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Abstract

In the ordinary theory of Sobolev spaces on domains of R”, the p-energy is defined as
the integral of |V f|?. In this paper, we try to construct a p-energy on compact metric
spaces as a scaling limit of discrete p-energies on a series of graphs approximating
the original space. In conclusion, we propose a notion called conductive homogene-
ity under which one can construct a reasonable p-energy if p is greater than the
Ahlfors regular conformal dimension of the space. In particular, if p = 2, then we
construct a local regular Dirichlet form and show that the heat kernel associated with
the Dirichlet form satisfies upper and lower sub-Gaussian type heat kernel estimates.
As examples of conductively homogeneous spaces, we present new classes of square-
based self-similar sets and rationally ramified Sierpiniski crosses, where no diffusions
were constructed before.
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Chapter 1

Introduction

The main objective of this paper is to generalize the following elementary fact.
Let / = [0, 1]. Define

271 . .
=315 ()]

forn > 1and f:1 — R.If £ is smooth or more generally f € WP (I), which is
the (1, p)-Sobolev space, then

1
Py En(f) - / IV £ |Pdx
0

as n — oo, where V f is the derivative of f.
Our naive question is what is a counterpart of this in the case of metric spaces.
More precisely, our general strategy of the study is:

(1) To fix an adequate sequence of discrete graphs {(7,, E,;)}n>1, where T}, is
a discrete approximation of the original metric space (X, d) and E;; is the collection
of edges, i.e., pairs of points in T},. For a function f: T, — R, define

G =5 Y 10— 0

(x,y)EE;;

which is called the p-energy of the function f.

(2) To find a proper scaling constant o such that the space of functions
{f: X > R|0"EJ(Pyf)is “convergent” as n — oo},

where P, f is a suitable discrete approximation of f, is rich enough to be a “Sobolev”
space in some sense. From our perspective, we do not care about the existence of
a derivative V f but pursue the convergence of 6" &7 ( Py f).

Actually, in the case p = 2, this strategy was employed to construct Dirichlet
forms inducing diffusion processes on self-similar sets like the Sierpinski gasket'
and the Sierpifiski carpet. (See Figure 1.4.) For the sake of simplicity, we confine our-
selves to non-finitely ramified self-similar sets. (This excludes post critically finite

'In many papers, people use “Sierpinski” in place of “Sierpinski”. Of course, originally
“Sierpiniski” is the correct one as a Polish family name but such a simplification often occurs
when the subject becomes popular and a part of classics.
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Figure 1.1. Square-based self-similar sets.

self-similar sets represented by the Sierpifiski gasket.) Barlow and Bass constructed
the Brownian motions on (generalized) Sierpinski carpets in [1-6] as scaling limits
of the Brownian motions on regions approximating Sierpinski carpets. Later in [36],
Kusuoka and Zhou employed the above strategy for p = 2 and directly constructed
the Dirichlet form inducing the Brownian motion on the planar Sierpinski carpet.
Note that all these works were done in the last century. Although more than 20 years
have passed, no essential progress has been made on the construction of diffusion
processes/Dirichlet forms on non-finitely ramified self-similar sets. In particular, no
diffusion was constructed on square-based non-finitely ramified self-similar sets like
those in Figure 1.1. The right-hand one is an example of rationally ramified Sierpinski
crosses treated in Section 4.5. It has two different contraction ratios. The left-hand
one is an example having no symmetry of the square. As a by-product of our results
in this paper, we will construct non-trivial self-similar local regular Dirichlet forms
on classes of square-based self-similar sets including those in Figure 1.1. See Sec-
tions 4.3, 4.4, and 4.5 for details.

From the viewpoint of construction of Sobolev spaces on metric spaces, there
have already been established theories based on upper gradients, which correspond
to local Lipschitz constants of Lipschitz functions. Compared with our strategy above,
this direction is to seek a counterpart of V f instead of the convergence of 6" & (P f)
like us. The pioneering works of this theory are Hajtasz [22], Cheeger [15] and Shan-
mugalingam [40]. One can find a panoramic view of this theory in [23]. Recent studies
by Kajino and Murugan in [26,27], however, have suggested that they may not cover
all the interesting cases. So far examples in question are higher-dimensional Sier-
piniski gaskets, the Vicsek set, and the planar Sierpinski carpet. What they have shown
in [26,27] is that the Brownian motions on those examples will not have the Gaussian
heat kernel estimate under any time change by a pair (d, ), where d is quasisymmet-
ric to the Euclidean metric dg and u has the volume doubling property with respect



Introduction 3

to dg. On the other hand, under the established theory, the heat kernel associated with
a (1, 2)-Sobolev space satisfying a (2, 2)-Poincaré inequality should satisfy the Gaus-
sian estimate due to the results in [21, 39, 42]. Thus, the Dirichlet forms associated
with the Brownian motions on the above-mentioned self-similar sets can hardly be
one of (1,2)-Sobolev spaces based on upper gradients. Note that, in these cases, there
exist plenty of rectifiable curves with respect to (the restriction of) the Euclidean
metrics, which are even quasiconvex. Partly motivated by such a situation, we will
try to provide an alternative theory of function spaces, which may be called Sobolev
spaces or else, on metric spaces, and to construct natural diffusion processes at the
same time.

Getting straight to the conclusion, we are going to propose a condition called p-
conductive homogeneity and show that under this condition, the strategy consisting
of (1) and (2) succeeds for p > dimyr(K, d), where dimygr (K, d) is the Ahlfors
regular conformal dimension of a compact metric space (K, d). One can see a more
precise and detailed exposition in what follows. The definition of the Ahlfors regular
conformal dimension of (K, d) is

dimgg (K, d) = inf{a | there exist a metric p on K which is
quasisymmetric to d and a Borel regular measure p

which is «-Ahlfors regular with respect to p}, (1.1)

where the definition of Ahlfors regularity of a measure is given in (2.9). The notion of
quasisymmetry was introduced in [43] as a certain generalization of quasiconformal
maps of the complex plane. It is defined in the following way:

Definition 1.1. Let (X, d) be a metric space. A metric p on X is said to be qua-
sisymmetirc to d if (X, p) gives the same topology as d and there exists a homeo-
morphism £ from [0, co) to itself satisfying #(0) = 0 and for any ¢ > 0, p(x, z) <
h(t)p(x,y) whenever d(x,z) < td(x, y).

In the direction of our study, Shimizu has done pioneering work for the case of
the planar Sierpiniski carpet, PSC for short, in the very recent paper [41]. Extending
Kusuoka—Zhou’s method, he has constructed a p-energy and the corresponding p-
energy measure for p > dimy g (PSC, dg ), and done detailed analysis of those objects.
In particular, he has shown that the collection of functions with finite p-energies is
a Banach space that is reflexive and separable. His proof of reflexivity and sepa-
rability can be easily extended to our general case as well. See Theorem 3.22 for
details.

Our framework on metric spaces is the theory of partitions introduced in [34]. Let
(K, d) be a compact metric space. We always suppose that (K, d) is connected in this
paper. Roughly speaking, a partition of K is a sequence of successive divisions of K
by some of its compact subsets. The idea is illustrated in Figure 1.2. Let Ty = {¢}



Introduction 4

To = {¢} Ty ={1,2,3} S(1) = {11,12,13}
S(2) = {21,22}

S(2) = {31,32,33}

Figure 1.2. Partition.

and set Ky = K. Starting from K, we first divide K into a finite number of children

K, forw € Ty, i.e.,
K= | Ku.
weT

The set T is thought of as the collection of children of Ty and denoted by S(¢).
Then we repeat this process of division, i.e., each w € T has a collection of children,

S(w), such that
Ky = U K.
veS(w)
Define T5 as the disjoint union of the S(w)’s for w € T;. So repeating this pro-
cess inductively, we have {7}, },>¢ where each w € T, has the collection of children

S(w) C Ty41. Set
T=|J7T.

n>0

With several requirements described in Section 2.1, the family {Ky, }wer is called
a partition of K.

For each n > 1, T}, has a natural graph structure associated with a given partition
{Ky }wer. Namely, if

Ef = {(u,v) | u.v € T, Ky N Ky # 0},

then (7). E;) is a connected graph, which is illustrated in Figure 1.3. To avoid tech-
nical complexity, we are going to explain our results under Assumption 2.15 hereafter
in the introduction. In fact, if (K, d) is «-Ahlfors regular for some « and the metric d
is 1-adapted in the sense of [34], then Assumption 2.15 holds. So our setting should
be broad enough.



Introduction 5

Figure 1.3. Graphs associated with a partition (dotted lines are vertices).

For A C T,,, we define the p-energy of a function on A by

1
Gaf)=5 Y Ifw-fl.
u,veA
(u,v)EE;
To carry out our strategy, we introduce two key characteristic quantities: conductance
and neighbor disparity constants. For m > 0, Ay, A», A € T,, with A1, A, € A and
A1 N Ay = @, define

Epm (A1, Az, A) = inf{E7"(f) | f:S™(A) = R, flsm(ay) =1, flsmay =0},

where S™(A) € T,4m is the collection of the descendants in the m-th generation
from A. The quantity &, (A1, A2, A) is called the p-conductance between A, and
A, within A at the level m.

Remark. Attaching a resistor of resistance 1 to each edge (v, v) € E,,,, we may

consider the graph (T +m, E | ,,) as an electric network. In this respect, the recipro-
cal of &, ,,(A1, A2, A) is the effective resistance between A; and A, within A and
hence &, (A1, A2, A) corresponds to the effective conductance. Such an analogy
has been often used in the study of random walks. See [18] for a classical reference.
In potential theory, the quantity &5 ,, (A1, A2, A) is called “capacity” as well.

In particular, for w € T,,, define
8p,m(w) = p,m({w}s I (w)c, Tn)»

where I'; (w) is the collection of neighbors of w in 7,, given by

Fi(w) ={v|veTy, (wv)eE,}.
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The value &, ,,, (w) represents the p-conductance between w and the complement of
its neighborhood I'; (w) in the m-th generation from w. In [34], it was shown that

fim (sup Epm(w)7) <1 ifandonlyif p>dimg(K.d). (12)

m—00 weT
The other one, the neighbor disparity constant, is defined as

. — wp ( sup |(f)smw) — (f)S’"(v)|p>
p.m,n — ’
(w,v)eE; “f:8™(w,v)—>R 81:;1,?*2!(10,11)(f)

where $™(w,v) = §™(w) U S™(v) and (f)sm ) is the average of f on S™(w)
under a suitable measure w. (This definition of the neighbor disparity constant is
a simplified version for introductory purposes. The full version will be presented
in Section 2.4.) For the case p = 2, this constant was introduced in [36]. The neighbor
disparity constant controls the difference of means of a function on neighboring cells
via the p-energy.

And now, p-conductive homogeneity, which is the principal notion of this paper,
is defined as follows.

Definition 1.2. A metric space (K, d) is said to be p-conductively homogeneous if
and only if there exists ¢ > 0 such that

sup Ep (W) SUPOp,man < ¢
weT n>1

for any m > 1.

The above condition is essentially due to Kusuoka—Zhou [36] when p = 2. Cao
and Qiu named this condition as condition (B) in [13], where they have constructed
a diffusion process on so called unconstrained Sierpifiski carpets by following the
Kusuoka—Zhou’s method.

At a glance, it does not quite look like “homogeneity”. The following theorem,
however, gives the legitimacy of the name.

Theorem 1.3 (Theorem 3.30). A metric space (K, d) is p-conductively homoge-
neous if and only if there exist 0 > 0 and ¢y, c; > 0 such that

c10™" < &pm(w) < c20™™
forany w € T\{¢p} andm > 1 and
c16™ < 0pmn < 20"

foranym,n > 1.
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The next natural question is how the conductive homogeneity is related to the con-
struction of a p-energy. The answer is the next theorem which follows by combining
Theorems 3.5, 3.21, 3.23 and Lemma 3.34.

Theorem 1.4. Suppose p > dimygr(K, d) and (K, d) is p-conductively homoge-
neous. Let C(K) be the collection of continuous functions on K. Define

S|=

Np(f) = (sup 0™ &) (Pm f))

m=>0

for f e LP(K, ), where

1
(Pu ) = e | emtan),
and
WP = | f € LP(K. ), Np(f) < o0}
Then

(1) Np(f) = 0ifand onlyif f is constant on K.
(2) N, is a semi-norm of WP,
3) (WP, || - |lp,u + Np(+)) is a Banach space.
(4) WP is a dense subset of (C(K), || - |loo)-
~ AL
Moreover, there exists &,: WP — [0, 00) such that &, is a semi-norm of 'W? which

is equivalent to Ny (), &, satisfies the Markov property and there exist T > 0 and
c1, ¢y > 0 such that

| f(x) = fOD)IP
d(x,y)t < 2 T < ed(x, )T
cd(x,y)" < Afseuwlzp &) < cd(x,y)
Ep(/)#0

forany x,y € K. In particular, for p =2, one can choose (éz, 'W2) as a local regular
Dirichlet form on L*>(K, ).

Note that by (1.2), the condition p > dimggr(K, d) implies o > 1. An explicit
description of the constant 7 is given in Lemma 3.34. In addition, we show a sub-
Gaussian type heat kernel estimate for the diffusion process induced by the Dirichlet
form (éz, 'W2) in Theorem 3.35. Moreover, if (K, d) is a self-similar set with ratio-
nally related contraction ratios, then a self-similar p-energy which is equivalent to ,
will be constructed in Section 4.1.

Another important question is how to show conductive homogeneity. The follow-
ing theorem provides an equivalent and useful condition for this purpose.
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Theorem 1.5 (Theorem 3.33). Suppose that p > dimygr(K,d). (K, d) is p-conduc-
tively homogeneous if and only if, for any k > 1, there exists c(k) > 0 such that

SUp €5, (2) < (k) Ep m(u, v, S*(w)) (1.3)

zeT
foranym > 1, w e T andu,v € S¥(w) withu # v.

The condition in the above theorem, (1.3), which is the same as (3.20) in The-
orem 3.33, is a relative of the “knight move” condition in [36] described in the
terminology of random walks, although the word “knight move” does not make sense
from the appearance of (1.3) any longer. The original “knight move” in [1] was the
name of an argument based on the symmetry of the Sierpiniski carpet to show a prob-
abilistic counterpart of (1.3). With certain symmetries of the space, it is possible to
show (1.3) by the method of combinatorial modulus in [11]. Applying Theorem 1.5,
we are going to show the conductive homogeneity for examples like those in Fig-
ure 1.1 in Sections 4.4 and 4.5.

Besides applications, Theorem 1.5 has a remarkable theoretical consequence;
conductive homogeneity is determined only by conductance constants and is inde-
pendent of the neighbor disparity constants if p > dimyg (K, d). This is the reason
conductive homogeneity is called “conductive”.

The major methodological backgrounds of this paper are Kusuoka—Zhou’s argu-
ments in [36] and combinatorial moduli of path families on graphs introduced in [11].
On many occasions, we will extend Kusuoka—Zhou’s results to compact metric spaces
and to general values of p. On such occasions, we will put a reference to the original
result by Kusuoka and Zhou right behind the number of a proposition or a lemma
like Lemma 2.27 [36, Lemma 2.12]. Beyond Kusuoka—Zhou’s arguments, the notion
of combinatorial modulus will play a crucial role on several occasions. The most
important one is in the proof of a sub-multiplicative inequality of conductance con-
stants, Corollary 2.24. Moreover, by Lemma C.4, one can compare moduli of different
graphs and this lemma is indispensable for showing (1.3) in Sections 4.3 and 4.5.

Regrettably, we do not have much for the case p < dimgr(K, d). In Section 3.2,
we will construct a function space 'W# and a semi-norm ép on W2 under p-con-
ductive homogeneity for p € [1, dimgr(K, d)]. In this case, however, W? is given
as a subspace of L?(K, u) and we do not know whether W? N C(K) is dense in
(C(K), || - loo) or not. This is due to the lack of an elliptic Harnack principle of
p-harmonic functions on the corresponding graphs. In the case p = 2, using the
coupling method, Barlow and Bass conquered this difficulty for higher-dimensional
Sierpifski carpets in [5, 6]. We have little idea what is an analytic counterpart of
the coupling method at this moment. It is a big open problem for future work. In
particular, it is interesting to know whether the following naive conjecture is true
or not.
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Figure 1.4. von Koch curve, Sierpifiski gasket and Sierpinski carpet.

Conjecture. 'W? C C(K) if and only if p > dimgg(K, d).
Now we briefly explain what happens in the cases of familiar examples.

1. Unit (hyper)cube [—1,1]": In this case, for any p > n,
WP = WhP([-1,1]")

and there exists ¢ > 0 such that

c€y(f) < /

[-1,1

LNV 1Pdx =TT ()

for any f € WLP([—1,1]"). See Example 4.31 for details. Even if p € [1,n], the
above results should be true but we do not have any proof for now.

2. von Koch curve (Figure 1.4): The von Koch curve does not contain any rectifiable
curve, so that the approaches using upper gradients do not work from the beginning.
However, our theory does not distinguish metric spaces which are snowflake equiv-
alent, i.e., two metric spaces (X, dx) and (Y, dy) are snowflake equivalent if there
exist a homeomorphism ¢: X — Y, ¢q1,c2 > 0 and @ > 0 such that

c1dx (x1,x2)% < dy (¢(x1), ¢(x2)) < c2dx (x1, x2)*

for any x;, x, € X. Since the von Koch curve is snowflake equivalent to the unit inter-
val [0, 1], we see that W2 for the von Koch curve equals W 7 ([0, 1]) for any p > 1.

3. Planar Sierpiriski carpet (Figure 1.4): As is mentioned above, this is one of the
original motivations of this paper and it is expected that our space ‘W7 is quite dif-
ferent from what one may get from the upper gradient approaches. By Theorem 4.13,
the planar Sierpinski carpet K is shown to be p-conductive homogeneous for any
p > dimyggr (K, d«), where dy is the restriction of the Euclidean metric. Moreover, let

_ log8 _ log8a

Pr = log3 "’

ayg =
" log3
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where o is the exponent appearing in Theorem 1.3. Then by [41, Theorem 2.19], we
have a fractional Korevaar—Shoen type expression of ‘W2 as follows:

o ) = FOIP
we={f|rerrpim [ o [ TESIOOT

rBp
where p is the normalized og-dimensional Hausdorff measure. Furthermore, it is
shown in [41] that B, > p. This fact implies that W# should not coincide with any
of the spaces obtained by approaches using upper gradients.

(dy)p(dx) < oo},

ds (X,7)

4. Sierpiriski gasket (Figure 1.4): Let K be the standard Sierpinski gasket and let dx
be the restriction of the Euclidean metric. Since K is one of nested fractals and

dimgg(K, ds) = 1,

Theorem 4.50 yields that K is p-conductively homogeneous for any p > 1. Argu-
ments analogous to those in [41, Section 5.3] give the same fractional Korevaar—
Shoen type expression of ‘W? as the planar Sierpifiski carpet. In this case,

_ log3 _ log3o

Pp =

oH = log 2 log2 *

We expect that B, > p for any p > 1. In fact, due to [8], we know

log 5

ﬂz_ > 2.

~ log2
Moreover, '67” is monotonically decreasing by [34, Lemma 4.7.3]. So at least for
p € (1,2], Bp > p and the space W? does not seem to be obtained by the upper
gradient approaches. However in this case, if we replace the Euclidean metric with
the harmonic geodesic metric and the Hausdorff measure with the Kusuoka measure,
then the heat kernel associated with the new pair of the metric and the measure has
the Gaussian estimate. See [30] for details. Consequently, the Cheeger theory [15] is
now in place for W? at least. On the other hand, the replacement of the metric and
the measure causes a change of the partition and, consequently, a change of the asso-
ciated function space WF . So, we expect that W? associated with the new pair may
coincide with those obtained from the approaches based on upper gradients but we
have no proof so far.

Before the conclusion of the introduction, we mention two related works. The first
one is [10], where the authors constructed another type of “Sobolev spaces” Ap (X)
on a compact metric space (Z, d) from its hyperbolic fillings X. The method is to
construct a discretization Pf on X of f € L'(Z), and to consider the weak £”-norm
of the gradient of P f. Their space A?(Z) seems closely related to our space W2 but
we merely know that W? C A p(X) under suitable assumptions at this point.
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The second one is [24], where the authors constructed a p-energy on Sierpinski
gasket type self-similar sets by extending the notion of harmonic structures in the
case of p = 2 for post critically finite self-similar sets. Their p-energy should be
equivalent to ours, although they did not show the completeness of the domain of
their p-energy. Despite the fact that their method can work only for finitely ramified
self-similar sets even if p = 2, their work is the first pioneering study to construct
a p-energy by renormalizing discrete counterparts.

The organization of this paper is as follows.

In Section 2.1, we review the basics of partitions of compact metric spaces and
then give a framework of this paper including standing assumptions, Assumptions 2.6,
2.7,2.10 and 2.12. In the end, we present Assumption 2.15, which is stronger than
the combination of all the assumptions above but more concise.

In Section 2.2, we introduce the notion of conductance constant which is one of
two principal quantities of this paper and we show the existence of a partition of unity
associated with the conductance constant.

In Section 2.3, we introduce the notion of combinatorial moduli of path families
on graphs and show a sub-multiplicative inequality for conductance constants using
them.

In Section 2.4, we introduce the other principal quantity, the neighbor disparity
constant and show its relation with the conductance constant and a sub-multiplicative
inequality of them.

In Section 3.1, we construct our function space 'W# and the p-energy 3 » under
Assumption 3.2 and show Theorem 1.4. At the same time, we propose a condition
called p-conducive homogeneity and show that the condition p > dimgr(K, d) and
p-conductive homogeneity imply Assumption 3.2 in Section 3.3.

In Section 3.2, we see what we can do for p < dimyg (K, d). In Section 3.3, we
show Theorem 3.30 (= Theorem 1.3) and Theorem 3.33 (= Theorem 1.5). Moreover,
in Theorem 3.35, we give a sub-Gaussian type heat kernel estimate for the diffusion
process induced by the Dirichlet form (&, 'W?) given in Section 3.1.

In Section 4.1, we construct a self-similar p-energy for self-similar sets with ratio-
nally related contraction ratios. In Section 4.2, we give a sufficient condition for the
conductive homogeneity for self-similar sets. Section 4.3 is devoted to a class of
self-similar sets called subsystems of cubic tiling, for which conductive homogene-
ity is shown through Theorem 3.33. This class includes the Sierpinski carpets, the
Menger curve, and the higher-dimensional hypercubes. In Section 4.4, we present
examples of subsystems of cubic tiling having the conductive homogeneity. Also,
Section 4.5 is devoted to showing conductive homogeneity of rationally ramified Sier-
pinski crosses.

In Sections 5.1, 5.2 and 5.3, we give a proof of Theorem 3.33. In Section 6.1,
we show that conductance, Poincaré and neighbor disparity constants are uniformly
bounded from below and above.
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We will briefly discuss the modification of the graph structure in Section 6.2.
Finally, in Section 6.3, we gather open problems and future directions of research.
Appendices give basic facts used in this paper.



Chapter 2

Basic frameworks and key constants

2.1 Framework

In this section, we are going to make our framework of this paper clear. It is based
on the notion of partitions of compact metric spaces parametrized by rooted trees,
which was introduced in [34]. Roughly speaking, a partition is successive divisions of
a given space like the binary division of the unit interval. See [34] for examples. Since
this notion is relatively new and unfamiliar to most readers, we will give a minimal
but detailed account of its definition.

To start with, we present the basics of graphs and trees.

Definition 2.1. Let T be a countable set and let A: T x T — {0, 1} which satisfies
A(w,v) = A(v, w) and A(w, w) = 0 for any w, v € T. We call the pair (T, A)
a (non-directed) graph with the vertices T and the adjacency matrix 4. An element
(u,v) € T x T is called an edge of (T, A) if A(u,v) = 1. We often identify the
adjacency matrix 4 with the collection of edges {(u,v) | u,v € T, A(u,v) = 1}.

(1) A graph (T, 4A) is called locally finite if #({v | A(w, v) = 1}) < oo for any
w € T, where #(A) is the number of elements of a set A.

(2) For wg,...,w, € T, (wg, wy, ..., wy) is called a path between wy and wy,
if A(w;, wj41) =1foranyi =0,1,...,n— 1. A path (wg, wy, ..., wy,) is called
simple if w; # wj forany i, j with0 <i < j <nand|i — j| <n.

(3) (T, A) is called a tree if there exists a unique simple path between w and v
for any w, v € T with w # v. For a tree (T, 4), the unique simple path between two
vertices w and v is called the geodesic between w and v and denoted by wv. We write
u € wv if wv = (wp, wy, ..., wy) and u = w; for some i.

Next, we define fundamental notions on trees.

Definition 2.2. Let (T, 4A) be a tree and let ¢ € T. The triple (7, A, ¢) is called
a rooted tree with root (or reference point, see, e.g., [45]) ¢.

(1) Define 7: T — T by

{ Wy—1 ifw # ¢ and pw = (Wo, W1, ..., Wy_1, W),
m(w) =

¢ ifw=¢

and, forw € T, set

Sw) = {v | 7(v) = wi\{w}.
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An element v € S(w) is thought of as a child of w. Moreover, for any k > 1, we
define S* (w) inductively as

S wy = | s*w).
veS(w)
which is the collection of descendants in the k-th generation from w.

(2) Forw € T and m > 0, we define
lw|=min{n |n >0, 7" (w) =¢} and T, ={w|weT, |w| =m)}.
(3) For any w € T, define
T (w) = {v | there exists n > 0 such that 7" (v) = w},

which is the collection of all the descendants of w.
(4) Define

Y ={(w(@))iso | w@i) € T; and w(i) = w(w(i + 1)) forany i > 0}.

For w = (w(i))i>0 € %, set [w];, = w(m) form > 0. An element (w(i));>o € X is
called a geodesic ray starting from ¢ in [45].

Remark. In [34], we have used (T'),, and Ty, in place of 7,, and T (w), respectively.

Throughout this paper, T is a countably infinite set and (7, 4) is a locally finite
tree satisfying #({v | (w,v) € A}) > 2foranyw € T
Next, we define partitions.

Definition 2.3 (Partition). Let (K, ) be a compact metrizable topological space hav-
ing no isolated point, where O is the totality of open sets.

A collection of non-empty compact subsets { Ky, }wer is called a partition of K
parametrized by (T, 4, ¢) if it satisfies the following conditions (P1) and (P2):

(P1) Ky = K and for any w € T, K, has no isolated point and

Ky = U K,.

veS(w)
(P2) For any geodesic ray w € X, [,,59 K[o],, is a single point.

Originally in [34], we did not assume that K is connected to include spaces like
the Cantor set. In this paper, however, we will only deal with connected spaces.
In such cases, the assumption that K has no isolated point is always satisfied unless K
is a single point.

As an illustrative example of partitions, we present the case of the unit square
[—1, 1]? as a self-similar set. This is an example of the general construction of parti-
tions associated with self-similar sets discussed in Section 4.1.
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Example 2.4 (The unit square). Let K = [—1,1]?> and let S = {1, 2,3, 4}. Set p;
[1,-1], po = [1.,—1], p3 = [1, 1] and pgy = [-1,1]. For i € S, define f;i(x) =
1(x = pi) + pi forany x € R Then it is obvious that

K= fi(K).

ieS

This is the expression of the unit square as the self-similar set with respect to the
collection of contractions { f; };es. Let

T, =8"={i1...in |ij € Sforany j = 1,...,n}.

In particular, let To = {¢}. Moreover, define T = | J T,y and define 7: T — T by

m=>0
7T(i1 lnln+1) = il ln

forany iy ...inin41 € Ty4+1 forn > 1 and 7 (¢p) = ¢. Define A(w, v) forw,v € T
as A(w,v) = lif 7 (w) = v or 7 (v) = w except for (w, v) = (¢, ). Then (T, A, @)
is a rooted tree. For w = wy ... w, € T,, define

Jw = fw1 O"'Ofwn and K, = fy(K).

Then {Ky, }weT is a partition of K parametrized by (7, #A, ¢). See Figure 2.1.

44 | 43 | 34 | 33 .
4 3

41 (42 | 31 | 32 +

14 | 13 | 24 | 23

I
I (13)

11 |12 | 21 | 22

T) ={1,2,3,4} T, ={1,2,3,4)?

Figure 2.1. Partition of the unit square.

The following definition is a collection of notions concerning partitions.

Definition 2.5. Let { K, },er be a partition of K parametrized by (7, 4, ¢).
(1) Define Oy, and By, for w € T by

szKw\( U K,,), szme( U KU).

vET |y \{w} veET |y \{w}

If Oy # 0 for any w € T, then the partition K is called minimal.
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(2) Forany A € T, and w € A, define Fj,‘,(w) CT,as

Fﬁ(w) = {u | u € A, there exist u(0),...,u(M) € A such that
u(0) = w,u(M) =uand K,y N Kyi+1) # 9
foranyi =0,...,M — 1}.

For simplicity, for w € T;,, we write I'ps (w) = F;[” (w).
(3) {Ky}wer is called uniformly finite if
sup #(I'1 (w)) < +o0.

weT

If a partition is minimal, then Oy, is actually the interior of K,,, and By, is the
topological boundary of K,,. See [34, Proposition 2.2.3] for details.

In the case of the unit square in Example 2.4, K, is a square and Oy, (resp. By,)
is the interior (resp. the boundary) of K,,. Therefore, it is minimal. Moreover,

sup #(I'1(w)) =8,

weT

so that it is uniformly finite.

