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Preface

The Eighth European Congress of Mathematics (8ECM) was special in many ways. It
was the first time that an ECM was entrusted to Slovenia, a relatively small European
country of two million inhabitants. In addition, in contrast to previous ECMs that were
organized in major cities, this ECM was planned to take place in a small town, Piran, on
the shore of the Adriatic coast. Although the municipality of Piran has less than twenty
thousand inhabitants, it has a suitable congress infrastructure. Local organization was
focused in the small but ambitious University of Primorska in the nearby town of Koper.
The main challenge was to break the stereotypes about Slovenia and its mathematics,
not only abroad but also locally. “We are too small for such a big project. Forget it!”
said a leading Slovenian mathematician. After winning the bid for the 8ECM, the tide
changed and all Slovenian institutions practicing mathematics enthusiastically offered
their support for the success of the congress.

The second challenge was to increase interest in the congress among the general
international mathematical community. Looking at the attendance details of the past
seven ECMs, we noticed that the number of participants never exceeded the partici-
pation at the first ECM in Paris, which had about 1,500 attendees. Only in the seventh
ECM in Berlin, one of the key centers of European mathematics, did the trend turn
and the participation surpassed 1,000 attendees. Before we decided to put in a bid
for hosting the congress, we wanted to understand why this event, one of the most
important international mathematical events, does not attract more participants. By
informally interviewing various mathematicians from different countries, including
some of the organizers of previous congresses, we identified certain issues, three of
which are mentioned below.

First, even the first-rate mathematicians who were actively involved in previous
congresses as speakers, prize winners, scientific or prize committee members, etc., in
general, rarely find time to attend later congresses. Similarly, many officers of the Euro-
pean Mathematical Society (EMS), belonging to various EMS committees, consider
their participation at the ECM of lesser importance. By not being a strong positive
role model, they also fail to reach out to the younger generations of European and
world mathematicians. For instance, the absence of members of scientific committees
who select plenary and invited speakers, and similarly members of prize committees,
unfortunately, sends a very negative message not only to the speakers and prize win-
ners themselves but also to the general mathematical community, that it is prestige
and not mathematical content that counts at the congress. This is a challenge that the
leadership of the EMS should address for future congresses.
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Second, many excellent mathematicians tend to avoid worldwide and European
mathematics congresses. They find these meetings too big and too broad; they prefer
smaller, specialized meetings, which they find much more attractive and productive.
We addressed this challenge by increasing the weight of the bottom-up approach,
expanding the number of minisymposia and minisymposia speakers. In addition, we
allowed each minisymposium to select a special speaker and gave these speakers the
opportunity to present their contribution within these proceedings.

The third issue, and by far the most damaging, was beyond our control. The out-
break of the pandemic in the final stages of our preparations at the end of 2019 forced
us to rapidly adapt to the developing situation. The numbers of infections were rising
steeply, worldwide. By March of 2020, it became clear that our original plan needed
drastic changes. All decisions were made hand in hand with the executive committee
of the EMS. The option of canceling the congress was never on the table. Postponing
the ECM for a couple of months seemed too risky. Eventually, we decided to post-
pone it for a year. By then, the tools for online conferences were sufficiently developed
and most mathematicians had adjusted to giving their presentations via the Internet.
Although we were prepared for a live congress, we knew very well that several coun-
tries still prohibited their scientists from traveling abroad at that time. This is why we
opted for a hybrid approach.

Structure of the 8ECM

There were 62 minisymposia with 902 talks, and 95 talks were delivered in special
sessions.

Plenary Speakers. Peter Bühlmann, Xavier Cabré, Franc Forstnerič, Alice Guionnet,
Gitta Kutyniok, Monika Ludwig, János Pach, Alfio Quarteroni, Karl-Theodor Sturm,
Umberto Zannier.

Invited Speakers. Andrej Bauer, Yves Benoist, Robert Berman, Martin Burger, Albert
Cohen, Marius Crainic, Mirjam Dür, Alison Etheridge, Rupert Frank, Aleksey Kos-
tenko, Emmanuel Kowalski, Daniel Kressner, Daniela Kühn, Eugenia Malinnikova,
Domenico Marinucci, Eva Miranda, Richard Nickl, Burak Özbağcı, Ilaria Perugia,
Gabriel Peyré, Yuri Prokhorov, Alexander A. Razborov, Aner Shalev, Špela Špenko,
László Székelyhidi, Anna-Karin Tornberg, Nick Trefethen (FRS), Stuart White.

EMS Prize Lectures. Karim Adiprasito, Ana Caraiani, Alexander Efimov, Kaisa
Matomäki, Joaquim Serra, Simion Filip, Alexandr Logunov, Phan Thành Nam, Jack
Thorne, Maryna Viazovska.

Abel Lecture. László Lovász.

Felix Klein Prize Lecture. Arnulf Jentzen.
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Otto Neugebauer Prize Lecture. Karine Chemla.

Hirzebruch Lecture. Martin Hairer.

Public Lectures. Bojan Mohar, Andrei Okounkov, Stanislav Smirnov, Kathryn Hess,
Robin Wilson.

Scholarships were awarded following the regulations of the open call.1 Out of 274
applications from 64 countries around the world, 105 scholarships were awarded.

The internal satellite event “Optimization in Insurance” was held in Portorož on
23 June 2021.2 Due to COVID-19, five of the fifteen external satellite events were
canceled or postponed.

Four Open Panels and Society Meetings

A highlight of the 8ECM was an open live interview with Jean-Pierre Bourguignon,
one of the most influential contemporary European mathematicians who, among other
things, served as the second President of the EMS and as President of the European
Research Council and left a huge impact on the prestigious Institut des Hautes Études
Scientifiques as its Director for 19 years. The interview was conducted by Günter
Ziegler, a prominent mathematician who currently serves as the President of the Freie
Universität Berlin. The event was chaired by Maria J. Esteban, the Chair of the 8ECM
Scientific Committee, and was broadcast live with open access. The interview took
place on the last day of the congress, on Friday, 25 June 2021, and was followed by
the closing ceremony.

There were eight accompanying events, a career day, and a student competition
“Best of 8ECM”. There were sixteen 8ECM exhibitors. There were 1,771 participants
who completed registration. Participants came from seventy-seven countries, and there
were nineteen countries with more than twenty registered participants: Italy, Slovenia,
Germany, UK, Spain, USA, France, Russia, Poland, Czech Republic, Croatia, Hun-
gary, Austria, Ukraine, Switzerland, China, Canada, Belgium, and Romania. There
were 1,058 contributions in total.

These proceedings covered forty presentations coming from plenary speakers (7),
invited speakers (14), EMS prize winners (6), public lecturers (2), and minisymposia
keynote speakers (11).

The 8ECM program was broadcast using the Zoom Webinar platform: one Zoom
Webinar license for 3,000 participants (used for plenary talks, public talks, the opening,
the interview with Jean-Pierre Bourguignon, and the closing ceremony), eight Zoom

1See https://www.8ecm.si/about-8ecm/8ecm-scholarships.
2See https://conferences.famnit.upr.si/event/20.

https://www.8ecm.si/about-8ecm/8ecm-scholarships
https://conferences.famnit.upr.si/event/20
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Webinar licenses for 1,000 participants (used for invited talks and prize talks), and
forty-two Zoom Webinar licenses for 500 participants (used for minisymposia, round
tables, exhibitors, etc.).

We certainly hope that the next ECMs will be held live, perhaps with certain key
talks and other events broadcast over the Internet, and all talks recorded for posterity.
We also hope that the next ECMs will be attended more widely by members of EMS
committees and also by members of ECM committees. The bottom-up approach could
be significantly extended through engagement by national mathematical societies.

Tomaž Pisanski, 8ECM Organizing Committee Chair
Dragan Marušič, 8ECM Local Scientific Committee Chair
Klavdĳa Kutnar, 8ECM Organizing Committee Deputy Chair
Ademir Hujdurović, 8ECM Organizing Committee Member
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Regularity of stable solutions to reaction-diffusion elliptic
equations

Xavier Cabré

Abstract. The boundedness of stable solutions to semilinear (or reaction-diffusion) elliptic
PDEs has been studied since the 1970s. In dimensions 10 and higher, there exist stable energy
solutions which are unbounded (or singular). This note describes, for non-expert readers, a
recent work in collaboration with Figalli, Ros-Oton, and Serra, where we prove that stable solu-
tions are smooth up to the optimal dimension 9. This solves an open problem posed by Brezis
in the mid-nineties concerning the regularity of extremal solutions to Gelfand-type problems.
We also describe, briefly, a famous analogue question in differential geometry: the regularity of
stable minimal surfaces.

1. Hilbert’s 19th problem and the principle of least action

In many physical phenomena and geometric problems, observable states try to min-
imize a certain functional. When we describe the possible states by functions u of
one or several real variables, the functional is a real valued function A acting on such
functions. In classical mechanics, A is called the action and is given by the integral
of a Lagrangian. A simple example is the motion of a particle under gravitation, in
which its position is given by u D u.x/ (where x D t 2 R is time) and the action is
the difference of kinetic and potential energies. In geometry, two important examples
are geodesics (curves in a Riemannian manifold that are critical points of the length
functional) and minimal surfaces (hypersurfaces of Euclidean space that are critical
points of the area functional).

Hilbert’s 19th problem asks whether minimizers of elliptic functionals are always
analytic. When the functional is given by A.u/ D

R
�

L.ru.x//dx for some domain
� � Rn and convex function L W Rn ! R (here u W � � Rn ! R), the problem was
solved independently in the late 1950s by Ennio De Giorgi and John Forbes Nash, Jr.

2020 Mathematics Subject Classification. Primary 35B65; Secondary 35B35.
Keywords. Semilinear elliptic equations, stable solutions, extremal solutions, regularity,
a priori estimates.
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Our work [5] takes up on the same question for the Lagrangian L.ru; u/ D
1
2
jruj2 � F.u/, which depends also on the variable u.

The principle of least action in mechanics states that observable states should
be not only critical points of the action but absolute minimizers of it. In the previ-
ous setting, when L D L.ru/ is a convex function defined in Rn, we have that A is
convex. As a consequence, any critical point of A (if it exists) is an absolute mini-
mizer. Thus, the principle of least action is, here, fulfilled. However, the principle is
violated in some real life situations, described next, in which we observe states that
are only local minimizers (minimizers among small perturbations), even in situations
when an absolute minimizer exists. Still, the observed state being a local minimizer,
it is therefore a stable state, in the sense that the second variation of the functional is
nonnegative definite when computed at such state.

In these minimization problems, the competitors among which one looks for criti-
cal points are functions, or surfaces, with prescribed given boundary values—the end
points of the trajectory of a mechanical particle, or of a geodesic, or a given wire
from which soap films or (minimal) surfaces are spanned. The key point is that the
functional in many of these variational problems is not convex. Thus, it may admit
critical points which are not absolute minimizers (but are only local minimizers) and
even unstable critical points (which, consequently, are not even local minimizers).

2. Stable minimal surfaces

An instructive example is that of catenoids: a soap film or minimal surface formed
between two coaxial parallel circular rings. In the nice paper “In situ observation
of a soap-film catenoid—a simple educational physics experiment” by Ito and Sato
[15], catenoids are experimentally produced in a lab and videotaped while the dis-
tance between the two circular wires is continuously increased. Note that, besides
catenoids, there always exists another critical point of the area: the two flat disks
spanned by the wires. For each small enough distance, two catenoids exist and the
one with a thicker neck is an absolute minimizer of the area (clearly the disks have
much larger area). As the wires separate, there is a distance h0 at which both states
(the thick-neck catenoid and the two disks) have the same area. Right after it, the two
disks become the absolute minimizer, while the catenoid is only a local minimizer.
Still, for an interval of distances h > h0 the videotaped surface is the catenoid—not
the absolute minimizing disks. Such catenoid is a stable minimal surface—stability
understood as defined in the previous section. Up to these distances, the unobserved
thinner neck catenoid always existed and was an unstable minimal surface (this fits
with the idea that a functional with two local minima should have a third unstable
critical point). Finally, there is a second larger distance hc at which the local mini-
mizer (the thick catenoid) and the unstable critical point (the thin one) get together to
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produce an inflection point. Right after it, the two-disks is the only critical point. In
the experiment [15], the unstable catenoid is photographed for a short instant, right
before the distance hc . Quickly after such instant, the thin neck collapses and the
catenoid film succeeds to transform itself into the two disks.

The regularity theory of minimal surfaces has been the source of many important
progresses in the area of PDEs. In the 1960s the Italian school proved that the Simons
cone

x2
1 C � � � C x2

m D x2
mC1 C � � � C x2

2m

is an absolute minimizer of area (for its own boundary values in any ball) if 2m � 8,
while it is not even stable in dimensions 2, 4, and 6.1 Thus, minimizing minimal sur-
faces of dimension n may have (conical) singularities when n � 7. At the same time, a
sequence of outstanding contributions by different authors (J. Simons’ being a promi-
nent one) established that n-dimensional (absolute) minimizing minimal surfaces in
RnC1 are always smooth when n � 6.

It is a long-standing open problem to extend this regularity result to the larger
class of stable minimal surfaces. It is only known to be true for surfaces of dimension
2, 3, or 4. See [7, 8] for more details on these issues.

3. Stable solutions to reaction-diffusion elliptic equations

The paper [5] takes on the analogue question (the regularity of stable solutions)
for equations of the form ��u D f .u/, where � is the Laplacian. They are called
semilinear or reaction-diffusion elliptic equations and arise in many physical and bio-
logical situations. In the following combustion problem, a similar phenomenon to
that of catenoids occurs. It concerns the thermal self-ignition of a chemically active
mixture of gases in a container. The model was introduced by Frank-Kamenetskii in
the 1930s but became popular within the mathematical community when Barenblatt
wrote Chapter 15 of the volume [12], edited by Gelfand in 1963. Here x 2 � � Rn

denotes points in the container � and u D u.x/ is the temperature at the point. The
action functional is the difference of kinetic and potential energies:

A.u/ D

Z
�

�
1

2

ˇ̌
ru.x/

ˇ̌2
� F

�
u.x/

��
dx;

where F W R ! R is a given function, which Barenblatt chose to be F.u/ D �eu,
with � a positive constant, from Arrhenius law in chemical kinetics. For convenience,

1This different behavior can be roughly understood noticing that the Jacobian for area in
spherical coordinates, r2m�2dr , becomes smaller at the origin as the dimension 2m increases.
Note that for 2m D 2, the minimizer clearly avoids the origin: for the boundary values of the
cone, it is given by two parallel lines (and not by the “cross” passing through the origin).
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we will impose vanishing boundary conditions: the temperature is kept at u D 0 on
the boundary @�. Making a first variation u C "v and integrating by parts, one easily
sees that critical points of A satisfy the reaction-diffusion equation

��u D f .u/ in � � Rn; (3.1)

where f D F 0. In the case (among others) of the so-called Gelfand problem, ��u D

�eu, the situation is similar to the one of catenoids. For a certain range � 2 .0; ��/

of parameters, there exists a stable solution u�—that is, a solution at which the
functional A has a nonnegative definite second variation. Such stable solution is
not an absolute minimizer since A is unbounded by below (note that the poten-
tial density F.u/ D eu grows faster at infinity than the quadratic kinetic density
jru.x/j2). For some parameters � 2 .0; ��/, there might also exist (this will depend
on the container �) unstable solutions of the same problem. For � D ��, the limit of
the functions u� is an L1 weak stable solution, called the extremal solution. When
� > ��, no solution exists—in the same way that catenoids did not exist for distances
h between the wires larger than hc .

To better understand the problem, let us consider the nonlinear heat equation

vt � �v D f .v/; (3.2)

where v D v.x; t/ and t is time. Now, a stable solution uD u.x/ of (3.1) can be under-
stood as a stationary solution of (3.2) which is stable in the sense of Lyapunov—note
that a simple computation shows that the action functional A.v.�; t // is non-increasing
in the time t . The problem is nonlinear due to the sources of heat, f .v.x; t// or
f .u.x//: the production of heat depends nonlinearly on the actual temperature. As
described in [13, 14], equation (3.2) describes the evolution of an initially uniform
temperature v.�; 0/ � 0 which diffuses in space and increases in the container due
to the heat release given by the reaction term f .v/—note that in Gelfand’s problem
the initial heat source �f .0/ D �e0 D � is already positive. The parameters � for
which there exists a stable solution of (3.1) correspond to ignition failure (the reac-
tive component undergoes partial oxidation and results in establishing a stationary
temperature profile equal to the stable solution). Instead, � > �� (when there exists
no stationary solution) means successful auto-ignition in the combustion process.

Since we will turn now to regularity issues, let us recall that Fourier invented his
omnipresent Fourier series to understand the linear heat equation. On the other hand,
the regularity theory for the stationary linear Poisson equation ��u D g.x/ is at
the center of PDE theory and also propitiated the development of many tools, such
as the theory of singular integrals in harmonic analysis. In particular, the Lebesgue-
integrability requirements for g D g.x/ which are needed to guarantee the bound-
edness of the potential function u are well known. This is relevant since, for our
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nonlinear equation (3.1), ��u D f .u/, the obstruction for regularity is the possibil-
ity that u becomes unbounded somewhere, that is, u blows-up at some points (and
hence u is singular). As we will see next, this singular behavior can be produced by
the strength of some reaction terms f .u/. A technical detail for experts is that, since
our problem is variational, in what follows we consider only (singular) solutions for
which each term of the action functional is integrable (that is, energy solutions).

When n � 3, � D B1 is the unit ball,

u D log
1

jxj2
; f .u/ D 2.n � 2/eu;

then a simple computation shows that we are in the presence of a singular solution of
(3.1) vanishing on @B1. As the Simons cone in minimal surfaces theory, this explicit
solution turns out to be stable in high dimensions, precisely when n � 10. On the
other hand, in the 1970s Crandall and Rabinowitz [9] established that if

f .u/ D eu or f .u/ D .1 C u/p with p > 1;

then stable solutions in any smooth bounded domain � are bounded (and hence
smooth and analytic, by classical elliptic regularity theory) when n � 9. These results
were the main reason for Haim Brezis to raise the following question in the 1990s
(which we cite almost literally from a later reference).

Brezis ([1, Open problem 1]). Is there something “sacred” about dimension 10?
More precisely, is it possible in “low” dimensions to construct some f (and some
�) for which a singular stable solution exists? Alternatively, can one prove in “low”
dimensions that every stable solution is smooth for every f and every �?

Other open questions on stable solutions were posed by Brezis and Vázquez [2].
The last twenty five years have produced a large literature on Gelfand-type prob-

lems. See the monograph [10] for an extensive list of results and references. For a
certain type of nonlinearities f , some of these works are related to micro-electro-
mechanical systems (MEMS); see [11].

The main developments proving that stable solutions to (3.1) are smooth (no mat-
ter what the nonlinearity f is) were made

� by Nedev [16] in 2000, when n � 3 (and f is convex);

� by Cabré and Capella [4] in 2006, when � D B1 (u is radially symmetric) and
n � 9;

� by Cabré [3] in 2010, when n � 4 (and � is convex).

Note that the 2006 result in the radially symmetric case, [4], accomplished the optimal
dimension n � 9 for every nonlinearity f . This gave hope for the result to be true



X. Cabré 6

also in the general nonradial case, though no certainty was assured—note that Brezis’
statement above leaves both the affirmative and negative answers as possible ones.
Since 2010, after [3], the regularity result was only known up to dimension n D 4.
Two attempts in higher dimensions (recorded in [5]) gave only very partial answers.

The work [5] finally solves the open problem, by establishing the regularity of
stable solutions to (3.1) in the interior of any open set � in the optimal dimensions
n � 9 under the only requirement for the nonlinearity f to be nonnegative. Fur-
thermore, adding the vanishing boundary condition u D 0 on @�, the article proves
regularity up to the boundary when � is of class C 3 and n � 9, assuming now f to
be nonnegative, nondecreasing, and convex. Both results come along with new uni-
versal Hölder-continuity estimates which have a very weak norm (the L1-norm) of
the solution on their right-hand sides. They read, respectively, as

kukC ˛.B1=2/ � CkukL1.B1/; kukC ˛.�/ � C� kukL1.�/;

where ˛ > 0 and C are dimensional constants, while C� depends only on �. These
estimates are rather surprising (because of their universality) for a nonlinear problem,
specially since they make no reference to the reaction nonlinearity f . The stability of
the solution u is crucial for their validity. For the expert reader, [5] also establishes
another open problem from [2]: an a priori H 1 D W 1;2 estimate for stable solutions
in all dimensions n.

Whether the nonnegativeness of f is a needed requirement for interior regularity
remains as an open question. It is only known to be unnecessary for n � 4, as well as
for n � 9 in the radial case.

The proofs in the article are too technical to be described here. Let us only say
that a key point is to use the stability property under two different types of small
perturbations of the solution u (one in the radial direction, the other in the normal
direction to the level sets):

u
�
x C "jxj.2�n/=2�.x/x

�
; u

�
x C "�.x/

ru.x/ˇ̌
ru.x/

ˇ̌�;

where � and � are cut-off functions.
After [5], an analogue result for equations involving the p-Laplacian has been

proved by Cabré, Miraglio, and Sanchón [6]. It is optimal in terms of dimensions
for p > 2, but not for p < 2—this case remains as an open problem. On the other
hand, for the recently very active area of fractional Laplacians, an optimal result for
.��/su D f .u/ is largely open—even in the radial case. The optimal dimensions
for regularity have only been accomplished in a 2014 work of Ros-Oton [17] for the
Gelfand nonlinearity f .u/D �eu in symmetric convex domains—but for any fraction
s 2 .0; 1/ of the Laplacian.
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Minimal surfaces in Euclidean spaces by way of complex
analysis

Franc Forstnerič

Abstract. This is an expanded version of my plenary lecture at the 8th European Congress of
Mathematics in Portorož on 23 June 2021. The main part of the paper is a survey of recent
applications of complex-analytic techniques to the theory of conformal minimal surfaces in
Euclidean spaces. New results concern approximation, interpolation, and general position prop-
erties of minimal surfaces, existence of minimal surfaces with a given Gauss map, and the
Calabi–Yau problem for minimal surfaces. To be accessible to a wide audience, the article
includes a self-contained elementary introduction to the theory of minimal surfaces in Euclidean
spaces.

1. Minimal surfaces: A link between mathematics, science,
engineering, and art

Minimal surfaces are among the most beautiful and aesthetically pleasing geometric
objects. These are surfaces in space which locally minimize area, in the sense that
any small enough piece of the surface has the smallest area among surfaces with the
same boundary. From the physical viewpoint, these are surfaces minimizing tension,
hence in equilibrium position. They appear in a variety of applications to engineering,
biology, architecture, and others.

The subject has a luminous history, going back to 1744 when Leonhard Euler
[32] showed that pieces of the surface now called catenoid (see Example 2.7) have
smallest area among all surfaces of rotation in the 3-dimensional Euclidean space R3.
The catenoid derives it name from catenary, the curve that an idealized hanging chain
assumes under its own weight when supported only at its ends. The model catenary is
the graph of the hyperbolic cosine function y D coshx, and a catenoid is obtained by
rotating this curve around the x-axis in the .x; y; z/-space. Topologically, a catenoid
is a cylinder, and as a conformal surface it is the puncture plane C� D C n ¹0º. From

2020 Mathematics Subject Classification. Primary 53A10; Secondary 32H02.
Keywords. Minimal surface, conformal harmonic map, Calabi–Yau problem.
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the mathematical viewpoint, the catenoid is one of the most paradigmatic examples
of minimal surfaces, and it appears in several important classification results and in
proofs of major theorems.

The subject of minimal surfaces was put on solid footing by Joseph–Louis La-
grange who developed the calculus of variations during 1760–61, thereby reducing
the problem of finding stationary points of functionals to a second-order partial dif-
ferential equation, now called Lagrange’s equation. His work was published in 1762
by Accademia delle scienze di Torino [51, 52] and is available in his collected works
[53]. In [51], Lagrange applied his new method to a variety of problems in physics,
dynamics, and geometry. In particular, he derived the equation of minimal graphs.
The term minimal surface has since been used for a surface which is a stationary
point of the area functional. The question whether a domain in a minimal surface
truly minimizes the area among nearby surfaces with the same boundary can be ana-
lyzed by considering the second variation of area. It was later shown that a minimal
graph in R3 over a compact convex domain in R2 is an absolute area minimizer, and
hence small enough pieces of any minimal surface are area minimizers.

In 1776, Jean Baptiste Meusnier [66] discovered that domains in a surface in R3

are minimal in the sense of Lagrange if and only if the surface has vanishing mean
curvature at every point. He also described the second known minimal surface, the
helicoid; see Example 2.8. It is obtained by a line in 3-space rotating at a constant rate
as it moves at a constant speed along the axis of rotation, which is perpendicular to the
rotating line. Helicoid is the geometric shape of a device known as Archimedes’ screw
(or the water screw, screw pump, or Egyptian screw), named after Greek philosopher
and mathematician Archimedes who described it around 234 BC on the occasion of
his visit to Egypt. There is evidence that this device had been used in ancient Egypt
much earlier. The helicoid is sometimes called “double spiral staircase”—each of the
two half-lines sweeps out a spiral staircase, and these two staircases only meet along
the axis of rotation. Therefore, its physical model is a convenient device for letting
people ascend and descend a staircase without the two crowds meeting in-between.
From a different field, DNA molecules assume the shape of a helicoid.

Topologically and conformally the helicoid is the plane. Its name derives from
helix—for every point on the helicoid, there is a helix (a spiral curve) contained in
the helicoid which passes through that point. The helicoid plays a major role in the
classification of properly embedded minimal surfaces in R3; see the survey paper [28]
by Tobias H. Colding and William P. Minicozzi.

Minimal surfaces appear naturally in the physical world. Laws of physics imply
that a soap film spanned by a given frame (i.e., a closed Jordan curve) is a minimal
surface. The reason is that this shape minimizes the surface tension and puts it in equi-
librium position. Soap films, bubbles, and surface tension were studied by the Belgian
physicist Joseph Plateau in the 19th century. Based on his experiments, Karl Weier-
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strass formulated in 1873 the Plateau problem, conjecturing that any closed Jordan
curve in R3 spans a minimal surface (in fact, a minimal disc). This was confirmed
by Tibor Radó [71, 72] (1930) and Jesse Douglas [31] (1931). For his work on the
Plateau problem, Douglas received one of the first two Fields Medals at the Interna-
tional Congress of Mathematicians in Oslo in 1936. Half a century later, it was shown
that the disc of smallest area with given boundary curve (the Douglas–Morrey solu-
tion of the Plateau problem) has no branch points; see the monograph by Anthony
Tromba [77]. Furthermore, if the curve lies in the boundary of a convex domain in
R3, then the solution is embedded according to William H. Meeks and Shing Tung
Yau [63, 64].

Minimal surfaces are also studied in more general Riemannian manifolds of di-
mension at least three. Holomorphic curves in complex Euclidean spaces Cn for
n > 1, or in any complex Kähler manifold of complex dimension at least two, are
special but important examples of minimal surfaces. As pointed out by Colding and
Minicozzi [28], there are several fields where minimal surfaces are actively used
in understanding physical phenomena. In particular, they come up in the study of
compound polymers, protein folding, etc. They also play a prominent role in art,
especially in architecture.

The connection between minimal surfaces in Euclidean spaces and complex anal-
ysis has been known since mid-19th century. The basic fact is that a conformal
immersionX WM ! Rn from a Riemann surfaceM parameterizes a minimal surface
if and only if the map X is harmonic (see Theorem 2.1); equivalently, the complex
derivative @X=@z in any local holomorphic coordinate z on M is holomorphic. Fur-
thermore, the immersion X is conformal if and only if @X=@z assumes values in the
null quadric A � Cn, given by the equation z21 C z22 C � � � C z2n D 0 (see (2.23)), and
@X=@z ¤ 0 if X is an immersion. This leads to the Enneper–Weierstrass representa-
tion of any conformally immersed minimal surface M ! Rn as the real part of the
integral of a holomorphic map f WM ! A� D A n ¹0º � Cn (see Theorem 2.6). The
period vanishing conditions on f along closed curves in M ensure that the integral
is well defined. The formula is most concrete in dimension n D 3 (see (2.25)) due to
an explicit 2-sheeted parameterization of the null quadric A � C3 by C2.

This connection between minimal surfaces and holomorphic maps was used by
Bernhard Riemann around 1860 in his construction of properly embedded minimal
surfaces in R3, now called Riemann’s minimal examples [73] (see the paper [60]
by William H. Meeks and Joaquín Pérez), and in numerous further works by other
authors. It was popularized again in modern times by Robert Osserman [69].

Despite the long and illustrious history of the subject, the author in collaboration
with Antonio Alarcón, Francisco J. López, and others obtained in the last decade a
string of new results by exploiting the Enneper–Weierstrass representation. The main
point in our approach is that the punctured null quadric A� is a complex homoge-



F. Forstnerič 12

neous manifold, hence an Oka manifold, a notion introduced in [34] and treated in
[35, Chapter 5]. This implies that holomorphic maps from any open Riemann surface
(and, more generally, from any Stein manifold, that is, a closed complex submanifold
of a complex Euclidean space CN ) to A� satisfy the Runge–Mergelyan approxima-
tion theorem and the Weierstrass interpolation theorem in the absence of topological
obstructions. Together with methods of convexity theory, this gave rise to many new
constructions of conformal minimal surfaces with interesting properties; see Theo-
rem 3.1. By using parametric versions of these results, it was possible to determine
the rough topological shape (i.e., the weak or strong homotopy type) of the space of
nonflat conformal minimal immersions from any given open Riemann surface into
Rn (see Theorem 3.2). It was also shown that every natural candidate is the Gauss
map of a conformal minimal surface in Rn (see Theorem 3.3).

Another complex analytic technique, which has recently had a major impact on
the field, is an adaptation of the classical Riemann–Hilbert boundary value problem
to conformal minimal surfaces and holomorphic null curves in Euclidean spaces. This
led to an essentially optimal solution of the Calabi–Yau problem for minimal surfaces,
originating in conjectures of Eugenio Calabi from 1965; see Theorems 3.5 and 3.6.
This technique was also used in the construction of complete proper minimal surfaces
in minimally convex domains of Rn (see [16, Chapter 8]).

The recent results presented in Section 3 are carefully explained in the monograph
[16] published in March 2021. The corresponding developments on non-orientable
minimal surfaces are described in the AMS Memoir [15] from 2020. It is needless to
say that both of these publications contain many other results not mentioned here.

In 2021, the author and David Kalaj [38] obtained an optimal Schwarz–Pick
lemma for conformal minimal discs in the ball of Rn and introduced the notion of
hyperbolicity of domains in Rn, in analogy with Kobayashi hyperbolicity of complex
manifolds. This new topic is currently being developed, and it is too early to include
it here.

2. An elementary introduction to minimal surfaces

To make the article accessible to a wide audience including advanced undergraduate
students of Mathematics, we present in this section a self-contained introduction to
the theory of minimal surfaces in Euclidean spaces. We assume familiarity with ele-
mentary calculus, topology, and rudiments of complex analysis; however, no a priori
knowledge of differential geometry is expected. We shall use the fact that metric-
related quantities such as length, area, and curvature of curves and surfaces in a
Euclidean space Rn are invariant under translations and orthogonal maps of Rn; these
are the isometries of the Euclidean metric, also called rigid motions. For simplic-
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ity of presentation, we focus on minimal surfaces parameterized by plane domains,
although the same methods apply on an arbitrary open Riemann surface. More com-
plete treatment is available in a number of texts; see [16,20, 26,30, 55, 58,59,68,69],
among others. For the theory of non-orientable minimal surfaces, see [15].

2.1. Conformal maps and conformal structures on surfaces

From the physical viewpoint, the most natural parameterization of a minimal surface
is by a conformal map (from a plane domain, or a conformal surface). A confor-
mal parameterization minimizes the total energy of the map and makes the tension
uniformly spread over the surfaces. We give a brief introduction to the subject of
conformal maps, referring to [16, Sections 1.8–1.9] for more details and further ref-
erences.

LetD be a domain in R2 with coordinates .u; v/. A C1 mapX WD! Rn .n� 2/
is an immersion if the partial derivatives Xu D @X=@u and Xv D @X=@v are linearly
independent at every point ofD. An immersion is said to be conformal if its differen-
tial dXp at any point p 2D preserves angles. It is elementary to see (cf. [16, Lemma
1.8.4]) that an immersion X is conformal if and only if

jXuj D jXvj and Xu �Xv D 0: (2.1)

Here, x � y denotes the Euclidean inner product between vectors x; y 2 Rn and jxj D
p

x � x is the Euclidean length of x. A smooth map X W D ! Rn (of class C1, not
necessarily an immersion) is called conformal if (2.1) holds at each point. It clearly
follows that X has rank zero at non-immersion points.

Let M be a topological surface. A conformal structure on M is given by an atlas

U D ¹.Ui ; �i /ºi2I with charts �i W Ui
Š
�! Vi � R2 whose transition maps

�i;j D �i ı �
�1
j W �j .Ui \ Uj /! �i .Ui \ Uj /

are conformal diffeomorphisms of plane domains. Identifying R2 with the com-
plex plane C, each map �i;j is biholomorphic or anti-biholomorphic. A surface M
endowed with a conformal structure (more precisely, with an equivalence class of
conformal structures) is a conformal surface. If M is orientable, then by choosing
the charts �i in a conformal atlas to preserve orientation, the transition maps �i;j
are biholomorphic; hence, U is a complex atlas and .M;U/ is a Riemann surface.
A connected non-orientable conformal surface M admits a two-sheeted conformal
covering zM !M by a Riemann surface zM .

Assume now that g is a Riemannian metric on a smooth surface M , i.e., a
smoothly varying family of scalar products gp on tangent spaces TpM , p 2 M . In
any local coordinate .u; v/ on M , the metric g has an expression

g D E du2 C 2F dudv CG dv2;
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where the coefficient functions E;F;G satisfy EG � F 2 > 0. A local chart .u; v/ is
said to be isothermal for g if the above expression simplifies to

g D �.u; v/.du2 C dv2/ D �jdzj2; z D uC iv

for some positive function �. An important result, first observed by Carl Friedrich
Gauss, is that in a neighborhood of any point of M there exist smooth isothermal
coordinates. One way to obtain such coordinates is from solutions of the classical
Beltrami equation. We refer to [16, Sections 1.8–1.9] for a more precise statement
and references. Since the transition map between any pair of isothermal charts is
a conformal diffeomorphism, we thus obtain a conformal atlas on M consisting of
isothermal charts. The upshot is that every Riemannian metric on a smooth surface
determines a conformal structure. Furthermore, a pair of Riemannian metrics g, Qg

on M determine the same conformal structure if and only if Qg D �g for a smooth
positive function � on M .

Denote by x D .x1; : : : ; xn/ the Euclidean coordinates on Rn and by

ds2 D dx21 C � � � C dx2n

the Euclidean metric. If X D .X1; : : : ; Xn/ WM ! Rn is a smooth immersion, then

g D X�.ds2/ D .dX1/
2
C � � � C .dXn/

2

is a Riemannian metric on M , called the first fundamental form. By the definition of
g, the map X W .M; g/ ! .Rn; ds2/ is an isometric immersion. By what has been
said, g determines a conformal structure on M (assuming now that M is a surface),
and in this structure the map X is a conformal immersion. More precisely, X.u; v/ is
conformal in any isothermal local coordinate .u; v/ on M .

This shows that any immersion X WM ! Rn from a smooth surface determines
a unique conformal structure on M which makes X a conformal immersion. If in
addition M is oriented, we get the structure of a Riemann surface. Results of confor-
mality theory imply that if D is a domain in R2 and X W D ! Rn is an immersion,
then there is a diffeomorphism � W D0 ! D from another domain D0 � R2 such that
the immersion X ı � W D0 ! Rn is conformal. In particular, if D is the disc, then we
may take D0 D D.

The same arguments and conclusions apply to immersions of a smooth surface
M into an arbitrary Riemannian manifold .N; Qg/ in place of .Rn; ds2/.

2.2. First variation of area and energy

Assume that D � R2
.u;v/

is a bounded domain with piecewise smooth boundary and
X W xD ! Rn is a smooth immersion. Precomposing X with a diffeomorphism from
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another such domain in R2, we may assume that X is conformal; see (2.1). We con-
sider the area functional

Area.X/ D
Z
D

jXu �Xvj dudv D

Z
D

p
jXuj2jXvj2 � jXu �Xvj2 dudv (2.2)

and the Dirichlet energy functional

D.X/ D
1

2

Z
D

jrX j
2 dudv D

1

2

Z
D

�
jXuj

2
C jXvj

2
�
dudv: (2.3)

We have elementary inequalities

jxj2jyj2 � jx � yj2 � jxj2jyj2 �
1

4

�
jxj2 C jyj2

�2
; x; y 2 Rn;

which are equalities if and only if x, y is a conformal frame, i.e., jxj D jyj and x � y D

0. Applying this to the vectors x D Xu and y D Xv gives Area.X/ � D.X/, with
equality if and only if X is conformal. Hence, these two functionals have the same
critical points on the set of conformal immersions.

It is elementary to find critical points of these functionals. The calculation is sim-
pler for the Dirichlet functional D , but the expression for the first variation is the
same for both functionals at a conformal map X . Assuming that G W xD ! Rn is a
smooth map vanishing on bD, the first variation of D at X in direction G equals

d

dt

ˇ̌̌
tD0

D.X C tG/D

Z
D

.Xu �Gu CXv �Gv/ dudvD�

Z
D

�X �Gdudv; (2.4)

where �X D Xuu C Xvv is the Laplace of X . (We integrated by parts and used
GjbD D 0.) The right-hand side of (2.4) vanishes for all G if and only if �X D 0.
This proves the following theorem.

Theorem 2.1. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X W xD! Rn .n � 3/ is a stationary point
of the area functional (2.2) if and only if X is harmonic: �X D 0.

For completeness, we also calculate the first variation of area at a conformal
immersion X . Let G W xD ! Rn be as above. Consider the expression under the inte-
gral (2.2) for the map Xt D X C tG, t 2 R. Taking into account (2.1), we obtain

jXu C tGuj
2
� jXv C tGvj

2
D jXuj

4
C 2t .Xu �Gu CXv �Gv/ jXuj

2
CO.t2/;ˇ̌

.Xu C tGu/ � .Xv C tGv/
ˇ̌2

D O.t2/:

It follows that
d

dt

ˇ̌̌
tD0

�
jXu C tGuj

2
jXv C tGvj

2
�
ˇ̌
.Xu C tGu/ � .Xv C tGv/

ˇ̌2�
D 2jXuj

2.Xu �Gu CXv �Gv/
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and therefore

d

dt

ˇ̌̌
tD0

Area.X C tG/ D

Z
D

.Xu �Gu CXv �Gv/ du dv D �

Z
D

�X �G dudv:

(We integrated by parts and used that GjbD D 0. The factor 2jXuj2 also appears in
the denominator when differentiating the expression for Area.X C tG/ at t D 0, so
this term cancels.) Comparing with (2.4), we see that

d

dt

ˇ̌̌
tD0

Area.X C tG/ D
d

dt

ˇ̌̌
tD0

D.X C tG/ D �

Z
D

�X �G dudv

if X is a conformal immersion.
The same result holds on any compact domain with piecewise smooth boundary

in a conformal surface M . A conformal diffeomorphism changes the Laplacian by a
multiplicative factor, so there is a well-defined notion of a harmonic function on M .

2.3. Characterization of minimality by vanishing mean curvature

In this section, we prove a result due to Meusnier [66] which characterizes minimal
surfaces in terms of vanishing mean curvature; see Theorem 2.3.

To explain the notion of curvature of a smooth plane curve C � R2 at a point
p 2 C , we apply a rigid change of coordinates in R2 taking p to .0; 0/ and the tangent
line TpC to the x-axis, so locally near .0; 0/ the curve is the graph y D f .x/ of a
smooth function on an interval around 0 2 R, with f .0/ D f 0.0/ D 0. Therefore,

y D f .x/ D
1

2
f 00.0/x2 C o.x2/: (2.5)

Let us find the circle which agrees with this graph to the second order at .0; 0/.
Clearly, such a circle has center on the y-axis, so it is of the form x2C .y � r/2 D r2

for some r 2 R n ¹0º, unless f 00.0/ D 0 when the x-axis (a circle of infinite radius)
does the job. Solving the equation on y near .0; 0/ gives

y D r �
p

r2 � x2 D r � r

r
1 �

x2

r2

D r � r
�
1 �

x2

2r2
C o.x2/

�
D

1

2r
x2 C o.x2/:

A comparison with (2.5) shows that for f 00.0/¤ 0 the number r D 1=f 00.0/ 2 R n ¹0º

is the unique number for which the circle agrees with the curve (2.5) to the second
order at .0; 0/. This best fitting circle is called the osculating circle. The number

� D f 00.0/ D 1=r (2.6)
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is the signed curvature of the curve (2.5) at .0;0/, its absolute value j�j D jf 00.0/j � 0

is the curvature, and jr j D 1=j�j D 1=jf 00.0/j is the curvature radius. If f 00.0/ D 0,
then the curvature is zero and the curvature radius is C1.

Consider now a smooth surface S � R3. Let .x; y; z/ be coordinates on R3. Fix a
point p 2 S . A rigid change of coordinates gives p D .0; 0; 0/ and TpS D ¹z D 0º D

R2 � ¹0º. Then, S is locally near the origin of a graph of the form

z D f .x; y/ D
1

2

�
fxx.0/x

2
C 2fxy.0; 0/xy C fyy.0/y

2
�
C o.x2 C y2/: (2.7)

The symmetric matrix

A D

�
fxx.0; 0/ fxy.0; 0/

fxy.0; 0/ fyy.0; 0/

�
(2.8)

is called the Hessian matrix of f at .0; 0/. Given a unit vector v D .v1; v2/ in the
.x; y/-plane, let †v be the 2-plane through 0 2 R3 spanned by v and the z-axis. The
intersection Cv WD S \†v is then a planar curve contained in S , given by

z D f .v1t; v2t / D
1

2
.Av � v/t2 C o.t2/ (2.9)

for t 2 R near 0. Since jvj D 1, the parameters .t; z/ on†v are Euclidean parameters,
i.e., the Euclidean metric ds2 on R3 restricted to the plane†v is given by dt2C dz2.
From our discussion of curves and the formula (2.6), we infer that the number

�v D Av � v D fxx.0/v
2
1 C 2fxy.0; 0/v1v2 C fyy.0/v

2
2

is the signed curvature of the curve Cv at the point .0; 0/.
On the unit circle jvj2 D v21 C v22 D 1 the quadratic form v 7! Av � v reaches its

maximum �1 and minimum �2; these are the principal curvatures of the surface (2.7)
at .0; 0/. Since A is symmetric, �1 and �2 are its eigenvalues. The real numbers

H D �1 C �2 D traceA; K D �1�2 D detA (2.10)

are, respectively, the mean curvature and the Gaussian curvature of S at .0; 0; 0/.
Note that the trace of A (2.8) equals the Laplacian �f .0; 0/. On the other hand,

the trace of a matrix is the sum of its eigenvalues. This implies

�f .0; 0/ D �1 C �2 D H: (2.11)

Lemma 2.2. LetD be a domain in R2. IfX WD! Rn is a smooth conformal immer-
sion, then for every p 2 D the vector �X.p/ is orthogonal to the plane dXp.R2/ �
Rn. Equivalently, the following identities hold on D:

�X �Xu D 0; �X �Xv D 0: (2.12)
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Proof. Recall from (2.1) that X is conformal if and only if Xu � Xu D Xv � Xv and
Xu �Xv D 0. Differentiating the first identity on u and the second one on v yields

Xuu �Xu D Xuv �Xv D �Xvv �Xu;

whence�X �Xu D .XuuCXvv/ �Xu D 0. Likewise, differentiating the first identity
on v and the second one on u gives �X �Xv D 0.

We can now prove the following result due to Meusnier [66].

Theorem 2.3. A smooth conformal immersionXD .x;y;z/ WD!R3 from a domain
D � R2 parameterizes a surface with vanishing mean curvature function if and only
if the map X is harmonic, �X D .�x;�y;�z/ D 0.

Proof. Fix a point p0 2D; by a translation of coordinates we may assume that p0 D
.0; 0/ 2 R2. Since the differential dX.0;0/ W R2 ! R3 is a conformal linear map, we
may assume up to a rigid motion on R3 that X.0; 0/ D .0; 0; 0/ and

dX.0;0/.�1; �2/ D �.�1; �2; 0/ for all � D .�1; �2/ 2 R2

for some � > 0. Equivalently, at .u; v/ D .0; 0/ the following hold:

xu D yv D � > 0; xv D yu D 0; zu D zv D 0: (2.13)

Note that
� D jXuj D jXvj D

1
p
2
jrX j: (2.14)

The implicit function theorem shows that there is a neighborhoodU �D of the origin
such that the surface S DX.U / is a graph zD f .x;y/with df.0;0/D 0, so f is of the
form (2.7). Since the immersion X is conformal, (2.12) shows that �X is orthogonal
to the .x; y/-plane R2 � ¹0º at the origin, which means that

�x D �y D 0 at .0; 0/: (2.15)

We now calculate �z.0; 0/. Differentiation of z.u; v/ D f .x.u; v/; y.u; v// gives

zu D fxxu C fyyu; zv D fxxv C fyyv;

zuu D .fxxu C fyyu/u

D fxxx
2
u C fxyxuyu C fxxuu C fyxxuyu C fyyy

2
u C fyyuu:

At the point .0; 0/, taking into account (2.13) and fx D fy D 0 we get zuu D �2fxx .
A similar calculation gives zvv D �2fyy at .0; 0/, so we conclude that

�z.0; 0/ D �2�f .0; 0/ D �2H; (2.16)
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where H is the mean curvature of S at the origin (see (2.11)). Denoting by N D

.0; 0; 1/ the unit normal vector to S at 0 2 R3, it follows from (2.14), (2.15), and
(2.16) that

�X D
1

2
jrX j

2HN (2.17)

holds at .0; 0/ 2 D. In particular, �X D 0 if and only if H D 0. This formula is
clearly independent of the choice of a Euclidean coordinate system.

Combining Theorems 2.1 and 2.3 gives the following corollary.

Corollary 2.4. Let D be a relatively compact domain in R2 with piecewise smooth
boundary. A smooth conformal immersion X W xD ! R3 is a stationary point of the
area functional if and only if the immersed surface S D X.D/ has vanishing mean
curvature at every point.

Although we used conformal parameterizations, neither curvature nor area de-
pends on the choice of parameterization. This motivates the following definition.

Definition 2.5. A smooth surface in R3 is a minimal surface if and only if its mean
curvature vanishes at every point.

Every point in a minimal surface is a saddle point, and the surface is equally
curved in both principal directions but in the opposite normal directions. Further-
more, the Gaussian curvature K D �1�2 D ��21 � 0 is nonpositive at every point.
The integral

TC.S/ D
Z
S

K � dA 2 Œ�1; 0� (2.18)

of the Gaussian curvature function with respect to the surface area on S is called the
total Gaussian curvature. This number equals zero if and only if S is a piece of a
plane.

The results presented in this section easily extend to surfaces in Rn for any n�3
which are parameterized by conformal immersions X W M ! Rn from any open
Riemann surface M . (By the maximum principle for harmonic maps, there are no
compact minimal surfaces in Rn.) There is a sphere Sn�3 of unit normal vectors to
the surface at a given point, and one must consider the mean curvature of the surface
in any given normal direction. This gives the mean curvature vector field H along the
surface, which is orthogonal to it at every point. For surfaces in R3 we have H DHN,
where H is the mean curvature function (2.10) and N is a unit normal vector field to
the surface. The formula (2.17) can then be written in the form

2

jrX j2
�X D �gX D H;

where�gX denotes the intrinsic Laplacian of the map X with respect to the induced
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metric g D X�ds2 on the surface M (cf. [16, Lemma 2.1.2]). The formula (2.4) for
the first variation of area still holds. It shows that the mean curvature vector field H
is the negative gradient of the area functional, and the surface is a minimal surface if
and only if H D 0. We refer to [16,55,69] or any other standard source for the details.

2.4. The Enneper–Weierstrass representation

In this section we explain the Enneper–Weierstrass formula, which provides a con-
nection between holomorphic maps D ! Cn with special properties from domains
D � C and conformal minimal immersionsD! Rn for n� 3. The same connection
holds more generally for maps from any open Riemann surface.

Let z D x C iy be a complex coordinate on C. Let us recall the following basic
operators of complex analysis, also called Wirtinger derivatives:

@

@z
D
1

2

�
@

@x
� i

@

@y

�
;

@

@ Nz
D
1

2

�
@

@x
C i

@

@y

�
:

The differential of a function F.z/ can be written in the form

dF D
@F

@x
dx C

@F

@y
dy D

@F

@z
dz C

@F

@ Nz
d Nz;

where dz D dx C idy and d Nz D dx � idy. Note that @F
@z
dz is the C-linear part and

@F
@ Nz
d Nz is the C-antilinear part of dF . In particular, @F=@Nz D 0 holds for holomorphic

functions, and @F=@zD 0 holds for antiholomorphic ones. In terms of these operators,
the Laplacian equals

� D
@2

@x2
C

@2

@y2
D 4

@

@ Nz

@

@z
D 4

@

@z

@

@ Nz
:

Hence, a function F W D ! R is harmonic if and only if @F=@z is holomorphic.
It follows that a smooth map X D .X1; X2; : : : ; Xn/ W D ! Rn is a harmonic

immersion if and only if the map f D .f1; f2; : : : ; fn/ W D ! Cn with components
fj D @Xj =@z is holomorphic and the component functions fj have no common zero.
Furthermore, conformality of X is equivalent to the following nullity condition:

f 21 C f 22 C � � � C f 2n D 0: (2.19)

Indeed, we have that 4f 2j D .Xj;x � iXj;y/
2 D .Xj;x/

2 � .Xj;y/
2 � 2iXj;xXj;y , and

hence

4

nX
jD1

f 2j D jXxj
2
� jXy j

2
� 2iXx �Xy :

Comparing with the conformality conditions (2.1) proves the claim.
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Since we know by Theorem 2.1 that a conformal immersion is harmonic if and
only if it parameterizes a minimal surface, this gives the following result.

Theorem 2.6 (The Enneper–Weierstrass representation). Let D be a connected do-
main in C. For every smooth conformal minimal immersion X D .X1; X2; : : : ; Xn/ W

D ! Rn, the map f D .f1; f2; : : : ; fn/ D @X=@z W D ! Cn n ¹0º is holomorphic
and satisfies the nullity conditions (2.19). Conversely, a holomorphic map f W D !

Cn n ¹0º satisfying (2.19) and the period vanishing conditions

<

I
C

f dz D 0 for every closed curve C � D (2.20)

determines a conformal minimal immersion X W D ! Rn given by

X.z/ D c C 2<

Z z

z0

f .�/ d�; z 2 D (2.21)

for any base point z0 2 D and vector c 2 Rn.

Conditions (2.20) guarantee that the integral in (2.21) is well defined, that is,
independent of the path of integration. The imaginary components

=

I
C

f dz D p.C / 2 Rn (2.22)

of the periods define the flux homomorphism p W H1.D;Z/! Rn on the first homo-
logy group ofD. Indeed, by Green’s formula the period

H
C
f dz only depends on the

homology class ŒC � 2 H1.D;Z/ of a closed path C � D.

Remark (The first homology group). If D is a domain in R2 Š C, then its first
homology group H1.D;Z/ is a free abelian group Z` .` 2 ¹0; 1; 2; : : : ;1º/ with
finitely or countably many generators. If D is bounded, connected, and its bound-
ary bD consists of l1 Jordan curves �1; : : : ; �l1 and l2 isolated points (punctures)
p1; : : : ; pl2 , then the group H1.D;Z/ has ` D l1 C l2 � 1 generators which are rep-
resented by loops inD based at any given point p0 2D, each surrounding one of the
holes ofD. (By a hole, we mean a compact connected component of the complement
C nD. A hole which is an isolated point of C nD is called a puncture.) Indeed, if �1
is the outer boundary curve of D, then every other boundary curve �2; : : : ; �l1 of D
is contained in the bounded component of C n �1, so it bounds a hole ofD. Likewise,
each of the points p1; : : : ; pl2 is a hole (a puncture). Every hole contributes one gen-
erator to H1.D;Z/. The same loops then generate the fundamental group �1.D; p0/
as a free nonabelian group, and groupH1.D;Z/ is the abelianization of �1.D;p0/. A
similar description of the homology group H1.D;Z/ holds for every surface, except
that its genus enters the picture as well; see [16, Section 1.4]. For basics on homology
and cohomology, see J. P. May [56].
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It is clear from Theorem 2.6 that the following quadric complex hypersurface in
Cn plays a special role in the theory of minimal surfaces in Rn:

A D An�1 D
®
.z1; : : : ; zn/ 2 Cn

W z21 C z22 C � � � C z2n D 0
¯
: (2.23)

This is called the null quadric in Cn, and A� D A n ¹0º is the punctured null quadric.
Note that A is a complex cone with the only singular point at 0. Theorem 2.6 says
that we get all conformal minimal surfacesD!Rn as integrals of holomorphic maps
f W D ! A� � Cn satisfying the period vanishing conditions (2.20).

The Enneper–Weierstrass representation in R3. In dimension n D 3, the null
quadric A admits a 2-sheeted quadratic parameterization � W C2 ! A given by

�.z; w/ D
�
z2 � w2; i.z2 C w2/; 2zw

�
: (2.24)

This map is branched at 0 2 C2, and � W C2 n ¹0º ! A� is a 2-sheeted holomorphic
covering map. It follows that every conformal minimal immersionX D .X1;X2;X3/ W

D ! R3 can be written in the following form (see [69] or [16, pp. 107–108]):

X.z/ D X.z0/C 2<

Z z

z0

�
1

2

�
1

g
� g

�
;

i

2

�
1

g
C g

�
; 1

�
@X3: (2.25)

Here, @X D
@X
@z
dz D .@X1; @X2; @X3/, and

g D
@X3

@X1 � i @X2
W D ! CP1 D C [ ¹1º (2.26)

is a holomorphic map to the Riemann sphere (a meromorphic function on D), called
the complex Gauss map ofX . Identifying CP1 with the unit 2-sphere S2 � R3 by the
stereographic projection from the point .0; 0; 1/ 2 S2, g corresponds to the classical
Gauss map N D Xx �Xy=jXx �Xy j W D ! S2 of X .

Many important quantities and properties of a minimal surface are determined by
its Gauss map. In particular, we have that

g D X�ds2 D 2
�
j@X1j

2
C j@X2j

2
C j@X3j

2
�
D

�
1C jgj2

�2
4jgj2

j@X3j
2

Kg D �
4jdgj2�
1C jgj2

�2 D �g�.�2
CP1/:

Here, K is the Gauss curvature function (2.10) of the metric X�ds2 and �2
CP1 is the

spherical metric on CP1. It follows that the total Gaussian curvature (see (2.18)) of
a conformal minimal surface X W D ! R3 equals the negative spherical area of the
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image of the Gauss map g WD! CP1 counted with multiplicities, where the area of
the sphere CP1 D S2 is 4� :

TC.X/ D �Area g.D/: (2.27)

It is a recent result that every holomorphic mapD! CP1 is the complex Gauss map
of a conformal minimal immersion X W D ! R3; see Theorem 3.3. Hence, the total
Gaussian curvature of a minimal surface can be any number in Œ�1; 0�.

Example 2.7 (Catenoid). A conformal parameterization of a standard catenoid (see
[16, Figure 2.1, p. 117]) is given by the map X D .X1; X2; X3/ W R2 ! R3,

X.u; v/ D .cosu � cosh v; sinu � cosh v; v/: (2.28)

It is 2�-periodic in the u variable, hence infinitely-sheeted. Introducing the variable
zD e�vCiu 2C�, we pass to the quotient C=.2�Z/ŠC� and obtain a single-sheeted
parameterization X W C� ! R3 having the Enneper–Weierstrass representation

X.z/ D .1; 0; 0/ � 2<

Z z

1

�
1

2

�
1

�
� �

�
;

i

2

�
1

�
C �

�
; 1

�
d�

�
: (2.29)

Its Gauss map is g.z/ D z and extends to the identity map CP1 ! CP1. Hence, by
(2.27) the catenoid has total Gaussian curvature equal to �4� .

The catenoid is one of the most paradigmatic examples in the theory of minimal
surfaces. A compendium of major results about it can be found in [16, Example 2.8.1].

Example 2.8 (Helicoid). A conformal parameterizationX WR2!R3 of the standard
left helicoid, shown on [16, Figure 2.2, p. 119], is

X.u; v/ D .sinu � sinh v;� cosu � sinh v; u/: (2.30)

Its Weierstrass representation in the complex coordinate z D uC iv 2 C is

X.z/ D <

Z z

0

�
1

2

�
1

ei�
� ei�

�
;

i

2

�
1

ei�
C ei�

�
; 1

�
d�:

Its complex Gauss map g.z/ D eiz is transcendental, so the helicoid has infinite total
Gaussian curvature �1. Changing the sign of the second component in (2.30) gives
a right helicoid. Like the catenoid, the helicoid is a paradigmatic example satisfying
various uniqueness theorems. E. Catalan [23] proved in 1842 that the helicoid and the
plane are the only ruled minimal surfaces in R3, i.e., unions of straight lines. Much
more recently, W. H. Meeks and H. Rosenberg proved in 2005 [62] that the helicoid
and the plane are the only properly embedded, simply connected minimal surfaces in
R3. Their proof uses curvature estimates of T. H. Colding and W. P. Minicozzi [27].



F. Forstnerič 24

Remark (Branch points). Our definition of a conformal map X W D ! Rn of class
C1.D/ requires that equations (2.1) hold. We have already observed that such a map
has rank zero at non-immersion points. Assuming that X is harmonic at immersion
points, it follows that f D @X=@z W D ! Cn is a continuous map with values in the
null quadric A (2.23) which is holomorphic at immersion points of X and vanishes
at non-immersion points. By a theorem of T. Radó [70] (cf. [74, Theorem 15.1.7]),
such an f is holomorphic everywhere on D, and in particular its zero set consists
of isolated points (assuming that X and hence f are nonconstant). This shows that
the minimal surface parameterized by X has only isolated singularities. See [77] for
more details.

There are interesting examples of minimal surfaces with branch points. For exam-
ple, Henneberg’s surface (see [16, Example 2.8.9]) is a complete non-orientable
minimal surface with two branch points (a branched minimal Möbius strip), named
after Ernst Lebrecht Henneberg [46] who first described it in his doctoral dissertation
in 1875. It was the only known non-orientable minimal surface until 1981 when W. H.
Meeks [57] discovered a properly immersed minimal Möbius strip in R3. A properly
embedded minimal Möbius strip in R4 was found in 2017 [15, Example 6.1].

2.5. Holomorphic null curves

There is a family of holomorphic curves in Cn which are close relatives of conformal
minimal surfaces in Rn. A holomorphic mapZ D .Z1; : : : ;Zn/ WD! Cn for n � 3
from a domain D � C satisfying the nullity condition

.Z0
1/
2
C .Z0

2/
2
C � � � C .Z0

n/
2
D 0

is a holomorphic null curve in Cn. Its complex derivative f D Z0 assumes values in
the null quadric A (2.23), and we have

H
C
fdz D

H
C
dZ D 0 for any closed curve

C � D. Conversely, a holomorphic map f W D ! A satisfying the period vanishing
conditions I

C

fdz D 0 for every closed curve C � D (2.31)

integrates to a holomorphic null curve

Z.z/ D c C

Z z

z0

f .�/d�; z 2 D; (2.32)

where z0 2D is any given base point and c 2 Cn. Indeed, conditions (2.31) guarantee
that the integral in (2.32) is independent of the choice of a path of integration. These
period conditions are trivial on a simply connected domain D.

If Z D X C iY W D ! Cn is an immersed holomorphic null curve, then its real
part X D <Z W D ! Rn and imaginary part Y D =Z W D ! Rn are conformal
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minimal surfaces which are harmonic conjugates of each other. Indeed, denoting the
complex variable in C by z D x C iy, the Cauchy–Riemann equations imply

f D Z0
D Zx D Xx C iYx D Xx � iXy D 2

@X

@z
:

Since f D Z0 W D ! An�1� satisfies the nullity condition (2.19), X is a conformal
minimal immersion. In the same way we find that f D Z0 D Yy C iYx D 2iYz , so Y
is a conformal minimal immersion. Being harmonic conjugates, X and Y are called
conjugate minimal surfaces. Conformal minimal surfaces in the 1-parameter family

X t
D <.ei tZ/ W D ! Rn; t 2 R;

are called associated minimal surfaces of the holomorphic null curve Z.
Conversely, if X W D ! Rn is a conformal minimal surface and the holomor-

phic map f D 2@X
@z

W D ! An�1 satisfies period vanishing conditions (2.31), then
f integrates to a holomorphic null curve Z W D ! Cn (2.32) with <Z D X . In
general, the imaginary parts of the periods (2.32) determine the flux homomorphism
H1.M;Z/ ! R of the minimal surface X (see (2.22)); hence, X is the real part
of a holomorphic null curve if and only if it has vanishing flux. The periods (2.31)
always vanish on a simply connected domainD, and hence every conformal minimal
immersion D ! Rn is the real part of a holomorphic null curve D ! Cn.

The relationship between conformal minimal surfaces and holomorphic null
curves extends to maps having (isolated) branch points.

Example 2.9 (Helicatenoid). Consider the holomorphic immersion Z W C ! C3,

Z.z/ D .cos z; sin z;�iz/ 2 C3; z D x C iy 2 C: (2.33)

We have that

Z0.z/ D .� sin z; cos z;�i/; sin2 z C cos2 z C .�i/2 D 0:

Hence, Z is a holomorphic null curve. Consider the 1-parameter family of its associ-
ated minimal surfaces in R3 for t 2 Œ0; 2��:

X t .z/ D <
�
eitZ.z/

�
D cos t

0@cos x � coshy
sin x � coshy

y

1AC sin t

0@ sin x � sinhy
� cos x � sinhy

x

1A : (2.34)

At t D 0 and t D � we have a catenoid (see Example 2.7), while at t D ˙�=2 we
have a helicoid (see Example 2.8). Hence, these are conjugate minimal surfaces in
R3. The holomorphic null curve (2.33) is called helicatenoid.
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3. A survey of new results

This section is a survey of recent results in the theory of minimal surfaces in Euclidean
spaces, which were discussed in my lecture at the 8ECM. A detailed presentation is
available in the monograph [16] and, for non-orientable surfaces, in the AMS Memoir
[15] by Alarcón, the author, and López.

3.1. Approximation, interpolation, and general position theorems

Holomorphic approximation is a central topic in complex analysis. Holomorphic
functions and maps with interesting properties are often constructed inductively, ex-
hausting the manifold by an increasing sequence of compact sets such that one can
approximate holomorphic functions uniformly on each one by holomorphic functions
onM . The quintessential example is Runge’s theorem from 1885 [75] on approxima-
tion of holomorphic functions on a compact set K � C with connected complement
by holomorphic polynomials. A major extension is Mergelyan’s theorem [65] from
1951.

In order to generalize Runge’s theorem, we need the following concept. Denote
by O.M/ the algebra of holomorphic functions on a complex manifold M . Given a
compact set K in M , its O.M/-convex hull (or holomorphic hull) is the set

yK D
®
z 2M W

ˇ̌
f .z/

ˇ̌
� sup

K

jf j for all f 2 O.M/
¯
:

IfK D yK, thenK is said to be holomorphically convex, or O.M/-convex, or a Runge
compact. If M is the complex plane or, more generally, an open Riemann surface,
then the hull yK is the union of K and all relatively compact connected components
of M nK (the holes of K in M ). There is no topological characterization of the hull
in higher-dimensional complex manifolds.

Holomorphically convex sets are the natural sets for holomorphic approxima-
tion. Runge’s theorem was extended to open Riemann surfaces by H. Behnke and
K. Stein [21] in 1949, who proved that any holomorphic function on a neighbor-
hood of a Runge compact K in open Riemann surface M can be approximated uni-
formly onK by holomorphic functions onM . A related result on higher-dimensional
complex manifolds is the Oka–Weil theorem which pertains to Runge compacts in
Cn and, more generally, in any Stein manifold (a closed complex submanifold of a
Euclidean space Cn). A recent survey of holomorphic approximation theory can be
found in [33].

We have seen in Section 2.4 that every conformal minimal immersion M ! Rn

from an open Riemann surface M is the integral of a holomorphic map f W M !

A� � Cn into the punctured null quadric A�; furthermore, f must satisfy the period



Minimal surfaces in Euclidean spaces by way of complex analysis 27

vanishing conditions (2.20). Hence, a Runge-type approximation theorem for con-
formal minimal surfaces in Rn (or holomorphic null curves in Cn) reduces to the
approximation problem for holomorphic maps f WM !A� satisfying the period van-
ishing conditions (2.20) (or (2.31) when considering null curves). This is a nonlinear
approximation problem. The first part, ignoring the period conditions, fits within Oka
theory. In particular, the manifold A� is easily seen to be a homogeneous space of the
complex orthogonal groupOn.C/. Runge-type approximation theorems for holomor-
phic maps from Stein manifolds to complex homogeneous manifolds were proved by
Hans Grauert [41] (1957) and Grauert and Kerner [42] (1963). More generally, a com-
plex manifold Y is said to be an Oka manifold if and only if approximation results of
this type hold for holomorphic mapsM ! Y from any Stein manifold in the absence
of topological obstructions. Oka theory also includes interpolation theorems for holo-
morphic maps, generalizing classical theorems of K. Weierstrass [78] and H. Cartan
[22]. For the theory of Oka manifolds, see [35].

The second part of the problem, ensuring the period vanishing conditions (2.20)
or (2.31) for holomorphic maps to A�, can be treated by using sprays of holomor-
phic maps together with elements of convexity theory. More precisely, Gromov’s
1-dimensional convex integration lemma from [43] is useful in this regard. The main
techniques underlying all subsequent developments were established in [5] (2014).
Their application led to the following result, which is a summary of several individual
theorems. Parts (i), (ii), and (iv) are due to Alarcón, the author, and López [5, 12, 15]
(the special case of (i) for n D 3 was obtained beforehand in [19]), while (iii) was
proved by Alarcón and Castro–Infantes [2, 3]. Related results for conformal minimal
surfaces of finite total curvature were given by Alarcón and López [18].

Main Theorem 3.1. Let K be a compact set with piecewise smooth boundary and
without holes (a Runge compact) in an open Riemann surface M . Then:

(i) Every conformal minimal immersion X W K ! Rn .n � 3/ can be approxi-
mated uniformly onK by proper conformal minimal immersions zX WM !

Rn.

(ii) The approximating map zX can be chosen to have only simple double points
if n D 4, and to be an embedding if n � 5.

(iii) In addition, one can prescribe the values of zX on any closed discrete subset
of M (Weierstrass-type interpolation).

(iv) The analogous results hold for non-orientable minimal surfaces in Rn and
for holomorphic null curves in Cn, n � 3.

The proof of Theorem 3.1 is fairly complex, and we shall only outline the main
idea. Fix a nowhere vanishing holomorphic 1-form � on the open Riemann sur-
face M . (Such a 1-form always exists; see [44].) By Enneper–Weierstrass (Theo-
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rem 2.6), it suffices to prove the Runge approximation theorem for holomorphic maps
f WM ! A� satisfying the period vanishing conditions (2.20).

Consider an inductive step. Assume that K � L are connected Runge compacts
with piecewise smooth boundaries in M , X W K ! Rn is a conformal minimal sur-
face, and f D 2@X=� WK! A�. We wish to approximateX by a conformal minimal
immersion zX W L! Rn. We may assume that f .K/ is not contained in a complex
ray C�z of the null quadric A�, for otherwise the result is trivial. There are two main
cases to consider, the noncritical case and the critical case.

The noncritical case. There is no change of topology from K to L. It is well known
that there are closed curves C1; : : : ; C` in K forming a basis of H1.K;Z/ whose
union C D

S`
jD1 Cj is a Runge compact. Let Bn denote the unit ball of Cn. By

using flows of holomorphic vector fields on Cn tangent to A, we construct a smooth
map

F W K � Bn` ! A�; F .� ; 0/ D f D 2@X=�;

which is holomorphic on VK � Bn, such that the associated period map

Bn` 3 t 7!

�Z
Cj

F.� ; t /�

�`
jD1

2 Cn`

is biholomorphic onto its image. Such a period dominating spray can be found of the
form

F.p; t/ D �1g1.p/t1
ı �2g2.p/t2

ı � � � ı �n`gn`.p/tn`

�
f .p/

�
2 A�; p 2 K; (3.1)

where each �j is the flow of a holomorphic vector field tangent to A and gj 2 O.M/.
We first construct smooth functions gi on C which give a period dominating spray;
this can be done since the convex hull of A equals Cn. As C is Runge in M , we can
approximate the gi ’s by holomorphic functions on M , thereby obtaining a holomor-
phic period dominating spray F as above.

In the next key step, we use that A� is an Oka manifold, so we can approximate F
by a holomorphic map zF WM �Bn`! A�. (There is no topological obstruction since
A� is connected.) If the approximation is close enough, the implicit function theorem
furnishes a parameter value Qt 2 Bn` close to 0 such that the map Qf D F.� ; Qt / WM !

A� has vanishing real periods on the curves C1; : : : ;C`. Hence, fixing a point p0 2K,
the map zX W L! Rn given by

zX.p/ D X.p0/C<

Z p

p0

Qf �; p 2 L;

is a conformal minimal immersion which approximates X W K ! Rn on K.
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The critical case. Assume now that E is an embedded smooth arc in L n VK attached
with its endpoints toK such thatK [E is a deformation retract ofL. (Thus,L has the
same topology as K [ E. This situation arises when passing a critical point of index
1 of a strongly subharmonic Morse exhaustion function onM .) Let a; b 2 bK denote
the endpoints of E. We extend f smoothly across E to a map f WK [E ! A� such
that

<

Z
E

f � D X.b/ �X.a/ 2 Rn:

This is possible since the convex hull of A� equals Cn. We then proceed as in the
noncritical case: embed f into a period dominating spray of smooth mapsK [E !

A� which are holomorphic on VK D K n bK, approximate it by a holomorphic spray
on L by Mergelyan’s theorem, and pick a parameter value for which the map in the
spray has vanishing real periods onK [E, and hence onL. The Enneper–Weierstrass
formula gives a conformal minimal surface eX W L! Rn approximating X on K.

The proof of the basic approximation theorem (i) (without the properness con-
dition) is then completed by induction on a suitable exhaustion of M by Runge
compacts, alternatively using the above two cases. Critical points of index 2 do not
arise.

Interpolation (part (iii)) is easily built into the same inductive construction. In-
deed, in each of the two cases considered above, we can arrange that none of the
points pj 2 M at which we wish to interpolate lies on the boundary of K or L. By
choosing the functions gi in the spray F (3.1) to vanish at those points pj which lie
in the interior of K, we ensure that the spray F is fixed at these points (independent
of the parameter t ), and hence the approximating map zX will agree with X at these
points. For each of the finitely many points pj 2 VL nK we choose a smooth embedded
arc Ej � L n VK with one endpoint pj and the other endpoint qj 2 bK such that
Ej n ¹qj º � L nK and these arcs are pairwise disjoint. The set S D K [

S
j Ej is

then a Runge compact. We extend the map f W K ! A� smoothly to S such that
for each j ,

R
Ej
f � has the correct value which ensures that the integral assumes

the prescribed value at pj . It remains to apply the same method as above with a
spray which is period dominating also on each of the arcs Ej and to use Mergelyan
approximation on the set S .

Properness of the approximating conformal minimal immersion zX W M ! Rn

(part (ii) of the theorem) requires considerable additional work. The main point is to
prove a relative version of the approximation theorem in part (i) in which all but two
components of the given map X extend to harmonic functions on all of M . One can
keep these components fixed while approximating the remaining two components
such that the resulting map zX is a conformal minimal immersion. This requires a
more precise version of the Oka principle. This result is then used in an inductive
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scheme which is designed so that j zX.z/j tends to infinity as the point z 2M goes to
the ideal boundary of M (i.e., it exists in any compact subset).

Finally, the general position theorem in part (ii) uses the same technique together
with the transversality theorem. The details of proof are considerably more involved
from the technical viewpoint, and we shall not deal with this subject here.

3.2. Topological structure of spaces of minimal surfaces

Assume that M is an open Riemann surface. Fix a nowhere vanishing holomorphic
1-form � on M . Let n � 3. An immersion M ! Rn is said to be nonflat if its image
is not contained in an affine 2-plane. We introduce the following notations:

� O.M;A�/ and C.M;A�/ denote spaces of holomorphic and continuous maps
M ! A�, respectively;

� CMI.M;Rn/ denotes the space of conformal minimal immersions M ! Rn;

� CMInf.M;Rn/ is the subspace of CMI.M;Rn/ consisting of nonflat immersions;

� NC.M;Cn/ is the space of holomorphic null immersions M ! Cn;

� NCnf.M;Cn/ is the subspace of NC.M;Cn/ consisting of nonflat immersions.

Consider the commutative diagram

NCnf.M;Cn/
�

//

<

��

O.M;A�/
� � � // C.M;A�/

<NCnf.M;Cn/
� � � // CMInf.M;Rn/

 

OO

where

� the maps � W NCnf.M;Cn/! O.M;A�/ and  W CMInf.M;Cn/! O.M;A�/

are given by Z 7! @Z=� and X 7! 2@X=� , respectively;

� the map NCnf.M;Cn/! <NCnf.M;Cn/ is the projection Z D X C iY 7! X ;

� the maps � W <NCnf.M;Cn/ ,! CMInf.M;Rn/ and � W O.M;A�/ ,! C.M;A�/

are the natural inclusions.

Recall that a continuous map � W X ! Y between topological spaces is said to
be a weak homotopy equivalence if it induces a bijection of path components of the

two spaces and, for each integer k 2 N, an isomorphism �k.�/ W �k.X/
Š
�! �k.Y /

of their kth homotopy groups. The map � is a homotopy equivalence if there is a
continuous map  W Y ! X such that  ı � W X ! X is homotopic to the identity
on X and � ı  W Y ! Y is homotopic to the identity on Y . These notions indicate
that the spaces X and Y have the same rough topological shape.
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Since A� is an Oka manifold, the inclusion � W O.M;A�/ ,! C.M;A�/ is a weak
homotopy equivalence by the Oka–Grauert principle (see [35, Corollary 5.5.6]), and
by Lárusson [54] it is a homotopy equivalence if M is of finite topological type; i.e.,
if the homology group H1.M;Z/ is a finitely generated abelian group.

The real-part projection map < W NCnf.M;Cn/! <NCnf.M;Cn/ is evidently a
homotopy equivalence.

It turns out that all other maps in the above diagram are also weak homotopy
equivalences. The first part of the following theorem was proved by the author and
Lárusson in [39], and the second part was proved by Alarcón, the author, and López
in [14]. Validity of statement (a) for CMI.M;Rn/ and NC.M;Cn/ remains an open
problem.

Main Theorem 3.2. Let M be an open Riemann surface.

(a) Each of the maps �, �,  in the above diagram is a weak homotopy equiva-
lence, and a homotopy equivalence if M is of finite topological type.

(b) The map � ı W CMI.M;Rn/! C.M;A�/ induces a bijection of path com-
ponents of the two spaces. Hence,

�0
�

CMI.M;Rn/
�
D

´
Z`2; n D 3; H1.M;Z/ D Z`I

0; n > 3:

It follows that each of the spaces NCnf.M;Cn/ and CMInf.M;Cn/ is weakly
homotopy equivalent to the space C.M;A�/ of continuous maps M ! A�, and is
homotopy equivalent to C.M;A�/ if the surface M has finite topological type.

The group Z2 D ¹0; 1º, which appears in part (b), is the fundamental group of
the punctured null quadric A� � C3; see (2.24) and note that C2 n ¹0º is simply
connected. If X 2 CMI.M;R3/, then @X=@z WM ! A� maps every generator of the
homology groupH1.M;Z/ either to the generator of �1.A�/ or to the trivial element.
This gives 2` choices, each one determining a connected component of CMI.M;R3/.
The null quadric A� � Cn for n > 3 is simply connected.

These results are proved by using the parametric versions of techniques discussed
in Section 3.1. Each of the maps in question satisfies the parametric h-principle, which
implies that it is a weak homotopy equivalence.

3.3. The Gauss map of a conformal minimal surface

The Gauss map is of major importance in the theory of minimal surfaces. We have
already seen that the Gauss map of a conformal minimal immersion X WM ! R3 is
a holomorphic map g W M ! CP1 (2.26), which coincides with the classical Gauss
map M ! S2 under the stereographic projection from S2 onto CP1. In general, for
any dimension n � 3 one defines the generalized Gauss map of a conformal minimal
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immersion X D .X1; X2; : : : ; Xn/ WM ! Rn as the Kodaira-type holomorphic map

G D Œ@X1 W @X2 W � � � W @Xn� WM ! Qn�2
� CPn�1; (3.2)

where

Q D Qn�2
D

²
Œz1 W � � � W zn� 2 CPn�1 W

nX
jD1

z2j D 0

³
is the projectivization of the punctured null quadric A�, a smooth quadric complex
hypersurface in CPn�1. A recent discovery is the following converse result from [14]
(see also [16, Theorem 5.4.1]), which shows that every natural candidate is the Gauss
map of a conformal minimal surface.

Main Theorem 3.3. Assume that n � 3.

(i) For every holomorphic map G WM !Qn�2 from an open Riemann surface
there exists a conformal minimal immersion X W M ! Rn with the Gauss
map G .

(ii) IfM is a compact bordered Riemann surface and G WM !Qn�2 is a map
of class Ar�1.M;Qn�2/ for some r 2N, then there is a conformal minimal
immersion X WM ! Rn of class C r.M;Rn/ with the Gauss map G .

Here, Ar�1.M; Qn�2/ denotes the space of maps M ! Qn�2 of class C r�1

which are holomorphic in the interior M n bM of M .
Furthermore, the following assertions hold true in both cases in the above theo-

rem.

(i) The conformal minimal immersionX can be chosen to have vanishing flux.
In particular, every holomorphic map G WM ! Qn�2 is the Gauss map of
a holomorphic null curve M ! Cn.

(ii) If G .M/ is not contained in any projective hyperplane of CPn�1, then X
can be chosen with arbitrary flux, to have prescribed values on a given
closed discrete subset ƒ of M , to be an immersion with simple double
points if n D 4, and to be an injective immersion if n � 5 and the prescrip-
tion of values on ƒ is injective.

When nD 3, the quadricQ1 is an embedded rational curve in CP2 parameterized
by the biholomorphic map

CP1 3 t
�

7�!

�
1

2

�
1

t
� t

�
W

i

2

�
1

t
C t

�
W 1

�
D

�
1� t2 W i.1C t2/ W 2t

�
2Q1: (3.3)

Writing .1 � t2; i.1C t2/; 2t/ D .a; b; c/, we easily find that

t D
c

a � i b
D
b � i a

i c
2 CP1:
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Suppose that X D .X1; X2; X3/ W M ! R3 is a conformal minimal immersion, and
write 2@X D 2.@X1; @X2; @X3/ D .�1; �2; �3/. In view of the above formula for
t D t .a; b; c/ it is natural to consider the holomorphic map

g D
�3

�1 � i�2
D

@X3

@X1 � i @X2
WM ! CP1:

This is the complex Gauss map (2.26) of X , which appears in the Enneper–Weier-
strass representation (2.25). The generalized Gauss map G WM ! Q1 � CP2 (3.2)
of X is then expressed by G D � ı g, where � W CP1 ! Q1 is given by (3.3).

Let us say a few words about the proof of Theorem 3.3. The first step is to lift the
given map G W M ! Q to a holomorphic map G W M ! A�. Note that the natural
projection A� ! Q sending .z1; : : : ; zn/ to Œz1 W � � � W zn� is a holomorphic fibre bun-
dle with fibre C� D C n ¹0º. The existence of a continuous lifting follows by noting
that the homotopy type of M is a wedge of circles, and every oriented C�-bundle
over a circle is trivial. Further, since C� is an Oka manifold, every continuous lifting
is homotopic to a holomorphic lifting according to the Oka principle [35, Corol-
lary 5.5.11].

In the second and main step of the proof, the holomorphic map G W M ! A� is
multiplied by a nowhere vanishing holomorphic function h WM ! C� such that the
product f D hG W M ! A� has vanishing periods along closed curves in M (see
(2.31)), and hence it integrates to a holomorphic null immersion Z W M ! Cn. Its
real part X D <Z W M ! Rn is then a conformal minimal immersion having the
Gauss map G . The construction of such a multiplier h follows the idea of proof of
Theorem 3.1, but the details are fairly nontrivial and we refer to the cited works.

There are many results in the literature relating the behavior of a minimal surface
to properties of its Gauss map. A particularly interesting question is how many hyper-
planes in a general position in CPn�1 can be omitted by the Gauss map of a complete
conformal minimal surface of finite total curvature. A discussion of this topic can be
found in [16, Chapter 5] and in several other sources.

3.4. The Calabi–Yau problem

A smooth immersion X W M ! Rn is said to be complete if X�ds2 is a complete
metric on M . Equivalently, for every divergent path 
 W Œ0; 1/ ! M (i.e., such that

.t/ leaves every compact set in M as t ! 1) the image path X ı 
 W Œ0; 1/! Rn

has infinite Euclidean length. Clearly, if X is proper, then it is complete since any
such path X ı 
.t/ diverges to infinity as t ! 1. The converse is not true; it is easy
to construct complete immersions (and embeddings if n � 3) with bounded image
X.M/ � Rn.

It is however not so easy to find complete bounded immersions with additional
properties, such as conformal minimal or, in case when the target is a complex
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Euclidean space Cn, holomorphic. The following conjecture was posed by Eugenio
Calabi in 1965, [50, p. 170]. Calabi’s conjecture was also promoted by Shiing-Shen
Chern [24, p. 212].

Conjecture 3.4. Every complete minimal hypersurface in Rn .n � 3/ is unbounded.
Furthermore, every complete nonflat minimal hypersurface in Rn .n � 3/ has an
unbounded projection to every .n � 2/-dimensional affine subspace.

A particular reason which may have led Calabi to propose these conjectures was
the theorem of Chern and R. Osserman [25] from that time. Their result says in par-
ticular that if X WM ! Rn .n � 3/ is a complete conformal minimal surface of finite
total Gaussian curvature TC.X/ > �1, then M is the complement of finitely many
points p1; : : : ; pm in a compact Riemann surface R, the holomorphic 1-form @X has
an effective pole at each point pj , and X is proper. (The first statement holds even
without the completeness assumption onX , due to a result of Huber [47] from 1957.)
The Chern–Osserman theorem says that such an X is complete if and only if @X has
an effective pole at each puncture pj . The asymptotic behavior of X at the punctures
was described by M. Jorge and W. Meeks [48] in 1983.

It turns out that, at least in dimension n D 3, Calabi’s conjecture is both right and
wrong, depending on whether the minimal surface is embedded or merely immersed.
(This point was not specified in the original question.) In dimension nD 3, the answer
is radically different for these two cases, as we now explain.

The first counterexample to Calabi’s conjecture in the immersed case was given
by L. P. de M. Jorge and F. Xavier in 1980 [49], who constructed a complete nonflat
conformal minimal immersion D ! R3 from the disc with the range contained in a
slab between two parallel planes.

In 1982, S.-T. Yau pointed out in [80, Problem 91] that the question whether there
are complete bounded minimal surfaces in R3 remained open despite Jorge–Xavier’s
example. This became known as the Calabi–Yau problem for minimal surfaces.

The problem was resolved for immersed surfaces by N. Nadirashvili [67] who in
1996 constructed a complete conformal minimal immersion D ! R3 with the image
contained in a ball. Many subsequent results followed, showing similar results for
topologically more general surfaces; see [16, Section 7.1] for a survey and references.
However, the conformal type of the examples could not be controlled by the methods
developed in those papers, except for the disc. The reason is that the increase of the
intrinsic radius of a surface was achieved by applying Runge’s theorem on pieces of
a suitable labyrinth in the surface, chosen such that any divergent path avoiding most
pieces has infinite length, while crossing a piece of the labyrinth increases the length
by a prescribed amount. However, Runge’s theorem does not allow to control the map
everywhere, and hence small pieces of the surface had to be cut away in order to keep
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the image bounded. This surgery changes the conformal type of the surface, and only
its topological type can be controlled by this method.

After Nadirashvili’s paper, Yau revisited the Calabi–Yau conjectures in his 2000
millennium lecture and proposed several new questions (see [81, p. 360] or [82,
p. 241]). He asked in particular: What is the geometry of complete bounded mini-
mal surfaces in R3? Can they be embedded? What can be said about the asymptotic
behavior of these surfaces near their ends?

Concerning Calabi’s conjecture for embedded surfaces, Colding and Minicozzi
showed in 2008 [29] that every complete embedded minimal surface in R3 of finite
topological type is proper in R3. Their result was extended to surfaces of finite genus
and countably many ends by W. H. Meeks, J. Pérez, and A. Ros in 2018, [61]. Hence,

Calabi’s conjecture holds true for embedded minimal surfaces of finite genus
and countably many ends in R3.

Against this background, we have the following result for immersed surfaces.

Main Theorem 3.5. Every open Riemann surface of finite genus and at most count-
ably many ends, none of which are point ends, is the conformal structure of a complete
bounded immersed minimal surface in R3.

By the uniformization theorem of Z.-X. He and O. Schramm [45, Theorem 0.2]
(1993) solving Koebe’s conjecture, every open Riemann surface of finite genus and
at most countably many ends is conformally equivalent to a domain of the form

M D R n

[
i

Di ; (3.4)

where R is a compact Riemann surface without boundary and ¹Diºi is a finite or
countable family of pairwise disjoint compact geometric discs or points inR. (A geo-
metric disc in R is a compact subset whose preimage in the universal holomorphic
covering space of R, which is one of the surfaces CP1, C, or D, is a family of
pairwise disjoint round discs or points.) Such an M is called a circled domain in R.
Hence, Theorem 3.5 is a corollary to the following more precise result, which includes
information about the boundary behavior of surfaces.

Main Theorem 3.6. Assume that M is a circled domain of the form (3.4). For any
n� 3 there exists a continuous mapX W xM !Rn such thatX WM !Rn is a complete
conformal minimal immersion and X W bM ! Rn is a topological embedding. If
n � 5, then there is a topological embedding X W xM ! Rn such that X W M ! Rn

is a complete embedded minimal surface.

This means that the image X.M/ is a complete immersed minimal surface whose
boundary X.bM/ consists of pairwise disjoint Jordan curves. The control of confor-
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mal structures on complete minimal surfaces in Theorems 3.5 and 3.6 is one of the
main new aspects of these results; the other one is that the surfaces in Theorem 3.6
have Jordan boundaries. These answer the aforementioned questions by Yau.

For surfaces M of type (3.4) with finitely many boundary components, Theorem
3.6 was proved in [4]. This covers all finite bordered Riemann surfaces in view of the
uniformization theorem [76, Theorem 8.1] due to E. L. Stout. In this case, we actu-
ally showed that any conformal minimal immersion xM ! Rn can be approximated
uniformly on xM by a map X as in the theorem. The general case for countably many
ends was obtained in [10]; an approximation theorem also holds in that case.

The situation regarding point ends remains elusive and does not have a clear-cut
answer. On the one hand, a bounded conformal minimal surface cannot be complete at
an isolated point end (a puncture) since a bounded harmonic function extends across
a puncture. On the other hand, it was shown in [10, Theorem 5.1] that an analogue of
Theorem 3.6 holds for connected domains of the form

M D R n

�
E [

[
i

Di

�
;

where E is a compact set in a compact Riemann surface R and Di � R n E are
pairwise disjoint geometric discs such that the distance to E is infinite within M . In
particular, there are complete bounded conformal minimal surfaces in R3 with point
ends which are limits of disc ends.

Our construction uses an adaptation of the Riemann–Hilbert boundary value prob-
lem to holomorphic null curves and conformal minimal surfaces, together with a
method of exposing boundary points of such surfaces. This technique is explained
in detail in [16, Chapter 6]. The modifications which we use provide a good con-
trol of the position of the whole surface in the ambient space, thereby keeping it
bounded. The main technical lemma of independent interest (see [16, Lemma 7.3.1])
enables one to make the intrinsic radius of a conformal bordered minimal surface in
Rn as large as desired by a deformation of the surface which is uniformly as small as
desired. One uses this lemma in an inductive process which converges to a bounded
complete limit surface. This lemma also allows the construction of complete minimal
surfaces with other interesting geometric properties. In particular, every bordered Rie-
mann surface admits a complete proper conformal minimal immersion into any con-
vex domain in Rn (embedding if n � 5) and, more generally, into any minimally con-
vex domain (see [16, Section 8.3]). A smoothly bounded domain in R3 is minimally
convex if and only if the boundary has nonnegative mean curvature at each point.

We give a brief description of the modifications which lead to proof of the above
results. A complete presentation of this technique is given in [16, Chapter 6], and
Theorem 3.6 is proved in [16, Chapter 7]. Illustrations can be found in my lecture [36].
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Each step consists of two substeps. In the first substep, we choose a large but finite
number of roughly equidistributed points on the boundary of the surface and change
the surface so that it grows long spikes (tentacles) at these points, which however
remain uniformly close to the attachment points. (Imagine the picture of a corona
virus.) The effect of this modification is that curves in the surface which terminate
near one of the exposed boundary points get elongated by a prescribed amount. See
[16, Section 6.7].

In the second substep, we perform a Riemann–Hilbert type modification which
increases the intrinsic radius along each of the boundary arcs between a pair of
exposed points, without destroying the effect of substep 1. To each boundary arc
between a pair of exposed points we attach a 3-dimensional cylinder, consisting of a
1-parameter family of conformal minimal discs centered at points of the given arc.
The boundaries of these discs form a 2-dimensional cylinder, a product of the arc
with a circle, and their radii shrink to zero near the exposed endpoints of the arc. Is it
then possible to modify the surface by pushing each arc very near the corresponding
2-dimensional cylinder, with the modification tempering out near the exposed end-
points and away from the arcs. So, the modification in substep 2 is big very close
to the boundary (except near the exposed points), and it is arbitrarily small outside
a given neighborhood of the boundary. The new conformal minimal surface is con-
tained in an arbitrarily small neighborhood of the union of the surface from substep 1
and the 3-dimensional cylinders that have been attached to the arcs in substep 2. The
metric effect of the modification in substep 2 is that the length of any path in the sur-
face terminating at an interior point of one of the boundary arcs increases almost by
the radius of the disc that was attached at this point. (For curves terminating near the
exposed points a desired elongation was already achieved in substep 1.) For technical
reasons, we actually work with @-derivatives of these conformal minimal surfaces,
including the boundary discs, so the entire picture concerns families of holomorphic
maps with values in the punctured null quadric A�. In order to control the period con-
ditions, we work with sprays of such configurations, like in the proof of Theorem 3.1.
Special attention is paid to avoid introducing branch points to our surfaces in the pro-
cess. As said before, this provides the main modification lemma, and its inductive
application leads to the proof of Theorem 3.6.

By this method, the Calabi–Yau property has been established in several geome-
tries: for holomorphic curves in complex manifolds [6], holomorphic null curves in
Cn and conformal minimal surfaces in Rn for n � 3 [4, 7, 10], holomorphic Leg-
endrian curves in complex contact manifolds [8, 13], and superminimal surfaces in
self-dual or anti-self-dual Einstein 4-manifolds [37]. For a survey and further refer-
ences, see [16, Section 7.4]. An axiomatic approach to the Calabi–Yau problem was
proposed in [11].
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The analogue of the Calabi–Yau problem for complex submanifolds in Cn, which
is known as Paul Yang’s problem who raised it in 1977 [79], has also received a lot of
recent attention. In particular, J. Globevnik showed [40] that for any pair of integers
1 � k < n, the ball of Cn admits holomorphic foliations by complete k-dimensional
proper complex subvarieties, most of which are without singularities (submanifolds).
Another construction using a different technique was given by Alarcón et al. [17],
and it was also shown that there are nonsingular holomorphic foliations of the ball
having complete leaves (Alarcón [1]). Furthermore, there are nonsingular holomor-
phic foliations of the ball whose leaves are complete properly embedded discs [9].
The techniques in these papers do not apply to more general minimal surfaces, and
they do not provide control of complex structures of examples.

In conclusion, I propose the following conjecture. Although I am fully aware of
the lack of technical tools to solve it in this generality, I believe that it is true.

Conjecture 3.7. The Calabi–Yau property holds for bordered minimal surfaces in
any smooth Riemannian manifold .N; g/ with dimN � 3. Explicitly, for every bor-
dered Riemann surface, M , and conformal minimal immersion X W xM ! N it is
possible to approximate X uniformly on M by complete conformal minimal immer-
sions M ! N .

Acknowledgments. I wish to thank Antonio Alarcón and Francisco J. López for
having introduced me to this beautiful subject back in 2011. I also thank the men-
tioned colleagues, as well as Barbara Drinovec Drnovšek and Finnur Lárusson, for
the continuing collaboration on this subject.

Funding. This research was supported by Program P1-0291 from ARRS, Republic
of Slovenia.

References

[1] A. Alarcón, Complete complex hypersurfaces in the ball come in foliations. J. Differential
Geom., to appear

[2] A. Alarcón and I. Castro-Infantes, Complete minimal surfaces densely lying in arbitrary
domains of Rn. Geom. Topol. 22 (2018), no. 1, 571–590 Zbl 1378.53070
MR 3720350

[3] A. Alarcón and I. Castro-Infantes, Interpolation by conformal minimal surfaces and
directed holomorphic curves. Anal. PDE 12 (2019), no. 2, 561–604 Zbl 1402.53005
MR 3861901

[4] A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, and F. J. López, Every bordered Rie-
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Bernoulli random matrices

Alice Guionnet

Abstract. Random matrix theory has become a field on its own with a breadth of new results,
techniques, and ideas in the last thirty years. In these proceedings, I illustrate some of these ad-
vances by describing what we now know about the spectrum and the eigenvectors of Bernoulli
matrices.

1. Introduction

Jacques (or Jakob) Bernoulli (1654–1705) was a renowned Swiss mathematician who
made important contributions to probability theory and partial differential equations.
He was the first to discover the number e. But his most famous result is, at least
for probabilists, the first proof of the law of large numbers. To this end, he analyzed
the concept of the Bernoulli law, which is the simplest non-trivial distribution you
can think of, being the sum of two Dirac masses. It is the distribution of a random
variable b which can only take two values 0 and 1. We denote

p D P .b D 1/ D 1 � P .b D 0/:

A very common example is a coin that, once thrown, falls either on head (modeled by
the state 1) or tail (modeled by 0). Even if one would expect in general the probability
of each event to be equal to 1=2, it may well be rather p 2 .0; 1/ if the coin is rigged.
In Ars Conjectandi, Bernoulli showed that if one throws such a coin independently
a number n of times, then, with large probability, one should see approximately pn

heads if n is large enough. To state this law of large numbers more precisely, he
showed that if b1; : : : ; bn denotes the outcome of n-independent Bernoulli trials, then
for any a < p < b

lim
n!1

P

 
1

n

nX
iD1

bi 2 Œa; b�

!
D 1:
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But how close can we choose a, b to p so that this result remains true? Few years
later, A. de Moivre (1667–1754) quantified the size of the error and proved the first
central limit theorem, namely that a; b can be at a distance of about 1=

p
n of p in the

sense that

lim
n!1

P

 
1p

np.1 � p/

nX
iD1

.bi � p/ 2 Œa; b�

!
D

1
p

2�

Z b

a

e�
x2

2 dx:

This was the first occurrence of the central limit theorem and the start of modern
probability theory and statistics. Implicitly, we so far assumed that p does not depend
on n and belongs to .0; 1/. Later on, we shall also be interested in the case where
p depends on n. Then, it can be checked that the central limit theorem still holds
as long as pn goes to infinity. If pn goes to a finite constant c, then it cannot hold
since

Pn
iD1 bi is an integer so that the above random variable is discrete. In fact, it

converges towards the Poisson distribution

lim
n!1

P

 
1p

np.1 � p/

nX
iD1

.bi � p/ 2 Œa; b�

!
D

X
k2cC

p
cŒa;b�

1

kŠ
cke�c :

We will see later that this transition between such continuous and discrete limits is
also key to describing the spectrum of Bernoulli random matrices. The last concept
which is central in probability theory and important in these notes is entropy. It was
introduced by Ludwig Boltzmann (1844–1906) and Claude Shannon (1916–2001) in
physics and information theory, respectively, as a way to measure disorder. For again
n-independent Bernoulli trials with parameter p, it is defined for any q 2 Œ0; 1� by

lim
"#0

lim
n!1

1

n
ln P

 
1

n

nX
iD1

bi 2 Œq � "; q C "�

!
D �Sp.q/;

where Sp.q/ D q
p

ln q
p
C

1�q
1�p

ln 1�q
1�p

is the entropy or rate function.
In this survey, I will discuss Bernoulli random matrices. A Bernoulli random

matrix is an n � n symmetric matrix with independent Bernoulli entries (modulo the
symmetry constraint) whose size n is going to infinity. I will discuss the law of large
numbers, the fluctuations, and the entropy for their spectrum and eigenvectors. There
are many motivations to study random matrices. The first goes back to Wishart who
considered random matrices to study correlations in large data sets. Such questions
are very modern, with the need to analyze larger and larger data sets and machine
learning. The second comes from physics and works of Wigner and Dyson. They pro-
posed to model the Hamiltonian of excited nuclei by random matrices, an idea which
turned out to be quite successful as indeed real nuclei turned out to have energy
levels distributed like the eigenvalues of random matrices. But Bernoulli matrices
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Figure 1. Courtesy of D. Coulette.

are special among all other random matrices because they describe the adjacency
matrix of an Erdős–Rényi graph G.n; p/. Indeed, the latter is just a graph built on n

(labeled) vertices, with an edge drawn independently between each couple of vertices
with probability p. Studying the eigenvalues of the adjacency matrix of a graph gives
valuable geometric information, such as the size of its boundary (expanders) or the
number of specific configurations, such as triangles, that it contains. One can also
be interested in the combinatorial properties of such matrices and for instance focus
on the probability that the matrix is singular; see e.g. [68]. My viewpoint will be to
investigate the properties of the eigenvalues and eigenvectors of Bernoulli random
matrices, as a particularly nice and well-documented example of random matrices.

To simplify, I will restrict myself to symmetric Bernoulli matrices Bn throughout
these notes:

Bn.i; j / D Bn.j; i/;

and assume that .Bn.i; j /; i � j / follows a Bernoulli law with parameter p. Also, I
will take Bn.i; i/ random, but could take it equal to zero without changing much the
statements of most of the results.

My goal is to understand the spectrum of Bn as well as the properties of its eigen-
vectors as n goes to infinity. One can easily guess that these properties should depend
on the parameter p. Indeed, thinking about the Erdős–Rényi graph, one sees that the
average degree of a vertex is pn. The graph will be very dense if pn goes to infinity
fast enough but sparse if it is finite.

Indeed, it is well known since the breakthrough paper of Erdős and Rényi (see
Figure 1) that if np < 1, G.n; p/ will almost surely have no connected component
of size greater than O.ln n/; if np D 1, there is a giant connected component but it
is of size of order n2=3; if np goes to a constant c > 1, it will have a unique giant
component but lots of small components, and isolated vertices will continue to exist
until np < .1 � "/ ln n; whereas if np > .1 C "/ ln n the graph will almost surely be
connected. Here " is some positive real number as small as wished. In the case where
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np is of order c, the finite size connected components will create small diagonal
blocks in the Bernoulli matrix, with entries equal either to zero or one and therefore
finitely many possible eigenvalues. Hence, we expect the spectrum to accumulate at
these possible values. But should there be other possible eigenvalues? Similarly, we
see that the eigenvectors related with these eigenvalues are localized on a few vertices.
But should we also have delocalized eigenvectors? On the contrary, in the case where
np > .1 C "/ ln n, we may expect eigenvectors to be delocalized and the spectrum to
be nicely continuous. In this case, a whole theory has been developed to show that
the spectrum and the eigenvalues of Bernoulli matrices have the same properties as
those of a random matrix with Gaussian entries. The latter is well known to be much
easier to study, for instance, because the joint law of its eigenvalues is rather simple
and independent of the eigenvectors. Conversely, Bernoulli matrices resemble more
heavy-tailed matrices when pn is of order one, in the sense that it has mostly very
tiny entries but a few large entries. Understanding the transition between these two
behaviors is at the heart of random matrix theory.

In this survey, I will start discussing the asymptotic behavior of the spectrum in
both sparse and dense cases. Then, I will consider its fluctuations, both local and
global, as well as the properties of its eigenvectors. Finally, I will discuss the large
deviations of the spectrum, for instance how to estimate the probability that the sec-
ond eigenvalue of Bernoulli matrices takes an unexpected value.

2. Law of large numbers

In this section, we shall see that the limiting distribution of the spectrum differs a lot
according to whether pn goes to infinity or not.

A first remark should be made about the matrix Bn: its entries are not centered. It
will be more convenient to center them and renormalize the matrix properly. To this
end, we make the decomposition

Bn D
p

np.1 � p/Xn C p1;

where 1 is a matrix whose entries are all equal to one, whereas the entries of Xn are
centered and renormalized to have covariance 1=n:

Xn.i; j / D
Bn.i; j / � pp

np.1 � p/
:

The matrix 1 has one non-trivial eigenvalue which equals n, and flat eigenvector

1 D .1=
p

n; 1=
p

n; : : : ; 1=
p

n/:
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Figure 2.

Conversely, the spectrum of Xn has eigenvalues mostly of order one in the sense that
EŒTr.X2

n/� D EŒ
P

�2
i � D n. Therefore, the above decomposition shows that Bn has a

very large eigenvalue of order n, and the rest is roughly given by the eigenvalues of Xn

taken on 1?. Moreover, by Weyl’s interlacing properties, the eigenvalues .�B
i /1�i�n

of Bn=
p

np.1 � p/ and .�X
i /1�i�n of Xn are interlaced:

�X
n � �B

n � �X
n�1 � � � � �X

1 � �B
1 :

Therefore, it is in general not difficult to retrieve the properties of the eigenvalues of
Bn=

p
np.1 � p/ from those of Xn. Hereafter, we will therefore concentrate mostly

on Xn.

2.1. Dense case

The first result describes the asymptotic distribution of the spectrum in the dense case
and shows that the limit is described by the famous semi-circle law; see Figure 2.

Theorem 2.1. Assume that pn goes to infinity as n goes to infinity. Then, almost
surely, for any a < b

lim
n!1

1

n
#
®
i W �B

i 2
p

np.1 � p/Œa; b�
¯
D lim

n!1

1

n
#
®
i W �X

i 2 Œa; b�
¯
D �

�
Œa; b�

�
;

where � is the semi-circle law given by

�.dx/ D
1

2�

p

4 � x21jxj�2dx: (2.1)

The semi-circle law is ubiquitous to random matrix theory as it describes the
asymptotic behavior of random matrices with Gaussian entries, but in fact any ran-
dom matrix with independent centered entries .aij /i;j such that EŒj

p
naij j

2C"� is
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Figure 3. Simulation for c D 1; 2; 3 (courtesy of J. Salez).

uniformly bounded for some " > 0. Such a convergence was proved first by Wigner
in the case where p is independent of n based on the computation of the moments
EŒTr Xk

n�. Indeed, one can expand the trace of moments of matrices in terms of the
entries, and observe that the indices which contribute to the first order of this expan-
sion can be described by rooted trees, whereas �.xk/ is equal to the Catalan numbers
which enumerate them.

2.2. Sparse case

On the other hand, the limiting distribution of the spectrum is very different when pn

is of order one. Namely, we have the following theorem; see [52, 70].

Theorem 2.2. Assume that pn goes to c 2 .0;C1/ as n goes to infinity. Then, almost
surely, for any a < b

lim
n!1

1

n
#
®
i W �B

i 2
p

np.1 � p/Œa; b�
¯
D lim

n!1

1

n
#
®
i W �X

i 2 Œa; b�
¯
D �c

�
Œa; b�

�
:

The limit law �c depends on c; some plots are shown in Figure 3.
The simulations indicate the presence of atoms. They were shown to be exactly

given by totally real algebraic integers in [58] for all c>0; these are the roots of monic
polynomials with integer coefficients. It is easy to understand that the atoms should
be totally algebraic integers as finite connected components are diagonal blocks with
0 or 1 entries whose characteristic polynomials have such roots. It is a much stronger
statement to show that all such roots are atoms, in particular since totally algebraic
integers are dense in the real numbers. �c has also a continuous spectrum: it was
indeed proved in [30] that �c has a non-trivial continuous part if and only if c > 1.
This result is in fact hard to prove as the limit laws �c’s are described as the solution
of complicated equations [28]; see also [17, 20]. However, such description could be
used in [8] to prove the existence of an absolutely continuous part for sufficiently
large c. Moreover, the first-order expansion of �c in c going to infinity was derived
in [38]. The spectrum at the origin seems to have a Dirac mass whose weight could
be computed [29].
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2.3. Idea of the proof

The first proof of Theorem 2.1 estimated the moments 1
n

Tr.Xn/k for all integer num-
bers k; see [69] for the first theorem and [17, 52, 70] for the sparse case. However, in
order to go into more local results like the behavior of the eigenvectors or the local
fluctuations, and as well to have more explicit formulas for the limit law, it is more
convenient to study the resolvent. This path can be used to study the asymptotics
of the spectral measure of any self-adjoint matrix Xn with independent entries mod-
ulo the symmetry constraint, and was generalized to study heavy-tailed matrices in
[17, 20, 52] based on the ideas from [35]. The idea is to derive the asymptotics of the
Stieltjes transform

Gn.z/ D
1

n
Tr.z � Xn/�1

D
1

n

nX
iD1

1

z � �X
i

for a complex number z away from the real line. To this end, we use the Schur com-
plement formula which reads

.z � Xn/�1
i i D

1

z � Xi i �
˝
Xi ; .z � X.i//�1Xi

˛ ; (2.2)

where Xi D .Xij /j¤i and X.i/ is the associated principal minor, namely the .N � 1/�

.N � 1/ matrix obtained from Xn by removing the i th row and column. Xi i goes to
zero with N and we can check (e.g. by estimating the L2 norm of the difference) that
with probability going to one˝

Xi ; .z � X.i//�1Xi

˛
D

X
j Wj¤i

X2
ij .z � X.i//�1

jj C o.1/: (2.3)

This is where the “light tail” hypothesis pn going to infinity starts to matter. Then,
the entries X2

ij go to zero and have variance 1=n so that, since the Xij are independent
of X.i/, the law of large numbers (or a second moment computation) asserts that with
probability going to oneX
j Wj¤i

X2
ij .z�X.i//�1

jj D

X
j Wj¤i

EŒX2
ij �.z�X.i//�1

jj Co.1/D
1

n

X
j Wj¤i

.z � X.i//�1
jj C o.1/:

But again X.i/ and Xn vary only by a rank two matrix (if we complete X.i/ by zero
entries at the i th row and column), so that their spectrum is interlaced by Weyl’s
interlacing property. As a consequence

1

n

X
j¤i

.z � X.i//�1
jj D

1

n

X
i

.z � Xn/�1
jj C O

�
1

=.z/n

�
:
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This approximation, together with (2.2) and (2.3), implies that with high probability

Gn.z/ D
1

n

X
i

.z � Xn/�1
jj D

1

z � Gn.z/
C o.1/: (2.4)

After recalling that Gn.z/ goes to zero as N goes to infinity, we conclude that since
Gn.z/ goes to zero as the imaginary part of z goes to infinity,

Gn.z/ D
1

2
.z �

p

z2 � 4/ C o.1/

is approximately the Stieltjes transform of the semicircle law G� .z/D 1
2
.z�

p
z2�4/.

Since Gn is analytic and uniformly bounded for =z > ", Montel’s theorem implies
that Gn converges to this limit away from the real line, which yields the vague con-
vergence of the empirical measure of the eigenvalues. Because 1

n
Tr.X2

n/ is in L1, the
weak convergence follows.

On the contrary, in the heavy-tailed case where pn is of order one, the entries
of Xij are often very small but of order one with a positive probability. Hence, the
previous law of large numbers does not hold true any more and we cannot expect such
a simple equation as (2.4). In fact,

P
j¤i X2

ij .z � X.i//�1
jj , if it converges, will a priori

converge to a random variable. To study this convergence, we make the following
assumption on the law �n of Xij :

lim
n!1

n

�Z
.e�iux2

� 1/ d�n.x/

�
D ˆ.u/ (2.5)

with ˆ such that there exists g on RC, with g.y/ bounded by Cy� for some � > �1,
such that for u 2 C�,

ˆ.u/ D

Z 1

0

g.y/e
iy
u dy: (2.6)

This is satisfied by the adjacency matrix of Erdős–Rényi graph with ˆ.u/Dc.eiu�1/

if pn goes to c and g is a Bessel function [20], but also for other cases, for instance
for ˛ stable laws with ˆ.u/ D c.iu/˛=2 and g.y/ D Cy˛=2�1 for some constants
c; C . Then, it was shown in [17, 20] that Gn.z/D 1

n
Tr.z � Xn/�1 converges almost

surely towards G given by

G.z/ D i

Z
eitze�z.t/ dt; z 2 CC; (2.7)

where �z W RC ! ¹x C iyI x � 0º is the unique solution, analytic in z 2 CC, of the
non-linear equation

�z.t/ D

Z 1

0

g.y/e
iy
t zC�z. y

t / dy: (2.8)
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This entails the convergence of the spectral measure of Xn, with � replaced by a
probability measure with Stieltjes transform given by (2.7). The argument to prove
(2.7) and (2.8) is as follows. We first remark that Gn concentrates in the sense that it
is close to its average; see Theorem 3.2. We let �n be the order parameter �n

z .x/ WD

EŒ 1
n

P
ˆ.x.z � X.i//�1

jj /�. By (2.2) and (2.3), we find that, if =z > 0,

Gn.z/ ' E
�
Gn.z/

�
D �iE

� Z 1

0

e
itz�it

P
j¤i X2

ij
.z�X.i//�1

jj dt

�
C o.1/

D i

Z 1

0

eitzE

�Y
j¤i

EŒe
�itX2

ij
.z�X.i//�1

jj � dt

�
C o.1/

D �i

Z 1

0

eitzE

�Y
j¤i

�
1 C

1

n
ˆ
�
t .z � X.i//�1

jj

��
dt

�
C o.1/

D i

Z 1

0

eitzC�n
z .t/ dt C o.1/:

To conclude, we need to show the convergence of �n. But �n can be seen to be analytic
away from the real axis, and uniformly bounded under our hypothesis. This is enough
to see that it is tight and any limit point will be analytic by Montel theorem. Hence, it
is enough to show that it has a unique limit point for z with large imaginary part. To
this end, we get an equation for �n which follows from (2.6) by

�n
z .t/ D

Z 1

0

g.y/E
h
e

iy

x.z�X.i//�1
11

i
dy

'

Z 1

0

g.y/E
h
e

iy
x .z�

P
j�2 X2

ij
.z�X.1//�1

jj
/
i

dy C o.1/

'

Z 1

0

g.y/e
iy
x ze�n

z . y
x / dy C o.1/;

where in the second line we used (2.2) and (2.3). One can conclude by proving the
uniqueness of the solutions to this equation when z is far from the real line by show-
ing that the non-linear equation is then a contraction. The above arguments were
made complete in [17, 19, 20]. Another approach to heavy-tailed matrices and sparse
Bernoulli matrices based on Aldous’ Poisson-weighted infinite tree was proposed
in [25].

2.4. Extreme eigenvalues

The asymptotic behavior of the extreme eigenvalues also depend on c: they stick to the
bulk when pn�lnn and then go away at distance of order

p
ln n. We, more precisely,

have the following result, putting together the article of Benaych-Georges, Borde-
nave, and Knowles [18] and that of Alt, Ducatez, and Knowles [4]; see also [65].
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Theorem 2.3. � Assume that pn= ln n ! C1. Then the largest eigenvalue of Xn

sticks to the bulk: �X
1 ! 2.

� Assume that pn= ln n ! 0. Then �X
1 '

p
ln n= ln.ln n=pn/.

� Assume that pn ' C ln n. Then for C > 1=.ln 4 � 1/ WD C � the eigenvalues stick
to the bulk, whereas for C < 1=.ln 4 � 1/

�X
1 D

˛
p

˛ � 1
; ˛ D max

1

pn

X
j

Bij :

Observe that
P

j Bij is the degree of vertex i : the largest eigenvalue is hence
created by the largest degree in the graph. In fact, in the work of Alt, Ducatez, and
Knowles [4], it is shown that all eigenvalues outside the bulk are created by vertices
with large degrees when pn � C � ln n.

3. Fluctuations

3.1. Concentration of measure

Concentration of measure has become a central tool in probability and, in particular,
in random matrix theory. It allows us to prove that some quantities, such as smooth
function of independent variables, are not much random. It was crucial in the previous
proof of the convergence of the spectral measure. However, it generally depends on
the tails of the random variables. Herbst’s argument allows considering random vari-
ables with sub-Gaussian tails and more precisely random variables whose distribution
satisfies log-Sobolev inequalities, which is the case for instance when their density is
strictly log-concave as for Gaussian’s variables. To deal with bounded variables such
as the entries of Bernoulli matrices, one should rather use the theory developed by
Talagrand [61]. This was done in [44], where the spectrum of random matrices was
observed to be a smooth function of its entries and the associated Lipschitz norm
was computed. It resulted in the following theorem [44, Theorem 1.1]. We hereafter
consider a symmetric matrix A with independent entries above the diagonal with dis-
tribution aij =

p
n, where aij is distributed according to Pij supported in a compact

set K with width jKj.

Theorem 3.1. (1) Take f convex and Lipschitz with Lipschitz norm kf kL. Then,
for any ı > ı0.n/ D 8jKjkf kL=n,

P

�ˇ̌̌̌
1

n
Tr
�
f .A/

�
�E

�
1

n
Tr
�
f .A/

��ˇ̌̌̌
>ıkf kL

�
�4exp

´
�n2

�
ı� ı0.n/

�2
16jKj2

µ
:
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(2) There exists a finite constant c > 0 such that for any ı > ı1.n/ '
p

ı0.n/

P

�
sup

f 2LipK

ˇ̌̌̌
1

n
Tr
�
f .A/

�
� E

�
1

n
Tr
�
f .A/

��ˇ̌̌̌
> ıkf kL

�
� exp

²
� n2

�
ı � ı1.n/

�2
cjKj2

³
:

(3) Let �A
1 be the largest eigenvalue of A. Then

P
�ˇ̌

�A
1 � EŒ�A

1 �
ˇ̌
� ıjKj

�
� exp

²
�

�
ı � 8jKj=

p
n
�2

n

16

³
:

This result is a direct application of Talagrand’s beautiful theory and the com-
putation of Lipschitz constants of functions of the spectral measure in terms of the
entries; see [6, 45]. The original statement proves concentration around the median
rather than the mean, but it is easy to go from one result to the other up to some error
ı0.n/, ı1.n/. The second point is deducted from the first by approximating a general
function by convex functions. It applies to Bernoulli matrices straightforwardly by
taking jKj D 1=

p
p.1 � p/.

Theorem 3.2. Take f convex and Lipschitz with Lipschitz norm kf kL. Then, for any
ı > ı0.n/ D 8

p
�jf jL=np.1 � p/,

P

�ˇ̌̌̌
1

n
Tr
�
f .Xn/

�
� E

�
1

n
Tr
�
f .Xn/

��ˇ̌̌̌
> ı C ı0.n/

�
� exp

²
� p.1 � p/n2 .ı/2

16jf j2L

³
:

Moreover, for any ı > ı00.n/ D O.1=
p

p.1 � p/n/

P
�ˇ̌

�1 � EŒ�1�
ˇ̌

> ı C ı00.n/
�
� exp

®
� p.1 � p/nı2

¯
:

As we can see, the speed of the concentration deteriorates with p going to zero
to be of order n when np is of order one. In fact, it can be shown that the worse
concentration estimates for the empirical measure are of the order of exponential
in n. Indeed, we have the following result due to Bordenave, Caputo, and Chafai [24]
which is based on the Azuma–Hoeffding inequality and requires only the indepen-
dence of the vectors of the random matrix.

Lemma 3.3. Let kf kT V be the total variation norm:

kf kT V D sup
x1<���<xp

pX
iD2

ˇ̌
f .xi / � f .xi�1/

ˇ̌
:



A. Guionnet 56

Then, for any self-adjoint matrix Xn with independent vectors ..Xij ; i � j /;

1 � j � n/ and eigenvalues .�i /1�i�n for any function f with finite total variation
norm so that EŒj 1

n

Pn
iD1 f .�i /j� < 1, and any ı > 0

P

 ˇ̌̌̌
ˇ1n nX

iD1

f .�i / � E

"
1

n

nX
iD1

f .�i /

#ˇ̌̌̌
ˇ � ıkf kT V

!
� 2e�

nı2

8 :

In the general case, however, the extreme eigenvalues do not concentrate and can
be very large for heavy-tailed entries [4, 9].

3.2. Global fluctuations

It is a natural question to wonder how the empirical measure of the eigenvalues fluc-
tuates and, in particular, whether the concentration result of Theorem 3.2 is on the
optimal scale. In the case where p is of order one, this question was first answered
by Jonsson [51] by estimating moments, and in the context of Gaussian matrices by
Johansson [50] by using loop equations. The main point is that the central limit theo-
rem does not require a renormalization by the famous

p
n as for the classical central

limit theorems.

Theorem 3.4. Assume that p 2 .0; 1/ independent of n. Let f be a continuously
differentiable function. Let �i be the eigenvalues of Xn. Then

nX
iD1

f .�i / � E

"
nX

iD1

f .�i /

#
converges in distribution towards a centered Gaussian variable with variance

V.f / D
1

2�2

Z 2

�2

Z 2

�2

�
f .x/ � f .y/

x � y

�2
.4 � xy/

p
4 � x2

p
4 � y2

dx dy:

The central limit theorem also holds if one recenters with respect to the limit
rather than the expectation; see e.g. [56].

On the contrary, if pn goes to a constant c, we see that Theorem 3.3 gives the
optimal speed and we have a “more” classical central limit theorem [7, 20, 59]:

Theorem 3.5. Assume that pn goes to c 2 .0;C1/. Let f be a C 1
b

function. Then

1
p

n

 
nX

iD1

f .�i / � E

"
nX

iD1

f .�i /

#!
converges in law towards a centered Gaussian variable with non-trivial variance.
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Together with [46], we claim that at least for pn of order one, or in Œn"; n1�"�, or
p of order one, we have the following theorem.

Theorem 3.6. Let f be a C 1
b

function. Then

p
p

 
nX

iD1

f .�i / � E

"
nX

iD1

f .�i /

#!
converges in law towards a centered Gaussian variable with non-trivial covariance.

This result should hold for any p > 1=n.

3.3. Local laws

An important breakthrough towards the understanding of local fluctuations and eigen-
vectors is to analyze the so-called local laws as foreseen in [41]. Namely, to esti-
mate

P
f .�i / for less smooth functions, in fact for functions on a mesoscopic scale

f .x/ D g.N ˛.x � E// for some ˛ 2 .0; 1/. Equivalently, one can look at f .x/ D

.z � x/�1 with z DE C i� with � of order N�˛ (indeed the latter can serve to approx-
imate conveniently the first). In this scale, it was proved that if pn goes to infinity,
the mesoscopic distribution of the eigenvalues is still very close from the semi-circle
distribution. Indeed, let us define the Stieltjes transform to be given by

Gn.z/ D
1

n

nX
iD1

1

z � �i

; G�.z/ D

Z
1

z � �
d�.�/:

In [40, Theorems 2.8 and 2.10], the following result was proved, where �-high prob-
ability means a probability greater than or equal to 1 � e�v.ln n/�

for some v > 0.

Theorem 3.7. There are universal constants C1; C2 > 0 such that the following
holds. Assume that

pn � .ln n/C1� ; � D C2 ln ln n:

Then, for E 2 Œ�3; 3� and D D ¹z D E C i�; 0 < � < 3º,\
z2D

²ˇ̌
Gn.z/ � m� .z/

ˇ̌
� .ln n/C2�

�
min

²
1

pn
p

�E C �
;

1
p

pn

³
C

1

n�

�³
holds with �-high probability. Moreover, for � > .ln n/C �n�1

#
®
i W �i 2 ŒE � �; E C ��

¯
D n�

�
ŒE � �; E C ��

��
1 C O.ln n/C �

�
1

n�
3
2

C
1

pn�

��
with �-high probability.
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The above theorem applies for any p such that pn goes to infinity much faster
than any ln n; see e.g. [4]. Below ln n, the extreme eigenvalues were shown to be
dictated by the largest degree in the graph [18].

A similar statement in the sparse case where pn goes to a finite constant is still
open. Indeed, the fact that �c has a dense set of atoms and a continuous part makes the
analysis a priori much more involved and the local law more difficult to conjecture.
An easier heavy tail matrix model was studied in [17, 26, 35], namely the random
matrices with alpha-stable independent entries. In this case, the entries follow the
alpha-stable law P .jAij j � t / ' t�˛=n. When ˛ < 2, it was shown in [17, 35] that
the empirical measure converges towards a limiting law �˛ which is different from
the semi-circle law. One of the advantages of this model is that �˛ is absolutely
continuous except possibly for a discrete set of atoms. Of course, one cannot expect
the eigenvalues to be as rigid in the heavy-tailed case since this would contradict the
central limit theorem (which holds as in Theorem 3.6; see [20]). Hence, in this case,
large eigenvalues should be less rigid, creating large fluctuations. The following result
was proved if the Aij are ˛-stable variables in [26, 27]: for all t 2 R,

E
�

exp.i tA11/
�
D exp

�
�

1

n
w˛jt j

˛

�
; (3.1)

for some 0 < ˛ < 2 and w˛ D �=.sin.�˛=2/�.˛//. We put

� D

8̂̂<̂
:̂

1
2

if 8
5
� ˛ < 2;

˛
8�3˛

if 1 < ˛ < 8
5
;

˛
2C3˛

if 0 < ˛ � 1:

(3.2)

Then, there exists a finite set E˛ � R such that if K � RnE˛ is a compact set and
ı > 0, the following holds. There are constants c0; c1 > 0 such that for all integers
n � 1, if I � K is an interval of length jI j � c1n��.ln n/2, thenˇ̌

NI � n�˛.I /
ˇ̌
� ınjI j; (3.3)

with probability at least 1 � 2 exp.�c0nı2jI j2/. The fact that our result might not be
true on a finite set of values should only be technical. This result was improved in
[2, Theorems 3.4 and 3.5] in order to tackle I of size n�!.˛/ with !.˛/ > 1=2 (and
<.z/ small enough when ˛ < 1). Such an optimal scale is important in the study of
the local fluctuations of the spectrum.

In both light and heavy tails, the main point is to estimate the Stieltjes transform
Gn.z/ D 1

n

Pn
iD1.z � �i /

�1 for z going to the real axis: z D E C i� with � of order
nearly as good as n�1 for light tails, n�� for heavy tails. This is done by showing
that Gn is characterized approximately by a closed set of equations. In the case of
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lights tails, one has simply a quadratic equation for Gn and needs to show that the
error terms remain small as z approaches the real line. In the heavy-tailed case, the
equations are much more complicated, see (2.7) and (2.8), and therefore more diffi-
cult to handle. Similar questions are completely open for other heavy-tailed matrices,
including Bernoulli matrices with pn of order one.

3.4. Local fluctuations

When the average degree pn is large, one expects the eigenvalues to behave exactly as
the eigenvalues of a symmetric matrix with independent Gaussian entries (so-called
GOE matrices). The advantage of Gaussian matrices is that they are an integrable
model of random matrices in the sense that many of their properties can be exactly
computed. To start with, the joint distribution of its eigenvalues .�G

i /1�i�n is explicit:

dP .�G/ D
1

Z
�.�/e�

n
4

P
.�G

i
/2
Y

d�G
i ; (3.4)

where
�.�/ D

Y
i<j

j�i � �j j

is the Vandermonde determinant. In particular, this formula does not depend on the
eigenvectors. Based on this formula, Tracy and Widom could study the local fluctua-
tions of the spectrum .�G

i /1�i�n [66, 67] and they proved that

lim
n!1

P
�
n2=3.�G

1 � 2/ � s
�
D F1.s/;

where F1 is the distribution function of the Tracy–Widom law. For the eigenvalues in
the bulk, it was proved [55] that, for all smooth compactly supported function,

EGn
.O; E/ D E

�
O
�
n.�G

i � E/; : : : ; n.�G
iCp � E/

��
converges as n goes to infinity and the limit is described in terms of Pfaffian distribu-
tions.

The universality in the bulk was obtained after a series of works including notably
[41,42,62] and [39, Theorem 2.5] (for � � 2=3) and improved in [48] (for � > 0) to
finally get the following theorem.

Theorem 3.8 (Bulk universality). Suppose that pn > n� with � > 0. There exists bn

going to zero so that for all smooth compactly supported function O , any E 2 .�2;2/,

lim
n!1

Z ECbn

E�bn

dE 0

2bn

�
EGn

.O; E 0/ � EBn
.O; E 0/

�
D 0:

Moreover, the universality at the edge was obtained in [39, Theorem 2.7]; see also
[60].
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Figure 4.

Theorem 3.9 (Edge universality). Suppose that pn > n� , � > 2=3. Then there exists
ı > 0 such that

P
�
n2=3.�B

2 � 2/ � s
�
D P

�
n2=3.�G

2 � 2/ � s C O.n�ı/
�
C O.n�ı/:

This statement was generalized to pn > n1=3 but the largest eigenvalue then needs
to be shifted by a deterministic drift of order 1=pn [53]. Beyond this threshold, the
fluctuations of the second largest eigenvalue starts to be Gaussian.

When pn decreases below 1=3, it was proved that universality stops to hold
and fluctuations of the largest eigenvalue start to be Gaussian. The precise transi-
tion between Tracy–Widom law and Gaussian fluctuations when p is of order n�2=3

was described in [49]. When no.1/ � pn � n1=3, the papers [47, 49] show that the
fluctuations of the extreme eigenvalues are Gaussian, even if they stick to the bulk.
In the case where pn � ln n, Theorem 2.3 asserts that the eigenvalues go away from
the bulk, at distance of order

p
ln n. The corresponding eigenvectors are localized

close to the vertices with a high degree. In an even more recent preprint [5], the same
authors show that these eigenvalues follow a Poisson point process. Such questions
are open for Bernoulli random matrices with pn of order c 2 .0;C1/ and eigenval-
ues in the bulk. Indeed, as we have seen, the limiting density is a mixture of atoms
and continuous density and it is not yet clear how to zoom in the spectrum in such a
situation. However, such questions could be analyzed for Lévy matrices with ˛-stable
entries in the regime where local law can be obtained on the optimal scale n�1=2 [2].
Figure 4 depicts the expected regimes. In fact, one expects the following transition to
occur (see [63]).

� If ˛ 2 Œ1; 2�, all eigenvectors corresponding to finite eigenvalues are completely
delocalized. Further, for any E 2 R, the local statistics of the eigenvalues near E

converge to those of the GOE as N goes to infinity.

� If ˛ 2 .0; 1/, there exists a mobility edge E˛ such that for jEj < E˛ the local
statistics of the eigenvalues near E converge to those of the GOE as N goes to
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infinity. But if jEj > E˛ , the local statistics of the eigenvalues near E converge to
those of a Poisson point process and all eigenvectors in this region are localized.
The fact that local statistics are given by those of Gaussian matrices for ˛ 2 .1; 2/

or ˛ 2 .0; 1/ and E small enough, except for E in some finite set, was proved in
[2, Theorems 2.4 and 2.5].

3.5. Properties of the eigenvectors

The properties of the eigenvectors are intimately related with local laws. Indeed, by
definition of the eigenvectors, if v is an eigenvector of the symmetric matrix Xn for
the eigenvalue E and we set hv; ei i D vi , then X1 is the first column vector of Xn

while X.1/
n is the .n � 1/ � .n � 1/ principal minor of Xn obtained by removing the

column and row vector given by X1 and XT
1 :

v2
1 D

�
1 C

˝
X1; .E � X.1/

n /�2X1

˛��1
;

where, at least in the dense cases hX1; .E � X.1/
n /�2X1i is close to 1

n
Tr.E � Xn/�2,

and so is governed by the local law. In [40, Theorem 2.16], the following theorem
was proved.

Theorem 3.10 (Complete delocalization of eigenvectors). Assume the hypotheses of
Theorem 3.7 with pn > n� with � > 0. Let vi be the eigenvectors of Bn for the
eigenvalues �n � �n�1 � � � � �1. Then

max
i�n

kvik1 �
.ln n/4�

p
n

with �-high probability.

This result was extended to q going to infinity logarithmically only more recently
[3]. We roughly state their result:

� (Semilocalized phase) Assume that C
p

ln n ln ln n �
p

pn � 3 ln n and let w be a
normalized eigenvector of Bn with non-trivial eigenvalue E � 2 C C �1=2. We let
ƒ.˛/D ˛=

p
˛ � 1 and ˛x D

P
y Bxy=pn. We let WE;ı be the set of vertices such

that ƒ.˛x/ 2 ŒE � ı; E C ı�. Then for each x 2 WE;ı , there exists a normalized
vector v.x/ supported in a ball around x and radius c

p
ln n, such that the support

of v.cx/ and v.y/ is distinct if x ¤ y andX
x2WE;ı

˝
v.x/; w

˛2
� 1 � C

�
p

ln npn ln pn C
p

ln npn
1

E � 2

�2

ı�2:

Moreover, X
y2Br .x/

�
v.x/

�2
y
�

1

.˛x � 1/rC1
:
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� (Delocalized phase) For any � > 0 and � > 0, there exists a constant C > 0 such
that for pn 2 ŒC

p
ln n; .ln n/3=2�, if w is a normalized eigenvector for Bn with

eigenvalue E 2 Œ�2 C �;��� [ Œ�; 2 � ��,

kwk
2
1 � n�1C�

with probability greater than 1 � n�� .

This question is completely open for Bernoulli random matrices with pn of order one
but the understanding of Lévy matrices is again more complete. Based on [2, 26, 27],
we can assert that Tarquini, Biroli, and Tarzia’s conjecture [63] is partly proved.
Indeed the complete delocalization is proved for ˛ 2 .1; 2/ and ˛ 2 .0; 1/ and small
enough eigenvalues. A sort of localization for ˛ 2 .0; 1/ for large enough eigenvalue
was derived in [26], and was shown to be not true for small enough eigenvalues in
[27]: the transition and the value of the mobility edge is still an open question. In fact,
even in the case where the eigenvalue statistics belong to the universality class of
Gaussian matrices, the fine properties of the eigenvectors of Lévy matrices differ [1].
Let us also mention [57] which shows under quite general assumptions that eigenvec-
tors are somehow uniformly delocalized in the sense that any subset of at least eight
coordinates carries a non-negligible part of the mass of an eigenvector.

4. Rare events
It is sometimes important to estimate the probability of rare events, such as the prob-
ability that the extreme eigenvalues take unlikely values or the empirical measure of
the eigenvalues shows an unlikely profile, and what kind of optimal strategy can lead
to such deviations from the expected behavior. In the case of Gaussian symmetric
matrices, the joint density of the eigenvalues is known (3.4). One finds by sort of
Laplace’s principle [15, 16] the large deviations for the empirical measure and the
largest eigenvalue.

Theorem 4.1. Let �G
n � �G

2 � � � � �G
1 be the eigenvalues of a GOE matrix. Then, the

following holds.

� Let E.�/ D 1
2

’
.x2

4
C

y2

4
� ln jx � yj/ d�.x/d�.y/ and set E.�/ D E � inf E.

Then E is a good rate function and the distribution of the empirical measure of
the eigenvalues y�n D

1
n

P
ı�G

i
satisfies a large deviations principle (LDP) with

speed n2 with rate function 	 , that is for every closed set F

lim sup
n!1

1

n2
ln P .y�n 2 F / � � inf

F
E;

whereas for any open set O

lim sup
n!1

1

n2
ln P .y�n 2 O/ � � inf

O
E:
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� Let IG.x/ D 1
2

R x

2

p
4 � y2dy for x � 2 and IG.x/ D C1 for x < 2. Then I

is a good rate function and the distribution of �G
1 satisfies an LDP with speed n

and good rate function IG .

In this case, deviations of the spectrum can be created independently from the
eigenvectors which stay uniformly distributed. On the other hand, if the entries have
sharp exponential decay, large deviations can be created by large entries. Assume that
for some ˛ 2 .0; 2/, there exists a > 0 so that for all i; j

lim
t!1

2�1iDj t�˛ ln P
�
j
p

nXij j � t
�
D �a:

Theorem 4.2. � The law of the empirical measure satisfies an LDP in the speed
n1C˛

2 and good rate function which is infinite unless � D � � � and then equals
a
R
jxj˛d�.x/ [22].

� The law of the largest eigenvalue satisfies an LDP with rate n
˛
2 and GRF propor-

tional to .
R

.x � y/�1d�.y//�˛ [10].

However, the situation is much less understood for Bernoulli matrices and again
the sparse and the dense regimes lead to very different results and techniques. We
discuss these questions hereafter.

4.1. Large deviations for the extreme eigenvalues

Let us first consider the dense case. In [12, 43], we considered the large deviations
for the largest eigenvalue of Wigner matrices and showed that if the entries are
Rademacher, then the same large deviation principle holds, whereas in general there
is a transition between deviations close to two where the rate function is the Gaus-
sian one whereas for large deviations towards large enough values the rate function
is more of a heavy tail type. In a work in progress with F. Augeri, R. Ducatez and J.
Husson, we prove the following theorem.

Theorem 4.3. � Assume that p D 1=2. Then the law of �X
1 satisfies an LDP in the

scale n and with the same rate function IG as for the GOE matrix.

� Assume that p 2 .0; 1=2/. Then for x close enough to 2, the probability that �X
1

is close to x is the same as in the Gaussian case. But for x large enough,

lim sup
ı#0

lim sup
n!1

1

n
ln P

�
j�X

1 � xj < ı
�
D �Ip.x/;

where Ip.x/ < IG.x/.

The case p 2 .1=2; 1/ is under investigation. In fact, analyzing the large deviation
requires to understand good strategies to create the deviations. For p D 1=2, it is
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shown that an optimal strategy is to tilt the law of the entries in order to change their
expectation so that the matrix looks like a rank one deformation of Bernoulli matrix
with a delocalized deformation. The eigenvectors also stay delocalized through this
deformation. When p < 1=2 and x is large, it turns out that the optimal strategy is
to create fully connected components of size

p
n. For p > 1=2, the picture is less

clear and we suspect that vertices with high degree are optimal ways to create large
eigenvalues.

Let us now consider the sparse case following [21]: in this case we already saw
that large eigenvalues are created by vertices with large degree, namely with row or
column vectors with many entries equal to one.

Theorem 4.4. Let Lp D
ln n

ln ln n�ln.np/
and assume that

ln.1=np/ � ln n and np �
p

ln n= ln ln n:

Let �2 be the second largest eigenvalue of Bn. Then for any ı � 0,

lim
n!1

� ln P
�
�2 � .1 C ı/

p
Lp

�
ln n

D 2ı C ı2;

whereas

lim
n!1

� ln P
�
�2 � .1 � ı/

p
Lp

�
ln n

D 2ı � ı2:

4.2. Large deviations for the empirical measure

In [23, Theorem 1.6], a large deviation for the empirical measure of the eigenvalue in
the sparse case was derived: we do not make precise the rate function as it is obtained
by contraction from the large deviation for the empirical neighborhood distribution.

Theorem 4.5. Assume that pn is fixed. Then the law of y�n satisfies a large deviation
principle with speed n.

This question is still open when pn � 1. When p is of order one, we should
expect to have a large deviation with speed n2 according to the concentration of
measure, but the rate function should not be equal to the Gaussian one even when
p D 1=2 because the Dirac at the origin should have rate function bounded above by
ln p (whereas it is infinite in the Gaussian case).

4.3. Large deviations for triangle counts

The traces of Bernoulli matrices have a combinatorial interpretation. For instance,
Tr.B3

n/ is the number Tn;p of triangles in the Erdős–Rényi graph. Observe that its
expectation is of order p3n3. In the well-known paper [34, Theorem 4.1], the follow-
ing theorem was proved.
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Theorem 4.6. Let

Ip.f /D sup
�

²Z 1

0

Z 1

0

f .x;y/�.x;y/dx dy �
1

2

“
ln
�
pe2�.x;y/

C .1�p/
�
dx dy

³
and set '.p; t/ D2 ¹Ip.f /;

R
f .x; y/f .y; v/f .v; x/dxdydv � 6tº. Then for each

p 2 .0; 1/,

lim
n!1

1

n2
ln P .Tn;p � tn3/ D �'.p; t/:

This result extends to any moment Tr.Bk
n/. However, observe that it does not tell

us about deviations of the empirical measure since x ! xk is unbounded so that
deviations of the extreme eigenvalues matter. It is natural to wonder what happens as
well when p goes to zero. This question was attacked in [33,36,37], but we state here
[11, Proposition 1.19]

Theorem 4.7. Let p go to zero with n so that .ln n/4�np2. Set vnDn2p2 ln.1=p/.
Then for t � 1,

lim
n!1

1

vn

ln P
�

Tr.Bd
n / � tnd pd

�
D �ˆ.t/;

where ˆ.t/ D 1
2
.t � 1/2=d if n�1 � p � n�1=2, but ˆ.t/ D min¹�t ;

1
2
.t � 1/2=d º

if p � n�1=2 and �t is the solution of PCd
.�t / D t , where PCd

is the independence
polynomial of the d -cycle.

4.4. The singularity probability

A well-known problem has been to estimate the probability that a matrix zBn with all
independent Bernoulli entries (hence not self-adjoint) is singular. In a breakthrough
paper, Tikhomirov [64] (see also [54]) could exactly estimate it, by showing that the
best strategy to achieve singularity is to have a zero column or row vector.

Theorem 4.8. There exists a finite constant C such that if C ln n=n � p �
1
2

,

P .zBn is singular/ D
�
2 C on.1/

�
.1 � p/nn:

Such an optimal estimate is not yet known for the symmetric Bernoulli matrix Bn

(even though it is conjectured) but the paper [32] proves that the probability that it is
singular is bounded above by e�O.

p
n/. This was improved in an exponential upper

bound in [31].

5. Open problems

(1) Local law for Bernoulli matrices when pn is of order one. This could be at
best on the scale

p
n but is tricky even to state because of the atoms of the

limit law.
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(2) Localization/delocalization of the eigenvectors of Bernoulli matrices for pn

of order one (one would conjecture that Dirac masses yield localization but
the continuous part yields delocalization, however the right criteria to express
this remains to be given). Find a critical c� such that for np > c� there exists
delocalized vectors with connected support with high probability.

(3) Large deviations for the empirical measure of the eigenvalues of Bernoulli
matrices (all p so that pn � 1). Even when p D 1=2, one does not expect to
retrieve the Gaussian rate function since the entropy should be finite at ı0 (as
can be seen by requiring all entries to be equal).

(4) Precise estimate on the singularity probability in the symmetric case.

(5) In comparison, d -regular graphs which are picked uniformly at random are
conjectured to be in the universality class of Gaussian random matrices for
all d � 3. This was proved for d going to infinity fast enough [13, 14], and
recently Huang and Yau could get the local law and the delocalization of the
eigenvectors up to d D 3.
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random graph. European J. Combin. 32 (2011), no. 7, 1000–1017 Zbl 1230.05259
MR 2825532

[35] P. Cizeau and J. P. Bouchaud, Theory of Lévy matrices. Phys. Rev. E 50 (1994), no. 3,
1810–1822

[36] N. Cook and A. Dembo, Large deviations of subgraph counts for sparse Erdős–Rényi
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An introduction to the mathematics of deep learning

Gitta Kutyniok

Abstract. Despite the outstanding success of deep neural networks in real-world applications,
ranging from science to public life, most of the related research is empirically driven and a
comprehensive mathematical foundation is still missing. At the same time, these methods have
already shown their impressive potential in mathematical research areas such as imaging sci-
ences, inverse problems, or numerical analysis of partial differential equations, sometimes by
far outperforming classical mathematical approaches for particular problem classes.

The goal of this paper, which is based on a plenary lecture at the 8th European Congress
of Mathematics in 2021, is to first provide an introduction into this new vibrant research area.
We will then showcase some recent advances in two directions, namely the development of a
mathematical foundation of deep learning and the introduction of novel deep learning-based
approaches to solve inverse problems and partial differential equations.

1. Introduction

During the last years, deep neural networks have been key to spectacular successes in
diverse applications such as autonomous driving, medical diagnosis, speech recogni-
tion, and telecommunication. It is by now evident that deep learning and, in general,
artificial intelligence, will change in the future both public life and science in an
unprecedented way; and this future has already begun. As an example in the sciences,
Google’s DeepMind’s AlphaFold 2 has recently led to a breakthrough in highly accu-
rate prediction of protein structures [20].

A strongly increasing impact on mathematics itself can also be witnessed. The
field of inverse problems, predominantly in imaging science, was one of the first
areas in mathematics, which embraced these novel methodologies. This area, which
focusses on problems such as denoising, inpainting, super-resolution or computed
tomography, is particularly accessible to learning methods, since there does not exist
a precise model for what an image is. Almost all novel contributions, which improved

2020 Mathematics Subject Classification. Primary 68T07; Secondary 41A25, 42C15, 35C20,
65D18.
Keywords. Approximation theory, deep learning, inverse problems, parametric partial
different equations.
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the state of the art, employ such techniques. This, by now, already led to a change in
paradigm in this field. We will discuss further details in Section 4.1.

Besides inverse problems, another large area of mathematical problem settings
are partial differential equations. One can, in general, imagine using learning meth-
ods in solvers. It is, however, not immediately evident what the advantage of such an
approach would be. The ability of deep neural networks to beat the curse of dimen-
sionality then led to a change of paradigm in this area as well, and research at the
intersection of numerical analysis of partial differential equations and deep learning
accelerated since about 2017. Several milestones could already be celebrated as will
be presented in Section 4.2.

As bright as the deep learning future appears to be, one has to also be aware
of various major obstacles still waiting to be overcome. This was very prominently
stated during the plenary talk at the main conference in artificial intelligence and
machine learning, namely NIPS (today called NeurIPS) in 2017 on behalf of the Test-
of-Time Award, in which Ali Rahimi from Google claimed that “Machine learning
has become a form of alchemy”. And, indeed, as we will discuss later, a fundamen-
tal understanding of deep learning algorithms is still missing, posing a great—and
exciting—challenge to, in particular, mathematics.

This problem becomes even more severe when observing that in addition to a
lack of theoretical foundation, causing, for instance, a very time-consuming and deli-
cate training process, deep learning approaches also sometimes fail dramatically. One
example of such failures are so-called adversarial examples, when small changes in
the data lead to a radically different decision; a well-known problem in this regime
is the sensitivity of self-driving cars to minor adaptions of traffic signs such as the
placement of stickers. Another example is fairness, when biased training data causes
deep learning approaches to, for instance, reach racist decisions.

Summarizing, there is a tremendous need for mathematics in the area of deep
learning. One can identify two different research directions:

� Mathematics for deep learning. This direction aims for deriving a deep mathe-
matical understanding of deep learning and asks questions such as “How can we
make deep learning more robust?”

� Deep learning for mathematics. This direction focusses on mathematical problem
settings such as inverse problems and numerical analysis of partial differential
equations with the goal to employ deep learning techniques for superior solvers.

In this article, we will touch upon both research directions, showcasing some
novel results and pointing out key future challenges for mathematics. In Section 2,
we will first provide an introduction into deep learning from a mathematics view-
point. We will then delve deeper into the first direction, namely mathematics for deep
learning, and discuss the subarea of expressivity in more detail (Section 3). This will
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be followed in Section 4 by highlighting examples of the second direction, namely
deep learning for mathematics. Finally, Section 5 is devoted to future perspectives for
mathematics.

2. Deep neural networks

In 1943, McCulloch and Pitts had the vision to introduce artificial intelligence to the
world [28]. At that time, their idea was to develop an algorithmic approach to learn-
ing by mimicking the functionality of the human brain. Due to the structure of the
brain being composed of neurons with numerous interconnections, they introduced
so-called artificial neurons as building blocks. The structure of a neuron in the human
brain, in its most simple form, consists of dendrites through which signals are trans-
mitted to its soma, while being scaled/amplified due to the structural properties of the
respective dendrites. In the soma of the neuron, those incoming signals are accumu-
lated, and a decision is reached whether to fire to other neurons or not, and also with
which strength.

A mathematical definition of an artificial neuron is consequently defined as fol-
lows. In the sequel, we will build a neural network from such components with the
weights and biases being the free parameters, which need to be trained.

Definition 2.1. An artificial neuron with weights w1; : : : ; wn 2 R, bias b 2 R, and
activation function � W R ! R is defined as the function f W Rn ! R given by

f .x1; : : : ; xn/ D �

� nX
iD1

xiwi C b

�
D �

�
hx;wi C b

�
;

where w D .w1; : : : ; wn/ and x D .x1; : : : ; xn/.

Let us now take a look at some examples of activation functions.

Example 2.2. (1) Heaviside function

�.x/ D

´
1; x > 0;

0; x � 0:

(2) Sigmoid function �.x/ D 1
1Ce�x .

(3) Rectifiable Linear Unit (ReLU) �.x/ D max¹0; xº.

The most basic activation function is certainly the Heaviside function, leading to
a yes/no decision. The sigmoid function is a smooth alternative. But the by far most
extensively used activation function in basically all applications is the ReLU due to
its simple piecewise linear structure, which is advantageous in the training process,
and still allows superior performance.



G. Kutyniok 76

2.1. The mathematical definition

An (artificial feed-forward) neural network is then built by concatenating artificial
neurons to compositions of affine linear maps and activation functions. This leads to
the following definition.

Definition 2.3. Let d 2 N be the dimension of the input layer, let L be the number
of layers, let N0 WD d , N`, ` D 1; : : : ; L, be the dimensions of the hidden and last
layer, let � W R ! R be a (non-linear) activation function, and, for ` D 1; : : : ; L, let
T` be the affine-linear functions

T` W RN`�1 ! RN` ; T`x D W .`/x C b.`/;

with W .`/ 2 RN`�N`�1 being the weight matrices and b.`/ 2 RN` the bias vectors of
the `th layer. Then ˆ W Rd ! RNL given by

ˆ.x/ D TL�
�
TL�1�

�
: : : �

�
T1.x/

�
: : :

��
; x 2 Rd ;

is called (deep) neural network.

We would like to stress that in many papers a distinction is made between a neural
network and its realization, namely the function it realizes. The reason for this is that
different architectures can lead to the same function. For this article, we will, however,
avoid such technical delicacies.

2.2. Key research directions

Aiming to identify the key mathematical research directions in deep learning, let us
take a high-level view of the typical application of a deep neural network; exemplar-
ily we choose classification. One proceeds in the four—very coarsely explained—
following steps.

(1) We assume that we are given samples .xi ; f .xi //miD1 of a function such as
f W M ! ¹1; 2; : : : ; Kº, where M might be a lower-dimensional manifold
of Rd . This is a customarily assumed setting in image classification. We then
split this set into a training data set .xi ; f .xi // QmiD1, say, and a test data set
.xi ; f .xi //

m
iD QmC1

, say. The training data set is—as the name indicates—used
for training, and the test data set for testing the performance of the trained
network. Notice that the test data set stays hidden during the training process.

(2) Then an architecture of a deep neural network needs to be selected, i.e., a
choice of L, .N`/L`D1, and �. Sometimes selected entries of the weight matri-
ces .W .`//L

`D1
are already set to zero at this point if one does not intend to

train a fully connected neural network.
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(3) Next, the affine-linear functions .T`/L`D1 D .W .`/ � Cb.`//L
`D1

are learnt by
solving the optimization problem given by

min
.W .`/;b.`//`

QmX
iD1

L
�
ˆ.W .`/;b.`//`

.xi /; f .xi /
�
C �R

�
.W .`/; b.`//`

�
;

where L is a loss function to determine a measure of closeness between the
network evaluated in the training samples and the (known) function values
f .xi / and R is a regularization term to impose additional constraints on
the weight matrices and bias vectors. The optimization problem is typically
solved by stochastic gradient descent, yielding a network

ˆ.W .`/;b.`//`
W Rd ! RNL ;

where
ˆ.W .`/;b.`//`

.x/ D TL�
�
TL�1�

�
: : : �

�
T1.x/

�
: : :

��
:

(4) Finally, one employs the test data set to analyze whether

ˆ.W .`/;b.`//`
� f;

i.e., whether and to which extent the training process was successful.

It is in fact very surprising that this procedure works this well these days, which
has two main reasons: first, the drastic improvement of computing power allows the
training of networks with hundreds of layers in the sense of deep neural networks.
And, second, we are living in the age of data, hence vast amounts of training data is
available. This being the empirical explanation, a profound mathematical explanation
why, for instance, deep networks are superior to shallow ones or why the complex
training data does not lead to the phenomenon of overfitting is to a large extent still
missing.

2.2.1. Mathematics for deep learning. Based on these considerations, we can now
formulate the four key mathematical research directions, first for mathematics for
deep learning. We will each time also mention the main mathematical fields involved,
thereby showing that almost each area of mathematics is touched and required.

� Expressivity. This direction aims to understand whether and to which extent as-
pects of a neural network architecture affect the performance of deep learning.
Typically methods from applied harmonic analysis and approximation theory are
used.

� Learning. The goal here is to analyze the training procedure with a key question
being why the typically applied algorithm of stochastic gradient descent does
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Figure 1. Illustration of an explanation for the classification as a “black swan” using RDE.

converge to suitable local minima even though the problem itself is highly non-
convex. This direction relies on techniques from areas such as algebraic/differen-
tial geometry, optimal control, and optimization.

� Generalization. This research direction is the least explored and maybe also the
most difficult, sometimes called the “holy grail” of deep learning. It targets the
out-of-sample error and asks questions such as “Why is depth beneficial” or “Why
does high overparametrization not lead to overfitting?”. Required methods belong
in particular to the following areas: learning theory, probability theory, and statis-
tics.

Notice that these three research directions are precisely related to the three com-
ponents of the error of a statistical learning problem (cf. [4, (1.4) and Figure 1.2]),
namely the approximation error from the hypothesis class, the optimization error from
the algorithm itself, and the out-of-sample error.

Besides these more classical problem complexes, new directions have evolved.
One of the most exciting directions might be the following, which until now lacks
almost entirely a mathematical foundation.

� Explainability. Given a trained neural network, this area aims to analyze why
certain decisions were reached, and which components of the input data were
crucial for those. The range of required approaches is quite broad, including areas
such as information theory or uncertainty quantification.

In practice, this direction is invaluable, since one often encounters the situation
that a neural network is given and decisions have to be explained, for instance, to a
customer. In the imaging situation, typical explanations are relevance maps assigning
each pixel a relevance score for the decision such as layerwise-relevance propaga-
tion (LRP) [3] or rate-distortion explanation (RDE) [15]. For an example of such an
explanation, we refer to Figure 1.

However, from a mathematical standpoint, one truly aims for a mathematical def-
inition of the term “relevance” and an according theory of optimal relevance maps.
Ideally, one would also like to have explanations beyond the pixel-based setting and
for more challenging modalities. For a survey of some recent work in this direction,
we refer to [21].
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2.2.2. Deep learning for mathematics. As said before, the second main research
thread is deep learning for mathematics in the sense of deep learning for mathematical
problem settings. The two key research subfields are as follows.

� Inverse problems. The main goal is to improve classical model-based approaches
by deep learning techniques. Since it is often highly beneficial to not entirely
neglect domain knowledge such as the physics of the problem, one crucial ques-
tion is how to optimally combine deep learning with model-based approaches.
This direction relies on tools from imaging science, inverse problems, and mi-
crolocal analysis, to name a few.

� Partial differential equations. Research in this area targets foremost the ques-
tion of how and to which extent deep neural networks are able to beat the curse
of dimensionality. This direction obviously requires methods from areas such as
numerical mathematics and partial differential equations.

3. Mathematics for deep learning

Deep learning-based methodologies for inverse problems and partial differential
equations exploit deep neural networks as approximators. Thus, the first question
to ask is whether deep neural networks are at least as good as all previous mathemat-
ical methods. This question belongs in the realm of the previously introduced area
of expressivity, which will be the focus of this section, aiming to provide a (partial)
answer.

3.1. Revisiting classical approximation theory

We start by revisiting classical approximation theory, and, in the sequel, analyze
whether deep neural networks have at least similar approximation properties as clas-
sical methods.

In a nutshell, function approximation has the following goal. Given a class C �

L2.Rd / of interest—for later use it is sufficient for us to consider L2.Rd /—and
a representation system .'i /i2I � L2.Rd /, which can be an orthonormal basis or,
more generally, a frame, one aims to measure the suitability of .'i /i2I for uniformly
approximating functions from C . For a budget N , the approximating function has
then typically the form of a linear combination of N terms of the representation sys-
tem. This leads to the following definition.

Definition 3.1. The error of best N -term approximation of some f 2 C is given by

�N .f / WD inf
IN �I; #IN DN; .ci /i2IN




f �

X
i2IN

ci'i





2
:
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Figure 2. Illustration of a cartoon-like function.

The largest 
 > 0 such that

sup
f 2C

�N .f / D O.N�
 /; as N ! 1;

determines the optimal (sparse) approximation rate of C by .'i /i2I .

A closer look reveals that this viewpoint relates approximation accuracy to the
complexity of the approximating system in terms of sparsity.

Also for later use, we will now introduce one example of a class C and a repre-
sentation system .'i /i2I along with an analysis of its optimal (sparse) approximation
rate. The model class we will consider, called cartoon-like functions (see Figure 2),
was first introduced in imaging science [10], since the predominant features of images
are edge structures. Such anisotropic features also occur in other settings such as the
solution of transport dominated equations, leading to a model class with much larger
applicability.

Definition 3.2. The set of cartoon-like functions E2.R2/ is defined by

E2.R2/ WD
®
f 2 L2.R2/ W f D f0 C f1 � �B

¯
;

where ; ¤ B � Œ0; 1�2 is simply connected with a C 2-curve with bounded curvature
as its boundary, and fi 2 C 2.R2/ with supp fi � Œ0; 1�2 and kfikC2 � 1, i D 0; 1.

A lower bound for any optimal (sparse) approximation rate was derived in the
same article (i.e., [10]). We would like to remark that the purpose of the techni-
cal requirement of “polynomial depth search” in the following theorem is to avoid
degenerate cases of representation systems.

Theorem 3.3. Allowing only polynomial depth search, we have the following optimal
behavior for f 2 E2.R2/:

�N .f / � N�1; as N ! 1:

The well-known wavelet systems [9] do only provide a suboptimal rate of N� 1
2

due to the fact that they are isotropic multiscale systems in the sense of scaling in
both directions at a similar rate (cf. Figure 3).
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Figure 3. Schematic illustration of wavelet and shearlet approximation.

Various systems were suggested to provide optimal (sparse) approximations for
cartoon-like functions. The first successful systems were curvelets [7], which, how-
ever, did not allow faithful implementations. This could be achieved by so-called
shearlets, which were introduced in [26], see also the survey article [23]. For an illus-
tration of the benefit of anisotropic scaling, we refer to Figure 3.

Shearlet systems are associated with three parameters: scale j , position m, and
orientation k. For the precise definition, let A2j and zA2j , j 2 Z, denote the parabolic
scaling matrices given by

A2j WD

�
2j 0

0 2j=2

�
and zA2j WD diag.2j=2; 2j /, and let Sk , k 2 Z, be the shearing matrix given by

Sk WD

�
1 k

0 1

�
:

(Cone-adapted) discrete shearlet systems can then be defined as follows (cf. [24]).

Definition 3.4. The (cone-adapted) discrete shearlet system �H .�; ; z / generated
by � 2 L2.R2/ and  ; z 2 L2.R2/ is the union of®

�.� �m/ W m 2 Z2
¯
;®

23j=4 .SkA2j � �m/ W j � 0; jkj � d2j=2e; m 2 Z2
¯
;®

23j=4 z .STk
zA2j � �m/ W j � 0; jkj � d2j=2e; m 2 Z2

¯
:

We denote the associated shearlet transform by

SH.f / WD
�
hf; gi

�
g2�H.�; ; z /

; f 2 L2.R2/:

This system indeed satisfies the optimal (sparse) approximation rate for cartoon-
like functions up to a log-factor, which is often regarded as negligible. The following
statement is taken from [24], where also the precise hypotheses can be found.

Theorem 3.5. Let �;  ; z 2 L2.R2/ be compactly supported, and let y , yz satisfy
certain decay condition. Then �H .�; ; z / provides an optimally sparse approxima-
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tion of f 2 E2.R2/, i.e.,

�N .f / . N�1.logN/
3
2 ; as N ! 1:

Concluding our example for Definition 3.1, shearlet systems provide an (almost)
optimal (sparse) approximation rate of N�1 for the class C of cartoon-like functions.
For the interested reader, a faithful implementation of the shearlet transform as a
2D&3D (parallelized) fast shearlet transform can be found in www.ShearLab.org.

3.2. Universality of deep neural networks

Analyzing approximation problems for deep neural networks immediately bears the
question of how to replace the notion of complexity of the approximating term, which
was before measured in terms of sparsity. A typical approach for networks is a com-
plexity measure in terms of memory requirements. Recall that the k � k0-“norm”
counts the number of non-zero entries.

Definition 3.6. Retaining the same notation for deep neural networks as in Defini-
tion 2.3, the complexity C.ˆ/ of a deep neural network ˆ is defined by

C.ˆ/ WD

LX
`D1

�
kW .`/

k0 C kb.`/k0
�
:

We will also in the sequel use the notion N NL;C;d;� for the class of deep neural
networks with no more than L layers, complexity of at most C , input dimension d ,
and activation function �. If no bound is given, we indicate this by writing 1.

Thus, the key challenge is now to relate approximation accuracy to the complex-
ity of the approximating network in terms of memory efficiency. A very classical
result—and maybe the first main expressivity result from the time of the “first wave”
of neural networks—is the universal approximation theorem [8,17], which states that
each continuous function on a compact domain can be approximated up to an arbi-
trary accuracy by a shallow neural network.

Theorem 3.7. Let d 2 N, K � Rd compact, f W K ! R continuous, � W R ! R
continuous and not a polynomial. Then, for each " > 0, there existN 2N, ak; bk 2R,
and wk 2 Rd , 1 � k � N , such that



f �

NX
kD1

ak�
�
hwk; �i � bk

�




1

� ":

While this is certainly an interesting result, it is not satisfactory in terms of com-
plexity, since this can be arbitrary large.

www.ShearLab.org
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Aiming to derive an optimality result, we require a lower bound as a benchmark.
One example of such a statement was proven in [5] in terms of a so-called optimal
exponent 
�.C/ from information theory to measure the complexity of C � L2.Rd /.
We should stress that only the essence of this result is stated without all details.

Theorem 3.8. Let d 2 N, � W R ! R, and C � L2.Rd /. Further, let

Learn W .0; 1/ � C ! N N 1;1;d;�

satisfy that, for each f 2 C and 0 < " < 1,

sup
f 2C



f � Learn."; f /



2
� ":

Then, for all 
 < 
�.C/,

"
 sup
f 2C

C
�

Learn."; f /
�
! 1; as "! 0:

This now provides a conceptual lower bound independent of the learning algo-
rithm. It in fact allows not only to construct deep neural networks, which are memory-
optimal, but also to answer the question with which we started, namely whether deep
neural networks are at least as good as all previous mathematical methods. We will
affirm this for approximations by affine systems such as wavelets and shearlets.

One can now proceed as follows. Assume that we are given a specific function
class such as cartoon-like images, and an associated representation system with an
optimal approximation rate such as shearlets. Mimicking classical approximation
theory—more specifically best N -term approximations—by neural networks leads
to such memory-optimal neural networks, which at the same time perform at least as
good as the associated representation system from an approximation standpoint.

One example of a resulting theorem is taken from [5]. Notice that this is in fact the
optimal approximation rate (up to some "), implying that the bound in Theorem 3.8
is sharp.

Theorem 3.9. Let � be a suitably chosen activation function, and let " > 0. Then, for
all f 2 E2.R2/ and N 2 N, there exists ˆ 2 N N 3;O.N/;2;� with

kf �ˆk2 . N�1C"
! 0; as N ! 1:

Thus, one can conclude that deep neural networks achieve optimal approximation
properties of all affine systems combined. Intriguingly, training the network architec-
ture of the proof, the neural network does even learn approximations of classical
affine systems such as shearlets; for more details see [5].
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4. Deep learning for mathematics

Having established that deep neural networks are at least as good as various classical
approximation methods, we will continue our journey in the deep learning world and
next ask whether deep learning methods are even better than classical approaches. For
this, we will now enter the area of deep learning for mathematics and turn towards
the setting of inverse problems.

4.1. Inverse problems meet deep learning

We start by recalling a general classical approach to solve inverse problems. We will
later discuss how to best combine it with deep learning in specific problem settings
in the sense of taking the best out of the model- and data-world.

Assume that we are given an (ill-posed) inverse problem

Kf D g; where K W X ! Y;

where X and Y are Hilbert spaces, say. In its most classical form in imaging science,
K could be an operator which adds noise to an image, leading to a denoising prob-
lem. Sparse regularization is a conceptually general approach for recovering f from
knowledge of g and K, see also [18]. It computes an approximate solution f ˛ 2 X ,
˛ > 0, by solving

f ˛ WD argmin
f

h
kKf � gk2„ ƒ‚ …
data fidelity term

C˛ �


�hf; 'i i�i2I

1„ ƒ‚ …

penalty term

i
;

where .'i /i2I is a suitably selected—in the sense of providing sparse approximations
of f —orthonormal basis or frame for X .

One class of approaches for combining deep learning with solvers such as sparse
regularization are supervised approaches, which in their most direct form first apply
the solver followed by the neural network [19]. A bit more sophisticated are ap-
proaches which replace certain procedures in the solver—such as a denoising part—
by a deep neural network in the sense of plug-and-play [31] or using a specifically
trained network [1]. Semi-supervised approaches aim to encode the regularization as
a neural network (see, e.g., [27]), whereas deep image prior [32] are one example of
what one might coin unsupervised approaches.

We will now focus on one specific inverse problem from imaging science and
discuss one exemplary approach in more detail. This approach follows the philosophy
to apply the model-based solver as far as it is reliable and only complement it by a
deep neural network where necessary. The problem we aim to study is the inverse
problem of (limited angle-) computed tomography.
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A CT scanner samples the Radon transform, which is defined by

Rf .s; �/ D

Z 1

�1

f
�
s!.�/C t!.�/?

�
dt; for .s; �/ 2 R � .0; �/:

Here !.�/ WD .cos �; sin �/ is the unitary vector with orientation described by the
angle � with respect to the x1-axis and !.�/? WD .� sin �; cos �/.

The problem of inverting the Radon transform becomes even harder if Rf .s; �/ is
only sampled on a proper subset Œ��; �� of .0; �/, which is the case in, for instance,
electron tomography. In the sequel, we will refer to the respective Radon transform
by R� . Classical solvers fail in this case due to the fact that a large connected region
of the measurements is missing, while also being too complex for accurate modeling.

The key problem can in fact be regarded as recovering parts of the wavefront
set of the original image, where—coarsely speaking—a wavefront set is the set of
singularities of a distribution together with their directions; for a precise definition we
refer to [16]. Since shearlets resolve the wavefront set [22], the following approach
was suggested in [6], following the previously described philosophy:

� Step 1: Reconstruct the visible.
Compute

f �
WD argmin

f�0

kR�f � gk22 C


SH.f /




1;w
:

We then split the set of parameters .j;m;k/ of shearlets into a visible set 	vis and
an invisible set 	inv related to whether they are associated with shearlets within
a range of acquired data or not, leading to the following cases:

˘ for .j;m; k/ 2 	inv, SH.f �/.j;m;k/ � 0;

˘ for .j;m; k/ 2 	vis, SH.f �/.j;m;k/ is reliable and near perfect.

� Step 2: Learn the invisible.
Train a neural network (U-net) ˆ to compute

ˆ W SH.f �/	vis 7! F;

where F is an approximation of SH.fgt/	inv and fgt the ground truth image.

� Step 3: Combine.
Finally, compute

fLtI D SHT
�

SH.f �/	vis C F
�
:

The numerical experiments in Figure 4 indicate the superiority of deep learning
approaches in general and even more a careful combination of classical solvers with
deep neural networks to pure model-based approaches.

This answers the question whether deep neural networks can perform even better
than classical methods to the affirmative. We include with Figure 5 one additional
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Original

Filtered backprojection Sparse regularization with shearlets

Neural network [13] Learn the invisible (LtI)

Figure 4. Illustration of the superiority of combined model-deep learning approaches.

Original SEAL [33]

CoShREM [30] DeNSE [2]

Figure 5. Illustration of another combined model-deep learning approach [2] in relation to pure
model-based methods [30, 33].
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example, which follows the same philosophy for the edge detection problem [2].
Without going into the details, this approach first uses shearlets as a coarse edge
detector, followed by a deep neural network applied in shearlet domain.

4.2. Deep learning-based solvers for partial differential equations

Finally, we will provide a glimpse into the effectiveness of deep neural networks for
solving partial differential equations, and provide an answer to the question of why
one should use deep learning for solving partial differential equations at all.

Given a partial differential equation L.u/ D f , a common approach to solve this
equation using a neural networkˆ is to approximate the solution u byˆ, i.e., to train
ˆ such that

L.ˆ/ � f:

This requires to incorporate the partial differential equation into the loss function.
Some of the key approaches in this realm are the Deep Ritz Method [11], the so-
called physics-informed neural networks [29], or using a backwards stochastic partial
differential equation reformulation [14].

We will now focus on a more general setting, namely parametric partial differen-
tial equations, which in fact arise in basically any branch of science and engineering
such as in complex design problems or uncertainty quantification tasks. Let us now
assume that we are given a parametric partial differential equation, L.uy ; y/ D fy
with y being a parameter from a parameter space Y � Rp and uy the associated
solution in a Hilbert space H . Since in applications one typically faces a multi-query
situation, the so-called parametric map, given by

Y3y 7!uy 2H such that L.uy ; y/Dfy ;

needs to be solved several times. If p is very large, the curse of dimensionality could
lead to an exponential computational cost.

It seems natural to ask whether deep neural networks can be of benefit in this
situation in the sense of whether a network can approximate the parametric map lead-
ing to a flexible, universal approach which is hopefully not affected by the curse of
dimensionality. For this, we first need to bring the problem into a finite-dimensional
domain, which is done by a high-fidelity discretization, leading to the problem

Rp � Y 3 y 7! uh
y 2 RD such that by.u

h
y ; v/ D fy.v/ for all v

with by.uhy ; v/ D fy.v/ being the associated variational form and uh
y being the coef-

ficient vector of uhy with respect to a suitable basis. We can now ask the following
questions.
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� Given " > 0, does there exist a neural network ˆ such that

ˆ.y/ � uh
y



 � "; for all y 2 Y;

and how does the complexity of ˆ depend on p and D?

� How do neural networks perform numerically on this task?

The first question falls in the category of expressivity and would need to be comple-
mented by an analysis of the learning procedure as well as the generalization error, as
discussed in Section 2.2.1. Mathematical answers to those two questions are however
at this point still out of reach, leaving only numerical experiments as an alternative.

The first question was indeed solved by explicitly constructing an associated deep
neural network, while carefully monitoring its complexity. We state the result from
[25] in a high level form.

Theorem 4.1. There exists a neural network ˆ which approximates the parametric
map, i.e., 

ˆ.y/ � uh

y



 � "; for all y 2 Y;

and the dependence of C.ˆ/ on p and D can be (polynomially) controlled.

With an extensive set-up of numerical experiments such as fixing a specific neural
network architecture and the training procedure, it could then be shown in [12] that
the numerical performance of deep neural networks for this task does also not suffer
from the curse of dimensionality.

5. Conclusions

Deep learning shows impressive performance in real-world applications. However, a
theoretical foundation is largely missing. Developing such a foundation requires var-
ious areas of mathematics as well as the development of new mathematics. The two
main research areas are mathematics for deep learning with its subfields expressivity,
learning, generalization, and explainability, and deep learning for mathematics aim-
ing to apply deep learning to solve inverse problems and partial differential equations.

Let us conclude with seven mathematical key problems of deep learning as they
were stated in [4]:

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of deep
learning?

(3) Why does stochastic gradient descent converge to good local minima despite
the non-convexity of the problem?

(4) Why do large neural networks not overfit?
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(5) Why do neural networks perform well in very high-dimensional environ-
ments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences?

It is thus fair to say that there are exciting future perspectives for mathematics.
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Geometric valuation theory

Monika Ludwig

Abstract. A brief introduction to geometric valuation theory is given. The focus is on classifi-
cation results for valuations on convex bodies and on function spaces.

1. Introduction

Measurement is part of the literal meaning of geometry and geometric valuation
theory deals with measurement in the following sense. We want to associate to a
geometric object a real number (or, more generally, an element of an abelian semi-
group A). For example, we can associate to a sufficiently regular subset of Rn its
n-dimensional volume or the .n � 1/-dimensional measure of its boundary. Let � be
a class of subsets of Rn. We call a function Z W � ! A a valuation if

Z.K/ C Z.L/ D Z.K [ L/ C Z.K \ L/

for all K; L 2 � with K \ L, K [ L 2 � (and we set Z.;/ WD 0). Thus, the valuation
property is just the inclusion-exclusion principle applied to two sets. In particular,
measures on Rn when restricted to elements of � are valuations but there are many
additional interesting valuations.

In his Third Problem, Hilbert asked whether an elementary definition of volume
on polytopes is possible. In 1900, it was known that it is possible on R2 but the
question was open in higher dimensions. Let P n be the set of convex polytopes in Rn

and call Z W P n ! R simple if Z.P / D 0 for all lower dimensional polytopes. Using
our terminology, Hilbert’s Third Problem turns out to be equivalent to the question
whether every simple, rigid motion invariant valuation Z W P n ! R is a multiple
of n-dimensional volume for n � 3. Dehn [46] solved Hilbert’s Third Problem by
constructing a simple, rigid motion invariant valuation that is not a multiple of volume
and thereby showed that an elementary definition of volume is not possible for n � 3.

Blaschke [30] took the important next step by asking for classification results
for invariant valuations on P n and on the space of convex bodies, Kn, that is, of
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non-empty, compact, convex sets in Rn. For a class � of subsets of Rn, we say that a
function Z W � ! A is G invariant for a group G acting on Rn if Z.�K/ D Z.K/ for
all � 2 G and K 2 � . Blaschke’s question is motivated by Klein’s Erlangen Program.
We will describe some of the results that were obtained in this direction, in particular,
focusing on the special linear group, SL.n/, and the group of (orientation preserving)
rotations, SO.n/. Often additional regularity assumptions are required and for A, a
topological semigroup, we consider continuous and upper semicontinuous valuations,
where the topology on Kn and its subspaces is induced by the Hausdorff metric.

In addition to classification results and their applications, structural results for
spaces of valuations have attracted a lot of attention in recent years. We refer to the
books and surveys [14,17,21]. Valuations were also considered on various additional
spaces, in particular, on manifolds (see [12]). We will restrict our attention to sub-
spaces of Kn and to recent results on valuations on spaces of real valued functions.
On a space X of (extended) real valued functions, a function Z W X ! A is called a
valuation if

Z.u/ C Z.v/ D Z.u _ v/ C Z.u ^ v/

for all u; v 2 X such that also their pointwise maximum u _ v and pointwise mini-
mum u ^ v belong to X . Since spaces of convex bodies can be embedded in various
function spaces in such a way that union and intersection of convex bodies corre-
spond to pointwise minimum and maximum of functions, this notion generalizes the
classical notion.

2. Affine valuations on convex bodies

The first classification result in geometric valuation theory is due to Blaschke. He
worked on polytopes and aimed at a complete classification of rigid motion invariant
valuations. However, at a certain step, he had to assume also SL.n/ invariance and
established the following result (and the corresponding result on polytopes).

Theorem 2.1 (Blaschke [30]). A functional Z W Kn ! R is a continuous, translation
and SL.n/ invariant valuation if and only if there are c0; cn 2 R such that

Z.K/ D c0V0.K/ C cnVn.K/

for every K 2 Kn.

Here, V0.K/ WD 1 is the Euler characteristic of K and Vn.K/ is its n-dimensional
volume. It has become customary to refer to results that involve invariance (or covari-
ance) with respect to SL.n/ as affine results and the title of this section is to be
understood in this sense.
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We will first describe results for affine valuations on polytopes and then on gen-
eral convex bodies. While on P n a complete classification of SL.n/ invariant val-
uations has been established, we require additional regularity assumptions on Kn.
Such assumptions are also used on important subspaces of P n and Kn. We will also
describe results for affine valuations with values in tensor spaces, spaces of convex
bodies, and related spaces.

2.1. SL.n/ invariant valuations on convex polytopes

We call a function � W Œ0;1/ ! R a Cauchy function if

�.x C y/ D �.x/ C �.y/

for every x; y 2 Œ0;1/. Cauchy functions are well understood and can be completely
described (if we assume the axiom of choice) by their values on a Hamel basis.

The following result gives a complete classification of translation and SL.n/

invariant valuations on polytopes and is closely related to Theorem 2.1.

Theorem 2.2 ([94]). A functional Z W P n ! R is a translation and SL.n/ invariant
valuation if and only if there are c0 2 R and a Cauchy function � W Œ0;1/ ! R such
that

Z.P / D c0V0.P / C �
�
Vn.P /

�
for every P 2 P n.

Even without translation invariance, a complete classification can be obtained (see
[94]). We state the case when the valuation is in addition continuous. We write Œ0; P �

for the convex hull of the origin and P 2 P n.

Theorem 2.3 ([94]). A functional Z W P n ! R is a continuous and SL.n/ invariant
valuation if and only if there are c0; cn; dn 2 R such that

Z.P / D c0V0.P / C cnVn.P / C dnVn

�
Œ0; P �

�
for every P 2 P n.

Corresponding results are known on the space, P n
0 , of polytopes containing the

origin (see [94]).
Let P n

.0/
be the space of convex polytopes in Rn that contain the origin in their

interiors. Here, we have additional interesting valuations connected to polarity. For
K 2 Kn, define its polar by

K�
WD

®
y 2 Rn

W hx; yi � 1 for all x 2 K
¯
;
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where hx; yi is the inner product of x; y 2 Rn. If P 2 P n
.0/

, then P � 2 P n
.0/

. Hence,
setting

V �
n .P / WD Vn.P �/;

we obtain a finite valued functional on P n
.0/

and it follows easily from properties of
polarity that it is a valuation.

Valuations on P n
.0/

were first considered in [84], where a classification of Borel
measurable, SL.n/ invariant, and homogeneous valuations was established. Here, we
say that Z W P n

.0/
! R is homogeneous if there is q 2 R such that

Z.tP / D tq Z.P /

for every P 2 P n
.0/

and t > 0. We say that Z is Borel measurable if the pre-image
of every open set is a Borel set. We use corresponding notions on Kn and related
spaces.

The results from [84] were strengthened by Haberl and Parapatits.

Theorem 2.4 (Haberl and Parapatits [55, 57]). A functional Z W P n
.0/

! R is a Borel
measurable and SL.n/ invariant valuation if and only if there are c0; cn; c�n 2 R
such that

Z.P / D c0V0.P / C cnVn.P / C c�nV �
n .P /

for every P 2 P n
.0/

.

The regularity assumption is again required to exclude discontinuous solutions
of the Cauchy functional equation. It is an open problem to establish a complete
classification without such assumption.

We remark that lattice polytopes, that is, convex polytopes with vertices in the
integer lattice Zn, are important in many fields and subjects. The Betke–Kneser the-
orem [28] gives a complete classification of valuations on this class that are invariant
with respect to translations by integer vectors and by so-called unimodular transfor-
mations (which can be described by matrices with integer coefficients and determi-
nant ˙1). For more information on valuations on lattice polytopes, see [32].

2.2. Affine surface areas

For K 2 Kn, the affine surface area of K is defined by

�.K/ WD

Z
@K

�.K; x/
1

nC1 dx; (2.1)

where �.K; x/ is the generalized Gaussian curvature of @K at x and integration is
with respect to the .n � 1/-dimensional Hausdorff measure. For smooth convex sur-
faces, this definition is classical (see [29]). It is also classical that � is translation and
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SL.n/ invariant for smooth surfaces. The extension of the definition of affine surface
area to general convex bodies was obtained more recently in a series of papers by
Leichtweiß [73], Lutwak [98], and Schütt and Werner [126]. There it is also proved
that � is translation and SL.n/ invariant on Kn. The notion of affine surface area is
fundamental in affine differential geometry. Moreover, since many basic problems in
discrete and stochastic geometry are translation and SL.n/ invariant, affine surface
area has found numerous applications in these fields (see [47, 50]). It follows easily
from (2.1) that � vanishes on polytopes and therefore is not continuous. The long
conjectured upper semicontinuity of affine surface area (for smooth surfaces as well
as for general convex surfaces) was proved by Lutwak [98]. For a proof that � is a
valuation, see [125].

The following result gives a classification of upper semicontinuous, translation
and SL.n/ invariant valuations and represents a strengthening of Theorem 2.1. It pro-
vides a characterization of affine surface area.

Theorem 2.5 ([92]). A functional Z W Kn ! R is an upper semicontinuous, trans-
lation and SL.n/ invariant valuation if and only if there are c0; cn 2 R and c � 0

such that
Z.K/ D c0V0.K/ C cnVn.K/ C c�.K/

for every K 2 Kn.

For n D 2, this result was proved in [80], where also applications to asymptotic
approximation by polytopes were obtained.

A complete classification of translation and SL.n/ invariant valuations on Kn

appears to be out of reach. Already a weakening of upper semicontinuity to, say,
Baire-one (that is, a pointwise limit of continuous functionals) would be interesting
and would have applications in discrete and stochastic geometry.

Let Kn
.0/

be the space of convex bodies in Rn containing the origin in their interi-
ors. For such a convex body with smooth boundary, the centro-affine surface area is
a classical notion that can be defined by

�n.K/ WD

Z
@K

�0.K; x/
1
2 dVK.x/;

where dVK.x/ WD hx; uK.x/i dx with uK.x/ the outer unit normal vector to K at x

is (up to a constant) the cone measure on @K and

�0.K; x/ WD
�.K; x/˝

x; uK.x/
˛nC1

:

It is classical that �n is GL.n/ invariant. Lutwak [100] extended this notion to general
convex bodies in Kn

.0/
and showed that �n is upper semicontinuous.
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The following result gives a complete classification of upper semicontinuous and
GL.n/ invariant valuations on Kn

.0/
and provides a characterization of centro-affine

surface area.

Theorem 2.6 ([93]). A functional Z W Kn
.0/

! R is an upper semicontinuous and
GL.n/ invariant valuation if and only if there are c0 2 R and c � 0 such that

Z.K/ D c0V0.K/ C c�n.K/

for every K 2 Kn
.0/

.

Lutwak [100] defined the so-called Lp-affine surface areas which were charac-
terized in [93] as upper semicontinuous, SL.n/ invariant, homogeneous valuations.

A more general notion, now called Orlicz affine surface area, was introduced in
[93]. Let

ConcŒ0;1/ WD

²
� W Œ0;1/ ! Œ0;1/ W � concave; lim

t!0
�.t/ D lim

t!1

�.t/

t
D 0

³
:

The following result gives a classification of upper semicontinuous, SL.n/ invariant
valuations on Kn

.0/
and provides a characterization of Orlicz affine surface areas.

Theorem 2.7 ([55, 93]). A functional ZWKn
.0/

! R is an upper semicontinuous and
SL.n/ invariant valuation if and only if there are c0; cn; c�n 2 R and � 2 ConcŒ0;1/

such that

Z.K/ D c0V0.K/ C cnVn.K/ C c�nV �
n .K/ C

Z
@K

�
�
�0.K; x/

�
dVK.x/

for every K 2 Kn
.0/

.

Here, the classification of upper semicontinuous, SL.n/ invariant valuations van-
ishing on polytopes from [93] is combined with Theorem 2.4 by Haberl and Parap-
atits.

2.3. Vector and tensor valuations

We say that Z W P n ! Rn is SL.n/ equivariant if

Z.�P / D � Z.P /

for all �2SL.n/ and P 2P n. We use corresponding definitions for subspaces of P n.
The study of SL.n/ equivariant vector valuations on convex polytopes contain-

ing the origin in their interiors was started in [82], where a classification of Borel
measurable, SL.n/ equivariant, homogeneous valuations was established. Haberl and
Parapatits strengthened this result and obtained the following complete classification,
which we state for n � 3.
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Theorem 2.8 (Haberl and Parapatits [57, 58]). A function Z W P n
.0/

! Rn is a Borel
measurable and SL.n/ equivariant valuation if and only if there is c 2 R such that

Z.P / D cm.P /

for every P 2 P n
.0/

.

Here, for P 2 P n, the moment vector m.P / is defined by m.P / WD
R

P
x dx.

Zeng and Ma showed that it is possible to obtain a complete classification of
vector valuations on convex polytopes without any regularity assumptions. We state
their result for n � 3.

Theorem 2.9 (Zeng and Ma [137]). A function Z W P n ! Rn is an SL.n/ equivariant
valuation if and only if there are c; d 2 R such that

Z.P / D cm.P / C dm
�
Œ0; P �

�
for every P 2 P n.

In the same paper, a complete classification result is also established for n D 2.
The obtained valuations depend on Cauchy functions.

Also higher rank tensor valuations are important in the geometry of convex bod-
ies. In particular, the moment matrix M 2;0.K/ of a convex body K is a most valuable
tool through its connection to the Legendre ellipsoid and the notion of isotropic posi-
tion. In a certain way dual is the so-called LYZ ellipsoid, which was introduced
by Lutwak, Yang, and Zhang [102, 103]. Associated to this ellipsoid is the LYZ
matrix, which was characterized as a matrix valuation on convex polytopes contain-
ing the origin in [85]. The LYZ matrix corresponds to the Fisher information matrix
[89, 102, 103] important in statistics and information theory.

Haberl and Parapatits [58] extended the result from [85] to general symmetric
tensor valuations. For p � 1, let T p.Rn/ denote the space of symmetric p-tensors
on Rn. We identify Rn with its dual space and regard each symmetric p-tensor as a
symmetric p-linear functional on .Rn/p . We say that Z W P n

.0/
! T p.Rn/ is SL.n/

equivariant if

Z.�P /.y1; : : : ; yp/ D Z.P /.��1y1; : : : ; ��1yp/

for all y1; : : : ; yp 2 Rn, all � 2 SL.n/, and all P 2 P n
.0/

. We state the result by Haberl
and Parapatits for n � 3 and p � 2.

Theorem 2.10 (Haberl and Parapatits [58]). A function Z WP n
.0/

!T p.Rn/ is a Borel
measurable, SL.n/ equivariant valuation if and only if there are c; d 2 R such that

Z.P / D cM p;0.P / C dM 0;p.P �/

for every P 2 P n
.0/

.
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Here, the pth moment tensor of a convex polytope P 2 P n
.0/

is defined by

M p;0.P / WD
1

pŠ

Z
P

xp dx; (2.2)

where xp is the p-fold symmetric tensor product of x 2 Rn and the pth LYZ tensor
is

M 0;p.P / WD

Z
Sn�1

yp dSn�1;p.P; y/;

where Sn�1;p.P; �/ is the Lp surface area measure of P , which is a central notion in
the Lp Brunn–Minkowski theory (see [99, 100]).

For classifications of matrix valuation on P n without regularity assumptions, see
[108,109], and for tensor valuations on lattice polytopes, see [95]. Continuous tensor
valuations on complex vector spaces are classified in [4].

2.4. Convex body valued valuations and related notions

Affinely associated convex bodies play an important role in convex geometry (see
[122, Chapter 10]). We have already mentioned the Legendre and the LYZ ellipsoid
and describe here results on valuations Z W Kn ! Kn, where we choose suitable
additions on Kn. The most classical choice is the Minkowski addition, where for
K; L 2 Kn,

K C L WD ¹x C y W x 2 K; y 2 Lº;

and such valuations are called Minkowski valuations.
The first classification result for Minkowski valuations was obtained in [83] and

strengthened in [86]. It provides a characterization of projection bodies, a notion that
was introduced by Minkowski.

Theorem 2.11 ([86]). An operator Z W P n ! Kn is a translation invariant, SL.n/

contravariant Minkowski valuation if and only if there is c � 0 such that

Z P D c…P

for every P 2 P n.

Here, we describe convex bodies by their support functions, where for K 2 Kn,
the support function h.K; �/ W Rn ! R is given by

h.K; y/ WD max
®
hx; yi W x 2 K

¯
:

The support function is homogeneous of degree 1 and convex and any such function
is the support function of a convex body. For K 2 Kn, the projection body of K is
defined by

h.…K; y/ WD Vn�1.Kjy?/
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for y 2 Sn�1, where y? is the hyperplane orthogonal to y and Kjy? denotes the
image of the orthogonal projection of K onto y?. We say that Z W P n ! Kn is
SL.n/ contravariant if

Z.�P / D ��t Z P

for all � 2 SL.n/ and P 2 P n, where ��t is the inverse of the transpose of �. For
more information on projection bodies and their many applications, see [48, 122].

We say that Z W P n ! Kn is SL.n/ equivariant if

Z.�P / D � Z P

for all � 2 SL.n/ and P 2 P n. The following result establishes a classification SL.n/

equivariant valuations.

Theorem 2.12 ([86]). An operator Z W P n ! Kn is a translation invariant, SL.n/

equivariant Minkowski valuation if and only if there is c � 0 such that

Z P D c D P

for every P 2 P n.

Here, the operator P 7! D P WD ¹x � y W x; y 2 P º assigns to P its difference
body (see [48, 122]).

A classification of SL.n/ equivariant, homogeneous Minkowski valuations on the
space, Kn

0 , of convex bodies containing the origin was obtained in [86]. The result
was strengthened by Haberl [53], who was able to drop the assumption of homogene-
ity. Let n � 3.

Theorem 2.13 (Haberl [53]). An operator Z W Kn
0 ! Kn is a continuous, SL.n/

equivariant Minkowski valuation if and only if there are c0 2 R and c1; c2; c3 � 0

such that
Z K D c0m.K/ C c1K C c2.�K/ C c3 M K

for every K 2 Kn
0 .

Here, the moment body, M K, of K is defined by

h.M K; y/ WD

Z
K

ˇ̌
hx; yi

ˇ̌
dx

for y 2 Rn. When divided by the volume of K, the moment body of K is called its
centroid body and is a classical and important notion going back to at least Dupin (see
[48,122]). Results corresponding to Theorem 2.13 for SL.n/ contravariant Minkowski
valuations were obtained in [53,86]. On the space, P n

0 , of convex polytopes contain-
ing the origin, classification results for SL.n/ contravariant Minkowski valuations
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were established in [53, 86] without assuming continuity and additional operators
appear. For the SL.n/ equivariant case, such results were established in [76].

We remark that the results from Theorem 2.13 and the corresponding results in the
SL.n/ equivariant case were complemented in [124, 135] by classification results for
continuous, homogeneous Minkowski valuations on Kn. A complete classification
for SL.n/ equivariant Minkowski valuations on P n

0 was established in [53]. On the
space of convex bodies that contain the origin in their interiors, moment bodies allow
to define SL.n/ equivariant Minkowski valuations using polarity. For continuous,
SL.n/ equivariant, homogeneous valuations, a complete classification on this space
was established in [88]. For Minkowski valuations on lattice polytopes, see [33].

Classification results for Minkowski valuations on complex vector spaces were
established by Abardia and Bernig [1–3]. They introduce and characterize complex
projection and difference bodies.

An important extension of the classical Brunn–Minkowski theory is the more
recent Lp Brunn–Minkowski theory (see [99,100]). For p > 1, the Lp sum of convex
bodies K; L 2 Kn

0 is defined by

hp.K Cp L; y/ WD hp.K; y/ C hp.L; y/

for y2Rn. An Lp Minkowski valuation Z WKn!Kn
0 is a valuation where on Kn

0 this
addition is chosen. Classification results were obtained in [76,86,117,118] and led to
the definition of asymmetric Lp projection and moment bodies (see [86]). Inequalities
for these new classes of operators were established by Haberl and Schuster [59]. They
generalize the Lp Petty projection and the Lp Busemann–Petty moment inequalities,
which were established by Lutwak, Yang, and Zhang [101], and were, in turn, gener-
alized within the Orlicz–Brunn–Minkowski inequality by Lutwak, Yang, and Zhang
[105, 106]. For information on valuations in this setting, see [77].

A classical notion of addition on full dimensional convex bodies in Rn is Blaschke
addition, which is defined using the sum of surface area measures of convex bodies
and the solution of the classical Minkowski problem. The so-called Blaschke valua-
tions were classified in [52]. For information on the corresponding question within
the Lp Brunn–Minkowski theory, see [79].

The dual Brunn–Minkowski theory, established by Lutwak [96], is, in a certain
way, dual to the classical theory. Star bodies replace convex bodies and radial addi-
tion (defined by the addition of radial functions) corresponds to Minkowski addition.
Intersection bodies in the dual Brunn–Minkowski theory correspond to projection
bodies in the classical theory. Intersection bodies were critical in the solution of the
Busemann–Petty problem [97,139]. A classification of radial valuations and a charac-
terization of the intersection body operator was established in [87]. Replacing radial
addition by Lp radial addition leads to Lp radial valuations (see [51, 54] for classifi-
cation results).
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Since convex bodies can be described by support functions and star bodies by
radial functions, a natural extension of the results described above is a classification
of valuations Z W Kn ! F.Rn/, where F.Rn/ is a suitable space of functions on Rn.
Such results were obtained by Li [74, 75] and by Li and Ma [78], where a charac-
terization of the Laplace transform on convex bodies is established. Another way to
describe convex bodies is by suitable measures and a classification of measure valued
valuations was obtained by Haberl and Parapatits [56], where characterization results
of surface area measures and of Lp surface area measures were established.

3. The Hadwiger theorem on convex bodies
The classical Steiner formula states that the volume of the outer parallel set of a
convex body at distance r > 0 can be expressed as a polynomial in r of degree at
most n. Using that the outer parallel set of K 2 Kn at distance r > 0 is just the
Minkowski sum of K and rBn (the ball of radius r), we get

Vn.K C rBn/ D

nX
jD0

rn�j �n�j Vj .K/

for every r > 0, where �j is the j -dimensional volume of the unit ball in Rj (with the
convention that �0 WD 1). The coefficients Vj .K/ are known as the intrinsic volumes
of K. Up to normalization and numbering, they coincide with the classical quermass-
integrals. In particular, Vn�1.K/ is proportional to the surface area of K and V1.K/

to its mean width (cf. [122]).
The celebrated Hadwiger theorem gives a characterization of intrinsic volumes

and a complete classification of continuous, translation and rotation invariant valua-
tions. For n D 2, it follows from the positive solution to Hilbert’s Third Problem in
this case. It was proved for n D 3 in [60] and then for general n � 3 in [61].

Theorem 3.1 (Hadwiger [61]). A functional Z W Kn ! R is a continuous, translation
and rotation invariant valuation if and only if there are c0; : : : ; cn 2 R such that

Z.K/ D c0V0.K/ C � � � C cnVn.K/

for every K 2 Kn.

The Hadwiger theorem leads to effortless proofs of numerous results in integral
geometry and geometric probability (see [63,69]). An alternate proof of the Hadwiger
theorem is due to Klain [67].

We will describe results on translation invariant and rotation equivariant valua-
tions with values in tensor spaces and spaces of convex bodies. We remark that upper
semicontinuous, translation and rotation invariant valuations were only classified in
the planar case (see [81]).
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3.1. Vector and tensor valuation

The first classification of vector valuations was established by Hadwiger and Schnei-
der [64] using rotation equivariant valuations Z W Kn ! Rn, that is, valuations such
that

Z.�K/ D � Z.K/

for all � 2 SO.n/ and K 2 Kn.

Theorem 3.2 (Hadwiger and Schneider [64]). A function Z W Kn ! Rn is a con-
tinuous, translation covariant, rotation equivariant valuation if and only if there are
c1; : : : ; cnC1 2 R such that

Z.K/ D c1 M1;0
1 .K/ C � � � C cnC1 M1;0

nC1.K/

for every K 2 Kn.

Here M1;0
i .K/ WD ˆ

1;0
i .K/ are the intrinsic vectors of K (see (3.1) below) and

see (3.2) for the definition of translation covariance.
The theorem by Hadwiger and Schneider was extended by Alesker [5,7] (based on

[6]) to a classification of continuous, translation covariant, rotation equivariant tensor
valuations on Kn. Just as the intrinsic volumes can be obtained from the Steiner
polynomial, the moment tensor (defined in (2.2)) satisfies the Steiner formula

Mp;0.K C rBn/ D

nCpX
jD0

rnCp�j �nCp�j

X
k�0

ˆ
p�k;k

j�pCk
.K/ (3.1)

for K 2 Kn and r � 0. The coefficients ˆ
p;s

k
.K/ are called the Minkowski tensors of

K (see [122, Section 5.4]). Recall that T p.Rn/ is the space of symmetric p-tensors on
Rn and let Q 2 T 2.Rn/ be the metric tensor, that is, Q.x;y/ WD hx;yi for x;y 2 Rn.

Theorem 3.3 (Alesker [5]). A function Z W Kn ! T p.Rn/ is a continuous, trans-
lation covariant, rotation equivariant valuation if and only if Z can be written as
linear combination of the symmetric tensor products Qlˆ

m;s
k

with 2l C m C s D p.

Here, a valuation Z W Kn ! T p.Rn/ is called translation covariant if there exist
associated functions Zj

W Kn ! T j .Rn/ for j D 0; : : : ; p such that

Z.K C y/ D

pX
jD0

Zr�j .K/
yj

j Š
(3.2)

for all y 2 Rn and K 2 Kn, where on the right side we sum over symmetric tensor
products. We say that Z is G equivariant for a group G acting on Rn if

Z.�K/.y1; : : : ; yp/ D Z.K/.�ty1; : : : ; �typ/
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for all y1; : : : ; yp 2 Rn, all transformation � 2 G, and all K 2 Kn, where �t is the
transpose of �.

For a classification of local tensor valuations, see [65], and for applications in
various fields, including astronomy and material sciences, see [66].

3.2. Convex body valued valuations

An operator Z W Kn ! Kn is called Minkowski additive if

Z.K C L/ D Z.K/ C Z.L/

for all K;L2Kn. Since KCLDK [LCK \L for K;L2Kn with K [ L2Kn, it
is easy to see that every Minkowski additive operator is a Minkowski valuation. While
the first classification results for Minkowski valuations were established in [83],
Schneider [120] earlier obtained the first classification results for rotation equivariant
Minkowski additive operators. For continuous, translation invariant, rotation equi-
variant Minkowski valuations, so far no complete classification has been established.
But the following representation is known to hold. Let Mcen.Sn�1/ and Ccen.Sn�1/

denote the spaces of signed Borel measures and continuous functions on Sn�1, respec-
tively, having their center of mass at the origin.

Theorem 3.4 (Schuster and Wannerer [123]). If Z WKn!Kn is a continuous, trans-
lation invariant, rotation equivariant Minkowski valuation, then there are uniquely
determined constants c0; cn � 0 and SO.n � 1/ invariant measures �i 2 Mcen.Sn�1/

for 1 � i � n� 2, as well as an SO.n� 1/ invariant function �n�1 2 Ccen.Sn�1/ such
that

h.Z K; �/ D c0 C

n�2X
iD1

Si .K; �/ � �i C Sn�1.K; �/ � �n�1 C cnVn.K/

for every K 2 Kn.

The Borel measures Si .K; �/ on Sn�1 are Aleksandrov’s area measures (see [122])
of K 2 Kn. The convolution of functions and measures on Sn�1 is induced from the
group SO.n/ by identifying Sn�1 with the homogeneous space SO.n/= SO.n � 1/

(see [123]). The above representation formula has to be read in the sense of equality
of measures and h.Z K; �/ is identified with the measure with this density.

4. More on invariant valuations on convex bodies

Translation invariant valuations on polytopes were classified using simplicity or mild
regularity assumptions. Hadwiger [62] established a complete classification of sim-
ple, weakly continuous, translation invariant valuations on convex polytopes. Here,
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informally, a valuation is weakly continuous if it is continuous under parallel dis-
placements of the facets of a polytope. Hadwiger’s result was extended by McMullen
[112] to the following result.

Theorem 4.1 (McMullen [112]). A functional Z W P n ! R is a weakly continuous,
translation invariant valuation if and only if

Z.P / D

nX
jD0

X
F 2Fj .P /

Yj

�
N.P; F /

�
Vj .F /

for every P 2 P n where Yj W Qn�j ! R is a simple valuation.

Here, Fj .P / is the set of j -dimensional faces of P and N.P; F / is the normal
cone to P at F while Qk is the system of all closed polyhedral convex cones of
dimension at most k. We remark that valuations on convex polyhedral cones (or,
equivalently, on spherical polytopes) are not yet well understood and the problems to
classify simple, rotation invariant valuations on spherical polytopes and on spherical
convex bodies are open on spheres of dimension � 3 (even if continuity is assumed).
Kusejko and Parapatits [72] extended Hadwiger’s result and established a complete
classification of simple, translation invariant valuations on polytopes using Cauchy
functions.

Hadwiger [63] proved that simple, continuous, translation invariant valuations
on Kn have a homogeneous decomposition. His result was extended by McMullen
[110].

Theorem 4.2 (McMullen [110]). If Z W Kn ! R is a continuous and translation
invariant valuation, then

Z D Z0 C � � � C Zn;

where Zj W Kn ! R is a continuous, translation invariant valuation that is homo-
geneous of degree j .

It is easy to see that every continuous, translation invariant valuation that is homo-
geneous of degree 0 is a multiple of the Euler characteristic. For the degrees of
homogeneity j D n and j D n � 1, the following results hold.

Theorem 4.3 (Hadwiger [63]). A functional Z W P n ! R is a translation invariant
valuation that is homogeneous of degree n if and only if there is c 2 R such that

Z.P / D cVn.P /

for every P 2 P n.
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Theorem 4.4 (McMullen [111]). A functional Z WKn !R is a continuous and trans-
lation invariant valuation which is homogeneous of degree .n � 1/ if and only if there
is � 2 C.Sn�1/ such that

Z.K/ D

Z
Sn�1

�.y/ dSn�1.K; y/

for every K 2 Kn. The function � is uniquely determined up to addition of the restric-
tion of a linear function.

Continuous, translation invariant valuations that are homogeneous of degree 1

were classified by Goodey and Weil [49].
While a complete classification of continuous, translation invariant valuations on

Kn is out of reach, Alesker [9] proved the following result.

Theorem 4.5 (Alesker [9]). For 0 � j � n, linear combinations of the valuations®
K 7! V

�
KŒj �; K1; : : : ; Kn�j

�
W K1; : : : ; Kn�j 2 Kn

¯
are dense in the space of continuous and translation invariant valuations that are
homogeneous of degree j .

Here, V.KŒj �; K1; : : : ; Kn�j / is the mixed volume of K taken j times and
K1; : : : ; Kn�j while the topology on the space of continuous, translation invari-
ant valuations is induced by the norm k Z k WD sup¹j Z.K/j W K 2 Kn; K � Bnº.
Alesker’s result confirms a conjecture by McMullen [111] and is based on Alesker’s
so-called irreducibility theorem, which was proved in [9] and which has far-reaching
consequences.

For simple valuations, the following complete classification was established by
Klain and Schneider.

Theorem 4.6 (Klain [67], Schneider [121]). A functional Z W Kn ! R is a simple,
continuous, translation invariant valuation if and only if there are c 2 R and an odd
function � 2 C.Sn�1/ such that

Z.K/ D

Z
Sn�1

�.y/ dSn�1.K; y/ C cVn.K/

for every K 2 Kn. The function � is uniquely determined up to addition of the restric-
tion of a linear function.

Klain [67] used his classification of simple valuations in his proof of the Hadwiger
theorem. For an alternate proof of Theorem 4.6, see [72].

A valuation Z W Kn ! R is called translatively polynomial if x 7! Z.P C x/ is
a polynomial in the coordinates of x 2 Rn for all K 2 Kn. Alesker [6] established
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a complete classification of continuous, translatively polynomial, rotation invariant
valuations on Kn. Theorem 3.3 is the version of this result for tensor valuations.

Classification results for continuous, translation invariant valuations that are in-
variant under indefinite orthogonal groups were established by Alesker and Faifman
[16] and Bernig and Faifman [23]. For subgroups of the orthogonal group O.n/, the
following result holds.

Theorem 4.7 (Alesker [8,12]). For a compact subgroup G of O.n/, the linear space
of continuous, translation and G invariant valuations on Kn is finite dimensional if
and only if G acts transitively on Sn�1.

As the classification of the such subgroups G is known, it was a natural task
(which was already proposed in [8]) to find bases for spaces of G invariant valuations
(see [9–11,13,19,20,22,24–27] for results on real valued valuations and [31,136] for
results on tensor and measure valued valuations).

5. Affine valuations on function spaces

We describe classification results for valuations on function spaces that correspond to
the results in Section 2. Let F.Rn/ be a space of functions f W Rn ! Œ�1;1� and
let G be a subgroup of GL.n/. An operator Z W F.Rn/ ! A is G invariant if

Z.f ı ��1/ D Z.f /

for all � 2 G and f 2 F.Rn/. If G acts on A, we say that an operator Z W F.Rn/ ! A
is G contravariant if for some q 2 R,

Z.f ı ��1/ D j det �jq��t Z.f /

for all � 2 G and f 2 F.Rn/. It is G equivariant if for some q 2 R,

Z.f ı ��1/ D j det �jq� Z.f /

for all � 2 G and f 2 F.Rn/. It is called homogeneous if for some q 2 R,

Z.sf / D jsjq Z.f /

for all s 2 R and f 2 F.Rn/ such that sf 2 F.Rn/. An operator is called affinely
contravariant if it is translation invariant, GL.n/ contravariant, and homogeneous.

5.1. Valuations on Sobolev spaces

For p � 1, let W 1;p.Rn/ be the Sobolev space of functions belonging to Lp.Rn/

whose distributional first-order derivatives belong to Lp.Rn/.
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The following result corresponds to Theorem 2.11. Let Kn
c be the set of origin-

symmetric convex bodies in Rn. Let n � 3.

Theorem 5.1 ([90]). An operator Z W W 1;1.Rn/ ! Kn
c is a continuous, affinely

contravariant Minkowski valuation if and only if there is c � 0 such that

Z.f / D c… hf i

for every f 2 W 1;1.Rn/.

Here, for f 2 W 1;1.Rn/, the LYZ body hf i is defined by Lutwak, Yang, and
Zhang [104] as the unique origin-symmetric convex body in Rn such thatZ

Sn�1

�.y/ dSn�1

�
hf i; y

�
D

Z
Rn

�
�
rf .x/

�
dx (5.1)

for every even continuous function � W Rn ! R that is homogeneous of degree 1.
Equation (5.1) is a functional version of the classical even Minkowski problem.

Combined with (5.1), it follows from the definition of projection bodies and sur-
face area measures that for f 2 W 1;1.Rn/ and y 2 Sn�1,

h
�
… hf i; y

�
D

1

2

Z
Rn

ˇ̌˝
rf .x/; y

˛ˇ̌
dx:

We remark that the convex body hf i has proved to be critical in geometric analysis:
the affine Sobolev–Zhang inequality [138] is a volume inequality for the polar body
of … hf i, which strengthens and implies the Euclidean case of the classical Sobolev
inequality, and it was proved in [104] that hf i describes the optimal Sobolev norm
of f 2 W 1;1.Rn/. Tuo Wang [133] studied the LYZ operator f 7! hf i on the space
of functions of bounded variation. Here, the LYZ operator is not a valuation anymore
but Wang [134] established a characterization as an affinely covariant Blaschke semi-
valuation.

The following classification of tensor valuation corresponds to Theorem 2.10 for
p D 2. Let n � 3.

Theorem 5.2 ([89]). An operator Z W W 1;2.Rn/ ! T 2.Rn/ is a continuous, affinely
contravariant valuation if and only if there is c 2 R such that

Z.f / D c J.f 2/

for every f 2 W 1;2.Rn/.

Here, we write J.h/ for the Fisher information matrix of the weakly differentiable
function h W Rn ! Œ0;1/, that is, the n � n matrix with entries

Jij .h/ WD

Z
Rn

@ log h.x/

@xi

@ log h.x/

@xj

h.x/ dx: (5.2)
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We remark that the Fisher information matrix plays an important role in information
theory and statistics (see [45]). In general, Fisher information is a measure of the
minimum error in the maximum likelihood estimate of a parameter in a distribution.
The Fisher information matrix (5.2) describes such an error for a random vector of
density h with respect to a location parameter.

For results on real valued valuations on Sobolev spaces, see [107].

5.2. Valuations on convex functions

We write Conv.Rn/ for the space of convex functions u W Rn ! .�1;1� that are
lower semicontinuous and proper, that is, u 6� 1. We equip Conv.Rn/ and its sub-
spaces with the topology induced by epi-convergence (see [119]). Let

Convcoe.R
n/ WD

®
u 2 Conv.Rn/ W lim

jxj!1
u.x/ D 1

¯
be the space of coercive, convex functions, where jxj is the Euclidean norm of x 2Rn.
The following result corresponds to Theorem 2.1.

Theorem 5.3 ([38]). A functional Z W Convcoe.Rn/ ! Œ0;1/ is a continuous, trans-
lation and SL.n/ invariant valuation if and only if there are a continuous function
�0 W R ! Œ0; 1/ and a continuous function �n W R ! Œ0; 1/ with finite .n � 1/th
moment such that

Z.u/ D �0

�
min

x2Rn
u.x/

�
C

Z
dom u

�n

�
u.x/

�
dx

for every u 2 Convcoe.Rn/.

Here, a function � W R ! Œ0;1/ has finite kth moment if
R1

0
tk�.t/ dt < 1 and

dom u is the domain of u, that is, dom u WD ¹x 2 Rn W u.x/ < 1º.
Let Conv.RnIR/ be the space of finite valued convex functions, that is, of convex

functions u W Rn ! R. We say that u 2 Conv.Rn/ is super-coercive if

lim
jxj!1

u.x/

jxj
D 1:

Let Convsc.RnI R/ be the space of super-coercive, finite valued, convex functions.
The following result corresponds to Theorem 2.4.

Theorem 5.4 (Mussnig [114]). A functional Z W Convsc.RnIR/ ! Œ0;1/ is a con-
tinuous, translation and SL.n/invariant valuation if and only if there are a continuous
�0 W R ! Œ0;1/, a continuous �n W R ! Œ0;1/ with finite .n � 1/th moment, and a
continuous ��n W R ! Œ0;1/ whose support is bounded from above such that

Z.u/ D �0

�
min

x2Rn
u.x/

�
C

Z
Rn

�n

�
u.x/

�
dx C

Z
Rn

��n

�
u.x/

�
d MA.u; x/

for every u 2 Convsc.RnIR/.
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Here, MA.u; �/ denotes the Monge–Ampère measure of u, which is also called
the nth Hessian measure. See [113] for a result on coercive functions in Conv.RnIR/.

The following results correspond to Theorems 2.11 and 2.12. Let n � 3.

Theorem 5.5 ([37]). An operator Z W Convcoe.Rn/ ! Kn is a continuous, monotone,
translation invariant, SL.n/contravariant Minkowski valuation if and only if there is
a continuous, decreasing � W R ! Œ0;1/ with finite .n � 2/th moment such that

Z.u/ D … h� ı ui

for every u 2 Convcoe.Rn/.

For u2Convcoe.Rn/ and suitable � 2C.R/, define the level set body Œ� ı u�2Kn

by

h
�

Œ� ı u�; y
�
WD

Z 1

0

h
�
¹� ı u � tº; y

�
dt

for y 2 Rn. Hence the level set body is a Minkowski average of the level sets.

Theorem 5.6 ([37]). An operator Z W Convcoe.Rn/ ! Kn is a continuous, monotone,
translation invariant, SL.n/ equivariant Minkowski valuation if and only if there is a
continuous, decreasing � W R ! Œ0;1/ with finite integral over Œ0;1/ such that

Z.u/ D D Œ� ı u�

for every u 2 Convcoe.Rn/.

We remark that the results in this section can be easily translated to classification
results for valuations on log-concave functions. In this setting, the results on convex
body valued valuations were strengthened by Mussnig [115].

6. The Hadwiger theorem on convex functions

We call a functional Z W Convsc.Rn/ ! R epi-translation invariant if

Z.u ı ��1
C c/ D Z.u/

for all translations � W Rn ! Rn and c 2 R. Hence Z.u/ is not changed by transla-
tions of the epi-graph of u. To state the Hadwiger theorem on Convsc.Rn/, we need
to define functional versions of the intrinsic volumes. Let Cb..0;1// be the set of
continuous functions on .0;1/ with bounded support. For 0 � j � n � 1, let

Dn
j WD

²
� 2 Cb

�
.0;1/

�
W lim

s!0C
sn�j �.s/ D 0;

lim
s!0C

Z 1

s

tn�j�1�.t/ dt exists and is finite
³

:
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In addition, let Dn
n be the set of functions � 2 Cb..0;1// where lims!0C �.s/ exists

and is finite, and set �.0/ WD lims!0C �.s/.

Theorem 6.1 ([39]). For 0 � j � n and � 2 Dn
j , there exists a unique, continuous,

epi-translation and rotation invariant valuation Vj;� WConvsc.Rn/ ! R such that

Vj;� .u/ D

Z
Rn

�
�ˇ̌
ru.x/

ˇ̌��
D2 u.x/

�
n�j

dx

for every u 2 Convsc.Rn/ \ C 2
C.Rn/.

Here, D2 u is the Hessian matrix of u and ŒD2 u.x/�k the kth elementary symmet-
ric functions of the eigenvalues of D2 u.x/ (with the convention that ŒD2 u.x/�0 W� 1)
while C 2

C.Rn/ is the space of twice continuously differentiable functions with posi-
tive definite Hessian. We remark that V0;� is constant on Convsc.Rn/.

The following result is the Hadwiger theorem on Convsc.Rn/. Here, a functional
Z W Convsc.Rn/ ! R is said to be rotation invariant if Z.u ı #�1/ D Z.u/ for every
# 2 SO.n/. Let n � 2.

Theorem 6.2 ([39]). A functional Z W Convsc.Rn/ ! R is a continuous, epi-transla-
tion and rotation invariant valuation if and only if there are functions �0 2 Dn

0 , : : : ;

�n 2 Dn
n such that

Z.u/ D V0;�0
.u/ C � � � C Vn;�n

.u/

for every u 2 Convsc.Rn/.

A comparison of Theorems 3.1 and 6.2 shows that for 0 � j � n and � 2 Dn
j ,

the functional Vj;� plays a role corresponding to that of the j th intrinsic volume Vj .
Hence, we call Vj;� a j th functional intrinsic volume on Convsc.Rn/. It is connected
to the classical intrinsic volume by

Vj;� .IK/ D cVj .K/

for K 2 Kn where IK is the convex indicator function (that is, IK.x/ D 0 for x 2 K

and IK.x/ D 1 otherwise) and c depends only on j , n, and � (see [42]).
We call a functional Z W Conv.RnIR/ ! R dually epi-translation invariant if

Z.v C ` C c/ D Z.v/

for all linear functions ` WRn !R and c 2R. Using the convex conjugate or Legendre
transform of u 2 Convsc.Rn/, given by

u�.y/ WD sup
x2Rn

�
hx; yi � u.x/

�
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for y2Rn, we see that v 7!Z.v/ is dually epi-translation invariant on Conv.RnIR/ if
and only if u 7!Z.u�/ is epi-translation invariant on Convsc.Rn/. It was proved in [40]
that Z is a continuous valuation on Conv.RnIR/ if and only if Z�

WConvsc.Rn/ ! R,
defined by

Z�.u/ WD Z.u�/;

is a continuous valuation on Convsc.Rn/. This fact permits us to transfer results valid
for valuations on Convsc.Rn/ to results for valuations on Conv.RnIR/ and vice versa.

The following result is obtained from Theorem 6.1 by using convex conjugation.

Theorem 6.3 ([39]). For 0 � j � n and � 2 Dn
j , the functional V�

j;�
WConv.RnIR/ !

R is a continuous, dually epi-translation and rotation invariant valuation such that

V�
j;� .v/ D

Z
Rn

�
�
jxj

��
D2 v.x/

�
j

dx (6.1)

for every v 2 Conv.RnIR/ \ C 2
C.Rn/.

Here, V�
j;�

.v/ WD Vj;� .v�/ for 0 � j � n and � 2 Dn
j . Theorem 6.2 has the fol-

lowing dual version. Let n � 2.

Theorem 6.4 ([39]). A functional Z W Conv.RnIR/ ! R is a continuous, dually epi-
translation and rotation invariant valuation if and only if there are functions �0 2 Dn

0 ,
: : : ; �n 2 Dn

n such that

Z.v/ D V�
0;�0

.v/ C � � � C V�
n;�n

.v/

for every v 2 Conv.RnIR/.

For � 2 Dn
j , the functional V�

j;�
is connected to the classical intrinsic volume by

V�
j;� .hK/ D cVj .K/

for K 2 Kn, where c depends only on j , n, and � (see [42]).
Applications of the Hadwiger theorem on convex functions including integral

geometric formulas and additional representations of functional intrinsic volumes can
be found in [42].

7. More on invariant valuations on function spaces

For continuous, epi-translation invariant valuations on Convsc.Rn/, the existence of a
homogeneous decomposition corresponding to Theorem 4.2 was established in [41],
that is, every such valuation is a linear combination of continuous, epi-translation
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invariant valuations that are epi-homogeneous of degree j and 0 � j � n. Here Z is
called epi-homogeneous of degree j if Z.u/ is multiplied by tj when the epi-graph of
u is multiplied by t > 0. It is not difficult to see that every continuous, epi-translation
invariant valuation that is epi-homogeneous of degree 0 is constant.

The following classification corresponding to Theorem 4.3 was established in
[41].

Theorem 7.1 ([41]). A functional Z WConvsc.Rn/!R is an epi-translation invariant
valuation that is epi-homogeneous of degree n if and only if there is � 2 Cc.Rn/ such
that

Z.u/ D

Z
dom u

�
�
ru.x/

�
dx

for every u 2 Convsc.Rn/.

Here, Cc.Rn/ is the space of continuous functions with compact support. The
result corresponding to Theorem 7.1 on Conv.RnIR/ is stated next.

Theorem 7.2 ([41]). A functional Z W Conv.RnIR/ ! R is a dually epi-translation
invariant valuation that is homogeneous of degree n if and only if there is � 2 Cc.Rn/

such that
Z.v/ D

Z
Rn

�.x/ d MA.v; x/

for every v 2 Conv.RnIR/.

See [41], for more information on homogeneous decompositions and why such
results do not hold for many spaces of convex functions. For more results on val-
uations on convex functions, see [15, 34, 70, 71], and for results on valuations on
quasi-concave functions, see [35, 36].

While formally not results for valuations on function spaces, classification results
for valuations on star shaped sets in Rn were the motivation for some of the results
on function spaces. Let �n.Rn/ be the space of sets S � Rn which are star shaped
with respect to the origin and whose radial functions �.S; �/ W Sn�1 ! Œ0;1�, given
by

�.S; x/ WD sup¹r � 0 W rx 2 Sº;

are in Ln.Sn�1/. Let �0 be the space of star bodies, that is, of star shaped sets with
continuous radial functions. We remark that �n

0 is the space used in the dual Brunn–
Minkowski theory (see [48, 96]). Note that union and intersection on �n.Rn/ and
on �n

0 correspond to the pointwise maximum and minimum for radial functions. We
equip �n.Rn/ with the topology induced by the Ln norm on Sn�1 and �n

0 with the
topology induced by the maximum norm.
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Klain [68] established the following classification results on star shaped sets.

Theorem 7.3 (Klain [68]). A functional Z W �n.Rn/ ! R is a continuous, rotation
invariant valuation with Z.¹0º/ D 0 if and only if there is � 2 C.Œ0; 1// with the
properties that �.0/ D 0 and j�.t/j � c C d jt jn for all t 2 R for some c; d � 0 such
that

Z.S/ D

Z
Sn�1

�
�
�.S; y/

�
dy

for every S 2 �n.Rn/.

If the valuation Z in Theorem 7.3 is in addition positively homogeneous of degree
p, then �.t/ D ctp with c 2 R and 0 � p � n and hence Z is a dual mixed volume
(as defined by Lutwak [96]).

Tsang [130] obtained classification results for valuations on Lp.X; �/, when X

is a non-atomic measure space. Here we state a special case of his results that com-
plements Theorem 7.3. Let p � 1.

Theorem 7.4 (Tsang [130]). A functional Z W Lp.Rn/ ! R is a continuous, trans-
lation invariant valuation that vanishes on the null function if and only if there is
� 2 C.R/ with the property that j�.t/j � cjt jp for all t 2 R for some c � 0 such that

Z.f / D

Z
Rn

�
�
f .x/

�
dx

for every f 2 Lp.Rn/.

We remark that also Theorem 7.3 can be written as a classification result on the
space of non-negative functions in Ln.Sn�1/ (also see [130]). For results on tensor
and Minkowski valuations on Lp space, see [91, 116, 131].

Villanueva [132] obtained classification results for non-negative valuations on star
bodies. In [127], Tradacete and Villanueva showed that a result corresponding to the
classification from Theorem 7.3 is valid on �n

0 . A complete classification on �n
0 is

given in the following result.

Theorem 7.5 (Tradacete and Villanueva [128]). A functional Z W �n
0 ! R is a con-

tinuous valuation if and only if there are a finite Borel measure � on Sn�1 and a
function � W Œ0;1/ � Sn�1 ! R that fulfills the strong Carathéodory condition with
respect to � such that

Z.S/ D

Z
Sn�1

�
�
�.S; y/; y

�
d�.y/

for every u 2 �n
0 .
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Here, we say that � W Œ0;1/ � Sn�1 ! R fulfills the strong Carathéodory condi-
tion with respect to � if �.s; �/ is Borel measurable for all s � 0 and �.�; y/ is contin-
uous for � almost every y 2 Sn�1, while for every t > 0 there is �t 2 L1.Sn�1; �/

such that �.s; y/ � �t .y/ for s < t and � almost every y 2 Sn�1. We remark that
Theorem 7.5 can be rewritten as a result on valuations on non-negative functions in
C.Sn�1/.

Classification results for valuations on Lipschitz functions on Sn�1 were obtained
in [43, 44] and on Banach lattices in [129]. A Hadwiger theorem for valuations on
definable functions was established in [18].

Funding. M. Ludwig was supported, in part, by the Austrian Science Fund (FWF):
P 34446.
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Metric measure spaces and synthetic Ricci bounds:
Fundamental concepts and recent developments

Karl-Theodor Sturm

Abstract. Metric measure spaces with synthetic Ricci bounds have attracted great interest in
recent years, accompanied by spectacular breakthroughs and deep new insights. In this sur-
vey, I will provide a brief introduction to the concept of lower Ricci bounds as introduced by
Lott–Villani and myself, and illustrate some of its geometric, analytic, and probabilistic con-
sequences, among them Li–Yau estimates, coupling properties for Brownian motions, sharp
functional and isoperimetric inequalities, rigidity results, and structural properties like rectifia-
bility and rectifiability of the boundary. In particular, I will explain its crucial interplay with the
heat flow and its link to the curvature-dimension condition formulated in functional-analytic
terms by Bakry–Émery. This equivalence between the Lagrangian and the Eulerian approach
then will be further explored in various recent research directions: (i) time-dependent Ricci
bounds which provide a link to (super-) Ricci flows for singular spaces, (ii) second-order cal-
culus, upper Ricci bounds, and transformation formulas, (iii) distribution-valued Ricci bounds
which, e.g., allow singular effects of non-convex boundaries to be taken into account.

1. Synthetic Ricci bounds for metric measure spaces

1.1. Metric spaces

The class of metric spaces .X; d/ is a far-reaching generalization of the class of
Riemannian manifolds .M; g/. It allows for rich geometric structures including singu-
larities, branching, change of dimension as well as fractional and infinite dimensions.

Already in the middle of the last century, A. D. Aleksandrov [1, 2] has proposed
his fundamental concepts of lower and upper bounds for generalized sectional curva-
ture for metric spaces. Especially these lower bounds are particularly well behaved
with respect to the so-called Gromov–Hausdorff metric on the class of compact met-
ric spaces as observed by Gromov [77, 78]:

2020 Mathematics Subject Classification. Primary 35K05; Secondary 31C25, 47D08, 30L99.
Keywords. Ricci curvature, metric measure space, curvature-dimension condition, optimal
transport, Bakry–Émery, synthetic Ricci bound.
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� for each K 2 R, the class®
.X; d/ with sect. curv. � K

¯
is closed under GH-convergence;

� for each K;L;N 2 R, the class®
.X; d/ with sect. curv. � K; dimension � N; diameter � L

¯
is compact.

In the sequel, many properties of Riemannian manifolds and geometric estimates
which only depend on one-sided curvature bounds could be proven for such metric
spaces .X; d/ with synthetic (upper or lower) curvature bounds. For spaces with syn-
thetic lower bounds on the sectional curvature, also a far-reaching analytic calculus
was developed with foundational contributions by Burago–Gromov–Perel’man [24],
Kuwae–Machigashira–Shioya [101], Zhang–Zhu [149].

However, for most properties and estimates in geometric analysis, spectral theory
and stochastic analysis on manifolds, no quantitative assumptions on the sectional
curvature are needed but—as observed in the seminal works of Yau, Cheeger, Cold-
ing, Elworthy, Malliavin, Bismut, Perel’man and many others—merely a lower bound
on the Ricci curvature

Ric � Kg:

Since the Ricci tensor is the trace of the sectional curvature, i.e.,

Ricx.vi ; vi / WD
X
j 6Di

Secx.vi ; vj / if ¹viºiD1;:::;n ONB of TxN;

assumptions on lower bounded Ricci curvature are less restrictive than assumptions on
lower bounded sectional curvature. Replacing (synthetic) sectional curvature bounds
by Ricci bounds, the previously mentioned Gromov’s compactness theorem turns into
a precompactness theorem:

� For any choice of K;L; N 2 R, the class of Riemannian manifolds .M; g/ with
Ricci curvature � K, dimension � N , and diameter � L is relatively compact
with respect to mGH-convergence.

Properties of mGH-limits of Cauchy sequences in such classes (so-called Ricci limit
spaces) have been studied in great detail by Cheeger–Colding [32–34]; see also [35,
36, 39].

As already pointed out by Gromov, the right setting to deal with the completions
of these classes is the class of metric measure spaces. However, what was missing
for decades was a synthetic formulation of lower Ricci bounds, applicable not only to
Riemannian manifolds (and their limits) but also to metric measure spaces.
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1.2. Metric measure spaces

Here and in the sequel, a metric measure space (briefly mm-space) will always mean
a triple .X; d;m/ consisting of

� a space X,

� a complete separable metric d on X,

� a locally finite Borel measure m on it.

It is called normalized (or mm1-space) iff in addition m.X/ D 1.
A primary goal since many years has been to find a formulation of generalized

Ricci curvature bounds Ric.X; d;m/ � K which is

� equivalent to Ricx.v; v/ � Kkvk2 if X is a Riemannian manifold,

� stable under convergence,

� intrinsic, synthetic (like curvature bounds in Aleksandrov geometry),

� sufficient for many geometric, analytic, and spectral theoretic conclusions.

In independent works, such a formulation has been proposed by the author [136,137]
and by Lott–Villani [107], based on the concept of optimal transport and relying
on previous works by Brenier [21], Gangbo [60], McCann [112, 113], Otto [128],
Otto–Villani [129], Cordero-Erausquin–McCann–Schmuckenschläger [40], and von
Renesse–Sturm [145].

The synthetic lower Ricci bound for an mm-space .X;d;m/will be defined through
the interplay of two quantities on X:

� the Kantorovich–Wasserstein distance

W2.�1; �2/ WD inf

´�Z
X�X

d2.x; y/ dq.x; y/

�1=2
W q 2 Cpl.�1; �2/

µ
(1.1)

on the space P .X/ of Borel probability measures on X where

Cpl.�1; �2/ WD
®
q 2 P .X � X/; .�1/�q D �1; .�2/�q D �2

¯
denotes the set of couplings of two probability measures �1, �2,

� the Boltzmann entropy

S.�/ D Ent.�jm/ D

´R
X � log � dm; if � D � � m;

C1; if � 6� m;
(1.2)

regarded as a functional on P .X/.

The first of these quantities is defined merely using the metric d on X, the second one
merely using the measure m on X.
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Figure 1.

Remark 1.1. En passant, we record some nice properties of the underlying metric
d on X which carry over to the Kantorovich–Wasserstein metric on the Wasserstein
space P2.X/ D ¹� 2 P .X/ W

R
X d2.x; x0/�.dx/ <1º:

� .P2.X/;W2/ is a complete separable metric space,

� .P2.X/; W2/ is a compact space or a length space or an Aleksandrov space with
curvature � 0 if and only if .X; d/ is so.

1.3. Synthetic Ricci bounds for metric measure spaces

Following [107, 136, 137], we now present the so-called curvature-dimension condi-
tion CD.K;N / to be considered as a synthetic formulation for “Ricci curvature � K

and dimension � N ”. For convenience, we first treat the case N D 1, where no
constraint on the dimension is imposed.

Definition 1.2. We say that a metric measure space .X;d;m/ has Ricci curvature �K
or that it satisfies the curvature-dimension condition CD.K;1/ iff 8�0;�1 2 P2.X/,
there exists W2-geodesic .�t /t2Œ0;1� connecting them such that

S.�t / � .1 � t /S.�0/C tS.�1/ �
K

2
t.1 � t /W 2

2 .�0; �1/: (1.3)

Remark 1.3. In other words, the CD.K;1/-condition holds true if and only if the
Boltzmann entropy is weaklyK-convex on P2.X/, see Figure 1. Recall that S is called
K-convex on P2.X/ iff (1.3) holds true for allW2-geodesics .�t /t2Œ0;1� in P2.X/. The
reason for requiring the weaker version is the stability under convergence of the latter
(see below).

The second case which allows for an easy formulation is K D 0. Here for finite
N 2 RC, the formulation is based on the Renyi-type entropy

SN .�jm/ WD �

Z
X
�1�1=N dm for � D � � m C �s:
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sec ≥ 0 ⇐⇒ dist concave ric ≥ 0 ⇐⇒ vol1/n concave

Figure 2.

Definition 1.4. We say that .X; d; m/ satisfies the curvature-dimension condition
CD.0;N / iff 8�0;�1 2 P2.X/, there existsW2-geodesic .�t /t2Œ0;1� connecting them
such that

SN .�t jm/ � .1 � t /SN .�0jm/C tSN .�1jm/: (1.4)

Remark 1.5. It is quite instructive to observe that

SN .�jm/ D �m.A/1=N if � is unif. distrib. on A � X:

Thus the curvature-dimension condition CD.0;N / can be vaguely interpreted as a
kind of concavity property for the N -th root of the volume, see Figure 2. This should
be seen in context with the facts that (i) on N -dimensional spaces, the N -th root of
the volume has the dimension of a length, (ii) nonnegative sectional curvature in the
sense of Aleksandrov can be regarded as a concavity property of distances, and (iii)
Ricci curvature should be regarded as the average of the sectional curvatures.

1.4. The curvature-dimension condition CD.K; N /

The curvature-dimension condition CD.K; N / for general pairs of K; N is more
involved. It was introduced in [137]. (Based on that, later on Lott–Villani [106] also
introduced a slight modification of it—the difference, however, will be irrelevant for
the sequel. In their original paper [107], they consider only the caseK=N D 0, where
the effects of dimension and curvature are decoupled.)

Definition 1.6. Given thatK;N 2R (withN � 1), we say that an mm-space .X;d;m/
satisfies the curvature-dimension condition CD.K;N / iff 8�0m; �1m 2 P2.X/, there
exists W2-geodesic .�tm/t2Œ0;1� connecting them and a W2-optimal coupling q of
them such thatZ

X
�
1�1=N
t .z/ dm.z/ �

Z
X�X

�
�
.1�t/
K;N .
0; 
1/ � �

�1=N
0 .
0/

C �
.t/
K;N .
0; 
1/ � �

�1=N
1 .
1/

�
dq.
0; 
1/: (1.5)

Here the distortion coefficients are given by

�
.t/
K;N .x; y/ WD t

1
N

 
sin
�q

K
N�1

t d.x; y/
�

sin
�q

K
N�1

d.x; y/
�
!N�1

N
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in caseK>0, analogous formula with sin
p
� � � replaced by sinh

p
� � � � in case K<0,

and � .t/K;N .x; y/ WD t in case K D 0.

