European Congress
of Mathematics 8k

PORTOROZ

Portoroz, 20-26 June 2021

Edited by

Ademir Hujdurovic
Klavdija Kutnar
Dragan Marusic
Stefko Miklavi¢

Tomaz Pisanski
Primoz Sparl







EM
=N

PRESS






European Congress
of Mathematics

Portoroz, 20-26 June 2021

Edited by

Ademir Hujdurovic
Klavdija Kutnar
Dragan Marusic
Stefko Miklavi¢
Tomaz Pisanski
Primoz Sparl

ECM

2020
PORTORODZ

EM
=N

PRESS



Editors

Ademir Hujdurovi¢

Faculty of Mathematics, Natural Sciences
and Information Technologies

University of Primorska

Glagoljaska 8

6000 Koper, Slovenia

Email: ademir.hujdurovic@upr.si

Dragan Marusic¢

Faculty of Mathematics, Natural Sciences
and Information Technologies

University of Primorska

Glagoljaska 8

6000 Koper, Slovenia

Email: dragan.marusic@upr.si

Tomaz Pisanski

Faculty of Mathematics, Natural Sciences
and Information Technologies

University of Primorska

Glagoljaska 8

6000 Koper, Slovenia

Email: tomaz.pisanski@upr.si

2020 Mathematics Subject Classification: 00B25

Klavdija Kutnar

Faculty of Mathematics, Natural Sciences
and Information Technologies

University of Primorska

Glagoljaska 8

6000 Koper, Slovenia

Email: klavdija.kutnar@upr.si

Stefko Miklavi¢

Faculty of Mathematics, Natural Sciences
and Information Technologies

University of Primorska

Glagoljaska 8

6000 Koper, Slovenia

Email: stefko.miklavic@upr.si

Primoz Sparl

University of Ljubljana
Faculty of Education
Kardeljeva plos¢ad 16
1000 Ljubljana, Slovenia

Email: primoz.sparl@pef.uni-lj.si

ISBN 978-3-98547-051-8, elSBN 978-3-98547-551-3, DOI 10.4171/8ECM

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Published by EMS Press, an imprint of the

European Mathematical Society — EMS — Publishing House GmbH

Institut flr Mathematik
Technische Universitat Berlin
StraRRe des 17. Juni 136
10623 Berlin, Germany

https://ems.press

© 2023 EMS Press

Cover illustration based on a photo by Antonio Marano licensed under CC BY 2.0
Typesetting using the authors’ LaTeX sources: Ashry Abdalla, Roisin, Belgium

Printed in Germany
Printed on acid free paper



Preface

The Eighth European Congress of Mathematics (SECM) was special in many ways. It
was the first time that an ECM was entrusted to Slovenia, a relatively small European
country of two million inhabitants. In addition, in contrast to previous ECMs that were
organized in major cities, this ECM was planned to take place in a small town, Piran, on
the shore of the Adriatic coast. Although the municipality of Piran has less than twenty
thousand inhabitants, it has a suitable congress infrastructure. Local organization was
focused in the small but ambitious University of Primorska in the nearby town of Koper.
The main challenge was to break the stereotypes about Slovenia and its mathematics,
not only abroad but also locally. “We are too small for such a big project. Forget it!”
said a leading Slovenian mathematician. After winning the bid for the 8ECM, the tide
changed and all Slovenian institutions practicing mathematics enthusiastically offered
their support for the success of the congress.

The second challenge was to increase interest in the congress among the general
international mathematical community. Looking at the attendance details of the past
seven ECMs, we noticed that the number of participants never exceeded the partici-
pation at the first ECM in Paris, which had about 1,500 attendees. Only in the seventh
ECM in Berlin, one of the key centers of European mathematics, did the trend turn
and the participation surpassed 1,000 attendees. Before we decided to put in a bid
for hosting the congress, we wanted to understand why this event, one of the most
important international mathematical events, does not attract more participants. By
informally interviewing various mathematicians from different countries, including
some of the organizers of previous congresses, we identified certain issues, three of
which are mentioned below.

First, even the first-rate mathematicians who were actively involved in previous
congresses as speakers, prize winners, scientific or prize committee members, etc., in
general, rarely find time to attend later congresses. Similarly, many officers of the Euro-
pean Mathematical Society (EMS), belonging to various EMS committees, consider
their participation at the ECM of lesser importance. By not being a strong positive
role model, they also fail to reach out to the younger generations of European and
world mathematicians. For instance, the absence of members of scientific committees
who select plenary and invited speakers, and similarly members of prize committees,
unfortunately, sends a very negative message not only to the speakers and prize win-
ners themselves but also to the general mathematical community, that it is prestige
and not mathematical content that counts at the congress. This is a challenge that the
leadership of the EMS should address for future congresses.
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Second, many excellent mathematicians tend to avoid worldwide and European
mathematics congresses. They find these meetings too big and too broad; they prefer
smaller, specialized meetings, which they find much more attractive and productive.
We addressed this challenge by increasing the weight of the bottom-up approach,
expanding the number of minisymposia and minisymposia speakers. In addition, we
allowed each minisymposium to select a special speaker and gave these speakers the
opportunity to present their contribution within these proceedings.

The third issue, and by far the most damaging, was beyond our control. The out-
break of the pandemic in the final stages of our preparations at the end of 2019 forced
us to rapidly adapt to the developing situation. The numbers of infections were rising
steeply, worldwide. By March of 2020, it became clear that our original plan needed
drastic changes. All decisions were made hand in hand with the executive committee
of the EMS. The option of canceling the congress was never on the table. Postponing
the ECM for a couple of months seemed too risky. Eventually, we decided to post-
pone it for a year. By then, the tools for online conferences were sufficiently developed
and most mathematicians had adjusted to giving their presentations via the Internet.
Although we were prepared for a live congress, we knew very well that several coun-
tries still prohibited their scientists from traveling abroad at that time. This is why we
opted for a hybrid approach.

Structure of the SECM

There were 62 minisymposia with 902 talks, and 95 talks were delivered in special
sessions.

Plenary Speakers. Peter Biithlmann, Xavier Cabré, Franc Forstneri¢, Alice Guionnet,
Gitta Kutyniok, Monika Ludwig, Jdnos Pach, Alfio Quarteroni, Karl-Theodor Sturm,
Umberto Zannier.

Invited Speakers. Andrej Bauer, Yves Benoist, Robert Berman, Martin Burger, Albert
Cohen, Marius Crainic, Mirjam Diir, Alison Etheridge, Rupert Frank, Aleksey Kos-
tenko, Emmanuel Kowalski, Daniel Kressner, Daniela Kiihn, Eugenia Malinnikova,
Domenico Marinucci, Eva Miranda, Richard Nickl, Burak Ozbagm, [laria Perugia,
Gabriel Peyré, Yuri Prokhorov, Alexander A. Razborov, Aner Shalev, gpela gpenko,
Laszl6 Sz€kelyhidi, Anna-Karin Tornberg, Nick Trefethen (FRS), Stuart White.

EMS Prize Lectures. Karim Adiprasito, Ana Caraiani, Alexander Efimov, Kaisa
Matomiki, Joaquim Serra, Simion Filip, Alexandr Logunov, Phan Thanh Nam, Jack
Thorne, Maryna Viazovska.

Abel Lecture. Laszl6 Lovasz.

Felix Klein Prize Lecture. Arnulf Jentzen.
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Otto Neugebauer Prize Lecture. Karine Chemla.
Hirzebruch Lecture. Martin Hairer.

Public Lectures. Bojan Mohar, Andrei Okounkov, Stanislav Smirnov, Kathryn Hess,
Robin Wilson.

Scholarships were awarded following the regulations of the open call.! Out of 274
applications from 64 countries around the world, 105 scholarships were awarded.

The internal satellite event “Optimization in Insurance” was held in PortoroZ on
23 June 2021.2 Due to COVID-19, five of the fifteen external satellite events were
canceled or postponed.

Four Open Panels and Society Meetings

A highlight of the 8ECM was an open live interview with Jean-Pierre Bourguignon,
one of the most influential contemporary European mathematicians who, among other
things, served as the second President of the EMS and as President of the European
Research Council and left a huge impact on the prestigious Institut des Hautes Etudes
Scientifiques as its Director for 19 years. The interview was conducted by Giinter
Ziegler, a prominent mathematician who currently serves as the President of the Freie
Universitit Berlin. The event was chaired by Maria J. Esteban, the Chair of the SECM
Scientific Committee, and was broadcast live with open access. The interview took
place on the last day of the congress, on Friday, 25 June 2021, and was followed by
the closing ceremony.

There were eight accompanying events, a career day, and a student competition
“Best of SECM”. There were sixteen 8ECM exhibitors. There were 1,771 participants
who completed registration. Participants came from seventy-seven countries, and there
were nineteen countries with more than twenty registered participants: Italy, Slovenia,
Germany, UK, Spain, USA, France, Russia, Poland, Czech Republic, Croatia, Hun-
gary, Austria, Ukraine, Switzerland, China, Canada, Belgium, and Romania. There
were 1,058 contributions in total.

These proceedings covered forty presentations coming from plenary speakers (7),
invited speakers (14), EMS prize winners (6), public lecturers (2), and minisymposia
keynote speakers (11).

The 8ECM program was broadcast using the Zoom Webinar platform: one Zoom
Webinar license for 3,000 participants (used for plenary talks, public talks, the opening,
the interview with Jean-Pierre Bourguignon, and the closing ceremony), eight Zoom

1See https://www.8ecm.si/about-8ecm/8ecm-scholarships.
2See https://conferences.famnit.upr.si/event/20.
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Webinar licenses for 1,000 participants (used for invited talks and prize talks), and
forty-two Zoom Webinar licenses for 500 participants (used for minisymposia, round
tables, exhibitors, etc.).

We certainly hope that the next ECMs will be held live, perhaps with certain key
talks and other events broadcast over the Internet, and all talks recorded for posterity.
We also hope that the next ECMs will be attended more widely by members of EMS
committees and also by members of ECM committees. The bottom-up approach could
be significantly extended through engagement by national mathematical societies.

Tomaz Pisanski, SECM Organizing Committee Chair

Dragan Marusi¢, 8ECM Local Scientific Committee Chair
Klavdija Kutnar, SECM Organizing Committee Deputy Chair
Ademir Hujdurovi¢, 8ECM Organizing Committee Member
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Regularity of stable solutions to reaction-diffusion elliptic
equations

Xavier Cabré

Abstract. The boundedness of stable solutions to semilinear (or reaction-diffusion) elliptic
PDEs has been studied since the 1970s. In dimensions 10 and higher, there exist stable energy
solutions which are unbounded (or singular). This note describes, for non-expert readers, a
recent work in collaboration with Figalli, Ros-Oton, and Serra, where we prove that stable solu-
tions are smooth up to the optimal dimension 9. This solves an open problem posed by Brezis
in the mid-nineties concerning the regularity of extremal solutions to Gelfand-type problems.
We also describe, briefly, a famous analogue question in differential geometry: the regularity of
stable minimal surfaces.

1. Hilbert’s 19th problem and the principle of least action

In many physical phenomena and geometric problems, observable states try to min-
imize a certain functional. When we describe the possible states by functions u of
one or several real variables, the functional is a real valued function A acting on such
functions. In classical mechanics, A is called the action and is given by the integral
of a Lagrangian. A simple example is the motion of a particle under gravitation, in
which its position is given by ¥ = u(x) (where x = ¢ € R is time) and the action is
the difference of kinetic and potential energies. In geometry, two important examples
are geodesics (curves in a Riemannian manifold that are critical points of the length
functional) and minimal surfaces (hypersurfaces of Euclidean space that are critical
points of the area functional).

Hilbert’s 19th problem asks whether minimizers of elliptic functionals are always
analytic. When the functional is given by A(u) = fQ L(Vu(x))dx for some domain
Q C R” and convex function L : R" — R (here u : Q2 C R” — R), the problem was
solved independently in the late 1950s by Ennio De Giorgi and John Forbes Nash, Jr.

2020 Mathematics Subject Classification. Primary 35B65; Secondary 35B35.
Keywords. Semilinear elliptic equations, stable solutions, extremal solutions, regularity,
a priori estimates.
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Our work [5] takes up on the same question for the Lagrangian L(Vu, u) =
%Wu |2 — F(u), which depends also on the variable u.

The principle of least action in mechanics states that observable states should
be not only critical points of the action but absolute minimizers of it. In the previ-
ous setting, when L = L(Vu) is a convex function defined in R”, we have that A4 is
convex. As a consequence, any critical point of A (if it exists) is an absolute mini-
mizer. Thus, the principle of least action is, here, fulfilled. However, the principle is
violated in some real life situations, described next, in which we observe states that
are only local minimizers (minimizers among small perturbations), even in situations
when an absolute minimizer exists. Still, the observed state being a local minimizer,
it is therefore a stable state, in the sense that the second variation of the functional is
nonnegative definite when computed at such state.

In these minimization problems, the competitors among which one looks for criti-
cal points are functions, or surfaces, with prescribed given boundary values—the end
points of the trajectory of a mechanical particle, or of a geodesic, or a given wire
from which soap films or (minimal) surfaces are spanned. The key point is that the
functional in many of these variational problems is not convex. Thus, it may admit
critical points which are not absolute minimizers (but are only local minimizers) and
even unstable critical points (which, consequently, are not even local minimizers).

2. Stable minimal surfaces

An instructive example is that of catenoids: a soap film or minimal surface formed
between two coaxial parallel circular rings. In the nice paper “In situ observation
of a soap-film catenoid—a simple educational physics experiment” by Ito and Sato
[15], catenoids are experimentally produced in a lab and videotaped while the dis-
tance between the two circular wires is continuously increased. Note that, besides
catenoids, there always exists another critical point of the area: the two flat disks
spanned by the wires. For each small enough distance, two catenoids exist and the
one with a thicker neck is an absolute minimizer of the area (clearly the disks have
much larger area). As the wires separate, there is a distance /¢ at which both states
(the thick-neck catenoid and the two disks) have the same area. Right after it, the two
disks become the absolute minimizer, while the catenoid is only a local minimizer.
Still, for an interval of distances & > hg the videotaped surface is the catenoid—not
the absolute minimizing disks. Such catenoid is a stable minimal surface—stability
understood as defined in the previous section. Up to these distances, the unobserved
thinner neck catenoid always existed and was an unstable minimal surface (this fits
with the idea that a functional with two local minima should have a third unstable
critical point). Finally, there is a second larger distance /. at which the local mini-
mizer (the thick catenoid) and the unstable critical point (the thin one) get together to
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produce an inflection point. Right after it, the two-disks is the only critical point. In
the experiment [15], the unstable catenoid is photographed for a short instant, right
before the distance /.. Quickly after such instant, the thin neck collapses and the
catenoid film succeeds to transform itself into the two disks.

The regularity theory of minimal surfaces has been the source of many important
progresses in the area of PDEs. In the 1960s the Italian school proved that the Simons
cone

XT Xy = X+t XD,
is an absolute minimizer of area (for its own boundary values in any ball) if 2m > 8,
while it is not even stable in dimensions 2, 4, and 6.' Thus, minimizing minimal sur-
faces of dimension n may have (conical) singularities when n > 7. At the same time, a
sequence of outstanding contributions by different authors (J. Simons’ being a promi-
nent one) established that n-dimensional (absolute) minimizing minimal surfaces in
R”*1 are always smooth when n < 6.

It is a long-standing open problem to extend this regularity result to the larger
class of stable minimal surfaces. It is only known to be true for surfaces of dimension
2,3, or 4. See [7, 8] for more details on these issues.

3. Stable solutions to reaction-diffusion elliptic equations

The paper [5] takes on the analogue question (the regularity of stable solutions)
for equations of the form —Au = f(u), where A is the Laplacian. They are called
semilinear or reaction-diffusion elliptic equations and arise in many physical and bio-
logical situations. In the following combustion problem, a similar phenomenon to
that of catenoids occurs. It concerns the thermal self-ignition of a chemically active
mixture of gases in a container. The model was introduced by Frank-Kamenetskii in
the 1930s but became popular within the mathematical community when Barenblatt
wrote Chapter 15 of the volume [12], edited by Gelfand in 1963. Here x € Q C R”
denotes points in the container Q2 and ¥ = u(x) is the temperature at the point. The
action functional is the difference of kinetic and potential energies:

A(u) = /Q (%’Vu(xﬂ2 - F(u(x))) dx,

where F : R — R is a given function, which Barenblatt chose to be F(u) = Ae¥,
with A a positive constant, from Arrhenius law in chemical kinetics. For convenience,

IThis different behavior can be roughly understood noticing that the Jacobian for area in
spherical coordinates, r2Mm=2dr becomes smaller at the origin as the dimension 2m increases.
Note that for 2m = 2, the minimizer clearly avoids the origin: for the boundary values of the
cone, it is given by two parallel lines (and not by the “cross” passing through the origin).
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we will impose vanishing boundary conditions: the temperature is kept at ¥ = 0 on
the boundary 9€2. Making a first variation u + ev and integrating by parts, one easily
sees that critical points of A satisfy the reaction-diffusion equation

—Au= f(u) inQ CR", 3.1)

where f = F’.In the case (among others) of the so-called Gelfand problem, —Au =
Ae™, the situation is similar to the one of catenoids. For a certain range A € (0, A*)
of parameters, there exists a stable solution uj—that is, a solution at which the
functional A has a nonnegative definite second variation. Such stable solution is
not an absolute minimizer since A is unbounded by below (note that the poten-
tial density F(u) = e* grows faster at infinity than the quadratic kinetic density
|Vu(x)|?). For some parameters A € (0, A*), there might also exist (this will depend
on the container ) unstable solutions of the same problem. For A = A*, the limit of
the functions u, is an L! weak stable solution, called the extremal solution. When
A > A%, no solution exists—in the same way that catenoids did not exist for distances
h between the wires larger than /..
To better understand the problem, let us consider the nonlinear heat equation

v, — Av = f(v), (3.2)

where v = v(x,t) and ¢ is time. Now, a stable solution u = u(x) of (3.1) can be under-
stood as a stationary solution of (3.2) which is stable in the sense of Lyapunov—note
that a simple computation shows that the action functional A(v(:,?)) is non-increasing
in the time ¢. The problem is nonlinear due to the sources of heat, f(v(x,1t)) or
f(u(x)): the production of heat depends nonlinearly on the actual temperature. As
described in [13, 14], equation (3.2) describes the evolution of an initially uniform
temperature v(-, 0) = 0 which diffuses in space and increases in the container due
to the heat release given by the reaction term f(v)—note that in Gelfand’s problem
the initial heat source A (0) = Ae® = 1 is already positive. The parameters A for
which there exists a stable solution of (3.1) correspond to ignition failure (the reac-
tive component undergoes partial oxidation and results in establishing a stationary
temperature profile equal to the stable solution). Instead, A > A* (when there exists
no stationary solution) means successful auto-ignition in the combustion process.
Since we will turn now to regularity issues, let us recall that Fourier invented his
omnipresent Fourier series to understand the linear heat equation. On the other hand,
the regularity theory for the stationary linear Poisson equation —Au = g(x) is at
the center of PDE theory and also propitiated the development of many tools, such
as the theory of singular integrals in harmonic analysis. In particular, the Lebesgue-
integrability requirements for g = g(x) which are needed to guarantee the bound-
edness of the potential function u are well known. This is relevant since, for our
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nonlinear equation (3.1), —Au = f(u), the obstruction for regularity is the possibil-
ity that ¥ becomes unbounded somewhere, that is, ¥ blows-up at some points (and
hence u is singular). As we will see next, this singular behavior can be produced by
the strength of some reaction terms f(u). A technical detail for experts is that, since
our problem is variational, in what follows we consider only (singular) solutions for
which each term of the action functional is integrable (that is, energy solutions).

When n > 3, Q = B; is the unit ball,

u=1log—, [fu)=2n-2)e",

x|
then a simple computation shows that we are in the presence of a singular solution of
(3.1) vanishing on dB;. As the Simons cone in minimal surfaces theory, this explicit
solution turns out to be stable in high dimensions, precisely when n > 10. On the
other hand, in the 1970s Crandall and Rabinowitz [9] established that if

fw)=¢e" or fu)=0+u)? withp>1,

then stable solutions in any smooth bounded domain 2 are bounded (and hence
smooth and analytic, by classical elliptic regularity theory) when n < 9. These results
were the main reason for Haim Brezis to raise the following question in the 1990s
(which we cite almost literally from a later reference).

Brezis ([1, Open problem 1]). Is there something “sacred” about dimension 10?
More precisely, is it possible in “low” dimensions to construct some f (and some
Q) for which a singular stable solution exists? Alternatively, can one prove in “low”
dimensions that every stable solution is smooth for every [ and every Q?

Other open questions on stable solutions were posed by Brezis and Vazquez [2].

The last twenty five years have produced a large literature on Gelfand-type prob-
lems. See the monograph [10] for an extensive list of results and references. For a
certain type of nonlinearities f, some of these works are related to micro-electro-
mechanical systems (MEMS); see [11].

The main developments proving that stable solutions to (3.1) are smooth (no mat-
ter what the nonlinearity f is) were made

e by Nedev [16] in 2000, when n < 3 (and f is convex);

e by Cabré and Capella [4] in 2006, when €2 = B; (u is radially symmetric) and
n<go

e by Cabré [3] in 2010, when n < 4 (and €2 is convex).

Note that the 2006 result in the radially symmetric case, [4], accomplished the optimal
dimension n < 9 for every nonlinearity f. This gave hope for the result to be true
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also in the general nonradial case, though no certainty was assured—note that Brezis’
statement above leaves both the affirmative and negative answers as possible ones.
Since 2010, after [3], the regularity result was only known up to dimension n = 4.
Two attempts in higher dimensions (recorded in [5]) gave only very partial answers.

The work [5] finally solves the open problem, by establishing the regularity of
stable solutions to (3.1) in the interior of any open set 2 in the optimal dimensions
n < 9 under the only requirement for the nonlinearity f to be nonnegative. Fur-
thermore, adding the vanishing boundary condition ¥ = 0 on dS2, the article proves
regularity up to the boundary when € is of class C2 and n < 9, assuming now f to
be nonnegative, nondecreasing, and convex. Both results come along with new uni-
versal Holder-continuity estimates which have a very weak norm (the L!-norm) of
the solution on their right-hand sides. They read, respectively, as

lullcas, ) = Cllullis). e = Callull @),

where @ > 0 and C are dimensional constants, while Cg depends only on 2. These
estimates are rather surprising (because of their universality) for a nonlinear problem,
specially since they make no reference to the reaction nonlinearity f. The stability of
the solution u is crucial for their validity. For the expert reader, [5] also establishes
another open problem from [2]: an a priori H! = W12 estimate for stable solutions
in all dimensions 7.

Whether the nonnegativeness of f is a needed requirement for interior regularity
remains as an open question. It is only known to be unnecessary for n < 4, as well as
for n < 9 in the radial case.

The proofs in the article are too technical to be described here. Let us only say
that a key point is to use the stability property under two different types of small
perturbations of the solution u (one in the radial direction, the other in the normal
direction to the level sets):

u(x + elx] @2 (x)x), u(x + en(x) Vu(x) )

|Vu(x)|

where ¢ and 7 are cut-off functions.

After [5], an analogue result for equations involving the p-Laplacian has been
proved by Cabré, Miraglio, and Sanchén [6]. It is optimal in terms of dimensions
for p > 2, but not for p < 2—this case remains as an open problem. On the other
hand, for the recently very active area of fractional Laplacians, an optimal result for
(—A)Su = f(u) is largely open—even in the radial case. The optimal dimensions
for regularity have only been accomplished in a 2014 work of Ros-Oton [17] for the
Gelfand nonlinearity f(u#) = Ae* in symmetric convex domains—but for any fraction
s € (0, 1) of the Laplacian.
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Minimal surfaces in Euclidean spaces by way of complex
analysis

Franc Forstneric

Abstract. This is an expanded version of my plenary lecture at the 8th European Congress of
Mathematics in PortoroZ on 23 June 2021. The main part of the paper is a survey of recent
applications of complex-analytic techniques to the theory of conformal minimal surfaces in
Euclidean spaces. New results concern approximation, interpolation, and general position prop-
erties of minimal surfaces, existence of minimal surfaces with a given Gauss map, and the
Calabi—Yau problem for minimal surfaces. To be accessible to a wide audience, the article
includes a self-contained elementary introduction to the theory of minimal surfaces in Euclidean
spaces.

1. Minimal surfaces: A link between mathematics, science,
engineering, and art

Minimal surfaces are among the most beautiful and aesthetically pleasing geometric
objects. These are surfaces in space which locally minimize area, in the sense that
any small enough piece of the surface has the smallest area among surfaces with the
same boundary. From the physical viewpoint, these are surfaces minimizing tension,
hence in equilibrium position. They appear in a variety of applications to engineering,
biology, architecture, and others.

The subject has a luminous history, going back to 1744 when Leonhard Euler
[32] showed that pieces of the surface now called catenoid (see Example 2.7) have
smallest area among all surfaces of rotation in the 3-dimensional Euclidean space R3.
The catenoid derives it name from catenary, the curve that an idealized hanging chain
assumes under its own weight when supported only at its ends. The model catenary is
the graph of the hyperbolic cosine function y = cosh x, and a catenoid is obtained by
rotating this curve around the x-axis in the (x, y, z)-space. Topologically, a catenoid
is a cylinder, and as a conformal surface it is the puncture plane C* = C \ {0}. From

2020 Mathematics Subject Classification. Primary 53A10; Secondary 32H02.
Keywords. Minimal surface, conformal harmonic map, Calabi—Yau problem.
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the mathematical viewpoint, the catenoid is one of the most paradigmatic examples
of minimal surfaces, and it appears in several important classification results and in
proofs of major theorems.

The subject of minimal surfaces was put on solid footing by Joseph—Louis La-
grange who developed the calculus of variations during 1760-61, thereby reducing
the problem of finding stationary points of functionals to a second-order partial dif-
ferential equation, now called Lagrange’s equation. His work was published in 1762
by Accademia delle scienze di Torino [51,52] and is available in his collected works
[53]. In [51], Lagrange applied his new method to a variety of problems in physics,
dynamics, and geometry. In particular, he derived the equation of minimal graphs.
The term minimal surface has since been used for a surface which is a stationary
point of the area functional. The question whether a domain in a minimal surface
truly minimizes the area among nearby surfaces with the same boundary can be ana-
lyzed by considering the second variation of area. It was later shown that a minimal
graph in R3 over a compact convex domain in R? is an absolute area minimizer, and
hence small enough pieces of any minimal surface are area minimizers.

In 1776, Jean Baptiste Meusnier [66] discovered that domains in a surface in R3
are minimal in the sense of Lagrange if and only if the surface has vanishing mean
curvature at every point. He also described the second known minimal surface, the
helicoid; see Example 2.8. It is obtained by a line in 3-space rotating at a constant rate
as it moves at a constant speed along the axis of rotation, which is perpendicular to the
rotating line. Helicoid is the geometric shape of a device known as Archimedes’ screw
(or the water screw, screw pump, or Egyptian screw), named after Greek philosopher
and mathematician Archimedes who described it around 234 BC on the occasion of
his visit to Egypt. There is evidence that this device had been used in ancient Egypt
much earlier. The helicoid is sometimes called “double spiral staircase”—each of the
two half-lines sweeps out a spiral staircase, and these two staircases only meet along
the axis of rotation. Therefore, its physical model is a convenient device for letting
people ascend and descend a staircase without the two crowds meeting in-between.
From a different field, DNA molecules assume the shape of a helicoid.

Topologically and conformally the helicoid is the plane. Its name derives from
helix—for every point on the helicoid, there is a helix (a spiral curve) contained in
the helicoid which passes through that point. The helicoid plays a major role in the
classification of properly embedded minimal surfaces in R3; see the survey paper [28]
by Tobias H. Colding and William P. Minicozzi.

Minimal surfaces appear naturally in the physical world. Laws of physics imply
that a soap film spanned by a given frame (i.e., a closed Jordan curve) is a minimal
surface. The reason is that this shape minimizes the surface tension and puts it in equi-
librium position. Soap films, bubbles, and surface tension were studied by the Belgian
physicist Joseph Plateau in the 19th century. Based on his experiments, Karl Weier-
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strass formulated in 1873 the Plateau problem, conjecturing that any closed Jordan
curve in R3 spans a minimal surface (in fact, a minimal disc). This was confirmed
by Tibor Radé [71,72] (1930) and Jesse Douglas [31] (1931). For his work on the
Plateau problem, Douglas received one of the first two Fields Medals at the Interna-
tional Congress of Mathematicians in Oslo in 1936. Half a century later, it was shown
that the disc of smallest area with given boundary curve (the Douglas—Morrey solu-
tion of the Plateau problem) has no branch points; see the monograph by Anthony
Tromba [77]. Furthermore, if the curve lies in the boundary of a convex domain in
R3, then the solution is embedded according to William H. Meeks and Shing Tung
Yau [63,64].

Minimal surfaces are also studied in more general Riemannian manifolds of di-
mension at least three. Holomorphic curves in complex Euclidean spaces C” for
n > 1, or in any complex Ké#hler manifold of complex dimension at least two, are
special but important examples of minimal surfaces. As pointed out by Colding and
Minicozzi [28], there are several fields where minimal surfaces are actively used
in understanding physical phenomena. In particular, they come up in the study of
compound polymers, protein folding, etc. They also play a prominent role in art,
especially in architecture.

The connection between minimal surfaces in Euclidean spaces and complex anal-
ysis has been known since mid-19th century. The basic fact is that a conformal
immersion X : M — R” from a Riemann surface M parameterizes a minimal surface
if and only if the map X is harmonic (see Theorem 2.1); equivalently, the complex
derivative X /dz in any local holomorphic coordinate z on M is holomorphic. Fur-
thermore, the immersion X is conformal if and only if dX /dz assumes values in the
null quadric A C C”, given by the equation z7 + z3 +--- + z2 = 0 (see (2.23)), and
0X/0dz # 0if X is an immersion. This leads to the Enneper—Weierstrass representa-
tion of any conformally immersed minimal surface M — R” as the real part of the
integral of a holomorphic map f : M — A, = A\ {0} C C”" (see Theorem 2.6). The
period vanishing conditions on f along closed curves in M ensure that the integral
is well defined. The formula is most concrete in dimension n = 3 (see (2.25)) due to
an explicit 2-sheeted parameterization of the null quadric A C C3 by C2.

This connection between minimal surfaces and holomorphic maps was used by
Bernhard Riemann around 1860 in his construction of properly embedded minimal
surfaces in R3, now called Riemann’s minimal examples [73] (see the paper [60]
by William H. Meeks and Joaquin Pérez), and in numerous further works by other
authors. It was popularized again in modern times by Robert Osserman [69].

Despite the long and illustrious history of the subject, the author in collaboration
with Antonio Alarcén, Francisco J. Lopez, and others obtained in the last decade a
string of new results by exploiting the Enneper—Weierstrass representation. The main
point in our approach is that the punctured null quadric A is a complex homoge-
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neous manifold, hence an Oka manifold, a notion introduced in [34] and treated in
[35, Chapter 5]. This implies that holomorphic maps from any open Riemann surface
(and, more generally, from any Stein manifold, that is, a closed complex submanifold
of a complex Euclidean space CV) to A satisfy the Runge—Mergelyan approxima-
tion theorem and the Weierstrass interpolation theorem in the absence of topological
obstructions. Together with methods of convexity theory, this gave rise to many new
constructions of conformal minimal surfaces with interesting properties; see Theo-
rem 3.1. By using parametric versions of these results, it was possible to determine
the rough topological shape (i.e., the weak or strong homotopy type) of the space of
nonflat conformal minimal immersions from any given open Riemann surface into
R" (see Theorem 3.2). It was also shown that every natural candidate is the Gauss
map of a conformal minimal surface in R” (see Theorem 3.3).

Another complex analytic technique, which has recently had a major impact on
the field, is an adaptation of the classical Riemann—Hilbert boundary value problem
to conformal minimal surfaces and holomorphic null curves in Euclidean spaces. This
led to an essentially optimal solution of the Calabi—Yau problem for minimal surfaces,
originating in conjectures of Eugenio Calabi from 1965; see Theorems 3.5 and 3.6.
This technique was also used in the construction of complete proper minimal surfaces
in minimally convex domains of R” (see [16, Chapter 8]).

The recent results presented in Section 3 are carefully explained in the monograph
[16] published in March 2021. The corresponding developments on non-orientable
minimal surfaces are described in the AMS Memoir [15] from 2020. It is needless to
say that both of these publications contain many other results not mentioned here.

In 2021, the author and David Kalaj [38] obtained an optimal Schwarz—Pick
lemma for conformal minimal discs in the ball of R” and introduced the notion of
hyperbolicity of domains in R”, in analogy with Kobayashi hyperbolicity of complex
manifolds. This new topic is currently being developed, and it is too early to include
it here.

2. An elementary introduction to minimal surfaces

To make the article accessible to a wide audience including advanced undergraduate
students of Mathematics, we present in this section a self-contained introduction to
the theory of minimal surfaces in Euclidean spaces. We assume familiarity with ele-
mentary calculus, topology, and rudiments of complex analysis; however, no a priori
knowledge of differential geometry is expected. We shall use the fact that metric-
related quantities such as length, area, and curvature of curves and surfaces in a
Euclidean space R” are invariant under translations and orthogonal maps of R”; these
are the isometries of the Euclidean metric, also called rigid motions. For simplic-
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ity of presentation, we focus on minimal surfaces parameterized by plane domains,
although the same methods apply on an arbitrary open Riemann surface. More com-
plete treatment is available in a number of texts; see [16,20,26,30,55,58,59, 68, 69],
among others. For the theory of non-orientable minimal surfaces, see [15].

2.1. Conformal maps and conformal structures on surfaces

From the physical viewpoint, the most natural parameterization of a minimal surface
is by a conformal map (from a plane domain, or a conformal surface). A confor-
mal parameterization minimizes the total energy of the map and makes the tension
uniformly spread over the surfaces. We give a brief introduction to the subject of
conformal maps, referring to [16, Sections 1.8—1.9] for more details and further ref-
erences.

Let D be a domain in R? with coordinates (1,v). A€  map X : D — R” (n >2)
is an immersion if the partial derivatives X,, = 0X/du and X, = 0X/0v are linearly
independent at every point of D. An immersion is said to be conformal if its differen-
tial dX, at any point p € D preserves angles. It is elementary to see (cf. [16, Lemma
1.8.4]) that an immersion X is conformal if and only if

| Xul = |Xy| and X, -X, =0. 2.1)

Here, x - y denotes the Euclidean inner product between vectors X,y € R” and |x| =
/XX is the Euclidean length of x. A smooth map X : D — R” (of class €', not
necessarily an immersion) is called conformal if (2.1) holds at each point. It clearly
follows that X has rank zero at non-immersion points.

Let M be a topological surface. A conformal structure on M is given by an atlas

U = {(U;, ¢i) }ier with charts ¢; : U; = V; € R? whose transition maps
$ij = io¢; ' (Ui NUj) — ¢ (Ui N Uj)

are conformal diffeomorphisms of plane domains. Identifying R? with the com-
plex plane C, each map ¢;,; is biholomorphic or anti-biholomorphic. A surface M
endowed with a conformal structure (more precisely, with an equivalence class of
conformal structures) is a conformal surface. If M is orientable, then by choosing
the charts ¢; in a conformal atlas to preserve orientation, the transition maps ¢;_ ;
are biholomorphic; hence, U is a complex atlas and (M, U) is a Riemann surface.
A connected non-orientable conformal surface M admits a two-sheeted conformal
covering M—>M by a Riemann surface M.

Assume now that g is a Riemannian metric on a smooth surface M, i.e., a
smoothly varying family of scalar products g, on tangent spaces T, M, p € M. In
any local coordinate (1, v) on M, the metric g has an expression

g = Edu®>+2F dudv + G dv?,
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where the coefficient functions E, F, G satisfy EG — F? > 0. A local chart (1, v) is
said to be isothermal for g if the above expression simplifies to

g = Au,v)(du® + dv®) = Adz|?, z=u+1iv

for some positive function A. An important result, first observed by Carl Friedrich
Gauss, is that in a neighborhood of any point of M there exist smooth isothermal
coordinates. One way to obtain such coordinates is from solutions of the classical
Beltrami equation. We refer to [16, Sections 1.8—1.9] for a more precise statement
and references. Since the transition map between any pair of isothermal charts is
a conformal diffeomorphism, we thus obtain a conformal atlas on M consisting of
isothermal charts. The upshot is that every Riemannian metric on a smooth surface
determines a conformal structure. Furthermore, a pair of Riemannian metrics g, g
on M determine the same conformal structure if and only if ¢ = ug for a smooth
positive function p on M.
Denote by x = (x1, ..., X) the Euclidean coordinates on R” and by

ds* = dx3 + - +dx;
the Euclidean metric. If X = (X1,...,X,) : M — R” is a smooth immersion, then
g = X*(ds®) = (dX1)* + - + (dXn)?

is a Riemannian metric on M, called the first fundamental form. By the definition of
g, the map X : (M, g) — (R", ds?) is an isometric immersion. By what has been
said, g determines a conformal structure on M (assuming now that M is a surface),
and in this structure the map X is a conformal immersion. More precisely, X (u, v) is
conformal in any isothermal local coordinate (1, v) on M.

This shows that any immersion X : M — R” from a smooth surface determines
a unique conformal structure on M which makes X a conformal immersion. If in
addition M is oriented, we get the structure of a Riemann surface. Results of confor-
mality theory imply that if D is a domain in R? and X : D — R” is an immersion,
then there is a diffeomorphism ¢ : D’ — D from another domain D’ C R? such that
the immersion X o ¢ : D’ — R”" is conformal. In particular, if D is the disc, then we
may take D’ = D.

The same arguments and conclusions apply to immersions of a smooth surface
M into an arbitrary Riemannian manifold (N, g) in place of (R”, ds?).

2.2. First variation of area and energy

Assume that D C R%u v) is a bounded domain with piecewise smooth boundary and

X : D — R”" is a smooth immersion. Precomposing X with a diffeomorphism from
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another such domain in R?, we may assume that X is conformal; see (2.1). We con-
sider the area functional

Area(X)z/ |Xuva|dudv=/ VIXul?21 X2 = | Xu - Xo|2dudv  (2.2)
D D

and the Dirichlet energy functional

1 1
D(X) = E/D|V)(|2alu dv = 5/0 (1Xul?® + | Xy %) du dv. (2.3)

We have elementary inequalities
1 2
Xy ” — Ix-y1? < IxPlyl]? < Z(IXI2 +1y?)°. xyeR",

which are equalities if and only if X, y is a conformal frame, i.e., |x| = |y| and x -y =
0. Applying this to the vectors x = X,, and y = X, gives Area(X) < D(X), with
equality if and only if X is conformal. Hence, these two functionals have the same
critical points on the set of conformal immersions.

It is elementary to find critical points of these functionals. The calculation is sim-
pler for the Dirichlet functional £, but the expression for the first variation is the
same for both functionals at a conformal map X. Assuming that G : D — R” is a
smooth map vanishing on oD, the first variation of O at X in direction G equals

d
< i)(X+tG)=/ (Xu - Gy + Xy - Gy) dudv:—/ AX -G dudv, (2.4)
dt lr=0 D D

where AX = X, + Xyy is the Laplace of X. (We integrated by parts and used
Glpp = 0.) The right-hand side of (2.4) vanishes for all G if and only if AX = 0.
This proves the following theorem.

Theorem 2.1. Let D be a relatively compact domain in R? with piecewise smooth
boundary. A smooth conformal immersion X : D — R"™ (n > 3) is a stationary point
of the area functional (2.2) if and only if X is harmonic: AX = 0.

For completeness, we also calculate the first variation of area at a conformal
immersion X. Let G : D — R” be as above. Consider the expression under the inte-
gral (2.2) for the map X; = X + tG, ¢t € R. Taking into account (2.1), we obtain

| X + 1Gul? | Xy 4+ 1Gy|* = | Xu|* + 21 (Xu - Gy + Xy - Gy) | Xu* + O(17),
(X +1Gy) - (Xy +1Gy)|* = 0(t?).

It follows that
d

dl‘t=0
= 2|Xu|2(Xu : Gu + Xv : Gv)

(1Xu + 1Gu 2| Xy + 1Gy* = |(Xu +1G) - (Xy +1Gy)[?)
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and therefore

d
— Area(X+tG)=/(Xu-Gu+Xv-Gv)dudv=—/ AX -G dudv.
dt =0 D D

(We integrated by parts and used that G|,p = 0. The factor 2| X, |? also appears in
the denominator when differentiating the expression for Area(X + tG) at t = 0, so
this term cancels.) Comparing with (2.4), we see that

d d
— Area(X +1tG) = — DX +1tG =—/AX~Gdudv
dt =0 ( ) dtlt=0 ( ) D
if X is a conformal immersion.
The same result holds on any compact domain with piecewise smooth boundary
in a conformal surface M. A conformal diffeomorphism changes the Laplacian by a
multiplicative factor, so there is a well-defined notion of a harmonic function on M.

2.3. Characterization of minimality by vanishing mean curvature

In this section, we prove a result due to Meusnier [66] which characterizes minimal
surfaces in terms of vanishing mean curvature; see Theorem 2.3.

To explain the notion of curvature of a smooth plane curve C C R? at a point
p € C, we apply arigid change of coordinates in R? taking p to (0,0) and the tangent
line 7,,C to the x-axis, so locally near (0, 0) the curve is the graph y = f(x) of a
smooth function on an interval around 0 € R, with f(0) = f/(0) = 0. Therefore,

1
y=f(x)= Ef”(O)xz + o(x?). (2.5)

Let us find the circle which agrees with this graph to the second order at (0, 0).
Clearly, such a circle has center on the y-axis, so it is of the form x% 4+ (y —r)? = r?
for some r € R \ {0}, unless f”(0) = 0 when the x-axis (a circle of infinite radius)
does the job. Solving the equation on y near (0, 0) gives

A comparison with (2.5) shows that for 1/ (0) # 0 the number » = 1/f”(0) € R \ {0}
is the unique number for which the circle agrees with the curve (2.5) to the second
order at (0, 0). This best fitting circle is called the osculating circle. The number

k= f"(0)=1/r (2.6)
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is the signed curvature of the curve (2.5) at (0, 0), its absolute value || = | f”(0)| > 0
is the curvature, and |r| = 1/|k| = 1/| f”(0)] is the curvature radius. If f"(0) = 0,
then the curvature is zero and the curvature radius is +oo.

Consider now a smooth surface S C R3. Let (x, y, z) be coordinates on R3. Fix a
point p € §. Arigid change of coordinates gives p = (0,0,0) and 7,,S = {z =0} =
R2 x {0}. Then, S is locally near the origin of a graph of the form

z=f(x,y)= %(fxx(o)x2 + 2fxy(0v0)xy + fyy(o)yz) + 0(x2 + yz). 2.7)

The symmetric matrix

_ [ /xx(0,0) fxy(0,0))
A_(fxy(O,O) fy(0,0) (2.8)

is called the Hessian matrix of f at (0,0). Given a unit vector v = (vq, v3) in the
(x, y)-plane, let X, be the 2-plane through 0 € R3 spanned by v and the z-axis. The
intersection Cy, := S N X, is then a planar curve contained in S, given by

z = f(vit,vat) = é(Av -0)t2 4+ o(t?) 2.9)

for ¢ € R near 0. Since |v| = 1, the parameters (¢, z) on X,, are Euclidean parameters,
i.e., the Euclidean metric ds? on R restricted to the plane X, is given by d¢? + dz2.
From our discussion of curves and the formula (2.6), we infer that the number

ky = Av-v = fxx(O)vf + 2 fxy(0,0)v1v2 + fyy(())vg

is the signed curvature of the curve C, at the point (0, 0).

On the unit circle |v|* = v + v3 = | the quadratic form v +— Av - v reaches its
maximum k; and minimum «;; these are the principal curvatures of the surface (2.7)
at (0, 0). Since A is symmetric, k1 and k, are its eigenvalues. The real numbers

H =« +ky =traceA, K = kj1kp =detA (2.10)

are, respectively, the mean curvature and the Gaussian curvature of S at (0, 0, 0).
Note that the trace of A (2.8) equals the Laplacian A f(0, 0). On the other hand,
the trace of a matrix is the sum of its eigenvalues. This implies

AF(0,0) = ky + kp = H. 2.11)

Lemma 2.2. Let D be a domainin R?. If X : D — R" is a smooth conformal immer-
sion, then for every p € D the vector AX(p) is orthogonal to the plane dX,(R?) C
R”™. Equivalently, the following identities hold on D:

AX-X, =0 AX-X,=0. (2.12)
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Proof. Recall from (2.1) that X is conformal if and only if X,, - X;, = X, - X and
Xy - Xy = 0. Differentiating the first identity on u and the second one on v yields

Xyu - Xy = Xyy - Xy = —Xyp - Xy,

whence AX - X, = (Xyuu + Xyv) - Xy = 0. Likewise, differentiating the first identity
on v and the second one on u gives AX - X, = 0. ]

We can now prove the following result due to Meusnier [66].