Now we give the first part of our framework in this paper.

As we declared partially before, through this paper, T is a countably infinite set,
¢ T, (T, A)is alocally finite tree satisfying #({w|(w,v) € A}) > 2forany w € T,
(K, 09) is a compact connected metrizable space and {Ky }yer is a partition of K
parametrized by (T, 4, ¢).
Assumption 2.6. (1) Forany w € T, Ky, is connected.

(2) There exist My and ky € N such that
7% (Cat1 () S Tg, (7 (w) @.1)

foranyw € T.
(3) There exists My > M, such that

Tar, (u) N S*(w) € T @) 2.2)

foranyw € T, k > 1 andu € S*(w).

See Figure 2.2 for an illustrative exposition of Assumption 2.6 in the case of the
unit square.

Remark. As is explicitly mentioned in Proposition 2.16, Assumption 2.6 (2) is al-
ways satisfied under mild additional assumptions.
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N W
2 (w) X Cy )
7 (w) w = w2 (u)
Ty (u) S (w)
Q:ike =1, My =1 (22: k=2, My =My =1

Figure 2.2. Assumption 2.6: the unit square.

Remark. If M, = 1, then we have I'jyy, (w) N A = FA“}* (w) for any w and A. So in
this case, by choosing My = M, = 1, Assumption 2.6 (3) is always satisfied.

Throughout this paper, we set
Ly = sup #(I'1(w)). (2.3)

weT
Then, for any m € N,
sup #(T'm(w)) < (L™,
weT

Under Assumption 2.6 (2), if the partition {Ky, }yer is replaced by the parti-
tion { Ky },ye7 &+, Where Tk = Uizo Tk, the constant k, can be regarded as 1.
So doing such a replacement, we will adopt the following assumption.

Assumption 2.7. The constant k« appearing in (2.1) is 1.

For a given partition { K, }y e, We always associate the following graph struc-
ture E; on T,,.

Proposition 2.8. Forn > 0, define
Ey ={(w.,v) |w,v €T, w#v, Ky NK, #0}.

Then (T,, E) is a non-directed graph. Under Assumption 2.6, (T, E)) is connected
foranyn >0, and
Fl(w) = {U | (S Tn’ (w7v) € E::}

foranyn > 0and w € T,,.
Remark. In [34], E;¥ is denoted by J{" .
Definition 2.9. For w € T,,, define
9S™(w) = {v | v € S™(w), there exists v € Ty 4m

such that (v,v") € E¥, and 7™ (v') # w}.

n+m
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The set 35™ (w) is a kind of a boundary of S™ (w). In fact, it is easy to see
S (w) ={v|veS™(w), Ky, N By # @},
where By, is the topological boundary of K,, as is mentioned above. So the next
assumption means that the boundary is not the whole space.

Assumption 2.10. There exists mo > 1 such that S™ (w)\9S™ (w) # @ foranyw e T
and m > my.

In Figure 2.3, we have an illustrative exposition of Assumption 2.10 in the case
of the unit square.

o oo
952 (w)
y .
. SZ(w)\aSz(w) Ui(y :2)
Assumption 2.10 Assumption 2.15 (2B)

Figure 2.3. Assumptions 2.10 and 2.15 (2B); the unit square.

Definition 2.11. Forw € T, M > 1 and k > 1, define
Bui(w) = {v | v e S¥w), Ty—1(v) N ISK(w) # ).
Remark. Bj;(w) = 3S*(w).
The final assumption is an assumption on a measure y on K.

Assumption 2.12. The measure u is a Borel regular probability measure on K sat-
isfying
n(Kw) = Z w(Ky) (2.4)

veS(w)

for any w € T. There exists y € (0, 1) such that
/L(Kw) > V/L(Kn(w)) (2.5)

for any w € T. This property is called “super-exponential” in [34]. Moreover, there
exists k > 0 such that ifw,v € T, |w| = |v| and (w,v) € EI’;)‘, then

W(Ky) < kpu(Ky) (2.6)
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The above condition (2.6) corresponds to the gentleness of the measure p intro-
duced in [34]. Indeed, if u has the volume doubling property, then this condition is
satisfied. See Proposition 2.16 and its proof below for an exact statement.

Lemma 2.13. Under Assumptions 2.6, 2.10 and 2.12,

(1) w is exponential, i.e., u satisfies (2.5) and there exist m; > 1 and y; € (0, 1)
such that w(Ky) < yiu(Ky) forany w € T and v € S™ (w).
2) supyer #(S(w)) < .

Throughout this paper, we set

Ny = sup #(S(w)). 2.7
weT

Proof. (1) In fact, we set m; = my. For any w with |w| > 1 and m > 0, we see that
dS™(w) # 0 because K is connected. Hence by Assumption 2.10, #(S™0(w)) > 2
forany w € T. Let v € S™!(w). Then there exists u € S™!(w) with v # u. By (2.5),

w(Ky) = p(Ky) + n(Ky) > n(Ky) +y™ 1(Ky),
so that 1(Ky) < (1 — y"™)u(Ky).
@ u(Ku) = Y wK) =y D u(Kuw) = y#(Sw))u(Ky).

veS(w) veS(w)

Hence #(S(w)) < %

Lemma 2.14. Under Assumptions 2.6, 2.10 and 2.12,

S™(w)\ By,m(w) # 0
foranyw € T, M > 1 and m > Mmgy. Moreover,
u( U Ky) = 7™M u(Ky) (2.8)
veST (S™ (w)\Bpr,m(w))

foranyw € T, n > 0and m > Mmy.

Proof. By Assumption 2.10, we can inductively choose v; € S0 (w) for i > 1
such that v;yq € §™0(v;)\dS™0(v;) for any i > 1. At the same time, we see v; ¢
Biimo(w). If moi <k <mo(i + 1), then v ¢ B; x(w) for v = gmo+D=k(y, ).
So the first part of the claim has been verified. Now if v € S (w)\ Ba,m (w), then

p U Ko) = 1K) = v u(Ky)
veS(S™ (w)\ By m(w))

by Assumption 2.12.
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Until now, we have not considered any metric of (K, @), which was merely
assumed to be compact and metrizable. The introduction of a metric d on K having
suitable properties enables us to integrate the above assumptions into the following
one.

Assumption 2.15. The metric space (K, d) is a compact connected metric space and
diam(K, d) = 1, where

diam(A,d) = sup d(x,y)
x,y€A
for a subset A  B. The partition { Ky, }wer is minimal and uniformly finite.
(1) Forany w € T, Ky, is connected.
(2) There exist My > 1 and r € (0, 1) such that the following properties hold:
(2A) Define h,:T — (0,1] as h,(w) = r®l. Then there exist ¢1,c2 > 0 such
that
cihr(w) < diam(Ky, d) < c2hy(w)
foranyw € T.
(2B) Forx € K andn > 1, define

Upy(x :n) = U U Ky.

weTy, vellys (w)
xeKy

(See Figure 2.3 for examples of Uy (- : 2) in the case of the unit square.)
Then there exist c1, ¢ > 0 such that

By(x,c1r™) CUpm, (x :n) € By(x,car™)

foranyn > 1 and x € K, where Bg(x,r) ={y | d(x,y) <r}.

(2C) There exist ¢ > O such that, for any n > 1 and w € T,, there exists
x € Ky, such that
Ky 2 By(x,cr™).

(3) w is a Borel regular probability measure on K. Moreover, | is exponential
and has the volume doubling property with respect to the metric d. Further-
more, [ satisfies (2.4) for any w € T.

(4) There exists M such that (2.2) holds forany w € T, k > 1 and u € S*(w).
(5) Foranyw € T, n(U'p, +1(w)) € Iy, (7 (w)).

Remark. In the terminology of [34], (2A) corresponds to the bi-Lipschitz equiva-
lence of d and h,, (2B) says that the metric d is M«-adapted to &, and (2C) together
with (2B) yields d being thick. The combination of (2A), (2B) and (2C) is equivalent
to that of (BF1) and (BF2) in [34, Section 4.3].
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Remark. Modifying the original partition {K,, }wer, We may always obtain As-
sumption 2.15 (5) from Assumption 2.15 (1), (2), (3), and (4). Namely, by Propo-
sition 2.16, we have k. satisfying (2.1) under Assumption 2.15 (1), (2), (3) and (4).
So, replacing the original partition {Ky, }wer With {Ky },, c7*+, We may suppose
ki = 1.

Proposition 2.16. Assumption 2.15 (1), (2), (3) and (4) suffice Assumptions 2.6, 2.10
and 2.12.

Proof. About Assumption 2.6, (1) and (3) are included in Assumption 2.15. Since d
is M-adapted, [34, Proposition 4.4.4] shows the existence of k. required in Assump-
tion 2.6 (2). By (2C) and (2B), there exists my > 1 such that

Kuw 2 Ba(x.cr™) 2 Up, (x : 1+ my)

for any n > 1 and w € T,, where the point x € Ky, is chosen as in (2C). So if v €
Tywim and x € Ky, then K, € By(x, cr") and hence K, N By, = @. Therefore,
Assumption 2.10 is satisfied. Assumption 2.15 includes (2.4) and (2.5) follows from
the fact that u is exponential. Finally, (2.6) is a consequence of the volume doubling
property by [34, Theorem 3.3.4]. |

Under Assumption 2.15, we may suppose further properties of the metric d and
the measure . Namely, if o« > dimyr(K, d), then by (1.1), there exist an e-Ahlfors
regular metric d, which is quasisymmetric to d and a Borel regular measure v which
is a-Ahlfors regular with respect to dx, i.e., there exist ¢y, ¢, > 0 such that

c1r® < v(Bg,(x,r)) < cor® (2.9)

forany x € K and r € (0,2diam(K, d)]. Replacing d and u by d, and v, respectively,
we may assume that d is «-Ahlfors regular. Note that if u is a-Ahlfors regular with
respect to d, then « is the Hausdorff dimension of (K, d).

2.2 Conductance constant

In this section, we introduce the conductance constant &z, (w, A) and show the
existence of a partition of unity whose p-energies are estimated by conductance con-
stants from above. In the next section, using the method of combinatorial modulus,
we will establish a sub-multiplicative inequality of conductance constants.

Through this section, 7 is a countably infinite set, ¢ € T, (T, 4) is a locally finite
tree satisfying #({w|(w, v) € A}) > 2 forany w € T, (K, @) is a compact connected
metrizable space and { Ky, }e7 is a partition of K parametrized by (7, 4, ¢). More-
over, hereafter in this paper, we always presume Assumptions 2.6, 2.7, 2.10 and 2.12.
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To begin with, we define p-energies of functions on graphs (7}, E;) and the associ-
ated p-conductances between subsets.

Notation. Let A be a set. Set
LA ={f]| f:4—> R} (2.10)
Definition 2.17. (1) Let A C T,,. For f € £(A), define 81’]‘,A(f) by
1
=5 D If@w-fo)
u,veA,(u,v)EE,;
In particular, if A = T, we define & (f) = Sg,T,, (f) for f € £(Ty).
(2) Let A C Ty, and let Ay, A» C A. Define
Epm(A1, Az, A) = inf {&)7 0 (f) | [ € L(S™(A)), flsm(ay =1,
Slsmaz) = 0}.
(3) Let A C T,,. For w € A, define
Ex.pm(w. A) = Epm({w}, ATy (w), A),
which is called the p-conductance constant of w in A at level m.

For simplicity, we often denote a set consisting of a single point, {w}, by w.
For example, if A1 and A, are single points u and v respectively, we sometimes write
Epm(u, v, A) instead of &, ,, ({u}, {v}, A).

Remark. As we have mentioned in the introduction, the quantity &y, » (w, A) can
be regarded as “p-capacity” from the viewpoint of the potential theory.

Lemma 2.18. Foranyw € T, k > 0 and u € S*(w),
8Mo,p,m(ua Sk(w)) =< 8M*,p,m(u’ T|w|+k)‘
Proof. This follows from Assumption 2.6 (3). |

Remark. In the case M, = 1, we always have Ff‘ (w) = T'1(w) N A. Hence even
without (2.2),

&1 pm(w, SE(w)) < &1 pm (W, Tiw|+x)

foranyw € T,k > 0and u € Sk(w).

The following lemma shows the existence of a partition of unity.
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Lemma 2.19. Let p > 1 and let A € T,,. For any w € A, there exists @y,: S™(A) —
[0, 1] such that

Dovw=1 gulsmw = L) Guwlsmansmrs wy =0
weA

and
S;E%(A)((p'”) < (LM + 1P max Em,pm(w’, A).

w/EFzAM_H(w)
Proof. Choose hy, € £(S™(A)) such that hy, |sm@) = 1, hw|Sm(A)\Sm(1"/€, Wy = 0,
and &y, pm(w, A) = 8;’;’,’,,1(14)(}11,)). Define i € £(S™(A)) as

hw) =Y hu(v)

weA

for any v € S”(A). Note that 1 < h(v) < (Ls)™. Set

n+m

h *
Pw = - and  Epym(w) = E N S™(Cig 1 ().

It follows that ¢y, (4) = @y (v) = 0 forany (u,v) ¢ E,4m(w). Let (u,v) € Eyqpm(w).
Then hyy (V) (hy (V) — hy (1)) = 0 for any w' ¢ FfMH(w). Hence

lpw (1) — @u (v)] = m(h(vxhw(u) — (1)) + o (V) (B(V) = h(w)))
< h@) —hy |+ Y ) = b (V).

w/el"ﬁ‘lﬂ/,_,’_1 (w)

Set C = (L4)?*1! 4 1. Then the last inequality yields

1
&M =5 D lew) —gu®)I”
(u,U)EEn-‘,-m(w)
cr1
<

= X (kG =k

W, v)EE); +1m(w)
Y ) = b))
w’eFf‘M+1(w)

<Cr (gt + Y &)

w’eI‘é"M+l(w)

<C? max Em,pm(W', A). =
w’GFfM+l(w)

In particular, in the case A = T, the associated partition of unity defined below
will be used to show the regularity of the p-energy constructed in Section 3.1.
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Definition 2.20. For w € T, define hy, , ,, € €(Tjw|+m) as the unique function /
satisfying h[smw) = 1, hl1,, 1 \sm (T w)) = 0 and

€51 (1) = €t pn (W, Tiw))-
Moreover, define ¢y . € {(Tjw|+m) by

*
hM,w,m

*
(pM,w,m - * .
ZUET|w| hM,v,m

By the proof of Lemma 2.19,

8;;'+m(‘/’1>\k4,w,m) < (LM 4 1)P max Em,pm (v, Ty)

forany w € T,,.

2.3 Combinatorial modulus

Another principal tool of this paper is the notion of combinatorial modulus of a path
family of a graph introduced in [11]. The general theory will be briefly reviewed in
Appendix 6.3. In this section, we introduce the notion of the p-modulus of paths
between two sets and show a sub-multiplicative inequality for them. As in the last
section, T is a countably infinite set, ¢ € T, (T, 4A) is a locally finite tree satisfying
#{w|(w,v) € A}) =2 forany w € T, (K, O) is a compact connected metrizable
space and { K, }yer is a partition of K parametrized by (7, 4, ¢).
Definition 2.21. Let M, m € N.
(1) Define
Exgm = {(w,v) | w,v € Ty, v € Ty (w)}.
Note that £, = ET . Moreover, define
Om(w,v) = min{M | v € Ty (w)}

for w,v € Tpy. O (w, v) is called the graph distance of the graph (T, E ).
(2) Let A C T, andlet A1, A» € A. For k > 0, define
€M 4y, 42, A) = {(w(),....v()) | v(i) € S™(A) foranyi = 1,...,1,
there exist v(0) € S™ (A1) and v(l + 1) € S™(A,) such
that (v(i),v(i + 1)) € Eyy 4, foranyi =0,...,1}, (2.11)
ASD (A1, A2, A) = {f | f: Tom — [0.00), Xy f(w(i)) = 1
for any (w(1),...,w(l)) € €M (41, A2, A)}
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and

MM (A, A2, A) = inf > fwyr. (2.12)

feAn” (A A2.4) ye

(3) For w € T, define
Ew) = €M ({w}, Ty (w)°, T), AGh (w) = ADD (w}, Ty (w)°. T)

and
M%),m(w) = MM (w}. Ty (W), Ty).

The quantity M;{l;[,,) (A1, Az, A) is called the p-modulus of the family of paths
between A; and A, inside A.

Remark. In (2.11) and (2.12), the domain of f is Tj+,,. However, since we only
use f(u) foru € S™(A) in (2.11) and the sum in (2.12) becomes smaller by setting
f(u) =0foru € Ty4,\S™(A), we may think of the domain of f as S™(A).

As in the case of conductances, if A; and A, consist of single points u and v,
respectively, then we write E’,(nM)(u, v, A), Ag,,M)(u, v, A) and M;{‘;fn) (u, v, A) instead
of €M (fu}, (v}, A), A ({u}, {v}, A) and MS) ({u}. {v}, A), respectively.

In accordance with [34, Proposition 4.8.4], the following simple relation between
Epm (A1, Az, A) and MY (A1, Ay, A) holds. Hence to know M5, (A1, Aa, A) is
essentially to know &, (A1, Az, A).

Lemma 2.22. Let AC T, andlet A1, Ay C Awith Ay N Ay = @. Then for any m > 1
and p > 0,

1
7 Eom(d1 A2 4) < M) (A1, Az, A)
<2max{1, (L«)?""}6p m(A1, A2, A). (2.13)
The following theorem is the main result of this section.

Theorem 2.23 (Sub-multiplicative inequality). Let ko, L, M € N. Suppose that
70T 41(u)) € Ty (20 )
foranyu € T. Then

M) (w) < oMY (w max MY (@
M,p.k+1 - M,p,k( )veSk(FM(w)) L,p,l()

foranyl €e N, k > ko, w € T and p > 0, where ¢,,3 depends only on p, Ly and L.

Remark. If 7%50(T; 1 (1)) € Tar (ko (u)), then 7% (T 41 (1)) € Tar(nF (1)) for
any k > ko.
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Similar sub-multiplicative inequalities for moduli of curve families have been
shown in [11, Proposition 3.6], [14, Lemma 3.8] and [34, Lemma 4.9.3].

By Assumption 2.7, the assumption 750 (T4 (u)) € Tar (sw*0(u)) is satisfied
with M = L = M, and k¢ = 1. This fact along with Lemma 2.22 shows the following
sub-multiplicative inequality of conductance constants.

Corollary 2.24. Foranyn,k,l > 1, w € T, and p > 1.

8M*,p,k-f—l (U), Tn) =< C2A248M*,p,k (w, Tn) max 8M*,p,l (U7 Tn—i—k)’ (2.14)
veSk (Tar (w))

where the constant ¢24 = c224(p, L+, M) depends only on p, Ly and M.
The rest of this section is devoted to a proof of Theorem 2.23.

Lemma 2.25. Let A C T, and let A1, A, C A with Ay N Ay = 0. Assume that
Tpr(u)N S™(A) is connected for any u € S™(A). Then

M) (A1, Az, A) < MM (A1, Az, A) < (L) PTOIM M) (A1, Az, A).
Proof. By definition,
€M (A;, A7, A) D2 €D (A1, A2, A) and  AM (A}, Ay, A) € AV (4, Az, A).

This shows
MED (A1, Az, A) < MM (A4, A5, A).

Define H, = I'ps(u) for any u € T, 4p,. Then
#(Hy) < (L™ and #({v |u € Hy}) < (L)Y

Let (u(1), ..., u(l)) e €M) (A, Ay, A). Then there exist u(0) € S™ (A1) N Tar (u(1))
and u(/ + 1) € S™(A2) N T'ar (u(l)). Since u(0) and u(1) is connected by a chain in
Tar(u(1)) and u(i) and u(i 4 1) is connected by a chainfori = 1,...,1 in Ty (u(7)),
we have a chain belonging to € (A1, A, A) and contained in Ui=1....n Hug)- Thus
Lemma C.4 shows

(M)(Al,Az A) < (L« )(pH)MeM(l) (A1, Az, A). n

Proof of Theorem 2.23. Let [ € A(LH)(w) andlet g, € A(Ll)l(v) forany v € Tjy| 4.
Define h: Ty |+k+1 — [0, 00) by

h(u) = max { f(v)go) | v € T (! () 0S¥ (Tar (W)} X gk (00, ) @)-

Claim 1. % € ”4’1(\}1)k+l(w)‘
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Proof. Let (u(1),...,u(m)) € Eﬁ}’)kﬂ (w). There exist such u(0) € S¥*!(w) and
u(m + 1)€ Ty +x+1\S* T (Tar (w)) that u(0) € Ty (u(1)) and u(m + 1) € Ty (u(m)).
Set v(i) = 7l (u(i)) fori = 0,...,m + 1. Let v4(0) = v(0) and let ig = 0. Define
n«, Vx(n) and iy fori = 1,...,n, inductively as follows: If

max{j | in < j =m,v(j) € I'L(v«(n))} = m,
then n = n,. If
max{; | in < j =m,v(j) € [L(v«(n))} <m,
then define
int1=max{j |inp <j <m,v(j) eTL(w«m)}+1 and vi(n+1)=v(n4+1).

The fact that 7% (I 41 (v4(0))) € Tar (7% (v(0))) implies 74 > 1. Since v(ip4q — 1) €
'z (v« (n)), we have ve(n + 1) € ' +1(v«(n)). Hence

(We(1).....va(n2)) € E;F TP (),

Moreover, since v«(n — 1) ¢ I'p(v«(n)) for n = 1, ..., ny, there exist j, and my,
suchthat i, < j, <my, <i, and (U(j,),...,u(my,)) € ‘Célg(v*(n)). Since gy, (n) €
AD (vi(n)), we have

D @) = Y f0x )Gy () = f(va()).
i=Jn i=Jn

This and the fact that (v« (1),...,v«(nx)) € E’](‘;Zl)(w) yield

Do) =) fs() = 1.
i=1 j=1

Thus Claim 1 has been verified. m|

Set Cy = max{(L+)“®@~V 1}. Then by Lemma A.1, for u € S¥T/(I'ys (w)),

p
h)? < ( ) f(v)gv(u))

vel'y (w! W)NSK(Tas ()

<Gy 3 F@)Pgo)?.

vel'z (! w)NSK (Tar (w))

The above inequality and Claim 1 yield
RPN ESD S T0) L= B D S O LI A (L

ueSk+ (Tpr (w)) veSK(Tar () UETwi+k+1
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Taking infimum over g, € ,A(Ll)l(v) and f € A(L+l)(w) we have

MY ey =c Y fPM® )
veSK (T (w))
Yo f? max M ()

k
veTim veSk (T (w))

(L+1) €Y)]
<
< Cy Mpk(w) UGS"I?I?A);(w))M ’ (v).

28

Finally, applying Lemma 2.25, we have the desired inequality. This completes the

proof of Theorem 2.23.

2.4 Neighbor disparity constant

Another important constant in this paper is 0, (-), which is called the neighbor

disparity constant. The neighbor disparity constant controls the differences between
means of a function on several cells via the p-energy of the function. For p = 2,

02,m was introduced in [36] for the case of self-similar sets.

Notation. For A € T, and f € Z(A) define

()4 = 3 fwn(Ky).

veA

ZveA ( w)

Furthermore, set
E;(A) =(AxA)N E,’,‘

Definition 2.26. Let A C T,,.

(1) Define Py p: £(S™(A)) — £(A) by

(Pnm )W) = (f)smw)

forany f € £(S™(A)) and w € A.

(2) Form > 0 and p > 1, define

& (P
o'p’m(A) — Sup M’
retsma) &, gma(f)

which is called the p-neighbor disparity constant of A at level m.

(3) Let {G;}i=1,..x be a collection of subsets of T;,. The family {G;};—1, x

called a covering of (A, E,; (A)) with covering numbers (N7, Ng) if

k
A= ~ #(li ) <
LJ]G“ max (i | x € Gi}) < Nr,

(2.15)

is
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and for any (u,v) € E;(A), there exist/ < Ng and {w(1),...,w(/ + 1)} € A such
that w(1) = u, w(l + 1) = v and (w@), w(i@ + 1)) € U;,,_x E;(G)) for any
i=1,...,1

Remark. The neighbor disparity constant o, (w, v) defined in the introduction is

equal to 0 (A) with A = {w, v}.

One of the advantages of neighbor disparity constants is their compatibility with
the integral projection Py, from £(Ty4m) to £(T,) as follows.

Lemma 2.27 ([36, Lemma 2.12]). Let A be a connected subset of T,, let m > 0 and
let {G; }{le be a covering of (A, E,; (A)) with covering numbers (N7, Ng). Then

& A(Pam f) < c201 max 0pm(GOEREH 4(f)

forany f € £(S™(A)), where ¢227 = (Lx)NE(Ng)?~'Nr, and

0pm(A) < 207 max op;,(G;).
i=1

=1,...,

In particular, if Ay, Ay C A, then
Epo(A1, A2, A) < 207 max. Op.m (Gi)&pm(Ay, Az, A) (2.16)
=

forany m > 0.
Proof. For (w,v) € E;;, set
Dj(w,v) = {(u1,uz) | (u1,uz) € E;, there exists (w(1),...,w(l), w(l + 1))
such that w(l) = u, w(l + 1) = uy
and (w(@), w( + 1)) = (w,v) forsomei =1,...,[}.
If (uy,uz) € Dy(w,v), thenu; € I'_1(w) and u, € T’y (u1). Hence
#(Dy(w,v)) < (L)',

Since {G; }i1,... k is a covering of A with covering numbers (N7, Ng), we have

1
EpaPamf) =5 3 |Pam())@01) = Pum(f)u2)l”
(u1,u2)€E; (A)
k
(Np)P™" max #(Dwg (w.v) ) &g, (Pumf)

i=1

IA

k
< LONEWNE) Y 0pm(GHEN G 61 (f)
i=1

Nentm
= 27 ,_nllaxkGp,m(Gz)gpjsm(A)(f)

=1,...,
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Next, choose f such that f |4, = 1, f|4, = 0and &, ,, (A1, A2, A) = Sggﬁ(A)(f).
Then
Epo(A1, A2, A) < &) 4(Pum f)-

So we have (2.16). [ ]

Lemma 2.28 ([36, Proposition 2.13(3)]). Let p > 1 and let A € Ty. If {Bi}i=1....1

is a covering of (S"(A), Ef ,,(S"(A))) with covering number (N1, Ng), then

Op,n+m (A) < €2270p.n (A) _Irllaxlap,m(Bi)-
i=

yeees

Proof. By Lemma 2.27, for any f € {(Tx+n+m),

€y A(Pin(Prtnmf)) < 0pn(AVENEL o (Prtnm )

=< 0p,nC2270pn (A) iil}ax ; Op,m (Bi)gigfﬁ:fm) (f) un

Due to Theorem 3.33, we will see that if p > dimgg (K, d), then it is enough to
consider neighbor disparity constants for a family #« = {{w,v}|(w,v) € U,~¢ Ex }-
As we will mention right after Example 2.30, however, allowing all the pair_s in $x
might cause a trouble, so that we need the following notion of a covering system in
general.

Definition 2.29. Let ¢ C (J,.¢t4 | A € T, }. The collection ¢ is called a covering
system with covering numbers (N, Ng) if the following conditions are satisfied:
(1) supygeg #(A) < oo.
(2) Forany w € T and m > 1, there exists a finite subset &' C ¢ such that N is
a covering of (S™(w), E¥, (S™(w))) with covering numbers (N7, Ng).

n+m
(3) Forany G € g and m > 0, if G C Ty, then there exists a finite subset N C ¢
such that N is a covering of (S™(G), E,,,(S™(G))) with covering numbers
(N7, Ng).

For a covering system ¢, set

of = max{o, ,(4) | A€ g, A< T,} and Gim = supo?
n=>0

p,m,n p.m,n’

Remark. By (2.6), applying Theorem 6.10, we see that

<oo and 0<o? <oo.

g
0 <0pmn p,m

Example 2.30. Define
$« = {{w, v} | (w,v) € E,; for some n > 0}.
Then g« is a covering system with covering numbers (L, 1).

If we allow all the pairs in J«, we may end up with the following situation.
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Proposition 2.31. Let § be a covering system and let {w, v} € . Assume Ky, N K,
is a single point {x}, and for any m > 0, there exist w’' € S™(w) and v’ € S™(v) such
that {w’,v'} ={u | u € Tyy4m,x € Ky}. Then

g g
O m.wl >1 and Opm = 1

forany p > 0andm > 0.
Proof. Setn = |w|. Let f = ygmy). Then Py f = y(w). Hence
+ _ -
SZ,SZ’!(w)US’"(v)(f) =1 and 8;’{w,v}(P,,,mf) =1,
so that o ;m ({w, v}) > 1. [

As we will observe in the following sections, the consequence of the above propo-
sition should be avoided if p < dimygr(K, d) because we expect (but do not have
a proof in general) that lim,,_.¢ alfim = 0 for p < dimyg (K, d). For example, a suit-
able substitute of ¢, for the unit square described in Example 2.4 is given as follows.

Example 2.32. Let K be the unit square [—1, 1]? treated in Example 2.4. Define
Fo = {{w, v} | {w,v} € g«, Ky N Ky is a line segment},

where the subscript £ in $; represents the word “line”. Then g is a covering system
with covering numbers (4, 2). Note that no {w, v} € J, satisfies the assumption of
Proposition 2.31.