The interpretation of CD.K; N / as a synthetic formulation for “Ricci curvature
� K, dimension � N ” is justified by the Riemannian case.

Theorem 1.7 ([137] extending [40, 135, 145]). For Riemannian manifolds .M; g/,

CD.K;N /, RicM � K and dimM � N:

Further examples of metric measure spaces satisfying a CD.K;N/-condition inclu-
de weighted Riemannian spaces, Ricci limit spaces, Aleksandrov spaces, and Finsler
spaces. If one slightly extends the concept of “metric” towards “pseudo metric”, it
also includes path spaces (e.g. the Wiener space with K D 1, N D 1) and configu-
ration spaces.

Moreover, many further examples are obtained by constructions as limits, prod-
ucts, cones, suspensions, or warped products.

2. Geometric aspects

The broad interest in—and the great success of—the concept of the curvature-dimen-
sion condition CD.K;N / is due to

� its equivalence to classical lower Ricci bounds in the Riemannian setting,

� its stability under convergence and under various constructions, and

� the fact that it implies almost all of the geometric and functional analytic estimates
(with sharp constants!) from Riemannian geometry which depend only on (the
dimension and on) lower bounds on the Ricci curvature.

2.1. Volume growth

Let us summarize some of the most fundamental geometric estimates.

Theorem 2.1 (Bonnet–Myers diameter bound [137]). The CD.K;N /-condition with
finite N and positive K implies compactness of X and

diam.X/ �

r
N � 1

K
� �: (2.1)

Theorem 2.2 (Bishop–Gromov volume growth estimate [137]). Under CD.K; N /
with finite N , for every x0 2 X, the volume growth function r 7! m.Br.x0// is abso-
lutely continuous and its weak derivative s.r/ WD @

@r
m.Br.x0// satisfies

s.r/=s.R/ � sin
�r

K

N � 1
r

�N�1�
sin
�r

K

N � 1
R

�N�1

(2.2)
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for all 0 < r < R with the usual re-interpretation of the RHS ifK � 0 (i.e., replacing
all sin.

p
K � � � / by sinh.

p
�K � � � / in the case K < 0).

As in the smooth Riemannian setting, this differential inequality immediately
implies the integrated version:

m
�
Br.x0/

�
m
�
BR.x0/

� � R r
0

sin
�q

K
N�1

t
�N�1

dtR R
0

sin
�q

K
N�1

t
�N�1

dt

for all 0 < r < R, and thus in particular

m
�
BR.x0/

�
� CrN exp

�p
.N � 1/K�R

�
:

The results so far assumed that N is finite. In the case N D 1, the CD.K; N /-
condition implies a novel volume growth estimate [136], not known before in the
Riemannian setting,

m
�
BR.x0/

�
� exp

�
K�

2
R2 C c1RC c0

�
: (2.3)

It can be seen as complementary to the concentration of measure phenomenon. The
sharpness is illustrated by the following example.

Example 2.3. Consider X D R, d D j � j, and dm.x/ D exp.�
2
jxj2/ for � > 0. Then

.X;d;m/ satisfies CD.��;1/, and m.BR.x//� exp.�
2
.R�

1
2
/2/ for all x andR �

1
2

.

The curvature-dimension condition CD.K;N / also implies numerous further geo-
metric estimates, among them the Brunn–Minkowski inequality [137] and the Borell–
Brascamp–Lieb inequality [11]. What remained an open problem for many years
was the Lévy–Gromov isoperimetric inequality which only recently was proven by
Cavalletti–Mondino.

Theorem 2.4 (Lévy–Gromov isoperimetric inequality [30]). Let .X; d;m/ be an es-
sentially non-branching mm-space which satisfies CD.K;N/ and let yX be a CD.K;N/-
model space. Then for every subset E � X and every spherical cap B � yX,

j@Ej

jXj
�

j@Bj

jyXj
if
jEj

jXj
D

jBj

jyXj
: (2.4)

Here j � j denotes the respective volume or surface measure.

2.2. The space of spaces

Two mm1-spaces will be called isomorphic—and henceforth identified—iff there
exists a measure preserving isometry between the supports of the respective mea-
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sures. It is a quite remarkable observation that the space „ of isomorphism classes of
normalized mm1-spaces itself is a geodesic space.

TheLp-transportation distance between mm1-spaces .X0;d0;m0/ and .X1;d1;m1/
is defined for p 2 Œ1;1/ as

Dp
�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

d;m

�Z
X0�X1

d.x0; x1/
pdm.x0; x1/

�1=p
;

where the infimum is taken over all couplings m of m0 and m1 and over all couplings
d of d0 and d1 (i.e., metrics on X0 t X1 which coincide with d0 on X0 and with d1
on X1), [136]. With slight modifications, this definition also extends to p D 1 and
p 2 .0; 1/. Furthermore, for p D 0 we define in the spirit of the Ky Fan metric

D0
�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

d;m
inf
®
" > 0 W m

®
d.x0; x1/ > "

¯
� "

¯
:

A closely related concept is the Lp-distortion distance between mm1-spaces de-
fined for p 2 Œ1;1/ as

�p

�
.X0; d0;m0/; .X1; d1;m1/

�
D inf

m

�Z
X0�X1

Z
X0�X1

ˇ̌
d0.x0; y0/ � d1.x1; y1/

ˇ̌p
dm.x0; x1/dm.y0; y1/

�1=p
;

where the infimum is taken over all couplings m of m0 and m1, and again with slight
modifications also extended to p D1, p 2 .0; 1/, and p D 0. Under uniform control
of the moments of the involved metric measure spaces, the topologies induced by all
these metrics are the same and coincide with that of Gromov’s box distance �� and
with that of measured Gromov–Hausdorff convergence.

Lemma 2.5 ([76, 116, 138]). (a) 8p 2 Œ0;1/: Dp is complete whereas �p is
not complete,

(b) Dp-convergence , D0-convergence and convergence of p-th moments,

(c) �p-convergence , �0-convergence and convergence of p-th moments,

(d) D0-convergence , �0-convergence , ��-convergence.

The main result here is that the space of spaces is an Aleksandrov space.

Theorem 2.6 ([138]). The metric space .„2;�2/ of isomorphism classes of mm1-
spaces is a geodesic space with nonnegative curvature.

The tangent space (for the space of spaces) at a given mm1-space admits an
explicit representation and so does the symmetry group, with the latter e.g. in terms of
optimal self-couplings. Of particular interest are finite dimensional subspaces of the
space of spaces.
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Proposition 2.7. For each n 2 N, the subspace of n-point spaces (i.e., mm1-spaces
with equal mass on n-points) is a Riemannian orbifold with nonnegative curvature.

2.3. Stability, compactness

Converging sequences of mm1-spaces can always be embedded into common metric
spaces. The stability of the CD.K; N /-condition then simply amounts to the lower
semicontinuity of the Renyi-type entropy for weakly convergent sequences of proba-
bility measures.

Theorem 2.8. The curvature-dimension condition is stable under D0-convergence of
mm1-spaces.

The volume growth estimates entailed by the CD.K;N /-condition, together with
the stability of the latter under convergence, allow us to turn Gromov’s pre-compact-
ness theorem under Ricci bounds into a compactness theorem.

Theorem 2.9. For every triple K;N; L 2 R, the space of all mm1-spaces .X; d;m/
that satisfy CD.K;N / and have diameter � L is compact.

2.4. Local to global

A crucial property of curvature bounds both in Riemannian geometry and in the geom-
etry of Aleksandrov spaces is the local-to-global property: sharp global estimates
follow from uniform local curvature assumptions. For the synthetic Ricci bounds for
mm-spaces, this is a highly non-trivial claim. To deal with it, we restrict ourselves to
non-branching geodesic spaces.

The first globalization theorem was obtained in the case K=N D 0, where curva-
ture and dimension effects are de-coupled.

Proposition 2.10 ([107,136,137]). IfKD0 orND1, then every mm-space .X;d;m/
satisfies

CD.K;N / locally , CD.K;N / globally:

Further progress then was based on the reduced curvature-dimension condition
CD�.K; N / defined similarly as CD.K; N / but now with the distortion coefficient
�
.t/
K;N .x; y/ in (1.5) replaced by the reduced coefficients

�
.t/
K;N .x; y/ WD sin

�r
K

N
t d.x; y/

��
sin
�r

K

N
d.x; y/

�
:

Proposition 2.11 ([12]). For all K;N 2 R and all mm-spaces,

CD.K;N / locally , CD�.K;N / locally , CD�.K;N / globally:
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Only recently, the globalization theorem could be proven in full generality by
Cavalletti–Milman (with a minor extension by Zhenhao Li removing the finiteness as-
sumption for the underlying measure). Their approach is based on Klartag’s [95] nee-
dle decomposition and the localization technique developed by Cavalletti–Mondino
[30].

Theorem 2.12 ([29, 103]).

CD.K;N / locally , CD.K;N / globally.

3. Analytic aspects
A deeper understanding of the role of synthetic lower Ricci bounds on singular spaces
will be obtained through links with spectral properties of the Laplacians and estimates
for heat kernels on such spaces.

3.1. Heat flow on metric measure spaces

There are two different (seemingly unrelated) approaches to define the heat equation
on an mm-space .X; d;m/:

� either as a gradient flow in L2.X;m/ for the energy

E.u/ D
1

2

Z
X

jruj2 dm D lim inf
v!u in L2

1

2

Z
X

.lipxv/
2 dm.x/

with lipxv.x/D lim supy!x
jv.x/�v.y/j

d.x;y/ and jruj D minimal weak upper gradient,

� or as a gradient flow in P2.X/ for the Boltzmann entropy

Ent.u/ D
Z
X

u logudm:

The former approach (the traditional point of view) has the advantage that the en-
ergy—if it exists—is always convex and thus guarantees the existence of the gradient
flow. Its disadvantage is that it relies on the concept of weakly differentiable func-
tions. However, all analytic problems related to the notion of energy have been fully
resolved in the trilogy [3–5] by Ambrosio–Gigli–Savaré.

The latter approach (the novel perspective of Otto) has the advantage that the
entropy is always obviously well defined. However, for its gradient flow to exist, addi-
tional assumptions are required, e.g. that the entropy is semi-convex. Up to minor
technicalities, this simply says that the underlying mm-space has lower bounded
synthetic Ricci curvature. Under this minimal assumption, indeed, both approaches
coincide.

Theorem 3.1 ([3]). For every mm-space .X; d;m/ that satisfies CD.K;1/ for some
K 2 R, the energy approach and the entropy approach coincide.
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Example 3.2. There are plenty of examples to which this result applies. The most
prominent among them (and the authors who first proved it) are

(i) Euclidean space Rn: Jordan–Kinderlehrer–Otto [85],

(ii) Riemann manifolds .M; g/: Ohta [124], Savaré [133], Villani [144],
Erbar [45],

(iii) Finsler spaces .M; F;m/: Ohta–Sturm [126],

(iv) Aleksandrov spaces: Gigli–Kuwada–Ohta [67].

Example 3.3. In many other cases not covered by any CD-condition, we know that
the energy approach and the entropy approach coincide:

(a) Heisenberg group (unbounded curvature): Juillet [86],

(b) Wiener space (degenerate distance): Fang–Shao–Sturm [58],

(c) Configuration space (degenerate distance): Erbar–Huesmann [50],

(d) Neumann Laplacian (unbounded curvature if nonconvex): Lierl–Sturm [104],

(e) Dirichlet Laplacian (no mass conservation): Profeta–Sturm [131],

(f) Discrete spaces (no W2-geodesics): Maas [109], Mielke [117],

(g) Lévy semigroups (no W2-geodesics): Erbar [46],

(h) Metric graphs (unbounded curvature): Erbar–Forkert–Maas–Mugnolo [49].

In the latter examples (e), (f), and (g), the concept of “gradient flow for the Boltzmann
entropy” has to be slightly adapted.

3.2. Curvature-dimension condition: Eulerian vs. Lagrangian

Besides the Lagrangian formulation of synthetic Ricci bounds in terms of semicon-
vexity properties of the entropy, there is also a Eulerian formulation in terms of the
energy: the celebrated curvature-dimension (or �2) condition of Bakry–Émery. It is a
groundbreaking observation that both formulations are equivalent in great generality.

For this equivalence to hold, we now make the standing assumption that .X; d;m/
is infinitesimally Hilbertian, i.e., the energy E is quadratic or, in other words, Lapla-
cian and heat flow are linear. For convenience, we will also assume that the mm-
space under consideration has the Sobolev-to-Lipschitz property and volume growth
bounded by eCr

2
. Note that both of these latter properties follow from the validity of

the Lagrangian CD.K;N /-condition.

Theorem 3.4 ([4,5,52]). Under the above assumptions, the following properties are
equivalent:

(i) the synthetic Ricci bound CD.K;N /, briefly reformulated as

HessS �
1

N
.rS/˝2 � K on

�
P2.X/;W2

�
;
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(ii) the transport estimate

W 2
2 .Ps�;Pt�/ � e�K�W 2

2 .�; �/C 2N
1 � e�K�

K�
.
p
s �

p
t /2

with � WD
2
3
.s C

p
st C t /,

(iii) the gradient estimate

jrPtuj
2
C

4Kt2

N.e2Kt � 1/
j�Ptuj

2
� e�2KtPt jruj

2;

(iv) the Bochner inequality

1

2
�jruj2 � hru;r�ui � K � jruj2 C

1

N
.�u/2;

also known as Bakry–Émery criterion and written in comprehensive form
as

�2.u/ � K � �.u/C
1

N
.�u/2:

These equivalences allow for easy explanations and/or intuitive interpretations.
The equivalence (iii),(iv), indeed, is known since decades as a basic result of the so-
called �-calculus of Markov semigroups [13,14], and easily follows by differentiating
s 7! Pt�s.jrPsuj

2/. The equivalence (i),(ii), from a heuristic point of view, is a
consequence of the fact that the heat flow is the gradient flow for the entropy with
respect to the metric W2. Finally, the equivalence (ii),(iii) is the important Kuwada
duality which extends the celebrated Kantorovich–Rubinstein duality towards p 6D 1,
q 6D 1. The rigorous proofs of the above equivalences by Ambrosio–Gigli–Savaré
[4, 5] (for the case N D 1) and Erbar–Kuwada–Sturm [52] (for the general case)
are rather sophisticated and mark milestones in the development of the theory. For an
alternative approach in the general case, see also [7].

Remark 3.5. The Bakry–Émery estimate

�2.u/ �K � jruj2 �
1

N
.�u/2 .8u/

has a remarkable self-improvement property [13–15, 57, 134] asserting that it implies
the seemingly stronger estimate

�2.u/ �K � jruj2 �
1

N
.�u/2 C

N

N � 1

ˇ̌ˇ̌
rjruj

ˇ̌
�
1

N
j�uj

ˇ̌2
D
ˇ̌
rjruj

ˇ̌
C

1

N � 1

ˇ̌ˇ̌
rjruj

ˇ̌
� j�uj

ˇ̌2
.8u/:
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This leads to improved gradient estimates and improved transport estimates which
e.g. in the case N D 1 read as

jrPtuj � e�KtPt jruj; W1.Pt�;Pt�/ � e�KtW1.�; �/:

3.3. RCD.K; N /-spaces—functional inequalities

We will say that an mm-space satisfies the RCD.K; N /-condition iff it satisfies the
CD.K;N /-condition and iff it is infinitesimally Hilbertian. For these mm-spaces, the
full machinery of geometric analysis and Riemannian calculus can be developed and
far-reaching structural assertions can be derived.

Here we have to restrict ourselves to present only a selection of the many results
proven so far. And we will not formulate detailed estimates (except for the first result),
we will just mention the respective results.

Theorem 3.6. The following estimates hold true (each of them with sharp constants)
on any mm-space which satisfies an RCD.K; N /-condition for some K 2 R and for
N � 1:

� Poincaré/Lichnerowicz inequality [106]: �1 � N
N�1

K;

moreover, for N <1:

� Laplace comparison [64],

� Bochner’s inequality [7, 52],

� Li-Yau differential Harnack inequality, Gaussian heat kernel estimates [61],

� Sobolev, Cheeger, and Buser inequalities [44, 130],

whereas for N D 1:

� Talagrand- and logarithmic Sobolev inequalities [106],

� Wang’s Harnack inequality [102], upper Gaussian heat kernel estimate [143],
and Ledoux’s inequality [44].

In all the previous results, the dimensional parameter has always been a num-
ber N � 1 (which in turn then even implies that N � dimH .X/). Quite remarkably,
various of these results also admit versions where the dimensional parameter N is a
negative number; see e.g. [110, 111, 119, 125, 127].

3.4. RCD.K; N /-spaces—splitting and rigidity

In the smooth Riemannian setting, an important consequence of nonnegative Ricci
curvature is the Cheeger–Gromoll splitting theorem. In order to extend this to metric
measure spaces, it is essential to assume that the underlying spaces are infinitesimally
Hilbertian.
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Theorem 3.7 (Splitting theorem [63]). If an mm-space .X; d;m/ satisfies RCD.0;N /
and contains a line, then X D R � X0 for some RCD.0;N � 1/-space .X0; d0;m0/.

The counterpart to the splitting theorem for positive lower Ricci bound is Cheng’s
maximal diameter theorem.

Theorem 3.8 (Maximal diameter theorem [91]). If an mm-space .X; d;m/ satisfies
RCD.N � 1; N / and has diameter � , then X is the spherical suspension of some
RCD.N � 2;N � 1/-space .X0; d0;m0/.

In the smooth Riemannian setting, the maximal diameter theorem provides a more
far-reaching conclusion, namely, that X is the roundN -sphere. In the singular setting,
however, this conclusion is false [91].

On the other hand, such a far-reaching conclusion can be drawn from the maxi-
mality of the spherical size.

Theorem 3.9 (Maximal spherical size theorem [56]). If an mm-space .X; d;m/ satis-
fies RCD.N � 1;N / and

�

Z
X

Z
X

cos
�
d.x; y/

�
dm.x/ dm.y/ � 0; (3.1)

then N 2 N and .X; d;m/ is isomorphic to the N -dimensional round sphere SN .

Closely related to the maximal diameter theorem is Obata’s theorem on the min-
imality of the spectral gap.

Theorem 3.10 (Obata’s theorem [92]). If an RCD.N � 1; N /-space .X; d;m/ has
spectral gapN , then it is the spherical suspension of some RCD.N � 2;N � 1/-space
.X0; d0;m0/.

This splitting theorem indeed also admits an extension to N D 1 which states
that an mm-space .X; d;m/ that satisfies RCD.1;1/ and has spectral gap 1 splits off
a Gaussian factor [66].

3.5. RCD.K; N /-spaces—structure theory

Since blow-ups of RCD.K; N /-spaces are RCD.0; N /-spaces which contain lines, a
sophisticated iterated application of the splitting theorem will lead to deep insights
into tangent spaces and local structure of RCD-spaces.

Theorem 3.11 (Rectifiability and constancy of dimension [23,120]). If .X; d;m/ sat-
isfies RCD.K;N /, then

(a) X D
SbN c

kD1
Rk [ N , m.N / D 0,

(b) each Rk is covered by countably many measurable sets which are .1C "/-
biLipschitz equivalent to subsets of Rk ,
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(c) m and Hk are mutually abs. cont. on Rk ,

and even more,

(d) there exists n 2 N such that m.Rk/ D 0 for all k 6D n.

Besides the two landmark contributions to this structure theory mentioned above,
numerous important results were obtained [6, 43, 69, 90]. Particularly nice insights
could be obtained in the case N D 2.

Corollary 3.12 ([108]). RCD.K; 2/-spaces with m D H2 are Aleksandrov spaces.

Further challenges then concern the boundaries of mm-spaces. Various concepts
how to define them and related results were presented in [42,88,89]. Important contri-
butions to the analysis of tangent cones and to the regularity theory for non-collapsed
RCD-spaces were provided in [8,82,94]. Based on these results, a precise description
could be derived.

Theorem 3.13 ([22]). Let .X; d;m/ be a non-collapsed RCD.K;N /-space (with m D

HN , N 2 N). Then

(a) there exists a stratification �0 � �0 � � � � � �N�1 D � D X n RN ,

(b) the boundary @X WD �N�1 n �N�2 is .N � 1/-rectifiable,

(c) TxX ' RN�1 � RC for x 2 �N�1 n �N�2,

(d) X n �N�2 is a topological manifold with boundary.

4. Recent developments

The concept of synthetic Ricci bounds for singular spaces turned out to be extremely
fruitful, both for theory and applications. A rich theory of mm-spaces satisfying such
uniform lower Ricci bounds has been established. The last 15 years have seen a
wave of impressive results—many of them going far beyond the previously described
scope.

In the following, we will first present in detail recent developments concerning

� heat flow on time-dependent mm-spaces and super-Ricci flows,

� second-order calculus, upper Ricci bounds, and transformation formulas,

� distribution-valued lower Ricci bounds,

and then briefly summarize several further developments.

4.1. Heat flow on time-dependent mm-spaces and super-Ricci flows

Whereas construction and properties of the heat flow on “static” metric measure
space .X; d; m/—in particular, its relation to synthetic lower bounds on the Ricci
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curvature—by now are well understood in great generality, analogous questions for
time-dependent families of mm-spaces .Xt ; dt ;mt /, t 2 I D .0; T /, until recently
remained widely open:

� How do we define a heat propagator .Pt;s/t�s acting on functions in L2.Xs;ms/
and/or its dual . yPt;s/s�t acting on measures on Xt?
Can they be regarded as gradient flows of (time-dependent) energy or entropy
functionals in function/measure spaces with time-dependent norms or metrics?

� Is there a parabolic analogue to synthetic lower Ricci bounds? Can one formulate
it as “dynamic convexity” of a time-dependent entropy functional? How is this
related to the notion of super-Ricci flows for families of Riemannian manifolds?

� Are there “parabolic versions” of the functional inequalities that characterize syn-
thetic lower Ricci bounds?

Within recent years, for families of mm-spaces .X; dt ;mt /, t 2 .0; T /, such that

� for every t 2 I the mm-space .X; dt ;mt / satisfies an RCD.K;N /-condition,

� there exists some regular t -dependence of dt and mt ,

these questions found affirmative answers.

Definition 4.1 ([140]). A family of mm-spaces .X;dt ;mt /t2.0;T / is called super-Ricci
flow iff the function

EntW .0; T / � P .X/! .�1;1�; .t; �/ 7! Entt .�/ WD Ent.�jmt /

is dynamically convex on P .X/—equipped with the 1-parameter family of metrics
Wt (D L2-Kantorovich–Wasserstein metrics with respect to dt )—in the following
sense: for all �0; �1 and a.e. t there exists a Wt -geodesic .�a/a2Œ0;1� such that

@a Entt .�0/ � @a Entt .�1/ �
1

2
@tW

2
t .�

0; �1/: (4.1)

Example 4.2. A family of Riemannian manifolds .M; gt /, t 2 .0; T / is a super-Ricci
flow in the previous sense iff

Rict C
1

2
@tgt � 0:

Recall that .M; gt /t2.0;T / is called Ricci flow if Rict C1
2
@tgt D 0. These properties

can be regarded as the parabolic analogue to nonnegative (or vanishing, resp.) Ricci
curvature for static manifolds.

Whereas in the static setting the gradient flow for the energy and the gradient
flow for the entropy characterize the same evolution (either in terms of densities or
in terms of measures), this is no longer the case in the dynamic setting: here one
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is characterizing the forward evolution whereas the other one is characterizing the
backward evolution.

Theorem 4.3 ([98]). In the previous setting, there exists a well-defined heat prop-
agator .Pt;s/t�s acting on functions in L2.X;ms/ and its dual . yPt;s/s�t acting on
measures on X. Moreover,

(1) 8u 2 Dom.E/, 8s 2 I , the heat flow t 7! ut D Pt;su is the unique forward
gradient flow for the Cheeger energy 1

2
Es in L2.X;ms/.

(2) 8� 2 Dom.Ent/, 8t 2 I , the dual heat flow s 7! �s D yPt;s� is the unique
backward gradient flow for the Boltzmann entropy Entt in .P .X/; Wt / pro-
vided that .X; dt ;mt / is a super-Ricci flow.

Both gradient flows can be obtained as limits of corresponding steepest-descend
schemes (aka JKO-schemes) adapted to the time-dependent setting [97].

In analogy to Theorem 3.4, the Lagrangian characterization of super-Ricci flows
(in terms of dynamic convexity of the entropy) turns out to be equivalent to a Eulerian
characterization (in terms of a dynamic �2-inequality), to a gradient estimate for the
forward evolution, and to a transport estimate (as well as to a pathwise Brownian
coupling property) for the backward evolution.

Theorem 4.4 ([98]). The following are equivalent:

(a) @a Entt .�a/jaD0 � @a Entt .�a/jaD1 � 1
2
@tW

2
t .�

0; �1/,

(b) Ws. yPt;s�; yPt;s�/ � Wt .�; �/,

(c) 8x;y, 8t , there exist coupled backward Brownian motions .Xs;Ys/s�t start-
ing at t in .x; y/ such that ds.Xs; Ys/ � dt .x; y/ a.s. for all s � t ,

(d) jrt .Pt;su/j
2 � Pt;s.jrsuj

2/,

(e) �2;t �
1
2
@t�t , where �2;t .u/ D 1

2
�t jrtuj

2 � hrtu;rt�tui.

This result in particular extends a previous characterization of super-Ricci flows
of smooth families of Riemannian manifolds in terms of the previous assertion (b)
by McCann–Topping [115] and in terms of the previous assertion (c) by Arnaudon–
Coulibaly–Thalmaier [10].

There is a whole zoo of further functional inequalities which characterize super-
Ricci flows. Several implications for the subsequent assertions were new even in the
static case.

Theorem 4.5 ([99]). Each of the following assertions is equivalent to any of the
above or, in other words, to .X; dt ;mt /t2I being a super-Ricci flow:

(f) local Poincaré inequalities:

2.t � s/�t .Pt;su/ � Pt;s.u
2/ � .Pt;su/

2
� 2.t � s/Pt;s.�su/;
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(g) local logarithmic Sobolev inequalities:

.t � s/
�t .Pt;su/

Pt;su
�Pt;s.u logu/� .Pt;su/ log.Pt;su/� .t � s/Pt;s

�
�su

u

�
;

(h) dimension-free Harnack inequality: 8˛ > 1

.Pt;su/
˛.y/ � Pt;su

˛.x/ � exp
�

˛d2t .x; y/

4.˛ � 1/.t � s/

�
;

(i) log Harnack inequality:

Pt;s.logu/.x/ � logPt;su.y/C
d2t .x; y/

4.t � s/
:

With these concepts and results, a robust theory of super-Ricci flows is estab-
lished—being regarded as a parabolic analogue to singular spaces with lower Ricci
bounds. In the smooth case, deeper insights and more powerful estimates require to
restrict oneself to Ricci flows rather than super-Ricci flows; see e.g. [16, 81, 96, 100].
To deal with similar questions in the singular case, first of all we need a synthetic
notion of upper Ricci bounds; see the next subsection.

For related current research on lower Ricci bounds in time-like directions on
Lorentzian manifolds and on Einstein equation in general relativity, see [31,114,122].

4.2. Second-order calculus, upper Ricci bounds, and transformation formulas

So far, on RCD-space we only dealt with the canonical first-order calculus for (real-
valued) functions on these spaces. The setting, however, allows us to go far beyond
this.

Theorem 4.6 ([18, 62, 65, 70–72, 121]). Given an RCD.K;1/-space .X; d;m/, there
exist well established concepts of

� a powerful second-order order calculus on X including a consistent notion of
Ricci tensor (the lower bound of which coincides with the synthetic lower Ricci
bound in terms of semiconvexity of the entropy),

� the heat flow on 1-forms on X which among others leads to the celebrated Hess–
Schrader–Uhlenbrock inequality

jPt df j � e�KtPt jdf j;

� harmonic maps from X into metric spaces .Y; dY/, typically of nonpositive curva-
ture, based on Sobolev calculus and approximation of energy densities for maps
between metric spaces, providing Lipschitz continuity of these maps.

In a different direction, a challenging goal is to provide synthetic characteriza-
tions of upper Ricci bounds Ric � L. Indeed, various of the (equivalent) synthetic
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characterizations of lower Ricci bounds admit partial converses. However, these con-
verse characterizations are not necessarily equivalent to each other. Moreover, any
such characterizations will certainly be not as powerful as the corresponding lower
bound. Typically, the upper Ricci bounds are asymptotic estimates whereas the lower
Ricci bounds are uniform estimates.

Theorem 4.7 ([142]). Weak synthetic characterizations of upper Ricci bounds for an
RCD.K;N /-space .X; d;m/

� in terms of partial L-concavity of the Boltzmann entropy and

� in terms of the heat kernel asymptotics

are equivalent to each other.
More precisely, a weak upper bound L for the Ricci curvature is given by

L WD sup
z

lim sup
x;y!z

�.x; y/;

where for all x; y 2 X ,

�.x; y/ WD

D lim
"!0

inf
²

1

W 2
2 .�

0; �1/
�
�
@�a S.�

a/
ˇ̌
aD1

� @Ca S.�
a/
ˇ̌
aD0

�
W
�
�a
�
a2Œ0;1�

geodesic;

S.�0/ <1; S.�1/ <1; suppŒ�0� � B".x/; suppŒ�1� � B".y/

³
D lim
"!0

inf
®
� @Ct logW2.Pt�;Pt�/

ˇ̌
tD0

W suppŒ�� � B".x/; suppŒ�� � B".y/
¯
:

Remark 4.8. For weighted Riemannian manifolds .M; g; e�f dvolg/,

Ricf .x; y/ � �.x; y/ � Ricf .x; y/C �.x; y/ � tan2
�p
�.x; y/ d.x; y/=2

�
provided x and y are not conjugate. Here Ricf .x; y/ D

R 1
0

Ricf . P
a; P
a/=j P
aj2 da
denotes the average Bakry–Émery–Ricci curvature along the (unique) geodesic 
 D

.
a/a2Œ0;1� from x to y, and �.x;y/ denotes the maximal modulus of the Riemannian
curvature along this geodesic.

Similar as other approaches (e.g. [123]), these weak upper Ricci bounds will not
be able to detect the positive Ricci curvature sitting in the tip of a cone over a circle
of length < 2� . A slightly stronger notion will detect it.

Theorem 4.9 ([56]). If a metric cone has both sided (“strong”) Ricci bounds K and
L in the sense of RCD.K;1/ and

� lim inf
x;y!z

lim inf
t!0

1

t
log

W2
�
Ptıx; Ptıy

�
d.x; y/

� L .8z 2 X/;

then it is the flat Euclidean space (of some integer dimension).
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A crucial property of the class of RCD-spaces is that it is preserved under transfor-
mations of measure and metric of the underlying spaces, and that there exist explicit
formulas for the transformation of the parametersK andN in the curvature-dimension
condition CD.K;N /.

To be more specific, let an mm-space .X; d;m/ be given as well as continuous
(“weight”) functions V;W on X. In terms of them, define the transformed mm-space
.X; d0;m0/ with m0 WD eVm and

d0.x; y/ WD inf
²Z 1

0

j P
t j � e
W.
t / dt W 
 W Œ0; 1�! X rectifiable, 
0 D x; 
1 D y

³
:

If
R
jruj2 dm on L2.X;m/ denotes the Dirichlet form (“Cheeger energy”) associated

with .X; d;m/, then the Dirichlet form associated with the transformed mm-space is
given by Z

jruj2eV�2W dm on L2.X; eVm/:

Theorem 4.10 ([80, 139]). If .X; d;m/ satisfies RCD.K;N / for finite K;N 2 R and
if V;W 2 W 2;1.X/, then for each N 0 > N there exists an explicitly given K 0 such
that .X; d0;m0/ satisfies RCD.K 0; N 0/.

(IfW D 0, then alsoN DN 0 D1 is admissible; if V DNW , then alsoN 0 DN

is admissible.)

Let us illustrate this result in three special cases of particular importance:

� W D 0 (“drift transformation”):

K 0
D K � sup

f;x

1

jrf j2

�
HessV.rf;rf /C

1

N 0 �N
hrV;rf i2

�
.x/I

� V D 2W (“time change”):

K 0
D inf

x
e�2W

�
K ��W �

�
.N � 2/.N 0 � 2/

�
C

N 0 �N
jrW j

2

�
.x/I

� V D NW (“conformal transformation”): N 0 D N and

K 0
D inf

x
e�2W

�
K �

�
�W C .N � 2/jrW j

2
�

� sup
f

N � 2

jrf j2

�
HessW.rf;rf / � hrW;rf i2

��
.x/:

The first of these cases is well studied in the setting of Bakry–Émery calculus (and
also in the setting of synthetic Ricci bounds for mm-spaces). It is the only case where
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also N D 1 is admitted. The last of these cases is well known in Riemannian geom-
etry but has not been considered before in singular settings. A particular feature of
the second case is that the transformation formula for the Ricci bound only depends
on bounds for jrW j and �W (and thus extends to distribution-valued Ricci bounds
in case of W 2 Lip.X/; see the next subsection).

4.3. Distribution-valued Ricci bounds

Uniform lower Ricci bounds of the form CD.K;1/ on mm-spaces

� are preserved for Neumann Laplacian on convex subsets, but

� never hold for Neumann Laplacian on non-convex subsets.

The goal thus is

� to find appropriate modification for non-convex subsets,

� to replace constant K, by function k, measure �, distribution, etc.

Theorem 4.11 ([20]). Given an infinitesimally Hilbertian mm-space .X; d;m/ and a
lower bounded, lower semicontinuous function k W X ! R, the following are equiva-
lent:

(i) curvature-dimension condition CD.k;1/with variable k: 8�0;�12P .X/,
there existsW2-geodesic .�t /t D .et��/t such that 8t 2 Œ0; 1� with gs;t WD
.1 � s/t ^ s.1 � t /,

Ent.�t / � .1 � t /Ent.�0/C t Ent.�1/ �
Z Z 1

0

k.
s/gs;t dsj P
 j
2�.d
/;

(ii) gradient estimate:

jrPtuj.x/ � Ex
�
e�

R t
0 k.Bs/ds � jruj.Bt /

�
;

(iii) Bochner’s inequality BE2.k;1/:

1

2
�jruj2 � hru;r�ui � k � jruj2;

(iv) 8�1, �2, there exists a coupled pair of Brownian motions .B1
t=2
/t�0,

.B2
t=2
/t�0 with given initial distributions such that a.s. for all s < t

d.B1t ; B
2
t / � e�

R t
s

Nk.B1r ;B
2
r /dr � d.B1s ; B

2
s /

with Nk.x0; x1/ WD sup¹
R 1
0
k.
u/du W 
0 D x0; 
1 D x1; 
 geodesicº.

For extensions to .k;N /-versions, see [52, 93, 141].
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To proceed towards distribution-valued Ricci bounds, define the spaces W 1;p.X/
for p 2 Œ1;1�, put W 1;1

� .X/ WD ¹f 2 W
1;2
loc
.X/ W kjrf jkL1 <1º, and denote by

W �1;1.X/ the topological dual of

W 1;1C.X/ WD
®
f 2 L1.X/ W fn WD f ^ n_ .�n/ 2W 1;2.X/; sup

n



jrfnj

L1 <1
¯
:

Definition 4.12. Given �2W �1;1.X/, we say that the Bochner inequality BE1.�;1/

holds iff jrf j 2 W 1;2 for all f 2 D.�/, and

�

Z
X

˝
rjrf j;r�

˛
C

1

jrf j
hrf;r�f i� dm �

˝
jrf j�; �

˛
W 1;1;W�1;1

for all f 2 D.�/ with �f 2 W 1;2 and all nonnegative � 2 W 1;2.

Given � 2 W �1;1.X/, we define a closed, lower bounded bilinear form E� on
L2.X/ by

E�.f; g/ WD E.f; g/C hfg; �iW 1;1C;W�1;1

for f; g 2 Dom.E�/ WD W 1;2.X/. Associated to it, there is a strongly continuous,
positivity preserving semigroup .P �t /t�0 on L2.X/.

Theorem 4.13 ([141]). The Bochner inequality BE1.�;1/ is equivalent to the gra-
dient estimate

jrPtf j � P �t
�
jrf j

�
: (4.2)

To gain a better understanding of the semigroup .P �t /t�0, assume that � D �� 

for some  2 W 1;1.

Theorem 4.14 ([37, 141]). Then

E�.f; g/ D E.f; g/C E.fg;  / (4.3)

and
P �t=2f .x/ D Ex

�
eN

 
t f .Bt /

�
; (4.4)

where .Px; .Bt /t�0/ denotes Brownian motion starting in x 2 X , and N is the zero
energy part in the Fukushima decomposition; i.e., N 

t D  .Bt / �  .B0/ �M
 
t .

If  2 Dom.�/, then N 
t D

1
2

R t
0
� .Bs/ds—in consistency with the previous

theorem (Theorem 4.11).

Remark 4.15. The concept of tamed spaces proposed by Erbar–Rigoni–Sturm–
Tamanini [55] generalizes the previous approach to distribution-valued lower Ricci
bounds in various respects:

� the objects under consideration are strongly local, quasi-regular Dirichlet spaces
.X;E;m/ (rather than infinitesimally Hilbertian mm-spaces .X; d;m/);
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� the Ricci bounds are formulated in terms of distributions � 2 W
�1;2
qloc

.X/ (rather
than � 2 W �1;1.X/); for such distributions � which lie quasi locally in the dual
of W 1;2.X/, the previous ansatz for defining the semigroup .P �t /t>0 still works
with appropriate sequences of localizing stopping times;

� in addition, the distributions � are assumed to be moderate in the sense that

sup
t�1;x2X

P �t 1.x/ <1:

This reminds of the Kato condition but is significantly more general since it does
not require any decomposition of � into positive and negative parts. It always
holds if � D �� for some  2 Lipb.X/.

Example 4.16. The prime examples of tamed spaces are provided by the following:

(a) ground state transformation of Hamiltonian for molecules [19, 79]; it yields
curvature bounds in terms of unbounded functions in the Kato class;

(b) Riemannian Lipschitz manifolds with lower Ricci bound in the Kato class
[27, 28, 132];

(c) time change of RCD.K;N /-spaces withW 2 Lipb.X/ (cf. Theorem 4.10); it
typically yields curvature bounds � which are not signed measures;

(d) restriction of RCD.K; N /-spaces to (convex or non-convex) subsets Y � X
or, in other words, Laplacian with Neumann boundary conditions; it yields
curvature bounds in terms of signed measures � D kmC `� ; see below.

Assume that .X; d;m/ satisfies an RCD.k;N /-condition with variable k W X ! R
and finite N . Let a closed subset Y � X be given which can be represented as sub-
level set Y D ¹V � 0º for some semiconvex function V W X ! R with jrV j D 1 on
@Y. Typically, V is the signed distance functions V D d. � ;Y/ � d. � ;X n Y/.

A function ` W X ! R is regarded as “generalized lower bound for the curvature
(or second fundamental) form of @Y” iff it is a synthetic lower bound for the Hessian
of V .

Example 4.17. Assume that X is an Aleksandrov space with sectional curvature � 0

and that Y � X satisfies an exterior ball condition: 8z 2 @Y, there exists a ballBr.x/�
{Y with z 2 @Br.x/. Then `.z/ WD �

1
r.z/

is a lower bound for the curvature of @Y.

Under weak regularity assumptions, the distributional Laplacian �Y WD �V C is a
(nonnegative) measure which then will be regarded as “the surface measure of @Y”.

Theorem 4.18 ([141]). Under weak regularity assumptions on V and `, the restricted
space .Y; dY;mY/ satisfies a Bakry–Émery condition BE1.�;1/ with a signed mea-
sure valued Ricci bound

� D k �mY C ` � �Y: (4.5)
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Thus the Neumann heat semigroup on Y satisfies

jrP Y
t uj.x/ � Ex

�
jruj.Bt / � e

�
R t
0 k.Bs/ds � e�

R t
0 `.Bs/dLs

�
; (4.6)

where .Bs=2/s�0 denotes the Brownian motion in Y and .Ls/s�0 the continuous addi-
tive functional associated with �Y.

For smooth subsets in Riemannian manifolds, this kind of gradient estimate—
with .Ls/s�0 being the local time of the boundary—has been firstly derived by Hsu
[84]; cf. also [38, 146].

Let us illustrate the power of the above estimates with two simple examples: the
ball and its complement.

Corollary 4.19. Let .X; d;m/ be an N -dimensional Aleksandrov space (N � 3) with
Ric � �1 and sec � 0. Then for Y WD X n Br.z/,ˇ̌

rP Y
t=2f

ˇ̌
.x/ � EY

x

h
et=2C

1
2rL

@Y
t �

ˇ̌
rf .BY

t /
ˇ̌i
:

In particular, Lip.P Y
t=2
f / � supx EY

xŒe
t=2C 1

2rL
@Y
t � � Lip.f / and

jrP Yt=2f j
2.x/ � eCtCC

0
p
t
� P Y

t=2jrf j
2.x/: (4.7)

Upper and lower bounds of curvature (here 0 and �1, resp.) can be chosen to be
any numbers. Note that no estimate of the formˇ̌

rP Y
t=2f

ˇ̌2
.x/ � eCt � P Y

t=2

ˇ̌
rf

ˇ̌2
.x/

can hold true due to the non-convexity of Y. Thus it is necessary to take into account
the singular contribution arising from the negative curvature of the boundary.

In the next example, the singular contribution arising from the positive curvature
of the boundary can be ignored. However, taking it into account will significantly
improve the gradient estimate.

Corollary 4.20. Let .X; d;m/ be an N -dimensional Aleksandrov space with Ric � 0

and sec � 1. Then for Y WD xBr.z/ for some z 2 X and r 2 .0; �=4/,ˇ̌
rP Yt=2f

ˇ̌
.x/ � EY

x

�
e�

cot r
2 L@Y

t �
ˇ̌
rf .BYt /

ˇ̌�
:

In particular, Lip.P Y
t=2
f / � supx EY

xŒe
� cot r

2 L@Y
t � Lip.f /� andˇ̌

rP Y
t=2f

ˇ̌2
.x/ � e�t

N�1
2 cot2 rC1

� P Y
t=2jrf j

2.x/: (4.8)

Taking into account the curvature of the boundary allows us to derive a positive
lower bound for the spectral gap (without involving any diameter bound and despite
possibly vanishing Ricci curvature in the interior).
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Corollary 4.21. In the previous setting, �1 � N�1
2

cot2 r .

4.4. Synthetic Ricci bounds—extended settings

In order to summarize recent developments concerning synthetic Ricci bounds for
singular spaces, let us recall the previously presented

(1) heat flow on time-dependent mm-spaces and super-Ricci flows,
(2) second-order calculus, upper Ricci bounds, and transformation formulas,
(3) distribution-valued lower Ricci bounds,

and then move on to further developments in extended settings

(4) discrete mm-spaces: for discrete mm-spaces .X; d; m/, the synthetic Ricci
bounds as introduced above will be meaningless since there will be no non-
constant geodesics with respect to the Kantorovich–Wasserstein metricW2 as
defined in (1.1). This disadvantage can be overcome by resorting to a modi-
fied Kantorovich–Wasserstein metric based on a subtle discrete version of the
Benamou–Brenier formula. This way, the heat flow can again be character-
ized as the gradient flow of the entropy [109, 117].
And synthetic Ricci bounds defined in terms of semiconvexity of the entropy
with respect to this modified metric are intimately linked to equilibration
properties of the heat flow; see e.g. [47, 48, 53, 54, 75]. Challenging ques-
tions address homogenization [68,73,74] and evolution under curvature flows
[51]. Related—but in general different—concepts of synthetic Ricci bounds
are based on discrete versions of the Bakry–Émery condition; see e.g. [17,41,
59, 105, 147].

(5) non-commutative spaces: inspired by the synthetic Ricci bounds for discrete
spaces, an analogous concept also has been proposed for non-commutative
spaces, with remarkable insights e.g. for (ergodic) quantum Markov semi-
groups on tracial or finite-dimensional unital C �-algebras, in particular, equi-
libration rate estimates for the fermionic Ornstein–Uhlenbeck semigroup and
for Bose Ornstein–Uhlenbeck semigroups [9, 25, 26, 83, 118, 148].

(6) Dirichlet boundary conditions: for a long time, it seemed that OT techniques
could not be used to analyze the heat flow with Dirichlet boundary conditions.
Only recently, Profeta–Sturm [131] overcame the problem of mass absorption
by considering charged particles (which are either particles or anti-particles),
and this way succeeded in finding a characterization for the heat flow as
a gradient flow for the entropy. Passing from particles to charged particles
technically corresponds to passing from a space X to its doubling. Functional
inequalities for the Dirichlet heat flow thus are closely linked to those for
the doubled space. For recent progress concerning the challenging problem
of gluing convex subsets in RCD-spaces, see [87].
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Torsion in algebraic groups and problems which arise

Umberto Zannier

Abstract. This article is based on the lecture that I had the honor and pleasure to deliver at
the 8th European Congress of Mathematics in Portorož, Slovenia (originally planned for June
2020, then shifted to June 2021 for public health reasons). In the talk I tried to give an overview
of some issues linked to torsion in algebraic groups, focusing on some recent research. Taking
into account the purposes of reaching a large audience of mathematicians, from all subjects,
I started with elementary general concepts, recalling some historical steps, before shifting to
more specific themes which I was more familiar with. In these notes, I maintained the same
principles, and only slightly expanded the contents of the lecture; indeed, I have not gone into
any detailed argument.

1. Torsion in commutative algebraic groups

Torsion (etymology): the word torsion (in mathematics) often denotes a quantity,
suitably defined in differential terms, which measures local “twisting” of a curve in
Euclidean space (roughly speaking, it expresses “how far” the curve locally is from
being a plane curve). However, in this exposition we shall adopt the usual algebraic
meaning, namely according to the following definition.

Definition. An element g in a group G is torsion if gm D 1 D identity of G, for some
integer m > 0. (Such an m is called an exponent for g, whereas the minimal such m

is called the – exact – order of g.)

This terminology apparently is not unrelated to the former one, as it seemingly
originated from the structure of homology groups of spaces obtained by twisting.
For instance, the real projective plane P2.R/, defined by gluing antipodal points in a
closed half sphere, has the torsion group Z=2 as its first homology group (over Z).

A torsion element g as above generates a so-called finite cyclic group; now the
etymology comes from the circle, because the powers gn repeat cyclically: : : : ; g;

g2; : : : ; gmC1 D g; gmC2 D g2; : : : and generally gnCm D gn, n D 0; 1; : : : :

2020 Mathematics Subject Classification. Primary 11-02; Secondary 11Gxx, 14Gxx, 14Kxx,
14Lxx.
Keywords. Number theory, Diophantine geometry, algebraic groups.
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Indeed the circle comes into the picture beyond this simple intuition, through its
topology (especially the fundamental group).

1.1. Algebraic groups

We shall consider some examples of torsion elements, and their structure, in algebraic
groups: roughly speaking an algebraic group is defined first as an algebraic vari-
ety, i.e., a set of points satisfying a given system of algebraic equations in an affine
or projective space, and then one has a group law expressed by polynomials in the
coordinates.

An algebraic group is an irreducible variety if and only if it is connected, and, in
general, it is anyway a finite union of translates of the connected component of the
identity element (which is a normal subgroup).

In this article we shall meet only commutative algebraic groups, a property which
entails that torsion elements form a subgroup.

For simplicity we shall consider only algebraic groups and points defined over
the field C of complex numbers and tacitly identify such a group with the set of
its complex points. (However, this does not mean that we shall disregard the actual
minimal field of definition of the points of interest for us, a field which may be small
and is highly important for arithmetical information.)

Examples.

Additive algebraic group. The additive algebraic group, denoted by Ga, is simply
the affine line A1 as an algebraic variety. The group law is expressed additively by
.x; y/ 7! x C y. The set of complex points Ga.C/ of Ga is simply C.

A torsion element g 2 C of exponent m now satisfies mg D 0, hence g D 0,
which means that there is no torsion other than 0 (as over any field of characteristic
zero, whereas every element is torsion of exponent p in positive characteristic p).

Multiplicative algebraic group. The multiplicative algebraic group Gm is the affine
line deprived of the origin A1 � ¹0º as an algebraic variety, with the algebraic group
law .x; y/ 7! xy. The set Gm.C/ of its complex points is the multiplicative group of
nonzero complex numbers C� WD C n ¹0º.

A torsion element g 2 C� of exponent m satisfies gm D 1, so the torsion elements
are precisely the (complex) roots of unity. There are m having exponent m; these lie
on the unit circle S1 WD ¹z 2 C W jzj D 1º, and they form the vertices of a regular
m-gon in the complex plane C.

Note the (analytic) exponential map z 7! e2�iz , which sends homomorphically C
onto C� and has a kernel Z Š �1.C�/; this is a non-divisible group, which explains
torsion elements in the image (whereas there are no nontrivial ones in the domain).
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Through this map we have the analytic isomorphism Gm.C/ D C� Š C=Z, the quo-
tient of C by a discrete subgroup (of rank 1).

Elliptic curves. The additive and multiplicative algebraic groups are curves (i.e.,
have dimension 1). However, they do not exhaust the possibilities for a curve to be
a connected algebraic group. Indeed, (the) other fundamental examples are given by
(complex) elliptic curves. They can be defined in the projective plane P2 by equations
of the shape

EWy2
D 4x3

� g2x � g3 in A2
C point at infinity O WD .0 W 1 W 0/ in P2;

where g2; g3 2 C are such that 4x3 � g2x � g3 has no multiple roots, i.e.,

g3
2 � 27g2

3 ¤ 0:

What is particularly remarkable is the existence of an algebraic-group (commutat-
ive) law among the points of each such curve. Namely, if we prescribe that the origin
is the point at infinity O , then to add points P; Q 2 E, we first draw the line through
P; Q (or the tangent to E if P D Q) which (taking into account multiplicities) will
intersect E in a third point R. The group law is such that P C Q C R D O , whereas
P C Q is the point opposite to R with respect to the x-axis.

This outstanding law (called classically the chord and tangent process, apparently
observed first by Newton) indeed may be expressed by polynomials in the homogen-
eous coordinates and satisfies the group axioms (the associative law being not entirely
trivial to check). It is fundamental in several respects, e.g., in the theory of Diophant-
ine equations, since, when the curve has rational coefficients, it produces rational
points out of rational ones.

Somewhat similarly to the case of Gm, each of these curves is found to be ana-
lytically isomorphic to a (compact) complex torus C=L, where L is again a suitable
discrete subgroup, however now of maximal rank 2, i.e., a lattice in C. The isomorph-
ism occurs through the Weierstrass exponential map: z 7! .}L.z/; }0

L.z//, where }L

is the Weierstrass function associated to L:

}L.z/ D z�2
C

X
l2L�¹0º

�
.z � l/�2

� l�2
�
:

This function is meromorphic on C and admits L as its group of periods. (It sends L

to O .)
The addition C on C (and on C=L) then explains the group law on E in the sense

that the former is transported to the latter by the said exponential.
In particular, it appears that now there are m2 torsion elements of exponent m.
The complex elliptic curves, up to complex isomorphism, form a family of dimen-

sion 1 (parameterized by the so-called j -invariant j.E/ D 1728g3
2=.g3

2 � 27g2
3/,
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which can assume any complex value). Together with Ga and Gm, they exhaust the
isomorphism classes of complex (connected) algebraic groups of dimension 1.

Abelian varieties. Abelian varieties are the irreducible (or, equivalently, connected)
projective algebraic groups. They are automatically commutative (the terminology
“abelian” arising for a different reason).

Elliptic curves represent precisely the abelian varieties of dimension 1. But
abelian varieties exist in any dimension: a simple example is a power Er of an elliptic
curve E, though this is extremely special. Other very important (though still special)
abelian varieties arise as Jacobians of (smooth) algebraic curves of genus g > 0; such
a Jacobian has dimension g.

Like for elliptic curves, every complex abelian variety, say of dimension g, is
analytically isomorphic to a complex torus, i.e., a quotient Cg=L where L is a (full)
lattice; however for g > 1 not every complex torus is an abelian variety, a certain
subtle “bilinear” condition on the lattice (existence of a Riemann form), in heavy part
arithmetical, being necessary and sufficient.

Products. We may obtain other algebraic groups by taking products, e.g., of the form
Gr

a � Gs
m; the complex points are now vectors in CrCs , where the last s coordin-

ates are nonzero and where the operations are coordinatewise (additive on the first r

coordinates, multiplicative on the last s ones). For topological reasons the powers Gs
m

are sometimes called (complex multiplicative) tori.
Similarly, we may take products among the other algebraic groups we have seen.

However, one should take into account that there exist extensions of algebraic groups,
i.e., exact sequences 0!G1 !G !G2 ! 0, where G is not (necessarily isomorphic
to) the product G1 � G2 (examples occur already in dimension 2, on taking G1 D Ga

or Gm and G2 D an elliptic curve). When G1 D Gs
m and G2 is an abelian variety, any

G in such an exact sequence is called a semiabelian variety.

1.2. Some results about torsion in algebraic groups

Additive case. We have already noted that Ga has no nontrivial torsion in character-
istic zero, thus in particular over C.

Multiplicative case. In this case, we have recalled that the torsion elements of
Gm.C/ D C� are the complex roots of unity.

Through the exponential map z ! e2�iz , the roots of unity correspond to z D

rational number, which raises a link with Number Theory.
Roots of unity naturally appear in describing discrete periodical phenomena. For

instance one finds here finite Fourier series, i.e., linear combinations of exponential
functions (on Z) having roots of unity as bases; they are a discrete counterpart of
the famous series expansions introduced systematically by Fourier, at the very heart
of Harmonic Analysis. The finite Fourier series represent all periodic functions on Z
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and are of the utmost relevance in myriads of topics and applications, including Cod-
ing Theory, Combinatorics, Fast Multiplication, Group Theory, (Analytic) Number
Theory, Numerical Analysis, and so on.

An effectivity issue. Let us pause to note that, already for roots of unity, even to decide
whether a specific number (or, more generally, specific point of a given algebraic
group) is torsion seems not completely obvious. For instance, consider the following:

Small challenge: Is ˛ WD
3 C 4

p
�1

5
a root of unity?

Note that ˛ indeed lies in the unit circle S1, as 32 C 42 D 52. So the natural test
of computing j˛j does not disprove the sought eventuality for this particular number.

Now, we can check whether ˛2; ˛3; : : : ; or any given power ˛m, is or is not equal
to 1, but a possible torsion-exponent is not bounded a priori; so, unless we find 1 at
some stage, we are left with an open possibility for the next check.

In conclusion, a little reflection may be needed to (see how to) answer such (type
of) question(s) algorithmically in the general case. (Now a negative answer may be
obtained using the Euler function value �.q/ for the degree over Q of a root of unity
of exact order q, which bounds the possible torsion order in terms of the degree of the
given number. This works generally, but for the actual question maybe the simplest
way is to observe that ˛ is not an algebraic integer.1 We invite the interested reader to
seek several different arguments for answering the question.)

From a number theoretical viewpoint, Gauss (Disquisitiones Arithmeticae 1801)
was the first to study in depth the arithmetical properties of roots of unity. In partic-
ular, this led him to criteria for constructing a regular n-gon with ruler and compass
(ancient problem of Greek mathematics). For instance this is possible for

n D 3; 4; 5; 6; 8; 10; 12; 15; 16; 17; : : : ; but not for n D 7; 9; 11; 13; 14; 18; 19; : : : :

As is well known, Fermat primes 22k
C 1 play a heavy role here: : : :

In fact, already a few years before the publication of the Disquisitiones, Gauss
had succeeded to construct the regular polygon of 17 sides, obtaining in practice the
remarkable equality

16 cos
2�

17
D �1 C

p
17 C

q
34 � 2

p
17 C 2

r
17 C 3

p
17 �

q
170 C 38

p
17:

We may say that Gauss anticipated the Galois theory of the cyclotomic fields; in
fact, in particular he defined the so-called Gaussian periods, which a posteriori turn

1This fits with a well-known theorem of Kronecker: “Roots of unity are those algebraic
integers having all conjugates of complex absolute value 1”, which may be rephrased as: “An
algebraic number is a root of unity if and only if all its absolute values are 1”.
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out to be suitable invariants for subgroups of automorphisms. (They may be also
conceived as values of certain finite Fourier series alluded to above.) For instance,
Gauss obtained from them “explicit” generators for all the subfields of a principal
cyclotomic field Q.e2�i=p/, where p is a prime number. (They are highly import-
ant for other reasons as well.) In particular, Gauss expressed, through the famous
Gauss sums, any number

p
n, n 2 Z, as a sum of roots of unity, which is not at all

obvious. This also started the theory of abelian extensions of Q and of number fields
(so-called “Class-field theory”).

In this case of the roots of unity (through viewpoints introduced by Deuring; : : : ;

Tate; : : : ; Grothendieck; : : :) the Galois groups which arise may be seen as an algeb-
raic manifestation and realization of the monodromy (group) of the circle S1 D ¹z 2

C W jzj D 1º. For instance, we have

�1.S1/ D �1.C�/ D Z;

and its finite quotients are the Z=.m/ which correspond to the finite covers of S1, and
so to the homomorphisms

S1 ! S1W z 7! zm;

with kernel the group Um D e2�iZ=m Š Z=.m/ of mth roots of unity. So Um is the
topological covering group and the Galois group over Q acts on it, and we have

Aut.Um/ Š
�
Z=.m/

��
Š Gal

�
Q.Um/=Q

�
D Gal

�
Q.e2�i=m/=Q

�
;

as proved essentially by Gauss. So the algebraic Galois group of the corresponding
field extension equals the (abstract) automorphism group of the topological covering
group.

Elliptic case. Now the theory of torsion elements is again highly interesting, rich,
and actually (much) more difficult than in the cyclotomic case. We have already
recalled that there are m2 elements of exponent m. The coordinates of these points
generate (over the ground field Q.g2; g3/) a field which is found to contain the cyc-
lotomic field Q.e2�i=m/, so we may say that the cyclotomic case recalled above falls
just as a special piece of the elliptic theory.

The torsion points now lie on a space which may be identified with the product
S1 � S1 of two circles (a torus), and the topological covering group corresponding
to torsion points of order m is now .Z=.m//2. The elements of the Galois group
again correspond to automorphisms of the covering group and thus may be viewed
inside the finite matrix group GL2.Z=.m//. A fundamental issue is to understand the
image of the Galois group (as m varies). This Galois theory somewhat depends on
the coefficients g2; g3.
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The “generic” case of transcendental j -invariant had been dealt with by Fricke &
Weber between the XIX and XX centuries: they proved that the image is essentially
the “largest possible one” (i.e., SL2.Z=.m// if we work over C).

The algebraic case lies much deeper, and suppose to fix ideas that g2; g3 2 Q.
There are two essentially different subcases, according to whether the ring of endo-
morphisms of the elliptic curve is “trivial” (i.e., Z) or not; the latter case, called
Complex Multiplication, is “exceptional” in various ways (now the endomorphism
ring is an order in some imaginary quadratic field).

Already Gauss (beginning of Chapter VII of Disquisitiones) foresaw the interest
and depth of this issue in some of these situations, which he interpreted as analogous
to cyclotomy, i.e., as the (arithmetical) theory of the dissection of a lemniscate (in
place of a circle) into equal parts. It is also interesting that the general case of prime m

had been considered by Galois (in a letter to Chevalier, 29 May 1832), especially from
the viewpoint of solvability by radicals of the corresponding algebraic equations.

We skip any other detail and only recall a few basic more modern achievements.

Some elliptic results

� A deep landmark result on the above-mentioned Galois image is Serre’s Open
Image Theorem (70s): in a sense it extends Gauss’ achievements (and more) to
the most general elliptic case, proving that the Galois image is as large as pos-
sible (compatibly with the endomorphism ring) up to bounded index. (We omit a
precise statement, which would lead us outside the scope of these notes.)

� Another very important and deep theorem is due to Mazur (70s), who proved
that for g2; g3 2 Q the possible torsion orders of rational torsion points never
exceed 12. This result corresponds to finding all rational points on suitable modu-
lar curves, providing a link of the present topic with major questions in the theory
of Diophantine equations.

� Merel 1994, with some new ingredient, extended this kind of result to number
fields other than Q (some independent work being due to Kamienny & Parent, and
previously to Demianenko & Manin in the case of prime-power torsion order).

Case of abelian varieties. The arithmetic and Galois structure of torsion elements is
even more difficult than the special elliptic case. But nowadays there has been great
progress, thanks to the work of Deligne, Bogomolov, Faltings, Serre; : : : ; Masser &
Wüstholz; : : : ; Mazur, Ribet, Pink, Tamagawa, Cadoret; : : : :

2. Algebraic relations among torsion points

We have recalled some results on individual torsion points. Let us now see some
problems on relations among torsion points.
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An old significant example comes from Gordan 1877 who studied the equation

cos 2�x C cos 2�y C cos 2�z C 1 D 0; x; y; z 2 Q;

with the purpose of classifying the finite subgroups of PGL2.C/. On writing

2 cos 2�z D e2�iz
C e�2�iz;

we see that this amounts to a certain algebraic equation among the three roots of
unity e2�ix , e2�iy , e2�iz , or else a certain (inhomogeneous) linear relation among
three roots of unity and their reciprocals.

Later on, general linear equations in roots of unity were studied systematically,
in particular by Mann 1965 and Conway & Jones 1976, in the setting of what the
latter authors called trigonometric diophantine equations. These results in particular
bounded the maximal torsion order in a linear equation with nonzero constant term
and no vanishing subsums (with coefficients in Q). As a very special instance, their
conclusions very easily imply that

the only triangles with rational sides and angles rational multiples of � are
equilateral,

and similar results follow for polygons with a given number of sides.
More recent applications appear, for example, in the work of Gross, Hironaka, and

McMullen (to cyclotomic factors of En-Coxeter polynomials, 2009), of Bourgain,
Gamburd, and Sarnak (to Markov surfaces 2016), of Kedlaya, Kolpakov, Poonen,
and Rubinstein (to rational angles among vectors in R3, 2020), and in a joint work of
the author with Dvornicich & Veneziano (to rational angles in plane lattices, 2020).

Uniform quantitative results (regarding the number of solutions of a given linear
equation) were proved, e.g., by Schlickewei, Evertse, Beukers & Smyth, and in a
joint work of the author with Bombieri, also towards the conjecture of Lang to be
discussed in the next section. (Subsequently these results have been quantitatively
refined by several authors, including Amoroso & Viada and Martinez.)

2.1. The conjecture of Lang

Independently of the above authors, Lang had raised in the 60s the related problem
of studying polynomial equations:

F.�; �/ D 0; �; � roots of unity, of unrestricted exponent:

Note that such a pair .�; �/ is a torsion point on the plane curve F.x; y/ D 0,
viewed inside G2

m.
Let F be given. As expected by Lang, there can be infinitely many solutions of the

said shape only if F has a binomial factor of the shape axmCbyn or axmynCb; this
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was quickly proved by Ihara, Serre, and Tate (and proofs may be got also through the
previously mentioned results on linear equations, on considering monomial terms).

This was later extended to arbitrary dimensions by M. Laurent and Sarnak &
Adams, proving (among other things) the conjecture of Lang:

An algebraic subvariety of Gr
m can have infinitely many torsion points only

if it contains a positive dimensional special subvariety, i.e., a translate of an
algebraic subgroup by a torsion point.

More precisely, their results yield the following theorem.

Theorem 2.1. Let † be any set of torsion points inside Gr
m. The Zariski closure of †

is a finite union of translates (by torsion points) of algebraic subgroups.

It is moreover not difficult to see that any connected algebraic subgroup of Gr
m

can be defined by finitely many equations of the shape x
a1

1 � � � x
ar
r D 1 and is (algeb-

raically) isomorphic to some Gh
m (h � r). Hence in practice the principle is that

every prescribed algebraic relation within varying torsion elements can be
explained in finite terms by a multiplicative structure of algebraic group.

Methods. The Galois theory of Gauss is a precious tool in all these achievements,
though also other ingredients are relevant.

As for the previously mentioned work, later this had several applications.
For instance we quote the work by Sarnak (on Betti numbers of congruence

groups, 1994), by Ailon & Rudnick (on gcd.f .t/n � 1;g.t/n � 1/, 2004), by Kurasov
& Sarnak (on crystalline measures, 2020).

2.2. Multiplicative relations on curves – unlikely intersections

The mentioned issues on torsion points may be extended to deal with more general
multiplicative relations among coordinates of points on a curve X inside a torus Gr

m.
That is, we weaken the condition that all the coordinates are torsion and only impose
that a certain number of independent multiplicative relations hold among the coordin-
ates.

It is easy to see that if we prescribe on the irreducible curve X a single multi-
plicative relation, i.e., of the shape x

a1

1 � � � x
ar
r D 1 with .x1; : : : ; xr/ 2 X , then we

obtain infinitely many points as .a1; : : : ; ar/ varies through all nonzero integer vec-
tors; this corresponds to intersect X with the union of all proper algebraic subgroups
of Gr

m. However, it turns out that imposing another such relation, independent with
the former but otherwise arbitrary (which corresponds to intersect X with the union
of algebraic subgroups of codimension � 2), yields only finitely many points, unless
the curve X is special in the sense that it is contained in a proper algebraic subgroup
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of Gr
m. (For r D 2 we obtain nothing new since imposing two independent relations

yields torsion coordinates, but for r > 2 this is a weaker restriction, making the the-
orem stronger.)

With the more demanding assumption that X is not contained in any proper trans-
late of algebraic subgroup, this was dealt with in a joint work of the author with
Bombieri & Masser 1999, and later proved in the sharper form by Maurin 2008,
relying partly on methods by Rémond. (This case is more difficult; for instance it
contains implicitly the so-called Mordell–Lang context for tori.) A different approach
for this stronger theorem was found later by the former authors with Habegger 2010
(this time using the results of Mordell–Lang type). A still further approach with the
stronger assumption appeared in a joint work of the author with Capuano, Masser,
and Pila 2016, based on the counting method alluded to below; this argument has the
advantage of extending to the abelian context (but not containing the sharper form).

Several results followed by other authors as well, also for some higher-dimen-
sional analogues, and further in the abelian case.

The topic, sometimes called Unlikely Intersections, was independently raised also
by Zilber 2002 (with entirely independent motivations from Logic) and again inde-
pendently by Pink 2005.2 They put forward certain general conjectures still widely
open (those of Pink embracing still further realms). These conjectures dealt also with
abelian varieties in place of tori, where exact analogues may be stated. We shall briefly
discuss this context in the next subsection.

2.3. The conjecture of Manin–Mumford

A motivation for the above-mentioned problems stated by Lang had been a conjecture
formulated independently by Manin & Mumford in the 60s.

Manin–Mumford conjecture. A curve of genus � 2 embedded in its Jacobian vari-
ety has only finitely many torsion points.

This may be indeed seen as an analogue (of more difficult nature) for abelian
varieties of some of the above problems for multiplicative tori. It became a theorem
due to Raynaud in the 80s; he was able to prove, more generally, the analogue of
Lang’s conjecture above, and for arbitrary abelian varieties (not merely Jacobians)
and arbitrary subvarieties. Several other proofs then followed, due, e.g., to Serre,
Coleman, Hindry, Buium, Hrushovski, Pink & Roessler, M. Baker & Ribet.

Still other proofs (by Bilu 1997 for Gr
m and Szpiro, Ullmo, and S. Zhang 1997 for

the abelian case) gave stronger results of Galois equidistribution of the conjugates of
torsion points when the degree of the field of definition of the points grows. Moreover,

2Certain rather special cases had been raised earlier by Schinzel, with still different lan-
guage and motivations, coming mainly from his theory of reducibility of lacunary polynomials.
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these proofs worked also for points of “small height”.3 Remarkable uniform estimates
here (e.g., for the number of torsion points on the curve) have been given very recently
by Kuehne 2021.

A further proof was found in a joint work of Pila and the author (2009): this relied
on the analytic isomorphism of a complex abelian variety with a complex torus, in
which torsion points correspond to rational points (as in the case of roots of unity).
Then one reduces to counting rational points on suitable analytic subvarieties of the
torus and comparing bounds from below (coming from the large degree of torsion
points – work by Masser) and from above. This last step is done through estim-
ates by Bombieri & Pila 1989, Pila, and finally Pila–Wilkie 2006. In turn, this last
work involves the (model)-theory of the so-called o-minimal structures (developed
by van der Dries et al.).

2.4. “Special points” and the André–Oort conjecture

As far-reaching analogues of torsion points, one may consider the so-called special
points in Shimura varieties. An important kind of such varieties arises as moduli
spaces of abelian varieties with certain properties (i.e., parametrizing abelian variet-
ies of given dimension with supplementary symmetries). The special points, playing
the role of torsion points, are those corresponding to Complex-Multiplication abelian
varieties. Moreover, one may also define special subvarieties of positive dimension,
analogues of the translates (by torsion points) of algebraic subgroups (in the conjec-
ture of Lang) or of abelian subvarieties (in the theorem of Raynaud, in turn analogue
of Lang’s for abelian varieties).

We skip any formal definition, since the context is quite technical, but we note that
one may formulate statements analogue to the above ones. A very relevant instance
is the André–Oort conjecture, raised by André 1989 and Oort 1990s independently.
Once that the above terminology has been introduced in precise terms, a possible
phrasing of it is as follows:

The Zariski closure of a set of special points is a finite union of special sub-
varieties.

This formulation reminds of what we have seen in the multiplicative and abelian
cases.

After the proof of a special case by André (i.e., the significant case of CM-points
on a curve in the plane A2, viewed as representing pairs of elliptic curves), the above-

3The height of a point with algebraic coordinates is a real non-negative number which
measures its arithmetical complexity; one may define a canonical height on the algebraic points
of a commutative algebraic group, which vanishes precisely at torsion points; we cannot pause
here on this concept, introduced first by Weil, despite its great relevance.
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mentioned counting method was applied by Pila to this context, proving substantially
more general instances.

A final step for the full conjecture (for the moduli space Ag ) was finally devised
by Tsimerman 2015 after many important intermediate results and steps, in particular
by Colmez, Edixhoven, Gao, Klingler, Pila, Pila & Tsimerman, Ullmo & Yafaev,
Yuan & S. Zhang; : : : : (A still more general form of the conjecture has been obtained
very recently by Pila, Shankar, and Tsimerman, relying also on further ingredients
provided by Binyamini and by Esnault & Groechening.)

Several other results in a similar spirit have been obtained and much work in the
context is still in progress.

Dynamical analogues. Still further analogues of special points occur in dynamics,
which we describe roughly as the study of iterates f; f ı2 WD f ı f; : : : ; f ın; : : : of
a map f W X ! X from a space X to itself. The simplest examples (already leading
often to very difficult problems) occur with rational maps f W P1 ! P1. As possible
analogues of torsion points one can consider preperiodic points for f , i.e., the points
x 2 X such that f ın.x/ D f ım.x/ for some integers n > m (so that the sequence
.f ır.x//r2N is finite). For instance, if X D Gm, f .x/ D xd (any d � 2), the preperi-
odic points are precisely the torsion points. One may formulate analogues of the above
statements, and some quite nontrivial remarkable results have been proved, mainly
due to the work of M. Baker, Bell, DeMarco, Ghioca, Hsia, Mavraki, Scanlon, Sil-
verman, Szpiro, Tucker, Yuan, S. Zhang; : : : ; among others. However, only a partial
picture has been obtained to date in this direction compared to the original context of
torsion points, and even a satisfactory formulation of suitable complete conjectures
seems not to have been reached so far.

3. Torsion in families of algebraic groups

We have briefly discussed torsion in individual algebraic groups, and algebraic rela-
tions among them. To go one step further, we can consider torsion conditions in
algebraic groups (and points) varying in families. The multiplicative group Gm does
not admit genuine “variation”, but already for elliptic curves we have truly noncon-
stant families. A typical and historically relevant instance of this is the Legendre
family of elliptic curves, defined by

L�Wy
2
D x.x � 1/.x � �/ C point at infinity O;

where � is a complex parameter in C � ¹0; 1º. For each b 2 C � ¹0; 1º up to two
exceptions, there are only six values of � producing a curve isomorphic to Lb , and
each complex elliptic curve is isomorphic to some Lb , so the family indeed is intrins-
ically not “constant”.
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Regarding families of points (also called sections), we may consider, just as a
simple instance, the points

P� D
�
2;
p

2.2 � �/
�
2 L�;

where the choice of the sign is immaterial for us.
It may be shown that

(1) P� is not identically torsion on L� (i.e., there is no integer m > 0 such that
mP� D O for all �), but

(2) Pb becomes torsion on Lb (of unrestricted exponent) for an infinite, even
dense, set of b 2 C. This set consists of algebraic numbers, and the corres-
ponding minimal torsion exponents tend to 1;

(3) these numbers b have bounded height. So for instance there are only finitely
many rational or even quadratic irrational ones, and in fact the degree over
Q of these numbers tends to 1. (Néron had previously shown that they form
a so-called thin set in any given number field.)

Property (1) follows from the general principle that torsion points are unramified
except above the locus of bad reduction. Property (2) may be proved through the Betti
map, mentioned below. Property (3) follows from results by Silverman & Tate 1980s.
Properties (2) and (3) actually hold for all sections (defined over xQ) satisfying (1).

Further Galois-equidistribution results for these numbers b are due to DeMarco
& Mavraki 2019. Note that the equidistribution here does not concern the (conjugates
of the) hypothetical torsion points, but regards the (conjugates of the) values b for
which Pb is a torsion point. Hence this result has a quite different meaning with
respect to the previously mentioned equidistribution theorems of Bilu and Szpiro,
Ullmo, and Zhang. This equidistribution implies in particular the above-mentioned
complex density.

For the actual choice of family (using the Betti map appearing below) one can
also prove density of the relevant b in the real half-line .�1; 2/, so that Pb 2 Lb.R/.
On the other hand, a joint work of the author with Lawrence observes that we never
have p-adic density for this set.

3.1. Masser’s problem and the Pink conjectures

Masser considered a second family of points, for instance

Q� D
�
� C 1;

p
�.� C 1/

�
2 L�:

The same remarks (1), (2), and (3) hold for this family, and moreover P�, Q� may
be shown to be generically linearly independent on L�, i.e., if rP� C sQ� D O for
certain integers r; s and all �, then r D s D 0.
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From (3) we see that the values b of � for which each point becomes separately
torsion form a sparse set, so Masser asked the following.

Masser’s question. Is the “doubly sparse” set

¹b 2 C W Pb; Qb are both torsion on Lbº

even a finite set?
Here Galois groups of torsion points do not give enough information, essentially

because the degree of the relevant numbers “b” is unbounded (and actually tends
to 1).

Using the above-mentioned counting method (and other tools), Masser & the
author (2008) gave an affirmative answer to the question, actually to its natural gen-
eralization to other pairs of families and sections.

Later this was further extended to arbitrary algebraic pencils of abelian varieties
and in other directions (e.g., of Unlikely Intersections type), also by M. Baker, Bar-
roero, Bertrand, Capuano, Daw, DeMarco, Dill, Habegger, G. Jones, Orr, Pila, Pillay,
H. Schmidt, Stoll, Tsimerman; : : : :

Some of these results may be seen as relative analogues of the Manin–Mumford
conjecture (i.e., where the ambient abelian variety moves in a family), and some other
ones as dynamical analogues (i.e., when the torsion points are replaced by preperiodic
points with respect to suitable rational maps).

The problem of Masser was recognized as a special case of conjectures by Pink
(and also of Zilber in other cases). As alluded above, these conjectures deal with much
more general contexts (including the André–Oort one) and are still widely open.

3.2. The Betti map

The counting method alluded to above worked for families and points defined over
xQ, but some of the tools failed over C. This obstacle was overcome in a joint work of
the author with Corvaja & Masser 2017 by specialization, to reduce to the algebraic
case.

This gave as a byproduct somewhat analogous conclusions for families paramet-
erized by spaces of dimension > 1.

Specialization appeared delicate because of certain possible degeneracies, diffi-
cult to exclude a priori. To get control on this, a relevant tool came from the so-called
(real analytic) Betti map: it gives the real coordinates of the point, in terms of a lattice
basis for the torus representing the abelian variety, the basis varying locally holo-
morphically in the family.

Example 3.1. In the case of the Legendre family, consider a lattice L� � C such that
C=L� Š L� (for instance through a Weierstrass exponential giving the Legendre
equation). Then, e.g., in the region R � C defined by max.j�j; j1 � �j/ < 1, by
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formulae going back to the XIX century, one can express a Z-basis of L� in terms
of hypergeometric functions, in fact as L� D Z!1 C Z!2, where !1 D i�F.1 � �/,
!2 D �F.�/ and where F.�/ D

P�
�1=2

n

�2
�n. For a given � 2 R and a point Q 2

L� we may take a representative for Q in C=L� of the shape ˇ1!1 C ˇ2!2 with
ˇ1; ˇ2 2 R=Z. Then by definition the ˇi are the Betti coordinates of Q and the Betti
map takes the value .ˇ1; ˇ2/ at Q.4

The Betti map is highly relevant in our context because its rational values cor-
respond precisely to torsion points. We have already mentioned some proofs where
essential use is made of this map.

The Betti map appeared implicitly already in a work by Manin 1960s and was
recently studied (for higher dimensions) in a work of Voisin 2019 and of André,
Corvaja & the author 2020, with further contributions by Gao and applications by
Voisin and by Dimitrov–Gao–Habegger and Kuehne.

4. Some applications

4.1. Pell equations in polynomials

The Pell equation

x2
� y2D D 1; D non-square positive integer;

to be solved in integers x; y ¤ 0, is a celebrated Diophantine equation, proposed in
fact by Fermat in the XVII century but actually having roots in ancient mathematics.
It is linked with many important issues in Number Theory, such as integral points on
curves (especially general affine conics), class-numbers and units of quadratic rings,
orthogonal groups over Z, Diophantine approximation and continued fractions, and
so on.

There is also a polynomial analogue, more recent and apparently less known,
but in fact also old, studied for instance already by Abel 1826, where D D D.t/ is a
(complex, for instance) polynomial of even degree 2d and not a square, and one seeks
polynomial solutions x.t/; y.t/ ¤ 0. Following a suggestion of Serre, this equation
may then be called Pell–Abel equation.

As in the classical case, a possible nontrivial solution generates infinitely many
ones through the formulae xn ˙ yn

p
D D .x ˙ y

p
D/n, n 2 Z (and all solutions are

generated in this way, up to sign, from a “minimal” one).

4This map may be defined in any given open simply connected region, like the above R,
and we can cover the domain C n ¹0; 1º with such regions. Then the map depends on a choice
of basis for a given region and is subject to monodromy as we travel through loops meeting
several regions.
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For the Pell–Abel equation, when deg D D 2 there are always solutions (over C),
and the polynomials x.t/, y.t/ which arise are related to Chebyshev polynomials.
But if deg D � 4, contrary to the classical case, it is generally unexpected to have
solutions (unless we work over a finite field). This assertion can be put on a rigorous
ground for instance using the Betti map. Indeed, the issue is linked with torsion in
the Jacobian of the smooth complete hyperelliptic curve H D HD defined affinely by
u2 D D.t/. In fact, denoting 1˙ the poles of t on H , it is not difficult to prove that
(nontrivial) solutions exist if and only if the class of the divisor 1C �1� 2 div.H/

has finite order in the divisor class group – i.e., in the Jacobian – of H .5 Abel gave
a translation of such condition in terms of the continued fraction for

p
D.t/ being

periodic (as happens in the classical case).
The polynomials D.t/ for which nontrivial solutions of the Pell–Abel equation

exist are sometimes called Pellian.
In a joint work of the author with Masser we studied some 1-parameter families

for fixed d , like D�.t/ D Dd;�.t/ WD t2d C t C �. As said, for d D 1, Db is always
Pellian. For d D 2 we easily realized that Db.t/ is Pellian for infinitely many b 2 C
(satisfying (3) of Section 3), whereas we proved that for d D 3 there are only finitely
many such values. We then extended the analysis to arbitrary 1-dimensional families
of polynomials D.t/ of higher degree and those results would lead, for example, to
the following theorem.

Theorem 4.1. For any d � 3, there are only finitely many b 2 C for which the Pell–
Abel equation for Dd;b.t/ is solvable.

We note that 0 lies in all these sets Pd WD ¹b 2 C W Dd;b is Pellianº, for we have

.2t2d�1
C 1/2

� .2td�1/2Dd;0.t/ D 1:

Open question. Is the union
S

d�3 Pd of these finite sets itself finite?
If the answer is at all affirmative, it appears to require new tools to be proved,

since the method that we used to deal with each single degree d � 3 is not completely
uniform as d varies.

The Pell–Abel equation, similarly to the original version, appears in many math-
ematical topics; just to mention a recent instance, it has been studied by Kollar in
connection with decidability issues and the Hilbert X problem over function fields.
(We recall that the usual Pell equation had been used by Matijasevic in his final step
solving the original Hilbert X problem.)

5A generalized Jacobian has to be considered if D.t/ has multiple roots. This link with
Jacobians may be viewed as somewhat analogue of Dirichlet class number formula for real
quadratic fields, the analogy being closer if we work over finite fields.
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4.2. Integration in finite terms

The problem of expressing indefinite integrals in terms of “simple” functions goes
back to long ago and appeared among the first examples and motivations for differ-
ential algebra. In this direction, we recall for instance the following (more or less
classical) definition.

Definition. We call Integrable in Finite Terms (abbr. IFT) a differential whose (indef-
inite) integral can be expressed by a finite tower of operations either of algebraic type,
or by taking exponentials or by taking logarithms (starting from rational functions).
We also call elementary an integral which can be likewise expressed.

Even recently, much attention has been given to the study of possible algebraic
relations among (definite) integrals of algebraic functions, special cases of periods
(after Grothendieck; : : : ; Kontsevich & Zagier; : : :), a topic not entirely unrelated
with this theme.

We have already mentioned Abel in connection with Pell’s equations in poly-
nomials, and indeed his research involved also elementary integration. Subsequently
the matter was studied by authors like Chebyshev, Liouville, Ritt, Kolchin; : : : ; giving
rise for instance to Differential Galois theory.

More recently, J. Davenport investigated pencils of algebraic differentials, to be
integrated in finite terms; he sought to understand whether,

if the general member of the family cannot be likewise integrated, the same
happens for the special members, up to finitely many exceptions.

Together with Masser we found how to establish when this type of assertion is
correct, and we also found some counterexamples.

By means of a criterion of Risch and other considerations, it turns out that the
analysis for such results in fact involves torsion, now in generalized Jacobians, which
are algebraic groups obtained as extensions of usual Jacobians by products of groups
of type Ga or Gm.

Jointly with Masser, we carried out this, applying in particular some of the above
results, and here are special cases of the output (all results joint with Masser 2018–
2020).

Theorem 4.2. There are only finitely many b 2 C such that the integral
R

.2zCb/ dz
p

z4CzCb
is elementary.

Example 4.3. The special value b D 1=2 is in the said finite set:Z
.2z C 1=2/ dzp

z4 C z C 1=2

D
1

2
log

�
4z4

� 4z3
C 2z2

C 2z � 1 C .4z2
� 4z C 2/

p
z4 C z C 1=2

�
:
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This corresponds to a torsion point of order 4 in an extension by Ga of the elliptic
curve w2 D z4 C z C .1=2/.

The next example yields a negative answer towards Davenport’s issue.

Example 4.4 (Counterexample). The differential z dz

.z2�t2/
p

z3�z
(over C.t/) is not

identically IFT but it becomes IFT for infinitely many specializations t ! b.

In this example, note the underlying elliptic curve w2 D z3 � z with CM: this is
no coincidence, since it can be shown that if the (usual) Jacobian of the underlying
curve (corresponding to the differential) does not contain CM elliptic curves, then
Davenport’s expectation is correct.

4.3. Elliptical billiards

Further applications of some of the results are to elliptical billiards, namely billiard
tables whose border is an ellipse and such that consecutive segments of billiard tra-
jectory obey the usual law of reflection at the border.

Work going back to Poncelet and Jacobi shows that to such a billiard one can
associate an elliptic family. In fact, it may be shown by nice arguments of Geometry,
of type almost going back to Euclid, that all segments in a given billiard trajectory are
tangent to a same conic, confocal with the ellipse, the so-called caustic. This caustic
varies in a family of dimension 1. If the caustic is given, then the set of pairs .P; l/,
where P lies on the ellipse and l is a line through P tangent to the caustic, describes
a curve of genus 1 embedded in P 2

1 . This curve becomes an elliptic curve after choice
of an origin, whence, as the caustic varies, we obtain the said elliptic family.

A choice of a slope for a billiard shot from a given point yields a section of this
family (depending on the point and parameterized by the slope). The torsion values
of such a section correspond to the trajectories which are periodic, whose analysis is
a main issue in the study of billiards.6

In this frame, on applying some of the above-mentioned results, in a recent joint
work with Corvaja (2021) we deduced certain finiteness theorems for periodic tra-
jectories in such billiards. For instance, we have the following conclusion.

Theorem 4.5. For each ˛ 2 .0; �/ there are only finitely many periodic pairs of
billiard shots from a given point in an elliptical billiard such that the initial directions
form an angle ˛.

This may be shown to be not generally true for rectangular billiards.

6Part of this is a special case of a famous theorem of Poncelet, dealing with more general
pairs of conics. The context has been generalized to higher dimensions by Griffiths & Harris
1977, which raises again questions related to the present realm.
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Another finiteness conclusion (proved however with results of “Unlikely Inter-
sections” type going beyond torsion – see above) concerns the set TP;Q;R of billiard
trajectories which connect two given points P; Q and pass through another given
point R: for instance, we have the following theorem.

Theorem 4.6. If Q is a hole (i.e., lies on the boundary) and P; R are not both foci of
the ellipse, then the set TP;Q;R is finite.

It is somewhat curious that some of these results in the degenerate case of a cir-
cular billiard are related to the above discussion around Lang’s conjecture.

Still further conclusions in the same spirit may be stated, e.g., concerning boom-
erang billiard shots. The link with the algebraic theory of elliptic families also shows
how arithmetic information may affect chaotic behavior in an elliptical billiard. For
instance, shots from a given point, and having slope of large enough arithmetic height,
cannot lead to periodic trajectories (we tacitly deal here with ellipses and points
defined over the algebraic numbers, which implies that the shot-slope is algebraic
too if we have periodicity). This kind of implication seems not to have previously
appeared in the theory of billiards.

5. Final remarks

Some open issues:

(1) To prove further cases of the conjectures of Pink and Zilber.

(2) To achieve effectivity in the counting of rational points appearing in some of
the proofs.
This last issue is related to the theory of o-minimality in Model Theory. Some
crucial recent work towards effectivity is due to Binyamini, and also to Daw,
Jones, Schmidt; : : : :

(3) To prove finiteness in families where also the degrees vary.

Some of the methods from o-minimality have been developed (by Cluckers,
Comte, Forey, and Loeser) in the p-adic context, and already applied by Chambert-
Loir and Loeser 2017.

One expects here further applications.

6. References

I have realized that giving references for all the topics that we have touched would
lead to a very long list, with some difficult choices and a heavy risk of leaving out
something relevant. So, I have decided to quote just two of my own publications on
these subjects, whose union contains a relevant quantity of references.
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(1) The book [1] on Unlikely Intersections was written about 10 years ago: much
work has appeared later, but the book contains an account of a substantial part
of the contents of these notes, and many references.

(2) The more recent survey paper [2] contains further descriptions and more
updated bibliography with respect to the former reference.
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Positive harmonic functions on the Heisenberg group I

Yves Benoist

Abstract. We present the classification of positive harmonic functions on the Heisenberg group
in the case of the southwest measure.

1. Introduction

In this self-contained paper, we present the classification of the positive harmonic
functions on the Heisenberg group H3.Z/ in the special case of the southwest mea-
sure. This example is striking because the famous partition functions occur as positive
harmonic functions. In this case, our main result tells us that roughly all positive
harmonic functions are combinations of characters and partition functions (Theo-
rem 1.1).

We will also explain with no proof how this result can be extended to finite pos-
itive measures on H3.Z/ (Theorem 3.8). The proof of this extension can be found
in [2].

1.1. The partition function p.x; y; z/ as a potential

We first introduce the “partition function” p.x; y; z/ for any integers x, y, z in Z.

1.1.1. The partition function. This function counts the “number of Young diagrams
of area z,” also called “partitions of z,” included in a rectangle with side lengths x
and y (see Figure 1). More precisely, when x, y, and z are non-negative, one has that

p.x; y; z/ D
ˇ̌®
.n1; : : : ; ny/ 2 Zy

j x � n1 � � � � � ny � 0

and n1 C � � � C ny D z
¯ˇ̌
; (1.1)

and p.x; y; z/ D 0 otherwise. The integers ni are the lengths of the rows of the
partition. By convention, for x � 0, one has that p.x; 0; z/ D 0 when z ¤ 0, and

2020 Mathematics Subject Classification. Primary 31C05; Secondary 20F18.
Keywords. Nilpotent group, potential theory, partition function, random walk.
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= 4 area

= 5

= 12y

x

z

Figure 1. The partition 12 D 5C 4C 2C 1 is included in a 5 � 4 rectangle.

+

Figure 2. The 11 partitions in the equality p.5; 4; 12/ D p.4; 4; 8/C p.5; 3; 12/.

that p.x; 0; 0/ D 1. This partition function satisfies the functional equation, for all
g D .x; y; z/ in Z3, g ¤ .0; 0; 0/,

p.x; y; z/ D p.x � 1; y; z � y/C p.x; y � 1; z/: (1.2)

One checks it by splitting this set of partitions according to the color of the lower-left
case of the rectangle as in Figure 2.

1.1.2. The Heisenberg group. Recall that the Heisenberg group G WDH3.Z/ is the
set Z3 of triples seen as matrices

.x; y; z/ WD
� 1 x z

0 1 y

0 0 1

�
:

It is endowed with the product

.x0; y0; z0/.x; y; z/ D .x0 C x; y0 C y; z0 C z C x0y/: (1.3)

Let �0 be the southwest measure on G. It is given by

�0 D ıa�1 C ıb�1 ; where a WD .1; 0; 0/ and b D .0; 1; 0/. (1.4)

Let e WD .0; 0; 0/ be the unity of G and let 1¹eº be the characteristic function of ¹eº.
Equation (1.2) can be rewritten as, for all g D .x; y; z/ in G,

p.g/ D p.a�1g/C p.b�1g/C 1¹eº.g/: (1.5)
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a
b
a
b
a a

b
a
b

Figure 3. The partition 12 D 5C 4C 2C 1 associated to the word w D ababaabab gives the
element g D gw D ababaabab D .5; 4; 12/ 2 H3.Z/.

In particular, the function f D p satisfies

f .g/ � P�0
f .g/; where P�0

f .g/ WD f .a�1g/C f .b�1g/: (1.6)

This inequality (1.6) tells us that the function f is a �0-superharmonic function
on the Heisenberg group G.

1.1.3. The potential. More precisely, the partition function p.g/ is the potential of
�0 at e. This means that one has the equality

p D

X
n�0

P n
�0

1¹eº:

Indeed, as can be seen in Figure 3, for g in G,

p.g/ is the number of ways to write g as a word in a and b. (1.7)

A function h on G is said to be �0-harmonic if it satisfies

h.g/ D P�0
h.g/; for all g in G, or equivalently (1.8)

h.x; y; z/ D h.x � 1; y; z � y/C h.x; y � 1; z/; for all .x; y; z/ in Z3: (1.9)

1.2. Construction of positive harmonic functions

We want to classify all the positive1 solutions of (1.6), i.e., all the positive �0-
superharmonic functions h on G. We begin with five remarks.

1.2.1. Choquet theorem. By a theorem of Choquet in [5], every positive superhar-
monic function h is an average of extremal2 positive superharmonic functions h˛ .
Moreover, when h is harmonic, the h˛ are harmonic. By Riesz decomposition theo-
rem [13, Thm. 2.1.4], every positive �0-superharmonic function can be written in a
unique way as the sum of a potential3 and a positive�0-harmonic function. Therefore,
it is enough to describe the extremal positive �0-harmonic functions on G.

1A function f on G is said to be positive if f .g/ � 0 for all g in G and f ¤ 0.
2A positive (super)harmonic function is said to be extremal if it cannot be written as the

sum of two non-proportional positive (super)harmonic functions.
3A potential is a function of the form f D

P
n�0 P

n
�0
F for a positive function F on G.
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" z
0 0 1 5 10 15 18 20 21 22
0 0 1 4 8 11 13 14 15 15
0 0 1 4 7 9 10 11 11 11
0 0 1 3 5 6 7 7 7 7
0 0 1 3 4 5 5 5 5 5
0 0 1 2 3 3 3 3 3 3
0 0 1 2 2 2 2 2 2 2
0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 ! y
0 0 0 0 0 0 0 0 0 0

Figure 4. The function py.z/ satisfies py.z/ D py.z � y/C py�1.z/.

1.2.2. Choquet–Deny theorem. If we look for a �0-harmonic function h which
does not depend on z, then (1.9) becomes

h.x; y/ D h.x � 1; y/C h.x; y � 1/; for all .x; y/ in Z2. (1.10)

This equation tells us that the function h is �0-harmonic on the abelian quotient Z2

of G. According to a theorem of Choquet and Deny in [6], since the support of the
measure �0 spans the group Z2, every extremal positive �0-harmonic function on
this abelian group is proportional to a character4:

�.x; y; z/ D rxsy with r; s > 0 and
1

r
C
1

s
D 1: (1.11)

1.2.3. The partition function as a harmonic function. If we look for a �0-har-
monic function h which does not depend on x, then (1.9) becomes

h.y; z/ D h.y; z � y/C h.y � 1; z/; for all .y; z/ in Z2. (1.12)

A nice example is given in Figure 4 by the partition function .y; z/ 7! py.z/, where

py.z/ D sup
x2Z

p.x; y; z/ D lim
x!1

p.x; y; z/ D p.z; y; z/

D the number of partitions of z with at most y rows. (1.13)

Hence the function h0.x; y; z/ WD py.z/ is a �0-harmonic function on G.

4The proof is very short. One notices that equality (1.10) gives a decomposition of h as a
sum of two positive harmonic functions and hence both of them are proportional to h.
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1.2.4. Margulis first theorem. According to the first theorem of Margulis, a theo-
rem he proved in [10] when he was not yet twenty, the Choquet–Deny theorem is
still true on a finitely generated nilpotent group G as soon as the support of the mea-
sure spans G as a semigroup (see Fact 3.7). This is why it might look surprising at
first glance that there exists a positive �0-harmonic function h0 on H3.Z/ which is
not invariant by the center. The reason it exists is that the support of �0 spans G as
a group but not as a semigroup. What is more surprising is that this “new” positive
harmonic function h0 is given by the famous partition function py.z/.

1.2.5. Switching and translating harmonic functions. We denote by � the auto-
morphism of G exchanging a and b. It is given by

�.x; y; z/ D .y; x; xy � z/:

Since the function h0 is �0-harmonic, the function

h1 WD h0 ı � W .x; y; z/ 7! px.xy � z/

is also �0-harmonic. For g0 inG, we denote by �g0
W g 7! gg0 the right translation by

g0 onG. The translated functions h0 ı �g0
W g 7! h0.gg0/ and h1 ı �g0

W g 7! h1.gg0/

are also �0-harmonic.

1.3. Classification of positive harmonic functions

We can now state our main result for the southwest measure �0 introduced in (1.4).

1.3.1. Main result and strategy.

Theorem 1.1. Let h be an extremal positive �0-harmonic function on the Heisenberg
group G WD H3.Z/. Then, up to a multiplicative scalar,

� either h D � is a �0-harmonic character �.x; y; z/ D rxsy as in (1.11)

� or h D h0 ı �g0
is a translate of the function h0.x; y; z/ WD py.z/

� or h D h1 ı �g0
is a translate of the function h1.x; y; z/ WD px.xy � z/.

This classification has been announced on May 28th 2019 in a short informal
videotaped speech at the Cetraro conference “Dynamics of group actions.” This video
can be found on the author’s web page.

As we will see, the partition function p.x; y; z/ will play a crucial role in the
proof of Theorem 1.1. Indeed, in Chapter 2, we will prove a ratio limit theorem for
the partition function p.x; y; z/. In Chapter 3, we will deduce from this ratio limit
theorem the proof of Theorem 1.1.

Notice that the positive �0-harmonic function h0 vanishes. In particular, it does
not satisfy the Harnack inequality. This contrasts with the case studied in [10], where
the support of � spans G as a semigroup.
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In the last section (Section 3.4), we will present the classification of the positive
�-harmonic functions, for all finitely supported measures � on G.

1.3.2. Dealing with a probability measure. At first glance it might look a little bit
weird to deal with a�0-harmonic function for a measure�0 which is not a probability
measure. We could have worked instead with the probability measure

z�0 D
1

2
.ıa�1 C ıb�1/; where a WD .1; 0; 0/ and b D .0; 1; 0/

which is the law for the southwest random walk on H3.Z/. The z�0-harmonic func-
tions Qh on G are the functions satisfying

Qh D P z�0
h; where P z�0

h.x; y; z/ D
1

2

�
Qh.x � 1; y; z � y/C Qh.x; y � 1; z/

�
is the expected value of the function h after one step of the random walk.

It is easy to see that

h.x; y; z/ is �0-harmonic if and only if 2�x�yh.x; y; z/ is z�0-harmonic:

Therefore, classifying positive �0-harmonic functions is equivalent to classifying
positive z�0-harmonic functions. The main reason we are using �0 instead of z�0 is to
get rid of all these factors 2�x�y .

1.3.3. Extremal superharmonic functions. We have seen in (1.5) that the parti-
tion function p is �0-superharmonic and more precisely that it is the potential of
�0 at e. For every g0 in G, the function p ı �g0

is also a potential of �0 at g�1
0 .

By Riesz decomposition theorem, those potentials are exactly the extremal positive
�0-superharmonic functions on G which are not harmonic. Therefore,

every extremal positive �0-superharmonic function f on G which is not har-
monic is a translate f D p ı �g0

of the function p.x; y; z/.

We would like to end this introduction by pointing out other limit theorems for
random walks on the Heisenberg group and other nilpotent groups as [3, 4, 7, 8] even
though we will not use them here.

2. The partition function

The aim of this chapter is to prove the ratio limit theorem (Proposition 2.2) for the
partition function p.x; y; z/.
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2.1. The unimodality of the partition functions

We recall that, for x; y; z � 0, the partition function p.x; y; z/ counts the number of
partitions of z included in a rectangle with side lengths x and y. See definition (1.1)
and Figure 1.

This function is non-zero for 0 � z � xy and satisfies the equalities

p.x; y; z/ D p.y; x; z/ D p.x; y; xy � z/: (2.1)

This function is well studied. For instance, one has the following fact.

Fact 2.1 (Cayley, Sylvester 1850). The sequence z 7! p.x; y; z/ is unimodal; i.e., it
is increasing for z � xy=2.

The proof below relies on the theory of finite dimensional representations of the
Lie algebra sl.2;R/. This proof is due to Hughes in [9]. See [12] for an elementary
proof and [14, p. 522] for a survey of various generalizations.

Sketch of proof of Fact 2.1. Let n WD x C y and let .Y; H; X/ be the principal sl2-
triple in the Lie algebra g WD sl.n;R/ so that H D diag.n � 1; n � 3; : : : ;�nC 1/.
This Lie algebra g has a natural representation in the space V WDƒx.Rn/. One checks
that p.x; y; z/ D dim Vxy�2z , where V� denotes the eigenspace of H in V for the
eigenvalue �. The theory of representations of sl.2;R/ tells us that for � > 0, one
always has that dimV� � dimV��2.

2.2. The ratio limit theorem

Here is the ratio limit theorem for p.x; y; z/.

Proposition 2.2. One has that

lim
z!1

xy�z!1

p.x; y; z � 1/

p.x; y; z/
D 1:

This limit is taken along sequences of positive triples .x; y; z/ such that z ! 1

and xy � z ! 1.
With this generality this theorem seems to be new, even though there already exist

very precise estimates of p.x; y; z/ in certain ranges. For instance, when x; y � z,
the partition function p.x; y; z/ D p.z; z; z/ depends only on z. It is the classical
partition function p.z/ which admits a famous asymptotic expansion due to Hardy
and Ramanujan in 1920 (see [1, Chap. 5]). These estimates have been extended to
larger ranges of .x; y; z/ as in [11, 15]. We will not use them.

The proof of Proposition 2.2 is tricky but elementary. The rough idea is to intro-
duce a relation between the set of partitions w of z and the set of partitions w0 of
z � 1 such that “most of the time” when w and w0 are related, they are related to
approximately the same number of partitions (see Lemma 2.5).
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Because of (2.1), we can assume that y � x and z � xy=2.

2.3. When the height of the rectangles is bounded

In this section, we deal with the easy case when the height y remains bounded.

Lemma 2.3. For all y � 1, one has that

lim
x;z!1

z�xy=2

p.x; y; z � 1/

p.x; y; z/
D 1:

Note that in this limit y is fixed, and x, z go to 1 with z � xy=2.

Proof of Lemma 2.3. This follows from Lemma 2.4 and the inequalities

0 � p.x; y; z/ � p.x; y; z � 1/ � p.x; y � 1; z/:

The first inequality is the unimodality of the partition function.
For the second inequality, just notice that one can inject the set of partitions of z of

height exactly y inside the set of partitions of z � 1 of height at most y by removing
the last square in the bottom row of each partition.

We have used the following lemma.

Lemma 2.4. (a) For all x; y; z � 1, one has that p.x; y; z/ � zy�1.

(b) For all y � 1, there exists ˛y > 0 such that, for all x; z � 1 with z � xy=2,
one has that p.x; y; z/ � ˛yz

y�1.

Proof of Lemma 2.4. (a) The lengths of the last y�1 rows of the partition are bounded
by z � 1 and the first row is deduced from the others.

(b) Choose y � 1 integers m1; : : : ; my�1 in the interval Œ0; z
y2 � and keep only

those for which the system

n1 � n2 D m1; : : : ; ny�1 � ny D my�1 and n1 C � � � C ny D z

has a solution .n1; : : : ; ny/ in Zy . But then one has that

ny D
1

y

�
z �m1 � 2m2 � � � � � .y � 1/my�1

�
� 0;

n1 D ny Cm1 C � � � Cmy�1 �
z

y
C
z

y
� x:

This gives about 1
y
. z

y2 /
y�1 partitions of z with x � n1 � � � � � ny � 0.

2.4. Inner and outer corner of a partition

We now introduce notations that will strengthen the connection between partitions
and words in the Heisenberg group.
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Figure 5. The fiber ��1.w/ of the word w D ababaabab has size fw D 4.

We recall that a D .1; 0; 0/ and b D .0; 1; 0/ are the generators of the Heisenberg
group G D H3.Z/. Let

GC
WD

®
g D .x; y; z/ 2 G j x; y � 0 and 0 � z � xy

¯
be the semigroup generated by a and b and let

c D aba�1b�1
D .0; 0; 1/ (2.2)

be the generator of the center Z of G.
Let Bn WD ¹a; bºn be the set of finite words w in a, b of length `w D n and let

B WD
S

n�0 Bn. Using the product law in G, to each word w 2 B , we can associate
an element gw in GC. The partition function gives the size of the fibers of this map:

p.g/ D jBg j; where Bg WD ¹w 2 B j gw D gº: (2.3)

Indeed, as explained in Figure 3, when g D .x; y; z/, each word w in Bg corresponds
uniquely to a partition of z included in a rectangle with side lengths x and y. We
introduce now the following relation R on B:

R WD
®
.w;w0/ 2 B � B j w D w0abw1 and w0

D w0baw1

for some w0; w1 in B
¯
:

Let � W R ! B and � 0 W R ! B be the two projections

�.w;w0/ D w and �.w;w0/ D w0:

For w, w0 in B , the cardinality of the fiber fw WD j��1.w/j is the number of pairs
ab occurring in the word w. The size fw is also the number of inner corners of
the partition associated to w (see Figure 5). Similarly the cardinality of the fiber
f 0

w0 WD j� 0�1.w0/j is the number of pairs ba occurring in the word w0. It is equal to
the number of outer corners of the partition associated to w0.

The following lemma compares the size of these fibers.

Lemma 2.5. (a) For all .w;w0/ 2 R, one has that gw D gw0c.

(b) For all .w;w0/ 2 R, one has that jfw � f 0
w0 j � 2.

In particular, one also has that fw � 3f 0
w0 .
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Proof of Lemma 2.5. (a) This follows from the equality c D aba�1b�1.
(b) Comparing the number of pairs ab and pairs ba occurring in w and in w0, one

gets jfw � fw0 j � 1 and jfw0 � f 0
w0 j � 1.

2.5. Partitions with bounded number of corners

We will need to control the number p�i .x; y; z/ of partitions of z included in a
rectangle with side length x, y that have at most i inner corner.

The following Lemma 2.6 tells us that p�i .x; y; z/ is negligible compared to the
total number of partitions p.x; y; z/.

Lemma 2.6. For all i � 0, one has that

lim
x;y;z!1

z�xy=2

p�i .x; y; z/

p.x; y; z/
D 0:

The limit is taken along sequences where all coordinates x, y, z go to 1 and
z � xy=2.

Proof of Lemma 2.6. Use the following slight upgrade of Lemma 2.4.

Lemma 2.7. (a) For all x; y; z; i � 1, one has that p�i .x; y; z/ � .2z/2i .

(b) For all j > 1, there exists z0 D z0.j / � 1 such that, for all x; y; z � 1 with
4j � y � x and z0 � z � xy=2, one has that p.x; y; z/ � zj .

Proof of Lemma 2.7. It is similar to Lemma 2.4.
(a) We can assume that x D y D z. We want to choose integers a1; : : : ; ai � 1

and m1; : : : ; mi � 0, bounded by z such that a1m1 C � � � C aimi D z. There are at
most .2z/2i possibilities.

(b) We give a rough count. Choose Ly � y as large as possible such that, setting
`y D ŒLy=2� and `x D Œz=Ly �, one has that `y � `x � x=2. There exists a partition
w0 of z with Ly rows and all of whose rows have length `x or `x C 1. For every
sequence `x > m1 � � � � � m`y

� 0, we can modify this partition w0 by adding mj

spots to the j th highest row of w0 and removing mj spots to the j th lowest row of
w0, for all j � `y . This gives N different partitions of z, where N WD

�`xC`y�1

`y

�
�

max.2; `x=`y/
`y . Hence, one has that p.x; y; z/ � N .

First case: when z � y2=2. In this case, we have that Ly D Œ
p
2z�.

One gets N � 2`y � 2
p

z=2 � zj .

Second case: when z � y2=2. In this case, we have that Ly D y.
If z � y4, one gets N � 2`y � 2

4
p

z=4 � zj .
If z � y4, one gets N � . `x

`y
/`y � . z

y2 /
`y �

p
z

`y
� zy=4 � zj .
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2.6. When the height of the rectangles is unbounded

We can now explain the proof of the ratio limit theorem.

Proof of Proposition 2.2. By (2.1) and Lemma 2.3, we can assume that the three
positive integers x, y, z are going to 1 with y � x and z � xy=2. For g D .x; y; z/

in GC, one sets Rg WD ¹.w;w0/ 2 R j gw D gº, and one computes

p.g/ D jBg j D "g C

X
.w;w0/2Rg

1

fw

; (2.4)

where "g D 1 if Rg D ; and "g D 0 otherwise. Similarly, by Lemma 2.5 (a), one has
that

p.gc�1/ D jBgc�1 j D "0g C

X
.w;w0/2Rg

1

f 0
w0

; (2.5)

where "0g D 0 or 1. Combining (2.4), (2.5), and Lemma 2.5 (b), one getsˇ̌
p.g/ � p.gc�1/

ˇ̌
� 2C

X
.w;w0/2Rg

2

fwf
0

w0

� 2C
X

.w;w0/2Rg

6

f 2
w

� 2C
X

w2Bg

fw¤0

6

fw

:

We recall that p�i .g/ is the number of w with fw � i . Therefore, one has thatˇ̌
p.g/ � p.gc�1/

ˇ̌
� 2C 6p�i .g/C

6

i
p.g/ for all i � 1:

We let x; y; z go to infinity with z � xy=2. According to Lemma 2.6, for all i � 1,
the ratios p�i .g/=p.g/ converge to 0. Therefore,

lim sup
ˇ̌̌̌
p.gc�1/

p.g/
� 1

ˇ̌̌̌
�
6

i
;

and therefore the sequence p.gc�1/
p.g/

converges to 1 as required.

3. Positive harmonic functions

We now start the classification of extremal positive �0-harmonic functions h. In Sec-
tion 3.1, we deal with the case where h has a non-zero limit along an orbit of a�1 or
b�1. In Sections 3.2 and 3.3, we deal with the case where h goes to zero along all
orbits of a�1 and b�1. In Section 3.4, we present the generalization of this classifica-
tion to any finitely supported measure � on G.
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3.1. The partition function as a harmonic function

In this section, we characterize the functions h0 ı �g0
and h1 ı �g0

among extremal
positive �0-harmonic functions by their behavior along the orbits a�Ng0 and b�Ng0

of G.
We recall that a D .1; 0; 0/ and b D .0; 1; 0/ are the generators of the Heisenberg

group G D H3.Z/, that �0 D ıa�1 C ıb�1 , and that h0 and h1 are the �0-harmonic
functions h0.x; y; z/ D py.z/ and h1.x; y; z/ D px.xy � z/.

We first begin by an alternative construction of the function h0. Let H0 be the
abelian subgroup ofG generated by a and let 0 WD 1H0

be the characteristic function
of H0. One has that

 0.x; y; z/ D

´
1 when y D z D 0;

0 otherwise:

Lemma 3.1. One has the equality h0 D limn!1 P n
�0
 0.

Remark. Since the function  0 is �0-subharmonic, i.e.,  0 � P�0
 0, the sequence

n 7! P n
�0
 0 is increasing.

Proof of Lemma 3.1. One can compute explicitly this function P n
�0
 0. It does not

depend on x. Indeed, P n
�0
 0.x; y; z/ is the number of ways of writing the element

.n � y; y; z/ as a word w of length n in a and b. This proves the equality, involving
the partition function,

P n
�0
 0.x; y; z/ D p.n � y; y; z/:

Letting n go to 1, we conclude using (1.13).

Lemma 3.2. Let g0 2 G and let h be an extremal positive �0-harmonic function on
G such that lim supn!1 h.a�ng0/ > 0. Then one has that hD �h0 ı �g0

with � > 0.
In particular, the positive �0-harmonic function h0 ı �g0

is extremal.

Proof of Lemma 3.2. We can assume that g0 D e. Since the function h is positive and
�0-harmonic, the sequence n 7! h.a�n/ is decreasing. Hence it has a limit �. By
assumption, this limit � is positive. By construction, one has the equality h � � 0.
Since h is �0-harmonic, one also has the inequality h� �P n

�0
 0 for all n � 0. There-

fore, by Lemma 3.1, one gets h � �h0. Since h is extremal, it has to be proportional
to h0 and therefore one has that h D �h0.

It remains to check that h0 is extremal. If one can write h0 D h00 C h000 with both h00
and h000 positive �0-harmonic, for at least one of them, say h00, the sequence h00.a

�n/

does not converge to 0 for n! 1. Hence, by the previous discussion, h00 is propor-
tional to h0. This proves that h0 is extremal.
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Exchanging the role of a and b we get the following corollary.

Corollary 3.3. Let h be an extremal positive �0-harmonic function on G such that
lim supn!1 h.b�ng0/ > 0. Then one has that h D �h1 ı �g0

for some � > 0.
In particular, the positive �0-harmonic function h1 ı �g0

is extremal.

3.2. Harmonic functions that decay on cosets

We now discuss positive harmonic functions on G that decay to 0 along the orbits
a�Ng0 and b�Ng0.

Let Gn be the subset of G consisting of elements of “degree” n,

Gn D
®
g D .x; y; z/ 2 G j x C y D n

¯
:

By definition and by (1.7), a positive�0-harmonic function h onG satisfies the equal-
ity, for all n � 1,

h.g0/ D
X

w2Bn

h.g�1
w g0/ D

X
g2Gn

p.g/h.g�1g0/: (3.1)

For an integer A > 0, we set

Gn;A D
®
g D .x; y; z/ 2 Gn j z � A

¯
; (3.2)

G�
n;A D

®
g D .x; y; z/ 2 Gn j xy � z � A

¯
:

The following lemma tells us when the contributions of Gn;A and G�
n;A in formula

(3.1) are negligible.

Lemma 3.4. Let h be a positive �0-harmonic function on G such that

lim
n!1

h.a�ng0/ D 0 and lim
n!1

h.b�ng0/ D 0 for all g0 in G. (3.3)

Then, for all A > 0 and g0 in G, one has that

lim
n!1

X
g2Gn;A[G�

n;A

p.g/h.g�1g0/ D 0: (3.4)

Proof of Lemma 3.4. It is enough to prove (3.4) with g0 D e. Moreover, since G�
n;A

is the image of Gn;A by the involution � which exchanges a and b, it is enough to
prove (3.4) with g 2 Gn;A. Equivalently, it is enough to prove that

lim
n!1

X
w2Bn;A

h.g�1
w / D 0; where Bn;A WD ¹w 2 Bn j g�1

w 2 Gn;Aº: (3.5)
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s
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a
k

m

A£z

Figure 6. The decomposition w D bmsak for a word w 2 Bn;A.

Note that, when n > A, every word w 2 Bn;A can be written as

w D bmsak

with s 2 BAC1 a word of length AC 1 (see Figure 6). One splits the set Bn;A accord-
ing to m � A or m < A. Therefore, for n � 2A, one has the inclusion

Bn;A � bABn�A [ B2Aa
n�2A:

Therefore, using (3.1), one gets the inequalitiesX
w2Bn;A

h.g�1
w / �

X
w2Bn�A

h.g�1
w b�A/C

X
w2B2A

h.a�.n�2A/g�1
w /

D h.b�A/C
X

w2B2A

h.a�.n�2A/g�1
w /:

For all " > 0, we choose A large enough so that, by the second assumption (3.3), one
has that h.b�A/ � ". Then the last sum is a sum over the fixed finite set B2A, and, by
the first assumption (3.3), this last sum converges to 0 when n goes to infinity. This
proves (3.5) as required.

3.3. Using the ratio limit theorem

Combining Lemma 3.4 with the ratio limit theorem, we can finish the last case of the
proof of Theorem 1.1.

Lemma 3.5. Let h be a positive �0-harmonic function on G such that, for all g0 in
G, limn!1 h.a�ng0/ D limn!1 h.b�ng0/ D 0. Then h is invariant by the center
Z D cZ of G.

Proof of Lemma 3.5. Using (3.1) with g0 and g0c, we compute

h.g0/ � h.g0c/ D
X

g2Gn

�
p.g/ � p.gc/

�
h.g�1g0/: (3.6)
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We fix " > 0. According to the ratio limit theorem (Proposition 2.2), there exists
an integer A > 0 such that, for all g D .x; y; z/ in GC with z � A and xy � z � A,
one has that ˇ̌

p.g/ � p.gc/
ˇ̌
� "p.g/: (3.7)

Therefore, using (3.6), (3.7), and definition (3.2), one getsˇ̌
h.g0/�h.g0c/

ˇ̌
�

X
g2Gn

"p.g/h.g�1g0/C
X

g2Gn;A[G�
n;A

p.g/
�
h.g�1g0/Ch.g

�1g0c/
�
:

By (3.1), the first term is equal to "h.g0/. Therefore, using twice Lemma 3.4 and
letting n go to infinity, one gets jh.g0/� h.g0c/j � "h.g0/. Since " is arbitrary small,
this proves that h.g0/ D h.g0c/ as required.

Corollary 3.6. Let h be an extremal positive �0-harmonic function on G such that,
for all g0 in G, limn!1 h.a�ng0/ D limn!1 h.b�ng0/ D 0. Then h is a character
of G.

In particular, every �0-harmonic character of G is an extremal positive �0-
harmonic function.

Proof of Corollary 3.6. By Lemma 3.5, the function h is �0-harmonic on the abelian
group G=Z. By Choquet–Deny theorem, it is a character.

It remains to check that a �0-harmonic character � is extremal. Assume that
�D h0 C h00 with both h0 and h00 positive �0-harmonic. For all g0 inG, the sequences
h0.a�ng0/ and h0.b�ng0/ converge to 0 for n! 1. Hence, by the previous discus-
sion and by Choquet’s theorem, the function h0 is an integral h0 D

R
C
�0 d�.�0/, where

� is a finite positive measure on the set C of (harmonic) character �0 of G. Since
h0 � �, the measure � must be supported by �. This proves that � is extremal.

This ends the proof of Theorem 1.1.

3.4. Extension to finitely supported measures

In this section, we give the classification of the positive �-harmonic functions on the
Heisenberg group for all finitely supported measure �.

Let G D H3.Z/ be the Heisenberg group and let S be a finite subset of G. We
denote by GS the subgroup of G generated by S . Let � D

P
s2S �sıs be a positive

measure on G with support S .
We recall that a function h on G is said to be �-harmonic if

h D P�h; where P�h.g/ WD
X
s2S

�sh.sg/: (3.8)
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We want to describe the cone HC of positive �-harmonic functions h on G. By
Choquet’s theorem, it is enough to describe the extremal rays of this cone HC.

There are two constructions of extremal positive �-harmonic functions.

3.4.1. The harmonic characters �. By definition, the �-harmonic characters are
the characters � WG! R>0 ofG such that

P
s2S �s�.s/D 1. Such a function hD �

is an extremal positive �-harmonic function on G which is invariant by the center Z
of G.

We now recall Margulis’s theorem which tells us that this first construction is the
only possible when GC

� D G.

Fact 3.7 (Margulis). Let � be a finite positive measure on a finitely generated nilpo-
tent group G. If the semigroup GC

� generated by the support of � is equal to G, then
every extremal positive �-harmonic function h on G is a character.

Sketch of proof of Fact 3.7 for G D H3.Z/. Because of the assumptionGC
� DG, we

can assume that �c > 0 and �a > 0. The first part of the argument is as in the abelian
case: since h.x; y; z/ � �ch.x; y; z C 1/, these two �-harmonic functions are pro-
portional and we get that, for some t > 0, one has that h.x; y; z/ D h.x; y; 0/tz . We
now want to prove that t D 1.

Let Kt be the set of positive harmonic functions h0.x; y; z/ D  0.x; y/t
z with

h0.e/ D 1. Since GC
� D G, the convex set Kt is compact for the pointwise conver-

gence. The element a 2 G acts continuously by “right-translation and renormaliza-
tion” on Kt . By Schauder’s fixed point theorem, this action has a fixed point h0 in
Kt . It can be written as h0.x; y; z/ D rx'0.y/t

z with r > 0. But then one writes
h0.g/ � �ah0.ag/ for all g inG, or equivalently '0.y/ � �ar'0.y/t

y for all y 2 Z.
This proves that t D 1.

When GC
� ¤ G, a second construction is possible.

3.4.2. The functions hS0;�0
induced from a harmonic character. Let S0 � S be

an abelian subset. Denote by �S0
WD

P
s2S0

�sıs the measure restriction of � to S0.
Let �0 be a �S0

-harmonic character of GS0
. We extend �0 as a function

 0 WD �01GS0

onG which is 0 outsideGS0
. This function 0 is�-subharmonic, so that the sequence

P n
� 0 is increasing. We set

hS0;�0
D lim

n!1
P n

� 0:

We can tell exactly for which pairs .S0; �0/ the function hS0;�0
is finite (see [2]). In

this case, the function hS0;�0
is an extremal positive �-harmonic function on G.
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We can now state the extension of Theorem 1.1 to a more general finitely sup-
ported measure � on G.

Theorem 3.8. Let G D H3.Z/ and � a positive measure on G whose finite support
S generates the group G. Then every extremal positive �-harmonic function h on G
is proportional either to a character � ofG or to a translate hS0;�0

ı �g0
of a function

induced from a harmonic character.

Corollary 3.9. Let G D H3.Z/, Z its center, and � a probability measure on G
whose finite support S generates the group G. The following are equivalent.

(i) Every positive �-harmonic function on G is Z-invariant.

(ii) GC
� contains two non-central elements whose product is in Z X ¹0º.

Theorem 3.8 and Corollary 3.9 are proven in the sequel paper [2].
We will also see in [2] that on the nilpotent group of rank 4 with cyclic center,

there exist extremal positive harmonic functions which are neither a harmonic char-
acter nor a function induced from a harmonic character.
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Kähler–Einstein metrics and Archimedean zeta functions

Robert J. Berman

Abstract. While the existence of a unique Kähler–Einstein metric on a canonically polarized
manifold X was established by Aubin and Yau already in the 70s, there are only a few explicit
formulas available. In a previous work, a probabilistic construction of the Kähler–Einstein met-
ric was introduced – involving canonical random point processes onX – which yields canonical
approximations of the Kähler–Einstein metric, expressed as explicit period integrals over a large
number of products of X . Here it is shown that the conjectural extension to the case when X is
a Fano variety suggests a zero-free property of the Archimedean zeta functions defined by the
partition functions of the probabilistic model. A weaker zero-free property is also shown to be
relevant for the Calabi–Yau equation. The convergence in the case of log Fano curves is settled,
exploiting relations to the complex Selberg integral in the orbifold case. Some intriguing rela-
tions to the zero-free property of the local automorphic L-functions appearing in the Langlands
program and arithmetic geometry are also pointed out. These relations also suggest a natural
p-adic extension of the probabilistic approach.

1. Introduction

A metric ! on a compact complex manifold X is said to be Kähler–Einstein if it has
constant Ricci curvature:

Ric! D �ˇ!

for some constant ˇ and ! is Kähler (i.e., parallel translation preserves the complex
structure on X ). Such metrics play a prominent role in current complex differential
geometry and the study of complex algebraic varieties, in particular in the context of
the Yau–Tian–Donaldson conjecture [39] and the minimal model program (MMP) in
birational algebraic geometry [61]. In [7, 8], a probabilistic construction of Kähler–
Einstein metrics with negative Ricci curvature on a complex projective algebraic vari-
ety X was introduced, where the Kähler–Einstein metric emerges from a canonical
random point process on X . The random point process is defined in terms of purely
algebro-geometric data. Accordingly, one virtue of this approach is that it generates

2020 Mathematics Subject Classification. Primary 32Q20; Secondary 14J45, 60G55, 11S40,
14G40.
Keywords. Kähler–Einstein metric, Fano variety, random point process, Langlands
L-functions, Arakelov geometry.
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new links between differential geometry on the one hand and algebraic-geometry on
the other. In the present work, it is, in particular, shown that the conjectural extension
to Kähler–Einstein metrics with positive Ricci curvature suggests a zero-free property
of the Archimedean zeta functions defined by the partition functions of the probabilis-
tic model. The particular case of Kähler–Einstein metrics with conical singularities
on the Riemann sphere is settled, which from the algebro-geometric perspective cor-
responds to the case of log Fano curves.

We start by providing some background on Kähler–Einstein metrics and recapit-
ulating the probabilistic approach to Kähler–Einstein metrics; the reader is referred to
the survey [9] for more background and [13] for relations to the Yau–Tian–Donaldson
conjecture. See also [20] for connections to quantum gravity in the context of the
AdS/CFT correspondence and [11, 41] for connections to polynomial approximation
theory and pluripotential theory in Cn.

1.1. Kähler–Einstein metrics

The existence of a Kähler–Einstein metric onX implies that the canonical line bundle
KX ofX (i.e., the top exterior power of the cotangent bundle ofX ) has a definite sign:

sign.KX / D sign.ˇ/: (1.1)

We will be using the standard terminology of positivity in complex geometry: a line
bundle L is said to be positive, L > 0, if it is ample and negative, L < 0, if its dual
is positive. In analytic terms, L > 0 iff L carries some Hermitian metric with strictly
positive curvature. The standard additive notation for tensor products of line bundles
will be adopted. Accordingly, the dual of L is expressed as �L. We will focus on the
cases when ˇ ¤ 0. Then X is automatically a complex projective algebraic manifold
and after a rescaling of the metric we may as well assume that ˇ D˙1. For example,
in the case when X is a hypersurface in PnC1, cut out by a homogeneous polynomial
of degree d ,

KX > 0, d > nC 2; �KX > 0, d < nC 2:

In the case when KX > 0, the existence of a Kähler–Einstein metric was established
in the late seventies [3, 82]. The opposite case �KX > 0 is the subject of the Yau–
Tian–Donaldson conjecture, which was settled only recently (see the survey [39]).
However, these are abstract existence results and there are very few explicit formulas
for Kähler–Einstein metrics on complex algebraic varieties available. For example,
even in the simplest case when KX > 0 and X is complex curve, n D 1, finding an
explicit formula for the Kähler–Einstein metric is equivalent to finding an explicit
uniformization map from the curve X to the quotient H=G of the upper half-plane
by a discrete subgroup G � SL.2;R/. This has only been achieved for very special
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curves (such as the Klein quartic and Fermat curves), using techniques originating in
the classical works by Weierstrass, Riemann, Fuchs, Schwartz, Klein, Poincaré, etc.
Thus one virtue of the probabilistic approach is that it yields canonical approxima-
tions of the Kähler–Einstein metric onX , expressed as essentially explicit period-type
integrals formulas (see formula (1.4)). These are reminiscent of the aforementioned
few explicit formulas for Kähler–Einstein metrics, involving hypergeometric integrals
(see [9, Section 2.1]).

1.2. The probabilistic approach

First, recall that, in the case when ˇ ¤ 0, a Kähler–Einstein metric !KE on X can be
readily recovered from its (normalized) volume form dVKE :

!KE D
1

ˇ

i

2�
@N@ log dVKE ;

where we have identified the volume form dV with its local density, defined with
respect to a choice of local holomorphic coordinates z. The strategy of the proba-
bilistic approach is to construct the normalized volume form dVKE by a canonical
sampling procedure on X . In other words, after constructing a canonical symmetric
probability measure �.N/ on XN , the goal is to show that the corresponding empiri-
cal measure

ıN WD
1

N

NX
iD1

ıxi
;

viewed as a random discrete measure on X , converges in probability as N ! 1 to
the volume form dVKE of the Kähler–Einstein metric !KE .

1.2.1. The case ˇ > 0. When KX > 0, the canonical probability measure �.N/ on
XN , introduced in [7], is defined for a specific subsequence of integers Nk tending
to infinity, the plurigenera of X :

Nk WD dimH 0.X; kKX /;

whereH 0.X; kKX / denotes the complex vector space of all global holomorphic sec-
tions s.k/ of the kth tensor power of the canonical line bundle KX ! X (called
pluricanonical forms). The assumption thatKX >0 ensures thatNk !1, as k!1.
In terms of local holomorphic coordinates z 2 Cn on X , a section s.k/ of kKX ! X

may be represented by local holomorphic functions s.k/ on X , such that js.k/j2=k

transforms as a density on X , i.e., defines a measure on X . The canonical symmetric
probability measure �.Nk/ on XNk is concretely defined by

�.Nk/ WD
1

ZNk

j detS .k/j2=k; ZNk
WD

Z
XNk

j detS .k/j2=k; (1.2)
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where detS .k/ is the holomorphic section of the canonical line bundle .kKXNk / over
XNk , defined by the Slater determinant

.detS .k//.x1; x2; : : : ; xNk
/ WD det

�
s
.k/
i .xj /

�
; (1.3)

in terms of a given basis s.k/i in H 0.X; kKX /. Under a change of bases, the sec-
tion det S .k/ only changes by a multiplicative complex constant (the determinant of
the change of bases matrix on H 0.X; kKX /) and so does the normalizing constant
ZNk

. As a result, �.Nk/ is indeed canonical, i.e., independent of the choice of bases.
Moreover, it is completely encoded by algebro-geometric data in the following sense:
realizing X as projective algebraic subvariety, the section det S .k/ can be identified
with a homogeneous polynomial, determined by the coordinate ring of X (or more
precisely, the degree k component of the canonical ring of X ).

The following convergence result was shown in [7].

Theorem 1.1. Let X be a compact complex manifold with positive canonical line
bundleKX . Then the empirical measures ıNk

of the corresponding canonical random
point processes on X converge in probability, as Nk ! 1, towards the normalized
volume form dVKE of the unique Kähler–Einstein metric !KE on X .

In fact, the proof (discussed in Section 2.2) shows that the convergence holds at
an exponential rate, in the sense of large deviation theory: for any given " > 0, there
exists a positive constant C" such that

Prob
�
d

�
1

N

NX
iD1

ıxi
; dVKE

�
> "

�
� C"e

�N";

where d denotes any metric on the space P .X/ of probability measures on X com-
patible with the weak topology. The convergence in probability implies, in particular,
that the measures dVk on X , defined by the expectations E.ıNk

/ of the empirical
measure ıNk

, converge towards dVKE in the weak topology of measures on X :

dVk WD E.ıNk
/ D

Z
XNk�1

�.Nk/ ! dVKE ; k ! 1:

For k sufficiently large (ensuring that kKX is very ample), the measures dVk are, in
fact, volume forms onX and induce a sequence of canonical Kähler metrics !k onX ,
expressed in terms of period-type integrals:

!k WD
i

2�
@N@ log dVk D

i

2�
@N@ log

Z
XNk�1

j detS .k/j2=k; (1.4)

whose integrands are encoded by the degree k component of the canonical ring of X .
The convergence above also implies that the canonical Kähler metrics !k converge,
as k ! 1, towards the Kähler–Einstein metric !KE on X , in the weak topology.
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1.2.2. The case ˇ < 0. When �KX > 0, i.e.,X is a Fano manifold, there are obstruc-
tions to the existence of a Kähler–Einstein metric. According to the Yau–Tian–Don-
aldson conjecture (YTD), X admits a Kähler–Einstein metric iff X is K-polystable.
The non-singular case was settled in [31–33] and the singular case in [68–70], build-
ing on the proof of the uniform version of the YTD conjecture on Fano manifolds
in [18] (the “only if” direction was previously shown in [6]). In the probabilistic
approach, a different type of stability condition naturally appears, dubbed Gibbs sta-
bility (connections with the YTD conjecture are discussed in [13]). The starting point
for the probabilistic approach on a Fano manifold, introduced in [8, Section 6], is the
observation that when �KX > 0, one can replace k with �k in the previous construc-
tions concerning the case KX > 0. Thus, given a positive integer k, we set

Nk WD dimH 0.X;�kKX /

(which tends to infinity as k!1, since �KX is ample) and define a measure onXNk

by

�.Nk/ WD
1

ZNk

j detS .k/j�2=k; ZNk
WD

Z
XNk

j detS .k/j�2=k : (1.5)

However, in this case it may happen that the normalizing constant ZNk
diverges, since

the integrand of ZNk
blows up along the zero-locus in XNk of detS .k/. Accordingly,

a Fano manifold X is called Gibbs stable at level k if ZNk
< 1 and Gibbs sta-

ble if it is Gibbs stable at level k for k sufficiently large. For a Gibbs stable Fano
manifold X , the measure �.Nk/ in formula (1.5) defines a canonical symmetric prob-
ability measure on XNk . We thus arrive at the following probabilistic analog of the
YTD conjecture posed in [8, Section 6]:

Conjecture 1.2. Let X be Fano manifold. Then

� X admits a unique Kähler–Einstein metric !KE if and only if X is Gibbs stable;

� if X is Gibbs stable, the empirical measures ıN of the corresponding canonical
point processes converge in probability towards the normalized volume form of
!KE .

In order to briefly compare with the YTD conjecture, denote by Aut.X/0 the Lie
group of automorphisms (biholomorphisms) of X homotopic to the identity I . Fano
manifolds are divided into the two classes, according to whether Aut.X/0 is trivial or
non-trivial,

Aut.X/0 D ¹I º or Aut.X/0 ¤ ¹I º:

In the former case, the Kähler–Einstein metric is uniquely determined (when it exists),
while in the latter case, it is only uniquely determined modulo the action of the group
Aut.X/0. This dichotomy is also reflected in the difference between K-polystability
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and the stronger notion of K-stability, which implies that Aut.X/0 is trivial. Similarly,
the Gibbs stability ofX also implies that the group Aut.X/0 is trivial [14] and should
thus be viewed as the analog of K-stability. Accordingly, we shall focus on the case
when Aut.X/0 is trivial (but see [9, Conjecture 3.8] for a generalization of Conjecture
1.2 to the case when Aut.X/0 is non-trivial).

There is also a natural analog of the stronger notion of uniform K-stability (dis-
cussed in more detail in [13]). To see this, first recall that Gibbs stability can be given
a purely algebro-geometric formulation, saying that the Q-divisor DNk

in XNk cut
out by the (multi-valued) holomorphic section .detS .k//1=k of �KXNk has mild sin-
gularities in the sense of the MMP. More precisely, X is Gibbs stable at level k iff
DNk

is Kawamata log terminal (klt). This means that the log canonical threshold (lct)
of DNk

satisfies
lct.DNk

/ > 1 (1.6)

(as follows directly from the analytic representation of the lct of a Q-divisor D ,
recalled in the appendix). Accordingly, X is called uniformly Gibbs stable if there
exists " > 0 such that, for k sufficiently large,

lct.DNk
/ > 1C ": (1.7)

One is thus led to pose the following purely algebro-geometric conjecture:

Conjecture 1.3. Let X be a Fano manifold. Then X is (uniformly) K-stable iff X is
(uniformly) Gibbs stable.

The uniform version of the “if” direction was settled in [48], using algebro-
geometric techniques (see also [12] for a different direct analytic proof that uniform
Gibbs stability implies the existence of a unique Kähler–Einstein metric). However,
the converse is still widely open. And even if confirmed, it is a separate analytic
problem to prove the convergence towards the Kähler–Einstein metric in Conjec-
ture 1.2. In [9, Section 7], a variational approach to the convergence problem was
introduced, which reduces the proof of the convergence towards the volume form
dVKE of Kähler–Einstein metric to establishing the following convergence result for
the normalization constants ZNk

:

lim
Nk!1

�
1

Nk
log ZNk

D inf
�2P .X/

F.�/; (1.8)

where F.�/ is a functional on the space P .X/ of probability measures on X , min-
imized by dVKE , which may be identified with the Mabuchi functional (see Section
2.2). This variational approach is inspired by a statistical mechanical formulation,
where F appears as a free-energy type functional and ˇ appears as the “inverse tem-
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perature”. A central role is played by the partition function

ZNk
.ˇ/ WD

Z
XNk

k detS .k/k2ˇ=k dV ˝Nk ; ˇ 2 Œ�1;1Œ (1.9)

coinciding with the normalization constant ZN when ˇ D�1. However, for ˇ ¤ �1,
ZNk

.ˇ/ depends on the choice of a Hermitian metric k � k on �KX , which, in turn,
induces a volume form dV on X . In order to establish the convergence (1.8), two
different approaches were put forth in [9, Section 7], which hinge on establishing
either of the following two hypotheses:

� the “upper bound hypothesis” for the mean energy (discussed in Section 2.2),

� the “zero-free hypothesis” (discussed in Section 2.4):

ZNk
.ˇ/¤0 on some Nk-independent neighborhood � of ��1; 0� in C: (1.10)

While originally defined for ˇ 2 Œ�1;1Œ, the partition function ZNk
.ˇ/ extends to a

meromorphic function of ˇ 2 C, all of whose poles appear on the negative real axes.
Indeed, by taking a covering of X , the function ZNk

.ˇ/ may be expressed as a sum
of functions of the form

Z.ˇ/ WD

Z
Cm

jf j2ˇˆd�; (1.11)

for a holomorphic function f and a Schwartz functionˆ on Cm. One can then invoke
classical general results of Atyiah and Bernstein for such meromorphic functions
Z.ˇ/ (recalled in Section A.2 of the appendix). The first negative pole of ZNk

.ˇ/ is
precisely the negative of the log canonical threshold lct.DNk

/. The zero-free hypoth-
esis referred to above demands that there exists an N -independent neighborhood of
�� 1; 0� in C, where ZNk

.ˇ/¤ 0. As shown in Section 2.4, the virtue of this hypoth-
esis is that it allows one to prove the convergence in formula (1.8) by “analytically
continuing” the convergence for ˇ > 0 to ˇ D �1. In the statistical mechanics litera-
ture, this line of argument goes back to the Lee–Yang theory of phase transitions (see
Remark 2.7).

1.3. The partition function ZNk
.ˇ/ viewed as local Archimedean zeta function

From an algebro-geometric perspective, the partition function ZNk
.ˇ/ (formula (1.9))

is an instance of an Archimedean zeta function. More generally, replacing the local
field C and its standard Archimedean absolute value j � j with a local field F and
an absolute value j � jF on F , meromorphic functions Z.ˇ/ as in formula (1.11) can
be attached to any polynomial f defined over the local field F . Such meromorphic
functions are usually called local Igusa zeta functions [53]. This is briefly recalled
in Section A.2 of the appendix. For example, the Riemann zeta function �.s/ may
be expressed as a Euler product over such local meromorphic functions Zp.s/ as p
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ranges over all primes p, i.e., all non-Archimedean places p of the global field Q:

�.s/ WD

1X
nD1

n�s D
Y
p

Zp.s/; Zp.s/ D

Z
Q�

p

jxjsQp p̂ d
�x D .1 � p�s/�1;

where Qp is the localization of Q at p, i.e., the p-adic field Qp , endowed with its
standard normalized non-Archimedean absolute value and multiplicative Haar mea-
sure d�x on Q�

p and p̂ denotes the p-adic Gaussian. This is explained in Tate’s
celebrated thesis [78], where it is shown that the classical procedure of completing
the Riemann zeta function amounts to including a factor Zp.s/ corresponding to the
standard Archimedean absolute value on R, which is proportional to the Gamma
function.1 In this case, all the local factors Zp.s/ are manifestly non-zero (while
the corresponding global zeta function �.s/ does have zeros). It should, however, be
stressed that it is rare that general local Igusa zeta functions of the form (1.11) and
their zeros can be computed explicitly. Still, one might hope that the canonical nature
of ZNk

.ˇ/may facilitate the situation. One small step in this direction is taken in Sec-
tion 5, where some intriguing relations between the partition functions ZNk

.ˇ/ and
the local L-functions appearing in the Langlands program are pointed out (general-
izing the local factors Zp.ˇ/ of the Riemann zeta function). In particular, it is shown
that in the simplest case when X is n-dimensional complex projective space and Nk
is minimal, i.e., Nk D n C 1, the partition function ZNk

.ˇ/ can be identified with
a standard local L-function Lp attached to the group GL.nC 1;Q/ when the place
p of the global field Q is taken to be the one defined by the complex Archimedean
absolute. Accordingly, in this particular case, ZNk

.ˇ/ has a strong zero-free property
as a consequence of the standard zero-free property of local L-functions.

1.4. Main new results in the case of log Fano curves

Here it will be demonstrated that both approaches discussed above are successful in
one complex dimension, n D 1. The only one-dimensional Fano manifold X is the
complex projective line (the Riemann sphere) and its Kähler–Einstein metrics are all
biholomorphically equivalent to the standard round metric on the two-sphere. But
a geometrically richer situation appears when introducing weighted points (conical
singularities) on the Riemann sphere. From the algebro-geometric point of view, this
fits into the standard setting of log pairs .X; �/, consisting of complex (normal)
projective variety X (here assumed to be non-singular, for simplicity) endowed with
a Q-divisor � on X , i.e., a sum of irreducible subvarieties �i of X of codimension
one, with coefficientswi in Q. In this log setting, the role of the canonical line bundle

1Expressing d�x D x�1dx reveals that the role of ˇ is played by s � 1; see Section 5.1.
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KX is placed by the log canonical line bundle

K.X;�/ WD KX C�

(viewed as a Q-line bundle) and the role of the Ricci curvature Ric! of a metric !
is played by twisted Ricci curvature Ric! � Œ��, where Œ�� denotes the current of
integration defined by�. The corresponding log Kähler–Einstein equation thus reads

Ric! � Œ�� D ˇ!; ˇ D ˙1; (1.12)

where Œ�� denotes the current of integration along �. When ˇ is non-zero, existence
of a solution !KE forces

ˇ.KX C�/ > 0:

In general, the equation (1.12) should be interpreted in the weak sense of pluripoten-
tial theory [16,42]. However, in case when .X;�/ is log smooth, i.e., the components
of � have simple normal crossings (which means that they intersect transversally),
it follows from [52, 55] that a positive current ! solves the equation (1.12) iff !
is a bona fide Kähler–Einstein metric on X � � and ! has edge-cone singularities
along �, with cone-angle 2�.1 � wi /, prescribed by the coefficients wi of �. In
particular, in the orbifold case

� D

X�
1 �

1

mi

�
�i ; mi 2 ZC; (1.13)

the log Kähler–Einstein metrics locally lift to a bona fide Kähler–Einstein metric on
local coverings of X (branched along � and KX C � may be identified with the
orbifold canonical line bundle) [26, Section 2].

Example 1.4. Let X be the complex hypersurface of weighted projective space
P .a0; : : : ; an/, cut out by a quasi-homogeneous polynomial F on CnC1 of degree d ,
whose zero-locus Y � CnC1 � ¹0º is assumed non-singular. Then the orbifold .X;�/
defined by the branching divisor � on X of the fibration Y � ¹0º ! X , induced by
the natural quotient projection

CnC1
� ¹0º ! P .a0; : : : ; an/;

is a Fano orbifold (i.e., �.KX C�/ > 0) iff d < a0 C a1 C � � � C an.

The probabilistic approach naturally extends to the setting of log pairs .X; �/
satisfying ˇ.KX C�/ > 0 yielding a canonical probability measure onXNk , that we
shall denote by �.Nk/

� . Indeed, one simply replaces the canonical line bundleKX with
the log canonical line bundle K.X;�/ in the previous constructions (cf. [8, Section 5]
and [9, Section 3.2.4]).
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1.4.1. Log Fano curves. Let now .X;�/ be a log Fano curve .X;�/, i.e., X is the
complex projective line and

� D

mX
iD1

wipi

for positive weights wi satisfying
Pm
iD1 wi < 2. In this case, it turns out that the

“upper bound hypothesis” for the mean energy does hold, which leads to the follow-
ing result announced in [9, Section 3.2.4]:

Theorem 1.5. Let .X;�/ be a log Fano curve. Then the following is equivalent:

� .X;�/ is Gibbs stable;

� .X;�/ is uniformly Gibbs stable;

� the following weight condition holds:

wi <
X
i¤j

wj ; 8i I (1.14)

� there exists a unique Kähler–Einstein metric !KE for .X;�/.

Moreover, if any of the conditions above hold, then the laws of the corresponding
empirical measures ıN satisfy a large deviation principle (LDP) with speedN , whose
rate functional has a unique minimizer, namely !KE=

R
X
!KE . In particular, for any

given " > 0,

Prob
�
d

�
1

N

NX
iD1

ıxi
;
!KER
X
!KE

�
> "

�
� C"e

�N":

Existence of solutions to the log Kähler–Einstein equation (1.12) in the one-
dimensional setting was first shown in [79], under the weight condition (1.14) and
uniqueness in [71]. The weight condition (1.14) is also equivalent to uniform K-
stability of .X; �/ [47, Example 6.6] and thus the previous theorem confirms Con-
jecture 1.3 for log Fano curves.

We also show that in the case when the support of � consists of three points, the
following variant of the “zero-free hypothesis” holds:

ZNk ;� ¤ 0;

when the coefficients of� are complexified, so that ZNk ;� is extended to a meromor-
phic function on C3 (the proof exploits that ZNk ;� can be expressed as the complex
Selberg integral, which first appeared in the conformal field theory (CFT)). This leads
to an alternative proof of the previous theorem, in this particular case, by “analyti-
cally continuing” the convergence result in the caseKX C�> 0 to the log Fano case
KX C� < 0.
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Example 1.6. The case of three points includes, in particular, the case when X is
a Fano orbifold curve. Such a curve may be embedded into a weighted P2 and is
defined by the zero-locus of explicit quasi-homogeneous polynomial F.X; Y; Z/ in
C3 (the du Val singularities). In the case of three orbifold points, there always exists
a unique log Kähler–Einstein metric on X , concretely realized as the quotient P1=G
of the standard SU.2/-invariant metric on P1 under the action of a discrete subgroup
G of SU.2/ (branched over the three points in question).

1.5. Organization

In Section 2, conditional convergence results on log Fano varieties are obtained,
formulated in terms of either the “upper bound hypothesis” on the mean-energy or
the “zero-free hypothesis” of the partition function. Then – after a digression on the
Calabi–Yau equation in Section 3 – in Section 4, the hypotheses in question are veri-
fied for log Fano curves and Fano orbifolds, respectively. Section 5 is of a speculative
nature, comparing the strong form of the zero-free hypothesis with the standard zero-
free property of the local L-functions appearing in the Langlands program. The paper
is concluded with an appendix, providing background on lct’s and Archimedean zeta
functions.

2. Conditional convergence results on log Fano varieties

In this section, it is explained how to reduce the proof of the convergence on Fano
manifolds X in Conjecture 1.2 to establishing either one of two different hypotheses,
building on [9, Section 7]. More generally, we will consider the setup of log Fano
varieties .X; �/, discussed in Section 1.4. For simplicity, X will be assumed to be
non-singular. We will be using the standard correspondence between metrics k � k on
log canonical line bundles �.KX C �/ and volume forms dV� on X � �, which
are singular when viewed as measures on X (see [9, Section 4.1.7] for background,
where the measure dV� is denoted by �0).

2.1. Setup

Let .X; �/ be a log Fano variety. As recalled in Section 1.4, this means that � is a
divisor with positive coefficients and that �.KX C�/ > 0. We will allow � to have
real coefficients. Set

Nk WD dimH 0
�
X;�k.KX C�/

�
;

where k ranges over the positive numbers with the property that �k.KX C �/ is
a well-defined line bundle on X . To simplify the notation, we will often drop the
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subscript k in the notation for Nk . Since,

k ! 1 , N ! 1;

this should, hopefully, not cause any confusion. As discussed in Section 1.4, assuming
that .X;�/ is Gibbs stable, we get a sequence of canonical probability measures �.N/�

onXN . Fixing a smooth Hermitian metric k � k on the R-line bundle �.KX C�/with
positive curvature �.N/� may be expressed as

�
.N/
� WD

1

ZN
k detS .k/k2=kdV ˝N

.X;�/
; ZN WD

Z
XN

k detS .k/k2=kdV ˝N
.X;�/

; (2.1)

where dV.X;�/ is the singular volume form on X corresponding to the metric k � k on
�.KX C�/ and detS .k/ is the Slater determinant of H 0.X;�k.KX C�// induced
by a choice of bases s.k/1 ; : : : ; s

.k/
N for H 0.X;�k.KX C �//, defined as in formula

(1.3). Since �.N/� is independent of the choice of bases, we may as well assume that
the basis is orthonormal with respect to the Hermitian product induced by .k � k; dV /.
The condition that .X;�/ is Gibbs stable means that the normalization constant ZN
is finite. Hence, it implies that the local densities of dV are inL1loc (which in algebraic
terms means that � is klt divisor).

From a statistical mechanical point of view, the probability measure �.N/� on XN

may be expressed as the Gibbs measure

�
.N/

ˇ
D
e�ˇNE

.N /

ZN .ˇ/
dV ˝N

� ;

E.N/.x1; : : : ; xN / WD �
1

kN
log

�

 detS .k/.x1; : : : ; xN /


2� (2.2)

with ˇ D �1. In physical terms, the Gibbs measure represents the microscopic state
of N interacting particles in thermal equilibrium at inverse temperature ˇ, with
E.N/.x1; : : : ; xN / playing the role of the energy per particle and the normalizing
constant

ZN .ˇ/ D

Z
XN

e�ˇNE
.N /

dV ˝N
.X;�/

D

Z
XN

k detS .k/k2ˇ=k dV ˝N
.X;�/

(2.3)

is called the partition function. It should, however, be stressed that, while the proba-
bility measure �.N/� is canonical, i.e., independent of the choice of metric k � k, this is
not so when ˇ ¤ �1. But one advantage of introducing the parameter ˇ is that �.Nk/

ˇ

is a well-defined probability measure as long as ˇ > � lct.X; �/, where lct.X; �/
denotes the global lct of .X; �/ (whose definition is recalled in the appendix). In
particular, it is, trivially, well defined when ˇ > 0.
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Fixing ˇ 2 Œ�1;1Œ, we can view the empirical measure

ıN WD
1

N

NX
iD1

ıxi
W XN ! P .X/

as a random discrete measure on X . To be more precise, ıN is a random variable on
the ensemble .XN ; �.N/

ˇ
/, taking values in the space P .X/ of probability measures

on X . Accordingly, the law of ıN is the probability measure

�N;ˇ WD .ıN /��
.N/

ˇ
2 P

�
P .X/

�
on P .X/, defined as the push-forward of the probability measure �.N/

ˇ
on XN to

P .X/ under the map ıN .

2.2. The case ˇ > 0

The following result, which is a special case of [7, Theorem 5.7] (when � is trivial)
and [8, Theorem 4.3] (when � is non-trivial), establishes an LDP for the laws �N;ˇ
of ıN as N ! 1, which may be symbolically expressed as

�N;ˇ WD .ıN /��
.N/

ˇ
� e�N.F .�/�F.ˇ//; N ! 1

(formally viewing the right-hand side as a density on the infinite dimensional space
P .X/; the precise meaning of the LDP is recalled below).

Theorem 2.1. Let .X; �/ be a log Fano variety. For ˇ > 0, the sequence �N;ˇ of
probability measures on P .X/ satisfies an LDP speed N and rate functional

Fˇ .�/ � F.ˇ/; F.�/ WD ˇE.�/C Ent.�/; F.ˇ/ WD inf
P .X/

Fˇ .�/; (2.4)

where E.�/ is the pluricomplex energy of � relative to the Kähler form ! defined
by the curvature of the metric k � k on �.KX C �/ and Ent.�/ is the entropy of �
relative to dV�. In particular, the random measure ıN converges in probability, as
N ! 1, to the unique minimizer �ˇ of Fˇ in P .X/, i.e.,

lim
N!1

�N;ˇ D ı�ˇ
in P

�
P .X/

�
(2.5)

and the following convergence of the partition functions ZN .ˇ/ holds:

lim
N!1

�
1

N
log ZN .ˇ/ D F.ˇ/: (2.6)
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We recall that the entropy Ent.�/ of � relative to a given measure � is defined by

Ent.�/ D
Z
X

log
�

�
�

when � has a density with respect to � and otherwise Ent.�/ WD 1.2 As for the
pluricomplex energy E.�/ of a measure � on X , relative to a reference form !0, it
was first introduced in [17, Theorem 4.3]. From a thermodynamical point of view, the
functional Fˇ .�/, introduced in [4, Theorem 4.3], can be viewed as the free energy.3

The pluricomplex E.�/ may be defined as the greatest lsc extension to P .X/ of the
functional E.�/ on the space of volume forms � in P .X/ whose first variation is
given by

dE.�/ D �'�; (2.7)

where '� is a smooth solution to the complex Monge–Ampère equation (also known
as the Calabi–Yau equation):

1

V

�
! C

i

2�
@N@'ˇ

�n
D �; V WD

Z
X

!n:

This property determines the functional E.�/ up to an additive constant which is
fixed by imposing the normalization condition

E.!n0=V / D 0; (2.8)

in the case when the reference form !0 is Kähler. Using the property (2.7), it is shown
in [9, Proposition 4.1] that the minimizer �ˇ of Fˇ .�/ is the normalized volume form
on X �� uniquely determined by the property that

�ˇ D eˇ'ˇdV�;

where the function 'ˇ is the unique smooth bounded Kähler potential on X � �

solving the complex Monge–Ampère equation

1

V

�
! C

i

2�
@N@'ˇ

�n
D eˇ'ˇdV�: (2.9)

It follows that the corresponding Kähler form

!ˇ WD ! C
1

ˇ

i

2�
@N@ log

�ˇ

dV�

�
D ! C

i

2�
@N@'ˇ

�
2We are using the “mathematical” sign convention for the entropy, which renders Ent.�/

non-negative when the reference measure � is a probability measure and thus Ent.�/ coincides
with the Kullback–Leibler divergence in information theory.

3Strictly speaking, it is Fˇ=ˇ which plays the role of free energy in thermodynamics.
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satisfies the twisted Kähler–Einstein equation

Ric!ˇ � Œ�� D �ˇ!ˇ C .ˇ C 1/!0; (2.10)

on X , coinciding with the (log) Kähler–Einstein equation (1.12) when ˇ D �1.

Remark 2.2. Incidentally, the functional

M.'/ WD F�1

�
1

V

�
! C

i

2�
@N@'ˇ

�n�
coincides with the Mabuchi functional for the log Fano variety .X;�/, as explained
in [9, Section 5.3]. Moreover, the twisted Kähler–Einstein equation (2.10) coincides
with the logarithmic version of Aubin’s continuity equation with “time-parameter”
t WD �ˇ.

The precise definition of an LDP, which goes back to Cramér and Varadhan [37],
is recalled in [9, Proposition 4.1]. For the purpose of the present paper, it will be
convenient to use the following equivalent (“dual”) characterization of the LDP in
the previous theorem: for any continuous function ˆ.�/ on P .X/:

lim
N!1

�
1

N
log

Z
XN

e�NˇE
.N /

e�Nˆ.ıN / D inf
P .X/

�
F.�/Cˆ.�/

�
(2.11)

(as follows from well-known general results of Varadhan and Bryc [37, Theorem
4.4.2]).

2.2.1. Outline of the proof. Before turning to the case when ˇ < 0, we briefly recall
that a key ingredient in the proof of the previous theorem is the convergence

E.N/.x1; : : : ; xN /! E.�/; N ! 1; (2.12)

which holds in the sense of Gamma-convergence (deduced from the convergence
and differentiability of weighted transfinite diameters in [15, Theorems A and B]).
Combining this convergence with some heuristics going back to Boltzmann suggests
that the contribution of the volume form dV ˝N in the Gibbs measure (2.2) should
give rise to the additional entropy term appearing in the rate functional:

.ıN /�.e
�ˇNE .N /

dV ˝N / � e�NE.�/.ıN /�.dV
˝N / � e�NˇE.�/e�N Ent.�/:

This is made rigorous in [7] using an effective submean property of the density of
�
.N/

ˇ
on theN -fold symmetric product ofX , viewed as a Riemannian orbifold (lever-

aging results in geometric analysis).
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2.3. The case ˇ < 0

In the case when ˇ < 0, we may define the free energy functional Fˇ .�/ by the same
expression as in formula (2.4), Fˇ D ˇECEnt.�/, whenE!0

.�/ <1 and otherwise
we set Fˇ .�/ D 1. The definition is made so that we still have F�.�/ 2 � �1;1�

with F�.�/ <1 iff both E.�/ <1 and Ent.�/ <1.
In order to handle the largeN -limit in the case when ˇ < 0, a variational approach

was introduced in [9, Section 7], which reduces the problem to establishing the fol-
lowing “upper bound hypothesis” for the mean energy:

lim sup
N!1

Z
XN

E.N/�
.N/

�;ˇ
� E.�ˇ / WD

Z
P .X/

E.�/�ˇ .�/ (2.13)

for any large N -limit point � of �N;ˇ in X. This property is independent of the
choice of metric k � k on �.KX C �/. Moreover, the corresponding lower bound
always holds (as follows from the convergence (2.12)). The following theorem is an
extension of the results in [9, Section 7] to the case when � is non-trivial.

Theorem 2.3. Let .X; �/ be a log Fano variety. Assume that .X; �/ is uniformly
Gibbs stable. Then .X;�/ admits a unique Kähler–Einstein metric !KE . Moreover,
in the following list each statement implies the next one:

(1) the “upper bound hypothesis” (2.13) for the mean energy holds when ˇD�1;

(2) the convergence (2.6) for the partition functions holds when ˇ D �1;

(3) the empirical measures ıN of the canonical random point process on X con-
verge in law towards the normalized volume form dVKE of !KE ; i.e., the
convergence (2.5) holds when ˇ D �1.

Furthermore,if the “upper bound hypothesis” (2.13) is replaced by the stronger hy-
pothesis that the convergence holds whenE.N/ is replaced byE.N/Cˆ.ıN / for any
continuous functional ˆ on P .X/ (and E is replaced by E C ˆ), then the LDP in
Theorem 2.1 holds for ˇ D �1.

Proof. The proof in the general case is similar to the case when � is trivial. Indeed,
the assumption that .X; �/ is uniformly Gibbs stable implies, by a simple modi-
fication of the proof of [48, Theorem 2.5] (concerning the case when � is trivial)
that ı.X; �/ > 1, which by [47] is equivalent to .X; �/ being uniformly K-stable.
Hence, by the solution of the uniform version of the YTD conjecture for log Fano
varieties .X;�/ with X non-singular in [18] (extended to general log Fano varieties
in [68, 69]), it follows that .X;�/ admits a unique Kähler–Einstein metric. Next, we
summarize the proof of the convergence in [9, Section 7]; all steps are essentially the
same in the case when � is non-trivial. Set

FN .ˇ/ WD �
1

N
log ZN .ˇ/; F.ˇ/ WD inf

2P .X/
Fˇ .�/ (2.14)
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and consider the mean free energy functional on P .XN / defined by

FN .�N / WD ˇ

Z
XN

E.N/�N C
1

N
Ent.�N /;

where Ent.�N / denotes the entropy of�N relative to .dV�/˝N . By Gibbs variational
principle (or Jensen’s inequality),

FN .ˇ/ D inf
�N 2P .XN /

FN;ˇ .�N / D FN;ˇ .�N;ˇ /: (2.15)

Moreover,
F.ˇ/ D inf

P .P .X//
Fˇ .�/ D Fˇ .ı�ˇ

/; (2.16)

where Fˇ .�/ denotes the following functional on P .P .X//:

Fˇ .�/ WD

Z
P .X/

Fˇ .�/�

and ı�ˇ
is the unique minimizer of F.�/ in P .P .X// (using that F.�/ is lsc, thanks

to the energy/entropy compactness theorem in [16] and hence F.�/ is lsc and linear
on P .P .X//). Now, as shown in the course of the proof of [8, Theorem 6.7] (and
refined in Step 1 in the proof of [9, Theorem 7.6]) for any ˇ, the following inequality
holds:

lim sup
N!1

FN .ˇ/ � F.ˇ/ (2.17)

(as follows from combining Gibbs variational principle with the Gamma-convergence
(2.12) ofE.N/ towardsE.�/). Combining Gibbs variational principle (2.15) with the
variational principle (2.16) for F.ˇ/, this means that

lim sup
N!1

�
inf

�N 2P .XN /
FN;ˇ .�N /

�
� inf

2P .X/
Fˇ .�/:

Moreover, as shown in [9, Section 7], if the “upper bound hypothesis” on the mean
energy holds, then the corresponding lower bound also holds; i.e., the convergence
(2.6) of the partition functions holds:

lim
N!1

FN .ˇ/ D F.ˇ/: (2.18)

Indeed, combining the “upper bound hypothesis” with the well-known sub-additivity
property of the mean entropy yields

Fˇ .�ˇ / � lim inf
N!1

FN;ˇ .�N;ˇ /

for any limit point �ˇ of �N;ˇ , in the case ˇ D �1. Combined with the upper bound
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(2.17) and formula (2.16) for F.ˇ/, it then follows that �ˇ minimizes F�1.�/ and
hence, by the uniqueness of minimizer, � D ı��1

, as desired. All in all, this shows
that “(1))(2))(3)” in the theorem.

Finally, to prove the LDP stated in the theorem, one just repeats the previous
argument with E.N/ replaced by E.N/ˆ WDE.N/Cˆ.ıN /. Then ZN .ˇ/ gets replaced
with

R
XN e

�NE
.N /
ˆ dV ˝N and hence the convergence (2.11) follows, as before, from

the implication (1))(2), now applied to E.N/ˆ .
In fact, the implications in the previous theorem may “almost” be reversed, by

exploiting that the mean N -particular energy at inverse temperature ˇ is proportional
to the logarithmic derivative of ZN .ˇ/. More precisely, the following theorem holds,
where it is assumed, for technical reasons, that X is a Fano orbifold.

Theorem 2.4. Let .X; �/ be a Fano orbifold and assume that .X; �/ is uniformly
Gibbs stable. Then there exists " > 0 such that Fˇ admits a unique minimizer �ˇ for
any ˇ 2 � � 1 � "; 0Œ. Moreover, the following is equivalent:

(1) the “upper bound hypothesis” for the mean energy (2.13) holds for any ˇ 2

� � 1 � "; 0Œ;

(2) the convergence (2.6) for the partition functions holds for any ˇ 2 � � 1 �

"; 0Œ;

(3) the convergence (2.6) for the partition functions holds and the convergence
(2.5) of the laws of ıN holds for any ˇ 2 � � 1 � "; 0Œ.

Furthermore, If (1), (2) or (3) holds, then

lim
N!1

Z
XN

E.N/�
.N/

�;ˇ
D E.�ˇ /: (2.19)

Proof. First, assume that .X; �/ is a log Fano variety. As explained in the proof of
the previous theorem, X admits a unique Kähler–Einstein metric. Hence, it follows
from [34] (and [18]) that F�1.�/ is coercive with respect to E; i.e., there exists " > 0
such that

F�1 � "E � 1="

on P .X/. Thus Fˇ is also coercive with respect to E for any ˇ > �1 � ". In par-
ticular, it follows from the energy-entropy compactness theorem in [16] that Fˇ
admits a minimizer. Moreover, as shown in [16], any minimizer has the property
that the corresponding function 'ˇ satisfies the complex Monge–Ampère equation
(2.9). Next assume that .X; �/ is a Fano orbifold. Then, for ˇ sufficiently close to
�1, the equation (2.9) has a unique solution. Indeed, since the Kähler–Einstein met-
ric is unique, the orbifold X admits no non-trivial orbifold holomorphic vector fields,
which, in turn, implies that the linearization of the equation (2.9) has a unique solu-
tion, defining a smooth function in the orbifold sense (see [36]). It then follows from
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a standard application of the implicit function theorem on orbifolds that the solution
�ˇ is uniquely determined for ˇ sufficiently close to �1.

By the previous theorem (and its proof), it will be enough to show that (2))(1).
Since, trivially, (2))(3), we have that �ˇ D ı�ˇ

and hence it will be enough to show
the convergence in formula (2.19). To this end, first note that the functions FN .ˇ/
and F.ˇ/ (defined in formula (2.14)) are concave in ˇ, as follows readily from the
definitions. Moreover, FN .ˇ/ and F.ˇ/ are differentiable on � � 1 � "; 0Œ and

dFN .ˇ/

dˇ
D

Z
XN

E.N/�
.N/

�;ˇ
;

dF.ˇ/

dˇ
D E.�ˇ /; (2.20)

using that �ˇ is the unique minimizer of Fˇ . Hence, if the convergence in item (2) of
the theorem holds, then it follows from basic properties of concave functions that the
derivative of FN .ˇ/ converges towards the derivative of F.ˇ/ at ˇ D �1 (see [19,
Lemma 3.1]). Applying formula (2.20) thus concludes the proof of the convergence
(2.19).

Remark 2.5. The reason that we have assumed that .X;�/ is a Fano orbifold is that
the proof involves the implicit function theorem in Banach spaces and thus relies on
analytic properties of the linearized log Kähler–Einstein equation. We will come back
to this point in Section 2.4.3.

2.4. The zero-free hypothesis

An alternative approach towards the case ˇ < 0 was also introduced in [9, Section
7.1]. In a nutshell, it aims to “analytically continue” the convergence when ˇ > 0 to
ˇ < 0. Here we formulate the approach in terms of the following zero-free hypothesis
on the partition function ZN .ˇ/ (defined in formula (2.3)):

ZN .ˇ/ ¤ 0 on some N -independent neighborhood � of � � 1; 0� in C: (2.21)

We also need to assume that ZN .ˇ/ is finite on a neighborhood of Œ�1; 0� in R in
a quantitative manner depending on N . This is made precise in the following result,
which is a refinement of [9, Theorem 7.9]:

Theorem 2.6. Let .X; �/ be a Fano orbifold. Assume that there exists " > 0 such
that

� ZN .ˇ/ � CN for ˇ D �.1C "/,

� the zero-free hypothesis (2.21) holds.

Then .X;�/ admits a Kähler–Einstein metric !KE and ıN converges in law towards
the normalized volume form dVKE of !KE . More precisely, the convergence (2.5)
of laws holds and �

1
N

log ZN .ˇ/ converges towards F.ˇ/ in the C1-topology on a
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neighborhood of �� 1; 0�. Moreover, if Œ�1; 0� b �, then the convergence holds on a
neighborhood of Œ�1; 0�.

Proof. First, assume that .X; �/ is a log Fano variety. Then the first point in the
theorem implies that F admits a minimizer �ˇ for any ˇ 2 � � 1 � "; 0Œ. Indeed, by
the bound (2.17), F.ˇ/ is bounded from below for any ˇ 2 � � 1 � "; 0�. Thus, for
any ˇ 2 � � 1 � "; 0Œ, there exists ı > 0 such that Fˇ � ıE � ı�1, which implies
the existence of �ˇ (as recalled in the proof of Theorem 2.4). In particular, taking
ˇ D �1 shows that X admits a unique Kähler–Einstein metric. Next, assume that
X is a Fano orbifold. Then the argument using the implicit function, employed in
the proof of Theorem 2.4, shows that after perhaps replacing " with a small positive
number there exists a unique solution 'ˇ to the equation (2.9), in the orbifold sense.
In the case when X is a Fano manifold, it was shown in the proof of [9, Theorem 7.9]
that F.ˇ/ (D F.�ˇ /) defines a real-analytic function on � � .1C "/;1Œ. Since the
proof only employs the implicit function theorem, it applies more generally when
.X;�/ is a Fano orbifold. Next, first consider the case when ZN .ˇ/ is zero-free on an
N -independent neighborhood � of Œ�1; 0� in C. By Theorem 2.3, it will be enough
to show that ZN .ˇ/

1=N ! e�F.ˇ/ point-wise on � � .1 C "/; "Œ. To this end, first
recall that, by Theorem 2.1, the convergence holds when ˇ � 0. Next, by the zero-
free hypothesis, ZN .ˇ/

1=N extends from Œ�1; 0� to a holomorphic function defined
on a neighborhood � of Œ�1; 0� in C. Moreover, by the first point,ˇ̌

ZN .ˇ/
1=N

ˇ̌
� C on � (2.22)

(using that jZN .ˇ/
1=N j � ZN .<ˇ/

1=N � ZN .�1 � "/1=N , which is uniformly
bounded, by assumption). Hence, after perhaps passing to a subsequence, we may
assume that ZNj

.ˇ/1=Nj converges uniformly in the C1-topology on any compact
subset of � to a holomorphic function Z.ˇ/, which, in particular, defines a real-
analytic function on � � 1 � "; "Œ. But when ˇ � 0, we have, as explained above, that
Z.ˇ/D e�F.ˇ/ which extends to a real-analytic function on �� 1� "; "Œ. By the iden-
tity principle for real-analytic functions, it thus follows that ZNj

.ˇ/1=Nj ! e�F.ˇ/

for any ˇ in � � 1 � "; "Œ, in the C1-topology. Since the limit is uniquely deter-
mined, it thus follows that the whole sequence ZN .ˇ/

1=N converges towards e�F.ˇ/,
as desired.

Finally, consider the case when it is only assumed that � is a neighborhood of
� � 1; 0� in C. By assumption, the sequence of functions

FN .ˇ/ WD � log
�
ZN .ˇ/

1=N
�

is uniformly bounded on Œ�1� "; "�. Since FN .ˇ/ is concave in ˇ, it thus follows that
FN .ˇ/ is uniformly Lipschitz continuous on Œ�1; 0�. Hence, by the Arzela–Ascoli
theorem, we may, after perhaps passing to a subsequence, assume that FN .ˇ/ con-
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verges uniformly to continuous function F1.ˇ/ on Œ�1;0�. By the previous argument,
F1.ˇ/ D F.ˇ/ on � � 1; 0�. But since F1 and F are both continuous on Œ�1; 0�, it
follows that they also coincide at ˇ D �1, as desired.

Remark 2.7. In statistical mechanical terms, theC1-convergence ofN�1 logZN.ˇ/

amounts to the absence of phase transitions [75, Chapter 5]. It seems natural to expect
that the zero-free hypothesis (2.21) is satisfied as soon asX admits a Kähler–Einstein
metric. Indeed, it can be viewed as a strengthening of the real-analyticity of free
energy F.ˇ/ in some neighborhood of �0; 1� in C (discussed in the proof of the pre-
vious theorem). The zero-free hypothesis for general statistical mechanical partition
functions was introduced in the Lee–Yang theory of phase transitions (and has been
verified for some spin systems and lattice gases [67, 81]). More precisely, originally
Lee–Yang considered zeros in the complexified field parameter h called Lee–Yang
zeros, while zeros with respect to the complexified inverse temperature ˇ are called
Fisher zeros [43]. The role of h in the present complex geometric setup is discussed
in Remark 3.4.

As discussed in [8, Section 6], the bound in first point in the previous theorem –
which is independent of the choice of metric k � k (up to changing the constant C ) –
can be viewed as an analytic (stronger) version of uniform Gibbs stability (cf. [8,
Theorem 6.7]). As shown in [9, Lemma 7.1], the bound always holds for ˇ sufficiently
close to 0. More precisely,

ˇ > � lct.�KX /) ZN .ˇ/ � CNˇ (2.23)

for any N (D Nk), where lct.L/ denotes the global lct of a line bundle L (whose
definition is recalled in the appendix). The proof exploits that lct.�KX / coincides
with Tian’s analytically defined ˛-invariant ˛.�KX /. Accordingly, under the weaker
hypothesis that ZN .ˇ/ is zero-free, for ˇ in some "-neighborhood of � � lct.X/; 0�
in C, the convergence statements in the theorem hold when ˇ 2 � � lct.X/; 0�.

Remark 2.8. If lct.X/ > 1, the first assumption in Theorem 2.6 is automatically sat-
isfied. Such Fano orbifolds are called exceptional (see [30], where two-dimensional
exceptional hypersurfaces in three-dimensional weighted projective space are classi-
fied). Exceptional Fano orbifolds appear naturally in the MMP as the base of excep-
tional isolated affine singularities [76].

2.4.1. The strong zero-free hypothesis. The zero-free hypothesis is independent of
the choice of basis in H 0.X;�kKX /. Indeed, under a change of basis, detS .k/ gets
multiplied by a non-zero scalar c 2 C and hence ZNk

.ˇ/ gets multiplied by cˇ=k .
However, it should be stressed that the zero-free hypothesis depends, a priori, on the
choice of metric k � k. For example, there are reasons to expect that it fails unless
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k � k has positive curvature. Accordingly, the zero-free hypothesis might be more
accessible for special/canonical choices of positively curved metrics, such as the
Kähler–Einstein metric itself. This is illustrated by the following example, where
ZNk

.ˇ/ can be explicitly computed:

Example 2.9. WhenX D PnC we have that �KX D O.nC 1/ and hence the minimal
value for k is k D 1=.nC 1/, which means that the minimal value for Nk is Nk D

n C 1. Taking k � k to be the Fubini–Study metric (which is Kähler–Einstein) the
following formula holds in the minimal case N D nC 1 (where cn is a computable
positive constant), proved in the appendix (see Proposition A.3):

ZnC1.ˇ/ D cn

Qn
jD1 �

�
ˇ.nC 1/C j

��
�
�
ˇ.nC 1/C nC 1

��n ; �.a/ WD

Z 1

0

tae�t
dt

t
(2.24)

where �.a/ denotes the classical �-function, which defines a meromorphic function
on C whose poles are located at 0;�1;�2; : : : (as follows from the functional relation
�.aC 1/D a�.a/). Thus the first negative pole of ZN .ˇ/ comes from the first pole of
the factor corresponding to j D 1 in the nominator above, i.e., when ˇ D �1.nC 1/.
Moreover, since �.a/ is zero-free on all of C, ZN .ˇ/ is zero-free in the maximal strip
¹<ˇ > �1=.n C 1/º of holomorphicity (but the meromorphic continuation ZN .ˇ/

does have zeros in C, coming from the poles of the denominator).

In the light of this example, it is tempting to speculate that the following strong
zero-free hypothesis holds for Kähler–Einstein metrics:

Z.ˇ/ ¤ 0; when <ˇ > max
®
� lct.DN /;�1

¯
:

In other words, this means that ZN .ˇ/ is zero-free in the maximal strip inside
¹<ˇ > �1º, where it is holomorphic. To provide some further evidence for the strong
zero-free property, we note that if its holds, then the bound (2.23), combined with
the proof of Theorem 2.6, shows that, for any given " > 0, the function F.ˇ/ on
� � lct.�KX /C "; "Œ � R, induced by the Kähler–Einstein metric, is “strongly real-
analytic” in the following sense: F.ˇ/ extends to a bounded holomorphic function
on the infinity strip � � lct.�KX /C "; "ŒC iR � C. This condition is much stronger
than ordinary real-analyticity (which only implies holomorphic extension to a finite
strip). But it does hold for the Kähler–Einstein metric. Indeed, in this case,

F.ˇ/ � 0; ˇ 2 � � 1;1Œ;

which trivially extends to a bounded holomorphic function on the infinity strip. To
prove the identity above, first observe that when !0 D !KE , the twisted Kähler–
Einstein equation (2.10) is solved by !ˇ D !KE for any ˇ (equivalently, in the case
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when !0 D !KE , we have !n0=V D dV.X;�/ and hence the complex Monge–Ampère
equation (2.9) is solved by 'ˇ D 0). But, as recalled above, for ˇ > �1, the equation
(2.9) admits a unique solution and hence

F.ˇ/ D Fˇ .dVKE / D 0

(using the vanishing (2.8) combined with the vanishing Ent.�/D 0 when �D dVKE
D dV�). In fact, this argument shows that F.ˇ/ � 0 on all of Œ�1;1Œ. Moreover, if
Aut.X/0 is trivial, then there exists an "> 0 such thatF.ˇ/� 0 on all of �� 1� ";1Œ,
as follows from the argument using the implicit function theorem, employed in the
proof of Theorem 2.4. This argument suggests that when Aut.X/0 is trivial, one can,
perhaps, expect the strong zero-free property to even hold in the larger region where
<ˇ > max¹� lct.DN /;�1 � "º for some " > 0.

Remark 2.10. Coming back to Example 2.9, it is natural to ask if there exists an
explicit formula for ZN .ˇ/whenX D PnC for generalN , generalizing formula (2.24)
(or, more precisely, for anyN of the formN DNk). However, as discussed in Remark
A.4, this problem appears to be open even when n D 1. But one interesting conse-
quence of formula (2.24) is that it reveals that in the case when X D PnC and N is
minimal,

lct.DN / D lct.�KX /

since lct.�KX / D 1=.nC 1/. This shows that the estimate in formula (2.23) is sharp
(in the sense that there are cases where it fails for ˇ �� lct.�KX /). The point of Con-
jecture 1.2, however, is that it only requires that lct.DNk

/ > 1 whenNk is sufficiently
large. Similarly, in the case of PnC , where Aut.X/0 ¤ ¹I º, the corresponding conjec-
ture only requires that lct.DNk

/! 1, when Nk ! 1 (see [9, Conjecture 3.8]). For
example, when X D P1C , one has lct.DN / D .N � 1/=N (by Theorem 4.5) which
indeed tends to 1 as N ! 1 (and equals 1=2 when N D 2, which is the minimal
case).

2.4.2. Allowing singular metrics k � k. Alternatively, when X is a Fano manifold,
one can take k � k to be the singular metric induced by the anti-canonical Q-divisor
�m defined by the zero-locus of a holomorphic section of �mKX , assuming thatm>
0 and the zero-locus is non-singular (which ensures that the corresponding singular
volume form dV has a density in Lploc for some p > 1). In other words, the curvature
of k � k is given by the positive current Œ�m� supported on �m. Then Theorem 2.6
still applies. Indeed, in the proof one can apply the implicit function to the wedge-
Hölder spaces appearing in [38, 55], which are independent of ˇ (see, in particular,
[55, Corollary 3.5]). In this singular setup, the corresponding equations (2.10) become
Donaldson’s variant of Aubin’s continuity equations

Ric!ˇ D t!ˇ C .1 � t /Œ�m�; t D �ˇ; (2.25)
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that were used in the proof of the YTD conjecture in [31–33], by deforming t from an
initial small value, where there always exists a solution (by [4, Theorem 1.5]) to t D 1,
assuming thatX is K-stable. In other words, ˇ is deformed down to �1. In the present
probabilistic approach, the (potential) advantage of employing the singular metric
on �KX induced by the Q-divisor �m is that the corresponding partition function
ZN .ˇ/ is encoded by purely algebraic data: the divisors DN and �m on XN and X ,
respectively. In this case, combining [4, Proposition 6.2] with [9, Lemma 7.1] gives

ˇ > �min
®

lct.�KX /; lct.�KX j�m
/
¯
) ZN .ˇ/ � CNˇ ;

where �KX j�m
denotes the restriction of �KX to the support of �m. More gener-

ally, it seems natural to expect that Theorem 2.6 holds for any log Fano variety .X;�/
(when k � k is either a smooth metric on KX C� with positive curvature or the sin-
gular metric defined by any klt Q-divisor in �.KX C�/). In the case when�C�m
defines a divisor whose components are non-singular and mutually non-intersecting,
the aforementioned results in [38, 55] still apply.

2.4.3. Deforming the divisor �. Sometimes, it is advantageous to keep ˇ D �1

and instead deform the divisor � as follows. Given a log Fano variety .X;�/ and a
positive real number k such that �k.KX C�/ is a well-defined line bundle L, i.e.,
defines an element in the integral lattice H 2.X;Z/ of H 2.X;R/, consider the affine
subspace A of RMC1 of all .w; s/ which are “admissible” in the sense that

�
�
KX C�.w/

�
D sL; (2.26)

where�.w/ denotes the divisor with the sameM irreducible components as the given
divisor � and coefficients w 2 RM . In particular, .w0; k

�1/ is “admissible”, where
w0 2 RM denotes the coefficients of the initial divisor�. If there exists .w1; s1/ 2 A

such that KX C�.w1/ > 0 (and hence s1 < 0), the conclusion of Theorem 2.6 still
applies if the corresponding partition function ZN , viewed as a meromorphic function
on CMC1, satisfies

� ZN � CN0 in a neighborhood in RMC1 of .w0; k
�1/,

� ZN ¤ 0 in an N -independent neighborhood of the line-segment in CMC1 con-
necting .w0; k

�1/ and .w1; s1/.

More precisely, as discussed in the previous section, in order to apply the implicit
function theorem in Banach spaces, the appropriate linear PDE-theory needs to be
in place. For example, by [38, 55], this is the case when the components of � are
non-singular and mutually non-intersecting (results concerning the case when .X;�/
is log smooth are announced in [73]). The previous proof can then by applied to the
meromorphic function ZN .t/ on C defined by the partition functions associated to
the line-segment I b CmC1 connecting the initial .w0; k

�1/ with .w1; s1/ (where t
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denotes the complexification of the standard parametrization of I ). In this situation,
the estimate (2.22) still holds, i.e., jZN .t/1=N j � C on some N -independent neigh-
borhood� of Œ0; 1� in C. Indeed, by assumption, the estimate holds with constant C0
in a neighborhood of t D 0 and, moreover, it trivially holds with a constant C1 when
t is close to t D 1. Since log ZN .t/ is convex with respect to t 2 Œ0; 1�, one can thus
take C D max¹C0; C1º.

3. Intermezzo: A zero-free hypothesis for polarized manifolds .X; L/

and the Calabi–Yau equation

Before turning to the case of log Fano curves, we make a digression on general polar-
ized manifolds .X; L/, i.e., a compact complex manifold X endowed with an ample
line bundle L. To a metric k � k on L and a volume form dV on X , we may attach
partition functions ZN .ˇ/, by replacing the log canonical line bundle �.KX C �/

with L and dV� with dV in formula (2.3):

ZN .ˇ/ WD

Z
XN

k detS .k/k2ˇ=kdV ˝N ; (3.1)

where k is a given positive integer and N denotes the dimension ofH 0.X; kL/. This
is the general setup considered in [7], where the corresponding free energy functional
is of the form

Fˇ .�/ WD ˇE.�/C End.�/;

where E.�/ denotes the pluricomplex energy of � with respect to the normalized
curvature form ! of the metric k � k onL and Ent.�/ denotes the entropy of � relative
to dV . The minimizers �ˇ of Fˇ .�/ are of the form

�ˇ D eˇ'ˇdV

for a smooth solution 'ˇ of the complex Monge–Ampère equation

1

V

�
! C

i

2�
@N@'ˇ

�n
D eˇ'ˇdV: (3.2)

Remark 3.1. In the case when ˇ D k andX is a Riemann surface, the corresponding
partition function ZN .ˇ/ coincides with the L2-norm of the Laughlin wave function
for the (integer) Quantum Hall state on X , subject to the magnetic two-form ik!

[58]. Accordingly, as shown in [5], in this case (and for any dimension of X ) the
corresponding large N -limit is described by the minimizers Fˇ .�/=ˇ, as ˇ ! 1,
i.e., of E.�/. However, here we are concerned with the case when ˇ is fixed, where
entropy enters the picture and dominates when ˇ is close to 0.
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Consider, in this general setup, the following weak zero-free hypothesis:

ZN .ˇ/ ¤ 0 on some N -independent neighborhood � of 0 in C: (3.3)

It implies a weaker form of the upper bound hypothesis (2.13) on the mean energy:

Theorem 3.2. Let .X; L/ be a polarized manifold. Given a metric k � k on L and
a volume form dV on X , assume that the corresponding partition functions ZN .ˇ/

satisfy the weak zero-free hypothesis above. Then �
1
N

log ZN .ˇ/ converges towards
F.ˇ/ in theC1-topology on a neighborhood of 0 in R. In particular, the mean energy
of dV ˝N converges towards the pluricomplex energy E.dV / of dV :

lim
N!1

Z
XN

E.N/dV ˝N
D E.dV /;

E.N/.x1; : : : ; xN / WD �
1

kN
log

�

 detS .k/.x1; : : : ; xN /


2�: (3.4)

Proof. In general, given a metric k � k on L and a volume form dV on X , there exists
" > 0 such that F.ˇ/ is real-analytic on �� "; "Œ. Indeed, this follows, as before, from
an application of the implicit function theorem at ˇ D 0. Moreover, by the argument
discussed in connection to formula (2.23),

ˇ > � lct.L/) ZN .ˇ/ � CNˇ : (3.5)

In particular, the estimate holds when ˇ > �" for " sufficiently small. The C1-
convergence of �

1
N

log ZN .ˇ/ towards F.ˇ/ then follows exactly as in the proof
of Theorem 2.6. Finally, the convergence of the first derivatives at ˇ D 0 yields the
convergence (3.4).

We next show that a variant of the weak zero-free hypothesis yields canonical
approximations 'N of the solution of the Calabi–Yau equation, i.e., the equation
obtained by setting ˇ D 0 in equation (3.2):

1

V

�
! C

i

2�
@N@'

�n
D dV (3.6)

for a smooth function ' on X . By Yau’s theorem [82], there exists a unique smooth
solution ' with vanishing average on .X; dV /. Given a volume form dV with unit
total volume, the canonical approximation 'N in question is defined by the integral
formula

'N .x/ WD

Z
1

k
log

�

 detS .k/.x; x2; : : : ; xN /


2� dV ˝N�1

� cN ; (3.7)

where cN is the constant ensuring that the average of 'N on .X; dV / vanishes:

cN WD

Z
XN

1

k
log

�

 detS .k/.x; x2; : : : ; xN /


2� dV ˝N :
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For a given smooth function u onX , denote by ZN .ˇ;h/ the function on R2 obtained
by replacing dV in formula (3.1) with ehudV :

ZN .ˇ; h/ WD

Z
XN

k detS .k/k2ˇ=k.ehudV /˝N : (3.8)

Theorem 3.3. Let .X; L/ be a polarized manifold and k � k a metric on L. Given a
volume form dV on X with unit total volume, assume that

ZN .ˇ; h/ ¤ 0 on some N -independent neighborhood � of .0; 0/ in C2; (3.9)

for any smooth function u on X (where � depends on u). Then the functions 'N ,
defined by formula (3.7), converge in L1.X/, as N ! 1, to the unique smooth solu-
tion ' of the Calabi–Yau equation (3.6) satisfying

R
X
'dV D 0.

Proof. First, observe that 'N .x/ is !-psh, since it is a superposition of the !-psh
functions log.k det S .k/.x; x2; : : : ; xN /k2/. Hence, by standard properties of !-psh
functions, theL1-convergence in question is equivalent to weak convergence. In other
words, it is equivalent to proving that for any given smooth function u 2 C1.X/

lim
N!1

Z
'NudV D

Z
' dV:

Moreover, since the integrals on both sides of the previous equality vanish for u D 1,
it is enough to prove the convergence for any u 2 C1.X/ satisfying

R
udV D 0.

To this end, fix such a function u and consider the corresponding partition functions
ZN .ˇ; h/, defined by formula (3.8). A direct calculation reveals thatZ

'NudV D
@

@h

@

@ˇ
N�1 log ZN .ˇ; h/; at .ˇ; h/ D .0; 0/: (3.10)

By assumption, there exists a neighborhood� of .0; 0/ in C2, where log ZN .ˇ; h/ is
holomorphic. Moreover, by Theorem 3.2,

�N�1 log ZN .ˇ; h/! F.ˇ; h/ WD inf
2P .X/

�
ˇE.�/ � h

Z
X

udV C Ent.�/
�

in the C1
loc -topology on �, where Ent.�/ denotes the entropy of � relative to dV .

In particular, the convergence of the second derivatives at .0; 0/ yields, by formula
(3.10),

lim
N!1

Z
'NudV D �

@

@h

@F.ˇ; h/

@ˇ
at .ˇ; h/ D .0; 0/:

Since dV is the unique minimizer of Fˇ when ˇ D 0,

@F.ˇ; h/

@ˇ
D E.dVh/; dVh WD dVehu=

Z
X

dVehu:
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The proof is thus concluded by invoking the property (2.7) of the functionalE, which
gives

�
E.dVh/

@h juD0
D

Z
X

'udV:

In the particular case when X is a Calabi–Yau manifold – i.e., when some power
of KX is trivial – we can apply the previous theorem to the canonical normalized
volume form dV on X ,

dV WD
.sm ^ Nsm/

1=mR
X
.sm ^ Nsm/1=m

;

where sm trivializes mKX for some positive integer m. Then the corresponding con-
vergence implies that the positive .1; 1/-currents

!N WD
i

2�k

Z
@N@ log

�ˇ̌
detS .k/.�; x2; : : : ; xN /

ˇ̌2�
dV ˝N�1

converge weakly towards the unique Calabi–Yau metric !CY on X in c1.L/, i.e.,
towards the unique Ricci flat Kähler metric in c1.L/. Note that, by the Poincaré–
Lelong formula, !N is the average over XN�1 of the currents of integration defined
by the zero-loci in X of the holomorphic sections detS .k/.�; x2; : : : ; xN /.

Remark 3.4. It seems natural to expect that the zero-free hypothesis (3.9) is always
satisfied. Indeed, it can be viewed as a strengthening of the real-analyticity of the free
energy F.ˇ; h/ in some neighborhood of .0; 0/ in C2 (discussed in the proof of the
previous theorem). This expectation is in line with corresponding expectations in the
Lee–Yang theory of phase transitions [67, 81], where the role of ˇ and h=ˇ is played
by the inverse temperature and the field strength, respectively (see the discussion in
the introduction of [64]).

When X is a compact complex curve, i.e., n D 1, the convergence in Theo-
rem 3.2 and Theorem 3.3 can, unconditionally, be deduced from the bosonization
formula for det S .k/.x1; : : : ; xN / [1]. To the leading order, this formula expresses
kdetS .k/.x; x2; : : : ; xN /k as a product of G.xi ; xj /, where G is Green’s function for
the Laplacian i@N@ (see Lemma 4.3 for the case when X D P1C).

4. The case of log Fano curves

Let X be the complex projective line P1C . Fix an R-divisor � on X , i.e.,

� WD

mX
1D1

piwi
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for given points p1; : : : ; pm on X and with real coefficients/weights wi and assume
that

wi < 1:

In contrast to Section 1.4, we thus allow wi to be negative. Assume that .X;�/ is a
log Fano manifold, i.e., the anti-canonical line bundle of .X;�/ is positive:

L WD �.KX C�/ > 0:

Since X is a complex curve, the assumption that L is positive simply means that its
degree dL is positive:

dL D 2 �
X

wi > 0: (4.1)

Given a positive real number k and assuming that kL defines a line bundle, i.e., kdL
is an integer set,

Nk WD dimH 0.X; kL/:

To the log Fano curve .X;�/ we attach (as in the beginning of Section 2) the follow-
ing symmetric probability measure on XNk :

�
.Nk/
� D

1

ZNk

ˇ̌
detS .k/.z1; : : : ; zN /

ˇ̌�2=k
js�j

�2.z1/ � � � js�j
�2.zNk

/;

which is well defined precisely when ZNk
<1. The following result implies Theo-

rem 1.5 (concerning the case when wi > 0):

Theorem 4.1. Let .X;�/ be a log Fano curve. Then the following is equivalent:

� ZNk
<1 for k sufficiently large;

� the following weight condition holds:

wi <
X
i¤j

wj ; 8i: (4.2)

Moreover, if any of the conditions above hold, then the law of the empirical mea-
sure ıN on .XNk ; �

.Nk/
� / satisfies an LDP with speed N and rate functional F�1 �

infP .X/F�1 (where F�1 is the free energy functional on P .X/ defined in Section 2.3,
which coincides with the Mabuchi functional for .X;�/).

Remark 4.2. In particular, if the weight condition above holds, then F�1 is lsc on
P .X/ (since, in general, any rate functional for an LDP is lsc) and thus admits a
minimizer. The existence of a minimizer was first shown in [79] using a different
variational argument. By the general results for log Fano varieties .X;�/ in [16], any
minimizer satisfies the Kähler–Einstein equation for .X;�/. In general, a solution is
not uniquely determined (see [71, Remark 2]). However, whenwi >0, the uniqueness
in the case of the Riemann sphere was shown in [71] (see [16, 31–33] for the general
higher dimensional log Fano case).
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To prove the previous theorem, we first recall some standard identifications (see
[11, Section 3.7]). Fixing a point p1, we identify X � ¹p1º with C. The point p1

induces a trivialization e1 of the restriction of the hyperplane line bundle O.1/! P1C
to C (vanishing at p1) and thus the space H 0.X; dO.1// of all global holomorphic
sections of the d th tensor power of the hyperplane line bundle O.1/ ! X may be
identified with the space of all polynomials in z of degree at most d . Moreover, the
anti-canonical line bundle �KX of X may be identified with 2O.1/ and s� with a
(multivalued) holomorphic section of

P
wiO.1/. In particular, we identify

kL$ kdLO.1/ D k

�
2 �

mX
iD1

wi

�
O.1/;

(recall that we are assuming that kdL is an integer). Thus H 0.X; kL/ gets identi-
fied with the space of all polynomials in z of degree at most k.2 �

Pm
iD1 wi /. This

identification reveals that
Nk D kdL C 1: (4.3)

Fix the standard basis of monomials 1; z; z2; : : : inH 0.X; kL/. Then the correspond-
ing section detS .k/ overXNk gets identified with the usual Vandermonde determinant
on CNk :

detS .k/ $ D.z1; : : : ; zNk
/ WD det

i;j�Nk

.z
j
i /: (4.4)

Next, we identify X with the unit-sphere S2 in R3, using the standard stereographic
projection, so that the fixed point p1 2 X corresponds to the “north-pole” .0; 0; 1/
in S2:

z 7! x WD

�
z C Nz

1C jzj2
;
z � Nz

1C jzj2
;
�1C jzj2

1C jzj2

�
; C ! R3:

Denote by dVX the area form of the standard round metric on S2 and by G the
following lsc function on X :

G.x; y/ WD � log kx � yk;

expressed in terms of the Euclidean norm on R3.

Lemma 4.3. In terms of the standard identifications over C,ˇ̌
detS .k/.z1; : : : ; zN /

ˇ̌�2=k
js�j

�2.z1/ � � � js�j
�2.zNk

/

D
1�Q

i¤j jzi � zj j
� dL

N�1

1Q
i

1

jzi � pj j
2wj

(where dL is defined in formula (4.1)). As a consequence, onX WD P1C the probability
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measure �.N/� may be expressed as

�
.N/
� D

1

ZN
e

dL
N�1

P
i¤j�N G.xi ;xj /dV ˝N ; dV WD e

P
i�mwiG.x;pi /dVX : (4.5)

Proof. First, factorizing the Vandermonde determinantD.z1; : : : ; zNk
/ on CN reveals

that D.z1; : : : ; zNk
/ is the product of .zi � zj / over all i; j in ¹1; : : : ; N º such that

i < j . Hence, ˇ̌
D.z1; : : : ; zNk

/
ˇ̌2

D

Y
i¤j

jzi � zj j: (4.6)

Since Nk D kdL C 1, we have that k D .N � 1/=dL and hence the first formula of
the lemma follows. To prove the second one, first recall that in the general setting of
log Fano manifolds .X;�/, the measure �.N/� may be expressed as in formula (2.1).
In the present case, we take k � k to be the metric on L induced from the Fubini–Study
metric k � kFS on O.1/ under the identification of L with dLO.1/. Recall that

ke1k
2
FS D e��FS .z/; �FS .z/ WD log

�
1C jzj2

�
:

Hence, formula (4.5) follows from the following two facts: first,

kz � wk2FS WD jz � wj2e��FS .z/e��FS .w/ (4.7)

is proportional to the squared norm in R3 under stereographic projection and second,

kdzk2FS WD ke˝21 k
2
FS WD e�2�FS

is proportional to the density of dVX . These are well-known relations that can be
checked explicitly, but they also follow readily from their invariance under the isom-
etry group of S2.

Next, we recall the following general LDP [10, Theorem 1.5], generalizing the
convergence in probability established in [27, 57] for the point-vortex model in a
planar compact domain. Given a symmetric functionW on a compact metric spaceX ,
a measure �0 on X , and p 2 R, set

�.N/Œp� D
1

ZNŒp�
e
�p 1

N

P
xi¤xj

W.xi ;xj /�˝N
0 ;

ZN Œp� WD

Z
XN

e
�p 1

N

P
xi¤xj

W.xi ;xj /�˝N
0 ;

assuming that ZN Œp� <1.
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Theorem 4.4. Let X be a compact metric space, �0 a measure on X , W a lower
semi-continuous symmetric measurable function on X2, and p0 a negative number
such that

sup
x2X

Z
X

e�p0W.x;y/�0.y/ <1: (4.8)

Then, for any p > p0, the normalizing constant ZN Œp� is finite and the law of the
empirical measure ıN on .XN ; �.N/Œp�/ satisfies an LDP with a rate functional

Fp � inf
P .X/

Fp; Fp.�/ WD p

Z
X�X

W�˝ �C Ent�0
.�/:

Proof. It may be illuminating to reformulate the proof given in [10] in terms of the
conditional convergence result in Theorem 2.3. First, the finiteness of ZN Œp� fol-
lows readily from the arithmetic-geometric means inequality, using the integrability
condition (4.8). A refinement of this argument also yields a priori estimates on each
j -point correlation measure on Xj , building on [9, Section 3.2.4], showing that its
density is uniformly bounded in Lp.�˝j

0 / for any p > 1. Applying this estimate to
j � 2 shows that the “upper bound hypothesis” (2.13) of the energy is satisfied. A
twist of this argument also yields the stronger form of the upper bound hypothesis
with respect to any given continuous function ˆ.�/, as formulated in Theorem 2.3,
and thus also the LDP.

In the present case, we thus have

W.z;w/ D �dL log kz � wk; p D ˇ
N � 1

N
:

Moreover, Z
X

W�˝ � D E.�/C C (4.9)

for some constant C . Indeed, by a simple scaling argument, it is enough to consider
the case when dL D 1. Then we can write W.x; y/ D G.x; y/=2, where G.x; y/ D
� log.kz � wk2/ has the property that � i

2�
@N@G.x; �/ D ıx � !0, where !0 is the

normalized curvature of the Fubini–Study metric. Hence, the first variation of the
functional � 7!

R
X
W� ˝ � on P .X/ coincides with the first variation of E.�/

(formula (2.7)), which proves formula (4.9).

4.1. Conclusion of the proof of Theorem 4.1

Set p D �t and observe thatZ
X

e�pW.x;y/�0.y/ D

Z
X

e�.tdL log kx�ykC
P

i wi log kx�pik
2/ dVX :
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For any given y 2 X , the function e�c log kx�yk2
is locally integrable on X iff c < 1.

Hence, the right-hand side above is integrable iff for any fixed index i

tdL=2C wi < 1; 8i:

But this condition holds for some t > 1 iff

dL=2C wi < 1; 8i;

i.e., iff 1 �
P
wj =2C wi < 1 for all i , that is, wi <

P
j¤i wj , which is equivalent

to the weight condition (4.2). Hence, if the weight condition holds, then by Theorem
4.4, the desired LDP follows.

Next, assume that the weight condition is violated. Without loss of generality we
may assume that it is violated for the index i D 1, which equivalently means that

�dL C 2.1 � w1/ D 0:

Set BR WD ¹kx � p1k � Rº. Since e� log kx�yk � R�1 on BR, we haveZ
BN

R

eW.x;y/�0.y/ � .R�1/dLN

Z
BN

R

�˝R
0 :

Using
R
jzj�R

e�w log jzj2d.r2/ ^ d� D
1

1�w
.R2/1�w , we thus getZ

BR

�0 �

Z
e�.w1 log kx�p1k

2/ dVX � C.R2/.1�w1/

for some constant independent of R. All in all, this means that�Z
BN

R

eW.x;y/�0.y/

�1=N
� CR�dLC2.1�w1/ � CR0 � C > 0:

But the right-hand side is independent of R. Hence, letting R ! 0 shows that the
density eW.x;y/ cannot be inL1.XN�˝N

0 /, which means thatZN;�1D1, as desired.

4.2. The case of a general divisor �

Now consider the case of general coefficientswi 2��1; 1Œ. By the previous theorem,
ZN;�1 diverges for large N , unless the weight condition (4.2) holds. But fixing any
continuous metric k � k onL, we can consider the corresponding probability measures
�
.N/

�;ˇ
, defined by formula (2.2), which are well defined when �ˇ is sufficiently small.

Theorem 4.5. ZN .ˇ/ <1 iff ˇ > �
N , where


N D
N � 1

N
2
1 � maxi wi
2 �

P
i wi

:
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Moreover, if ZN .ˇ/ < 1, then the law of the random variable ıN on .XN ; �.N/
�;ˇ

/

satisfies an LDP with speed N and rate functional Fˇ � infP .X/ Fˇ .

Proof. First, consider the case when k � k is the metric k � kFS induced from the
Fubini–Study metric on O.1/. Then we get, as above, that �.N/

ˇ
D �.N/Œp� for p D

ˇN�1
N

. Hence, by the argument in the beginning of the previous section, the integra-
bility threshold is given by


N D
N � 1

N

; 
 D sup¹t W tdL=2C wi < 1; 8iº D 2

1 � maxi wi
2 �

P
i wi

;

and the LDP follows from the general LDP in Theorem 4.4. Finally, writing a general
continuous metric k � k as e�u=2k � kFS for a continuous function u on X , we can
express�.N/

ˇ
D�.N/Œp�, where�0D e�.ˇC1/udV , and again apply Theorem 4.4.

As recalled in Section 2.3, any minimizer !ˇ of Fˇ satisfies the twisted Kähler–
Einstein equation (2.10) with !0 equal to the normalized curvature form of the metric
k � k on L.

Remark 4.6. In the case when � is trivial (i.e., wi D 0), the formula for 
N in the
previous theorem was shown in [46, Section 3], using a different algebro-geometric
argument.

4.3. The zero-free hypothesis in the case of three points and the complex
Selberg integral

We will next give an alternative proof of Theorem 4.1 in the case when m D 3 using
the approach in Section 2.4.3. To simplify the notation, we will drop the subscript k
in the notation Nk in formula (4.3). In other words, as our data we take a divisor �
on P1C and an integer N which is strictly greater than one (k can then be recovered
from formula (4.3)). First, recall that, by Lemma 4.3, the normalizing constant ZN –
that we will write as ZN .�/ to indicate the dependence on � – may be expressed by

ZN .�/ D

Z
CN

�Y
i¤j

jzi � zj j
�� dL

N�1
Y

i�N;j�m

jzi � pj j
�2wi

Y
i

i

2
dzi ^ d Nzi :

Now specialize to m D 3. Then we may, after perhaps applying an automorphism of
P1C , assume that the points p1, p2, and p3 are given by the points 0, 1, and 1. Hence,

ZN .�/ D

Z
CN

�Y
i¤j

jzi � zj j
�� d

N�1
Y
i

jzi j
�2w0

Y
i

jzi � 1j
�2w1

Y
i

i

2
dzi ^ d Nzi ;

d D 2 � .w0 C w1 C w2/:
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This integral is known as the complex Selberg integral (when expressed in terms of
the parameters w0, w1, and d=.N � 1/). The original Selberg integral is the integral
obtained by replacing CN with Œ0;1�N and generalizes Euler’s classical Beta-function
toN > 1 (see the survey [44]). Its complex version above seems to first have appeared
in the CFT, in the context of minimal CFTs, where it is known as one of the Dotsenko–
Fateev integrals [40] (an equivalent formula was also established in [2], expressed in
terms of the original Selberg integral). By [40, formula (B.9)], the integral ZN .�/

is explicitly given by the following remarkable formula involving the classical �-
function:

ZN .�/ D NŠ

�
�

l
�
�
1
2

d
N�1

��N NY
jD1

l
�
�
j
2

d
N�1

�
l
�
w1 C

j
2

d
N�1

�
l
�
w2 C

j
2

d
N�1

�
l
�
w3 C

j
2

d
N�1

� ;
l.x/ WD

�.x/

�.1 � x/
:

(4.10)

Remark 4.7. The integral ZN .�/ also appears in connection to the DOZZ formula
of Dorn–Otto and Zamolodchikov–Zamolodchikov for the 3-point structure constants
C
 .˛1; ˛2; ˛3/ in Liouville CFT, which has recently been given a rigorous proof in
[63] (see also the exposition in [80, Section 2.3]). A general formula for Selberg-type
integrals over a local field F of characteristic zero was recently established in [45]
(specializing to Selberg’s original integral when F D R>0 and its complex general-
ization when F D C).

We next observe that for any given " 2 �0; 1Œ, ZN .�/ is zero-free in the convex
tube domain � in C3 defined by

� D ¹w 2 C3
W <wi < 1; <w1 C<w2 C<w3 > 0º: (4.11)

Indeed, by formula (4.10),

ZN .�/DNŠ�
N

 
�
�
1C 1

2
d

N�1

�
�
�
�
1
2

d
N�1

� !N NY
jD1

 
�
�
�
j
2

d
N�1

�
�
�
1C j

2
d

N�1

� ��1 � w1 � j
2

d
N�1

�
�
�
w1 C

j
2

d
N�1

� � � �

!
;

where the dots indicate similar factors obtained by replacing w1 with w2 and w3. It
is a classical fact that �.x/ is a meromorphic zero-free function of x 2 C with poles
at 0;�1;�2; : : : : Hence, the zeros of ZN .�/ can only come from the poles of the
Gamma factors appearing in the denominators above. First, consider the case when
d ¤ 0. SinceN � 2 and 2 > <d , the factor �.�1

2
d

N�1
/ has no poles in�. Similarly,

since <d > �1, the factor �.1C j
2

d
N�1

/ has no poles and since <w1 < 1, the factor
�.w1C

j
2

d
N�1

/ has no poles in� (using that, for w 2 R3, when d < 0, w1C
j
2

d
N�1
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is minimal when j DN andN D 2, i.e., the minimum isw1C d D 2�w1 �w2 > 0)
and likewise when w1 is replaced by w2 and w3. Finally, when d D 0, we get

ZN .�/ D NŠ�N
�
�.1 � w1/

�.w1/
� � �

�N
which is non-zero, since <wi > 0 (and thus the denominator above has no poles).

This argument also reveals that the “first” negative poles of ZN .�/ appear when
1 � x D 0, for x D w C td=2 for w 2 ¹w0; w1; w2º and t D i=.N � 1/ for i D
1; : : : ; N , i.e., when w C td=2 D 1. In particular, if w C td=2 > 1 for the maximal
value of t , i.e., for t D N=.N � 1/, then ZN .�/ <1. This is precisely the condition
for the finiteness of ZN .�/ that came up in the beginning of Section 4.1 which is
equivalent to the weight condition (4.2) for w real. The explicit formula (4.10) for
ZN .�/ then also gives

ZN .�/ � CN :

4.3.1. Proving Theorem 4.1 by deforming � in the case when m D 3. We finally
explain how to give an alternative proof of Theorem 4.1 in the case m D 3 using
the zero-free property and the bound on ZN .�/ established in the previous section,
combined with the approach discussed in Section 2.4.3. In this case, the affine space
A of all “admissible” .s;w/ is defined by the condition

d�1
L

�
2 �

� mX
iD1

wi

��
D s;

where, as before, dL denotes the degree of the anti-canonical line bundle of the given
log Fano variety (whose weight vector is denoted by w0 in Section 2.4.3). In par-
ticular, since we consider the case when m D 3, we get s < 0 by choosing a real
weight vector w1 with components sufficiently close to 1 (which can be done as soon
as m > 2) and, in particular, w1 2 � (where � is the domain in formula (4.11)).
Since the components p1; : : : ; pm of � are, trivially, non-singular and mutually non-
intersecting, the implicit function theorem does apply. Hence, so does the approach
in Section 2.4.3.

5. Speculations on the strong zero-free hypothesis, L-functions, and
arithmetic geometry

In this last section, we discuss some intriguing relations between the strong zero-
free hypothesis for the partition functions ZN .ˇ/ on Fano manifolds introduced in
Section 2.4.1 and the zero-free property of the representation-theoretic (automorphic)
local zeta functions Lp.s/ appearing in the Langlands program [65]. Conjecturally,
the latter zeta functions are related to arithmetic/motivic L-functions [66].
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First, recall that given a reductive group G over a global field F together with
automorphic representations � and � of G and its Langlands dual, respectively, one
attaches a local L-function Lp.s/ to any place (prime) p of F . By definition, the
places p of F correspond to multiplicative (normalized) absolute value j � jp on F .
In the case when j � jp is non-Archimedean, the local L-function Lp.s/ is defined as
the inverse of a characteristic polynomial attached to the induced representation ofGp
and thusLp.s/ is automatically zero-free. For Archimedean j � jp , the localL-function
Lp.s/ may be defined as an appropriate product of �-functions and is thus also zero-
free; see [59, Section 4] for the caseG D GL.N;C/ and the relation to the local Lang-
lands correspondence. Conjecturally, any local automorphic L-function Lp.s/ is a
product of the standard L-functions corresponding to the case when G D GL.N;Fp/
and � is the standard representation of GL.N;C/ [65] (generalizing the local versions
of the classical Hecke L-functions, e.g. the Riemann zeta function when N D 1).

5.1. The “minimal” partition function on P n
C

as a standard local L-function

In the standard case, it was shown in [51] (generalizing Tate’s thesis [78] to N > 1)
that Lp.s/ may – for any given admissible irreducible representation � – be realized
as a “zeta integral”:

Lp.s/D

Z
GL.N;Fp/

ˇ̌
det.g/

ˇ̌s
p
�p.g/ (5.1)

for a distinguished measure �p on GL.Fp; N /, depending on � , which is absolutely
continuous with respect to Haar measure. As a consequence, for such particular mea-
sures �p.g/ the zeta integral above is zero-free (since Lp.s/ is).

To see the relation to the partition functions ZN .ˇ/ for Fano manifolds, first note
that we may, in the zeta integral above, replace the group GL.Fp;N / with the algebra
Mat.Fp; N / of N �N matrices A with coefficients in Fp (since �P puts no mass on
the complement of GL.Fp;N / inM.Fp;N /). Then, after a suitable shift, s! sC �,
the measure �p is of the form

�p D f�ˆdA;

where dA is the additive Haar measure on Mat.Fp;N /, the function f� is an appropri-
ate matrix element of � , andˆ is a suitable Schwartz–Bruhat function on Mat.Fp;N/.
In the “unramified case”, f� is the spherical function attached to � and ˆ is its own
Fourier transform [51, Proposition 6.12]. In case when p is non-Archimedean, this
means that ˆ is the characteristic function of M.Op; N /, where Op denotes the ring
of integers of Fp , while in the Archimedean case, ˆ is the Gaussian (see [54] for
the case Fp D C). Now, when p is taken to be the standard (squared) Archimedean
absolute value on C.D Fp/, with � the trivial representation, we get

ZN .ˇ/ D cn
�
�.s C nC 1/

��.nC1/
Lp.s/; s D ˇ.nC 1/; (5.2)
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where ZN .ˇ/ denotes the partition function for the standard Kähler–Einstein metric
on the Fano manifold PnC with N the minimal one (i.e., N D nC 1) considered in
Example 2.9. Indeed, this follows directly from combining formula (5.1) (for f� D 1)
with formula (A.5) for ZN .ˇ/ in the appendix. Note that the first factor in the right-
hand side above is non-vanishing when <ˇ > �1 and thus the zero-free property
of ZN .ˇ/ in the strip <ˇ > �1 can be attributed to the zero-free property of the
corresponding local L-function Lp.s/.

5.2. Zeta integrals associated to Calabi–Yau subvarieties of Mat.Nk; C/

It would be interesting to compute ZNk
.ˇ/ in more examples to check if it can be

expressed as products (and quotients) of �-function and related to local Archimedean
L-functions as above. For example, if a reductive group G acts holomorphically on
X (e.g. if X is a flag variety), one might be able to exploit that the section det S .k/

over XNk is invariant under the diagonal action of G on XNk , up to multiplication
by the determinant of the induced G-action on H 0.X;�kKX /.

For a general Fano manifold X and Nk , it seems, however, unlikely that ZNk
.ˇ/

can be related to an automorphic local L-function. Anyhow, as next explained the
integral ZNk

.ˇ/ can be expressed in terms of an integral over a Calabi–Yau subvariety
of Mat.Nk;C/, which has some intriguing structural similarities with the zeta integral
for the standard L-function Lp.s/ in formula (5.1). We start by lifting the integral
ZNk

.ˇ/ to an integral where the projective variety X is replaced by the affine variety
Yk of dimension nC 1 obtained by blowing down of the zero-section in the total space
of the line bundle �kKX ! X . To this end, first note that the standard C�-action on
�kKX induces a C�-action on the affine variety Yk with a unique fixed point y0, i.e.,
Yk can be viewed as an affine cone over X :

X '
�
Yk � ¹y0º

�
=C�:

On the affine variety Yk , there is a unique C�-equivariant holomorphic top form �

(modulo a multiplicative constant). The Kähler–Einstein metric !KE on X corre-
sponds to a conical Calabi–Yau metric !CY on Yk , i.e., a Ricci-flat Kähler metric
with a conical singularity at y0 [49]. Denote by r the distance to the fixed point y0 in
Yk with respect to the Calabi–Yau metric !CY . We may then express

ZNk
.ˇ/ D cn

�
�
�
.nC 1/ˇ C nC 1

���Nk zZNk
.ˇ/;

zZNk
.ˇ/ WD

Z
Y

Nk
k

j det‰.k/j2ˇ=k.e�r
2

� ^ N�/˝Nk ;

where‰.k/ is the holomorphic function on Y Nk

k
corresponding to the section detS .k/

of �kKXNk and cn is a (computable) positive constant cn. This is shown essentially
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as in the proof of Proposition A.3 in the appendix. Next, assume that k is sufficiently
large to ensure that �kKX is very ample. Then one obtains a holomorphic .C�/Nk -
equivariant embedding

Y
Nk

k
! Mat.Nk;C/; .y1; : : : ; yNk

/ 7!
�
‰ .k/.y1/; : : : ;‰

.k/.yNk
/
�
;

where ‰ .k/.y/ denotes the Nk-tuple of holomorphic functions  .k/1 ; : : : ;  
.k/
Nk

on Yk
corresponding to the fixed bases inH 0.X;�kKX/. In geometric terms, the embedding
above is just the embedding induced from the Kodaira embedding of X in the projec-
tivization of H 0.X;�kKX /

�. Denoting by Yk the image of Y Nk

k
in Mat.Nk;C/, we

can thus express zZNk
.ˇ/ as a matrix integral:

zZNk
.ˇ/ WD

Z
YkbMat.Nk ;C/

j detAj2ˇ=ke�r
2

� ^ N�;

where now r denotes the distance to the origin in Mat.Nk;C/ with respect to the
Calabi–Yau metric on the subvariety Yk and � denotes the equivariant holomorphic
top form on Yk (which can be viewed as a Poincaré-type residue of the standard
holomorphic top form on Mat.Nk;C/ along Yk). This matrix integral is reminiscent
of the integral expression (5.1) for the local L-functions Lp.s/, if �p is taken to be
the measure on Mat.Nk;C/ induced by pairing of � ^ N� with the subvariety Yk ,
weighted by the Gaussian-type factor e�r

2
(and s WD ˇ=k). In view of this structural

similarity, it is tempting to speculate on a very strong zero-free hypothesis, saying
that, in general, the “lifted” partition function zZNk

.ˇ/ is zero-free on all of C, when
viewed as a meromorphic function.

Remark 5.1. The same considerations apply when X is a Fano orbifold if KX is
replaced by the orbifold canonical line bundle (coinciding with �KX C� as Q-line
bundle). Then the natural projection from Yk � ¹y0º to X is a submersion over the
complement of the branching divisor � and the orbifold Kähler–Einstein metric on
X corresponds to a bona fide Calabi–Yau metric on Yk � ¹y0º [49].

One further piece of evidence for the very strong form of the zero-free hypothesis
(complementing the “minimal” case on Pn appearing in Proposition A.3) is pro-
vided by the case when X D P1 and k D 1, i.e., Nk D 3 (which is the case next
to minimal dimension, Nk D nC 1). Then identifying �KX with 2O.1/ and detS .1/

with the Vandermonde determinant D.3/ on C3 (as in Lemma 4.3) and using that
the Kähler–Einstein metric is explicitly given by the Fubini–Study metric (formula
(4.7)), ZNk

.ˇ/ may be expressed as

ZNk
.ˇ/ D

Z
C3

Y
i<j�3

jzi � zj j
2ˇ

Y
i<j�3

�
1C jzi j

2
��.2ˇC2/

;
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integrating with respect to Lebesgue measure. Applying the formula in [22, Theo-
rem 1] (to �i D �i D ˇ C 1), which originally appeared in the CFT, thus yields

ZNk
.ˇ/ D �3

�
�.2ˇ C 2/

��3
�.3ˇ C 2/�.ˇ C 1/3: (5.3)

This means that the meromorphic function zZNk
.ˇ/ is a product of four Gamma func-

tions and thus zero-free on all of C. The elegant proof in [22] leverages the diagonal
action of GL.Nk;C/ onXNk alluded to above (following the corresponding real case
considered in [21] in the context of automorphic triple products).

The general case on X D P1, when Nk > 3, appears to be open. However, a
similar formula does hold for anyNk whenX is replaced by its real points, i.e., when
P1C is replaced by P1R. Then the role of ZNk

.ˇ/ is played by

ZNk
.ˇ/R WD

Z
.P1

R/
Nk

k detS .k/kˇ=k dV ˝Nk

D

Z
.S1/Nk

Y
i<j�Nk

jzi � zj j
2ˇ

Nk�1 d�˝Nk ; Nk D 2k C 1;

where k � k denotes the Fubini–Study metric and dV denotes the corresponding vol-
ume form on .P1R/. In the second equality above, we have exploited that the integrand
is invariant under the diagonal action of SU.2/ to replace the real points P1R of P1C
with the unit-circle S1 in C � P1C . The latter integral over .S1/Nk coincides with the
partition function for the 2D Coulomb gas confined to S1 � C at inverse tempera-
ture 2ˇ=.Nk � 1/ (known as the circular ensemble). Applying [44, formula (1.12)]
(originally conjectured by Dyson and established by Gunson and Wilson) thus yields

ZNk
.ˇ/R D .2�/Nk�

�
1C ˇ

1

Nk � 1

��Nk

�

�
1C ˇ

Nk

Nk � 1

�
; Nk D 2k C 1:

This formula reveals that the real analog ZNk
.ˇ/R of the partition function on P1C

does satisfy the strong zero-free hypothesis. This real analog may, from the point of
view of localization, be obtained by replacing the squared absolute value j � j2C corre-
sponding to the complex Archimedean place of the global field Q with the absolute
value j � jR corresponding to the real Archimedean place of Q. The extension to non-
Archimedean places is discussed in Section 5.4. But first we start by a brief detour on
arithmetic aspects of the partition function.

5.3. Invariants of arithmetical Fano varieties

Let X be an arithmetic variety of dimension n C 1 (i.e., a projective scheme flat
over Z, X ! Spec Z) such that the corresponding n-dimensional complex variety
X (i.e., the complexification of the generic fiber XQ of X) is Fano. Assume that X
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is endowed with a relatively nef line bundle L such that the induced line bundle on
X equals �KX . Then .X;L/ induces a section detS .k/ of �kKXNk ! XNk which
is uniquely determined up to multiplication by ˙1. Indeed, .X;L/ induces a lattice
H 0.X; kL/ of integral sections in H 0.X;�kKX / and detS .k/ may be defined as in
formula (1.3) with respect to any basis in H 0.X; kL/ (any two such bases are related
by a matrix with integral coefficients, which thus has determinant equal to ˙1). As a
consequence, the corresponding partition function ZNk

.ˇ/ only depends on .X;L/
and the choice of a metric k � k on �KX (and is independent of the metric at ˇ D�1).
In fact, the explicit expression for ZNk

.ˇ/ appearing in Proposition A.3 – related
to a local L-function in formula (5.2) – was computed with respect to the standard
integral model .X;L/ for .Pn;O.1// (where H 0.X; kL/ is the lattice spanned by
the sections defined by multinomials). In the light of the speculations in the previous
section, this appears to fit well with the arithmetical side of the Langlands program.

In particular, taking ˇ D�1 yields an invariant ZNk
of .X;L/ (which is finite iff

X is Gibbs stable at level k). The following conjecture relates the arithmetic invariants
ZNk

to the arithmetic intersection numbers introduced by Gillet–Soulé in the context
of Arakelov geometry (see the book [77]).

Conjecture 5.2. Let .X;L/ be an arithmetic variety as above and assume that the
corresponding Fano manifold X admits a unique Kähler–Einstein metric, whose vol-
ume form is denoted by dVKE , normalized to have unit total volume. Then, as k!1,
.nC1/Š
kn log ZNk

converges towards the .nC 1/-fold arithmetic self-intersection num-
ber of the line bundle L, metrized by dVKE .

In fact, using the arithmetic Hilbert–Samuel theorem in [83, Theorem 1.4] (gen-
eralizing the relative ample case in [50]), this conjecture is equivalent to the conver-
gence of the partition function appearing in Theorem 2.4, defined with respect to any
basis of H 0.X; kKX / which is orthonormal with respect to the Hermitian product
induced by a Kähler metric on X . Thus, by Theorem 2.6, in order to establish the
conjecture it would, for example, be enough to show that the lifted partition function
zZNk

.ˇ/ may be expressed as a product of O.Nk/ shifted �-functions all of whose
poles are located in the region where <ˇ < �1 � " for some " > 0.

Remark 5.3. Other (polarized) arithmetic varieties on arithmetic varieties X, en-
dowed with a relatively ample line bundle L, are introduced in [23, 84] (which are
finite precisely when .X;kL/ is Chow stable) and related to constant scalar curvature
metrics in [74].

The analog of Conjecture 5.2 does hold when �KX is replaced by KX (assumed
ample) and logZNk

is replaced by the arithmetic invariant � logZNk
(as follows from

combining the convergence of ZNk
.1/ in Theorem 2.1 with the arithmetic Hilbert–

Samuel theorem).
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5.4. Extension to non-Archimedean places

In view of the connections to local L-functions, Lp at the (complex) Archimedean
place p, exhibited in Section 5.1, one may wonder if the probabilistic setup can be
extended to non-Archimedean places p. The case of the trivial place is discussed in
(5.1), in connection to Gibbs stability. What follows are some speculations on the
case of non-trivial non-Archimedean places p, inspired by the adelic geometric setup
in [29], where geometric Igusa local zeta functions are studied (see Section A.2).

Let X be a non-singular variety defined over Q and first consider the case when
KX.Q/ is ample. Given a non-trivial non-Archimedean place p (i.e., a prime number),
denote by X.Qp/ the projective variety over the corresponding p-adic local field
Qp (the completion of Q with respect to j � jp), which comes with the structure of
a Qp-analytic manifold. By general principles, any continuous metric on KX.Qp/

induces a measure on X.Qp/, which is absolutely continuous with respect to the
local Haar measures [29, Section 2.1]. In particular, a section sk of kKX.Qp/ induces
a measure onX.Qp/, whose local density may be symbolically expressed as jskj

1=k
p .4

Hence, replacing the squared Archimedean absolute value appearing in formula (1.2)
with j � jp , one arrives at a symmetric probability measure �.Nk/

p on X.Qp/
Nk . This

construction thus yields a canonical random point process on X.Qp/. Accordingly,
it seems natural to ask if the convergence in Theorem 1.1 can be extended to this
non-Archimedean setup, if dVKE is replaced by an appropriate measure dVKE;p
on X.Qp/. In analogy with the Archimedean setup, the measure dVKE;p should be
characterized as the unique minimizer of a free-energy type functional F1 on the
space of probability measure � on X.Qp/ of the form

F1.�/ D E.�/C Ent.�/; (5.4)

where Ent.�/ denotes the entropy of the measure � relative to a fixed measure on
X.Qp/, absolutely continuous with respect to the local Haar measure and E.�/
is a non-Archimedean analog of the energy discussed in Section 2.2. In particular,
dVKE;p is then absolutely continuous with respect to the local Haar measure.

Ideally, one might hope that the collection of metrics on �KX.Qp/ defined by
dVKE;p , as p ranges over all primes p, is induced by some model .X; L/ for
.X;KX.Q// over Z, away from primes p with bad reduction (cf. [29, Section 2.2.3]).
This would, loosely speaking, yield a probabilistic construction of a “canonical”
integral model attached toX.Q/. This is in line with the analogy between the Kähler–
Einstein condition of a metric on X.C/ (i.e., at p D1) and the minimality condition
of an integral model for X.Q/ put forth in [72] and further studied in [74].

4One can also consider a field extension Fp of Qp and get a measure on the corresponding
analytic manifolds X.Fp/, as in [56], but here Fp D Qp , for simplicity.
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Remark 5.4. Embedding X.Qp/ in its Berkovich analytification Xanp and push-
ing forward a measure � on X.Qp/ to Xanp , the functional on C 0.Xanp / defined
as the Legendre–Fenchel transform of the functional E.�/ in formula (5.4) should,
in analogy to the Archimedean setup [4, 17], be given by the primitive of the non-
Archimedean Monge–Ampère operator introduced in [28,62]. The primitive in ques-
tion is called the “energy functional” in [24]. In the case of a trivial non-Archimedean
absolute value, such an energy E.�/ appears in [25, formula (6.1)] and plays an
important role in the non-Archimedean approach to K-stability.

Similar considerations apply in the Fano case. In particular, to a given metric on
�KX.Qp/ one can associate a lifted partition function zZNk ;p.ˇ/. By general princi-
ples [29, Section 4.1], this defines a meromorphic function on C which in the light
of Section 5.1 plays the role of the local L-functions Lp in the Langlands program.
More precisely, in order to render zZNk ;p.ˇ/ as canonical as possible, the metric on
�KX.Qp/ should be taken to be defined by a “canonical” integral model .X;L/ for
.X.Q/;�K.Q// and detS .k/ should be defined with respect to any basis inH 0.X;L/

(as in Section 5.3). Finally, one could then attempt to define a global L-type function
as a Euler product of zZNk ;p.ˇ/ over all p, generalizing the Riemann zeta function.

A. Log canonical thresholds and Archimedean zeta functions

In this appendix, we recall the basic notions of lct’s, ˛-invariants, and their con-
nections to Archimedean zeta functions, which are as essentially well known. We
conclude with a proof of the formula appearing in Example 2.9.

A.1. Log canonical thresholds

Let X be a compact complex manifold.

A.1.1. The lct of a divisor on X . By definition, an R-divisor D is a finite formal
sum of irreducible analytic subvarieties Di � X of complex codimension one:

D D

mX
iD1

ciDi ; ci 2 R:

The log canonical threshold lctX.D/ of an R-divisorD has various algebro-geometric
formulations (using discrepancies, valuations, multiplier ideal sheaves, etc.) [60], but
for the purposes of the present paper, it will be enough to recall its analytic definition
as an integrability threshold. First, consider the case when the coefficients D are
in ZC. This equivalently means that there exists a holomorphic line bundle LD ! X

and a holomorphic section sD such that D is cut-out by sD , including multiplicities,
i.e., sD vanishes to order ci along the irreducible varieties Di . The lct may then be
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defined as the following integrability index:

lctX .D/ WD sup

>0

²

 W

Z
X

ksDk
�2
 dV <1

³
; (A.1)

in terms of any Hermitian metric k � k onL and volume form dV onX . This definition
first extends to the case when ci 2 Z, if sD is viewed as a meromorphic section, so
that the negative coefficients correspond to the poles of sD , and then to ci 2 Q by
viewing sD as a multi-valued holomorphic section and noting that ksk is still a well-
defined function on X (taking values in Œ0;1�). Finally, the definition extends, by
continuity, to any R-divisor D or, alternatively, by noting that the function ksDk is
still well defined (and can be viewed as the norm on an R-line bundle, i.e., a formal
sum of the line bundles LDi

).

A.1.2. The lct of a divisor on .X; �/. More generally, if � is a given Q-divisor
ofX , then the lct ofD relative to the log pair .X;�/ [30] may be analytically defined
as

lct.X;�/.D/ WD sup

>0

²

 W

Z
X

ksk�2
 dV� <1

³
;

where dV� is a measure onX with singularities encoded by�, i.e., locally dV� may
be expressed as

dV� D ks�k
�2dVX

for some bona fide volume form dVX on X and metric k � k on the Q-line bundle
with multivalued holomorphic section s� corresponding to �. More generally, as in
the previous section, � may be taken to be an R-divisor on X .

A.1.3. The lct of a line bundle L and the ˛-invariant. The log canonical threshold
lctX .L/ of a line bundle L! X is now defined by

lctX .L/ WD inf
D�L

lctX .D/;

whereD ranges over the divisors attached to all the many-valued holomorphic section
s of L. By [35], this coincides with Tian’s ˛-invariant of L:

˛.L/ WD sup

>0

²

 W 9C

Z
X

e�
.���0/ dV � C 8� 2 H .L/

³
; (A.2)

where H .L/ denotes the space of all metrics on L with positive curvature and �0
denotes a fixed smooth reference metric on L using additive notation for metrics so
that � � �0 defines a function on X . More generally, the log canonical threshold
lct.X;�/.L/ of a line bundle L! X with respect to a log pair .X;�/ [30] is defined
by

lct.X;�/.L/ WD inf
D�L

lct.X;�/.D/:
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This coincides with the ˛-invariant defined with respect to the log pair .X;�/ obtained
by replacing dV in formula (A.2) with dV.X;�/, as shown in the appendix of [4].

A.2. Archimedean zeta functions

Let �0 be a measure on Cn with compact support and  2 L1.�0/. Then we may
define the integrability threshold lct�0

. / as in formula (A.1), by replacing log ksk2

with  and dV by �0. The integral

Z.ˇ/ D

Z
Cn

e2ˇ �0;

defines a holomorphic function on the strip ¹<ˇ > � lct�0
. /º in C (using that, in

this strip, eˇ 2L1.�0/ and that the integrand is holomorphic in ˇ). In the case when
 D log jf j2 for f holomorphic, or more precisely,

Z.ˇ/ D

Z
Cn

jf j2ˇˆdx; (A.3)

for a Schwartz function ˆ, the holomorphic function Z.ˇ/ on the strip ¹<ˇ >

� lct�0
. /º extends to a meromorphic function in C, whose poles are located at

the negative real axes.

Remark A.1. This follows from classical results of Atiyah and Bernstein, extended
by Igusa to a more general setting of zeta function attached to polynomials defined
over local fields [53]. Briefly, meromorphic functions Z.ˇ/ of the form (A.3) can be
defined more generally by replacing C and its standard Archimedean absolute value
j � j with any local field F , endowed with an absolute value j � jF . Such functionsZ.ˇ/
are usually called Igusa local zeta function [53] and thus Z.ˇ/ in formula (A.3) is
called an Igusa Archimedean zeta function or simply an Archimedean zeta function
in the literature on algebraic and arithmetic geometry. In the case when f is a poly-
nomial with integer coefficients and F is the p-adic field, F D Qp , the meromorphic
function Z.ˇ/ encodes the number of solutions of the equation f .x1; : : : ; xn/ D 0,
modulo powers of p, when ˆ is taken as the characteristic function of the n-fold
product of the ring Zp of integers of Qp ,

Similarly, given a holomorphic section s of a line bundle L! X over a compact
complex manifold, a metric k � k on L and a singular volume form dV� associated to
a log pair .X;�/

Z.ˇ/ WD

Z
X

ksk2ˇ dV.X;�/ (A.4)

defines a holomorphic function in the strip ¹<ˇ > � lct.X;�/.D/º in C, where D
denotes the divisor cut out by the section s. More precisely, the function Z.ˇ/ extends
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to a meromorphic function on C, whose poles are located on the negative real axes
(using a partition of unity to reduce to the case of X D Cn). The first negative pole is
precisely � lct.X;�/.D/.

