let .G ; �; �/ be a weighted metric graph such that the correspond-
ing minimal Kirchhoff Laplacian H0 is self-adjoint, H0 D H. Then:

(i) The operator H is positive definite, �0.H/ > 0, if and only if there is a model
of finite intrinsic size such that the corresponding operator h is positive
definite, �0.h/ > 0.

(ii) We have �ess
0 .H/ > 0 exactly when there is a model of finite intrinsic size

such that �ess
0 .h/ > 0.

(iii) If .G ;�; �/ has infinite intrinsic size, then �0.H/ D �ess
0 .H/ D 0 and, more-

over, �0.h/ D �ess
0 .h/ D 0 for all models with finite intrinsic size.

(iv) The spectrum of H is purely discrete if and only if there is a model with zero
essential intrinsic size, ��

ess.E/ D 0 and the spectrum of the corresponding
graph Laplacian h is purely discrete.

(v) If there is a model with ��
ess.E/ > 0, then the essential spectrum of H is not

empty and, moreover, so is the essential spectrum of h for each model with
��

ess.
zE/ D 0.

Proof. By Corollary 3.15, h is self-adjoint, hD h0 for each model of a given weighted
metric graph. Moreover, the operators H and h are both non-negative. Then (i) and (ii)
follow immediately from Corollary 3.2 (iii)–(iv) since one can always find a model
with finite intrinsic size. The same argument together with Theorem 3.1 (v) proves
(iv)–(v).
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Thus it remains to show (iii). In fact, we only need to prove the first claim that

�0.H/ D �ess
0 .H/ D 0

if there is a model of infinite size. However, the Friedrichs extension HF has zero
spectral gap, see (3.34), and hence so does every non-negative self-adjoint restriction
of Hmax.2

Remark 3.19. Notice that one can always find a model with ��
ess.E/ D 0 by refining

(even if .G ; �; �/ has infinite intrinsic size). Indeed, for each model the edge set E is
countable and hence one can obtain a new model satisfying ��

ess.
zE/ D 0 by “cutting”

an edge into equally short pieces; then the next edge into shorter ones, and so on.

Let us stress the following fact. The above results demonstrate that a Kirchhoff
Laplacian shares some properties with the corresponding graph Laplacians for each
model (e.g., self-adjointness), however, for some properties the class of models must
be sufficiently good in a certain sense. For instance, strict positivity of spectra/essen-
tial spectra requires models having finite intrinsic size, ��.E/ < 1. Discreteness (that
is, compactness of resolvents) requires even a more refined choice (essential intrinsic
size must be zero, ��

ess.E/ D 0). On the other hand, Corollary 3.18 demonstrates that
if the set of models is in a certain sense too wide (for instance, there are models
having infinite size), then the corresponding Kirchhoff Laplacian cannot have the
required property (e.g., positive spectral gap). However, in the latter case the absence
of a required property is shared with all graph Laplacians arising from all reasonable
models.

We would like to finish with a result which sheds light on the situation when
the deficiency indices of H0 are non-trivial. However, first we need the following
useful fact.

Lemma 3.20. Let .G ; �; �/ be a weighted metric graph together with the minimal
Kirchhoff Laplacian H0. If n˙.H0/ > 0, then for each model the map

zh 7! zH D Hz‚ WD Hmax � ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 z‚º;

z‚ WD ‚mul ˚ ¹. f̂; ˆzhf / W f 2 dom.zh/º
(3.37)

is a bijection between the sets ExtS .h0/ and ExtS .H0/ of self-adjoint extensions
of h0 and H0. Here ¹HV ; �V

0 ; �V
1 º is the vertex-based boundary triplet defined in

Section 3.2.2, the map ˆ and the multivalued part ‚mul are given by (3.30) and,
respectively, (3.23).

Proof. The existence of a bijection is a trivial consequence of von Neumann’s formu-
las in view of (3.36), however, we would like to give another proof based on the use

2In fact, following line by line the argument of M. Solomyak in [196, Theorem 5.1], one
can show in this case that the whole semi-axis Œ0;1/ belongs to the spectrum of H.
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of the boundary triplets approach, which enables us to connect self-adjoint extensions
of H0 and h0 in a rather transparent way.

Take a self-adjoint extension zH 2 Ext.H0/ of H0. Then for a chosen model it
admits the representation (3.19), that is, there exists a self-adjoint linear relation z‚

in HV such that3

dom.zH/ D ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 z‚º: (3.38)

By Theorem A.4 (i), z‚ is a self-adjoint extension of the linear relation ‚0 param-
eterizing H0 via (3.20). As it was mentioned in the proof of Proposition 3.11, ‚0

admits the representation (3.24). Similarly, z‚ admits an analogous decomposition.
Moreover, the multivalued parts of ‚0 and z‚ coincides, that is, ‚mul D z‚mul, since
both ‚mul and z‚mul are self-adjoint relations (or since mul.‚0/ D mul.‚/). There-
fore, z‚op is a self-adjoint extension of ‚0

op in H
op
V

. Taking into account (3.31), every
self-adjoint extension of ‚0 has the form

z‚ D ‚mul ˚ ¹. f̂; ˆzhf / W f 2 dom.zh/º;

where zh is a self-adjoint extension of h0.

Remark 3.21. In fact, one can rewrite the map (3.37) in a more convenient form and
this will be done in Chapter 4 (see Lemma 4.7 below).

Lemma 3.20 provides us with a map establishing a one-to-one correspondence
between self-adjoint extensions of H0 and h0. It turns out that their spectral properties
are closely connected as well:

Theorem 3.22. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Suppose

n˙.H0/ > 0;

and zH 2 ExtS .H0/. If zh 2 ExtS .h0/ is the self-adjoint extension corresponding to zH
via (3.37). Then:

(i) zH is lower semibounded if and only if zh is lower semibounded.

(ii) zH is non-negative if and only if zh is non-negative.

(iii) The total multiplicities of negative spectra of zH and zh coincide,

��.zH/ D ��.zh/:

(iv) The spectrum of zH is purely discrete if and only if the model satisfies
��

ess.E/ D 0 and the spectrum of zh is purely discrete.

If additionally the corresponding model has finite intrinsic size, ��.E/ < 1, then:

(v) zH is positive definite if and only if zh is positive definite.

3Taking into account Theorem A.4, in fact z‚ is given by z‚D¹.�V
0

f;�V
1

f / W f 2dom.zH/º.
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(vi) If, in addition, the extension zH is lower semibounded, then �ess
0 .zH/ > 0

(�ess
0 .zH/ D 0) exactly when �ess

0 .zh/ > 0 (respectively, �ess
0 .zh/ D 0).

(vii) Moreover, the equivalence

zH�
2 Sp.L2/ ” zh�

2 Sp.`2/

holds for all p 2 .0; 1�. In particular, negative spectra of zH and zh are
discrete simultaneously.

The proof is an immediate corollary of Lemma 3.20 and Remark 3.13 and we
leave it to the reader.

Remark 3.23. In fact, Theorem 3.22 specifies the properties of the map (3.37) when
it is further restricted to certain subclasses of self-adjoint extensions. Namely, items
(i)–(iii) say that the map (3.37) is a bijection between the sets of semibounded/non-
negative/self-adjoint extensions. According to items (v) and (vi), (3.37) is a bijection
between self-adjoint extensions having a positive spectral gap/positive essential spec-
tral gap, however, only if the corresponding model of a weighted metric graph has
finite intrinsic size.

Remark 3.24 (Laplacians with ı-couplings). It is not difficult to notice that Lem-
ma 3.20 extends to the operator H0

˛ with ˛ 6� 0 in an obvious way. Taking into
account that the representation (3.37) is the key to prove Theorem 3.22, it is then
straightforward to see that the analog of Theorem 3.22 holds true for the operator H˛

with non-trivial ˛.

3.3.1 Historical remarks

The fact that the boundary triplets machinery is a convenient tool to investigate finite
and infinite metric graphs was realized in the 2000s (the literature is enormous and
we only refer to [35, 67, 182], which also contain further references). However, in
all these studies it was assumed that edge lengths admit a uniform positive lower
bound (infe2E �.e/ > 0 in our notation). Notice that in contrast to the finite intrinsic
size assumption (which can always be achieved by subdividing edges), this “uniform
positive lower bound” assumption, which is rather common in the quantum graph lit-
erature [25,182], is indeed a restriction. The main obstacle on this way is to construct
a boundary triplet for the maximal operator Hmax. A convenient approach to con-
struct such a triplet was proposed by M.M. Malamud and H. Neidhardt in [156] (see
Theorem A.11). This technique was applied in [143] to investigate one-dimensional
Schrödinger operators with local point interactions on discrete sets and then in [68]
to Laplacians on unweighted metric graphs (� D � � 1).



Chapter 4

Connections between parabolic properties

This chapter is dedicated to correspondences between Kirchhoff Laplacians and dis-
crete graph Laplacians on the level of Markovian extensions and parabolic properties
(e.g., recurrence, stochastic completeness, on-diagonal heat kernel estimates).

4.1 Markovian extensions

As in Section 3.3, let .G ; �; �/ be a weighted metric graph (as a metric space). The
discussion below is independent of the choice of a concrete model, however, one can,
of course, choose a model .V ;E; j � j;�;�/ and look then at .G ;�;�/ as its metric real-
ization. Let also H0 be the corresponding minimal Kirchhoff Laplacian in L2.G I�/.
We start by collecting some basic properties of Markovian extensions, that is, of self-
adjoint extensions whose quadratic form is a Dirichlet form (see Appendix B for
definitions and further facts). First of all, recall that H 1.G / is the weighted Sobolev
space defined by (2.20). When equipped with the graph norm (2.21), it turns into
a Hilbert space. It is clear that the energy form

QŒf � D

Z
G

jrf .x/j2�.dx/; (4.1)

when restricted to dom.QN /DH 1.G /, is a Dirichlet form on L2.G I�/ and hence the
corresponding Neumann Laplacian HN is a Markovian extension of H0. Moreover,
the quadratic form QD of the Friedrichs extension of H0, which coincides with the
Dirichlet Laplacian HD , is the restriction of Q to the subspace H 1

0 .G /. Recall that
H 1

0 .G / is defined as the closure of dom.H/ \ Cc.G / with respect to k � kH 1.G / and
hence QD is a regular Dirichlet form. It is well known that the Dirichlet and Neumann
Laplacians play a rather distinctive role among the Markovian extensions of H0.

Lemma 4.1. If zH is a Markovian extension of H0, then dom.zH/ � H 1.G / and

HN � zH � HD; (4.2)

where the inequalities are understood in the sense of forms.1 Moreover, the following

1We shall write A�B for two non-negative self-adjoint operators A and B if their quadratic
forms tA and tB satisfy dom.tB/ � dom.tA/ and tAŒf � � tB Œf � for every f 2 dom.tB/. The
latter is also equivalent to the fact that .A C I /�1 � .B C I /�1 is a positive operator.
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statements are equivalent:

(i) H0 admits a unique Markovian extension,

(ii) HD D HN ,

(iii) H 1
0 .G / D H 1.G /,

(iv) the Gaffney Laplacian HG is self-adjoint.

Proof. The proof of [99, Theorem 5.2] carries over to our setting (see also the proof
of [78, Theorem 3.3.1]).

An analogous result holds true for weighted graph Laplacians (see [99]). Namely,
fix a model .V ; E; j � j; �; �/ and let h0 be the graph Laplacian defined in `2.V Im/

by (3.7) with the coefficients (3.5) and (3.6) (notice that ˛ � 0). In most of this
chapter we are going to consider exactly this graph Laplacian, which is related to
the Kirchhoff Laplacian. We shall see in Chapter 6 that this is not at all a restriction.
Following the considerations in Section 2.2, we can introduce the Dirichlet hD and
the Neumann hN Laplacians. Namely, define the energy form by

qŒf� WD
1

2

X
u;v2V

b.u; v/jf.u/ � f.v/j2; (4.3)

with the edge weight

b.u; v/ D

8̂̂<̂
:̂

X
Ee2EEuWe2Ev

�.e/

jej
; u ¤ v;

0; u D v;

.u; v/ 2 V � V ; (4.4)

and denote by dom.qN / the space of all `2.V Im/-functions f such that qŒf� is finite.
Clearly, the restriction qN of q to dom.qN / is a Dirichlet form. The corresponding
self-adjoint operator hN is a Markovian extension of h0 and we refer to it as the Neu-
mann extension. Moreover, the Friedrichs extension hD is also a Markovian extension
of h0 and we call it the Dirichlet extension. Its quadratic form qD is obtained by
restricting qN to the domain dom.qD/, which is the closure of dom.h0/ with respect
to the graph norm

k � k
2
H 1.V/

WD qŒ � � C k � k
2
`2.V Im/

:

Let us also denote

H 1.V/ D H 1.V ; mI b/ WD dom.qN /;

H 1
0 .V/ D H 1

0 .V ; mI b/ WD dom.qD/:

The analog of Lemma 4.1 for the discrete operator h0 now reads (see [99, Theo-
rem 5.2]): If zh is a Markovian extension of h0, then dom.zh/ � H 1.V/ and

hN � zh � hD: (4.5)
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4.2 Brownian motion and random walks

The framework of Dirichlet forms relates the energy forms (4.1) and (4.3) with stoch-
astic processes (Brownian motions and, respectively, random walks) and we will
review certain connections known on this level. We will not need these stochastic
results in the sequel and hence restrict to a rather informal discussion. However, in
our opinion this viewpoint is conceptually important and gives a good motivation for
subsequent considerations.

We follow the setup in Section 4.1: .G ; �; �/ is a weighted metric graph and
QD is the corresponding (strongly local) Dirichlet form in L2.G /. Moreover, we fix
a model of .G ; �; �/ and consider the corresponding form qD in `2.V Im/ associated
with (4.3) and (4.4), where mW V ! .0; 1/ is the vertex weight (3.5). By defini-
tion, both QD and qD are regular Dirichlet forms and hence they correspond to two
stochastic processes .XG

t /t�0 and .XV
t /t�0 (see Remark B.3).

The stochastic process .XV
t /t�0 defined by qD is a continuous-time random walk

(see [12, Remark 5.7], [136, Sections 0.10 and 2.5] and [174] for details and further
information). Roughly speaking, a particle starting at some vertex v 2 V first waits
for a random waiting time, which is exponentially distributed with parameter

1

m.v/

X
u2V

b.u; v/ D Deg.v/; v 2 V (4.6)

(which is called the weighted degree in Section 2.2), and then jumps to a randomly
chosen vertex u 2 V . Here, the probability of jumping from v to u is given by

p.u; v/ D
b.u; v/P

u2V b.u; v/
; u; v 2 V : (4.7)

Repeating the same steps for the vertex u and continuing in this manner, we end up
with a continuous-time random walk. Notice that the expected waiting time of the
particle at the vertex v equals 1=Deg.v/. In particular, according to Lemma 2.9, the
boundedness of hD is equivalent to the existence of a uniform positive lower bound
for expected waiting times.

On the other hand, the stochastic process .XG
t /t�0 associated with QD is a

Brownian motion on a metric graph (see, e.g., [72, Section 2], [64, Section 2] and
[154, Section 2]). It admits the following informal description: assume that the parti-
cle starts at the vertex v 2 V . Let B D .Bt /t�0 denote the standard Brownian motion
on R started at the origin. For each excursion of B, we randomly pick an oriented
edge Ee 2 EEv with probability

P.v; Ee/ D
�.e/P

Ee2EEv
�.e/

; Ee 2 Ev:

The excursions are then performed successively in the corresponding edges e 2 Ev ,
starting from v (for a loop edge, the orientation of Ee needs to be taken into account),
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however with different speeds. Namely, if Ee1 is the first chosen edge, then in the first
excursion the particle is at position jB�.e1/t=�.e1/j instead of jBt j inside e1 and so
on. This is performed until we reach a new vertex u 2 V n ¹vº. Then we repeat the
construction with u as the starting vertex and continue in the same manner.

To make the connection between the two processes .XG
t /t�0 and .XV

t /t�0, we
briefly recall the results of [72]. Denote by T the first hitting time of the Brownian
motion, that is, the first time that the Brownian motion started at some vertex hits
a different vertex. Then the expected value of T , if the Brownian motion starts at
v 2 V , is given by (see [72, Theorem 2.2])

EvT D

P
Ee2EEv

jej�.e/P
w¤v

P
e2Ew\Ev

�.e/
jej

; v 2 V : (4.8)

Then the next natural question is which of the neighboring vertices gets hit at the
time T . By [72, Theorem 2.1], if the Brownian motion starts at v 2 V , then for each
u � v, u ¤ v, the probability of being this next vertex is precisely

P v.XG
T D u/ D

P
e2Eu\Ev

�.e/
jejP

w¤v

P
e2Ew\Ev

�.e/
jej

: (4.9)

Comparing (4.6) with (4.8) and (4.7) with (4.9), we see that if m is defined by
(3.5) with the weight r.e/ given by (3.3) and b by (3.6), they coincide. In fact, the
above discussion shows that to a certain extent the continuous-time random walk
associated with qD is a discretization of the Brownian motion defined by QD . This
can be taken as a first indication for connections between parabolic properties. How-
ever, we also stress that already the second moments of the hitting and waiting times
differ (see [72, Theorem 2.3]).

4.3 Correspondence between quadratic forms

A more straightforward approach to establish connections between weighted Kirch-
hoff Laplacians and weighted graph Laplacians is to compare their quadratic forms.
Fix a model .V ; E; j � j; �; �/ of .G ; �; �/ and consider the space of continuous edge-
wise affine functions on G ,

CA.G n V/ WD ¹f 2 C.G / W f je is affine for each edge e 2 Eº:

The importance of CA.G n V/ stems from the fact that it contains the kernel ker.H/

of the maximal Kirchhoff Laplacian H, as well as all harmonic functions on G , as
a subspace (see Section 6.5.2). Clearly, for each refinement of a given model the
corresponding space of edgewise affine functions is larger.
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Every function f 2CA.G nV/ can be identified with its values f jV D .f .v//v2V

at the vertices. Conversely, we can identify each f2C.V/ with a continuous edgewise
affine function f 2 CA.G n V/ such that f D f jV D .f .v//v2V . This suggests to
define the map

{V WC.G / ! C.V/;

f 7! f jV :
(4.10)

Notice that this map is linear. Moreover, it is bijective when restricted to CA.G n V/.
In the following we shall denote by {�1

V
the inverse of its restriction to CA.G n V/.

Clearly, when restricted to bounded edgewise affine functions, {V is a bijection onto
`1.V/. The situation is not so trivial when 1 � p < 1, as the next result shows.
Recall that (see Definition 3.16) a model of a weighted metric graph has finite intrinsic
size if

��.E/ D sup
e2E

�.e/ D sup
e2E

jej

s
�.e/

�.e/
< 1: (4.11)

Moreover, we define the vertex weight m by (3.5) with r given by (3.3) for models
having finite intrinsic size and by (3.4) otherwise.

Lemma 4.2. If f 2CA.G nV/\Lp.G I�/, 1�p <1, then fD {V .f /2 `p.V Im/,
where m is the vertex weight (3.5), (3.3)–(3.4). If additionally the underlying model
has finite intrinsic size, then the inclusion f 2 `p.V Im/ implies that the corresponding
continuous edgewise affine function f D {�1

V
.f/ belongs to Lp.G I�/ and, moreover,

kf k
p

Lp.G I�/
� kfkp

`p.V Im/
� 4p

kf k
p

Lp.G I�/
: (4.12)

Proof. Consider the case p D 1 first. Then

`

4
.jf .0/j C jf .`/j/ �

Z `

0

jf .x/j dx �
`

2
.jf .0/j C jf .`/j/; (4.13)

for each affine function on 	` D Œ0; `� and hence

kf kL1.G I�/ D

Z
G

jf .x/j�.dx/ D
X
e2E

Z
e

jf .x/j�.dx/

�
1

4

X
e2E

jej�.e/.jf .e{/j C jf .e� /j/;

whenever f 2 CA.G n V/. However, by (3.3)–(3.4),

r.e/ � jej�.e/ (4.14)

for all e 2 E , and hence (3.5) implies the estimate

kf kL1.G I�/ �
1

4
k{V .f /k`1.V Im/ D

1

4
kfk`1.V Im/:
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The case p > 1 easily follows from the above considerations. Indeed, applying
Hölder’s inequality to the left-hand side in (4.13) together with the simple inequality

.a C b/p
� ap

C bp; a; b;� 0; p � 1;

we get from (4.13) the following estimate for edgewise affine functions:

4p

Z
e

jf .x/jp�.dx/ � jej�.e/.jf .e{/j
p
C jf .e� /jp/; e 2 E:

Summing up over all edges and taking into account (4.14), we finally arrive at the
estimate

4p
kf k

p

Lp.G I�/
� k{V .f /k

p

`p.V Im/
D kfkp

`p.V Im/
:

This proves the first claim as well as the second inequality in (4.12).
Assume now that the model has finite intrinsic size. Then r is defined by (3.3)

and hence for f D {�1
V

.f/ 2 CA.G n V/ we get

kf k
p

Lp.G /
D

X
e2E

Z
e

jf .x/jp�.dx/

�

X
e2E

jej�.e/ max
x2e

jf .x/jp

�

X
e2E

jej�.e/.jf .e{/j
p
C jf .e� /jp/

�

X
v2V

jf.v/jpm.v/ D kfkp

`p.V Im/
:

This clearly implies the first estimate in (4.12) and finishes the proof.

Remark 4.3. A few remarks are in order.

(i) Considering CA.G n V/ \ Lp.G I �/ as a Banach space with the corre-
sponding Lp norm, the above result actually says that {V is a bounded
linear operator from CA.G nV/\Lp.G I�/ to `p.V Im/ for all 1� p <1

(however, for p D1 this claim is trivial) and this is true for each model of
a given weighted metric graph. However, this map has a bounded inverse
exactly when the model has finite intrinsic size.

(ii) The estimate in (4.12) is not optimal. In particular, in the case p D 2 the
arguments from [68, Remark 3.8] (see also [149, Section 2.5]) show that

2kf k
2
L2.G I�/

� kfk2
`2.V Im/

� 6kf k
2
L2.G I�/

;

for any model of finite intrinsic size (for models of infinite intrinsic size,
only the second inequality is valid).
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(iii) Let us also mention that if f 2 CA.G nV/ is non-negative, f � 0, then the
second inequality in (4.13) turns into equality. Therefore, if the underlying
model has finite intrinsic size, we end up with the equality

kf kL1.G I�/ D
1

2
k{V .f /k`1.V Im/ D

1

2
kfk`1.V Im/ (4.15)

for all 0 � f 2 CA.G n V/ \ L1.G I�/.

The crucial fact for our further considerations is the observation that the above
results can be extended to the H 1 setting:

Corollary 4.4. If f 2 CA.G n V/ \ H 1.G /, then f D {V .f / belongs to H 1.V/ and

QŒf � D qŒf�: (4.16)

Conversely, if f 2 H 1.V/ and the underlying model has finite intrinsic size, then
f D {�1

V
.f/ 2 H 1.G /.

Proof. Taking into account the relationship established in Lemma 4.2, we only need
to mention that for f 2 CA.G n V/ the energy forms (4.1) and (4.3) coincide upon
identification (4.10):

QŒf � D

Z
G

jrf .x/j2�.dx/

D

X
e2E

Z
e

jrf .x/j2�.dx/

D

X
e2E

�.e/

jej
jf .e{/ � f .e� /j2

D
1

2

X
u;v2V

b.v; u/jf.v/ � f.u/j2 D qŒf�:

Every continuous function f on G can be uniquely decomposed as

f D flin C f0; (4.17)

where both flin and f0 are continuous functions on G , however, flin is edgewise affine
on G , flin 2 CA.G n V/ and f0 vanishes at all vertices, that is,

flinjV D f jV ; f0jV D 0:

Notice also the following identity flin D .{�1
V

ı {V /.f / in terms of (4.10). Now we
are in a position to state the key technical result connecting the energy forms (4.1)
and (4.3). For convenience matters, let us introduce the following notation:

H 1
0 .G n V/ D ¹f 2 H 1.G / W f jV D 0º:
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Lemma 4.5. Let f 2 H 1.G / and consider its decomposition (4.17). If (4.11) is sat-
isfied, then f0 2 H 1

0 .G n V/, flin 2 H 1.G / and

QŒf � D QŒflin� C QŒf0�: (4.18)

Moreover, f D {V .f / belongs to H 1.V/ and

QŒflin� D qŒf�:

Proof. A straightforward edgewise integration by parts gives

QŒf � D
X
e2E

Z
e

jrf .x/j2�.dx/

D

X
e2E

Z
e

jrflin.x/j2 C jrf0.x/j2 �.dx/

D

Z
G

jrflin.x/j2�.dx/ C

Z
G

jrf0.x/j2�.dx/ D QŒflin� C QŒf0�:

The latter implies that if f is continuous and has finite energy (i.e., it is edgewise
in H 1 and QŒf � < 1), then both summands on the right-hand side in (4.17) have
finite energy. In particular, (4.18) holds for all continuous edgewise H 1 functions
on G .

Taking into account the trivial estimateZ jej

0

jf .x/j2 dx �
jej2

�2

Z jej

0

jf 0.x/j2 dx;

which holds for any f 2 H 1
0 .Œ0; jej�/, we get

kf0kL2.G I�/ �
��.E/

�
krf0kL2.G I�/: (4.19)

Therefore, f0 2 L2.G I�/ whenever (4.11) holds true and f0 has finite energy. This
immediately implies that flin 2 H 1.G / if so is f and (4.11) holds. It remains to apply
Corollary 4.4.

Remark 4.6. The constant in (4.19) is optimal since so are the corresponding con-
stants in one-dimensional inequalities for H 1

0 functions (see also (3.33)).

To emphasize the role of the map (4.10), let us provide another way to write down
the correspondence between self-adjoint extensions of the minimal Kirchhoff Laplac-
ian H0 and the corresponding minimal graph Laplacian h0established in Lemma 3.20.
For a self-adjoint extension zH 2 ExtS .H0/ of H0 define the operator zh in `2.V Im/

by setting

zh WD h � dom.zh/; dom.zh/ D ¹{V .f / W f 2 dom.zH/º; (4.20)

where h D .h0/� is the maximal graph Laplacian.
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Lemma 4.7. Let H0 be the minimal Kirchhoff Laplacian with possibly non-trivial
deficiency indices, n˙.H0/ � 0. If zH 2 ExtS .H0/, then the operator zh defined by
(4.20) is a self-adjoint extension of h0. Moreover, the induced map

ExtS .H0/ ! ExtS .h0/;

zH 7! zh
(4.21)

is a bijection. The inverse image of a self-adjoint extension zh of h0 is the extension

zH WD H � dom.zH/; dom.zH/ D ¹f 2 dom.H/ W {V .f / 2 dom.zh/º: (4.22)

Proof. First of all, let us show that the map is well defined, that is, zh is indeed a self-
adjoint restriction of h. Recall that zH admits the representation (3.38) and, moreover,
by Lemma 3.20, there is a self-adjoint extension yh 2 ExtS .h0/ such that

z‚ D ‚mul ˚ ¹. f̂; ˆyhf / W f 2 dom.yh/º:

The Kirchhoff conditions at vertices imply that (see (3.13) and (3.25), (3.30))

�V
0 f D

X
v2V

f .v/fv
D ˆ.{V .f // (4.23)

for all f 2 dom.H/. Therefore, by (3.38),

dom.yh/ D ˆ�1.dom.z‚// D dom.zh/:

Thus, by (4.20), we have zh D yh 2 ExtS .h0/. Moreover, this also implies that the map
(4.21) coincides with the inverse of the map (3.37) and hence (4.21) is a bijection by
Lemma 3.20.

It remains to prove the last claim. However, by definition, we have

dom.zH/ � ¹f 2 dom.H/ W {V .f / 2 dom.zh/º

D ¹f 2 dom.Hmax/ W .�V
0 f; �V

1 f / 2 ‚; {V .f / 2 dom.zh/º:

Taking into account the decomposition

‚ D ‚mul ˚ ¹.ˆf; ˆ hf/ W f 2 dom.h/º;

as well as (4.23), it is clear that (4.22) coincides with (3.37), which proves the claim.

Remark 4.8. Since the map (4.20)–(4.21) coincides with the inverse of the map
(3.37), Theorem 3.22 (see also Remark 3.23) implies that (4.20) remains to be a bijec-
tion when it is further restricted to certain subclasses of self-adjoint extensions (e.g.,
semibounded, non-negative, etc.).

It turns out that the simple correspondence in Lemma 4.7 also prevails on the
level of quadratic forms.
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Corollary 4.9. Suppose that zH 2 ExtS .H0/ is a self-adjoint extension of H0 and let
zh 2 ExtS .h0/ be the self-adjoint extension of h0 defined by (4.20). Then

hzHf; f iL2.G I�/ D hzh f; fi`2.V Im/ C

Z
G

jrf0.x/j2 �.dx/ (4.24)

for all f 2 dom.zH/, where f D {V .f / and f0 is the function defined by (4.17). In
particular, f0 has finite energy, QŒf0� D krf0k

2
L2.G I�/

< 1 for every f 2 dom.zH/.

Proof. Take f 2 dom.zH/ and consider f D {V .f /, which belongs to dom.zh/ by def-
inition. Using the same notation as in the proof of Lemma 3.20 and Lemma 4.7, we
conclude from (4.23) that

hzh f; fi`2.V Im/ D hzhˆ�1�V
0 f; ˆ�1�V

0 f i`2.V Im/

D h�V
1 f; �V

0 f iHV

D h�E
1 f; �E

0 f iHE
:

Here, …E and …V denote the edge-based and vertex-based boundary triplets intro-
duced in Theorem 3.5 and Corollary 3.8 in Section 3.2.2. Decompose f 2 dom.zH/

as f D f0 C flin (see (4.17)). A straightforward edgewise integration by parts gives
(see (3.10))

hzHf; f iL2.G / D

X
e2E

�h�f; f iL2.eI�/

D

X
e2E

h�1;ef; �0;ef iC2 C hrf0;rf iL2.eI�/

D

X
e2E

h�1;ef; �0;ef iC2 C

X
e2E

hrf0;rf iL2.eI�/

D h�E
1 f; �E

0 f iHE
C

X
e2E

hrf0;rf iL2.eI�/:

Notice that we can rearrange sums. Indeed, both .�0;ef /e2E and .�1;ef /e2E belong
to HE by Theorem 3.5 and hence the first sum is absolutely convergent. Taking into
account that f0 vanishes on V , we get

hrf0;rf iL2.eI�/ D hrf0;rf0iL2.eI�/ � 0

for all e 2 E , which implies that the second series is also absolutely convergent and
equals the energy QŒf0� of f0. This finishes the proof of equality (4.24).

Remark 4.10. Notice that Theorem 3.1 (i) states that the sets of self-adjoint exten-
sions of H0 and h0 are in one-to-one correspondence and the concept of boundary
triplets provides the explicit correspondence which, however, requires a construction
of a suitable boundary triplet. From this perspective, Lemma 4.7 and Corollary 4.9
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connect self-adjoint extensions via quadratic forms and this approach has its roots in
the pioneering works of M. G. Krein, M. I. Vishik and M. S. Birman in the 1950s on
boundary value problems for elliptic PDEs (see, e.g., [56] for more details). However,
let us emphasize that the decomposition (4.24) is usually established under the addi-
tional assumption that the corresponding symmetric operator is uniformly positive,
see [158, f-la (25)] (in our setting this would mean that the Dirichlet Laplacian HD

has positive spectral gap).

4.4 Correspondence between Markovian extensions

According to (4.2) and (4.5), the sets ExtM .H0/ and ExtM .h0/ of Markovian exten-
sions are nonempty. Lemma 3.20 as well as Lemma 4.7 show that first of all, the
sets of self-adjoint extensions ExtS .H0/ and ExtS .h0/ are in bijection, and, what is
more important, each self-adjoint extension of h0 can be seen as a boundary operator
parameterizing the corresponding self-adjoint extension of H0. The further corre-
spondence between their spectral properties indicates that one can hope that (4.20)
and (4.21) induce a bijection between the sets ExtM .H0/ and ExtM .h0/ and we shall
see that this is indeed the case.

It turns out that the correspondence between Markovian extensions can be con-
veniently explained using the notion of extended Dirichlet spaces (see Appendix B.3
for details) and we need to introduce the following function spaces. Let .G ; �; �/

be a weighted metric graph together with a fixed model. Recall that the energy of
a continuous, edgewise H 1-function f WG ! C is given by

QŒf � WD krf k
2
L2.G I�/

D

Z
G

jrf .x/j2 �.dx/: (4.25)

The space of functions of finite energy is defined as

PH 1.G / WD ¹f 2 C.G / W f je 2 H 1.e/ for all e 2 E; QŒf � < 1º;

and its subspace of functions vanishing on the vertex set is denoted by PH 1
0 .G n V/,

PH 1
0 .G n V/ WD ¹f 2 PH 1.G / W {V .f / � 0º:

Let us stress at this point that in contrast to the Sobolev space H 1.G / we do not
require f to belong to L2.G I�/ (for example, 1 always belongs to PH 1.G /, however,
1 2 H 1.G / exactly when �.G / < 1).

Since PH 1.G / � C.G /, each f 2 PH 1.G / can be decomposed into f D flin C f0

as in (4.17) and, moreover, we easily get (see the proof of Lemma 4.5)

QŒf � D QŒflin� C QŒf0�; (4.26)
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which implies that flin 2 PH 1.G / and f0 2 PH 1
0 .G n V/ whenever f 2 PH 1.G /. More-

over, the calculations in the proof of Corollary 4.4 imply that

QŒflin� D qŒf� D
1

2

X
u;v2V

b.v; u/jf.v/ � f.u/j2;

where f D {V .f / D {V .flin/. In particular, this means that a function f 2 C.V/ has
finite energy, qŒf� < 1 exactly when the corresponding edgewise affine function
flin D {�1

V
.f/ 2 CA.G n V/ has finite energy. In contrast to the usual Sobolev space

H 1.G /, the above decomposition holds for all models of a given metric graph (see
Lemma 4.5) and exactly this fact makes the use of extended Dirichlet spaces very
convenient. In particular, a similar decomposition holds for all Markovian extensions
and the corresponding extended Dirichlet spaces.

Lemma 4.11. Let zH be a Markovian extension of the minimal Kirchhoff Laplacian
H0 and zQeWdom. zQe/ ! Œ0;C1/ the corresponding extended Dirichlet form. Then:

(i) dom. zQe/ � PH 1.G /.

(ii) PH 1
0 .G n V/ � dom. zQe/ and for each f0 2 PH 1

0 .G n V/

zQeŒf0� D QŒf0�:

(iii) Each f 2 dom. zQe/ has an approximating sequence .fn/n � dom.zH/.

(iv) If f D flin C f0 2 dom. zQe/, then flin 2 dom. zQe/, f0 2 PH 1
0 .G n V/ and

zQeŒf � D zQeŒflin� C QŒf0�:

Proof. (i) By Lemma 4.1, HN � zH. Moreover, it is easy to observe that the extended
Dirichlet space for QN is contained in PH 1.G /, which implies the desired inclusion.

(ii) For each f0 2 PH 1
0 .G n V/ there exists a sequence .fn/n � dom.H/ \ Cc.G /

such that each fn vanishes in a neighborhood of all vertices and

lim
n!1

QŒf0 � fn� D 0:

The claim now follows easily from Corollary 4.9.
(iii) This is an immediate consequence of the fact that dom.zH/ is a core of

dom. zQ/ and convergence in the graph norm of zQ implies uniform convergence on
compact subsets of G .

(iv) Take f D flin C f0 2 dom. zQe/. By (i), f0 2 PH 1
0 .G n V/ and hence (ii) im-

plies that flin 2 dom. zQe/. By (iii), pick an approximating sequence .fn/n � dom.zH/

for f with fn D fn;0 C fn;lin for each n. By the proof of (ii), there exists an approxi-
mating sequence .gn/n � dom.H/ \ Cc.G / for f0 such that gnjV � 0. Corollary 4.9
implies that .fn;0/n and .gn/n are Q-Cauchy sequences. Moreover, it is straightfor-
ward to show that

lim
n!1

QŒf0 � fn;0� D lim
n!1

QŒf0 � gn� D 0:
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Since .fn � gn/n is an approximating sequence for flin, by Corollary 4.9 we get

zQŒflin� D lim
n!1

hzh fn; fni C QŒfn;0 � gn�

D lim
n!1

hzh fn; fni C QŒfn;0� � QŒfn;0�

D zQŒf � � QŒf0�:

This completes the proof of Lemma 4.11.

Now we are in a position to state the main result of this section.

Theorem 4.12. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Then the map defined by (4.20) induces a bijection

ExtM .H0/ ! ExtM .h0/;

zH 7! zh:

Proof. By Lemma 4.7, the map (4.20) is a bijection between ExtS .H0/ and ExtS .h0/

and hence we only need to show that zH 2 ExtS .H0/ is Markovian exactly when so is
the corresponding zh 2 ExtS .h0/. We divide the proof into several steps.

(i) First suppose that zH 2 ExtM .H0/ and zh 2 ExtS .h0/ is defined by (4.20) with
the corresponding quadratic form zq in `2.V Im/. Let us show that zh is also Markovian.
Define the quadratic form

yqeŒf� WD zQeŒ{�1
V .f/�; f 2 dom.yqe/ WD ¹f 2 C.V/ W {�1

V .f / 2 dom. zQe/º; (4.27)

and also its `2.V Im/ restriction (compare with (B.3))

yq WD yqe � dom.yq/; dom.yq/ D dom.yqe/ \ `2.V Im/: (4.28)

Here zQe is the extended Dirichlet form of zQ. It is straightforward to prove that
yq is closed, which basically follows from the fact that zQe is closed under taking
a.e. pointwise limits of zQe-Cauchy sequences. Moreover, yq inherits the Markovian
property from zQe . Indeed, take f 2 dom.yq/ and pick a normal contraction 'WC ! C.
Then f D {�1

V
.f/ 2 dom. zQe/ and hence ' ı f D {V .' ı f / belongs to dom.yq/ since

zQe is Markovian (see Appendix B.3). Moreover, Lemma 4.11 implies

yqŒ' ı f� D yqeŒ' ı f� D zQeŒ{�1
V .' ı f/�

� zQeŒ' ı f � � zQeŒf � D zQeŒ{�1
V .f/� D yqŒf�:

Thus, yq is a Dirichlet form in `2.V Im/ and the corresponding self-adjoint operator yh
is Markovian. Hence to prove the claim it suffices to show that yh D zh (or equivalently
that yq D zq).

First of all, (4.20) implies that dom.zh/ � dom.yq/ and zq D yq on dom.zh/ by Corol-
lary 4.9. Therefore, zh � yh.
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To prove the converse, observe that yh 2 ExtS .h0/. Indeed, take f 2 dom.h0/ and
g 2 dom.yq/ and then pick an f 2 dom.H0/ with {V .f / D f and an approximat-
ing sequence .gn/n � dom.zH/ for g WD {�1

V
.g/ 2 dom. zQe/ \ CA.G n V/. Then by

Lemma 4.11 (iv),

yqŒf; g� D zQeŒ{�1
V .f /; {�1

V .g/� D zQeŒf; {�1
V .g/�

D lim
n!1

zQŒf; gn� D lim
n!1

hH0f; gniL2 :

Since zH � HN (see Lemma 4.1), it follows that gn converges to g uniformly on
compact subsets of G . Using integration by parts and (4.26),

yqŒf; g� D hH0f; giL2 D QŒf; g� D qŒf; g� D hh0f; gi`2 ;

which shows that h0 � yh and hence yh 2 ExtS .h0/.
Let yH be the non-negative self-adjoint extension of H0 corresponding to yh via

(4.20). Again, we infer from Lemma 4.7, Lemma 4.11 (iv) and Corollary 4.9 that (see
also (B.3))

dom.yH/ � dom. zQe/ \ L2.G I�/ D dom. zQ/

and that yQ D zQ on dom.yH/. This implies that yH � zH. However, the map between
non-negative extensions of H0 and h0 is monotonic (this can easily be deduced from
Krein’s resolvent formula (A.5)), that is, zH1 � zH2 exactly when zh1 � zh2. Hence we
conclude that yh D zh.

(ii) It remains to show that zH is a Markovian extension of H0 if zh is a Markovian
extension of h0. The proof essentially consists in reversing the construction of the
previous step. More precisely, we define the quadratic form

yQeŒf � WD zqeŒ{V .f /� C QŒf0�;

f 2 dom. yQe/ WD ¹g 2 PH 1.G / W {V .g/ 2 dom.zqe/º;
(4.29)

and consider its restriction

yQ WD yQe � dom. yQ/; dom. yQ/ D dom. yQe/ \ L2.G I�/: (4.30)

Similar to the previous step, it turns out that yQ is a Dirichlet form in L2.G I�/ and
the associated operator coincides with zH, that is, yH D zH. Let us only prove that
yQ verifies the Markovian property (B.1) since the other claimed properties can be
verified without difficulty analogous to the previous step and we omit the details.

Take f 2 yQ and pick a normal contraction 'WC ! C. By [133, Theorem 3.12]
(see also (4.5)), the difference zqe � q satisfies the Markovian condition (B.1) on
dom.zqe/. Setting f WD {V .f /, we see that

{V .' ı f / D ' ı f
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and in particular ' ı f 2 dom.zq/. Moreover, it follows from (4.26) that

yQŒf � D zqeŒf� C QŒf0� D zqeŒf� C QŒf � � QŒ{�1
V .f/� D zqeŒf� � qŒf� C QŒf �

� .zqe � q/Œ' ı f� C QŒ' ı f � D yQŒ' ı f �;

which shows that yQ is Markovian.

The proof of Theorem 4.12 in fact contains the following transparent correspon-
dence between the extended Dirichlet forms (see (4.27)–(4.28) and (4.29)–(4.30)).

Corollary 4.13. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
Let also zH be a Markovian extension of H0 and consider the associated Markov-
ian extension zh of h0 defined by (4.20). The domains of the corresponding extended
Dirichlet forms zQe and zqe are related by

dom.zqe/ D ¹{V .f / W f 2 dom. zQe/º;

dom. zQe/ D ¹f 2 PH 1.G / W {V .f / 2 dom.zqe/º:

Moreover, for every function f 2 dom. zQe/,

zQeŒf � D zqeŒ{V .f /� C QŒf0�:

However, the above correspondence cannot be extended to the Dirichlet forms
(and form domains) without further restrictions on the underlying model.

Corollary 4.14. Let .G ;�; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let zH 2 ExtM .H0/ and zh 2 ExtM .h0/ be given by (4.20).
Then the corresponding Dirichlet forms zQ and zq are connected by

zqŒf� D zQŒ{�1
V .f/�; f 2 dom.zq/ D ¹{V .f / W f 2 dom. zQ/º;

and
dom. zQ/ D ¹{�1

V .f/ C f0 W f 2 dom.zq/; f0 2 H 1
0 .G n V/º;

zQŒf � D zqŒf� C QŒf0�; f D {�1
V .f/ C f0 2 dom. zQ/:

Proof. Taking into account (B.3), the proof is a straightforward combination of
Corollary 4.13, Lemma 4.11 and Lemma 4.5.

Remark 4.15. It is easy to show that under the finite intrinsic size assumption (4.11),
Corollary 4.14 holds true for non-negative extensions zH2ExtCS .H0/ and zh2ExtCS .h0/

as well. However, we restrict to the special case of Markovian extensions for the sake
of a streamlined exposition.

Remark 4.16. The results of the present section remain valid for Laplacians with
ı-couplings H0

˛ (see Section 2.4.3) and their associated discrete Laplacians h0
˛ (see

(3.7) and Theorem 3.1), of course under the additional assumption that all strengths
are non-negative, that is, ˛WV ! Œ0;1/.
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4.5 Recurrence/transience

As it was explained in Section 4.2, the connection between a Brownian motion on
a metric graph and a continuous time random walk on a graph indicates a connection
between the corresponding heat semigroups. The main tool to confirm this intuition
is the close relationship between the energy forms established in the previous sec-
tions. We begin with the study of recurrence and transience (see Appendix B.2 for
definitions and further references).

Theorem 4.17. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Let also zH be a Markovian extension of H0 and zh the corresponding Markovian
extension of h0 (see Theorem 4.12). Then the heat semigroup .e�

zHt /t>0 is recurrent
(respectively, transient) if and only if the semigroup .e�

zht /t>0 is recurrent (respec-
tively, transient).

Proof. The claim follows immediately from the recurrence characterization by means
of extended Dirichlet spaces (see Lemma B.7) and the relationship between extended
Dirichlet spaces established in Corollary 4.13. Notice also that G (and hence Gd for
each model of G ) is connected and hence the corresponding Dirichlet form is irre-
ducible, which implies the recurrence/transience dichotomy.

Remark 4.18. Let us stress that recurrence/transience is independent of the choice
of a model of a weighted metric graph (one may even allow models having infinite
intrinsic size). So, the situation is analogous to the self-adjoint uniqueness (cf. Corol-
lary 3.15): If .e�

zHt /t>0 is recurrent, then .e�
zht /t>0 is recurrent for all models of

.G ; �; �/. And conversely, .e�
zHt /t>0 is recurrent if .e�

zht /t>0 is recurrent for one
(and hence for all) models of .G ; �; �/.

Remark 4.19. A similar approach connecting recurrence/transience on graphs and
metric graphs was suggested in [97, Chapter 4].

For the two extremal Markovian extensions, the Dirichlet and Neumann Laplac-
ians HD and HN , we obtain the following characterizations.

Corollary 4.20. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
The following statements are equivalent for the Neumann Laplacian HN :

(i) .e�HN t /t>0 is recurrent.

(ii) .e�hN t /t>0 is recurrent.

(iii) 1 2 dom.Qe
N /, where dom.Qe

N / is the extended Dirichlet space of QN .

(iv) dom.Qe
N / D PH 1.G /.