Similar modification of . can be made in the case of subsystems of cubic tilings
studied in Section 4.3 including the Sierpifiski carpet. See (4.15) for details.

Now, we start to investigate the properties of the neighbor disparity constants of
a fixed covering system.

The following lemma is a consequence of Lemma 2.27 connecting the conduc-
tance constants with the neighbor disparity constants.

Lemma 2.33. Let § be a covering system with covering numbers (N7, Ng). Let
p>landletw e T. Foranyk > 1, m,[ > 0andv € Sk(w),

Emtpm(v. SKW)) < cam0d) L Ep i (0. SF (W) (2.17)

In particular; there exists ¢33, depending only on Nt, Ng, M, p and L, such that
k
if SK(w) # T35 ) (v), then
133 < 0¥ Eat.pa (v, SK(w)) 2.18)
233 = Op 1 |w|+k M,p,l\V, .

foranyn > 1andl > 0.
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Proof. Let A = S*¥T™(w) and choose a covering &' C g of S+ (w) with covering
number (N7, Ng). Then by (2.16),

k
€p.0(S™(v), S™(Tay ™ (v)°), S+ (w))
k w c m
< €207 MaX 0,1 (G) g (S (1). 8™ (T (0)°). S™+F (w)).

This implies (2.17). To obtain (2.18), letting m = 0 in (2.17), we have
8M,AIJ,O(Us Sk(w)) = 02427Ui15‘w|+k8M,p,l (v, Sk(w))

According to Theorem 6.3, cg (L+, (L*)M_1 . D) < &m,po(v, Sk(w)). This immedi-
ately implies (2.18). ]

Another important consequence of Lemma 2.27 is a sub-multiplicative inequality
of neighbor disparity constants.

Lemma 2.34. Let § be a covering system with covering numbers (N7, Ng) and let
p > 1. Then
S F F
O}J,n—i—m,k = 62-270'1),n,ko}z,m,/wl-n

foranyn,m,k € N.
Proof. This is straightforward by Lemma 2.28. ]

In the rest of this section, we study an estimate of the difference f(u) — f(v) for
f:Ty — R and u,v € T by means of the p-energy &, (/) and neighbor disparity
constants.

Lemma 2.35. Let § be a covering system with covering numbers (N1, Ng). Let
w e T andletm > 1. Forany f € £(S™(w)) and u € S(w),

1 1
(F)smawy — (Fsm-1ayl < Nalod 1 1) P Eent ()7

Proof. Let N C & be a covering of (S(w), EI*;U‘H(S(w))) with covering numbers
(N1, NEg). For any v € S(w), there exist vy, va,...,vx € S(w)and Gy,...,Gy € N
such that k < Ny, vy = v, vx =u and (v;,vi4+1) € E;(G;) foranyi =1,....k — 1.

Hence

() sm=10) = (F ) sm=10)|

k—1 k—1 .

1 1

< Osm1n = Fsm1pil £ Y €t (Pl r1m-1£)?
i=1

i=1

k—1

F{ 1 |lw|+m 1 g L ojw|+m 1

< O i) D E s ()7 SN )7 €y ()7
i=1
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Combining this with

(Nsmaw) = (Dsmre = s D (Hsm-1y = (Fsm=160) @),

veS(w)

(

we obtain the desired inequality. ]

Lemma 2.36. Suppose that § is a covering system with covering numbers (N1, NEg).
Foranyu,v € T, and [ € £(Ty+m),

(F)smen — (sma) < Nebae, v)(F,, €177 (£))7.

Proof. Suppose that N C ¢ is a covering of T,, with covering number (N7, Ng).
Set N = 0,(u,v) and g = Py, f. There exists (u(1),...,u(N + 1)) € T, such
that u(1) = u,u(N + 1) = v and (u(i),u(i + 1)) € E; foranyi =1,..., N. For
any i, there exist G;1,..., Gi Ny, € # and (u(i,1),...,u(i, Ng + 1)) such that
u(@, 1) =u@),u(i, Ng + 1) =u( + 1) and (u(i, j), u(i,j + 1)) € E;(G;,;) for
any j = 1,..., Ng. Then,

lg(w) —g)] = Z lg () — gu@ + 1))

~
—

Ng

> (Ve 3 lei. )~ g(uti. j + 1))

1 j=1

> (V) 12 26, (P )

M=

i i
S

N

'MZ

(g7 ,,,,,,,Z " snGe ()

N
Il
_-

N =

(NeY? o, s NEERTT  (f))

'MZ

1

< NNE (0 n€L " (). .

~

Lemma 2.37. Let § be a covering system with covering numbers (N7, Ng). Let
n > m. Then, for any u,v € T, and [ € £(Ty,),

1760 = )] = (NEOu (2" @), 7" ) O )

12N, Z( 0 imsi) )Sg(f)%. (2.19)
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Proof. Setv(i) = x" ™ (v) fori =0,...,n —m. Then by Lemma 2.35,
n—m
| f() = (Fsn=mn=mapl < D () gn-m=i @y = (f)sn—m=i+1 -1yl
i=1
n—m 1 1
SN D O i) P ER)7 (2.20)

i=1

The same inequality holds if we replace v by u. Set v/ = 7™ (v) and v’ = 7" (u).
Applying Lemma 2.36, we obtain

() sm-mry = (F)sn-mn] < NEOu @', V)08 o) PELF)P. (221

By (2.20) and (2.21), we have (2.19). [ ]



Chapter 3

Conductive homogeneity and its consequences

3.1 Construction of p-energy: p > dimy g (K, d)

In this section, we are going to construct a p-energy on K as a scaling limit of the
discrete counterparts &,’s step by step under Assumption 3.2, which consists of the
following two requirements:

(3.1) Neighbor disparity constants and (conductance constants) ™! have the same
asymptotic behavior.

(3.2) Conductance constants have exponential decay.

Under these assumptions, the p-energy ép is constructed in Theorem 3.21. Further-
more, in the case p = 2, we construct a local regular Dirichlet form in Theorem 3.23.
The question when Assumption 3.2 is fulfilled will be addressed in Section 3.3.
As in the previous sections, we continue to suppose that Assumptions 2.6, 2.7,
2.10 and 2.12 hold. Moreover, throughout this section, we fix p > 1.

Definition 3.1. For M > 1,m > 0 and n > 1, define

EM,pomn = Max Ey pm (v, Tr).
veTy

Remark. Theorem 6.3 shows that Exs p m.» is finite.

Assumption 3.2. Let § be a covering system. There exist ¢1,c3 > 0 and o € (0, 1)
such that
c1 =< 8M*,p,m,n01}i,m,n = 3.1
and
8M,k,p,m,n =< C2am (3.2)
foranym > 0,n > 1.
Hereafter in this section, we fix a covering system § with covering numbers
(N1, Ng) and use op s, (r€sp. 0p,,) in place of CT;Zm’n (resp. oim) for simplicity of
notations.

By [34, Theorems 4.7.6 and 4.9.1], we have the following characterization of (3.2)
under Assumption 2.15.

Proposition 3.3. Under Assumption 2.15,
im (6, pm)™ <1 ifandonlyif p > dimgr(K.d).
m—00

In particular, (3.2) holds if and only if p > dimggr(K, d).
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Note that since K is assumed to be connected, we have dimgg (K, d) > 1, so that
p>1

In the following definition, we introduce the principal notion of this paper called
conductive homogeneity. Due to Theorem 3.5, conductive homogeneity yields (3.1).

Definition 3.4 (Conductive homogeneity). Define

EMpm = sup  Empm(w, Tiy)).
weT, |lw|>1

A compact metric space K (with a partition { Ky, },,er and a measure ) is said to be
p-conductively homogeneous if

SUp 0p,mEM,,pm < OO. (3.3)
m=>0

Remark. Asin the case of Eus,p m.n, Em,p,m is always finite due to Theorem 6.3.

Remark. As we will see in Theorem 3.33, if p > dimggr (K, d), then the conductive
homogeneity is solely determined by the conductance constants. Consequently, it is
independent of a choice of a covering system &. So, in the case p > dimgr(K, d),
the covering system J . is good enough in the end.

Theorem 3.5. If K is p-conductively homogeneous, then (3.1) holds.

A proof of Theorem 3.5 will be provided in Section 3.3.
Under conductive homogeneity, it will be shown in Theorem 3.30 that there exist
c1,c3 > 0and o > 0 such that

c10™ <opmn <c20™ and 107" < Em, pm(V. Tn) <207

foranym > 1,n > 0 and v € T},. This is why we have given the name “homogeneity”
to this notion.

Now we start to construct a p-energy under Assumption 3.2. An immediate con-
sequence of Assumption 3.2 is the following multiplicative property of 6p m.x.

Lemma 3.6. There exist c1,co > 0 such that
C10p.mn+kOp,nk = Opnt+mk = C20pm n+kOp,n.k
foranyk > 1, andm,n > Q.
Proof. By (2.14), we have
8M,.<,p,n~|-m,k = CgM*,p,m,n—i—kgM*,p,n,k-
This along with (3.1) shows
C10p,mn+kOpn,k = Opn+m,k-
The other half of the desired inequality follows from Lemma 2.34. |

Next, we study some geometry associated with the partition { Ky, }yper-
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Definition 3.7. Let L > 1. Define

nr(x,y) = max{n | there exist w, v € T, such that

x € Ky, ye Kyandv € I'p(w)}.
Furthermore, fix 7 € (0, 1) and define
8§r.(x,y) = &), (3.4)

Recall that 4,: T — (0, 1] is given as h,(w) = r'®!. Since A?r =T,ifr" ! >
s > r", where
Al ={w |weT, h(rw)) >s>h(w)}

8, is nothing but 82’ defined in [34, Definition 2.3.8].
By [34, Proposition 2.3.7] and the discussions in its proof, we have the following
fact.

Proposition 3.8. Suppose that d is a metric on K giving the original topology
of K. Let L > 1. There exists a monotonically non-decreasing function np: [0, 1] —
[0, 1] satisfying lim; | ny(t) = 0 and 6p.(x,y) < nr(d(x,y)) forany x,y € K.

Proof. Define

A ={vlveAlr xek) Ures= |J K

veA (x)

and
hr hy
Ures) = | Uy (y.9)
yeU(?" (x,s)

for s € (0, 1] and x € K. First we show that for any & > 0, there exists y, > 0 such
that 87 (x, y) < & whenever d(x, y) < y.. If this is not the case, then there exist
g0 > 0, {xy}n>1 and {y,}n>1 such that d(x,, y,) < % and &7, (xn, ) > €o. Since
K is compact, choosing an adequate subsequence {ny }x— o, We see that there exists
x € K such that x,, — x and y,, — x for k — oo. By [34, Proposition 2.3.7],
Ug” (x, £2) is a neighborhood of x. Hence both x,, and y,, belong to U(f" (x,22)
for sufficiently large k. So, there exist w,v € Aif(: /2.0 (x) such that x,, € Ky, and
Vni € Ky. Since x € Kyy N K, we see that y € Ulhr(x, £0), so that 87 (X, Yny) < 2.
This contradicts the assumption that 87 (x,, y,) > €o. Thus our claim at the beginning
of this proof is verified. Note that with a modification if necessary, we may assume
that y, is monotonically non-decreasing as a function of ¢ and lim, ¢ y, = 0. Define

nL(t) = infle | e > 0, < y,}.

Now it is routine to see that 7 is the desired function. |
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Let T, = {w(1),..., w(l)}, where | = #(T}). Inductively we define K, by

Kya) = Kway and Ky = w(k+l)\( U Kw(z))
i=1,.

Note that (2.4) implies that w(By,) = 0 for any w € T,, and hence we have
Ky 2 0y and u(Ky\Kyp) =0
for any w € T},. The latter equality is due to (2.4). Now define J,,: £(T,,) — RX by
Inf =" fwig, (3.5)

weTy

Since K,, is a Borel set, J, / is u-measurable for any f € £(T}). The definitions
of Ew and J, depend on an enumeration of T, but J, f stays the same in the u-a.e.
sense regardless of an enumeration.

Define

&3 (f) = opm-116] (/). (3.6)
N The next lemma yields the control of the difference of values of J, f through
&y (f).
Lemma 3.9. Suppose that Assumption 3.2 holds. There exists C > 0 such that for
anyn > 1, f €e {(T,)and x,y € K,

| ))@) = Un )] < CaBER ()7,
where m = min{nr (x,y),n}.

Proof. Let m = min{ny (x, y), n}. Then there exist w, w’ € T, v € S" ™ (w) and
u e S"™(w')suchthat x € Ky, y € Ky, (Jo f)(x) = f(v), (J», f)(y) = f(u) and
w' € T 42(w). By (2.19),

1£@) = Ol < ¢ Y Opnomim+i) 7 ELS)T. (3.7)
i=0

where ¢ = max{2(N«)?, Ng(L + 2)}. Lemma 3.6 shows that
C10p,m+i—1,10p.n—m—i,m+i = Op.n—1,1-
Combining this with Assumption 3.2, we obtain
. < m-+i
Opn—m—i,m+i = C3Q Op,n—1,1-

Using (3.7), we see
1) = f()] < caa?ER(f)7. "
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By this lemma, the boundedness of ég (fn) gives a kind of equicontinuity to the
family { f,}»>1 and hence an analogue of Arzela—Ascoli theorem, which we present
in Appendix 6.3, shows the existence of a uniform limit as follows.

Lemma 3.10. Suppose that Assumption 3.2 holds. Define t = llgi‘: Let f,, € £(Ty)
foranyn > 1. If

sup é;(fn) <oo and sup|(fu)T,| < 00,
n>1 n>1

then there exist a subsequence {ny }x>1 and f € C(K) such that {J,, fn,} converges
uniformly to f as k — oo, &,* (fny) is convergent as k — oo and

F@) = FOIP = Co(d(x, y)" Jim &3 (fo,),
where ng was introduced in Proposition 3.8.

Proof. Set Cx = sup,>, gl’,‘(fn). By Lemma 3.9, if n > np (x, y), then

ny(

[ fa0) = Jn fa )] < Ca™™ 5 (CF < Cop(d(x.y)F(C)F.  (3.8)

In the case n < ny(x, y), there exist w, w’ € T, such that x € Ky, J, fu(x) =
f(w),y € Ky, Jpfu(w') = f(w') and w’ € I'z42(w). So there exists an E, -path
(w(0), ..., w(L + 2)) satistying

w0)=w and w = w(L +2).

By Lemma A.1,

L+1

|fw) = f@NIP < (L +2)P71 Y | fw@) = f(wii + D)

i=0
< (L+2)P7'€)(fo)-
On the other hand, since g;} (fn) < Cx, Assumption 3.2 implies

€, (fu) = (Ul”n—lyl)_lc* < 26M, pn-1,1Cx = (c2)?a™1C,.

Thus we have ., .
| Jn fu(x) = Jn fu(P)| < car (Cy)7. (3.9

Making use of (3.8) and (3.9), we see that
T 1 n 1
[Jn fn(x) = Jn fn(P)] = Cnr(d(x, 9)) 7 (Cx) 7 + car (Cy) 7

forany x, y € K. Applying Lemma D.1 with X = K, Y =R, u; = J; f;, we obtain
the desired result. |
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Definition 3.11. Define P,: L'(K, u) — £(T,) by
1
(P = | fap
p(w) Jk,
forany n,m > 1. For f € £(Ty), we define

Pnf:Panf~

The next lemma is one of the keys to the construction of a p-energy. A counterpart
of this fact has already been used in Kusuoka—Zhou’s construction of Dirichlet forms
on self-similar sets in [36].

Lemma 3.12. Under Assumption 3.2, there exists C > 0 such that for any n,m > 1
and f € LY(K, ) U (Uks1 €(Tr)),

CEN(Puf) < EXT™(Pusm [)- (3.10)
In particular,

Csup M (P, f) < lim E"(P, f) < Tim EM(P,f) <sup&'(P,f)  (3.11)
n—oo n>0

n>0 n—o00
forany f € LY(K, ).
Remark. This lemma holds without (3.2).

Proof. Note that P, f = Py m(Prim f). Let N C ¢ be a covering of (T,, E,;) with
covering numbers (N7, Ng). By Lemma 2.27,

gg(Pnf) < C2.270p,m,n8;+m(Pn+mf)~

Hence

~ o} ~
E,(Pnf) < O e Ex" (Putm f).
Op,n—1,1 Opn+m—1,1

By Lemma 3.6, we have (3.10). ]

By virtue of the last lemma, we have a proper definition of the domain W? of
a p-energy given in Theorem 3.21 and its semi-norm N,.

Lemma 3.13. Define

WP ={f | f € LP(K.p).sup & (Puf) < +oo},
n>1

and

Mm=g@wﬂ%
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for f € WP Then WP is a normed linear space with norm || - ||p.,. + Np(-), where
|| - Ip, . is the LP -norm. Moreover, for any f € WP, there exists fi« € C(K) such that
f(x) = fu(x) for p-a.e. x € K. In this way, WP is regarded as a subset of C(K) and

|f(x) = fODIP = Cnr(d(x, y)* Np(f)P (3.12)

forany f € WP and x,y € K, where n, was introduced in Proposition 3.8. In par-
ticular, Np(f) = 0 ifand only if f is constant on K.

If no confusion may occur, we write || - ||, in place of || - [|5,,, hereafter.
In fact, (WP, || - ||, + Np(-)) turns out to be a Banach space by Lemma 3.16.

Proof. Note that
~ 1 ~ 1 ~ 1
E,(f +8)7 =&65()7 +&E5(8)7

and so & 5 ()% is a semi-norm. This implies that N, (-) is a semi-norm of ‘W?.
For f € ‘W7, by Lemma 3.10, there exist {ng }x>1 and fx € C(K) such that

as k — oo and

1) = fu0)IP = Crp(d(x, y)* Tim €3 (P, f).

Since [y Pny fdjt — [ frdpask — oo, it follows that [ fdu = [ fidu
forany w € T. Hence f = f for u-a.e. x € K. Thus we identify f, with f and so
f € C(K). Moreover, (3.12) holds for any x, y € K. By (3.12), N,(f) = 0 if and
only if f is constant on K. n

We now examine the properties of the normed space (W2, || - ||, + N, (-)). The
intermediate goals are to show its completeness (Lemma 3.16) and that it is dense
in C(K) with respect to the supremum norm (Lemma 3.19).

Lemma 3.14. Suppose that Assumption 3.2 holds. The identity map
I (WP - lp + Np () = (C(K), |- [loo)
is continuous.

Proof. Let { fu}n>1 be a Cauchy sequence in (W2, | - ||, + N,(-)). Fix xo € K and
set gn(x) = fu(x) — fu(xo). Then

122 (X) = gm(X)] = [(fn(x) = fon (X)) = (f(x0) = fon(x0))]
< Cnr(d(x,%0)) 7 Np(fo = fon)
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for any x € K and n,m > 1. Thus {g,},>1 is a Cauchy sequence in C(K) with
the norm || - ||co, SO that there exists g € C(K) such that ||g — gx]lco = 0 asn — oo.
On the other hand, since { f; }»>1 is a Cauchy sequence of L? (X, ), there exists f €
LP(X,p) suchthat || f, — f|l, = 0asn — oo. Thus f,(xo) = f» — gn converges
asn — ooin L? (K, ). Let ¢ be its limit. Then f = g 4 ¢ in L? (K, u). Therefore,
feC(K)and || fu — flloo > 0asn — oc. ]

Define W2 as the completion of (W2, || - | p + Np(-)). Then the map I is extended
to a continuous map from ‘W, — C(K), which is denoted by / as well for simplicity.

Lemma 3.15 (Closability). Suppose that Assumption 3.2 holds. The extended map
1:' WP — C(K) is injective. In particular, W? is identified with a subspace of C(K).

Proof. Let { fu}n>1 be a Cauchy sequence in (W2, || - ||, + Ny,(-)). Suppose that
limy,— 00 || fnlloo = 0. Note that

EX(Pic f — P fm) < sup EL(PL fu — Pifm) = Np(fu — f)?

for any k,n, m > 1. Hence, for any ¢ > 0, there exists N € N such that
EX(Pif— Pifm) <€
forany n,m > N and k > 1. As || filleo — 0 as m — oo, we see that
EX(Pef) <e

forany n > N and k > 1 and hence N, (f,)? < eforanyn > N.Thus, N,(f,) — 0
asn — oo, so that f, — 0in W? asn — oo. ]

Lemma 3.16. Suppose that Assumption 3.2 holds. Then
WP = WP,

Proof. Let{ f,}n>1 be a Cauchy sequence of W» and let f be its limit in WP 1t fol-
lows that | f — fulloo = 0 as n — oo. Using the same argument as in the proof of
Lemma 3.15, we see that for sufficiently large n,

CEX(Pifu—Pif) <e
for any k > 1. Since
Sk 1 Sk 1 Sk 1
E,(Prf)? <&, (Prf — Pefn)? + &5 (Pr fn)7,

it follows that supy -, éll,‘(Pkf) < oo and hence f € WP, ]
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Lemma 3.17. Suppose that Assumption 3.2 holds.

(1) Let {ng}x>1 be a monotonically increasing sequence of N. Suppose that
Sy € LTy ) for any k > 1, that supy Ep% (fn,) < 00 and that there exists
f € C(K) such that || Jy, fn, — flloo = 0ask — oo. Then f € WP,

(2) Let f,g € WP. Then f-g € WP,

Proof. (1) Set C1 = sup~ &* (f,)- By (3.10), if n < ny, then

CEJ(Pufu) < &' (fu)) =< C1.
Letting [ — o0, we obtain
CEH(Pnf) =Cy

for any k > 1. This implies f € W?.
(2) For any ¢, ¥ € £(T,),

1
E i) =2 Y leyw)—g®)y©)”

(w,v)EE
1
=272 Y (el () =y ) + o) — @) [y 0)]”)
(w,v)eE,;

<277 (llpllZ&7 (@) + V15,65 (¥)).

Hence if h, = P, f-P,g, then
€0 (hn) < 277 (1 FI12,E0(Pu f) + lIgIZER (Pug)).-

Since f, g € Wy, we see that sup,,- gl’,’(hn) < 00. Moreover, ||Jnhy — fglloo — 0
as n — oo. Using (1), we conclude that fg € WP, ]

Lemma 3.18. Suppose that Assumption 3.2 holds. There exist a monotonically in-
creasing sequence {m;}jeN and hy, ¢y . € WP forw € T such that

(@) Foranyw e T,

. * *
jlifgo ”Jm.i hM*,w,mj—lwl B hM*,w lloo

. * * —
B Jlggo ”Jm_/(pM*,w,mj—lw\ ~PMaw loo =0,

where hL* w.m and (p;“}* w.m are defined in Definition 2.20. For negative val-

* _ * * _
ues of m, we formally define hM*.w,k—IwI = Prhyy, .0 and P ] =
Pk(pj’f,l* wofork=0,1,... |w|

(b) {glr’nj(h;l*,w,m_,-—|w|)}./21 and{glr,nj((p;l*,wjmj_lw‘)}jzl converge as j — 00.
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(c) SerUpy(w) = UveFM(w) Ky. Foranyw € T, h;[*,w: K — [0, 1] and

1 ifx € Ky,

0 ifx ¢ Un,(w).

(d) Foranyw €T, ¢y 0 K — [0,1], supp(ey,, ) S Unm, (w), and
it () = (L)~

for any x € Ky,. Moreover, for any n > 1,

Z Orw = 1.

weTy

hM*,w (x) = {

(e) Foranyw € T and x € K,

hyg, 0 (X)

- .
veT\wl hM*,U(x)

wikl*,w (x) = Z

Remark. The family {¢y, . }wer, isa partition of unity subordinate to the covering
{UM* (w)}WETn .

Proof. For ease of notation, write @y, ,, = @pr o o and hy, . = hy, .
ma 2.19, (3.1) and Lemma 3.6, we see that

Erm(pr ) < (L)*MT + 120, 1wl 4m—1,18M,p.m (W, Tiw))

-1 /
= Cop,jwl+m—1,10p || = C Op,Jw|-1,1

By Lem-

forany w € T and m > 0. Similarly,
EYIT (M) < Clop 1,1

Hence Lemma 3.10 shows that, for each w, there exists {nj}x—o such that the
sequence {Jjy|+n; gy n, te=1 (€SP. {Jjw|+m; Poy.n, Jk=1) converges uniformly as
k — oo. Let h}, (resp. ¢,;) be its limit. Lemma 3.17 (1) implies that 4}, € ‘W? and
@y € WP, By the diagonal argument, we choose {m;};>; such that (a) and (b)
hold. Statements (c), (d) and (e) are straightforward from the properties of h:)’m
and @y, .- L]

Lemma 3.19. Under Assumption 3.2, WP is dense in (C(K), || - |loo)-

Proof. Choose xy, € Ky, foreachw € T. For f € C(K), define
Jn = Z f(xw)q)]t[*,w-

weTy,

Then by Lemma 3.18, it follows that || f;, — f ||cc — 0 as n — co. Hence 'W? is dense
in C(K). [
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Definition 3.20. For /' € LY (K, i), define f by

1 if f(x)>1,
Fx) =2 fx) if0< f(x) <1,
0 if f(x) <0
forx € K.

Now we construct the p-energy 3 » as a I'-cluster point of & » (P ). The use of
I'-convergence in the construction of Dirichlet forms on self-similar sets has been
around for some time. See [13,20] for example.

Theorem 3.21. Suppose that Assumption 3.2 holds. Then there exist SAP: WP —
[0, 00) and ¢ > 0 such that

AL .
(@) (&p)7 is a semi-norm on WP and

CNp(f) < Ep(1)7 < Np(f) (3.13)
forany f € WP,
(b) Forany f € WP, ]76 WP and
ép(f_) = é\p(f)

(c) Forany f € WP,

1f() = FOIP < enn(dx, 1) E,(f).

In particular, for p = 2, (éz, ‘W2) is a regular Dirichlet form on L*(K, jv) and the
associated non-negative self-adjoint operator has compact resolvent.

Property (b) in the above theorem is called the Markov property.

Theorem 3.22 (Shimizu [41]). Suppose that Assumption 3.2 holds. Then the Banach
space (WP, || - ||, + &,(°)) is reflexive and separable.

Remark. In [41], the reflexivity and separability are shown in the case of the planar
Sierpifiski carpet. His method, however, can easily be extended to our general case
and one has the above theorem.

Proof of Theorem 3.21. Define é"‘ L?(K, ) — [0,00) by é”(f) = é”(P f) for
f e LP(K ). Then by [12, Proposmon 2.14], there exists a I"-convergent subse-
quence {8 *}k>1. Define 8 as its limit. Let f € 'WP?. Then

E,(f) < lim &M (f) < sup EX(Paf) = Np(f)P.

k—o00
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Let { fu, }x>1 be a recovering sequence for f,i.e., | f — fu,llp = 0 as k — oo and
limg 00 6% (fu,) = Ep(f). By (3.12),if ng > n, then

CEM(Pn fu) < EMC(Puy fu) = €M% (fr)-
Letting k — oo, we obtain
CENPuf) < &5().

so that R
CNp(f)? < &p(f).

The semi-norm property of ép ()% is straightforward from basic properties of I'-
convergence. B
Next we show that €,(f) < &,(f) forany f € W?. Define

Onf =) (Paf) W)k, (3.14)

weTy

Then

[K ) = Ou f) P e(dy)

1
=2 | (aw | 0 = f@Ip) )

< ﬁ e | f() = I u(dx)pn(dy).
weTy wXBw

This shows that if f € C(K), then || f — Q, f|p, = 0asn — oo. Let { f5, }x>1 be
a recovering sequence for f. Since

If = 0nglpy <I1f = Qnfllp +10nf — Onglly
<If = Oufllp + 10nf — Onglly
<Nf=0nflp+ 1S =2l

it follows that || f — Oni fuillp = 0asn — oo. Then

Ep(f) < lim &M (Qny fny) = lim &M (Py fur)
— 00 — 00

k k
< lim &3 (P fuy) = lim E3(fu) = Ep(f)-
k—o0 0

Finally for p = 2, since a I'-limit of quadratic forms is a quadratic form, we see
that (éz, ‘W?) is a regular Dirichlet form on L?(K, u). Since the inclusion map from
(W2, || - l2 + Np(+) to (C(K), | - |loo) is @ compact operator, by [17, Exercise 4.2],
the non-negative self-adjoint operator associated with (&, W#) has compact resol-
vent. [
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For the case p = 2, due to the above theorem, W2 is separable. Hence, we may
replace ["-convergence by point-wise convergence as seen in the following theorem.
This enables us to obtain the local property of our Dirichlet form, which turns out to
be a resistance form as well.

Theorem 3.23. Suppose that Assumption 3.2 holds for p = 2. Then there exists a sub-
sequence {my }x>1 such that {&5 (P, f Pm, ) }k>1 converges as k — oo for any
f. g € W2, Furthermore, define &( £, g) as its limit. Then (€, W?) is a local regular
Dirichlet form on L?>(K, i), and there exist ¢y, c2, c3 > 0 such that

Mo (f) < E(f, )2 < cada(f) (3.15)

and

| /() = fODI? < eane(d(x, »))TE(S. f) (3.16)

forany f € W?and x,y € K. In particular, (€, W?) is a resistance form on K and
the associated resistance metric R gives the original topology O of K.