Remark A.2. Functions of the form (A.4) have previously appeared in a general
adelic setup [29] (containing both the Archimedean and the p-adic setup), motivated
by number theory and arithmetic geometry on log Fano varieties.

In the present probabilistic setup on Fano manifolds, discussed in Section 2.4.1,
the manifold is of the form XNk , the section is the many-valued holomorphic section
.detS .k//1=k of �KXNk , and the measure is of the form dV

˝Nk

X (and similarly in the
case of log Fano pairs). We conclude by proving the explicit formula for Z.ˇ/ stated
in Example 2.9.

Proposition A.3. In the setup of Example 2.9, the following formula holds:

Z.ˇ/ D cn

Qn
jD1 �

�
ˇ.nC 1/C j

��
�
�
ˇ.nC 1/C nC 1

��n :
In particular, the maximal holomorphicity strip of Z.ˇ/ is given by � D ¹<.ˇ/ >

�1=.nC 1/º b C and Z.ˇ/ is zero-free in �. More precisely, the zeros of Z.ˇ/ are
located at ˇ D �1C j=.nC 1/, where j D 0; 1; 2; : : : :

Proof. In this “minimal” case, a basis s1; : : : ; sNk
in the complex vector space

H 0.X;�kKX / D H 0
�
Pn;O.1/

�
is obtained from the homogeneous coordinates Z0; : : : ; Zn on Pn. Denote by Z WD

.Z0; : : : ; Zn/ the corresponding vector in CnC1. We will represent an element in

.Z1; : : : ;ZN / 2 .CnC1/N with an .nC 1/ � N -matrix, denoted by ŒZ �. Then the
corresponding Slater determinant det S .k/ may be identified with the homogeneous
polynomial detŒZ � on C.nC1/2 , defined by the determinant of the matrix ŒZ �. Using
the SU.nC 1/-symmetry of the Fubini–Study metric on O.1/! Pn, we may then
first lift the integral Z.ˇ/ on .Pn/nC1 to the product of unit-spheres S in CnC1:

Z.ˇ/ D cn

Z
S.nC1/

ˇ̌
detŒZ �

ˇ̌2s
d�˝N ; s WD ˇ=k;

where d� denotes the standard SU.nC 1/-invariant measure on S . Next, exploiting
that detŒZ � is homogeneous of degree 1 in each column givesZ

S.nC1/

ˇ̌
detŒZ �

ˇ̌2s
d�˝N

D cn

R
C.nC1/2

ˇ̌
detŒZ �

ˇ̌2s
e�jZ j2 d�� R1

0
.r2/se�r

2
r2.nC1/�1 dr

�nC1 :
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Hence, making the change of variables t D r2 in the denominator (and rewriting
r2.nC1/�1dr D r2.nC1/r�2d.r2/=2) reveals that

Z.ˇ/ D cn

R
C.nC1/2

ˇ̌
detŒZ �

ˇ̌2s
e�jZ j2 d��

�.s C nC 1/
�.nC1/ ; �.a/ WD

Z 1

0

tae�t
dt

t
: (A.5)

Finally, the proof is concluded by invoking the following formula in [53, Theo-
rem 6.3.1]:

Z.s/ WD

Z
C.nC1/2

ˇ̌
detŒZ �

ˇ̌2s
e�jZ j2 d� D cn

nC1Y
jD1

�.s C j /: (A.6)

Remark A.4. The proof of formula (A.6) in [53] exploits that the polynomial f WD

detŒZ � on C.nC1/2 has the property that

P.@/f sC1 D b.s/f s (A.7)

with

b.s/ D

nC1Y
jD1

.s C j /;

when P.z/ D f .z/. This leads to the functional relation b.s/Z.s/ D Z.s C 1/, that
can then be compared with the classical functional relation for �.s/ to deduce formula
(A.6). Recall that in general, given a polynomial f .z/ on Cm, the monic polynomial
b.s/ on C with minimal degree for which there exists a polynomial P.z/ satisfying
formula (A.7) is called the Bernstein–Sato polynomial attached to f [53]. In general,
it is very hard to compute b.s/ explicitly (and thus to also find P.z/) but the present
case, f .z/ D detŒZ �, fits into Sato’s theory of prehomogenuous vector spaces. This
is explained in [53]. Alternatively, formula (A.6) follows from the Iwasawa decom-
position of GL.N;C/ (as in [54, Section 2]). It would be interesting to see if similar
considerations could be applied to X D Pn when Nk is not assumed to be minimal,
i.e., when Nk > nC 1. However, even the case when nD 1 appears to be open (apart
from the case when Nk D 3 appearing in formula (5.3), where a symmetry argument
can be exploited).
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Variational regularization in inverse problems and machine
learning

Martin Burger

Abstract. This paper discusses basic results and recent developments on variational regulariza-
tion methods, as developed for inverse problems. In a typical setup we review basic properties
needed to obtain a convergent regularization scheme and further discuss the derivation of quan-
titative estimates respectively the needed ingredients such as Bregman distances for convex
functionals.

In addition to the approach developed for inverse problems, we will also discuss variational
regularization in machine learning and work out some connections to the classical regular-
ization theory. In particular we will discuss a reinterpretation of machine learning problems
in the framework of regularization theory and a reinterpretation of variational methods for
inverse problems in the framework of risk minimization. Moreover, we establish some pre-
viously unknown connections between error estimates in Bregman distances and generalization
errors.

1. Introduction

Regularization methods are an approach of fundamental importance in the solution of
ill-posed problems. Their main paradigm is to approximate an ill-posed problem by a
parametrized family of well-posed problems, with appropriate convergence properties
as the regularization parameter and the so-called noise level tend to zero. The noise
level is a measure for the size of deterministic and stochastic errors in the data, which
are usually the main cause of concern due to the ill-posedness.

A detailed theory of regularization has been developed in the typical setting of
inverse problems, obviously with more precise results in the case of linear forward
models than for nonlinear ones (cf. [3, 20, 24, 54, 56] and references therein). Reg-
ularization is however not only relevant in inverse problems, similar methods are
now routinely used in machine learning, mainly from a practical point of view, with
theoretical results often hidden in the statistical theory of generalization (cf. e.g.
[27, 33, 40]). The role and objective of regularization is less clear and less developed
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in the machine learning domain. In this paper we will thus aim to give a unified
overview and present some links between the formulations and questions in inverse
problems and those in machine learning. We will concentrate on the prominent class
of variational regularization methods, which we interpret in a rather broad way.

2. Regularization theory

In order to present the basic ideas of regularization methods in a rather unified way
for inverse and machine learning problems, we will first adopt a high-level point of
view. Regularization theory is based on the following ingredients.

� An ideal problem respectively an ideal solution u�. We can assume that the ideal
problem is given by a map ˆ W VD ! U, where VD is the space of ideal data and
U is the space of admissible solutions. The typical analysis is confined to Banach
or at least metric spaces.

� A space V � VD of possible data and a measure of noise between the ideal data
v� Dˆ�1.u�/2VD and noisy data v 2V . In the case of an ill-posed problem, the
operator ˆ is not continuous when considered from (a subset of) V to U; it may
be continuous on bounded subsets of VD however. The latter leads to the concept
of conditional stability (cf. [57, 58]) and corresponding stability estimates.

� A family of continuous, possibly multivalued, maps ˆ˛ W V ! P .U/, ˛ 2 A,
such that for a sequence .vn/ � V converging to v� 2 VD , there exists a param-
eter sequence ˛n such that there is un 2 ˆ˛n

.vn/ converging to u� (in a suitable
metrizable topology, possibly weak or weak-star on bounded sets in the Banach
space case). Sometimes the notion of convergence is restricted to subsequences.

To make these notions more concise we will discuss them in the setting of inverse
problems as well as machine learning subsequently.

2.1. Inverse problems

In the typical case of inverse problems, there is first a (continuous) forward operator
F W U ! V , which is typically not invertible and if it is on a subset of V , the inverse
is discontinuous. The set of ideal data is a subset of F.U/, and there the multivalued
operator

ˆ0 W VD ! P .U/; v 7! F �1.v/

can be defined. In order to obtain a unique (generalized) inverse, a further selection
operator † W P .U/ ! U is defined to obtain ˆ WD † ı ˆ0. Let us mention that there
are standard examples of the selection operator such as the minimum norm solution,
but often this issue is treated in a hidden or unprecise way. We refer to [3] for a
detailed discussion of selection operators in inverse problems.
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The standard notion of noise is the perturbation of the data, i.e. v � v�, either as a
deterministic or a stochastic quantity. The norm of v � v� in the Banach space V (or
the expectation of some power of the norm) serves as a definition of the noise level.

The solution of the inverse problem can then be cast as the solution of the ill-
posed operator equation

F.u/ D v

or as the minimization of
D.u/ D L

�
F.u/; v

�
; (2.1)

where L is some distance measure between the predicted data F.u/ and the measured
data v. If statistical information about the noise is available or the forward model
contains other stochastic elements, L is typically a negative log-likelihood functional.

As mentioned above, regularization methods are families of multivalued operators
ˆ˛ WV !P .U/; in most cases the parameter domain A is a subset of the positive real
numbers. The well-posedness of ˆ˛ is characterized by some set-valued continuity,
e.g. if un ! u, then ˆ˛.un/ contains a convergent subsequence and each limit v of a
convergent subsequence satisfies v 2 ˆ˛.u/. In most cases the regularization operator
satisfies a stronger stability estimate of the form

dU .u1; u2/ � C˛dV .v1; v2/ 8u1 2 ˆ˛.v1/; u2 2 ˆ˛.v2/; (2.2)

where dU and dV are appropriate distance measures (that may be degenerate in the
sense that dU .u1; u2/ can vanish also if u1 ¤ u2).

Regularization methods are constructed along several different paradigms.

� Data smoothing or mollifier methods, which are of the form ˆ˛ D F �1 ı M˛ ,
where M˛ W V !VD is a family of mollifying (smoothing) operators into an
appropriate subspace of V on which there exists a continuous inverse of F . In
order to obtain suitable regularization methods, a quite detailed characterization
of the forward operator is needed in order to be sure to construct a mollification to
the right subspace. Consequently, such methods became popular for inverse prob-
lems with well-understood forward operators such as tomography (cf. [43, 44]).

� Direct approximation of the operator F by continuously invertible operators (cf.
[24,37,41,56] and references therein). The construction of approximations is usu-
ally done only in the case of linear forward operators based on modifying (small)
singular vectors or by approximating the normal equation, i.e. F �F . The latter
is however related to the minimization of the least-squares function kF.u/ � vk2

and can thus be viewed as a variational method. Another approach modifying the
forward operator is discretization, the regularization parameter thus being related
to the discretization fineness.
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� Variational methods are based on a perturbation of the likelihood minimization,
with ˆ˛ mapping v to the set of minimizers of

D˛.u/ D L
�
F.u/; v

�
C ˛J.u/

for some regularization functional J that introduces the needed compactness
properties for the existence of minimizers and ˛ 2 RC being the regularization
parameter (cf. [3, 54]).

� Iterative regularization methods use a well-defined iteration method such as a
fixed-point iteration or some descent scheme for the likelihood minimization to
define an approximation of the inverse of F , with the iteration number ˛ 2 N
being the regularization parameter (cf. [14, 24, 34, 35, 49]). Since the majority of
iterative methods, in particular in the nonlinear case, are iterative methods for
variational problems, there is an intimate connection to variational regularization
methods.

� Learned regularization methods are of increasing relevance recently (cf. [1,3] and
references therein), which are categorized into supervised and semi-supervised
approaches. The supervised approach tries to learn the regularization operator
ˆ˛ directly from a collection of pairs of training data .ui ; vi /, e.g. by approx-
imation with a deep neural network. Consistent data pairs are however difficult
to obtain in many inverse problems, in particular with realistic input data ui and
realistic noise in vi . The alternative semi-supervised approach mainly works on
suitable solutions ui , e.g. images for reconstruction tasks, and tries to learn a more
conventional regularization approach, e.g. the regularization functional J in vari-
ational regularization methods. With certain restrictions such as convex networks
those become accessible for theoretical arguments of regularization theory.

Besides providing a well-posed problem for fixed ˛, which often requires some
advanced analysis itself (e.g. existence of minimizers for variational problems), a
major goal of regularization theory is to study the convergence of regularized solu-
tions. While a qualitative convergence theory can be developed under generic condi-
tions, it is well known that a quantitative theory will rely on additional assumptions
on the ideal solution u� due to the underlying ill-posedness. To understand the possi-
bility to derive such estimates and the used assumptions from a generic point of view,
let us consider a sequence of data vn ! v� and a parameter choice ˛n, assuming
that ˛n is a nonnegative scalar sequence converging to zero (e.g. the regularization
parameters in a variational regularization method or ˛n D

1
kn

with kn the maximal
iteration number in an iterative regularization method). Now assume that the stabil-
ity estimate (2.2) holds and that u� satisfies a range condition for the regularization
operator (cf. [3]).
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Definition 2.1. An element u� 2 U is said to satisfy a range condition for the regu-
larization operator ˆ˛ if for all ˛ there exists v�

˛ such that u� 2 ˆ˛.v�
˛/.

Under a range condition we can write

un � u�
2 ˆ˛n

.vn/ � ˆ˛n
.v�

˛n
/

and exploit the stability estimate (2.2) to obtain

dU .u�; un/ � C˛n
dV .v�

˛n
; v�/:

Thus, if we can control the range condition in the sense that we can construct an
element v�

˛n
out of v� such that the distance can be estimated, we directly obtain

an error estimate. This will be made more precise in the next section on variational
regularization methods.

2.2. Learning and risk minimization

In the typical case of machine learning problems (cf. [33,45]) we are given (randomly
sampled) input samples xi 2 X and output samples yi 2 Y, i D 1; : : : ;N , and want to
infer a parametrized map f� W X ! Y reasonably reproducing these training data and
generalizing further to other data of the same kind. These properties are frequently
obtained from risk minimization arguments. Given a loss ` measuring deviations in
the output space, the empirical risk is given by

yR.�/ D
1

N

NX
iD1

`
�
f� .xi /; yi

�
and approximate solutions are constructed as approximate minimizers of yR, e.g. via
variational regularization methods minimizing

D˛.�/ D yR.�/ C ˛J.�/

or by iterative methods such as the gradient descent

�kC1
D �k

� �k yR0.�k/

or even more often by stochastic gradient descent, where the term implicit regulariza-
tion is common (cf. [48]).

Generalization is usually measured by the behavior on the population risk, i.e.

R.�/ D E.x;y/�P

�
`
�
f� .x/; y

��
I
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in particular the generalization error defined by

G.�/ D R.�/ � yR.�/;

evaluated at a regularized solution. Note that the generalization error is actually a
random variable depending on the samples .xi ; yi /

N
iD1, hence it is relevant to consider

its distribution among the random sampling.
The ideal model could be defined in two ways, depending on what variable is

identified to be the relevant one. In any case the ideal solution is perceived as a min-
imizer of the population risk, however one could define u� as the optimal parameter
value or the optimal function. Thus we are led to the following cases.

(i) The first case, corresponding to classical approaches in statistics such as
regression, is to define U as the set of possible parameters, genuinely a
finite-dimensional space (with few generalizations to infinite-dimensional
models recently, cf. [39, 47]). Thus, the ideal solution is given by

��
2 arg min

�2U
R.�/:

(ii) The second case rather corresponds to the perspective of modern learning
theory; it extends the population risk to some function class F and com-
putes for f 2 F

S.f / D E.x;y/�P

�
`
�
f .x/; y

��
:

The ideal solution is given by

f �
2 arg min

f 2F
S.f /:

Another obvious question in this case is how to define the ideal and perturbed
data. We follow a distributional viewpoint and define the ideal data v� as the data
distribution P . Correspondingly, the perturbed data are given by the empirical distri-
bution

P N
D

1

N

NX
iD1

ı.xi ;yi /;

where ız denotes the concentrated measure at z. Thus, the noise level becomes a
distance between (probability) distributions, standard distances such as the total vari-
ation distance or Wasserstein metrics.

The regularization operator ˆ˛ maps from a space of probability distributions to
(a set of) regularized solutions. Take the variational regularization of minimizing D˛

as an example. Then in case (i), ˆ˛ is given by

ˆ˛ W P N
7! arg min

�
D˛.�/;
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while in the second case (ii) we have

ˆ˛ W P N
7!

®
f� j � 2 arg min

�
D˛.�/

¯
:

We finally mention that these models can obviously be generalized, in particu-
lar to the case of further data errors in the samples .xi ; yi /. Then the samples can
be considered to be drawn from a distribution P 0 and the effective error is not just
determined by sampling but also by the distance of P and P 0.

Thus, we see that regularized learning problems can be reformulated in the lan-
guage of regularization theory for inverse problems (see also [12,53]). In turn we will
see that many inverse problems can be reformulated as risk minimization problems,
in particular if there is additional sampling of measurement points.

2.3. Risk minimization formulation of inverse problems

Many inverse problems are dealing with data being functions of a variable x, e.g.
in integral equations of the first kind or tomography, where x is a set of distances
and angles (cf. [46]). Denoting the unknown of the inverse problem by � , we thus
obtain F.�/ as a function of x and denote f .xI �/ D F.�/.x/. Moreover, standard
log-likelihood functionals in this setting are of the form

L
�
F.�/; v

�
D

Z
�

`
�
F.�/.x/; v.x/

�
dx

for some function `. Thus, choosing P D L�ıv.x/, where L� denotes the Lebesgue
measure on �, we obtain

L
�
F.�/; v

�
D E.x;y/�P

�
`
�
F.�/.x/; y

��
D E.x;y/�P

�
`
�
f .xI �/; y

��
:

The ideal problem is thus the minimization of the loss for appropriate data v�.
In a practical setting we have a finite sampling of data with additional noise, which

we consider to be additive for simplicity in the following. This means the practical
data are a finite number N of samples yi D F.�/.xi / C ni , where ni are the noise
samples drawn from some distribution. The practical distribution of samples and data
is of the form

P N
D

1

N

NX
iD1

ıxi
˝ ıF .��/.xi /Cni

;

where the xi are drawn from a prior distribution (usually a deterministic one) and the
ni are drawn from the noise distribution.

Example 2.2. As a simple example consider the inversion of the Radon transform on
a domain � � R2. Then in the standard parametrization we can choose x 2 Œ0; �/ �
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Œ0; L� as the angle and distance to origin of the lines to be integrated on. Correspond-
ingly F.�/.x/ is the line integral of the density function � on the line parametrized
by x. Now let x be drawn from the uniform distribution on Œ0;�/� Œ0;L� and let each
n be drawn from a Gaussian distribution G� with zero mean and finite variance. Then
the population risk becomes

R.�/ D
1

2L�

Z
Œ0;�/�Œ0;L�

Z
R

ˇ̌
F.�/.x/ � F.��/.x/ � n

ˇ̌2
dG� .n/ dx

D
1

2L�

Z
Œ0;�/�Œ0;L�

ˇ̌
F.�/.x/ � F.��/.x/

ˇ̌2
dx C

Z
R

n2 dG� .n/:

Hence, after affine transform with terms independent of � , the population risk equals
the squared L2-distance of the Radon transforms of � and ��, which is the usual data
discrepancy L. The empirical risk on the other hand is of the form

yR.�/ D
1

2N

NX
iD1

ˇ̌
F.�/.xi / � yi

ˇ̌2
;

which is the standard functional minimized in practice.

For a more general noise model one may construct the conditional distribution
for y based on using the appropriate push-forward of the noise distribution based on
applying the noise to F.��/.x/ and an appropriately chosen loss function. Moreover,
errors in the forward model could be included in the stochastic model, which will
imply that even in the ideal model the conditional distribution of y given x is not
concentrated.

3. Variational regularization

In the following we present some key steps in the analysis of iterative regulariza-
tion methods, for the sake of a simpler presentation restricting ourselves to a linear
forward model and a quadratic data fidelity in a Hilbert space, i.e.

D˛.u/ D
1

2
kF u � vk2

C ˛J.u/; (3.1)

where J W U ! R [ ¹C1º is assumed to be convex and proper. Moreover, we
assume V to be a Hilbert space and U a Banach space being the dual of some Banach
space W , with the additional property that the weak-star topology on U is metrizable
on bounded sets. The operator F W U ! V is assumed to be bounded and the adjoint
of a bounded linear operator E W V ! W . With abuse of notation we shall write
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F � D E. Finally, we need some additional property of the regularization functional;
we assume that it is the convex conjugate of some other functional H W W ! R, i.e.

J.u/ D sup
w2W

hu; wi � H.w/:

Let us mention that convex conjugates are weak-star lower semicontinuous, which is
obviously an important property of the functional and can be inferred by similar argu-
ments as the weak lower semicontinuity results in [23]. Finally, a coercivity property
is needed to apply weak-star compactness arguments (based on the Banach–Alaoglu
theorem); we assume that the sublevel sets

MC D
®
u 2 U j J.u/ � C

¯
are bounded in U for C > 0. The final property we need is that J is bounded below;
we can assume directly that J is nonnegative.

There are various important examples in literature motivating the above model
and assumptions. A popular and reasonably easy to compute approach is classical
Tikhonov–Phillips regularization with U being a Hilbert space and

J.u/ D
1

2
kuk2:

Possibly the most prominent example with a variety of applications is total variation
regularization (cf. [16, 19]), i.e. U D BV.�/ and

J.u/ D sup
g2C 1

0
.�/d ; kgk1�1

Z
�

ur � g dL�;

where � � Rd is the domain on which the function to be reconstructed is defined.
There are various variants of total variation, including higher order versions, which
received considerable attention. Another class of important regularization methods
are sparsity-enforcing priors (cf. [50]), in the simplest setup U D `1 and

J.u/ D
X

jui j:

An interesting case in deconvolution problems as well as mean-field approaches to
learning with neural networks is the continuum variant, the total variation norm of
Radon measures (cf. [7, 22]). Here we have U D M.�/ and

J.u/ D sup
w2C0.�/

Z
�

w du:
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3.1. Basic properties of variational regularization methods

A key result, often found for special cases in literature (cf. e.g. [16, 55]), is the exis-
tence of a minimizer and some stability, which verifies the well-posedness of the
regularization operator ˆ˛.v/ WD arg minu D˛.u/.

Theorem 3.1. Under the above assumptions on U, V , F , and J there exists a min-
imizer of D˛.u/ for every v 2 V and every ˛ > 0. Moreover, if ˛ > 0, vn ! v, and
un 2 ˆ˛.vn/, then there exists a weak-star convergent subsequence vnk

and the limit
u of every weak-star convergent subsequence satisfies u 2 ˆ˛.v/.

In general, no uniqueness can be shown under the above conditions, which is any-
way not to be expected for the rather degenerate examples above. However, a weaker
type of uniqueness can be inferred from the convexity and optimality condition

F �.F u � v/ C ˛p D 0; p 2 @J.u/;

where @J.u/ denotes the subdifferential

@J.u/ D
®
w 2 U�

j J.u/ C hw; Qu � ui � J. Qu/ 8 Qu 2 U
¯
:

From the assumptions on F we see that F � effectively maps to the predual space W ,
thus the subgradients in the optimality condition effectively satisfy p 2 W , which is
a weak regularity condition. A key concept needed in the following is the Bregman
distance or generalized Bregman distance (cf. [11, 38]).

Definition 3.2. Let J W U ! R [ ¹C1º be a convex proper functional and let
u; Qu 2 U with p 2 @J.u/. Then the (generalized) Bregman distance d

p
J . Qu; u/ is

defined by
d

p
J . Qu; u/ D J. Qu/ � J.u/ � hp; Qu � ui:

If Qp 2 @J. Qu/, the symmetric Bregman distance d
Qp;p

J . Qu; u/ is defined by

d
Qp;p

J . Qu; u/ D h Qp � p; Qu � ui:

Now assume that there are two minimizers u1 and u2 of the variational regular-
ization problem, then the difference in optimality conditions yields

F �F.u1 � u2/ C ˛.p1 � p2/ D 0

and from a duality product with u1 � u2 we infer

F.u1 � u2/


2

C ˛d
p1;p2

J .u1; u2/ D 0:
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Hence, by the nonnegativity of both terms we obtain uniqueness of the output value,
i.e., F u1 D F u2 as well as a vanishing symmetric Bregman distance between u1

and u2.
Finally, we can turn our attention to convergence properties of the regularization

method. For this sake we use an exposition based on �-convergence (cf. [6]).

Lemma 3.3. Let vn ! v� D F u� in V and ˛n ! 0. Then the sequence of functionals
D˛n

defined by

D˛n
.u/ D

1

2
kF u � vnk

2
C ˛nJ.u/

�-converges to

D0.u/ D
1

2
kF u � v�

k
2

with respect to the weak-star topology in U.

This kind of convergence is not strong enough to infer convergence of minimizers,
in particular since there is no equicoercivity property. To achieve this, we need to
rescale the functional, i.e. use �-convergence by development to the next order.

Lemma 3.4. Let vn ! v� D F u� in V and ˛n ! 0 such that

kvn � v�k2

˛n

! 0:

Then the sequence of functionals E˛n
defined by

E˛n
.u/ D

1

2˛n

kF u � vnk
2
C J.u/

�-converges to

E0.u/ D

´
J.u/ if F u D v�;

C1 else;

with respect to the weak-star topology in U.

Let us mention that we obtain divergence, i.e. E˛n
converges to the functional

identically equal to C1, if the condition on the parameter choice is violated, i.e.
lim inf kvn�v�k2

˛n
> 0. Since E˛ � J and J is coercive, we immediately conclude the

equicoercivity of the sequence E˛n
.

Corollary 3.5. Let vn ! v� D F u� in V and ˛n ! 0 such that

kvn � v�k2

˛n

! 0:
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Moreover, let un be a sequence of minimizers of D˛n
(or equivalently E˛n

), then there
exists a subsequence converging with respect to the weak-star topology in U and the
limit u�� of each weakly convergent subsequence is a minimizer of E0. Moreover,
J.un/ ! J.u��/.

Corollary 3.5 confirms that indeed the regularization operator defined by

ˆ˛.v/ D arg min
u

D˛.u/

yields a convergent regularization. Let us mention some further direct consequences.

� If the J -minimizing solution is unique, i.e. u�� is the unique minimizer of E0,
then the whole sequence un converges weakly-star to u��. Moreover, if there is
p�� 2 @J.u/ \ W , then due to the convergence of J and the weak-star conver-
gence we conclude

d
p��

J .un; u��/ ! 0:

� If u� satisfies F u� D v�, but is not a J -minimizing solution (a minimizer of E0),
it cannot be reconstructed by the regularization method, i.e. it is not the limit of
minimizers of the variational regularization for positive ˛. This is related to the
question whether the regularization functional introduces the right type of prior
knowledge. If we are interested in reconstructing a solution like u� that is not
J -minimizing, then J is not a suitable choice.

� If J is the norm in U as in many frequent examples and U satisfies a Radon-
Riesz property, the previous result indeed implies a strong convergence of subse-
quences.

The above analysis was based on a deterministic approach, but in a similar way a
stochastic theory can be developed, e.g. for a sequence of random variables vn with
variance E.kvn � v�k2/ converging to zero.

3.2. Quantitative estimates

As mentioned above, it is important to derive quantitative estimates between solutions
of the regularized problem and ideal solutions, which we present here based on using
range conditions as sketched above. In the following we denote by u˛ a regularized
solution, i.e. a minimizer of D˛ . Due to convexity u˛ 2 ˆ˛.v/ is characterized as the
solution of the optimality condition

F �.F u˛ � v/ C ˛p˛ D 0; p˛ 2 @J.u˛/:

Taking two such solutions one can establish a stability estimate for the Bregman dis-
tance (cf. [3]).
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Theorem 3.6. Let u˛ 2 ˆ˛.v/ and Qu˛ 2 ˆ˛. Qv/. Then the estimate

1

2
kF u˛ � F Qu˛k

2
C ˛d

p˛ ; Qp˛

J .u˛; Qu˛/ �
1

2
kv � Qvk2

holds, where p˛ respectively Qp˛ are the subgradients appearing in the optimality
condition for u˛ respectively Qu˛ .

Now we turn to the range condition, effectively reformulating a result from [15].

Lemma 3.7. An element u� 2 U with v� D F u� satisfies the range condition for the
variational regularization operator ˆ˛ if and only if it satisfies the source condition

9 z�
2 V W F �z�

2 @J.u�/:

The key part of the proof is the explicit construction v�
˛ D v� C ˛z�, which allows

to obtain an estimate of the right-hand side in the error estimate, due to

kv � v�
˛k � kv � v�

k C kv�
� v�

˛k D kv � v�
k C ˛kz�

k:

This leads to the error estimates as derived in [15].

Corollary 3.8. Let u˛ 2 ˆ˛.v/ and let v� D F u�, with u� satisfying the source
condition p� D F �z� 2 @J.u�/. Then the estimate

1

2
kF u˛ � F u�

k
2
C ˛d

p˛ ;p�

J .u˛; u�/ � kv � v�
k

2
C ˛2

kz�
k

2:

In the error estimate we see again the condition on the choice of ˛ needed for
the convergence of regularization methods. While the estimate on the output error
kF u˛ � F u�k is uniform in ˛; the effective estimate for the Bregman distance is of
the form

d
p˛ ;p�

J .u˛; u�/ �
kv � v�k2

˛
C ˛kz�

k
2;

which is small again only if ˛ and the quotient kv�v�k2

˛
are small.

One also observes a bias-variance decomposition inherent in the estimate, even
more clearly when we assume an underlying stochastic noise model, i.e., v is a ran-
dom variable. Without systematic errors in the measurements, we have E.v/ D v�

and hence

E
�
d

p˛ ;p�

J .u˛; u�/
�
�

E
�
kv � v�k2

�
˛

C ˛kz�
k

2:

The measure on the left-hand side is the natural generalization of the mean-squared
error to the case of convex variational regularization, and the right-hand side is com-
posed of the data variance and the bias term kz�k2, scaled by the regularization
parameter.
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Let us mention that the above estimates in Bregman distances lead to estimates in
norms if J satisfies strong convexity conditions (cf. [54]). In the case of not strictly
convex functionals, the Bregman distance can vanish even if u˛ ¤ u�, e.g. in total
variation regularization if they differ by a change of contrast u˛ D h.u/ with a mono-
tone function h, but rather measures a deviation of the discontinuity sets (cf. [3, 16]).
In such cases the multivaluedness of the subdifferential can even be an advantage that
needs to be exploited, since we do not have just a single estimate, but actually an esti-
mate for each p� satisfying a source condition. Estimates for other quantities can then
be derived from the Bregman distance estimates by optimizing over the possible p�

and the associated source elements z� (respectively, their norm appearing in the error
estimates). An example are estimates for the total variation regularization for piece-
wise constant functions; it has been shown already in [15] how the total variation of
u˛ away from the discontinuity set of u� can be estimated by choosing appropriate
subgradients.

Again the above type of conditions and estimates are the canonical ones, but can
be developed much farther (cf. e.g. [2, 25, 26, 28, 30–32, 51, 52, 57]). The first issue
is the question of having better estimates under stronger conditions, and a typical
example is an improved source condition p� D F �F �� 2 @J.u�/ for some �� 2 U.
In this case the element �� can be used to construct an approximate solution u�

˛ D

u� � ˛�� instead of approximate data for a range condition. This was carried out in
[51] (see also [29]) to obtain the estimate

d
p�

J .u˛; u�/ � d
p�

J .u�
� ˛��; u�/ C

kv � v�k2

2˛
:

The exact characterization of d
p�

J .u� � ˛��; u�/ depends on the properties of the
functional and may be on u� itself. For J being Fréchet-differentiable with Lipschitz-
continuous (or Hölder-continuous) derivative, it is always quadratic in ˛; hence the
estimate is of higher order in ˛. For the nonsmooth functionals like total variation
or the `1-norm the situation is different; at a first glance it cannot be expected that
d

p�

J .u� � ˛��; u�/ is of higher order in ˛. However, in such situations we can even
have d

p�

J .u� � ˛��; u�/ D 0 for ˛ small, e.g. in `1 regularization if the support of
�� is contained in the support of u�.

The opposite question of weaker estimates arises if u� does not satisfy the source
condition p� D F �z�. In this case approximate source conditions are used, which
measure the deviation from the source condition. A frequently used concept is the
so-called distance function

D�.p�/ D inf
®
kF �z � p�

k j z 2 V ; kzk � �
¯
;

which is useful in particular under strong convexity assumptions and allows to build a
theory in a similar way by optimizing the value � that finally appears in the error esti-
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mate. For functionals not being strictly convex and in particular the one-homogeneous
cases like total variation, a reformulation in terms of a dual problem is more suitable
as seen in [13]. There the measure

e˛;�.p�/ D inf
z2V

�J �

�
F �z � p�

�

�
C

˛

2
kzk2

was used to derive estimates. One observes some duality to the concept of distance
functions, noticing that for J being a norm in Banach space we just have

e˛;�.p�/ D ˛ inf
®
kzk j z 2 V ; kF �z � p�

k� � �
¯
;

where k�k� is the dual norm to J . It was also shown that approximate source condi-
tions are inherently related to the case of large noise, which is particularly relevant
for stochastic models like white noise having non-finite variance (cf. [5, 13, 36]).

While the literature was focused on asymptotic results for a long time, the spe-
cific shape of solutions at a fixed positive ˛ became a more attractive topic in the last
two decades. In order to understand this issue, a better understanding of the range
condition for the regularization method is needed, which means the source condi-
tion p� D F �z� in the case of variational regularization. Since F is modeled as a
smoothing operator in inverse problems, F � is smoothing as well, which implies that
the source condition is an abstract smoothness condition. However, the smoothness
is rather indirect, since it concerns the subgradient p� and not directly u�. Various
results on the structure of minimizers, from sparsity properties for J D `1 or its coun-
terpart in the space of measures to total variation and staircasing phenomena can be
found in literature (cf. [18, 19]).

Another issue that found strong recent interest is debiasing, since in the case of
large noise the bias caused by the regularization term (and the large value of ˛ that
is needed to achieve stability) spoils the possible quality of regularized solutions.
The influence of bias can also be seen from the term depending on kz�k in the error
estimates, and in practice it is often observed that the reconstruction of the subgradient
is better than the one of the primal solution due to bias. First debiasing methods (also
called refitting) appeared in `1 regularization, where in a first step the variational
regularization is used and in a second step a simple least-squares problem is used
on the support obtained from the first step, sometimes also with a sign constraint as
obtained from the subgradient in the first step (cf. [21, 42]). This approach can be
translated to a more general two-step approach for debiasing as worked out in [8],
which computes

ˆ˛.v/ D arg min
®
d

p˛

J .u; u˛/ j u˛ 2 ˆ0
˛.v/

¯
;

with ˆ0
˛ being the regularization operator from the variational regularization method.
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Another approach effectively leading to debiasing, but also with other advan-
tages, are iterative regularization methods such as the Bregman iteration (cf. [49]). In
the case of a quadratic functional, it can be formulated as an augmented Lagrangian
method for computing the J -minimizing solution of F u D v, i.e.

ukC1
2 arg min

u

1

2
kF u � vk

k
2
C ˛J.u/;

vkC1
D vk

C v � F ukC1;

with v0 D v. To have a suitable generalization also for other loss functionals this can
be reformulated as

ukC1
2 arg min

u

1

2
kF u � vk2

C ˛d
pk

J .u; uk/;

pkC1
D pk

C
1

˛
F �.v � F ukC1/ 2 @J.ukC1/:

The regularization parameter in this case is not ˛, which is to be chosen rather larger
in order to achieve good results, but the number of iterations carried out. Due to the
variational structure in each iteration step, variational methods can be employed to
prove well-definedness of the regularization operator, convergence, and error esti-
mates. We refer to [3, 17, 49] for a detailed discussion of such iterative approaches
and their analysis. Let us finally mention that in this respect there is another rela-
tion to machine learning, since Bregman iterations for `1 regularizations have been
developed further recently for the training of sparse deep neural networks and their
architecture design (cf. [9, 10]).

4. Variational regularization and generalization

In this final part we discuss some possible relations between the setup in machine
learning and the above results on variational regularization theory. In particular we
highlight some connections between the typical error measures used in the two fields,
namely generalization errors on the one hand and Bregman distances on the other.

4.1. Error decomposition and generalization error

Let us return to the setup of machine learning with the minimization of the empirical
risk with a convex loss `, taking the viewpoint that the ideal solution is the function
f �. While we have seen that naturally Bregman distances are estimated in the theory
of variational regularization, the generalization error

G D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�PN

�
`
�
f .xI �/; y

��
is the commonly used quantity in machine learning.
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In order to understand the connections to Bregman distances, consider an ideal
solution f � 2 F minimizing the population risk, i.e.

f �
2 arg min

f 2F
E.x;y/�P

�
`
�
f .x/; y

��
D arg min

f 2F
R�.f /:

Since the population risk is convex with respect to f , we conclude that 0 2 @R�.f �/,
which implies that

d 0
R�

�
f .�; �/; f �

�
D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�P

�
`
�
f �.x/; y

��
:

The latter can be decomposed in a similar spirit to the error decomposition in [4]:

d 0
R�

�
f .�; �/; f �

�
D E.x;y/�P

�
`
�
f .xI �/; y

��
� E.x;y/�PN

�
`
�
f .xI �/; y

��
C E.x;y/�PN

�
`
�
f .xI �/; y

�
� `

�
f �.x/; y

��
C E.x;y/�PN

�
`
�
f �.x/; y

��
� E.x;y/�P

�
`
�
f �.x/; y

��
:

We see that the Bregman distance is decomposed into three parts: in addition to the
generalization error in the first line, we have an approximation error in the second
line (or rather a term that can be controlled with an approximation error in standard
spaces) and a sampling error in the last line. The approximation error can be esti-
mated beforehand or is often even negligible, since overparametrized models such as
deep neural networks can usually be trained to have E.x;y/�PN .`.f .xI �/; y// � 0

and the second part is nonpositive. Moreover, the last term vanishes on expectation
over the sampling if P N is obtained from i.i.d. samples. Thus, in order to control the
expected Bregman distance, the most important term is indeed the expected general-
ization error.

4.2. Estimates with operator errors and generalization

Errors due to sampling are effectively related to operator errors in inverse problems,
which we see also from Example 2.2, where effectively the operator F is replaced
by an operator zF being the concatenation of F with a random sampling operator.
Moreover, we assume again a source condition of the form p� D F �z� 2 @J.u�/.

The generalization error in this notation is given by (noticing that we might need
to use different norms for the two terms)

G.u/ D kF u � vk2
� k zF u � Qvk2:

Hence, let us start again with the optimality condition of a regularized solution

u˛ 2 arg min
u

1

2
k zF u � Qvk2

C ˛J.u/;
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which is given by

zF �. zF u˛ � Qv/ C ˛p˛ D 0; p˛ 2 @J.u˛/:

Rewriting to

F �F.u˛ � u�/ C ˛.p˛ � p�/ D F �.F u˛ � v/ � zF �. zF u˛ � Qv/ � ˛F �z�;

we are in a position to derive the kind of estimate we are after. A duality product with
u˛ � u� and several applications of Young’s inequality imply

1

4



F.u˛ � u�/


2

C ˛d
p˛ ;p�

J .u˛; u�/ � ˛2
kz�

k
2
C k zF u�

� Qvk2
C

1

2
G.u˛/:

In the case of consistent data, such as obtained from sampling F , we further have
Qv D zF u�; i.e., we obtain in particular

d
p˛ ;p�

J .u˛; u�/ � ˛kz�
k

2
C

1

2˛
G.u˛/:

Thus, the error in the Bregman distance is controlled by the systematic error and the
generalization error.

4.3. Regularized risk minimization problems

The above arguments can be extended to convex risk minimization problems of the
form

D˛.�/ D E.x;y/�PN

�
`
�
f .xI �/; y

�
C ˛J.�/

�
:

For simplicity we assume that the model f is linear, i.e. f .xI �/ D .F �/.x/ with a
linear operator F mapping to an appropriate function space F , and ` is the squared
Euclidean norm. Consequently, we will consider F as a bounded linear operator from
some parameter space ‚ to L2

P .�/m for some domain � � Rd . The ideal solution
�� is a minimizer of the population risk

R.�/ D E.x;y/�P

�

.F �/.x/ � y


2�

:

With this setup, the regularization operator is given by

ˆ˛.P N / D arg min
�

E.x;y/�PN

�
1

2



.F �/.x/ � y


2

C ˛J.�/

�
: (4.1)

Moreover, the source condition becomes

p�
D F �z�

2 @J.��/ with z�
2 L2

P .�/m: (4.2)
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Similar to the reasoning in the previous section we can use the optimality condition

E.x;y/�PN

�˝
.F �˛/.x/ � y; F � 0

˛�
D C˛p˛ D 0; p˛ 2 @J.�˛/

for all � 0 2 ‚ to derive the following result.

Theorem 4.1. Let �˛ 2ˆ˛.P N / be defined by (4.1) and let the source condition (4.2)
be satisfied. Then for appropriate p˛ 2 @J.u˛/ the estimate

1

4
E.x;y/�P

�

.F �˛/.x/ � .F ��/.x/


2�

C ˛d
p˛ ;p�

J .�˛; ��/

�
1

2
G.�˛/ C ˛2

kz�
k

2
C E.x;y/�PN

�

.F ��/.x/ � y


2�

;

with the generalization error

G.�˛/ D E.x;y/�P

�
1

2



.F �˛/.x/ � y


2
�
� E.x;y/�PN

�
1

2



.F �˛/.x/ � y


2
�

:
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Some minimization problems for mean field models with
competing forces

Rupert L. Frank

Abstract. We review recent results on three families of minimization problems, defined on
subsets of nonnegative functions with fixed integral. The competition between attractive and
repulsive forces leads to transitions between parameter regimes, where minimizers exist and
where they do not. The problems considered are generalized liquid drop models, swarming
models, and generalized Keller–Segel models.

1. Introduction

In this survey we discuss three families of minimization problems. They are simple
mathematical toy models for physical or biological phenomena. While their origins
are rather different, they share some mathematical similarities and differences and we
think it is worthwhile to look at them side by side.

The common feature of all three problems is that they are of mean-field type. They
involve an “energy” functional that is defined on a subset of nonnegative functions
(“densities”) whose integral is fixed (“total mass”). They are, at least on a heuristic
level, derived from microscopic, many-body models. The densities in the mean-field
models describe the distribution of the microscopic particles in the limit of a large
number of particles, and similarly the energy functionals in our models are obtained
as macroscopic approximations to microscopic energy functionals.

Another common feature of the problems discussed here is that the energy func-
tionals have two contributions that compete with each other. There are attractive
forces that keep the particles together and try to concentrate them and there are repul-
sive forces that push them apart and try to spread them out. Typically, these forces act
on different length scales and one is of short range and the other one of long range
type. The existence of a minimizer can be understood as the forces being in a local

2020 Mathematics Subject Classification. Primary 49Q10; Secondary 49Q20, 49S05, 81V35,
92C17.
Keywords. Minimization problems, mean field models, liquid drop model, swarming,
Keller–Segel model.
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equilibrium, while the nonexistence typically means that one of the forces dominates
the other.

We are particularly interested in situations where, as a parameter of the problem
is varied continuously, there is either a transition between existence and nonexistence
of minimizers, or a sharp change in the properties of minimizers. A typical parameter
that is varied is the total mass, but in one of the models it is also a parameter describing
the shape of the forces acting between the particles.

The models. Let us be more specific about the three families of models that we will
consider. Throughout, N � 1 is the dimension of the underlying Euclidean space.

For the generalized liquid drop model, depending on a parameter � 2 .0; N /, we
define, for any measurable set � � RN ,

E
gld
�

Œ�� WD Per � C
1

2

“
���

dx dy

jx � yj�
: (1.1)

Here Per� denotes the perimeter in the sense of De Giorgi; see, e.g., [45]. The corres-
ponding minimization problem is, for m 2 .0;1/,

E
gld
�

.m/ WD inf
®
E

gld
�

Œ�� W � � RN measurable, j�j D m
¯
: (1.2)

The original liquid drop model, suggested by Gamow [35] for the description of
atomic nuclei, corresponds to � D 1 in dimension N D 3.

For the flocking model, depending on parameters � 2 .0; N / and ˛ 2 .0;1/, we
define, for any nonnegative, measurable function � on RN ,

E f
�;˛Œ�� WD

1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy: (1.3)

The corresponding minimization problem is, for m 2 .0;1/,

E f
�;˛.m/ WD inf

²
E f

�;˛Œ�� W � 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D m

³
: (1.4)

This model was suggested by Burchard, Choksi, and Topaloglu [7]. It is a simple
model to describe the flocking behavior in stable states of a large group of animals
such as fish or birds.

For the generalized Keller–Segel model, depending on parameters q 2 .0; 1/ and
˛ 2 .0;1/, we define, for any nonnegative function � 2 Lq.RN /,

EgKS
q;˛ Œ�� WD �

Z
RN

�q dx C
1

2

“
RN �RN

�.x/jx � yj˛�.y/ dx dy: (1.5)

The corresponding minimization problem is

EgKS
q;˛ WD inf

²
EgKS

q;˛ Œ�� W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
: (1.6)
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Note that here, in contrast to the two previous problems, we fix the integral of � to
be one. The more general case, where it is fixed to be equal to m, can be reduced
to the present one by scaling. The generalized Keller–Segel model was introduced in
[8] and generalizes the standard Keller–Segel model, which corresponds (after some
rescaling) to the limit cases q D 1 and ˛ D 0 in dimension N D 2.

Competing forces. Let us discuss in which sense in the above models two forces
compete with each other.

In the generalized liquid drop model, the perimeter term corresponds to an attrac-
tive short range force, whereas the double integral term corresponds to a repulsive
long range force. Note that by the isoperimetric inequality (see, e.g., [45])

inf
®

Per � W � � RN measurable, j�j D m
¯
D N

N�1
N jSN�1

j
1
N m

N�1
N

with equality if and only if � is a ball (up to sets of measure zero). On the other hand,
it is easy to see that

inf
²

1

2

“
���

dx dy

jx � yj�
W � � RN measurable, j�j D m

³
D 0

and the infimum is not attained. A minimizing sequence is given, for instance, by
taking � as a union of a large number of small balls placed very far apart from each
other. Next, we note that, by scaling,

E
gld
�

.m/ D inf
²

m
N�1

N Per! Cm
2N��

N
1

2

“
!�!

dx dy

jx � yj�
W ! � RN meas., j!j D 1

³
:

Since .N � 1/=N < .2N � �/=N , the perimeter term is dominant for small m,
whereas the double integral is dominant for large m. We therefore expect existence
of minimizers for small m, whereas for large m we might have nonexistence of mini-
mizers.

In the flocking model, the ˛-term corresponds to an attractive force, while the
�-term corresponds to a repulsive force. Moreover, the ˛-term is relevant on large
distances and the �-term on short ones. By rearrangement inequalities and the bathtub
principle (see, e.g., [41, Theorems 1.14 and 3.7])

inf
²

1

2

“
RN �RN

�.x/ jx � yj˛�.y/dx dy W � 2L1.RN /; 0� � � 1;

Z
RN

�dx Dm

³
is attained if and only if � is the characteristic function of a ball of volume m. More-
over, as a consequence of what we said in the generalized liquid drop model,

inf
²

1

2

“
RN �RN

�.x/�.y/

jx � yj�
dx dy W � 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D m

³
D 0
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and the infimum is not attained. Next, we note that, by scaling,

E f
�;˛.m/ D inf

²
m

2N��
N

1

2

“
RN �RN

�.x/ �.y/

jx � yj�
dx dy

C m
2NC˛

N
1

2

“
RN �RN

�.x/ jx � yj˛�.y/ dx dy W

� 2 L1.RN /; 0 � � � 1;

Z
RN

� dx D 1

³
:

Since .2N � �/=N < .2N C ˛/=N , the ˛-term is dominant for large m and in this
regime we expect existence of minimizers and closeness to the characteristic function
of a ball. We also have

E f
�;˛.m/ D m2 inf

²
1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy W

� 2 L1.RN /; 0 � � � m�1;

Z
RN

� dx D 1

³
:

For small m, we expect that the constraint � � m�1 is irrelevant and that the mini-
mizer is m times the minimizer of the problem

inf
²

1

2

“
RN �RN

�.x/
�
jx � yj��

C jx � yj˛
�
�.y/ dx dy W

0 � � 2 L1.RN /;

Z
RN

� dx D 1

³
;

provided that a minimizer for the latter problem exists and is bounded.
Finally, in the generalized Keller–Segel model, the Lq term corresponds to a

repulsive short range force, whereas the double integral term corresponds to an attrac-
tive long range force. Note that

inf
²
�

Z
RN

�q dx W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
D �1:

A minimizing sequence is given, for instance, by a sequence that spreads out like
`�N �.x=`/ with ` ! 1. On the other hand,

inf
²

1

2

“
RN �RN

�.x/ jx � yj˛�.y/ dx dy W 0 � � 2 Lq.RN /;

Z
RN

� dx D 1

³
D 0

and the infimum is not attained. A minimizing sequence is given, for instance, by a
delta sequence `�N �.x=`/ with ` ! 0. Since, as we already mentioned, in this model
the dependence on the total mass is trivial, we are looking here for a transition in



Some minimization problems 281

terms of the parameters q and ˛. Intuitively, the repulsive force is stronger the smaller
q and the attractive force is stronger the larger ˛. The above examples suggest that
two mechanisms for the nonexistence of a minimizer are conceivable, namely both
spreading out and concentration of minimizing sequences.

Structure of the paper. In the following three sections we summarize what is known
about the three families of minimization problems. The presentation will be rather
compact and we refer to the original papers for the proofs. We do, however, empha-
size several open questions concerning each model. In a short appendix, we provide
details for a simple, unpublished result in the one-dimensional generalized liquid drop
model.

2. The generalized liquid drop model

In this section, we consider the energy functional (1.1) and the corresponding mini-
mization problem (1.2). We assume throughout that 0 < � < N .

Let us set, for fixed � and N ,

m� WD

�
21=N � 1

1 � 2�.N��/=N

Per B1

1
2

’
B1�B1

jx � yj�� dx dy

�N=.N��C1/

jB1j;

where B1 denotes the unit ball in RN . The number m� is the unique solution m > 0

of the equation

E
gld
�

"�
m

jB1j

�1=N

B1

#
D 2E

gld
�

"�
m

2jB1j

�1=N

B1

#
: (2.1)

Thus, the energy of a ball of mass m� is equal to the energy of two balls, each of mass
m�=2, placed infinitely far apart. For m < m� one has < instead of D in (2.1) and for
m > m� one has >.

In the physics literature, it is typically taken for granted that in the special case
� D 1 and N D 3, balls are minimizers for E

gld
�

.m/ for m � m� and there is no
minimizer for m > m�. In the mathematics literature, this appears explicitly as a
conjecture in the work of Choksi and Peletier [12, 13].

One may wonder whether the analogous conjecture is valid in the general case
0 < � < N . In dimension N D1, this is indeed the case, as can be verified by elemen-
tary computations; see Appendix A. It is shown in [37, 3] that for any N � 2 there is
a �c > 0 such that for all 0 < � < �c the conjecture is true; see [46] for an explicit
lower bound on �c for N D 2. In the remaining cases, the validity or invalidity of the
conjecture is open.

Existence. As a first step towards this conjecture, before asking whether minimizers
for E

gld
�

.m/ are balls for all m � m�, it is natural to ask whether minimizers exist for
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all m�m�. This is indeed the case, as shown in [31]. Moreover, it is shown there as
well that if there are no minimizers for m>m�, then balls are minimizers for m�m�.

The proof of [31] proceeds by verifying that for any m < m� one has the strict
binding inequality

E
gld
�

.m/ < E
gld
�

.m0/ C E
gld
�

.m � m0/ for all 0 < m0 < m:

According to a compactness result in [26] this implies the existence of a minimizer
for E

gld
�

.m/ for m � m�.

Uniqueness. We address the question of whether balls are minimizers. A convexity
argument due to Bonacini and Cristoferi [3, Theorem 2.10] shows that there is a
number mball

c 2 Œ0;1/ [ ¹1º (depending on � and N ) such that for m < mball
c balls

are the unique minimizers of E
gld
�

.m/, for m D mball
c > 0 balls are minimizers of

E
gld
�

.m/, and for m > mball
c balls are not minimizers of E

gld
�

.m/. (This part of [3]
does not use the assumption � < N � 1.)

An important result is that mball
c > 0, that is, for small m > 0 balls are minimizers

for E
gld
�

.m/. In the full parameter regime, this result is due to [21], extending earlier
results in [37,38,36,3]. The proofs in these papers are based directly or indirectly on
the quantitative form of the isoperimetric inequality (see [33] and also [22, 15]) and
the regularity theory for quasiminimizers of the perimeter (see, e.g., [45, Part III]).
As far as we are aware, these proofs use compactness arguments and do not give a
numerical lower bound on mball

c .
On the other hand, one can show that mball

c < 1, that is, for large m > 0 balls are
not minimizers for E

gld
�

.m/. Indeed, setting

mstab
c WD

�
N C 1

�.N � �/

Per B1

1
2

’
B1�B1

jx � yj�� dx dy

�N=.N��C1/

jB1j;

one finds that for m < mstab
c the ball is stable against small volume-preserving per-

turbations and for m > mstab
c it is unstable. (Stability here means that the Hessian is

positive definite except for zero modes coming from translations. Instability means
that the Hessian is not positive semidefinite.) This computation goes back to Bohr
and Wheeler [2] for N D 3, � D 1 and can be found in the general case in [3, 21].
Clearly, mball

c � mstab
c , so the former quantity is indeed finite.

Nonexistence. Let us discuss the nonexistence of minimizers for E
gld
�

.m/. For fixed
� and N we set

mn:e:
c WD sup

®
m > 0 W there is a minimizer for E

gld
�

.m/
¯
:

Then, if � � 2 (and � < N , as always), one can show that mn:e:
c < 1, that is, there

is no minimizer for large m. This is due to [37, 38, 43, 31]. It seems to be unknown
whether mn:e:

c is finite or not for 2 < � < N .
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In [25], it is shown that for �D 1, N D 3, one has mn:e:
c � 8. This is to be compared

with mstab
c D 10 for these values of � and N . Thus there is a regime 8 < m < 10, where

balls are stable local minimizers, but not global minimizers. For comparison, for these
values of � and N one has m� D 5.21=3 � 1/=.1 � 2�2=3/ � 3:512.

Problem 2.1. For N D 3 and � D 1, show that balls are minimizers for m � m� and
there are no minimizers for m > m�. In which parameter region of �’s and N ’s is the
analogous conjecture valid?

The following two problems are special cases of the previous one.

Problem 2.2. Do there exist minimizers for E
gld
�

.m/ for arbitrarily large m in case
2 < � < N ?

Problem 2.3. Find an explicit numerical lower bound on mball
c , in particular, in the

case N D 3 and � D 1.

We conclude this section by briefly mentioning two further, related models.
The first one concerns the liquid drop model in the presence of a neutralizing

background. This problem is motivated, for instance, by the physics of neutron stars
and there are interesting mathematical questions; see, e.g., [39]. For simplicity we
focus here on the case � D N � 2 in dimension N � 3, although there are similar
versions in dimensions N D 1; 2 [29]. For a (large) parameter L > 0 one sets ƒL WD

.0; L/N and considers the minimization problem

EL.�/ WD inf
²

Per � C
1

2

“
ƒL�ƒL

�
1�.x/ � �

��
1�.y/ � �

�
jx � yjN�2

dx dy W

� � ƒL; j�j D �jƒLj

³
:

(Sometimes, the kernel jx � yj�NC2 is replaced by a constant multiple of the periodic
or Neumann Green’s function of the Laplacian and the perimeter is replaced by its
periodic version or a relative perimeter, but this does not qualitatively change the
results discussed below.)

A major open problem is to prove that (for N D 3, for simplicity) there are
0 < �c1 < �c2 < 1=2 such that the following holds approximately for minimizers for
EL.�/ for large L > 0 “in the bulk”: for 0 < � < �c1, minimizers are periodic with
respect to a three-dimensional lattice, for �c1 < � < �c2, minimizers are periodic with
respect to a two-dimensional lattice, and for �c2 < � � 1=2, minimizers are periodic
with respect to a one-dimensional lattice. For 1=2 < � < 1, the situation reverses,
with 1 � � replacing �. This would correspond to what is known as “nuclear pasta”
phases in astrophysics.



R. L. Frank 284

A fundamental result by Alberti, Choksi, and Otto [1] gives precise bounds on
the energy distribution of minimizers that are indicative of the emergence of a regular
(e.g., periodic) structure. More precise results about the structure of minimizers are
restricted only to the dilute regime. The case � � L�3 is treated in [12] (see also [16]
and references therein), the case � � L�2 in [39], and the case � � 1 (independently
of L) in [20].

The second generalization of the generalized liquid drop model concerns the addi-
tion of an external potential V ,

inf
²

E
gld
�

Œ�� C

Z
�

V dx W � � RN measurable, j�j D m

³
:

Lu and Otto [44] suggested this model with V.x/ D �Zjxj�1 in N D 3, � D 1 as
a toy problem for the ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker
theory and proved that there is no minimizer for m � Z C C max¹1; Z2=3º. Nonexis-
tence for m � Z C C max¹1; Z1=3º, as well as the ionization conjecture in Thomas–
Fermi–Dirac–von Weizsäcker theory were proved in [32]. For more on the ionization
conjecture, also for more complicated models, we refer to [47].

Finally, returning to the standard liquid drop model with � D 1 and N D 3, we
mention the open problem to make the global bifurcation picture of Bohr and Wheeler
[2] rigorous. For an initial local bifurcation result, see [23].

3. A simple model for flocking

In this section, we consider the energy functional (1.3) and the corresponding mini-
mization problem (1.4). We assume throughout that 0 < � < N and ˛ > 0.

It is easy to see that there is a minimizer of E f
�;˛

.m/ for any m > 0 [11]. We would
like to understand properties of minimizers and, in particular, qualitative changes in
these properties as m varies. For instance, one is interested in the existence of the
following three “phases” [27]. A first, “liquid” phase occurs when any minimizer
� for E f

�;˛
.m/ satisfies � < 1 almost everywhere. A second, “intermediate” phase

occurs when there is a minimizer � for E f
�;˛

.m/ such that ¹0 < � < 1º has positive
measure strictly less than m. A third, “solid” phase occurs when any minimizer � for
E f

�;˛
.m/ satisfies � D 1 almost everywhere.

Some initial results. The case N � 3, � D N � 2, and ˛ D 2 can be solved explicitly
[7] and one finds that there is an explicit mN 2 .0;1/ such that the unique (up to
translations) minimizer for E f

�;˛
.m/ is a multiple of the characteristic function of a

ball of measure mN if m � mN and the characteristic function of a ball of measure
m if m > mN . In particular, in this special case, the second, intermediary phase does
not occur.
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In the case 2 � ˛ � 4 (and any N � 1 and 0 < � < N ), one can show that for any
m > 0 minimizers of E f

�;˛
.m/ are unique up to translations [42] and, in particular,

radially symmetric. This relies on an interesting convexity argument. Moreover, the
case N D 3, � D 1, and ˛ D 4 is explicitly solved in [42]. In particular, there are
critical constants 0 < m0 < m00 < 1 such that the system is in phase one for m � m0,
in phase two for m0 < m < m00, and in phase three for m � m00.

Small m regime. In [27], it is shown that for N D 3 and � D 1 (and any ˛ � 1) there
is an m� > 0, depending on ˛, such that for all m < m� any minimizer � of E f

1;˛.m/

satisfies � < 1 almost everywhere. This result extends, with the same proof, to the
case � D N � 2 in arbitrary dimension N � 3.

The proof relies on the fact, due to [10], that for � D N � 2 minimizing measures
of the problem

E�;˛ WD inf
²

1

2

“
RN �RN

�
jx�yj��

Cjx�yj˛
�
d�.x/d�.y/ W �2P.RN /

³
(3.1)

are absolutely continuous with respect to Lebesgue measure with a bounded density.
Here P.RN / denotes the set of Borel probability measures on RN . More precisely,
one needs a bound on the density depending only on N and ˛.

There are also results in [10] concerning the problem E�;˛ for 0�N � 2 < � < N

and certain assumptions on ˛. Using these results, one should be able to prove that for
certain N , �, ˛, there is an m0

� > 0, depending on N , �, ˛, such that for all m < m0
�

there are minimizers � of E f
�;˛

.m/ satisfying � < 1.

Large m regime. Under the assumption � < N � 1, it is shown in [30] that there
is an m� < 1, depending on N , �, ˛, such that for m > m� the only minimizers of
E f

�;˛
.m/ are characteristic functions of balls. The assumption on � is optimal in the

sense that for N � 1 � � < N and any m > 0, balls are not even critical points for
the problem E f

�;˛
.m/.

The results in [30] improve earlier results in [7] for ˛ D 2 and in [27] for � D

N � 2, obtained by different methods.
The technique used in [30] is that of symmetric decreasing rearrangement and,

more precisely, a quantitative version of the Riesz rearrangement inequality. This
quantitative version is due to M. Christ [14], with some minor extensions and a par-
tially alternate proof in [28]. As an aside, we mention that from the quantitative
Riesz rearrangement inequality one can derive quantitative rearrangement inequal-
ities for Riesz potentials. Those were proved, simultaneously and independently, in a
restricted range in [34]; see also [4, 48, 5].

Let us conclude this section by mentioning some open problems. Relatively little
seems to be known about minimizers of E f

�;˛
.m/ outside of the asymptotic regimes

m ! 0 and m ! 1.
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Problem 3.1. Study qualitative properties of minimizers of E f
�;˛

.m/.

Concrete questions to be studied are, for instance, the following. Known examples
of minimizers are radially symmetric. Can symmetry breaking occur? For arguments
in favor of this, see [6]. Is the support of a minimizer convex? As m increases, do the
regions ¹� > 0º and ¹� D 1º increase (fixing the center of mass, for instance), where
� is a minimizer? Are minimizers concave or convex on their supports for ˛ < 2 and
˛ > 2, respectively?

In view of the above small m results, it would be interesting to better understand
the case 0 < � < N � 2. We consider the minimization problem (3.1) and wonder
whether the result from [10] extends to 0 < � < N � 2. An affirmative answer would
be related to the existence, for small m, of minimizers � for E f

�;˛
.m/ with � < 1

almost everywhere. Examples, however, suggest that the answer might be negative.

Problem 3.2. For 0 < � < N � 2, are minimizers � of E�;˛ absolutely continuous
with respect to Lebesgue measure with a bounded density?

In view of the large m results for � < N � 1, it seems interesting to investigate
in more detail the case N � 1 � � < N . We expect that minimizers for large m have
values close to one in a large core region and then drop down to zero in a relatively
small region. It would be interesting to find the scaling behavior of these regions and,
if possible, the transition profile.

Problem 3.3. For N � 1 � � < N study the shape of minimizers of E f
�;˛

.m/ for
large m.

The dynamical problem. The energy function E f
�;˛

considered on functions 0 �

� � 1 leads via a formal Wasserstein-2 gradient flow to an evolution equation called
the constrained aggregation equation; see [17, 18]. It would be interesting to under-
stand the long time behavior of solutions to this equation. In particular, for � < N � 1

and large m such that characteristic functions of balls are the only optimizers for
E f

�;˛
.m/, one might wonder whether the solution approaches the characteristic func-

tion of a ball for large times.

4. The generalized Keller–Segel model

In this section, we consider the energy functional (1.5) and the corresponding mini-
mization problem (1.6). We assume throughout that 0 < q < 1 and ˛ > 0. We sum-
marize the results from [8, 9].

The basic fact is that E
gKS
q;˛ D �1 for 0 < q � N=.N C ˛/ and E

gKS
q;˛ > �1 for

N=.N C ˛/ < q < 1 [8, Proposition 20]. Thus, in the following discussion we will
always assume that q > N=.N C ˛/.
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It is known and elementary that the case ˛ D 2 (and any N=.N C 2/ < q < 1)
can be solved explicitly by expanding the square jx � yj2 and setting the center of
mass to zero; see [8, Corollary 6 and Proposition 20]. We comment below on the case
˛ D 4, which can also be solved to some extent.

It is deeper that the case q D 2N=.2N C ˛/ can be solved explicitly as well. This
was observed by Dou and Zhu [19], who discovered a conformal symmetry in this
case, similarly as in Lieb’s work on the Hardy–Littlewood–Sobolev inequality [40].
The case q D 2N=.2N C ˛/ is also of some conceptual importance. If we reinstate
the mass in the variational problem (1.6) and define E

gKS
q;˛ .m/ in the natural way, then

EgKS
q;˛ .m/ D m

2N�.2NC˛/q
N�˛�Nq EgKS

q;˛ :

Thus, for q D 2N=.2N C ˛/, E
gKS
q;˛ .m/ is independent of m. As we will see, there are

differences between the cases q > 2N=.2N C ˛/ and q < 2N=.2N C ˛/.

Existence in the superconformal case. In the case 2N=.2N C ˛/ < q < 1, there is a
minimizer for E

gKS
q;˛ [8, Proposition 8], and any minimizer is radially symmetric with

respect to some point, nonincreasing with respect to the distance from this point and
positive almost everywhere [8, Lemma 9]. Symmetric decreasing rearrangment plays
an important role in the proof of existence and in the derivation of the properties of
minimizers.

Existence and nonexistence in the subconformal case. The case N=.N C ˛/ <

q < 2N=.2N C ˛/ is less understood and there are some open questions about the
existence of minimizers. A brief summary of the results in this case is as follows.
Either there is a minimizer or there is no minimizer, but instead a generalized mini-
mizer. The latter consists of a symmetric nonincreasing function together with a Dirac
delta measure at the center of symmetry. Moreover, sufficient conditions for the exis-
tence of a “proper” minimizer were given in [8]. The fact that in some cases there
are no minimizers, but only generalized minimizers, was shown in [9]. The exis-
tence of a generalized minimizer can be understood as a partial mass concentration
phenomenon. We find the appearance of this phenomenon in such a model rather
surprising.

Let us be more specific. For N=.N C ˛/ < q < 2N=.2N C ˛/, we consider the
relaxed functional, defined on pairs .�; M/, where 0 � � 2 Lq.RN / and M > 0,

E rgKS
q;˛ Œ�; M � WD �

Z
RN

�q dx C
1

2

“
RN �RN

�.x/jx � yj˛�.y/ dx dy

C M

Z
RN

jxj˛�.x/ dx: (4.1)
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The corresponding minimization problem is

E rgKS
q;˛ WD inf

²
E rgKS

q;˛ Œ�� W 0 � � 2 Lq.RN /; M � 0;

Z
RN

� dx C M D 1

³
: (4.2)

Intuitively, the energy E
rgKS
q;˛ Œ�; M � corresponds to the energy functional E

gKS
q;˛ evalu-

ated at � plus a Dirac delta measure of mass M at the origin. Making this intuition
rigorous, one finds that [8, equation (5)]

E rgKS
q;˛ D EgKS

q;˛

and that E
gKS
q;˛ has a minimizer if and only if E

rgKS
q;˛ has a minimizer .��; M�/ with

M� D 0. Moreover, the same arguments as those applied for q > 2N=.2N C ˛/ imply
that E

rgKS
q;˛ has a minimizer [8, Proposition 10] and that for any minimizer .��; M�/

the function �� is radially symmetric with respect to some point, nonincreasing with
respect to the distance from this point and positive almost everywhere [8, Lemma 9].

In view of the above discussion, for N=.N C ˛/ < q < 2N=.2N C ˛/, the prob-
lem of existence of minimizers for E

gKS
q;˛ is equivalent to the existence of a minimizer

.��; M�/ for the problem E
rgKS
q;˛ with M� D 0. In [8], we gave sufficient conditions

for this. Namely, for N D 1; 2, there is always a minimizer for E
gKS
q;˛ . The same is true

for N � 3 and ˛ � 2N=.N � 2/. If N � 3 and ˛ > 2N=.N � 2/, this is true provided
q � 1 � 2=N [8, Proposition 11].

In [9], the case ˛ D 4 was analyzed and an example of a minimizer for E
rgKS
q;˛

with M� > 0 was given. More precisely, it was shown that, for N � 6, the problem
E

rgKS
q;4 has a minimizer with M� > 0 if q < .N � 2/.3N C 4/=..N C 2/.3N //. More-

over, this result is optimal, in the sense that, for N � 6 and q � .N � 2/.3N C 4/=

..N C 2/.3N //, as well as for N � 5, every minimizer of the problem E
rgKS
q;4 has

M� D 0. The proof is based on a semiexplicit solution.
The paper [9] contains also numerical experiments that are consistent with the

appearance of minimizers with M� > 0 for E
rgKS
q;4 . This concentration phenomenon

seems to be more pronounced for larger N , smaller q, and larger ˛.

Problem 4.1. Prove the existence of a “large” region of parameters q; ˛ for which
E

rgKS
q;˛ has a minimizer .��; M�/ with M� > 0.

Uniqueness. Uniqueness (up to translations) of minimizers, including minimizers of
the relaxed functional, is known in two regimes, namely for 2 � ˛ � 4 and for ˛ � 1

and q � 1 � 1=N [8, Theorem 27]. The first result follows by a small generalization
of a proof by Lopes [42], and the latter by the standard tool of displacement convexity
in optimal mass transport.
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The dynamical problem. The energy functional E
gKS
q;˛ or, more precisely, its rescaled

version

�
1

1 � q

Z
RN

�q dx C
1

2˛

“
RN �RN

�.x/jx � yj˛�.y/ dx dy (4.3)

appears in connection with the aggregation-diffusion equations

@t� D ��q
Cr �

�
�r.W � �/

�
; W.x/ D ˛�1

jxj˛: (4.4)

Indeed, this time-dependent equation is the formal gradient flow with respect to the
Wasserstein-2 distance of the free energy functional (4.3). Minimizers or, more gen-
erally, critical points of the free energy functional, restricted to probability densities,
should play an important role for the long time behavior of solutions of (4.4). It seems
particularly interesting to investigate whether in the dynamical setting there is a con-
centration effect similar to what we have seen for minimizing sequences for E

gKS
q;˛

in case there is no minimizer, or equivalently there is a minimizer for E
rgKS
q;˛ with

M� > 0.

Problem 4.2. Investigate the long time behavior of solutions of (4.4) in the case
where E

rgKS
q;˛ has a minimizer with M� > 0.

To conclude this section, we mention that while we have focused on the free
energy functional (4.3) in the case ˛ > 0 and 0 < q < 1, it has been studied for all
q > 0 and ˛ > �N . (Here we use the convention that ˛�1jx � yj˛ is understood
as ln jx � yj for ˛ D 0 and .1 � q/�1�q is understood as �� ln � for q D 1.) The
nonexistence phenomenon via partial mass concentration that we discussed above,
however, appears at most in the region ˛ > 0 and 0 < q < 1. The case ˛ > 0 and
q � 1 is treated in [8, Appendix B]. For N D 2, q D 1, and ˛ D 0 one obtains the
original Keller–Segel free energy functional.

A. The generalized liquid drop model in 1D

In this appendix, we consider the minimization problem E
gld
�

.m/ in the generalized
liquid drop model for 0 < � < 1 in dimension N D 1. We will show that for m � m�,
single intervals are the unique (up to sets of measure zero) minimizers and for m > m�

there are no minimizers. The computations are elementary.
It is well known (see, e.g., [45, Proposition 12.13]) that any set in R of finite

measure and finite perimeter coincides, up to sets of measure zero, with a finite num-
ber of bounded intervals with disjoint closures. Moreover, the perimeter is twice the
number of intervals. Clearly, if there is more than one interval, these intervals want to
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be infinitely far apart. Therefore,

E
gld
�

.m/ D inf

´
2K C

1

2

KX
kD1

Z mk=2

�mk=2

Z mk=2

�mk=2

dx dy

jx � yj�
W K 2 N;

KX
kD1

mk D m

µ

D inf

´
2K C

1

.1 � �/.2 � �/

KX
kD1

m2��
k W K 2 N;

KX
kD1

mk D m

µ
D inf

K2N

�
2K C

1

.1 � �/.2 � �/
K�1C�m2��

�
and there is a minimizer if and only if the infimum occurs at K D 1. Here we used

KX
kD1

m2��
k � K�1C�

 
KX

kD1

mk

!2��

(with equality if and only if all mk are equal). The infimum is attained at K D 1 if
and only if 2 C .1 � �/�1.2 � �/�1m2�� � 2K C .1 � �/�1.2 � �/�1K�1C�m2��

for all K � 2, which is the same as

m �

�
2.1 � �/.2 � �/ inf

K�2

K � 1

1 � K�1C�

�1=.2��/

D

�
2.1 � �/.2 � �/

1 � 2�1C�

�1=.2��/

D m�:

Here we used the fact that � 7! .� � 1/=.1 � ��1C�/ is increasing on .1;1/. This
proves the claimed result.
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Laplacians on infinite graphs: Discrete vs. continuous

Aleksey Kostenko and Noema Nicolussi

Abstract. There are two main notions of a Laplacian operator associated with graphs: dis-
crete graph Laplacians and continuous Laplacians on metric graphs (widely known as quantum
graphs). Both objects have a venerable history as they are related to several diverse branches of
mathematics and mathematical physics. The existing literature usually treats these two Lapla-
cian operators separately. In this overview, we will focus on the relationship between them
(spectral and parabolic properties). Our main conceptual message is that these two settings
should be regarded as complementary (rather than opposite) and exactly their interplay leads to
important further insight on both sides.

1. Introduction

Laplacian operators on graphs have a long history and enjoy deep connections to
several branches of mathematics and mathematical physics. There are two differ-
ent notions of Laplacians appearing in this context: the key features of (continuous)
Laplacians on metric graphs, which are also known as quantum graphs, include their
use as simplified models of complicated quantum systems (see, e.g., [4, 19, 21, 56])
and the appearance of metric graphs in tropical and algebraic geometry, where they
serve as non-Archimedean analogues of Riemann surfaces (see, e.g., [1, 17]). The
subject of discrete Laplacians on graphs is even wider, and a partial overview of the
immense literature can be found in [2, 9, 10, 43, 70].

The study of both types of graph Laplacians is heavily influenced by the corre-
sponding investigations in the manifold setting (e.g., spectral geometry of manifolds).
In fact, one can also put Laplacians on manifolds, metric graphs, and discrete graphs
under the overarching umbrella of Dirichlet forms, which provides the systematic
framework for studying heat and diffusion processes. From this perspective, metric
graph Laplacians have much in common with Laplacians on manifolds since both can
be treated in the framework of strongly local Dirichlet forms. Moreover, the notion of
an intrinsic metric, first mentioned by E. B. Davies and later emphasized by M. Biroli,

2020 Mathematics Subject Classification. Primary 34B45; Secondary 47B25, 05C63, 81Q35,
35R02, 60J27.
Keywords. Graph, metric graph, Laplacian, intrinsic metric, random walk.
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U. Mosco, and K.-T. Sturm (see, e.g., [65]), allows to directly transfer many important
results from manifolds to the abstract setting of strongly local Dirichlet forms (and
hence metric graph Laplacians). In contrast to this, discrete graph Laplacians are dif-
ference operators and hence provide examples of nonlocal operators (e.g., no Leibniz
rule). In particular, difficulties in analyzing random walks on graphs often stem from
exactly this fact. On the other hand, this area has seen a tremendous progress in the
last decade. In our opinion, the successful introduction and systematic use of the
notion of intrinsic metrics on graphs played (and continues to play!) a major role in
this breakthrough (see the fresh monograph [43]).

Despite a vast interest in both types of graph Laplacians, the existing litera-
ture usually treats them separately. In the present overview, we mainly focus on the
relationship between them and survey connections on different levels (spectral and
parabolic properties). This leads to a systematic way of connecting the settings and
several applications. Our main conceptual message is that discrete and continuous
graph Laplacians should be regarded as complementary (rather than opposite) and
exactly their interplay leads to important further insight on both sides. This relation-
ship can also be formulated in the language of intrinsic metrics. Indeed, a large class
of intrinsic metrics on discrete graphs is obtained as restrictions to vertices of intrinsic
metrics on (weighted) metric graphs. In particular, from this perspective metric graphs
indeed serve as a bridge between graphs and manifolds, a heuristic principle which
is often mentioned in context with graph Laplacians. Let us also mention that the
stochastic side of these connections, namely the approach of using Brownian motion
on metric graphs to study random walks on discrete graphs, has been employed sev-
eral times in the literature [3, 22, 23, 33, 36, 67] (see also references therein).

Most of the results presented here are carefully explained in the recent monograph
[49], which also contains many other results not mentioned in this text.

2. Preliminaries

2.1. Graphs

Let us recall basic notions (we mainly follow the terminology in [16]). Let Gd D.V;E/

be an undirected graph; that is, V is a finite or countably infinite set of vertices and E

is a finite or countably infinite set of edges. Two vertices u, v 2 V are called neigh-
bors, and we shall write u � v if there is an edge eu;v 2 E connecting u and v. For
every v 2 V , we define Ev as the set of edges incident to v. We stress that we allow
multigraphs; that is, we allow multiple edges (two vertices can be joined by several
edges) and loops (edges from a vertex to itself). Graphs without loops and multiple
edges are called simple.
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Example 2.1 (Cayley graphs). Let G be a finitely generated group and let S be a
generating set of G. We shall always assume that

� S is symmetric, S D S�1 and finite, #S < 1,

� the identity element of G does not belong to S (this excludes loops).

The Cayley graph GC D C.G; S/ of G w.r.t. S is the simple graph whose vertex set
coincides with G and two vertices x; y 2 G are neighbors if and only if xy�1 2 S .

Sometimes it is convenient to assign an orientation on Gd : to each edge e 2 E

one assigns the pair .e{ ; e� / of its initial e{ and terminal e� vertices. We shall denote
the corresponding oriented graph by EGd D .V ; EE/, where EE denotes the set of ori-
ented edges. Notice that for an oriented loop we do distinguish between its initial and
terminal vertices. Next, for every vertex v 2 V , set

EC
v D

®
.e{ ; e� / 2 EE j e{ D v

¯
; E�

v D
®
.e{ ; e� / 2 EE j e� D v

¯
; (2.1)

and let EEv be the disjoint union of outgoing EC
v and incoming E�

v edges,

EEv WD EC
v t E�

v D EEC
v [ EE�

v ; EE˙
v WD

®
.˙; e/ j e 2 E˙

v

¯
: (2.2)

The (combinatorial) degree of v 2 V is

deg.v/ WD #. EEv/ D #. EEC
v / C #. EE�

v / D #.Ev/ C #¹e 2 Ev j e is a loopº: (2.3)

Notice that if Ev contains no loops, then deg.v/ D #.Ev/. The graph Gd is called
locally finite if deg.v/ < 1 for all v 2 V .

A sequence of (unoriented) edges P D .ev0;v1
; ev1;v2

; : : : ; evn�1;vn
/, where

evi ;viC1
connects the vertices vi and viC1, is called a path of (combinatorial) length

n 2 Z�0 [ ¹1º. Notice that for simple graphs each path P can be identified with
its sequence of vertices P D .vk/n

kD0
. A graph Gd is called connected if for any two

vertices there is a path connecting them.
We shall always make the following assumptions on the geometry of Gd .

Hypothesis 2.2. Gd is connected and locally finite.

Remark. We assume connectivity for convenience reasons only (one can always
consider each connected component of a graph separately). However, the assump-
tion that a graph is locally finite is indeed important in our considerations.

2.2. Metric graphs

Assigning each edge e 2 E a finite length jej 2 .0; 1/, we can naturally associate
with .Gd ; j � j/ D .V ; E; j � j/ a metric space G . First, we identify each edge e 2 E with
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a copy of the interval 	e D Œ0; jej�, which also assigns an orientation on E upon iden-
tification of e{ and e� with the left, respectively, right endpoint of 	e . The topological
space G is then obtained by “glueing together” the ends of edges corresponding to
the same vertex v (in the sense of a topological quotient; see, e.g., [6, Chap. 3.2.2]).
The topology on G is metrizable by the length metric %0—the distance between two
points x; y 2 G is defined as the arc length of the “shortest path” connecting them
(such a path does not necessarily exist and one needs to take the infimum over all
paths connecting x and y).

A metric graph is a (locally compact) metric space G arising from the above
construction for some collection .Gd ; j � j/ D .V ; E; j � j/. More specifically, G is then
called the metric realization of .Gd ; j � j/, and a pair .Gd ; j � j/ whose metric realization
coincides with G is called a model of G . For a thorough discussion of metric graphs
as topological and metric spaces we refer to [31, Chap. I].

Remark. Let us stress that a metric graph G equipped with the length metric %0

(or with any other path metric) is a length space (see [6, Chap. 2.1] for definitions
and further details). Notice also that complete, locally compact length spaces are
geodesic; that is, every two points can be connected by a shortest path.

Clearly, different models may give rise to the same metric graph. Moreover, any
metric graph has infinitely many models (e.g., they can be constructed by subdivid-
ing edges using vertices of degree two). A model .V ; E; j � j/ is called simple if the
corresponding graph .V ; E/ is simple. In particular, every metric graph has a sim-
ple model, and this indicates that restricting to simple graphs, that is, assuming in
addition to Hypothesis 2.2 that Gd has no loops or multiple edges, would not be a
restriction at all when dealing with metric graphs.

Remark. In most parts of our paper, we will consider a metric graph together with
a fixed choice of its model. In this situation, we will usually be slightly imprecise
and do not distinguish between these two objects. In particular, we will denote both
objects by the same letter G and write G D .V ; E; j � j/ or G D .Gd ; j � j/.

Remark (Metric graph as a 1d manifold with singularities). Sometimes it is useful
to consider metric graphs as 1d manifolds with singularities. Since every point x 2 G

has a neighborhood isomorphic to a star-shaped set

E
�

deg.x/; rx

�
WD

®
z D re2� ik= deg.x/

j r 2 Œ0; rx/; k D 1; : : : ; deg.x/
¯
�C; (2.4)

one may introduce the set of tangential directions Tx.G / at x as the set of unit vec-
tors e2� ik= deg.x/, k D 1; : : : ; deg.x/. Then all vertices v 2 V with deg.v/ � 3 are
considered as branching points/singularities and vertices v 2 V with deg.v/ D 1 as
boundary points. Notice that for every vertex v 2 V the set of tangential directions
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Tv.G / can be identified with EEv . If there are no loop edges at the vertex v 2 V , then
Tv.G / is identified with Ev in this way.

3. Graph Laplacians

When speaking about graph Laplacians, one often considers one of the operators in
the next two examples.

Example 3.1 (Combinatorial Laplacian). For a simple graph Gd D .V ; E/ satisfying
Hypothesis 2.2, the so-called combinatorial Laplacian is defined on C.V/ by

.Lcombf /.v/ D
X
u�v

f .v/ � f .u/

D deg.v/f .v/ �
X
u�v

f .u/; v 2 V : (3.1)

Here C.V/ is the set of complex-valued functions on a countable set V . Notice that
the second summand on the RHS,

.Af /.v/ D
X
u�v

f .u/; v 2 V ;

is nothing but the operator generated by the adjacency matrix of Gd , which explains
the name of Lcomb. The combinatorial Laplacian plays a crucial role in many areas
of mathematics, physics, and engineering. In particular, the relationship between the
spectral properties of Lcomb and various graph parameters is one of the core topics
within the field of Spectral Graph Theory (see [9, 10] for further details).

Example 3.2 (Normalized Laplacian). Assuming again that Gd D .V ; E/ is a simple
graph satisfying Hypothesis 2.2, consider another operator defined on C.V/ by

.Lnormf /.v/ D
1

deg.v/

X
u�v

f .v/ � f .u/

D f .v/ �
1

deg.v/

X
u�v

f .u/ (3.2)

for every v 2 V . The second summand on the RHS,

.Mf /.v/ D
1

deg.v/

X
u�v

f .u/; v 2 V ;

is the so-called Markov (averaging) operator. Notice that due to our assumptions on
Gd , M is a stochastic matrix known as the transition matrix for the simple random
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walk on the graph. The normalized Laplacian serves as the generator of the simple
random walk on Gd (see, e.g., [2, 70]).

Remark. If the underlying graph Gd is regular (deg � c is constant on V ; for in-
stance, Cayley graphs are regular), then Lcomb D c � Lnorm D c � I � A. However, in
general these two Laplacians may have very different properties. For instance, Lnorm

generates a bounded operator in `2.V Ideg/ and Lcomb gives rise to a bounded operator
in `2.V/ only if Gd has bounded geometry, i.e., deg is bounded on V (see (3.6)).

The above two examples can be put into a much more general framework.
Namely, let V be a countable set. A function mWV ! .0;1/ defines a measure of full
support on V in an obvious way. A pair .V ; m/ is called a discrete measure space.
The set of square summable (w.r.t. m) functions

`2.V Im/ D

²
f 2 C.V/ j kf k

2
`2.V Im/

WD

X
v2V

ˇ̌
f .v/

ˇ̌2
m.v/ < 1

³
has a natural Hilbert space structure.

Suppose that bWV � V ! Œ0;1/ satisfies the following conditions:

(i) symmetry: b.u; v/ D b.v; u/ for each pair .u; v/ 2 V � V ,

(ii) vanishing diagonal: b.v; v/ D 0 for all v 2 V ,

(iii) locally finite: #¹u 2 V j b.u; v/ ¤ 0º < 1 for all v 2 V ,1

(iv) connected: for any u; v 2 V there is a finite collection .vk/n
kD0

� V such
that u D v0, v D vn and b.vk�1; vk/ > 0 for all k 2 ¹1; : : : ; nº.

Following [41,43], b is called a (weighted) graph over V or over .V ;m/ if in addition
a measure m of full support on V is given (b is also called an edge weight). To simplify
notation, we shall denote a graph b over .V ; m/ by .V ; mI b/.

Remark. To any graph b over V , we can naturally associate a simple combinatorial
graph Gb . Namely, the vertex set of Gb is V and its edge set Eb is defined by calling
two vertices u; v 2 V neighbors, u � v, exactly when b.u; v/ > 0. Clearly, Gb D

.V ; Eb/ is an undirected graph in the sense of Section 2.1. Let us stress, however, that
the constructed graph Gb is always simple.

The (formal) Laplacian L D Lm;b associated to a graph b over .V ;m/ is given by

.Lf /.v/ D
1

m.v/

X
u2V

b.v; u/
�
f .v/ � f .u/

�
; v 2 V : (3.3)

1In fact, using the form approach, one can considerably relax this condition by replacing it
with the local summability:

P
v2V b.u; v/ < 1 for all u 2 V .
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It acts on functions f 2 C.V/ and this naturally leads to the maximal Laplacian h in
`2.V Im/ defined by

h D L � dom.h/; dom.h/ D
®
f 2 `2.V Im/ j Lf 2 `2.V Im/

¯
: (3.4)

This operator is closed; however, if V is infinite, it is not symmetric in general (cf. [41,
Thm. 6]). Taking into account that b is locally finite, it is clear that Cc.V/ � dom.h/,
where Cc.V/ is the space of compactly supported functions in C.V/ (w.r.t. the dis-
crete topology on V ). Therefore, we can introduce the minimal Laplacian h0 as the
closure in `2.V Im/ of the pre-minimal Laplacian

h0
D L � dom.h0/; dom.h0/ D Cc.V/: (3.5)

Then h0 � h0 � h and .h0/� D .h0/� D h. If h0 D h, then h is self-adjoint as an
operator in the Hilbert space `2.V Im/ (and h0 is called essentially self-adjoint). The
problem of self-adjointness is a classical topic, which is of central importance in
quantum mechanics (see, e.g., [58, Chap. VIII.11]). We shall return to this issue in
Section 8.1. Let us now only mention that the self-adjointness takes place whenever
L D Lm;b gives rise to a bounded operator on `2.V Im/. It is rather well known (see,
e.g., [13, Lem. 1], [40, Thm. 11], and [66, Rem. 1]) that the Laplacian L D Lm;b is
bounded on `2.V Im/ if and only if the weighted degree function DegWV ! Œ0;1/

given by

DegW v 7!
1

m.v/

X
u2V

b.u; v/ (3.6)

is bounded on V . In this case, h0 D h and kDegk1 � khk`2.V Im/ � 2kDegk1.

Remark. For the combinatorial Laplacian Lcomb, we have Degcomb.v/ D deg.v/ and
hence Lcomb is bounded exactly when Gd has bounded geometry. For the normalized
Laplacian Lnorm, Degnorm.v/ � 1 for all v 2 V and hence kLnormk � 2.

There is another way to associate a self-adjoint operator in `2.V I m/ with the
Laplacian L. With each graph b one can associate the energy form qWC.V/ ! Œ0;1�

defined by

qŒf � D qbŒf � WD
1

2

X
u;v2V

b.v; u/
ˇ̌
f .v/ � f .u/

ˇ̌2
: (3.7)

Functions f 2 C.V/ such that qŒf � < 1 are called finite energy functions. Clearly,2

Cc.V/ belongs to the set D.q/ of finite energy functions and hhf; f i`2.m/ D qŒf �

2Actually, it suffices to assume that b satisfies the local summability condition; see [41,43].
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for all f 2 Cc.V/. If b is a graph over .V ; m/, introduce the graph norm

kf k
2
q WD qŒf � C kf k

2
`2.V Im/

(3.8)

for all f 2 D.q/ \ `2.V Im/ DW dom.q/. Clearly, dom.q/ is the maximal domain of
definition of the form q in the Hilbert space `2.V Im/; let us denote this form by qN .
Restricting further to compactly supported functions and then taking the graph norm
closure, we get another form:

qD WD q � dom.qD/; dom.qD/ WD Cc.V/
k�kq

:

It turns out that both qD and qN are Dirichlet forms (for definitions see [26]) and qD

is a regular Dirichlet form. Moreover, the converse is also true: “every (irreducible)
regular Dirichlet form over .V ;m/ arises as the energy form qD for some (connected)
graph b over .V ; m/” (this claim is wrong as stated; however, to make it correct one
needs to replace locally finite by the local summability condition on b and also to
allow killing terms; see [41, Thm. 7]).

Remark. The notion of irreducibility for Dirichlet forms on graphs is closely con-
nected with the notion of connectivity. Recall that a graph b is called connected if
the corresponding graph Gb is connected. Then the regular Dirichlet form qD is irre-
ducible exactly when the underlying graph b is connected (e.g., [43, Chap. 1.4]).

Now using the representation theorems for quadratic forms (see, e.g., [38]), one
can associate in `2.V Im/ the self-adjoint operators hD and hN , the so-called Dirich-
let and Neumann Laplacians over .V ; m/, with, respectively, qD and qN . Usually, it
is a rather nontrivial task to provide an explicit description of the operators hD and,
especially, hN .3 However, the following abstract description always holds:

hD D h � dom.hD/; dom.hD/ D dom.h/ \ dom.qD/; (3.9)

which also implies that hD is the Friedrichs extension of the adjoint h0 D h� to h.

4. Laplacians on metric graphs

4.1. Function spaces on metric graphs

Let G be a metric graph with a fixed model .V ; E; j � j/. Let also �W E ! .0; 1/

be a weight function assigning a positive weight �.e/ to each edge e 2 E . We shall
assume that edge weights are orientation independent and we set �.Ee/ D �.e/ for all

3In fact, to decide whether hN and hD coincide for given b and m, or equivalently that
qN D qD , is already a highly nontrivial problem. This property is related to the uniqueness of
a Markovian extension. For further details we refer to [43, 46], [49, Chap. 7.2].
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Ee 2 EEv , v 2 V . Notice that � can be identified with an edgewise constant function
on G in an obvious way. Identifying every edge e 2 E with a copy of 	e D Œ0; jej�,
we can introduce Lebesgue and Sobolev spaces on edges and also on G . First of all,
with the weight � we associate the measure � on G defined as the edgewise scaled
Lebesgue measure such that �.dx/ D �.e/dxe on every edge e 2 E . Thus we can
define the Hilbert space L2.G I �/ of measurable functions f W G ! C which are
square integrable w.r.t. the measure � on G . Similarly, one defines the Banach spaces
Lp.G I�/ for p 2 Œ1;1�. In fact, if p 2 Œ1;1/, then

Lp.G I�/ Š

²
f D .fe/e2E j fe 2 Lp.eI�/;

X
e2E

kfek
p

Lp.eI�/
< 1

³
;

where
kfek

p

Lp.eI�/
D

Z
e

ˇ̌
fe.xe/

ˇ̌p
�.dxe/ D �.e/

Z
e

ˇ̌
fe.xe/

ˇ̌p dxe:

If �.e/ D 1, then we shall simply write Lp.e/. Next, the subspace of compactly
supported Lp functions will be denoted by L

p
c .G I�/. The space L

p
loc.G I�/ of locally

Lp functions consists of all measurable functions f such that fg 2 L
p
c .G I�/ for all

g 2 Cc.G /. Notice that both L
p
loc and L

p
c are independent of the weight �.

For edgewise locally absolutely continuous functions on G , let us denote by r

the edgewise first derivative,

rWf 7! f 0: (4.1)

Then for every edge e 2 E ,

H 1.e/ D
®
f 2 AC.e/ j rf 2 L2.e/

¯
; H 2.e/ D

®
f 2 H 1.e/ j rf 2 H 1.e/

¯
are the usual Sobolev spaces (upon the identification of e with 	e D Œ0; jej�), and
AC.e/ is the space of absolutely continuous functions on e. Let us denote by
H 1

loc.G n V/ and H 2
loc.G n V/ the spaces of measurable functions f on G such that

their edgewise restrictions belong to H 1, respectively, H 2; that is,

H
j
loc.G n V/ D

®
f 2 L2

loc.G / j f je 2 H j .e/ 8e 2 E
¯

for j 2 ¹1; 2º. Clearly, for each f 2 H 2
loc.G n V/ the quantities

f .e{/ WD lim
xe!e{

f .xe/; f .e� / WD lim
xe!e�

f .xe/ (4.2)

and the normal derivatives

@f .e{/ WD lim
xe!e{

f .xe/ � f .e{/

jxe � e{ j
; @f .e� / WD lim

xe!e�

f .xe/ � f .e� /

jxe � e� j
(4.3)
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are well defined for all e 2 E . We also need the notation

@Eef .v/ WD

´
@f .e{/; Ee 2 EEC

v ;

@f .e� /; Ee 2 EE�
v ;

(4.4)

for every v 2 V and Ee 2 EEv . In the case of a loopless graph, the above notation
simplifies since we can identify EEv with Ev for all v 2 V .

4.2. Kirchhoff Laplacians

Let G be a metric graph together with a fixed model .V ; E; j � j/ and �; �W E !

.0;1/ two edge weights on G (for this model). For every e 2 E consider the maximal
operator He;max defined in L2.eI�/ by

He;maxf D �ef; �e D �
1

�.xe/

d
dxe

�.xe/
d

dxe

; (4.5)

dom.He;max/ D
®
f 2 L2.eI�/ j f; �f 0

2 AC.e/; �ef 2 L2.eI�/
¯
: (4.6)

Since � and � are constant on e, dom.He;max/ coincides with the Sobolev space
H 2.e/. The maximal operator on G is then defined in L2.G I�/ as

Hmax D

M
e2E

He;max: (4.7)

Clearly, for each f 2 dom.Hmax/ the quantities (4.2), (4.3), and hence (4.4) are well
defined for all e 2 E . Now, in order to reflect the underlying graph structure, we
impose at each vertex v 2 V the Kirchhoff boundary conditions8̂<̂

:
f is continuous at v;X
Ee2 EEv

�.Ee/@Eef .v/ D 0: (4.8)

To motivate our definition, consider r as the differentiation operator on G acting
on functions which are edgewise locally absolutely continuous and also continuous
at the vertices. Notice that when considering r as an operator acting from L2.G I�/

to L2.G I�/, its formal adjoint r� acting from L2.G I�/ to L2.G I�/ acts edgewise as

r
�
Wf 7! �

1

�
.�f /0: (4.9)

Thus the weighted Laplacian � acting in L2.G I�/, written in the divergence form
�Wf 7! �r�.rf /, acts edgewise as the following divergence form Sturm–Liouville
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operator:

�Wf 7!
1

�
.�f 0/0: (4.10)

The continuity assumption imposed on f results for � in a one-parameter family
of symmetric boundary conditions at the vertices (the so-called ı-coupling). In the
present text, with the Laplacian � acting on G we shall always associate the Kirch-
hoff vertex conditions (4.8). In particular, imposing these boundary conditions on the
maximal domain yields the (maximal) Kirchhoff Laplacian:

H D �� � dom.H/;

dom.H/ D
®
f 2 dom.Hmax/ j f satisfies (4.8) on V

¯
:

(4.11)

4.3. Energy forms

Restricting further to compactly supported functions, we end up with the pre-minimal
operator

H0
D �� � dom.H0/; dom.H0/ D dom.H/ \ Cc.G /: (4.12)

Integrating by parts, one obtains for all f 2 dom.H0/

hH0f; f iL2 D

Z
G

ˇ̌
rf .x/

ˇ̌2
�.dx/ DW QŒf �; (4.13)

which implies that H0 is a nonnegative symmetric operator in L2.G I�/. We define
H0 as the closure of H0 in L2.G I�/. It is standard to show that

.H0/� D H: (4.14)

In particular, the equality H0 D H holds if and only if H is self-adjoint (or, equiva-
lently, H0 is essentially self-adjoint).

With the form Q we associate two spaces: first, the Sobolev space H 1.G / D

H 1.G I�; �/ is defined as the subspace of L2.G I�/ consisting of continuous func-
tions, which are edgewise absolutely continuous and have finite energy QŒf � < 1.
Equipping H 1.G / with the standard graph norm turns it into a Hilbert space. Also,
we define the space H 1

0 .G / D H 1
0 .G I�;�/ as the closure of compactly supported H 1

functions,
H 1

0 D H 1
0 .G I�; �/ WD H 1

c .G /
k�k

H1.G I�;�/ ;

where H 1
c .G / WD H 1.G / \ Cc.G /. Restricting Q to these spaces, we end up with

two closed forms in L2.G I�/:

QD D Q � H 1
0 ; QN D Q � H 1: (4.15)
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According to the representation theorem, they give rise to two self-adjoint nonneg-
ative operators HD and HN in L2.G I �/, the Dirichlet and Neumann Laplacians,
respectively. Notice also that HD coincides with the Friedrichs extension of H0:

dom.HD/ D dom.H/ \ H 1
0 .G /:

Remark. Following the analogy with the Friedrichs extension, it might be tempting
to think that the domain of the Neumann Laplacian HN is given by dom.H/\H 1.G /.
However, the operator defined on this domain has a different name—the Gaffney
Laplacian—and it is not symmetric in general. Moreover, this operator is not always
closed (see [48]).

5. Connections

One of the immediate ways to relate Laplacians on metric and discrete graphs is by
noticing a connection between their harmonic functions. Despite being elementary,
this observation lies at the core of many of our considerations and hence we briefly
sketch it here. Every harmonic function f on a weighted metric graph .G ; �; �/ (i.e.,
f satisfies �f D 0 and the Kirchhoff conditions (4.8)) must be edgewise affine. The
Kirchhoff conditions (4.8) imply that f is continuous and, moreover, satisfiesX

Ee2 EEv

�.Ee/@Eef .v/ D
X
u�v

X
Ee2 EEuWe2Ev

�.e/

jej

�
f .u/ � f .v/

�
D 0

at each vertex v 2 V . This suggests to consider a discrete Laplacian (3.3) with edge
weights given by

b.u; v/ D

´P
Ee2 EEuWe2Ev

�.e/
jej

; u ¤ v;

0; u D v:
(5.1)

Indeed, then for every �-harmonic function f on the weighted metric graph .G ;�;�/,
its restriction to vertices f WD f jV is an L-harmonic function; that is, Lf D 0. More-
over, the converse is also true. Phrased in a more formal way, the map

{V WC.G / ! C.V/

f 7! f jV ;
(5.2)

when restricted further to the space of continuous, edgewise affine functions on G

becomes bijective and establishes a bijective correspondence between �-harmonic
and L-harmonic functions. This indicates a possible connection between the cor-
responding Laplacians on G and Gd (this immediately connects, for instance, the
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corresponding Poisson and Martin boundaries). However, one also has to take into
account the measures � and m; that is, the vertex weight m should be chosen in a
way which connects the corresponding Hilbert spaces L2.G I�/ and `2.V Im/. The
desired connection is given by the choice

mW v 7!

X
Ee2 EEv

jej�.e/; v 2 V ; (5.3)

under the additional assumption that .G ; �; �/ has finite intrinsic size:

��.E/ WD sup
e2E

jej

s
�.e/

�.e/
< 1: (5.4)

The quantity �.e/ WD jej
q

�.e/
�.e/

is the intrinsic length of the edge e 2 E (see Sec-
tion 7.1 for further details).

Remark. In at least two special cases, the correspondence between the Kirchhoff
Laplacian for .G ; �; �/ and the discrete Laplacian for the above weights b and m has
been known for a quite long time. First of all, in the case of so-called unweighted
equilateral metric graphs (i.e., � D � D 1 on G and jej D 1 for all edges e), (3.3)
with the weights (5.1), (5.3) turns into the normalized Laplacian (3.2). Connections
between their spectral properties have been established in [53, 69] for finite metric
graphs and then extended in [5, 7, 18] to infinite metric graphs, and in fact one can
even prove some kind of local unitary equivalence [55]. Thus these results allow
to reduce the study of Laplacians on equilateral metric graphs to a widely studied
object—the normalized Laplacian Lnorm, the generator of the simple random walk
on Gd (see [2, 10, 70]). The second well-studied case is a slight generalization of the
above setting: again, jej D 1 for all edges e; however, � D � on G (these are named
cable systems in the work of Varopoulos [67]). The corresponding Laplacian L with
the coefficients (5.1), (5.3) is the generator of a discrete time random walk on Gd with
the probability of jumping from v to u given by

p.u; v/ D
�.eu;v/P

w�v �.ev;w/
when u � v;

and 0 otherwise. There is a close connection between this random walk and the Brow-
nian motion on the cable system, and exactly this link has been exploited several times
in the literature (see [67] and some recent works [3, 22, 23]).

If the underlying model of .G ; �; �/ has finite intrinsic size (5.4), it turns out that
the maximal Kirchhoff Laplacian H in L2.G I�/ and h.G ; �; �/, the corresponding
maximal Laplacian with the weights (5.1), (5.3), share many basic properties.
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Spectral properties.
� Self-adjoint uniqueness; see [20, Sec. 4] and [49, Chap. 3].

� Positive spectral gap; see [20, Sec. 4], [47], and [49, Chap. 3].

� Ultracontractivity estimates; see [20, Sec. 5.2], [49, Chap. 4.8], and [60].

Parabolic properties.
� Markovian uniqueness; see [49, Chap. 4.4].

� Recurrence/transience; see [31, Chap. 4] and [49, Chap. 4.5].

� Stochastic completeness; see [23, 33, 35, 36], and [49, Chap. 4.6].

The above lists are by no means complete and we refer to the recent mono-
graph [49] for further details, results, and literature.

Remark. In fact, the idea to relate the properties of � and L by taking into account
the relationship between their kernels has its roots in the fundamental works of M. G.
Krein, M. I. Vishik, and M. Sh. Birman in the 1950s. Indeed, it turns out that L serves
as a “boundary operator” for � and exactly this fact allows to connect basic spectral
properties of these two operators. However, in order to make all that precise one
needs to use the machinery of boundary triplets and corresponding Weyl functions,
a modern language of extension theory of symmetric operators in Hilbert spaces,
which can be seen as far-reaching development of the Birman–Krein–Vishik theory
(see [14,15,62]). First applications of this approach to finite and infinite metric graphs
can be traced back to the 2000s (see, e.g., [5,19,56]). One of its advantages is the fact
that the boundary triplets approach allows to treat metric graphs avoiding restrictive
assumptions on the edge lengths [20, 44].

6. Cable systems for graph Laplacians
The above considerations naturally lead to the following question: which graph
Laplacians may arise as “boundary operators” for a Kirchhoff Laplacian on a
weighted metric graph? Let us be more precise. Suppose a vertex set V is given.
Each graph Laplacian (3.3) is determined by the vertex weight mWV ! .0;1/ and
the edge weight function bWV � V ! Œ0;1/ having the properties (i)–(iv) of Sec-
tion 3. With each such b we can associate a locally finite simple graph Gb D .V ; Eb/

as described in Section 3.

Definition 6.1. A cable system for a graph b over .V ; m/ is a model of a weighted
metric graph .G ; �; �/ having V as its vertex set and such that the functions defined
by (5.3) and (5.1) coincide with m and, respectively, b. If in addition the underlying
graph .V ; E/ of the model coincides with Gb D .V ; Eb/, then the cable system is
called minimal.
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Thus the problem stated at the very beginning now can be formulated as follows:
Which locally finite graphs .V ; mI b/ have a (minimal) cable system? It turns out that
the existence of a minimal cable system is a nontrivial issue already in the case of a
path graph (see [49, Chap. 5.3]). Let us also present the following example.

Example 6.2 (Cable systems for Lcomb). Consider the combinatorial Laplacian Lcomb

on a simple, connected, locally finite graph Gd , that is, m � 1 on V , b.u; v/ D 1

exactly when u � v and u ¤ v, and b.u; v/ D 0 otherwise. It turns out that in this
case .V ; mI b/ admits a minimal cable system if and only if for each e 2 E there is a
disjoint cycle cover of Gd containing e in one of its cycles.4

However, we stress that a general cable system may have loops and multiple edges
and thus the simplicity assumption on the model of .G ; �; �/ (that is, the minimality
of a cable system for .V ; mI b/) might be too restrictive. Moreover, the underlying
combinatorial graph .V ; E/ of a cable system for b can always be obtained from the
simple graph Gb D .V ; Eb/ by adding loops and multiple edges. The next result was
essentially proved in [23] (see also [49, Chap. 6.3]).

Theorem 6.3. Every locally finite graph .V ; mI b/ has a cable system.

After establishing existence of cable systems, the next natural question is their
uniqueness. In fact, every locally finite graph b over .V ; m/ has a large number of
cable systems. In particular, the construction in [23, p. 2107] is a special case of a
general construction using different metrizations of discrete graphs. These connec-
tions will be discussed in the next section.

7. Intrinsic metrics on graphs

7.1. Intrinsic metrics on metric graphs

We define the intrinsic metric % of a weighted metric graph .G ; �; �/ as the intrinsic
metric of its Dirichlet Laplacian HD (in particular, note that QD is a strongly local,
regular Dirichlet form). By [65, eq. (1.3)] (see also [24, Thm. 6.1]), %intr is given by

%intr.x; y/ D sup
®
f .x/ � f .y/ j f 2 yDloc

¯
; x; y 2 G ;

where the function space yDloc is defined as

yDloc D
®
f 2 H 1

loc.G / j �.x/
ˇ̌
rf .x/

ˇ̌2
� �.x/ for a.e. x 2 G

¯
:

4httpsW//mathoverflow.net/questions/59117/ (2011): Assigning positive edge weights to a
graph so that the weight incident to each vertex is 1.

https://mathoverflow.net/questions/59117/
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In fact, %intr admits an explicit description: define the intrinsic weight

� D ��;� WD

r
�

�
on G : (7.1)

This weight gives rise to a new measure on G whose density w.r.t. the Lebesgue
measure is exactly � (we abuse the notation and denote with � both the edge weight
and the corresponding measure).

Recall that a path P in G is a continuous and piecewise injective map P W I ! G

defined on an interval I � R. If 	 D Œa; b� is compact, we call P a path with starting
point x WD P .a/ and endpoint y WD P .b/, and its (intrinsic) length is defined as

jP j� WD

X
j

Z
P ..tj ;tjC1//

�.dx/; (7.2)

where a D t0 < � � � < tn D b is any partition of 	 D Œa; b� such that P is injective on
each interval .tj ; tjC1/ (clearly, jP j� is well defined).

Lemma 7.1. The metric %� defined by

%�.x; y/ WD inf
P

jP j�; x; y 2 G ; (7.3)

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on .G ; �; �/ (w.r.t. QD); that is, %intr D %� .

The proof is straightforward and can be found in, e.g., [31, Prop. 2.21] (see
also [45, Lem. 4.3]). Notice that in the case � D �, � coincides with the Lebesgue
measure and hence %� is nothing but the length metric %0 on G (see Section 2.2).

Remark. If a path Pe consists of a single edge e 2 E , then

jPej� D

Z
e

�.dx/ D jej

s
�.e/

�.e/
D �.e/;

which connects %intr D %� on .G ; �; �/ with the intrinsic edge length (see (5.4)).

7.2. Intrinsic metrics on discrete graphs

The idea to use different metrics on graphs can be traced back at least to [12] and
versions of metrics adapted to weighted discrete graphs have appeared independently
in several works; see, e.g., [22, 23, 29, 52]. In our exposition we follow [24, 39].

For a connected graph b over .V ; m/, a symmetric function pWV � V ! Œ0;1/

such that p.u;v/>0 exactly when b.u;v/>0 is called a weight function for .V ;mIb/.
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Every weight function p generates a path metric %p on V w.r.t. b via

%p.u; v/ WD inf
PD.v0;:::;vn/WuDv0; vDvn

X
k

p.vk�1; vk/: (7.4)

Here the infimum is taken over all paths in b connecting u and v, that is, all sequences
P D .v0; : : : ; vn/ such that v0 D u, vn D v and b.vk�1; vk/ > 0 for all k. Since we
assume b to be locally finite, %p.u; v/ > 0 whenever u ¤ v.

Example 7.2 (Combinatorial distance). Let pWV � V ! ¹0; 1º be given by

p.u; v/ D

´
1; b.u; v/ ¤ 0;

0; b.u; v/ D 0:
(7.5)

Then the corresponding metric %p is nothing but the combinatorial distance %comb

(a.k.a. the word metric in the context of Cayley graphs) on a graph b over V .

Definition 7.3. A metric % on V is called intrinsic w.r.t. .V ; mI b/ ifX
u2V

b.u; v/%.u; v/2
� m.v/ (7.6)

holds for all v 2 V . Similarly, a weight function pW V � V ! Œ0; 1/ is called an
intrinsic weight for .V ; mI b/ ifX

u2V

b.u; v/p.u; v/2
� m.v/; v 2 V :

If p is an intrinsic weight, then the path metric %p is called strongly intrinsic.

For any given locally finite graph .V ; mI b/ an intrinsic metric always exists (see
[34, Ex. 2.1], [39], and also [11]).

Remark. It is straightforward to check that the combinatorial distance %comb is not
intrinsic for the combinatorial Laplacian Lcomb (m� 1 on V in this case). On the other
hand, %comb is equivalent to an intrinsic path metric if and only if deg is bounded on
V ; that is, the corresponding graph has bounded geometry. If supV deg.v/ D1, then
Lcomb is unbounded in `2.V/, and it turned out that %comb is not a suitable metric on
V to study the properties of Lcomb (in particular, this has led to certain controversies
in the past; see [42, 71]).

7.3. Connections between discrete and continuous

Consider a weighted metric graph .G ; �; �/ and its intrinsic metric %� . With each
model of .G ; �; �/ we can associate the vertex set V together with the vertex weight
mWV ! .0;1/ and the graph bWV � V ! Œ0;1/; see (5.3), (5.1). The next result
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shows that the intrinsic metric %� of .G ;�; �/ gives rise to a particular intrinsic metric
for .V ; mI b/.

Lemma 7.4 ([49]). Fix a model of .G ; �; �/ having finite intrinsic size and define the
metric %V on V as a restriction of %� onto V � V ,

%V .u; v/ WD %�.u; v/; .u; v/ 2 V � V : (7.7)

Then %V is an intrinsic metric for .V ;mIb/. Moreover, .G ;%�/ is complete as a metric
space exactly when .V ; %V / is complete.

Let us mention that Lemma 7.4 also has an interpretation in terms of quasi-
isometries (see, e.g., [2, Def. 1.12] and [54, Sec. 1.3]).

Definition 7.5. A map �WX1 ! X2 between metric spaces .X1; %1/ and .X2; %2/ is
called a quasi-isometry if there are constants a, R > 0, and b � 0 such that

a�1
�
%1.x; y/ � b

�
� %2

�
�.x/; �.y/

�
� a

�
%1.x; y/ C b

�
; (7.8)

for all x; y 2 X1 and, moreover,[
x2X1

BR

�
�.x/I %2

�
D X2: (7.9)

Here and below BR.xI%/ D ¹y 2 X j %.x; y/ < Rº is a ball in a metric space .X; %/.

It turns out that the map {V defined in Section 5 is closely related with a quasi-
isometry between weighted graphs and metric graphs.

Lemma 7.6. Assume the conditions of Lemma 7.4. Then the map

'WV ! G ; '.v/ D v (7.10)

defines a quasi-isometry between the metric spaces .G ; %�/ and .V ; %V /.

Proof. The proof is a straightforward check of (7.8) and (7.9) for the map � with
a D 1, b D 0, and R D ��.E/ (notice that the finite intrinsic size (5.4) is necessary
for the net property (7.9) to hold).

Remark. The notion of quasi-isometries was introduced in the works of M. Gromov
and M. Kanai in the 1980s. It is well known in context with Riemannian manifolds
and (combinatorial) graphs that roughly isometric spaces share many important prop-
erties: e.g., geometric properties (such as volume growth and isoperimetric inequali-
ties), parabolicity/transience, Liouville-type theorems for harmonic functions of finite
energy, and many more. However, we stress that most of these connections also
require additional (rather restrictive) conditions on the local geometry of the spaces.
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Some of our conclusions are reminiscent of this notion, but in fact our results go
beyond this framework. For instance, the strong/weak Liouville property (i.e., all pos-
itive/bounded harmonic functions are constant) is not preserved under bi-Lipschitz
maps in general [51]. However, the equivalence holds true for our setting (see [49,
Lem. 6.46]). In addition, we stress that we do not require any additional local con-
ditions (e.g., bounded geometry). On the other hand, our results connect only two
particular roughly isometric spaces .G ; %�/ and .V ; %V / and not the whole equiva-
lence class of roughly isometric weighted graphs or weighted metric graphs.

By Lemma 7.4, each cable system having finite intrinsic size5 gives rise to an
intrinsic metric %V for .V ; mI b/ using a simple restriction to vertices. It is natural
to ask which intrinsic metrics on graphs can be obtained as restrictions of intrinsic
metrics on weighted metric graphs. Due to the lack of space we omit the description
of these results, which roughly speaking state that to construct an intrinsic metric on
a graph b over .V ; m/ is almost equivalent to constructing a cable system. Let us
state only one result here (see [49, Lem. 6.27 and Thm. 6.30]).

Theorem 7.7 ([49]). Let b be a locally finite, connected graph over .V ; m/ equipped
with a strongly intrinsic path metric %. Assume also that % has finite jump size,

s.%/ D sup
®
%.u; v/ j u; v 2 V ; b.u; v/ > 0

¯
< 1:

Then there exists a weighted metric graph .G ; �; �/ together with a model such that
(5.4) is satisfied, m and b have the form (5.3) and (5.1), respectively, and, moreover,
% coincides with the induced path metric %V D %�jV�V .

Remark. It is hard to overestimate the role of intrinsic metrics in the progress
achieved for weighted graph Laplacians during the last decade. Surprisingly, the
above-described procedure to construct an intrinsic metric for .V ; mI b/ in fact pro-
vides a way to obtain all finite jump size intrinsic path metrics on .V ;mIb/. Moreover,
upon normalization assumptions on cable systems (e.g., restricting to weighted met-
ric graphs with equal weights, i.e., � D �, and also assuming no multiple edges and
that all loops have the same length 1), the correspondence in Theorem 7.7 becomes
in a certain sense bijective (see [49, Thm. 6.34]).

Let us mention that some versions of this result have been used earlier in [23,33].

8. Applications
Our main goal in this final section is to demonstrate the established connections
between discrete graph Laplacians and metric graph Laplacians. We will describe

5Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size immediately extends to cable systems.
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some applications to the self-adjointness problem and to the problem of recurrence.
For further results as well as applications (Markovian uniqueness, spectral gap esti-
mates, stochastic completeness, etc.) we refer to [49, Chap. 7–8].

8.1. Self-adjointness

The first mathematical problem arising in any quantum mechanical model is self-
adjointness (see, e.g., [58, Chap. VIII.11]); that is, usually a formal symmetric expres-
sion for the Hamiltonian has some natural domain of definition in a given Hilbert
space (e.g., pre-minimally defined Laplacians) and then one has to verify that it gives
rise to an (essentially) self-adjoint operator. Otherwise,6 there are infinitely many
self-adjoint extensions (or restrictions in the maximally defined case) and one has to
determine the right one which is the observable.

There are several ways to introduce the notion of self-adjointness. For the Kirch-
hoff Laplacian as well as for the graph Laplacian (take into account the locally finite
assumption), the self-adjointness means that the minimal Laplacian coincides with
the maximal Laplacian in the corresponding L2 space. On the other hand, consider-
ing the associated Schrödinger or wave equation, the self-adjointness actually means
its L2-solvability (see, e.g., [63, Sec. 1.1]). Perhaps, the most convenient way for us
would be to define the self-adjointness via solutions to the Helmholtz equation

�u D �u; � 2 R: (8.1)

Since � is nonpositive, the maximally defined operator is self-adjoint if and only if for
some (and hence for all) � > 0 equation (8.1) admits a unique solution u 2 L2.G I�/,
which is clearly identically zero in this case (see, e.g., [57, Thm. X.26]). Recalling
that, in the context of both manifolds and graphs, functions satisfying (8.1) are called
�-harmonic, the self-adjoint uniqueness can be seen as some kind of a Liouville-
type property of G 7, and this indicates its close connections with the geometry of the
underlying metric space. We begin with the following result, which is widely known
in the context of Riemannian manifolds.8

Theorem 8.1. Let .G ; �; �/ be a weighted metric graph and let %� be the corre-
sponding intrinsic metric. If .G ; %�/ is complete as a metric space, then the Kirchhoff
Laplacian H is self-adjoint.

6Of course, one needs to check whether the corresponding symmetric operator has equal
deficiency indices, which is always the case for Laplacians or, more generally, for symmetric
operators which are bounded from below or from above.

7Under the positivity of the spectral gap, one can in fact replace � > 0 by � D 0 and hence
in this case one is led to harmonic functions.

8M. P. Gaffney [27] noticed the importance of completeness of the manifold in question
and the essential self-adjointness in this case was established later [59] (see also [8, 64]).
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In the context of metric graphs, the above result seems to be a folklore; however,
it is not an easy task to find its proof in the literature. In fact, the above considerations
enable us to provide a rather short one.

Proof. Assume that H is not self-adjoint. Since the minimal Kirchhoff Laplacian
H0 D H� is nonnegative, this means that ker.H C I/ ¤ ¹0º; that is, there is 0 ¤

f 2 dom.H/ such that �f D f (see [57, Thm. X.26]). Moreover, we can choose
such an f real-valued and hence jf j is subharmonic. Moreover, jf j 2 L2.G I �/

since f 2 dom.H/. On the other hand, if .G ; %�/ is complete as a metric space, then
applying Yau’s Lp-Liouville theorem [65, Cor. 1(a)], we conclude that f � 0. This
contradiction completes the proof.

Remark. A few remarks are in order.

(i) Simple examples (e.g., G is a path graph) show that the completeness w.r.t.
%� is not necessary.

(ii) By the Hopf–Rinow theorem (a metric graph G equipped with %� is a
length space), completeness of .G ; %�/ is equivalent to bounded compact-
ness (compactness of distance balls), as well as to geodesic completeness.

As an immediate corollary of Theorem 8.1 and the above discussed connections,
we obtain a version of the Gaffney theorem for graph Laplacians.

Theorem 8.2 ([34]). Let b be a locally finite graph over .V ; m/ and let % be an
intrinsic metric which generates the discrete topology on V . If .V ; %/ is complete as
a metric space, then h0 is self-adjoint and h0 D h.

Proof. Let us only sketch the proof (missing details can be found in [49, Chap. 7.1]).
By Theorem 7.7, there is a cable system for .V ; mI b/. Moreover, the correspond-
ing Kirchhoff Laplacian H is self-adjoint if and only if so is h (see [20, Sec. 4],
[49, Thm. 3.1 (i)]). Taking into account Lemma 7.4 and applying Theorem 8.1, we
complete the proof.

Remark. A few remarks are in order.

(i) Theorem 8.2 was first established in [34, Thm. 2].

(ii) Both Theorem 8.1 and Theorem 8.2 are not optimal. For instance, Theo-
rem 8.2 does not imply the self-adjointness of the combinatorial Laplacian
Lcomb when it is unbounded (see [37], [41, Thm. 6]). However, Theo-
rems 8.1 and 8.2 enjoy a certain stability property under additive pertur-
bations, which preserve semiboundedness ([30, Thm. 2.16], [45]).

(iii) We refer for further results and details to [45], [49, Chap. 7.1], and [61].
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8.2. Recurrence and transience

Recurrence of a random walk/Brownian motion means that a particle returns to its ini-
tial position infinitely often (see, e.g., [26] for a formal definition). In fact, recurrence
appears (quite often under different names) in many different areas of mathematics
and mathematical physics and enjoys deep connections to various important problems
(e.g., the type problem for simply connected Riemann surfaces).

The famous theorem of G. Pólya states that the simple random walk on Zd is
recurrent if and only if either d D 1 or d D 2. Intuitively, one may explain recurrence
of a random walk/Brownian motion as insufficiency of volume in the state space
(volume of a ball of radius R in Zd or Rd grows faster as R ! 1 for larger d ). The
qualitative form of this heuristic statement in the manifold context has a venerable
history (we refer to the excellent exposition of A. Grigor’yan [28] for further details),
and in the case of complete Riemannian manifolds, it was proved in the 1980s inde-
pendently by L. Karp, N. Th. Varopoulos, and A. Grigor’yan (see [28, Thm. 7.3])
that Z 1 r dr

vol
�
Br.x/

� D 1

guarantees recurrence. Moreover, this condition is close to be necessary. This result
was extended to strongly local Dirichlet forms by K.-T. Sturm [65] and hence it also
holds in the setting of weighted metric graphs. Again, using the obtained connections
between metric graph and weighted graph Laplacians, we can proceed as in the pre-
vious subsection and establish the corresponding volume growth test for weighted
graph Laplacians, which was originally obtained by B. Hua and M. Keller [32]. Due
to the lack of space we only refer to [49, Chap. 7.4] for further details.

We would like to finish this article by reflecting on another interesting topic. Per-
haps, the most studied class of graphs are Cayley graphs of finitely generated groups
(Example 2.1). Random walks on groups is a classical and very rich subject (the liter-
ature is enormous and we only refer to the classic text [70]). Recall that a group G is
called recurrent if the simple random walk on its Cayley graph C.G; S/ is recurrent
for some (and hence for all) S . The classification of recurrent groups was accom-
plished in the 1980s by proving the famous Kesten conjecture. It is a combination of
two seminal theorems—relationship between decay of return probabilities and growth
in groups established by N. Th. Varopoulos and the characterization of groups of
polynomial growth by M. Gromov (see, e.g., [68, Chap. VI.6], [70, Thm. 3.24]).

Theorem 8.3 (N. Th. Varopoulos). G is recurrent if and only if G contains a finite
index subgroup isomorphic either to Z or to Z2.

It turns out that the problem of recurrence on weighted metric graphs can be
reduced to the study of recurrence of random walks on groups (see [49, Thm. 7.49]).
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Let .GC ; �; �/ be a weighted metric graph where GC D C.G; S/ is a Cayley graph of
a finitely generated group G. Also, let HD be the corresponding Dirichlet Laplacian.
Define

b�.u; v/ D

´
�.eu;v/

jeu;v j
; u�1v 2 S;

0; u�1v … S;
u; v 2 G: (8.2)

Theorem 8.4. The heat semigroup .e�tHD /t>0 is recurrent if and only if the discrete
time random walk on G with transition probabilities

p�.u; v/ D P.XnC1 D v j Xn D u/ D
b�.u; v/P

g2S b�.u; ug/
; u; v 2 G; (8.3)

is recurrent.

Combining Theorem 8.4 with Theorem 8.3, we arrive at the following result.

Corollary 8.5. Assume the conditions of Theorem 8.4.

(i) If G contains a finite index subgroup isomorphic either to Z or to Z2 and
the edge weight � satisfies

sup
e2E

�.e/

jej
< 1; (8.4)

then the heat semigroup .e�tHD /t>0 is recurrent.

(ii) If G is transient (i.e., G does not contain a finite index subgroup isomorphic
either to Z or to Z2) and the edge weight � satisfies

inf
e2E

�.e/

jej
> 0; (8.5)

then the heat semigroup .e�tHD /t>0 is transient.

In fact, the above result has numerous consequences and actually can be im-
proved. Let us finish by its applications to ultracontractivity estimates. To simplify
the exposition we restrict now to unweighted metric graphs.

Theorem 8.6 ([20,49]). Assume the conditions of Theorem 8.4 and let also �D��1.
Suppose that G is not recurrent and the edge lengths satisfy

sup
e2E

jej < 1: (8.6)

Then .e�tHD /t>0 is ultracontractive and, moreover,
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(i) if 
G.n/ � nN as n ! 1 with some N 2 Z�3, then9

ke�tHDk1!1 � CN t�N=2; t > 0I (8.7)

(ii) if G is not virtually nilpotent (i.e., 
G has superpolynomial growth10), then
(8.7) holds true for all N > 2.

Remark. Notice that applying Theorems 1.2 and 1.3 of [50] to the Dirichlet Lapla-
cian HD and then using Theorem 8.6, we arrive at the Cwikel–Lieb–Rozenblum
estimates for additive perturbations, that is, for Schrödinger operators �� C V.x/.
It is also well known (see [25]) that ultracontractivity estimates and Sobolev-type
inequalities lead to Lieb–Thirring bounds (Sp estimates on the negative spectra);
however, we are not going to pursue this goal here. For further details and historical
remarks we refer to [49, Chap. 8.2].
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Uniqueness results for solutions of continuous and discrete
PDE

Eugenia Malinnikova

Abstract. We give an overview of some recent results on unique continuation property “at
infinity” for solutions of elliptic and dispersive PDE and their discrete counterparts. The proofs
of most of the results are given in previous works written with coauthors.

1. Introduction

Let L be a differential operator. We say that L has the (weak) unique continuation
property if any solution u to the equation Lu D 0 in some domain � which vanishes
on an open subset of � equals zero on �. For the case of a linear operator, we con-
clude that two solutions which coincide on an open subset should coincide on the
whole domain. The unique continuation property holds for the class of holomorphic
functions, this corresponds to the first-order differential operator N@, and, more inter-
estingly, for a large class of second-order elliptic operators. The operator L has the
strong unique continuation property if any solution u to the equation Lu D 0 in �

that vanishes at some point x 2 � to an infinite order is identically zero in �.
In this survey, we consider versions of the uniqueness property at infinity. Let

Lu D 0 on Rd , assuming some decay or growth restriction condition for u, we want
to conclude that u is a trivial solution. The simplest example of such result is the
classical Liouville theorem for harmonic functions. If a harmonic function on Rd is
bounded, then it is constant. This theorem has a very short and elegant proof; see
[30]. It also has numerous generalizations, which include the analogous statement
for harmonic functions on Zd ; see for example [21]. The first topic of this note is a
surprising improvement of the Liouville theorem for discrete harmonic functions on
Z2 obtained in [3]. We discuss some follow up questions and very deep related results
on Anderson localization for the Anderson–Bernoulli model.

2020 Mathematics Subject Classification. Primary 35J10; Secondary 35B53, 39A12, 31C20.
Keywords. Unique continuation, Schrödinger equation, exponential decay.
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In the next part of the note, we consider the stationary Schrödinger operator with
a bounded potential, Lu D ��u C V u. We suggest an elementary analysis of the
decay properties of solutions to the corresponding equation on the lattice Zd and then
describe a recent progress on the continuous question, known as the Landis conjec-
ture. The result is proved in [28] and answers the question on the plane; the problem
is open in higher dimensions.

Finally, we describe uniqueness results for the operator LuD@tuCi.��CV /u,
obtained by Luis Escauriaza, Carlos Kenig, Gustavo Ponce, and Luis Vega in a re-
markable series of articles [12–15], and discuss the semi-discrete operator, citing the
results of [1, 16, 17, 22].

2. Uniqueness results for discrete harmonic functions

2.1. Harmonic functions on Zd

For each point x D .x1; : : : ; xd / 2 Zd , the 2d points y D .y1; : : : ; yd / such thatP
j jxj � yj j D 1 are called the neighbors of x; we write x � y. Let V � Zd . We

define the interior of V as the set of all x 2 V such that all neighbors of x also lie
in V . Then a function h W V ! R is called harmonic in V if for any point x in the
interior we have

h.x/ D
1

2d

X
y�x

h.y/:

This definition easily extends to graphs with finite degrees of vertices. The sys-
tematic study of harmonic functions on Zd started about a century ago with the
classical works of Phillips and Wiener [31], and of Courant, Friedrichs, and Lewy,
[5]. It is interesting to note that the first classical articles on the discrete potential
theory already mentioned its connections to the probability and random walks. The
motivation for these works was the approximation of continuous harmonic functions
by discrete ones. One of the results, that can be obtained using such approximation, is
the solvability of the Dirichlet problem for bounded domains in Rd with sufficiently
smooth boundary. One might argue that motivation now is reversed; we think that the
real world is discrete and study the discrete mathematical models in their own right.

2.2. Weak unique continuation

We start with some simple examples that show the absence of the weak unique con-
tinuation property for harmonic functions on Zd .

Example 2.1. First we consider Z2. It is easy to see that if h is a harmonic function
on Z2 and h.x/ D 0 when x D .x1; 0/ and x D .x1; 1/ for all x1 2 Z, then h D 0
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on Z2. On the other hand, we construct a non-trivial harmonic function h on Z2 such
that h.x/ D 0 when x D .x1; x2/ with x1 C x2 < 0. We define h.x1;�x1/ D .�1/x1

and notice then that one can choose freely the values h.0; n/ for n D 1; 2; : : : and all
other values of h are then uniquely determined. We note also that this large region
of zeros enforces a rigid structure to the values of the harmonic function nearby. On
each next diagonal, the harmonic function h.x1; n � x1/ D .�1/x1pn.x1/, where pn

is a polynomial of degree n.

The situation is even more counter-intuitive in higher dimensions.

Example 2.2. We consider the function h0 on Z2 defined by

h0.x/ D

´
0; when x D .x1; x2/; x1 C x2 ¤ 0;

.�1/x1 ; when x D .x1;�x1/:

Then we extend h0 to the function on Z3 D Z2 � Z as

H.x1; x2; x3/ D cx3h0.x1; x2/;

where c C c�1 D 6. The resulting harmonic function H equals zero everywhere on
Z3 except for the hyperplane x1 C x2 D 0.

These examples demonstrate that some of our continuous intuition does not work
for discrete harmonic functions.

Nevertheless, there is a trace of the unique continuation property for discrete har-
monic functions on Zd . We denote by Qd

N the discrete cube Œ�N; N �d \ Zd .

Lemma 2.3 ([20]). There exist C D C.d/ > 0, c D c.d/ > 0, and ˛ D ˛.d/ 2 .0; 1/

such that for any discrete harmonic function U on Qd
4N the following inequality holds:

max
Qd

2N

jU j � C
�

max
Qd

N

jU j
˛ max

Qd
4N

jU j
1�˛

C e�cN max
Qd

4N

jU j

�
:

A similar result was also proven by Lippner and Mangoubi in [26] using a differ-
ent method. We remark that the error term e�cN maxQd

4N
jU j cannot be omitted, as

Example 2.1 shows, and that the decay of this term as N grows to infinity is sharp. In
the continuous setting, the corresponding estimate (without the error term) is known
as the three-ball inequality; see for example [24]. This estimate serves as a quantita-
tive version of the weak unique continuation property.

The inequality of Lemma 2.3 was generalized in [3], where we showed that there
exist C , c, ˛ as above such that

max
Qd

2N

jU j � C
�

max
E

jU j
˛ max

Qd
4N

jU j
1�˛

C e�cN max
Qd

4N

jU j

�
(2.1)
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holds for any E � Qd
N with jEj > jQd

N j=2. The proof is based on the fact that
discrete harmonic function is a restriction to the lattice of a real analytic function
with controlled speed of convergence. On the other hand, it is known that the three-
ball inequality and its generalizations concerning propagation of smallness from sets
of positive measure hold for a large class of elliptic equations with non-analytic
coefficients; see [27]. Recently, interesting three balls inequalities were obtained for
solutions of the discrete magnetic Schrödinger equation on the lattice using new dis-
crete Carleman estimates [19].

2.3. Discrete harmonic functions bounded on a large portion of Zd

Let U be a discrete harmonic function on Zd , we say that it is bounded by one on a
�-portion of Zd if ˇ̌®

x 2 Qd
N W

ˇ̌
U.x/

ˇ̌
� 1

¯ˇ̌
� �jQd

N j

for all N large enough. The inequality (2.1) shows that discrete harmonic functions
behave similar to continuous ones and we expect a discrete harmonic function which
is bounded on a large portion of Zd to grow fast at infinity. More precisely, the fol-
lowing result holds.

Theorem 2.4 ([3]). There exist " D ".d/ > 0 and b D b.d/ > 0 such that for any
sufficiently large N and any discrete harmonic function U on Qd

2N which satisfies
maxQd

M
jU j � 2 and ˇ̌®

x 2 Qk W
ˇ̌
U.x/

ˇ̌
� 1

¯ˇ̌
� .1 � "/jQK j

for every K 2 ŒM; 2N �, where M �
p

N , we have

max
Qd

N

jU j � ebN :

Example 2.2 shows that for d � 3 there are discrete harmonic functions bounded
on .1 � "/ portion of Zd , which grow exponentially at infinity. We remark that the
continuous intuition would predict for very small " even faster growth at infinity.

A new uniqueness result for harmonic functions on Z2 found in [3] says that a
discrete harmonic function which vanishes on a .1 � "/ portion of Z2 for sufficiently
small " is zero. The key observation, exploited in [3], is that near a tilted rectangle of
zeros, the restrictions of a discrete harmonic function to diagonals have polynomial
structure and thus either vanish or have a few zeros. This result follows from a more
general statement.

Theorem 2.5 ([3]). There exist "0 > 0 and a."/ > 0 such that if U is a discrete
harmonic function on Q2

2N , N is sufficiently large, and U is bounded by one on
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.1 � "/ portion of Q2
2N , " < "0, then

max
Q2

N

jU j � ea."/N :

Moreover, a."/ ! 0 as " ! 0.

Theorems 2.4 and 2.5 imply that any discrete harmonic function that is bounded
on a .1 � "/ portion of Z2 with " small enough is constant.

Theorem 2.5 also implies that there exist constants a and " < 1 such that for any
discrete harmonic function on Q2

2N , for N large enough, we haveˇ̌̌°
jU j > e�aN max

Q2
N

jU j

±
\ Q2

2N

ˇ̌̌
� "N 2: (2.2)

It would be interesting to obtain sharp generalizations of this result to harmonic
functions on higher dimensional lattices. For example, a toy statement in Z3 is the
following:

Suppose that U is a discrete harmonic function on Q3
2N such thatˇ̌

¹U ¤ 0º
ˇ̌
� cN 2;

where c is sufficiently small and N is sufficiently large. Then U D 0 on Q3
N .

The interest in the uniqueness theorems for discrete harmonic functions and more
general solutions to the Schrödinger equation on lattices is partly due to its connec-
tions to the problem of the exponential decay of eigenfunctions of the Schrödinger
operator with a random Bernoulli potential, known as the Anderson localization. This
connection is discovered and exploited by Bourgain and Kenig in [2], where the con-
tinuous model is studied. Recently, Ding and Smart [10], combining the approach
developed in [2] with ideas introduced in [3], obtained new results on localization
near the edge for the Anderson–Bernoulli model on Z2. One of the tools developed in
[10] is a probabilistic version of (2.2) for solutions of the equation �U C V U D �U

with random Bernoulli potential V . It is worth mentioning, that in dimension three
the following deterministic statement holds (see [25]):

There exists constant p > 3=2 such that for each K > 0, there is C > 0, such
that if �U C V U D 0 on Q3

N , N is large enough, and jV j � K, thenˇ̌®
jU j > e�CN

ˇ̌
U.0/

ˇ̌¯ˇ̌
� N p:

This result is due to Li and Zhang, who generalized the Anderson localization near
the edge of the spectrum to the Anderson–Bernoulli model on Z3 [25].
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3. Landis conjecture on decay of solutions to Schrödinger equations

3.1. Decay at infinity

In this section, we consider bounded solutions to the stationary Schrödinger equation
with bounded potential, �u C V u D 0, jV j � 1. Landis conjectured that a solution
to this equation cannot decay faster than exponential at infinity. An example of a
function that decays exponentially is u.x/ D exp.�.1 C x2/1=2/.

We assume that there is a bounded solution to the Schrödinger equation with
a bounded potential, and we are interested in the possible decay of the quantity
mu.R/ D supjxj>R ju.x/j. A local version of the Landis conjecture, which appeared
in [2] in connection to the Anderson–Bernoulli model, is about the possible decay of
the quantity �u.R/ D infjxjDR supB.x;1/ ju.x/j.

For solutions of the continuous Schrödinger equation, the Landis conjecture was
disproved by Meshkov, [29]. He gave an example of a complex valued function u.x/

which decays as C exp�cjxj4=3 and satisfies the inequality j�uj � juj everywhere.
The proof is based on a Carleman inequality. Bourgain and Kenig proved the follow-
ing local version of the estimate.

Theorem. Let �U C V u D 0, let u.0/ D 1, and let u and V be bounded on Rd .
Then

�u.R/ � c exp.�CR4=3 log R/:

The proof also exploits a Carleman-type inequality. The remaining question is
whether the original Landis conjecture holds for the class of real-valued potentials.
For this case one may consider only real-valued solutions. This question is open in
dimension d � 3.

3.2. Discrete equation

First, we consider the corresponding equation on the lattice Zd , here there is no differ-
ence between the real-valued and complex-valued cases, to the best of my knowledge.

Suppose that �U C V U D 0, U W Zd ! R, jV j � C0, and U ¤ 0, where

�U.x/ D
X
y�x

�
U.y/ � U.x/

�
:

We also refer the reader to [1] for the discussion of this problem. Let

mU .N / D sup
x 62Qd

N

ˇ̌
U.x/

ˇ̌
:

We consider any x 2 Qd
NC1 n Qd

N . Then there is one of its neighbors y such that
y 2 Qd

NC2 n Qd
NC1 and all neighbors of y except x are not in Qd

NC1. Then the
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equation �U.y/ C V.y/U.y/ D 0 can be written as

U.x/ D U.y/ C
X

z�y;z¤x

�
U.y/ � U.z/

�
� V.y/U.y/:

This implies that mU .N / � .2dC1 C 1 C C0/mU .N C 1/. Thus mU .N / does not
decay faster than e�CN as N ! 1, where C D C.d; C0/.

On the other hand, simple example shows that

�U .N; k/ D inf
x2Qd

N
nQd

N �1

max
jy�xj�k

ˇ̌
U.y/

ˇ̌
may be equal to zero for a non-trivial function U and bounded V ; see [1]. Let us
describe this example on Z2. We consider a function U which is zero on a tilted
square

QQ2
N D

®
x D .x1; x2/ 2 Z2

W jx1 C x2j � 2N; jx1 � x2j � 2N
¯

and takes non-zero values everywhere else. On the four diagonals x1 ˙ x2 D ˙2N ,
we define U.x1; x2/ D .�1/x1 , so that the function is harmonic at each point of QQ2

N .
Then the values are arbitrary such that, for any x�y, we have jU.x/j�.1C"/jU.y/j.
Then we define V.x/ D �.�U.x//=U.x/ when x 62 QQ2

N . We see that jV j � 8 C 4".
The example shows that there is no local version of the Landis conjecture when the
potential is bounded but large enough. It would be interesting to obtain a local version
for the case of the small potential.

3.3. Landis conjecture for real-valued potentials on the plane

The question of the estimates for the mu.R/ and �u.R/ for real-valued solutions of
the Schrödinger equations in R2 is considered in [7–9,23], where local estimates were
obtained under some assumptions on the potential. The decay estimate of the solution
for the case of a periodic (in all but one variables) potential in R2 and R3 is discussed
in [11].

The global and local versions of the result for solution of the Schrödinger equation
with general bounded potential on R2 were recently obtained in [28]. It turns out that
the Landis conjecture holds for this case (up to a logarithmic factor). More precisely,
the following theorem holds.

Theorem 3.1 ([28]). Let u W R2 ! R be a C 2 function which satisfies j�uj � juj.
Then

(i) if ju.x/j � exp.�C jxj.log jxj/1=2/ and C is large enough, then u D 0;

(ii) if infjxjDR supB1.x/ ju.x/j � exp.�CR.log R/3=2/, then u D 0.
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There are three main steps in the proof. First, one constructs a family of separated
Dj disks of equal radii r such that dist.Dj ; ¹u D 0º/ � 10r and each connected
component �k of ¹u ¤ 0º n

S
j Dj has the small first Laplace eigenvalue. Then,

constructing an auxiliary solution of the equation �f C Vf D 0 in �k with boundary
values f D 1 on @�k , one considers the ration v D u=f . This reduces the problem
to the following one:

Let v W R2 n
S

j Dj ! R be a solution to the equation div.f 2rv/ D 0

and let v not change sign in each set 10Dj n Dj . Then if v decays as
exp.�C jxj.log jxj/1=2/ with large C , then v D 0.

The second step uses quasiconformal mappings to replace the general elliptic equa-
tion in divergence form by the Laplace equation; the factor log jxj1=2 in the exponent
appears on this step. This step uses the specifics of dimension two. Finally, the above
statement is proved for harmonic functions defined on R2 n

S
QDj . The version of the

last step for harmonic functions in higher dimensions is also discussed in [28].

4. Uncertainty principle and uniqueness for Schrödinger evolutions

4.1. Hardy’s uncertainty principle

The Hardy uncertainty principle says that if f 2 L2.R/, jf .x/j � Ce�ajxj2 , jbf .�/j �

Ce�bj�j2 , and ab > 1=4, then f D 0. If ab D 1=4, then f .x/ D ce�ajxj2 . Its dynam-
ical interpretation was found in [4,12], where it is shown that the principle is equiva-
lent to the following statement.

Theorem. Let u.t; x/ be a solution to the free Schrödinger equation

@tu D i�u.t; x/:

Suppose that u 2 C 1.Œ0; T �; W 2;2.Rd // andˇ̌
u.0; x/

ˇ̌
� Ce�˛jxj2 and

ˇ̌
u.T; x/

ˇ̌
� Ce�ˇ jxj2 ;

where ˛; ˇ > 0. Then the following hold.

(i) If ˛ˇ > .16T 2/�1, then u.t; x/ D 0.

(ii) If ˛ˇ D .16T 2/�1, then u.t; x/ D ce�.˛Ci=.4T //jxj2 .

A real-variable proof of this result is given by Cowling, Escauriaza, Kenig, Ponce,
and Vega in [6]. The last theorem was generalized to a large class of Schrödinger
evolutions of the form @tu D i.�u C V u/ in the series of articles [12–14].
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4.2. Uniqueness results for discrete Schrödinger evolutions

Let � be again the discrete Laplacian on Zd . We consider the equation

@tU.t; n/ D i
�
�U .t; n/ C V.t; n/U.t; n/

�
;

where V is a bounded potential. We are interested in uniqueness results which says
that if a solution to the discrete Schrödinger equation decays fast on Zd at two dis-
tinct times, then it is trivial. First, we consider the free evolution with V D 0. In
dimension d D 1, there is a solution U0.t; n/ D i�ne�2itJn.1 � 2t/, where Jn is the
Bessel function. This solution has optimal decay at t D 0 and t D 1. The role of the
Gaussian is now played by the Bessel function. We get the following result for the
free evolution:

Let U.t; n/ be a solution to @tU.t; n/ D i�U.t; n/ on Œ0; 1��Z. Suppose thatˇ̌
U.0; n/

ˇ̌
C

ˇ̌
U.1; n/

ˇ̌
�

Cp
jnj

�
e

2jnj

�jnj

; n 2 Z n ¹0º:

Then U.t; n/ D C i�ne�2itJn.1 � 2t/.

This result was generalized to general bounded potentials in [22] (in dimension
d D 1) and [1] (in arbitrary dimension). The result is as follows.

Theorem 4.1. Let U.t; n/ 2 C 1.Œ0; 1� W `2.Zd // be a solution to

@tU.t; n/ D i
�
�U.t; n/ C V.t; n/U.t; n/

�
;

on Œ0; 1� � Zd . Suppose that kV k1 � 1. There exists constant 
 such that ifˇ̌
U.0; n/

ˇ̌
C

ˇ̌
U.1; n/

ˇ̌
� C exp

�
� 
 jnj log jnj

�
; n 2 Zd

n ¹0º;

then U D 0.

This result is not precise; we expect the same decay bounds as for the case of the
free Schrödinger equation. One of the interesting applications of the uniqueness theo-
rem with general potential which may depend on time is to the nonlinear Schrödinger
equation. For this case, we have the same decay result as for the free equation. Let
U W Œ0; 1� � Z ! R be a solution to the equation

@tU D i
�
�U C cjU j

2U
�
:

Suppose that ˇ̌
U.0; n/

ˇ̌
C

ˇ̌
U.1; n/

ˇ̌
�

�
c

jnj

�jnj

; n 2 Z n ¹0º;
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where c < e=2. Then U D 0. We refer the reader to a recent survey [18] for detailed
discussions of the uniqueness results for discrete and continuous Schrödinger evolu-
tions.
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Some recent developments on the geometry of random
spherical eigenfunctions

Domenico Marinucci

Abstract. A lot of efforts have been devoted in the last decade to the investigation of the
high-frequency behaviour of geometric functionals for the excursion sets of random spheri-
cal harmonics, i.e., Gaussian eigenfunctions for the spherical Laplacian �S2 . In this survey, we
shall review some of these results, with particular reference to the asymptotic behaviour of vari-
ances, phase transitions in the nodal case (Berry’s cancellation phenomenon), the distribution
of the fluctuations around the expected values, and the asymptotic correlation among different
functionals. We shall also discuss some connections with the Gaussian kinematic formula, with
Wiener chaos expansions, and with recent developments in the derivation of quantitative central
limit theorems (the so-called Stein–Malliavin approach).

1. Introduction

Spherical eigenfunctions are defined as the solutions of the Helmholtz equation

�S2f` C �`f` D 0; f` W S2
! R; ` D 1; 2; : : : ;

where �S2 is the spherical Laplacian and ¹��` D �`.` C 1/º`D1;2;::: is the set of
its eigenvalues. A random structure can be constructed easily by assuming that the
eigenfunctions ¹f`.�/º follow a Gaussian isotropic random process on S2. More pre-
cisely, for each x 2 S2, we take f`.x/ to be a Gaussian random variable defined on a
suitable probability space ¹�;=;Pº; without loss of generality, we assume ¹f`.�/º to
have mean zero, unit variance, and covariance function given by

E
�
f`.x/f`.y/

�
D P`

�
hx; yi

�
; x; y 2 S2;

P`.t/ WD
1

2``Š

d `

dt`
.t2 � 1/; t 2 Œ�1; 1�;

where ¹P`.�/º denotes the family of Legendre polynomials: this is the only covariance
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Keywords. Random eigenfunctions, spherical harmonics, Lipschitz–Killing curvatures,
kinematic formulae, nodal lines, Wiener–Itô expansions.
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structure to ensure that the random eigenfunctions are isotropic, that is, invariant in
law with respect to the action of the group of rotations SO.3/. Random spherical
eigenfunctions, also known as random spherical harmonics, arise in a huge number
of applications, especially in connection with mathematical physics: in particular,
their role in quantum chaos has drawn strong interest in the last two decades, starting
from the seminal papers [7, 8, 43, 61]; also, they represent the Fourier components of
isotropic spherical random fields, whose analysis has an extremely important role in
cosmology (see, e.g., [35]). Of course, random spherical harmonics are just a spe-
cial case of a much richer literature on random eigenfunctions on general manifolds;
special interest has been drawn for instance by arithmetic random waves, i.e., ran-
dom eigenfunctions on the torus T d , which were introduced in [52] and then studied,
among others, in [9, 10, 19, 26, 27, 33, 36, 53, 54]; see also [17, 55] and the references
therein. Although some of the results that we shall discuss have related counterparts
on the torus, on the higher-dimensional spheres, on more general compact manifolds,
and in the Euclidean case, we will stick mainly to S2 for brevity and simplicity.

A lot of efforts have been spent in the last decade to characterize the geometry of
the excursion sets of random spherical harmonics, which are defined as

Au.f`IS
2/ WD

®
x 2 S2

W f`.x/ � u
¯
; u 2 R: (1.1)

A classical tool for the investigation of these sets is given by the so-called Lipschitz–
Killing curvatures (or, equivalently, by Minkowski functionals; see [1]), which in
dimension 2 correspond to the Euler–Poincaré characteristic, (half of) the bound-
ary length and the excursion area. A general expression for their expected values
(covering much more general Gaussian fields than random eigenfunctions) is given
by the Gaussian kinematic formula (see [1, 58]). Over the last decade, more refined
characterizations for random spherical harmonics have been obtained, including neat
analytic expressions (in the high-energy limit �` ! 1) for the fluctuations around
their expected values and the correlation among these different functionals; much of
the literature has been concerned with the nodal case, corresponding to u D 0, to
which we shall devote special attention. In this survey, we shall review some of these
results and present some open issues for future research.

2. The Gaussian kinematic formula for Lipschitz–Killing curvatures
on excursions sets

2.1. The Kac–Rice formula and the expectation metatheorem

The first modern attempt to investigate the geometry of random processes and fields
can probably be traced back to the groundbreaking work by Kac (1943) and Rice
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(1945) [25, 49] on the zeroes of stochastic processes. Their pioneering argument can
be introduced as follows: let f .�; �/ W � � R ! R be a continuous stochastic process
satisfying regularity conditions; our aim is to derive the expected cardinality of its
zero set in some finite interval (say Œ0; T �), i.e., the mean of

N0

�
Œ0; T �

�
WD Card

®
t 2 Œ0; T � W f .t/ D 0

¯
:

Now assume that ¹f .�/º is C 1 with probability one, such that f .0/; f .T / ¤ 0 and®
t W f .t/ D 0; f 0.t/ D 0

¯
D ¿I

then the following result (Kac’s counting lemma) can be established easily (see [3,
p. 69]):

N0

�
Œ0; T �

�
D lim

"!0

Z T

0

1

2"
I.�";"/

�
f .t/

�ˇ̌
f 0.t/

ˇ̌
dt;

where as usual IA denotes the indicator function of the set A. With further efforts and
assuming that all exchanges of integrals and limits can be justified, one obtains also

E
�
N0

�
Œ0; T �

��
D

Z T

0

E
�ˇ̌
f 0.t/

ˇ̌
j f .t/ D 0

�
pf .t/.0/ dt; (2.1)

where EŒ�j�� denotes as usual the conditional expected value and pf .�/ the marginal
density of f .�/, which is assumed to exist and admit enough regularity conditions (in
the overwhelming majority of the literature and in this whole survey, f .�/ will indeed
be assumed to be Gaussian); (2.1) is the simplest example of the Kac–Rice formula.

The basic idea behind the Kac–Rice approach has proved to be extremely fruitful,
leading to an enormous amount of applications and generalizations. In particular, in
the research monographs [1, 3], (slightly different) versions of a general expectation
metatheorem (in the terminology of [1]) are proved. More precisely, let us take M to
be a compact, d -dimensional oriented C 1 manifold with a C 1 Riemannian metric g.
Assume that f WM ! Rd and h WM ! Rk are vector-valued random fields which
satisfy suitable regularity conditions (see [1,3] for more details and [56] for some very
recent developments). Let B � Rk be a subset with boundary dimension smaller than
or equal to k � 1; then define

Nu.f; h;M;B/ D
®
t 2M W f .t/ D u; h.t/ 2 B

¯
; u 2 Rd :

The following extension of the Kac–Rice formula holds.

Theorem 2.1 ([1, 3]). It holds that

E
�
Nu.f; h;M;B/

�
D

Z
M

E
�ˇ̌

det
®
rf .t/

¯ˇ̌
IB

�
h.t/

�
j f .t/ D u

�
pf .t/.u/�g.dt/;
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where as before IB.�/ denotes the indicator function, rf .�/ the (covariant) gradient
of f .�/, and �g.�/ the volume form induced by the metric g.

Remark. By taking k D 1, f WD rh the gradient of h (and hence rf D r2h its
Hessian) and u D .0; : : : ; 0/, Theorem 2.1 yields the expected number of critical
points with values in B for the scalar random field h. Simple modifications similarly
yield the expected values for maxima, minima, and saddle points.

The previous results have all been restricted to vector-valued random fields whose
image space has co-dimension zero. However, the results can be similarly generalized
to strictly positive co-dimensions. Indeed, under the same setting as before assume
instead that f W M ! Rd 0

is such that d 0 < d ; then rX is a d � d 0 rectangular
matrix, and the following generalization of the expectation metatheorem holds (see
[1, 3]).

Theorem 2.2 ([1, 3]). It holds that

E
�
Hu.f; h;M;B/

�
D

Z
M

E
�ˇ̌

det
®�
rf .t/

�T �
rf .t/

�¯ˇ̌1=2
IB.h/ j f .t/ D u

�
pf .t/.u/�g.dt/;

where Hu.f; h;M;B/ denotes the d � d 0 dimensional Hausdorff measure of the set
¹t 2M W f .t/ D u and h.t/ 2 Bº.

Example 2.3. Let M D S2 be the standard unit-dimensional sphere in R3, let f W

S2 ��! R be a random field, and let

Len.f / WD H0.f;S
2; 0/ D meas

®
t 2 S2

W f .t/ D 0
¯
;

i.e., the length of the nodal lines of f .�/. Then

E
�

Len.f /
�
D

Z
S2

E
�ˇ̌

det
®�
rf .t/

�T �
rf .t/

�¯ˇ̌1=2
j f .t/ D 0

�
pf .t/.0/�.dt/

D

Z
S2

E
�

rf .t/

 j f .t/ D 0

�
pf .t/.0/�.dt/;

where k � k denotes Euclidean norm and �.�/ the standard Lebesgue measure on the
unit sphere. In particular, assuming that the law of f .�/ is isotropic (that is, invariant
with respect to the action of the group of rotations SO.3/), we get

E
�

Len.f /
�
D 4� � E

�

rf .t/

 j f .t/ D 0
�
pf .t/.0/:

2.2. Intrinsic volumes and Lipschitz–Killing curvatures

In the sequel, as mentioned earlier we will restrict our attention only to Gaussian pro-
cesses, which have driven the vast majority of research in this area. We need now to
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introduce the Gaussian kinematic formula (see [1, 58]); to this aim, let us first recall
the notion of Lipschitz–Killing curvatures. In the simplest setting of convex subsets
of the Euclidean space Rd , Lipschitz–Killing curvatures (also known as intrinsic vol-
umes) can be defined implicitly by means of Steiner’s tube formula; to recall the latter,
for any convex d -dimensional set A � Rd define the Tube of radius � around A as

Tube.A; �/ WD
®
x 2 Rd

W d.x;A/ � �
¯
; d.x; A/ D inf

y2A
d.x; y/;

where d.�; �/ is the standard Euclidean distance. Then the following expansion holds:

�d

®
Tube.A; �/

¯
D

dX
jD0

!d�j�
d�j Lj .A/;

where Lj .A/ denotes the j th Lipschitz–Killing curvatures, �d .�/ denotes the d -
dimensional Lebesgue measure, and

!j WD
�j=2

�
�

j
2
C 1

�
is the volume of the j -dimensional unit ball (!0 D 1, !1 D 2, !2 D � , !3 D

4
3
�).

Lipschitz–Killing curvatures can be shown to be additive and to scale with dimen-
sionality, in the sense that

Lj .�A/ D �j Lj .A/ 8� > 0;

Lj .A1 [ A2/ D Lj .A1/C Lj .A2/ � Lj .A1 \ A2/:

For j D d , it is immediately seen that Ld .A/ is just the Hausdorff measure of A,
whereas for j D 0 we obtain L0.A/ D '.A/, the (integer-valued) Euler–Poincaré
characteristic of A. A more general definition of Lj .�/ can be given for basic com-
plexes (i.e., disjoint union of complex sets), for which the following characterization
(due to Hadwiger, see [1]) holds:

Lj .A/ D
!d

!d�j!j

�
d

j

�Z
Gd

'.A \ gEd�j /�.dg/; (2.2)

where Gd DRd �O.n/ is the group of rigid motions,Ed�j is any d � j dimensional
affine subspace, and the volume form �.dg/ is normalized so that

for all x 2 Rd ; A � Rd ; �¹g W gx 2 Aº D H .A/;

where as before H .�/ denotes the Hausdorff measure. For instance, for A D S2 it is
well known and easy to check that (2.2) gives

L0.S
2/ D 2; L1.S

2/ D 0; L2.S
2/ D 4�;
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which represent, respectively, the Euler–Poincaré characteristic, (half) the boundary
length, and the area of the 2-dimensional unit sphere.

2.3. The Gaussian kinematic formula

From now on, we shall restrict our attention to Gaussian processes f WM !R, which
we shall take to be zero-mean and isotropic, meaning as usual that EŒf .t/� D 0 and
f .gt/

d
D f .t/ for all t 2 M � Rd and g 2 SO.d/; more explicitly, the law of the

field f .�/ will always be taken to be invariant to rotations. In order to present the
Gaussian kinematic formula, let us first introduce a Riemannian structure governed
by the covariance function of the field ¹f .�/º; more precisely, consider the metric
induced on the tangent plan TtM by the following inner product [1, p. 305]:

gf .Xt ; Yt / WD EŒXtf � Ytf �; Xt ; Yt 2 TtM:

This metric takes a particular simple form in case the field f .�/ is isotropic; in these
circumstances, gf .�; �/ is simply the standard Euclidean metric, rescaled by a factor
that corresponds to the square root of (minus) the derivative of the covariance density
at the origin.

Example 2.4. Consider the random spherical eigenfunction satisfying

�f` D ��`f`; f` W S2
! R; ` D 0; 1; 2; : : : ;

with

E
�
f`.x/

�
D 0; E

�
f`.x1/f`.x2/

�
D P`

�
hx1; x2i

�
; P 0

`.1/ D �
`.`C 1/

2
:

Then the induced inner product is simply

gf`.X; Y / D

r
`.`C 1/

2
hX; Y iR3 I

this change of metric can of course be realized by transforming S2 into

S2p
�`=2

WD
p
�`=2S

2:

Let us now write L
f
j .A/ for the j th Lipschitz–Killing curvatures of the set A

under the metric induced by the zero-mean Gaussian field f ; for instance, in the case
of spherical random eigenfunctions we get immediately

L
f`

0 .S
2/ D L0

�
S2p

�`=2

�
D 2; L

f`

1 .S
2/ D 0; L

f`

2 .S
2/ D 4�

�`

2
:
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For further notation, as in [1] we shall write

�j .u/ WD
1

.2�/1=2Cj=2
exp.�u2=2/Hj�1.u/; j � 1;

�0.u/ WD 1 �ˆ.u/ D

Z 1

u

'.t/ dt;

where as usual '.t/ D .2�/�1=2 exp.�t2=2/ denotes the standard Gaussian density
and we introduced the Hermite polynomials

Hk.u/ WD .�1/k exp
�
u2

2

�
dk

duk
exp

�
�
u2

2

�
; k D 0; 1; 2; : : : ; u 2 RI (2.3)

for instanceH0.u/D 1,H1.u/D u,H2.u/D u2 � 1; : : : : Finally, we shall introduce
the flag coefficients �

d

k

�
WD

�
d

k

�
!d

!k!d�k

; k D 0; 1; : : : ; d: (2.4)

We are now in the position to state the following.

Theorem 2.5 (Gaussian kinematic formula, [1, Theorem 13.4.1] and [58]). Under
regularity conditions, for all j D 0; 1; : : : ; n one has that

E
�
L

f
j

�
Au.f IM/

��
D

d�jX
kD0

�
k C j

k

�
�k.u/L

f

kCj
.M/: (2.5)

Before we proceed with some examples, it is worth discussing formula (2.5). We
are evaluating the expected value of a complex geometric functional on a complicated
excursion set, in very general circumstances (under minimal regularity conditions on
the field and on the manifold on which it is defined). It is clear that the expected value
should depend on the manifold, on the threshold level, and on the field one considers,
and one may expect these three factors to be intertwined in a complicated manner.
On the contrary, formula (2.5) shows that their role is completely decoupled; more
precisely

� the threshold u enters the formula merely through the functions �j .u/ which are
very simple and fully universal (i.e., they do not depend neither on the field nor
on the manifold);

� on the left-hand side Lipschitz–Killing curvatures appear, but they are computed
on the original manifold, not on the excursion sets, and they are therefore again
extremely simple to compute;
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� the role of the field f is confined to the new metric gf .�; �/ that it induces and
under which the Lipschitz–Killing curvatures are computed on both sides; under
the (standard) assumption of isotropy, this implies only a rescaling of the manifold
by means of a factor depending only on the derivative of the covariance function
at the origin.

Example 2.6. Let us consider a zero-mean isotropic Gaussian field f defined on Sd

(the unit sphere in RdC1); its covariance function can be written as

E
�
f .x1/f .x2/

�
D

1X
`D0

n`;d

sdC1

C`G`Id
2

�
hx1; x2i

�
;

where sdC1 D .d C 1/!dC1 is the surface measure of Sd , G`I˛.�/ denotes the nor-
malized Gegenbauer polynomials of order ˛, whereas

n`;d D
2`C d � 1

`

�
`C d � 2

` � 1

�
�

2

.d � 1/Š
`d�1; as `! 1;

is the dimension of the eigenspace corresponding to the `th eigenvalue �`Id WD

`.`C d � 1/; here ¹C`º is a sequence of non-negative weights which represent the so-
called angular power spectrum of the random field. The derivative of the covariance
function at the origin is

� WD

1X
`D0

n`;d

sdC1

C`

�`Id

d
:

Recall that the Lipschitz–Killing curvatures of the manifold Sd
�
WD �Sd are given by

Lj

�
�Sd

�
D 2

�
d

j

�
sdC1

sdC1�j

�j ;

for d � j even, and 0 otherwise, see [1, p. 179]. Then the Gaussian kinematic formula
reads

E
�
L

f
j

�
Au.f IS

d /
��

D

d�jX
kD0

�k.u/

�
k C j

k

�
LkCj .

p
�Sd /

D

d�jX
kD0

�k.u/

�
k C j

k

�
LkCj .S

d /�.kCj /=2:

Example 2.7. As a special case of the previous example, assume that f D f` is
actually a unit variance random eigenfunction on S2 corresponding to the eigenvalue
�`.`C 1/, ` D 0; 1; 2; : : : :
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Then the Gaussian kinematic formula gives

E
�
L

f`

0

�
Au.f`IS

2/
��

D E
�
L0

�
Au.f`IS

2/
��

D 2
®
1 �ˆ.u/

¯
C

1

2�
u�.u/.4�/

`.`C 1/

2
;

E
�
L

f`

1

�
Au.f`IS

2/
��

D �1.u/

�
2

1

�
L2.S

2/

²
`.`C 1/

2

³
so that

E
�
L1

�
Au.f`IS

2/
��

D � exp
�
�
u2

2

�²
`.`C 1/

2

³1=2

;

and finally

E
�
L2

�
Au.f`IS

2/
��

D
®
1 �ˆ.u/

¯
L2.S

2/ D
®
1 �ˆ.u/

¯
4�:

Example 2.8. In the special case of the nodal volume Ld�1.A0.Sd /; f`/ of random
eigenfunctions, i.e., half the Hausdorff measure of the zero-set of the eigenfunction,
the Gaussian kinematic formula gives

E
�
L

f

d�1

�
Au.f`IS

d /
��

D

�
�`

d

�.d�1/=2

E
�
Ld�1

�
Au.f`IS

d /
��

D �1.u/
d!d

!1!d�1

Ld .S
d /

�
�`

d

�d=2

so that, recalling !j D
�j=2

�. j
2 C1/

and Ld .S
d / D .d C 1/!dC1, we have

E
�
Ld�1

�
Au.f`IS

d /
��

D
1

2�
exp

�
�
u2

2

�
d!d

!1!d�1

Ld .S
d /

�
�`

d

�1=2

D exp
�
�
u2

2

�
�d=2

�
�

d
2

���`

d

�1=2

: (2.6)

For u D 0 equation (2.6) was derived for instance in [6] (see [61]) and it is con-
sistent with a celebrated conjecture in [63], which states that for C1 manifolds the
nodal volume of any eigenfunction corresponding to the eigenvalue E should belong
to the interval Œc1

p
E; c2

p
E� for some constants 0 < c1 � c2 <1. The conjecture

was settled for real analytic manifolds in [22]; for smooth manifolds the lower bound
was established much more recently; see [29–31] while the upper bound is addressed
in [32]. As a consequence of the results in the next two sections below in the case of
the sphere in a probabilistic sense, the upper and lower constants can be taken nearly
coincident, in the limit of diverging eigenvalues.
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3. Wiener chaos expansions, variances, and correlations

In view of the results detailed in Section 2, the question related to the expectation of
intrinsic volumes in the case of Gaussian fields can be considered completely settled.
The next step of interest is the computation of the corresponding variances, and the
asymptotic laws of fluctuations around the expected values, in the high-frequency
regime. The first rigorous results in this area can be traced back to a seminal paper
by Igor Wigman [61], where the variance of the nodal length (i.e., Len.f`; S

2/ WD

2L1.A0.f`; S
2//) for random spherical harmonics in dimension 2 is computed and

shown to be asymptotic to

Var
�

Len.f`;S
2/
�
D

log `
32

CO`!1.1/: (3.1)

We shall start instead from the derivation of variances and central limit theorems for
Lipschitz–Killing curvatures of excursion sets at u ¤ 0, although these results were
actually obtained more recently than (3.1).

Let us recall first the notion of Wiener chaos expansions. In the simplest setting,
consider Y DG.Z/, i.e., the transform of a zero mean, unit variance Gaussian random
variable Z, such that EŒG.Z/2� <1; it is well known that the following expansion
holds, in the L2.�/ sense:

G.Z/ D

1X
qD0

Jq.G/

qŠ
Hq.Z/; (3.2)

where ¹Hq.�/ºqD0;1;2;::: denotes the family of Hermite polynomials that we intro-
duced earlier in (2.3), and Jq.G/ are projection coefficients given by Jq.G/ WD

EŒG.Z/Hq.Z/� (see, e.g., [24, 46]). The summands in (3.2) are orthogonal, because
when evaluated on pairs of standard Gaussian variablesZ1;Z2, Hermite polynomials
enjoy a very simple formula for the computation of covariances:

E
�
Hq1

.Z1/Hq2
.Z2/

�
D ıq2

q1
q1Š
®
EŒZ1Z2�

¯q1 ; (3.3)

where ıq2
q1

denotes the Kronecker delta. Equation (3.3) is just a special case of the cel-
ebrated diagram (or Wick’s) formula; see [46] for much more discussion and details.
We thus have immediately

Var
®
G.Z/

¯
D

1X
qD0

J 2
q .G/

qŠ
:

More generally, let ¹Z1; : : : ; Zj ; : : :º be any array of independent standard Gaussian
variables, and consider elements of the form

Hq1
.Z1/ � � �Hqp

.Zp/; q1 C � � � C qp D qI
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the linear span (in theL2.�/ sense) of these random variables is usually written as Cq

(denoted by the qth-order Wiener chaos; see again [46]) and we have the orthogonal
decomposition

L2.�/ D

1M
qD0

Cq:

3.1. Wiener chaos expansions for random eigenfunctions

Let us now explain how these techniques can be pivotal for the investigation of fluc-
tuations of geometric functionals. We start from the simplest case, the excursion
volume/area for the 2-dimensional sphere, which we can write as

L2

�
Au.f`IS

2/
�
D

Z
S2

IŒu;1/

�
f`.x/

�
dx;

IŒu;1/.�/ denoting the indicator function of the semi-interval Œu;1/. It is not difficult
to show that

Jq

�
IŒu;1/.�/

�
D E

�
IŒu;1/.Z/Hq.Z/

�
D

Z 1

u

Hq.z/�.z/dz D .�1/qHq�1.u/�.u/;

the last result following by integration by parts, under the convention that

.�1/H�1.u/�.u/ WD 1 �ˆ.u/:

In view of (3.2), we thus have [40, 41]

L2

�
Au.f`IS

2/
�
D

Z
S2

1X
qD0

.�1/qHq�1.u/�.u/
Hq

�
f`.x/

�
qŠ

dx

D

1X
qD0

.�1/q

qŠ
Hq�1.u/�.u/h`Iq;

where
h`Iq D

Z
S2

Hq

�
f`.x/

�
dxI

as a consequence, we have also

Var
®
L2

�
Au.f`IS

2/
�¯

D

1X
qD0

1

.qŠ/2
H 2

q�1.u/�
2.u/Var¹h`Iqº: (3.4)

The crucial observation to be drawn at this stage is that the variances of the com-
ponents ¹h`Iqº exhibit a form of phase transition with respect to their order q, in the
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high-frequency/high-energy limit ` ! 1. In particular, a simple application of the
diagram formula (3.3), isotropy, and a change of variable yield

Var¹h`Iqº D

Z
S2�S2

E
®
Hq

�
f`.x/

�
Hq

�
f`.y/

�¯
dx dy

D 8�2qŠ

Z �

0

®
P`.cos �/

¯q sin � d� I

for instance, for q D 2 we obtain exactly

Var¹h`Iqº D 2 � 8�2

Z �

0

P 2
` .cos �/ sin � d� D 16�2 2

2`C 1
:

Given two sequences of positive numbers an; bn, we shall write an � bn when we
have that an=bn ! c as n! 1, c > 0. By means of the so-called Hilb asymptotics
[57, 61], it is possible to show that, as `! 1 [42],

Var¹h`Iqº �
1

`2
�

Z `�

0

1

 q=2
 d �

8̂̂<̂
:̂
`�1 for q D 2

`�2 log ` for q D 4

`�2 for q D 3; 5; : : : :

Note that h`I1 � 0 for all `D 1; 2; : : : ; whereas the term for q D 3 requires an ad-
hoc argument given in [34,40]. As a consequence, the dominant terms in the variance
expansion correspond to q D 2 whenH1.u/ is non-zero, i.e., for u¤ 0; for uD 0 the
even-order chaoses vanish and all the remaining terms contribute by the same order
of magnitude with respect to `. In conclusion, we have that

L2

�
Au.f`IS

2/
�
� E

�
L2

�
Au.f`IS

2/
��

D
1

2
H1.u/�.u/h`I2 COp

�p
log `=`2

�
; (3.5)

and for u ¤ 0

Var
®
L2

�
Au.f`IS

2/
�¯

�

²
1

2
H1.u/�.u/

³2

Var¹h`I2º; as `! 1:

Because

h`I2 D

Z
S2

®
f 2

` .x/ � 1
¯
dx D



f`



2

L2.S2/
� E

�
kf`k

2
L2.S2/

�
;

equation (3.5) is basically stating that the fluctuations in the excursion area for u ¤ 0

are dominated by the fluctuations in the random norm of the eigenfunctions.
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Interestingly, the same behaviour characterizes also the other Lipschitz–Killing
curvatures; for the boundary length we have the expansion

2L1

�
Au.f`IS

2/
�
D lim

"!0

Z
S2



rf`.x/


ı"

�
f`.x/ � u

�
dx

which holds both ! almost surely and in L2.�/; here we write ı".�/ D
1
2"

I.�/. Simi-
larly for the Euler–Poincaré characteristic we have

L0

�
Au.f`IS

2/
�
D lim

"!0

Z
S2

det
®
r

2f`.x/
¯
ı"

�
rf`.x/

�
IŒu;1/

�
f`.x/

�
dx:

Similar arguments can be developed, expanding the integrand function into poly-
nomials evaluated on the random vectors ¹r2f`.�/;rf`.�/; f`.�/º; algebraic simplifi-
cations occur and the expansions read as follows.

Theorem 3.1. As `! 1, for j D 0; 1; 2

Lj

�
Au.f`;S

2/
�
� E

�
Lj

�
Au.f`IS

2/
��

D �
1

2

�
2

2 � j

�
u�02�j .u/.�`=2/

.2�j /=2

Z
S2

H2

�
f`.x/

�
dx CR`Ij ; (3.6)

where
EŒR2

`Ij � D o`!1

�
`3�2j

�
I

as a consequence, one has also the variance asymptotics

Var
®
Lj

�
Au.f`IS

2/
�¯

D
1

4

²�
2

2 � j

�
u�02�j .u/

�
�`=2

�.2�j /=2
³2

�
32�2

2`C 1
C o`!1.�

2�j�1

`
/: (3.7)

Some features of the previous result are worth discussing.

� The asymptotic behaviour of all the Lipschitz–Killing curvatures is proportional
to a sequence of scalar random variables ¹h`I2º`2N . As a consequence, these geo-
metric functionals are fully correlated in the high-energy limit `! 1.

� For the same reasons, these functionals are also fully correlated, in the high-
energy limit, when evaluated across different levels u1, u2: for the boundary
length, this correlation phenomenon was first noted in [62].

� The leading terms all disappear in the “nodal” case u D 0, where the variances
are hence an order of magnitude smaller. This is an instance of the so-called
Berry cancellation phenomenon [61], to which we shall return in Section 4. We
noted before that the leading terms are proportional to the centred random norm;
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it is thus natural that these terms should disappear in the nodal case, which is
independent of scaling factors. Note that for j D 0 the cancellation of the leading
term occurs also at u D 1.

Remark. The proof of Theorem 3.1 was given in [11], in the case of the 2-dimen-
sional sphere S2. However, we conjecture the result to hold as stated for spherical
eigenfunctions in arbitrary dimension; see below for more details. Extensions have
also been given to cover for instance the 2-dimensional torus (see [14]), for which a
formula completely analogous to (3.1) holds.

Similar results can be shown to hold for other geometric functionals; let us con-
sider for instance critical values, defined by

Nu.f`IS
2/ D #

®
x 2 S2

W rf`.x/ D 0 and f`.x/ � u
¯
:

The asymptotic variance of ¹Nu.f`I S
2/º`D1;2;::: was established in [15, 16], and in

particular we have

E
�
Nu.f`IS

2/
�
D �`g1.u/;

g1.u/ D
1

p
2�

Z 1

u

�
2e�t2

C
�
t2 � 1

�
e�t2=2

�
dt

D u�.u/C
p
2
�
1 �ˆ.

p
2u/

�
;

Var
�
Nu.f`IS

2/
�
D
1

4
�2

`g
2
2.u/Var

²Z
S2

H2

�
f`.x/

�
dx

³
C o`!1.`

3/

D
1

4
�2

`g
2
2.u/

2.4�/2

2`C 1
C o`!1.`

3/;

where

g2.u/ D

Z 1

u

1
p
8�
e�3t2=2

�
2 � 6t2 � e�t2

.1 � 4t C t4/
�
dt:

Later in [12] it was shown that the critical values above the threshold level u satisfy
the asymptotic

Nu.f`IS
2/ � E

�
Nu.f`IS

2/
�

D
1

2
�`g2.u/

Z
S2

H2

�
f`.x/

�
dx C op

�q
Var

�
Nu.f`IS2/

� �
;

As a consequence, one has also, for all u ¤ 0; 1, the correlation result

Corr2
®
Nu.f`IS

2/;Lj

�
Au.f`IS

2/
�¯

WD
Cov2

®
Nu.f`IS

2/;Lj

�
Au.f`IS

2/
�¯

Var
®
Nu.f`IS2/

¯
Var

®
Lj

�
Au.f`IS2/

�¯ ! 1; as `! 1I
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the value u D 1 has to be excluded only for j D 0. We also have that

Corr2
®
Nu1

.f`IS
2/;Nu2

.f`IS
2/
¯
! 1; as `! 1;

that is, asymptotically full correlation between the number of critical values above
any two non-zero thresholds u1, u2.

As for the Lipschitz–Killing curvatures, a form of Berry’s cancellation occurs
at u D 0 and u ! ˙1; the total number of critical points has then a lower-order
variance (see [16]), as we shall discuss in Section 4.

3.2. Quantitative central limit theorems

The results reviewed in Section 3.1 can be considered as following from a reduction
principle (see [20]), where the limiting behaviour of ¹Nu.f`IS

2/;Lj .Au.f`IS
2//º

is dominated by a deterministic function of the threshold level u, times a sequence of
random variables ¹h`I2º which do not depend on u. To derive the asymptotic law of
these fluctuations, it is hence enough to investigate the convergence in distribution of
¹h`I2º, as `!1. In fact, it is possible to show a stronger result, namely a quantitative
central limit theorem; to this aim, let us recall that the Wasserstein distance between
two random variables X and Y is defined by

dW .X; Y / WD sup
h2Lip.1/

ˇ̌
Eh.X/ � Eh.Y /

ˇ̌
;

where Lip.1/ denotes the class of Lipschitz functions of constant 1; i.e., jh.x/ �
h.y/j � jx � yj for all x; y 2 R.DW .�; �/ defines a metric on the space of probability
distributions (for more details and other examples of probability metrics; see [46,
Appendix C]). Taking Z � N.0; 1/ to be a standard Gaussian random variable, a
quantitative central limit theorem is defined as a result of the form

lim
n!1

dW

�
Xn � EXnp

Var.Xn/
; Z

�
D 0:

The field of quantitative central limit theorems has been very active in the last few
decades; more recently, a breakthrough has been provided by the discovery of the so-
called Stein–Malliavin approach by Nourdin, Peccati, and Nualart [45,46,48]. These
results entail that for sequences of random variables belonging to a Wiener chaos,
say Cq , a quantitative central limit theorem for the Wasserstein distance can be given
simply controlling the fourth-moment of Xn, as follows:

dW

�
Xn � EXnp

Var.Xn/
; Z

�
�

s
2q � 2

3�q

vuutE

"�
Xn � EXnp

Var.Xn/

�4
#
� 3: (3.8)
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Similar results hold for other probability metrics, for instance the Kolmogorov and
total variation distances; see again [46].

Quantitative central limit theorems lend themselves to an immediate application
for the sequences ¹h`Iqº that we introduced above. It should be noted indeed that by
construction all these random variables belong to the qth-order Wiener chaos; it is
then possible to exploit (3.8) to obtain quantitative central limit theorems for these
polyspectra at arbitrary orders: their fourth moment can be computed by means of
the diagram formula. These results were first given in [40] and then refined in [37],
yielding the following.

Theorem 3.2. As `! 1, one has

dW

 
h`Iq � EŒh`Iq�p

Var.h`Iq/
; Z

!
D

8̂̂<̂
:̂
O
�

1p
`

�
for q D 2; 3;

O
�

1
log `

�
for q D 4;

O.`�1=4/ for q D 5; 6; : : : :

Now, we have just shown that for nonzero thresholds u¤ 0 the Lipschitz–Killing
curvatures and the critical values are indeed proportional to a term belonging to the
second-order chaos, plus a remainder that it is asymptotically negligible. The follow-
ing quantitative central limit theorem then follows immediately (see [11, 40, 50]).

Theorem 3.3. As `! 1, for u ¤ 0 (j D 1; 2) and for u ¤ 0; 1 (for j D 0) one has
that

dW

 
Lj

�
Au.f`IS

2/
�
� E

�
Lj

�
Au.f`IS

2/
��q

Var
�
Lj

�
Au.f`IS2/

�� ; Z

!
D O.`�1=2/:

3.3. A higher-dimensional conjecture

The results we discussed so far have been limited to random-spherical harmonics
on the 2-dimensional sphere S2. Research in progress suggests however that further
generalizations should hold: to this aim, let us define the set of singular points Pj WD

¹u2R W u�0j .u/D 0º (for instance,P0 DP1 D ¹0º,P2 D ¹0;1º,P3 D ¹0;˙
p
3º; : : :).

Let us now consider Gaussian random eigenfunctions on the higher-dimensional unit
sphere Sd ; e.g.,

�Sdf`Id D ��`Idf`Id ; �`Id WD `.`C d � 1/I

these eigenfunctions are normalized so that (see [37, 51])

EŒf`Id � D 0; EŒf 2
`Id � D 1; E

�
f`Id .x/f`Id .y/

�
D G`Id=2

�
hx; yi

�
;

where as before G`Id=2.�/ is the standardized `th Gegenbauer polynomial of order d
2
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(normalized with G`Id=2.1/ D 1); it is convenient to recall that

G0
`Id=2.1/ D

�`Id

d
:

We recall also that the dimension of the corresponding eigenspaces is

n`Id D
2`C d � 1

`

�
`C d � 2

` � 1

�
�

2

.d � 1/Š
`d�1; as `! 1:

By means of Parseval’s equality we have also as a consequence

Var
� Z

Sd

H2

�
f`Id .x/

�
dx

�
D
2s2

d

n`Id

D
2.d C 1/2!2

dC1

n`Id

�
.d C 1/2!2

dC1
.d � 1/Š

`d�1
as `! 1:

We then propose the following.

Conjecture 3.4. As `! 1, for all k D 0; 1; : : : ; d one has that
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Au.f`IS

d /
�
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�
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`d�2kC1

�
:

Remark. An immediate consequence of this conjecture would be

Lk

�
Au.f`IS

d /
�
� E

�
Lk

�
Au.f`IS

d /
��q

Var
�
Lk

�
Au.f`ISd /

�� D
h`Iqq

Var
�
h`Id .2/

� C op.1/;

h`Iq D

Z
Sd

H2

�
f`Id .x/

�
dx:

Remark. The remainder term in Conjecture 3.4 is expected to beO.
p
`d�2k/, in the

L2.�/ sense.

Three further consequences of Conjecture 3.4 would be the following.

� (Variance asymptotics). As `! 1, for all k D 0; 1; : : : ; d and for non-singular
points u … Pd�k , one has

Var
®
Lk

�
Au.f`IS

d /
�¯

D
H 2

d�k
.u/�2.u/u2

.2�d/.d�k/

dŠ

.d � k/ŠkŠ

!2
d
!2

dC1

!2
k
!2

d�k

.d C 1/2�d�k
`Id

2n`Id

C o.`d�2kC1/:
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� (Central limit theorem). As `! 1, for all k D 0; 1; : : : ; d and for non-singular
points u … Pd�k , one has
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�
Au.f`IS
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��q

Var
�
Lk

�
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�� ; Z

!
D o.1/;

where Z � N .0; 1/.

� (Correlation asymptotics). As `! 1, for all k1; k2 D 0; 1; : : : ; d and all u1, u2

such that u1u2Hd�k1
.u1/Hd�k2

.u2/ ¤ 0, one has

lim
`!1

Corr2
�
Lk1

�
Au.f`IS

d /
�
;Lk2

�
Au.f`IS

d /
��

D 1:

The driving rationale behind these conjectures is the ansatz that the asymptotic
variance of the geometric functionals should be governed by fluctuations in the ran-
domL2.Sd / norm of the eigenfunctions, for non-singular points u…Pj . In this sense,
we believe the result has even greater applicability, for instance to cover combina-
tions of random eigenfunctions defined on more general submanifolds of Rn, such as
Berry’s random waves or “short windows” averages of isotropic random eigenfunc-
tions on general manifolds (see [7, 8, 18, 21, 47, 64]). These issues are the object of
currently ongoing research.

4. Nodal cases: Berry cancellation and the role of the fourth-order
chaos

Section 4 has discussed the behaviour of geometric functionals for non-zero threshold
levels u¤ 0; under isotropy, it has been shown that all these functionals are asymptot-
ically proportional, in the L2.�/ sense, to a single random variable representing the
(centred) random L2.S2/-norm of the eigenfunction. This dominant term has been
shown to disappear in the nodal case u D 0 (and, more generally, for �0

d�k
.u/u D 0,

i.e., for the singular points u 2 Pj ); the asymptotic behaviour must then be derived
by a different route in these circumstances.

As mentioned above, the first paper to investigate the variance of the nodal length
for random spherical harmonics was the seminal work by Igor Wigman [61], which
made rigorous an ansatz by Michael Berry in the physical literature [8]. In particular,
by using a higher-order version of the expectation metatheorem (see again [1, 3]) the
following representation for the second moment of the nodal length can be given:

E
�®

Len.f`IS
2/
¯2�

D

Z
S2�S2

E
�

®rf`.t1/

¯



®rf`.t2/
¯

 j f`.t1/D 0; f`.t2/D0

�
� pf`.t1/;f`.t2/.0; 0/�g.dt1/�g.dt2/;
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where as before we write Len.f`IS
2/ D 2L1.A0.f`IS

2// for the nodal length. The
integrand in the previous formula is denoted by the 2-point correlation function of the
nodal length and generalizes the Kac–Rice argument to second-order moments; anal-
ogous generalizations are possible for the other geometric functionals we considered
and for higher-order moments as well (see [1]). By means of a challenging and care-
ful expansion of this correlation function and a deep investigation of its behaviour for
`! 1, Wigman was able to investigate the asymptotic for the variance of the nodal
length and to show that (3.1) holds.

A natural question which was investigated shortly after this seminal paper was
the possibility to derive the asymptotic variances of nodal statistics, and further char-
acterizations such as the law of the asymptotic fluctuations, in terms of the Wiener
chaos expansions that we discussed in Section 3. The first efforts were devoted to
the analysis of the “nodal area” L2.A0.f`IS

2//, for which it is easily shown that all
even-order terms vanish at u D 0; from (3.4) we are then left with (see [42])
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2�qŠ
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2q.0/C o.`�2/;

where

c2qC1 D lim
`!1

`2
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P
2qC1
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.cos �/ sin �d�

D

Z 1

0

J
2qC1
0 . / d ; J0. / WD

1X
kD0

.�1/kC1.x=2/2k

.kŠ/2
:

The computation of the variance and the results in Theorem 3.2 lead easily also to
a central limit theorem, which was given first in [40] and then extended to higher
dimensions in [50].

Theorem 4.1 ([40]). As `! 1, one has
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and hence
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The proof of the previous result is standard; in short, the idea is to write
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where the remainder term is such that, as M ! 1,

RM D

1X
kDMC1

.�1/2kC1

.2k C 1/Š
H2k.u/�.u/h`I2kC1 D op

�q
Var

®
L2

�
A0.f`IS2/

�¯ �
:

It is then enough to show that the central limit theorem holds forM (sufficiently large
but) finite; this can be achieved by an application of the multivariate fourth moment
theorem to the terms .h`I3; : : : ; h`I2MC1/ (see [46]). It should be noted that in the case
of the defect the limiting behaviour depends on the full sequence ¹h`I2kC1ºkD1;2;:::;
this is due to the exact disappearance of the two natural candidates to be leading
terms, that is, ¹h`I2º and ¹h`I4º, both whose coefficients vanish for u D 0.

It is thus even more remarkable that for the nodal lines the situation simplifies
drastically to yield the following result.

Theorem 4.2 ([39]). As `! 1, one has
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h`I4 C op
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Var¹h`I4º

�
; (4.1)

and hence, in view of (3.2)
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¯ ; Z
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D o.1/:

The most notable aspect of Theorem 4.2 is that the limiting behaviour of nodal
lines is asymptotically fully correlated with the sequence of random variables ¹h`I4º,
so that in principle it would be possible to “predict” nodal lengths by simply comput-
ing the integral of a fourth-order polynomial of the eigenfunctions over the sphere.

A natural question that arises is the structure of correlation among functionals
evaluated at different thresholds and those considered for the nodal case u D 0.
Focussing for instance on the boundary length, it is immediate to understand that
the latter, which is dominated by the second-order chaos term ¹h`I2º when u ¤ 0,
must be independent from the nodal length, which is asymptotically proportional to
¹h`I4º. A more refined analysis, however, should take into account the fluctuations of
the boundary length when the effects of the random norm kf`kL2.S2/ is subtracted,
that is, dropping the second-order chaos term from the Wiener expansion. This cor-
responds to the evaluation of the so-called partial correlation coefficients Corr�, for
which it was shown in [38] that

lim
`!1

Corr�
�

Len.f`IS
2/;L1

�
Au.f`IS

2/
��

D 1:

More explicitly, when compensating the effect of random norm fluctuations, the
boundary length at any threshold u ¤ 0 can be fully predicted on the basis of the
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Lj .u1/ Lj .u2/ Len.0/ Len�.u/ L2.0/ Nu N�1

Lj .u1/ 1 1 0 0 0 1 0
Lj .u2/ 1 1 0 0 0 1 0
Len.0/ 0 0 1 1 0 0 1
Len�.u/ 0 0 1 1 0 0 1
L2.0/ 0 0 0 0 1 0 0
Nu 1 1 0 0 0 1 0
N�1 0 0 1 1 0 0 1

Table 1. The limiting value of Corr2.�; �/, as `! 1.

knowledge of the nodal length, up to a remainder term which is asymptotically neg-
ligible in the limit `! 1. It is interesting to note that a similar phenomenon occurs
also for the total number of critical points, for which (building on earlier computations
in [16]) it was shown in [13] that

N�1.f`IS
2/ � E

�
N�1.f`IS

2/
�
D �

�`

2332
p
3�
h`I4 C op.`

2 log `/I

as a consequence, the nodal length of random spherical harmonics and the number of
their critical points are perfectly correlated in the high-energy limit:

lim
`!1

Corr2
�

Len.f`IS
2/;N�1.f`IS

2/
�
D 1:

Let us now denote by Len�.u/ the boundary length at level u after the fluctuations
induced by the random norm have been subtracted (e.g., after removing its projection
on the second-order chaos); moreover, for brevity’s sake we write

Lj

�
Au.f`IS

2/
�
D Lj .u/; j D 0; 1; 2;

Nu.f`IS
2/ D Nu; Len.f`IS

2/ D Len.0/;

so that N�1 is the total number of critical points and L2.0/ is the excursion area for
uD 0. The correlation results that we discussed so far can be summarized in Table 1;
here, we denote by u1; u2 ¤ 0; 1 any two non-singular threshold values.

5. Eigenfunctions on different domains

For brevity and simplicity’s sake, this survey has focussed only on the behaviour of
random eigenfunctions on the sphere. Of course, as mentioned in Section 1, this is just
a special case of a much broader research area, including for instance eigenfunctions
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on Rd and on the standard flat torus T d WD Rd=Zd . We do not even attempt to do
justice to these developments, but it is important to mention some of them which are
particularly close to the results we discussed for S2.

5.1. Eigenfunctions on the torus: arithmetic random waves

Eigenfunctions on the torus were first introduced in [52] and have then been studied
by several other authors; see for instance [10,23,26,33,36,53,54] and the references
therein. In dimension 2 these eigenfunctions (arithmetic random waves) are defined
by the equations

�T2fn CEnfn D 0; En D 4�n; n D a2
C b2;

for a; b 2 Z; the dimension of the nth eigenspace is Nn WD Card¹a; b 2 Z W

a2 C b2 D nº, while the expected value of nodal lengths is [52]
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:

A major breakthrough was then obtained with the derivation of the variance in [26].
In this paper, the authors introduce a probability measure on S1 defined by

�n.�/ WD
1

Nn

X
a;bWa2Cb2Dn

ı.a;b/.�/;

ı.a;b/.�/ denoting the Dirac measure; its kth-order Fourier coefficients are defined byb�n.k/ WD
R

S1 exp.ik�/�n.d�/. In [26] it is then shown that the variance of nodal
lengths has a non-universal behaviour and is proportional to
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It was later shown in [36] that the behaviour of Len.T 2; fn/ is dominated by its
fourth-order chaos component, similarly to what we observed above for random
spherical harmonics (the result on the torus was actually established earlier than the
corresponding case for the sphere). More precisely, we have that
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where ProjŒ�jq� denotes projection on the qth-order chaos. On the contrary of what we
observed for the case of the sphere, here it is not possible to express the fourth-order
chaos as a polynomial functional of the random eigenfunctions ¹fnº alone. Moreover,
the limiting distribution is non-Gaussian and non-universal; i.e., it depends on the
asymptotic behaviour of limj!1b�nj

.4/ which varies along different subsequences
¹nj ºjD1;2;::: (the attainable measures for the weak convergence of the sequences
¹�nj

.�/ºn2N have been investigated in [26, 27]). Further results in this area include
[10, 44] for arithmetic random waves in higher dimension and [28] for the excursion
area on subdomains of T 2; as mentioned earlier, an extension of Theorem 3.1 to the
torus has been given in [14]. It should be noted that arithmetic random waves can be
viewed as an instance of random trigonometric polynomials, whose zeroes have been
studied, among others, in [2, 4].

5.2. The Euclidean case: Berry’s random waves

Spherical harmonics on the sphere S2 are known to exhibit a scaling limit; i.e., after
a change of coordinates they converge locally to a Gaussian random process on R2

which is isotropic, zero mean, and has covariance function

E
�
f .x/f .y/

�
D J0

�
2�kx � yk

�
; x; y 2 R2; J0.z/ WD

1X
kD0

.�1/kz2k

.kŠ/222k
I

here J0.�/ corresponds to the standard Bessel functions, for which the following scal-
ing asymptotics hold:

P`

�
cos

 

`

�
!`!1 J0. /;  2 R:

The behaviour of nodal lines LE .f / D ¹x 2 R2 W f .x/ D 0; kxk < 2�
p
Eº can

then be studied in the asymptotic regime E ! 1; this is indeed the physical set-
ting under which Berry first investigated cancellation phenomena in his pioneering
paper [8]. The topology of nodal sets for Berry’s random waves was studied in [17,
43, 55] and others. Concerning nodal lengths, a (quantitative) central limit theorem
was established in [47], where intersections of independent random waves were also
investigated; more recently, [60] proved a result analogous to Theorem 4.2, namely
that, as E ! 1,

LE .f / � E
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Var
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¯ �
: (5.1)

We expect that results analogous to (4.1) and (5.1) will hold for more general Rie-
mannian waves on 2-dimensional manifolds [64]; extensions to random waves in R3
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have been studied, among others, in [18], but in these higher-dimensional settings it is
no longer the case that nodal volumes are dominated by a single chaotic component.

5.3. Shrinking domains

As a final issue, we recall how some of the previous results can be extended to shrink-
ing subdomains of the torus and of the sphere. In this respect, a surprising result was
derived in [5] concerning the asymptotic behaviour of the nodal length on a suitably
shrinking subdomain Bn � T 2; indeed it was shown that, for density one subse-
quences in n,

lim
n!1

Corr
�

Len.T 2; fn/;Len.T 2
\ Bn; fn/

�
D 1;

entailing that the behaviour of the nodal length on the whole torus is fully determined
by its behaviour on any shrinking disk Bn, provided the radius of this disk is not
smaller than n�1=2C", some " > 0. Of course, the asymptotic variance and distribu-
tions of the nodal length in this shrinking domain are then immediately shown to be
the same as those for the full torus, up to a normalizing factor. Interestingly, the same
phenomenon does not occur on the sphere, where on the contrary it was shown in
[59] that

lim
`!1

Corr
�

Len.S2; f`/;Len.S2
\ B`; f`/

�
D 0;

so that the nodal length when evaluated on a shrinking subsetB` of the 2-dimensional
sphere is actually asymptotically independent from its global value; in the same paper,
it is indeed shown that (4.1) generalizes to
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(5.2)

from this characterization, a central limit theorem follows easily along the same lines
that we discussed in Section 4; see [59] for more details and discussion.
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Looking at Euler flows through a contact mirror: Universality
and undecidability

Robert Cardona, Eva Miranda, and Daniel Peralta-Salas

Abstract. The dynamics of an inviscid and incompressible fluid flow on a Riemannian man-
ifold is governed by the Euler equations. In recent papers by Cardona, Miranda, and Peralta-
Salas, several unknown facets of the Euler flows have been discovered, including universality
properties of the stationary solutions to the Euler equations. The study of these universality
features was suggested by Tao (2019) as a novel way to address the problem of global exis-
tence for Euler and Navier–Stokes. Universality of the Euler equations was proved by Cardona
et al. (2019) for stationary solutions using a contact mirror which reflects a Beltrami flow as a
Reeb vector field. This contact mirror permits the use of advanced geometric techniques in fluid
dynamics. On the other hand, motivated by Tao’s approach relating Turing machines to Navier–
Stokes equations, a Turing complete stationary Euler solution on a Riemannian 3-dimensional
sphere was constructed by Cardona et al. (2021). Since the Turing completeness of a vector
field can be characterized in terms of the halting problem, which is known to be undecidable
(as shown by Turing (1936)), a striking consequence of this fact is that a Turing complete Euler
flow exhibits undecidable particle paths (as shown by Cardona et al. (2021)). In this article, we
give a panoramic overview of this fascinating subject, and go one step further in investigating
the undecidability of different dynamical properties of Turing complete flows. In particular, we
show that variations of the work of Cardona et al. (2021) allow us to construct a stationary
Euler flow of Beltrami type (and, via the contact mirror, a Reeb vector field) for which it is
undecidable to determine whether its orbits through an explicit set of points are periodic.

1. Introduction

Back in 1936, Turing faced a fundamental question which had been driving the atten-
tion of many mathematicians since the 1920s: Is there an answer for the decision
problem for first-order logics? A decision problem can be posed as a yes/no ques-
tion depending on the input values. Decidability is the problem of the existence of
an effective method, a test or automatic procedure to know whether certain premises
entail certain conclusions. The halting problem is one of the first decision problems
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which was proved to be undecidable. Indeed, Alan Turing [32] proved that a general
algorithm that solves the halting problem cannot exist (for all possible program-input
pairs). In doing so, he, fortuitously, invented the basic model of modern digital com-
puters, the so-called Turing machine.

The undecidability of the halting problem yields a cascade of related questions:
What kind of physics might be non-computational? (Penrose [21]) Is hydrodynam-
ics capable of performing computations? (Moore [19]). Given the Hamiltonian of a
quantum many-body system, does there exist an algorithm to check whether it has a
spectral gap? (this is known as the spectral gap problem, recently proved to be unde-
cidable [10]). And last but not least, can a mechanical system (including a fluid flow)
simulate a universal Turing machine? (Tao [27, 28, 30]).

Surprisingly, this last question is connected with the regularity of the Navier–
Stokes equations [26], one of the unsolved problems in Clay’s list of problems for
the Millennium. In [29], Tao speculated on a relation between a potential blow-up
of the Navier–Stokes equations, Turing completeness, and fluid computation. This
is part of a more general program he launched in [26, 27, 29] to address the global
existence problem for Euler and Navier–Stokes based on the concept of universality.
Inspired by this proposal, in [8] we showed that the stationary Euler equations exhibit
several universality features, in the sense that, any non-autonomous flow on a compact
manifold can be extended to a smooth stationary solution of the Euler equations on
a Riemannian manifold of possibly higher dimension. As a corollary, we established
the Turing completeness of the steady Euler flows on a 17-dimensional sphere [8]. It
is then natural to ask: Can this dimensional bound be improved?

We solved this problem affirmatively in [9] constructing stationary solutions of
the Euler equations on a Riemannian 3-dimensional sphere that can simulate any
Turing machine (i.e., they are Turing complete). In particular, these solutions exhibit
undecidable paths in the sense that there are constructible points for which it is
not possible to decide whether their associated trajectories will intersect a certain
(explicit) open set or not. The type of flows that we considered are Beltrami fields,
a particularly relevant class of stationary solutions. Our game plan combines the
computational power of symbolic dynamics with techniques from contact topology.
Contact topology enters into the scene because Beltrami fields correspond to Reeb
flows under a contact mirror unveiled by Sullivan, Etnyre, and Ghrist more than two
decades ago. The contact mirror thus reflects a problem in Fluid Dynamics as a prob-
lem in contact geometry and back.

The existence of Turing complete Euler flows gives rise to new questions concern-
ing undecidability of different dynamical properties. One of the potential problems
to consider is that of periodic orbits: ever, at least since the work of Poincaré [24],
periodic orbits are known to be one of the major tools to understand the dynamics
of Hamiltonian systems. Even though not every Hamiltonian system admits periodic
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orbits, the Weinstein conjecture asserts that under some topological (compact) and
geometrical (contact) conditions on the manifold, Reeb vector fields admit at least
one periodic orbit. The Weinstein conjecture is known to be true in dimension 3, so
using our contact mirror we can conclude that the Turing complete Reeb flow we
constructed in [9] has at least one periodic orbit (in fact, in our construction the Reeb
vector field coincides with a Hopf field in the complement of a certain solid torus, so
it has infinitely many periodic orbits). It is then natural to ask if for every point of the
sphere it is possible to decide whether its corresponding orbit will be closed or not.
We shall see in this article that such a decision problem has no answer. The undecid-
ability of other dynamical properties of Reeb flows will be also discussed. In view
of Gödel’s incompleteness theorems, undecidability of such properties of dynamical
systems seems to be an unsurmountable obstacle no matter what systems of axioms
are considered.

Our goal in this article is to give an overview of this exciting area of research.
Let us summarize the contents of this work. Next, in this introduction, we present the
Euler equations and the Beltrami fields on Riemannian manifolds, in Section 1.1, and
the connection between contact geometry and hydrodynamics (in particular, between
Beltrami fields and Reeb flows), in Section 1.2. In Section 2, following [8], we
introduce the theory of Reeb embeddings and their flexibility (in the form of a new
h-principle), and apply it to prove several universality features of the stationary Euler
flows in high dimensions. The construction of a Turing complete Reeb field on a 3-
dimensional sphere [9] is presented in Section 3; as a novel feature, we show how
variations of this result allow us to prove the existence of Reeb fields exhibiting
different undecidable dynamical properties, including periodic orbits. Finally, in Sec-
tion 4 we recall the main theorem of [7] establishing the existence of Turing complete
time-dependent solutions to the Euler equations (on compact Riemannian manifolds
of very high dimension), and discuss the implications of our results regarding com-
putability with the Navier–Stokes equations.

1.1. The Euler equations on Riemannian manifolds

The Euler equations describe the dynamics of an incompressible fluid flow without
viscosity. Even if they are classically considered on R3, they can be formulated on
any n-dimensional Riemannian manifold .M; g/, n � 2 (for an introduction to the
geometric aspects of hydrodynamics see [2, 22]). The equations can be written as´

@
@t

X CrXX D �rp;

div X D 0;

where p stands for the hydrodynamic pressure and X is the velocity field of the fluid
(a non-autonomous vector field on M ). Here rXX denotes the covariant derivative
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of X along X . A solution to the Euler equations is called stationary whenever X does
not depend on time, i.e., @

@t
X D 0, and it models a fluid flow in equilibrium.

This extension of the Euler equations to high dimensional manifolds turns out
to be very useful to show that the steady and time-dependent Euler flows exhibit
remarkable dynamical [8] (see also [28,30,31]), computational [7] or topological [5]
universality features. For non-specialists, we refer to [18] for an introduction to dif-
ferential geometry.

A short comprehensive dictionary.
� A volume-preserving (autonomous) vector field X on M is Eulerisable [23] if

there exists a Riemannian metric g on M compatible with the volume form, such
that X satisfies the stationary Euler equations on .M; g/:

rXX D �rp; div X D 0 (1.1)

for some pressure function p.

� A divergence-free vector field X on an odd-dimensional manifold .M; g/ of
dimension n D 2m C 1 is Beltrami if

curl X D fX;

for some factor f 2 C1.M/. The curl of X is defined as the unique vector field
Y D curl X that satisfies the equation

�Y � D .dX [/m; (1.2)

where � is the Riemannian volume form, the symbol [ stands for the musical
isomorphism associated to the metric g, and �Y � denotes the contraction of �

with Y . The classical Hopf fields on the round sphere S2mC1 and the ABC flows
on the flat 3-torus T 3 are examples of Beltrami fields.

1.2. Contact hydrodynamics

Let M 2mC1 be an odd-dimensional manifold equipped with a hyperplane distribu-
tion � . Assume that there is a globally defined non-vanishing one-form ˛ 2 �1.M/

with ker ˛ D � and satisfying ˛ ^ .d˛/m > 0 everywhere; i.e., it defines a volume
form in M . Then we say that .M 2mC1; �/ is a (cooriented) contact manifold.

The one-form ˛ is called a contact form. Of course, the contact structure � does
not depend on a particular choice of the defining contact one-form ˛, any other one-
form h � ˛ with h a positive function in M is a contact form defining � as well. The
contact condition ˛ ^ .d˛/m > 0 implies that d˛ induces a fiber-wise symplectic
structure on the hyperplane distribution � (of even dimension 2m). The unique Reeb
vector field R associated to a given contact form ˛ is uniquely determined by the
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equations
�R˛ D 1; �Rd˛ D 0: (1.3)

These equations imply that the flow of R preserves the contact form, so, in particular,
it preserves ˛ ^ d˛ and hence R is a volume-preserving vector field. In contrast with
the hyperplane distribution, the Reeb field can display drastically different dynamics
depending on the particular choice of contact form.

We will now explain the connection between contact geometry and hydrodynam-
ics. In order to understand this remarkable correspondence, it is convenient to rewrite
the Euler equations in a dual language. Duality is given by contraction with the Rie-
mannian metric g. With the one-form ˛ defined as ˛ WDX [ and the Bernoulli function
as B WD p C

1
2
g.X; X/, the steady Euler equations can be equivalently formulated as´

�Xd˛ D �dB;

d�X� D 0;

where � is the Riemannian volume form.
Observe that the following hold.

� The equation curlX D fX , with f 2C1.M/, satisfied by a Beltrami vector field
on an odd-dimensional manifold, can be equivalently written as .d˛/m D f �X�.
This follows from equation (1.2), that determines the curl of X , and the fact that
˛ D X [. Assume that X is rotational, i.e., f > 0, then if X does not vanish on
M we infer that

˛ ^ .d˛/m
D f ˛ ^ �X� > 0;

thus proving that ˛ defines a contact structure on M .

� Obviously, X satisfies �X .d˛/m D f �X �X� D 0. Therefore, since ˛ ^ .d˛/m > 0,
it is easy to conclude that X 2 ker d˛, and hence it is a reparametrization of the
Reeb vector field R by the function ˛.X/ D g.X; X/. Indeed, the vector field
R D

X
˛.X/

satisfies equations (1.3).

These observations prove one of the implications of the following theorem, which
is due to Etnyre and Ghrist [12].

Theorem 1.1. Let M be a Riemannian odd-dimensional manifold. Any smooth, non-
singular rotational Beltrami field on M is a Reeb-like field for some contact form on
M . Conversely, given a contact form ˛ on M with Reeb field X , any nonzero rescal-
ing of X is a smooth, nonsingular rotational Beltrami field for some Riemannian
metric on M .

Remark 1. The original proof by Etnyre and Ghrist is for three-dimensional mani-
folds. The fact that the correspondence holds on any odd-dimensional manifold was
detailed in [8]. See also [6] for an extension of this result to b-manifolds.
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2. Embedding dynamics into Reeb flows

In [8], we studied several universality features of the stationary Euler equations. In
view of the correspondence established in Theorem 1.1, we can reformulate the ques-
tion of embedding dynamics into steady Euler flows in terms of Reeb flows. Let us
fix a nonvanishing vector field X on a compact manifold N and some compact con-
tact manifold .M; �/ of dimensions n � m, respectively. The question we answer in
this section is the following: Can we give sufficient conditions for the existence of
an embedding e W N ,! M and a contact form ˛ 2 �1.M/ defining � such that the
Reeb field R satisfies e�X D Rje.N /? In other words, can we find conditions which
ensure the existence of a Reeb field, whose contact form defines � , such that e.N / is
an invariant submanifold of R and where the Reeb field coincides with X?

2.1. Flexibility of Reeb embeddings

We will address the question above using a classical framework for flexibility prob-
lems in contact geometry: the homotopy principle. The world of contact geometry
exhibits a lot of flexibility which reduces geometrical problems to their associated
purely homotopical algebraic problems. The pioneering work of Gromov [15] showed
that this approach is extremely fruitful for symplectic and contact geometrical prob-
lems. Some of Gromov’s results in contact geometry were generalized in [4] when
the ambient manifold is closed and the contact structure is “overtwisted”. We will not
introduce this notion here, the only thing that we need in our discussion is that being
“overtwisted” is a property that a given contact structure may satisfy.

A first observation concerning our motivating question of embedding dynamics
on Reeb fields is that the vector field X cannot be arbitrary.

Definition 2.1. A vector field X on N is geodesible if there is some metric for which
the orbits of X are geodesics.

When X is of unit length for such a metric, we say that X is geodesible of unit
length. From now on, by geodesible we mean geodesible of unit length. A character-
ization of geodesible vector fields was given by Gluck in terms of differential forms:
X is geodesible if and only if there is some one-form ˇ such that ˇ.X/ D 1 and
�Xdˇ D 0. In particular, if a Reeb vector field R defined by a form ˛ on a contact
manifold M has some invariant submanifold N , then R restricted to N is geodesible.
Indeed, if X is the vector field R restricted on N and i W N ,! M is the inclusion of
N into M , then i�˛ satisfies ´

i�˛.X/ D 1;

�Xdi�˛ D 0:
(2.1)
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Note that i�˛ is not necessarily a contact form, so that X is not necessarily a Reeb
field (in general, it is not even volume-preserving). However, it is always geodesible
according to Gluck’s characterization.

Conversely, start with any geodesible (hence non-vanishing) vector field X on a
compact manifold N .

Definition 2.2. An embedding e W .N; X/ ,! .M; �/ is called a Reeb embedding
if there is a contact form ˛ defining � such that the associated Reeb field satisfies
e�X D Rje.N /.

The main theorem in [8] gives sufficient conditions in terms of the codimension
of an arbitrary smooth embedding to be isotopic to a Reeb embedding.

Theorem 2.3 ([8]). Let e W .N; X/ ,! .M; �/ be a smooth embedding of N into a
contact manifold .M; �/, where X is a geodesible vector field on N . Assume that
dim M � 3n C 2. Then e is isotopic to a C 0-close Reeb embedding Qe W .N; X/ ,!

.M; �/.

Remark 2. If we impose the additional assumption that .M; �/ is an overtwisted
contact manifold, then dim M � 3n is enough, although the Reeb embedding Qe is
not necessarily C 0 close to e if dim M < 3n C 2. In [8], parametric versions of the
previous statement are also discussed.

Example 2.4. The existence of a Reeb embedding of any pair .N; X/ into some
contact manifold is easy to establish, since there is a natural source of examples of
such embeddings. Denote by ˇ the one-form such that ˇ.X/ D 1 and �Xdˇ D 0.
Gluck’s characterization implies that there is a metric for which X is of unit-length
and its orbits are geodesics which satisfies g.X; �/ D ˇ. Recall that the cotangent
bundle T �N is equipped with the canonical Liouville one-form �std 2 �1.T �N /.
Such one-form is characterized by the property that, given any one-form 
 on N ,
which can be understood as an embedding 
 W N ! T �N , we have 
 D 
��std.
For a given metric one can define the unit tangent bundle STN defined fiberwise by
STpN D ¹X 2 TpN j gp.X;X/ D 1º. A standard property (see e.g. [13, Section 1.5])
of �std is that given the metric g on N , it restricts on ST �N (the unit cotangent
bundle) as a contact form � whose Reeb field is dual to the geodesic vector field on
STN . In particular, the section ˇ, seen as an embedding

ˇ W N ! ST �N;

satisfies ˇ�� D ˇ and actually the Reeb field R defined by � satisfies ˇ�X D R.
Thus, it is a Reeb-embedding according to Definition 2.2. This further motivates a
systematic examination of Reeb-embeddings from a contact topology point of view,
a study that leads to Theorem 2.3.
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Sketch of the proof of Theorem 2.3. The proof of Theorem 2.3 follows the usual pro-
cedure of h-principle type results. We first define a “formal” notion of Reeb embed-
ding, which satisfies a property that is purely homotopic in terms of its differential.
We then prove that, under certain conditions, any formal Reeb embedding is isotopic
to a genuine Reeb embedding (i.e., they satisfy the h-principle). To conclude, we
use obstruction theory to analyze the minimal codimension for which any smooth
embedding is a formal Reeb embedding satisfying the conditions for the h-principle
to apply. We will now sketch each of these steps of the proof, under the simplifying
assumption that M is overtwisted.

Step 1: Iso-Reeb embeddings and extension lemma. Let X be a geodesible vector
field on N , and denote by ˇ a one-form such that ˇ.X/ D 1 and �Xdˇ D 0. We need
to fix such a choice of one-form, and let � WD ker ˇ be the hyperplane distribution
defined by the kernel of ˇ (which in general will not be of contact type). Let .M; �/

be an overtwisted contact manifold with some defining contact form ˛, i.e., ker˛ D � .
With a slight abuse of notation, given a monomorphism F W TN ! TM we will

denote ˛ ı F for ˛.F.�// and d˛ ı F for d˛.F.�/; F .�//. This is also denoted by
F �˛ and F �d˛ in the discussion of “generalized iso-contact immersions” in [11,
Section 16.2].

Definition 2.5. An embedding f W .N;X;� D kerˇ/ ! .M;�/ is an iso-Reeb embed-
ding if f �� D �.

The corresponding formal notion is the following definition.

Definition 2.6. An embedding f W .N; X; �/ ! .M; �/ is a formal iso-Reeb embed-
ding if there exists a homotopy of monomorphisms

Ft W TN ! TM;

such that Ft covers1 f , F0 D df , h1˛ ı F1 D ˇ, and dˇj� D h2d˛ ı F1j� for some
strictly positive functions h1 and h2 on N .

Any (genuine) iso-Reeb embedding is clearly a formal iso-Reeb embedding, with
Ft constantly equal to df . Both conditions h1˛ ı F1 D ˇ and dˇj� D h2d˛ ı F1j�

have to be imposed, since F1 does not commute with the exterior derivative in general
(when F1 is not holonomic). This formal notion of Reeb embedding is enough to
obtain the main theorem for an overtwisted target contact manifold. For the most
general case, an extra formal hypothesis needs to be imposed (confer [8]).

1We say that Ft W TN ! TM covers f W N ! M if the map between bases induced by Ft

is constantly equal to f .
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The following lemma by Inaba [16] (see also [8]) shows that the condition of
being an iso-Reeb embedding is enough to answer positively our question: we can
find a Reeb field in .M; �/ extending the given geodesible vector field X .

Lemma 2.7. Let N be a submanifold of .M; �/, and denote by i the inclusion map
of N into M . Let � be the restriction i�� . A nonvanishing vector field X on N can be
extended to a Reeb field on all M if and only if X is transverse to � and the flow of
X preserves �.

The vector field X is transverse to � and preserves it if and only if there is a one-
form ˇ such that ˇ.X/ D 1, �Xdˇ D 0, and ker ˇ D �. These are our hypotheses in
the case of an iso-Reeb embedding, hence by the previous lemma there is a contact
form whose Reeb field R satisfies f�X D R. Observe that an iso-Reeb embedding f

is, in particular, a Reeb embedding according to Definition 2.2, the only difference is
that in the definition of iso-Reeb embedding the one-form ˇ making X geodesible is
fixed.

Step 2: An h-principle via isocontact embeddings. Our goal in this second step is
to prove that any formal iso-Reeb embedding e W .N; X; �/ ! .M; �/ into an over-
twisted contact manifold is homotopic through formal iso-Reeb embeddings to a
genuine iso-Reeb embedding. This is tantamount to saying that iso-Reeb embeddings
satisfy an existence h-principle. Other versions of the h-principle (parametric, rela-
tive to the domain, etc.) are discussed in [8]. Recall that ˛ is a defining contact form
of � . The sketch of the argument is the following.

(1) The embedding e satisfies that de.�/ � TM jN , but de.�/ is not, in general,
contained in ker ˛ D � . We extend the homotopy Ft and use it inversely to
deform � via a homotopy of symplectic vector bundles .�t ; !t / (defined over
all M , but which is identically .�; d˛/ outside a neighborhood U of e.N /)
such that .�0; !0/ D .�; d˛/, .�1; !1/ satisfies de.�/ � �1 and !1j� D dˇ

along N . The last condition is guaranteed, up to a conformal transformation,
by the formal iso-Reeb condition. The symplectic hyperplane bundle .�1; !1/

will no longer be a contact structure in general.

(2) Using partitions of unity, the fact that !1 is non-degenerate on �1, and that
!1j� D dˇ, it is now possible to make another deformation. We extend the
homotopy .�t ; !t / to t 2 Œ1; 2� such that .�2; !2/ is a contact structure in a
smaller neighborhood U 0 of e.N / and still satisfies de.�/ � �2. In particular,
we can achieve that !2 D d
 for some one-form 
 such that 
 satisfies e�
 D

ˇ (the form such that ker ˇ D � and ˇ.X/ D 1). The pair .�2; !2/ will not be
a contact structure globally, since this small neighborhood is a priori smaller
than the neighborhood U , where .�1; !1/ was not anymore of contact type.
Hence in some parts U n U 0, �2 is not of contact type.



R. Cardona, E. Miranda, and D. Peralta-Salas 376

(3) We will now reduce to a formal isocontact embedding (confer [11, Section
12.3] for more details on such embeddings). We endow the neighborhood
U 0 with the contact structure .�2; !2/. We use the previous deformations
.�t ; !t /, t 2 Œ0; 2� defined on U 0 to endow the trivial embedding Oe W U 0 ! M

(defined as a neighborhood extension of the embedding e) with a homo-
topy of monomorphisms Gt W T U 0 ! TM such that G0 D d Oe, G1 satisfies
�2 D G�1

1 .�/, and the map induces a conformally symplectic map.

(4) The map Oe is what is called a formal isocontact embedding of codimension 0

with open source manifold. The h-principle for such embeddings into over-
twisted targets applies [4, Corollary 1.4]. We obtain an embedding Qe W U 0 !

M (isotopic to Oe through formal isocontact embeddings) such that d Qe satis-
fies d Qe.�2/ D � and the map induces a conformally symplectic map. Since
.�2; !2/ restricted to N � U 0 corresponds to .�; dˇ/, we deduce that QejN
satisfies . QejN /�� D � and hence is a genuine iso-Reeb embedding isotopic to
e D OejN .

Step 3: Obstruction theory. The final step of the proof consists in showing that
for dim M � 3 dim N , any smooth embedding e W N ! .M; �/ is a formal iso-Reeb
embedding for any choice of .X; ˇ/, where X is a non-vanishing geodesible field and
ˇ is a choice of one-form for which ˇ.X/ D 1 and �Xdˇ D 0. We will assume the
following lemma; confer [8] for the details.

Lemma 2.8. Let e W .N; X; �/ ! .M; �/ be an embedding such that there is a homo-
topy of monomorphisms Ft W TN ! TM covering e satisfying F0 D de and F1.�/

is an isotropic subbundle of � . Then e is a formal iso-Reeb embedding.

For 2m > dim N , standard obstruction theory shows that there is a family of
monomorphisms Ht W TN ! TM such that F1.X/ t � , and furthermore F1.�/ � � .
The previous lemma shows that a sufficient condition for being a formal iso-Reeb
embedding is that F1.�/ can be homotoped into an isotropic subbundle of � . Recall
that n denotes the dimension of N , hence � has rank n � 1. The manifold M is of
dimension 2m C 1, hence � is of rank 2m. Denote by Gr D Grass.n � 1; R2m/ the
space of .n � 1/-subspaces of Rm. Similarly, denote by Gris D Grassis.n � 1; R2m/

the space of isotropic subspaces of dimension n� 1 in R2m seen as Cm. To find a path
between � and an isotropic subspace of � over N , we need to find a global section of
the bundle E over N whose fiber is

P D Path
�

Grass.n � 1; R2m/; Grassis.n � 1; R2m/
�
;

i.e., the space of paths between any .n � 1/-subspace and any isotropic .n � 1/-
subspace of R2m. On the other hand, we know that the homotopy groups of such
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a path space depend on the relative homotopy groups

�j .P / Š �jC1

�
Grass.n � 1; R2m/; Grassis.n � 1; R2m/

�
:

We now use that

Gr Š
SO.2m/

SO.n � 1/ � SO
�
2m � .n � 1/

� ;

Gris Š
U.m/

SO.n � 1/ � U
�
m � .n � 1/

� :

Combining the exact sequence for relative pairs, the exact sequence for quotients, and
using the stable range of the involved groups, we can show that

2m � 3n � 1 H) �j .P / D 0 for all j � n � 1:

Hence, if dim M � 3 dim N , we can find a global section along N . Using this sec-
tion and the previous family of monomorphisms, we find a family of isomorphisms
Gt W TN ! TM covering the smooth embedding e such that G1.�/ is an isotropic
subbundle of � . Applying Lemma 2.8, we conclude that e is a formal iso-Reeb embed-
ding.

Step 4: Conclusion. In Step 3, we showed that any smooth embedding is a formal
iso-Reeb embedding for any pair .N; X/ embedded into a contact manifold .M; �/

such that dim M � 3 dim N . Note that smooth embeddings in this context always
exist by Whitney’s embedding theorem. Under the assumption that M is overtwisted,
we can apply the h-principle proved in Step 2 and deduce that there is an iso-Reeb
embedding Qe isotopic to e. Since an iso-Reeb embedding is, in particular, a Reeb
embedding, we can find some contact form ˛ defining � whose Reeb field R satisfies
Qe�X D RjQe.N /. This concludes the proof of the theorem.

The previous theorem “fixes” the target contact structure, which forces to take an
embedding that is isotopic to the original smooth embedding e W N ! .M; �/. If we
simply want to extend the vector field X to a Reeb vector field, without fixing the
ambient contact structure, then we can fix the embedding.

Corollary 2.9. Let X be a geodesible vector field on a compact manifold N . Let
e W N ! .M; �/ be a smooth embedding into a contact manifold with dim M �

3 dim N C 2. Then there is a contact form ˛ on M whose Reeb field R satisfies
e�X D Rje.N /. The contact form ˛ defines a contact structure contactomorphic to � .

Proof. It follows from Theorem 2.3 that there is a Reeb embedding Qe (with respect to
the contact structure �) isotopic to e. According to Definition 2.2, there is a contact
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one-form ˛0 defining � such that the Reeb field R0 of ˛0 satisfies Qe�X D R0jQe.N /. Let
't be an isotopy of M such that '1 ı Qe D e. Then ˛ WD .'�1

1 /�˛0 is a contact one-
form, defining a contact structure .'1/�� , whose Reeb field R D .'1/�R0 satisfies

e�X D .'1/� ı Qe�X D .'1/�R0
D R;

thus concluding the proof.

2.2. Applications to universality

We are now ready to give some applications of Theorem 2.3. The following concept
is inspired by Tao’s definition of Euler-extendibility in [30] (albeit it is different in the
sense that it is adapted to the context of stationary solutions of the Euler equations).

Definition 2.10. A non-autonomous time-periodic vector field u0.�; t / on a compact
manifold N is Euler-extendible if there exists an embedding e W N � S1 ! Sn for
some dimension n > dim N C 1 (that only depends on the dimension of N ), and a
Eulerisable flow u on Sn, such that e.N � S1/ is an invariant submanifold of u and
e�.u0.�; �/ C @� / D uje.N�S1/, � 2 S1. If the non-autonomous field u0.�; t / is not
time-periodic, we say that it is Euler-extendible if there exists a proper embedding e W

N �R!Rn for some dimension n > dimN C 1 (that only depends on the dimension
of N ), and a Eulerisable flow u on Rn, such that e.N �R/ is an invariant submanifold
of u and e�.u0.�; �/ C @� / D uje.N�R/, � 2 R. If any non-autonomous dynamics
u0.�; t / is Euler-extendible, we say that the stationary Euler flows are universal.

Roughly speaking, the extendibility of a non-autonomous dynamics implies that,
in the appropriate local coordinates, u0 describes the “horizontal” behavior of the
integral curves of the extended vector field u. Observe that the original vector field
u0 is not assumed to be volume-preserving, although certainly u will be. We introduce
another definition for embeddability of discrete dynamics.

Definition 2.11. We say that an (orientation-preserving) diffeomorphism � W N ! N

is Euler-embeddable if there exists a Eulerisable field u on Sn (for some n that only
depends on the dimension of N ) with an invariant submanifold exhibiting a cross-
section diffeomorphic to N such that the first return map of u at this cross-section is
conjugate to �.

Two main corollaries of the previous construction can be expressed in terms of
these two definitions.

Corollary 2.12 ([8]). The stationary Euler flows are universal. Moreover, the dimen-
sion of the ambient manifold Sn or Rn is the smallest odd integer n2¹3 dim N C5;

3 dim N C 6º. In the time-periodic case, the extended field u is a steady Euler flow



Universality and undecidability in Euler and Reeb flows 379

with a metric g D g0 C ıP , where g0 is the canonical metric on Sn and ıP is sup-
ported in a ball that contains the invariant submanifold e.N � S1/.

It is clear that the extension to a Euler flow u is not unique, since Theorem 2.3
shows that iso-Reeb embeddings exist in abundance. Corollary 2.9, via the correspon-
dence theorem (Theorem 1.1), illustrates the flexibility of steady Euler flows in the
sense that any fixed smooth embedding in high enough codimension can be realized
as an invariant submanifold (with arbitrary induced geodesible dynamics) of a steady
Euler flow. Our second corollary is expressed in terms of Definition 2.11.

Corollary 2.13 ([8]). Let N be a compact manifold and � an orientation-preserving
diffeomorphism on N . Then � is Euler-embeddable in Sn, where n is the smallest odd
integer n 2 ¹3 dim N C 5; 3 dim N C 6º.

As in Corollary 2.12, the metric can also be assumed to be the canonical one
outside an embedding of the mapping torus of N by �. This is ensured by applying
Theorem 2.3 with a tight contact sphere as the target contact manifold. The dimen-
sional bounds can be slightly improved if we use an overtwisted contact sphere as
target manifold, as explained after the statement of Theorem 2.3. In the following
section, we shall introduce the concept of “Turing complete” flows, which are flows
that are universal in a computational sense. Using the fact that there are diffeomor-
phisms that simulate any Turing machine (see [27] for an example), and the fact that
our construction via an h-principle is constructible (i.e., algorithmic), we obtain as
a by-product that there is a Turing complete Euler flow on S17. In the next section,
we will focus on this property and drastically improve the dimension of the ambient
manifold.

3. A Turing complete steady Euler flow on S3

In this section, we review the construction of a Turing complete stationary Euler flow
on a Riemannian three-sphere [9]. We end up by proving a new result (Corollary 3.7)
on the existence of Reeb flows (and their Beltrami counterparts) with orbits whose
periodicity is undecidable.

3.1. Turing machines and symbolic dynamics

A Turing machine is a mathematical model of a theoretical device manipulating a
set of symbols on a tape following some specific rules. It receives, as input data, a
sequence of symbols and, after a number of steps, it might return as output another
string of symbols. More concretely, a Turing machine is defined via the following
data:
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� a finite set Q of “states” including an initial state q0 and a halting state qhalt;

� a finite set † which is the “alphabet” with cardinality at least two;

� a transition function ı W Q � † ! Q � † � ¹�1; 0; 1º.

We will denote by q 2 Q the current state, and by t D .tn/n2Z 2 †Z the current
tape of the machine at a given step of the algorithm of the Turing machine. This
gives a configuration .q; t/ of the machine. In particular, the space of all possible
configurations of a Turing machine is given by P WD Q � †Z. The algorithm works
as follows, for a given input tape t 2 †Z.

(1) Set the current state q as the initial state and the current tape t as the input
tape.

(2) If the current state is qhalt, then halt the algorithm and return t as output.
Otherwise, compute ı.q; t0/ D .q0; t 00; "/, with " 2 ¹�1; 0; 1º.

(3) Replace q with q0 and t0 with t 00, obtaining a modified tape
Qt D .� � � t�1 � t 00t1 � � � /.

(4) Shift Qt by ", obtaining a new tape t 0. The resulting configuration is .q0; t 0/.
Return to step .2/.

Our convention is that " D 1 (resp. " D �1) corresponds to the left shift (resp. the
right shift). This algorithm (determined by the transition function ı) induces a global
transition function in the space of configurations

� W Q n ¹qhaltº � †Z
! P ;

which sends a non-halting configuration in P to the configuration obtained after one
step of the algorithm.

Remark 3. Without loss of generality, one can assume that the configurations of the
machine are those pairs .q; t/ 2 Q � †Z for which only a finite number of sym-
bols in t are different from 0 (also called the “blank” symbol). We will not need this
simplifying assumption in this section, although it is certainly useful in other con-
structions [7].