Theorem 2.3. A smooth conformal immersion X = (x,y,z) : D —R3 from a domain
D C R? parameterizes a surface with vanishing mean curvature function if and only
if the map X is harmonic, AX = (Ax, Ay, Az) = 0.

Proof. Fix a point pg € D; by a translation of coordinates we may assume that pg =
(0,0) € R2. Since the differential dXg,0) : R? — R? is a conformal linear map, we
may assume up to a rigid motion on R3 that X(0,0) = (0,0, 0) and

dX(0,0)(E1.6) = n(£1.62.0) forall§ = (£, &) € R?

for some p > 0. Equivalently, at (1, v) = (0, 0) the following hold:

Xy =Yy =pu>0, xp=y, =0, 2z, =2, =0. (2.13)
Note that :
w=1Xyl = [Xy| = E|VX|- (2.14)

The implicit function theorem shows that there is a neighborhood U C D of the origin
such that the surface S = X(U) isa graph z = f(x, y) with df(g,0) =0, so f is of the
form (2.7). Since the immersion X is conformal, (2.12) shows that A X is orthogonal
to the (x, y)-plane R? x {0} at the origin, which means that

Ax =Ay =0 at(0,0). (2.15)
We now calculate Az (0, 0). Differentiation of z(u, v) = f(x(u,v), y(u,v)) gives

Zu = fxXu + fyYu, Zv = faXv + fyYu,
Zyu = (fxXu + nyM)u
= fxxxlzt + fxyquM + fxXuu + fyxxuyu + fyyy; + fyyuu~

At the point (0, 0), taking into account (2.13) and fy = f, = 0 we get zy,, = u? fx-
A similar calculation gives zy,, = u? fyy at (0, 0), so we conclude that

Az(0,0) = u2Af(0,0) = u?H, (2.16)
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where H is the mean curvature of S at the origin (see (2.11)). Denoting by N =
(0,0, 1) the unit normal vector to S at 0 € R3, it follows from (2.14), (2.15), and
(2.16) that

1
AX = 5|VX|2HN (2.17)

holds at (0,0) € D. In particular, AX = 0 if and only if H = 0. This formula is
clearly independent of the choice of a Euclidean coordinate system. u

Combining Theorems 2.1 and 2.3 gives the following corollary.

Corollary 2.4. Let D be a relatively compact domain in R? with piecewise smooth
boundary. A smooth conformal immersion X : D — R3 is a stationary point of the
area functional if and only if the immersed surface S = X (D) has vanishing mean
curvature at every point.

Although we used conformal parameterizations, neither curvature nor area de-
pends on the choice of parameterization. This motivates the following definition.

Definition 2.5. A smooth surface in R3 is a minimal surface if and only if its mean
curvature vanishes at every point.

Every point in a minimal surface is a saddle point, and the surface is equally
curved in both principal directions but in the opposite normal directions. Further-
more, the Gaussian curvature K = K1k = —K12 < 0 is nonpositive at every point.
The integral

TC(S) =/K-dA € [~00, 0] (2.18)
S

of the Gaussian curvature function with respect to the surface area on § is called the
total Gaussian curvature. This number equals zero if and only if S is a piece of a
plane.

The results presented in this section easily extend to surfaces in R” for any n >3
which are parameterized by conformal immersions X : M — R” from any open
Riemann surface M. (By the maximum principle for harmonic maps, there are no
compact minimal surfaces in R”.) There is a sphere $”~3 of unit normal vectors to
the surface at a given point, and one must consider the mean curvature of the surface
in any given normal direction. This gives the mean curvature vector field H along the
surface, which is orthogonal to it at every point. For surfaces in R3 we have H = HN,
where H is the mean curvature function (2.10) and N is a unit normal vector field to

the surface. The formula (2.17) can then be written in the form
2 AX =A, X =H
vxpp—T o e

where Ag X denotes the intrinsic Laplacian of the map X with respect to the induced
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metric g = X *ds? on the surface M (cf. [16, Lemma 2.1.2]). The formula (2.4) for
the first variation of area still holds. It shows that the mean curvature vector field H
is the negative gradient of the area functional, and the surface is a minimal surface if
and only if H = 0. We refer to [16,55,69] or any other standard source for the details.

2.4. The Enneper—Weierstrass representation

In this section we explain the Enneper—Weierstrass formula, which provides a con-
nection between holomorphic maps D — C” with special properties from domains
D c C and conformal minimal immersions D — R” for n > 3. The same connection
holds more generally for maps from any open Riemann surface.

Let z = x 4 iy be a complex coordinate on C. Let us recall the following basic
operators of complex analysis, also called Wirtinger derivatives:

O _1(8 Y 0 _1(h 0
0z 2\ax dy) 9z 2\ox  ay )

The differential of a function F(z) can be written in the form

oF oF oF oF
dF = —d —dy = —d —dz,
R M Pl F
where dz = dx + idy and dz = dx — idy. Note that %—I;dz is the C-linear part and
%—gd Z is the C-antilinear part of d F'. In particular, dF/dz = 0 holds for holomorphic
functions, and dF /dz = 0 holds for antiholomorphic ones. In terms of these operators,
the Laplacian equals

_62+32_ aad 90
C0x2 0 9y2 0z 0z 0z oz
Hence, a function F : D — R is harmonic if and only if dF/dz is holomorphic.
It follows that a smooth map X = (X1, X2,..., Xy) : D — R” is a harmonic
immersion if and only if the map f = (f1, f2,..., fa) : D — C" with components

J; = 0X;/0z is holomorphic and the component functions f; have no common zero.
Furthermore, conformality of X is equivalent to the following nullity condition:

fE+fA+-+ f2=0. (2.19)

Indeed, we have that 417 = (X;x —1X;y)* = (Xjx)> — (X},,)? — 2iX;x X}, and
hence

n
47 =X =X )P = 2iXx - X,
j=1

Comparing with the conformality conditions (2.1) proves the claim.
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Since we know by Theorem 2.1 that a conformal immersion is harmonic if and
only if it parameterizes a minimal surface, this gives the following result.

Theorem 2.6 (The Enneper—Weierstrass representation). Let D be a connected do-
main in C. For every smooth conformal minimal immersion X = (X1, X2,...,Xp) :
D — R" the map [ = (f1, f2,..., fu) = 0X/0z : D — C" \ {0} is holomorphic
and satisfies the nullity conditions (2.19). Conversely, a holomorphic map f : D —
C"™ \ {0} satisfying (2.19) and the period vanishing conditions

ER¢ fdz =0 forevery closed curve C C D (2.20)
C
determines a conformal minimal immersion X : D — R”" given by
z
X(Z)=c+257i/ f©de¢, zeD (2.21)
0

for any base point zg € D and vector ¢ € R".

Conditions (2.20) guarantee that the integral in (2.21) is well defined, that is,
independent of the path of integration. The imaginary components

%56 fdz=p(C)eR" (2.22)
C

of the periods define the flux homomorphism p : Hi (D, Z) — R" on the first homo-
logy group of D. Indeed, by Green’s formula the period ¢, f dz only depends on the
homology class [C] € H{(D, Z) of a closed path C C D.

Remark (The first homology group). If D is a domain in R? = C, then its first
homology group H;(D, Z) is a free abelian group Z*¢ (£ € {0, 1,2, ..., 00}) with
finitely or countably many generators. If D is bounded, connected, and its bound-
ary bD consists of /; Jordan curves I'y, ..., I, and /5 isolated points (punctures)
Di.-- -, Di,, then the group H{(D,Z) has £ = [, + [, — 1 generators which are rep-
resented by loops in D based at any given point py € D, each surrounding one of the
holes of D. (By a hole, we mean a compact connected component of the complement
C \ D. A hole which is an isolated point of C \ D is called a puncture.) Indeed, if I';
is the outer boundary curve of D, then every other boundary curve I',, ..., I';; of D
is contained in the bounded component of C \ I'1, so it bounds a hole of D. Likewise,
each of the points py, ..., p;, is a hole (a puncture). Every hole contributes one gen-
erator to Hy(D, Z). The same loops then generate the fundamental group 771 (D, po)
as a free nonabelian group, and group H; (D, Z) is the abelianization of 1 (D, pg). A
similar description of the homology group H(D, Z) holds for every surface, except
that its genus enters the picture as well; see [ 16, Section 1.4]. For basics on homology
and cohomology, see J. P. May [56].
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It is clear from Theorem 2.6 that the following quadric complex hypersurface in
C™ plays a special role in the theory of minimal surfaces in R”:

A=A"T1={(G,....20) €C" 1 2] + 25 + -+ 27 = 0. (2.23)

This is called the null quadric in C", and A, = A \ {0} is the punctured null quadric.
Note that A is a complex cone with the only singular point at 0. Theorem 2.6 says
that we get all conformal minimal surfaces D — R” as integrals of holomorphic maps
f D — A, C C" satisfying the period vanishing conditions (2.20).

The Enneper-Weierstrass representation in R3. In dimension n = 3, the null
quadric A admits a 2-sheeted quadratic parameterization ¢ : C> — A given by

d(z,w) = (22 —w?,i(z2 + w?), 2zw). (2.24)

This map is branched at 0 € C2, and ¢ : C? \ {0} — A, is a 2-sheeted holomorphic
covering map. It follows that every conformal minimal immersion X = (X1, X5, X3):
D — R3 can be written in the following form (see [69] or [16, pp. 107-108]):

X(z) = X(z9) + 23%/2 (1(l - g), i—(l + g), 1)3)(3. (2.25)
z0 2\g 2\g

Here, 0X = %—fdz = (0X1,0X>,0X3), and

0X3

=——"°> _D>CP'=CuU 2.26
X, —10X, = {oo} (2.26)

gq
is a holomorphic map to the Riemann sphere (a meromorphic function on D), called
the complex Gauss map of X . Identifying CIP! with the unit 2-sphere S2 C R? by the
stereographic projection from the point (0,0, 1) € S2, g corresponds to the classical
Gauss map N = Xy x X,,/|Xx X Xy : D — S? of X.
Many important quantities and properties of a minimal surface are determined by
its Gauss map. In particular, we have that

1+ |g?)?
g = X*ds* = 2(|0X1]* + |0X2|* + |0X3]?) = %IG&IZ
4|d g|? 2
Kg=———"==—-g%07p1)
(1+1g?)* cF

Here, K is the Gauss curvature function (2.10) of the metric X *ds? and G((z:]pl is the

spherical metric on CP!. It follows that the total Gaussian curvature (see (2.18)) of
a conformal minimal surface X : D — R3 equals the negative spherical area of the
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image of the Gauss map g : D — CP' counted with multiplicities, where the area of
the sphere CP! = S2 is 4x:

TC(X) = — Areag(D). (2.27)

It is a recent result that every holomorphic map D — CP! is the complex Gauss map
of a conformal minimal immersion X : D — R3; see Theorem 3.3. Hence, the total
Gaussian curvature of a minimal surface can be any number in [—o0, 0].

Example 2.7 (Catenoid). A conformal parameterization of a standard catenoid (see
[16, Figure 2.1, p. 117]) is given by the map X = (X1, X2, X3) : R? — R3,

X(u,v) = (cosu - coshv, sinu - coshv, v). (2.28)

It is 2w -periodic in the u variable, hence infinitely-sheeted. Introducing the variable
z=e vt € C*, we pass to the quotient C /(27 Z) = C* and obtain a single-sheeted
parameterization X : C* — R3 having the Enneper—Weierstrass representation

X(z) = (1,0,0)—29%/;2 (%(é —C), %(é +§), 1)% (2.29)

Its Gauss map is g(z) = z and extends to the identity map CPP! — CP!. Hence, by
(2.27) the catenoid has total Gaussian curvature equal to —4.

The catenoid is one of the most paradigmatic examples in the theory of minimal
surfaces. A compendium of major results about it can be found in [16, Example 2.8.1].

Example 2.8 (Helicoid). A conformal parameterization X : R? — R3 of the standard
left helicoid, shown on [16, Figure 2.2, p. 119], is

X(u,v) = (sinu - sinhv, —cosu - sinh v, u). (2.30)

Its Weierstrass representation in the complex coordinate z = u + iv € C is

20101 . i/ 1 )
—m - _ait) if
X(Z)‘S‘/o (2(eif ) )’2(eif e )’l)d?

Its complex Gauss map g(z) = e'? is transcendental, so the helicoid has infinite total
Gaussian curvature —oo. Changing the sign of the second component in (2.30) gives
a right helicoid. Like the catenoid, the helicoid is a paradigmatic example satisfying
various uniqueness theorems. E. Catalan [23] proved in 1842 that the helicoid and the
plane are the only ruled minimal surfaces in R3, i.e., unions of straight lines. Much
more recently, W. H. Meeks and H. Rosenberg proved in 2005 [62] that the helicoid
and the plane are the only properly embedded, simply connected minimal surfaces in
R3. Their proof uses curvature estimates of T. H. Colding and W. P. Minicozzi [27].
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Remark (Branch points). Our definition of a conformal map X : D — R” of class
€1(D) requires that equations (2.1) hold. We have already observed that such a map
has rank zero at non-immersion points. Assuming that X is harmonic at immersion
points, it follows that f = 0X/dz : D — C" is a continuous map with values in the
null quadric A (2.23) which is holomorphic at immersion points of X and vanishes
at non-immersion points. By a theorem of T. Radé [70] (cf. [74, Theorem 15.1.7]),
such an f is holomorphic everywhere on D, and in particular its zero set consists
of isolated points (assuming that X and hence f are nonconstant). This shows that
the minimal surface parameterized by X has only isolated singularities. See [77] for
more details.

There are interesting examples of minimal surfaces with branch points. For exam-
ple, Henneberg’s surface (see [16, Example 2.8.9]) is a complete non-orientable
minimal surface with two branch points (a branched minimal M6bius strip), named
after Ernst Lebrecht Henneberg [46] who first described it in his doctoral dissertation
in 1875. It was the only known non-orientable minimal surface until 1981 when W. H.
Meeks [57] discovered a properly immersed minimal Mébius strip in R3. A properly
embedded minimal Mobius strip in R* was found in 2017 [15, Example 6.1].

2.5. Holomorphic null curves

There is a family of holomorphic curves in C” which are close relatives of conformal
minimal surfaces in R”. A holomorphic map Z = (Z1,...,Z,) : D — C" forn > 3
from a domain D C C satisfying the nullity condition

(Z)*+(Z5)> +--+(Z;)> =0

is a holomorphic null curve in C", Its complex derivative f = Z’ assumes values in
the null quadric A (2.23), and we have ¢ fdz = ¢ dZ = 0 for any closed curve
C C D. Conversely, a holomorphic map f : D — A satisfying the period vanishing
conditions

95 fdz =0 forevery closed curve C C D (2.31)
c

integrates to a holomorphic null curve
zZ
Z(z):c—i—/ f(©d¢, zeD, (2.32)
zo

where zg € D is any given base point and ¢ € C”. Indeed, conditions (2.31) guarantee
that the integral in (2.32) is independent of the choice of a path of integration. These
period conditions are trivial on a simply connected domain D.

IfZ=X+1iY : D — C" is an immersed holomorphic null curve, then its real
part X = RZ : D — R” and imaginary part ¥ = JZ : D — R” are conformal
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minimal surfaces which are harmonic conjugates of each other. Indeed, denoting the
complex variable in C by z = x + iy, the Cauchy—Riemann equations imply

aX

fZZ,ZZx:Xx+in=Xx_iXy:28_'
z

Since f = Z': D — A""! satisfies the nullity condition (2.19), X is a conformal
minimal immersion. In the same way we find that f = Z' =Yy, + 1Yy =2iY¥,;,s0Y
is a conformal minimal immersion. Being harmonic conjugates, X and Y are called
conjugate minimal surfaces. Conformal minimal surfaces in the 1-parameter family

X'=0ReE'"Z): D > R", teR,

are called associated minimal surfaces of the holomorphic null curve Z.

Conversely, if X : D — R” is a conformal minimal surface and the holomor-
phic map f = 2%—); : D — A" satisfies period vanishing conditions (2.31), then
f integrates to a holomorphic null curve Z : D — C” (2.32) with RZ = X. In
general, the imaginary parts of the periods (2.32) determine the flux homomorphism
Hi(M,Z) — R of the minimal surface X (see (2.22)); hence, X is the real part
of a holomorphic null curve if and only if it has vanishing flux. The periods (2.31)
always vanish on a simply connected domain D, and hence every conformal minimal
immersion D — R” is the real part of a holomorphic null curve D — C”.

The relationship between conformal minimal surfaces and holomorphic null
curves extends to maps having (isolated) branch points.

Example 2.9 (Helicatenoid). Consider the holomorphic immersion Z : C — C3,
Z(z) = (cosz,sinz,—iz) e C3, z=x+4+1y e C. (2.33)
We have that
Z'(z) = (=sinz,cosz,—i), sin?z 4+ cos?z + (—i)> = 0.

Hence, Z is a holomorphic null curve. Consider the 1-parameter family of its associ-
ated minimal surfaces in R3 for ¢ € [0, 27]:

cos x - cosh y sinx - sinh y
X'(z) =N(e""Z(z)) = cost | sinx-coshy | +sins | —cosx -sinhy |. (2.34)
y x

Att = 0 and t = m we have a catenoid (see Example 2.7), while at t = +7/2 we
have a helicoid (see Example 2.8). Hence, these are conjugate minimal surfaces in
R3. The holomorphic null curve (2.33) is called helicatenoid.
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3. A survey of new results

This section is a survey of recent results in the theory of minimal surfaces in Euclidean
spaces, which were discussed in my lecture at the SECM. A detailed presentation is
available in the monograph [16] and, for non-orientable surfaces, in the AMS Memoir
[15] by Alarcén, the author, and Lépez.

3.1. Approximation, interpolation, and general position theorems

Holomorphic approximation is a central topic in complex analysis. Holomorphic
functions and maps with interesting properties are often constructed inductively, ex-
hausting the manifold by an increasing sequence of compact sets such that one can
approximate holomorphic functions uniformly on each one by holomorphic functions
on M. The quintessential example is Runge’s theorem from 1885 [75] on approxima-
tion of holomorphic functions on a compact set K C C with connected complement
by holomorphic polynomials. A major extension is Mergelyan’s theorem [65] from
1951.

In order to generalize Runge’s theorem, we need the following concept. Denote
by @ (M) the algebra of holomorphic functions on a complex manifold M. Given a
compact set K in M, its O (M )-convex hull (or holomorphic hull) is the set

K= {Z eEM: |f(z)| <sup|f]|forall f € (9(M)}.
K

If K = K, then K is said to be holomorphically convex, or @ (M )-convex, or a Runge
compact. If M is the complex plane or, more generally, an open Riemann surface,
then the hull K is the union of K and all relatively compact connected components
of M \ K (the holes of K in M). There is no topological characterization of the hull
in higher-dimensional complex manifolds.

Holomorphically convex sets are the natural sets for holomorphic approxima-
tion. Runge’s theorem was extended to open Riemann surfaces by H. Behnke and
K. Stein [21] in 1949, who proved that any holomorphic function on a neighbor-
hood of a Runge compact K in open Riemann surface M can be approximated uni-
formly on K by holomorphic functions on M. A related result on higher-dimensional
complex manifolds is the Oka—Weil theorem which pertains to Runge compacts in
C"™ and, more generally, in any Stein manifold (a closed complex submanifold of a
Euclidean space C"). A recent survey of holomorphic approximation theory can be
found in [33].

We have seen in Section 2.4 that every conformal minimal immersion M — R”
from an open Riemann surface M is the integral of a holomorphic map f : M —
Ay C C”" into the punctured null quadric A ; furthermore, f must satisfy the period
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vanishing conditions (2.20). Hence, a Runge-type approximation theorem for con-
formal minimal surfaces in R” (or holomorphic null curves in C”) reduces to the
approximation problem for holomorphic maps f : M — A satisfying the period van-
ishing conditions (2.20) (or (2.31) when considering null curves). This is a nonlinear
approximation problem. The first part, ignoring the period conditions, fits within Oka
theory. In particular, the manifold A, is easily seen to be a homogeneous space of the
complex orthogonal group O, (C). Runge-type approximation theorems for holomor-
phic maps from Stein manifolds to complex homogeneous manifolds were proved by
Hans Grauert [41] (1957) and Grauert and Kerner [42] (1963). More generally, a com-
plex manifold Y is said to be an Oka manifold if and only if approximation results of
this type hold for holomorphic maps M — Y from any Stein manifold in the absence
of topological obstructions. Oka theory also includes interpolation theorems for holo-
morphic maps, generalizing classical theorems of K. Weierstrass [78] and H. Cartan
[22]. For the theory of Oka manifolds, see [35].

The second part of the problem, ensuring the period vanishing conditions (2.20)
or (2.31) for holomorphic maps to A, can be treated by using sprays of holomor-
phic maps together with elements of convexity theory. More precisely, Gromov’s
1-dimensional convex integration lemma from [43] is useful in this regard. The main
techniques underlying all subsequent developments were established in [5] (2014).
Their application led to the following result, which is a summary of several individual
theorems. Parts (i), (ii), and (iv) are due to Alarcén, the author, and Lépez [5, 12, 15]
(the special case of (i) for n = 3 was obtained beforehand in [19]), while (iii) was
proved by Alarcén and Castro—Infantes [2, 3]. Related results for conformal minimal
surfaces of finite total curvature were given by Alarcén and Lépez [18].

Main Theorem 3.1. Let K be a compact set with piecewise smooth boundary and
without holes (a Runge compact) in an open Riemann surface M. Then:

(1)  Every conformal minimal immersion X : K — R”" (n > 3) can be approxi-
mated uniformly on K by proper conformal minimal immersions X : M —
R”.

(i1)  The approximating map X can be chosen to have only simple double points
if n = 4, and to be an embedding if n > 5.

(i) In addition, one can prescribe the values of X on any closed discrete subset

of M (Weierstrass-type interpolation).

(iv) The analogous results hold for non-orientable minimal surfaces in R" and
for holomorphic null curves in C", n > 3.

The proof of Theorem 3.1 is fairly complex, and we shall only outline the main
idea. Fix a nowhere vanishing holomorphic 1-form 6 on the open Riemann sur-
face M. (Such a 1-form always exists; see [44].) By Enneper—Weierstrass (Theo-
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rem 2.6), it suffices to prove the Runge approximation theorem for holomorphic maps
f M — A, satisfying the period vanishing conditions (2.20).

Consider an inductive step. Assume that K C L are connected Runge compacts
with piecewise smooth boundaries in M, X : K — R” is a conformal minimal sur-
face, and f =20X/0 : K — A.. We wish to approximate X by a conformal minimal
immersion X : L — R". We may assume that f(K) is not contained in a complex
ray C*z of the null quadric A, for otherwise the result is trivial. There are two main
cases to consider, the noncritical case and the critical case.

The noncritical case. There is no change of topology from K to L. It is well known
that there are closed curves Cy, ..., Cy in K forming a basis of H;(K, Z) whose
union C = Uf=1 C; is a Runge compact. Let B"” denote the unit ball of C". By
using flows of holomorphic vector fields on C” tangent to A, we construct a smooth
map

F:KxB" > A,, F(-,0)=f =20X/6,

which is holomorphic on K x B”, such that the associated period map

L

B" >t > (/ F(-,t)@) ec™
of} j=1

J

is biholomorphic onto its image. Such a period dominating spray can be found of the
form

F(p1) = b3, © Paaori © © Py /(D) €Ase pe K. (B.D)

where each ¢/ is the flow of a holomorphic vector field tangent to A and g; € O(M).
We first construct smooth functions g; on C which give a period dominating spray;
this can be done since the convex hull of A equals C”. As C is Runge in M, we can
approximate the g;’s by holomorphic functions on M, thereby obtaining a holomor-
phic period dominating spray F as above.

In the next key step, we use that A, is an Oka manifold, so we can approximate F
by a holomorphic map F:MxB" - A,. (There is no topological obstruction since
A is connected.) If the approximation is close enough, the implicit function theorem
furnishes a parameter value 7 € B"¢ close to 0 such that the map f =F(,[): M —
A, has vanishing real periods on the curves Cy,. .., Cy. Hence, fixing a point pg € K,
the map X:L—>R" given by

~ p
X(p)=X(po)+m/ 76. pel.
Po

is a conformal minimal immersion which approximates X : K — R” on K.
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The critical case. Assume now that E is an embedded smooth arc in L \ K attached
with its endpoints to K such that K U E is a deformation retract of L. (Thus, L has the
same topology as K U E. This situation arises when passing a critical point of index
1 of a strongly subharmonic Morse exhaustion function on M.) Let a,b € bK denote
the endpoints of E. We extend f smoothly across £ toamap f : K U E — A, such
that

sn/ 6 = X(b) — X(a) € R".
E

This is possible since the convex hull of A, equals C”. We then proceed as in the
noncritical case: embed f into a period dominating spray of smooth maps K U E —
A, which are holomorphic on K=K \ bK, approximate it by a holomorphic spray
on L by Mergelyan’s theorem, and pick a parameter value for which the map in the
spray has vanishing real periods on K U E, and hence on L. The Enneper—Weierstrass
formula gives a conformal minimal surface X:L—>R" approximating X on K.

The proof of the basic approximation theorem (i) (without the properness con-
dition) is then completed by induction on a suitable exhaustion of M by Runge
compacts, alternatively using the above two cases. Critical points of index 2 do not
arise.

Interpolation (part (iii)) is easily built into the same inductive construction. In-
deed, in each of the two cases considered above, we can arrange that none of the
points p; € M at which we wish to interpolate lies on the boundary of K or L. By
choosing the functions g; in the spray F' (3.1) to vanish at those points p; which lie
in the interior of K, we ensure that the spray F is fixed at these points (independent
of the parameter ), and hence the approximating map X will agree with X at these
points. For each of the finitely many points p; € L \ K we choose a smooth embedded

arc E; C L\ K with one endpoint p; and the other endpoint ¢; € bK such that
Ej\{gj} C L\ K and these arcs are pairwise disjoint. The set § = K U |J; E; is
then a Runge compact. We extend the map f : K — A, smoothly to S such that
for each j, |, E; /0 has the correct value which ensures that the integral assumes
the prescribed value at p;. It remains to apply the same method as above with a
spray which is period dominating also on each of the arcs E; and to use Mergelyan
approximation on the set S.

Properness of the approximating conformal minimal immersion X : M — R”
(part (ii) of the theorem) requires considerable additional work. The main point is to
prove a relative version of the approximation theorem in part (i) in which all but two
components of the given map X extend to harmonic functions on all of M. One can
keep these components fixed while approximating the remaining two components
such that the resulting map X is a conformal minimal immersion. This requires a
more precise version of the Oka principle. This result is then used in an inductive
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scheme which is designed so that | X (z)| tends to infinity as the point z € M goes to
the ideal boundary of M (i.e., it exists in any compact subset).

Finally, the general position theorem in part (ii) uses the same technique together
with the transversality theorem. The details of proof are considerably more involved
from the technical viewpoint, and we shall not deal with this subject here.

3.2. Topological structure of spaces of minimal surfaces

Assume that M is an open Riemann surface. Fix a nowhere vanishing holomorphic
I-form 6 on M. Let n > 3. An immersion M — R” is said to be nonflat if its image
is not contained in an affine 2-plane. We introduce the following notations:

e (O(M,Ay) and €(M, A,) denote spaces of holomorphic and continuous maps
M — A, respectively;

e  CMI(M,R") denotes the space of conformal minimal immersions M — R”";

o CMlI (M, R") is the subspace of CMI(M, R") consisting of nonflat immersions;
e NC(M,C") is the space of holomorphic null immersions M — C”;

e NCy(M,C") is the subspace of NC(M, C") consisting of nonflat immersions.

Consider the commutative diagram

NCo(M.C") —2—— O(M, A,) 5 €(M. A,)

x| [y

M NCp(M, C")—— CMI(M,R")

where

e the maps ¢ : NCy(M,C") - O(M, Ay) and ¢ : CMI (M, C") — O(M, Ay)
are given by Z +— 0Z /0 and X — 20X /0, respectively;

e the map NCy(M,C") — RN NCy(M, C") is the projection Z = X +1iY — X;

e themapst: HNCy(M,C") — CMI(M,R")and 7 : O(M, Ay) — €(M, Ay)
are the natural inclusions.

Recall that a continuous map ¢ : X — Y between topological spaces is said to
be a weak homotopy equivalence if it induces a bijection of path components of the

two spaces and, for each integer k € N, an isomorphism 7% (¢) : 7 (X) — 7 (Y)
of their kth homotopy groups. The map ¢ is a homotopy equivalence if there is a
continuous map ¥ : ¥ — X such that ¥ o ¢ : X — X is homotopic to the identity
on X and ¢ oy : ¥ — Y is homotopic to the identity on Y. These notions indicate
that the spaces X and Y have the same rough topological shape.
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Since A is an Oka manifold, the inclusion 7 : O (M, A,) — € (M, A,) is a weak
homotopy equivalence by the Oka—Grauert principle (see [35, Corollary 5.5.6]), and
by Larusson [54] it is a homotopy equivalence if M is of finite topological type; i.e.,
if the homology group H,(M, Z) is a finitely generated abelian group.

The real-part projection map R : NCpe(M, C*) — R NCye(M, C") is evidently a
homotopy equivalence.

It turns out that all other maps in the above diagram are also weak homotopy
equivalences. The first part of the following theorem was proved by the author and
Larusson in [39], and the second part was proved by Alarcén, the author, and Lépez
in [14]. Validity of statement (a) for CMI(M, R") and NC(M, C") remains an open
problem.

Main Theorem 3.2. Let M be an open Riemann surface.

(a) Each of the maps 1, ¢, ¥ in the above diagram is a weak homotopy equiva-
lence, and a homotopy equivalence if M is of finite topological type.

(b) The map t oy : CMI(M,R") — € (M, A.) induces a bijection of path com-
ponents of the two spaces. Hence,

Z5, n=3, H(M.Z)=17t

mo(CMI(M,R™)) = {0 o

It follows that each of the spaces NCy(M, C"*) and CMI (M, C") is weakly
homotopy equivalent to the space € (M, A,) of continuous maps M — A, and is
homotopy equivalent to € (M, A ) if the surface M has finite topological type.

The group Z, = {0, 1}, which appears in part (b), is the fundamental group of
the punctured null quadric A, C C3; see (2.24) and note that C? \ {0} is simply
connected. If X € CMI(M, R3), then 0X/0z : M — A, maps every generator of the
homology group H;(M, Z) either to the generator of 1 (A ) or to the trivial element.
This gives 2¢ choices, each one determining a connected component of CMI(M, R3).
The null quadric A, C C” for n > 3 is simply connected.

These results are proved by using the parametric versions of techniques discussed
in Section 3.1. Each of the maps in question satisfies the parametric h-principle, which
implies that it is a weak homotopy equivalence.

3.3. The Gauss map of a conformal minimal surface

The Gauss map is of major importance in the theory of minimal surfaces. We have
already seen that the Gauss map of a conformal minimal immersion X : M — R? is
a holomorphic map g : M — CP! (2.26), which coincides with the classical Gauss
map M — S? under the stereographic projection from S onto CP'. In general, for
any dimension n > 3 one defines the generalized Gauss map of a conformal minimal
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immersion X = (X1, X»,...,X,) : M — R” as the Kodaira-type holomorphic map
g =1[0X1:0X2:- 10X, M - Q"2 CcCP" !, (3.2)

where

n
0=0"2= {[21 tee1z,] e CPPTL szz = 0}
j=1
is the projectivization of the punctured null quadric A, a smooth quadric complex
hypersurface in CP"~!. A recent discovery is the following converse result from [14]
(see also [16, Theorem 5.4.1]), which shows that every natural candidate is the Gauss
map of a conformal minimal surface.

Main Theorem 3.3. Assume thatn > 3.

(i)  Forevery holomorphic map § : M — Q"2 from an open Riemann surface
there exists a conformal minimal immersion X : M — R" with the Gauss
map §.

(i) If M is a compact bordered Riemann surface and § : M — Q"2 is a map
of class A"~V (M, Q") for some r € N, then there is a conformal minimal
immersion X : M — R" of class €" (M, R") with the Gauss map §.

Here, A" ~1(M, Q"72) denotes the space of maps M — Q"2 of class € !
which are holomorphic in the interior M \ bM of M.

Furthermore, the following assertions hold true in both cases in the above theo-
rem.

(i)  The conformal minimal immersion X can be chosen to have vanishing flux.
In particular, every holomorphic map ¢ : M — Q"2 is the Gauss map of
a holomorphic null curve M — C”.

(ii) If §(M) is not contained in any projective hyperplane of CP"~!, then X
can be chosen with arbitrary flux, to have prescribed values on a given
closed discrete subset A of M, to be an immersion with simple double
points if n = 4, and to be an injective immersion if n > 5 and the prescrip-
tion of values on A is injective.

When n = 3, the quadric Q" is an embedded rational curve in CIP? parameterized
by the biholomorphic map

CP! 9;»4[%(%—:):%(;“):1} =[1-r*:i(1+1%):2t] € Q'. (3.3)

Writing (1 —¢2,i(1 + t2),2t) = (a, b, ¢), we easily find that

b_i
t=—"_=2""%ccp.
a—ib ic
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Suppose that X = (X1, X3, X3) : M — R3 is a conformal minimal immersion, and
write 20X = 2(0X1, 0X3, 0X3) = (¢1, ¢2, ¢3). In view of the above formula for
t =t(a,b,c) itis natural to consider the holomorphic map

$3 09X

¢1—1¢2 8X1—18X2

g

This is the complex Gauss map (2.26) of X, which appears in the Enneper—Weier-
strass representation (2.25). The generalized Gauss map ¢ : M — Q! ¢ CP? (3.2)
of X is then expressed by € = 7 o g, where 7 : CP! — Q! is given by (3.3).

Let us say a few words about the proof of Theorem 3.3. The first step is to lift the
given map § : M — Q to a holomorphic map G : M — A.. Note that the natural
projection A, — Q sending (z1,...,2,) to [z1 : -+ : z,] is a holomorphic fibre bun-
dle with fibre C* = C \ {0}. The existence of a continuous lifting follows by noting
that the homotopy type of M is a wedge of circles, and every oriented C*-bundle
over a circle is trivial. Further, since C* is an Oka manifold, every continuous lifting
is homotopic to a holomorphic lifting according to the Oka principle [35, Corol-
lary 5.5.11].

In the second and main step of the proof, the holomorphic map G : M — A, is
multiplied by a nowhere vanishing holomorphic function 4 : M — C* such that the
product f = hG : M — A, has vanishing periods along closed curves in M (see
(2.31)), and hence it integrates to a holomorphic null immersion Z : M — C”. Its
real part X = NZ : M — R” is then a conformal minimal immersion having the
Gauss map §. The construction of such a multiplier / follows the idea of proof of
Theorem 3.1, but the details are fairly nontrivial and we refer to the cited works.

There are many results in the literature relating the behavior of a minimal surface
to properties of its Gauss map. A particularly interesting question is how many hyper-
planes in a general position in CIP”~! can be omitted by the Gauss map of a complete
conformal minimal surface of finite total curvature. A discussion of this topic can be
found in [16, Chapter 5] and in several other sources.

3.4. The Calabi-Yau problem

A smooth immersion X : M — R” is said to be complete if X*ds? is a complete
metric on M. Equivalently, for every divergent path y : [0, 1) — M (i.e., such that
y(t) leaves every compact set in M as t — 1) the image path X oy : [0,1) —> R”
has infinite Euclidean length. Clearly, if X is proper, then it is complete since any
such path X o y(¢) diverges to infinity as ¢+ — 1. The converse is not true; it is easy
to construct complete immersions (and embeddings if n > 3) with bounded image
X(M) C R™.

It is however not so easy to find complete bounded immersions with additional
properties, such as conformal minimal or, in case when the target is a complex
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Euclidean space C”", holomorphic. The following conjecture was posed by Eugenio
Calabi in 1965, [50, p. 170]. Calabi’s conjecture was also promoted by Shiing-Shen
Chern [24, p. 212].

Conjecture 3.4. Every complete minimal hypersurface in R" (n > 3) is unbounded.
Furthermore, every complete nonflat minimal hypersurface in R™ (n > 3) has an
unbounded projection to every (n — 2)-dimensional affine subspace.

A particular reason which may have led Calabi to propose these conjectures was
the theorem of Chern and R. Osserman [25] from that time. Their result says in par-
ticular that if X : M — R” (n > 3) is a complete conformal minimal surface of finite
total Gaussian curvature TC(X) > —oo, then M is the complement of finitely many
points p1,..., pm in a compact Riemann surface R, the holomorphic 1-form dX has
an effective pole at each point p;, and X is proper. (The first statement holds even
without the completeness assumption on X, due to a result of Huber [47] from 1957.)
The Chern—Osserman theorem says that such an X is complete if and only if dX has
an effective pole at each puncture p;. The asymptotic behavior of X at the punctures
was described by M. Jorge and W. Meeks [48] in 1983.

It turns out that, at least in dimension n = 3, Calabi’s conjecture is both right and
wrong, depending on whether the minimal surface is embedded or merely immersed.
(This point was not specified in the original question.) In dimension n = 3, the answer
is radically different for these two cases, as we now explain.

The first counterexample to Calabi’s conjecture in the immersed case was given
by L. P. de M. Jorge and F. Xavier in 1980 [49], who constructed a complete nonflat
conformal minimal immersion D — R3 from the disc with the range contained in a
slab between two parallel planes.

In 1982, S.-T. Yau pointed out in [80, Problem 91] that the question whether there
are complete bounded minimal surfaces in R> remained open despite Jorge—Xavier’s
example. This became known as the Calabi—Yau problem for minimal surfaces.

The problem was resolved for immersed surfaces by N. Nadirashvili [67] who in
1996 constructed a complete conformal minimal immersion D — R3 with the image
contained in a ball. Many subsequent results followed, showing similar results for
topologically more general surfaces; see [ 16, Section 7.1] for a survey and references.
However, the conformal type of the examples could not be controlled by the methods
developed in those papers, except for the disc. The reason is that the increase of the
intrinsic radius of a surface was achieved by applying Runge’s theorem on pieces of
a suitable labyrinth in the surface, chosen such that any divergent path avoiding most
pieces has infinite length, while crossing a piece of the labyrinth increases the length
by a prescribed amount. However, Runge’s theorem does not allow to control the map
everywhere, and hence small pieces of the surface had to be cut away in order to keep
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the image bounded. This surgery changes the conformal type of the surface, and only
its topological type can be controlled by this method.

After Nadirashvili’s paper, Yau revisited the Calabi—Yau conjectures in his 2000
millennium lecture and proposed several new questions (see [81, p. 360] or [82,
p. 241]). He asked in particular: What is the geometry of complete bounded mini-
mal surfaces in R3? Can they be embedded? What can be said about the asymptotic
behavior of these surfaces near their ends?

Concerning Calabi’s conjecture for embedded surfaces, Colding and Minicozzi
showed in 2008 [29] that every complete embedded minimal surface in R? of finite
topological type is proper in R3. Their result was extended to surfaces of finite genus
and countably many ends by W. H. Meeks, J. Pérez, and A. Ros in 2018, [61]. Hence,

Calabi’s conjecture holds true for embedded minimal surfaces of finite genus
and countably many ends in R3.

Against this background, we have the following result for immersed surfaces.

Main Theorem 3.5. Every open Riemann surface of finite genus and at most count-
ably many ends, none of which are point ends, is the conformal structure of a complete
bounded immersed minimal surface in R3.

By the uniformization theorem of Z.-X. He and O. Schramm [45, Theorem 0.2]
(1993) solving Koebe’s conjecture, every open Riemann surface of finite genus and
at most countably many ends is conformally equivalent to a domain of the form

M=R\UDL~, (3.4)

where R is a compact Riemann surface without boundary and {D;}; is a finite or
countable family of pairwise disjoint compact geometric discs or points in R. (A geo-
metric disc in R is a compact subset whose preimage in the universal holomorphic
covering space of R, which is one of the surfaces CPY, C,orD,is a family of
pairwise disjoint round discs or points.) Such an M is called a circled domain in R.
Hence, Theorem 3.5 is a corollary to the following more precise result, which includes
information about the boundary behavior of surfaces.

Main Theorem 3.6. Assume that M is a circled domain of the form (3.4). For any
n > 3 there exists a continuous map X : M — R”" such that X : M — R" is a complete
conformal minimal immersion and X : bM — R" is a topological embedding. If
n > 5, then there is a topological embedding X : M — R" such that X : M — R”
is a complete embedded minimal surface.

This means that the image X (M) is a complete immersed minimal surface whose
boundary X(bM ) consists of pairwise disjoint Jordan curves. The control of confor-
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mal structures on complete minimal surfaces in Theorems 3.5 and 3.6 is one of the
main new aspects of these results; the other one is that the surfaces in Theorem 3.6
have Jordan boundaries. These answer the aforementioned questions by Yau.

For surfaces M of type (3.4) with finitely many boundary components, Theorem
3.6 was proved in [4]. This covers all finite bordered Riemann surfaces in view of the
uniformization theorem [76, Theorem 8.1] due to E. L. Stout. In this case, we actu-
ally showed that any conformal minimal immersion M — R” can be approximated
uniformly on M by a map X as in the theorem. The general case for countably many
ends was obtained in [10]; an approximation theorem also holds in that case.

The situation regarding point ends remains elusive and does not have a clear-cut
answer. On the one hand, a bounded conformal minimal surface cannot be complete at
an isolated point end (a puncture) since a bounded harmonic function extends across
a puncture. On the other hand, it was shown in [10, Theorem 5.1] that an analogue of
Theorem 3.6 holds for connected domains of the form

M=R\(EUUD,'),

where E is a compact set in a compact Riemann surface R and D; C R\ E are
pairwise disjoint geometric discs such that the distance to E is infinite within M. In
particular, there are complete bounded conformal minimal surfaces in R® with point
ends which are limits of disc ends.

Our construction uses an adaptation of the Riemann—Hilbert boundary value prob-
lem to holomorphic null curves and conformal minimal surfaces, together with a
method of exposing boundary points of such surfaces. This technique is explained
in detail in [16, Chapter 6]. The modifications which we use provide a good con-
trol of the position of the whole surface in the ambient space, thereby keeping it
bounded. The main technical lemma of independent interest (see [16, Lemma 7.3.1])
enables one to make the intrinsic radius of a conformal bordered minimal surface in
R" as large as desired by a deformation of the surface which is uniformly as small as
desired. One uses this lemma in an inductive process which converges to a bounded
complete limit surface. This lemma also allows the construction of complete minimal
surfaces with other interesting geometric properties. In particular, every bordered Rie-
mann surface admits a complete proper conformal minimal immersion into any con-
vex domain in R” (embedding if n > 5) and, more generally, into any minimally con-
vex domain (see [16, Section 8.3]). A smoothly bounded domain in R? is minimally
convex if and only if the boundary has nonnegative mean curvature at each point.

We give a brief description of the modifications which lead to proof of the above
results. A complete presentation of this technique is given in [16, Chapter 6], and
Theorem 3.6 is proved in [ 16, Chapter 7]. Illustrations can be found in my lecture [36].
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Each step consists of two substeps. In the first substep, we choose a large but finite
number of roughly equidistributed points on the boundary of the surface and change
the surface so that it grows long spikes (tentacles) at these points, which however
remain uniformly close to the attachment points. (Imagine the picture of a corona
virus.) The effect of this modification is that curves in the surface which terminate
near one of the exposed boundary points get elongated by a prescribed amount. See
[16, Section 6.7].

In the second substep, we perform a Riemann—Hilbert type modification which
increases the intrinsic radius along each of the boundary arcs between a pair of
exposed points, without destroying the effect of substep 1. To each boundary arc
between a pair of exposed points we attach a 3-dimensional cylinder, consisting of a
1-parameter family of conformal minimal discs centered at points of the given arc.
The boundaries of these discs form a 2-dimensional cylinder, a product of the arc
with a circle, and their radii shrink to zero near the exposed endpoints of the arc. Is it
then possible to modify the surface by pushing each arc very near the corresponding
2-dimensional cylinder, with the modification tempering out near the exposed end-
points and away from the arcs. So, the modification in substep 2 is big very close
to the boundary (except near the exposed points), and it is arbitrarily small outside
a given neighborhood of the boundary. The new conformal minimal surface is con-
tained in an arbitrarily small neighborhood of the union of the surface from substep 1
and the 3-dimensional cylinders that have been attached to the arcs in substep 2. The
metric effect of the modification in substep 2 is that the length of any path in the sur-
face terminating at an interior point of one of the boundary arcs increases almost by
the radius of the disc that was attached at this point. (For curves terminating near the
exposed points a desired elongation was already achieved in substep 1.) For technical
reasons, we actually work with d-derivatives of these conformal minimal surfaces,
including the boundary discs, so the entire picture concerns families of holomorphic
maps with values in the punctured null quadric A . In order to control the period con-
ditions, we work with sprays of such configurations, like in the proof of Theorem 3.1.
Special attention is paid to avoid introducing branch points to our surfaces in the pro-
cess. As said before, this provides the main modification lemma, and its inductive
application leads to the proof of Theorem 3.6.