Proof. Existence of {my}r>1: By Lemma 3.21, the non-negative self-adjoint oper-
ator H associated with the regular Dirichlet form (éz, ‘W?) has compact resolvent.
Hence there exist a complete orthonormal basis {¢; };>1 of L?(K, ) and {A;};i>1 €
[0, 00) such that Hp; = A;j¢; and A; < Aj4; for any i > 1 and lim; 0 A; = 00.
Note that { —2—1};>1 is a complete orthonormal system of (W2, (-, )2, + ép -,*).

A 1+A;
Hence setting

{f’v:{aill/fil‘f_""i_aimwjm|le,i1,...,imZl,ail,...,aimEQ},
we see that ¥ is a dense subset of W?. For any f, g € ¥, since
~ = 1x 1
165 (Pn f. Png)| < €5 (Pn [)2E3(Png)? < Na(f)Na(g),

some subsequence of {gf(P,, /o Png)}n>1 is convergent. Since ¥ x F is countable,
the standard diagonal argument shows the existence of a subsequence {my }x>1 such
that g;"k (Pmy [, Pm, g) converges as k — oo for any f, g € ¥. Define &>(f, g) as
its limit. For f, g € W2, choose { f;}i>1 € ¥ and {g;}i>1 € ¥ such that f; — f and
gi — gasi — ooin W2, Write ék(u, V) = g;"k (Pmyu, Py, v) for ease of notation.
Then

1Ec(f,8) — &E1(f. 0)| < 1&k(f. ) — Ex(fi @) + €k (fiv 8) — Ek(fi, 80
+ 18k (fi-gi) — E1(fi gi)| + 1&1(fiv g1) — E1( i, 0]
+1&1(fi.8) —Ei(f9)]

<& (fi, &) — E1(fiv gi)| + 2N (fi) Na(g — £1)
F 2N (f — f)Ma(g).
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This shows that {ék (f.8)}k>1 is convergent as k — oo. The equivalence between N,
and &, (3.15), is straightforward.

Strongly local property: Let f, g € WP. Assume that there exists an openset U C K
such that supp(f) € U and g|y is a constant. Consequently, for sufficiently large &,

Ex(f.g) =0, 50 that &(f. ) = 0.
Markov property: By (3.13) and (3.15),

0<&(f f) < &(f 1)

forany f € W2, Since (éz, W2)isa regular Dirichlet form, by [16, Theorem 2.4.2],
we see that & ( f, g) = 0 whenever

fige W2 and f(x)g(x)=0

for u-a.e. x € K. Now by the same argument as in the proof of [7, Theorem 2.1], we
have the Markov property.

Resistance form: Among the conditions for a resistance form in [32, Definition 3.1],
(RF1), (RF2), (RF3), and (RF5) are immediate from what we have already shown.
(RF4) is deduced from (3.16). In fact, (3.16) yields that

R(x.y) < enp(d(x, )"

for any x, y € K. Assume that R(x,,x) — 0 as n — oo and lim,, o0 d(x, X,) > 0.
Note that the collection of

ULh’(x,r”)z U ( U KU)

weTy:xeKy velp(w)

for n > 1 is a fundamental system of neighborhoods of x by [34, Proposition 2.3.9].
Therefore, there exist n > 1 and {X,,, }x>1 such that x,,, ¢ ULh’ (x,r™) forany k > 1.
Choose w € T, such that x € K. Then x,,, belongs to K, for some v € I'z (w)°.
So,

hi (x) =1 and A7 , (xm,) = 0.

Hence 1
R(xy, ,x) > ———
(e ) g
for any k > 1. This contradicts the fact that R(x, X, ) — 0 as k — oo. Thus we
have shown d(x,, x) — 0 as n — oo. Hence the topology induced by the resistance
metric R is the same as the original topology . |
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3.2 Construction of p-energy: p < dimyg (K, d)

In this section, we will consider how much we can salvage the results in the pre-
vious section if p < dimggr(K, d). Honestly, what we will have in this section is
far from satisfactory mainly because we have no proof of the conjecture saying that
WP N C(K) is dense in C(K) with respect to the supremum norm. In spite of this,
we present what we have now for future study.

Throughout this section, we assume (3.1) and fix a covering system .

For p < dimygr(K, d), a choice of a covering system really matters. As we
have ogserved in Proposition 2.31, if {w,v} € g and K,, N K, is a single point,
then o

p>m,|w| — 1
EM,,pm,lw| < c2 for any m, so that lim,;, 00 (Epr,,,p,m)™ < 1. As long as

> 1 for any m > 1. However, since we assume (3.1), this yields that

p = dimyr(K, d),

this inequality does not cause any inconsistency with Proposition 3.3. On the con-
trary, if p < dimygr(K, d), then this seems troublesome. For example, in the case
of the unit square, a direct calculation shows that limyn— 00 (& M., p,m)% > 1 for any
p < dimyg([—1, 1]?) = 2. A similar situation is expected in other cases including
the Sierpinski carpet. So, for p < dimyg(K, d), one should carefully choose ¢ to
avoid a pair sharing only a single point. In the case of the unit square, §, given in
Example 2.32 works for p < 2.

As in the previous section, we use 0p,, (1€Sp. 0p m,n) in place of 01‘,1, m (reps.

&
Op,m,n)-

Under (3.1), it is straightforward to see that Lemma 3.12 still holds. Replacing
(C(K), || - loo) bY (LP(K, ), || - ||p) in the statements and proofs of Lemmas 3.15
and 3.16, we have the following statement.

Lemma 3.24. ‘'W? is a Banach space with the norm || - ||, + Ny (+).

Lemma 3.25. Let p > 1. If { fu}n>1 is a bounded sequence in the Banach space
‘WP, then there exist {ny }x>1 and f € WP such that f is the weak limit of { fn, }x>1
in LP(K, ),

£y = sup I fullp and  Np(f) < sup Np (fn)-
n> n=

Proof. Since L?(K, p) is reflexive, { f4}»>1 contains a weakly convergent sub-se-
quence { fn, }k>1. (See [46, Section V.2].) Let f € L?(K, 1) be its weak limit. Since
the map f — (Py, f)(w) is continuous, we see that Py, f,, — Py f as k — oo and
hence

~ o~ 1
81’;!(me) = klglgo 81’;n(menk) = ]Sclifl) Np(fnk)p- u
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Lemma 3.26. Let p > 1. Suppose that f, € £(T,) for any n > 1 and that

sup [|Jn full, < 00 and sup &2 (fy) < oo

n>1 n>1

Then there exist a subsequence {ni}r>1 and f € WP such that f is the weak limit
of {Jny fuy tik=1 in LP(K, ) and

1/ Mo < sup I nfully and  CNp(f)? < sup &, (fn)-
n>1 n>1
Proof. Since L?(K, ) is reflexive, {J, fn} possesses a weak convergent sub-se-

quence {J,, fn, }k>1. (See [46, Section V.2].) Let f € L?(K, 1) be its weak limit.
Lemma 3.12 shows that if n; > m, then

CEM (P fu) < M (P Iy fn) = EXF (fu) < sup EX ().
n>1

Letting k — oo, we see
CEM(Puf) < sup &y (fn)

forany m > 1. Thus f € W? and CN,(f)? < sup,>; gl’,‘(fn) [
Using this lemma, we have a counterpart of Lemma 3.18 as follows.
Lemma 3.27. There exist {h},}wer and {¢;, }wer S WP such that

(@) Set Un, (w) = Uyer,,, ) Kv- Foranyw € T, hy,: K — [0, 1] and

1 ifx € Ky,

) = {o iFx ¢ Unt, (w).

(b) Foranyw €T, ¢5: K — [0, 1], supp(ey) € U(w), and

0 (xX) = (Li) ™M

for any x € Ky,. Moreover, for any n > 1,

D en=1

weTy,
(¢c) Foranyw € T and x € K,
hy (x)
ZUETHU‘ h;’;(x)

By the above lemma, we have the next statement.

P (x) =
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Lemma 3.28. W? is dense in L? (K, ).

Finally, we have the following result on the construction of a p-energy.

~ ~L
Lemma 3.29. There exist §,: WP — [0,00) and c1, ¢ > 0 such that &7 is a semi-
norm,

ANy ()P < Ep(f) < aNp(f)? and €,(f) < &(f)
forany f € WP, In particular, for p = 2, (éz, 'W2) is a Dirichlet form on L>(K, 11).

3.3 Conductive homogeneity

In this section, we study the notion of conductive homogeneity, namely, its conse-
quence and how one can show it.

Throughout this section, we suppose that Assumptions 2.6, 2.7, 2.10 and 2.12
hold. Moreover, we fix a covering system ¢ with covering numbers (N7, Ng). As in
the previous sections, we omit ¢ in the notations of O’I‘:{ m,n and opg, m and use op m.n
and o0, n, respectively. In the end, we will see by Theorem 3.33 that the conductive
homogeneity is solely determined by the conductance constants and a choice of ¢
makes no difference.

The first theorem explains the reason why it is called “homogeneity”.

Theorem 3.30. A metric space A is p-conductively homogeneous if and only if there
exist cy,cp > 0 and o > 0 such that

10" < 8m,.pm(V, Ty) < c207™, (3.17)

and
c10™ < 0pman < c20™

foranym >0,n > landv € T,.
An immediate corollary of this theorem is Theorem 3.5.

Corollary 3.31 (Theorem 3.5). If K is p-conductively homogeneous, then (3.1) holds.

Proof of Theorem 3.30. Assume that K is p-conductively homogeneous. Then by
formula (2.18), there exists ¢; > 0 such that

c1 = O—p,mE’bM*,p,m-
Also by Lemma 2.34, there exists ¢, > 0 such that

Opmtn = C20p,mOp.n (3.18)
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for any n, m > 0. Moreover, by (2.14), there exists ¢z > 0 such that

EM.,pm+n < C3EM,,.pmEM..,p.n

for any n,m > 0. These inequalities along with (3.3) shows that there exist c4,c5 > 0
such that

C40p.mOp.n = Op.m+n = C50p mOp.n and ¢4 < O—p,mE’bM*,p,m =cs5
for any m,n > 0. From these, there exist cg,c7 > 0 and o > 0 such that
c60™ < 0pm <c70™ and ceo™ < (("211,1*,1,,,,,,)_1 < c70™
for any m > 0. Hence forany w € T and n > 1,
c60™ < (Epm) ™" < (EMepm(w, Tn)™" and  0pmp < c70™.
Making use of (2.18), we see that there exists cg > 0 such that
c60™ < (EMy.pm(W. Ty)) ™" < 80pmm < csc70™

foranym > 0,n > land w € T,.
The converse direction is straightforward. ]

Next, we show another consequence of conductive homogeneity. For simplicity,
we set &, (U, v, Sk(w)) = &pm{u}, {v}, S*(w)). (In other words, we deliberately
confuse u with {u}.)

Lemma 3.32. If K is p-conductively homogeneous, then there exists ¢33 > 0, de-
pending only on p, Ly, N, My, k, N7, Ng, such that

EM,pom < 3308pm (U, v, Sk(w))
foranym =0, w € T andu,v € S*(w) withu # v.
Proof. By (2.16), we see that
Ep.0(, v, S¥(W)) < €2270p mEpm(u, v, S¥(w)).
Using Theorem 6.3, it follows that
ce(Le, (NOF. p) < Ep0(u, 0. S (W) = €2210pmEp.m(u. v, S*(w)).
Now Theorem 3.30 suffices. |

When p > dimgr(K, d), the converse direction of the above lemma is actually
true.
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Theorem 3.33. Assume that there exist ¢ > 0 and o € (0, 1) such that
EM.,pm < ca™ (3.19)

Sfor any m > 0. Then K is p-conductively homogeneous if and only if for any k > 1,
there exists c(k) > 0 such that

& pm < c(k)Epm(u, v, S*(w)) (3.20)

foranym >0, w € T and u,v € SK¥(w) with u # v. In particular, under Assump-
tion 2.15, if p > dimyg(K, d), then whether K is p-conductively homogeneous or
not is independent of neighbor disparity constants and hence a choice of a covering
system &.

The last part of the theorem justifies the name “conductive” homogeneity.

In fact, (3.19) is the same as (3.2). Recall that, by Proposition 3.3, (3.19) holds if
and only if p > dimyg (K, d) under Assumption 2.15.

As was mentioned in the introduction, (3.20) is an analytic relative of the “knight
move” condition described in probabilistic terminologies in [36]. The name “knight
move” originated from the epoch-making paper [1] where Barlow and Bass con-
structed the Brownian motion on the Sierpifiski carpet.

The proof of the “only if” part of the above theorem is Lemma 3.32. A proof of
the “if” part will be given in Chapter 5.

In the next chapter, we are going to give examples for which one can show p-
conductive homogeneity by Theorem 3.33.

In the rest of this section, we study asymptotic behaviors of the heat kernel
associated with the diffusion process induced by the Dirichlet form (&, W?) under
Assumption 2.15. The next lemma shows that the associated resistance metric is bi-
Lipschitz equivalent to a power of the original metric.

Lemma 3.34. Suppose that Assumption 2.15 holds, p > dimyr(K, d) and K is p-

conductively homogeneous. Let o be the same as in Theorem 3.30 and set t, = — llzi ‘:
Then there exist c1, ¢ > 0 such that
_ p
c1d(x,y)” < sup If(x)A—f(y)I < cpd(x,y)%” (3.21)
FeWP Ey(f)#0 Ep(f)
forany x,y € K. In particular, if 2 > dimygr (K, d), then
c1d(x, )2 < R(x,y) < cad(x,y)™ (3.22)

forany x,y € K, where R(x, ) is the resistance metric associated with the resistance

form (€, W?).
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Proof. Since &} (hy, EmM.,p,m—lw| (W, Tjy|), we have

e m—lw]) =
clo_m+|w| < glr)n(h;l*,w,m—\m) < 020_”’+|w|
by (3.17). This shows
crol < ép(h&*,w) < covl,
Note that d is M- adapted to &, by Assumption 2.15. Hence by [34, (2.4.1)],
c1d(x,y) < dm.(x,y) < c2d(x,y) (3.23)

forany x,y € K. Choose n = np, (x,y) + 1. Let w € T, satisfying x € Ky,. Since
n > nyr, (x,), it follows that if v € T, and y € Ky, then v ¢ I'ps, (w). Hence

Ry, w(x) =1 and hy, ,(y)=0.
Therefore (3.4) and (3.23) yield

lfx) = FDI? 1
sup — >
rewr gy (N0 Ep(f) Ep(Mag, )

> c(0p) ™" = "M CN% > d(x, y).

On the other hand in this case, 1y, (t) = ¢ by (3.23). Hence Theorem 3.21 (c) implies
the other side of the desired inequality. |

Due to the general theory of resistance forms in [32], once we have (3.22), it is
straightforward to obtain asymptotic estimates of the heat kernel.

Theorem 3.35. Suppose that Assumption 2.15 holds, 2 > dimgr(K, d) and K is 2-
conductively homogeneous. Set 1. = 1. Then there exists a jointly continuous hear
kernel p, (t,x,y) on (0,00) x K x K associated with the diffusion process induced
by the local regular Dirichlet form (&, W?) on L?(K, i). Moreover,
(1) There exist B > 2, a metric p, which is quasisymmetric to d, and positive
constants c1, Ca, 3, C4 such that

exp (—CZ(M)BL]> (3.24)

pult,x,y) < .

—
w(Bp(x,17))
forany (t,x,y) € (0,00) x K x K and
C3

————— = pult,x,y) (3.25)
w(Bp(x,t8))

foranyy € Bp(x,C4t%).
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(2) Suppose that w is agr-Ahlfors regular with respect to the metric d. Set

ﬂ* = Tx +aH.

Then B« > 2 and there exist c7, cg, 9, 10 > 0 such that

_%H d(X, y)'B* B*l_l
B e (22
pult,x,y) < cet eXP( 67( ” ) ) (3.26)
forany (t,x,y) € (0,00) x K x K and
_oH
cot” Px < pul(t.x,y) (3.27)

oy
forany y € B;i(x,crot P~ ). In addition, suppose that d has the chain condi-
tion, i.e., forany x,y € K and n € N, there exist xo, ..., X, € K such that
X0 = X,X, =y and
Cd(x,y)

n

d(x;, xi41) <

where the constant C > 0 is independent of x, y and n. Then there exist c11,
c12 > 0 such that

0111_% exp (—clz (d(xt—y)ﬂ*yg*]_l) < pu(t,x,y). (3.28)

The exponent oy above is in fact the Hausdorff dimension of (K, d). The expo-
nents B and B are called the walk dimensions.

Proof. We make use of [32, Theorems 15.10 and 15.11]. Since p has the volume
doubling property with respect to d, (3.22) shows that u has the volume doubling
property with respect to R as well. Since K is connected, (K, R) is uniformly perfect.
Moreover, since (&, W?) has the local property, the annulus comparable condition
(ACC) holds by [32, Proposition 7.6]. Thus, (C1) of [32, Theorem 15.11] is verified
and so is (C3) of [32, Theorem 15.11]. Using [32, Theorem 15.11], we have (3.24).
Consequently, by [32, Theorem 15.10], we see (3.25). Thus we have shown the first
part of the statement. The fact that 8 > 2, which is beyond the reach of [32, Theo-
rem 15.10], is due to [25]. See also [33, Theorem 22.2].
About the second part, assuming « g -Ahlfors regularity, i.e., (2.9), we see that

ha(x,s) = gten — Sﬁ*,
where 4 (x,s) is defined as

ha(x,s) = sup R(x,y)- p(Ba(x,s)).
yeB;(x,s)
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Hence following the flow of exposition of [32, Theorem 15.10], we have
g(s) =sP* and @(s) = P71,

where g and ® appear in the statement of [32, Theorem 15.10]. Consequently, by
[32, Theorem 15.10], we obtain (3.26), (3.27) and (3.28). The fact that 8« > 2 can be
shown in the same way as we did for 8 above. ]



Chapter 4

Conductive homogeneity of self-similar sets

4.1 Self-similar sets and self-similarity of energy

In this section, we consider the case where K is a self-similar set with rationally
related contraction ratios and construct self-similar energies under conductive homo-
geneity. Throughout this section, we fix a self-similar structure

£ = (K,S,{fs)ses).

The notion of the self-similar structure was introduced to give a purely topological
description of self-similar sets. See [29, Section 1.3] for details.

Definition 4.1. Let K be a compact metrizable space, let S be a finite set, and let
{ fs}ses be a family of continuous injective maps from K to itself.

(1) The triple (K, S, {fs}ses) is called a self-similar structure if there exists
a continuous surjective map y: SN — K such that

x(s152...) = fs; (x(s253...))

for any 515, ... € SN, where SY is equipped with the product topology.

(2) Define W, = Unzo S”, where S = {¢}. An element (wy, ..., w,) € S" is
denoted by wy ... w,. Forw; ... w, € §", set

fw = fw1 o"'ofwn and K, = fw(K)

In particular, fy is an identity map and Ky = K.

Hereafter in this section, (K, S, { fs}ses) is a self-similar structure.
By [29, Proposition 3.3, if (K, S, { f;}ses) is a self-similar structure, y: SN — K
is uniquely given by

(15293 = () Ksvosm

m=>0

for any 51855 ... € SN,

Typically, an example of self-similar structures is given by a self-similar set with
respect to a family of contractions. Let (X, d) be a complete metric spaces and let
{fi}i=1,.,~ be afamily of contractions of (X, d), i.e., fi: X — X and

W Ui fG)
p <

1
x,y€X,x#£y d(x’Y)
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foranyi € {1,..., N}. Then it is known that there exists a unique non-empty compact
subset K of X satisfying

N
K =] f(K). (4.1)
i=1
See [29, Theorem 1.1.4] for example. The set K is called a self-similar set with re-
spectto{ fi}i=1,..~.By[29, Theorem 1.2.3],if S ={1,..., N}, then (K, S,{fi}ies)
is a self-similar structure.
Definition 4.2. Letr € (0,1) and let j; € N fors € S.
(1) Define
m .
jw)=>"ju, and gw)=r/® (42)
i=1
forw = wy ... wy, € S™. (In particular, j(¢) =0, g(¢) = 1.) Define 7 (wy ... wy) =
Wi...Wpo1forw =wi...wy, € S™ and

A, ={w|w=wi...wy € Wi, g(@(W)) >r" > g(w)}. 4.3)

(2) Set
Ty ={(n.w)|weAm}, T=|]JT,

n>0

and define 1: T — W* as ((n, w) = w. Moreover, define
A={((n,v),m+1Lw))|n=>0,v=worv=mr(w)}

Note that A%, N Afn 41 can be non-empty. (See Section 4.5 for example.) Thus
to distinguish w € A%, and w € Afn 11, we have introduced T}, in the above definition.
The following proposition is straightforward.

Proposition 4.3. The triple (T, A, ¢) is a rooted tree and {Ky, }wer is a minimal
partition of K parametrized by (T, A, ¢).

In the rest of this section, we fix {js}ses and the associated partition (7', 4, ¢).
Furthermore, we presume the following assumption.

Assumption 4.4. There exists a metric d on K giving the original topology of K and
Assumption 2.15 holds with the metric d.

If this assumption is satisfied, we say that { f;}ses has rationally related contrac-
tion ratios {r’s }ses.

In fact, under this assumption, in particular, by Assumption 2.15 (3), there exist
c1, ¢ > 0 such that

c1r’® < diam(Ky. d) < cr’™ (4.4)
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for any w € T'. This enable us to regard the contraction ratio of f; as r/s. This is why
we say that contraction ratios of { fs}ses are rationally related.
Combining (4.4) with Assumption 2.15 (2B), we obtain the following proposition.

Proposition 4.5. Define oy to be the unique number satisfying

ersaH =1

seS

and let | be the self-similar measure on K with weight {r’s®H \¢cs. Then [ is op-
Ahlfors regular with respect to the metric d and ag coincides with the Hausdorff
dimension of (K, d).

Under our assumptions, let o be the same constant as in Theorem 3.30. Note that
even if we replace the definition of & (u), (3.6), by

EM(u) = o™EM (), (4.5)

all the arguments in Section 3.1 work and the results are unchanged. Our goal in this
section is the next theorem.

Theorem 4.6. Let (K, S, { fs}ses) be a self-similar structure and let (T, A, ¢) be
given in Definition 4.2. Suppose that Assumption 4.4 is satisfied and that K is p-
conductively homogeneous for some p € (dimgr(K, d), 00).

(1) Forany w € Wy and f € WP,
fofwe WP
(2) There exists &,: WP — [0, 00) satisfying

1, . .
(@) (&p)7 is asemi-norm on WP and there exist ¢y, c2 > 0 such that

ANy (f) < Ep(f)7 < caNp(f)
and

c1d(x,y)” < sup M
T v, E0(f)

forany f € WP andx,y € K.
(b) Forany f € WP, f € WP and

817(J7) < & (f).

< C2d(-x’ y)‘fp

(¢) Forany f € W2,
Ep(f) =) 0 Ey(fofs).

seS

In particular, for p = 2, (&2, W?) is a local regular Dirichlet form on L?>(K, ).
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Proof. Define

U= {A(~) | A(-) is a semi-norm on ‘W?, there exist ¢, ¢ > 0 such that
Ny (f) = A(f) < caNp(f) forany f € WP}

For Ay, A, € U, we write A1 < A, ifand only if A;(f) < A>(f) forany f € WP,
We give U the point-wise convergence topology, i.e., {A,}n>1 € U is convergent to
A€ Uasn — ooifand only if A, (f) — A(f) asn — oo for any f € WP, Then
due to the separability of ‘W?# described in Theorem 3.22, U is an ordered topological
cone in the sense of [28].

Letw € Wi. Forany v = vy...vx € A,n—jw), since

gwvy...ve—1) = g(w)g(vy ... ve—1) > g(w)r"_j(w) =r" > g(wv),

it follows that wv € A,n. This shows that {(n, wv)|v € A,n—jw } C Ty. In fact,

T, = U {(n,wv) | v e Anjwm},

wesm

which is a disjoint union. This yields

> eIy (fofuw) < EF(Puf)
weSsm
forany f € L?(K, u). Therefore,
> oI WETIW(fofy) < E)(S).

wesm

This inequality implies that /W) SUDP, > j(w) é”‘j(w)(fofw) < Np(f)? < oo for
any f € WP so that fof, € WP. Thus we have verified the statement (1). Again
by the above inequality,

¢ D N (fofu)’ = Y o lim EMI(fofy)

wes” wesm n=eo
< supo E,(f) = Mp(f)P. (4.6)
n>
Note that
Y. VETV(fef) = Y oM WEHTIW (fo ).
(n,v)eTy wesm

By (3.11), taking lim in the left-hand side and sup in the right-hand side, we see that

c Z oj(v)d\/p(fofu)p < Z Uj(w)Np(fOfw)p. 4.7

(n,v)eTy wesSm
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On the other hand, for any (n,v) € T,, and x € K, the self-similarity of u and (3.21)

show

|(Pn )W) = f(X)] = /K | fofu(y) = fofu(xo)| u(dy)

<c /K d(x0. )% 1(d) Ny (fofu) < ' No(fo fo).

where xo = (f,)"!(x). Hence if (1, v), (n,u)) € E}, then
[(Pn )W) = (Pu )@)] = " (Np(fofo) + Np(fofw)).

This along with (4.7) yields

EN=5 X IBHO=E)

((n,v),(nu))EE;

<C Y TN (fofy)? <C" Y T N,(fofu).

(n,v)eTy, weSsm

Taking sup in the right-hand side, we have

Np(f)? <C" Y7 TNy (fofuw)?.

wesm

Now for A € U, define F (A) by

F) = (Lo Afeso?).

seS

For any A € U, since A < ¢ N,, (4.6) implies
F(A) < 2F (Ny) < Np.
On the other hand, the fact ¢; N, < A4 and (4.8) yield
F(A) = c1F (Np) = " Np.
Thus £ (A) € U and F: U — U. It is easy to see that U is continuous and
F(A+ B)<¥F(A)+ F(B).
Combining (4.6) and (4.8), we see that there exist C;, C; > 0 such that

c1Np < ﬁj(wp) <N,

(4.8)

for any j > 1. So, by [28, Theorem 1.5], there exists &« € U such that F (Ex) = Ex.

Define
Uy = {A| A €U A(f) < A(f) forany f € WF}.
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Then ép € Up and Uy is a closed subset of U. Hence by [28, Corollary 1.6], we
see there exists & € Uy such that ¥ (&) = &’. Letting & = (&’)?, we have the
desired &. In the case p = 2, define

Upr ={A | A € U, A satisfies the parallelogram law, the resulting
quadratic form has both Markov and local property}.

Then Upr is a closed subspace of U and Theorem 3.23 ensures that Upr # @.
So again by [28, Corollary 1.6], we have the desired local regular Dirichlet form. m

4.2 Conductive homogeneity of self-similar sets

In this section, we present a sufficient condition for conductive homogeneity of self-
similar sets. The idea originated from [11], where the authors used symmetries of
the spaces to show the combinatorial Loewner property of the Sierpifski carpet and
the Menger curve, also known as the Menger sponge. Our sufficient condition, Theo-
rem 4.8, will be used in Sections 4.3 and 4.6.

Throughout this section, we assume that (K, S, { fs}ses) is a self-similar structure
and adopt the setting in Section 4.1, i.e., let (T, 4, ¢) be given in Definition 4.2 and we
suppose that Assumption 4.4 is satisfied. For simplicity, we also assume that j; = 1
for any s € S, so that g(w) = r*! and 7,,, = S™.

Definition 4.7. (1) For any e = (w,v) € (J,,», E,,, define
X(e) = (fuw) ™' (fu(K) N fu(K))

and @,: X(e) — X(e") by we = (fv) o fulx(e), where ¢ = (v, w) for e = (w, v).
Furthermore, define

IT(K,T)={(X(e),X(€"),pe) |m=>1,e € E,}.

An element of I7 (K, T) is called an intersection type of (K, T).

(2) A homeomorphism g: K — K is said to be a symmetry of (K, T) if there
exists g*: T — T such that [g*(w)| = |w| and g(Ky) = Kgx() for any w € T.
Define §(k,r) as the collection of symmetries of (K, T').

(3) Forany n > 0, define ¥: 50 Tntm — T by ¥n(v) = uif v € Ty4m and
v=na"()u.

Remark. The notion of intersection types and the set I7 (K, T') were introduced
in [31].

Note that Y (Ty4m) = T and (frm @)~ (Ky) = Ky, (v) forany v € Tppm.
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Notation. For A C T, set
K4) = | J K. (4.9)

vEA
Theorem 4.8. Suppose that there exist a finite subset I C IT (K, T) and finite sub-
groups §o and Gy of § k) satisfying the following properties:

@) (T, ED) is connected for any m > 1, where
Ey=felecEy. (X(e).X(e").ge) € I},

(b) Forany (X,Y,@) € I and x € X, there exists g € §p such that g(x) = ¢(x).

(c) Foranyn>1,weT,andpe t’]&})m (w), there exists Up Ugeﬁl g*Wn(p)
such that K(Up) is connected and g(K(Up)) N X # @ and g(K(Up)) N
Y £ @ forany (X,Y,¢) € I and g € 5.

Thenforany p > 1,n,k > 1, m > 1, ux,v4x € Ty, and w € Ty,

o)

Mopm (W) < (LM #EG)PTH(T)? ML), (. va Ti). (4.10)

Furthermore, if Assumption 4.4 holds with M, = M, then K is p-conductively homo-
geneous for any p > dimygr (K, d).