The halting problem. In computability theory, the halting problem is the problem
of determining, from a description of an arbitrary computer program and an input,
whether the program will finish running (halting state), or continue to run forever.
Alan Turing proved in 1936 that a general algorithm to solve the halting problem for
all possible program-input pairs cannot exist. A key part of the proof is the formula-
tion of a mathematical definition of a computer and program, which is the previously
introduced notion of Turing machine; the halting problem is undecidable for Tur-
ing machines. The halting problem is historically important as it was one of the first
problems to be proved undecidable.
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Turing machines and universality. A Eulerisable field on a manifold M is Turing
complete if it can simulate any Turing machine. In fact, Turing machines can be
simulated by dynamical systems in a large sense (a vector field, a diffeomorphism, a
map, etc.). Following [27], we give a formal definition of such a “simulation”.

Definition 3.1. Let X be a vector field on a manifold M . We say it is Turing complete
if for any integer k � 0, given a Turing machine T , an input tape t , and a finite string
.t�
�k

; : : : ; t�
k

/ of symbols of the alphabet, there exist an explicitly constructible point
p 2 M and an open set U � M such that the trajectory of X through p intersects U

if and only if T halts with an output tape whose positions �k; : : : ; k correspond to the
symbols t�

�k
; : : : ; t�

k
. A completely analogous definition holds for diffeomorphisms

of M .

Remark 4. In the construction explained in this section, the point p depends on T ,
the input, and the finite string, while the open set U is always the same. In other con-
structions of Turing complete flows [6, 8, 27], the point p only depends on T and the
input, and the open set U depends on the finite string of the output. In particular, for
a fixed machine and input we construct a point p and we can “measure” a posteriori
what is the output of the machine up to some precision by looking which open sets
are intersected by the trajectory of the flow through p.

Remark 5. One might as well avoid fixing a finite string of the output .t�
�k

; : : : ; t�
k

/

and just require that the machine halts if and only if the trajectory through p enters
certain open set. As detailed in [9, Lemma 5.5], the computational power is the same
with this simplification.

In 1991, Moore [19] introduced the notion of generalized shift to be able to simu-
late any Turing machine; a generalized shift is a map that acts on the space of infinite
sequences on a given finite alphabet.

Let A be an alphabet and S 2 AZ an infinite sequence. A generalized shift � W

AZ ! AZ is specified by two maps F and G which depend on a finite number of
specified positions of the sequence in AZ. Denote by DF D ¹i; : : : ; i C r � 1º and
DG D¹j; : : : ; j C l � 1º the sets of positions on which F and G depend, respectively.
These functions take a finite number of different values since they depend on a finite
number of positions. The function G modifies the sequence only at the positions
indicated by DG :

G W Al
! Al

.sj � � � sjCl�1/ 7! .s0j � � � s
0
jCl�1/:

Here sj � � � sjCl�1 are the symbols at the positions j; : : : ; j C l � 1 of an infinite
sequence S 2 AZ.



R. Cardona, E. Miranda, and D. Peralta-Salas 382

On the other hand, the function F assigns to the finite subsequence of consecutive
elements .si ; : : : ; siCr�1/ of the infinite sequence S 2 AZ an integer

F W Ar
! Z:

The generalized shift � W AZ ! AZ corresponding to F and G is defined as
follows:

� compute F.S/ and G.S/;

� modify S changing the positions in DG by the function G.S/, obtaining a new
sequence S 0;

� shift S 0 by F.S/ positions. That is, we obtain a new sequence s00n D s0
nCF .S/

for
all n 2 Z.

The sequence S 00 is then �.S/.
Given a Turing machine, there is a generalized shift � conjugate to it. Conjugation

means that there is an injective map ' W P ! AZ such that the global transition
function of the Turing machine is given by � D '�1�'. In fact, if the Turing machine
is reversible, it can be shown that the generalized shift is bijective.

Key observation. Generalized shifts are conjugate to maps of the square Cantor set
C 2 WD C � C � I 2, where C is the (standard) Cantor ternary set in the unit interval
I D Œ0; 1�.

Point assignment. Take A D ¹0; 1º (this can be assumed without loss of generality).
Given s D .� � � s�1 � s0s1 � � � / 2 AZ, we can associate to it an explicitly constructible
point in the square Cantor set. We just express the coordinates of the assigned point
in base 3: the coordinate y corresponds to the expansion .y0; y1; : : :/, where yi D 0

if si D 0 and yi D 2 if si D 1. Analogously, the coordinate x corresponds to the
expansion .x1; x2; : : :/ in base 3, where xi D 0 if s�i D 0 and xi D 2 if s�i D 1.

Moore proved that any generalized shift is conjugate to the restriction on the
square Cantor set of a piecewise linear map defined on blocks of the Cantor set in I 2.
This map consists of finitely many area-preserving linear components. If the gener-
alized shift is bijective, then the image blocks are pairwise disjoint. An example is
depicted in Figure 1. Each linear component is the composition of two linear maps:
a translation and a positive (or negative) power of the horseshoe map (or the Baker’s
map).

3.2. Area-preserving maps and Turing complete Reeb flows

In [19], Moore proved that any bijective generalized shift, understood as a map of the
square Cantor set onto itself, can be extended as a diffeomorphism of the disk isotopic
to the identity. The construction suggests that this can be done by further imposing



Universality and undecidability in Euler and Reeb flows 383

Figure 1. Example of a map by blocks of the square Cantor set.

the condition that this diffeomorphism is area-preserving. In [9], we formalized this
proving that any bijective generalized shift can be extended to an area-preserving
diffeomorphism of the disk which is the identity near the boundary. The proof of this
result combines three ingredients: the aforementioned piecewise linear map defined
on Cantor blocks, an explicit geometric construction using the homotopy extension
property, and Moser’s path method to ensure that the diffeomorphism that we obtain
is area-preserving. The precise statement is the following:

Proposition 3.2. For each bijective generalized shift and its associated map of the
square Cantor set �, there exists an area-preserving diffeomorphism of the disk ' W

D ! D which is the identity in a neighborhood of @D and whose restriction to the
square Cantor set is conjugate to �.

Now the idea to construct a Turing complete Reeb flow is to take a Turing
complete bijective generalized shift (which exists because there are universal Tur-
ing machines that are reversible as proved in the classical paper of Bennett [3]).
Proposition 3.2 hence implies the existence of a Turing complete area-preserving
diffeomorphism of the disk which is the identity on the boundary, as detailed in [9,
Theorem 5.2]. Using a suspension construction in contact geometry, we can then
show that any area-preserving diffeomorphism of the disk can be realized as the
first-return map on a cross-section of a Reeb flow on any contact three-manifold. In
particular, taking the aforementioned Turing complete diffeomorphism, we conclude
the existence of Turing complete Reeb flows. More precisely, the following theorem
holds.

Theorem 3.3. Let .M;�/ be a contact 3-manifold and ' WD !D an area-preserving
diffeomorphism of the disk which is the identity (in a neighborhood of) the boundary.
Then there exists a defining contact form ˛ whose associated Reeb vector field R

exhibits a Poincaré section with first return map conjugate to '. In particular, there
exists a Reeb field R on .M; �/ which is Turing complete (in the sense of Defini-
tion 3.1).
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Combining Proposition 3.2, Theorem 3.3, and the correspondence theorem (The-
orem 1.1) between Beltrami fields and Reeb flows, we obtain the desired result for
stationary Euler flows.

Corollary 3.4. There exists a Eulerisable field X on S3 that is Turing complete. The
metric g that makes X a solution of the stationary Euler equations can be assumed
to be the round metric in the complement of an embedded solid torus.

The fact that the metric can be assumed to be the round one in the complement
of an embedded solid torus needs some explanation. When applying Theorem 3.3,
we take as ambient manifold the standard contact sphere .S3; �std/. Then, the contact
form whose Reeb field realizes a given area-preserving diffeomorphism of the disk
as a Poincaré map can be chosen to coincide with the standard contact form ˛std

outside a solid torus. To conclude, one can check that the metric associated to ˛ via
Theorem 1.1 can be taken to be the round one whenever ˛ coincides with ˛std.

Remark 6. The construction of a Turing complete Reeb flow in Theorem 3.3 is
obtained by choosing a particular reversible universal Turing machine and realiz-
ing its associated generalized shift as the first return map of the flow restricted to a
square Cantor set on a Poincaré section (see Proposition 3.2). Had we chosen another
reversible Turing machine (not necessarily universal), its dynamics would have been
induced in the square Cantor set via the first return map of a Reeb flow. We will use
this observation in Corollary 3.8.

3.3. Undecidable dynamical properties in Reeb dynamics

In this subsection, we prove some new corollaries that follow from our construction
in [9]. A straightforward implication of Theorem 3.3 is the existence of certain phe-
nomena of contact dynamics that are undecidable. Specifically, there is no algorithm
to assure that a Reeb trajectory will pass through a certain region of space in finite
time. The precise formulation of this result is the following:

Corollary 3.5. Let R be a Turing complete Reeb flow on .M; �/. Then there exist an
explicitly constructible compact set of points K � M and an explicit open set U � M

such that it is an undecidable problem to determine if the (positive) integral curve of
R through a point in K will intersect the set U or not.

A variation of our construction also allows us to construct a Reeb field R for
which there exist explicit points on M such that the problem of determining if the
orbit of R through each of these points is closed is undecidable. The fact that gen-
eralized shifts have orbits whose periodicity is undecidable was proved by Moore in
[19, Theorems 9 and 10]. In the lemma below, we give a complete formalization of
an argument in [17, Theorem 8] that is similar to Moore’s approach. This allows us
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to ensure that both properties required to prove Corollary 3.5 are satisfied: bijectivity
of the associated generalized shift (i.e., reversibility of the Turing machine) and the
equivalence between the halting of an input and the periodicity of the associated point
in the disk.

Lemma 3.6. There exists a Turing machine T 0 such that

(1) it is reversible;

(2) the image of the first component of the transition function ı does not con-
tain q0;

(3) it satisfies the “restart” property: if T 0 halts with input .q0; t /, then it halts
with output .qhalt; t /;

(4) T 0 is universal in the following sense: the halting of any Turing machine T

and input c0 is equivalent to the halting of T 0 for some explicit input (which
depends on T and c0).

We are now ready to prove the undecidability of determining whether a trajectory
is periodic or not.

Corollary 3.7. Let .M; �/ be a three-dimensional contact manifold. Then there is
a contact form ˛ defining � whose associated Reeb field R satisfies that there are
explicit points on M for which determining whether the orbit through one of those
points is periodic or not is an undecidable problem.

Proof. Let T D .Q; q0; qhalt; †; ı/ be a universal Turing machine as in Lemma 3.6.
We extend the transition function via ı.qhalt; t / D .q0; t; 0/, and construct a general-
ized shift � conjugate to T by a map '. Then given any input .q0; t /, the orbit of �

through '.q0; t / is periodic if and only if T halts with input .q0; t /.
The map � is bijective (since T is reversible), and by Proposition 3.2 we can find

an area-preserving diffeomorphism of the disk F W D ! D (which is the identity in a
neighborhood of the boundary) whose restriction to the square Cantor set is conjugate
to �. Using Proposition 3.3, we construct a contact form ˛ defining � whose Reeb
flow has a cross-section with a first return map that is conjugate to F . It is then
obvious that the orbit of the Reeb flow through a point representing an input of the
Turing machine is periodic if and only if T halts with such an input. The result then
follows from the undecidability of the halting problem.

Other special orbits can be constructed using the fact that the Turing machine is
universal. For example, it is possible to construct an explicit point p such that the orbit
of the Reeb flow through p is closed if and only if there is a counterexample to the
Riemann hypothesis (using a discrete equivalent formulation [27]), and similarly with
many other open problems in mathematics. This is achieved by constructing an initial
input associated to a Turing machine which halts upon finding a counterexample.
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Let us now give a proof of the auxiliary lemma (Lemma 3.6).

Proof of Lemma 3.6. As explained in [20, Section 6.1.2], we can find a reversible
universal Turing machine T D .Q; q0; qhalt; †; ı/ which satisfies property (2): the
initial state cannot be reached from any other state. Let us construct a universal Turing
machine T 0 starting from T , which satisfies (1), (2), and (3).

This Turing machine is of the form T 0 D .Q0; q0; qhalt; †; ı0/. The space of states
Q0 is given by

Q0
D

�
Q0 � ¹�1;C1º

�
[ ¹q0; qhaltº;

where Q0 WD Q n ¹q0º. We basically take two copies of each state in Q except for q0,
and add q0; qhalt. The sign in ¹�1;C1º denotes the “direction” of the computation,
a concept that will become clear in the construction. To simplify, for any state q 2

Q n ¹q0; qhaltº, we denote qC D q � ¹C1º 2 Q0 and q� D q � ¹�1º 2 Q0. The halting
state of T 0 is qhalt, even if there are two additional states qhalt � ¹1º and qhalt � ¹�1º

that we denote by qC
halt and q�

halt.
For any input of T , given by .q0; t /, we associate the input .q0; t / of T 0. For any

pair of the form .qC; t / with q 2 Q n ¹q0; qhaltº, we define the transition function of
T 0 exactly as the transition function ı. To formalize this, we introduce the notation
. Qq; Qt0; "/ D ı.q; t0/. Then

ı0.qC; t0/ WD . QqC; Qt0; "/:

This is always well defined since Qq is never equal to q0. Similarly, for the initial state
q0 we also use the notation . Qq; Qt0; "/ D ı.q0; t0/ and we define

ı0.q0; t0/ WD . QqC; Qt0; "/:

When the machine reaches the state qC
halt (which happens when T halts with that

input), we reverse the computation by defining

ı0.qC
halt; t0/ WD .q�

halt; t0; 0/: (3.1)

The idea now is that instead of halting with the output of T , we swapped to a
“reverse the computations” phase to undo the computations. For the states q�

halt and
q� with q 62 ¹q0; qhaltº, we define T 0 as the inverse Turing machine: a step of T 0 for
a pair the form .q�; t0/ is given by T �1. See for instance [20, Section 5.1.4] for the
construction of the inverse machine T �1, which is also reversible. Denote by ı�1 the
transition function of T �1; notice that ı�1 is not defined on the state q0 by property
(2). Then, for q 2 Q n ¹q0; qhaltº, if we set ı�1.q; t0/ D . Qq; Qt0; "/, we define

ı0.q�; t0/ WD . Qq�; Qt0; "/ if Qq ¤ q0:
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If ı�1.q; t0/ D .q0; Qt0; "/, it means that we have returned to the input configuration
so we can define instead

ı0.q�; t0/ WD .qhalt; Qt0; "/: (3.2)

Similarly, for q�
halt, if ı�1.qhalt; t0/ D . Qq; Qt0; "/, we define

ı0.q�
halt; t0/ D . Qq�; Qt0; "/ if Qq ¤ q0

and if Qq D q0, then
ı0.q�

halt; t0/ D .qhalt; Qt0; "/: (3.3)

Notice that the image state Qq via ı�1 cannot be qhalt because the transition function ı

is not defined when q D qhalt.
The global transition function of T 0 on configurations with states q0; qC coincides

with the global transition function of T , where qC
halt is identified with the halting

state of T . Accordingly, it is injective there. Similarly, the global transition function
on configurations with states q� and qhalt coincides with that of T �1, where qhalt

is identified with the halting state of T 0 and q�
halt is identified with the initial state

of T 0. So it is also injective there. Each configuration with state qC
halt is sent to the

same configuration with state q�
halt in a trivial injective way. Summarizing, the global

transition function of T 0 is injective everywhere so T 0 is reversible
The machine T 0 satisfies (2), since q0 cannot be reached from ı, and in our con-

struction we attain qhalt instead of q0 when ı�1 is applied according to equation (3.3).
The machine is universal since its halting is equivalent to the halting of T . Indeed,
observe that the states of the form q� in T 0 can only be reached if T halted, and qhalt

can only be reached through negative states. This shows that if T does not halt with
input .q0; t /, then T 0 does not halt. On the other hand, if T halts, T 0 will eventu-
ally reach a negative state, reverse the computation, and reach qhalt. In fact, T halts
with input .q0; t / if and only if T 0 halts with the same input. This shows that T 0 is
universal.

Property (3) is also satisfied by construction. Whenever T 0 halts with input .q0; t /,
it will reach a qC

halt, then q�
halt and reverse the computation to halt with configuration

.qhalt; t /.

Remark 7. Since any Turing machine can be simulated by a reversible Turing ma-
chine that satisfies property (2) (see e.g. [20, Section 6.1.2]), the construction pre-
sented in the proof of Lemma 3.6 allows one to start from any reversible Turing
machine T , obtaining a reversible Turing machine T 0 which halts on the same inputs
than T and has the “restart” property. In particular, any undecidable property associ-
ated to the inputs of T that halt is inherited by the inputs of T 0.

Finally, we can mention a corollary which serves as a sample of dynamical prop-
erties of Reeb flows which simulate Turing machines that can be easily shown to be
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undecidable. Such undecidable properties are inherent to Turing machines and their
associated generalized shifts [19, Theorem 10]. A key ingredient is Rice’s theorem in
computability theory, which in particular shows that non-trivial questions about the
set of inputs for which the Turing machine halts are undecidable [25]. For example,
Rice’s theorem shows that there is no algorithm that can decide, for any given Turing
machine, if there are at least k inputs that halt. From a logical point of view, this
implies that there is at least one Turing machine for which determining if there are at
least k inputs that halt is undecidable in the logical sense (i.e., the statement cannot
be proved or disproved).

The following result is then a straightforward consequence of the previous dis-
cussion, Remark 7, Remark 6, and the existence of reversible Turing machines for
which, respectively, determining if the set of inputs that halt has cardinality at least
k � 0, is dense (in the set of all inputs) or has certain measure in the set of all inputs
is undecidable in the logical sense.

Corollary 3.8. Let .M; �/ be a three-dimensional contact manifold. Then there is a
contact form ˛ defining � and an explicit set of points K � M for which the following
questions on the dynamics of R are undecidable (from the logical point of view, we
remark that ˛ depends on each question):

� Are there at least k � 0 points in K whose orbit is periodic?

� Is the set of points in K whose orbit is periodic dense in K?

� For a given � > 0, is the set of points in K whose orbit is periodic of measure
greater than �?

In the previous corollary, the set K is simply the set of points associated to inputs
of the Turing machine in the square Cantor set of the disk-like Poincaré section of the
flow (these points lie on a finite union of blocks of the square Cantor set; see [9]).

Other dynamical properties of generalized shifts were proved to be undecidable
by Moore, and could probably be adapted to establish analogous undecidability state-
ments for Reeb flows. This includes convergence of orbits to a given point or the
computability of Lyapunov exponents on a given invariant set (the orbits through the
square Cantor set).

4. Time-dependent solutions of Euler and Navier–Stokes

In the previous sections, we have focused on stationary solutions to the Euler equa-
tions, first in high dimensions as a consequence of a new h-principle for Reeb embed-
dings, and then in dimension three using the power of symbolic dynamics. However,
recall that the original motivation in [28–30] was to find a Turing complete time-
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dependent solution. The time-dependent Euler equations on a Riemannian manifold
.M; g/ define a dynamical system on the space of volume-preserving vector fields of
the ambient manifold X1

vol.M/. The following definition of Turing completeness is
adapted to this context by analogy with Definition 3.1.

Definition 4.1. Let .M;g/ be a Riemannian manifold. The Euler equations on .M;g/

are Turing complete if the following property is satisfied. For any integer k � 0, given
a Turing machine T , an input tape t , and a finite string .t�

�k
; : : : ; t�

k
/ of symbols of

the alphabet, there exist an explicitly constructible vector field X0 2 X1
vol.M/ and a

constructible open set U � X1
vol.M/ such that the solution to the Euler equations with

initial datum X0 is smooth for all time and intersects U if and only if T halts with an
output tape whose positions �k; : : : ; k correspond to the symbols t�

�k
; : : : ; t�

k
.

In our recent article [7], we use a remarkable embedding theorem by Torres de
Lizaur [31] (building on a previous embedding theorem into time-dependent Euler
flows by Tao [28]) and the construction of Turing complete polynomial non-autono-
mous ODEs [14], to obtain Turing complete time-dependent solutions to the Euler
equations:

Theorem 4.2 ([7]). There exists a (constructible) compact Riemannian manifold
.M; g/ such that the Euler equations on .M; g/ are Turing complete. In particular,
the problem of determining whether a certain solution to the Euler equations with
initial datum X0 will reach a certain open set U � X1

vol.M/ is undecidable.

This solves the question of the Turing universality of the time-dependent Euler
equations in high dimensions with general Riemannian metrics.

We finish this article presenting an application of Corollary 3.4 in the context of
the Navier–Stokes equations (following [8]). These equations describe the dynamics
of an incompressible fluid flow with viscosity. On a Riemannian 3-manifold .M; g/,
they read as [1] 8̂̂<̂

:̂
@
@t

X CrXX � ��X D �rp;

div X D 0;

X.t D 0/ D X0;

(4.1)

where � > 0 is the viscosity. In what follows, the differential operators are computed
with respect to the metric g, and � stands for the Hodge Laplacian (whose action on
a vector field is defined as �X WD .�X [/]).

Let us analyze what happens with the solution X.t/ when we take the Turing
complete vector field X0 constructed in Corollary 3.4 as initial condition (for the
Navier–Stokes equations with the metric g that makes X0 a stationary Euler flow).
Specifically, using that curlg.X0/ D X0, the solution to equation (4.1) with initial
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datum X.t D 0/ D MX0, M > 0 a real constant, is easily seen to be8<:X.�; t / D MX0.�/e��t ;

p.�; t / D c0 �
1
2
M 2e�2�tg.X0; X0/;

(4.2)

for any constant c0. The integral curves (fluid particle paths) of the non-autonomous
field X solve the ODE

dx.t/

dt
D Me��tX0

�
x.t/

�
:

Accordingly, reparametrizing the time as

�.t/ WD
M

�
.1 � e��t /;

we show that the solution x.t/ can be written in terms of the solution y.�/ of the
ODE

dy.�/

d�
D X0

�
y.�/

�
;

as
x.t/ D y

�
�.t/

�
:

When t !1, the new reparametrized “time” � tends to M
�

, and hence the integral
curve x.t/ of the solution to the Navier–Stokes equations travels the orbit of X0 just
for the time interval � 2 Œ0; M

�
/. In particular, the flow of the solution X only simulates

a finite number of steps of a given Turing machine, so we cannot deduce the Turing
completeness of the Navier–Stokes equations using the vector field MX0 as initial
condition. More number of steps of a Turing machine can be simulated if � ! 0 (the
vanishing viscosity limit) or M !1 (the L2 norm of the initial datum blows up). For
example, to obtain a universal Turing simulation we can take a family ¹MkX0ºk2N of
initial data for the Navier–Stokes equations, where Mk !1 is a sequence of positive
numbers. The energy (L2 norm) of this family is not uniformly bounded, so it remains
as a challenging open problem to know if there exists an initial datum of finite energy
that gives rise to a Turing complete solution of the Navier–Stokes equations.
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Lefschetz fibrations, open books, and symplectic fillings of
contact 3-manifolds

Burak Ozbagci

Abstract. Ever since Donaldson showed that every closed symplectic 4-manifold admits a
Lefschetz pencil and Giroux proved that every closed contact 3-manifold admits an adapted
open book decomposition, Lefschetz fibrations and open books have been used fruitfully to
obtain significant results about the topology of symplectic 4-manifolds and contact 3-manifolds.
In this expository article, we present the highlights of our contribution to the subject at hand
based on joint work with several coauthors during the past twenty years.

1. Introduction

At the turn of the century, two groundbreaking results have surfaced which had a
long-lasting impact on the study of global topology of symplectic 4-manifolds and
contact 3-manifolds. These results respectively are Donaldson’s existence theorem
[19] about Lefschetz pencils on closed symplectic 4-manifolds and Giroux’s corre-
spondence [30] between open books and contact structures on closed 3-manifolds.

In the first half of this short expository article, we briefly review the results of
Donaldson and Giroux. In the last half, we first present an analogous result on Stein
domains of complex dimension two, with an eye towards some applications to the
study of the topology of symplectic fillings of contact 3-manifolds. Then we demon-
strate how Lefschetz fibrations and open books interact with the classical theory of
complex surface singularities as well as trisections of arbitrary smooth 4-manifolds,
which were relatively recently discovered by Gay and Kirby [25].
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Keywords. Lefschetz fibration, open book decomposition, contact 3-manifold, symplectic
4-manifold, Stein surface, singularity link, trisection.
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2. Topological characterization of symplectic 4-manifolds

Suppose that X and † are compact, oriented, and smooth manifolds of dimensions
four and two, respectively, possibly with nonempty boundaries.

Definition 2.1. A Lefschetz fibration � W X ! † is a submersion except for finitely
many points ¹p1; : : : ; pkº in the interior of X , such that around each pi and �.pi /,
there are orientation-preserving complex charts, on which � is of the form �.z1;z2/D

z2
1 C z2

2 .

The topology of Lefschetz fibrations is well understood with multiple points of
view. We advise the reader to turn to the book [33] of Gompf and Stipsicz for an
excellent introduction to the subject.

Lefschetz critical points can be viewed as complex analogs of Morse critical
points, and they correspond to 2-handles. As a result, one obtains a handle decom-
position of the 4-manifold X . Since a Lefschetz fibration is locally trivial in the
complement of finitely many singular fibers, it can also be described combinatori-
ally by means of its monodromy. Locally, the fiber of the map .z1; z2/ ! z2

1 C z2
2

above 0 ¤ t 2 C is smooth (topologically an annulus), while the fiber above the ori-
gin has a transverse double point (aka nodal singularity) and is obtained from the
nearby fibers by collapsing an embedded simple closed curve called the vanishing
cycle, as illustrated in Figure 1.

Let � W X ! † be a Lefschetz fibration and let 
 be a loop in † enclosing a
single critical value, whose critical fiber has a single node. Then � restricts to surface
fibration over 
 , whose monodromy (a diffeomorphism of the fiber) is given by the
right-handed Dehn twist about the vanishing cycle, as depicted in Figure 2.

For the purposes of this article, we assume that each singular fiber carries a unique
singularity and there are no homotopically trivial vanishing cycles. Moreover, we
restrict our attention to the following two cases.

First case, † D S2, @X D ;, and hence the fibers are closed surfaces. Suppose that
q1; : : : ; qk 2 D2 � S2 are the critical values of a genus g Lefschetz fibration � W X !

S2. Let q0 2 D2 be a regular value and for each 1 � i � k, let 
i � D2 be a loop
based at q0 enclosing a single critical value qi as shown in Figure 3. By the discussion
above, the monodromy of the fibration over each 
i is a positive Dehn twist along the
corresponding vanishing cycle.

Since the fibration � is trivial over the complement S2 n D2, the product of pos-
itive Dehn twists along the vanishing cycles is isotopic to the identity. The upshot is
that a Lefschetz fibration � W X ! S2 is characterized by a positive Dehn twist fac-
torization of the identity element in Mapg , the mapping class group of an oriented
closed surface of genus g.
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Figure 1. A nodal singularity.
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Figure 4. Fibers in a Lefschetz fibration.
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Figure 5. Blowing up the base-locus of a Lefschetz pencil.

Second case, † D D2, the fibers have nonempty boundary and hence @X ¤ ;. In
this case, the global monodromy over the boundary of the base disk D2 is a product
of positive Dehn twists in Mapg;r (the mapping class group of an oriented genus g

surface with r > 0 boundary components), with no other constraints (see Figure 4).
Moreover, @X inherits a natural open book decomposition, which we will discuss in
details later in Section 3.

Definition 2.2. A Lefschetz pencil on a closed and oriented 4-manifold X is a map
� W X � ¹b1; : : : ; bnº ! S2, submersive except for a finite set ¹p1; : : : ; pkº, conform-
ing to local models

(i) .z1; z2/ ! z1=z2 near each bi and

(ii) .z1; z2/ ! z2
1 C z2

2 near each pj .

By blowing up X at the base-locus ¹b1; : : : ; bnº, we obtain a Lefschetz fibration

X # n CP 2
! S2

with n disjoint sections, which are the exceptional spheres in the blow-up, as illus-
trated in Figure 5.
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In the early twentieth century, Lefschetz showed that every algebraic surface (4-
manifold arising as the zero-locus of a collection of homogeneous polynomials in
CP n) admits “Lefschetz” pencils, which enabled him to study the topology of alge-
braic surfaces. This result was extended by Donaldson, to the case of the much larger
class of symplectic 4-manifolds (i.e., those admitting closed non-degenerate 2-forms).

Theorem 2.3 (Donaldson [19]). Any closed symplectic 4-manifold admits a Lefschetz
pencil.

For a sketch of the proof of Theorem 2.3 (other than Donaldson’s original papers
[18,19]), the interested reader may consult the lecture notes [6] of Auroux and Smith,
which is a wide-ranging survey, touching on the uses of Donaldon’s theory of Lef-
schetz pencils and their relatives in 4-dimensional topology and mirror symmetry.

Conversely, generalizing a similar result of Thurston [58] on surface bundles over
surfaces, Gompf [33] showed that if � W X ! † is a Lefschetz fibration for which the
fiber represents a non-torsion homology class,1 then X admits a symplectic structure
with symplectic fibers. As a corollary, he showed that any closed 4-manifold which
admits a Lefschetz pencil, is symplectic.

Combining the results of Donaldson and Gompf, we obtain a topological charac-
terization of symplectic 4-manifolds which has lead to a renewed interest in Lefschetz
pencils/fibrations and hundreds of papers have been devoted to the study of various
aspects and generalizations of Lefschetz fibrations, over the past twenty years. Here
is one of the earlier results.

Theorem 2.4 (Ozbagci and Stipsicz [47]). There are infinitely many pairwise non-
homeomorphic closed 4-manifolds, each of which admits a genus two Lefschetz fibra-
tion over S2 but does not carry complex structure with either orientation.2

The examples in Theorem 2.4 are obtained by fiber sums of genus two Lefschetz
fibrations S2 � T 2 # 4 CP 2

! S2 of Matsumoto [39], which also shows that fiber
sums of holomorphic Lefschetz fibrations are not necessarily holomorphic.

3. Topological characterization of contact 3-manifolds

Definition 3.1. An open book decomposition of a closed and oriented 3-manifold Y

is a pair .B; �/ consisting of an oriented link B � Y , and a locally trivial fibration
� W Y �B ! S1 such that B has a trivial tubular neighborhood B �D2 in which � is

1This hypothesis is automatically satisfied if the fiber genus is not equal to one.
2This result was independently observed by Ivan Smith.
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binding

page

Figure 6. I am an open book! Figure 7. .2; 3/-torus knot (the trefoil).

given by the angular coordinate in the D2-factor (see Figure 6). Here B is called the
binding and the closure of each fiber of � , which is a Seifert surface for B , is called
a page.

Example 3.2 (Milnor’s fibration). Consider the polynomial f W C2 ! C given by
f .z1; z2/ D z

p
1 C z

q
2 , where p; q � 2 are relatively prime. Then B D f �1.0/ \ S3

is the .p; q/-torus knot in S3 whose complement fibers over S1:

� W S3
� B ! S1

WD
f .z1; z2/ˇ̌
f .z1; z2/

ˇ̌ :

Hence .B; �/ is an open book for S3 with connected binding. The torus knot for the
case p D 2 and q D 3 is depicted in Figure 7.

For any given open book, one can choose a vector field which is transverse to the
pages and meridional near the binding. Then the isotopy class of the first return map
on a fixed page is called the monodromy of the open book. The topology of an open
book is determined by the topology of its page and its monodromy.

Suppose that � W X ! D2 is a Lefschetz fibration such that the regular fiber F

has nonempty boundary @F . Then @X is the union of two pieces:

� the horizontal boundary, @F � D2 (see Figure 8) and

� the vertical boundary, ��1.@D2/ (see Figure 9),

glued together along the tori @F � @D2. It follows that @X inherits a natural open
book, whose page is the fiber F and whose monodromy coincides with the mon-
odromy of the Lefschetz fibration � W X ! D2.

A differential 1-form ˛ on a 3-manifold Y is called a contact form if ˛ ^ d˛ is
a volume form. A 2-dimensional distribution � in T Y is called a contact structure if
it can be given as the kernel of a contact form ˛. The pair .Y; �/ is called a contact
3-manifold.
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Figure 8. The vertical boundary: ��1.@D2/.
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Figure 9. The horizontal boundary: @F �D2.

There are no local invariants of contact structures by Darboux’s theorem, which
says that any point in a contact 3-manifold has a neighborhood isomorphic to a neigh-
borhood of the origin in the standard contact structure � D ker.dz C xdy/ in R3,
which is depicted in Figure 10.

We advise the reader to turn to the book [28] of Geiges, for a thorough introduc-
tion to contact topology in general dimensions and to the book [49] of Stipsicz and
the author for a rapid course in dimension 3.

A classical theorem of Alexander [5] says that every closed oriented 3-manifold
admits an open book decomposition and Martinet [38] showed that every closed ori-
ented 3-manifold carries a contact structure. In 1975, Thurston and Winkelnkemper
[59] presented an alternate proof of Martinet’s theorem by constructing contact forms
on closed 3-manifolds using open books.

Definition 3.3. A contact structure � on a 3-manifold Y is said to be supported by
an open book .B; �/ if � can be given by a contact form ˛ such that ˛.B/ > 0 and
d˛ > 0 on every page.

In view of Definition 3.3, the result of Thurston and Winkelnkemper can be
rephrased as follows: every open book on a closed oriented 3-manifold supports a
contact structure.

The converse (i.e., every contact structure on a closed oriented 3-manifold is sup-
ported by an open book) was proven by Giroux. In fact, he proved the following
theorem, which is known as Giroux’s correspondence.

Theorem 3.4 (Giroux [30]). On a closed oriented 3-manifold, there is a one-to-one
correspondence between the set of isotopy classes of contact structures and open
books up to positive stabilization.
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x

y

z

Figure 10. The standard contact structure � D ker.dz C xdy/ in R3.

For a detailed sketch of the proof of Theorem 3.4, we refer to Etnyre’s lecture
notes [21].

4. Topological characterization of Stein domains of complex
dimension two

Definition 4.1. A Stein manifold is an affine complex manifold, i.e., a complex man-
ifold that admits a proper holomorphic embedding into some CN .

Suppose that �W X ! R is a smooth function on a complex manifold .X; J /.
Let !� denote the 2-form �d.d� ı J /. Then the map �W X ! R is called J -convex
(aka strictly plurisubharmonic) if !�.u; J u/ > 0 for all nonzero vectors u 2 TX . It
follows that !� is an exact symplectic form on X .
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Grauert’s characterization. A complex manifold .X; J / is Stein if and only if it
admits a proper J -convex function �W X ! Œ0;1/.

We advise the reader to turn to the book [17] of Eliashberg and Cieliebak, for
a meticulous treatment of Stein (and Weinstein) manifolds. For the purposes of this
article, we now restrict our attention to Stein surfaces (of complex dimension two),
for which the reader may consult [32] for an elaborate discussion.

Suppose that .X; J / is a Stein surface. For any proper J -convex Morse function
�W X ! Œ0; 1/, each regular level set Y of � is a contact 3-manifold, where the
contact structure is given by the kernel of ˛� D �d� ı J or, equivalently, by the
complex tangencies T Y \ JT Y . For any regular value c of �, the sublevel set W D

��1.Œ0; c�/ is called a Stein domain. We also say that the compact 4-manifold .W; J /

is a Stein filling of its contact boundary .@W; ker ˛�/.
By the work of Eliashberg [20] and Gompf [32] a handle decomposition of a

Stein domain .W; J / is well understood: it consists of a 0-handle, some 1-handles,
and some 2-handles attached along Legendrian knots (those tangent to the contact
planes) with framing �1 relative to the contact planes.

The following theorem, whose proof is based on the handle decomposition above,
is somewhat analogous to Donaldson’s theorem on the existence of Lefschetz pencils
on closed symplectic manifolds.

Theorem 4.2 (Akbulut and Ozbagci [1] and Loi and Piergallini [36]). A Stein domain
admits an allowable3 Lefschetz fibration over D2 and, conversely, any allowable Lef-
schetz fibration over D2 admits a Stein structure.

Moreover, by modifying the proof of Akbulut and the author, Plamenevskaya
[52] showed that the contact structure induced on the boundary of the Stein domain is
supported by the open book inherited by the Lefschetz fibration. As a result we have
the diagram

Lefschetz fibration

allowable

Stein domain

open bookcontact structure

which gives a criterion for Stein fillability: a contact 3-manifold is Stein fillable if
and only if it admits a supporting open book whose monodromy can be factorized
into positive Dehn twists.4

3The vanishing cycles are homologically non-trivial.
4This was independently proved by Giroux.
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Definition 4.3. A compact symplectic 4-manifold .X; !/ is a (strong) symplectic fill-
ing of a contact 3-manifold .Y; �/ if @X D Y (as oriented manifolds), ! is exact near
the boundary, and its primitive ˛ can be chosen so that ker.˛jY / D � . A symplectic
filling is called minimal if it does not contain any symplectically embedded sphere of
self-intersection �1.

An active line of research in symplectic/contact topology is to classify all Stein
fillings or more generally all minimal symplectic fillings of a given contact 3-mani-
fold, up to diffeomorphism. It is clear by definition that every Stein filling is a minimal
symplectic filling. The converse, however, is not true as shown by Ghiggini [29],
using the celebrated Ozsváth–Szabó contact invariants [50].

The classification of Stein or more generally minimal symplectic fillings of a
given contact 3-manifold is difficult in general. Nevertheless, this problem has been
solved for many contact 3-manifolds, each of which has finitely many fillings. See
the author’s survey article [46] for the state of affairs until 2015.

The existence of a contact 3-manifold which admits infinitely many distinct Stein
fillings was discovered by Stipsicz and the author. Let Yg denote the closed 3-mani-
fold, which is the total space of the open book whose page is a genus g surface with
connected boundary and whose monodromy is the square of the boundary Dehn twist.
Let �g denote the contact structure on Yg supported by this open book.

Theorem 4.4 (Ozbagci and Stipsicz [48]). For each odd integer g � 3, the contact
3-manifold .Yg ; �g/ admits infinitely many pairwise non-homeomorphic Stein fillings.

Outline of proof. A positive word in Mapg , for g � 3 (generalizing Matsumoto’s
genus two word [39]), was discovered independently by Cadavid [12] and Korkmaz
[34]. For g odd, the word is .c0c1c2 � � � cga2b2/2 D 1, where, by an abuse of nota-
tion, each letter represents the right-handed Dehn twist along the curve decorated
with the same letter, depicted in Figure 11. For each odd integer g � 3, there is a
Lefschetz fibration over S2, which corresponds to the aforementioned word. First we
take (twisted) fiber sums of two copies of this Lefschetz fibration over S2 and then
remove a regular neighborhood of the union of a section and a regular fiber to get
Stein fillings of the common contact boundary. The Stein fillings are distinguished
by the torsion in their first homology groups, coming from the twistings in the fiber
sums.

Remark 4.5. For a fixed odd integer g � 3, all the Stein fillings mentioned in Theo-
rem 4.4 have the same Euler characteristic and the signature. In contrast, Baykur and
Van Horn-Morris [8] showed that there are vast families of contact 3-manifolds each
member of which admits infinitely many Stein fillings with arbitrarily large Euler
characteristics and arbitrarily small signatures.
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Figure 11. Curves on a genus g surface, for odd g.

5. Canonical contact structures on the links of isolated complex
surface singularities

A fruitful source of Stein fillable contact 3-manifolds is given by the links of isolated
complex surface singularities. Let .X; 0/ � .CN ; 0/ be an isolated complex surface
singularity. Then for a sufficiently small sphere S2N�1

" � CN centered at the origin,
Y D X \ S2N�1

" is a closed, oriented, and smooth 3-dimensional manifold, which is
called the link of the singularity.

If J denotes the complex structure on X , then the plane field given by the com-
plex tangencies � WD T Y \ JT Y is a contact structure on Y —called the canonical
(aka Milnor fillable) contact structure on the singularity link. The contact 3-manifold
.Y; �/ is called the contact singularity link. Note that � is determined uniquely, up to
isomorphism, by a theorem of Caubel, Némethi, and Popescu-Pampu [14].

We advise the reader to turn to the comprehensive lecture notes [54] of Popescu-
Pampu for an introduction to complex singularity theory and its relation to contact
topology.

The minimal resolution of an isolated complex surface singularity provides a
Stein filling of its contact singularity link .Y; �/, by the work of Bogomolov and
de Oliveira [11]. Moreover, if the singularity is smoothable, the general fiber X of
a smoothing is called a Milnor fiber, which is a compact smooth 4-manifold such
that @X D Y . Furthermore, X has a natural Stein structure so that it provides a Stein
(hence minimal symplectic) filling of .Y; �/. Therefore, a natural question arises as
follows (see, for example, [41]): Does there exist a contact singularity link which
admits Stein (or minimal symplectic) fillings other than the Milnor fibers (and the
minimal resolution)?

The answer is negative for simple and simple elliptic singularities as shown by
Ohta and Ono [43–45]. The answer is negative for cyclic quotient singularities as
shown by the culmination of the work of several people: McDuff [40], Christophersen
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[16], Stevens [56], Lisca [35], and Némethi and Popescu-Pampu [42]. The answer is
negative for non-cyclic quotient singularities as well by the work of Stevens [57],
Bhupal and Ono [9], and H. Park, J. Park, Shin, and Urzúa [51].

The first examples where the answer is affirmative were discovered by Akhmedov
and the author.

Theorem 5.1 (Akhmedov and Ozbagci [3]). There exists an infinite family of Seifert
fibered contact singularity links such that each member of this family admits infinitely
many exotic5 Stein fillings. Moreover, none of these Stein fillings are homeomorphic
to Milnor fibers.

The exotic fillings mentioned in Theorem 5.1 are not simply connected. The first
examples of infinitely many exotic simply-connected Stein fillings were discovered
by Akhmedov, Etnyre, Mark, and Smith [2].

Moreover, Plamenevskaya and Starkston [53] recently showed that many rational
singularities admit simply-connected Stein fillings that are not diffeomorphic to any
Milnor fibers.

Theorem 5.2 (Akhmedov and Ozbagci [4]). For any finitely presented group G, there
exists a contact singularity link which admits infinitely many exotic Stein fillings such
that the fundamental group of each filling is G.

Some key ingredients in the proofs of Theorem 5.1 and Theorem 5.2 are Lut-
tinger surgery [37], symplectic sum [31], Fintushel–Stern knot surgery [24], and the
Seiberg–Witten invariants [61].

We now turn our attention to Lefschetz fibrations on minimal symplectic fillings
of lens spaces. Let � denote the canonical contact structure on the lens space L.p; q/,
which is the link of a cyclic quotient surface singularity. The minimal symplectic fill-
ings of .L.p; q/; �/ have been classified by Lisca [35], generalizing the classification
by McDuff [40] for .L.p; 1/; �/.

Theorem 5.3 (Bhupal and Ozbagci [10]). There is an algorithm to describe any min-
imal symplectic filling of .L.p; q/; �/ as an explicit genus-zero allowable Lefschetz
fibration over D2. Moreover, any minimal symplectic filling of .L.p;q/;�/ is obtained
by a sequence of rational blowdowns6 starting from the minimal resolution of the cor-
responding cyclic quotient singularity.

Theorem 5.3 was recently extended to the case of non-cyclic quotient singularities
by H. Choi and J. Park [15].

5Homeomorphic but pairwise not diffeomorphic.
6Rational blow-down is a surgery operation discovered by Fintushel and Stern [23], where

a negative definite linear plumbing submanifold is replaced by a rational 4-ball.
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Remark 5.4. Since .L.p; q/; �/ is known to be planar [55], i.e., it admits a planar
open book that supports � , it also follows by a theorem of Wendl [60], that each
minimal symplectic filling of .L.p; q/; �/ is deformation equivalent to a genus-zero
allowable Lefschetz fibration over D2, although we have not relied on Wendl’s theo-
rem in our proof of Theorem 5.3.

6. Lefschetz fibrations and trisections

A handlebody is a compact manifold admitting a handle decomposition with a single
0-handle and some 1-handles. A trisection of a closed 4-manifold X is a decompo-
sition of X into three 4D-handlebodies, whose pairwise intersections are 3D-handle-
bodies and whose triple intersection is a closed embedded surface.

A trisection of a 4-manifold is analogous to a Heegaard splitting of a closed 3-
manifold, which is a decomposition into two 3D-handlebodies whose intersection is
an embedded surface. Moreover, trisections can be presented by trisection diagrams,
similar to the Heegaard diagrams. We refer to Gay’s lecture notes [27] for a gentle
introduction to trisections of 4-manifolds.

Theorem 6.1 (Gay and Kirby [25]). Every closed oriented 4-manifold admits a tri-
section.

Based on a splitting of an arbitrary closed 4-manifold into two achiral7 Lefschetz
fibrations over D2 due to Etnyre and Fuller [22] and a gluing technique for rela-
tive trisections for 4-manifolds with boundary, Castro and the author [13] obtained
an alternate proof of Theorem 6.1 using Lefschetz fibrations and contact geometry,
instead of Cerf theory as utilized by Gay and Kirby. The following result is an appli-
cation of this alternate proof.

Theorem 6.2 (Castro and Ozbagci [13]). Suppose that X is a closed, oriented 4-
manifold which admits a Lefschetz fibration over S2 with a section of square �1.
Then, an explicit trisection of X can be described by a corresponding trisection dia-
gram, which is determined by the vanishing cycles of the Lefschetz fibration.

We would like to point out that Gay [26] also constructed a trisection of any 4-
manifold which admits a Lefschetz pencil, turning one type of decomposition into
another, but without describing an explicit trisection diagram.

Remark 6.3. Baykur and Saeki [7] obtained yet another proof of Theorem 6.1, set-
ting up a correspondence between broken Lefschetz fibrations and trisections, using

7Possibly including nodes with opposite orientation.
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Figure 12. A trisection diagram for the Horikawa surface H 0.1/.

a method which is very different from ours. They also proved a stronger version of
Theorem 6.2.

Example 6.4 ([13]). The Horikawa surface H 0.1/, a simply-connected complex sur-
face of general type, admits a genus two Lefschetz fibration over S2 with a section of
square �1. The trisection diagram obtained by applying Theorem 6.2 is depicted in
Figure 12. Notice that H 0.1/ is an exotic copy of 5 CP 2 # 29 CP 2.
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Finite groups of birational transformations

Yuri Prokhorov

Abstract. We survey new results on finite groups of birational transformations of algebraic
varieties.

1. Introduction

We work over a field k of characteristic 0. Typically, unless otherwise mentioned,
we assume that k is algebraically closed. The Cremona group Crn.k/ of rank n is
the group of k-automorphisms of the field k.x1; : : : ; xn/ of rational functions in n
independent variables. Equivalently, Crn.k/ can be viewed as the group of birational
transformations of the projective space P n. It is easy to show that for nD 1, the group
Crn.k/ consists of linear projective transformations:

Cr1.k/ D PGL2.k/:

On the other hand, for n � 2, the group Crn.k/ has an extremely complicated struc-
ture. In particular, it contains linear algebraic subgroups of arbitrary dimension and
has a lot of normal non-algebraic subgroups [18,24]. We refer to [3,22,23,38,48,95]
for surveys, historical résumés, and introductions to the subject.

Examples. (i) Any matrix A D kai;j k 2 GLn.Z/ defines an element 'A 2 Crn.k/
via the following action on k.x1; : : : ; xn/:

'A W xi 7! x
a1;i

1 x
a2;i

2 � � � x
an;i
n :

Such Cremona transformations are called monomial. For n D 2 and A D �id, the
transformation 'A is known as the standard quadratic involution

.x1; x2/ 7! .x�1
1 ; x�1

2 /:

2020 Mathematics Subject Classification. Primary 14E07; Secondary 14J50, 14J45, 14E30.
Keywords. Cremona group, birational transformation, Fano variety, minimal model program.

https://creativecommons.org/licenses/by/4.0/


Y. Prokhorov 414

(ii) Let S be an algebraic variety admitting a generically finite rational map

� W S Ü P n�1

of degree 2. In an affine piece and suitable coordinates, S can be given by the equation
y2 D f .x1; : : : ; xn�1/. One can associate with .S;�/ an involution � 2 Crn.k/ acting
on k.x1; : : : ; xn�1; y/ via

� W .x1; : : : ; xn�1; y/ 7!
�
x1; : : : ; xn�1; f .x1; : : : ; xn�1/ � y

�1
�
:

If n D 2 and S is a hyperelliptic curve, then � is known as the de Jonquières involu-
tion.

The study of the Cremona group has a very long history. Basically, it was started
in earlier works of A. Cayley and L. Cremona, and since then, this group has been
the object of many studies. In these notes, we concentrate on the following particular
problem.

Problem 1.1. Describe the structure of finite subgroups of Crn.k/.

Note, however, that the projective space is not an exceptional variety from the
algebro-geometric point of view. So one can ask a similar question replacing Crn.k/
with the group of birational transformations Bir.X/ of an arbitrary algebraic variety
X . Hence it is natural to pose the following problem.

Problem 1.2. Describe the structure of finite subgroups of Bir.X/, where X is an
algebraic variety.

We deal with the most recent results related to these problems. Definitely, our
survey is not exhaustive.

2. Equivariant minimal model program

In this section, we collect basic facts on the so-called G-minimal model program
(abbreviated as G-MMP). This program is the main tool in the study of finite groups
of birational transformations. For a detailed exposition, we refer to [89].

LetG be a finite group. Following Yu. Manin [68], we say that an algebraic variety
X is a G-variety if it is equipped with a regular faithful action G Õ X , i.e., if there
exists an injective homomorphism ˛ WG ,!Aut.X/. A morphism (resp. rational map)
f W X ! Y of G-varieties is a G-morphism (resp. G-map) if there exists a group
automorphism ' W G ! G such that, for any g 2 G,

f ı ˛.g/ D ˇ
�
'.g/

�
ı f;
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where ˛ W G ,! Aut.X/ and ˇ W G ,! Aut.Y / are the embeddings corresponding to
the actions G Õ X and G Õ Y , respectively.

For anyG-varietyX , the actionGÕX induces an embeddingG ,!Autk.k.X//
to the automorphism group of the field of rational functions k.X/. Conversely, given
any finitely generated extension K=k and any finite subgroup G � Autk.K/, there
exists aG-varietyX and an isomorphism k.X/'k K inducingG � Autk.K/. Thus,
we have the following fact.

Proposition 2.1. Let K=k be finitely generated field extension. Then there exists a
1-1 correspondence between finite subgroups G � Autk.K/ considered modulo con-
jugacy and G-varieties X such that k.X/ 'k K considered modulo G-birational
equivalence.

Recall that a variety X is said to be rational if it is birationally equivalent to the
projective space P n or, equivalently, if the field extension k.X/=k is purely transcen-
dental.

Corollary. There exists a 1-1 correspondence between finite subgroups G � Crn.k/
considered modulo conjugacy and rationalG-varietiesX such that k.X/'k K con-
sidered modulo G-birational equivalence.

Next, due to the equivariant resolution theorem (see e.g. [1]), it is possible to
replace X with a smooth projective model.

Proposition 2.2 (see, e.g., [89, Lemma 14.1.1]). For any G-variety X , there exists a
smooth projective G-variety Y that is G-birationally equivalent to X .

Thus the above considerations allow us to reduce the problem of classification
of finite subgroups of Bir.X/ to the study of subgroups in Aut.Y /, where Y is a
smooth projective variety. The main difficulty arising here is that this G-variety Y is
not unique in its G-birational equivalence class. So, given G-birational equivalence
class of algebraic G-varieties, we need to choose some good representative in it. This
can be done by means of the G-MMP. The higher-dimensional MMP forces us to
consider varieties with certain very mild, so-called terminal singularities.

Definition. A normal variety X has terminal singularities if some multiple mKX of
the canonical Weil divisorKX is Cartier, and for any birational morphism f W Y !X ,
one can write

mKY D f �mKX C

X
aiEi ;

where Ei are all the exceptional divisors and ai > 0 for all i . The smallest positivem
such that mKX is Cartier is called the Gorenstein index of X .
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Definition. A G-variety X has GQ-factorial singularities if a multiple of any G-
invariant Weil divisor on X is Cartier.

It is important to note that terminal singularities lie in codimension � 3. In par-
ticular, terminal surface singularities are smooth.

Example ([72, 93]). Let the cyclic group �r act on A4 diagonally via

.x1; x2; x3; x4/ 7! .—x1; —
�1x2; —

ax3; x4/; —D —r D exp.2  i =r/; gcd.a; r/D 1:

Then for a polynomial f .u; v/, the singularity of the quotient®
x1x2 C f .xr

3; x4/ D 0
¯
=�r

at 0 is terminal whenever it is isolated.

The aim of the G-MMP is to replace a G-variety with another one, which is
“minimal” in some sense. As we mentioned above, running the G-MMP we have to
consider singular varieties, and the class of terminal GQ-factorial singularities is the
smallest class that is closed under the G-MMP.

Definition (For simplicity, we assume that k is uncountable). A varietyX is uniruled
if for a general point x 2X , there exists a rational curve C �X passing through x. A
variety X is rationally connected if two general points x1; x2 2 X can be connected
by a rational curve.

Note that a rationally connected surface is rational, and an uniruled surface is
birationally equivalent to C � P 1, where C is a curve.

Definition. Let Y be a G-variety with only terminal GQ-factorial singularities and
let f W Y ! Z be aG-equivariant morphism with connected fibers to a lower-dimen-
sional variety Z, where the action of G on Z is not necessarily faithful. Then f is
called G-Mori fiber space (abbreviated as G-Mfs) if the anti-canonical class �KY is
f -ample and rk Pic.Y=Z/G D 1. If Z is a point, then �KY is ample, and Y is called
GQ-Fano variety. Two-dimensionalGQ-Fano varieties are traditionally calledG-del
Pezzo surfaces.

Definition. A G-variety Y is said to be a G-minimal model if it has only terminal
GQ-factorial singularities and the canonical class KY is numerically effective (nef).

It is not difficult to show that the concepts of G-minimal model and G-Mori fiber
space are mutually exclusive. Moreover, if f W Y ! Z is a G-Mfs, then its general
fiber is rationally connected; hence Y is uniruled. On the other hand, a G-minimal
model is never uniruled [70]. The following assertions are usually formulated for
varieties without group actions. The corresponding equivariant versions can be easily
deduced from non-equivariant ones (see [89]).



Finite groups of birational transformations 417

Theorem 2.3 ([14]). Let X be an uniruled G-variety. Then there exists a birational
G-map X Ü Y , where Y has a structure of G-Mfs f W Y ! Z.

Conjecture 2.4. Let X be a non-uniruled G-variety. Then there exists a birational
G-map X Ü Y , where Y is a G-minimal model.

The conjecture is known to be true in dimension � 4 (see [73, 99]), as well as
in the case where KX is big [14], and in some other cases. In arbitrary dimension, a
weaker notion of quasi-minimal models works quite satisfactory [82].

3. Cremona group of rank 2

The G-MMP for surfaces is much more simple than in higher dimensions. It was
developed in the works of Yu. Manin and V. Iskovskikh (see [68]). In the two-dimen-
sional case, the G-MMP works in the category of smooth G-surfaces, and all the
birational transformations are contractions of disjoint unions of .�1/-curves. For a
G-Mfs f W Y ! Z, there are two possibilities:

(i) Z is a point and then Y is a G-del Pezzo surface,

(ii) Z is a curve, any fiber of f is a reduced plane conic and rk Pic.Y /G D 2.
In this case, f is called G-conic bundle.

Thus to study finite subgroups of Cr2.k/, one has to consider the above two classes
of G-Mfs’s in detail. The classification of del Pezzo surfaces is well known and very
short. Hence, to study the case (i) one has to list all finite subgroups G�Aut.Y / sat-
isfying the condition rk Pic.Y /G D 1. The full list was obtained by Dolgachev and
Iskovskikh [40]. In contrast, the class of conic bundles is huge and consists of an
infinite number of families. In this case, a reasonable approach is to find an algorithm
of enumerating conic bundles Y=Z together with subgroups G � Aut.Y=Z/ satisfy-
ing rk Pic.Y /G D 2. This also was done by Dolgachev and Iskovskikh [40] (see also
[103]). However, even using this algorithm, it is very hard to get a complete list of
corresponding groups.

As an example, we present a well-known classical result on the classification of
subgroups of order 2 in Cr2.k/. It was obtained by E. Bertini [12] in 1877; however,
his arguments were incomplete from a modern point of view. A new rigorous proof
was given by L. Bayle and A. Beauville [8].

Theorem 3.1. Let G D ¹1; �º � Cr2.k/ be a subgroup of order 2. Then the embed-
ding G�Cr2.k/ is induced by one of the following actions on a rational surface X :



Y. Prokhorov 418

� X and �

1o Linear involution P 2

2o de Jonquières involu-
tion of genus g � 1

X D ¹y1y2 D p.x1; x2/º � P .1; 1; g C 1; g C 1/

p is a homogeneous form of degree 2g C 2,
� is the deck involution of the projection

X
2W1
ÜP .1; 1; gC1/, .x1; x2; y1; y2/ 7!.x1; x2; y1Cy2/

3o Geiser involution X D ¹y2 D p.x1; x2; x3/º � P .1; 1; 1; 2/,
p is a homogeneous form of degree 4,
� is the deck involution of the projection

X
2W1
��! P .1; 1; 1/ D P 2

4o Bertini involution X D ¹z2 D p.x1; x2; y/º � P .1; 1; 2; 3/,
p is a quasihomogeneous form of degree 6,
� is the deck involution of the projection

X
2W1
��! P .1; 1; 2/

Here P .w1; : : : ; wn/ denotes the weighted projective space with corresponding
weights.

In the cases 1o, 3o, and 4o, the variety X is a del Pezzo surface of degree 9, 2,
and 1, respectively. In the case 2o, the projection X Ü P .1; 1/ D P 1 becomes a
G-conic bundle after blowing up the indeterminacy points.

The G-MMP was successfully applied for the classification of various classes
of finite subgroups in Cr2.k/: groups of prime order [36], p-elementary groups [9],
abelian groups [15,16], and finally, arbitrary groups [40]. Here is another example of
classification results.

Theorem 3.2 ([40]). LetG � Cr2.C/ be a finite simple group. ThenG is isomorphic
to one of the following:

A5; A6; PSL2.F7/;

where An is the alternating group of degree n and PSLn.Fq/ is the projective special
linear group over the finite field Fq .

Moreover, if G 6' A5, then the embedding G � Cr2.k/ is induced by one of the
following actions on a del Pezzo surface X :

G jGj X

A6 360 P 2

PSL2.F7/ 168 P 2

PSL2.F7/ 168 ¹y2 D x3
1x2 C x3

2x3 C x3
3x1º � P .1; 1; 1; 2/

A complete classification of embeddings A5 ,! Cr2.k/ can be found in [31].
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4. Cremona group of rank 3

The MMP in dimension 3 is more complicated than the two-dimensional one, but still,
it is developed very well. In particular, terminal threefold singularities are classified
up to analytic equivalence [72,93]. The structure of all intermediate steps of the MMP
and Mfs’s is also studied relatively well (see [89] for a survey).

For a three-dimensional G-Mori fiber space f W Y ! Z, there are three possibil-
ities:

(i) Z is a point, then Y is a (possibly singular) GQ-Fano threefold,

(ii) Z is a curve, then f is called a GQ-del Pezzo fibration,

(iii) Z is a surface, then f is a GQ-conic bundle.

A GQ-conic bundle can be birationally transformed into a standard G-conic bundle,
i.e., GQ-conic bundle such that both X and Z are smooth [6]. For GQ-del Pezzo
fibrations, there are only some partial results of this type (see [35,66]). Nevertheless,
the main difficulty in the application G-MMP to the classification of finite groups of
birational transformations is the lack of a complete classification of Fano threefolds
with terminal singularities. At the moment, only some very particular classes of GQ-
Fano threefolds are studied (see [4, 5, 52, 79, 80, 88] and references therein). Some
roundabout methods work in the case of “large” in some sense (in particular, simple)
finite groups.

Theorem 4.1 ([78]). LetG � Cr3.C/ be a finite simple subgroup. ThenG is isomor-
phic to one of the following:

A5; A6; A7; PSL2.F7/; PSL2.F8/; PSp4.F3/;

where PSp4.F3/ is the projective symplectic group over F3. All the possibilities occur.

This classification is a consequence of the following more general result.

Theorem 4.2 ([78]). Let Y be a rationally connected threefold and let G � Bir.Y /
be a finite simple group. If G is not embeddable to Cr2.C/, then Y is G-birationally
equivalent to one of the following GQ-Fano threefolds:

G X Rational?

1o A7 X 0
6 D ¹¢1;7 D ¢2;7 D ¢3;7 D 0º � P 5 � P 6 no

2o A7 P 3 yes
3o PSp4.F3/ P 3 yes
4o PSp4.F3/ Burkhardt quarticXb

4 D ¹¢1;6 D ¢4;6 D 0º � P 4 � P 5 yes
5o PSL2.F8/ Special Fano threefold Xm

12 � P 8 of genus 7 yes
6o PSL2.F11/ Klein cubicXk

3 D¹x1x
2
2 C x2x

2
3 C � � �x5x

2
1 D 0º�P 4 no

7o PSL2.F11/ Special Fano threefold X a
14 � P 9 of genus 8 no



Y. Prokhorov 420

Here ¢d;k D ¢d;k.x1; : : : ; xk/ is the elementary symmetric polynomial of degree
d in k variables.

Below we outline the proof of Theorem 4.2.
Assume that G is not embeddable to Cr2.k/, i.e., it is not isomorphic to any

of the groups listed in Theorem 3.2. First, Proposition 2.2 allows us to assume that
the action of G is regularized on some smooth projective G-variety X . By running
the equivariant MMP, we may assume that X has a structure of a G-Mfs f W X ! Z

(becauseX is rationally connected). Consider the case dimZ > 0. SinceG is a simple
group, it must act faithfully on the baseZ or on the general fiber F . Since the varieties
F and Z are rational, this means that G is contained in the plane Cremona group
Cr2.k/. The contradiction proves Theorem 4.2 in the case dimZ > 0.

Hence, we may further assume that Z is a point and X is a GQ-Fano threefold.
Consider the case where X is not Gorenstein, i.e., the canonical class KX is not a
Cartier divisor. It turns out that this case does not occur. Let P1; : : : ; Pn 2 X be all
non-Gorenstein points and let r1; : : : ; rn be the corresponding Gorenstein indices.
Arguments based on Bogomolov–Miyaoka inequality (see [55, 57] and [89, §12])
show that X�

ri �
1

ri

�
< 24:

Hence, n � 15. Then using the classification of transitive actions of simple groups
[33] and analyzing the action of stabilizers of Pi , one obtains the only possibility:

� n D 11, G ' PSL2.F11/, r1 D � � � D rn D 2.

This case is excluded by a more detailed geometric consideration (see [78, §6]).
Thus, we may assume thatKX is a Cartier divisor. In this case, according to [74],

the varietyX has a smoothing, that is, there exists a one-parameter flat family X=B 3

o such that the special fiber Xo is isomorphic to X , and a general geometric fiber Xt

is a smooth Fano threefold. Hence some discrete invariants of X , such as the Picard
lattice Pic.X/ and the anticanonical degree �K3

X , are the same as for smooth Fano
threefolds, which are completely classified (see [52]). Recall that the Fano index �.X/
of X is the maximal integer that divides the canonical class KX in the lattice Pic.X/
[52]. By [80], we have rk Pic.X/ � 4. Since Pic.X/G ' Z and a simple group that
is not isomorphic to A5 cannot have a nontrivial integer representation of dimension
� 4, we have rk Pic.X/D 1. If �.X/� 4 (resp, �.X/D 3), thenX is isomorphic to the
projective space P 3 (resp. a quadric in P 4) [52]. Then from the classification of finite
subgroups in PSL4.k/ and PSL5.k/, we get cases 2o and 3o. Three-dimensional Fano
varieties with �.X/D2 are called del Pezzo threefolds. G-Fano threefolds of this type
were studied in [79]. As a consequence of these results, we get the case of the group
G D PSL2.F11/ acting on the Klein cubic (case 6o).
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Finally, let Pic.X/ D Z �KX . Recall that in this case, the anticanonical degree is
written in the form �K3

X D 2 g.X/ � 2, where g.X/ 2 ¹2; 3; : : : ; 10; 12º [52]. For
g.X/ � 5, the variety X has a natural embedding to a (weighted) projective space as
a complete intersection [52]. Using this and some facts from representation theory,
we obtain for the group G two cases, 1o and 4o. The case g.X/ D 6 can be excluded
using [37, Corollary 3.11]. For g.X/ � 7, the variety X must be smooth (see [78,
Lemma 5.17] and [88]). Further, using some facts about automorphisms of smooth
Fano threefolds [63], we obtain for the group G two possibilities, 5o and 7o. This
completes our sketch of the proof of Theorem 4.2.

A similar technique was applied to the study of finite p-subgroups and quasi-
simple subgroups in Cr3.k/ (see [17, 64, 67, 77, 81, 86]).

Note that Theorem 4.2 does not describe embeddings of groups A5, A6, and
PSL2.F7/ to the space Cremona group. It is obvious that such embeddings exist,
but their full classification should be significantly more difficult. There are only some
partial results in this direction (see e.g. [26–29, 62]).

5. Jordan property

The methods and results of [40] show that one cannot expect a reasonable classifi-
cation of all finite subgroups of Cremona groups of higher rank. Thus it is natural to
concentrate on the study of general properties of these subgroups. Recall the follow-
ing two famous results by C. Jordan and H. Minkowski.

Theorem 5.1 ([53]). There exists a function j.n/ such that for any finite subgroup
G � GLn.C/, there exists a normal abelian subgroup A � G of index at most j.n/.

Theorem 5.2 ([69]). There exists a function b.n/ such that for every finite subgroup
G � GLn.Q/, one has jGj � b.n/.

J.-P. Serre [94, 96] asked if these properties hold for Cremona groups. Complete
answers to these questions were given in [82, 83] (see below). The following very
convenient definitions were suggested by V. L. Popov [75].

Definition. � A group � is Jordan if there exists a constant j.�/ such that any finite
subgroup G � � has a normal abelian subgroup A of index ŒG W A� � j.�/.

� A group � is bounded (or satisfy bfs property) if there exists a constant b.�/ such
that for any finite subgroup G � � , one has jGj � b.�/.

Rationally connected varieties

Theorem 5.3 ([13,83]). LetX be a rationally connected variety. Then Bir.X/ is Jor-
dan. Moreover, Bir.X/ is uniformly Jordan; that is, the constant j.Bir.X// depends
only on dim.X/.
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As a consequence, we obtain that the group Crn.k/ is Jordan.
Originally, Theorem 5.3 was proved modulo the so-called BAB conjecture (in a

weak form), which is now settled by C. Birkar:

Theorem 5.4 ([13]). Fix d > 0. The set of all Fano varieties X of dimension at
most d with at worst terminal singularities form a bounded family; i.e., they are
parameterized by a scheme of finite type.

It follows from Theorem 5.3 that there is a constant L D L.n/ such that for any
rationally connected variety X of dimension n and for any prime p > L.n/, every
finite p-subgroup of Bir.X/ is abelian and generated by at most n elements (see
[83]). Recently this result was essentially improved by Jinsong Xu [104]; he showed
that L.n/ D nC 1. The proof is based on a result by O. Haution [47]. Thus we have
the following theorem.

Theorem 5.5. Let X be a rationally connected variety of dimension n and let G �

Bir.X/ be a finite p-subgroup. If p > nC 1, then G is abelian and is generated by
at most n elements.

The results of Theorems 5.3 and 5.5 were applied in the proof of Jordan property
of local fundamental groups of log terminal singularities [20, 71].

Varieties over non-closed fields

Theorem 5.6 ([13, 82]). Let X be a variety over a field k of characteristic 0, which
is finitely generated over Q. Then the group Bir.X/ is bfs.

Similar to Theorem 5.3, the proof of this result is based on the BAB conjecture
(Theorem 5.4).

In the case X D P 2, an explicit bound was obtained in [94] (see also [41]) in
terms of cyclotomic invariants of the field k. Theorem 5.6 can be reformulated in an
algebraic form, which gives the positive answer to a question of J.-P. Serre [96].

Theorem 5.6a. Let K be a finitely generated field over Q. Then the group Aut.K/ is
bfs.

Jordan constants. Define the Jordan constant of a group � as the number j.�/ that
appears in the definition of Jordan property. The weak Jordan constant Nj.�/ of � is
the minimal j such that for any finite subgroup G � � , there exists an abelian (not
necessarily normal) subgroup A � G such that ŒG W A� � j . Easy group-theoretic
arguments show that

Nj.�/ � j.�/ � Nj.�/2:
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The exact value of the Jordan constant is known only for the Cremona group of rank
two: j.Cr2.k// D 7200 (see [105]). On the other hand, weak Jordan constants are
easier to compute. It was proved in [84] that

Nj.Cr2/ D 288; Nj.Cr3/ D 10368:

Moreover, the inequality Nj.Bir.X//� 10368 holds for any rationally connected three-
fold X .

Jordan property of arbitrary varieties. It turns out that the group of birational
transformations of an algebraic variety is not always Jordan. The first example was
discovered by Yu. Zarhin.

Example ([106]). Let C be an elliptic curve and let X D C � P 1. Then the group
Bir.X/ is not Jordan.

On the other hand, the exceptions as above are very rare.

Theorem 5.7 (V. L. Popov [75]). Let X be an algebraic surface. The group Bir.X/
is not Jordan if and only if X is birationally equivalent to P 1 � C , where C is an
elliptic curve.

The proof of this theorem given in [75] essentially uses a result of I. Dolgachev,
which in turn is based on the classification of algebraic surfaces. Later, Theorem 5.7
was generalized to higher dimensions with classification independent proofs.

Theorem 5.8 ([82]). Let X be an algebraic variety. Then the following assertions
hold.

(i) If X either is non-uniruled or has irregularity q.X/ D 0, then Bir.X/ is
Jordan.

(ii) If X is non-uniruled and q.X/ D 0, then Bir.X/ is bfs.

Similar to Theorems 5.6 and 5.3, the proof of Theorem 5.8(i) is based on the
boundedness of terminal Fano varieties (Theorem 5.4).

In dimension three, there is the following much more precise result.

Theorem 5.9 ([85]). Let X be a three-dimensional algebraic variety. Then Bir.X/ is
not Jordan if and only if either

(i) X is birationally equivalent to C � P 2, where C is an elliptic curve, or

(ii) X is birationally equivalent to S � P 1, where S is one of the following:

� a surface of Kodaira dimension ~.S/ D 1 such that the Jacobian fibra-
tion of the pluricanonical map �WS ! B is locally trivial;

� S is either an abelian or bielliptic surface (and ~.S/ D 0).
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Below we explain the main idea of the proof of the necessity. So we assume that
Bir.X/ is not Jordan. By Theorems 5.3 and 5.8, the variety X is uniruled, but it is not
rationally connected. Hence there exists a map X Ü Z with rationally connected
fibers (so-called maximal rationally connected fibration) such that Z is not uniruled
and dim.Z/ D 1 or 2 (see [56]). We have a natural exact sequence

1! Bir.X�/! Bir.X/! Bir.Z/;

where X� is the generic scheme-theoretic fiber. Since X� is rationally connected and
Z is not uniruled, the groups Bir.X�/ and Bir.Z/ must be Jordan. Then group-
theoretic arguments show that both groups Bir.X�/ and Bir.Z/ are not bfs (see,
e.g., [82, Lemma 2.8]). In the case where Z is a curve, this implies that Z is elliptic,
and applying the following fact with K D k.Z/ and S WD X� , we obtain that X is
birationally equivalent to Z � P 2.

Proposition 5.10 ([85]). Let K be a field containing all roots of 1 and let S be a
surface over K such that S is not K-rational, S is NK-rational, and S.K/ ¤ ¿. Then
the group Bir.S/ is bfs.

Note that the condition of the existence of a K-point on S in the above statement
is important. The groups of (birational) automorphisms of geometrically rational sur-
faces without rational points were studied in the series of papers [100–102].

Now assume thatZ is a surface. According to the main result of [7], the threefold
X is birationally equivalent to Z � P 1. By Theorem 5.8 we have q.Z/ > 0. Thus in
the case ~.Z/D 0, the surface Z must be either abelian or bielliptic. Since the group
Bir.Z/ is not finite in our case, Z cannot be a surface of general type. Consider the
case ~.Z/ D 1. Then the pluricanonical map � W Z ! B is a Bir.Z/-equivariant
elliptic fibration. Let

Jac.�/ W E ! B

be the corresponding Jacobian fibration. The automorphism group Aut.Z�/ of the
generic fiber Z� over B is embedded to Bir.Z/ as a normal subgroup. Analyzing
singular fibers, one can conclude that Aut.Z�/ is of finite index in Bir.Z/. In turn,
Aut.Z�/ has a subgroup Aut0.Z�/ of index at most 6 isomorphic to the group of
k.B/-points of E� . Assume that the fibration Jac.�/ is not locally trivial. Then by
the functional version of Mordell–Weil theorem, known as Lang–Néron theorem (see,
e.g., [32]), the group of k.B/-points of E� is finitely generated, and in particular, the
torsion subgroup of the group of points of E� is finite. This implies that Aut0.Z�/ is
finite.
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6. Invariants and rigidity

The most important part of the classification of finite subgroups in Bir.X/ is to dis-
tinguish conjugacy classes.

Problem 6.1. Let G;G0 � Bir.X/ be finite subgroups such that G ' G0. How can
one conclude that G and G0 are not conjugate?

This is equivalent to the following.

Problem 6.1a. Let X and X 0 be G-varieties. How can one conclude that X and X 0

are not G-birational?

Below we describe a few approaches to solve the above problems. Note, however,
that there are no universal methods.

Fixed point locus. LetX be a smooth projectiveG-variety. By Fix.X;G/, we denote
the set of G-fixed points. It is not difficult to show (see [87]) that Fix.X; G/ has at
most one codimension one component that is not uniruled. Denote this component by
Fnu.X; G/. This is a natural birational invariant in the category of smooth projective
G-varieties.

Proposition 6.2 ([87]). Let X and X 0 be smooth projective G-varieties. If X and X 0

are G-birational, then Fnu.X; G0/ and Fnu.X 0; G0/ are birational for any subgroup
G0 � G.

If G0 � G is a normal subgroup, then the set Fnu.X;G0/ (if it is not empty) has
a structure of .G=G0/-variety. Clearly, the birational type of this .G=G0/-variety is
also a birational invariant (cf. [16]).

Example. According to Theorem 3.1 for subgroups G � Cr2.k/ of order 2, we have
one of the following possibilities:

Involution � 2 G Fnu.X;G/

1o Linear on P 2 ¿
2o de Jonquières of genus g � 1 Hyperelliptic curve of genus g

3o Geiser Non-hyperelliptic curve of genus 3
4o Bertini Special non-hyperelliptic curve of genus 4

Thus the curve Fnu.X;G/ distinguishes conjugacy classes in this case. The same
assertion is true for subgroups of prime order [36], but it fails in general [15].
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Cohomological invariants. It is not difficult to see that for a smooth projective G-
variety X , the cohomology group

H 1
�
G; Pic.X/

�
is a G-birational invariant (see [19]). More generally, we say that G-varieties X and
X 0 are stably G-birationally equivalent if for some n and m the products X � P n

and X 0 � P m are G-birationally equivalent, where the action of G on P n and P m is
supposed to be trivial. Then we have the following theorem.

Theorem 6.3 ([19]). Let X and X 0 be smooth projective G-varieties. If X and X 0

are stably G-birationally equivalent, then

H 1
�
G;Pic.X/

�
' H 1

�
G; Pic.X 0/

�
:

Surprisingly, in some cases, the invariant H 1.G; Pic.X// can be computed in
terms of G-fixed locus.

Theorem 6.4 ([19]). LetG be a cyclic group of prime order p and letX be a smooth
projective rational G-surface. Assume that Fnu.X;G/ is a curve of genus g. Then

H 1
�
G;Pic.X/

�
' .Z=pZ/2g :

This theorem was slightly generalized with a more conceptual proof in [97]. An-
other cohomological invariant which is called Amitsur group was introduced in [17].

As a consequence of Theorem 6.4, one can see that involutions from different
families in Theorem 3.1 are not stably conjugate in Cr2.k/. Note, however, that
H 1.G; Pic.X// is a discrete invariant. For example, stable conjugacy of involutions
whose curves Fnu.X;G/ are non-isomorphic but have the same genus is not known.

A natural question that arises here is to find examples of subgroups in Crn.k/
that are stably conjugate but not conjugate. This question is similar to the birational
Zariski problem [11].

Example. Let G D S3 � �2. There are two embeddings of this group into the Cre-
mona group Cr2.k/ induced by the following actions:

(i) action on P 2 D ¹x1 C x2 C x3 D 0º � P 3 by permutation and reversing
signs;

(ii) action on the sextic del Pezzo surface ¹y1y2y3 D y0
1y

0
2y

0
3º �P 1 �P 1 �P 1

by permutation and taking inverses.

It was shown in [65] that these two subgroups in Cr2.k/ are stably conjugate; in fact,
they are conjugate in Cr4.k/. On the other hand, they are not conjugate [51].

Here is another example of this kind, which was pointed out to us by Yuri
Tschinkel.
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Example ([92]). Let V andW be faithful linear representations ofG with dim.V /D
dim.W /D n. Assume that the images ofG in GL.V / and GL.W / do not contain non-
identity scalar matrices. Then by a variant of the no-name lemma [39], we have the
following G-birational equivalences of G-varieties:

P .V / � knC1
�
bir
V �W �

bir
P .W / � knC1;

where knC1 is viewed as the trivial representation. Hence G-varieties V and W are
stably G-birationally equivalent. On the other hand, it may happen that they are not
G-birationally equivalent.

For example, Reichstein and Youssin [92] showed that the determinant of the
action in the tangent space at a fixed point of a finite abelian group, up to sign, is a
birational invariant of the action. This allowed them to produce nonbirational linear
actions, e.g., of groups �pn on P n, with p � 5. Many new examples of nonbirational
linear actions were given in [60, Section 10-11]; these are based on new invariants
introduced in [61] (see also [46,59]). These invariants take into account more refined
information about the action on subvarieties with nontrivial abelian stabilizers.

A prime number p is said to be a torsion prime for the group Bir.X/ if there is a
finite abelian p-subgroupG � Bir.X/ not contained in any algebraic torus of Bir.X/
[76]. Note that if a group G is contained in an algebraic torus T � Bir.X/, then for
any smooth projective birational model Y of X on which T acts biregularly, we have
H 1.G; Pic.Y // D 0. Then by Theorem 6.3, the inequality H 1.G; Pic.Y // ¤ 0 for
a finite p-subgroup G � Aut.Y / implies that a prime number p is a torsion prime
for Bir.Y / and for Bir.Y � P n/ for any n. Using Theorem 6.4 and the classification
[36], one can immediately see that the set of all torsion primes for Cr2.k/ is equal to
¹2;3;5º, and the numbers 2, 3, and 5 are torsion primes for Crn.k/ for any n� 2. This
fact was proved in [76] by using another argument. In the case n � 3, the collection
of all torsion primes for Crn.k/ is unknown.

Maximal singularities method. The maximal singularities method is the most pow-
erful tool to study birational maps between Mfs’s. It goes back to the works of G. Fano
and even earlier works of other Italian geometers. However, the first application of
this technique with rigorous proofs appeared much later in the breakthrough paper of
Manin and Iskovskikh [49]. For an introduction to the “standard,” non-equivariant
maximal singularities method, we refer to the book [90]. Below we outline very
briefly an equivariant version of the method.

Definition ([40, Definition 7.10], [29, Definition 3.1.1]). A GQ-Fano variety X is
said to be G-birationally rigid if given birational G-map ˆ W X Ü X] to the total
space of another G-Mfs X]=Z], there exists a birational G-selfmap  W X Ü X
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such that the composition ˆ ı  W X Ü X] is an isomorphism (in particular, Z] is
a point; i.e., X] is also a GQ-Fano variety).

A GQ-Fano variety X is said to be G-birationally superrigid if any birational
G-mapˆ W X Ü X] to the total space of another G-Mfs X]=Z] is an isomorphism.

The maximal singularities method allows to check G-birational (super)rigidity
using only internal geometry of the original variety, without considering all other
G-Mfs’s. We need the following technical definition which has become common
nowadays.

Definition. Let X be a normal variety, let M be a linear system of Weil divisors on
X without fixed components, and let � be a rational number. We say that the pair
.X; �M/ is canonical if some multiple m.KX C �M/ is Cartier, where M 2 M, and
for any birational morphism f W Y ! X , one can write

m.KY C �MY / D f �m.KX C �M/C
X

aiEi ;

where MY is the birational transform of M, Ei are prime exceptional divisors, and
ai � 0 for all i .

In the surface case, the canonical property is very easy to check: a pair .X; �M/
is canonical if and only if

multP .M/ � 1=�

for any point P 2 X .
Now, suppose that a GQ-Fano variety X is not G-birationally superrigid. Then

the Noether–Fano inequality [34, Theorem 4.2] implies the existence of aG-invariant
linear system M on X without fixed components such that the pair .X; �M/ is not
canonical, where � 2 Q is taken so that KX C �M is numerically trivial. Moreover,
any M as above defines a birational G-map X Ü X] to the total space of a G-Mfs
X]=Z]. To show the existence or non-existence of such M, one needs to analyze the
geometry of the variety X carefully.

Example. Let X be a del Pezzo surface of degree 1. Assume that X is a G-del
Pezzo with respect to some group G � Aut.X/. This means that G acts on X so that
rk Pic.X/G D 1. For example, this holds for any subgroup G � Aut.X/ containing
the Bertini involution. Let M be a G-invariant linear subsystem without fixed com-
ponents. Since Pic.X/G D Z �KX , we have M � j � nKX j for some n > 0. Suppose
that the pair .X; 1

n
M/ is not canonical. Then multP .M/ > n. Since M has no fixed

components,
n2

D .�nKX /
2
D M2

�
�

multP .M/
�2
> n2:

The contradiction shows that X is G-birationally superrigid.
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Similar arguments show that any G-del Pezzo surface X of degree � 3 is G-
birationally rigid. Moreover, it is G-birationally superrigid if and only if G has no
orbits of length � K2

X � 2 on X . In particular, PSL2.F7/-del Pezzo surface from
Theorem 3.2 is G-birationally superrigid.

Example. All the GQ-Fano threefolds from Theorem 4.2 are G-birationally super-
rigid [17,28,30]. In particular, different embeddings of PSp4.F3/ and PSL2.F11/ are
not conjugate in Cr3.k/.

There is another relevant and very important notion called G-solidity [25]. For
Fano varieties without group action, this notion has been introduced earlier by
Shokurov [98] (who called solid Fano varieties primitive) and by Ahmadinezhad and
Okada [2].

Definition ([25]). AG-Fano varietyX isG-solid ifX is notG-birational to aG-Mfs
with a positive dimensional base.

For example, a G-del Pezzo surface X of degree 4 is G-solid if and only if G has
no fixed points on X [40, §8].

A part of the maximal singularities method is the so-called Sarkisov program
[34, 45]. It allows us to decompose any birational map between Mfs’s into a compo-
sition of elementary ones. Refer to [50] for an explicit description of this program in
dimension two and to [31] for examples and applications.

7. Application: Essential dimension

The notion of the essential dimension of a finite group G, denoted by ed.G/, was
introduced by Buhler and Reichstein [21]. Informally, ed.G/ is the minimal number
of algebraic parameters needed to describe a faithful representation. More precisely,
given a faithful linear representation V of G viewed as a G-variety, the essential
dimension ed.G; V / is the minimal value of dim.X/, where X is taken from the set
of all G-varieties admitting dominant rational G-equivariant map V Ü X . It can be
shown that ed.G; V / does not depend on V , so we can omit V in the notation. It is
easy to see that ed.G/ D 1 if and only if G is cyclic or dihedral of order 2n where n
is odd. Finite groups of essential dimension � 2 have been classified [43].

The essential dimension of symmetric groups Sn is important because it is equal
to the minimal number of parameters needed to describe the general polynomial of
degree n modulo Tschirnhaus transformations [21]. The values of ed.Sn/, as well as
of ed.An/, are known for n � 7, and bounds exist for any n as follows.
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Theorem 7.1 ([21, 42]). If n � 6, then

n � 3 � ed.Sn/ � bn=2c;

ed.Sn/ � ed.An/ �

´
n
2

if n is even,

2bnC2
4

c if n is odd.

In many cases, the computations of ed.G/ use the machinery of G-varieties. As
an example, following Serre [95], we show that ed.A6/ D 3. Let V be the standard
six-dimensional permutation representation of A6. There exists an equivariant open
embedding V � .P 1/6. On the other hand, the group PSL2.k/ also acts on .P 1/6 so
that the two actions commute. Hence we have a dominant rational A6-map

V ,! .P 1/6 ! .P 1/6=PSL2.k/;

where .P 1/6=PSL2.k/ is a birational quotient. Since dim..P 1/6=PSL2.k// D 3, we
have ed.A6/ � 3. Thus it is sufficient to show that ed.A6/ is not equal to 2. If so,
there exists a dominant rational G-map V Ü X to a surface which must be rational.
According to Theorem 3.2, we may assume that X D P 2. But in this case, a Sylow
3-subgroup S � A6 is abelian and acts without fixed points on P 2. On the other hand,
S has a fixed point on V , and the same should be true for the image of any rational
S -map to a projective variety [58]. Therefore, ed.A6/ D 3 as claimed.

Using similar arguments and the classification of embeddings of A7 to groups of
birational transformations of rationally connected threefolds (Theorem 4.2), A. Dun-
can proved that ed.A7/ D ed.S7/ D 4 [42].

Denote by rdim.G/ (resp. cdim.G/) the minimal dimension of faithful represen-
tations of G (resp. the smallest n such that G is embeddable to Crn.k/). It immedi-
ately follows from the definition that

ed.G/ � rdim.G/:

If G is a p-group, then the equality holds ed.G/ D rdim.G/ [54]. In general, this
equality fails, but there is a bound in terms of Jordan constants.

Theorem 7.2 ([91]). rdim.G/ � ed.G/ � j.ed.G//, where j.n/ is the Jordan constant.

I. Dolgachev conjectured that ed.G/� cdim.G/ (see [44]). It would be interesting
to test this conjecture for the group G D PSL2.F11/. In fact, we have

3 � ed
�

PSL2.F11/
�
� 4

by Theorem 3.2 and because the group PSL2.F11/ is simple and has a faithful five-
dimensional representation. Assuming Dolgachev’s conjecture, by Theorem 4.2 we
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would have ed.PSL2.F11// D 4. But this is unknown. See [44] for interesting dis-
cussions. The computation of the essential dimension of PSL2.F11/ should complete
Beauville’s classification of finite simple groups of essential dimension � 3 [10].
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Propositional proof complexity

Alexander A. Razborov

Abstract. Propositional proof complexity studies efficient provability of those statements that
can be expressed in propositional logic, in various proof systems, and under various notions
of “efficiency.” Proof systems and statements of interest come from a variety of sources that,
besides logic and combinatorics, include many other areas like combinatorial optimization and
practical SAT solving. This article is an expanded version of the ECM talk in which we will
attempt to convey some basic ideas underlying this vibrant area.

1. General overview

Like with many other areas in theoretical computer science, the framework of propo-
sitional proof complexity can be easily explained to a mathematically advanced high
school student. In fact, its core definitions are so easy to give that we prefer to inter-
lace them with the discussion rather than to separate the two.

Definition 1.1 (preliminaries). We fix a set of Boolean (that is, 0-1 valued, where 0

stands for FALSE and 1 stands for TRUE) variables. A literal is either a variable x

or its negation that will be denoted by Nx. The alternate notation :x is also used in
the literature, and sometimes we will use the uniform notation xa, a 2 ¹0; 1º, where
x1 def

D x and x0 def
D Nx. A clause C is a disjunction of literals: C D x

a1

i1
_ � � � _ x

aw

iw
in

which no variable appears twice. A conjunctive normal form (CNF in what follows) is
a conjunction of clauses � DC1 ^ � � � ^Cm, often identified with the set ¹C1; : : : ;Cmº

of which it is comprised. Whenever n appears as a subscript in �n, it always stands
for the number of variables.

One very important complexity measure for this article is width. The width of a
clause is the number of literals w in it. The width of a CNF is the maximal width of
a clause in it. A k-CNF is a CNF of width � k. An assignment (sometimes called
truth assignment) is a mapping ˛ W V ! ¹0; 1º. It is naturally extended to literals,
clauses, and CNFs. For example, for the assignment ˛ given by ˛.x1/D 1, ˛.x2/D 0,
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Keywords. Proof complexity, lower bounds, resolution.
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˛.x3/ D 1, and ˛.x4/ D 0 we have ˛. Nx2/ D 1, ˛. Nx1 _ x2 _ x4/ D 0, ˛.x2 _ x3/ D 1,
and ˛.. Nx1 _ x2 _ x4/ ^ .x2 _ x3// D 0. A CNF � is satisfiable if there exists at
least one truth assignment ˛ such that ˛.�/ D 1; ˛ itself is called then a satisfying
assignment. Otherwise, � is unsatisfiable.

The algorithmic problem SATISFIABILITY of determining whether a given
CNF � is satisfiable or not is NP-complete. In fact, it is the most fundamental NP-
complete problem, as well as historically the first [4, Chapter 2.4]. It is central to the
field of computational complexity.

In proof complexity, accents are slightly shifted. Instead of deciding whether �

is satisfiable or not, we want a proof of the answer, and we are interested in the
resources necessary to represent this proof, in most cases abstracting away from the
complexity of finding it.

If we want to certify the satisfiability of � , then the task becomes trivial: a proof
consists of a satisfying assignment ˛ itself. Let us note in passing, however, that
this immediately changes once we impose additional restrictions on the verification
process. Significantly oversimplifying, any proof can be written in a special “holo-
graphic” form such that, once submitted, its validity can be checked by verifying a
small number of “lemmas” in it, selected randomly. This leads to one of the most
beautiful and difficult topics in the computational complexity theory called prob-
abilistically checkable proofs (PCPs). Unfortunately, this topic is way beyond the
scope of our article, so we refer the reader to [4, Chapter 11].

The main question of interest in the propositional proof complexity is how to
prove efficiently that a CNF � is unsatisfiable.

Remark 1.2. If we view � itself as representing a mathematical statement, then what
we call a “proof” is actually its refutation. The reason why this change of direction
is very convenient will become clear below. For now, let us just warn the reader that
the terminology is unfortunately rather inconsistent. Say, an unsatisfiable CNF may
be called in the literature “a contradiction” or even “a tautology.” In what follows we
also may at times be sloppy about this.

Remark 1.3. We have restricted ourselves to CNFs mostly because this class is suf-
ficiently broad to easily encompass virtually all statements we will be interested in.
It will also be a must when we discuss so-called weak proof systems. But sometimes
people do consider more complicated Boolean (and not only Boolean in fact) expres-
sions to be proved/refuted.

Once we have determined that our goal is to study efficient provability of (the
unsatisfiability of) CNFs, the next task is to define what we mean by a “proof system.”
In the most abstract form this definition was given in the seminal paper [25] by Cook
and Reckhow.
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Definition 1.4 (proof systems). Let UNSAT be the set of all unsatisfiable CNFs.
A propositional proof system is a surjective polynomial-time computable function
P W ¹0; 1º� � UNSAT, where ¹0; 1º� is the set of all finite binary strings.

The intuition is that proofs are encoded by binary strings w and the function P

first checks whether w is a legitimate proof (and outputs something trivial like x ^ Nx

if it is not). Then P.w/ is the theorem that the proof w proves, and the surjectivity
of P is the property of a proof system called completeness: every unsatisfiable CNF
possesses at least one proof (that is, refutation).

In this abstract form, the definition has turned out very useful for general “struc-
tural” studies in proof complexity; see e.g. [40, 55]. But the main focus of our article
is on concrete fixed proof systems that are interesting for some external reasons.

Before branching into specifics, we still can give a few crucial definitions at this
level of generality.

Definition 1.5 (size complexity). For a propositional proof system P and �2UNSAT,
let SP .� ` 0/ be the size complexity of � defined as the minimal possible bit length
jwj of w 2 ¹0; 1º� such that P.w/ D � . The proof system is p-bounded if SP .� ` 0/

is bounded by a polynomial in the bit length j� j of � itself.

Whether p-bounded proof systems P exist is the main motivating question of
proof complexity. It is not hard to see, however, that in this generality (that is without
any other restrictions on P ) this is equivalent to a major question in the computational
complexity.

Theorem 1.6 ([25]). A p-bounded proof system P exists if and only if NP D co�NP.

The following will allow us to compare different proof systems according to their
strength and arrange them into a hierarchy.

Definition 1.7 (simulation and equivalence). A proof system P p-simulates another
proof system Q if there is a polynomial-time computable function s such that the
following diagram commutes:

¹0; 1º� ¹0; 1º�

UNSAT

s

Q P

Informally, any Q-proof w can be efficiently converted into a P -proof s.w/ of the
same theorem; note that the poly-time computability of s automatically implies that
js.w/j is bounded by a polynomial in jwj. Two proof systems are p-equivalent if they
p-simulate each other.

We now move on to consider concrete proof systems.
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2. Strong proof systems

The classification of proof systems into “weak” and “strong” is loosely defined and
it is not universally agreed upon. Roughly speaking, a proof system P is considered
strong if we cannot rule out that it is p-bounded, and it is sufficiently widely believed
that this inability is in a sense inherent. We will see below at least one proof system
in the “gray area.”

Strong proof systems are usually associated with original motivations for the
propositional proof complexity coming from mathematical logic, more exactly from
the study of weak theories of bounded arithmetic. On this subject I will be very brief
(as I was in my ECM presentation); the reader willing to learn more about these
fascinating connections with classical proof theory is referred to the monographs
[21, 24, 38, 39]. As before, we precede the discussion with a few definitions.

Definition 2.1 (Frege, informal). Take any textbook in the mathematical logic. It will
most likely begin with a description of propositional calculus given as a Hilbert-style
proof system. That is, it will contain finitely many axiom schemes like A ) .A _ B/

or A _ :A and inference rules like

A A H) B

B
.modus ponens/:

Here A; B; C; : : : are placeholders for which one can substitute an arbitrary Boolean
formula. This is a Frege proof system.

Remark 2.2. One very important distinction in propositional proof complexity is
whether we consider proofs in the tree-like form or allow arbitrary directed acyclic
graphs (DAGs). In other words, do we allow intermediate “lemmas” to be used more
than once or not? This is of little significance in the classical proof theory since any
DAG can be expanded into a tree (if you need to use a lemma more than once, just
repeat its inference). But this may result in an exponential increase in the size of the
proof and, as a result, for weak proof systems we should strictly distinguish between
the two possibilities. It is a non-trivial fact that for the Frege proof system these two
versions are actually p-equivalent [37].

Textbooks in the mathematical logic seldom use the same finite sets of axioms and
inference rules, and in many cases they use even different sets of Boolean connectives
(e.g., we have just seen the implication ) that was not in our original de Morgan
language ¹:; ^; _º). But it turns out that modulo polynomial equivalence all these
choices are immaterial.

Theorem 2.3 ([60]). Any two Frege proof systems, understood as Hilbert-style com-
plete proof systems based on a finite number of axiom schemes and inference rules,
are p-equivalent.
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Remark 2.2, along with Theorem 2.3, strongly suggests that the concept of Frege
proof system is very robust and hence natural. This system is denoted by F; thus, the
function SF.� ` 0/ is well defined up to a polynomial.

Definition 2.4 (extended Frege, informal). An extended Frege proof system, denoted
by EF, is the Frege proof system augmented with the following extension rule. This
rule allows to introduce at any moment a fresh new propositional variable xA as an
abbreviation for a formula A. The proof then may proceed using also the extension
axioms xA � A, and this can happen recursively.

All that has been said about the robustness of Frege proof systems fully applies to
EF as well. That is, SEF.� ` 0/ does not depend on whether it is DAG-like or tree-like
or on the choice of the underlying Frege proof system.

Returning to the connections with weak arithmetic, these theories capture various
complexity classes in the sense that, roughly speaking, all functions provably total
in such a theory T are precisely the functions from that class. Total provability of
a function f .x/ means that it is representable by a formula A.x; y/ such that T

proves1 .9Šy � t /A.x; y/ and A.n; f .n// is true for any n. It involves the bounded
existential quantifier .9y � t / in front. It turns out that if we are interested in the
provability, in the same theory T , of “almost” quantifier-free formulas (for experts,
�b

0 formulas), then such formulas can be translated into an increasing sequence ¹�nº

of propositional formulas. Then the provability of the original statement in T becomes
“essentially equivalent” to the efficient provability of its propositional translation in
a proof system PT naturally associated with T . In most cases, it simply means that
SPT

.�n ` 0/ is bounded by a polynomial in n, and F and EF happen to correspond
to the most central systems of weak arithmetic. For more details see the monographs
[21, 24, 38, 39] already cited above.

Showing that F or EF are not p-bounded is widely believed to be out of reach
of the current methods and in general even more difficult than solving notorious
open problems in the computational complexity like NC1

¤ P or P ¤ NP. They are
paradigmatic strong systems in our informal classification. A good explanation, both
philosophical and heuristical, predicates that the most important feature of a proof
system P is the expressive (in the computational sense of the word) power of its lines,
that is what computational power is afforded to concepts underlying auxiliary state-
ments appearing in the proof. For a Frege proof system lines are just arbitrary Boolean
expressions, and they correspond to the complexity class NC1. For the extended Frege
we get arbitrary Boolean circuits, and those correspond to the class P. It appears to
be even more difficult, and usually way more difficult, to analyze what one can prove
using concepts definable by a complexity class than what we can compute within this

1The exclamation mark stands for “unique.”
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class. I am not aware of any good explanation of this fact, this is just what has been
happening in the area so far.

The final observation I would like to offer about F and EF strongly differentiates
the propositional proof complexity from its sister discipline, circuit complexity. Let
me remind the reader that in the latter field we know that almost all Boolean functions
are hard; this is the famous Shannon effect (see e.g. [36, Chapter 1.4]). Moreover, we
strongly believe that a variety of very natural Boolean functions corresponding to NP-
complete problems are hard. That is, we have a host of natural and explicit candidates
for hardness; we simply do not know yet how to prove that they are actually hard.

Nothing like that happens in proof complexity, and potential candidates are few
and far between. In [16], Bonet, Buss, and Pitassi set off for a slightly modified task
to find good tautologies separating F and EF, that is hard for F, easy for EF. Their
own conclusion, to which I fully concur, was that “no particularly good or convincing
examples are known.” If we relax the requirement and simply ask for tautologies that
would be good candidates to show that the Frege proof system is not p-bounded, I
believe there are only two principles that have passed the test of time even by loose
standards, and both are equally plausible to be hard for EF.

The first is random k-CNFs. Pick up sufficiently many clauses of width k at ran-
dom. Then the resulting CNF will be in UNSAT w.h.p. but there does not appear to
be even a good starting point for F or EF (or, for that matter, any other conceivable
proof system) to certify the unsatisfiability in particular instances.

The second kind of examples is made by CNFs expressing facts like “NP does
not have small size circuits.” For an extensive discussion of these statements and their
relations to other topics in proof and computational complexities I refer the reader to
[59, Section 1].

All proof systems in the remainder of this article will be weak (“potentially” weak
in one case).

3. Benchmarks

In computer science, a “benchmark” usually stands for a “good” standardized test, or
a family of tests, used to run competing pieces of software or hardware to compare
these pieces to each other. In the propositional proof complexity, it also turns out that
there is a handful of combinatorial principles, expressible as unsatisfiable CNFs, that
wander from one framework to another and appear in papers over and over again.
This uniformity turns out indispensable for understanding the general picture and
trying out new methods for proving both lower and upper bounds that can be then
applied to many other tautologies.

For now, let us define two such principles that, arguably, are the most prominent
and popular ones (we will see a few more later in the text).
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Definition 3.1 (pigeonhole principle). Let m > n be integers; introduce propositional
variables xij (i 2 Œm�, j 2 Œn�). The pigeonhole principle (sometimes also called the
Dirichlet principle, particularly in the Russian literature) is the unsatisfiable CNF
PHPm

n made of the following clauses:

� xi1 _ � � � _ xin, for all “pigeons” i 2 Œm� (“every pigeon flies to a hole”);

� Nxij _ Nxi 0j , for all pairs of different “pigeons” i ¤ i 0 2 Œm� and all “holes” j 2 Œn�

(“no two pigeons fly to the same hole”).

This is the so-called “basic” pigeonhole principle. One can also add to it dual
axioms, the functionality axioms Nxij _ Nxij 0 or the surjectivity axioms x1j _ � � � xmj .
Varying the parameter m D m.n/ as well, we obtain a large family of pigeonhole
principles and, somewhat surprisingly, they may display very different behavior with
respect to the same proof system. I refer the reader to the survey [57] entirely devoted
to the pigeonhole principle, with the warning that several important results have been
obtained since its release.

Our second principle was introduced in [62] that, arguably, was the earliest paper
in the propositional proof complexity.

Definition 3.2 (Tseitin tautologies). Let G D .V; E/ be a simple graph with odd
number of vertices. Introduce propositional variables xe , one variable per edge e 2 E.
The Tseitin tautology Tseitin.G/ is the following system of linear equations over F2:M

e3v

xe D 1 .v 2 V /

(˚ is the parity function, addition mod 2). This principle says that in any spanning
sub-graph of G (determined by the values .xe j e 2 E/) there exists a vertex of even
degree.

Remark 3.3. The attentive reader may have observed that, as stated, Tseitin.G/ is
not a CNF. It is usually converted into a CNF by straightforwardly expanding all
parities into a family of clauses. For example, x ˚ y ˚ z is the same as .x _ y _ z/^

. Nx _ Ny _ z/^ . Nx _ y _ Nz/^ .x _ Ny _ Nz/. This expansion incurs an increase in the size
of the contradiction by a factor of 2��1, where � is the maximal vertex degree of G.
This is often unacceptable when � is large so in most applications Tseitin tautologies
are considered only for constant-degree graphs that are also sometimes assumed to
be regular (all vertices have the same degree).

It turns out that Tseitin tautologies work best when G is a good expander. There
are several standard definitions of graph expansion, very much equivalent in the
bounded-degree case. Here we only recall that of edge expansion, as the most conve-
nient for our purposes.
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Definition 3.4 (edge expansion). For a graph G D .V; E/ and S � V , let E.S; xS/

be the set of all cross-edges between S and xS
def
D V n S . The (edge) expansion c.G/

of G is defined as

c.G/
def
D min

² ˇ̌
E.S; xS/

ˇ̌
jS j

j S � V; 1 � jS j � jV j=2

³
:

4. Bounded-depth Frege

In this section, we will discuss several restrictions of the Frege proof system to which
Theorem 2.3 no longer applies. On the other hand, the remark from Section 2 (that
a proof system is largely determined by the expressive power of its lines) applies in
full, and a bounded-depth Frege proof system is determined by the bound on depth
and the set of propositional connectives (the basis) it employs.

Let us start with the standard de Morgan basis ¹:;_;^º. The first useful observa-
tion is that using de Morgan rules :.A_B/� .:A^:B/, :.A^B/� .:A_:B/,
any formula can be converted into a formula with tight negations, that is a formula in
which negations occur only at the variables.

Definition 4.1 (bounded-depth Frege). The logical depth of a ¹:;_;^º-formula with
tight negations is the maximum number of alternations _ _ � � � ^ ^ ^ � � � _ of _ and
^, where the maximum is taken over all paths from the root of the formula to its
leaves (i.e., literals). Alternatively, we can allow disjunctions and conjunctions with
an arbitrary number of arguments, and then logical depth becomes the ordinary depth
(= height) of the tree representing the formula.

The depth-d Frege proof system Fd is the fragment of a Frege proof system over
¹:;^;_º in which all lines are required to have logical depth � d .

As in Definition 2.1, we do not specify axiom schemes and inference rules since
all “reasonable” choices lead to p-equivalent systems. For most of this section, we
view the depth d as arbitrarily large but fixed constant; this is what we mean by
“bounded depth.”

The corresponding circuit class, made of sequences of Boolean functions that can
be computed by circuits of polynomial size and bounded depth, is well known in
circuit complexity. It is denoted by AC0 and by now it is relatively well understood,
beginning with exponential size lower bounds for bounded-depth circuits proved in
the celebrated series of papers [1, 34, 63].

While lower bounds for Fd were established with the same general method (so-
called restrictions), this required to overcome a great deal of additional difficulties as
compared to the case of circuits. But before we start discussing concrete results I find
it prudent to make the following disclaimer.
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This short article is not intended to be a comprehensive survey in the propositional
proof complexity or its sub-areas; for more extended account, see e.g. the monograph
[39] and historical remarks made therein. Its purpose is limited to giving the first
impression about the area to non-specialists, and my choice of illustrating examples
is necessarily incomplete and subjective.

That said, the first lower bounds for bounded-depth Frege were proved for the
pigeonhole principle.

Theorem 4.2 ([41, 48]). SFd
.PHPnC1

n ` 0/ � exp.�.n1=5d
//.

Here, and in what follows, “�” is the notation dual to “big-O”: f � �.g/ means
that there exists an absolute constant " > 0 such that f � "g for all values of the
parameters appearing in f; g.

Corollary 4.3. For any fixed d > 0, Fd is not p-bounded.

To illustrate one point made in Section 3, let us note that once we increase the
number of pigeons to 2n, the situation changes dramatically.

Theorem 4.4 ([5, 42]). SFd
.PHP2n

n ` 0/ � n.log n/O.1=d/
. For d D 2, this refines as

SF2
.PHP2n

n ` 0/ � nO.log n/.

Whether this can be improved to polynomial, perhaps at the expense of using
more pigeons, is open despite decades of research.

Problem 4.5. Does there exist a fixed d > 0 such that SFd
.PHP1

n ` 0/ � nO.1/?

As we noted above, once a method to analyze a proof system (in particular, to
prove lower bounds for it) is established, it usually can be extended to other contra-
dictions as well. As an illustration, the following was proved by a direct (albeit, very
clever) reduction from Theorem 4.2.

Theorem 4.6 ([13]). Let ¹Gnº be a sequence of bounded-degree graphs with c.Gn/�

�.1/. Then for any fixed d > 0, SFd
.Tseitin.Gn/ ` 0/ � exp .�.n1=5d

//.

But sometimes the next improvement/generalization requires a very serious en-
hancement of known techniques. Let us for example reverse the gears and instead of
asking about size lower bounds in any fixed depth, ask what is the largest depth, as a
function of the number of variables n, for which the bound still holds.

The bounds in Theorems 4.2 and 4.6 work up to d D " log log n. It was recently
improved to d D o.

p
log n/ in [50]. While this is still the same basic method of

restrictions the previous work was based upon, this improvement literally had to take
it to a new level of sophistication.



A. A. Razborov 448

Theorem 4.7 ([50]). For ¹Gnº as in Theorem 4.6,

SFd

�
Tseitin.Gn/ ` 0

�
� n�..log n/=d2/:

Note that unlike Theorem 4.6, this bound is only quasi-polynomial. But it is good
enough to prove that Fd.n/ is not p-bounded when d.n/ D o.

p
log n/.

In conclusion of this section, let us briefly discuss one extension.

Definition 4.8 (bounded-depth Frege with modular gates, informal). Let m > 0 be a
fixed integer and MODm.x1; : : : ; xn/ the propositional connective with the intended
meaning MODm.x1; : : : ; xn/ D 1 iff mjx1 C � � � C xn. Let F.MODm/ be a Frege
system (p-equivalent to F) in the language ¹:; ^; _; MODmº. The proof system
Fd .MODm/ is its fragment in which the logical depth of all formulas is restricted
to d , where axioms schemes and inference rules are chosen in any reasonable way (in
particular, they should describe basic properties of the new connectives).

For some inspiration of what might be expected from this extension, we have to
look again into the circuit complexity. The corresponding complexity class is denoted
by ACC0Œm�, and it turns out that the story crucially depends on m.

When m is a prime power, exponential lower bounds for this class of circuits
have been known since [54,61]. In all other cases (say, when m D 6) this is one of the
most major and challenging open problems in circuit complexity: for all we know,
ACC0Œ6� may contain all of NP or, for that matter, EXPTIME. For details, see e.g.
[36, Chapter 12].

Accordingly, when m has at least two different prime divisors, Fd .MODm/ should
definitely be classified as “strong.” Somewhat embarrassingly, we have not been able
to adapt the proofs from [54, 61] (based on the so-called method of approximations)
to our context so far. The following is one of the main open problems in the area.

Problem 4.9. Prove that for any fixed d > 0 and any fixed prime m > 0 the system
Fd .MODm/ is not p-bounded.

The only known partial results towards this problem pertain to its much weaker
subsystems; we will now briefly mention one of them and another will appear in
Section 6.1.

Definition 4.10 (counting principles). Let m − n, and introduce propositional vari-
ables xe , where e 2

�
Œn�
m

�
, the family of all m-element subsets of Œn�

def
D ¹1; 2; : : : ; nº.

The counting principle Countnm is the unsatisfiable CNF consisting of the following
clauses:

� Nxe _ Nxf , for all e ¤ f such that e \ f ¤ ;;

�
W

e3i xe , for all i 2 Œn�.
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Intuitively, these clauses state that .xe j e 2
�

Œn�
m

�
/ defines a partition of Œn� into sets

of size m which may not exist since we assumed m − n. The proof system Fd C

Countm is obtained from Fd by adding to it all substitutional (de Morgan!) instances
of Countnm, for arbitrary n, that are of logical depth � d .

The principle Countnm is easily provable in Fd .MODm/, hence Fd C Countm is
indeed intermediate between Fd and Fd .MODm/ in the sense of Definition 1.7.

Theorem 4.11 ([11,18]). Let m; d; ` be fixed integers and assume that ` has a prime
factor which is not a prime factor of m. Then SFdCCountm.Countn` ` 0/ � exp.n�.1//.

Note, however, that this result holds for all m including, say, m D 6. This might
be not so good sign for attempts to adapt these methods for solving Problem 4.9.

5. Resolution

In our notation, resolution is simply F1. It obviously does not make much sense to
consider terms x

a1

i1
^ � � � ^ x

aw

iw
as lines in a proof, they can be always split into w

lines consisting of single literals. Hence resolution uses clauses only and, given the
importance of this proof system (that we will try to explain below), we prefer to
break up with our own tradition and formulate its inference rules (there are no default
axioms) very explicitly.

Definition 5.1 (resolution). Resoluton is the proof system operating with clauses,
denoted by R. It has the inference rules

C

C _ D
(weakening)

C _ x D _ Nx

C _ D
.resolution rule/:

A resolution proof is regular if, on any path in this proof, no variable x is resolved
more than once. We will denote this subsystem of resolution by RR.

Remark 5.2. Resolution, as well as most systems we will see in the rest of this arti-
cle, is too weak to speak of CNFs directly. It is therefore paramount (cf. Remark 1.2)
that from now on we strictly adopt the “refutational” perspective: all “proofs” will be
actually contradictions derived from a set of clauses.

Remark 5.3. The weakening rule is cosmetic and its removal does not change the
complexity SR.� ` 0/. Having this rule, however, is very convenient in many situa-
tions.

Resolution, as well as other proof systems that we will see below, is very relevant
to various scenarios with practical flavor. The paradigm is somewhat similar in all
these cases; let us spell it out for resolution in a few more details. Much more infor-
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mation on the topic, as well as all definitions missing in our description below, can be
found e.g. in the very recent survey [19].

There is a large community of practice-oriented researchers working on finding
feasible algorithms (which in this context means “actually implemented and deliver-
ing concrete results”) for solving “interesting” instances of SATISFIABILITY. These
programs are called SAT solvers. Now, what will happen if we feed a CNF � to a SAT
solver, it runs successfully and produces the correct answer?

When � is satisfiable, in most cases the solver will be able to justify its answer by
producing an actual satisfying assignment. But this case is not very inspiring for our
purposes.

More interesting is the case when � is unsatisfiable because if we understand the
code and believe in its correctness, then we also must accept the transcript of the
solver’s run as a proof of unsatisfiability of � . In mathematical terms, any practi-
cal scalable algorithm for solving SATISFIABILITY defines a propositional proof
system in terms of Definition 1.4.

It turns out that in many scenarios the proof systems automatically associated in
this way to algorithms are also mathematically elegant, and it is particularly visible in
the case of SAT solvers. Namely, the algorithmic technique that has been dominating
in that community for quite a while is called conflict-driven clause learning (CDCL).
Then, a transcript of a run of a CDCL solver can be identified with a resolution proof,
modulo a differing terminology. This connection is in fact so strong that it would not
be too much of an exaggeration to describe the operation of CDCL solvers in this
way: they search, in very ingenuous and specific ways, for resolution refutations of a
CNF � and declare it satisfiable if the search fails.

Thus, any lower bounds for the resolution proof system imply inherent limitations
on CDCL solvers that cannot be overcome by any amount of clever engineering.
They can also be used as a rough guidance of what to expect and what to avoid when
building CDCL solvers.

An extremely interesting question is whether there is a connection in the opposite
direction; that is, what algorithmic applications does the mere existence of a short
resolution proof entail?

When the word “algorithmic” is understood in its most theoretical sense (that is,
poly-time computable), this question is captured by the concept of “automatizability”
(or “automation”), and we have recently seen a major progress in this direction [8]
followed up in several other papers. Very loosely speaking, if P ¤ NP, then no effi-
cient algorithm will be able to find small resolution refutations in all cases when they
exist, ever.

Another meaningful interpretation is to consider only algorithms based on the
CDCL-architecture but allow them a limited amount of non-determinism in the
choices they make. It turns out that this question is very sensitive to the choice of
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the model and, in my view, it is far from being answered conclusively. Some partial
work in that direction is reported e.g. in [7, 12, 44]; once again, much more informa-
tion can be found in [19].

Let us now return to mathematics, and we begin with several early prominent
results.

Theorem 5.4 ([62]). SRR.Tseitin.Gridn;n/ ` 0/ � exp.�.n//, where Gridn;n is the
n � n grid graph.

Theorem 5.5 ([33]). SR.PHPnC1
n ` 0/ � exp.�.n//.

Theorem 5.6 ([22]). Let �n be a random 3-CNF with O.n/ clauses. Then with prob-
ability 1 � o.1/ we have SR.�n ` 0/ � exp.�.n//.

As we already mentioned several times, it is highly desirable to have reasonably
general methods for analyzing proof complexity, as opposed to those that are tailored
to individual benchmarks. In that respect, the following prominent width-size relation
clearly stands out.

Given a resolution refutation, its width is defined as the maximum width of its
clauses, and let w.�n ` 0/ be the minimum possible width of a resolution refutation
of �n. In other words, we are trying to refute �n using only narrow clauses as our
“lemmas,” disregarding the question of how many of them we use. Then the width-
size relation due to Ben–Sasson and Wigderson has the following neat and general
form.

Theorem 5.7 ([15]). For any sequence ¹�nº of unsatisfiable CNFs,

w.�n � 0/ � O
�p

n � log SR.�n ` 0/ C w0

�
;

where w0 is the width of �n itself.

Parsing this expression, when w0 is small (say, a constant) and w.�n ` 0/ � �.n/,
we get SR.�n ` 0/ � exp.�.n//. In words, linear lower bounds on width imply expo-
nential lower bounds on the resolution size.

And it turns out that width lower bounds are often much easier to prove. For
example, we have the following (cf. Definition 3.4).

Theorem 5.8 ([15]). For any sequence of bounded-degree graphs ¹Gnº with c.Gn/�

�.1/, w.Tseitin.Gn/`0/��.n/ (and hence by Theorem 5.7, SR.Tseitin.Gn/`0/�

exp.�.n//).

This recovers a stronger version of Theorem 4.6 for d D 1 but, again, the main
strength of Theorem 5.7 lies in its generality. Two more important points highlighted
by the width-size relation that have turned out very influential in proof complexity
(we will see some examples below) are as follows.
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(1) Diversity is good. Proof complexity measures more elaborated than the one
stipulated by Definition 1.5 are inspiring even if one is primarily interested in
size.

(2) Expansion is good as well. If a graph property imply hardness in the proof
complexity, the odds are that expansion will also do the job.

The width-size relation can be successfully applied to an impressive array of var-
ious contradictions �n, often after some massaging. But, as is the case with any good
method, it has its limitations. One notable principle it completely fails at is the pigeon-
hole principle with many (say, infinitely many) pigeons, which is the special case of
Problem 4.5 for d D 1. For that, another technique of pseudo-width was developed in
[49,53,58]. Unfortunately, this concept is a bit too technical to meaningfully address
here, so let us simply state the end result for PHP2.

Theorem 5.9. SR.PHP1
n ` 0/ � exp.�.n1=3//.

Remark 5.10. Surprisingly, the best known upper bound here is not the trivial
exp.O.n// but exp.O.n1=2// [20]. That would be nice to close the gap, particularly
since most likely this will require developing new methods.

Problem 5.11. Determine the smallest ˛ 2 Œ1=3; 1=2� for which SR.PHP1
n ` 0/ �

exp.n˛Co.1//.

Among other things, Theorem 5.9 implies resolution lower bounds for the state-
ment “NP does not have small size circuits” mentioned at the end of Section 2; see
again [59], as well as [52], for more details and the context. The former paper also
extends this to the proof system Res.O.1// operating with O.1/-CNFs but the proof
is very indirect and complicated. On the other hand, Problem 4.5 remains wide open
even for the system (say) Res.2/ intermediate between F1 and F2. Moreover, now the
upper bound of Theorem 4.4 no longer applies and we can state this conjecture in the
stronger form.

Problem 5.12. Prove (or disprove) that SRes.2/.PHP1
n ` 0/ � exp.n�.1//.

More applications of the pseudo-width method can be found in the recent paper
[28].

Are there prominent unsatisfiable CNFs that (in terms of their resolution com-
plexity) resist analysis by both the width-size and pseudo-width methods? Let me
conclude this section with my favorite example, the small clique problem.

2The last paper in the series [58] generalized the method to a much wider class of general
perfect matching principles including, among others, the counting principles from Defini-
tion 4.10.
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Definition 5.13. Let G be a k-partite graph, that is its vertices can be partitioned
into k blocks, V.G/ D V1 P[ � � � P[Vk (let us also assume that jV1j D � � � D jVkj) such
that there is no edge within each block. The CNF CliqueBlock.G; k/ is defined as the
following set of clauses in the variables .xv j v 2 V.G//:

�
W

v2Vi
xv (1 � i � k);

� Nxv ^ Nxw (.v; w/ is not an edge of G).

This CNF says that .xv j v 2 V.G// encodes a k-clique in G and when the clique
number !.G/ is at most .k � 1/, this is a contradiction.

The obvious brute-force resolution refutation has size at most nk , and the ques-
tion is whether we can do any better. Motivated by the framework of parameterized
(computational) complexity [29] and some research in circuit complexity, it is natural
to ask about the existence of resolution refutations of size f .k/ � nO.1/, where f .k/

is any function. Assuming that k is a fixed constant, the first term disappears and
the question is whether SR.CliqueBlock.G; k/ ` 0/ � nO.1/, where the degree of the
polynomial in the right-hand side must not depend on k.

The small clique problem is usually considered when G is the Erdös–Renyi ran-
dom graph, that is when every potential edge between v 2 Vi and w 2 Vj is included

i.i.d. with probability pkn > 0, n
def
D jVi j. Let us fix for definiteness

pkn
def
D n�C=.k�1/; (5.1)

where C > 2 is an arbitrary constant, and let Gk;n be the corresponding Erdös–Renyi
graph. The value (5.1) is a (weak) threshold value; it guarantees that the probability
of the event !.Gk;n/ D k is bounded away from both 0 and 1.

Theorem 5.14 ([6]). For k � n1=4 � �.1/, with probability 1 � o.1/ we have

SRR
�
CliqueBlock.Gk;n/ ` 0

�
� n�.k/:

Problem 5.15. Prove that for any fixed k > 0, SR.CliqueBlock.Gk;n/ ` 0/ � n2.

6. Algebraic and semi-algebraic proof systems

When you say 0 and 1, it is only mathematical logicians and computer scientists
whose first association would be FALSE and TRUE. For anyone else, these are dis-
tinguished elements of a ring with particular algebraic (or semi-algebraic if the ring
is ordered) properties. In this section, we will review, very briefly, a prominent family
of proof systems heavily adopting this latter point of view and entirely abstracting
from the logical interpretation of the statements they are proving. Besides [39, Chap-
ter 16], the foundational material for this section, as well as a taxonomy of these proof
systems, can be found in the early paper [32].
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The first thing to decide is how exactly we are going to translate logic to alge-
bra/geometry, and we should start with encoding clauses. There are essentially two
different ways of doing it, and this choice largely determines what kind of proof sys-
tems we are aiming at.

The first possibility is to encode clauses by polynomial equations over a ground
field F . This is done in a very straightforward way; for example, the clause C D

x1 _ Nx2 _ x3 is encoded as the equation .1 � x1/x2.1 � x3/ D 0.
For the second option we must assume that our ground field F is ordered, say

F D Q or F D R. In that case, we can encode clauses by linear inequalities. For
example, C D x1 _ Nx2 _ x3 will be translated as x1 C .1 � x2/ C x3 � 1 that can be
further simplified to x1 C x3 � x2, if desired.

In either case, the original CNF is unsatisfiable if and only if the algebraic/semi-
algebraic set defined by the corresponding system of polynomial equations/inequali-
ties over F does not have 0-1 solutions. This reformulation allows us to employ tools
from algebra/geometry, and we now treat the two cases separately.

6.1. Algebraic models

If we are allowed to use non-linear polynomials, the assumption that we are interested
only in 0-1 solutions can be hardwired into the framework by introducing the default
axioms x2

i � xi D 0. It turns out to be very handy, albeit not strictly necessary, to
factor out these relations at once and work in the F -algebra

ƒn
def
D F Œx1; : : : ; xn�=.x2

i � xi j 1 � i � n/:

This algebra was introduced to complexity theory (apparently) in [54, 61]; it consists
of all multi-linear polynomials and hence has linear dimension 2n. On the other hand,
it is isomorphic to the algebra of all functions ¹0; 1ºn ! F ; Hom.ƒn; F/ is the set of
all Boolean assignments to the variables x1; : : : ; xn etc.

Hilbert’s Nullstellensatz tells us that a polynomial system f1.x1; : : : ; xn/ D � � � D

fm.x1; : : : ; xn/ D 0 .fi 2 ƒn/ does not have 0-1 solutions if and only if there exist
Q1; Q2; : : : ; Qm 2 ƒn such that

f1Q1 C f2Q2 C � � � C fmQm D 1: (6.1)

Every such system of polynomials .Q1; : : : ; Qm/ 2 ƒn can thus be considered as a
proof of the statement that the algebraic set .f1D0; : : : ; fmD0/ does not contain 0-1
points. This proof system is called the Nullstellensatz proof system (over the field F ).

Remark 6.1. The question whether this system formally fits Definition 1.4 is slightly
non-trivial. It may depend on the way the polynomials are represented, on their coef-
ficients etc. We prefer not to dwell into these details as it has become much more
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customary (and it is way more clean mathematically, too) to measure the complexity
of the proof .Q1; : : : ; Qm/ by its degree defined as max1�i�m.deg.Qi / C deg.fi //.

By now, the Nullstellensatz proof system is fairly well understood. But since most
results proved for it have been eventually generalized (and sometimes strengthened)
to a stronger system that we will consider next, let us confine ourselves to just one
prominent example.

Theorem 6.2 ([10]). Every Nullstellensatz refutation of PHP1
n must have degree

�.
p

n/.

Remark 6.3. Both for this result and those below, Definition 2.1 should be slightly
adjusted. Namely, to avoid polynomials of prohibitively high degree, the pigeon ax-
ioms xi1 _ � � � _ xin should be translated as xi1 C � � � C xin � 1 D 0 (note that this
also implies that the funcionality axioms Nxij1

_ Nxij2
.j1 ¤ j2 2 Œn�/ are also implicitly

included).

The polynomial calculus (PC) is a dynamic version of this system in which we
attempt to prove that 1 is in the ideal .f1; : : : ; fm/ � ƒn by generating its elements
one by one instead of writing down a single expression like (6.1).

Definition 6.4. Polynomial calculus (over a ground field F ) is the algebraic proof
system whose lines are elements of ƒn. It has the following inference rules:

f D 0 g D 0

f̨ C ˇg D 0
I ˛; ˇ 2 F .addition rule/;

f D 0

fg D 0
.multiplication rule/:

The degree of a PC proof is the maximum degree of its lines.

Remark 6.5. The main source of non-triviality of this system stems from the fact that
at every step we completely expand the result as a sum of terms. When doing this,
cancelations may (and typically do) lead to a substantial decrease in degree. On the
other hand, there is a degree-size relation for the PC perfectly analogous to Theorem
5.7 (and actually proved earlier in [23]).

Remark 6.6. It is not very hard to see that every PC proof over Fp can be p-simulated
by F2.MODp/. Thus, polynomial calculus over a finite field can be reasonably viewed
as an “algebraic” component of F2.MODp/ while F2 is its logical part. The main
reason why Problem 4.9 appears to be so difficult is that the existing methods for
understanding these two parts seem to be totally disjoint from each other.

There has been a fair amount of work attempting to build actual SAT solvers based
upon algebraic principles, primarily the Gröbner basis algorithm. These solvers relate
to the PC in precisely the same way CDCL-based solvers are related to resolution, cf.
our discussion in Section 5. It would be fair to say that so far they have not been
competitive with CDCL solvers but there does not seem to exist any good theoretical
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explanation of this fact. So perhaps the true potential of algebraic SAT solvers is yet
to be revealed; we refer the reader to [19, Section 7.5.7] for more details.

As usual, we conclude with a few sample results. Historically the first lower
bound for the PC generalized and strengthened Theorem 6.2.

Theorem 6.7 ([56]). Every polynomial calculus refutation of PHP1
n must have de-

gree �.n/.

This also implies PC degree lower bounds for the statement “NP does not have
small size circuits” we already mentioned several times before.

The proof method of Theorem 6.7 is rather ad hoc, it is based on the so-called
“pigeon dance” specifically designed for the purpose. The next paper [17] introduced
a very nice and remarkably simple method of analyzing PC refutations from bino-
mial3 axioms. Here is one concrete application that strengthens Theorem 5.8.

Theorem 6.8 ([17]). For any sequence of bounded-degree graphs ¹Gnº with c.Gn/�

�.1/, every polynomial calculus refutation of Tseitin.Gn/ over any field of odd or
zero characteristic must have degree �.n/.

The extension to random 3-CNFs, with the same restriction on the ground field F ,
is not very difficult [14]. But the binomial method completely breaks down for
F D F2 which is one of the most interesting cases. Another method for proving PC
degree lower bounds over an arbitrary field based on a general hardness criterion
was proposed in [2]; see also [43] and the literature cited therein for more recent
developments.

Theorem 6.9 ([2, 14]). Let �n be a random 3-CNF with O.n/ clauses. Then any
polynomial calculus refutation of �n over an arbitrary field F must have degree �.n/.

Let us finally note that the degree-size relation mentioned above immediately
implies exponential size lower bounds for PC refutations in Theorems 6.8 and 6.9.

6.2. Semi-algebraic case

There are many prominent semi-algebraic proof systems: Sum-of-Squares, Cutting
Planes, Lovász–Schrijver, Sherali–Adams to name a few. We will only touch, very
briefly, on the first two; for a nicely organized exposition see [32]. Throughout this
section we assume that F D Q or F D R.

The Sum-of-Squares is also known under the name Positivestellensatz and is
closely related to the so-called Lassierre hierarchy. There are several slight variations
in its definition, we only present here (as many other authors do) the simplest version
in which the original axioms are given as polynomial equations, like in Section 6.1.

3In the Rademacher ¹˙1º framework.
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Definition 6.10. An SOS (or Positivestellensatz) refutation of a polynomial system
.f1 D � � � D fm D 0/ .fi 2 ƒn/ is a family of polynomials .Q1; : : : ; Qm; g1; : : : ; gt /

in ƒn such that

f1Q1 C � � � C fmQm C

tX
jD1

g2
j D �1: (6.2)

Its degree is defined as max.max1�i�m deg.fi / C deg.Qi /; 2 max1�j�t deg.gj //.

The corresponding algorithmic technique has in recent years become extremely
important in combinatorial optimization and approximation algorithms, largely due to
the fact that it has turned out unexpectedly powerful. We refer the reader to the expos-
itory paper [9] although a great deal of important work has been done since that. The
relation between combinatorial optimization and proof complexity follows the famil-
iar pattern, and in fact in this case it is even more transparent. But one important
difference is that unlike SAT solvers, algorithms in combinatorial optimization sel-
dom output the exact answer but only an optimistic approximation to it which in most
cases means relaxing the integrality constraints xi 2 ¹0; 1º to xi 2 Œ0; 1�. In any case,
the computation implies that one cannot beat the value of the goal function delivered
by this relaxation, and then after a straightforward application of the PSD duality, it
becomes an SOS proof in the sense of Definition 6.10. See again [9] for more details.

As for degree lower bounds, SOS is also relatively well understood although some
important problems still remain open. The first lower bound had been proven by Grig-
oriev [31] and largely forgotten until the realization of the algorithmic significance of
the SOS method came. This is the same binomial method we saw in Section 6.1,
wisely put to a different use.

Theorem 6.11 ([31]). Every SOS refutation of Tseitin.Gn/, where ¹Gnº is a sequence
of bounded-degree graphs with c.Gn/ � �.1/, must have degree �.n/.

More modern methods of handling SOS proofs are based upon the concept of a
pseudoexpectation which is essentially an object dual to the expression (6.2) (there-
fore, it exists if and only if the system (6.2) is not solvable in Qi ; gj of given degree).

The last system we discuss is Cutting Planes.

Definition 6.12. Cutting Planes is the proof system operating with affine inequalities,
denoted by PC. It has default axioms x � 0 and x � 1 for all variables x, as well as
the following inference rules:

f � 0 g � 0

f̨ C ˇg � 0
I ˛; ˇ � 0 .convex closure/;

f � a

f � dae
I f 2 ZŒx1; : : : ; xn� .cut rule/:
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To explain this terminology, it is convenient to adapt the dual, more geometric
point of view. Namely, if we allow to apply all possible convex closure rules at once,
then the set of constraints inferrable in this way will form a (convex) polyhedra. Its
dual will be a polytope P that is actually a sub-polytope of Œ0; 1�n (due to default
axioms). The task is to show that P \ ¹0; 1ºn D ;, that is that P does not contain any
integer points. In this language, applying the cut rule means cutting off a small piece
from this polytope (whence the name) guaranteed to not contain integer points.

From the algorithmic perspective, cutting planes correspond to the “geometric”
part of very prominent method in combinatorial optimization called Branch and Cut.
The full power of this method is captured by the proof system that, in the geometric
language above, operates with finite unions of polytopes. This system is currently out
of reach of the current methods although I would hesitate to classify it as “strong.”
A major development has been very recently reported on its subsystem Res.linR/ in
which all polytopes are confined to the form H \ Œ0; 1�n, H a hyperplane [47].

One proof complexity measure for cutting planes that has been extensively con-
sidered in the literature is their (Chvátal) rank (or depth). It is defined as follows: we
allow to apply in parallel not only all possible convex closure rules but cut rules as
well. Then the rank is simply the number of rounds that are necessary to arrive at
the empty polytope. This complexity measure is rather well understood due to a very
powerful technique called “protection lemmas,” see [36, Chapter 19] for an excellent
exposition.

As far as the size of cutting planes refutation is concerned, the situation is way
more intriguing and dynamic. The first lower bounds were proved by Pudlák [51]
using a prominent feasible interpolation method (or rather property). In the next the-
orem, Clique-Coloring.n; k/ is the principle that says that a graph on n vertices may
not simultaneously have a clique on k vertices and be k-colorable.

Theorem 6.13 ([51]). SCP.Clique-Coloring.n;
p

n// � exp.n�.1//.

Remarkably, the method of feasible interpolation is not combinatorial or direct,
instead it reduces a difficult problem in proof complexity to a difficult problem in
circuit complexity (lower bounds for monotone circuits) that we fortunately know
how to solve. As a by-side remark, let me mention that this kind of reductions is
very important and welcome for the proof complexity. Still, it is also natural to won-
der whether there are any “direct” methods (all other results in this article certainly
qualify) to handle cutting planes. On this frontier we have seen recent exciting devel-
opments that defy several pieces of “common wisdom.”

Firstly, it somehow makes sense to assume that random O.logn/-CNFs and O.1/-
CNFs should be “morally similar.” Nonetheless, the proof method of the following
theorem (a very clever use of feasible interpolation) seems to completely break apart
for O.1/-CNFs.
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Theorem 6.14 ([30, 35]). With probability 1 � o.1/, for a random ‚.log n/-CNF �n

with nO.1/ clauses we have SCP.�n ` 0/ � exp.n�.1//.

Even more striking and unexpected is the following recent result. In all our previ-
ous scenarios, random O.1/-CNFs and Tseitin tautologies for expanders went hand
in hand, and it was a general feeling that morally they should be sort of the same
(well, unless the characteristics of the field is 2). Given this feeling, the following
upper bound, very surprising in itself, also does not seem to generalize to random
O.1/-CNFs.

Theorem 6.15 ([26]). For any sequence ¹Gnº of bounded-degree graphs,

SCP
�

Tseitin.Gn/ ` 0
�
� nO.log n/:

All these developments make the following problem particularly exciting.

Problem 6.16. Is it true that for random O.1/-CNFs �n with O.n/ clauses,

SCP.�n ` 0/ � exp.n�.1// w.h.p.‹

It is expected that solving this in the affirmative would require development of
long-sought direct techniques, combinatorial or geometric, for analyzing the size
complexity of cutting planes. But then it also had been expected from the principles
featuring in the last two theorems.

7. In lieu of conclusion

There are several important topics in the modern proof complexity that, due to time
and space constraints, we have either skipped entirely or given them much less atten-
tion than they deserve. Let me conclude with a list of such topics, saying (literally) a
few words about each of them and providing some pointers to the literature.

Space complexity. Size complexity measures roughly correspond to the framework
in which a complete proof is written as a single piece made ready for submission or
verification. Space complexity deals with more dynamic, “classroom” scenario when
the proof is presented on a blackboard and lemmas that are no longer needed can be
erased to save space. See [45] for a nice exposition.

Feasible interpolation and automatizability. These were already mentioned in
Sections 5 and 6.1. The book [39] treats the subject extensively in Chapters 17 and 18.

Relations between various proof systems and complexity measures. We have
already seen some of those but, with the exception for Theorem 5.7, they were some-
what straightforward. There are, however, many other realtions, particularly involving
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space complexity measures, that are rather intricate and unexpected. The paper [46]
aims at providing a general picture using an appropriate notion of reduction.

Pseudo-random generators in proof complexity. This is an ongoing effort to adjust
to the needs of proof complexity the concept that is omnipresent in computational
complexity. It is largely motivated by studying (efficient) provability of the principle
“NP does not possess small circuits” we already mentioned several times. See (again)
[59, Section 1] or [39, Chapter 19.4] for more details.

Lifting techniques. This is a very recent general approach to lower bounds in circuit
complexity, communication complexity, and proof complexity remarkably uniting the
three themes. I am not aware of an expository source (this is very much work in
progress!) so let me instead refer to one of the latest papers in this direction [27].

Ideal proof system. This is an intriguing and bold attempt to stretch the Cook–
Reckhow framework (Definition 1.4) and bring it closer to the concept of PCPs
discussed earlier in Section 1. The paper [3] is one of the latest texts on the subject.
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[41] J. Krajíček, P. Pudlák, and A. Woods, An exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle. Random Structures Algorithms 7 (1995),
no. 1, 15–39 Zbl 0843.03032 MR 1346282

[42] A. Maciel, T. Pitassi, and A. R. Woods, A new proof of the weak pigeonhole principle. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp.
368–377, ACM, New York, 2000 Zbl 1296.03033 MR 2114552

[43] M. Mikša and J. Nordström, A generalized method for proving polynomial calculus
degree lower bounds. In 30th Conference on Computational Complexity, pp. 467–487,
LIPIcs. Leibniz Int. Proc. Inform. 33, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2015 Zbl 1434.03134 MR 3441818

[44] N. Mull, S. Pang, and A. A. Razborov, On CDCL-based proof systems with the ordered
decision strategy. In Theory and Applications of Satisfiability Testing—SAT 2020, pp.
149–165, Lecture Notes in Comput. Sci. 12178, Springer, Cham, 2020 Zbl 07331019
MR 4140309

[45] J. Nordström, Pebble games, proof complexity and time-space trade-offs. Log. Methods
Comput. Sci. 9 (2013), no. 3, 3:15, 63 Zbl 1285.03070 MR 3109599

[46] T. Papamakarios and A. A. Razborov, Space characterizations of complexity measures
and size-space trade-offs in propositional proof systems. Tech. Rep. TR21-074, Electronic
Colloquium on Computational Complexity, 2021

[47] F. Part and I. Tzameret, Resolution with counting: dag-like lower bounds and different
moduli. Comput. Complexity 30 (2021), no. 1, Paper No. 2 Zbl 07355181
MR 4199854

[48] T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for the pigeonhole
principle. Comput. Complexity 3 (1993), no. 2, 97–140 Zbl 0784.03034 MR 1233662

[49] T. Pitassi and R. Raz, Regular resolution lower bounds for the weak pigeonhole principle.
Combinatorica 24 (2004), no. 3, 503–524 Zbl 1063.03044 MR 2085370

[50] T. Pitassi, B. Rossman, R. A. Servedio, and L.-Y. Tan, Poly-logarithmic Frege depth lower
bounds via an expander switching lemma. In STOC’16—Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, pp. 644–657, ACM, New York, 2016
Zbl 1373.03125 MR 3536603

[51] P. Pudlák, Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symbolic Logic 62 (1997), no. 3, 981–998 Zbl 0945.03086 MR 1472134

https://zbmath.org/?q=an:0835.03025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1366417
https://zbmath.org/?q=an:07044161&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3929744
https://zbmath.org/?q=an:0696.03029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1011192
https://zbmath.org/?q=an:0843.03032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1346282
https://zbmath.org/?q=an:1296.03033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2114552
https://zbmath.org/?q=an:1434.03134&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3441818
https://zbmath.org/?q=an:07331019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4140309
https://zbmath.org/?q=an:1285.03070&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3109599
https://zbmath.org/?q=an:07355181&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4199854
https://zbmath.org/?q=an:0784.03034&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1233662
https://zbmath.org/?q=an:1063.03044&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2085370
https://zbmath.org/?q=an:1373.03125&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3536603
https://zbmath.org/?q=an:0945.03086&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1472134


A. A. Razborov 464

[52] R. Raz, P ¤ NP, propositional proof complexity, and resolution lower bounds for the weak
pigeonhole principle. In Proceedings of the International Congress of Mathematicians,
Vol. III (Beijing, 2002), pp. 685–693, Higher Ed. Press, Beijing, 2002 Zbl 1012.68081
MR 1957570

[53] R. Raz, Resolution lower bounds for the weak pigeonhole principle. J. ACM 51 (2004),
no. 2, 115–138 Zbl 1317.03036 MR 2145651

[54] A. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. Mat. Zametki 41 (1987), no. 4, 598–607; English translation
Math. Notes 41 (1987), 333–338 MR 897705

[55] A. A. Razborov, On provably disjoint NP-pairs. Tech. Rep. RS-94-36, Basic Research
in Computer Science Center, Aarhus, Denmark, 1994, https://www.brics.dk/RS/94/36/
BRICS-RS-94-36.pdf

[56] A. A. Razborov, Lower bounds for the polynomial calculus. Comput. Complexity 7 (1998),
no. 4, 291–324 Zbl 1026.03043 MR 1691494

[57] A. A. Razborov, Proof complexity of pigeonhole principles. In Developments in Lan-
guage Theory (Vienna, 2001), pp. 110–116, Lecture Notes in Comput. Sci. 2295, Springer,
Berlin, 2002 Zbl 1073.03540 MR 1964164

[58] A. A. Razborov, Resolution lower bounds for perfect matching principles. J. Comput.
System Sci. 69 (2004), no. 1, 3–27 Zbl 1106.03049 MR 2070797

[59] A. A. Razborov, Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Ann. of Math. (2) 181 (2015), no. 2, 415–472 Zbl 1376.03055
MR 3275844

[60] R. A. Reckhow, On the lengths of proofs in the propositional calculus. Tech. Rep. 87,
University of Toronto, 1976

[61] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Proceedings of the 19th ACM Symposium on Theory of Computing, pp. 77–82,
1987

[62] G. S. Tseitin, On the complexity of derivations in propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic, Part II, Consultants Bureau, New
York, 1968

[63] A. Yao, Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th
IEEE FOCS, pp. 1–10, 1985

Alexander A. Razborov
Departments of Mathematics and Computer Science, University of Chicago, Eckhart Hall,
5734 S University Ave, Chicago, IL 60637, USA; and Steklov Mathematical Institute of
the Russian Academy of Sciences, 8 Gubkina St., Moscow 119991, Russia;
razborov@uchicago.edu, razborov@mi-ras.ru

https://zbmath.org/?q=an:1012.68081&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1957570
https://zbmath.org/?q=an:1317.03036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2145651
https://mathscinet.ams.org/mathscinet-getitem?mr=897705
https://www.brics.dk/RS/94/36/BRICS-RS-94-36.pdf
https://www.brics.dk/RS/94/36/BRICS-RS-94-36.pdf
https://zbmath.org/?q=an:1026.03043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1691494
https://zbmath.org/?q=an:1073.03540&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1964164
https://zbmath.org/?q=an:1106.03049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2070797
https://zbmath.org/?q=an:1376.03055&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3275844
mailto:razborov@uchicago.edu
mailto:razborov@mi-ras.ru


© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/21

Covering and growth for group subsets and representations

Aner Shalev

Abstract. Deep results on products of subsets of finite groups, and of finite simple groups in
particular, were obtained this century. Gowers’ theory of quasi-random groups, further devel-
oped and applied by Nikolov and Pyber, focuses on covering results, while the theory of
approximate subgroups and the product theorem, developed by Helfgott, Hrushovski, Breuil-
lard, Green and Tao, and Pyber and Szabó, focus on growth results.

In recent joint works with Larsen and Tiep, following works with Liebeck and Tiep, we
explore analogous problems in representation theory. We replace subsets of a group by its char-
acters, and subset products by products of characters. We also study covering and growth for
normal subsets of finite simple groups and derive various applications. In particular, we prove
that every element of a sufficiently large finite simple transitive permutation group is a product
of two derangements.

The product theorem establishes 3-step growth of the form jA3j � jAj1C" for (certain)
subsets A of finite simple groups of Lie type of bounded rank. Surprisingly, stronger results
hold for characters. We obtain 2-step growth for characters of finite simple groups of Lie type,
including those of unbounded rank. For a character � of G, we set j�j D

P
i �i .1/

2, where �i

are the (distinct) irreducible constituents of �. For a finite simple group G of Lie type, we show
that for every ı > 0 there exists " > 0 such that if � is an irreducible character of G satisfying
j�j � jGj1�ı , then j�2j � j�j1C". In addition, we obtain results for reducible characters and
establish faster growth of the form j�2j � j�j2�" if j�j � jGjı .

Following a recent work of Sellke, we also study covering phenomena in representation
theory, proving that if j�1j � � � j�mj is a sufficiently large power of jGj, then every irreducible
character of G is a constituent of �1 � � ��m. Finally, we obtain related results for characters of
compact semisimple Lie groups.

1. Subset products and covering

In the past two decades, there has been considerable interest in the products of subsets
of finite groups, especially (nonabelian) finite simple groups. The so-called Gowers’
trick, which is part of the theory of quasi-random groups (see [1, 17, 57]), establishes

2020 Mathematics Subject Classification. Primary 20C33; Secondary 20D06.
Keywords. Finite simple groups, growth, covering, characters, approximate subgroups.

https://creativecommons.org/licenses/by/4.0/


A. Shalev 466

a useful 3-step covering result. Let m.G/ denote the minimal degree of a non-trivial
irreducible character of a finite group G. The density of a subset A � G is defined
as jAj=jGj. Let A, B , and C be subsets of G satisfying jAjjBjjC j � jGj3=m.G/.
Then, Gowers’ trick shows that ABC D G. In particular, if the density of A is at
least m.G/�1=3, then A3 D G.

A family F of finite groups is said to be quasi-random ifm.G/!1 asG ranges
over the groups in F . It follows that if F is a quasi-random family of finite groups,
" > 0, G 2 F , and the density of A;B;C � G is at least ", then ABC D G provided
that jGj is sufficiently large.

Much less is known about the products of two subsets, which is the main topic
of this section. It is easy to see that the above assertion fails to hold for length
2 products AB . Moreover, for every positive integer k, there exist infinitely many
finite groups G and subsets A;B � G such that jAj; jBj � jGj=.k C 1/ and jABj �

jGj � k. To see this, fix k � 1, and let G be any finite group of order divisible by
k C 1. Let A; S � G be subsets satisfying jAj D jGj=.k C 1/ and jS j D k. Define
B WD G n A�1S (where A�1 WD ¹a�1 W a 2 Aº). Note that jBj D jGj � jA�1S j �

jGj � jS jjAj D jGj � kjGj=.kC 1/D jGj=.kC 1/. Clearly, AB \ S D ; (if ab D s

for some a 2A, b 2B , and s 2 S , then bD a�1s, soB \A�1S ¤;, a contradiction).
Thus, AB � G n S and jABj � jGj � k, proving the claim.

Can we still obtain 2-step covering results under suitable stronger assumptions?
A trivial observation (which is still useful) is that if subsets A;B � G have den-

sities ˛ and ˇ, respectively, and ˛C ˇ > 1, then AB D G. In particular, if A;B � G

have size greater than jGj=2, then AB D G. This observation will play a role in the
complicated proof of the main result of Section 2 (see Theorems 2.4 and 2.8).

Next, let us assume that F is the family of all finite simple groups G. It is well
known that F is quasi-random (see [29] for detailed information on m.G/). Let
S; T � G be normal subsets of G; this means that S; T are closed under conju-
gation by elements of G, and so they are unions of conjugacy classes of G. What can
we say about the product ST and about related distributions?

Products of two (or more) normal subsets of finite simple groups have been
extensively studied. This includes the challenging case of products of two conjugacy
classes. A major motivation is a longstanding conjecture of Thompson, which asserts
that every finite simple group G has a conjugacy class C such that C 2 D G. In spite
of considerable progress (see Ellers and Gordeev [8] and the references therein) and
the proof of the related Ore conjecture (see [42]), Thompson’s conjecture is still open
for various infinite families of groups of Lie type over fields with q � 8 elements. A
weaker result, that all finite simple groups G of order exceeding 2630 have conjugacy
classes C1, C2 such that C1C2 � G X ¹eº, is obtained in [36]; this was improved,
using computational group theory and other tools, by Guralnick and Malle in [18],
where the same conclusion is established for all finite simple groups.
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See also [65], where a probabilistic approximation to Thompson’s conjecture is
obtained. It is shown there that, for finite simple groups G and random (not necessar-
ily independent) elements x;y2G, the sizes of xGyG and of .xG/2 are .1�o.1//jGj.
Thus, the square of the conjugacy class xG of a random element x 2 G almost cov-
ers G as jGj ! 1. Very recently, Larsen and Tiep [39] have proved Thompson’s
conjecture for additional infinite families of finite simple groups.

For normal subsets S (not equal to ;, ¹eº) of arbitrary finite simple groups G, the
minimal k > 0 such that Sk D G is determined by Liebeck and me in [45] up to an
absolute multiplicative constant. Indeed, we show there that log jGj= log jS j � k �

c log jGj= log jS j and derive various applications. Note that the lower bound on k is
trivial and that the upper bound on k is also an upper bound on the diameter of the
Cayley graph �.G; S/.

A beautiful improvement of this result in the case G D PSLn.q/ was obtained
by Rodgers and Saxl [59]. They show that if C1; : : : ; Ck are conjugacy classes of G
satisfying jC1j � � � jCkj > jGj12, then C1 � � �Ck D G.

Very recently, Maróti and Pyber [54] have obtained an impressive common exten-
sion of [45, 59], proving the following covering result.

Theorem 1.1 (Maróti and Pyber, 2021). There exists an absolute constant c such that
if G is any finite simple group, k 2 N, and T1; : : : ; Tk � G are normal subsets of G
satisfying jT1j � � � jTkj � jGjc , then T1 � � �Tk D G.

In [41], Liebeck, Nikolov, and I conjectured that there is an absolute constant c
such that if G is any finite simple group and A � G is any subset of size at least
two, then there is k � c log jGj= log jAj and elements g1; : : : ; gk 2 G such that
Ag1 � � �Agk D G (where Ag D g�1Ag). This conjecture is still open in general, but
Gill, Pyber, Short, and Szabó [15] confirmed it for finite simple groups of Lie type of
bounded rank.

The following stronger covering conjecture, which implies Theorem 1.1, was
stated by Gill, Pyber, and Szabó in [16] and proved there for finite simple groups
of Lie type of bounded rank.

Conjecture 1.2. There is an absolute constant c such that if G is any finite simple
group, k 2 N, and A1; : : : ; Ak � G are subsets of G satisfying jA1j � � � jAkj � jGjc ,
then there exist elements g1; : : : ; gk 2 G such that Ag1

1 � � �A
gk

k
D G.

Some covering results have deep applications, also to the theory of expander
graphs. It is now known that all finite simple groups can be made expanders uniformly
with respect to bounded generating sets. Remarkable pioneering work by Kassabov
established this for alternating groups [28] and then for special linear groups of
unbounded rank. A key step in proving expansion for the remaining finite simple
groups was to present the simple groups of Lie type of bounded rank (except the
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Suzuki groups, shown to be expanders in [6]) as a bounded product of subgroups of
the types SL2.q/ and PSL2.q/. This is done effectively in [40] with explicit bounds
and ineffectively (using a model-theoretic approach based on work by Hrushovski
and Pillay) by Lubotzky in [51].

In the work [43], Liebeck, Schul, and I show that the product of two small nor-
mal subsets of finite simple groups has size close to the product of their sizes (see
Section 3 for more details).

An interesting context in which the products of normal subsets of finite simple
groups play a role is the Waring problem for finite simple groups; see, for instance,
[21,22,32,33,36,37,42,55,60,66], the references therein, and Segal’s monograph [61]
on word width and the affirmative solution by Nikolov and Segal of Serre’s problem,
whether every finite index subgroup of a (topologically) finitely generated profinite
group is open.

By a word, we mean an element w D w.x1; : : : ; xd / of the free group Fd freely
generated by x1; : : : ;xd . A wordw and a groupG give rise to a word mapw W Gd!G

induced by substituting group elements g1; : : : ; gd in x1; : : : ; xd , respectively; its
image, denoted by w.G/, is a normal subset of G.

The classical Waring problem in number theory, solved by Hilbert and subse-
quently by Hardy and Littlewood using the circle method, deals with sums of nth
powers of natural numbers (see [56]). In [55, 60], the analogous problem for finite
simple groups G is studied; it is shown there that for every integer n > 1 there is
a number f .n/ such that if G is a finite simple group not satisfying the identity
xn D 1, then every element of G is a product of f .n/ nth powers. In other words, if
w D wn WD xn, then w.G/f .n/ D G for such groups G.

This result is improved in [66] for sufficiently large finite simple groups in sev-
eral ways: the inexplicit function f (depending on w) is replaced by the fixed small
number 3; the equality w.G/3 D G holds for all non-trivial words w provided that
jGj �Nw ; moreover, it is shown in [66] that, for all non-trivial wordsw1;w2;w3 2Fd

and all sufficiently large finite simple groups G, we have w1.G/w2.G/w3.G/ D G.
This is improved by Larsen, Tiep, and me in [36] for length 2 products; i.e., for non-
trivial words w1; w2 2 Fd and all sufficiently large finite simple groups G, we have

w1.G/w2.G/ D G: (1.1)

The tools we apply in proving this and other results on word maps include rep-
resentation theory and the Deligne–Lustig theory of characters, as well as algebraic
geometry and some model theory; see Hrushovski’s work on the elementary theory
of Frobenius automorphism [27] and Varshavsky’s strengthening of Fujiwara’s proof
of Deligne’s conjecture [68].

There are various asymptotic results showing that word maps associated with
words w ¤ 1 on finite simple groups G have large image; see [31–33, 57]. In partic-
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ular, it is shown by Larsen in [31] that jw.G/j � jGj1�" for any " > 0 provided that
jGj � 0, and that for G of Lie type and bounded rank there exists " > 0 (depending
only on the rank of G) such that for all words w ¤ 1 we have jw.G/j � "jGj. In the
recent preprint [35], we attempt to understand to what extent (1.1) can be extended to
products of arbitrary large normal subsets of finite simple groups.

Let " > 0 be a constant. Let G be a finite simple group and S and T normal
subsets ofG such that jS j; jT j> "jGj. We are particularly interested in the following
questions.

Question 1.3. Does every element in G X ¹eº lie in ST if jGj is sufficiently large?

Question 1.4. Does the ratio between the number of representations of each g 2

G X ¹eº and jS j jT j

jGj
tend uniformly to 1 as jGj ! 1?

Question 1.5. What happens in the special case S D T ?

An affirmative answer to Question 1.4 implies an affirmative answer to Ques-
tion 1.3 (and the same holds in the special case S D T ).

We exclude the identity element e of G in Questions 1.3 and 1.4 because every
conjugacy classC in a non-trivial finite groupG satisfies jC j D

jGj

n
for some n� 2, so

each such group has a normal subset S with jGj

3
� jS j � 2jGj

3
. Setting T D G X S�1,

we have jT j � jGj

3
and e … ST .

If G is non-trivial and we do not assume that S; T � G are normal subsets, then
we may choose S; T � G of size at least

�
jGj

2

˘
such that ST 6� G X ¹eº; indeed, fix

g 2 G X ¹eº, choose S of the specified size, and let T D G X S�1g.
Our answers to these questions are listed below.

Theorem 1.6. (1) The answers to Questions 1.3 and 1.4 are negative ifG ranges
over all finite simple groups, or even just over the alternating groups, or just
over all projective special linear groups.

(2) In the S D T case, the answer to Question 1.4 is still negative for alternating
groups.

(3) In the S D T case, the answer to Question 1.3 is positive for alternating
groups.

(4) IfG is a group of Lie type of bounded rank, then the answers to Questions 1.3
and 1.4 are both positive.

In view of this, we may say that the simple groups of Lie type of bounded rank
are the most well behaved in this context, and that the alternating groups are mildly
well behaved.

Let us now outline the proof of Theorem 1.6, starting with the case of alternating
groups An. Part (3) in this case follows from the more detailed result below.
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Proposition 1.7. For every s; t � 0 with sC t � 1, there are normal subsets Sn; Tn �

An such that jSnj=jAnj ! s, jTnj=jAnj ! t , and SnTn contains no 3-cycle.

It follows that, for normal subsets S; T � An, even the inequalities jS j; jT j �

.1=2 � o.1//jAnj do not imply ST � An n ¹eº.
As for part (3) of Theorem 1.6, namely, the positive result for An in the case

S D T , the following more detailed proposition shows that we obtain a covering
result even when "! 0 rather fast.

Proposition 1.8. For every 0 < ˛ < 1=4, there exists N > 0 such that if n � N and
T � An is a normal subset satisfying jT j � exp.�n˛/ � jAnj, then T 2 D An.

The main tool in the proof of Proposition 1.8 are strong character bounds for
symmetric groups obtained in [32]. Roughly speaking, we show that for each � 2 Sn

there is a well-defined E.�/ 2 Œ0; 1� such thatˇ̌
�.�/

ˇ̌
� �.1/E.�/Co.1/ for all � 2 Irr.Sn/:

Applying these character bounds and other tools, we deduce thatE.�/ < 1=4 implies
.�Sn/2 D An for all n � 0. It is also shown in [32] that, for every subset T � An

satisfying jT j � exp.�n˛/ � jAnj with ˛ < 1=4, a random � 2 T satisfiesE.�/ < 1=4
almost surely. We therefore deduce that there is � 2 T such that .�Sn/2 D An if
n � 0. Finally, replacing �Sn with �An and using Erdős–Turán’s statistical group
theory (see, for instance, [9]), we show that T 2 D An for n� 0.

We now turn to projective special linear groups PSLn.q/. We show the following.

Proposition 1.9. Let q be a fixed prime power. Then, there exists " > 0 such that,
for every n � 2 which is relatively prime to q � 1, there are normal subsets Sn; Tn �

SLn.q/Š PSLn.q/ of density at least " such that SnTn does not contain any transvec-
tion.

This result completes the proof of part (1) of Theorem 1.6.
Our proof of part (4) of Theorem 1.6, dealing with Lie-type groups of bounded

rank, depends on a new result in algebraic geometry, which may be of independent
interest; it may be regarded as a refinement of the classical Lang–Weil estimate [30]
(see also Varshavsky [68]), which concerns the number of points in a finite product
set inside a product variety which lies on a subvariety of the product variety. Another
major ingredient of the proof is character theory. To explain the connection, we need
some notation. For normal subsets R1; : : : ; Rk of a finite group G and g 2 G, let
PR1;:::;Rk

.g/ denote the probability that x1 � � � xk D g, where xi 2 Ri are randomly
chosen. Using this notation, we formulate and establish the following result, which is
equivalent to part (4) of Theorem 1.6.
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Theorem 1.10. Let G D Xr.q/, a finite simple group of Lie type of rank r over Fq .
Suppose that r is bounded and q!1. Fix " > 0 and let S;T �G be normal subsets
of size � "jGj. Then, for every g 2 G n ¹eº we have

PS;T .g/ D
�
1C o.1/

�
jGj

�1:

The relevance of character theory and character bounds to the proof of Theorem
1.10 stems from a classical result of Frobenius: let C1; : : : ; Ck � G be conjugacy
classes, and g 2 G. Then,

PC1;:::;Ck
.g/ D jGj

�1
X

�2Irr.G/

�.C1/ � � ��.Ck/�.g/

�.1/k�1
:

Frobenius’ formula above is also useful for classical groups of unbounded rank.
In this case, part (1) of Theorem 1.6 and the more detailed Proposition 1.8 provide
counterexamples to 2-step covering by large normal subsets. It turns out that 3-step
covering is achieved. More specifically, Question 1.3 for products of three normal
subsets has a positive answer with a tiny "D jGj�ı , which tends to zero as jGj !1.

Theorem 1.11. There exists a fixed ı > 0 such that if G is a finite simple classical
group and R; S; T � G are normal subsets of size � jGj1�ı , then RST D G.

Note that this result does not follow from Gowers’ trick. Indeed, for G of rank
r ! 1, jGj�ı � q�ar2

is much smaller than m.G/�1=3 � q�br .
The proof of Theorem 1.11 relies heavily on recent developments in representa-

tion theory and, more specifically, on the theory of exponential character bounds for
finite simple groups G; these are bounds of the formˇ̌

�.g/
ˇ̌
� �.1/˛.g/;

for various g 2 G, where ˛.g/ 2 Œ0; 1� is an explicit function of g.
For symmetric and alternating groups, such bounds were first obtained by Fomin

and Lulov [10] in 1997 for the so-called homogeneous permutations. Bounds for
almost homogeneous permutations were subsequently obtained in [46] (see also [48])
with various applications to Fuchsian groups, Higman’s conjecture, subgroup growth,
and representation varieties. In [32], Larsen and I obtain essentially best-possible
exponential character bounds for most permutations in Sn, with applications to word
maps and other topics.

Exponential character bounds for finite simple groups of Lie type were recently
obtained by Bezrukavnikov, Liebeck, Tiep, and me in [2], by Guralnick, Larsen, and
Tiep in [19, 20], and by Taylor and Tiep in [67].
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The proof of Theorem 1.11 relies mainly on the level theory of characters devel-
oped by Guralnick, Larsen, and Tiep in [19, 20], combined with earlier results on the
Witten zeta function

�G.s/ D
X

�2Irr.G/

�.1/�s

and its abscissa of convergence obtained by Liebeck and me in [47].
More specifically, we apply a theorem from [20] according to which there exists

an absolute constant 
 > 0 such that if G is a finite simple classical group and g 2 G

satisfies jCG.g/j � jGj
 , then j�.g/j � �.1/1=4 for all � 2 Irr.G/.
We then apply Frobenius’ formula and [47, Theorem 1.2], stating that, for any

fixed s > 0 and r sufficiently large (in terms of s), �G.s/ converges and tends to 1 as
r ! 1. In fact, the case s D 1=4 suffices.

We now turn to applications of Theorem 1.6. We start with a direct (yet highly
non-trivial) application to word maps. A major application, the proof of which is
considerably harder, will be discussed in the next section (see Theorem 2.8).

For a non-trivial word w 2 Fd and a finite group G, consider the word map w W

Gd ! G, and define Pw;G.g/ WD jw�1.g/j=jGjd . Thus, Pw;G.g/ is the probability
that w.g1; : : : ; gd / D g as g1; : : : ; gd 2 G are chosen uniformly and independently.

In [37, Theorem 4], we show that for every ` � 1 there exists N D N.`/ WD

2 � 1018 � `4 such that if 1 ¤ w1; : : : ; wN 2 Fd are pairwise disjoint words of length
� `, G is a finite simple group, and UG is the uniform distribution on G, then

kPw1���wN ;G � UGk1 ! 0 as jGj ! 1I

namely, Pw1���wN ;G is almost uniform with respect to the L1 norm.
Surprisingly, changing the probabilistic model and using Theorem 1.10, we obtain

an almost uniform distribution in L1 much more rapidly.

Corollary 1.12. Let 1 ¤ w1; w2 2 Fd and let G be a finite simple group of Lie type
of bounded rank. Then,

kPw1.G/;w2.G/ � UGk1 ! 0 as jGj ! 1:

A version for classical groups of unbounded rank was previously implicitly ob-
tained by Nikolov and Pyber in [57] using Gowers’ theory of quasi-random groups;
it shows that

kPw1.G/;w2.G/;w3.G/ � UGk1 ! 0 as jGj ! 1:

Note that Theorem 1.11 extends this result, since wi .G/ are normal subsets of size at
least jGj1�ı by [31].
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2. Permutation groups and derangements

A major application of our results from Section 1 on products of normal subsets
concerns permutation groups and fixed-point-free permutations, also called derange-
ments.

The study of derangements goes back three centuries.
In 1708, Monmort proved that the proportion of derangements in the symmetric

group Sn (in its natural action) tends to 1=e as n ! 1. Passing to general permu-
tation groups G � Sn, it is easy to see that if G is intransitive it need not contain
derangements (e.g., all permutations in G may have a common fixed point).

In the 1870s, Jordan showed that ifG � Sn is transitive and 2� n<1, then there
exists a derangement g 2 G (this result fails to hold for infinite transitive permutation
groups).

What can be said about the proportion of derangements in finite transitive permu-
tation groups?

In 1990, Cameron and Cohen [7] proved that the proportion of derangements in
transitive permutation groups of degree n is at least 1=n and that this lower bound
is sharp (as shown by the example of Frobenius groups). Subsequently, it was con-
jectured that a much better lower bound holds for finite simple transitive permutation
groups.

Conjecture 2.1 (Boston–Shalev, 1990s). The proportion of derangements in any
finite simple transitive permutation group is at least " for some fixed " > 0.

LetG�Sn be a transitive permutation group. LetD.G/ denote the set of derange-
ments in G. Clearly, D.G/ D D.G/�1 and D.G/ is a normal subset of G. Let H be
a point stabilizer in G. The set of derangements in G in this case is also denoted by
D.G;H/. Clearly,

D.G;H/ D G n

[
g2G

Hg :

Conjecture 2.1 states that if G is simple, thenˇ̌
D.G/

ˇ̌
� "jGj;

for some absolute positive constant ".
Impressive work on Conjecture 2.1 was carried out in 2002–2018 by Fulman and

Guralnick (see, e.g., [11–13]), culminating in the following result.

Theorem 2.2 (Fulman–Guralnick, 2018). The Boston–Shalev conjecture holds.
Moreover, if G is sufficiently large we may take " D 0:016.

It would be nice to find an explicit number N such that if the finite simple transi-
tive permutation group G has order at least N , then jD.G/j � 0:016jGj or to find an
explicit (possibly smaller) " > 0 such that jD.G/j � "jGj without exceptions.
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Since finite simple groups are quasi-random, Theorem 2.2, combined with Gow-
ers’ trick, yields the following.

Corollary 2.3. For all sufficiently large finite simple transitive permutation groupsG,
every permutation in G is a product of three derangements, namely, D.G/3 D G.

Can we replace three by two? Note that the proof of Corollary 2.3 does not use
the fact that D.G/ is a normal subset of G. Using the normality of D.G/, Theorem
1.6 becomes highly relevant. Applying parts (3) and (4) of it, noting that e 2 D.G/2,
we immediately obtain the following.

Theorem 2.4. Let G be a finite simple transitive permutation group which is alter-
nating or of Lie type of bounded rank. If jGj � 0, then D.G/2 D G; namely, every
element of G is a product of two derangements.

Indeed, we proved for the groups above that T 2 D G for every normal subset
T � G of size � "jGj, so take T WD D.G/.

In order to extend Theorem 2.4 to all types of finite simple groups, it remains
to deal with classical groups G of unbounded rank (since the sporadic groups have
bounded order). We may assume that G is primitive; i.e., a point stabilizer H < G

is a maximal subgroup. Indeed, if H is not maximal, it is contained in a maximal
subgroup M of G, and

D.G;H/ D G n

[
g2G

Hg
� G n

[
g2G

M g
D D.G;M/;

so D.G;M/2 D G implies that D.G;H/2 D G.
We need some additional tools in order to deal with the remaining case of classical

groups of unbounded rank.
In 1993, Łuczak and Pyber [52] proved a conjecture of Cameron that as n! 1,

almost all permutations in Sn do not lie in a proper transitive subgroup (not containing
An). In the same paper, they pose a similar problem for GLn.p/, where p is a fixed
prime and n! 1. In 1998, this problem was solved in [64].

Theorem 2.5. Let q be a fixed prime power. Then, as n! 1, almost all matrices in
GLn.q/ do not lie in a proper irreducible subgroup (not containing SLn.q/).

In 2018, Fulman and Guralnick [13] proved a stronger result for all classical
groups in dimension n ! 1, where the size of the underlying field need not be
fixed. In the case G D Spn.2

k/, they exclude (apart from irreducible subgroups) the
subgroups O˙

n .2
k/. We apply this to obtain the following.

Corollary 2.6. Let G be a finite simple classical group in dimension n � 0. Let
H <G be a maximal subgroup. Suppose thatH is irreducible and notO˙

n .2
k/ when

G D Spn.2
k/. Then, D.G;H/2 D G.
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To prove this, letX.G/ denote the union of the above maximal subgroupsH <G.
Then, jX.G/j=jGj ! 0 as n ! 1. Therefore, jX.G/j < jGj=2 for n � 0. Fixing
one such subgroup H (noting that X.G/ is closed under conjugation), we see thatS

g2G H
g � X.G/ implies that jD.G;H/j � jGj � jX.G/j > jGj=2. Applying an

observation from Section 1, it follows that D.G;H/2 D G.
Hence we may assume that H is reducible (namely, a parabolic subgroup) or

G D Spn.2
k/ and H D O˙

n .2
k/.

Our next result settles the problem in additional cases.

Proposition 2.7. There are absolute constants c1, c2 such that the following holds.
Let G 2 Cln.q/ be a finite simple classical primitive permutation group with point
stabilizerH . If q is even, assume .G;H/¤ .Spn.Fq/;O

˙
n .Fq//. Suppose that n� c1

and the action is not a subspace action on subspaces of dimension k � c2. Then,
D.G/2 D G.

To show this, we may assume that H is reducible; namely, G acts in subspace
action, say on subspaces (non-degenerate or totally singular for G ¤ PSLn.q/) of
dimension k, with 1 � k � n=2. Theorems 6.4, 9.4, 9.10, 9.17, and 9.30 of [12] show
that, as k!1, the proportion of derangements inG is 1�O.k�0:005/, which tends
to 1. The result follows as before.

We are left with very concrete cases, of subspace action on subspaces of bounded
dimension and of Spn.Fq/ for q even acting on cosets of GO˙

n .Fq/. These cases
are handled using character methods and the theory of symbols. Roughly speaking,
we apply the method of [53] and its extension in [36] and use weakly orthogonal
tori T1; T2 and regular semisimple elements ti 2 Ti such that only few (unipotent)
characters � 2 Irr.G/ satisfy �.t1/�.t2/ ¤ 0. This helps show that tG1 t

G
2 � G n ¹eº.

This rather long case-by-case study completes the proof of the main result of this
section (see [34]).

Theorem 2.8. Let G be a finite simple transitive permutation group. If G is suffi-
ciently large, then every element of G is a product of two derangements.

We conjecture that the assumption that G is sufficiently large is not needed;
namely:

Conjecture 2.9. Let G be a finite simple transitive permutation group. Then, every
element of G is a product of two derangements.

Computations carried out by Eamonn O’Brien provide strong evidence in favor
of this conjecture, but proving it seems to require new methods.
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3. Subset growth

The celebrated product theorem of [5,58], which is part of the deep theory of approx-
imate subgroups [4] following the pioneeing work of Helfgott on SL2.p/ [24] (see
also [25]) and Hrushovski’s model-theoretic approach [26], shows that for finite sim-
ple groups G of Lie type and bounded rank there exists " > 0 such that, for every
subset A � G which generates G, either jA3j � jAj1C" or A3 D G.

Can we extend this result to general finite simple groups? The answer is known
to be negative, as shown by counterexamples for classical groups of unbounded rank
and alternating groups of unbounded degree.

However, the situation changes dramatically if we replace arbitrary subsets by
normal subsets. A first result in this direction was obtained in [66] before the product
theorem was fully established. Indeed, Theorem 2.7 there states the following.

Theorem 3.1. For any ı > 0, there exists " > 0 depending only on ı such that if G
is a finite simple group and C is a conjugacy class of G of size at most jGj1�ı , then
jC 3j � jC j1C".

Note that an upper bound on the size of C of the type above is necessary for
the conclusion to hold. The proof of Theorem 3.1 uses tools from character theory,
properties of the Witten zeta function obtained by Liebeck and me in [47], as well as
[24, Lemma 2.2] of Helfgott and its proof.

Can we extend this 3-step growth result to 2-step growth results, replacing C 3 by
C 2? It turns out that the answer is positive if G is a finite simple group of Lie type of
bounded rank. Indeed, we have the following (see [66, Proposition 10.4]).

Theorem 3.2. If C is a conjugacy class of a finite simple group G of Lie type, then
jC 2j � jC j1C", where " > 0 depends only on the rank of G.

The above result was extended by Gill, Pyber, Short, and Szabó in [15, Theo-
rem 1.5], where conjugacy classes C are replaced by arbitrary normal subsets T , and
G is an arbitrary finite simple group.

Theorem 3.3. There are absolute constants b 2 N and " > 0 such that, for any nor-
mal subset T of a finite simple group G, either T b D G or jT 2j � jT j1C".

Subsequently, Liebeck, Schul, and I obtained stronger expansion results for nor-
mal subsets in [43].

Theorem 3.4. Given any " > 0, there exists b 2 N such that, for any normal subset
T of any finite simple group G, either T b D G or jT 2j � jT j2�".

Theorem 3.4 is deduced from the following result.
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Theorem 3.5. Given any " > 0, there exists ı D ı."/ > 0 such that if T is a normal
subset of a finite simple group G satisfying jT j � jGjı , then jT 2j � jT j2�".

Obviously jT 2j � jT j2, so Theorem 3.5 shows that small normal subsets of finite
simple groups expand almost as quickly as possible.

Note that some upper bound on the size of T is needed in order for the conclusion
to hold.

To deduce Theorem 3.4, fix " > 0 and choose ı D ı."/ > 0 as above. Recall that,
by the main result of [45], there exists an absolute constant c and a positive integer
k � c log jGj= log jT j such that T k D G for every (non-trivial) normal subset T of
a finite simple group G. Hence, if jT j � jGjı , then T k D G for some k � cı. Thus,
Theorem 3.4 holds with b D bcıc.

Theorem 3.5 holds vacuously for simple groups of bounded order or of bounded
rank, since for these we may choose ı so small that jT j > jGjı for all non-trivial
normal subsets T ; in particular, it holds for the sporadic groups and the exceptional
groups of Lie type. It therefore remains to prove the theorem for classical groups of
large rank and alternating groups of large degree.

We deduce Theorem 3.5 from the following more general result.

Theorem 3.6. Given any " > 0, there exists ı > 0 such that if T1, T2 are nor-
mal subsets of a finite simple group G satisfying jT1j; jT2j � jGjı , then jT1T2j �

.jT1j jT2j/
1�".

The proof of Theorem 3.6 in [43] is based on results from [44, 45, 47], together
with some new results of independent interest on the size of the conjugacy classes in
classical groups and in symmetric groups in terms of the support of their elements.

The support of a permutation x 2 Sn is the number of points moved by x. Let
C � Sn be a non-trivial conjugacy class and let s be the support of its elements
(obviously all the elements of C have the same support), which may be regarded as
the support of C . Then, 2 � s � n. For our purpose, it is essential to obtain good
estimates on the size of C in terms of its support s. We show that

jC j �
nŠ

.n � s/Šs

for all s and that
jC j �

nŠ

.n � s/Š2s=2bs=2cŠ

for all s ¤ 3.
Note that the above lower bound on jC j is best possible, since it is attained in the

case where the permutations in C decompose into s=2 2-cycles (s even). The upper
bound on jC j is also sharp; it is attained when C consists of s-cycles. Finally, if sD 3,
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then the lower bound does not hold, but it does hold for all s if we replace bs=2c by
ds=2e.

Next, let G be one of the classical groups L˙
n .q/, PSpn.q/ or PO˙

n .q/, and let
V D Vn.q

u/ be the natural module for G with n large, where u D 2 if G is unitary
and u D 1 otherwise. Let F be the algebraic closure of Fq , and let V D V ˝ F . Let
x 2 G, and let Ox be a preimage of x in GL.V /. Define

�.x/ D �V;F .x/ D min
®

dimŒV ; � Ox� W � 2 F
�¯
;

where ŒV ; � Ox� denotes the subspace V .� Ox � IdV /. We shall refer to �.x/ as the
support of x.

Define

a.G/ D

´
1; if G D L˙

n .q/;
1
2
; otherwise:

The inequalities we state below, which are an extension of [44, Lemma 3.4], show
that �.x/ is closely related to the size of the conjugacy class C D xG . Suppose that
�.x/ D s < n

2
, and let a D a.G/. We prove that

c1q
2as.n�s�1/

� jxG
j � c2q

as.2n�sC1/

for some absolute constants c1; c2 > 0.
In fact, under the assumptions of Theorem 3.6, we establish a stronger conclusion:

there exists a single conjugacy class C � T1T2 such that jC j � .jT1j jT2j/
1�". The

notion of the support of elements of G plays a key role in our argument.
A similar result for k subsets follows inductively from Theorem 3.6.

Corollary 3.7. Given " > 0 and k 2 N, there exists ı > 0 such that if T1; : : : ; Tk �G

are normal subsets of a finite simple group G with jTi j � jGjı for i D 1; : : : ; k, then
jT1 � � �Tkj � .jT1j � � � jTkj/

1�". In particular, jT kj � jT jk�" for every normal subset
T of G satisfying jT j � jGjı , where ı depends on " and k.

Finally, we prove a result analogous to Theorem 3.6 for algebraic groups over
algebraically closed fields.

Theorem 3.8. For any " > 0, there exists ı > 0 such that if C1, C2 are conjugacy
classes in a simple algebraic group G satisfying dimCi � ı dimG for i D 1; 2, then
the product C1C2 contains a conjugacy class of dimension at least .1� "/.dimC1 C

dimC2/.

4. Character growth and covering

The main goal of this section, based mainly on the recent preprint [38] with Larsen
and Tiep, is to study covering and growth phenomena in representation theory, with
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emphasis on (complex) representations of the finite simple groupsG of Lie type. Here,
products of subsets of G are replaced by tensor products of representations (or equiv-
alently, products of characters). Our results on tensor product growth are somewhat
stronger than the product theorem in two senses: instead of 3-step growth, we estab-
lish 2-step growth, as well as uniform growth when the rank of G tends to infinity.

In some cases, the results of this section are character-theoretic analogues of
results from the previous section, dealing with product growth of conjugacy classes
(corresponding to irreducible characters) and normal subsets (corresponding to arbi-
trary characters). An irreducible constituent of an arbitrary character may be regarded
as an analogue of a conjugacy class contained in a normal subset.

Covering results by products of characters of finite simple groups were obtained
by Liebeck, Tiep, and me in the recent papers [49,50]. These papers study the McKay
graphs of finite simple groups, with emphasis on their diameter.

We need some background and notation. For a finite group G and a complex
character ˛ ofG, the McKay graphMC.G;˛/ is defined to be the directed graph with
vertex set Irr.G/, and with an edge from �1 to �2 if and only if �2 is a constituent of
˛�1.

A classical result of Burnside and Brauer [3] shows that MC.G; ˛/ is connected
if and only if ˛ is faithful; furthermore, in this case an upper bound for the diameter
diamMC.G; ˛/ is given by N � 1, where N is the number of distinct values of ˛.
This means that

PN�1
jD0 ˛

j contains every irreducible character of G.

An obvious lower bound for diamMC.G;˛/ (when ˛.1/ > 1) is given by log b.G/
log ˛.1/

,
where b.G/ is the largest degree of an irreducible character of G. This lower bound
(which can be slightly improved) is in general far from tight. However, finite simple
groups often behave better than arbitrary groups, and for them we stated the following
conjecture in [50].

Conjecture 4.1. There is an absolute constant c such that, for any finite non-abelian
simple group G and any non-trivial irreducible character ˛ of G, we have

diamMC.G; ˛/ � c
log jGj

log˛.1/
:

This conjecture may be regarded as a representation-theoretic analogue of [45,
Theorem 1.1] on the diameter of the Cayley graph �.G; S/ of a finite simple group
G with respect to a (non-trivial) normal subset S .

Various results supporting this conjecture were obtained in [49, 50], where it is
proved for several families of groups of Lie type and for alternating groups following
Sellke’s paper [62] proving it for symmetric groups. In [49], we also obtain some
results showing that, under suitable assumptions, products �1 � � ��m of possibly dif-
ferent characters cover Irr.G/ (namely, every irreducible character is a constituent of



A. Shalev 480

the above product). In [39], Larsen and Tiep have completed the proof of Conjec-
ture 4.1.

A more recent covering result of Sellke [63] is a character-theoretic analogue of
Gowers’ trick and the theory of quasi-random groups discussed in Section 1, which
focuses on 3-step covering. We need some notation.

LetG be a finite group. We say that an arbitrary complex character  ofG covers
Irr.G/ if every irreducible character of G is a constituent of  . If X D ¹�1; : : : ; �kº

is a set of (pairwise distinct) irreducible characters of G, we define

jX j D

kX
iD1

�i .1/
2:

This is the Plancherel measure, normalized so that j Irr.G/j D jGj. If � is any char-
acter of G, we define j�j D jX�j, where X� denotes the set of distinct irreducible
constituents of �. We show in [38] that the function sending � to j�j has convenient
properties: it is sub-multiplicative and satisfies the triangle inequality in the sense that

j�1�2j � j�1j � j�2j and j�1 C �2j � j�1j C j�2j: (4.1)

We can now state the covering result mentioned above, which is the main part
of [63, Theorem 1.3]. For a finite group G, let c.G/ denote the minimal size of
a conjugacy class ¤ ¹eº in G. Let us say that a collection F of finite groups is
conjugacy-random if c.G/! 1 as G ranges over the groups in F .

Theorem 4.2 (Sellke, 2021). Let F be a conjugacy-random set of finite groups. Fix
" > 0. Let G 2 F and let �1, �2, �3 be (not necessarily irreducible) characters of G
with the property that j�1j; j�2j; j�3j � "jGj. Then, �1�2�3 covers Irr.G/ provided
jGj is sufficiently large.

While most of our results below establish rapid tensor product growth in vari-
ous situations, some of them, i.e., Theorems 4.8 and 4.9, are covering results, while
Theorem 4.7 establishes a growth-or-covering phenomenon.

Recall that G is quasisimple if G D ŒG;G� and G=Z.G/ is simple.
Our first growth results are as follows.

Theorem 4.3. For all ı > 0, there exists " > 0 such that if G is a finite quasisimple
group of Lie type and � is an irreducible character of G with j�j � jGj1�ı , then
j�2j � j�j1C" and j��j � j�j1C".

We also have a version of this result for general characters in groups of high rank.

Theorem 4.4. For all ı > 0, there exist " > 0 and R > 0 such that if G is a finite
quasisimple group of Lie type and rank �R and � is any (not necessarily irreducible)
character of G with j�j � jGj1�ı , then j�2j � j�j1C" and j��j � j�j1C".
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An essential tool in the proofs of most of the results in this section is a new
uniform character bound obtained by Larsen and Tiep [39, Theorem A]. The proofs
of Theorems 4.3 and 4.4 present " as an explicit function of ı, e.g., " D cı

4C2c.1�ı/

in Theorem 4.3, where c > 0 is the absolute constant in [39, Theorem A]. Moreover,
if G is sufficiently large but of bounded rank r , and � is irreducible, then " D ı

2�2ı

will do; for example, any irreducible character � of G with j�j � jGj1=2 satisfies
j�2j � j�j3=2. Can we establish faster growth when j�j is smaller?

Our next result provides an affirmative answer and may be regarded as a charac-
ter-theoretic analogue of the main result of Section 3, namely, Theorem 3.6 (which
obviously implies Theorem 3.4).

Theorem 4.5. For any " > 0, there exists an explicit ı > 0 such that the following
statement holds. If G is a finite quasisimple group of Lie type and �1, �2 are any (not
necessarily irreducible) characters of G with j�1j; j�2j � jGjı , then

j�1�2j �
�
j�1j � j�2j

�1�"
:

In particular, if � is a character of G satisfying j�j � jGjı , then j�2j � j�j2�2".

The inequality j�1�2j � j�1j � j�2j mentioned in (4.1) shows that the growth
established in Theorem 4.5 is almost best possible.

Theorem 4.5 is easily extended to products of arbitrary length, in the spirit of
Corollary 3.7 for k normal subsets.

Corollary 4.6. For any " > 0 and any integer k � 1, there exists an explicit 
 D


."; k/ > 0 such that the following statement holds. If G is a finite quasisimple group
of Lie type and �1; �2; : : : ; �k are any (not necessarily irreducible) characters of G
with j�1j; j�2j; : : : ; j�kj � jGj
 , then

j�1�2 � � ��kj �
�
j�1j � j�2j � � � j�kj

�1�"
:

In particular, if � is a character of G satisfying j�j � jGj
 , then j�kj � j�jk�k".

To show this, we prove by induction on k�2 the following equivalent statement.
For any " > 0 and any k � 2, there exists an explicit 
 > 0 (depending on both "

and k) such that if G is a finite quasisimple group of Lie type and �1; �2; : : : ; �k are
any characters of G with j�1j; j�2j; : : : ; j�kj � jGj
 , then

j�1�2 � � ��kj �
�
j�1j � j�2j � � � j�kj

�1�k"
:

We will show that this statement holds with 
 WD ı=.k � 1/, where ı is the con-
stant in Theorem 4.5. The case k D 2 is already established in Theorem 4.5. For the
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inductive step, note that (4.1) and the induction hypothesis yield�
j�2j � � � j�kj

�1�.k�1/"
� j�2 � � ��kj �

kY
iD2

j�i j � jGj

.k�1/

� jGj
ı :

Since j�1j � jGjı , by Theorem 4.5 we have

j�1�2 � � ��kj �
�
j�1j � j�2 � � ��kj

�1�"

�
�
j�1j �

�
j�2j � � � j�kj

�1�.k�1/"�1�"

�
�
j�1j � j�2j � � � j�kj

�1�k"
:

The above result shows that, for any " > 0 and any integer k � 2, there exists an
explicit ı D ı."; k/ > 0 such that, for G as above and any (not necessarily irre-
ducible) character � ofG satisfying j�j � jGjı , we have j�kj � j�jk�"; indeed, define
ı."; k/ D 
."=k; k/.

Applying Theorem 4.5, we deduce the following result, which is a character-
theoretic analogue of Theorem 3.4.

Theorem 4.7. For all " > 0, there exists an explicit positive integer b such that ifG is
a finite simple group of Lie type and � is any (not necessarily irreducible) character
of G, then either �b contains every irreducible character of G or j�2j � j�j2�".

In view of Gowers’ theorem, it is natural to ask whether b D 3 suffices in Theo-
rem 4.7 when j�j is sufficiently large. Sellke’s theorem (Theorem 4.2) shows that the
answer to this question is affirmative for large G provided that j�j � jGjı for some
fixed ı > 0. We therefore ask the following.

Question. If G is a finite simple group of Lie type and � is an arbitrary character
of G such that j�j � jGjı for some fixed ı > 0, is it true that j�3j D jGj provided
jGj � 0?

We remark that the stronger equality j�2j D jGj does not always hold, as shown
by the example of PSU2nC1.q/ (see [23, Theorem 1.2]). On the other hand, for certain
simple groups of Lie type, we can bring b down to 6 or 7.

Theorem 4.8. If G D PSLn.q/ and q is sufficiently large in terms of n, then j�j �

jGj11=12 implies that j�6j D jGj. If G D PSUn.q/ and q is sufficiently large in terms
of n, then j�j � jGj11=12 implies that j�7j D jGj.

Our next result is an analogue of Theorem 1.1 by Maróti and Pyber (following
[45] and Rodgers–Saxl [59]), where the normal subsets are replaced by characters
of G. In the case where the characters are irreducible, this analogue was conjectured
by Gill in [14] and proved by Larsen and Tiep in [39, Theorem 8.5]. A more general
version, for arbitrary characters, is given below.
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Theorem 4.9. There exists an explicit constant c>0 such that the following statement
holds. If G is a finite simple group of Lie type,m � 1 any integer, and �1; �2; : : : ; �m

are any (not necessarily irreducible) characters of G with
Qm

iD1 j�i j � jGjc , then
j�1�2 � � ��mj D jGj and thus �1�2 � � ��m contains every irreducible character of G.

Finally, we prove an analogue of Theorem 4.3 for compact semisimple Lie
groups.

Theorem 4.10. Let G be a compact semisimple Lie group. Then, there exists " > 0
such that, for each irreducible character � of G, we have j�2j � j�j1C".

Funding. The author was supported in part by BSF grant 2016072, ISF grant 686/17,
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HMS symmetries and hypergeometric systems

Špela Špenko

Abstract. The derived category of an algebraic variety might be a source of a myriad of new
(categorical) symmetries. Some are predicted by homological mirror symmetry, to be obtained
from the fundamental group of the space of complex structures of its mirror partner. These
finally lead to differential equations. We expositorily unravel a part of this conjectural master
plan for a class of toric varieties.

nasvidenje, Marjan, nekoč . . . nekje . . .

1. Overview

Hilbert’s 21st problem asks about the existence of Fuchsian linear differential equa-
tions on the Riemann sphere with prescribed singular points and monodromy rep-
resentation of the fundamental group of the complement of the singular points [25].
The first (slightly erroneous) solution was proposed by the Slovenian mathematician
Plemelj [38]. A suitably adapted version of this problem was solved and general-
ised, depending on the context, by Deligne [16], Kashiwara [33], Mebkhout [37],
Beı̆linson–Bernstein [5], and others. The solution is now known as the Riemann–
Hilbert correspondence.

Homological mirror symmetry (HMS) predicts the existence of an action of the
fundamental group of the “stringy Kähler moduli space (SKMS)” on the derived cat-
egory of an algebraic variety. The prediction was established by Halpern-Leistner and
Sam for certain toric varieties [24]. A decategorification of this action yields a rep-
resentation of the fundamental group of the SKMS, and our joint work with Michel
Van den Bergh shows that it corresponds under the Riemann–Hilbert correspondence
to a hypergeometric system of differential equations [42].

In this expository note, we aim to explain the above terms and finally present the
mentioned results.

2020 Mathematics Subject Classification. Primary 13A50; Secondary 53D37, 32S45, 16S38,
14F06.
Keywords. Riemann–Hilbert correspondence, homological mirror symmetry, geometric
invariant theory.
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2. Hilbert’s 21st problem

We begin with a classical problem, namely Hilbert’s 21st problem. It is a part of the
list of 23 problems [25, 26], published by Hilbert in 1900, which has been influential
for the future mathematical development. The 21st one had the following formulation:

To show that there always exists a linear differential equation of the Fuchsian
class, with given singular points and monodromic group.

We shall first decipher the problem a little bit.

2.1. Fuchsian type

A system of linear differential equations0B@y0
1
:::

y0
n

1CA D A.z/

0B@y1

:::

yn

1CA (2.1)

is of Fuchsian type if A.z/ is holomorphic on xC n ¹a1; : : : ; aN º with a pole of order
1 at aj , 1 � j � N , where we denote xC D C [ ¹1º.

In particular,1
Pn

iD0 qi .z/y.n�i/ D 0, qn.z/ D 1, is Fuchsian if and only if the
familiar Fuchsian condition is satisfied, i.e., qi .z/.z � a/i is holomorphic at z D a

for a 2 C and qi .z/zi is holomorphic at z D 1, for 0 � i � n.2

2.2. Monodromy

Assume that we have a system of linear differential equations (2.1) with singularities
at finitely many points ¹a1; : : : ; aN º. Let 
 be a closed path (so 
.0/ D 
.1/) in
xC n ¹a1; : : : ; aN º.

Let y1; : : : ; yn be a basis of solutions of the system on an open set around 
.0/

(they exist by the local existence theorem for differential equations). These solutions
are guaranteed to exist a priori only locally. However, we can analytically continue
them along 
 . Let us denote by Qy1; : : : ; Qyn analytic continuations of y1; : : : ; yn

along 
 .
Because both y1; : : : ; yn and Qy1; : : : ; Qyn form a basis of solutions around 
.0/,

they should be related via an invertible linear map. We denote it by �
 . It turns out
that �
 only depends on the homotopy class of 
 . Therefore, we obtain a group homo-

1We may take yi D y.i/, where 0 � i � n and for A an (.n C 1/ � .n C 1/-)matrix with
nonzero entries only on the first upper diagonal where they are equal to 1 and in the last row.

2This follows by taking the n � n-matrix with ai;iC1 D �1, an;i D qn�iC1, and aij D 0

otherwise.
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morphism
�1

�
xC n ¹a1; : : : ; aN º

�
! GLn.C/; Œ
� 7! �
 :

This is what is called a monodromy representation.
To close this discussion, we look at a concrete example of a differential equation.

Example 2.1. We take the differential equation zy0 � ˛y D 0. First, note that it has
singularities at 0 and at 1. (It is of Fuchsian type.) We take a loop 
 around 0. A local
solution is equal to y D z˛ and its analytic continuation along 
 equals Qy D e2�i˛z˛ .
To construct a monodromy representation, we first notice that the fundamental group
of xC n ¹0;1º D C n ¹0º is isomorphic to Z, and we can identify the generator 1 with
the homotopy class of 
 . The monodromy representation is then given by

� W �1

�
xC n ¹0; 1º

�
Š Z ! GL1.C/ Š C�; k 7! e2� ik˛:

2.3. Formulation

Let us now restate the problem. As input we have

� a finite set of points ¹a1; : : : ; aN º, and

� a representation � of �1.xC n ¹a1; : : : ; aN º/.

Then Hilbert’s 21st problem reads as follows: Does there exist a system of linear
differential equations of Fuchsian type with singular points ¹a1; : : : ; aN º and the
monodromy representation equal to �?

2.4. Progress

Already in 1908, Plemelj proposed a complete solution [38]. Unfortunately, it turned
out that Plemelj’s solution was not entirely correct. (Nevertheless, Plemelj’s proof
shows that one can find a system of linear differential equations which is Fuchsian
at all but one point, where it is regular, see Section 3.3.) In 1988, Bolibrukh found a
counterexample for N D 4 and a � of degree 3 [8].

The problem then transformed into classifying the input data that correspond to
systems of differential equations of Fuchsian type.

Among algebraic geometers, the focus was however directed towards higher di-
mensions with a suitably rendered condition. Instead of Fuchsian type, one requires
regularity, a weaker condition.

3. Riemann–Hilbert correspondence

There are plentiful variants of the Riemann–Hilbert correspondence. We first present
one in line with the previous discussion, and then its powerful generalisation to the
context of D-modules. We mostly follow [28]. We also mention [34] for a very nice
review of Deligne’s work on Hilbert’s 21st problem.
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3.1. Integrable connections

We first need to make sense of differential equations on general manifolds where we
have no global coordinates at our disposal.

Let X be a complex manifold. Let TX be the tangent sheaf on X (i.e., the sheaf of
vector fields).3

Definition 3.1. An integrable connection on X is a pair .M;r/, where M is a finite
dimensional vector bundle on X and a linear map r W TX ˝ zM ! zM , where zM is
the sheaf of sections of M such that4

� rf � .m/ D f r� .m/ for f 2 OX , � 2 TX , m 2 zM ,

� r� .f m/ D �.f /m C f r� .m/ for f 2 OX , � 2 TX , m 2 zM ,

� rŒ�1;�2�.m/ D Œr�1
;r�2

�.m/ for �1; �2 2 TX , m 2 zM .

With the natural definition of morphisms, we obtain an abelian category of con-
nections on X which we denote by Conn.X/.

Remark 3.2. For a system of differential equations (2.1) on X D C n ¹0º (i.e., 0 is
the only singularity different from 1), M is the trivial vector bundle of rank n, and
r is given by r@=@z.y/ D y0 � A.z/y for y 2 zM D .OX /n.

Conversely, if .M; r/ is an integrable connection on X D C n ¹0º, then M is
a trivial vector bundle, say of rank n. We choose an OX -basis .ei /i of zM D On

X .
Define aij .z/, 1 � i; j � n, by r@=@z.ej / D �

Pn
iD1 aij .z/ei . Then r@=@z.y/ D

r@=@z.
P

i yiei / D
P

i y0
iei C

P
i yir@=@z.ei / D y0 � A.z/y for y 2 zM .

The solutions of an integrable connection are defined as ¹m 2 zM j r� .m/ D

0 for all � 2 TXº and are called horizontal sections.

3.2. Meromorphic connections

We now extend the concept of integrable connections to allow poles as well. Let
D � X a divisor. Let OX ŒD� be a sheaf of meromorphic functions on X , holomorphic
on X n D with poles along D.

Definition 3.3. A coherent OX ŒD�-module M 5 is a meromorphic connection if there
exists a map r W M ! �1

X ˝OX
M such that

� r.f s/ D df ˝ s C f rs,

� Œr� ;r� 0 � DrŒ�;� 0� for �; � 0 2 TX (where r� W M ! M is r 0
�

for r 0 W TX ˝ M !

M obtained from r).

3Note that TX may also be identified with derivations in EndCX
.OX /.

4We use standard notation r� .m/ WD r.� ˝ m/.
5We note that the definition implies that the restriction MXnD of a meromorphic connection

M to X n D is a locally free OXnD-module.
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With the natural definition of morphisms between meromorphic connections, we
obtain an abelian category Conn.X ID/ of meromorphic connections.

Remark 3.4. This remark is an analogue of Remark 3.2. We obtain a natural one-to-
one correspondence between linear differential equations on C with possible poles
at 0 and meromorphic connections in Conn.X ID/.

3.3. Regular singularities

Here we define regular singularities of differential equations, which are a generalisa-
tion of the differential equations of Fuchsian type.

Definition 3.5. In complex dimension 1, a system of differential equations has regu-
lar singularities if every solution y on a punctured angular sector around a singular
point in ¹a1; : : : ; aN º has moderate growth, i.e.,

� aj finite: jy.z/j D O.jz � aj j
�m/ for some m � 0 as z ! aj ,

� aj D 1: jy.z/j D O.jzjm/ for some m � 0 as z ! 1.

This also has an algebraic interpretation which can be moreover generalised to
higher dimensions and all manifolds.

Definition 3.6. A meromorphic connection .M; r/ in Conn.X I D/ is regular if
.i�M/0 is regular for every i W B ! X such that i�1D D ¹0º.

We also mention that with the natural definition of morphisms between regular
meromorphic connections on .X; D/ we obtain an abelian category Connreg.X ID/.

3.4. Deligne’s Riemann–Hilbert correspondence

Theorem 3.7 ([16]). Let X be a complex manifold and let D be a divisor in X . Then
the restriction functor induces an equivalence Connreg.X ID/

�
�! Conn.X n D/.

Deligne’s theorem constitutes the essential part of the correspondence between
systems of differential equations on X with regular singularities along D and repres-
entations of the fundamental group of X n D.

Corollary 3.8. There is an equivalence of categories between Connreg.X I D/ and
rep.�1.X n D//.

This equivalence factors as

Connreg.X ID/
� //

o
��

rep
�
�1.X n D/

�
Conn.X n D/

� // Loc.X n D/;

o

OO

(3.1)

where Loc.X n D/ is the category of local systems, i.e., locally constant sheaves of
finite dimensional C-vector spaces. The first (vertical) equivalence is the restriction
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from Theorem 3.7, the second is obtained by taking the horizontal sections (“solutions
of the system”), and the last (vertical) arrow is a well-known equivalence (see e.g.
[1]) which sends a local system L to the representation of �1.X n D/ on Lx0

that
associates to every path an isomorphism of Lx0

along itself (which exists as L is
locally constant).

The statement holds also in the context of smooth algebraic varieties which was
Deligne’s original motivation.

In short, we could say that topology, here measured by the fundamental group, is
somewhat determined by analysis or algebra, here represented by differential equa-
tions with regular singularities.

3.5. D-modules

We continue towards a generalisation of Deligne’s correspondence to other systems
of linear differential equations.

For this we move on the left-hand side of the above diagram a bit more towards
the algebra direction, and replace the differential equations with modules over the
ring of differential operators. We enter the framework of so-called D-modules. We
follow [28, Introduction].

Let X be an open submanifold in Cn and let O.X/ be holomorphic functions
globally defined on X . With D we denote the set of partial differential operators with
coefficients in O.X/. Namely,

D D

² X
i1;:::;in

fi1���in

�
@

@x1

�i1

� � �

�
@

@xn

�in

j fi1���in 2 O.X/

³
;

where xi are coordinate functions on Cn. Note that D also has a ring structure. For
example, D contains the n-th Weyl algebra for X D Cn (we take only polynomial
coefficients).

Now take P in D. Then P corresponds to a differential equation.6 We can rep-
resent the holomorphic (global) solutions as follows:®

u 2 O.X/ j P u D 0
¯
Š HomD

�
D=DP; O.X/

�
; u 7! .d 7! du/:

We can proceed similarly if we have a collection of Pij 2D, 1� i � k, 1� j � l ,
corresponding to a system of differential equations. Then the solution .uj / of the
system given by the matrix .Pij / can be identified with®

.uj / j .Pij /.uj / D 0
¯
Š HomD

�
M; O.X/

�
;

6For example, x @
@x

� ˛ corresponds to the equation xy0 � ˛y D 0.
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where M is defined by the short exact sequence

Dk
.Pij /
���! Dl

! M ! 0:

In sum, we have found a way to turn systems of differential equations into finitely
presented D-modules, and have described their (global) solutions purely algebraically
using homomorphisms.

However, solutions may not exist globally, so therefore we should use a tool that
takes into account also local solutions. From modules, we should pass to sheaves,
as we have already done in the beginning of this section. Now O denotes the sheaf
of holomorphic functions. Similarly, we replace D by D (D.U / consists of par-
tial differential operators with coefficients in O.U /). Then we can look at the sheaf
HomD.M; O/ (U 7! HomD.U /.M.U /; O.U //).

There is another caveat to consider. We may be interested in relating different sys-
tems of differential equations; i.e., from solutions of two systems deduce something
about solutions of the system that is formed as the union of the two systems. The
problem that we encounter here is that the functor HomD.�; O/ is not exact. So we
should also consider “higher solutions”, namely the extension modules ExtiD.M; O/.

It will turn out that higher solutions give us almost all the topological data that we
need. Perhaps it is then a good point to ask what kind of sheaves these higher solutions
are. We know they are sheaves of C-vector spaces. Is there any other property that
distinguishes them?

Recall from (3.1) (applied with D D ;) that if M is associated to a connection,
then we obtain a local system, i.e., a locally constant sheaf of finite dimensional C-
vector spaces. It turns out that this correspondence generalises if we restrict to holo-
nomic modules7, they are those that roughly speaking give finite dimensional (higher)
solution spaces. With this assumption, all the higher solution sheaves ExtiD.M; O/

are constructible, which means that they are built from local systems. More precisely,
there exists a stratification of X D t˛X˛ into locally closed sets such that Fi jX˛

is a
local system for all i .

This is a prelude to a correspondence between holonomic D-modules on the
algebraic side and constructible sheaves on the topological side. Note that on the
topological side we obtain an entire sequence of constructible sheaves, and to com-
pute those we should also know something about the projective resolution of the
modules, again on the algebraic side. A convenient machinery to process all this data
at once and without losing too much information is the derived category.

7A coherent DX -module M is holonomic if dim Ch.M/ D dim X . Here Ch.M/ denotes
the characteristic variety of M , i.e., the support of the associated graded module gr M (for a
“good” filtration) on the cotangent bundle of X .
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3.6. Derived categories

Let A be an abelian category, for example the category mod.DX / of DX -modules
on X , or the category mod.CX / of sheaves of finite dimensional vector spaces on X ,
the categories that we have just seen.

Let C.A/ be the category of complexes on A. We say that a map f W X�!Y �

between two complexes is a quasi-isomorphism if it induces isomorphisms on co-
homology, i.e., H i .f / W H i .X�/

�
�! H i .Y �/ for all i .

We want that the derived category does not distinguish between two complexes
which are connected via a quasi-isomorphism. So we formally invert quasi-isomorph-
isms (see e.g. [43, 04VB] for localisation in categories) and define the derived cat-
egory as

D.A/ D C.A/Œqis�1�:

Furthermore, if a covariant, resp. contravariant, functor F W A ! B between
two abelian categories (with A having enough injectives, resp. projectives) is left-
exact, then there exists a corresponding functor RF W DC.A/ ! DC.B/, resp. RF W

D�.A/ ! DC.B/, between the derived categories (of bounded-below, resp. above/
below, complexes).

Let us zoom this in on our example.

Example 3.9. We take for F the solution functor F D HomD.�; O/. Then the
derived functor RF W D�.DX /o ! DC.CX / is such that its cohomology sheaves
are exactly the higher solutions; i.e., H i .RF / D Exti .�; OX /. So the derived solu-
tion functor carries the information about all higher solutions. (Note that here and
later we for brevity omit writing mod.)

3.7. Riemann–Hilbert correspondence

We are ready to state the Riemann–Hilbert correspondence in its full power and com-
plexity, to connect all the module data with the data of solutions and higher solutions.

We need to restrict to a subclass of complexes of DX -modules that have regu-
lar8 and holonomic cohomology. Roughly these conditions guarantee that the solu-
tion spaces are finite dimensional and have moderate growth. We denote the derived
category of bounded complexes of DX modules with regular and holonomic cohomo-
logy by Db

rh
.DX /. On the topological side, we look at those bounded complexes of

sheaves of C-vector spaces on X that have constructible cohomology, and we denote
the corresponding derived category by Db

c .CX /.
Under these restrictions, the derived solution functor gives the celebrated anti-

equivalence of categories.

8For the definition of regularity for DX -modules on a complex manifold X , we refer to
[28, Definition 6.1.8].
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Theorem 3.10 ([5, 32, 33, 37]9). There is an anti-equivalence of (triangulated) cat-
egories

R HomDX
.�; OX / W Db

rh.DX /o �
�! Db

c .CX /:

First we remark that we really need to pass to the derived level contrary to
Deligne’s Riemann–Hilbert correspondence. Indeed, as mentioned earlier, the solu-
tion functor is not exact so it cannot induce an equivalence of abelian categories. This
theorem is from an algebraic point of view a real advancement, and a vast general-
isation of Deligne’s Riemann Hilbert correspondence, since we can, in particular, to
every (regular holonomic) DX -module associate a topological object, a complex of
sheaves of C-vector spaces on X (with constructible cohomology), and vice versa.

These associated complexes are also rather special, they form an abelian category,
and they are called perverse sheaves, i.e.,

Perv.X/ WD R HomDX
.�; OX /.modrh Do

X /Œdim X�:

4. Homological mirror symmetry symmetries

We divert the story to mirror symmetry. There we will encounter representations of
some fundamental groups and our aim will be to realise them as monodromy repres-
entations of differential equations.

4.1. Mirror symmetry

Let us first very briefly say a few words on mirror symmetry, a theory that has its
origins in physics, more precisely in string theory. Typically, the spaces that appear
in this context have both a complex and a symplectic structure. Moreover, the spaces
come in mirror pairs X and Xo, with the complex and symplectic structures inter-
laced. The complex geometry of X mirrors the symplectic geometry of its mirror Xo,
and vice versa. The picture is still highly speculative. We refer to [15, Introduction]
for a survey of its origins and multiple predictions that mirror symmetry provides to
algebraic geometry.

4.2. HMS categorical symmetries

Mirror symmetry has been enhanced to a homological statement about the equival-
ence of certain categories (the derived category and the Fukaya category) that reflect
complex and symplectic geometry, respectively. The correspondence has been conjec-
tured by Kontsevich [36] and nowadays goes under the name of homological mirror
symmetry.

9Beı̆linson and Bernstein proved the theorem in the algebraic setting.
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We discuss here one of the consequences of HMS. For a more precise explanation
of heuristics, see [24, §1.1]. Assume that we regard X as a complex manifold. Then
the symplectic structure of the mirror Xo is fixed, but there is still room for different
complex structures. Denote by KX the space of complex structures of X0.10

Then HMS predicts the following.

Conjecture 4.1. There exists an action11

�1.KX / Õ Db.X/:

As an immediate corollary of this, we would get the following result about the
Grothendieck group of X .

Corollary 4.2. There exists an action

�1.KX / Õ K0.X/C:

It is this action about which we will wonder which system of differential equa-
tions it corresponds to.

4.3. Example

We look at the conifold, Y D Spec.CŒx; y; z; u�=.xu � yz//.12 We define X D

Bl.x;y/Y , a small resolution of Y . (In the framework of toric geometry, we might
represent Y as a cone in R3 over the unit square in R2 � ¹1º. To obtain X we should
add a diagonal hyperplane.)

There is another viewpoint that will be more useful for us. Let C� act on C4 as
t � .v1; v2; v3; v4/ D .t�1v1; t�1v2; tv3; tv4/. Then we may view Y as the (categor-
ical) quotient C4 == C� (D Spec CŒx1; x2; x3; x4�C

�

, xi D v�
i ).13 We obtain X as the

geometric invariant theory (GIT) quotient .C4 n V.x1; x2// == C�.14

Heuristics from physics [4] yield that KX D P 1 n ¹0; 1;1º.

10KX is also called the “stringy Kähler moduli space” (SKMS) of X (i.e., the space of
Kähler structures on X coming from symplectic geometry of X ). The tangent space to the
SKMS is H 2.X; C/ (the space of complexified symplectic forms). However, there is no global
definition; KX has only been explicitly defined in very few examples, the difficulty being the
determination of the mirror pair.

11We might think of Db.X/ as bounded complexes of vector bundles on X .
12One can describe the conifold also as a cone over P 1 � P 1.
13The homomorphism CŒx; y; z; u�=.xu � yz/ ! CŒx1; x2; x3; x4�C

�

, x 7! x1x3, y 7!

x1x4, z 7! x2x3, u 7! x2x4, is an isomorphism.
14Let us assume that t � v D tv, and take s D v�, assume that degs D 1, degxi D 0, 1� i � 4.

Then the GIT quotient .C4 n V.x1; x2// == C� is defined as Proj.CŒx1; x2; x3; x4; s�C
�

/.
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To construct a representation of �1.KX / on Db.X/, we first view Db.X/ as the
(full thick) subcategory of Db.ŒC4=C��/15, generated by OC4 , OC4 ˝ V.1/, where
V.n/ denotes the irreducible (1-dimensional) representation of C� with character n,
i.e., t � v D tnv for v 2 V.n/; see [44, Theorem 8.6].

Then it turns out that in the basis ¹OC4 ˝ V.1/; OC4º the action of the three
generating loops 
0; 
1; 
1 2 �1.KX / is given by


1 D

�
1 0

0 1

�
; 
0 D

�
2 1

�1 0

�
; 
1 D

�
0 �1

1 2

�
:

See e.g. [17, 24, 41].

5. HMS symmetries: toric varieties

We will approach the conjecture in the setting of toric varieties.

5.1. Setting

We assume that W D Cd is a T WD .C�/n-representation which is unimodular (i.e.,
the sum of weights is equal to 0).

We describe how to obtain an analogue of the variety X in the case of the conifold;
cf. Section 4.3. We should remove some undesirable locus of W and then take the GIT
quotient. The variety (or stack) X that we obtain in this way is a (crepant) resolution
of singularities of W == T (D Spec CŒW �T ).

Let X.T / be the character group of T and Y.T / the group of 1-parameter sub-
groups of T . We take a generic � 2 X.T /R. Let W �;u be the �-unstable locus, i.e.,
the set of points w 2 W such that if limt!0 �.t/w for � 2 Y.T / exists, then �.�/ � 0.
Then we take

X D
�
.W n W �;u/=T

�
:

This is a priori a Deligne–Mumford quotient stack, a quotient stack whose points
have finite stabilizers. In the case that all stabilizers are trivial, the corresponding
GIT quotient variety can replace the stack (i.e., in this case the quotient stack and
the quotient variety are isomorphic). The GIT quotient is defined in the analogy with
Footnote 14.16

15Here ŒC4=C�� denotes the quotient stack. The category mod.ŒC4=C��/ consists
of C�-equivariant CŒx1; x2; x3; x4�-modules and the category coh.ŒC4=C��/ of C�-
equivariant coherent sheaves on C4. It follows that Db.ŒC4=C��/ D Db.mod.ŒC4=C��// D

Db.coh.ŒC4=C��//.
16We assume that V D Cv is the 1-dimensional T -representation with character �; i.e.,

t � v D �.t/v. Let wi be a basis of W such that t � wi D ˇi .t/wi for ˇi 2 X.T /. Set xi D w�
i

,
1 � i � d , d D v�. We assume that deg xi D 0 and deg s D 1. Then .W n W �;u/ == T WD

Proj.CŒx1; : : : ; xd ; s�T /.



Š. Špenko 500

Remark 5.1. The varieties above are exactly affine normal Gorenstein toric varieties
whose class group is a torus (i.e., it has no finite group part).

5.2. Space of complex structures on Xo

In the case of toric varieties physics heuristics are rather reliable. In [18, §4.1] there
is an explicit recipe for KX that refers for evidence to [13].17

Set d D dim W . Let .ˇi /
d
iD1 be T -characters of W . Note that X.T / Š Zn and

set B D .ˇi /
d
iD1 2 Mn�d .Z/. We define A (up to an automorphism of Zd�n) by the

exact sequence

0 ! Zd�n A
�! Zd B

�! Zn
! 0: (5.1)

Then KX is the complement of a hypersurface V.EA/ � T , where EA is the principal
A-determinant. We refer to [20, §10.1.A] for the definition.18 Alternatively, see [18,
35].

In a sufficiently symmetric case, V.EA/ is much simpler.

Theorem 5.2 ([35]). If W is quasi-symmetric19, then KX is the complement of a
hyperplane arrangement (in logarithmic coordinates) in T D .C�/n.

The hyperplane arrangement in 1=.2�i/ log T D X.T /C can be explicitly de-
scribed. Let � be the Minkowski sum of Œ0; .1=2/ˇi �. Let .Hi /i be the supporting
(affine) hyperplanes of �. Then the hyperplane arrangement is the complexification
of the real hyperplane arrangement

S
i .�Hi / C X.T / (up to a suitable translation).

This is an infinite, but locally finite, hyperplane arrangement.
This hyperplane arrangement was prior to the result of Kite heuristically predicted

to coincide with KX in [24].

Example 5.3. We make a quick sanity check in the case of the conifold; cf. Sec-
tion 4.3. Then KX D P 1 n ¹0; 1; 1º. Applying 1=.2�i/ log to P 1 n ¹0; 1; 1º D

C n ¹0; 1º, we obtain C n Z. On the other hand, by the above recipe, � D Œ�1; 1� (as
.ˇi /

4
iD1 D .�1;�1; 1; 1/) and the hyperplane arrangement is given by Z. Thus, the

two descriptions are consistent.

5.3. HMS symmetries: quasi-symmetric case

Assume that Cd is a quasi-symmetric representation of .C�/n. In this case, Halpern-
Leistner and Sam [24] confirmed Conjecture 4.1.

17The heuristics are derived from the speculations that a mirror is given by a family of
Landau–Ginzburg models [27]. See also [12, 29].

18In loc. cit. EA stands for A0, where A D .A0; 1/ which we may assume since
P

i ˇi D 0.
19W is quasi-symmetric if for all lines 0 2 ` 2 X.T /R,

P
ˇi2` ˇi D 0.
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Theorem 5.4 ([24]). There exists an action of �1.KX / on Db.X/.

As in Section 4.3, Db.X/ is identified with the (full thick) subcategory D of
Db.ŒW=T �/ generated by ¹OW ˝ V.�/ j � 2 .� C �/ \ X.T /º, where V.�/ is the
irreducible T -representation with character �, and � 2 X.T /R is generic [23, 40]20.

Then this action can be explicitly described, especially relying on the concrete
description of the fundamental group of the complement of a complexified hyperplane
arrangement [39]. See Section 7.1.2.

Remark 5.5. The statement can be generalised to some reductive groups, i.e., those
groups G for which X.G/ ¤ 0, if some genericity assumptions are satisfied.21 See
[24].

6. HMS differential equations: quasi-symmetric case

In this section, we assume that we are in the setting of Section 5.1. Moreover, we
assume that W is quasi-symmetric. Having Theorem 5.4, providing evidence for
Conjecture 4.1, at our disposal, we also obtain Corollary 4.2. Hence, �1.KX / acts
on K0.X/C . We want to determine which (regular) system of differential equations
on .C�/n this action corresponds to.

6.1. Example

We first want to understand the monodromy representation in the case of the conifold;
cf. Section 4.3.

We look at the Gauss hypergeometric equation

z.1 � z/y00
C
�
c � .a C b C 1/z

�
y0

� aby D 0:

The monodromy is given by, see e.g. [7],


1 D

 
1 �e2� i.c�b/ � e2� i.c�a/ C e2� ic C 1

0 e2� i.c�a�b/

!
;


0 D

 
1 C e�2� ic 1

�e�2� ic 0

!
;


1 D

 
0 �e2� i.aCb/

1 e2� ia C e2� ib

!
:

20� is not parallel to any face of �.
21The condition

P
i Rˇi D X.T / should be satisfied and there should exist � 2 X.G/ which

is not parallel to any face of �.
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Setting a D b D c D 0, we obtain matrices that we have already encountered in
Section 4.3. From this, one may deduce that the action of �1.KX / on K0.X/C from
Theorem 5.4 in the case of the conifold corresponds to z.1 � 1/y00 � zy0 D 0, i.e.,
the Gauss differential equations with parameters a D b D c D 0 (which is regular on
P 1 with singularities at 0; 1;1).

6.2. Example with parameters

We change the focus a bit and ask whether we can find an action of �1.KX / on
K0.X/C that would give the Gauss hypergeometric equation also for other paramet-
ers. We obtained the original action from an action of �1.KX / on Db.X/. We would
want to tweak this action a little bit to open the route to other parameters.

For this, first observe that .C�/4 acts on C4 coordinate-wise. The initial C�

embeds in it via the map t 7! .t�1; t�1; t; t / determined by the action of C� on
C4; cf. Section 4.3 and (5.1). This inclusion splits, and the complement is .C�/3. We
seem to be well on the way, the dimension of the complement torus coincides with
the number of parameters in the Gauss hypergeometric equation.

Now a slightly more technical part follows. To get an action for other a; b; c, we
need to replace Db.X/ by a bigger category zD such that X..C�/3/ acts on it.

We define zD as the (full thick) subcategory of Db.ŒC4=.C�/4�/ generated by

OC4 ˝ V.�/; � 2 X
�
.C�/4

�
such that B� 2 ¹0; 1º (see (5.1) for B).

It turns out that �1.KX / still acts on zD. However, K0. zD/C is a (free rank 2)
module over C¹X..C�/3/º Š CŒ.C�/3�22. Specialising at (sufficiently generic23) h 2

.C�/3, we obtain an action of �1.KX/ on a 2-dimensional C-vector space. This action
corresponds to the Gauss hypergeometric equation with parameters �1=.2�i/ log h.

6.3. GKZ hypergeometric systems

The GKZ hypergeometric systems are systems of differential equations that gener-
alise the Gauss hypergeometric differential equation, as well as Appell, Lauricella,
Horn, etc. They were introduced and studied by Gelfand, Kapranov, and Zelevinsky
[19, 21, 22]. Allegedly, they were introduced as a unified approach to the multidi-
mensional generalisations of the Gauss hypergeometric functions. In some sense, the
construction of the GKZ hypergeometric system is dictated by the desired set of solu-
tions, which should be hypergeometric power series. See Remark 6.3.

22Here C¹X..C�/3/º is the group algebra of X..C�/3/, while CŒ.C�/3� is the coordinate
ring of .C�/3.

23This is, in particular, satisfied if a, b, a � c, b � c are all non-integers. However, one might
check that a D b D c D 0 as in Section 6.1 also work.
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Let ˛ 2 Cd�n. Recall the exact sequence (5.1). Let B� W Zn ! Zd be the dual
of B . Then the hypergeometric GKZ system with parameter ˛ is defined by the dif-
ferential operators

� homogeneity relations:
Pd

jD1 aij xj @j � ˛i , 1 � i � d � n,

� box relations: �l D
Q

li >0 @
li

i �
Q

li <0 @
�li

i , l 2 B�Zn.

Note that this is a system of differential equations on .C�/d . However, the homo-
geneity relations allow to descend these differential equations to .C�/n.24

This descent also allows us to recover the Gauss hypergeometric equation from
the GKZ hypergeometric system corresponding to the conifold, i.e., for the example
B D .�1;�1; 1; 1/.

Example 6.1. In the case of the conifold, we may take

A D

0B@�1 1 0 0

1 0 1 0

1 0 0 1

1CA :

Then a solution ˆ of the GKZ hypergeometric system satisfies

.�x1@1 C x2@2/ˆ D ˛1ˆ;

.x1@1 C x3@3/ˆ D ˛2ˆ;

.x1@1 C x4@4/ˆ D ˛3ˆ;

@1@2 � @3@4 D 0:

Setting ˛ D .c � 1;�a;�b/, a simple manipulation yields�
x�1

3 x�1
4

�
x1@2

1 � .1 C a C b/x1@1 � ab
�
� x�1

2 .x1@2
1 � c@1/

�
ˆ D 0:

Then F.x/ WD ˆ.x; 1; 1; 1/ is a solution of the Gauss hypergeometric equation.
Moreover, by homogeneity relations, F determines ˆ.

We denote the corresponding D.C�/d -module, cf. Section 3.5, by P .˛/, and its
restriction to .C�/n by P.˛/. The next proposition reveals that they are well behaved,
as required for the Riemann–Hilbert correspondence.

Proposition 6.2 ([2]). The D.C�/d -module P .˛/ is holonomic with regular singu-
larities. The same holds for the D.C�/n-module P.˛/.

24The corresponding D-module on .C�/d is weakly equivariant for the action of .C�/d�n,
hence it descends to .C�/n; see e.g. [42, Corollary A.11].



Š. Špenko 504

Remark 6.3. To follow on the introduction to this subsection we record here that the
multidimensional hypergeometric (formal) series25

ˆ
 .x1; : : : ; xd / D
X

l2Zn

dY
iD1

x
B�lC
i

i

�.B�l C 
i C 1/
;

where 
 2 .C/d is such that A
 D ˛, is a (formal) solution of the GKZ hypergeo-
metric system [22].26 Moreover, also Euler integrals generalise [19] to give solutions
to the GKZ hypergeometric system. Another handy class of solutions is given by
Mellin–Barnes integrals [6] that we crucially employ in the proof of Theorem 6.4
below.

6.4. Decategorification of HMS symmetries

We want to determine the system of differential equations whose monodromy rep-
resentation coincides with the representation of �1.KX / on K0.X/C obtained from
Theorem 5.4. However, we cannot quite do that. Instead, we tweak the action a bit, as
in Section 6.2.

Analogously to Section 6.2, we note that .C�/d acts on Cd coordinate-wise,
and we have the inclusion T D .C�/n ,! .C�/d which splits. The complement is
.C�/d�n.

We replace Db.X/ by a bigger category zD, the (full thick) subcategory of
Db.ŒCd =.C�/d �/ generated by®

OCd ˝ V.�/ j B� 2 .� C �/ \ X.T /
¯
I

cf. the paragraph below Theorem 5.4. Then X..C�/d�n/ acts on zD and K0. zD/C is a
C¹X..C�/d�n/º Š CŒ.C�/d�n�-module.

Theorem 6.4 ([42]). Assume that ˛ 2 Cd�n is generic.27 The monodromy represent-
ation of the GKZ system of differential equations with parameter ˛ restricted to KX

is isomorphic to the representation of �1.KX / on K0. zD/C specialised at e�2�i˛28.

As a corollary, we obtain, in particular, a description of the full monodromy of
such “quasi-symmetric” GKZ hypergeometric systems. In [6], Beukers describes the
“local” monodromy.

25We abuse the notation and denote by B� also the “complexified” B� W Cn ! Cd .
26By appropriately varying 
 , one can achieve that such power series are a basis of solutions

that converge on an open set.
27We require that ˛ is non-resonant, i.e., ˛ does not belong to the hyperplane arrangement

consisting of Zd�n-translates of the supporting hyperplanes of the cone RCA.
28More precisely, K0. zD/C ˝CŒ.C�/d�n� C for CŒ.C�/d�n� ! C, p 7! p.e�2�i˛/.
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Remark 6.5. There are various other results where an interesting system of differen-
tial equations is obtained from actions on derived categories, often also inspired by
mirror symmetry. We mention here [3, 10, 11].

7. Liftings

Theorem 5.4 (and accordingly Theorem 6.4) extend a bit further, in analogy with
D-modules introduced in Section 3.5 and the associated perverse sheaves, defined
as the image of the abelian category of D-modules by the derived solution functor
Section 3.7.

7.1. Perverse schobers

Recall that a representation of �1.KX / corresponds to a local system on KX ; cf.
Section 3.4. If �1.KX / acts instead on a category, we might say that it corresponds
to a local system of categories on KX . In the quasi-symmetric setting, KX is a
complement of a hyperplane arrangement in .C�/n (in logarithmic coordinates); cf.
Theorem 5.2. We may extend a local system on KX to a perverse sheaf on .C�/n. This
extension for the particular action of Theorem 5.4 also lifts on the level of derived cat-
egories, and we get what we might call a perverse sheaf of categories on .C�/n [41].
It also goes under the name of a perverse schober, which was coined by Kapranov
and Schechtman [30] for a categorification of a perverse sheaf.

The rest of this subsection builds on this extension and, in return, also illuminates
the proof of Theorem 5.4. Unfortunately, it is rather technical.

7.1.1. Perverse sheaves over real hyperplane arrangements. While in general the
abelian category of perverse sheaves might be difficult to describe, in the case of
complements of complexified real hyperplane arrangements there exists a concrete
combinatorial description [31], which is apt for categorification.

Let H be an affine hyperplane arrangement in a finite dimensional real vector
space V D Rn. Then H stratifies V into a set C of locally closed subsets.29 We
partially order C by C 0 � C iff C 0 � xC . A triple of faces .C1; C2; C3/ is collinear if
there exists C 0 � C1; C2; C3 and there exist ci 2 Ci such that c2 2 Œc1; c3�.

We denote by vec.C/ the category of finite dimensional C-vector spaces.

Theorem 7.1 ([31]). The category of perverse sheaves on VC with respect to the
stratification induced by HC is equivalent to the category of diagrams consisting of

� finite dimensional vector spaces EC , C 2 C , and

� linear maps 
C 0C W EC 0 ! EC , ıCC 0 W EC ! EC 0 for C 0 � C

29The elements of C are level sets for .sign fH /H2H , where fH is the affine map defin-
ing H .
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such that .EC ; .
C 0C /CC 0/, resp. .EC ; .ıCC 0/CC 0/, is a representation of .C ; �/,
resp. .C ;�/, in vec.C/, and the following conditions are satisfied.

� 
C 0C ıCC 0 D idEC
for C 0 � C . In particular, �C1C2

WD 
C 0C2
ıC1C 0 for C 0 �

C1; C2 is well defined.
� �C1C2

is an isomorphism for all C1;C2, C1 ¤ C2, of the same dimension `, which
lie in the same `-dimensional affine space and share a facet.

� �C1C3
D �C2C3

�C1C2
for collinear triples of faces .C1; C2; C3/.

7.1.2. Perverse schobers over real hyperplane arrangements. To define perverse
schobers over real hyperplane arrangements, we may word for word translate the
description of perverse sheaves from Theorem 7.1 to the setting of triangulated cat-
egories. When we apply K0.�/C , we get back the data defining a perverse sheaf.

Definition 7.2 ([9]). A perverse schober on VC with respect to the stratification
induced by HC

30 is given by

� triangulated categories EC , C 2 C , and
� adjoint exact functors .ıCC 0 W EC ! EC 0 ; 
C 0C W EC 0 ! EC / for C 0 � C

such that .EC ; .ıC 0C /C 0C / defines a pseudo-functor from .C ;�/ to the 2-category of
triangulated categories satisfying the following conditions.

� The unit of the adjunction .ıCC 0 ; 
C 0C / defines a natural isomorphism

idEC

Š
�! 
C 0C ıCC 0

for C 0 � C , and thus �C1C2
WD 
C 0C2

ıC1C 0 for C 0 � C1; C2 is well defined up to
canonical natural isomorphism.

� �C1C2
is an equivalence for all C1; C2, C1 ¤ C2, of the same dimension `, which

lie in the same `-dimensional affine space and share a facet.
� The counit of the adjunction .ıC0C2

; 
C2C0
/ defines a natural isomorphism

�C2C3
�C1C2

Š
�! �C1C3

for collinear triples of faces .C1; C2; C3/.

This definition also sheds some light on the proof of Theorem 5.4 (cf. the para-
graph following it) and allows its extension.

Theorem 7.3 ([41]). The local system on KX from Theorem 5.4 extends to a perverse
schober on .C�/n.31

30A perverse schober in this context is also called an H -schober.
31We identify .C�/n with Cn=Zn, and in order to use Definition 7.2 we should also impose

an action of Zn on a perverse schober, which consists of isomorphisms �C ! �gC for g 2 Zn

satisfying some compatibility conditions; see e.g. [41, §3.3].
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Remark 7.4. By a suitable tweak as in Theorem 6.4, we obtain perverse schobers
whose decategorifications are the perverse sheaves obtained as solution complexes of
GKZ hypergeometric D-modules [42].

7.2. HMS predictions

GKZ hypergeometric systems appeared here rather ad hoc, and not really motivated.
In fact, it is HMS that indicates that they should be there [10, 14, 29].

While we only combinatorially match the two perverse sheaves, one would desire
to construct a canonical correspondence via the following sequence of maps (GM
denotes Gauss–Manin):�

K0

�
Db
�
ŒW=T �

��
�
�
K0.D/

�
�! K0.X/

�
�!

H�.X/ (for. quantum conn.)
mirror map
������! ¹rel. tw. DR-coh. at 1º(for. GM conn.)
anal. cont.
�����! ¹solutions to GKZ systemº:

However, the heuristics of why this action would lift to an action on the derived
category of X are still somewhat mysterious.32

Acknowledgements. We are foremost grateful to Michel Van den Bergh for a jour-
ney to kaleidoscopic areas that would otherwise remain inaccessible to us. Moreover,
we thank Geoffrey Janssens, Urban Jezernik, Igor Klep, and the referee for a generous
assortment of comments and suggestions.

Funding. The work on this survey was partially supported by the FNRS project
MIS/BEJ F.4545.21 and the ARC project “Algebra”.

References

[1] P. Achar, Local systems and constructible sheaves. 2007, applications to homological
algebra: Introduction to perverse sheaves, https://www.math.lsu.edu/�pramod/

[2] A. Adolphson, Hypergeometric functions and rings generated by monomials. Duke Math.
J. 73 (1994), no. 2, 269–290 Zbl 0804.33013 MR 1262208

[3] R. Anno, R. Bezrukavnikov, and I. Mirković, Stability conditions for Slodowy slices and
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AAA-least squares rational approximation and solution of
Laplace problems

Stefano Costa and Lloyd N. Trefethen

Abstract. A two-step method for solving planar Laplace problems via rational approximation
is introduced. First, complex rational approximations to the boundary data are determined by
AAA approximation, either globally or locally near each corner or other singularity. The poles
of these approximations outside the problem domain are then collected and used for a global
least-squares fit to the solution. Typical problems are solved in a second of laptop time to
8-digit accuracy, all the way up to the corners, and the conjugate harmonic function is also
provided. The AAA-least squares combination also offers a new method for avoiding spurious
poles in other rational approximation problems, and for greatly speeding them up in cases with
many singularities. As a special case, AAA-LS approximation leads to a powerful method for
computing the Hilbert transform or Dirichlet-to-Neumann map.