Proof. Since 1 2 PH 1.G /, in view of Theorem 4.12, Theorem 4.17 and Lemma B.7,
we only need to prove the implication (iii)) (iv). The arguments leading to their
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proofs are well known (see, e.g., [136, Proposition 6.11]), however, we repeat them
for the sake of completeness.

Suppose (iii) holds true and let .fn/n � H 1.G / be an approximating sequence
for 1, that is, limn!1 fn.x/ D 1 for a.e. x 2 G and limn!1 QŒfn� D 0. Replacing
fn by zfn WD 0 _ Re.fn/ ^ 1, if necessary, we can assume that 0 � fn � 1. Suppose
also that g 2 PH 1.G / is bounded. Then gn WD fng belongs to H 1.G / as well for all
n 2 Z�0. Moreover, the sequence .gn/n converges to g pointwise a.e. on G and

lim
n!1

QŒg � gn� � lim
n!1

2kgk2
1QŒfn� C 2

Z
G

.1 � fn/2
jrgj2�.dx/ D 0:

Hence every bounded function g 2 PH 1.G / belongs to dom.Qe
N / and satisfies

Qe
N Œg� D QŒg�:

On the other hand, for every (real-valued) function g 2 PH 1.G /, the sequence defined
by

gn WD .�n/ _ gn ^ n; n 2 Z�0;

converges pointwise to g and, moreover, limn!1 QŒg � gn� D 0. In particular, it
follows that (iv) holds true.

In the case of Dirichlet Laplacians, the characterization looks slightly differently.
If H0 admits a unique Markovian extensions, then HD coincides with HN and in
this case the above characterization applies. It turns out that Markovian uniqueness is
necessary for .e�HD t /t>0 to be recurrent.

Corollary 4.21. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
The following statements are equivalent for the Dirichlet Laplacian HD:

(i) .e�HD t /t>0 is recurrent.

(ii) .e�hD t /t>0 is recurrent.

(iii) 1 2 dom.Qe
D/, where dom.Qe

D/ is the extended Dirichlet space of QD .

(iv) dom.Qe
D/ D PH 1.G /.

(v) HD D HN and dom.Qe
D/ D PH 1.G /.

Proof. Clearly, we only need to prove that HD D HN if .e�HD t /t>0 is recurrent.
However, QD is a regular Dirichlet form and the corresponding fact connecting
recurrence and Markovian uniqueness is rather well known (see, e.g., [98, Theo-
rem 5.20]).

Remark 4.22. A few remarks are in order.

(i) Let us stress that Markovian uniqueness is not necessary for the Neumann
Laplacian to be recurrent. Intuitively, this is explained by the fact that
Neumann boundary conditions are considered as a reflecting boundary.
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On the other hand, one can easily construct simple examples (see, e.g.,
Lemma 5.13).

(ii) For the Kirchhoff Laplacian H˛ with nonzero ˛ � 0 (which is equivalent to
the presence of a nonzero killing term for h˛) the corresponding Dirichlet
form is always transient.

(iii) As in the manifold case (see, e.g., [90]), transience/recurrence for both
Kirchhoff Laplacians and graph Laplacians admits several equivalent refor-
mulations in terms of harmonic and subharmonic functions. We shall return
to this issue in Section 7.4.

4.6 Stochastic completeness

The preceding sections suggest a connection between stochastic completeness of
the Kirchhoff Laplacian H on a weighted metric graph .G ; �; �/ and its associated
discrete Laplacian h on a fixed model. In fact, the results of [72, 114] imply that
(assuming the model has finite intrinsic size and, for simplicity, that H and h are
self-adjoint2)

.e�tH/t>0 stochastically complete H) .e�th/t>0 stochastically complete: (4.31)

It can be shown by examples that the converse direction fails (even for models of
finite intrinsic size). However, we are going to show that equivalence holds true in
(4.31) if the corresponding model is in a certain sense fine enough.

Theorem 4.23. Let .G ; �; �/ be a weighted metric graph with a fixed model of finite
intrinsic size. Let zH 2 ExtM .H0/ be a Markovian extension of H0 together with the
corresponding extension zh 2 ExtM .h0/ defined on `2.V Im/ by (4.20).

(i) If .e�t zH/t>0 is stochastically complete, then .e�tzh/t>0 is stochastically
complete.

(ii) If .e�tzh/t>0 is stochastically complete and the model additionally satisfiesX
e2E

�.e/
p
jej�.e/ < 1; (4.32)

then .e�t zH/t>0 is stochastically complete.

Notice that one can always find a model satisfying (4.32) since by cutting a given
edge e into N equal edges, the corresponding summand �.e/

p
jej�.e/ in (4.32) is

2It is assumed in [72, 114] that G is complete as a metric space with respect to the corre-
sponding intrinsic metric, which implies the self-adjointness of both H and h, see Theorem 7.1.
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replaced with 1p
N

�.e/
p
jej�.e/. Taking this into account we end up with the follow-

ing immediate corollary.

Corollary 4.24. Let .G ; �; �/ be a weighted metric graph and let zH 2 ExtM .H0/ be
a Markovian extension of H0. Then:

(i) The heat semigroup .e�t zH/t>0 is stochastically complete exactly when for
each model of .G ; �; �/ having finite intrinsic size the heat semigroup
.e�tzh/t>0 with the generator zh defined by (4.20) is stochastically complete.

(ii) The heat semigroup .e�t zH/t>0 is not stochastically complete exactly when
for each model of .G ; �; �/ having finite intrinsic size and satisfying (4.32)
the corresponding heat semigroup .e�tzh/t>0 is not stochastically complete.

Remark 4.25. From Corollary 4.24 (i), we know that stochastic incompleteness of
.e�t zH/t>0 is equivalent to the existence of a model of finite intrinsic size such that
.e�tzh/t>0 is not stochastically complete. The point of Corollary 4.24 (ii) is to pro-
vide an explicit class of models for which zH and zh are simultaneously stochastically
complete.

Proof of Theorem 4.23. (i) This was essentially obtained in [72, 114] and we only
slightly adapt the proof of [114, pp. 137–140] to our setting. Suppose .e�t zH/t>0 is
stochastically complete and consider the operator zh (see (4.20)) for some fixed model
of .G ;�;�/ satisfying (4.11). By Lemma B.6, there exists a sequence .fn/ � dom. zQ/

such that 0 � fn � 1 for all n � 0, limn!1 fn D 1 a.e. on G , and

lim
n!1

zQŒfn; g� D 0

for all g 2 dom. zQ/ \ L1.G I m/. By Corollary 4.14, fn D {V .fn/ 2 dom.zq/ and,
clearly, 0 � fn � 1 for all n � 0. Moreover, using additionally Lemma 4.2, we see
that

lim
n!1

zqŒfn; g� D lim
n!1

zQŒ{�1
V .fn/; {�1

V .g/� D lim
n!1

zQŒfn; {�1
V .g/� D 0

for all g 2 dom.zq/ \ `1.V Im/. Taking into account again Lemma B.6, it remains to
show that limn!1 fn.v/ D 1 for all vertices v 2 V . We decompose fn D fn;lin C fn;0

as in (4.17), where fn;lin 2 CA.G n V/ and fn;0 2 H 1
0 .G n V/. Denote by ge

n the
restriction of fn;0 to the edge e 2 E and extended by zero to the rest of G . Clearly, ge

n

belongs to dom. zQ/ \ L1.G / and taking into account Corollary 4.14, we see that

lim
n!1

Z
e

jrge
nj

2 �.dxe/ D lim
n!1

zQŒge
n; ge

n� D lim
n!1

zQŒfn; ge
n� D 0:

Since ge
n has support contained in the edge e, this implies that limn!1 ge

n.x/ D 0 for
all x 2 e and hence limn!1 fn;0.x/ D 0 for all x 2 G . Thus limn!1 fn;lin.x/ D 1

on G , which implies the desired property of .fn/.
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(ii) Suppose now that .e�tzh/t>0 is stochastically complete for some model of
.G ; �; �/ satisfying (4.11). By Lemma B.6, there exists a sequence .fn/ � dom.zq/

such that 0 � fn � 1, limn!1 fn.v/ D 1 for all v 2 V and limn!1 zqŒfn; g� D 0 for
all g 2 dom.zq/ \ `1.V Im/. Define fn WD {�1

V
.fn/ 2 CA.G n V/ and notice that .fn/

is a sequence in dom. zQ/ with 0 � fn � 1 and limn!1 fn.x/ D 1 for all x 2 G .
Moreover, by Corollary 4.14 we have

zQŒfn; g� D zQŒfn; glin� D zqŒfn; {V .glin/�

for all g 2 dom. zQ/. Hence, by Lemma B.6, the stochastic completeness of .e�t zH/t>0

would follow if we could prove that g WD {V .glin/ belongs to dom.zq/ \ `1.V Im/ for
all g 2 dom. zQ/ \ L1.G /. Taking into account Corollary 4.14 and Lemma 4.2 with
p D 1, it suffices to show that glin 2 L1.G I�/ and the additional assumption (4.32)
is needed exactly for this purpose. Indeed, for an edge e 2 Ev , the estimate

jglin.x/ � g.x/j � jglin.x/ � glin.v/j C jg.x/ � g.v/j

� jej
1=2

�Z
e

jrglin.xe/j2 dxe

�1=2

C jej
1=2

�Z
e

jrg.xe/j2 dxe

�1=2

holds for all x 2 e. Taking into account Corollary 4.14 this impliesZ
e

jglin.x/ � g.x/j�.dx/ � 2�.e/
p
jej�.e/

q
zQŒg�; e 2 E;

and hence Z
G

jglin.x/j�.dx/ � kgkL1.G I�/ C 2

q
zQŒg�

X
e2E

�.e/
p
jej�.e/;

which proves the claim.

Remark 4.26. A few remarks are in order.

(i) As in the manifold case (see, e.g., [90, Theorem 6.2]), stochastic complete-
ness for both Kirchhoff Laplacians and graph Laplacians admits several
equivalent reformulations in terms of �-harmonic or �-subharmonic func-
tions and the uniqueness for the heat equation in L1 or `1 (Khas’minskii-
type theorems). Therefore, both Theorem 4.23 and Corollary 4.24 can be
reformulated in these terms. For further details we refer to Section 7.5.

(ii) Condition (4.32) in Theorem 4.23 is far from being optimal. Actually, what
one needs in proving the converse implication to (i) in Theorem 4.23 is
the boundedness of {V as a map from dom. zQ/ \ L1.G I �/ to the set
dom.zq/ \ `1.V Im/ equipped with the corresponding norms.

(iii) Theorem 4.23 can be extended in an obvious way to the case of non-trivial
ı-couplings, of course under the positivity assumption that ˛ � 0 on V .
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(iv) In [117] and [116], a “refinement” of a graph .V ; mI b/ was suggested (see
[116, Definition 1.4] and [117, Definition 1.10]). It is very much similar
to the construction induced by (3.5)–(3.6) when refining a weighted metric
graph, however, the corresponding difference can be seen as adding loops at
the end vertices of a refined edge in order to keep the same vertex weights.
Moreover, the construction from [116, 117] enjoys the same important sta-
bility property with respect to stochastic completeness: If a refined graph is
stochastically complete, then so is the original graph .V ; mI b/ (see [116,
Theorem 1.5]).

4.7 Spectral estimates

Recall that in Theorem 3.22 (v) we observed the following equivalence between strict
positivity of spectra:

�0.zH/ D inf �.zH/ > 0 ” �0.zh/ D inf �.zh/ > 0

for a non-negative extension zH of H0 on a weighted metric graph .G ; �; �/ and the
associated non-negative extension zh of h0 on a fixed model having finite intrinsic
size. In this section we present a simple two-sided estimate between �0.zH/ and �0.zh/

based on the results of Section 4.3.

Theorem 4.27. Let .G ;�; �/ be a weighted metric graph together with a fixed model.
Suppose zH 2 ExtS .H0/ is a non-negative extension of H0 and consider in `2.V Im/

the non-negative extension zh 2 ExtS .h0/ of h0 defined by (4.20). Then

min
²

�0.zh/;
1

2

� �

��.E/

�2
³
� �0.zH/ � min

²
6�0.zh/;

�
�

��.E/

�2³
: (4.33)

Proof. First of all, recall from Theorem 3.22 (ii) that zH � 0 exactly when zh � 0.
Moreover, since zH is a non-negative extension of Hmin D H�

max, whose Friedrichs
extension HF is given by (3.32), we conclude from (3.34) that

�0.zH/ � �0.HF / D
�2

��.E/2
:

In particular, (4.33) trivially holds if the model has infinite intrinsic size since all
three terms vanish in this case (see also Corollary 3.18 (iii)). Hence in the following,
we assume ��.E/ < 1.

Recall the following variational characterization via the Rayleigh quotient:

�0.zH/ D inf
f 2dom.zH/

hzHf; f iL2.G I�/

kf k2
L2.G I�/

; �0.zh/ D inf
f2dom.zh/

hzhf; fi`2.V Im/

kfk2
`2.V Im/

:
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Turning to the upper estimate in terms of �0.zh0/, let f 2 dom.zh/ be fixed. By Corol-
lary 4.9, there is f D flin C f0 2 dom.zH/ such that {V .f / D f and f0 2 PH 1

0 .G n V/.
Moreover, by (4.19) and (4.11), PH 1

0 .G n V/ D H 1
0 .G n V/ algebraically and topo-

logically. Modifying f by edgewise H 2-functions vanishing in a neighborhood of
V , we readily construct a sequence .fn/ � dom.zH/, fn D fn;lin C fn;0 such that
{V .fn/ D {V .fn;lin/ D f and

lim
n!1

QŒfn;0� C kfn;0kL2.G I�/ D 0:

Hence we conclude from Corollary 4.9 that

�0.zH/ � lim
n!1

hzHfn; fniL2.G I�/

kfnk
2
L2.G I�/

D
hzh f; fi`2.V Im/

k{�1
V

.f/k2
L2.G I�/

;

and Remark 4.3 (ii) finishes the proof of the upper estimate in (4.33).
It remains to prove the lower inequality in (4.33). By Corollary 4.9, every function

f 2 dom.zH/ admits a decomposition into f D flin C f0 with flin 2 CA.G n V/ and
f0 2 PH 1

0 .G n V/ (see also (4.17)). Setting f WD {V .f /, (4.24) together with (4.19)
imply

hzHf; f iL2.G I�/ � hzh f; fi`2.V Im/ C
�2

��.E/2
kf0k

2
L2.G I�/

� �0.zh/kfk2
`2.V Im/

C
�2

��.E/2
kf0k

2
L2.G I�/

:

The lower estimate in (4.33) now follows from Remark 4.3 (ii) and the trivial inequal-
ity kf k2

L2.G I�/
� 2kflink

2
L2.G I�/

C 2kf0k
2
L2.G I�/

.

We shall continue the study of the positivity of spectral gaps in Section 7.3 and
now we complete this section with a few remarks.

Remark 4.28. The constant in the second estimate in (4.33) can be improved. For
instance, a modified version of [180, Corollary 2.2 and Remark 2.3] yields the bound

�0.zH/ �
�2

2
�0.zh/:

Remark 4.29. Theorem 4.27 remains valid for Laplacians with ı-couplings H0
˛ (see

Section 2.4.3) and their associated discrete Laplacians h0
˛ (see (3.7) and Theorem 3.1

and Remark 3.24), of course under the additional assumption that all strengths are
non-negative, that is, ˛WV ! Œ0;1/.

4.8 Ultracontractivity estimates

Theorem 4.27 shows that under the additional assumption (4.11), there is a connection
between the decay of heat semigroups e�t zH and e�tzh since ke�t zHkL2 D e�t�0.zH/
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and ke�tzhk`2 D e�t�0.zh/ for all t > 0. Our next result indicates that the connection
between the decay of heat semigroups can be specified further if �0.H/ D �0.h/ D 0.
More specifically, we are going to relate small and large time behavior of the heat
kernels by studying the corresponding ultracontractivity estimates.

Theorem 4.30. Let .G ; �; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let also zH 2 ExtM .H0/ be a Markovian extension of
H0 and consider the associated Markovian extension zh of h0 on `2.V I m/ defined
by (4.20).

(i) If .e�t zH/t>0 is ultracontractive and there are D � 1 and C1 > 0 such that

ke�t zH
kL1!L1 � C1t�D=2 (4.34)

holds for all t > 0, then .e�tzh/t>0 is ultracontractive and

ke�tzh
k`1!`1 � C2t�D=2 (4.35)

holds for all t > 0 with some positive constant C2 > 0.

(ii) If there is D > 2 such that the heat kernel of zh satisfies (4.35) for all t > 0

and, in addition, the underlying model satisfies

sup
e2E

.jej�.e//1�2=D jej

�.e/
< 1; (4.36)

then the heat kernel of zH satisfies (4.34) for all t > 0 with some positive
constant C1 > 0.

Proof. (i) Suppose that (4.34) holds true for all t > 0 with some fixed D � 1. Then,
by Theorem C.4, the Nash-type inequality

kf k
2C4=D

L2.G I�/
� C zQŒf � kf k

4=D

L1.G I�/
(4.37)

holds true for all 0 � f 2 dom. zQ/ \ L1.G I�/, where zQ is the Dirichlet form asso-
ciated with zH. However, restricting in (4.37) to edgewise affine functions and then
using Corollary 4.14 and the second inequality in (4.12) with p D 2 together with
the first one with p D 1 (see also Remark 4.3 (iii)), one easily concludes that (4.37)
implies

kfk2C4=D

`2.V Im/
� zC zqŒf� kfk4=D

`1.V Im/
; zC D 42C4=DC;

for all 0 � f 2 dom.zq/ \ `1.V Im/, where zq is the Dirichlet form associated with zh.
By Theorem C.4, this implies (4.35) for all t > 0.

(ii) Suppose now that (4.35) holds true for all t > 0 with some fixed D > 2. Then,
by Varopoulos’ theorem (Theorem C.2), the Sobolev-type inequality

kfk2
`q.V Im/ � C zqŒf�; f 2 dom.zq/; (4.38)
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is valid, where q D q.D/ WD 2D
D�2

. Since the model satisfies (4.11), by Corollary 4.14,
every f 2 dom. zQ/ admits a unique decomposition f D {�1

V
.f/Cf0 with f2 dom.zq/,

f0 2 H 1
0 .G n V/ and, moreover,

zQŒf � D zqŒf� C QŒf0� D zqŒf� C krf0k
2
L2.G I�/

:

Using Lemma 4.2, the first inequality in (4.12) with p D q together with (4.38) imply
that

k{�1
V .f/k2

Lq.G I�/ � C zqŒf�: (4.39)

Next, using the simple estimate�Z `

0

jf .s/jq ds

� 2
q

� `
2
q sup

0�x�`

jf .x/j2 � `1C 2
q

Z `

0

jf 0.s/j2 ds;

which holds true for all f 2 H 1
0 .0; `/ and ` > 0, we obtain�Z

e

jf .x/jq�.dx/

� 2
q

� jej1C
2
q

�.e/
2
q

�.e/

Z
e

jrf .x/j2�.dx/; f 2 H 1
0 .G n V/;

for each edge e 2 E . Since q > 2, this immediately implies the inequality

kf0k
2
Lq.G I�/ � Ckrf0k

2
L2.G I�/

(4.40)

for all f0 2 H 1
0 .G n V/, where the constant C D C.E; �; �/ depends only on the

model and edge weights �; � and is given by

C.E; �; �/ D sup
e2E

jej1C
2
q

�.e/
2
q

�.e/
D sup

e2E

.jej�.e//1� 2
D

jej

�.e/
:

Thus, combining (4.40) with (4.39), we arrive at the Sobolev-type inequality

kf k
2
Lq.G I�/ �

zC zQŒf �; f 2 dom. zQ/:

Applying Theorem C.2 once again, we conclude that .e�t zH/t>0 is ultracontractive
and (4.34) holds true for all t > 0.

Remark 4.31. In the special case � D � � 1 on G , Theorem 4.30 was proved in
[68, Section 5]. However, the proof of Theorem 4.30 (i) in [68] was based on the use
of Varopoulos’ theorem and hence was restricted to the case D > 2. Notice that Theo-
rem 4.30 (i) with � D � � 1 was observed by G. Rozenblum and M. Solomyak (see
[189, Theorem 4.1]), however, for a different discrete Laplacian (the vertex weight m

is defined in [189] as the vertex degree function degW v 7! #.EEv/).

The proof of Theorem 4.30 (ii) indicates that (4.36) is necessary for the validity
of (4.34) for t > 0. As the next result shows, it is indeed necessary for all D > 0.
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Lemma 4.32. Let .G ; �; �/ be a weighted metric graph and let zH 2 ExtM .H0/ be
a Markovian extension of H0. Assume also that .e�t zH/t>0 is ultracontractive. If there
is a model of .G ; �; �/ such that (4.36) fails to hold for a given D > 0, then

sup
t2.0;1/

tD=2
ke�t zH

kL1!L1 D 1: (4.41)

In particular, (4.41) always holds for D 2 .0; 1/.

Proof. Assume the converse, that is, (4.34) holds for all t 2 .0; 1/ with some fixed
D > 0. Then, by Theorem C.4, this implies that the Nash-type inequality

kf k
2C4=D

L2.G I�/
� C. zQŒf � C kf k

2
L2.G I�/

/ kf k
4=D

L1.G I�/
(4.42)

holds true for all 0 � f 2 dom. zQ/\L1.G I�/. In particular, this inequality holds for
all 0 � f 2 H 1

0 .G n V/ \ L1.G I�/. It remains to apply a scaling argument. Indeed,
take a positive function 0 ¤ f0 2 H 1

0 .Œ0; 1�/ with kf0kL1 D 1 and choose a model
of .G ; �; �/ satisfying (4.11). Next define fe 2 H 1

0 .G n V/ as f0. � =jej/ on e (upon
identification of e 2 E with 	e D Œ0; jej�) and then extend it by 0 to the rest of G n e.
Clearly, 0 � fe 2 dom. zQ/ \ L1.G I�/ for all e 2 E and

kfekL1.G I�/ D jej�.e/;

kfek
2
L2.G I�/

D jej�.e/kf0k
2
2;

QŒfe� D
�.e/

jej
kf 0

0k
2
2:

(4.43)

Plugging fe into (4.42), we get

C �
.jej�.e//1C2=Dkf0k

2C4=D
2�

�.e/
jej

kf 0
0k

2
2 C jej�.e/kf0k

2
2

�
.jej�.e//4=D

�
.jej�.e//1�2=Dkf0k

2C4=D
2

�.e/
jej

�
kf 0

0k
2
2 C ��.E/2kf0k

2
2

�
D

�
�.e/2D�2

�.e/�.e/

� 1
D kf0k

2C4=D
2

kf 0
0k

2
2 C ��.E/2kf0k

2
2

for all e 2 E . Since ��.E/ < 1, the latter is unbounded from above if (4.36) fails to
hold, and hence we arrive at a contradiction, which proves the first claim.

To prove the last claim it suffices to mention that 2D � 2 < 0 if D 2 .0; 1/ and
hence we can always find a model such that (4.36) is not true with D 2 .0; 1/.

By using Theorem C.6, it is possible to extend the above connections to subex-
ponential scales. In the next result we shall always assume that sW R>0 ! R>0 is
a decreasing differentiable bijection such that its logarithmic derivative has polyno-
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mial growth (see (C.5)). A typical example are functions that behave like t�d=2 with
d > 0 for small t , and e�ct˛

with ˛ 2 .0; 1� for large t (notice that ˛ > 1 is also
allowed, however, heat semigroups cannot have such a fast decay at infinity).

Theorem 4.33. Let .G ; �; �/ be a weighted metric graph together with a fixed model
having finite intrinsic size. Let also zH 2 ExtM .H0/ be a Markovian extension of
H0 and consider the associated Markovian extension zh of h0 on `2.V I m/ defined
by (4.20).

(i) If .e�t zH/t>0 is ultracontractive and

ke�t zH
kL1!L1 � s.t/; t > 0; (4.44)

then .e�tzh/t>0 is ultracontractive and

ke�tzh
k`1!`1 � s.ct/ (4.45)

holds for all t > 0 with some positive constant c > 0.

(ii) If (4.44) holds true, then there is a positive constant C > 0 such that�
8jej�.e/

�2

�2

�s

�
�2

8 jej�.e/

�
� 8

�.e/

jej
; �s WD �s0 ı s�1; (4.46)

for all e 2 E .

Proof. (i) For simplicity we assume that H is self-adjoint. Our proof is based on the
use of Theorem C.6 and its proof in [46]. First of all, by [46, Proposition II.2], (4.44)
implies that


s.kf k
2
L2.G I�/

/ � QŒf �

for all 0 � f 2 dom.Q/ with kf kL1.G I�/ � 1. Here the function 
sWR>0 ! R>0 is
given by


s.x/ WD sup
r>0

x

2r
log
�

x

s.r/

�
:

In particular, the latter holds for edgewise affine functions and hence restricting to
0 � f 2 CA.G n V/ we get by taking into account (4.15) and (4.16) that


s.4�1
kfk2

`2.V Im/
/ � 4qŒf�

for all 0 � f 2 dom.q/ with kfkL1.V Im/ � 1. Here we also used the estimate (4.12)
with p D 2 together with the monotonicity of the logarithm. Now, taking into account
that �4s.x/ D 4�s.x=4/, by [46, Lemma II.3], there is zC > 0 such that

�.4�1
kfk2

`2.V Im/
/ � zC qŒf�

for all 0 � f 2 dom.q/ with kfk`1.V Im/ � 1. It remains to use Theorem C.6 once again.



Ultracontractivity estimates 79

(ii) By Theorem C.6, (4.44) implies the Nash-type inequality

�s.kf k
2
L2.G I�/

/ � C QŒf � (4.47)

for all f 2 dom.Q/ with kf kL1.G I�/ D 1. Pick 0 � f0 2 H 1
0 .Œ0; 1�/ with kf0k1 D 1.

For each e 2 E , define fe 2 H 1
0 .G / as in the proof of Lemma 4.32. After plugging

f D
1

jej�.e/
fe into (4.47) and taking into account (4.43), we get

�s

�
kf0k

2
2

jej�.e/

�
�

�.e/

jej

�
kf 0

0k2

jej�.e/

�2

(4.48)

for all e 2 E and each 0 � f0 2 H 1
0 .Œ0; 1�/ with kf0k1 D 1. Finally, upon choosing

f0.x/ D �
2

sin.�x/ in (4.48), we end up with (4.46).

Remark 4.34. We are convinced that (4.45) together with (4.46) should imply esti-
mate (4.44), however, we have not succeeded in proving it by applying T. Coulhon’s
extension of Theorem C.4. Let us also stress that in the case of a polynomial decay
our proof of Theorem 4.30 (ii) is based on Varopoulos’ theorem (Theorem C.2) and
hence the range of the corresponding exponent is restricted to D > 2.





Chapter 5

One-dimensional Schrödinger operators with point
interactions

Let us demonstrate our findings by considering the simplest possible situation: Fix
L 2 .0;1� and let

.xk/k�0 � 	 WD Œ0; L/

be a strictly increasing sequence such that x0 D 0 and xk " L. Considering .xk/ as
a vertex set and the intervals ek D Œxk; xkC1� as edges, we end up with the simplest
infinite metric graph – an infinite path graph. Then the edge weights �; �W	 ! R>0

are given by
�.x/ D

X
k�0

�k1Œxk ;xkC1/.x/;

�.x/ D
X
k�0

�k1Œxk ;xkC1/.x/;
(5.1)

where .�k/k�0 and .�k/k�0 are positive real sequences. For a sequence ˛ D .˛k/k�0

of reals, conditions (2.13) take the form´
f .xk�/ D f .xkC/ DW f .xk/;

�kf 0.xkC/ � �k�1f 0.xk�/ D ˛kf .xk/
(5.2)

for all k � 0, where we set f 0.0�/ D 0 for notational simplicity and hence for
k D 0 the corresponding condition is �0f 0.0/ D ˛0f .0/. The corresponding (max-
imal) operator H˛ WD H�;�;˛ acting in L2.	 I �/ is known as the one-dimensional
Schrödinger operator with ı-interactions on X D .xk/k�0 (see, e.g., [3]), and the
corresponding differential expression is given by

� D
1

�.x/

�
�

d
dx

�.x/
d

dx
C

X
k�0

˛kı.x � xk/

�
: (5.3)

Remark 5.1. There are manifold reasons to investigate the operator H˛ . First of all,
it serves as a toy model in quantum mechanics. Indeed, if �k D �k D 1 for all k � 0,
then (5.3) turns into the usual ı-coupling on X and H˛ in this case is nothing but the
Hamiltonian (see [3, 144])

�
d2

dx2
C

X
k�0

˛nıxn
:

Moreover, (5.3) naturally appears in the study of Kirchhoff Laplacians and Laplacians
with ı-couplings on family preserving graphs (see Section 8.1 for further details).
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5.1 The case ˛ � 0 and Krein strings

We begin with the study of the “unperturbed” case, that is, when ˛ � 0 and hence
(5.3) is the classical weighted Sturm–Liouville operator

� D �
1

�.x/

d
dx

�.x/
d

dx
: (5.4)

Note that in this situation the well-developed spectral theory of Sturm–Liouville oper-
ators [208] and Krein strings [120, 127] leads to rather transparent and complete,
although far from being trivial, answers to some spectral questions.

Let H WD H�;� be the maximal operator associated with (5.4) in L2.	 I �/ and
subject to the Neumann boundary condition at x D 0:

dom.H/D ¹f 2L2.	 I�/ W f;�f 0
2AClocŒ0;L/; f 0.0/D 0; �f 2L2.	 I�/º: (5.5)

The corresponding minimal operator H0 is defined as the closure in L2.	 I�/ of the
pre-minimal operator H0:

H0
D H � dom.H0/; dom.H0/ D dom.H/ \ Cc.	 /:

It is immediate to see that H and H0 coincide with the maximal and, respectively, min-
imal Kirchhoff Laplacians defined in Section 2.4.1. The next result provides a rather
transparent criterion for the equality H D H0 to hold.

Lemma 5.2. The operator H is self-adjoint if and only if the series

X
k�0

�kjekj

�X
j�k

jej j

�j

�2

(5.6)

diverges.

Proof. The self-adjointness criterion follows from the standard limit point/limit circle
classification for (5.4) (see, e.g., [208]). Namely, �y D 0 has two linearly independent
solutions

y1.x/ � 1; y2.x/ D

Z x

0

ds

�.s/
; x 2 Œ0; L/;

and one simply needs to verify whether or not both y1 and y2 belong to L2.	 I�/.
Clearly, y1 2 L2.	 I�/ exactly when the seriesX

k�0

�kjekj (5.7)

converges. Moreover, it is straightforward to check that y2 2 L2.	 I�/ if and only if
the series (5.6) converges. The Weyl alternative finishes the proof.
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The above considerations suggest to introduce the following quantity:

L� WD

Z
	

dx

�.x/
D

X
k�0

jekj

�k

:

Observe that L� < 1 exactly when all solutions to �y D 0 are bounded.

Corollary 5.3. If X
k�0

�kjekj D 1; (5.8)

then H is self-adjoint. Moreover, in the case L� < 1, (5.8) is also necessary for the
self-adjointness.

Remark 5.4. A few remarks are in order.

(i) Condition (5.8) admits two transparent geometric reformulations. Namely,
equipping the set XD¹xkºk�0 with weights mWxk 7!�k�1jek�1jC�kjekj,
and considering the path graph (xk � xn exactly when jk � nj D 1) as
a metric space .X; %m/ equipped with the path metric %m (see Section 6.4.2
for a detailed definition), condition (5.8) is equivalent to each of the follow-
ing conditions:

(a) infinite total volume:

m.X/ D
X
k�0

m.xk/ D 2
X
k�0

�kjekj D 1;

(b) completeness of .X; %m/.

In particular, Lemma 5.2 implies that completeness of .X; %m/ is only suf-
ficient for H to be self-adjoint (cf. Theorem 7.7). Moreover, observe that in
the case of a path graph both conditions (a) and (b) become also necessary
for the self-adjointness exactly when the constant L� is finite, that is, when
all solutions to �y D 0 are bounded.

(ii) It is an interesting and, in fact, very difficult question to decide about the
self-adjointness by looking at the geometry of a given metric graph. Lem-
ma 5.2 demonstrates that even in the simplest case of a weighted path graph
its solution involves non-trivial tools.

Despite the well-developed spectral theory of Sturm–Liouville operators, it turns
out that the detailed spectral analysis of the operator (5.5) is already a difficult task
even with this very special class of weights (5.1). However, in one particular situation
the analysis is rather straightforward.

Lemma 5.5. If the series (5.6) is convergent, then the deficiency indices of H0 are
equal to 1 and the self-adjoint extensions of H0 form a one-parameter family H� ,
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where � 2 Œ0; �/ and

dom.H� / WD ¹f 2 dom.H/ W cos.�/f�.L/ C sin.�/f 0
� .L/ D 0º: (5.9)

Here

f�.L/ D lim
x!L

.f .x/ � �.x/f 0.x/y2.x// and f 0
� .L/ D lim

x!L
�.x/f 0.x/:

Moreover, the spectrum of H� is purely discrete, bounded from below, and eigenvalues
(if ordered in the non-decreasing order) obey the Weyl law:

lim
n!1

np
�n.H� /

D
1

�

Z L

0

s
�.x/

�.x/
dx D

1

�

X
k�0

jekj

r
�k

�k

: (5.10)

Proof. The first claim is standard (see, e.g., [208]). The second one follows from,
e.g., [85, Chapter 6.7].

Remark 5.6. A few remarks are in order.

(i) Using the definition (3.1) of the intrinsic edge length, we set

�k WD �.ek/ D jekj

r
�k

�k

(5.11)

for all k 2 Z�0, and then the right-hand side of (5.10) is nothing but

1

�

X
k�0

�.ek/ D
1

�
� intrinsic length of 	 :

(ii) If y2 is bounded, then f�.L/ can be replaced by limx!L f .x/.

The next result mostly follows from the work of I. S. Kac and M. G. Krein [119,
120] on spectral theory of Krein strings. Recall that �0.A/ and �ess

0 .A/ denote the
bottoms of the spectrum, respectively, of the essential spectrum of a self-adjoint oper-
ator A.

Lemma 5.7. Suppose that the series (5.6) diverges, i.e., the operator H is self-adjoint.
Then:

(i) Positive spectral gap: �0.H/ > 0 if and only if

L� D

X
k�0

jekj

�k

< 1 and sup
n�0

X
k�n

�kjekj

X
k�n

jekj

�k

< 1: (5.12)

(ii) Positive essential spectral gap: �ess
0 .H/ > 0 if and only if either (5.12) holds

true orX
k�0

jekj

�k

D 1 and sup
n�0

X
k�n

jekj

�k

X
k�n

�kjekj < 1: (5.13)
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(iii) Discreteness: The spectrum of H is purely discrete if and only if

• either
P

k�0
jek j

�k
< 1 and

lim
n!1

X
k�n

�kjekj

X
k�n

jekj

�k

D 0;

• or
P

k�0 �kjekj < 1 and

lim
n!1

X
k�n

jekj

�k

X
k�n

�kjekj D 0:

Proof. Let us only give a sketch of the proof (details can be found in, e.g., [149]).
First observe that 0 is an eigenvalue of H exactly when y1 D 1 2 L2.	 I�/, that is,
exactly when the series (5.7) converges. Taking this fact into account together with
the divergence of (5.6), to prove (i), (ii) and (iii) it suffices to observe that by using
a simple change of variables, the operator H is unitarily equivalent to the minimal
operator zH defined in the Hilbert space L2.Œ0;L�/I�g/ by the differential expression

z� D �
1

�g.x/

d2

dx2

and subject to the Neumann boundary condition at x D 0. Here

�g WD .� � �/ ı g�1;

where the function gW Œ0; L/ ! Œ0;1/ is given by

g.x/ D

Z x

0

ds

�.s/
; L� WD g.L/ D

Z L

0

ds

�.s/
:

Notice that g is strictly increasing, locally absolutely continuous on Œ0; L/ and maps
Œ0; L/ onto Œ0; L�/. Hence its inverse g�1W Œ0; L�/ ! Œ0; L/ is also strictly increasing
and locally absolutely continuous on Œ0; L/. Now the remaining claims follow from
the results of M. G. Krein and I. S. Kac (see [119, Theorems 1 and 3] or [120, Sec-
tion 11] and [127]).

Remark 5.8. A few remarks are in order.

(i) Using the quantities in (5.12) and (5.13), one can obtain sharp estimates on
�0.H/ and �ess

0 .H/ (cf., e.g., [149, 196]).

(ii) If the spectrum of H is discrete, then it consists of simple eigenvalues such
that

0 � �0.H/ < �1.H/ < �2.H/ < � � �

and the Weyl-type asymptotics (5.10) holds true. If the right-hand side in
(5.10) is infinite (i.e., 	 D Œ0; L/ has infinite intrinsic length), then there
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are criteria (see [127]) to decide whether the seriesX
n�1

1

�n.H/


converges with some 
 > 1
2

(the series diverges for all 
 2 .0; 1
2
�).

If the spectrum of H is not discrete, the study of spectral types of H is a highly
non-trivial problem. However, we would like to mention only one result on the abso-
lutely continuous spectrum established recently in [26].

Lemma 5.9 ([26]). Assume that 	 D Œ0; L/ has infinite intrinsic length,Z L

0

s
�.x/

�.x/
dx D

X
k�0

jekj

r
�k

�k

D

X
k�0

�k D 1; (5.14)

and define the increasing sequence .tn/n�0 � Œ0; L/ by settingZ tn

0

s
�.x/

�.x/
dx D n; n 2 Z�0:

If X
n�0

�Z tnC2

tn

�.x/ dx

Z tnC2

tn

dx

�.x/
� 4

�
< 1;

then �ac.H/ D Œ0;1/.

Remark 5.10. The operator H also plays an important role in the analysis of Kirch-
hoff Laplacians on family preserving graphs .G ; �; �/, which are known to reduce
to Sturm-Liouville operators (see [30, 31]). In this situation, the weights admit the
following description in terms of graph parameters of G (for simplicity we restrict to
the case when the weights in Section 2.1 are constant on G and hence � D � � const
in (5.1)):

• jekj is the length of edges between the consecutive combinatorial spheres Sk and
SkC1,

• �k D �k is the number of edges between the consecutive combinatorial spheres
Sk and SkC1,

• the series (5.7) equals the total volume of the metric graph G .

For instance, for radially symmetric antitrees �k D skskC1, where .sk/k�0 � Z�1

are the antitree sphere numbers [31, 149] (see also Section 8.1 for weighted metric
antitrees); for radially symmetric trees �k D b0 : : : bk , where .bk/k�0 � Z�1 are the
tree branching numbers [196].

In conclusion, let us quickly discuss parabolic properties of Markovian extensions
of H0. We begin with the characterization of Markovian uniqueness. Recall that the
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Gaffney Laplacian HG is defined (see Lemma 2.18) as the restriction of H to H 1

functions, that is,

dom.HG/ D ¹f 2 dom.H/ W f 0
2 L2.	 I �/º: (5.15)

Lemma 5.11. The operator HG is self-adjoint if and only if y2.x/ D
R x

0
ds

�.s/
does

not belong to H 1.	 /, that is, either the series (5.6) diverges or L� D 1. If HG is
not self-adjoint, then its Markovian restrictions form a one-parameter family

dom.H� / WD ¹f 2dom.HG/ W cos.�/f .L/Csin.�/f 0
� .L/D0º; � 2 Œ0; �

2
�: (5.16)

Here f .L/ D limx!L f .x/ and f 0
� .L/ D limx!L �.x/f 0.x/.

Proof. If HG is not self-adjoint, then so is H and hence, by Lemma 5.2, the series (5.6)
converges. On the other hand, all self-adjoint extensions in this case are parameterized
by (5.9). For each � ¤

�
2

, dom.H� / contains functions such that f 0
� .L/ D 1, that is,

f 0.x/ D
1

�.x/
.1 C o.1// as x ! L.

However, if L� D 1, then f 0 … L2.	 I �/, which implies that HG admits a unique
self-adjoint restriction corresponding to � D

�
2

. The latter contradicts our assumption
that HG is not self-adjoint since in this case HG admits at least two different self-
adjoint restrictions HD and HN .

Remark 5.12. Notice that the self-adjointness of HG is equivalent to the equality
H 1.	 / D H 1

0 .	 /, where

H 1.	 / D ¹f 2 ACloc.	 / W f 2 L2.	 I�/; f 0
2 L2.	 I �/º;

H 1
0 .	 / D H 1.	 / \ Cc.	 /

k�k
H1

:

The next result provides a characterization of transience/recurrence of Markovian
restrictions of HG .

Lemma 5.13. Let HG be the Gaffney Laplacian (5.15).

(i) If HG is self-adjoint, then it is recurrent if and only if L� D 1.

(ii) If HG is not self-adjoint and H� is its Markovian restriction (5.16), then H�

is recurrent if and only if � D
�
2

.

Proof. It is not difficult to show that HG (or its Markovian restriction when HG is
not self-adjoint) is transient exactly when the Green’s function of HG is well defined
at the zero energy, that is, one needs to look at the limit of the resolvent .HG � z/�1

when z " 0. It remains to use the form of the resolvent of a second order linear
differential operator.

Finally, let us state the stochastic completeness criterion, which essentially goes
back to W. Feller [70].
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Lemma 5.14. Let HG be the Gaffney Laplacian (5.15).

(i) If HG is self-adjoint, then it is stochastically incomplete if and only if

L� < 1 and
1

�.x/

Z x

0

�.s/ ds 2 L1.	 /: (5.17)

(ii) If HG is not self-adjoint and H� is its Markovian restriction (5.16), then H�

is stochastically complete if and only if � D
�
2

.

Proof. (i) If HG is self-adjoint, then stochastic completeness is equivalent to the fact
that for some (and hence for all) � > 0 the boundary value problem

.�.x/y0/0 D ��.x/y; y0.0/ D 0; (5.18)

has only a trivial non-negative bounded solution on 	 (see Remark 7.52 below). Inte-
grating (5.18) with � D 1 yields

y0.x/ D
1

�.x/

Z x

0

y.s/�.s/ ds; x 2 Œ0; L/:

Since a solution to (5.18) is unique up to a scalar multiple, we can assume y.0/ D 1.
Clearly, y 2 L1.	 / exactly when y0 2 L1.	 /. Thus, if y is bounded, then (5.17)
necessarily holds true. Conversely, taking into account that y is non-decreasing, we
get

0 � y0.x/ �
y.x/

�.x/

Z x

0

�.s/ ds DW y.x/b.x/; x 2 Œ0; L/:

Since w0 Dwb has a bounded solution on 	 satisfying w.0/D 1 whenever b 2L1.	 /,
and taking into account that y � w on 	 , this completes the proof of sufficiency.

(ii) If HG is not self-adjoint, then each Markovian restriction H� of HG has purely
discrete, non-negative spectrum. Moreover, each eigenvalue of H� is simple. Thus
the claim is an immediate consequence of the spectral theorem and the definition of
stochastic completeness.

5.2 Connection via boundary triplets

If ˛ ¤ 0 and, in particular, if ˛ takes negative values on X , the analysis of H˛ , the
maximal operator associated with (5.3) in L2.	 I �/,1 becomes more involved. In
particular, we shall see that there is no transparent self-adjointness criterion.

Consider the interval 	 D Œ0; L/ together with the sequence X D .xk/k�0 as
a metric path graph: V D Z�0 is a vertex set, and k � n exactly when jk � nj D 1; the
length of the edge ek connecting k with k C 1 equals jekj WD xkC1 � xk . Following

1The precise definitions of H˛ and the corresponding minimal operator H0
˛ are given in

Section 2.4.1, see (2.18), (2.19) and take into account (5.2).
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(3.3)–(3.6) and using (5.11), we define the weight r WZ�0 ! R>0 as follows:

• if ��.X/ WD supk�0 �k < 1, then

r.k/ D jekj�k; k � 0;

• if ��.X/ D 1, we set

r.k/ D

´
jekj�k; �k � 1;
p

�k�k; �k > 1:

Next, we define the weights mWZ�0 ! .0;1/ and bWZ�0 � Z�0 ! Œ0;1/ by

m.k/ D

´
r.0/; k D 0;

r.k � 1/ C r.k/; k � 1;
(5.19)

and

b.k; n/ D

8<:
�min.n;k/

jxk � xnj
; jn � kj D 1;

0; jn � kj ¤ 1:

(5.20)

First, we can associate the minimal h0
˛ and the maximal h˛ operators in the weighted

Hilbert space `2.Z�0Im/ with the discrete Schrödinger-type expression

.�f /.k/ WD
1

m.k/

�X
n�0

b.k; n/.f .k/ � f .n// C ˛kf .k/

�
; k 2 Z�0: (5.21)

Next, using the map (3.29), we can consider in `2.Z�0/ the minimal zh0
˛ and the

maximal zh˛ operators, which are unitarily equivalent to h0
˛ and, respectively, h˛ . The

corresponding difference expression (3.28) is the following second order difference
expression

.z�˛f /.k/ D

´
a0f .0/ � b0f .1/; k D 0;

�bk�1f .k � 1/ C akf .k/ � bkf .k C 1/; k � 1;

where

ak D
1

m.k/

�
˛k C

�k�1

jek�1j
C

�k

jekj

�
; bk D

�k

jekj
p

m.k/m.k C 1/
; (5.22)

for all k � 0 with ��1=je�1j D 0 for notational simplicity. Hence the operator zh˛ is
nothing but the maximal operator associated in `2.Z�0/ with the Jacobi (tri-diagonal)
matrix

J D

0BBBBB@
a0 �b0 0 0 : : :

�b0 a1 �b1 0 : : :

0 �b1 a2 �b2 : : :

0 0 �b2 a3 : : :
:::

:::
:::

:::
: : :

1CCCCCA : (5.23)
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Therefore, Theorem 3.1 establishes connections between the operator (5.3) and spec-
tral theory of Jacobi (tri-diagonal) matrices. We would like to present only one claim
regarding self-adjointness.