Remark. Strictly, a path p = (w(1),...,w(k)) of a graph is not a subset of vertices
but a sequence of them. However, we use p to denote a subset {w(1), ..., w(k)} if
no confusion may occur. For example, in the expression v, (p) above, we regard p as
a subset of Ty 4.

Proof of Theorem 4.8. Foru € S™(I'ps(w)), define Hy, € Ty, by
Hy = {vg"(Yn(u)) | g € G1,v € T}

Then we have that #(H,) < #(Ty)#(%,) for any u € S"™(I'1(w)) and #({u | v €
Hy}) < #(Thg (w))#(%1) for any v € Ty ym.

Now, since (7, E]‘CT) is connected, there exists (w(0), w(1),...,w{),w(l + 1)) €
(Tx)"+2 such that w(0) = uy, w(l + 1) = vy, (W), w(i + 1)) € E]f for any i =
0,1,...,1.Sete; = (w(i), w(i + 1)). Then (X(e;), X((ei)"), @e,;) € I.

Claim. There exist A; C Ty, x; € K and gi, h; € &y fori = 1,2,...,1 such that

@) A = (hl)*(up) and K(Ai) n X(ei) 75 @,

(i) x; € K(Ai) N X(e;) and gi(xi) = @e; (xi),

(i) A1 = (gi)* (Ai).

Proof. Fori = 1, let h; be the identity map. Then 4 = U,. Since by (c) K(+41) N
X(e1) # @, we may choose x; € K(471) N X(e1). By (b), there exists g1 € Gy such
that g1(x1) = @e, (x1).
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Assume that we have the desired objects for i € {1,...,/ — 1}. Letting h;+; =
gioh; € §y and A;1+1 = (g;)*(+A;), we obtain

Air1 = (81)"(hi)"(Up) = (hi1)" (Up).

Using (c), we see that K(sA;+1) N X(e;j+1) 7# 0. Choose x;+1 € K(sAi+1) N X(ei+1).
By (b), there exists g;+1 € §o such that g;+1(Xi+1) = @e; | (Xi+1)-
Thus by induction, the claim has been proven. O

Now, by (¢), X(eo) N K(A1) # @ and X((e;)") N K(A;) # @. This implies
Sw@)(K(A1) N Ky) #9 and  fi,)(K(A)) N Ky #9.  (4.11)
Next, (ii) yields fu(i+1)(gi (xi)) = fuw()(x:). Since
gi(xi) € K((g:)" (A1) = K(Ai1),

we have
Jw@)(K(A:) N fruir1)(K(Air1) # 0 4.12)

fori =1,...,1. Since A; = (h;))*(Up) € Ugeg, & (¥n(p)), we see that

l

Jw@)A < | H.

i=1 UEP

Note that K(|J!_,w(i)4A;) = ' _, fw) (). By formulas (4.12) and (4.11), we see
that K ( U£=1w(i )#A;) is connected and intersects with K,y and Ky, (741). There-
fore, there exists pg € f,f,l)(u*, Vs, Ty ) included in Ule w(i)A; € Uuep H,. Con-
sequently, Lemma C.4 shows (4.10). The conductive homogeneity follows from Lem-
ma 2.22 and Theorem 3.33. =

4.3 Subsystems of (hyper)cubic tiling

In this section, we present three classes of hypercube-based self-similar sets as ex-
amples of conductively homogeneous spaces. The first one given in Theorem 4.13
includes generalized Sierpinski carpets studied in the series of papers [ 1-6] by Barlow
and Bass, the Menger curves (also known as the Menger sponge), and the hypercubes
[—1, 1]% for L > 1. Unlike those examples, however, our examples also contain self-
similar sets with fewer, or even no, symmetries of a hypercube. See Section 4.4, where
we present explicit examples of self-similar sets belonging to the classes given in this
section.

We start with basic notations on the hypercube [—1, 1]% and its symmetry group.
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Definition 4.9. Let L € N and let CL = [—1, 1]E. Moreover, let By be the L-
dimensional hyperoctahedral group, that is,

BL ={g|geO(L) g(Ck) =CL},

where O(L) is the collection of orthogonal transformations of RZ. For the case
L =2, B, is often denoted by D4 in a literature. Define

Bji = {(x1,....x0) | (x1,...,x1) € [, 1]F, x; = i}
for j ={1,...,L} and i € {—1,0, 1}. Then the boundary of [—1, 1]¥ consists of
{Bji}je,...L},ie{i,—1}- Fors = (s1,...,51) € {1,.. .. N}t define
L
2si —2—N 2s; — N
ctN =TI !
i=1_[1 N N
L’N=(2s1—1—N 2sL—1—N)
N N .

. . L L
If no confusion may occur, we use Cx, Cy and ¢ instead of C*L, C; N and Cs N

respectively hereafter.
In the course of this section, we are going to deal with particular elements of By .

Definition 4.10. Define R; € By as the reflection in the hyperplane Bj o for j €
{1,..., L}. Furthermore, define Rj.] _j, as the reflection in the hyperplane

Jell'l,_iz = {(xl,...,xL) | Xj, = isz}

for ji. ja € {1,..., L} with j; # j,andi € {1,—1}.

In the next definition, we introduce key notions of this section.
Throughout this section, we fix L > 1 and N > 2.

Definition 4.11. (1) A self-similar structure (K, S, { f}ses) is called a subsystem of
L-dimensional hypercubic tiling, or a subsystem of cubic tiling for short, if K C Ci,
Sc{l,..., N}L and, for any s € S, fs is a restriction of a similitude from RZL to
itself satisfying f;(Cx) = Cs, i.e., there exists ®5 € By, such that

1
fs(x) = Nq)sx + ¢

for any x € RL. A subsystem of cubic tiling (K, S, { f; }ses) is called non-degenerate
itKNB;; #Pforany j € {1,...,L}andi € {I,—1}.

(2) A continuous map ¢: Cx — C, is called an N -folding map if and only if, for
any s € {1,..., N}L, there exists A; € By, such that

o(x) = NAs(x —cy) 4.13)
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for any x € Cs. If no confusion may occur, we omit N in the expression of an “N -
folding” map and say a “folding map” for simplicity.

(3) Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. We use the frame-
work of Section 4.1 to define (T, #4, ¢) with r = % and j; = 1 forany s € S. In this
case, T, = S” for any n > 1. Define a graph (7, Ef;) by

Ef ={w.v) [ w,veThw#v, fu(C) N f1(Cy) = fu(Bjs)
for some j € {I,...,L}andi € {1,—1}}.

The subsystem of cubic tiling £ is said to be strongly connected if (T, Ef;) is con-
nected for any n > 1.

(4) Let £ = (K, S,{fs}ses) be a subsystem of cubic tiling. £ is called locally
symmetric if Ky, U K, is invariant under the reflection in the hyperplane including
Jw(Cyx) N fu(Cy) forany n > 1 and (w, v) € Eﬁ.

Remark. Let &£ be a subsystem of cubic tiling which is non-degenerate and locally
symmetric. Then E,f C E; by the following arguments. Assume that (w, v) € Eﬁ.
Set

Ew,v = fw (C*) N fv(c*)- (4-14)

By non-degeneracy, K,, N £y, # @ and by local symmetry, Ky, N £y = Ky N
Ly v # 0. Hence (w,v) € E;. Note thateven if (w,v) € T, and fy, (C+) N f,(Cx) # 9,
it may happen that K, N K, = 0.

Remark. Let £ be a subsystem of cubic tiling which is non-degenerate, locally sym-
metric, and strongly connected. As in the case of the unit square in Example 2.32,
define

fo = {tw.v} | w,v) € | EL}. (4.15)

n>0

For explicit examples in the next section except for the chipped Sierpinski carpet,
¢ is a covering system and is a good substitute for g in the case p < dimgr(K, d).

By properties of cubic tiling, it is easy to see that Assumption 2.15 holds. In sum-
mary, we have the next proposition. Recall that the edges of 7, are given not by Ef;
but by E; as it has always been in the previous sections.

Proposition 4.12. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Then the
Sfamily {Ky}wer is a partition of K parametrized by the tree (T, A, ¢). Let dx be
the restriction of the Euclidean metric on K and let | be the self-similar measure
satisfying L(Ky) = #(S)) ™! for any w € T. Then Assumption 2.15 is satisfied
withd = dy, r = 3, My =1, My = 1, Ny = #(S) and L < 3L — 1. In this case,

W is ag -Ahlfors regular with respect to d«, where ag = loliggg).
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The exponent oy coincides with the Hausdorff dimension of (K, d«). Note that
#(S) < NL.Since #(S) = NL implies K = C,, we see that ey < L unless K = Ci.
The following theorems are the main results of this section.

Theorem 4.13. Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. Assume
that £ is non-degenerate, locally symmetric, and strongly connected. Moreover, sup-
pose that the following condition (SDR) is satisfied:

(SDR) For any j1, j» € {1,..., L} with j1 # Ja, there exists i € {1,—1} such

that R;-l o S g(K,T)~

Then K is p-conductively homogeneous for any p > dimyg (K, dy).

The name (SDR) represents “symmetric with respect to diagonal reflections”
as R;l J is the reflection in the diagonal hyperplane Jr’f}l - For generalized Sier-
pifiski carpets, the Menger curve and the hypercube, it follows that §x 7y = By and
(SDR) is satisfied. However, ¥k, 1) does not necessarily coincide with By, to satisfy
(SDR). For example, the group generated by {R}1 g L j2 €41, LY, i # J2)
is (isomorphic to) the symmetric group of order L, Sy, which is a proper subgroup
of Bz, and if §; C 9(k,T), then (SDR) is satisfied. See Example 4.30.

In the case L = 2, the advantage of being planar gives another two classes having

conductive homogeneity.

Theorem 4.14. Let L = 2 and let £ = (K, S, { fs}ses) be a subsystem of 2-dimen-
sional cubic tiling. Assume that £ is non-degenerate, locally symmetric, and strongly
connected. Moreover, assume one of the following two conditions (RS) or (NS):

(RS) 8% € §,T), where ®% is the rotation by % around (0, 0).
(NS) Foreachi,j €{l,...,N — 1}, there exist iy, j1 € {1,..., N} such that

{(l9jl)v(l + ]’jl)i(ihj),(l'hj + 1)}0 S = 0.

Then K is p-conductively homogeneous for any p > dimyg (K, dy).

The expressions (RS) and (NS) represent “rotational symmetry” and “no symme-
try”, respectively.

At a glance at definitions, it may look difficult to verify the conditions like “non-
degenerate”, “strongly continuous”, and “locally symmetric”. In the course of the
discussion, however, we will show useful criteria concerning only the first iteration
{ fs(Cx)}ses to check those conditions.

Proofs of the above theorems will be given later in this section after necessary pre-
parations. The main idea of the proof is to construct a family of paths required (c) of
Theorem 4.8 by using local symmetry and an additional geometric condition (SDR),
(RS), or (NS). Such an idea was used in [11] and can be traced back to the “knight
move” argument by Barlow—Bass [1]. In those previous works, however, the full By -
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symmetry of the space was required but we find that weaker (or even no) symmetry
is good enough under the presence of local symmetry.

Now we start to study the conditions “non-degenerate”, “strong continuous”, and
“locally symmetric”. First, we study the nature of folding maps, which turns out to
be closely related to the local symmetry.

Lemma 4.15. Let ¢: Cx — Cx be a folding map characterized as (4.13). Then for
any s,t € {1,...,N}L,

1
As = AR ifC;NCy = NBj’i + ¢5 for some i € {1,—1}.

Proof. Assume that C; N C; = %B]’,i + c¢s. Then C;, N Cy = %B]‘,_i + ¢; as well
and x — ¢; = Rj(x —¢s) for any x € Cs; N C;. On the other hand, as ¢ is a folding
map, we see that

NAs(x —cs) = NA;(x —¢y)
for any x € C; N C;. Hence As(x —¢5) = A:Rj(x —¢5) for any x € Cy N C;. This
immediately implies Ay = A; R;. |

Note that Rj, Rj, = Rj, Rj, forany ji, j» €{1,..., L}. So, by the above lemma,
we can determine all the folding maps as follows.

Lemma 4.16. Fixs* = (s},...,s7) €{l,.. ., N}t For A € By, define gg+ 4:Cy —
Cy by

L
peea(x) = NATT(R) 7 (x = cff ;)
j=1
for any x € Cs, .5, Then @y 4 is a folding map. Moreover, {¢s+ 4 | A € BL} is
the totality of folding maps for any s* € {1,..., N}E.

Examples of folding maps in the case of L = 2 are given in Figure 4.1. In each
example, s* = (1,1) and A = I. The element of B, in each square indicates the
corresponding A(R;)!! _sfl(Rz)lsTS;l.

Notation. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Set

K™ = U Juw(Cy).

weTyy,

Due to the next lemma, one can easily determine the non-degeneracy of K by
examining K (.

Lemmad4.17. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Then £ is non-
degenerate if and only if KM N Bji #@forany j € {l,...,L}andi € {1,—1}.
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/ R, / Ry | —1| Ry | —1I
I | R | T | Ry
R, | =1 | Ry
Ry | —1| Ry | —1I
1 Ry 1 I | R | I | R
N =3 N =4

Figure 4.1. Folding maps.

Proof. Since K € KM, the “only if” part is obvious. Assume that KV N B;; # @
forany j € {l,...,L}andi € {l,—1}. We are going to show that K®* N B;; # @
forany j € {l,...,L},i € {1,—1},and k € {1,...,n} by induction on n. Assume
that the claim holds for n. Let w € T, satisfying f,,(C«) N Bj; # @. Since

(fw) ™ (fw(Cs) N Bji) = Bjy i,
for some j; € {1,...,L}and i; € {1, —1}, there exists s € 7} such that

S5(C) N (fuw) ™' (fu(Ce) N Bjy) # 9.

This implies that f,,5(Cx) N B;; # . Thus we have shown the desired statement for
n + 1. Now by induction,
K® n Bj; <0

forany j € {1,...,L},i € {l1,—1}. Since K™ is monotonically decreasing and K =
Mus1 K@, it follows that K N Bj; # @ forany j € {1,...,L}andi € {1,—1}. =

The locally symmetric property can also be determined by the first step of the
iteration as follows.

Lemma 4.18. Let £ = (K, S, {fs}ses) be a subsystem of cubic tiling. Then £ is
locally symmetric if and only if Ky U K, is invariant under the reflection in {s; for
any (s,t) € Ef

Proof. The “only if” part is obvious. We show the following statement by induction
onn > 1.

Forany k € {1,...,n}and (w,v) € E¢, Ky, U K, is invariant under the reflection
infy .

The case n = 1 is exactly the assumption of the lemma. Suppose that the statement
holds for n. Let (w,v) € E,fﬂ. In the case 7" (w) = 7" (v), lets = 7 (w). Then w =
sw’ and v = sv’ for some w’, v’ € Ty,. Since f,(Cs) = f5(fu(Cy)) and f,(Cy) =
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f5(for(Cx)), we see £y € EL. By induction hypothesis, K, N K, is invariant
under the reflection in £, .. Applying f, we see that K, U K, is invariant under the
reflection in £, 5. In the case 7" (w) # 7" (v), let s = #" (w) and let = 7" (v). Since
Ly CSlss = fs(Bj,;)forsome j €{l,...,L}andi € {1,—1}, we obtain (s,) € Ef.
So, K5 U K; is invariant under the reflection in £, ;. Denoting this reflection by R,
we see that R coincides with the reflection in £y, 5. Since R(fi(Cx)) = fu(Cy), it
follows that R(Ky) = R(K; N fu(Cy)) = K; N f,(Cx) = K. So we have verified

the statement for n + 1. Thus by induction, we have the desired result. [
Next, we consider the strong connectedness.

Lemma 4.19. Let £ = (K, S, {fs}ses) be a locally symmetric subsystem of cubic
tiling. If £ is non-degenerate and (T, E f) is connected, then £ is strongly connected.

Proof. By the non-degeneracy, we see that K™ N Bi; #@forany j € {l,...,L}
andi € {1,—1}.

We are going to show that (7%, E,f) is connected for any k € {1,...,n} by
induction on n > 1. Assume that w,v € Ty41. If 7”7 (w) = 7" (v), then there exist
w’,v" € T, such that w = sw’ and v = sv’, where s = 7" (w). Since w’ and v’ are con-
nected by an E’-path, w and v are connected by an Eﬁ 41-path. In the case 7" (w) #
a"(v), let s = 7™ (w) and let t = 7" (v). Then w = sw’ and v = v’ for some
w’, v’ € T,. Since (11, Ef) is connected, there exists an Ef-path (s(0),...,s(m))
such that s(0) = s, s(m) =t and (s(i),s(i + 1)) € Ef foranyi =0,...,m — 1. For
eachi =0,...,m—1,since U, er, fu(Cs) N Bj; #@forany j ={1,...,L}and
i €{l,—1}, there exists u(i) € T, such that fs(,-)u(,-)(C*) N Es(i),s(i-i—l) Z# 0. Since £
is locally symmetric, there exists v(i) € T, such that fg41)»@)(Cx) is the image of
Js@yu()(Cx) by the reflection in €4y 5(i+1)- Define v(—1) = w” and u(m) = v’. Then
w = s(0)v(—1) and v = s(m)u(m). Since (T, Eﬁ) is connected, v(i — 1) and u(i)
are connected by an Eﬁ-path forany i = 0,...,m — 1. Adding s(i) at the top, we
obtain an Efl 4 1-path between s(i)v(i — 1) and s(i)u(i). Combining all these Eﬁ e
paths, we obtain an E* 4 1-path between w and v. Thus (7}, +1, E! 4+1) 1s connected.
By induction, we see that £ is strongly connected. u

Lemma 4.20. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling. Assume that

K Nint(Cy) # 0. Forany s € {1,...,N™L if K N int(CsL’Nm) % (0, then there

exists w € Ty, such that fy, (Cy) = CSL’Nm.

Proof. Suppose that f,,(Cx) # C;V" for all w € Tyy. Then f£,,(C.) N G s
included in the boundary of CSL N and hence Jw(Cx) N int(CsL N ) = @. So,

K™ ain(CFN") = | (fw(Co) nin(CEN™)) = 0.

weTm

Since K € K™ | it follows that K N int(CEN") = g. n
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The following relation between a folding map and a subsystem of cubic tiling will
be used to characterize local symmetry.

Lemma 4.21. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Assume that
K Nint(Cyx) # @. Let ¢ be a folding map. Then the following four statements are
equivalent:

(@ ¢(K) =K.

(b) @o fo(K™) = K™ foranys € S and m > 0.
(c) gofs(K)= K foranys € S.

d) oK™y = K™ for any m > 0.

Proof. (a) = (b): Lets € S. Then ¢o fs(K) C K. For any w € T, there exists T =
(t1,....t) € {1,..., N™}L such that po f;( fi (Cx)) = CEN" . Now

K 2 9o fs(fu(K Nint(Cy))) = ¢o fyo fu (K) M int(CLN™).

Since K Nint(Cy) # @, this implies K N int(C,L’Nm) # . Lemma 4.20 shows that
90 fi(fw(Ci)) = CEN" € K 50 that

po fs(K™) = ) gofs(fu(Cx)) < K™.

weTy,

As o f; € By, preserves the Lebesgue measure of a set, we see (pofs(K(m)) = Km
(b) = (c): Since ()20 Km = K,

pofs(K) = ¢°fs( N K(’")) =) K™ =K.

m=0 m=>0

(c) = (a): Since K = (J g f5(K),

oK) =o(|J 1(K)) = K.

seS

(b) = (d): Since | J,cg fs(K™M) = KOm+D),

oK) = o( | fi(k™)) = K.

seS
(d) = (a): Since (=0 Km = K,
p(K) = gg( ﬂ K(m—i—l)) — m Km — g -
m>0 m>0

The next theorem tells that a locally symmetric subsystem of cubic tiling is almost
an inverse of a folding map.
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Theorem 4.22. Let £ = (K, S, { fs}ses) be a subsystem of cubic tiling.

(1) If £ is strongly connected and locally symmetric, then there exists a folding
map satisfying
¢" o fu(K™) = K™

foranyn > 1, m > 0and w € T,. In particular,
(p"(K("+m)) - gm

foranyn > 1, m > 0and

¢"(K) =K
for any n > 1. Furthermore, define Fs: C. — Cs by Fy = (p|c,)”! for each
s € S. Then
K = | J Fs(K)
SES

and (K, S, {Fs}ses) is a self-similar structure.
(2) Suppose that K N int(Cy) # Q. If there exists a folding map ¢ such that
¢(K) = K, then £ is locally symmetric.

Proof. (1) Fix s € §. Recall that there exists &y € B, such that
1
fs(x) = NCDSX + ¢

for any x € Cy. Set Ay = (®5)~! and define ¢ = gy, 4, Since o f; = I, it follows
that " o(fs)" = I forany n > 1. Thus letting

Sp = 8§58,

n-times
we see that "o f;, (K) = K. Choose T = (ty,...,71) € {I,..., N"}¥ such that
cEN" = fs5,(Cx). Letw € T,,. Choose £ = (£;,...,&) € {1,..., N"}L such that
CEL N = fw(Cx). Since & is strongly connected, there exists an E%-path (w(0),
..., w(m)) between s, and w. Following this path and applying the reflections in
Lw(i),w(i+1), We see that

L,N" L,N"
Ky —c = R(Ks, — BN,

where R = ]_[jLzl(R j)|’-/ —& 1. Note that ¢” is an N"-folding map. Hence, for any
y €{1,..., N"}L, there exists A, € By, such that

(pn(x) — N"Ay(x _CJE"NH)
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for any x € C,,L’Nn. Applying Lemma 4.16 to ¢”, we see that

¢"0 fu(K) = ¢" (Ky) = N" Ag(Kyy — cf M)

= NnArRR(KSn - C‘f‘,Nn) = gon(Ksn) = K

Hence

¢"o fi,(K) = K
forany n > 1 and w € T,. Since K € K _ it follows that ¢"o f,, (K™) D K. Note
that ¢"o f,, (K™ = U, e C,{"Nn for some subset B C {1,..., N"}£ and K™ is
the minimal of such unions containing K. This shows ¢"o f,, (K™) 2 K Since
"o fp preserves the Lebesgue measure of a set, we conclude that

9" fu(K™) = K.

Since K™+ = |, 1, fw(K™), we obtain o™ (K" ™) = K™ Note that K =
Uwer, fw(K). Hence ¢"(K) = K. Moreover, if p(x) = NA;(x — ¢5) for x € Cy,
then by Lemma 4.21 (c), we have K = NA;(K;s — cs). This implies

1 _
Ks = N(As) 'K + ¢s.

Hence letting Fg(x) = ﬁ(As)_lx + c5, wesee K = | J g Fs(K).
(2) Suppose that (s,t) € Ef Then by Lemma 4.16, there exist A; € By and
j €{1,..., L} such that
@(x) = NAg(x —cs)
for any x € C; and
@(x) = NAsR; (x — ;)

for any x € C;. Since go f;(K) = K and go f;(K) = K by Lemma 4.21, it follows
that

1 _ 1 _
Ky —cs =N(As) 'K and K;—c; =NR]~(AS) K.

Therefore,
1 _
R(Ks —cg) = RN(AS) 'K = K; — ¢y,

so that K; U Kj is invariant under the reflection in £ ;. Thus Lemma 4.18 shows that
£ is locally symmetric. |

By (2) of the above theorem, we immediately have the following sufficient con-
dition for the local symmetry.
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Corollary 4.23. Let S € {1,..., N}t Assume that B;; N (Uses Cs) # @ for any
je{l,...,L}andi € {1,—1}. Let ¢ be an N -folding map. Define

fs = @le)™
forany s € S. Let K be the unique non-empty compact set satisfying
K =] £(K).
sES

Then, £ = (K, S,{fs}ses) is non-degenerate and locally symmetric.

Proof. Since Bi; N (|Useg Cs) # @ forany j e {l,..., L} and i € {I,—1}, Lem-
ma 4.17 shows that £ is non-degenerate and hence K N int(Cy) # @. Moreover, it is
immediate to see that ¢(K) = K. Now Theorem 4.22 (2) suffices. ]

Note that by Theorem 4.22 (1), if a subsystem of cubic tiling is locally symmetric
and strongly connected, then it is given by a inverse of a folding map described in
Corollary 4.23.

Now we are ready to give a proof of Theorem 4.13.

Proof of Theorem 4.13. By Theorem 4.22, we may assume that £ is given by an
inverse of a folding map described in Corollary 4.23 without loss of generality. Note
that

@ fwic)™ = fu (4.16)
foranym > 1and w € Tp,,. Foranym > 1 and e = (w, v) € Ef;,,by (4.16),

9" € s = () " awcon s = (o) iw@onsfuc-

Hence X(e) = X(e") and ¢, = I, where [ is the identity map. Now let

I= {(X(e),X(e’),fﬂe) lec U Eﬁ’}’

m>1

and set § = {/} and §; = G k.1 N BL. We are going to make use of Theorem 4.8.
By the fact that &£ is strongly connected, we have (a) of Theorem 4.8. Since ¢, = 1
forany e € | J,,.-, EL,, (b) of Theorem 4.8 is obvious.

Now it only_ remains to show (c) of Theorem 4.8. Let w € T,. Suppose that
Jw(Cy) = HiL=1 [, 0 + %] Then every path p € 15’1(1,21 (w) contains a path between
hyperplanes

{(x1,....x) | xj =aj} and {(xl,...,xL)|Xj = —m}

or

2 4
—} and {(xl,...,xL) | x; =« +W}

{(xl,...,xL)|xj =o; + N7
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for some j € {1,..., L}. This implies that there exists j« € {1,..., L} such that
¢"(K(p)) N Bj,; # @ foranyi € {1,—1}. Note that ¢ (K(p)) = K(¥»(p)). Hence
there exists a path p;, € ¥, (p) between Bj, _; and B}, 1. By (SDR), for any j; # Jjs,
there exists ix € {1, —1} such that RJ , €8«k.1). Setpj, = (R;* 11) (pj,)- Then
K(pj,) N Bj, i # 9 for any i € {l,—1}. Moreover, K(p;,) and K(p;,) intersects at
H;: j,- Thus set px = Uk 1 Px. Then py is connected and K(p«) N Bx; N K # @
forany k € {1,...,L} and i € {1, —1}. Moreover, px C Ugeﬁ(K,T)OIBL g*(Wn(p)).

Thus we have verified (c¢) of Theorem 4.8. ]

Proof of Theorem 4.14. The arguments are the same as in the proof of Theorem 4.13
except the deduction of (c) of Theorem 4.8.

In the case of (RS), to construct p;, from p;, , we use (t*)% in place of R;: i Then
the advantage of being planar yields K(pj,) N K(p;) # 9. The rest is the same as in
the proof of Theorem 4.8.

Next, assume (NS). Let w € T,, and let p = (w(1),...,w(k)) € ‘GIS)m (w) with
M = 4N — 3. Note that ’

#({x" D), .... 7" (wk)}) = M
We are going to show that
K(Yn(p)) N Bji # 0 (4.17)

forany je{l1,2}andie {1, —1} Suppose K (¥, (p)) N B1,1 =90. As ¢~ "(By,1) forms
vertical lines at intervals of we see that K(p) is contained in the interior of

Nn ’
a vertical strip (J; —y_yn C(zi*l\;) U Cé:fil j)» Which is denoted by Z;,, for some i.
Let Cy, ..., C; be the collection of connected components of
weTy
and set

Di ={v|veTy, fu(Cs) € Ci}
fori = 1,...,[. Then by (NS), we see that
#(D;) <2(2N —2).
Note that Ule Jam (i) (Cx) C C;, for some i,. Hence
AN — 4> #(D;,) > #({x™(w(@)) |i =1,...,k}) > M = 4N — 3.

This contradiction shows (4.17). Thus setting U, = ¥, (p), we have (c) of Theo-
rem 4.8. ]

To conclude this section, we present a useful criterion to determine if g € By is
a symmetry of (K, T') or not.
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Lemma4.24. Let £ = (K, S,{ fs}ses) be a subsystem of cubic tiling. Assume that £
is non-degenerate, locally symmetric and strongly connected. Let ¢ be the folding
map satisfying Theorem 4.22 (1). Then for g € By, if there exists a map g«. S — S
such that, for any s € S, g(Cs) = Cq,(s) and Ag, (58(As)™! = g* for some k > 0,
then g € g(K,T)-

Recall that A € B, is given in Definition 4.11 (2).

Proof. We are going to show that g(K™) = K™ for any n > 1 by induction. For
n = 1,since g(Cy) = Cg,(5), it follows g(K) = K. Next assume that

g(K(”)) = K™
Then by Theorem 4.22, go fy(K™) = K™ so that A;®;(K™) = K™ Hence
1 _
S(K®) = S (A)THE™) + 5.

Sett = g«(s). Then

g(fs(K™))

1 _ 1 _ -
FEAITHEK®) + e = ()T Arg(A) T K D) + ¢

FADT D) e = f(K)

Since K"+ = | J, .5 fs(K™), this yields g(K®*V) = K@+ Thus using induc-
tion, we see that g(K™) = K® for any n > 1. Since (=1 K™ = K, we obtain
g(K) = K. Now, since g(K™) = K® it follows that, for_any w € T,, there exists
v € Ty such that g(fy (Cx)) = fu(Cx). Set v = g« (w). Then g«: T, — T,. Since
g(fw(Cx)) = fe.(v)(Cx) and g(Ky) € K, we see that

g(Ky) Cg(fu(Cy)NK = fg*(w)(c*) NK=K NME

Using g~ ! in place of g in the arguments above, we obtain g_l(Kg*(w)) C Ky as

well. Thus we have shown g(Ky) = Kg, ), so that g € Gk 1). m

4.4 Examples: subsystems of (hyper)cubic tiling

In this section, we present examples of subsystems of cubic tiling having conductive
homogeneity.