1. Introduction

The aim of this paper is to introduce a new method for the numerical solution of planar
Laplace problems, based on a combination of local complex rational approximations
by the AAA algorithm followed by a real linear least-squares problem. This method
is an outgrowth of three previous works [8,16,23], which we now briefly summarize.

The AAA algorithm (adaptive Antoulas–Anderson, pronounced “triple-A”) is a
fast and flexible method for near-best complex rational approximation [23]. Given
a vector Z of real or complex sample points and a corresponding vector F of data
values, it finds a rational function r of specified degree or accuracy such that

r.Z/ � F: (1.1)

This is done by developing a barycentric representation for r by alternating a nonlin-
ear step of greedy selection of the next barycentric support point with a linear least-
squares approximation step to determine the barycentric weights. If F is obtained by

2020 Mathematics Subject Classification. Primary 41A20; Secondary 30E10, 44A15, 65N35.
Keywords. Rational approximation, AAA algorithm, lightning Laplace solver, conformal
mapping, Hilbert transform, Dirichlet-to-Neumann map.
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sampling a function f .z/ with singularities at certain points of Z, such as logarithms
and fractional powers, then root-exponential convergence with respect to the degree n
is typically achieved (i.e., errorsO.exp.�C

p
n // for some C > 0), with poles of the

approximants f clustering exponentially near the singularities [26,32]. The standard
implementation of AAA approximation is the code aaa in Chebfun [10].

The lightning Laplace solver is a method for solving Laplace problems

�u D 0 on �; u D h.z/ on @� (1.2)

on a simply connected domain� in the plane, which we parametrize for convenience
by the complex variable z [16]. It also computes an analytic function f .z/ such that
u D Re f . This method first fixes poles with exponential clustering near each corner
of � or other point where a singularity is expected. A real linear least-squares prob-
lem is then solved to determine a rational function in � with the prescribed poles,
plus a polynomial term (i.e., poles at infinity), whose real part matches the boundary
data as closely as possible. The method converges root-exponentially with respect to
the number of poles and generalizes to Neumann boundary data, multiply-connected
domains, and the Stokes and Helmholtz equations [7, 14]. The standard implementa-
tion is the MATLAB code laplace available at [30].

Although the lightning Laplace solver is fast and effective, one would really like
to solve Laplace problems by a method more like the AAA algorithm, which allows
the set Z to be completely arbitrary and adapts to the singularities of the solution
automatically rather than relying on a priori estimates of pole clustering. Two chal-
lenges have held back the development of a AAA method for Laplace problems. First,
no barycentric representation is known for real parts of rational functions. Second,
even if such a formula were available, there would remain the fundamental problem
of achieving approximation in a region � based on values on the boundary @�. A
AAA-style approximation does not distinguish interior from exterior and includes no
mechanism to restrict poles to the latter.

These considerations led to the third contribution that this work builds upon, pub-
lished on arXiv by the first author in 2020 [8]. The upper row of Figure 1 illustrates
the idea as applied to the “NA Digest model problem” [28], an L-shaped region with
boundary data u.z/ D .Re z/2. First, complex AAA is used to approximate the real
data on the boundary. The resulting analytic function is complex (though real on @�,
up to the approximation accuracy), with poles both inside and outside �. Then the
poles in � are discarded, leaving a set of poles outside � that are often clustered
effectively for rational approximation. The Laplace problem is solved by computing
such an approximation by linear least-squares fitting on @�.

In the form just described, the AAA-Laplace method can be quite slow because
of depending on AAA approximations with a large number of poles. In this article,
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Figure 1. Above, Costa’s AAA-Laplace method from [8]. A global AAA approximation gives
poles both inside and outside �. The poles inside are discarded, and those outside are used
for a linear least-squares fit. Errors on the boundary in the rightmost plot are plotted against
angle with respect to the point .1 C i/=2. This computation determines u.0:99 C 0:99i/ �

1:0267919261073 to 10 digits of accuracy, but it takes 12 s of laptop time because the AAA
approximation has 294 poles. Below, the new local variant, in which the poles outside � are
determined by local AAA approximations near each corner. The computation time falls to 0:67 s
because the AAA problems are six times smaller, without much change in accuracy.

we propose a variation that often speeds it up greatly, namely, to use local AAA
approximations near each singularity to choose the set of poles. Since the cost of
AAA approximation grows with the fourth power of the number of poles, this leads
to a speedup potentially by a factor on the order of the cube of the number of corners.
For the L-shaped example, the speedup is a factor of about 18.

The AAA-Laplace method as presented in [8] was actually much slower than indi-
cated in Figure 1 for an accidental reason. In that implementation, aaa was invoked in
its default “cleanup” mode, which led to the removal of many poles close to the sin-
gularities and a consequent need to employ AAA approximations involving as many
as 1;000 poles. The explanation was proposed in that paper that discarding poles in
� may tend to halve the number of digits of accuracy, but we recognize now that it
is not so, that the loss of accuracy was a consequence of using the cleanup feature.
Throughout this paper, we always call aaa with “cleanup off.”
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Figure 2. A smooth Laplace problem solved by the global AAA-LS method. A global AAA
approximation produces 46 poles inside � and 30 outside, and the latter are retained for a real
least-squares problem that also includes a polynomial term. 9-digit accuracy is achieved in 0:7 s.

2. Laplace problems

Our main interest is problems with corner singularities, since this is where the power
and convenience of rational functions are most decisive. However, the AAA approach
can be effective for smooth problems too. Figure 2 presents an example. An irreg-
ular domain � (bounded by a trigonometric interpolant through 15 complex data
points) is given with the Laplace boundary condition u.z/ D � log jzj. The vec-
tor Z is constructed by sampling @� in 1;000 points, and a global AAA fit to the
boundary data with tolerance 10�8 yields 46 poles in � and 30 in Cnx�. The interior
poles are discarded, and a least-squares fit to the boundary data is computed via a
1;000 � 102 matrix: 60 real degrees of freedom for 30 poles and 42 for a polyno-
mial term of degree 20. The computation takes 0:7 s, and the maximum error on Z is
2:1 � 10�9. A polynomial expansion needs about 10 times as many degrees of free-
dom to achieve the same accuracy, a ratio that would worsen exponentially for more
distorted regions according to the theory of the “crowding phenomenon” in complex
analysis [15, Thm. 5].

We now turn to problems with singularities, typically at corners, whose locations
are assumed to be known in advance. The local variant of the AAA-LS algorithm
proceeds in this manner:

(1) construct sample point vector Z and fix corresponding data values H D

h.Z/;

(2) for each singularity, run AAA for nearby sample points and data values;

(3) discard poles in x� and retain poles exterior to x�;

(4) calculate real least-squares fit to boundary data, including a polynomial
term;

(5) construct function handles for u.z/ and its analytic extension f .z/.
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We give some mathematical and MATLAB details of each of these steps. The global
variant of the algorithm is the same except that step (2) involves just a single global
AAA approximant.

(1) Construct sample point vectorZ and fix corresponding data values HDh.Z/.
The problem domain� can be quite arbitrary, and it can be multiply connected. Typi-
cally,Z will consist of hundreds or thousands of points, which it is simplest to specify
in advance with exponential clustering near singularities. In MATLAB, we use con-
structions like logspace(-14,0,300)' for a singularity at one endpoint of Œ0; 1�
and tanh(linspace(-16,16,600)') for singularities at both endpoints of Œ�1; 1�.
If AAA-LS software were to be developed analogous to the laplace code of [30]
for the lightning Laplace method, then it would be worthwhile placing sample points
more strategically to avoid having too many more rows in the matrix than necessary.

(2) For each singularity, run AAA for nearby sample points and data values. We
use the simplest choice: each point of Z is associated with whichever singularity it is
closest to (on the same boundary component, if the geometry is multiply connected
so there are several boundary components). The Chebfun command aaa is invoked
with 'cleanup', 'off', and throughout this paper we specify a AAA tolerance of
10�8.

(3) Discard poles in x� and retain poles exterior to x�. The aaa code returns highly
accurate pole locations computed via a matrix generalized eigenvalue problem de-
scribed in [23]. To distinguish those inside and outside�, we use the complex variant
inpolygonc = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w)) of
the inpolygon command.

(4) Calculate real least-squares fit to boundary data, including a polynomial term.
If pol is a row vector of the poles from step (3) and n is a small nonnegative integer,
then the sequence

d = min(abs(Z-pol),[],1);
P = Z.^(0:n); Q = d./(Z-pol);
A = [real(P) real(Q) -imag(P) -imag(Q)];
c = reshape(A\H,[],2)*[1;1i];

computes a complex coefficient vector c for the function f in the space spanned by
the polynomials of degree n and the given poles such that u D Re f is the least-
squares fit to the data H in the sample points. The vector d contains the distances of
the poles to Z and is used to scale the columns of Q to have 1-norm 1. For n much
larger than 10, however, numerical stability requires that the monomials of Z.^(0:n)
be replaced by orthogonalizations computed by the Vandermonde with Arnoldi
procedure of [6]. This can be done by replacing P = Z.^(0:n) by [Hes,P] =
VAorthog(Z,n), where the code VAorthog comes from [7] and is listed in the
appendix.
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The description and code above apply for bounded, simply-connected domains
with Dirichlet boundary conditions. For problems with Neumann boundary condi-
tions on some sides, the corresponding rows of A are modified appropriately. For
exterior domains, z is replaced by .z � zc/

�1 for some point zc in the hole. For
multiply-connected domains, additional columns of the form log jz � zj j must be
added, where ¹zj º are a set of fixed points, one in each hole [2, 29]. In addition, new
columns are added corresponding to polynomials in 1=.z � zj / for each j .

(5) Construct function handles for u.z/ and its analytic extension f .z/. For con-
venience in making plots and other applications, it is desirable to have functions that
can be applied to matrices as well as vectors. Following the commands above this can
be achieved with

f = @(z) reshape([z(:).^(0:n) d./(z(:)-pol)]*c,size(z));
u = @(z) real(f(z)); v = @(z) imag(f(z));

When VAorthog is used, the first line is replaced by

f = @(z) reshape([VAeval(z(:),Hes) d./(z(:)-pol)]*c,size(z));

Figure 3 illustrates the method at work on two examples. In the first row, the L
shape of Figure 1 has been modified to a square with two circular bites removed.
No new issues arise here, as the method does not distinguish between straight and
curved sides, so long as they are smooth. The second row shows a doubly-connected
problem, and here some new issues do arise. First there is the use of polynomials
with respect to both z and .z � zc/

�1 as described above (writing zc instead of z1

since there is just one hole), as well as the introduction of a log jz � zcj term; we
take zc D �.1C i/=4. The domain is discretized by 400 clustered points on each of
the eight side segments, and the polynomials in z and .z � zc/

�1 are of degree 40.
A more fundamental issue also arises in this problem. The boundary data have been
taken as 1 on the inner square and 0 on the outer square, a natural situation for a heat
flow or electrostatics problem in a doubly connected geometry. Since these boundary
conditions are constant on each of the two boundary components, however, the local
AAA problems will be trivial and no poles at all will be produced! Clearly that is no
route to an accurate solution, so for this computation, poles have been generated by
using an artificial boundary condition (the square root of the product of the distances
to the eight corners) and then the least-squares problem is solved with the boundary
data actually prescribed. The reader is justified if he/she finds this puzzling, and we
discuss the matter further in Section 6.

Our final example of this section is an unbounded region with three rectangular
holes, as shown in Figure 4. The boundary conditions are uD 1 on the rectangle at the
left and uD 0 on the other two, giving a natural interpretation as the potential around
three conductors. Each boundary segment is discretized by 400 clustered points, so
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Figure 3. Two examples of Laplace solutions by the local AAA-LS method. Above, a square
with two circular bites removed. The computation involves 102 poles outside the domain and a
polynomial of degree 20. Below, a multiply-connected domain, solved in 1:7 s with 397 poles
outside the domain and a polynomial of degree 40. In the error plot, black dots correspond to
the outer boundary and green dots to the inner one. The boundary data used for local-AAA pole
location are not those of the Laplace problem, as explained in the text.
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Figure 4. Local AAA-LS solution of a Laplace problem in an unbounded triply-connected
domain, requiring reciprocal polynomials with respect to three interior points cj and also
logarithm terms log jz � zj j. The computation takes 2 s and gives the value u.1/ �

0:64357510429036 to 10-digit accuracy.
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the least-squares matrix has 4;800 rows. The AAA fits lead to 52 poles inside a rectan-
gle near each corner, 624 in total, and we also have a reciprocal-polynomial of degree
10 and one real logarithm term in each rectangle, bringing the number of columns
of the matrix to 2 � .624C 3 � 11/C 3 D 1;317. A solution is computed in 2 s to
10-digit accuracy as measured by the value at the point z D 1 midway between the
rectangles, u.1/ � 0:64357510429036.

A fine point to note in this triply-connected example is that the point z D 1 is a
point of analyticity, in the interior of the domain, so there should be no logarithmic
term there, meaning that the sum of the coefficients of the three log terms centered at
the points z1, z2, z3 in the rectangles should be zero. This condition can be enforced
by adding one more row to the matrix, or (as was in fact done for the computation in
Figure 4) by taking the log columns of the matrix to correspond not to log jz � zj j

but to log jz � zj j � log jz � zj.mod 3/C1j.

3. Conformal mapping

A Laplace solver that also produces the harmonic conjugate of the solution, hence its
analytic extension, can be used to compute conformal maps. Details are given in [31],
so here we give just one example of construction of the conformal map g of a simply-
connected region � containing the point z D 0 to the unit disk, with g.0/ D 0 and
g0.0/ > 0. The trick is to write g in the form

g.z/ D z exp
�
f .z/

�
; f .z/ D log

�
g.z/=z

�
; (3.1)

where f is the unique nonzero analytic function on � having real part � log jzj on
@� and imaginary part 0 at z D 0. Thus f is obtained by solving a Laplace Dirichlet
problem, and (3.1) then gives the map g.

Figure 5 illustrates this method for the smooth region of Figure 2, where � log jzj
was already the boundary condition. Thus the conformal map comes from exponenti-
ating the analytic extension of the harmonic function of Figure 2 and multiplying the
result by z. As described in [15], this result is then compressed by AAA approxima-
tion, and another AAA approximation gives the inverse map. See [31] for extensions
to multiply-connected regions.

The speed of these computations is remarkable. After an initial 0:9 s to construct
the forward and inverse maps in this example, they can be each then be evaluated
in 0.3�s per point. For example, we take one million random points uniformly dis-
tributed in the unit disk, map them conformally to �, then map these images back to
the unit disk again. The whole back-and-forth process takes 0:6 s, and the maximum
error in the million sample points is 1:1 � 10�8.
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Figure 5. Conformal map of the region of Figure 2 by the global AAA-LS method. The map
is computed to 8-digit accuracy in 0:8 s and the rational approximations in both directions are
evaluable in less than 1�s per point. In the left image, the poles differ slightly from those of
Figure 2 because a further AAA compression of z exp.f .z// has taken place.

4. Rational approximation without spurious poles

Though the emphasis in this paper is on Laplace problems, AAA-LS approxima-
tion also offers striking advantages for more general rational approximations. It may
be much faster than AAA alone for problems with a number of singularities, and
since unwanted poles can be discarded, it produces approximations guaranteed to
have desired properties of analyticity and stability. Thus AAA-LS may combat what
Heather Wilber has called the “spurious poles blues” (discussed in [34], though with-
out this phrase).

We illustrate both the speed and the robustness with an example of approximat-
ing a real zigzag function on the interval Œ�1; 1�, as shown in Figure 6. Knowing that
poles will need to cluster exponentially at the points �0:8;�0:6; : : : ; 0:8, we set up
a 3;000-point grid consisting of -0.9 + 0.2*tanh(linspace(-16,16,300)) and
its nine translates at centers �0:7, �0:5, : : : ; 0:9. With straight AAA approximation,
poles in Œ�1; 1� virtually always appear. They could be removed for input to a least-
squares fit, but the timing would still be very slow for the moderately large degrees
needed for effective approximation: 0:3 s, 4:2 s, and 35:3 s on our laptop for degrees
50, 200, and 500. By contrast, with its local AAA fits the AAA-LS method quickly
computes a good approximation. In Figure 6, AAA-LS has been run with AAA tol-
erance 10�8, leading to local fits each of size 51 and 52 and hence quite speedy.
This gives 466 poles all together, two of which lie in Œ�1; 1� and are discarded, as
shown in the middle panel of the figure. A least-squares fit with these 464 poles, plus
a polynomial of degree 16, then gives the error marked in blue in the bottom figure,
with maximum error 3:1� 10�7. The whole computation takes half a second, and the
resulting approximation can be evaluated in 5�s per point. By contrast, a polynomial
fit with the same 962 degrees of freedom can have error no smaller than 1:6 � 10�3,
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Figure 6. Top, a real zigzag function on Œ�1; 1� to be approximated over the whole interval
by a single rational function. Middle, the 466 poles determined by local AAA fits near each
singularity, each of degree 51 or 52. Two poles lie in Œ�1; 1� and are discarded (blue). Bottom,
the resulting errors in the AAA-LS fit show accuracy of 3� 10�7. A polynomial with the same
962 degrees of freedom such as a Chebyshev interpolant (dots) could have accuracy at best
10�3 (dashed line).

as marked by the orange dashed line. The orange dots show the error for a polynomial
Chebyshev interpolant of that degree.

It appears that AAA-LS offers a flexible, fast, and reliable way to compute near-
best rational approximations with no unwanted poles. Potential applications lie in
many areas of computational science and engineering. An interesting question is
“might AAA-LS be further leveraged via a AAA-Lawson iteration as in [24] to lead
to truly minimax rational approximations in certain cases?” For this to be possible,
it would be necessary first to convert the rational approximation to barycentric form.
We have not explored this possibility.

5. Computing the Hilbert transform

If u is a sufficiently smooth real function defined on the real line, its Hilbert transform
is the function v defined by the principal value integral

v.y/ D
1

�
PV

Z 1

�1

u.x/

y � x
dx: (5.1)
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The transform can be interpreted as follows: if f is a complex analytic function in
the upper half-plane with Re f .x/ D u.x/ for x 2 R, then v.y/ D Im f .y/. Similar
definitions and interpretations apply to the unit circle and other contours. Another
name for the Hilbert transform (essentially) is the Dirichlet-to-Neumann map.

It is evident that to compute the Hilbert transform numerically, it suffices to find
an analytic function in the upper half-plane whose real part on R matches that of u
to sufficient accuracy. The classical idea of this kind is to use a Fourier transform,
perhaps discretized on a finite interval by the fast Fourier transform [20, p. 203]. For
example, this is the method used by the hilbert command in the MATLAB Sig-
nal Processing Toolbox. But it is also possible to use rational approximations instead
of trigonometric polynomials, and numerical methods of this kind have been pro-
posed [22, 27, 33].

The AAA-LS method provides another natural approach based on rational ap-
proximation, since poles in the upper half-plane can be discarded to ensure the appro-
priate analyticity. Indeed, all of our AAA-LS Laplace solutions can be regarded as
Hilbert transforms, but on more general contours @�. A prototype code for the real
line can be written like this:

function [v,f] = ht(u)
X = logspace(-10,10,300)'; X = [X; -X]; % sampling grid
[~,pol] = aaa(u(X),X,'cleanup',0); % global AAA fit
pol(imag(pol)>=0) = []; pol = pol.'; % discard unwanted poles
d = min(abs(X-pol),[],1); % for column normalization
A = d./(X-pol); A = [real(A) -imag(A)]; % fitting matrix
c = reshape(A\u(X),[],2)*[1;1i]; % least-squares solve
f = @(x) reshape((d./(x(:)-pol))*c,size(x)); % analytic extension
v = @(x) imag(f(x)); % Hilbert transform

This is not an item of software—it is a proof of concept. Note that the sampling
grid has been taken as 300 points exponentially spaced from 10�10 to 1010 and their
negatives, 600 points all together. This would not be appropriate for all functions, but
it is a good starting point for a function which loses analyticity possibly at 0 and at 1.
The code does well at computing Hilbert transforms of the seven example functions
in Weideman’s list in Table 1 of his paper [33]. In 0:6 s total on a laptop, it produces
results for these seven example problems with relative accuracy in the range of 5–
13 digits, as detailed in Table 1. We shall not attempt systematic comparisons with
other algorithms, but as an indication of the nontriviality of these computations, we
mention that applying the MATLAB hilbert command for u.x/ D exp.�x2/ on a
grid of 1;024 equispaced points in Œ�20; 20� gives an estimate of v.2/ with an error
of 1:4 � 10�2, 11 orders of magnitude greater than the figure in Table 1.
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Function u Hilbert transform v.2/ AAA-LS error

1=.1C x2/ 0:400000000000000 �1:3 e–12
1=.1C x4/ 0:415945165403851 �4:3 e–14
sin.x/=.1C x2/ 0:156805255543717 3:4 e–06
sin.x/=.1C x4/ 0:121897775700258 �1:7 e–07
exp.�x2/ 0:340026217066066 1:0 e–13
sech.x/ 0:506584586167368 1:3 e–10
exp.�jxj/ 0:328435745958114 �1:4 e–12

Table 1. The example functions u.x/ from Table 1 by Weideman [33] together with their Hilbert
transforms v.x/ evaluated at the arbitrary point x D 2. In a total time of 0:6 s, the prototype
AAA-LS code ht computes these numbers to 5–13 digits of relative accuracy.
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Figure 7. Error at 1;000 points y 2 Œ�5; 5� in the Hilbert transform of u.x/ D exp.�jxj/ com-
puted by the global AAA-LS method from 60; 120; : : : ; 360 exponentially spaced samples. This
plot was produced in 2 s on a laptop.

Figure 7 illustrates AAA-LS computation of the Hilbert transform graphically for
Weideman’s final example,

u.x/ D e�jxj; v.y/ D ��1 sign.y/
�
ejyjE1

�
jyj

�
C e�jyjEi

�
jyj

��
; (5.2)

where E1 and Ei are the exponential integrals computed in MATLAB by expint
and ei. For each of the values L D 1; 2; : : : ; 6, a sample grid of 60L points y has
been used consisting of 30L points exponentially spaced from 10�L to 10L and their
negatives. Rapid convergence is observed to an accuracy of better than 10 digits,
despite the singularity of u at x D 0.

The great flexibility of the AAA-LS method for computing the Hilbert transform
is to be noted. It can work with arbitrary data points, which need not be regularly
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spaced, and it delivers a result as a global representation speedily evaluated via a
function handle. No interpolation of data is required (see discussion of this problem
in [9]), and singularities in u.x/ cause little degradation of accuracy so long as there
are sample points clustered nearby, as illustrated in the example of Figure 7.

Many generalizations of this AAA-LS Hilbert transform computation are pos-
sible, including other contours both open and closed and more general Riemann–
Hilbert problems.

6. Theoretical observations

The core of the AAA-LS method (in its global form) is the following idea, which we
shall call the pole symmetry principle. Suppose r is a complex rational approximation
that closely approximates a real function h on the boundary @� of a region �. Then
there is another complex rational function rC, with poles only at the locations of the
poles of r outside �, such that Re rC also closely approximates h on @�. The AAA-
LS method finds r by AAA approximation on @�, extracts its poles outside �, and
then finds rC by linear least-squares fitting on @�.

In particular, for cases with singularities on @�, rational functions r exist with
root-exponential convergence to h as n ! 1 [16]. Such approximations will usu-
ally have poles that cluster exponentially on both sides of @� near each singularity.
The pole symmetry principle proposes that we can discard all the poles inside �,
retaining only the ones outside �, and still get essentially the same root-exponential
convergence.

In this section, we assess this idea. Our conclusions can be summarized as fol-
lows.

(1) If � is a half-plane or a disk, the pole symmetry principle holds exactly
(Theorems 6.1 and 6.2).

(2) If� is a simply-connected domain with corners, the pole symmetry principle
fails in the worse case in that rC may have no poles near @� even though
they are needed to resolve singularities; conversely it may have clusters of
poles near @� when they are not needed (examples shown in Figure 8). How-
ever, both of these situations are nongeneric. For most problems, the principle
holds also on regions with corners.

(3) If � is a simply-connected domain bounded by an analytic curve, then in a
certain theoretical sense it can be reduced to the case of a disk. However, the
constants involved may be sufficiently adverse that in practice; it may be more
appropriate to think of� as a domain with corners. Again the pole symmetry
principle will usually hold even if this cannot be guaranteed in the worst case.
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Figure 8. Examples showing that in the worst case, the pole symmetry principle underlying
the global AAA-LS method may fail. On the left, AAA approximation gives “too many poles,”
with poles exponentially clustered outside� near ˙1 even though the singularity-free function
u.z/ D Re z solves the Laplace problem. On the right, it gives “too few poles,” providing no
poles at all outside� near the boundary even though the rational approximation of the solution
of the Laplace problem will need them to approximate the branch point singularities at ˙1.
Both these situations are nongeneric and unlikely to appear in practice.

(4) If � is a multiply-connected domain, then harmonic functions in � can in
general not be approximated by rational functions: logarithmic terms are
needed too. Thus the pole symmetry principle is inapplicable and a local
rather than global variant of AAA-LS should be used.

To establish conclusion (1), let C� and CC denote the open lower and upper
complex half-planes, respectively, and let k � kE denote the supremum norm over
a set E. The two assertions of the following theorem ensure that complex rational
approximation on R produces “enough poles” to solve the Laplace problem on CC,
and that it does not produce “too many poles” to be efficient.

Theorem 6.1. Given a bounded real continuous function h on R, let u be the bounded
harmonic function in CC with u.x/D h.x/ for x 2 R. Suppose there exists a rational
function r , also real on R, such that kr � hkR � " for some " � 0. Then there exists a
rational function rC whose poles are precisely the poles of r in C� such that kRerC �

hkR � ", and thus by the maximum principle also kRe rC � ukCC
� ". Conversely,

if rC is a rational function analytic in CC such that kRe rC � ukCC
� ", then there

exists a rational function r whose poles are the poles of rC and their reflections in
CC such that kr � hkR � ".

Proof. Given r as indicated in the first assertion, write r.z/ D .rC.z/C r�.z//=2,
where rC has its poles in C� and r� has its poles in CC. By the Schwarz reflection
principle, r.xz/ D r.z/ for all z 2 C, and thus the poles of r� must be the conjugates
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of the poles of rC. Symmetry further implies that

r�.z/ D rC.xz/ 8z 2 C; r.x/ D Re rC.x/ 8x 2 R; (6.1)

assuming that the constant r.1/, if it is nonzero, is split equally between r� and
rC. Thus Re rC.z/ is a bounded harmonic function in CC with kRe rC � hkR � ",
hence also k Re rC � ukCC

� " by the maximum principle. Moreover, the poles of
rC are exactly the poles of r in C�. Conversely, given rC as indicated in the second
assertion, the function r.z/ D .rC.z/C rC.xz//=2 has the required properties.

The other half of conclusion (1) concerns the case of the open unit disk �. Let S
denote the unit circle and �� the complement of x� in C [ ¹1º. We get essentially
the same theorem as before.

Theorem 6.2. Given a real continuous function h on S , let u be the harmonic func-
tion in� with u.x/D h.x/ for x 2 S . Suppose there exists a rational function r , also
real on S , such that kr � hkS � " for some "� 0. Then there exists a rational function
rC whose poles are precisely the poles of r in �� such that kRe rC � hkS � " and
thus also k Re rC � uk� � ". Conversely, if rC is a rational function analytic in �
such that kRe rC � uk� � ", then there exists a rational function r whose poles are
the poles of rC and their reflections in � such that kr � hkS � ".

Proof. One can argue as before or, alternatively, derive this as a corollary of Theo-
rem 6.1 by a Möbius transformation.

We now turn to conclusion (2), concerning the case where� has corners. As men-
tioned, in the worst case rational approximation may give “too many poles,” meaning
poles that are not needed for approximation of the solution of the Laplace problem,
and it may give “not enough poles,” meaning poles that are inadequate to approximate
the solution of the Laplace problem. To explain this, we present a pair of examples
in Figure 8, both showing poles of AAA approximations with tolerance 10�8 on the
boundary of the bounded symmetric “lens” domain � bounded by two circular arcs
meeting at right angles at z D ˙1.

The first image illustrates “too many poles.” When the function h.z/ D Re z is
approximated by a rational function on @�, many poles appear both inside and out-
side �; this will be the rule almost always when a region has corners. And yet this
boundary data can be exactly matched by the harmonic function u.z/ D Re z, which
has just a single pole at 1. So the clusters of poles obtained by AAA are unnecessary
for the Laplace problem in the interior of �.

The second image illustrates “too few poles.” Here h is taken as the values on @�
of the analytic function f that maps the exterior of � conformally to the exterior of
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the slit Œ�1; 1� while leaving the points ˙1 and 1 fixed:

f .z/ D
1C v2

1 � v2
; v D �

�
z � 1

z C 1

�2=3

: (6.2)

With the standard branch of the 2=3 power, f has a branch cut along Œ�1; 1�, and
AAA finds a rational approximation r whose poles lie approximately on this slit. In
particular, they all lie within� apart from one pole of magnitude 1010, approximating
the pair f .1/ D 1. Thus there are no poles near @� for the AAA-LS method to
work with in approximating the solution in the interior of �, yet this solution has
singularities at ˙1 involving fractional powers .z ˙ 1/4=3, so it would need such
poles to get high accuracy.

Thus we see that on domains with corners, failure of the pole symmetry princi-
ple is possible. However, the failures we have identified are atypical, at least in these
extreme forms. The example on the left in Figure 8 is special in that despite the cor-
ners in the domain, the solution to the Laplace problem has no singularities thanks
to special boundary data. This is hardly the generic situation (though picking such
examples is a common mistake beginners make when testing their Laplace codes!).
As for the example on the right, it has the unusual property of involving data h that
can be analytically continued to all of C [ ¹1ºnx�. This is another very special sit-
uation. Generically, a function h on a domain boundary with corners will only be
analytically continuable with branch cuts on both sides, and rational approximations
will need to have poles approximating those branch cuts on both sides of the domain.
Configurations like that of the second image of Figure 8 are unlikely to appear in
applications.

Now we turn to conclusion (3). Suppose � is a simply-connected domain
bounded by an analytic curve that is not simply a circle or a straight line. For such a
problem, Schwarz reflection no longer gives a symmetry equivalence between � and
C [ ¹1ºnx�. What happens to the pole symmetry principle?

The “pure mathematics answer” is that everything works essentially as before,
modified only by the need for a fast exponentially-convergent polynomial term to
be added into the rational approximations. The reasoning here can be based on the
technique of considering a conformal map w D �.z/ of C [ ¹1ºnx� to C [ ¹1ºnx�

with �.1/ D 1 and its inverse map z D  .w/ [12]. If @� is analytic, then � and
 extend analytically to larger domains, implying that they can be approximated by
polynomials in z�1 and w�1, respectively, with exponential convergence. It follows
that rational approximation of a function h defined on @�, for example, is equivalent
to rational approximation of its transplant Qh.w/D h. .w// on S , up to exponentially
convergent polynomial terms. If h has singularities, then root-exponential conver-
gence of rational approximations in z is ensured by the same property for rational
approximation of Qh in w. By this kind of reasoning, one can argue that AAA-LS in a
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smooth domain is like AAA-LS in a disk, up to constants associated with polynomial
approximations.

The “applied mathematics answer” is not so simple. All across complex analysis,
the constants that appear in estimates of interest tend to grow exponentially as func-
tions of geometric parameters such as the aspect ratios of reentrant or salient fingers
in boundary curves, and this applies here. So the practical status of the pole symme-
try principle for regions with curved boundaries may not be so different from that for
regions with corners.

All the discussion above pertains to the global variant of AAA-LS. For local
variants, as illustrated in the discussion around the multiply-connected domain of
Figure 3, failures of the algorithm are more likely to appear in practice if the AAA
step of the algorithm is applied with the data h given. In such cases, we recommend
the method used in that figure: replace the actual boundary data h by a function Oh tar-
geted to generate singularities at each corner, such as the product of the square roots
of the distances to the corners. Our experience shows that as a practical matter, this
strategy is highly effective. The reason for this is that, though not all singularities look
alike, a wide range of them can be approximated with root-exponential convergence
by exponentially clustered poles, whose configurations need not be tuned to the sin-
gularities [16, 32]. So the set of poles utilized by AAA to approximate one function
will generally also do well for another.

In the case of a multiply-connected domain, to turn to point (4) of our summary,
one should always use a local variant of the AAA-LS method. The reason is that
approximating harmonic functions in such a domain will require logarithmic terms
since their conjugates are in general multivalued [2]. One can use AAA to approxi-
mate a real function h on the boundary @� of such a domain by a rational function
r , but r will not have the right properties interior to �. As illustrated in Figure 9,
typically it will approximate different analytic functions near the different boundary
components, separated by strings of poles approximating branch cuts (compare Fig-
ure 6.9 of [23]). These poles have nothing to do with the harmonic function u in �
one wants to approximate, so in such a case global rational approximations should
not be used.

In discussing local rational approximations above, we alluded to a kind of approx-
imate university of pole distributions for resolving singularities. This suggests that in
the end, AAA approximation should not really be necessary; one could equally well
use a “lightning” strategy in which poles are positioned a priori rather than determined
from the data. Indeed we think this is likely to be the case for problems dominated by
singular corners, though the great convenience of starting from AAA approximations
remains an advantage. For problems less controlled by corners, global or partially-
global variants of AAA-LS will have a power not easily matched by lightning solvers.
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Figure 9. Poles of a global AAA rational approximant r with tolerance 10�8 on the boundary
of a triply-connected domain with boundary data 0, 1, and 2 on the smaller, larger, and outer
circles, respectively. The function r matches the data accurately on all three parts of @�, but
achieves this only by introducing strings of poles that effectively split � into subdomains with
separate analytic functions. Here, these are the constant functions 0, 1, and 2, though the con-
figuration would be much the same for any analytic boundary data. Effective approximation by
a single harmonic function throughout � would require an additional logarithmic term in each
hole, so for Laplace problems in domains like this, a local rather than global variant of AAA-LS
should be used.

7. Discussion

AAA-LS offers a remarkably fast and accurate way to solve Laplace problems in pla-
nar domains with corners. Typical examples give 8-digit accuracy in a fraction of a
second, and the resulting representation of the solution as the real part of a rational
function can be evaluated in microseconds per point. Not just the harmonic function
but also its harmonic conjugate are obtained, thereby giving the analytic extension of
the solution in the problem domain as well as the solution itself—the Hilbert trans-
form or Dirichlet-to-Neumann map. For domains with holes, this analytic extension
is a multivalued analytic function, which consists of a single-valued function plus
multivalued log terms, one for each hole [2].

A feature of all these expansion-based methods is that the representations of the
solution they compute are numerically nonunique and, a fortiori, nonoptimal. The
matrices involved have enormous or infinite condition numbers, and the coefficient
vectors they deliver may depend in unpredictable ways on details of boundary dis-
cretization and other parameters. If we solve a Laplace problem and obtain 8-digit
accuracy with 112 poles, for example, it must not be supposed that these poles are in
truly optimal locations or that 112 is the precise minimal number for this accuracy.
Despite that, the 8 digits are solid, as can be verified a posteriori by applying the max-
imum principle on a finer boundary grid, and they are achieved thanks to the regular-
izing effects of least-squares solvers as realized in the MATLAB backslash command.
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Some other methods for computing rational approximations, such as vector fit-
ting [18], IRKA [17], RKFIT [5], IRF [21], AGH [1], and the Haut–Beylkin–Monzón
reduction algorithm [19], have optimality as a more central part of their design con-
cept than AAA-LS, though they too will often terminate before optimality is achieved.
As a rule, one cannot count on achieving optimality in rational approximation prob-
lems, in view of their extreme sensitivities, which are reflected both theoretically and
computationally in longstanding complications of spurious poles or “Froissart dou-
blets.” For example, it is well known that Padé approximants, which are defined by
optimality in approximating a function and its derivatives at a single point, do not in
general converge to the function being approximated [4, 13].

Continuing on the matter of optimality in rational approximation, we offer an
analogy from the field of matrix iterations for large linear systems of equations Ax D

b, the core problem of computational science. (Actually it is more than an analogy,
since matrix iterations are closely connected with rational approximations.) In theory,
one might seek to generate an approximation to the solution vector x at each step of
iteration that was truly optimal by some criterion. In a sense this is what certain forms
of pure Lanczos or biconjugate gradient iterations do. However, it is well known that
such an attempt brings risks of breakdowns and near-breakdowns that interfere with
performance [11]. In practice, iterative methods aim for speed rather than optimality,
and the idea of trying to solve Ax D b to a certain accuracy in exactly the minimal
number of steps is not part of the discussion.

In the past few years about a dozen papers have appeared related to AAA and
lightning solution of Laplace problems via rational approximation and its variants;
an impressive example we have not mentioned is [3], and an important earlier work
is [21]. Most of the methods proposed in these works approximate continuous bound-
aries by discrete sets, typically with thousands of clustered points, and it is an interest-
ing question to what extent such discretization is necessary. Even if the least-squares
problem ultimately solved will involve a matrix with discrete rows, one may won-
der whether the discretization can be deferred or hidden away in “continuous-mode”
AAA or AAA-LS methods, as is done by the MATLAB code laplace [30] and
in Chebfun codes such as minimax. This is one of many areas in which AAA and
lightning methods, which are very young, can be expected to improve with further
investigation in the years ahead. We are also exploring speedups to the linear algebra,
and the possibility of “log-lightning” AAA-LS approximation as in [25].

Appendix: Sample code

As templates for further explorations, Figures 10 and 11 list the MATLAB codes used
to generate the second row of Figure 1.
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%% Set up
s = tanh(linspace(-12,12,300)');
Z = [1+s; 2+.5i+.5i*s; 1.5+1i+.5*s; 1+1.5i+.5i*s; .5+2i+.5*s; 1i+1i*s];
w = [0 2 2+1i 1+1i 1+2i 2i].';
h = @(z) real(z).^2; H = h(Z);
LW = 'linewidth'; MS = 'markersize'; ms = 6; PO = 'position'; FS = 'fontsize';

%% Local AAA fits
axes(PO,[.02 .6 .35 .35])
inpolygonc = @(z,w) inpolygon(real(z),imag(z),real(w),imag(w));
tol = 1e-8; pol_in = []; pol_out = [];
for k = 1:6

ii = find(abs(Z-w(k)) == min(abs(Z-w.'),[],2));
[~,polk] = aaa(H(ii),Z(ii),'tol',tol,'cleanup',0);
polk_in = polk(inpolygonc(polk,w)); pol_in = [pol_in; polk_in];
polk_out = polk(~inpolygonc(polk,w)); pol_out = [pol_out; polk_out];

end
plot(w([1:end 1]),'k',LW,.9), axis([-.8 2.8 -.8 2.8]), axis square, hold on
plot(pol_out,'.r',MS,ms), plot(pol_in,'.b',MS,ms), hold off, set(gca,'ytick',0:2)
title('local AAA poles'), set(gca,FS,6)

%% Solution
pol = pol_out.';
d = min(abs(w-pol),[],1);
[Hes,P] = VAorthog(Z,20); Q = d./(Z-pol);
A = [real(P) real(Q) -imag(P) -imag(Q)];
c = reshape(A\H,[],2)*[1; 1i];
F = [P Q]*c; U = real(F);
f = @(z) reshape([VAeval(z(:),Hes) d./(z(:)-pol)]*c,size(z));
u = @(z) real(f(z));

%% Contour and error plots
axes(PO,[.35 .6 .35 .35])
plot(pol,'.r',MS,ms), hold on
x = linspace(0,2,150); [xx,yy] = meshgrid(x,x); zz = xx+1i*yy;
uu = u(zz); uu(~inpolygonc(zz,w)) = NaN;
plot(w([1:end 1]),'k',LW,.9), axis([-.8 2.8 -.8 2.8]), axis square
contour(x,x,uu,20,LW,1), hold off, set(gca,'ytick',0:2)
u99err = u(.99+.99i) - 1.0267919261073
title('Laplace solution'), set(gca,FS,6)
axes(PO,[.73 .6 .25 .35])
semilogy(angle(Z-(.5+.5i)),abs(U-H),'.k',MS,3), grid on
set(gca,FS,6), axis([-pi pi 1e-12 1e-4])
set(gca,'xtick',pi*(-1:.5:1),'xticklabel',{'-\pi','-\pi/2','0','\pi/2','\pi'})
title('error against angle'), set(gca,FS,6)

Figure 10. MATLAB code to generate the second row of Figure 1.
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function [Hes,R] = VAorthog(Z,n,varargin) % Vand.+Arnoldi orthogonalization
% Input: Z = column vector of sample points
% n = degree of polynomial (>= 0)
% Pol = cell array of vectors of poles (optional)
% Output: Hes = cell array of Hessenberg matrices (length 1+length(Pol))
% R = matrix of basis vectors
M = length(Z); Pol = []; if nargin == 3, Pol = varargin{1}; end
% First orthogonalize the polynomial part
Q = ones(M,1); H = zeros(n+1,n);
for k = 1:n

q = Z.*Q(:,k);
for j = 1:k, H(j,k) = Q(:,j)'*q/M; q = q - H(j,k)*Q(:,j); end
H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end
Hes{1} = H; R = Q;
% Next orthogonalize the pole parts, if any
while ~isempty(Pol)

pol = Pol{1}; Pol(1) = [];
np = length(pol); H = zeros(np,np-1); Q = ones(M,1);
for k = 1:np

q = Q(:,k)./(Z-pol(k));
for j = 1:k, H(j,k) = Q(:,j)'*q/M; q = q - H(j,k)*Q(:,j); end
H(k+1,k) = norm(q)/sqrt(M); Q(:,k+1) = q/H(k+1,k);

end
Hes{length(Hes)+1} = H; R = [R Q(:,2:end)];

end

function [R0,R1] = VAeval(Z,Hes,varargin) % Vand.+Arnoldi basis construction
% Input: Z = column vector of sample points
% Hes = cell array of Hessenberg matrices
% Pol = cell array of vectors of poles, if any
% Output: R0 = matrix of basis vectors for functions
% R1 = matrix of basis vectors for derivatives
M = length(Z); Pol = []; if nargin == 3, Pol = varargin{1}; end
% First construct the polynomial part of the basis
H = Hes{1}; Hes(1) = []; n = size(H,2);
Q = ones(M,1); D = zeros(M,1);
for k = 1:n

hkk = H(k+1,k);
Q(:,k+1) = ( Z.*Q(:,k) - Q(:,1:k)*H(1:k,k) )/hkk;
D(:,k+1) = ( Z.*D(:,k) - D(:,1:k)*H(1:k,k) + Q(:,k) )/hkk;

end
R0 = Q; R1 = D;
% Next construct the pole parts of the basis, if any
while ~isempty(Pol)

pol = Pol{1}; Pol(1) = [];
H = Hes{1}; Hes(1) = []; np = length(pol); Q = ones(M,1); D = zeros(M,1);
for k = 1:np

Zpki = 1./(Z-pol(k)); hkk = H(k+1,k);
Q(:,k+1) = ( Q(:,k).*Zpki - Q(:,1:k)*H(1:k,k) )/hkk;
D(:,k+1) = ( D(:,k).*Zpki - D(:,1:k)*H(1:k,k) - Q(:,k).*Zpki.^2 )/hkk;

end
R0 = [R0 Q(:,2:end)]; R1 = [R1 D(:,2:end)];

end

Figure 11. Codes for Vandermonde with Arnoldi orthogonalization and evaluation, from [7].
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Smooth compactifications in derived non-commutative
geometry

Alexander I. Efimov

Abstract. This is a short overview of the author’s results related to the notion of a smooth cat-
egorical compactification. We cover the construction of a categorical smooth compactification
of the derived categories of coherent sheaves, using the categorical resolution of Kuznetsov
and Lunts. We also mention examples of homotopically finitely presented DG categories which
do not admit a smooth compactification. This is closely related to Kontsevich’s conjectures
on the generalized versions of categorical Hodge-to-de Rham degeneration, which we dis-
proved. Finally, we mention our new result on the DG categorical analogue of Wall’s finiteness
obstruction, which in particular gives a criterion for existence of a smooth compactification of
a homotopically finite DG category.

1. Introduction

We give a short overview of some of our results concerning smooth compactifications
of differential graded categories [8–10].

Suppose that X � xX is a smooth compactification, i.e., X is open in xX and xX is
smooth and proper over a base field k. Then the restriction functor

Db
coh. xX/ ! Db

coh.X/

is a localization. Namely, the induced functor

Db
coh. xX/=Db

coh; xX�X
. xX/ ! Db

coh.X/

is an equivalence of categories.
This motivates a general categorical notion of a smooth compactification. There

are notions of smoothness and properness for DG categories, which are defined in
terms of the diagonal bimodule. By definition, a categorical smooth compactification
of a pre-triangulated DG category A is given by a smooth and proper pre-triangulated

2020 Mathematics Subject Classification. Primary 14F08; Secondary 18G35, 14E15.
Keywords. Derived categories, differential graded categories, homotopy finiteness, Verdier
localization, resolution of singularities.
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DG category C , with a functor ˆ W C ! A, such that ˆ is a localization up to direct
summands, with an additional assumption that ker.ˆ/ is generated by a single object
(see Definition 3.5). Here being a localization means that the induced functor x̂ W

C=ker.ˆ/!A is fully faithful, and it is essentially surjective up to direct summands.
Existence of a categorical smooth compactification of a DG category A auto-

matically implies that A is smooth. Moreover, A is actually homotopically finitely
presented (hfp); see Definition 3.3.

The following result has been proved in [9].

Theorem 1.1 ([9, Theorem 1.8, part (1)]). Let X be a separated scheme of finite type
over a field k of characteristic zero. Then there exists a categorical smooth compact-
ification of the form Db

coh.Y / ! Db
coh.X/, where Y is smooth and proper.

In [9], Theorem 1.1 was used to prove the homotopy finiteness for derived cate-
gories of coherent sheaves over a field of characteristic zero, confirming a conjecture
of Kontsevich.

The construction of a smooth compactification in Theorem 1.1 uses the categori-
cal resolution of singularities of Kuznetsov and Lunts [15], as well as Orlov’s results
on semi-orthogonal gluings of geometric DG categories [21].

The statement of Theorem 1.1 is conceptually very closely related with the fol-
lowing conjecture of Bondal and Orlov.

Conjecture 1.2 ([2]). Let Y be a variety with rational singularities, and f W X !

Y a resolution of singularities. Then the functor Rf� W Db
coh.X/ ! Db

coh.Y / is a
localization.

The methods of the proof of Theorem 1.1 allow to prove Conjecture 1.2 in a
certain class of cases.

Theorem 1.3 ([9, Theorem 1.10]). Suppose that Y has rational singularities, Z �

Y is a closed smooth subscheme, and X D BlZY is smooth, so that f W X ! Y

is a resolution of singularities. Denote by T D f �1.Z/ the exceptional divisor, by
p W T ! Z the induced morphism, and by j W T ! X the embedding. Suppose that
Rf�I n

T D I n
Z for n � 1. Then the functor Rf� W D

b
coh.X/ ! Db

coh.Y / is a localization,
and its kernel is generated by j�..p�Db

coh.Z//?/.

In particular, Theorem 1.3 applies in the case when Y is a cone over a projectively
normal embedding of a smooth Fano variety, and Z is the origin.

The following question for general homotopically finite DG categories was for-
mulated by Toën.

Question 1.4. Is it true that any homotopically finite DG category admits a categori-
cal smooth compactification?
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It turns out surprisingly that the answer is “no”, and a counterexample has been
obtained in [8]. Question 1.4 is closely related with two (unpublished) conjectures of
Kontsevich on the generalized versions of Hodge-to-de Rham degeneration, which
we disproved in [8] (these are Conjectures 5.3 and 5.4).

One can further ask “what are the necessary and sufficient conditions for an hfp
DG category to have a categorical smooth compactification?”. We have the following
(new) result.

Theorem 1.5 ([10]). Let A be an hfp pre-triangulated DG category. The following
are equivalent.

(1) A admits a smooth categorical compactification.

(2) There exists a DG functor C ! A, where C is smooth and proper, such that

ŒIA� 2 Im
�
K0.C ˝ Cop/ ! K0.A ˝ Aop/

�
:

Here IA is the diagonal A-A-bimodule.

This theorem is closely related with a certain DG categorical analogue of Wall’s
finiteness obstruction theorem; see Section 6.

The paper is organized as follows.
In Section 2, we briefly recall some basic notions and statements about triangu-

lated categories and DG categories.
In Section 3, we discuss the general notion of a categorical smooth compactifica-

tion.
In Section 4, we formulate our result on smooth compactifications of derived

categories of coherent sheaves, and briefly explain the idea of the proof.
Section 5 discusses the question of existence of smooth compactifications, and

the closely related Conjectures 5.3 and 5.4.
Finally, in Section 6 we briefly mention our new results on the DG categorical

analogue of Wall’s finiteness obstruction theorem about finitely dominated spaces.
This in particular gives a criterion for when a homotopically finite DG category has a
smooth compactification.

2. Some preliminaries on triangulated categories and DG categories

For a very nice introduction to DG categories and their derived categories, we refer to
[12]. For triangulated categories, we refer to Neeman’s book [19]. The notion of a DG
enhancement of a triangulated category has been introduced in [3]. The notion of a
DG quotient of DG categories has been introduced in [13] and an explicit construction
has been given in [6]. For model structures on the categories of DG algebras and DG
categories we refer to [22, 23].
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Fix some base field k. For a quasi-projective scheme X over k, we have the cat-
egory of finite rank vector bundles on X , or equivalently the category of locally free
sheaves of finite rank. After adding to it the cokernels, we get the abelian category
Coh.X/ of coherent sheaves. More generally, the abelian category Coh.X/ can be
defined for any noetherian (or even locally coherent) scheme X . In this note, we deal
only with separated schemes of finite type over k.

The objects of the derived category Db.Coh.X// D Db
coh.X/ are bounded com-

plexes of coherent sheaves. The morphisms are more complicated: they are obtained
from the naive category of complexes by inverting the quasi-isomorphisms. A quasi-
isomorphism is a morphism of complexes that induces an isomorphism in cohomol-
ogy.

The derived category Db
coh.X/ is always triangulated. It has a full triangulated

subcategory of perfect complexes Dperf.X/ � Db
coh.X/, which is formed by bounded

complexes of locally free sheaves (that is, of vector bundles). More precisely, if X is
not necessarily quasi-projective, an object F 2 Db

coh.X/ is a perfect complex if it is
locally quasi-isomorphic to a bounded complex of locally free sheaves.

A DG category A is given by the following data:

� a class of objects Ob.A/;

� for any pair of objects x; y 2 Ob.A/, a complex of vector spaces A.x; y/ D

HomA.x; y/;

� for any objects x;y;z2Ob.A/, a composition map A.y;z/˝A.x;y/!A.x;z/.

The composition maps are required to be morphisms of complexes: they are ho-
mogeneous of degree zero and satisfy the (super-)Leibniz rule. They are also required
to be associative. For each object x 2 Ob.A/, it is required that there is a unit mor-
phism 1x of degree zero (and automatically d.1x/ D 0).

The homotopy category of a DG category A is a k-linear category H 0.A/ which
has the same objects as A, and the morphisms are given by

H 0.A/.x; y/ D H 0
�
A.x; y/

�
:

It is also convenient to define similarly the k-linear category Z0.A/ with the same
objects as A, and with the morphisms given by Z0.A/.x; y/ D Z0.A.x; y//.

For a small DG category A, just as for DG algebras, there is a notion of a right
DG A-module: it is a DG functor Aop ! Mod-k, where Mod-k is the DG category of
complexes of vector spaces. DG A-modules form a DG category Mod-A. The derived
category D.A/ of right A-modules is obtained from H 0.Mod-A/ by inverting quasi-
isomorphisms. Equivalently, D.A/ is obtained from Z0.Mod-A/ by inverting quasi-
isomorphisms. Again, as for DG algebras, Dperf.A/ � D.A/ is the full subcategory
of compact objects.



Smooth compactifications in derived non-commutative geometry 539

The Yoneda embedding A ,! Mod-A induces a fully faithful functor H 0.A/ ,!

D.A/. If its image is a triangulated subcategory of D.A/, then we call the DG cat-
egory A pre-triangulated. In this case, we have Dperf.A/ ' H 0.A/Kar – Karoubi
completion.

The basic example is the following: for a separated scheme X of finite type
over k we take the DG category Db

coh.X/ of bounded below complexes of injective
quasi-coherent sheaves with bounded coherent cohomology. Then Db

coh.X/ is pre-
triangulated and H 0.Db

coh.X// is equivalent to Db
coh.X/. We denote by Perf.X/ �

Db
coh.X/ the full DG subcategory of perfect complexes.

If T is a small triangulated category and � � T is a full triangulated subcategory,
then there is a notion of a quotient category T =� , due to Verdier [26,27]. The category
T =� is again triangulated, and we have an exact quotient functor T ! T =� . The
category T =� is obtained from T by inverting the morphisms f W x ! y such that
Cone.f / 2 � .

The basic example is coming from geometry: let X be as above, Z � X a closed
subscheme, and U D X � Z. Denote by Db

coh;Z.X/ � Db
coh.X/ the full subcategory

of complexes whose cohomology is supported on Z. Then we have an equivalence

Db
coh.X/=Db

coh;Z.X/ ' Db
coh.U /I

see [20, Lemma 2.2].
There is a notion of a DG quotient A=B of a small DG category A by a full

DG subcategory B � A, which was first defined by Keller [13], and then an explicit
construction has been given by Drinfeld [6]. The main property of the DG quotient
is its compatibility with the Verdier quotient of triangulated categories. Namely, if
A is a pre-triangulated small DG category, and B � A is a full pre-triangulated DG
subcategory, then we have an equivalence H 0.A=B/ ' H 0.A/=H 0.B/.

In particular, within the above notation we have a quasi-equivalence

Db
coh.X/=Db

coh;Z.X/ ' Db
coh.U /:

3. Categorical smooth compactifications

The following notions of smoothness and properness for DG categories are due to
Kontsevich.

A DG category A is called proper (over k) if for any x;y2A the complex A.x;y/

has finite-dimensional total cohomology, and the triangulated category Dperf.A/ is
generated by a single object. Here and below we say that a triangulated category T

is generated by an object x if T is the smallest idempotent complete triangulated
subcategory of T containing x. Equivalently, any (isomorphism class of an) object of
T can be obtained from x using cones and direct summands.
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A DG category A is called smooth (over k) if the diagonal A-A-bimodule IA is
perfect over A ˝ Aop. Here IA.x; y/ D A.x; y/.

These properties are compatible with the corresponding properties of schemes.
Namely, the following holds.

Proposition 3.1 ([21, Proposition 3.30] and [17, Proposition 3.13]). If X is a sep-
arated scheme of finite type over k, then the DG category Perf.X/ is smooth (resp.
proper) if and only if X is smooth (resp. proper).

Much more surprising is the following theorem of Lunts.

Theorem 3.2 ([17, Theorem 6.3]). For any separated scheme X of finite type over a
perfect field k, the DG category Db

coh.X/ is smooth.

There is a notion of an hfp DG category. Before giving its formal definition, we
mention that it is an analogue of the notion of a finitely dominated topological space.
Recall that a (possibly infinite) CW complex X is called finitely dominated if there
exists a finite CW complex Y and continuous maps f W X ! Y , g W Y ! X such that
gf � idX . Equivalently, the identity map idX is homotopic to a map r W X ! X such
that the closure r.X/ is compact.

Formal definition of hfp DG algebras and DG categories is the following.

Definition 3.3 ([25]). (1) A finite cell DG algebra B is a DG algebra which is iso-
morphic as a graded algebra to the free finitely generated associative algebra:

Bgr
Š khx1; : : : ; xni;

and moreover we have

dxi 2 khx1; : : : ; xi�1i; 1 � i � n: (3.1)

(2) A DG algebra A is hfp if in the homotopy category Ho.dgalgk/ the object A

is a retract of some finite cell DG algebra B .
(3) A DG category A is hfp if it is Morita equivalent to an hfp DG algebra.

Recall that in any category C an object X is a retract of Y iff there exists mor-
phisms f W X ! Y , g W Y ! X such that gf D idX .

Proposition 3.4 ([25]). Let A be a small DG category over k.

(1) If A is hfp, then A is smooth.

(2) If A is smooth and proper, then A is hfp.

Informally, an hfp DG category is a smooth DG category “given by a finite
amount of data”. For example, the k-algebra of rational functions k.x/ is smooth
but not hfp.
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An equivalent definition of an hfp DG category is the following. First, there is a
notion of a finite cell DG category: as a k-linear graded category, it is a path category
of a finite graded quiver with arrows x1; : : : ; xn such that the differential satisfied the
condition analogous to (3.1). Now, a DG category A is hfp if it is a retract of a finite
cell DG category in the Morita homotopy category of DG categories HoM .dgcatk/

(which is obtained by inverting Morita equivalences).
Recall that a usual smooth compactification of a smooth algebraic variety X is

given by a smooth and proper variety xX and an open embedding X ,! xX . Denote
by Z D xX � X the infinity locus. As already mentioned in the previous section, we
have an equivalence Db

coh.X/ ' Db
coh. xX/=Db

coh;Z. xX/. Hence, we also have a quasi-
equivalence of DG categories

Db
coh.X/ ' Db

coh. xX/=Db
coh;Z. xX/:

This motivates a general definition of a categorical smooth compactification,
which we already mentioned in the introduction.

Definition 3.5. A smooth categorical compactification of a DG category A is a DG
functor F W C ! A, where the DG category C is smooth and proper, the extension
of scalars functor F W Perf.C/ ! Perf.A/ is a localization (up to direct summands),
and its kernel is generated by a single object.

We have the following implication, which is quite easy to prove.

Proposition 3.6 ([9, Corollary 2.9]). If a DG category A has a smooth categorical
compactification, then it is hfp.

4. Smooth compactifications of derived categories of coherent sheaves

We have the following general result.

Theorem 4.1 ([9, Theorem 1.8]). For any separated scheme X of finite type over
a field k of characteristic zero, there exists a smooth projective variety Y and a
quasi-equivalence Db

coh.Y /=� ' Db
coh.X/, where � � Db

coh.Y / is a pre-triangulated
subcategory generated by a single object. In particular, the DG category Db

coh.Y / is
hfp.

This confirms a conjecture of Kontsevich on the homotopy finiteness of the DG
category Db

coh.X/.

Remark. A similar result is expected to hold over any perfect field. In our proof, we
cannot get rid of the characteristic zero assumption: we use the categorical resolution
of singularities of Kuznetsov and Lunts, which in turn uses the classical Hironaka’s
theorem.
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We now explain the idea of the proof of Theorem 4.1. It is based on the following
constructions.

The first one is the categorical resolution of singularities due to Kuznetsov and
Lunts [15]. Let us restrict to proper schemes. For any proper scheme X over k, they
construct a smooth and proper DG category C together with a fully faithful functor
Perf.X/ ,! C . Moreover, this DG category C has a semi-orthogonal decomposition
into derived categories of some smooth and proper varieties:

C D
˝
Db

coh.Y1/; : : : ; Db
coh.Ym/

˛
:

More precisely, one chooses a resolution Z ! Xred by a sequence of blow-ups
with smooth centers. Then the varieties Y1; : : : ; Ym are exactly the centers of the
blow-ups and the resolution Z (each of these varieties can appear in the list several
times).

Another general construction due to Orlov [21] allows to embed such a semi-
orthogonal gluing of Db

coh.Yi / into a single derived category Db
coh.Y / (here Yi and

Y are smooth and proper). Taking such embedding C ,! Db
coh.Y / (where C is as

above), we obtain the fully faithful composition functor Perf.X/ ,! C ,! Db
coh.Y /.

Passing to large categories (i.e., categories of ind-objects), we can take a right adjoint
to this embedding, which restricts to a functor ˆ W Db

coh.Y / ! Db
coh.X/. It turns out

(but it is not easy to prove) that this functor is actually a desired localization functor
promised by Theorem 4.1.

Remark. Strictly speaking, in [9] it is proved that the functor ˆ WDb
coh.Y /!Db

coh.X/

is a localization under some assumptions on the choices of integer parameters in the
construction of the category C in [15]. We do not discuss these details in the present
note.

The construction of the categorical resolution from [15] uses two general methods
to “partially resolve” the category Perf.X/. The first one allows to deal with nilpotents
in the structure sheaf OX . Namely, assuming that the reduced part Xred �X is smooth,
one can find a categorical resolution by a certain ringed space .X; AX /, where AX is
a sheaf of associative algebras (and non-commutative unless X D Xred). This ringed
space is equipped with a morphism .X; AX /

�X
��! X , and the pullback functor

��
X W Dperf.X/ ! Dperf.X; AX /

is fully faithful. It is not hard to show that the pushforward functor

�X� W Db
coh.X; AX / ! Db

coh.X/

is a localization.
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Remark. The ringed space .X; AX / is given by a certain generalization of algebras
considered by Auslander [1]. Namely, for a finite-dimensional algebra A of finite
representation type, Auslander constructs an algebra B D EndA.

L
i Mi /, where Mi

are representatives of all isomorphism classes of indecomposable finite-dimensional
A-modules. In fact, for X D Spec kŒx�=xn we have

.X; AX / D

�
pt; EndkŒx�=xn

� nM
iD1

kŒx�=xi

��
:

Another more interesting construction involved in the categorical resolution is
the “categorical blow-up”. Without going into details, this is a certain categorical
modification of the usual blow-up. Given any noetherian scheme X and a closed
subscheme S , consider the blow-up f W Y ! X , i.e., Y D ProjX .

L
n�0 I n

S /. Then
under some assumptions on S (always achievable by replacing S with its sufficiently
large infinitesimal neighborhood), one can define a certain semi-orthogonal gluing of
Db

coh.Y / and Db
coh.S/, denoted by Dcoh.Y; S/, with a functor

�� W Dcoh.Y; S/ ! Db
coh.X/:

It is proved in [9] that under some additional assumptions on S (again they always
hold after infinitesimally enlarging S ) this functor �� is a localization. This is the
most difficult part of the proof of Theorem 4.1. Note that if we use Db

coh.Y / instead
of Dcoh.Y; S/, then

(1) the pushforward functor Rf� W Db
coh.Y / ! Db

coh.X/ is usually not a local-
ization, and a necessary condition is that Rf�.OY / D OX ;

(2) if we assume that this condition is satisfied, we are not able in general to
prove that Rf� is a localization (this is a generalization of Conjecture 1.2).
So even in this case we use Dcoh.Y; S/ instead of Db

coh.Y /.

Using these localization statements as building blocks, the proof of Theorem 4.1
is obtained by induction of the number of blow-ups of smooth centers in the resolution
process of Xred.

5. Existence of smooth compactifications

In this section, we assume that the characteristic of the base field k is zero.
Recall the question of Toën, mentioned in the introduction.

Question 5.1. Let A be a homotopically finite DG category. Does it admit a smooth
compactification?
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Quite surprisingly, the paper [8] gives a negative answer. We briefly explain the
idea of a counterexample, and its close relation with generalized versions of the non-
commutative Hodge-to-de Rham degeneration.

Recall that the classical Hodge theory implies that for any smooth and proper
algebraic variety X over a field k of characteristic zero the spectral sequence

E
p;q
1 D H

q
Zar.X; �

p
X / ) H

pCq
DR .X/

degenerates. Here the limit of the spectral sequence is the algebraic de Rham coho-
mology.

The following categorical generalization was conjectured by Kontsevich and
Soibelman [14], and proved by Kaledin [11].

Theorem 5.2 ([11, Theorem 5.4]). Let A be a smooth and proper DG algebra over
a field of characteristic zero. Then the Hochschild-to-cyclic spectral sequence degen-
erates, so that we have an isomorphism HP�.A/ Š HH�.A/..u//.

The following conjectures were formulated by Kontsevich (unpublished).

Conjecture 5.3 (Kontsevich). Let A be a smooth DG algebra over a field of charac-
teristic zero. Then the composition

K0.A ˝ Aop/
ch
�!

�
HH�.A/ ˝ HH�.A

op/
�

0

id˝ı�

����!
�
HH�.A/ ˝ HC�

� .Aop/
�

1

vanishes on the class ŒA� of the diagonal bimodule.

Here ı� W HH�.A
op/ ! HC�

� .Aop/Œ�1� denotes the boundary map in the long
exact sequence

� � � ! HC�
nC1.Aop/ ! HC�

n�1.Aop/ ! HHn�1.Aop/
ı�

��! HC�
n .Aop/ ! � � � I

see for example [7, Section 3].

Conjecture 5.4 (Kontsevich). Let B be a proper DG algebra over a field k of char-
acteristic zero. Then the composition map�

HH�.B/ ˝ HC�.B
op/

�
Œ1�

id˝ıC

����! HH�.B/ ˝ HH�.B
op/ ! k (5.1)

is zero.

Here ıC W HC�.B
op/Œ1� ! HH�.B

op/ denotes the boundary map in a similar
long exact sequence

� � � ! HHnC1.Bop/ ! HCnC1.Bop/ ! HCn�1.Bop/
ıC

��! HHn.Bop/ ! � � � I
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see [16, Section 2.2]. The second map in (5.1) is given by the composition

HH�.B/ ˝ HH�.B
op/ Š HH�.B ˝ Bop/ ! HH�

�
Endk.B/

�
Š HH�.k/ D k;

where we used the Künneth isomorphism for HH , the diagonal bimodule structure
on B , and the (derived) Morita equivalence between Endk.B/ and k.

Both Conjectures 5.3 and 5.4 had a strong motivation. Namely, in the case of
smooth DG algebras, the following holds.

Proposition 5.5 ([8, Proposition 4.1]). Let B be a smooth DG algebra and F W

Perf.A/ ! Perf.B/ a localization functor, where A is a smooth and proper DG alge-
bra. Then Conjecture 5.3 holds for B .

This is easy to prove (of course, assuming Kaledin’s theorem (Theorem 5.2)).
Namely, it almost immediately follows from the commutative diagram

HH�.A/ ˝ HH�.A
op/

id˝ı�

����! HH�.A/ ˝ HC�
� .Aop/Œ�1�??y ??y

HH�.B/ ˝ HH�.B
op/

id˝ı�

����! HH�.B/ ˝ HC�
� .Bop/Œ1�;

and from the degeneration of the Hochschild-to-cyclic spectral sequence for A. We
have the following corollary.

Corollary 5.6 ([8, Corollary 4.2]). Let X be a separated scheme of finite type over k,
and G 2Db

coh.X/ – a generator. Then Conjecture 5.3 holds for the smooth DG algebra
A D R End.G /.

Indeed, this follows from Proposition 5.5 and from Theorem 1.1 (in fact, a weak-
ened version of Theorem 1.1 is sufficient; see [8, Remark 4.3]).

Similar (dual) statements hold for proper DG algebras.

Proposition 5.7 ([8, Proposition 5.1]). Let B be a proper DG algebra and Perf.B/,!

Perf.A/ a fully-faithful functor, where A is a smooth and proper DG algebra. Then
Conjecture 5.4 holds for B .

Corollary 5.8 ([8, Corollary 5.2]). Let X be a separated scheme of finite type over k,
and Z �X a closed proper subscheme. For any object F 2 PerfZ.X/, Conjecture 5.4
holds for the proper DG algebra B D R End.F /.

However, we disproved both Conjectures 5.3 and 5.4. The counterexamples are
provided by [8, Theorems 4.5 and 5.4]. The counterexample to Conjecture 5.3 is in
fact hfp, hence by Proposition 3.6 it gives a negative answer to Question 1.4.

We briefly describe the counterexample to Conjecture 5.4. Recall that given DG
algebras A and B , together with an A-B-bimodule M , we can form a gluing C D�

B 0
M A

�
. This is a DG algebra which equals A ˚ B ˚ M as a complex of vector
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spaces, and the multiplication is given by

.a; b; m/ � .a0; b0; m0/ D .aa0; bb0; am0
C mb0/:

Let us take A D kŒx�=x6 and B D kŒy�=y3, where deg.x/ D 0, deg.y/ D 1, and
dx D 0, dy D 0. Then one can show that there exists a DG A-B-bimodule M such
that H �.M/ D kŒ0� and the DG algebra C D

�
B 0
M A

�
is a counterexample to Conjec-

ture 5.4. Namely, the DG algebra C is proper (but not smooth), and its cohomology
H �.C / is 10-dimensional. Further, we have the elements x 2 H 0.C /, y 2 H 1.C /.
Using natural maps H n.C / ! HH�n.C / ! HC�n.C / and similarly for C op, we
can consider x and y as classes in Hochschild and cyclic homology, respectively:
x 2 HH0.C /, y 2 HC�1.C op/. Now, a bimodule M is constructed in such a way
that hx; ıC.y/i ¤ 0, disproving conjecture 5.4. For details see [8, Theorem 5.4].

6. Wall’s finiteness obstruction for DG categories

Here we mention some new results, to appear in [10]. In particular, we formulate a
criterion for a homotopically finite DG category to have a smooth compactification.

As we already mentioned, the notion of an hfp DG category is analogous to the
notion of a finitely dominated CW complex.

In 1959, Milnor [18] asked if every finitely dominated CW complex X is homo-
topy equivalent to a finite CW complex. This was already known in the case when
each connected component of X is simply connected, but it was considered to be a
difficult problem in general.

For simplicity, let us assume that X is connected. In 1965, C. T. C. Wall defined
an invariant w.X/ 2 fK0.ZŒ�1.X/�/ (an element of the reduced Grothendieck group
of ZŒ�1.X/�) for any finitely dominated space X . Recall that for an associative unital
ring A the group K0.A/ is generated by isomorphism classes of finitely generated
projective (right) A-modules ŒP �, subject to relations ŒP ˚ Q� D ŒP � C ŒQ�. If a ring
A is equipped with a unital homomorphism A ! Z (i.e., A is augmented), its reduced
Grothendieck group fK0.A/ is defined to be the kernel ker.K0.A/ ! K0.Z/ D Z/. In
fact, we have a decomposition K0.A/ Š Z ˚ fK0.A/. Note that for any group G the
group ring ZŒG� is naturally augmented. Wall proved the following result.

Theorem 6.1 ([28, Theorem F]). A connected finitely dominated space X has a
homotopy type of a finite CW complex if and only if w.X/ D 0.

Probably the simplest description (and different from the original one) of the class
w.X/ is the following. Recall that for a DG ring B the group K0.B/ is defined to be
the Grothendieck group K0.Dperf.B//. Here for a small triangulated category T the
group K0.T / is generated by the isomorphism classes of objects ŒX�, X 2 T , subject
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to relations ŒY � D ŒX� C ŒZ� for an exact triangle

X ! Y ! Z ! XŒ1�

in T . If the DG ring B is concentrated in degree zero, i.e., B D H 0.B/, then the
two definitions of K0.B/ agree. Moreover, if B is (cohomologically) non-positively
graded, then K0.B/ Š K0.H 0.B//; see [4, Theorem 5.3.1 and Proposition 6.2.1].

Now choose a base point x0 2 X . Consider the DG ring C�.�x0
X/ of singular

chains on the based loop space. By the result of Brav–Dyckerhoff [5, Proposition 5.1],
the DG ring C�.�x0

X/ is smooth over Z (and moreover it is hfp). It follows that the
augmentation module Z is perfect: Z 2 Perf.C�.�x0

X//. Any perfect module defines
a class in K0, hence we have a well-defined class

zw.X/ WD ŒZ� 2 K0

�
C�.�x0

X/
�
Š K0

�
Z
�
�1.X; x0/

��
;

since H0.�x0
X/ Š ZŒ�1.X;x0/�. The class w.X/ 2 fK0.ZŒ�1.X;x0/�/ is simply the

projection of zw.X/.

Remark. The class zw.X/ 2 K0.ZŒ�1.X; x0/�/ contains essentially the same infor-
mation as w.X/ 2 fK0.ZŒ�1.X; x0/�/. Namely, under the identification

K0

�
Z
�
�1.X; x0/

��
Š Z ˚ fK0

�
Z
�
�1.X; x0/

��
the class zw.X/ is given by .�.X/; w.X//, where �.X/ is the Euler characteristic.

Equivalent formulation of Wall’s theorem is thus the following: a finitely domi-
nated connected space X has a homotopy type of a finite CW complex if and only if
the class ŒZ� 2 K0.C�.�x0

X// is an integer multiple of the class ŒC�.�x0
X/�.

Now fix some base field k of arbitrary characteristic. For a small DG category A,
we put K0.A/ WD K0.Dperf.A//. Recall that we denote by IA the diagonal A-A-
bimodule.

Theorem 6.2 ([10]). For a small DG category A, the following are equivalent:

(i) A is Morita equivalent to a finite cell DG category;

(ii) A is hfp, and moreover ŒIA� 2 Im.K0.A/ ˝ K0.Aop/ ! K0.A ˝ Aop//;

(iii) A is Morita equivalent to a DG quotient E=� , where E is a pre-triangulated
proper DG category with a full exceptional collection, and � is a subcate-
gory generated by a single object.

Remark. To explain the analogy between Theorem 6.2 and Wall’s theorem, let us
consider the following three categories with a class of morphisms called weak equiv-
alences (the most important part of the model structure):

(1) the category Top of topological spaces, with a class of weak homotopy equiv-
alences;
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(2) the category Z0.Mod-A/ (see Section 2 for this notation) of right DG mod-
ules over a fixed DG category A, with a class of quasi-isomorphisms;

(3) the category dgcatk of small DG categories over a field k, with a class of
Morita equivalences.

For each of these categories, one has the class of “finite cell” objects, namely:
finite CW complexes in Top, semi-free finitely generated A-modules in Z0.Mod-A/,
and finite cell DG categories in dgcatk. Then we have the classes of hfp objects:
these are homotopy retracts of finite cell objects. Thus, the hfp objects are as fol-
lows: finitely dominated spaces in Top, perfect A-modules in Z0.Mod-A/, hfp DG
categories in dgcatk.

Now, Wall’s theorem (more precisely, an analogue of Theorem 6.1 for not neces-
sarily connected spaces) gives a K-theoretic criterion for a finitely dominated space
to have a homotopy type of a finite CW complex.

Further, Thomason’s classification of dense subcategories of triangulated cate-
gories [24, Theorem 2.1] gives a K-theoretic criterion for a perfect A-module M to
be quasi-isomorphic to a semi-free finitely generated A-module. This happens if and
only if the class ŒM � 2 K0.A/ is contained in the subgroup generated by the classes
of representable A-modules.

From this point of view, our theorem (Theorem 6.2) is an analogue of the results
of Wall and Thomason for DG categories, plus also an alternative characterization of
finite cell DG categories (equivalence (i),(iii)). The following table summarizes the
above discussion.

Topological spaces
DG modules over a small
DG category A

Small DG categories over k

Weak homotopy
equivalences

Quasi-isomorphisms Morita equivalences

Finite CW complexes
Semi-free finitely
generated A-modules

Finite cell DG categories

Finitely dominated
spaces

Perfect A-modules hfp DG categories

Wall’s finiteness
obstruction theorem

Thomason’s classification
of dense subcategories

Theorem 6.2

There are different ways to formulate a “relative” version of Theorem 6.2. We
choose the following “minimalistic” formulation.

Theorem 6.3 ([10]). Let A and B be hfp, pre-triangulated, Karoubi complete DG
categories, and B ¤ 0. The following are equivalent.
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(i) The class ŒIA� 2 K0.A ˝ Aop/ is contained in the subgroup generated by
the images Im.K0.B ˝ Bop/ ! K0.A ˝ Aop// under various pairs of
quasi-functors .B ! A; Bop ! Aop/.

(ii) We have a Morita equivalence A ' C=� , where C D hB; : : : ; Bi is a
(smooth) semi-orthogonal gluing of a finite number of copies of B, and
� � C is generated by a single object.

Using this relative version of Wall’s finiteness obstruction for DG categories, we
prove the following criterion for existence of a categorical smooth compactification.

Theorem 6.4 ([10]). Let A be an hfp pre-triangulated DG category. The following
are equivalent.

(1) A admits a smooth categorical compactification.

(2) There exists a DG functor C ! A, where C is smooth and proper, such that

ŒIA� 2 Im
�
K0.C ˝ Cop/ ! K0.A ˝ Aop/

�
:

For example, this allows to show existence of a smooth compactification of the
derived category of coherent D-modules on a separated scheme of finite type X over
a field of characteristic zero (although it is not clear how to construct such compacti-
fication explicitly).
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Global properties of some weight 3 variations of Hodge
structure

Simion Filip

Abstract. We survey results on the global geometry of variations of Hodge structure with
Hodge numbers .1; 1; 1; 1/. Included are uniformization results of domains in flag manifolds, a
strong Torelli theorem, as well as the formula for the sum of Lyapunov exponents conjectured
by Eskin, Kontsevich, Möller, and Zorich. Additionally, we establish the Anosov property of
the monodromy representation, using gradient estimates of certain functions derived from the
Hodge structure.

1. Introduction

Consider the following family of algebraic 3-manifolds in P 4:®
t � .x5

1 C x5
1 C x5

2 C x5
3 C x5

4 C x5
5/ � x1x2x3x4x5 D 0

¯
DW Qt :

This is the famous mirror quintic family, used by string theorists in [4] to make
predictions about the number of rational curves on a generic quintic 3-fold. Every
member of the family admits a nowhere vanishing 3-form �t , which, integrated over
an explicit cycle (near t D 0), yields the hypergeometric series

 0.t/ D
X
n�0

.5n/Š

.nŠ/5
tn: (1.1)

This function satisfies (after rescaling t to 55t ) the hypergeometric differential
equation�
D4

� t

�
D C

1

5

��
D C

2

5

��
D C

3

5

��
D C

4

5

��
 0 D 0; where D WD t

d

dt
:

All the results below are of interest already in this particular example, although they
apply to a much larger class of variations of Hodge structure.

2020 Mathematics Subject Classification. Primary 14D07; Secondary 34D08, 37D20, 14L24.
Keywords. Variations of Hodge structure, Calabi–Yau, Anosov representation, GIT, Lyapunov
exponents.
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Monodromy. LetX WDX.1;1; 5/ denote the orbifold Riemann surface P 1 n ¹0;1º

with an orbifold point of order 5 at 1; the notation is meant to suggest that it comes
from the hyperbolic triangle group with angles .�=1; �=1; �=5/. The cohomology
H 3.Qt IZ/ has rank 204, but of interest to us is a piece invariant by a natural finite
abelian group of roots of unity. This invariant subspace has rank 4, and in fact gives a
local system over X (the monodromy around 1 has order 5).

The explicit matrices are, in an appropriate choice of basis, around 1 and 1:2664
1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

3775 and

2664
1 1 0 0

0 1 �1 1

5 5 1 0

0 �5 �1 1

3775 :
It can be checked that the last matrix has order 5, and that both preserve the standard
symplectic form on R4. Here is the first result:

Theorem 1.1 (Log-Anosov monodromy). The monodromy representation

�W�1.X/! Sp4.R/

is log-Anosov. There exists a continuous, dynamics-preserving, �-equivariant map

�W @ zX ! P .R4/:

Let us explain the terms. The universal cover of X , denoted by zX , is isometric to
the hyperbolic plane and as such has a boundary, isomorphic to P 1.R/, and denoted
by @ zX . The notion of Anosov representation, introduced by Labourie [15], requires
a quantitative divergence of the singular values of the monodromy matrices; see Def-
inition 3.1 for the details. In the present context, we need to take into account the
presence of unipotent elements in the group, hence the term “log-Anosov”. Under the
name relatively Anosov, or relatively dominated, such representations were studied
by Kapovich–Leeb [12] and Zhu [21], respectively.

Integral vectors. The “limit set” curve, i.e., the image of � , provided by Theorem 1.1
is a fractal curve (in fact it is possible and not hard to prove that because of the
rank 1 unipotent element, the limit curve cannot be rectifiable). See Figure 1 for
some illustrations. Nonetheless, we can classify the rational points on the curve, and
similarly an analogous limit set in the Lagrangian Grassmannian.

Theorem 1.2 (Rational directions on limit curve). Let � � Sp4.Z/ denote the image
of the monodromy representation.

(1) A line Œv� 2 �.@ zX/ � P .Q4/ has rational coordinates if and only if there
exists a unipotent transformation 
 2 � such that v is both in the kernel and
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Figure 1. Sample images of the map � from Theorem 1.1 for several families of Calabi–Yau
manifolds. The middle curve corresponds to the mirror quintic.

image of 
 � 1. In particular, the rational vectors on �.@ zX/ fall into finitely
many orbits under the action of � , corresponding to the cusps of X .

(2) Suppose that a Lagrangian L � Q4 contains �.p/, for some point p 2 @ zX .
Then there exists a unipotent 
 2 � and Œv� D �.p/ as in the first part, in the
kernel and image of 
 , such that Œv� � L.

Note that the property of being both in the kernel, and in the image, of 
 � 1

is equivalent (in Sp4) to v belonging to the deepest part of the monodromy weight
filtration.

Torelli theorems. Our methods also allow us to gain some insight into the global
structure of some moduli spaces of Calabi–Yau 3-folds. Before discussing it, let us
introduce some notation. Let V ! X denote the rank 4 local system of the cohomol-
ogy of interest of Qt . It admits a variation of Hodge structure, i.e., a decomposition
of the complexification:

VC D V3;0
˚ V2;1

˚ V1;2
˚ V0;3

which depends on the point onX (with additional properties). The symplectic pairing
on V induces an indefinite Hermitian pairing on VC , for which F 2DV3;0˚V2;1 is of
signature .1; 1/. Note that it is a Lagrangian subspace for the symplectic form, and we
denote by LGr1;1.VC/ the space of all such Lagrangians in a fixed vector space VC .

Theorem 1.3 (Strong Torelli using Lagrangians). (1) The maps induced by the
Hodge filtration:

zX
F 2

��! LGr1;1.VC/

and taking the quotient by �1:

X
F 2

��! �

/
LGr1;1.VC/

are injective.
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(2) Furthermore, for x; y 2 zX , if L is a real Lagrangian such that
.F 2.x/ \ LC/ ¤ 0 ¤ .F 2.y/ \ LC/, then x D y.

A further dichotomy, related to rational Lagrangian subspaces, is contained in
Corollary 1.4. For the mirror quintic family, a generic Torelli theorem using the full
Griffiths period domain was proved by Usui [19].

Remark (On Griffiths’ intermediate Jacobians). When the real weight 3Hodge struc-
ture has an underlying integral structure, one can associate to it the Griffiths interme-
diate Jacobian VZnVC=F

2. In general, this is not an abelian variety, and the period
domain of such objects is LGr1;1.VC/, a pseudo-Hermitian homogeneous space, in
contrast to Siegel spaces parametrizing marked abelian varieties.

It is not possible to take a Hausdorff quotient of LGr1;1.VC/ by Sp4.Z/, or any
lattice in Sp4.R/. However, Theorem 4.3 implies that for the monodromy � of a VHS
satisfying assumption A, it is possible to take the quotient. Theorem 1.3 then says that
the period map to this quotient is injective. So it can be viewed a Torelli theorem in
the classical sense.

Theorem 1.2 above, combined with the strong Torelli theorem provides an inter-
esting property of rational Lagrangian subspaces:

Corollary 1.4 (Dichotomy for rational Lagrangian subspaces). With assumptions as
in Theorem 1.2, for every rational Lagrangian subspaces L � Q4, precisely one of
the following holds:

� either there exists a unipotent transformation 
 2 � and vector v 2 L such that
v is both in the kernel and in the image of 
 � 1,

� or there exists a unique x 2 zX such that LC \ F 2.x/ ¤ ¹0º.

Lyapunov exponents. The original reason that prompted the above results was a
conjecture of Eskin, Kontsevich, Möller, and Zorich from [6] relating Lyapunov expo-
nents, which are invariants coming from dynamical systems, with the degrees of
certain line bundles. Using the above results, we can establish their conjecture:

Theorem 1.5 (Formula for the sum of Lyapunov exponents). Let �1 � �2 � 0 be
the nonnegative Lyapunov exponents of the geodesic flow on the unit tangent, for the
cocycle induced by V . Then

�1 C �2 D
deg V

0;3
ext C deg V

1;2
ext

�.X/
D
6

5
;

where �.X/ is the (orbifold) Euler characteristic of X , deg denotes the (orbifold)
degree of a complex line bundle, and the subscript ext denotes the Deligne extension
of a bundle across punctures.



Global properties of some weight 3 variations of Hodge structure 557

As we shall explain below, in fact the stronger conjecture, Conjecture 6.4 of [6],
of a number-theoretic flavor, also holds. Note that the degrees of the bundles were
computed in loc. cit. and come from the parameters of the corresponding hypergeo-
metric differential equation.

Explicit nonvanishing. The conjecture alluded to above is formulated in terms of
the subspace invariant by the monodromy near the singularity at 0. It has an explicit
statement in terms of power series, which we now explain.

Recall from equation (1.1) that we defined one solution of the hypergeometric
equation, and consider the second one

 1.t/ WD
X
n�0

.5n/Š

.nŠ/5

� 5nX
kDnC1

1

k

�
� tn:

There are two more (with further logarithmic terms), but we are interested in the fol-
lowing Wronskian determinant (which is a 2� 2minor of the full matrix of solutions)

W r.t/ WD  0.t/ 
0
1.t/ �  

0
0.t/ 1.t/:

To describe the uniformization of the orbifold X , we make use again of classical
hypergeometric functions:

F0.t/ D
X
n�0

.a/n.b/n

.nŠ/2
tn;

F1.t/ D F0.t/ log t C
X
n�0

.a/n.b/n

.nŠ/2

� nX
kD1

1

aC k � 1
C

1

b C k � 1
�
2

k

�
tn;

where a D
2
5

and b D
3
5

.
Define now the map

q WD exp
�
F1.t/

F0.t/

�
D t � exp

�
P1.t/

P0.t/

�
;

where P1.t/, P0.t/ are the power series appearing under the summation sign in the
definition of F0, F1. Finally, define the inverse power series �5.q/ D

P
n�0 ƒnq

n

such that

�5

�
exp

�
F1.t/

F0.t/

��
D t:

This yields the uniformization cover®
0 < jqj < eD.1/

¯ �5
�! X;

where D.1/ denotes a sum of values of the logarithmic derivative of the gamma-
function.
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The explicit nonvanishing, conjectured in [6, Conj. 6.4], then reads

W r

�
1

55
�5.q/

�
never vanishes:

Domains of discontinuity. A consequence of the Anosov property of the mon-
odromy representation is that the image group � � Sp4.R/ has a large class of
domains of discontinuity in real and complex flag manifolds associated to Sp4. In
Theorem 4.3, we list some of them.

Thin groups. No lattice in Sp4.R/ can have a domain of discontinuity as in Theo-
rem 4.3. It follows that the monodromy group � , when it has an integral structure,
is necessarily a “thin group” in the sense of Sarnak [17]. Let us note that the proofs
in the present paper offer an alternate route to some of the results from [2, 9], where
thinness is established using ping-pong and an explicit construction of cones. These
explicit cones have, nonetheless, other applications to a more detailed understanding
of the monodromy groups.

Below we outline the main notions that go into the proof of the above results, in
greater generality. A detailed account is in [8].

2. Variations of Hodge structure and hypergeometric equations
2.1. Variations of Hodge structure

Let X be a complex manifold and V ! X a local system of real vector spaces.
Equivalently, this is a bundle with flat connection r, also called the Gauss–Manin
connection.

Definition 2.1 (Variation of Hodge structure). A variation of Hodge structure (or
VHS) on V of weight n is a decomposition of the complexification

VC D

M
pCqDn

Vp;q.x/; x 2 X

such that the following hold.

� The Hodge filtration F p WD ˚s�pV s;n�s varies holomorphically.

� The Griffiths transversality condition

r.F p/ � F p�1
˝�1

X

is satisfied.

� Under complex conjugation, we have that Vp;q D Vq;p .

Additionally, the variation is polarized if there exists a .�1/n-symmetric nondegen-
erate bilinear form on V , parallel for the Gauss–Manin connection, and such that the
induced Hermitian pairing on VC has signature .�1/q on Vp;q .
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The classical case is that of a weight 2 variation, when there are two bundles
V1;0 ˚ V0;1. Such variations come from holomorphic families of abelian varieties or
Riemann surfaces.

Second fundamental form. The Griffiths transversality condition allows us to define
a second fundamental form, by taking r.F p/=F p to obtain a well-defined linear
map of bundles

�� D ˚�p;q with �p;qWV
p;q

! Vp�1;qC1
˝�1

X :

Tensor constructions. We will be interested in variations with dim Vp;q D 1 and
weight 3, or said differently with Hodge numbers .1; 1; 1; 1/. These admit an invari-
ant symplectic form and the monodromy of the local system is valued in Sp4.R/.
We can also perform natural tensor constructions, of which the most useful is the
(reduced) second exterior power W WD ƒ2

ıV , where reduced means that we remove
a 1-dimensional invariant subspace generated by the symplectic form. Therefore, W
has rank 5 and Hodge numbers .1; 1; 1; 1; 1/ (we Tate-twist the construction so that it
has weight 4, not 6). In fact, up to passing to a finite cover, it is possible to recover V
from W .

We assume from now on that X is a finite volume complete hyperbolic Riemann
surface, and denote by the subscript ext the Deligne extension of bundles across the
punctures (the reader unfamiliar with these terms can just assume that X is compact).

Definition 2.2 (Assumption A). We will say that V satisfies assumption A if the
component of the second fundamental form

�2;1WV
2;1
ext ! V

1;2
ext ˝�1

X

is an isomorphism.
Equivalently on W , the requirement is that �4;0 is an isomorphism.

All the theorems described below apply as soon as the VHS satisfies assump-
tion A.

2.2. Hypergeometric equations

For general information and the results below on hypergeometric equations, we refer
to the texts of Beukers–Heckman [1] or Yoshida [20].

Let ˛1, ˇ1, : : :, ˛n, ˇn be a list of 2n numbers (while we will always take them
real later, at this stage they can be complex). Define the differential operator

D˛;ˇ WD

nY
iD1

.D � ˇi / � z

nY
iD1

.D C ˛i /; where D D z@z :
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˛� ˇ� Conditions�
�; 1

2
; 1

2
; 1 � �

�
.0; 0; 0; 0/ � 2

�
0; 1

2

�
.0; 0; �; 1 � �/ 0 < � < � �

1
2

Table 1. Parameters �, � are real.

ˇ� Conditions�
1
2
; 1

2
; 1

2
; 1

2

�
.0; 0; 0; 0/

.0; 0; �; 1 � �/ 0 < � < 2k�1
2N�

�; 1
2
; 1

2
; 1 � �

�
N�1
2N

< � < 1
2�

M�.2kMC1/
2M

; M�1
2M

; MC1
2M

; MC.2kMC1/
2M

�
2kMC1

M
< 1

N

Table 2. Parameters M , kM are integers; � is real. Throughout, ˛� D .N�.2kC1/
2N

; N�1
2N

;
NC1
2N

; NC.2kC1/
2N

/ with arbitrary integers k � 1, N > 2k C 1.

With these conventions, the exponents (or Riemann scheme) of the operator are:

� at 0: ˇ1; : : : ; ˇn,

� at 1: ˛1; : : : ; ˛n,

� at 1: 0; 1; : : : ; n � 2, 
 WD .n � 1/ �
Pn

iD1.˛i C ˇi /.

The parameters are slightly different from those of [1], specifically ˇBK
i D 1 � ˇi ,

and there are plenty of other variations in the literature.
The local system of solutions of the hypergeometric equations is rigid, meaning

that it has no nontrivial deformations when we require the conjugacy classes at the
cusps to be fixed. By a theorem of Simpson [18, Cor. 8.1], it follows that the local
system underlies a variation of Hodge structure. Fedorov [7] provided a recipe for
computing the Hodge numbers of the corresponding VHS.

This allows us to tabulate the values of the hypergeometric parameters which
satisfy assumption A, listed in Tables 1 and 2.

Assumption B/maximal representations. It is natural to consider also a variant of
assumption A, asking instead that the second fundamental form �3;0 is an isomor-
phism. This leads to the class of maximal monodromy representations, in the sense
introduced in [3]. Following an analogous algorithm as in the case of assumption A,
it is possible to tabulate the hypergeometric rank 5 parameters such that the local sys-
tem W , with monodromy in SO2;3.R/, is maximal. The results are listed in Table 3.

Schwarz reflection. Hypergeometric equations with real parameters satisfy a com-
plex conjugation symmetry and their monodromy groups can be embedded with



Global properties of some weight 3 variations of Hodge structure 561

˛� ˇ��
�; 1

2
; 1

2
; 1 � �; 1

2

� �
0; 0; 0; M

2MC1
; MC1

2MC1

�
or or�

N�kN

2N
; N�1

2N
; 1

2
; NC1

2N
; NCkN

2N

� �
0; kM

M
; kMC1

M
; M�.kMC1/

M
; M�kM

M

�
Table 3. Any set choice from the first column is compatible with any choice from the second,
subject to the condition ˛min >ˇmed, where ˛min WD� or N�kN

2N
, and ˇmed WD

M
2MC1

or kM C1
M

depending on the choices. The parameter � is real, while M , N , kM , kN are positive integers
with 1 < kN < N and 2.kM C 1/ < M .

index 2 into a group generated by three order 2 involutions. Geometrically, this cor-
responds to the following construction. Take a basis of solutions in the upper half
plane. Analytically continue it into the lower half-plane by choosing one of the three
segments formed by removing 0; 1 from R. Then, apply the Schwarz reflection, i.e.,
map f .z/ to f .Nz/, to obtain another basis of solutions in the upper half-plane.

The operation of the Schwarz reflection is just complex-conjugating the coeffi-
cients of a Taylor expansion of f .z/. Because the hypergeometric equation has real
coefficients, the resulting functions are still solutions of the hypergeometric equation.
Note that on each of the three segments of the real axis, there is a basis of solutions
with real coefficients, but on each segment the basis is different. For instance, log z is
real-valued on .0;1/ but has also an imaginary component on .�1; 0/.

It is possible to choose a basis and explicitly give the matrices of the three reflec-
tions generating the above construction. Let RA, RB , RC be the transformations
corresponding to crossing along .1;1/, .0; 1/, and .1; 0/ on the real axis. Then the
matrices giving the transformations are listed in equation (2.1). To obtain the action of
RX on the space of solutions, one must apply complex conjugation to the coordinates
after applying the matrix RX :

RA WD

2666664
0 � � � 0 1 �A1

0 � � � 1 0 �A2

:::

1 � � � 0 0 �An�2

0 � � � 0 0 �An

3777775 RB WD

26666664
0 � � � 0 1 �B1

0 � � � 1 0 �B2

:::

1 � � � 0 0 �Bn�2

0 � � � 0 0 �Bn

37777775

as well as RC WD

2666664
0 0 � � � 0 1

0 0 � � � 1 0
:::

0 1 � � � 0 0

1 0 � � � 0 0

3777775 : (2.1)
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Recall that the hypergeometric equation has parameters ˛i , ǰ and we set aj WD

exp.2�
p
�1 j̨ / and bj WD exp.2�

p
�1 ǰ / as well as

pA.t/ WD

nY
jD1

.t � aj / D tn C A1t
n�1

C � � � C An;

pB.t/ WD

nY
jD1

.t � bj / D tn C B1t
n�1

C � � � C Bn

to obtain the entries of the matrices. This should be compared to the Levelt presenta-
tion of the monodromy matrices of the hypergeometric equation from [1, Thm. 3.5].

Tiling by polyhedra. For the domains of discontinuity constructed in Theorem 4.3,
it is possible to give a detailed description of a tiling by polyhedra, in direct analogy
with the tiling of the hyperbolic plane by hyperbolic triangles. Crucially, the varia-
tion of Hodge structure underlying the hypergeometric local system provides the data
needed to construct the edges of the polyhedron.

3. Log-Anosov representations

3.1. Lie theory and Anosov representations

The notion of Anosov representation was introduced by Labourie in [15]. We refer
to the works of Guichard–Wienhard [11, 13] for extensive references and a general
introduction to the subject. Some general background in Lie theory can be gathered
from [14].

It is worth keeping in mind that there is both an extrinsic and an intrinsic approach
to Anosov representations, and that both are useful. Fix a semisimple real algebraic
group G. One can look at a representation �W �1.X/ ! G, or consider a (possibly
reducible) algebraic representation �WG ! GL.V /. It is possible to go back and
forth between the properties of � and the properties of � ı �, and it is useful to do so.

Lie theory preliminaries. Continuing with the semisimple Lie groupG as above, let
K �G be maximal compact and let a D LieA be the split part of a Cartan subalgebra
of g. Let ˆ � a_ be the roots and � � ˆ the subset of simple roots, for a choice
of ordering, which also yields the Weyl chamber aC � a. Finally, let � � � be a
(nonempty) set of roots.

KAK, or polar decomposition. One way to approach the coarse geometry of the
group G is via its KAK decomposition. Namely, any g 2 G can be written as

g D k�.g/ � e
�.g/kC.g/ with k˙.g/ 2 K and �.g/ 2 aC:

The K-components are not necessarily unique, but �.g/ is.
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Let also k � kW �1.X/ ! R�1 be the matrix norm induced by some Fuchsian
representation �1.X/! SL2.R/.

Definition 3.1 (Log-Anosov representation). A representation �W�1.X/!G is called
log-Anosov if there exist C; " > 0 such that

˛
�
�
�
�.
/

��
� " � log k
k � C 8˛ 2 �; 8
 2 �1.X/;

where � denotes the element in aC from the KAK decomposition.

In the more general setting of relatively hyperbolic groups, this notion was studied
under the name relatively Anosov, or relatively dominated, by Kapovich–Leeb [12]
and Zhu [21].

Boundary map. A consequence of the (log)-Anosov property is the existence of
boundary maps; see for instance [10, Thm. 1.1] and [21, Thm. 1.2]. Specifically,
recall that the universal cover zX is isometric to the hyperbolic plane, and it has a
visual boundary @ zX . Then there exists a continuous, �-equivariant map

�W @ zX ! F� ;

where F� is the manifold of flags associated to � , so F� Š G=P� , where P� is a
parabolic subgroup corresponding to � .

3.2. Proper discontinuity, stability, and GIT

Kapovich, Leeb, and Porti in [13] have emphasized the analogy between the action of
discrete subgroups of Lie groups, and those of algebraic groups in linear representa-
tions, viewed from the lens of Mumford’s Geometric Invariant Theory [16]. We make
some further definitions and take it as a viewpoint to perform some of the construc-
tions appearing later.

Suppose for this section that � � G is a closed subgroup of G. Associated to
it are various notions of limit sets, similarly to how there are various notions of
boundaries for G, or G=K. The one of interest to us, which we will denote by
LC � K � PaC, consists of all possible accumulation points of the coordinates
kC.
/ 2 K and Œ�.
/� 2 PaC (the projectivized cone) as �.
/ ! C1. Suppose
now that V is a G-representation.

Definition 3.2 (Stable and semistable points). Let Œv� 2 P .V / be a point and v 2 V

a lift of it to the vector space. Then Œv� is stable if

ket�kCvk ! C1 8
�
k; Œ��

�
2 LC

and Œv� is semistable if

lim inf ket�kCvk > 0 8
�
k; Œ��

�
2 LC:
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This definition is the direct analogue of the Hilbert–Mumford numerical criterion.
It is then possible to show that the following theorem holds.

Theorem 3.3 (Proper discontinuity). (1) The set of stable points is open in P.V /.

(2) The action of � on the set of stable points is properly discontinuous.

(3) A stable point and a semistable point cannot be dynamically related.

Two points x, y are said to be dynamically related if there exist sequences xi and

i 2 � such that xi ! x and 
ixi ! y. Note that this is an equivalence relation (take
yi D 
ixi and 
�1

i as the sequence).
If the group � is the image of a log-Anosov representation, then the boundary

map � gives useful control on the limit set LC, and hence on the set of stable points
in various linear representations of G.

4. Variations of Hodge structure and log-Anosov representations

In this section, we combine some ideas from Hodge theory with those coming from
Anosov representations.

4.1. Growth of vectors

Let V ! X be a VHS satisfying assumption A from Definition 2.2. Let W WD ƒ2
ıV

be the corresponding reduced second exterior power. We will work on a universal
cover zX , where both local systems become trivial and can be identified with fixed
vector spaces V;W , and the VHS gives a Hodge decomposition of these fixed vector
spaces. Recall also that V is symplectic whereas W carries an indefinite pairing of
signature .2; 3/.

Pick a nonzero vector w 2 WR and write its Hodge decomposition:

w D w4;0
˚ w3;1

˚ w2;2
˚ w1;3

˚ w0;4

Theorem 4.1 (Growth of vectors). Let fw.x/ WD kw0;4k2, where k � k is computed
with respect to the Hodge norm at x 2 zX .

(1) Suppose that w is isotropic. Then fw has at most one critical point, which
can only be a local minimum.

(2) Suppose that w is positive-definite, for the indefinite metric. Then fw has
precisely one critical point, which is a local minimum.

The proof of this result is based on a gradient estimate for fw , combined with
an argument using Palais–Smale sequences to exclude multiple local minima. In fact,
the gradient estimate can be strengthened and used to show that when w is positive-
definite, it has exponential growth:
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Theorem 4.2 (Exponential growth). Suppose that w is positive-definite and fw has
a minimum at x0. Then there exist C; " > 0 such that

fw.x/ �
1

C
e"�dist.x;x0/

� C:

With this information in hand, it is not hard to obtain the log-Anosov condition
on the monodromy representation from Definition 3.1.

4.2. Uniformization results

With the log-Anosov property in hand, the formalism of stable vectors in repre-
sentations from Section 3.2 provides a wealth of domains of discontinuity for the
monodromy.

Theorem 4.3 (Domains of discontinuity). Let � � Sp4.VR/ be the image of the mon-
odromy group.

(1) In the real Lagrangian Grassmannian LGr.VR/, there exists an open non-
empty set �L on which � acts properly discontinuously.

(2) The pseudo-sphere S1;3 of unit vectors in WR is a domain of discontinuity
for � .

(3) The complex Grassmannian of Lagrangians of signature .1; 1/ for the indef-
inite Hermitian metric on VC , denoted by LGr1;1.VC/, is also a domain of
discontinuity for � .

(4) In the complex projective space P .VC/, there exists an open, nonempty set
�P on which � acts properly discontinuously.

More interestingly, it is possible to obtain a uniformization result for the domain
of discontinuity in the Lagrangian Grassmannian. For an element F 2 D V3;0 ˚ V2;1

of the Hodge filtration, set

ˇ.F 2/ WD
®
real Lagrangians L s.t. LC \ F 2

¤ ¹0º
¯
:

In other words, we consider the real Lagrangians which are not transverse to F 2, after
complexification. It can be directly checked that for a fixed F 2, these form a circle
inside the real 3-dimensional manifold LGr.VR/. Let eBad ! zX denote this circle
bundle over the universal cover, and Bad ! X its quotient by �1.X/. The reason for
the name “Bad” will be explained in the section on Lyapunov exponents below. For
now, observe that there is a tautological developing map

eBad
Dev
��! LGr.VR/

since each fiber of the bundle is a circle in that Lagrangian Grassmannian.
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Theorem 4.4 (Uniformization). The developing map Dev is a bijection between eBad
and the domain of discontinuity �L � LGr.VR/ from Theorem 4.3.

4.3. Formula for Lyapunov exponents

Theorem 4.4 implies, in a stronger form, Conjecture 6.4 from [6] that the MUM
Lagrangian is never “bad”. Recall that in that context, to every vector w 2 WR one
can associate a “bad locus” corresponding to points in the universal cover where
w0;4 D 0. The emptiness of the bad locus, for at least one vector w, implies the
expected formula for the sum of Lyapunov exponents. This is precisely the formula
stated in the introduction in Theorem 1.5.

Maximal representations. We end with an observation regarding what we called
“assumption B”, or equivalently the condition that the VHS is maximal described in
Section 2.1. A uniformization result analogous to Theorem 4.4 holds in this case,
and was established by Collier, Tholozan, and Toulisse [5, Thm. 1]. It implies the
following formula for the top Lyapunov exponent of V :

�1.V / D
deg V

0;3
ext

�.X/
:

Note that the only representations which satisfy both assumption A and assumption
B are those which are a symmetric power of the standard Fuchsian representation.
In that case, all the above theorems, including the domains of discontinuity and the
formula for Lyapunov exponents, are immediate verifications in linear algebra.
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On primes, almost primes, and the Möbius function in short
intervals

Kaisa Matomäki

Abstract. In this article, aimed at a general mathematical audience, we have three goals. First,
we give a brief account of the classical theory connecting primes, the Riemann zeta function,
and the Möbius function. Second, we discuss the state-of-art results concerning primes, almost
primes, and the Möbius function in short intervals. Third, we outline the most fundamental
concepts underlying the proofs of such results.

1. Introduction

Some of the most prominent topics in analytic number theory include the prime num-
bers, the Riemann zeta function, and the Möbius function. In this article, aimed at a
general mathematical audience, we first introduce some classical results on the primes
and their relation to the Riemann zeta function in Section 2. Then we go on to dis-
cuss primes and almost primes in short intervals in Section 3, starting with classical
results and moving on to very recent works. In Section 4 we make a similar journey
with the Möbius function. Finally, in Section 5 we discuss the proof strategies, mostly
in rather general terms.

2. Primes and the Riemann zeta function

2.1. Primes

We write P D ¹2;3;5; 7;11;13;17; : : :º for the set of primes, i.e., natural numbers > 1

that are only divisible by 1 and themselves. The letter p with or without subscripts
will always denote a prime.

One of the first theorems concerning primes is that of Euclid (ca. 300 BC), stating
that there are infinitely many prime numbers. This can be quickly proved in various
ways. The most classical way is to make a counter assumption that only p1; : : : ; pk

2020 Mathematics Subject Classification. Primary 11N37; Secondary 11M06, 11N05, 11N25.
Keywords. Prime numbers, Riemann zeta function, Möbius function, short intervals.

https://creativecommons.org/licenses/by/4.0/
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are primes. Then p1 � � � pk C 1 is either a new prime or divisible by a new prime
which is a contradiction.

By the fundamental theorem of arithmetic every natural number can be uniquely
written as a product of primes, e.g., 2021 D 43 � 47. In other words, primes are like
the building blocks of the natural numbers.

By Euclid’s theorem there are infinitely many primes, but we have much more
precise information. Hadamard and de la Valleé Poussin showed independently in the
end of the 19th century (see e.g. [12, Notes to Chapter 12]) that1

#¹p 2 P W p � xº D
�
1 C o.1/

� Z x

2

dx

log x
D

�
1 C o.1/

� x

log x
:

This is called the prime number theorem (PNT) and it sort of asserts that the “proba-
bility” that an integer n is prime is about 1= log n.

In light of this, it is convenient to normalize prime p by log p. More precisely,
we write ƒ.n/ for the von Mangoldt function

ƒ.n/ D

´
log p if n D pk with k � 1I

0 otherwise:

Now the PNT is equivalent to the fact thatX
n�x

ƒ.n/ D
�
1 C o.1/

�
x:

As for the o.1/ error term in the PNT, the best result (see e.g. [12, Theorem 12.2])
currently is that X

n�x

ƒ.n/ D x C O

�
x exp

�
�

c.log x/3=5

.log log x/1=5

��
(2.1)

for some absolute constant c > 0.

2.2. The Riemann zeta function

Next we introduce some basic properties of the Riemann zeta function. For a refer-
ence to the results in this and the following subsection, and much more, see e.g. [12]
or [25].

1We use, for f WR ! C and gWR ! R�0, the notation f .x/ D O.g.x// when there exists
a constant C > 0 such that jf .x/j � Cg.x/ for all x and the notation f .x/ D o.g.x// when
limx!1 f .x/=g.x/ D 0. For instance O.x1=2/ denotes a quantity which is, for some constant
C > 0, at most Cx1=2 for all x and o.1/ denotes a quantity tending to 0 when x ! 1.
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Write, for <s > 1,

�.s/ D
X
n2N

1

ns
D

Y
p2P

�
1 C

1

ps
C

1

p2s
C � � �

�
D

Y
p2P

�
1 �

1

ps

��1

: (2.2)

The function �.s/ can be analytically continued to the whole complex plane except
for a simple pole at s D 1 with residue 1. The function �.s/ is called the Riemann
zeta function and it satisfies the functional equation

�.s/ D 2s�s�1 sin
�

�s

2

�
�.1 � s/�.1 � s/; (2.3)

where �.s/ is the gamma function.
The functional equation can be used to obtain some basic information about the

zeros of the Riemann zeta function. Notice first that on the right-hand side of the
functional equation (2.3) the function sin.�s=2/ has a zero at each even integer. For
s D 0 the zero is cancelled by the pole of �.1 � s/ whereas for positive even integers
the poles of �.1 � s/ cancel with the zeros. But for negative even integers there are
no poles and hence also �.s/ has a zero at each negative even integer �2;�4;�6; : : : :

These zeros are called the trivial zeros of �.s/.
The remaining zeros of �.s/ are called non-trivial. From the Euler product (2.2)

one sees that there are no zeros with <s > 1 and thus, by the functional equation (2.3)
there are no non-trivial zeros with <s < 0. Hence all the non-trivial zeros of the zeta
function must lie in the critical strip 0 � <s � 1.

Writing N.T / for the number of non-trivial zeros with j=sj � T , the Riemann-
von Mangoldt formula states that

N.T / D
T

2�
log

T

2�
�

T

2�
C O.log T /: (2.4)

The famous Riemann hypothesis (RH) asserts that all these non-trivial zeros actu-
ally lie on the critical line <s D 1=2. This has been numerically verified in [21] for
all zeros with j=sj � 3 � 1012. Furthermore we know that the exists a constant c > 0

such that, for any zero s D ˇ C i t of �.s/ with jt j � 10, one has

ˇ � 1 �
c�

log jt j
�2=3� log log jt j

�1=3
I (2.5)

the complement of this region is called the Vinogradov–Korobov zero-free region.

2.3. The relation between primes and the Riemann zeta function

It turns out that the non-trivial zeros of the zeta function are closely related to the
prime numbers. The relation between von Mangoldt function and the zeros of the
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zeta function stem from a Dirichlet series identity; for <s > 1, one has

�
�0.s/

�.s/
D �

d

ds
log �.s/ D

d

ds
log

Y
p2P

�
1 �

1

ps

�
D

X
p2P

d

ds
log

�
1 �

1

ps

�
D

X
p2P

p�s log p

1 �
1

ps

D

1X
nD1

ƒ.n/

ns
: (2.6)

This identity is one of the reasons why it is more convenient to study ƒ.n/ than the
characteristic function of the primes.

To utilize (2.6) to study primes in Œ1; x�, one uses the contour integration formula

1

2�i

Z 2Ci1

2�i1

ys

s
ds D

´
0 if y < 1I

1 if y > 1:
(2.7)

Combining these two observations we obtain (when x 62 N)X
n�x

ƒ.n/ D
X

n

ƒ.n/
1

2�i

Z 2Ci1

2�i1

.x=n/s

s
ds D �

1

2�i

Z 2Ci1

2�i1

�0

�
.s/

xs

s
ds:

Moving the integration to the left side of the line <s D 1, one picks up a pole at
s D 1 with residue �x, so this gives the main term in the PNT. The zeros of the zeta
function are also poles of the integrand and one can derive, for any x � T � 2, the
explicit formula X

n�x

ƒ.n/ D x �

X
�

�.�/D0
j=.�/j�T

x� � 1

�
C O

�
x

T
log2 x

�
:

One can now use this and (2.4) to relate the error term in the PNT to the zero-free
region for the zeta function. In particular, one can show that

PNT ,

X
n�x

ƒ.n/ D
�
1 C o.1/

�
x , �.s/ ¤ 0 when <s D 1:

Furthermore, one obtains (2.1) using the zero-free region (2.5). Finally, it is possible
to show this way that

RH ,

X
n�x

ƒ.n/ D x C O.x1=2C"/ for all " > 0; (2.8)

where the implied constant is allowed to depend on ".
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2.4. Dirichlet L-functions

The Riemann zeta function is the simplest member of a large family of L-functions
(for a lot of information about general L-functions, see [14, Chapter 5]). Let us intro-
duce here also Dirichlet L-functions, which are L-functions of degree 1 like �.s/.

Let �WZ ! C be a Dirichlet character of modulus q; i.e., a function that

(i) is periodic with period q (i.e., �.a C q/ D �.a/ for all a 2 Z);

(ii) is completely multiplicative (i.e., �.mn/ D �.m/�.n/ for all m; n 2 Z);

(iii) is such that �.r/ D 0 whenever .r; q/ ¤ 1.

For every q 2 N, a trivial instance of Dirichlet character is the principal character
�0.n/ D 1.n;q/D1. For modulus 4 the only non-principal character is �4 defined at
primes by

�4.p/ D

8̂̂<̂
:̂

1 if p � 1 .mod 4/I

�1 if p � 3 .mod 4/I

0 if p D 2:

For a Dirichlet character �, the corresponding Dirichlet L-function L.s; �/ is
defined for <s > 1 by

L.s; �/ D
X
n2N

�.n/

ns
D

Y
p2P

�
1 C

�.p/

ps
C

�.p2/

p2s
C � � �

�
D

Y
p2P

�
1 �

�.p/

ps

��1

:

The Dirichlet L-functions play an important role when studying prime numbers
in arithmetic progressions thanks to the orthogonality relation

1

'.q/

X
� .mod q/

�.m/ D

´
1 if m � 1 .mod q/I

0 otherwise:

The Dirichlet L-functions have a very similar theory as the Riemann zeta function,
with a functional equation, the generalized RH, etc. The zero-free region for L.s; �/

is not as good as for �.s/. In particular, one has not been able to rule out the possibility
of a real exceptional character which has a real zero very close to s D 1.

3. Primes and almost primes in short intervals

3.1. Primes in short intervals

The PNT tells us about the behavior of primes in Œ1; x� but even the best known
quantitative result (2.1) is so weak that it does not imply that there exists " > 0 such



K. Matomäki 574

that, for sufficiently large x, the interval .x; x C x1�"� contains primes. However,
Hoheisel [10] showed such a statement already in 1930 and Huxley’s [11] PNT from
1972 gives, for any " > 0,X

x<n�xCH

ƒ.n/ D
�
1 C o.1/

�
H for H � x7=12C": (3.1)

This is based on Huxley’s [11] zero-density estimate

N.�; T / D O
�
T . 12

5 C"/.1��/.log T /O.1/
�

for all T � 2 and � 2 Œ1=2; 1�; (3.2)

where N.�; T / is the number of zeros of the Riemann zeta function in the rectangle
<.s/ � � , j=.s/j � T . Huxley’s result has resisted improvements, except that Heath-
Brown [9] has shown (3.2) for H � x7=12�o.1/.

The so-called density hypothesis asserts that

N.�; T / D O.T 2�2�C"/ for all T � 2 and � 2 Œ1=2; 1�; (3.3)

and this would imply that (3.2) holds for H � x1=2C" for any " > 0 (see e.g. [12,
Theorem 12.8]). Note that the density hypothesis is a consequence of the Lindelöf
hypothesis (see e.g. [12, Section 1.9]) asserting that j�.1=2 C i t/j � jt j" for every
" > 0.

If one does not require an asymptotic formula for the number of primes in a short
interval but contends with a lower bound of correct order of magnitude, then shorter
intervals can be reached. In particular, following the initial breakthrough of Iwaniec
and Jutila [13] and a succession of further improvements, Baker–Harman–Pintz [1]
showed that, for large enough x and some " > 0,X

x<n�xCH

ƒ.n/ � "H for H � x0:525: (3.4)

For shorter intervals one does not even know existence of primes. However,
assuming the RH one knows that, for large enough x, the interval .x; x C x1=2 log x�

always contains primes (see e.g. [12, Theorem 12.10]). This barely falls short of one
of the four famous problems of Landau, asserting that there is always a prime between
two consecutive squares, which would follow if one could show that .x; x C x1=2�

always contains primes.
Cramer made a probabilistic model based on “probability of n being prime is

1= log n”. Based on this, one expects that, for a large enough C , the interval .x; x C

C log2 x� contains primes for all large x; for more precise conjectures, see [5,6]. Here
we see a large gap between what is known and what is expected.
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3.2. Primes in almost all short intervals

As even under the RH it is not known that .x; x C x1=2� always contains primes, it is
natural to ask what if one only requires that almost all intervals contain primes.

A variant of Huxley’s PNT says that, for almost all x 2 .X; 2X�,X
x<n�xCH

ƒ.n/ D
�
1 C o.1/

�
H for H � x1=6C";

see e.g. [7, Theorem 9.1]. This can be proved using a technique due to Selberg [23]
and Huxley’s zero-density estimate (3.2). Furthermore also this result has resisted
improvements.

Again if one only wants a lower bound for the number of primes, one can do
better. By a sieve method Jia [15] has shown that, for some " > 0,X

x<n�xCH

ƒ.n/ � "H for H � x1=20: (3.5)

Assuming the density hypothesis (3.3) (or the Lindelöf hypothesis) one can show
that, for every " > 0, almost all intervals .x; x C x"� contain asymptotically the
expected number of primes (see [12, Theorem 12.9]).

Based on probabilistic models, one expects that, for any h ! 1 with X ! 1,
the interval .x; x C h log x� contains primes for almost all x 2 .X; 2X�, so again
we are far from the expected truth. Heath-Brown [8] has established this conjecture
assuming both the RH and the pair correlation conjecture for zeros of �.s/ which
concerns the distribution of the gaps between the imaginary parts of the zeros.

The author and Jori Merikoski [17] have worked on studying the distribution of
primes under the very unlikely assumption that there exist so-called exceptional char-
acters for which the corresponding L-function has a zero extremely close to s D 1.
If such an exceptional character existed, it would have some very interesting conse-
quences. Concerning primes in short intervals, as a corollary in our work we obtain
the following theorem.

Theorem 3.1 (Matomäki–Merikoski [17]). Let C � 2. Let � be a primitive quadratic
character modulo q � 2 and assume that L.s; �/ has a real zero ˇ0 such that

ˇ0 D 1 �
1

� log q
:

for some � � 10.
Let X 2 Œq10; q�99=100

� and let 2 � H � X1=3. ThenZ 2X

X

� X
y<n�yCH

ƒ.n/ � H

�2

dy D OC

�
H 2X

�
log X

H
C exp.�C

p
log �/

��
:
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This implies that as soon as

� ! 1;
H

log X
! 1; and q10

� X � q�99=100

;

we get the asymptotic formulaX
y<p�yCH

1 D
�
1 C o.1/

� H

log y

for almost all y 2 ŒX; 2X�.
Note that it is widely believed that such exceptional characters do not exist. But

at least our result allows one to assume they do not exist when attacking primes in
almost all short intervals.

3.3. Almost primes in short intervals

As discussed above, one expects that, for any h ! 1 with X ! 1, the interval
.x; x C h log x� contains primes for almost all x 2 .X; 2X�. This being far out of
reach, one can ask similar questions about almost-primes, i.e., Pk numbers that have
at most k prime factors or Ek numbers that have exactly k prime factors.

Here Pk numbers are easier to deal with since classical sieve methods can be
applied. For instance Wu [26] has shown that, for all sufficiently large x, the interval
.x � x101=232; x� contains P2 numbers. This is significantly better than the cor-
responding result for the primes, where one could not cross the 1=2 barrier even
assuming the RH.

Due to the so-called parity barrier (see e.g. [2, Section 16.4]), classical sieves are
unable to distinguish between numbers having an even and an odd number of prime
factors. In particular, a sieve can be used to find P2 numbers but, without additional
input, it is impossible to tell whether it found primes or E2-numbers.

However, Ek numbers are still easier to deal with than the primes, thanks to
sums over them having a multilinear structure. Teräväinen has shown that for k � 2,
there exists a constant Ck such that, for almost all x 2 .X; 2X�, the interval .x; x C

.logk�1 X/Ck log X� contains an Ek-number, where logm X is m times iterated log-
arithm. Furthermore, in Teräväinen’s result one can take C2 D 2:51 and C3 D 6 C ".

Let us turn into discussing Pk numbers in almost all intervals. Following Fried-
lander [3,4], Friedlander and Iwaniec [2, Section 6.10] showed that as soon as h !1

with X ! 1, the interval .x � h log X; x� contains P19-numbers for almost all
x 2 .X=2;X�. Furthermore, they say that, using more advanced techniques, one could
obtain P3 numbers. The author improved this in a recent preprint [16].

Theorem 3.2 (Matomäki [16]). Let h ! 1 with X ! 1. Then the interval
.x � h log X; x� contains P2 numbers for almost all x � X .
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4. The Möbius function

4.1. Introducing the Möbius function

Let �.n/ denote the Möbius function

�.n/ D

´
.�1/k if n D p1 � � �pk with pi distinctI

0 otherwise:

Now, for <s > 1,
1X

nD1

�.n/

ns
D

Y
p2P

�
1 �

1

ps

�
D

1

�.s/
;

so �.n/ is closely related to ƒ.n/ whose generating Dirichlet series was ��0=�.s/.
In particular, using similar contour integration arguments as in Section 2.3 one

can show that

PNT , �.s/ has no zeros with <s D 1 ,

X
n�x

�.n/ D o.x/

RH ,

X
n�x

�.n/ D O.x1=2C"/ for all " > 0;

where the implied constant may depend on ".

4.2. Möbius in short intervals

Until 2014 the story about the Möbius function in short intervals was exactly the
same as for ƒ.n/. In particular, Motohashi [20] and Ramachandra [22] independently
adapted Huxley’s proof of [11] to show thatX

x<n�xCH

�.n/ D o.H/ for H � x7=12C": (4.1)

Analogously it was known by [22] that, for almost all x 2 .X; 2X�,X
x<n�xCH

�.n/ D o.H/ for H � x1=6C":

This almost-all interval result was significantly improved in the author’s work
with Radziwiłł [18] showing the following theorem.

Theorem 4.1 (Matomäki–Radziwiłł [18]). Let H ! 1 with x ! 1. Then, for
almost all x 2 .X; 2X�, one has X

x<n�xCH

�.n/ D o.H/:
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Our result is more general and has led to numerous advancements, e.g., concern-
ing Chowla’s conjecture (see e.g. [24]). In the proof we crucially used the fact that
a typical n has prime factors from certain convenient intervals—something that is
certainly not true for n 2 P .

A natural question is whether one can improve also on (4.1) along similar lines.
Recently, the author and J. Teräväinen [19] obtained such a result.

Theorem 4.2 (Matomäki–Teräväinen [19]). One hasX
x<n�xCH

�.n/ D o.H/ for H � x0:55C":

Note that 7=12 D 0:5833 : : : ; and that even under RH one cannot get beyond 1=2,
so we get significantly closer to this natural barrier.

5. Proof strategy

5.1. The general strategy

We have already discussed how contour integration can be used to relate questions
about primes and the Möbius function to questions about the Riemann zeta function.
However, there is another more flexible way to go which we will describe in this
section.

In this strategy for proving results on primes or the Möbius function there are two
steps: a combinatorial step and an analytic step. In the combinatorial step a combina-
torial identity or a sieve method is used to reduce the problem to that of estimating
so-called type I and type II sums. In the analytic step these type I and type II sums
are estimated.

This overall strategy works for various problems concerning primes, including
problems for which no other strategy is known. On the other hand, it can also be
used e.g. to reprove Huxley’s PNT (3.1) without appealing to zero density results; see
e.g. [7, Section 7.3].

5.2. The combinatorial step

When one is looking for an asymptotic formula for the number of primes in some in-
teresting set, the combinatorial step is often done using Vaughan’s identity or Heath-
Brown’s identity (see [14, Sections 13.3–13.4]). A special case of Vaughan’s identity
(see e.g. [14, Proposition 13.4]) implies that, for any .˛n/,X

X<n�2X

˛nƒ.n/ D
X

X<bc�2X

b�X1=3

˛bc�.b/ log c
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�

X
X<abc�2X

b;c�X1=3

˛abc�.b/ƒ.c/ C
X

X<abc�2X

b;c>X1=3

˛abc�.b/ƒ.c/:

From this one can see that instead of
P

X<n�2X ˛nƒ.n/ it suffices to study type
I sums X

X<mn�2X

m�X1=3

˛mnam and
X

X<mn�2X

m�X1=3

˛mnam log n (5.1)

with arbitrary bounded coefficients am and type II sumsX
X<mn�2X

X1=3�m�X2=3

˛mnambn

with arbitrary bounded coefficients am and bn.
Heath-Brown’s identity is a more flexible variant of Vaughan’s identity in terms

of the different sums it produces, and it is of benefit to be able to deal e.g. with type
I2 sums X

X<`mn�2X
m�M
n�N

˛`mna`:

5.3. The analytic step

In the analytic step one estimates the resulting type I and type II sums. In type I sums
(5.1) there is a smooth variable n and one often wants to bring the sum over n inside.
For instance if ˛n D 1n2.X;XCX3=4�, thenX
X<mn�2X

m�X1=3

˛mnam D

X
m�X1=3

am

X
X=m<n�.XCX3=4/=m

1DX3=4
X

m�X1=3

am

m
CO.X1=3/;

so that we get an asymptotic formula for such a type I sums.
In type II sums we have genuine bilinear structure and quite often one applies

Cauchy–Schwarz at some point, either to separate the variables or to dispose of some
of the coefficients.

For instance when working on problems concerning short intervals, one can use
Dirichlet polynomials through contour integration (2.7). One gets that

1

H

X
x<mn�xCH

ambn �
1

X

X
X<mn�2X

ambn

essentially if Z X=H

.log X/100

ˇ̌̌̌ X
mn�X

ambn

.mn/1=2Cit

ˇ̌̌̌
dt D O

�
X1=2

.log X/100

�
:
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Such mean values can be estimated through mean and large value results for
Dirichlet polynomials; see e.g. [7, Chapter 7].

5.4. Sieve methods

If one does not require an asymptotic formula, one can use a sieve method. The
most popular prime-detecting sieve is Harman’s sieve (for a comprehensive account,
see [7]) that has been used e.g. in proofs of (3.4) and (3.5).

For A � N and z � 2, write P.z/ D
Q

p<z p and

S.A; z/ D
X
n2A

.n;P.z//D1

1:

If now A � .X; 2X� \ N, then

A \ P D S.A; 2X1=2/:

Writing also Ad D ¹n 2 A W d j nº, one has the Buchstab identity

S.A; z/ D S.A; w/ �
X

w�p<z

S.Ap; p/:

Harman’s sieve method consists of consecutive applications of Buchstab’s identity to
reach type I and type II sums. Some sums with a positive sign can be dropped if one
looks for a lower bound.

When one is looking for Pk numbers, one can use more classical sieve methods
that require only type I information. For instance in a lower bound sieve one replaces
the identity

S.A; z/ D
X
n2A

.n;P.z//D1

1 D

X
n2A

X
d j.n;P.z//

�.d/

by an inequality

S.A; z/ D
X
n2A

.n;P.z//D1

1 �

X
n2A

X
d j.n;P.z//

��.d/

for an appropriate chosen sequence ��.d/ which is supported only on d � D. Now
one encounters a type I sum X

dn2A
d jP.z/
d�D

��.d/:

Unfortunately, such a sieve can produce a non-trivial lower bound only when D > z2.
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5.5. Implementation of the strategy

In this subsection we briefly discuss the combinatorial and analytic steps in the proofs
of Theorems 3.1, 3.2, 4.1, and 4.2.

In the proof of Theorem 3.2 on P2 numbers in almost all short intervals, the com-
binatorial tool used is Richert’s weighted sieve with ˇ-sieve (for a comprehensive
account of these sieves, see [2, Chapters 25 and 11]). These sieves reduce the prob-
lem to understanding type I sums. As mentioned in Section 5.4, sieves using only
type I information as input are incapable of catching primes, but here our goal is P2

numbers. Then in the analytic step we reduce estimating the type I sums in almost all
intervals into estimating averages of Kloosterman sums which can be done by known
results.

Let us now turn to the proof of Theorem 4.1 on the Möbius function for almost
all intervals. The combinatorial step uses Ramaré’s identity in the form saying that,
for .P; Q� � .1; H�, one hasX
x<n�xCH

�.n/ D �

X
x<pm�xCH

P <p�Q

�.pm/

#¹P < q � Q W q j mº C 1p−m

C O

�
H

log P

log Q

�
;

where the error term comes from those n that do not have a prime factor in the interval
.P; Q�. This combinatorial step leads to type II sums with one of the variables (i.e.,
p) being very small. In the analytic step we reduce estimating such sums to mean
square estimates for Dirichlet polynomials. In order to reach very short intervals, we
need to use an iterative argument, with several applications of Ramaré’s identity.

In the proof of Theorem 4.2 on the Möbius function in all short intervals, in
the combinatorial step we use both Ramaré’s identity and Heath-Brown’s identity.
Ramaré’s identity allows us to extract a very small prime factor from the sum over
�.n/ before using the Heath-Brown identity to split into type I, type II, and type
I/II sums. In the analytic step we again use estimates on Dirichlet polynomials. This
method actually works in greater generality. For instance we obtain also the following
theorem.

Theorem 5.1 (Matomäki–Teräväinen [19]).X
x<p1p2�xCH

pj 2P

1 D H
log log x

log x
C O

�
H

log log log x

log x

�
; H � x0:55C":

The proof of Theorem 3.1 works somewhat differently though there are similar
steps. Thanks to the assumption on the existence of exceptional characters, the rel-
evant type II sums become quite easy to bound and then one just needs to obtain
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enough type I information to find primes. In the analytic step for the type I sums one
again reduces the problem to that of bounding Kloosterman sums.
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Bogoliubov excitation spectrum of Bose gases

Phan Thành Nam

Abstract. We review some rigorous results on the derivation of Bogoliubov excitation spec-
trum of interacting Bose gases from many-body Schrödinger equations.

1. Introduction

The Bose–Einstein condensation (BEC) has been an important topic in quantum
physics for a long time since the first predictions in 1924 [11, 24], and especially
after the experimental observations in 1995 [2, 19]. Roughly speaking, BEC is the
phenomenon when many bosons occupy a common quantum state at very low temper-
atures, thus allowing to observe in our macroscopic scales many interesting quantum
phenomena such as superfluidity and quantized vortices.

While the pioneer works of Bose and Einstein [11, 24] concern only the non-
interacting gas, in reality the particles do interact and the rigorous understanding
of interacting systems remains a very challenging problem in mathematical physics.
The theory of interacting Bose gases essentially started in 1947 when Bogoliubov
[10] proposed an approximation theory and used it to predict the excitation spec-
trum of Bose gases. In particular, Bogoliubov’s theory gives a satisfactory explana-
tion of Landau’s criterion for superfluidity [32]. Since then, there have been several
attempts to justify Bogoliubov’s theory from first principles, namely from many-body
Schrödinger equations, and some rigorous results will be reviewed below.

Heuristically, Bogoliubov’s theory based on the key assumption that the interac-
tion is sufficiently weak. In this case, the total interaction felt by each particle can
be effectively replaced by a one-body mean-field potential, in the spirit of the law of
large number in probability theory. This so-called mean-field approximation leads to
Hartree’s theory (or the Gross–Pitaevskii theory) which has been used widely to study
the condensate. Moreover, the weak interaction ansatz also allows to treat excited par-
ticles by the second-order perturbation method. Consequently, Bogoliubov’s theory

2020 Mathematics Subject Classification. 81V73.
Keywords. Bose gases, Bose–Einstein condensation, Bogoliubov’s theory.
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gives an effective description for the fluctuations around the condensate, as some sort
of the central limit theorem.

In this review, we will focus on two specific scaling regimes where the interac-
tions are weak but still play a leading order role.

� The mean-field regime: the interaction range is long, but the interaction strength
is weak. Thus there are many but weak collisions, which is an ideal situation to
apply the mean-field approximation.

� The Gross–Pitaevskii regime: the interaction range is short, but the interaction
strength is strong. Thus there are few but strong collisions, making the mean-field
behavior less obvious.

Although the mean-field and Gross–Pitaevskii regimes correspond to different
physical systems, it turns out that Bogoliubov’s arguments apply successfully to both
cases. In fact, thanks to a series of works by many authors in the last 10 years, the
validity of Bogoliubov excitation spectrum has been proved in both regimes. In 2011,
Seiringer [55] for the first time justified the Bogoliubov excitation spectrum in the
mean-field regime for the homogeneous Bose gas in the torus T 3. Later his result was
extended to general trapped systems in R3 in [30,36]; see also [8,13,21,46,49,52,54]
for various extensions. On the other hand, in the Gross–Pitaevskii regime, which
is most relevant to the physical setup in [2, 19], the analysis is significantly more
challenging since Bogoliubov’s theory admits a subtle correction. The correction
to Bogoliubov’s theory in the Gross–Pitaevskii regime was established by Boccato,
Brennecke, Cenatiempo, and Schlein [7] for the homogeneous gas. Very recently, this
result was finally extended to general trapped systems in R3 in [17, 50].

In the following, I will explain in detail Bogoliubov’s theory and review the
results obtained in [36, 50]. I will also discuss some possible extensions and open
problems in the end.

2. Bogoliubov’s theory

To make the idea transparent, let us start with a trapped system in the mean-field
regime. We consider a system of N bosons in R3 described by the Hamiltonian

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

1

N � 1

X
1�i<j�N

W.xi � xj / (2.1)

which acts on the symmetric space HN D
NN

sym L2.R3/. Here xi 2 R3 stands for the
coordinate of the i th particle (we ignore the spin for simplicity) and HN consists of
functions in L2..R3/N / satisfying

‰.x1; : : : ; xN / D ‰.x�.1/; : : : ; x�.N //; 8� 2 SN :
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We assume that the external potential Vext W R3 ! R satisfies

.Vext/� 2 L3=2.R3/ C L1.R3/; .Vext/C 2 L1
loc.R

3/; lim
jxj!1

Vext.x/ D1 (2.2)

and that the interaction potential W W R3 ! R satisfies

W 2
2 L3=2.R3/ C L1.R3/: (2.3)

Under these conditions, HN is well defined on the core domain
NN

sym C1
c .R3/ and

it is bounded from below. Consequently, HN can be extended to be a self-adjoint
operator on HN by Friedrichs’ method. The trapping condition limjxj!1 Vext.x/D1

ensures that HN has a compact resolvent, and hence it has eigenvalues

�1.HN / � �2.HN / � � � � ; lim
j!1

�j .HN / D 1:

We are interested in the asymptotic behavior of the eigenvalues of HN when N !1.
In the non-interacting gas, namely W D 0, the spectrum of HN can be computed

explicitly from the spectrum of the one-body operator �� C Vext as follows:

�.HN / D

²X
i�1

niei j ei 2 �.�� C Vext/; ni 2 ¹0; 1; 2; : : :º;
X
i�1

ni D N

³
:

On the other hand, for the interacting gas, namely W ¤ 0, it is in general impos-
sible to compute the spectrum of HN when N becomes large, even numerically.
Therefore, it is important to derive effective theories, which are less precise (describ-
ing only some collective properties of the system) but easier to deal with.

One of the most popular approximation methods used in computational quantum
physics and chemistry is the mean-field approximation, which was first introduced by
Curie and Weiss to describe phase transitions in statistical mechanics. Heuristically,
the mean-field theory is based on the assumption that the particles are independent,
leading to a replacement of the linear problem of N particles by a non-linear prob-
lem of one particle. Mathematically, N independent and identical particles can be
described by the Hartree state

‰.x1; : : : ; xN / D u˝N .x1; : : : ; xN / D u.x1/ � � �u.xN /;

where u is a normalized function in L2.R3/. The energy per particle of the factorized
wave function u˝N is given by the Hartree functional

EH.u/ D

Z
R3

�ˇ̌
ru.x/

ˇ̌2
C Vext.x/

ˇ̌
u.x/

ˇ̌2� dx

C
1

2

Z
R3

Z
R3

ˇ̌
u.x/

ˇ̌2ˇ̌
u.y/

ˇ̌2
W.x � y/ dx dy:
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In Hartree’s theory, the lowest energy per particle is

eH D inf
kuk

L2.R3/
D1

EH.u/:

It is not difficult to show that eH has a minimizer u0 which is non-negative and solves
the self-consistent equation

Du0 D 0; D D �� C Vext C ju0j
2
� W � "0; (2.4)

where "0 is a real constant (it is the Lagrange multiplier associated with the mass con-
straint kukL2.R3/ D 1). Thus the mean-field approximation suggests that the ground
state energy of HN in (3.7) satisfies

EN D NeH C o.N /N!1 (2.5)

and that u0 describes the Bose–Einstein condensate. We refer to [34] and the reviews
[33, 53] for rigorous results on the validity of Hartree’s theory.

In this review, we are interested in the next order correction to Hartree’s theory,
which is given by Bogoliubov’s theory. We will give below two different heuristic
derivations of Bogoliubov’s theory: the first is obtained by applying the second-order
perturbation method to the Hartree functional, and the second is obtained by manip-
ulating the many-body Hamiltonian in the second quantization language. While the
first is shorter and easier to access for a general audience, the second is closer to
Bogoliubov’s original argument [10] and easier to justify mathematically.

2.1. Bogoliubov’s theory from the second-order perturbation

To describe the excited particles, namely the particles outside of the condensate, we
can apply the second-order perturbation method to the Hartree functional. More pre-
cisely, if u0 is a Hartree minimizer, then for v?u0 we have the Taylor expansion

EH

 
u0 C vq
1 C kvk2

L2

!
D eH C

1

2

� �
v

v

�
; E 00

H.u0/

�
v

v

� �
C o

�
kvk2

H 1.R3/

�
(2.6)

with the Hessian matrix

E 00
H.u0/ D

�
D C K K

K D C K

�
;

where K is the operator on L2.R3/ with kernel

K.x; y/ D u0.x/u0.y/w.x � y/:
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Roughly speaking, Bogoliubov’s theory suggests that we may lift the Taylor expan-
sion (2.6) to the many-body level, leading to the following refinement of (2.5):

�.HN / D NeH C �.HBog/ C o.1/N!1; (2.7)

where the Bogoliubov Hamiltonian HBog is the second quantization of 1
2
E 00

H.'/ that
we will introduce later.

Note that we always have E 00
H.'/� 0 since u0 is a Hartree minimizer (in particular

D � 0 and u0 is a ground state of D). Moreover, it is known that if the Hessian matrix
is non-degenerate, namely

E 00
H.'/ � � > 0 on HC ˚ HC (2.8)

with HC D ¹u0º
? � L2.R3/ and a constant � > 0, then it can be diagonalized by a

symplectic matrix of the form

V D

 p
1 C s2 s

s
p

1 C s2

!
; V�

�
1 0

0 �1

�
V D

�
1 0

0 �1

�
; (2.9)

namely

V�E 00
H.'/V D

�
E1 0

0 E1

�
; (2.10)

where E1 is unitarily equivalent to .D1=2.D C 2K/D1=2/1=2. Consequently, up to
a constant, the Bogoliubov Hamiltonian HBog is unitarily equivalent to d�.E1/, the
quantization of E1 (see (2.14) below). We refer to [20, 48] for general discussions
on the diagonalization procedure, in particular for the emergence of the symplectic
structure in (2.9). In summary, (2.8) implies that the excitation spectrum of HN can
be described by the spectrum of E1 as follows:

�.HN / � �1.HN / � �
�
d�.E1/

�
D

²X
i�1

niei j ei 2 �.E1/; ni 2 ¹0; 1; : : :º

³
: (2.11)

2.2. Bogoliubov’s theory from the microscopic equation

Now we explain Bogoliubov’s theory from the microscopic description of the many-
body system, which is closer to the original argument in [10].

Let us recall the Fock space formalism. Let K be L2.R3/ or a subspace of L2.R3/.
We define the bosonic Fock space

F .K/ D

1M
nD0

Kn; Kn
D

nO
sym

K: (2.12)
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For g 2 K, we define the creation and annihilation operators a�.g/, a.g/ on F .K/

by

�
a�.g/‰

�
.x1; : : : ; xnC1/ D

1
p

n C 1

nC1X
jD1

g.xj /‰.x1; : : : ; xj�1; xjC1; : : : ; xnC1/;

�
a.g/‰

�
.x1; : : : ; xn�1/ D

p
n

Z
R3

g.xn/‰.x1; : : : ; xn/ dxn; 8‰ 2 Kn; 8n:

It is also convenient to define the operator-valued distributions

a�
x D

1X
nD1

fn.x/a�.fn/; ax D

1X
nD1

fn.x/a.fn/; x 2 R3;

where ¹fnº
1
nD1 is an orthonormal basis of K (the definitions of ax; a�

x are independent
of the choice of the basis). Equivalently, we have

a�.g/ D

Z
R3

g.x/a�
x dx; a.g/ D

Z
R3

g.x/ax dx; 8g 2 K:

These operators satisfy the canonical commutation relations (CCR)�
a.g1/; a.g2/

�
D
�
a�.g1/; a�.g2/

�
D0;

�
a.g1/; a�.g2/

�
Dhg1; g2i; 8g1; g22K;

Œa�
x; a�

y �D Œax; ay �D0; Œax; a�
y �Dı.x�y/; 8x; y2R3: (2.13)

It turns out that many important operators on Fock space can be expressed in the
second quantization form using the creation and annihilation operators. For example,
for any one-body self-adjoint operator A we can write its second quantization as

d�.A/ WD

1M
nD0

� nX
iD1

Axi

�
D

“
R3

A.x; y/a�
xay dx dy; (2.14)

where A.x; y/ is the kernel of A. Similarly, the Hamiltonian in (2.1) can be extended
to be an operator on F .L2.R3// as

HN D

Z
R3

a�
x

�
� �x C Vext.x/

�
ax dx

C
1

2N

Z
R3

Z
R3

W.x � y/a�
xa�

yaxay dx dy: (2.15)

Roughly speaking, Bogoliubov’s theory [10] contains three key steps.

Step 1 (c-number substitution). From the assumption on the complete condensation
on the Hartree minimizer u0, namely˝

‰N ; a�.u0/a.u0/‰N

˛
D N C o.N /; (2.16)
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and the commutation relation�
a.u0/; a�.u0/

�
D 1 �

˝
‰N ; a�.u0/a.u0/‰N

˛
D N0 � N;

we see that a.u0/ and a�.u0/ “mostly commute.” Pushing this idea further, we may
heuristically think of a.u0/ and a�.u0/ as the scalar number N

1=2
0 . Put differently,

we may factor out the contribution of the condensate as a scalar field as

ax � N
1=2
0 u0.x/ C cx; (2.17)

where ax , cx are annihilation operators on F .H/, F .HC/, respectively, where H D

L2.R3/ and HC D ¹u0º
? � H. This allows us to focus on the Fock space F .HC/

which corresponds to excited particles.

Step 2 (Quadratic reduction). Inserting (2.17) in (2.15) and expanding to second
order, we obtain

HN � NeH C HBog C o.1/N!1; (2.18)

where

HBog D d�.D/

C
1

2

Z
R3

Z
R3

W.x � y/u0.x/u0.y/.2c�xcy C c�xc�y C cxcy/ dx dy: (2.19)

Here we have ignored all terms containing more than 2 operators cx or c�x thanks
to the BEC (heuristically cx � N 1=2 � N

1=2
0 ). Moreover, the terms containing only

one operator cx or c�x are canceled due to the Hartree’s equation (2.4).
Note that the Bogoliubov Hamiltonian in (2.19) can be rewritten as

HBog D

Z
R3

c�x .D C K/xcx dx C
1

2

Z
R3

Z
R3

K.x; y/.c�xc�y C cxcy/ dx dy

which is exactly the second quantized version of the Hessian energy

1

2

� �
v

v

�
; E 00

H.'/

�
v

v

� �
D

Z
v.x/.D C K/v.x/ dx

C
1

2

“
K.x; y/

�
v.x/v.y/ C v.x/v.y/

�
dx dy

via the simple rules v.x/ 7! a�
x , v.x/ 7! ax .

Step 3 (Diagonalization). The Bogoliubov Hamiltonian HBog in (2.18) can be diag-
onalized by a unitary operator on F .HC/ of the form

T D exp
�Z

R3

Z
R3

�
k.x; y/c�xc�y � h.c.

�
dx dy

�
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with an appropriate kernel k.x; y/. The actions of T are characterized by

T �c.v/T D c.
p

1 C s2v/ C c�.sv/;

T �c�.v/T D c�.
p

1 C s2v/ C c.sv/; 8v 2 HC;

where

s D sh.k/ D
ek � e�k

2

with k being the operator with kernel k.x;y/. If we choose the operator s as in (2.10),
then a simple computation using the CCR (2.13) leads to the identity

T �HBogT D
1

2
T rHC

.E1 � D � K/ C d�.E1/: (2.20)

Thus from (2.18) we deduce that, up to a unitary transformation,

HN � NeH C
1

2
T rHC

.E1 � D � K/ C d�.E1/ C o.1/N!1; (2.21)

which is consistent with the prediction in (2.11) for the excitation spectrum.

3. Validity of Bogoliubov’s theory

3.1. The mean-field regime

In this subsection we focus on the mean-field regime, namely we consider the Hamil-
tonian in (2.1),

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

1

N � 1

X
1�i<j�N

W.xi � xj /;

with time-independent potentials Vext; W .
From the heuristic discussion in Section 2, we can easily extract two natural

conditions which are necessary to justify Bogoliubov’s prediction for the excitation
spectrum.

� The Hartree minimizer is unique. This is the necessary and sufficient condition to
have the complete BEC in (2.16) for low-lying eigenfunctions of HN ; see, e.g.,
[33, 34, 53].

� The non-degeneracy (2.8) holds true. This condition ensures that the Taylor ex-
pansion in (2.6) makes sense, namely the Hessian dominates the error term, and
that the Bogoliubov Hamiltonian in (2.19) is bounded from below and diagonal-
izable; see [20, 48].
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In a joint work with M. Lewin, S. Serfaty, and J. P. Solovej [36], we proved
that Bogoliubov’s prediction is indeed correct under those general conditions on the
Hartree minimizer. More precisely, we have the following theorem.

Theorem 3.1 (Validity of Bogoliubov excitation spectrum [36]). Consider the Hamil-
tonian HN in (2.1), where Vext and W satisfy (2.2) and (2.3). Assume that the Hartree
minimizer u0 is unique and non-degenerate. Then for every j 2 N, the j th eigenvalue
of HN satisfies

lim
N!1

�
�j .HN / � NeH

�
D �j .HBog/;

where the Bogoliubov Hamiltonian is an operator on F .HC/ defined in (2.19).

The result in [36] holds in a more general setting; in particular, it holds in all
dimensions and the external potential Vext may vanish at infinity which is relevant to
unconfined systems. In the later case, some particles may escape to infinity and we
have to add the assumption that any minimizing sequence of the Hartree functional
is pre-compact in L2.R3/, which is the necessary and sufficient condition for the
complete BEC to hold (see [34]).

Our result in [36] was inspired by the pioneer works of Seiringer [55] and Grech
and Seiringer [30] who have for the first time derived the Bogoliubov excitation spec-
trum for a class of trapped bosons in the mean-field model. In [30,55], the interaction
potential W is assumed to be bounded and of positive type, namely its Fourier trans-
form satisfies

0 � yW 2 L1.R3/:

Under this condition, we haveZ
R3

Z
R3

f .x/f .y/W.x � y/ dx dy D

Z
R3

Z
R3

ˇ̌
Of .k/

ˇ̌2 yW .k/ dk � 0: (3.1)

Therefore, the uniqueness of the Hartree minimizer is an easy consequence of the
convexity of juj2 7! EH.u/ (the convexity of the kinetic part follows from the dia-
magnetic inequality jru.x/j � jrjuj.x/j). Moreover, (3.1) also implies that the oper-
ator K with kernel u0.x/u0.y/W.x � y/ is a positive operator, and hence the non-
degeneracy condition (2.8) holds true.

Note that thanks to (2.20), the spectrum of HBog is known explicitly in terms
of the spectrum of the one-body operator E1 given in (2.11). For the homogeneous
gas studied in [55], when particles are confined on the torus Œ0; L�3 with periodic
boundary condition and Vext D 0, the eigenvalues of E1 are simply given by

ep D
�
jpj4 C 2jpj2 yW .p/

�1=2
; p 2 .2�=L/Z3

n¹0º:
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As already mentioned by Bogoliubov [10], the fact that the elementary excitation ep

behaves linearly for small jpj corresponds to Landau’s criterion for superfluidity [32].
More precisely, it implies the wedge-like shape of the joint spectrum of the Hamil-
tonian momentum, which in particular guarantees that adding a drop with a small
velocity will not change the ground state of the system, namely the drop can move
without friction. Strictly speaking, the mean-field regime discussed in this subsection
corresponds to the choice L � 1 and jpj is not very small. However, the same pic-
ture holds true in the large volume limit L D LN ! 1; see [21] for rigorous results
(the results in [7, 8], up to a suitably scaling argument, are also relevant to the large
volume limit).

Ingredients of the proof. Now let us explain the main ideas of the proof in [36]. Our
important tool is an excitation operator which implements Bogoliubov’s c-number
substitution. Thanks to the isomorphism of Fock spaces

F
�
L2.R3/

�
D F

�
Span.u0/ ˚ ¹u0º

?
�
� F

�
Span.u0/

�
˝s F .HC/

we can decompose any function ‰N 2 HN uniquely as

‰N D u˝N
0 �0 C u˝N�1

0 ˝s �1 C u˝N�2
0 ˝s �2 C � � � C �N

with �k 2 Hk
C. Recall that for two functions ‰k 2 Hk and ‰` 2 H`, we define the

symmetric tensor product by

‰k ˝s ‰`.x1; : : : ; xkC`/

D
1p

kŠ`Š.k C `/Š

X
�2SN

‰k.x�.1/; : : : ; x�.k//‰`.x�.kC1/; : : : ; x�.kC`//:

As proved in [36], the operator

U W ‰N ! .�0; �1; : : : ; �N / (3.2)

is a unitary transformation from HN to the truncated Fock space

F �N .HC/ D 1NC�N F .HC/;

where NC D d�.1HC
/ is the number operator on the excited Fock space F .HC/.

The operator U essentially maps a.u0/ and a�.u0/ to
p

N � NC, namely

ax 7!
p

N � NCu0.x/ C cx;

where cx is the annihilation operator on F .HC/. More precisely, we have on
F �N .HC/

UHN U �
D 1N �N

� 4X
iD0

Li

�
1N �N ; (3.3)
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where

L0 D NeH C
NC.NC C 1/

2N

�Z
ju0j

2
�
W � ju0j

2
��

;

L1 D
p

N � NC

Z ��
� � C Vext C ju0j

2
� W

�
u0

�
.x/cx dx C h.c.

C
NC

p
N � NC

N � 1

Z ��
ju0j

2
� W

�
u0

�
.x/cx dx C h.c.;

L2 D

Z
c�x .D C K/xcx dx C

1 � NC

N � 1

Z
c�x
�
ju0j

2
� W C K

�
x
cx dx

C

p
.N � NC/.N � NC � 1/

2.N � 1/

“
K.x; y/cxcy dx dy C h.c.;

L3 D

p
N � NC

N � 1

“
W.x � y/'.x/c�y cxcy dx dy C h.c.;

L4 D
1

N � 1

“
W.x � y/c�xc�y cxcy dx dy:

By formally taking the limit N !1, we obtain immediately the desired convergence

UHN U �
� NeH ! HBog: (3.4)

Rigorously, we proved in [36, Proposition 5.1] that for every 1 � M � N ,

˙1NC�M .UHN U �
� NeH � HBog/1NC�M

� C

r
M

N
.HBog C C / (3.5)

as quadratic forms on F �M .HC/. This justifies the convergence (3.4) in the sectors of
low excitations, namely NC � N . The contribution of the sectors of high excitations,
namely NC � N , is negligible thanks to the complete BEC (2.16). Using (3.5), we
can derive the convergence of quadratic forms in (3.5), which in turns implies the
convergence of eigenvalues by the min-max principle.

As a byproduct of our method, we also obtain the information for eigenfunctions.

Theorem 3.2 (Norm approximation for eigenfunctions [36]). Under the same condi-
tions in Theorem 3.1, the ground state ‰N of HN is simple and satisfies

lim
N!1

kU ‰N � ˆkF .HC/ D 0; (3.6)

where ˆ 2 F .HC/ is the unique ground state of the Bogoliubov Hamiltonian HBog. A
similar convergence holds for the higher eigenfunctions (possibly up to subsequences
of N ! 1 in case of degenerate eigenvalues).



P. T. Nam 596

The norm approximation (3.6) is much stronger than the complete BEC (2.16).
In fact, while (2.16) describes a macroscopic property, (3.6) really contains micro-
scopic information: changing the behavior of a single particle can change the many-
body state in norm to the leading order. In particular, (3.6) implies that in the non-
interacting case (W 6� 0), ‰N is never close to u˝N

0 in norm, namely the fluctuations
around the Hartree state u˝N

0 are nontrivial.

3.2. The Gross–Pitaevskii regime

In this subsection, we consider the N -body Hamiltonian

HN D

NX
iD1

�
� �xi

C Vext.xi /
�
C

X
1�i<j�N

N 2V
�
N.xi � xj /

�
(3.7)

on HN D
NN

sym L2.R3/ with time-independent potentials Vext; V . For simplicity, we
assume that the external and interaction potentials satisfy

0 � Vext.x/ � CeC jxj for some constant C > 0; lim
jxj!1

Vext.x/ D 1; (3.8)

0 � V 2 L1.R3/; V is radially symmetric and compactly supported. (3.9)

In this so-called Gross–Pitaevskii regime, the system is very dilute and the strong
correlation between particles at short distances leads to a subtle correction to the
leading order which is captured by the scattering length

8�a0 D inf
²Z

R3

�
2
ˇ̌
rf .x/

ˇ̌2
C V.x/

ˇ̌
f .x/

ˇ̌2� dx; lim
jxj!1

f .x/ D 1

³
: (3.10)

More precisely, the Hartree functional has to be replaced by the Gross–Pitaevskii
functional

EGP.u/ D

Z
R3

�ˇ̌
ru.x/

ˇ̌2
C Vext.x/

ˇ̌
u.x/

ˇ̌2
C 4�a0

ˇ̌
u.x/

ˇ̌4� dx: (3.11)

Note that by simply restricting to the Hartree states u˝N and using N 3V.N �/ �

yV .0/ı0, we would obtain a wrong functional with 8�a0 replaced by its first Born
approximation yV .0/. It is not difficult to prove that the Gross–Pitaevskii functional
has a unique normalized minimizer ' which is positive and exponentially decay (see
[39]).

In [39], Lieb, Seiringer, and Yngvason proved that the ground state energy of HN

in (3.7) satisfies

lim
N!1

�1.HN /

N
D inf

kuk
L2.R3/

D1
EGP.u/: (3.12)
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Later, in [37,38], Lieb and Seiringer proved that if ‰N is an approximate ground state,
namely h‰N ; HN ‰N i D �1.HN / C o.N /, then the complete BEC on the Gross–
Pitaevskii minimizer ' holds:˝

‰N ; a�.'/a.'/‰N

˛
D N C o.N /: (3.13)

Recently, the BEC with optimal rate˝
‰N ; a�.'/a.'/‰N

˛
D N C O.1/ (3.14)

was obtained in [6, 9, 31] (the homogeneous case) and [18, 47] (the general trapped
case).

Since there are only finitely many excited particles due to (3.14), it is still reason-
able to predict the excitation spectrum by Bogoliubov’s approximation. A straightfor-
ward application of the heuristic arguments in Section 2 predicts that the elementary
excitations are eigenvalues of the one-body operator�

D1=2
�
D C 2 yV .0/'2

�
D1=2

�1=2
;

where D is the mean-field operator associated with the Gross–Pitaevskii equation,

D' D 0; D D �� C Vext C 8�a0 � "0:

However, as mentioned already by Bogoliubov [10] (which goes back to a remark of
Landau), the number yV .0/ should be replaced by the scattering length 8�a0, similarly
to the leading order correction. Therefore, to put Bogoliubov’s theory in a good use,
after the three steps written in Section 2.2, we need an important modification.

Step 4 (Landau’s correction). yV .0/ should be replaced by 8�a0 everywhere, with a0

the scattering length of V .

It is Step 4 that makes the implementation of Bogoliubov’s arguments in the
Gross–Pitaevskii regime much more challenging than that of the mean-field regime.

In [7], Boccato, Brennecke, Cenatiempo, and Schlein solved this problem for the
homogeneous gas. Recently, in a joint work with A. Triay [50], we extended the result
for general trapped systems. We have the following theorem.

Theorem 3.3 (Bogoliubov’s theory in the Gross–Pitaevskii regime [50]). Consider
the Hamiltonian HN in (3.7). Let �1.HN / be the ground state energy of the Hamil-
tonian HN in (3.7). Then the spectrum of HN � �1.HN / below an energy ƒ 2

Œ1; N 1=12� is equal to finite sums of the formX
i�1

niei C O.ƒ3N�1=12/; ni 2 ¹0; 1; 2; : : :º;

where ¹eiº
1
iD1 are the positive eigenvalues of .D1=2.D C 16�a0'2/D1=2/1=2.
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Independently to us, a result similar to Theorem 3.3 was obtained by Brennecke,
Schlein, and Schraven in [17]. While our overall approach is similar to that of [7,
17], the detailed implementations are different. In fact, in [50] we introduced several
conceptual simplifications and generalizations, which could be helpful for the study
of dilute gases in the future. Let us explain some key ideas below.

Ingredients of the proof. Our proof is based on the rigorous approximation

T �
2 T �

c T �
1 UHN U �T1TcT2 � �1.HN / C d�.E1/ C o.1/N!1 (3.15)

on the excited Fock space FC D F .HC/ with HC D ¹'º? D QL2.R3/ with Q D

1 � j'ih'j.
Here U is the same transformation in (3.2), which factors out the condensation

described by the Gross–Pitaevskii minimizer u0. Consequently, the excited particles
are captured by the Hamiltonian in (3.3). Unlike the mean-field regime where L3

and L4 are of order o.1/, in the Gross–Pitaevskii regime L4 � N and L3 � O.1/.
Therefore, these terms have to be renormalized by the unitary transformations T1

and Tc , respectively. After that, we obtain a quadratic Hamiltonian which can be
diagonalized by the final unitary transformation T2.

To define the quadratic transformation T1, we need to capture the correlation
structure of particles. Let 0 � f � 1 be the scattering solution

�2�f C Vf D 0 in R3; lim
jxj!1

f .x/ D 1: (3.16)

We write ! D 1 � f and for every 0 < ` � 1 introduce the truncated functions

!`;N .x/ D �.x=`/!.Nx/; "`;N D 2�
�
!`;N .x/ � !.Nx/

�
; (3.17)

where 0 � � � 1 is a smooth function satisfying �.t/ D 1 if jxj � 1=2 and �.x/ D 0

if jxj � 1. By choosing T1 such that

T �
1 a�.g/T1 D a�.

q
1 C s2

1g/ C a.s1g/; 8g 2 H; (3.18)

where
s1 D Q˝2

Qs1 2 H2
C; Qs1.x; y/ D �N!`;N .x � y/'.x/'.y/;

we can replace the short range potential V.N.x � y// in L2 by the longer range
potential "`;N .x � y/. Note that "`;N is supported in ¹`=2 � jxj � `º and

N 3

Z
R3

"`;N D 8�a0: (3.19)

When ` grows slowly, we are essentially placed in the mean-field regime.
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The idea of renormalizing the short-range potential by a Bogoliubov transfor-
mation was introduced by Benedikter, de Oliveira, and Schlein [4] to derive the
Gross–Pitaevskii dynamics on Fock space. In [16], Brennecke and Schlein adapted
the approach in [4] to study the quantum dynamics on HN , where they used a gener-
alized Bogoliubov transformation on F �N

C of the form

exp
�

1

2

“
K1.x; y/b�

xb�
y dx dy � h.c.

�
with bx D

p
1 � N =N ax : (3.20)

The transformation (3.20) has been also an essential tool in the study of the spectral
problem in a series of papers [6–9,17,18]. Our choice of T1 in (3.18) is different from
(3.20) in three aspects.

� First, the operator bx in (3.20) is not an exact annihilation operator, and hence zT1

only satisfies an approximate form of (3.18). Here our T1 is a proper Bogoliubov
transformation and the exact formula (3.18) simplifies several computations.

� Second, the truncated scattering solution in [4, 16] is defined using Neumann
boundary condition on jxj D `N . Here our choice of !`;N in (3.17) is simpler
and works for a larger class of potentials.

� Third, and most importantly, we take ` � 1 instead of ` � 1 as in [4,7,16]. Thus
T1 renormalizes L2 efficiently but and leaves the cubic terms L3 invariant.

To remove the cubic term L3, we introduce a cubic transformation of the form

Tc D eS ; S D �M

“
kc.x; y; y0/a�

xa�
yay dx dy � h.c.;

where �M � 1.N � M/ and kc.x; y; y0/ is the kernel of the operator kc W H ! H2

defined by

kc D Q˝2 QkcQ; Qkc.x; y; y0/ D �N 1=2'.x/!`;N .x � y/ıy;y0

with Qkc.x;y;y0/ the kernel of the operator kc WH!H2. The projections Q WH!HC

and Q˝2 W H2 ! H2
C ensure that kc W HC ! H2

C, namely the cubic kernel S acts only
on excited particles. The cut-off parameter 1 � M � N in �M allows us to control
the number of excitations. Consequently, we have the simple expansion

T �
c ATc � A � ŒS; A� C

1

2

�
S; ŒS; A�

�
and the above choice of S comes from the cancelation

L3 �
�
S; d�.��/ C L4

�
� 0:

Here our cubic transformation is slightly simpler than that of [7] since we did not
change L3 in the previous step. The idea of using a cubic generator goes back to the
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work of Yau and Yin [56] on the Lee–Huang–Yang formula in the thermodynamic
limit. The choice ` � 1 is again very helpful to separate high and low momenta.

Finally, we end up with the quadratic Hamiltonian

d�.D/ C
1

2

Z
N 3"`;N .x � y/'.x/'.y/.2a�

xay C a�
xa�

y C axay/ dx dy

which can be diagonalized similarly as in the mean-field regime. We find that

T �
2 T �

c T �
1 HT1TcT2 � const C d�.E/; (3.21)

where

E D
�
D1=2.DC2K/D1=2

�1=2
; K DQ zKQ; zK.x;y/D '.x/N 3"`;N .x�y/'.y/:

Since `� 1, we have N 3"N;` ! 8�ı0, which implies that E !E1 in an appropriate
sense. This completes the overview of our proof of Theorem 3.3.

4. Further results and open problems

Excitation spectrum. In the mean-field regime, the validity of Bogoliubov’s theory
for the ground state energy and the excitation spectrum were extended in various
directions, including the large volume setting [21], multiple-condensations [49, 54],
mixture of Bose gases [41], and higher-order expansions [13, 42, 46, 52]. The inter-
mediate regime between the mean-field and the Gross–Pitaevskii regime was studied
in [8]. The regime beyond the Gross–Pitaevskii was studied in [14] (see also [1, 27]
for results on the BEC). It is an interesting open problem to extend the results in the
Gross–Pitaevskii regime (or beyond) to trapped systems in bounded domains with
Neumann or Dirichlet boundary conditions, since this will have interesting implica-
tions to systems in the thermodynamic limit.

Quantum dynamics. In the mean-field regime, the method in [36] was developed
in [35] to derive the norm approximation for the many-body Schrödinger dynamics.
Higher-order expansions in the mean-field regime were also obtained in [12]. The
validity of Bogoliubov’s theory for the quantum dynamics with singular interaction
potentials of the form N 3ˇ W.N ˇ x/ with 0 < ˇ < 1 was obtained in [15, 43–45].
When ˇ D 1, the Gross–Pitaevskii dynamics was derived in [25,26], but the justifica-
tion of Bogoliubov’s theory for the dynamics remains open. We refer to the reviews
[5, 51] for further discussions on the dynamical problem.

Positive temperatures. As discussed in Section 3, Bogoliubov’s theory holds true
for eigenvalues belonging to an interval of order 1 above �1.HN /. This implies the
validity of Bogoliubov’s theory for the free energy of a temperature of order 1; see,
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e.g., [36, Theorem 2.3] for an explicit statement. It is an open problem to extend the
analysis to higher temperatures. For the homogeneous gas in a unit torus, the critical
temperature where we see the BEC phase transition is of order N 2=3. In this case, the
validity of the Gross–Pitaevskii theory has been understood [22], but the validity of
Bogoliubov’s theory remains unknown.

Thermodynamic limit. In the thermodynamic limit, Bogoliubov’s theory is con-
sistent with the Lee–Huang–Yang formula on the ground state energy of dilute Bose
gases. In this problem, the leading order behavior is already difficult: the upper bound
was proved in 1957 [23] but the lower bound was obtained only some 40 years later
[40]. The second order, which requires a correction to Bogoliubov’s theory similar
to that in the Gross–Pitaevskii regime, was proved recently in [3, 56] (upper bound)
and [28, 29] (lower bound). While the second-order lower bound in [29] covers a
large class of interaction potentials, including the hard core case, extending this uni-
versality to the second-order upper bound remains an open problem. The excitation
spectrum seems to be completely out of reach by current techniques; a simple reason
is that the existence of the BEC in the thermodynamic limit remains a major open
problem in mathematical physics.
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From branching singularities in minimal surfaces to
non-smoothness points in ice-water interfaces

Joaquim Serra

Abstract. We review some recent developments on the regularity theory of two classical free
boundary problems: the obstacle problem and Stefan’s problem.

We emphasize the similarities and differences between these recent results (for the obstacle
problem and Stefan’s problem) and the regularity theory of integer rectifiable area-minimizing
currents (and related problems) developed during the XXth century.

1. Introduction

The aim of this note is to review some recent developments on the regularity theory
of two classical free boundary problems: the obstacle problem and Stefan’s problem.

We believe that these new developments are better understood and appreciated
when one can recognize in them strong parallelisms, and yet crucial differences, with
the regularity theories of Plateau’s problem, Signorini’s problem, and Almgren’s prob-
lem. (Throughout the note, we will use the non-standard (but convenient) keyword
Almgren’s problem to refer to the analog of Plateau’s problem in context of integer
rectifiable area-minimizing currents of codimension 2 or higher, which was studied
by Almgren in his famous work [4].) Consequently, we provide, in addition to a rather
complete background on the former two problems, a (partial) historical overview of
the latter three, focusing on their connections and analogies with the obstacle problem
and Stefan’s problem.

Finally, we describe the methods and results in recent works [25–27, 29] con-
cerned with the fine structure of the singular sets in the obstacle problem and Stefan’s
problem.

2. Five “classical” problems

We begin by presenting—in chronological order of their first appearance—the five
problems that will be discussed throughout the note: Plateau’s problem (1760s),

2020 Mathematics Subject Classification. 35R35.
Keywords. Stefan’s problem, obstacle problem, free boundary.
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Figure 1. Soap films spanning the red “curves”.

Stefan’s problem (1890s), Signorini’s problem (1950s), the obstacle problem (1960s),
and Almgren’s problem (1970s).

2.1. Plateau’s problem: The elegant shapes of soap films

Given a curve in R3, can one find a surface with minimal area having it as boundary?
Raised by Joseph-Louis Lagrange in the 1760s, this problem is one of the most clas-
sical and influential ones in the calculus of variations and geometry. It is named after
the Belgian physicist, J. Plateau (1801–1883), who experimentally investigated the
(physical) geometric laws of soap films and bubbles. By the effect of surface tension,
soap films are natural examples of area-minimizing surfaces.

By a well-known classical computation going back to Lagrange, if a piece of
an area-minimizing surface is smooth, then its mean curvature (sum of the principal
curvatures) must be identically zero.

A difficulty of Plateau’s problem is that area-minimizing “surfaces” may not be
surfaces in the classical sense of differential geometry. For instance, physical soap
films can take the shapes sketched in Figure 1, and while the center and right ones are
smooth surfaces, the soap film on the left is not smooth (or not even locally homeo-
morphic to a planar disc!) near some of its points.

Between the 1930s and the 1970s, several well-known analysts and geometers,
including Almgren, De Giorgi, Douglas, Federer, Fleming, Radó, Reifenberg, and
Taylor, among others, yielded outstanding contributions to Plateau’s problem, which
shaped its modern theory; see for instance [1, 3, 4, 14, 15, 18, 20, 21, 28, 40–42, 53].
They addressed the following fundamental questions:

(i) Which mathematical objects, that are “surfaces” in some sense, allow for a
rigorous solution of the area minimization problem?

(ii) Are such minimizers smooth, possibly outside of a certain singular set?

(iii) What can be said about the singular set? (e.g., is it lower dimensional?)
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Figure 2. Stefan’s problem: ice melting in water.

Thanks to intensive efforts during the XXth century, the answers to these questions are
today well understood. In Section 3, we will review some key aspects of the regularity
theory of Plateau’s problem, i.e., the answers to questions (ii) and (iii). Some of them
will have clear parallelisms in the other problems we will discuss.

2.2. Stefan’s problem: Ice melting in water

Dating back to the XIXth century, Stefan’s problem aims to describe the temperature
distribution in a homogeneous medium undergoing a phase change, typically a body
of ice at zero degrees centigrade submerged in water. The problem is named after
Josef Stefan, a Slovenian physicist who introduced it around 1890; see [52].

The most classical formulation of Stefan’s problem (see e.g. [19, 24]) is as fol-
lows: let� � R3 be some bounded domain. For concreteness, let us think that� is a
“cylindric water tank” as drawn in Figure 2. We denote by � D �.x; t/ the tempera-
ture of the water at the point x 2� at time t 2 RC WD Œ0;C1/. We assume that � � 0
in � � RC. The (nonnegative) temperature at the boundary of the tank is given, and
we assume that � D 0 at t D 0.

The set ¹.x; t/ 2 � � RC W �.x; t/ > 0º, denoted for brevity by ¹� > 0º, repre-
sents the water while its complement, denoted by ¹� D 0º, represents the ice. The
temperature � satisfies the heat equation

@t� ��� D 0 in the region ¹� > 0º;

while in the complement � is simply zero.
Determining the time-evolving domain ¹� > 0º in which the heat equation holds

is part of the problem. Equivalently, one must determine where the ice-water interface
@¹� > 0º, also called the free boundary, is. For it, an additional equation—so-called
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Stefan’s condition1—is needed:

@t� D jrx� j
2 on @¹� > 0º: (2.1)

It is not difficult to see that, in the previous setting, the ice ¹� D 0º must shrink
over time. More precisely, if at some point of the tank there is liquid water at some
given time, then the same point remains occupied by liquid at all future times.

The relevant regularity questions for Stefan’s problem are as follows:

(i) Is the problem well posed?2

(ii) Is the free boundary smooth, or may it have singularities?

(iii) If there are singularities, how often may they occur in space and time?

We will discuss the answers to these questions (which remained completely open
until the 1970s!) later on in this note.

2.3. Signorini’s problem (1950s)

Raised in 1959, Signorini’s problem [50] consists in finding the (elastic) equilibrium
configuration of an elastic body, resting on a rigid frictionless horizontal plane and
subject only to its mass forces.

The difficulty of the problem lies on the fact that one needs to determine which
points on the bottom surface of the body will be in contact with the plane (and what
is the deformation at the points which are not in contact).3

In a very linearized situation, Signorini’s problem is reduced to following a min-
imization problem in the half space U WD R3 \ ¹x3 � 0º,

min
²Z

U

jruj2 dx among u W U ! R satisfying u.x1; x2; 0/ � g.x1; x2/;

lim
x!1

u.x/ D 0

³
; (2.2)

1This extra relation comes from two considerations. First, the normal velocity of the inter-
phase, V , is proportional to the amount of heat absorbed by it (and used to melt the ice). In turn,
this flow of heat “entering” the interphase is, by Fourier’s law, proportional to the gradient of
temperature. Hence, we have jV j D C jr� j. Second, since � D 0 on the moving interphase, we
obtain that, on it, V and r� are parallel and .@t C V � r/� D 0. Combining the two previous
equations and choosing the physical units to make C D 1, we obtain Stefan’s condition.

2In the sense of Hadamard, i.e., given initial and boundary conditions, is there a unique
solution which depends continuously on the given data?

3If one knew, for instance, that all points are in contact, then the initial and final position of
all the boundary points of the body would be obviously determined, and resolving the body’s
deformation would be much simpler!
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Undeformed body in suspension Deformed body lying on irregular surface
(vertical deformation: red=max / white=min)

Figure 3. Signorini’s problem: an elastic body lying on a surface.

where g W R2 ! R is a smooth prescribed function satisfying lim supx!1 g < 0.
This problem is often called the thin obstacle problem and has other applications as
well, such as in the modeling of semipermeable membranes. See [5, 13, 22, 38] and
references therein for more information on this problem.

The model (2.2) can be used when the bottom surface of the (undeformed) elastic
solid is a small perturbation of a horizontal plane. In order to derive it more easily,
let us consider the following variant of the problem: Assume that the bottom surface
of the (undeformed) elastic solid is (exactly) a horizontal plane and that, instead, the
rigid surface on which the body will rest is a small perturbation of a horizontal plane.
The horizontal surface is then described as ¹x3 D "g.x1; x2/º, where g W R2 ! R is
some bounded function—which we assume to be smooth—and where " > 0 is small.
This situation is depicted in Figure 3. Let us suppose for simplicity that g D �1C Ng,
where Ng W R ! Œ0; 1� is smooth and compactly supported.

The undeformed body “suspended in air” corresponds to U WD R3 \ ¹x3 � 0º.
As we let it rest on the rigid surface, it experiences a deformation. For " small, hor-
izontal deformations may be neglected, and we can think that the displacements are
only vertical. More precisely, there is a function u W U ! R and a constant c 2 .0; 1/
such that the point of the solid before occupying the position .x1; x2; x3/ 2 U in the
suspended configuration, now occupies the position .x1; x2; x3 C "u/ in the resting
configuration. We are considering for simplicity the “boundary condition at infinity”
limx!1 u D �c 2 .�1; 0/, but it would not be difficult to consider other (more real-
istic) boundary conditions by modifying (2.2) accordingly.

The elastic energy of the deformed body is proportional (at leading order in ") toR
R2 jruj

2. Hence, up to replacing u and g by u � c and g � c, we obtain (2.2).
Now, although the minimization problem (2.2) leads to a nonlinear Euler–La-

grange equation, the fact that the (convex) Dirichlet energy is minimized inside the
convex set ¹u 2 H 1

0 .U / W u. � ; � ; 0/ � gº confers it a very nice mathematical struc-
ture. The study of Singorini’s problem was the starting point for the study of other
similar convex constrained minimization problems with free boundaries, initiating in
the 1960s the field of variational inequalities.
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2.4. The obstacle problem (1960s)

Conceived as a paradigmatic variational inequality, the obstacle problem originates in
the papers [8,30,32,35]. The initial motivation of the problem (which gives its name)
concerned Plateau’s problem with an obstacle. Namely, given a concave function  W

�! R, where � � R2 is a convex smooth domain, and some boundary values h W

@� ! R satisfying h �  j@�, find a surface with minimal area among all graphs
lying above the obstacle  and spanning the curve ¹.x; h.x// W x 2 @�º. In other
words,

min
²Z

�

p
1C jrvj2 dx among v �  satisfying vj@� D h

³
: (2.3)

Determining where the surface will be in contact with the obstacle is part of the
problem.

The obstacle problem is actually the “small perturbation version” of (2.3), namely,
the same minimization problem where

p
1C jrvj2 is replaced by 1

2
jrvj2. Com-

puting its first variation with respect to nonnegative perturbations, one finds that a
minimizer u must satisfy the variational inequalityZ

�

rv � r� dx � 0 in �; for all � 2 C1
c .�/ such that � � 0: (2.4)

Using this one can show that v is lower-semicontinuous, and hence the set ¹x 2 � W

v.x/ >  º, denoted by ¹v >  º for brevity, is open. Since inside the set ¹v >  º the
solution v can be slightly perturbed in both the upwards and downwards directions,
its minimality yieldsZ

�

rv � r� dx D 0 in �; for all � 2 C1
c

�
¹v >  º

�
: (2.5)

Considering the new function u WD v �  and integrating by parts in (2.4)-(2.5),
we obtain the PDE ´

�u D max.0;�� /;

u � 0;
(2.6)

which is also called the obstacle problem.
Although the original motivation of the obstacle problem does not seem very

deep, much more interesting applications have been found in the last decades. A
beautiful one concerns the configuration of a cloud of Coulomb charges (all with the
same sign), which are kept together by a confining electric potential. In the asymp-
totic regime corresponding to a very large number of charges, the potential generated
by them solves a problem of the form (2.6) (see for instance [43] or the introduction
of [49]). Other well-known applications are the dam problem (fluid filtration) and
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optimal stopping problems (for Finance and Probability). As we will see, the obsta-
cle problem in the particular case �� � 1 is also closely connected with Stefan’s
problem.

2.5. Almgren’s problem (1970s)

After their existence theory was established in the 1960s (see [20, 21]), the question
of (partial) regularity for oriented area-minimizing m-dimensional surfaces in RmCk

(more precisely integer rectifiable area-minimizing m-currents), in codimension k �

2 was a very natural one. For the sake of brevity, throughout this note we will use the
keyword Almgren’s problem to refer to this problem. It is a convenient and probably
fair name for the problem, since Almgren anticipated its mathematical significance
and studied it in depth during the last two decades of his life. His complete resolution
was published in a famous 950-page posthumous paper [4].

The details of Almgren’s proof are so intricate that its correctness was rather a
myth until De Lellis and Spadaro deciphered its key ideas and bridged them with
shorter (and clearer) arguments in a series of recent papers (see [17] and references
therein). In Section 5, we will describe (very roughly) some ideas from this mon-
umental proof, since they have clear parallels in our recent results for the Stefan
problem and the obstacle problem.

One aspect that makes codimension k � 2 area-minimizing surfaces particularly
delicate is the phenomenon of branching. As it was already known before the 1970s
(by a classical result of Wirtinger and Federer; see [16, Section 1.2] for details),
holomorphic “curves” are area-minimizing 2-surfaces in R4. For example, we can
consider S WD ¹.x3 C ix4/

2 D .x1 C ix2/
3º � C2 Š R4. Note that S is not smooth

at 0: it has a delicate type of singularity called branching singularity. While—as we
will see in Section 3—singularities in soap-film-like area-minimizing surfaces in R3

(or in integer rectifiable codimension 1 currents in Rn for all n) are always of conical
type, zooming in infinitely at a branching singularity, we always obtain a plane, just
as in smoothness points. However, near branching singularities, the surface is really a
multiple-valued graph over the tangent plane. As we will see, this feature makes the
analysis of the problem in codimension k � 2 much harder than in the case k D 1.

3. Classical regularity theory for Plateau’s problem (1960s)

In Section 2.1, we stated the three main questions (i)-(ii)-(iii) associated to Plateau’s
problem. Similar questions apply to all the problems considered here. Now, in the case
of Plateau’s problem, existence question (i) is very challenging, and the multiple (all
valid) answers to it obtained during the XXth century were celebrated breakthroughs
(see references in Section 2.1). However, the discussion of (i) does not reveal any
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parallelism between Plateau’s problem and the obstacle problem or Stefan’s problem.
For this reason (and also because it would take too much space), we will not discuss
(i) here and will focus on the regularity part: questions (ii) and (iii).

Although we do not discuss (i), it is perfectly possible to intuitively understand
most of the main ideas in the regularity theory for Plateau’s problem without giving
a completely rigorous definition of “area-minimizing surface”. For our purposes, it is
enough to think of physical soap films.

In the rest of the section, � will denote some prescribed (reasonably regular) con-
tour. We postulate the existence of an “area-minimizing surface” (a physical soap
film) spanning � , which we denote by S . We review next some of the main ingredi-
ents of the regularity theory for such S .

3.1. Minimal surface equation (1760s)

As found by Lagrange in the 1760s, smooth pieces of an area-minimizing surface
must have zero mean curvature. As a consequence, if a piece of the surface can be
represented by a C 1 graph, then it solves a uniformly elliptic equation with contin-
uous coefficients. Then, linear methods in elliptic PDE (Schauder estimates) can be
used to show that the piece of surface must be analytic.

3.2. De Giorgi’s “flatness implies smoothness” principle (1961)

One of the most fundamental results for area-minimizing surfaces is the following
theorem of De Giorgi [14] (see also [31]). We give a slightly modified version of
statement (not involving the excess) due to Savin [46].

Theorem 1 ([14]). There exists "ı > 0 dimensional such that the following holds.
Assume that S has minimal perimeter inside B1 (i.e., the curve � which the soap
film S spans does not intersect B1) such that S \ B1 � ¹jxnj � "ıº. Then, @S is an
analytic graph in B1=2.

It will become clear in the next subsections that this theorem is a fundamental
pillar of the theory. Let us now recall the heuristic behind its proof: let B 0

1 � R2 be
the unit ball and suppose that S D ¹x3 D "g.x1; x2/º with " > 0 tiny and g W B 0

1 ! R
bounded. Then the area of S is given byZ

B0
1

p
1C "2jrgj2 dx1 dx2 D � C "2

Z
B0

1

jrgj2

2
dx1 dx2 CO."4/:

Hence, for " # 0, the fact that x3 D "g.x1; x2/ has minimal area should imply that
g (which is nothing but the x3 coordinate on S , as a function of x1, x2, and divided
by ") must be, approximately, a minimizer of

R
B0

1

jrgj2

2
dx1 dx2. In other words, g is
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approximately harmonic.4 As a consequence (of this happening at every scale and
near every point of S ), the smoothness of the limiting harmonic functions as " # 0 is
inherited by S , which can be shown to be aC 1;˛-graph. The minimal surface equation
then implies its analyticity.

3.3. Fleming’s monotonicity formula and tangent cones (1962)

A very useful consequence of the minimality of S is the so-called “monotonicity
formula”. Fix x 2 S . For r > 0, let Br.x/ � R3 denote the Euclidean ball of radius r
centered at x. Given r > 0 such that Br.x/ \ � D ¿ (recall that � is the contour
spanned by S ), let us consider the dimensionless quantity

ax.r IS/ WD
1

r2
Area

�
S \ Br.x/

�
: (3.1)

Then, ax.r IS/ is monotone nondecreasing in r (this was first shown in [21]).
To prove the monotonicity formula (at x D 0), one compares the area of S in

Br.0/ with the area of “competitors” St obtained glueing the rescaled surface tS for
some t 2 .0; 1/ inside Btr.0/ with a “conical interpolation” ¹x 2 Rn W

rx
jxj

2 Sº in the
annulus Br n Btr (note that in this way St coincides with S on @Br ).

One can show that ax.r IS/ is constant between r D 0 and r D R if and only if
S is conical inside BR, that is, if t .S \ BR/ D S \ BtR for all t 2 .0; 1/.

The previous observation gives essential information on area-minimizing sur-
faces: they must have conical structure around each point “when looked at the micro-
scope”. More precisely, let us consider the “zoomed-in” (around x) surfaces Sx;r WD
1
r
.S � x/ for r > 0. For any fixed R > 0, a0.RI S

x;r/ D ax.Rr I S/ is monotone
increasing (in r) and converges to the constant ax.0

C; S/ as r # 0. Hence we have
0 � a0.RIS

x;r/ � a0.0
CISx;r/ # 0 as r # 0. As a consequence, one can prove that

the surface Sx;r must be closer and closer to some cone inside any fixed ball BR, as
r # 0. This crucial property was first noticed in [28].

3.4. The classification of minimal cones: Taylor, Almgren, and Simons

By the discussion in the previous subsection, for any given x 2 S , the “zoomed-in”
surface Sx;r \ B1 is arbitrarily close to some area-minimizing cone C , provided that
we take r small enough (possibly depending on x). This leads us to the question:
what are the possible area-minimizing cones C? The answer depends on the type of
objects which we want to admit as “surfaces”. As proven in [53], in the case of “soap-
film-like minimal surfaces” (Reifenberg [41] or Almgren [3]), there are exactly three

4The actual proof of this kind of statement is, of course, more complicated than that: to start
with S does not need to be a graph, so first, one must suitably approximate it by graphs, and
then one needs to understand how to transfer the regularity of harmonic functions to S . But this
gives a good enough idea on how the proof works.
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'

Figure 4. Possible singularities in soap-film-like minimal surfaces: Y type (left) and tetrahedron
type (right).

possibilities: a plane, three half-planes meeting in Y shape with angles of 120ı, or the
cone generated by the edges of a regular tetrahedron centered at 0 (see Figure 4).

An easy computation shows that

a0.r IC/ �

8̂̂<̂
:̂
`1 W � � 3:1 if C is a plane;

`2 WD 3�=2 � 4:7 if C is of Y type;

`3 WD 3 arccos.�1=3/ � 5:7 if C is of tetrahedron type:

(3.2)

Hence, thanks to Fleming’s monotonicity formula, for every point x in a soap film
S (in R3), zoomed-in surface Sx;r (r tiny) must be close to one of the previous three
possible cones. Moreover, the type of cone is determined by the value of ax.0

CIS/,
which necessarily belongs to ¹`1; `2; `3º, as (3.2).

Based on our experience when observing physical soap films, we would expect
that the zoomed-in surfaces should look like a plane around “most points”, but still
one important idea is still needed to show this (see next subsection). Still, we can
already start to devise the power of De Giorgi’s theorem and Fleming’s monotonicity
formula combined. They imply that for any given x 2 S , if there exists r > 0 such
that ax.r IS/ < `2, then S will be analytic in some neighborhood of x.5 Such points
x are called regular points. All other points are called singular points.

Let us close the subsection with an important remark: if instead of soap-film-like
minimal surfaces we had considered boundaries of sets of minimal perimeter (resp.
integer rectifiable area-minimizing 2-currents) in R3, then the only possible minimal
cones would have been the planes. In particular, De Giorgi’s theorem implies that
such notions of area-minimizing surfaces in R3 are analytic unconditionally.

5Indeed, since ax is monotone and ax.0
C; S/ must take one of the three values in (3.2),

the assumption ax.r; S/ < `2 implies that the value at 0C can only be � . Hence for small
enough scales, Sx;r will be arbitrarily close to a plane, and then De Giorgi’s theorem implies
its analyticity.
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On the other hand, the same strategy—described here for surfaces in R3—works
for hypersurfaces in Rn. In that case, Almgren [2] for n D 4 and Simons [51] for
5 � n � 7 proved that if C is an area-minimizing (hyper-)cone in Rn and C \ Sn�1

is smooth, then C must be a hyperplane. This classification result is important because
one can deduce from it that boundaries of sets of minimal perimeter (resp. inte-
ger rectifiable area-minimizing .n � 1/-currents) are analytic in dimensions n � 7.
This dimension 7 is sharp since Simons’s cone ¹x2

1 C x2
2 C x2

3 C x2
4 D x2

5 C x2
6 C

x2
7 C x2

8º is an example of area-minimizing surface (with respect to the two previous
notions) in R8, as shown in [7].

3.5. Federer’s dimension reduction principle and partial regularity theorems

In order to complete our heuristic overview of the classical regularity theory for
area-minimizing surfaces in R3, a last key idea is missing: the dimension reduction
principle. The first observation we need to make is that the map m W S ! ¹`1; `2; `3º

defined as
m.x/ WD ax.0

C; S/ D inf
®
ax.r IS/ W r > 0

¯
will be upper-semicontinuous, since it is an infimum of continuous functions. As a
consequence, the set of tetrahedron type singular points X3 WD ¹m D `3º is closed.

In order to glimpse how Federer’s dimension reduction argument works, let us
show that X3 is discrete. Indeed, assume by contradiction that xk 2 X3 converges to
x1 2 Rn n .

S
k¹xkº [ �/. Since X3 is closed, x1 belongs to X3.

Now given " > 0 arbitrarily small, we can choose r" > 0 (depending on x1) such
that 0 � ax1

.r"; S/ � `3 < "=2. On the other hand, since ax.r"; S/ is continuous in
x, there exist %" 2 .0; r"/ such that 0 � ax.r"IS/� `3 < " for all x 2 X3 \B%"

.x1/.
Since xk ! x1, for k sufficiently large, we will have rk WD jxk � x1j < %".

Let us now zoom in: consider S�
k
WD Sx1;rk and define x�

k
WD .xk � x1/=rk .

Note that, by definition, x�
k

belongs to S2. By scaling, we have a0.1IS
�
k
/Dax1

.rkIS/

and ax�
k
.1IS�

k
; / D axk

.rkIS/. Hence, by definition of %",

`3 D a0.0
C
IS�

k / � a0.S
�
k ; 1/ D ax1

.rkIS/ < ax1
.%"IS/ � `3 � "

and

`3 D ax�
k
.0CIS�

k / � ax�
k
.1IS�

k / D axk
.rkIS/ < ax1

.%"IS/ � `3 � ":

Hence choosing " sufficiently small (and k sufficiently large), we find that

� S�
k

will be arbitrarily close to a cone of tetrahedron type (centered at 0),

� S�
k

will be arbitrarily close to a cone about the point x�
k
2 S2.

This gives an obvious contradiction since the cone of tetrahedron type is clearly not
a cone about any of its points in S2.
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A refined version of the same type of argument allows one to show that singu-
lar points of Y type have Hausdorff dimension6 at most one.7 This type of argument
is often called Federer’s dimension reduction and works in several contexts where
“zoomed-in objects” have some conical structure. The basic principle can be summa-
rized as follows: ifX � Rn is at the same time a cone about 0 and about another point
x� ¤ 0, then X must be translation invariant in the direction x� (since tX D X and
t .X � x�/ D X � x� for all t > 0 imply that X � .t � 1/x� D X ).

4. Stefan’s problem and the obstacle problem during 1970s–2000s

4.1. Duvaut’s transformation

From the XIX century formulation of the Stefan problem explained in Section 2.2, it
was not even clear if the problem was well posed. A key development was obtained in
1973 by Duvaut [19], who revealed a hidden convex structure in the problem: recall
that � denotes the temperature and consider the transformation

u.x; t/ WD

Z t

0

�.x; �/ d�:

Duvaut showed that the new function

u W � � RC
! RC

satisfies
@tu ��u D ��¹u>0º;

u � 0;

@tu � 0;

(4.1)

where �A denotes the characteristic function of the set A.
By the strong maximum principle, if u is Duvaut’s transformation of a tempera-

ture solving the Stefan problem, then it also satisfies the strict monotonicity property

@tu > 0 in ¹u > 0º: (4.2)

This seemingly qualitative property was never used in the regularity theory developed
in the 1970s. Still, we state it here because it plays an important role in the recent
results.

6We recall that a subset X � Rn is said to have Hausdorff dimension ˇ 2 Œ0; n� if for
all ˇ0 > ˇ and for all ı > 0 there exist countably many balls Bri

zi covering X such thatP
i .ri /

ˇ < ı. One can easily check from this definition that the Hausdorff dimension of an
m-plane in Rn is m.

7Actually, Y points form analytic curves by the deep results in [34, 53].
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Since we can easily recover � from u by computing its time derivative, we see
that (4.1) is an equivalent formulation of the Stefan problem. The new formulation
is useful because (4.1) enjoys a convex structure: it is the L2-gradient flow8 of the
convex functional

J.u/ D

Z
�

�
1

2
jruj2 C max.0; u/

�
dx: (4.3)

As a consequence, questions such as the well-posedness of solutions become much
simpler in the new formulation.

4.2. Stefan’s problem as a parabolic obstacle problem

Let us notice that stationary (constant-in-time) solutions of (4.1) satisfy exactly the
obstacle problem (2.6) in particular case �� � 1, that is

�u D �¹u>0º;

u � 0:
(4.4)

In this respect, (4.1) is a parabolic version of the obstacle problem (4.4). Solutions
to (4.4) are critical points (and hence minimizers, since the functional is convex)
of J.u/. Note that such constant-in-time solutions of (4.1) are never solutions of
the Stefan problem (never arise as Duvaut transforms of some temperature) since,
for instance, they do not satisfy (4.2). Still, understanding the regularity of the free
boundaries for the obstacle problem (4.4) is a logic first step before dealing with
time-dependent solutions.

4.3. Obstructions to regularity of the free boundary:
Schaeffer’s examples (1977)

To study (4.4), a first thing one might try is to construct some explicit solutions. In
most simple cases, the obtained free boundaries are smooth.

However, it is possible to find singular free boundaries even in two dimensions, as
done by Schaeffer in [48]. He used complex variables to construct solutions of (4.4)
in R2 in which the free boundary has a cusp represented by the curve (Figure 5, left)

x2 D ˙ x
2kC 1

2

1 ; 0 � x1 � 1;

8The solution u satisfies, for infinitesimal � > 0,

u.�; t C �/ D arg min
�
J.v/C

1

2�
kv � u.�; t /k2

L2.�/

�
C o.�/;

where the minimum is among functions v W �! Rn satisfying the prescribed boundary condi-
tion for u at time t C � , i.e., v D u.�; t C �/ on @�.
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Figure 5. Schaeffer’s examples of singular free boundaries.

where k 2 N. In this family of examples, the set ¹u > 0º is actually the image of
¹jzj � 1; Imz > 0º under the conformal mapping f .z/D z2 C i z4kC1, and u satisfies
near the origin

u.z/ �
x2

2

2
C ck Im

�
z2kC 3

2

�
C � � � ;

where z D x1 C ix2.
Another family type of singularities (two-sided cusps) was also constructed by

Schaeffer (Figure 5, center). In this case, the free boundary is represented by the
curves

x2 D ˙jx1j
2k; �1 � x1 � 1:

In the case of general smooth concave obstacles  , Schaeffer noticed that solu-
tions to (2.6) may even have infinitely many cusps (Figure 5, right).

4.4. Caffarelli’s breakthrough (1977)

It was not until 1977, with the groundbreaking paper of Caffarelli [9] (and with the
paper [33]), that the “modern” regularity theory for (4.1) and (4.4) was initiated.
Since, as explained before, (4.4) is a particular case of (4.1)—that of constant-in-
time solutions—Caffarelli’s results described next apply at the same time to both the
obstacle problem and Stefan’s problem.

The approach of Caffarelli to the regularity of free boundaries of (4.1)—or of
(4.4)—has some rough similarities with the regularity theory of area-minimizing
hypersurfaces described in Section 3. In Caffarelli’s regularity theory (as in area-mini-
mizing surfaces), blow-ups (limiting zoomed-in objects) are central actors. Informally
speaking, Caffarelli looks at points on the free boundary through the microscope, and
infers “macroscopic properties” of the free boundary from the “microscopic” ones.

For (4.1) the natural scaling of the equation suggests considering, for given .xı; tı/
2 @¹u > 0º and r > 0,

uxı;tı;r.x; t/ WD
1

r2
u.xı C rx; tı C r2t /:
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Fi g u r e 6. Ill ustr ati o n of t h e di c h ot o m y i n C aff ar elli’s t h e or e m.

It is e as y t o s e e t h at u x ı ;tı ; r is a g ai n a s ol uti o n of (4. 1 ). Bl o w- u ps ar e d e fi n e d as

a c c u m ul ati o n p oi nts as r # 0 of u x ı ;tı ; r .

T h e m ai n r es ult fr o m C aff ar elli [ 9 ], c o m bi n e d wit h t h e f u n d a m e nt al a n al yti cit y

r es ult f or C 1 fr e e b o u n d ari es of Ki n d erl e hr er a n d Nir e n b er g [3 3 ], is st at e d n e xt. ( S e e

Fi g ur e 6 f or a n ill ustr ati o n of t h e r es ult.)

T h e o r e m 2. L et R n a n d l et u W . 0; T / ! R b e a s ol uti o n of (4. 1 ). F or e v er y

. x ı ; tı / b el o n gi n g t o t h e fr e e b o u n d ar y @ ¹ u > 0 º , o n e of t h e f oll o wi n g t w o alt er n ati v es

h ol ds:

( a) u x ı ;tı ; r ! 1
2
.m a x . 0; e x // 2 as r # 0 , f or s o m e e 2 S n 1 ; a n d t h e fr e e b o u n d-

ar y is a ( m o vi n g) s m o ot h e m b e d d e d . n 1/ -s urf a c e n e ar . x ı ; tı /;

( b) u x ı ;tı ; rk ! 1
2
x A x f or s o m e r k # 0 a n d s o m e n o n n e g ati v e d e fi nit e m atri x

A wit h tr a c e. A/ D 1 ; a n d t h e fr e e b o u n d ar y h as a c us p-li k e si n g ul arit y at

. x ı ; tı /.

B esi d es t h e i d e a of c o nsi d eri n g bl o w- u ps, t h e m et h o ds us e d b y C aff ar elli t o pr o v e

t his r es ult w er e r at h er diff er e nt t h a n t h os e e m pl o y e d i n ar e a- mi ni mi zi n g s urf a c es.

F or i nst a n c e, i n C aff ar elli’s a p pr o a c h, a c o n v e xit y pr o p ert y of bl o w- u ps is cr u ci all y

us e d i n its cl assi fi c ati o n, a n d his m et h o ds “ b as e d o n t h e m a xi m u m pri n ci pl e ” c a n

b e a p pli e d t o m or e g e n er al n o n- v ari ati o n al pr o bl e ms, s u c h as f ull y n o nli n e ar o bst a-

cl e pr o bl e ms. F or a s elf- c o nt ai n e d o v er vi e w of C aff ar elli’s 1 9 7 7 pr o of, w e r ef er t h e

r e a d er t o [2 3 ].
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4.5. Weiss’ epiperimetric inequality approach (1999)

In the paper [54], Weiss introduced a new monotonicity formula for the obstacle
problem, which is in many respects analogous to the Federer–Fleming monotonicity
formula for area-minimizing surfaces. Given a solution u of the obstacle problem
(4.4), and xı 2 @¹u > 0º, he introduced the adjusted energy (recall that the functional
J was defined in (4.3))

Wxı
.r; u/ D

1

rnC2
J
�
uIBr.xı/

�
�

1

rnC3

Z
@Br

u:

He proved that Wxı
.r; u/ is monotone nondecreasing in r , and constant if and only if

u is 2-homogeneous (i.e., u.tx/ D t2u.x/ for all t > 0).
Similarly to what happens with area-minimizing surfaces, this monotonicity for-

mula follows from comparing the energy of the solution J of u in Br with the energy
of its natural competitor (defined for given t 2 .0; 1/)

Qu.x/ WD

8<: jxj2

r2 u
�

rx
jxj

�
x 2 Br n Btr ;

t2u.tx/ x 2 Btr :

Using Weiss’ monotonicity formula, one can show that blow-ups in the obstacle
problem must be 2-homogeneous. Similarly, as we explained with axı

.r; S/ in the
case of Plateau’s problem,Wxı

.0C; u/ can only take two different values: jB1j

8.nC2/
and

jB1j

4.nC2/
. The lowest possible value defines regular points, while the higher value is

attained at singular points.
The paper [54] was the first to introduce methods for the obstacle problem which

had a very strong parallelism with those for area-minimizing surfaces (e.g., an
“epiperimetric inequality”), reinforcing the connection between the two theories.

4.6. First regularity results on the singular set and open questions

After the results of Caffarelli [9], a natural question was as follows: what else can be
said about the singular set?

Besides some first results in two dimensions [11], there was no real progress on
this question until 1991, when Sakai [44, 45] obtained a very precise description of
singularities for the obstacle problem (4.4) in R2. He essentially proved that the cusps
of Schaeffer (and small analytic perturbations of them) are the only ones which may
appear for (4.4) in R2.

In dimensions n � 3, where complex analysis is of no use, the first results on
the singular set were established again by Caffarelli in 1998 [10] (using the Alt–
Caffarelli–Friedmann monotonicity formula) and by Monneau in 2003 [37] (using a
new monotonicity formula based on the Weiss one). They established that a solution
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u of (4.4) in Rn (n � 3) must satisfy at any singular point xı,

u.xı C x/ D
1

2
x � Ax C o

�
jxj2

�
: (4.5)

As a consequence of (4.5) and Whitney’s extension theorem, one obtains that the
singular set enjoys spatial C 1-regularity, in the sense that they can be covered by
.n � 1/-manifolds of class C 1. Still, this result seems rather weak in the sense that
it does not prevent the singular set from being as large as the regular part of the free
boundary. In this direction, the following conjecture holds.

Conjecture 3 (Schaeffer [47]). Generically, solutions of the obstacle problem have
smooth free boundaries.

In other words, the conjecture states that, generically, the free boundary has no
singular points. Here the word “generically” must be interpreted as “for most bound-
ary values”. Until very recently (see Section 6), Conjecture 3 was only known to hold
in the plane R2, a result of Monneau [37].

In the evolutionary case, the “parabolic analog” of Monneau’s monotonicity for-
mula [37] for solutions to (4.1) and its consequences were investigated in [6, 36].

5. Almgren’s problem and the thin obstacle problem during
1970s–2000s

5.1. Branching singularities of holomorphic curves

As explained in Section 2.5, holomorphic curves such as S1 WD¹w2Dz3º�C2ŠR4,
where w D x3 C ix4 and z D x1 C ix2, are examples of area-minimizing 2-surfaces
in R4. In the case of S1, we can write x3 and x4 as “two valued functions” of x1 and
x2: since � D

p
z3 involves a complex square root, there are two possible values of

.x3; x4/ for each pair .x1; x2/.
Let us consider two further examples: S2 WD ¹.w � z2/2 D z5º and S3 WD

¹.w � z2 C z3/3 D z11º. Both have branching singularities at 0, but they look even
more complicated than the case of S1. In order to understand the singularity of S2, we
need to proceed as follows: we first consider the change of variables �.z;w/Dw� z2

and notice that the coordinates .z; �/ are diffeomorphic to .z; w/ near the origin. In
the new coordinates, we have S2 WD ¹�2 D z5º, so we see that the singularity has
again two branches (from the complex square root involved in � D

p
z5). Only after

we rectify the coordinates, we can clearly see the structure of the branching singular-
ity of S2. Something similar happens for S3. In that case, the new coordinates would
be �.w; z/D w � z2 C z3 and the model singularity ¹�3 D z11º, with three branches
from 3

p
� .
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5.2. Almgren’s regularity theorem

In [4], Almgren established the following theorem.

Theorem 4. Let S be an oriented area-minimizing surface9 of dimension n � 2 in
RmCk , where k � 2.

Then, S is an analytic submanifold in RmCk n� , where � denotes the boundary10

of S , with the exception of a closed set Sing.S/ of dimension at most m � 2 (discrete
if m D 2).

The dimensional estimate for the singular set is optimal, as shown by holomorphic
curves with branching points.

5.3. Q-valued harmonic functions, frequency formula

In Section 5.1, we saw examples of branching singularities in explicit holomorphic
curves. Let us explain next in what sense general oriented area-minimizing surfaces
resemble holomorphic curves.

Suppose that S � R4 is any area-minimizing oriented 2-surface11 and that 0 is
a non-smoothness point on it (e.g., an integer rectifiable area-minimizing current).
Similarly, as in Section 3.3, a0.r IS/ is monotone nondecreasing and the zoomed-in
surfaces S0;r converge towards a cone C , now a 2-surface in R4. It is not difficult to
show that planes are the only possible area-minimizing oriented 2-cones in R4. The
difficulty now is that C could be a plane with “multiplicity two or higher”; in other
words, we could have a0.0

CIS/ D Q� , for some Q � 2 (as it happens in branching
singularities of holomorphic curves). Note that this cannot happen for codimension 1
surfaces, thanks to De Giorgi’s theorem.

What can one do at those “multiplicity points”? Assume first that, up to a rotation,
S0;r is close to the plane ¹x3 D x4 D 0º. If S0;r happened to be (locally near 0) a
very flat multiplicity one graph xi D "fi .x3; x4/, i D 1; 2, then its surface area would
be given by an integral of the typeZ q�

1C "2jrf1j
2
��
1C "2jrf2j

2
�
� "4.rf1 � rf2/2 dx1 dx2

� � C
"2

2

Z �
jrf1j

2
C jrf2j

2
�
dx1 dx2:

Hence, both f1 and f2 would need to be approximate minimizers of the Dirich-
let energy! Something similar happens when f D .f1; f2/ is not a single-valued

9Rigorously, assume that S is an integer rectifiable area-minimizing current.
10More precisely, � is the support of the boundary of the current S .
11Integer rectifiable current.
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map from R2 ! R2, but a multiple-valued one. More precisely, the pair of func-
tions f .x1; x2/ do not “return” a point in R2, but a Q-tuple of them: all the pairs
.x3="; x4="/ for which .x1; x2; x3; x4/ belongs to S . Still in this case, the area would
be given by an analogous expression as above. And, as before, the fact that the S is
area-minimizing should imply that, as "# 0, the multiple-valued functions are approx-
imate minimizers of the Dirichlet energy—appropriately generalized to the context of
multiple-valued functions.

The Q-valued Dirichlet minimizers f W Rm ! .Rk/Q=�, where � identifies
Q-tuples of points in Rk which are equal up to reordering, are a main object in
Almgren’s theory. Interesting minimizers such as x3 C ix4 D

p
.x1 C ix2/3 have

branched structure, where the multiple graphs are “knotted” to one another. In Alm-
gren’s theory, the singularities of minimal surfaces are shown to correspond to the sin-
gularities of multiple-valued minimizers of the Dirichlet energy, also called multiple-
valued harmonic functions.

A crucial ingredient in Almgren’s theory is the frequency formula: if f W Rm !

.Rk/Q=� f .xı/ D 0 is Dirichlet-minimizer, then the dimensionless quantity

�xı
.r If / WD

r
R

Br .xı/
jrf j2R

@Br .xı/
f 2

(5.1)

is monotone nondecreasing in r . Moreover, �xı
.r I f / � � for some � � 0 (�xı

is constant in r) if and only if f .xı C � / is �-homogeneous. As a consequence
of the frequency formula, whenever f is a multiple-valued harmonic function and
f .xı/ D 0, “blow-up” sequences

f xı;rk WD
f .xı C rk � /�

r1�m
R

@Br
f 2

�1=2
; rk # 0;

converge (up to subsequences) towards some homogeneous multiple-valued harmonic
function f �.

5.4. Dimension reduction and center manifold

With the frequency formula at hand, we can explain (roughly and naively) some other
key ideas in the proof of Theorem 4, which will later have parallels in the obsta-
cle problem and Stefan’s problem. Assume that S is a minimal surface (current) of
dimension m inside RmCk that has a singular (or non-smoothness) point at 0. As
discussed before, near 0, S will be well approximated by a multiple-valued Dirichlet
minimizer f W Rm ! .Rk/Q=�, where Q 2 N is given by Q D a0.0

CI S/=jBn
1 j

(here jBm
1 j denotes the m-dimensional volume of the unit ball of Rm).

Let us only discuss for simplicity the case m D k D 2. In that case, we want to
show that singular points are isolated. So, assume by contradiction that there was a
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sequence of singular points xk ! 0 and let rk WD jxkj be their norms. Consider the
blow-up sequence f 0;rk , which will converge (up to a subsequence) towards some
�-homogenous (possibly multiple-valued) function f �, where � D �0.0

CIf /. Now
f �

W R2 ! .Rk/Q=� must be of the form f .r cos �; r sin �/ D r�g.�/, where g

is some Q-valued curve. The fact that f is harmonic (Dirichlet minimizer) imposes
very strong restrictions on g (e.g., locally each branch g W R ! Rk must satisfy the
ODE g00 D �2g). This strong rigidity helps in classifying all possibilities for f �, and
one can show that it must be exactly given by a holomorphic curve, e.g.,

x3 C ix4 D .x1 C ix2/
3 or .x3 C ix4/

Q
D .x1 C ix2/

QC1:

Now, if f � has a (multiplicity Q) branching singularity at 0, then—since we
now know that f � is a homogeneous holomorphic curve—it must be isolated. Hence
f � must be smooth away from 0. This fact—thanks to Allard’s version of Theorem 1,
which only applies to multiplicity one points x 2 S (i.e., ax.0

CIS/=� D 1)—implies
that S will not have any other singularity in a (sufficiently small) neighborhood of 0.

Still, there is the possibility that—as it happens in the examples S2 and S3 given
from Section 5.1—, f � may be a harmonic polynomial. In such cases, the branching
singularity will only show itself after we “rectify” f , subtracting from it the (single-
valued) harmonic polynomial P , which “best fits” f near 0. This idea leads to the
notion of center manifold: in order to see the branching structure, we must consider
the deviation of S , not from the tangent plane, but from the “best fitting” smooth
single-valued minimal graph near 0. The frequency function on f � P—more pre-
cisely �0.r If � P /—is also monotone, and .f � P /.rk � / divided by its L2 norm
on @B1 converges to some new homogeneous blow-up f �. Now, by construction f �

cannot be single-valued, so it must have a branching singularity.
In order to prove the result in higher dimensions, we need an appropriate variant

of Federer’s dimension reduction principle (previously discussed in the context of
area-minimizing surfaces in R3). The dimension reduction is based on the following
simple property: if a function f W Rm ! Rk is at the same time �-homogeneous with
respect to 0 and �-homogeneous with respect to xı ¤ 0, then necessarily � D � and
f is translation invariant in the direction xı. A similar property holds for multiple-
valued functions f .

5.5. Almgren’s methods applied to Signorini’s problem

In [5], the authors devised how to apply the methods introduced by Almgren in
the context of area-minimizing currents to Signorini’s problem. This leads to a very
important progress, as described next.

In order to get rid of superfluous technical details, instead of (2.2), the authors
consider the “cleaner” zero obstacle problem: Let n � 2, and consider u W B1 ! R
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Figure 7. From Signorini’s problem to “2-valued harmonic functions”.

(B1 � Rn is the unit ball) satisfyingZ
B1

jrvj2

�

Z
B1

jruj2 for all v2H 1.B1/ with v�0 on ¹xn D 0º and vD u on @B1: (5.2)

A key contribution of [5] was to show that functions satisfying (5.2) behave essen-
tially identically to Dirichlet-minimizing 2-valued functions. As a matter of fact, for
n D 2, explicit examples of minimizers to (5.2) can be obtained, and they are con-
spicuously related to the examples of branching singularities of holomorphic curves
discussed before. For example, a very important explicit solution of (5.2) for nD 2 is
u.x1; x2/D Re

p
.x1 C ix2/3, where now

p
� selects only the principal branch. This

is clearly related to the branching singularity .x3 C ix4/
2 D .x1 C ix2/

3.
Heuristically, if u is a minimizer of (5.2), then the 2-valued function .u.x/;�u.x//

can be thought of as “2-valued harmonic function” (see Figure 7).
Among the multiple analogies, the frequency formula �xı

.r; u/—defined exactly
as in (5.1) replacing f with u—is also monotone nondecreasing for every point
such xı 2 ¹xn D 0º \ ¹u D 0º. The main contribution [5] was to show that if � WD

�xı
.r; u/ < 2 at some free boundary point xı 2 @¹u > 0º \ ¹xn D 0º, then either

� � 3=2 or � � 2. Moreover, they proved that the set of points where the first alter-
native holds is open and is an .n � 2/-manifold of class C 1 inside ¹xn D 0º.

6. The singular set in the obstacle problem (2017–2021)

In 2015, more than 30 years after Caffarelli’s breakthrough [9] for the obstacle prob-
lem, the following important questions remained essentially open in dimensions n �

3:

� Can we obtain some precise description of singularities in the obstacle problem?

� Is the singular set “small” in some sense? How small?
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As we discussed before, satisfactory answers to these questions had been only
obtained (through complex variable methods) in dimension n D 2 by Sakai [44, 45].
Sakai’s methods did not work in higher dimensions, and improving Caffarelli’s result
required new ideas.

6.1. A finer analysis of the singular set

The first new result in this direction for n � 3 was established by Colombo, Spolaor,
and Velichkov in [12]. By refining the methods of Weiss [54], they proved that at
every singular point xı, the expansion

u.xı C x/ D
1

2
x � Ax C !

�
x
�
: (6.1)

holds with a quantitative logarithmic estimate for the error j!.x/j �C jxj2.log jxj/�
 ,
where 
 > 0. Caffarelli in [10] had obtained a qualitative control j!.x/j � o.jxj2/

using the Alt–Caffarelli–Friedmann monotonicity formula—a different proof of the
same qualitative estimate was given later in [37]. Sakai had found in [44,45] the (opti-
mal) rate j!.x/j � C jxj3 in dimensions nD 2. In the proofs of [12], one can glimpse
some delicate obstructions to obtaining such a strong result in dimensions n � 3,
although it was not clear if they were only of technical nature (no counterexample
was known).

Independently and with different methods, Figalli and the author proved in [27]
the following:

Theorem 5 ([27]). Let u be a solution of the obstacle problem (4.4) in a ball of Rn.
For all singular points outside some “anomalous” (relatively open) set of Hausdorff
dimension � n � 3, (6.1) holds with j!.x/j � C jxj3.

Moreover, there exist examples in R3 of isolated singular points for whichˇ̌
!.x/

ˇ̌
� jxj2C" as jxj ! 0 for all " > 0:

The previous theorem suggests that one might be able to give a much more precise
description of the solutions than Caffarelli’s near “most” singular points. However,
not for all of them: the existence, already in R3, anomalous singular points for which
j!.x/j � jxj2C" for all " > 0 is to be kept in mind as a warning of the arduousness
of the problem.

The methods introduced in [27] are strongly connected with Almgren’s ones for
minimal currents. The link between the two (a priori unrelated) problems, found in
[27], is as follows. Let u be a solution of the obstacle problem (4.4) in B1 � Rn

with a singular point at 0. In other words, assume that (6.1) holds at xı D 0 with
!.x/ D o.jxj2/. We then consider w.x/ D u.x/ � 1

2
x � Ax. In [27], it was found
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that (surprisingly!) �0.r Iw/ is monotone increasing in r , where �0 is, as before,
Almgren’s frequency formula. This property allows one to study the so-called second
blow-ups, namely accumulation of points of the type

q.x/ D lim
rk!0

w.rx/

w.rk � /




L2.@B1/

:

Thanks to the monotonicity of � onw, such second blow-ups q are �-homogeneous—
that is q.tx/ D t�q.x/ for all t � 0—where � D �0.0

CIw/. Moreover, in [27], it is
found that, outside of an n � 3 dimensional set of singular points, the second blow-
ups have homogeneity � � 3 and are either harmonic or solutions of the thin obstacle
problem (5.2). This allows for a full classification of possible second blow-ups in
two dimensions, and in higher dimensions, allows us to perform dimension reduction
arguments à la Federer based on the frequency, similarly to Almgren’s work for area-
minimizing currents in codimensions � 2.

Another insightful result from [27] is that, for all singular points outside some
.n � 2/-dimensional set we have, after rotation, the improved expansion

u.xı C x/ D
1

2
x2

n C xnQ.x/C o
�
jxj3

�
; (6.2)

where Q is some quadratic polynomial satisfying �.xnQ/ � 0. By analogy with
Almgren’s center manifold, this invites to subtract the polynomial xnQ in order to
investigate higher order expansions (this turned out to be a quite delicate task, and the
missing tools in order to perform it were only developed later in [25, 29]).

6.2. Generic regularity: Schaeffer’s conjecture in low dimensions

Building on the methods of [27], we could recently obtain a positive answer to (Scha-
effer’s) Conjecture 3 in low dimensions:

Theorem 6 ([25]). Conjecture 3 holds true in R3 and R4.

More precisely, we can consider 1-parameter monotone (and continuous) families
of boundary data g W @�� .0; 1/! RC, where�� Rn is a bounded smooth domain,
satisfying g.xI � 0/ � g.xI �/ � c.� 0 � �/ for all 0 < � < � 0 < 1. We let u� be the
solution of (4.4) with boundary data u� D g. � I �/ on @B1. The“generic regularity”
question we want to understand can be phrased as follows: if we choose � 2 .0; 1/

randomly (with a uniform distribution), will the free boundary of u� be analytic with
probability one? We can answer positively this question in dimensions 3 and 4 (the
positive answer in two dimensions had already been obtained by Monneau in [37] for
g.xI �/ D g.x/C � ).

Our strategy towards this theorem is reminiscent of Sard’s theorem in analysis.
We aim to prove that the set of “singular values” � 2 .0; 1/ has measure zero by
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improving, at most singular points, the order of approximation of certain polynomial
expansions for u� . This is a delicate and long proof because the singular set needs to
be split into several different subsets and, in each of them, the corresponding set of
singular values has measure zero for a different reason.

In order to prove the conjecture in four dimensions, we need to consider the set
of all points xı 2 �, which are singular for some of the solutions u� in the family.
We then show that, after to removing .n� 2/-dimensional set, for all the other xı, we
have an expansion of the type

u� .xı C x/ D P .x/CO
�
jxj5

�
;

where � D �.xı/ is the value of the parameter for which xı is singular. Here P is a
polynomial of the form (in some orthonormal coordinates depending of xı)

P .x/ WD
1

2

�
xn C

n�1X
˛D1

a˛

2
x2

˛ C
.
P
a˛/

6
x2

n C

n�1X
˛D1

�
a2

˛ �
a˛.

P
a˛/

3

��
x3

n

12
�
x2

˛xn

2

��2

;

for some a˛ � 0 (˛ D 1; : : : ; n � 1). We call P , the “Ansatz”, and whose structure
is found imposing �P D 1CO.jxj3/. In many respects, P plays an analogous role
to Almgren’s center manifold: also here the idea is that, only after subtracting a very
smooth “tangent object”, one is able to see branching-type patterns which can only
occur on lower dimensional sets.

We then manage to obtain an approximate monotonicity of (a truncated version
of) the frequency function �0 for the remainder

w WD u� .xı C �/ � P ;

and perform dimension reduction type of arguments à la Federer–Almgren. However,
an interesting feature of the dimension reduction arguments in [25] (which is com-
pletely new with respect to Almgren’s) is that we need to work not with one single
solution but with an increasing family of them (which do not have any other link
between them than the monotonicity). And the dimension bounds that we obtain for
the union in � of all “bad points” for the family ¹u�º� are as precise as the estimate
one single u� .

The existence of solutions with an .n� 3/-dimensional set of “anomalous points”
where the expansion is quadratic, and not better, prevents us from using the same kind
of methods for Schaeffer’s conjecture in dimensions 5 or higher.

6.3. C 1 partial regularity

Building on the methods of [25] (and [26]), F. Franceschini and W. Zatoń obtained in
[29] the following extremely detailed (and essentially optimal) result:
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Theorem 7 ([29]). Let u be a solution of the obstacle problem (4.4) in the unit ball
of Rn and let † denote its singular set. There exists a closed set †1 � † such that

(i) dimH .† n†1/ � n � 2 (countable, if n D 2);

(ii) locally, †1 is contained in one .n � 1/-dimensional C1 manifold, and at
every point x 2 †1 the solution u has a polynomial expansion of arbitrar-
ily large order. Moreover, these are consistent from one point to another in
the sense of Whitney’s extension theorem.

A key contribution from [29] was to show almost-optimal Lipchitz estimates (in
terms of theirL2 norms in a small ball) for the differences u.xı C � /�P , where xı is
a singular point, and P is an Ansatz of arbitrarily large order (nonnegative polynomial
satisfying �P � 1). Such Lipchitz estimates are needed to prove that Almgren’s
frequency formula on w D u � P is monotone. With the previous approach from
[25], such estimates had necessarily errors of size O.jxj5/, which was blocking the
expansion at order 5. The smarter (and more natural, a posteriori) approach from [29]
allows the authors to obtain similar Lipchitz estimates with an error of arbitrarily high
order. As a consequence, they obtain a beautiful C1 partial regularity result for the
singular set: something that seemed inconceivable only a few years ago.

7. The singular set in the Stefan problem (2019–2021)

After Caffarelli’s 1977 breakthrough, a main question on the structure of the free
boundaries in Stefan’s problem remained open: how large may the singular set be?
Very simple examples—such as a one-dimensional solution u.x3; t / for which the
ice region is ¹jx3j � f .t/º for some f decreasing—show that the singular set in
Stefan’s problem (in R3) may be as large as 2-dimensional; at least for some times.
The regular part of the free boundary is a moving 2-surface in R3, so at such “bad”
times, the singular set is as large as the regular part! However, in the examples, this
may happen only for a very exceptional set of times. This suggests that the singular
set should be “smaller” than the set of smooth points as a subset of spacetime R3 �R.

In order to measure the dimension of subsets of spacetime in Stefan’s problem,
it is natural to introduce a Hausdorff dimension associated to the “parabolic scal-
ing” (which leaves the equation invariant). Namely, for a set E � Rn � R, we write
dimpar.E/ � ˇ, when for all ˇ0 > ˇ, E can be covered by countably many parabolic
cylinders Bri

.xi / � .ti � r
2
i ; ti /, making

P
i r

ˇ 0

i arbitrarily small. Notice that, if we
denote by dimH .E/ the standard Hausdorff dimension of a set

E � RnC1
D Rn

� R;

then dimH .E/� dimpar.E/. On the other hand, the time axis has parabolic Hausdorff
dimension 2, while it has standard Hausdorff dimension 1.
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The only known dimensional bound on the singular set † � Rn � R for solu-
tions to (4.1)-(4.2) in dimensions n � 2 was the following rather rough estimate: as
a consequence of the results in [6, 9], at every singular point .xı; tı/, the qualitative
expansion

u.xı C x; tı C t / D
1

2
x � Ax C o

�
jxj2 C jt j

�
(7.1)

holds, where AD Axı;tı is a nonnegative definite matrix, satisfying tr.A/D 1, which
depends on .xı; tı/. As a consequence of (7.1), the set of singular points can be
decomposed as † D

Sn�1
mD0†m, where

†m WD
®
.xı; tı/ 2 † W dim

�
ker.Axı;tı/

�
D m

¯
; m D 0; : : : ; n � 1:

Moreover, for each m, the set †m \ ¹t D tıº can be covered by a C 1 manifold of
dimension m. Unfortunately, the previous expansion implies only C 1=2 regularity in
time for the covering manifolds. As shown in [36], (7.1) also implies a (very rough)
bound on the parabolic Hausdorff dimension of †:

dimpar.†/ � nC
1

2
: (7.2)

Since the parabolic dimension of the regular part of the free boundary has dimension
.n� 1/C 2D nC 1, the previous bound shows that, in some weak sense, the singular
set is smaller than the regular one. However, the bound (7.2) does not even rule out
the existence of pathological solutions with singular points at every time (not even in
two dimensions)!

7.1. Almgren meets Stefan

After the works [25, 27], it was very natural to apply the same kind of arguments to
the Stefan’s problem (4.1)-(4.2). Given a singular point .xı; tı/, let us consider

w.x/ WD u.xı C x; tı C x/ �
1

2
x � Ax:

In order to extend our methods from [27] to the parabolic setting, Poon’s [39]
parabolic version of Almgren’s frequency formula plays an important role. Namely,

denoting G.x; t/ D .4�t/�n=2e
jxj2

4t the time-reversed heat kernel, the functional

�.r; w/ WD
r2

R
¹tD�r2º

jrwj2G dxR
¹tD�r2º

w2G dx
;

can be shown to be monotone in r .12

12Actually, we need to employ a (new) suitable truncated version of � (which we call �
 ),
and its monotonicity can be proved only up to exponentially small errors. But these are technical
details.
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Thanks to this fact, we can prove that

w.rx; r2t /

kwkr

! q.x; t/ as r ! 0; (7.3)

along subsequences and in compact subset of ¹t < 0º, where q is a parabolically
homogeneous function: namely q.rx; r2t / D r�q.x; t/ for all r > 0, where � D

�.0C;w/. In (7.3), we denote by kwkr the quantity .
R

Cr
w2/1=2, which measures the

“size” of w in the parabolic cylinder Cr WD Br � .�r
2; 0/.

We then show the following:

(i) If .xı; tı/ 2 †m with m � n � 2, then the function q is always a quadratic
caloric polynomial. This means that the expansion (7.1) cannot be improved
at any of these points! To obtain an improved dimensional bound on †m,
we employ a barrier argument in the spirit of [25] to show that u > 0 in
Br.xı/ � .tı C r2�";1/. In other words, a ball of radius r around one of
these singular points will be completely occupied by water after increment
of time of size r2�". This gives

dimpar.†m/ � m; 0 � m � n � 2:

(ii) If .xı; tı/ 2 †n�1, then q is a homogeneous solution of the parabolic thin
obstacle problem. We denote by†<3

n�1 the subset at which the homogeneity
is less than 3.

(a) If .0; 0/ 2 †<3
n�1, we show that @tq 6� 0 and that q is convex in all

directions that are tangential to ¹p2 D 0º. This allows us to perform a
dimension reduction that, combined with a barrier argument similar to
that in (i), yields

dimpar.†
<3
n�1/ � n � 2:

(b) If .0; 0/ 2 †n�1 n †<3
n�1, we show that q is always 3-homogeneous,

hence

u.xı C �; tı C �/ D
1

2
x � Ax CO

�
jxj3 C jt j3=2

�
: (7.4)

This (and a barrier argument similar to the one before) implies that

dimpar.†n�1 n†<3
n�1/ � n � 1:

Combining these estimates in [26], we obtain the following theorem.

Theorem 8. The singular set of solutions to (4.1)-(4.2) has a parabolic dimension
n � 1.

Therefore, it is natural to ask ourselves if a similar result holds in the physical
space R3 and, more in general, how often singular points may appear.
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Figure 8. Inside of the shrinking ballBr.t/.xı/, the free boundary consists of two fronts, which
evolve independently until they meet at time tı.

7.2. Cubic expansions and their heuristic interpretation

With a bit of extra work, we can obtain a complete parabolic analog of the main result
in [27]: for all singular points .xı; tı/ outside of a set of parabolic dimension n � 2,
the following expansion holds13

u.xı C x; tı C t / D
1

2
x2

n C ajxnj

�
t C

1

6
x2

n

�
C

�
3-homogeneous caloric

polynomials

�
C o

��
jxj C jt j1=2

�3�
; (7.5)

for some a > 0. The fact that this coefficient is positive, which turns out to be conse-
quence of (4.2), is crucial.

Indeed, (7.5) implies that, if we look at the free boundary at time t < tı inside a
ball of radius

p
tı � t centered at xı, we will see two almost-parallel “independent”

fronts which move one towards the other. More precisely, for t < tı, we have

xn D ˙2a .tı � t /C o.tı � t / on @¹u > 0º \ Bp
tı�t .xı/ � ¹tº:

In this direction, let us (informally) define r.t/ as “the largest” radius for which
the ice inside B%.xı/ has two connected components for times before t—see Figure
8 (left). The expansion (7.5) actually implies r.t/�

p
tı � t , as t " tı.

Now, it is interesting to observe the following: suppose that r.t/ happened to
stay bounded away from zero as t " tı. Then, inside of some (small) parabolic cylin-
der B%.xı/ � .tı � %

2; tı/, the “positivity set” ¹u > 0º would consist of exactly two

13After choosing an appropriate orthonormal frame depending on .xı; tı/.
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connected components 1 and 2. We could then define u.i/, i D 1; 2, as u multiplied
by the characteristic function of the component i . Doing so, the two new functions
u.i/ would both solve (4.1)! Moreover, both functions would have a thick contact
set ¹u.i/ D 0º, so the point .xı; tı/ would be regular for the two of them—see Fig-
ure 8 (right). Hence the free boundaries of u.i/, i D 1; 2 (which correspond to the two
fronts of u) would be smooth inside B%.xı/ up to the final time t D tı. At this final
time, t D tı, the two fronts ¹xn D g.i/.x0/º would be ordered, smooth, and tangent at
least at xı. Then, their tangency points in B%.xı/ would necessarily be of one of the
following two types.

� Infinite order tangency points of the two functions g.i/: near such points the ice
would be extremely thin, and hence they should become immediately surrounded
by water after tı.

� Lower dimensional tangency points: the subset of g.1/ D g.2/ where the two func-
tions disagree at some finite order k would be automatically contained in a smooth
.n � 2/-dimensional manifold (being contained in the transversal intersection of
the graphs of certain .k � 1/-derivatives of gi .x0/).

Of course, the difficulty is that we cannot expect r.t/ to be bounded away from
zero at typical free boundary points. But it turns out that (with much extra effort) we
can improve the bound r.t/�

p
tı � t to r.t/ � .tı � t /

1
2Cˇ , for some tiny ˇ > 0

(as t " tı), at “most” singular points. This amounts to proving an expansion like
(7.5) but with an error of size O..jxj C jt j1=2/3Cˇ /. As we will see, such apparently
small improvement is “breaking the parabolic scaling”, and will allow us to obtain the
same type of conclusions as if r.t/ stayed bounded away from zero! But such strong
conclusions are not cheap to obtain: in order to improve (7.5) by a tiny positive ˇ, we
need to introduce completely new techniques. We need to go beyond Almgren.