Theorem 5.15. Let zh0
˛ be the minimal operator defined in `2.Z�0/ by the Jacobi

matrix (5.23) with Jacobi parameters (5.22). Then the deficiency indices of H0
˛ and

zh0
˛ are equal and

nC.H0
˛/ D n�.H0

˛/ D n˙.zh0
˛/ � 1:

In particular, H˛ is self-adjoint if and only if zh˛ is self-adjoint.

Applying spectral theory of Jacobi matrices and using Theorem 3.1, we would
be able to investigate spectral properties of the operators H˛ and this approach was
taken in [143, Section 5.2] for the case � D � � 1. Let us only provide some simple
self-adjointness criteria.

Lemma 5.16. Let H˛ be the maximal operator defined by (5.3) in L2.	 I�/.

(i) If the series X
k�0

�2
k D

X
k�0

jekj
2 �k

�k

(5.24)

diverges, then H˛ is self-adjoint for any ˛.

(ii) If 	 has infinite intrinsic length, i.e., (5.14) holds, and ˛WX ! R is such
that zh0

˛ is bounded from below, then H˛ is self-adjoint and bounded from
below.

Proof. (i) By the Carleman test [2, Problem I.1], zh0
˛ is self-adjoint if the seriesX

k�0

1

bk

(5.25)

diverges. However,

1

bk

D
jekj

p
m.k/m.k C 1/

�k

�
jekjr.k/

�k

�

´
�2

k
; �k � 1;

1; �k > 1:
(5.26)

Therefore, (5.25) diverges if so is (5.24). It remains to apply Theorem 5.15.
(ii) By the Wouk test [2, Problem I.4], zh0

˛ is self-adjoint if it is bounded from
below and X

k�0

1
p

bk

D 1:

It remains to take into account (5.26) and then apply Theorem 5.15.

Remark 5.17. One can apply other self-adjointness tests (see, e.g., [2, Chapter I]) to
J with the Jacobi parameters given by (5.22) in order to get various self-adjointness
conditions for the operator H˛ (cf., e.g., [143, Section 5]). For instance, Berezanskii’s
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test [2, Problem I.5] would lead to examples with non-trivial deficiency indices even
if (5.14) is satisfied.

5.3 Jacobi matrices and Krein–Stieltjes strings as boundary operators

The results in the previous section connect spectral properties of Sturm–Liouville
operators with a certain family of Jacobi matrices. The natural question arising in this
context is:

How large is the class of Jacobi matrices with Jacobi parameters (5.22)?

The next result shows that for each choice of Jacobi parameters .ak; bk/k�0 one
can find weights �, � and strengths ˛ such that (5.22) holds.

Proposition 5.18. For every symmetric Jacobi (tri-diagonal) matrix (5.23) normal-
ized by the condition bk > 0 for all k � 0 there exist lengths .jekj/k�0 �R>0, weights
.�k/k�0 � R>0 and strengths .˛k/k�0 � R such that:

(i) Normalization: lengths .jekj/k�0 and weights .�k/k�0 satisfy

�k D
jekj
p

�k

� 1 (5.27)

for all k � 0.

(ii) Jacobi parameters have the form

ak D
1

jek�1j C jekj

�
˛k C

�k�1

jek�1j
C

�k

jekj

�
; (5.28)

bk D
�k

jekj
p

.jek�1j C jekj/.jekj C jekC1j/
(5.29)

for all k � 0.

(iii) Boundary operator: the minimal operator zh associated in `2.Z�0/ with the
matrix (5.23) having Jacobi parameters (5.28)–(5.29) serves as a bound-
ary operator (in the sense of Proposition 3.11) for the minimal operator
H0 D H0

1;�;˛ defined by the differential expression

��;˛ D �
d

dx
�.x/

d
dx

C

X
k�0

˛kı.x � xk/; (5.30)

in the Hilbert space L2.	 /. Here 	 D Œ0; L/ and the weight �W 	 ! R>0

is defined by

xk D

k�1X
jD0

jej j; L D

X
k�0

jekj; �.x/ D
X
k�0

�k1Œxk ;xkC1/.x/: (5.31)
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Proof. Since ˛k 2 R in (5.22) can be chosen arbitrary, the main difficulty is of course
to show that every sequence .bk/k�0 of positive real numbers can be realized as
(5.22). Let .bk/k�0 � .0;1/ be given. First set je0j D 1. Then (5.29) holds for k D 0

if
je1j D

�2
0

b2
0

� 1:

If b0 < 1, we set �0 D 1 and define je1j by the above equation, otherwise, we set
�0 D

p
2b0 > 1 and je1j D 1. Clearly, both (5.27) and (5.29) hold true for k D 0.

Next we proceed inductively. Assume we have already defined positive numbers
�0; : : : ; �n�1 and je0j; : : : ; jenj such that (5.29) holds for k D 0; : : : ; n � 1. Set

sn WD
jenjp

jen�1j C jenj
p
jenj C 1

:

If sn � bn, we set

jenC1j D 1; �n D
bn

sn

jenj
2
� jenj

2;

and otherwise we choose

jenC1j D
s2

n

b2
n

.1 C jenj/ � jenj > 1; �n D jenj
2:

Clearly, by construction, both (5.27) and (5.29) hold true for k D n. Therefore, pro-
ceeding inductively, we obtain sequences of lengths .jekj/k�0 and weights .�k/k�0

such that (5.29) holds together with (5.27).

Remark 5.19. A few remarks are in order.
(i) Combining Proposition 5.18 with Theorem 3.1, we conclude that basic

spectral theory of Jacobi matrices (e.g., self-adjointness, semiboundedness,
etc.) can be included into the spectral theory of Sturm–Liouville operators
of the form (5.30)–(5.31).

(ii) The choice of lengths and weights is not unique. Indeed, taking into account
that (3.1)–(3.6) are invariant under the scaling jej ! jejc.e/, �.e/ ! �.e/

c.e/
,

and �.e/ ! �.e/c.e/ for any cW E ! .0;1/, one can rescale parameters
and construct lengths and weights with the following properties:
• jekj � 1 and �k D �k for all k � 0 (hence � D � in (5.3)),
• �k D 1 and jekj

2�k � 1 for all k � 0 (hence � � 1 in (5.3)),
• jekj D 1 and �k � �k for all k � 0 (hence X D N in (5.3)).

(iii) Let us also stress that for Jacobi (tri-diagonal) matrices (5.23) still there is
no self-adjointness criterion formulated in closed form in terms of Jacobi
parameters (there are only various necessary and sufficient conditions).
This in particular means that even in the simplest case of a weighted path
graph one cannot hope for a transparent self-adjointness criterion formu-
lated in terms of weights and interaction strengths.
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If ˛ � 0, then the Hamiltonian H˛ generates a Markovian semigroup in L2.	 I�/

(assume, for a moment, that H˛ is self-adjoint). However, the boundary operator zh˛

does not reflect the parabolic properties of H˛ (it is not difficult to see that the semi-
group generated by zh˛ in `2.Z�0/ is positivity preserving, however, in general it is
not `1 contractive). From this perspective, let us look at the minimal operator h0

defined in `2.Z�0Im/ by (5.21) with the coefficients (5.19) and (5.20) and ˛ � 0.
It serves as the boundary operator for the Sturm–Liouville operator H, however, it
also captures the parabolic properties of H (see Chapter 4). Following the setting of
Section 2.2, every weight function b given by (5.20) defines an infinite path graph.
Since the coefficients of b depend only on the weight � and edge lengths, it is clear
that every weighted path graph can be obtained via (5.20). However, the difference
expression (5.21) (see (3.7)) also contains the vertex weight m defined by (5.19).
Thus, we can reformulate the question posed at the very beginning of Section 5.3
as follows:

Does every path graph b over .Z�0; m/ arise as a boundary operator for H?

Taking into account Proposition 5.18, the answer may look a bit surprising.

Proposition 5.20. Let mW Z�0 ! .0; 1/ and bW Z�0 � Z�0 ! Œ0; 1/ be positive
weights such that b defines an infinite path graph (i.e., b.k; n/ D b.n; k/ > 0 exactly
when jk � nj D 1). Then the minimal operator h0 associated in `2.Z�0Im/ with the
weighted Laplacian

.�f /.k/ WD
1

m.k/

X
n�0

b.n; k/.f .k/ � f .n//; k 2 Z�0; (5.32)

arises as a boundary operator for some Sturm–Liouville operator (5.4) with the
weights (5.1) if and only if

nX
kD0

.�1/n�km.k/ > 0 (5.33)

for all n � 0.

Proof. The necessity of (5.33) follows from (5.19) since m.0/ D r.0/ > 0 and for all
n � 1 we have

nX
kD0

.�1/n�km.k/ D .�1/nm.0/ C

nX
k�1

.�1/n�k.r.k � 1/ C r.k//

D r.n/ > 0:

To prove sufficiency, suppose that mWZ�0 ! .0;1/ satisfies (5.33) for all n � 0

and set b.k/ WD b.k;k C 1/, k � 0. Thus the left-hand side of (5.33) defines a positive
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sequence r WZ�0 ! .0;1/. Setting

jekj WD

8̂̂̂<̂
ˆ̂:
s

r.k/

b.k/
; r.k/ � b.k/;

r.k/

b.k/
; r.k/ > b.k/;

�k WD

´p
r.k/b.k/; r.k/ � b.k/;

r.k/; r.k/ > b.k/;

for all k � 0, we end up with a suitable and, in fact unique, choice of the weight
function

�.x/ D
X
k�0

�k1Œxk ;xkC1/; xk D

k�1X
jD0

jej j;

such that the minimal operator h0 associated in `2.ZIm/ with (5.32) is the boundary
operator for H0 associated with (5.4) (with the weights � D �).

Remark 5.21. Surprisingly enough, we are not able to obtain all difference expres-
sions of the form (3.7) even in the simplest case of a path graph. The main restriction
is the form of the weight function m. More precisely, the formal Laplacian L asso-
ciated to a path graph b over the measure space .Z�0; m/ can be obtained via (5.19)
and (5.20) only if the weight function m belongs to the image of the cone of strictly
positive functions CC.Z�0/ under the map I C � , where � is the right shift operator
defined on C.Z�0/ by

� W .f .k//k�0 7! .f .k � 1//k�0;

where f .�1/ WD 0 for notational simplicity. Indeed, with this notation (5.19) takes
the form

m D .I C �/r;

and then the validity of (5.33) for all n � 0 is exactly the inclusion m 2 CC.Z�0/.

Remark 5.22 (Krein–Stieltjes strings). Set

`k D
1

b.k; k C 1/
D

jekj

�k

; �k D

k�1X
jD0

j̀ ; !k D m.k/

for all k � 0. Next define the positive measure ! on Œ0; `/, where ` WD
P

k�0 `k , by

!.Œ0; �// WD
X
�k��

!k :

If ˛k D 0 for all k � 0, then the spectral problem �f D zf associated with the
difference expression (5.21), (5.19), (5.20) admits a mechanical interpretation (see
[2, Appendix], [120, Section 13]): it describes small oscillations of a string of length
` with mass density !. The corresponding spectral problem can be written as

�y00
D z!y; � 2 Œ0; `/;
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which is similar to the form of (5.4), however, the coefficient ! is a measure bear-
ing point masses only. Strings whose mass density has the above form are usually
called Krein–Stieltjes strings (the corresponding finite difference expressions appear
in the study of the Stieltjes moment problem and their mechanical interpretation was
observed by M. G. Krein [120]). Thus, the results of this section establish a connec-
tion between two classes of strings: strings whose mass density is piecewise constant
and Krein–Stieltjes strings. However, Proposition 5.20 says that we cannot cover the
whole class of Krein–Stieltjes strings.





Chapter 6

Graph Laplacians as boundary operators

The results in the preceding chapters lead to the following question:

Which graph Laplacians may arise as boundary operators (in the sense of
Chapters 3 and 4) for a Kirchhoff Laplacian on a weighted metric graph?

Let us be more specific in stating the above problem. Suppose a vertex set V

is given. Each graph Laplacian (2.4) is determined by the vertex weight function
mWV ! .0;1/, edge weight function bWV � V ! Œ0;1/ having properties (i), (ii)
and (iv) of Section 2.2, and the killing term cWV ! Œ0;1/. We always assume that
the underlying graphs are connected. With each such b we can associate a locally
finite simple graph Gb D .V ; Eb/ as described in Remark 2.7.

Definition 6.1. A cable system for a graph b over .V ; m/ is a model of a weighted
metric graph .G ; �; �/ having V as its vertex set and such that the functions defined
by (3.1)–(3.5) and (3.6) coincide with m and, respectively, b. If in addition the under-
lying graph .V ; E/ of the model coincides with Gb D .V ; Eb/, then the cable system
is called minimal.

Remark 6.2. Notice that the underlying combinatorial graph .V ; E/ of a cable sys-
tem for .V ; mI b/ can always be obtained from the simple graph Gb D .V ; Eb/ by
adding loops and multiple edges.

Since the killing term c is nothing but the strength of ı-couplings at the vertices
in (3.7), we can restrict our considerations to the case c � 0:

Problem 6.1. Which locally finite graphs .V ; mI b/ have a minimal cable system?

The case of a path graph shows that the answer to the above problem is not trivial
(see Proposition 5.20). However, we stress that a general cable system may have loops
and multiple edges and thus the simplicity assumption on the model of .G ; �; �/ (that
is, the minimality of a cable system for .V ; mI b/) might be too restrictive. In fact, as
discussed in Remark 2.11 and Remark 2.12, we can allow multi-graphs and this leads
us to another question:

Problem 6.2. Which locally finite graphs .V ; mI b/ have a cable system?

Once the above problems will be resolved, the next natural question (also in con-
text with possible applications) is:

Problem 6.3. How can one describe all cable systems of a locally finite graph b over
.V ; m/?
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On the other hand, there is another closely connected class of second order differ-
ence operators on graphs, however, acting in `2.V/. In particular, the operator defined
in `2.V/ by the difference expression (3.28) is a special case of

.�f /.v/ D ˇ.v/f .v/ �
X
u2V

q.u; v/f .u/; v 2 V ;

where ˇW V ! R and q is a graph over V satisfying properties (i), (ii) and (iv) of
Section 2.2. This leads to a similar problem:

Problem 6.4. Given a graph q over V , which of the above difference expressions
arise as boundary operators for Laplacians with ı-couplings on a weighted metric
graph .G ; �; �/ over Gq D .V ; Eq/?

Despite an obvious similarity and a clear connection between these problems, as
we learned in Section 5.3, they have very different answers even in the case of a path
graph (see Proposition 5.18 and Proposition 5.20).

Remark 6.3. Taking into account an obvious analogy between the above second
order difference expression and Jacobi matrices, it is tempting to call them Jacobi
matrices on graphs (cf., e.g., [8–10]).

6.1 Examples

Before studying Problems 6.1–6.4, let us first give several illustrative examples.

Example 6.4 (Normalized Laplacians/simple random walks). Let Gd D .V ; E/ be
a locally finite simple graph. Let also j � jW E ! .0; 1/ be given and define edge
weights �; �WE ! .0;1/ by setting

�W e 7!
1

jej
; �W e 7! jej:

Notice that the intrinsic edge length is constant on E , that is,

�.e/ D jej

s
�.e/

�.e/
D 1

for all e 2 E in this case, and hence (3.3), (3.5) and (3.6) give

m.v/ D
X
u�v

jej�.e/ D deg.v/; v 2 V ;

and

b.u; v/ D

´
1; u � v;

0; u 6� v;
.u; v/ 2 V � V :
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The corresponding graph Laplacian (3.7) (with ˛ � 0) has the form

.Lnormf /.v/ WD
1

deg.v/

X
u�v

f .v/ � f .u/ D f .v/ �
1

deg.v/

X
u�v

f .u/

for all v 2 V . It is known in the literature as a normalized Laplacian (or physical
Laplacian). This operator has a venerable history. In particular, it appears as the gen-
erator of the simple random walk on Gd D .V ; E/, where “simple” refers to the fact
that the probabilities to move from v to a neighboring vertex are all equal to 1

deg.v/

(see, e.g., [212]).

Example 6.5 (Electrical networks/Random walks). Again, let Gd D .V ; E/ be a lo-
cally finite simple graph. Suppose j � jW E ! ¹1º, that is, the corresponding metric
graph G is equilateral (each e 2 E can be identified with a copy of the interval Œ0; 1�).
Next, suppose that the edge weights �; �WE ! .0;1/ coincide, that is, �.e/ D �.e/

for all e 2 E . Then

�.e/ D

s
�.e/

�.e/
D 1

for all e 2 E and hence, by (3.3), (3.5) and (3.6),

b.u; v/ D

´
�.eu;v/; u � v;

0; u 6� v;
m.v/ D mb.v/ WD

X
e2Ev

�.e/:

The corresponding graph Laplacian (3.7) (with ˛ � 0) is given explicitly by

.Lbf /.v/ WD
1

mb.v/

X
u�v

b.u; v/.f .v/ � f .u//; v 2 V ;

and arises in the study of random walks on Gd (a.k.a. reversible Markov chains),
where the jump probabilities are defined by (see, e.g., [12, Chapter 1.2], [91])

p.u; v/ D
b.u; v/P

x2V b.u; x/
; u; v 2 V :

On the other hand, considering informally an electrical network as a set of wires
(edges) and nodes (vertices), we can interpret b.u; v/ as a conductance of a wire eu;v

connecting u with v, r.u; v/ D 1
b.u;v/

is the resistance of eu;v and m.v/ is the total
conductance at v. Thus, the corresponding weighted Laplacian Lb arises in the study
of pure resistor networks (see [12, 195, 212]).

Therefore, every electrical network operator/generator of a random walk (re-
versible Markov chains) on a locally finite graph arises as a boundary operator for
a Kirchhoff Laplacian on a weighted metric graph. Notice also that by Lemma 2.9
the corresponding graph Laplacian is bounded (in fact, its norm is at most 2).

Remark 6.6. The construction in Example 6.5 connecting a random walk on a graph
with a Brownian motion on a weighted metric graph can be found in [205].
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The above examples show that a very important class of graph Laplacians arises
as boundary operators (in the sense of Proposition 3.11) for Laplacians on weighted
metric graphs. However, as we shall see next, the answer to Problem 6.1 is far from
trivial.

Example 6.7 (Combinatorial Laplacians on antitrees). Again, let Gd D .V ; E/ be
a locally finite simple graph. Set m D 1 on V and define a graph b over .V ; m/ by

b.u; v/ D

´
1; u � v;

0; u 6� v;
.u; v/ 2 V � V :

Notice in particular that the associated combinatorial graph .V ; Eb/ coincides with
Gd D .V ; E/ (see Remark 2.7). The corresponding graph Laplacian acts in `2.V/ and
is given by

.Lcombf /.v/ WD
X
u�v

f .v/ � f .u/ D deg.v/f .v/ �
X
u�v

f .u/: (6.1)

This operator is known as the combinatorial Laplacian1 and A D .b.u; v//u;v2V is
nothing but the adjacency matrix of the graph Gd D .V ; E/.

Suppose additionally that our graph Gd D .V ;E/ is a rooted antitree (see [48,149,
213] and also Section 8.1), that is, fix a root vertex o2V and then order the graph with
respect to the combinatorial spheres Sn, n 2 Z�0 (Sn consists of all vertices v 2 V

such that the combinatorial distance from v to the root o, that is, the combinatorial
length of the shortest path connecting v with o, equals n; notice that S0 D ¹oº). The
graph Gd is called an antitree if it is simple and every vertex in Sn is connected
to every vertex in SnC1 and there are no horizontal edges, i.e., there are no edges
with all endpoints in the same sphere (see Figure 6.1). In this particular situation

o
S0

S1

S2

S3

Figure 6.1. Example of an antitree with sn D #Sn D n C 1.

1It seems that there is no agreement how to call this difference operator and sometimes the
name “physical Laplacian” is used instead. However, taking into account its obvious connection
with the adjacency matrix, the name “combinatorial Laplacian” looks more appropriate to us.
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(a combinatorial Laplacian on an infinite antitree) the next result provides a complete
answer to Problem 6.1.

Proposition 6.8. Let AD .V ;E/ be an (infinite) antitree and let sn WD #Sn, n 2 Z�0,
be its sphere numbers. Then the corresponding combinatorial Laplacian (6.1) on A

arises as a boundary operator for a minimal Kirchhoff Laplacian on a weighted met-
ric antitree if and only if

nX
kD0

.�1/ksn�k > 0 (6.2)

holds for all n 2 Z�0.

We shall give the proof of this result in Section 6.2. Let us only mention the
similarity between (6.2) and (5.33), which is, in fact, not at all surprising in view
of connections between Laplacians on family preserving graphs and Jacobi matrices
(see [30]).

6.2 Life without loops I: Graph Laplacians

We begin with Problem 6.1. Its importance stems from the fact that every regular
Dirichlet form over .V ; m/ arises as the energy form qD for some graph .b; c/ over
.V ; m/ (see [132, Theorem 7]).

Suppose that a connected locally finite graph .b; c/ over .V ;m/ is given. Let Gb D

.V ; Eb/ be the simple graph associated with .b; c/: u � v exactly when b.u; v/ ¤ 0

(see Remark 2.7). Then for each weighted metric graph .G ; �; �/ over .V ; Eb/ the
functions defined by (3.1)–(3.5) and (3.6) take the following form:

mG .v/ D
X

uWb.u;v/¤0

r.eu;v/; (6.3)

where r is defined by (3.1), (3.3)–(3.4), and

bG .u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; b.u; v/ > 0;

0; b.u; v/ D 0:

Comparing the form of the boundary operator (3.7) with (2.4), it is clear that the
killing term c is nothing but the strength of ı-couplings at the vertices and hence we
can restrict our considerations to the case c � 0. In fact, the next result shows that
Problem 6.1 can be reduced to a description of all possible vertex weights m:

Proposition 6.9. A locally finite graph .V ; mI b/ admits a minimal cable system if
and only if there is a function rbWEb ! .0;1/ such that, for all v 2 V ,

m.v/ D
X
e2Ev

rb.e/: (6.4)
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Proof. Necessity immediately follows from (6.3). Let us prove sufficiency. Suppose
there is rbWEb ! .0;1/ such that (6.4) holds true for all v 2 V . First of all, we set
jeu;vj � 1 and �.eu;v/ WD b.u; v/ for all edges eu;v 2 Eb . If supu;v

rb.eu;v/

b.u;v/
< 1, then

we define �.eu;v/ D rb.eu;v/ and otherwise set

�.eu;v/ D

8̂<̂
:

rb.eu;v/; rb.eu;v/ � b.u; v/;

rb.eu;v/2

b.u; v/
; rb.eu;v/ > b.u; v/;

for each eu;v 2 Eb . It is then straightforward to check that the corresponding functions
defined by (3.1)–(3.5) and (3.6) coincide with m and b.

In fact, the above result shows that the answer to Problem 6.1 is analogous to the
answer in the case of a path graph (see Proposition 5.20 and Remark 5.21). Indeed, let
Gd D .V ; E/ be a simple locally finite graph and consider the map DWC.V/ ! C.E/

given by
.Df /.eu;v/ D f .u/ C f .v/:

If we define the Hilbert space `2.E/ as

`2.E/ D

²
�WE ! C W

X
e2E

j�.e/j2 < 1

³
;

then D defines a possibly unbounded operator from `2.V/ to `2.E/ (in fact, D is
bounded if and only if the graph Gd has bounded geometry, supv2V deg.v/ < 1). Its
(formal) adjoint D�WC.E/ ! C.V/ is given by

.D��/.v/ D
X
e2Ev

�.e/; v 2 V :

Comparing this formula with (6.4), we immediately arrive at the following result:

Corollary 6.10. A locally finite graph .V ; mI b/ admits a minimal cable system if
and only if m belongs to the image of the positive cone CC.E/ under the map D�.

Remark 6.11. Taking into account Example 6.5, Corollary 6.10 admits the following
reformulation: A locally finite graph .V ; mI b/ admits a minimal cable system if and
only if there are resistances RWEb ! R>0 such that total conductances on V coincide
with m.

Let us apply the above result to antitrees in order to prove Proposition 6.8.

Proof of Proposition 6.8. By Proposition 6.9, we need to show that for a given anti-
tree AD .V ;E/ with sphere numbers .sn/n�0 condition (6.2) holds for all n� 0 if and
only if there is a strictly positive function r WE ! .0;1/ such that

P
e2Ev

r.e/ D 1

for all v 2 V .
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Suppose first that (6.2) holds for all n � 0. Then setting

r.e/ WD
1

snsnC1

nX
kD0

.�1/ksn�k

for all e 2 En, where En the set of edges connecting the spheres Sn and SnC1, we get
for each v 2 Sn, n � 0,X

e2Ev

r.e/ D
X

e2En\Ev

r.e/ C
X

e2En�1\Ev

r.e/

D snC1

1

snsnC1

nX
kD0

.�1/ksn�k C sn�1

1

sn�1sn

n�1X
kD0

.�1/ksn�1�k

D 1:

Conversely, suppose r WE ! .0;1/ is such that D�r D 1V . Then we haveX
e2E0

r.e/ D
X
e2Eo

r.e/ D 1 D #S0 D s0;

and hence

0 <
X
e2En

r.e/ D
X

v2Sn

X
e2Ev

r.e/ �
X

e2En�1

r.e/

D sn �

X
e2En�1

r.e/

D

nX
kD0

.�1/ksn�k

for all n � 0, where the last equality follows immediately by induction.

Remark 6.12. A few remarks are in order.

(i) Proposition 6.8 can be generalized to family preserving graphs (see [30] for
definitions).

(ii) We stress that, by the above results, the combinatorial Laplacian on an infi-
nite path graph Gd D Z�0 has no minimal cable system. Indeed, every
infinite path graph is an antitree with sphere numbers sn D 1 for all n � 0

and (6.2) clearly fails to hold in this case (see also Proposition 5.20).

Despite its simple form, for a given vertex weight it is not so easy to verify the
conditions in Proposition 6.9 and Corollary 6.10. In particular, returning to Exam-
ple 6.7, the corresponding vertex weight m is a constant function, m D 1V , and
one may ask: for which graphs Gd D .V ; E/ the constant function 1V belongs to
D�.CC.E//? The answer to this question is provided by the following elegant result:
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Lemma 6.13. Let Gd D .V ; E/ be a simple graph satisfying Hypotheses 2.1. Then
1V 2 D�.CC.E// if and only if for each e 2 E there is a disjoint cycle cover of Gd

containing e in one of its cycles.

Recall that a disjoint cycle cover of Gd is a collection of vertex-disjoint cycles
in Gd such that every vertex in Gd lies on some edge in one of the cycles. Here,
by a cycle of length n 2 Z�2 in a simple graph Gd , we mean a path P D .vk/n

kD0

such that v0 D vn and all other vertices are distinct. Notice that this definition differs
slightly from the one given in Section 2.1.1, that is, in the present section we allow
for a moment cycles of length two (consisting of “going back and forth” along one
fixed edge).

Remark 6.14. Lemma 6.13 is due to G. Zaimi and was published in MathOverflow2

as the answer to a question posed by M. Folz. It is curious to mention that Folz
came up in [72] with a problem similar to Problem 6.1 when studying stochastic
completeness of weighted graphs and attempting to prove a volume growth test by
employing connections between Dirichlet forms on graphs and metric graphs, which
allow to transfer the results from strongly local Dirichlet forms to Dirichlet forms on
graphs (see Sections 4.2 and 4.6 for further information).

Remark 6.15. Notice that in the case of finite graphs, for each e 2E there is a disjoint
cycle cover containing e in one of its cycles if and only if removing an edge decreases
the permanent of the corresponding adjacency matrix. The appearance of permanents
is not at all surprising since

.D�Df /.v/ D
X
u�v

f .v/ C f .u/ D deg.v/f .v/ C
X
u�v

f .u/

is the so-called signless Laplacian. Here the second summand is the usual adjacency
matrix.

6.3 Life with loops

As we have seen in Section 6.2, a minimal cable system for .V ; mI b/ may not exist.
Moreover, to verify its existence is a rather complicated task even in some simple
cases. It turns out that the situation changes once we drop the minimality assumption.
In particular, we obtain an affirmative answer to Problem 6.2:

Theorem 6.16. Every locally finite graph .V ; mI b/ has a cable system.

2See httpsW//mathoverflow.net/questions/59117/: Assigning positive edge weights to a graph
so that the weight incident to each vertex is 1, (2011).

https://mathoverflow.net/questions/59117/
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Proof. The proof is by construction. As before, denote by Gb D .V ; Eb/ the simple
graph associated with b (see Remark 2.7). Let Gloop D .V ; Eloop/ be the (combinato-
rial) graph obtained from Gb D .V ; Eb/ by adding a loop ev D ev;v at each vertex
v 2 V . More precisely, its edge set is given by

Eloop D Eb [ ¹ev W v 2 Vº:

Next, define the edge weight pWEloop ! .0;1/ by

p.eu;v/2
D

8<:
1

2 max¹1; Deg.u/; Deg.v/º
; u ¤ v;

1; u D v;

where Deg is the weighted degree function (2.9). The edge lengths are then defined
by j � j D p.�/ on Eloop and the edge weights � and � are given by

�.eu;v/ D �.eu;v/ D

8̂̂<̂
:̂

b.u; v/p.u; v/; u ¤ v;

m.v/ �
X
u�v

b.u; v/p.eu;v/2; u D v:

By construction, �.ev/D �.ev/ > 0 and hence we indeed obtain well-defined weights
�; �W Eloop ! .0;1/. Moreover, it is easy to check that .Gloop; j � j; �; �/ is a cable
system for .V ; mI b/.

Remark 6.17. A few remarks are in order:

(i) The above construction is taken from [72, Remark 2, p. 2107], where it was
suggested in context with synchronizing Brownian motions and random
walks on graphs. However, we stress that, due to the presence of a loop at
every vertex, this cable system is never minimal.

(ii) After establishing existence of cable systems, the next natural question is
their uniqueness. In fact, every locally finite graph b over .V ;m/ has a large
number of cable systems. In particular, the above cable system is a spe-
cial case of a general construction using different metrizations of discrete
graphs. These connections will be discussed in the next section.

6.4 Intrinsic metrics

In this section we discuss connections between intrinsic metrics for the Kirchhoff
Laplacian on a weighted metric graph .G ; �; �/ and the associated discrete Laplacian
on a fixed model. Notice that we cannot expect a close link between the properties of
the length metric %0 (see Section 2.1) and Kirchhoff Laplacians on weighted metric
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graphs since %0 does not depend on � and �. However, it is known that the spectral
properties of an operator associated to a (regular) Dirichlet form relate closely to
its associated intrinsic metrics (see, e.g., [74, 198] for precise definitions and further
references).

Historically, intrinsic metrics appear first in context with strongly local forms (see
[53, Chapter 3.2] and [27]). More precisely, to each strongly local, regular Dirichlet
form there is an associated intrinsic metric and this notion allows to generalize many
results known for the Laplace–Beltrami operator on a Riemannian manifold and the
Riemannian metric (see [198–200] for details and further references).

A rather general notion of intrinsic metrics for arbitrary (regular) Dirichlet forms
was introduced in [74]. With its help, a variety of results could be recovered also in
the non-local setting (see, e.g., [18,74,113,116,129] and the references therein). One
of the crucial differences is that it is no longer possible to associate a unique intrinsic
metric to a general Dirichlet form. More precisely, if the Dirichlet form is strongly
local, then the classical intrinsic metric is intrinsic in the sense of [74]. Moreover, it
is in a certain sense the largest one among all such metrics (see [74, Theorem 6.1])
and hence provides a canonical choice. For a non-local Dirichlet form (including the
setting of graph Laplacians), there is in general no largest intrinsic metric and hence
it is not possible to make a canonical choice.

6.4.1 Intrinsic metrics on metric graphs

We define the intrinsic metric of a weighted metric graph .G ; �; �/ as the (largest)
intrinsic metric of its Dirichlet Laplacian HD (in particular, note that QD is a strongly
local, regular Dirichlet form). By [198, equation (1.3)] (see also [74, Theorem 6.1]),
%intr is given by

%intr.x; y/ D sup¹f .x/ � f .y/ W f 2 yDlocº; x; y 2 G ;

where the function space yDloc is defined as

yDloc D ¹f 2 H 1
loc.G / W �.x/jrf .x/j2 � �.x/ for a.e. x 2 G º:

It turns out that %intr admits a rather explicit description. First of all, the above suggest
to define the intrinsic weight �WG ! .0;1/,

� D ��;� WD

r
�

�
on G :

This weight gives rise to a new measure on G whose density with respect to the
Lebesgue measure is exactly � (as in the case of the edge weights on a metric graph,
we abuse the notation and denote with � both the edge weight and the corresponding
measure).
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Recall from Remark 2.2 that a path P in G is a continuous and piecewise injective
map P W I ! G defined on an interval I � R. In case that 	 D Œa; b� is compact, we
call P a path with starting point x WD P .a/ and endpoint y WD P .b/. The (intrinsic)
length of such a path P in G is defined as

jP j� WD

X
j

Z
P ..tj ;tjC1//

�.ds/; (6.5)

where a D t0 < � � � < tn D b is any partition of 	 D Œa; b� such that P is injective on
each interval .tj ; tjC1/ (clearly, jP j� is well defined).

Lemma 6.18. The metric %� defined by

%�.x; y/ WD inf
P

jP j� D inf
P

Z
P

�.ds/; x; y 2 G ; (6.6)

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on .G ; �; �/ (with respect to QD), that is, %intr D %� .

Notice that in the case � D �, � coincides with the Lebesgue measure and hence
%� is nothing but the length metric %0 on G .

Proof. The proof is straightforward and can be found in, e.g., [97, Proposition 2.21],
however, we decided to present it for the sake of completeness. First, observe that for
any two points x; y on G and every path P from x to y, the estimate

jf .x/ � f .y/j �

Z
P

jrf jds �

Z
P

r
�

�
ds D

Z
P

�.ds/ D jP j�

holds true for every f 2 yDloc, and hence %intr � %� .
On the other hand, fixing some y 2 G , define f 2H 1

loc.G / by f .x/D %�.x; y/

for all x 2 G . It is immediate to see that f is edgewise absolutely continuous and

jrf j D

r
�

�
a.e. on G .

Therefore, f 2 yDloc. Moreover, for each x 2 G we clearly have

%�.x; y/ D f .x/ � f .y/ D f .x/;

which finishes the proof.

Remark 6.19. According to the above definition of the intrinsic weight, we get for
a path Pe consisting of a single edge e 2 E

jPej� D

Z
e

�.ds/ D jej

s
�.e/

�.e/
D �.e/;

which connects the intrinsic path metric %intr D %� on .G ; �; �/ with the notion of the
intrinsic edge length (3.1).
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Remark 6.20 (Eikonal/optical metric). Let us mention that the obtained intrinsic
metric admits a mechanical interpretation. In terms of the wave equation, the weight
p

�
�

is precisely the reciprocal of the speed of wave propagation on a given edge.
Moreover, the distance function f WD %�.x0; � / for a reference point x0 satisfies the
eikonal equation jrf j D

p
�
�

on all edges. From this perspective, one may try to
interpret the intrinsic distance between two points on a weighted metric graph as a
time that the wave initiated at one point needs to reach the other one. In the physics
literature, the latter is often called eikonal or optical metric.

6.4.2 Intrinsic metrics on discrete graphs

The idea to use different metrics on graphs can be traced back at least to [52] and
versions of metrics adapted to weighted discrete graphs have appeared independently
in several works, see, e.g., [71,72,92,165]. Let us now recall the definition of intrinsic
metrics for graph Laplacians, where we follow [18, 74, 129, 136].

Given a connected graph b over .V ; m/, a symmetric function pWV �V ! Œ0;1/

such that p.u;v/>0 exactly when b.u;v/>0 is called a weight function for .V ;mIb/.
Every weight function p generates a path metric %p on V with respect to the graph b

via
%p.u; v/ WD inf

PD.v0;:::;vn/WuDv0; vDvn

X
k

p.vk�1; vk/: (6.7)

Here the infimum is taken over all paths in b connecting u and v, that is, all sequences
P D .v0; : : : ; vn/ such that v0 D u, vn D v and b.vk�1; vk/ > 0 for all k 2 ¹1; : : : ; nº.
We stress that we always assume that b is locally finite (see Section 2.2) and hence
%p.u; v/ > 0 whenever u ¤ v.

Example 6.21. Let us provide a few important examples.

(i) Combinatorial distance: Let pWV � V ! ¹0; 1º be given by

p.u; v/ D

´
1; b.u; v/ ¤ 0;

0; b.u; v/ D 0:

Then the corresponding path metric is nothing but the combinatorial dis-
tance %comb (also known as the word metric in the context of Cayley graphs)
on a graph b over V .

(ii) Natural path metric: Define pbWV � V ! Œ0;1/ by

pb.u; v/ D

8<:
1

b.u; v/
; b.u; v/ ¤ 0;

0; b.u; v/ D 0:

(6.8)

Then the corresponding path metric %b depends only on the graph b and not
on the weight function m, and hence one may call it as a natural path met-
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ric. Notice also that the edge weight (6.8) can be interpreted as resistances
(see Example 6.5).

(iii) Star path metric: Let mWV ! .0;1/ be a vertex weight. Set

pm.u; v/ D

´
m.u/ C m.v/; b.u; v/ ¤ 0;

0; b.u; v/ D 0:
(6.9)

Then the corresponding path metric %m is called the star metric on the
graph b over V . The following two choices of m are of particular interest:
the vertex weight

mb.v/ WD
X
u2V

b.u; v/; v 2 V ;

corresponds to a simple random walk on graph b (see Remark 2.11). An-
other choice

m1=b.v/ WD
X
u�v

1

b.u; v/
; v 2 V ;

appears in [68]. In particular, if bWV � V ! ¹0; 1º, then both mb and m1=b

coincide with the combinatorial degree function deg. In both cases the ver-
tex weight can be considered as a weight (or length) of the corresponding
star Ev at v 2 V , which explains the name.

Recall (see [74] and also [115, 129]) the following important notion:

Definition 6.22. A metric % on V is called intrinsic with respect to .V ; mI b/ ifX
u2V

b.u; v/%.u; v/2
� m.v/

holds for all v 2 V .

Similarly, a weight function pWV � V ! Œ0;1/ is called an intrinsic weight for
.V ; mI b/ if X

u2V

b.u; v/p.u; v/2
� m.v/; v 2 V :

If p is an intrinsic weight, then the associated path metric %p is called strongly intrin-
sic (it is obviously intrinsic in the sense of Definition 6.22).

Remark 6.23. For any given locally finite graph .V ; mIb/ an intrinsic metric always
exists (see [115, Example 2.1], [129] and also [45]). Indeed, we obtain an intrinsic
weight by setting

p.u; v/ D

8̂<̂
:

1p
max¹1; Deg.u/; Deg.v/º

; b.u; v/ ¤ 0;

0; b.u; v/ D 0;
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where Deg is the weighted degree function (2.9), and hence the corresponding path
metric % D %p is strongly intrinsic. We are going to provide further examples in the
next sections.

Example 6.24. Let us continue with Example 6.21.

(i) If a graph bWV � V ! ¹0; 1º is locally finite and m D deg on V , then the
combinatorial distance %comb on V is intrinsic.

(ii) If m D m1=b , then the path metric %b is intrinsic. Moreover, the weight pb

is intrinsic as well.

(iii) Let us stress that the star path metric %m is not intrinsic in general since it
does not contain any information on b except the underlying combinatorial
structure.

Remark 6.25. Let us emphasize that the combinatorial distance %comb is not intrinsic
for the combinatorial Laplacian Lcomb (m � 1 on V in this case). However, %comb

is equivalent to an intrinsic path metric if and only if deg is bounded on V , that is,
the corresponding graph has bounded geometry. If supV deg.v/ D 1, then Lcomb is
unbounded in `2.V/ and it turned out that %comb is not a suitable metric on V to study
the properties of Lcomb (in particular, this has led to certain controversies in the past,
see [135, 213]).

Remark 6.26. In the discrete setting we are unaware of any mechanical interpre-
tation of intrinsic metrics (cf. Remark 6.20). In particular, the relationship to wave
propagation speed is unclear since waves on discrete graphs propagate with infinite
speed, which is closely connected to the non-locality of the corresponding Dirich-
let form. It seems to us that exactly these facts are the origin of many difficulties in
analysis on weighted (discrete) graphs.

6.4.3 Connections between discrete and continuous

Consider a weighted metric graph .G ; �; �/ and its intrinsic metric %� defined in
Section 6.4.1. With each model of .G ;�;�/ we can associate the vertex set V together
with the vertex weight mWV ! .0;1/ and the graph bWV � V ! Œ0;1/, see (3.1)–
(3.6). The next result shows that the intrinsic metric %� of .G ; �; �/ gives rise to
a particular intrinsic metric for .V ; mI b/.

Lemma 6.27. Let .G ; �; �/ be a weighted metric graph and %� its intrinsic metric.
Fix further a model of .G ; �; �/ having finite intrinsic size and define the metric %V

on V as a restriction of %� onto V � V ,

%V .u; v/ WD %�.u; v/; .u; v/ 2 V � V : (6.10)
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Then:

(i) %V is an intrinsic metric for .V ; mI b/.

(ii) .G ; %�/ is complete as a metric space exactly when .V ; %V / is complete.

Proof. (i) Fix a model of a weighted metric graph of .G ; �; �/ and consider the edge
weight function p�WV � V ! Œ0;1/ given by

p�.u; v/ D

´
mine2Eu;v

�.e/; u � v and u ¤ v;

0; else;
.u; v/ 2 V � V : (6.11)

Here Eu;v denotes the set of edges between u and v (recall that we allow multigraphs).
Using (3.1)–(3.6), notice that for every v 2 V ,X

u2V

b.u; v/p�.u; v/2
D

X
u2Vn¹vº

X
e2Eu;v

�.e/

jej
p�.u; v/2

�

X
u2Vn¹vº

X
e2Eu;v

�.e/

jej
�.e/2

D

X
u2Vn¹vº

X
e2Eu;v

jej�.e/

� m.v/;

where in the last inequality we used the fact that .G ; �; �/ has finite intrinsic size.
Hence p� is an intrinsic weight for .V ; mI b/. It remains to notice that each path P

without self-intersections from u 2 V to v 2 V in the metric graph G can be identified
with a path Pd D .eu;v1

; : : : ; evn�1;v/ in the fixed model from u D v0 to v D vn

without self-intersections. With respect to this identification,

jP j� D

nX
kD1

�.evk�1;vk
/

which immediately implies that %p�
D %�jV�V (notice that both the infima in (6.6)

and (6.7) can be taken over paths without self-intersections).
(ii) The remaining equivalence of the metric space completeness is straightfor-

ward to verify directly (one can also immediately observe it by comparing geodesic
completeness on both metric spaces and then using the corresponding versions of the
Hopf–Rinow theorems, see Section 6.4.5).

Remark 6.28. Notice that the proof also implies that (6.11) is an intrinsic weight for
.V ; mI b/ and %V D %p�

is the corresponding strongly intrinsic path metric.

Let us mention that Lemma 6.27 also has an interpretation in terms of quasi-
isometries (see, e.g., [12, Definition 1.12], [175, Section 1.3] and [187]).
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Definition 6.29. A map �WX1!X2 between two metric spaces .X1;%1/ and .X2;%2/

is called a quasi-isometry if there are constants a; R > 0 and d � 0 such that

a�1.%1.x; y/ � d/ � %2.�.x/; �.y// � a.%1.x; y/ C d/ (6.12)

for all x; y 2 X1 and, moreover,[
x2X1

BR.�.x/I %2/ D X2: (6.13)

One can check that quasi-isometries define an equivalence relation between met-
ric spaces. It turns out that the map {V defined in Section 4.3 is closely related with a
quasi-isometry between weighted graphs and metric graphs:

Lemma 6.30. Assume the conditions of Lemma 6.27. Then the map

'WV ! G ; '.v/ D v

defines a quasi-isometry between the metric spaces .G ; %�/ and .V ; %V /. Moreover,
the map ' is bi-Lipschitz (i.e., b in (6.12) can be set equal to 0).

Proof. The proof is a straightforward check of (6.12) and (6.13) for the map � with
a D 1, b D 0 and R D ��.E/ and we leave it to the reader.

Remark 6.31. The notion of quasi-isometries was introduced in the works [94] of
M. Gromov and [122, 123] of M. Kanai. It is well known in context with Riemann-
ian manifolds and (combinatorial) graphs that quasi-isometric spaces share many
important properties: e.g., geometric properties (such as volume growth and isoperi-
metric inequalities) [122], parabolicity/transience [47, 122, 160], Nash inequalities
[47], Liouville-type theorems for harmonic functions of finite energy [47, 106, 107,
151, 160, 194] and parabolic/elliptic Harnack inequalities [14, 15, 47, 103]. However,
we stress that most of these connections also require additional conditions on the local
geometry of the spaces. Typically, one imposes a bounded geometry assumption for
manifolds [122] and bounded geometry/controlled weights assumptions for graphs
[12, 15], [195, Chapter VII].

Some of our conclusions are reminiscent of this notion (see, e.g., Theorem 4.17,
Theorem 4.30 and Proposition 7.38), but in fact our results go beyond this framework.
For instance, the strong/weak Liouville property (i.e., all positive/bounded harmonic
functions are constant) is not preserved under bi-Lipschitz maps in general [155].
However, the equivalence holds true for our setting (this is a trivial consequence
of Lemma 6.48 below). In addition, we stress that in contrast to the above works,
we do not require any additional local conditions (e.g., bounded geometry). On the
other hand, our results connect only two particular quasi-isometric spaces .G ; %�/ and
.V ; %V / and not the whole equivalence class of quasi-isometric weighted graphs or
weighted metric graphs.
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By Lemma 6.27, each cable system having finite intrinsic size3 gives rise to an
intrinsic metric %V for .V ;mIb/ using a simple restriction to vertices. In view of Prob-
lems 6.1–6.2, it is natural to ask which intrinsic metrics on graphs can be obtained as
restrictions of intrinsic metrics on weighted metric graphs. It turns out that a rather
large class can be covered in this way. Before stating the result, let us recall one more
definition.