By this method, the Calabi—Yau property has been established in several geome-
tries: for holomorphic curves in complex manifolds [6], holomorphic null curves in
C™" and conformal minimal surfaces in R” for n > 3 [4, 7, 10], holomorphic Leg-
endrian curves in complex contact manifolds [8, 13], and superminimal surfaces in
self-dual or anti-self-dual Einstein 4-manifolds [37]. For a survey and further refer-
ences, see [16, Section 7.4]. An axiomatic approach to the Calabi—Yau problem was
proposed in [11].
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The analogue of the Calabi—Yau problem for complex submanifolds in C”, which
is known as Paul Yang’s problem who raised it in 1977 [79], has also received a lot of
recent attention. In particular, J. Globevnik showed [40] that for any pair of integers
1 < k < n, the ball of C" admits holomorphic foliations by complete k-dimensional
proper complex subvarieties, most of which are without singularities (submanifolds).
Another construction using a different technique was given by Alarcén et al. [17],
and it was also shown that there are nonsingular holomorphic foliations of the ball
having complete leaves (Alarcén [1]). Furthermore, there are nonsingular holomor-
phic foliations of the ball whose leaves are complete properly embedded discs [9].
The techniques in these papers do not apply to more general minimal surfaces, and
they do not provide control of complex structures of examples.

In conclusion, I propose the following conjecture. Although I am fully aware of
the lack of technical tools to solve it in this generality, I believe that it is true.

Conjecture 3.7. The Calabi-Yau property holds for bordered minimal surfaces in
any smooth Riemannian manifold (N, g) with dim N > 3. Explicitly, for every bor-
dered Riemann surface, M, and conformal minimal immersion X : M — N it is
possible to approximate X uniformly on M by complete conformal minimal immer-
sions M — N.
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Bernoulli random matrices

Alice Guionnet

Abstract. Random matrix theory has become a field on its own with a breadth of new results,
techniques, and ideas in the last thirty years. In these proceedings, I illustrate some of these ad-
vances by describing what we now know about the spectrum and the eigenvectors of Bernoulli
matrices.

1. Introduction

Jacques (or Jakob) Bernoulli (1654—1705) was a renowned Swiss mathematician who
made important contributions to probability theory and partial differential equations.
He was the first to discover the number e. But his most famous result is, at least
for probabilists, the first proof of the law of large numbers. To this end, he analyzed
the concept of the Bernoulli law, which is the simplest non-trivial distribution you
can think of, being the sum of two Dirac masses. It is the distribution of a random
variable b which can only take two values 0 and 1. We denote

p=Pbh=1)=1-P@® =0).

A very common example is a coin that, once thrown, falls either on head (modeled by
the state 1) or tail (modeled by 0). Even if one would expect in general the probability
of each event to be equal to 1/2, it may well be rather p € (0, 1) if the coin is rigged.
In Ars Conjectandi, Bernoulli showed that if one throws such a coin independently
a number n of times, then, with large probability, one should see approximately pn
heads if n is large enough. To state this law of large numbers more precisely, he
showed that if by, . . ., b, denotes the outcome of n-independent Bernoulli trials, then

foranya < p <b
. I ¢
,,ILH;OP(; D bie [a,b]) =1

i=1
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But how close can we choose a, b to p so that this result remains true? Few years
later, A. de Moivre (1667—1754) quantified the size of the error and proved the first
central limit theorem, namely that a, b can be at a distance of about 1/,/n of p in the
sense that

lim P

(i 10 wl

This was the first occurrence of the central limit theorem and the start of modern
probability theory and statistics. Implicitly, we so far assumed that p does not depend
on n and belongs to (0, 1). Later on, we shall also be interested in the case where
p depends on n. Then, it can be checked that the central limit theorem still holds
as long as pn goes to infinity. If pn goes to a finite constant ¢, then it cannot hold
since ) ;_, b; is an integer so that the above random variable is discrete. In fact, it
converges towards the Poisson distribution

1

lim IP’( Z(b p) € [a, b]) Z —ckee.
n—o0o / _ |
np(1 )i kec++/cla,b] k!

We will see later that this transition between such continuous and discrete limits is
also key to describing the spectrum of Bernoulli random matrices. The last concept
which is central in probability theory and important in these notes is entropy. It was
introduced by Ludwig Boltzmann (1844—-1906) and Claude Shannon (1916-2001) in
physics and information theory, respectively, as a way to measure disorder. For again
n-independent Bernoulli trials with parameter p, it is defined for any ¢ € [0, 1] by

p) € la, b])

lim lim —lnIP’( Zb € [ —8,q—|—8]) =-=5,(q),

glon—>oon
i=1

where S,(q) = q ln + 1 1= q ln =4 £ is the entropy or rate function.

In this survey, I w1ll dlSCUSS Bernoulh random matrices. A Bernoulli random
matrix is an 7 X n symmetric matrix with independent Bernoulli entries (modulo the
symmetry constraint) whose size 7 is going to infinity. I will discuss the law of large
numbers, the fluctuations, and the entropy for their spectrum and eigenvectors. There
are many motivations to study random matrices. The first goes back to Wishart who
considered random matrices to study correlations in large data sets. Such questions
are very modern, with the need to analyze larger and larger data sets and machine
learning. The second comes from physics and works of Wigner and Dyson. They pro-
posed to model the Hamiltonian of excited nuclei by random matrices, an idea which
turned out to be quite successful as indeed real nuclei turned out to have energy
levels distributed like the eigenvalues of random matrices. But Bernoulli matrices
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n=50p=01 n=50p=0.01

Figure 1. Courtesy of D. Coulette.

are special among all other random matrices because they describe the adjacency
matrix of an Erd6s—Rényi graph G(n, p). Indeed, the latter is just a graph built on n
(labeled) vertices, with an edge drawn independently between each couple of vertices
with probability p. Studying the eigenvalues of the adjacency matrix of a graph gives
valuable geometric information, such as the size of its boundary (expanders) or the
number of specific configurations, such as triangles, that it contains. One can also
be interested in the combinatorial properties of such matrices and for instance focus
on the probability that the matrix is singular; see e.g. [68]. My viewpoint will be to
investigate the properties of the eigenvalues and eigenvectors of Bernoulli random
matrices, as a particularly nice and well-documented example of random matrices.

To simplify, I will restrict myself to symmetric Bernoulli matrices B,, throughout
these notes:

B.(i.]) =Bn(j.1),

and assume that (B, (i, j), i < j) follows a Bernoulli law with parameter p. Also, I
will take B, (7, i) random, but could take it equal to zero without changing much the
statements of most of the results.

My goal is to understand the spectrum of B,, as well as the properties of its eigen-
vectors as n goes to infinity. One can easily guess that these properties should depend
on the parameter p. Indeed, thinking about the Erd6s—Rényi graph, one sees that the
average degree of a vertex is pn. The graph will be very dense if pn goes to infinity
fast enough but sparse if it is finite.

Indeed, it is well known since the breakthrough paper of Erd6s and Rényi (see
Figure 1) that if np < 1, G(n, p) will almost surely have no connected component
of size greater than O(Inn); if np = 1, there is a giant connected component but it
is of size of order n2/3; if n p goes to a constant ¢ > 1, it will have a unique giant
component but lots of small components, and isolated vertices will continue to exist
until np < (1 — ¢€) Inn; whereas if np > (1 + &) Inn the graph will almost surely be
connected. Here ¢ is some positive real number as small as wished. In the case where
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np is of order c, the finite size connected components will create small diagonal
blocks in the Bernoulli matrix, with entries equal either to zero or one and therefore
finitely many possible eigenvalues. Hence, we expect the spectrum to accumulate at
these possible values. But should there be other possible eigenvalues? Similarly, we
see that the eigenvectors related with these eigenvalues are localized on a few vertices.
But should we also have delocalized eigenvectors? On the contrary, in the case where
np > (1 4+ &) Inn, we may expect eigenvectors to be delocalized and the spectrum to
be nicely continuous. In this case, a whole theory has been developed to show that
the spectrum and the eigenvalues of Bernoulli matrices have the same properties as
those of a random matrix with Gaussian entries. The latter is well known to be much
easier to study, for instance, because the joint law of its eigenvalues is rather simple
and independent of the eigenvectors. Conversely, Bernoulli matrices resemble more
heavy-tailed matrices when pn is of order one, in the sense that it has mostly very
tiny entries but a few large entries. Understanding the transition between these two
behaviors is at the heart of random matrix theory.

In this survey, I will start discussing the asymptotic behavior of the spectrum in
both sparse and dense cases. Then, I will consider its fluctuations, both local and
global, as well as the properties of its eigenvectors. Finally, I will discuss the large
deviations of the spectrum, for instance how to estimate the probability that the sec-
ond eigenvalue of Bernoulli matrices takes an unexpected value.

2. Law of large numbers

In this section, we shall see that the limiting distribution of the spectrum differs a lot
according to whether pn goes to infinity or not.

A first remark should be made about the matrix B,,: its entries are not centered. It
will be more convenient to center them and renormalize the matrix properly. To this
end, we make the decomposition

B, = vnp(1 — p)X, + p1,

where 1 is a matrix whose entries are all equal to one, whereas the entries of X,, are
centered and renormalized to have covariance 1/n:

vnp(l—p)

The matrix 1 has one non-trivial eigenvalue which equals n, and flat eigenvector

1= (1/Vn.1/Vn,....1//n).

Xn(ivj) =
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Figure 2.

Conversely, the spectrum of X, has eigenvalues mostly of order one in the sense that
E[Tr(X2)] = E[Y_ A?] = n. Therefore, the above decomposition shows that B,, has a
very large eigenvalue of order n, and the rest is roughly given by the eigenvalues of X,
taken on 1+. Moreover, by Weyl’s interlacing properties, the eigenvalues ()‘,B)lsisrz

of B,,/+/np(1 — p) and ()Ll.X)lfiSn of X, are interlaced:

A <aB <)X .o <A <aB
Therefore, it is in general not difficult to retrieve the properties of the eigenvalues of
B, //np(1 — p) from those of X,. Hereafter, we will therefore concentrate mostly
on X,,.
2.1. Dense case

The first result describes the asymptotic distribution of the spectrum in the dense case
and shows that the limit is described by the famous semi-circle law; see Figure 2.

Theorem 2.1. Assume that pn goes to infinity as n goes to infinity. Then, almost
surely, for anya < b

lim 1#{;’ A2 € Vnp(1 = p)la.b]} = lim_ %#{i : ¥ € la.b]} = o([a, b)),

n—>oon

where o is the semi-circle law given by
1

o(dx) = 2—v4—x21|x|52dx. 2.1
big

The semi-circle law is ubiquitous to random matrix theory as it describes the
asymptotic behavior of random matrices with Gaussian entries, but in fact any ran-
dom matrix with independent centered entries (a;;);,; such that E[|/na;;|*>¢] is
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Figure 3. Simulation for ¢ = 1,2, 3 (courtesy of J. Salez).

uniformly bounded for some & > 0. Such a convergence was proved first by Wigner
in the case where p is independent of n based on the computation of the moments
E[Tr Xﬁ ]. Indeed, one can expand the trace of moments of matrices in terms of the
entries, and observe that the indices which contribute to the first order of this expan-
sion can be described by rooted trees, whereas o(x*)is equal to the Catalan numbers
which enumerate them.

2.2. Sparse case

On the other hand, the limiting distribution of the spectrum is very different when pn
is of order one. Namely, we have the following theorem; see [52,70].

Theorem 2.2. Assume that pn goes to ¢ € (0,400) as n goes to infinity. Then, almost
surely, for anya < b

lim l#{i :)tiB € vnp(l —p)[a,b]} = nll)rrolo %#{i :)LiX € [a,b]} = pe([a. b]).

n—oon

The limit law . depends on c; some plots are shown in Figure 3.

The simulations indicate the presence of atoms. They were shown to be exactly
given by totally real algebraic integers in [58] for all ¢ > 0; these are the roots of monic
polynomials with integer coefficients. It is easy to understand that the atoms should
be totally algebraic integers as finite connected components are diagonal blocks with
0 or 1 entries whose characteristic polynomials have such roots. It is a much stronger
statement to show that all such roots are atoms, in particular since totally algebraic
integers are dense in the real numbers. . has also a continuous spectrum: it was
indeed proved in [30] that i, has a non-trivial continuous part if and only if ¢ > 1.
This result is in fact hard to prove as the limit laws p.’s are described as the solution
of complicated equations [28]; see also [17,20]. However, such description could be
used in [8] to prove the existence of an absolutely continuous part for sufficiently
large ¢. Moreover, the first-order expansion of i in ¢ going to infinity was derived
in [38]. The spectrum at the origin seems to have a Dirac mass whose weight could
be computed [29].
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2.3. Idea of the proof

The first proof of Theorem 2.1 estimated the moments % Tr(Xn)k for all integer num-
bers k; see [69] for the first theorem and [17,52,70] for the sparse case. However, in
order to go into more local results like the behavior of the eigenvectors or the local
fluctuations, and as well to have more explicit formulas for the limit law, it is more
convenient to study the resolvent. This path can be used to study the asymptotics
of the spectral measure of any self-adjoint matrix X,, with independent entries mod-
ulo the symmetry constraint, and was generalized to study heavy-tailed matrices in
[17,20,52] based on the ideas from [35]. The idea is to derive the asymptotics of the
Stieltjes transform

1 R RN
Gn(2)=;Tr(Z—Xn) IZZZm
i=1 i

for a complex number z away from the real line. To this end, we use the Schur com-
plement formula which reads

1
z = Xii —(Xi, (2 = XO)~1X;)’

(z —Xn)ii' = (2.2)
where X; = (Xj;);+; and X @ s the associated principal minor, namely the (N — 1) x
(N — 1) matrix obtained from X,, by removing the ith row and column. Xj; goes to
zero with N and we can check (e.g. by estimating the L? norm of the difference) that
with probability going to one

(Xi (2 =XD)7x;) = > X2z = XD)2t +o(D). (2.3)
Jij#
This is where the “light tail” hypothesis pn going to infinity starts to matter. Then,
the entries X/, 2 ; goto zero and have variance 1/n so that, since the X;; are independent

of X&) the law of large numbers (or a second moment computation) asserts that with
probability going to one

N 1 N
> XFE-XxD) =" E[xig](z—x<'>)jjl+o(1):; > =X + o).
Ji# JiJ#i Jij#i

But again X® and X,, vary only by a rank two matrix (if we complete X® by zero
entries at the ith row and column), so that their spectrum is interlaced by Weyl’s
interlacing property. As a consequence

1 . 1

J#L
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This approximation, together with (2.2) and (2.3), implies that with high probability

1 _ 1
Gn(2) = lZ(Z —Xn); = ot o(1). 2.4)

After recalling that G, (z) goes to zero as N goes to infinity, we conclude that since
G, (z) goes to zero as the imaginary part of z goes to infinity,

Gu(z) = %(z —VzZ—4) +0(1)

is approximately the Stieltjes transform of the semicircle law G4 (z) = %(z —+/z2-4).
Since G, is analytic and uniformly bounded for Iz > &, Montel’s theorem implies
that G, converges to this limit away from the real line, which yields the vague con-
vergence of the empirical measure of the eigenvalues. Because % Tr(Xfl) isin L!, the
weak convergence follows.

On the contrary, in the heavy-tailed case where pn is of order one, the entries
of X;; are often very small but of order one with a positive probability. Hence, the
previous law of large numbers does not hold true any more and we cannot expect such
a simple equation as (2.4). In fact, ) i X izj (z— X(i))j-_jl, if it converges, will a priori
converge to a random variable. To study this convergence, we make the following
assumption on the law p, of X;;:

lim n( / (e v l)dun(x)) = d(u) 2.5)

n—>oo

with ® such that there exists g on R*, with g(y) bounded by Cy* for some x > —1,
such that foru € C—,

D) = /0 g(y)e’ dy. 2.6)

This is satisfied by the adjacency matrix of Erdés—Rényi graph with ®(u) =c(e'*—1)
if pn goes to ¢ and g is a Bessel function [20], but also for other cases, for instance
for « stable laws with ®(u) = c(iu)*? and g(y) = Cy*/?~! for some constants
¢, C. Then, it was shown in [17,20] that G,(z)= %Tr(z — X")~! converges almost
surely towards G given by

G(z) =i / et7eP: Oy zeCT, (2.7)

where p, : RT — {x 4+ iy;x < 0} is the unique solution, analytic in z € CT, of the
non-linear equation

o0 .
p(1) = /O g(neFete= gy, 2.8)
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This entails the convergence of the spectral measure of X”, with ¢ replaced by a
probability measure with Stieltjes transform given by (2.7). The argument to prove
(2.7) and (2.8) is as follows. We first remark that G, concentrates in the sense that it
is close to its average; see Theorem 3.2. We let p" be the order parameter p? (x) :=
E[+ Y ®(x(z — XO)71)]. By (2.2) and (2.3), we find that, if 3z > 0,

o0 .
Gn(z) ~ E[Gn(2)] = —iIE|:/ Pitz=it X X7 (z—XO) 7 d;} + o(1)
0

=i /Ooo ei’ZE[]l;[i E[e~ X5 X5 dt:| +o(1)
] (1 + %Cb(t(z — X("))j—jl)) dt} +o(1)

o0
= —i/ e”ZIE[
0 J#i

o0 . "
i / MEHPE® gr 4 o(1).
0

To conclude, we need to show the convergence of p”. But p” can be seen to be analytic
away from the real axis, and uniformly bounded under our hypothesis. This is enough
to see that it is tight and any limit point will be analytic by Montel theorem. Hence, it
is enough to show that it has a unique limit point for z with large imaginary part. To
this end, we get an equation for p” which follows from (2.6) by

0 iy —
Pz (1) =/ g(y)JE[e’“Z—X“’m ]dy
0
> 2= 0 X7 E-XD)5
2/ g(y)JE[ex jz2 Xij i ]dy—l—o(l)
0

o0 .
2/0 g(y)e e ) dy + o(1),

where in the second line we used (2.2) and (2.3). One can conclude by proving the
uniqueness of the solutions to this equation when z is far from the real line by show-
ing that the non-linear equation is then a contraction. The above arguments were
made complete in [17, 19, 20]. Another approach to heavy-tailed matrices and sparse
Bernoulli matrices based on Aldous’ Poisson-weighted infinite tree was proposed
in [25].

2.4. Extreme eigenvalues

The asymptotic behavior of the extreme eigenvalues also depend on c: they stick to the
bulk when pn>>Inn and then go away at distance of order +/In n. We, more precisely,
have the following result, putting together the article of Benaych-Georges, Borde-
nave, and Knowles [18] and that of Alt, Ducatez, and Knowles [4]; see also [65].
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Theorem 2.3. « Assume that pn/Inn — +o00. Then the largest eigenvalue of X,
sticks to the bulk: )L{( — 2

o Assume that pn/Inn — 0. Then AX ~ VInn/In(Inn/pn).

o Assume that pn ~ C Inn. Then for C > 1/(In4 — 1) := C* the eigenvalues stick
to the bulk, whereas for C < 1/(In4 — 1)

o

1
, O =max — B;;.
,—Ot—l pn]Z 1

A=

Observe that Zj B;j is the degree of vertex i: the largest eigenvalue is hence
created by the largest degree in the graph. In fact, in the work of Alt, Ducatez, and
Knowles [4], it is shown that all eigenvalues outside the bulk are created by vertices
with large degrees when pn < C*Inn.

3. Fluctuations

3.1. Concentration of measure

Concentration of measure has become a central tool in probability and, in particular,
in random matrix theory. It allows us to prove that some quantities, such as smooth
function of independent variables, are not much random. It was crucial in the previous
proof of the convergence of the spectral measure. However, it generally depends on
the tails of the random variables. Herbst’s argument allows considering random vari-
ables with sub-Gaussian tails and more precisely random variables whose distribution
satisfies log-Sobolev inequalities, which is the case for instance when their density is
strictly log-concave as for Gaussian’s variables. To deal with bounded variables such
as the entries of Bernoulli matrices, one should rather use the theory developed by
Talagrand [61]. This was done in [44], where the spectrum of random matrices was
observed to be a smooth function of its entries and the associated Lipschitz norm
was computed. It resulted in the following theorem [44, Theorem 1.1]. We hereafter
consider a symmetric matrix A with independent entries above the diagonal with dis-
tribution a;;j /</n, where a;; is distributed according to P;; supported in a compact
set K with width |K]|.

Theorem 3.1. (1) Take f convex and Lipschitz with Lipschitz norm || f || L. Then,
forany § > do(n) = 8[K||| flL/n,

2(5—50(:1))2}'

]P’('%Tr(f(A))—E[%Tr(f(A))] 16/K 2

>8||f||L)s4exp{—n
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(2) There exists a finite constant ¢ > 0 such that for any § > §1(n) ~ /8o(n)

]P’( sup lTr (f@A) - E[l Tr (f(A)):|
feLipg |1 "

fexp{—n

> 8||f||L)

, (8 —Mn))z}
c|K|? '

(3) Let /\‘14 be the largest eigenvalue of A. Then

(8- 8|K|/\/ﬁ)2n}.

P — B4 = 81K]) < exp{— -

This result is a direct application of Talagrand’s beautiful theory and the com-
putation of Lipschitz constants of functions of the spectral measure in terms of the
entries; see [6,45]. The original statement proves concentration around the median
rather than the mean, but it is easy to go from one result to the other up to some error
80(n), 81(n). The second point is deducted from the first by approximating a general
function by convex functions. It applies to Bernoulli matrices straightforwardly by

taking |K| = 1/+/p(1 — p).

Theorem 3.2. Take [ convex and Lipschitz with Lipschitz norm || f ||L. Then, for any
§ > 8o(n) = 8y/x| flL/np(1 - p),

(|1 e (%)~ B[ 1o (7060 | > 5+ )
e
_exp{ p(1—p)n 16|f|i}

Moreover, for any § > §y(n) = O(1/+/p(1 — p)n)
P(|A1 —E[A]] > 8 + 85(n)) <exp{— p(1 — p)ns?}.

As we can see, the speed of the concentration deteriorates with p going to zero
to be of order n when np is of order one. In fact, it can be shown that the worse
concentration estimates for the empirical measure are of the order of exponential
in n. Indeed, we have the following result due to Bordenave, Caputo, and Chafai [24]
which is based on the Azuma—Hoeffding inequality and requires only the indepen-
dence of the vectors of the random matrix.

Lemma 3.3. Let || /|7y be the total variation norm:

p
Ifllzy = sup Y | f(x) = flxion)|.

X1 <-<Xp i=2
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Then, for any self-adjoint matrix X, with independent vectors ((Xi;, 1 < J),
1 < j < n) and eigenvalues (A;)1<i<n for any function f with finite total variation
norm so that E[|% Yo' S]] < oo, and any § > 0

P(‘% DIWALH —E[%Zf(/\i)}

i=1 i=1

_ng?
>68|fllrv | <2e” 5.

In the general case, however, the extreme eigenvalues do not concentrate and can
be very large for heavy-tailed entries [4,9].

3.2. Global fluctuations

It is a natural question to wonder how the empirical measure of the eigenvalues fluc-
tuates and, in particular, whether the concentration result of Theorem 3.2 is on the
optimal scale. In the case where p is of order one, this question was first answered
by Jonsson [51] by estimating moments, and in the context of Gaussian matrices by
Johansson [50] by using loop equations. The main point is that the central limit theo-
rem does not require a renormalization by the famous +/n as for the classical central
limit theorems.

Theorem 3.4. Assume that p € (0, 1) independent of n. Let f be a continuously
differentiable function. Let A; be the eigenvalues of X,. Then

n n
> fOi)-E [ > f(xi)}
i=1 i=1

converges in distribution towards a centered Gaussian variable with variance

LR @0 G-
=5 L5 )mmd“’y'

The central limit theorem also holds if one recenters with respect to the limit
rather than the expectation; see e.g. [56].

On the contrary, if pn goes to a constant ¢, we see that Theorem 3.3 gives the
optimal speed and we have a “more” classical central limit theorem [7,20, 59]:

Theorem 3.5. Assume that pn goes to ¢ € (0, +00). Let f be a Cb1 function. Then

%(Xn:f(ki)—ﬂi[if@i)})

i=1 i=1

converges in law towards a centered Gaussian variable with non-trivial variance.
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Together with [46], we claim that at least for pn of order one, or in [n®, n17¢], or
p of order one, we have the following theorem.

Theorem 3.6. Let f be a Cb1 function. Then

ﬁ(iﬂm—ﬁ[fm»])

i=1 i=1
converges in law towards a centered Gaussian variable with non-trivial covariance.

This result should hold for any p > 1/n.

3.3. Local laws

An important breakthrough towards the understanding of local fluctuations and eigen-
vectors is to analyze the so-called local laws as foreseen in [41]. Namely, to esti-
mate Y f(4;) for less smooth functions, in fact for functions on a mesoscopic scale
f(x) = g(N%(x — E)) for some « € (0, 1). Equivalently, one can look at f(x) =
(z —x)~! with z = E + in with n of order N ~* (indeed the latter can serve to approx-
imate conveniently the first). In this scale, it was proved that if pn goes to infinity,
the mesoscopic distribution of the eigenvalues is still very close from the semi-circle
distribution. Indeed, let us define the Stieltjes transform to be given by

Gu() = 23— Gu) = [ i,

n ¢ zZ — zZ —
i=1

In [40, Theorems 2.8 and 2.10], the following result was proved, where {-high prob-
ability means a probability greater than or equal to 1 — e=Mm for some v > 0.

Theorem 3.7. There are universal constants Cy, Co > 0 such that the following
holds. Assume that
pn > (Inn)€%¥, &= C,Inlnn.

Then, for E € [-3,3land D ={z =E +in,0<n <3},

_ e ! ! } L)}

holds with C-high probability. Moreover, for n > (Inn)¢n™1

#{i: A €[E—nE+n]}=no([E—nE+ TI])(l + O(IH”)CZ( 13 + L))
nni pnn

with {-high probability.



A. Guionnet 58

The above theorem applies for any p such that pn goes to infinity much faster
than any Inn; see e.g. [4]. Below Inn, the extreme eigenvalues were shown to be
dictated by the largest degree in the graph [18].

A similar statement in the sparse case where pn goes to a finite constant is still
open. Indeed, the fact that . has a dense set of atoms and a continuous part makes the
analysis a priori much more involved and the local law more difficult to conjecture.
An easier heavy tail matrix model was studied in [17, 26, 35], namely the random
matrices with alpha-stable independent entries. In this case, the entries follow the
alpha-stable law P(|A4;;| > ¢) ~ t7%/n. When o < 2, it was shown in [17,35] that
the empirical measure converges towards a limiting law p, which is different from
the semi-circle law. One of the advantages of this model is that u, is absolutely
continuous except possibly for a discrete set of atoms. Of course, one cannot expect
the eigenvalues to be as rigid in the heavy-tailed case since this would contradict the
central limit theorem (which holds as in Theorem 3.6; see [20]). Hence, in this case,
large eigenvalues should be less rigid, creating large fluctuations. The following result
was proved if the A;; are a-stable variables in [26,27]: for all 1 € R,

1
E[exp(izAu)] = exp ( — ;wa|t|°‘), 3.1

for some 0 < o < 2 and wy = 7/ (sin(wa/2)I (). We put

3 if$ <o <2,
P=1 g5 ifl<a< %, (3.2)

Then, there exists a finite set §, C R such that if K C R\&, is a compact set and
6 > 0, the following holds. There are constants cg, ¢; > 0 such that for all integers
n > 1,if I C K is an interval of length |I| > c¢;n~?(Inn)?, then

Ny — npa(D)| < 8nl1, (3.3)

with probability at least 1 — 2 exp(—con?|1|?). The fact that our result might not be
true on a finite set of values should only be technical. This result was improved in
[2, Theorems 3.4 and 3.5] in order to tackle I of size n~?® with w(x) > 1/2 (and
N(z) small enough when @ < 1). Such an optimal scale is important in the study of
the local fluctuations of the spectrum.

In both light and heavy tails, the main point is to estimate the Stieltjes transform
Gn(z) = 237 (z — A;)~! for z going to the real axis: z = E + in with 1 of order
nearly as good as n~! for light tails, n~ for heavy tails. This is done by showing
that G, is characterized approximately by a closed set of equations. In the case of
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lights tails, one has simply a quadratic equation for G, and needs to show that the
error terms remain small as z approaches the real line. In the heavy-tailed case, the
equations are much more complicated, see (2.7) and (2.8), and therefore more diffi-
cult to handle. Similar questions are completely open for other heavy-tailed matrices,
including Bernoulli matrices with pn of order one.

3.4. Local fluctuations

When the average degree pn is large, one expects the eigenvalues to behave exactly as
the eigenvalues of a symmetric matrix with independent Gaussian entries (so-called
GOE matrices). The advantage of Gaussian matrices is that they are an integrable
model of random matrices in the sense that many of their properties can be exactly
computed. To start with, the joint distribution of its eigenvalues (Al.c")lfisn is explicit:

1 "
dP(\%) = fA()L)e_ZZ(A,»G)Z de?, (3.4)
where
AW =TIk -4
i<j

is the Vandermonde determinant. In particular, this formula does not depend on the
eigenvectors. Based on this formula, Tracy and Widom could study the local fluctua-
tions of the spectrum ()tiG)lsiS,, [66,67] and they proved that

lim P(n*3(F —2) <5) = Fi(s),
n—>oo

where F] is the distribution function of the Tracy—Widom law. For the eigenvalues in
the bulk, it was proved [55] that, for all smooth compactly supported function,

€,(0.E) =E[0(n(Af — E).....n(A{,, — E))]

converges as n goes to infinity and the limit is described in terms of Pfaffian distribu-
tions.

The universality in the bulk was obtained after a series of works including notably
[41,42,62] and [39, Theorem 2.5] (for ¢ > 2/3) and improved in [48] (for ¢ > 0) to
finally get the following theorem.

Theorem 3.8 (Bulk universality). Suppose that pn > n® with ¢ > 0. There exists by,

going to zero so that for all smooth compactly supported function O, any E € (-2, 2),
E +bn E/

lim

n—>oo E—bn 2bn

(66, (0. E') — €3,(0. E)) = 0.

Moreover, the universality at the edge was obtained in [39, Theorem 2.7]; see also
[60].
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GOE STATISTICS FOR LEVY MATRICES

0
Poisson/
Localized
GOE/
E Ea Delocalized
0
0 1 2
a€(0,2)
Figure 4.

Theorem 3.9 (Edge universality). Suppose that pn > n®, ¢ > 2/3. Then there exists
8 > 0 such that

P(n2/3()tg . 2) < S) — P(n2/3(k§ _2) <54+ O(n_8)) + 0(}1_8).

This statement was generalized to pn > n 1/3 but the largest eigenvalue then needs

to be shifted by a deterministic drift of order 1/ pn [53]. Beyond this threshold, the
fluctuations of the second largest eigenvalue starts to be Gaussian.

When pn decreases below 1/3, it was proved that universality stops to hold
and fluctuations of the largest eigenvalue start to be Gaussian. The precise transi-
tion between Tracy—Widom law and Gaussian fluctuations when p is of order n=2/3
was described in [49]. When n°(") « pn « n'/3, the papers [47,49] show that the
fluctuations of the extreme eigenvalues are Gaussian, even if they stick to the bulk.
In the case where pn < Inn, Theorem 2.3 asserts that the eigenvalues go away from
the bulk, at distance of order +/Inn. The corresponding eigenvectors are localized
close to the vertices with a high degree. In an even more recent preprint [5], the same
authors show that these eigenvalues follow a Poisson point process. Such questions
are open for Bernoulli random matrices with pn of order ¢ € (0, +00) and eigenval-
ues in the bulk. Indeed, as we have seen, the limiting density is a mixture of atoms
and continuous density and it is not yet clear how to zoom in the spectrum in such a
situation. However, such questions could be analyzed for Lévy matrices with ¢-stable
entries in the regime where local law can be obtained on the optimal scale n=1/2[2].
Figure 4 depicts the expected regimes. In fact, one expects the following transition to
occur (see [63]).

e Ifua €[l,2], all eigenvectors corresponding to finite eigenvalues are completely
delocalized. Further, for any E € R, the local statistics of the eigenvalues near E
converge to those of the GOE as N goes to infinity.

o Ifa € (0, 1), there exists a mobility edge E, such that for |E| < E, the local
statistics of the eigenvalues near E converge to those of the GOE as N goes to
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infinity. Butif | E| > E,, the local statistics of the eigenvalues near E converge to
those of a Poisson point process and all eigenvectors in this region are localized.
The fact that local statistics are given by those of Gaussian matrices for o € (1,2)
ora € (0,1) and E small enough, except for E in some finite set, was proved in
[2, Theorems 2.4 and 2.5].

3.5. Properties of the eigenvectors

The properties of the eigenvectors are intimately related with local laws. Indeed, by
definition of the eigenvectors, if v is an eigenvector of the symmetric matrix X, for
the eigenvalue E and we set (v, ¢;) = v;, then X is the first column vector of X,
while X,(,l) is the (n — 1) x (n — 1) principal minor of X,, obtained by removing the
column and row vector given by X; and X 1T :

v2 = (14 (X1, (E =XM)72x,)) 7,

where, at least in the dense cases (X1, (E — Xf,l))_zXl) is close to % Tr(E — X,) 72,
and so is governed by the local law. In [40, Theorem 2.16], the following theorem
was proved.

Theorem 3.10 (Complete delocalization of eigenvectors). Assume the hypotheses of
Theorem 3.7 with pn > n® with ¢ > 0. Let v; be the eigenvectors of B, for the
eigenvalues Ay, < Apy—1-+- < A1. Then

with C-high probability.

This result was extended to g going to infinity logarithmically only more recently
[3]. We roughly state their result:

e (Semilocalized phase) Assume that C +/InzInlnn < A/pn < 3Inn and let w be a
normalized eigenvector of B,, with non-trivial eigenvalue E > 2 + C /2. We let
Ala) =a/~a—1land oy = Zy By, /pn. Welet Wg s be the set of vertices such
that A(ax) € [E — 68, E + 8]. Then for each x € WE s, there exists a normalized
vector v(x) supported in a ball around x and radius ¢ VInn, such that the support
of v(cx) and v(y) is distinct if x # y and

| 2
Z (v()c),w)2 > l—C(«/lnnpnlnpn + vlnnan _2) §72.

xEWE.,;

Moreover,

1
2, L) = G

Y€B(x)
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¢ (Delocalized phase) For any v > 0 and ¥ > 0, there exists a constant C > 0 such
that for pn € [Cv/Inn, (Inn)>?], if w is a normalized eigenvector for B, with
eigenvalue F € [-2 + k, —«] U [k, 2 — k],

2 -1
w3, <n™t*e

v

with probability greater than 1 — n™

This question is completely open for Bernoulli random matrices with pn of order one
but the understanding of Lévy matrices is again more complete. Based on [2,26,27],
we can assert that Tarquini, Biroli, and Tarzia’s conjecture [63] is partly proved.
Indeed the complete delocalization is proved for & € (1,2) and « € (0, 1) and small
enough eigenvalues. A sort of localization for « € (0, 1) for large enough eigenvalue
was derived in [26], and was shown to be not true for small enough eigenvalues in
[27]: the transition and the value of the mobility edge is still an open question. In fact,
even in the case where the eigenvalue statistics belong to the universality class of
Gaussian matrices, the fine properties of the eigenvectors of Lévy matrices differ [1].
Let us also mention [57] which shows under quite general assumptions that eigenvec-
tors are somehow uniformly delocalized in the sense that any subset of at least eight
coordinates carries a non-negligible part of the mass of an eigenvector.

4. Rare events

It is sometimes important to estimate the probability of rare events, such as the prob-
ability that the extreme eigenvalues take unlikely values or the empirical measure of
the eigenvalues shows an unlikely profile, and what kind of optimal strategy can lead
to such deviations from the expected behavior. In the case of Gaussian symmetric
matrices, the joint density of the eigenvalues is known (3.4). One finds by sort of
Laplace’s principle [15, 16] the large deviations for the empirical measure and the
largest eigenvalue.

Theorem 4.1. Let AG < /\26 2 < /\lG be the eigenvalues of a GOE matrix. Then, the
following holds.

o Let E(pn) = %ff(% + y4—2 —1In|x — y|)du(x)du(y) and set & (u) = E —inf E.
Then & is a good rate function and the distribution of the empirical measure of
the elgenvalues Un = = Z ] A6 satisfies a large deviations principle (LDP) with
speed n? with rate functlon I that is for every closed set F

llmsup — lnIP’(/Ln e F) < —1nf8
n—>oo
whereas for any open set O

hmsup—ln]P’(,un € 0)> —1nf8

n—>o00
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o LetIg(x) =1 [} /4= y*dy for x = 2 and Ig(x) = +oo for x < 2. Then I
is a good rate function and the distribution of AIG satisfies an LDP with speed n
and good rate function Ig.

In this case, deviations of the spectrum can be created independently from the
eigenvectors which stay uniformly distributed. On the other hand, if the entries have
sharp exponential decay, large deviations can be created by large entries. Assume that
for some o € (0, 2), there exists a > 0 so that for all 7, j

lim 27Y=/t"* InP(|v/nX;j| = 1) = —a.
100
Theorem 4.2. « The law of the empirical measure satisfies an LDP in the speed

n'*% and good rate function which is infinite unless u = o B v and then equals

a [ |x|*dv(x) [22].

o The law of the largest eigenvalue satisfies an LDP with rate n 5 and GRF propor-

tional to ([ (x — y)~tdo(y))™* [10].

However, the situation is much less understood for Bernoulli matrices and again
the sparse and the dense regimes lead to very different results and techniques. We
discuss these questions hereafter.

4.1. Large deviations for the extreme eigenvalues

Let us first consider the dense case. In [12,43], we considered the large deviations
for the largest eigenvalue of Wigner matrices and showed that if the entries are
Rademacher, then the same large deviation principle holds, whereas in general there
is a transition between deviations close to two where the rate function is the Gaus-
sian one whereas for large deviations towards large enough values the rate function
is more of a heavy tail type. In a work in progress with F. Augeri, R. Ducatez and J.
Husson, we prove the following theorem.

Theorem 4.3. »  Assume that p = 1/2. Then the law of A satisfies an LDP in the
scale n and with the same rate function Ig as for the GOE matrix.

e Assume that p € (0,1/2). Then for x close enough to 2, the probability that )L{(
is close to x is the same as in the Gaussian case. But for x large enough,

1
limsup limsup — InP(|]Af — x| < §) = —I,(x),

5¢0 n—00

where I(x) < Ig(x).

The case p € (1/2,1) is under investigation. In fact, analyzing the large deviation
requires to understand good strategies to create the deviations. For p = 1/2, it is
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shown that an optimal strategy is to tilt the law of the entries in order to change their
expectation so that the matrix looks like a rank one deformation of Bernoulli matrix
with a delocalized deformation. The eigenvectors also stay delocalized through this
deformation. When p < 1/2 and x is large, it turns out that the optimal strategy is
to create fully connected components of size /n. For p > 1/2, the picture is less
clear and we suspect that vertices with high degree are optimal ways to create large
eigenvalues.

Let us now consider the sparse case following [21]: in this case we already saw
that large eigenvalues are created by vertices with large degree, namely with row or
column vectors with many entries equal to one.

Theorem 4.4. Let L, = m;ﬂ% and assume that

In(1/np) < Inn and np < /Inn/Inlnn.

Let Ay be the second largest eigenvalue of By,. Then for any § > 0,

—InP(A, > (1+6)/L
fm —n PGz A+ OVE) o0 o
n—00 Inn
whereas
—InP(A, <(1-9)/L
lim P2 =U=OVE) _ 5 g
n—o00 Inn

4.2. Large deviations for the empirical measure

In [23, Theorem 1.6], a large deviation for the empirical measure of the eigenvalue in
the sparse case was derived: we do not make precise the rate function as it is obtained
by contraction from the large deviation for the empirical neighborhood distribution.

Theorem 4.5. Assume that pn is fixed. Then the law of [i, satisfies a large deviation
principle with speed n.

This question is still open when pn > 1. When p is of order one, we should
expect to have a large deviation with speed n? according to the concentration of
measure, but the rate function should not be equal to the Gaussian one even when
p = 1/2 because the Dirac at the origin should have rate function bounded above by
In p (whereas it is infinite in the Gaussian case).

4.3. Large deviations for triangle counts

The traces of Bernoulli matrices have a combinatorial interpretation. For instance,
Tr(B2) is the number 7, , of triangles in the Erd6s—Rényi graph. Observe that its
expectation is of order p3n3. In the well-known paper [34, Theorem 4.1], the follow-
ing theorem was proved.
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Theorem 4.6. Let
1 p1 1
B =swf [ rependsay =3 [[in(pe# - pyasay|
0o Jo

and set p(p,t) =€ {I,(f). [ f(x.y)f(y,v)f(v,x)dxdydv > 6t}. Then for each
p€(0.1),

1
lim — InP(T,,, > tn®) = —p(p.1).

n—-oo n
This result extends to any moment Tr(Bﬁ ). However, observe that it does not tell

k is unbounded so that

us about deviations of the empirical measure since x — x
deviations of the extreme eigenvalues matter. It is natural to wonder what happens as
well when p goes to zero. This question was attacked in [33,36,37], but we state here

[11, Proposition 1.19]

Theorem 4.7. Let p go to zero with n so that (Inn)* < np?. Set v, =n?p?In(1/p).
Then fort > 1,

1
lim — InP(Tr(BY) > tn? p?) = —@(1),

n—00 vy
where ®(1) = 3t — ¥4 ifn™' « p < n7V2, but ®(r) = min{6;, $(r — 1)*/?}
if p > n~Y2 and 6, is the solution of Pc 4 (0:) =t, where Pc, is the independence
polynomial of the d -cycle.

4.4. The singularity probability

A well-known problem has been to estimate the probability that a matrix B,, with all
independent Bernoulli entries (hence not self-adjoint) is singular. In a breakthrough
paper, Tikhomirov [64] (see also [54]) could exactly estimate it, by showing that the
best strategy to achieve singularity is to have a zero column or row vector.

Theorem 4.8. There exists a finite constant C such that if CInn/n < p < L
P (B, is singular) = (24 0n(1))(1 = p)'n.

Such an optimal estimate is not yet known for the symmetric Bernoulli matrix B,
(even though it is conjectured) but the paper [32] proves that the probability that it is
singular is bounded above by e~OWM  This was improved in an exponential upper
bound in [31].

S. Open problems

(1) Local law for Bernoulli matrices when pn is of order one. This could be at
best on the scale /7 but is tricky even to state because of the atoms of the
limit law.
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Localization/delocalization of the eigenvectors of Bernoulli matrices for pn
of order one (one would conjecture that Dirac masses yield localization but
the continuous part yields delocalization, however the right criteria to express
this remains to be given). Find a critical ¢* such that for np > ¢* there exists
delocalized vectors with connected support with high probability.

Large deviations for the empirical measure of the eigenvalues of Bernoulli
matrices (all p so that pn > 1). Even when p = 1/2, one does not expect to
retrieve the Gaussian rate function since the entropy should be finite at 8¢ (as
can be seen by requiring all entries to be equal).

Precise estimate on the singularity probability in the symmetric case.

In comparison, d-regular graphs which are picked uniformly at random are
conjectured to be in the universality class of Gaussian random matrices for
all d > 3. This was proved for d going to infinity fast enough [13, 14], and
recently Huang and Yau could get the local law and the delocalization of the
eigenvectors up to d = 3.
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An introduction to the mathematics of deep learning
Gitta Kutyniok

Abstract. Despite the outstanding success of deep neural networks in real-world applications,
ranging from science to public life, most of the related research is empirically driven and a
comprehensive mathematical foundation is still missing. At the same time, these methods have
already shown their impressive potential in mathematical research areas such as imaging sci-
ences, inverse problems, or numerical analysis of partial differential equations, sometimes by
far outperforming classical mathematical approaches for particular problem classes.

The goal of this paper, which is based on a plenary lecture at the 8th European Congress
of Mathematics in 2021, is to first provide an introduction into this new vibrant research area.
We will then showcase some recent advances in two directions, namely the development of a
mathematical foundation of deep learning and the introduction of novel deep learning-based
approaches to solve inverse problems and partial differential equations.

1. Introduction

During the last years, deep neural networks have been key to spectacular successes in
diverse applications such as autonomous driving, medical diagnosis, speech recogni-
tion, and telecommunication. It is by now evident that deep learning and, in general,
artificial intelligence, will change in the future both public life and science in an
unprecedented way; and this future has already begun. As an example in the sciences,
Google’s DeepMind’s AlphaFold 2 has recently led to a breakthrough in highly accu-
rate prediction of protein structures [20].