7.3. Improving cubic expansions: Life beyond Almgren

Arguably, the most delicate point in [26] is to show that, for all singular points .xı; tı/
outside of a set of parabolic dimension n � 2, the following expansion holds:

u.xı C x; tı C t / D
1

2
x2

n C ajxnj

�
t C

1

6
x2

n

�
C Œ3-hom. cal. pol.�

CO
��
jxj C jt j1=2

�3Cˇ �
; (7.6)

for some ˇ > 0 (which may depend on the point).
Given a singular point .xı; tı/ where (7.5) holds, it is natural to consider

w.x; t/ WD u.xı C x; tı C t / �
1

2
x2

n � ajxnj

�
t C

1

6
x2

n

�
� Œ3-hom. cal. pol.�:
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Now, one could naively try to show that Almgren frequency is again monotone on
such w (this is the first we tried and, as a matter of fact, we thought for a long time
that this was the way to go). Unfortunately, since a > 0, the cubic term is never a
caloric polynomial and the frequency function �.r; w/ is never (almost) monotone.

In order to improve (7.5), we need a completely new strategy based on barriers,
compactness, and certain ad-hoc monotonicity properties, which are much weaker
than Almgren’s (but which still give some nonempty information).

Our new approach consists in showing, essentially,14 that

kwkL1.Br�.�r2;0// � !.r/;

where ! satisfies the following alternative with " > 0 arbitrarily small. For all r > 0
sufficiently small, we have either

† is ."r/-close to an .n � 2/-plane inside Br.xı/

for t 2 .tı � r2; tı/ and !
�r
2

�
�
!.r/

23�"
I (7.7)

or else, we have

!
�r
2

�
�
!.r/

23C 1
2

: (7.8)

In view of the previous alternative, it seems to look at dyadic scales r D 2�i and
consider the “upper density” of scales at which (7.7) holds:

# WD lim sup
`!1

#
®
i � ` W (7.7) holds at the scale r D 2�i

¯
`

2 Œ0; 1�:

Now, if # D 1, then as we zoom in around .xı; tı/, we see “enough scales” at
which the singular set is close to an .n � 2/-plane to conclude that “† is .n � 2/

dimensional at .xı; tı/” (this requires new delicate GMT-type covering arguments).
On the other hand, if # < 1, then for a positive .1 � #/-proportion of scales, we
have (7.8), while for the other scales, we have !. r

2
/ � 2�3C". Taking " small, we can

choose ˇ > 0 such that .1 � #/1
2
C #.�"/ D 3C ˇ. We then see that

!.2�`/ . 2.�3� 1
2 /.1��/`2.�3C"/�`!.1/ D 2�.3Cˇ/`!.1/:

This gives (7.6) at such points.

14The (over)simplified statement given here is not strictly correct, but it gives a very good
approximated idea on how the argument goes. The actual statement is much more involved (see
[26, Proposition 11.3]). Although some of the subtleties in the actual statement are important
and not mere technicalities, we cannot discuss them here.
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7.4. C 1 partial regularity and optimal dimensional bounds on the singular set

Once we have proven (7.6), we are ready to push the expansion to higher order. For
this, we show with a barrier argument that the set ¹u > 0º splits into two separate
connected components inside the set �ˇ WD ¹jxj2Cˇ < �tº—here .xı; tı/ D .0; 0/.

Note that, under the parabolic scaling .x; t/! .rx; r2t /, the set �ˇ converges
to Rn � .�1; 0/ as r ! 0. In other words, we have “broken the parabolic scaling”.
We then show a C1 regularity result (at .0; 0/) for the free boundary of solutions of
(4.4) in �ˇ which have a “regular point” at .0; 0/. Here the difference with respect
to the Caffarelli and Kinderlehrer–Nirenberg result is that in our case the domain �ˇ

is not a parabolic cylinder: for every time slice space, the equation holds in ball, but
its radius goes to zero as t " 0. Nevertheless, we manage to prove a C1 regularity
which is robust enough to work in our setting. More precisely, to show that if Nu is
a solution of the Stefan problem such that ¹ Nu D 0º is sufficiently close to ¹xn � 0º

inside �ˇ , then we have a C1 expansion for Nu at .0; 0/. We then apply this result to
our solution u multiplied by the characteristic functions of each of the two connected
components of ¹u > 0º inside�ˇ . In this way, we obtain a C1-type regularity for u.

As a corollary of thisC1 expansion, we are able to prove that, outside an .n� 2/-
dimensional set, if .xı; tı/ and .x1; t1/ are singular points, then

jtı � t1j D o
�
jxı � x1j

k
�

for every k � 1:

This allows to finally establish the following theorem.

Theorem 9 ([26]). Let��Rn, and let u2L1.�� .0;T // solve the Stefan problem
(4.1)-(4.2). Then there exists †1 � † (recall that † � Rn � R denotes the singular
set) such that

dimpar.† n†1/ � n � 2; dimH

�®
t 2 .0; T / W 9 .x; t/ 2 †1

¯�
D 0;

and †1 � � � .0; T / can be covered by countably many .n � 1/-dimensional sub-
manifolds in RnC1 of class C1.15

In a sense, this result says that the singular set can be split into two separate
pieces: one is very smooth and extremely rare in time (the set †1), and one lower
dimensional (of parabolic dimension at most n � 2).

This is a very precise result. Indeed, it is easy to construct radial examples of
solutions to (4.1)-(4.2) for which the singular set contains some .n � 1/-sphere for
countably many times. Such spheres would be covered by the set †1 in Theorem 9.

15Here, the .n � 1/-submanifolds that cover †1 are of class C1 as subset of RnC1 with
the usual Euclidean distance, not with respect to the parabolic distance. So, our statement is
much stronger than the previously known results (for instance, [36] proved C 1 regularity of †
with respect to the parabolic distance, which implies only C 1=2 regularity in time).
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Now, for general solutions, we cannot prove that �t .†
1/ is countable as in such

examples, but we do prove that it must be a 0-dimensional set (and Hausdorff dimen-
sion cannot distinguish between countable and 0-dimensional sets, so the result is
sharp in this sense). On the other hand, the complement of †1 inside † instead, is a
set of “bad” singular points. These “bad” points do not enjoy a priori any extra spatial
regularity, but in exchange, their parabolic dimension is bounded by n � 2. The fact
that points where Caffarelli’s quadratic expansion cannot be improved exist (and may
be n � 2 dimensional) can be easily shown by considering any radial solutions in R2

with a singular point at .0; 0/.
An important consequence of Theorem 9 is the following very precise bound for

the physical case (three spatial dimensions):

Corollary 10 ([26]). The set of singular times for Stefan’s problem in R3 has Haus-
dorff dimension at most 1=2. In particular, it has measure zero.

Also, Theorem 9 implies that in R2, the set of singular times for Stefan’s problem
has zero Hausdorff dimension (prior to our results, it was not even known that in R2,
the set of singular times had measure zero).

In summary, these new results provide a very good picture about how the singular
set of the Stefan problem behaves.
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Elliptic curves and modularity

Jack A. Thorne

Abstract. We survey results and conjectures concerning the modularity of elliptic curves over
number fields.

1. Introduction

The modularity conjecture for elliptic curves over Q was stated with increasing de-
grees of precision by Taniyama, Shimura, and Weil in the 1950s and 60s. It admits
several equivalent formulations, which are discussed in the textbook [17]. The most
common asserts that given any elliptic curve E over Q, we can find a newform f 2

S2.�0.N // with the property that for all but finitely many prime numbers p, the pth
Fourier coefficient ap.f / in the q-expansion f .q/ D q C

P
n�2 an.f /qn equals the

number
ap.E/ D p C 1 �

ˇ̌
E.Fp/

ˇ̌
;

which measures the error in the Hasse estimate for the number of points on E modulo
p. The newform f is then uniquely determined by E, by the strong multiplicity one
theorem for modular forms. Any curve E for which such a newform f exists is said
to be modular.

A famous example of a modular elliptic curve is the curve of conductor 11 given
by the equation

E W y2
C y D x3

� x2:

This elliptic curve is modular, with associated newform

f .q/ D q

1Y
nD1

.1 � qn/2.1 � q11n/2
2 S2

�
�0.11/

�
:

The modularity conjecture is, on the face of it, a very surprising statement. It is easy
to write down elliptic curves over Q; indeed, for any cubic polynomial

f .x/ D x3
C ax C b 2 ZŒx�

2020 Mathematics Subject Classification. Primary 11G05; Secondary 11R39.
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of non-zero discriminant, the equation y2 D f .x/ gives an elliptic curve. On the
other hand, modular forms begin life as complex analytic objects. Even once admits
their algebro-geometric description (as sections of a line bundle on a modular curve,
thought of as an algebraic curve over Q), together with the theory of Hecke operators,
there is no a priori reason to expect that every elliptic curve over Q should be associ-
ated to a newform. Nevertheless, the modularity conjecture was proved for semistable
elliptic curves over Q in 1995 by Wiles and Taylor [40, 45], on the way to proving
Fermat’s Last Theorem, and finally for all elliptic curves over Q in 2001 by Breuil,
Conrad, Diamond, and Taylor [8].

The modularity conjecture for elliptic curves over Q can be thought of as a spe-
cial case of the Langlands program, in a form made precise by Clozel [13]. Newforms
give rise to automorphic representations of the adèle group GL2.AQ/. Under Clozel’s
conjectures, there would be a correspondence between motives of rank n over a num-
ber field K (or more concretely, compatible systems of semisimple, n-dimensional
representations of the absolute Galois group of K) and automorphic representations
of the group GLn.AK/ satisfying a condition that he calls “algebraic.” Specialising to
elliptic curves, we obtain a precise analogue of the modularity conjecture valid over
an arbitrary number field. (We note that such an analogue had already been anticip-
ated, especially in the case of imaginary quadratic fields; cf. [14, 24].)

Our first goal in this article is to state a version of this modularity conjecture
for elliptic curves over a general number field K in as down to earth a manner as
possible. In particular, our formulation does not use the language of automorphic
representations. (This is not original; for example, Taylor’s 1994 ICM article [38]
contains essentially the same statement that we give here.) Note however that it is
not possible to avoid the automorphic theory if one wants to give the most precise
statements, or to get to the most important consequences of modularity, such as the
analytic continuation of the L-function of an elliptic curve.

We will then continue to discuss some of the many applications of modularity in
number theory, beyond the most famous application to Fermat’s Last Theorem. It is
interesting to note that these range from statements of great theoretical importance
(such as the analytic properties of the L-function) to very concrete statements that
have no obvious connection to automorphic representations or the Langlands program
(such as bounds on the height of solutions to Mordell’s equation).

Finally, we will discuss what is known towards the modularity conjecture for
elliptic curves over a number field K, beyond the case K D Q. It is natural to break
up the discussion depending on whether or not K is totally real (in the sense that each
field embedding K ! C in fact takes values in R). Many of the methods developed
to study modularity over Q translate well to the totally real setting. It is more challen-
ging to study modularity over number fields which are not totally real, but there has
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been much progress in this direction recently, inspired particularly by applications of
Scholze’s theory of perfectoid spaces.

2. The modularity conjecture

Let K be a number field, with ring of integers OK and absolute Galois group GK D

Gal. xK=K/ with respect to a fixed choice of algebraic closure xK=K. (More generally,
if k is a perfect field, then we will write Gk for the absolute Galois group of k with
respect to some fixed choice of algebraic closure.)

Definition 2.1. An elliptic curve over K is a pair .E; 1/, where E is a smooth,
projective, connected curve over K and 1 2 E.K/ is a marked rational point.

We often take the marked point as given and just say that E is an elliptic curve.
Any elliptic curve may be given by a Weierstrass equation

y2
D x3

C ax C b; (2.1)

where a; b 2 OK and x, y are plane co-ordinates. The closure (in the projective plane
P2) of the affine curve defined by such an equation picks up exactly one extra point at
infinity, which is the marked point 1. The discriminant � D �.a; b/ D �16.4a3 C

27b2/ is non-zero. Conversely, for any pair .a; b/ 2 O2
K such that �.a; b/ ¤ 0, equa-

tion (2.1) defines an elliptic curve.
Elliptic curves have a number of important associated structures. The first is the

group law: there is a unique way to make any elliptic curve into a commutative algeb-
raic group with identity element 1 2 E.K/. The addition law then has a simple
characterization: three points P , Q, R sum to 1 if and only if they are collinear in
the Weierstrass embedding (2.1).

The second is the system of reductions modulo v, for v a finite (i.e., non-
archimedean) place of the number field K. If the discriminant � of a given Wei-
erstrass equation is a v-adic unit, then v is a place of good reduction for the curve
E: the reduction modulo v of the Weierstrass equation (2.1) defines an elliptic curve
over the residue field k.v/ of the completion Kv of K at the place v. This leads to the
definition of the quantity

av.E/ D qv C 1 �
ˇ̌
E
�
k.v/

�ˇ̌
;

where qv D jk.v/j and jE.k.v//j is the number of points of this reduced curve over
the residue field k.v/. One can also define av at the places where � is not a v-adic
unit, but this requires the use of a long Weierstrass equation in order to be able to find
a model of minimal discriminant at the place v (see [36, Chapter VII]).
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The third structure we want to introduce is the compatible system of `-adic Galois
representations of E. For each prime number `, the étale cohomology group
H 1

ét.E xK ; Q`/ is a 2-dimensional Q`-vector space which receives a continuous action
of the absolute Galois group GK . Fixing a choice of basis, we obtain a continuous
representation

�E;` W GK ! GL2.Q`/:

(This representation is the same, up to passing to the dual and taking a twist by the
cyclotomic character, of the representation afforded by the `-adic Tate module of E.)
If v is a finite place of K not dividing ` and at which E has good reduction, then
the representation �E;` is unramified at v. By definition, this means that the inertia
subgroup IKv

of the decomposition group GKv
� GK acts trivially through �E;`.

Moreover, if Frobv 2 GKv
=IKv

Š Gk.v/ denotes the Frobenius element,1 then we
have the equality

tr �E;`.Frobv/ D av.E/;

a consequence of the Grothendieck–Lefschetz trace formula for the reduction mod-
ulo v of the elliptic curve E. We call the collection .�E;`/` of `-adic representa-
tions a “compatible system” because these Frobenius traces are independent of `

(even though the representations themselves are incomparable, because the topolo-
gical fields Q` are pairwise non-isomorphic).

So much for elliptic curves. We next want to introduce the structures “on the
automorphic side” that should be matched up with elliptic curves under the modu-
larity conjecture. By analogy with class field theory, which gives a description of the
1-dimensional representations of GK , these structures should be defined using the
“internal arithmetic” of the field K. To write these down, we first need to recall the
existence of the adèle ring of K.

Definition 2.2. The finite adèle ring of K is the restricted direct product

A1
K D

Y0

v finite

Kv

with respect to the valuation rings OKv
� Kv . The adèle ring of K is the product

AK D A1
K � K1, where K1 D

Q
v infinite Kv .

In other words, AK is the set of elements x D .xv/v 2
Q

v Kv such that for all but
finitely many finite places v of K, xv 2 OKv

. The fundamental facts concerning AK

are that it is a locally compact topological ring, the diagonal embedding K ! AK

induces the discrete topology on K, and the quotient AK=K is compact.

1More precisely, the geometric Frobenius element (inverse of the arithmetic Frobenius auto-
morphism x 7! xqv on k.v/).
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Having defined AK , we can take the AK-points of any algebraic group over K. In
particular, the group GL2.AK/ is then defined. This group can also be realised as the
restricted direct product

Q0

v GL2.Kv/, with respect to the family of open subgroups
GL2.OKv

/ � GL2.Kv/ for finite places v.

Definition 2.3. Let n � OK be a non-zero ideal. We define the open compact sub-
group of

Q
v finite GL2.OKv

/:

U1.n/ D

²�
av bv

cv dv

�
2

Y
v finite

GL2.OKv
/ W 8v; cv; dv � 1 � 0 mod nOKv

³
:

If v is an infinite place of K, we let Uv D SO2.R/ (if Kv D R) or Uv D U2.R/

(if Kv Š C). Let U1 D R>0 �
Q

vj1 Uv � GL2.K1/. We then define the quotient
topological space

Y1.n/ D GL2.K/nGL2.AK/=U1.n/ � U1:

In order to formulate the modularity conjecture, we will look at the singular
cohomology groups H�.Y1.n/; Q/. These are finite dimensional Q-vector spaces.
Indeed, Y1.n/ can be represented quite concretely, as we now explain. The double
quotient GL2.K/nGL2.A1

K /=U1.n/ (where we omit the infinite places) is finite; if
g1; : : : ; gn 2 GL2.A1

K / are coset representatives, then Y1.n/ can itself be identified
with the disjoint union of the quotients �inGL2.K1/=U1, where we define

�i D GL2.K/ \ giU1.n/g�1
i

(intersection in GL2.A1
K /). The groups �i are congruence subgroups of GL2.K/,

which are torsion-free if the ideal n is small enough, so these quotients are gener-
alisations of the modular curves arising in the theory of classical modular forms. In
fact, if K D Q and n D .N / for a natural number N , then the space Y1.n/ defined
above may be identified with the usual modular curve of level �1.N /.

The reason for defining Y1.n/ using the adèle ring is that it makes transparent
the definition of Hecke operators, which are necessary to be able to give a pre-
cise formulation of the modularity conjecture. The existence of Hecke operators is
a consequence of the following observation: if U � GL2.A1

K / is any open compact
subgroup, let YU be the space defined in the same way as Y1.n/, except with U1.n/

replaced by U . If V � U , then there is a natural projection YV ! YU . We can thus
form the direct limit

A D lim
�!
U

H�.YU ; Q/;

a representation of GL2.A1
K / which is smooth, in the sense that each vector is fixed by

some open compact subgroup of GL2.A1
K /. Moreover, we can recover H�.Y1.n/;Q/
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as the space of U1.n/-invariant vectors of A. General considerations (see e.g. [32,
§2.2]) then imply that H�.Y1.n/; Q/ has the structure of module for the ring
H .GL2.A1

K /; U1.n// of compactly supported U1.n/-biinvariant functions

f W GL2.A1
K / ! Q:

Elements of this ring are what we call Hecke operators.
The most fundamental ones are as follows.

Definition 2.4. Let v be a finite place of K which is prime to n, and let $v 2 OKv

be a uniformizer of the valuation ring at v. Then the Hecke operator

Tv W H�
�
Y1.n/; Q

�
! H�

�
Y1.n/; Q

�
is the endomorphism induced by the characteristic function fv2H .GL2.A1

K /;U1.n//

of the double coset U1.n/xU1.n/, where x D .xw/w 2 GL2.A1
K / is the element with

xw D 1 if w ¤ v and xw D diag.$v; 1/ if w D v.

This definition is independent of the choice of uniformizer xv . The Hecke oper-
ator Tv can also be described more concretely as the endomorphism of H�.Y1.n/; Q/

induced by a correspondence

YU1.n/\xU1.n/x�1

ww ''

Y1.n/ Y1.n/

However, its definition is explained most clearly by the local Langlands correspond-
ence for unramified representations of GL2.Kv/, as we will recall below.

We now have everything we need to state a version of the modularity conjecture.

Conjecture 2.5. Let E be an elliptic curve over K such that EndK.E/ D Z. Then
there exists an ideal n � OK and a non-zero class cE 2 H�.Y1.n/; Q/ such that for
all but finitely many finite places v of K, one has the equality

Tv.cE / D av.E/cE :

Various remarks are in order. The restriction to curves with EndK.E/ D Z is
made because curves with EndK.E/ ¤ Z (in other words, elliptic curves with com-
plex multiplication defined over K) behave differently: their Galois representations
�E;` are abelian and are described by class field theory. We note that the condition
EndK.E/ D Z always holds if K is totally real, for example if K D Q.

Next we ask how this conjecture is related to the more classical conjecture in the
case K D Q referenced in the introduction, which phrases modularity in terms of the
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modular forms, rather than cohomology classes. The bridge between modular forms
and cohomology is in this case given by the Eichler–Shimura isomorphism. This is
an isomorphism

M2

�
�1.N /

�
˚ S2

�
�1.N /

�
Š H 1

�
Y1.N /; C

�
respecting the action of Hecke operators on each side. If p is a prime number not
dividing N and f is a newform, then the pth Fourier coefficient of f coincides with
the eigenvalue of the Hecke operator Tp on f , which explains how newforms give rise
to cohomology classes in H 1.Y1.N /; C/ which are eigenvectors for Hecke operators.
When the eigenvalues are rational numbers, we can even choose eigenvectors which
lie in H 1.Y1.N /; Q/.

How is this conjecture related to the formulation of Clozel [13], also referenced
in the introduction, which would lead one to associate to each elliptic curve E over
K with EndK.E/ D Z a cuspidal automorphic representation � of GL2.AK/? Such
a representation � admits a restricted tensor product decomposition � D ˝0

v�v ,
indexed by the set of places v of the number field K. One can predict the isomorph-
ism class of �v , as a representation of the group GL2.Kv/, using the local Langlands
correspondence for the group GL2.Kv/. Let us recall that when v is a finite place, the
local Langlands correspondence recKv

is a bijection between the following two sets
of objects:

� the set of isomorphism classes of irreducible smooth representations of GL2.Kv/

over C,

� the set of isomorphism classes of 2-dimensional Frobenius-semisimple Weil–
Deligne representations of the Weil group WKv

� GKv
over C.

We can use the local Langlands correspondence to build an irreducible representation
�.E/ of GL2.A1

K / from an elliptic curve E over K, by specifying a Weil–Deligne
representation .rv; Nv/ of the group WKv

for each finite place v of K using the local
representations �E;`jWKv

. (For an explanation of how to do this, see e.g. [37].) Thus
�.E/ is the restricted tensor product of the local factors rec�1

Kv
.rv ˝ j � j1=2; Nv/. In

particular, this leads to the following more precise conjecture, which implies Conjec-
ture 2.5.

Conjecture 2.6. Let E be an elliptic curve over K such that EndK.E/ D Z, and let
�.E/ be the irreducible smooth representation of GL2.A1

K / associated to E using
the local Langlands correspondence. Then there is a GL2.A1

K /-equivariant injection
�.E/ ,! A ˝Q C.

From this point of view we can explain the importance of the Hecke operators Tv

in formulating the modularity conjecture, which is otherwise slightly obscure: if v is
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a finite place of K, then the local Langlands correspondence restricts to a bijection
between the following two sets of objects:

� the set of isomorphism classes of smooth representations of GL2.Kv/ over C
which are unramified, in the sense that the space of GL2.OKv

/-invariant vectors
is non-zero,

� the set of isomorphism classes of 2-dimensional semisimple representations of
WKv

which are unramified, in the sense that the inertia group IKv
� WKv

acts
trivially.

If �v is an unramified irreducible smooth representation of GL2.Kv/ and r ˝

j � j1=2 D recKv
.�v/, then the Hecke operator Tv acts by a scalar on the space of

GL2.OKv
/-invariant vectors of �v which is equal to tr r.Frobv/. We have already

observed that if v is a place of good reduction for the elliptic curve E, then the
Grothendieck–Lefschetz trace formula implies the equality �E;`.Frobv/ D av.E/,
provided v is prime to `. This explains the essential equality

eigenvalue of Tv D av.E/

which appears in the statement of Conjecture 2.5.
One can (and should) go further than we do here. For example, is it possible to

describe all of the systems of Hecke eigenvalues which appear in H�.Y1.n/; C/ in
terms of abelian varieties? They cannot all be described in terms of elliptic curves
since, for example, there are systems of Hecke eigenvalues which are not all rational
numbers and so cannot come from elliptic curves. See [38] for a precise conjectural
description in terms of “false generalised elliptic curves.”

3. Applications of modularity

We briefly discuss some applications of the modularity conjecture for elliptic curves.
Our intent here is not to be exhaustive but rather to give a flavour of some of the many
different applications of modularity that exist.

We mention first applications to Fermat’s Last Theorem and other Fermat-style
problems. Let us recall the strategy to prove Fermat’s Last Theorem used in [45]. Let
p � 5 be a prime number, and suppose given a non-trivial solution

ap
C bp

D cp

to the Fermat equation in exponent p; thus a; b; c 2 Z are coprime non-zero integers.
One associates to such a non-trivial solution the Frey–Hellegoarch elliptic curve

Ea;b;c W y2
D x.x � ap/.x C bp/:
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After possibly permuting a; b; c (in order to optimise the local behaviour at the
prime 2), the minimal discriminant of this elliptic curve over Q is 2�8.abc/2p (see for
example the calculation in [35, §4.1]). This implies that the reduction of the p-adic
Galois representation �Ea;b;c ;p (to be discussed further below) can be ramified only at
the prime 2 (and is finite flat at p). The modularity of the curve Ea;b;c , together with
Ribet’s level-lowering theorem, then implies the existence of a newform of weight 2

and level �0.2/, a contradiction.
Variants of this strategy may be employed to study the generalised Fermat equa-

tions
ap

C bq
D cr ;

where p; q; r � 2 are integers satisfying 1=p C 1=q C 1=r < 1. Bennett et al. [4]
describe a broad range of exponents for which it can be proved using variants of the
above modularity-based method that no non-trivial solutions exist. One can also study
solutions to these equations in number fields other than Q. Assuming a strengthened
version of the modularity conjecture (Conjecture 2.5) for an imaginary quadratic field
K D Q.

p
�d/, where d > 0 is an even squarefree integer, Şengün and Siksek [34]

prove that for all sufficiently large prime numbers p, there are no non-trivial solu-
tions to the Fermat equation in exponent p over OK . See also [20] for similar (and
unconditional) results over real quadratic fields.

These kinds of modular techniques can also be used to get positive (as opposed
to non-existence) information about solutions to Diophantine equations. An example
is given by the following theorem, taken from the work of von Känel and Matschke
[44].

Theorem 3.1. Let a be a non-zero integer. Then any solution .x; y/ 2 Z2 to the
equation y2 D x3 C a satisfies the estimate

max
�

log jxj;
2

3
log jyj

�
� 1728jaj

�
log jaj C 4

�
:

Modularity is also of great importance for studying individual elliptic curves. For
example, essentially all known results towards the Birch–Swinnerton-Dyer (BSD)
conjecture are restricted to the class of modular elliptic curves. The BSD conjecture
concerns the L-function of an elliptic curve over a number field.

Definition 3.2. Let E be an elliptic curve over a number field K. The L-function
L.E; s/ of E is the function of a complex variable s defined by the Euler product,
indexed by finite places v of K:

L.E; s/ D
Y
v bad

�
1 � av.E/q�s

v

��1
Y

v good

�
1 � av.E/q�s

v C q1�2s
v

��1
:
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The Hasse estimate implies that this Euler product converges absolutely in the
right half-plane Re.s/ > 3=2, and defines a complex analytic function there. We then
have the following fundamental conjectures.

Conjecture 3.3. Let E be an elliptic curve over a number field K.

(1) (Analytic continuation) The function L.E; s/ admits an analytic continuation
to the whole complex plane. Defining ƒ.E; s/ D .2��s�.s//ŒKWQ�L.E; s/,
there is a natural number N and a sign " 2 ¹˙1º such that the functional
equation

ƒ.E; s/ D "N 1�sƒ.E; 2 � s/

holds.

(2) (Weak BSD) Assuming (1), the order of vanishing of L.E;s/ at the point s D 1

is equal to the rank rE of the finitely generated abelian group E.K/.

(3) (Strong BSD) Assuming (2), one has

lim
s!1

L.E; s/

.s � 1/rE
D P.E/R.E/

ˇ̌
Sha.E/

ˇ̌
;

where P.E/ is a product of local terms, R.E/ is the regulator of E.K/, and
Sha.E/ is the Tate–Shafarevich group of E. In particular, Sha.E/ is finite.

Here we follow the formulation of the strong BSD conjecture given by Gross
[22], to which we refer for the definition of the terms P.E/, R.E/.

Theorem 3.4. Let E be an elliptic curve over a number field K. Then

(1) if E satisfies Conjecture 2.6, then L.E; s/ has an analytic continuation,

(2) if E satisfies Conjecture 2.6 and K is totally real, and either ŒK W Q� is odd
or there exists a finite place v such that the Weil–Deligne representation of
WKv

associated to E is indecomposable, then the weak BSD conjecture holds
for E provided that the order of vanishing of L.E; s/ at the point s D 1 is at
most 1.

If E satisfies Conjecture 2.6, then there is a cuspidal automorphic representation
� of GL2.AK/ such that L.E; s/ D L.�; s/. In other words, we may identify L.E; s/

with an automorphic L-function. The analytic continuation of L.E; s/ is then a con-
sequence of the known continuation for such automorphic L-functions [25]. When
K D Q and L.E; s/ vanishes to order at most 1, the validity of the weak BSD con-
jecture follows from the Gross–Zagier formula and work of Kolyvagin [23, 29].

These results were generalised to a general totally real field K by Zhang [46]. It
is interesting to note that the Gross–Zagier formula and its generalisations depend
on the existence of a modular parameterisation, i.e., a non-constant map from a
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Shimura curve defined over K to the elliptic curve E. The existence of such a para-
meterisation for a curve E satisfying the hypothesis of Theorem 3.4 (2) is a non-trivial
consequence of its modularity, in the sense of Conjecture 2.5.

4. Known results

We now discuss what is known towards the modularity conjecture (Conjecture 2.5).
First, it is known for elliptic curves over Q [8, 40, 45].

Theorem 4.1. Every elliptic curve over Q is modular.

We review the structure of the proof, which underlies all known generalisations
of this theorem. First, we change our point of view slightly by considering the mod-
ularity of the Galois representations �E;` W GK ! GL2.Q`/ associated to an elliptic
curve over a number field K. For example, we can make the following definition.

Definition 4.2. Let K be a number field, let ` be a prime number, and let � W GK !

GL2.Q`/ be a continuous representation. We say that � is modular if there exists
a non-zero ideal n � OK and a non-zero class c� 2 H�.Y1.n/; Q`/ satisfying the
following condition: for all but finitely many finite places v of K, �jGKv

is unramified,
c� is an eigenvector of the Hecke operator Tv , and we have the equality

Tv.c�/ D
�
tr �.Frobv/

�
c�:

In view of the equality av.E/ D tr �E;`.Frobv/ for prime-to-` places at which E

has good reduction, we see that Conjecture 2.5 holds for an elliptic curve E over K

if and only if one (or equivalently, all) of its `-adic Galois representations is modular
in the above sense.

It is important to note that this notion of modularity is very restrictive. It is
believed (and known, in many cases) that any Galois representation which is modular
in the above sense must be of weight 2, in the sense defined in [38]. To encompass
all (say irreducible 2-dimensional) Galois representations which arise from the étale
cohomology of algebraic varieties over K we would need to consider a broader defin-
ition of modularity, encompassing all of the algebraic automorphic representations of
GL2.AK/ singled out in [13].

We can also define a notion of modularity for representations with coefficients in
F`, the field with ` elements.

Definition 4.3. Let x� W GK ! GL2.F`/ be a continuous representation. We say that
x� is modular if there exists a non-zero ideal n � OK and a non-zero class c� 2

H�.Y1.n/; F`/ satisfying the following condition: for all but finitely many finite
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places v of K, �jGKv
is unramified, c� is an eigenvector of the Hecke operator Tv ,

and we have the equality

Tv.c�/ D
�
tr �.Frobv/

�
c�:

Any continuous representation � WGK !GL2.Q`/ may be conjugated to take val-
ues in GL2.Z`/; reduction modulo ` then gives a representation valued in GL2.F`/.
We write x� W GK ! GL2.F`/ for the semisimplification of this representation, which
is (up to isomorphism) independent of any choices. It is easy to prove that if � is mod-
ular in the sense of Definition 4.2, then x� is modular in the sense of Definition 4.3.

A fundamental idea behind the proof of Theorem 4.1 and its generalisations, first
introduced in [45], is that of the modularity lifting theorem, which gives conditions
under which one can go in the other direction and “lift” the modularity of the residual
representation x� to the characteristic 0 representation �. Many such results now exist
in the literature, all approximations to the following ideal:

Theorem Schema 4.4. Let � W GK ! GL2.Q`/ be a continuous representation sat-
isfying

(1) some global conditions on x�, such as the irreducibility of x�,

(2) some necessary local conditions on �, such as that � be of weight 2, in the
sense of [38],

(3) x� is modular.

Then � is modular.

The first such theorem, proved in [40, 45], was sufficient to establish the mod-
ularity of semistable elliptic curves over Q (i.e., those elliptic curves with good or
multiplicative reduction everywhere). In order to apply such a theorem, say to prove
the modularity of an elliptic curve E, one needs a way to verify the modularity of the
residual representation x�E;` for some prime `. Wiles was able to do this when ` D 3

and K D Q by exploiting a few very happy coincidences:

� The homomorphism GL2.Z3/ ! GL2.F3/ given by reduction modulo 3 splits.
Consequently, for any elliptic curve E over Q we can find a representation z� W

GQ ! GL2.Z3/ with finite image and lifting x�E;3.

� The group GL2.F3/ is soluble. The Langlands–Tunnell theorem [43], which gives
the automorphy (in the sense of [13]) of 2-dimensional representations of GQ

(or more generally GK , where K is any number field) with finite soluble image,
implies that z� may be associated to a weight 1 holomorphic newform.

� There exist plentiful congruences between weight 1 newforms and weight 2 new-
forms (for example, given by multiplying by a well-chosen weight 1 Eisenstein
series). The existence of such congruences is needed to pass from the automorphy
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of z� to the modularity of x� in our sense (which is also the sense required for
application of the modularity lifting theorem in [45]).

Verifying the modularity of x�E;3 in this way, Wiles was able to prove the modularity
of those semistable elliptic curves over Q for which x�E;3 is irreducible. To take care
of those curves for which x�E;3 is reducible (or in other words, for which E admits
a rational 3-isogeny), he introduced a beautiful trick, the “3-5 switch,” exploiting the
geometry of modular curves of low level to prove the modularity of x�E;5 instead.
This suffices since there are no semistable elliptic curves over Q with a rational 15-
isogeny!

4.1. Elliptic curves over totally real fields

The strongest known modularity lifting theorem suitable for applications to the mod-
ularity of elliptic curves over totally real number fields K is the following result, taken
from [19, Theorem 2].

Theorem 4.5. Let K be a totally real number field and let E be an elliptic curve over
K. Suppose that there exists an odd prime ` such that the following conditions are
satisfied:

(1) x�E;` is modular,

(2) x�E;`jGK.�`/
is absolutely irreducible (here �` denotes a primitive `th root of

unity in the fixed algebraic closure of K).

Then �E;` is modular (and hence E itself is modular).

This is very close to optimal! The possibility of proving a theorem like this is
based on numerous technical improvements to the methods introduced in [40, 45],
which are due to many people. First, one has to understand why it may be reas-
onable to generalise modularity lifting theorems from the case K D Q to the case
where K is totally real. For a totally real field, the analogues of holomorphic modu-
lar forms are Hilbert modular forms. Most of the Galois representations attached to
Hilbert modular forms may be constructed and analyzed using Shimura curves and
the Jacquet–Langlands correspondence [12], giving a theory quite analogous to the
theory of classical modular curves.

Diamond and Fujiwara [16, 21] explained how to generalise the fundamental
Taylor–Wiles patching technique introduced in [40] to this context, making it pos-
sible to prove the first modularity lifting theorems over totally real fields, and also
introducing soluble base change, using [30], as a fundamental tool. At this point the
main question was how to impose conditions from `-adic Hodge theory2 (such as

2More normally called p-adic Hodge theory, but we consider `-adic representations in this
article.
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the above-mentioned weight 2 condition) while still being able to control the Galois
deformation theory (in [45] only smooth conditions were considered, in which case
computing the tangent space to the deformation functor in terms of Galois cohomo-
logy is enough – not so in general). This problem was solved by Kisin [28], who
introduced a variant of the Taylor–Wiles method and defined and analysed weight 2

lifting functors using sophisticated results in integral `-adic Hodge theory. Finally,
Khare and Wintenberger, on their way to proving Serre’s conjecture, introduced an
important new technique for constructing liftings of modulo ` Galois representations
with prescribed properties [27], using modularity lifting theorems and Taylor’s poten-
tial automorphy technique [39] as an input. This was exploited in a very clever way
by Barnet-Lamb, Gee, and Geraghty [3] in order to optimise Kisin’s results.

With Theorem 4.5 in hand, we see that for an elliptic curve over a totally real field
K to fail to be modular, each of its residual representations must either be degenerate
(in the sense that x�E;`jGK.�`/

is reducible) or must fail to be modular. The coincid-
ences underlying Wiles’s proof of the representations x�E;3, together with the 3-5
switch, generalise well to the totally real context. Using the geometry of the modu-
lar curve X.7/, Manoharmayum [31] gave a 3-7 switch argument, making it possible
now to prove the following theorem.

Theorem 4.6. Let E be an elliptic curve over a totally real field K. If x�E;`jGK.�`/
is

absolutely irreducible for any of ` D 3, 5 or 7, then E is modular.

Using this, Freitas, Le Hung, and Siksek were able to prove the following striking
result.

Theorem 4.7. Let K be a totally real field. Then,

(1) there is a finite set S � K such that if E is an elliptic curve over K and
j.E/ 62 S , then E is modular,

(2) if ŒK W Q� D 2, then every elliptic curve over K is modular.

(Here j.E/ is the j -invariant, which classifies the xK-isomorphism class of E.)
The proof of this theorem is based on the following idea: if E is a non-modular elliptic
curve, then, by Theorem 4.6, it must determine a rational point on one of a finite set of
modular curves parameterising elliptic curves with some of kind degeneracy of their
modulo 3, 5, and 7 Galois representations. (For example, this set would include the
curve X0.105/, which parameterises elliptic curves for which each of the modulo 3, 5,
and 7 Galois representations is reducible already on GK .) The first part of Theorem
4.7 is thus a consequence of the observation that each of these modular curves has
genus greater than 2, together with Faltings’s theorem (i.e., Mordell’s conjecture)
[18]. The second part, much the harder, is to analyse the points of these modular
curves which are defined over real quadratic fields. Similar ideas have been used by
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Derickx, Najman, and Siksek to establish also the modularity of elliptic curves over
totally real cubic fields [15], and by Box to establish the modularity of elliptic curves
over most totally real quartic fields [6].

Here is a “vertical” analogue of Theorem 4.7 (2), proved in [42].

Theorem 4.8. Let p be a prime, and let K=Q be a totally real abelian extension,
unramified away from the prime p, such that Gal.K=Q/ has order a power of p.
Then every elliptic curve over K is modular.

This theorem is again proved by combining modularity lifting theorems and an
analysis of rational points on modular curves, although in a different way. The first
main ingredient is a new modularity lifting theorem, proved in [41], which removes
the assumption that �E;`jGK.�`/

is irreducible. This so-called Taylor–Wiles assump-
tion is used to control certain Galois cohomology groups. The effect of this new
theorem is that in proving Theorem 4.8, one needs consider only rational points on
the single modular curve X0.15/. This curve has genus 1, so could have infinitely
many rational points over a fixed number field (as it does, for example, over Q.

p
3/).

However, it turns out that for any field K as in the statement of Theorem 4.8, we
in fact have X0.15/.K/ D X0.15/.Q/! Any such field K is contained in the cyclo-
tomic Zp-extension Q1=Q, so the natural tool to prove this is Iwasawa theory, and
in particular the results of Kato [26].

Looking at Theorems 4.7 and 4.8, it seems reasonable, in principle, to try to prove
the modularity of all elliptic curves over any family F of totally real number fields for
which the points of modular curves rational over members of F can be “organised”
in some way. Establishing the modularity of elliptic curves over all totally real fields
will require new ideas.

4.2. Elliptic curves over more general number fields

We now consider the modularity of elliptic curves over number fields which are not
totally real. Until a few years ago, it was very mysterious how one might hope to
prove modularity lifting theorems in this context. First, it is not known in general
how to associate Galois representations to Hecke eigenclasses in H�.Y1.n/; Q`/.
Indeed, the spaces Y1.n/ (and their analogues, associated to quaternion algebras over
number fields) have no obvious relation to algebraic geometry (for example, when K

has a complex place they have no complex structure). Second, even if one could solve
this problem, the spaces Y1.n/ can have non-trivial torsion classes in their cohomo-
logy (say with Z` coefficients) which cannot be described in terms of automorphic
representations (see e.g. [5]). Third, the Taylor–Wiles method breaks down because
the cohomology groups of Y1.n/ (again, say, with Z` coefficients, and now some
auxiliary Taylor–Wiles level structure) are not free modules over the group rings of
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diamond operators that appear in the version of the Taylor–Wiles method developed
by Diamond and Fujiwara.

The way forward was explained by Calegari and Geraghty [10]. Assuming a num-
ber of conjectures, they explain how to generalise the Taylor–Wiles method and prove
modularity lifting theorems over general number fields which can be applied, for
example, to prove the modularity of elliptic curves. We will not attempt to formulate
these conjectures precisely here but note that their conjectures include the import-
ant prescription that there should exist Galois representations associated not just to
(algebraic) automorphic representations with complex coefficients, but also to torsion
classes in the cohomology of spaces like Y1.n/. This is a striking enlargement of the
Langlands program as outlined in [13]!

To get unconditional results, one still has to establish the conjectures which are
taken as a starting point in [10]. Progress towards these conjectures was made first
by Scholze, who used his theory of perfectoid spaces to prove the existence of Galois
representations attached to Hecke eigenclasses in the groups H�.Y1.n/; Z`/ when
K is a CM field, i.e., a totally imaginary quadratic extension of a totally real field
[33]. Using the further results of Caraiani and Scholze on the cohomology of non-
compact Shimura varieties [11], the 10-author collaboration [1] established enough
of the Calegari–Geraghty conjectures to be able to establish unconditional modularity
lifting theorems over CM fields. These sufficed to be able to prove, for example, the
potential modularity of all elliptic curves E over CM fields K (i.e., the modularity of
the base change EL, for some finite extension L=K depending on E – a result which
implies in particular the meromorphic continuation to C of L.E; s/).

Separately, Boxer, Calegari, Gee, and Pilloni studied the application of the
Calegari–Geraghty method in the context of the coherent cohomology of Siegel type
Shimura varieties [7]. The problems faced here are analogous, but different, to those
arising out of the singular cohomology of the locally symmetric spaces Y1.n/. Nev-
ertheless these authors were able to prove unconditional modularity lifting theorems
that can be applied to the Galois representations arising from abelian surfaces over
totally real fields. As a particular consequence, they are able to prove the potential
modularity of elliptic curves over any quadratic extension of a totally real field (not
necessarily CM) – the first general results of this kind that can be applied to elliptic
curves over non-CM fields. An excellent guide to the path to the results of the last
few paragraphs can be found in the survey article [9].

What about modularity (as opposed to potential modularity) of elliptic curves? To
prove modularity using modularity lifting theorems, one needs a source of modular
residual representations. Unfortunately, one can no longer use Wiles’s idea to prove
the modularity of representations x�E;3 for elliptic curves E when the base field K is
not totally real. The reason is that, although the Langlands–Tunnell theorem applies
over arbitrary base number fields, there is no known way to construct congruences
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between the automorphic representations it gives and those automorphic representa-
tions which contribute to the cohomology of locally symmetric spaces. A solution to
this problem would also allow the construction of the Galois representations associ-
ated to algebraic Maass forms, a famously difficult open problem!

Nevertheless, we were able to establish the following theorem in [2].

Theorem 4.9. Let K be a CM field, and let E be an elliptic curve over K with
multiplicative reduction at each place vj5 of K. Then x�E;3 is modular.

Corollary 4.10. Let K be a CM field such that �5 62 K. Then a positive proportion of
elliptic curves over K are modular.

The proof of Theorem 4.9 is based on the idea of a kind of 2-3 switch: we want
to find an auxiliary elliptic curve A such that x�A;3 Š x�E;3 and x�A;2 extends to a
representation of GKC , where KC is the maximal totally real subfield of K. A tricky
2-adic modularity lifting theorem would then imply the modularity of A, hence of
x�A;3 Š x�E;3. In fact, the existence of such an auxiliary curve A is a delicate matter
(partly explained by the fact that the modular curve X.6/ has genus 1) and we need
to take a more circuitous route, for which we refer to [2].

The local conditions at the 5-adic places in Theorem 4.9 are always satisfied after
possibly replacing K by a soluble CM extension. Since we are free to make a soluble
base change when establishing the modularity of a given elliptic curve E (by cyclic
base change [30]), a sufficiently powerful modularity lifting theorem would, when
combined with Theorem 4.9, prove the modularity of most elliptic curves over a given
CM field.

The modularity lifting theorems established in [1] apply only to elliptic curves
which have either good reduction at each place of K above the fixed prime `, with `

unramified in K, or which have good ordinary/multiplicative reduction at each place
of K above `. Thus we do not have yet access to theorems such as those proved by
Kisin over totally real fields [28], in which an arbitrary amount of ramification is
permitted. If such theorems can be established in the future, then it seems reasonable
to hope that it will be possible to prove e.g. the modularity of all elliptic curves over
imaginary quadratic fields.
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From art and circuit design to geometry and combinatorics

Bojan Mohar

Abstract. These notes provide a detailed insight on the interplay between crossing numbers
of graphs and random geodesic drawings, and try to explain a relationship with the main fun-
damental open questions about crossing numbers of graphs. A very general class of geodesic
drawings on the sphere attaining the Hill bound is presented.

1. Introduction

Crossing number minimization in drawings of graphs on surfaces appears in diverse
applications across disciplines. It came into mathematical research through problems
in modern constructionist art. Crossing number problems have various applications
within engineering (e.g., design of large electrical circuits [17]) and in computer sci-
ence.

Later it became a useful concept in theoretical questions about graph drawing,
algorithm design, and robotics, and became an important notion in discrete and com-
putational geometry. The famous crossing lemma made a very surprising impact
within pure mathematics, after it was discovered that it gives greatly simplified proofs
for various (seemingly unrelated) hard geometric [32] and algebraic problems [29].
On the other hand, the rectilinear crossing number is related to the classical Sylvester
four-point problem, which gave motivation for developments of geometric probability
theory. We refer to [26,27] for a more complete overview of this area of mathematics.

These notes are related to the public talk at the 8th ECM in Portorož, Slovenia,
where the author presented some of the complex issues related to geodesic drawings
of graphs on surfaces and crossing minimization in such drawings, with a special
emphasis on random drawings.

The presentation herein includes historical remarks, it overviews the main fun-
damental open problems about crossing numbers of graphs, and through a general-
ization of Sylvester’s four-point problem gives special emphasis on random geodesic

2020 Mathematics Subject Classification. 05C10.
Keywords. Crossing number, geodesic drawing, graph drawing.
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drawings of graphs on surfaces. When dealing with random geodesic drawings on the
sphere, we give a very general class of geodesic drawings attaining the conjectured
minimum crossing number.

2. Hill conjecture and Hill drawings

English painter Anthony Hill1 made an extraordinary conjecture in the 1950s that
remained unanswered until today despite serious attacks using powerful machinery in
trying to resolve his conjecture. Starting with a question underlying some of his paint-
ing projects, Hill tried to understand how to draw

�
n
2

�
connections between n objects

so that the painting would involve a minimum number of under or over-crossings.
This lead to the formal notion of the crossing number of a graph, which he intro-
duced in a mathematical paper jointly with Harary [13].

Given a graph G, one can consider its drawing in the plane (or in some other
surface), where vertices are represented as distinct points and edges are drawn as
rectifiable arcs joining the corresponding points. One may restrict attention to good
drawings, where we request that any two edges intersect in at most one point, which
is either their common endvertex or a (proper) crossing of two arcs, and no three
arcs have their pairwise crossings in the same point. The crossing number of a (good)
drawing D of a graph G is the number of crossings of pairs of edges in D, and the
crossing number of the graph G, denoted by cr.G/, is the minimum crossing number
taken over all good drawings of G in the plane.

Hill found a general drawing for any complete graph Kn of order n that involves
precisely

H.n/D
1

4

jn

2

kjn � 1

2

kjn � 2

2

kjn � 3

2

k
D

8<: 1
64

n.n�2/2.n�4/; n is evenI
1

64
.n�1/2.n�3/2; n is odd

(2.1)

crossings. Based on these drawings and inability of producing any drawing with less
than H.n/ crossings, Hill conjectured the following.

Conjecture 2.1 (Hill, 1959). For any complete graph Kn of order n, we have

cr.Kn/ D
1

4

jn

2

kjn � 1

2

kjn � 2

2

kjn � 3

2

k
:

1Anthony Hill (1930–2020) was one of leading modern British painters. The following is
an abstract from his obituary in Guardian: “Anthony Hill, who has died aged 90, was a singular,
but not solitary, figure in the art world. An artist under two names, and a mathematician and
writer under more than one alias, he was a member of the constructionist group of geometrical
abstract artists that emerged in Britain in the mid-1950s, and was its leading theoretician.”
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Hill’s drawings of complete graphs are called cylindrical drawings because they
can be realized on a cylinder in such a way that all vertices lie (evenly split) on the
two circles forming the cylinder and no edge crosses those two circles. Soon after
these drawings were published in [13], Blažek and Koman [8] found another kind
of drawings of complete graphs involving precisely the same number of crossings.
Their drawings correspond to 2-page drawings in which the vertices are drawn on
the boundary of a unit disk in the plane and no edge crosses this boundary, so each
edge is drawn entirely inside the disk or entirely outside. It has been proved quite
recently that no cylindrical [2] and no 2-page drawing [1] of Kn has fewer than H.n/

crossings, thus giving the first real support to the conjecture of Hill.
We will say that a drawing D of the complete graph Kn is a Hill drawing if it has

precisely H.n/ crossings.
No other Hill drawings of complete graphs have been discovered until 2014 when

Ábrego et al. [3] described modifications of cylindrical drawings of K2n yielding Hill
drawings of K2nC1, K2nC2, and K2nC3 that are different in the sense that they are not
“shellable”. In Section 4.3, we describe a much more general class of Hill drawings
that include in particular all known examples of Hill drawings. These drawings have
not appeared previously in the mathematical literature.2

After 60+ years, Conjecture 2.1 is still widely open. It has been confirmed for
every n � 12 (with K11 and K12 confirmed in [23]), but it is still unresolved for
n D 13 and beyond. In fact, the weaker, asymptotic version of Conjecture 2.1 is also
open.

Conjecture 2.2 (Asymptotic Hill conjecture).

cr.Kn/ D
1

64
n4

�
1 � o.1/

�
D

3

8

�
n

4

��
1 � o.1/

�
:

Of course, the main problem is to show the lower bound – that there are no better
drawings than those with precisely H.n/ crossings. To that effect, there are several
exciting new results that were obtained through elaborate analysis of drawings and
use of semidefinite programming and Razborov’s flag algebra calculus [18, 25].

Theorem 2.3 (Balogh, Lidický, and Salazar [7]). For every sufficiently large n,

cr.Kn/ � 0:985 H.n/:

In the same paper [7], the authors also proved that the spherical geodesic crossing
number of Kn (see Section 4.3 for the definition) is asymptotically at least 0:996H.n/.

2After the author put a preprint of this construction on the arXiv [20] in 2018, he was
informed that almost the same construction was mentioned by Kyncl on mathoverflow [16].
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3. Turán’s brick factory problem

Turán’s brick factory problem asks for the minimum number of crossings in a drawing
of a complete bipartite graph Km;n. During World War II, Turán was forced to work
in a brick factory, pushing wagon loads of bricks from kilns to storage sites, and the
corresponding rail network with m kilns and n storage barracks was the same as a
special drawing of the complete bipartite graph Km;n. Crossings of rail tracks made
the transport challenging, and Turán, inspired by this situation, asked himself how the
rail network might be redesigned to minimize the number of crossings between the
railway tracks [33].

Paul Turán discussed his brick factory problem during 1950s in his talks, and
Zarankiewicz and Urbanik, who attended some of his presentations, independently
found drawings of complete bipartite graphs for which they claimed that they are
optimal [34, 35]. Unfortunately, proofs in both published papers were flawed. This
was discovered only a couple of years later, and the claimed minimum number of
crossings was turned into the following conjecture, which remains widely open even
today.

Conjecture 3.1. For any positive integers m and n, the crossing number cr.Km;n/ of
the complete bipartite graph with m C n vertices is equal to

Z.m; n/ D
1

4

jm

2

kjm � 1

2

kjn

2

kjn � 1

2

k
:

The conjecture has since been confirmed for the cases where one of the parame-
ters is at most 6 and also for K7;7 and K7;8, but it remains open even for such small
graphs as K7;9 and K9;9.3

4. Geodesic drawings

When we consider drawings of graphs in the plane, where each edge is drawn as
a straight-line segment, we come to the notion of the rectilinear crossing number
cr.G/. It turns out that for most small graphs the rectilinear crossing number is equal
to the usual crossing number. However, it was discovered early that cr.K8/ D 18 and
cr.K8/ D 19 and that this difference extends to larger graphs. However, it was open
for a long time how large can be the difference cr.Kn/� cr.Kn/. A breakthrough was
made in 2004 by Lovász, Vesztergombi, Wagner, and Welzl [19], who proved that the
normalized rectilinear crossing number of Kn is strictly greater than the correspond-
ing limit for the usual crossing number. Building on the work in [19], Ábrego, Cetina,

3The cases with even parameters were not mentioned since they would follow from odd
cases by known parity arguments; see, e.g. [27].
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Probability Shape Author
3=4 Cayley and Sylvester
1/2 DeMorgan
2/3 Triangle Wilson

> 1=2 Ingleby
5/8 (No name given)

1 � 35=.12�2/ Disk Woolhouse
25=36 Rectangle [10]

2.18 �
p

5 /=45 Regular pentagon [9]
683=972 Regular hexagon [14, p. 46]

Table 1. Answers to Sylvester’s question. The upper part of the table is taken from [24], where
the complementary probabilities for non-convex 4-gon are shown.

Fernández-Merchant, Leaños, and Salazar [5] improved the bounds from [19]. They
also found today’s best upper bounds [4]. Their results are summarized in the follow-
ing inequalities:

0:379972 <
277

729
� lim

n!1
cr.Kn/=

�
n

4

�
�

83247328

218791125
< 0:380488: (4.1)

Unlike for the Hill conjecture, we are lacking understanding of the rectilinear
crossing number and there is no good evidence about whether the lower or the upper
bound in (4.1) is closer to the normalized limit.

The rectilinear crossing number of complete graphs is tightly related to an old
problem in geometric probability that was originally proposed by Julius Sylvester in
1864, and which we will discuss next.

4.1. Sylvester’s four-point problem

In 1864, Sylvester asked [30] “what is the probability that four randomly chosen
points in the plane form a convex 4-gon?”. As it turned out, the problem was ill-posed
since by 1865, at least six solutions were received, all with different answers (see the
first six entries in Table 1). Depending on the method chosen to pick points from the
infinite plane, a number of different solutions are possible, and Sylvester concluded
[31] that his problem does not admit a determinate solution (see also [24]).

The reason for so many distinct answers was that it was not clear what “randomly
chosen points” in the plane would be. Sylvester himself changed the question a year
later [31]. The revised four-point problem asks for the probability q.R/ that four
points chosen at random in a bounded planar region R have a convex hull which is a
quadrilateral.
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3
8

0.37500.3695 0.3799 0.3805

ν∗

Figure 1. Currently best bounds on the asymptotic values of normalized crossing numbers of
large complete graphs: 0:3695 � cr.Kn/=

�
n

4

�
�

3
8

and 0:3799 � cr.Kn/=
�

n

4

�
� 0:3805.

Scheinerman and Wilf linked the Sylvester problem to the rectilinear crossing
number [28]. Let x�� be the limit of cr.Kn/=

�
n
4

�
as n !1, and let q.R/ be as defined

above. Scheinerman and Wilf proved that x�� D inf q.R/, where the infimum is taken
over all open planar sets R whose area is 1 (equivalently, over all unions of finitely
many disjoint circles). Let us recall that today’s best estimates for the rectilinear cross-
ing number of complete graphs given in (4.1) yield that 0:3799 < x�� < 0:3805; see
Figure 1.

Note that, in the plane, four points form a convex quadrilateral if and only if
the six line segments joining pairs of these points make a crossing. We will use this
interpretation in the sequel.

One can pose similar questions when considering randomly chosen points on any
surface. Suppose that S is a compact Riemannian surface and that � is a probability
measure4 on S. Then we define q.�/ as the probability that for four �-randomly
chosen points, two of the six geodesics joining pairs of these points cross each other.
Then q.�/ is called the geometric crossing probability of �.

The geometric crossing probabilities are related to the geodesic crossing number
of the complete graph on S, for which we consider all drawings of the graph in which
all edges are drawn as shortest geodesic segments on S. This is not hard to see and
we prove it as Lemma 4.1 below. But let us first discuss random drawings.

Let � be a probability measure on S.We say that � is geodesically non-degenerate
if the probability that two �-random points x; y are distinct and that they are joined
with a unique geodesic is equal to 1, and the probability that a third random point lies
on this geodesic is 0. If this is the case, then, with probability 1, n randomly selected
points define a unique good geodesic drawing of Kn. Such a drawing will be referred
to as a �-random drawing.

Lemma 4.1. Let x��.S/ be the limit of crS.Kn/=
�

n
4

�
(where n tends to infinity) and let

q.�/ be as defined above. Then x��.S/ D inf q.�/, where the infimum is taken over
all geodesically non-degenerate probability, measures �. The same holds when the
infimum is taken over all uniform probability measures whose support is the union of
finitely many disjoint disks on S.

4The measure � has to fulfill some simple non-degeneracy conditions, which will be dis-
cussed later.



From art and circuit design to geometry and combinatorics 669

Proof. Every �-random drawing Dn of Kn gives an upper bound on the geodesic
crossing number of Kn in S. For any four points a; b; c; d 2 S, let Qabcd be equal
to 1 if two of the geodesics between points a; b; c; d in S cross each other. Note that
E.Qabcd / D q.�/ if a, b, c, d are chosen at random with respect to �, and that

cr.Dn/ D
X²

Qabcd j ¹a; b; c; dº 2

�
V

4

�³
:

By linearity of expectations, we have

E.cr.Dn// D E
�X

Qabcd

�
D

X
E.Qabcd / D

�
n

4

�
q.�/:

This implies that x��.S/ � q.�/ for every �.
To establish equality, let ı > 0 and consider an optimal geodesic drawing D of

Kn in S, such that cr.D/=
�

n
4

�
� x�� < ı. Let x1; : : : ; xn 2 S be the vertices of D. There

are " > 0 and balls B1; : : : ; Bn centered at these vertices, each of area ", such that for
any choice of points x0

i 2 Bi (1 � i � n), the geodesic drawing on these points has
exactly the same crossings as D.

Let �n be the uniform measure on B1 [ � � � [ Bn. We claim that q.�n/ is close
to cr.D/=

�
n
4

�
. Let us consider four �n-random points. With probability at least 1 �

O.1=n/, the four points are in distinct balls Bi1 , Bi2 , Bi3 , Bi4 and the four indices
i1, i2, i3, i4 are chosen uniformly at random from Œn�. Thus, the probability that the
geodesics on these four points induces a crossing is at most .1�O.1=n//�1 cr.D/=

�
n
4

�
.

This shows that

q.�n/ �
�
1 C o.1/

�
cr.D/=

�
n

4

�
�

�
1 C o.1/

�
.x��

C ı/:

By letting ı ! 0 and n ! 1, we conclude that

x��
� inf

�
q.�/ � lim

n!1
q.�n/ � x��:

This completes the proof.

4.2. Sylvester’s problem on the sphere

Moon [22] proved that the expected number of crossings in random drawings of Kn

on the unit sphere in R3 is asymptotically the same as the conjectured crossing num-
ber of Kn. His result can be expressed as follows.

Theorem 4.2 (Moon [22]). Let � be the uniform probability distribution on the unit
sphere S2 in R3. Then q.�/ D 3=8.
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Guy, Jenkyns, and Schaer [12] considered the crossing number of Kn on the flat
torus (obtained from the unit square by identifying opposite sides). Their computation
shows the following.

Theorem 4.3 (Guy, Jenkyns, and Schaer [12]). Let T be the flat torus obtained from
a rectangle in the plane by identifying opposite sides. Let � be the uniform probability
distribution on T . Then q.�/ D 5=18.

As noted in [12], the Sylvester crossing probability is the same for every rectangle
model of the flat torus. However, they neglected the possibility of other parallelogram
representations of the flat torus. Interestingly, they give smaller crossing probabilities.

Theorem 4.4 (Elkies [11]). Let T˛ be the flat torus obtained from a rhombus with
side length 1 and angle ˛ .0 < ˛ � �=2/ by identifying opposite sides. If �˛ is the
uniform distribution on T˛ , then

q.�˛/ �
22

81
:

The smallest value occurs at ˛ D �=3, where q.��=3/ D 22
81

.

In [15], Koman bounded the crossing number of Kn in the projective plane:

41

273

�
n

4

�
� crN1

.Kn/ �
39

128

�
n � 1

4

�
; (4.2)

where the left inequality holds only when n � 11.
Below we give an improvement of Koman’s upper bound by using the model of

the projective plane as the surface endowed with constant curvature 1 and considering
random drawings.

Let P 2 be the projective plane obtained from the unit sphere S2 by identifying
all antipodal pairs of points. This defines the projective plane as a surface of constant
curvature 1. Its total area is one half of the area of the unit sphere, A.P 2/ D 2� . The
geodesics in P 2 are the great semicircles, each of which has length equal to � .

Theorem 4.5. The uniform distribution � on P 2 has crossing probability q.�/ D

3��2. Consequently,

crP2.Kn/ � 3��2

�
n

4

�
:

Proof. Let us consider two random points in P 2 and let ` denote the length of the
geodesic joining them. We claim that E.`/ D 1. To see this, we may assume that
the first point is the North pole of S2. Then ` D ˛, where 0 � ˛ � �=2 is the angle
between the lines through the origin in R3 and the two points. Now,

E.`/ D

“
S

˛ dS D

Z 2�

0

Z �=2

0

˛ sin ˛ d˛ ds D 2�

Z �=2

0

˛ sin ˛ d˛ D 1:
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Next, we consider the conditional probability of a crossing of two random seg-
ments S1, S2, conditioned on their lengths `1 and `2. The two great semicircles
containing S1 and S2 cross each other at a point p. The segments are positioned
randomly on these two segments, so the probability that they both contain p (which
is the only way they would cross) is equal to .`1=�/ � .`2=�/. Thus the conditional
probability of the event X that S1 and S2 cross is

PrŒX j `1; `2� D
`1

�
�

`2

�
:

Since `1 and `2 are independent and E.`1/ D E.`2/ D 1, we get

E.X/ D ��2 E.`1`2/ D ��2 E.`1/ E.`2/ D ��2:

Finally, we have that q.�/ D 3 E.X/ D 3��2.

Elkies [11] realized that 3��2 < 39=128 and concluded that the bound of The-
orem 4.5 asymptotically beats Koman’s upper bound (4.2). In comparison with the
Hill conjecture, it was conjectured in [11] that the bound of the theorem is best pos-
sible. However, Arroyo, McQuillan, Richter, Salazar, and Sullivan [6] recently found
better drawings of complete graphs in the projective plane. Their drawings can also
be approximated with random drawings, but the probability measure is not uniform.

Theorem 4.6 ([6]). crP2.Kn/ < 0:3024
�

n
4

�
.

Note that 0:3024 < 3��2 � 0:304.

4.3. Antipodal drawings on the sphere

Let S2 be the unit sphere in R3. For any two points p;q 2 S2, consider the great circle
through p and q (the great circle is unique unless q is antipodal to p in which case
there are many). The shorter of the two segments on this circle from p to q is called
a geodesic arc (or just a geodesic). Any geodesic arc joining two antipodal points in
S2 is a half of a great circle and will be referred to as a half-circle.

A geodesic drawing of a graph G on S2 is a drawing in which all edges are
drawn as geodesic arcs. We define the geodesic crossing number of the graph G on
the sphere as the minimum number of crossings of edges of G in a geodesic drawing
of the graph, and denote it by crS2.G/.

A set P of points in S2 is in general position if no three points in P lie on a
common great circle in the sphere.

Let k � 3 be a positive integer and let n D 2k. The graph Mn obtained from the
complete graph Kn by removing edges of a perfect matching in Kn is isomorphic to
the complete k-partite graph K2;2;:::;2 with k parts of size 2 each. The edge-set of this
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graph consists of
�

k
2

�
4-cycles, each of which joins two parts of size 2 and is called a

basic 4-cycle in Mn.
We will consider some special drawings of Mn. Let P be a set of k points in

general position in S2. Let � be obtained from P by adding, for each p 2 P , its
antipodal point Np into � . The geodesic drawing of Mn on these points, where each
antipodal pair represents a pair of nonadjacent vertices in Mn, is said to be an antipo-
dal geodesic drawing of Mn. We will denote by Dn.P / the antipodal drawing of Mn

determined by P .

Lemma 4.7 ([20]). For every k � 3, every antipodal drawing Dn.P / of Mn has
precisely 1

4
k.k � 1/.k � 2/.k � 3/ crossings, and by adding any geodesic half-circle

between a pair of antipodal points p; Np .p 2 P /, we obtain precisely 1
2
.k � 1/.k � 2/

additional crossings.

Proof. Note that every pair of points p; q 2 P together with their antipodes Np, Nq

determines a great circle Qpq that consists of four edges forming the basic 4-cycle
between ¹p; Npº and ¹q; Nqº. Any two such great circles Qpq and Qrs cross twice and
make two crossings if ¹p; qº \ ¹r; sº D ;. If j¹p; qº \ ¹r; sºj D 1, then they do not
cross. Thus, the edges in each Qpq participate in precisely 2

�
k�2

2

�
D .k � 2/.k � 3/

crossings. By summing up these numbers over all
�

k
2

�
possibilities for the pair ¹p; qº,

we count each crossing twice, so

cr.Dn/ D
1

2

�
k

2

�
.k � 2/.k � 3/ D

1

4
k.k � 1/.k � 2/.k � 3/:

By adding any great circle through two antipodal points p; Np, p 2 P , we separate
k � 1 of the points in P [ xP from their antipodal pairs. There are precisely .k �

1/.k � 2/ edges joining them. Because of the antipodal symmetry of the drawing Dn,
precisely half of these edges cross each half-circle. Thus, each half-circle is crossed
1
2
.k � 1/.k � 2/ many times.

We say that a set P of points in S2 has strength s if there is a choice of half-circles
joining each point in P with its antipodal point Np such that these half-circles cross
each other s times.

Corollary 4.8 ([20]). If a set P of k points in general position on S2 has strength
s, then the drawing Dn.P / can be extended to a geodesic drawing of the complete
graph Kn with H.n/ C s crossings.

Proof. We extend the drawing Dn by adding half-circles joining the antipodal pairs
p, Np for p 2 P 0 so that these half-circles make s crossings among each other. By
Lemma 4.7, the number of crossings is 1

4
k.k � 1/.k � 2/.k � 3/ C 1

2
.k � 1/.k �

2/jP j C s, which is equal to H.n/ C s.



From art and circuit design to geometry and combinatorics 673

It is easy to see that there are many sets of strength 0. They give rise to antipodal
Hill drawings.

Corollary 4.9. Let P � S2 be a set of k points in general position in S2, whose
strength is 0. Then the geodesic drawing Dn.P / .n D 2k/ can be extended to a Hill
drawing of Kn. This drawing has the following additional properties:

(a) the drawing is antipodally symmetric except for the drawing of the half-
circles joining antipodal pairs;

(b) for every vertex v of Kn, the edges incident with v participate in precisely
1

16
.n � 2/2.n � 4/ crossings;

(c) by deleting any point from P [ xP , we obtain a drawing of Kn�1 with pre-
cisely H.n � 1/ crossings;

(d) by adding any new point (in general position with respect to P ) and adding
geodesics from that point to P [ xP , we obtain a geodesic drawing of KnC1

with precisely H.n C 1/ crossings.

Proof. Statements (a)–(c) are easy observations and their proof is left for the reader.
To prove (d), let QDP [¹qº, where q is the added point. Consider the corresponding
drawing of KnC2 for yQ. Note that Q may no longer have strength 0, but since P has
strength 0, there is a drawing where the only half-circle intersecting other half-circles
is the half-circle joining q and Nq. All these added crossings disappear after removing
Nq, and thus by (b), the extended drawing of KnC1 has H.n C 2/ � 1

16
n2.n � 2/ D

H.n C 1/ crossings.

The last corollary implies that crS2.Kn/ � H.n/ for every positive integer n.
This result is surprising in two ways. Firstly, it is known that the rectilinear crossing
number (geodesic version in the Euclidean plane) of complete graphs is strictly larger
than the usual crossing number. So, assuming the Hill conjecture, it is surprising that
the geodesic crossing number in the sphere is not different. Secondly, the abundance
of obtained Hill drawings is also quite unexpected.

4.4. Moon’s result revisited

A probability measure � on the sphere S2 is non-degenerate if �.C / D 0 for each
great circle C . This is equivalent to saying that the probability that n �-random points
on the sphere lie in general position is equal to 1 (with probability 1, they are all dis-
tinct and no three are on the same great circle). Further, we say that � is antipodally
symmetric if for any �-measurable set A � S2, its antipodal set xA has the same mea-
sure, �. xA/ D �.A/.

As mentioned before (see Theorem 4.2), Moon proved that random geodesic
drawings of complete graphs on the sphere have asymptotically about the same num-
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ber of crossings as the conjectured best drawings. Corollary 4.8 gives a simple expla-
nation of this phenomenon. Indeed, in a forthcoming work [21] the following result
with several interesting consequences is derived.

Theorem 4.10 (Mohar and Wesolek [21]). Let � be a non-degenerate antipodally
symmetric probability distribution on the unit sphere S2. Then a �-random set of n

points on S2 joined by geodesics gives rise to a drawing Dn of the complete graph
Kn such that cr.Dn/=H.n/ D 1 C o.1/ asymptotically almost surely.
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European mathematics: A history in stamps

Robin Wilson

Abstract. It is surprising how many hundreds of postage stamps from around the world have
featured mathematics and its history. For the 8ECM meeting in Portorož I was invited to present
a public lecture on those stamps that are related to European mathematics, and I illustrated
it with more than 200 examples. I also designed a stamp exhibition for the Congress, also
including over 200 mathematical stamps with historical commentary. In this article I present a
selection of the stamps that I selected for this lecture and exhibition. The treatment is historical
and is presented chronologically.

1. Greek mathematics

European mathematics is often taken to begin with Ancient Greece, although its ori-
gins can be traced back further. From around 600 BC, the subject flourished through-
out the eastern Mediterranean where the Greeks developed deductive logical reason-
ing and proof – the hallmark of their work, especially in geometry.

An early Greek mathematician, around 600 BC, was Thales of Miletus (Figure
1(a)), who predicted a solar eclipse and showed how to cause electricity in feathers by
rubbing them with a stone. In geometry he reportedly proved that a circle is bisected
by any diameter and that the base angles of an isosceles triangle are equal.

Another semi-legendary figure is Pythagoras of Samos (Figure 1(b)), who formed
a School in Crotona to further the study of mathematics and science. Supposedly
believing that “All is number”, the Pythagoreans emphasised the “mathematical arts”
of arithmetic, geometry, astronomy, and music, later known as the “quadrivium”. Sev-
eral stamps feature the well-known Pythagorean theorem for a right-angled triangle
(Figure 1(c)), that the areas of the squares on its two smallest sides add up to the
area of the square on its largest side – or in algebraic form (which the Greeks did not
use), a2 C b2 D c2. We do not know who first proved this, but its connection with
right-angled triangles had already been known many years earlier, in Mesopotamia
and elsewhere.

2020 Mathematics Subject Classification. 97A30.
Keywords. European mathematics, history of mathematics, postage stamps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Greek mathematics
(a) Thales, (b) Pythagoras, (c) Pythagorean theorem, (d) Platonic solids,

(e) Plato’s Academy, (f) Euclid, (g) Archimedes, (h) Archimedes’ geometry

The scene then moved to Athens, which became the most important intellectual
centre in Greece. In 387 BC, the philosopher Plato founded a school in the suburb of
Athens named “Academy”, and Plato’s Academy became the focal point for mathem-
atical study. Convinced that mathematical training was essential for his ideal citizens,
Plato emphasised the quadrivium subjects of the Pythagoreans and discussed the
five regular (or “Platonic”) solids (Figure 1(d)), while his pupil Aristotle formalised
deductive reasoning. In Raphael’s fresco The School of Athens, Plato and Aristotle
are shown on the steps of the Academy (Figure 1(e)).

Around 300 BC, following the military successes of Alexander the Great, math-
ematical activity moved to Alexandria in the Egyptian part of the Greek world. The
first important mathematician there was Euclid (Figure 1(f)) who is mainly remem-
bered for his Elements, the most widely read and influential mathematical work of all
time. A model of deductive reasoning, it presented plane and solid geometry, arith-
metic, and number theory, by building them up from a small number of axioms to a
great hierarchy of results that he derived in a logical and systematic order.

One of the greatest of mathematicians, around 250 BC, was Archimedes of Syra-
cuse, now in Sicily (Figure 1(g)). In geometry he investigated spheres and cylinders
and compared the surface areas and volumes of sections of these; he also listed the
thirteen “Archimedean” (or semi-regular) solids, and found estimates for � by con-
sidering polygons that approximate a circle (Figure 1(h)). In mechanics he found the
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law of moments for a balance and invented the Archimedean screw for raising water.
In statics he stated Archimedes’ principle on the weight of an object immersed in
water, but no contemporary evidence exists for the well-known story that he used his
principle to test the purity of a gold crown or that he jumped out of his bath and ran
naked through the streets celebrating his discovery.

2. Early European mathematics

We now turn briefly to the Islamic world from AD 750 onwards. United by their
new religion, and with Baghdad lying on the east-west trade routes, their scholars
developed Greek writings from the west and Hindu writings from India. Some of our
present terminology dates from this period: the word “algorithm” (a step-by-step pro-
cedure for solving a problem) comes from al-Khwārizmı̄, a Persian mathematician
whose influential book on arithmetic introduced the Indian decimal place-value sys-
tem to the Islamic world. He also wrote a book on solving equations, Kitāb al-jabr
wal-muqābala (Calculation by Completion and Balancing), whose title gives us the
word “algebra”.

The Islamic world developed in all directions, and by the year 1000 it had spread
across the top of Africa and up into southern Europe through Spain and Italy. Córdoba
became the scientific capital of Europe, while Islamic decorative art and architecture
spread through southern Spain and Portugal (Figure 2(a)) and included the magni-
ficent geometrical arches in the mosque at Córdoba, and the tilings in Granada’s
Alhambra.

Meanwhile, in Europe, the period from 500 to 1000 had become known as the
“Dark Ages”. Much of the legacy from the ancient world was forgotten, and the
general level of culture was low. Revival of interest began with the French scholar
Gerbert of Aurillac (Figure 2(b)) who trained in Catalonia and introduced the Hindu–
Arabic numerals to Christian Europe, using an abacus that he designed for the pur-
pose. A major figure in the Church, he was crowned Pope in 999.

The Hindu-Arabic numbers were also popularised by Leonardo of Pisa, or Fibon-
acci (Figure 2(c)) in his Liber Abbaci (Book of Calculation) of 1202. This famous
work contains many problems from arithmetic and algebra, such as his rabbits prob-
lem (Figure 2(d)) that leads to the Fibonacci sequence of numbers, 1;2;3;5;8;13; : : : ;

where each successive number is the sum of the previous two. These numbers also
arise in the arrangements of seeds in sunflowers and pine cones.

Another notable figure was the Catalan mystic Ramon Lhull (Figure 2(e)), who
believed that all knowledge could be obtained by combining God’s “divine attrib-
utes”, such as power, wisdom, and goodness. His combinatorial ideas spread through
Europe, later influencing such figures as Mersenne and Leibniz.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2. Early European mathematics
(a) Tiling pattern, (b) Gerbert, (c) Fibonacci, (d) rabbits problem, (e) Llull,

(f) arithmetic and geometry, (g) Pacioli, (h) arithmetic symbols, (i) Dürer engraving

The Middle Ages renaissance in learning was largely due to three developments:
the establishment of universities, the translation of Arabic texts into Latin, and the
invention of printing. The first European university was in Bologna, founded in 1088,
with Paris and Oxford following soon after. For hundreds of years, the curriculum
was based on the Greek quadrivium (Figure 2(f)).

The invention of printing around 1440 enabled mathematical works to become
widely available for the first time. At first, these were in Latin for the scholar, but
gradually vernacular works appeared at prices accessible to all. These included texts
in arithmetic, algebra, and geometry, and practical works on the mathematics of com-
merce. Important among these vernacular works was Luca Pacioli’s Summa in Italian
(Figure 2(g)), a 600-page compilation of contemporary mathematics that included
the first account of double-entry bookkeeping. Printing also led to a standardisation
of mathematical notation: the symbols C and � first appeared in a German arithmetic
text of 1489, but � and � were not used until much later (Figure 2(h)).

It was around this time that painters learnt how to give visual depth through
geometrical perspective. Two of these were Brunelleschi who designed the dome of
Florence Cathedral, and his friend Alberti who presented mathematical rules for per-
spective and insisted that “the first duty of a painter is to know geometry”. Piero
della Francesca wrote books on perspective that included polyhedron woodcuts by
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Leonardo da Vinci who warned: “Let no one who is not a mathematician read my
work”. Another famous artist was Albrecht Dürer, who learnt perspective in Italy and
introduced it into Germany. His engraving St Jerome in His Study shows his use of
perspective (Figure 2(i)).

3. The age of exploration

The Renaissance period also coincided with many great sea voyages and explorations.
In Portugal, Prince Henry the Navigator devoted his wealth and energies to maritime
exploration, while Vasco da Gama became the first European to reach the west coast
of India. Other well-known explorers included the Italian Christopher Columbus and
Ferdinand Magellan of Portugal.

Such explorers needed accurate maps, and attempts to represent the spherical
earth on a flat surface led to various types of map projection for use by navigators.
Most notable was that of Gerard Mercator (Figure 3(a)) who projected the globe
onto a vertical cylinder and adjusted the scale so that the lines of latitude and lon-
gitude appeared straight, as did fixed compass directions. Another early European to
apply mathematical techniques to cartography was Pedro Nunes (Figure 3(b)), royal
cosmographer and the leading figure in Portuguese nautical science.

For navigating at sea, astrolabes were used to determine latitude by measurements
of the altitudes of heavenly bodies such as the sun or pole star (Figure 3(c)); other
instruments included quadrants (in the shape of a quarter-circle, or 90°) and sextants
(a sixth of a circle, or 60°) (Figure 3(d)). To measure an object’s altitude, you viewed
it along the top edge of the instrument, and the position of a movable rod on the rim
gave the reading.

The 16th century was also important for astronomy, which was completely trans-
formed when Nicolaus Copernicus replaced the Greek earth-centred planetary system
by one with the sun at the centre and the earth as just one of the planets in circular
orbits around it; his book De Revolutionibus Orbium Coelestium (On the Revolutions
of the Heavenly Spheres) was published in 1543 (Figure 3(e)). The Copernican sys-
tem aroused much controversy, bringing its supporters into conflict with the church
which placed the earth at the centre of creation.

Before the invention of the telescope, the greatest observer of the heavens was
the Danish astronomer Tycho Brahe, who designed instruments of unequalled accur-
acy and measured over 700 stars. His assistant Johannes Kepler (Figure 3(f)) is
remembered for his laws of planetary motion. From Tycho’s extensive observations,
he proposed elliptical orbits for the planets, with the sun at one focus, and introduced
the word “focus” into mathematics. Kepler also rotated curves around an axis and
found the volumes of many solids of revolution by summing thin discs, foreshadow-
ing the integral calculus of some years later.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. The age of exploration
(a) Mercator, (b) Nunes, (c) mariner’s astrolabe, (d) sextant,

(e) Copernicus, (f) Kepler, (g) Galileo

Another Copernican supporter was Galileo Galilei (Figure 3(g)), who made ex-
tensive use of the telescope, drawing our moon’s surface and discovering the moons
of Jupiter and Saturn. His mechanics book Discorsi e Dimostrazioni Matematiche
Intorno a Due Nuove Scienze (Discourses and Mathematical Demonstrations Relating
to Two New Sciences) investigated uniform and accelerated motion and explained
why the path of a projectile must be a parabola.

4. The 17th century

A major difficulty of the time, particularly for navigators and astronomers, was nu-
merical calculation. In 1614 John Napier of Scotland introduced his “logarithms”,
designed to replace lengthy multiplications and divisions by easier additions and sub-
tractions. These soon led to practical instruments based on a logarithmic scale, such
as the slide rule (Figure 4(a)); dating from around 1630, they were used for over 300
years until pocket calculators appeared in the 1970s. The Slovenian mathematician
Jurij Vega also published a celebrated compendium of logarithms, as well as 7-figure
and 10-figure tables that ran to many editions (Figure 4(b)), and calculated � to 140
decimal places.



European mathematics: A history in stamps 683

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 4. The 17th century
(a) Slide rule, (b) Vega’s logarithms, (c) Descartes,

(d) Mersenne prime, (e) Fermat’s last theorem, (f) Pascal, (g) Pascal’s triangle,
(h) Newton, (i) Newton’s Principia, (j) Leibniz

Meanwhile, in France, René Descartes (Figure 4(c)) solved an ancient problem
of Pappus who had asked for the locus of a point that moved in a specified way
relative to certain fixed lines. To solve this, Descartes named two lengths x and y and
calculated every other length in terms of them, obtaining a quadratic expression (a
conic) as the required path. In this way he introduced algebraic methods into geometry
(a development that would continue over the next 100 years), but not the “Cartesian
coordinates” that are named after him.

Marin Mersenne was a minimite friar living just outside Paris, who made great
advances in the mathematical theory of sound and who is mainly remembered for
listing prime numbers of the form 2n � 1, such as 3, 7, and 31. Fifty-one of these
Mersenne primes are now known, and Figure 4(d) exhibits the largest Mersenne prime
that had been discovered up to 2004.
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Pierre de Fermat is mainly remembered for analytic geometry and number theory.
In particular, he famously claimed to have proved Fermat’s last theorem, that the
equation xn C yn D zn has no non-zero integer solutions when n > 2 (Figure 4(e)).
This was eventually proved by Andrew Wiles in 1995, as indicated on the stamp by
the bar across the equals sign.

Blaise Pascal (Figure 4(f)) showed an early interest in mathematics – when only
16 he discovered his “hexagon theorem” about six points on a conic. One of the earli-
est to explore the theory of probability, he is also remembered for “Pascal’s principle”
in hydrodynamics, Pascal’s triangle of binomial coefficients (Figure 4(g)), and for an
early calculating machine, operated by cogged wheels, that could add and subtract.

In England, Isaac Newton (Figure 4(h)) was born in 1642, and at Cambridge
University he was appointed Lucasian Professor of Mathematics, a post later held
by Stephen Hawking. Together with Leibniz (but independently) he recognised the
inverse relationship between differentiation and integration, the two branches of the
calculus.

The story of Newton and the apple is well known. Seeing it fall, he realised that
the gravitational force that pulled it to earth was the same as the force that keeps
the moon orbiting the earth and the earth orbiting the sun – and claimed that this
motion was governed by a “universal law of gravitation”, where the force of attrac-
tion between two objects varies inversely as the square of the distance between them.
In his Philosophiae Naturalis Principia Mathematica (Mathematical Principles of
Natural Philosophy) of 1687, Newton used this law to explain Kepler’s laws of ellipt-
ical planetary motion, and to account for cometary orbits, the variation of tides, and
much else besides (Figure 4(i)).

Newton justly claimed priority for the calculus, but it was Gottfried Leibniz who
was the first to publish it (Figure 4(j)). But his calculus was different from Newton’s,
being based on geometry rather than on velocity and motion. Also, his notation was
more versatile than Newton’s: his “D” for differentiation and his integral sign, which
are still used today, were introduced within just three weeks of each other in the
autumn of 1675.

5. The 18th century

The Bernoulli family included several distinguished Swiss mathematicians. In his
book of 1713 on the “Art of Conjecturing”, Jakob Bernoulli presented his law of large
numbers (Figure 5(a)). With his brother Johann, he was the first to develop Leibniz’s
calculus, introducing the word “integral” and applying calculus to such curves as
cycloids and spirals.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The 18th century
(a) Bernoulli, (b) Euler, (c) Königsberg bridges problem,

(d) geodetic missions, (e) d’Alembert, (f) Monge

Leonhard Euler also grew up in Switzerland, but spent his working life at the
scientific academies of St. Petersburg and Berlin. The most prolific mathematician
of all time, he contributed to almost every branch of mathematics and physics, from
number theory and the calculus to mechanics, astronomy, and optics. Euler introduced
the notations e for exponential, f for a function, i for

p
�1, and † for summation,

and linked the exponential and trigonometric functions via his equation ei' D cos' C

i sin' as shown on the stamp (Figure 5(b)). In 1735 he solved the Königsberg bridges
problem of deciding whether one can cross the seven bridges of the city visiting no
bridge twice, but he never drew the associated graph that is often attributed to him
(Figure 5(c)).

Newton had predicted that the earth’s rotation causes a flattening at the poles,
whereas an alternative theory of Descartes claimed that it is elongated. In the 1730s
geodetic missions went to Peru (led by Charles-Marie de la Condamine) and Lapland
(led by Pierre Louis de Maupertuis) to measure the swing of a pendulum and ascertain
who was correct (Figure 5(d)). These missions confirmed Newton’s view: the earth is
flattened at the poles.

In France a leading Enlightenment figure was Jean d’Alembert (Figure 5(e)), who
attempted to put the calculus on a firm basis by formalising the idea of a limit. He
also derived the wave equation that describes the motion of a vibrating string, and
in later years wrote many mathematical and scientific articles for Denis Diderot’s
Encyclopédie (Encyclopedia).
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Napoleon Bonaparte’s rise to power in France led to important developments
in mathematics. Napoleon himself was interested in the subject – there’s even a
“Napoleon’s theorem” – and his close friend, the geometer Gaspard Monge (Figure
5(f)), while investigating fortress gun emplacements, developed improved methods
for projecting 3-dimensional objects onto a plane; this became known as “descriptive
geometry”.

6. The 19th century

An important consequence of the French Revolution was the founding in Paris of the
École Polytechnique, where the finest mathematicians of the day – Monge, Lagrange,
Laplace and Cauchy – taught students who were destined to serve in both military and
civilian capacities.

Joseph-Louis Lagrange (Figure 6(a)) wrote on mechanics, functions, and num-
ber theory; and proved that every positive integer can be written as the sum of four
squares. Pierre-Simon Laplace (Figure 6(b)) is remembered for the Laplace transform
of a function and Laplace’s equation in physics and wrote a monumental five-volume
treatise on celestial mechanics that earned him the title of “the Newton of France”.
Shortly after the French Revolution, a commission was set up to standardise weights
and measures and introduce a metric system; led by Lagrange, its members included
Laplace and Monge.

Work in analysis continued with Augustin-Louis Cauchy (Figure 6(c)). The cal-
culus was still on shaky foundations, but Cauchy rescued it with formal treatments of
limits and continuity, while also developing complex analysis. Meanwhile, in Prague,
Bernard Bolzano (Figure 6(d)) had formalised the idea of continuity before Cauchy,
proving the “intermediate value theorem” that a continuous function takes every value
between its greatest and least values.

In algebra a major breakthrough in 1826 occurred when the Norwegian Niels Abel
(Figure 6(e)) solved a long-standing problem. Although there were general formulas
for solving polynomial equations of degrees 2, 3, and 4, none was known for those
of higher degrees. Abel showed that no such formulas can exist. Abel’s work was
continued by Évariste Galois (Figure 6(f)), who explained in algebraic terms exactly
which equations can be solved. Galois had a short and turbulent life, being sent to jail
for political activities and dying tragically in a duel at the age of 20, having sat up the
previous night summarising all his mathematical achievements for posterity.

The Irishman William Rowan Hamilton was a child prodigy who discovered an
error in Laplace’s writings while a teenager and was appointed Astronomer Royal
of Ireland when he was still a student. He made important advances in mechan-
ics and geometrical optics, and while attempting to generalise the complex numbers
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 6. The 19th century
(a) Lagrange, (b) Laplace, (c) Cauchy, (d) Bolzano,

(e) Abel, (f) Galois, (g) Hamilton’s quaternions,
(h) Gauss and polygon, (i) Bolyai’s geometry, (j) Lobachevsky, (k) Chebyshev,

(l) Kovalevskaya, (m) Agnesi, (n) Germain, (o) Nightingale
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discovered the quaternions, a non-commutative system that involves three intercon-
nected square roots of �1 (i , j , and k), as shown in Figure 6(g).

Meanwhile, in Germany, Carl Friedrich Gauss worked in many areas, from com-
plex numbers (the “Gaussian number plane”) to statistics (the “Gaussian distribu-
tion”). One of the greatest mathematicians of all time, he also discovered which
regular polygons can be drawn by straight-edge and compasses alone – these include
triangles and pentagons, and also a regular polygon with 17 sides (Figure 6(h)).

In the early 19th century, there were important developments in geometry. Euc-
lid’s Elements opens with five “postulates” – four are straightforward, but the fifth is
more complicated and seemed to be provable from the others. One version of it was
the “parallel postulate”: “given a line L and any point O not on it, there is a unique
line through O, parallel to L”. For two millennia, mathematicians tried to deduce this
from the other postulates, but they were unsuccessful because there are geometries
that satisfy the first four postulates but not the fifth: these have infinitely many lines
through O parallel to L (Figure 6(i)). Described around 1830 by Nikolai Lobachevsky
of Russia (Figure 6(j)) and János Bolyai of Hungary, they forced mathematicians to
ask: “Which geometry corresponds to the world we live in?” – our familiar Euclidean
geometry or a non-Euclidean one? (The familiar spherical geometry of our globe is
not a true geometry in the Euclidean sense, as two lines, or great circles, meet in more
than one point.)

In Russia, Pafnuty Chebyshev (Figure 6(k)) investigated orthogonal functions
(“Chebyshev polynomials”), probability (“Chebyshev’s inequality”), and prime num-
bers. Sofia Kovalevskaya (Figure 6(l)) contributed to mathematical analysis and par-
tial differential equations and won a coveted prize from the French Academy of
Sciences for a memoir on the rotation of bodies; barred by her gender from study-
ing in Russia, she later became the first female professor in Stockholm.

Other women mathematicians who have featured on stamps include Maria Gae-
tana Agnesi (Figure 6(m)), who published an early book on the calculus and after
whom the cubic curve known as the “witch of Agnesi” is named, and Sophie Germain
(Figure 6(n)), whose pioneering work on prime numbers and Fermat’s last theorem
greatly impressed Gauss; she also made important contributions to the theory of
elasticity. Florence Nightingale saved many lives through her sanitary improvements
in Crimean War hospitals; an accomplished statistician, she analysed Crimean mor-
tality data and displayed them using her “polar diagrams”, as depicted in Figure 6(o).

7. The 20th century

It was in the 20th century that mathematicians created the subject as we now know it.
What follows is a brief selection.
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Henri Poincaré (Figure 7(a)) worked on the still-unsolved “three-body problem”
of determining the simultaneous motion of the sun, earth, and moon. A gifted pop-
ulariser of mathematics, he also developed algebraic topology, differential equations,
celestial mechanics, and much else. The range of David Hilbert was also immense
– from number theory, “Hilbert space”, and a space-filling curve (Figure 7(b)) to
potential theory and the theory of gases. In 1900 he gave a celebrated lecture at the
International Congress of Mathematicians in Paris, posing 23 mathematical problems
that set the agenda for research over the coming century.

In England, Bertrand Russell (Figure 7(c)) made fundamental contributions to
mathematical logic, such as “Russell’s paradox”, and with A. N. Whitehead wrote
a three-volume Principia Mathematica on the foundations of mathematics, while in
Poland Stefan Banach (Figure 7(d)) helped to create modern functional analysis and
develop links between topology and algebra: the term Banach space is named after
him.

Fractal patterns are “self-similar”, in that they reproduce themselves for ever
when magnified or reduced, such as von Koch’s snowflake curve (Figure 7(e)), which
has infinite length but encloses a finite area. Figure 7(f) features a Julia set, a fractal
pattern that arises from iterating a quadratic formula.

For something more light-hearted, Figure 7(g) shows Rubik’s cube, whose faces
can be rotated to yield over 1019 different patterns; the object is to restore the original
colours. In the early 1980s, when the craze was at its peak, over 100 million cubes
were sold.

Mathematics continues to advance at an ever-increasing rate, and since 1897 the
International Congresses of Mathematicians have been held regularly around the
world, at which thousands of mathematicians gather to learn about the most recent
developments in their subject. Several of these gatherings have been commemorated
on stamps – those from Europe include Moscow in 1966 (Figure 7(h)), Helsinki in
1978 (Figure 7(i)), and Berlin in 1998 (Figure 7(j)). As for the European Congresses
of Mathematics, only two stamps have been issued: in 1996 for the second congress in
Hungary, and recently for the eighth one, 8ECM, at Portorož, showing the Fibonacci
sequence (Figure 7(k)).

Postage stamps provide an attractive vehicle for presenting mathematics and its
development. This brief account has shown how the subject has been shaped by
factors ranging from scientific and geographical developments and trade to education.
Crucial to this story have been the attempts to solve a wide range of theoretical and
practical problems, as well as the subject’s internal logic by which it has progressed
to increasingly greater abstractness.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k)

Figure 7. The 20th century
(a) Poincaré, (b) Hilbert curve, (c) Russell, (d) Banach,

(e) von Koch curve, (f) Julia set, (g) Rubik’s cube,
(h) 1966 ICM Moscow, (i) 1978 ICM Helsinki, (j) 2008 ICM Berlin,

(k) 2021 8ECM Portorož
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See [5, 6] for further information about mathematical stamps, and [1–4] for ac-
counts of the history of mathematics. Many mathematical stamps are featured on the
website www.mathematicalstamps.eu
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Detecting arrays for effects of single factors

Charles J. Colbourn and Violet R. Syrotiuk

Abstract. Determining correctness and performance for complex engineered systems necessi-
tates testing the system to determine how its behavior is impacted by factors and interactions
among them. Of particular concern is to determine which settings of single factors (main
effects) impact the behavior significantly. Detecting arrays for main effects are test suites that
ensure that the impact of each main effect is witnessed even in the presence of d or fewer other
significant main effects. Separation in detecting arrays dictates the presence of at least a spec-
ified number of such witnesses. A new parameter, corroboration, enables the fusion of levels
while maintaining the presence of witnesses. Detecting arrays for main effects, having various
values for the separation and corroboration, are constructed using error-correcting codes and
separating hash families. The techniques are shown to yield explicit constructions with few
tests for large numbers of factors.

1. Introduction

Combinatorial testing [33,45] addresses the design and analysis of test suites in order
to evaluate correctness (and, more generally, performance) of complex engineered
systems. We first introduce some basic definitions. There are k factors F1; : : : ; Fk .
Each factorFi has a set Si D¹vi1; : : : ;visi

º of si possible levels (or values or options).
A test is an assignment of a level from vi1; : : : ; visi

to Fi , for each 1 � i � k. The
execution of a test yields a measurement of a response. When ¹i1; : : : ; itº � ¹1; : : : ; kº

and �ij 2 Sij , the set ¹.ij ; �ij / W 1 � j � tº is a t -way interaction. The value of
t is the strength of the interaction. A main effect is a 1-way interaction. A test on
k factors covers

�
k
t

�
t -way interactions. A test suite is a collection of tests. A test

suite is typically represented as an N � k array A D .�i;j / in which �i;j 2 Sj when
1 � i � N and 1 � j � k. The size of the test suite is N and its type is .s1; : : : ; sk/.
Tests correspond to rows of A, and factors correspond to its columns.

2020 Mathematics Subject Classification. Primary 05B40; Secondary 05B15, 68R05, 62K99.
Keywords. Combinatorial testing, detecting array, covering array, orthogonal array,
error-correcting code.
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When the response of interest can depend on one or more interactions, each hav-
ing strength at most t , a test suite must cover each interaction in at least one row (test).
To make this precise, let A D .ai;j / be a test suite of size N and type .s1; : : : ; sk/.
Let T D ¹.ij ; �ij / W 1 � j � tº be a t -way interaction. Then �A.T / denotes the set
¹r W ar;ij D �ij ; 1 � j � tº of rows of A in which the interaction is covered. A t -way
interaction T must have j�A.T /j � 1 in order to impact the response. For a set T of
interactions, �A.T / D

S
T2T �A.T /.

When used in practical testing applications, as in [1,24,50], further requirements
arise. First, if we suppose that some set T of interactions are those that signifi-
cantly impact the response, yet there is another interaction T 62 T for which �A.T /�S

S2T �A.S/, the responses are inadequate to determine whether or not T impacts the
response significantly. This requirement was explored in [17], and later in [19, 40].
Secondly, one or more tests may fail to execute correctly, and yield no response or
yield outlier responses. To mitigate this, Seidel et al. [51] impose stronger “separa-
tion” requirements on the test suite.

Extending definitions in [17,19,51], we formally define the test suites with which
we are concerned. Let A be a test suite of size N and type .s1; : : : ; sk/. Let 	 t be
the set of all t -way interactions for A. Our objective is to identify the set T � 	 t of
interactions that have significant impact on the response. In so doing, we assume that
at most d interactions impact the response. Without limiting d , it can happen that no
test suite of type .s1; : : : ; sk/ exists for any value of N [40].

An N � k array A of type .s1; : : : ; sk/ is . Nd; t; ı/-locating if j�A.R/\ �A.T /j <

ı , R D T whenever R; T � 	 t , jRj � d , and jT j � d . In this paper, we enforce
a condition that is stronger [17]. An N � k array A of type .s1; : : : ; sk/ is .d; t; ı/-
detecting if j�A.T / n �A.T /j < ı , T 2 T whenever T � 	 t , and jT j D d . To
record all of the parameters, we use the notation DAı.N I d; t; k; .s1; : : : ; sk//. To
emphasize that different factors may have different numbers of levels, this is called a
mixed detecting array. When all factors have the same number, v, of levels, the array
is uniform and the notation is simplified to DAı.N I d; t; k; v/. The parameter ı is
the separation of the detecting array [51], and the definition in [17] is recovered by
setting ı D 1. Rows in �A.T / n �A.T / are witnesses for T that are not masked by
interactions in T . A separation of ı necessitates ı witnesses, ensuring that fewer than
ı missed or incorrect measurements cannot result in an interaction’s impact being
lost.

Setting d D 0 in the definition, T D ;, and �A.;/ D ;. Then a .0; t; ı/-detecting
array is an array in which each t -way interaction is covered in at least ı rows. This
leads to a standard class of testing arrays: a covering array CAı.N I t; k; .s1; : : : ; sk//

is equivalent to a DAı.N I 0; t; k; .s1; : : : ; sk//. The simpler notation CAı.N I t; k; v/

is employed when it is uniform.
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An orthogonal array OAı.N I t; k; v/, A, enforces the stronger condition that for
every t -way interaction T , we have that j�A.T /jDı. Orthogonal arrays are the subject
of a vast literature [28], in part because of their applications in experimental design
and error-correcting codes. Covering arrays have also been much more extensively
studied [13, 33, 45] than detecting arrays and their variants; they are usually defined
only in the case when ıD 1, and in a more direct manner than by exploiting the equiv-
alence with certain detecting arrays. Often constructions of covering arrays focus on
the uniform cases. In part this is because a CAı.N I t; k; .s1; : : : ; si�1; si � 1; siC1;

: : : ; sk// can be obtained from a CAı.N I t; k; .s1; : : : ; si�1; si ; siC1; : : : ; sk// by mak-
ing any two levels of the i th factor identical. This operation is fusion (see, e.g., [15]).

Supporting fusion for detecting arrays motivates the definition of a further param-
eter [20]. When applied to detecting arrays with d � 1, fusion may reduce the number
of witnesses. Increasing the separation cannot overcome this problem, unless the
number of distinct witnesses increases.

Let A be an N � k array. Let T D ¹.ij ; �ij / W 1 � j � tº be a t -way interaction
for A. Let C D ¹ci W 1 � i � dº be a set of d column indices of A with ¹i1; : : : ; itº \

¹c1; : : : ; cd º D ;. Define a set system on the ground set ¹.c; f / W c 2 C; f 2 Scº by

�A;T;C D
®®
.c1; v1/; : : : ; .cd ; vd /

¯
W T [

®
.c1; v1/; : : : ; .cd ; vd /

¯
is covered in A

¯
:

Lemma 1.1. An arrayA is .d; t; ı/-detecting if and only if for every t -way interaction
T and every set C of d disjoint columns, every subset X of the ground set of �A;T;C

that is disjoint from fewer than ı sets in �A;T;C satisfies jX j > d .

Proof. First suppose that for some t -way interaction T D ¹.ij ; �ij / W 1 � j � tº and
some set C D ¹ci W 1 � i � dº of d disjoint columns, in the set system �A;T;C there
is a set of elementsX D ¹.c1; v1/; : : : ; .cd ; vd /º for which fewer than ı sets in the set
system contain no element of X . Define Ti D ¹.ij ; �ij / W 1 � j � t � 1º [ ¹.ci ; vi /º.
Set T D ¹T1; : : : ; Td º. Then T 62 T but j�A.T / n �A.T /j < ı, so A is not .d; t; ı/-
detecting.

In the other direction, suppose that A is not .d; t; ı/-detecting, and consider a
set T D ¹T1; : : : ; Td º of d t -way interactions and a t -way interaction T for which
T 62 T but j�A.T / n �A.T /j < ı. Without loss of generality, there is no interaction
T 0 2 T for which T and T 0 share a factor set to different levels in each and so, because
T ¤ T 0, T 0 contains a factor not appearing in T . For each Ti 2 T , let ci be a factor
in Ti that is not in T , and suppose that .ci ; vi / 2 Ti for 1 � i � d . Then the set
X D ¹.ci ; vi / W 1 � i � dº, when removed from �A;T;C , leaves fewer than ı sets.

Lemma 1.1 implies that a .d; t; ı/-detecting array must cover each t -way inter-
action at least d C ı times; indeed when d � 1, for each t -way interaction T and
every column c not appearing in T , interaction T must be covered in at least d C 1
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rows containing distinct levels in column c. In particular, a necessary condition for a
DAı.N I d; t; k; .s1; : : : ; sk// to exist is that d < min.si W 1 � i � k/ (see also [17]).

These considerations lead to the parameter of interest. For array A, with t -way
interaction T and set C of d disjoint columns, suppose that, in �A;T;C , for each col-
umn in C one performs fewer than s fusions of elements within those arising from
that column. Further suppose that, no matter how these fusions are done, the result-
ing set system has the property that every subset X of the ground set of �A;T;C that
is disjoint from fewer than ı sets in �A;T;C satisfies jX j � d C 1. Then .T; C / has
corroboration s in A. When every choice of .T; C / has corroboration (at least) s
in a DAı.N I d; t; k; .s1; : : : ; sk//, it has corroboration s. We extend the notation as
DAı.N I d; t; k; .s1; : : : ; sk/; s/ to include corroboration s as a parameter.

In this paper, we focus on detecting arrays for single factors, or main effects. In
Section 2, we briefly summarize what is known about the construction of detecting
arrays. In Section 3, we define and construct certain arrays, perfect and separating
hash families, which are subsequently used to construct detecting arrays with dif-
ferent values of separation and corroboration. In Section 4, we unify a number of
constructions for detecting arrays that employ hash families by providing a general
column replacement method, and present the small detecting arrays needed. In Sec-
tion 5, we examine the consequences of applying the general construction.

2. Covering arrays and Sperner partition systems

As observed in [17], one method to construct detecting arrays is to use covering arrays
of higher strength. The following records consequences for separation and corrobo-
ration.

Lemma 2.1. A CA�.N I t; k; v/ is

(1) a DAı.N I d; t � d; k; v; 1/ with ı D �.v � d/vd�1, and

(2) a DAı.N I d; t � d; k; v; v � d/ with ı D �.d C 1/d�1

whenever 1 � d < min.t; v/.

Proof. Let A be a CA�.N I t; k; v/. Let d satisfy 1 � d < min.t; v/. Let T be a
.t � d/-way interaction, and let C be a set of d columns not appearing in T . Using
the parameters of the covering array, �A;T;C contains at least �vd sets, and each
element appears in at least �vd�1 of them. Suppose that d elements of �A;T;C are
removed, and further suppose that the numbers of elements deleted for the d fac-
tors are e1; : : : ; ed (so that d D

Pd
iD1 ei ). Then the number of remaining sets is

�
Qd

iD1.v � ei /, which is minimized at ı D �.v � d/vd�1. This establishes the first
statement. For the second, performing at most v � d � 1 fusions within each factor
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of �A;T;C and then deleting at most d elements leaves at least ı D �.d C 1/d�1 sets
by a similar argument.

The effective construction of detecting arrays is well motivated by practical test-
ing applications, in which the need for higher separation to mitigate the effects of
outlier responses, and higher corroboration to support fusion of levels, arise. Despite
this, other than the construction from covering arrays of higher strength, few con-
structions are available. In [60], uniform .1; t/-detecting arrays with separation 1,
corroboration 1, and few factors are studied. This was extended in [53, 55] to .d; t/-
detecting arrays, and further to mixed detecting arrays in [54]. Each of these focusses
on the determination of a lower bound on the number of rows in terms of d , t , and
v, and the determination of cases in which this bound can be met. For d C t � 2,
however, the number of rows must grow at least logarithmically in k, because every
two columns must be distinct. Hence the study of arrays meeting bounds that are
independent of k necessarily considers only small values of k. In addition, none of
these addresses separation or corroboration.

For larger values of k, algorithmic methods are developed in [51]. The algorithms
include randomized methods based on the Stein–Lovász–Johnson framework [31,37,
57], and derandomized algorithms using conditional expectations (as in [10, 11]);
randomized methods based on the Lovász local lemma [3, 25] and derandomizations
using Moser–Tardos resampling [44] (as in [16]). Although these methods produce
.1; t/-mixed detecting arrays for a variety of separation values, they have not been
applied for d > 1 or to increase the corroboration. Extensions to larger d for locating
arrays are considered in [35].

When t D 1, one is considering detecting arrays for main effects. A Sperner family
is a family of subsets of some ground set such that no set in the family is a subset of
any other. Meagher, Moura, and Stevens [42] introduced Sperner partition systems as
a natural variant of Sperner families. An .n;v/-Sperner partition system is a collection
of partitions of some n-set, each into v nonempty classes, such that no class of any
partition is a subset of a class of any other. In [36, 42], the largest number of classes
in an .n; v/-Sperner partition system is determined exactly for infinitely many values
of n for each v. In [12, 26], lower and upper bounds are established for all n and
each v. As noted there, given an .n; v/-Sperner partition system with k partitions, if
we number the elements using ¹1; : : : ; nº and number the sets in each partition with
¹1; : : : ; vº, we can form an n � k array in which cell .r; c/ contains the set number to
which element r belongs in partition c. This array is a DA1.nI1; 1;k; v; 1/, and indeed
every such DA arises in this way. Even when d D t D s D ı D 1, the largest value
of k as a function of n is not known precisely. Therefore, it is natural to seek useful
bounds and effective algorithms for larger values of the parameters.
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3. Perfect and separating hash families

3.1. Separating hash families: Definitions

An .N I k; v/-hash family is an N � k array on v symbols. Colbourn and Torres-
Jiménez [23] relax the requirement that each row have the same number of symbols.
An N � k array is a heterogeneous hash family, or HHF.N I k; .v1; : : : ; vN //, when
the i th row contains (at most) vi symbols for 1 � i � N .

An .N Ik; v; ¹w1;w2; : : : ;wtº/-separating hash family of index � is an .N Ik; v/-
hash family A that satisfies the property: for any C1; C2; : : : ; Ct � ¹1; 2; : : : ; kº such
that jC1j Dw1, jC2j Dw2, : : :, jCt j Dwt , andCi \Cj D; for every i ¤ j , whenever
c 2 Ci , c0 2 Cj , and i ¤ j , different symbols appear in columns c and c0 in each of at
least � rows. The notation SHF�.N Ik;v; ¹w1;w2; : : : ;wtº/ is used. See, for example,
[2, 48, 56]; and see [5] for the similar notion of “partially hashing.” The notation
SHHF�.N I k; .v1; : : : ; vN /; ¹w1; w2; : : : ; wtº/ is used for heterogeneous arrays. We
remark that an SHF1.N Ik;v; ¹1;dº/ is a frameproof code (see, for example, [56,59]),
a type of strong separating hash family [47, 48].

When w1 D � � � D wk D 1, we recover a more widely studied class of arrays. A
perfect hash family PHF�.N I k; v; t/ is an .N I k; v/-hash family, in which in every
N � t subarray, at least � rows each consisting of distinct symbols. Mehlhorn [43]
introduced perfect hash families, and they have subsequently found many applications
in combinatorial constructions [58]. The definition for PHF extends naturally to per-
fect heterogeneous hash families; we use the notation PHHF�.N I k; .v1; : : : ; vN /; t/.

We employ a further extension that incorporates two types of symbols, as pro-
posed in [14]. Let†v D ¹0; : : : ; v � 1º. An SHHF�.N Ik; .v1; : : : ; vN /; ¹1; d

ıº/ is an
N � k array for which

(1) the j th row contains symbols from †vj
[ ¹ıº;

(2) for every C1; C2 � ¹1; 2; : : : ; kº with jC1j D 1, jC2j D d , and C1 \ C2 D ;,
there are � rows, indexed by ¹�1; : : : ; ��º, so that for each �j , the set S of
symbols appearing in columns of C2 in row �j is a subset of †v�j

[ ¹ıº, and
the symbol in the column of C1 in row �j belongs to †v�j

n S .

When the array is homogeneous, the notation SHF�.N I k; v; ¹1; d ıº/ is used.
Every SHF�.N I k; v; ¹1; dº/ is an SHF�.N I k; v; ¹1; d ıº/, and by treating ı as a
symbol like the rest, every SHF�.N I k; v; ¹1; d ıº/ is an SHF�.N I k; v C 1; ¹1; dº/.

3.2. Separating hash families: Some constructions

Existence of SHFs is well studied for ı D 1 (see [52] and references therein), but
these appear not to have been studied when ı > 1. We employ a number of standard
ideas to construct SHHFs from other SHHFs in the following lemma.
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Lemma 3.1. Suppose that an SHHFı.N I k; ¹v1; : : : ; vN º; ¹1; d ıº/ exists, in which
some symbol in the j th row appears in c columns. Then

(1) an SHHFı.N I k; ¹v1; : : : ; vj�1; vj C 1; vjC1; : : : ; vN º; ¹1; d ıº/ exists;

(2) when ı > 1, an SHHFı�1.N � 1I k; ¹v1; : : : ; vj�1; vjC1; : : : ; vN º; ¹1; d ıº/

exists;

(3) when c D k, an SHHFı�1.N � 1I k; ¹v1; : : : ; vj�1; vjC1; : : : ; vN º; ¹1; d ıº/

exists;

(4) an SHHFı.N I k � c; ¹v1; : : : ; vj�1; vj � 1; vjC1; : : : ; vN º; ¹1; d ıº/ exists;

(5) an SHHFı.N � 1I c; ¹v1; : : : ; vj�1; vjC1; : : : ; vN º; ¹1; d ıº/ exists;

(6) an SHHFı.N I k C 1; ¹v1 C 1; : : : ; vj C 1; : : : ; vN C 1º; ¹1; d ıº/ exists;

(7) if an SHHFı0.M I k; ¹w1; : : : ; wM º; ¹1; d ıº/ also exists, then
an SHHFıCı0.N CM I k; ¹v1; : : : ; vN ; w1; : : : ; wM º; ¹1; d ıº/ exists.

Proof. Let A be the stated SHHF. Then (1) holds because permitting an additional
symbol in row j does not require its use. Deleting any row of A can reduce its index
by at most one, so (2) holds. When c D k (and in particular when vj D 1), row j

accomplishes no separations in A, so (3) holds. To establish (4), choose a symbol
that occurs c times in row j , and delete all columns containing that symbol in row
j . For (5), choose a symbol that occurs c times in row j , and delete all columns
containing any other symbol in row j ; then apply (3). For (6), add a column to A
that, in each row, contains a symbol not appearing in A. For (7), vertically juxtapose
the two arrays.

Stinson, Wei, and Chen [59] use an expurgation technique to establish lower
bounds on k for which an SHF1.N I k; v; ¹1; dº/ exists. One consequence of their
results is the following.

Theorem 3.2 ([59]). An SHF1.N I k; v; ¹1; 2º/ exists for k D d
1
2
. v2

2v�1
/

N
2 e.

Unfortunately, Theorem 3.2 does not provide competitive lower bounds on the
achievable numbers of columns in our applications. We therefore develop a number
of other constructions.

Lemma 3.3. An SHF1.N C 1IN � vN ; v; ¹1; 1ıº/ exists whenever N � 1 and v � 1.

Proof. Form an N � vN array A consisting of all distinct column vectors from †N
v .

For 0� i �N , form an .N C 1/� vN array Ai by inserting a row consisting entirely
of ı after row i when 1 � i � N , or before row 1 when i D 0. Horizontally juxtapose
A0; : : : ; AN to form B , the SHF1.N C 1IN � vN ; v; ¹1; 1ıº/. The verification is rou-
tine, as follows. Consider two distinct columns 
 and c of B . When 
 and c are from
the same Ai , the two columns disagree in at least one row because such a row appears



C. J. Colbourn and V. R. Syrotiuk 700

in A. On the other hand, when 
 is in Ai and c is in Aj with j ¤ i , row j C 1 of the
resulting array contains ı in column c, but contains an element of †v in column 
 ,
so the desired separation is ensured.

We consider cases with “few” rows next.

Lemma 3.4. Let d � 2, ı � 1, and d > ˛ � 1. Then

k � kmax D max

 
v1; : : : ; vdCı�˛;

$
1

ı

dCı�˛X
iD1

.vi � 1/

%!
whenever an SHHFı.d C ı � ˛I k; .v1; : : : ; vdCı�˛/; ¹1; dº/ exists.

Proof. Let A be an SHHFı.d C ı � ˛Ik; .v1; : : : ; vdCı�˛/; ¹1; dº/. An entry in A is
a private entry if it contains the only occurrence of a symbol in its row. If some row
contains only private entries, then k � max.v1; : : : ; vdCı�˛/. If some column c were
to contain d C 1 � ˛ entries that are not private, for each of d C 1 � ˛ such rows
choose a column that contains the same symbol as in column c. Let X be the set of
at most d C 1 � ˛ columns so chosen. There could be at most ı � 1 rows separating
c from X , which cannot arise. Consequently, every column of A contains at least ı
private entries, and at most d � ˛ that are not private. Row i employs vi symbols
and hence contains at least k � vi C 1 entries that are not private. Hence .d � ˛/k �PdCı�˛

iD1 .k � vi C 1/. Hence
PdCı�˛

iD1 .vi � 1/ � ık and the bound follows.

When ı D 1, Blackburn [6] establishes that an SHF1.N I k; v; ¹1; dº/ can exist
only when k � dvd

N
d
e
� d . To establish this, partition the N rows into d classes;

then when the largest class has r rows in it, amalgamate all rows in the class into
a single row on vr symbols. He employs a version of Lemma 3.4, using ı D 1 and
not exploiting heterogeneity, to obtain the upper bound on k already mentioned. Our
heterogeneous bound underlies an improvement in the upper bound in some situa-
tions. Unfortunately, although the amalgamation strategy cannot reduce a separation
ı � 2 to zero, it can nonetheless reduce it to 1. Hence Lemma 3.4 does not lead to an
effective upper bound on k as a function of N when ı > 1.

For certain SHHFs, this bound can be met by generalizing a well-known con-
struction for perfect hash families [6, 41, 61]; indeed, it can be extended to employ ı

symbols.

Lemma 3.5. Let ı � 1 and d > ˛ � 1. Let v1 D � � � D vı � vıC1 � � � � � vdCı�˛ .
Then an SHHFı.d C ı � ˛I max.vı ; b

1
ı

PdCı�˛
jD1 vj c/; ¹v1; : : : ; vdCı�˛º; ¹1; d

ıº/

exists.

Proof. If k D vı , form ı rows that contain only private entries, and adjoin d � ˛

arbitrary rows to produce the SHHF. Henceforth, we suppose that k > vı D v1. In a
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.d C ı � ˛/ � k array, place ı entries so that (1) each of the k columns contains
exactly d � ˛ ı entries, and (2) for 1� j � d C ı � ˛, row j contains at least k � vj

ı entries. When this can be done, in each row fill the remaining entries with distinct
symbols. Then no matter how C1 D ¹
º is chosen, there are ı rows in which 
 con-
tains a private entry, so the array is an SHHFı.dCı�˛Ik;¹v1; : : : ;vdCı�˛º;¹1;d

ıº/.
We next determine the values of k for which this is possible. Because each column

contains d�˛ entries equal to ı, the array contains k.d�˛/ entries equal to ı. On the
other hand, row j contains at least k�vj entries equal to ı. Hence

PdCı�˛
jD1 .k�vj /�

k.d � ˛/, leading to the stated bound on k. It remains to ensure that the ı entries
can be placed to meet the row and column constraints simultaneously; this follows
from classical work on ¹0; 1º-matrices with fixed row and column sums ([9], for
example).

For larger numbers of rows, the elementary constructions of Lemma 3.1 are use-
ful, but they typically decrease the number of columns or the index. Hence further
constructions are needed. One addition method follows.

Lemma 3.6. If an SHF.N I k; v; ¹1; d ıºI ı/ and an SHF.N 0I k0; v; ¹1; d ıºI ı/ both
exist, then an SHF.N CN 0I k C k0; v; ¹1; d ıºI ı/ exists.

Proof. LetA be an SHF.N Ik;v; ¹1;d ıºI ı/ and letB be an SHF.N 0Ik0; v; ¹1;d ıºI ı/.
LetEn�� denote an n�� array in which every entry is ı. Then the array

� A EN �k0

EN 0�k B

�
is an SHF.N CN 0I k C k0; v; ¹1; d ıºI ı/. The verification is routine.

To yield a larger increase in the number of columns, we also employ a composi-
tion [4] or column replacement [13] method.

Theorem 3.7. Suppose that an SHHFı.N I k; ¹k1; : : : ; kN º; ¹1; dº/ exists, Further
suppose that an SHHFˇ .Mi I ki ; ¹vi1; : : : ; viMi

º; ¹1; d ıº/ exists for each 1 � i � N .
Then an SHHFıˇ .

PN
iD1Mi I k; ¹vij W 1 � i � N; 1 � j �Miº; ¹1; d

ıº/ exists.

Proof. Let A be the SHHFı.N I k; ¹k1; : : : ; kN º; ¹1; dº/. Form an arbitrary bijec-
tion between the ki symbols permitted in row i of A and the ki columns of Bi , the
SHHFˇ .Mi Iki ; ¹vi1; : : : ; viMi

º; ¹1; d ıº/. Replace each symbol of A by its associated
column in Bi to form an arrayDi . Vertically juxtaposeD1; : : : ;DN to formD. Then
D has

PN
iD1Mi rows and k columns; the largest numbers of symbols that can appear

in its rows is given by ¹vij W 1 � i � N; 1 � j � Miº. Now consider an arbitrary
column 
 and a set C2 of d columns of D not containing 
 . Column 
 is separated
from C2 in ı rows of A, say �1; : : : ; �ı . Consider a particular such row, �j . Suppose
that A contains symbol � in column 
 ; let S be the set of symbols appearing in row
�j in columns of C2. Then S does not contain �, and column � is separated from all
columns in S in ˇ rows of B�j

that do not contain ı in column �. But then in D�j
,
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there are ˇ rows in which column 
 does not contain ı, and the symbol in column 
 is
not the same as in any column of C2. This establishes thatD is the desired SHHF.

Restricting to SHFs, an SHFı.N Ik;�; ¹1;dº/ and an SHFˇ .M I�;v; ¹1;d ıº/ yield
an SHFıˇ .NM Ik; v; ¹1; d ıº/. Theorem 3.7 is particularly useful because the array in
which replacements are made is a separating, rather than a perfect, hash family. It is
also effective because the construction of v-ary SHHFs can employ SHHFs with much
larger alphabets.

3.3. Separating hash families: Codes for d D 1

Here we consider the case when d D 1, i.e., the case of perfect hash families. A v-ary
code C of length N is a subset of †n

v . (See [38, 39] for definitions in coding theory.)
Each c 2 C is a codeword. The size of C is the number jC j of codewords, and its
minimum distance is the smallest Hamming distance between any two distinct code-
words. A v-ary code with length N , size k, and minimum distance ı is an .N; k; ı/v
code. LetAv.N;d/ denote the maximum size of an .N;k; ı/v code. Treating columns
of a PHFı.N Ik; v; 2/ as codewords, one obtains an .N; k; ı/v code; the converse also
holds. More generally, we have the following lemma.

Lemma 3.8. An SHFı.N I k; v; ¹1; dº/ exists whenever Av.N;N � b
N�ı

d
c/ � k.

Proof. Treat codewords of an .N; k; N � b
N�ı

d
c/v code as columns of an N � k

array on v symbols. Consider any set C1 D ¹
º of one column, and any disjoint set
C2 of d columns. For each 
 0 2 C2, there can be at most bN�ı

d
c rows in which 


and 
 0 share a symbol. Then there can be at most N � ı rows in which 
 shares a
symbol with one or more columns of C2, and hence at least ı rows in which 
 shares
a symbol with no column of C2. This establishes the result.

For ı � 3, the existence question for such codes is far from settled, particu-
larly when v > 2. In Section 5, we use constructions of SHF�.N I k; 5; ¹1; dº/s,
SHF�.N Ik; 6; ¹1; dº/s, and SHF�.N Ik; 5; ¹1; d ıº/s. Therefore, for d D 1, in Table 1
we provide lower bounds on the number of columns achieved for these parameters.

To justify these entries, first consider the cases when ı2¹1;2º. For type ¹1;1º with
v 2 ¹5; 6º, the values are exact and arise from the easy observations that all distinct
column vectors form a code of distance 1, while all column vectors whose total weight
is 0 .mod v/ form a code of distance 2. Considering the case of type ¹1;1ıº for v D 5

with ı 2 ¹1; 2º, only one example is given for an SHFı.N I k; 5; ¹1; 1ıº/ having more
columns than the SHFı.N I k; 5; ¹1; 1º/, namely the SHF1.6I 18750; 5; ¹1; 1

ıº/. This
SHF was initially found by computation, but Lemma 3.3 provides an easier construc-
tion.
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ı D 1 ı D 2 ı D 3 ı D 4

x .5; 1/ .5; 1ı/ .6; 1/ .5; 1/ .5; 1ı/ .6; 1/ .5; 1/ .5; 1ı/ .6; 1/ .5; 1/ .5; 1ı/ .6; 1/

1 25 25 36 25 25 36 25 25 34 25 25 30

2 125 125 216 125 125 216 125 125 159 125 125 146

3 625 625 1296 625 625 1296 625 625 953 263 263 819

4 3125 3125 7776 3125 3125 7776 1597 1597 5718 1225 1225 4914

5 15625 18750 46656 15625 15625 46656 7985 7985 34278 4375 4375 22719

6 17500 17500 28320

Table 1. Lower bounds on k for SHFı.x C ıI k; v; ¹1; dº/ for v 2 ¹5; 6º and d 2 ¹1; 1ıº.

Now let us turn to ı � 3. Most research effort for the construction of codes has
concentrated on “small” values of v. Indeed, for v D 6 there appears to have been
no systematic effort to construct 6-ary codes. However, for v D 5, the situation is
quite different. For large values of N , typically one resorts to using linear codes, as
tabulated in [27]. In addition, Bogdanova and Östergård [7] tabulate lower bounds on
A5.N; d/ for N � 11 obtained by standard code constructions, by computation, and
certain explicit constructions [32]. Some entries were subsequently improved upon
in [34]. In particular, Laaksonen and Östergård [34] show that A5.8; 5/ � 165 and
A5.9; 5/ � 725; in the repository of codes associated with their paper they provide
explicit solutions to establish that A5.8; 5/ � 257 and A5.9; 5/ � 857. In [7], it is
shown that A5.7; 5/ � 53 and A5.8; 6/ � 45. We improve these two bounds next,
obtained via computations using cliquer [46].

Lemma 3.9. A5.7; 5/ � 57 and A5.8; 6/ � 50.

Proof. We write codewords omitting the commas and parentheses. Consider the
nine codewords C7 D ¹1111111; 1242342; 1200224; 1324443; 1333020; 1420300;

1432233;1043404;1004032º. When a0 � � �aN�1 is a codeword, any vector b0 � � �bN�1

with biCs mod N D ai for some s is a cyclic shift of the codeword. The 57 distinct
cyclic shifts of the codewords inC7 form a .7;57;5/5 code. In the same manner, the 50
cyclic shifts of ¹11214402; 11023313; 12001200; 13441344; 14330040; 10322424;

22030434; 23232323º form an .8; 50; 6/5 code.

Known codes provide powerful constructions for SHFı.N I k; 5; ¹1; 1º/s, which
in turn yield lower bounds on the number of columns in SHFı.N I k; 5; ¹1; 1ıº/s
and SHFı.N I k; 6; ¹1; 1º/s. We failed to find any cases with ı � 3 in which an
SHFı.N I k; 5; ¹1; 1ıº/ has more columns than an SHFı.N I k; 5; ¹1; 1º/, although we
expect that this can happen for larger sizes.
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We have no tables of 6-ary codes. Lemma 3.1 (6) constructs 6-ary codes from
5-ary ones, to which the remaining constructions of the lemma can be applied. In
addition, we adapted the “replace-one-column–random extension” randomized algo-
rithm from [16] in order to construct SHFs of index ı. We do not describe the method
here, noting only that it is a heuristic technique that is not expected to produce optimal
sizes. We also report some 6-ary codes, again found using cliquer [46].

Lemma 3.10. For v D 6, A6.13; 10/ � 78, A6.12; 9/ � 108, A6.11; 8/ � 132,
A6.10; 7/ � 186, A6.9; 6/ � 258, A6.16; 12/ � 96, A6.15; 11/ � 180, A6.14; 10/ �

546, and A6.11; 7/ � 660.

Proof. Form the following sets of codewords:

N; d Starter codewords

13,10 0001105451315

12,9 000000000000, 002322454401, 012345012345, 013415321203

11,8� 00205141502, 00541020145

10,7 0000143153, 0023442314, 0140504324, 0303030303

9,6 000214121, 000300342, 004135045, 004343154, 010232454,

025403241, 042042042

16,12� 0000414354453414

15,11� 000125304403521, 000450523325054

14,10� 00043515451534, 00103445544301, 00134204402431,

00214412003553, 00452540045254, 01014503530541,

01025245354252

11,7� 00015524122, 00133100525, 00150303051, 00224151422,

00314010413, 00342404243, 00501242105, 01035134235

When a � is shown, adjoin the codeword aN�1 � � � a0 whenever a0 � � � aN�1 is a
codeword. Form all distinct cyclic shifts (as in the proof of Lemma 3.9). Then develop
each codeword under the additive action of Z6.

3.4. Separating hash families: d D 2

For separations ¹1; 2º and ¹1; 2ıº, we report results for v 2 ¹5; 6º in Table 2. To
produce Table 2, we apply Lemma 3.8 to the .n; k; ı/5 and .n; k; ı/6 codes described
earlier. We also employ certain linear codes, noting that a linear code with parameters
Œn; k; ı�q yields an .n; qk; ı/q code [38, 39]. In particular, we employ linear codes
with parameters Œ6; 3; 4�5, Œ10; 3; 7�5, Œ12; 4; 8�5, Œ15; 5; 9�5, Œ18; 5; 11�5, Œ15; 6; 8�5,
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ı D 1 ı D 2 ı D 3 ı D 4

x .5; 2/ .5; 2ı/ .6; 2/ .5; 2/ .5; 2ı/ .6; 2/ .5; 2/ .5; 2ı/ .6; 2/ .5; 2/ .5; 2ı/ .6; 2/

1 8 10 10 6 7 7 6 6

2 25 25 36 25 25 34 25 25 30 25 25 27

3 34 46 51 26 36 39 26 32 28

4 125 125 162 125 125 146 57 57 132 50 50 126

5 170 202 152 62

6 263 274 819 174 174 702 135 135 258 125 125 186

7 352 356 177 179

8 857 868 2106 625 625 1944 625 625 660 625 625 626

9 900 2592 2106

10 3125 3125 3564 780 780 2592 864

11 5346 1000 1125 3564 730 1296 864

12 3645 8423 3125 3125 5184 3125 3125 3126 730 1296

13 5000 6562 14124 3645 7776 1125 1944

14 15625 15625 44172 4096 6562 11664 3645 4374 3125 3125 3126

15 5000 10125 17496 4096 6562 6562 3645 4374

16 15625 18225 42984 15625 15625 15626 15625 15625 15626

Table 2. Lower bounds on k for SHFı.x C ıI k; v; ¹1; dº/ for v 2 ¹5; 6º and d 2 ¹2; 2ıº.

Œ20; 6; 12�5 [27]. Lemmas 3.5 and 3.1 are applied. In order to apply Theorem 3.7,
we employ SHFs on larger alphabets. The primary source of these is the following
standard construction of orthogonal arrays.

Theorem 3.11. Let q be a prime power, where q � s � 2, and d � 1. Then an
OA1.q

sI s; q C 1; q/ exists. Hence, in addition, for 1 � ı � .q C 1/ � .s � 1/d , an
SHFı..s � 1/d C ıI qs; q; ¹1; dº/ exists.

Proof. The construction of the OA1.q
sI s; q C 1; q/ is very well known [28, 38, 39],

but we repeat it here. To form the orthogonal array A, index the qs rows by the
qs polynomials with coefficients in Fq of degree less than s. Index the columns by
elements of Fq [ ¹1º. In a row indexed by the polynomial f .x/ D

Ps�1
iD0 aix

i , and
column indexed by r , place the entry f .r/ when r 2 Fq , or the entry as�1 when
r D 1. This is the required orthogonal array. To form the SHF, B , first select R �

Fq [ ¹1º with jRj D .s � 1/d C ı, and let AR be the array obtained from A by
including only columns whose indices are in R. Transpose AR to form B . Then two
columns can agree in at most s � 1 rows, and so one column disagrees with each of
d other columns in at least ı rows, so we have the desired SHF.
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Despite applying each of the constructions discussed thus far, for many parameter
sets the bound obtained is weak. We also employ a heuristic computational method
using random extension (as in [16]) to establish lower bounds on k for these situa-
tions. We expect that many or most of the entries can be increased, particularly when
v D 6.

3.5. Separating hash families: d D 3

For separations ¹1; 3º and ¹1; 3ıº, we report results for v 2 ¹5; 6º in Table 3. We
follow the same strategy as when d D 2. In this case, we use linear codes with
parameters Œ11; 3; 8�5, Œ22; 4; 16�5, Œ25; 5; 17�5, Œ29; 5; 20�5, Œ34; 5; 24�5, Œ16; 4; 12�8,
and Œ16; 4; 12�9 [27]. When the number of symbols is not a prime power, we also
apply the natural extension of Theorem 3.11 to transversal designs and incomplete
transversal designs (see [13], for example). A .6; 225; 5/15 code results from the exis-
tence of four mutually orthogonal latin squares of order 15 [49], and a .6; 98; 5/10

code results from four mutually incomplete orthogonal latin squares of order 10 with
a hole of size 2 [8].

It is worthwhile to remark that in order to produce an SHF3.N I 56; 5; ¹1; 3º/

one could use an ŒN; 6; ��5 linear code with 3� � 2N � 3. According to [27], the
smallest N for which such a linear code is known has N D 39. Nevertheless, an
SHF3.9I 25

3; 25; ¹1; 3º/ and an SHF1.4I 25; 5; ¹1; 3º/ both exist by Theorem 3.11,
and hence an SHF3.36I 5

6; 5; ¹1; 3º/ exists by Theorem 3.7.

4. Constructing detecting arrays from hash families

Now we return to detecting arrays. Perhaps the easiest connection with hash families
is the following.

Lemma 4.1. If an SHF1.N Ik; v; ¹1; 1º/ exists, a DA1.v.N C 1/I 1; 1; k; v; 1/ exists.

Proof. Form the SHF1.N I k; v; ¹1; 1º/ on symbols †v , append a row consisting of
all 0s, and apply the action of the cyclic group Zv . To verify that this works, consider
a column 
 and a symbol � , and let R be the rows in which � appears in column 
 .
Let 
 0 ¤ 
 . Some row in R in the orbit of the all-0 row contains � in column 
 0. A
different row of R contains a symbol not equal to � in column 
 0, from the orbit of a
row of the SHF in which columns 
 and 
 0 contain different symbols.

In [20], a second approach is explored, there called h-inflation, which uses an
SHFı.N Ik;vC 1; ¹1;dº/ to make a detecting array on v symbols. In [21], yet another
approach is developed for general d and general t ; when t D 1 it employs an array
that is equivalent to an SHFı.N Ik; v; ¹1; d ıº/. Rather than reviewing each approach,
we develop a common generalization of all three, in the case that t D 1. Later we
revisit these constructions.
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ı D 1 ı D 2 ı D 3 ı D 4

x .5; 3/ .5; 3ı/ .6; 3/ .5; 3/ .5; 3ı/ .6; 3/ .5; 3/ .5; 3ı/ .6; 3/ .5; 3/ .5; 3ı/ .6; 3/

1 8 10 10 6 7 7
2 12 15 15 8 10 10 6 8 8 6 7 7
3 25 25 34 25 25 30 25 25 27 15 15 19
4 26 36 37 28 32 28 16
5 29 54 54 41 41 29 20 20
6 57 67 132 50 50 126 41 41 72 25 25 64
7 64 98 27
8 103 64 98 50 31
9 125 125 186 125 125 132 65 98 108 65 65 78

10 150 216 144 82 82
11 200 225 324 130 216 80 144 108
12 320 405 552 200 225 552 125 125 216 125 125 192
13 512 730 730 320 405 200 225 324 216
14 760 864 512 730 730 320 405 486 200 225 324
15 625 830 1296 512 730 730 320 405 486
16 1125 1944 760 760 512 730 730
17 807 2025 2916 830 1130
18 1270 3645 4374 625 910 1866 625 760 1033 625
19 2032 6562 6562 2578 3092 1186 1701
20 6567 6567 704 5141 5141 2345 2813 760 760
21 6833 6833 968 5651 5651 4700 4700 830 841
22 7515 7515 1332 6214 6214 704 5151 5151 1043 1043
23 2179 8265 8265 6833 6833 968 5655 5655 1304 1304
24 3125 9091 9091 1600 7515 7515 1332 6214 6214 704 1663 1663
25 4096 10000 10240 2560 8265 8265 1600 6833 6833 1000 2134 2134
26 5632 13000 15360 4096 9091 9091 2560 7515 7515 1600 2749 2916
27 15625 16900 32770 10000 10000 4096 8265 8265 2560 3645 4374
28 22926 5632 13000 13000 9091 9091 4096 6562 6562
29 34386 34386 7744 16900 16900 10000 10000
30 15625 21970 32770 5632 13000 13000 7696 7696
31 32250 7744 16900 16900 10000 10000
32 10648 21970 21970 13000 13000
33 15625 30255 32770 4516 16900 16900
34 6753 21970 21970
35 10118 28563 28563
36 15625 32770

Table 3. Lower bounds on k for SHFı.x C ıI k; v; ¹1; dº/ for v 2 ¹5; 6º and d 2 ¹3; 3ıº.
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To begin, we extend the notion of detecting arrays for single factors to permit a
column in which not all symbols need appear. A DAı.N Id;1;kı; v/ is anN � .kC 1/

array A in which the columns contain symbols from †v , where the first k columns
are indexed by†k and the last is indexed by ı, so that when T D ¹
º with 0� 
 < k,
j�A.T / n �A.T /j< ı, T 2 T whenever T � 	1, and jT j D d . In plain English, we
require that each of the first k columns be separated from any set of d other columns
(possibly including the last) at least ı times, but no such requirement is placed on the
last column.

Evidently, every DAı.N I d; 1; k C 1; v/ is a DAı.N I d; 1; kı; v/; moreover, by
deleting column k C 1, every DAı.N I d; 1; kı; v/ yields a DAı.N I d; 1; k; v/. Incor-
porating corroboration as a parameter parallels the definitions provided at the outset.

The general construction that we use for detecting arrays for single factor effects
follows.

Construction 4.2. Suppose that there exist

(1) an SHHFı.N I k; .`1; : : : ; `N /; ¹1; d
ıº/, and

(2) a DAˇ .Mj I d; 1; `
ı
j ; v; s/ for each 1 � j � N .

Then a DAˇı.
PN

jD1Mj I d; 1; k; v; s/ exists.

Proof. Let the symbols of the SHHFı.N I k; .`1; : : : ; `N /; ¹1; d
ıº/, A, in row j be

†
j̀
[ ¹ıº. For 1 � j � N , let Bj be a DAˇ .Mj I d; 1; `

ı
j ; v; s/, in which the first j̀

columns are indexed by †
j̀

, and the last by ı. (There is a natural bijection between
the symbols in row j of A and the column indices of Bj .) Replace each symbol of
row j of A by the corresponding column of Bj to form an Mj � k array, Ej , on
v symbols, for 1 � j � N . Then vertically juxtapose E1; : : : ; EN to form E. For
any column 
 of E and any set C2 of d disjoint columns of A, there are (at least) ı
rows ¹�1; : : : ; �ıº in which column 
 contains a non-ı symbol  , and the columns
of C2 contain symbols S with  62 S . Let � 2 †v . For each 1 � j � ı, in E�j

there
is a set R of r � d C ˇ rows in which the column  (arising from symbol  of
row �j of A) contains � so that no selection T of d (column,value) pairs within the
columns of S have j�E�j

.R/ n �E�j
.T /j< ˇ. This establishes the desired separation.

Corroboration is limited by the number of distinct witnesses; each of E�1
; : : : ; E�ı

ensures corroboration s individually, but each may employ the same witnesses. Hence
the corroboration of E is (at least) s.

Using an SHHFı.N I k; �; ¹1; dº/ and a DAˇ .M Id; 1; �; v; s/, the variant of Con-
struction 4.2 enables one to use ingredient arrays not involving ı.

Although we have already explored constructing the SHFı.N I k; �; ¹1; d ıº/, the
effective application of Construction 4.2 requires that we establish the existence of
suitable DAı.M I d; 1; �ı; v; s/s, at least for small values of �. We resort to one basic
construction using orthogonal arrays.
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Lemma 4.3. Suppose that an OA1.q
2I2; qC 1; q/ exists. Let d � 1, ı � 1, and s � 1

satisfy sd C ı � q. Then a DAı..sd C ı/qI 1; d; qı; q; s/ exists.

Proof. Let R be the OA1.q
2I 2; q C 1; q/. Set � D sd C ı. Choose any set L� of �

symbols in the last column, and delete all rows fromR that contain a symbol not inL�

to form an array S having �q rows. In the last column, each of � symbols appears
q times; in each of the remaining columns of S , every symbol appears precisely �
times. Let T D ¹.
; �/º with 0 � 
 < q and � 2 †q . Consider the � rows in �S .T /;
these rows agree in column 
 but in no other column. No matter how fewer than
s fusions are performed in at most d columns to form array A (so that � remains
a symbol in column 
 ), it follows that j�A.T /j � � � .s � 1/d , and moreover that
�A.T / contains a set of at least � � .s � 1/d rows that mutually disagree on all other
columns. Because � � .s � 1/d � d C ı, S is a DAı..sd C ı/qI 1; d; qı; q; s/.

Lemma 4.3 produces arrays that need not contain all q symbols in the final col-
umn. In these cases, we obtain a DAı..sdCı/qI1;d;q

ı;q; s/ but not a DAı..sdCı/qI

1;d; qC 1; q; s/. To obtain various DAs on qC 1 symbols, we employ definitions and
results from finite projective geometry. (For relevant background, see [29,30].) In the
projective plane PG.2; q/, an .n; r/-arc is a set A of n points with at most r on a
line; the largest n for which there is an .n; r/-arc in PG.2; q/ is denoted bymr.2; q/.
A t -blocking set in PG.2; q/ is a set B of points so that every line meets B in at
least t points. Whenever A is an .m; n/-arc in PG.2; q/, B D PG.2; q/ n A is a
.q C 1 � n/-blocking set of size q2 C q C 1 �m.

Lemma 4.4. Let q be a prime power. Let d � 1, ı � 1, and s � 1 satisfy sd C ı � q.
Then a DAı.q

2 �mq�sd�ı.2; q/I 1; d; q C 1; q; s/ exists.

Proof. Use an .m; q � sd � ı/-arc in PG.2; q/ with m D mq�sd�ı.2; q/ to form an
.sd C ı C 1/-blocking set of size q2 C q C 1 � m. The dual blocking set (i.e., the
configuration obtained from the blocking set by interchanging points and lines) is a
set of q2 C q C 1�m lines so that every point belongs to at least sd C ıC 1. Delete
any point and the q C 1 lines through it to form a set of (at least) q2 � m lines so
that every remaining point belongs to at least sd C ı. Use the q C 1 deleted lines,
omitting the deleted point, to form the columns of the DA.

Let T D ¹.
; �/º with 0 � 
 < q C 1 and � 2 †q . Then �.T / contains sd C ı

rows that agree in column 
 but in no other column. So similar arguments to those
used in the proof of Lemma 4.3 show that the array is in fact a DA with the required
parameters.

When q D sd C ı, Lemma 4.4 yields precisely q2 rows, the entire orthogonal
array. Exact values formr.2; q/ are not known in general and form the focus of much
research. For our running examples with q D 5, however, exact values are known:
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m0.2; 5/D 0,m1.2; 5/D 1,m2.2; 5/D 6,m3.2; 5/D 11,m4.2; 5/D 16,m5.2; 5/D

25, and m6.2; 5/ D 31 [29, Table 25].
Lemmas 4.3 and 4.4, together with Construction 4.2, unify earlier constructions,

as follows. The h-inflation developed in [20] is equivalent to applying Construction
4.2 using the DAs from Lemma 4.4 along with an SHFı.N I k; q C 1; ¹1; dº/. The
method of [21] is equivalent when restricted to t D 1 to applying Construction 4.2
using the DAs from Lemma 4.3 along with an SHFı.N I k; q; ¹1; d ıº/. Instead by re-
moving the last column of the DA from Lemma 4.3 and using an SHFı.N Ik;q;¹1;dº/,
we recover a construction in the same vein as Lemma 4.1. However, there are impor-
tant differences. First, Lemma 4.1 needs no assumption that v is a prime power. More
importantly, where the application of Construction 4.2 requires a DA1 (having at least
2q rows), Lemma 4.1 instead modifies the SHF by adding an all-0 row, so that instead
of the DA1 we can employ only q rows. To reconcile this apparent discrepancy, form
the DA1.2qI1;1; q; q; 1/ so that it contains all q constant rows (rows in which all sym-
bols are the same). Apply Construction 4.2 using an SHF1.N Ik; q; ¹1; dº/ to form an
2Nq � q array E. The manner of construction ensures that each of the constant rows
appears (at least) N times in E. Because these are only useful when T contains no
main effects using the symbol used in T ,N � 1 copies of each of these constant rows
are unnecessary and can be deleted. This recovers Lemma 4.1 (when q is a prime
power), and indeed leads to a useful generalization of Construction 4.2.

By choosing symbol 0 to be in L� , Lemma 4.3 produces a DAı..sd C ı/qI

1; d; q; q; s/ having q constant rows. Using this, we provide a construction (stated
for the homogeneous case) for corroboration s D 1.

Construction 4.5. If an SHFı.N I k; �; ¹1; dº/ and a DAˇ .M I d; 1; �; v; 1/ having v
constant rows exist, a DAˇı.NM � .N � ˇı/vI d; 1; k; v; 1/ exists.

Each replacement of columns of the DA into a row of the SHF yields (at least) v
constant rows. Then the verification follows that of Construction 4.2, after deleting
all but ˇı copies of each constant row. We leave the details to the reader. Instead,
we explore a powerful construction employing the detecting arrays of Lemma 4.3,
restricting to a prime power number of symbols. A row in †�C1

v is nearly constant if
each of the first � entries contains the same symbol, and the last entry is 0.

Construction 4.6. Let q be a prime power. If an SHFı.N I k; q; ¹1; d ıº/ exists, then
when d C ˇ � q, a DAˇı..N.d C ˇ � 1/C ı/qI d; 1; k; q; 1/ exists.

Proof. Let the symbols of the SHFı.N I k; q; ¹1; d ıº/, A, be †q [ ¹ıº. Form a
DAˇ ..dCˇ/qId; 1; q

ı; q; 1/, B , using Lemma 4.3 choosing L� D ¹0; : : : ; dCˇ�1º.
Let the first q columns of the DAˇ .M I d; 1; qı; q; 1/ be indexed by †q , and index
the .q C 1/st by ı. The q rows containing 0 in the last column are nearly constant.
Remove them from B to form a .d C ˇ � 1/q � .qC 1/ array B 0. Replace each sym-
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bol of row j of A by the corresponding column of B 0 to form an .d C ˇ � 1/q � k

array, Ej , on q symbols, for 1 � j � N . Form a q � k array D1 consisting of
each constant row. For 1 � i � ı, let Di be a copy of D. Then vertically juxtapose
E1; : : : ; EN and D1; : : : ;Dı to form F .

To verify that F is the desired DAˇı..N.d C ˇ � 1/C ı/qId;1; k; q; 1/, consider
T D ¹.
; �/º. It is necessary and sufficient that in every column g ¤ 
 , and every set
X of d symbols, at least ˇı rows of F contain � in column 
 but contain no symbol
of X in column g. To establish this for a specific T and g, partition the N rows of A
into classes, as follows:

(1) A1 contains the �1 rows in which columns 
 and g contain distinct symbols
from †q;

(2) A2 contains the �2 rows in which column 
 contains a symbol from †q , and
column g contains ı;

(3) A3 contains the �3 rows in which column g contains a symbol from †q , and
column 
 contains ı;

(4) A4 contains the �4 rows in which columns 
 and g contain the same symbol
from †q;

(5) A5 contains the �5 rows in which columns 
 and g both contain ı.

The separation requirements of the SHF ensure that �1 C �2 � ı in order to separate
column 
 from column g, and that �1 C �3 � ı in order to separate column g from
column 
 .

Next we define disjoint classes of rows of F as follows.

(1) For 1 � j � min.ı; �1/, Fj contains .d C ˇ/q rows of F consisting of

� the .d C ˇ � 1/q arising from the j th row of A1, and

� the q rows of Dj .

(2) For 1 � j � ı � �1, Gj contains .2d C 2ˇ � 1/q rows of F consisting of

� the .d C ˇ � 1/q arising from the j th row of A2,

� the .d C ˇ � 1/q arising from the j th row of A3, and

� the q rows of DjC�1
.

It suffices to check that in each of F1; : : : ; F�1
and each of G1; : : : ; Gı��1

, at least
d C ˇ rows have � in column 
 and distinct symbols in column g. Let us check Fj .
In the .d C ˇ � 1/q rows arising from the column replacement of B 0 into the j th
row of A1, each � in column 
 appears in exactly d C ˇ � 1 rows, with a different
symbol in column g in each. Because nearly constant rows have been deleted to form
B 0, none of these d C ˇ � 1 symbols is �, so the row from Dj that is constant equal
to � provides the final symbol in column g. Initially, we proceed in the same manner
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for Gj . In the .d C ˇ � 1/q rows arising from the column replacement of B 0 into the
j th row of A2, each � in column 
 appears in exactly d C ˇ � 1 rows; in these rows,
column g contains each of ¹1; : : : ; d C ˇ � 1º. When � 62 ¹1; : : : ; d C ˇ � 1º, the
all-� row from DjC�1

provides the final row needed. When � 2 ¹1; : : : ; d C ˇ � 1º,
consider the .d C ˇ � 1/q rows arising from the column replacement of B 0 into the
row chosen from A3 (these rows have not been considered before). In these rows,
every � 2 ¹1; : : : ; d C ˇ � 1º appears in column 
 with every symbol of †q in col-
umn g. This completes the verification.

When the DA from Lemma 4.3 is used, Construction 4.6 improves on Construc-
tion 4.5. By imposing the further condition on the SHF that the class A4 of rows
not be empty, one could eliminate some of the constant rows added. Even without
this restriction, Construction 4.6 may include more constant rows than are needed in
certain cases. We do not pursue this further here.

5. Consequences

Now we consider some consequences of Constructions 4.2 and 4.6 using detecting
arrays from Lemmas 4.3 and 4.4, along with the SHFs tabulated in Tables 1, 2, and
3, and SHHFs produced from these by Lemma 3.1 (4). Of course we do not attempt
to list all of the detecting arrays generated; instead we compare different approaches.
Our interest is in constructing detecting arrays for complex engineered systems of
moderate to large sizes. In Table 4, we report upper bounds on the number N of rows
in a DAı.N I 1; d; k; 5/ (with corroboration 1) for various values of d , k, and ı.

In constructing Table 4, we apply Lemma 3.1 (7) and the observation that a DA
need not have more rows than a DA having larger index but the same parameters
otherwise.

The effectiveness of the methods employed in producing detecting arrays for sin-
gle factor effects with many columns enables us to produce such arrays for larger
systems. Although we do not expect that the arrays found have the fewest possible
rows in general, it is striking how few rows suffice for large numbers of columns.

Comparing the results from Constructions 4.2 and 4.6 in Table 4, one finds that
Construction 4.6 almost always yields the fewest rows. Perhaps this is no surprise,
because Construction 4.6 typically succeeds in eliminating many rows using the
nearly constant rows of the detecting array ingredient. Despite this, Construction
4.2 often remains competitive, because it uses hash families in which the unusual
ı symbol does not appear, and which can be heterogeneous. Indeed Construction 4.2
can lead to the better result, as we illustrate next. Using an SHF2.8I 126; 6; ¹1; 3º/

and DA2.25I 1; 3; 6; 5/, Construction 4.2 yields a DA4.200I 1; 3; 100; 5/. Using an
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k D 10 k D 100 k D 1000 k D 10000

d ı 4.6,4.3 4.2,4.4 4.6,4.3 4.2,4.4 4.6,4.3 4.2,4.4 4.6,4.3 4.2,4.4
1 1 15 20 20 30 30 50 35 60
1 2 25 30 30 40 40 60 45 70
1 3 35 40 40 50 50 70 60 90
1 4 40 45 50 60 60 80 70 100
1 8 70 75 80 90 100 120 120 125
2 1 25 38 55 75 115 165 155 225
2 2 35 48 70 90 150 186 190 270
2 3 45 50 100 120 165 225 205 285
2 4 70 80 100 120 200 225 220 300
2 8 110 120 170 188 290 360 320 400
3 1 35 48 155 164 290 380 425 560
3 2 45 50 175 175 325 400 490 640
3 3 90 100 230 200 360 500 555 720
3 4 90 100 230 200 410 500 620 775
3 8 160 175 400 400 540 650 820 950

Table 4. Upper bounds on N for a DAı.N I 1; d; k; 5/. Two upper bounds are given for each.
The first employs Construction 4.6 using Lemma 4.3, and SHFs of type ¹1; dıº with v D 5:

The second employs Construction 4.2 using Lemma 4.4, and SHHFs of type ¹1; dº with five or
six symbols per row whose existence is implied by the SHF tables.

SHF2.11I 125; 5; ¹1; 3
ıº/ and DA2.25I 1; 3; 5

ı; 5/, Construction 4.6 yields a DA4.230I

1; 3; 100; 5/. The hash family with 6 symbols is enough smaller than that with five
symbols in addition to ı that the usual advantage of exploiting nearly constant rows is
overcome. Naturally finding hash families with fewer rows might impact such com-
parisons. Although we do not believe that the hash families here have the fewest rows
(or the most columns), we do believe that Construction 4.2 can, in certain cases, yield
fewer rows than Construction 4.6.

Potential improvements in the sizes of the detecting arrays could result from find-
ing better SHFs and SHHFs. They could also arise from a more detailed analysis of
the redundant rows produced by Constructions 4.2 and 4.6; for this purpose, a post-
optimization strategy from [18] may prove useful computationally, but we have not
employed that here. In this paper, we applied the constructions only to DAs from Lem-
mas 4.3 and 4.4, which have v or v C 1 columns. Naturally, the same constructions
can be applied to DAs having more columns (permitting the hash families to have
more symbols and hence fewer rows). We expect that such an extension would be
effective, given a larger collection of detecting arrays to use as ingredients.
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Of most importance from the standpoint of applications is that the column re-
placement techniques and associated ingredients developed underlie effective and
efficient methods to produce detecting arrays for the effects of single factors so that
specified values of separation and corroboration can be achieved. Finally, many of the
techniques developed here extend in a natural manner to detecting t -way interactions,
not just the effects of single factors [21, 22].
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Digital collections of examples in mathematical sciences

James H. Davenport

Abstract. Some aspects of computer algebra (notably computation group theory and compu-
tational number theory) have some good databases of examples, typically of the form “all the
X up to size n”. But most of the others, especially on the polynomial side, are lacking such,
despite the utility they have demonstrated in the related fields of SAT and SMT solving. We
claim that the field would be enhanced by such community-maintained databases, rather than
each author hand-selecting a few, which are often too large or error-prone to print, and therefore
difficult for subsequent authors to reproduce.

1. Introduction

Mathematicians have long had useful collections, either of systematic data or ex-
amples. One of the oldest known such is the cuneiform tablet known as Plimpton 322,
which dates back to roughly 1800BC; see [23, pp. 172–176], or a more detailed
treatment in [42, 50]. This use of systematic tables of data spawned the develop-
ment on logarithmic, trigonometric, and nautical tables: Babbage’s difference engine
was intended to mechanise the production of such tables. But there were also tables
of purely mathematical interest: the author recalls using an 1839 table of logarithms
and what are now known as Zech logarithms [59] (but in fact they go back at least
to [41]), i.e., tables of the function log x 7! log.1 C x/, at least over R; Jacobi’s table
[34] was modulo pn for all the prime powers pn < 1000.

1.1. Data citation

Citation and referencing is an important point of modern scholarship—Harvard-style
referencing is generally attributed to [43], and the history of Science Citation Index
is described in [29]. It is well understood, and practically all research students, and
many undergraduates, get lessons in article citation practices.

2020 Mathematics Subject Classification. Primary 00A35; Secondary 12-04, 20-04.
Keywords. Benchmarking, citation, OpenMath.
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Figure 1. Overlaps between data citation harvesters [56, Figure 5].

Despite the success of article citation, data citation is a mess in practice [56]: only
1.16% of dataset DOIs in Zenodo are cited1 (and 98.5% of these are self-citations). It
is still a subject of some uncertainty: [36, 46] and significant changes are still being
proposed [25]. Worse, perhaps, it is poorly harvested; see Figure 1. Assuming inde-
pendence and looking at the overlap statistics, we can estimate that there are between
4,000 to 20,000 datasets waiting to be cited. In such circumstances, de facto people
cite a paper if they can find one.

2. Pure mathematics

2.1. On-line Encyclopedia of Integer Sequences

This database [52] can be said to have “colonised the high ground” in mathematics:
mathematicians from all sub-disciplines use it. It has evolved from a private enter-
prise, for a long time at http://www.research.att.com/�njas/sequences, to a system
maintained by a foundation, and now at https://oeis.org/. The recommended citation
is “OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences,
published electronically at https://oeis.org, [date]”, but the author had originally to
search the website to find it!

2.2. Group theory

The classification of finite simple groups, as well as being a tour de force in mathem-
atics, also means that we have a complete database here. In most other areas, we have
to be content with “small” databases.

1In contrast, 60% of papers in Natural Science and Engineering had a citation in the next
two years [39, 49].

http://www.research.att.com/~njas/sequences
https://oeis.org/
https://oeis.org
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An example of this is the transitive groups acting on n points, where various
authors have contributed: [17] (n�11); [51] (nD12); [16] (nD14;15); [32] (n D 16);
[33] (17 � n � 31); [18] (n D 32). These are available in the computer algebra system
GAP (and MAGMA), except that (for reasons of space) n D 32 is not in the default
build for GAP.

These are really great resources (if that is what you want), but how does one cite
this resource: “[55, transgrp library]”?

There are several other libraries such as primitive groups. But it could be argued
that (finite) group theory is “easy”: for a given n, there are a finite number and we
“just” have to list them.

2.3. L-functions and modular forms

The L-functions and modular forms database, known as LMFDB and hosted at
lmfdb.org is a third example of mathematical databases. The recommended cita-
tion, “The LMFDB Collaboration, The L-functions and modular forms database,
http://www.lmfdb.org, 2021” is directly linked from the home page, which is a good
model to follow.

Computation in this area had a long history, from [9] and [54] to the current
database, which is the work of a significant number of people. The early computa-
tions gave rise to the Birch–Swinnerton-Dyer conjectures [10], now a Clay Millen-
nium Prize topic. The current computations are in active use by mathematicians; see
Poonen’s remarks in [27].

3. SAT and SMT solving

3.1. SAT solving

SAT solving is normally seen as solving a Boolean expression written in conjunctive
normal form (CNF).

The 3-SAT problem is as follows: given a 3-literals/clause CNF satisfiability prob-
lem,

.l1;1 _ l1;2 _ l1;3/„ ƒ‚ …
Clause 1

^.l2;1 _ l2;2 _ l2;3/ ^ � � � ^ .lN;1 _ lN;2 _ lN;3/; (1)

where li;j 2 ¹x1; x1; x2; x2; : : :º; is it satisfiable? In other words, is there an assign-
ment of ¹T; F º to the xi such that all the clauses are simultaneously true.

3-SAT is the quintessential NP-complete problem [24]. 2-SAT is polynomial, and
k-SAT for k > 3 is polynomial-transformable into 3-SAT. In practice, we deal with
SAT—i.e., no limitations on the length of the clauses and no requirement that all
clauses have the same length.

https://lmfdb.org
https://www.lmfdb.org
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Let n be the number of i such that xi (and/or xi ) actually occur. Typically n is of
a similar size to N .

Despite the problem class being NP-complete, nearly all examples are easy (e.g.,
SAT-solving has been routinely used in the German car industry for over twenty years
[38]): either easily solved (SAT) or easily proved insoluble (UNSAT). For random
problems there seems to be a distinct phase transition between the two [2,3,30], with
the hard problems typically lying on the boundary.

This means that constructing difficult examples is itself difficult, and a topical
research area [5, 53].

SAT solving has many applications, so we want effective solvers for “real” prob-
lems, not just “random” ones. This gives us the fundamental question: what does this
mean?

3.2. SAT contests

These are described at http://www.satcompetition.org. They have been run since 2002.
In the early years, there were distinct tracks for industrial/handmade/random prob-
lems; this has been abandoned.

The methodology is that the organisers accept submissions (from contestants2 and
others), then produce a list of problems (in DIMACS, a standard format), set a time
(and memory) limit, and see how many of the problems the submitted systems can
solve on the contest hardware.

SAT is easy to certify (the solver just produces a list of values of the xi ). Verifying
UNSAT is much harder, but since 2013 the contest has required proofs of UNSAT for
the UNSAT track, and since 2020 in all tracks, in DRAT: a specified format (some of
these proofs have been > 100 GB).

The general feeling is that these contests have really pushed the development of
SAT solvers, roughly speaking �2/year. For comparison, Linear Programming has
done �1:8 over a greater timeline and with more rigorous dcoumentation [11].

3.3. SMT: Life beyond SAT

Consider a theory T , with variables yj , and various Boolean-valued statements in T

of the form Fi .y1; : : : ; yn/, and a CNF L in the form of (1) with Fi .y1; : : : ; yn/ rather
than just xi . In principle, T can be anything: those currently supported3 are given in
Figure 2.

2In 2020, contestants were required to submit at least 20 problems, as well as a solver.
3By the SMT-LIB standard [6], which also says “ New logics are added to the standard

opportunistically, once enough benchmarks are available”.

http://www.satcompetition.org
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Figure 2. Available logics (March 2022) https://smtlib.cs.uiowa.edu/logics.shtml.

For example QF_NRA is the quantifier-free theory of nonlinear real arithmetic,
and QF_LRA (linear real arithmetic) is included in this. Both QF_NRA and QF_UFLRA
(uninterpreted functions and linear real arithmetic) are included in QF_UFNRA.

Then the SAT/UNSAT question is similar: do there exist values of yi such that
L is true (SAT), or can we state that no such exist (UNSAT), and the community
runs SMT competitions (https://smt-comp.github.io/2022/). There is a separate track
for each theory T , as the problems will be different. Within each, the problems are
subdivided as industrial/crafted/random.

The SMT-LIB format [6] provides a standard input format. The question of prov-
ing UNSAT is in general unsolved (but see [37] for one particular theory T ).

There has been substantial progress in SMT-solving over the years, possibly sim-
ilar to SAT, and probably also spurred by the contests.

4. Computer algebra: Where are we?

Obviously, group theory and others are parts of computer algebra: What about the
rest of computer algebra?

In general, the problems of computer algebra have a bad worst-case complex-
ity, and we want effective solvers for “real” problems, not just “random” ones. The
question, as in SAT and SMT, is “what does this mean?”.

But there are also various logistical challenges.

(1) Format: there is no widely accepted common standard. We do have Open-
Math [15], but it is not as widely supported as we would like.

https://smtlib.cs.uiowa.edu/logics.shtml
https://smt-comp.github.io/2022/
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(2) Contests: there are currently none. Could SIGSAM organise them?

(3) Problem sets: there are essentially no independent ones. Each author chooses
his own.

(4) Archive: not really.

We now consider various specific problems.

4.1. Polynomial GCD

This problem is NP-hard (for sparse polynomials, even univariate) [26, 48]. Even
for dense polynomials, it can be challenging for multivariates. There is no standard
database: one has to trawl previous papers (and often need to ask the authors, as the
polynomials were too big to print in the paper). Verification is a challenge: one can
check that the result is a common divisor, but verifying greatest is still NP-hard [48].

4.2. Polynomial factorisation

This is known to be polynomial time for dense encodings [40], even though their
exponent is large, and much work has gone into better algorithms; e.g. [1]. Presum-
ably it is NP-hard for sparse encodings, though the author does not know of an explicit
proof. There is no standard database: one has to trawl previous papers (and often
needs to ask the authors, as the polynomials were too big to print in the paper).

Verification is a challenge: one can check that the result is a factorisation, but
checking completeness (i.e., that these factors are irreducible) seems to be as hard as
the original problem in the worst cases.

It is worth noting that, with probability 1, a random dense polynomial is irredu-
cible (and easily proved so by the Musser test [47]), so the question “what are the
interesting problems?” is vital.

4.3. Gröbner bases

The computation of Gröbner bases has many applications, from engineering to cryp-
tography. But this has doubly exponential (with respect to n, the number of variables)
worst-case complexity [45], even for a prime ideal [20]. If we take n “random” equa-
tions in n variables, they will satisfy the conditions for the Shape Lemma [7] and have
D � nn solutions, so a Gröbner base in a purely lexicographical order will look like®

p1.x1/; x2 � p2.x1/; x3 � p3.x1/; : : : ; xn � pn.x1/
¯
; (2)

where p1 is a polynomial of degree D in x1 and the other pi are polynomials of
degree at most D � 1 in x1. Experience shows that the coefficients of the pi will
generally be large (theoretically, they can be D times as long as the input coefficients).
Conversely, if we have n C 1 equations, there are generally no solutions and the
Gröbner base is ¹1º, much shorter than (2).
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The good news from the point of view of this paper is that there is a collection [8],
but it is very old (1996), so most of the examples are trivial with today’s hardware
and software, and completely static. Worse, some of the examples are only available
in PDF.

There is always a Gröbner base (no concept of UNSAT as such) but it is not clear
what a useful certificate of “G is a Gröbner base for input L” might mean in general
(but see [4]). If G D ¹g1; : : : ; gM º is a Gröbner base of F D ¹f1; : : : ; fN º, then a
general certificate would consist of three components:

(1) a proof that G is a Gröbner base, which would mean that every S -polynomial
S.gi ; gj / reduces to 0 under G, which is easily checked;

(2) a proof that .F / � .G/, which could be a set of �i;j such that every fi DP
�i;j gj ;

(3) a proof that .G/ � .F /, which could be a set of �i;j such that every gi DP
�i;j fj .

However, the �i;j and �i;j might be (and generally are) extremely large.

4.4. Real algebraic geometry

Again, the problem of describing the decomposition of Rn sign-invariant for a set S of
polynomials fi in n variables has doubly exponential (with respect to n) worst-case
complexity [14]. However, unlike Gröbner bases, it seems that this is the “typical”
complexity, though the author knows no formal statement of this. For a given prob-
lem, the complexity can vary greatly: [14, Theorem 7] is an example of a polynomial
p in 3n C 4 variables such that any cylindrical algebraic decomposition (CAD), with
respect to one order, of R3nC4 sign-invariant for p has O

�
22n�

cells, but with respect
to another order has 3 cells:

p WD xnC1

��
yn�1 �

1

2

�2

C .xn�1 � zn/2

��
.yn�1 � zn/2

C .xn�1 � xn/2
�

C

n�1X
iD1

xiC1
�
.yi�1 � yi /

2
C .xi�1 � zi /

2
��

.yi�1 � zi /
2
C .xi�1 � xi /

2
�

C x

�
.y0 � 2x0/2

C

�
˛2

C

�
x0 �

1

2

��2
�

�

�
.y0 � 2 C 2x0/2

C

�
˛2

C

�
x0 �

1

2

��2
�
C a:

The bad order (eliminating x, then y0; ˛; x0; z1; y1; z1; : : : ; xn; a) needs O.22n
/

(Maple: 141 when n D 0) cells. Any order eliminating a first says that R3nC3 is
undecomposed, and the only question is p D 0, which is linear in a, and we get three
cells: p < 0, p D 0, and p > 0.
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However, if we replace a by a3, the topology is essentially the same, but the
discriminant is no longer trivial, and the “good” order now generates 213 cells in
Maple, rather than three.

There is a collection [58], not quite as old as [8] (2014 was the last update), but
still completely static. The DEWCAD project [12] might update this, but there are still
issues of long-term conservation. The format has learned from [8] and each example
is available in text, Maple input, and QEPCAD.

If we are just looking at computing a CAD, which we might wish to do for motion
planning purposes [57], there is no concept of UNSAT, and the question of certificates
of correctness is essentially unsolved. Attempts to produce a formally verified CAD
algorithm have also so far been unsuccessful [21].

However, CAD was invented [22] for the purpose of quantifier elimination, i.e.,
converting QkxkQkC1xkC1 � � �Qnxnˆ.fi /, where Qi 2 ¹9;8º and ˆ is a Boolean
combination of equalities and inequalities in the fi , into ‰.g1; : : : ; gn0/, where ‰

is a Boolean combination of equalities and inequalities in the gi , polynomials in
x1; : : : ; xk�1, and if the statement is fully quantified, the result is a Boolean. A com-
mon case, particularly in program verification, is the fully existential case (all Qi

are 9), where ˆ is “something has gone wrong”, and we want to show that this can-
not happen. Then SAT is easy (exhibit values of xi such that ˆ is true, but UNSAT is
much harder to certify. See [37] for some steps in this direction.

4.5. Integration

The computational complexity of integration (i.e., given a formula f in a class L, is
there a formula g 2 L, or in an agreed extension of L, such that g0 D f ) is essen-
tially unknown (but integration certainly involves GCD, factorisation, etc.). When
L includes algebraic functions, difficult questions of algebraic geometry arise (see
[28, as corrected in [44]]), and there is no known bound on the complexity of these.

“Paper” mathematics produced large databases of integrals (e.g. [31]), but these
are (at best) in PDF, and the way they are commonly printed makes it extremely hard
to recover semantics from the layout. Probably the best current database is described
in [35]. But these databases are almost entirely of successful (SAT in our notation)
examples, and there is almost no collection of UNSAT (6 9g 2 L W g0 D f ) examples.
Algorithm-based software (e.g. [28]) has an internal proof of UNSAT, but I know of
no software that can exhibit it. That proof is typically very reliant on the underlying
mathematics.

A new question here is the “niceness” of the output in the SAT case. Jeffrey and
Rich [35] give the example ofZ

5x4

.1 C x/6
dx D

x5

.1 C x/5
; (3)
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where Maple’s answer is

�10

.1 C x/3
C

5

.1 C x/4
�

5

.1 C x/
�

1

.1 C x/5
C

10

.1 C x/2
: (4)

Note that (4) is not just an ugly form of the right-hand side of (3): the two differ by 1,
which is a legitimate constant of integration.

While some element of “niceness” is probably beyond automation, “simplicity”
in the sense of [19], essentially minimal Kolmogorov complexity, is probably a good
proxy, and could be automatically judged (at least in principle: there are probably
some messy system-dependent issues in practice).

5. Conclusions

(1) The field of computer algebra really ought to invest in the sort of contests that
have stimulated the SAT and SMT worlds.

(2) This requires much larger databases of “relevant” problems than we currently
have, and they need to be properly curated.

C The technology of collaborative working, e.g. wikis or GitHub, has
greatly advanced since the days of [8], which should make collaborat-
ive construction of example sets easier, and would also help with the
preservation challenge.

� Although OpenMath is in principle a suitable system-neutral notation
that could be the standard input (and output) format, such a use would
challenge OpenMath implementations. This would be a good develop-
ment, though.

(3) This would allow much better benchmarking practices; see the description
in [13].

(4) There are significant challenges in providing “certificates”, not just of
UNSAT in the case of integration, but elsewhere in algebra. For example,
asserting g D gcd.f1;f2/ involves, not just the claim that g divides f1 and f2,
but also that f1=g; f2=g are relatively prime, which may be much harder to
demonstrate.

Acknowledgements. The author is grateful to Dr. Uncu for his comments on drafts,
and to the organisers of the MIDAS session at the 8th European Congress of Math-
ematicians for prompting these reflections.

Funding. This work was partially supported by EPSRC Grant EP/T015713/1.



J. H. Davenport 728

References

[1] J. Abbott, V. Shoup, and P. Zimmermann, Factorization in ZŒx�: the searching phase. In
ISSAC 2000, edited by C. Traverso, pp. 1–7, ACM, New York, 2000 Zbl 1326.68339

[2] D. Achlioptas and C. Moore, Random k-SAT: two moments suffice to cross a sharp
threshold. SIAM J. Comput. 36 (2006), no. 3, 740–762 Zbl 1120.68096 MR 2263010

[3] D. Achlioptas and Y. Peres, The threshold for random k-SAT is 2k log 2 � O.k/. J. Amer.
Math. Soc. 17 (2004), no. 4, 947–973 Zbl 1093.68075 MR 2083472

[4] E. A. Arnold, Modular algorithms for computing Gröbner bases. J. Symbolic Comput. 35
(2003), no. 4, 403–419 Zbl 1046.13018 MR 1976575

[5] T. Balyo and L. Chrpa, Using algorithm configuration tools to generate hard SAT bench-
marks. In The Eleventh International Symposium on Combinatorial Search (SoCS 2018),
pp. 133–137, 2018

[6] C. Barrett, P. Fontaine, and C. Tinelli, The SMT-LIB standard: Version 2.6. 2021,
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

[7] E. Becker, M. G. Marinari, T. Mora, and C. Traverso, The shape of the Shape Lemma. In
ISSAC 1994, pp. 129–133, ACM, Baltimore, MD, 1994 Zbl 0925.13006

[8] D. Bini and B. Mourrain, Polynomial test suite. 1996, http://www-sop.inria.fr/saga/POL/

[9] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I. J. Reine Angew.
Math. 212 (1963), 7–25 Zbl 0118.27601 MR 146143

[10] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II. J. Reine Angew.
Math. 218 (1965), 79–108 Zbl 0147.02506 MR 179168

[11] R. Bixby, Computational progress in linear and mixed integer programming. 2015,
presentation at ICIAM 2015

[12] R. Bradford, J. H. Davenport, M. England, A. Sadeghimanesh, and A. Uncu, The DEW-
CAD Project: pushing back the Doubly Exponential Wall of Cylindrical Algebraic
Decomposition. ACM Commun. Comput. Algebra 55 (2021), no. 3, 107–111
MR 4363371

[13] M. Brain, J. Davenport, and A. Griggio, Benchmarking solvers, SAT-style. In SC2 2017
Satisfiability Checking and Symbolic Computation CEUR Workshop 1974, pp. 1–15, 2017

[14] C. W. Brown and J. H. Davenport, The complexity of quantifier elimination and cyl-
indrical algebraic decomposition. In ISSAC 2007, edited by C. Brown, pp. 54–60, ACM,
New York, 2007 Zbl 1190.68028 MR 2396184

[15] S. Buswell et al., The OpenMath Standard 2.0 Revision 1. 2017, http://www.openmath.org

[16] G. Butler, The transitive groups of degree fourteen and fifteen. J. Symbolic Comput. 16
(1993), no. 5, 413–422 Zbl 0813.20003 MR 1271082

[17] G. Butler and J. McKay, The transitive groups of degree up to eleven. Comm. Algebra 11
(1983), no. 8, 863–911 Zbl 0518.20003 MR 695893

[18] J. J. Cannon and D. F. Holt, The transitive permutation groups of degree 32. Experiment.
Math. 17 (2008), no. 3, 307–314 Zbl 1175.20004 MR 2455702

https://zbmath.org/?q=an:1326.68339&format=complete
https://zbmath.org/?q=an:1120.68096&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2263010
https://zbmath.org/?q=an:1093.68075&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2083472
https://zbmath.org/?q=an:1046.13018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1976575
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://zbmath.org/?q=an:0925.13006&format=complete
https://www-sop.inria.fr/saga/POL/
https://zbmath.org/?q=an:0118.27601&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=146143
https://zbmath.org/?q=an:0147.02506&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=179168
https://mathscinet.ams.org/mathscinet-getitem?mr=4363371
https://zbmath.org/?q=an:1190.68028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2396184
https://www.openmath.org
https://zbmath.org/?q=an:0813.20003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1271082
https://zbmath.org/?q=an:0518.20003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=695893
https://zbmath.org/?q=an:1175.20004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2455702


Digital collections of examples in mathematical sciences 729

[19] J. Carette, Understanding expression simplification. In ISSAC 2004, pp. 72–79, ACM,
New York, 2004 Zbl 1134.68596 MR 2126927

[20] A. L. Chistov, Double-exponential lower bound for the degree of any system of generators
of a polynomial prime ideal. St. Petersburg Math. J. 20 (2009), no. 6, 983–1001
Zbl 1206.13031

[21] C. Cohen and A. Mahboubi, A formal quantifier elimination for algebraically closed
fields. In CICM 2010, edited by S. Autexier et al., pp. 189–203, Springer, Berlin, 2010
Zbl 1286.68394

[22] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In Automata Theory and Formal Languages (Second GI Conf., Kaiserslautern,
1975), pp. 134–183, Lecture Notes in Comput. Sci. 33, Springer, Berlin, 1975
Zbl 0318.02051 MR 0403962

[23] J. H. Conway and R. K. Guy, The Book of Numbers. Copernicus, New York, 1996
Zbl 0866.00001 MR 1411676

[24] S. Cook, On the minimum computation time of functions. Ph.D. thesis, Department of
Mathematics, Harvard University, 1966

[25] M. Daquino et al., The OpenCitations data model. In The 19th International Semantic
Web Conference (ISWC 2020), pp. 447–463, 2020

[26] J. Davenport and J. Carette, The sparsity challenges. In SYNASC 2009, edited by S. Watt
et al., pp. 3–7, 2010

[27] J. Davenport, B. Poonen, J. Maynard, H. Helfgott, P. Tiep, and L. Cruz-Filipe, Machine-
assisted proofs. In Proceedings of the International Congress of Mathematicians—Rio de
Janeiro 2018. Vol. I. Plenary Lectures, pp. 1085–1110, World Sci. Publ., Hackensack, NJ,
2018 Zbl 1452.68262 MR 3966753

[28] J. H. Davenport, On the Integration of Algebraic Functions. Lecture Notes in Comput.
Sci. 102, Springer, Berlin, 1981 Zbl 0471.14009 MR 617377

[29] E. Garfield, The evolution of the Science Citation Index. Int. Microbiol. 10 (2007), 65–69

[30] I. Gent and T. Walsh, The SAT phase transition. In ECAI 1994, edited by A. Cohn, pp.
105–109, John Wiley, New York, 1994

[31] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. 7th edn.,
Academic Press, Amsterdam, 2007 Zbl 1208.65001 MR 2360010

[32] A. Hulpke, Konstruktion transitiver Permutationsgruppen. Ph.D. thesis, RWTH Aachen,
1996

[33] A. Hulpke, Constructing transitive permutation groups. J. Symbolic Comput. 39 (2005),
no. 1, 1–30 Zbl 1131.20003 MR 2168238

[34] C. Jacobi, Canon arithmeticus, sive tabulae quibus exhibentur pro singulis numeris primis
vel primorum potestatibus infra 1000 numeri ad datos indices et indices ad datos numeros
pertinentes. Typis Academicis, Berolini, 1839

[35] D. J. Jeffrey and A. D. Rich, Reducing expression size using rule-based integration. In
CICM 2010, edited by S. Autexier et al., pp. 234–246, Springer, Berlin, 2010
Zbl 1286.68517

https://zbmath.org/?q=an:1134.68596&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2126927
https://zbmath.org/?q=an:1206.13031&format=complete
https://zbmath.org/?q=an:1286.68394&format=complete
https://zbmath.org/?q=an:0318.02051&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0403962
https://zbmath.org/?q=an:0866.00001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1411676
https://zbmath.org/?q=an:1452.68262&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3966753
https://zbmath.org/?q=an:0471.14009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=617377
https://zbmath.org/?q=an:1208.65001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2360010
https://zbmath.org/?q=an:1131.20003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2168238
https://zbmath.org/?q=an:1286.68517&format=complete


J. H. Davenport 730

[36] J. Kratz and C. Strasser, Data publication consensus and controversies [version 3].
F1000Research 3 (2014), Article No. 94

[37] G. Kremer, E. Ábrahám, M. England, and J. H. Davenport, On the implementation of cyl-
indrical algebraic coverings for satisfiability modulo theories solving. In SYNASC 2021,
pp. 37–39, 2021

[38] W. Küchlin and C. Sinz, Proving consistency assertions for automotive product data man-
agement. J. Autom. Reasoning 24 (2000), no. 1–2, 145–163 Zbl 0968.68042

[39] V. Larivière, Y. Gingras, and E. Archambault, The decline in the concentration of citations,
1900–2007. J. Amer. Soc. Info. Sci. Technol. 60 (2009), no. 4, 858–862

[40] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational
coefficients. Math. Ann. 261 (1982), no. 4, 515–534 Zbl 0488.12001 MR 682664

[41] G. Leonelli, Supplément logarithmique. Théorie des logarithmes additionels et diductifs.
Brossier, Bordeaux, 1803

[42] D. F. Mansfield, Plimpton 322: a study of rectangles. Found. Sci. 26 (2021), no. 4, 977–
1005 Zbl 07554371 MR 4334265

[43] E. Mark, Maturation, fecundation, and segmentation of Limax campestris, Binney. Bul-
letin of the Museum of Comparative Zoology at Harvard College 6 (1881), no. 12, 173–
625

[44] D. Masser and U. Zannier, Torsion points, Pell’s equation, and integration in elementary
terms. Acta Math. 225 (2020), no. 2, 227–313 Zbl 1470.11163 MR 4205408

[45] E. W. Mayr and S. Ritscher, Dimension-dependent bounds for Gröbner bases of polyno-
mial ideals. J. Symbolic Comput. 49 (2013), 78–94 Zbl 1258.13032 MR 2997841

[46] H. Mooney and M. Newton, The anatomy of a data citation: Discovery, reuse, and credit.
Journal of Librarianship and Scholarly Communication 1 (2012), no. 1, Article No.
eP1035

[47] D. R. Musser, On the efficiency of a polynomial irreducibility test. J. Assoc. Comput.
Mach. 25 (1978), no. 2, 271–282 Zbl 0372.68014 MR 488309

[48] D. A. Plaisted, New NP-hard and NP-complete polynomial and integer divisibility prob-
lems. Theoret. Comput. Sci. 31 (1984), no. 1-2, 125–138 Zbl 0572.68027 MR 752098

[49] D. Remler, Are 90% of academic papers really never cited? Reviewing the literature
on academic citations. 2014, http://blogs.lse.ac.uk/impactofsocialsciences/2014/04/23/
academic-papers-citation-rates-remler/

[50] E. Robson, Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322. His-
toria Math. 28 (2001), no. 3, 167–206 Zbl 0991.01001 MR 1849797

[51] G. F. Royle, The transitive groups of degree twelve. J. Symbolic Comput. 4 (1987), no. 2,
255–268 Zbl 0683.20002 MR 922391

[52] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Notices Amer. Math.
Soc. 50 (2003), no. 8, 912–915 Zbl 1044.11108 MR 1992789

[53] I. Spence, Weakening cardinality constraints creates harder satisfiability benchmarks.
ACM J. Exp. Algorithmics 20 (2015), Article No. 1.4 MR 3353196

https://zbmath.org/?q=an:0968.68042&format=complete
https://zbmath.org/?q=an:0488.12001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=682664
https://zbmath.org/?q=an:07554371&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4334265
https://zbmath.org/?q=an:1470.11163&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4205408
https://zbmath.org/?q=an:1258.13032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2997841
https://zbmath.org/?q=an:0372.68014&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=488309
https://zbmath.org/?q=an:0572.68027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=752098
https://blogs.lse.ac.uk/impactofsocialsciences/2014/04/23/academic-papers-citation-rates-remler/
https://blogs.lse.ac.uk/impactofsocialsciences/2014/04/23/academic-papers-citation-rates-remler/
https://zbmath.org/?q=an:0991.01001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1849797
https://zbmath.org/?q=an:0683.20002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=922391
https://zbmath.org/?q=an:1044.11108&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1992789
https://mathscinet.ams.org/mathscinet-getitem?mr=3353196


Digital collections of examples in mathematical sciences 731

[54] H. Swinnerton-Dyer et al., Numerical tables on elliptic curves. In Modular Functions of
One Variable IV, pp. 74–144, Lecture Notes in Math. 476, Springer, Berlin, 1975
Zbl 1214.11006

[55] The GAP Group, GAP—Groups, algorithms, and programming, version 4.11.1. 2021,
https://www.gap-system.org

[56] S. van de Sandt et al., Practice meets principle: Tracking software and data citations to
Zenodo DOIs. 2019, arXiv:1911.00295

[57] D. Wilson, J. Davenport, M. England, and R. Bradford, A “Piano Movers” Problem refor-
mulated. In SYNASC 2013, pp. 53–60, 2013

[58] D. J. Wilson, R. J. Bradford, and J. H. Davenport, A repository for CAD examples. ACM
Commun. Comput. Algebra 46 (2012), no. 3, 67–69 Zbl 1322.68294

[59] J. Zech, Tafeln der Additions- und Subtractions-Logarithmen. Weidmannsche Buchhand-
lung, Berlin, 1849

James H. Davenport
Department of Computer Science, University of Bath, Bath BA2 7AY, UK;
j.h.davenport@bath.ac.uk

https://zbmath.org/?q=an:1214.11006&format=complete
https://www.gap-system.org
https://arxiv.org/abs/1911.00295
https://zbmath.org/?q=an:1322.68294&format=complete
mailto:j.h.davenport@bath.ac.uk




© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/18

Closed G2-structures on compact quotients of Lie groups

Anna Fino and Alberto Raffero

Abstract. G2-structures defined by a closed non-degenerate 3-form constitute the starting
point in various known and potentially effective methods to obtain holonomy G2-metrics on
compact 7-manifolds. Albeit linear, the closed condition is quite restrictive, and no general
results on the existence of closed G2-structures on compact 7-manifolds are currently known.
In this paper, we review some results regarding compact locally homogeneous spaces admit-
ting invariant closed G2-structures. In particular, we consider the case of compact quotients of
simply connected Lie groups by discrete subgroups.

1. Introduction

A G2-structure is a special type of G-structure that occurs on certain 7-dimensional
smooth manifolds. More precisely, it is a reduction of the structure group of the frame
bundle of a 7-manifold M from the general linear group GL.7; R/ to the compact
exceptional Lie group G2. The existence of a G2-structure on M is equivalent to the
orientability of M and the existence of a spin structure on it, namely to the vanishing
of the the first and second Stiefel–Whitney classes of M .

Since every 7-manifold admitting G2-structures is spin, it also admits almost con-
tact structures. The interplay between the existence of special types of G2-structures
and of contact structures has been recently investigated in [2, 13, 26].

The existence of a G2-structure on M can also be described in terms of differen-
tial forms. Indeed, it is characterized by the existence of a 3-form ' 2 �3.M/ with
pointwise stabilizer isomorphic to G2. This is also equivalent to requiring that ' is
non-degenerate; namely that at each point p of M one has that

�X' ^ �X' ^ ' ¤ 0;

for every non-zero tangent vector X 2 TpM , where �X denotes the contraction by
X . Every such 3-form ' gives rise to a Riemannian metric g' and to an orientation
on M . More precisely, g' and the corresponding Riemannian volume form dV' are

2020 Mathematics Subject Classification. Primary 53C10; Secondary 53C30.
Keywords. Closed G2-structure, locally homogeneous space, Lie algebra, lattice, Laplacian
soliton, exact G2-structure.
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related to ' as follows:

g'.X; Y /dV' D
1

6
�X' ^ �Y ' ^ ':

Moreover, at each point p of M , the 3-form ' can be written as

' D e127
C e347

C e567
C e135

� e146
� e236

� e245;

where .e1; : : : ; e7/ is a g'-orthonormal basis of the cotangent space T �
p M , and eijk

denotes the wedge product ei ^ ej ^ ek .
Let � be the Hodge star operator determined by g' and the orientation, and let

r be the Levi-Civita connection of g' . By [19], the 3-form ' is parallel with respect
to r if and only if it is closed and co-closed; namely d' D 0 and d � ' D 0. In this
case, the G2-structure is said to be parallel or torsion-free, its intrinsic torsion van-
ishes identically, the Riemannian metric g' is Ricci-flat (see also [4]), and Hol.g'/

is isomorphic to a subgroup of G2. Notice that the conditions r' D 0 and d � ' D 0

are both non-linear in ', as both r and � depend on g' , which is determined by '.
The existence of Riemannian metrics with holonomy equal to G2 was first proved

by Bryant in [7], where some non-compact examples of Riemannian 7-manifolds
with holonomy G2 were given. The first complete (but still non-compact) examples
were obtained by Bryant and Salamon in 1989 [9], and the first compact examples
were constructed by Joyce in 1994 [35, 36]. Further compact examples admitting
holonomy G2 metrics were obtained in [12, 34, 38, 39].

A G2-structure defined by a non-degenerate 3-form ' satisfying the linear con-
dition d' D 0 is said to be closed or calibrated, since ' defines a calibration on M ,
namely 'j� � vol� , for every oriented tangent 3-plane � (cf. [30]). The codifferential
of a closed G2-structure ' is given by

d � ' D � ^ ';

for a unique 2-form � belonging to the irreducible 14-dimensional space ƒ2
14 Š g2.

This 2-form is usually called the torsion form of the closed G2-structure ', and it
satisfies the identities � ^' D�� � and � ^�' D 0. Note that � D d �', and therefore
d �� D 0. As a consequence, d� D �'', where �' D dd � C d �d denotes the Hodge
Laplacian of g' .

By [8], the scalar curvature of the metric g' induced by a closed G2-structure is
given by

Scal.g'/ D �
1

2
j� j2;

and so it is non-positive. Notice that this is not a restrictive condition on compact
manifolds.

By [56], a compact homogeneous 7-manifold cannot admit any invariant closed
non-parallel G2-structure. On the other hand, there exist many examples of compact



Closed G2-structures on compact quotients of Lie groups 735

locally homogeneous 7-manifolds admitting invariant G2-structures of this type; see
for instance [3, 8, 11, 14, 15, 23, 37, 50]. All these examples are compact quotients
of simply connected Lie groups by co-compact discrete subgroups (lattices). Further
examples of compact manifolds admitting closed non-parallel G2-structures are given
in [16, 51] and they are obtained resolving the singularities of 7-orbifolds.

In Section 2, we review known examples of compact locally homogeneous spaces
admitting invariant closed G2-structures and known classification results for Lie alge-
bras admitting closed G2-structures. A classification is currently available for 7-
dimensional Lie algebras that are non-solvable [23] and for those having a non-trivial
center [11,26]. The classification of solvable Lie algebras with a trivial center admit-
ting closed G2-structures is still missing.

A geometric flow evolving closed G2-structures was introduced by Bryant in [8].
Self-similar solutions to this flow correspond to the so-called Laplacian solitons,
namely to closed G2-structures ' satisfying the condition �'' D �' C LX', for
some real constant � and some vector field X on M , where LX' denotes the Lie
derivative of ' with respect to X . In Section 3, after reviewing general properties of
the Laplacian flow and of Laplacian solitons, we present some recent results obtained
in [26], where left-invariant Laplacian solitons on Lie groups with a non-trivial center
were considered.

A Laplacian soliton ' is called expanding if � > 0. In this case, the G2-form '

has to be exact, i.e., ' D d˛, for some 2-form ˛ on M . By [42, 44], a non-parallel
Laplacian soliton on a compact 7-manifold must be expanding with LX' ¤ 0.

Currently, it is still not known whether exact G2-structures may occur on compact
7-manifolds. In Section 4, we review the results of [18, 22, 28], where this problem
was considered in the case when the compact 7-manifold M is the quotient of a 7-
dimensional simply connected Lie group G by a co-compact discrete subgroup � �

G, and the exact G2-structure on M is induced by a left-invariant one on G. In [18,28],
it was shown that there are no examples of this type whenever the group G satisfies
suitable extra assumptions. In the recent joint work with L. Martín Merchán [22], we
extended the previous results, showing that every compact manifold M D �nG as
above does not admit any exact G2-structure which is induced by a left-invariant one
on G.

2. Compact locally homogeneous examples and classification results
for Lie algebras

Let M be a 7-manifold endowed with a G2-structure ' and consider its automorphism
group

Aut.M; '/ WD
®
f 2 Diff.M/ j f �' D '

¯
:
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Note that Aut.M; '/ is a closed Lie subgroup of the full isometry group Isom.M; g'/

of the Riemannian manifold .M; g'/.
When M is compact, Aut.M; '/ is compact, too, and its Lie algebra is given by

aut.M; '/ D
®
X 2 X.M / j LX' D 0

¯
:

In particular, every X 2 aut.M; '/ is a Killing vector field for the metric g' ; namely
LXg' D 0.

When ' is parallel, g' is Ricci-flat, and it follows from the Bochner–Weitzenböck
technique that every Killing vector field must be parallel with respect to the Levi-
Civita connection of g' . Consequently, the Lie algebra aut.M; '/ is abelian. More-
over, its possible dimensions are 0; 1; 3 or 7, depending on Hol0.g'/ being equal to
G2, SU.3/, SU.2/ or ¹1º, respectively.

If the G2-structure ' is closed and non-parallel, namely � D d �' ¤ 0, then for
every X 2 aut.M;'/ the closed 2-form �X' is �'-harmonic, since �.�X'/D 1

2
�X' ^

' is also closed. There is then an injective map

X 2 aut.M; '/ 7! �X' 2 H 2.M/;

and thus dim aut.M; '/ � b2.M/, where b2.M/ D dim H 2.M/ D dim H 2
dR.M/ is

the second Betti number of M . Moreover, it is possible to prove the following.

Theorem 2.1 ([56]). Let M be a compact 7-manifold with a closed non-parallel G2-
structure '. Then, aut.M; '/ is abelian and its dimension is at most 6.

Therefore, the identity component of Aut.M; '/ is a compact abelian Lie group
whose dimension is bounded above by min¹6; b2.M/º. As a consequence, a compact
7-manifold M with a closed non-parallel G2-structure ' cannot be homogeneous;
namely neither Aut.M; '/ nor a subgroup thereof can act transitively on M . In con-
trast to this last result, it is possible to construct non-compact homogeneous examples;
see for instance [55].

The first example of compact 7-manifold M admitting closed G2-structures but
not admitting any parallel G2-structure was constructed by Fernández in [14]. In
this example, M D �nN is a compact nilmanifold; i.e., the compact quotient of a
7-dimensional simply connected nilpotent Lie group N by a co-compact discrete sub-
group (lattice) � . Moreover, the closed G2-structure ' on �nN considered in [14] is
induced by a left-invariant one on the Lie group N . In particular, the pair .�nN; '/

is a locally homogeneous space that is not globally homogeneous, as the transitive
action of N on �nN does not preserve the 3-form '. In other words, N is not a
subgroup of Aut.�nN; '/.

Remark. By Malcev’s criterion [49], a nilpotent Lie group admits lattices if and only
if its Lie algebra admits a basis with rational structure constants.
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We now consider the following problem.

Problem 2.2. Study the existence of invariant closed G2-structures on compact 7-
manifolds of the form �nG, where G is a 7-dimensional simply connected Lie group
and � � G is a co-compact discrete subgroup.

We recall that a G2-structure on �nG is said to be invariant if it is induced by a
left-invariant one on the Lie group G. Therefore, an invariant closed G2-structure on
�nG is completely determined by a G2-structure ' on the Lie algebra g of G which
is closed with respect to the Chevalley–Eilenberg differential d of g.

A 3-form ' on a 7-dimensional Lie algebra g defines a G2-structure if and only
if the symmetric bilinear map

b' W g � g ! ƒ7g�; b'.v; w/ D
1

6
�v' ^ �w' ^ '

satisfies the condition det.b'/1=9 ¤ 0 2 ƒ7g� and the symmetric bilinear form

g' WD det.b'/�1=9b' W g � g ! R

is positive definite; see e.g. [32]. In particular, for any choice of orientation on g, the
map

b' W g � g ! ƒ7g�
Š R

has to be positive or negative definite.
By [52], a simply connected Lie group G admits lattices only if its Lie algebra g

is unimodular; i.e., tr.adX / D 0, for every X 2 g.
In the sequel, the structure equations of an n-dimensional Lie algebra with

respect to a basis of covectors .e1; : : : ; en/ of g� will be specified by the n-tuple
.de1; : : : ; den/. Moreover, we will use the shortening eijk��� to denote the wedge
product of covectors ei ^ ej ^ ek ^ � � � .

In [23], we classified all unimodular non-solvable Lie algebras admitting closed
G2-structures, up to isomorphism, obtaining the following result.

Theorem 2.3 ([23]). A unimodular non-solvable Lie group G admits left-invariant
closed G2-structures if and only if its Lie algebra g is isomorphic to one of the fol-
lowing:

q1 D

�
� e23;�2e12; 2e13; 0;�e45;

1

2
e46

� e47;
1

2
e47

�
;

q2 D
�
� e23;�2e12; 2e13; 0;�e45;��e46; .1 C �/e47

�
; �1 < � � �

1

2
;

q3 D

�
� e23;�2e12; 2e13; 0;��e45;

�

2
e46

� e47; e46
C

�

2
e47

�
; � > 0;

q4 D .�e23;�2e12; 2e13;�e14
� e25

� e47; e15
� e34

� e57; 2e67; 0/:
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The first three Lie algebras in the previous list decompose as a product of the form
sl.2; R/ ˚ r, where the radical r is unimodular and centerless. The Lie algebra q4

is indecomposable and its Levi decomposition is given by q4 Š sl.2; R/ Ë r, where
r Š R Ë R3.

As a consequence of the previous result, a unimodular Lie algebra with a non-
trivial center admitting closed G2-structures must be solvable.

It is well known that every nilpotent Lie algebra is unimodular and has a non-
trivial center. Nilpotent Lie algebras admitting closed G2-structures were considered
in [11], where the following classification result was obtained.

Theorem 2.4 ([11]). A 7-dimensional nilpotent Lie algebra admits closed G2-struc-
tures if and only if it is isomorphic to one of the following:

n1 D .0; 0; 0; 0; 0; 0; 0/;

n2 D .0; 0; 0; 0; e12; e13; 0/;

n3 D .0; 0; 0; e12; e13; e23; 0/;

n4 D .0; 0; e12; 0; 0; e13
C e24; e15/;

n5 D .0; 0; e12; 0; 0; e13; e14
C e25/;

n6 D .0; 0; 0; e12; e13; e14; e15/;

n7 D .0; 0; 0; e12; e13; e14
C e23; e15/;

n8 D .0; 0; e12; e13; e23; e15
C e24; e16

C e34/;

n9 D .0; 0; e12; e13; e23; e15
C e24; e16

C e34
C e25/;

n10 D .0; 0; e12; 0; e13
C e24; e14; e46

C e34
C e15

C e23/;

n11 D .0; 0; e12; 0; e13; e24
C e23; e25

C e34
C e15

C e16
� 3e26/;

n12 D .0; 0; 0; e12; e23;�e13; 2e26
� 2e34

� 2e16
C 2e25/:

In [26], we dealt with the more general case of unimodular solvable non-nilpotent
Lie algebras with a non-trivial center admitting closed G2-structures. There, we ob-
tained a characterization that is based on the following observation. Let W be a 7-
dimensional vector space endowed with a G2-structure '. Choosing a non-zero vector
z 2 W and a complementary vector subspace V � W so that W Š V ˚ Rz, one can
write

' D z! ^ � C �;

where � 2 W � is the dual of z, z! 2 ƒ2V �, and � 2 ƒ3V �. The 3-form ' defines a
G2-structure on W if and only if it is definite; namely for each non-zero vector w 2W

the contraction �w' has rank six. Moreover, the 3-form ' on W is definite if and only
if the 3-form � on V is definite; i.e., for each non-zero vector v 2 V the contraction
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�v� has rank four, and z! is a taming form for the complex structure J induced by �

and one of the two orientations of V ; namely z!.v; J v/ > 0 for every non-zero vector
v 2 V .

Using this property, in [26] we proved that a Lie algebra g with a non-trivial
center endowed with a closed G2-structure ' must be the central extension of a 6-
dimensional Lie algebra h by means of a closed 2-form !0 2 ƒ2h�; namely g D

h ˚ Rz and its Lie bracket is given by

Œz; h� D 0; Œx; y� D �!0.x; y/z C Œx; y�h; 8x; y 2 h:

Moreover, ' D z! ^ � C �, where � is a 1-form on g satisfying the condition d� D!0,
� is a definite 3-form on h such that d� D �!0 ^ z!, and z! is a symplectic form on
h that tames the almost complex structure induced by � and a suitable orientation.
If the 2-form z! is symplectic, the 1-form � is a contact form on g and .g; �/ is
the contactization of .h; z!/; see [1]. In this last case, the Lie algebra g admits both a
closed G2-structure and a contact structure. This is reminiscent of the Boothby–Wang
construction in [5].

As a first consequence of this characterization, we determined all isomorphism
classes of nilpotent Lie algebras admitting closed G2-structures that arise as the con-
tactization of a 6-dimensional symplectic nilpotent Lie algebra .h; !0/, showing that
any such Lie algebra must be isomorphic to one of the following Lie algebras: n9,
n10, n11, n12.

Then, we proved that there exist eleven unimodular solvable non-nilpotent Lie
algebras with a non-trivial center admitting closed G2-structures, up to isomorphism,
achieving in this way the classification of all isomorphism classes of unimodular Lie
algebras with a non-trivial center admitting closed G2-structures.

Theorem 2.5 ([26]). Let g be a 7-dimensional unimodular solvable non-nilpotent
Lie algebra with a non-trivial center. Then, g admits closed G2-structures if and only
if it is isomorphic to one of the following:

s1 D .e23;�e36; e26; e26
� e56; e36

C e46; 0; 0/;

s2 D .e16
C e35;�e26

C e45; e36;�e46; 0; 0; 0/;

s3 D .�e16
C e25;�e15

� e26; e36
� e45; e35

C e46; 0; 0; 0/;

s4 D .0;�e13;�e12; 0;�e46;�e45; 0/;

s5 D .e15;�e25;�e35; e45; 0; 0; 0/;

s6 D .˛e15
C e25;�e15

C ˛e25;�˛e35
C e45;�e35

� ˛e45; 0; 0; 0/; ˛ > 0;

s7 D .e25;�e15; e45;�e35; 0; 0; 0/;

s8 D .e16
C e35;�e26

C e45; e36;�e46; 0; 0; e34/;



A. Fino and A. Raffero 740

s9 D .�e26
C e35; e16

C e45;�e46; e36; 0; 0; e34/;

s10 D .e23;�e36; e26; e26
�e56; e36

Ce46; 0; 2e16
Ce25

�e34
C
p

3e24
C
p

3e35/;

s11 D .e23;�e36; e26; e26
�e56; e36

Ce46; 0; 2e16
Ce25

�e34
�
p

3e24
�
p

3e35/:

In particular, g is the contactization of a symplectic Lie algebra if and only if it is
isomorphic either to s10 or to s11.

By the characterization above, we know that g has to be the central extension
of a unimodular symplectic Lie algebra h endowed with a closed (possibly non-
degenerate) 2-form !0 and a suitable pair of forms .z!; �/. Such an extension is
determined by any representative in the cohomology class Œ!0� 2 H 2.h/, and the
proof of the theorem follows after an inspection of all 6-dimensional unimodular
symplectic Lie algebras that exist up to isomorphism (cf. [20, 47]).

As far as we know, the following problem remains open.

Problem 2.6. Classify all 7-dimensional solvable Lie algebras with a trivial center
admitting closed G2-structures, up to isomorphism.

3. Laplacian solitons

A special class of closed G2-structures that has attracted a lot of attention in recent
years is given by Laplacian solitons. These G2-structures are closely related to the
self-similar solutions to the Laplacian flow for closed G2-structures, a geometric flow
that was introduced by Bryant in [8] as a tool to potentially deform a closed G2-
structure towards a parallel one.

Definition 3.1 ([8]). Let '0 be a closed G2-structure on a 7-manifold M . The Lapla-
cian flow starting at '0 is the initial value problem8̂̂<̂

:̂
@t'.t/ D �'.t/'.t/;

d'.t/ D 0;

'.0/ D '0;

where �'.t/ is the Hodge Laplacian of g'.t/.

The stationary points of the Laplacian flow are parallel G2-structures, even on
non-compact manifolds (see [43] for the explicit computation in the non-compact
case). If '.t/ is a family of closed G2-structures solving the Laplacian flow, then
'.t/ 2 Œ'0� 2 H 3

dR.M/; namely the de Rham cohomology class Œ'.t/� is constant in
t . Moreover, the evolution equation of the metric g'.t/ induced by '.t/ coincides with
the Ricci flow of g'.t/ up to lower order terms; namely

@tg'.t/ D �2 Ric.g'.t// C l:o:t:
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Remark. On a compact manifold M , the Laplacian flow is the gradient flow of
Hitchin’s volume functional

V W ' 2 Œ'0� 7!

Z
M

' ^ �':

This functional is monotonically increasing along the flow, its critical points are par-
allel G2-structures, and they are strict local maxima. See [6,43] and the arXiv version
of [31] for more details.

The short-time existence and uniqueness of the solution to the Laplacian flow on
a compact manifold were proved by Bryant and Xu in [6].

Theorem 3.2 ([6]). Let M be a compact 7-manifold with a closed G2-structure '0.
Then, the Laplacian flow starting at '0 has a unique solution defined for short time
t 2 Œ0; "/, with " depending on '0.

The geometric and analytic properties of the Laplacian flow have been deeply
investigated by Lotay and Wei in [44–46], and further results are available in [10,
21, 57]. Moreover, various lower-dimensional reductions of the flow were studied in
[21, 24, 27, 40]. Explicit examples of solutions to the flow are also known; see for
instance [17, 24, 41] for examples on simply connected Lie groups with left-invariant
closed G2-structures, and [33] for a cohomogeneity one example on the 7-torus.

A closed G2-structure ' on a 7-manifold M is said to be a Laplacian soliton if it
satisfies the equation

�'' D �' C LX';

for some real constant � and some vector field X on M . These G2-structures give rise
to self-similar solutions to the Laplacian flow, namely to solutions of the form '.t/ D

�.t/f �
t ', where �.t/ is a real-valued function of t , and ft 2 Diff.M/. Laplacian

solitons are expected to model finite time singularities of the Laplacian flow; see [43]
for more details.

Depending on the sign of �, one can introduce the following definitions.

Definition 3.3. A Laplacian soliton ' is called shrinking if � < 0, steady if � D 0

and expanding if � > 0.

Some restrictions to the existence of a Laplacian soliton on a compact manifold
are known.

Theorem 3.4 ([42, 44]). On a compact 7-manifold, a non-parallel Laplacian soliton
' must satisfy the equation �'' D �' C LX', with � > 0 and LX' ¤ 0. Moreover,
the only steady Laplacian solitons are given by parallel G2-structures.

Thus, a non-parallel Laplacian soliton on a compact manifold must be expanding.
The following problem is still open.
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Problem 3.5. Do there exist expanding Laplacian solitons on compact manifolds?

The non-compact setting is less restrictive, and various homogeneous examples
of steady, shrinking, and expanding solitons are known [3, 24, 25, 41, 53, 54]. More
recently, complete inhomogeneous examples of steady and shrinking solitons were
obtained in [3, 27]. These examples are of gradient type; i.e., X is a gradient vector
field.

By [41], any left-invariant Laplacian soliton ' on a Lie group G is semi-algebraic;
i.e., the vector field X is defined by a 1-parameter group of automorphisms induced
by a derivation D of the Lie algebra g. Some results on semi-algebraic solitons on
unimodular Lie algebras with a non-trivial center have been recently obtained in [26].
For instance, under a natural assumption on the derivation D, it is possible to relate
the constant � to a certain eigenvalue of D and to the norm of the torsion form � of
the semi-algebraic soliton '. Moreover, the following result can be proved.

Theorem 3.6 ([26]). Let g be a unimodular Lie algebra with a non-trivial center
z.g/ admitting a semi-algebraic soliton '. Then the following conditions hold:

(1) if g is the contactization of a symplectic Lie algebra, then � D j� j2 and thus
' must be expanding;

(2) if dim z.g/ D 2, then g has to be isomorphic to one of the following Lie
algebras: n1, n2, n3, n4, n5, n6, n7, s5, s6, s7.

If dim z.g/ D 1, some non-existence results for semi-algebraic solitons on certain
Lie algebras are also known [26], but a general result is still missing.

Remark. All known examples of Lie algebras admitting shrinking or steady Lapla-
cian solitons have a trivial center. It would be interesting to establish whether the
existence of these types of solitons forces the Lie algebra to be centerless.

4. Exact G2-structures
An expanding Laplacian soliton ' is an exact G2-structure. Indeed, since ' is closed
and �'' D d� , the condition �'' D �' C LX' can be rewritten as follows:

' D d

�
1

�
.� � �X'/

�
:

In the literature, all known examples of compact 7-manifolds M admitting closed
G2-structures, but not admitting parallel G2-structures, have b1.M/ > 0 and b3.M/ >

0; see [11, 14–16, 50, 51]. A longstanding open question concerns the existence of
closed G2-structures on compact 7-manifolds with b3.M/ D 0, such as the 7-sphere.
Notice that, in this case, any closed G2-structure would be defined by an exact 3-form.
A natural question is then the following.
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Problem 4.1. Does there exist a compact 7-manifold admitting exact G2-structures?

In this section, we consider this problem in the case when the manifold is the
compact quotient of a simply connected unimodular Lie group G by a lattice.

The following example constructed in [18] shows that exact G2-structures occur
on unimodular Lie algebras.

Example 4.2. Let s be the 7-dimensional unimodular solvable Lie algebra with
structure equations

de1
D �2e17; de2

D �4e27; de3
D

9

2
e37;

de4
D

5

2
e47

� e13; de5
D

1

2
e57

� 6e37
� e14

� e23;

de6
D �

3

2
e67

� 6e47
C 3e13

C e15
C e24; de7

D 0:

This Lie algebra is a semidirect product of the form s D R Ë n, where n is a codi-
mension one 4-step nilpotent ideal, and it satisfies the conditions b2.s/ D 0 D b3.s/.
Moreover, s admits the exact G2-structure

' D e127
C e347

C e567
C e135

� e146
� e236

� e245

D d

�
1

6
e12

C
23

7
e34

C 2e36
� 2e45

C e56

�
:

Consequently, the simply connected solvable Lie group S with Lie algebra s is en-
dowed with a left-invariant exact G2-structure obtained from ' via left multiplication.

As we already recalled, a Lie group G admitting lattices must be unimodular. In
the case of solvable Lie groups, a stronger necessary condition for the existence of
lattices is known; namely the group must be strongly unimodular (cf. [29, Prop. 3.3]).
We recall the definition here.

Definition 4.3 ([29]). A solvable Lie group G with Lie algebra g and nilradical n is
said to be strongly unimodular if tr.adX /jni =niC1 D 0, for every X 2 g, where n0 D n,
and ni D Œn; ni�1�, i � 1, is the i th term in the descending central series of n.

For instance, the simply connected solvable Lie group S in Example 4.2 is uni-
modular but not strongly unimodular, so it does not admit any compact quotient by a
lattice.

In [18], we showed that a strongly unimodular .2; 3/-trivial Lie algebra g, namely
with b2.g/ D b3.g/ D 0, does not admit any exact G2-structure. Therefore, there are
no compact examples of the form �nG admitting invariant exact G2-structures when-
ever the Lie algebra of G is .2; 3/-trivial. To prove this result, we used the property
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that a .2; 3/-trivial Lie algebra g is solvable and g D R Ë n, with n a codimension
one nilpotent ideal (see [48]), and we classified all 7-dimensional strongly unimodu-
lar .2; 3/-trivial Lie algebras.

One can then investigate what happens if either b3.g/ D 0 and b2.g/ ¤ 0 or if
no conditions on the Betti numbers of g are imposed. A first partial answer to this
problem was given in [28].

Theorem 4.4 ([28]). If the Lie algebra g of G has a codimension one nilpotent ideal,
then any compact quotient �nG does not admit any invariant exact G2-structure. If
in addition G is completely solvable, namely adX has only real eigenvalues for every
X 2 g, then �nG does not have any exact G2-structure at all.

In [22], we investigated the existence of invariant exact G2-structures on compact
quotients of Lie groups without introducing any extra assumption on the Lie algebra
g, and we proved the following result.

Theorem 4.5 ([22]). A potential compact 7-manifold M with an exact G2-structure
' cannot be of the form M D �nG, where G is a 7-dimensional simply connected Lie
group, � � G is a lattice, and the exact G2-structure ' on M is invariant.

To prove this result, we focused on 7-dimensional unimodular Lie algebras g and
we studied the non-solvable case and the solvable case separately. By Theorem 2.3,
there are four non-solvable unimodular Lie algebras admitting closed G2-structures,
up to isomorphism. The first three Lie algebras are decomposable, and by a direct
computation we showed that b' is never definite for every exact 3-form ' on each
one of them. The remaining Lie algebra q4 is indecomposable, and for this we proved
that the corresponding simply connected Lie group does not admit any lattice. In
the solvable case, g has a codimension one unimodular ideal s, and the existence
of a G2-structure ' on g allows one to consider the g'-orthogonal decomposition
g D s ˚ R, where R denotes the orthogonal complement of s. As a Lie algebra, g

is then a semidirect product of the form g D s ÌD R, for some derivation D of s.
Moreover, the G2-structure ' on g can be written as follows:

' D ! ^ � C �;

where � WD z[ is the metric dual of a unit vector z 2 R, and the pair .!; �/ defines
an SU.3/-structure on s. By imposing that ' is an exact non-degenerate 3-form and
using that g has to be strongly unimodular, one sees that no examples can be found
also in the solvable case.
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Computational/algorithmic thinking in school mathematics

Djordje M. Kadijevich

Abstract. As a result of the globalization and internationalization of the mathematics curricu-
lum, there is, for example, a rapidly developing interest in including computational/algorithmic
thinking (CT/AT) in mathematics education. After briefly presenting an emerging educational
context regarding the application of CT, this contribution first examines critical issues of CT/AT
concerning the notion of CT/AT, the state of CT/AT-oriented educational research, and the inte-
gration of CT/AT in the school mathematics curriculum. Then, it presents how CT might be
cultivated through data practice and, to this end, data modeling using interactive displays is
applied. The contribution ends with a summary of the issues examined and implications for
research and practice. This contribution is an extended version of a keynote talk delivered at the
symposium “Mathematics in Education.”

1. Introduction

Today, technology is increasingly used in all areas of work and life. To practice prob-
lem solving with technology successfully, apart from applying disciplinary reasoning
(i.e., reasoning applied in the particular discipline such as mathematics), students
need to apply computational thinking (CT), which, in short, denotes reasoning pro-
cesses used in solving problems when solutions are represented in forms that can
efficiently be performed by computers [63]. CT clearly involves some degree of algo-
rithmic thinking (AT) that is applied in the work with algorithms. This is because
algorithms are used to describe, in a precise manner, which steps (e.g., calculations,
visualizations, logical inferences) need to be taken and in what order, to solve the
problem under consideration (e.g., [9]).

Recent educational research evidences a growing number of researchers and edu-
cators who call for cultivating CT, not only in teaching computer science (informatics)
but also in teaching other subjects, such as mathematics and statistics. To illustrate
this state, the role of CT in three international projects is summarized below.

2020 Mathematics Subject Classification. Primary 97C70; Secondary 97B99, 97C30, 97K40,
97P99.
Keywords. Algorithmic thinking, computational thinking, data modeling, interactive displays,
school mathematics.
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� Students’ knowledge and skills regarding computer and information literacy have
been evaluated worldwide using International Computer and Information Literacy
Study carried out by the International Association for the Evaluation of Educa-
tional Achievement (httpsW//www.iea.nl/). In a 2018 study cycle, students’ CT
was assessed for the first time, using tasks that required them to analyze problems,
divide these into subproblems, and then find steps that lead to their solutions [18].

� The Organization for Economic Co-operation and Development (httpsW//www.
oecd.org/) has evaluated educational achievements in reading, mathematics, and
science worldwide using the well-known PISA study (Program for International
Student Assessment). In its current 2021 cycle [48], students’ CT is assessed for
the first time by including it in the steps of mathematical modeling that have
already been used in this study (e.g., in the step of employing, one may apply
technology to find exact/approximate solutions).

� The growing need for experts in the field of data science, i.e., for the so-called
data scientists (e.g., [34]), demands the development of skills required by such
a profession, including CT. Within an international project named International
Data Science in Schools Project (httpW//www.idssp.org/), the content of the high
school subject on data science has been developed, aiming at the integration of
computational and statistical thinking. The development of various resources to
support teachers in the realization of this subject is planned [23].

In the remaining text of this contribution, we first consider critical CT/AT issues
concerning their definition, state of research, and curricular integration. This con-
sideration is primarily based on a recently published encyclopedia entry [56]. Then
we present a way to cultivate CT through data practice to support the position that
other learning practices (not only programming, as is often assumed) could be used
to develop CT/AT. This presentation is mainly based on two recently published con-
tributions: a chapter in an edited book [31] and an entry in an encyclopedia [33]. The
contribution concludes with a summary of the issues examined and implications for
research and practice.

2. Critical CT/AT issues

This section comprises three subsections. The first clarifies the notion of CT/AT, the
second summarizes the current state of CT/AT-oriented educational research, whereas
the third examines the integration of CT/AT in the school mathematics curriculum.

2.1. Definition

As mentioned in Section 1, algorithms are used to describe, in a precise manner,
which steps (e.g., calculations, visualizations, logical inferences) need to be taken and

https://www.iea.nl/
https://www.oecd.org/
https://www.oecd.org/
http://www.idssp.org/
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in what order to solve the problem under consideration. It is usually assumed that the
notion of AT is used to describe reasoning processes applied in work with algorithms,
which require their user/developer to comprehend, test, evaluate, correct, improve, or
design them. CT clearly involves work with algorithms because to apply computers in
problem solving, problem solutions have to be represented in an algorithmic fashion
(“do this, do that, in the following order”) using forms that are recognized by the
computer programs applied.

CT is widely spread and increasingly used in educational research. As CT is based
on AT, it may be expected that most researchers agree on what the notion of CT
stands for. This is not true, however, because a widely accepted definition of CT is
lacking [45].

Various CT definitions have been proposed in the literature. To define CT, re-
searchers have referred to its main facets, practices, concepts, components, and di-
mensions, and examined them within the specific educational context. This context
ranged from specific subject area(s), such as programming or STEM (Science, Tech-
nology, Engineering, and Mathematics) education, to a general educational setting
such as K-12 subjects [56]. In a high school STEM context, for example, CT may
be applied in (and thus cultivated by) various learning practices, including data prac-
tices (e.g., preparing data and visualizing them), modeling and simulation practices
(e.g., building and using computational models), and computational problem-solving
practices (e.g., programming, troubleshooting) [61].

A recent review showed that to clarify the notion of CT, researchers have used and
combined entities of different sorts. Most of these entities refer to thinking processes
(e.g., abstraction), problem solving methods (e.g., simulation), standard implementa-
tion practice (e.g., debugging), and general skills (e.g., technology solution design)
[43]. To make progress in CT/AT-related research, researchers may focus on similar-
ities in proposed CT definitions rather than on their differences. CT entities are still
common in many of these definitions, such as decomposition (i.e., breaking a prob-
lem down into subproblems), abstraction (i.e., making general statements concerning
particular examples), and algorithms [55]. These three entities are highly relevant to
mathematics learning through programming because during this learning, CT makes
use of decomposition, abstraction, pattern recognition, and algorithmic thinking [22].

Regarding CT’s main entities (cornerstones), instead of decomposition, abstrac-
tion, pattern recognition, and algorithmic thinking, researchers may consider decom-
position, abstraction, algorithmization, and automation. There are two reasons for this
conceptual shift. Firstly, pattern recognition may be viewed as an instance of abstrac-
tion and generalization [53]. Secondly, CT relies on automation of calculations, i.e.,
using computers that apply certain computational models; a human may formulate a
problem solution, but this solution is primarily carried out by a computer not by a
human [39]. Although the term CT was coined more than forty years ago [49], it can
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Figure 1. Rule discovery.

be said that CT has been used for centuries to design computational procedures and
computing machines to automate them; to formalize a computing procedure, math-
ematicians have usually described its steps using an algorithm [12], which may also
deal with (frequently overlooked) model of computation (to be) applied [11].

If we accept the conceptual shift mentioned above, AT main entities (corner-
stones) might then be defined as decomposition, abstraction, and algorithmization,
and it is precisely the application of automation that separates AT from CT. This
means that AT is not equal to CT but is rather included in it [28, 32]. Interestingly,
mathematics educators/researchers may prefer to use AT even when technology is
applied, whereas computer science educators/researchers may prefer to use CT even
when technology is not used (see [6,42] for this preference), which may be the result
of distinguishing (securing) the position and role of AT/CT in their discipline.

Although the relevance of automation to CT cannot be questioned, its importance
to the development of mathematical thinking might be lower than that of other CT
cornerstones (decomposition, abstraction, algorithmization), which were also critical
learning activities in Pólya’s [50] approach to problem solving [13]. Such a state
that puts automation in the CT background was found in a recent study involving
twenty-five mathematics and computer science experts. They considered CT aspects
in mathematics courses and reached a much lower consensus for applying automation
than that for using decomposition, abstraction, and algorithmic thinking [36].

It might be that the role of automation is devaluated in general for a few rea-
sons but this position is questionable. By applying abstraction (e.g., through selecting
variables), we provide building blocks for automation to be carried out. However,
computer programs may not only provide means to support abstraction (e.g., through
the work with classes in object-oriented programming), but also they may do abstrac-
tion themselves as well. Think about a computer program that enables rule discovery
(e.g., [10]). Figure 1 presents facts that may be needed to support the discovery of the
well-known rule that says that a greater angle of a triangle is opposite a greater side.
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A similar bi-directional relationship holds true for decomposition. By applying
decomposition (through identifying substantial or relational sub-problems [52]), we
also provide building blocks for automation to be carried out. Regarding the contri-
bution of automation to decomposition, consider computer programs (the so-called
expert systems) that instruct their users which sub-problems to solve first and how to
use their solutions in order to solve the initial problems (e.g., [24,25]). A video avail-
able at httpsW//www.mi.sanu.ac.rs/~djkadij/FRA20.avi presents the work with such a
system concerning problems on multiple proportion (e.g., if three workers repaired 6
windows working 8 hours, how many workers are needed to repair 9 windows work-
ing 6 hours?)

2.2. State of research

The notion of CT originated from learning mathematics with technology, i.e., the
work with Turtle Geometry through LOGO programming more than forty years ago
[49]. Since 2000, due to the elaboration of CT done by a computer scientist Wing
[63, 64], this notion has been mostly used by computer science experts, who link
it with computer science topics, mostly programming [21]. As a result, during the
previous decade, CT has become a critical curricular component in computer science
(informatics) education in a number of countries worldwide (e.g., [59]).

Due to limited research on CT in mathematics learning, CT has not had a similar
status in mathematics education. Studies on linking CT and learning mathematics in
an explicit way are rather rare, and in doing so they mostly refer to areas that are tradi-
tionally connected to programming, including numbers and operations, algebra, and
geometry. There are, of course, other areas suitable for this linking, such as functions,
probability, and statistics. Functions might be explored through modeling, probability
through simulations, whereas statistics could better be understood through data anal-
ysis [21]. In solving problems, these areas are often combined. Data analysis may, for
example, reveal the most probable distribution of the values of a particular variable,
and this distribution might be used to build a mathematical model with simulation.

To pursue these explorations successfully, appropriate learning paths need to be
followed. Such paths have been proposed outside the mathematics education com-
munity, such as an understand-debug-extend path [8], or a use-modify-create path
[40], which, when combined, may result in the following path: use problem solutions
(to understand or evaluate them) – modify problem solutions (to debug or extend
them) – create problem solutions, i.e., develop problem solutions from scratch. Math-
ematics educators have proposed CT pedagogy for the work with various conceptual
or digital objects in the classroom [38]. The proposed pedagogy assumes that this
work makes use of four overlapping activities: unplugging (not using computers),
tinkering (dividing existing objects into their components and changing or modify-
ing these components), making (constructing new objects), and remixing (producing

https://www.mi.sanu.ac.rs/~djkadij/FRA20.avi
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new objects through the appropriation of existing objects or their components). As
an example of unplugging, consider sorting mathematical expressions. Tinkering is
applied when the content of a spreadsheet is modified, whereas remixing is prac-
ticed when a dashboard (a set of interactive reports) is created through combining
and modifying existing interactive reports. Although these four activities (unplug-
ging, tinkering, making, remixing) are present in the combined learning path men-
tioned above, this pedagogy can be applied without using computers, which opens
the question “What is actually being developed when computers are not used: CT or
(nevertheless) AT only?”

AT is a central activity in mathematics. Although AT is widely practiced in math-
ematics classes (though mostly implicitly), research on AT in mathematics learning
is also limited. There are, however, several studies whose valuable findings may con-
tribute to fostering both AT and mathematics learning. It was found, for example,
that procedural knowledge rich in connections could be developed through designing
and implementing procedures and algorithms [42]. AT may also be used to develop
conceptual knowledge representing a deeper conceptual understanding when a spe-
cial case of an algorithm in general, or a formula in particular, is considered in detail
to ask advanced questions about its result [1]. In other words, AT may contribute to
developing and relating procedural and conceptual mathematical knowledge. When
AT is supported by technology (i.e., when CT is practiced in our terms), it is important
to understand in what ways mathematics learning could be mediated by technology
[14], especially in developing and relating these two types of mathematical knowl-
edge (e.g., [2, 30]). To develop AT gradually, the following learning path (derived
from the combined path mentioned above) could be applied: consider formulas, pro-
cedures, and algorithms given (to understand or evaluate them) – modify formulas,
procedures, and algorithms given (to debug or extend them) – create formulas, proce-
dures, and algorithms, i.e., develop them from scratch. Furthermore, as in case with
CT, the activities comprising this path are not realized separately but, as a rule, over-
lap each other.

Although research on CT/AT in mathematics learning is limited at present, it
seems to be a growing research area as evidenced, for example, with the inclusion
of CT in PISA 2021 [48]. Also, in 2021, research and practice regarding CT/AT were
explicitly represented (probably for the first time) at an international congress on
mathematical education. In particular, at the 14th International Congress on Math-
ematical Education” (ICME-14, httpsW//www.icme14.org), there was a topic study
group titled “Teaching and learning of programming and algorithms” (TSG-14) and
a discussion group titled “Computational and algorithmic thinking, programming
and coding in the school mathematics curriculum: Sharing ideas and implications
for practice” (DG-1), whose participants emphasized the importance of fostering
CT/AT in mathematics education. This might be done through problem solving using

https://www.icme14.org
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a CT/AT lens described in this contribution. Such an approach would result in more
focused (and explicit!) instruction on AT and its core components (decomposition,
abstraction, algorithmization), possibly supported by particular computer programs.
As assumed by a model of mathematical thinking based on the triad abstraction-
modeling-problem solving [15], these components denote critical activities applied
in mathematics learning.

2.3. Curricular CT/AT integration

This subsection comprises three parts. The first explains the rationale for this cur-
ricular CT/AT integration, the second summarizes different models of integrations
applied worldwide, while the third examines various educational implications of this
integration.

2.3.1. Rationale for integration. More and more workplaces require specialized
knowledge based on the use of modern information-communication technology
(ICT); tens of millions of specialists with this knowledge are needed today world-
wide [4]. Among them data scientists are particularly important, whose competencies
(e.g., [3]) are essentially supported by CT/AT. An increasing demand to (better)
prepare students for a range of ICT-based jobs (with many future ones unknown
at present) clearly provides a good rationale for the inclusion of CT/AT in school
mathematics. There is another good rationale for this inclusion. Due to an increas-
ing reliance on computations in scientific inquiry (e.g., [17]), students should learn
how to solve problem with technology for the development of their mathematical
thinking. To this end, they should act as information-processing agents (e.g., [64]).
Although these two rationales clearly represent different perspectives (a societal one
vs a professional one [7]), they are not separated, obviously influencing each other.
Note that an extensive rationale for including CT in school mathematics (at least
for senior high school students) was elaborated in a discussion paper developed by
four mathematical and computer science academies in France by using the following
arguments: (1) CT is becoming increasingly embedded in university courses in math-
ematics; (2) certain areas such as graphs, combinatorics, and logic could be used to
establish creative interfaces between mathematics and computer science; (3) CT can
strengthen students’ mathematical development [19]. This paper also contains a num-
ber of examples that can be used to foster creative interfaces between mathematics
and informatics (computer science).

2.3.2. Models of integration. Various models of the integration of CT in the school
mathematics curriculum have been applied worldwide. Let us provide some exam-
ples. To integrate CT/AT across different school subjects, a cross-curriculum model
may be applied like in Finland. If this integration is realized within the curriculum of
an information technology (IT) subject, an IT model may be in use like in Australia



D. M. Kadijevich 756

and England. CT/AT may be integrated in mathematics and other school subjects
in several grades gradually, meaning that a gradualist model is being applied, like
in Japan where the focus is on programming thinking not on CT/AT. Finally, the
integration may be realized within a new school subject, like in France (subject
Algorithmique et Programmation in the middle grades taught by mathematics and
IT teachers) and Australia (subject Algorithmics in the senior high school). Clearly,
although CT/AT integration has often been realized within one or several existing
subjects, it could be done within new subjects as well. Although all these models
remain unexamined and are by and large untested, certain pros and cons can be iden-
tified. For example, the cross-curriculum model might be implemented in a shallow
way; in the IT model, teachers may focus more on using technology than on math-
ematical connections; the gradualist model allows time for teacher preparation, but
creating interfaces between school subjects with entrenched boundaries would be
challenging; a separate subject, especially if taught by mathematics and IT teachers,
can provide opportunities for exploring interfaces between mathematics and com-
puter science, but may, at a higher educational level, require rich prior experience
with CT/AT [56]. For a thorough evaluation, the curricular integration of CT may be
examined in terms of critical curricular components (e.g., goals, content, materials,
forms of teaching, student activities, assessment [47]). Note that a detailed integration
of CT in the school mathematics curriculum is planned in Australia. The new Aus-
tralian F-10 curriculum for mathematics (from Foundation to Year 10) calls for the
application of CT in problem solving, and gives examples and instructions of doing
that from Year 4 to Year 10 [5]. In this document, the phrase computational thinking
occurs almost forty times (e.g., Year 10: “apply computational thinking to model and
solve algebraic problems graphically or numerically”). In July 2021, the status of this
document was “waiting for approval.”

2.3.3. Educational implications. Due to technological advances, computational
mathematics has been increasingly used in research mathematics; there are great num-
ber of respectable research publications with the words computational and mathemat-
ics in their titles, whose authors, stated briefly, primarily examine various algorithms
carried out by computers. Such a reliance on computations has changed the prac-
tice of scientific inquiry in which “together with theory and experimentation, a third
pillar of scientific inquiry of complex systems has emerged in the form of a combina-
tion of modeling, simulation, optimization, and visualization” [17, p. 2]. Hence, the
development of CT/AT in mathematical classes should cultivate such an inquiry by
applying different kinds of practice, such as those already mentioned data practices
(e.g., preparing data and visualizing them), modeling and simulation practices (e.g.,
building and using computational models), and computational problem-solving prac-
tices (e.g., programming, troubleshooting) [61]. To this end, instruction may relate
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(integrate) content, technology, and pedagogy through, for example, identifying rel-
evant CT/AT practice(s) for each curriculum strand content descriptor and computer
tool available (e.g., [51]).