Definition 6.32. Let b be a locally finite graph over V . A metric % on V has finite
jump size (with respect to b) if

s.%/ WD sup¹%.u; v/ W u; v 2 V with b.u; v/ > 0º

is finite.

Lemma 6.33. Let .V ;mIb/ be a locally finite graph and let �WV �V ! Œ0;1/ be an
intrinsic path metric having finite jump size s.%/ <1. Then there is a cable system for
.V ; mI b/ satisfying ��.E/ � max¹s.%/; 1º and such that �V D �. Moreover, .V ; %V /

is complete exactly when the corresponding weighted metric graph .G ; �; �/ of the
cable system equipped with its intrinsic metric %� is complete.

Proof. Our proof follows closely the ideas of [114, p. 128] and [72]. The edge set E

of the cable system .V ; E; j � j; �E ; �E/ is defined as follows: first of all, we create an
edge e D eu;v between each pair of vertices u; v 2 V with b.u; v/ > 0. Moreover, we
add a loop edge at each vertex v 2 V satisfyingX

u2Vn¹vº

b.u; v/%.u; v/2 < m.v/:

Notice that the resulting combinatorial graph Gd D .V ;E/ does not have any multiple
edges. Specifying now the edge lengths and weight, assume first that eu;v 2 E is
a non-loop edge, that is, u ¤ v. Then we set

jeu;vj D %.u; v/; �.eu;v/ D �.eu;v/ D %.u; v/b.u; v/:

If e 2 E is a loop at the vertex v 2 V , then we define

jej D 1; �.e/ D �.e/ D m.v/ �
X

u2Vn¹vº

b.u; v/%.u; v/2 > 0:

By definition, �.eu;v/D jeu;vj D %.u;v/ for each non-loop edge eu;v and it is straight-
forward to check that .V ; E; j � j; �E ; �E/ is a cable system for .V ; mI b/. Moreover,
since % is a path metric, we easily infer that % D %V (see Remark 6.28).

3Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size (see Definition 3.16) immediately extends to cable systems.
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Remark 6.34. A few remarks are in order.

(i) Notice that an intrinsic path metric with jump size s.%/ � 1 indeed exists
for every graph .V ; mI b/ (e.g., take the path metric in Remark 6.23).

(ii) We stress that not every intrinsic metric is a path metric. However, in some
sense intrinsic path metrics correspond to particularly large intrinsic met-
rics. Namely, for every intrinsic metric %, the choice p.u; v/ WD %.u; v/

whenever b.u; v/ > 0 defines an intrinsic weight and the corresponding
path metric clearly satisfies % � %p on V � V .

6.4.4 Description of cable systems

The results of the previous sections naturally lead us to Problem 6.3. It does not
seem realistic to obtain a complete answer to this question since the class of all cable
systems of .V ; mI b/ is rather large. Hence our strategy will be to restrict to a certain
class of “well-behaved” cable systems and obtain a precise description of those.

Definition 6.35. A cable system .V ; E; j � j; �; �/ for a graph b over .V ; m/ is called
canonical if it satisfies the following additional assumptions:

(i) the underlying graph Gd D .V ; E/ has no multiple edges,

(ii) the edge weights � and � coincide,

�.e/ D �.e/; e 2 E;

(iii) jej D 1 whenever e is a loop and, moreover, supe2E jej < 1.

The set of canonical cable systems of .V ; mI b/ is denoted by Cab D Cab.V ; mI b/.

Notice that conditions (ii) and (iii) imply that canonical cable systems have finite
intrinsic size since in this case intrinsic edge length coincides with the edge length
and hence

��.E/ D sup
e2E

jej:

The importance of canonical cable systems stems from the fact that the intrinsic
metric %� of the corresponding weighted metric graph coincides with the length met-
ric %0. Moreover, it turns out that canonical cable systems can be described in terms
of intrinsic metrics. More precisely, denote by W.V ; mIb/ the set of intrinsic weights
for .V ; mI b/ having finite jump size, that is, all intrinsic weights pWV � V ! R�0

satisfying
sup

u;vWb.u;v/>0

p.u; v/ < 1:

We already observed that for every canonical cable system, the choice

p.u; v/ D

´
jeu;vj if u ¤ v and u � v;

0 else;
(6.14)
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defines an intrinsic weight on .V ; mI b/ (see Remark 6.28). Hence (6.14) defines
a map

‰WCab.V ; mI b/ ! W.V ; mI b/: (6.15)

In fact, this leads to a one-to-one correspondence between canonical cable systems
and intrinsic weights.

Theorem 6.36. Suppose b is a locally finite connected graph over .V ; m/. Then the
map ‰ defined by (6.14) and (6.15) is a bijection between the set of canonical cable
systems of .V ; mI b/ and intrinsic weights of .V ; mI b/ having finite jump size.

Proof. As noticed above, the map ‰ is well defined and, moreover, its surjectivity
was established in Lemma 6.33. More precisely, if we replace %.u; v/ by p.u; v/ in
its proof, we obtain an explicit construction of a canonical cable system for every
p 2 W.V ; mI b/.

To prove the injectivity of ‰, we essentially invert the construction in Lem-
ma 6.33. Let C D .V ; E; j � j; �/ be a canonical cable system for .V ; mI b/. First
of all, notice that the non-loop edges of E are determined by (3.6): there is an edge
eu;v between u ¤ v exactly when b.u; v/ > 0. Moreover, if ‰.C / D p, then equali-
ties (6.14) and (3.6) imply that

jeu;vj D p.u; v/; �.e/ D b.u; v/p.u; v/

for each non-loop edge eu;v between u ¤ v. However, this means that the location
of the loop edges of E is determined by (3.5) and the finite intrinsic size assumption.
Namely, it is easy to see that they are attached to exactly those vertices v 2 V with

m.v/ �
X

uWb.u;v/>0

b.u; v/p.u; v/2
D m.v/ �

X
uWb.u;v/>0

jeu;vj�.eu;v/ > 0:

This proves that the edge set E of C is uniquely determined by p D ‰.C /. Moreover,
since we required that jej D 1 for loop edges, it follows that

2�.ev/ D m.v/ �
X

uWb.u;v/>0

b.u; v/p.u; v/2 > 0

if there is a loop ev at a vertex v 2 V . This shows that the weight �WE ! .0;1/ is
determined by p D ‰.C / as well and the injectivity of ‰ is proven.

Remark 6.37. Notice that from a cable system .V ; E; j � j; �; �/ of .V ; mI b/ we can
construct further ones by scaling, that is, we set

jej0 D c.e/jej; �0.e/ D c.e/�1�.e/; �0.e/ D c.e/�.e/; e 2 E;

for some .c.e//e2E � .0;1/. The corresponding Kirchhoff Laplacians and energy
forms are (unitarily) equivalent as well. Among these equivalent cable systems there
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is a unique one satisfying � � � and this explains condition (ii) in Definition 6.35
(cf. also [97, Definition 2.18]). Conditions (ii) and (iii) exclude similar constructions
(i.e., by replacing single edges with multiple ones and different normalizations of
loop edges) and simplify the definition of m (see (3.1)–(3.5)).

6.4.5 Interlude: The Hopf–Rinow theorem on graphs

As it was already mentioned in Remark 2.1, a metric graph G equipped with its length
metric %0 is a length metric space (or simply a length space, see [37] for defini-
tions). Clearly, equipping a weighted metric graph .G ; �; �/ with the intrinsic metric
%� , which is defined by (6.6), turns G into a length space as well. A path P in G ,
a continuous and piecewise injective map P W I ! G defined on an interval I � R,
is called geodesic if it is locally a distance minimizer, i.e., for each x 2 I there is
a neighborhood B.x/ � I of x such that P jB.x/ is a shortest path (with respect to the
corresponding length metric). In the following it would be convenient to assume that
each geodesic is parameterized by its arc length.

Complete length spaces enjoy a number of very important properties. For in-
stance, if .G ; %�/ is complete as a metric space (recall that we always assume G

to be locally finite), then it is a geodesic metric space meaning that any two points
x;y 2 G can be connected by a minimal geodesic, that is, by a shortest path (see, e.g.,
[37, Theorem 2.5.23]). Moreover, the classical Hopf–Rinow theorem, which connects
completeness with geodesic completeness, as well as with compactness of closed
distance balls, extends from the smooth setting of Riemannian manifolds to locally
compact length spaces [37, Theorem 2.5.28], and in the case of metric graphs it reads
as follows.

Theorem 6.38 (Hopf–Rinow’s theorem on metric graphs). Let G be a locally finite
connected weighted metric graph and let % be a path metric on G .4 The following
assertions are equivalent:

(i) .G ; %/ is complete,

(ii) .G ; %/ is boundedly compact (every closed metric ball in .G ; %/ is compact),

(iii) every geodesic P W Œ0; a/ ! G extends to a continuous path P W Œ0; a� ! G .

It is natural to expect that the Hopf–Rinow theorem extends to the case of locally
finite weighted graphs and this was done in [167] and [115, Theorem A.1] (see
also [129]).

4In fact, we are going to use this result with only two particular metrics on G : the length
metric %0 and the intrinsic path metric %�.
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Theorem 6.39 (Hopf–Rinow’s theorem on graphs). Let b be a locally finite graph
over V and let % be a path metric for .V Ib/. The following assertions are equivalent:

(i) .V ; %/ is complete as a metric space,

(ii) every closed metric ball in .V ; %/ is finite,

(iii) every infinite geodesic has infinite length.5

Remark 6.40. A few remarks are in order.

(i) Taking into account the connection between weighted graphs and cable
systems, it is not difficult to derive Theorem 6.39 from Theorem 6.38. For
instance, if additionally % is intrinsic for .V ; mI b/ and has finite jump size,
then by Theorem 6.36 there is a canonical cable system .G ; �; �/ such that
% coincides with the restriction of %� D %0 onto V �V . By Lemma 6.27 (ii),
.V ; %/ is complete if and only if so is .G ; %�/ and hence it remains to apply
Theorem 6.38. Notice that this approach was used in [167, p. 24].

(ii) For a version of the discrete Hopf–Rinow theorem for graphs which are not
locally finite see the recent [137].

6.4.6 Volume growth

We finish this section with a simple but useful estimate between the volume of balls
with respect to the intrinsic metrics %� and %V . For any x 2 G and r > 0, we denote
an intrinsic distance ball of radius r by

Br.x/ WD Br.xI %�/ D ¹y 2 G W %�.x; y/ < rº:

Similarly, for any vertex v 2 V and r > 0, the ball of radius r in the induced metric
%V on V is denoted by

BV
r .v/ WD BV

r .vI %V / D ¹u 2 V W %V .u; v/ < rº:

In particular, we have the obvious relation BV
r .vI %V / D Br.vI %�/ \ V for every

r > 0 and vertex v 2 V .

Lemma 6.41. Assume the conditions of Lemma 6.27. Then

�.Br.vI %�// � m.BV
r .vI %V // � 2�.BrC��.E/.vI %�//

for every r > 0 and vertex v 2 V .

5In a discrete measure space, paths are parameterized by the combinatorial distance and
“infinite geodesic” simply means that as a path it has infinite combinatorial length.
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Proof. First of all, notice that

m.BV
r .v// D

X
u2BV

r .v/

X
Ee2EEu

�.e/jej

D

X
e2EE

�.e/jej.1Br .v/.e{/ C 1Br .v/.e� //;

where as always 1Br .v/ denotes the characteristic function of the subset Br.v/ � G .
This implies the first inequality since clearly

m.BV
r .v// �

X
e2EW e\Br .v/¤¿

�.e/jej �
X
e2E

�.e \ Br.v// D �.Br.v//:

Conversely, every edge e 2 E with at least one endpoint in Br.v/ is contained in the
larger ball BrC��.E/.v/. In particular,

m.BV
r .v// � 2

X
e2E

�.e \ BrC��.E/.v// � 2�.BrC��.E/.v//;

and the proof is complete.

Remark 6.42. On the one hand, Lemma 6.41 establishes connections between vol-
ume growth of large balls in .G ; %�/ and .V ; %V / (e.g., their polynomial/subexponen-
tial/exponential growth rates are the same) and, in fact, this phenomenon is well
known in context with quasi-isometries (indeed, a volume growth is one of the most
important quasi-isometric invariants). On the other hand, Lemma 6.41 indicates a con-
nection between small scales too and this is usually not a part of the quasi-isometric
setting.

6.5 Harmonic functions on graphs

6.5.1 Harmonic functions on weighted graphs

Let us begin by briefly recalling basic definitions. Assume that b is a connected graph
over .V ; m/ satisfying assumptions (i)–(iii) of Section 2.2 (at this point there is no
need to assume that b is locally finite). Also, by L we denote the corresponding
formal Laplacian (2.4) (the killing term c is assumed to be identically zero).

Definition 6.43. A function f WV ! C is called harmonic (subharmonic, superhar-
monic) with respect to .V ; mI b/ (or, simply, L-harmonic, L-subharmonic, L-super-
harmonic) if f belongs to Fb.V/ and satisfies

.Lf /.v/ D 0; ..Lf /.v/ � 0; .Lf /.v/ � 0// (6.16)

for all v 2 V .
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If f 2 Fb.V/ satisfies (6.16) on a subset Y � V , then it is called harmonic on Y

(subharmonic on Y , etc.) with respect to .V ; mI b/.

Remark 6.44. Let us emphasize that the notion of harmonic/subharmonic/super-
harmonic functions is independent of the weight m and hence one can simply set
m � 1 in Definition 6.43 and say harmonic/subharmonic/superharmonic with respect
to .V Ib/. On the other hand, when considering the maximal Laplacian h (see (2.6)) in
the Hilbert space `2.V Im/, its kernel consists of L-harmonic functions which belong
to `2.V Im/, and this subspace of course depends on the weight m.

The following fact is trivial in the setting of weighted graphs.

Lemma 6.45. Suppose f 2 Fb.V/ solves Lf C �f D 0 for some � 2 R�0.6 Then
jf j is subharmonic with respect to .V ; mI b/. If in addition f is real-valued, then
both fC and f� are subharmonic with respect to .V ; mI b/. Here f˙ D

1
2
.jf j ˙ f /.

Proof. First observe that Lf C �f D 0 means that

f .v/

�X
u2V

b.u; v/ C �m.v/

�
D

X
u2V

b.u; v/f .u/

for all v 2 V . Since the second factor on the left-hand side is positive, we get

jf .v/j

�X
u2V

b.u; v/ C �m.v/

�
D

ˇ̌̌̌ X
u2V

b.u; v/f .u/

ˇ̌̌̌
�

X
u2V

b.u; v/jf .u/j;

which immediately implies that

.Ljf j/.v/ D
1

m.v/

X
u2V

b.u; v/.jf .v/j � jf .u/j/

D
1

m.v/

�
jf .v/j

X
u2V

b.u; v/ �
X
u2V

b.u; v/jf .u/j

�
� ��jf .v/j:

Therefore, Ljf j ���jf j � 0 and hence jf j is subharmonic with respect to .V ;mIb/.
It remains to notice that for real-valued f by linearity we have

Lf˙ D
1

2
.Ljf j ˙ Lf / �

1

2
.��jf j � �f / � 0:

6Usually, for � > 0 such a function is called �-harmonic.
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6.5.2 Harmonic functions on metric graphs

In the case of metric graphs, one can start with the definition for strongly local Dirich-
let forms (see, e.g., [198]).

Definition 6.46. A function f W G ! R is called harmonic with respect to .G ; �; �/

if f 2 H 1
loc.G / and Z

G

rf .x/rg.x/�.dx/ D 0; (6.17)

for all 0 � g 2 H 1
c .G / D H 1.G / \ Cc.G /.

If for an open subset Y � G , (6.17) holds for all 0 � g 2 H 1.G / \ Cc.Y / with
compact support in Y , then f is called harmonic on Y .

Replacing the equality in (6.17) by the inequality “�” (resp., by “�”), one gets the
definition of a subharmonic (resp., superharmonic) function on Y � G with respect
to .G ; �; �/.

Remark 6.47. We stress that the notion of harmonic/subharmonic/superharmonic
functions is independent of the weight �WG ! .0;1/ (since this obviously holds for
the space H 1

loc.G /) and hence we could also call them harmonic/subharmonic/super-
harmonic functions with respect to .G ; �/. However, for our purposes we will mainly
be interested in functions which additionally belong to Lp.G I�/ and of course these
spaces do depend on the edge weight �.

If it is clear from the context which graph (weighted graph or weighted metric
graph) is meant, we shall simply say harmonic, subharmonic, etc. Notice also that on
each edge the structure of the corresponding Sobolev space is very well understood
and hence we can rewrite the above definition in a more convenient form. Recall (see
Section 4.3) that for each fixed model of .G ; �; �/, CA.G n V/ denotes the space of
continuous edgewise affine functions on G .

Lemma 6.48. A function f W G ! R is harmonic with respect to .G ; �; �/ exactly
when f 2CA.G nV/ for some model of .G ;�;�/ and, moreover, f satisfies Kirchhoff
conditions at each vertex v 2 V .

Proof. Clearly, we only need to prove the “only if” claim. Fix an arbitrary model of
.G ; �; �/. Upon choosing test functions g 2 H 1

c .G / whose support is contained in
single edges, it is straightforward to see that f is affine on each edge e 2 E (indeed,
one simply needs to use the fact that a distributional solution to f 00 D 0 is a classical
solution). Next, for each vertex v 2 V , choosing test functions supported in a suffi-
ciently small vicinity of v, a straightforward integration by parts shows that f must
satisfy Kirchhoff conditions at v 2 V .

Remark 6.49. Let us stress that by Lemma 6.48 the set of harmonic functions is
independent of the choice of a model of G .
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Using the same arguments one can easily show the following result:

Lemma 6.50. A function f 2 CA.G n V/ is subharmonic (superharmonic) with re-
spect to .G ; �; �/ exactly when, for all v 2 V ,X

Ee2EEv

�.e/@Eef .v/ � 0;

� X
Ee2EEv

�.e/@Eef .v/ � 0

�
: (6.18)

Remark 6.51. A few remarks are in order.

(i) Similar to the discrete situation, Definition 6.46 can be reformulated in
terms of the Laplacian � (see (2.11)). More specifically, the left-hand side
in (6.17) allows us to define � on locally H 1 functions in a standard
way (as a distribution on the test function space H 1

c .G /). Then a locally
H 1 function f is called harmonic (resp., subharmonic, superharmonic) if
�f D 0 on G (resp., �f is a nonpositive/non-negative distribution on G ).
This definition becomes transparent for edgewise affine functions. Indeed,
if f 2 CA.G n V/ for some model of .G ; �; �/, then a straightforward inte-
gration by parts shows that, as a distribution,

�f D

X
v2V

� X
Ee2EEv

�.e/@Eef .v/
�
ıv: (6.19)

Comparing (6.19) with Lemma 6.48 and Lemma 6.50, one concludes that f

is harmonic (subharmonic or superharmonic) if and only if �f D 0 (respec-
tively, �f � 0 or �f � 0).

(ii) We stress that there are sub-/superharmonic functions which are not edge-
wise affine. For instance, it is easy to check that a continuous, edgewise
H 2-function f is subharmonic exactly when f satisfies (6.18) and is sub-
harmonic on every edge. However, for our purposes it will suffice to con-
sider only edgewise affine sub-/superharmonic functions.

It is not difficult to notice that the above results immediately connect harmonic,
subharmonic, and superharmonic functions on graphs and on metric graphs.

Lemma 6.52. Let .G ; �; �/ be a weighted metric graph together with a fixed model.
Let also .V ; mI b/ be the corresponding weighted graph defined by (3.3)–(3.6). Then
f 2 CA.G n V/ is harmonic (resp., subharmonic, superharmonic) if and only if
f D {V .f / D f jV is harmonic (resp., subharmonic, superharmonic) with respect to
.V ; mI b/. Here the map {V is defined by (4.10).

Proof. Notice that for an edgewise affine function f , its slope at v on an oriented
edge Ee 2 EEv having vertices v and u is simply given by

@Eef .v/ D
f .u/ � f .v/

jej
:
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Thus, comparing (6.19) with (3.6) and then using Lemma 6.48 (resp., Lemma 6.50),
one finishes the proof.

We also need the following analog of Lemma 6.45.

Lemma 6.53. Suppose f 2 H 1
loc.G / solves �f D �f edgewise for some � 2 R�0

and, moreover, satisfies Kirchhoff conditions at all the vertices. Then jf j is subhar-
monic. If in addition f is real-valued, then both fC and f� are subharmonic.

Proof. Due to linearity, we can assume without loss of generality that f is real-
valued. Fix some model of .G ; �; �/. Then the equality �f D �f implies that f

is a classical solution to �.e/f 00 D ��.e/f on each edge e 2 E (upon an identifica-
tion of e with the interval 	e D Œ0; jej�). Hence it is easy to show that

jf j
00
� �

�.e/

�.e/
jf j;

where the inequality is understood in the distributional sense (e.g., use the Kato
inequality [184, Theorem X.27]). It remains to notice thatX

Ee2EEv

�.e/@Eejf j.v/ � 0

for all vertices v 2 V . Since f is continuous at v 2 V , in the case f .v/ ¤ 0, jf j

coincides with sign.f .v//f in a small vicinity of v and hence Kirchhoff conditions
would imply that X

Ee2EEv

�.e/@Eejf j.v/ D
X
Ee2EEv

�.e/@Eef .v/ D 0

at every such vertex. If f .v/ D 0, then it is straightforward to see that in this case

0 D

X
Ee2EEv

�.e/@Eef .v/ �
X
Ee2EEv

�.e/@Eejf j.v/;

which finishes the proof.

The following result is a standard characterization via the mean value property.

Lemma 6.54 (Mean value property). Let f 2 CA.G n V/ be real-valued. Then f is
harmonic (subharmonic, superharmonic) if and only if for each v 2 V

1

�.Br.vI %�//

Z
Br .vI%�/

f .x/�.dx/ D f .v/ .� f .v/; � f .v// (6.20)

for all sufficiently small r > 0. Here %� is the intrinsic metric on .G ; �; �/ and
Br.vI %�/ is the distance ball in .G ; %�/ of radius r > 0 with the center at v.
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Proof. In fact, the mean value property is a straightforward consequence of Lem-
ma 6.48 (resp., and Lemma 6.50). Indeed, suppose r > 0 is such that the correspond-
ing distance ball Br.vI %�/ is isomorphic to a star-shaped set (2.3). Then taking into
account that f is edgewise affine, we easily getZ

Br .vI%�/

f .x/�.dx/ D
X
e2Ev

Z
e\Br .vI%�/

f .xe/�.dxe/

D

X
Ee2EEv

1

2

�
2f .v/ C @Eef .v/

r jej

�.e/

�
r jej

�.e/
�.e/

D f .v/r
X
Ee2EEv

p
�.e/�.e/ C

r2

2

X
Ee2EEv

�.e/@Eef .v/:

It remains to notice that

�.Br.vI %�// D
X
Ee2EEv

�.e/
r jej

�.e/
D r

X
Ee2EEv

p
�.e/�.e/:

Remark 6.55. We stress that the mean-value property on weighted metric graphs
holds only locally. That is, even for a harmonic function f on .G ; �; �/, the equal-
ity (6.20) can fail when the integral is taken over a ball Br.vI%�/ with large radius r .
Indeed, problems arise already if Br.vI %�/ contains more than one vertex of degree
� 3 and the latter is not at all surprising since these vertices can be considered as
singularities of one-dimensional manifolds (see Remark 2.4).

6.5.3 Liouville-type properties on graphs

An important question is which subspaces of harmonic functions are trivial, that is,
which conditions ensure the uniqueness of solutions to the Helmholtz equation

�u D �u:

Such results are referred to as Liouville-type theorems. In Riemannian geometry
Lp-Liouville theorems for harmonic functions were studied, for example, by S.T. Yau
[217], L. Karp [124], P. Li and R. Schoen [153] and many others. Karp’s and Yau’s
theorems were later generalized by K.-T. Sturm [198] to the setting of strongly local,
regular Dirichlet forms. In particular, in the case of metric graphs Sturm’s result reads
as follows (cf. [198, Corollary 1 (a)]).

Theorem 6.56 (Yau’s Lp-Liouville theorem on metric graphs [198]). If .G ; �; �/ is
a locally finite weighted metric graph such that .G ; %�/ is complete, then every non-
negative subharmonic function which belongs to Lp.G I �/ for some p 2 .1; 1/ is
identically zero. In particular, if f 2 Lp.G I�/ is harmonic, then f � 0.
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In the case of weighted graphs, Liouville-type theorems have been investigated
in, e.g., [108,110,164,186] and the analogs of Yau’s and Karp’s theorems were estab-
lished quite recently by B. Hua and M. Keller [113].

Theorem 6.57 (Yau’s Lp-Liouville theorem on graphs [113]). Let b be a locally
finite connected graph over .V ; m/ and let % be an intrinsic path metric of finite jump
size. If .V ; %/ is complete as a metric space, then every non-negative L-subharmonic
function which belongs to `p.V Im/ for some p 2 .1;1/ is identically zero. In par-
ticular, if f 2 `p.V Im/ is L-harmonic, then f � 0.

Remark 6.58. We stated Corollary 1.2 from [113] in a weaker form in order to sim-
plify considerations. In fact, the assumption that % is a path metric can be weakened.
More precisely, the conclusion remains valid for a general intrinsic metric % of finite
jump size such that % generates the discrete topology on V and .V ; %/ is complete (the
latter follows by a simple comparison argument with the path metric %p constructed
in Remark 6.34 (ii)).

In fact, the connection between intrinsic metrics on weighted graphs and cable
systems shows that Theorem 6.57 easily follows from Theorem 6.56:

Proof of Theorem 6.57. Let % be an intrinsic path metric for .V ; mI b/ having finite
jump size. Then by Lemma 6.33 there is a canonical cable system .G ; �; �/ such that
% coincides with the restriction of %� D %0 onto V � V . Clearly, .V ; %/ is complete
if and only if so is .G ; %�/.

Take now a non-negative function fWV ! R�0 which is L-subharmonic. By Lem-
ma 6.52, the corresponding function f D {�1

V
.f/ is non-negative and subharmonic

with respect to .G ; �; �/. If f 2 `p.V Im/ for some p 2 .1;1/, then f 2 Lp.G I�/

according to Lemma 4.2. Applying Theorem 6.56, we conclude that f is trivial and
hence so is f D {V .f /.

Remark 6.59. Using the same line of reasoning and also connections between vol-
ume growth of metric graphs and weighted graphs (see Lemma 6.41), one can easily
connect, for example, Karp’s Lp Liouville theorems for metric graphs and weighted
graphs (see Section 7.4), Grigor’yan’s L1 theorem, etc.

6.6 Life without loops II: Jacobi matrices on graphs

This section deals with Problem 6.4. For a given ˇWV ! R and a connected graph q

over V satisfying properties (i), (ii) and (iv) of Section 2.2, consider a second order
symmetric difference expression

.�f /.v/ D ˇ.v/f .v/ �
X
u2V

q.u; v/f .u/; v 2 V : (6.21)
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Alternatively, its action can be described by the infinite symmetric matrix

H D .huv/u;v2V

given by

huv D

´
ˇ.v/; u D v;

�q.u; v/; u ¤ v:

As described in Section 2.2, we can associate in `2.V/ the minimal and maximal
operator with the difference expression (6.21).

Remark 6.60. Every difference operator (6.21) is a Schrödinger-type operator on
`2.V/ in the sense of Remark 2.10: the weight function m D 1V on V and its coeffi-
cients are explicitly given by

b.u; v/ D q.u; v/; c.v/ D ˇ.v/ �
X
u2V

q.u; v/:

Symmetric difference expressions (6.21) are also known as Jacobi matrices on graphs
(see, e.g., [8–10]).

On the other hand, every Schrödinger-type operator in `2.V Im/ is unitarily equiv-
alent (by means of the map UW`2.V Im/ ! `2.V/ defined by (3.29)) to a Schrödinger
operator in `2.V/ and hence from this perspective the class of Schrödinger-type oper-
ators on `2.V/ is sufficiently large.

The next result answers Problem 6.4 in the affirmative.

Theorem 6.61. Let qWV � V ! Œ0;1/ be a locally finite connected graph over V

and let Gq D .V ; Eq/ be the underlying simple graph (see Remark 2.7). Then there
exist edge weights �WEq ! .0;1/ and edge lengths j � jWEq ! .0;1/ such that

jej2 � �.e/ (6.22)

for all e 2 Eq , and

q.u; v/ D
�.eu;v/

jeu;vj.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
(6.23)

for all eu;v 2 Eq .

Notice that the difference expression (3.28) is a special case of (6.21):

ˇ.v/ D
1

m.v/

�
˛.v/ C

X
u2V

b.u; v/

�
; q.u; v/ D

b.u; v/p
m.u/

p
m.v/

: (6.24)

Moreover, the minimal operator zh˛ associated with (6.21), (6.24) shares many of
its basic spectral properties with the Laplacian H˛ (see Theorem 3.1 and its proof),
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however, there is in general no connection between their parabolic properties. Theo-
rem 6.61 implies the following result.

Corollary 6.62. Every second-order difference operator (6.21) arises as a boundary
operator of a Laplacian with ı-couplings. More precisely, there is a weighted met-
ric graph .G ; �; �/ such that for its simple model .V ; Eq; j � j; �; �/ and ˛WV ! R
the relations (6.24) holds true, where the graph .V ; mI b/ is given by (3.1)–(3.5)
and (3.6).

The proof of Theorem 6.61 is based on the following two lemmas, however, first
we need to recall a few basic notions. A connected simple graph .V ;E/ without cycles
is called a tree. We shall denote trees by T . Notice that for any two vertices u, v on
a tree T there is exactly one path P connecting u and v, and hence the combinatorial
distance on T is exactly the number of edges in the path connecting u and v. A tree
T D .V ; E/ with a distinguished vertex o 2 V is called a rooted tree and o is called
the root. Each vertex v 2 V having degree 1 is called a leaf.

Lemma 6.63. Let T D .V ; E/ be a locally finite infinite tree. Then there is an infinite
subtree T1 D .V1; E1/ � T such that T1 has at most one leaf and T is obtained
by attaching to each vertex v 2 V1 a (possibly empty) finite tree Tv .

Proof. The proof is by construction, which can informally be considered as “cutting
away” finite subtrees from a given tree. Fix a root o 2 V for T and order the vertices
of T according to combinatorial spheres. The latter also introduces a natural orienta-
tion on T : for every edge e its initial vertex e{ belongs to the smaller combinatorial
sphere.

Next, let us define the standard partial ordering on T . For two edges e; ze 2 E , we
write ze � e, if the path from the root o to the terminal vertex e� of e passes through ze.
For any e 2 E , denote by Te � T the subtree with the edge set

E.Te/ D ¹ze 2 E W e � zeº:

Since “�” is transitive on E , e 2 Tze implies that Te � Tze . Moreover, define

E1
v D ¹e 2 EC

v W Te is infiniteº;

where EC
v is the set of outgoing edges at v, see (2.1), and then for each v 2 V denote

by Tv the (possibly empty) finite subtree of T with the edge set

E.Tv/ D
[

e2E
C
v nE1

v

E.Te/: (6.25)

After all these lengthy preparations, we finally begin our construction. For every
edge e 2 EC

o D Eo consider the subtree Te . Since T is infinite, there is at least one
edge e 2 EC

o such that the corresponding subtree Te is infinite and hence the set
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E1
o is non-empty. Denote the set of terminal vertices of all edges e 2 E1

o by V1
1 .

Notice that V1
1 is a subset of the first combinatorial sphere S1. Next for each v 2 V1

1

consider the corresponding edge sets E1
v . Again all of them are non-empty since,

by construction, each Te is infinite. The union of all terminal vertices of e 2 E1
v

with v 2 V1
1 is denoted by V1

2 . Clearly, V1
2 is a non-empty subset of the second

combinatorial sphere S2. Continuing this process, we end up with an infinite sequence
of vertex sets V1

n � Sn, n � 1. Since our initial tree T is infinite but locally finite,
every vertex set V1

n , n � 1 is non-empty.
Now we define T1 as the subtree of T with the vertex set V1 WD ¹oº [ ¹V1

n ºn�1.
It follows from our construction that T1 is an infinite tree with the only possible leaf o

(this happens exactly when #E1
o D 1). Moreover, it is immediate to see that attaching

to each v 2 V1 the finite subtree Tv defined by (6.25) we recover the given tree T .

The next result proves Theorem 6.61 for trees:

Lemma 6.64. Let q be a locally finite graph over V such that the associated simple
graph Gq (see Remark 2.7) is an infinite tree T D .V ; E/. Then there exist edge
weights �WE ! .0;1/ and edge lengths j � jWE ! .0;1/ such that (6.22) and (6.23)
hold true for all e 2 E .

Proof. We divide the proof into several steps.
(i) First of all, notice that the existence of � and j � j satisfying (6.22) and (6.23)

for all e 2 E is equivalent to the existence of edge lengths j � j satisfying

T .eu;v/ WD
jeu;vj

.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
� q.u; v/ (6.26)

for each u � v, since in this case a suitable choice of the edge weight � is simply
given by

�.e/ WD jej2
q.e/

T .e/
; e 2 E: (6.27)

Here and below we use the obvious notation q.eu;v/ D q.u; v/ for each e D eu;v 2 E .
(ii) Next, by Lemma 6.63, we can find an infinite rooted subtree T1 D .V1; E1/

of T such that T1 has at most one leaf at its root o and such that T is obtained by
attaching to each v 2 V1 a (possibly empty) finite tree Tv . Clearly,

E n E1 D

[
v2V1

E.Tv/:

(iii) We start by assigning edge lengths to each finite non-empty subtree Tv ,
v 2 V1. Consider Tv as a rooted tree with the root at v, o.Tv/ D v. Let h.v/ be
the height of Tv , i.e., the maximal combinatorial distance of a vertex in Tv to v. For
n 2 ¹1; : : : ; h.v/º, denote by En.Tv/ the set of edges e 2 E.Tv/ between the com-
binatorial spheres Sn�1.Tv/ and Sn.Tv/ of Tv . We will assign lengths for the sets
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En.Tv/ inductively in n starting from the top of Tv and going downwards to o.Tv/.
More precisely, we define positive reals `1; : : : ; `h.v/ by first setting `h.v/ D 1 and, if
h.v/ > 1, inductively

`k�1 WD max
e2Ek.Tv/

`k

q.e/2
D

`k

.mine2Ek.Tv/ q.e//2

for all k 2 ¹2; : : : ; h.v/º. Next, we put jej WD `k for all e 2 Ek.Tv/, k 2 ¹1; : : : ; h.v/º.
Clearly, with this choice of lengths we have

T .e/ D
`k

.
P

e2Ee{
jej/1=2.

P
e2Ee�

jej/1=2

�
`k

.
P

e2E�
e{
jej/1=2.

P
e2E�

e�
jej/1=2

�

s
`k

`k�1

� q.e/

for all e 2 Ek.Tv/ and k 2 ¹2; : : : ; h.v/º.
(iv) It remains to define edge lengths for edges in T1 such that (6.26) then holds

true on E1 and also on each non-empty edge set E1.Tv/, v 2 V . Again, we will
assign edge lengths inductively for the sets En.T1/, but now moving “upwards” the
tree T1. Here En.T1/, n � 1, is the set of edges e 2 E1 between the combinatorial
spheres Sn�1.T1/ and Sn.T1/ in T1.

For n D 1, we set jej D 1 for all e 2 E1.T1/ if E1.T1/ D E1
o D Eo (that is, if

To is empty). Otherwise, we define

z̀
1 WD max

e2E1.To/

jej

q.e/2
D

`1.o/

.mine2E1.To/ q.e//2
;

and then set jej D z̀
1 for all e 2 E1.T1/. Hence for each e 2 E1.To/ we get

T .e/ D
`1.o/

.
P

e2Eo
jej/1=2.

P
e2Ee�

jej/1=2

�
`1.o/

.
P

e2E1.To/ jej/
1=2.

P
e2E1.T1/ jej/

1=2
�

s
`1.o/

z̀
1

� q.e/:

Now assume we have already defined edge lengths for edges in Ek.T1/ for all
k � n, such that (6.26) holds true on each

zEk
WD Ek�1.T1/ [

[
v2Sk�1

E1.Tv/

for k � n. Now we define again

z̀
nC1 WD max

e2zEnC1

jej

q.e/2
;
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and then we set jej D z̀
nC1 for all e 2 EnC1.T1/. By our choice of the root, every

vertex v 2 Sn.T1/ is adjacent to at least one e 2 EnC1.T1/. Hence T .ze/ � q.ze/ for
all ze in zEnC1. Since

S
n�1 En.T1/ D E1, by induction we obtain edge lengths on E

such that (6.26) holds true for all e 2 E .

Now we are ready to prove Theorem 6.61 and Corollary 6.62.

Proof of Theorem 6.61. As in the proof of Lemma 6.64, it suffices to show the exis-
tence of lengths j � j satisfying (6.26) since in this case a suitable choice of edge
weights is provided by (6.27). The main idea behind our construction is the observa-
tion that we assign weights and lengths to edges, and hence we can “transform” in
a suitable way our graph to a tree and then apply Lemma 6.64 .

Suppose that T is a spanning tree for the underlying combinatorial graph Gq .
Denote the edge set of T by E.T / � Eq . Now we decouple each remaining edge
eu;v 2 Eq n E.T / at exactly one vertex (say, v) and thereby transform it to a leaf
attached to the remaining vertex u.

Applying this to all edges e 2 Eq n E.T / yields a new graph zGq . Clearly, zGq is
a tree and its edge set zEq can be identified in the above way with Eq . Hence every
choice of edge lengths j � j on Gq corresponds to a respective choice on zGq . Moreover,
by construction we have

TGq
.e/ � TzGq

.e/

for all e 2 Eq , where TzGq
.e/ and TGq

.e/ are given by (6.26). More precisely, within
the identification we have zEv � Ev for every v 2 V and zEve

D ¹eº for each of the
new vertices ve , e 2 Eq n E.T /. Hence

TGd
.eu;v/ D

jeu;vj

.
P

e2Eu
jej/1=2.

P
e2Ev

jej/1=2
�

p
jeu;vj

.
P

e2Eu
jej/1=2

D TzGd
.eu;v/

for every eu;v 2 Eq n E.T / and similar for each e 2 E.T /. Thus every choice of edge
lengths satisfying (6.26) for zGq defines a suitable choice of edge lengths for Gq . It
remains to apply Lemma 6.64.

Proof of Corollary 6.62. We simply need to set �.e/ D 1 for each e 2 Eq and then
choose � and j � j as in Theorem 6.61. By construction, this implies �.e/ � 1 for
all edges e 2 Eq . Taking into account (6.23), it follows that q coincides with (6.24).
Moreover, choosing the function ˛WV ! R in a suitable way, we can achieve that ˇ

coincides with (6.24) as well.

Remark 6.65. A few remarks are in order.

(i) Theorem 6.61 can be seen as an extension of Proposition 5.18 to an arbi-
trary locally finite graph.

(ii) According to the proof of Theorem 3.1, the graph Laplacian h0
˛ associ-

ated in `2.V I m/ with (3.7) is unitarily equivalent (by means of the map



Graph Laplacians as boundary operators 130

UW `2.V Im/ ! `2.V/ defined by (3.29)) to the minimal symmetric opera-
tor zh0

˛ defined in `2.V/ by (6.21) with the coefficients (6.24) and therefore,
by Theorem 3.1, zh0

˛ shares its basis spectral properties with the Laplac-
ian H0

˛ . However, the map U does not preserve the Dirichlet form structure
(e.g., the quadratic form of zh0

˛ may fail to be a Dirichlet form even if ˛ � 0)
and hence there is in general no connection between their parabolic prop-
erties.

6.7 Further comments and open problems

We would like to conclude this part with a few comments.

1. The results of this chapter suggest viewing connections between weighted graphs
and metric graphs from geometric perspective. Namely, it is proved that with every
weighted locally finite graph .V ; mI b/ one can always associate at least one cable
system, that is, a weighted metric graph .G ; �; �/ such that for one of its mod-
els the weight m and the graph b are expressed via (3.1)–(3.5) and (3.6). Next,
.G ; �; �/ is always equipped with the intrinsic path metric %� and it turns out that
the induced metric %V D %�jV�V is intrinsic with respect to the corresponding graph
.V ; mI b/. Moreover, the spaces .V ; %V / and .G ; %�/ are quasi-isometric and this
fact connects their large scale geometric properties. However, their local combinato-
rial structures are also connected in an obvious way and these facts together provide
a partial explanation for the close connections between graph Laplacians and metric
graph Laplacians established in Chapters 3 and 4. Notice also that .G ; %�/ is a length
space, a widely studied class of metric spaces, and this provides a lot of tools and
techniques. This is reminiscent of the following common practice in geometric group
theory: a finitely generated group can be turned into a length space by viewing its
Cayley graph as an equilateral metric graph equipped with the length metric %0; more-
over, the word metric %comb in this case is nothing but the induced metric %0jV�V .

2. It is hard to overestimate the role of intrinsic metrics in the progress achieved for
weighted graph Laplacians during the last decade. Surprisingly, the above described
procedure to construct an intrinsic metric for .V ;mIb/ in fact provides a way to obtain
all finite jump size intrinsic path metrics on .V ; mI b/. Moreover, upon some normal-
ization assumptions on cable systems (e.g., canonical cable systems) the correspon-
dence between intrinsic weights on .V ; mI b/ and cable systems becomes bijective
(Theorem 6.36).

3. Let us also briefly mention the following perspective on the results of Chapter 6
and on Problems 6.1–6.4. Suppose a vertex set V is given and consider a weighted
metric graph .V ; E; j � j; �E ; �E/ over V , i.e., a model of a weighted metric graph



Further comments and open problems 131

having V as its vertex set. To this weighted metric graph, equations (3.5) and (3.6)
associate a vertex weight mW V ! .0; 1/ and an edge weight bW V � V ! Œ0; 1/

with the properties (i)–(iv) of Section 2.2. In other words, we obtain a map

ˆV WGraphmetr.V/ ! Graphdiscr.V/;

where Graphmetr and Graphdiscr denote the sets of all connected, locally finite weighted
metric graphs and connected, locally finite weighted graphs over V , respectively.

From this point of view, the results in Chapters 3 and 4 say that the map ˆV

connects the basic spectral and parabolic properties of the respective Laplacian-type
operators, as well as spectral properties of Laplacians with ı-couplings on weighted
metric graphs and Schrödinger operators on weighted discrete graphs. Moreover, the
results of Section 6.4 connect certain basic geometric features (see also Proposi-
tion 7.38). In terms of this map, the results of Sections 6.2–6.3 and Section 6.4.4
can be formulated as follows:

• The map ˆV is surjective (see Theorem 6.16).

• When restricted to simple metric graphs, the map ˆV is no longer surjective (Sec-
tion 6.2).

• Unfortunately, the map ˆV is not injective, that is, the correspondence between
weighted metric and weighted discrete graphs is not one-to-one. However, after
restricting ˆV further to the class of canonical weighted metric graphs over V , we
can at least describe the preimage ˆ�1

V
.m; b/ of a locally finite graph .V ; mI b/

using intrinsic weights (see Theorem 6.36 and the map ‰ given by (6.15)).

4. The results of Section 6.6 show that similar connections work for Jacobi matrices
on graphs. We decided not to proceed in this direction and demonstrate it by only one
application in the next chapter. More specifically, in Section 7.1.3 we briefly discuss
the self-adjointness problem for the minimal operator associated with (6.21) in `2.V/

and prove the analogs of some classical self-adjointness tests for the usual Jacobi
matrices, which also improve several recent results (Theorem 7.17).

5. Taking into account the said above, the following problems remain open.

Problem 6.5. Given a locally finite b graph over .V ; m/, is there an efficient way to
decide whether it admits a minimal cable system?

This problem can be reformulated in other terms (e.g., given a simple graph, how
can one describe the image of the positive cone CC.E/ under the map D�?).

Of course, stated this way, Problem 6.5 is too complicated to obtain a complete
answer and hence it makes sense either to restrict to some classes of weights (for
constant weights the answer is given by means of a disjoint cycle cover) or to partic-
ular classes of graphs (seems, for antitrees the answer depends on sphere numbers in
a rather non-trivial way).
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Taking into account the fact that each graph admits an infinite family of cable
systems, one can specify the above problem:

Problem 6.6. Given a locally finite b graph over .V ; m/, is there an efficient proce-
dure/algorithm to construct a cable system with certain desirable properties?

The same kind of questions can be asked about Jacobi matrices on graphs:

Problem 6.7. Given a Jacobi matrix (6.21) on a graph, is there an efficient pro-
cedure/algorithm to construct a weighted metric graph such that Jacobi parameters
admit the representation (6.24)?

The direction “from .V ; mI b/ to a cable system” seems to be rather non-trivial
despite the fact that we have provided some constructions. Namely, Problems 6.6
and 6.7 are of practical importance since it is desirable to get as accurate information
as possible regarding the properties of the obtained cable system. For instance, in
Theorem 7.19 it is desirable to know the qualitative behavior of the corresponding
length function j � j, however, even for the usual Jacobi matrix it is not trivial to get this
information out of its Jacobi parameters using the construction in Proposition 5.18
(see (5.28)).



Chapter 7

From continuous to discrete and back

Our main goal in this chapter is to employ the established connections between graph
Laplacians and metric graph Laplacians in order to prove new results for Laplac-
ians on metric graphs as well as to provide another perspective on recent results for
weighted graph Laplacians.

7.1 Self-adjointness

In this section we provide sufficient conditions for the self-adjoint uniqueness, that
is, the self-adjointness of both the minimal and the maximal operator and hence the
equality H0

˛ D H˛ .

7.1.1 Kirchhoff Laplacians

We begin our study with the case ˛ � 0. The next result is an immediate corollary of
Sturm’s extension of Yau’s Lp-Liouville theorem for strongly local Dirichlet forms
[198], see Theorem 6.56.

Theorem 7.1. Let .G ;�;�/ be a weighted metric graph and let %� be the correspond-
ing intrinsic metric defined in Section 6.4.1. If .G ; %�/ is complete as a metric space,
then the minimal Kirchhoff Laplacian H0 is self-adjoint and H0 D H.