A strongly increasing impact on mathematics itself can also be witnessed. The
field of inverse problems, predominantly in imaging science, was one of the first
areas in mathematics, which embraced these novel methodologies. This area, which
focusses on problems such as denoising, inpainting, super-resolution or computed
tomography, is particularly accessible to learning methods, since there does not exist
a precise model for what an image is. Almost all novel contributions, which improved
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65D18.
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the state of the art, employ such techniques. This, by now, already led to a change in
paradigm in this field. We will discuss further details in Section 4.1.

Besides inverse problems, another large area of mathematical problem settings
are partial differential equations. One can, in general, imagine using learning meth-
ods in solvers. It is, however, not immediately evident what the advantage of such an
approach would be. The ability of deep neural networks to beat the curse of dimen-
sionality then led to a change of paradigm in this area as well, and research at the
intersection of numerical analysis of partial differential equations and deep learning
accelerated since about 2017. Several milestones could already be celebrated as will
be presented in Section 4.2.

As bright as the deep learning future appears to be, one has to also be aware
of various major obstacles still waiting to be overcome. This was very prominently
stated during the plenary talk at the main conference in artificial intelligence and
machine learning, namely NIPS (today called NeurIPS) in 2017 on behalf of the Test-
of-Time Award, in which Ali Rahimi from Google claimed that “Machine learning
has become a form of alchemy”. And, indeed, as we will discuss later, a fundamen-
tal understanding of deep learning algorithms is still missing, posing a great—and
exciting—challenge to, in particular, mathematics.

This problem becomes even more severe when observing that in addition to a
lack of theoretical foundation, causing, for instance, a very time-consuming and deli-
cate training process, deep learning approaches also sometimes fail dramatically. One
example of such failures are so-called adversarial examples, when small changes in
the data lead to a radically different decision; a well-known problem in this regime
is the sensitivity of self-driving cars to minor adaptions of traffic signs such as the
placement of stickers. Another example is fairness, when biased training data causes
deep learning approaches to, for instance, reach racist decisions.

Summarizing, there is a tremendous need for mathematics in the area of deep
learning. One can identify two different research directions:

e Mathematics for deep learning. This direction aims for deriving a deep mathe-
matical understanding of deep learning and asks questions such as “How can we
make deep learning more robust?”

e Deep learning for mathematics. This direction focusses on mathematical problem
settings such as inverse problems and numerical analysis of partial differential
equations with the goal to employ deep learning techniques for superior solvers.

In this article, we will touch upon both research directions, showcasing some
novel results and pointing out key future challenges for mathematics. In Section 2,
we will first provide an introduction into deep learning from a mathematics view-
point. We will then delve deeper into the first direction, namely mathematics for deep
learning, and discuss the subarea of expressivity in more detail (Section 3). This will
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be followed in Section 4 by highlighting examples of the second direction, namely
deep learning for mathematics. Finally, Section 5 is devoted to future perspectives for
mathematics.

2. Deep neural networks

In 1943, McCulloch and Pitts had the vision to introduce artificial intelligence to the
world [28]. At that time, their idea was to develop an algorithmic approach to learn-
ing by mimicking the functionality of the human brain. Due to the structure of the
brain being composed of neurons with numerous interconnections, they introduced
so-called artificial neurons as building blocks. The structure of a neuron in the human
brain, in its most simple form, consists of dendrites through which signals are trans-
mitted to its soma, while being scaled/amplified due to the structural properties of the
respective dendrites. In the soma of the neuron, those incoming signals are accumu-
lated, and a decision is reached whether to fire to other neurons or not, and also with
which strength.

A mathematical definition of an artificial neuron is consequently defined as fol-
lows. In the sequel, we will build a neural network from such components with the
weights and biases being the free parameters, which need to be trained.

Definition 2.1. An artificial neuron with weights wy, ..., w, € R, bias b € R, and
activation function p : R — R is defined as the function f : R” — R given by

f(x1,...,xn) :p(inw,- +b) = p((x, w) + b),

i=1
where w = (wyq,...,w,) and x = (x1,...,Xp).
Let us now take a look at some examples of activation functions.

Example 2.2. (1) Heaviside function

1, x>0,
xX) =
p(x) {0, x <0.

(2) Sigmoid function p(x) = H%
(3) Rectifiable Linear Unit (ReLU) p(x) = max{0, x}.

The most basic activation function is certainly the Heaviside function, leading to
a yes/no decision. The sigmoid function is a smooth alternative. But the by far most
extensively used activation function in basically all applications is the ReLU due to
its simple piecewise linear structure, which is advantageous in the training process,
and still allows superior performance.
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2.1. The mathematical definition

An (artificial feed-forward) neural network is then built by concatenating artificial
neurons to compositions of affine linear maps and activation functions. This leads to
the following definition.

Definition 2.3. Let d € N be the dimension of the input layer, let L be the number
of layers, let Ng :=d, Ng, £ =1, ..., L, be the dimensions of the hidden and last
layer, let p : R — R be a (non-linear) activation function, and, for £ =1, ..., L, let
Ty be the affine-linear functions

Ty : RVt S RVe Tyx = wOx 4+ p©,

with W® e RNe*Ne—1 peing the weight matrices and b e RV¢ the bias vectors of
the £th layer. Then ® : R — RVL given by

P(x) = TLp(TL_lp(...p(Tl(x)) . )), x € RY,
is called (deep) neural network.

We would like to stress that in many papers a distinction is made between a neural
network and its realization, namely the function it realizes. The reason for this is that
different architectures can lead to the same function. For this article, we will, however,
avoid such technical delicacies.

2.2. Key research directions

Aiming to identify the key mathematical research directions in deep learning, let us
take a high-level view of the typical application of a deep neural network; exemplar-
ily we choose classification. One proceeds in the four—very coarsely explained—
following steps.

(1) We assume that we are given samples (x;, f(x;))7Z, of a function such as
fiM—{1,2,..., K}, where M might be a lower-dimensional manifold
of R?. This is a customarily assumed setting in image classification. We then
split this set into a training data set (x;, f (x,-))f;l, say, and a test data set
(i, f(xi))iL 541 say. The training data set is—as the name indicates—used
for training, and the test data set for testing the performance of the trained
network. Notice that the test data set stays hidden during the training process.

(2) Then an architecture of a deep neural network needs to be selected, i.e., a
choice of L, (Nz)é;l, and p. Sometimes selected entries of the weight matri-
ces (W(z))gfz1 are already set to zero at this point if one does not intend to
train a fully connected neural network.
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(3) Next, the affine-linear functions (Tg)é“:1 =wW®. +b(z))£7:1 are learnt by
solving the optimization problem given by

m
i, 2 E (B, (0. £50)) £ AR(OV . 5O)),
where &£ is a loss function to determine a measure of closeness between the
network evaluated in the training samples and the (known) function values
f(x;) and R is a regularization term to impose additional constraints on
the weight matrices and bias vectors. The optimization problem is typically
solved by stochastic gradient descent, yielding a network

. md N
D pwy, : R — R,

where
Dy pwy, (X) = Tep(Tp—1p(- - p(T1(x))...)).

(4) Finally, one employs the test data set to analyze whether

w0 poy, ~ .

i.e., whether and to which extent the training process was successful.

It is in fact very surprising that this procedure works this well these days, which
has two main reasons: first, the drastic improvement of computing power allows the
training of networks with hundreds of layers in the sense of deep neural networks.
And, second, we are living in the age of data, hence vast amounts of training data is
available. This being the empirical explanation, a profound mathematical explanation
why, for instance, deep networks are superior to shallow ones or why the complex
training data does not lead to the phenomenon of overfitting is to a large extent still
missing.

2.2.1. Mathematics for deep learning. Based on these considerations, we can now
formulate the four key mathematical research directions, first for mathematics for
deep learning. We will each time also mention the main mathematical fields involved,
thereby showing that almost each area of mathematics is touched and required.

e  Expressivity. This direction aims to understand whether and to which extent as-
pects of a neural network architecture affect the performance of deep learning.
Typically methods from applied harmonic analysis and approximation theory are
used.

e Learning. The goal here is to analyze the training procedure with a key question
being why the typically applied algorithm of stochastic gradient descent does
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Figure 1. Illustration of an explanation for the classification as a “black swan” using RDE.

converge to suitable local minima even though the problem itself is highly non-
convex. This direction relies on techniques from areas such as algebraic/differen-
tial geometry, optimal control, and optimization.

e Generalization. This research direction is the least explored and maybe also the
most difficult, sometimes called the “holy grail” of deep learning. It targets the
out-of-sample error and asks questions such as “Why is depth beneficial” or “Why
does high overparametrization not lead to overfitting?”. Required methods belong
in particular to the following areas: learning theory, probability theory, and statis-
tics.

Notice that these three research directions are precisely related to the three com-
ponents of the error of a statistical learning problem (cf. [4, (1.4) and Figure 1.2]),
namely the approximation error from the hypothesis class, the optimization error from
the algorithm itself, and the out-of-sample error.

Besides these more classical problem complexes, new directions have evolved.
One of the most exciting directions might be the following, which until now lacks
almost entirely a mathematical foundation.

e Explainability. Given a trained neural network, this area aims to analyze why
certain decisions were reached, and which components of the input data were
crucial for those. The range of required approaches is quite broad, including areas
such as information theory or uncertainty quantification.

In practice, this direction is invaluable, since one often encounters the situation
that a neural network is given and decisions have to be explained, for instance, to a
customer. In the imaging situation, typical explanations are relevance maps assigning
each pixel a relevance score for the decision such as layerwise-relevance propaga-
tion (LRP) [3] or rate-distortion explanation (RDE) [15]. For an example of such an
explanation, we refer to Figure 1.

However, from a mathematical standpoint, one truly aims for a mathematical def-
inition of the term “relevance” and an according theory of optimal relevance maps.
Ideally, one would also like to have explanations beyond the pixel-based setting and
for more challenging modalities. For a survey of some recent work in this direction,
we refer to [21].
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2.2.2. Deep learning for mathematics. As said before, the second main research
thread is deep learning for mathematics in the sense of deep learning for mathematical
problem settings. The two key research subfields are as follows.

o Inverse problems. The main goal is to improve classical model-based approaches
by deep learning techniques. Since it is often highly beneficial to not entirely
neglect domain knowledge such as the physics of the problem, one crucial ques-
tion is how to optimally combine deep learning with model-based approaches.
This direction relies on tools from imaging science, inverse problems, and mi-
crolocal analysis, to name a few.

e Fartial differential equations. Research in this area targets foremost the ques-
tion of how and to which extent deep neural networks are able to beat the curse
of dimensionality. This direction obviously requires methods from areas such as
numerical mathematics and partial differential equations.

3. Mathematics for deep learning

Deep learning-based methodologies for inverse problems and partial differential
equations exploit deep neural networks as approximators. Thus, the first question
to ask is whether deep neural networks are at least as good as all previous mathemat-
ical methods. This question belongs in the realm of the previously introduced area
of expressivity, which will be the focus of this section, aiming to provide a (partial)
answer.

3.1. Revisiting classical approximation theory

We start by revisiting classical approximation theory, and, in the sequel, analyze
whether deep neural networks have at least similar approximation properties as clas-
sical methods.

In a nutshell, function approximation has the following goal. Given a class € C
L?(R?) of interest—for later use it is sufficient for us to consider L?(R%)—and
a representation system (¢;)ic; € L?(R?), which can be an orthonormal basis or,
more generally, a frame, one aims to measure the suitability of (¢;);es for uniformly
approximating functions from €. For a budget N, the approximating function has
then typically the form of a linear combination of N terms of the representation sys-
tem. This leads to the following definition.

Definition 3.1. The error of best N -term approximation of some f € € is given by

on(f) = inf =T
iely

INCI, #IN=N, (ci)iery ‘2
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Figure 2. Illustration of a cartoon-like function.

The largest y > 0 such that

supon(f)=O(NTY), asN — oo,
fee

determines the optimal (sparse) approximation rate of € by (¢;)ier.

A closer look reveals that this viewpoint relates approximation accuracy to the
complexity of the approximating system in terms of sparsity.

Also for later use, we will now introduce one example of a class € and a repre-
sentation system (¢; );es along with an analysis of its optimal (sparse) approximation
rate. The model class we will consider, called cartoon-like functions (see Figure 2),
was first introduced in imaging science [ 10], since the predominant features of images
are edge structures. Such anisotropic features also occur in other settings such as the
solution of transport dominated equations, leading to a model class with much larger
applicability.

Definition 3.2. The set of cartoon-like functions &2(R?) is defined by
E*(R*) :={f e L>R?: f = fo+ f1- 18},

where @ # B C [0, 1]? is simply connected with a C?-curve with bounded curvature
as its boundary, and f; € C2?(R?) with supp f; € [0,1]? and || f;||c2 < 1,i =0, 1.

A lower bound for any optimal (sparse) approximation rate was derived in the
same article (i.e., [10]). We would like to remark that the purpose of the techni-
cal requirement of “polynomial depth search” in the following theorem is to avoid
degenerate cases of representation systems.

Theorem 3.3. Allowing only polynomial depth search, we have the following optimal
behavior for f € §2(R?):

on(f)=<N7', asN — oco.

The well-known wavelet systems [9] do only provide a suboptimal rate of N -3
due to the fact that they are isotropic multiscale systems in the sense of scaling in
both directions at a similar rate (cf. Figure 3).
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e

Figure 3. Schematic illustration of wavelet and shearlet approximation.

Various systems were suggested to provide optimal (sparse) approximations for
cartoon-like functions. The first successful systems were curvelets [7], which, how-
ever, did not allow faithful implementations. This could be achieved by so-called
shearlets, which were introduced in [26], see also the survey article [23]. For an illus-
tration of the benefit of anisotropic scaling, we refer to Figure 3.

Shearlet systems are associated with three parameters: scale j, position m, and
orientation k. For the precise definition, let 4,; and /Tz i»J € Z,denote the parabolic

scaling matrices given by
270
Azj = (0 21/2)

and ffz ; 1= diag(2//2,27), and let Sk, k € Z, be the shearing matrix given by

1 k
s (1),

(Cone-adapted) discrete shearlet systems can then be defined as follows (cf. [24]).

Definition 3.4. The (cone-adapted) discrete shearlet system S ¥ (¢, V) generated
by ¢ € L2(R?) and v, ¥ € L?(R?) is the union of
{p(-—m):m e Z?},
{2149 (SkAys - —m): j = 0, |K|
(¥4 (SE Ay - —m) 1 j =0, |k|

127121, m e 22},

<
< [2/1%1, m e Z?}.

We denote the associated shearlet transform by

SH(S) = ((£:8)) yesewwiy /€ L2®).

This system indeed satisfies the optimal (sparse) approximation rate for cartoon-
like functions up to a log-factor, which is often regarded as negligible. The following
statement is taken from [24], where also the precise hypotheses can be found.

Theorem 3.5. Let ¢, v, ¥ € L2(R2) be compactly supported, and let 1//}, U satisfy
certain decay condition. Then § ¥ (¢, , W) provides an optimally sparse approxima-
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tion of f € E2(R2), i.e.,
on(f) S N'(log N)3, as N — oo.

Concluding our example for Definition 3.1, shearlet systems provide an (almost)
optimal (sparse) approximation rate of N ! for the class € of cartoon-like functions.
For the interested reader, a faithful implementation of the shearlet transform as a
2D&3D (parallelized) fast shearlet transform can be found in www.ShearLab.org.

3.2. Universality of deep neural networks

Analyzing approximation problems for deep neural networks immediately bears the
question of how to replace the notion of complexity of the approximating term, which
was before measured in terms of sparsity. A typical approach for networks is a com-
plexity measure in terms of memory requirements. Recall that the || - [|o-“norm”
counts the number of non-zero entries.

Definition 3.6. Retaining the same notation for deep neural networks as in Defini-
tion 2.3, the complexity C(®P) of a deep neural network & is defined by

L

C(@®) =Y (IWOlo+ 6©]0).
=1

We will also in the sequel use the notion N Nj, ¢ 4, for the class of deep neural
networks with no more than L layers, complexity of at most C, input dimension d,
and activation function p. If no bound is given, we indicate this by writing co.

Thus, the key challenge is now to relate approximation accuracy to the complex-
ity of the approximating network in terms of memory efficiency. A very classical
result—and maybe the first main expressivity result from the time of the “first wave”
of neural networks—is the universal approximation theorem [8, 17], which states that
each continuous function on a compact domain can be approximated up to an arbi-
trary accuracy by a shallow neural network.

Theorem 3.7. Letd € N, K C R4 compact, [ : K — R continuous, p : R — R
continuous and not a polynomial. Then, for each & > 0, there exist N € N, ay, by € R,
and wy, € R4, 1 <k < N, such that

<e.
oo

N
Hf - Z arp((wk.-) — bx)
k=1

While this is certainly an interesting result, it is not satisfactory in terms of com-
plexity, since this can be arbitrary large.
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Aiming to derive an optimality result, we require a lower bound as a benchmark.
One example of such a statement was proven in [5] in terms of a so-called optimal
exponent y*(€) from information theory to measure the complexity of € C L2(R%).
We should stress that only the essence of this result is stated without all details.

Theorem 3.8. Letd e N, p: R - R, and € C Lz(Rd). Further, let
Learn: (0,1) X € — NN o5,00,d,p
satisfy that, for each f € € and 0 < g < 1,

sup Hf — Learn(e, f)“2 <e.
fe€

Then, forall y < y*(€),

&” sup C(Learn(e, f)) — oo, ase — 0.
fee

This now provides a conceptual lower bound independent of the learning algo-
rithm. It in fact allows not only to construct deep neural networks, which are memory-
optimal, but also to answer the question with which we started, namely whether deep
neural networks are at least as good as all previous mathematical methods. We will
affirm this for approximations by affine systems such as wavelets and shearlets.

One can now proceed as follows. Assume that we are given a specific function
class such as cartoon-like images, and an associated representation system with an
optimal approximation rate such as shearlets. Mimicking classical approximation
theory—more specifically best N-term approximations—by neural networks leads
to such memory-optimal neural networks, which at the same time perform at least as
good as the associated representation system from an approximation standpoint.

One example of a resulting theorem is taken from [5]. Notice that this is in fact the
optimal approximation rate (up to some ¢), implying that the bound in Theorem 3.8

is sharp.

Theorem 3.9. Let p be a suitably chosen activation function, and let € > 0. Then, for
all f € 8>(R?) and N € N, there exists ® € NN3,0N),2,p With

| f =Pl SN1T¢ 50, as N — oo.

Thus, one can conclude that deep neural networks achieve optimal approximation
properties of all affine systems combined. Intriguingly, training the network architec-
ture of the proof, the neural network does even learn approximations of classical
affine systems such as shearlets; for more details see [5].
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4. Deep learning for mathematics

Having established that deep neural networks are at least as good as various classical
approximation methods, we will continue our journey in the deep learning world and
next ask whether deep learning methods are even better than classical approaches. For
this, we will now enter the area of deep learning for mathematics and turn towards
the setting of inverse problems.

4.1. Inverse problems meet deep learning

We start by recalling a general classical approach to solve inverse problems. We will
later discuss how to best combine it with deep learning in specific problem settings
in the sense of taking the best out of the model- and data-world.

Assume that we are given an (ill-posed) inverse problem

Kf =g, whereK:X —Y,

where X and Y are Hilbert spaces, say. In its most classical form in imaging science,
K could be an operator which adds noise to an image, leading to a denoising prob-
lem. Sparse regularization is a conceptually general approach for recovering f from
knowledge of g and K, see also [18]. It computes an approximate solution f* € X,
a > 0, by solving

f% .= arg;nin[HKf _g||2 ta- ”((f’(pi))iel ”1 ]’

data fidelity term penalty term

where (¢;); ey is a suitably selected—in the sense of providing sparse approximations
of f—orthonormal basis or frame for X.

One class of approaches for combining deep learning with solvers such as sparse
regularization are supervised approaches, which in their most direct form first apply
the solver followed by the neural network [19]. A bit more sophisticated are ap-
proaches which replace certain procedures in the solver—such as a denoising part—
by a deep neural network in the sense of plug-and-play [31] or using a specifically
trained network [1]. Semi-supervised approaches aim to encode the regularization as
a neural network (see, e.g., [27]), whereas deep image prior [32] are one example of
what one might coin unsupervised approaches.

We will now focus on one specific inverse problem from imaging science and
discuss one exemplary approach in more detail. This approach follows the philosophy
to apply the model-based solver as far as it is reliable and only complement it by a
deep neural network where necessary. The problem we aim to study is the inverse
problem of (limited angle-) computed tomography.
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A CT scanner samples the Radon transform, which is defined by

o0
Rf(s,0) = / f(sco(@) + ta)(@)J‘) dt, for(s,0) € R x (0, ).
—0o0
Here w(f) := (cos 0, sin 6) is the unitary vector with orientation described by the
angle 6 with respect to the x;-axis and w(6)* := (—sin 6, cos 6).

The problem of inverting the Radon transform becomes even harder if R f (s, ) is
only sampled on a proper subset [—¢, ¢] of (0, ), which is the case in, for instance,
electron tomography. In the sequel, we will refer to the respective Radon transform
by Ry. Classical solvers fail in this case due to the fact that a large connected region
of the measurements is missing, while also being too complex for accurate modeling.

The key problem can in fact be regarded as recovering parts of the wavefront
set of the original image, where—coarsely speaking—a wavefront set is the set of
singularities of a distribution together with their directions; for a precise definition we
refer to [16]. Since shearlets resolve the wavefront set [22], the following approach
was suggested in [6], following the previously described philosophy:

e Step 1: Reconstruct the visible.
Compute

f* = ar}gn})in |Rs f — g5+ H SH(f)”l,w‘

We then split the set of parameters (j,m, k) of shearlets into a visible set I and
an invisible set I;,, related to whether they are associated with shearlets within
arange of acquired data or not, leading to the following cases:

o for (j,m, k) € Iim,, SH(f*)(j,m,k) % 0;
o for (j,m,k) € Iyis, SH(f™)(jm.k) is reliable and near perfect.

e Step 2: Learn the invisible.
Train a neural network (U-net) ® to compute

®:SH(f*)z,. — F.

where F is an approximation of SH( fg¢) 1,,, and fg the ground truth image.

e Step 3: Combine.
Finally, compute

Jrer = SH” (SH(f*)Ivis + F)‘

The numerical experiments in Figure 4 indicate the superiority of deep learning
approaches in general and even more a careful combination of classical solvers with
deep neural networks to pure model-based approaches.

This answers the question whether deep neural networks can perform even better
than classical methods to the affirmative. We include with Figure 5 one additional
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Filtered backprojection Sparse regularization with shearlets

Original

Neural network [13] Learn the invisible (LtI)

Figure 4. Illustration of the superiority of combined model-deep learning approaches.

Original SEAL [33]

CoShREM [30] DeNSE [2]

Figure 5. Illustration of another combined model-deep learning approach [2] in relation to pure
model-based methods [30,33].
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example, which follows the same philosophy for the edge detection problem [2].
Without going into the details, this approach first uses shearlets as a coarse edge
detector, followed by a deep neural network applied in shearlet domain.

4.2. Deep learning-based solvers for partial differential equations

Finally, we will provide a glimpse into the effectiveness of deep neural networks for
solving partial differential equations, and provide an answer to the question of why
one should use deep learning for solving partial differential equations at all.

Given a partial differential equation £(u) = f, a common approach to solve this
equation using a neural network ® is to approximate the solution u by ®, i.e., to train
@ such that

£(P) ~ f.

This requires to incorporate the partial differential equation into the loss function.
Some of the key approaches in this realm are the Deep Ritz Method [11], the so-
called physics-informed neural networks [29], or using a backwards stochastic partial
differential equation reformulation [ 14].

We will now focus on a more general setting, namely parametric partial differen-
tial equations, which in fact arise in basically any branch of science and engineering
such as in complex design problems or uncertainty quantification tasks. Let us now
assume that we are given a parametric partial differential equation, £(u,,y) = f,
with y being a parameter from a parameter space ¥ € R” and u, the associated
solution in a Hilbert space J¢. Since in applications one typically faces a multi-query
situation, the so-called parametric map, given by

Ysyr—uy,ed such that cf(uy,y):fy’

needs to be solved several times. If p is very large, the curse of dimensionality could
lead to an exponential computational cost.

It seems natural to ask whether deep neural networks can be of benefit in this
situation in the sense of whether a network can approximate the parametric map lead-
ing to a flexible, universal approach which is hopefully not affected by the curse of
dimensionality. For this, we first need to bring the problem into a finite-dimensional
domain, which is done by a high-fidelity discretization, leading to the problem

RPDOY>y u; € R?  such that by(uﬁ, v) = fy(v) forall v

with by, (ug, v) = fy(v) being the associated variational form and ul;, being the coef-
ficient vector of uﬁ with respect to a suitable basis. We can now ask the following
questions.



G. Kutyniok 88

e Given ¢ > 0, does there exist a neural network ® such that
|@(y) —ul| <& forally €,

and how does the complexity of ® depend on p and D?
e How do neural networks perform numerically on this task?

The first question falls in the category of expressivity and would need to be comple-
mented by an analysis of the learning procedure as well as the generalization error, as
discussed in Section 2.2.1. Mathematical answers to those two questions are however
at this point still out of reach, leaving only numerical experiments as an alternative.

The first question was indeed solved by explicitly constructing an associated deep
neural network, while carefully monitoring its complexity. We state the result from
[25] in a high level form.

Theorem 4.1. There exists a neural network ® which approximates the parametric
map, i.e.,
|[o(y)—ub|| <e. forallyey,

and the dependence of C(®) on p and D can be (polynomially) controlled.

With an extensive set-up of numerical experiments such as fixing a specific neural
network architecture and the training procedure, it could then be shown in [12] that
the numerical performance of deep neural networks for this task does also not suffer
from the curse of dimensionality.

5. Conclusions

Deep learning shows impressive performance in real-world applications. However, a
theoretical foundation is largely missing. Developing such a foundation requires var-
ious areas of mathematics as well as the development of new mathematics. The two
main research areas are mathematics for deep learning with its subfields expressivity,
learning, generalization, and explainability, and deep learning for mathematics aim-
ing to apply deep learning to solve inverse problems and partial differential equations.

Let us conclude with seven mathematical key problems of deep learning as they
were stated in [4]:

(1) What is the role of depth?

(2) Which aspects of a neural network architecture affect the performance of deep
learning?

(3) Why does stochastic gradient descent converge to good local minima despite
the non-convexity of the problem?

(4) Why do large neural networks not overfit?
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(5) Why do neural networks perform well in very high-dimensional environ-
ments?

(6) Which features of data are learned by deep architectures?

(7) Are neural networks capable of replacing highly specialized numerical algo-
rithms in natural sciences?

It is thus fair to say that there are exciting future perspectives for mathematics.
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Geometric valuation theory
Monika Ludwig

Abstract. A brief introduction to geometric valuation theory is given. The focus is on classifi-
cation results for valuations on convex bodies and on function spaces.

1. Introduction

Measurement is part of the literal meaning of geometry and geometric valuation
theory deals with measurement in the following sense. We want to associate to a
geometric object a real number (or, more generally, an element of an abelian semi-
group A). For example, we can associate to a sufficiently regular subset of R” its
n-dimensional volume or the (n — 1)-dimensional measure of its boundary. Let § be
a class of subsets of R”. We call a function Z : § — A a valuation if

Z(K)+Z(L)=Z(KUL)+Z(K N L)

forall K,L € $ with KN L, KU L € § (and we set Z(@) := 0). Thus, the valuation
property is just the inclusion-exclusion principle applied to two sets. In particular,
measures on R” when restricted to elements of § are valuations but there are many
additional interesting valuations.

In his Third Problem, Hilbert asked whether an elementary definition of volume
on polytopes is possible. In 1900, it was known that it is possible on R? but the
question was open in higher dimensions. Let " be the set of convex polytopes in R”
and call Z : " — R simple it Z(P) = 0 for all lower dimensional polytopes. Using
our terminology, Hilbert’s Third Problem turns out to be equivalent to the question
whether every simple, rigid motion invariant valuation Z : £ — R is a multiple
of n-dimensional volume for n > 3. Dehn [46] solved Hilbert’s Third Problem by
constructing a simple, rigid motion invariant valuation that is not a multiple of volume
and thereby showed that an elementary definition of volume is not possible for n > 3.

Blaschke [30] took the important next step by asking for classification results
for invariant valuations on $#” and on the space of convex bodies, K", that is, of
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non-empty, compact, convex sets in R”. For a class § of subsets of R”, we say that a
function Z : § — A is G invariant for a group G acting on R” if Z(¢pK) = Z(K) for
all¢ € G and K € §. Blaschke’s question is motivated by Klein’s Erlangen Program.
We will describe some of the results that were obtained in this direction, in particular,
focusing on the special linear group, SL(n), and the group of (orientation preserving)
rotations, SO(n). Often additional regularity assumptions are required and for A, a
topological semigroup, we consider continuous and upper semicontinuous valuations,
where the topology on K" and its subspaces is induced by the Hausdorff metric.

In addition to classification results and their applications, structural results for
spaces of valuations have attracted a lot of attention in recent years. We refer to the
books and surveys [14,17,21]. Valuations were also considered on various additional
spaces, in particular, on manifolds (see [12]). We will restrict our attention to sub-
spaces of K" and to recent results on valuations on spaces of real valued functions.
On a space X of (extended) real valued functions, a function Z : X — A is called a
valuation if

Z(u) +Z(v) =Z(u Vv v) + Zu Av)

for all u, v € X such that also their pointwise maximum u V v and pointwise mini-
mum ¥ A v belong to X. Since spaces of convex bodies can be embedded in various
function spaces in such a way that union and intersection of convex bodies corre-
spond to pointwise minimum and maximum of functions, this notion generalizes the
classical notion.

2. Affine valuations on convex bodies

The first classification result in geometric valuation theory is due to Blaschke. He
worked on polytopes and aimed at a complete classification of rigid motion invariant
valuations. However, at a certain step, he had to assume also SL(n) invariance and
established the following result (and the corresponding result on polytopes).

Theorem 2.1 (Blaschke [30]). A functionalZ.: X" — R is a continuous, translation
and SL(n) invariant valuation if and only if there are cg, ¢, € R such that

Z(K) = coVo(K) + cnVa(K)

for every K € K".

Here, Vy(K) := 1 is the Euler characteristic of K and V},(K) is its n-dimensional
volume. It has become customary to refer to results that involve invariance (or covari-
ance) with respect to SL(n) as affine results and the title of this section is to be
understood in this sense.
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We will first describe results for affine valuations on polytopes and then on gen-
eral convex bodies. While on #” a complete classification of SL(n) invariant val-
uations has been established, we require additional regularity assumptions on K.
Such assumptions are also used on important subspaces of #” and K”. We will also
describe results for affine valuations with values in tensor spaces, spaces of convex
bodies, and related spaces.

2.1. SL(n) invariant valuations on convex polytopes

We call a function ¢ : [0, 00) — R a Cauchy function if

Clx +y) =) +8(y)

for every x, y € [0, 00). Cauchy functions are well understood and can be completely
described (if we assume the axiom of choice) by their values on a Hamel basis.

The following result gives a complete classification of translation and SL(n)
invariant valuations on polytopes and is closely related to Theorem 2.1.

Theorem 2.2 ([94]). A functional Z : P" — R is a translation and SL(n) invariant
valuation if and only if there are ¢y € R and a Cauchy function ¢ : [0, 00) — R such
that

Z(P) = coVo(P) + & (Va(P))

for every P € P".
Even without translation invariance, a complete classification can be obtained (see

[94]). We state the case when the valuation is in addition continuous. We write [0, P]
for the convex hull of the origin and P € £".

Theorem 2.3 ([94]). A functional Z : ™ — R is a continuous and SL(n) invariant
valuation if and only if there are co, ¢y, dy € R such that

Z(P) = coVo(P) + cnVa(P) + ngn([O» P])
for every P € P".

Corresponding results are known on the space, &', of polytopes containing the
origin (see [94]).
Let j)('f)) be the space of convex polytopes in R” that contain the origin in their
interiors. Here, we have additional interesting valuations connected to polarity. For

K € X", define its polar by

K* = {yeR”:(x,y)f lforallxeK},
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where (x, y) is the inner product of x,y e R*. If P € Py then P* e P(0)- Hence,
setting

Vi (P) = Va(PT),

we obtain a finite valued functional on fP('B) and it follows easily from properties of
polarity that it is a valuation.

Valuations on ,7)(’6) were first considered in [84], where a classification of Borel
measurable, SL(#) invariant, and homogeneous valuations was established. Here, we

say that Z : ,7’(’(‘)) — R is homogeneous if there is g € R such that

Z(tP) =t17Z(P)

for every P € ?(’6) and t > 0. We say that Z is Borel measurable if the pre-image
of every open set is a Borel set. We use corresponding notions on K” and related
spaces.

The results from [84] were strengthened by Haberl and Parapatits.

Theorem 2.4 (Haberl and Parapatits [55,57]). A functional Z. : !P(’(’)) — R is a Borel
measurable and SL(n) invariant valuation if and only if there are cg, cp,c—p € R
such that

Z(P) = coVo(P) + cnVu(P) + c—n V) (P)
for every P € J’('(’)).

The regularity assumption is again required to exclude discontinuous solutions
of the Cauchy functional equation. It is an open problem to establish a complete
classification without such assumption.

We remark that lattice polytopes, that is, convex polytopes with vertices in the
integer lattice Z", are important in many fields and subjects. The Betke—Kneser the-
orem [28] gives a complete classification of valuations on this class that are invariant
with respect to translations by integer vectors and by so-called unimodular transfor-
mations (which can be described by matrices with integer coefficients and determi-
nant £1). For more information on valuations on lattice polytopes, see [32].

2.2. Affine surface areas

For K € K", the affine surface area of K is defined by
Q(K) := [ K (K, x)7 dox, @2.1)
0K
where (K, x) is the generalized Gaussian curvature of dK at x and integration is

with respect to the (n — 1)-dimensional Hausdorff measure. For smooth convex sur-
faces, this definition is classical (see [29]). It is also classical that €2 is translation and
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SL(n) invariant for smooth surfaces. The extension of the definition of affine surface
area to general convex bodies was obtained more recently in a series of papers by
Leichtweil3 [73], Lutwak [98], and Schiitt and Werner [126]. There it is also proved
that 2 is translation and SL(#) invariant on K”. The notion of affine surface area is
fundamental in affine differential geometry. Moreover, since many basic problems in
discrete and stochastic geometry are translation and SL(n) invariant, affine surface
area has found numerous applications in these fields (see [47,50]). It follows easily
from (2.1) that © vanishes on polytopes and therefore is not continuous. The long
conjectured upper semicontinuity of affine surface area (for smooth surfaces as well
as for general convex surfaces) was proved by Lutwak [98]. For a proof that 2 is a
valuation, see [125].

The following result gives a classification of upper semicontinuous, translation
and SL(n) invariant valuations and represents a strengthening of Theorem 2.1. It pro-
vides a characterization of affine surface area.

Theorem 2.5 ([92]). A functional Z : X" — R is an upper semicontinuous, trans-
lation and SL(n) invariant valuation if and only if there are cy,c, € R and ¢ = 0
such that

Z(K) = coVo(K) + cn Va(K) + cQ(K)

for every K € K",

For n = 2, this result was proved in [80], where also applications to asymptotic
approximation by polytopes were obtained.

A complete classification of translation and SL(n) invariant valuations on K"
appears to be out of reach. Already a weakening of upper semicontinuity to, say,
Baire-one (that is, a pointwise limit of continuous functionals) would be interesting
and would have applications in discrete and stochastic geometry.

Let X (”0) be the space of convex bodies in R” containing the origin in their interi-
ors. For such a convex body with smooth boundary, the centro-affine surface area is
a classical notion that can be defined by

Qu(K) = /a k(K0 Vi),

where dVk(x) := (x,ug(x))dx with ug (x) the outer unit normal vector to K at x
is (up to a constant) the cone measure on dK and

K(K,x)

ko(K, x) := )n-l—l'

(x,uK(x)

It is classical that €2,, is GL(n) invariant. Lutwak [100] extended this notion to general
convex bodies in K ?0) and showed that €2,, is upper semicontinuous.
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The following result gives a complete classification of upper semicontinuous and
GL(n) invariant valuations on X ?0) and provides a characterization of centro-affine
surface area.

Theorem 2.6 ([93]). A functional Z : J{(”O) — R is an upper semicontinuous and
GL(n) invariant valuation if and only if there are ¢y € R and ¢ > 0 such that
Z(K) = coVo(K) + cQn(K)
forevery K € J{(”O).
Lutwak [100] defined the so-called L?-affine surface areas which were charac-
terized in [93] as upper semicontinuous, SL(#n) invariant, homogeneous valuations.
A more general notion, now called Orlicz affine surface area, was introduced in
[93]. Let
N P : - o S
Concl0, 00) := ¢ : [0,00) — [0, 00) : ¢ concave, lim {(¢) = lim =—= = 0y.
t—0 t—>oo f
The following result gives a classification of upper semicontinuous, SL(#) invariant

valuations on KX ?0) and provides a characterization of Orlicz affine surface areas.

Theorem 2.7 ([55,93]). A functional Z.: K (”0) — R is an upper semicontinuous and
SL(n) invariant valuation if and only if there are cq, cn,c—n € R and ¢ € Conc|0, 00)
such that

Z(K) = coVo(K) + cnVa(K) + c—n V5 (K) + /a ¢(ko(K, x)) dVk (x)
K
n
forevery K € ‘K(o)'
Here, the classification of upper semicontinuous, SL(») invariant valuations van-

ishing on polytopes from [93] is combined with Theorem 2.4 by Haberl and Parap-
atits.

2.3. Vector and tensor valuations
We say that Z : P — R”" is SL(n) equivariant if
Z(¢pP) = ¢ Z(P)

for all ¢ €SL(n) and P € P". We use corresponding definitions for subspaces of 5”.

The study of SL(n) equivariant vector valuations on convex polytopes contain-
ing the origin in their interiors was started in [82], where a classification of Borel
measurable, SL(n) equivariant, homogeneous valuations was established. Haberl and
Parapatits strengthened this result and obtained the following complete classification,
which we state for n > 3.
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Theorem 2.8 (Haberl and Parapatits [57, 58]). A function Z. : ,7’(’(‘)) — R” is a Borel
measurable and SL(n) equivariant valuation if and only if there is ¢ € R such that
Z(P) =cm(P)

forevery P € ‘7)("0)'
Here, for P € $", the moment vector m(P) is defined by m(P) := [p x dx.
Zeng and Ma showed that it is possible to obtain a complete classification of

vector valuations on convex polytopes without any regularity assumptions. We state

their result for n > 3.

Theorem 2.9 (Zeng and Ma [137]). A functionZ : P"* — R" is an SL(n) equivariant
valuation if and only if there are ¢, d € R such that

Z(P) =cm(P) + dm([O, P])
for every P € P".

In the same paper, a complete classification result is also established for n = 2.
The obtained valuations depend on Cauchy functions.

Also higher rank tensor valuations are important in the geometry of convex bod-
ies. In particular, the moment matrix M %:%(K) of a convex body K is a most valuable
tool through its connection to the Legendre ellipsoid and the notion of isotropic posi-
tion. In a certain way dual is the so-called LYZ ellipsoid, which was introduced
by Lutwak, Yang, and Zhang [102, 103]. Associated to this ellipsoid is the LYZ
matrix, which was characterized as a matrix valuation on convex polytopes contain-
ing the origin in [85]. The LYZ matrix corresponds to the Fisher information matrix
[89, 102, 103] important in statistics and information theory.

Haberl and Parapatits [58] extended the result from [85] to general symmetric
tensor valuations. For p > 1, let T?(R") denote the space of symmetric p-tensors
on R”. We identify R” with its dual space and regard each symmetric p-tensor as a
symmetric p-linear functional on (R”)?. We say that Z : J’('(’)) — T2 (R") is SL(n)
equivariant if

Z@P)V1v- - ¥p) =Z(P) (@ V1se i T yp)

forall y;,...,y, € R", all¢ € SL(n),and all P € J)('(‘)). We state the result by Haberl
and Parapatits forn > 3 and p > 2.

Theorem 2.10 (Haberl and Parapatits [58]). A functionZ : 57(’(’)) — TP (R") is a Borel
measurable, SL(n) equivariant valuation if and only if there are ¢, d € R such that

Z(P) = cMP(P) + dM®P(P*)

@mn
forevery P € § (0)"
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Here, the pth moment tensor of a convex polytope P € J’(’B) is defined by

1
MPo(p) = —/ x? dx, (2.2)
p!Jp
where x? is the p-fold symmetric tensor product of x € R” and the pth LYZ tensor
is
MOP(P) = / P A8, (P.Y),
Sn—

where S,_1,,(P,-) is the L? surface area measure of P, which is a central notion in
the L? Brunn—Minkowski theory (see [99, 100]).

For classifications of matrix valuation on #” without regularity assumptions, see
[108, 109], and for tensor valuations on lattice polytopes, see [95]. Continuous tensor
valuations on complex vector spaces are classified in [4].

2.4. Convex body valued valuations and related notions

Affinely associated convex bodies play an important role in convex geometry (see
[122, Chapter 10]). We have already mentioned the Legendre and the LYZ ellipsoid
and describe here results on valuations Z : K" — K", where we choose suitable
additions on K. The most classical choice is the Minkowski addition, where for
K,L e X",
K+L:={x+y:xekK, yel},

and such valuations are called Minkowski valuations.

The first classification result for Minkowski valuations was obtained in [83] and

strengthened in [86]. It provides a characterization of projection bodies, a notion that
was introduced by Minkowski.

Theorem 2.11 ([86]). An operator Z.: P" — K" is a translation invariant, SL(n)
contravariant Minkowski valuation if and only if there is ¢ > 0 such that

ZP =cITP

for every P € P".

Here, we describe convex bodies by their support functions, where for K € K",
the support function h(K,-) : R" — R is given by

h(K.y) := max {(x,y) : x € K}.

The support function is homogeneous of degree 1 and convex and any such function
is the support function of a convex body. For K € K", the projection body of K is
defined by

h(TIK. y) = Voo (K|y*)
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for y € S*~1, where y* is the hyperplane orthogonal to y and K|yt denotes the
image of the orthogonal projection of K onto y*. We say that Z : #" — K" is
SL(n) contravariant if

Z(pP)=¢'Z P

for all ¢ € SL(n) and P € $", where ¢~ is the inverse of the transpose of ¢. For
more information on projection bodies and their many applications, see [48, 122].
We say that Z : " — K" is SL(n) equivariant if

Z(pP) = ¢Z P

forall ¢ € SL(n) and P € »". The following result establishes a classification SL(#n)
equivariant valuations.

Theorem 2.12 ([86]). An operator Z.: P" — K" is a translation invariant, SL(n)
equivariant Minkowski valuation if and only if there is ¢ > 0 such that

ZP=cDP

for every P € P".

Here, the operator P — D P := {x — y : x,y € P} assigns to P its difference
body (see [48, 122]).

A classification of SL(n) equivariant, homogeneous Minkowski valuations on the
space, K, of convex bodies containing the origin was obtained in [86]. The result
was strengthened by Haberl [53], who was able to drop the assumption of homogene-
ity. Letn > 3.

Theorem 2.13 (Haberl [53]). An operator Z : KX§ — K" is a continuous, SL(n)
equivariant Minkowski valuation if and only if there are ¢y € R and ¢y, c3,¢3 > 0
such that

ZK =com(K)+c1K+ c2(—K) +csMK

forevery K € K.

Here, the moment body, M K, of K is defined by
BT K.y) 1= [ [xy)] s

for y € R". When divided by the volume of K, the moment body of K is called its
centroid body and is a classical and important notion going back to at least Dupin (see
[48,122]). Results corresponding to Theorem 2.13 for SL(n) contravariant Minkowski
valuations were obtained in [53,86]. On the space, £, of convex polytopes contain-
ing the origin, classification results for SL(n) contravariant Minkowski valuations
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were established in [53, 86] without assuming continuity and additional operators
appear. For the SL(n) equivariant case, such results were established in [76].

We remark that the results from Theorem 2.13 and the corresponding results in the
SL(n) equivariant case were complemented in [124, 135] by classification results for
continuous, homogeneous Minkowski valuations on K”. A complete classification
for SL(n) equivariant Minkowski valuations on #¢ was established in [53]. On the
space of convex bodies that contain the origin in their interiors, moment bodies allow
to define SL(n) equivariant Minkowski valuations using polarity. For continuous,
SL(n) equivariant, homogeneous valuations, a complete classification on this space
was established in [88]. For Minkowski valuations on lattice polytopes, see [33].

Classification results for Minkowski valuations on complex vector spaces were
established by Abardia and Bernig [1-3]. They introduce and characterize complex
projection and difference bodies.