We begin with planar examples where dimg g (K, dx) < dimpg (K, dx) < 2, so that
they are 2-conductively homogeneous and have self-similar local regular Dirichlet
forms constructed in Theorem 4.6.
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R, 1
R, R,
I Ry I

Figure 4.2. Chipped Sierpiriski carpet.

Example 4.25 (Chipped Sierpinski carpet). Let L = 2 and let N = 3. Let S be the
set of squares in the right figure of Figure 4.2 where one of Ry, R, or I is written.
The corresponding f; is given by

1
fs(x) = NqDSX + CS’

where @ € B, is indicated in Figure 4.2. Note that if the upper-left square belonged
to S as well, then K would be the Sierpinski carpet. Lemma 4.17 and Corollary 4.23
show that £ is non-degenerate and locally symmetric, respectively. Then using Lem-
ma 4.19, we see that £ is strongly connected. Finally, Lemma 4.24 shows that Rl_a €
9k, so0 that (SDR) is satisfied. Thus we have confirmed all the assumptions in
Theorem 4.13. Note that K N dCy has two different ingredients, the line segment, and
the Cantor set. The lack of rotational symmetry enables such a phenomenon. Another
unique feature is the “countably ramified” property, that is, after removing a certain
countable set, every remaining point becomes a connected component. Because of
this property, J, introduced in (4.15) is not a covering system. Furthermore, no matter
how we choose a covering system § C g, we cannot avoid a pair {w, v} € § where
Ky N K, consists of a single point. It is our conjecture that dimgg (K, d) = 1 for the
chipped Sierpinski gasket. In this example, since there are enough number of straight
lines inside K, (K, d«) has the chain condition and hence the heat kernel associated
with (&, W?) satisfies (3.26) and (3.28).

Example 4.26. Let L = 2 and let N = 4. As in Example 4.25, S and {®;}ses are
indicated in the right figure of Figure 4.3. It is easy to see that the corresponding
self-similar structure is non-degenerate, locally symmetric, and strongly connected in
the same way as Example 4.25. Moreover, Lemma 4.24 shows that R%J € $k.,T), 50
that (SDR) is satisfied. Thus we have confirmed all the assumptions of Theorem 4.13.
Unlike the chipped Sierpinski carpet, this example is not “countably ramified”. In this
example, like the chipped Sierpifiski carpet, K contains enough straight lines. This
implies that (K, d«) has the chain condition, so that the heat kernel associated with
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3 £ : Ry| —I| Ry| -1

Figure 4.3. Non-countably ramified example.

(&, W?) satisfies (3.26) and (3.28). In this example, g, given by (4.15) is a covering
system with covering numbers (4, 2).

Example 4.27 (Moulin/Pinwheel). Let L = 2 and let N = 5. As in the above exam-
ples, S and {®;}ses are indicated in the right figure of Figure 4.4. The assumptions
of Theorem 4.14 are verified in exactly the same way as before including (RS), i.e.,
®% € Yk,1)- In this example, unlike previous ones, (K, dx) does not have the chain
condition and hence we have (3.26) and (3.27). In this example, J, given by (4.15) is
a covering system with covering numbers (4, 2).

1| R, I
E“E‘}ﬁ : —I|Ry| 1| R,
i wl [

B i“ ”éhﬁg
¥ BB Ry|—1T|Ry|—1
oagy

¥ B & I Ri| 1

Figure 4.4. Moulin/Pinwheel.

The next two examples satisfy (NS) and have no B,-symmetry. Furthermore,
¢ given by (4.15) is a covering system with covering numbers (4, 2).

Example 4.28. Let L =2 andlet N = 6. As in the previous examples, S and {®; }ses
are indicated in the right figure of Figure 4.5. In the same manner as before, we verify
local symmetry, non-degeneracy and strongly connectedness. By the right figure of

Figure 4.5, we verify (NS). We have #(S) = 23, so that dimg (K, dy) = lffgzg.

Example 4.29. Let L =2 andlet N = 7. As in the previous examples, S and {®; }ses
are indicated in the right figure of Figure 4.6. In the same manner as before, we verify
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I | Ri| 1 |Ry

Ry Ry|—-1|R>

I |\R| 1 [|Ry

Figure 4.5. Non-symmetric example 1.

local symmetry, non-degeneracy and strongly connectedness. By the right figure of
Figure 4.6, we verity (NS). In this example #(S) = 30, so that dimg (K, dx) = %.
Note that

log 5 log4

hile di KNRy_1)= .
log7 while dim ( 2.-1) log7

dimg (K N Ra,1) =

I |(Ri| 1 1 R||
R> R>|—I| R>
1] | [1]
Ry | -1 —I|R>|—1|R>
I (R
—I|R>|—I| R> R_2
1 I |Ri| 1

Figure 4.6. Non-symmetric example 2.

In the following examples, we may choose an arbitrary L > 2.

Example 4.30. Let S = {1,..., N}X\{s.}, where s, = (1,...,1). Alsoletp = gy, 1,
i.e., ¢ is a folding map given by

@(x) = NAs(x —c5)

for any s = (s1,...,s2) € {1,..., N}* and x € Q;, where A; = ]_[jLzl(Rj)|sf_1|.
Note that (45)~! = A;. Define

1
fs(x) = WASX + cs
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and let K be the unique non-empty compact set satisfying
K = fu(K).
SES

Then £ = (K, S, {fs}ses) is a self-similar structure. According to Corollary 4.23,
&£ is non-degenerate and locally symmetric. Moreover, Lemma 4.19 shows that &£
is strongly connected. Additionally, using Lemma 4.24, we see that §(g ) is gener-
ated by {R}l o 1. j2€{l,.... L}, j1 # j2} and it is isomorphic to the symmetric
group of order L. Hence by Theorem 4.13, K is p-conductively homogeneous for any
p > dimyr(K, dy). Note that §(g 7y is a proper subgroup of By in this case. In this
example, ¢ given by (4.15) is a covering system with covering numbers (2L, L).

Example 4.31 (Hypercube). Let S = {1,..., N}% and let fi(x) = %x + ¢ for
any s € S and x € [-1,1]F. Set K = [—1,1]%. Then (K, S, { f;}ses) is a self-similar
structure. Obviously, £ is non-degenerate, strongly connected and locally symmetric.
Moreover, 9,7y = By . In this case, , is a covering system with covering numbers
(2L, L).By Theorem 4.13, K is p-conductively homogeneous for any p > L. In fact,
for any p > L, we see that W1?(K) = WP and there exist ¢ > 0 such that

c&p(f) = [ VF1Pdx =6 () (4.18)
K
for any f € WLP(K), where &, is the self-similar p-energy constructed in Sec-
tion 4.1. The rest of this example is devoted to showing these facts. Let
A={w(), w?),w@)} < T,
Then Ky, (1), Ky (2) and Ky, (3) are three consecutive cubes in x-direction, i.e.,

Kway N Kyey) = fwu@)(B1,1) = fwe)(Bi,-1).
Koy N Ky@) = fwe)(B1,1) = fwue) (Bi,-1).

Let A7 = {w(1)} and let A; = {w(3)}. Then, the function attaining the infimum in the
definition of &, ,,,(A1, A2, A) depends only on the first variable x; and is a piecewise
linear function in the direction of x;. Consequently, we see that

gﬁ,m(Al,Az, A) > 2mL=p)=1
On the other hand, the comparison of moduli shows
1
M (Ay, Az, A) < M) L (w)
for any w € T. Therefore, there exists ¢, > 0 such that

c22m(L—p) = 81,p,m(w7 lel)

foranym > landw € T.
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Now, for f: K — R, we define ﬁn: Tm — T by ﬂ,,(w) = f(fw(0)). Then there
exists ¢ > 0 such that

mr=Dg o (fn) = c/ |V f|Pdx (4.19)
K

asm — oo forany f € C*°(K). So there exists ¢z > 0 such that &1 (W, Tyy|) <
¢32™(L=P) for any w € T. Thus the scaling exponent of ¢ appearing in (3.17) is
2L=P_ Combining this fact and arguments analogous to those in [41, Section 5.3], we
have the following Korevaar—Shoen type expression of W?:

J— 1 — p
'W":{f’fGLP(K,dx),lim/—Lf Mdydx<oo}.
r40 Jk 1% JBy, (x.r) re
This expressing enable us to identify W2 with W17 (K). By (4.19), we see that (4.18)
holds for any f € C*°(K). Since C*°(K) is dense in W 7 (K), (4.18) holds for any
fewr,

4.5 Rationally ramified Sierpinski crosses

In this section, we present another class of conductively homogeneous spaces called
rationally ramified Sierpifiski crosses. This example is a planar square-based self-
similar set as those in the last section but the sizes of the squares constituting it are
not one but two. See Figure 4.7. Consequently, although it has full B,-symmetry, we
should make a little more complicated discussion than that of the previous section to
show the conductive homogeneity.

The family of Sierpinski crosses was introduced in [31, Example 1.7.5].

Definition 4.32. Let r1,r, € (0, 1) satisfying 2r; + r, = 1 and r; > rp. Let p; =

(_lv _1)9 P2 = (07_1)’ pP3 = (17_1)? P4 = (130)’ pPs = (1’ 1)’ Pe = (Ov 1)’ P71 =
(—1,1) and pg = (—1,0). Set S = {1,...,8}. Fors € §, define F;: Cx, — Cx as

- if s is odd,
Fs(x):{rl(x ps) + ps ifsiso

ra(x — ps) + ps if s is even.

The self-similar set K with respect to the family of contractions { Fs }ses is called the
(r1)-Sierpiriski cross. Define

b, ={-1} x[-1,1], fLg={1}x[-1,1],

by =[-1,1] x{-1}, £r=[-1,1]x {1},

where the symbols, L, R, B, and T correspond to left, right, bottom, and top, respec-
tively.
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{r
Ke
K; [ ] Ks
0L |Kg Ka| lr
Ki || Kj
K>
{p

Figure 4.7. The p.-Sierpifiski cross: ps« = +/2 — 1.

In this section, we will show that if an (ry)-Sierpiriski cross K is rationally ram-
ified, then it is p-conductively homogeneous for any p > dimyg(K, dx). Roughly
speaking an (rq)-Sierpinski cross is rationally ramified if Uven () Kv, which repre-
sents the local geometry around w € T, has finite types of variety up to the isometries
when w € T varies. See [31] for the exact definition. In fact, in [31, Proposition 1.7.6],
it is shown that an (r1)-Sierpiniski cross is rationally ramified if and only if 1 —r; =
(r1)™ for some m > 2. For simplicity of arguments, we confine ourselves to the case
m = 2 hereafter in this section. The generalization to other values of m is a little
complicated but the essential idea is the same.

In the case m = 2, the value of r; equals +/2 — 1. Set px = +/2 — 1. Our main
object of study is now the p,-Sierpinski cross. We take advantage of the framework
of Section 4.1 with r = p, and

. 1 if s is odd,

Jo = 2 ifsiseven
to define (7, +, ¢) and the associated partition of K. In this case, g(w) is the con-
traction ratio of the map Fy, = Fy, 0---0 Fy,,, forw = w; ... w, € S™. Note that
g(w) = (ps)" or (ps)" 1 for any (n, w) € T),. For example, A5, = S and

Ag

(0r)2 = {1s,3s,55,7s | s € S,s:even} U {ls,3s,5s,7s | s € S,s:0dd}

U{2,4,6,8).

Note that g(1s) = (p«)? if s is even and g(1s) = (p«)? if 5 is odd. Moreover, A5, N
Afp*)z # @ in this case. Let d, be the restriction of the Euclidean metric to K. Let
hp,(n, w) = (ps)" for (n,w) € Ty,. It is straightforward to see that d is 1-adapted
to the weight function £, , i.e., Assumption 2.15 (2B) holds with M, = 1.

For simplicity, to denote an element in 7},, we use w in place of (n, w) hereafter
as long as no confusion may occur.
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The Hausdorff dimension of (K, dx) is given by the unique number o g satisfying
4(ps ) 4 4(ps)*H = 1.
Consequently, we see that
log?2
log (1 +v/2)
Let u be the self-similar measure with weight (i;);ecs, where

) ()™ ifi s odd,
l (p«)%%H if i is even.

g =

Then p is the normalized o g -dimensional Hausdorff measure and is o7 -Ahlfors reg-
ular with respect to d,. After those observations, it is easy to see that Assumption 2.15
is satisfied with M, = My = 1, N, = 8. Moreover, we see that L, < 8.

The main result of this section is as follows.

Theorem 4.33. Forany p >0, n,m,k > 1, w € T, andu,v € Ty,

M(l)

1y (W) < 8QHPTH#(Ti )P M), (v, Tp).

An immediate consequence of the above theorem is the conductive homogeneity
of the Sierpifiski cross.

Corollary 4.34. The ps«-Sierpiriski cross K is p-conductively homogeneous for any
p > dimyr(K, d«). Moreover, there exists a self-similar p-energy &, on W?. In par-
ticular, there exists a local regular Dirichlet form (&, W?) on L*(K, j1) whose asso-
ciated heat kernel satisfies (3.26) and (3.28).

Note that due to the two different values of js, the self-similarity of the p-
energy &, is given as

Ep(f) =0 E(foFy) +02 > E(foFy)

s:odd s:even

for any f € WP,
Proof. By (2.13), it follows that
E1.pm(w, Ty) < Cp#(Tk-H)pSp,m(u, v, Tk)

foranyn,m,k > 1, w € T,, and u, v € Ty.. Moreover, since p > dimyg(K, d«), there
exist ¢ > 0 and @ € (0, 1) such that

E1,pm < ca™
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for any m > 1. Thus we have obtained (3.19) and (3.20), so that K is p-conductively
homogeneous by Theorem 3.33. In particular, since ey < 2, K is 2-conductively
homogeneous and we have (€, W?). Since (K, dx) has the chain condition, by The-
orem 3.35, we have (3.26) and (3.28). ]

To show Theorem 4.33, we need to prepare several notions.

Definition 4.35. (1) Set
U ={(2,13),(2,31), (4,35),(4,53),(6,57),(6,75),(8,17), (8,71)}.

For (i, jk)e U, define R; jr: K; — K as the reflection in the line segment K; N K.
Moreover, define R;"jk(w) forw € T(i) U T(jk) as the unique v € T(i) U T (jk)
satisfying R; jx(Ky) = Ky. R;kjk is amap from 7(i) U T (jk) to itself.

(2) For g € B,, define g*: T — T by
g w) =v,
where v is the unique v € T with g(Ky,) = K,. Note that g*|r,,: T, — T.
(3) Forw e T,ifw ¢ T(2)UT(4)UT(6)U T(8), then define
Hw ={g"(v) | g € Ba}.
Otherwise, if w € T (i) fori = 2,4, 6,8, then define
Hw = {8 (v) | g € B2} U{g«(R] ;1 (v)) | g € B2, (i, jk) € U}

Note that #(H#y,) < 24 for any w € T,.
By the construction of T, we see that g(w) = (p«)" or g(w) = (p«)" ! for any
w € T,}. In fact, we immediately obtain the following lemma.

Lemma 4.36. Set T = {w | w € T, g(w) = (p«)"} and T'! = {w | w € Ty,
g(w) = (0«)" '} Then

(1) Forany w € T,}, wv € Ty if and only if v € T,

(2) Forany w € T, wv € Tyim if and only if v € Ty—1.

B) we T,:’:ll if and only if w € T'"*! or w = tj for some T € T and j €
{1,3,5,7}.

4 we T,:’j_'lz ifand only if w = tj for some v € T,} and j € {2,4,6,8}.
Definition 4.37. (1) Define ¥, ,,: S™(T,) — T by

w:,m(wv) =7

forw e T)) and v € Ty,.
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(2) For w € T, define #2 C T by

w

70 — {{w,R;].k(w)} if w e T(jk) for some (i, jk) € U,

{w} otherwise.
For w € T”“Ll1 and u € T, define

n {{‘L’U|UEJ€]OM} ifw = 1tj forsomet € T and j € {1,3,5,7},

v {wu} ifwe Tr+L

(3) Define
Ko= | J Ks (4.20)
5€8,KsNloy 70
for % € {T,B, R, L}. For example, Kg = K; U K, U K3.

Note that if w € T}, then #; 0 ¢ T, and that if w € T:j:ll and u € Ty,—1, then
f}(ﬂ,u - Tn+m-

Lemma 4.38. Assume that there exists a path p = (w(l),...,w()) of Tyy—1 con-
tained in Ky such that K,y N4 # 0, Kyqy) N Ly # 0, and p is R;-invariant.

Set
Jf: — U U Jfk-i—l

k+1 ved,
weTk_H u

foru € Ty,—1. Then for any uy,u, € Ty, there exists pg € ‘(f,(,,l)({ul}, {uz}, Ty) such

that
l

po S |J %5 )- (4.21)
i=1
Remark. Strictly, po is not a subset but a sequence of points. However, in (4.21), we
use po to denote a subset consisting of the points in the sequence. We use such abuse
of notations if no confusion may occur.

Proof. Set
Y =pUO%(p)UB;(p)U O3 n(p)

ThenY = g*(Y) forany g € B,. Let

aorwy=J Yk

k+1veY
weTk_H

See Figure 4.8 for an illustration paths ¢ and Y along with a part of H*(Y). It
follows that K(H*(Y)) is a connected set intersecting K,, for any u € Tj. Therefore,
we can choose a path po connecting K,,, and Ky, from J*(Y). Since #*(Y) C
Ule Hy, (i)» We have the desired statement. n
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iRt dlifal et atusl

= 1 I I R I

ébj[r JHI/ LU% E%UJ

P C Tm—1 T (ps)k
?Fn% ?F?ﬁﬂﬁ IL:% E-I_LZJ_LZ
Ciereta Nt et gl amet

Y C T reT]f,veT]f—HﬁT,fi_ll,Tl,BvTSsWGTlf—tll

Figure 4.8. Paths ¢ and Y, and a part of J*(Y).

Proof of Theorem 4.33. Let w € T,, and let u;,u, € Ty. Forany p € ‘61(’1,)”(11)), set

Jem—l(p) = U Hu.

UEY L1 ey NS D)

Then Hyu—1(p) € Tin—1 and g* (Hpm—1(p)) = Hm—1(p) for any g € B,.
Claim 1. There exists a path p* contained in H,,—1(p) such that one of the following
four statements is true:

(@ K(p*) Nl # 0 and K(p*) N K1 # 0,

(b) K(p*) Ner # @ and K(p*) N Kg # 9,

() K(p*) N4y # 0 and K(p*) N Kr # 9,

(d) K(@p*)N4Lg # B and K(p*) N KL # 0.

Proof. Let Fy,(Cy) = [a,a + h] x [b,b + h], where h = (p«)" if w € T, and h =
(ps)"tlif w € TP T, Define

Awy =la—y.a+h+ylx[b—yb+h+y]
and A, = K N (Ay, (o) +1 \ Ay (p,n+2)- Two typical examples of Ay, is illustrated
in Figure 4.9. Since Ky (1) N Ky # @ and Ky ) N Ay, (p,)n+1 = @, a part of p con-
tained in Zw connects
{(@a=(p)"*, y) |y € [1,1]} and {(@ — (p)"*2, ) | y € [-1,1]},
{(@a+h,y+(p)"?) |y e[=1L 1} and {(a + h + (p)"* 1, y) | y € [-1, 1]},
{6, b= (p)") [ x € [=1, 1]} and {(x, b — (px)"?) | x € [=1, 1]},
or
{5, b+ 1+ (p)"?) | x € [=1, 1]} and {(x,b + A + (p«)" 1) [ x € [-1, 1]},
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Figure 4.9. Two examples of Ay (dark grey regions are Ky, light grey regions are Aw).

According to the four possibilities above, we have (a), (b), (c) or (d), where the
exact correspondence depends on w. O

Hereafter we assume the first case (a) in Claim | in the course of discussion.
Other cases may be treated exactly in the same manner. In the following claims, we
are going to modify the initial path p* step by step. This process of modification is
illustrated in Figure 4.10.

Claim 2. The union p* U R} (p*) contains an R,-symmetric path
p1 = (v(0),...,v(/1))
between Ly and Lr, i.e., Kyoy N g # 0, R3(v(i)) =v(ly —i) fori =1,....1;.

Proof. Let px = (w(1),...,w(l)). By (a), K(p*) intersects with the line segment
[—1,1] x {0}. Setix, = min{i | w(i) N [—1, 1] x {0} # @}. Then connecting (w(1),...,
w(ix)) and its image by R}, we obtain a desired path. O

Claim 3. The union R} (p1) U p1 contains an R,-symmetric path p such that
K(p2) € [-1,0] x [-1,1].

Proof. 1If py or R} (p1) is contained in the left half of Cy, then choose p; or RY(p1)
accordingly as our path. Otherwise, applying R; to K(p1) N[0, 1] x [—1, 1], we obtain
a desired path. O

Claim 4. Set Hp« = (U, ep+ Hu- Then there exists an R;-symmetric path p3 S Hyx
contained in Ky, such that K(p3) N €y # @ and K(p3) N {g # 0.
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Figure 4.10. Modifications of a path.

Proof. 1If K(p2) € KL, then we set p, = p3. Otherwise, use R} ;3 (resp. R ;) to
reflect the part K(p2) N K5 (resp. K(p2) N Kg) into K;3 (resp. K75). Then we obtain
a desired path. O

Now we have a path p3 satisfying all the assumptions of Lemma 4.38. Apply-
ing Lemma 4.38 with p = p3, we obtain a path pg € ‘6,(,,1)({u1}, {uz}, Ty). Foru €
S™(T1(w)), define

F* ifu e S™Y (T,
Hu — UUEJ(‘/’;_H,m_ﬂ”) v ( n+1)
] otherwise.

Then it follows that po € | J, <, Hy. Since #(H,) < 24 and #(I'y (w)) < 8,

veEp

#(Hy) < 48#(Tiy1) and #({v |u € H,}) <248,

So, Lemma C .4 suffices. n

4.6 Nested fractals

In this section, we show conductive homogeneity of a class of self-similar sets, called
strongly symmetric self-similar sets, that are highly symmetric and finitely ramified.
This class is a natural extension of nested fractals introduced by Lindstrgm [37],
where Brownian motions were constructed on them. In [29, Section 3.8], Lindstrgm’s
results were extended to strongly symmetric self-similar sets. Typical examples of
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strongly symmetric self-similar sets are the Sierpifiski gasket, the pentakun (“Kun”
means “Mr.” in Japanese), and the snowflake, whose definitions are given below.

Let p € (0,1) and let S be a finite subset of R for some L € N. Foreachg € S,
let fg: RL — RL be a p-similitude whose fixed point is g, i.e., there exists U,€0(L)
such that

Jq(x) = pUq(x —q) +q
for any x € RL. Let K be the self-similar set with respect to the family of con-
tractions { f;}4es. Then the triple (K, S, { f;}qes) is a self-similar structure as is
explained in Section 4.1. Throughout this section, we consider a self-similar structure
(K, S, {fq}ses) given in this way.

Assumption 4.39. (1) If p,q € S and p # q, then p & f,(K).
(2) There exists U C S such that
U 7 Fa (K) N f(K)) = U

q1,92€S
91792

(3) K is connected.
For purposes of normalization, we assume ) c;; ¢ = 0 hereafter.

Proposition 4.40. Under Assumption 4.39, (K, S, { f4}qes) is a post critically finite
self-similar structure with
Vo = U. (4.22)

Moreover; define {Vy}m>1 inductively by
Vi1 = | i (Vi)

ieS
Then
Vin C I/m—i—l (423)

foranym > 0.

The definitions of post critically finite (p.c.f. for short) self-similar structures
and V, along with the proof of (4.22) is given in Appendix 6.3. Inclusion (4.23)
is due to [29, Lemma 1.3.11].

For the self-similar structure (K, S, { f;}4es), we adopt the framework in Sec-
tion 4.1 withr = p and j;, = 1 for any g € S. In this case,

Tn=8S"={wy...wy |w; € Sforanyi =1,...,m}.

Then we see that

Vo= X

ecEf
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where X(e) is defined in Definition 4.7. Moreover, by [29, Proposition 1.3.5 (2)], it
follows that
Ky NK, = fw (VO) N fv(VO) C Vn (4.24)

for any w, v € T,, with w # v. This implies that

Vo = U X. (4.25)
(X,Y,p)elIT (K,T)

Letayg = — 1100 gg IZ . Note that Np®H = 1. Let i be the self-similar measure with weight

(p%H, ..., p“H). Basic properties of u are given in Appendix 6.3. Also, let dy be the
restriction of the Euclidean metric to K.

The following assumption is an equivalent condition of Assumption 2.15 (2B)
when d is the (restriction of) Euclidean metric. Essentially, the same assumptions
have been around from time to time for almost 30 years. See [35, Assumption 2.2]
and [38, Assumption (P)]. The assumption is believed to be true for nested fractals
but we have no proof so far. In [38], it was shown that this assumption is true if U, is
the same for any ¢ € S. In Appendix 6.3, this assumption is shown to be true if U, is
the identity map for any g € V5.

Assumption 4.41. There exists ¢ > 0 such that d(Ky,, Ky) > cp™! foranyn > 1, and
(w,v) € (T, x T))\E,;, where d(A, B) = infxe4,yeB |x — y| for subsets A, B C RL.

Proposition 4.42. Under Assumptions 4.39 and 4.41, Assumption 2.15 is satisfied
withd = ds, r = p, and My, = My = 1.

The above proposition is proven in Appendix 6.3.

Definition 4.43. (1) Let m, = #{|x — y| | x,y € Vy, x # y}, where |x| is the Eu-
clidean length of x € RZ. Define

lo = min{|x — y| | x,y € Vo, x # y}.
Moreover, define /; fori = 0, 1,...,ms — 1 inductively by
lit1 =min{|lx — y| | x,y € Vo, x # y, |x — y| > Li}.

(2) A sequence (X;);=1,.x S Vi is called an m-walk if there exists w(i) € T,
such that x;, x; 41 € fya)(Vo) foranyi =1,...,k — 1.

(3) A O0-walk (x;);=1,.. x is called a strict 0-walk (between x; and xi) if |x; —
Xiy1| =lpforanyi =1,...,k— 1.

(4) Define

9 ={g|geO(),gVy) =V and there exists g*: T — T such that
g(fw (Vo)) = fexw)(Vo) forany w € T}.
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(5) For any x,y € RE with x # y, define
Hyy={z |z eRL |x—z] = ly —z1}.

(Hyy is the hyperplane bisecting the line segment xy.) Also let gyy: RL — RL be
reflection in Hyy.

Definition 4.44. A self-similar structure (K, S, { f;}4es) is said to be strongly sym-
metric if Assumption 4.39 is satisfied and there exists a finite subgroup g, of § such
that the following properties hold:

(1) Forany x, y € Vy with x # y, there exists a strict O-walk between x and y.

2) If x,y,z € Vg and |x — y| = |x — z|, then there exists g € &« such that
g(x)=xand g(y) = z.

(3) Foranyi = 1,...,m4« — 2, there exist x, y and z € V{ such that |[x — y| = [},
|x —z| =1I;+1 and g,; € Gs.

(4) Vy is G.-transitive, i.e., for any x, y € Vp, there exists g € G, such that
glx) =y.
Remark. By Definition 4.44 (4), |q1| = |q2| for any ¢, g2 € Vp.

Definition 4.45. A self-similar structure (K, S, { f;}4es) is called a nested fractal if
Assumption 4.39 holds and g, € ¢ forany x, y € V, with x # y.

By [29, Proposition 3.8.7], we have the following proposition.
Proposition 4.46. A nested fractal is strongly symmetric.

We give three examples of strongly symmetric self-similar sets. Note that As-
sumption 4.41 is satisfied for all three examples because of Lemma E.5. The first two
are nested fractals.

Example 4.47 (Pentakun: Figure 4.11). Let L =2andletS = {py,..., ps} beacol-
lection of vertices of a regular pentagon satisfying Z?:l pi =0andlet p = %g
Then the associated self-similar set K, called pentakun, is strongly symmetric. (See
[29, Example 3.8.11].) In this case § = §, = D5, which is the group of symmetries

of a regular pentagon, and Vo = {p1,..., ps}.

Example 4.48 (Snowflake: Figure 4.12). Let L = 2 and let {p;, ..., pe} be a collec-
tion of vertices of a regular hexagon satisfying Zle pi=0andlet S ={p1,...,
p7,0}. Furthermore, let p = % Then the associated self-similar set, called snowflake,
is strongly symmetric. (See [29, Example 3.8.12].) In this case § = 9. = Dg, which
is the group of symmetries of a regular hexagon and Vy = {p1,..., ps}.

The last example is not a nested fractal.
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Figure 4.11. Pentakun. Figure 4.12. Snowflake.

Example 4.49. Let L = 3 and let

1 1,3
S =1{-1,0,113U {—5,5} LU ={1,-1),

and p = % Note that U is the collection of vertices of the cube [—1, 1] and

41 —1 491 +1 4> —1 49> + 1 43 —1 4g3 +1
fa=11P) = [ | x [ | x[*E—, ]
5 5 5 5 5 5

forany ¢ = (q1,92,93) € S. Itis straightforward to see that the associated self-similar
set is strongly symmetric with Vo = U and § = §, = B3. This self-similar set is not
a nested fractal because g, ¢ § if x = (—1,—1,—1)and y = (1,1, 1).