Proof. Assume that H0 is not self-adjoint. Since H0 is non-negative, this means that
ker.H C I/ ¤ ¹0º, that is, there is 0 ¤ f 2 dom.H/ such that �f D f (see [184,
Theorem X.26]). However, by Lemma 6.53, jf j is subharmonic. Moreover, we have
jf j 2 L2.G I �/ since f 2 dom.H/. On the other hand, if .G ; %�/ is complete as
a metric space, then Theorem 6.56 implies that f � 0. This contradiction completes
the proof of the theorem.

Remark 7.2. A few remarks are in order.

(i) A different proof of Theorem 7.1 can be found in [97, Theorem 3.49].
Moreover, one more proof is provided by Theorem 7.9 below.

(ii) Simple examples show that the completeness with respect to the intrinsic
path metric is only sufficient. Indeed, take a path graph and assume for
simplicity that � D �. In this case, the intrinsic metric %� coincides with the
natural path metric %0 and hence completeness is equivalent to the infinite
length of the path. However, by Lemma 5.2, the self-adjointness of the
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Kirchhoff Laplacian is equivalent to the divergence of the series (5.6). For
another example see [68, Example 4.14].

(iii) Notice also that by the Hopf–Rinow theorem for metric graphs (see The-
orem 6.38) completeness of .G ; %�/ is equivalent to bounded compactness
(compactness of distance balls), as well as to geodesic completeness.

As an immediate corollary of Theorem 7.1 and the results in Section 6.4, we
obtain the analog of the above result for graph Laplacians, which was first established
in [115, Theorem 2]:

Corollary 7.3 ([115]). Let b be a locally finite graph over .V ; m/ and let % be an
intrinsic metric which generates the discrete topology on V . If .V ; %/ is complete as
a metric space, then h0 is self-adjoint and h0 D h.

Proof. We prove the claim in three steps.
(i) Assume first that % is an intrinsic path metric of finite jump size such that .V ;%/

is complete. Then, by Lemma 6.33 there is a cable system .G ; �; �/ for .V ; mI b/

such that � D �V and .G ; %�/ is complete as a metric space. Hence the corresponding
minimal Kirchhoff Laplacian H0 is self-adjoint by Theorem 7.1 and it remains to
apply Theorem 3.1 (i).

(ii) Suppose now that % D %p is a general intrinsic path metric with weight func-
tion p � 0 such that .V ; %/ is complete. By the discrete Hopf–Rinow Theorem 6.39,
the completeness is equivalent to the fact thatX

n�0

p.vn; vnC1/ D 1

for any infinite path P D .v0; v1; v2; : : : / (i.e., b.vn; vnC1/ > 0 for all n � 0, see
(6.7)). However, introducing the new weight function zp WD min¹1; pº, we arrive at
another path metric z% WD % zp , which is strongly intrinsic with respect to .V ; mI b/ (by
construction) and, moreover, has jump size at most 1. It is not hard to show (e.g., by
employing the Hopf–Rinow Theorem 6.39 once again) that .V ; %/ is complete exactly
when so is .V ; z%/ and this finishes the proof in this case.

(iii) Finally, assume that % is an intrinsic metric which generates the discrete
topology on V and such that .V ; %/ is complete. We show how to associate with % an
intrinsic path metric z% on V such that .V ; z%/ is complete as well. Consider the weight
pWV � V ! Œ0;1/ given by p.x; y/ WD %.x; y/ whenever x � y and p.x; y/ D 0

if x 6� y. By construction, p is an intrinsic weight and the associated intrinsic path
metric z% D %p satisfies � � z%. Moreover, since both z% and % generate the discrete
topology on V , the completeness of .V ; z%/ follows by comparison. This completes
the proof in the general case.

Remark 7.4. In the context of manifolds, Theorem 7.1 and Corollary 7.3 are known
as Gaffney-type theorems.
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The following results can be seen as a demonstration of the “from discrete to
continuous” approach. First one can replace the completeness condition by a weaker
one formulated in terms of the weighted degree function.

Lemma 7.5. Let .G ; �; �/ be a weighted metric graph. Suppose that for some model
of finite intrinsic size the weighted degree function (2.9) with the vertex and edge
weights defined by (3.5) and (3.6) is bounded on finite radius metric balls of .V ; %V /.
Then the minimal Kirchhoff Laplacian H0 is self-adjoint. In particular, H0 is self-
adjoint if Deg is bounded on V .

Here %V is the restriction of %� onto V � V defined by (6.10).

Proof. If Deg is bounded on V , then, by Lemma 2.9, the corresponding graph Laplac-
ian h0 is bounded and hence self-adjoint. Therefore, by Theorem 3.1 (i), the minimal
Kirchhoff Laplacian H0 is also self-adjoint.

Assume now that Deg is bounded on distance balls of .V ; %V /. By Lemma 6.27
(see also Remark 6.28 (i)), %V is intrinsic and hence applying [115, Theorem 1] we
conclude that h0 is self-adjoint. It remains to apply Theorem 3.1 (i).

Remark 7.6. Notice that Lemma 7.5 improves Theorem 7.1. Indeed, the assumption
of Lemma 7.5 is satisfied if .G ; %�/ is complete since in this case distance balls in
.V ; %V / are finite by the Hopf–Rinow Theorem 6.39.

Theorem 7.7. Let .G ;�; �/ be a weighted metric graph. Assume that for some model
of .G ; �; �/, the vertex set V equipped with the star metric %m (defined by (6.9) and
(3.5)) is a complete metric space. Then the minimal Kirchhoff Laplacian H0 is self-
adjoint.

Proof. By Theorem 3.1 (i) (see also Corollary 3.15), H0 is self-adjoint if and only if
h0 is self-adjoint for some model of .G ; �; �/. However, by [132, Theorem 6], the
minimal graph Laplacian defined by (3.35) in `2.V Im/ is self-adjoint ifX

n�0

m.vn/ D 1

for any infinite path P D .v0; v1; v2; : : : /. However, our graph is locally finite and
hence, by Theorem 6.39, the latter is equivalent to completeness of .V ; %m/ with
respect to the star path metric (6.9).

Remark 7.8. A few remarks are in order.

(i) Theorem 7.7 can be seen as an extension of Corollary 5.3 to the graph set-
ting (see also Remark 5.4). In turn, Corollary 5.3 shows that completeness
with respect to the star path metric %m is only sufficient even in the simplest
case of a path graph. It would be of great interest to find (at least some) con-
ditions which would guarantee the necessity of completeness with respect
to the star path metric for the self-adjointness of both H0 and h0.
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(ii) It is not hard to see that the completeness conditions in Theorem 7.1 and
Theorem 7.7 are different. For example, if � D �, then the intrinsic metric
%� coincides with the natural path metric %0 and hence the completeness
in Theorem 7.1 is independent of the weight �. On the other hand, the
completeness in Theorem 7.7 is independent of the weight �. However, in
certain cases, Theorem 7.1 is a corollary of Theorem 7.7 (e.g., if �D � � 1,
see [68, Section 4.2]).

7.1.2 Laplacians with ı-couplings

We begin with the following result proved recently in [145], which says that com-
pleteness combined with semiboundedness guarantees self-adjointness:

Theorem 7.9 (The Glazman–Povzner–Wienholtz theorem on metric graphs). Let
.G ; �; �/ be a weighted metric graph such that .G ; %�/ is complete. Assume that
˛WV ! R is such that the minimal Laplacian H0

˛ is bounded from below. Then H0
˛ is

self-adjoint and H0
˛ D H˛ .

Remark 7.10. A few remarks are in order.

(i) The proof of Theorem 7.9, which also provides another proof of Theo-
rem 7.1, can be found in [145] (see Theorem 5.1 there). The claim in
Theorem 7.9 remains valid if we add an additive potential V WG ! R to the
operator H0

˛ , which preserves the semiboundedness. Of course, some reg-
ularity assumptions on V must be imposed (e.g., V 2 L2

loc.G /), however,
it is proved in [145, Theorem 5.1] that one may even allow distributional
potentials V 2 H�1

loc .G /.

(ii) It is tempting to replace in Theorem 7.9 the completeness with respect to %�

by the one with respect to the star path metric %m. However, simple coun-
terexamples show that it is not possible in general (see Remark 7.18 (ii) and
also the detailed discussion in [145, Section 6]).

(iii) In the simplest case of a path graph Theorem 7.9 was first proved in [4]
(see Theorem I.1 and Remark III.2 there). However, notice also that in this
case Theorem 7.9 is nothing but Lemma 5.16 (ii) (take into account also
Remark 3.24).

(iv) The Glazman–Povzner–Wienholtz theorem has a venerable history. To the
best of our knowledge (see [29, Appendix D.1] for further information), for
Schrödinger operators in RN the result was conjectured by I. M. Glazman
and proved by A. Ya. Povzner in 1952 [183]. However, this paper was pub-
lished in Russian and was not widely known in the West until its English
translation in 1967. For instance, P. Hartman (1948) and F. Rellich (1951)
proved a one-dimensional version of this result, and F. Rellich in his invited
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address at the ICM in Amsterdam (1954) posed a multi-dimensional result
as an open problem, which was solved later by his student E. Wienholtz
(see [210]).

As an immediate application of Theorem 7.9 and the results connecting metric
graphs with weighted graphs, we arrive at the following version of the Glazman–
Povzner–Wienholtz theorem for weighted graphs (see [145, Theorem 6.1]).

Theorem 7.11 (The Glazman–Povzner–Wienholtz theorem on graphs). Let b be a
locally finite graph over .V ; m/ and assume that there exists an intrinsic metric %

which generates the discrete topology on V and such that .V ; %/ is complete. Assume
also that ˛W V ! R is such that the minimal Schrödinger operator h0

˛ is bounded
from below in `2.V Im/. Then h0

˛ is self-adjoint and h0
˛ D h˛ .

Proof. Arguing as in the proof of Corollary 7.3, it suffices to consider the case when %

is an intrinsic path metric of finite jump size. Then applying Lemma 6.33, we obtain
a cable system .G ; �; �/ for .V ; mI b/ such that � D �V and .G ; %�/ is complete.
Moreover, by Theorem 3.22 (i) and Remark 3.24, the corresponding operator H0

˛ is
bounded from below. Applying Theorem 7.9, we conclude that H0

˛ is self-adjoint. It
remains to apply Theorem 3.1 (i).

Remark 7.12. To the best of our knowledge the Glazman–Povzner–Wienholtz the-
orem for graphs was established first in [167, Theorem 1.3] and [202, Theorem 6.1]
(however, under the additional bounded geometry assumption on .V ; b/) and then
independently in [7, Theorem 1] and [96, Theorem 2.16] (the latter allows non-locally
finite graphs, see also [190]).

Usually, it is not an easy task to find necessary and sufficient conditions which
guarantee semiboundedness. We begin with the simplest situation.

Lemma 7.13. Let .G ; �; �/ be a weighted metric graph together with a fixed model.
Assume that the weighted degree function (2.9) with the vertex and edge weights
defined by (3.5) and (3.6) is bounded on V . Then the Laplacian H˛ with ı-couplings
on V is self-adjoint for any ˛WV ! R. Moreover, H˛ is bounded from below exactly
when

inf
v2V

˛.v/

m.v/
> �1: (7.1)

Proof. It suffices to notice that h˛ D h C
˛
m

. Indeed, ˛
m

is a multiplication opera-
tor in `2.V I m/ and hence it is self-adjoint since ˛ is real-valued. Moreover, it is
bounded from below exactly when (7.1) holds true. Since h is a bounded operator by
Lemma 2.9, and both self-adjointness and semiboundedness are stable under bounded
perturbations, we complete the proof by applying Theorem 3.1.

As an immediate corollary we arrive at the following result.
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Corollary 7.14. Let .G ;�;�/ be a weighted metric graph together with a fixed model.
If

��.G / WD inf
e2E

�.e/ > 0; (7.2)

then H˛ is self-adjoint for any ˛WV ! R. Moreover, it is bounded from below exactly
when (7.1) is satisfied.

Proof. Without loss of generality we can assume that the model is simple and has
finite intrinsic size (we can “cut” each loop and multiple edge in the middle, and also
each long edge by adding inessential vertices; clearly, this would not change H˛ and
also the corresponding conditions (7.1) and (7.2) would hold true as well). Since (7.2)
means that

jej�.e/ � ��.G /2 �.e/

jej

for all e 2 E by (7.2), it follows that

Deg.v/ D

P
e2Ev

�.e/
jejP

e2Ev
jej�.e/

�

P
e2Ev

�.e/
jejP

e2Ev
��.G /2 �.e/

jej

D
1

��.G /2
< 1;

and hence Lemma 7.13 applies.

Remark 7.15. The most common restriction imposed in the quantum graphs lit-
erature is that � D � � 1 and infE jej > 0 on G (see, e.g., [25]). For non-trivial
weights, a similar assumption is sometimes imposed: � D � on G and infE jej > 0,
infE �.e/ > 0. Clearly, in both cases (7.2) holds true and Corollary 7.14 applies.

If the weighted degree Deg is unbounded on V , then one needs to proceed more
carefully.

Lemma 7.16. Let .G ; �; �/ be a weighted metric graph together with a fixed model.
Assume that at least one of the following conditions is satisfied:

• .G ; %�/ is complete as a metric space,

• .V ; %m/ is complete as a metric space, where %m is the star path metric.

If ˛WV ! R satisfies (7.1), then H0
˛ is self-adjoint and bounded from below.

Proof. If .G ; %�/ is complete as a metric space, then according to Theorem 7.9 it
suffices to show that H0

˛ is bounded from below. However, this easily follows from
Theorem 3.22 (i) (take into account also Remark 3.24), since (7.1) implies that h0

˛ is
lower semibounded.

If .V ; %m/ is complete as a metric space, combining (7.1) with [132, Proposi-
tion 3.1] implies that h0

˛ is self-adjoint and lower semibounded. By Theorem 3.1,
H0

˛ is self-adjoint and lower semibounded as well.
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7.1.3 Jacobi matrices on graphs

Of course, the results from the previous two subsections immediately apply to Jacobi
matrices on graphs – Schrödinger-type operators in `2.V/ (that is, the vertex weight
m is constant). Let us quickly recall the setup (see Section 6.6). For a given ˇWV ! R
and a connected graph q over V satisfying properties (i), (ii) and (iv) of Section 2.2,
consider a second order symmetric difference expression

.�f /.v/ D ˇ.v/f .v/ �
X
u2V

q.u; v/f .u/; v 2 V : (7.3)

As described in Section 2.2, we can associate in `2.V/ the minimal J 0 D J 0
q;ˇ

and
maximal operator J D Jq;ˇ with the difference expression (7.3).

Theorem 7.17. If at least one of the following conditions is satisfied:

(i) There is C � 0 such that

ˇ.v/ �
X
u2V

q.u; v/ � �C (7.4)

for all v 2 V ,

(ii) The minimal operator J 0 is bounded from below and .V ; %p/ is complete
as a metric space, where %p is the path metric with the edge weights

p.u; v/ D
1p

q.u; v/ max.deg.u/; deg.v//
(7.5)

whenever q.u; v/ > 0 and 0 otherwise,

then the operator J is self-adjoint and J 0 D J .

Proof. (i) If m � 1V , then the corresponding star path metric %m is nothing but the
combinatorial distance on V . Taking into account that .V ; %comb/ is complete (this can
be either verified directly or by using the Hopf–Rinow Theorem 6.39), it remains to
apply Lemma 7.16 since ˛.v/ in this case coincides with the left-hand side of (7.4).

(ii) This is a straightforward application of the Glazman–Povzner–Wienholtz the-
orem on graphs. Indeed, choosing m � 1V , b D q and ˛.v/ D LHS of (7.4), we get
that J 0

q;ˇ
D h0

˛ in `2.V/ D `2.V I m/. It remains to notice that the weight (7.5) is
intrinsic: X

u�v

q.u; v/p.u; v/2
D

X
u�v

1

max.deg.u/; deg.v//

�

X
u�v

1

deg.v/
D 1

for all v 2 V . It remains to apply Theorem 7.11.
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Remark 7.18. A few remarks are in order.

(i) Theorem 7.17 can be seen as an extension of Wouk’s tests for Jacobi matri-
ces to the graph setting (compare (i) and (ii) with [215, Theorem 3 (c) and
Theorem 3 (d)], see also [2, Problems I.3 and I.4]). On the other hand,
Wouk’s test [215, Theorem 3(d)] can be seen as the analog of a one-dimen-
sional predecessor of the Glazman–Povzner–Wienholtz theorem proved by
P. Hartman (1948) and F. Rellich (1951) (see [145, Remark 6.5] for further
details).

(ii) It is well known that even for Jacobi matrices (5.23) one cannot replace
(7.4) by the semiboundedness of the minimal operator J 0. This, in particu-
lar, implies that one cannot replace the intrinsic path metric by the star path
metric %m in the completeness assumption of Glazman–Povzner-Wienholtz
theorems.

(iii) Under the additional bounded degree assumption, supV deg.v/ < 1, the
above result was established in [202, Theorem 6.1] and [167, Theorem 1.3].

Let us give one more sufficient condition for self-adjointness. Recall that, accord-
ing to Theorem 6.61, for any locally finite graph q over V one can find edge lengths
j � j and weights � satisfying (6.22) and (6.23). For a given j � jWEq ! .0;1/, define
the vertex weight mWV ! .0;1/ by setting

mq.v/ D
X
u�v

jeu;vj; v 2 V :

Taking into account (6.23), let us also introduce the graph b D bq over V by setting

bq.u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; q.u; v/ > 0;

0; q.u; v/ D 0:

Theorem 7.19. Let q be a locally finite graph over V and let ˇWV ! R. Suppose
that j � jW Eq ! .0;1/ and �W Eq ! .0;1/ are edge lengths and weights satisfying
(6.22) and such that q admits the representation (6.23). If at least one of the following
conditions is satisfied, then the operator J is self-adjoint and J 0 D J :

(i) The space .V ; %m/ is complete, where %m is the star path metric (see Exam-
ple 6.21 (iii)) with m D mq , and there is M � 0 such that

ˇ.v/ �
X
u2V

q.u; v/

s
m.u/

m.v/
� �M

for all v 2 V ,

(ii) The minimal operator J 0 is bounded from below and .V ; %b/ is complete,
where %b is the natural path metric (see Example 6.21 (iii)) with b D bq .
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Proof. Notice that the minimal operator J 0 is unitarily equivalent to the operator h0
˛

acting in `2.V I m/ and associated with the graph .V ; mI b/ whose coefficients are
defined via (6.24), that is,

b.u; v/ D bq.u; v/ D q.u; v/
p

m.u/m.v/;

˛.v/ D ˇ.v/mq.v/ �
X
u2V

bq.u; v/:

If condition (i) is satisfied, then we simply need to apply Lemma 7.16 to h0
˛ .

Assume now that (ii) holds true. Observe that the natural path metric %b is intrin-
sic with respect to .V ; mI b/:X

u�v

b.u; v/pb.u; v/2
D

X
u�v

�.eu;v/

jeu;vj

jeu;vj
2

�.eu;v/
D

X
u�v

jeu;vj D m.v/; v 2 V :

It remains to apply Theorem 7.11.

7.1.4 Semiboundedness and criticality theory on graphs

Condition (7.1) means that the semiboundedness is preserved if the strength ˛WV !R
is not too negative. In fact, (7.1) can be improved by using the concept of relatively
bounded perturbations (see, e.g., [126, 184]). Assume for a moment that the strength
˛WV ! .�1; 0� is non-positive. Then ˛ is called form bounded with respect to h0 if
there are " � 0 and 
 � 0 such thatX

v2V

j˛.v/jjf .v/j2 �
"

2

X
u;v2V

b.u; v/jf .u/ � f .v/j2 C 

X
v2V

m.v/jf .v/j2 (7.6)

for all f 2 Cc.V/. If (7.6) holds with some " < 1, then ˛ is called strongly form
bounded. Notice that (7.6) is nothing butD

j˛j

m
f; f

E
`2.V Im/

� " qŒf � C 
kf k
2
`2.V Im/

:

Clearly, if ˛ satisfies (7.1), then we can take " D 0 in (7.6), which further means that
the multiplication operator ˛ is bounded in `2.V Im/. The importance of this concept
stems from the KLMN theorem (see, e.g., [184]): if ˛WV ! .�1; 0� is strongly form
bounded, then the form q˛ D q C ˛ defined as a form sum with dom.q˛/ D dom.q/

is closed and bounded from below. Combining this result further with the Glazman–
Povzner–Wienholtz theorem for graphs, we would be able to get the self-adjoint
uniqueness for Laplacians with ı-couplings once the negative part of ˛ satisfies (7.6)
and .G ; %�/ is complete.

To proceed further, let us recall the following notion from [140]. For convenience
reasons, for each real-valued function !WV ! R, we shall denote the corresponding
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quadratic form by the same letter, that is,

!Œf � WD
X
v2V

!.v/jf .v/j2; f 2 Cc.V/:

Definition 7.20 ([140]). Let b be a connected, locally finite graph over .V ; m/ and
let q D qb;0 be the corresponding energy form in `2.V ; m/. For � � 0, the weight
!WV ! Œ0;1/ is called �-critical with respect to .V ; mI b/ (for � D 0, it is simply
called critical) if

• the form q C �m � ! is non-negative on Cc.V/, that is, .q C �m/Œf � � !Œf �

for all f 2 Cc.V/,

• for each weight z!WV ! Œ0;1/ satisfying z! � !, the form q C �m � z! is not
non-negative on Cc.V/.

If the last property does not hold true (i.e., there is z! such that 0 6� z! � ! � 0 and
the form q C �m � z! is non-negative), then the weight ! is called �-subcritical.

Combining the notion of criticality with the Glazman–Povzner–Wienholtz theo-
rem for graphs, we arrive at the following extension of Lemma 7.16.

Lemma 7.21. Let .G ; �; �/ be a weighted metric graph together with a fixed model
and let .V ; mI b/ be the corresponding weighted graph (3.5)–(3.6). If .G ; %�/ is com-
plete and ˛WV ! R is such that ˛� WD

1
2
.j˛j � ˛/ is �-subcritical for some � � 0,

then the operator H˛ is self-adjoint and bounded from below.
Conversely, if ˛WV ! .�1; 0� is such that H0

˛ is bounded from below, then there
is � � 0 such that the weight �˛ is �-subcritical for h0.

Proof. If ˛WV !R satisfies the assumptions of Lemma 7.21, then taking into account
that the form q C �m � ˛� is non-negative on Cc.V/, we conclude that

q˛Œf � � q�˛�
Œf � WD qŒf � � ˛�Œf � � ��kf k

2
`2.V Im/

for all f 2Cc.V/. Therefore, the form q˛ is bounded from below on Cc.V/ and hence
so is the operator h0

˛ . By Theorem 3.1 (ii) (see also Theorem 3.22 and Remark 3.24),
the operator H0

˛ is bounded from below. It remains to apply Theorem 7.9.
To prove the last claim it suffices to notice that the semiboundedness of h0

˛ , which
is equivalent to the semiboundedness of H0

˛ , means that there exists � > 0 such that
h0

˛ C � � 0, where the inequality is understood in the sense of forms. It is straight-
forward to see that �˛ is .� C 1/-subcritical for h0

Remark 7.22. A few remarks are in order.

(i) The notion of criticality is closely connected with the notion of recurrence
(see, e.g., [140, Remark 5.8]). In particular, for � D 0, h0 is critical exactly
when it is recurrent.
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(ii) A characterization of criticality is presented in [140, Theorem 5.3]. How-
ever, for a concrete graph b over V it is a highly non-trivial task to find
critical and (especially) �-critical weights. One of the approaches is to
employ positive �-harmonic/superharmonic functions, which also leads to
optimal Hardy weights, however, this requires an explicit form or at least
a rather qualified knowledge of their asymptotic behavior (see [139]).

(iii) Let us stress that the Glazman–Povzner–Wienholtz theorem enables us to
avoid the use of the KLMN theorem, however, the price to pay is the com-
pleteness assumption on .G ; %�/.

7.2 Markovian uniqueness and finite energy extensions

In this section we briefly address the question of uniqueness of Markovian exten-
sion for the minimal Kirchhoff Laplacian H0. Notice that by Lemma 4.1 the latter
is equivalent to the self-adjointness of the Gaffney Laplacian HG . We also stress
that the self-adjoint uniqueness implies Markovian uniqueness, and hence the results
obtained in the previous section provide various sufficient conditions for the Markov-
ian uniqueness as well. In particular, completeness of G (with respect to particular
choices of path metrics) is sufficient for the Markovian uniqueness.

7.2.1 Markovian uniqueness and graph ends

Surprisingly enough, in some cases of interest it is possible to provide a complete
characterization of the Markovian uniqueness in purely geometric terms. Intuitively,
this problem (as well as the self-adjoint uniqueness) is closely related to finding
appropriate boundary notions for infinite graphs. For unweighted metric graphs, that
is, with � D � � 1, the question was studied in [146, 148] using graph ends, a graph
boundary notion going back to H. Freudenthal and R. Halin (see Section 2.1.3). For
this purpose recall the following notion introduced in [146].

Definition 7.23. A topological end 
 2 C.G / of a metric graph G equipped with the
edge weight � has finite volume (with respect to �) if there is a sequence U D .Un/

representing 
 such that

�.Un/ D

Z
Un

�.dx/ < 1

for some n. Otherwise 
 has infinite volume. We denote the set of all finite volume
ends by C0.G I�/ and equip it with the induced topology from the end space C.G /.

The above notion leads to a complete characterization of the Markovian unique-
ness in the unweighted setting � D � � 1 (see [146, Corollary 3.12]): All ends of the
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metric graph have infinite volume. In the present section, we briefly recall the results
of [146, 148] and also extend them to the following simple situation.

Theorem 7.24. Let .G ; �; �/ be a weighted metric graph whose weight functions
�; �WG ! .0;1/ are uniformly positive, that is,

1

�
;

1

�
2 L1.G /: (7.7)

Then the deficiency indices of the minimal Gaffney Laplacian HG;min are equal to the
number of finite volume graph ends,

n˙.HG;min/ D #C0.G I�/: (7.8)

Moreover, the following statements are equivalent:

(i) H0 admits a unique Markovian extension,

(ii) HD D HN ,

(iii) the Gaffney Laplacian HG is self-adjoint,

(iv) H 1
0 .G ; �; �/ D H 1.G ; �; �/,

(v) all graph ends have infinite volume (with respect to �), i.e., C0.G I�/ D ¿.

Before giving the proof of Theorem 7.24, we recall a few standard facts on
Sobolev spaces in dimension one. First of all, for every 	 D Œ0; a/, a 2 .0;1� the
embedding of H 1.	 / into Cb.	 / D C.	 / \ L1.	 / is bounded and

sup
x2	

jf .x/j2 � Ca

Z
	

jf .x/j2 C jf 0.x/j2 dx (7.9)

holds for all f 2 H 1.	 /, where Ca D
p

coth.a/ (see [161]). Moreover, the limit
limx!a f .x/ exists for every function f 2 H 1.	 / (see, e.g., [32, Theorem 8.2] for
bounded intervals and [32, Corollary 8.9] in the unbounded case).

Returning to our setting, assume that .G ; �; �/ is a weighted metric graph. Sup-
pose further that P is a path in G . Notice that we can first identify P with a subset
of G , and then further with an interval 	P D Œ0; jP j/ of length

jP j WD

Z
P

dx;

where the integral is taken over the subset P � G with respect to the (unweighted)
Lebesgue measure on G (cf. (6.5)). The restriction f jP of a function f 2H 1.G ;�;�/

to P � G can be identified with a function on 	P D Œ0; jP j/. Notice that, in case
that (7.7) is satisfied, f jP belongs to the (unweighted) Sobolev space H 1.	P /. In
particular, (7.7) implies the following crucial property of H 1-functions: for every ray
R D .evn;vnC1

/n�0, the following limit

f .
R/ WD lim
n!1

f .vn/ (7.10)
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exists. Moreover, for each topological end 
 2 C.G / this limit is independent of the
choice of the ray R in the corresponding graph end !
 . Indeed, for any two equivalent
rays R and R0 there exists a third ray R00 containing infinitely many vertices of both
R and R0, which immediately implies that

f .
R/ D f .
R00/ D f .
R0/:

Taking into account the relationship between topological ends and graph ends (see
Section 2.1.3), this enables us to introduce the following notion.

Definition 7.25. Assume the weights �, � satisfy (7.7). Then for f 2 H 1.G ; �; �/

and a (topological) end 
 2 C.G /, we define

f .
/ WD f .
R/;

where R is any ray belonging to the corresponding graph end !
 .

As is easily verified, the values f .
/, 
 2 C.G / are independent of the choice of
the model of .G ; �; �/. It turns out that we obtain a continuous extension of f to the
end compactification yG D G [ C.G /.

Proposition 7.26. Let .G ; �; �/ be a weighted metric graph satisfying (7.7). Then for
every function f 2 H 1.G ; �; �/, its extension f W yG ! C is continuous.

Proof. Let 
 2 C.G / be a topological end represented by a sequence of open subsets
U D .Un/. To prove that f W yG ! C is continuous in 
 , we have to show that (see
Section 2.1.3 for the definition of the topology on yG )

lim
n!1

sup
x2Un

jf .x/ � f .
/j D 0:

As is readily verified (for instance, we can always refine the fixed model of .G ;�; �/),
it suffices to prove this statement for vertices v 2 V , that is, to establish that

lim
n!1

sup
v2V\Un

jf .v/ � f .
/j D 0: (7.11)

In order to obtain (7.11), we distinguish two cases. Assume first that each of the open
sets Un contains a ray Rn � Un with length jRnj > 1. As is easily verified, then each
vertex v 2 Un is contained in a path without self-intersections Pv � Un of length
jPvj �

1
2

. Since
T

n Un D ¿, it follows from (7.9) and assumption (7.7) that

lim
n!1

sup
v2V\U

jf .v/j2 � lim
n!1

C1=2

Z
Un

jf .x/j2 C jrf .x/j2 dx D 0:

Clearly, this also implies f .
/ D 0 and hence proves (7.11) in the first case.
On the other hand, suppose that there exists a set UN such that all rays R � UN

have length jRj � 1. Since every vertex v 2 Un, n � N , is contained in some ray
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Rv � Un with Rv 2 !
 , we have

sup
v2V\Un

jf .v/ � f .
/j � sup
v2V\Un

Z
Rv

jrf .x/j dx �

�Z
Un

jrf .x/j2 dx

�1=2

and assumption (7.7) again implies that (7.11) holds true.

This leads to a description of H 1
0 .G ; �; �/ D H 1

c .G /
k�k

H1.G ;�;�/ as the space of
H 1-functions with vanishing boundary values.

Theorem 7.27. Assume that (7.7) holds true. Then

H 1
0 .G ; �; �/ D ¹f 2 H 1.G ; �; �/ W f .
/ D 0 for all 
 2 C.G /º:

Proof. First of all, notice that sup
x2yG

jf .x/j � Ckf kH 1.G ;�;�/ for every function
f 2 H 1.G ; �; �/ and some uniform constant C > 0 (this follows, e.g., from the
closed graph theorem). On the other hand, if f 2 H 1.G ; �; �/ has compact support,
then f .
/ D 0 for all graph ends 
 2 C.G /. This proves the first inclusion “�”.

The proof of the converse inclusion “�” follows line to line the proof of [146,
Theorem 3.12] (see also the proof of [83, Theorem 4.14]). First of all, we may assume
that f 2 H 1.G ; �; �/ is non-negative and vanishes on C.G /. Then for every s > 0,
the set

As D ¹x 2 G W f .x/ � sº

is a compact subset of G . In particular, defining �nWR�0 ! R�0 by

�n.s/ D

8̂<̂
:

s �
1

n
if s �

1

n
;

0 if s <
1

n
;

the composition fn WD �n ı f has compact support in G . Moreover, j�n.s/j � jsj

and j�n.s/ � �n.t/j � js � t j for all s; t � 0 and hence fn belongs to H 1
0 .G ; �; �/

for all n. As is easily verified, limn!1 fn D f in H 1.G ; �; �/, which finishes the
proof.

To prove the main results of this section, we also need the following lemma.

Lemma 7.28. Let .G ; �; �/ be a weighted metric graph satisfying (7.7). Then for
any finite collection of distinct finite volume ends .
i /

N
iD1, there exists a function

g 2 dom.HN / with g.
1/ D 1 and g.
2/ D � � � D g.
N / D 0.

Proof. Fix a representing sequence of open subsets Ui D .U i
n/ for each of the topo-

logical ends 
i , i D 1; : : : ; N . Without loss of generality, we may suppose that
U WD U 1

0 has measure �.U / < 1 and U \ U i
0 D ¿ for all i D 2; : : : ; N . Moreover,

since @U is compact, the edge set E0 D ¹e 2 E W e \ @U ¤ ¿º is finite and hence its
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union K WD
S

e2E0
e is a compact subset of G . Clearly, we can easily construct a func-

tion g 2 H 1.G ; �; �/ \ dom.H/ which satisfies g � 1 on U , ¹x W rg.x/ ¤ 0º � K

and g � 0 on G n .U [ K/. Notice that in this step we need the finite volume prop-
erty of 
1 to ensure that g 2 L2.G I �/. Taking into account that U \ U i

0 D ¿ for
i D 2; : : : ; N , it is easily verified that g has the claimed boundary values in the graph
ends 
i , i D 1; : : : ; N .

It remains to prove that g belongs to dom.HN /. However, since g satisfies the
Kirchhoff conditions on G and is (componentwise) constant on G n K, integration by
parts gives

QN Œg; h� D

Z
G

rg.x/rh.x/� �.dx/ D

Z
K

rg.x/rh.x/� �.dx/

D �

Z
K

�g.x/h�.x/ �.dx/ D �

Z
G

�g.x/h�.x/ �.dx/

for every function h 2 H 1.G ; �; �/. In particular, g belongs to dom.HN / by the first
representation theorem (see, e.g., [126, Chapter 6]).

After these preparations we proceed with the proof of Theorem 7.24.

Proof of Theorem 7.24. First of all, since HN is a self-adjoint extension of HG;min,
the second von Neumann formula (cf. [191, Theorem 13.10]) implies

n˙.HG;min/ D dim
�
dom.HN /=dom.HG;min/

�
:

The lower estimate “�” in (7.8) then follows immediately from Lemma 7.28, Theo-
rem 7.27 and the fact that dom.HG;min/ � H 1

0 .G ; �; �/. This, in particular, implies
the equality if #C0.G I�/D1. Hence we only need to prove (7.8) if #C0.G I�/ <1.

In this case, by Lemma 7.28, for every finite volume end 
 2 C0.G I�/, we can
fix a function g
 2 dom.HN / with g
 .
/ D 1 and g
 .
 0/ D 0 for all 
 0 2 C0.G I�/,

 0 ¤ 
 . Then every function f 2 dom.HN / can be written as

f D f �

X

2C0.G I�/

f .
/g
 C

X

2C0.G I�/

f .
/g
 DW f0 C fC0
:

Clearly, f0 belongs to dom.HN / and f0.
/ D 0 at all finite volume graph ends

 2 C.G /. In fact, f0.
/ D 0 for all graph ends (including ends of infinite volume)
since f0 extends continuously to the end compactification (see Proposition 7.26) and
belongs to L2.G I�/. Therefore, by Theorem 7.27, f0 belongs to H 1

0 .G ; �; �/ and,
comparing (2.22) with (2.23), this implies that f0 2 dom.HG;min/ and, moreover, that
dom.HN / admits the following decomposition:

dom.HN / D dom.HG;min/ PC span¹g
 W 
 2 C0.G I�/º:

In particular, we conclude that

n˙.HG;min/ D dim
�
dom.HN /=dom.HG;min/

�
D #C0.G I�/:
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The remaining equivalences follow from Lemma 4.1 (see also Lemma 2.15 and
(2.23)).

Let us stress that finite volume graph ends do not provide a characterization
of Markovian uniqueness for general weighted graphs .G ; �; �/. This was already
observed in the simple case of weighted path graphs in Section 5.1 (see in particu-
lar Lemma 5.11). Notice that Z�0 has only one graph end 
 and it has finite volume
exactly when the sum in (5.7) converges. Hence, by Lemma 5.11, the Gaffney Laplac-
ian HG is self-adjoint if either the quantity L� D 1 (and in this case the volume of
the graph end is irrelevant) or L� < 1 and 
 has infinite volume.

On the other hand, the result for path graphs suggests that finite volume ends can
be used under a suitable generalization of the condition L� < 1 from Lemma 5.11.
It turns out that this guess is indeed correct and we outline the idea in the following.
For any path P in G , we define its �-length as (cf. (6.5))

jP j1=� D

Z
P

ds

�.s/
;

where the integral is taken over the corresponding subset P � G . Moreover, for any
subset U � G , its �-diameter at infinity is defined as

D1=�.U / WD supP�U jP j1=� ;

where the supremum is taken over all paths P without self-intersection in U . Suppose

 2 C.G / is a topological end represented by a sequence of open subsets U D .Un/.
Then we define its �-diameter1 by

D1=�.
/ D inf
n

D1=�.Un/ D lim
n!1

D1=�.Un/:

Remark 7.29. As is readily verified, the value of D1=�.
/ is independent of the
choice of the representing sequence U D .Un/.

It turns out that the conclusions of Theorem 7.7 are also valid under the assump-
tion

D1=�.
/ < 1 for all graph ends 
 2 C.G / (7.12)

instead of (7.7). For instance, it is easy to see that for each f 2 H 1.G ; �; �/ and
a ray R, Z

R

jrf j ds < 1

and in particular, the limits in (7.10) exist. A careful analysis of the rest of the proof
for Theorem 7.7 shows that it can be carried over as well and we omit the details.

1Let us stress that D1=�.U / does not coincide with the standard definition of the diameter
for metric spaces.
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Remark 7.30. Assumption (7.12) can be seen as a generalization of the condition
L� < 1 in Lemma 5.11. On the other hand, neither of the conditions (7.7) and (7.12)
implies the other one.

7.2.2 Markovian and finite energy extensions

Let us now briefly comment on the problem of describing the self-adjoint restrictions
of the Gaffney Laplacian HG . This class of extensions is called finite energy exten-
sions in [146] and by Lemma 2.18, these are exactly the self-adjoint extensions zH of
the minimal operator H0 satisfying dom.zH/ � H 1.G ; �; �/. Their importance stems
from the fact that they contain all Markovian extensions (see Lemma 4.1). Moreover,
the kernels of their heat semigroups and resolvents are well behaved (the results of
[146, Section 5] extend verbatim if at least one of the assumptions (7.7) or (7.12)
is satisfied).

The preceding sections suggest to describe finite energy extensions in terms of
finite volume graph ends. It turns out that, if (7.7) or (7.12) holds true and in addition
#C0.G I�/ < 1, this is indeed possible. Namely, in this case the maximal Gaffney
Laplacian HG is closed (this can be proved analogous to [148, Theorem 3.12 (i)]).
Moreover, these assumptions allow to introduce a suitable notion of a normal deriva-
tive for finite volume graph ends 
 2 C0.G I �/ (modifying the notions in [146,
Section 6] using the weights). This leads to a complete description of all Markov-
ian extensions of the minimal Laplacian H0 and all self-adjoint restrictions of the
maximal Gaffney Laplacian HG in terms of certain boundary conditions on finite
volume graph ends (analogous to [146, Section 6.3] and [148, Remark 3.13 (ii)]). The
proofs of these claims can easily be carried over from [146, 148], however, the full
exposition reads a bit technical and hence we do not develop it here.

If #C0.G I�/ D1, that is, the deficiency indices of the minimal Gaffney Laplac-
ian are infinite, then even in the unweighted case � D � � 1 the above methods are
not sufficient for a description of finite energy extensions. We stress that in this case
the Gaffney Laplacian HG is not closed in general (see [148, Section 4]) and, more-
over, in many interesting cases (see [148, Section 4]), its closure equals the maximal
Laplacian H, HG D H (which is further equivalent to the equality of the minimal
Kirchhoff and Gaffney Laplacians), and hence the problem is essentially as difficult
as the description of self-adjoint extensions of the minimal Laplacian H0.

We would also like to stress that, by Theorem 4.12 and Theorem 6.16, the problem
of describing Markovian extensions is equivalent for weighted metric and discrete
graphs. Moreover, for weighted graph Laplacians, a description of Markovian exten-
sions was obtained in [133] in terms of Dirichlet forms (in the wide sense) on the
corresponding Royden boundary (see, e.g., [83, 134, 195] for details and definitions)
equipped with a harmonic measure (in fact, on the so-called harmonic boundary,
which is a subset). It should also be stressed that there is no finiteness assumption on
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the deficiency indices of the Gaffney Laplacian in [133]. However, let us emphasize
that this description is by means of quadratic forms and not via boundary conditions.
Moreover, the correspondence between Markovian extensions and Dirichlet forms (in
the wide sense) on the boundary is in general not one-to-one and hence also does not
lead to a complete characterization of the Markovian uniqueness. On the other hand,
if the weighted graph .V ; mI b/ has finite total mass, m.V/ < 1, it becomes a bijec-
tion and in this case the Royden boundary should be the correct concept to study
Markovian extensions.

In general, the Royden boundary of a graph .V ; mI b/ can be rather big and hard
to describe (see [216] for the toy model Gd D Z). Its relationship to the standard
one-point compactification is closely connected to the Liouville property for finite
energy harmonic functions [134, Theorem 6.2]. However, in the special case thatP

u;v 1=b.u; v/ < 1, the Royden boundary coincides with the space of graph ends
and several other graph boundaries (see [83, Section 4.6] for details). Hence, under
the additional assumption that m.V/ < 1, we recover precisely the space of finite
volume ends (in the discrete setting). Moreover, one can show that under either of the
assumptions (7.12) and (7.7), the space of finite volume ends C0.G I�/ of a weighted
metric graph .G ; �; �/ can be embedded into the Royden boundary of the discrete
graph .V ; mI b/ for any model (the weights are defined by (3.5) and (3.6)). However,
in general it seems that these two boundaries do not compare.

7.2.3 A few more comments

Let us point out that, by Theorem 4.12 and Theorem 6.16, the problem of character-
izing Markovian uniqueness is equivalent for Laplacians on weighted metric graphs
and graph Laplacians. Moreover, for weighted metric graphs .G ; �; �/ this question
was studied in [97, Chapter 2] using metric completions (with respect to several
different metrics). In the parallel settings of discrete graphs and manifolds, results
were obtained in terms of polarity of metric boundaries in [115] and [93, 162, 163].
These techniques obviously apply to weighted metric graphs as well (alternatively,
the results from [115] can also be transferred using the correspondence between
H 1-spaces and intrinsic metrics, see Section 4.3 and Section 6.4). However, none
of these approaches leads to a complete description of the uniqueness of Markovian
extensions (e.g., the characterization in [115, Theorem 3] requires finite capacity of
the metric boundary).

An important concept in context with graphs is the construction of boundaries
by employing C �-algebra techniques (this includes both Royden and Kuramochi
boundaries, see [83, 125, 134, 168, 195] for further details and references). Under
the assumptions (7.7) or (7.12), finite volume graph ends can also be constructed
by using this method. Indeed, A WD H 1.G ; �; �/ � Cb.G / is a subalgebra by Propo-
sition 7.26 and hence its k � k1-closure zA WD xAk�k1 is isomorphic to C0. zX/, where
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zX is the space of characters equipped with the weak�-topology with respect to zA. In
general, describing zX for some concrete C �-algebra is a rather complicated task.
However, it turns out that in our situation zX coincides with zG WD G [ C0.G I�/.
Indeed, zG D G [ C0.G I�/ equipped with the induced topology of the end com-
pactification yG is a locally compact Hausdorff space. Proposition 7.26 together with
Theorem 7.27 shows that each function f 2 H 1.G ; �; �/ has a unique continuous
extension to zG and this extension belongs to C0.zG /. Moreover, by Lemma 7.28,
H 1.G ; �; �/ is point-separating and nowhere vanishing on zG and hence zA D C0.zG /

by the Stone–Weierstrass theorem. Thus the resulting boundary notion is precisely
the space of finite volume graph ends.

7.3 Spectral estimates

The aim of this section is to obtain spectral estimates for Laplacians on a weighted
metric graph .G ; �; �/. For simplicity, we restrict to the Dirichlet Laplacian HD and
present estimates for the bottom of its spectrum,

�0.HD/ WD inf �.HD/:

We also recall from Theorem 4.27 that if .G ; �; �/ has infinite intrinsic size, that
is, there is a model with ��.E/ D 1, then �0.HD/ D 0 (in fact, this holds true for
all Markovian and all non-negative extensions of the minimal Kirchhoff Laplacian).
Therefore, without loss of generality we can restrict our considerations in this section
to the case when

.G ; �; �/ has finite intrinsic size.

7.3.1 Isoperimetric estimates

We begin with estimates for �0.HD/ in terms of isoperimetric constants. Our exposi-
tion follows closely [147], where the special case of unweighted metric graphs (i.e.,
� D � � 1) was considered.

Assume that we have fixed a model of .G ; �; �/ with underlying combinatorial
graph Gd D .V ; E/. Then clearly every finite subgraph K D .V.K/; E.K// of Gd

can be identified with a compact subset of G . Moreover, its volume with respect to �

and its topological boundary are given by

�.K/ D
X

e2E.K/

jej�.e/; @K D ¹v 2 V.K/ W degK.v/ < degG .v/º: (7.13)

We introduce the boundary area of K as

area.@K/ D area.@K; �; �/ D
X

v2@K

X
Ee2EEv.K/

p
��.e/: (7.14)
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Definition 7.31. The isoperimetric constant of a weighted metric graph .G ; �; �/ is
defined as

Ch.G / D Ch.G ; �; �/ WD inf
K

area.@K/

�.K/
; (7.15)

where the infimum is taken over all finite, connected subgraphs K D .V.K/; E.K//

of a fixed model of .G ; �; �/.