An important extension of the classical Brunn—Minkowski theory is the more
recent L? Brunn—Minkowski theory (see [99,100]). For p > 1, the L? sum of convex
bodies K, L € K is defined by

h?(K +p L.y) := hP(K.,y) + h*(L.y)

for yeR". An L? Minkowski valuation Z : X" — K} is a valuation where on K this
addition is chosen. Classification results were obtained in [76,86,117,118] and led to
the definition of asymmetric L? projection and moment bodies (see [86]). Inequalities
for these new classes of operators were established by Haberl and Schuster [59]. They
generalize the L? Petty projection and the L? Busemann—Petty moment inequalities,
which were established by Lutwak, Yang, and Zhang [101], and were, in turn, gener-
alized within the Orlicz-Brunn—Minkowski inequality by Lutwak, Yang, and Zhang
[105, 106]. For information on valuations in this setting, see [77].

A classical notion of addition on full dimensional convex bodies in R” is Blaschke
addition, which is defined using the sum of surface area measures of convex bodies
and the solution of the classical Minkowski problem. The so-called Blaschke valua-
tions were classified in [52]. For information on the corresponding question within
the L? Brunn—Minkowski theory, see [79].

The dual Brunn—Minkowski theory, established by Lutwak [96], is, in a certain
way, dual to the classical theory. Star bodies replace convex bodies and radial addi-
tion (defined by the addition of radial functions) corresponds to Minkowski addition.
Intersection bodies in the dual Brunn—Minkowski theory correspond to projection
bodies in the classical theory. Intersection bodies were critical in the solution of the
Busemann—Petty problem [97,139]. A classification of radial valuations and a charac-
terization of the intersection body operator was established in [87]. Replacing radial
addition by L7 radial addition leads to L7 radial valuations (see [51, 54] for classifi-
cation results).



Geometric valuation theory 103

Since convex bodies can be described by support functions and star bodies by
radial functions, a natural extension of the results described above is a classification
of valuations Z : K" — F(R"), where F(R") is a suitable space of functions on R”.
Such results were obtained by Li [74,75] and by Li and Ma [78], where a charac-
terization of the Laplace transform on convex bodies is established. Another way to
describe convex bodies is by suitable measures and a classification of measure valued
valuations was obtained by Haberl and Parapatits [56], where characterization results
of surface area measures and of L? surface area measures were established.

3. The Hadwiger theorem on convex bodies

The classical Steiner formula states that the volume of the outer parallel set of a
convex body at distance r > 0 can be expressed as a polynomial in r of degree at
most n. Using that the outer parallel set of K € K" at distance r > 0 is just the
Minkowski sum of K and rB" (the ball of radius r), we get

n
Va(K +rB") =Y r" iy ; Vi (K)
j=0

for every r > 0, where «; is the j-dimensional volume of the unit ball in R/ (with the
convention that ko := 1). The coefficients V;(K) are known as the intrinsic volumes
of K. Up to normalization and numbering, they coincide with the classical quermass-
integrals. In particular, V,,—; (K) is proportional to the surface area of K and V;(K)
to its mean width (cf. [122]).

The celebrated Hadwiger theorem gives a characterization of intrinsic volumes
and a complete classification of continuous, translation and rotation invariant valua-
tions. For n = 2, it follows from the positive solution to Hilbert’s Third Problem in
this case. It was proved for n = 3 in [60] and then for general n > 3 in [61].

Theorem 3.1 (Hadwiger [61]). A functionalZ : X" — R is a continuous, translation
and rotation invariant valuation if and only if there are cy, . .., ¢, € R such that

Z(K) = coVo(K) + -+ + caVa(K)
for every K € K".

The Hadwiger theorem leads to effortless proofs of numerous results in integral
geometry and geometric probability (see [63,69]). An alternate proof of the Hadwiger
theorem is due to Klain [67].

We will describe results on translation invariant and rotation equivariant valua-
tions with values in tensor spaces and spaces of convex bodies. We remark that upper
semicontinuous, translation and rotation invariant valuations were only classified in
the planar case (see [81]).
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3.1. Vector and tensor valuation

The first classification of vector valuations was established by Hadwiger and Schnei-
der [64] using rotation equivariant valuations Z : K" — R”, that is, valuations such
that

Z(¢K) = ¢ Z(K)
for all ¢ € SO(n) and K € K™".

Theorem 3.2 (Hadwiger and Schneider [64]). A function Z : X" — R" is a con-
tinuous, translation covariant, rotation equivariant valuation if and only if there are
Cly++.,Cnt+1 € R such that

Z(K) = ey MP%(K) + -+ + cug1 M2 (K)

n

for every K € K".

Here M;’O(K) = CDZ.I’O(K) are the intrinsic vectors of K (see (3.1) below) and
see (3.2) for the definition of translation covariance.

The theorem by Hadwiger and Schneider was extended by Alesker [5,7] (based on
[6]) to a classification of continuous, translation covariant, rotation equivariant tensor
valuations on J”. Just as the intrinsic volumes can be obtained from the Steiner
polynomial, the moment tensor (defined in (2.2)) satisfies the Steiner formula

n+p
MPO(K +rB") = Y "7 g, Y 9PN (K) 3.1)
j=0 k>0

for K € K" and r > 0. The coefficients CD,’(’ **(K) are called the Minkowski tensors of
K (see [122, Section 5.4]). Recall that T 7 (R") is the space of symmetric p-tensors on
R” and let Q € T?2(R") be the metric tensor, that is, Q(x, y) := (x, y) for x, y € R".

Theorem 3.3 (Alesker [5]). A function Z : K" — TP?(R") is a continuous, trans-
lation covariant, rotation equivariant valuation if and only if Z. can be written as
linear combination of the symmetric tensor products Q* @?’s with2l +m + s = p.

Here, a valuation Z : K" — T2 (R") is called translation covariant if there exist
associated functions Z/ : X" — T/ (R") for j = 0,..., p such that

p . J
UK +y) =Y 7" (K)% 3.2)
Jj=0 ’

for all y € R” and K € K", where on the right side we sum over symmetric tensor
products. We say that Z is G equivariant for a group G acting on R” if

Z(PK)(31. -+ Yp) = Z(K) (@' V1. - 9" Yp)
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for all yi,...,y, € R", all transformation ¢ € G, and all K € K", where ¢! is the
transpose of ¢.

For a classification of local tensor valuations, see [65], and for applications in
various fields, including astronomy and material sciences, see [66].

3.2. Convex body valued valuations
An operator Z : K" — K" is called Minkowski additive if
Z(K + L) =27Z(K) +Z(L)

forall K,Le K" .Since K+ L=KUL+KNLforK,LeX" with KU LeX",it
is easy to see that every Minkowski additive operator is a Minkowski valuation. While
the first classification results for Minkowski valuations were established in [83],
Schneider [120] earlier obtained the first classification results for rotation equivariant
Minkowski additive operators. For continuous, translation invariant, rotation equi-
variant Minkowski valuations, so far no complete classification has been established.
But the following representation is known to hold. Let M., (S"™1) and Ceen (")
denote the spaces of signed Borel measures and continuous functions on S”~!, respec-
tively, having their center of mass at the origin.

Theorem 3.4 (Schuster and Wannerer [123]). If Z: X" — K" is a continuous, trans-
lation invariant, rotation equivariant Minkowski valuation, then there are uniquely
determined constants co,cp, > 0 and SO(n — 1) invariant measures jL; € Meen(S™™1)
for1 <i <n—2,aswell as an SO(n — 1) invariant function £,—1 € Ceen(S" 1) such
that

n—2

MZK.) = co+ 3 Si(K.) % i+ Suca(K,) % Gt + eaVa(K)
i=1

forevery K € K",

The Borel measures S; (K,-) on S” ! are Aleksandrov’s area measures (see [122])
of K € X". The convolution of functions and measures on S”~! is induced from the
group SO(n) by identifying S"~! with the homogeneous space SO(n)/ SO(n — 1)
(see [123]). The above representation formula has to be read in the sense of equality
of measures and i(Z K, -) is identified with the measure with this density.

4. More on invariant valuations on convex bodies

Translation invariant valuations on polytopes were classified using simplicity or mild
regularity assumptions. Hadwiger [62] established a complete classification of sim-
ple, weakly continuous, translation invariant valuations on convex polytopes. Here,
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informally, a valuation is weakly continuous if it is continuous under parallel dis-
placements of the facets of a polytope. Hadwiger’s result was extended by McMullen
[112] to the following result.

Theorem 4.1 (McMullen [112]). A functional Z : " — R is a weakly continuous,
translation invariant valuation if and only if

ZPy=)_ Y. Y (N(P.F)V;(F)

j=0 Fe¥F;(P)
for every P € P" where Y; : @/ — R is a simple valuation.

Here, #;(P) is the set of j-dimensional faces of P and N(P, F) is the normal
cone to P at F while @ is the system of all closed polyhedral convex cones of
dimension at most k. We remark that valuations on convex polyhedral cones (or,
equivalently, on spherical polytopes) are not yet well understood and the problems to
classify simple, rotation invariant valuations on spherical polytopes and on spherical
convex bodies are open on spheres of dimension > 3 (even if continuity is assumed).
Kusejko and Parapatits [72] extended Hadwiger’s result and established a complete
classification of simple, translation invariant valuations on polytopes using Cauchy
functions.

Hadwiger [63] proved that simple, continuous, translation invariant valuations
on K" have a homogeneous decomposition. His result was extended by McMullen
[110].

Theorem 4.2 (McMullen [110]). If Z : K" — R is a continuous and translation
invariant valuation, then
Z="Zo++Zn,

where Z; : K" — R is a continuous, translation invariant valuation that is homo-
geneous of degree .

It is easy to see that every continuous, translation invariant valuation that is homo-
geneous of degree O is a multiple of the Euler characteristic. For the degrees of
homogeneity j = n and j = n — 1, the following results hold.

Theorem 4.3 (Hadwiger [63]). A functional Z : P"* — R is a translation invariant
valuation that is homogeneous of degree n if and only if there is ¢ € R such that

Z(P) = cVa(P)

for every P € P".
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Theorem 4.4 (McMullen [111]). A functionalZ : X" — R is a continuous and trans-

lation invariant valuation which is homogeneous of degree (n — 1) if and only if there
is £ € C(S™Y) such that

26) = [ t0)as,m(K.y)

forevery K € K. The function { is uniquely determined up to addition of the restric-
tion of a linear function.

Continuous, translation invariant valuations that are homogeneous of degree 1
were classified by Goodey and Weil [49].

While a complete classification of continuous, translation invariant valuations on
K™ is out of reach, Alesker [9] proved the following result.

Theorem 4.5 (Alesker [9]). For 0 < j < n, linear combinations of the valuations
{K— V(K[j].K1.....Kn—j) : Ki,...,Ky—j € X"}

are dense in the space of continuous and translation invariant valuations that are
homogeneous of degree j.

Here, V(K[j], Ki. ..., Ky—;) is the mixed volume of K taken j times and
Ki, ..., K,—; while the topology on the space of continuous, translation invari-
ant valuations is induced by the norm || Z || := sup{| Z(K)| : K € K", K C B"}.
Alesker’s result confirms a conjecture by McMullen [111] and is based on Alesker’s
so-called irreducibility theorem, which was proved in [9] and which has far-reaching
consequences.

For simple valuations, the following complete classification was established by
Klain and Schneider.

Theorem 4.6 (Klain [67], Schneider [121]). A functional Z.: K" — R is a simple,
continuous, translation invariant valuation if and only if there are ¢ € R and an odd
function ¢ € C(S"™Y) such that

26) = [ €181 (Koy) + V()

forevery K € K. The function { is uniquely determined up to addition of the restric-
tion of a linear function.

Klain [67] used his classification of simple valuations in his proof of the Hadwiger
theorem. For an alternate proof of Theorem 4.6, see [72].

A valuation Z : K" — R is called translatively polynomial if x — Z(P + x) is
a polynomial in the coordinates of x € R” for all K € JK". Alesker [6] established
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a complete classification of continuous, translatively polynomial, rotation invariant
valuations on K. Theorem 3.3 is the version of this result for tensor valuations.

Classification results for continuous, translation invariant valuations that are in-
variant under indefinite orthogonal groups were established by Alesker and Faifman
[16] and Bernig and Faifman [23]. For subgroups of the orthogonal group O(n), the
following result holds.

Theorem 4.7 (Alesker [8, 12]). For a compact subgroup G of O(n), the linear space
of continuous, translation and G invariant valuations on K" is finite dimensional if
and only if G acts transitively on S" 1.

As the classification of the such subgroups G is known, it was a natural task
(which was already proposed in [8]) to find bases for spaces of G invariant valuations
(see [9-11,13,19,20,22,24-27] for results on real valued valuations and [31, 136] for
results on tensor and measure valued valuations).

5. Affine valuations on function spaces

We describe classification results for valuations on function spaces that correspond to
the results in Section 2. Let F'(R") be a space of functions f : R” — [—o0, co] and
let G be a subgroup of GL(#n). An operator Z : F(R") — A is G invariant if

Z(fo¢™") =2Z(f)

forall¢ € G and f € F(R").If G acts on A, we say that an operator Z : F(R") — A
is G contravariant if for some g € R,

Z(fo¢™!) = |detp|?¢p™" Z(f)
forall ¢ € G and f € F(R").Itis G equivariant if for some g € R,
Z(fo¢™!) = |detp|?d Z(f)
forall ¢ € G and f € F(R"). It is called homogeneous if for some g € R,
Z(sf) = Is|"Z(f)

forall s € R and f € F(R") such that sf € F(R"). An operator is called affinely
contravariant if it is translation invariant, GL(n) contravariant, and homogeneous.

5.1. Valuations on Sobolev spaces

For p > 1, let W1P(R") be the Sobolev space of functions belonging to L” (R")
whose distributional first-order derivatives belong to L? (R").
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The following result corresponds to Theorem 2.11. Let K7 be the set of origin-
symmetric convex bodies in R”. Letn > 3.

Theorem 5.1 ([90]). An operator Z : WY (R") — K" is a continuous, affinely
contravariant Minkowski valuation if and only if there is ¢ > 0 such that

Z(f) = cII(f)
for every f € WLI(RM).

Here, for f € WU (R?), the LYZ body (f) is defined by Lutwak, Yang, and
Zhang [104] as the unique origin-symmetric convex body in R” such that

/ £ dSucs ((f).y) = / £(V £ () dx 5.1)
Sn—l R”

for every even continuous function ¢ : R” — R that is homogeneous of degree 1.
Equation (5.1) is a functional version of the classical even Minkowski problem.

Combined with (5.1), it follows from the definition of projection bodies and sur-
face area measures that for f € WL1(R”) and y € S"71,

1

h(I(f).y) =5 | [(V(x),9)]dx.
2 Rl’l

We remark that the convex body ( /') has proved to be critical in geometric analysis:
the affine Sobolev—Zhang inequality [138] is a volume inequality for the polar body
of IT { ), which strengthens and implies the Euclidean case of the classical Sobolev
inequality, and it was proved in [104] that ( /) describes the optimal Sobolev norm
of f € WLI(R™). Tuo Wang [133] studied the LYZ operator f +— (f) on the space
of functions of bounded variation. Here, the LYZ operator is not a valuation anymore
but Wang [134] established a characterization as an affinely covariant Blaschke semi-
valuation.

The following classification of tensor valuation corresponds to Theorem 2.10 for
p =2.Letn > 3.

Theorem 5.2 ([89]). An operator Z : W12(R") — T2(R") is a continuous, affinely
contravariant valuation if and only if there is ¢ € R such that

Z(f) = cI(f?)
for every f € WL2(RM).

Here, we write J(h) for the Fisher information matrix of the weakly differentiable
function £ : R” — [0, 00), that is, the n x n matrix with entries

dlog h(x) dlogh(x)
Jij (h) = /n 8gxi 8ng'

h(x)dx. (5.2)
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We remark that the Fisher information matrix plays an important role in information
theory and statistics (see [45]). In general, Fisher information is a measure of the
minimum error in the maximum likelihood estimate of a parameter in a distribution.
The Fisher information matrix (5.2) describes such an error for a random vector of
density & with respect to a location parameter.

For results on real valued valuations on Sobolev spaces, see [107].

5.2. Valuations on convex functions

We write Conv(R") for the space of convex functions u : R” — (—o0, co] that are
lower semicontinuous and proper, that is, ¥ % co. We equip Conv(R") and its sub-
spaces with the topology induced by epi-convergence (see [119]). Let

Conveee(R") := {u € Conv(R") : ‘ llim u(x) = oo}
X|—>00

be the space of coercive, convex functions, where | x| is the Euclidean norm of x € R”.
The following result corresponds to Theorem 2.1.

Theorem 5.3 ([38]). A functional Z. : Conv.y.(R") — [0, 00) is a continuous, trans-
lation and SL(n) invariant valuation if and only if there are a continuous function
to : R — [0, 00) and a continuous function ¢, : R — [0, co) with finite (n — 1)th
moment such that
Z(u) = &o( min u(x)) + / tn (u(x)) dx
xeR” domu

for every u € Convee(R™).

Here, a function ¢ : R — [0, 0co) has finite kth moment if fooo tk¢(t)dr < oo and
dom u is the domain of u, that is, domu := {x € R” : u(x) < oo}.

Let Conv(R";R) be the space of finite valued convex functions, that is, of convex
functions u : R" — R. We say that u € Conv(R") is super-coercive if

u(x)
|x]—>o00 |x| -

Let Convg.(R”; R) be the space of super-coercive, finite valued, convex functions.
The following result corresponds to Theorem 2.4.

Theorem 5.4 (Mussnig [114]). A functional Z : Conv,.(R"; R) — [0, 00) is a con-
tinuous, translation and SL(n) invariant valuation if and only if there are a continuous
Lo : R = [0, 00), a continuous ¢, : R — [0, 00) with finite (n — 1)th moment, and a
continuous {_, : R — [0, 0c0) whose support is bounded from above such that

20 = to( min w00) + [ G (ue)dx+ [ 2o () MAGL)

for every u € Convg.(R”; R).
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Here, MA(u, -) denotes the Monge—Ampére measure of u, which is also called
the nth Hessian measure. See [113] for a result on coercive functions in Conv(R”; R).
The following results correspond to Theorems 2.11 and 2.12. Letn > 3.

Theorem 5.5 ([37]). An operatorZ : Conveye(R") — K" is a continuous, monotone,
translation invariant, SL(n) contravariant Minkowski valuation if and only if there is
a continuous, decreasing ¢ : R — [0, 00) with finite (n — 2)th moment such that

Z(u) = I {Cou)
Sor every u € Convge(R").

For u € Conve(R") and suitable ¢ € C(R), define the level set body [{ o u] € K"
by

o0
H(gouly) = [ h(tgou=.y)a
for y € R”. Hence the level set body is a Minkowski average of the level sets.

Theorem 5.6 ([37]). An operatorZ : Conveye(R") — K" is a continuous, monotone,
translation invariant, SL(n) equivariant Minkowski valuation if and only if there is a
continuous, decreasing ¢ : R — [0, 00) with finite integral over [0, 00) such that

Z(u) =D[¢ oul
Sfor every u € Convee (R™).

We remark that the results in this section can be easily translated to classification
results for valuations on log-concave functions. In this setting, the results on convex
body valued valuations were strengthened by Mussnig [115].

6. The Hadwiger theorem on convex functions

We call a functional Z : Convs.(R") — R epi-translation invariant if
Zwot ' +¢)=2Z®wu)

for all translations v : R” — R” and ¢ € R. Hence Z(u) is not changed by transla-
tions of the epi-graph of u. To state the Hadwiger theorem on Convy. (R"), we need
to define functional versions of the intrinsic volumes. Let Cp((0, 00)) be the set of
continuous functions on (0, co) with bounded support. For 0 < j <n —1, let

D} = {g € Cp((0,00)) :Sgrgl+ s"E(s) =0,

(o.¢]

lim "/~ (¢) dt exists and is ﬁnite}.

s—0t Jg
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In addition, let D7 be the set of functions { € Cp((0, 00)) where lim,_, o+ {(s) exists
and is finite, and set £(0) := lim;_, o+ £(s).

Theorem 6.1 ([39]). For0 < j <nand{ € D]’.’, there exists a unique, continuous,
epi-translation and rotation invariant valuation V¢ : Convg(R") — R such that

Vje(u) = /]R” §(|Vu(x)|)[D2u(x)]n_j dx

for every u € Convs.(R*) N Cf_ (R™).

Here, D? u is the Hessian matrix of u and [D? u(x)]x the kth elementary symmet-
ric functions of the eigenvalues of D? u(x) (with the convention that [D? u(x)]o := 1)
while Cer (R") is the space of twice continuously differentiable functions with posi-
tive definite Hessian. We remark that V¢ ¢ is constant on Conv.(R").

The following result is the Hadwiger theorem on Convg.(R"). Here, a functional
Z : Conve.(R™) — R is said to be rotation invariant if Z(u o 9~') = Z(u) for every
¥ € SO(n). Letn > 2.

Theorem 6.2 ([39]). A functional Z. : Convy.(R") — R is a continuous, epi-transla-
tion and rotation invariant valuation if and only if there are functions §o € Dg, ...,
¢n € Dy such that

Z(u) = Vo, (u) + -+ Vu e, (1)

for every u € Convg.(R").

A comparison of Theorems 3.1 and 6.2 shows that for 0 < j <n and { € D,
the functional V; ¢ plays a role corresponding to that of the jth intrinsic volume V.
Hence, we call V; ¢ a jth functional intrinsic volume on Convy.(R"). It is connected
to the classical intrinsic volume by

Ve(lg) = cV;(K)

for K € K" where Ig is the convex indicator function (that is, Ig(x) = 0 for x € K
and Ix (x) = oo otherwise) and ¢ depends only on j, n, and ¢ (see [42]).
We call a functional Z : Conv(R"”;R) — R dually epi-translation invariant if

Z(v+ L+ c)=7Z(v)

for all linear functions £ : R” — R and ¢ € R. Using the convex conjugate or Legendre
transform of u € Convy. (R"), given by

u*(y) = sup ((x,y) —u(x))

xeR”
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for y eR”, we see that v+~ Z(v) is dually epi-translation invariant on Conv(R”; R) if
and only if u+>Z(u™) is epi-translation invariant on Conv,. (R"). It was proved in [40]
that Z is a continuous valuation on Conv(R”; R) if and only if Z*: Conv (R") — R,
defined by

Z*(u) ;== Z(u™),

is a continuous valuation on Conv (R"). This fact permits us to transfer results valid
for valuations on Convy. (R") to results for valuations on Conv(R"”;R) and vice versa.
The following result is obtained from Theorem 6.1 by using convex conjugation.

Theorem 6.3 ([39]). ForO0<j <nand(¢ € D}’, the functional V}*;:Conv(R”; R) —
R is a continuous, dually epi-translation and rotation invariant valuation such that

Vig) = /R ¢(Ix)[D?v(x)]; dx 6.1)

for every v € Conv(R";R) N CZ(R").

Here, V}it(v) =V;¢(*)for0<j <nand{ e D?. Theorem 6.2 has the fol-
lowing dual version. Let n > 2.

Theorem 6.4 ([39]). A functional Z : Conv(R"; R) — R is a continuous, dually epi-
translation and rotation invariant valuation if and only if there are functions {o € D,
..., n € D} such that

Z(v) = Vi (0) + -+ Vy o (v)
for every v € Conv(R"; R).
For ¢ € D7, the functional V;.‘ ¢ 1s connected to the classical intrinsic volume by
Vi, (hg) = cVi(K)

for K € K", where ¢ depends only on j, n, and ¢ (see [42]).

Applications of the Hadwiger theorem on convex functions including integral
geometric formulas and additional representations of functional intrinsic volumes can
be found in [42].

7. More on invariant valuations on function spaces
For continuous, epi-translation invariant valuations on Conv.(R"), the existence of a

homogeneous decomposition corresponding to Theorem 4.2 was established in [41],
that is, every such valuation is a linear combination of continuous, epi-translation
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invariant valuations that are epi-homogeneous of degree j and 0 < j < n. Here Z is
called epi-homogeneous of degree j if Z(u) is multiplied by ¢t/ when the epi-graph of
u is multiplied by ¢ > 0. It is not difficult to see that every continuous, epi-translation
invariant valuation that is epi-homogeneous of degree 0O is constant.

The following classification corresponding to Theorem 4.3 was established in
[41].

Theorem 7.1 ([41]). A functional Z : Convs.(R") — R is an epi-translation invariant
valuation that is epi-homogeneous of degree n if and only if there is { € C.(R") such
that

Z(u) = /d ((Vu(x)) dx
for every u € Conv.(R").

Here, C.(R") is the space of continuous functions with compact support. The
result corresponding to Theorem 7.1 on Conv(R"; R) is stated next.

Theorem 7.2 ([41]). A functional Z : Conv(R"; R) — R is a dually epi-translation
invariant valuation that is homogeneous of degree n if and only if there is { € C.(R")
such that

Z(v) = /]R" {(x)dMA(v, x)
for every v € Conv(R"; R).

See [41], for more information on homogeneous decompositions and why such
results do not hold for many spaces of convex functions. For more results on val-
uations on convex functions, see [15, 34,70, 71], and for results on valuations on
quasi-concave functions, see [35, 36].

While formally not results for valuations on function spaces, classification results
for valuations on star shaped sets in R” were the motivation for some of the results
on function spaces. Let $”(R") be the space of sets S C R” which are star shaped
with respect to the origin and whose radial functions p(S,-) : S*~! — [0, oc], given
by

o(S,x) :=sup{r >0:rx € S},

are in L"(S"™1). Let 8y be the space of star bodies, that is, of star shaped sets with
continuous radial functions. We remark that $ is the space used in the dual Brunn—
Minkowski theory (see [48, 96]). Note that union and intersection on §”(R”) and
on $; correspond to the pointwise maximum and minimum for radial functions. We
equip $”(R") with the topology induced by the L” norm on S"~! and S} with the
topology induced by the maximum norm.
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Klain [68] established the following classification results on star shaped sets.

Theorem 7.3 (Klain [68]). A functional Z.: $"(R") — R is a continuous, rotation
invariant valuation with Z({0}) = 0 if and only if there is ¢ € C([0, 00)) with the
properties that £ (0) = 0 and |E(¢)| < c + d|t|" forallt € R for some c,d > 0 such
that

25)= [ 4(esn)ay
for every S € S"(R").

If the valuation Z in Theorem 7.3 is in addition positively homogeneous of degree
p,then {(t) = ct? withc € R and 0 < p < n and hence Z is a dual mixed volume
(as defined by Lutwak [96]).

Tsang [130] obtained classification results for valuations on L? (X, i), when X
is a non-atomic measure space. Here we state a special case of his results that com-
plements Theorem 7.3. Let p > 1.

Theorem 7.4 (Tsang [130]). A functional Z : LP (R") — R is a continuous, trans-
lation invariant valuation that vanishes on the null function if and only if there is
¢ € C(R) with the property that |{(t)| < c|t|? forall t € R for some ¢ > 0 such that

2= [ ¢(rw)as

forevery f € LP(R").

We remark that also Theorem 7.3 can be written as a classification result on the
space of non-negative functions in L"(S"~1) (also see [130]). For results on tensor
and Minkowski valuations on L? space, see [91,116,131].

Villanueva [ 132] obtained classification results for non-negative valuations on star
bodies. In [127], Tradacete and Villanueva showed that a result corresponding to the
classification from Theorem 7.3 is valid on S§. A complete classification on $( is
given in the following result.

Theorem 7.5 (Tradacete and Villanueva [128]). A functional Z : S§ — R is a con-
tinuous valuation if and only if there are a finite Borel measure . on S and a
function ¢ : [0, 00) x S"~! — R that fulfills the strong Carathéodory condition with
respect to |L such that

25)= [ 4(e(s..5) i)

n
foreveryu € S§.
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Here, we say that ¢ : [0, 00) x S"~! — R fulfills the strong Carathéodory condi-
tion with respect to u if £ (s, -) is Borel measurable for all s > 0 and £ (-, y) is contin-
uous for y almost every y € S"~!, while for every t > 0 there is &, € L'(S"™1, )
such that (s, y) < &(y) for s < ¢ and p almost every y € S"~!. We remark that
Theorem 7.5 can be rewritten as a result on valuations on non-negative functions in
c(S"™ ™.

Classification results for valuations on Lipschitz functions on S"~! were obtained
in [43,44] and on Banach lattices in [129]. A Hadwiger theorem for valuations on
definable functions was established in [18].
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Metric measure spaces and synthetic Ricci bounds:
Fundamental concepts and recent developments

Karl-Theodor Sturm

Abstract. Metric measure spaces with synthetic Ricci bounds have attracted great interest in
recent years, accompanied by spectacular breakthroughs and deep new insights. In this sur-
vey, I will provide a brief introduction to the concept of lower Ricci bounds as introduced by
Lott—Villani and myself, and illustrate some of its geometric, analytic, and probabilistic con-
sequences, among them Li—Yau estimates, coupling properties for Brownian motions, sharp
functional and isoperimetric inequalities, rigidity results, and structural properties like rectifia-
bility and rectifiability of the boundary. In particular, I will explain its crucial interplay with the
heat flow and its link to the curvature-dimension condition formulated in functional-analytic
terms by Bakry—Emery. This equivalence between the Lagrangian and the Eulerian approach
then will be further explored in various recent research directions: (i) time-dependent Ricci
bounds which provide a link to (super-) Ricci flows for singular spaces, (ii) second-order cal-
culus, upper Ricci bounds, and transformation formulas, (iii) distribution-valued Ricci bounds
which, e.g., allow singular effects of non-convex boundaries to be taken into account.

1. Synthetic Ricci bounds for metric measure spaces

1.1. Metric spaces

The class of metric spaces (X, d) is a far-reaching generalization of the class of
Riemannian manifolds (M, g). It allows for rich geometric structures including singu-
larities, branching, change of dimension as well as fractional and infinite dimensions.

Already in the middle of the last century, A. D. Aleksandrov [1, 2] has proposed
his fundamental concepts of lower and upper bounds for generalized sectional curva-
ture for metric spaces. Especially these lower bounds are particularly well behaved
with respect to the so-called Gromov—Hausdorff metric on the class of compact met-
ric spaces as observed by Gromov [77,78]:
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e foreach K € R, the class
{(X, d) with sect. curv. > K }

is closed under GH-convergence;
e foreach K, L, N € R, the class

{(X, d) with sect. curv. > K, dimension < N, diameter < L}

is compact.

In the sequel, many properties of Riemannian manifolds and geometric estimates
which only depend on one-sided curvature bounds could be proven for such metric
spaces (X, d) with synthetic (upper or lower) curvature bounds. For spaces with syn-
thetic lower bounds on the sectional curvature, also a far-reaching analytic calculus
was developed with foundational contributions by Burago—Gromov—Perel’man [24],
Kuwae—Machigashira—Shioya [101], Zhang—Zhu [149].

However, for most properties and estimates in geometric analysis, spectral theory
and stochastic analysis on manifolds, no quantitative assumptions on the sectional
curvature are needed but—as observed in the seminal works of Yau, Cheeger, Cold-
ing, Elworthy, Malliavin, Bismut, Perel’man and many others—merely a lower bound
on the Ricci curvature

Ric > Kg.

Since the Ricci tensor is the trace of the sectional curvature, i.e.,

Ricy (vi.v;) := Y Secy(v;.vj) if {v;}i=1,... ONB of T N.
J#i
assumptions on lower bounded Ricci curvature are less restrictive than assumptions on
lower bounded sectional curvature. Replacing (synthetic) sectional curvature bounds

by Ricci bounds, the previously mentioned Gromov’s compactness theorem turns into
a precompactness theorem:

e For any choice of K, L, N € R, the class of Riemannian manifolds (M, g) with
Ricci curvature > K, dimension < N, and diameter < L is relatively compact
with respect to mGH-convergence.

Properties of mGH-limits of Cauchy sequences in such classes (so-called Ricci limit
spaces) have been studied in great detail by Cheeger—Colding [32-34]; see also [35,
36,39].

As already pointed out by Gromov, the right setting to deal with the completions
of these classes is the class of metric measure spaces. However, what was missing
for decades was a synthetic formulation of lower Ricci bounds, applicable not only to
Riemannian manifolds (and their limits) but also to metric measure spaces.
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1.2. Metric measure spaces

Here and in the sequel, a metric measure space (briefly mm-space) will always mean
a triple (X, d, m) consisting of

e aspace X,

e acomplete separable metric d on X,

e alocally finite Borel measure m on it.

It is called normalized (or mm;-space) iff in addition m(X) = 1.
A primary goal since many years has been to find a formulation of generalized
Ricci curvature bounds Ric(X,d, m) > K which is

e equivalent to Ricy (v, v) > K|[v||? if X is a Riemannian manifold,

e stable under convergence,

e intrinsic, synthetic (like curvature bounds in Aleksandrov geometry),

« sufficient for many geometric, analytic, and spectral theoretic conclusions.

In independent works, such a formulation has been proposed by the author [136, 137]
and by Lott—Villani [107], based on the concept of optimal transport and relying
on previous works by Brenier [21], Gangbo [60], McCann [112, 113], Otto [128],
Otto—Villani [129], Cordero-Erausquin—-McCann—Schmuckenschlidger [40], and von
Renesse—Sturm [145].

The synthetic lower Ricci bound for an mm-space (X,d, m) will be defined through
the interplay of two quantities on X:

e the Kantorovich—Wasserstein distance
1/2
Wa(jer, p2) = inf{(/ dz(x,y)dq(x,y)) 'q € Cpl(m,uz)} (1.1)
XXX

on the space J (X) of Borel probability measures on X where

Cpl(p1. 2) := {g € P(X X X), (1)xq = p1. (T2)xq = pa}

denotes the set of couplings of two probability measures (i1, Uz,

o the Boltzmann entropy

Jxplogpdm, ifp=p-m,

(1.2)
400, if u € m,

S(p) = Ent(u|m) = {
regarded as a functional on P (X).

The first of these quantities is defined merely using the metric d on X, the second one
merely using the measure m on X.
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Figure 1.

Remark 1.1. En passant, we record some nice properties of the underlying metric
d on X which carry over to the Kantorovich—Wasserstein metric on the Wasserstein
space Po(X) = {p € P(X) : [, d?(x, xo)pu(dx) < oo}:

¢ (P2(X), W,) is a complete separable metric space,

o (P2(X), Wr) is a compact space or a length space or an Aleksandrov space with
curvature > 0 if and only if (X, d) is so.

1.3. Synthetic Ricci bounds for metric measure spaces

Following [107, 136, 137], we now present the so-called curvature-dimension condi-
tion CD(K, N) to be considered as a synthetic formulation for “Ricci curvature > K
and dimension < N”. For convenience, we first treat the case N = oo, where no
constraint on the dimension is imposed.

Definition 1.2. We say that a metric measure space (X, d, m) has Ricci curvature > K
or that it satisfies the curvature-dimension condition CD(K, 00) ift V 1o, t1 € P2 (X),
there exists W>-geodesic (i4)se[o,1] connecting them such that

SGt) = (1 =0 o) +18Gun) = 40~ OW2 o). (13)

Remark 1.3. In other words, the CD(K, co)-condition holds true if and only if the
Boltzmann entropy is weakly K-convex on P5(X), see Figure 1. Recall that S is called
K-convex on P»(X) iff (1.3) holds true for all W»-geodesics (it;)sefo,17 in P2 (X). The
reason for requiring the weaker version is the stability under convergence of the latter
(see below).

The second case which allows for an easy formulation is K = 0. Here for finite
N € R4, the formulation is based on the Renyi-type entropy

Sy (v|m) :=—[pl_l/Ndm forv=p-m+ vs.
X
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sec >0 <= dist concave ric > 0 <= vol'/"concave

Figure 2.

Definition 1.4. We say that (X, d, m) satisfies the curvature-dimension condition
CD(0, N) iff Vo, u1 € P2(X), there exists W-geodesic (i4) e[o,1] connecting them
such that

Sn(pelm) < (1 —1)Sn (rolm) + tSn (p1m). (1.4)

Remark 1.5. It is quite instructive to observe that
Sy(wlm) = —m(A)YN if v is unif. distrib. on 4 C X.

Thus the curvature-dimension condition CD(0, N') can be vaguely interpreted as a
kind of concavity property for the N -th root of the volume, see Figure 2. This should
be seen in context with the facts that (i) on N-dimensional spaces, the N -th root of
the volume has the dimension of a length, (ii) nonnegative sectional curvature in the
sense of Aleksandrov can be regarded as a concavity property of distances, and (iii)
Ricci curvature should be regarded as the average of the sectional curvatures.

1.4. The curvature-dimension condition CD(K, N)

The curvature-dimension condition CD(K, N) for general pairs of K, N is more
involved. It was introduced in [137]. (Based on that, later on Lott—Villani [106] also
introduced a slight modification of it—the difference, however, will be irrelevant for
the sequel. In their original paper [107], they consider only the case K/N = 0, where
the effects of dimension and curvature are decoupled.)

Definition 1.6. Given that K, N € R (with N > 1), we say that an mm-space (X, d, m)
satisfies the curvature-dimension condition CD(K, N) iff ¥ pom, pym € 5, (X), there
exists W-geodesic (p;m);e[o,1] connecting them and a W,-optimal coupling g of
them such that

[o ™ @amer = [ [P 006" 0o
X XXX

+ 1y oy - N (0] dg(vo.v). (1)

Here the distortion coefficients are given by

o ) (sin(,/%td(x,y)))lv_l

rK,N(x, y) =tN
sin (y/ 70 d(x, »))
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in case K >0, analogous formula with sin /- - - replaced by sinh ,/—---in case K <0,
and 7 (x,y):=ti K=0
k. (x,y) :=tincase K = 0.

The interpretation of CD(K, N) as a synthetic formulation for “Ricci curvature
> K, dimension < N is justified by the Riemannian case.

Theorem 1.7 ([137] extending [40, 135, 145]). For Riemannian manifolds (M, g),
CD(K, N) < Ricy > K and dimy < N.

Further examples of metric measure spaces satisfying a CD(K, N)-condition inclu-
de weighted Riemannian spaces, Ricci limit spaces, Aleksandrov spaces, and Finsler
spaces. If one slightly extends the concept of “metric” towards “pseudo metric”, it
also includes path spaces (e.g. the Wiener space with K = 1, N = oo) and configu-
ration spaces.

Moreover, many further examples are obtained by constructions as limits, prod-
ucts, cones, suspensions, or warped products.

2. Geometric aspects

The broad interest in—and the great success of—the concept of the curvature-dimen-

sion condition CD(K, N) is due to

e its equivalence to classical lower Ricci bounds in the Riemannian setting,

e its stability under convergence and under various constructions, and

o the fact that it implies almost all of the geometric and functional analytic estimates
(with sharp constants!) from Riemannian geometry which depend only on (the
dimension and on) lower bounds on the Ricci curvature.

2.1. Volume growth

Let us summarize some of the most fundamental geometric estimates.

Theorem 2.1 (Bonnet—-Myers diameter bound [137]). The CD(K, N)-condition with
finite N and positive K implies compactness of X and
N -1

K

Theorem 2.2 (Bishop—Gromov volume growth estimate [137]). Under CD(K, N)
with finite N, for every xo € X, the volume growth function r +— m(B,(xg)) is abso-
lutely continuous and its weak derivative s(r) := %m(Br (x0)) satisfies

N—1 N-1
s(ry/s(R) > sin( Nlilr) /sin(,/%R) (2.2)

diam(X) <

-7 (2.1)
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forall 0 < r < R with the usual re-interpretation of the RHS if K < 0 (i.e., replacing
all sin(vK --+) by sinh(v/—K -+ ) in the case K < 0).

As in the smooth Riemannian setting, this differential inequality immediately
implies the integrated version:

N—-1
m(Br(xo)) for Sin( %t) dt

m(Br(xo)) - [Esin (\/%t)lv_ldz

forall 0 < r < R, and thus in particular

m(Br(x0)) < Cr¥ exp (v/ (N — )K~R).

The results so far assumed that N is finite. In the case N = oo, the CD(K, N)-
condition implies a novel volume growth estimate [136], not known before in the
Riemannian setting,

m(BR(xo)) < exp (%R2 +c1 R+ co). (2.3)

It can be seen as complementary to the concentration of measure phenomenon. The
sharpness is illustrated by the following example.

Example 2.3. Consider X =R,d =] - |, and dm(x) = exp(§|x|2) for k > 0. Then
(X,d, m) satisfies CD(—«, 00), and m(Bg(x)) > exp(5(R — % 2) forall x and R > %

The curvature-dimension condition CD(K, N) also implies numerous further geo-
metric estimates, among them the Brunn—Minkowski inequality [137] and the Borell-
Brascamp-Lieb inequality [11]. What remained an open problem for many years
was the Lévy—Gromov isoperimetric inequality which only recently was proven by
Cavalletti-Mondino.

Theorem 2.4 (Lévy—Gromov isoperimetric inequality [30]). Let (X, d, m) be an es-
sentially non-branching mm-space which satisfies CD(K, N)) and let X be a CD(K, N)-
model space. Then for every subset E C X and every spherical cap B C X,
dE aB E B
—| |Z—|A| iu:u. 2.4)
Xl ~ X Xl IX]

Here | - | denotes the respective volume or surface measure.

2.2. The space of spaces

Two mm;-spaces will be called isomorphic—and henceforth identified—iff there
exists a measure preserving isometry between the supports of the respective mea-
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sures. It is a quite remarkable observation that the space E of isomorphism classes of
normalized mm;-spaces itself is a geodesic space.

The LP-transportation distance between mm;-spaces (Xg,dg, mg) and (X1, dy, my)
is defined for p € [1, o) as

1/p
Dy ((Xo.do. mo). (X1, di,my)) = }jnnf(/ d(x07x1)pdm(x0’xl)) ,
: X

0%X1

where the infimum is taken over all couplings m of mg and m; and over all couplings
d of dy and d; (i.e., metrics on Xy LI X; which coincide with dy on X and with d
on Xj), [136]. With slight modifications, this definition also extends to p = oo and
p € (0, 1). Furthermore, for p = 0 we define in the spirit of the Ky Fan metric

Do((Xo, do. Mo), (X1,d1, my)) = gr’lnt:inf{e > 0 : m{d(xo, x1) > &} < ¢}.

A closely related concept is the L?-distortion distance between mm;-spaces de-
fined for p € [1, o) as

A ,((Xo.do. mg). (X1.d1, myp))
» 1/p
=inf(/ / |do(x0. yo) — di(x1. y1)| dm(xo,xl)dm(yo,yl)) ,
m XoXX1 ¥ XoxX1

where the infimum is taken over all couplings m of my and m;, and again with slight
modifications also extended to p = oo, p € (0, 1), and p = 0. Under uniform control
of the moments of the involved metric measure spaces, the topologies induced by all
these metrics are the same and coincide with that of Gromov’s box distance 1) and
with that of measured Gromov—Hausdorff convergence.

Lemma 2.5 ([76, 116, 138]). (@) VYp e[0,00): D, is complete whereas A is
not complete,
(b) Dp-convergence < Dg-convergence and convergence of p-th moments,
(c) Ap-convergence & Ag-convergence and convergence of p-th moments,

(d) Dg-convergence < Ay-convergence < [, -convergence.
The main result here is that the space of spaces is an Aleksandrov space.

Theorem 2.6 ([138]). The metric space (E,, Ay) of isomorphism classes of mm;-
spaces is a geodesic space with nonnegative curvature.

The tangent space (for the space of spaces) at a given mm;-space admits an
explicit representation and so does the symmetry group, with the latter e.g. in terms of
optimal self-couplings. Of particular interest are finite dimensional subspaces of the
space of spaces.
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Proposition 2.7. For each n € N, the subspace of n-point spaces (i.e., mm;j-spaces
with equal mass on n-points) is a Riemannian orbifold with nonnegative curvature.

2.3. Stability, compactness

Converging sequences of mm;-spaces can always be embedded into common metric
spaces. The stability of the CD(K, N )-condition then simply amounts to the lower
semicontinuity of the Renyi-type entropy for weakly convergent sequences of proba-
bility measures.

Theorem 2.8. The curvature-dimension condition is stable under Dg-convergence of
mmj-spaces.

The volume growth estimates entailed by the CD(K, N )-condition, together with
the stability of the latter under convergence, allow us to turn Gromov’s pre-compact-
ness theorem under Ricci bounds into a compactness theorem.

Theorem 2.9. For every triple K, N, L € R, the space of all mm;-spaces (X, d, m)
that satisfy CD(K, N) and have diameter < L is compact.

2.4. Local to global

A crucial property of curvature bounds both in Riemannian geometry and in the geom-
etry of Aleksandrov spaces is the local-to-global property: sharp global estimates
follow from uniform local curvature assumptions. For the synthetic Ricci bounds for
mm-spaces, this is a highly non-trivial claim. To deal with it, we restrict ourselves to
non-branching geodesic spaces.

The first globalization theorem was obtained in the case K/N = 0, where curva-
ture and dimension effects are de-coupled.