Using Theorem 4.8, we have the following theorem.

Theorem 4.50. Suppose that (K, S,{ fi}ies) is strongly symmetric and that As-
sumption 4.41 holds. Then (K, dx) is p-conductively homogeneous for any p >

As for dimgr (K, dx), it was shown in [44] that dimgg (K, dx) = 1 if (K, dy) is
the Sierpinski gasket. In general, we have the following fact.

Proposition 4.51. Suppose that (K, S,{f;}ies) is strongly symmetric and that As-
sumption 4.41 holds. Then dimyg (K, ds) < 2.

Proof. Form > 0, define E,, = {(fu (%), fw(»)) | w € Tpn.x,y € Vo, x # y}. Then
the sequence {(Vin, Em)}m>o is a proper system of horizontal networks in the sense
of [34, Definition 4.6.5]. Define

Ls(Vo) = {(Dxy)x,yev, | there exists (Do, ..., Dpy,—1) € [0, 00)™*
such that Do = 1, Dy = D; if |x — y| = ;.
and }_ ey, Dxy = Oforany x € Vo}.
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In particular, let D! € £(Vp) satisfy (Dl)xy = 1forany x, y € Vo with x # y. For
D = (ny)x,erO e L5(Vp), define

=5 Y Daylh(ful) ~h(fu()
weTy,x,yeVp

for h € £(V};,) and

Epmuw = AL, 4 () | B € LVsm). BV, ks = 1.
h|Vn+mﬂ(Uv¢F1(w)Kv) = 0}
for any w € T,. Then by [29, Theorem 3.8.10 and Corollary 3.1.9], there exist D, €

£5(Vo) and o > 1 such that (D, (071,...,071)) is a harmonic structure, that is, for
any h € £L(Vy),

6" &y (h) = min {o" 1€ 1 (9) | § € L(Vimr1). 8y, = h}.

m ,m
This implies that there exist ¢y, c2 > 0 and £ > 1 such that

_ D _
cio”™ < sup &y <co ™

weT\Tk

w

On the other hand, there exist c3, ¢4 > 0 such that
1
03835 (h) < €2, (h) < c4€7%(h)

for any m > 0 and & € £(V},). Thus we see that sup,, <y SZD,,In,w < Co™™ for any

m > 0. Therefore, by [34, Theorems 4.6.9 and 4.9.1], dimgr (K, dx) < 2. ]

The rest of this section is devoted to proving Theorem 4.50. We suppose that
(K, S,{fi}ies) is strongly symmetric hereafter in this section. We have the following
theorem by [29, Proposition 3.8.19],

Lemma 4.52. If (K, S,{fi}ies) is strongly symmetric, then g(Ky) = Kgx@) for
any g € § and w € T. In particular, § C Gk T).

Lemma 4.53. If (K, S, {fi}ies) is strongly symmetric, x1, X2, y1, y2 € Vo and
|x1 — X2| = |y1 — y2|, then there exists g € G such that g(x1) = y1 and g(x3) = y,.

Proof. According to Definition 4.44 (4), there exists g; € g« such that g(x1) = y;.
Let g1(x2) = z. Then |y; — y2| = |y1 — z|. Hence by Definition 4.44 (2), there exists
g2 € G, such that g>(y1) = y1 and g2(z) = y,. Thus letting g = go0g1, we see that
g(x1) = g2(y1) = y1 and g(x2) = g2(2) = y2. u

Definition 4.54. A path (w(1),...,w(k)) of (Tjn. E,;) is said to connect x € K and
y € Kifx e Kw(l) and y € Kw(k)-
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Lemma 4.55. Let p be a path of (T, E.) connecting x1 € Vo and x, € Vy. Sup-
pose |x1 — x| = 1; for some i = 1,...,my — 1. Then there exist a path p; of
(T, Ep), x € Vo and y € Vo such that py connects x and y, p1 € U, cg, &*(P)
and |x — y| = li—1.

Notation. For a pathp = (w(1),...,w(k)) and g € &, set
g (p) = (" (w()),...,g" (w(k))).

Remark. As was done before, we regard p; and g*(p) as subsets of T}, in the above
lemma. We are going to keep doing such an abuse of notation as long as no confusion
may occur.

Proof. By Definition 4.44 (2), there exist x, y,z € Vp such that |x — y| = [;_1,
|x —z| =/; and g,,; € Gs. Also, Lemma 4.53 shows that there exists & € &, such
that ~(x1) = x and h(x;) = z. Since |x — y| < |x — z|, x and z belong to differ-
ent sides of H,,. Hence the path #*(p) intersects with H, .. Therefore, 2*(p) and
(8yz)* o h*(p) has an intersection in H, .. Since (g,)* o h*(p) connects g, (x) and
Yy = gyz(2), we can extract a path p; from 2*(p) U (g,2)* o h*(p) connecting x
and y, and included in | J,cg, *(P). Since |x — y| = /;—1, p1 is a desired path. m

Lemma 4.56. Let p be a path of (T, E,;,) connecting two distinct points in Vy. Then
for any x,y € Vy, there exists a path p’ of (T,,, E,;,) connecting x and y such that

P C Ueq, & (D)

Proof. Inductive use of Lemma 4.55 shows that there exists a path py of (75, E})
connecting two distinct points z; and z, in Vp such that |z; — z5| = [y and py C
Ugeg* g*(p). By Definition 4.44 (1), there exists a strict 0-walk (x1, ..., xj,) satis-
fying x; = x and x;, = y. By Lemma 4.53, forany j = 1,..., jo — 1, there exists
gj € &, such that g;(z;) = x; and g;(z2) = x;j41. Concatenating (g1)*(po). - - -,
(8jo—2)" (Po) and (gj,—1)* (Po), we obtain a desired path connecting x and y. [

Proof of Theorem 4.50. We are going to use Theorem 4.8. Let I = I7 (K, T) and
let §p = §; = §«. By (4.25) and the fact that T = IT (K, T), we see that Ei =E;.
Hence (a) of Theorem 4.8 is satisfied, and (b) is also satisfied due to the fact that G,
is transitive on Vj.

Let w € Ty, let u,v € Ty and let p € ‘6’1(1,31 (w). Then p contains a path con-
necting two distinct points in ( J,,rc7, fuw (Vo). Thus ¥, (p) contains a path between
two distinct points in Vy. By Lemma 4.56, for any x, y € Vj, there exists a path
Pxy € Ugeg, & (¥n(p)) connecting x and y. Set U, = U, , ey, Pxy- Then since
K(Up) 2 Wy, it follows that g(K(U,)) 2 Vp for any g € Gy. Moreover, K(Up) is
connected and Up € (J,eg, & (¥n(p))- Thus we have verified (c) of Theorem 4.8.
Now, Theorem 4.8 suffices. |



Chapter 5

Knight move implies conductive homogeneity

5.1 Conductance and Poincaré constants

From this section, we start preparations for a proof of Theorem 3.33. To begin with,
we will introduce Poincaré constants and study a relationship between Poincaré and
conductance constants in this section.

The next lemma concerns an extension of functions on 7, to those on 7, 4+,, by
means of the partition of unity {¢y, }yer, given in Lemma 2.19.

Lemma 5.1 ([36, Lemma 2.8]). Let p > 1, let A C T, and let {py, }wea be the par-
tition of unity given in Lemma 2.19. Define 14 ,: £(A) — £(S™(A)) by

Tam @) =D fW)ew ).

weA

Then
&y " amf) = cs1(max Entpm(w, A))E5 4 (f),

where the constant ¢s,, = ¢s5.1(p, L«, M) depends only on p, L« and M.

Proof. Let (ax(u,v))u,ver;, be the adjacency matrix of (7%, E;). Set f = IAA,mf.
Then

amD=3 Y Y amewlfe-For. 6

weAveS™ (w) yeSm (Il (w))

Suppose v € S™(w),u € Sm(l"{“(w)) and (u,v) € E,;, .. Then gy (1) = @y (v) =0
for any w' ¢ T’y ., (w). Hence

Z Pw () = Z Puw (v) = 1.

w’elhy | (w) w’elzy (W)
Using this, we see

fu)— f)

S S (pw @) = gur(v))

w/el’]‘é[_i_l(w)

= Y (S = fW) (g ) — gur ().

w’EFZ‘éI+1(w)
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Let g > 1 be the conjugate of p, i.e., % + é = 1. Then by Lemma A.2,
fay—fP= > [f@) - fw)?
w’el"jﬂl_i_l(w)
ya
(X lew ) —ew @)’
w’el"]‘él+1(w)
<C ), @)= fw)?
GF;}H("’)
x> lew ) = ew )7,
w’elfy 4 (w)

where C; = max{l, (L,)MTD®=2} If € Aand w’ € T4y, | (w), then there exist
w(0),...,w(M + 1) € Asuchthat w(0) = w, w(M + 1) =w’, (w(j), w(j +1)) €
Exforany j =0,..., M. Then

M
|fw) = fFw)|? < (M +DP7' | fw() — fw(j + D)7
j=0

Since #(I'jy ., (w)) < (L)t it follows that

YW - fw)l? < G 3 fw) = fF@")?,

w/el",‘é[(w) w/,w”el"jé,(u)),(l,v’,w”)eE,’,k

where C, = (M + 1)?~!(L,)™. On the other hand,

Z Z Anim WU, v) Z lpw (u) — @u (V)P

veS"(w) ueS”’(I‘lA(w)) w’eFfé,Jrl(w)
=2 ) Enulewew) = 2(L)MT max E’MJF'"(A)(‘pw/)
w/erﬁ+1(w)

Hence, by (5.1),

gm;%(A)(f) = CICZ(L*)M+1 max 8nsm(A)((pw)

3 ( ) /@) = "))

weA g/ w”el";é[_H(w) (w’, w”)EE;;

< CIG(L* M max &)°70 1) ()€ 4 ()

So, Lemma 2.19 suffices. [
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There is another simple way of extension of functions on 7, to those on 7, 4.

Lemma 5.2. Let p > 1 and let A C Ty,. Define Iy i: £(A) — £(S¥(A)) by

i f = fW)Xsk)-

weA

Then
€15k oy Tai f) = max#(dS* W)€} 4(f).

Proof. Let f = TA,kf. Then f(u) = f(v) if 7%(u) = 7% (v). Soif (u,v) € EN ,
and f (u) # f(v), then (¥ (u), 7% (v)) € E*. Fix (w,w’) € E*. Then

#{(u,v) | (U, ) € Epyr, 75 u) = w, 7% (v) = w'} < #05*(w)).
This immediately implies the desired statement. ]

Combining two previous extensions, we have the following estimate.

Lemma 5.3 ([36, Lemma 2.9]). Let p > 1 and let A C T,. Then, there exists I j m:
0(A) — (S5t (A)) such that for any [ € £(A),

enitm Uakmf) < css max#(aSk(w))

Sk+m(A)
x max Eu.pm(v. SK(A)EL 4(f). (5.2)
vesSk(4)

where the constant ¢s3 = ¢s3(p, Lx, M) depends only on p, L« and M, and
Tajem )W) = f(w) (5.3)
forany w € Aandu € S”‘(Sk(w)\BMk(w)).

Proof. Define I = 1, Sk (A),m © T, 4.k~ Combining Lemmas 5.1 and 5.2, we 1mmed1ately
obtain (5.2). Let u € S™tK(A). Set v = 7 (u) and w = 7 (w). If FS (A)(v)C
Sk (w), then

I = Y fE*Dew) = Y fEF0)ew )

U/GSk(A) v’EFf,,k(A)(v)
= > fwey@) = f(w).

k
v/el";‘g,l (A)(v)

Ifv e Sk(w)\BM,k (w), then Filk(A) (v) € Ty (v) € S¥(w). So the above equality
suffices for (5.3). ]
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Next we introduce p-Poincaré constants. In fact, there are two kinds of Poincaré
constants A, ,(A4) and A, ,,,(A) but they are almost the same in view of (5.4).

Definition 5.4. Define u(w) = u(Ky) for w € T. For A C T, define u(4) =
> wea 4(w) and g A — [0, 00) by

_ )

pa(w) = (A)

forw € A. For f € £(A), define

(Na=Y_ f)palu)

ucA

and

1/ s = (2 1S G017 pa0))

ucA

Moreover, define

infCER(” f —CxXsm (A) ||P5MSWL(A))p

Apm(A) =

Fel(sm(4) & ()

and
z (A) _ (”f - (f)Sm(A) |PaMSWI(A))p
p.m -
Fet(sm(4) & i (f)

Remark. By Lemma B.2, it follows that

1\?~ ~

(3)" Zoan (D) = 2 (4) = Tpum (). (5:4)

Using the previous lemmas, we have a relation between Poincaré and conductance
constants as follows.

Lemma 5.5 ([36, Proposition 2.10]). Let p > 1 and let A C T,. Forany m > 1 and
k Z Mmo,

max #(9S¥(w)) max &1, p.m (v, S¥(A)Ap ktm(A) > ¢5545.0(A),
weA veSk(A)

where the constant css = ¢s55(y,mg, p, L+, M) depends only on y, my, p, L« and M.

Proof. Choose fo € £(A) such that €] ,(fo) = 1 and

(min || fo — ¢ xallpys)” = Apo(A).
ceR
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Letting f = I4k m fo, by Lemma 5.3, we see that

k k k
SZ’EnthL(A)(f) <53 3121);#(85 (w)) vergg)((A) Em,pm(v, S (A)). (5.5)

On the other hand, by (5.3) and (2.8),

1 e
D ves;m) HOREYI0!

=ﬁ2 Y1) — el u)

weA yeSm (S (w))

1
> 3 | fo(w) = c|” u(v)
* weA yeS™M (Sk (w)\Bas x (w))
1
> ymoM N7 fo(w) — P u(w) = y"0M 3, 0(A).
p(A) —
This and (5.5) yield the desired inequality. |

5.2 Relations of constants

In this section, we will establish relations between conductance, neighbor disparity,
and Poincaré constants towards a proof of Theorem 3.33. As in the previous section
we fix a covering system J with covering numbers (N7, Ng) and we write 0,
and 0p ., in place of al;g, m and ai m,n» respectively.

Definition 5.6. For w € T and n > 0, define

p(v)
max
veS” (w) u(w)

‘i:n (w) =

First, we consider a relation between Poincaré and neighbor disparity constants.

Lemma 5.7 ([36, Proposition 2.13 (1)]). Let p > 1. Forany w € T andn,m > 1,

Xp,ner(w) < ZP_I(S,, (w) EI??[? )Xpam (v) + L*CZ.271p,n (w)ap,m,n+|w\)-
v w

Proof. By Theorem A.3, for any f € £(S"T™(w)),

S 1)~ (Dsrem PR)

p(w) ueSn+m(y)

< S (760 - (Nsmnl”

B ,u(w) veS(w) ueS™ (v)
+ () sm@) = (f) gntm )P Ipn),
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where C, = 277! for p # 2 and C, = 1. Examining the first half of the above inequal-
ity, we obtain

oD 1@ = (f)smw P )

veS" (w) ueSm (v)

veS”(w)

lw|+n+m
Xverggz(w) pm(v)8 S"+m(w)(f)'

p(w)

For the other half, by Lemma 2.27,

DD 1F)smwy = (F)sntmy P )

veS" (w) ueSm(v)

> £ B i £)O) = P piin D |?
veS" (w) M( )
< Ip,n (w)gll,w;jz_(nw)(})n—i—lwl mf)

7 +m+
=< L*Ap,n (w)c2.270'p,m,n+|w|8; S:zn+;1|,1‘(),|l))(f)

p(w)

Combining all, we see
ApnemW) < Cp(Ex(w) max Apm(v)
veS" (w)

+ L*CZA27Xp,n(w)ap,m,n-i-\wl(v, U,))- un

Definition 5.8. Define
kp m = sup kp m(w).

weT

By Theorem 6.7, Xp,m is finite for any m > 1.
Making use of Lemma 5.7, we have the following inequality.

Lemma 5.9. Define
€n = sup &p(w).

weT
Then 3 3 3
Ap,n—i—m =< 2p_l(g:nkp,m + L*62.27/\p,n0p,m) (5.6)

foranyn,m > 1.

Remark. By Lemma 2.13, u is exponential, so that there exist £ € (0,1) and ¢ > 0
such that

En < ct"

forany n > 1.
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Next, we examine the relationship between the conductance and Poincaré con-
stants.

Lemma 5.10. Foranyw € T, [,m > 1 and k > moM,,

Dk 8M*,p,m,\w|+k+lzp,k+m+l (w) > CS‘l()Xp,l (w), (5.7

where Dy = maxXyer\{¢} #(aSk(v)) and the constant ¢s.1) = 27P¢s5 depends only
ony,my, p, Ly and My. In particular,

BkgM*,p,mXp,k—l—m-H = CS,I()Xp,l (5.8)
Proof. Applying Lemma 5.5 with M = Mg and A = S’ (w), we obtain

D max  Eumypm(v, S WAk ym (ST (W) = ¢552p,0(S' (w)).
veSk+i(w)

Lemma 2.18 shows
EMo,pm(V, SKTHW)) < Ety pm U, Tl k1) < S pomfiw|+k+1-

Moreover, Ap,k+m(Sl(w)) = Ap k+m+1(w) and Apo(SH(w)) = Ap,1(w) by defini-
tion. So letting ¢s.10 = 27 ¢s.5, we obtain (5.7). [

The next theorem is one of the main results of this section.

Theorem 5.11. Assume that p > 1. If either

nll>r£>10 & 8p,n—moMO =0 (5.9
or
lim & D,_1 =0, (5.10)
n—>oo

then there exists C > 0 such that

Apm < Copm, (5.11)
Apmin < CApnOpm (5.12)

and ~ _
(SM*,p,n)_IAp,m < CApmtn (5.13)

foranyn,m > 1.

Remark. Inequalities (5.12) and (5.13) correspond to [36, (2.4)] and [36, (2.3)],
respectively.

Unlike (5.9), (5.10) does not depend on p. So, once (5.10) holds, then we have
(5.11), (5.12) and (5.13) for any p > 1. See Proposition 5.12 after the proof for more
discussion on (5.10).
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Proof. For ease of notation, we write )_Lm = )_kp,m, Om = 0pm and Epy, pom = Em.
By (5.8),if n > k > mo M, then

Di€n—ihnim = €s.10Am. (5.14)
This and (5.6) show
Angm <2771 ((e5.10) " DicEntcbndnim + LuC227An0m). (5.15)
Suppose that (5.9) holds. Let k = moMy. Then there exists no such that, for any
n = no,

_ 1= 1
2[7 1(c54|0) 1Dm()M08n—m()M0‘i‘-n < E

and hence by (5.15), B B
Antm < 2P LycroiAnom. (5.16)

Next suppose that (5.10) holds. Then there exists n¢ such that, for any n > ny,
_ 1= 1
27" N(es10) T Dp1616n < 5

so that we have (5.16) as well. Thus we have seen that if either (5.9) or (5.10) holds,
then there exists n¢g such that (5.16) holds for any n > ny.
Now, let n, = max{moMy + 1,n¢}. Then by (5.14) and (5.16),

CSAI()(EmOMO)_I(gp,n*—moMo)_IIm < Anutm < 2PLiCr27An, Om
for any m > 1. This immediately implies (5.11). Using this and (3.18), we have

Amin < Omin < COpmop.

Therefore, forany m > 1 andn € {1,...,np},
@ <cZ<Cc max 20
Angp’m A’n n=1,...,ng A‘n

So we have verified (5.12) for any n,m > 1. Letting k = moMj in (5.8) and using
(5.12), we obtain (5.13) as well. ]

The following proposition gives a geometric sufficient condition for (5.10).

Proposition 5.12. Suppose that Assumption 2.15 holds. Assume that | is ag -Ahlfors
regular with respect to the metric d. If there exist & < ayg and ¢ > 0 such that

#0S™(w)) < cr e

forany w € T and m > 0, then (5.10) holds.
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Under the assumptions of Proposition 5.12, oy = dimg (K, d), which is the
Hausdorff dimension of (K, d), while dimg (By,,d) < & for any w € T. So, roughly
speaking, Proposition 5.12 says that if

dimg (K,d) > sup dimg (By,d),

weT

then (5.10) is satisfied. By this proposition, one can verify (5.10) for generalized
Sierpifiski carpets for example.

Proof. By [34, Theorem 3.1.21], there exist c¢q, ¢, > 0 such that
el < p(Ky) < coret?!
for any w € T. Hence &, < cr®#", while D, < r~%", -

To conclude this section, we present a lemma providing a control of the difference
of a function on 7}, through &7 ( /) and the Poincaré constant.

Lemma 5.13. Forany w e T, n > m > 1, f € £(S"(w)), and u,v € §"(w), if
"M () = 77" (v), then

n—m
_1 1 - 1
fa) — f)] <2 7825 ()7 Y Fpi)7.
i=1
Proof. Letu € S"(w). Set
Si(u) = S* (7' (u))
foru e S"(w)andi =0,1,...,n. By Lemma B.3 and (2.5), forany k = 1,...,n

@) = (Fsea] = Y 1si v = (sial

=1

k 1
p(r' (W) \» » 1
Z<M(7T’ 1(u))> (Reopa (2" (IES 1) ()

~.

I/\

i=1

'u\»—

<y rert (v Z Xp,i (' (u))) 7.
Hence
@) = O] <170 = (Nl + () $5m) = L)
<y rertel () (nim(dp,i (7 @) 7 +(pi (' ())) 7). m

i=1
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5.3 Proof of Theorem 3.33

Finally, we are going to give a proof of the “if”” part of Theorem 3.33. Recall that
by (3.19), there exist ¢ > 0 and o € (0, 1) such that

EMy,pom < ca™

for any m > 0. Then since &, < 1, (5.9) is satisfied and hence (5.11), (5.12) and (5.13)
turn out to be true.

As in the previous sections, a set J is a covering system with covering numbers
(N1, Ng). Furthermore, recall that by the definition of covering systems,

sup #(A) < oo.
Aeg

We denote the above supremum by N..

Lemma 5.14. Set p = a%. There exists C > 0 such that for any w € T, k,m > 1
withm >k and f € £(S™(w)), if u,v € S™(w) and 7™ (u) = 7™ *(v), then

1

1f ) = F)] < CoERpm) P EV G ()7
Proof. By (5.13),

Api < ChpmEpm—i < ChpmpP™=D, (5.17)

Using this and applying Lemma 5.13, we have
. m—k _ . . . m—1 .
£ ) = f@)] < CEX, ()7 D Rp)PCEY T ()7 Cpm)? D . m
i=1 i=k

Lemma 5.15. Sete = (NC)_%. There exist ny > 1 and my > ny such that if m > my,
then there exist w € T and f € £(S™(w)) such that

1
min u) — max (u) > —¢
uesm—"*(yl)f( ) uesm—"*(yz)f ) 8

Sfor some y1, y, € S"*(w) and

|lw|+m 2
gp,Sm(w)(f) = O’p_m
Proof. Choose A € ¢ such that 0, ,,,(4) > %O’p’m. Suppose that A € T,, and choose
f € t(S™(A)) such that &7 ,(Pnm f) = 1 and
1

& i) = oA’ (5.18)
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Claim 1. There exists ¢c1 > 0, which is independent of m and A, such that ifuy,u, €
S™(A) and (uy,us) € E* then

n+m’
| f(u1) — f(u2)| < c1p™. (5.19)
Proof. By (5.11), (5.17) and (5.18), we have
1 2 C
uy) — fup)|? < &"tm = < < < Cp"™.
|f(u1) — fu2)|? < .S (A)(f) Tpm(A) — Tpm Ao p
This proves the claim. O

Claim 2. There exists ¢, > 0, which is independent of m and A, such thatifu,,u, € A
and 1K (uy) = 7% (uy) for some k € {1,...,m), then | f(u1) — f(uz)| < cap*.

Proof. Itfollows that u1,u, € S™(w) for some w € A. Using Lemma 5.14, we obtain
- 1 1
|fr) = fu2)] < Cp*Cpm) 7 €0 % 1) ()7
- 1 1 - 1 _1
= Cpk(/\p,m) P 8;:13_"2(14) ()7 < Cpk(/\p,m) 7 (0p,m)” 7.
Now (5.11) immediately shows the claim. O

Since #(A) < N, it follows that #(E}(A)) < (N.)?. Therefore, the fact that
8;’A(Pn’mf) = 1 shows that there exists (w1, w2) € E,; (A) such that

I(F)smawy) — (F)smanl? = (Ne)™> = &P,
Exchanging f by — f if necessary, we may assume that
(N)smwy) = (fsmn) = €
without loss of generality. Define

ny =inf{n | n € N, &g > 16¢2p"},

My = max{n.,inf{m | m € N, & > 2¢1p™}}.

Hereafter, we assume that m > m.

Claim 3. Fori = 1 or 2, there exist uy,us € S™(w;) such that u, € 0S™(w;) and

1
|f(u1) — f(u2)| = ZS-
Proof. Choose v11,v12 € S™(wq) and va1, v22 € S™(w;) such that

S11) = (fsmwy), f(22) < (f)smw,), (Vi2,v21) € E|T,)1|+m-
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Since

S11) = f(vi2) + f(v12) = f(v21) + f(v21) — f(v22) = f(v11) — f(va2) > &,
(5.19) shows that, for either i = 1 or 2,
1 1
| f(vi1) = f(vi2)| = 5(8 —c1p™) > ZS-
Letting u; = v;; and u, = v;3, we have the claim. m|

Let w = w; where i is chosen in Claim 3. Exchanging f by — f" if necessary, we
see that there exists #; € S™(w) and u, € dS™(w) such that

1
Sur) = fuz) = e
Set y; = 77"+ (u;) fori = 1,2. Note that y; € S”*(w). By Claim 2,

1 1
min u) — max U) > —g—2c0"* > —¢. n
uES”’—"*(yl)f( ) ueSm—nx(y,) Sz 4 207 = 8

Proof of Theorem 3.33. Let m > my. Then there exist w € T and f € £(S™(w))
satisfying the conclusions of Lemma 5.15. Set ¢o = maxyesm—nx(y,) f(u). Define

1 if 8(f(v) —co) > &,
h(v) = 8¢ 1 (f(v) —co) if0<8(f(v)—co) <&,
0 if 8(f(v) —co) <O

for any v € S (w). Then h|gn«(y,) = 1, h|sn«(y,) = 0 and

N x |w|+m p.—p ‘w|+m 23p+1(NC)2
Epmne (1,72, 87 (W) < é;JII,S’”(w)(h) = 8% 8p,Sm(w)(f) <— -
p.m
By (3.20),
c(n.)23PtH(N )2
EM,pm—ni = C(x)Epm—n, (¥1,y2, 8" (w)) < () (Ne) )
p.m

Making use of the sub-multiplicative property of Exs, pn, We have
EMu.pm < CEM, . pnu M. p.m—n-
Finally, the last two inequalities show
EM,,p.mOpm < C 8M>.<,p,rl*c(”l>x<)23p—i_l (Nc)2

for any m > m,, where the right-hand side is independent of m. Thus K is p-
conductively homogeneous. |



Chapter 6

Miscellanea

6.1 Uniformity of constants

In this section, we study the uniformity of conductance, Poincaré and neighbor dis-
parity constants with respect to the structure of graphs.

Definition 6.1. (1) A pair (V, E) is called a (non-directed) graph if and only if V is
a countable set and £ C V x V such that (u,v) € V if and only if (v,u) € V. For
a graph (V, E), V is called the vertices and E is called the edges.

(2) Let (V,E) and (V’, E’) be graphs. A bijective map t: V — V' is called an iso-
morphism between (V, E) and (V’/, E’) if “(w, v) € E” is equivalent to “(¢(w), t(v)) €
E” forany u,v e V.

(3) Let (V, E) be a graph. For p > 0 and f € £(V), define 81(,,V’E)(f) € [0, o0] by
1
&N =5 D Ifw— I
(u,v)eE
(4) Let (V, E) be a graph and let A, B C V with A N B = @. Define
&, (A B) = (&) (f) | f € LV). fla=1.flp = O}

In this section, we always identify isomorphic graphs.
First, we study the uniformity of conductance constants.
Definition 6.2. For L, N > 1, define
Gs(L,N)={(V,E) | (V, E) is aconnected graph, V = {t,b} U V,, where
the union is a disjoint union and t # b, 1 < #(V,) < LN,
#{v|v e E,(w,v) € E}) <L forany w € V,}.

Since §g(L, N) is a finite set up to graph isomorphisms, we have the following
theorem.

Theorem 6.3. Forany L, N > 1 and p > 0,

0< inf eWV-E) (11}, (b)) < su £VE) (1) (bY) < oo,
(V,E)e$g(L,N) ? ({t). {b)) =< (V,E)eﬁS(L,N) » 0 ({t}{b})

Definition 6.4. Define

L,N,p) = inf eV-E) 1ty {b
cel p) s o & ({t}, {b})
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and

ce(L.N.p)= sup & Bt} {b}).
(V,E)e§g(L,N)

Next we consider Poincaré constants.
Definition 6.5. For L > 1 and N > 2, define

G(L,N)={(V,E) | (V,E)is aconnected graph, 2 < #(V) < N,
#{v|veV, (w,v)eE,})<Lforanyw € V}.