The above definition of Ch.G / is given in terms of a fixed model of .G ; �; �/,
however, we have the following simple fact.

Lemma 7.32. The isoperimetric constant Ch.G / does not depend on the choice of
the model.

Proof. First of all, it is not difficult to see that (7.15) remains unchanged under refine-
ment of the model (see Section 2.4.3). Namely, any subgraph in a refined model can
be completed to a subgraph in a coarser model by adding the “remaining parts” of
edges. It is also clear that this procedure decreases the quotient in (7.15). Hence for
two given models of .G ; �; �/, we can take their common refinement (take all the
vertices of both models as the vertex set) and hence the claim follows.

The next result provides Cheeger- and Buser-type estimates on weighted metric
graphs.

Theorem 7.33. For a weighted metric graph .G ; �; �/,

1

4
Ch.G /2

� �0.HD/ �
�2

2 sup ��

Ch.G /; (7.16)

where ��.G / is defined by (7.2) and the supremum is taken over all models of the
weighted metric graph .G ; �; �/.2

Proof. (i) Cheeger’s estimate. First of all, recall that �0.HD/ is given by the varia-
tional characterization

�0.HD/ D inf
0¤f 2H 1

0
.G /

krf k2
L2.G I�/

kf k2
L2.G I�/

: (7.17)

Hence the lower estimate in (7.16) will follow from the inequality

Ch.G /kf kL2.G I�/ � 2krf kL2.G I�/; f 2 H 1
0 .G /:

2Notice that in practice sup��.G / can be computed by first removing all inessential vertices
from a fixed model of .G ;�;�/ and then finding the shortest intrinsic length among the obtained
edges. Here we apply the convention that an infinite ray of inessential vertices becomes trans-
formed into a non-compact edge (sometimes called a lead, leg or half-edge), whose intrinsic
length is the total intrinsic length of the ray.
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Without loss of generality we can assume that f is real-valued, compactly supported
and smooth on all edges e 2 E . Recall also that for any compactly supported, contin-
uous and edgewise C1-function hWG ! Œ0;1/, the following co-area formulas hold
true (see, e.g., [147, Lemma 3.6]):Z

G

h.x/�.dx/ D

Z 1

0

�.�h.t// dt:Z
G

jrh.x/j!.dx/ D

Z 1

0

area.@�h.t// dt;

where �h.t/ WD ¹x 2 G W h.x/ > tº for all t � 0,

! WD
p

��; !.dx/ WD
p

��.x/ dx;

and
area.@�h.t// WD

X
x2@�h.t/

!.x/:

Notice that for almost every t > 0, the boundary @�h.t/ contains no vertices and
hence the above integral is well defined. Indeed, every x 2 @�h.t/ satisfies h.x/ D t

and hence the claim follows from the countability of the vertex set.
Moreover, if @�h.t/ \ V D ¿, then we can associate with �h.t/ the subgraph

Kt � Gd consisting of all edges e 2 E with �h.t/ \ e ¤ ¿ and their endpoints. It is
then easily verified that (see also [147, proof of Lemma 3.7])

area.@�h.t//

�.�h.t//
�

area.Kt /

�.Kt /
� Ch.G /: (7.18)

By choosing h D f 2, we conclude from the co-area formulas that

Ch.G /kf k
2
L2.G I�/

� 2

Z
G

jrf .x/f .x/j!.dx/ � 2kf kL2.G I�/krf kL2.G I�/;

where the last inequality follows from the Cauchy–Schwarz inequality.
(ii) Buser’s estimate. Fix a model of .G ; �; �/. The edge set of a finite connected

subgraph K D .V.K/; E.K// can be split into

E.K/ D E0 [ E1 [ E2;

where E0, E1 and E2 denote the mutually disjoint sets of edges of E.K/ with, respec-
tively, all endpoints in V.K/ n @K , exactly one endpoint in @K (and hence exactly
one endpoint in V.K/ n @K), and all endpoints in @K .3 Notice in particular that

area.@K/ D
X
e2E1

p
��.e/ C 2

X
e2E2

p
��.e/:

3Loop edges in E.K/ are considered either as elements of E2 or E0, depending on their
vertex belonging to @K or not.
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Consider the test function f WG ! R defined by

f je D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1; e 2 E0;

sin
�

�

jej
j � �e{ j

�
; e 2 E2;

sin
�

�

2jej
j � �uj

�
; e D eu;v 2 E1 with u 2 @K;

0; e … E.K/:

By construction, f belongs to H 1
c .G / and its support coincides with K . Moreover,

kf k
2
L2.G I�/

D

X
e2E0

�.e/jej C
X

e2E1[E2

�.e/jej

2
�

�.K/

2
;

krf k
2
L2.G I�/

D
�2

8

X
e2E1

�.e/

jej
C

�2

2

X
e2E2

�.e/

jej

D
�2

8

X
e2E1

p
��.e/

�.e/
C

�2

2

X
e2E2

p
��.e/

�.e/
�

�2

4��.G /
area.@K/;

and then using (7.17) and taking the supremum over all models, we arrive at the
second inequality in (7.16).

In a similar way, one can obtain isoperimetric estimates for �ess
0 .HD/, the bottom

of the essential spectrum of HD . More precisely, for any finite, connected subgraph
K D .V.K/; E.K// of our fixed model, define

H 1
0 .G n K/ WD ¹f 2 H 1

0 .G / W supp.f / � G n Kº:

Then a standard Persson-type argument (a.k.a. Glazman’s decomposition principle,
see [84]) implies that

�ess
0 .HD/ D sup

K

inf
f 2H 1

0
.GnK/

krf k2
L2.G I�/

kf k2
L2.G I�/

; (7.19)

where the supremum is taken over all finite, connected subgraphs K of G . Setting
K1 � K2 exactly when K1 is a subgraph of K2, we can see the set of all finite,
connected subgraphs of G as a directed set. Moreover, if K1 � K2, then

H 1
0 .G n K2/ � H 1

0 .G n K1/;

and hence (7.19) can be rewritten as

�ess
0 .HD/ D lim

K
inf

f 2H 1
0

.GnK/

krf k2
L2.G I�/

kf k2
L2.G I�/

; (7.20)
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where the limit is taken over all finite, connected subgraphs K of G in the sense of
nets. Thus, Theorem 7.33 together with (7.20) suggest that, roughly speaking, �ess

0 .G /

is related to the isoperimetric behavior of .G ; �; �/ “at infinity”. This leads to the
following definition:

Definition 7.34. Let .G ; �; �/ be a weighted metric graph together with a fixed
model. For any finite, connected subgraph K D .V.K/; E.K// of G , define

ChK.G / D inf
K0�GnK

area.@K 0/

�.K 0/
;

where the infimum is over all finite, connected subgraphs K 0 of G with K 0 � G n K .
The isoperimetric constant at infinity of .G ; �; �/ is given by

Chess.G / WD sup
K

ChK.G / D lim
K

ChK.G /; (7.21)

where both the supremum and the net limit are taken over all finite, connected sub-
graphs K of G .

It turns out that (e.g., by an argument as in Lemma 7.32) the definition of Chess.G /

does not depend on the choice of the model of .G ; �; �/. Moreover, we obtain the
following estimates:

Theorem 7.35. Let E be the edge set of a fixed model of .G ; �; �/ and set

�ess
� .G / WD sup

zE finite

inf
e2EnzE

�.e/:

Then
1

4
Chess.G /2

� �ess
0 .HD/ �

�2

2 sup �ess
� .G /

Chess.G /:

Here the supremum is taken over all models of .G ; �; �/.
In particular, �.HD/ is purely discrete if Chess.G / D 1.

Proof. Following the proof of Theorem 7.33, we get

1

4
ChK.G /2

� inf
f 2H 1

0
.GnK/

krf k2
L2.G I�/

kf k2
L2.G I�/

�
�2

2

ChK.G /

�K
� .E/

for any finite, connected subgraph K of G (with �K
� .E/ WD infe2EnE.K/ �.e/). For

instance, if f belongs to H 1
0 .G n K/, then the set �f 2.t/ is contained in G n K for

all t > 0. In particular, this means that the subgraph Kt in (7.18) is contained in
G n K . The claim then follows from (7.19) together with (7.21).

Remark 7.36. Going back to Cheeger’s inequality for manifolds [42], isoperimetric
constants are known to provide spectral estimates for both manifolds and graphs, see,
e.g., [5, 6, 18, 38, 42, 59, 61, 147, 172]. For unweighted discrete graphs, the first works



From continuous to discrete and back 156

on this topic include [5, 6, 59, 61]. Employing the notion of an intrinsic metric, an
isoperimetric constant and the corresponding estimate for weighted graphs .V ; mI b/

were introduced in [18] (see Section 7.3.2 for more details). For unweighted metric
graphs, � D � � 1, Cheeger’s inequality was proven in [172] for finite metric graphs
and in [147] for infinite metric graphs.

7.3.2 Connection with discrete isoperimetric constants

The combinatorial structure of Ch.G / enables us to investigate it by combinatorial
methods. More precisely, in the case of unweighted metric graphs (�� � � 1), Ch.G /

was studied using discrete, curvature-like quantities in [147, Section 6] and [173].
These methods can be extended to the setting of weighted metric graphs as well and
this will be done elsewhere (see also Section 8.3.2 for the special case of tilings).
Our main goal in this section is to discuss connections with discrete isoperimetric
constants of the corresponding weighted graphs.

Let .V ; mI b/ be a locally finite connected graph and let pW V � V ! Œ0; 1/

be an intrinsic weight function (see Section 6.4.2). Following [18] (see also [147,
Appendix]), we define an isoperimetric constant Chd .V/ for .V ; mI b/ by

Chd .V/ D Chd .V ; mI b/ WD inf
X

j@X j

m.X/
; (7.22)

where the infimum is over all finite, connected subsets X � V and

@X D ¹.u; v/ 2 X � .V n X/ W b.u; v/ > 0º;

j@X j D

X
.u;v/2@X

b.u; v/p.u; v/; m.X/ D
X
v2X

m.v/:

We recall that, by [18, Theorem 3.2 and Theorem 3.6] (see also [147, Appendix]),
the Dirichlet Laplacian hD on .V ; mI b/ satisfies the following spectral estimate:

1

2
Chd .V/2

� �0.hD/ �
Chd .V/

p�.V/
; (7.23)

where p�.V/ WD infb.u;v/>0 p.u; v/.

Remark 7.37. Notice that the isoperimetric constant Chd .V/ is defined slightly dif-
ferently in [18]. Namely, the weight p.u; v/ in the definition of j@X j is replaced by
the distance %.u; v/ in an intrinsic metric %. On the other hand, it is straightforward
to verify that [18, Theorem 3.2 and Theorem 3.6] remain valid also for our definition
(see [147, Appendix] for details).

Recall that we had assumed that the weighted metric graph .G ; �; �/ has finite
intrinsic size. Fix a model of .G ; �; �/ (which then also has finite intrinsic size).
Consider the locally finite graph .V ; mIb/ defined by (3.3)–(3.6) and the correspond-
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ing discrete Laplacian h (see (3.7)). Recall also that we obtain an intrinsic weight
p�WV � V ! Œ0;1/ (see Remark 6.28) given by

p�.u; v/ D

´
min

e2Eu;v

�.e/; u � v and u ¤ v;

0; else;
.u; v/ 2 V � V : (7.24)

In Theorem 4.27 (see also Theorem 3.1 (vii)) we have seen that there is a close con-
nection between �0.hD/ and �0.HD/. In fact, it is easy to notice also connections
between the corresponding isoperimetric constants. Namely, suppose that our fixed
model of the weighted metric graph .G ; �; �/ has no multiple edges. Then

b.u; v/p�.u; v/ D
p

��.euv/ (7.25)

for all vertices u � v, u ¤ v. On the other hand, we can associate to every finite subset
X � V the subgraph KX of Gd consisting of all edges in the stars Ev , v 2 X (and all
incident vertices). Clearly, we have

�.KX / � m.X/ � 2�.KX /: (7.26)

Taking into account the definitions (7.15) and (7.22), this indicates a connection
between Ch.G / and Chd .V/. The following explicit estimates hold:

Proposition 7.38. Let .G ; �; �/ be a weighted metric graph having finite intrinsic
size and fix a model with underlying combinatorial graph Gd D .V ; E/ having no
multiple edges. Then

Ch.G / � 2Chd .V/;
2

Ch.G /
�

1

Chd .V/
C ��.E/; (7.27)

where Chd .V/ is the isoperimetric constant (7.22) of .V ;mIb/ for the intrinsic weight
given by (7.24). In particular,

Ch.G / > 0 exactly when Chd .V/ > 0: (7.28)

Proof. Let X � V be a finite, connected vertex set. Consider the connected subgraph
KX of Gd having the edge set E.KX / WD

S
v2X Ev . Using (7.25), it is not hard to see

that (see also [147, Lemma 4.2])

area.@KX / � j@X j:

Taking into account (7.26), we arrive at the first inequality in (7.27). The rest of
the proof can be carried over line to line from [147, Lemma 4.2] and we omit the
details.

Remark 7.39. A few remarks are in order.

(i) The second estimate in Proposition 7.38 is sharp. For example, the equality
holds true on every simple unweighted, equilateral metric graph, that is,
when Gd D .V ; E/ is simple and � D � � 1 with jej D 1 for all edges
e 2 E (see [173, equation (4.5)]).
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(ii) Surprisingly, Proposition 7.38 and even the equivalence (7.28) can fail for
models with multiple edges. The reason is precisely that (7.25) is no longer
valid in the presence of multiple edges (see also (7.24)). However, the
equivalence (7.28) holds true for models having finite intrinsic size and
satisfying the additional condition

inf
e2E

p�.e{ ; e� /

�.e/
> 0;

which clearly allows to recover an adapted version of (7.25).

7.3.3 Volume growth estimates

Going back to the work of R. Brooks [34], another well-known tool for Laplacians on
manifolds and graphs are spectral estimates in terms of volume growth (see, e.g., [34,
71, 100, 198] and the references therein). Moreover, these results can be formulated
in the abstract framework of Dirichlet forms (see [198] for the strongly local case
and [100] for generalizations). In this form, they directly apply to weighted metric
graphs and we shortly discuss this in the following.

Let %� be the intrinsic metric on a weighted metric graph .G ; �; �/ (see Sec-
tion 6.4.1). For any x 2 G and r > 0, we denote an intrinsic distance ball of radius r

by
Br.x/ D Br.xI %�/ WD ¹y 2 G W %�.x; y/ < rº: (7.29)

The exponential volume growth v.G / of G is defined by

v.G / WD lim inf
r!1

1

r
log �.Br.x0//; (7.30)

where x0 is any point of G (since G is connected, the limit in (7.30) does not depend
on x0). Moreover, we also introduce

v�.G / WD lim inf
r!1

1

r
inf

x2G
log

�.Br.x//

�.B1.x//
;

where by notational convention 1

a
WD 1 for any a 2 .0;1�. Notice in particular that

v�.G / � v.G /:

Applying the results of [198, Theorem 5] (see also [100, Theorem 1.1]), we arrive
at the following estimate:

Theorem 7.40. Suppose that .G ; %�/ is complete. Then

�0.HD/ � �ess
0 .HD/ �

1

4
v�.G /2

�
1

4
v.G /2: (7.31)
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Remark 7.41. The assumptions in Theorem 7.40 are not optimal. For instance, by
Theorem 7.1, the completeness assumption implies that the maximal Kirchhoff
Laplacian H is self-adjoint and hence

H0
D HD D HN D H:

On the other hand, the proof in [198, Theorem 5] shows that the Neumann extension
HN on any weighted metric graph .G ; �; �/ satisfies

�0.HN / �
1

4
v�.G /2

�
1

4
v.G /2:

In particular, we obtain (7.31) whenever HD D HN , that is, when H0 admits a unique
Markovian extension. The latter is a much weaker condition than the completeness of
.G ; %�/ (see Section 7.2 and also Theorem 7.24).

7.4 Recurrence and transience

There are numerous characterizations of recurrence/transience and we refer to [78] for
further details. Intuitively one may explain recurrence of a Brownian motion/random
walk as insufficiency of volume in the state space. The qualitative form of this heuris-
tic statement in the manifold context has a venerable history (we refer to the excel-
lent exposition of A. Grigor’yan [90] for further details) and in the case of com-
plete Riemannian manifolds the corresponding result (see [90, Theorem 7.3]) was
proved in the 1980s independently by L. Karp, N.Th. Varopoulos, and A. Grigor’yan.
It was extended to strongly local Dirichlet forms by K.-T. Sturm and in our setting of
weighted metric graphs, [198, Theorem 3] reads as follows:

Theorem 7.42 ([198]). Assume that a weighted metric graph .G ; �; �/ is such that
.G ; %�/ is complete. Then the heat semigroup .e�tH/t>0 generated by the Kirchhoff
Laplacian4 H is recurrent if for some (and hence for all) x 2 G ,Z 1

1

r

�.Br.x//
dr D 1; (7.32)

where Br.x/ is the intrinsic metric ball (7.29). That is, the following equivalent prop-
erties hold true:

(i) Every non-negative superharmonic function is constant.

(ii) Every bounded superharmonic function is constant.

(iii) Every bounded subharmonic function is constant.

4Recall that by Theorem 7.1 completeness implies that the maximal Kirchhoff Laplacian H
is self-adjoint and hence coincides with both the Dirichlet HD and Neumann HN Laplacian.
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(iv) Every potential

Gf .x/ D lim
N!1

Z N

0

.e�sHf /.x/ ds; x 2 G ;

is identically 1 for all nonzero 0 � f 2 L1.G I�/.

Remark 7.43. In fact, the above result is an immediate consequence of a Karp-type
theorem proved for strongly local regular Dirichlet forms in the same paper. More
specifically, by [198, Theorem 1], if .G ; %�/ is complete, then every nonzero subhar-
monic function u � 0 satisfyingZ 1

1

r

ku1Br .x/k
p

Lp.G I�/

dr D 1 (7.33)

for some p 2 .1;1/ and x 2 G , is constant. Thus, if u � 0 is a bounded subharmonic
function, then ku1Br .x/k

p

Lp.G I�/
� C�.Br.x// and hence (7.33) follows from (7.32),

which further implies that u is constant.

Remark 7.44. It appears that in the setting of weighted metric graphs the complete-
ness assumption in both Theorem 7.42 and Karp’s theorem is superfluous. Namely, it
seems to us that at least in the setting of Theorem 7.24, one can replace this assump-
tion by the Markovian uniqueness (which, according to Theorem 7.24, is equivalent
to the absence of finite volume ends).

We would like to demonstrate two applications of the above theorem. First of
all, employing connections between intrinsic metrics on weighted graphs and cable
systems, we arrive at the analogs of Karp’s theorem and Theorem 7.42 for graphs.

Theorem 7.45 ([113]). Let b be a locally finite, connected graph over .V ; m/. Let
also % be an intrinsic metric of finite jump size such that .V ; %/ is complete and
% generates the discrete topology on V . Then every nonzero subharmonic function
u � 0 satisfying Z 1

1

r

ku1Br .vI%/k
p

`p.V Im/

dr D 1

for some p 2 .1;1/ and v 2 V , is constant. In particular, if for some v 2 VZ 1

1

r

m.Br.vI %//
dr D 1;

then the heat semigroup .e�th/t>0 generated by the graph Laplacian h is recurrent.

Proof. The proof is analogous to the one of Theorem 6.57. Indeed, assume first that %

is an intrinsic path metric for .V ; mI b/ having finite jump size. Then by Lemma 6.33
there is a cable system .G ; �; �/ such that % coincides with the restriction %V of %�

onto V � V and .G ; %�/ is complete.
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Take now a non-negative function fWV ! R�0 which is L-subharmonic. By Lem-
ma 6.52, the corresponding function f D {�1

V
.f/ is non-negative and subharmonic

with respect to .G ; �; �/. Taking into account the relationships between the p-norms
(see Lemma 4.2) and using the corresponding results for weighted metric graphs, one
easily completes the proof of the first claim. The second one follows in a similar way
from Theorem 4.17, Lemma 6.41 and Theorem 7.42.

If % is not a path metric, then we proceed as in part (iii) of the proof of Corol-
lary 7.3. Namely, if % has finite jump size, then the construction there gives an intrinsic
path metric z% of finite jump size such that .V ; z%/ is complete and % � z%. It remains to
notice that Bs.xI z%/ � Bs.xI %/ and then apply the above arguments.

Remark 7.46. Let us mention that Theorem 7.45 was first established in [113] (see
Theorem 1.1 and Corollary 1.6 there) by using an absolutely different approach,
which, in particular, allows to treat non-locally finite graphs.

To proceed with another application, notice that the characterization of recurrence
either in terms of extended Dirichlet spaces (see Lemma B.7) or by means of subhar-
monic functions indicates that it essentially depends on the energy form only and not
on the underlying Hilbert space. In our situation, the energy form depends only on the
underlying metric graph G and the edge weight �, however, � enters Theorem 7.42
implicitly as a requirement that .G ; %�/ is complete. So, first of all, we arrive at the
following result.

Lemma 7.47. Let .G ; �; �/ be a weighted metric graph. Then the heat semigroup
.e�tHD /t>0 generated by the Dirichlet Laplacian HD is recurrent if G is complete
with respect to the length metric %0 and for some (and hence for all) x 2 G ,Z 1

1

r

�.Br.xI %0//
dr D 1;

where Br.xI %0/ is the metric ball in .G ; %0/.

Proof. As the Dirichlet form of HD is regular, recurrence of the corresponding semi-
group implies the uniqueness of a Markovian extension for H0. Moreover, taking into
account the regularity of QD once again, we conclude that .e�tHD /t>0 is recurrent
exactly when there is a sequence .fn/ � H 1

c .G / which approximates 1 and such that
QŒfn� D o.1/. Next recall that H 1

c .G / is independent of �. Therefore, if .e�tHD /t>0

is recurrent for some choice of �, it is automatically recurrent for any other choice of
�. Now it remains to consider the weighted metric graph .G ; �; �/, that is, to replace
� by �, and apply [198, Theorem 3] (see Theorem 7.42) by taking into account that
the length metric %0 coincides with the intrinsic metric %� for .G ; �; �/.

Remark 7.48. The above proof indicates that one may come up with a more clever
choice of the weight � (for instance, choosing �.e/ D �.e/=jej2 for each e 2 E ,
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one arrives at Laplacians, which are closely connected with discrete time random
walks, see below). However, this of course depends on the concrete situation since,
at the same time, one wants to ensure the completeness of G with respect to the
corresponding intrinsic metric %� , which clearly depends on this choice.

The usefulness of the arguments in the proof of Lemma 7.47 can be demonstrated
by the following result. Before stating it, let us associate with the metric graph G and
the edge weight � the following discrete time random walk: choose a simple model
.V ; E; j � j; �; �/ of .G ; �; �/ and set

b�.u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; u � v;

0; u 6� v;

.u; v/ 2 V ; (7.34)

together with
m�.v/ D

X
u�v

b�.u; v/; v 2 V :

Consider the corresponding graph Laplacian (let us denote it by h�). By Lemma 2.9,
it is bounded. Moreover, it generates a discrete time random walk on V (see Re-
mark 2.11). Namely, this random walk on V is a Markov chain .Xn/n�0 with state
space V and transition probabilities P� D .p�.u; v//u;v2V defined by

p�.u; v/ D P.XnC1 D v W Xn D u/ D
b�.u; v/

m�.v/
:

Since the graph b over V is connected by construction, the corresponding Markov
chain is irreducible. Moreover, it is reversible (again by construction).

Theorem 7.49. Let .G ; �; �/ be a weighted metric graph. Then the heat semigroup
.e�tHD /t>0 generated by the Dirichlet Laplacian HD is recurrent if and only if for
some (and hence for all) simple model of .G ; �; �/ the discrete time random walk on
V with transition probabilities P� D .p�.u; v//u;v2V is recurrent.

Proof. First, by Theorem 4.17, .e�tHD /t>0 is recurrent if and only if the semigroup
.e�thD /t>0 is recurrent. Here hD is the Dirichlet Laplacian defined by (3.7) (with ˛ �

0). Notice that the edge weight b given by (3.6) coincides with b� defined by (7.34).
Using exactly the same argument as in the proof of Lemma 7.47, however, applied in
the discrete graph setting, we conclude that the recurrence of hD is independent of the
choice of m and hence, in particular, .e�thD /t>0 is recurrent if and only if .e�th� /t>0

is recurrent. However, the latter holds exactly when the corresponding discrete time
random walk is recurrent.

Remark 7.50. Theorem 7.49 connects the study of recurrence on metric graphs with
the study of recurrence for discrete time random walks, which is a classical topic (the
standard reference is the book by W. Woess [212]). We shall demonstrate these con-
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nections by concrete examples (Cayley graphs and tessellations) in the next chapter.
Let us only mention that the idea to relate Brownian motion on a Riemannian man-
ifold with random walks goes back at least to the work of S. Kakutani [121] on the
type problem for simply connected Riemann surfaces (see [90] for further details).

7.5 Stochastic completeness

Here we follow the same line of reasoning as in the previous section. Recall the
following result of K.-T. Sturm [198, Theorem 4].

Theorem 7.51 ([198]). Assume that a weighted metric graph .G ; �; �/ is such that
.G ; %�/ is complete as a metric space. Then the heat semigroup .e�tH/t>0 generated
by the Kirchhoff Laplacian H is stochastically complete if for some (and hence for
all) x 2 G ,5 Z 1

1

r

log �.Br.x//
dr D 1;

where Br.x/ is the metric ball (7.29).

Remark 7.52. A few remarks are in order.

(i) Let us recall that stochastic completeness means that e�tH1 D 1 for some
(and hence for all) t > 0. There are various equivalent characterizations
and in terms of �-harmonic/subharmonic functions stochastic completeness
means that:

• for some � > 0 every bounded non-negative �-harmonic function is
constant,

• for all � > 0 every bounded non-negative �-subharmonic function is
constant.

(ii) In the context of manifolds, the volume test is due to L. Karp and P. Li, and
A. Grigor’yan (for a detailed historical account we refer to [90]).

(iii) Similar to the recurrence statement (see Remark 7.44), we are convinced
that in the setting of weighted metric graphs the completeness assumption
in Theorem 7.51 is superfluous. At least in the setting of Theorem 7.24, one
can replace this assumption by the Markovian uniqueness and this will be
addressed elsewhere.

Taking into account the relationships between the parabolic properties of Laplac-
ians on metric graphs and weighted graphs (see Section 4.6), we arrive at the follow-
ing result.

5Recall that by Theorem 7.1 completeness implies that the maximal Kirchhoff Laplacian H
is self-adjoint and hence coincides with both the Dirichlet HD and Neumann HN Laplacian.
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Theorem 7.53 ([72, 114]). Let b be a locally finite, connected graph over .V ; m/.
Let % be an intrinsic metric of finite jump size such that .V ; %/ is complete and %

generates the discrete topology on V . If for some (and hence all) v 2 V ,Z 1

1

r

log m.Br.vI %//
dr D 1;

where Br.vI %/ is the metric ball in .V ; %/, then the semigroup .e�th/t>0 is stochas-
tically complete.

Proof. For an intrinsic path metric of finite jump size, the proof follows by combining
Lemma 6.33 with Theorem 7.51 and Lemma 6.41. Finally, the argument in the proof
of Corollary 7.3 allows to reduce to this case.

Remark 7.54. Theorem 7.53 was first proved by M. Folz [72] by using Sturm’s
theorem 7.51 and also by connecting stochastic completeness on graphs and met-
ric graphs via the corresponding transfer probabilities as described in Section 4.2
(see also [114], where a different proof of the latter connection was given using the
weak Omori–Yau maximum principle). A different approach avoiding connections
with metric graphs was suggested in [116] and the Grigor’yan volume test is proved
under the only assumption that there exists an intrinsic pseudo-metric whose distance
balls are finite, that is, there is no finite jump assumption and non-locally finite graphs
are allowed as well.



Chapter 8

Examples

The main aim of the final chapter is to demonstrate our findings by considering several
important and interesting classes of graphs.

8.1 Antitrees

Recall the following definition (see Section 6.1):

Definition 8.1. A connected simple rooted graph Gd is called an antitree if every
vertex in the combinatorial sphere Sn, n � 1,1 is connected to all vertices in Sn�1 and
SnC1 and no vertices in Sk for all jk � nj ¤ 1.

Notice that combinatorial antitrees admit radial symmetry and every antitree is
uniquely determined by its sphere numbers sn D #Sn, n 2 Z�0 (see Figure 6.1, where
the antitree with sphere numbers sn D n C 1, n 2 Z�0 is depicted).

8.1.1 Radially symmetric antitrees

Both weighted graph Laplacians and Kirchhoff Laplacians on weighted antitrees
admit a very detailed analysis in the situation when their coefficients respect the
radial symmetry of the underlying combinatorial antitree. In this subsection we focus
on radially symmetric weighted metric antitrees and follow [149] in our exposition.
More specifically, we assume that the weighted metric antitree .A; �; �/ is radially
symmetric, that is, for each n � 0, all edges connecting the combinatorial spheres Sn

and SnC1 have the same length, say `n > 0, and the same weights � and �, say �n > 0

and �n > 0.
The next result plays a crucial role in further analysis, however, to state it, we first

need to introduce the following objects. Let

xn WD

n�1X
kD0

`k; L WD

X
n�0

`n 2 .0;1�;

and then set

�A.x/ D
X
n�0

�nsnsnC11Œxn;xnC1/.x/; �A.x/ D
X
n�0

�nsnsnC11Œxn;xnC1/.x/;

1By definition, the root o is connected to all vertices in S1 and no vertices in Sk , k � 2.
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for all x 2 Œ0; L/. Notice that L can be interpreted as the height of a metric antitree.
Next, we define three different types of operators associated with the differential
expression

�A D �
1

�A.x/

d
dx

�A.x/
d

dx
: (8.1)

• The operator HA is associated with �A in the Hilbert space L2.Œ0; L/I�A/ and
acts on the maximal domain subject to the Neumann boundary condition at x D 0,
see (5.5).

• For each integer n � 1, the operator H1
n is associated with �A in the Hilbert space

L2.Œxn; xnC1/I�A/ and with Dirichlet boundary conditions at the endpoints,

dom.H1
n/ D ¹f 2 H 2.Œxn; xnC1// W f .xn/ D f .xnC1/ D 0º:

• For each integer n � 1, the operator H2
n is associated with �A in the Hilbert space

L2.Œxn�1; xnC1/I�A/ and with Dirichlet boundary conditions at the endpoints,

dom.H2
n/ D ¹f 2 H 1

0 .Œxn�1; xnC1// W �Af 0
2 H 1.Œxn�1; xnC1//º:

With these definitions at hand, we are in a position to state the key result.

Theorem 8.2. Let .A;�;�/ be a radially symmetric antitree. Then the corresponding
maximal Kirchhoff Laplacian H is unitarily equivalent to the orthogonal sum

HA ˚

M
n�1

.I.sn�1/.snC1�1/ ˝ H1
n/ ˚

M
n�1

.Isn�1 ˝ H2
n/: (8.2)

Here sn D #Sn, n � 0 are the sphere numbers of A and Ik is the identity operator
in Ck , k 2 Z�0.

Proof. Follows line by line the proof of [149, Theorem 3.5] (see also [31]), where the
case � D � � 1 is considered, and we omit it. Let us only mention that the operator
HA is nothing but the restriction of H onto the subspace Fsym of radially symmetric
functions

Fsym D ¹f 2 L2.AI�/ W f .x/ D f .y/ if %0.x; o/ D %0.y; o/º;

which follows easily by comparing the corresponding quadratic forms. Here %0.x; o/

denotes the distance from the point x 2 A to the root o of A with respect to the length
metric %0.

Thus, Theorem 8.2 reduces the analysis of the Kirchhoff Laplacian H on .A;�;�/

to the analysis of Sturm–Liouville operators (8.1). In particular, since both H1
n and H2

n

are self-adjoint and have purely discrete simple spectra for each n � 1, the operator
HA acting in L2.Œ0;L/I�A/ encodes the main spectral and parabolic properties of H.
Moreover, take into account that HA allows a rather detailed treatment (see Chap-
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ter 5). First of all, we easily obtain the following characterization of the self-adjoint
and Markovian uniqueness.

Theorem 8.3. Let .A; �; �/ be a radially symmetric antitree.

(i) The Kirchhoff Laplacian H is self-adjoint if and only if the series

X
n�0

snsnC1�n`n

�X
k�n

`k

skskC1�k

�2

(8.3)

diverges. If the series converges, then the deficiency indices of the minimal
Kirchhoff Laplacian H0 D H� equal 1.

(ii) The Kirchhoff Laplacian H admits a unique Markovian restriction if and
only if either it is self-adjoint or the series

LA
� WD

X
n�0

`n

snsnC1�n

(8.4)

diverges.

Proof. Taking into account decomposition (8.2) and the self-adjointness of the sec-
ond and the third summands, the self-adjoint uniqueness (resp., Markovian unique-
ness) for H is equivalent to the self-adjoint uniqueness (resp., Markovian uniqueness)
for HA. Applying Lemma 5.2 and Lemma 5.11, we prove (i) and, respectively, (ii).

Remark 8.4. It might be useful to compare the self-adjointness criterion obtained in
Theorem 8.3 with the Gaffney-type results from Section 7.1.1. Taking into account
that by the Hopf–Rinow theorem (see Section 6.4.5), completeness is equivalent to
the geodesic completeness, we conclude:

(i) .A; %�/ is complete exactly when (cf. Theorem 7.1)X
n�0

`n

r
�n

�n

D 1:

(ii) if, for simplicity,2

sup
n

`n

r
�n

�n

< 1;

then .V ; %m/ is complete exactly when (cf. Theorem 7.7)X
n�0

.sn C snC1/`n�n D 1:

2Here we need to take into account the definition of the vertex weight in Section 3.1
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On the one hand, the last condition is equivalent to (8.3) only under the restrictive
assumptions that (a) LA

� < 1, and (b) snsnC1 . sn C snC1 for all n. On the other
hand, its main drawback that it does not take � into account.

The next immediate corollary is of some interest when one looks at the self-
adjointness and Markovian uniqueness by using graph ends (cf. Section 7.2.1).

Corollary 8.5. Let .A; �; �/ be a radially symmetric antitree.

(i) If

�.A/ D

Z
A

�.dx/ D
X
n�0

snsnC1�n`n D 1; (8.5)

then the Kirchhoff Laplacian H is self-adjoint. Moreover, (8.5) is also nec-
essary for the self-adjointness if LA

� < 1.

(ii) If LA
� < 1, then the Kirchhoff Laplacian H admits a unique Markovian

restriction if and only if �.A/ D 1.

Remark 8.6. Every infinite antitree has exactly one graph end. By Definition 7.23,
this graph end has finite volume if and only if the total volume of a given antitree is
finite, �.A/ < 1. By Corollary 8.5, the absence of finite volume ends is equivalent
to both self-adjoint and Markovian uniqueness exactly when LA

� < 1, that is, when
the series in (8.4) converges.

Remark 8.7. If H is not self-adjoint, then one can describe its self-adjoint restrictions
in the following way. First of all, the decomposition (8.2) implies that it suffices to
restrict to the subspace of spherically symmetric functions: for each f 2 dom.H/,
define the function fsymW Œ0; L/ ! C by setting

fsym.x/ D
1

s.x/

X
y2AW%0.o;y/Dx

f .y/;

s.x/ D
X
n�0

snsnC11Œxn;xnC1/.x/:

It is straightforward to check that fsym 2 dom.HA/ (cf. [149, Lemma 3.2]). Next,
define

fsym.L/ WD lim
x!L

�
fsym.x/ � �A.x/f 0

sym.x/

Z x

0

ds

�A.s/

�
;

f 0
sym.L/ WD lim

x!L
�A.x/f 0

sym.x/:

By Lemma 5.5, both limits exist for each f 2 dom.H/ and applying (5.9), we con-
clude that the one-parameter family H� , � 2 Œ0; �/ of self-adjoint restrictions of H is
explicitly given by

dom.H� / D ¹f 2 dom.H/ W cos.�/fsym.L/ C sin.�/f 0
sym.L/ D 0º: (8.6)
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Corollary 8.8. Let H be non-self-adjoint. If LA
� <1, then the corresponding Dirich-

let Laplacian is given by

dom.HD/ D
°
f 2 dom.H/ W lim

x!L
fsym.x/ D 0

±
:

Otherwise, the Dirichlet Laplacian coincides with the Neumann Laplacian

dom.HN / D dom.H�=2/ D
°
f 2 dom.H/ W lim

x!L
�A.x/f 0

sym.x/ D 0
±
:

Proof. If LA
� D

R L

0
ds

�A.s/
<1, then boundary conditions can be written in a standard

way since in this case

fsym.L/ D lim
x!L

fsym.x/ � LA
� f 0

sym.L/;

which implies that the limit on the right-hand side exists for all f 2 dom.H/. Hence
we can replace fsym.L/ in (8.6) by zfsym.L/ WD limx!L fsym.x/. Taking into account
the definition of the Dirichlet Laplacian, this implies the first claim. The second one
follows from Theorem 8.3 (ii).

If H is not self-adjoint, then the spectral analysis is reduced to that of HA and
Lemma 5.5. Therefore, in the following results we restrict to the case when H is
self-adjoint, that is, the series (8.3) diverges. Using Lemma 5.7, we arrive at the next
result.

Lemma 8.9. Suppose that the Kirchhoff Laplacian H is self-adjoint. Then:

(i) We have �0.H/ > 0 if and only if

LA
� < 1 and sup

n�0

X
k�n

skskC1�k`k

X
k�n

`k

skskC1�k

< 1: (8.7)

(ii) We have �ess
0 .H/ > 0 if and only if either (8.7) holds true or

LA
� D 1 and sup

n�0

X
k�n

`k

skskC1�k

X
k�n

skskC1�k`k < 1: (8.8)

(iii) The spectrum of H is purely discrete if and only if

• either LA
� < 1 and

lim
n!1

X
k�n

skskC1�k`k

X
k�n

`k

skskC1�k

D 0;

• or �.A/ < 1 and

lim
n!1

X
k�n

`k

skskC1�k

X
k�n

skskC1�k`k D 0:
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Proof. Taking into account the decomposition (8.2), observe that

�0.H/ D �0.HA/; �ess
0 .H/ D �ess

0 .HA/

since �0.HA/ � �0.Hj
n/ for all n � 1, as well as �ess

0 .HA/ � lim infn!0 �0.Hj
n/,

j 2 ¹1; 2º, which follows by using the variational characterization of �0 provided by
the Rayleigh quotient. Thus, applying Lemma 5.7, we complete the proof.

Remark 8.10. A few remarks are in order.

(i) If H is not self-adjoint, then one can conclude that the spectrum of each
self-adjoint restriction H� (see (8.6)) is purely discrete. Furthermore, taking
into account that

�.H1
n/ D

²
�2k2

�2
n

³
k2Z�1

;

where �n D `n

p
�n=�n, n � 0 are the intrinsic edge lengths, the Weyl

law (5.10) for HA together with the standard Dirichlet–Neumann brack-
eting argument applied to H2

n (see the proof of [149, Corollary 5.1]), one
arrives at the Weyl law for self-adjoint restrictions of H:3

lim
�!1

N.�IH� /
p

�
D

1

�
� intrinsic volume of A; (8.9)

and the intrinsic volume of A is

�.A/ D

Z
A

�.dx/ D
X
n�0

snsnC1�n D

X
n�0

snsnC1`n

r
�n

�n

:

(ii) If H is self-adjoint, however, has purely discrete spectrum, then Weyl’s
law (8.9) still takes place. If �.A/ D 1, then one can prove criteria for the
inclusion .H C I/�1 2 Sp , p 2 .1

2
;1/ (see Remark 5.8 and [149, Theo-

rem 5.6 and Remark 5.7]).

The following result provides an explicit form of the isoperimetric constant for
.A; �; �/ in the radially symmetric case.

Proposition 8.11. The isoperimetric constant of a radially symmetric metric antitree
.A; �; �/ is

Ch.A/ D inf
n�0

snsnC1
p

�n�nPn
kD0 skskC1�k`k

: (8.10)

In particular, the following estimate holds true:

�0.HD/ �
1

4
Ch.A/2:

3Here N.�IA/ is the eigenvalue counting function of a (bounded from below) self-adjoint
operator A with purely discrete spectrum: N.�IA/ D #¹k W �k.A/ � �º, where ¹�k.A/ºk�0

are the eigenvalues of A (counting multiplicities) in increasing order.
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Proof. The decomposition (8.2) as well as the proof of Lemma 8.9 suggests taking
the infimum in (7.15) only over radially symmetric subgraphs. Thus, evaluating (7.15)
over subantitrees An, where one cuts out the part of A above the combinatorial sphere
Sn, the inequality “�” in (8.10) is trivial. The proof of the converse inequality “�”
follows line by line the proof of [149, Theorem 7.1] and we leave it to the reader.

Applying the volume growth estimates from Section 7.3.3, we arrive at the fol-
lowing upper bounds.

Proposition 8.12. Suppose that the radially symmetric antitree .A; �; �/ has infinite
intrinsic height (i.e., .A; %�/ is complete),X

n�0

�n D

X
n�0

`n

r
�n

�n

D 1:

Then H is self-adjoint and

�0.H/ �
1

4
v.A/2; v.A/ D lim inf

n!1

1P
k�n �k

log
�X

k�n

skskC1�k`k

�
:

Remark 8.13. It might be useful to compare the isoperimetric and volume growth
bounds with the positive spectral gap criterion obtained in Lemma 8.9 (i)–(ii). It is
rather curious that the volume of the sub-antitrees An (defined in the proof of Propo-
sition 8.11), X

k�n

skskC1�k`k

enters all the estimates and criteria. However, it appears there in rather different ways.
The meaning of the quantity X

k

`k

skskC1�k

in both (8.7) and (8.8) remains unclear to us, however, it plays crucial role in under-
standing both spectral and parabolic properties of the Kirchhoff Laplacian.

Let us finish this subsection by quickly discussing basic parabolic properties.

Lemma 8.14. Let HG be the Gaffney Laplacian on a radially symmetric antitree
.A; �; �/. If HG is self-adjoint, then it is recurrent if and only if LA

� D 1. If HG is
not self-adjoint, then H� is recurrent if and only if � D

�
2

.

Proof. By Lemma B.5, recurrence is equivalent to the fact that there is a sequence
approximating (in a suitable sense) the constant function 1. However, 1 is radially
symmetric and thus belongs to the reducing subspace Fsym of all radially symmetric
functions. Thus, HG is recurrent exactly when so is its radial part HA. It remains to
apply Lemma 5.13.
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Lemma 8.15. Let HG be the Gaffney Laplacian on a radially symmetric antitree A.
If HG is self-adjoint, then it is stochastically incomplete if and only if

LA
� < 1 and

1

�A.x/

Z x

0

�A.s/ ds 2 L1.Œ0; L//:

Proof. By the very definition of stochastic completeness (B.2), decomposition (8.2)
clearly reduces the problem to the stochastic completeness of the operator HA since
1A 2 Fsym. It remains to apply Lemma 5.14.

8.1.2 General case

Removing the symmetry assumption, that is, if at least one of the weights � or � or the
lengths j � j are no longer radially symmetric, the analysis of the Kirchhoff Laplacian
becomes much more complicated. The very first problem – the self-adjoint unique-
ness – remains open and, as the next example from [146, Section 7] demonstrates, far
from being trivial.

Example 8.16 (Antitrees with arbitrary deficiency indices). We shall assume that the
metric antitree is unweighted, that is, � D � D 1 on A (notice that both weights are
radially symmetric). Fix N 2 Z�1 and consider the antitree AN with sphere numbers
sn D n C N , n 2 Z�1 (for N D 1 this antitree is depicted on Figure 6.1). To assign
lengths, let us enumerate the vertices in every combinatorial sphere Sn by .vn

i /
sn

iD1

and then denote the edge connecting vn
i with vnC1

j by en
ij , 1 � i � sn, 1 � j � snC1

and n � 0. For a sequence of positive real numbers .`n/n�0, we first assign edge
lengths

jen
ij j D

´
2`n; if 1 � i D j � N;

`n; otherwise;

for all n 2 Z�0. It turns out that for the corresponding metric antitree AN the space
of harmonic functions has dimension N C 1 (see Lemma 7.4 in [146]). Choosing
lengths such that vol.AN / �

P
n�1 n2`n < 1, the deficiency indices of the minimal

Kirchhoff Laplacian H0 are equal to the dimension of the space of harmonic functions
belonging to L2.A/. By [146, Proposition 7.5], if we choose lengths such that

`n D O

�
1

.36N /n..n C N C 3/Š/2

�
; n ! 1;

then all harmonic functions belong to L2.A/ and hence n˙.H0/ D N C 1.

Remark 8.17. A few concluding remarks are in order.

(i) Slightly modifying the antitree in Example 8.16 one can construct an exam-
ple of a metric antitree such that the corresponding minimal Kirchhoff
Laplacian has infinite deficiency indices (see [146, Section 7.4]). The above
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example also demonstrates that the space of harmonic functions, even in
the unweighted case, depends in a complicated way on the choice of edge
lengths (notice that in the radially symmetric case constants are the only
harmonic functions). Thus, the self-adjoint uniqueness becomes a highly
non-trivial problem already in the case � D � D 1.

(ii) In contrast to the self-adjoint uniqueness in the case of no radial symmetry,
the Markovian uniqueness problem can be answered in several situations of
interest. For example, in the case � D � D 1 it was observed in [146] that
the Markovian uniqueness is equivalent to the infinite total volume of A

(and the latter is independent of whether the antitree is radially symmetric
or not). Moreover, the results of Section 7.2 extend this claim to a much
wider setting: if at least one the two conditions

(a) 1
�

, 1
�
2 L1.A/, or

(b) A has finite �-diameter D1=�.A/ < 1, see (7.12),

is satisfied, then the minimal Kirchhoff Laplacian admits a unique Markov-
ian uniqueness if and only if �.A/ D 1. If �.A/ < 1, then H admits
a one-parameter family of Markovian extensions and their description is
very much similar to the one in the radial case. Let us also stress that in the
radially symmetric case the condition relating Markovian uniqueness with
infinite total volume is LA

� < 1 (see (8.4)), and this condition is much
weaker than both (a) and (b).