Although classroom practice should be different from disciplinary practice (in-
creasingly using computation to support experimentation, approximation, conjecture
testing, visualization, and other aspects of mathematicians’ work), the latter should
inform the former and help design it [41]. Hence, students may in general use CT/AT
to define (construct) objects, identify their possible properties (of algebraic, geomet-
ric, or other nature), and verify these properties. Furthermore, like mathematicians
who apply computation to find approximate solutions to intractable problems, stu-
dents may use CT/AT to approximate solutions of mathematical models that cannot
(easily) be solved in the context of school mathematics (e.g., [37]). Regarding the
use of algorithms in particular, it may, for example, support students to (1) unpack
concepts and procedures, (2) identify the mathematical structure of a given problem
and generalize its solution, (3) familiarize themselves with modeling, optimization,
operations research, and experimental mathematics, and (4) generate examples of
problems for which the given algorithm works or does not work [56].

Some readers may insist on the position that despite the fact that various CT/AT-
based practices might be applied to solve a variety of task types, CT/AT should
nevertheless be promoted primarily through programming. The following examples
may help these readers make this position less strict. In preparing these examples,
it was supposed that we apply CT whenever we recognize aspects of computations
in problem solving and deals with them in appropriate ways by using tools and tech-
niques from computers science [57]. Regarding this computing support, the examples
make us of Wolfram Alpha (httpsW//www.wolframalpha.com/). Of course, the use of
computing support in general may generate various learning challenges and appropri-
ate didactic treatments need to be applied to alleviate them (e.g., [20, 26]).

Example 1. To determine the greatest common divisor, one can simply use a built-
in command gcd, such as gcd(24,16) that yields 8. Another way to do this is to
apply a four-step-approach: (1) find the set of the first number divisors, (2) find the
set of the second number divisors, (3) determine the intersection of these sets, and
(4) find the maximum value in the intersection set (with each step supported by an
important algorithm). To combine these steps, clearly in an algorithmic fashion, use
the following commands: Max[intersect[divisors(24),divisors(16)]].

Example 2. To discover functional dependence that connects two arrays of natural
numbers, we may apply a curve fitting approach with perfect fit. The number of diag-
onals in a triangle, quadrilateral, and pentagon are 0, 2, and 5, respectively. If the
number pairs .3; 0/, .4; 2/, .5; 5/ are fitted with a quadratic model, the following
dependence is found 0:5x2 � 1:5x, and this fit is perfect because R2 D 1. When this

https://www.wolframalpha.com/
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dependence is factorized, the result is 0:5.x � 3/x, directing students what key ele-
ments to consider: the role of x is clear, but why 0:5 and x � 3 are included? Relevant
commands are quadratic fit¹3; 0º,¹4; 2º,¹5; 5º and factor.0:5x2 � 1:5/.

As AT is critical to the processes of conjecturing and proving, the development
of algorithms may be connected with these processes. There are some areas of dis-
crete mathematics (e.g., combinatorics, graph theory) that are particularly suitable
for fostering creative interfaces between mathematics and computer science through
exploring relations between algorithm, proof, logic, and programming [44]. In this
exploration, different conceptions of algorithm might emerge: an algorithm is implic-
itly included in the proof of a theorem (if the activity is from a problem to a theorem
to a proof, or, in short, problem-theorem-proof); a proof of the correctness of an algo-
rithm is given (problem-algorithm-proof); an algorithm is given as a computer pro-
gram whose validity is established in some way (problem-program-validation) [16].

Although the exploration sketched in the previous paragraph may only be suit-
able for senior high school students, an algorithm should be considered not only as
a useful tool that can solve certain problems, but also as a separate entity that can be
investigated in itself. For example, apart from applying the algorithm for determining
the greatest common divisors of two natural numbers when we use this algorithm as a
tool, we may examine its applicability to whole or other numbers (or its complexity in
terms of the number of operations needed to complete it) when we treat the algorithm
as a separate entity (e.g, [16]). Such an approach calls for considering the so-called
process-object nature of algorithm, whenever this approach is appropriate and acces-
sible to students. This dual nature also characterizes other mathematical entities, such
as relations and functions (e.g., [54]).

3. Cultivating CT through data practice

3.1. Preliminaries

As mentioned in Section 2.2, CT has mostly been cultivated through programming
(e.g., [21]), which is hence often assumed as a dominant learning practice that would
support CT development. However, to this end, other learning practices might be
applied as well (e.g., [61]). Among these are data practices (e.g., data preparation
and visualization) that may activate different CT components, such as abstraction,
decomposition, and pattern recognition.

The relevance of data practices to developing CT is, for example, recognized by
a CT definition that refers to core CT facets, assuming that these facets might be:
abstraction (data collection and analysis, pattern recognition, modeling), decompo-
sition, algorithms (algorithm design, parallelism, efficiency, automation), iteration,



Computational/algorithmic thinking in school mathematics 759

debugging, and generalization [55]. Bearing in mind this relevance, CT assessment
may also include some aspects of data practice. This was, for example, done in a large
worldwide assessment named ICILS 2018 (International Computer and Information
Literacy Study completed in 2018), which used tasks that called for programming as
well as structuring and manipulating datasets [18].

As mentioned in Section 2.3.1, tens of millions of workers with specialized ICT
knowledge are needed worldwide today, among whom data scientists are particularly
important, applying various (often complex) techniques from mathematics, statistics,
and computer science to obtain useful information from (big) datasets. It is reasonable
to expect that in their future jobs most students would have to work with data as a
foundation for their claims and actions regarding various professional issues, and, to
this end, they may primarily use some simple data science techniques. Among these
is exploratory data analysis that is applied to summarize the main characteristics of
the dataset analyzed by using data visualization methods, primarily charts, aiming at
discovering what the data can tell us not at formal data modeling or hypothesis testing
[58]. This expectation regarding such use of exploratory data analysis is supported by
the increasing application of dashboards (e.g., [62]), which are particularly suitable
tools for this kind of analysis. In a specialized computer environment, building charts
and dashboards (combining various types of charts and summary measures) can be
(relatively effortlessly) done visually using the drag-and-drop approach.

Dashboards are interactive displays that are composed of two or more interac-
tive reports, mostly charts, whose content updates automatically whenever there are
changes in data or variables considered [33]. Dashboards are today used in various
industries and areas (for a gallery of dashboards, visit httpsW//www.yellowfinbi.com/
analytics-best-practice/dashboard-gallery). Among them is learning analytics in edu-
cation (e.g., [60]), where such interactive displays summarize the values of various
learning indicators. Dashboards may also be used in education to support the work
with data in various school subjects and university courses. If this work is practiced
within a suitable learning cycle (e.g., a mathematical modeling cycle [29]), it would
not only support the understanding of this cycle and the realization of its values in
capturing the main features of disciplinary thinking (i.e., thinking applied in the par-
ticular discipline), but also support the development of important (disciplinary or
general) notions, such as variable and functional dependence [33]. In other words,
although interactive displays are primarily a means for visualizing data, they can
also be a learning tool if used within an appropriate learning cycle [31]. Note that a
growing demand for the inclusion of data science in secondary education (e.g., [23])
may, at introductory levels, profit from the work with interactive displays, whose
visualizations (although mostly based on simple mathematical models such as fre-
quencies, sums, and means) can support the discovery of useful (interesting) patterns,
trends, effects, and interactions in the data examined. To find an interesting inter-

https://www.yellowfinbi.com/analytics-best-practice/dashboard-gallery
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action in a tourism dataset, the reader may examine the visualizations available at
httpsW//www.mi.sanu.ac.rs/~djkadij/Dashboard.htm.

3.2. Data modeling using dashboards

The key activities in data modeling using dashboards (key stages) may be Asking
questions, Preparing data, Visualizing data, Answering questions, Validating model-
ing, and Recommending changes. Apart from Visualizing data, the use of dashboards
would support other data modeling steps, especially Answering questions and Val-
idating modeling. In Answering questions, students have to match patterns, trends,
effects, and interactions found with the questions posed, whereas in Validating mod-
eling they might improve the modeling applied by using other variables or charts,
or even other data or another dashboard. When datasets to model are not given to
students, the use of dashboards may also support (though not primarily) the stage of
Preparing data, because they may signal some oddities in data (e.g., outliers, missing
or inappropriate data) that should be addressed before the stage of Visualizing data is
applied. In most cases, datasets to model should be given to data modelers, especially
novices, because removing these oddities is a very challenging task, even for data sci-
entists who usually spend most of their time preparing data, i.e., collecting, cleaning,
and organizing data [29].

Data modeling using dashboards clearly calls for abstraction (e.g., in using vari-
ables), decomposition (e.g., in deciding what charts to include in a dashboard, or what
variables to use in a chart and in what role), and pattern recognition (e.g., in recog-
nizing an effect or a trend in data). Apart from decomposition, this modeling would
promote other computational strategies, such as top-down and bottom-up approaches
[31], recalling that these approaches are relevant to mathematical problem solving
proposed Pólya’s [50]. A top-down approach is applied when the modeler goes from a
dashboard as a whole to its individual reports as parts, whereas a bottom-up approach
is used when he/she starts from some individual reports and combine them to cre-
ate a dashboard; instead of a single approach, their combination is often applied.
In addition, building a dashboard may make use of another computational strategy
called rapid prototyping, which denotes an iterative process through which the mod-
eler incrementally presents what the dashboard under development will look like in
order to get feedback and validation from peers and future users [31]. This strategy
is, in general, relevant to mathematical modeling whenever models of increased com-
plexity are developed in an incremental fashion. To consider a way to promote these
computational strategies, the reader may consider the development of a dashboard
whose content is presented in Figure 2, but it should be kept in mind that only a
basic understanding of these strategies may be promoted because the applied dash-
board development (as is the case most often) calls for simple system engineering

https://www.mi.sanu.ac.rs/~djkadij/Dashboard.htm
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Figure 2. Assessment dashboard.

[31]. Note that although the three computational strategies, especially rapid prototyp-
ing, have been under-represented in CT-related research, there is a CT facet named
iteration [55] under which these strategies might be discussed.

As the previous consideration shows, the presented work with data offers a num-
ber of learning opportunities: cultivating a modeling (or a data inquiry) cycle; sup-
porting the development of important disciplinary notions (e.g., variable and func-
tional dependence); promoting a basic understanding of CT strategies, such as decom-
position as well as rapid prototyping, and top-down and bottom-up approaches. To
be practiced skillfully, this work requires the modeler to demonstrate a range of
skills, such as choosing relations to examine, identifying dependent and independent
variables (Asking questions), selecting charts and measure to use (Visualizing data),
recognizing regularities in charts produced, and connecting regularities to questions
asked (Answering questions) [31]. A number of challenges would be faced in the
development and use of these skills. Among them are the following: using appropri-
ate sets of variables to answer questions; selecting appropriate charts and measures;
considering context properly to interpret findings. There are several possible reasons
for these challenges, such as complexity of this data practice when considered as a
design task; limited experience in using various charts and measures; and complex
interactions of knowledge from different domains [27, 29]. To alleviate these and
other challenges, hints and supports (the so-called scaffolds) need to be provided to
modelers, which would hopefully enable them to complete successfully, on their own,
data modeling using dashboards. These scaffolds may connect key stages using their
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underlying skills (e.g., variables selection with charts production; charts production
with regularities recognition) and link contextual/conceptual and technology-related
issues (e.g., between questions to ask and chart types to use, visualizations produced
and questions to answer, or modeling features to validate and technology components
used) [29, 31].

Data modeling using dashboards should be practiced within a rich computational
environment that supports various CT assets, such as ZOHO Analytics (httpsW//www.
zoho.com/analytics/). Bearing in mind the learning paths examined in Section 2.2,
to support (and empower) this practice, the following learning path may be applied:
examine dashboards to understand or evaluate data modeling (DM) completed – mod-
ify dashboards to debug or extend DM done – create dashboards to perform DM
by yourself. To assess the outcome of data modeling using dashboards, the instruc-
tor may examine students’ portfolios about dashboards evaluated, improved, or fully
developed (done individually or through a cooperative work), focusing on success
of pursuing each key DM stage and connecting these stages in terms of major skills
underlying them and their links [31].

Although the presentation of data modeling using dashboards is linked to foster-
ing CT in a mathematical context, this modeling may also contribute to fostering CT
in other school subjects if embedded in another disciplinary context using an appro-
priate learning cycle (e.g., in statistics using a data inquiry cycle). Such a data practice
is also in accord with a CT pedagogy regarding a range of disciplines that calls for
focusing on interactive visualizations or simulations, modeling and troubleshooting
of datasets, and searching for patterns in large datasets [46]. Regarding the work with
data in general, this focus aligns with an already underlined today’s practice of sci-
entific inquiry, whose three pillars are theory, experimentation, and a combination of
modeling, simulation, optimization, and visualization [17].

4. Closing remarks

After briefly presenting an emerging educational context regarding the application of
CT, this contribution first examined critical issues of CT/AT concerning the notion
of CT/AT, the state of CT/AT-oriented educational research, and the integration of
CT/AT in the school mathematics curriculum. Although a widely accepted defini-
tion of CT is lacking, it was argued that CT cornerstones might be decomposition,
abstraction, algorithmization, and automation, where the first three might comprise
AT. The examination of the state of CT/AT-oriented educational research showed
that research on CT/AT in mathematics learning is limited but growing, being con-
cerned with exploring various areas through different activities to foster this learning,
especially developing and relating procedural and conceptual mathematical knowl-

https://www.zoho.com/analytics/
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edge. Regarding the integration of CT/AT in the school mathematics curriculum, the
rationale for doing that is supported by both societal and professional needs. Vari-
ous models have been used (within one or several existing school subjects or within
new school subjects), but they remain unexamined and are by and large untested.
To develop CT/AT, instruction should, whenever appropriate and accessible to stu-
dents, be based on applying a range of activities designed in accord with disciplinary
practice (increasingly empowered by computations), exploring interfaces between
mathematics and computer science, and considering the dual nature of algorithm (a
tool to apply as well a separate entity to investigate). In doing that, suitable learn-
ing paths may be followed, such as use problem solutions (to understand or evaluate
them) – modify problem solutions (to debug or extend them) – create problem solu-
tions, i.e., develop problem solutions from scratch.

After the examination of these critical CT/AT issues concerning their notion,
examination in educational research, and integration in the school mathematics cur-
riculum, this contribution presented a way to cultivate CT through data practice. This
practice, which has been increasingly advocated in educational research, is based on
using sets of interactive reports called dashboards. The rationale for using such inter-
active displays is supported by an expectation that in their future jobs, most students
would have to work with data as a foundation for their claims and actions regard-
ing various professional issues, and to this end, they may primarily apply exploratory
data analysis with dashboards, because on one hand, this analysis, as an introduc-
tory data science technique, could be accessible to most students, and, on the other,
dashboards, which have been increasingly applied in various industries and areas, are
particularly suitable tools for this kind of analysis. After describing the key stages in
data modeling with dashboards, CT components involved in this modeling are dis-
cussed (e.g., pattern recognition), especially computational strategies (e.g., top-down
approach), which, despite their educational relevance, have been under-represented
in CT-related research. Next, various learning issues concerning the proposed data
modeling with dashboards were discussed, including learning opportunities, under-
lying skills required, expected challenges in practicing this modeling and possible
reasons for these challenges, scaffolds that would alleviate these challenges, as well
as a learning path that may be followed in practicing this modeling. Finally, it was
considered whether the advocated data practice is aligned, in a pedagogical way, with
today’s practice of scientific inquiry. All in all, the presentation showed that data
modeling using dashboards may be a promising way to cultivate CT, provided that
the discussed learning issues are adequately treated.

The content of this contribution has evidenced that more research is needed on
linking CT with mathematics learning. Although it showed how CT could be devel-
oped through exploring the area of statistics using exploratory data analysis with
dashboards, this is just an initial research step in this research direction. Further
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research may be (more) concerned with, for example, exploring various areas (e.g.,
probability) through different activities (e,g., simulation), designing these activities in
accord with disciplinary practice (e.g., experimenting and approximation), exploring
interfaces between mathematics and computer science (e.g., computational geome-
try), and considering algorithm in (more) explicit and detailed way (e.g., its dual
nature). The outcomes of such a directed research would considerably inform instruc-
tion and help designing it.

Bearing in mind that the models of curricular CT integration remain largely unex-
amined, research is also needed on this integration, and, to this end, research could
apply a detailed evaluation, which may, as already suggested, examine critical cur-
ricular components, such as goals, content, materials, forms of teaching, student
activities, and assessment. As materials considerably influence teaching, learning,
and assessment, applying appropriate materials, developed in lines that align with the
proposed goals and content, seems to be the most critical component not only for this
integration, but also for teacher education and further professional development.

To summarize, as there is a long-standing reliance on algorithms in mathemat-
ics, CT/AT should be cultivated in mathematics education, especially today with a
growing application of computer tools in almost every areas of our work and life.
Although thinking supported by technology has been named differently in the liter-
ature – computational, algorithmic, or even programming thinking – and defined in
a number of ways, the focus in mathematics education should be on cultivating the
aspects of mathematical thinking using tools and techniques from computer science.
If this cultivation, supported by various suitable materials describing CT/AT based
activities, is realized in appropriate ways in mathematical classes, the integration of
CT/AT in the school curriculum would be a success. Undoubtedly, such an integra-
tion calls for international cooperation and sharing among educators and researchers
at all educational levels. In doing that, special care may be taken about the following
issues: how to define thinking with technology in a precise way; how to cultivate this
thinking accordingly, focusing on the development of mathematical reasoning; and
how to assess its contribution to this development in an adequate way [35].

Acknowledgments. The author dedicates the contribution to his son Aleksandar.

Funding. This contribution resulted from the author’s research funded by the Min-
istry of Education, Science and Technological Development of the Republic of Serbia
(Contract No. 451-03-68/2022-14/200018).



Computational/algorithmic thinking in school mathematics 765

References

[1] S. Abramovich, Mathematical problem posing as a link between algorithmic thinking and
conceptual knowledge. Teach. Math. 18 (2015), no. 2, 45–60

[2] M. Artigue, The future of teaching and learning mathematics with digital technologies. In
Mathematics Education and Technology – Rethinking the Terrain. The 17th ICMI Study,
edited by C. Hoyles and J. B. Lagrange, pp. 463–476, Springer, New York, 2010

[3] Asia Pacific Economic Cooperation (APEC), Data science and analytics skills short-
age: Equipping the APEC workforce with the competencies demanded by employers.
APEC, Singapore, 2017, https://www.apec.org/Publications/2017/11/Data-Science-and-
Analytics-Skills-Shortage

[4] Asia Pacific Economic Cooperation (APEC), Project DARE (Data Analytics Raising
Employment). APEC, Singapore, 2018, httpsW//www.apec.org/Press/News-Releases/2018/
1109_dare

[5] Australian Curriculum, Assessment and Reporting Authority (ACARA), Australian cur-
riculum: Mathematics – All elements F–10 consultation curriculum. NSW, Sydney,
2021, httpsW//www.australiancurriculum.edu.au/media/7044/mathematics_all_elements_
f-10.pdf

[6] T. Bell and J. Vahrenhold, CS unplugged—How is it used, and does it work? In Adventures
Between Lower Bounds and Higher Altitudes, edited by H. J. Böckenhauer, D. Komm, and
W. Unger, pp. 497–521, Lect. Notes Comput. Sci. 11011, Springer, Cham, 2018

[7] S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari, and K. Engelhardt, Develop-
ing computational thinking in compulsory education – Implications for policy and
practice. Joint Research Centre, European Commission, European Union, Luxemburg,
2016, httpsW//publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_
computhinkreport.pdf

[8] K. Brennan and M. Resnick, New frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012 Annual Meeting of the American
Educational Research Association (Vancouver, Canada), 2012

[9] C. Clapham and J. Nicholson, The Concise Oxford Dictionary of Mathematics. 5th edn.,
Oxford University Press, Oxford, 2014 Zbl 1290.00009 MR 3186178

[10] L. de Raedt and M. Bruynooghe, Interactive concept-learning and constructive induction
by analogy. Mach. Learn. 8 (1992), no. 2, 107–150 Zbl 0751.68051

[11] P. J. Denning, Remaining trouble spots with computational thinking. Commun. ACM 60
(2017), no. 6, 33–39

[12] P. J. Denning and M. Tedre, Computational Thinking. MIT Press, Cambridge, MA, 2019

[13] A. A. DiSessa, Computational literacy and “the big picture” concerning computers in
mathematics education. Math. Think. Learn. 20 (2018), no. 1, 3–31

[14] P. Drijvers, Tools and taxonomies: a response to Hoyles. Res. Math. Edu. 20 (2018), no. 3,
229–235

https://www.apec.org/Publications/2017/11/Data-Science-and-Analytics-Skills-Shortage
https://www.apec.org/Publications/2017/11/Data-Science-and-Analyt\protect \discretionary {\char \hyphenchar \font }{}{}ics-Skills-Shortage
https://www.apec.org/Press/News-Releases/2018/1109_dare
https://www.apec.org/Press/News-Releases/2018/1109_dare
https://www.australiancurriculum.edu.au/media/7044/mathematics_all_elements_f-10.pdf
https://www.australiancurriculum.edu.au/media/7044/mathematics_all_elements_f-10.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
https://zbmath.org/?q=an:1290.00009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3186178
https://zbmath.org/?q=an:0751.68051&format=complete


D. M. Kadijevich 766

[15] P. Drijvers, H. Kodde-Buitenhuis, and M. Doorman, Assessing mathematical thinking as
part of curriculum reform in the Netherlands. Educ. Stud. Math. 102 (2019), 435–456

[16] V. Durand-Guerrier, A. Meyer, and S. Modeste, Didactical issues at the interface of math-
ematics and computer science. In Proof Technology in Mathematics Research and Teach-
ing, edited by G. Hanna, D. Reid, and M. de Villiers, pp. 115–138, Math. Educ. Digit. Era
14, Springer, Cham, 2019

[17] European Mathematical Society (EMS), Position paper on the European Commission’s
contributions to European research. 2011

[18] J. Fraillon, J. Ainley, W. Schulz, D. Duckworth, and T. Friedman, IEA International Com-
puter and Information Literacy Study 2018 Assessment Framework. Springer, Cham, 2019

[19] Groupe de travail des sociétés savantes de mathématiques et d’informatique, Proposi-
tions pour le futur programme de mathématiques du lycée. Sociétéinformatique de France,
Grenoble, France, 2016

[20] D. Guin, K. Ruthven, and L. Trouche (eds.), The Didactical Challenge of Symbolic Calcu-
lators: Turning a Computational Device into a Mathematical Instrument. Springer, New
York, 2005

[21] D. Hickmott, E. Prieto-Rodriguez, and K. Holmes, A scoping review of studies on com-
putational thinking in K-12 mathematics classrooms. Digit. Exp. Math. Educ. 4 (2018),
no. 1, 48–69

[22] C. Hoyles and R. Noss, Revisiting programming to enhance mathematics learning. 2015,
paper presented at Math + Coding Symposium, Western University, London, Canada

[23] International Data Science in Schools Project (IDSSP) Curriculum Team, Curricu-
lum frameworks for introductory data science. 2019, httpW//www.idssp.org/files/IDSSP_
Frameworks_1.0.pdf

[24] D. M. Kadijevich, Can mathematics students be successful knowledge engineers? J. Inter-
act. Learn. Res. 9 (1998), no. 3–4, 235–248

[25] D. M. Kadijevich, An approach to learning mathematics through knowledge engineering.
J. Comput. Assist. Learn. 15 (1999), no. 4, 291–301

[26] D. M. Kadijevich, Neglected critical issues of effective CAS utilization. J. Symb. Comput.
61–62 (2014), 85–99 Zbl 1284.97033

[27] D. M. Kadijevich, Data modelling with dashbards: Opportunities and challenges. In Pro-
moting Understanding of Statistics About Society. Proceedings of the Roundtable Con-
ference of the International Association of Statistics Education (IASE), Berlin, Germany,
July 2016, edited by J. Engel, ISI/IASE, The Haag, the Netherlands, 2016

[28] D. M. Kadijevich, A cycle of computational thinking. In Proceedings of the 9th Inter-
national Conference on e-Learning, edited by B. Trebinjac and S. Jovanović, pp. 75–77,
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Graph and hypergraph colouring via nibble methods: A survey

Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and
Deryk Osthus

Abstract. This paper provides a survey of methods, results, and open problems on graph and
hypergraph colourings, with a particular emphasis on semi-random “nibble” methods. We also
give a detailed sketch of some aspects of the recent proof of the Erdős–Faber–Lovász conjec-
ture.

1. Introduction

The theory of graph and hypergraph colouring is fundamental to combinatorics, with
numerous applications to other areas of combinatorics and beyond. It has also given
rise to the introduction and development of techniques that have had a major impact
far beyond the settings for which they were initially developed. In this paper, we
survey results, open problems, and methods in the area, with a focus on one such
technique called the “Rödl nibble” or the “semi-random method.” We also provide
a detailed outline of some ideas involved in the authors’ recent proof of the Erdős–
Faber–Lovász conjecture [96], with the Rödl nibble playing an important role.

1.1. Background

A hypergraph H is a pair H D .V; E/, where V is a set of elements called ver-
tices and E � 2V is a set of subsets of V called edges. For convenience, we often
identify a hypergraph H with its edge set and use V.H / to denote its vertex set. A
proper edge-colouring of a hypergraph H is an assignment of colours to the edges
of H such that no two edges of the same colour share a vertex, and a proper vertex-
colouring (often simply called a proper colouring) of H is an assignment of colours
to the vertices of H such that no edge contains vertices all of the same colour. The
chromatic index of H , denoted by �0.H /, is the minimum number of colours used by
a proper edge-colouring of H , and the chromatic number, denoted by �.H /, is the
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Keywords. Graph colouring, hypergraph colouring, probabilistic method, nibble,
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minimum number of colours used by a proper vertex-colouring of H . A hypergraph
H is k-uniform if every edge e 2 H satisfies jej D k, and a graph is a 2-uniform
hypergraph. A matching M � H in a hypergraph H is a set of disjoint edges, and an
independent set I � V.H / in H is a set of vertices that contains no edge of H (as a
subset). The maximum size of an independent set in H , denoted by ˛.H /, is called
the independence number of H .

Bounding the chromatic index of a graph or hypergraph is closely related to the
problem of finding large matchings (note that the colour classes of a proper edge-
colouring form a matching). Matching theory is a classical subject in the study of
graphs and is well developed, dating back to the work of König [111], Egerváry
[47], and Hall [75] in the 1930s. Tutte’s theorem [140] provides a characterization
of graphs that contain a perfect matching, and Edmonds’ [46] “blossom algorithm”
finds a maximum matching in a graph in polynomial time. In contrast, there is no
polynomial-time algorithm known to compute the independence number or chromatic
number of a graph, or the size of a largest matching in a k-uniform hypergraph for
k � 3. Indeed, these problems were all among Karp’s [100] original twenty-one NP-
complete problems. It is also NP-complete to compute the chromatic index �0.G/

of a graph G [76]. However, every graph G trivially satisfies �0.G/ � �.G/, where
�.G/ WD maxv2V.G/ dG.v/ and dG.v/ WD j¹e 2 E.G/ W e 3 vºj, and Vizing’s theorem
[142] implies that �0.G/ � �.G/ C 1 (�.G/ is called the maximum degree of G,
dG.v/ is the degree of v in G, and these definitions, as well as the lower bound,
extend naturally to hypergraphs). More generally, it is natural to seek similar bounds
for hypergraphs.

Consequently, there is a rich literature and active research on proving bounds on
the chromatic index and chromatic number of hypergraphs. As we will describe in
this survey, the “Rödl nibble” method has played a major role in the growth of this
field. Though this survey is mainly concerned with hypergraphs (rather than graphs),
several results and colouring problems for hypergraphs arise naturally from the graph
case, so we also provide the relevant context on the latter. Similarly, we provide back-
ground on the study of matchings and independent sets in graphs and hypergraphs.
Some of the earlier developments in the area are described in the surveys of Füredi
[63] and Kahn [86,90]. Some aspects are also covered in the book of Molloy and Reed
[121] on graph colouring with the probabilistic method. For some recent surveys on
perfect matchings in hypergraphs, see [104, 113, 126, 146].

1.2. The Rödl nibble

In its basic form, the Rödl nibble is a probabilistic approach for constructing a com-
binatorial substructure, such as a matching or independent set, within some host
structure (such as a hypergraph) which exhibits some weak quasirandom properties.
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The substructure is built bit by bit by iterating a step called a “nibble,” in which ele-
ments of the host structure are selected randomly. This approach enabled Rödl [125]
to prove the conjecture of Erdős and Hanani [50] on the existence of approximate
combinatorial designs (see Theorem 2.1) in 1985.

Preceding Rödl’s [125] work, Ajtai, Komlós, and Szemerédi [5] showed in 1981
that a similar approach produces large independent sets in graphs with bounded aver-
age degree and no triangles (i.e., three pairwise adjacent vertices). Ultimately, the
work of Rödl [125] and of Ajtai, Komlós, and Szemerédi [5] led to numerous impor-
tant developments in the theory of hypergraph colouring. Frankl and Rödl [58] and
Pippenger (unpublished) showed that Rödl’s “nibble” method produces nearly perfect
matchings in hypergraphs under much more general conditions than those considered
in [125]. In particular, every regular uniform hypergraph with comparatively small
codegree has a nearly perfect matching; Pippenger and Spencer [122], coining the
term “nibble,” generalized this further in 1989 by showing that D-regular hyper-
graphs have chromatic index tending to D as D ! 1, as long as the codegree is
o.D/. (Here a hypergraph H is D-regular if all of its vertices have degree D and
regular if it is D-regular for some D, and the codegree of H is the maximum of the
codegrees of all the pairs of distinct vertices of H , where the codegree of distinct
vertices u; v 2 V.H / is j¹e 2 H W e � ¹u; vººj.) The Pippenger–Spencer theorem
was further generalized to list edge-colourings by Kahn [87] in 1996. Meanwhile,
the Ajtai–Komlós–Szemerédi theorem [5] was generalized in 1982 by Ajtai, Komlós,
Pintz, Spencer, and Szemerédi [3], who showed that the bound also holds for uniform
hypergraphs, and also by Johansson [82] in 1996, who proved a bound on the chro-
matic number of triangle-free graphs of bounded maximum degree. In 2013, Frieze
and Mubayi [60] showed that both of these results have a common generalization in
the setting of vertex-colouring hypergraphs.

These two threads of research, of edge-colouring and of vertex-colouring with the
“nibble” method, have developed somewhat in parallel, sometimes intertwining. They
also both converge in the authors’ [96] recent resolution of the Erdős–Faber–Lovász
conjecture. Indeed, in [96], we apply generalizations of the Pippenger–Spencer theo-
rem [122] as well as results inspired by Johansson’s theorem [82] on vertex-colouring
“locally sparse” graphs.

1.3. Organization of the paper

This paper is organized as follows. In Section 2, we survey results on hypergraph
matchings and edge-colouring hypergraphs, and in Section 3, we survey results on
independent sets and vertex-colourings of graphs and hypergraphs. In Section 4,
we present the history of the Erdős–Faber–Lovász conjecture, and in Section 5 we
describe ideas involved in its recent proof [96].
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1.4. Basic definitions and notation

We say a vertex v 2 V.H / is covered by a matching M if there is an edge e 2 M

such that e 3 v, and we say a set X � V.H / is covered by M if every vertex in X is
covered by M . A matching M in H is perfect if it covers V.H /. The maximum size
of a matching in H , denoted by �.H /, is called the matching number of H . Note that
in a proper edge-colouring, each colour is assigned to the edges of a matching, and in
a proper vertex-colouring, each colour is assigned to the vertices of an independent
set.

We usually denote a graph by G, with vertex set V.G/ and edge set E.G/. The
line graph of a hypergraph H , denoted by L.H /, is the graph G WD L.H / where
V.G/ is the edge set of H , and e; f 2 V.G/ are adjacent in G if e \ f ¤ ¿. For
an edge e 2 H , we write NH .e/ for short instead of NL.H/.e/ to denote the neigh-
bourhood of e in the line graph of H . Note that the matchings in H are in one-to-one
correspondence with the independent sets of L.H / and that �0.H / D �.L.H //.

The fractional chromatic number of a hypergraph H , denoted by �f .H /, is the
smallest k 2 R for which there exists a probability distribution on the independent
sets of H satisfying P Œv 2 I � � 1=k for every v 2 V.H / if I is drawn according
to the distribution, and the fractional chromatic index of H is defined as �0

f
.H / D

�f .L.H //. The list chromatic number of a hypergraph H , denoted by �`.H /, is
the minimum k 2 N such that the following holds: if C is an assignment of “lists
of colours” C.v/ � N for each v 2 V.H / satisfying jC.v/j � k for all v 2 V.H /,
then H has a proper vertex-colouring � such that �.v/ 2 C.v/ for every v 2 V.H /.
The list chromatic index of H is defined as �0

`
.H / D �`.L.H //. It is well known

that every hypergraph H satisfies jV.H /j=˛.H / � �f .H / � �.H / � �`.H / and
jH j=�.H / � �0

f
.H / � �0.H / � �0

`
.H /.

Some authors define a hypergraph to be a pair H D .V; E/ where E is a multi-set
of subsets of V ; in this survey, we refer to such an object as a multi-hypergraph, and
if every e 2 H has size two, then H is a multigraph.

For n2N, we write Œn� WD ¹k 2N W 1� k � nº. We write c D a˙ b if a� b � c �

a C b. In Sections 4 and 5, we use the “�” notation in proofs. Whenever we write
a hierarchy of constants, they have to be chosen from right to left. More precisely,
if we claim that a result holds whenever 0 < a � b � 1, then this means that there
exists a non-decreasing function f W .0; 1� 7! .0; 1� such that the result holds for
all 0 < a; b � 1 with a � f .b/. We will not calculate these functions explicitly.
Hierarchies with more constants are defined in a similar way. We use “log” to denote
the natural logarithm, which is relevant in Section 3.

Our graph theory notation is standard, but one may refer to [96, Section 3] for a
comprehensive list of the notation we use.
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2. Matchings and edge-colouring

2.1. Early results

A partial Steiner system with parameters .t; k; n/ is a k-uniform n-vertex hyper-
graph such that every set of t vertices is contained in at most one edge, and a (full)
Steiner system with parameters .t; k; n/ is a k-uniform n-vertex hypergraph such that
every set of t vertices is contained in precisely one edge. Note that a Steiner system
with parameters .t; k; n/ has

�
n
t

�ı�
k
t

�
edges, which implies that

�
k
t

�ˇ̌�
n
t

�
. The so-called

existence conjecture for designs asserts that, apart from finitely many exceptions, this
and a few other trivial divisibility conditions are sufficient to ensure the existence of a
Steiner system with parameters .t; k; n/. In 1963, Erdős and Hanani [50] asked for an
approximate version of this conjecture, which was confirmed by Rödl [125] in 1985,
initiating the use of the celebrated “nibble” method, as follows.

Theorem 2.1 (Rödl [125]). For every k > t � 1 and " > 0, there exists n0 such
that the following holds. For every n � n0, there exists a partial Steiner system with
parameters .t; k; n/ and at least .1 � "/

�
n
t

�ı�
k
t

�
edges.

The existence conjecture was proved by Keevash [103] in 2014, by combining a
generalization of Theorem 2.1 (briefly discussed in Section 2.3), with an “absorption”
technique called “randomized algebraic construction.” Glock, Kühn, Lo, and Osthus
[66] provided a purely combinatorial proof, using “iterative absorption” instead of
the algebraic approach of Keevash.

A partial Steiner system H with parameters .t; k; n/ corresponds to a matching
M WD ¹

�
e
t

�
W e 2 Hº in the

�
k
t

�
-uniform auxiliary hypergraph with vertex set

�
V.H/

t

�
and edge set ¹

�
X
t

�
W X 2

�
V.H/

k

�
º. In particular, a Steiner system with parameters

.t; k; n/ exists if and only if the hypergraph H�
t;k;n

with vertex set
�

Œn�
t

�
and edge

set ¹
�

X
t

�
W X 2

�
Œn�
k

�
º has a perfect matching, and Theorem 2.1 is equivalent to the

statement that H�
t;k;n

contains a matching covering all but a vanishing proportion of
its vertices as n !1. This result holds much more generally for hypergraphs satisfy-
ing mild pseudorandomness conditions involving the degrees and codegrees. Indeed,
Frankl and Rödl [58] proved that if H is an N -vertex, D-regular hypergraph with
codegree at most D=.log N /4, then H has a matching covering all but o.N / ver-
tices as N !1. Since H�

t;k;n
is
�

n�t
k�t

�
-regular and has codegree at most

�
n�t�1
k�t�1

�
, this

result generalizes Theorem 2.1. Pippenger generalized this result further, by relaxing
the codegree condition, as follows. (Pippenger’s result was not published, but a proof
is given, e.g., in [63, Theorem 8.4].)

Theorem 2.2 (Pippenger). For every k; " > 0, there exists ı > 0 such that the fol-
lowing holds. If H is an n-vertex k-uniform D-regular hypergraph with codegree at
most ıD, then there is a matching in H covering all but at most "n vertices.
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As mentioned in Section 1.2, Theorem 2.2 is proved with the nibble method,
which we now sketch in more detail. Each step of the nibble process produces a
matching in a nearly Di -regular subhypergraph Hi � H (beginning with H1 WD H

and D1 WD D), as follows. First, select a set of edges Xi � Hi randomly, where each
edge e 2 Hi is included in Xi independently with probability "0=Di where "0 > 0

is a small constant depending on k and ". Then, let Ni � Xi be the matching con-
sisting of the edges of Xi that are disjoint from the rest. Crucially, each vertex is in
an edge of Xi with probability close to 1 � e�"0 , and moreover, the codegree condi-
tion ensures that two distinct vertices are in an edge of Xi somewhat independently.
This fact implies that the hypergraph HiC1 obtained by removing every vertex in an
edge of Xi is nearly DiC1-regular, where DiC1 WD e�"0.k�1/Di , which in turn allows
the nibble process to continue. Each edge e 2 H is in Xi with probability roughly
."0=Di /e

�"0k.i�1/ D ."0=D/e�"0.i�1/ (indeed, e is in Hi with probability roughly
e�"0k.i�1/, and conditioning on this, is selected in Xi with probability "0=Di ). Each
edge in Xi is then kept in Ni with probability roughly e�"0k . Thus, after t steps of
the nibble, each edge e 2 H is contained in M WD

St
iD1 Ni with probability close

to
Pt

iD1."0=D/e�"0.i�1/e�"0k D ˛=D, where ˛ WD "0e�"0k.1 � e�"0t /=.1 � e�"0/. In
particular, M is a matching and the expected number of uncovered vertices is essen-
tially at most .1 � ˛/n � "n (if "0 and t�1 are small enough). Kahn [89] and Kahn
and Kayll [93] proved generalizations of Theorem 2.2 where the regularity and code-
gree conditions are replaced with the existence of a fractional matching satisfying a
certain “local sparsity” condition, which can be used to guide the nibble process.

It is natural to wonder if the “random greedy algorithm” (which would select
Xi to consist of a single edge chosen uniformly at random from Hi in the process
above) also produces a nearly perfect matching under the conditions of Theorem 2.2.
Indeed, this result was obtained independently by Spencer [138] and by Rödl and
Thoma [127]. To prove this, Spencer [138] considered a branching process, and Rödl
and Thoma [127] showed that the random greedy algorithm produces a matching with
a similar distribution as the nibble process. Note that these results immediately yield a
(randomized) polynomial-time Monte Carlo algorithm for finding the matching guar-
anteed by Theorem 2.2. The proof of Theorem 2.2 given in [122] also yields such an
algorithm. Rödl and Thoma also asked if there is an NC-algorithm (and in particular,
a deterministic, polynomial-time algorithm) for finding such a matching, and Grable
[70] answered their question in the affirmative.

In 1989, Pippenger and Spencer [122] generalized Theorem 2.2 to edge-colou-
ring, as follows.

Theorem 2.3 (Pippenger and Spencer [122]). For every k; " > 0, there exists ı > 0

such that the following holds. If H is a k-uniform D-regular hypergraph of codegree
at most ıD, then �0.H / � .1 C "/D.
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Since every hypergraph H satisfies �.H / � jH j=�0.H / and moreover jH j D

DjV.H /j=k if H is D-regular and k-uniform, Theorem 2.3 implies Theorem 2.2.
In fact, in Pippenger and Spencer’s [122] proof of Theorem 2.3, they used the argu-
ment described above to select nearly perfect matchings randomly with the nibble
process, which ultimately form most of the colour classes. Roughly, they show that
after selecting D such matchings—in groups of size o.D/, selected iteratively in a
“semi-random” way (which could also be considered a nibble process)—the remain-
ing hypergraph has small maximum degree and can thus be properly edge-coloured
with at most "D colours in a “greedy” fashion.

Pippenger and Spencer [122] actually proved the slightly stronger version of
Theorem 2.3 that applies if every vertex of H has degree .1 ˙ ı/D, rather than pre-
cisely D. Kahn [84] observed that Theorem 2.3 holds more generally for k-bounded
hypergraphs of maximum degree at most D, by showing that such hypergraphs can
be “embedded” in a nearly D-regular k-uniform hypergraph with the same or larger
chromatic index (a hypergraph H is k-bounded if every e 2 H satisfies jej � k).
This sequence of results culminated in Kahn’s [87] generalization of the Pippenger–
Spencer theorem to list colouring, as follows.

Theorem 2.4 (Kahn [87]). For every k; " > 0, there exists ı > 0 such that the fol-
lowing holds. If H is a k-bounded hypergraph of maximum degree at most D and
codegree at most ıD, then �0

`
.H / � .1 C "/D.

The so-called “List Edge Colouring conjecture”—first posed by Vizing in 1975
and asked by many others since (see, e.g., [81])—asserts that every graph G satisfies
�0

`
.G/ D �0.G/, and Theorem 2.4 for k D 2 confirms this conjecture asymptotically.

Kahn’s proof of Theorem 2.4 is also based on a nibble argument but is notably dif-
ferent from Pippenger and Spencer’s [122] proof of Theorem 2.3. In particular, rather
than selecting colour classes one by one, in each step of the nibble, edges are assigned
a colour randomly from their lists, so the colour classes are constructed in parallel.

For linear hypergraphs (i.e., hypergraphs of codegree one), Molloy and Postle
[119, Theorem 10] recently generalized Theorem 2.4 to the setting of “correspon-
dence colouring” (also known as DP-colouring), and Bonamy, Delcourt, Lang, and
Postle [21, Theorem 7] generalized this result further by proving a “local version.”

Several results also strengthen Theorems 2.2–2.4 by improving the asymptotic
error terms. This is the focus of Section 2.2. We conclude this subsection by dis-
cussing two open problems from the late 1990s. Both of these are conjectured to hold
for multi-hypergraphs. In fact, Theorems 2.2–2.4 also hold for multi-hypergraphs (but
the codegree conditions also bound the number of copies of each edge).

Conjecture 2.5 (Kahn [87]). For every k;" > 0, there exists K such that the following
holds. If H is a k-bounded multi-hypergraph, then �0

`
.H /� max¹.1C "/�0

f
.H /;Kº.
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Even the weaker version of this conjecture, with the list chromatic index replaced
by the chromatic index, is wide open. Only the case k D 2 is known. For 2-bounded
hypergraphs (i.e., graphs with edge-multiplicity 1), the conjecture follows from Viz-
ing’s theorem [142] for the chromatic index and from Theorem 2.4 for the list chro-
matic index. As shown by Seymour [131] using Edmonds’ Matching Polytope theo-
rem [45], every multigraph G satisfies �0

f
.G/ D max¹�.G/; �.G/º, where

�.G/ WD max

´
2
ˇ̌
E.H/

ˇ̌ˇ̌
V.H/

ˇ̌
� 1

W H � G;
ˇ̌
V.H/

ˇ̌
� 3 and is odd

µ
:

Kahn [88] proved that every multigraph G satisfies �0.G/ � .1 C o.1//�f .G/ and
in [91] extended this result to list colouring, thus confirming Conjecture 2.5 in full
for the case k D 2. For the ordinary chromatic index, even more is now known in
this case. In the 1970s, Goldberg [69] and Seymour [131] independently conjectured
that every multigraph G satisfies �0.G/ � max¹�.G/ C 1; d�.G/eº. Thus, Kahn’s
result [88] confirmed the Goldberg–Seymour conjecture asymptotically. Recently, a
full proof (which does not rely on probabilistic arguments) of the Goldberg–Seymour
conjecture was obtained by Chen, Jing, and Zang [31].

The next conjecture was posed by Alon and Kim [9]. A hypergraph H is called
t -simple if every two distinct edges of H have at most t vertices in common; in
particular, a hypergraph is 1-simple if and only if it is linear.

Conjecture 2.6 (Alon and Kim [9]). For every k � t � 1 and " > 0, there exists
D0 such that the following holds. For every D � D0, if H is a k-uniform, t -simple
multi-hypergraph with maximum degree at most D, then

�0.H / � .t � 1 C 1=t C "/D:

The conjecture is true for k D 2 by Vizing’s theorem [142] for t D 1 and by a
result of Shannon [133] for t D 2. For k > t D 1, the conjecture follows from Theo-
rem 2.3 (together with the observation of Kahn in [87] mentioned above). Kahn (see
[9]) conjectured that the t -simple condition in Conjecture 2.6 can be relaxed to requir-
ing that the “.t C 1/-codegrees” are small (i.e., every set of t C 1 vertices is contained
in at most ıD edges, for some ı > 0), which if true, would generalize Theorem 2.3.
The remaining cases are still open. The case k D t (without the “C"” in the bound)
was proved by Füredi, Kahn, and Seymour [64] for the fractional chromatic index.

Alon and Kim [9] showed that Conjecture 2.6 holds for intersecting hypergraphs
(i.e., hypergraphs with matching number one), and they gave a construction to show
that if Conjecture 2.6 is true, then it would be asymptotically tight for every k � t

for which there exists a projective plane of order t � 1. We sketch their construction
here. Let D be a large integer divisible by t , let m WD t2 � t C 1, and fix a projective
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plane P of order t � 1 with m lines `1; `2; : : : ; `m on a set of m points. For each
of the lines `i , let Fi be a collection of D=t sets of size k containing `i , so that all
the mD=t sets ¹A n `i W 1 � i � m and A 2 Fiº are pairwise disjoint and disjoint
from P . Let H be the k-uniform hypergraph whose edge set is

S
i Fi . Then clearly

H is intersecting, k-uniform, and t -simple; its maximum degree is at most D; and it
has mD=t D .t � 1 C 1=t/D edges. Thus, �0.H / � .t � 1 C 1=t/D.

2.2. Asymptotic improvements

Let H be a k-uniform, D-regular hypergraph on n vertices. Recall that Pippenger’s
theorem (Theorem 2.2) shows that if the codegree of H is o.D/, then there is a
matching in H covering all but at most o.n/ vertices. However, his proof does not
supply an explicit estimate for the error term o.n/. Also recall that Theorems 2.3 and
2.4 imply that if the codegree of H is o.D/, then the chromatic index of H is D C

o.D/. Sharpening these error terms is useful for many applications, and considerable
progress has been made towards this end with improved analysis and variations of the
nibble method, with more powerful concentration inequalities. In this subsection, we
will discuss many such results.

Grable [71] proved that if the codegree is at most D1�ı in Theorem 2.2, then
there is a matching covering all but at most n.D= log n/�ı=.2k�1Co.1// vertices. In
1997, Alon, Kim, and Spencer [10] improved this bound for linear hypergraphs by
showing the following.

Theorem 2.7 (Alon, Kim, and Spencer [10]). Let k � 3. Let H be a k-uniform D-
regular n-vertex linear hypergraph. Then H has a matching containing all but at
most O.nD� 1

k�1 logck D/ vertices, where ck D 0 for k > 3 and c3 D 3=2.

Based on computer simulations (see, e.g., [13]), Alon, Kim, and Spencer conjec-
tured that the simple random greedy algorithm outlined in the previous subsection
should also produce a matching containing all but at most O.nD� 1

k�1 logO.1/ D/

vertices. The results of Spencer [138] and of Rödl and Thoma [127] mentioned after
Theorem 2.2 only show that the random greedy algorithm produces a matching cov-
ering all but o.n/ vertices. This error term was sharpened by Wormald [145] and
Bennett and Bohman [15] but the conjecture is still open.

Kostochka and Rödl [112] extended Theorem 2.7 to hypergraphs with small code-
grees C (i.e., satisfying C � D1�
 for some 
 > 0). In 2000, Vu [143] further
extended the result of Kostochka and Rödl [112] by removing the assumption C <

D1�
 on the codegree. More precisely, he showed that every k-uniform D-regular
n-vertex hypergraph with codegree at most C contains a matching covering all but
at most O.n.D=C /�

1
k�1 logc D/ vertices for some constant c > 0. He also obtained

stronger bounds if one makes additional assumptions on the “t-codegrees” for t > 2.



D. Y. Kang et al. 780

Very recently, Kang, Kühn, Methuku, and Osthus [99] improved Theorem 2.7 and
the results of Kostochka and Rödl [112] and of Vu [143] for hypergraphs with small
codegree. In the case when H is linear, they showed the following.

Theorem 2.8 (Kang, Kühn, Methuku, and Osthus [99]). For every k > 3, � 2 .0; 1/,
and �< k�3

.k�1/.k3�2k2�kC4/
, there exists n0 such that the following holds for all n�n0

and D � exp.log� n/.
If H is a k-uniform D-regular linear hypergraph on n vertices, then H contains

a matching covering all but at most nD� 1
k�1

�� vertices.

Their approach consists of showing that the Rödl nibble process not only con-
structs a large matching but it also produces many well-distributed “augmenting stars”
which can then be used to significantly augment the matching constructed by the Rödl
nibble process.

Below we discuss results concerning improvements on the chromatic index of
hypergraphs. In 2000, Molloy and Reed [120] sharpened the error term in Theo-
rem 2.4. For linear hypergraphs their result can be stated as follows.

Theorem 2.9 (Molloy and Reed [120]). If H is a k-uniform linear hypergraph with
maximum degree at most D, then �0

`
.H / � D C O.D1�1=k log4 D/.

For graphs, this result improves a result of Häggkvist and Janssen [74] and pro-
vides the best-known general bound for the List Edge Colouring conjecture. Molloy
and Reed [120] actually proved a more general result showing that every k-uniform
hypergraph H with maximum degree at most D and codegree at most C has list
chromatic index at most D C O.D.D=C /�1=k.log D=C /4/, which also gave the
best-known bound on the ordinary chromatic index �0.H /. Very recently, Kang,
Kühn, Methuku, and Osthus [99] showed that this bound on the chromatic index can
be improved further. For linear hypergraphs their result can be stated as follows.

Theorem 2.10 (Kang, Kühn, Methuku, and Osthus [99]). For every k � 3, � 2 .0;1/,
and � < k�2

k.k3Ck2�2kC2/
, there exists n0 such that the following holds for all n � n0

and D � exp.log� n/.
If H is a k-uniform linear hypergraph on n vertices with maximum degree at

most D, then �0.H / � D C D1�1=k�� .

Theorems 2.8–2.10 are unlikely to be best possible. The best lower bounds we
know come from the following construction, in which every matching leaves �.n=D/

vertices uncovered. Consider an m-vertex k-uniform D-regular linear hypergraph
H such that m D O.D/ and m � 1 is divisible by k (e.g., using a Steiner system
S.2; k; m/), so the union of n=m disjoint copies of H yields an n-vertex k-uniform
D-regular hypergraph with at least �.n=D/ vertices uncovered by any matching.
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If we know more about the hypergraph H , then the bound given in Theorem 2.8
can be improved further. For example, if H is a Steiner triple system (i.e., a Steiner
system with parameters .2;3;n/), then H is .n�1/=2-regular and linear, and Brouwer
[25] conjectured the following in 1981.

Conjecture 2.11 (Brouwer [25]). Every Steiner triple system with n vertices has a
matching of size at least n�4

3
.

Recently, combining the nibble method with the robust expansion properties of
edge-coloured pseudorandom graphs, Keevash, Pokrovskiy, Sudakov, and Yepremyan
[105] showed that every Steiner triple system has a matching covering all but at most
O.log n= log log n/ vertices.

A related problem is a famous conjecture of Ryser, Brualdi, and Stein [26, 129,
139] which states that every n � n Latin square has a transversal of order n � 1

and moreover, if n is odd, then it has a full transversal. The best-known bound for
this problem was given in [105] where the authors showed that every n � n Latin
square contains a transversal of order n � O.log n= log log n/. The problem of find-
ing large transversals in Latin squares can be rephrased as a problem about finding
large matchings in hypergraphs. Indeed, we can construct a 3-uniform hypergraph
HL on 3n vertices from an n � n Latin square L as follows. The vertex set of HL is
V.HL/ D R [ C [ S where R, C , and S are the rows, columns, and symbols of L.
For every entry of L we add an edge to HL—if the .i; j /-th entry of L contains a
symbol s, then we add the edge ¹i; j; sº to HL. Clearly, HL is n-regular and 3-partite,
and a matching in H corresponds to a transversal in L. Thus, the Ryser–Brualdi–
Stein conjecture can be regarded as the “partite-version” of Brouwer’s conjecture.

Similarly, it is interesting to determine the maximum chromatic index of an n-
vertex Steiner triple system (or an n � n Latin square). Meszka, Nedela, and Rosa
[116] conjectured the following in 2006.

Conjecture 2.12 (Meszka, Nedela, and Rosa [116]). If H is a Steiner triple system
with n > 7 vertices, then �0.H / � .n � 1/=2 C 3 and moreover, if n � 3 .mod 6/,
then �0.H / � .n � 1/=2 C 2.

Since an n-vertex Steiner triple system is .n � 1/=2-regular, it is obvious that
�0.H / � .n � 1/=2, and equality holds if and only if H can be decomposed into
perfect matchings. Hence, if n � 1 .mod 6/, then �0.H / � .n C 1/=2. In fact, there
are constructions of Steiner triple systems with n vertices which show that Conjec-
ture 2.12, if true, is tight [28, 115, 123, 141]. Similarly, for Latin squares the follow-
ing conjecture was posed independently by Cavenagh and Kuhl [29] in 2015 and
Besharati, Goddyn, Mahmoodian, and Mortezaeefar [18] in 2016.
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Conjecture 2.13. Let L be an n � n Latin square. If HL is the corresponding 3-
uniform 3-partite hypergraph, then �0.HL/ � n C 2 and moreover, if n is odd, then
�0.HL/ � n C 1.

Note that Conjecture 2.12 implies Conjecture 2.11, and Conjecture 2.13 implies
the Ryser–Brualdi–Stein conjecture. Theorem 2.8 implies that every n-vertex Steiner
triple system has chromatic index at most n=2 C O.n2=3�1=100/ and every hyper-
graph corresponding to an n � n Latin square has chromatic index at most n C

O.n2=3�1=100/; currently these bounds are the best known.

2.3. Pseudorandom hypergraph matchings

Let H be a k-uniform D-regular hypergraph on n vertices, and let M � H be a ran-
dom matching generated by the nibble process, such that M covers all but at most "n

vertices of H (with high probability), where " 2 .0; 1/. A heuristic argument suggests
that each vertex of H is left uncovered by M roughly independently with probability
". In many applications (including our proof in [96]), it is useful to find a nearly per-
fect matching guaranteed by Theorem 2.2 with additional “pseudorandom” properties
that are compatible with this heuristic. In this subsection, we discuss some results
that provide nearly perfect pseudorandom hypergraph matchings and some of their
applications. In particular, we show how a “pseudorandom version” of Pippenger’s
theorem (Theorem 2.2) is in fact equivalent to the Pippenger–Spencer theorem (The-
orem 2.3).

The first pseudorandom hypergraph matching result of this sort was proved by
Alon and Yuster [14] in 2005. With a slightly stronger assumption regarding code-
grees, Ehard, Glock, and Joos [48] recently proved a stronger and more flexible
version. The following is an immediate corollary of [48, Theorem 1.2].

Theorem 2.14 (Ehard, Glock, and Joos [48]). For every k � 2 and ı 2 .0; 1/, there
exists D0 such that the following holds for all D � D0 and " WD ı=.50k2/. Sup-
pose that H is a k-uniform hypergraph and F is a collection of subsets of V.H /

such that jF j � exp.D"2
/ and

P
v2S dH .v/ � kD1Cı for every S 2 F . If H has

maximum degree at most D, codegree at most D1�ı , and e.H / � exp.D"2
/, then

there exists a matching M of H such that every S 2 F satisfies jS \ V.M /j D

.1 ˙ D�"/
P

v2S dH .v/=D.

Note that if H is D-regular in Theorem 2.14 and V.H / 2 F , then M covers
all but at most nD�" vertices of H . Moreover, for every S 2 F , at most jS jD�"

vertices are uncovered by M , as we would expect if each vertex was uncovered
with probability D�". Ehard, Glock, and Joos [48] actually proved a stronger ver-
sion of Theorem 2.14 involving weight functions on the edges of H of the form



Graph and hypergraph colouring via nibble methods 783

! W H ! R�0. The “pseudorandomness” heuristic suggests that every edge is in M

with probability 1=D, and thus the expected total weight of edges in M should beP
e2H !.e/=D.

Hypergraph matching results, particularly ones with pseudorandomness guaran-
tees, are widely applicable in combinatorics and beyond. We give some examples
here. Ford, Green, Konyagin, Maynard, and Tao [57] proved a pseudorandom gener-
alization of Theorem 2.2 (stated for coverings rather than matchings and which allows
for non-uniform hypergraphs). They used it to improve bounds on gaps between
prime numbers. As we saw in Section 2.2, in [99, 105], pseudorandom properties of
hypergraph matchings can be “bootstrapped” to produce a larger matching. Further-
more, in some applications of the “absorption method,” such as [34, 55, 66, 67, 103],
a matching in an auxiliary hypergraph is used to construct a nearly spanning struc-
ture which is complemented by an “absorbing structure,” so that the pseudorandom
properties can be exploited for “absorption,” which results in a spanning structure.
Hypergraph matchings with pseudorandomness properties can also be used to con-
struct approximate decompositions (see, e.g., [65, 66, 103, 107]) or edge-colourings.
Indeed, in the proof of the Erdős–Faber–Lovász conjecture, we use Theorem 2.14 to
obtain a partial edge-colouring of a linear hypergraph in which each colour class has
pseudorandom properties that enable some of the uncovered vertices to be absorbed
(see Section 5.1 for more details). As an illustration of this approach, we show how
Theorem 2.14 implies a version of the Pippenger–Spencer theorem. First we need the
following definition and observation.

Definition 2.15. For every hypergraph H and t 2 N, we define the t -wise incidence
hypergraph H� WD inct .H / to be the hypergraph with

� vertex set H [ .Œt � � V.H // and

� edge set ¹¹eº [ .¹iº � e/ W e 2 H ; i 2 Œt �º.

That is, for every e D¹v1; : : : ;vkº 2H , we include t edges in the t -wise incidence
hypergraph H� WD inct .H /, where each such edge is of the form ¹e; .i;v1/; : : : ; .i;vk/º

for some i 2 Œt �.

Observation 2.16. Let H be a hypergraph, and let H� WD inct .H / be the t -wise
incidence hypergraph. The following holds.

(a) If H is k-uniform, then H� is .k C 1/-uniform.

(b) The codegree of H� is at most the codegree of H .

(c) For every v 2 V.H / and i 2 Œt �, dH�..i; v// D dH .v/, and for every e 2 H ,
dH�.e/ D t .
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(d) A set M � H� is a matching if and only if M1; : : : ; Mt , where Mi WD ¹e 2

H W 9f 2 M; f � ¹iº � eº are pairwise edge-disjoint matchings in H . In
particular, the chromatic index of H is at most t if and only if H� contains
a matching covering H .

Using Observation 2.16, we can show that, under a slightly stronger codegree
condition, Theorem 2.14 implies Theorem 2.3 (i.e., that the chromatic index of a D-
regular hypergraph of small codegree tends to D), as follows. Let k � 2, ı 2 .0; 1/,
and " WD ı=.50.k C 1/2/, and suppose that H is a k-uniform, n-vertex, D-regular
hypergraph, with codegree at most D1�ı , such that D � log"�2

n. By Observa-
tion 2.16 (a)–(c), H� WD incD.H / is a .k C 1/-uniform, D-regular hypergraph with
codegree at most D1�ı , and e.H�/ D D � e.H / D D2n=k � exp.D"2

/. Let F WD

¹ŒD� � ¹vº W v 2 V.H /º, and note that F is a collection of subsets of V.H�/ such
that jF j � n � exp.D"2

/ and every S 2 F satisfies
P

v2S dH�.v/ D D2. Thus, if
D is sufficiently large, then, by Theorem 2.14, there exists a matching M in H�

such that jS \ V.M /j � .1 � D�"/jS j for every S 2 F . By Observation 2.16 (d),
M1; : : : ;MD , where Mi WD ¹e 2H W 9f 2M; f � ¹iº � eº are pairwise edge-disjoint
matchings, and moreover, by the construction of F , every v 2 V.H / is covered by
all but D1�" of these matchings. In particular, �0.H 0/ � D and �.H n H 0/ � D1�",
where H 0 WD

SD
iD1 Mi . Hence, �0.H n H 0/ � k.�.H n H 0/ � 1/ C 1 � kD1�", so

�0.H / � �0.H 0/ C �0.H n H 0/ � D C kD1�" D D C o.D/, as desired.
Theorem 2.14 is actually proved via a generalization of Theorem 2.9 (which

implies Theorem 2.3). Thus, the above argument is based on “circular logic,” but it
demonstrates that in the setting of Theorem 2.2, the existence of nearly perfect pseu-
dorandom hypergraph matchings is in some sense equivalent to the existence of a
nearly optimal proper edge-colouring (the above comments about the proof of Theo-
rem 2.14 also apply to the result of Alon and Yuster [14] on pseudorandom matchings,
which is proved via Theorem 2.3). Moreover, Kahn’s [87] proof of Theorem 2.4 (in
the case when all lists are the same) more closely resembles the approach described
here, wherein a nibble process is used to construct a matching in the incidence hyper-
graph, than it does Pippenger and Spencer’s [122] proof of Theorem 2.3.

Note that one could also prove Theorem 2.14 “more directly” by a more careful
analysis of the proof of Theorem 2.2—the reason being essentially that the matchings
chosen in each step of the nibble intersect the sets in F as one would expect a random
set would. This intuition is made rigorous in [99], where Theorem 2.10 is derived
from [99, Theorem 7.1], a pseudorandom version of Theorem 2.8. Moreover, the
approach of finding an edge-colouring via Theorem 2.14 and Observation 2.16 is
very versatile and was used, e.g., in [96, 99] (see Section 5.1).
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3. Independent sets and vertex-colouring

3.1. Independence number

Prior to Rödl’s [125] proof of the Erdős–Hanani conjecture [50], in 1981, Ajtai, Kom-
lós, and Szemerédi [5] employed a similar semi-random approach to show that every
triangle-free graph has a large independent set.

Theorem 3.1 (Ajtai, Komlós, and Szemerédi [4, 5]). There exists an absolute con-
stant c > 0 such that the following holds. If G is an n-vertex triangle-free graph of
average degree at most d , then

˛.G/ � c
� n

d

�
log d:

This result has spawned intensive research over the last four decades. Theorem 3.1
and a hypergraph analogue of it due to Komlós, Pintz, Spencer, and Szemerédi [110]
have surprising applications to number theory and geometry, respectively. Improving
and generalizing Theorem 3.1 is also a problem of major importance within combina-
torics, in part due to connections to Ramsey theory and to the study of random graphs
and algorithms.

In [5], Ajtai, Komlós, and Szemerédi used Theorem 3.1 to construct an infinite
Sidon sequence (i.e., a sequence of positive integers in which the pairwise sums are
all distinct) with “high density;” in particular, for every n, the sequence contains
�..n log n/1=3/ integers less than n. Erdős conjectured that for every " > 0, there
exists an infinite Sidon sequence containing �.n1=2�"/ integers less than n, and this
problem is still open. The best-known result is due to Rusza [128], who proved the
weaker version with 1=2 replaced with

p
2 � 1 in the exponent, and Cilleruelo [33]

provided an explicit construction of such a sequence.
A new proof of Theorem 3.1 was given in [4] by Ajtai, Komlós, and Szemerédi

(written by Spencer), which uses the Cauchy–Schwarz inequality to build the inde-
pendent set deterministically, rather than with a random nibble process. Theorem 3.1
is used in [4] to prove the Ramsey number bound R.3;k/ D O.k2= log k/. (The Ram-
sey number R.`; k/ is the smallest n such that every red-blue edge-colouring of the
n-vertex complete graph contains either a red copy of K` or a blue copy of Kk .)
The matching lower bound R.3; k/ D �.k2= log k/ was later established by Kim
[109], also using a semi-random approach. Theorem 3.1 was improved by Shearer
[134, 135], who showed that the constant c can be replaced with 1 � o.1/ in The-
orem 3.1, as conjectured by Ajtai, Komlós, and Szemerédi [5]. Although Shearer’s
proof is more similar to the Cauchy–Schwartz approach of [4] than the random nib-
ble approach of [5], his proof implies that the random greedy algorithm produces an
independent set with expected size at least .1 � o.1//.n=d/ log d in every n-vertex
triangle-free graph of average degree d .
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Improving the value of the leading constant in Theorem 3.1, or determining if 1�

o.1/ is best possible, is an interesting open problem. Bollobás [20] proved that there
are n-vertex d -regular triangle-free graphs with ˛.G/� 2.n=d/ logd (by considering
random d -regular graphs), so Shearer’s bound [134] is within a factor of about at most
two of best possible. Shearer’s result also implies that R.3; k/ � .1 C o.1//k2= log k,
which is still the best-known upper bound, and any further improvement to the value
of c in Theorem 3.1 would improve this bound on the Ramsey number as well and be
a major breakthrough. Fiz Pontiveros, Griffiths, and Morris [56] and independently
Bohman and Keevash [19] showed that R.3;k/ � .1=4� o.1//k2= logk, so Shearer’s
bound on R.3; k/ is also within a factor of about at most four of best possible.

Theorem 3.1 holds more generally for k-uniform hypergraphs, where k � 2, as
follows. An `-cycle in a k-uniform hypergraph is a set of ` edges spanned by at most
`.k � 1/ vertices, which does not contain an `0-cycle for `0 < `, and the girth of
a k-uniform hypergraph is the length of its shortest cycle (or infinity if there is no
cycle). In 1982, Komlós, Pintz, Spencer, and Szemerédi [110] proved an analogue of
Theorem 3.1 for 3-uniform hypergraphs of girth at least five and used this result to
disprove Heilbronn’s conjecture on the Heilbronn triangle problem, which asks for the
minimum area of a triangle formed by any three points out of a set of n points placed
in the unit disk. Heilbronn conjectured that this area is at most O.n�2/ for any set
of n points, but Komlós, Pintz, Spencer, and Szemerédi [110] used their hypergraph
analogue of Theorem 3.1 to construct a set of n points in which the minimum area of
a triangle with its vertices among those points is at least �.n�2 log n/. Ajtai, Komlós,
Pintz, Spencer, and Szemerédi [3] later generalized the result of [110] by showing
that every k-uniform hypergraph on n vertices with girth at least five and average
degree at most d contains an independent set of size at least �.n.log d=d/1=.k�1//.
Duke, Lefmann, and Rödl [44] strengthened this result by showing that for k � 3, this
bound holds for hypergraphs of girth at least three (that is, for linear hypergraphs),
confirming a conjecture of Spencer [137] in a strong sense. Note that for k D 2, this
bound matches the one in Theorem 3.1. Notably, the proofs in [110] and [3] use a
random nibble approach like in [5]. The proof in [44] proceeds by a reduction to the
case of hypergraphs of girth at least 5, whence the result follows from the result in [3].

Ajtai, Erdős, Komlós, and Szemerédi [2] suggested that Theorem 3.1 may still
hold for Kr -free graphs for any fixed r (and it may even hold more generally for
vertex-colouring—see Conjecture 3.3), and they proved the weaker result that Kr -
free graphs on n vertices of average degree at most d have an independent set of size
at least �..n=d/ log log d/. Later, a breakthrough of Shearer [136] in 1995 improved
this bound to �..n=d/ log d= log log d/, which, up to the leading constant factor,
is still the best known. Alon [6] proved that Theorem 3.1 holds more generally for
graphs where the neighbourhood of every vertex has bounded chromatic number.
These results of Shearer [136] and of Alon [6] actually bound the average size of



Graph and hypergraph colouring via nibble methods 787

an independent set. In this vein, Davies, Jenssen, Perkins, and Roberts [40] recently
proved that the average size of an independent set in a triangle-free graph of max-
imum degree at most � is at least .1 � o.1//.n=�/ log �, which also generalizes
Theorem 3.1 and even matches the earlier bound of Shearer [134] for the special case
of regular graphs.

3.2. Chromatic number

Nearly all of the results bounding the independence number mentioned in the previ-
ous subsection can be generalized to bounds on the chromatic number. In 1995, Kim
[108] proved that every graph of girth at least five and maximum degree at most � has
(list) chromatic number at most .1 C o.1//�= log �. Independently, Johansson [82]
proved that every triangle-free graph of maximum degree at most � has chromatic
number at most O.�= log �/, which generalizes Theorem 3.1. In 2019, Molloy [118]
simultaneously generalized both Kim’s [108] and Johansson’s [82] result by improv-
ing the leading constant in Johansson’s result to match that of Kim, as follows.

Theorem 3.2 (Molloy [118]). For every " > 0, there exists �0 such that the following
holds for every � � �0. If G is a triangle-free graph of maximum degree at most �,
then

�`.G/ � .1 C "/
�

log �
:

Theorem 3.2 also matches Shearer’s bound [134] for regular graphs. Improving
the leading constant in Theorem 3.2, or determining if it is best possible, is another
major open problem. By the same argument as in the previous subsection, the bound
in Theorem 3.2 is within a factor of at most two of best possible. In fact, Frieze and
Łuczak [61] proved that random �-regular graphs have chromatic number .1=2 ˙

o.1//�= log � with high probability, and it is an open problem whether there is a
polynomial-time algorithm which almost surely finds a proper vertex-colouring of
such a graph with at most .1 � "/�= log � colours for some " > 0 (see [118]). Since
random regular graphs of bounded degree have O.1/ cycles with high probability,
the affirmative would follow if there exists such an algorithm for colouring triangle-
free graphs of maximum degree at most � (again, see [118]). A related longstanding
open problem of Karp [101] is whether there exists a polynomial-time algorithm for
finding an independent set of size within a factor two of best possible in a binomial
random graph.

The proofs of Kim [108] and Johansson [82] use a nibble approach inspired by
Kahn’s [87] proof of Theorem 2.4, in which a small random selection of vertices are
assigned a colour randomly in each step of the nibble. Johansson [82] never pub-
lished his proof, but Molloy and Reed [121, Chapters 12 and 13] provided simpler
proofs of the results of both Kim [108] and Johansson [82]. Molloy’s [118] proof
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of Theorem 3.2, which uses the “entropy compression” method, is even simpler, and
Bernshteyn [17] simplified this proof further by showing that the “Lopsided Local
Lemma” can be used instead of “entropy compression.” However, Bernshteyn’s proof
is non-constructive, and Molloy’s “entropy compression” argument provides an effi-
cient randomized algorithm for finding a proper colouring using .1 C o.1//�= log �

colours, matching the “algorithmic barrier” for colouring random graphs described
above. Molloy’s proof has inspired further algorithmic results such as in [1, 41].

All of these proofs rely on a “coupon collector”-type approach. Roughly speak-
ing, this means that a useful heuristic is to consider a random colouring, where each
vertex v 2 V.G/ is assigned a colour uniformly at random from a set of colours C .
If G is triangle-free, then GŒN.v/� is an independent set for every v 2 V.G/ and is
thus properly coloured. Moreover, the well-known solution to the coupon collector’s
problem implies that if d.v/ � .1 � o.1//jC j log jC j, then there is a colour in C

not assigned to a neighbour of v, which we could potentially use to “recolour” v. In
particular, if G has maximum degree � and jC j � .1 C o.1//�= log �, then with
non-zero probability, for every vertex v 2 V.G/, less than jC j colours are assigned to
a vertex in N.v/. This is of course not sufficient to prove Theorem 3.2 but is a useful
intuition for the bound.

It is also believed that at the expense of a worse leading constant, Theorem 3.2
holds for Kr -free graphs for every fixed r , as follows.

Conjecture 3.3. For every r 2 N, there exists a constant cr such that the follow-
ing holds. If G is a Kr -free graph with maximum degree at most �, then �`.G/ �

cr�= log �.

The resulting bound on the independence number is already a major open prob-
lem proposed earlier by Ajtai, Erdős, Komlós, and Szemerédi [2] (as mentioned in
Section 3.1) and is still open even for r D 4, and the resulting bound on the chromatic
number was conjectured by Alon, Krivelevich, and Sudakov [12]. In this direction,
Johansson [83] proved that for every fixed r , every Kr -free graph of maximum degree
at most � has list chromatic number O.� log log �= log �/, which generalizes the
result of Shearer [136] mentioned at the end of Section 3.1. Johansson also proved
that for every fixed r , if G is a graph of maximum degree at most � that satisfies
�.GŒN.v/�/ � r for every v 2 V.G/, then �`.G/ D O.�= log �/, generalizing the
result of Alon [6] mentioned at the end of Section 3.1. These results of Johansson
were also not published, but Molloy [118] gave a new proof of the former, and the
latter was proved (using the approach of Bernshteyn [17]) by Bonamy, Kelly, Nelson,
and Postle [22]. Alon, Krivelevich, and Sudakov [12] generalized Johansson’s result
to “locally sparse graphs” by proving the following: if G is a graph of maximum
degree at most � such that the neighbourhood of any vertex spans at most �2=f

edges, then �.G/ D O.�= log
p

f / for f � �2 C 1, and Vu [144] generalized this
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result to list colouring. Davies, Kang, Pirot, and Sereni [42] improved this result by
showing that it holds with a leading constant of 1C o.1/ as f !1, thus generalizing
Theorem 3.2.

Theorem 3.4 (Davies, Kang, Pirot, and Sereni [42]). For every " > 0, there exists �0

such that the following holds for every � � �0. If G is a graph of maximum degree
at most � such that the neighbourhood of any vertex spans at most �2=f edges for
f � �2 C 1, then

�`.G/ � .1 C "/
�

log
p

f
:

We note that the aforementioned results of Kim [108], Johansson [82, 83], and
Vu [144] all use the nibble method. Davies, Kang, Pirot, and Sereni [42] provided a
generalization of all of these results (and also Theorem 3.4) by introducing the “local
occupancy method.” This method reduces these colouring problems to optimization
problems involving relevant local properties of the “hard-core model,” which is a
family of probability distributions over the independent sets of a graph with origins in
statistical physics. Their approach builds on the work of Molloy [118] and Bernshteyn
[17] and subsequent work in [22, 38], and the approach used to prove the results of
[6, 40, 136] bounding the average size of independent sets mentioned in the previous
subsection and also of [39] may be viewed as a precursor to these methods. The main
result of Davies, Kang, Pirot, and Sereni [42] is proved using the Lopsided Local
Lemma as in Bernshteyn’s [17] proof of Theorem 3.2. It can also be proved using
entropy compression as in the original proof of Theorem 3.2 of Molloy [118], and
indeed, Davies, Kang, Pirot, and Sereni [41] used this approach to obtain additional
algorithmic coloring results.

All of the results mentioned so far in this subsection provide a bound of o.�/ on
the chromatic number of graphs of maximum degree � under a “local sparsity” condi-
tion. Trivially, every graph G satisfies �.G/ � �.G/ C 1, and Brooks [24] famously
showed that equality holds if and only if G is a complete graph or an odd cycle (when
G is connected). With a considerably relaxed “local sparsity” condition, we can still
bound the chromatic number away from �, as in the following result.

Theorem 3.5 (Molloy and Reed [121]). For every � > 0, there exists �0 such that
the following holds for every � � �0. If G is a graph of maximum degree at most �

and every v 2 V.G/ satisfies jE.GŒN.v/�/j � .1 � �/
�

�
2

�
, then �.G/ � .1 � �=e6/�.

This result was improved by Bruhn and Joos [27] and by Bonamy, Perrett, and
Postle [23]. Recently, Hurley, de Joannis de Verclos, and Kang [78] improved it fur-
ther by proving the bound �.G/ � .1 � �=2 C �3=2=6 C o.1//�, which gives the
correct dependence on � as � ! 0. Determining the best possible bound in The-
orem 3.5 for larger � is an interesting problem; any further improvements would
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also improve the best-known bound for Reed’s !, �, � conjecture [124] and for the
Erdős–Nešetřil conjecture [51]. We also use Theorem 3.5 in our proof of the Erdős–
Faber–Lovász conjecture (see Section 5.2), but we do not need the improvements of
[23, 27, 78]. The following related problem was posed by Vu [144] in 2002.

Conjecture 3.6 (Vu [144]). For every �; " > 0, there exists �0 such that the following
holds for every � � �0. If G is a graph of maximum degree at most � and every two
distinct vertices have at most �� common neighbours in G, then �`.G/ � .� C "/�.

This conjecture is still open if we replace �`.G/ by �.G/, and even the much
weaker conjecture, that G satisfies ˛.G/ � .1=� � "/.n=�/, is still open. The results
of [78] give nontrivial bounds when � is close to one. If true, Conjecture 3.6 with � D

1=k implies Theorem 2.4 for linear hypergraphs, as follows. Let H be a k-bounded
linear hypergraph with maximum degree at most D. It is clear that �.L.H // � kD,
and every two distinct vertices in L.H / have at most max¹k2; .D � 2/C .k � 1/2º �

�k.D C k2/ common neighbours. Letting � WD k.D C k2/, Conjecture 3.6 would
imply �0.H / D �.L.H // � .� C "/� D D C o.D/ when k is fixed as D ! 1.
Recently, Kelly, Kühn, and Osthus [106] confirmed a special case of Conjecture 3.6
that also recovers this application to Theorem 2.4.

Our final problem on vertex-colouring graphs is the following conjecture of Alon
and Krivelevich [11] from 1998 on the list chromatic number of bipartite graphs.

Conjecture 3.7 (Alon and Krivelevich [11]). There exists K such that the following
holds. If G is a bipartite graph of maximum degree at most �, then �`.G/ � K log �.

The best-known bound for this conjecture is provided by Theorem 3.2; however,
this bound can also be proved more directly with the “coupon collector” argument
described earlier. Alon, Cambie, and Kang [8] used this argument to prove a stronger
result for list colouring bipartite graphs when each vertex in one of the parts has
a list of available colours of the conjectured size. Alon and Krivelevich [11] also
suggested that the stronger bound �`.G/ � .1 C o.1// log2 � may also hold, which
would be best possible for complete bipartite graphs. In fact, Saxton and Thomason
[130] proved that every graph of minimum degree at least d has list chromatic number
at least .1 � o.1// log2 d , improving an earlier result of Alon [7].

3.3. Hypergraph colourings

Theorem 3.1 cannot only be generalized to vertex-colouring in the graphic setting but
also for hypergraphs. In 2013, Frieze and Mubayi [60] proved the following result,
which generalizes both Johansson’s theorem [82] and Theorem 3.1.

Theorem 3.8 (Frieze and Mubayi [60]). For every k � 2 there exists c; �0 > 0 such
that the following holds for every � � �0. If H is a k-uniform hypergraph with
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maximum degree at most � and girth at least four, then

�.H / � c

�
�

log �

� 1
k�1

:

To prove this result, Frieze and Mubayi [60] analyzed a nibble procedure inspired
by the proof of Johansson [82]. Molloy [117] conjectured that for k D 3 the result
holds for c D

p
2 C o.1/, as this value is suggested by the “coupon collector” heuris-

tic described in Section 3.2, and he asked more broadly if it can also be proved with
either the “entropy compression” or the “local occupancy” approach. Iliopoulos [79]
showed that the bound �`.H / � .1 C o.1//.k � 1/.�= log �/1=.k�1/ holds in Theo-
rem 3.8 if H has girth at least five.

For k � 3, Frieze and Mubayi [60] “bootstrapped” Theorem 3.8 to show that it
actually holds for linear hypergraphs (that is, hypergraphs of girth at least three), by
applying it with a distinct set of colours to vertex-disjoint induced subgraphs of girth
at least four whose vertices partition V.H /. This latter result generalizes the bound
of Duke, Lefmann, and Rödl [44] on the independence number mentioned in Sec-
tion 3.1 to vertex-colouring. Cooper and Mubayi [35] also generalized Theorem 3.8
for k D 3 by showing that the girth hypothesis can be replaced with the condition
that H has no triangle, where a triangle is a set of three edges e, f , and g such
that there exist vertices u, v, and w satisfying ¹u; vº � e, ¹v; wº � f , ¹u; wº � g,
and ¹u; v; wº \ e \ f \ g D ¿. Cooper and Mubayi [36] later showed that both of
these results hold under more general “local sparsity” conditions similar to that of
Theorem 3.4 for graphs. Frieze and Mubayi [59, 60] conjectured a generalization of
Conjecture 3.3 for k-uniform hypergraphs; however, Cooper and Mubayi [37] dis-
proved this conjecture for all k � 3.

4. The Erdős–Faber–Lovász conjecture

In this section, we introduce and provide background for the Erdős–Faber–Lovász
conjecture, which we abbreviate to the EFL conjecture. Earlier developments related
to the EFL conjecture are also detailed in the surveys of Kahn [86, 90] and of Kayll
[102]. The EFL conjecture states the following (recall that a hypergraph is linear if it
has codegree one):

(EFL1) Every n-vertex linear hypergraph has chromatic index at most n.

Erdős often wrote that this was one of his “three favourite combinatorial prob-
lems” (see, e.g., [90]). Erdős, Faber, and Lovász famously formulated this conjecture
at a tea party in 1972. The simplicity and elegance of the EFL conjecture initially led
them to believe it would be easily solved (see, e.g., the discussion in [32, 49]). How-
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Projective plane Degenerate plane K2tC1

Figure 1. Extremal examples for the Erdős–Faber–Lovász conjecture.

ever, as the difficulty became apparent Erdős offered successively increasing rewards
for a proof of the conjecture, which eventually reached $500.

The following three infinite families of hypergraphs are extremal for this conjec-
ture (see Figure 1):

� finite projective planes of order k (known to exist when k is a prime power),
which are .k C 1/-uniform, linear, intersecting hypergraphs on n vertices with n

edges where n WD k2 C k C 1;

� degenerate planes, also called “Near Pencils,” which are linear, intersecting hyper-
graphs on n vertices with n edges for any n 2 N consisting of one edge of size
n � 1 and n � 1 edges of size two; and

� complete graphs on n vertices where n 2 N is odd (as well as some “local” mod-
ifications of these).

The vastly different structure of these extremal examples contributes to the difficulty
of the EFL conjecture. Note in particular that the first two examples have edges of
unbounded size as n ! 1, whereas complete graphs are 2-uniform. Let us note that
we can (and will) assume without loss of generality that hypergraphs have no edges of
size one in the EFL conjecture, since any proper edge-colouring of the edges of size at
least two in an n-vertex linear hypergraph H with at most n colours can be extended
to the remaining size-one edges of H (again with at most n colours). Without this
assumption, the hypergraph obtained from an n-vertex star by adding the edge of size
one containing the center vertex is also an extremal example.

4.1. Equivalent formulations

Part of the beauty of this conjecture lies in the fact that it can be equivalently stated
in several simple, yet seemingly unconnected, ways. The following are all in fact
equivalent to the EFL conjecture:

(EFL2) If H is a linear hypergraph with n edges, each of size at most n, then the
vertices of H can be coloured with at most n colours such that no edge
contains two vertices of the same colour.
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Figure 2. The hypergraph dual (left) of the 5-vertex hypergraph in the center, and the line graph
(right).

(EFL3) If A1; : : : ; An are sets of size n such that every pair of them shares at
most one element, then the elements of

Sn
iD1 Ai can be coloured with n

colours so that all colours appear in each Ai .

(EFL4) If G1; : : : ; Gn are complete graphs, each on at most n vertices, such that
jV.Gi /\V.Gj /j � 1 for every 1� i ¤ j � n, then the chromatic number
of

Sn
iD1 Gi is at most n.

We show that the EFL conjecture is equivalent to (EFL2)–(EFL4) by showing the
following implications: (EFL1))(EFL2))(EFL3))(EFL4))(EFL1).

For the first implication, we need to introduce the notion of hypergraph duality.
The dual of a hypergraph H is the hypergraph H� with vertex set H and edge set
¹¹e 3 v W e 2 Hº W v 2 V.H /º (see Figure 2 for an example). Clearly, the dual of H� is
isomorphic to H itself. Note that H is linear if and only if H� is linear. Now suppose
that H is a linear hypergraph with n edges, each of size at most n. We may assume
without loss of generality that every vertex of H has degree at least two. Since H has
n edges and is linear, H� has n vertices and is also linear, so (EFL1) implies that there
is proper edge-colouring of H� using at most n colours. By assigning each vertex of
H the colour of the corresponding edge of H�, we obtain the desired colouring,
proving (EFL2).

To show that (EFL2))(EFL3), let H be the hypergraph with vertex set
Sn

iD1 Ai

and edge set ¹Ai W i 2 Œn�º. Since A1; : : : ;An have size n and every pair of them shares
at most one element, H is linear with n edges, each of size n. By (EFL2), the vertices
of H can be coloured with at most n colours such that no edge contains two vertices
of the same colour. Since every edge has size n, every edge contains a vertex of every
colour, so this colouring satisfies (EFL3). To prove (EFL3))(EFL4), first note that
by possibly adding new vertices to each Gi , we may assume without loss of generality
that jV.Gi /j D n for each i 2 Œn�. Letting Ai D V.Gi / for each i 2 Œn�, (EFL3) implies
there is a colouring of

Sn
iD1 Ai with n colours so that all colours appear in each Ai . In

particular, if u; v 2 Ai , then u and v are assigned different colours, so this colouring
is also a proper vertex-colouring of

Sn
iD1 Gi , proving (EFL4).

Finally, to prove that the EFL conjecture follows from (EFL4), let H be a linear
hypergraph on n vertices, and for each v 2 V.H /, let Gv be the complete graph with
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vertex set ¹e 3 v W e 2 Hº. Since H is linear, each Gv for v 2 V.H / has at most
n vertices, and jV.Gu/ \ V.Gv/j � 1 for distinct u; v 2 V.H /. Since

S
v2V.H/ Gv

is in fact the line graph of H (see Figure 2), we have �0.H / D �.
S

v2V.H/ Gv/, so
(EFL4))(EFL1), as desired.

An interpretation of (EFL4) in terms of a scheduling problem was given by Had-
dad and Tardif [73].

4.2. Results

Recently, we confirmed the EFL conjecture for all but finitely many hypergraphs.

Theorem 4.1 (Kang, Kelly, Kühn, Methuku, and Osthus [96]). For every sufficiently
large n, every n-vertex linear hypergraph has chromatic index at most n.

The proof of Theorem 4.1 can be turned into a randomized polynomial-time algo-
rithm. The necessary modifications are discussed in detail in [98]. We also proved the
following “stability result,” predicted by Kahn [86].

Theorem 4.2 (Kang, Kelly, Kühn, Methuku, and Osthus [96]). For every ı > 0, there
exist n0; � > 0 such that the following holds for every n � n0. If H is an n-vertex
linear hypergraph such that

(i) H has maximum degree at most .1 � ı/n and

(ii) the number of edges of size .1 ˙ ı/
p

n in H is at most .1 � ı/n,

then the chromatic index of H is at most .1 � �/n.

The hypothesis (i) in Theorem 4.2 ensures that H does not too closely resemble
the degenerate plane or the complete graph, while (ii) ensures that H does not too
closely resemble a projective plane, since projective planes on n vertices have n edges
of size roughly

p
n.

Let us overview previous progress leading up to these results. Predating the EFL
conjecture, in 1948 de Bruijn and Erdős [43] showed that every intersecting n-vertex
linear hypergraph has at most n edges. Equivalently, the line graph of an n-vertex
linear hypergraph contains no clique of size greater than n. Seymour [132] proved that
every n-vertex linear hypergraph H contains a matching of size at least jH j=n, which
implies the de Bruijn–Erdős theorem, as an intersecting hypergraph has matching
number one. Kahn and Seymour [94] strengthened this result by proving that every
n-vertex linear hypergraph has fractional chromatic index at most n. (Recall that every
hypergraph H satisfies �0

f
.H / � �0.H /, so all of these results are relaxations of the

EFL conjecture.) Chang and Lawler [30] proved that every n-vertex linear hypergraph
has chromatic index at most d3n=2 � 2e.

Interestingly, results from both Section 2 and Section 3 have the following imme-
diate applications to the EFL conjecture, which are illustrative to note.
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(4.1) For every "; k > 0, there exists n0 such that the following holds for every
n � n0. If H is a k-bounded, n-vertex, linear hypergraph, then �0.H / �

n C "n and moreover, if every e 2 H satisfies jej � 3, then �0.H / � n.

(4.2) For every " > 0, there exist ı;n0 > 0 such that the following holds for every
n� n0 and k WD ı

p
n. If H is a k-uniform, n-vertex, linear hypergraph, then

�0.H / � "n.

(4.3) For every " > 0, there exist ı; n0 > 0 such that the following holds for
every n � n0 and k WD .1 � ı/

p
n. If H is a k-uniform, n-vertex, linear

hypergraph, then �0.H / � .1 � "/n.

To prove (4.1), it suffices to note that since H is linear, it has maximum degree at
most n=.mine2H jej � 1/ (assuming H has no size-one edges), whence (4.1) fol-
lows immediately from Theorem 2.4. To prove (4.2) and (4.3), it suffices to note that
since H is linear, the line graph L WD L.H / has maximum degree at most k.n � k/=

.k � 1/ � .1C 2=k/n and every pair of adjacent vertices in L has at most .k � 1/2 C

n=k common neighbours. Hence, (4.2) follows immediately from Theorem 3.4, and
(4.3) follows immediately from Theorem 3.5.

In 1992, a breakthrough by Kahn [84] confirmed the EFL conjecture asymptoti-
cally, by showing that every n-vertex linear hypergraph has chromatic index at most
n C o.n/. Note that this result strengthens the first part of (4.1) by showing that
the k-boundedness assumption is not necessary. Kahn’s argument in [84] relies on
a “restricted” list colouring result which strengthens the Pippenger–Spencer theorem
(Theorem 2.3) but is still weaker than Theorem 2.4, and thus can be viewed as a “step-
ping stone” towards Theorem 2.4. Moreover, Kahn’s argument from [84], combined
with Theorem 2.4 that he proved later in [87], can be adapted to prove that every n-
vertex linear hypergraph has list chromatic index at most n C o.n/, which we explain
further in Section 4.4. The second part of (4.1) was strengthened in 2019 by Faber and
Harris [54], who proved that for some absolute constant c, the EFL conjecture holds
if every edge has size at least three and at most c

p
n. In fact, the main result of [54]

also implies (4.2). Their argument relies on Theorem 2.4 and the result of Vu [144]
mentioned before Theorem 3.4. That the works [12,144] have applications to the EFL
conjecture was first observed by Faber [52], namely to prove a result similar to (4.2).

Nevertheless, none of the results prior to Theorem 4.1 confirmed the conjecture
for any nontrivial class of hypergraphs containing one of the extremal families. In
particular, the case of k-bounded (or even 3-bounded) hypergraphs was still open
(and was highlighted as a challenging problem by Kahn [86]). Similarly, the case of
hypergraphs in which all edges have size !.1/ was also still open. Both of these cases
turned out to be significant stepping stones towards the proof of Theorem 4.1, and
their proofs contain several of the main ideas. To highlight these ideas, we provide a
detailed sketch of the following two results in Section 5.
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Theorem 4.3. There exists n0 > 0 such that the following holds. If H is an n-vertex
linear hypergraph such that every e 2 H satisfies jej 2 ¹2; 3º and n > n0, then
�0.H / � n C 1.

Theorem 4.4. For every ı > 0, there exist n0; r; � > 0 such that the following holds.
If H is an n-vertex linear hypergraph where n > n0 and every e 2 H satisfies jej > r ,
then �0.H / � n. Moreover, if �0.H / > .1� �/n, then j¹e 2 H W jej D .1˙ ı/

p
nºj �

.1 � ı/n.

Notice that in Theorem 4.3, the bound on the chromatic index is one larger than
in the EFL conjecture. In Section 5.1, we prove Theorem 4.3 and briefly explain the
additional ideas required to prove the stronger bound of the EFL conjecture in this
case. The proof of Theorem 4.3 can also be adapted with little additional effort to
prove the same result for k-bounded hypergraphs, for any fixed k. We focus on the
case of 3-bounded hypergraphs as it is slightly cleaner yet complex enough to capture
many of the important ideas.

Note also that Theorem 4.4 implies Theorem 4.2 in the case when all edges of H

are sufficiently large. This “stability result” is needed to combine the arguments of
Theorems 4.3 and 4.4 to obtain Theorem 4.1. Roughly, we apply (a stronger version
of) Theorem 4.4 first to the “large” edges of H , and then we apply the arguments of
Theorem 4.3 to find a proper edge-colouring of the “small” edges of H that is com-
patible with the colouring of the “large” edges. If Theorem 4.4 only requires .1� �/n

colours, then only minor adaptations to the arguments of Theorem 4.3 are required,
which we briefly describe in Section 5.2 after proving Theorem 4.4. If Theorem 4.4
only guarantees a proper edge-colouring of the large edges of H with n colours, then
additional ideas are required, for which we refer the interested reader to [96] (which
in particular contains a sketch of the overall argument).

4.3. Open problems

We now discuss some open problems related to the EFL conjecture. First, it would
be interesting to characterize when equality holds in Theorem 4.1. As mentioned,
finite projective planes, degenerate planes, and complete graphs on an odd number
of vertices are extremal examples. In fact, any n-vertex hypergraph with more than
.n � 1/2=2 size-two edges has chromatic index at least n when n is odd, and any
hypergraph H obtained from Kn by replacing a complete subgraph with a single edge
e is linear and has chromatic index n if jV.H / n ej is odd (note that the degenerate
plane is obtained in this way). These may include all of the extremal examples.

Berge [16] and Füredi [62] independently posed the following beautiful conjec-
ture.
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Conjecture 4.5 (Berge [16], Füredi [62]). If H is a linear hypergraph with vertex set
V , then �0.H / � maxv2V j

S
e3v ej.

If true, Conjecture 4.5 implies the EFL conjecture, since every linear hypergraph
H satisfies maxv2V.H/ j

S
e3v ej � n. Note also that if GH is the graph obtained from

H by replacing each edge e 2 H with a complete graph on the vertices of e (some-
times called the shadow of H ), then j

S
e3v ej D �.GH / C 1. In particular, if H is

2-uniform, then GH D H , so Conjecture 4.5, if true, also implies Vizing’s theorem.
The fractional relaxation of Conjecture 4.5 is still open. The following related con-
jecture was posed by Füredi, Kahn, and Seymour [64]: if H is a multi-hypergraph
with vertex set V , then �0

f
.H / � maxv2V

P
e3v.jej � 1 C 1=jej/. This conjecture

may even hold for the chromatic index, which, if true, would generalize Shannon’s
theorem [133] and imply Conjecture 2.6 in the case k D t .

It is also natural to ask whether the EFL conjecture holds more generally for list
colouring. Faber [53] conjectured that it does, as follows.

Conjecture 4.6 (The “List” EFL conjecture [53]). Every n-vertex linear hypergraph
has list chromatic index at most n.

Conjecture 4.6 was recently confirmed by the authors [97] for the special case
of hypergraphs of maximum degree at most n � o.n/, and their result also implies
that in this case projective planes are the only extremal examples. The main result in
[97] also solves a conjecture of Erdős on the chromatic index of hypergraphs of small
codegree.

A related problem to Conjecture 4.6 is an algebraic strengthening of the EFL con-
jecture involving the Combinatorial Nullstellensatz, posed by Janzer and Nagy [80].

As mentioned, the arguments of Kahn [84, 87] can be adapted to prove that the
List EFL conjecture holds asymptotically. Kahn’s proof in [84] also implies that
Conjecture 4.5 holds asymptotically. In fact, assuming the sizes of the lists are poly-
logarithmic in n, it is easy to show that the argument can be adapted to work for list
colouring, as follows.

Theorem 4.7. For every " > 0, there exists n0 such that the following holds for every
n; D � n0. If H is an n-vertex linear hypergraph such that j

S
e3v ej � D for every

v 2V.H /, then �0.H /� .1C "/D. Moreover, if D � log2 n, then �0
`
.H /� .1C "/D.

For completeness, we prove Theorem 4.7 in Section 4.4. It would be interesting
to prove that the bound on the list chromatic index in Theorem 4.7 holds without the
assumption D � log2 n.

The next open problem is the following special case of a conjecture of Larman.
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Conjecture 4.8 (“Restricted” Larman’s conjecture). If H is an n-vertex intersecting
hypergraph, then there exists a decomposition of H into F1; : : : ; Fn � H such that
jF \ F 0j � 2 for every F; F 0 2 Fi and i 2 Œn�.

The full version of Larman’s conjecture was a combinatorial relaxation of Bor-
suk’s conjecture from 1933, which states that every set of diameter at most one in Rd

can be partitioned into at most d C 1 sets of diameter strictly less than one. How-
ever, in 1993, Kahn and Kalai [92] disproved Larman’s conjecture (and thus in turn
Borsuk’s conjecture). Nevertheless, they asked whether the special case of Larman’s
conjecture presented in Conjecture 4.8 still holds (see also [95]), in part because of
its resemblance to the EFL conjecture.

Finally, we note that Alon, Saks, and Seymour (see Kahn [85]) conjectured the
following “bipartite version” of (EFL4): if a graph G can be decomposed into k

edge-disjoint bipartite graphs, then the chromatic number of G is at most k C 1.
This conjecture was a generalization of the Graham–Pollak theorem [72] on edge
decompositions of complete graphs into bipartite graphs, which has applications to
communication complexity. However, it was disproved by Huang and Sudakov [77]
in a strong form, i.e., the conjectured bound on the chromatic number is far from
being true.

4.4. Asymptotic list colouring version of the Berge–Füredi conjecture

In this subsection, we prove Theorem 4.7. We only prove the bound on the list chro-
matic index when D � log2 n, as the proof of the general bound on the chromatic
index will be evident from the argument we provide here. Our proof closely follows
the approach of [84], but with a simple additional trick, and using Theorem 2.4 instead
of [84, Theorem 1.3].

Proof of Theorem 4.7. Let

1=n0 � 1=r0 � 1=r1 � 
 � " � 1;

let n � n0, let D � log2 n, and let H be an n-vertex linear hypergraph such that
j
S

e3v ej � D for every v 2 V.H /. It suffices to show that if C is an assignment of
lists C.e/ to every e 2 H , such that every e 2 H satisfies jC.e/j � .1 C "/D, then
H has a proper edge-colouring � such that �.e/ 2 C.e/ for every e 2 H . We assume
without loss of generality that jC.e/j D .1 C "/D ˙ 1.

Let � be a linear ordering of the edges of H satisfying e � f if jej > jf j, and
decompose H into the following spanning subhypergraphs:

� Hsml WD ¹e 2 H W jej � r1º,

� Hmed WD ¹e 2 H W r1 < jej � r0º, and

� Hlrg WD ¹e 2 H W jej > r0º.
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Since H is linear,

(4.4) every e 2 Hlrg satisfies j¹f 2 NH .e/ W f � eºj � jej.D � jej/=.jej � 1/ �

.1 C "=3/D,

(4.5) �.Hmed/�D=r1 (and thus, by Theorem 2.4, �0
`
.Hmed/� 2D=r1 � 
D=2),

and

(4.6) every e 2 Hsml satisfies jNH .e/ \ Hlrgj � r1D=r0 � "D=4.

Now we show there exists a set R �
S

e2H C.e/ such that

every e 2 H satisfies
ˇ̌
R \ C.e/

ˇ̌
D .1 ˙ 1=2/


ˇ̌
C.e/

ˇ̌
: (4.7)

Include every colour in R randomly and independently with probability 
 . By a stan-
dard application of the Chernoff bound, every e 2 H satisfiesˇ̌

R \ C.e/
ˇ̌
D .1 ˙ 1=2/


ˇ̌
C.e/

ˇ̌
with probability at least 1 � 2 exp.�
 jC.e/j=12/ � 1 � 2 exp.�
 log2 n=12/. Thus
by the Union Bound, (4.7) holds with high probability, and hence there indeed exists
such a set R.

Fix R satisfying (4.7), and for every e 2 H , let C 0.e/ WD C.e/ n R and R.e/ WD

C.e/ \ R. By (4.7),

(4.8) every e 2 Hlrg [ Hsml satisfies jC 0.e/j � .1 C "=2/D, and

(4.9) every e 2 Hmed satisfies jR.e/j � 
D=2.

Therefore, by (4.4) and (4.8), there exists a proper edge-colouring �lrg of Hlrg such
that �lrg.e/ 2 C 0.e/ for every e 2 Hlrg, and by (4.5) and (4.9), there exists a proper
edge-colouring �med of Hmed such that �med.e/ 2 R.e/ for every e 2 Hmed. Now for
each e 2 Hsml, let C 00.e/ WD C 0.e/ n ¹�lrg.f / W f 2 NH .e/\Hlrgº. By (4.6) and (4.8),
jC 00.e/j � .1 C "=4/D for every e 2 Hsml. Therefore, by Theorem 2.4, there exists a
proper edge-colouring �sml of Hsml such that �sml.e/ 2 C 00.e/ for every e 2 Hsml. By
combining �lrg, �med, and �sml, we obtain the desired colouring.

5. Proving the Erdős–Faber–Lovász conjecture
In this section, we give detailed sketches of the proofs of Theorems 4.3 and 4.4, the
special cases of the proof of the EFL conjecture in [96] discussed in Section 4.2.

5.1. Using n C 1 colours when edge-sizes are bounded

We begin with Theorem 4.3, which we restate for the readers’ convenience.

Theorem 4.3. There exists n0 > 0 such that the following holds. If H is an n-vertex
linear hypergraph such that every e 2 H satisfies jej 2 ¹2; 3º and n > n0, then
�0.H / � n C 1.
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Low degree: more flexibility High degree: more graph-like

Figure 3. Two partial edge-colourings using 4 colours (when n D 9, say). The uncoloured
edges form a graph of maximum degree at most 4 and can be coloured with at most 5 colours
by Vizing’s theorem.

In this subsection, we fix constants satisfying the hierarchy

0 < 1=n0 � � � � � 
 � " � 1; (5.1)

we let n � n0, and we let H be an n-vertex linear hypergraph such that every e 2 H

satisfies jej 2 ¹2; 3º. We assume without loss of generality that every pair of vertices
of H is contained in an edge, since otherwise we can add a size-two edge to H to
obtain an n-vertex linear hypergraph with chromatic index greater than or equal to
�0.H /. Let G be the graph with V.G/ WD V.H / and E.G/ WD ¹e 2 H W jej D 2º, and
let U WD ¹u 2 V.H / W dG.u/ � .1 � "/nº. Since every pair of vertices is contained in
precisely one edge, we have

n � 1 D 2
�
dH .v/ � dG.v/

�
C dG.v/

D 2dH .v/ � dG.v/ for every vertex v 2 V.H /: (5.2)

Our strategy to prove Theorem 4.3 is to reduce it to Vizing’s theorem. In order
to do that, it suffices to partially colour H with k < n colours (for some suitable
k � n=2) such that every edge of H nE.G/ is coloured and the remaining uncoloured
edges of G form a graph of maximum degree at most n � k (see Figure 3 and
Lemma 5.9). Roughly speaking, each colour class of this partial colouring will be
obtained by first constructing a large matching via the Rödl nibble and then extend-
ing it to cover (essentially) all of U . The latter step is of course necessary in order
to obtain an (uncoloured) leftover graph of small maximum degree. (It is also suffi-
cient since U consists of precisely those v 2 V.H / with dH .v/ � n.) On the other
hand, while this is the reason we need to pay special attention to the vertices in U , the
definition of U also means that we have many (graph) edges at our disposal, which
allow us to carry out the extension step mentioned above. To make this precise, we
introduce the following important definition.

Definition 5.1 (Perfect and nearly perfect coverage). Let M be a set of edge-disjoint
matchings in H , and let S � U .

� We say that M has perfect coverage of U if each M 2 M covers U .
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� We say that M has nearly perfect coverage of U with defects in S if

(i) each u 2 U is covered by at least jMj � 1 matchings in M and

(ii) each M2M covers all but at most one vertex in U , and U nV.M/�S .

More precisely, using k WD dn=2e C d
1=3ne colours, we will partially colour H

such that

� every edge of H n E.G/ is coloured,

� at least dG.v/=2� 2�n edges of G containing v are coloured for every v 2 V.G/,
and

� the colour classes have nearly perfect coverage of U (with defects in U ).

As we will show, these conditions ensure that the partial colouring can be extended
via Vizing’s theorem to all of H using at most n C 1 total colours.

The first step of the proof is to randomly construct a “reservoir” consisting of
edges of G (which will be used for the extension step), as in the following lemma.

Lemma 5.2 (Reservoir lemma). There exists R � E.G/ satisfying the following:

(R1) (Typicality) every v 2 V.H / satisfiesˇ̌
NR.v/ \ U

ˇ̌
D

ˇ̌
NG.v/ \ U

ˇ̌
=2 ˙ �n;ˇ̌

NR.v/ n U
ˇ̌
D

ˇ̌
NG.v/ n U

ˇ̌
=2 ˙ �nI

(R2) (Upper regularity) for every pair of disjoint sets S; T � V.H / with
jS j; jT j � �n, we haveˇ̌

EG.S; T / \ R
ˇ̌
� .1=2 C �/jS jjT j:

This lemma can be proved with a straightforward application of the Chernoff
Bound and the Union Bound, by considering the set R to be chosen randomly, where
each edge of G is included independently and with probability 1=2, so we omit the
details. For the remainder of the subsection, we fix R satisfying Lemma 5.2.

By (R1), every vertex v 2 V.H / satisfies dHnR.v/ D dH .v/ � dG.v/=2 ˙ 2�n.
Hence, by (5.2),

every vertex v 2 V.H / satisfies dHnR.v/ D
n � 1

2
˙ 2�n: (5.3)

Note that by (5.3), the Pippenger–Spencer theorem already implies �0.H n R/ �

.1=2 C 
1=3/n, but we need to prove the stronger result that there is a set of pairwise
edge-disjoint matchings M D ¹M1; : : : ; Mkº such that M1 [ � � � [ Mk � H n R and
M has nearly perfect coverage of U (with defects in U ).
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5.1.1. Absorption. To obtain these matchings with nearly perfect coverage of U ,
we combine the nibble method with an absorption strategy. We first find matchings in
H nR covering almost all of U using Theorem 2.14, and then for each such matching,
we find a vertex-disjoint matching in R covering (all but at most one of) the remaining
vertices of U . We extend the first matching by adding the matching in R, and in this
way we “absorb” the uncovered vertices of U . It will be convenient to work with the
following definitions, which will apply to the matchings produced by Theorem 2.14.

Definition 5.3 (Pseudorandom matchings). For a family F of subsets of V.H /, a
matching M in H is .
; �/-pseudorandom with respect to F if every S 2 F satisfies
jS n V.M /j D 
 jS j ˙ �n.

Definition 5.4 (Absorbable matchings). Let R0 � R, let S � U , and let M be a
matching in H n R. We say .M; R0; S/ is absorbable if

(AB1) jS j � min¹jU j; n=5º,

(AB2) �.R n R0/ � 
n, and

(AB3) either jV.M /j �
p


n, or M is .
; �/-pseudorandom with respect to
F .R0/ [ ¹U; Sº, where

F .R0/ WD
®
NR0.u/ \ U W u 2 U

¯
[
®
NR0.u/ n U W u 2 U

¯
:

If the former holds in (AB3), we say that .M; R0; S/ is absorbable by the smallness
of M , and if the latter holds, we say that .M; R0; S/ is absorbable by the pseudoran-
domness of M .

In the proof of Theorem 4.3, we apply our absorption argument successively
to each matching constructed by the nibble. Hence, in each step we will consider
absorbable tuples .M; R0; S/ where M was obtained via a nibble process, R0 consists
of reservoir edges not used in previous absorption steps, and S consists of vertices of
U that are not the “defect” from any of the previous absorption steps. Now we can
state our main absorption lemma, but first we note the following proposition, which
is used in its proof.

Proposition 5.5. Let 0 < 1=m0 � ˛ � 1, and let m � m0 be even. If H is an m-
vertex graph such that

(i) every v 2 V.H/ satisfies dH .v/ � 3m=8 and

(ii) every pair of disjoint sets S; T � V.H/ with jS j; jT j � ˛m satisfies
eH .S; T / � .1=2 C ˛/jS jjT j,

then H has a perfect matching.

To prove Proposition 5.5, one can consider a random equitable partition of V.H/

and apply Hall’s theorem.
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Lemma 5.6 (Absorption lemma). Let R0 � R, let S � U , and let N WD ¹N1; : : : ;Nkº

be a set of pairwise edge-disjoint matchings in H n R. If either

(i) k � �n and, for every i 2 Œk�, .Ni ; R0; S/ is absorbable by the pseudoran-
domness of Ni or

(ii) k � d
1=3ne and, for every i 2 Œk�, .Ni ; R0; S/ is absorbable by the small-
ness of Ni ,

then there is a set of pairwise edge-disjoint matchings M WD ¹M1; : : : ; Mkº in H

such that

� Mi � Ni and Mi n Ni � R0 for all i 2 Œk�, and

� M has nearly perfect coverage of U with defects in S , and moreover, if jU j <

3n=4, then M has perfect coverage of U .

Proof. Let F WD F .R0/ [ ¹U; Sº, and for each i 2 Œk�, let Ui WD U n V.Ni /. In both
cases, the proof proceeds roughly as follows. If jU j < n=100, then one-by-one for
each i 2 Œk�, we can greedily find a matching N abs

i of edges in R0, with precisely one
end in Ui and the other end not in V.Ni /, edge-disjoint from those previously chosen,
that covers Ui . Letting Mi WD Ni [ N abs

i for each i 2 Œk�, ¹M1; : : : ; Mkº has perfect
coverage of U , as desired. If jU j � n=100, then one-by-one for each i 2 Œk�, using
Proposition 5.5, we can find a matching N abs

i of edges in R0, with both ends in Ui ,
edge-disjoint from those previously chosen, that contain all but at most one vertex
of Ui . Moreover, we ensure that the vertices in each Ui not covered by N abs

i are
distinct, and if jU j < 3n=4, we can also augment each N abs

i with an edge of R0 that
has an end in V.H / n .U [ V.Ni / [ V.N abs

i // to cover U . Hence, ¹M1; : : : ; Mkº

has nearly perfect coverage of U with defects in S and perfect coverage of U if
jU j < 3n=4, where Mi WD Ni [ N abs

i for each i 2 Œk�, as desired. We only provide
a formal proof of the case when (i) holds and jU j � n=100, as this case is the most
challenging.

For each i 2 Œk�, let Gi be the graph with V.Gi / WD Ui and E.Gi / WD ¹e 2 R0 W

e � Uiº. Since Ni is .
; �/-pseudorandom with respect to F 3 U , we have

jUi j D 
 jU j ˙ �n and, in particular, jUi j � 
n=200: (5.4)

We claim that for each i 2 Œk� there exists ui 2 Ui and a matching N abs
i in Gi

such that the following holds. The vertices u1; : : : ; uk are distinct, the matchings
N abs

1 ; : : : ; N abs
k

are pairwise edge-disjoint, and N abs
i covers every vertex of Ui n ¹uiº

for each i 2 Œk�. Moreover, if jU j < 3n=4, then N abs
i covers every vertex of Ui for

each i 2 Œk�, and otherwise ui 2 S .
To that end, we choose distinct ui 2 Ui for each i 2 Œk�, as follows.

� If jU j � 3n=4, then by (R1) and (AB2), every u 2 Ui satisfies jNR0.u/ n U j �

.1=4 � "/n=2 � �n � 
n � n=10. By (AB3), since Ni is .
; �/-pseudorandom
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with respect to F � F .R0/ for each i 2 Œk�, this inequality implies that every
u 2 Ui satisfies jNGi

.u/ n U j � 
n=20. Since k � �n and � � 
 , by (5.4), we
can choose ui 2Ui one-by-one such that there is a matching ¹uivi W i 2 Œk�º where
vi 2 NGi

.ui / n U for each i 2 Œk�.

� Otherwise, (AB1) implies jS j � 
n, and since Ni is .
; �/-pseudorandom with
respect to F 3 S , by (AB3), we have jS n V.Ni /j � 
 jS j � �n � 
2n=2 > �n

for each i 2 Œk�. So we can choose ui 2 Ui \ S D S n V.Ni / one-by-one such
that they are distinct, as required.

Now let U 0
i WD Ui n ¹uiº if jUi j is odd. Otherwise, let U 0

i WD Ui . By the choice
of the vertices u1; : : : ; uk , it suffices to find pairwise edge-disjoint perfect matchings
N 0abs

i in Gi ŒU
0
i � for each i 2 Œk�. Indeed if jU j � 3n=4 and jUi j is odd, then N abs

i WD

N 0abs
i [ ¹uiviº satisfies the claim, and otherwise N abs

i WD N 0abs
i satisfies the claim.

We find these matchings one-by-one using Proposition 5.5. To this end, we as-
sume that for some ` � k, we have found such matchings N 0abs

i for i 2 Œ` � 1�, and
we show that there exists such a matching N 0abs

` , which proves the claim. Let G0
`
WD

G`ŒU 0
`
� n

S
i2Œ`�1� N 0abs

i . Since jU j � n=100, by (R1) and (AB2), every u2U satisfiesˇ̌
NR0.u/ \ U

ˇ̌
�

ˇ̌
NR.u/ \ U

ˇ̌
� 
n �

�
jU j � "n

�
=2 � 2
n � 49jU j=100: (5.5)

Note that N` is .
;�/-pseudorandom with respect to F �F .R0/[ ¹U º by (AB3).
Together with (5.5), this implies that every u 2 U 0

`
satisfies dG`ŒU 0

`
�.u/ � 
 jNR0.u/ \

U j � �n � 1 � 48
 jU j=100. Since ` � k � �n, we have

dG0
`
.u/ � dG`ŒU 0

i
�.u/ � �n � 47
 jU j=100: (5.6)

By (5.4), we also have

jU 0
`j ˙ 1 D jU`j D 
 jU j ˙ �n and, in particular, jU 0

`j � 5
 jU j=4: (5.7)

Combining (5.6) and (5.7), we have dG0
`
.u/ � 3jU 0

`
j=8 for every u 2 U 0

`
. So by (R2)

and (5.7), we can apply Proposition 5.5 to G0
`
, with 200�=
 as ˛, to obtain a perfect

matching N 0abs
` in G0

`
, as desired.

Therefore we have pairwise edge-disjoint matchings N abs
i in Gi , as claimed,

which by construction are edge-disjoint from N1; : : : ; Nk . For each i 2 Œk�, let Mi WD

Ni [ N abs
i and let M D ¹M1; : : : ; Mkº. Now Mi � Ni and Mi n Ni � R for each

i 2 Œk�, and M has nearly perfect coverage of U with defects in S , as desired. More-
over, if jU j < 3n=4, then M has perfect coverage of U , as desired.

5.1.2. Finding absorbable matchings. Lemma 5.6 allows us to apply absorption
for up to �n “pseudorandom” matchings at a time. We construct these collections of
matchings in the following lemma using Theorem 2.14 and the strategy described in
Section 2.3.
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Lemma 5.7 (Nibble lemma). Let D 2 Œn1=2; n�, and let H 0 � H be a spanning
subhypergraph such that for every w 2 V.H 0/ we have dH 0.w/ D .1 ˙

p
�/D. If

FV and FE are families of subsets in V.H 0/ and E.H 0/, respectively, such that
jFV j; jFE j � nlog n, then there exist pairwise edge-disjoint matchings N1; : : : ; ND in
H 0 such that

(N1) Ni is .
; �/-pseudorandom with respect to FV for every i 2 ŒD�, and

(N2) jF n
SD

iD1 Ni j � 
 jF j C � max.jF j; D/ for each F 2 FE .

Proof (sketch). First we embed H 0 into a 3-uniform linear hypergraph H 00 with
O.n4/ vertices, in which every vertex has degree .1 ˙

p
�/D. We then let H� WD

incD.H 00/ be the D-wise incidence hypergraph of H 00 (recall Definition 2.15). By
Observation 2.16 (a)–(c), H� is 4-uniform, linear, and every vertex of H� has degree
.1 ˙

p
�/D. Thus, we can apply Theorem 2.14 to H� with ı D 1=4 and an appro-

priately chosen F , determined by FV and FE , to obtain a matching M in H� such
that every S 2 F satisfies jS n V.M /j � � max¹jS j; Dº=2. Next, we “sparsify” M ,
by randomly and independently removing each edge with probability 
 , to obtain a
new matching N . For each i 2 ŒD�, we let Ni WD ¹e 2 H W 9f 2 N; f � ¹iº � eº.
By Observation 2.16 (d), the matchings N1; : : : ; ND are pairwise edge-disjoint, and
the pseudorandomness property of M guaranteed by Theorem 2.14 ensures that (N1)
and (N2) are satisfied.

We will use Lemmas 5.7 and 5.6 to construct dn=2e pairwise edge-disjoint match-
ings with nearly perfect coverage of U such that the remaining edges of H n R

comprise a subhypergraph of small maximum degree. We apply the following lemma
to this subhypergraph to decompose it into matchings which are absorbable by “small-
ness.”

Lemma 5.8 (Leftover colouring lemma). If H 0 � H n R is a spanning subhyper-
graph such that �.H 0/ � 
n, then there exist pairwise edge-disjoint matchings
N1; : : : ; Nk where k � d
1=3ne such that

(L1) jV.Ni /j �
p


n for every i 2 Œk�, and

(L2) H 0 D
Sk

iD1 Ni .

Proof. Let D WD d
ne. For every e 2 H , since jej � 3, we have
P

v2e dH 0.v/ � 3D.
Thus, �0.H / � 3D C 1, so there exist pairwise edge-disjoint matchings M1; : : : ;

M3DC1 such that
S3DC1

iD1 Mi D H 0. Let ` WD d
�1=2e C 1. For each i 2 Œ3D C 1�,
there exist pairwise edge-disjoint matchings Ni;1; : : : ;Ni;` such that

S`
jD1 Ni;j D Mi

and jV.Ni;j /j �
p


n for each j 2 Œ`�. By reindexing,
S3DC1

iD1 ¹Ni;1; : : : ; Ni;`º is the
desired set of matchings, since .3D C 1/` � 
1=3n.
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5.1.3. Proof of Theorem 4.3. By combining Lemmas 5.6, 5.7, and 5.8, we prove the
following lemma, which effectively reduces Theorem 4.3 to Vizing’s theorem.

Lemma 5.9 (Main colouring lemma). There exists H 0 � H and a proper edge-
colouring of H 0 using dn=2e C d
1=3ne colours such that

� H 0 � H n R and

� the colour classes have nearly perfect coverage of U .

Moreover, H n H 0 is a graph and satisfies �.H n H 0/ � n � dn=2e � d
1=3ne.

Proof. The proof proceeds in two steps.

Step 1. Using Lemmas 5.7 and 5.6, find a set M of dn=2e pairwise edge-disjoint
matchings M1; : : : ; Mdn=2e such that the following holds:

(M1) M has nearly perfect coverage of U , and moreover, if jU j < 3n=4, then M

has perfect coverage of U ,

(M2) �.H n .R [
Sdn=2e

iD1 Mi // � 
n, and

(M3) �.R \
Sdn=2e

iD1 Mi / � 
n.

First we partition H n R into K WD d1=�e pairwise edge-disjoint hypergraphs
H1; : : : ;HK such that

SK
iD1 Hi DH nR, and every vertex has degree .1=2˙3�/n=K

in Hi for each i 2 ŒK�. (To show that the desired partition exists, consider a partition
chosen uniformly at random which, by (5.3), will satisfy the vertex degree condition
with high probability.) We iteratively apply alternating applications of Lemmas 5.7
and 5.6 to each Hi .

Now, for each i 2 ŒK�, we choose ni to be either bdn=2e=Kc or ddn=2e=Ke

such that
PK

jD1 nj D dn=2e, and we partition the set Œdn=2e� into K disjoint parts
I1; : : : ; IK such that jIi j D ni . Note that ni � �n and every vertex in Hi has degree
.1 ˙ 7�/ni for every i 2 ŒK�.

For j 2 ŒK� [ ¹0º, let us define the following inductive properties, where Mk WD

¹Mc W c 2 Ikº is a set of matchings in H for each k 2 Œj �.

(M1j ) For every k 2 Œj �, Mc � Hk [ R for every c 2 Ik and, moreover, the
matchings in

Sj

kD1
Mk are pairwise edge-disjoint.

(M2j ) For every w 2 V.H /,ˇ̌̌̌
ER.w/ \

[
k2Œj �

[
M2Mk

M

ˇ̌̌̌
� .
 C 3�/

X
k2Œj �

nk;

ˇ̌̌̌
ESj

kD1
Hk

.w/ n
[

k2Œj �

[
M2Mk

M

ˇ̌̌̌
� .
 C 3�/

X
k2Œj �

nk :
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(M3j ) If jU j < 3n=4, then
Sj

kD1
Mk has perfect coverage of U . Otherwise,Sj

kD1
Mk has nearly perfect coverage of U with defects in U .

Using induction on j , we will show that there exist sets of matchings M1; : : : ;

MK satisfying (M1j )–(M3j ) for j D K. Note that (M1j )–(M3j ) trivially hold for
j D 0. Let i 2 ŒK�, and suppose that M1; : : : ; Mi�1 satisfy (M1j )–(M3j ) for j D

i � 1. Our goal is to find a collection Mi of ni pairwise edge-disjoint matchings in
H satisfying (M1j )–(M3j ) for j D i .

Let Ri WD R n
Si�1

kD1

S
M2Mk

M , let Si WD U n
Si�1

kD1

S
M2Mk

.U n V.M //, and
let W WD F .Ri /[ ¹U;Siº, where F .Ri / WD ¹NRi

.u/\U W u 2 U º [ ¹NRi
.u/ nU W

u 2 U º.
Now we apply Lemma 5.7 with Hi , W , ¹EHi

.w/ W w 2 V.H /º, and ni playing
the roles of H 0, FV , FE , and D, respectively to obtain a set Ni WD ¹Nc W c 2 Iiº of
ni pairwise edge-disjoint matchings in Hi such that the following hold.

(N’1) For every c 2 Ii , Nc is .
; �/-pseudorandom with respect to W .

(N’2) For every w 2 V.H /, dHin
S

c2Ii
Nc

.w/ � .
 C 2�/ni .

Now we show that for every c 2 Ii , .Nc ; Ri ; Si / is absorbable by pseudorandom-
ness of Nc , as follows.

� By (M3j ) for j D i � 1, if jU j < 3n=4, then Si D U , and otherwise jSi j �

jU j �
Pi�1

kD1 nk � n=4 � 1, so (AB1) holds.

� By (M2j ) for j D i � 1, since .
 C 3�/dn=2e � 
n, (AB2) holds.

� By (N’1), Nc is .
; �/-pseudorandom with respect to W so (AB3) holds, as
required.

Therefore we can apply Lemma 5.6 to obtain a set Mi WD ¹Mc W c 2 Iiº of ni

pairwise edge-disjoint matchings in H such that the following hold.

� For every c 2 Ii , Mc � Nc , and Mc n Nc � Ri , and consequently (M1j ) holds
for j D i .

� By (N’2), for every w 2 V.H /, jEHi
.w/ n

S
c2Ii

Mcj � .
 C 2�/ni . Moreover,
again by (N’2), all but at most ni � .dHi

.w/ � dHin
S

c2Ii
Nc

.w// � .
 C 3�/ni

of the matchings in Ni cover w, so jERi
.w/ \

S
c2Ii

Mcj � .
 C 3�/ni . Hence,
(M2j ) holds for j D i .

� If jU j < 3n=4, then Mi has perfect coverage of U , and, otherwise, Mi has nearly
perfect coverage of U with defects in Si � U . Hence, (M3j ) holds for j D i .

Therefore, by induction, there exist sets of matchings M1; : : : ; MK such that for
every i 2 ŒK�, Mi satisfies (M1j )–(M3j ) for j D i , as claimed. Now M WD

SK
iD1 Mi

satisfies (M1)–(M3). Indeed, by (M1j ) and (M3j ) for j D K, M satisfies (M1), and
by (M2j ) for j D K, M satisfies (M2) and (M3), since .
 C 3�/dn=2e � 
n.



D. Y. Kang et al. 808

Step 2. Using Lemmas 5.8 and 5.6, find a set M0 of d
1=3ne pairwise edge-disjoint
matchings M 0

1; : : : ; M 0

d
1=3ne
such that the following holds:

(M’1)
S

M2M M \
S

M 02M0 M 0 D ¿,

(M’2) M [ M0 has nearly perfect coverage of U , and

(M’3) H n R �
S

M2M M [
S

M 02M0 M 0.

By (M2) and Lemma 5.8 applied with H n .R [
S

M2M M/ playing the role
of H 0, there exists a set N 0 WD ¹N 0

1; : : : ;N 0

d
1=3ne
º of pairwise edge-disjoint matchings

such that

(L’1) jV.N 0
i /j �

p

n for every i 2 Œd
1=3ne� and

(L’2) H n .R [
S

M2M M/ D
Sd
1=3ne

iD1 N 0
i .

Now we show that for every i 2 d
1=3ne, .N 0
i ; R0; S 0/ is absorbable by smallness of

N 0
i , where R0 WD R n

S
M2M M and S 0 WD U n

S
M2M.U n V.M //. Indeed,

� by (M1), if jU j<3n=4, then S 0DU , and otherwise jS 0j�jU j� dn=2e�n=4� 1,
so (AB1) holds,

� by (M3), �.R n R0/ D �.R \
S

M2M M/ � 
n, so (AB2) holds, and

� by (L’1), (AB3) holds.

Therefore we can apply Lemma 5.6 to obtain a set M0 WD ¹M 0
1; : : : ; M 0

d
1=3ne
º of

pairwise edge-disjoint matchings in H such that the following hold:

� for every i 2 Œd
1=3ne�, M 0
i � N 0

i and M 0
i n N 0

i � R0, and

� M0 has nearly perfect coverage of U with defects in S 0

Therefore, by the choice of R0, M0 satisfies (M’1), by the choice of S 0, M0 satisfies
(M’2), and by (L’2), M0 satisfies (M’3), as desired.

Now let H 0 WD
S

M2M M [
S

M 02M0 M 0, assign colour c to each edge in Mc

for every c 2 Œdn=2e�, and assign colour c D dn=2e C i to each edge in M 0
i for

every i 2 Œd
1=3ne�. By (M’1), we have a proper edge-colouring of H 0 using at
most dn=2e C d
1=3ne colours, as required. By (M’3), H 0 � H n R, as desired,
and by (M’2), the colour classes M [ M0 of H 0 have nearly perfect coverage of
U , as desired. Since H 0 � H n R, it follows that H n H 0 � R is a graph. Since
M [ M0 has nearly perfect coverage of U , every vertex w 2 U satisfies dHnH 0.w/ �

.n � 1/ � .dn=2e C d
1=3ne � 1/ D n � dn=2e � d
1=3ne, and by (R1), every vertex
w 2 V.H / n U satisfies dHnH 0.w/ � .1 � "/n=2 C 2�n � n � dn=2e � d
1=3ne.
Hence, �.H n H 0/ � n � dn=2e � d
1=3ne, as desired.

Now we can immediately deduce Theorem 4.3.

Proof of Theorem 4.3. By Lemma 5.9, there exists H 0 � H such that �0.H 0/ �

dn=2e C d
1=3ne and H n H 0 is a graph with �.H n H 0/ � n � dn=2e � d
1=3ne.
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By Vizing’s theorem, �0.H n H 0/ � �.H n H 0/ C 1 � n � dn=2e � d
1=3ne C 1.
Therefore

�0.H / � �0.H 0/ C �0.H n H 0/ � n C 1;

as desired.

We conclude this subsection by briefly discussing how Theorem 4.3 can be im-
proved to show that �0.H / � n. First, we note that the same argument combined with
Vizing’s theorem proves �0.H / � n if at least one of the following holds:

(a) the colour classes of H 0 in Lemma 5.9 have perfect coverage of U or

(b) every v 2 U which is a “defect vertex” of some colour class of H 0 in Lemma
5.9 satisfies dG.v/ < n � 1.

Indeed, in either case, �.H n H 0/ � n � k � 1 for k D dn=2e C d
1=3ne, and since
�0.H 0/ � k, we have �0.H / � �0.H 0/ C �0.H n H 0/ � k C .n � k � 1 C 1/ D n,
as desired.

Recall that Lemma 5.6 actually guarantees (a) if jU j < 3n=4. In fact, this argu-
ment even works as long as jU j � .1 � 10"/n. Moreover, the proof of Lemma 5.9
also guarantees (b) if j¹v 2 U W dG.v/ < n � 1ºj � .1=2 C 2
1=3/n. In particu-
lar, with only minor modifications to the proof of Lemma 5.9, we can prove either
(a) or (b) unless U consists of nearly all of the vertices of H and nearly half of
the vertices of H have degree n � 1. Note that this means that H resembles the
complete graph, one of the extremal examples for the EFL conjecture. In this case,
additional ideas are needed to prove that �0.H n H 0/ D �.H n H 0/, which then
ensures that �0.H / � �0.H 0/C �0.H nH 0/ � k C .n� k/ D n, as desired. To obtain
this improved bound on �0.H n H 0/, we modify the above approach to ensure that
H n H 0 is quasirandom and then apply an edge-colouring result of Glock, Kühn, and
Osthus [68]. (This edge-colouring result in turn is deduced from the theorem of Kühn
and Osthus [114] that dense even-regular robustly expanding graphs have a Hamilton
decomposition. This deduction is based on the fact that a �-regular graph of even
order with a Hamilton decomposition has chromatic index �.)

5.2. Proving the EFL conjecture when all edges are large
This subsection is devoted to the proof of Theorem 4.4, which we restate here.

Theorem 4.4. For every ı > 0, there exist n0; r; � > 0 such that the following holds.
If H is an n-vertex linear hypergraph where n > n0 and every e 2 H satisfies jej > r ,
then �0.H / � n. Moreover, if �0.H / > .1� �/n, then j¹e 2 H W jej D .1˙ ı/

p
nºj �

.1 � ı/n.

If � is a linear ordering of the edges of a hypergraph H , for each e 2H , we define
N�

H
.e/ WD ¹f 2 NH .e/ W f � eº and d�

H
.e/ WD jN�

H
.e/j. We omit the subscript H

when it is clear from the context. For each e2H , we also let H�e WD ¹f 2H W f �eº.
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For every n-vertex hypergraph H and W � H , the normalized volume of W is
volH .W / WD

P
e2W

�
jej
2

�ı�
n
2

�
. If H is linear, then volH .W /2 Œ0;1� for every W �H .

As in (4.4), if H is an n-vertex linear hypergraph such that jej> r for every e 2H ,
then every e 2H satisfies d�

H
.e/� .1C 2=r/n if � is size-monotone-decreasing (i.e.,

satisfying e � f if jej > jf j). In the following key lemma, we showed that we can
either obtain an improved bound on d�

H
.e/ (by modifying the ordering if necessary)

or find a highly structured set W � H . In particular, the edges of W have similar size,
and W has large volume. The fact that the edges have similar size will allow us to
colour W efficiently via Theorem 3.5, unless W closely resembles a projective plane.

Lemma 5.10 (Reordering lemma [96]). Let 0 < 1=r � �; 1=K where � < 1, K � 1,
and 1 � � � 7�1=4=K > 0. If H is an n-vertex linear hypergraph where every e 2 H

satisfies jej � r , then there exists a linear ordering � of the edges of H such that at
least one of the following holds.

(5.10:a) Every e 2 H satisfies d�.e/ � .1 � �/n.

(5.10:b) There is a set W � H such that

(W1) maxe2W jej � .1 C 3�1=4K4/ mine2W jej and

(W2) volH .W / � .1���7�1=4=K/2

1C3�1=4K4 .

Moreover, if e� is the last edge of W , then

(O1) for all f 2 H such that e� � f and f ¤ e�, we have d�.f / �

.1 � �/n and

(O2) for all e; f 2 H such that f � e � e�, we have jf j � jej.

We do not provide a proof of Lemma 5.10, but we briefly sketch the idea. Begin-
ning with a size-monotone-decreasing ordering �, we “reorder” � as follows. Let e�

be the last edge of H that does not satisfy (5.10:a). If there exists f 2 N�.e�/ such
that jNH .f /\H�e� j � .1� �/n� 1, then let �0 be the ordering obtained from � by
moving f to be the successor of e�. If � satisfies (O1) and (O2), then �0 does as well,
and, moreover, jH�0e� j < jH�e� j. Thus, by iterating this argument, we may assume
that there is no such f 2 N�.e�/. Moreover, since we started with a size-monotone-
decreasing ordering, we may also assume that e� satisfies (O1) and (O2). Now a
double-counting argument shows that W WD ¹f 2 H�e� W jf j � .1 C 3�1=4K/je�jº

satisfies (W2).
By applying Lemma 5.10 twice, we obtain the following.

Lemma 5.11. Let 0 < 1=r � � � 1. Let H be an n-vertex linear hypergraph such
that every e 2 H satisfies jej > r . If �0.H / > .1 � �/n, then there exists a partition
of H into three spanning subhypergraphs, H1, W , and H2 such that

(P1) maxe2W jej � .1 C 4�1=4/ mine2W jej,
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(P2) volH .W / � 1 � 4�1=5, and

(P3) jej � maxf 2W jf j for all e 2 H2,

and a linear ordering � of the edges of H such that

(FD1) every e 2H1 satisfies d�

H
.e/�.1�2�/n and f �e for every f 2H2 [W ,

and

(FD2) d�

H
.e/ � n=2000 for all e 2 H2.

Proof. We apply Lemma 5.10 twice and combine the resulting orderings to obtain the
desired ordering � of H . First, we apply Lemma 5.10 to H with 2� and 1 playing the
roles of � and K, respectively, to obtain an ordering �1. If �1 satisfies (5.10:a), then
�0.H / < .1� �/n, and so we assume that (5.10:b) holds. Let W be the set W obtained
from (5.10:b), let e� be the last edge of W in �1, and let H1 WD H n H�1e� . Let f �

be the edge of W which comes first in �1, and let H2 WD H n ¹e 2 H W f � �1 eº. By
the choices of � and K, and since � � 1, we have maxe2W jej � .1C 4�1=4/je�j and
volH .W / � .1 � �1=5/3 � 1 � 4�1=5, and so W satisfies (P1) and (P2), as desired.
Also by (O2) of (5.10:b), we may assume without loss of generality that every e 2 H

satisfying f � �1 e �1 e� is in W , and so H is partitioned into H1, W , and H2, as
required, and H2 satisfies (P3), as desired.

Now we reapply Lemma 5.10 to H2 and show that the resulting ordering sat-
isfies (FD1) and (FD2), as follows. Apply Lemma 5.10 with H2, 1 � 1=2000, and
20002 playing the roles of H , � , and K, respectively, to obtain an ordering �2.
Since W \ H2 D ¿, we have volH .W /C volH .H2/� 1. Thus, �2 satisfies (5.10:a),
because (5.10:b) would imply that there is a set W 0 � H2 disjoint from W with
volH .W 0/ > 4�1=5, contradicting (P2). Combine �1 and �2 to obtain an ordering �

of H where

� if f 2 H1 [ W , then e � f for every e 2 H�1f , and

� if f 2 H2, then e � f for every e 2 H
�2f
2 .

Since H1 and �1 satisfy (O1) of (5.10:b) with � D 2� , (FD1) holds, and since H2

and �2 satisfy (5.10:a) with � D 1 � 1=2000, (FD2) holds, as desired.

To prove Theorem 4.4, we apply Lemma 5.11 and consider two cases depending
on the size of the edges in W . In either case, by (FD1), it suffices to show that �0.H2 [

W / � n. When the edges in W have size close to or larger than
p

n, we apply the
following lemma to colour H2 [ W . As its proof covers the case when H is close
to a projective plane, the argument is quite delicate and we refer the reader to [96,
Lemma 5.1] for a proof.

Lemma 5.12. Let 0 < 1=n0 � ı � 1, and let n � n0. If H is an n-vertex linear
hypergraph where every e 2 H satisfies jej � .1 � ı/

p
n, then �0.H / � n.
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When the edges in W have size bounded away from
p

n, we apply the following
lemma [96, Corollary 6.5], which we prove using Theorem 3.5, to colour W .

Lemma 5.13. Let 0 < 1=n0, 1=r � ˛ � � < 1, let n � n0, and suppose that r �

.1 � �/
p

n. If H is an n-vertex linear hypergraph such that every e 2 H satisfies
jej 2 Œr; .1 C ˛/r�, then �0.H / � .1 � �=500/n.

Proof. Let � WD .1C ˛/r.n� r/=.r � 1/, and let L WD L.H /. For every edge e 2 H ,
there are at most .1 C ˛/r.n � r/ pairs of vertices ¹u; vº of H where u … e and
v 2 e. Thus, since H is linear and every edge has size at least r , we have �.L/ � �.
Similarly, if e; f 2 H share a vertex, thenˇ̌

NL.e/ \ NL.f /
ˇ̌
� n=.r � 1/ C .1 C ˛/2r2

� .1 � 5�=6/n:

Thus, every v 2 V.L/ satisfies e.LŒN.v/�/ � �.1 � 5�=6/n=2 � .1 � 5�=6/
�

�
2

�
.

Therefore, by Theorem 3.5, �0.H / D �.L/ � .1 � 5�=.6e6//� � .1 � �=500/n, as
desired.

Now we can combine Lemmas 5.11–5.13 to prove Theorem 4.4.

Proof of Theorem 4.4. We may assume without loss of generality that ı � 1, and we
let 0 < 1=n0 � 1=r � � � ı. We assume that �0.H / > .1 � �/n or else there is
nothing to prove.

Apply Lemma 5.11 to obtain a partition of H into H1, W , and H2 satisfying
(P1)–(P3) and an ordering � of the edges of H satisfying (FD1) and (FD2), and let
r 0 WD mine2W jej. We assume that

r 0 �
p

n=.1 � 4�/; (5.8)

as otherwise the fact that volH .H2 [ W / � 1 and (P3) together would imply e.H2 [

W / � .1 � 2�/n. Together with (FD1), this fact would imply that every e 2 H satis-
fies d�

H
.e/ � .1 � 2�/n, in which case �0.H / � .1 � �/n, a contradiction.

We now consider two cases: r 0 < .1 � ı/
p

n and r 0 � .1 � ı/
p

n. In the former
case, we derive a contradiction by showing �0.H / � .1 � �/n, and in the latter case,
we prove that �0.H / � n and j¹e 2 H W jej D .1 ˙ ı/

p
nºj � .1 � ı/n.

Case 1. r 0 < .1 � ı/
p

n.
Let � WD1�r 0=

p
n. Since r 0 <.1�ı/

p
n, we have � >ı. By (P1) and Lemma 5.13

with r 0 and 4�1=4 playing the roles of r and ˛, respectively, we have �0.W / �

.1 � �=500/n.
Now we claim that �0.H2/ � �n=1000. To that end, let k WD e.H2/. If k �

�n=1000, then we can simply assign each edge of H2 a distinct colour and the claim
holds; so we assume that k > �n=1000. Since � > ı, we have k > �n=1000 > 2ı2n. By
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(P3), every edge of H2 has size at least r 0, so we have volH .H2/ � k.r 0 � 1/2=n2. On
the other hand, by (P2), and since H2 \ W D ¿, we have volH .H2/ � 4�1=5 � ı3.
Thus, 2ı2n < k � ı3n2=.r 0 � 1/2, so r 0 < ı1=4

p
n. Therefore � > 1000=1001. Now

by (FD2), we can properly colour H2 greedily in the ordering provided by � using at
most n=2000 C 1 � �n=1000 colours, as claimed.

Since �0.H2/ � �n=1000 and �0.W / � .1 � �=500/n, there is a proper edge-
colouring of H2 [W using at most .1� �=1000/n � .1� �/n colours, and by (FD1),
we can extend such a colouring to H1 greedily without using any additional colours,
contradicting that �0.H / > .1 � �/n.

Case 2. r 0 � .1 � ı/
p

n.
By (P3) and Lemma 5.12, there is a proper edge-colouring of H2 [ W using

at most n colours, and as before, by (FD1), we can extend such a colouring to H1

greedily without using any additional colours. Hence, �0.H / � n, as desired.
Since r 0 � .1 � ı/

p
n, by (P1) and (5.8), the edges in W have size .1 ˙ ı/

p
n.

In fact, the edges in W have size at most .1 C ı2/
p

n, so by (P2), since volH .W / �

1 � ı2, we have e.W / � volH .W /.n � 1/=.1 C ı2/2 � .1 � ı/n, as desired.

We conclude by briefly discussing how to combine the arguments of Theorems
4.3 and 4.4 to obtain Theorem 4.1. First, we merge the hierarchy used in the proof of
Theorem 4.4 with (5.1) and also introduce constants r1, r0, ˇ, and � into the hierarchy,
letting

1=n0 � 1=r0 � � � 1=r1 � ˇ � � � 
 � " � � � � � ı � 1:

As in the proof of Theorem 4.7, we decompose H into three spanning subhypergraphs
Hsml WD ¹e 2 H W jej � r1º, Hmed WD ¹e 2 H W r1 < jej � r0º, and Hlrg WD ¹e 2 H W

jej > r0º. We apply a stronger version of Theorem 4.4 to Hlrg [ Hmed in which

(a) every colour class either covers at most ˇn vertices or consists of a single
edge, and

(b) at most 
n colours are used to colour Hmed.

This strengthening of Theorem 4.4 enables us to modify the proof of Lemma 5.9 to
find a colouring of some H 0 satisfying Hsml n R � H 0 � Hsml compatible with the
colouring of Hlrg [Hmed. As in the proof of Theorem 4.3, we can ensure that H nH 0

is a graph of maximum degree at most n � dn=2e � d
1=3ne; however, Vizing’s theo-
rem does not guarantee a colouring of H n H 0 that avoids conflicts with Hlrg [ Hmed.
To that end, we modify Lemma 5.9 further to colour H 0 with k WD d.1� �/ne colours.
If Hlrg [ Hmed can be coloured with at most .1 � �/n colours, then we can colour
H n H 0 with n � k colours that are not used on Hlrg [ Hmed (either using Viz-
ing’s theorem or the more involved argument discussed at the end of Section 5.1). If
Hlrg [ Hmed requires more than .1 � �/n colours, then we need a different approach,
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using the fact that in this case we know that j¹e 2 H W jej D .1 ˙ ı/
p

nºj � .1 � ı/n;
i.e., that H is close to a projective plane. See [96] for the full proof.
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[49] P. Erdős, On the combinatorial problems which I would most like to see solved. Combi-
natorica 1 (1981), no. 1, 25–42 Zbl 0486.05001 MR 602413
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[126] V. Rödl and A. Ruciński, Dirac-type questions for hypergraphs—a survey (or more prob-
lems for Endre to solve). In An Irregular Mind, pp. 561–590, Bolyai Soc. Math. Stud.
21, János Bolyai Math. Soc., Budapest, 2010 Zbl 1221.05255 MR 2815614

[127] V. Rödl and L. Thoma, Asymptotic packing and the random greedy algorithm. Random
Structures Algorithms 8 (1996), no. 3, 161–177 Zbl 0856.05074 MR 1605397

[128] I. Z. Ruzsa, An infinite Sidon sequence. J. Number Theory 68 (1998), no. 1, 63–71
Zbl 0927.11005 MR 1492889

[129] H. J. Ryser, Neuere Probleme der Kombinatorik. In Vorträge über Kombinatorik, pp.
69–91, Oberwolfach, 24–29 July (1967)

[130] D. Saxton and A. Thomason, Hypergraph containers. Invent. Math. 201 (2015), no. 3,
925–992 Zbl 1320.05085 MR 3385638

[131] P. D. Seymour, Some unsolved problems on one-factorizations of graphs. In Graph
Theory and Related Topics, edited by J. A. Bondy and U. S. R. Murty, pp. 367–368,
Academic Press, New York, 1979

[132] P. D. Seymour, Packing nearly disjoint sets. Combinatorica 2 (1982), no. 1, 91–97
Zbl 0494.05015 MR 671149

[133] C. E. Shannon, A theorem on coloring the lines of a network. J. Math. Physics 28 (1949),
148–151 Zbl 0032.43203 MR 0030203

[134] J. B. Shearer, A note on the independence number of triangle-free graphs. Discrete Math.
46 (1983), no. 1, 83–87 Zbl 0516.05053 MR 708165

[135] J. B. Shearer, A note on the independence number of triangle-free graphs. II. J. Combin.
Theory Ser. B 53 (1991), no. 2, 300–307 Zbl 0753.05074 MR 1129557

[136] J. B. Shearer, On the independence number of sparse graphs. Random Structures Algo-
rithms 7 (1995), no. 3, 269–271 Zbl 0834.05030 MR 1369066

[137] J. Spencer, Uncrowded graphs. In Mathematics of Ramsey Theory, pp. 253–262, Algo-
rithms Combin. 5, Springer, Berlin, 1990 Zbl 0738.05052 MR 1083606

[138] J. Spencer, Asymptotic packing via a branching process. Random Structures Algorithms
7 (1995), no. 2, 167–172 Zbl 0847.60068 MR 1369062

[139] S. K. Stein, Transversals of Latin squares and their generalizations. Pacific J. Math. 59
(1975), no. 2, 567–575 Zbl 0302.05015 MR 387083

[140] W. T. Tutte, The factorization of linear graphs. J. London Math. Soc. 22 (1947), 107–111
Zbl 0029.23301 MR 23048

[141] S. A. Vanstone, D. R. Stinson, P. J. Schellenberg, A. Rosa, R. Rees, C. J. Colbourn,
M. W. Carter, and J. E. Carter, Hanani triple systems. Israel J. Math. 83 (1993), no. 3,
305–319 Zbl 0783.05023 MR 1239064

[142] V. G. Vizing, The chromatic class of a multigraph. Cybernetics 1 (1965), 32–41

[143] V. H. Vu, New bounds on nearly perfect matchings in hypergraphs: higher codegrees do
help. Random Structures Algorithms 17 (2000), no. 1, 29–63 Zbl 0953.05056
MR 1768848

https://zbmath.org/?q=an:1221.05255&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2815614
https://zbmath.org/?q=an:0856.05074&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1605397
https://zbmath.org/?q=an:0927.11005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1492889
https://zbmath.org/?q=an:1320.05085&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3385638
https://zbmath.org/?q=an:0494.05015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=671149
https://zbmath.org/?q=an:0032.43203&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0030203
https://zbmath.org/?q=an:0516.05053&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=708165
https://zbmath.org/?q=an:0753.05074&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1129557
https://zbmath.org/?q=an:0834.05030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1369066
https://zbmath.org/?q=an:0738.05052&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1083606
https://zbmath.org/?q=an:0847.60068&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1369062
https://zbmath.org/?q=an:0302.05015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=387083
https://zbmath.org/?q=an:0029.23301&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=23048
https://zbmath.org/?q=an:0783.05023&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1239064
https://zbmath.org/?q=an:0953.05056&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1768848


Graph and hypergraph colouring via nibble methods 823

[144] V. H. Vu, A general upper bound on the list chromatic number of locally sparse graphs.
Combin. Probab. Comput. 11 (2002), no. 1, 103–111 Zbl 0991.05041 MR 1888186

[145] N. C. Wormald, The differential equation method for random graph processes and greedy
algorithms. In Lectures on Approximation and Randomized Algorithms, pp. 73–155, Pol-
ish Scientific Publishers, Warsaw, 1999 Zbl 0943.05073

[146] Y. Zhao, Recent advances on Dirac-type problems for hypergraphs. In Recent Trends in
Combinatorics, pp. 145–165, IMA Vol. Math. Appl. 159, Springer, Cham, 2016
Zbl 1354.05100 MR 3526407

Dong Yeap Kang
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
d.y.kang.1@bham.ac.uk

Tom Kelly
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
t.j.kelly@bham.ac.uk

Daniela Kühn
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
d.kuhn@bham.ac.uk

Abhishek Methuku
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
abhishekmethuku@gmail.com

Deryk Osthus
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
d.osthus@bham.ac.uk

https://zbmath.org/?q=an:0991.05041&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1888186
https://zbmath.org/?q=an:0943.05073&format=complete
https://zbmath.org/?q=an:1354.05100&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3526407
mailto:d.y.kang.1@bham.ac.uk
mailto:t.j.kelly@bham.ac.uk
mailto:d.kuhn@bham.ac.uk
mailto:abhishekmethuku@gmail.com
mailto:d.osthus@bham.ac.uk




© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/10

From matrix pivots to graphs in surfaces:
Exploring combinatorics through partial duals

Iain Moffatt

Abstract. To what extent is a graph determined by the trees in it? What changes if we ask this
question not for graphs in the abstract, but graphs that are embedded on surfaces? By consid-
ering these questions we will see how a collection of seemingly disjoint topics in mathematics
are brought together through the idea of a partial dual.

1. Introduction

Consider two graphs G and H each of which is drawn on a plane so that its edges
do not intersect (or consider two spherical polyhedra if you prefer). Then G and H
are geometric duals if the vertices in one correspond to the faces in the other, and
the edges between vertices in one correspond to the edges between faces in the other.
(See Figure 2 for an example.)

Now consider two graphs G and H (not drawn on the plane this time). Each con-
tains a set of spanning trees, these are the maximal acyclic subgraphs contained in
them. Then G and H are algebraic duals if their sets of spanning trees correspond
through complementation (i.e., the edge set of a spanning tree of one is the comple-
ment of the edge set of a spanning tree of the other).

It is a classical result of H. Whitney that a graph has an algebraic dual if and only
if it can be drawn on the plane without its edges crossing, in which case the algebraic
dual is exactly a geometric dual. This sets up a fundamental relationship between
planarity, duality, and spanning trees.

But what happens if the graphs cannot be drawn on the plane in this way? It is
this situation we examine here. We shall see that it is inexorably linked to graphs
drawn on surfaces, duals and partial duals, matroids and delta-matroids, principal
pivot transforms of matrices, and pivot-minors of simple graphs.

2020 Mathematics Subject Classification. Primary 05C10; Secondary 05B35.
Keywords. Delta-matroid, dual, embedded graph, matroid, partial dual, pivot, quasi-tree,
ribbon graph, tree.
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This exposition is aimed at a general mathematical reader. A familiarity with
elementary graph theory and with orientable surfaces is assumed. We note that graphs
here may have multiple edges (edges that have the same ends) and loops (an edge with
both ends being the same vertex). For simplicity we shall only consider orientable
surfaces, but (almost) everything here can be extended to non-orientable surfaces.

2. Graphs and their spanning trees

We start with a classical question with a well-known answer. Recall that a graph is
a tree if it is connected and contains no cycles. A spanning tree of a graph G is a
subgraph that is a tree and that contains every vertex of G. (For example, the bold
edges in the left and right images in Figure 2 define spanning trees.) Only connec-
ted graphs have spanning trees, and to simplify terminology here we shall generally
restrict ourselves to connected graphs. This restriction does not result in any real loss
of generality. This is since most of our results extend trivially and obviously to non-
connected graphs by considering the maximal spanning forests of a graph, which are
the subgraphs that restrict to a spanning tree in each connected component.

Our initial interest is in the question:

Is a graph determined by its spanning trees?

There are a few ways to interpret this question resulting in different answers. Here
we are interested in what happens if the only information you have about any given
spanning tree is the edges that are in it. But since loops will never appear in a spanning
tree, we will also need to know if there are any loops. So our precise question is: If
you know the edge set of each spanning tree of a connected graph as well as any loops
in the graph, do you then know the graph? It is not hard to see that the answer is no.
For example, consider the two non-isomorphic trees on three edges. But this “no” is
really a “more or less, yes.”

Consider the moves of vertex identification, vertex cleaving, and Whitney twisting
illustrated in Figure 1. Vertex identification is a move that identifies two vertices that
lie in different connected components of a graph, and vertex cleaving is the inverse
operation. For Whitney twisting, suppose u1 and v1 are vertices in a graph G1, and
u2 and v2 are vertices in a graph G2. Construct a graph G by identifying u1 and
u2, and v1 and v2. Construct also a graph G0 by identifying u1 and v2, and v1 and
u2. Then we say G and G0 are related by Whitney twists. Two graphs are said to
be 2-isomorphic if one can be obtained from the other through isomorphism, vertex
identification, vertex cleaving, and Whitney twisting.

Whitney’s 2-isomorphism theorem [57] provides an answer to our question. It
states that if you know the edge set of each spanning tree of a graph as well as any
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G1 G2
identification
�������!

 �������
cleaving

G1 G2

G1 G2 Whitney
 ���!

twisting

G1

G2

Figure 1. The moves for 2-isomorphism: vertex identification, vertex cleaving, and Whitney
twisting.

loops in the graph, then you know the graph up to 2-isomorphism. Conversely, the col-
lections of edge sets of spanning trees and loops in two 2-isomorphic graphs are equal.
(We shall give a cleaner statement of Whitney’s 2-isomorphism theorem below.)

Thus the spanning tree structure determines the graph up to some simple moves.
In particular, it completely determines 3-connected graphs (ones in which there are
three internally disjoint paths between each pair of vertices) up to isomorphism as the
moves cannot be applied to such graphs. It turns out that many graph properties and
results do not distinguish between 2-isomorphic graphs, and so can be understood in
terms of spanning tree structure. In fact, considering the spanning tree structure of a
graph, rather than the graph itself, turns out to be an extremely fruitful thing to do.

The spanning trees in a connected graph G have many nice standard properties.
For example, every non-loop edge of G is in some spanning tree; all spanning trees
have the same number of edges; and if G has n vertices, a spanning subgraph is a
spanning tree if and only if it is connected and has exactly n � 1 edges. Spanning
trees also satisfy an exchange property: if T and T 0 are spanning trees and e is an
edge in T but not T 0, then there is always some edge f in T 0 but not T such that
removing e from T then adding f results in another spanning tree. (A reader may
spot that this exchange property also applies to the bases of a vector space.) These
properties on the collection of spanning trees lead us to matroids.

Definition 2.1. Let E be a finite set, and let B be a non-empty collection of subsets
of E. Then the pair M WD .E; B/ is called a matroid if for distinct A; B 2 B and for
all a 2 A n B there exists b 2 B n A such that .A n a/ [ b 2 B.

By the properties of trees mentioned above, if G is a connected graph with edge
set E and B is the set consisting of all edge sets of its spanning trees, then C.G/ WD

.E; B/ is a matroid. It is called the cycle matroid of G.

Example 2.2. The graph on the left of Figure 2 has cycle matroid .E; B/ with E D

¹1; 2; 3; 4; 5; 6; 7º and B D ¹¹1; 2; 3; 5º; ¹1; 2; 4; 5º; ¹1; 3; 4; 5º; ¹2; 3; 4; 5º; ¹1; 3; 5; 7º;

¹1; 4; 5; 7º; ¹2; 3; 5; 7º; ¹2; 4; 5; 7ºº.
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A plane graph G Placing vertices
and edges of G�

1
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6

7

Its geometric dual G�

Figure 2. Forming the geometric dual G� of a plane graph G.

Our initial question of whether the spanning trees determine the graph then be-
comes a matroid theoretic one: If you have a cycle matroid, can you determine the
graph it came from? We can rephrase our previous answer as follows. (For the state-
ment, matroid isomorphism is defined in the obvious way.)

Theorem 2.3 (Whitney’s 2-isomorphism theorem). Let G and H be connected
graphs. Then C.G/ and C.H/ are isomorphic matroids if and only if G and H are
2-isomorphic.

Whitney’s 2-isomorphism theorem nails down the connection between cycle
matroids and graphs. Cycle matroids give rise to a class of matroids, but almost all
matroids are not cycle matroids [41]. Nevertheless, cycle matroids are important in
matroid theory and graph theory. On one hand, insights from matroid theory can lead
to new results about graphs. On the other hand, graph theory can serve as an excellent
guide for studying matroids. A good introduction to the mutually enriching relation-
ship between graph theory and matroid theory can be found in [42].

Bibliographic remarks. The topics discussed in this section are classical. An excel-
lent resource for this material is Chapter 5 of J. Oxley’s book [43]. Whitney’s 2-
isomorphism theorem dates from the 1930s and is due to H. Whitney, [57] (see
also [50, 54]), and Theorem 2.3 is a modern formulation in terms of matroids.

Our motivational question was whether a graph is determined by its spanning
trees or its cycle matroid. We restrict discussion here to characterising graphs that
have the same cycle matroid, ignoring the algorithmic question about constructing
the graphs from the cycle matroid. Discussion of the latter problem can be found
in [53] (for what will follow, the equivalent problem for quasi-trees can be answered
through the circle graph recognition methods of [30, 34, 46]).

H. Whitney introduced matroids in the 1930s (see [58]) to capture ideas of de-
pendence common to linear algebra and graph theory. There are many ways to define
matroids and Definition 2.1 provides their definition in terms of “bases.” The cycle
matroid C.G/ can also be defined through the cycles in a graph (using a “circuit
definition” of a matroid), hence the name. Matroid theory is a major topic of study in
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combinatorics. Our encounter with matroids here is extremely brief and we refer the
reader to the books [43, 55] for more on them.

A spectacular illustration of the mutually enriching relationship between graph
theory and matroid theory can be found in J. Geelen, B. Gerards, and G. Whittle’s
recent and, at the time of writing, unpublished result that, for any finite field, the class
of matroids that are representable over that field is well-quasi-ordered by the minor
relation. Their results generalise N. Robertson and P. Seymour’s graph minors pro-
ject where it is shown that graphs are well-quasi-ordered by the minor relation [45].
In [31] Geelen, Gerards, and Whittle wrote “it would be inconceivable to prove a
structure theorem for matroids without the Graph Minors Structure Theorem as a
guide.”

3. The appearance of topology

We want to make contact with topological graph theory, which is the study of graphs
embedded in surfaces. We shall do this by considering duals. Suppose M D .E;B/ is
a matroid. Define a collection of sets B� by taking the complement of each member
of B, so B� WD ¹E n B W B 2 Bº. It is not hard to check that the pair .E; B�/ also
forms a matroid. This is called the dual of M and is denoted by M �.

Example 3.1. The dual of the matroid in Example 2.2 has B� D ¹¹4; 6; 7º; ¹3; 6; 7º;

¹2; 6; 7º; ¹1; 6; 7º; ¹2; 4; 6º; ¹2; 3; 6º; ¹1; 4; 6º; ¹1; 3; 6ºº.

If G is a graph and C.G/ its cycle matroid, then the dual matroid C.G/� is always
a matroid. However, it is not always the cycle matroid of a graph. If C.G/ D .E; B/,
the graph G is connected, and C.G/� D .E; B�/, then B consists of the edge sets of
all the spanning trees of G. For C.G/� to be the cycle matroid of a graph we require
the existence of some graph H on the edge set E such that the sets in B� define
exactly the spanning trees of H . That is, we require H to have the property that T is
a spanning tree of G if and only if E n T is a spanning tree of H . Such a graph H , if
it exists, is called an algebraic dual (or abstract dual or combinatorial dual) of G. If
it does exist, it may or may not be unique.

The existence of algebraic duals is tied to the topological properties of a graph.
A connected plane graph consists of a connected graph drawn, or embedded, in the
sphere (or, equivalently, the plane) in such a way that vertices are distinct points and
edges only intersect at their ends. (So each vertex is a point on the sphere, each edge
is a simple curve between these points, and these curves do not intersect except when
their ends share a vertex.) Plane graphs are equivalent if there is a homeomorphism of
the sphere taking one graph drawing to the other (i.e., inducing a graph isomorphism).
A plane graph divides the sphere into regions called faces. For example, with the page
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representing a portion of the sphere, the left-hand image of Figure 2 shows a plane
graph with four faces. A connected graph is said to be planar if it can be drawn in
the sphere in the above way. (So a plane graph is drawn on the sphere, and a planar
graph can be drawn on the sphere.) Inequivalent plane graphs can be drawings of
the same planar graph. These definitions are extended to non-connected graphs by
drawing each graph component in its own copy of the sphere.

Plane graphs have another type of dual. If G is a plane graph, then its geometric
dual, denoted G�, is the plane graph obtained from G by placing one vertex in each
of its faces, and embedding an edge of G� between two of these vertices whenever
the faces of G they lie in meet at an edge. Edges of G� are embedded so that they
cross only the corresponding edge of G. An example is given in Figure 2.

For a plane graph G D .V; E/, Euler’s formula gives that jV j � jEj C jF j D 2,
where jF j is the number of faces. Thus if A is the edge set of a spanning tree in G,
then jV j � jAj D 1 and so jF j � jE n Aj D 1 giving that E n A is the edge set of a
spanning tree of G�. As .G�/� D G, it follows that geometric duals of plane graphs
are algebraic duals, and so for plane graphs C.G/� D C.G�/.

The converse is also true: if G and H are algebraic duals, then the correspondence
between their spanning tree structures guarantees that there are plane graphs G and H
that are embeddings (i.e., drawings) of G and H that are geometric duals, H D G�.
Collecting all this together gives the following result of Whitney [56].

Theorem 3.2. Let G be a connected graph with cycle matroid C.G/. Then the dual
matroid C.G/� is the cycle matroid of a graph if and only if G is planar. Moreover, if
G is planar, then

C.G/� D C.G�/;

where G is any plane embedding of G, and G� its geometric dual.

In this theorem we see how the spanning tree (or cycle matroid) structure of a
graph captures its topological properties. However, Theorem 3.2 illustrates that many
of these properties are tied to planarity. What if you do not want to restrict yourself to
plane or planar graphs? Let us examine what changes when you consider graphs on
surfaces other than the plane.

As noted above, for expositional simplicity we shall only consider orientable sur-
faces. However (almost) everything here extends to non-orientable surfaces (with
varying degrees of difficulty) and details of how to do this can be found in the refer-
ences. We will often omit the work “orientable”, although we shall add it when it is
crucial. We recall that the classification of surfaces states that every closed orientable
surface is homeomorphic to a sphere with handles (or n-torus). Every orientable sur-
face with boundary is homeomorphic to a sphere with handles with the interiors of
some discs removed from it. In both cases the number of handles is its genus.
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(b) A ribbon graph

Figure 3. Realisations of the same embedded graph.

An embedded graph G is a graph drawn on a closed surface † in such a way
that edges only intersect at their ends, and the drawing divides † into regions that are
homeomorphic to discs. (As in the plane case, each vertex is a point on the surface,
each edge is a simple curve between these points, and these curves do not intersect
except when their ends share a vertex.) The regions of † determined by the graph
drawing are called faces of G. Thus a plane graph is a graph embedded in the sphere.
We note that if G has more than one component, then each component of the graph
lies in its own surface. Figure 3a shows a graph embedded in a torus. It has two faces.

The geometric dual G� of an embedded graph G is formed just as in the plane
case by placing vertices in the faces and drawing edges between these vertices when
the faces meet at an edge. Note that G and G� are embedded in the same surface.

Suppose G is a connected embedded graph and G� its geometric dual. Since the
edge sets of G and G� correspond, we may assume that a graph and its geometric
dual have the same edge set E. The operation � W A 7! E n A sends edge sets of G
to edge sets of G�, or equivalently the set of spanning subgraphs of G to the set of
spanning subgraphs of G�.1 (As an example, the bold edges in Figure 2 indicate a pair
of spanning trees identified under this map.) Theorem 3.2 and the characterisation of
planar graphs in terms of algebraic duals depend upon the fact that if G (and so G�)
is a plane graph, then � sends spanning trees to spanning trees, and this happens if
and only if G is a plane graph.

1At this point we are glossing over the issue of exactly how a subgraph of G should be
considered as an embedded graph. The difficulty is that restricting the drawing of G to the
edges and vertices in the subgraph may result in faces that are not discs, in which case the
surface will need to be altered, by removing any redundant handles, to obtain an embedded
graph. This issue will be resolved in the next section by switching to the language of ribbon
graphs. For the present discussion it is safe, although not quite correct, to think of restricting
the drawing of G to the edges and vertices in the subgraph.
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Figure 4. Neighbourhoods of the subgraphs on ¹2; 4; 6º, ¹1; 2; 4; 5; 6º, and ¹2; 3; 4; 5; 6º.

Suppose that G is embedded in an arbitrary closed surface † and A is the edge
set of one of its spanning trees T . Let �.T / be the spanning subgraph of G� on
the edge set �.A/. Then it is easy to see (e.g., by drawing a picture; as an example
consider the bold edges in the middle image of Figure 2) that † can be written as the
union of a neighbourhood of T and a neighbourhood of �.T /. Since T is a spanning
tree, its neighbourhood is a disc. Thus the neighbourhood of �.T / consists of a once-
punctured copy of †. In particular, it is a subgraph whose neighbourhood has exactly
one boundary component. This is the property that is important to us.

A spanning subgraph of an embedded graph G is said to be a spanning quasi-
tree if its neighbourhood has exactly one boundary component. Notice that every
spanning tree is a spanning quasi-tree, although in general an embedded graph will
have many other spanning quasi-trees. The genus of a quasi-tree is the genus of its
neighbourhood considered as a surface with boundary. (We shall reformulate these
definitions in the next section.) If G is in a surface † of genus n, then it will have
spanning quasi-trees of genus 0; 1; 2; : : : ; n, and the spanning trees are just those of
genus zero. The map � then sends a tree to a quasi-tree of maximal genus n. More
generally, � will send a spanning quasi-tree of genus g to a spanning quasi-tree of
genus n � g.

Example 3.3. For the embedded graph shown in Figure 3a, each of the sets ¹2; 4; 6º,
¹1; 2; 4; 5; 6º, and ¹2; 3; 4; 5; 6º induces a spanning quasi-tree. The neighbourhoods
are shown in Figure 4. The set ¹2; 4; 6º defines a spanning quasi-tree of genus zero,
and the other two sets induce spanning quasi-trees of genus one.

We started with the question of whether the spanning trees in a graph determine
the graph itself. Whitney’s theorem provided a complete answer to this question, and
Theorem 3.2 tied together duality, spanning tree structure, and planarity. If instead
we want to work with non-plane embedded graphs, rather than looking at spanning
trees, we should consider quasi-trees. Thus we are led to ask:

Is an embedded graph determined by its spanning quasi-trees?
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Just as in the spanning trees case we formalise this by asking: If you know the edge set
of each spanning quasi-tree of an embedded graph, as well as any edges that appear
in no quasi-trees, then do you then know the embedded graph?

Again the immediate answer is no. For example, if G is a plane graph, then its set
of spanning quasi-trees is exactly its set of spanning trees, and we already know that
these do not necessarily determine a plane embedding. In this plane case, however,
Whitney’s 2-isomorphism theorem will provide a way to characterise all plane graphs
that have the same set of spanning quasi-trees. What if G is not embedded in the
plane? In this case Whitney’s 2-isomorphism theorem does not help.

Bibliographic remarks. Dual matroids date back to H. Whitney’s foundational work
on matroids [58]. The construction of a geometric dual is classical and can be seen
in J. Kepler’s work on dual polyhedra (see p. 181 of his Harmonices mundi dating
from 1619). Algebraic duals, as well as their connection with planarity and geometric
duals, are due to H. Whitney [56]. Theorem 3.2 provides a modern statement of his
results.

Embedded graphs are standard objects in graph theory. They have several altern-
ative names and formulations including combinatorial maps, rotation systems, ribbon
graphs, graph encoded maps, and so on. Excellent introductions to embedded graphs
and topological graph theory are the works of J. Gross and T. Tucker [35], and
B. Mohar and C. Thomassen [40].

4. Partial duals

Duality tied spanning tree structure to planarity. For non-plane embedded graphs and
quasi-trees we consider a generalisation of geometric duality called partial duality.
For our discussion of partial duals it is convenient to describe embedded graphs as
ribbon graphs.

A ribbon graph is a structure that arises by taking a regular neighbourhood of a
graph embedded in a surface, but without throwing away the vertex-edge structure of
the graph; see Figure 3. We can think of them informally as “graphs whose vertices
consist of discs, and whose edges consist of ribbons,” as in Figure 3b. They can be
defined formally as follows.

Definition 4.1. A ribbon graph G D .V; E/ is a surface with boundary represented
as the union of two sets of discs, a set V of vertices, and a set E of edges such
that (1) the vertices and edges intersect in disjoint line segments; (2) each such line
segment lies on the boundary of precisely one vertex and precisely one edge; (3) every
edge contains exactly two such line segments.
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Ribbon graphs are equivalent to embedded graphs. Above we described how a
ribbon graph can be obtained from an embedded graph. In the other direction, given
a ribbon graph, the classification of surfaces with boundary ensures there is a unique
way (up to homeomorphism) to embed it in a closed surface by “filling in the holes.”
This gives an embedding of the ribbon graph in a closed surface from which it is
clear how to obtain the embedded graph. Two ribbon graphs are equivalent if there is
a homeomorphism from one to the other that sends vertices to vertices and edges to
edges. Thus ribbon graphs are equivalent precisely when their corresponding embed-
ded graphs are. Thus any result about ribbon graphs is a result about embedded
graphs, and vice versa.

Graph theory terminology is extended to ribbon graphs in the obvious way. A
ribbon subgraph H of G is a ribbon graph obtained from G by removing some of its
vertices and edges. It is spanning if it has the same vertices as G. The spanning ribbon
subgraph obtained from G by deleting an edge e is denoted by Gne. Ribbon graphs
have topological parameters in addition to their graph theoretic ones. Here we defined
ribbon graphs to be orientable meaning that they are orientable when considered as a
surface with boundary. (Recall that for expositional simplicity we restricted ourselves
to orientable surfaces, and therefore to orientable ribbon graphs.) In general, ribbon
graphs may be non-orientable as well, and at times we will comment on this case. The
genus of a ribbon graph is its genus as a surface. A connected ribbon graph is plane
if it has genus 0 (i.e., if it corresponds to a graph on a sphere). We are often interested
in the boundary components of a ribbon graph, which are just the components of
its boundary when it is considered as a surface with boundary. A ribbon graph that
has exactly one vertex is called a bouquet. These form an important class of ribbon
graphs.

Geometric duality has a very neat description in terms of ribbon graphs. If G D
.V; E/ is a ribbon graph, then its geometric dual G� is the ribbon graph formed by
taking one disc for each boundary component of G (these will form the vertices of the
dual); for each boundary component of G (which is topologically a circle), identify
it with the boundary of one of these discs (resulting in a surface without boundary);
finally, in the resulting surface, delete the interiors of the vertex discs in V . This
results in the ribbon graph G�. The discs that were added during the construction
form the vertices of G�, and the edges of G form the edges of G� but the parts of
their boundary that are and are not attached to vertices are switched. This construction
is illustrated in Figure 5.

It is not too hard to see our two constructions for geometric duals agree. The
construction of G� in terms of embedded graphs is a global construction in the sense
that it applies to the whole of G at the same time. However, once you have switched
to the language of ribbon graphs, the construction is easily adapted to give a local
construction, where local here means that you can form the geometric dual G� at
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(a) G (b) Sewing in discs (c) Removing original
vertices to get G�

(d) Redrawing G�

Figure 5. Forming the geometric dual of a ribbon graph.

(a) G D .V; E/ with
the boundary of .V;A/

highlighted

(b) Adding discs to the
boundary of .V; A/

(c) Deleting vertices in
V gives GA

(d) Redrawing
GA

Figure 6. Forming a partial dual GA where A consists of the two non-loop edges of G.

individual edges. Then, with this local construction in hand, we can form the dual at
just some of edges while leaving the remaining edges alone. This observation leads
to the surprising idea of partial duals.

Partial duals arise by modifying the description of geometric duality for ribbon
graphs so that the dual is formed with respect to only a subset of edges. Let G D
.V;E/ be a ribbon graph and A�E. The partial dual of G with respect to A, denoted
by GA, is the ribbon graph formed as follows. Consider the spanning ribbon subgraph
.V; A/ as a subset of G. The boundary of .V; A/ defines a set of closed curves on G.
For each of these closed curves, take a disc (which will form a vertex of GA) and
identify the curve and the boundary of this disc. Finally, delete the interior of each
vertex disc in V . The resulting ribbon graph is GA. This construction is illustrated in
Figure 6.
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The following properties of partial duals follow directly from the definition: G�D

GE.G/; G; D G; .GA/B D G.A[B/n.A\B/ and so partial duals can be formed one
edge at a time; partial duality acts disjointly on the connected components of a ribbon
graph; and GA is orientable if and only if G is. Another useful fact for us is that if
H is a spanning ribbon subgraph of G with exactly one boundary component (for
example, if H is a spanning tree) and A is the edge set of H, then GA is a bouquet
(i.e., has exactly one vertex). This is because the vertices of GA correspond to the
boundary components of H (just as the vertices of G� correspond to the boundary
components of G).

Bibliographic remarks. As with embedded graphs, ribbon graphs are standard ob-
jects in graph theory. They arise in several settings and under different names includ-
ing fat graphs, dessins d’enfants, and reduced band decompositions. However, it
should be remembered that they are just one of the many descriptions of embed-
ded graphs. J. Ellis-Monaghan and I. Moffatt’s book [29] offers an introduction to
ribbon graphs and partial duals. Although we described partial duals in terms of
ribbon graphs here, they can, of course, be described in other the models for embed-
ded graphs. In particular, their local nature is prominent when they are defined in
the languages of arrow presentations [18], graph encoded maps [28], or permutation
models [20].

Partial duality was introduced by S. Chmutov in [18] in order to reconcile the
various results in [19, 20, 26] which constructed the Jones polynomial of a knot or
link as an evaluation of the Bollobás–Riordan polynomial of a ribbon graph. The
Bollobás–Riordan polynomial of [4, 5] is a graph polynomial that offers an analogue
of the Tutte polynomial [52] for embedded graphs. The connections between ribbon
graphs and knot theory extend Thistlethwaite’s well-known connection [48] between
the Tutte polynomial of a plane graph and the Jones polynomial of an alternating link;
a connection that was integral to his proof of the Tait conjectures. Chmutov used the
term “generalized duality” in his original paper. Its adopted name ‘partial duality’ was
suggested to the author of the present article by D. Archdeacon and has been used in
all subsequent papers. Partial duality has since entered topological graph theory as
a topic of study in its own right and is proving to be a fundamental operation on
embedded graphs.

5. Ribbon graphs and their spanning quasi-trees
In the language of ribbon graphs, a quasi-tree is a ribbon graph that has exactly one
boundary component. A ribbon subgraph H is a spanning quasi-tree of G if it is
a quasi-tree that contains all of the vertices of G. A ribbon graph of genus g has a
spanning quasi-tree of genus 0;1; : : : ;g, and its spanning trees are exactly its spanning
quasi-trees of genus zero.
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Recall from Section 2 that the set of spanning trees in a graph satisfies an ex-
change property: if T and T 0 are spanning trees and e is an edge in T but not T 0,
then there is always some edge f in T 0 but not T such that removing e from T then
adding f results in another spanning tree. This exchange property does not hold for
spanning quasi-trees in general.

However, spanning quasi-trees satisfy a more general symmetric exchange prop-
erty. If H and H0 are spanning quasi-trees and e is an edge that is in exactly one of
H or H0, then there is always an edge f that is in exactly one of H0 or H such that
adding or removing each of e and f from H results in a spanning quasi-tree. Proving
that this symmetric exchange property holds does require a little work. A proof can be
found in [22] or implicitly in [12], or see [38, Figure 16] for a pictorial explanation.
We shall return to this symmetric exchange property in the next section.

In Section 2 we used matroids to capture the spanning tree structure of a graph. A
minor modification of the definition of a cycle matroid gives a way to similarly record
the spanning quasi-trees in a ribbon graph.

Definition 5.1. Let G D .V; E/ be a connected ribbon graph, and let

F WD ¹F � E W F is the edge set of a spanning quasi-tree of Gº:

We call D.G/ WD .E; F / the delta-matroid of G.

Example 5.2. Let G be the ribbon graph of Figure 3b. Then D.G/ D .E; F / where
ED¹1;2; : : : ;6º and F D¹¹2;4;5º;¹2;4;6º;¹3;4;5º;¹3;4;6º;¹4;5;6º;¹1;2;3;4;5º;

¹1; 2; 3; 4; 6º; ¹1; 2; 4; 5; 6º; ¹2; 3; 4; 5; 6ºº.

Euler’s formula gives that if H is an orientable quasi-tree with v vertices and
e edges, then .1 � v C e/=2 gives the genus of H (or half its genus if H is non-
orientable). As the spanning quasi-trees of G have the same number of vertices, this
relates the sizes of the sets in F to the topology of the spanning quasi-trees. In partic-
ular, it follows that every set in F has the same parity (i.e., is of odd or even size) if
and only if G is orientable, that the genus of G is one half of the differences in sizes
between the largest and smallest sets in F , and that for G connected, D.G/ D C.G/

if and only if G is plane.
Rephrased in terms of ribbon graphs, the map � from Section 3 sends a spanning

ribbon subgraph .V; A/ of G D .V; E/ to the spanning ribbon subgraph .V �; E n A/

of G�. Moreover, this map sends a spanning quasi-tree of genus g to a spanning
quasi-tree of genus n � g where n here is the genus of G. Thus if D.G/ D .E; F /

and we define F � WD ¹E n F W F 2 F º, then for any ribbon graph G we have that
D.G�/ D .E; F �/. The main insights for quasi-tree structure, however, come from
partial duals rather than geometric duals.
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Partial duality preserves the quasi-tree structure of a ribbon graph. Let GD .V;E/

be a ribbon graph and B � E. We shall relate the quasi-trees of G to those of its
partial dual GB . For this recall that the symmetric difference X 4 Y of sets X and Y

is .X [ Y / n .X \ Y /. Then A � E is the edge set of a quasi-tree of G if and only if
A4B is the edge set of a quasi-tree of GB . It is not hard to see why this is the case—
essentially it follows from the observation that the boundary components of G¹eº and
Gne correspond. In terms of the delta-matroids, this means that if D.G/ D .E; F /

and we set F B WD ¹B 4 F W F 2 F º, then D.GB/ D .E; F B/.
The significance of this result is that if we wish to study the spanning quasi-

trees of G, we may equivalently study the spanning quasi-trees of any of its partial
duals GB . The partial duals of a ribbon graph can have quite different properties
from each other and from the original ribbon graph. This means that we have some
ability to choose the ribbon graphs to work with without losing any generality, which
is something we did not have much scope to do when working with geometric duals
alone. A specific instance of this principle, and one that we shall make much use of
here, is that every ribbon graph has a partial dual that is a bouquet (i.e., a one-vertex
ribbon graph). Thus we only ever need to consider the spanning quasi-tree structure
of bouquets. But to make use of this, we need a better understanding of D.G/.

Bibliographic remarks. The definition and approach to the delta-matroids of ribbon
graphs that we follow here is due to C. Chun, I. Moffatt, S. Noble, and R. Rueck-
riemen [22, 23]. However, these delta-matroids are equivalent to A. Bouchet’s delta-
matroids of maps from [12]. There Bouchet associated a delta-matroid with the
4-regular medial graph of an embedded graph. The delta-matroid arises from its
Eulerian circuits, and the Eulerian circuits correspond to the quasi-trees of the embed-
ded graph. That D.G/ determines genus and orientability can be deduced from [12]
through the correspondence ([22] gives the form stated here). The behaviour of D.G/

under partial duals is from [22].

6. Delta-matroids and quasi-tree structure

Recall from Section 3 that the dual of a matroid M D .E; B/ is M � D .E; B�/

where B� D ¹E n B W B 2 Bº. We can write B� as ¹E 4 B W B 2 Bº, and, in light
of the above, it becomes obvious that we can form a partial dual of a matroid by
replacing E with a subset X of E. So we can define a partial dual of M D .E; B/ as
M X WD .E; BX /, where, as above, BX WD ¹X 4 B W B 2 Bº.

For example, if M D .¹1;2º; ¹¹1º; ¹2ºº/ and X D ¹1º, then a partial dual is M X D

.¹1; 2º; ¹¹;º; ¹1; 2ºº/. The difficulty, as can be seen in this example, is that M X may
no longer be a matroid. Instead it is an example of a more general structure called a
delta-matroid.
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Definition 6.1. A delta-matroid D consists of a pair .E; F / where E is a finite set
and F a non-empty collection of subsets of E. Furthermore, F is required to satisfy
the symmetric exchange axiom which states that

.8X; Y 2 F / .8u 2 X 4 Y / .9 v 2 X 4 Y /
�
X 4 ¹u; vº 2 F

�
:

Since the collection of spanning quasi-trees of a ribbon graph G satisfies the sym-
metric exchange property, it follows that D.G/, as introduced in Definition 5.1, is a
delta-matroid (and so the name we gave D.G/ is an honest one). Not every delta-
matroid arises in this way, as the following example shows. In fact, almost all delta-
matroids do not come from ribbon graphs, however those that do play an important
role.

Example 6.2. Let E D ¹1;2; 3; 4º, F D ¹;; ¹1;2º; ¹1;3º; ¹1;4º; ¹2;3º; ¹2;4º; ¹3;4ºº,
and F 0 D ¹;; ¹1; 2º; ¹1; 4º; ¹2; 3º; ¹3; 4º; ¹1; 2; 3; 4ºº. Then .E; F / and .E; F 0/ are
both delta-matroids but neither is the delta-matroid of a ribbon graph. This can be
verified by calculating the delta-matroids of the bouquets on four edges.

Matroids are also examples of delta-matroids: M is matroid if and only if it is a
delta-matroid in which every member of F has the same size. Most delta-matroids
are not matroids though.

While the class of matroids is not closed under partial duals, the class of delta-
matroids is. Let D D .E; F / be a delta-matroid and B � E. The partial dual (or
twist) DB of D is defined as the pair .E; F B/ where F B WD ¹F 4B W F 2 F º. The
dual D� of D is DE .

Example 6.3. If D is the delta-matroid from Example 5.2, then D¹3;4ºD .E;F ¹3;4º/

where E D ¹1; : : : ; 6º and F ¹3;4º D ¹¹2; 3; 5º; ¹2; 3; 6º; ¹5º; ¹6º; ¹3; 5; 6º; ¹1; 2; 5º;

¹1; 2; 6º; ¹1; 2; 3; 5; 6º; ¹2; 5; 6ºº.

Matroid duality captures the way that the spanning trees of a plane graph G
are transformed into the spanning trees of its geometric dual G�, giving the identity
C.G�/ D C.G/� for plane graphs. Delta-matroid duality captures that the spanning
quasi-trees of any ribbon graph G are transformed into the spanning quasi-trees of any
partial dual GB . Indeed the following results follow from our previous discussion.

Theorem 6.4. Let G be a connected ribbon graph. Then

(1) C.G�/ D C.G/� if and only if G is a plane ribbon graph,

(2) D.G�/ D D.G/� for any ribbon graph G, and

(3) D.GB/ D D.G/B for any ribbon graph G and any subset of its edges B .

Just as with ribbon graphs, we can use partial duality to transform a delta-matroid
into one with desirable properties. A delta-matroid D D .E; F / is said to be normal
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if ; 2 F . Every delta-matroid has a normal partial dual: if D D .E; F / and F is any
element of F , then DF is normal. On the other hand, some properties are preserved
by partial duals. For example, a delta-matroid D D .E; F / is said to be even if every
set in F has the same parity (i.e., they are all of odd size or all of even size). If a
delta-matroid is even, then so is each of its partial duals.

By making use of the properties of spanning quasi-trees we observe that for a
connected ribbon graph G, the delta-matroid D.G/ is even if and only if G is orient-
able, and that D.G/ is normal if and only if G is a bouquet. As we are restricting to
orientable ribbon graphs here, we shall focus on even delta-matroids.

Bibliographic remarks. Delta-matroids were introduced in the mid-1980s, inde-
pendently, by A. Bouchet in [6]; R. Chandrasekaran and S. Kabadi, under the name
of pseudo-matroids, in [17]; and A. Dress and T. Havel, under the name of metroids,
in [27]. Delta-matroids are related to many different matroidal-objects, including
É. Tardos’ g-matroids [47], J. Kung’s Pfaffian structures [37], L. Qi’s ditroids [44],
A. Bouchet’s symmetric matroids [6], L. Traldi’s transition matroids [49], Bouchet’s
isotropic systems [7], jump systems [15], and Bouchet’s multimatroids [13]. This list
is indicative, not exhaustive.

The discipline has adopted Bouchet’s terminology and notation (most of the early
development of the topic is due to Bouchet and his collaborators) and it is that we
follow here except in the following instance. What we have called the “partial dual”
and denoted by DB is usually called a “twist” and denoted by D � A, but here we
prefer to keep close to the ribbon graph terminology.

Bouchet, in [6], showed that the partial dual of a delta-matroid is indeed a delta-
matroid. That D.G�/ D D.G/� is implicit in [12] (it was translated into this form
in [22]), and that D.GB/ D D.G/B is from [22].

Additional background on delta-matroids can be found in the survey [38] or in
the source papers.

7. Matrices and representability
We are interested in the spanning quasi-trees of a connected orientable ribbon graph
G. Since D.GB/ D D.G/B , partial duality preserves the spanning quasi-tree struc-
ture and so, without loss of generality, we may assume that G is a bouquet. Then the
ribbon subgraph of G induced by any two of its edges forms either a genus one or
a genus zero ribbon graph. We say that two edges of G are interlaced if the ribbon
subgraph G they induce has genus one.

There is a method from algebraic topology (e.g., see [3, Theorem 3] and its sub-
sequent exercises) for determining via a matrix if an orientable bouquet is a quasi-tree.
Let G D .V; E/ be an orientable bouquet. Number the edges of G by travelling
around the boundary of the vertex from an arbitrary starting point in either direction
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and assigning the numbers 1; 2; : : : ; jEj in the order that you first encounter one of
their ends. Now construct an jEj � jEj-matrix IMO

G by setting the .i; j /-entry to be
sgn.i � j / if the edges labelled i and j are interlaced, and 0 otherwise. (Here sgn is
the signum function.) Then det.IMO

G/ D 1 if G is a quasi-tree and is 0 otherwise.
This construction can be simplified by working over the field of two elements,

GF.2/. In this case, as we are forgetting the signs, we can construct an jEj � jEj-
matrix IMG whose rows and columns are indexed by the edges of G by setting the
.e; f /-entry to be 1 if edges e and f are interlaced, and to be 0 otherwise. Again
det.IMG/ D 1 if G is a quasi-tree and is 0 otherwise, where here we compute the
determinant over GF.2/.

The matrices IMO
G and IMG in fact determine the whole spanning quasi-tree

structure of G (although not G itself). This is since we can test if a ribbon subgraph
H of G is a quasi-tree by computing the determinant of the principal submatrix given
by the edges of H (delete any rows and columns of IMO

G or IMG that correspond to
edges not in H).

Thus the delta-matroid D.G/ can be recovered from the matrices IMO
G or IMG by

computing determinants of their principal submatrices over R or GF.2/, respectively.
These matrices provide what is known as a representation of the delta-matroid D.G/.

Before continuing let us highlight one issue with this approach to studying span-
ning quasi-trees via matrices. As the matrices are only defined on bouquets, if we are
interested in a ribbon graph G that has more than one vertex, then we can obtain a
matrix by choosing a one-vertex partial dual of G and computing a matrix from that.
However, different choices of partial dual will result in different matrices, so we will
need to understand how the matrices change under this choice.

A matrix A is symmetric if At D A and is skew-symmetric if At D �A and the
diagonal entries are zero. (The condition on the diagonal is there for fields of charac-
teristic 2.) Suppose that A is a symmetric or skew-symmetric matrix over a field k,
and that a set E labels its rows and columns (in the same order). For X � E, let AŒX�

denote the principal submatrix of A given by the rows and columns indexed by X .
Define a collection F of subsets of E by

X 2 F , AŒX� is non-singular;

where AŒ;� is considered to be non-singular. Then the pair D.A/ WD .E; F / forms a
delta-matroid. (This result is due to A. Bouchet [11].)

Since the principal submatrices of IMO
G or IMG are non-singular precisely when

the corresponding edge sets of G define a quasi-tree, it follows that when G is an
orientable bouquet,

D.G/ D D.IMO
G/ D D.IMG/;

where we work over R for the middle expression and GF.2/ for the one on the right.
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Since AŒ;� is non-singular, such a delta-matroid D.A/ is necessarily normal. We
say a normal delta-matroid is representable if it can be obtained as the delta-matroid
of a matrix. Every delta-matroid is a partial dual of a normal delta-matroid, so we can
extend representability to non-normal delta-matroids by saying that a delta-matroid
is representable if one of its partial duals is the delta-matroid of a matrix.

Definition 7.1. Let D D .E; F / be a delta-matroid. We say that D is representable
over k if there exists some X �E and a symmetric or skew-symmetric matrix A over
a field k such that

DX
D D.A/:

A delta-matroid is binary if it is representable over GF.2/, and is regular if it is
representable over R. Delta-matroids of orientable ribbon graphs are binary since

D.G/X
D D.GX / D D.IMGX /;

where X is the edge set of any spanning quasi-tree of G. Similarly, the matrix IMO
GX

shows that they are regular. (We note that orientability matters here as delta-matroids
of non-orientable ribbon graphs are not regular, although they are binary.)

The definition of representability for delta-matroids requires a choice of a set X

to make DX normal. In general, there are many such sets to choose from, and there-
fore a delta-matroid D will have many representing matrices. How do the different
representing matrices of a delta-matroid relate? That is, if D.A/ D D.B/X what can
you say about the matrices A and B?

The relevant matrix operation predates delta-matroids and can be found in the
work of A. Tucker [51] that appeared in 1960. Let A be a square matrix over a field k,
whose rows and columns are labelled (in the same order) by a set E. Let X � E.
Without loss of generality (reordering if necessary), suppose that X labels the first
jX j rows and columns of the matrix. Then A has a block form

X E nX� �
X ˛ ˇ

E nX 
 ı
:

Suppose that AŒX� is non-singular. Then the principal pivot transform of A with
respect to X is the matrix A �X with block form

X E nX� �
X ˛�1 ˛�1ˇ

E nX � 
˛�1 ı � 
˛�1ˇ
:
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A. Bouchet, in [11], proved that principal pivot transformations correspond to
partial duals of delta-matroids.

Theorem 7.2. Let A be a symmetric or skew-symmetric matrix over a field k, whose
rows and columns are labelled (in the same order) by a set E. Let X � E be such
that AŒX� is non-singular. Then A � X is a symmetric or skew-symmetric matrix (of
the same type as A), and

D.A �X/ D D.A/X : (7.1)

Thus if A is a representing matrix for a delta-matroid D, then B is also a rep-
resenting matrix for D if and only if B is a principal pivot transform of B. Thus we
have our answer to the problem in this section: all of the representing matrices for an
orientable ribbon graph G are principal pivot transformations of one another.

Bibliographic remarks. That D.A/ is a delta-matroid, that D.A � X/ D D.A/X ,
and the definition of representability is due to A. Bouchet and from [11]. The repres-
entations for D.G/ can also be deduced from this reference (see also [9] for IMO

G),
although changes in language are needed (the interpretation in ribbon graph lan-
guage is from [22]). However, a different route to showing that D.G/ D D.IMO

G/ D

D.IMG/ was taken in this section. Here we deduced the result from a theorem on
weight systems of Vassiliev invariants due to D. Bar-Natan and S. Garoufalidis [3].
This knot theory work seems to be entirely independent of Bouchet’s work.

8. The reappearance of graphs

So far we have seen that the spanning quasi-tree structure of an orientable ribbon
graph G is described by its delta-matroid D.G/, and also by a binary representing
matrix IMH, where H is any one-vertex partial dual of G. The matrix IMH is a
skew-symmetric 0-1 matrix. (Recall that skew-symmetric matrices here must have
zeros on their diagonal.) Thus we can consider it as the adjacency matrix of a simple
graph G. (A graph is simple if it does not have multiple edges or loops.) In this section
we consider the properties of these simple graphs and what they tell us about ribbon
graphs.

The adjacency matrix, AMG , of a simple graph G is the matrix over GF.2/ whose
rows and columns correspond to the vertices of G; and whose .u;v/-entry is 1 if there
is an edge uv in G and is 0 otherwise.

Adjacency matrices are skew-symmetric, and every skew-symmetric matrix over
GF.2/ is an adjacency matrix of some simple graph. This results in a 1-1 corres-
pondence between skew-symmetric binary matrices and simple graphs. Every skew-
symmetric binary matrix A gives rise to a normal even binary delta-matroid D.A/.
(The delta-matroid must be even since odd order skew-symmetric matrices are always
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u v

Suv

Su Sv

toggle

(a) G

v u

Suv

Su Sv

(b) G ^ uv

Figure 7. Pivoting (edges between the three sets, Su, Sv , and Su;v , are “toggled,” and the
names of u and v are switched).

singular.) On the other hand, a normal even binary delta-matroid D determines a
unique skew-symmetric matrix A such that D D D.A/. (If D D .E; F / is binary,
then it must come from a binary matrix, and the sets of size two in F determine
which entries of this matrix are zero and which are one.) This means that there is a
1-1 correspondence between simple graphs and normal even binary delta-matroids.

However, we want to work with all even binary delta-matroids not just normal
ones. Obtaining a representing matrix for an arbitrary binary even delta-matroid D

requires choosing a normal partial dual of it. Different choices will result in different
matrices, however, from the results of Section 7, we know that these matrices will
be related through principal pivot transforms. How are the simple graphs correspond-
ing to these two matrices related? Once again we can find the relevant operation in
the literature in a move introduced by A. Bouchet in [10, 14] and rediscovered by
R. Arratia, B. Bollobás, and G. Sorkin in [1, 2].

Definition 8.1. Let G be a simple graph and uv an edge. Partition the vertices other
than u and v into four classes: (1) vertices adjacent to u but not v, (2) vertices adjacent
to v but not u, (3) vertices adjacent to both u and v, (4) vertices adjacent to neither u

nor v. The pivot of the edge uv is the graph, G ^ uv, constructed from G as follows.
For any vertex pair x, y where x is in one of the classes (1)–(3), and y is in a different
class (1)–(3), “toggle” the pair xy in the edge set (so if xy was an edge, make it a
non-edge; and if xy was a non-edge, make it an edge). Finally, switch the names of
the vertices u and v; see Figure 7.

Suppose G is a simple graph with adjacency matrix AMG , and uv is an edge of
G. Then the principal submatrix AMG Œ¹u; vº� defined by the edge has zeros on the
diagonal and ones elsewhere and is hence non-singular. This means we can form the
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(b) H

Figure 8. Two bouquets.

principal pivot transform AMG � ¹u; vº of AMG . This changes the matrix in a very
nice way and it is not too hard an exercise (remembering we are working over GF.2/)
to track this change through to the corresponding simple graphs: the graphs will be
pivots of one another. Passing to delta-matroids, for an edge uv of G we have that

D.AMG/¹u;vº
D D

�
AMG � ¹u; vº

�
D D.AMG^uv/:

Thus we can identify even binary delta-matroids up to partial duals with simple graphs
up to pivoting:²

even binary delta-matroids
up to partial duals

³
1-1
 !

²
simple graphs

up to edge pivots

³
:

As edge pivoting is of interest in graph theory in its own right, this identification
opens up a new body of graph theory for studying delta-matroids, and vice versa.
However, there is a catch when we want to use simple graphs and edge pivots to study
ribbon graphs and their spanning quasi-trees. Although the delta-matroid D.G/ of an
orientable ribbon graph is even and binary, not all even and binary delta-matroids arise
from ribbon graphs. This means that the delta-matroids of ribbon graphs correspond
with a proper subclass of simple graphs. We turn our attention to this class in the next
section.

Example 8.2. As an illustration of the discussion from Section 6 onwards, consider
the bouquets G and H of Figure 8. Both are on the edge set E D ¹1; 2; 3; 4º. Their
binary representing matrices are

IMG D

1 2 3 42664
3775

1 0 1 1 1

2 1 0 1 0

3 1 1 0 0

4 1 0 0 0

and IMH D

1 2 3 42664
3775

1 0 1 1 0

2 1 0 1 1

3 1 1 0 1

4 0 1 1 0

:
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34

(a) G

2 1

34

(b) H

Figure 9. Two simple graphs.

Now let G and H be the simple graphs in Figure 9. It is readily checked that AMG D

IMG and AMH D IMH.
By direct computation from the bouquets and matrices we see that D.G/ D

D.IMG/D .E;FG/ and D.H/DD.IMH/D .E;FH/ where FG D ¹;;¹1;2º;¹1;3º;

¹2; 3º; ¹1; 4º; ¹1; 2; 3; 4ºº and FH D ¹;; ¹1; 2º; ¹1; 3º; ¹2; 3º; ¹2; 4º; ¹3; 4ºº.
The bouquets G and H are partial duals with HDG¹1;2º. In addition, the matrices

IMG and IMH can be verified as principal pivot transforms with IMH D IMG �

¹1; 2º, and G and H are pivots with H D G ^ 12. Thus we can see that

D
�
G¹1;2º

�
D D.G/¹1;2º

D D
�
IMG � ¹1; 2º

�
D D.AMG^12/;

and we can work with spanning quasi-trees in any of the settings.

Bibliographic remarks. Pivoting is a graph operation related to A. Kotzig’s trans-
formations on Eulerian circuits [36]. It was introduced by A. Bouchet in the context
of isotropic systems [10] and multimatroids [14], and rediscovered by R. Arratia,
B. Bollobás, and G. Sorkin when they introduced the interlace polynomial in [1, 2].

Further information on binary delta-matroids can be found in [16]. In particu-
lar, this reference contains the result that a normal binary delta-matroid .D; F / is
completely determined by the members of F of size at most two.

The identification of even binary delta-matroids considered up to partial duals
with simple graphs considered up to edge pivots can be extended to all binary delta-
matroids. They can be identified with looped simple graphs considered up to ele-
mentary pivots which are pivots on edges not adjacent to loops, and a local com-
plementation move (toggle the edges and non-edges, and loops and non-loops in
the neighbourhood of a looped vertex). This identification was first written down by
J. Geelen in [33] (see also [32]) although he has said that the graph-theoretical point
of view was used by both A. Bouchet and W. Cunningham in their discussions with
him at the time of writing that paper.
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Figure 10. A circle graph and a corresponding chord diagram.

9. Bringing it all together

A chord diagram consists of a circle in the plane and a number line segments, called
chords, whose end-points lie on the circle. The end-points of chords should all be
distinct. The intersection graph of a chord diagram is the graph G D .V; E/ where
V is the set of chords, and where uv 2 E if and only if the chords u and v intersect.
A graph is a circle graph if it is the intersection graph of a chord diagram. Figure 10
shows a circle graph and a corresponding chord diagram.

Now suppose that G is an orientable bouquet. We may regard G as a chord dia-
gram with the vertex boundary forming the circle and chords defined by where the
edges touch this circle. Let IG denote the corresponding intersection graph. There is
an edge ef of IG whenever the edges e and f are interlaced in G. In terms of the
delta-matroid D.G/ D .E; F / this means that there is an edge ef of IG whenever
¹e;f º is in F . Thus, since D.G/ is binary, we can obtain a binary representing matrix
A for D.G/ by setting the .e; f /-entry to be 1 if ef is an edge in IG and 0 otherwise,
so A is the adjacency matrix of IG . Thus the intersection graph IG of G is exactly
the simple graph corresponding to the delta-matroid D.G/. (As an example, it can be
checked that G D IG and H D IH in Example 8.2.)

We can then conclude that circle graphs are exactly the simple graphs that repres-
ent the delta-matroids of orientable ribbon graphs:²

Delta-matroids of orientable ribbon graphs
up to partial duals

³
1-1
 !

²
circle graphs

up to edge pivots

³
:

Circle graphs are well studied in graph theory and their appearance in the present
setting provides access to a large body of work that we can apply to ribbon graphs.
Let us take advantage of this to characterise the delta-matroids that arise from ribbon
graphs.

A minor of a graph is any graph that can be obtained from it by edge deletion
(remove an edge), vertex deletion (remove a vertex and the edges it meets), and edge
contraction (delete the edge then identify its ends). An excluded minor characterisa-
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Figure 11. Excluded pivot-minors for circle graphs.

tion of a class of graphs is a result that states that a graph belongs to the class if
and only if it has no minor in a given finite list. Possibly the best known example
of an excluded minor characterisation is Wagner’s theorem which states that a graph
is planar if and only if it has no minor isomorphic to K5 (the graph of five vertices
and one edge between each pair of vertices) or K3;3 (the graph with two sets of three
vertices and an edge between all pairs of vertices in different sets). (The name Kur-
atowski’s theorem, which uses a different type of minor, is often associated with this
result.) The spectacular Robertson–Seymour theorem gives that every minor-closed
class of graphs has an excluded minor characterisation [45].

Circle graphs, however, are not closed under the usual graph minor operations,
and so it does not make sense to ask for an excluded minor characterisation of them
with the usual type of graph minor. However, the set of circle graphs is closed under
edge pivots and vertex deletions which leads to a different type of graph minor.

A pivot-minor of a graph is any graph that can be obtained from it by edge pivots
and vertex deletions. Circle graphs have an excluded pivot-minor characterisation.
J. Geelen and S. Oum [32] proved that a graph is a circle graph if and only if it has
no pivot-minor isomorphic to any of the graphs shown in Figure 11.

We can use the correspondence between delta-matroids and simple graphs to
derive an excluded minor characterisation for the class of delta-matroids that arise
from ribbon graphs. For this we need delta-matroid versions of the vertex minor oper-
ations. We know from Section 8 that the delta-matroid version of an edge pivot is a
partial dual. Vertex deletion corresponds to the standard idea of deletion for delta-
matroids.
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Let D D .E; F / be a delta-matroid, and let e 2 E. Then D delete e, denoted by
Dne, is defined as Dne WD .Ene; F 0/, where F 0 D ¹F W F 2 F and e … F º when
e is not in every member of F ; and F 0 D ¹F ne W F 2 F and e 2 F º e is in every
member of F . Although we do not use the fact here, it is worth noting that D.Gne/D

D.G/ne. A delta-matroid D0 is said to be a minor of a delta-matroid D if it can be
obtained from D through the operations of deletion and partial duality.

By translating the excluded pivot-minor characterisation of circle graphs we
obtain the following characterisation of the even delta-matroids that arise from ribbon
graphs.

Theorem 9.1. Let D be an even delta-matroid. Then D D D.G/ for some ribbon
graph G if and only if it has no minor isomorphic to D.AMG/ where G is one of the
graphs shown in Figure 11, or to one of the delta-matroids given in Example 6.2.

The excluded minors from Example 6.2 are included to ensure that an even delta-
matroid is binary and hence comes from a simple graph.

Finally we come to the question from which our journey into delta-matroids
began: Do the spanning quasi-trees of an embedded graph determine it? In terms
of delta-matroids we are asking:

If D.G/ D D.H/, then how are the ribbon graphs G and H related?

So we are looking for a version of Whitney’s theorem that applies to ribbon graphs
and their delta-matroids.

Again we can make use of the circle graph literature. There has been extensive
work on recovering chord diagrams from circle graphs, and on determining which
chord diagrams correspond to the same circle graph. Appearing implicitly in [8, 24,
30], and explicitly in [21], is an operation on chord diagrams called mutation that
relates all chord diagrams that have the same intersection graph. This operation cuts
out a certain substructure in a chord diagram, rotates it then glues it back in (we omit a
definition of the move as we do not use its details here). The result uses Cunningham’s
theory of graph decompositions from [25] to decompose an intersection graph into
“prime” graphs that have unique intersection graphs. Mutation then corresponds to
the choices that are made when reassembling a corresponding chord diagram from
these prime graphs.

In the present setting, if two ribbon graphs G and H have equal delta-matroids,
then there must be some set of edges X such that the partial duals GX and HX are
both bouquets with the same delta-matroid. The delta-matroids D.GX / and D.HX /

therefore correspond to the same simple graph. As this simple graph can be con-
sidered as the intersection graphs of GX and HX , it follows that GX and HX must
be related by mutation (technically, a version of mutation for bouquets). Then by ana-
lysing how mutation changes under partial duality, we can pull back the operations
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G1 G2

vertex split
������!

 �����
vertex cut

G

Figure 12. Vertex joins and vertex splits.

to the original ribbon graphs G and H. This approach results in a characterisation of
ribbon graphs that have the same delta-matroid. We describe the relevant moves then
the characterisation. The first move is the analogue of the vertex identification and
vertex cleaving that are used in Whitney’s theorem and illustrated in Figure 1.

Suppose that G1 and G2 are ribbon graphs. For i D 1; 2, suppose that ˛i is an
arc that lies on the boundary of Gi and entirely on a vertex boundary. If a ribbon
graph G can be obtained from G1 and G2 by identifying the arc ˛1 with ˛2 (where
the identification merges the vertices), then we say that G is obtained from G1 and
G2 by a vertex join, and that G1 and G2 are obtained from G by a vertex split. The
operations are illustrated in Figure 12 and are standard operations in ribbon graph
theory. It is important to observe that the definition of a vertex join does not allow for
any “interlacing” of the edges of G1 and G2.

The next operation we need is called mutation. It is illustrated in Figure 13. The
figure shows a local change in a ribbon graph (so the ribbon graphs are identical
outside of the region shown) and the two parts of vertices that are shown in it may
come from the same vertex. To define the move, let G1 and G2 be ribbon graphs. For
i D 1; 2, let ˛i and ˇi be two disjoint directed arcs that lie on the boundary of Gi

and lie entirely on boundaries of (one or two) vertices. Furthermore, suppose that G
is a ribbon graph that is obtained by identifying the arcs ˛1 with ˛2, and ˇ1 with ˇ2,
where both identifications are consistent with the direction of the arcs. (The identific-
ation merges the vertices.) Suppose further that H is a ribbon graph obtained by either
(1) identifying ˛1 with ˛2, and ˇ1 with ˇ2, where the identifications are inconsistent
with the direction of the arcs, (2) identifying ˛1 with ˇ2, and ˇ1 with ˛2, where the
identifications are consistent with the direction of the arcs or (3) identifying ˛1 with
ˇ2, and ˇ1 with ˛2, where the identifications are inconsistent with the direction of the
arcs. Then we say that G and H are related by mutation.

With these definitions in hand, we can complete our tour with an answer (due
to I. Moffatt and J. Oh [39]) to our original question as to what extent the spanning
quasi-trees determine the ribbon graph.

Theorem 9.2. Let G and H be connected orientable ribbon graphs, and let D.G/

and D.H/ be their delta-matroids. Then D.G/DD.H/ if and only if G can be ob-
tained from H by ribbon graph isomorphism, vertex joins, vertex splits or mutation.
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Figure 13. Mutation for ribbon graphs.

As an example of Theorem 9.2, the two non-equivalent ribbon graphs in Fig-
ure 14 can be obtained from each other by isomorphism, vertex joins, vertex splits,
and mutation. Therefore their delta-matroids are isomorphic.

Bibliographic remarks. The excluded minor characterisation for the delta-matroids
of orientable ribbon graphs stated in Theorem 9.1 is implicit in J. Geelen and S. Oum’s
paper [32]. There it was stated for even Eulerian delta-matroids which, from [22], are
equivalent to the delta-matroids of ribbon graphs. The ribbon graph formulation given
here is from [22]. The characterisation extends to non-orientable ribbon graphs. Again
this was given in for Eulerian delta-matroids in [32] and translated to the ribbon graph
setting in [22]. There are 171 excluded minors in this case.

The excluded minor characterisation of binary delta-matroids alluded to after the
statement of Theorem 9.1 is due to A. Bouchet and A. Duchamp [16]. There are five
excluded minors for binary delta-matroids, and the two appearing in Example 6.2 are
the even ones.

Theorem 9.2 is due to I. Moffatt and J. Oh, and from [39]. It is given there
more generally for non-orientable and non-connected ribbon graphs. Extending to
the non-connected case is straightforward, but additional work is required for the
non-orientable case.
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Figure 14. Two ribbon graphs with the same delta-matroid.

10. Now we can get started . . .

We set out with the classical question of whether the spanning trees in a graph determ-
ine the graph itself. This led to a topological version of it, if the spanning quasi-trees
in a ribbon graph determine it. In answering this question we were guided by the
idea of partial duality which appeared in different forms and settings. This took us
to ribbon graphs, matroids and delta-matroids, matrices, as well as simple and circle
graphs. Moreover, we saw that delta-matroids provided the central unifying frame-
work for all of these ideas. It is this common framework that we should really take
away from our journey.

As mentioned earlier, there is a well-known and successful symbiotic relationship
between graph theory and matroid theory, with each area informing the other. As
reported in [42], W. Tutte famously observed that, “If a theorem about graphs can be
expressed in terms of edges and circuits alone it probably exemplifies a more general
theorem about matroids.” An analogous correspondence between embedded graphs
and delta-matroids was proposed in [22,23]. This view of delta-matroid is proving to
be successful. It has led implicitly and explicitly to advances in, especially, the topics
of graph polynomials, and the structural theory of both delta-matroids and ribbon
graphs. But we really are only at the beginning of this journey. Many fundamental
questions remain unanswered and directions remain unexplored, but our knowledge
is rapidly advancing.

Acknowledgements. This exposition draws upon work with many collaborators, to
whom I am greatly indebted. These include Carolyn Chun, Rhiannon Hall, Criel Me-
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Convex bodies all whose sections (projections) are equal

Luis Montejano

Abstract. This work deals with the following question: if all hyperplane sections through
the origin (orthogonal projections) of a convex body are “equal”, is the convex body “equal”
to the ball? where the notion of “equal” changes throughout the paper. Topology, Lie groups,
Fourier analysis, and convex geometry interrelates in the solution and understanding of these
problems.

1. Introduction

The purpose of this paper is to answer the following question:

If all hyperplane sections through the origin of a convex body are “equal”, is the
convex body “equal” to the ball?

The meaning of the notion “equal” will change in the course of this paper.
Similarly, we are interested in the following problem:

If all orthogonal projections of a convex body onto hyperplanes are “equal”, is
the convex body “equal” to the ball?

We believe that topology and convex geometry are deeply and beautifully inter-
related in the solution and understanding of these problems.

A good reference for these problems and related problems is the book “Geometric
Tomography” by Richard Gardner [11]. In particular, see Problems 3.3 and 7.4.

During this paper, unless otherwise stated, B is always an .nC 1/-dimensional
convex body with the origin as an interior point and n � 2.

2. Sections with the same area

The first meaning of “equal” is same “area”.

2020 Mathematics Subject Classification. Primary 46C15; Secondary 52A20, 22E99, 55Q40.
Keywords. Section, projection, group of affine symmetries, ellipsoid.
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If all hyperplane sections through the origin of a convex body B have equal
n-dimensional volume, does B have the .n C 1/-dimensional volume of the corre-
sponding ball?

The answer to this question is by far a resounding no. There exist counterex-
amples. However, if we add the symmetry hypothesis to the question, the answer
becomes yes. More precisely, the following theorem holds.

Theorem 2.1. If all hyperplane sections through the origin of a centrally symmetric
convex body B have equal n-dimensional volume, then the convex body B is a ball
centered at the origin.

Proof. The proof of this theorem uses analysis. We give here a sketch of the proof
using harmonic integration. See Falconer’s paper [10] or Schneider’s book [26].

First of all, let f W Sn ! R be a continuous function such thatZ
hx;yiD0

f .x/ dx D 0; for every y 2 Sn;

where integration refers to the usual measure in the .n� 1/-sphere. Then the classical
theorem of Funk-Hecke on spherical harmonics (see [12]) implies that f is an odd
function; that is, �f .x/ D f .�x/, for almost every x 2 Sn.

Let nowB1 andB2 be two .nC 1/-dimensional convex bodies that are symmetric
with center at the origin and assume that the corresponding parallel n-dimensional
areas of their sections through the origin are equal. We shall show that B1 D B2.
For this purpose, let f1; f2WSn ! R be the radial functions of B1 and B2. Note that
because B1 and B2 are centrally symmetric, f1 and f2 are even functions. Moreover,
by hypothesis

1

n

Z
hx;yiD0

f1.x/
n dx D

1

n

Z
hx;yiD0

f2.x/
n dx;

for every y 2 Sn�1.
By our first argument, f n

1 � f n
2 is an odd function, but since f1 and f2 are even

functions, f n
1 D f n

2 . Moreover, since f1 � 0 and f2 � 0, we obtain that f1 D f2 and
hence that B1 D B2.

Suppose now that B is a centrally symmetric convex body with the property that
all its hyperplane sections through the origin have equal n-dimensional volume, and
letG 2 SOnC1 be a linear isometry. Then, by the above B DGB , for everyG 2 SOn,
and consequently B is a ball centered at the origin.

3. Congruent and similar sections

The second meaning of “equal” is congruence.
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Theorem 3.1 (Schneider’s theorem). If all hyperplane sections through the origin of
a convex body B are congruent, then the convex body B is an .nC 1/-ball centered
at the origin.

This time, the hypothesis of symmetry is not necessary. The theorem was proved
by Süss [28] for n D 2. In 1970, using topological ideas, Mani [16] proved it for
n D even and, in 1979, Burton [7] proved it for n D 3. Finally, Rolf Schneider [25]
in 1980, using analysis, proved it in general. In 1990, using the topological ideas of
Hadwiger and Gromov, Montejano [20] proved the following result which, together
with the false center theorem, allows an alternative proof of Schneider’s theorem to
be given.

Theorem 3.2. If all hyperplane sections through the origin of a convex body B are
affinely equivalent, then every hyperplane section of B through the origin is centrally
symmetric.

The proof of Theorem 3.2 uses topological ideas. Indeed, it uses the notion of
field of convex bodies introduced by Hadwiger and developed by Mani in [16].

3.1. Fields of convex bodies

Let Kn be the space of all compact convex sets in Rn with the Hausdorff metric
topology.

A field of convex bodies tangent to Sn is a continuous function

� W Sn
! KnC1;

such that �.u/ � uC u? � RnC1, for every u 2 Sn, where u? denotes the subspace
of RnC1 orthogonal to u.

If, in addition, �.u/ is congruent (affinely equivalent) to the convex bodyK �Rn,
for every u 2 Sn, then we obtain a field of convex bodies tangent to Sn and congruent
(affinely equivalent) to K. If, in addition, �.u/ � u D �.�u/ C u, then we have a
complete turning of K in RnC1.

If all hyperplane sections through the origin of a convex body B are congruent
(affinely equivalent), then there is a field of convex bodies tangent to Sn and congru-
ent (affinely equivalent) to Rn \ B:

� W Sn
! KnC1;

defined as follows:

�.u/ D uC .u? \ B/; for every u 2 Sn:

Obviously, this field is a complete turning because �.u/� u D �.�u/C u, for every
u 2 Sn.
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Note that given a field of convex bodies � W Sn ! KnC1 tangent to Sn and con-
gruent toK, we may always assume without loss of generality that, for every u 2 Sn,
the circumcenter of �.u/ is the point u 2 .uC u?/.

The link between Hadwiger’s notion of field of convex bodies and the topology of
Lie groups traces back to the work of Steenrod [27] and Gromov [13]. Every vector
bundle � WE! Sn with base the sphere Sn, fiber Rm, and structure group GL.m;R/,
can be obtained from Bn

C � Rm disjoint union Bn
� � Rm by gluing the first copy

Sn�1 � Rm � Bn
C � Rm with the second copy Sn�1 � Rm � Bn

� � Rm via a fiber
preserving homeomorphism

Sn�1
� Rm

! Sn�1
� Rm

that glue every fiber ¹xº�Rm with the fiber ¹xº�Rm using an element gx2GL.m;R/,
where Bn

C and Bn
� are respectively, the north and south closed hemisphere of Sn. The

map g W Sn�1 ! GL.m;R/, given by g.x/ D gx , is called the characteristic map of
the vector bundle � . It is not difficult to see that two vector bundles are equivalent (as
fiber bundles) if and only if their corresponding characteristic maps are homotopic.

The existence of a field of convex bodies tangent to Sn and congruent to K
implies that the tangent bundle TSn can be obtained gluing the copies Bn

C � Rm

and Bn
� � Rm using only isometries that fix K. In other words, the following holds:

There exists a field of convex bodies tangent to Sn and congruent toK if and only
if the characteristic map

Sn�1 SOn

GK

f

�n

i

factorizes through
GK D

®
g 2 SOn j g.K/ D K

¯
:

If this is so, then we say that the structure group of TSn reduces to GK .

The main idea in the proof of Theorem 3.2 is that a complete turning ofK is only
possible if K has a center of symmetry (indeed, if n D 3; 7, the fact that the tangent
bundle of S3 and S7 is parallelizable implies that a complete turning ofK is possible
if and only if K has a center of symmetry).

Since vector bundles over contractible spaces are trivial, we are going to take
advantage of the existence of the field of convex bodies � W Sn ! KnC1, tangent to
the sphere Sn and congruent to K, to construct a continuous map

ˆ W Bn
C ! SOn;

such that ˆ.x/.K/ D �.x/, for every x 2 Bn
C.
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Suppose that K is not symmetric. We may assume without generality that there
is a point x0 in the boundary of K such that �x0 … K and hence for every g 2 SOn,
g.x0/ 6D �x0.

Note that ®
ˆ.x/.x0/

¯
is a field of vectors tangent to Bn

C. Furthermore, for every u 2 Sn�1, we have that
ˆ.u/.x0/ 6D �ˆ.�u/.x0/. We are going to add a small annulus toBn

C at the boundary
to obtain a larger n-dimensional ball zBn and we are going to take advantage of this
annulus to define on it a tangent vector field that coincides with the one we have in
Bn and with an additional property. The idea is that for every point u 2 Sn�1, we will
use the annulus to rotate from the vector ˆ.u/.x0/ towards the vector ˆ.�u/.x0/.
Since ˆ.u/.x0/ 6D �ˆ.�u/.x0/, we can do this unambiguously in such a way that
at the end on the border of zBn, the tangent vector at the point u 2 @ zBn coincides
with the tangent vector at the point �u 2 @ zBn. Using this procedure, we obtain a
complete turning of a nonzero vector field in the sphere Sn, which is a contradiction
to the well-known result that there is not a section to the canonical vector bundle of
n-subspaces in RnC1; see [27].

Suppose thatK1,K2 are convex bodies who have as ellipsoid of minimal volume
containing them the unit ball. It is easy to see that ifK1 andK2 are affinely equivalent,
then they are actually congruent. Suppose now that K � Rn is a convex body with
the unit ball as the ellipsoid of minimal volume containing it, and let � W Sn ! KnC1

be a field of convex bodies tangent to Sn and affinely equivalent to the convex body
K � Rn, then there is a field of convex bodies tangent to Sn congruent to K. For
every x 2 Sn, let Ex � x C x? be the ellipsoid of minimal volume containing �.x/
and let hx be the affine map that translates and dilates the principal axes of Ex to
obtain the unit ball. It is easy to observe that the affine map hx varies continuously
with x. Hence �0 W Sn ! KnC1, given by �0.x/ D hx.�.x//, is a field of convex
bodies tangent to Sn congruent to K. By all the above, if � W Sn ! KnC1 is a field of
convex bodies tangent to Sn and affinely equivalent, then, for every x 2 Sn, �.x/ is
symmetric.

3.2. The proof of Schneider’s theorem and similar sections

Summarizing, Theorem 3.2 is true because a complete turning of K is only possible
if K has a center of symmetry. This result, in combination with Larman’s beautiful
false center theorem [14], gives rise to a topological proof of Schneider’s theorem.

Theorem 3.3 (Larman’s false center theorem). If all hyperplane sections through the
origin of a convex body B have a center of symmetry, then either B is an ellipsoid or
B is symmetric with respect to the origin.
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The proof of Schneider’s theorem (Theorem 3.1) goes as follows. If all hyperplane
sections through the origin of B are congruent, by Theorem 3.2, then every hyper-
plane section through the origin is centrally symmetric. By Larman’s false center
theorem (Theorem 3.3), eitherB is symmetric with center the origin and Theorem 2.1
implies that B is a ball centered at the origin, or B is an ellipsoid in which case it is
easy to see directly that B is again a ball centered at the origin.

The third meaning of equal is similarity. If B is an .nC 1/-ball with the origin as
an interior point but not necessarily centered at the origin, then all hyperplane sections
of B through the origin are n-balls and hence all are similar. Our next theorem states
that this is always the case.

Theorem 3.4 (Montejano). If all hyperplane sections through the origin of a convex
body B are similar, then the convex body B is an n-ball not necessarily centered at
the origin.

A sketch of the proof is the following. Since similarities are affine equivalences,
by Theorem 3.2, all hyperplane sections of B through the origin have a center of
symmetry. By Larman’s false center theorem (Theorem 3.3), either the origin is the
center of symmetry of B or B is an ellipsoid. Using a topological argument, it is pos-
sible to prove that, in the first case, all hyperplane sections of B through the origin
are not only similar but actually congruent and hence, by Schneider’s theorem (The-
orem 3.1), B is a ball or, in the second case, if B is an ellipsoid, it is easy to directly
verify that our hypothesis implies that B is actually a ball.

4. Affinely equivalent sections and the Banach conjecture

The fourth meaning of equal is affine equivalence.

Conjecture 4.1. If all hyperplane sections through the origin of a convex body B are
affinely equivalent, then the convex body B is an ellipsoid.

It turns out that Conjecture 4.1 is equivalent to the Banach conjecture over the
reals.

4.1. The Banach conjecture

In 1932, in his book [3], Stephan Banach asked the following question:

Let V be a Banach space, real or complex, finite or infinite dimensional, all of
whose n-dimensional subspaces, for some fixed integer n, 2 � n < dim.V /, are iso-
metric to each other. Is it true that V is a Hilbert space?
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This conjecture was proved first for n D 2 and real V in 1935 by Auerbach,
Mazur, and Ulam [2] and in 1959 for all n � 2 and infinite dimensional real V
by A. Dvoretzky [9]. In 1967, M. Gromov [13] proved the conjecture for even n
and all V , real or complex, for odd n and real V with dim.V / � n C 2, and for
odd n and complex V with dim.V / � 2n. V. Milman [18] extended Dvoretzky’s
theorem to the complex case, in particular, reproving Banach’s conjecture for infi-
nite dimensional complex space V . Recently, in 2021, Bor, Hernández-Lamoneda,
Jiménez-Desantiago, and Montejano [4] proved the Banach conjecture if V is real
and n � 1 mod 4, with the possible exception of n D 133, and a little later, Bracho
and Montejano [6] proved the Banach conjecture if V is complex and n � 1 mod 4.
A thorough account of the history of this conjecture is found in the notes on Section 9
in [17]. We also recommend [24].

Our next goal is to prove that the Banach conjecture over the reals is equivalent
to Conjecture 4.1. First note that Banach’s conjecture is a codimension one problem:
since every Banach space, all of whose subspaces of a fixed dimension n � 2 are
Hilbert spaces, is itself a Hilbert space, which easily follows from the elementary
characterization of a norm coming from an inner product via the “parallelogram law”,
an affirmative answer for n in codimension one implies immediately an affirmative
answer for n in all codimensions.

Note next that two Banach spaces V1 and V2 are isometric if there is a linear
isomorphism f W V1 ! V2 that preserves the norm. That is, two Banach spaces V1

and V2 are isometric if their unit balls are linearly equivalent. To conclude, note that
a finite dimensional Banach space V is a Hilbert space if and only if V is isometric
to the Euclidean space, that is, if and only if its unit ball is an ellipsoid.

Finally, in the solution of Conjecture 4.1, we may always assume that not only
B but all hyperplane sections of B through the origin have as a center of symmetry
the origin. This is so because by Theorem 3.2 every section of B has a center of
symmetry and therefore by Larman’s false center theorem (Theorem 3.3) either B is
an ellipsoid or the origin is the center of B .

4.2. Topology of Lie groups

From now on, until the end of this section, suppose that B is a convex body with
the property that all its hyperplane sections through the origin are affinely equivalent.
Our first interest is to answer the following question:

What can we say about the sections of B?

For example, due to Theorem 3.2, we know that all these sections have a center
of symmetry, but do these sections share some other property?

Choose a convex set K � Rn affinely equivalent to all hyperplane sections of B
through the origin with the additional property that the ellipsoid of minimal volume
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containing K is the unit n-ball. Define G as the group of symmetries of K, that is, G
is the subgroup of linear isomorphism in GL.n;R/ keeping fixedK and with positive
determinant. Note that every element of G fixes also the unit n-ball that therefore
G � SOn. As we shall see, G is a compact Lie group relevant in the solution of our
previous question.

As in the sketch of the proof of Theorem 3.2, in Section 3, there is a field of convex
bodies tangent to Sn and affinely equivalent to K. This implies that the structure
group of the tangent bundle of the sphere Sn can be reduced to G or, in other words,
that the characteristic map of TSn

�n W Sn�1
! SOn

can be factorized through G. See Steenrod’s book [27] or Mani’s paper [16].
If n is even and G is not transitive, the structure group of the tangent bundle of

the sphere Sn cannot be reduced to G. This is so because if there is a map

f W Sn�1
! SOn

homotopic to �n, such that f .Sn�1/�G and e W SOn ! Sn is the evaluation map (at
any point), then ef is homotopic to e�n. The non-transitivity of G implies that there
are x;y 2 Sn such that g.x/ 6D y, for every g 2 SOn. If e W SOn ! Sn is the evaluation
at x, then the map e is not surjective and therefore ef is null homotopic. Thus, e�n

is null homotopic, which is a contradiction in even dimensions, where we can easily
calculate the even degree of e�n. Consequently, if n is even, a field of convex bodies
tangent to Sn affinely equivalent to K implies that G is transitive and consequently
that K is an n-ball. In contrast, for n D 3, there is a field of convex bodies tangent to
Sn and congruent toK, for every convex bodyK � Rn, because S3 is parallelizable.

Summarizing, if n is even, the answer to our question: what can we say about
the sections of B? is that all these sections are affinely equivalent to a ball and hence
all of them are ellipsoids. This immediately implies that B is an ellipsoid, solving
conjecture 1 when n is even and the Banach conjecture when n is even and V is a
Banach space over the reals.

The case nD odd is more complicated. First note that if nD 3; 7, this topological
technique does not give us information about the sections ofB , because S3 and S7 are
parallelizable. We shall prove next that if n � 1 mod 4, with the possible exception
of n D 133, a field of convex bodies tangent to Sn affinely equivalent to K implies
that K is an affine body of revolution.

Suppose that the characteristic map of the sphere �n factorizes through the max-
imal connected subgroup G � SOn, that is,

Sn�1
! G ,! SOn :
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We have two cases:

(1) G is an irreducible representation, that is, the action of G does not fix any
proper subspace, and

(2) the action of G fixes a proper subspace �k; 1 � k � n � 1.

In the first case, mathematicians have extensively studied irreducible representa-
tions, in particular, those for which the structural group of the space tangent to the
sphere can be reduced to them. In particular, Leonard [15] proved that if G � SOn

is a maximal connected irreducible representation and the characteristic map of the
sphere �n factorizes through G, then G is a simple group.

If this is so, we have several options:

� G is a classical group; SOk , SUk , Spk ,

� G is a spin group; Spink ,

� G is one of the exceptional Lie groups, G2, F4, E6, E7 or E8.

Furthermore, in 2006, Cadek and Crabb proved that under the same hypothesis
for G, if n � 8, then G is not isomorphic to SOk , SUm, Spm, with k � 4, m � 2.
If n � 1 mod 4, this rules out the classical groups, with the exception of n D 5. We
leave this exceptional case for the next section. Furthermore, it can be proved that
every irreducible representation of Spink , which does not factor through SOm, is even
dimensional. In our case, it is clear thatG does not factor through SOm, so if n is odd,
we can rule out the possibility of a spin group for G.

Suppose now that n � 1 mod 4. If this is the case, dim.G/ is not too small with
respect to n and hence G is not an exceptional Lie group, with the possible excep-
tion of the Lie group E7 � O133. This is so because it can be proved that in this
case, dim.G/ � 2n � 3 (see [8, Proposition 3.1]). Hence to rule out the exceptional
groups, one can simply check (e.g., in Wikipedia) the following table in which we
list the smallest irreducible representation for them, and the smallest irreducible rep-
resentation congruent to 1 mod 4 is highlighted in red, verifying that in all the cases,
with the exception of E7, dim.G/ � 2n � 4.

Group G2 F4 E6 E7 E8

dimG 14 52 78 133 248

Irreps 7 26 27 56 248

14 52 78 133 3875

27 273 351 912
:::

64
::: 2925

::: 1763125

77
:::

:::
:::

:::
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All the above implies that if G is irreducible and n � 1 mod 4, then G is E7 or
is conjugate to On. Consequently, in this last case, K must be a ball, all the sections
must be ellipsoids, and B must be an ellipsoid, as we wished.