Proposition 2.10 ([107,136,137]). If K=0 or N =00, then every mm-space (X,d, m)
satisfies
CD(K, N) locally < CD(K, N) globally.

Further progress then was based on the reduced curvature-dimension condition

CD*(K, N) defined similarly as CD(K, N) but now with the distortion coefficient

T1(<t,)1v (x, y) in (1.5) replaced by the reduced coefficients

UI((I,)N(X’ y) :=sin (\/gt d(X,y))/Sin (\/gd(x,y))-

Proposition 2.11 ([12]). Forall K, N € R and all mm-spaces,

CD(K, N) locally < CD*(K, N) locally < CD*(K, N) globally.
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Only recently, the globalization theorem could be proven in full generality by
Cavalletti-Milman (with a minor extension by Zhenhao Li removing the finiteness as-
sumption for the underlying measure). Their approach is based on Klartag’s [95] nee-
dle decomposition and the localization technique developed by Cavalletti-Mondino
[30].

Theorem 2.12 ([29, 103]).
CD(K, N) locally < CD(K, N) globally.

3. Analytic aspects

A deeper understanding of the role of synthetic lower Ricci bounds on singular spaces
will be obtained through links with spectral properties of the Laplacians and estimates
for heat kernels on such spaces.

3.1. Heat flow on metric measure spaces

There are two different (seemingly unrelated) approaches to define the heat equation
on an mm-space (X, d, m):
o either as a gradient flow in L2(X, m) for the energy
1 1
&) = - / |Vu|?dm = liminf — / (lip,.v)* dm(x)
2 Jx vouinL2 2 Jx

wx)=v()|
d(x,y)

e or as a gradient flow in &, (X) for the Boltzmann entropy

Ent(u):/ ulogudm.
b'¢

with lip, v(x) = limsup,,_, , and |Vu| = minimal weak upper gradient,

The former approach (the traditional point of view) has the advantage that the en-
ergy—if it exists—is always convex and thus guarantees the existence of the gradient
flow. Its disadvantage is that it relies on the concept of weakly differentiable func-
tions. However, all analytic problems related to the notion of energy have been fully
resolved in the trilogy [3—5] by Ambrosio—Gigli—Savaré.

The latter approach (the novel perspective of Otto) has the advantage that the
entropy is always obviously well defined. However, for its gradient flow to exist, addi-
tional assumptions are required, e.g. that the entropy is semi-convex. Up to minor
technicalities, this simply says that the underlying mm-space has lower bounded
synthetic Ricci curvature. Under this minimal assumption, indeed, both approaches
coincide.

Theorem 3.1 ([3]). For every mm-space (X, d, m) that satisfies CD(K, 0o) for some
K € R, the energy approach and the entropy approach coincide.
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Example 3.2. There are plenty of examples to which this result applies. The most
prominent among them (and the authors who first proved it) are

(1)  Euclidean space R": Jordan—Kinderlehrer-Otto [85],

(i)  Riemann manifolds (M, g): Ohta [124], Savaré [133], Villani [144],
Erbar [45],

(iii)  Finsler spaces (M, F, m): Ohta—Sturm [126],
(iv) Aleksandrov spaces: Gigli-Kuwada—Ohta [67].

Example 3.3. In many other cases not covered by any CD-condition, we know that
the energy approach and the entropy approach coincide:

(a) Heisenberg group (unbounded curvature): Juillet [86],

(b) Wiener space (degenerate distance): Fang—Shao—Sturm [58],

(c) Configuration space (degenerate distance): Erbar—Huesmann [50],

(d) Neumann Laplacian (unbounded curvature if nonconvex): Lierl-Sturm [104],

(e) Dirichlet Laplacian (no mass conservation): Profeta—Sturm [131],

(f) Discrete spaces (no W,-geodesics): Maas [109], Mielke [117],

(g) Lévy semigroups (no W,-geodesics): Erbar [46],

(h) Metric graphs (unbounded curvature): Erbar—Forkert—-Maas—Mugnolo [49].
In the latter examples (e), (f), and (g), the concept of “gradient flow for the Boltzmann
entropy” has to be slightly adapted.
3.2. Curvature-dimension condition: Eulerian vs. Lagrangian

Besides the Lagrangian formulation of synthetic Ricci bounds in terms of semicon-
vexity properties of the entropy, there is also a Eulerian formulation in terms of the
energy: the celebrated curvature-dimension (or T's) condition of Bakry—Emery. It is a
groundbreaking observation that both formulations are equivalent in great generality.

For this equivalence to hold, we now make the standing assumption that (X, d, m)
is infinitesimally Hilbertian, i.e., the energy & is quadratic or, in other words, Lapla-
cian and heat flow are linear. For convenience, we will also assume that the mm-
space under consideration has the Sobolev-to-Lipschitz property and volume growth
bounded by e€” ?. Note that both of these latter properties follow from the validity of
the Lagrangian CD(K, N )-condition.

Theorem 3.4 ([4,5,52]). Under the above assumptions, the following properties are
equivalent:

(1)  the synthetic Ricci bound CD(K, N), briefly reformulated as

1
Hess S — N(VS)@’Z > K on (P(X), Wa),
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(i)  the transport estimate
1 —e Kt
W3 (Psju, Prv) < e FTWR (1, v) + 2N — —— (V5 = V1)?
T

with T := 2(s + /st +1),

(iii) the gradient estimate

4K1?

W|AP,M|2 < e_ZKtPt|Vu|2,

|VPtu|2 =+

(iv) the Bochner inequality
1 1

§A|Vu|2 —(Vu,VAu) > K - |Vu|* + N(Au)z,

also known as Bakry—Emery criterion and written in comprehensive form
as

Do) = K TG0+ (Aw)

These equivalences allow for easy explanations and/or intuitive interpretations.
The equivalence (iii)<>(iv), indeed, is known since decades as a basic result of the so-
called I'-calculus of Markov semigroups [13,14], and easily follows by differentiating
s +> P;_s(|V Psu|?). The equivalence (i)<>(ii), from a heuristic point of view, is a
consequence of the fact that the heat flow is the gradient flow for the entropy with
respect to the metric W,. Finally, the equivalence (ii)< (iii) is the important Kuwada
duality which extends the celebrated Kantorovich—Rubinstein duality towards p # 1,
q # oo. The rigorous proofs of the above equivalences by Ambrosio-Gigli-Savaré
[4,5] (for the case N = oo) and Erbar-Kuwada—Sturm [52] (for the general case)
are rather sophisticated and mark milestones in the development of the theory. For an
alternative approach in the general case, see also [7].

Remark 3.5. The Bakry—Emery estimate
2 1 2
Do(u) — K- [Vul” = N(Au) (Vu)

has a remarkable self-improvement property [13—15,57, 134] asserting that it implies
the seemingly stronger estimate

1 N 1 2
To(u) — K - |Vu? > N(Au)z + m”kuu — NlAuH

1
=|V|Vu||+ﬁ“V|Vu||—|Au||2 (V).
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This leads to improved gradient estimates and improved transport estimates which
e.g. in the case N = oo read as

[VPu| < e KP|Vu|, W (Pipt, Piv) < e KW (e, v).

3.3. RCD(K, N)-spaces—functional inequalities

We will say that an mm-space satisfies the RCD(K, N)-condition iff it satisfies the
CD(K, N)-condition and iff it is infinitesimally Hilbertian. For these mm-spaces, the
full machinery of geometric analysis and Riemannian calculus can be developed and
far-reaching structural assertions can be derived.

Here we have to restrict ourselves to present only a selection of the many results
proven so far. And we will not formulate detailed estimates (except for the first result),
we will just mention the respective results.

Theorem 3.6. The following estimates hold true (each of them with sharp constants)
on any mm-space which satisfies an RCD(K, N )-condition for some K € R and for
N < oo:

e Poincaré/Lichnerowicz inequality [106]: A1 > %K ,

moreover, for N < oco:

e Laplace comparison [64],

e Bochner’s inequality [7,52],

e Li-Yau differential Harnack inequality, Gaussian heat kernel estimates [61],

e Sobolev, Cheeger, and Buser inequalities [44,130],

whereas for N = oo:

o Talagrand- and logarithmic Sobolev inequalities [106],

e  Wang’s Harnack inequality [102], upper Gaussian heat kernel estimate [143],
and Ledoux’s inequality [44].

In all the previous results, the dimensional parameter has always been a num-
ber N > 1 (which in turn then even implies that N > dimg (X)). Quite remarkably,
various of these results also admit versions where the dimensional parameter N is a
negative number; see e.g. [110,111,119,125,127].

3.4. RCD(K, N)-spaces—splitting and rigidity

In the smooth Riemannian setting, an important consequence of nonnegative Ricci
curvature is the Cheeger—Gromoll splitting theorem. In order to extend this to metric
measure spaces, it is essential to assume that the underlying spaces are infinitesimally
Hilbertian.
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Theorem 3.7 (Splitting theorem [63]). If an mm-space (X, d, m) satisfies RCD(0, N)
and contains a line, then X = R x X' for some RCD(0, N — 1)-space (X', d’, m’).

The counterpart to the splitting theorem for positive lower Ricci bound is Cheng’s
maximal diameter theorem.

Theorem 3.8 (Maximal diameter theorem [91]). If an mm-space (X, d, m) satisfies
RCD(N — 1, N) and has diameter m, then X is the spherical suspension of some
RCD(N — 2, N — 1)-space (X', d’, m’).

In the smooth Riemannian setting, the maximal diameter theorem provides a more
far-reaching conclusion, namely, that X is the round N -sphere. In the singular setting,
however, this conclusion is false [91].

On the other hand, such a far-reaching conclusion can be drawn from the maxi-
mality of the spherical size.

Theorem 3.9 (Maximal spherical size theorem [56]). If an mm-space (X, d, m) satis-
fies RCD(N — 1, N) and

—//cos (d(x,y)) dm(x) dm(y) = 0, (3.1
x Jx

then N € N and (X, d, m) is isomorphic to the N -dimensional round sphere SN .

Closely related to the maximal diameter theorem is Obata’s theorem on the min-
imality of the spectral gap.

Theorem 3.10 (Obata’s theorem [92]). If an RCD(N — 1, N)-space (X, d, m) has
spectral gap N, then it is the spherical suspension of some RCD(N —2, N — 1)-space
X', d, m).

This splitting theorem indeed also admits an extension to N = oo which states

that an mm-space (X, d, m) that satisfies RCD(1, co) and has spectral gap 1 splits off
a Gaussian factor [66].

3.5. RCD(K, N)-spaces—structure theory

Since blow-ups of RCD(K, N)-spaces are RCD(0, N )-spaces which contain lines, a
sophisticated iterated application of the splitting theorem will lead to deep insights
into tangent spaces and local structure of RCD-spaces.

Theorem 3.11 (Rectifiability and constancy of dimension [23,120]). If (X, d, m) sat-
isfies RCD(K, N), then
@ X=UM R uN, mN) =0,
(b) each Ry is covered by countably many measurable sets which are (1 + €)-
biLipschitz equivalent to subsets of R¥,
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(c) mand J* are mutually abs. cont. on Ry,
and even more,
(d) there exists n € N such that m(Ry) = 0 for all k # n.
Besides the two landmark contributions to this structure theory mentioned above,

numerous important results were obtained [6, 43, 69, 90]. Particularly nice insights
could be obtained in the case N = 2.

Corollary 3.12 ([108]). RCD(K, 2)-spaces with m = H? are Aleksandrov spaces.

Further challenges then concern the boundaries of mm-spaces. Various concepts
how to define them and related results were presented in [42,88,89]. Important contri-
butions to the analysis of tangent cones and to the regularity theory for non-collapsed
RCD-spaces were provided in [8,82,94]. Based on these results, a precise description
could be derived.

Theorem 3.13 ([22]). Let (X,d, m) be a non-collapsed RCD(K, N)-space (withm =
HN, N € N). Then

(a) there exists a stratification S C §® C ---C N1 =§ =X\ Ry,

(b) the boundary 0X := W is (N — 1)-rectifiable,

() TWX~RNIxR, forx e N1\ sVN2

(d) X\ $V=2 is a topological manifold with boundary.

4. Recent developments

The concept of synthetic Ricci bounds for singular spaces turned out to be extremely
fruitful, both for theory and applications. A rich theory of mm-spaces satisfying such
uniform lower Ricci bounds has been established. The last 15 years have seen a
wave of impressive results—many of them going far beyond the previously described
scope.

In the following, we will first present in detail recent developments concerning

¢ heat flow on time-dependent mm-spaces and super-Ricci flows,
« second-order calculus, upper Ricci bounds, and transformation formulas,
e distribution-valued lower Ricci bounds,

and then briefly summarize several further developments.

4.1. Heat flow on time-dependent mm-spaces and super-Ricci flows

Whereas construction and properties of the heat flow on “static” metric measure
space (X, d, m)—in particular, its relation to synthetic lower bounds on the Ricci
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curvature—by now are well understood in great generality, analogous questions for
time-dependent families of mm-spaces (X;,d;, m;), t € I = (0, T), until recently
remained widely open:

e How do we define a heat propagator (P );>s acting on functions in L2(Xg, my)
and/or its dual (13\,, s)s<¢ acting on measures on X;?
Can they be regarded as gradient flows of (time-dependent) energy or entropy
functionals in function/measure spaces with time-dependent norms or metrics?

o Is there a parabolic analogue to synthetic lower Ricci bounds? Can one formulate
it as “dynamic convexity” of a time-dependent entropy functional? How is this
related to the notion of super-Ricci flows for families of Riemannian manifolds?

¢ Are there “parabolic versions” of the functional inequalities that characterize syn-
thetic lower Ricci bounds?

Within recent years, for families of mm-spaces (X, d;, m;), ¢t € (0, T'), such that
o foreveryt € I the mm-space (X, d;, m;) satisfies an RCD(K, N )-condition,
e there exists some regular 7-dependence of d; and my,

these questions found affirmative answers.

Definition 4.1 ([140]). A family of mm-spaces (X,d;,m;);c(o,T) is called super-Ricci
flow iff the function

Ent: (0,T) x P(X) = (—o0,00], (t, ) — Ents(u) := Ent(u|m;)

is dynamically convex on &P (X )—equipped with the 1-parameter family of metrics
W; (= L?*-Kantorovich-Wasserstein metrics with respect to d;)—in the following
sense: for all u®, u! and a.e. 7 there exists a W;-geodesic (149)4e0,1] such that

1
0a Enty (11%) — 04 Bnty (1) < S0 W2 (u°, ). (4.1)

Example 4.2. A family of Riemannian manifolds (M, g;), t € (0, T') is a super-Ricci
flow in the previous sense iff

) 1
Ric; +§8tg, > 0.

Recall that (M, g;)e(0,1) is called Ricci flow if Ric, +%8tgt = 0. These properties
can be regarded as the parabolic analogue to nonnegative (or vanishing, resp.) Ricci
curvature for static manifolds.

Whereas in the static setting the gradient flow for the energy and the gradient
flow for the entropy characterize the same evolution (either in terms of densities or
in terms of measures), this is no longer the case in the dynamic setting: here one
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is characterizing the forward evolution whereas the other one is characterizing the
backward evolution.

Theorem 4.3 ([98]). In the previous setting, there exists a well-defined heat prop-
agator (Py5)s=s acting on functions in L*(X, mg) and its dual (Py)s<; acting on
measures on X. Moreover,

(1) Yu € Dom(8), Vs € I, the heat flow t — u; = Py su is the unique forward
gradient flow for the Cheeger energy %Ss in L2(X, my).

2) Yu € Dom(Ent), Vt € I, the dual heat flow s — s = ﬁt,su is the unique
backward gradient flow for the Boltzmann entropy Ent; in (P (X), W;) pro-
vided that (X, d;, m;) is a super-Ricci flow.

Both gradient flows can be obtained as limits of corresponding steepest-descend
schemes (aka JKO-schemes) adapted to the time-dependent setting [97].

In analogy to Theorem 3.4, the Lagrangian characterization of super-Ricci flows
(in terms of dynamic convexity of the entropy) turns out to be equivalent to a Eulerian
characterization (in terms of a dynamic I';-inequality), to a gradient estimate for the
forward evolution, and to a transport estimate (as well as to a pathwise Brownian
coupling property) for the backward evolution.

Theorem 4.4 ([98]). The following are equivalent:

(@) 3 Ent;(u®)|a=0 — 4 Ent, (u?)|a=1 < 30, WA (u®, ph),

(0) Wy(Prspu, Prsv) < Welu,v),

(c) Vx,y, Vt, there exist coupled backward Brownian motions (X, Ys)s<; start-

ing att in (x,y) such that dy(Xs, Ys) < d¢(x,y) a.s. forall s <t,

(d) |Vi(Prsu)® < Prs(IViul?),

(€ Ta; > 50:Ts, where T (u) = 3A8:|Vou|* — (Vou, Vi Au).

This result in particular extends a previous characterization of super-Ricci flows
of smooth families of Riemannian manifolds in terms of the previous assertion (b)
by McCann-Topping [115] and in terms of the previous assertion (c) by Arnaudon—
Coulibaly—Thalmaier [10].

There is a whole zoo of further functional inequalities which characterize super-

Ricci flows. Several implications for the subsequent assertions were new even in the
static case.

Theorem 4.5 ([99]). Each of the following assertions is equivalent to any of the
above or, in other words, to (X,ds, m;) ;e being a super-Ricci flow:

(f) local Poincaré inequalities:

2(t = )Ty (Prgu) < Prs(u?) — (Prsu)® < 2(t — ) Pr s (Tsu),
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(g) local logarithmic Sobolev inequalities:

T (P T
(t —s)% < P; s(ulogu) — (P su)log(P;su) < (t —S)Pt,s( su),
u

1,8

(h) dimension-free Harnack inequality: Yo > 1

2
(Prsi)(y) = Prsu®(x) - exp (%)

(1) log Harnack inequality:

d7 (x,y)
4t —s)’

With these concepts and results, a robust theory of super-Ricci flows is estab-
lished—being regarded as a parabolic analogue to singular spaces with lower Ricci
bounds. In the smooth case, deeper insights and more powerful estimates require to
restrict oneself to Ricci flows rather than super-Ricci flows; see e.g. [16, 81,96, 100].
To deal with similar questions in the singular case, first of all we need a synthetic
notion of upper Ricci bounds; see the next subsection.

For related current research on lower Ricci bounds in time-like directions on
Lorentzian manifolds and on Einstein equation in general relativity, see [31,114,122].

P; s(logu)(x) < log P, su(y) +

4.2. Second-order calculus, upper Ricci bounds, and transformation formulas

So far, on RCD-space we only dealt with the canonical first-order calculus for (real-
valued) functions on these spaces. The setting, however, allows us to go far beyond
this.

Theorem 4.6 ([18,62,65,70-72,121]). Given an RCD(K, o0)-space (X,d, m), there
exist well established concepts of

e a powerful second-order order calculus on X including a consistent notion of
Ricci tensor (the lower bound of which coincides with the synthetic lower Ricci
bound in terms of semiconvexity of the entropy),

e the heat flow on 1-forms on X which among others leads to the celebrated Hess—
Schrader—Uhlenbrock inequality
|Prdf| <e X Pidf],

e harmonic maps from X into metric spaces (Y, dy), typically of nonpositive curva-
ture, based on Sobolev calculus and approximation of energy densities for maps
between metric spaces, providing Lipschitz continuity of these maps.

In a different direction, a challenging goal is to provide synthetic characteriza-
tions of upper Ricci bounds Ric < L. Indeed, various of the (equivalent) synthetic
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characterizations of lower Ricci bounds admit partial converses. However, these con-
verse characterizations are not necessarily equivalent to each other. Moreover, any
such characterizations will certainly be not as powerful as the corresponding lower
bound. Typically, the upper Ricci bounds are asymptotic estimates whereas the lower
Ricci bounds are uniform estimates.

Theorem 4.7 ([142]). Weak synthetic characterizations of upper Ricci bounds for an
RCD(K, N)-space (X,d, m)

e interms of partial L-concavity of the Boltzmann entropy and
e interms of the heat kernel asymptotics

are equivalent to each other.
More precisely, a weak upper bound L for the Ricci curvature is given by

L :=suplimsup n(x, y),

z X,y—z

where forall x,y € X,
n(x,y) =

= lim inf{ ————
>0 {W22(1007 101)

S(p°) < 00, S(p") < o0, supp[p®] C Bs(x), supp[p'] C Bs(y)}

(92 S04zt =82S0 4o] : (0%) o,y 8e0desic,

= lim inf { — 07" log Wa(Pypt, Pev)|,_q : supp[u] C Be(x), supp[v] C Be(y)}.

Remark 4.8. For weighted Riemannian manifolds (M, g, e~/ d voly),
Ricy (x.y) < 1(x.y) < Ricy (x,) + 0 (x.y) - tan® (Vo (x.y) d(x. 3)/2)

provided x and y are not conjugate. Here Ricy(x, y) = fol Ricr (y*, %) /|y*|> da
denotes the average Bakry—Emery—Ricci curvature along the (unique) geodesic y =
(¥%)aefo,1] from x to y, and o (x, y) denotes the maximal modulus of the Riemannian
curvature along this geodesic.

Similar as other approaches (e.g. [123]), these weak upper Ricci bounds will not
be able to detect the positive Ricci curvature sitting in the tip of a cone over a circle
of length < 27. A slightly stronger notion will detect it.

Theorem 4.9 ([56]). If a metric cone has both sided (“strong”) Ricci bounds K and
L in the sense of RCD(K, 0o) and
1 WZ(P,(SX, P,Sy)

—liminfliminf — log

<L (VzeX),
X, y—=z t—>0 d(x,y) - (vz )

then it is the flat Euclidean space (of some integer dimension).
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A crucial property of the class of RCD-spaces is that it is preserved under transfor-
mations of measure and metric of the underlying spaces, and that there exist explicit
formulas for the transformation of the parameters K and N in the curvature-dimension
condition CD(K, N).

To be more specific, let an mm-space (X, d, m) be given as well as continuous
(“weight”) functions V, W on X. In terms of them, define the transformed mm-space
(X,d’,m) with m’ := ¢"m and

1
d'(x,y) = inf{/ Vel - "0 dt -y 1 [0,1] — X rectifiable, yo = x, y; = y}.
0

If [ |[Vu|*> dmon L?(X, m) denotes the Dirichlet form (“Cheeger energy”) associated
with (X, d, m), then the Dirichlet form associated with the transformed mm-space is
given by

/ IVu)?e"=2" dm on L%(X,e"m).

Theorem 4.10 ([80, 139]). If (X, d, m) satisfies RCD(K, N) for finite K, N € R and
ifV,W € W2(X), then for each N' > N there exists an explicitly given K' such
that (X,d’, m’) satisfies RCD(K’, N').

(If W =0, then also N = N’ = 0o is admissible; if V. = NW, then also N' = N
is admissible.)

Let us illustrate this result in three special cases of particular importance:

e W = 0 (“drift transformation”):

K’=K—sup |:HessV(Vfo)+ ! N(VV,Vf)Z](x);

IVf 2
e V =2W (“time change”):

[(N=2)(N'—2)]
N'—N

K' = infe™ 2" |:K — AW — + |VW|2}(x);
X

e V = NW (“conformal transformation™): N’ = N and

K = infe_2W|:K —[AW + (N = 2)|VW|?]

X

sup

|vf|§[HessW(Vf VI)—(VW,Vf) ]](x)

The first of these cases is well studied in the setting of Bakry—Emery calculus (and
also in the setting of synthetic Ricci bounds for mm-spaces). It is the only case where
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also N = oo is admitted. The last of these cases is well known in Riemannian geom-
etry but has not been considered before in singular settings. A particular feature of
the second case is that the transformation formula for the Ricci bound only depends
on bounds for [VW| and AW (and thus extends to distribution-valued Ricci bounds
in case of W € Lip(X); see the next subsection).

4.3. Distribution-valued Ricci bounds

Uniform lower Ricci bounds of the form CD(K, co) on mm-spaces
e are preserved for Neumann Laplacian on convex subsets, but

¢ never hold for Neumann Laplacian on non-convex subsets.
The goal thus is

» to find appropriate modification for non-convex subsets,

e toreplace constant K, by function k, measure «, distribution, etc.

Theorem 4.11 ([20]). Given an infinitesimally Hilbertian mm-space (X,d, m) and a
lower bounded, lower semicontinuous function k : X — R, the following are equiva-
lent:

(1)  curvature-dimension condition CD(k,00) with variable k: ¥V o, t1 € P (X),
there exists Wa-geodesic (j1y); = (er4V); such that ¥Vt € [0, 1] with g5, 1=
1=s)tAs(l—1),

Ent(u;) < (1 —1) Ent(uo) + 7 Ent(s1) —[/01 k(ys)gsa dsly*v(dy),
(i1)  gradient estimate:
|V Prul(x) < B KB vu|(B,)],
(iii) Bochner’s inequality BE, (k, 00):
%A|Vu|2 —(Vu,VAu) > k - |Vu|?,

(iv) VY1, Ko, there exists a coupled pair of Brownian motions (Btl/z)tzo,

(B t2/2 )e>0 with given initial distributions such that a.s. for all s <t
d(B}. B) < e~ KBLEDAr . 4(p, B2)

with k(xg, x1) := sup{fo1 k(yu)du : yo = xo, y1 = X1, Yy geodesic}.

For extensions to (k, N)-versions, see [52,93, 141].
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To proceed towards distribution-valued Ricci bounds, define the spaces W -2 (X)
for p € [1, o], put W*I’OO(X) ={f e Wchz(X) IV flllLee < 00}, and denote by
W —1:%0(X) the topological dual of

wHIt(x) = {f e L'(X): fr:= f Anv (—n) e WH2(X), sup |||Vf,,|“L1 < oo}.

Definition 4.12. Given k € W ~1:°°(X), we say that the Bochner inequality BE (k, 00)
holds iff |V £| € W12 for all f € D(A), and

— [ (V19 /1.98)+ G (L VAL dm = (9 1)y -1

IVfI
forall £ € D(A) with Af € W2 and all nonnegative ¢ € W12,
Given k € W=1:%°(X), we define a closed, lower bounded bilinear form &% on
L?(X) by
(f.g) =6(f8) + (f8KIwiit w-1.0

for f, g € Dom(&¥) := W12(X). Associated to it, there is a strongly continuous,
positivity preserving semigroup (P);>o on L2(X).

Theorem 4.13 ([141]). The Bochner inequality BE;(k, 00) is equivalent to the gra-
dient estimate

VP, f| < PF(IVS]). 4.2)

To gain a better understanding of the semigroup (P/);>0, assume that « = —Ayr
for some ¢ € W1o°,

Theorem 4.14 ([37,141]). Then
E(fg)=¢6(f8)+E(fg. V) (4.3)

and ,
t/2f(x) [ N f(Bt)]v (4.4)

where (Py, (B;)(>0) denotes Brownian motion starting in x € X, and NV is the zero
energy part in the Fukushima decomposition; i.e., Nw Y (By) — V¥ (By) — MW

If ¥ € Dom(A), then N;/’ =3 fo Ay (Bs)ds—in consistency with the previous
theorem (Theorem 4.11).

Remark 4.15. The concept of tamed spaces proposed by Erbar—Rigoni—Sturm-—
Tamanini [55] generalizes the previous approach to distribution-valued lower Ricci
bounds in various respects:

o the objects under consideration are strongly local, quasi-regular Dirichlet spaces
(X, &, m) (rather than infinitesimally Hilbertian mm-spaces (X, d, m));
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« the Ricci bounds are formulated in terms of distributions « € Wq_lé’cz (X) (rather
than k € W~1:°°(X)); for such distributions x which lie quasi locally in the dual
of W12(X), the previous ansatz for defining the semigroup (PX);~¢ still works
with appropriate sequences of localizing stopping times;

e in addition, the distributions k are assumed to be moderate in the sense that

sup Pf1(x) < oo.
t<l,xex
This reminds of the Kato condition but is significantly more general since it does
not require any decomposition of « into positive and negative parts. It always
holds if k = —Ay for some ¥ € Lip, (X).

Example 4.16. The prime examples of tamed spaces are provided by the following:

(a) ground state transformation of Hamiltonian for molecules [19, 79]; it yields
curvature bounds in terms of unbounded functions in the Kato class;

(b) Riemannian Lipschitz manifolds with lower Ricci bound in the Kato class
[27,28,132];

(c) time change of RCD(K, N)-spaces with W € Lip; (X) (cf. Theorem 4.10); it
typically yields curvature bounds x which are not signed measures;

(d) restriction of RCD(K, N)-spaces to (convex or non-convex) subsets Y C X
or, in other words, Laplacian with Neumann boundary conditions; it yields
curvature bounds in terms of signed measures k = km + £o; see below.

Assume that (X, d, m) satisfies an RCD(k, N )-condition with variable k : X - R
and finite N. Let a closed subset Y C X be given which can be represented as sub-
level set Y = {V < 0} for some semiconvex function V' : X — R with [VV| =1 on
adY. Typically, V is the signed distance functions V' = d(-,Y) —d(-,X\Y).

A function £ : X — R is regarded as “generalized lower bound for the curvature
(or second fundamental) form of dY”” iff it is a synthetic lower bound for the Hessian
of V.

Example 4.17. Assume that X is an Aleksandrov space with sectional curvature > 0
and that Y C X satisfies an exterior ball condition: Vz € dY, there exists a ball B, (x) C

CY with z € 9B, (x). Then £(z) := —% is a lower bound for the curvature of Y.

Under weak regularity assumptions, the distributional Laplacian oy := AV T is a
(nonnegative) measure which then will be regarded as “the surface measure of 9Y”.

Theorem 4.18 ([141]). Under weak regularity assumptions on 'V and £, the restricted
space (Y, dy, my) satisfies a Bakry—Emery condition BE; (k, o0) with a signed mea-
sure valued Ricci bound

Kk =k-my+{-oy. 4.5)
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Thus the Neumann heat semigroup on Y satisfies
IV PYu|(x) < E[|Vu|(B) - e~ Jo KBS . o= fo UBIdL:] (4.6)

where (Bg/2)s>0 denotes the Brownian motion in Y and (Ls)s>0 the continuous addi-
tive functional associated with oy.

For smooth subsets in Riemannian manifolds, this kind of gradient estimate—
with (Lg)s>0 being the local time of the boundary—has been firstly derived by Hsu
[84]; cf. also [38, 146].

Let us illustrate the power of the above estimates with two simple examples: the
ball and its complement.

Corollary 4.19. Let (X,d, m) be an N -dimensional Aleksandrov space (N > 3) with
Ric > —1 and sec < 0. Then forY := X\ B,(z),

1 yoy
|VPt/2f|(x) < El[et/”erz . |Vf(B;()|],
In particular, Lip(P}), ) < sup, EY[e"/>+FL7] - Lip(£) and

IVPY, fI2(x) < €TV PYIV £ (). 4.7)

Upper and lower bounds of curvature (here 0 and —1, resp.) can be chosen to be
any numbers. Note that no estimate of the form

VPV, £ () < €€ - PY, |V £ ()

can hold true due to the non-convexity of Y. Thus it is necessary to take into account
the singular contribution arising from the negative curvature of the boundary.

In the next example, the singular contribution arising from the positive curvature
of the boundary can be ignored. However, taking it into account will significantly
improve the gradient estimate.

Corollary 4.20. Let (X,d, m) be an N -dimensional Aleksandrov space with Ric > 0
and sec < 1. Then for Y := B, (z) for some z € X and r € (0, w/4),

|VPt/2f|(x) < ]E;[e_

cotr

LY v B[]

In particular, L1p(Pt/2f) < sup,, E;[e_CWL‘?Y -Lip(f)] and
2 ZNo1 2
VP, () < e T pY IV £ (). (4.8)

Taking into account the curvature of the boundary allows us to derive a positive
lower bound for the spectral gap (without involving any diameter bound and despite
possibly vanishing Ricci curvature in the interior).
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Corollary 4.21. In the previous setting, A1 > % cot? r.

4.4. Synthetic Ricci bounds—extended settings

In order to summarize recent developments concerning synthetic Ricci bounds for
singular spaces, let us recall the previously presented

(1) heat flow on time-dependent mm-spaces and super-Ricci flows,
(2) second-order calculus, upper Ricci bounds, and transformation formulas,

(3) distribution-valued lower Ricci bounds,
and then move on to further developments in extended settings

(4) discrete mm-spaces: for discrete mm-spaces (X, d, m), the synthetic Ricci

bounds as introduced above will be meaningless since there will be no non-
constant geodesics with respect to the Kantorovich—Wasserstein metric W as
defined in (1.1). This disadvantage can be overcome by resorting to a modi-
fied Kantorovich—Wasserstein metric based on a subtle discrete version of the
Benamou—Brenier formula. This way, the heat flow can again be character-
ized as the gradient flow of the entropy [109, 117].
And synthetic Ricci bounds defined in terms of semiconvexity of the entropy
with respect to this modified metric are intimately linked to equilibration
properties of the heat flow; see e.g. [47, 48, 53, 54, 75]. Challenging ques-
tions address homogenization [68,73,74] and evolution under curvature flows
[51]. Related—but in general different—concepts of synthetic Ricci bounds
are based on discrete versions of the Bakry—Emery condition; see e.g. [17,41,
59,105, 147].

(5) non-commutative spaces: inspired by the synthetic Ricci bounds for discrete
spaces, an analogous concept also has been proposed for non-commutative
spaces, with remarkable insights e.g. for (ergodic) quantum Markov semi-
groups on tracial or finite-dimensional unital C *-algebras, in particular, equi-
libration rate estimates for the fermionic Ornstein—Uhlenbeck semigroup and
for Bose Ornstein—Uhlenbeck semigroups [9, 25,26, 83,118, 148].

(6) Dirichlet boundary conditions: for a long time, it seemed that OT techniques
could not be used to analyze the heat flow with Dirichlet boundary conditions.
Only recently, Profeta—Sturm [131] overcame the problem of mass absorption
by considering charged particles (which are either particles or anti-particles),
and this way succeeded in finding a characterization for the heat flow as
a gradient flow for the entropy. Passing from particles to charged particles
technically corresponds to passing from a space X to its doubling. Functional
inequalities for the Dirichlet heat flow thus are closely linked to those for
the doubled space. For recent progress concerning the challenging problem
of gluing convex subsets in RCD-spaces, see [87].
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Torsion in algebraic groups and problems which arise
Umberto Zannier

Abstract. This article is based on the lecture that I had the honor and pleasure to deliver at
the 8th European Congress of Mathematics in Portoroz, Slovenia (originally planned for June
2020, then shifted to June 2021 for public health reasons). In the talk I tried to give an overview
of some issues linked to torsion in algebraic groups, focusing on some recent research. Taking
into account the purposes of reaching a large audience of mathematicians, from all subjects,
I started with elementary general concepts, recalling some historical steps, before shifting to
more specific themes which I was more familiar with. In these notes, I maintained the same
principles, and only slightly expanded the contents of the lecture; indeed, I have not gone into
any detailed argument.

1. Torsion in commutative algebraic groups

Torsion (etymology): the word torsion (in mathematics) often denotes a quantity,
suitably defined in differential terms, which measures local “twisting” of a curve in
Euclidean space (roughly speaking, it expresses “how far” the curve locally is from
being a plane curve). However, in this exposition we shall adopt the usual algebraic
meaning, namely according to the following definition.

Definition. An element g in a group G is forsion if g = 1 = identity of G, for some
integer m > 0. (Such an m is called an exponent for g, whereas the minimal such m
is called the — exact — order of g.)

This terminology apparently is not unrelated to the former one, as it seemingly
originated from the structure of homology groups of spaces obtained by twisting.
For instance, the real projective plane P> (R), defined by gluing antipodal points in a
closed half sphere, has the torsion group Z/2 as its first homology group (over Z).

A torsion element g as above generates a so-called finite cyclic group; now the
etymology comes from the circle, because the powers g” repeat cyclically: ..., g,
g%,...,g"t =g gmt2 =g2 . andgenerally g"t" =g",n=0,1,....

2020 Mathematics Subject Classification. Primary 11-02; Secondary 11Gxx, 14Gxx, 14Kxx,
14Lxx.
Keywords. Number theory, Diophantine geometry, algebraic groups.
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Indeed the circle comes into the picture beyond this simple intuition, through its
topology (especially the fundamental group).

1.1. Algebraic groups

We shall consider some examples of torsion elements, and their structure, in algebraic
groups: roughly speaking an algebraic group is defined first as an algebraic vari-
ety, i.e., a set of points satisfying a given system of algebraic equations in an affine
or projective space, and then one has a group law expressed by polynomials in the
coordinates.

An algebraic group is an irreducible variety if and only if it is connected, and, in
general, it is anyway a finite union of translates of the connected component of the
identity element (which is a normal subgroup).

In this article we shall meet only commutative algebraic groups, a property which
entails that torsion elements form a subgroup.

For simplicity we shall consider only algebraic groups and points defined over
the field C of complex numbers and tacitly identify such a group with the set of
its complex points. (However, this does not mean that we shall disregard the actual
minimal field of definition of the points of interest for us, a field which may be small
and is highly important for arithmetical information.)

Examples.

Additive algebraic group. The additive algebraic group, denoted by G,, is simply
the affine line A! as an algebraic variety. The group law is expressed additively by
(x,y) + x + y. The set of complex points G,(C) of G, is simply C.

A torsion element g € C of exponent m now satisfies mg = 0, hence g = 0,
which means that there is no torsion other than 0 (as over any field of characteristic
zero, whereas every element is torsion of exponent p in positive characteristic p).

Multiplicative algebraic group. The multiplicative algebraic group G, is the affine
line deprived of the origin A' — {0} as an algebraic variety, with the algebraic group
law (x, y) > xy. The set G, (C) of its complex points is the multiplicative group of
nonzero complex numbers C* := C \ {0}.

A torsion element g € C* of exponent m satisfies g = 1, so the torsion elements
are precisely the (complex) roots of unity. There are m having exponent m; these lie
on the unit circle S1 := {z € C : |z| = 1}, and they form the vertices of a regular
m-gon in the complex plane C.

Note the (analytic) exponential map z > e , which sends homomorphically C
onto C* and has a kernel Z == 71 (C*); this is a non-divisible group, which explains
torsion elements in the image (whereas there are no nontrivial ones in the domain).

2wiz
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Through this map we have the analytic isomorphism G,,(C) = C* =~ C/Z, the quo-
tient of C by a discrete subgroup (of rank 1).

Elliptic curves. The additive and multiplicative algebraic groups are curves (i.e.,
have dimension 1). However, they do not exhaust the possibilities for a curve to be
a connected algebraic group. Indeed, (the) other fundamental examples are given by
(complex) elliptic curves. They can be defined in the projective plane P, by equations
of the shape

E:y? = 4x3 — gox — g3 in A? + point at infinity O := (0 : 1: 0) in P5,
where g,, g3 € C are such that 4x3 — g,x — g3 has no multiple roots, i.e.,
g —27g3 #0.

What is particularly remarkable is the existence of an algebraic-group (commutat-
ive) law among the points of each such curve. Namely, if we prescribe that the origin
is the point at infinity O, then to add points P, Q € E, we first draw the line through
P, O (or the tangent to E if P = Q) which (taking into account multiplicities) will
intersect E in a third point R. The group law is such that P + Q + R = O, whereas
P + Q is the point opposite to R with respect to the x-axis.

This outstanding law (called classically the chord and tangent process, apparently
observed first by Newton) indeed may be expressed by polynomials in the homogen-
eous coordinates and satisfies the group axioms (the associative law being not entirely
trivial to check). It is fundamental in several respects, e.g., in the theory of Diophant-
ine equations, since, when the curve has rational coefficients, it produces rational
points out of rational ones.

Somewhat similarly to the case of Gy, each of these curves is found to be ana-
Iytically isomorphic to a (compact) complex torus C /L, where L is again a suitable
discrete subgroup, however now of maximal rank 2, i.e., a lattice in C. The isomorph-
ism occurs through the Weierstrass exponential map: z — (9L (2), 9 (2)), where g,
is the Weierstrass function associated to L:

L) =z724+ > (=-D7*=17).

leL—{0}

This function is meromorphic on C and admits L as its group of periods. (It sends L
to 0.)

The addition + on C (and on C /L) then explains the group law on FE in the sense
that the former is transported to the latter by the said exponential.

In particular, it appears that now there are m? torsion elements of exponent 7.

The complex elliptic curves, up to complex isomorphism, form a family of dimen-
sion 1 (parameterized by the so-called j-invariant j(E) = 1728g3 /(g5 — 27g3),
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which can assume any complex value). Together with G, and Gy, they exhaust the
isomorphism classes of complex (connected) algebraic groups of dimension 1.

Abelian varieties. Abelian varieties are the irreducible (or, equivalently, connected)
projective algebraic groups. They are automatically commutative (the terminology
“abelian” arising for a different reason).

Elliptic curves represent precisely the abelian varieties of dimension 1. But
abelian varieties exist in any dimension: a simple example is a power £ of an elliptic
curve E, though this is extremely special. Other very important (though still special)
abelian varieties arise as Jacobians of (smooth) algebraic curves of genus g > 0; such
a Jacobian has dimension g.

Like for elliptic curves, every complex abelian variety, say of dimension g, is
analytically isomorphic to a complex torus, i.e., a quotient C8 /L where L is a (full)
lattice; however for g > 1 not every complex torus is an abelian variety, a certain
subtle “bilinear” condition on the lattice (existence of a Riemann form), in heavy part
arithmetical, being necessary and sufficient.

Products. We may obtain other algebraic groups by taking products, e.g., of the form
G] x G} ; the complex points are now vectors in C” *5_ where the last s coordin-
ates are nonzero and where the operations are coordinatewise (additive on the first r
coordinates, multiplicative on the last s ones). For topological reasons the powers G,
are sometimes called (complex multiplicative) tori.

Similarly, we may take products among the other algebraic groups we have seen.
However, one should take into account that there exist extensions of algebraic groups,
i.e., exact sequences 0 > G; — G — G, — 0, where G is not (necessarily isomorphic
to) the product G; x G, (examples occur already in dimension 2, on taking G; = G,
or Gy, and G, = an elliptic curve). When G; = G, and G is an abelian variety, any
G in such an exact sequence is called a semiabelian variety.

1.2. Some results about torsion in algebraic groups

Additive case. We have already noted that G, has no nontrivial torsion in character-
istic zero, thus in particular over C.

Multiplicative case. In this case, we have recalled that the torsion elements of
Gm(C) = C* are the complex roots of unity.

Through the exponential map z — e2™'?, the roots of unity correspond to z =
rational number, which raises a link with Number Theory.

Roots of unity naturally appear in describing discrete periodical phenomena. For
instance one finds here finite Fourier series, i.e., linear combinations of exponential
functions (on Z) having roots of unity as bases; they are a discrete counterpart of
the famous series expansions introduced systematically by Fourier, at the very heart
of Harmonic Analysis. The finite Fourier series represent all periodic functions on Z
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and are of the utmost relevance in myriads of topics and applications, including Cod-
ing Theory, Combinatorics, Fast Multiplication, Group Theory, (Analytic) Number
Theory, Numerical Analysis, and so on.

An effectivity issue. Let us pause to note that, already for roots of unity, even to decide
whether a specific number (or, more generally, specific point of a given algebraic
group) is torsion seems not completely obvious. For instance, consider the following:

34+ 4/-1
5

Small challenge: Is o := a root of unity?

Note that « indeed lies in the unit circle Sy, as 3% 4+ 4% = 52. So the natural test
of computing || does not disprove the sought eventuality for this particular number.
3...., orany given power ™, is or is not equal
to 1, but a possible torsion-exponent is not bounded a priori; so, unless we find 1 at
some stage, we are left with an open possibility for the next check.

In conclusion, a little reflection may be needed to (see how to) answer such (type
of) question(s) algorithmically in the general case. (Now a negative answer may be
obtained using the Euler function value ¢ (g) for the degree over Q of a root of unity
of exact order g, which bounds the possible torsion order in terms of the degree of the
given number. This works generally, but for the actual question maybe the simplest
way is to observe that « is not an algebraic integer.! We invite the interested reader to
seek several different arguments for answering the question.)

From a number theoretical viewpoint, Gauss (Disquisitiones Arithmeticae 1801)
was the first to study in depth the arithmetical properties of roots of unity. In partic-
ular, this led him to criteria for constructing a regular n-gon with ruler and compass
(ancient problem of Greek mathematics). For instance this is possible for

Now, we can check whether o2, o

n=34,56281012,1516,17,..., butnotforn =7,9,11,13,14,18,19,....

As is well known, Fermat primes 22" 41 play a heavy role here. . ..

In fact, already a few years before the publication of the Disquisitiones, Gauss
had succeeded to construct the regular polygon of 17 sides, obtaining in practice the
remarkable equality

2 / /
16c0s%=—1—|—\/17+ 34—2«/17+2\/17+3\/1 — 170 + 38+/17.