8.1.3 Historical remarks and further references

Antitrees also appear in the literature under the name neural networks and to a certain
extent the corresponding graph Laplacians can be seen a generalization of Jacobi
matrices (one may interpret the recurrence relations as “the values on Sn depend only
on the values on Sn�1 and SnC1”). Seems, exactly this fact allows to perform a rather
detailed analysis of Laplacians (both weighted graph and Kirchhoff) on antitrees.
Below we collect some further information.

8.1.3.1 Spectral analysis in the radially symmetric case. The decomposition (8.2)
of the maximal Kirchhoff Laplacian in the radially symmetric case reduces the spec-
tral analysis to the study of a Sturm–Liouville operator HA. One may employ a num-
ber of results and techniques available in the one-dimensional setting. In particular,
we briefly listed the very basic results (self-adjointness, positive spectral gap, dis-
creteness, etc.). However, one can prove a number of results characterizing the struc-
ture of the spectrum of H in the self-adjoint case. In particular, [149, Section 8] shows
that the occurrence of absolutely continuous spectrum is a rather rare event. Antitrees
with zero-measure spectrum can be found in [49]. However, using Lemma 5.9, one
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can construct a rather large and non-trivial class of antitrees whose absolutely contin-
uous spectrum fills the positive semi-axis Œ0;1/ (see [149, Section 9]).

8.1.3.2 Family preserving graphs. An antitree is just a particular example of an
infinite graph having a lot of symmetry. Actually, antitrees belong to the wider class
of family preserving graphs (see [30] for definitions), which, in particular, includes
rooted radially symmetric trees. The decomposition (8.2) is motivated by a simi-
lar decomposition for Laplacians on radially symmetric metric trees observed by
K. Naimark and M. Solomyak [169, 170, 196]. For this very reason Laplacians on
radially symmetric trees form the most studied class of operators on metric graphs.
The literature is enormous and we refer for further references to [31].

Notice that the analog of the decomposition (8.2) for family preserving metric
graphs was obtained in [31], however, in contrast to graph Laplacians [30], the setting
of [31] excludes graphs with horizontal edges.

8.1.3.3 Historical remarks. Antitrees appear in the study of discrete Laplacians on
graphs at least since the 1980s [60] (see [48, Section 2] for a historical overview).
They played an important role in context with the notion of intrinsic metrics on
graphs (see Section 6.4). More precisely, in [213] (see also [135, Section 6] and [92])
R. K. Wojciechowski constructed antitrees of polynomial volume growth (with re-
spect to the combinatorial metric %comb, which is in general not intrinsic) for which the
(discrete) combinatorial Laplacian Lcomb (see Example 6.7) is stochastically incom-
plete and the bottom of the essential spectrum is strictly positive. At first, these
examples presented a sharp contrast to the manifold setting (cf. [34, 90]), but the
discrepancies were resolved later by the notion of intrinsic metrics. In this context,
antitrees appear as key examples for certain thresholds (see [100, 129]). During the
recent years, antitrees were also actively studied from other perspectives and we only
refer to a brief selection of articles [30, 31, 48, 149], where further references can
be found.

8.2 Cayley graphs

Let G be a countable finitely generated group and let S be a generating set of G. We
shall always assume that

• G is countably infinite,

• S is symmetric, S D S�1 and finite, #S < 1,

• the identity element of G does not belong to S (this excludes loops).

The Cayley graph GC D C.G; S/ of G with respect to S is the simple graph whose
vertex set coincides with G and two vertices x; y 2 GC are neighbors x � y if and
only if xy�1 2 S .
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The main aim of this section is to demonstrate some of our findings as well as
their relationships with large scale properties of groups. Notice that Cayley graphs
corresponding to two different generating sets are quasi-isometric as metric spaces
when equipped with the combinatorial distance (word metric), which in particular
indicates that many properties of interest are independent of the choice of S (see, for
instance, [54, 175, 187] for further details). To simplify our considerations we shall
restrict throughout most of Section 8.2 to weighted metric graphs with � D �, that is,
the edge weights � and � are assumed to coincide.

8.2.1 Markovian uniqueness

The self-adjointness for Kirchhoff Laplacians is a very complicated problem already
for abelian groups .ZN ;C/ with N � 2 (it does not seem to us that a complete answer
even in this “simplest” situation is feasible, see also Remark 8.25 below). One can
obtain various sufficient conditions by directly applying the results of Section 7.1
(e.g., Gaffney-type theorems) and we leave this to the interested reader. Our first
goal is to investigate the Markovian uniqueness on metric Cayley graphs, which is
equivalent to the self-adjointness of the corresponding Gaffney Laplacian HG .

Proposition 8.18. Let GC D C.G; S/ be a Cayley graph.4 Suppose .GC ; �; �/ is
a weighted metric graph whose edge weight � satisfies 1

�
2 L1.G /. Then the defi-

ciency indices of the corresponding minimal Gaffney Laplacian HG;min D H�
G coin-

cide with the number of finite volume graph ends of .GC ; �; �/.

Proof. This immediately follows from Theorem 7.24.

Remark 8.19 (Ends of Cayley graphs). Graph ends of countable finitely generated
groups are rather well understood (see [82]). It is not difficult to see that the graphs
depicted in Figure 8.1 have, respectively, 2, 1 and infinitely many ends. However,
by the Freudenthal–Hopf theorem, only these three options are possible: a Cayley
graph of an infinite finitely generated group has 1, 2 or infinitely many ends. More-
over, the end space (equipped with the topology of the end compactification) of
C.G; S/ is independent of the choice of the finite generating set S and hence we
shall denote the set of ends by C.G/. By Hopf’s theorem, #C.G/ D 2 if and only if
G is virtually infinite cyclic5 (equivalently, G has a finite normal subgroup � such
that the quotient group G=� is either infinite cyclic or infinite dihedral). The clas-
sification of finitely generated groups with infinitely many ends (equivalently, with
exactly 1 end) is due to J.R. Stallings (see, e.g., [82, Chapter 13]). In particular, if G
is amenable, then it has finitely many ends (actually, either 1 or 2).

4If it is not explicitly stated otherwise, we shall denote by GC both a Cayley graph and
a metric graph GC equipped with some edge lengths.

5If a finite index subgroup of G has property “P”, then G is called virtually “P”.
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Figure 8.1. Cayley graphs of the abelian groups Z, Z2 and the free nonabelian group F2 (the
Bethe lattice or infinite Cayley tree).

Thus, we arrive at the following result.

Corollary 8.20. Assume the conditions of Proposition 8.18. Let also HG be the cor-
responding Gaffney Laplacian.

(i) If #C.G/ D 1, then HG is self-adjoint if and only if �.G / D 1. Otherwise,
n˙.HG;min/ D 1.

(ii) If #C.G/ D 2 (i.e., G is virtually infinite cyclic), then n˙.HG;min/ � 2. In
particular, HG is self-adjoint if and only if both ends have infinite volume.

(iii) If #C.G/ > 2 and at least one of its ends has finite volume, then HG;min has
infinite deficiency indices.

(iv) If �.G / < 1, then the deficiency indices of HG;min are equal to the number
of ends of G, n˙.HG;min/ D #C.G/.

Proof. Note that (i), (ii) and (iv) are immediate consequences of Proposition 8.18.
(iii) By the Freudenthal–Hopf theorem, we have

#C.G/ D 1 if #C.G/ > 2

(see Remark 8.19). Moreover, the end space is known to be homeomorphic to the
Cantor set (see, e.g., [82, Addendum 13.5.8]), and hence there are no free graph ends.
Thus, having 1 finite volume end would immediately imply the presence of infinitely
many finite volume graph ends. It remains to apply Proposition 8.18.

Taking into account that the self-adjointness of HG is equivalent to the Markovian
uniqueness for the minimal Kirchhoff Laplacian, we arrive at the following charac-
terization in the case of amenable groups.

Corollary 8.21. Assume the conditions of Proposition 8.18. If G is amenable and
not virtually infinite cyclic, then the minimal Kirchhoff Laplacian admits a unique
Markovian extension if and only if

�.GC / D

Z
GC

� D

X
e2E

�.e/jej D 1:
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Remark 8.22. For Cayley graphs of infinite groups with finitely many ends one can
describe the sets of Markovian and finite energy extensions of the minimal Kirchhoff
Laplacian in a rather transparent way (see, e.g., Section 7.2.2 and [146, Section 6],
[148]). If G has infinitely many ends and the Gaffney Laplacian is not self-adjoint,
then it is not closed (see [148, Corollary 3.14]) and the description of its closure is an
open problem (even if � � 1). Moreover, in some cases its closure may coincide with
the maximal Kirchhoff Laplacian (for instance, if GC is a Cayley graph of the free
group F2 and �.GC / < 1, see [148, Lemma 4.6]). In our opinion, the description
of finite energy extensions (via boundary conditions) in the general case is a highly
non-trivial problem (see Sections 7.2.2–7.2.3). On the other hand, Markovian exten-
sions can still be described in terms of Dirichlet forms (in the wide sense) on the
Royden boundary [133], however this correspondence is in general not bijective (see
Section 7.2.2 for a detailed discussion).

Since the deficiency indices of the minimal Kirchhoff Laplacian are not smaller
than the deficiency indices of the Gaffney Laplacian, Corollary 8.20 immediately
provides us with the following result.

Corollary 8.23. Assume the conditions of Proposition 8.18. Let also H0 be the cor-
responding minimal Kirchhoff Laplacian. If #C.G/ > 2 and at least one of its ends
has finite volume, then n˙.H0/ D 1.

Let us consider the simplest example.

Example 8.24 (Infinite cyclic group). Let G D .Z;C/ be the infinite cyclic group and
S D ¹�1; 1º the standard set of generators. Then C.Z; S/ is nothing but the infinite
path graph (see the first graph on Figure 8.1). In this case the study of self-adjoint and
Markovian extensions of the weighted Kirchhoff Laplacian is reduced to the analysis
in Section 5.1. Lemma 5.2 and Lemma 5.11 provide a complete characterization of
self-adjoint and Markovian uniqueness, however, now one needs to deal with two
ends and hence one has to replace one series (5.6) by two series with summations to
�1 and 1, respectively.

Remark 8.25. A few remarks are in order.

(i) Unfortunately, the above example seems to be the only case when a com-
plete answer to the self-adjoint uniqueness for Kirchhoff Laplacians on
weighted metric graphs can be obtained. Moreover, this characterization
employs Weyl’s limit point/limit circle alternative for Sturm–Liouville op-
erators (see the proof of Lemma 5.2 and also [208]). Thus, upon changing
either the generating set S in the above example or by considering a Cayley
graph of an arbitrary virtually infinite cyclic group (e.g., � �Z with a finite
group � , see Figure 8.2), the problem of finding deficiency indices of the
minimal Kirchhoff Laplacian on the corresponding weighted metric graph
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� �

Figure 8.2. Cayley graphs of G D Z2 � Z (with Z2 D Z=2Z the cyclic group of order 2) for
two different generating sets.

seems rather non-trivial. In particular, the answer clearly depends on both
the generating set S and the group � .

(ii) The free abelian group .Zn;C/, n 2 Z�2 and the free non-abelian group
Fn, n 2 Z�2 are the most natural candidates if one wishes to study the case
of groups with 1 and, respectively, infinitely many ends (see Figure 8.1).
The Gaffney-type theorems (Theorem 7.1 and Theorem 7.7) provide rather
transparent sufficient conditions guaranteeing the self-adjoint uniqueness
(for instance, one can employ the Hopf–Rinow theorem to verify the com-
pleteness assumption, see Section 6.4.5). Imposing the radial symmetry
assumption for Cayley graphs of Fn, one would be able to reduce the
analysis to the one in Section 8.1.1 (see also Section 8.1.3.2), and the self-
adjointness in this case can be characterized analogously to Theorem 8.3
(see [196]).

8.2.2 Spectral gap

For a finitely generated group G and a generating set S , the isoperimetric constant of
its Cayley graph GC D C.G; S/ is defined by

ChS .G/ D inf
X�G

#@X

#X
; @X D ¹.u; v/ 2 X � .G n X/ W uv�1

2 Sº; (8.11)

where the infimum is taken over all finite subsets.6

Remark 8.26. Notice that the discrete isoperimetric constant defined in Section 7.3.2
for a weighted graph .V ;mIb/ looks very much similar to (8.11). In fact, upon choos-
ing b and m as in Example 6.24 (i), that is, the corresponding graph Laplacian is
the normalized graph Laplacian, the combinatorial distance is intrinsic. Taking into
account that C.G; S/ is a regular graph and each vertex has degree equal to the cardi-
nality of S , we get j@X j D #@X , m.X/ D #S � #X for any X � G and hence (7.22)
implies

ChS .G/ D #S � Chd .GC /:

6This definition extends to all connected graphs in an obvious way. A graph Gd has the
strong isoperimetric property if its isoperimetric constant is positive (see [212]).
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Let us recall the following notion (see, e.g., [175, Chapter 3], [212, Section 12.A]).
A group is called amenable if it admits a left-invariant mean. For discrete groups one
can define amenability in a more transparent way: a countable group G is amenable
if it admits a Følner sequence, that is, there is a sequence .Xn/ of non-empty finite
subsets Xn � G which exhausts G,

S
n�0 Xn D G and for each group element g 2 G,

lim
n!1

#.gXn \ Xn/

#Xn

D 1;

where gX D ¹gx W x 2 Xº is the left translation of a set X � G by g.

Remark 8.27. Amenability was introduced by J. von Neumann in 1929 and now
it is one of the most important concepts in analytic group theory. Amenability is
known for many important classes of groups. For instance, all abelian or more gen-
erally all (virtually) nilpotent groups as well as all (virtually) solvable groups are
amenable. The free non-abelian groups Fn, n � 2, as well as any group containing F2

as a subgroup (e.g., the modular group PSL.2; Z/) are not amenable (however, there
are non-amenable groups without free subgroups). Moreover, amenability is invariant
under quasi-isometries.

The analysis of spectral gaps of both weighted graph Laplacians and Kirchhoff
Laplacians heavily relies on Kesten’s amenability criterion [141], which can be seen
as another instance of Følner’s amenability criterion (see [212, Proposition 12.4]):

Theorem 8.28 (H. Kesten [141]). Let GC D C.G; S/ be a Cayley graph of a finitely
generated group G. Then the isoperimetric constant ChS .G/ equals zero if and only
if G is amenable.7

Remark 8.29. Notice that for amenable groups the isoperimetric constant is indepen-
dent of the choice of S since it always equals 0. For non-amenable groups, ChS .G/

depends on S , however, it always stays strictly positive. Thus, we can say that a group
G has the strong isoperimetric property if one (and hence all) of its Cayley graphs sat-
isfies ChS .G/ > 0. By Kesten’s theorem, the strong isoperimetric property for finitely
generated groups is equivalent to non-amenability.

Using connections between discrete isoperimetric constants and isoperimetric
constants for weighted metric graphs, we arrive at the following result.

Proposition 8.30. Assume that GC D C.G; S/ is a Cayley graph of a finitely gener-
ated group G. Also, let .GC ; �; �/ be a weighted metric graph having finite intrinsic
size and HD the corresponding Dirichlet Laplacian.

7The original statement is slightly different and it states that amenability is equivalent to
the zero spectral gap for the generator of the simple random walk on GC . However, it is not
difficult to see that both statements are equivalent (cf., e.g., (7.23)) and for convenience reasons
we decided to state Kesten’s criterion in the above form.
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(i) If G is non-amenable and the weight � satisfies

1

�
2 L1.G / and sup

e2E

�.e/jej < 1;

then �0.HD/ > 0.

(ii) If G is amenable, then �0.HD/ D �ess
0 .HD/ D 0 whenever

� 2 L1.G / and inf
e2E

�.e/jej > 0:

Proof. (i) By assumption, .GC ; �; �/ has finite intrinsic size. Moreover, the intrinsic
length coincides with the edge length and hence the corresponding discrete isoperi-
metric constant is given by (see (7.22))

Chd .GC / D inf
X�G

j@X j

m.X/
;

where

j@X j D

X
e2@X

�.e/; m.X/ D
X
v2X

X
e2Ev

�.e/jej:

Therefore, we get the estimate

j@X j

m.X/
�

infe2E �.e/

supe2E �.e/jej

#@X

#S � #X

for all finite subsets X � G. This immediately implies that Chd .GC / � C ChS .G/

with some positive C > 0. Hence, by Theorem 8.28, Chd .GC / > 0. Therefore, the
estimate (7.28) together with the Cheeger-type bound (7.16) imply the claim.

(ii) Combining Theorem 8.28 with the straightforward estimate

j@X j

m.X/
�

supe2E �.e/

infe2E �.e/jej

#@X

#S � #X
;

we conclude that Chd .GC / D 0 if G is amenable. Since

inf
e2E

jej �
infe2E �.e/jej

supe2E �.e/
> 0;

we can apply Proposition 7.38 and the Buser-type bound (7.16) to conclude that
�0.HD/ D 0. Finally, if �ess

0 .HD/ > 0, then � D 0 is an eigenvalue of HD with eigen-
function f � 1G . However, our assumptions imply that G has infinite total volume
and hence 1G … L2.G ; �/. This contradiction completes the proof.

As an immediate corollary we arrive at the following metric graph analog of
Kesten’s amenability criterion.
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Corollary 8.31. Let GC D C.G; S/ be a Cayley graph. The following assertions are
equivalent:

(i) G is non-amenable.

(ii) Ch.GC / > 0 for all .GC ; �; �/ having finite intrinsic size with the edge
weight satisfying �, 1

�
2 L1.G /.

(iii) �0.HD/ > 0 for all .GC ; �; �/ having finite intrinsic size with the edge
weight satisfying �, 1

�
2 L1.G /.

Remark 8.32. If G is an amenable group, then the analysis of �0.HD/ and �ess
0 .HD/

in the case infe2E �.e/jej D 0 remains an open (and, in our opinion, rather compli-
cated) problem. On the other hand, volume growth estimates (see Section 7.3.3 and
the follow-up section) can be used to establish the equality �0.HD/ D 0 for Cayley
graphs of amenable groups in the case infe2E �.e/jej D 0. In particular, for polyno-
mially growing groups or for groups of intermediate growth (see Section 8.2.3 for
definitions) one may clearly allow a certain qualitative decay of edge lengths and
weights at “infinity” in order to ensure the zero spectral gap.

8.2.3 Interlude: Growth in groups

The growth of a group is one of the most important quasi-isometric invariants (see [54,
159, 175]). Considering the identity element of G as the root o of its Cayley graph
C.G; S/, one defines the growth function 
GWZ�0 ! Z>0 by setting


G.n/ D #¹g 2 G W %comb.g; o/ � nº;

where %comb is the combinatorial distance (a.k.a. word metric) on GC D C.G; S/ (see
Example 6.21 (i)). Behavior of 
G for large n is independent of a choice of a generat-
ing set, that is, if z
G is the growth function of G corresponding to another generating
set zS , then there is C > 0 such that C�1
G.n/ � z
G.n/ � C
G.n/ for all n 2 Z�0.

Clearly, 
G.n/ � exp.C n/ for all n 2 Z�0. A group G has subexponential growth
if log 
G.n/ D o.n/ as n ! 1; otherwise, G is of exponential growth. Notice that
non-amenable groups have exponential growth. If

dG WD lim sup
n!1

log 
G.n/

log n

is finite, then G has polynomial growth and in this case dG is its degree.
For large classes of groups the behavior of 
G is well understood (e.g., Gromov’s

characterization of groups of polynomial growth, the Milnor–Wolf theorem for solv-
able groups, the Tits alternative for linear groups, etc. The subject is enormous and
we only refer to [159] for further details and references). For instance, if G is virtu-
ally nilpotent, then the degree of growth dG of 
G is a natural number and it can be
efficiently computed by the Bass–Guivarc’h formula (see, e.g., [159, Theorem 4.2],
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[212, f-la (3.15)]). For example, for the Heisenberg group over the integers U.3; Z/,

.n/ � n4 as n ! 1. The celebrated Gromov’s polynomial growth theorem states
that only virtually nilpotent groups have polynomial growth.

There are also groups of intermediate growth: those are groups of subexponential
growth with dG D 1, that is, 
G grows faster than any polynomial, however, slower
than any exponential function. Let us stress, however, that for groups of intermediate
growth finding the precise rate of growth is a subtle issue. For instance, for the first
Grigorchuk group this question was settled in the very recent work of A. Erschler and
T. Zheng [65]: in this case

log log 
.n/

log n
D

log 2

log s0

C o.1/

as n ! 1, where s0 is the positive root of s3 � s2 � 2s D 4.

8.2.4 Transience and recurrence

As before, GC D C.G; S/ is a Cayley graph of a finitely generated group G. Also, let
.GC ;�;�/ be a weighted metric graph (notice that in this subsection we allow � ¤ �!)
and let HD be the corresponding Dirichlet Laplacian. Define

b�.u; v/ D

8̂<̂
:

�.eu;v/

jeu;vj
; u�1v 2 S;

0; u�1v … S;

.u; v/ 2 G:

We begin with the following straightforward application of Theorem 7.49:

Corollary 8.33. The heat semigroup .e�tHD /t>0 is recurrent if and only if the dis-
crete time random walk on G with transition probabilities P� D .p�.u; v//u;v2G

defined by

p�.u; v/ D P.XnC1 D v W Xn D u/ D
b�.u; v/P

g2S b�.u; ug/
(8.12)

is recurrent.

The above result reduces the problem of recurrence on weighted metric graphs
to a thoroughly studied field – recurrence of random walks on groups. The literature
on the subject is enormous and we only refer to the classic text [212]. Recall that
a group G is called recurrent if the simple random walk on its Cayley graph C.G; S/

is recurrent for some (and hence for all) S . The classification of recurrent groups was
accomplished in the 1980s and it is a combination of two seminal theorems – rela-
tionship between decay of return probabilities and growth in groups established by
N. Th. Varopoulos [206] and M. Gromov’s characterization of groups of polynomial
growth (see, e.g., [206, Chapter VI.6], [212, Theorem 3.24]).
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Theorem 8.34 (N.Th. Varopoulos). The following assertions are equivalent:

(i) G is recurrent.

(ii) The growth function 
G has polynomial growth of degree at most two, i.e.,

G.n/ � C.1 C n2/ for all n 2 Z�0.

(iii) G contains a finite index subgroup isomorphic either to Z or to Z2.

Remark 8.35. In fact, the original statement is much stronger. Suppose p is a sym-
metric probability measure on G which generates G. It defines a random walk on G
by setting

P.XnC1 D v W Xn D u/ D p.¹u�1vº/; u; v 2 G:

The problem to characterize groups admitting a recurrent random walk was formu-
lated by H. Kesten in 1967. It turns out that only recurrent groups admit recurrent
random walks. Moreover, if G is recurrent, then every random walk generated by a
symmetric probability measure p with finite second moment is recurrent (we refer
to [212, Chapter I.3] for further details and information).

Therefore, we arrive at the following result.

Theorem 8.36. Let GC D C.G; S/ be a Cayley graph, .GC ; �; �/ a weighted metric
graph, HD the corresponding Dirichlet Laplacian.

(i) If G is recurrent, i.e., G contains a finite index subgroup isomorphic either
to Z or to Z2, and the edge weight � satisfies

sup
e2E

�.e/

jej
< 1; (8.13)

then the heat semigroup .e�tHD /t>0 is recurrent.

(ii) If G is transient (i.e., G does not contain a finite index subgroup isomorphic
either to Z or to Z2) and the edge weight � satisfies

inf
e2E

�.e/

jej
> 0;

then the heat semigroup .e�tHD /t>0 is transient.

Proof. The proof is a straightforward application of Corollary 8.33 and Theorem 8.34.
Namely, Corollary 8.33 reduces the study of recurrence/transience for .e�tHD /t>0 to
the study of recurrence/transience of the discrete time random walk (8.12) on G. On
the other hand, the energy form of the simple random walk on GC D C.G; S/ is given
by

qG;S Œf � D
1

2

X
v2G

X
u2S

jf .v/ � f .u�1v/j2:

By definition, G is recurrent/transient if and only if the energy form qG;S is recur-
rent/transient. Taking into account that the energy form associated with the random
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walk (8.12) is given by

q� Œf � D
1

2

X
v2G

X
u2S

�.eu;v/

jeu;vj
jf .v/ � f .u�1v/j2;

it remains to use Lemma B.7 to complete the proof of both claims.

Let us finish this subsection with one immediate corollary.

Corollary 8.37. Let GC D C.G; S/ be a Cayley graph and let .GC ; j � j/ be an
unweighted metric graph, � D � � 1.

(i) If G contains a finite index subgroup isomorphic either to Z or to Z2 and
infe2E jej > 0, then .e�tHD /t>0 is recurrent.

(ii) If G does not contain a finite index subgroup isomorphic either to Z or to
Z2 and supe2E jej < 1, then the heat semigroup .e�tHD /t>0 is transient.

Remark 8.38. A few remarks are in order.

(i) If G D .Z; C/ and C is the Cayley graph of G with the standard set of
generators S D ¹�1; 1º, one can show (cf. Lemma 5.13) that .e�tHD /t>0

is recurrent if and only ifX
n2Z<0

jenj

�n

D 1 and
X

n2Z>0

jenj

�n

D 1:

(ii) Using the volume test, one can slightly improve both Theorem 8.36 (i) and
Corollary 8.37 (i) in the case when G contains a finite index subgroup iso-
morphic to Z2.

(iii) Applying the volume test (Section 7.4), one may obtain some sufficient
conditions for recurrence for groups which grow faster than quadratic poly-
nomials, however, in this case one needs to know the qualitative behavior
of the corresponding growth function.

8.2.5 Ultracontractivity and eigenvalue estimates

In fact, the results in the previous section have a number of further and much stronger
consequences. However, to simplify the exposition we restrict to unweighted metric
graphs, that is, we shall assume throughout this subsection that � D � � 1 on G .

We begin with the following result.

Theorem 8.39. Let GC D C.G; S/ be a Cayley graph, .GC ; j � j/ a (unweighted)
metric graph, and HD the corresponding Dirichlet Laplacian. Assume also that G is
not recurrent (i.e., it does not contain a finite index subgroup isomorphic either to Z
or to Z2) and the edge lengths satisfy

sup
e2E

jej < 1: (8.14)
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Then .e�tHD /t>0 is ultracontractive and, moreover:

(i) If 
G.n/ � nN as n ! 1 with some N 2 Z�3, then

ke�tHDk1!1 � CN t�
N
2 ; t > 0: (8.15)

(ii) If G is not virtually nilpotent (i.e., 
G has superpolynomial growth)8, then
(8.15) holds true for all N > 2.

Proof. Notice that we only need to prove (8.15) since ultracontractivity is its imme-
diate consequence. By Theorem 4.30, (8.15) is equivalent to the analogous ultracon-
tractivity bound for the associated weighted graph Laplacian hD:

ke�thDk1!1 � C t�
N
2 ; t > 0:

However, by Theorem C.2 the latter is equivalent to the Sobolev-type inequality (4.38)�X
v2G

jf .v/j
2N

N�2 m.v/

�N�2
N

� C
X
v2G

X
u2S

1

jeu;vj
jf .v/ � f .u�1v/j2 (8.16)

for all f 2 dom.qD/. Here the vertex weight m is given by (take into account that the
model has finite size by assumption and � � 1)

m.v/ D
X
u2S

jev;uvj: (8.17)

However, (8.14) implies that (8.16) would follow from the inequality�X
v2G

jf .v/j
2N

N�2

�N�2
N

� C
X
v2G

X
u2S

jf .v/ � f .u�1v/j2: (8.18)

Now it remains to notice that the latter inequality is a consequence of our growth
assumptions on G. If 
G grows polynomially and 
G.n/ � nN for some N � 3 as
n ! 1, then (8.18) holds true by [206, Theorem VI.5.2]). If G is not virtually nilpo-
tent, then, by the Gromov theorem, 
G has superpolynomial growth and it remains to
apply [206, Theorem VI.3.2].

Remark 8.40. Let us stress that (8.14) is necessary for the validity of (8.15) with
N > 2 (see Lemma 4.32).

For groups having at most quadratic growth, the next result is an immediate con-
sequence of recurrence:

Corollary 8.41. Let G be recurrent (i.e., G contains a finite index subgroup isomor-
phic either to Z or to Z2). Let also GC D C.G; S/ be its Cayley graph and .GC ; j � j/

8This means that for each N > 0 there is c > 0 such that 
G.n/ � cnN for all large n.
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an unweighted metric graph. If infe2E jej > 0, then

lim sup
t>0

tke�tHDk1!1 2 .0;1�:

Let us mention that removing the assumption infe2E jej > 0 in the above corol-
lary, one may construct metric graphs such that the corresponding Dirichlet Laplacian
satisfies (8.15) with some N > 2.

We would like to finish this subsection with a remark on the so-called Cwikel–
Lieb–Rozenblum inequality. Let us consider Laplacians H˛ with ı-couplings on the
vertices, that is, ˛WG ! R and at each vertex v 2 G we replace the Kirchhoff condi-
tion by (2.13). As before, if H˛ is not self-adjoint, we shall consider the Friedrichs
extension of the minimal operator (of course, if it is bounded from below) and by
abusing the notation we shall denote it by the same letter H˛ . Moreover, we shall use
the standard notation ˛˙ D

1
2
.j˛j ˙ ˛/.

Theorem 8.42. Let GC D C.G; S/ be a Cayley graph, .GC ; j � j/ a (unweighted)
metric graph, ˛WG ! R, and H˛ the corresponding Laplacian.

(i) If 
G.n/ � C.1 C n2/ for all n and infe2E jej > 0, then H˛ has at least one
negative eigenvalue whenever 0 6� ˛ D �˛� 2 Cc.V/.

(ii) If 
G.n/ � nN as n ! 1 with some N 2 Z�3 and (8.14) is satisfied, then
the operator H˛ is bounded below whenever ˛�

m
2 `N=2.GIm/. Moreover,

its negative spectrum is discrete and

��.H˛/ � C
X
v2G

˛�.v/
N
2 m.v/1�N

2 ; (8.19)

where m is given by (8.17) and the constant C > 0 depends only on the
underlying metric graph.

(iii) If G is not virtually nilpotent, (8.14) is satisfied and ˛� 2 `N=2.GIm/ for
some N > 2, then the operator H˛ is bounded below, its negative spectrum
is discrete and the bound (8.19) holds true.

Proof. To simplify the proof, let us assume that H˛ is self-adjoint.9 First of all, by
Theorem 3.1 (iv), ��.H˛/ D ��.h˛/ and hence we need to prove the corresponding
claims for h˛ .

(i) By Corollary 8.37 (i) and Theorem 4.17, the heat semigroup generated by hD

is recurrent, which immediately implies the claim.
To prove (ii) and (iii), we just need to apply [152, Theorems 1.2 and 1.3], which

relate the ultracontractivity estimates established by Theorem 8.39 and Theorem 4.30
for h˛ with Cwikel–Lieb–Rozenblum bounds.

9One may assume GC is complete with respect to the natural path metric, and then by Theo-
rem 7.9, the operator H˛ is self-adjoint once it is bounded from below; see also Lemma 7.16.
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Remark 8.43. Notice that applying [152, Theorems 1.2 and 1.3] directly to the
Dirichlet Laplacian HD , we arrive at the Cwikel–Lieb–Rozenblum estimates for addi-
tive perturbation, that is, for Schrödinger operators �� C V.x/. It is also well known
(see [75]) that ultracontractivity estimates and Sobolev-type inequalities lead to Lieb–
Thirring bounds (Sp estimates on the negative spectra, see also Theorem 3.1 (viii)),
however, we are not going to pursue this goal here.

Let us also stress that Theorem 8.42 (iii) makes sense only for amenable G since
otherwise HD has a positive spectral gap (see Proposition 8.30).

8.2.6 Historical remarks and further references

The theory of random walks on groups was founded by H. Kesten [142] (in fact, in
his PhD thesis). The idea to relate growth of groups with recurrence is also due to
Kesten (Kesten’s conjecture). The literature on the subject is enormous and in this
respect we only refer to the excellent book by W. Woess [212].

Kesten’s amenability criterion has been heavily exploited to study random walks
on groups. However, we are also aware of some cases when Kesten’s criterion has
been used in the “opposite” direction. The most striking, in our opinion, applica-
tion appears in the solution of the von Neumann–Day problem (widely known as the
“von Neumann conjecture”): A. Yu. Olshanskii constructed a Tarski monster group
in [178]; S. I. Adyan in [1] proved that a simple random walk on the free Burnside
group B.m; n/ of rank m � 2 with odd exponent n � 665 has a spectral radius < 1,
which implies non-amenability of B.m; n/ for this range of m and n.10 Let us also
mention that recently L. Bartholdi and B. Virág [16] proved that the so-called Basil-
ica group is amenable by showing that return probabilities of the simple random walk
decay at subexponential rates.

Let us mention that one of the motivations to investigate random walks on groups
came from manifolds. By the Švarc–Milnor lemma, the fundamental group �1.M/

of a compact manifold M and its universal cover zM are quasi-isometric and thus
there are close relationships between them. For instance, it was proved independently
by R. Brooks [33] and N. Th. Varopoulos [203] that the Laplace–Beltrami operator
on zM has a positive spectral gap if and only if �1.M/ is not amenable. Moreover,
Varopoulos [203] showed that the Brownian motion on zM is recurrent if and only if
the group �1.M/ is recurrent.

10In fact, both A. Yu. Olshanskii and S. I. Adyan used one criterion of R. Grigorchuk [87],
who computed the spectral gap for the generator of the simple random walk by means of the
so-called co-growth function, see [87, Section 4] and also [54, Section VII.D]; notice also that
[87, Theorem 7.1] establishes non-amenability for a class of groups for which the problem of
identity is solved by Dehn’s algorithm.
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The importance of Sobolev-type inequalities for ultracontractivity estimates was
realized by N.Th. Varopoulos. The subject is enormous and we even did not touch
here Nash-type inequalities. We refer for further details and references to [206, 212].

Concluding this section, let us mention recent very active work related to under-
standing spectra of groups. More specifically, the spectrum of G is the spectrum of
a generator of a simple random walk on G, i.e., the spectrum of the normalized
Laplacian (or, equivalently, combinatorial Laplacian since C.G;S/ is a regular graph)
on a Cayley graph C.G; S/ of a given group G. The study of a spectral gap is the sim-
plest (and rather widely studied) issue in this topic. In particular, to understand the
support of the spectrum as well as its structure are much harder tasks. A complete pic-
ture is known only in some specific cases (e.g., abelian groups .Zn;C/, free group Fp

(see [142]), the Lamplighter group (see [89]); however, this list is by no means com-
plete). In particular, it is not completely clear what kind of spectra groups may have
(it is still open whether Cantor spectrum can occur on a Cayley graph, however, it is
shown in [36] that the support of the Kesten–von Neumann–Serre spectral measure of
the Basilica group is a Cantor set). Another interesting question is how the spectrum
depends on the chosen generating set or on the choice of weights on the generators.
The subject is rapidly developing and we only refer to a very brief selection of recent
articles [36, 50, 63, 88] for further results and information.

8.3 Tessellations

In the present section, we discuss graphs arising from tessellations of R2 (see Fig-
ure 8.3 for examples) and combine their distinctive combinatorial properties with our
previous findings.

(a) (b) (c)

Figure 8.3. (a) The Kagome lattice, (b) a Penrose tiling in R2 and (c) a tessellation of the
Poincaré disc by heptagons.11

11Image credit for Figure 8.3: (a) WilliamSix, CC BY-SA 2.5, via Wikimedia Commons;
(b) xJaM derivative work: Sprak, public domain, via Wikimedia Commons; (c) Theon, CC
BY-SA 3.0, via Wikimedia Commons.
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In order to formalize this setting, we first need a few definitions. Recall that
a plane graph is a planar graph Gd D .V ; E/ embedded in R2 by some fixed pla-
nar embedding. In particular, any plane graph Gd can be regarded as a subset of the
Euclidean plane R2, which we always assume to be closed. We denote by F the set
of faces of Gd , i.e., the closures of the connected components of R2 n Gd . We stress
that, since Gd may be infinite, it may have several unbounded faces and all of them
are included in F . We denote by Fb the set of bounded faces of Gd .

In order to avoid technical difficulties, we impose the following assumptions.

Definition 8.44. A plane graph Gd D .V ;E/ is tessellating if the following additional
conditions hold:

(i) F is locally finite, i.e., each compact subset K � R2 intersects only finitely
many faces.

(ii) Each bounded face F 2 Fb is a closed topological disc and its boundary
@F consists of a finite cycle of at least three edges.

(iii) Each unbounded face F 2 F n Fb is a closed topological half-plane and its
boundary @F consists of a (countably) infinite chain of edges.

(iv) #Fe D 2 for all e 2 E , where Fe WD ¹F 2 F W e � @F º.

(v) Each vertex v 2 V has degree � 3.

Here a subset A � R2 is called a closed topological disc (half-plane) if it is an
image of the closed unit ball in R2 (the closed upper half-plane) under a homeomor-
phism �WR2 ! R2. For a face F 2 F , we define

EF WD ¹e 2 E W e � @F º;

dF .F / WD #EF ;

where the latter is called the degree of a face F 2 F . Notice that according to Defini-
tion 8.44, dF .F / � 3 for all faces F and deg.v/ � 3 for all vertices v. In particular,
the graph Gd D .V ; E/ has no loops and vertices of degree one or two. Moreover,
every tessellating graph Gd is an infinite, locally finite graph.

The above assumptions imply that F is a locally finite tessellation (or tiling)
of R2, i.e., a locally finite, countable family T of closed subsets T � R2 such that
the interiors are pairwise disjoint and[

T2T

T D R2:

In addition, the original graph Gd D .V ; E/ coincides with the edge graph of the
tessellation F : by calling a connected component of the intersection of at least two
sets in F an F -vertex, if it has only one point and an F -edge otherwise, we recover
precisely the vertex and edge sets V and E . In fact, this connection is the motivation
behind our terminology.
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Remark 8.45. Tessellating graphs include all infinite trees T D .V ; E/ satisfying
deg.v/ � 3 for each vertex v 2 V .

A plane weighted metric graph is a weighted metric graph .G ; �; �/ together
with a fixed model whose underlying combinatorial graph Gd D .V ; E/ is planar
and embedded into R2. If the plane graph Gd is tessellating, then .G ; �; �/ is called
a tessellating weighted metric graph. Let us also stress that the edge lengths and
weights of .G ; �; �/ are in general not related to the Euclidean arc lengths of the
corresponding plane graph Gd .

Remark 8.46. Notice that the fixed model in the definition of a tessellating weighted
metric graph .G ; �; �/ is unique according to (v) in Definition 8.44, which excludes
inessential vertices. Moreover, it is easily seen that the weighted metric graph .G ;�;�/

has finite intrinsic size exactly when this particular model has finite intrinsic size. On
the other hand, let us emphasize that the embedding of a planar graph Gd D .V ; E/

into R2 is not unique. For instance, the degrees of the faces depend on the embed-
ding (whereas their number is invariant by Euler’s formula) and, in general, different
embeddings lead to non-isomorphic dual graphs (see, e.g., [73, Chapter 5.5 and Fig-
ure 5.7] for further details).

8.3.1 Markovian uniqueness

The combinatorial structure of plane graphs leads to simple criteria for Markovian
uniqueness.

Corollary 8.47. Let .G ; �; �/ be a tessellating weighted metric graph such that all
faces are bounded, F D Fb . Assume that either 1

�
; 1

�
2 L1.G / or that G has finite

�-diameter (see (7.12)). Then the following are equivalent:

(i) H0 admits a unique Markovian extension,

(ii) HD D HN ,

(iii) the Gaffney Laplacian HG is self-adjoint,

(iv) H 1
0 .G ; �; �/ D H 1.G ; �; �/,

(v) G has infinite volume, �.G / D 1.

If one (equivalently, all) of the above properties fails, then the deficiency indices of
the minimal Gaffney Laplacian HG;min are equal to

n˙.HG;min/ D 1:

Proof. The claims follow immediately from Theorem 7.24 (see also (7.12)) and the
fact that G has exactly one graph end since F D Fb .

Remark 8.48. If F contains unbounded faces, then the graph might have more than
one end. For instance, every infinite tree T D .G ; E/ with deg.v/ � 3 for all v 2 V
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can be embedded in R2 as a tessellating graph with infinitely many unbounded faces.
On the other hand, T has uncountably many graph ends.

8.3.2 Spectral gap estimates

In this subsection, we discuss lower estimates for the isoperimetric constant of tessel-
lating weighted metric graphs. To simplify our considerations, in this subsection we
consider only weighted metric graphs with equal weight functions .G ; �; �/, that is,
we assume that � D �. Without loss of generality we shall also assume that .G ; �; �/

has finite intrinsic size since otherwise

0 D Ch.G / D �0.HD/;

according to Corollary 3.18 and estimate (7.16). For each edge e 2 E of Gd , we define
its characteristic value as (see (3.5) for the definition of m)

c.e/ WD
1

jej�.e/
�

X
vWv2e

1

m.v/
�

X
F 2Fe\Fb

1

�.@F /
; (8.20)

and also set
c.E/ WD inf

e2E
c.e/:

All summands on the right-hand side (8.20) admit a clear interpretation in terms of
the edge weight �:

• the first summand is the reciprocal of
R

e
� D jej�.e/,

• we have, because of finite intrinsic size,

m.v/ D
X
e2Ev

jej�.e/ D �.Ev/ D

Z
Ev

�;

• finally, �.@F / D
R

@F
� D

P
e2EF

jej�.e/ is the weighted perimeter of F .

Remark 8.49. A few remarks are in order.

(i) Setting �.e/ D jej D 1 for all e 2 E in (8.20),

c.e/ D 1 �

X
vWv2e

1

deg.v/
�

X
F 2Fe\Fb

1

dF .F /
;

which coincides with the characteristic number �.e/ of the edge e intro-
duced in [211].

(ii) As is easily shown, the characteristic values c.e/, e 2 E , depend on the
embedding of the planar graph Gd D .V ; E/ in R2. Namely, the definition
of c.e/ takes into account all edges e0 2 E which share a face with e, and
this edge set depends heavily on the embedding.
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(iii) As is discussed below in Section 8.3.3.2, the characteristic values are re-
lated to discrete curvature notions for plane graphs. However, our choice
of the sign differs from the standard one in the literature and this explains
why our results are formulated in terms of positive curvature.

It turns out that, if the weight function �WG ! .0;1/ is uniformly positive on G ,
that is, it additionally satisfies

1

�
2 L1.G /;

then the characteristic edge values give rise to lower estimates for the isoperimetric
constant Ch.G /.

Theorem 8.50. Let .G ; �; �/ be a tessellating weighted metric graph. Then

c.E/

k
1
�
k1

� Ch.G /:

In particular, if c.E/ � 0, the following spectral estimate holds true for the Dirichlet
Laplacian HD:

1

4

�
c.E/

k
1
�
j1

�2

� �0.HD/:

The method of proof follows closely [211] and consists in a rather elegant appli-
cation of Euler’s identity for finite plane graphs K D .V.K/; E.K//,

#V.K/ � #E.K/ C #Fb.K/ D #C.K/; (8.21)

where Fb.K/ denotes the set of bounded faces of K and C.K/ is the set of connected
components of K (see, e.g., [28, Section 1.4]).

Proof of Theorem 8.50. The estimates in Theorem 8.50 are trivial if c.E/ � 0, thus
we can assume without loss of generality that c.E/ is positive. Therefore, taking into
account (7.31) and the Cheeger-type bound in Theorem 7.33, it suffices to prove that
the estimate

c.E/

k
1
�
k1

�
area.@K/

�.K/
(8.22)

holds true for all finite subgraphs K D .V.K/;E.K// of Gd . Here (see (7.13)–(7.14))

�.K/ D
X

e2E.K/

jej�.e/; area.@K/ D area.@K; �; �/ D
X

v2@K

X
e2Ev.K/

�.e/;

where @K D ¹v 2 V.K/ W degK.v/ < degG .v/º. Clearly,

c.E/�.K/ D c.E/

Z
K

�.dx/ �

Z
K

c.x/�.dx/;
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and hence it is enough to show thatZ
K

c.x/�.dx/ �





 1

�






1

area.@K/:

By (8.20), the left-hand side in the above inequality is equal toZ
K

c.x/�.dx/ D
X

e2E.K/

c.e/jej�.e/

D #E.K/ �
X
v2V

�.Ev \ E.K//

m.v/
�

X
F 2Fb

�.EF \ E.K//

�.@F /
:

Notice that for a non-boundary vertex v 2 V.K/ n @K , the equality

�.Ev \ E.K// D �.Ev/ D
X
e2Ev

�.e/jej D m.v/

holds true (recall that our graph has finite intrinsic size and hence we have equality
instead of � on the right-hand side). Consider the subgraph Kı D .V.Kı/; E.Kı//

of K which consists of all vertices in V.Kı/ WD V.K/ n @K and all edges between
such vertices. Notice also that each face F 2 F whose boundary consists only of
edges in Kı, that is @F � E.Kı/, defines a bounded face of Kı and satisfies

�.EF \ E.K// D �.EF \ E.Kı// D �.EF / D �.@F /:

Denoting by P .Kı/ the set of all such faces F 2 F , we arrive at the estimateZ
K

c.x/ �.dx/ � #E.K/ � #V.Kı/ � #P .Kı/: (8.23)

Clearly, we also have the elementary inequality

#.E.K/ n E.Kı// �





 1

�






1

area.@K/:

Hence, if all bounded faces of Kı are of the above form, that is,

Fb.Kı/ D P .Kı/; (8.24)

we can apply Euler’s formula (8.21) to the subgraph Kı and conclude that

RHS of (8.23) D #E.K/ � #E.Kı/ � #C.Kı/ �





 1

�






1

area.@K/:

In particular, we have established the estimate (8.22) in this special case.
On the other hand, if (8.24) fails for some finite subgraph K of the fixed model,

we can construct a new subgraph yK by “filling up its holes”. That is, we consider all
faces F 2 F which are contained in some bounded face F of Kı and add all vertices
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and edges of such faces to K . It is easily shown that the obtained subgraph yK satisfies
the estimates

�.K/ � �. yK/ and area.@ yK/ � area.@K/

together with condition (8.24). Hence inequality (8.22) holds in the general case and
the proof is complete.