For a connected graph (V, E), define
PV, E) = {,u | neV—1J0,1], Z,u(v) = 1}.
vevV

For u € P(V, E), define
(= FOp),

veV
for f € £(V),

~ - Pu(v
A%,LE) = sup 2 vev |f(VE()f)u| p(v)
fet) & (/)

for p > 0.
Lemma 6.6. Let (V, E) be a connected finite graph. Then for any p > 1,

0< inf AWE) < sup AVE) < .
neP.E) PP T o) PN

Proof. Write &, = SIEV’E). Forany p > 1,

()l + E5(f)7

is a norm on £(V). Therefore, if
Fu= 11 etlV),&(f)=1.()n =0},

then ¥, is a compact subset of £(V). Fix u« € (V. E) and set ¥ = F,,,. For any
S € (V) with &,(f) # 0, define

fe =& ()T = ().
Then fi € ¥ and

Loer VO =Dl _ S~ ) (£, 1P 000).
Sp(f) vevV
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Hence letting

F(u, fo) = Y 1fs() = (fo)ul? 1),

veV

we see that
/\I(JY/D«E) = sup F(u, fv).
f+€F
Since P (V, E) x ¥ is compact and F(u, f«) is continuous on P (V, E) x F, it
follows that

0< inf F(u, fx) < inf A0°E) < gqup  AVE)
pep B poeg T T = B A = pertr "
< sup F(u, fr) < oo. [

neP(V,E), f«€F
Since §(L, N) is a finite set, the above lemma implies the following theorem.

Theorem 6.7. For p > 1,

0< inf )LEJVME ) < sup XS/’E ) < 0.
(V.EYS(LIN) e (V.E) (V.E)e§(L.N).ueP(V.E)

Definition 6.8. Define

¢;(p.L,N) = AV-E)

alp.L.N) = (V,E)eg(L, N) ueP(V,E) PH
and

c(p,L,N) = sup )LI()VME)_

(V,E)€§(L,N),ueP (V,E)
Finally, we study neighbor disparity constants.
Definition 6.9. Define
gU(Lﬂ Nla N2) = {(V’ E], {I/l}:lzl’ E2) | (Vs El) € g(L’ Nl)’

({1,....nY Ex) € §(L, N,), Vi € Vand V; # @
foranyi =1,....n,V=U_, Vi. VinV; =0ifi # j}.

Let (V, E)beagraphandlet u € P(V,E).ForU C V and f € £(V), define

uU) =" )
velU
and
(N = (U) > f)u)

veU
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if £(U) > 0.For G = (V. E1{Vi}'_,. E2) € (L. N1.Ny), p € P(V.E)and p > 1,
define Pg ,:€(V) — £({1,...,n}) and 0, ,(G) by

(Pe,u )W) = (v
for f € £(V) and

81(,{1 ..... n}’Ez)(PG,/Lf)

0pu(G) = sup 7 E
Fet).6Y B ()70 & P (f)

Moreover, define
P(G.k) ={pn|pnePV.E), n(Vi) > kpn(Vy) forany i, j € {1,...,n}}
for k € (0, 1].
Theorem 6.10. Forany p > 1, L, N1, N, > 1 and k € (0, 1],
0 < inf{o, , (G) | G € §5(L, N1, N2), u € P(G,k)}
< sup{opu(G) | G € §(L, N1, N2),u € P(G,k)} < o0.

Proof. First fix
G = (Va Ela{I/i}?zl’EZ) € gO'(L’NlﬂNZ)

and fix
U € P(G, k).

Define ¥ as in the proof of Lemma 6.6. For any f € £(1), setting
1
e =Ep(f)7 X (f = ()
we see that f, € ¥ and

|(f)V1,M - (f)Vz,M|p
Ep(f)

forany u € P(G,x).Let F: F x P(G,k) — R by
F(fow) = 1(viw = (Hvaul

Since F is continuous and ¥ x P (G, k) is compact,

0< inf F(fip) < inf 0p,(G) < su F(f,
WEP (G k), fEF (f+ 1) HEP (G k) pn(@) Me.?’(G,;g,fe?f' Ge)

= |(f*)V1 N (f*)Vz,lLlp

= sup 0pu(G) < oo.
ueP (G k)

Now the desired statement follows by the fact that §; (L, N) is a finite set up to graph
isomorphisms. |
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Definition 6.11. Define

Qa(La NlaNZ’K) = inf{OP,M(G) | G € gG(La N17N2)7M € ‘(/)(G7K)}a
EO'(LaNlaNz’K) = Sup{GP,M(G) | G € gO'(Lv NlaNz)vl’L € ‘(/)(G7K)}

6.2 Modification of the structure of a graph

In the original work of Kusuoka—Zhou [36], they used a subgraph of (75, E;) to
define their version of &} in the case of the Sierpifiski carpet. Namely, in our termi-
nology, their subgraph is

E! ={(u,v) | (u,v) € Ef,dimg (K, N K,,) = 1}

and their energy is

e (N=5 X 1fw- [P

(u,v)€E,}

for f € £(T,). (They only consider the case p = 2.) Our theory in this paper works
well if we replace our energy &, with Kusuoka—Zhou’s energy & 1}’" because they are
uniformly equivalent, i.e., there exist c;, ¢ > 0 such that

EN(f) < EV(f) < e282(f)

forany n > 1 and f € €(T,). More generally, if we replace our graph (7, E,;) with
a subgraph (T,, E,) satisfying conditions (A) and (B) below, all the results in this
paper remain true except for changes in the constants.
(A) G, = (T, Ep) is a connected graph for each n having the following prop-
erties:
i If(w,v) € E,, then Ky, N K,, # @.
(i) If (w,v) € E, forn > 1, then m(w) = w(v) or (w(w), 7 (v)) € Ep—1.
(iii) If (w,v) € E, for n > 1, then there exist w; € S(w) and v; € S(v)
such that (w1, w;) € Ep41.
(iv) Foranyn > 0and w,v € T, with Ky, N K, # @, there exist w(0),...,
w(k) € I'1 (w) satisfying w(0) = w,w(k) =vand (w(@),w(i@ + 1)) €
E,foranyi =0,...,k—1.
(B) For any w € T, the graphs (S"(w), Erf:—ﬁﬁ\)) associated with the partition
T (w) of Ky, satisfies the counterparts of conditions (i), (ii), (iii) and (iv)
of (A).
Naturally, the graph (7, E,;) satisfies (A) and (B).
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6.3 Open problems
In the final section, we gather some of open problems and future directions of our

research.

1. Regularity of WP for p € [1,dimgr(K, d)]: As we have already mentioned, it is
not known whether or not C(K) N W2 is dense in W2 for p € [1,dimyg(K,d)]. The
first step should be to establish an elliptic Harnack principle for p-harmonic functions
on approximating graphs and/or the limiting object (W2, ép () + Il - llp,n)- Even in
the case of p = 2, this problem is open except for the case of generalized Sierpinski
carpets. The conjecture

WP C C(K) ifandonlyif p > dimgrc(K,d)

in the introduction is closely related to this problem as well.

2. Construction of p-form and p-Laplacian: In this paper, we have constructed a p-
energy &,(f) but not a p-form &,(f, g). Let

[t|P72t ift #0,

()= {o it = 0.

On a graph G = (V, E), if we define

E(f.8) ==Y (A ) (X)g(x)

xeV

for f,g € £(V), where A, is the p-Laplacian defined by

Do) = D Dp(f(¥) = f(X),

yeV,(x,y)€E

then it follows that

(N =5 3 10~ 0P = &(f /).

(x,y)EE

As a natural counterpart, we expect to have a p-form 3 »(f, g) which is linear in g,
satisfies

E(f) = E,(f. 1)

for any f € WP?, and has an expression such as

&,(f.g) = — /K (A f)()g (X)),
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3. Existence of p-energy measure: In the case p = 2, there is the notion of energy
measures associated with a strongly local regular Dirichlet form (&, ), where & is
the form and ¥ is the domain. Roughly speaking, the energy measure j1r associated
with f € ¥ is a positive Radon measure satisfying

[ ) diagtn) = 26 s ) = €720

forany u € ¥ N Co(X). See [19] for details. So, what is a counterpart of this in the
case of €77 Is there any natural measure s for f € ‘W2 such that

| dnptan = &2
For R”, the answer is yes and

sy =V f|Pdx.

For the planar Sierpifiski carpet, this problem has already been studied in [41]. How-
ever, we know almost nothing beyond those examples.

4. Fractional Korevaar—Shoen type expression: As we have already mentioned, a
fractional Korevaar—Shoen type expression of W2 has already shown in [41] in the
case of the planar Sierpinski carpet. Namely, we have

RS |fG) = F))I”
/l;d* (x,r)

Bo

wr = {1 | f e’k Tm [

K rH

dxdy < oo}

and it is shown in [41] that 8, > p for any p > 1. How about other cases? Suppose
that Assumption 2.15 holds and p is o g -Ahlfors regular with respect to the metric d.
Then we expect that
Bp=aun+1
and we know
og+1tp=p
by [34, (4.6.14)]. Now our questions are:
* Do we have a fractional Korevaar—Shoen type expression as above?
»  When does B, > p hold? (Apparently, if K = [—1,1]%, then 8, = p.)
A related question is: If 8, = p, then does 'W?” coincide with any of the Sobolev type

spaces given by approaches using upper gradients?

5. Without local symmetry: In Sections 4.3, 4.4, 4.5 and 4.6, we have shown the
conductive homogeneity of self-similar sets having local symmetry, which helped us
to extend a path from one piece of K4, to neighbors by the reflection in its boundaries.
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However, the local symmetry does not seem indispensable for having conductive
homogeneity. Intuitively the essence should be the balance of conductances in differ-
ent directions, for example, the vertical and the horizontal directions for square-based
self-similar sets. Unfortunately, we have not had any example without local symmetry
yet except for finitely ramified cases.
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A Basic inequalities

The next two lemmas can be deduced from the Holder inequality.

Lemma A.1. For p € (0, 00),

n
P
D
i=1

foranyn > landay,...,a, € R.

n
< max{1.n?'} > " a;|”
i=1

Lemma A.2. Let p,q € [1, oo] satisfying % + é = 1. Then for any n € N and
ai,...,dy e R,

n 1
<Z|ai|q)q < max {1,n = (Z|a |p>
i=1
The following fact implies the comparison of two types of Poincaré constants,
Apm and Ap , as in (5.4).

Theorem A.3 ([9, Lemma 4.17]). Let u be a finite measure on a set X. Then for any
felP(X,u)andc € R,

I L=

where || - ||, is the L?-norm with respect to j and (f),, = w(X)™! [ fdp.
The following lemma is a discrete version of the above theorem.
Corollary A4. Let (i;)i=1,..n € (0,1)" with > ;_, u; = 1. Then

z 1\? o | — p
Z|x—ai|pﬂi2(5> Z‘Zﬂjaj—ai
i=1

i=1 j=1

i

forany x,aq,...,a, € R.

B Basic facts on p-energy

Let G = (V, E) be a finite graph. For A C V,set E4 = {(x,y) | x,y € A, (w,y) € E}
and G4 = (A, E4).
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Definition B.1. Let u: V' — (0, 00) and let A C V. Define supp(u) = {x | x € V,
u(x) > 0}. Let p > 0. For u € £(V), define

Efa =5 Y () —u(l?,

(x,»)EE

el = (D )17 (0)

xeV

1

Sy i) 2 M)
ye

xeV

(“)M =

and

min u—-c p
20 — sup ( cer |l - XV”p,u) ’
’ uel(V),u#0 8]) (u)

where yy € £(V) is the characteristic function of the set V.

A _ oGa A _ 4Ga
For A CU,set&) =&, and A}, |, = /\P,M|A'

Lemma B.2. Define
¥ (v — @) xv llp.)”

A6 = sup
PR ety uzto &% (u)

Then :
P=G G _736G
(5) Ao = Mg = Appe

Proof. By Corollary A 4,

D 1) = ()l p(x) = min B fu(x) = el p(x)

xeV xeV

= (5)" 3 o) — @), .

2
xevV

Lemma B.3 ([36, Proposition 1.5(2)]). Let p € [1, 00) and let u: V — (0, 00).
Assume that A € B C V. Then for any u € £(B),

1 o~ 1
_ < AB 83 p'
[(u)a — (u)B| < M(A)%( pu€p (W)

Proof. By the Holder inequality,

[(u)a — (W)B| < ﬁ/l;XAW — (u)ldp < /L(:l)ll’ (/B lu — (u)Bll’du);. "
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C Useful facts on combinatorial modulus

In this appendix, we have useful facts on combinatorial modulus. In particular, the last
lemma, Lemma C.4, is a result on the comparison of moduli in two different graphs.
This lemma plays a key role on several occasions in this paper.
Let VV be a countable set and let &* (V') be the power set of V. For p: V' — [0, 00)
and A C V, define
Ly(4) = Y p(x).

x€eA

For U C £ (V), define
AU) ={p|p:V = [0,00), L,(A) > 1 forany A4 € U}.
Moreover, for p: V — [0, 00), define

My(p) = Y p(x)? and Mod,(U) = peg(fu) M, (p).

xeV
Note that if U = @, then A(U) = [0, 00)" and Mod,(U) = 0.

Lemma C.1. Assume that U consists of finite sets. Then there exists p« € A(U) such
that
Mod, (U) = Mp(p+).

Proof. Choose {p; };>1 € +(U) such that M,(p;) — Mod,(U) asi — oo. Since V
is countable, there exists a subsequence {pn; };>1 such that, for any v € V, pp; (v)
is convergent as j — 00. Set px(p) = lim; o0 pn, (p). For any A € U, since A is
a finite set, it follows that L,, (4) > 1. Hence px € A(U). For any & > 0, there exists
a finite set X, such that 3 .y p«(v)? > Mp(ps) —&. As

Mody(U) = lim My(pn;) > Tim 3~ pn, (0)",

veXe

we obtain Mod, (U) > M, (px) — ¢ for any & > 0. Hence Mod,, (U) > M, (px«). On the
other hand, since px € A(U), we see My, (p+) > Mod,(U). Therefore, M, (p«) =
Mod, (U). ]

Lemma C.2. Assume that U consists of finite sets. For v € V, define U, = {A |
A€ U,v € A}. Then
p+(v)? < Mod, (Uy)

for any ps € A(U) with M, (px) = Mod,(U). In particular, if U, = 9, then

px(v) = 0.
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Proof. Suppose that px € A(U) and M, (p«) = Mod, (U). Assume that U, = @ and
p«(v) > 0. Define p/, by

/( ) IO*(M) if u # v,
u) =
P 0 ifu=v.
Then p), € A(U) and M, (p,) < M,(p«). This contradicts the fact that M, (px) =
Mod, (U). Thus if U, = 9, then p«(v) = 0. Next assume that U, # 0. Let p, €
A(Uy) with Mp(py) = Mod, (U,). Note that such a p, does exist by Lemma C.1.
Define

- max{p«(u), py(u)} ifu # v,

pu) = .

v (V) ifu =w.

LetAe U.Ifv ¢ A, then p > p, on A, so that p € A(A). If v € A, then p > p, on A
and hence p € A(A). Thus we see that p € A(U). Therefore,

Mod,(U) < Mp(5) < Y pu(u)? + > py(u)?
uF#v uev

= Mod, (U) — p«(v)? + Mod, (Uy). [
Define £ (V) ={f | f:V — [0,00)}.

Lemma C.3. Let Vi and V, be finite sets. Let U; € P (V;) fori = 1,2. If there exist
maps &: Uy — Uy, F: L (V1) — £+ (V>) and constants C1, C, > 0 such that

CiLrp)(v) = Lp(§(y)) and  My(F(p)) = C2Mp(p)
forany p € L4 (V1) and y € Uy, then
Mod,(Us) = (C1)?C;Mod, (Uy)
forany p > Q.

Proof. Note that C; F(p) € A(U-) for any p € A(U;). Hence if F/'(p) = C1F(p),
then

Mod,(U,) = min M < min M,(F’
p( 2) peA(Un) p(P)_pGA(ul) p( ()

=< (C)HFC, min M,(p)(C1)F CaMod, (Uy). "
peA(UL)

Lemma C.4. Let Vi and V, be countable sets and let U; C P(V;) fori =1, 2.
Assume that Hy, C Vi and #(Hy) < oo for any v € V,. Furthermore, assume that, for
any B € Uy, there exists A € Uy such that A C | J,cp Hy. Then

Mod,(U>z) < sup #(Hy)? sup #({v | v € V2, u € Hy})Mod,(U1)

vels uely

forany p > Q.
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Proof. For p: V3 — R, define
F(p)(v) = max p(u)
ueHy,
for any v € V5. Then F: £ (V1) — £4(V>) and

Mp(F(p) = ) max pu)” < 3 7 > p(u)”

IS %) veV ueHy
< sup #({v | v € Vo, u € Hy})Mp(p).
uev

On the other hand, for B € U, choose £(B) € U, such that £(B) € | J,cp Hy- Then
forany p € £ (V1) and B € U,,

sup #(Hy) L (p)(B) = Y #(H)F(p)w) = > Y p(v)

uels ueB ueB veH,
= Z #{u | v e Hy})p(v)
veUyep Hu
> Z p(v) = L, (§(B)).
veé(B)
Hence by Lemma C.3, we have the desired conclusion. n

D An Arzela—Ascoli theorem for discontinuous functions

The following lemma is a version of Arzela—Ascoli theorem showing the existence
of a uniformly convergent subsequence of a sequence of functions. The difference
between the original version and the current one is that it can handle a sequence of
discontinuous functions.

Lemma D.1 (Extension of Arzela—Ascoli). Let (X, dx) be a totally bounded metric
space and let (Y, dy) be a metric space. Let u;: X — Y for any i > 1. Assume that
there exist a monotonically increasing function 1: [0, 0c0) — [0, 00) and a sequence
{8i}i>1 € [0, 00) such that n(t) - Oast | 0,8; - O0asi — oo and

dy (ui(x1),ui(x2)) < n(dx(x1,x2)) + 6; (D.1)

forany i > 1 and x1,x, € X. If Uizl u; (X) is compact, then there exists a sub-
sequence {un; }j>1 such that {u,, }j>1 converges uniformly to a continuous function
u: X =Y as j — oo satisfying dy (u(xy),u(x2)) <n(dx (x1,x2)) forany x1,x, € X.

Proof. Since X is totally bounded, there exists a countable subset A € X which is
dense in X and contains a finite 7-net A, of X forany v > 0. Let K = ;5 ui (X).
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Since K is compact and {; (x)};>1 € K is bounded for any x € A, there exists a sub-
sequence {Uy,, (X)}x>1 converging as k — oo. By the standard diagonal argument,
we may find a subsequence {1y, }j>1 such that {u,; (x)};>1 converges as j — oo for
any x € A. Set v; = up; and @ = §y;. Define v(x) = lim; oo v(x) for any x € A.
By (D.1),

dy (v (x1). v (x2)) < n(dx (x1.x2)) + )

for any x1, x, € A. Letting j — o0, we see that
dy (v(x1), v(x2)) < n(dx (x1,x2)) (D.2)

for any x1, x, € A. Since A is dense in X, v is extended to a continuous function on X
satisfying (D.2) for any x, x € X. Fix ¢ > 0. Choose 7 > 0 such that n(7) < 3.

Since the t-net A, is a finite set, there exists ko such that if k > kg, then o < %
and dy (v(z), vg(z)) < e for any z € A;. Let x € X and choose z € A, such that
dx(x,z) < 1. If k > kg, then

dy (v (x), v(x)) < dy (v (x), v (2)) + dy (Ve (2), v(2)) + dy (v(2), v(x))
< 2n(dx (x, 2)) + ax + dy (v (2), v(2)) < 2e.

Thus {v; };>1 converges uniformly to v as j — oo. ]

E Geometric properties of strongly symmetric self-similar sets

In this appendix, we will give proofs of claims on topological and geometric prop-
erties of self-similar sets treated in Section 4.6. Namely, we will give proofs of
Propositions 4.40 and 4.42. First, we recall the setting of Section 4.6. Let S be a finite
subset of RL and let p € (0, 1). Let U, € O(L) for any q € S. Define f,: R — RE
by
Ja(x) = pUg(x —q) +q

for x € RL. Let K be the self-similar set with respect to { f; }4es. i.e., K is the unique
non-empty compact set K satisfying

K = U Jq(K).

qges

The triple (K, S. {f;}qes) is know to be a self-similar structure defined in Defini-
tion 4.1 and the map y: SN — K is given by

@1q2.- 9 = () faram(K)

m=>0

as we have seen in Section 4.1.
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Definition E.1. (1) Define 5: SN — SN by

5(q1g2...) = q2q3... forqiqs...<€ SN.

(2) Define

k= Kink;, e=yx'Cx) 2=|J5 )
i#jeS k>1

and Vy = y(9). The sets € and & are called the critical set and the post critical set
of (K, S,{fq}qes), respectively. A self-similar structure (K, S, { f;}4es) is said to
be post critically finite (p.c.f. for short) if J is a finite set.

By [29, Theorem 1.2.3], we have the following proposition.

Proposition E.2. The map yx is continuous and surjective. Moreover,

1(q1q2..) = fq,(X(0(q192 - . .))) (E.1)

forany q1q> ... € SN.

In this appendix, we suppose that Assumption 4.39 holds.
The next lemma gives a proof of Proposition 4.40.

Lemma E.3. Under Assumption 4.39, we have
(1) Foranyq € S, x"'(q) = g, where g = qqq ... € SN.

2) P =1{q | q € U}, where U is the set appearing in Assumption 4.39. In par-
ticular, the self-similar structure (K, S, { f4}qes) is post critically finite and
Vo =U.

Proof. (1) Suppose x(t172...) = ¢. Then by (E.1),

q=yx(m...)= fr(x(213...)) € Ky,.

By Assumption 4.39 (1), it follows that ; = ¢. Since f; is invertible, we see that
x(t213...) = ¢q. Using the same argument as above, we see that 1, = ¢ as well. Thus
we deduce that 7 = ¢ for any k € N inductively.

(2) Suppose that y(t172...) € fr,(K) N f4(K) for some g # 7;. By (E.1), it
follows that x(7172...) = fr; (x(7273...)). Hence by Assumption 4.39 (2),

x(w2t3..) € (fo) 7 (fo (K) N fy(K)) S U.

Thus 7,73 ... = ¢’ for some ¢’ € U. Therefore, # C U.

Conversely, again by Assumption 4.39 (2), for any g € U, there exist py, p» € S
with p; # p2 such that y(p1q) € fp,(K) N fp,(K). This shows that p;g € € and
hence ¢ € P. ]
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In the next two lemmas, we are going to show a sufficient condition for Assump-
tion 4.41.

Lemma E.4. Suppose that Assumption 4.39 holds and that Uy is the identity map

forany g € Vy. Let g = fp,(q1) = fp,(q2) for some p1, p» € S with p1 # p, and
41,92 € Vo. Then there exists y = y(p1, P2,41,42) > 0 such that

d(KP] \Kp] (q])mfl ’ KP2) . ypm

forany m > 1, where d(A, B) = infyea,yep |Xx — y| and (@ =q...qeTy.

k-times

In the following proof, we assume that

#(fp1 (K) 0 fpp (K)) = 1

to avoid a non-essential complication of arguments. Without this assumption, the
lemma is still true with a technical modification of the proof.

Proof. Set ¢, = inf{d(Ky, Ky) | w,v € Ty, Ky N Ky, = @}. Define

Xm = Kp \Kp, (gym—1  and Yy = Kp, 4\ K, (4,)m—

for m > 1. Then X = Y U (U4, Kprg) and Kp, = Kprg, U (U,24, Kpag)-
This implies that
d(Xm, Kp,) = min{d (Y, Kp,q,). 2}

On the other hand, letting f(x) = p(x —q) + ¢, we see that
Yim UKprgr = f(Xm—1 U Kp,).
This yields d(Ypm, Kp,q,) = pd(Xm—1. Kp,). Consequently, we have
d(Xm, Kp,) > min{pd(X,u—1, Kp,), c2}.
Now inductive argument suffices. |

Lemma E.5. Suppose that Assumption 4.39 holds and that Uy is the identity map for
any q € Vy. Then Assumption 4.41 holds.

Remark. According to the notation in the proof of Lemma E.4, this lemma claims
Ccm = cp™ forany m > 1.

Proof. Suppose that w,v € Tj, and Ky, N Ky, = 0. Letw = wy ... wy, and letv =
V1 ...VUy. In the case w1 = wa,,

d(Kwy Ky) = Pd(sz...wms sz...vm) Z Cm—1p-
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Otherwise, assume that wy # v;. If Ky, N Ky, = 0, then d(Ky, Ky) > ¢1. So,
the remaining possibility is that w; # vy and Ky, N Ky, # 9. In this case, let
q = Ky, N Ky,. Then g = fy,(p;,) = fw,(pj,) for some ji, j» € {1,...,L}. By
Lemma E.4, it follows that d(Ky,, K,) > yp™, where ¥ = min{y(p1, p2.91.92) |
1,02 €5,91,92 € Vo, fp,(q1) = fp,(g2)}. Combining all the cases and using induc-
tion on m, we see that ¢,, > min{cy, y}p™ for any m > 1. ]

Now we start showing Proposition 4.42, that is, Assumption 2.15 holds under
Assumptions 4.39 and 4.41.

Lemma E.6. Under Assumptions 4.39 and 4.41, Assumption 2.15(2) holds with
r=p, My =1,and d = dy, where d is the restriction of the Euclidean metric.

Proof. (2A) is obvious. Set

Tia) = J Tiw)

weTy
xeKy

for x € K and n > 1. Then for any v € T,\I'; »(x), there exists w € T, such that
x € Ky and Ky, N K, = @. By Lemma E.5, we see that d(K,,, x) > cp” and hence
By, (x,cr™) N K, = @. Thus we have

By, (x,cp") C Ui(x : n). (E.2)

On the other hand, by (2A), there exists ¢’ > 0 such that diam(Ky,, dx) < ¢’ p‘w| for
any w € T. This implies

Ui(x :n) € By, (x,3¢'0"). (E.3)

So we have (2B). Choose x¢ € K\ Vj and choose m¢ € N such that 2p™0 < d(xq, Vp).
Letw € T, and letu € I'y 40 (fw (x0)). Suppose that u € T'(v) for some v € T,, with
v # w. Since u € I't mo+n(fuw(x0)), there exists ug € Ty4m, such that fy, (xo) € Ky,
and Ky, N K, # 0. Let y € K,,. Since K is connected (and hence arcwise connected
by [29, Theorem 1.6.2]), there exists a continuous curve ¢: [0, 1] — Ky, U K, such
that £(0) = fw(x0) and ¢(1) = y. Note that f,,(x¢9) € Ky and y € K,,. By (4.24),
the curve ¢ intersects with fy, (Vo). Therefore, (K, U Ky,) N fi, (Vo) # 0. However,
since diam(Ky,, dx) = diam(Ky,,, d«) = p™0™", it follows

d(fuw(x0), Ky U Ky) < 2Pm0+n < d(fw(xo0), fw(Vo)),

so that (K, U Ky) N fiy, (Vo) = 0. This contradiction shows that u € T'(w) and hence
Uy (fw(x0) : mog +n) C Ky. By (E.2), we see that

Ba, (fuw(x0),co™*™) € Ur(fu(x0) : mo +1n) S Ky,

This shows (2C). ]
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Next set oy = —%. Note that p*# = #(S)~!. Let u be the self-similar
measure on K with weight (p%#, ..., p*H). By [31, Theorem 1.2.7], we see that

w(Ky) = pl*! for any w € T and consequently 1 ({x}) = 0 for any x € K,,. These
facts show that u satisfies Assumption 2.12. Moreover, we have the following propo-
sition.

Proposition E.7. Under Assumptions 4.39 and 4.41, there exist c1, c; > 0 such that

c18™ < ju(Bg,(x,5)) < c1s (E4)

for any s € [0, 1]. In particular, | is ag-Ahlfors regular with respect to d,. and the
Hausdorff dimension of (K, d«) equals ag.

Proof. By (E.3),forany x € K andn > 1,if w € I'; ,(x), then
(P = u(Kw) < u(Bg, (x,3¢'p")). (E.5)
On the other hand, by [31, Proposition 1.6.11], there exists Jx € N such that
#(1n(x)) < Js (E.6)

for any x € T and n > 0. (Note that All)n’x defined in [31, Definition 1.3.3] equals
I'1,n(x).) Therefore by (E.2),

1(Ba, (x.cp™) = D w(Ky) < Ju(p"). (E.7)
vely ,(x)
Combining (E.5) and (E.7), we obtain (E.4). ]

The following proposition is immediately deduced from the previous propositions
and lemmas. Note that 'y (w) € I'y »(x) forany w € T and x € K,,. Hence by (E.6),
we see that the partition { Ky, }yer is uniformly finite.

Proposition E.8 (Proposition 4.42). Under Assumptions 4.39 and 4.41, Assump-
tion 2.15 holds withr = p, d = dyx and M, = My = 1.

The fact that My = 1 is due to the second remark after Assumption 2.6.
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adjacency matrix, Definition 2.1
Ahlfors regular, (2.9)
Ahlfors regular conformal dimension, (1.1)
Arzela—Ascoli, Appendix 6.3
child, Definition 2.2 (1)
chipped Sierpifiski carpet, Example 4.25
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conductively homogeneous (conductive
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