We may say that Gauss anticipated the Galois theory of the cyclotomic fields; in
fact, in particular he defined the so-called Gaussian periods, which a posteriori turn

IThis fits with a well-known theorem of Kronecker: “Roots of unity are those algebraic
integers having all conjugates of complex absolute value 17, which may be rephrased as: “An
algebraic number is a root of unity if and only if all its absolute values are 1”.
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out to be suitable invariants for subgroups of automorphisms. (They may be also
conceived as values of certain finite Fourier series alluded to above.) For instance,
Gauss obtained from them “explicit” generators for all the subfields of a principal
cyclotomic field Q(e27/?), where p is a prime number. (They are highly import-
ant for other reasons as well.) In particular, Gauss expressed, through the famous
Gauss sums, any number /n, n € Z, as a sum of roots of unity, which is not at all
obvious. This also started the theory of abelian extensions of Q and of number fields
(so-called “Class-field theory”).

In this case of the roots of unity (through viewpoints introduced by Deuring, . . .,
Tate, .. ., Grothendieck, . . .) the Galois groups which arise may be seen as an algeb-
raic manifestation and realization of the monodromy (group) of the circle S; = {z €
C : |z| = 1}. For instance, we have

11(S1) =m(C*) =2,

and its finite quotients are the Z/(m) which correspond to the finite covers of S7, and
so to the homomorphisms
S1— Sz ™,

with kernel the group U,, = e>™'Z/™ =~ 7,/(m) of mth roots of unity. So Uy, is the
topological covering group and the Galois group over QQ acts on it, and we have

Aut(Uyp) = (Z/(m))" = Gal (Q(Un)/Q) = Gal (Q(e*™/™)/Q),

as proved essentially by Gauss. So the algebraic Galois group of the corresponding
field extension equals the (abstract) automorphism group of the topological covering

group.

Elliptic case. Now the theory of torsion elements is again highly interesting, rich,
and actually (much) more difficult than in the cyclotomic case. We have already
recalled that there are m? elements of exponent /. The coordinates of these points
generate (over the ground field Q(g», g3)) a field which is found to contain the cyc-
lotomic field Q(e27%/™), so we may say that the cyclotomic case recalled above falls
just as a special piece of the elliptic theory.

The torsion points now lie on a space which may be identified with the product
S1 x S of two circles (a torus), and the topological covering group corresponding
to torsion points of order m is now (Z/(m))?. The elements of the Galois group
again correspond to automorphisms of the covering group and thus may be viewed
inside the finite matrix group GL,(Z/(m)). A fundamental issue is to understand the
image of the Galois group (as m varies). This Galois theory somewhat depends on
the coefficients g5, g3.
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The “generic” case of transcendental j -invariant had been dealt with by Fricke &
Weber between the XIX and XX centuries: they proved that the image is essentially
the “largest possible one” (i.e., SL,(Z/(m)) if we work over C).

The algebraic case lies much deeper, and suppose to fix ideas that g;, g3 € Q.
There are two essentially different subcases, according to whether the ring of endo-
morphisms of the elliptic curve is “trivial” (i.e., Z) or not; the latter case, called
Complex Multiplication, is “exceptional” in various ways (now the endomorphism
ring is an order in some imaginary quadratic field).

Already Gauss (beginning of Chapter VII of Disquisitiones) foresaw the interest
and depth of this issue in some of these situations, which he interpreted as analogous
to cyclotomy, i.e., as the (arithmetical) theory of the dissection of a lemniscate (in
place of a circle) into equal parts. It is also interesting that the general case of prime m
had been considered by Galois (in a letter to Chevalier, 29 May 1832), especially from
the viewpoint of solvability by radicals of the corresponding algebraic equations.

We skip any other detail and only recall a few basic more modern achievements.

Some elliptic results

e A deep landmark result on the above-mentioned Galois image is Serre’s Open
Image Theorem (70s): in a sense it extends Gauss’ achievements (and more) to
the most general elliptic case, proving that the Galois image is as large as pos-
sible (compatibly with the endomorphism ring) up to bounded index. (We omit a
precise statement, which would lead us outside the scope of these notes.)

e Another very important and deep theorem is due to Mazur (70s), who proved
that for g,, g3 € Q the possible torsion orders of rational torsion points never
exceed 12. This result corresponds to finding all rational points on suitable modu-
lar curves, providing a link of the present topic with major questions in the theory
of Diophantine equations.

e Merel 1994, with some new ingredient, extended this kind of result to number
fields other than @ (some independent work being due to Kamienny & Parent, and
previously to Demianenko & Manin in the case of prime-power torsion order).

Case of abelian varieties. The arithmetic and Galois structure of torsion elements is
even more difficult than the special elliptic case. But nowadays there has been great
progress, thanks to the work of Deligne, Bogomolov, Faltings, Serre, ..., Masser &
Wiistholz, . . ., Mazur, Ribet, Pink, Tamagawa, Cadoret, . ...

2. Algebraic relations among torsion points

We have recalled some results on individual torsion points. Let us now see some
problems on relations among torsion points.
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An old significant example comes from Gordan 1877 who studied the equation
cos2mx 4+ cos2ny +cos2nz+1=0, x,y,z€Q,

with the purpose of classifying the finite subgroups of PGL,(C). On writing

2c0827z = 2T 4 o272

’

we see that this amounts to a certain algebraic equation among the three roots of
unity 27, @27V @27z or else a certain (inhomogeneous) linear relation among
three roots of unity and their reciprocals.

Later on, general linear equations in roots of unity were studied systematically,
in particular by Mann 1965 and Conway & Jones 1976, in the setting of what the
latter authors called trigonometric diophantine equations. These results in particular
bounded the maximal torsion order in a linear equation with nonzero constant term
and no vanishing subsums (with coefficients in Q). As a very special instance, their
conclusions very easily imply that

the only triangles with rational sides and angles rational multiples of 7w are
equilateral,

and similar results follow for polygons with a given number of sides.

More recent applications appear, for example, in the work of Gross, Hironaka, and
McMullen (to cyclotomic factors of E,-Coxeter polynomials, 2009), of Bourgain,
Gamburd, and Sarnak (to Markov surfaces 2016), of Kedlaya, Kolpakov, Poonen,
and Rubinstein (to rational angles among vectors in R3, 2020), and in a joint work of
the author with Dvornicich & Veneziano (to rational angles in plane lattices, 2020).

Uniform quantitative results (regarding the number of solutions of a given linear
equation) were proved, e.g., by Schlickewei, Evertse, Beukers & Smyth, and in a
joint work of the author with Bombieri, also towards the conjecture of Lang to be
discussed in the next section. (Subsequently these results have been quantitatively
refined by several authors, including Amoroso & Viada and Martinez.)

2.1. The conjecture of Lang

Independently of the above authors, Lang had raised in the 60s the related problem
of studying polynomial equations:

F(0,t) =0, 6, roots of unity, of unrestricted exponent.

Note that such a pair (6, ¢) is a torsion point on the plane curve F(x,y) = 0,
viewed inside G2.

Let F be given. As expected by Lang, there can be infinitely many solutions of the
said shape only if F has a binomial factor of the shape ax™ +by" or ax™ y" +b; this
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was quickly proved by Ihara, Serre, and Tate (and proofs may be got also through the
previously mentioned results on linear equations, on considering monomial terms).

This was later extended to arbitrary dimensions by M. Laurent and Sarnak &
Adams, proving (among other things) the conjecture of Lang:

An algebraic subvariety of G| can have infinitely many torsion points only
if it contains a positive dimensional special subvariety, i.e., a translate of an
algebraic subgroup by a torsion point.

More precisely, their results yield the following theorem.

Theorem 2.1. Let X be any set of torsion points inside G!.. The Zariski closure of X
is a finite union of translates (by torsion points) of algebraic subgroups.

It is moreover not difficult to see that any connected algebraic subgroup of G},
can be defined by finitely many equations of the shape x{' ---x;" = 1 and is (algeb-
raically) isomorphic to some Gfx’l (h < r). Hence in practice the principle is that

every prescribed algebraic relation within varying torsion elements can be
explained in finite terms by a multiplicative structure of algebraic group.

Methods. The Galois theory of Gauss is a precious tool in all these achievements,
though also other ingredients are relevant.

As for the previously mentioned work, later this had several applications.

For instance we quote the work by Sarnak (on Betti numbers of congruence
groups, 1994), by Ailon & Rudnick (on ged( f(¢)" — 1, g(¢)" — 1),2004), by Kurasov
& Sarnak (on crystalline measures, 2020).

2.2. Multiplicative relations on curves — unlikely intersections

The mentioned issues on torsion points may be extended to deal with more general
multiplicative relations among coordinates of points on a curve X inside a torus G/,.
That is, we weaken the condition that all the coordinates are torsion and only impose
that a certain number of independent multiplicative relations hold among the coordin-
ates.

It is easy to see that if we prescribe on the irreducible curve X a single multi-
plicative relation, i.e., of the shape x'll1 coexy” =1 with (xq,...,x,) € X, then we
obtain infinitely many points as (a1, ..., a,) varies through all nonzero integer vec-
tors; this corresponds to intersect X with the union of all proper algebraic subgroups
of G| . However, it turns out that imposing another such relation, independent with
the former but otherwise arbitrary (which corresponds to intersect X with the union
of algebraic subgroups of codimension > 2), yields only finitely many points, unless
the curve X is special in the sense that it is contained in a proper algebraic subgroup
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of G/.. (For r = 2 we obtain nothing new since imposing two independent relations
yields torsion coordinates, but for r > 2 this is a weaker restriction, making the the-
orem stronger.)

With the more demanding assumption that X is not contained in any proper trans-
late of algebraic subgroup, this was dealt with in a joint work of the author with
Bombieri & Masser 1999, and later proved in the sharper form by Maurin 2008,
relying partly on methods by Rémond. (This case is more difficult; for instance it
contains implicitly the so-called Mordell-Lang context for tori.) A different approach
for this stronger theorem was found later by the former authors with Habegger 2010
(this time using the results of Mordell-Lang type). A still further approach with the
stronger assumption appeared in a joint work of the author with Capuano, Masser,
and Pila 2016, based on the counting method alluded to below; this argument has the
advantage of extending to the abelian context (but not containing the sharper form).

Several results followed by other authors as well, also for some higher-dimen-
sional analogues, and further in the abelian case.

The topic, sometimes called Unlikely Intersections, was independently raised also
by Zilber 2002 (with entirely independent motivations from Logic) and again inde-
pendently by Pink 2005.> They put forward certain general conjectures still widely
open (those of Pink embracing still further realms). These conjectures dealt also with
abelian varieties in place of tori, where exact analogues may be stated. We shall briefly
discuss this context in the next subsection.

2.3. The conjecture of Manin—-Mumford

A motivation for the above-mentioned problems stated by Lang had been a conjecture
formulated independently by Manin & Mumford in the 60s.

Manin-Mumford conjecture. A curve of genus > 2 embedded in its Jacobian vari-
ety has only finitely many torsion points.

This may be indeed seen as an analogue (of more difficult nature) for abelian
varieties of some of the above problems for multiplicative tori. It became a theorem
due to Raynaud in the 80s; he was able to prove, more generally, the analogue of
Lang’s conjecture above, and for arbitrary abelian varieties (not merely Jacobians)
and arbitrary subvarieties. Several other proofs then followed, due, e.g., to Serre,
Coleman, Hindry, Buium, Hrushovski, Pink & Roessler, M. Baker & Ribet.

Still other proofs (by Bilu 1997 for G/, and Szpiro, Ullmo, and S. Zhang 1997 for
the abelian case) gave stronger results of Galois equidistribution of the conjugates of
torsion points when the degree of the field of definition of the points grows. Moreover,

2Certain rather special cases had been raised earlier by Schinzel, with still different lan-
guage and motivations, coming mainly from his theory of reducibility of lacunary polynomials.
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these proofs worked also for points of “small height”.> Remarkable uniform estimates
here (e.g., for the number of torsion points on the curve) have been given very recently
by Kuehne 2021.

A further proof was found in a joint work of Pila and the author (2009): this relied
on the analytic isomorphism of a complex abelian variety with a complex torus, in
which torsion points correspond to rational points (as in the case of roots of unity).
Then one reduces to counting rational points on suitable analytic subvarieties of the
torus and comparing bounds from below (coming from the large degree of torsion
points — work by Masser) and from above. This last step is done through estim-
ates by Bombieri & Pila 1989, Pila, and finally Pila—Wilkie 2006. In turn, this last
work involves the (model)-theory of the so-called o-minimal structures (developed
by van der Dries et al.).

2.4. “Special points” and the André-Qort conjecture

As far-reaching analogues of torsion points, one may consider the so-called special
points in Shimura varieties. An important kind of such varieties arises as moduli
spaces of abelian varieties with certain properties (i.e., parametrizing abelian variet-
ies of given dimension with supplementary symmetries). The special points, playing
the role of torsion points, are those corresponding to Complex-Multiplication abelian
varieties. Moreover, one may also define special subvarieties of positive dimension,
analogues of the translates (by torsion points) of algebraic subgroups (in the conjec-
ture of Lang) or of abelian subvarieties (in the theorem of Raynaud, in turn analogue
of Lang’s for abelian varieties).

We skip any formal definition, since the context is quite technical, but we note that
one may formulate statements analogue to the above ones. A very relevant instance
is the André—Qort conjecture, raised by André 1989 and Oort 1990s independently.
Once that the above terminology has been introduced in precise terms, a possible
phrasing of it is as follows:

The Zariski closure of a set of special points is a finite union of special sub-
varieties.

This formulation reminds of what we have seen in the multiplicative and abelian
cases.

After the proof of a special case by André (i.e., the significant case of CM-points
on a curve in the plane A2, viewed as representing pairs of elliptic curves), the above-

3The height of a point with algebraic coordinates is a real non-negative number which
measures its arithmetical complexity; one may define a canonical height on the algebraic points
of a commutative algebraic group, which vanishes precisely at torsion points; we cannot pause
here on this concept, introduced first by Weil, despite its great relevance.
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mentioned counting method was applied by Pila to this context, proving substantially
more general instances.

A final step for the full conjecture (for the moduli space #,) was finally devised
by Tsimerman 2015 after many important intermediate results and steps, in particular
by Colmez, Edixhoven, Gao, Klingler, Pila, Pila & Tsimerman, Ullmo & Yafaev,
Yuan & S. Zhang, . . .. (A still more general form of the conjecture has been obtained
very recently by Pila, Shankar, and Tsimerman, relying also on further ingredients
provided by Binyamini and by Esnault & Groechening.)

Several other results in a similar spirit have been obtained and much work in the
context is still in progress.

Dynamical analogues. Still further analogues of special points occur in dynamics,
which we describe roughly as the study of iterates f, f°2 := f o f...., f°",...of
amap f : X — X from a space X to itself. The simplest examples (already leading
often to very difficult problems) occur with rational maps f : P; — P;. As possible
analogues of torsion points one can consider preperiodic points for f, i.e., the points
x € X such that f°"(x) = f°™(x) for some integers n > m (so that the sequence
(f°" (x))ren is finite). For instance, if X = G, f(x) = x¢ (any d > 2), the preperi-
odic points are precisely the torsion points. One may formulate analogues of the above
statements, and some quite nontrivial remarkable results have been proved, mainly
due to the work of M. Baker, Bell, DeMarco, Ghioca, Hsia, Mavraki, Scanlon, Sil-
verman, Szpiro, Tucker, Yuan, S. Zhang, . .., among others. However, only a partial
picture has been obtained to date in this direction compared to the original context of
torsion points, and even a satisfactory formulation of suitable complete conjectures
seems not to have been reached so far.

3. Torsion in families of algebraic groups

We have briefly discussed torsion in individual algebraic groups, and algebraic rela-
tions among them. To go one step further, we can consider torsion conditions in
algebraic groups (and points) varying in families. The multiplicative group G, does
not admit genuine “variation”, but already for elliptic curves we have truly noncon-
stant families. A typical and historically relevant instance of this is the Legendre
Sfamily of elliptic curves, defined by

£5:9% = x(x — 1)(x — A) + point at infinity O,

where A is a complex parameter in C — {0, 1}. For each b € C — {0, 1} up to two
exceptions, there are only six values of A producing a curve isomorphic to £, and
each complex elliptic curve is isomorphic to some £, so the family indeed is intrins-
ically not “constant”.
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Regarding families of points (also called sections), we may consider, just as a
simple instance, the points

Py =(2.v22-1)) € £;,

where the choice of the sign is immaterial for us.
It may be shown that

(1) P, is not identically torsion on £, (i.e., there is no integer m > 0 such that
mP; = O forall 1), but

(2) Py becomes torsion on £; (of unrestricted exponent) for an infinite, even
dense, set of b € C. This set consists of algebraic numbers, and the corres-
ponding minimal torsion exponents tend to co;

(3) these numbers b have bounded height. So for instance there are only finitely
many rational or even quadratic irrational ones, and in fact the degree over
Q of these numbers tends to co. (Néron had previously shown that they form
a so-called rhin set in any given number field.)

Property (1) follows from the general principle that torsion points are unramified
except above the locus of bad reduction. Property (2) may be proved through the Betti
map, mentioned below. Property (3) follows from results by Silverman & Tate 1980s.
Properties (2) and (3) actually hold for all sections (defined over @) satisfying (1).

Further Galois-equidistribution results for these numbers b are due to DeMarco
& Mavraki 2019. Note that the equidistribution here does not concern the (conjugates
of the) hypothetical torsion points, but regards the (conjugates of the) values b for
which Pp is a torsion point. Hence this result has a quite different meaning with
respect to the previously mentioned equidistribution theorems of Bilu and Szpiro,
Ullmo, and Zhang. This equidistribution implies in particular the above-mentioned
complex density.

For the actual choice of family (using the Betti map appearing below) one can
also prove density of the relevant b in the real half-line (—oo, 2), so that P, € £5(R).
On the other hand, a joint work of the author with Lawrence observes that we never
have p-adic density for this set.

3.1. Masser’s problem and the Pink conjectures

Masser considered a second family of points, for instance

0r=(A+1LVAA+1)) € &,

The same remarks (1), (2), and (3) hold for this family, and moreover P, 0, may
be shown to be generically linearly independent on £, i.e.,if rPy + sQ; = O for
certain integers r, s and all A, then r =5 = 0.
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From (3) we see that the values b of A for which each point becomes separately
torsion form a sparse set, so Masser asked the following.

Masser’s question. Is the “doubly sparse” set

{b € C: Py, Qp are both torsion on £p}

even a finite set?

Here Galois groups of torsion points do not give enough information, essentially
because the degree of the relevant numbers “b” is unbounded (and actually tends
to 00).

Using the above-mentioned counting method (and other tools), Masser & the
author (2008) gave an affirmative answer to the question, actually to its natural gen-
eralization to other pairs of families and sections.

Later this was further extended to arbitrary algebraic pencils of abelian varieties
and in other directions (e.g., of Unlikely Intersections type), also by M. Baker, Bar-
roero, Bertrand, Capuano, Daw, DeMarco, Dill, Habegger, G. Jones, Orr, Pila, Pillay,
H. Schmidt, Stoll, Tsimerman, . ...

Some of these results may be seen as relative analogues of the Manin—-Mumford
conjecture (i.e., where the ambient abelian variety moves in a family), and some other
ones as dynamical analogues (i.e., when the torsion points are replaced by preperiodic
points with respect to suitable rational maps).

The problem of Masser was recognized as a special case of conjectures by Pink
(and also of Zilber in other cases). As alluded above, these conjectures deal with much
more general contexts (including the André—Oort one) and are still widely open.

3.2. The Betti map

The counting method alluded to above worked for families and points defined over
@, but some of the tools failed over C. This obstacle was overcome in a joint work of
the author with Corvaja & Masser 2017 by specialization, to reduce to the algebraic
case.

This gave as a byproduct somewhat analogous conclusions for families paramet-
erized by spaces of dimension > 1.

Specialization appeared delicate because of certain possible degeneracies, diffi-
cult to exclude a priori. To get control on this, a relevant tool came from the so-called
(real analytic) Betti map: it gives the real coordinates of the point, in terms of a lattice
basis for the torus representing the abelian variety, the basis varying locally holo-
morphically in the family.

Example 3.1. In the case of the Legendre family, consider a lattice L) C C such that
C/L; = £, (for instance through a Weierstrass exponential giving the Legendre
equation). Then, e.g., in the region R C C defined by max(|A|, |1 —A|) < 1, by
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formulae going back to the XIX century, one can express a Z-basis of L, in terms
of hypergeometric functions, in fact as L) = Zw; + Zw,, where w; = inF(1 — 1),
wy = wF(A) and where F(1) = (—}1/2)21". For a given A € R and a point Q €
£, we may take a representative for Q in C/Lj of the shape Siw; + Brw, with
B1, B2 € R/Z. Then by definition the §; are the Betti coordinates of Q and the Betti
map takes the value (81, B2) at Q.*

The Betti map is highly relevant in our context because its rational values cor-
respond precisely to torsion points. We have already mentioned some proofs where
essential use is made of this map.

The Betti map appeared implicitly already in a work by Manin 1960s and was
recently studied (for higher dimensions) in a work of Voisin 2019 and of André,
Corvaja & the author 2020, with further contributions by Gao and applications by
Voisin and by Dimitrov—Gao—Habegger and Kuehne.

4. Some applications

4.1. Pell equations in polynomials
The Pell equation
x2—y2D =1, D non-square positive integer,

to be solved in integers x, y # 0, is a celebrated Diophantine equation, proposed in
fact by Fermat in the XVII century but actually having roots in ancient mathematics.
It is linked with many important issues in Number Theory, such as integral points on
curves (especially general affine conics), class-numbers and units of quadratic rings,
orthogonal groups over Z, Diophantine approximation and continued fractions, and
SO on.

There is also a polynomial analogue, more recent and apparently less known,
but in fact also old, studied for instance already by Abel 1826, where D = D(t) is a
(complex, for instance) polynomial of even degree 2d and not a square, and one seeks
polynomial solutions x(¢), y(t) # 0. Following a suggestion of Serre, this equation
may then be called Pell-Abel equation.

As in the classical case, a possible nontrivial solution generates infinitely many
ones through the formulae x,, + y,~/D = (x &+ y~/D)", n € Z (and all solutions are
generated in this way, up to sign, from a “minimal” one).

4This map may be defined in any given open simply connected region, like the above R,
and we can cover the domain C \ {0, 1} with such regions. Then the map depends on a choice
of basis for a given region and is subject to monodromy as we travel through loops meeting
several regions.
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For the Pell-Abel equation, when deg D = 2 there are always solutions (over C),
and the polynomials x(¢), y(¢) which arise are related to Chebyshev polynomials.
But if deg D > 4, contrary to the classical case, it is generally unexpected to have
solutions (unless we work over a finite field). This assertion can be put on a rigorous
ground for instance using the Betti map. Indeed, the issue is linked with forsion in
the Jacobian of the smooth complete hyperelliptic curve H = Hp defined affinely by
u? = D(t). In fact, denoting oo the poles of ¢ on H, it is not difficult to prove that
(nontrivial) solutions exist if and only if the class of the divisor ooy — oo_ € div(H)
has finite order in the divisor class group — i.e., in the Jacobian — of H .’ Abel gave
a translation of such condition in terms of the continued fraction for /D(¢) being
periodic (as happens in the classical case).

The polynomials D(¢) for which nontrivial solutions of the Pell-Abel equation
exist are sometimes called Pellian.

In a joint work of the author with Masser we studied some 1-parameter families
for fixed d, like Dy (¢) = Dg () := 124 £ + A Assaid, for d = 1, Dy is always
Pellian. For d = 2 we easily realized that Dy(¢) is Pellian for infinitely many b € C
(satisfying (3) of Section 3), whereas we proved that for d = 3 there are only finitely
many such values. We then extended the analysis to arbitrary 1-dimensional families
of polynomials D(¢) of higher degree and those results would lead, for example, to
the following theorem.

Theorem 4.1. For any d > 3, there are only finitely many b € C for which the Pell-
Abel equation for D g p(t) is solvable.

We note that 0 lies in all these sets $7 := {b € C : Dgp is Pellian}, for we have
297 4 1)2 — 2t Dy (1) = 1.

Open question. Is the union | ;. 5 $4 of these finite sets itself finite?

If the answer is at all affirmative, it appears to require new tools to be proved,
since the method that we used to deal with each single degree d > 3 is not completely
uniform as d varies.

The Pell-Abel equation, similarly to the original version, appears in many math-
ematical topics; just to mention a recent instance, it has been studied by Kollar in
connection with decidability issues and the Hilbert X problem over function fields.
(We recall that the usual Pell equation had been used by Matijasevic in his final step
solving the original Hilbert X problem.)

A generalized Jacobian has to be considered if D(¢) has multiple roots. This link with
Jacobians may be viewed as somewhat analogue of Dirichlet class number formula for real
quadratic fields, the analogy being closer if we work over finite fields.



Torsion in algebraic groups and problems which arise 177

4.2. Integration in finite terms

The problem of expressing indefinite integrals in terms of “simple” functions goes
back to long ago and appeared among the first examples and motivations for differ-
ential algebra. In this direction, we recall for instance the following (more or less
classical) definition.

Definition. We call Integrable in Finite Terms (abbr. IFT) a differential whose (indef-
inite) integral can be expressed by a finite tower of operations either of algebraic type,
or by taking exponentials or by taking logarithms (starting from rational functions).
We also call elementary an integral which can be likewise expressed.

Even recently, much attention has been given to the study of possible algebraic
relations among (definite) integrals of algebraic functions, special cases of periods
(after Grothendieck, ..., Kontsevich & Zagier, ...), a topic not entirely unrelated
with this theme.

We have already mentioned Abel in connection with Pell’s equations in poly-
nomials, and indeed his research involved also elementary integration. Subsequently
the matter was studied by authors like Chebyshev, Liouville, Ritt, Kolchin,. .., giving
rise for instance to Differential Galois theory.

More recently, J. Davenport investigated pencils of algebraic differentials, to be
integrated in finite terms; he sought to understand whether,

if the general member of the family cannot be likewise integrated, the same
happens for the special members, up to finitely many exceptions.

Together with Masser we found how to establish when this type of assertion is
correct, and we also found some counterexamples.

By means of a criterion of Risch and other considerations, it turns out that the
analysis for such results in fact involves torsion, now in generalized Jacobians, which
are algebraic groups obtained as extensions of usual Jacobians by products of groups
of type G, or Gp,.

Jointly with Masser, we carried out this, applying in particular some of the above
results, and here are special cases of the output (all results joint with Masser 2018—
2020).

(2z+b)dz

Theorem 4.2. There are only finitely many b € C such that the integral | Wi

is elementary.
Example 4.3. The special value b = 1/2 is in the said finite set:
2z +1/2)dz
44+ z41/2
= %10g(4z4—4z3 +222 42214 (422 -4z 4+2)/z4 +z + 1/2).
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This corresponds to a torsion point of order 4 in an extension by G, of the elliptic
curve w? = z* + z + (1/2).
The next example yields a negative answer towards Davenport’s issue.

. . zdz .
Example 4.4 (Counterexample). The differential ey (over C(¢)) is not

identically IFT but it becomes IFT for infinitely many specializations t — b.

In this example, note the underlying elliptic curve w? = z3 — z with CM: this is
no coincidence, since it can be shown that if the (usual) Jacobian of the underlying
curve (corresponding to the differential) does not contain CM elliptic curves, then
Davenport’s expectation is correct.

4.3. Elliptical billiards

Further applications of some of the results are to elliptical billiards, namely billiard
tables whose border is an ellipse and such that consecutive segments of billiard tra-
jectory obey the usual law of reflection at the border.

Work going back to Poncelet and Jacobi shows that to such a billiard one can
associate an elliptic family. In fact, it may be shown by nice arguments of Geometry,
of type almost going back to Euclid, that all segments in a given billiard trajectory are
tangent to a same conic, confocal with the ellipse, the so-called caustic. This caustic
varies in a family of dimension 1. If the caustic is given, then the set of pairs (P, ),
where P lies on the ellipse and / is a line through P tangent to the caustic, describes
a curve of genus 1 embedded in ]Plz. This curve becomes an elliptic curve after choice
of an origin, whence, as the caustic varies, we obtain the said elliptic family.

A choice of a slope for a billiard shot from a given point yields a section of this
family (depending on the point and parameterized by the slope). The torsion values
of such a section correspond to the trajectories which are periodic, whose analysis is
a main issue in the study of billiards.®

In this frame, on applying some of the above-mentioned results, in a recent joint
work with Corvaja (2021) we deduced certain finiteness theorems for periodic tra-
jectories in such billiards. For instance, we have the following conclusion.

Theorem 4.5. For each a € (0, ) there are only finitely many periodic pairs of
billiard shots from a given point in an elliptical billiard such that the initial directions
form an angle «.

This may be shown to be not generally true for rectangular billiards.

®Part of this is a special case of a famous theorem of Poncelet, dealing with more general
pairs of conics. The context has been generalized to higher dimensions by Griffiths & Harris
1977, which raises again questions related to the present realm.
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Another finiteness conclusion (proved however with results of “Unlikely Inter-
sections” type going beyond torsion — see above) concerns the set Tp g g of billiard
trajectories which connect two given points P, Q and pass through another given
point R: for instance, we have the following theorem.

Theorem 4.6. If Q is a hole (i.e., lies on the boundary) and P, R are not both foci of
the ellipse, then the set Tp o R is finite.

It is somewhat curious that some of these results in the degenerate case of a cir-
cular billiard are related to the above discussion around Lang’s conjecture.

Still further conclusions in the same spirit may be stated, e.g., concerning boom-
erang billiard shots. The link with the algebraic theory of elliptic families also shows
how arithmetic information may affect chaotic behavior in an elliptical billiard. For
instance, shots from a given point, and having slope of large enough arithmetic height,
cannot lead to periodic trajectories (we tacitly deal here with ellipses and points
defined over the algebraic numbers, which implies that the shot-slope is algebraic
too if we have periodicity). This kind of implication seems not to have previously
appeared in the theory of billiards.

5. Final remarks

Some open issues:
(1) To prove further cases of the conjectures of Pink and Zilber.

(2) To achieve effectivity in the counting of rational points appearing in some of
the proofs.
This last issue is related to the theory of o-minimality in Model Theory. Some
crucial recent work towards effectivity is due to Binyamini, and also to Daw,
Jones, Schmidt, . . ..

(3) To prove finiteness in families where also the degrees vary.

Some of the methods from o-minimality have been developed (by Cluckers,
Comte, Forey, and Loeser) in the p-adic context, and already applied by Chambert-
Loir and Loeser 2017.

One expects here further applications.

6. References

I have realized that giving references for all the topics that we have touched would
lead to a very long list, with some difficult choices and a heavy risk of leaving out
something relevant. So, I have decided to quote just two of my own publications on
these subjects, whose union contains a relevant quantity of references.
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(1) The book [1] on Unlikely Intersections was written about 10 years ago: much
work has appeared later, but the book contains an account of a substantial part
of the contents of these notes, and many references.

(2) The more recent survey paper [2] contains further descriptions and more
updated bibliography with respect to the former reference.
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Positive harmonic functions on the Heisenberg group I
Yves Benoist

Abstract. We present the classification of positive harmonic functions on the Heisenberg group
in the case of the southwest measure.

1. Introduction

In this self-contained paper, we present the classification of the positive harmonic
functions on the Heisenberg group H3(Z) in the special case of the southwest mea-
sure. This example is striking because the famous partition functions occur as positive
harmonic functions. In this case, our main result tells us that roughly all positive
harmonic functions are combinations of characters and partition functions (Theo-
rem 1.1).

We will also explain with no proof how this result can be extended to finite pos-
itive measures on H3(Z) (Theorem 3.8). The proof of this extension can be found
in [2].

1.1. The partition function p(x, y, z) as a potential

We first introduce the “partition function” p(x, y, z) for any integers x, y, z in Z.

1.1.1. The partition function. This function counts the ‘“number of Young diagrams
of area z,” also called “partitions of z,” included in a rectangle with side lengths x
and y (see Figure 1). More precisely, when x, y, and z are non-negative, one has that

P(X,y’z): |{(n1,,,,,ny)€Zy |x2n1 2"‘2”;;20

andny + -+ ny = z}|, (1.1)

and p(x, y, z) = 0 otherwise. The integers n; are the lengths of the rows of the
partition. By convention, for x > 0, one has that p(x,0,z) = 0 when z # 0, and

2020 Mathematics Subject Classification. Primary 31CO0S5; Secondary 20F18.
Keywords. Nilpotent group, potential theory, partition function, random walk.
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| area z =12

Figure 1. The partition 12 = 54+ 4 4+ 2 4 1 is included in a 5 x 4 rectangle.

Figure 2. The 11 partitions in the equality p(5,4,12) = p(4,4,8) + p(5,3,12).

that p(x,0,0) = 1. This partition function satisfies the functional equation, for all
g =(x.y,2)inZ> g # (0.0,0),
p(x.y.z)=plx =1y, z=y) + plx,y - 1.2). (1.2)

One checks it by splitting this set of partitions according to the color of the lower-left
case of the rectangle as in Figure 2.

1.1.2. The Heisenberg group. Recall that the Heisenberg group G := H3(Z) is the
set Z3 of triples seen as matrices

1xz
X,y,z):=(01y]).
(x.y.2) (0 ! 1)
It is endowed with the product
(X0, yo.Zo)(x,y.2) = (X0 + X, yo + ¥.Zo + Z + Xo¥). (1.3)

Let o be the southwest measure on G. It is given by
o = 8,—1 + 8—1, wherea :=(1,0,0)and b = (0, 1, 0). (1.4)

Let e := (0,0, 0) be the unity of G and let 1y} be the characteristic function of {e}.
Equation (1.2) can be rewritten as, for all g = (x, y,z) in G,

p(g) = pla'g) + p(b~'g) + Liy(g). (1.5)



Positive harmonic functions on the Heisenberg group I 183

Figure 3. The partition 12 = 5 + 4 4+ 2 + 1 associated to the word w = ababaabab gives the
element g = g, = ababaabab = (5,4,12) € H3(Z).

In particular, the function f = p satisfies

f(8) = Puof(g), where Py, f(g) = fa™'g) + f(b™'g). (1.6)

This inequality (1.6) tells us that the function f is a po-superharmonic function
on the Heisenberg group G.

1.1.3. The potential. More precisely, the partition function p(g) is the potential of
Mo at e. This means that one has the equality

p=)_ Pile
n>0
Indeed, as can be seen in Figure 3, for g in G,
p(g) is the number of ways to write g as a word in a and b. (1.7)

A function /& on G is said to be po-harmonic if it satisfies

h(g) = Pu,h(g), forall gin G, or equivalently (1.8)
hix,y,z) =h(x—1,y,z—y)+h(x,y —1,z), forall (x,y,z)inZ3 (1.9)

1.2. Construction of positive harmonic functions

We want to classify all the positive' solutions of (1.6), i.e., all the positive jio-
superharmonic functions 4 on G. We begin with five remarks.

1.2.1. Choquet theorem. By a theorem of Choquet in [5], every positive superhar-
monic function /4 is an average of extremal” positive superharmonic functions /.
Moreover, when / is harmonic, the /g, are harmonic. By Riesz decomposition theo-
rem [13, Thm. 2.1.4], every positive jo-superharmonic function can be written in a
unique way as the sum of a potential® and a positive jo-harmonic function. Therefore,
it is enough to describe the extremal positive po-harmonic functions on G.

'A function f on G is said to be positive if f(g) > 0forall g in G and f # 0.

2A positive (super)harmonic function is said to be extremal if it cannot be written as the
sum of two non-proportional positive (super)harmonic functions.

3A potential is a function of the form f =), >0 P}i, F for a positive function F on G.
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1Tz
0 01 5 10 15 18 20 21 22
001 4 8 11 13 14 15 15
0014 7 9 10 11 11 11
0013 5 6 7 7 7 17
0013 4 5 5 5 5 5
0012 3 3 3 3 3 3
o012 2 2 2 2 2 2
o011 1 1 1 1 1 1
0111 1 1 1 1 1 1>y
0000 O O OO O O

Figure 4. The function p, (z) satisfies py (z) = py(z — y) + py—1(2).

1.2.2. Choquet-Deny theorem. If we look for a po-harmonic function /# which
does not depend on z, then (1.9) becomes

h(x,y) =h(x —1,y) +h(x,y —1), forall (x,y)in Z>. (1.10)

This equation tells us that the function / is po-harmonic on the abelian quotient Z2
of G. According to a theorem of Choquet and Deny in [6], since the support of the
measure [to spans the group Z2, every extremal positive f1o-harmonic function on
this abelian group is proportional to a character®:

1 1
x(x,y,z) =r*s” withr,s >0and - + — = 1. (1.11)
ros

1.2.3. The partition function as a harmonic function. If we look for a p¢-har-
monic function 2 which does not depend on x, then (1.9) becomes

h(y,z) =h(y,z—y)+h(y —1,z), forall (y,z)in Z2. (1.12)
A nice example is given in Figure 4 by the partition function (y, z) + py(z), where

py(2) = sup p(x,y,z) = lim p(x,y,z) = p(z,y,2)

X€Z

= the number of partitions of z with at most y rows. (1.13)

Hence the function ho(x, y,z) := p,(z) is a po-harmonic function on G.

4The proof is very short. One notices that equality (1.10) gives a decomposition of 4 as a
sum of two positive harmonic functions and hence both of them are proportional to 4.
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1.2.4. Margulis first theorem. According to the first theorem of Margulis, a theo-
rem he proved in [10] when he was not yet twenty, the Choquet—Deny theorem is
still true on a finitely generated nilpotent group G as soon as the support of the mea-
sure spans G as a semigroup (see Fact 3.7). This is why it might look surprising at
first glance that there exists a positive po-harmonic function s on H3(Z) which is
not invariant by the center. The reason it exists is that the support of 1 spans G as
a group but not as a semigroup. What is more surprising is that this “new” positive
harmonic function A is given by the famous partition function p,(z).

1.2.5. Switching and translating harmonic functions. We denote by o the auto-
morphism of G exchanging a and b. It is given by

o(x,y,z) = (y,x,xy —z).
Since the function A¢ is po-harmonic, the function
hi:=hooo :(x,y,z) > px(xy —2)

is also po-harmonic. For go in G, we denote by pg,, : £ = ggo the right translation by
go on G. The translated functions /g o pg, : g+ ho(ggo) and i1 0 pg, : g — h1(ggo)
are also po-harmonic.

1.3. Classification of positive harmonic functions
We can now state our main result for the southwest measure p¢ introduced in (1.4).
1.3.1. Main result and strategy.

Theorem 1.1. Let h be an extremal positive po-harmonic function on the Heisenberg
group G := H3(Z). Then, up to a multiplicative scalar

e cither h = x is a jio-harmonic character y(x,y,z) = r*s” asin (1.11)
e orh = hgo pg, is a translate of the function ho(x, y,z) := p,(z)

e orh = hy o pg, is a translate of the function h1(x,y,z) := px(xy — 2).

This classification has been announced on May 28th 2019 in a short informal
videotaped speech at the Cetraro conference “Dynamics of group actions.” This video
can be found on the author’s web page.

As we will see, the partition function p(x, y, z) will play a crucial role in the
proof of Theorem 1.1. Indeed, in Chapter 2, we will prove a ratio limit theorem for
the partition function p(x, y, z). In Chapter 3, we will deduce from this ratio limit
theorem the proof of Theorem 1.1.

Notice that the positive j1g-harmonic function /¢ vanishes. In particular, it does
not satisfy the Harnack inequality. This contrasts with the case studied in [10], where
the support of y spans G as a semigroup.
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In the last section (Section 3.4), we will present the classification of the positive
u-harmonic functions, for all finitely supported measures @ on G.

1.3.2. Dealing with a probability measure. At first glance it might look a little bit
weird to deal with a pg-harmonic function for a measure (1o which is not a probability
measure. We could have worked instead with the probability measure

1
Lo = E(Sa—l + 6p—1), wherea := (1,0,0) and b = (0, 1,0)

which is the law for the southwest random walk on H3(Z). The [i¢-harmonic func-
tions 4 on G are the functions satisfying
h=P i

0

1, -~ ~
h, where Py h(x,y,z) = E(h(x —1,y,z—=y)+h(x,y — 1,2))

is the expected value of the function / after one step of the random walk.
It is easy to see that

h(x,y,z)is po-harmonic if and only if 2777 h(x, y, z) is [lo-harmonic.

Therefore, classifying positive jo-harmonic functions is equivalent to classifying
positive [Io-harmonic functions. The main reason we are using ¢ instead of [ig is to
get rid of all these factors 2777,

1.3.3. Extremal superharmonic functions. We have seen in (1.5) that the parti-
tion function p is pe-superharmonic and more precisely that it is the potential of
Mo at e. For every go in G, the function p o pg, is also a potential of g at gy L
By Riesz decomposition theorem, those potentials are exactly the extremal positive
Wo-superharmonic functions on G which are not harmonic. Therefore,

every extremal positive Lo-superharmonic function f on G which is not har-
monic is a translate f = p o pg, of the function p(x,y,z).

We would like to end this introduction by pointing out other limit theorems for
random walks on the Heisenberg group and other nilpotent groups as [3,4,7, 8] even
though we will not use them here.

2. The partition function

The aim of this chapter is to prove the ratio limit theorem (Proposition 2.2) for the
partition function p(x, y, z).



Positive harmonic functions on the Heisenberg group I 187

2.1. The unimodality of the partition functions

We recall that, for x, y, z > 0, the partition function p(x, y, z) counts the number of
partitions of z included in a rectangle with side lengths x and y. See definition (1.1)
and Figure 1.

This function is non-zero for 0 < z < xy and satisfies the equalities

p(x,y,2) = p(y,x,2) = p(x,y,xy = 2). 2.1)
This function is well studied. For instance, one has the following fact.

Fact 2.1 (Cayley, Sylvester 1850). The sequence z +— p(x, y, z) is unimodal; i.e., it
is increasing for z < xy /2.

The proof below relies on the theory of finite dimensional representations of the
Lie algebra s[(2, R). This proof is due to Hughes in [9]. See [12] for an elementary
proof and [14, p. 522] for a survey of various generalizations.

Sketch of proof of Fact 2.1. Let n := x + y and let (Y, H, X) be the principal sl,-
triple in the Lie algebra g := sl(n, R) so that H = diag(n — 1,n —3,...,—n + 1).
This Lie algebra g has a natural representation in the space V := A*(R"). One checks
that p(x, y, z) = dim Vyy_»,, where V) denotes the eigenspace of H in V' for the
eigenvalue A. The theory of representations of s[(2, R) tells us that for A > 0, one
always has that dim V) < dim V) _,. ]

2.2. The ratio limit theorem
Here is the ratio limit theorem for p(x, y, z).
Proposition 2.2. One has that

_1
lim POy =D

xyz—_z>2>ooo p(x’ Vs Z)

This limit is taken along sequences of positive triples (x, y, z) such that z — oo
and xy — z — oo.

With this generality this theorem seems to be new, even though there already exist
very precise estimates of p(x, y, z) in certain ranges. For instance, when x,y > z,
the partition function p(x, y,z) = p(z, z, z) depends only on z. It is the classical
partition function p(z) which admits a famous asymptotic expansion due to Hardy
and Ramanujan in 1920 (see [1, Chap. 5]). These estimates have been extended to
larger ranges of (x, y,z) asin [11, 15]. We will not use them.

The proof of Proposition 2.2 is tricky but elementary. The rough idea is to intro-
duce a relation between the set of partitions w of z and the set of partitions w’ of
z — 1 such that “most of the time” when w and w’ are related, they are related to
approximately the same number of partitions (see Lemma 2.5).
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Because of (2.1), we can assume that y < x and z < xy/2.

2.3. When the height of the rectangles is bounded
In this section, we deal with the easy case when the height y remains bounded.
Lemma 2.3. Forall y > 1, one has that

p(x7y’Z_1) _

=1
fszx_y’;"z’ px,y.2)

Note that in this limit y is fixed, and x, z go to co with z < xy /2.

Proof of Lemma 2.3. This follows from Lemma 2.4 and the inequalities
0<plx,y,z) = plx,y,z=1) < plx,y —1,2).

The first inequality is the unimodality of the partition function.

For the second inequality, just notice that one can inject the set of partitions of z of
height exactly y inside the set of partitions of z — 1 of height at most y by removing
the last square in the bottom row of each partition. |

We have used the following lemma.

Lemma 2.4. (@) Forall x,y,z > 1, one has that p(x,y,z) < z¥~L.

(b) Forall'y > 1, there exists ay, > 0 such that, for all x,z > 1 with z < xy/2,
one has that p(x,y,z) > ayz¥~ L.

Proof of Lemma 2.4. (a) The lengths of the last y —1 rows of the partition are bounded
by z — 1 and the first row is deduced from the others.

(b) Choose y — 1 integers my, ..., m,_; in the interval [0, ﬁ] and keep only
those for which the system

ny—ny=mi,..., Ny 1—Ny =my_1 and ny+---+n, =z
has a solution (11, ...,n,) in Z”. But then one has that
1
ny=—(z—-my—2my—--+—(y — hmy_1) >0,

7z oz
”1:”y+m1+"'+my—1§—+;§x.