Remark 8.51. The estimate in Theorem 8.50 is not optimal and can be improved
using methods similar to [173, Theorem 3.3], where the case � D � � 1 was con-
sidered (see also [138, Theorem 1] and [128, Theorem 6]). On the other hand, these
results look more technical and, for the sake of a clear exposition, we decided not to
include them.

Notice that Theorem 8.50 applies to infinite trees.

Proposition 8.52. Let .T ; �; �/ be a weighted metric tree having a model such that
all vertices satisfy deg.v/ � 3. Then

Ch.G / �
1

k
1
�
k1

inf
e2E

�
1

�.e/jej
�

X
v2e

1

m.v/

�
:

Example 8.53. Consider the graphs depicted in Figure 8.3. For simplicity, we con-
sider unweighted, equilateral metric graphs: � D � � 1 and jej D 1 for all e 2 E .

(a) Kagome lattice: All vertices have degree deg.v/ D 3 and each edge is adja-
cent to a triangle and a hexagon. In particular, the characteristic value of all
edges e 2 E is equal to

c.e/ D 1 � 2 �
1

4
�

1

3
�

1

6
D 0:

(b) Penrose tiling: Notice first that each face is a rhombus. However, the char-
acteristic edge value is not constant in this case, since the degrees of the
adjacent vertices vary. For instance, there are infinitely many edges e D euv

such that deg.u/ D 3 and deg.v/ D 5 and in this case

c.e/ D 1 �
1

3
�

1

5
� 2 �

1

4
D �

1

30
:

(c) Hyperbolic tessellation: As each face is a hyperbolic heptagon, dF .F / D 5

for all F 2 F and all vertices have degree deg.v/ D 3. More generally, we
can consider .p; q/-regular tessellations (i.e., deg.v/ D p for all vertices v

and dF .F / D q for all faces F ) for some p 2 Z�3 and q 2 Z�3 [ ¹1º

(note that q D 1 corresponds to p-regular trees, in which case all faces are
unbounded). In this case, the characteristic value c.e/ of all edges e 2 E is
equal to

cp;q WD 1 �
2

p
�

2

q
:
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It turns out that cp;q � 0 for every .p; q/-regular tessellation of R2 (see,
e.g., [57, Theorem 1.7]). Clearly,

cp;q D 0

exactly when
.p; q/ 2 ¹.4; 4/; .3; 6/; .6; 3/º;

and in these cases Gd is isomorphic to the square, hexagonal or triangle
lattice in R2. In particular, one easily shows that Ch.G / D 0 in all three
cases. On the other hand, if cp;q > 0, then Gd is isomorphic to the edge
graph of a tessellation of the Poincaré disc H2 with regular q-gons of inte-
rior angle 2�

p
(see [101, Remark 4.2]). Moreover, Theorem 8.50 implies that

Ch.G / > 0. The explicit value is given by (see [173, equation (4.6)])

Ch.Gp;q/ D
p � 2

p � 1 C
p
2

�q
.p�2/.q�2/
pq�2.pCq/

� 1
�

and can be found from results on isoperimetric constants of discrete graphs
(see [101, 105]).

Notice that Theorem 8.50 leads to trivial bounds for the Kagome lattice and the
Penrose tiling in Example 8.53. However, one can easily show directly that Ch.G /D 0

for these examples. It turns out that these graphs actually satisfy a stronger property:

Proposition 8.54. Let .G ; �; �/ be a tessellating weighted metric graph such that
infe2E jej > 0 and supF 2F �.@F / < 1. Suppose further that

inf
F 2F

mes.F / > 0 and sup
F 2F

sup
x;y2@F

kx � ykR2 < 1;

where mes.F / denotes the Lebesgue measure of the subset F � R2 and kx � ykR2

is the Euclidean distance in R2. Then the Kirchhoff Laplacian H is self-adjoint and
the corresponding heat semigroup .e�tH/t>0 is recurrent. In particular,

�0.H/ D Ch.G / D 0:

Proof. Under the above assumptions, the intrinsic metric %� of .G ; �; �/ coincides
with the length metric %0 and .G ; %0/ is complete. Hence, by Theorem 7.1, the Kirch-
hoff Laplacian H is self-adjoint. Moreover, by Theorem 7.42, it suffices to prove that

�.Br.x// D O.r2/ as r ! 1

for some fixed (and hence all) points x on G . Here, Br.x/ D Br.xI %0/ � G denotes
the distance ball of radius r centered at x 2 G with respect to the length metric %0.
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By assumption, the Lebesgue measure of all faces F of G is uniformly bounded
below. Using the condition on the diameter of the faces, it follows that for some
uniform constant b > 0, each Euclidean ball in R2 of (large) radius r can intersect at
most br2 faces of G . Moreover, observe that for some a > 0,

ku � vkR2 � a%0.u; v/; u; v 2 V :

Indeed, by our assumptions, the length jej of each edge e 2 E is comparable to the
distance of its endpoints in R2 and the estimate immediately follows. Altogether, for
every vertex u 2 V and large r ,

�.Br.u//

supF 2F �.@F /
� #¹F 2 F W @F \ V \ Br.u/ ¤ ¿º � ba2r2

and this completes the proof.

Remark 8.55. A few remarks are in order.

(i) The recurrence of random walks on edge graphs of tessellations was stud-
ied by P. M. Soardi [193] and W. Woess [212]. By [212, Theorem 6.29],
the simple random walk on the edge graph of every quasi-regular tessella-
tion of R2 is recurrent (see [212, Definition 6.28] for definitions and [193]
for a preceding result). In fact, [212, Theorem 6.29] can be used to show
that Proposition 8.54 holds for weighted metric graphs on quasi-regular
tessellations, allowing general edge lengths and weights � ¤ � with the
only assumption (8.13) (see the proof of Theorem 8.36). However, the
assumptions in Proposition 8.54 allow to give an elegant short proof and
we decided to include only this elementary statement.

(ii) The same arguments apply in case when Gd D .V ;E/ is an infinite semipla-
nar graph with non-negative vertex curvature (see [111,112] for details and
definitions). Again, in this case [112, Theorem 1.3] implies that the simple
random walk on Gd is recurrent, and under the assumption (8.13), the same
holds for the semigroup .e�tHD /t>0 on a weighted metric graph .G ; �; �/

over Gd D .V ; E/.

8.3.3 Historical remarks and further comments

8.3.3.1 Markovian uniqueness. The strong assumptions on the weights in Corol-
lary 8.47 are indeed necessary. For instance, it was proved in [40] (see also [21, 22]
for preceding results) that every locally finite, vertex-nonamenable12 planar graph

12This means that there exists some " > 0 such that for all finite vertex sets X � V the
inequality #¹u 2 V n X W there exists v 2 X with u � vº � "#X holds true.
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Gd D .V ; E/ admits a non-constant Lcomb-harmonic function of finite energy, where
Lcomb is the combinatorial Laplacian from Example 6.7. Notice that all graphs Gp;q

in Example 8.53 (iii) with cp;q > 0 are vertex-nonamenable and have exactly one
graph end if q < 1. Hence, setting jej D �.e/ D 1 for all edges e 2 E , one can
obtain a weighted metric graph .Gp;q; �; �/ admitting at least two linearly indepen-
dent harmonic functions of finite energy. Choosing edge weights � sufficiently small,
these finite energy harmonic functions would also belong to H 1. In particular, this
immediately implies that the corresponding (minimal) Gaffney Laplacian has defi-
ciency indices n˙.HG;min/ � 2 regardless of the number of ends (for example, one
can choose � sufficiently small in order to ensure a positive spectral gap).

8.3.3.2 Discrete curvature for plane graphs. The results in Section 8.3.2 can also
be seen in context with discrete curvature notions for plane graphs and their relation
to geometric properties. Going back to earlier works such as [95, 118, 197], several
notions of curvature have been introduced for plane graphs and they have been used to
investigate their geometric properties (see, e.g., the survey [130] and the works [19,
57, 101, 104, 111, 112, 128, 138, 177, 197, 211, 218]). In particular, these curvature
notions have been used to investigate isoperimetric constants (see, e.g., [104, 138,
173, 176, 177, 211, 218]) and the obtained spectral estimates resemble an estimate
by H. P. McKean in the manifold setting [166]. In the unweighted case � D � � 1,
the characteristic edge values (8.20) coincide with the ones introduced in [173, 211]
for (unweighted) discrete and metric graphs, respectively (up to the choice of sign).
Theorem 8.50 can be seen as the analog of [173, eq. (1.3)] in the weighted setting.

8.3.3.3 Parabolic properties. The above recurrence results (see Proposition 8.54
and Remark 8.55) are also connected to the notion of quasi-isometries between met-
ric spaces (see Remark 6.31). In fact, by [193, Theorem 4.11] the edge graph of every
normal tessellation of R2 is quasi-isometric to R2 and in this case, the recurrence
of the associated discrete Laplacians (and related Kirchhoff Laplacians on metric
graphs) follows from the equivalence of recurrence between quasi-isometric spaces,
see [47, Théorème 7.2] and also [122, 160]. Clearly, similar considerations apply to
(sufficiently well-behaved) tessellations of other two-dimensional Riemannian mani-
folds (e.g., the Poincaré disc), however, we cannot point to an explicit reference. On
the other hand, it should be stressed that the quasi-isometry property breaks down for
general quasi-regular tessellations of R2 (see [193, Section 7]) and hence the results
of [193, 212] indeed go beyond this setting.

As for the question of stochastic completeness on weighted tessellating graphs,
one can either proceed with the volume tests or by employing various curvature condi-
tions. Notice that, similar to the manifold setting, stochastic incompleteness is related
to a very fast decay of curvature to negative infinity (see, e.g., [214, Section 8]).





Appendix A

Boundary triplets and Weyl functions

A.1 Linear relations

Let H be a separable Hilbert space. A (closed) linear relation in H is a (closed) linear
subspace in H � H . The set of all closed linear relations is denoted by zC.H /. Since
every linear operator in H can be identified with its graph, the set of linear operators
can be seen as a subset of all linear relations in H . In particular, the set of closed
linear operators C.H / is a subset of zC.H /.

Recall that the domain, the range, the kernel and the multivalued part of a linear
relation ‚ are given, respectively, by

dom.‚/ D ¹f 2 H W there exists g 2 H such that .f; g/ 2 ‚º;

ran.‚/ D ¹g 2 H W there exists f 2 H such that .f; g/ 2 ‚º;

ker.‚/ D ¹f 2 H W .f; 0/ 2 ‚º;

mul.‚/ D ¹g 2 H W .0; g/ 2 ‚º:

The adjoint linear relation ‚� is defined by

‚�
D ¹. zf ; zg/ 2 H � H W hg; zf iH D hf; zgiH for all .f; g/ 2 ‚º:

‚ is called symmetric if ‚ � ‚�. If ‚ D ‚�, then it is called self-adjoint. Note
that mul.‚/ is orthogonal to dom.‚/ if ‚ is symmetric. For a closed symmetric ‚

satisfying mul.‚/ D mul.‚�/ (the latter is further equivalent to the fact that ‚ is
densely defined on mul.‚/?), setting

Hop WD dom.‚/ D mul.‚/?;

we obtain the following orthogonal decomposition:

‚ D ‚op ˚ ‚1; (A.1)

where ‚1 D¹0º �mul.‚/ and ‚op is the graph of a closed symmetric linear operator
in Hop, called the operator part of ‚. Notice that for non-closed symmetric linear
relations the decomposition (A.1) may not hold true as the next example shows.

Example A.1. Let H DHop ˚M, where Hop and M are closed infinite-dimensional
subspaces. Suppose A0 is a non-closed, densely defined symmetric operator in Hop

and M0 ¨ M a non-closed subspace such that M0 D M. Let A be the closure of A0,
fix f0 2 dom.A/ n dom.A0/ and g0 2 M n M0 and define

f0 D .f0; g0 C Af0/ 2 ‚ WD Gr.A/ ˚ .¹0º � M/;
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where Gr.A/ is the graph of A. Define the linear relation ‚0 as the linear (non-closed)
span of Gr.A0/ ˚ .¹0º � M0/ and f0. Clearly, ‚0 ¨ ‚ and hence it is symmet-
ric. Moreover, by construction dom.‚0/ D mul.‚0/?. However, (A.1) fails to hold
for ‚0. Indeed, if P2 is the projection in H � H onto the second component and PM

is the projection in H onto M, then (A.1) would imply M0 Dmul.‚0/DPM P2.‚0/.
However,

g0 D PM .g0 C Af0/ D PM P2f0 … M0:

This is a clear contradiction to the definition of ‚0.

The inverse of the linear relation ‚ is given by

‚�1
D ¹.g; f / 2 H � H W .f; g/ 2 ‚º:

The sum of linear relations ‚1 and ‚2 is defined by

‚1 C ‚2 D ¹.f; g1 C g2/ W .f; g1/ 2 ‚1; .f; g2/ 2 ‚2º:

Hence one can introduce the resolvent .‚ � z/�1 of the linear relation ‚, which is
well defined for all z 2 C. However, the set of those z 2 C for which .‚ � z/�1 is
the graph of a closed bounded operator in H is called the resolvent set of ‚ and is
denoted by �.‚/. Its complement �.‚/ D C n �.‚/ is called the spectrum of ‚. If
‚ is self-adjoint, then taking into account (A.1) we obtain

.‚ � z/�1
D .‚op � z/�1

˚ Omul.‚/: (A.2)

This immediately implies that �.‚/ D �.‚op/, �.‚/ D �.‚op/ and, moreover, one
can introduce the spectral types of ‚ as those of its operator part ‚op. Let us mention
that self-adjoint linear relations admit a very convenient representation, which was
first observed by F. S. Rofe-Beketov [188] in the finite-dimensional case (see also
[191, Exercises 14.9.3–4]).1

Proposition A.2. Let C and D be closed bounded operators on H and

‚C;D WD ¹.f; g/ 2 H � H W Cf D Dgº:

Then ‚C;D is self-adjoint if and only if

CD�
D DC �; ker

�
C �D

D C

�
D ¹0º: (A.3)

The second condition in (A.3) is equivalent to rank.C jD/ D dim.H / whenever
dim.H / < 1.

1This representation was rediscovered later by many authors; in the context of self-adjoint
vertex conditions for metric graphs, the reference usually goes to [150].
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We also need the following definition. For a symmetric linear relation ‚ in H , its
defect subspace at z 2 C is defined by Nz.‚/ D ker.‚� � z/. The numbers

n˙.‚/ WD dim N˙i.‚/ D dim ker.‚�
� i/

are called the deficiency indices of ‚.
Let us mention that the adjoint relation ‚�

C;D to ‚C;D is given by

‚�
C;D D ¹.D�f; C �f / W f 2 Hº:

In particular, ‚�
C;D is symmetric exactly when the first equality in (A.3) holds true.

Moreover, in this case the deficiency indices are given by

n˙.‚�
C;D/ D dim ker.C � iD/:

Further details and facts about linear relations in Hilbert spaces can be found in, e.g.,
[56, Chapter 6.1], [191, Chapter 14].

A.2 Boundary triplets and proper extensions

Let A be a densely defined closed symmetric operator in a separable Hilbert space H

with equal deficiency indices n˙.A/ D dim N˙i � 1, Nz WD ker.A� � z/.

Definition A.3 ([86]). A triplet … D ¹H ; �0; �1º is called a boundary triplet for the
adjoint operator A� if H is a Hilbert space and �0; �1W dom.A�/ ! H are bounded
linear mappings such that the abstract Green’s identity

hA�f; giH � hf; A�giH D h�1f; �0giH � h�0f; �1giH

holds for all f; g 2 dom.A�/ and the mapping

�W dom.A�/ ! H � H ;

f 7! .�0f; �1f /

is surjective.

A boundary triplet for A� exists if and only if the deficiency indices of A are equal
(see, e.g., [56, Proposition 7.4], [191, Proposition 14.5]). Moreover, n˙.A/Ddim.H /

and ADA� � ker.�/. Note also that the boundary triplet for A� is not unique.
An extension zA of A is called proper if dom.A/ � dom. zA/ � dom.A�/. The set

of all proper extensions is denoted by Ext.A/.

Theorem A.4 ([55, 157]). Let … D ¹H ; �0; �1º be a boundary triplet for A�. Then
the mapping � defines a bijective correspondence between Ext.A/ and the set of all
linear relations in H :

‚ 7! A‚ WD A� � ¹f 2 dom.A�/ W �f D .�0f; �1f / 2 ‚º: (A.4)
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Moreover, the following holds:

(i) A�
‚ D A‚� .

(ii) A‚ 2 C.H/ if and only if ‚ 2 zC.H /.

(iii) A‚ is symmetric if and only if ‚ is symmetric and n˙.A‚/ D n˙.‚/ holds.
In particular, A‚ is self-adjoint if and only if ‚ is self-adjoint.

(iv) If A‚ D A�
‚ and Az‚ D A�

z‚
, then for every p 2 .0;1� the following equiv-

alence holds:

.A‚ � i/�1
� .Az‚ � i/�1

2Sp.H/ ” .‚� i/�1
� .z‚� i/�1

2Sp.H /:

Notice that according to (A.2), a self-adjoint linear relation ‚ is said to belong to
the von Neumann–Schatten ideal Sp if its operator part ‚op belongs to Sp.Hop/.

Remark A.5. The proof of Theorem A.4 (i)–(ii) can be found in [56, Proposition 7.8]
and [191, Proposition 14.7], and statement (iii) was obtained in [157, Proposition 3],
see also [56, Proposition 7.14].

A.3 Weyl functions and extensions of semibounded operators

With a boundary triplet … D ¹H ; �0; �1º one can associate two linear operators

A0 WD A� � ker.�0/; A1 WD A� � ker.�1/:

It is clear that (A.4) implies A0 D A‚0
and A1 D A‚1

, where ‚0 D ¹0º � H and
‚1 D H � ¹0º. Hence, by Theorem A.4 (iii), A0 D A�

0 and A1 D A�
1 .

Definition A.6 ([55]). Let … D ¹H ; �0; �1º be a boundary triplet for A�. The oper-
ator-valued function M W �.A0/ ! B.H / defined by

M.z/ WD �1.�0 � Nz/�1; z 2 �.A0/;

is called the Weyl function corresponding to the boundary triplet ….

The Weyl function is well defined and holomorphic on �.A0/. Moreover, it is
a Herglotz–Nevanlinna function (see [55, Section 1], [56, Section 7.4.2] and also
[191, Section 14.5]). If A‚ 2 Ext.A/, then one has the Krein resolvent formula (see
[55, Section 1], [56, Section 7.6.1])

.A‚ � z/�1
D .A0 � z/�1

C 
.z/.‚ � M.z//�1
.z�/� (A.5)

for all z 2 �.A‚/ \ �.A0/. Here


.z/ WD .�0 � Nz/�1

is the so-called 
 -field.
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Assume now that A 2 C.H/ is a lower semibounded operator, i.e., A � a IH with
some a 2 R. Let a0 be the largest lower bound for A,

a0 WD inf
0¤f 2dom.A/

hAf; f iH

kf k2
H

:

The Friedrichs extension of A is denoted by AF . If … D ¹H ; �0; �1º is a boundary
triplet for A� such that A0 D AF , then the corresponding Weyl function M is holo-
morphic on C n Œa0; 1/. Moreover, M is strictly increasing on .�1; a0/ (that is,
for all x, y 2 .�1; a0/, M.x/ � M.y/ is positive definite whenever x > y) and the
following strong resolvent limit exists (see [55])

M.a0/ WD s � R � lim
x"a0

M.x/:

However, M.a0/ is in general a closed linear relation, which is bounded from below.

Theorem A.7 ([55, 158]). Let A � a IH with some a � 0 and let … D ¹H ; �0; �1º

be a boundary triplet for A� such that A0 D AF . Also, let ‚ D ‚� 2 zC.H / and let
A‚ be the corresponding self-adjoint extension (A.4). If M.a/ 2 B.H /, then:

(i) A‚ � a IH if and only if ‚ � M.a/ � OH .

(ii) ��.A‚ � a I/ D ��.‚ � M.a//.

If additionally A is positive definite, that is, a > 0, then:

(iii) A‚ is positive definite if and only if ‚.0/ WD ‚ � M.0/ is positive definite.

(iv) For every p 2 .0;1� the following equivalence holds:

A�
‚ 2 Sp.H/ ” ‚.0/� 2 Sp.H /;

where ‚.0/� WD ‚.0/�op ˚ ‚.0/1.

Remark A.8. For the proofs of (i) and (ii) consult [55, Theorems 5 and 6]; the proofs
of (iii)–(iv) can be found in [158, Theorem 3]. If A is not positive definite, then “,”
in Theorem A.7 (iv) is replaced by the implication “(”.

We also need the next result (see [55, Theorem 3] and [56, Theorem 8.22]).

Theorem A.9 ([55]). Assume the conditions of Theorem A.7. Then the following
statements

(i) ‚ 2 zC.H / is lower semibounded,

(ii) A‚ is lower semibounded,

are equivalent if and only if M.x/ tends uniformly to �1 as x ! �1, that is, for
every N > 0 there exists xN < 0 such that M.x/ < �N � IH for all x < xN .

Implication (ii)) (i) always holds true (cf. Theorem A.7 (i)), however, the valid-
ity of the converse implication requires that M tends uniformly to �1. Let us men-
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tion in this connection that the weak convergence of M.x/ to �1, i.e., the relation

lim
x!�1

hM.x/h; hiH D �1

holds for all h 2 H n ¹0º whenever A0 D AF . Moreover, this relation characterizes
Weyl functions of the Friedrichs extension AF among all non-negative (and even
lower semibounded) self-adjoint extensions of A (see [55, Proposition 4]).

The next result establishes a connection between the essential spectra of A‚

and ‚ and also it can be seen as an improvement of Theorem A.7 (iv).

Theorem A.10 ([68]). Let A � a0 IH > 0 and let … D ¹H ; �0; �1º be a boundary
triplet for A� such that A0 D AF . Also, let M be the corresponding Weyl function
and let ‚ D ‚� 2 zC.H / be such that A‚ D A�

‚ is lower semibounded. Then the
following equivalences hold:

inf �ess.A‚/ � 0 ” inf �ess.‚ � M.0// � 0;

inf �ess.A‚/ > 0 ” inf �ess.‚ � M.0// > 0;

inf �ess.A‚/ D 0 ” inf �ess.‚ � M.0// D 0:

A.4 Direct sums of boundary triplets

Let J be a countably infinite index set. For each j 2 J , let Aj be a closed densely
defined symmetric operator in a Hilbert space Hj such that

0 < nC.Aj / D n�.Aj / � 1:

Also, let …j D ¹Hj ; �0;j ; �1;j º be a boundary triplet for the operator A�
j , j 2 J .

In the Hilbert space H WD
L

j2J Hj , consider the operator A WD
L

j2J Aj , which is
symmetric and nC.A/ D n�.A/ D 1. Its adjoint is given by A� D

L
j2J A�

j . Let us
define a direct sum … WD

L
j2J …j of boundary triplets …j by setting

H WD

M
j2J

Hj ; �0 WD

M
j2J

�0;j ; �1 WD

M
j2J

�1;j : (A.6)

The next result provides several criteria for (A.6) to be a boundary triplet for the
operator A� D

L
j2J A�

j .

Theorem A.11 ([143]). Let A D
L

j2J Aj and let … D ¹H ; �0; �1º be defined by
(A.6). Then the following conditions are equivalent:

(i) … D ¹H ; �0; �1º is a boundary triplet for the operator A�.

(ii) The mappings �0 and �1 are bounded as mappings from dom.A�/ equipped
with the graph norm to H .
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(iii) The Weyl functions Mj corresponding to the triplets …j , j 2 J , satisfy the
following condition:

sup
j2J

�
kMj .i/kHj

C k.Im Mj .i//�1
kHj

�
< 1:

(iv) If in addition A is non-negative, then (i)–(iii) are further equivalent to

sup
j2J

�
kMj .�1/kHj

C kM 0
j .�1/kHj

C k.M 0
j .�1//�1

kHj

�
< 1: (A.7)

Remark A.12. Theorem A.11 was proved in [143, Section 3], however, it is essen-
tially contained in [156, Section 3].





Appendix B

Dirichlet forms

In this appendix, we collect necessary definitions and facts about Dirichlet forms. The
standard reference is [78]. We stress that most of the literature treats Dirichlet forms
on real Hilbert spaces (i.e., restricting to real-valued functions), however the theory
easily extends to complex Hilbert spaces (see, e.g., [99, Appendix B]).

B.1 Basic notions

In the following, let X be a locally compact separable metric space and � a positive
Radon measure on X of full support. The associated Hilbert space of complex-valued,
square integrable functions is denoted by H WD L2.X I �/. For a quadratic form
tW dom.t/ ! C, whose domain dom.t/ is a subspace of H , we denote by tŒu; v�,
u; v 2 dom.t/ its corresponding sesquilinear form.

Definition B.1. A Dirichlet form in H is a densely defined, non-negative and closed
quadratic form t satisfying the Markovian condition: for all f 2 dom.t/ and any
normal contraction1 ', ' ı f 2 dom.t/, and

tŒ' ı f � � tŒf �: (B.1)

A Dirichlet form in the wide sense is a quadratic form t satisfying all the above
conditions, except that dom.t/ � H is (possibly) not dense.

By the first representation theorem (see [126, Chapter VI.2.1]), to each Dirichlet
form we can associate a non-negative, self-adjoint operator AW dom.A/ ! H . The
corresponding heat semigroup Tt WD e�tA, t � 0 is then Markovian, that is, all opera-
tors Tt satisfy 0� Ttf � 1 for functions f with 0� f � 1. The latter means that e�tA

is positivity preserving (i.e., maps non-negative functions to non-negative functions)
and contractive (i.e., it is a contraction in L1) . Moreover, the heat semigroup has a
canonical extension from L1.X I�/ \ L1.X I�/ to a positive contraction semigroup
on Lp.X I�/ for all p 2 Œ1;1� (see, e.g., [51, Theorem 1.4.1] and also [78, p. 56] for
details).

Definition B.2. A Dirichlet form t is strongly local if tŒf; g� D 0 for any functions
f; g 2 dom.t/ with compact support2 and such that f is constant in a neighborhood

1A function 'WC ! C is called a normal contraction if j'.x/ � '.y/j � jx � yj for all
x; y 2 C and '.0/ D 0 .

2The support of a measurable function f is defined as the support of the measure fd�.
If f is continuous, this coincides with the closure of ¹x 2 X W f .x/ ¤ 0º.
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of supp.g/. Moreover, a Dirichlet form t is regular if the set dom.t/ \ Cc.X/ is

(i) dense in Cc.X/ with respect to the uniform norm k �k1, and

(ii) dense in .dom.t/;k�kt/ with respect to the graph norm k�k2
t DtŒ � �Ck�k2

L2 .

Remark B.3. Let us remark that a regular Dirichlet form t has an additional stochas-
tic interpretation: there is an associated (unique up to equivalence) Hunt process
M D ..Xt /t�0; .Px/x2X / on X such that for t � 0 and E � X measurable,

Tt1E .x/ D Px.Xt 2 E/ �-a.e.

For details on Hunt processes and their relationship to Dirichlet forms we refer to
[78, Appendix A.2, Theorem 4.2.8 and Theorem 7.2.1].

B.2 Transience, recurrence and stochastic completeness

Let t be a Dirichlet form in H and let Tt WD e�tA, t > 0, be the corresponding
heat semigroup. For a non-negative function f 2 L1.X I�/, we define its potential
Gf WX ! Œ0;1� by

Gf .x/ D lim
N!1

Z N

0

.Tsf /.x/ ds;

where the limit exists for �-a.e. x 2 X . We call the Dirichlet form (or heat semigroup
.Tt /t>0 associated to it) transient if

Gf .x/ < 1 �-a.e. for all 0 � f 2 L1.X I�/;

and recurrent if

Gf .x/ D 0 �-a.e. or Gf .x/ D 1 �-a.e. for all 0 � f 2 L1.X I�/:

Note that an arbitrary Dirichlet form might be neither recurrent nor transient. How-
ever, the dichotomy holds for irreducible Dirichlet forms,3 that is, every irreducible
Dirichlet form is either transient or recurrent (but not both!).

Remark B.4. One can reformulate transience/recurrence by means of quadratic
forms. For instance (see [78, Theorem 1.5.1]), the Dirichlet form t in H is transient
exactly when there exists 0 < g 2 L1.X I�/ \ L1.X I�/ such thatZ

X

jf .x/jg.x/ �.dx/ �
p

tŒf �

for all f 2 dom.t/.

3A measurable set Y � X is called t-invariant if 1Y f; 1XnY f 2 dom.t/ and t.f / D

t.1Y f / C t.1XnY f / for any f 2 dom.t/. This is equivalent to the equality Tt 1Y f D 1Y Tt f

for all f 2 H . The form t is irreducible if �.Y / D 0 or �.X n Y / D 0 for each t-invariant
set Y .
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We also need the following convenient characterization of recurrence (see, e.g.,
[78, Theorem 1.6.3]).

Lemma B.5. Let t be a Dirichlet form in H . Then the following are equivalent:

(i) t is recurrent.

(ii) There exists a sequence .fn/ in dom.t/ such that limn!1 fn D 1 �-a.e.
on X and limn!1 tŒfn� D 0.

A Dirichlet form (or heat semigroup .Tt /t>0 associated to it) is stochastically
complete if4

Tt1 D 1 �-a.e. (B.2)

for some (equivalently for all) t > 0. For a regular Dirichlet form, this means that
the associated stochastic process has infinite lifetime almost surely (see [78, p. 187]
for details). If A is the generator of the corresponding heat semigroup .Tt /t>0, then
stochastic completeness is equivalent to the equality

�.A C �/�11 D 1 �-a.e.

for some (and hence for all) � > 0. Similarly to Lemma B.5, one can characterize
stochastic completeness in terms of the quadratic form (e.g., [78, Theorem 1.6.6]).

Lemma B.6. Let t be a Dirichlet form in H . Then the following are equivalent:

(i) t is stochastically complete.

(ii) There is a sequence .fn/ in dom.t/ such that 0 � fn � 1, limn!1 fn D 1
�-a.e. on X , and

lim
n!1

tŒfn; g� D 0

for all g 2 dom.t/ \ L1.X I�/.

B.3 Extended Dirichlet spaces

Let tW dom.t/ ! Œ0;1/ be a Dirichlet form on H D L2.X I�/. A sequence .fn/ in
dom.t/ is said to be an approximating sequence for a function f WX ! C if one has
limn!1 fn D f �-a.e. on X and .fn/n is a t-Cauchy sequence, that is,

lim
m;n!1

tŒfn � fm� D 0:

4Usually in the literature (see, e.g., [78, 198]) the term conservative is used in this context
and then one says that .X; �/ is stochastically complete with respect to t (or with respect to the
heat semigroup .Tt /t>0 associated to it).
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The extended Dirichlet space of t is the space of all measurable functions on X which
admit at least one approximating sequence. It turns out that (see [78, Theorem 1.5.2])
for a function f 2 dom.te/, where dom.te/ is the extended Dirichlet space of t, the
limit

teŒf � WD lim
n!1

tŒfn�

exists and is independent of the approximating sequence .fn/. In particular, this
extends the Dirichlet form t to a non-negative quadratic form te on dom.te/:

teW dom.te/ ! Œ0;1/;

f 7! teŒf �:

The obtained form te is called the extended Dirichlet form of t.
The Markovian condition also carries over from t to te: for each normal contrac-

tion 'WC ! C and f 2 dom.te/, ' ı f belongs to dom.te/ and (B.1) holds (see, e.g.,
[78, Corollary 1.6.3]). Moreover, the form domain of t (see [78, Theorem 1.5.2]) can
be recovered from te by the relation

dom.t/ D dom.te/ \ L2.X I�/: (B.3)

The above notions lead to another convenient characterization of recurrence (see
[78, Theorem 1.6.3]):

Lemma B.7. Let t be a Dirichlet form on H . Then t is recurrent if and only if 1
belongs to dom.te/ and teŒ1� D 0.



Appendix C

Heat kernel bounds

In this appendix, we collect some useful results relating heat kernel decay with
Sobolev- and Nash-type inequalities. Throughout this section we shall assume that
A D A� � 0 is a generator of a Markovian semigroup in L2.X I�/ (see Appendix B
for details). The corresponding quadratic form, which is a Dirichlet form on L2.X I�/,
is denoted by QA, that is,

QAŒf � D kA
1=2f k

2
2; dom.QA/ D dom.A

1=2/;

where A
 , 
 > 0, is a non-negative self-adjoint operator. Recall that (see, e.g., [51,
Section 2.1]), the semigroup Tt D e�tA is called ultracontractive if e�tA is bounded
as an operator from L2.X I �/ to L1.X I �/ for all t > 0. By duality, the latter is
equivalent to e�tA being bounded from L1.X I�/ to L1.X I�/ for all t > 0.

We begin with the following simple result (see [51, Theorem 2.4.1]).

Proposition C.1. Let 
 > 0 be fixed. If 1

kf k1 � C1k.A C I/
=2f k2

for all f 2 dom.A C I/
=2, then e�tA is ultracontractive and there is a positive con-
stant C2 > 0 such that

ke�tA
k1!1 � C2t�
 (C.1)

for all t 2 .0; 1/. Conversely, if (C.1) holds on .0; 1/ for some 
 > 0, then

kf k1 � C."/k.A C I/
=2C"f k2; f 2 dom.A C I/
=2C";

is valid for any " > 0.

The next result is a famous theorem of N. Th. Varopoulos (see [204], [206, Theo-
rem II.5.2], [51, Theorem 2.4.2]).

Theorem C.2 ([204]). Let D > 2 be fixed. Then a bound of the form

ke�tA
k1!1 � C1t�

D=2 (C.2)

for all t > 0 is equivalent to the validity of the Sobolev-type inequality

kf k
2

2D
D�2

� C2QAŒf � for all f 2 dom.QA/.

1Here we use the standard notation kf kp WD kf kLp.XI�/ for f 2Lp.X I�/ and kT kp!q

denotes the norm of a linear operator T acting from Lp.X I�/ to Lq.X I�/.
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As an immediate corollary we get the following claim relating the behavior of the
heat kernel as t ! 0 with the Sobolev inequality (see [51, Corollary 2.4.3]).

Corollary C.3. Let D > 2 be fixed. Then (C.2) holds for all t 2 .0; 1/ if and only if

kf k
2

2D
D�2

� C.QAŒf � C kf k
2
2/

for all f 2 dom.QA/.

Notice that k � kQ D QAŒ � � C k � k2
2 is the graph norm and it is equivalent to the

energy (semi-)norm QAŒ � � if and only if A has a positive spectral gap, �0.A/ > 0.
Let us also recall the following result relating on-diagonal heat kernel estimates

with Nash-type inequalities ([39, Theorem 2.1], [51, Theorem 2.4.6]).

Theorem C.4 ([39]). Estimate (C.2) holds true for all t > 0 with some fixed D > 0

if and only if the inequality

kf k
2C4=D

2 � C QAŒf � kf k
4=D

1 (C.3)

holds true for all f 2 dom.QA/ \ L1.X I�/. Moreover, the inequality

kf k
2C4=D

2 � C.QAŒf � C kf k
2
2/kf k

4=D

1 (C.4)

holds for all f 2 dom.QA/ \ L1.X I�/ if and only if (C.2) holds for all t 2 .0; 1/.

Remark C.5. Taking into account that both (C.3) and (C.4) are homogeneous (with
respect to f ! cf , c 2 C), one can restrict in (C.3) to functions with kf k1 D 1 or
kf k1 D c for any fixed c > 0. Moreover, QAŒjf j� � QAŒf � for all f 2 dom.QA/

since QA is a Dirichlet form. Therefore, in all the above theorems one can further
restrict to non-negative functions.

The following extension of Theorem C.2 and Theorem C.4 to sub-exponential
scales is due to T. Coulhon (see [46, Theorem II.5]).

Theorem C.6. Let mWR>0 !R>0 be a decreasing bijection such that its logarithmic
derivative has polynomial growth, i.e., M WD � log m satisfies for some ˛ > 0

M 0.x/ � ˛M 0.s/; for all s > 0 and x 2 Œs; 2s�: (C.5)

Then the following conditions are equivalent:

(i) e�tA is ultracontractive and there is C1 > 0 such that

ke�tA
k1!1 � m.C1t / for all t > 0.

(ii) there is C2 > 0 such that for all f 2 dom.Q/ with kf kL1 D 1,

�m.kf k
2
2/ � C2QAŒf �;

where �m WD �m0 ı m�1.
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Glossary of notation

Basic notation

• Z, R, C have their usual meaning.

• For a 2 R, Z�a WD Z \ Œa;1/, R�a WD R \ Œa;1/, and R>a WD R \ .a;1/.

• z� denotes the complex conjugate of z 2 C.

• 	 � R usually denotes an interval, that is, a connected subset of R.

• 	` D Œ0; `�, ` 2 R>0.

• For a given set S , #S denotes its cardinality if S is finite; otherwise set #S D 1.

• We shall denote by .xn/ or sometimes .xn/n�0 a sequence .xn/1nD0.

Graphs

• Gd D .V ; E/ is a graph with the vertex set V and the edge set E .

• Ev is the set of edges at v 2 V .

• EGd D .V ; EE/ is an oriented graph and EE the set of oriented edges.

• EEv is the set of oriented (both incoming and outgoing) edges at v.

• e{ and e� are the initial and terminal vertices of an oriented edge Ee.

• deg is the vertex degree function.

• Deg is the weighted vertex degree.

• b or .V ; mI b/ is a weighted graph on V .

• .b; c/ or .V ; mI b; c/ is a weighted graph with killing term c on V .

• Gb D .V ; Eb/ is the underlying simple graph of b.

• G D .Gd ; j � j/ is a metric graph or its model.

• .G ; �; �/ D .Gd ; j � j; �; �/ is a weighted metric graph or its model.

• %0 is the length metric on G , i.e., the natural path metric on G .

• %� is the intrinsic metric on .G ; �; �/ and � D

q
�
�

is the intrinsic weight.

• %m is the star path metric on V corresponding to the star weight m.

• Sn is the n-th combinatorial sphere of a rooted graph Gd D .V ; E/.

• C.G / is the space of topological ends of a metric graph G .

• C0.G I�/ is the set of finite volume (with respect to �) ends of G .
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Function spaces

• X is a locally compact Hausdorff space X , and � is a Borel measure on X .

• C.X/ is the space of continuous functions on X .

• C.X/ is the set of complex-valued functions on X if X is countable.

• Cb.X/, C0.X/, and Cc.X/ are, respectively, the spaces bounded, vanishing at
infinity, and compactly supported continuous functions on X .

• CC.X/ is the cone of positive functions on X .

• Fb.V/ denotes the domain of definition of the formal graph Laplacian Lc;b;m.

• CA.G nV/ is the set of continuous, edgewise affine functions on a metric graph G .

• Lp.X I�/ is the complex Banach space of measurable functions, p 2 Œ1;1�.

• L
p
c .X I�/ is the subspace of compactly supported functions in Lp.X I�/.

• `p.X Im/ WD Lp.X Im/, `
p
c .X Im/ WD L

p
c .X Im/ if X is countable.

• H 1
loc.G n V/ is the space of all edgewise H 1 functions.

• H 1
loc.G / D H 1

loc.G n V/ \ C.G /.

• H 1
c .G / D H 1

loc.G / \ Cc.G /.

• H 1.G / D H 1.G I�; �/ is the first (weighted) Sobolev space on G .

• H 1
0 .G / D H 1

0 .G I�; �/ D H 1
c .G /

k�k
H1.G I�;�/ .

• H 1
0 .G n V/ is the subspace of H 1.G /-functions vanishing at all vertices.

• PH 1.G / D PH 1.G ; �/ is the space of functions of finite energy on G .

Laplacians and their quadratic/energy forms

• L D Lc;b;m is the formal graph Laplacian on .V ; mI b; c/.

• h, h0, h0 are the maximal, pre-minimal, minimal graph Laplacians in `2.V Im/.

• hD and hN are the Dirichlet and Neumann Laplacians in `2.V Im/.

• q D qc;b is the energy form on .b; c/.

• qD and qN are the maximal and the minimal forms in `2.V Im/.

• � is the weighted Laplacian on .G ; �; �/.

• H, H0 and H0 are the maximal, pre-minimal and minimal Kirchhoff Laplacians
in L2.G I�/.

• HD and HN are the Dirichlet and Neumann Laplacians in L2.G I�/.

• HG and HG;min are the maximal and minimal Gaffney Laplacians in L2.G I�/.

• H˛ , H0
˛ and H0

˛ are the maximal, pre-minimal and minimal Laplacians with
ı-couplings.
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• Q is the energy form on .G ; �; �/.

• QD and QN are the maximal and the minimal forms in L2.G I�/.

Operator theory

• H and H are separable complex Hilbert spaces.

• B.H / is the algebra of bounded linear operators on H .

• Sp.H /, p 2 .0;1� are the Schatten–von Neumann ideals in B.H /.

• IH is the identity operator in H , and In WD ICn .

• OH is the zero operator in H , and On WD OCn .

• For a self-adjoint operator A in H , �0.A/ and �ess
0 .A/ denote the bottoms of the

spectrum, respectively, of the essential spectrum

�0.A/ D inf �.A/; �ess
0 .A/ D inf �ess.A/;

and A� WD A1.�1;0/.A/, where 1.�1;0/.A/ is the spectral projection on the neg-
ative subspace of A.

• For a closed symmetric operator A,

– Ext.A/ is the set of its proper extensions,

– ExtS .A/ is the set of its self-adjoint extensions.

• For a non-negative symmetric operator A,

– ExtCS .A/ is the set of its non-negative self-adjoint extensions,

– Ext�S .A/, � 2 Z�0 [ ¹1º, are self-adjoint extensions of A with the total mul-
tiplicity of the negative spectrum equal to �,

– ExtM .A/ is the set of Markovian extensions of A.





Index

antitree 100, 165

boundary
– of a metric subgraph 151
– of a subgraph 156
boundary condition
– ı-coupling 24
– Kirchhoff (or standard) 25
– Rofe–Beketov 200
boundary triplet 201
– direct sum 204

CA.G n V/ 56
cable system 97
– canonical 114
– minimal 97
combinatorial
– distance 100, 108
– Laplacian 100
– sphere 100
cycle 15
– disjoint cycle cover 104

deficiency index
– of a symmetric linear relation 201
– of a symmetric operator 201
degree
– combinatorial 15
– weighted 21
ı-coupling 24
Dirichlet form 207
– extended 210
– in the wide sense 207
– irreducible 208
– recurrent 208
– regular 208
– stochastically complete 209
– strongly local 207
– transient 208

edge
– multiple 15
– weight 19

– on metric graph 19, 30
end
– (Freudenthal) compactification 19
– finite volume 143
– free 19
– infinite volume 143
– non-free 19
– of a graph 18
– of a group 175
– topological 18
extended Dirichlet space 210
extension
– Markovian 53
– proper 201

finite energy extension 149
function
– harmonic on a graph 118
– harmonic on a metric graph 120
– of finite energy 20
– sub-/superharmonic on a graph 118
– sub-/superharmonic on a weighted metric

graph 120

geodesic 116
– metric space 116
graph 15
– Cayley 174
– connected 15, 20
– locally finite 15
– locally finite weighted 21
– metric 16
– multi 15
– of bounded geometry 15
– oriented 15
– plane 189
– simple 15
– tessellating 189
– undirected 15
– weighted 19

{V 57
intrinsic



Index 218

– edge length 33
– essential size (of a metric graph) 48
– metric 109, 106
– size (of a metric graph) 48
– size (of a model) 48
– weight 109
– weight for a graph 109
– weight for a weighted metric graph 106
isoperimetric constant
– for metric graph 152
– for weighted graph 156

Jacobi matrix 89
– on a graph 98, 125

killing term 19
Kirchhoff
– boundary condition 25
– Laplacian 26
Krein resolvent formula 202

Laplacian
– combinatorial 100
– graph 20

– Dirichlet 20
– maximal 21
– minimal 21
– Neumann 20
– pre-minimal 21

– Kirchhoff 24
– Dirichlet 28
– Gaffney 28
– maximal 26
– minimal 26
– Neumann 27
– pre-minimal 26

– normalized 99
– with ı-couplings 26
length metric 16
linear relation 199
– adjoint 199
– closed 199
– domain 199
– kernel 199
– multivalued part 199
– operator part 199

– range 199
– resolvent 200
– resolvent set 200
– self-adjoint 199
– spectrum 200
– symmetric 199
loop 15

Markovian
– condition 207
– semigroup 207
metric
– intrinsic

– for a graph 109
– for a metric graph 106

– of finite jump size 113
– path 108
metric graph 16
– model 16

– refinement 17, 30
– simple 17

– weighted 30
– finite size 48
– infinite size 48
– model 30

model (see metric graph)

normal contraction 207

path
– in a graph 15
– in a metric graph 17
path metric 108
– natural 108
– star 109
– strongly intrinsic 109
perturbation
– form bounded 141
– strongly form bounded 141

quasi-isometry 112

ray 18
– equivalent 18
refinement 17, 30
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Schrödinger operator on a graph 21
semigroup
– heat 207
– L1-contractive 207
– Markovian 207
– positivity preserving 207
– recurrent 208
– transient 208
– ultracontractive 211

tessellation 189
theorem
– Gaffney for metric graphs 133
– Gaffney for weighted graphs 134
– Glazman–Povzner–Wienholtz 136, 137
– Hopf–Rinow 116

tree 126
– rooted 126

Vertex 15
– inessential 30
– initial 15
– terminal 15

Weyl function 202
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