The second case is when the action ofG fixes a proper subspace �k; 1�k�n�1.
If n D 4k C 1, the tangent space of the sphere TSn splits:

TSn
D e1

˚ �4k;

where e1 is a vector bundle of dimension 1 and �4k is unsplittable.
From here, we deduce that �k is either 1 or .n � 1/-dimensional, and G is a

subset of a conjugate copy of SOn�1. Furthermore, using an argument very similar to
the argument used in the proof that G D SOn, when n is even (or see the case nD 5),
it is possible to prove that G is actually a conjugate copy of SOn�1. This gives rise to
the case in which K is a body of revolution.

Summarizing, suppose that B is an .n C 1/-dimensional convex body with the
property that all its hyperplane sections through the origin are affinely equivalent,
n � 1 mod 4, n 6D 5; 133. Then, every hyperplane section of B through the origin is
an affine body of revolution.

4.3. The case n D 5

This case is an exceptional case in our proof of the Banach conjecture but it is also
interesting enough to illustrate the true complexity of the conjecture. This section will
be dedicated to its complete proof.

LetB ,K, andG be defined as in the previous section but this timeB is a centrally
symmetric convex body in R6, and G D ¹g 2 SO5 j g.K/ D Kº is a compact Lie
subgroup of SO5. Furthermore, we know that the characteristic map of the tangent
space of S5

S4 SO5

G

f

�5

i

factorizes through G.

Suppose first that G leaves invariant a proper subspace of R5. We shall prove
that in this case K is a body of revolution.

By hypothesis, there is a k-dimensional subspace ƒ invariant under G. This
immediately implies that there is a continuous field of k-planes in S5. By [27, The-
orem 27.18], we know that S5 admits a continuous field of k-planes if and only if
k D 1 or k D 4. So, assume without loss of generality that k D 1, and therefore that
ƒ is a line invariant under G. Suppose without loss of generality that ƒ is the line
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through the origin orthogonal to R4, in such a way that G � SO4. We will prove that
G acts transitively on R4, thus proving that K is a body of revolution.

Given any 5-dimensional plane through the origin in R6, it is easy to prove that
there is a unique complex plane through the origin contained in it. It is for this reason
that there is a field of complex planes tangent to S5. This implies that the structural
group of TS5 can be reduced to SU2. Thus, we may assume that �5 W S4 ! SU2 is
the characteristic map of TS5. If e W SO4 ! S3 is the evaluation, hence, e�5 W S4 !

S3 is not null homotopic. To see this, note that SU2 is homeomorphic to S3 and
the evaluation e W SU2 ! S3 is a homeomorphism. Therefore, if e�5 W S4 ! S3 is
homotopically trivial, then the same holds for �5 W S4 ! SU2, but this implies that
the characteristic map of TS5 is homotopic to a constant, and therefore that TS5 is
parallelizable which is a contradiction.

We know that the structural group of TS5 can be reduced to G. Therefore, the
characteristic map �5 W S4 ! SU2 is homotopic on SO4 to a map f W S4 ! G. This
implies that e�5; ef W S4 ! S3 are homotopic. If G does not act transitively on R4,
hence ef is null homotopic, but this is a contradiction to the fact that e�5 is not null
homotopic. Consequently,G acts transitively on R4 andK is a body of revolution, as
we wished.

Suppose now that G � SO5 does not leave invariant a proper subspace of R6.
That is, we must study the irreducible representations on R5.

Consider S the collection of 3� 3 real symmetric matrices with zero trace. Then,
S is a real vector space of dimension 5 with the following natural interior product:
given A;B 2 S ,

Aˇ B D tr.AB/:

The group G D SO3 defines the following representation: g.A/ D gAg�1 D

gAgt , for every g 2 G and A 2 S .
Clearly, G acts linearly on S and furthermore,

g.A/ˇ g.B/ D tr.gAg�1gBg�1/ D tr.gABg�1/ D Aˇ B:

It is well known that this is a faithful, irreducible, representation. That is, we may
think G is a subgroup of SO5 with the property that G does not leave invariant any
proper subspace. Moreover, it is well known that any other irreducible representation
on R5 factors through G.

The following lemma finally proves that if B is a 6-dimensional convex body with
the property that all its hyperplane sections through the origin are affinely equivalent,
then every hyperplane section of B through the origin is an affine body of revolution.

Lemma 4.2. Let � � SO5 be a subgroup isomorphic to SO3, Then, the structural
group of TS5 cannot be reduced to �.
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Proof. Suppose that there is f W S4 ! � such that i�f W S4 ! SO5 is homotopic to
the characteristic map �5 W S4 ! SO5 of TS5, where i� W �! SO5 is the inclusion.
Let � W S3 !� be the double covering map and let g W S3 !� be such that �gD f .

Let u W SU2 ! SO5 be the inclusion. Hence �3.SO5/ D Z (every compact, sim-
ple Lie group has �3 D Z) and u� W �3.SU2/ ! �3.SO5/ is an isomorphism. On
the other hand, at the level of homology, H3.SO5;Z2/ is a directed sum of Z2’s and
u� WH3.SU2;Z2/!H3.SO5;Z2/ is not zero. Let us consider Œi��� 2 �3.SO5/DZ.
Suppose that Œi��� D m 2 Z and let � W S3 ! SU2 such that the induced homomor-
phism in homotopy is ��.1/ D m 2 �3.SU2/ D Z. Consequently, u� W S3 ! SO5 is
homotopic to i�� W S3 ! SO5. In 3-dimensional homology, .iG�/�.1/ D 0 which
implies that .u�/�.1/ D 0 and therefore, since u� W H3.SU2;Z2/! H3.SO5;Z2/ is
not zero, that m is even.

Sincem is even, the map �g WS4 ! SU2 is null homotopic, because �� W�4.S3/!

�4.SU2/ is zero. This is a contradiction to the fact that S5 is not parallelizable.

The intuitive claim that

u� W H3.SU2;Z2/! H3.SO5;Z2/

is not zero, used in the above proof, is not so easy to prove. Indeed, to justify it, it is
necessary to use the Dynkin index.

4.4. Affine bodies of revolution

A convex body K � Rn is a body of revolution if it admits an axis of revolution;
i.e., a 1-dimensional line L such that each section of K by an affine hyperplane �
orthogonal to L is an .n � 1/-dimensional Euclidean ball in �, centered at � \ L

(possibly empty or just a point). If L is an axis of revolution of K, then L? is the
associated hyperplane of revolution. Clearly, a ball is a body of revolution and any
line through its center serves as an axis of revolution.

An axis of revolution of a plane convex figure is an axis of symmetry (or reflex-
ion). Of course, a convex figure may have two different axes of symmetry without
being a disk. In dimension n � 3, the situation is different.

Theorem 4.3. A convex body of revolution K � Rn, n � 3, with two different axes
of revolution must be a ball.

Proof. Consider GK D ¹g 2 SOn j g.K/D Kº the collection of orientation preserv-
ing isometries that fixK and suppose that L 6D L0 are two different axes of revolution
of K. Without loss of generality, we may assume that L is the 1-dimensional sub-
space orthogonal to Rn�1. Clearly, the collection of orientation preserving isometries
of Rn that fixL also fixK and is equal to SOn�1 � SOn. On the other hand, the group
of orientation preserving isometries of Rn that fixes L0 fixes also K and is equal to
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SO0.n� 1/, a conjugate subgroup of SOn�1 in SOn. Thus, our hypotheses imply that

SOn�1 ¨ GK � SOn;

but it is well known that SOn�1 is a maximal connected subgroup of SOn (see [23,
Lemma 4]). Therefore, GK D SOn and K must be a ball.

An affine body of revolution is a convex body affinely equivalent to a body of
revolution. The images, under an affine equivalence, of an axis of revolution and its
associated hyperplane of revolution of the body of revolution are an axis of revolution
and associated hyperplane of revolution of the affine body of revolution (not neces-
sarily perpendicular anymore). Clearly, an ellipsoid centered at the origin is an affine
body of revolution and any hyperplane through the origin serves as a hyperplane of
revolution.

As in the Euclidean case, a non-elliptical body of revolution admits a unique axis
of revolution and a unique hyperplane of revolution.

Corollary 4.4. An affine convex body of revolutionK � Rn, n� 3, with two different
hyperplanes of revolution must be an ellipsoid.

Proof. Let E be the ellipsoid of minimal volume containing K. By translation and
dilatation of the principal axes of this ellipsoid, we obtain an affine isomorphism f W

Rn ! Rn such that f .E/ is the unit ball of Rn. Then since every affine isomorphism
that fixes f .K/ also fixes f .E/, we have that f .K/ contains two different axes of
revolution. By Lemma 4.3, f .K/ is a ball and consequently K is an ellipsoid.

4.4.1. Sections of affine bodies of revolution. It is not difficult to see that every
section of a body of revolution is a body of revolution, that is why sections of affine
bodies of revolution are affine bodies of revolution. Is the converse true? As far as I
know, nobody knows the answer.

Conjecture 4.5. Suppose that B is an .nC 1/-dimensional convex body all whose
hyperplane sections through the origin are affine bodies of revolution, n � 3. Then B
is an affine body of revolution.

We shall give a partial answer to this conjecture which will turn out to be suffi-
ciently good for our purposes. Under the same hypothesis, we shall prove that at least
one section of B through the origin is an ellipsoid. If this is so, and if, in addition,
B satisfies the hypothesis that every two or its hyperplane section through the origin
are affinely equivalent, then every section of B through the origin is an ellipsoid and
consequently B is an ellipsoid. The proof of the existence of at least one elliptical
section is a very interesting proof that combines ideas of convex geometry and alge-
braic topology. Before exposing it here, we require three intuitive lemmas, which we
will state without proof. We ask the reader to include their own proofs.
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Lemma 4.6. Every hyperplane section �\K of an affine body of revolution K�Rn,
n � 3, is an affine body of revolution. Furthermore, if H is the hyperplane of revolu-
tion of K, then either � is parallel to H or � \H is a hyperplane of revolution of
� \K.

Lemma 4.7. Let K � Rn, n � 3, be an affine body of revolution with axis of revo-
lution the line L and let � be a hyperplane containing L. Suppose that � \K is an
ellipsoid. Then K is an ellipsoid.

Lemma 4.8. Let B � RnC1 be a centrally symmetric convex body, all of whose
hyperplane sections through the origin are non-elliptical affine symmetric bodies of
revolution. For each x 2 Sn, let Lx be the (unique) axis of revolution of x? \ B ,
where x? denotes the subspace orthogonal to x. Then x 7! Lx is a continuous func-
tion Sn ! RP n. Consequently,

¹x C Lxºx2Sn

is a field of lines tangent to Sn.

Since every field of tangent lines gives rise to a trivial 1-dimensional fiber bundle
over Sn, then there is

 W Sn
! Sn;

such that for every x 2 Sn

Lx \ Sn
D

®
�  .x/;  .x/

¯
:

Note that, for every x 2 Sn,  .x/ is orthogonal to x and hence  .x/ 6D �x. This
implies that  W Sn ! Sn is homotopic to the identity map and therefore that  is
surjective.

From now on, let B � RnC1 be a centrally symmetric convex body, all of whose
hyperplane sections through the origin are non-elliptical affine symmetric bodies of
revolution, and remember that for every u 2 Sn, we denote by u? the n-dimensional
subspace of RnC1 orthogonal to u. Furthermore, by Lemma 4.4, denote by Lu the
unique affine axis of revolution of u? \ B , and by Hu the corresponding .n � 1/-
dimensional hyperplane of revolution of u? \ B . Note that the line Lu contains the
origin. The fact that u? \ B is symmetric implies that the origin is the center of the
ellipsoid Hu \ B and therefore that the origin lies in Lu.

Lemma 4.9. Let B � RnC1 be a symmetric convex body with center at origin, n� 4,
and suppose that every hyperplane section of B through the origin is a non-elliptical
affine convex body of revolution. Suppose that Lv � u? for some u; v 2 Sn. Then

Hv \ �u D Hu \ �v D Hv \Hu

are highlighted in red.
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Proof. Consider u? \ v?, the .n � 1/-dimensional subspace of v?. By hypothesis,
v? \ B is a non-elliptical affine body of revolution with affine axis of revolution
Lv . Therefore, since Lv � u? \ v?, we have that u? \ v? \ B is an affine body
of revolution with affine axis of revolution Lv . Furthermore, by Lemma 4.7, u? \

v? \ B is not an ellipsoid. Moreover, the principal affine subspace of revolution of
u? \ v? \ B is Hv \ u?.

On the other hand, u? \ v? is an .n � 1/-dimensional subspace of u?. Note
that u? \ v? 6D Hu, otherwise u? \ v? \B D Hu \B would be an ellipsoid, con-
tradicting our previous assumption. Since u? \ B is a non-elliptical affine body of
revolution and u? \ v? 6D Hu, then, by Lemma 4.6, u? \ v? \ B is an affine body
of revolution with principal affine subspace of revolutionHu \ v?. Consequently, by
Lemma 4.4, we have that Hv \ u? D Hu \ v?.

Our main result regarding affine bodies of revolution is the following theorem.

Theorem 4.10. Let B � RnC1 be a symmetric convex body with center at origin,
n � 4, and suppose that every hyperplane section of B through the origin is an affine
body of revolution. Then there is a hyperplane section through the origin of B which
is an ellipsoid.

Proof. Suppose not, suppose that B is a symmetric convex body with center at the
origin and with the property that every hyperplane section of B through the origin is
a non-elliptical affine convex body of revolution.

Let us fix a point x0 2Hu0
\ Sn. Since  W Sn ! Sn is suprayective, let v0 2 Sn

such that  .v0/ D x0. This implies that

Lv0
� Hu0

:

This is a contradiction to Lemma 4.9 because clearly Lv0
� u0

?, hence,

Lv0
� Hu0

\ v0
?
D Hv0

\ u0
?
� Hv0

;

which is impossible.

Theorem 4.10 is also true when n D 2. Indeed, in [21] Montejano proved that
if B is a 3-dimensional convex body which contains the origin as interior point and
every section through the origin is a figure that has a line of reflection (symmetry),
then there is a section through the origin that is a disk. The proof also uses topology
but it is intrinsically different to the proof of Theorem 4.10. The case n D 3 remains
open.

With this, we have finished exposing the solution to the Banach conjecture over
the reals given by Gromov [13], when n D even and by Bor–Hernández Lamoneda–
Jiménez-Desantiago–Montejano [4] when n� 1 mod 4, n 6D 133. We summarize the
results below in the following theorem.
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Theorem 4.11 (Main theorem). If all hyperplane sections through the origin of an
.nC 1/-dimensional convex body B are affinely equivalent, n � 0; 1; 2 mod 4, n 6D

133, then the convex body B is an ellipsoid.

4.5. The Banach conjecture, when n is odd and dim V � n C 2

As we have mentioned before, the cases of the Banach conjecture that have yet to
be solved are those in which n � 3 mod 4. That is, the first unsolved case from the
Banach conjecture is the following.

Conjecture 4.12. If all hyperplane sections through the origin of a 4-dimensional
convex body B are affinely equivalent, then the convex body B is an ellipsoid.

Indeed, Gromov in his original paper [13], using topology but a complete different
sort of ideas, proved the Banach conjecture over the reals, when n � 3 mod 4 and
dim V > n C 1 and the Banach conjecture over the complex numbers, when n �

3 mod 4 and dimV > 2n � 1.
The purpose of this section is to introduce these deep ideas. Let us prove the

Banach conjecture over the reals, when n > 1 is odd and dimV � nC 2.

Theorem 4.13 (Gromov). Let B be an .n C 2/-dimensional convex body with the
origin as interior point and suppose that all n-sections through the origin are linearly
equivalent, for n > 1 odd. Then the convex body B is an ellipsoid.

Denote by Vn;k the space of all orthonormal k-frames .e1; : : : ; ek/, where ei 2Rn,
n � k. For our purpose, consider the space of 4-frames .e1; e2; e3; e4/ in RnC2 and
also the two fiber bundles

p1 W VnC2;4 ! VnC2;2; p2 W VnC2;4 ! VnC2;2;

where
p1.e1; e2; e3; e4/ D .e1; e2/; p2.e1; e2; e3; e4/ D .e3; e4/:

The fiber in both cases is the Stiefel Manifold Vn;2. For more about Stiefel fiber
bundles, see the book [19].

Consider now a nonempty closed subset V � VnC2;2 and denote

zV D p�1
1 .V / D

®
.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V

¯
:

The following lemma is Proposition 3 of Gromov’s paper [13].

Lemma 4.14. If n is odd and the restriction p2j W zV ! VnC2;2 is a fiber bundle, then
V D VnC2;2.

We give only a brief sketch of the main ideas of the proof. We must consider an
arbitrary fiber Vn;2 of p2 and prove that the intersection V 0 D zV \ Vn;2 coincides
with Vn;2. Note that the dimension of Vn;2 is equal to 2n � 3. In fact, if V 0 6D Vn;2,
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then H 2n�3.V IQ/ D 0 and for p C q D 2n � 3, the second term E
p;q
2 in the spec-

tral sequence of the fiber bundle p2j W zV ! VnC2;2 is trivial, which implies that
H 2n�3. zV IQ/ is trivial, contradicting an old result of Borel in [5, p. 192] that claims
that for n D odd, the homomorphism induced by the inclusion

H 2n�3.VnC4;2IQ/! H 2n�3.Vn;2IQ/

is non-zero.

Proof of Theorem 4.13. By hypothesis, there is a convex bodyK �Rn with the prop-
erty that the ellipsoid of minimal volume containingK is the unit ball of Rn and such
that every n-dimensional section of B through the origin is linearly equivalent to K.
Let us denote, as usual, by GK the Lie group of all linear isomorphisms of Rn that
keep K fixed. Of course, GK � On.

Let us fix a 2-dimensional plane � in RnC2 through the origin and define V �

VnC2;2 as the set of 2-frames .e1; e2/ in RnC2 such that if he1; e2i is the subspace
spanned by e1 and e2, then the section he1; e2i \B is linearly equivalent to the section
� \ B . Furthermore, let V 0 � Vn;2 be the set of 2-frames .e1; e2/ in Rn such that
he1; e2i \K is linearly equivalent to � \ B . Finally, let

zV D p�1
1 .V / D

®
.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V

¯
:

We shall first prove that the restriction p2j W zV ! VnC2;2 is a locally trivial bundle
with fiber V 0. For that purpose, consider U an open contractible subset of VnC2;2.
Then, using the contractibility of U and the existence of a field of convex bodies
lineally equivalent to K, contained in the fibers of the canonical vector bundle of n-
subspaces in RnC2, it is possible to construct a continuous mapƒ WU !GL.n;nC 2/
satisfying the following properties:

(1) for every .e3; e4/ 2 U , ƒe3;e4
W Rn ! RnC2 is a linear embedding,

(2) for every .e3; e4/ 2 U , ƒe3;e4
.Rn/ is orthogonal to both e3 and e4,

(3) for every .e3; e4/ 2 U , ƒe3;e4
.K/ D ƒe3;e4

.Rn/ \ B .

Given a pair of linearly independent vectors .w1; w2/, denote by .GS1.w1; w2/;

GS2.w1; w2// the 2-frame obtained from .w1; w2/ by the Gram–Schmidt procedure
in such a way that hw1; w2i D hGS1.w1; w2/;GS2.w1; w2/i.

Define the fiber preserving map

ˆ W U � V 0
! VnC2;4;

given by

ˆ
�
.e3; e4/; .e1; e2/

�
D

�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
:
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First of all, by (2),�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
2 VnC2;4:

Moreover, by (1),�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

��
2 V

and therefore�
GS1

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
;GS2

�
ƒe3;e4

.e1/;ƒe3;e4
.e2/

�
; e3; e4

�
2 p2j

�1.U /:

Hence, we obtain a fiber preserving homeomorphism:

U � V 0 p2j
�1.U /

U U

proj

ˆ

p2j

id

thus proving that p2j W zV ! VnC2;2 is a locally trivial bundle with fiber V 0. Further-
more, p2 is a fiber bundle with structure group GK . If this is so, by Lemma 4.14,
V D VnC2;2. This implies that for every two planes through the origin, the corre-
sponding sections of B are linearly equivalent and hence that B is an ellipsoid.

4.6. The complex Banach conjecture

The fifth meaning of equal is complex affinely equivalence.

Let V be a finite dimensional Banach space over the complex numbers all of
whose hyperplane subspaces are isometric to each other. Is it true that V is a Hilbert
space?

Our next purpose is to prove that the above problem is equivalent to the following
geometric problem. We need first some definitions.

Let S1 be the space of all unit complex numbers C. Let A be a subset of complex
space Cn. We say that A is complex symmetric if and only if there is a translated copy
A0 of A such that �A0 D A0, for every � 2 S1. In this case, if A0 D A� x0, we say that
x0 is the center of complex symmetry of A. If �A is a translated copy of A, then we
just say that A is symmetric. It will be useful to consider the empty set as a complex
symmetric set. Note that a compact convex set A � Cn is complex symmetric with
center at x0 if and only if for every complex line L through x0, the section L\A is a
disk centered at x0. Of course, any complex k-plane or a ball in a finite dimensional
Banach space over the complex numbers is complex symmetric. A complex ellipsoid
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is the image of a ball under a complex affine transformation. Thus, balls of finite
dimensional Hilbert spaces are complex ellipsoids. Of course, complex ellipsoids are
complex symmetric sets. With this definition in mind, we may state the following
problem equivalent to the complex Banach conjecture:

If all complex hyperplane sections through the origin of a convex bodyB � CnC1

with the origin as center of complex symmetry are complex linearly equivalent, is the
convex body B a complex ellipsoid?

As was already mentioned, this problem has a positive answer when n D even
(Gromov [13]) and when n � 1 mod 4 (Bracho and Montejano [6]). The purpose of
this section is to give a brief summary of the ideas and techniques used in the proof.

This time, unlike the real case in which we use the principal bundle

SOn ,! SOnC1 ! Sn;

we will use the corresponding principal bundle SUn ,! SUnC1 ! S2nC1. Here SUn

is the group of complex isometries of determinant 1 in Cn and we say that the
structure group of the principal bundle SUn ,! SUnC1 ! S2nC1 can be reduced
to G � SUn if the characteristic map �n W S2n ! SUn of the complex bundle factor-
izes through G, that is, there is a map f W S2n ! G such that the following diagram
commutes up to homotopy, where i W G ! SUn is the inclusion

S2n SUn

G:

f

�n

i

Denote by GL0
n.C/ the group of complex linear isomorphisms of Cn with deter-

minant a positive real number. Note that ifK1 andK2 are complex symmetric convex
bodies in Cn which are complex linearly equivalent, then there is g 2 GL0

n.C/ such
that g.K1/ D K2.

Given a complex symmetric convex body K � Cn, let

GK WD
®
g 2 GL0

n.C/ j g.K/ D K
¯

be the group of complex linear isomorphisms of K with positive real determinant.
By Lemma 1 of Gromov [13], there exists a complex ellipsoid of minimal volume
containing K centered at the origin. Suppose now that this minimal ellipsoid is the
.2n � 1/-dimensional unit ball, then every g 2 GK is actually an element of SUn,
because it fixes the unit ball, so in this case, GK WD ¹g 2 SUn j g.K/ D Kº.

The link between our geometric problem and the topology is via the following
lemma.
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Lemma 4.15. LetB �CnC1, n� 2, be a complex symmetric convex body with center
at the origin all of whose complex hyperplane sections through the origin are complex
linearly equivalent. Then there exists a complex symmetric convex bodyK � Cn with
center at the origin and with the property that every complex hyperplane section of B
is complex linearly equivalent toK and such that the structure group of the principal
fiber bundle SUn ,! SUnC1 ! S2nC1 can be reduced to GK � SUn.

Our main interest naturally lies in studying the structure groups of the principal
bundle �n: SUn ,! SUnC1 ! S2nC1. In particular, if n � 0 mod 2, �n cannot be
reduced to a proper subgroup of SUn�1 (see Leonard [15, Theorem 1B]). Therefore,
under the hypothesis of Lemma 4.15, GK must be SUn, and hence K must be a ball.
This implies that every section ofB is a complex ellipsoid. Of course, every section of
a complex symmetric body B � CnC1 is a complex ellipsoid only if B is a complex
ellipsoid; see [6, Lemma 3.3]. This proves the complex Banach conjecture, when n is
even.

For the case n � 1 mod 4, the proof requires first studying the case in which
GK � SUn is irreducible. If so, the topology of compact Lie groups over the complex
numbers is simpler than over the real numbers and then it is possible to prove, in a
similar way to the real case, that GK D SUn. If this is the case, then every section
of B is an ellipsoid and consequently B is also an ellipsoid. If GK � SUn is not
irreducible butGK is a proper subgroup of SUn, then we can prove thatGK D SUn�1.
To understand the convex geometry of the consequences of this result, we need the
following definition:

A complex body of revolution is a complex symmetric convex body K � Cn

for which there exists a 1-dimensional complex subspace L of Cn, called its axis of
revolution, such that for every affine complex hyperplaneH orthogonal toL, we have
thatH \K is either empty, a single point, or a .2n� 2/-dimensional ball centered at
H \ L. Of course, K is a convex body of revolution if and only if GK D SUn�1.

With this in mind, it is very clear that what we have obtained is the following
theorem.

Theorem 4.16. Let B � CnC1, n � 1 mod 4, n � 5, be a complex symmetric con-
vex body with center at the origin all of whose complex hyperplane sections through
the origin are complex linearly equivalent. Then, there exists a complex body of rev-
olution K � Cn with center at the origin and with the property that every complex
hyperplane section of B through the origin is C-linearly equivalent to K.

To conclude, we need to know what are the geometric consequences of all the
complex hyperplane sections of a convex body being complex affine bodies of revo-
lution.
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Theorem 4.17. A complex symmetric convex body B � CnC1 with center at the ori-
gin, n � 4, all of whose complex hyperplane sections through the origin are complex
affine bodies of revolution, has at least one complex hyperplane section through the
origin which is a complex ellipsoid.

The proof of Theorem 4.17 is similar to the proof of Theorem 4.10 except this
time the proofs are just technically more complicated. This concludes an sketch of
the proof of the complex Banach conjecture when n� 0; 1; 2 mod 4, because by The-
orems 4.16 and 4.17, every hyperplane section of B through the origin is a complex
ellipsoid and therefore, by [6, Theorem 3.3] we obtain that B is a complex ellipsoid
as we wished.

The following theorem follows immediately from Theorems 4.16 and 4.17. It
proves the Banach conjecture over the complex numbers for n � 0; 1; 2 mod 4, and
dimV > n.

Theorem 4.18 (Bracho–Montejano [6]). If all complex hyperplane sections through
the origin of a complex symmetric convex body B � CnC1 are linearly equivalent,
n � 0; 1; 2 mod 4, then the convex body B is a complex ellipsoid.

5. Convex bodies all whose orthogonal projections are equal

The purpose of this section is to answer the following question:

If all orthogonal projections of a convex body onto hyperplanes are “equal”, is
the convex body “equal” to the ball?

5.1. Equal area, congruence, and affine equivalence

The first meaning of “equal” is same “area”. In 1937, A. D. Aleksandrov [1] proved
that if all orthogonal projections of a symmetric convex body have the same area,
then not only does the body have the same volume of the corresponding ball but it is
actually a ball.

Theorem 5.1 (Aleksandrov’s projection theorem [1]). If all orthogonal projections
onto hyperplanes of a symmetric convex body B � RnC1 have equal n-dimensional
volume, then the convex body B is a ball.

Without the hypothesis of symmetry, Theorem 5.1 is false. However, a symmetric
convex body all whose orthogonal projections have the same area not only has the
volume of the corresponding ball but also it is actually a ball. For every v 2 Sn, denote
by Bjv the orthogonal projection of B onto v? and let �.Bjv/ be the n-dimensional
volume of Bjv. The proof of Theorem 5.1 follows immediately from the following
Aleksandrov result (see [17, Theorem 2.11.1]). Given two convex bodies B1; B2 �

RnC1 symmetric with respect to the origin and such that �.B1jv/ D �.B2jv/, for



L. Montejano 878

every v 2 Sn, then B1 is a translated copy of B2. The proof of this result is analytic
and a little more complicated than the proof of Theorem 2.1.

Using harmonic integration, it can be proved that a centrally symmetric convex
body all whose .n � 1/-dimensional perimeter areas are equal must be a ball. The
proof is similar to the proof of Theorem 2.1 but using the support functions instead of
the radial functions (see [10, Theorem 4]). Of course, without the symmetry hypoth-
esis, the result is false as it can be observed with 3-dimensional convex bodies of
constant width 1, in which the perimeter of all their orthogonal projections is � .

The next meaning of “equal” is congruence. That is, assume that all orthogonal
projections onto hyperplanes of the convex body B � RnC1 are congruent.

The collection of orthogonal projections of B � RnC1,

¹Bjvºv2Sn

give rise, not only to a field of convex bodies congruent toBje1 and tangent to Sn, but
also mainly to a complete turning of Bje1, where e1 D ¹1; 0; : : : ; º 2 RnC1. We know
that a complete turning is only possible for symmetric convex bodies (see Section 3).
So, Bjv is symmetric for every v 2 Sn and, consequently, it is not very difficult to
prove that B is symmetric, but in this last case Aleksandrov’s theorem (Theorem 5.1)
implies that B is also a ball. That is, we have the following theorem.

Theorem 5.2. If all orthogonal projections onto hyperplanes of a convex body B �

RnC1 are congruent, then the convex body B is a ball.

Suppose now all orthogonal projections onto hyperplanes of the convex body
B � RnC1 are affinely equivalent to a convex body K and suppose without loss of
generality that the ellipsoid of minimal volume containing K is the unit ball. Denote
GK WD ¹g 2 GLn.R/ j g.K/ D K and det.g/ is positiveº � SOn. As in the case of
the hyperplane sections, we have that the existence of the collection of projections
¹Bjvºv2Sn gives rise directly to the following lemma which is the link between the
topology and the geometric problem. Note that from the arguments given in the pre-
ceding paragraph and Theorem 3.2, we may assume without loss of generality that B
and K are symmetric with center at the origin.

Lemma 5.3. Let B � RnC1, n � 2, be a symmetric convex body all of whose orthog-
onal projections onto hyperplanes are linearly equivalent. Then there exists a sym-
metric convex bodyK � Rn, with the property that every orthogonal projection of B
onto a hyperplane is linearly equivalent toK and such that the structure group of the
principal fiber bundle SOn ,! SOnC1 ! Sn can be reduced to GK � SOn.

Once we have this technical lemma, we are in a position to know, using the topo-
logical arguments from Section 4.2, how the projections of B are. That is, we have
the following theorem.
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Theorem 5.4. Let B � RnC1, n � 0; 1; 2 mod 4, n � 2, n 6D 133, be a convex body
all of whose orthogonal projections onto hyperplanes are affinely equivalent. Then,
there exists a body of revolution K � Rn, with the property that every orthogonal
projection of B is affinely equivalent to K.

To conclude, we need to know the geometric consequences of all orthogonal
projections of a convex body being affine bodies of revolution. Every orthogonal
projection of a body of revolution is a body of revolution, this is why projections of
affine bodies of revolution are affine bodies of revolution. Is the converse true? As far
as I know, nobody knows the answer. The following geometric question is of great
interest. Suppose that B is an .nC1/-dimensional convex body all whose orthogonal
projections are affine bodies of revolution, n � 3. Is B an affine body of revolution?

We shall give a partial answer to this question which will turn out to be suffi-
ciently good for our purposes. Under the same hypothesis of the above question, we
shall prove that at least one orthogonal projection of B is an ellipsoid. If this is so,
and if, in addition, B satisfies the hypothesis that every two of its orthogonal pro-
jections are affinely equivalent, then every orthogonal projection of B is an ellipsoid
and consequently B is an ellipsoid. The proof of the next theorem is very similar to
the proof of Theorem 4.10, with the different adjustments that are always necessary
when trying to adapt a proof for sections to one for projections.

Theorem 5.5. Let B � RnC1 be a symmetric convex body, n � 4, and suppose that
every orthogonal projection onto hyperplanes of K is an affine body of revolution.
Then there is an orthogonal projection of B which is an ellipsoid.

This result, together with Theorem 5.4, immediately implies the following char-
acterization of the ellipsoid first proved by Montejano in [22].

Theorem 5.6. Let B � RnC1, n � 0; 1; 2 mod 4, n � 2, n 6D 133, be a convex body
all of whose orthogonal projections onto hyperplanes are affinely equivalent. Then B
is an ellipsoid.

5.2. The codimension 2 case for orthogonal projections

In this section, we will adapt Gromov’s ideas from Section 4.5 to the context of
orthogonal projections.

We need first a technical lemma.

Lemma 5.7. Given a linear embedding h W Rn ! Rm, 2 < n < m, there is a contin-
uous map h� W Vn;2 ! Vm;2 such that, for every u 2 Vn;2, (i) hh�.u/i � h.Rn/ and
(ii) h.hui?/ is orthogonal to hh�.u/i, where hui denotes the plane generated by u.

Furthermore, h� varies continuously with h, while h varies in the space of linear
embeddings from Rn to Rm.
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Proof. Let H � h.Rn/ be the plane such that H is orthogonal to h.hui?/ and let
� W h.Rn/! H be the orthogonal projection. Then, given u D .u1; u2/ 2 Vn;2, let

h�.u1; u2/ D
�

GS1
�
�.u1/; �.u2/

�
;GS2

�
�.u1/; �.u2/

��
2 Vm;2;

where given a pair of linearly independent vector .w1;w2/, denote by .GS1.w1;w2/;

GS2.w1; w2// the 2-frame obtained from .w1; w2/ by the Gram–Schmidt procedure
in such a way that hw1; w2i D hGS1.w1; w2/;GS2.w1; w2/i.

Here is the analogue of Theorem 4.13 for orthogonal projections:

Theorem 5.8 (Montejano). Let B be an .nC 2/-dimensional convex body and sup-
pose that all orthogonal projections onto n-planes are linearly equivalent, for n > 1
odd. Then the convex body B is an ellipsoid.

Proof. There is a convex body K � Rn with the property that the minimal ellipsoid
containingK is the unit ball of Rn and such that all orthogonal projections of B onto
an n-dimensional subspace are linearly equivalent to K. Let us fix a 2-dimensional
plane � � RnC2 through the origin and define V � VnC2;2 to be the set of 2-frames
.e1; e2/ in RnC2 such that the orthogonal projection of B onto he1; e2i is linearly
equivalent to the orthogonal projection ofB onto�. Furthermore, let V 0 � Vn;2 be the
set of 2-frames .e1; e2/ in Rn such that the orthogonal projection of K onto he1; e2i

is linearly equivalent to the orthogonal projection of B onto �. Finally, let zV D

p�1
1 .V / D ¹.e1; e2; e3; e4/ 2 VnC2;4 j .e1; e2/ 2 V º.

We shall first prove that the restriction p2j W zV ! VnC2;2 is a locally trivial bundle
with fiber V 0. For that purpose, consider U an open contractible subset of VnC2;2.
Then, using the contractibility of U and the existence of a field of convex bodies,
lineally equivalent to K, contained in the fibers of the canonical vector bundle of n-
subspaces in RnC2, it is possible to construct a continuous mapƒ WU !GL.n;nC 2/
satisfying the following properties:

(1) for every .e3; e4/ 2 U , ƒe3;e4
W Rn ! RnC2 is a linear embedding,

(2) for every .e3; e4/ 2 U , ƒe3;e4
.Rn/ is orthogonal to both e3 and e4,

(3) for every .e3; e4/ 2 U , ƒe3;e4
.K/ is the orthogonal projection of B onto

ƒe3;e4
.Rn/.

Define the fiber preserving map

ˆ W U � V 0
! VnC2;4

given by ˆ..e3; e4/; .e1; e2// D .h�.e1; e2/; e3; e4/.
First of all, by (2), .h�.e1; e2/; e3; e4/ 2 VnC2;4. Moreover, by (1) and Lemma 5.7,

.h�.e1; e2// 2 V and therefore .h�.e1; e2/; e3; e4/ 2 p2j
�1.U /. Hence, we obtain a
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fiber preserving homeomorphism

U � V 0 p2j
�1.U /

U U:

proj

ˆ

p2

id

Thus proving that p2j W zV ! VnC2;2 is a locally trivial bundle with fiber V 0. If this is
so, by Lemma 4.14, V D VnC2;2. This implies that every two orthogonal projections
onto 2-dimensional planes are linearly equivalent and hence, by Theorem 5.6, for
n D 2, that K is an ellipsoid.
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[24] A. Pełczyński, On some problems of Banach. Russ. Math. Surv. 28 (1973), no. 6, 67–75
Zbl 0288.46016

[25] R. Schneider, Convex bodies with congruent sections. Bull. London Math. Soc. 12 (1980),
no. 1, 52–54 Zbl 0401.52001 MR 565484

[26] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory. 2nd expanded edn., Ency-
clopedia Math. Appl. 151, Cambridge University Press, Cambridge, 2014
Zbl 1287.52001 MR 3155183

https://zbmath.org/?q=an:0088.31802&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=105652
https://zbmath.org/?q=an:0529.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=723941
https://zbmath.org/?q=an:1102.52002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2251886
https://zbmath.org/?q=an:0799.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1243009
https://zbmath.org/?q=an:0162.44402&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0217566
https://zbmath.org/?q=an:0298.52005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=362048
https://zbmath.org/?q=an:0217.49201&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=275468
https://zbmath.org/?q=an:0189.52901&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=259753
https://zbmath.org/?q=an:1468.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3930585
https://mathscinet.ams.org/mathscinet-getitem?mr=0293374
https://zbmath.org/?q=an:0298.57008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0440554
https://zbmath.org/?q=an:0746.52009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1125866
https://zbmath.org/?q=an:1104.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2168169
https://zbmath.org/?q=an:07470554&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4374323
https://zbmath.org/?q=an:0063.04077&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=8817
https://zbmath.org/?q=an:0288.46016&format=complete
https://zbmath.org/?q=an:0401.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=565484
https://zbmath.org/?q=an:1287.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3155183


Convex bodies all whose sections (projections) are equal 883

[27] N. Steenrod, The Topology of Fibre Bundles. Princeton Landmarks in Mathematics,
Princeton University Press, Princeton, NJ, 1999 Zbl 0942.55002 MR 1688579

[28] W. Süss, Kennzeichnende Eigenschaften der Kugel als Folgerung eines Brouwerschen
Fixpunktsatzes. Comment. Math. Helv. 20 (1947), 61–64 Zbl 0029.32001 MR 21339

Luis Montejano
Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM) at Querétaro,
76230 Juriquilla, Querétaro, Mexico; luis@im.unam.mx

https://zbmath.org/?q=an:0942.55002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1688579
https://zbmath.org/?q=an:0029.32001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=21339
mailto:luis@im.unam.mx




© 2023 EMS Press
This work is licensed under a CC BY 4.0 license
DOI 10.4171/8ECM/26

On a class of nonlocal problems with fractional gradient
constraint

Assis Azevedo, José-Francisco Rodrigues, and Lisa Santos

Abstract. We consider a Hilbertian and a charges approach to fractional gradient constraint
problems of the type jD�uj � g, involving the distributional fractional Riesz gradient D� ,
0 < � < 1, extending previous results on the existence of solutions and Lagrange multipliers of
these nonlocal problems.

We also prove their convergence as �% 1 towards their local counterparts with the gradient
constraint jDuj � g.

1. Introduction

Recently, the distributional partial derivatives of the Riesz potentials of order 1 � � ,
0 < � < 1,

.D�u/j D
@

@xj

.I1��u/ D Dj .I1��u/; j D 1; : : : ; N;

where I˛ , 0 < ˛ < 1, is given by

I˛u.x/ D .I˛ � u/.x/ D 
N;˛

Z
RN

u.y/

jx � yjd�˛
dy; with 
N;˛ D

�
�

N�˛
2

�
�

N
2 2˛�

�
˛
2

� ;
are shown to be a useful tool for a fractional vector calculus with the � -gradient
D� and � -divergence D� � (see [5, 6, 12–14]). It leads to a new class of fractional
partial differential equations and new problems in the calculus of variations [4]. As
a consequence of the approximation of the identity by the Riesz kernel as ˛ ! 0

(see [7]), the � -gradient converges to the classical gradientD as � % 1, for instance,
for smooth functions u 2 C1

0 .R
N / (see also [4,6]). Among the nice properties ofD� ,

in [12] it was shown, for u 2 C1
0 .R

N /, that

D�u � D.I1�� � u/ D I1�� �Du; (1.1)
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26A33.
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.��/�u D �D�
� .D�u/; (1.2)

where .��/� is the classical fractional Laplacian in RN .
Here we are interested in complementing and extending some results of [10] on

elliptic fractional equations of second � -order, subjected to a � -gradient constraint

jD�uj � g in RN (1.3)

and having the distributional form

�D�
� .AD�uCƒ� / D f# �D

�
� f : (1.4)

We consider the homogeneous Dirichlet problem in a bounded open domain
� � RN , with Lipschitz boundary, so that the solution u is to be found in the frac-
tional Sobolev space H �

0 .�/, 0 < � < 1, and may be extended by zero, belonging
to H � .RN /. The Lipschitz boundary is sufficient for the H �

0 .�/-extension property,
which is required in Section 4. Although in Sections 2 and 3 it is not strictly neces-
sary, we prefer to keep this assumption in order to avoid delicate issues, in particular,
with the definition of the classical space H �

0 .�/, which is the natural space to treat
the Dirichlet boundary condition.

In (1.4), A is a coercive matrix with bounded variable coefficients (see (2.1),
(2.2)) and f# and f are given functions making the right-hand side an element f 0 of
a suitable dual space.

The vector field ƒ� is associated with the constraint (1.3) and may have two
possible expressions. As we show in Section 2, with a Hilbertian approach, for g 2

L2.RN /, g� 0, and f 0 2H�� .�/D .H �
0 .�//

0,ƒ� DD�
 for a unique 
 2H �
0 .�/

and it defines an element of the subdifferential of K�
g , the convex subset ofH �

0 .�/ of
functions satisfying (1.3). The solution u is then the unique solution to the variational
inequality (2.9) in K�

g for the operator �D� � .AD� �/ � f 0.
In the second case, with a strictly positive g 2 L1.RN / and f# 2 L1.�/, f 2

L1.RN / D L1.RN /N , in Section 3, by approximating the unique solution u with a
suitable quasilinear penalised Dirichlet problem, we show the existence of at least a
generalised nonnegative Lagrange multiplier �� 2L1.RN /0, such thatƒ� D��D�u

and �� .jD�uj � g/ D 0 in the sense of charges, i.e., as an element of L1.RN /0.
We recall (see [15, Example 5, Section 9, Chapter IV]), for instance, that a charge

or an element � 2 L1.O/0, in an open set O � RN , can be represented by a finitely
additive measure ��, with bounded total variation, which is also absolutely continu-
ous with respect to the Lebesgue measure and may be given by a Radon integral

h�; 'i D

Z
O

' d��; 8' 2 L1.O/: (1.5)
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As a consequence, it is easy to show the Hölder inequality for nonnegative charges
� 2 L1.O/0 and arbitrary functions '; 2 L1.O/:ˇ̌

h�; ' i
ˇ̌
�

˝
�; j'jp

˛ 1
p
˝
�; j jp

0 ˛ 1
p0 ; p > 1; p0

D
p

p � 1
: (1.6)

It was proved in [12] that, similarly to the classical case � D 1, the Sobolev,
Trudinger, and Morrey inequalities also hold for the fractionalD� ; in particular, there
exists a constant C D C.N; p; �/ > 0, such that, for 1 < p <1, � 2 .0; 1/,

kukLq.RN / � CkD�ukLp.RN /; u 2 C1
c .R

N /; (1.7)

where q D Np
N��p

if � < N
p

, q <1 if � D
N
p

, and q D1 if � > N
p

. In addition, when
� > N

p
, we may take in the left-hand side of (1.7) the norm of the Hölder continuous

functions Cˇ
c .RN /, 0 < ˇ D � �

N
p
< 1. As a consequence, we considerH �

0 .�/with
the equivalent Hilbertian norm kD�ukL2.RN / (see [12]), which is also a consequence
of the fractional Poincaré inequality (see [4]).

We observe that our results of Sections 2 and 3 also hold in the limit local case
� D 1, i.e., in H 1

0 .�/. We then show in Section 4, where we need to work with
generalised sequences or nets, that the charges approach to the constrained problem
yields the convergence, as � % 1, of the solution u� and the generalised Lagrange
multiplier �� to the respective solution .u; �/ 2 W 1;1

0 .�/ �L1.�/0 to the classical
problem for D. We remark that, in this case, our results are new for data in L1 and
the general elliptic operator �D � .AD/, extending [3], where the charges approach
was introduced for �� with f# 2 L

2.�/ and f D 0. For a recent survey on gradient
type constrained problems, see [11].

2. The Hilbertian approach with � -gradient constraint in L2

Let the not necessarily symmetric measurable matrix A D A.x/ W RN ! RN�N sat-
isfy the coercive assumption, for some given a�; a� > 0,

A.x/� � � � a�j�j
2; a.e. x 2 RN ; 8� 2 RN ; (2.1)

and the boundedness conditions

A.x/� � � � a�j�j j�j; a.e. x 2 RN ; 8�; � 2 RN : (2.2)

Consider

f# 2 L2#
.�/ and f D .f1; : : : ; fN / 2 L2.RN /; (2.3)



A. Azevedo, J.-F. Rodrigues, and L. Santos 888

where, by the Sobolev embeddings (1.7), 2# D
2N

NC2�
if 0 < � < N

2
, or 2# D q for

any q > 1 when � D
1
2

and 2# D 1 when 1
2
< � < 1, so that

hf 0; vi� D

Z
�

f#v C

Z
RN

f �D�v; (2.4)

for arbitrary v 2H �
0 .�/, defines the linear form f 0 2H�� .�/DH �

0 .�/
0, 0< � < 1.

We have

9Š� 2 H �
0 .�/ W

Z
RN

D�� �D�v D hf 0; vi� ; 8v 2 H �
0 .�/: (2.5)

The validity of (2.5) is a consequence of the Fréchet–Riesz representation theorem
and the choice of the left-hand side of this equality as the inner product in H �

0 .�/,
as stated in Section 1. It follows that F D D�� 2 L2.�/ belongs to the image of
H �

0 .�/ by D� :

‰� D
®
G 2 L2.RN / W G D D�v; v 2 H �

0 .�/
¯
D D�

�
H �

0 .�/
�
; (2.6)

which is a strict Hilbert subspace of L2.RN /, for the inner product

.F ;G /‰�
D

Z
RN

D�� �D�v;

and ‰� is isomorphic to H�� .�/, by the Riesz theorem (2.5). Actually, this remark
extends the well-known case � D 1, when D1 is the classical gradient D.

Consider the nonempty closed convex set

K�
g D

®
v 2 H �

0 .�/ W jD
�vj � g a.e. in RN

¯
; (2.7)

where the � -gradient threshold g is such that

g 2 L2.RN /; g.x/ � 0 a.e. x 2 RN : (2.8)

Under the assumptions (2.1) and (2.2), A defines a continuous bounded coercive
bilinear form overH �

0 .�/ and, as an immediate consequence of the Stampacchia the-
orem (see [9, p. 95], for instance), we have the existence, uniqueness, and continuous
dependence of the solution u, with respect to the linear form (2.4), of the variational
inequality

u 2 K�
g W

Z
RN

AD�u �D� .v � u/

�

Z
�

f#.v � u/C

Z
RN

f �D� .v � u/; 8v 2 K�
g : (2.9)
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In particular, if C� denotes the Sobolev constant, with L2�

.�/ D L2#
.�/0,

kvkL2� .�/ � C�kD
�vk

L2.RN /
; v 2 H �

0 .�/; 0 < � � 1;

and Ou is the solution corresponding to the data Of#; Of , we have

ku � OukH �
0

.�/ �
C�

a�
kf# � Of#kL2#

.�/
C

1

a�
kf � Of k

L2.RN /
: (2.10)

It is well known (see [8, p. 203], for instance) that to solve (2.9) is equivalent to
finding u 2 H �

0 .�/, such that

� � f 0
� L�

Au 2 @IK�
g
.u/ in H�� .�/; (2.11)

where L�
A W H �

0 .�/! H�� .�/ is the linear continuous operator defined by

hL�
Aw; vi� D

Z
RN

AD�w �D�v; 8v;w 2 H �
0 .�/;

and � D �.u/ 2H�� .�/ is an element of the sub-gradient of the indicatrix function
IK�

g
of the convex set K�

g at u:

IK�
g
.v/ D

´
0 if v 2 K�

g ;

C1 if v 2 H �
0 .�/ n K�

g :

By the Riesz theorem, there exists a unique 
 D 
.u/ 2H �
0 .�/ corresponding to

� D �.u/ given by (2.11) (recall (2.5)) and the couple .u; 
/ 2 K�
g �H �

0 .�/ solves
the problemZ

RN

.AD�uCD�
/ �D�v D

Z
�

f#v C

Z
RN

f �D�v; 8v 2 H �
0 .�/: (2.12)

If we denote y
 D 
. Ou/, with Ou solving (2.9) with Of# and Of given in (2.3), using
(2.10) and (2.2), we easily obtain, by the Riesz isometry k�kH�� .�/ D k
kH �

0
.�/,

k
 � y
kH �
0

.�/

� C�

�
1C

a�

a�

�
kf# � Of#kL2#

.�/
C

�
1C

a�

a�

�
kf � Of k

L2.RN /
: (2.13)

We have then proven the following result.

Theorem 2.1. Under the previous assumptions, namely, (2.1), (2.2), (2.3), and (2.8),
there exists a unique solution of (2.9), which also satisfies (2.12) with a unique 
 D


.u/ 2 H �
0 .�/, obtained through (2.11) and depending on the data through (2.13).
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Remark 2.2. This result extends to the Riesz fractional gradient the limit case � D 1,
where the classical gradients of u and 
 are extended by zero in RN n�. A natural
and important question is to find a more direct relation of the potential 
 with the
solution u through the existence of a Lagrange multiplier �, such that

D�
 D �D�u: (2.14)

In the classical case � D 1, with A D Id ,� � R2 simply connected, and f 0 and
g given by positive constants, corresponding to the elasto-plastic torsion problem,
Brézis has proven the existence and uniqueness of a bounded function

� � 0 such that �
�
jDuj � g

�
D 0 a.e. in �;

which is even continuous if � is convex (see [11] for references). Although (2.14)
is an open question in the general case of Theorem 2.1, for strictly positive bounded
threshold g, it has been shown to hold in the sense of finite additive measures in [10],
following the case � D 1 of [3].

Using a variant of a classical penalisation method proposed in [8, p. 376] with
" 2 .0; 1/ and

k".t/ D 0; t � 0; k".t/ D
t

"
; 0 � t �

1

"
; k".t/ D

1

"2
; t �

1

"
; (2.15)

we may consider the approximating quasi-linear problem: find u" 2 H �
0 .�/, such

that Z
RN

�
AD�u" C y�".u"/D

�u"

�
�D�v

D

Z
�

f#v C

Z
RN

f �D�v; 8v 2 H �
0 .�/; (2.16)

where we set

y�" D y�".u"/ D k"

�
jD�u"j

2
� g2

�
with k" given by (2.15):

In the proof of the approximation theorem, we shall require the following assump-
tion: for each R > 0, there exists a gR, such that

g.x/ � gR > 0; for a.e. x 2 BR D
®
x 2 RN

W jxj < R
¯
: (2.17)

Theorem 2.3. Under the assumptions of Theorem 2.1, let also (2.17) hold. Then, the
unique solution u" 2 H �

0 .�/ of (2.16), as "! 0, is such that

u" �*
"!0

u in H �
0 .�/-weak; (2.18)

y�"D
�u" �*

"!0
D�
 in ‰0

� -weak; (2.19)
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where .u;
/ 2 K�
g �H �

0 .�/ is the unique couple given in Theorem 2.1 and satisfying
(2.12) and ‰� is the vector space defined in (2.6).

Proof. Since the quasi-linear operator yA" W H �
0 .�/! H�� .�/ defined by the left-

hand side of (2.16) is bounded, strongly monotone, coercive, and hemicontinuous, the
existence and uniqueness of u" solution to (2.16) is classical (see [8], for instance).

Taking v D u" in (2.16) and recalling that y�".u"/ � 0, it is clear that we have,
with C� > 0 independent of ", 0 < " < 1:

ku"kH �
0

.�/ �
C�

a�
kf#kL2#

.�/
C

1

a�
kf k

L2.RN /
� C� ; (2.20)

so that we have (2.18) at least for a generalised subsequence and some u 2 H �
0 .�/.

Consequently, from (2.16), we also obtain

ky�"D
�u"k‰0

�
D sup

v2H �
0

.�/

kvkH�
0

.�/D1

Z
RN

y�".u"/D
�u" �Dv � .a� C a�/C� ;

for all ", 0 < " < 1, by using (2.20) and recalling (2.2). Here we use the definition
(2.5) and we consider L2.RN /, identified to its dual, as a subspace of‰0

� , the dual of
‰� � L2.RN /. Hence, for a generalised subsequence "! 0, we also have

y�"D
�u" �*

"!0
ƒ in ‰0

� -weak: (2.21)

In order to prove that u 2 K�
g , i.e., jD�uj � g a.e. in RN , we consider, forR > 0,

U";R D
®
x 2 BR W 0 �

ˇ̌
D�u".x/

ˇ̌2
� g2.x/ �

p
"
¯
;

V";R D
®
x 2 BR W

ˇ̌
D�u".x/

ˇ̌2
� g2.x/ >

p
"
¯

and we observe that, using the assumptions (2.17), (2.20), and y�".jD
�u"j2 � g2/� 0,

from (2.16) it follows that

g2
R

Z
BR

y�" �

Z
RN

y�"g
2
�

Z
RN

y�"jD
�u"j

2
�
a�

2
C 2

� ; 0 < " < 1: (2.22)

Consequently, for all R > 0, we conclude that jD�uj � g in BR fromZ
BR

�
jD�uj � g

�C
� lim

"!0

Z
BR

�
jD�u"j � g

�C
D lim

"!0

� Z
U";R

�
jD�u"j � g

�
C

Z
V";R

�
jD�u"j � g

��
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since Z
U";R

�
jD�u"j � g

�
�

1

gR

Z
U";R

�
jD�u"j

2
� g2

�
�

jBRj
p
"

gR

;Z
V";R

�
jD�u"j � g

�
� jV";Rj

1
2

�
kD�u"kL2.BR/

C kgk
L2.BR/

�
�

�
C� C kgk

L2.RN /

�
jV";Rj

1
2

with

jV";Rj D

Z
V";R

1 �

Z
V";R

y�"

k".
p
"/

�
p
"

Z
BR

y�" �
a�C

2
�

2g2
R

p
":

Now, observing that for arbitrary v 2 K�
g we haveZ

RN

y�"D
�u" �D

� .v � u"/ �

Z
RN

y�"jD
�u"j

�
jD�vj � jD�u"j

�
� 0

(since y�" > 0 if jD�u"j > g � jD�vj), from (2.16) we obtainZ
RN

AD�u" �D
� .v � u"/ �

Z
�

f#.v � u"/C

Z
RN

f �D� .v � u"/; 8v 2 K�
g ;

and, passing to the limit as "! 0, we conclude that u solves (2.9), by using (2.18)
and the lower semi-continuity

lim
"!0

Z
RN

AD�u" �D
�u" �

Z
RN

AD�u �D�u: (2.23)

Finally, taking an arbitrary G DD�v 2‰� and taking "! 0 in (2.16), by recall-
ing (2.21), (2.12), and (2.5) we find

hƒ;G i‰�
D lim

"!0

Z
RN

y�"D
�u" �D

�v D

Z
RN

.D�� � AD�u/ �D�v

D

Z
RN

D�
 �D�v;

yielding the conclusion (2.19), by the uniqueness of u and 
 .

3. The charges approach with a � -gradient constraint in L1

In the framework of the previous section, we consider now the convex set K�
g defined

by (2.7) with the assumption

g 2 L1.RN /; 0 < g� � g.x/ � g� a.e. x in RN ; (3.1)



On a class of nonlocal problems with fractional constraint 893

for some constants g� and g�. It is clear that K�
g is still closed for the topology of

H �
0 .�/ in the space

‡�
1.�/ D

®
v 2 H �

0 .�/ W D
�v 2 L1.RN /

¯
; 0 < � � 1; (3.2)

and therefore, by the fractional Morrey–Sobolev inequality (1.7) for � > N
p

, we have,
for all 0 < ˇ < � ,

K�
g � ‡�

1.�/ � C0;ˇ .x�/ � L1.�/: (3.3)

Here C0;ˇ .x�/ is the space of the Hölder continuous functions with exponent ˇ.
As observed in [10], (3.3) is a consequence of Theorem 7.63 of [1] (see also [12,
Theorem 2.2]), which yields

kukL1.�/ � CpkD
�ukLp.RN /

� CpkD
�uk

1� 2
p

L1.RN /
kD�uk

2
p

L2.RN /
; 8u 2 ‡�

1.�/; (3.4)

where Cp > 0 is the Sobolev constant corresponding to any p > N
�
_ 2.

Therefore, in this case, we can extend the result of the solvability of the variational
inequality (2.9) with data in L1:

f# 2 L1.�/ and f 2 L1.RN /: (3.5)

Theorem 3.1. Under the assumptions (2.1), (2.2), (2.3), and (3.1), the unique solu-
tion u to (2.9) also satisfies the continuous dependence estimates (2.10). Moreover, if
in addition .f ; f#/ and . Of ; Of#/ also satisfy (3.5), the following estimate holds:

ku � OukH �
0

.�/ � apkf# � Of#k

1

2� 2
p

L1.�/
C b1kf � Of k

1
2

L1.RN /
; (3.6)

where p > N
�
_ 2 as in (3.4) and ap; b1 > 0 are constants.

Consequently, the variational inequality (2.9) is also uniquely solvable with the
assumption (2.3) replaced by (3.5) and the estimate (3.6) still holds in this case.

Proof. While the first part of this theorem is also a direct consequence of the Stam-
pacchia theorem, the estimate (3.6) follows easily from (2.9). Indeed, if we set Nu D

u � Ou, Nf# D f# � Of#, and Nf D f � Of , we have

a�k Nuk
2
H �

0
.�/ D a�

Z
RN

kD�
Nuk2

� k NukL1.�/k
Nf#kL1.�/ C kD�

NukL1.�/k
Nf k

L1.�/

� Cp.2g
�/1�

2
p kD�

Nuk
2
p

L2.�/
k Nf#kL1.�/ C 2g�k Nf k

L1.�/
; (3.7)

by (3.4) and the assumption (3.1). Hence, (3.6) follows easily by applying Young’s
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inequality and
p
� C  �

p
�C

p
 to the right-hand side of (3.7), where we obtain

the constants ap and b1 depending on Cp , a�, g�, and p > N
�
_ 2. The solvability of

(2.9) under the assumption (3.5) can be easily obtained using (3.6), approximating the
solution by a Cauchy sequence in H �

0 .�/ of solutions u� ���!
�!0

u, where u� solves

(2.9) with approximating sequences

f#� ���!
�!0

f# in L1.�/ and f � ���!
�!0

f in L1.RN / (3.8)

with f#� 2 L2.�/ and f � 2 L2.RN /, for instance, with f� D .f ^
1
�
/ _ .�1

�
/ by

truncation.

Remark 3.2. This result withL1-data extends Theorem 2.1 of [10] which considered
only the case f � 0. If the data f# 2 L

2#
.�/ and f 2 L2.RN /\ L1.RN / hold, our

approximation Theorem 2.3 also holds for the solution .u; 
/ to (2.11)-(2.12) under
the assumption (3.1), which implies g 2 L2.BR/ for all R > 0, since the proof is the
same.

It is also possible to obtain with L1-data the 1
2

-Hölder continuity of the map
L1.RN / 3 g 7! u 2H �

0 .�/with g satisfying (3.1) and u solution to (2.9), extending
Theorem 2.2 of [10].

Theorem 3.3. Under the assumptions (2.1), (2.2), and (3.5), let u and Ou be the solu-
tions to (2.9) corresponding to g and Og satisfying (3.1). Then, there exists a constant
C� > 0, depending on g� and the data, but independent of the solutions, such that

ku � OukH �
0

.�/ � C�kg � Ogk
1
2

L1.RN /
: (3.9)

Proof. Denote ı D kg � OgkL1.RN /, and take as test functions in (2.9), respectively,

w D
g�

g� C ı
Ou 2 K�

g and Ow D
g�

g� C ı
u 2 K�

Og

for the variational inequality for u and for Ou.
Observing that

ju � Owj �
ı

g�
juj and

ˇ̌
D� .u � Ow/

ˇ̌
�

ı

g�
jD�uj

and similarly for Ou � w, we obtain (3.9) from

a�ku � Ouk2
H �

0
.�/ �

Z
RN

AD� .u � Ou/ �D� .u � Ou/

D

Z
RN

AD�u �D� .u � w/C

Z
RN

AD�u �D� .w � Ou/

C

Z
RN

AD�
Ou �D� . Ou � Ow/C

Z
RN

AD�
Ou �D� . Ow � u/
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�

Z
�

f#
�
.u�w/C . Ou� Ow/

�
C

Z
RN

f �D�
�
.u � w/C . Ou� Ow/

�
C
2ı

g�

Z
RN

jAD�u �D�
Ouj

D

Z
�

f#
�
.u� Ow/C . Ou�w/

�
C

Z
RN

f �D�
�
.u� Ow/C . Ou�w/

�
C
2ı

g�

Z
RN

jAD�u �D�
Ouj

�
2ı

g�

�
Cpg

�1� 2
p �

2
p
p kf#kL1.�/ C g�kf k

L1.RN /
C a��2

p

�
;

by using (3.4) and �p D apkf#k

1

2� 2
p

L1.�/
C b1kf k

1
2

L2.RN /
, which is a general upper

bound for kD�ukL2.RN / and kD� OukL2.RN /, just by taking v � 0 in (2.9) and calcu-
lating as in (3.6).

Remark 3.4. This theorem allows to obtain solutions to quasi-variational inequalities
of the type (2.9), with the solution dependent on the convex sets K�

GŒu�
as in (2.7)

with g D GŒu�, where G W L2�

.�/! L1
g�
.RN /, being L1

g�
.RN /D ¹h 2 L1.RN / W

h.x/ � g� > 0 a.e. x 2 RN º, or G W C.x�/! L1
g�
.RN / are continuous and bounded

operators, as in [10, Section 4], where only the case f# 2 L2.�/ and f � 0 was
considered.

As we observed in Remark 3.2, the solution u to the variational inequality with
bounded � -gradient constraint and data satisfying (2.3) also solves (2.12), but the
extra terms involving 
 can be interpreted with a Lagrange multiplier � in a gener-
alised sense extending Theorem 3.1 of [10] to L1-data. Here we use the duality in
L1.RN / and in L1.RN / with the notation

hh�˛;ˇii D h�;˛ � ˇi; 8� 2 L1.RN /0 8˛;ˇ 2 L1.RN /: (3.10)

Theorem 3.5. Under the assumptions (2.1), (2.2), (3.1), and (2.3) or (3.5), there
exists .u; �/ 2 ‡�

1.�/ � L
1.RN /0, such thatZ

RN

AD�u �D�w C hh�D�u;D�wii

D

Z
�

f#w C

Z
RN

f �D�w; 8w 2 ‡�
1.�/; (3.11)

jD�uj � g a.e. in RN ; � � 0 and �
�
jD�uj � g

�
D 0 in L1.RN /0: (3.12)

Moreover, u is the unique solution to the variational inequality (2.9).
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Proof. (i) First we suppose (2.3), i.e., f# 2 L2.�/ and f 2 L2.RN /, and, from the
approximation problem (2.16), in addition to (2.20), we obtain the a priori estimates
independent of 0 < " < 1:

ky�"kL1.RN / �
a�

2g2
�

C 2
� �

C1

g2
�

; (3.13)

ky�"kL1.RN /0 �
C1

g2
�

; (3.14)

ky�"D
�u"kL1.RN /0 �

C1

g�
: (3.15)

Indeed, (3.13) follows from (2.22) with the assumption (3.1), which implies
(3.14), by definition of the dual norm, as well as (3.15), by using (3.13) and again
(2.22):

ky�"D
�u"kL1.RN /0 D sup

ˇ2L1.RN /
kˇk

L1.RN /
D1

Z
RN

y�"D
�u" � ˇ

�

�Z
RN

y�"jD
�u"j

2

� 1
2
�Z

RN

y�"

� 1
2

�
C1

g�
:

By the estimates (3.14), (3.15), and the Banach–Alaoglu–Bourbaki theorem, at
least for some generalised subsequence u" �*

"!0
u in H �

0 .�/ also

y�" �*
"!0

� weakly in L1.RN /0 and y�"D
�u" �*

"!0
ƒ weakly in L1.RN /0:

Since y�" � 0 a.e., � � 0 in L1.RN /0, and letting " ! 0 in (2.16) with w 2

‡�
1.�/, u and ƒ satisfyZ

RN

AD�u �D�w C hhƒ;D�wii

D

Z
�

f#w C

Z
RN

f �D�w; 8w 2 ‡�
1.�/: (3.16)

Letting "! 0 in (2.16) with v D u" and using (2.23), we easily find that

lim
"!0

Z
RN

y�"jD
�u"j

2
� hhƒ;D�uii:

Recalling that .jD�u"j
2 � g2/y�" � 0 and jD�uj � g a.e. x 2 RN , we obtain˝

�; jD�uj2
˛
� h�; g2

i D lim
"!0

Z
RN

y�"g
2
� lim

"!0

Z
RN

y�"jD
�u"j

2
� hhƒ;D�uii:
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Since we get the opposite inequality from

0 � lim
"!0

Z
RN

y�"

ˇ̌
D� .u" � u/

ˇ̌2
D lim

"!0

Z
RN

y�"jD
�u"j

2
� 2 lim

"!0

Z
RN

y�"D
�u" �D

�uC lim
"!0

Z
RN

y�"jD
�uj2

� hhƒ;D�uii � 2hhƒ;D�uii C
˝
�; jD�uj2

˛
D � hhƒ;D�uii C

˝
�; jD�uj2

˛
;

we conclude hhƒ;D�uii D h�; jD�uj2i and

lim
"!0

Z
RN

y�"

ˇ̌
D� .u" � u/

ˇ̌2
D 0: (3.17)

Hence, for any ˇ 2 L1.RN /, we haveˇ̌
hhƒ � �D�u;ˇii

ˇ̌
D lim

"!0

ˇ̌̌̌ Z
RN

y�"D
� .u" � u/ � ˇ

ˇ̌̌̌
� lim

"!0

��Z
RN

y�"

ˇ̌
D� .u" � u/

ˇ̌2� 1
2

ky�"kL1.RN /kˇkL1.RN /

�
D0;

showing that
ƒ D �D�u in L1.RN /0

and that, in fact, (3.16) is equivalent to (3.11).
It remains to show the last equation of (3.12) which follows easily from (recall

(3.1))

0 D
˝
�;

�
g2

� jD�uj2
�
'
˛
D

˝
�;

�
g � jD�uj

��
g C jD�uj

�
'
˛

� g�
˝
�;

�
g � jD�uj

�
'
˛
D g�

˝
�
�
g � jD�uj

�
; '

˛
� 0

for arbitrarily ' 2 L1.�/, ' � 0, which holds provided that we show˝
�;

�
g2

� jD�uj2
�
'
˛
D 0: (3.18)

As above, using (3.17), we have first

h�; g2'i � lim
"!0

Z
RN

y�"jD
�u"j

2'

D lim
"!0

�Z
RN

y�"

ˇ̌
D� .u" � u/

ˇ̌2
'

C 2

Z
RN

y�"D
� .u" � u/ �D

�u' C

Z
RN

y�"jD
�uj2'

�
D

˝
�; jD�uj2'

˛
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and, since u 2 K�
g and '; � � 0, it also holds that˝

�;
�
g2

� jD�uj2
�
'
˛
� 0:

To show that u is the unique solution to (2.9), it suffices to take w D u � v, with
an arbitrary v 2 K�

g , and observe that, by (3.18),

hh�D�u;D� .v � u/ii �
˝
�; jD�uj

�
jD�vj � jD�uj

�˛
�

˝
�; jD�uj

�
g � jD�uj

�˛
D

�
�
�
g2

� jD�uj2
�
;

jD�uj

g C jD�uj

�
D 0:

(ii) In the second case, if (3.5) holds, we can use approximation by solutions
.u� ; ��/ of (3.11)-(3.12) corresponding to data f#� 2 L2#

.�/ and f � 2 L2.RN /

satisfying (3.8), as in Theorem 3.1.
Using the estimate (3.6), it is clear that

u� ���!
�!0

u in H �
0 .�/ (3.19)

and u solves (2.9).
For ' 2 L1.RN /, setting b D

k'k
L1.RN /

g2
�

, recalling (3.1), and using (3.11) and

(3.12) for �� , which also implies that h�� ; g
2 � jD�u� j

2i D 0, we haveˇ̌
h�� ; 'i

ˇ̌
� h�� ; bg

2
i

D b
˝
�� ; jD

�u� j
2
˛
D bhh��D

�u� ;D
�u�ii

� b

�Z
�

f#u� C

Z
RN

f �D�u�

�
� C

k'kL1.RN /

g2
�

; (3.20)

where the constant C > 0 depends only on the L1-norms of f# and f and on the con-
stants ap and b1 of (3.6), being consequently independent of �. Then, �� is uniformly
bounded in L1.RN /0 and we may assume, for some generalised subsequence,

�� �*
�!0

� in L1.RN /0-weakly�; with � � 0; (3.21)

and, sinceƒ�D��D
�u� is also bounded in L1.RN /0 (recall kD�u�kL1.RN /�g

�),
also

ƒ� �*
�!0

ƒ in L1.RN /0-weakly�: (3.22)

Therefore, taking the limit � ! 0 in (3.11), we find that .u; �/ solvesZ
RN

AD�u �D�w C hhƒ;D�wii

D

Z
�

f#w C

Z
RN

f �D�w; 8w 2 ‡�
1.�/: (3.23)
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Recalling (3.18) with ' D 1, we have˝
�� ; jD

�uj2
˛
� h�� ; g

2
i D

˝
�� ; jD

�u� j
2
˛
: (3.24)

Using the equalities (3.24) and (3.19), we have

0 �
1

2

˝
�� ;

ˇ̌
D� .u� � u/

ˇ̌2˛
D
1

2

�˝
�� ; jD

�u� j
2
˛
� 2h�� ;D

�u� �D�ui C
˝
�� ; jD

�uj2
˛�

�
˝
�� ; jD

�u� j
2
˛
�
˝
�� ;D

�u� �D�u
˛
D hh��D

�u� ;D
� .u� � u/ii

D

Z
�

f#�.u� � u/C

Z
RN

f � �D� .u� � u/

�

Z
RN

AD�u� �D� .u� � u/ ���!
�!0

0; (3.25)

being the last equality satisfied because .u� ; ��/ solves problem (3.11)-(3.12) with
data f#� and f � .

Then, from (3.23) we can conclude that u in fact solves (3.11) from the equality

hhƒ;D�wii D lim
�!0

hh��D
�u� ;D

�wii

D lim
�!0

hh��D
�u;D�wii C lim

�!0
hh��D

� .u� � u/;D�wii

D lim
�!0

h�� ;D
�u �D�wi D h�;D�u �D�wi D hh�D�u;D�wii; (3.26)

which is valid for all w 2 ‡�
1.�/ since (3.25) implies thatˇ̌

hh��D
� .u� � u/;D�wii

ˇ̌
D

ˇ̌˝
�� ;D

� .u� � u/ �D�w
˛ˇ̌

�
˝
�� ;

ˇ̌
D� .u� � u/

ˇ̌
jD�wj

˛
�

�˝
�� ;

ˇ̌
D� .u� � u/

ˇ̌2˛� 1
2
�˝
�� ; jD

�wj2
˛� 1

2 ���!
�!0

0;

where we have used the Hölder inequality for charges in the last inequality.
From (3.26), we find hhƒ;D�uii D h�; jD�uj2i and

h�; g2
i D lim

�!0
h�� ; g

2
i D lim

�!0
hh��D

�u� ;D
�u�ii

D lim
�!0

hh��D
�u� ;D

�uii C lim
�!0

hh��D
�u� ;D

� .u� � u/ii

D lim
�!0

hhƒ� ;D
�uii D hhƒ;D�uii D

˝
�; jD�uj2

˛
:

Finally, we can now complete the proof of the theorem by using this equality in
the form h�.g2 � jD�uj2/; 1i D 0 and again the Hölder inequality to conclude the
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third condition in (3.12) with an arbitrarily ' 2 L1.RN /,ˇ̌˝
�
�
g � jD�uj

�
; '

˛ˇ̌
�

˝
�
�
g � jD�uj

�
; j'j

˛
D

�
�
�
g2

� jD�uj2
�
;

j'j

g C jD�uj

�
�

˝
�
�
g2

� jD�uj2
�
; 1
˛ 1

2

�
�
�
g2

� jD�uj2
�
;

j'j2�
g C jD�uj

�2

� 1
2

D 0:

The second part of this proof actually shows a generalised continuous dependence
of the solution and of the Lagrange multiplier with respect to the L1-data.

Corollary. Under the assumptions (2.1), (2.2), (3.1), and (3.5), if .u� ;��/2‡
�
1.�/�

L1.RN /0 are the solutions to (3.11) and (3.12) corresponding to L1-data satisfying
(3.8), as � ! 0, we have the convergence, for some generalised subsequence or net,

u� ���!
�!0

u in H �
0 .�/ and �� �*

�!0
� in L1.RN /0-weakly�;

where .u; �/ 2 ‡�
1.�/ � L

1.RN /0 also solves (3.11)-(3.12).

4. Convergence to the local problem as � % 1

It is easy to check that all the theorems of the preceding two sections hold in the limit
case � D 1, when D� D D is the classical gradient and the data f# and f satisfy
(2.3) (with f# 2 L

2N
NC2 .�/, if N > 2, f# 2 L

q.�/, 8q <1 if N D 2 and q D 1 if
N D 1) or (3.5), and g satisfies (2.8), (2.17) or (3.1), respectively.

In this section, we show a continuous dependence of the solution u� and of the
Lagrange multiplier �� when � % 1. For the sake of simplicity, we take f# D 0 and
f 2 L1.RN /, so that the limit variational inequality reads

u 2 Kg D
®
v 2 H 1

0 .�/ W jDvj � g a.e. in �
¯
; (4.1)Z

�

ADu �D.v � u/ �

Z
�

f �D.v � u/; 8v 2 Kg : (4.2)

Likewise, observing that setting � D 1 in (3.2) we have ‡1.�/DW
1;1

0 .�/, we
can write the limit Lagrange multiplier problem in the following form: find .u; �/ 2
W

1;1
0 .�/ � L1.�/0Z

�

ADu �Dw C hh�Du;Dwii D

Z
�

f �Dw; 8w 2 W
1;1

0 .�/; (4.3)

jDuj � g a.e. in �; � � 0 and �
�
jDuj � g

�
D 0 in L1.�/0: (4.4)
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In (4.3), we denote the duality in L1.�/ similarly to (3.10), as we can always
consider the solution and the test functions extended by zero in RN n�, since @� is
C0;1.

We first recall an important consequence of the fact that the Riesz kernel is an
approximation of the identity, as remarked by Kurokawa in [7].

Proposition 4.1. If h2Lp.RN /\C.RN /, for some p� 1, is bounded and uniformly
continuous in RN , then

lim
˛!0

kI˛ � h � hkL1.RN / D 0:

As a consequence, we have

D�w ���!
�%1

Dw in L1.RN /; for all w 2 C1
c.R

N /: (4.5)

Proof. In [7, Proposition 2.10], it is proved that

I˛ � h.x/ ���!
˛!0

h.x/

at each point of continuity of any function h 2 Lp.RN /, 1 � p < 1, and it is not
difficult to check that this convergence is uniform in x 2 RN for bounded and uni-
formly continuous functions (see [2]). Then, (4.5) is an immediate consequence of
Theorem 1.2 of [12], which established thatDsw D I1�s �Dw for allw 2 C1

c .R
N /,

being the proof equally valid for functions only in C1
c.R

N /.

Remark 4.2. The convergence (4.5), as well as in Lp.RN / for p � 1, has been
shown in [6, Proposition 4.4] for functions of C2

c.R
N /. By density of C1

c .R
N / in

Lp.RN / for p � 1, in [4] it was shown that the convergenceD�h ���!
�%1

Dh holds in
Lp.RN /, for 1 < p <1, if h 2 W 1;p.RN /.

For � 2L1.RN /0, we denote its restriction to��RN by �� 2L1.�/0, defined
by

h��; 'i D h�; z' i; 8' 2 L1.�/;

where z' is the extension of ' by zero to RN n�,

Theorem 4.3. Let f 2 L1.RN / (f# D 0) and let g be given as in (3.1). Then, if
.u� ; �� / 2 ‡�

1.�/ � L
1.RN /0 are the solutions to (3.11)-(3.12), we have, for a

generalised subsequence, the convergences, for any s, 0 < s < � < 1:

u�
���!
�%1

u in H s
0 .�/ and ��

� �*
�%1

� in L1.�/0-weakly�; (4.6)

where .u; �/ 2 W 1;1
0 .�/ � L1.�/0 is a solution to (4.3)-(4.4) and u is the unique

solution to (4.1)-(4.2).
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Proof. Setting v D 0 in (2.9), or w D u� in (3.11), we immediately obtain

ku�
kH �

0
.�/ D kD�u�

k
L2.RN /

�

�
g�

a�
kf kL1.RN /

� 1
2

� C1; (4.7)

where C1 is independent of � , 0 < � < 1. Hence, arguing as in (3.20), using (3.11)-
(3.12), it also follows easily that

k��
kL1.RN /0 D sup

'2L1.RN /
k'k

L1.RN /
D1

h�� ; 'i �
kf k

L1.RN /

g2
�

: (4.8)

Then, usingƒ� D ��D�u� and recalling kD�u�kL1.RN / � g
�, from the estimates

(4.7) and (4.8), we may take a generalised subsequence � % 1 such that, by the
compactness of H �

0 .�/ ,! H s
0 .�/, 0 < s < � � 1,8̂<̂

:
u� ���!

�%1
u in H s

0 .�/;

D�u� �*
�%1

� in L2.RN /0-weak and L1.RN /0-weak�;
(4.9)

��
�*
�%1

z� in L1.RN /0-weak�; ƒ�
�*
�%1

zƒ in L1.RN /0-weak: (4.10)

Denoting by Qu� the extension of u� by zero to RN n�, from (4.9) we conclude
that � D D Qu and in fact u 2 H 1

0 .�/, and then D Qu D eDu. Indeed, recalling the
convergence (4.5), we haveZ

RN

� � ' D lim
�%1

Z
RN

D�u�
� ' D � lim

�%1

Z
RN

Qu� .D�
� '/

D �

Z
RN

Qu.D � '/ D

Z
RN

D Qu � ';

with an arbitrary ' 2 C1
c .R

N /.
On the other hand, given any measurable set ! � �, we have nowZ

!

jDuj2 � lim
�%1

Z
!

jD�u�
j
2
�

Z
!

g2

and therefore jDuj � g a.e. in �, which yields u 2 Kg � W
1;1

0 .�/.
Passing to the limit � % 1 in (3.11), first with w 2 C1

c .�/Z
RN

AD�u�
�D�w C hhƒ� ;D�wii D

Z
RN

f �D�w
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and using (4.5), (4.9), and (4.10), since � D eDu and D Qw D eDw, we obtainZ
�

ADu �Dw C hhƒ;Dwii D

Z
�

f �Dw; (4.11)

by setting ƒ D zƒ� and hhƒ;Dwii D hhzƒ;D Qw ii.
Note that for each w 2 W

1;1
0 .�/ we may choose w� 2 C1

c .�/ such that
w� ����!

�!1
w in H 1

0 .�/ and Dw� �*
�!1

Dw in L1.�/-weak� in (4.11) and we may
pass to the generalised limit � ! 1, concluding that (4.11) also holds for all w 2

W
1;1

0 .�/. So, in order to see that u and �D z�j� , i.e., the restriction to� of the limit
charge z� in (4.10), solve (4.3), we need to show that

hhƒ;Dwii D hh�Du;Dwii D h�;Du �Dwi; 8w 2 W
1;1

0 .�/: (4.12)

We show first (4.12) for w D u, i.e., hhƒ;Duii D h�; jDuj2i, in two steps.
Observing that z� � 0 and jDuj � g, we have h�; jDuj2i � hhƒ;Duii from˝

�; jDuj2
˛
� hz�; g2

i D lim
�%1

h�� ; g2
i D lim

�%1

˝
�� ; jD�u�

j
2
˛

D lim
�%1

hh��D�u� ;D�u�
ii

D lim
�%1

Z
RN

.f � AD�u� / �D�u�

�

Z
RN

.f � AD Qu / �D Qu D hhzƒ;D Qu ii D hhƒ;Duii: (4.13)

Note that D�u� �*
�%1

D Qu in L2.RN /-weak and hence

lim
�%1

Z
RN

AD�u�
�D�u�

�

Z
RN

AD Qu �D Qu D

Z
�

ADu �Du:

On the other hand, we find hhƒ;Duii � h�; jDuj2i by noting that ƒ� D ��D�u�

and, similarly,

0 �
˝
�� ; jD�u�

�D Quj2
˛
D hh��D�u� ;D�u�

ii � 2hhƒ� ;D Qu ii C
˝
�� ; jD Quj2

˛
(4.14)

yields

2hhzƒ;D Qu ii D 2 lim
�%1

hhƒ� ;D Qu ii� lim
�%1

Z
RN

.f �AD�u� / �D�u�
C lim

�%1

˝
�� ; jD Quj2

˛
�

Z
RN

.f � AD Qu/ �D QuC
˝
�; jDuj2

˛
D hhzƒ;D Qu ii C

˝
�; jDuj2

˛
:
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As a consequence of hhƒ;Duii D h�; jDuj2i, from (4.14) we deduce

lim
�%1

˝
�� ; jD�u�

�D Quj2
˛
D 0; (4.15)

which by the Hölder inequality yields, for any ˇ 2 L1.RN /,ˇ̌
hhzƒ � z�D Qu;ˇii

ˇ̌
D lim

�%1

ˇ̌
hhƒ�

� ��D Qu;ˇii
ˇ̌
D lim

�%1

ˇ̌
hh�� .D�u�

�D Qu/;ˇii
ˇ̌

� lim
�%1

˝
�� ; jD�u�

�D Quj jˇj
˛

� lim
�%1

˝
�� ; jD�u�

�D Quj2
˛ 1

2
˝
�� ; jˇj2

˛ 1
2 D 0;

and, consequently, (4.12) follows from

ƒ D �Du in L1.�/0:

This equality in (4.12) with g > 0 implies that˝
�; jDuj2

˛
D hz�; g2

i � h�; g2
j�
i �

˝
�; jDuj2

˛
;

and h�; jDuj2 � g2i D 0 (here g D gj�). Then, exactly the same argument as at the
end of the proof of Theorem 3.4 shows that � and u satisfy the third condition of
(4.4).

Finally, since we also have

hh�Du;D.v � u/ii � 0; 8v 2 Kg ;

(4.3) implies (4.2) and this concludes the proof of the theorem.

Remark 4.4. In the Hilbertian case of g 2 L2.�/, g � 0, and f 2 L2.RN /, it is
easy to show the convergence of the solutions .u� ; 
� / 2 ‡�

1.�/�H
�
0 .�/ given by

Theorem 2.1, also in the case f# D 0 to simplify, as � % 1 to the local problem for
.u; 
/ 2 W

1;1
0 .�/ �H 1

0 .�/, satisfying (2.11) with � D 1 andZ
�

�
ADuCD�/ �Dv D

Z
�

f �Dv; 8v 2 H 1
0 .�/: (4.16)

Indeed, as in (2.10) and (2.13), the a priori estimates

ku�
kH �

0
.�/ �

1

a�
kf k

L2.RN /
and k
�

kH �
0

.�/ �

�
1C

a�

a�

�
kf k

L2.RN /

allow us to take sequences

u�
���!
�%1

u and 
�
���!
�%1


 in H s
0 .�/; 0 < s < 1;
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in (2.12) with v 2 H 1
0 .�/ � H �

0 .�/, in order to obtain (4.16) and, using (2.18), the
� D �.u/ 2 H�� .�/ corresponding to 
 satisfies (2.11) with � D 1.
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The topology of dissipative systems

Héctor Barge and José M. R. Sanjurjo

Abstract. This expository article is dedicated to the study of some topological features of
dissipative flows defined in locally compact metric spaces, especially in manifolds and in the
Euclidean space. We show that they exhibit a host of interesting topological properties in areas
as diverse as Conley’s index theory, population dynamics, and the dynamics of planar systems.

1. Introduction

In the study of flows in non-compact spaces, the dissipative ones play an important
role. Their interest lies in the fact that it is possible to reduce the fundamental part
of the flow and its asymptotic behavior to a compact set. The concept of dissipativity
was introduced by Levinson in 1944 [28] for flows in the Euclidean space in his study
of the periodically forced van der Pol equation.

This expository article is dedicated to the study of some topological features of
dissipative flows defined in locally compact metric spaces, especially in manifolds
and in the Euclidean space. We show that they exhibit a host of interesting topological
properties in areas as diverse as Conley’s index theory, population dynamics, and the
dynamics of planar systems.

Through the paper we shall consider continuous dynamical systems (or flows)
' WM �R!M , where M is a locally compact metric space. If M is not compact,
then every flow can be extended to the Alexandrov compactification M [ ¹1º of M
by leaving fixed the point1.

The main reference for the elementary concepts of dynamical systems is [10] but
we also recommend [34, 35, 37]. We use the notation 
.x/ for the trajectory of the
point x, i.e.,


.x/ D ¹xt j t 2 Rº:

Similarly, for the positive semi-trajectory and the negative semi-trajectory


C.x/ D ¹xt j t 2 RCº; 
�.x/ D ¹xt j t 2 R�º:

2020 Mathematics Subject Classification. Primary 34D23; Secondary 37G35.
Keywords. Dissipative flow, global attractor, Borsuk homotopy, Conley index, continuation.

https://creativecommons.org/licenses/by/4.0/


H. Barge and J. M. R. Sanjurjo 908

By the omega-limit of a point x we understand the set

!.x/ D
\
t>0

xŒt;1/:

In an analogous way, the negative omega-limit is the set

!�.x/ D
\
t<0

x.�1; t �:

An invariant compactum K is stable if every neighborhood U of K contains a
neighborhood V of K such that V Œ0;1/ � U .

We recall that an attractor is a stable invariant compactumK satisfying that there
exists a neighborhood U of K such that ; ¤ !.x/ � K, for every x 2 U . A repeller
is just an attractor for the reverse flow given by x'.x; t/ D '.x;�t /.

If K is an attractor, its region (or basin) of attraction of K is the set

A.K/ D
®
x 2M j ; ¤ !.x/ � K

¯
:

It is well known that A.K/ is an open invariant set. If in particular A.K/ is the whole
phase space, we say that K is a global attractor.

We use some topological notions through this paper. We recommend the books of
Hatcher and Spanier [24, 44] to cover this material. We use the notation H� for the
singular cohomology. We consider cohomology taking coefficients in Z.

If a pair of spaces .X; A/ satisfies that its cohomology H k.X; A/ is finitely gen-
erated for each k and is non-zero only for a finite number of values of k (as it happens
if .X;A/ is a pair of compact manifolds), its Poincaré polynomial is defined as

Pt .X;A/ D
X
k�0

rkH k.X;A/tk :

There is a form of homotopy theory which has proved to be the most convenient
for the study of the global topological properties of the invariant spaces involved in
dynamics, namely Borsuk’s homotopy theory or shape theory, introduced and studied
by Karol Borsuk. We present here a short introduction based on the presentation given
by Kapitanski and Rodnianski in [27].

A metric space X is said to be an absolute neighborhood retract or, shortly, an
ANR if it satisfies that whenever there exists an embedding f W X ! Y of X into
a metric space Y such that f .X/ is closed in Y , there exists a neighborhood U of
f .X/ such that f .X/ is a retract of U . Some examples of ANRs are manifolds, CW
complexes, and polyhedra. Besides, an open subset of an ANR is an ANR and a
retract of ANR is also an ANR. For more information about ANRs we recommend
[26]. Notice that by Kuratowski–Wojdyslawski theorem, every metric space can be
embedded in an ANR as a closed subspace.
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Let X be a closed subset of an ANR M and Y a closed subset of an ANR N .
Denote by U.X IM/ (resp. U.Y IN/) the set of all open neighborhoods of X in M
(resp. Y in N ).

Let fD ¹f W U ! V º be a collection of continuous maps from the neighborhoods
U 2U.X IM/ to V 2U.Y IN/. We say that f is a mutation fromX to Y if it satisfies

(1) for every V 2 U.Y IN/ there exists at least a map f W U ! V in f;
(2) if f W U ! V is in f, then the restriction f jU1 W U1! V1 is also in f for every

neighborhood U1 � U and every neighborhood V1 � V ;

(3) if two maps f;f 0 W U ! V are in f, there exists a neighborhood U1 � U such
that the restrictions f jU1 and f 0jU1 are homotopic.

An example of mutation is the identity mutation idU.X IM/ consisting of the iden-
tity maps id W U ! U .

Composition of mutations f D ¹f W U ! V º, g D ¹g W V ! W º from X to Y
and from Y to Z, respectively, is defined in the straightforward way. Two mutations
f D ¹f W U ! V º and f0 D ¹f 0 W U 0! V 0º (both from X to Y ) are said to be homo-
topic if for every pair of maps f W U ! V and f 0 W U 0 ! V belonging to f and f0,
respectively, there exists a neighborhood U0 2 U.X IM/, U0 � U \ U 0 such that
f jU0 is homotopic to f 0jU0 . It is easy to see that homotopy of mutations is an equiv-
alence relation.

Two metric spaces X and Y have the same Borsuk homotopy type or shape,
denoted by Sh.X/ D Sh.Y /, if they can be embedded as closed sets in ANRs M and
N in such a way that there exist mutations f D ¹f W U ! V º and g D ¹g W V ! U º

such that the compositions gf and fg are homotopic to the identity mutations idU.X IM/

and idU.Y IN/, respectively. In this case, the mutation f (resp. g) is said to be a shape
equivalence.

We stress the following basic features whose proofs can be found in [11].

(1) The notion of shape of sets depends neither on the ANRs they are embedded
in nor on the particular embeddings.

(2) Spaces belonging to the same homotopy type have the same shape.

(3) ANRs have the same shape if and only if they have the same homtopy type.

In the case of plane continua, the relation of having the same Borsuk homotopy
type has an easy visualization as it establishes the following result.

Theorem 1.1 (Borsuk [11]). Two continua K and L contained in R2 have the same
Borsuk homotopy type if and only if they disconnect R2 in the same number of con-
nected components. In particular, a continuum has the Borsuk homotopy type of a
point if and only if it does not disconnect R2. A continuum has the Borsuk homo-
topy type of a circle if and only if it disconnects R2 into two connected components.
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Every continuum has the Borsuk homotopy type of a wedge of circles, finite or infinite
(Hawaiian earring).

For more information about Borsuk homotopy theory we recommend the books
[11, 17, 32]. The papers [3, 9, 19–21, 23, 27, 39, 40, 42] illustrate some applications of
this theory to the study of dynamical systems.

An important class of invariant compacta is the so-called isolated invariant sets
(see [15, 16, 18] for details). These are compact invariant sets K which possess an
isolating neighborhood, i.e., a compact neighborhood N such that K is the maximal
invariant set in N .

To introduce the Conley index, that plays an essential role in this paper, we use
a special kind of isolating neighborhoods, the so-called isolating blocks. More pre-
cisely, an isolating block N is an isolating neighborhood such that there are compact
sets N i ; N o � @N , called the entrance and the exit sets, satisfying

(1) @N D N i [N o;

(2) for each x 2 N i there exists " > 0 such that xŒ�"; 0/ �M nN and for each
x 2 N o there exists ı > 0 such that x.0; ı� �M nN ;

(3) for each x 2 @N nN i there exists " > 0 such that xŒ�"; 0/� VN and for every
x 2 @N nN o there exists ı > 0 such that x.0; ı� � VN .

These blocks form a neighborhood basis of K in M .
LetK be an isolated invariant set. Its Conley index h.K/ is defined as the pointed

homotopy type of the topological space .N=N o; ŒN o�/, whereN is an isolating block
of K. A weak version of the Conley index which will be useful for us is the cohomo-
logical index defined as CH�.K/ D H�.h.K//. It can be proved that CH�.K/ Š
H�.N;N o/. Our main references for the Conley index theory are [15,38]. An exhaus-
tive study of the Conley index in the case of two-dimensional flows can be found in
[2, 4] and some applications of this theory to the evolution of the Lorenz strange set
are contained in [8]. In addition, the Conley index has recently been used to find
counterexamples to the triangulation conjecture (see [30, 31]).

The Conley index allows us to establish some conections between local and global
dynamics via Morse decompositions. We recall that if K is a compact invariant set, a
finite collection ¹M1; : : : ;Mnº of pairwise disjoint invariant subcompacta of K is a
Morse decomposition if it satisfies that

for each x 2

 
K n

n[
iD1

Mi

!
; !.x/ �Mj and !�.x/ �Mk with j < k:

Each set Mi is said to be a Morse set.
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Given a Morse decomposition ¹M1;M2; : : : ;Mkº of an isolated invariant set K,
there exists a polynomialQ.t/ whose coefficients are non-negative integers such that

nX
iD1

Pt
�
h.Mi /

�
D Pt

�
h.K/

�
C .1C t /Q.t/:

This formula, which relates the Conley indices of the Morse sets with the Conley
index of the isolated invariant set, is known as the Morse equation of the Morse
decomposition and it generalizes the classical Morse inequalities.

Another central concept of the Conley index theory that plays a crucial role in
this paper is that of continuation of isolated invariant sets. Let M be a locally com-
pact metric space, and let '� W M � R ! M be a parametrized family of flows
(parametrized by � 2 Œ0; 1�, the unit interval). The family .K�/�2J , where J � Œ0; 1�
is a closed (non-degenerate) subinterval and, for each � 2 J ,K� is an isolated invari-
ant set for '�, is said to be a continuation if for each �0 2 J and each N�0 isolating
neighborhood for K�0 , there exists ı > 0 such that N�0 is an isolating neighborhood
for K� for every � 2 .�0 � ı; �0 C ı/ \ J . We say that the family .K�/�2J is a
continuation of K�0 for each �0 2 J .

Notice that [38, Lemma 6.1] ensures that if K�0 is an isolated invariant set for
'�0 , there always exists a continuation .K�/�2J�0 of K�0 for some closed (non-
degenerate) subinterval �0 2 J�0 � Œ0; 1�.

There is a simpler definition of continuation based on [38, Lemma 6.2]. There,
it is proved that if '� W M � R! M is a parametrized family of flows and if N1
and N2 are isolating neighborhoods of the same isolated invariant set for '�0 , then
there exists ı > 0 such that N1 and N2 are isolating neighborhoods for '�, for every
� 2 .�0 � ı;�0C ı/\ Œ0; 1�, with the property that, for every �, the isolated invariant
subsets in N1 and N2 which have N1 and N2 as isolating neighborhoods coincide.

Therefore, the family .K�/�2J , with K� an isolated invariant set for '�, is a
continuation if for every �0 2 J there are an isolating neighborhood N�0 for K�0
and a ı > 0 such that N�0 is an isolating neighborhood for K�, for every � 2 .�0 �
ı; �0 C ı/ \ J .

Notice that, since this should not lead to any confusion, sometimes we will only
say that K� is a continuation of K�0 without specifying the subinterval J � Œ0; 1� to
which the parameters belong.

In the particular case that K�0 is an attractor for �0 2 J , there exists ı > 0 such
that K� is attractor with Sh.K�/ D Sh.K�0/ for � 2 .�0 � ı; �0 C ı/ \ J (see [41,
Theorem 4]).

The paper is structured as follows. In Section 2 the concept of dissipative flow is
introduced and some of the basic properties of this class of flows are presented. In par-
ticular, we see that dissipative flows coincide with those that have a global attractor.
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We also present some characterizations of the global attractor of a dissipative flow in
the Euclidean space. Section 3 is devoted to study parametrized families of dissipative
flows. We see that the property of being a global attractor is not robust and introduce a
characterization of continuations that consist entirely of global attractors. We also sur-
vey some results regarding the bifurcation global to non-global. In Section 4 we study
connections between dissipative flows and populations dynamics and present some
results about uniform persistence, a central concept in population dynamics. Finally,
in Section 5, we present some results that ensure that the global attractor of a dissipa-
tive flow defined on the non-negative orthant of the plane is contained in the boundary.

2. Dissipative flows

We start by recalling the definition of dissipative flow and some of its basic properties.
We assume that M is a locally compact, non-compact metric space.

Definition 2.1 (Levinson 1944). A flow ' W M � R! M is said to be dissipative
provided that, for each x 2M , the omega limit !.x/ ¤ ; and the closure of the set

�.'/ D
[
x2M

!.x/

is compact.

The following characterization of dissipative flows, which gives a very clear inter-
pretation of their dynamics, was provided by Pliss.

Proposition 2.2 (Pliss 1966 [36]). A flow ' WM �R!M is dissipative if and only
it has a global attractor.

It should be noted that, in general, the global attractor does not necessarily coin-
cide with the closure of �.'/. On the other hand, it can be seen that the flow ' is
dissipative if and only if ¹1º is a repeller.

The following result gives a characterization of the global attractor of a dissipative
flow. It relies heavily on the non-existence of bounded orbits outside the attractor.

Proposition 2.3. Let ' be a dissipative flow in Rn and K a compact invariant set.
ThenK is the global attractor if and only if Rn nK does not contain bounded orbits.

In the case of flows on the two-dimensional Euclidean space it is possible to
obtain a simpler characterization of global attractors of dissipative flows.

Theorem 2.4 (Barge–Sanjurjo [5]). Let K be an isolated invariant continuum of a
dissipative flow ' in R2. The following conditions are equivalent:

(i) K is a global attractor;
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(ii) there are no fixed points in R2 nK and there exists an orbit 
 connecting
1 and K (i.e., such that k
.t/k ! 1 when t ! �1 and !.
/ � K).

This result is inspired by the following result that gives a relation between global
asymptotic stability of a fixed point and the non-existence of additional fixed points
in the case of dissipative discrete dynamical systems.

Theorem 2.5 (Alarcón–Guíñez–Gutiérrez [1], Ortega–Ruiz del Portal [33]). Assume
that h 2 HC (orientation preserving homeomorphisms of R2) is dissipative and p is
an asymptotically stable fixed point of h. The following conditions are equivalent:

(i) p is globally asymptotically stable;

(ii) fix.h/D p and there exists an arc 
 � S2 with end points at p and1 such
that h.
/ D 
 .

The proof in [1] is based on Brouwer’s theory of fixed point free homeomor-
phisms of the plane. Ortega and Ruiz del Portal give in [33] an alternative proof
based on the theory of prime ends.

The previous results suggest that if K is an attractor of a dissipative flow, then
A.K/ being bounded is in the sharpest contrast to K being global.

3. Robustness of global attractors
This section is dedicated to the presentation of some results related to properties of
dissipative systems that concern Conley’s index theory.

We give a simple example which shows that the property of being global is not
a robust property for an attractor since small perturbations of the flow can create
bounded orbits in its region of attraction.

Example 3.1. Consider the family of ordinary differential equations defined on the
plane in polar coordinates:´

r 0 D �r3
�
1
r
� �

�2
;

� 0 D 1;
� 2 Œ0; 1�:

The phase portraits of this family of differential equations are depicted in Figure 1.
The picture on the left describes the phase portrait for the parameter � D 0. We see
that in this case the origin is a globally attracting fixed point and the orbit of any other
point spirals towards it. The picture on the right describes the phase portrait when
� > 0. In this case we see that the origin is still an asymptotically stable fixed point
but it is not a global attractor anymore since, for each � > 0, the circle centered at the
origin and radius 1=� is a periodic trajectory which attracts uniformly all the points of
the unbounded component of its complement and repels all the points of the bounded
one except the origin.
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@Bλ

Figure 1. Phase portraits of the family of ordinary differential equations from Example 3.1 for
� D 0 (left) and � > 0 (right).

Example 3.1 motivates the following definition.

Definition 3.2. A parametrized family of dissipative flows '� WM �R!M is said
to be coercive if for any continuation K� of the global attractor K0 of '0 there exists
a �0 such that A�.K�/ is bounded for every � with 0 < � < �0.

However, note that in this situation, since all the flows are dissipative, then each
'� still has a global attractor yK� but the family of global attractors is not a continua-
tion of K0.

The following definition introduces a notion which is, in some sense, the opposite
of the previous one.

Definition 3.3. A parametrized family of dissipative flows '� WM �R!M is said
to be uniformly dissipative provided that for each x 2M and � 2 Œ0; 1� we have that
!�.x/ ¤ ; and the closure of the set

� D
[

�2Œ0;1�

�.'�/

is compact.

The importance of the above definition is that it can be used to provide a charac-
terization of continuations that consist entirely of global attractors.

Theorem 3.4 (Barge–Sanjurjo [7]). Let '� WM �R!M be a parametrized family
of dissipative flows with � 2 Œ0; 1�. Let K� denote the global attractor of '�. Then
the family .K�/�2Œ0;1� is a continuation of K0 if and only if the family .'�/�2Œ0;1� is
uniformly dissipative.

We see a nice application of the previous result.
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Example 3.5. An important example of global attractor is provided by the Lorenz
equations 8̂̂<̂

:̂
x0 D �.y � x/;

y0 D rx � y � xz;

z0 D xy � bz;

where � , r , and b are three real positive parameters. If we fix � and b, we obtain a
family of flows

'r W R
3
�R! R3

corresponding to the Lorenz equations for the different values of r .
E. N. Lorenz proved that for every value of r there exists a global attractor of

zero volume for the flow associated to these equations. This attractor should not be
confused with the famous Lorenz attractor, which is a proper subset of the global
attractor.

The family 'r is uniformly dissipative and, as a consequence, it defines a contin-
uation of global attractors Kr . The proof of this fact uses the function

V D rx2 C �y2 C �.z � 2r/2:

C. Sparrow studied in [45] this function and showed that it is a Lyapunov function
for the flow 'r . By using this function he was able to prove that Kr lies in a ball Br
centered at 0 and with radiusO.r/, such thatO.r/ depends continuously on r . Hence,
if we consider an arbitrary r0 and an interval Œc; d � containing r0, we have that the set
C D

S
c�r�d Br is compact and that ; ¤ !r.x/ � C for every x 2 R3 and every

r 2 Œc; d �. Therefore, the family of Lorenz flows 'r is uniformly dissipative and the
corresponding family Kr of global attractors is a continuation.

The coercive families of flows are in sharp contrast with the uniformly dissipative
families. For coercive families, the continuations of global attractors are never global.
The study of coercive families of flows has some topological interest. The following
result provides a graphic characterization of this kind of families.

Theorem 3.6 (Barge–Sanjurjo [7]). Let '�, with � 2 Œ0; 1�, be a coercive family of
flows in Rn. We denote by K0 the global attractor of '0 and by K�, with � 2 Œ0; 1�, a
continuation of K0. Then there exists �0 > 0 such that for every � with 0 < � < �0
there is an isolated invariant compactum C� in Rn nK� such that

(i) C� separates Rn into two components and K� lies in the bounded compo-
nent;

(ii) C� has the Borsuk homotopy type (shape) of Sn�1;

(iii) C� attracts uniformly all the points of the unbounded component and repels
all the points of the bounded one which are not in K�;
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(iv) diamC� !1 when �! 0, where diamC� denotes the diameter of C�.

Moreover, the existence of such a C� for 0 < � < �0 is sufficient for the family to be
coercive.

In view of the previous results, it is interesting to study in all its generality the
mechanism which produces the global to non-global bifurcation in families of dissi-
pative flows. With this objective we introduce the following definition.

Definition 3.7. Let '� W Rn �R! Rn, with � 2 Œ0; 1�, be a parametrized family of
dissipative flows. The family is said to be polar if it has arbitrarily large bounded
trajectories. More precisely, for every L > 0 (arbitrarily large) there is a �0 > 0 such
that for every � with 0 < � < �0 there is a bounded trajectory 
� of '� and a t� < 0
such that k
�.t/k > L for every t with �1 < t < t�.

Obviously, if K� is a continuation of the global attractor K0 of '0, then for L
sufficiently large, 
� lies in Rn nK�.

The following proposition makes it clear that polarity is a key notion regarding
the transition from global to non-global.

Proposition 3.8 (Barge–Sanjurjo [7]). Let '� W Rn � R! Rn, with � 2 Œ0; 1�, be a
parametrized family of dissipative flows. Then the family is polar if and only if for
every continuationK� of the global attractorK0 of '0 there exists a �0 > 0 such that
K� is a non-global attractor for every � with 0 < � < �0.

The following result describes the general picture of the polar families of dissipa-
tive flows.

Theorem 3.9 (Barge–Sanjurjo [7]). If '� W Rn �R! Rn, with � 2 Œ0; 1�, is a polar
family of dissipative flows, then there exists a �0 > 0 such that for every � with
0 < � < �0 the maximal invariant compactum lying in Rn n K� for the flow '�,
which we denote by C�, is non-empty and isolated, and its cohomological Conley
index is trivial in every dimension. Moreover, the family is coercive if and only if C�
has the Borsuk homotopy type of Sn�1.

The isolated invariant compactum C� can be seen as the obstruction for the
existence of a continuation of global attractors. An interesting feature of the above
proposition is that it provides an equivalence between a topological property (having
the Borsuk homotopy type of Sn�1) and a dynamical property (coercivity).

4. Dissipative flows and populations dynamics
Another area in which dissipative systems play a fundamental role is population
dynamics. We shall suppose here thatM is a closed subset of a larger locally compact
metric space X and denote by @M the boundary of M in X .
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Fig. 1. A uniformly persistent flow ϕ and a small perturbation of ϕ .

which ∂E is invariant. We say that the family is regular at λ0 provided that there exists a compact
set K ⊂ E̊ , K "= ∅, and ε > 0 such that for every x ∈ E̊ and for every λ ∈ (λ0 − ε,λ0 + ε), the trajectory
ϕλ(x, ·) visits K .

We express our continuation results first in a general form and then we consider the particular
case of flows defined in the nonnegative orthant.

Theorem 5 (Weak continuation of uniform persistence). Let X be a locally compact metric space and let
E be a closed subset of X . Suppose we are given a (continuous) parametrized family of dissipative dy-
namical systems ϕλ , λ ∈ I , on E, for which ∂E is invariant. Further, assume that ϕ0 is uniformly per-
sistent. Then there exists β > 0 such that for every compact set K ⊂ E̊ there exists λ0 > 0 such that
lim inf{d(ϕλ(x, t), ∂E) | t → ∞}> β for every λ6 λ0 and for every x ∈ K .

Proof. We discuss the case when E is not compact, the compact case being easier. Since E is locally
compact we may consider its Alexandrov compactification E ∪ {∞} and extend all flows ϕλ to it in
such a way that ϕλ(∞) = ∞ (we still use the same notation, ϕλ , to denote such extension). It can be
easily proved that we obtain in this way a continuous parametrized family of flows

ϕλ :
(
E ∪ {∞}

)
× R → E ∪ {∞},

with λ ∈ I .
Since ϕ0 is uniformly persistent then R = ∂E ∪ {∞} is a repeller and we denote by A its dual

attractor. Now, a basic fact in Conley’s index theory is that the pair (A, R) continues to a family of
attractor-repeller pairs (Aλ, Rλ) for the flows ϕλ for λ sufficiently small. This means, in particular, that
if U is a neighborhood of A and V is a neighborhood of R (which can be assumed to be isolating)
with U ∩ V = ∅ then Aλ ⊂ U and Rλ ⊂ V and Aλ and Rλ are the maximal invariant sets for ϕλ in U
and V respectively for λ sufficiently small. Moreover, since R = ∂E ∪ {∞} is also invariant for ϕλ , we
necessarily have that R ⊂ Rλ .

Since (Aλ, Rλ) is an attractor-repeller pair for ϕλ there exists a Tλ > 0 such that ϕλ(x, t) ∈ U for
every x ∈ E − V and every t > Tλ (since E − V is a compact set contained in the basin of attrac-
tion of Aλ). Now, given a compactum K ⊂ E̊ and in order to establish the theorem, we choose the
previously mentioned pair (U , V ) satisfying the additional condition that V is a neighborhood of R
contained in the complement in E ∪ {∞} of Ū ∪ K . Hence, if we define β as the distance from the
compact set Ū to ∂E we immediately deduce that

lim inf
{
d
(
ϕλ(x, t), ∂E

) ∣∣ t → ∞
}
> β

Figure 2. A small perturbation of a uniformly persistent flow that is not uniformly persistent.

Definition 4.1. We will say that the dissipative flow ' W M � R! M is uniformly
persistent if there exists ˇ > 0 such that for every x 2 VM

lim inf
®
d
�
'.x; t/; @M

�
j t !1

¯
� ˇ:

If M is compact, then ' is persistent if and only if @M is a repeller of '. If M
is not compact, then ' is persistent if and only if @M [ ¹1º is a repeller for the
flow extended to M [ ¹1º. As a consequence, there exists a compactum K which
attracts all points x … @M . This compactum is called the global attractor of the system
and represents a state of coexistence of all the species that make up the population.
The most significant case is when X D Rn, M D RnC (the non-negative orthant).
The boundary @RnC represents populations some of whose components have become
extinct.

It is easy to see that, in a general context, uniform persistence is not a robust
property. For instance, the illustration in Figure 2 shows that small perturbations of a
uniformly persistent flow can destroy this property.

Despite this fact, we see in our next result that all uniformly persistent flows have
weak continuation properties, meaning by this that small perturbations of the flow
never drive to extinction populations within a certain range (which can be arbitrarily
chosen).

Theorem 4.2 (Weak continuation of uniform persistence, Sanjurjo [43]). Let X be a
locally compact metric space and letM be a closed subset ofX . Suppose we are given
a (continuous) parametrized family of dissipative dynamical systems '�, with � 2 I ,
on M , for which @M is invariant. Further, assume that '0 is uniformly persistent.
Then there exists ˇ > 0 such that for every compact set K � VM there exists �0 > 0
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such that
lim inf

®
d
�
'�.x; t/; @M

�
j t !1

¯
� ˇ

for every � � �0 and for every x 2 K.

When M is the non-negative orthant, some nice topological conclusions can be
reached about special regions of the flow. In particular, there is a contractible region
where populations are guaranteed their survival and another region of spherical shape
where populations have their survival compromised.

Corollary 4.3 (Sanjurjo [43]). Let '�, with � 2 I , be a (continuous) parametrized
family of dissipative flows on the non-negative orthant RnC. Further, assume that '0
is uniformly persistent. Then there exists ˛ > 0 such that for every " and every L with
0 < " < L there exists �0 > 0 such that

(i) lim inf¹d.'�.x; t/; @RnC/jt !1º > ˛ for every x with d.x; @RnC/ � " and
kxk � L and for every � � �0,

(ii) the set

W� D
®
x 2 RnC j lim inf

®
d
�
'�.x; t/; @R

n
C

�
j t !1

¯
> ˛

¯
is contractible and the set

R� D
®
x 2 RnC j lim inf

®
d
�
'�.x; t/; @R

n
C

�
j t !1

¯
� ˛

¯
[ ¹1º

has the Borsuk homotopy type (shape) of Sn�1 for every � � �0.

It would be of interest to study the implications of these results in some particular
situations. Theorem 4.2 suggests that permanence does not vanish completely in an
abrupt way. Even if it does not continue, permanence still remains when we limit our-
selves to populations within a certain range. As an interesting case, S. Cano-Casanova
and J. López-Gómez prove in [14] (see also [29]) that permanence of two species is
possible under strong mutual aggression. In other words, they prove that if the birth
rates are high enough, then the species are permanent irrespective of the competition
strength in the regions where competition occurs. They actually measure how large
the birth rate must be.

An interesting problem would be to study to what extent permanence remains
for populations within a certain range despite their reproduction rate being below the
limit threshold.

As we said before, uniformly persistent flows have a global attractor towards
which all the states of the interior evolve. The following results concern the fine
structure of this global attractor of the flow and some of its topological properties.
We recall that a continuum K is point-like in Rn provided Rn nK is homeomorphic
to Rn n ¹pº, where p is a point.
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Theorem 4.4 (Sanjurjo [43]). Let ' W RnC � R! RnC be a dissipative flow. If ' is
uniformly persistent then:

(i) Suppose L is a point-like repeller (in particular a repelling point) in the
interior of RnC, then there exists an attractor K0 with the Borsuk homotopy
type (shape) of Sn�1 contained in the global attractor K and whose basin
of attraction is int RnC n L.

(ii) Suppose L is a repeller with the Borsuk homotopy type (shape) of Sn�1

in the interior of RnC. Then L decomposes VRnC into two connected compo-
nents. Moreover, if the bounded component is simply connected, then there
exists an attractor with the Borsuk homotopy type (shape) of a point con-
tained (together with its basin of attraction) in the interior of the global
attractor K.

In our next result we see that the Morse theory of uniformly persistent flows with
an attracting cycle can be described in a simple way, irrespective of the complexity of
the flow in the boundary. Suppose ' W RnC �R! RnC is a uniformly persistent flow.
We say that M D ¹M1;M2; : : : ;Mkº is a natural Morse decomposition of the flow if

(a) ¹M1;M2º is an attractor-repeller decomposition of the global attractor K,

(b) Mi � @RnC for i � 3, and

(c) ¹M1;M2; : : : ;Mk;1º is a Morse decomposition of RnC [ ¹1º.

By the Morse equation of M we mean the Morse equation of ¹M1;M2; : : : ;Mk;1º.
The next theorem shows that ifM1 is an attracting cycle or, more generally, an attrac-
tor with the Borsuk homotopy type (shape) of S1, then the Morse equation of M

takes a simple form. On the opposite direction we see that using this equation we can
recognize the existence of attractors with the Borsuk homotopy type (shape) of S1

in the plane or attractors whose suspension has the Borsuk homotopy type (shape) of
S2 for higher dimensions.

Theorem 4.5 (Sanjurjo [43]). Let ' WRnC �R!RnC be a dissipative flow. Suppose '
is uniformly persistent and MD¹M1;M2; : : : ;Mkº is a natural Morse decomposition
of RnC for '. Then:

(i) If M1 has the Borsuk homotopy type of S1, then the Morse equation of the
decomposition M with coefficients in Z or a field is

1C t C t2 D 1C .1C t /t: (4.1)

(ii) Conversely, if the Morse equation of M is (4.1), then Sh.M1/D Sh.S1/ for
n D 2 and Sh.†M1/ D Sh.S2/ for n � 2, where †M1 is the suspension
of M1.
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( aλ , 0) ( aλ , 0)

Figure 3. Phase portrait of the Lotka–Volterra system for a=� � c=d .

5. Planar dissipative flows

In this section, we present some results regarding dissipative flows defined on the
non-negative orthant of the plane.

Example 5.1. Consider the Lotka–Volterra equation in R2C (see [25] for more infor-
mation): ´

Px D x.a � by � �x/;

Py D y.�c C dx � �y/;
a; b; c; d; � > 0 and � � 0:

This equation, which plays a central role in population dynamics, induces a family of
dissipative flows depending on the parameters. The point .a=�; 0/ 2 @R2C is a fixed
point (regardless of the parameter value) which is a sink for a=� � c=d (Figure 3).
In this case, there are no fixed points in VR2C and the global attractor of the flow is the
closed interval Œ0; a=�� � ¹0º contained in @R2C. As a consequence, the extinction of
one of the populations takes place. This situation is, in a certain sense, the opposite
of that described for uniformly persistent flows.

Motivated by the situation just described, we present some results that ensure that
the global attractor of a dissipative flow defined on R2C is contained in @R2C.

Theorem 5.2 (Barge–Sanjurjo [6]). Suppose that ' W R2C�R!R2C is a flow without
equilibria in VR2C. Then, the !-limit (resp. the !�-limit) of any point, when non-empty,
is entirely composed of fixed points and, hence, it is contained in @R2C. If, in addition,
the fixed point set is bounded and totally disconnected, then the !-limit (resp. the
!�-limit) of each trajectory, when non-empty, is a singleton. Moreover, if the flow is
dissipative, the following hold.
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x y

Figure 4. Dissipative flow in R2
C

with only two fixed points x and y, both contained in @R2
C

and such that I.x/ D 4 and I.y/ D C1.

(i) Given x 2R2C, if 
�.x/ is bounded so is 
.x/. Hence, both !.x/ and !�.x/
are non-empty and entirely composed of fixed points.

(ii) Let K be the global attractor of 'j@R2
C

. Then, K is the global attractor of
' if and only ifK is isolated for ' or, equivalently, 
�.x/ is unbounded for
each x 2 VR2C.

Remark. The fact that !.x/ is composed of fixed points for discrete systems of the
disc having all the fixed points in the boundary was proved by Campos, Ortega, and
Tineo in [13] by using some ideas of Brown [12] and a classical result of Brouwer
(see [22]) on homeomorphisms of the plane. The proof of the previous result, that can
be seen in [6], makes use of the Poincaré–Bendixson theorem.

Let �B.'/ be the set of bounded trajectories of ' and let x be an equilibrium
point. We define

�.x/ WD
®

 2 �B j x 2 !.
/ [ !

�.
/
¯
:

Definition 5.3. Let x be an equilibrium point. We define the index I.x/2N [ ¹C1º
to be k 2 N if the cardinal of �.x/ is k and I.x/ D C1 if the cardinal of �.x/ is
not finite.

Remark. For each k 2 N [ ¹C1º there exists a flow on R2C with all its equilibria
contained in @R2C and having a fixed point x such that I.x/ D k. In Figure 4, a flow
having a fixed point of index 4 is depicted.
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Theorem 5.4 (Barge–Sanjurjo [6]). Suppose that ' W R2C �R! R2C is a dissipative
flow having a countable amount of fixed points, all of them contained in @R2C. Then,
the global attractor of the flow is in the boundary if and only if all the fixed points
have finite index. In such a case, for each fixed point x, I.x/ is either 1, 2 or 3.
Moreover, if the index of an isolated fixed point x takes the value 1, then ¹xº is the
global attractor.
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Onset of fracture in random heterogeneous particle chains

Laura Lauerbach, Stefan Neukamm, Mathias Schäffner, and
Anja Schlömerkemper

Abstract. In mechanical systems, it is of interest to know the onset of fracture in dependence
of the boundary conditions. Here we study a one-dimensional model which allows for an under-
lying heterogeneous structure in the discrete setting. Such models have recently been studied
in the passage to the continuum by means of variational convergence (�-convergence). The
�-limit results determine thresholds of the boundary condition, which mark a transition from
purely elastic behavior to the occurrence of a crack. In this article, we provide a notion of frac-
ture in the discrete setting and show that its continuum limit yields the same threshold as that
obtained from the �-limit. Since the calculation of the fracture threshold is much easier with the
new method, we see a good chance that this new approach will turn out useful in applications.

1. Introduction

The mechanical behavior of one-dimensional systems has been of interest for dec-
ades. Such systems serve as toy models for higher-dimensional theoretical invest-
igations and are of interest with respect to one-dimensional structures; see, e.g.,
[8,9,11,12,21]. In order to understand the effective behavior of materials, the systems
are studied as the number of particles tends to infinity.

In this article, we focus on the occurrence of cracks and continue a mathematical
analysis of the effective behavior of one-dimensional discrete systems in the passage
to the continuum. In particular, we strive for insight into the threshold for the overall
prescribed length ` of a chain. If ` is smaller than the threshold, the system will
show elastic behavior, whereas cracks are energetically favored if ` is larger than the
threshold. The interaction potentials between the particles or atoms of the discrete
chain are allowed to be in a large class of convex-concave potentials, which include
for instance the classical Lennard-Jones potentials. The system is then modeled with

2020 Mathematics Subject Classification. Primary 74Q05; Secondary 74R10, 74A45, 41A60,
74G65.
Keywords. Fracture, discrete system, stochastic homogenization, �-convergence,
Lennard-Jones potentials.
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the help of an energy functional that is the sum of all the interaction potentials; see
(2.1). Here we restrict to the interactions of nearest neighbors; for related studies with
interactions beyond nearest neighbors we refer to [4, 5, 20].

In view of misplaced atoms or of chains consisting of several different kind
of particles, we allow for a random distribution of the interaction potentials; see
Assumption 2.1 and (2.2) for details. The limit passage is then also referred to as
stochastic homogenization; cf., e.g., [1, 7, 10, 17]. As a special case, also materials
with a periodic heterostructure are included; cf. also [15].

An appropriate mathematical technique for the passage of energy functionals
from discrete to continuous systems is based on the notion of �-convergence, which
is a notion of a variational convergence and (under coercivity assumptions) ensures
that minimizers of the discrete system converge to minimizers of the system in the
continuum limit; see, e.g., [2, 3, 19] and references cited therein. As the number of
particles tends to infinity, the energy functional converges to a functional that allows
for describing cracks. In particular, it is shown that cracks in the continuum limit
emerge if a critical stretch is exceeded. On the other hand, on the discrete level a
similar notion of a “critical stretch” or a notion for the onset of a crack has not been
introduced so far.

In this article, which is partially based on the PhD thesis [13, Chapter 7] of
L. Lauerbach, we focus on the emergence of cracks in atomistic chains. On the level
of the continuum limiting model of the chain, “crack” has a clear meaning – it is the
point where the continuum deformation features a jump and there is no interaction
between the different segments separated by the jump. In contrary, on the level of a
discrete chain with nC 1 particles, the notion of “crack” cannot be unambiguously
defined, since always neighboring particles interact. In the present paper, we intro-
duce a notion of “onset of a crack” at the discrete level for a chain with nC 1 particles.
For simplicity, we discuss the key idea in the case of a chain with nC 1 particles that
is composed of (random) potentials that are convex around its ground state and oth-
erwise concave, i.e., for deformations larger than an inflection point zfrac. We call a
deformation u elastic if the individual interaction potentials along the chain are only
evaluated in their convex region. In contrary, a deformation that is not elastic invokes
at least one bond that “lives” in the concave region of the corresponding potential.
Next, we consider the energy minimizers un of the chain with n C 1 particles and
prescribed total length ` > 0. If the minimizers un are elastic for all n 2 N, then we
do not expect the occurrence of crack in the continuum limit; while in the other case,
we expect that minimizing sequences show a concentration of strain on a finite num-
ber of weak bonds and thus a “crack” emerges in the continuum limit. Based on these
heuristics, we introduce a “critical stretch” `�n for random chains with nC 1 particles.
Firstly, we prove that it converges, for n!1, to the jump-threshold predicted by the
zeroth-order �-limit of the discrete energy, which has been obtained earlier in [14].
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Secondly, we establish a first-order expansion of the critical stretch and show that the
coefficients of the expansion term agree with the values predicted by the first-order
�-limit of the discrete energy derived in [14]. Since the proofs in [14] are technic-
ally quite involved, it is interesting to learn that there is a much simpler method for
the derivation of the jump threshold in the continuum limit. We expect that the new
notions of a fracture point and of a jump threshold in the discrete setting turn out
to be useful also in a wider class of applications. They might be compared to the
�-convergence analysis of weak-membrane and Blake–Zisserman models in [6, 18],
which invoke a combination of piecewise affine and piecewise constant interpolations
that require the identification of strain concentration on the discrete level as well.

The outline of this article is as follows: in Section 2, we introduce the model in the
discrete setting, including the assumptions on the large class of interaction potentials
in the random setting. Further, we provide the definition of a critical stretch (Defini-
tion 2.1), which corresponds to the jump threshold. We assert the asymptotic behavior
of the critical stretch as the number of particles tends to infinity (Theorem 2.1) and
compare the limit to the corresponding �-convergence results. Moreover, we consider
a rescaled setting, define the rescaled jump threshold, and assert its asymptotic beha-
vior as n tends to infinity (Theorem 2.2). Finally, we compare also this result with the
corresponding �-convergences result. All proofs are provided in Section 3.

2. Setup and main results

We consider a chain of nC 1 atoms that in a reference configuration are placed at the
sites in 1

n
Z \ Œ0; 1�; see Figure 1. The deformation of the atoms is referred to as

un W
1

n
Z \ Œ0; 1�! R:

For the passage from discrete systems to their continuous counterparts, it is useful
to identify the discrete functions with their piecewise affine interpolations, more pre-
cisely, with the functions in

An WD

°
u 2 C

�
Œ0; 1�

�
W u is affine on .i; i C 1/

1

n
; i 2 ¹0; 1; : : : ; n � 1º;

and monotonically increasing
±
:

We shall also consider clamped boundary conditions for the chain and thus introduce
for ` > 0 the set

An;` WD
®
u 2 An W u.0/ D 0; u.1/ D `

¯
:
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Figure 1. Chain of n C 1 atoms with reference position i
n

. The potential Ji describes the
nearest neighbor interaction of atom i and i C 1, i D 0; : : : ; n � 1. The characteristic length
scale is 1

n
and the interval is Œ0; 1�.

We consider a discrete energy functional of the form

An;` 3 u 7! En.u/ WD

n�1X
iD0

1

n
Ji

 
u
�

iC1
n

�
� u

�
i
n

�
1
n

!

D

n�1X
iD0

1

n
Ji

�
n

�
u

�
i C 1

n

�
� u

�
i

n

���
; (2.1)

where Ji W .0;1/! R is a potential describing the interaction between the i th atom
and its neighbor to the right. We are interested in random heterogeneous chains of
atoms, and thus assume that the potentials ¹Jiºi2Z are random with a distribution that
is stationary and ergodic. We appeal to the following standard setup: let .�;F ; P /
denote a probability space and .�i /i2Z a family of measurable maps �i W�!� such
that

� (Group property) �0! D ! for all ! 2 � and �i1Ci2 D �i1�i2 for all i1; i2 2 Z,

� (Stationarity) P .�iB/ D P .B/ for every B 2 F , i 2 Z,

� (Ergodicity) For all B 2 F , it holds that .�i .B/ D B 8i 2 Z/) P .B/ D 0 or
P .B/ D 1.

We then consider the energy functional

En W � � An ! R [ ¹C1º

with

En.!; u/ WD

n�1X
iD0

1

n
J

�
�i!; n

�
u

�
i C 1

n

�
� u

�
i

n

���
; (2.2)

where the random potential satisfies the following assumptions:

Assumption 2.1. Let J W �� R ! R [ ¹C1º be jointly measurable with J.�; z/D
1 if z � 0. For P -a.e. ! 2 �, the following conditions hold true:

(A1) (Regularity) J.!; �/ 2 C 3.0;1/.
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(A2) (Behavior at 0 and 1) There exist functions  C; � 2 C.0;1/, independ-
ent of !, such that

lim
z!0C

 �.z/ D 1 and lim
z!1

 C.z/ D 0;

and

J.!;z/� �.z/ for all 0 < z � 1 and
ˇ̌
J.!;z/

ˇ̌
� C.z/ for all z � 1:

(A3) (Convex-monotone structure) Suppose strict convexity close to 0 in form of

zfrac.!/ WD sup
®
z > 0 W J 00.!; s/ WD @2

sJ.!; s/ > 0 for all s 2 .0; z/
¯
> 0;

and assume that J.!; �/ is monotonically increasing on Œzfrac.!/;1/.

(A4) (Non-degenerate ground state) Suppose that J.!; �/ admits a unique min-
imizer ı.!/ 2 .0; zfrac.!/�, called the ground state of J.!; �/. There exists
a constant c > 0, independent of !, such that 1

c
> ı.!/ > c and

8z 2 ı.!/C .�c; c/ W c � J 00.!; z/ �
1

c
and

ˇ̌
J 000.!; z/

ˇ̌
�
1

c
:

Next, we introduce the following central quantities for a random heterogeneous
chain with nC 1 particles:

Definition 2.1 (Critical stretch of a chain with nC 1 particles). Consider the situation
of Assumption 2.1. Let n 2 N and ! 2 �. The critical stretch `�n.!/ is defined as the
largest number such that

inf
Ael

n.!/\An;`

En.!; �/ D inf
An;`

En.!; �/ for all 0 � ` < `�n.!/;

where we denote by

Ael
n.!/ WD

´
u 2 An W

u
�

iC1
n

�
� u

�
i
n

�
1
n

� zfrac.�i!/ for all i D 0; : : : ; n � 1

µ
the set of purely elastic deformations.

The idea behind the above definition is the following: a deformation u 2 Ael
n.!/

only sees the strictly convex region of the interaction potentials. Thus, we could
replace the potentials J.�i!; z/ in the definition of the energy function En by
(globally) convex potentials with superlinear growth without changing the energy for
deformations in Ael

n.!/. As it is well known, such energies do not allow for fracture
in the continuum limit. The definition of the critical stretch implies that a prescribed
macroscopic stretch (or compression) ` < `�n.!/ can be realized by a deformation in
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Ael
n.!/ and thus prohibits the formation of a jump, while, for ` > `�n.!/, deforma-

tions with minimal energy are required to explore the non-convex region of at least
one of the interaction potentials. We may refer to the bonds Œi; i C 1� that are evalu-
ated outside the convex region as “weak” bonds. If a jump occurs in the limit, then
the minimizing sequence shows a concentration of strain in the weak bonds. We thus
expect that `�n.!/ almost surely converges in the limit n! 1 to the continuum frac-
ture threshold that can be defined on the level of the continuum �-limit; see below. In
our first result, we prove that `�n indeed converges and we identify its limit, which is
the statistical mean of the ground states:

Theorem 2.1. Let Assumption 2.1 be fulfilled. Then,

lim
n!1

`�n.!/ D EŒı� for P -a.e. ! 2 �:

(The proof of Theorem 2.1 can be found in Section 3.1.)
Next, we consider the special case when ı.!/ is deterministic, say ı.!/ D 1 for

P -a.e. In that case, we establish a first-order expansion of `�n.!/ around its limit
EŒı� D 1 of the form

`�n.!/ � 1C

r
1

n

s
ˇ

˛
;

where ˇ is related to the maximal energy barrier among the random potentials J , and
1=˛ is the statistical mean of the curvatures of the random potentials at the ground
state.

Theorem 2.2. Let Assumption 2.1 be satisfied and assume that ı.!/ D 1 for P -a.e.
! 2 �. Consider the rescaled jump threshold 
�n .!/ WD

`�
n.!/�1q

1
n

. Then

lim
n!1


�n .!/ D lim
n!1

`�n.!/ � 1q
1
n

D

s
ˇ

˛
for P -a.e. ! 2 �;

where

˛ WD

�
E

��
1

2
J 00.!; 1/

��1���1

and ˇ WD ess inf
!2�

�
� J.!; 1/

�
: (2.3)

(The proof of Theorem 2.2 can be found in Section 3.2.)
We finally relate the above results to the zeroth- and first-order �-limits of En

subject to clamped boundary conditions, i.e.,

E`
n.!; �/ W L

1.0; 1/! R [ ¹C1º; E`
n.!; u/ WD

´
En.!; u/ if u 2 An;`;

C1 else:
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The zeroth-order �-limit of the discrete energy yields a homogenized energy func-
tional. In the present setting of nearest-neighbor interactions, [14] allows to charac-
terize the homogenized energy functional by

E`
hom.u/ D

Z 1

0

Jhom
�
u0.x/

�
dx;

where the homogenized energy density map z 7! Jhom.z/ is convex, lower semicon-
tinuous, monotonically decreasing and satisfies

lim
z!0C

Jhom.z/ D C1: (2.4)

Moreover, the minimum values of E`
n.!; �/ and E`

hom satisfy

lim
n!1

inf
u
E`

n.!; u/ D min
u
E`

hom.u/ D Jhom.`/;

and therefore can be calculated as

min
u
E`

hom.u/ D Jhom.`/ D

´
Jhom.`/ for ` < EŒı�;

Jhom
�
EŒı�

�
for ` � EŒı�:

Hence, the threshold between the elastic and the jump regimes is EŒı�, which is
identical to the limit of `�n.!/; see Theorem 2.1. Secondly, we recall a �-limit result
from [16] for the rescaled energy functional

H 
n
n .!; v/ D

´
Hn.!; v/ if v 2 An;
n

;

C1 otherwise;

where .
n/n is a sequence of non-negative numbers with 
n ! 
 � 0 and

Hn.!; v/ WD

n�1X
iD0

 
J

 
�i!;

v
�

iC1
n

�
� v

�
i
n

�q
1
n

C ı.�i!/

!
� J

�
�i!; ı.�i!/

�!
:

The �-limit is shown to be given as

H 
 .v/ D ˛

Z 1

0

ˇ̌
v0.x/

ˇ̌2 dx C ˇ#Sv;

with homogenized elastic coefficient ˛, jump parameter ˇ, #Sv being the number of
jumps of v, and v satisfying boundary conditions which depend on 
 . Moreover, it
holds true that

lim
n!1

inf
v
H 
n

n .!; v/ D min
v
H 
 .v/ D min¹˛
2; ˇº;
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which yields that the minima of the energy are given by

min
v
H 
 .v/ D min¹˛
2; ˇº D

8̂<̂
:
˛
2 if 
 <

q
ˇ
˛
;

ˇ if 
 �

q
ˇ
˛
:

Hence the threshold between elasticity and fracture in the rescaled case is
q

ˇ
˛

, which
equals the limit of the jump threshold 
�n in Theorem 2.2.

In summary, although the techniques by which the results are calculated are
completely different, they yield the same result regarding the jump threshold in the
continuum setting. The derivation of the limiting jump threshold with help of the
newly defined jump threshold in the discrete setting is, however, much easier and
thus is of interest for applications. It remains an open problem to analyze correspond-
ing questions in higher dimensional settings. In the following section, we provide the
proofs of the above theorems.

3. Proofs

For the upcoming analysis, it is convenient to introduce the notation

Mn.!; `/ WD min

´
1

n

n�1X
iD0

J.�i!; z
i / W

1

n

n�1X
iD0

zi
D `

µ
to denote the minimum energy of a discrete chain of length `. We begin with an ele-
mentary (yet, convenient) reformulation of the critical stretch `�n (cf. Definition 2.1).

Lemma 3.1. Consider the situation of Assumption 2.1. Let n 2 N and ! 2 �. Then,
it holds

Mn.!; `/ D min
u2An;`

En.!; u/: (3.1)

Moreover, `�n.!/ is the largest number such that for all 0 < ` < `�n.!/ there exists
Nz 2 Rn satisfying

Mn.!;`/D
1

n

n�1X
iD0

J.�i!; Nz
i /;

1

n

n�1X
iD0

Nzi
D `; Nzi

� zfrac.�i!/ 8i 2 ¹0; : : : ;n� 1º:

(3.2)

Proof of Lemma 3.1. The identity (3.1) follows by a simple change of variables, that
is by setting

zi
D n

�
u

�
i C 1

n

�
� u

�
i

n

��
;

and the direct method of the calculus of variations.
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Next, we give an argument regarding the characterization of `�n. The definition of
`�n.!/, see Definition 2.1, and (3.1) imply that

inf
Ael

n.!/\An;`

En.!; �/ DMn.!; `/ <1 8` 2
�
0; `�n.!/

�
:

Since Ael
n.!/ \ An;` is compact, there exists Nu 2 Ael

n.!/ \ An;` such that

En.!; Nu/ D inf
Ael

n.!/\An;`

En.!; �/:

Clearly, Nz 2 Rn defined as Nzi D n. Nu. iC1
n
/ � Nu. i

n
// satisfies (3.2).

Now we suppose that for some ` � `�n there exists Nz 2 Rn satisfying (3.2). With
help of the same change of variables as above, we find Nu 2 Ael

n.!/ \ An;` satisfying
En.!; Nu/ DMn.!; `/ which contradicts the definition of `�n.

Lemma 3.2. Let Assumption 2.1 be satisfied. Then, J.!; �/ is increasing on Œı.!/;1/

and it holds that
z

sup
frac WD sup

®
zfrac.!/ W ! 2 �

¯
<1: (3.3)

Proof of Lemma 3.2. For convenience we drop the dependence on ! in our notation
and simply write J.z/, ı, and zfrac instead of J.!; z/, ı.!/, and zfrac.!/, respectively.
We first prove that J is increasing on Œı;1/. On Œzfrac;1/ this directly follows from
(A3). On Œı; zfrac/ this follows from the convexity of J on .0; zfrac/ and the fact that ı
minimizes J . Next, we prove (3.3). We first note that (A2) and (A3) imply that

8z 2 .ı;1/ W J.ı/ � J.z/ � 0: (3.4)

Moreover, (A4) implies that zfrac � ı C c. Thus, for all � 2 .0; c/ we obtain

0 � J.zfrac/ D J.ı C �/C

Z zfrac

ıC�

J 0.t/ dt

� J.ı C �/C J 0.ı C �/
�
zfrac � .ı C �/

�
; (3.5)

where the second inequality holds, since J 0 is increasing on .ı C �; zfrac/ thanks to
(A3). (A4) yields

J 0.ı C �/ D J 0.ı C �/ � J 0.ı/ D

Z ıC�

ı

J 00.s/ ds � c�:

Thus, by rearranging terms in (3.5) and appealing to (3.4) and the previous estimate
we get

zfrac � ı C � �
J.ı C �/

J 0.ı C �/
� ı C � �

J.ı/

c�
: (3.6)
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It remains to bound ı D ı.!/ and �J.ı/ D �J.!; ı.!// by a constant that is inde-
pendent of !. From (A4) and (A2), we get

ı 2

�
c;
1

c

�
and � J.ı/� max

z2Œc; 1
c C��

max
®
� �.z/;

ˇ̌
 C.z/

ˇ̌¯
DW d <1; (3.7)

and thus, (3.6) yields zfrac �
1
c
C �C d

c�
.

3.1. Proof of Theorem 2.1

Proof of Theorem 2.1. Note that ! 7! ı.!/ is (as a minimizer of a measurable func-
tion) measurable. Moreover, by (3.7) ı is a non-negative and bounded and thus an
L1-random variable. Thus the ergodic theorem yields

lim
n!1

1

n

n�1X
iD0

ı.�i!/ D EŒı�; lim
n!1

1

n

n�1X
iD0

J
�
�i!; ı.�i!/

�
D E

�
J.ı/

�
(3.8)

for P -a.e. ! 2 �. For the rest of the proof, we consider ! 2 � such that (3.8) is valid
and drop the dependence on !. In particular, we set

ıi WD ı.�i!/; zi
frac WD zfrac.�i!/; and Ji .z/ WD J.�i!; z/:

Step 1. We show that xA WD lim supn!1 `�n � EŒı�.
Without loss of generality, we suppose that xAD limn!1 `�n and prove xA� EŒı�

by contradiction. Assume that there exists " 2 .0; c/ such that xA > EŒı� C 3". By
(3.8), we find that xN 2 N such that

`�n >
1

n

n�1X
iD0

ıi C 2" DW kn for n > xN: (3.9)

In view of Lemma 3.1, there exists a sequence . Nzn/n satisfying for n � xN

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/DMn.kn/; Nzi

n � zi
frac 8i 2 ¹0; : : : ;n� 1º: (3.10)

We claim that

lim sup
n!1

Mn.kn/ � E
�
J.ı/

�
; (3.11)

lim inf
n!1

Mn.kn/ � E
�
J.ı/

�
C c"; (3.12)

for some c" > 0. Clearly, (3.11) and (3.12) yield a contradiction. Hence the assump-
tion xA > EŒı�C 3" is wrong and xA � EŒı� follows by the arbitrariness of " > 0.
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Substep 1.1. Proof of (3.11). Let zn 2 Rn be given by zi
n WD ıi for i � 1 and z0

n WD

ı0 C 2n". Since 1
n

Pn�1
iD0 z

i
n D kn, we have

Mn.kn/ �
1

n

n�1X
iD1

Ji .ıi /C
1

n
J0.ı0 C 2n"/

D
1

n

n�1X
iD0

Ji .ıi /C
1

n

�
J0.ı0 C 2n"/ � J0.ı0/

�
:

Hence, (3.11) follows by (A2) and (3.8).

Substep 1.2. Proof of (3.12). Let Nzn be as in (3.10) and set

In WD
®
i 2 ¹0; : : : ; n � 1º W Nzi

n > ıi C "
¯
:

Obviously, it holds that 0 � jInj=n � 1 and we claim

jInj

n
�

"

z
sup
frac

> 0 for all n 2 N; (3.13)

where zsup
frac 2 .0;1/ is as in Lemma 3.2. Indeed,

1

n

n�1X
iD0

ıi C 2" D kn D
1

n

n�1X
iD0

Nzi
n D

1

n

X
i2In

Nzi
n C

1

n

X
i…In

Nzi
n

(3.10)
�

jInj

n
z

sup
frac C

1

n

n�1X
iD0

.ıi C "/

implies (3.13). Finally, using the monotonicity of Ji on .ıi ;1/ (see Lemma 3.2) and
(A4), we obtain

1

n

n�1X
iD0

Ji . Nz
i
n/ D

1

n

X
i2In

Ji . Nz
i
n/C

1

n

X
i…In

Ji . Nz
i
n/ �

1

n

X
i2In

Ji .ıi C "/C
1

n

X
i…In

Ji .ıi /

�
1

n

X
i2In

�
Ji .ıi /C

1

2
c"2

�
C
1

n

X
i…In

Ji .ıi /D
1

n

n�1X
iD0

Ji .ıi /C
jInj

n

1

2
c"2;

where c > 0 is as in (A4). Sending n! 1, we obtain with help of (3.8) and (3.13)
the claim (3.12).

Step 2. We claim A WD lim infn!1 `�n � EŒı�.
For all " > 0, we show that

`�n �
1

n

n�1X
iD0

ıi � " DW kn 8n 2 N; (3.14)
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which in combination with (3.8) implies thatA WD lim infn!1 `
�
n � EŒı� by the arbit-

rariness of " > 0.
Let Nzn be such that

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/ DMn.kn/:

We show that Nzi
n � ıi < z

i
frac 8i 2 ¹0; : : : ; n � 1º, which obviously implies (3.14).

Indeed, the optimality condition for Nzn implies that there exists a Lagrange multiplier
ƒ 2 R such that ƒ D J 0

i . Nz
i
n/ for all i 2 ¹0; : : : ; n � 1º. Since

1

n

n�1X
iD0

. Nzi
n � ıi / � �";

there exists Oi 2 ¹0; : : : ; n � 1º such that Nz
Oi
n 2 .0; ıi / and thus J 0

Oi
. Nz

Oi
n/ < 0. Hence

J 0
i . Nz

i
n/ < 0 for all i 2 ¹0; : : : ; n � 1º. Since J 0

i � 0 on .ıi ;1/ by Lemma 3.2, we
conclude that Nzi

n � ıi � zi
frac and thus `�n � kn by Lemma 3.1.

3.2. Proof of Theorem 2.2

We begin with a preliminary structure result for minimizers of the minimum problem
in the definition of Mn.!; 1C n�

1
2D/ for some D > 0; see (3.1).

Proposition 3.3. Let Assumption 2.1 be satisfied and assume that ı.!/ D 1 for P -
a.e. ! 2 �. Fix D > 0. There exist xN 2 N and a sequence .Nn/ satisfying Nn ! 1

such that the following statements hold true for P -a.e. ! 2 � and n � xN .
Let Nzn 2 Rn be such that

1

n

n�1X
iD0

Nzi
n D 1C n�

1
2D and

1

n

n�1X
iD0

J.�i!; Nz
i
n/ DMn.!; 1C n�

1
2D/: (3.15)

Then, it holds that

Nzi
n 2 Œ1; 1C c�2n�

1
2D� [ ŒNn;1/ for all i 2 ¹0; : : : ; n � 1º; (3.16)

where c > 0 is as in (A4).

Proof of Proposition 3.3. We consider ! 2 � such that ı.�i!/D 1 8i 2 N and drop
the dependence on !. Moreover, we use the shorthand notation zi

frac WD zfrac.�i!/ and
Ji .z/ WD J.�i!; z/.

Step 1. We show that

0 � J 0. Nzi
n/ �

1

c
Dn�

1
2 for all i 2 ¹0; : : : ; n � 1º; (3.17)

where c > 0 is as in (A4).
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By the optimality condition for Nzn, there exists a Lagrange multiplierƒ 2 R such
that ƒ D J 0

i . Nz
i
n/ for all i 2 ¹0; : : : ; n � 1º. Since

1

n

n�1X
iD0

Nzi
n D 1C n�

1
2D;

there exists i1 2 ¹0; : : : ; n � 1º such that Nz
i1
n � 1 C n�

1
2D > 1. Lemma 3.2 and

the assumption ı.�i!/ D 1 imply that Ji is increasing on .1;1/ and thus we have
ƒ � 0. Moreover, there exists i2 2 ¹0; : : : ; n � 1º such that Nzi2

n � 1C n�
1
2D. For n

sufficiently large such that n�
1
2D < c, where c > 0 as in (A4), we have (using that

J 0
i .1/ D 0)

0 � ƒ D J 0
i2
. Nzi2

n / D

Z Nz
i2
n

1

J 00
i2
.t/ dt

.A4/
�

1

c
n�

1
2D:

Since ƒ D J 0
i . Nz

i
n/ for all i 2 ¹0; : : : ; n � 1º, the claim (3.17) follows.

Step 2. Argument for (3.16).
We firstly observe that (3.17) implies that 1 � Nzi

n for all i 2 ¹0; : : : ; n� 1º (recall
J 0

i .z/ < 0 on .0; 1/). The remaining estimates of (3.16) are proven in three steps.

Substep 2.1. We claim that for n sufficiently large, Nzi
n � zi

frac implies that

Nzi
n � 1C c�2n�

1
2D;

where c > 0 is as in (A4). Indeed, using J 00
i .s/ > 0 on .0; zi

frac/ and (A4), we deduce
from Nzi

n � zi
frac and n sufficiently large that

c�1Dn�
1
2

(3.17)
� J 0

i . Nz
i
n/ D

Z Nzi
n

1

J 00
i .t/ dt

.A4/
� cmin¹Nzi

n � 1; cº:

From the above inequality, we deduce that Nzi
n � 1� c implies that n�D2=c6. Hence,

Nzi
n � 1 < c and thus 1 � Nzi

n � 1C c�2Dn�
1
2 for n > D2=c6.

Substep 2.2. There exists M <1, depending only on  �.1/ from (A2) and c > 0
from (A4), such that

sup
n2N

jIw
n j �M; where Iw

n WD
®
i 2 ¹0; : : : ; n � 1º W Nzi

n � zi
frac

¯
: (3.18)

Suppose that jIw
n j � 2 and consider some in 2 Iw

n . Define

Ozi
n WD

8̂̂<̂
:̂

Nzi
n if i … Iw

n ;

1 if i 2 Iw
n n ¹inº;

1C
P

i2I w
n
.Nzi

n � 1/ if i D in:

(3.19)
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By construction, we have
Pn�1

iD0 Nzi
n D

Pn�1
iD0 Ozi

n and thus by (3.15)

0 �

n�1X
iD0

�
Ji . Nz

i
n/ � Ji . Oz

i
n/
�

D

X
i2I w

n n¹inº

�
Ji .Nz

i
n/ � Ji .1/

�
C Jin. Nz

in
n / � Jin. Oz

in
n /: (3.20)

By the monotonicity of Ji on .1;1/, (A3), and (A4) in the form

Ji .z
i
frac/ � Ji .1/ � Ji .1C c/ � Ji .1/ D

Z 1Cc

1

Z s

1

J 00
i .t/ dt ds �

1

2
c3

(where c > 0 is as in (A4)), we find

Ji . Nz
i
n/ � Ji .1/ � Ji .z

i
frac/ � Ji .1/ �

1

2
c3

WD � 8i 2 Iw
n : (3.21)

Moreover, using Oz
in
n � 1 and thus Jin. Oz

in
n / � 0 (which follows from the monotonicity

of Ji on .1;1/ and (A2)), we obtain

Jin. Nz
in
n / � Jin. Oz

in
n / � Jin.1/

.A2/
�  �.1/: (3.22)

Combining (3.20)–(3.22), we deduce the uniform bound jIw
n j � 1 � ��1 �.1/.

Substep 2.3. We show that there exists .Nn/ satisfyingNn !1 as n!1 such that
Nzi
n � Nn for all i 2 Iw

n , where Iw
n is defined in (3.18).

We argue by contradiction and assume that there exists A 2 Œ1;1/ and an index
Oi 2 Iw

n such that NzOin �A. For n sufficiently large, we show that this contradicts (3.15).
Define

Qzi
n WD

8̂̂<̂
:̂
1 if i D Oi ;

Nzi
n C

�
n � jIw

n j
��1

. Nz
Oi
n � 1/ if i … Iw

n ;

Nzi
n if i 2 Iw

n n ¹Oiº:

(3.23)

By construction, we have
Pn�1

iD0 Qzi
n D

Pn�1
iD0 Nzi

n. Since Nzn is a minimizer (see (3.15)),

0 �

n�1X
iD0

�
Ji . Nz

i
n/ � Ji . Qz

i
n/
�
D JOi . Nz

Oi
n/ � JOi .1/C

X
i…I w

n

�
Ji . Nz

i
n/ � Ji . Qz

i
n/
�
:

By (3.21), we have JOi . Nz
Oi
n/ � JOi .1/ � �.c/ > 0. To obtain a contradiction, it suffices

to show that the second term on the right-hand side vanishes as n tends to infinity.
This can be seen as follows: on the one hand, we have Nzi

n 2 Œ1; 1C c�2n�
1
2D� for all

i … Iw
n by Substep 2.1, and on the other hand, we have

.n � jIw
n j/�1. Nz

Oi
n � 1/ � .n �M/�1.A � 1/;
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thanks to jIw
n j � M . Hence, Nzi

n; Qz
i
n 2 Œ1; 1C c

2
� for n sufficiently large (depending

only on c,D,M , and A). Now, a quadratic Taylor expansion of Ji at Nzi
n yields (using

jJ 00.z/j � c�1 for z 2 Œ1; 1C c/; see (A4))
nX

iD1
i…I w

n

ˇ̌
Ji . Nz

i
n/�Ji . Qz

i
n/
ˇ̌
�

n�1X
iD0

�ˇ̌
J 0

i . Nz
i
n/
ˇ̌
.n�M/�1.A�1/C c�1.n�M/�2.A�1/2

�
(3.17)
� n.n �M/�1c�1.A � 1/

�
n�

1
2D C .A � 1/.n �M/�1

�
� Cn�

1
2 ;

where C <1 depends only on A, c, D, and M .

Proof of Theorem 2.2. By the ergodic theorem, it holds that

lim
n!1

1

n

n�1X
iD0

J 00.�i!; 1/
�1

D E
�
J 00.1/�1

�
; lim

n!1
ˇn.!/ D ˇ (3.24)

for P -a.e. ! 2 �, where ˇ is defined in (2.3) and

ˇn.!/ WD min
®
� J.�i!; 1/ W i 2 ¹0; : : : ; n � 1º

¯
: (3.25)

In Step 3 below, we provide an argument for the limit ˇn ! ˇ.
In Steps 1 and 2, we consider ! 2 � such that (3.24) and the conclusion of Pro-

position 3.3 are valid. Moreover, we drop the dependence on ! and use the shorthand
notation zi

frac WD zfrac.�i!/ and Ji .z/ WD J.�i!; z/.

Step 1. We prove xA WD lim supn!1 
�n �

q
ˇ
˛

by contradiction: assume that there

exists " > 0 and xN 2 N such that

`�n > 1C n�
1
2

s
ˇ

˛
.1C "/ DW kn for n > xN: (3.26)

In view of Lemma 3.1, there exists . Nzn/n satisfying

1

n

n�1X
iD0

Nzi
n D kn;

1

n

n�1X
iD0

Ji . Nz
i
n/DMn.kn/; Nzi

n � zi
frac 8i 2 ¹0; : : : ;n� 1º: (3.27)

We show that

lim sup
n!1

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ; (3.28)

lim inf
n!1

n

�
1

n

n�1X
iD0

Ji . Nz
i
n/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ.1C "/2: (3.29)

Clearly, (3.28) and (3.29) contradict (3.27) for n sufficiently large.
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Substep 1.1. Argument for (3.29).
We claim that there exists K <1 such that for all n sufficiently large

n

 
1

n

n�1X
iD0

Ji . Nz
i
n/ �

1

n

n�1X
iD0

Ji .1/

!
�

 
1

n

n�1X
iD0

�
1

2
J 00

i .1/

��1
!�1

ˇ

˛
.1C "/2 �

K
p
n
;

(3.30)

where x̨ and ˇ are defined in (2.3). Note that (3.24) and (3.30) imply (3.29).
We prove (3.30). By (3.26), (3.27), and Proposition 3.3 (applied with D Dq

ˇ
˛
.1C "/2), we get

1 � zi
n � 1C n�

1
2C (3.31)

for some C <1 independent of n. Hence, a Taylor expansion yields

n�1X
iD0

Ji . Nz
i
n/ D

n�1X
iD0

Ji .1/C
1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2 C

1

6

n�1X
iD0

J 000
i .�

i
n/. Nz

i
n � 1/3; (3.32)

where � i
n 2 Œ1; Nzi

n�. To estimate the second term on the right-hand side, note that
Cauchy–Schwarz’ inequality yields 

n�1X
iD0

.Nzi
n � 1/

!2

�

 
1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2

! 
n�1X
iD0

�
1

2
J 00

i .1/

��1
!
:

Combined with the identity
Pn�1

iD0. Nz
i
n � 1/ D n.kn � 1/ D

p
n
q

ˇ
˛
.1C "/, we get 

1

n

n�1X
iD0

�
1

2
J 00

i .1/

��1
!�1

ˇ

˛
.1C "/2 �

1

2

n�1X
iD0

J 00
i .1/. Nz

i
n � 1/2: (3.33)

Moreover, (3.31) and (A4) imply for n sufficiently large that

1

6

n�1X
iD0

J 000
i .�

i
n/. Nz

i
n � 1/3 � �

C 3

6c
p
n
: (3.34)

Clearly, (3.32)–(3.34) imply (3.30) (with K D
C 3

6c
).

Substep 1.2. Argument for (3.28).
For every n 2 N, we choose Oin 2 ¹0; : : : ; n � 1º such that �JOin.1/ D ˇn (see

(3.25)) and define zn 2 Rn as

zi
n D

´
1 if i 2 ¹0; : : : ; n � 1º n ¹Oinº;

1C n.kn � 1/ if i D Oin:
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Since 1
n

Pn�1
iD0 z

i
n D kn D 1C n�

1
2

q
ˇ
˛
.1C "/, we have

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� JOin

�
1C n.kn � 1/

�
� JOin.1/

�  C

�
1C

p
n

s
ˇ

˛
.1C "/

�
C ˇn;

where the second inequality holds by (A2) and the choice of Oin. Now, (3.28) follows
from (3.24) and assumption (A2).

Step 2. Proof of A WD lim infn!1 
�n �

q
ˇ
˛

.
We show that, for every " > 0, there exists xN 2 N such that

`�n � 1C n�
1
2

s
ˇ

˛
.1 � "/ DW kn for n > xN: (3.35)

Note that (3.35) implies that lim infn!1 
�n �

q
ˇ
˛
.1 � "/ for all " > 0, and thus the

claim.
Let . Nzn/n be a sequence satisfying for all n 2 N,

1

n

n�1X
iD0

Nzi
n D kn; Mn.kn/ D

1

n

n�1X
iD0

Ji . Nz
i
n/: (3.36)

To prove (3.35), we only need to show that

zi
n � zi

frac for all i 2 ¹0; : : : ; n � 1º for n sufficiently large; (3.37)

depending only on ˛ ˇ, c, and " > 0.

Substep 2.1. We show that

lim sup
n!1

n

�
Mn.kn/ �

1

n

n�1X
iD0

Ji .1/

�
� ˇ.1 � "/: (3.38)

Set

Ozi
n WD 1C n�

1
2

s
ˇ

˛
.1 � "/

�
1

n

n�1X
iD0

1

˛i

��1
1

˛i

;

where ˛i WD
1
2
J 00

i .1/. By construction, we have

1

n

n�1X
iD0

Ozi
n D kn; 0 � Ozi

n � 1 � n�
1
2C; (3.39)

where C < 1 depends only on ˛, ˇ, and c > 0 from (A4) (note that (A4) implies
that ˛i �

1
2c

and 1
˛i

�
2
c

). Hence, a Taylor expansion of Ji at 1 and (A4) yield for n
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sufficiently large

n�1X
iD0

�
Ji . Oz

i
n/ � Ji .1/

�
�

n�1X
iD0

˛i . Oz
i
n � 1/2 C

1

6c

n�1X
iD0

. Ozi
n � 1/3

�
ˇ

˛
.1 � "/2

�
1

n

n�1X
iD0

1

˛i

��1

C
C 3

6c
n�

1
2 ;

where C <1 is the same as in (3.39). Finally, (3.24) implies that . 1
n

Pn�1
iD0

1
˛i
/�1 �

˛.1C "/ for n sufficiently large and thus (3.38) follows.

Substep 2.2. We now prove (3.37) by contraposition. Suppose that NzOin > z
Oi
frac for some

Oi 2¹0; : : : ;n�1º. Then, Proposition 3.3 yields NzOin �Nn for some .Nn/with Nn !1,
and thus JOi . Nz

Oi
n/�� sups�Nn

 C.s/ by (A2). Hence, with Ji . Nz
i
n/� Ji .1/ and �JOi .1/

� ˇ, we therefore get

n�1X
iD0

�
Ji . Nz

i
n/ � Ji .1/

�
� JOi . Nz

Oi
n/ � JOi .1/ � ˇ � sup

s�Nn

 C.s/:

Since sups�Nn
 C.s/ ! 0 for n ! 1, the above lower bound combined with the

upper bound (3.38) and (3.36) yields a contradiction for n sufficiently large, and thus
(3.37) follows.

Step 3. Argument for ˇn ! ˇ almost surely in (3.24).
The sequence .ˇn.!//n � R is decreasing and it holds that ˇn.!/ � ˇ for all

n 2 N. Hence, there exists y̌.!/ � ˇ such that

lim
n!1

ˇn.!/ D y̌.!/ � ˇ:

It remains to show that y̌.!/ D ˇ for P -a.e. ! 2 �. We argue by contradiction and
therefore suppose that there exist " > 0 and a set �0 � � with positive measure such
that y̌.!/ � ˇ C " for all ! 2 �0. Then we obtain for all ! 2 �0 that

lim sup
n!1

1

n

n�1X
iD0

�
¹�J.�i !;1/�ˇC 1

2 "º.�i!/ D 0;

where �A denotes the indicator function. Clearly, this contradicts the ergodic theorem
and the definition of ˇ in the form

lim
n!1

1

n

n�1X
iD0

�
¹�J.�i !;1/�ˇC 1

2 "º D EŒ�
¹�J.1/�ˇC 1

2 "º� > 0 for P -a.e. ! 2 �:

Hence the theorem is proven.
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Siu’s lemma: Generalizations and applications

Xiangyu Zhou and Langfeng Zhu

Abstract. In this survey paper, we present some generalizations of Siu’s lemma related to
multiplier ideal sheaves and discuss their applications in some problems related to optimal
L2 extension, comparison between singular metrics on exceptional fibers of twisted relative
pluricanonical bundles, and subadditivity of Kodaira–Iitaka dimensions with multiplier ideal
sheaves. We also discuss some ideas in the proofs.

1. Introduction

L2 extensions with precise estimates and multiplier ideal sheaves related to plurisub-
harmonic (psh) functions and their singularities have been playing a useful role in
recent progress in several complex variables and complex geometry. Siu’s lemma
deals with multiplier ideal sheaves which is an important invariant of the singular-
ities of the psh functions and quite closely related to L2 extensions. In the present
paper, we will outline recent progress on the generalizations and applications of Siu’s
lemma. Before we present our main results, let us first recall some notions and nota-
tions (see [7–9, 18, 20, 25]), which will be used in this paper.

LetX be a complex manifold. A function ' WX! Œ�1;C1/ is said to be quasi-
plurisubharmonic (quasi-psh) if ' is locally the sum of a psh function and a smooth
function.

A singular (Hermitian) metric h of a holomorphic line bundle L overX is simply
a Hermitian metric which is expressed locally as e�' with respect to local holo-
morphic trivialization of L such that ' 2 L1loc. The curvature current

p
�1‚L;h WD

p
�1@x@' is well defined on X . A holomorphic line bundle L is called pseudoeffec-

tive if it is endowed with a singular Hermitian metric h with positive or semipositive
curvature current (i.e., ' is psh in the sense of distribution). In particular, L is called
a positive line bundle if ' is smooth strictly psh; L is called a big line bundle if the

2020 Mathematics Subject Classification. Primary 32D15; Secondary 32L10, 32W05, 14C30,
14F18, 32U05.
Keywords. Optimal L2 extension, multiplier ideal sheaf, singularities of plurisubharmonic
functions, strong openness, Kodaira–Iitaka dimension, twisted relative pluricanonical bundles.
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curvature current is a Kähler current, i.e., ‚ � "! for some " > 0, where ! is the
.1; 1/ form associated to a Kähler metric.

A quasi-psh function ' on X is said to have (neat) analytic singularities if every
point x 2 X possesses an open neighborhood U on which ' can be written as

' D c log
X

1�j�j0

jgj j
2
C u;

where c is a nonnegative number, gj 2 OX .U /, and u is bounded onU (u 2C1.U /).

1.1. Multiplier ideal sheaf

For any quasi-psh function ' on X , the Lp multiplier ideal sheaf (0 < p < C1) is
defined by

	Lp .'/x D

²
f 2 OX;xI 9U 3 x such that

Z
U

jf jpe�' d� < C1

³
;

where U � X is a coordinate chart, and d� is the Lebesgue measure. 	L2.'/ is just
the usual multiplier ideal sheaf 	 .'/.

We will write the L
2
m multiplier ideal sheaf 	

L
2
m
.'/ (m is a positive integer) by

	m.'/ for simplicity.
We list some basic properties of the multiplier ideal sheaves as follows.

(1) Nadel’s theorem: 	 .'/ is coherent.

Consequently, the nonlocally integrable point set of e�' (D the zero set of 	 .'/D

supp O=	 .'/) is an analytic set, since the support of a coherent analytic sheaf is an
analytic set.

(2) Theorem: A multiplier ideal sheaf is integrally closed, i.e., the integral closure
of 	 .'/ is itself.

(3) Nadel’s vanishing theorem: Let .L; e�'/ be a big line bundle on a compact
Kähler manifold X . Then

H q
�
X;KX ˝ L˝ 	 .'/

�
D 0;

for any q � 1.

Recently, a new property of the multiplier ideal sheaves, i.e., the strong openness
of the multiplier ideal sheaves, is established by the solution of Demailly’s strong
openness conjecture [13]. The solution and its applications are based on the above
basic properties of the multiplier ideal sheaves.

Demailly’s strong openness conjecture. For any psh function ' on X, one has

	 .'/ D 	C.'/ WD
[
">0

	
�
.1C "/'

�
D 	

�
.1C "0/'

�
:
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The last equality is well known by the Noetherian property of the coherent ana-
lytic sheaves. This conjecture was also stated by Y. T. Siu [25], Demailly–Kollár [10]
and many others. For a reformulation of the conjecture, see Theorem 3.2.

It should be noted that .1 C "/' in the conjecture could be replaced by any
increasing sequence of psh functions which converges to ' [13]; more generally, sta-
bility of the multiplier ideal sheaves holds by Guan–Li–Zhou [15] based on [12].
Strong openness also holds for Lp multiplier ideal sheaves for 0 < p <1; it follows
from the strong openness for L2 multiplier ideal sheaves and Hölder’s inequality; see
Fornaess [11]. By the strong openness, it follows that Lp multiplier ideal sheaves are
coherent [6, 25].

1.2. Optimal L2 extension

In [21], Ohsawa and Takegoshi obtained the following L2 extension theorem with
psh weights.

Theorem 1.1 ([21]). Let� � Cn be a bounded pseudoconvex domain, ' a psh func-
tion on �, and s a holomorphic function on �. Let

H WD
®
x 2 �I s.x/ D 0

¯
:

Assume that jsj � 1 on � and ds 6� 0 on H . Then there exists an absolute constant
C such that, for every holomorphic function f on H satisfyingZ

H

jf j2e�'

jdsj2
dVH < C1;

there exists a holomorphic function F on � satisfying F D f on H andZ
�

jF j
2e�' d�n � C

Z
H

jf j2e�'

jdsj2
dVH ;

where d�n is the 2n-dimensional Lebesgue measure, and dVH is the 2.n � 1/-
dimensional Hausdorff measure on H .

Unifying various L2 extension theorems, a general L2 extension theorem with
precise estimate for the almost Stein case and its geometric meaning was established
and discovered in [14]. Later on, the optimal L2 extension theorem with singular
metrics for the Kähler case was obtained in [6, 30] by using Guan–Zhou’s work on
optimal L2 extension and strong openness of multiplier ideal sheaves, and the gener-
alized Siu’s lemma stated below plays also a key role in [30].
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1.3. Siu’s lemma

In the study of algebraic geometry problems such as Fujita’s conjecture [1, 24], Siu
obtained the semi-continuity of multiplier ideal sheaves and the following lower limit
property about integrals with psh weights having trivial multiplier ideal sheaves by
using Theorem 1.1.

Theorem 1.2 (Siu’s lemma; see [22]). Let '.z0; z00/ be a nonpositive psh function on
B1r � Bn�1r such that Z

z002Bn�1
r

e�'.0;z
00/ d�n�1 < C1; (1.1)

where Bn�1r denotes the open ball in Cn�1 centered at 0with radius r > 0, and d�n�1
denotes the 2.n � 1/-dimensional Lebesgue measure. Assume that r1 2 .0; r/. Then
there exists a positive number C independent of ', such that

lim
z0!0

Z
z002Bn�1

r1

e�'.z
0;z00/ d�n�1 � C

Z
z002Bn�1

r

e�'.0;z
00/ d�n�1: (1.2)

The inequality (1.1) means that ' restricted to the center fiber has a trivial multi-
plier ideal sheaf.

Siu’s lemma was also used by Phong and Sturm [22] to obtain a holomorphic
stability result for 1-parameter deformations; i.e., for any nonpositive psh function
'.z0; z00/which has neat analytic singularities and satisfies (1.1), the stronger equality

lim
z0!0

Z
z002Bn�1

r1

e�'.z
0;z00/ d�n�1 D

Z
z002Bn�1

r1

e�'.0;z
00/ d�n�1 (1.3)

holds.
In general, one could not expect that (1.3) holds for a general nonpositive psh

function ' which satisfies (1.1) but does not have neat analytic singularities (one can
see [29] for a simple counterexample).

Theorem 1.3 (Lemma on the semi-continuity of multiplier ideal sheaves; [1, 24]).
The limit of the zero-sets of the multiplier ideal sheaves defined by a holomorphic
family of multivalued holomorphic sections contains the zero-set of the limit.

For a concrete explanation of the above result, the reader is referred to [1, Lemma
6.1] and [24, Section 3]. The above two lemmas follow from the L2 extension theo-
rem.

An equivalent version of the above semi-continuity is as follows. Let '.z0; z00/ be
a psh function on �n � �m. If e�'.z

0;z00/ is not integrable at z0 D 0 for almost all
z00 2 �m n 0, then e�'.z

0;0/ is not integrable at z0 D 0.
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The generalized Siu lemma stated below implies both Siu’s lemma and Siu’s
semi-continuity of multiplier ideal sheaves which seem to not imply each other, and
could be regarded as a unified version of both properties.

1.4. Main content of the present paper

In [29], we generalized Siu’s lemma by proving a limit property, which implies Siu’s
lemma with an optimal estimate. In [32], we further generalized Siu’s lemma to the
case that the multiplier ideal sheaf of ' is not necessarily trivial when restricted to the
center fiber.

Moreover, we used in [32] the generalization of Siu’s lemma with nontrivial mul-
tiplier ideal sheaves to prove a refined optimal L2 extension theorem with singular
metrics in the Kähler case. As another application, we gave in [32] a positive answer
to a comparison question posed by Berndtsson–Păun [5] and Păun–Takayama [23]
about singular metrics on exceptional fibers of twisted relative pluricanonical bun-
dles.

By using optimal L2 extension theorem with singular metrics in the Kähler case,
one can prove the positivity or pseudoeffectivity of twisted relative pluricanonical
bundles with singular metrics in the Kähler case (see [6, 30, 32] for the Kähler case,
and see also [3,5,23] for the projective case). This positivity can be used to study the
subadditivity of Kodaira–Iitaka dimensions for Kähler fibrations (see [27, 33]).

We also proved in [33] a more general version of Siu’s lemma with nontrivial
multiplier ideal sheaves near a subvariety, which generalizes the submanifold case
obtained in [32]. This result gives a relation between two measures used in previous
L2 extension theorems in [9, 14, 19, 31, 34].

In the rest sections, we will discuss the above results explicitly.

2. A generalization of Siu’s lemma with trivial multiplier ideal sheaves
Under similar assumptions as in Siu’s lemma (Theorem 1.2), we proved the following
limit property, which is a generalization of Siu’s lemma.

Theorem 2.1 ([29]). Let '.z0; z00/ be a psh function on Bkr � Bn�kr .1 � k � n/ such
that Z

z002Bn�k
r

e�'.0;z
00/ d�n�k < C1:

Let P be a nonnegative continuous function on Bkr � Bn�kr . Assume that r1 2 .0; r/.
Then

lim
"!0

1

�k.Bk" /

Z
Bk

" �Bn�k
r1

P.z0; z00/e�'.z
0;z00/ d�n D

Z
z002Bn�k

r1

P.0; z00/e�'.0;z
00/ d�n�k;

(2.1)
where �k.Bk" / WD the 2k-dimensional Lebesgue measure of Bk" .
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It is easy to see that (2.1) implies that (1.2) holds with C D 1.
The following two results are used in the proof of Theorem 2.1.

Lemma 2.2 ([22, 29]). Let '.z0; z00/ be a negative psh function on Bk
ı
� Bn�k

ı
.1 �

k � n; ı > 0/ such that

I' WD

Z
z002Bn�k

ı

e�'.0;z
00/ d�n�k < C1 .I' WD e�'.0/ if k D n/:

Assume that r1 2 .0; ı/. Then there exist two positive numbers C and "' 2 .0; r1� (C
is independent of '), such that

1

"2k

Z
Bk

" �Bn�k
r1

e�'.z
0;z00/ d�n � CI kC1'

for all " 2 .0; "' � (z00 and Bn�kr1
will disappear if k D n).

Theorem 2.3 ([2]). Let ' be a psh function on the ball Bnr of Cn centered at 0 with
radius r . Assume that Z

Bn
r

e�' d�n < C1:

Let ı 2 .0; r/. Then there exists ˇ > 0 such thatZ
Bn

ı

e�.1Cˇ/' d�n < C1:

The idea in our proof of Theorem 2.1 consists of two steps.
The first step is to control the integral near the set ¹' D �1º, which can be

completed by using the openness property of multiplier ideal sheaves (Theorem 2.3)
and a variation of Siu’s lemma (Lemma 2.2).

The second step is to prove that Theorem 2.1 holds for ' which is bounded, which
can be completed by mainly using Lebesgue’s dominated convergence theorem.

To be more precise, let r , r1 be as in Theorem 2.1 and denote rCr1
2

by ı. Then
r1 < ı < r and we obtain from Theorem 2.3 thatZ

z002Bn�k
ı

e�.1Cˇ/'.0;z
00/ d�n�k < C1

for some positive number ˇ.
Then applying Lemma 2.2 to the psh function .1C ˇ/', we have

1

"2k

Z
Bk

" �Bn�k
r1

e�.1Cˇ/'.z
0;z00/ d�n � C (2.2)

for all small enough ", where C is a positive constant independent of ".
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Let v be a positive integer. Then (2.2) implies that

1

�.Bk" /

Z
¹'��vº\.Bk

" �Bn�k
r1

/

P.z0; z00/e�'.z
0;z00/ d�n � C1e

�ˇv

for all small enough ", where C1 is a positive constant independent of ".
Hence the integral near ¹' D �1º is uniformly small if v is sufficiently large,

and we complete the first step.
Set 'v D max¹';�vº. The second step is to prove

lim
"!0

1

�.Bk" /

Z
Bk

" �Bn�k
r1

P.z0; z00/e�'v.z
0;z00/ d�n

D

Z
z002Bn�k

r1

P.0; z00/e�'v.0;z
00/ d�n�k;

which can be obtained by mainly using Lebesgue’s dominated convergence theorem
(see [29] for the details).

3. A generalization of Siu’s lemma with nontrivial multiplier ideal
sheaves

In both Theorem 1.2 and Theorem 2.1, the multiplier ideal sheaf of ' is trivial when
restricted to the center fiber. It is natural to consider the case when the multiplier ideal
sheaf is nontrivial.

In [32], we obtained the following generalization of Siu’s lemma for psh functions
having nontrivial multiplier ideal sheaves when restricted to the center fiber.

Theorem 3.1 ([32,35]). Let p 2 .0; 2�. Let '.z0; z00/ be a psh function on Bkr � Bn�kr

.1 � k � n/, let P.z0; z00/ be a nonnegative continuous function on Bkr � Bn�kr , let
M.z0/ be a bounded nonnegative measurable function on Ck with compact support,
and let f .z00/ be a holomorphic function on Bn�kr satisfyingZ

z002Bn�k
r

ˇ̌
f .z00/

ˇ̌p
e�'.0;z

00/ d�n�k < C1:

Assume that r1; r2 2 .0; r/ and r1 < r2. Let ˇ be a positive number such that

Iˇ WD

Z
z002Bn�k

r2

ˇ̌
f .z00/

ˇ̌p
e�.1Cˇ/'.0;z

00/ d�n�k < C1 (3.1)

and ˛ 2 .1 � p
2k
ˇ; 1/\ Œ0; 1/. Then there exists a holomorphic function F.z0; z00/ on
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Bkr � Bn�kr2
such that F.0; z00/ D f .z00/ on Bn�kr2

,Z
.z0;z00/2Bk

r �Bn�k
r2

ˇ̌
F.z0; z00/

ˇ̌p
e�.1Cˇ/'.z

0;z00/

jz0j2k˛
d�n < C1; (3.2)

and

lim
"!0C

Z
.z0;z00/2Ck�Bn�k

r1

1

"2k
M

�z0
"

�
P.z0; z00/

ˇ̌
F.z0; z00/

ˇ̌p
e�'.z

0;z00/ d�n

D

Z
z02Ck

M.z0/ d�k

Z
z002Bn�k

r1

P.0; z00/
ˇ̌
f .z00/

ˇ̌p
e�'.0;z

00/ d�n�k : (3.3)

Moreover, any holomorphic extension F of f satisfying (3.2) has the property (3.3).

The existence of ˇ in Theorem 3.1 is guaranteed by the strong openness property
of multiplier ideal sheaves, i.e., Theorem 3.2 below.

Theorem 3.2 ([13]). Let p 2 .0;C1/. Let ' be a psh function on the unit ball Bn1
of Cn. Assume that F is a holomorphic function on Bn1 satisfyingZ

Bn
1

jF j
pe�' d�n < C1:

Then there exists r 2 .0; 1/ and ˇ 2 .0;C1/ such thatZ
Bn

r

jF j
pe�.1Cˇ/' d�n < C1:

In [32], we proved Theorem 3.1 by developing the method established in [30] and
using the iteration method in [4] or [5].

The existence of a holomorphic extension F satisfying (3.2) can be obtained by
using L2 extension theorems. The main property that needs to be proved is (3.3).

The key step in our proof of (3.3) is to construct holomorphic functions F" on
Bkr2 � Bn�kr2

such that F" D f on ¹0º � Bn�kr2
,Z

Bk
" �Bn�k

r2

jF"j
pe�.1Cˇ/' d�n � C1"

2k; (3.4)

and Z
Bk

r2
�Bn�k

r2

jF"j
pe�.1Cˇ/' d�n � C2"

�2ˇ1 (3.5)

for any " 2 .0; r2/, where ˇ1 2 .0; p2 / is a small enough positive number.
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Then by some calculation, we can getZ
Bk

" �Bn�k
r2

jF � F"j
pe�.1Cˇ2/'

"2k
d�n � C3 (3.6)

for all " small enough, where ˇ2 2 .0; ˇ/ is a small enough positive number, and C3
is a positive number independent of ".

Then we get the desired property (3.3) by using (3.4), (3.6), and the following
proposition.

Proposition 3.3 ([30]). Let '.z0; z00/ be a psh function on Bkr � Bn�kr , f .z00/ a holo-
morphic function on Bn�kr , P.z0; z00/ a nonnegative continuous function on Bkr �

Bn�kr , and M.z0/ a bounded nonnegative measurable function on Ck with compact
support. Let C , ˇ2, r1, and r2 be positive numbers. Assume that r1 < r2 < r . Sup-
pose that F is a holomorphic function on Bkr2 � Bn�kr2

satisfying F.0; z00/ D f .z00/

.8z00 2 Bn�kr2
/,

sup
Bk

r2
�Bn�k

r2

jF j � C;

and
lim
"!0C

1

"2k

Z
.z0;z00/2Bk

" �Bn�k
r2

ˇ̌
F.z0; z00/

ˇ̌p
e�.1Cˇ2/'.z

0;z00/ d�n � C:

Then

lim
"!0C

Z
.z0;z00/2Ck�Bn�k

r1

1

"2k
M

�z0
"

�
P.z0; z00/

ˇ̌
F.z0; z00/

ˇ̌p
e�'.z

0;z00/ d�n

D

Z
z02Ck

M.z0/ d�k

Z
z002Bn�k

r1

P.0; z00/
ˇ̌
f .z00/

ˇ̌p
e�'.0;z

00/ d�n�k :

4. A refined optimal L2 extension theorem with singular metrics on
Kähler manifolds

Now we regard Theorem 3.1 as a local property on coordinate charts, and discuss a
global version of it on complex manifolds.

Let R be the class of functions defined by²
R 2 C1.�1; 0�I R > 0; R is decreasing; CR WD

Z 0

�1

1

R.t/
dt < C1

and etR.t/ is bounded above on .�1; 0�

³
:
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By using Theorems 3.1 and 3.2, we obtained the following refined optimal L2

extension theorem with singular metrics on Kähler manifolds as a global version of
Theorem 3.1.

Theorem 4.1 ([32]). Let R 2 R and let … W X ! S be a surjective proper holo-
morphic map from a Kähler manifold .X; !/ of dimension n to a Stein domain S
contained in the unit ball Bk � Ck .1 � k � n/, where ! is a Kähler metric on X .
With respect to the coordinate functions on Ck , we regard … as a k-dimensional
vector of holomorphic functions s D .s1; : : : ; sk/ on X . Assume that 0 2 S and
ds WD ds1 ^ � � � ^ dsk is nonvanishing on

X0 WD
®
x 2 X I s.x/ D 0

¯
:

Let .L; h/ be a holomorphic line bundle over X equipped with a singular Hermitian
metric h such that the curvature current

p
�1‚L;h � 0. Write h as h1e�� , where h1

is any fixed smooth metric of L and � is a global quasi-psh function on X . Assume
that f 2 H 0.X0; KX jX0

C LjX0
/ satisfiesZ

X0

jf j2
!;h

jdsj2!
dVX0;!0

< C1;

where dVX0;!0
WD

!n�k
0

.n�k/Š
and !0 is the Kähler metric on X0 induced from !. Let ˇ

be a positive number such that

	
�
.1C ˇ/� C log jsj2k

�
x
D 	

�
� C log jsj2k

�
x

and
f 2 	

�
.1C ˇ/�jX0

�
x

hold for any x 2 X0 (the existence of ˇ is guaranteed by Theorem 3.2). Then there
exists F 2 H 0.X;KX C L/ such that F D f on X0,

F 2 	
�
.1C ˇ/� C ˛ log jsj2k

�
x

�
8˛ 2 Œ0; 1/; 8x 2 X0

�
; (4.1)Z

X

jF j2
!;h

jsj2kR
�

log jsj2k
� dVX;! � CR

.2�/k

kŠ

Z
X0

jf j2
!;h

jdsj2!
dVX0;!0

; (4.2)

and

lim
"!0C

Z
X

1

"2k
M

�s
"

�
P jF j

2
!;h dVX;!

D 2k
Z
z02Ck

M.z0/ d�k

Z
X0

P jf j2
!;h

jdsj2!
dVX0;!0

; (4.3)

where M is as in Theorem 3.1, and P is any nonnegative continuous function on X .
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One can see [6, 9, 28, 30] for many L2 extension theorems with singular metrics
on Kähler manifolds without the properties (4.1) and (4.3).

The properties (4.1) and (4.3) refine the optimal L2 extension theorem with sin-
gular metrics on Kähler manifolds discussed in [30]. In our proof of Theorem 4.1
(even without (4.1) and (4.3)), a key step is to use some construction essentially used
in the proof of Theorem 3.1 in the case p D 2 (see (3.4), (3.5), and [30]).

Furthermore, applying the iteration method in [4] or [5], the following refined
optimal L

2
m extension theorem with singular metrics on Kähler manifolds can be

obtained from Theorem 4.1.

Theorem 4.2 ([32]). Let R, …, .X; !/, S , .L; h/, .X0; !0/, s, ds, h1, �, M , and P
be the same as in Theorem 4.1. Let h! WD .dVX;!/

�1 (it defines a smooth Hermitian
metric on KX ). Assume that f 2 H 0.X0; mKX jX0

C LjX0
/ (m is a positive integer)

satisfies

Cf WD

Z
X0

jf j
2
m

h
˝m
! ˝h

jdsj2!
dVX0;!0

< C1;

and assume that there exists a holomorphic extension F1 of f to an open neighbor-
hood of X0 in X . Then there exists a positive number ˇ and a holomorphic section
F 2 H 0.X;mKX C L/ such that F D f on X0,

F 2 	m

�
.1C ˇ/

�

m
C ˛ log jsj2k

�
x

�
8˛ 2 Œ0; 1/; 8x 2 X0

�
; (4.4)

Z
X

jF j
2
m

h
˝m
! ˝h

jsj2kR
�

log jsj2k
� dVX;! � CR

.2�/k

kŠ
Cf ; (4.5)

and

lim
"!0C

Z
X

1

"2k
M

�s
"

�
P jF j

2
m

h
˝m
! ˝h

dVX;!

D 2k
Z
z02Ck

M.z0/ d�k

Z
X0

P jf j
2
m

h
˝m
! ˝h

jdsj2!
dVX0;!0

: (4.6)

5. Comparison of singular metrics on exceptional fibers of twisted
relative pluricanonical bundles

Theorem 4.2 can be used to prove the positivity of the twisted relative pluricanon-
ical bundles (Theorem 5.1), and it can also be used to obtain a comparison result
of singular metrics on exceptional fibers of twisted relative pluricanonical bundles
(Theorem 5.2).
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Let X be an n-dimensional Kähler manifold, Y a k-dimensional connected com-
plex manifold .1 � k � n/, and .L; h/ a pseudoeffective holomorphic line bundle
over X .

Let … W X ! Y be a surjective proper holomorphic map. Denote by Y0 the set
of all points in Y which are regular values of …. Let Xy WD …�1.y/, Ly WD LjXy

,
hy WD hjXy

, Yh WD ¹y 2 Y0I hy 6� C1º and

Ym;ext WD
®
y 2 Y0I dimH 0.Xy ; mKXy

C Ly/ D rank…�.mKX=Y C L/
¯
:

Then Ym;ext is the Zariski open subset of Y consisting of all y 2 Y0 such that every
section in H 0.Xy ; mKXy

C Ly/ has a holomorphic extension to some open neigh-
borhood of Xy in X . Denote …�1.Ym;ext/ by Xm;ext.

Denote by !y the Kähler metric on Xy induced by !. Let dVXy ;!y
WD

!n�k
y

.n�k/Š
and

let h!y
WD .dVXy ;!y

/�1 (it defines a smooth metric on KXy
).

For every y 2 Ym;ext and every x 2 Xy , by the isomorphism

.mKX=Y C L/jXy
' mKXy

C Ly ;

the relative m-Bergman kernel Bo
m;X=Y

of the line bundles .mKX=Y C L/jXm;ext is
defined as

Bom;X=Y .x/ WD sup
²
u.x/˝ u.x/I u 2 H 0.Xy ; mKXy

C Ly/

and
Z
Xy

juj
2
m

h
˝m
!y ˝hy

dVXy ;!y
� 1

³
:

Assume that Bo
m;X=Y

6� 0. Then the following positivity of the twisted relative
pluricanonical bundles mKX=Y C L holds. The projective case was proved in [3, 5,
23]. We give a proof of the Kähler case in [32] by using Theorem 4.2 (see also [6,30]
for the Kähler case).

Theorem 5.1 ([3, 5, 6, 23, 30, 32]). The metric .Bo
m;X=Y

/�1 is a singular metric
on .mKX=Y C L/jXm;ext with semipositive curvature current. Moreover, .Bo

m;X=Y
/�1

extends acrossX nXm;ext uniquely to a singular metric .Bm;X=Y /�1 onmKX=Y CL

with semipositive curvature current on all of X .

Theorems 4.1 and 5.1 can be used to prove the positivity of the direct images
of twisted relative pluricanonical bundles with singular metrics for Kähler fibrations
(see [32], and see also [3, 16, 23] for the projective case).

Now we discuss comparison of singular metrics on exceptional fibers of twisted
relative pluricanonical bundles.
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For y 2 Y0 n Ym;ext, the fiber Xy is called an exceptional fiber. The metric
.Bm;X=Y /

�1 over the exceptional fibers Xy is defined as the unique extension of
.Bo
m;X=Y

/�1.
There is an extremal metric .Bm;y/�1 on the bundlemKXy

CLy over the excep-
tional fibers Xy defined as

Bm;y.x/ WD sup
²
u.x/˝ u.x/I u 2 H 0.Xy ; mKXy

C Ly/;Z
Xy

juj
2
m

h
˝m
!y ˝hy

dVXy ;!y
� 1 and u has a holomorphic

extension to some open neighborhood of Xy in X
³
:

When the metric h on L is continuous, the inequality

.Bm;X=Y /
�1

jXy
� .Bm;y/

�1 .8y 2 Y0 n Ym;ext/ (5.1)

was obtained in [5,23] in the projective case. When h has arbitrary singularities, (5.1)
was guessed in [5, 23].

By using Theorem 4.2, we obtained the following result, which shows that (5.1)
is actually an equality in the Kähler case for those h with arbitrary singularities.

Theorem 5.2 ([32]). .Bm;X=Y /�1jXy
D .Bm;y/

�1 holds for any y 2 Y0 n Ym;ext.

The key point in the proof of Theorem 5.2 is to obtain a holomorphic extension
whose L

2
m integral with singular metrics on nearby fibers has a lower limit property

with an optimal estimate. This property can be implied by (4.6).

6. Subadditivity of generalized Kodaira–Iitaka dimensions

Theorem 5.1 can be used to prove the subadditivity of the generalized Kodaira–Iitaka
dimensions with multiplier ideal sheaves for certain Kähler fibrations (Theorem 6.2).

Let X be a connected compact complex manifold, and .L; hL/ a holomorphic
Q-line bundle on X with a singular metric hL. Let k0 be the smallest positive integer
such that k0L is a holomorphic line bundle.

In terms of the singular metric hL of L, we will denote the L
2
m multiplier ideal

sheaf 	
L

2
m
.'/ (m is a positive integer) by the global notation 	m.hL/, where ' is the

local weight of hL. We also write 	1.hL/ as 	 .hL/ for simplicity.
The notion of the generalized Kodaira–Iitaka dimension with multiplier ideal

sheaves is defined below.
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Definition 6.1 ([33]). The generalized Kodaira–Iitaka dimension �.X;KX C L; hL/

is defined to be

sup
²
v 2 ZI lim

k!C1

h0
�
X; .kk0KX C kk0L/˝ 	kk0

.hL/
�

kv
> 0

³
if limk!C1 h

0.X; .kk0KXCkk0L/˝	kk0
.hL//¤0. Otherwise, �.X;KXCL;hL/

is defined to be �1.

Then the following subadditivity of the generalized Kodaira–Iitaka dimensions
for certain Kähler fibrations holds.

Theorem 6.2 ([33]). Let … W X ! Y be a surjective holomorphic map with con-
nected fibers from a compact Kähler manifold X to a compact connected complex
manifold Y ; dimX D n and dim Y D m. Let L be a holomorphic Q-line bundle on
X possessing a singular metric hL such that the curvature current

p
�1‚L;hL

� 0

on X . Assume that the canonical bundle KY of Y possesses a singular metric h such
that

(a)
p
�1‚KY ;h � 0 on Y in the sense of currents,

(b) there exists an open subset U of Y and a continuous positive .1; 1/-form 


on U such that
p
�1‚KY ;h � 
 on U in the sense of currents.

Then
�.X;KX C L; hL/ � �.Z;KZ C LjZ ; hLjZ/Cm; (6.1)

where Z denotes a general fiber of ….

If X and Y are projective, and .L; hL/ is trivial, Theorem 6.2 is just Kawamata–
Viehweg’s result; that is,

�.X/ � �.Z/C dimY

holds for Y of general type [17, 26].
If 	 .hL/ D OX (for example, .X;L/ is Kawamata log terminal), (6.1) becomes

�.X;KX C L/ � �.Z;KZ C LjZ/C dimY:

One can also see [27] for some related results in the case when .X; L/ is Kawamata
log terminal.

Our proof of Theorem 6.2 is analytic and relies on Theorem 5.1 and a general
L2 extension theorem with singular metrics on weakly pseudoconvex Kähler man-
ifolds [9, Theorem 2.8 and Remark 2.9 (b)]. They are used to prove the following
L

2
k extension theorem (Theorem 6.3 below) for twisted pluricanonical sections on

compact Kähler manifolds, which is the crucial step in the proof of Theorem 6.2.
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For y 2 Y , denote …�1.y/ by Xy . Denote LjXy
simply by Ly . Denote by Y0 the

set of all points in Y which are regular values of ….
Let k0 be the smallest positive integer such that k0L is a holomorphic line bundle,

and let k be a positive integer such that k0jk. Let

Yk;ext WD
®
y 2 Y0I h

0.Xy ; kKXy
C kLy/ D rank…�.kKX=Y C kL/

¯
;

zYk;hL;ext WD
®
y 2 Y0I h

0
�
Xy ; .kKXy

C kLy/˝ 	k.hL/jXy

�
D rank…�

�
.kKX=Y C kL/˝ 	k.hL/

�¯
;

and
Yk;hL;ext WD

®
y 2 Yk;ext \ zYk;hL;extI 	k.hLjXy

/ D 	k.hL/jXy

¯
:

Denote
T
k2ZC; k0jk

Yk;hL;ext simply by YhL;ext. It is not hard to see that the 2m-
dimensional Lebesgue measure of Y n YhL;ext is zero and �.Xy ; KXy

C Ly ; hLjXy
/

is independent of y when y 2 YhL;ext.

Theorem 6.3 ([33]). Let …, X , Y , .L; hL/ be the same as in Theorem 6.2. Let Xy ,
Ly , k, Y0, Yk;ext, and Yk;hL;ext be the notations defined above. Let ' � 0 be a quasi-
psh function on Y , which is smooth outside q distinct points ¹yj º

q
jD1. For each yj

.1 � j � q/, assume that there exists a coordinate ball around yj with coordinate
functions z D .z1; z2; : : : ; zm/ such that z.yj / D 0 and '.z/ � log jzj2m is smooth.
Moreover, assume that the canonical bundleKY of Y possesses a singular Hermitian
metric h such that

.k � 1/
p
�1‚KY ;h C ˛

p
�1@x@' � 0 on Y for all ˛ 2 Œ1; 1C "�; (6.2)

where " is a positive number. Denote the pluripolar set ¹h D C1º by †h. Assume
that ¹yj º

q
jD1 � Yk;ext n†h. Then there exists a positive constant C such that, for any

f 2 H 0

� q[
jD1

Xyj
; .kKX C kL/jSq

jD1
Xyj

˝ 	k.hLjSq

jD1
Xyj

/

�
;

there exists F 2 H 0.X; .kKX C kL/˝ 	k.hL// such that

F jSq

jD1
Xyj

D f

and Z
X

�
jF j

2

hk
!˝hk

L

� 1
k dVX;! � C

qX
jD1

Z
Xyj

�
jf j2

hk
!˝hk

L

� 1
k dVXyj

;!yj
; (6.3)

where ! is the Kähler metric on X , !yj
is the Kähler metric on Xyj

induced from !,
dVX;! WD

!n

nŠ
is the volume form on X , and h! WD .dVX;!/

�1 (it defines a smooth
Hermitian metric on KX ).
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The idea in our proof of Theorem 6.2 is sketched below.
Let k be a positive integer sufficiently divisible, and let

p WD h0
�
Xy ; .kKXy

C kLy/˝ 	k.hLjXy
/
�
:

Then
p � ˛k�.Z;KZCLjZ ;hLjZ/

for some positive number ˛ independent of k.
Let q WD ˇkm and let ¹yj º

q
jD1 be q distinct points in U in general position, where

ˇ is some positive number independent of k. We will make some explanation on the
degree m .D dimY / in the end of this section.

Assume U is small enough and let � 2 H 0.U; KY / be a holomorphic frame of
KY jU . For each j D 1; 2; : : : ; q, let

¹eij º
p
iD1 � H 0

�
Xyj

; .kKXyj
C kLyj

/˝ 	k.hLjXyj
/
�

be a basis.
Let ılj be the Kronecker delta function, where 1 � l � q and 1 � j � q.
For each j ,

fi;l;j WD ılj eij ˝ .…��/kjXyj
.1 � i � p; 1 � l � q/

belongs to H 0.Xyj
; .kKX jXyj

C kLjXyj
/˝ 	k.hLjXyj

//. Let

fi;l 2 H
0

� q[
jD1

Xyj
; .kKX C kL/jSq

jD1
Xyj

˝ 	k.hLjSq

jD1
Xyj

/

�
be defined by fi;l jXyj

D fi;l;j for all 1 � i � p, 1 � l � q, and 1 � j � q.
Then by using Theorem 6.3, we can obtain that there exist holomorphic sections

¹Fi;lº1�i�p; 1�l�q � H 0
�
X; .kKX C kL/˝ 	k.hL/

�
such that

Fi;l jSq

jD1
Xyj

D fi;l for all i and l :

It is obvious that ¹Fi;lº1�i�p; 1�l�q is linearly independent. Therefore,

h0
�
X; .kKX C kL/˝ 	k.hL/

�
� pq � ˛ˇk�.Z;KZCLjZ ;hLjZ/Cm:

Hence
�.X;KX C L; hL/ � �.Z;KZ C LjZ ; hLjZ/Cm:
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Now we make some explanation on the degree m .D dim Y / in the definition
of q. In the above proof, we need to construct a quasi-psh function ' on Y such that
(6.2) holds on Y when we use Theorem 6.3. In fact, we construct the function ' by
splicing the polar functions log jz.y/ � z.yj /j2m around the points ¹yj º

q
jD1, and we

need to control the negative part of
p
�1@x@' such that (6.2) holds on Y . In this way,

p
�1@x@' may get more negativity when q becomes larger. The integer m is just the

largest degree in the definition of q such that (6.2) holds on Y .

7. A generalization of Siu’s lemma with nontrivial multiplier ideal
sheaves near a subvariety

Let .X; !/ be an n-dimensional Kähler manifold with a Kähler metric !, let .L; h/
be a holomorphic line bundle over X equipped with a singular metric h, and let  be
a quasi-psh function on X .

Let S WD V.	 . // be the zero variety of the multiplier ideal sheaf 	 . /. Then
 is said to have log canonical singularities along S if 	 ..1 � "/ /jS D OX jS for
every " > 0.

Denote by S0 the set of regular points of S .

Definition 7.1 (see [9,14,19]). Assume that  has neat analytic singularities and has
log canonical singularities along S D V.	 . //. The positive measure dVX;! Œ � on
S0 (the set of regular points of S ) is defined byZ

S0

g dVX;! Œ � D lim
t!�1

Z
¹x2X Wt< .x/<tC1º

Qge� dVX;! (7.1)

for any compactly supported nonnegative continuous function g on S0, where Qg is a
compactly supported nonnegative continuous extension of g toX such that .supp Qg/\

S � S0.

If f 2 H 0.S0; .KX ˝L/jS0/, then jf j2
!;h
dVX;! Œ � is a positive measure on S0

which depends on the property of h on S0. There is another way to define a positive
measure which is defined not only on the property of h on S0 but also on the property
of h near ¹ D �1º (see Definition 7.3).

Note that  is neither assumed to have neat analytic singularities nor assumed to
have log canonical singularities along S in Definition 7.2 and Definition 7.3.

Definition 7.2 ([9]). The restricted multiplier ideal sheaf 	 0
 .h/ is defined to be the

set of germs f 2	 .h/x�OX;x such that there exists a coordinate neighborhood U of
x satisfying

lim
t!�1

Z
¹y2U Wt< .y/<tC1º

jf j2e�'� d� < C1;
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whereU is small enough such that h can be written as e�' with respect to a local holo-
morphic trivialization of L on a neighborhood of xU , and d� is the 2n-dimensional
Lebesgue measure on U .

Denote by S 0 the zero set of the ideal sheaf

J WD
®
g 2 OX I g � 	 .h/ � 	 .he� /

¯
:

Let f be an element in

H 0
�
X;OX .KX ˝ L/˝ 	 0

 .h/=	 .he
� /

�
:

Then f is actually supported on S 0.

Definition 7.3 ([9]). The positive measure jf j2
!;h
dV 0

X;! Œ � (a purely formal nota-
tion) on S 0 is defined as the minimum element of the partially ordered set of positive
measures d� satisfyingZ

S 0

gd� � lim
t!�1

Z
¹x2X Wt< .x/<tC1º

gj Qf j2!;he
� dVX;!

for any nonnegative continuous function g on X with supp g �� X , where Qf is a
smooth extension of f to X such that

Qf � Of 2 OX .KX ˝ L/˝OX
	 .he� /˝OX

C1

locally for any local holomorphic representation Of of f .

The following generalization of Siu’s lemma with nontrivial multiplier ideal
sheaves near a subvariety gives a relation between the two measures in Definitions
7.1 and 7.3. It can be proved by using Hironaka’s desingularization theorem and the
method in the proof of Theorem 3.1.

Theorem 7.4 ([33]). Let �0 � Cn be a bounded domain,  a negative quasi-psh
function on�0 with neat analytic singularities, and ' a negative psh function on�0.
Denote by S the zero variety of 	 . / and assume that  has log canonical singular-
ities along S . Let � be a pseudoconvex domain such that � �� �0. Suppose that f
is a holomorphic function on S0 satisfyingZ

S0

jf j2e�' d�Œ � < C1;

where S0 is the set of regular points of S , d� is the Lebesgue measure on �0, and
d�Œ � is the positive measure on S0 defined as in Definition 7.1. Then there exists a
positive number ˇ such thatZ

�\S0

jf j2e�.1Cˇ/' d�Œ � < C1;
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and there exists a holomorphic function F on � such that

F D f on � \ S0 (7.2)

and Z
�

jF j2e�.1Cˇ/'

e . 2 C 1/
d� < C1: (7.3)

Moreover, any holomorphic function F on � satisfying (7.2) and (7.3) has the prop-
erty

lim
t!�1

Z
�\¹t< <tC1º

vjF j
2e�'� d� D

Z
�\S0

vjf j2e�' d�Œ �

for any compactly supported nonnegative continuous function v on �.

Theorem 7.4 shows that the two ways to define the measures are the same when
 has neat analytic singularities and has log canonical singularities along S .

By using Theorem 7.4, we proved in [33] that the L2 extension theorem in [31]
can be regarded as a corollary of the L2 extension theorem in [34].
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[23] M. Păun and S. Takayama, Positivity of twisted relative pluricanonical bundles and their
direct images. J. Algebraic Geom. 27 (2018), no. 2, 211–272 Zbl 1430.14017
MR 3764276

https://zbmath.org/?q=an:1271.14001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2978333
https://zbmath.org/?q=an:1360.14025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3525916
https://zbmath.org/?q=an:0994.32021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1852009
https://arxiv.org/abs/1507.00562
https://zbmath.org/?q=an:1333.32014&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3418242
https://zbmath.org/?q=an:1329.32016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3418526
https://zbmath.org/?q=an:1348.32008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3296822
https://arxiv.org/abs/1603.05733
https://zbmath.org/?q=an:1398.14018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3832403
https://zbmath.org/?q=an:0471.14022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=622451
https://zbmath.org/?q=an:0731.53063&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1078269
https://zbmath.org/?q=an:0986.32002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1820210
https://zbmath.org/?q=an:1439.32003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3887636
https://zbmath.org/?q=an:0625.32011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=892051
https://zbmath.org/?q=an:0995.11065&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1792297
https://zbmath.org/?q=an:1430.14017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3764276


Siu’s lemma: Generalizations and applications 967

[24] Y.-T. Siu, The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi. In Geo-
metric Complex Analysis (Hayama, 1995), pp. 577–592, World Sci. Publ., River Edge, NJ,
1996 Zbl 0941.32021 MR 1453639

[25] Y.-T. Siu, Invariance of plurigenera and torsion-freeness of direct image sheaves of pluri-
canonical bundles. In Finite or Infinite Dimensional Complex Analysis and Applications,
pp. 45–83, Adv. Complex Anal. Appl. 2, Kluwer Acad. Publ., Dordrecht, 2004
Zbl 1044.32016 MR 2058399

[26] E. Viehweg, Die Additivität der Kodaira Dimension für projektive Faserräume über Vari-
etäten des allgemeinen Typs. J. Reine Angew. Math. 330 (1982), 132–142
Zbl 0466.14009 MR 641815

[27] J. Wang, On the Iitaka conjecture Cn;m for Kähler fibre spaces. Ann. Fac. Sci. Toulouse
Math. (6) 30 (2021), no. 4, 813–897 Zbl 07469482 MR 4350100

[28] L. Yi, An Ohsawa–Takegoshi theorem on compact Kähler manifolds. Sci. China Math.
57 (2014), no. 1, 9–30 Zbl 1302.32035 MR 3146512

[29] X. Zhou and L. Zhu, A generalized Siu’s lemma. Math. Res. Lett. 24 (2017), no. 6, 1897–
1913 Zbl 1394.32027 MR 3762700

[30] X. Zhou and L. Zhu, An optimal L2 extension theorem on weakly pseudoconvex Kähler
manifolds. J. Differential Geom. 110 (2018), no. 1, 135–186 Zbl 1426.53082
MR 3851746

[31] X. Zhou and L. Zhu, Optimal L2 extension of sections from subvarieties in weakly pseu-
doconvex manifolds. Pacific J. Math. 309 (2020), no. 2, 475–510 Zbl 1458.32013
MR 4202022

[32] X. Zhou and L. Zhu, Siu’s lemma, optimal L2 extension and applications to twisted pluri-
canonical sheaves. Math. Ann. 377 (2020), no. 1-2, 675–722 Zbl 1452.32014
MR 4099619

[33] X. Zhou and L. Zhu, Subadditivity of generalized Kodaira dimensions and extension the-
orems. Internat. J. Math. 31 (2020), no. 12, 2050098, 36 Zbl 1457.32059
MR 4184430

[34] X. Zhou and L. Zhu, Extension of cohomology classes and holomorphic sections defined
on subvarieties. J. Algebraic Geom. 31 (2022), no. 1, 137–179 Zbl 07459642
MR 4372411

[35] X. Y. Zhou and L. F. Zhu, Optimal L2 extension and Siu’s lemma. Acta Math. Sin. (Engl.
Ser.) 34 (2018), no. 8, 1289–1296 Zbl 1402.32013 MR 3843436

Xiangyu Zhou
Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, P. R. China;
xyzhou@math.ac.cn

Langfeng Zhu
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China;
zhulangfeng@amss.ac.cn

https://zbmath.org/?q=an:0941.32021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1453639
https://zbmath.org/?q=an:1044.32016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2058399
https://zbmath.org/?q=an:0466.14009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=641815
https://zbmath.org/?q=an:07469482&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4350100
https://zbmath.org/?q=an:1302.32035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3146512
https://zbmath.org/?q=an:1394.32027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3762700
https://zbmath.org/?q=an:1426.53082&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3851746
https://zbmath.org/?q=an:1458.32013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4202022
https://zbmath.org/?q=an:1452.32014&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4099619
https://zbmath.org/?q=an:1457.32059&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4184430
https://zbmath.org/?q=an:07459642&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4372411
https://zbmath.org/?q=an:1402.32013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3843436
mailto:xyzhou@math.ac.cn
mailto:zhulangfeng@amss.ac.cn






 European Congress of Mathematics

The European Congress of Mathematics, held every four years, is a well-established 
major international mathematical event. Following those in Paris (1992), Budapest 
(1996), Barcelona (2000), Stockholm (2004), Amsterdam (2008), Kraków (2012),  
and Berlin (2016), the Eighth European Congress of Mathematics (8ECM) took place  
in Portorož, Slovenia, June 20–26, 2021, with about 1700 participants from all over 
the world, mostly online due to Covid pandemic.

Ten plenary and thirty invited lectures along with the special Abel and Hirzebruch 
lectures formed the core of the program. As in all the previous EMS congresses, ten 
outstanding young mathematicians received the EMS prizes in recognition of their  
research achievements. In addition, two more prizes were awarded: The Felix Klein 
Prize for a remarkable solution of an industrial problem and the Otto Neugebauer 
Prize for a highly original and influential piece of work in the history of mathematics. 
The program was complemented by five public lectures, several exhibitions, and 62 
minisymposia with about 1000 contributions, spread over all areas of mathematics.  
A number of panel discussions and meetings were organized, covering a variety of 
issues ranging from the future of mathematical publishing and the role of the ERC  
to public awareness of mathematics.

These proceedings provide a permanent record of current mathematics of highest 
quality by presenting extended versions of seven plenary, six prize, and fourteen  
invited lectures as well as eleven lectures from minisymposia keynote speakers,  
all of which were delivered during the congress.

https://ems.press

ISBN  978-3-98547-051-8

 European Congress  
of Mathematics
Portorož, 20–26 June 2021

Edited by 
Ademir Hujdurović
Klavdija Kutnar
Dragan Marušič
Štefko Miklavič
Tomaž Pisanski
Primož Šparl

 European C
ongress of M

athem
atics

A
dem

ir H
ujdurović, K

lavd
ija K

utnar, D
ragan M

arušič, Štefko M
iklavič, Tom

až Pisanski, and Prim
ož Šparl (Eds.)


	Front matter
	preface
	Preface

	8ECM-toc
	Contents

	committees
	8ECM Committees

	sponsors
	8ECM-parts1
	8ECM-13
	1. Hilbert's 19th problem and the principle of least action
	2. Stable minimal surfaces
	3. Stable solutions to reaction-diffusion elliptic equations
	References

	8ECM-08
	1. Minimal surfaces: A link between mathematics, science, engineering, and art
	2. An elementary introduction to minimal surfaces
	2.1. Conformal maps and conformal structures on surfaces
	2.2. First variation of area and energy
	2.3. Characterization of minimality by vanishing mean curvature
	2.4. The Enneper–Weierstrass representation
	2.5. Holomorphic null curves

	3. A survey of new results
	3.1. Approximation, interpolation, and general position theorems
	3.2. Topological structure of spaces of minimal surfaces
	3.3. The Gauss map of a conformal minimal surface
	3.4. The Calabi–Yau problem

	References

	8ECM-34
	1. Introduction
	2. Law of large numbers
	2.1. Dense case
	2.2. Sparse case
	2.3. Idea of the proof
	2.4. Extreme eigenvalues

	3. Fluctuations
	3.1. Concentration of measure
	3.2. Global fluctuations
	3.3. Local laws
	3.4. Local fluctuations
	3.5. Properties of the eigenvectors

	4. Rare events
	4.1. Large deviations for the extreme eigenvalues
	4.2. Large deviations for the empirical measure
	4.3. Large deviations for triangle counts
	4.4. The singularity probability

	5. Open problems
	References

	8ECM-30
	1. Introduction
	2. Deep neural networks
	2.1. The mathematical definition
	2.2. Key research directions
	2.2.1 Mathematics for deep learning
	2.2.2 Deep learning for mathematics


	3. Mathematics for deep learning
	3.1. Revisiting classical approximation theory
	3.2. Universality of deep neural networks

	4. Deep learning for mathematics
	4.1. Inverse problems meet deep learning
	4.2. Deep learning-based solvers for partial differential equations

	5. Conclusions
	References

	8ECM-25
	1. Introduction
	2. Affine valuations on convex bodies
	2.1. SL(n) invariant valuations on convex polytopes
	2.2. Affine surface areas
	2.3. Vector and tensor valuations
	2.4. Convex body valued valuations and related notions

	3. The Hadwiger theorem on convex bodies
	3.1. Vector and tensor valuation
	3.2. Convex body valued valuations

	4. More on invariant valuations on convex bodies
	5. Affine valuations on function spaces
	5.1. Valuations on Sobolev spaces
	5.2. Valuations on convex functions

	6. The Hadwiger theorem on convex functions
	7. More on invariant valuations on function spaces
	References

	8ECM-35
	1. Synthetic Ricci bounds for metric measure spaces
	1.1. Metric spaces
	1.2. Metric measure spaces
	1.3. Synthetic Ricci bounds for metric measure spaces
	1.4. The curvature-dimension condition \mathsf{CD}(K,N)

	2. Geometric aspects
	2.1. Volume growth
	2.2. The space of spaces
	2.3. Stability, compactness
	2.4. Local to global

	3. Analytic aspects
	3.1. Heat flow on metric measure spaces
	3.2. Curvature-dimension condition: Eulerian vs. Lagrangian
	3.3. \mathsf{RCD}(K,N)-spaces—functional inequalities
	3.4. \mathsf{RCD}(K,N)-spaces—splitting and rigidity
	3.5. \mathsf{RCD}(K,N)-spaces—structure theory

	4. Recent developments
	4.1. Heat flow on time-dependent mm-spaces and super-Ricci flows
	4.2. Second-order calculus, upper Ricci bounds, and transformation formulas
	4.3. Distribution-valued Ricci bounds
	4.4. Synthetic Ricci bounds—extended settings

	References

	8ECM-05
	1. Torsion in commutative algebraic groups
	1.1. Algebraic groups
	Examples

	1.2. Some results about torsion in algebraic groups
	Some elliptic results

	2. Algebraic relations among torsion points
	2.1. The conjecture of Lang
	2.2. Multiplicative relations on curves – unlikely intersections
	2.3. The conjecture of Manin–Mumford
	2.4. ``Special points'' and the André–Oort conjecture

	3. Torsion in families of algebraic groups
	3.1. Masser's problem and the Pink conjectures
	3.2. The Betti map

	4. Some applications
	4.1. Pell equations in polynomials
	4.2. Integration in finite terms
	4.3. Elliptical billiards

	5. Final remarks
	6. References
	References

	8ECM-parts2
	8ECM-17
	1. Introduction
	1.1. The partition function p(x,y,z) as a potential
	1.1.1 The partition function
	1.1.2 The Heisenberg group
	1.1.3 The potential

	1.2. Construction of positive harmonic functions
	1.2.1 Choquet theorem
	1.2.2 Choquet–Deny theorem
	1.2.3 The partition function as a harmonic function
	1.2.4 Margulis first theorem
	1.2.5 Switching and translating harmonic functions

	1.3. Classification of positive harmonic functions
	1.3.1 Main result and strategy
	1.3.2 Dealing with a probability measure
	1.3.3 Extremal superharmonic functions


	2. The partition function
	2.1. The unimodality of the partition functions
	2.2. The ratio limit theorem
	2.3. When the height of the rectangles is bounded
	2.4. Inner and outer corner of a partition
	2.5. Partitions with bounded number of corners
	2.6. When the height of the rectangles is unbounded

	3. Positive harmonic functions
	3.1. The partition function as a harmonic function
	3.2. Harmonic functions that decay on cosets
	3.3. Using the ratio limit theorem
	3.4. Extension to finitely supported measures
	3.4.1 The harmonic characters χ
	3.4.2 The functions h_{S_0,χ_0} induced from a harmonic character


	References

	8ECM-23
	1. Introduction
	1.1. Kähler–Einstein metrics
	1.2. The probabilistic approach
	1.2.1 The case \beta > 0
	1.2.2 The case \beta < 0

	1.3. The partition function \mathcal{Z}_{N_k}(\beta) viewed as local Archimedean zeta function
	1.4. Main new results in the case of log Fano curves
	1.4.1 Log Fano curves

	1.5. Organization

	2. Conditional convergence results on log Fano varieties
	2.1. Setup
	2.2. The case \beta > 0
	2.2.1 Outline of the proof

	2.3. The case \beta < 0
	2.4. The zero-free hypothesis
	2.4.1 The strong zero-free hypothesis
	2.4.2 Allowing singular metrics ||\cdot||
	2.4.3 Deforming the divisor \Delta


	3. Intermezzo: A zero-free hypothesis for polarized manifolds (X,L) and the Calabi–Yau equation
	4. The case of log Fano curves
	4.1. Conclusion of the proof of Theorem 4.1
	4.2. The case of a general divisor \Delta
	4.3. The zero-free hypothesis in the case of three points and the complex Selberg integral
	4.3.1 Proving Theorem 4.1 by deforming \Delta in the case when m = 3


	5. Speculations on the strong zero-free hypothesis, L-functions, and arithmetic geometry
	5.1. The ``minimal'' partition function on P_\mathbb{C}^n as a standard local L-function
	5.2. Zeta integrals associated to Calabi–Yau subvarieties of Mat(N_k,\mathbb{C})
	5.3. Invariants of arithmetical Fano varieties
	5.4. Extension to non-Archimedean places

	A. Log canonical thresholds and Archimedean zeta functions
	A.1. Log canonical thresholds
	A.1.1 The lct of a divisor on X
	A.1.2 The lct of a divisor on (X,\Delta)
	A.1.3 The lct of a line bundle L and the \alpha-invariant

	A.2. Archimedean zeta functions

	References

	8ECM-01
	1. Introduction
	2. Regularization theory
	2.1. Inverse problems
	2.2. Learning and risk minimization
	2.3. Risk minimization formulation of inverse problems

	3. Variational regularization
	3.1. Basic properties of variational regularization methods
	3.2. Quantitative estimates

	4. Variational regularization and generalization
	4.1. Error decomposition and generalization error
	4.2. Estimates with operator errors and generalization
	4.3. Regularized risk minimization problems

	References

	8ECM-06
	1. Introduction
	2. The generalized liquid drop model
	3. A simple model for flocking
	4. The generalized Keller–Segel model
	A. The generalized liquid drop model in 1D
	References

	8ECM-02
	1. Introduction
	2. Preliminaries
	2.1. Graphs
	2.2. Metric graphs

	3. Graph Laplacians
	4. Laplacians on metric graphs
	4.1. Function spaces on metric graphs
	4.2. Kirchhoff Laplacians
	4.3. Energy forms

	5. Connections
	6. Cable systems for graph Laplacians
	7. Intrinsic metrics on graphs
	7.1. Intrinsic metrics on metric graphs
	7.2. Intrinsic metrics on discrete graphs
	7.3. Connections between discrete and continuous

	8. Applications
	8.1. Self-adjointness
	8.2. Recurrence and transience

	References

	8ECM-33
	1. Introduction
	2. Uniqueness results for discrete harmonic functions
	2.1. Harmonic functions on \mathbb{Z}^d
	2.2. Weak unique continuation
	2.3. Discrete harmonic functions bounded on a large portion of \mathbb{Z}^d

	3. Landis conjecture on decay of solutions to Schrödinger equations
	3.1. Decay at infinity
	3.2. Discrete equation
	3.3. Landis conjecture for real-valued potentials on the plane

	4. Uncertainty principle and uniqueness for Schrödinger evolutions
	4.1. Hardy's uncertainty principle
	4.2. Uniqueness results for discrete Schrödinger evolutions

	References

	8ECM-15
	1. Introduction
	2. The Gaussian kinematic formula for Lipschitz–Killing curvatures on excursions sets
	2.1. The Kac–Rice formula and the expectation metatheorem
	2.2. Intrinsic volumes and Lipschitz–Killing curvatures
	2.3. The Gaussian kinematic formula

	3. Wiener chaos expansions, variances, and correlations
	3.1. Wiener chaos expansions for random eigenfunctions
	3.2. Quantitative central limit theorems
	3.3. A higher-dimensional conjecture

	4. Nodal cases: Berry cancellation and the role of the fourth-order chaos
	5. Eigenfunctions on different domains
	5.1. Eigenfunctions on the torus: arithmetic random waves
	5.2. The Euclidean case: Berry's random waves
	5.3. Shrinking domains

	References

	8ECM-31
	1. Introduction
	1.1. The Euler equations on Riemannian manifolds
	1.2. Contact hydrodynamics

	2. Embedding dynamics into Reeb flows
	2.1. Flexibility of Reeb embeddings
	2.2. Applications to universality

	3. A Turing complete steady Euler flow on \mathbb{S}^3
	3.1. Turing machines and symbolic dynamics
	3.2. Area-preserving maps and Turing complete Reeb flows
	3.3. Undecidable dynamical properties in Reeb dynamics

	4. Time-dependent solutions of Euler and Navier–Stokes
	References

	8ECM-14
	1. Introduction
	2. Topological characterization of symplectic 4-manifolds
	3. Topological characterization of contact 3-manifolds
	4. Topological characterization of Stein domains of complex dimension two
	5. Canonical contact structures on the links of isolated complex surface singularities
	6. Lefschetz fibrations and trisections
	References

	8ECM-20
	1. Introduction
	2. Equivariant minimal model program
	3. Cremona group of rank 2
	4. Cremona group of rank 3
	5. Jordan property
	Rationally connected varieties
	Varieties over non-closed fields

	6. Invariants and rigidity
	7. Application: Essential dimension
	References

	8ECM-03
	1. General overview
	2. Strong proof systems
	3. Benchmarks
	4. Bounded-depth Frege
	5. Resolution
	6. Algebraic and semi-algebraic proof systems
	6.1. Algebraic models
	6.2. Semi-algebraic case

	7. In lieu of conclusion
	References

	8ECM-21
	1. Subset products and covering
	2. Permutation groups and derangements
	3. Subset growth
	4. Character growth and covering
	References

	8ECM-22
	1. Overview
	2. Hilbert's 21st problem
	2.1. Fuchsian type
	2.2. Monodromy
	2.3. Formulation
	2.4. Progress

	3. Riemann–Hilbert correspondence
	3.1. Integrable connections
	3.2. Meromorphic connections
	3.3. Regular singularities
	3.4. Deligne's Riemann–Hilbert correspondence
	3.5. D-modules
	3.6. Derived categories
	3.7. Riemann–Hilbert correspondence

	4. Homological mirror symmetry symmetries
	4.1. Mirror symmetry
	4.2. HMS categorical symmetries
	4.3. Example

	5. HMS symmetries: toric varieties
	5.1. Setting
	5.2. Space of complex structures on X^o
	5.3. HMS symmetries: quasi-symmetric case

	6. HMS differential equations: quasi-symmetric case
	6.1. Example
	6.2. Example with parameters
	6.3. GKZ hypergeometric systems
	6.4. Decategorification of HMS symmetries

	7. Liftings
	7.1. Perverse schobers
	7.1.1 Perverse sheaves over real hyperplane arrangements
	7.1.2 Perverse schobers over real hyperplane arrangements

	7.2. HMS predictions

	References

	8ECM-16
	1. Introduction
	2. Laplace problems
	3. Conformal mapping
	4. Rational approximation without spurious poles
	5. Computing the Hilbert transform
	6. Theoretical observations
	7. Discussion
	Appendix: Sample code
	References

	8ECM-parts3
	8ECM-36
	1. Introduction
	2. Some preliminaries on triangulated categories and DG categories
	3. Categorical smooth compactifications
	4. Smooth compactifications of derived categories of coherent sheaves
	5. Existence of smooth compactifications
	6. Wall's finiteness obstruction for DG categories
	References

	8ECM-38
	1. Introduction
	2. Variations of Hodge structure and hypergeometric equations
	2.1. Variations of Hodge structure
	2.2. Hypergeometric equations

	3. Log-Anosov representations
	3.1. Lie theory and Anosov representations
	3.2. Proper discontinuity, stability, and GIT

	4. Variations of Hodge structure and log-Anosov representations
	4.1. Growth of vectors
	4.2. Uniformization results
	4.3. Formula for Lyapunov exponents

	References

	8ECM-07
	1. Introduction
	2. Primes and the Riemann zeta function
	2.1. Primes
	2.2. The Riemann zeta function
	2.3. The relation between primes and the Riemann zeta function
	2.4. Dirichlet L-functions

	3. Primes and almost primes in short intervals
	3.1. Primes in short intervals
	3.2. Primes in almost all short intervals
	3.3. Almost primes in short intervals

	4. The Möbius function
	4.1. Introducing the Möbius function
	4.2. Möbius in short intervals

	5. Proof strategy
	5.1. The general strategy
	5.2. The combinatorial step
	5.3. The analytic step
	5.4. Sieve methods
	5.5. Implementation of the strategy

	References

	8ECM-04
	1. Introduction
	2. Bogoliubov's theory
	2.1. Bogoliubov's theory from the second-order perturbation
	2.2. Bogoliubov's theory from the microscopic equation

	3. Validity of Bogoliubov's theory
	3.1. The mean-field regime
	3.2. The Gross–Pitaevskii regime

	4. Further results and open problems
	References

	8ECM-27
	1. Introduction
	2. Five ``classical'' problems
	2.1. Plateau's problem: The elegant shapes of soap films
	2.2. Stefan's problem: Ice melting in water
	2.3. Signorini's problem (1950s)
	2.4. The obstacle problem (1960s)
	2.5. Almgren's problem (1970s)

	3. Classical regularity theory for Plateau's problem (1960s)
	3.1. Minimal surface equation (1760s)
	3.2. De Giorgi's ``flatness implies smoothness'' principle (1961)
	3.3. Fleming's monotonicity formula and tangent cones (1962)
	3.4. The classification of minimal cones: Taylor, Almgren, and Simons
	3.5. Federer's dimension reduction principle and partial regularity theorems

	4. Stefan's problem and the obstacle problem during 1970s–2000s
	4.1. Duvaut's transformation
	4.2. Stefan's problem as a parabolic obstacle problem
	4.3. Obstructions to regularity of the free boundary: Schaeffer's examples (1977)
	4.4. Caffarelli's breakthrough (1977)
	4.5. Weiss' epiperimetric inequality approach (1999)
	4.6. First regularity results on the singular set and open questions

	5. Almgren's problem and the thin obstacle problem during 1970s–2000s
	5.1. Branching singularities of holomorphic curves
	5.2. Almgren's regularity theorem
	5.3. Q-valued harmonic functions, frequency formula
	5.4. Dimension reduction and center manifold
	5.5. Almgren's methods applied to Signorini's problem

	6. The singular set in the obstacle problem (2017–2021)
	6.1. A finer analysis of the singular set
	6.2. Generic regularity: Schaeffer's conjecture in low dimensions
	6.3. C^\infty partial regularity

	7. The singular set in the Stefan problem (2019–2021)
	7.1. Almgren meets Stefan
	7.2. Cubic expansions and their heuristic interpretation
	7.3. Improving cubic expansions: Life beyond Almgren
	7.4. C^\infty partial regularity and optimal dimensional bounds on the singular set

	References

	8ECM-12
	1. Introduction
	2. The modularity conjecture
	3. Applications of modularity
	4. Known results
	4.1. Elliptic curves over totally real fields
	4.2. Elliptic curves over more general number fields

	References

	8ECM-parts4
	8ECM-37
	1. Introduction
	2. Hill conjecture and Hill drawings
	3. Turán's brick factory problem
	4. Geodesic drawings
	4.1. Sylvester's four-point problem
	4.2. Sylvester's problem on the sphere
	4.3. Antipodal drawings on the sphere
	4.4. Moon's result revisited

	References

	8ECM-28
	1. Greek mathematics
	2. Early European mathematics
	3. The age of exploration
	4. The 17th century
	5. The 18th century
	6. The 19th century
	7. The 20th century
	References

	8ECM-parts5
	8ECM-19
	1. Introduction
	2. Covering arrays and Sperner partition systems
	3. Perfect and separating hash families
	3.1. Separating hash families: Definitions
	3.2. Separating hash families: Some constructions
	3.3. Separating hash families: Codes for d = 1
	3.4. Separating hash families: d = 2
	3.5. Separating hash families: d = 3

	4. Constructing detecting arrays from hash families
	5. Consequences
	References

	8ECM-39
	1. Introduction
	1.1. Data citation

	2. Pure mathematics
	2.1. On-line Encyclopedia of Integer Sequences
	2.2. Group theory
	2.3. L-functions and modular forms

	3. SAT and SMT solving
	3.1. SAT solving
	3.2. SAT contests
	3.3. SMT: Life beyond SAT

	4. Computer algebra: Where are we?
	4.1. Polynomial GCD
	4.2. Polynomial factorisation
	4.3. Gröbner bases
	4.4. Real algebraic geometry
	4.5. Integration

	5. Conclusions
	References

	8ECM-18
	1. Introduction
	2. Compact locally homogeneous examples and classification results for Lie algebras
	3. Laplacian solitons
	4. Exact G_2-structures
	References

	8ECM-40
	1. Introduction
	2. Critical CT/AT issues
	2.1. Definition
	2.2. State of research
	2.3. Curricular CT/AT integration
	2.3.1 Rationale for integration
	2.3.2 Models of integration
	2.3.3 Educational implications


	3. Cultivating CT through data practice
	3.1. Preliminaries
	3.2. Data modeling using dashboards

	4. Closing remarks
	References

	8ECM-11
	1. Introduction
	1.1. Background
	1.2. The Rödl nibble
	1.3. Organization of the paper
	1.4. Basic definitions and notation

	2. Matchings and edge-colouring
	2.1. Early results
	2.2. Asymptotic improvements
	2.3. Pseudorandom hypergraph matchings

	3. Independent sets and vertex-colouring
	3.1. Independence number
	3.2. Chromatic number
	3.3. Hypergraph colourings

	4. The Erdős–Faber–Lovász conjecture
	4.1. Equivalent formulations
	4.2. Results
	4.3. Open problems
	4.4. Asymptotic list colouring version of the Berge–Füredi conjecture

	5. Proving the Erdős–Faber–Lovász conjecture
	5.1. Using n + 1 colours when edge-sizes are bounded
	5.1.1 Absorption
	5.1.2 Finding absorbable matchings
	5.1.3 Proof of Theorem 4.3

	5.2. Proving the EFL conjecture when all edges are large

	References

	8ECM-10
	1. Introduction
	2. Graphs and their spanning trees
	3. The appearance of topology
	4. Partial duals
	5. Ribbon graphs and their spanning quasi-trees
	6. Delta-matroids and quasi-tree structure
	7. Matrices and representability
	8. The reappearance of graphs
	9. Bringing it all together
	10. Now we can get started …
	References

	8ECM-24
	1. Introduction
	2. Sections with the same area
	3. Congruent and similar sections
	3.1. Fields of convex bodies
	3.2. The proof of Schneider's theorem and similar sections

	4. Affinely equivalent sections and the Banach conjecture
	4.1. The Banach conjecture
	4.2. Topology of Lie groups
	4.3. The case n = 5
	4.4. Affine bodies of revolution
	4.4.1 Sections of affine bodies of revolution

	4.5. The Banach conjecture, when n is odd and dim V\geq n + 2
	4.6. The complex Banach conjecture

	5. Convex bodies all whose orthogonal projections are equal
	5.1. Equal area, congruence, and affine equivalence
	5.2. The codimension 2 case for orthogonal projections

	References

	8ECM-26
	1. Introduction
	2. The Hilbertian approach with \sigma-gradient constraint in L^2
	3. The charges approach with a \sigma-gradient constraint in L^\infty
	4. Convergence to the local problem as σ↗1
	References

	8ECM-09
	1. Introduction
	2. Dissipative flows
	3. Robustness of global attractors
	4. Dissipative flows and populations dynamics
	5. Planar dissipative flows
	References

	8ECM-32
	1. Introduction
	2. Setup and main results
	3. Proofs
	3.1. Proof of Theorem 2.1
	3.2. Proof of Theorem 2.2

	References

	8ECM-29
	1. Introduction
	1.1. Multiplier ideal sheaf
	1.2. Optimal L^2 extension
	1.3. Siu's lemma
	1.4. Main content of the present paper

	2. A generalization of Siu's lemma with trivial multiplier ideal sheaves
	3. A generalization of Siu's lemma with nontrivial multiplier ideal sheaves
	4. A refined optimal L^2 extension theorem with singular metrics on Kähler manifolds
	5. Comparison of singular metrics on exceptional fibers of twisted relative pluricanonical bundles
	6. Subadditivity of generalized Kodaira–Iitaka dimensions
	7. A generalization of Siu's lemma with nontrivial multiplier ideal sheaves near a subvariety
	References

	Leere Seite
	Leere Seite