This gives about %(yz—z)y_1 partitions of z withx > ny > --->n, > 0. ]

2.4. Inner and outer corner of a partition

We now introduce notations that will strengthen the connection between partitions
and words in the Heisenberg group.
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Figure 5. The fiber 7~ (w) of the word w = ababaabab has size f,, = 4.

We recall that a = (1,0,0) and b = (0, 1, 0) are the generators of the Heisenberg
group G = H3(Z). Let

Gti={g=(x.y.2)€G|x,y>0and0 <z < xy}
be the semigroup generated by a and b and let
c=aba 'b™! =(0,0,1) (2.2)

be the generator of the center Z of G.

Let B, := {a, b}" be the set of finite words w in a, b of length £,, = n and let
B :=UJ,,~¢ Bn. Using the product law in G, to each word w € B, we can associate
an element g,, in GT. The partition function gives the size of the fibers of this map:

p(g) = |Bg|, where By :={w e B | gy = g} (2.3)

Indeed, as explained in Figure 3, when g = (x, y, z), each word w in B, corresponds
uniquely to a partition of z included in a rectangle with side lengths x and y. We
introduce now the following relation R on B:

R = {(u),w') € Bx B | w = wyabw; and w’ = wobaw;

for some wg, w; in B}.
Letw : R — B and n’ : R — B be the two projections
r(w,w)=w and nw(w,w)=w.

For w, w’ in B, the cardinality of the fiber f,, := |7~ !(w)| is the number of pairs
ab occurring in the word w. The size f,, is also the number of inner corners of
the partition associated to w (see Figure 5). Similarly the cardinality of the fiber
S, = |7'~1(w’)| is the number of pairs ba occurring in the word w’. It is equal to
the number of outer corners of the partition associated to w’.

The following lemma compares the size of these fibers.

Lemma 2.5. (a) Forall (w,w’) € R, one has that g, = gyc.

(b) Forall (w,w') € R, one has that | fy, — f,,| < 2.
In particular, one also has that fy, < 3f,,.
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Proof of Lemma 2.5. (a) This follows from the equality ¢ = aba='h™!.
(b) Comparing the number of pairs ab and pairs ba occurring in w and in w’, one
gets | fu — furl < Land | fur — £, < 1. .

2.5. Partitions with bounded number of corners

We will need to control the number p<;(x, y,z) of partitions of z included in a
rectangle with side length x, y that have at most i inner corner.

The following Lemma 2.6 tells us that p<;(x, y, z) is negligible compared to the
total number of partitions p(x, y, z).

Lemma 2.6. Foralli > 0, one has that

p=i(x,y.2) _
Lo px.y.2)
The limit is taken along sequences where all coordinates x, y, z go to oo and
z <xy/2.

Proof of Lemma 2.6. Use the following slight upgrade of Lemma 2.4. ]

Lemma 2.7. (a) Forallx,y,z,i > 1, one has that p<;j(x,y,z) < (22)%.

(b) Forall j > 1, there exists zo = zo(j) > 1 such that, for all x, y,z > 1 with
4j <y <xandzyg <z <xy/2, one has that p(x,y,z) > z7,

Proof of Lemma 2.7. 1t is similar to Lemma 2.4.

(a) We can assume that x = y = z. We want to choose integers aj,...,a; > 1
and my,...,m; > 0, bounded by z such that a;m; + -+ 4+ a;m; = z. There are at
most (22)?* possibilities.

(b) We give a rough count. Choose L, < y as large as possible such that, setting
{, =[Ly/2] and £x = [z/L,], one has that £, < £, < x/2. There exists a partition
wo of z with Ly rows and all of whose rows have length £, or £, + 1. For every
sequence £y > my > --- > my, > 0, we can modify this partition wo by adding m;
spots to the jth highest row of wgo and removing m; spots to the jth lowest row of
wo, for all j < £,. This gives N different partitions of z, where N := (ex +fyy _1) >
max(2, ﬁx/(fy)ey. Hence, one has that p(x, y,z) > N.

First case: when z < y2/2. In this case, we have that L, = [v2z].

One gets N > 26 > 2VZ/2 > 77,

Second case: when z > y2/2. In this case, we have that L, =y.
If z < y*, one gets N > 28 > 2¥z/4 > i,
If z > y*, one gets N > (E—'y‘)ey > (yz_z)ey > \/Eﬁy > V4 > 7)), m
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2.6. When the height of the rectangles is unbounded

We can now explain the proof of the ratio limit theorem.

Proof of Proposition 2.2. By (2.1) and Lemma 2.3, we can assume that the three
positive integers x, y, z are going to oo with y < x and z < xy/2.For g = (x, y,2)
in GT, one sets Ry := {(w,w’) € R | g = g}, and one computes

1

—, 2.4
3 (2.4)

p(g) =|Bgl=eg+ Y

(w,w)eRg

where e = 1if Ry = @ and e, = 0 otherwise. Similarly, by Lemma 2.5 (a), one has

that
1

pge™) =Byt =g+ Y 2.5)
(w,w)eRg 7 W’
where afg = 0 or 1. Combining (2.4), (2.5), and Lemma 2.5 (b), one gets
1 2 6 6
p(e) —plgc™H| =2+ > =2+ > —<2+Zf—.
w

; <
(w,w)eRg ot (w,w)eR, S weBg
Jw#0

We recall that p;(g) is the number of w with f,, < i. Therefore, one has that
_ 6 .
|p(g) — p(gc™")| =2+ 6p<i(g) + =p(g) foralli > 1.

We let x, y, z go to infinity with z < xy /2. According to Lemma 2.6, for all i > 1,
the ratios p<;(g)/p(g) converge to 0. Therefore,

-1
lim sup ‘M —1] < 9
p() i
and therefore the sequence ”%g_)l) converges to 1 as required. |

3. Positive harmonic functions

We now start the classification of extremal positive po-harmonic functions 4. In Sec-
tion 3.1, we deal with the case where & has a non-zero limit along an orbit of a~! or
b~!. In Sections 3.2 and 3.3, we deal with the case where / goes to zero along all
orbits of ! and h~!. In Section 3.4, we present the generalization of this classifica-
tion to any finitely supported measure u on G.
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3.1. The partition function as a harmonic function

In this section, we characterize the functions /g o pg, and /1 o pg, among extremal
positive fto-harmonic functions by their behavior along the orbits a N go and 5N g,
of G.

We recall that a = (1,0,0) and & = (0, 1, 0) are the generators of the Heisenberg
group G = H3(Z), that o = 8,-1 + 8,—1, and that ko and £, are the po-harmonic
functions ho(x, y,z) = py(z) and hi(x,y,z) = px(xy — 2).

We first begin by an alternative construction of the function hg. Let Hy be the
abelian subgroup of G generated by a and let /¢ := 1y, be the characteristic function
of Hy. One has that

1 wheny =z=0,
Vo(x,y,z) =

0 otherwise.

Lemma 3.1. One has the equality hy = lim,_, o P/:lo Yo.

Remark. Since the function ¥ is po-subharmonic, i.e., Yo < P, %o, the sequence
n = P Yo is increasing.

Proof of Lemma 3.1. One can compute explicitly this function Pj . It does not
depend on x. Indeed, P} ¥o(x, y,z) is the number of ways of writing the element
(n —y,y,z) as a word w of length n in @ and b. This proves the equality, involving
the partition function,

PZZOW()(X,y,Z) = p(n—y,y,Z).
Letting n go to oo, we conclude using (1.13). |

Lemma 3.2. Let gg € G and let h be an extremal positive [Lo-harmonic function on
G such thatlimsup,_, . h(a™"go) > 0. Then one has that h = Ahg o pg, with A > 0.
In particular, the positive o-harmonic function hg o pg, is extremal.

Proof of Lemma 3.2. We can assume that go = e. Since the function /4 is positive and
Wo-harmonic, the sequence n — h(a™") is decreasing. Hence it has a limit A. By
assumption, this limit A is positive. By construction, one has the equality 2 > A.
Since & is po-harmonic, one also has the inequality 7 > ’\Pﬁ , Yo foralln > 0. There-
fore, by Lemma 3.1, one gets & > Ahg. Since A is extremal, it has to be proportional
to hg and therefore one has that 7 = Ahy.

It remains to check that /¢ is extremal. If one can write ho = hg, + hg with both /iy,
and hy positive (o-harmonic, for at least one of them, say %, the sequence hg(a™")
does not converge to 0 for 7 — oo. Hence, by the previous discussion, Ay, is propor-
tional to h¢. This proves that /¢ is extremal. [ ]
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Exchanging the role of a and b we get the following corollary.

Corollary 3.3. Let h be an extremal positive [Lo-harmonic function on G such that
limsup,,_, o, h(b™"go) > 0. Then one has that h = Ah; o pg, for some A > 0.
In particular, the positive [o-harmonic function hy o pg, is extremal.

3.2. Harmonic functions that decay on cosets

We now discuss positive harmonic functions on G that decay to 0 along the orbits
aNgoand b Ng,.
Let G, be the subset of G consisting of elements of “degree” n,

Gn={¢g=x,y.2)€G|x+y=n}

By definition and by (1.7), a positive jto-harmonic function 4 on G satisfies the equal-
ity, foralln > 1,

h(go) = Y h(gy'g0) = Y p(&)h(g™'go). 3.1)

weB, g€Gy
For an integer A > 0, we set
Gpa = {g =(x,y,2)€G,|z< A}, (3.2)
;A = {g =(x,9,2)€Gy|xy—z=< A}.

The following lemma tells us when the contributions of G4 and G , in formula
(3.1) are negligible.

Lemma 3.4. Let h be a positive jo-harmonic function on G such that
lim h(a™"go) =0 and 1lim h(b™"go) =0 forallgyinG. (3.3)
n—>oo n—>oo

Then, for all A > 0 and g in G, one has that

lim Y p(e)h(gT g0) =0. (34)

n—o0
8€Gy 4AVUG) 4

Proof of Lemma 3.4. 1t is enough to prove (3.4) with g9 = e. Moreover, since Gg’ A
is the image of G, 4 by the involution o which exchanges a and b, it is enough to
prove (3.4) with g € G, 4. Equivalently, it is enough to prove that

lim_ > h(g,") =0, where By 4:={weB,|g,' €Gna}. (35

WEB), 4
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Figure 6. The decomposition w = b""sa* fora word w € B, 4.

Note that, when n > A, every word w € B, 4 can be written as

w = b™sak

with s € B4+ a word of length A + 1 (see Figure 6). One splits the set B,, 4 accord-
ingtom > A or m < A. Therefore, for n > 2 A4, one has the inclusion

Bpa ChAB,_4 U Byga" 4.

Therefore, using (3.1), one gets the inequalities

Dok = ) kgt + Y k@ Veh

weBn’A wEBn,A wEBzA

=hb™ + Y k@ " PVgh.

weBs 4

For all ¢ > 0, we choose A large enough so that, by the second assumption (3.3), one
has that 1(h~4) < &. Then the last sum is a sum over the fixed finite set B, 4, and, by
the first assumption (3.3), this last sum converges to 0 when n goes to infinity. This
proves (3.5) as required. ]

3.3. Using the ratio limit theorem

Combining Lemma 3.4 with the ratio limit theorem, we can finish the last case of the
proof of Theorem 1.1.

Lemma 3.5. Let h be a positive po-harmonic function on G such that, for all gy in
G, lim, o h(a™go) = limy— oo K(b™"gg) = 0. Then h is invariant by the center
Z =c% of G.

Proof of Lemma 3.5. Using (3.1) with gy and goc, we compute

h(go) —h(goc) = > (p(g) — p(gc))h(g™ go). (3.6)
g€Gy
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We fix ¢ > 0. According to the ratio limit theorem (Proposition 2.2), there exists
an integer A > 0 such that, forall g = (x,y,z)in GT withz > Aand xy —z > A4,
one has that

|p(g) — p(ge)| < ep(2). 3.7)

Therefore, using (3.6), (3.7), and definition (3.2), one gets

|h(g0)—h(goc)|< D ep(@h(g™'g)+ D p(@)(h(g™"g0)+h(g ™" goc)).

g€Gy gEGn,AUGg'A

By (3.1), the first term is equal to eh(go). Therefore, using twice Lemma 3.4 and
letting n go to infinity, one gets |h(go) — h(goc)| < eh(go). Since ¢ is arbitrary small,
this proves that 21(go) = h(goc) as required. [

Corollary 3.6. Let h be an extremal positive jLo-harmonic function on G such that,
SJorall gg in G, lim,_00 (@™ go) = limy—00 H(b7"go) = 0. Then h is a character
of G.

In particular, every po-harmonic character of G is an extremal positive [Lo-
harmonic function.

Proof of Corollary 3.6. By Lemma 3.5, the function # is po-harmonic on the abelian
group G/Z. By Choquet—Deny theorem, it is a character.

It remains to check that a pg-harmonic character y is extremal. Assume that
x =h + h” with both 2’ and A" positive po-harmonic. For all g in G, the sequences
W (a™"go) and W' (b~ go) converge to O for n — 0o. Hence, by the previous discus-
sion and by Choquet’s theorem, the function /' is an integral i’ = [ ' do (x'), where
o is a finite positive measure on the set C of (harmonic) character y’ of G. Since
h' < x, the measure o must be supported by y. This proves that y is extremal. ]

This ends the proof of Theorem 1.1.

3.4. Extension to finitely supported measures

In this section, we give the classification of the positive p-harmonic functions on the
Heisenberg group for all finitely supported measure p.

Let G = H3(Z) be the Heisenberg group and let S be a finite subset of G. We
denote by G the subgroup of G generated by S. Let u = )" ¢ ts0s be a positive
measure on G with support S.

We recall that a function 4 on G is said to be p-harmonic if

h = Pyh, where P h(g) == psh(sg). (3.8)

sES
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We want to describe the cone # T of positive u-harmonic functions 4 on G. By
Choquet’s theorem, it is enough to describe the extremal rays of this cone J 7.
There are two constructions of extremal positive p-harmonic functions.

3.4.1. The harmonic characters y. By definition, the p-harmonic characters are
the characters y : G — R~ of G such that ) ¢ psx(s) = 1. Such a function s = y
is an extremal positive p-harmonic function on G which is invariant by the center Z
of G.

We now recall Margulis’s theorem which tells us that this first construction is the
only possible when G,f = G.

Fact 3.7 (Margulis). Let u be a finite positive measure on a finitely generated nilpo-
tent group G. If the semigroup G;f generated by the support of | is equal to G, then
every extremal positive [t-harmonic function h on G is a character.

Sketch of proof of Fact 3.7 for G = H3(Z). Because of the assumption G/j' =G, we
can assume that . > 0 and p, > 0. The first part of the argument is as in the abelian
case: since h(x,y,z) > uch(x,y,z + 1), these two p-harmonic functions are pro-
portional and we get that, for some ¢ > 0, one has that A(x, y, z) = h(x, y,0)t*. We
now want to prove that ¢ = 1.

Let K, be the set of positive harmonic functions Ag(x, y, z) = ¥o(x, y)t* with
ho(e) = 1. Since Glf = G, the convex set K; is compact for the pointwise conver-
gence. The element a € G acts continuously by “right-translation and renormaliza-
tion” on K,. By Schauder’s fixed point theorem, this action has a fixed point /¢ in
K;. It can be written as ho(x, y,z) = r*¢o(y)t? with r > 0. But then one writes
ho(g) = naho(ag) for all g in G, or equivalently @o(y) > war@o(y)t” forall y € Z.
This proves thatt = 1. =

When G;: # G, a second construction is possible.

3.4.2. The functions kg, 5, induced from a harmonic character. Let So C S be
an abelian subset. Denote by 15, 1= } ;s KsOs the measure restriction of u to So.
Let xo be a j15,-harmonic character of G,. We extend x as a function

WO = XOIGSO

on G which is 0 outside G, . This function g is p-subharmonic, so that the sequence
P/ Yo is increasing. We set

— : n
hsoro = Jim, Piivo.

We can tell exactly for which pairs (Sp. xo) the function /g, is finite (see [2]). In
this case, the function A, ,, is an extremal positive u-harmonic function on G.
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We can now state the extension of Theorem 1.1 to a more general finitely sup-

ported measure i on G.

Theorem 3.8. Let G = H3(Z) and p a positive measure on G whose finite support

S generates the group G. Then every extremal positive p-harmonic function h on G

is proportional either to a character x of G or to a translate hs, 5, © pg, of a function

induced from a harmonic character.

Corollary 3.9. Let G = Hs(Z), Z its center, and u a probability measure on G

whose finite support S generates the group G. The following are equivalent.

(1)  Every positive p-harmonic function on G is Z-invariant.

(ii) G/j' contains two non-central elements whose product is in Z ~ {0}.

Theorem 3.8 and Corollary 3.9 are proven in the sequel paper [2].
We will also see in [2] that on the nilpotent group of rank 4 with cyclic center,

there exist extremal positive harmonic functions which are neither a harmonic char-
acter nor a function induced from a harmonic character.
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Kihler-Einstein metrics and Archimedean zeta functions

Robert J. Berman

Abstract. While the existence of a unique Kihler—Einstein metric on a canonically polarized
manifold X was established by Aubin and Yau already in the 70s, there are only a few explicit
formulas available. In a previous work, a probabilistic construction of the Kihler—Einstein met-
ric was introduced — involving canonical random point processes on X — which yields canonical
approximations of the Kihler—Einstein metric, expressed as explicit period integrals over a large
number of products of X . Here it is shown that the conjectural extension to the case when X is
a Fano variety suggests a zero-free property of the Archimedean zeta functions defined by the
partition functions of the probabilistic model. A weaker zero-free property is also shown to be
relevant for the Calabi—Yau equation. The convergence in the case of log Fano curves is settled,
exploiting relations to the complex Selberg integral in the orbifold case. Some intriguing rela-
tions to the zero-free property of the local automorphic L-functions appearing in the Langlands
program and arithmetic geometry are also pointed out. These relations also suggest a natural
p-adic extension of the probabilistic approach.

1. Introduction

A metric w on a compact complex manifold X is said to be Kéihler—Einstein if it has
constant Ricci curvature:
Ricw = —Bw

for some constant B and w is Kéhler (i.e., parallel translation preserves the complex
structure on X). Such metrics play a prominent role in current complex differential
geometry and the study of complex algebraic varieties, in particular in the context of
the Yau-Tian—-Donaldson conjecture [39] and the minimal model program (MMP) in
birational algebraic geometry [61]. In [7, 8], a probabilistic construction of Kihler—
Einstein metrics with negative Ricci curvature on a complex projective algebraic vari-
ety X was introduced, where the Kihler—Einstein metric emerges from a canonical
random point process on X . The random point process is defined in terms of purely
algebro-geometric data. Accordingly, one virtue of this approach is that it generates

2020 Mathematics Subject Classification. Primary 32Q20; Secondary 14J45, 60G55, 11540,
14G40.

Keywords. Kihler-Einstein metric, Fano variety, random point process, Langlands
L-functions, Arakelov geometry.
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new links between differential geometry on the one hand and algebraic-geometry on
the other. In the present work, it is, in particular, shown that the conjectural extension
to Kéhler—Einstein metrics with positive Ricci curvature suggests a zero-free property
of the Archimedean zeta functions defined by the partition functions of the probabilis-
tic model. The particular case of Kéhler—Einstein metrics with conical singularities
on the Riemann sphere is settled, which from the algebro-geometric perspective cor-
responds to the case of log Fano curves.

We start by providing some background on Kéhler—Einstein metrics and recapit-
ulating the probabilistic approach to Kéhler—Einstein metrics; the reader is referred to
the survey [9] for more background and [13] for relations to the Yau-Tian—Donaldson
conjecture. See also [20] for connections to quantum gravity in the context of the
AdS/CFT correspondence and [11,41] for connections to polynomial approximation
theory and pluripotential theory in C”.

1.1. Kihler-Einstein metrics

The existence of a Kdhler—FEinstein metric on X implies that the canonical line bundle
Kx of X (i.e., the top exterior power of the cotangent bundle of X') has a definite sign:

sign(Ky) = sign(f). (1.1)

We will be using the standard terminology of positivity in complex geometry: a line
bundle L is said to be positive, L > 0, if it is ample and negative, L < 0, if its dual
is positive. In analytic terms, L > 0 iff L carries some Hermitian metric with strictly
positive curvature. The standard additive notation for tensor products of line bundles
will be adopted. Accordingly, the dual of L is expressed as — L. We will focus on the
cases when 8 # 0. Then X is automatically a complex projective algebraic manifold
and after a rescaling of the metric we may as well assume that 8 = +1. For example,
in the case when X is a hypersurface in P”*!, cut out by a homogeneous polynomial
of degree d,

Kx>0&d>n+2, —Kx>0&d<n+2.

In the case when Kx > 0, the existence of a Kdhler—Einstein metric was established
in the late seventies [3, 82]. The opposite case —Ky > 0 is the subject of the Yau-
Tian—Donaldson conjecture, which was settled only recently (see the survey [39]).
However, these are abstract existence results and there are very few explicit formulas
for Kdhler—FEinstein metrics on complex algebraic varieties available. For example,
even in the simplest case when Ky > 0 and X is complex curve, n = 1, finding an
explicit formula for the Kéhler—Einstein metric is equivalent to finding an explicit
uniformization map from the curve X to the quotient H/G of the upper half-plane
by a discrete subgroup G C SL(2, R). This has only been achieved for very special



Kéhler—Einstein metrics and Archimedean zeta functions 201

curves (such as the Klein quartic and Fermat curves), using techniques originating in
the classical works by Weierstrass, Riemann, Fuchs, Schwartz, Klein, Poincaré, etc.
Thus one virtue of the probabilistic approach is that it yields canonical approxima-
tions of the Kéhler—Einstein metric on X, expressed as essentially explicit period-type
integrals formulas (see formula (1.4)). These are reminiscent of the aforementioned
few explicit formulas for Kdhler—Einstein metrics, involving hypergeometric integrals
(see [9, Section 2.1]).

1.2. The probabilistic approach

First, recall that, in the case when 8 # 0, a Kihler—Einstein metric wgg on X can be
readily recovered from its (normalized) volume form d Vkg:

i -
= ——23adlogdVkEg,
WKE B2 OgaVKE

where we have identified the volume form d V' with its local density, defined with
respect to a choice of local holomorphic coordinates z. The strategy of the proba-
bilistic approach is to construct the normalized volume form d Vxg by a canonical
sampling procedure on X . In other words, after constructing a canonical symmetric
probability measure 1) on XV, the goal is to show that the corresponding empiri-

cal measure
1 N
Sy = ) b
i=1
viewed as a random discrete measure on X, converges in probability as N — oo to
the volume form d Vi g of the Kdhler—Einstein metric wg g .

1.2.1. The case 8 > 0. When Ky > 0, the canonical probability measure ™) on
XV, introduced in [7], is defined for a specific subsequence of integers Ny tending
to infinity, the plurigenera of X :

Ny :=dim H°(X, kKy),

where H%(X, kKy) denotes the complex vector space of all global holomorphic sec-
tions s®) of the kth tensor power of the canonical line bundle Ky — X (called
pluricanonical forms). The assumption that Ky > 0 ensures that Ny — 0o, as k — oo.
In terms of local holomorphic coordinates z € C" on X, a section s of kKy — X
may be represented by local holomorphic functions s*) on X, such that |s(k)|2/ k
transforms as a density on X, i.e., defines a measure on X. The canonical symmetric
probability measure ;‘N%) on X Nk is concretely defined by

1
pWNe) = | det SOk zy :=/ | det S®)2/k (1.2)
ZN, X Nk
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where det S® is the holomorphic section of the canonical line bundle (kK xNi ) over
XNk | defined by the Slater determinant

(det S®)(x1,x2, ..., xn,) := det (si(k)(xj)), (1.3)

in terms of a given basis si(k) in H O(X ,kKx). Under a change of bases, the sec-
tion det S® only changes by a multiplicative complex constant (the determinant of
the change of bases matrix on H°(X, kKy)) and so does the normalizing constant
Zn, . As aresult, M(N x) is indeed canonical, i.e., independent of the choice of bases.
Moreover, it is completely encoded by algebro-geometric data in the following sense:
realizing X as projective algebraic subvariety, the section det S*) can be identified
with a homogeneous polynomial, determined by the coordinate ring of X (or more
precisely, the degree k component of the canonical ring of X).
The following convergence result was shown in [7].

Theorem 1.1. Let X be a compact complex manifold with positive canonical line
bundle Kx. Then the empirical measures 8, of the corresponding canonical random
point processes on X converge in probability, as N — oo, towards the normalized
volume form d Vi g of the unique Kcihler—Einstein metric wxg on X.

In fact, the proof (discussed in Section 2.2) shows that the convergence holds at
an exponential rate, in the sense of large deviation theory: for any given ¢ > 0, there
exists a positive constant C, such that

N
1 -
Prob (d (ﬁ ;Sxi,dVKE) > 8) < Ce Ve,
where d denotes any metric on the space & (X) of probability measures on X com-
patible with the weak topology. The convergence in probability implies, in particular,
that the measures d Vi on X, defined by the expectations E(dy, ) of the empirical
measure y, , converge towards d Vi g in the weak topology of measures on X:

dVi :=E@n,) =/ uWNO 5 dVgg, k — oo.
XNkfl

For k sufficiently large (ensuring that k Ky is very ample), the measures d V}, are, in

fact, volume forms on X and induce a sequence of canonical Kéhler metrics wy on X,

expressed in terms of period-type integrals:

Wy = l—aélongk = l—Bélog/ |detS(k)|2/k, (1.4)
2 2 Y Ni—1

whose integrands are encoded by the degree k component of the canonical ring of X .
The convergence above also implies that the canonical Kihler metrics wy converge,
as k — oo, towards the Kéhler—Einstein metric wx g on X, in the weak topology.
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1.2.2. The case § <0. When —Kx > 0, i.e., X is a Fano manifold, there are obstruc-
tions to the existence of a Kdhler—Einstein metric. According to the Yau—Tian—Don-
aldson conjecture (YTD), X admits a Kédhler—Einstein metric iff X is K-polystable.
The non-singular case was settled in [31-33] and the singular case in [68—70], build-
ing on the proof of the uniform version of the YTD conjecture on Fano manifolds
in [18] (the “only if” direction was previously shown in [6]). In the probabilistic
approach, a different type of stability condition naturally appears, dubbed Gibbs sta-
bility (connections with the YTD conjecture are discussed in [13]). The starting point
for the probabilistic approach on a Fano manifold, introduced in [8, Section 6], is the
observation that when — Ky > 0, one can replace k with —k in the previous construc-
tions concerning the case Kx > 0. Thus, given a positive integer k, we set

Ny :=dim H°(X, —kKx)

(which tends to infinity as k — 0o, since — K is ample) and define a measure on X "V
by

p®Ve) = L| det S® |72k -z = / | det S| ~2/%, (1.5)

Z N, X Nk

However, in this case it may happen that the normalizing constant Z v, diverges, since
the integrand of Zy, blows up along the zero-locus in X Nk of det S® . Accordingly,
a Fano manifold X is called Gibbs stable at level k if Zy, < oo and Gibbs sta-
ble if it is Gibbs stable at level k for k sufficiently large. For a Gibbs stable Fano
manifold X, the measure M(N %) in formula (1.5) defines a canonical symmetric prob-
ability measure on X Vx. We thus arrive at the following probabilistic analog of the
YTD conjecture posed in [8, Section 6]:

Conjecture 1.2. Let X be Fano manifold. Then
e X admits a unique Kdihler—Einstein metric wg g if and only if X is Gibbs stable;

e if X is Gibbs stable, the empirical measures S of the corresponding canonical
point processes converge in probability towards the normalized volume form of

WKE.

In order to briefly compare with the YTD conjecture, denote by Aut(X )y the Lie
group of automorphisms (biholomorphisms) of X homotopic to the identity /. Fano
manifolds are divided into the two classes, according to whether Aut(X )y is trivial or
non-trivial,

Aut(X)o ={I} or Aut(X)o # {I}.

In the former case, the Kdhler—Einstein metric is uniquely determined (when it exists),
while in the latter case, it is only uniquely determined modulo the action of the group
Aut(X)o. This dichotomy is also reflected in the difference between K-polystability
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and the stronger notion of K-stability, which implies that Aut(X ) is trivial. Similarly,
the Gibbs stability of X also implies that the group Aut(X) is trivial [14] and should
thus be viewed as the analog of K-stability. Accordingly, we shall focus on the case
when Aut(X) is trivial (but see [9, Conjecture 3.8] for a generalization of Conjecture
1.2 to the case when Aut(X)g is non-trivial).

There is also a natural analog of the stronger notion of uniform K-stability (dis-
cussed in more detail in [13]). To see this, first recall that Gibbs stability can be given
a purely algebro-geometric formulation, saying that the Q-divisor Dy, in X Nk cut
out by the (multi-valued) holomorphic section (det S ®))1/* of —K Vi has mild sin-
gularities in the sense of the MMP. More precisely, X is Gibbs stable at level k iff
Dy, is Kawamata log terminal (kit). This means that the log canonical threshold (Ict)
of Dy, satisfies

let(Dp,) > 1 (1.6)

(as follows directly from the analytic representation of the Ict of a Q-divisor D,
recalled in the appendix). Accordingly, X is called uniformly Gibbs stable if there
exists ¢ > 0 such that, for k sufficiently large,

let(Dy, ) > 1+ & 1.7)
One is thus led to pose the following purely algebro-geometric conjecture:

Conjecture 1.3. Let X be a Fano manifold. Then X is (uniformly) K-stable iff X is
(uniformly) Gibbs stable.

The uniform version of the “if” direction was settled in [48], using algebro-
geometric techniques (see also [12] for a different direct analytic proof that uniform
Gibbs stability implies the existence of a unique Kéhler—FEinstein metric). However,
the converse is still widely open. And even if confirmed, it is a separate analytic
problem to prove the convergence towards the Kihler—Einstein metric in Conjec-
ture 1.2. In [9, Section 7], a variational approach to the convergence problem was
introduced, which reduces the proof of the convergence towards the volume form
d Vi of Kidhler—Einstein metric to establishing the following convergence result for
the normalization constants Zy, :

1
lim ——logZy, = inf F(u), 1.8
Nix—oo  Np & ONi HEP(X) (1) 19
where F'(u) is a functional on the space & (X) of probability measures on X, min-
imized by d Vi g, which may be identified with the Mabuchi functional (see Section
2.2). This variational approach is inspired by a statistical mechanical formulation,
where F appears as a free-energy type functional and 8 appears as the “inverse tem-
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perature”. A central role is played by the partition function

Zp) = [ eSOV, pefotoo  (19)

XNk
coinciding with the normalization constant Zy when 8 = —1. However, for 8 # —1,
Zn, (B) depends on the choice of a Hermitian metric || - || on —Ky, which, in turn,

induces a volume form dV on X. In order to establish the convergence (1.8), two
different approaches were put forth in [9, Section 7], which hinge on establishing
either of the following two hypotheses:

» the “upper bound hypothesis” for the mean energy (discussed in Section 2.2),

o the “zero-free hypothesis” (discussed in Section 2.4):
Z N, (B) #0 on some Ni-independent neighborhood €2 of |—1,0] in C. (1.10)

While originally defined for B € [—1, ool, the partition function Z, (8) extends to a
meromorphic function of 8 € C, all of whose poles appear on the negative real axes.
Indeed, by taking a covering of X, the function Zy, (8) may be expressed as a sum
of functions of the form

Z(B) ::/ /12D dA, (1.11)
(CITI

for a holomorphic function f and a Schwartz function ® on C”. One can then invoke
classical general results of Atyiah and Bernstein for such meromorphic functions
Z(PB) (recalled in Section A.2 of the appendix). The first negative pole of Zy, (B) is
precisely the negative of the log canonical threshold Ict(Dy, ). The zero-free hypoth-
esis referred to above demands that there exists an N -independent neighborhood of
] —1,0]in C, where Zy, (B) # 0. As shown in Section 2.4, the virtue of this hypoth-
esis is that it allows one to prove the convergence in formula (1.8) by “analytically
continuing” the convergence for § > 0 to 8 = —1. In the statistical mechanics litera-
ture, this line of argument goes back to the Lee—Yang theory of phase transitions (see
Remark 2.7).

1.3. The partition function Z y, (B) viewed as local Archimedean zeta function

From an algebro-geometric perspective, the partition function Z y, (8) (formula (1.9))
is an instance of an Archimedean zeta function. More generally, replacing the local
field C and its standard Archimedean absolute value | - | with a local field F and
an absolute value | - | on F, meromorphic functions Z(f) as in formula (1.11) can
be attached to any polynomial f defined over the local field F. Such meromorphic
functions are usually called local Igusa zeta functions [53]. This is briefly recalled
in Section A.2 of the appendix. For example, the Riemann zeta function ¢ (s) may
be expressed as a Euler product over such local meromorphic functions Z,(s) as p
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ranges over all primes p, i.e., all non-Archimedean places p of the global field Q:
o0
() =Y 1 = [[Zo(s). Zpls) = [@ [l @pd*x = (1= p=)7),
n=1 )4 p

where QQ,, is the localization of Q at p, i.e., the p-adic field Q,, endowed with its
standard normalized non-Archimedean absolute value and multiplicative Haar mea-
sure d*x on Q; and ®, denotes the p-adic Gaussian. This is explained in Tate’s
celebrated thesis [78], where it is shown that the classical procedure of completing
the Riemann zeta function amounts to including a factor Z,(s) corresponding to the
standard Archimedean absolute value on R, which is proportional to the Gamma
function.! In this case, all the local factors Z,(s) are manifestly non-zero (while
the corresponding global zeta function {(s) does have zeros). It should, however, be
stressed that it is rare that general local Igusa zeta functions of the form (1.11) and
their zeros can be computed explicitly. Still, one might hope that the canonical nature
of Z y, (B) may facilitate the situation. One small step in this direction is taken in Sec-
tion 5, where some intriguing relations between the partition functions Zy, (8) and
the local L-functions appearing in the Langlands program are pointed out (general-
izing the local factors Z, () of the Riemann zeta function). In particular, it is shown
that in the simplest case when X is n-dimensional complex projective space and Ny
is minimal, i.e., Ny = n + 1, the partition function Zy, (8) can be identified with
a standard local L-function L, attached to the group GL(n + 1, Q) when the place
p of the global field Q is taken to be the one defined by the complex Archimedean
absolute. Accordingly, in this particular case, Zy, () has a strong zero-free property
as a consequence of the standard zero-free property of local L-functions.

1.4. Main new results in the case of log Fano curves

Here it will be demonstrated that both approaches discussed above are successful in
one complex dimension, n = 1. The only one-dimensional Fano manifold X is the
complex projective line (the Riemann sphere) and its Kihler—Einstein metrics are all
biholomorphically equivalent to the standard round metric on the two-sphere. But
a geometrically richer situation appears when introducing weighted points (conical
singularities) on the Riemann sphere. From the algebro-geometric point of view, this
fits into the standard setting of log pairs (X, A), consisting of complex (normal)
projective variety X (here assumed to be non-singular, for simplicity) endowed with
a Q-divisor A on X, i.e., a sum of irreducible subvarieties A; of X of codimension
one, with coefficients w; in Q. In this log setting, the role of the canonical line bundle

'Expressing d *x = x~!dx reveals that the role of f is played by s — 1; see Section 5.1.
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Kx is placed by the log canonical line bundle
K(X,A) =Ky + A

(viewed as a Q-line bundle) and the role of the Ricci curvature Ric w of a metric w
is played by twisted Ricci curvature Ric w — [A], where [A] denotes the current of
integration defined by A. The corresponding log Kdiihler—Einstein equation thus reads

Ricw — [A] = B, B = %1, (1.12)

where [A] denotes the current of integration along A. When f is non-zero, existence
of a solution wg g forces
B(Kx + A) > 0.

In general, the equation (1.12) should be interpreted in the weak sense of pluripoten-
tial theory [16,42]. However, in case when (X, A) is log smooth, i.e., the components
of A have simple normal crossings (which means that they intersect transversally),
it follows from [52, 55] that a positive current @ solves the equation (1.12) iff w
is a bona fide Kéhler-Einstein metric on X — A and w has edge-cone singularities
along A, with cone-angle 27 (1 — w;), prescribed by the coefficients w; of A. In
particular, in the orbifold case

1
A=Z(l—m—i)Ai, mi € L, (1.13)

the log Kéhler—Einstein metrics locally lift to a bona fide Kéhler—Einstein metric on
local coverings of X (branched along A and Kx + A may be identified with the
orbifold canonical line bundle) [26, Section 2].

Example 1.4. Let X be the complex hypersurface of weighted projective space
P(ao, ...,an), cut out by a quasi-homogeneous polynomial F on C"*1 of degree d,
whose zero-locus Y € C"*! — {0} is assumed non-singular. Then the orbifold (X, A)
defined by the branching divisor A on X of the fibration ¥ — {0} — X, induced by
the natural quotient projection

C"t1 — {0} — P(aq. ....an),

is a Fano orbifold (i.e., —(Kx + A) > 0)iffd <ag +a; +--- + ay.

The probabilistic approach naturally extends to the setting of log pairs (X, A)
satisfying B(Kx + A) > 0 yielding a canonical probability measure on X V¢, that we
shall denote by ,u(AN" ), Indeed, one simply replaces the canonical line bundle Ky with
the log canonical line bundle K(x a) in the previous constructions (cf. [8, Section 5]
and [9, Section 3.2.4]).
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1.4.1. Log Fano curves. Let now (X, A) be a log Fano curve (X, A), i.e., X is the
complex projective line and

m
A= w; pi

for positive weights w; satisfying > ;- , w; < 2. In this case, it turns out that the
“upper bound hypothesis” for the mean energy does hold, which leads to the follow-
ing result announced in [9, Section 3.2.4]:
Theorem 1.5. Let (X, A) be a log Fano curve. Then the following is equivalent:
e (X, A) is Gibbs stable;
e (X, A) is uniformly Gibbs stable;
e the following weight condition holds:
wi < > wj, Vi (1.14)
i#]
e there exists a unique Kihler—Einstein metric wgg for (X, A).

Moreover, if any of the conditions above hold, then the laws of the corresponding
empirical measures 8y satisfy a large deviation principle (LDP) with speed N, whose
rate functional has a unique minimizer, namely wgg / fX wkEg- In particular, for any
given € > 0,

Jx ¥k

N
1 WKE _
Prob (d(ﬁ iEZI Ox;s ) > 8) < Cpe e,

Existence of solutions to the log Kéhler—FEinstein equation (1.12) in the one-
dimensional setting was first shown in [79], under the weight condition (1.14) and
uniqueness in [71]. The weight condition (1.14) is also equivalent to uniform K-
stability of (X, A) [47, Example 6.6] and thus the previous theorem confirms Con-
jecture 1.3 for log Fano curves.

We also show that in the case when the support of A consists of three points, the
following variant of the “zero-free hypothesis” holds:

Zne.a # 0,

when the coefficients of A are complexified, so that Zy, A is extended to a meromor-
phic function on C? (the proof exploits that Zx, A can be expressed as the complex
Selberg integral, which first appeared in the conformal field theory (CFT)). This leads
to an alternative proof of the previous theorem, in this particular case, by “analyti-
cally continuing” the convergence result in the case Kx + A > 0 to the log Fano case
Ky + A <0O.
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Example 1.6. The case of three points includes, in particular, the case when X is
a Fano orbifold curve. Such a curve may be embedded into a weighted P? and is
defined by the zero-locus of explicit quasi-homogeneous polynomial F(X,Y, Z) in
C3 (the du Val singularities). In the case of three orbifold points, there always exists
a unique log Kihler-Einstein metric on X, concretely realized as the quotient P! /G
of the standard SU(2)-invariant metric on P! under the action of a discrete subgroup
G of SU(2) (branched over the three points in question).

1.5. Organization

In Section 2, conditional convergence results on log Fano varieties are obtained,
formulated in terms of either the “upper bound hypothesis” on the mean-energy or
the “zero-free hypothesis™ of the partition function. Then — after a digression on the
Calabi—Yau equation in Section 3 — in Section 4, the hypotheses in question are veri-
fied for log Fano curves and Fano orbifolds, respectively. Section 5 is of a speculative
nature, comparing the strong form of the zero-free hypothesis with the standard zero-
free property of the local L-functions appearing in the Langlands program. The paper
is concluded with an appendix, providing background on Ict’s and Archimedean zeta
functions.

2. Conditional convergence results on log Fano varieties

In this section, it is explained how to reduce the proof of the convergence on Fano
manifolds X in Conjecture 1.2 to establishing either one of two different hypotheses,
building on [9, Section 7]. More generally, we will consider the setup of log Fano
varieties (X, A), discussed in Section 1.4. For simplicity, X will be assumed to be
non-singular. We will be using the standard correspondence between metrics || - || on
log canonical line bundles —(Ky + A) and volume forms d VA on X — A, which
are singular when viewed as measures on X (see [9, Section 4.1.7] for background,
where the measure d V) is denoted by o).

2.1. Setup

Let (X, A) be a log Fano variety. As recalled in Section 1.4, this means that A is a
divisor with positive coefficients and that —(Kx + A) > 0. We will allow A to have
real coefficients. Set

Ni := dim H°(X, —k(Kx + A)),

where k ranges over the positive numbers with the property that —k(Kx + A) is
a well-defined line bundle on X. To simplify the notation, we will often drop the
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subscript k in the notation for Ny. Since,
k— o004 N — oo,

this should, hopefully, not cause any confusion. As discussed in Section 1.4, assuming
that (X, A) is Gibbs stable, we get a sequence of canonical probability measures ,u(N)
on XV . Fixing a smooth Hermitian metric | - || on the R-line bundle —(Kx + A) with
positive curvature /L(A ) may be expressed as

ul¥) = || det S|P *aV g™ Zy = /X I det S® P ¥V g, 2.1)

where d V(x a) is the singular volume form on X corresponding to the metric | - || on
—(Kx + A) and det S®) is the Slater determinant of H°(X, —k(Kx + A)) induced
by a choice of bases sgk), . ,s%c) for HO(X, —k(Kx + A)), defined as in formula
(1.3). Since ,u(AN) is independent of the choice of bases, we may as well assume that
the basis is orthonormal with respect to the Hermitian product induced by (|| - ||, d V).
The condition that (X, A) is Gibbs stable means that the normalization constant Zy
is finite. Hence, it implies that the local densities of  V arein L} (which in algebraic
terms means that A is klt divisor).

From a statistical mechanical point of view, the probability measure MXV) on XV
may be expressed as the Gibbs measure

loc

—BNEN)
V) e d V®N
A ZyB) "
1
E(N)(xl, C L XN) = —mlog (H detS(k)(xl, .. .,xN)||2) (2.2)
with 8 = —1. In physical terms, the Gibbs measure represents the microscopic state
of N interacting particles in thermal equilibrium at inverse temperature 8, with
EM(xy,...,xy) playing the role of the energy per particle and the normalizing
constant
—BNEW)

Zn(B) = /X e PNETay S = /XN I det S©2P/% av & (2.3)

is called the partition function. It should, however, be stressed that, while the proba-
bility measure u( ) is canonical, i.e., independent of the choice of metric || - ||, this is
not so when B8 # —1. But one advantage of introducing the parameter § is that ,ul(gNk)
is a well-defined probability measure as long as 8 > —lct(X, A), where Ict(X, A)
denotes the global Ict of (X, A) (whose definition is recalled in the appendix). In

particular, it is, trivially, well defined when 8 > 0.
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Fixing B € [—1, oo[, we can view the empirical measure
LN
— : N
O = N ,-E_laxi XY > 2X)

as a random discrete measure on X . To be more precise, § is a random variable on
the ensemble (X, Mng)), taking values in the space & (X) of probability measures
on X. Accordingly, the law of §x is the probability measure

g = (6Nl € P(P(X))

on P (X), defined as the push-forward of the probability measure ung) on XV to

P (X) under the map .

2.2. Thecase 8 >0

The following result, which is a special case of [7, Theorem 5.7] (when A is trivial)
and [8, Theorem 4.3] (when A is non-trivial), establishes an LDP for the laws I'y g
of §y as N — oo, which may be symbolically expressed as

Typ = (SN)*IJL,%N) ~ e NEW=FE) N — oo

(formally viewing the right-hand side as a density on the infinite dimensional space
& (X); the precise meaning of the LDP is recalled below).

Theorem 2.1. Let (X, A) be a log Fano variety. For 8 > 0, the sequence I'ny g of
probability measures on P (X) satisfies an LDP speed N and rate functional

Fp(w) — F(B), F(w) :=PE(u) + Ent(n), F(B) := 53?;) Fg(u),  (2.4)

where E () is the pluricomplex energy of wu relative to the Kdhler form w defined
by the curvature of the metric || - || on —(Kx + A) and Ent(u) is the entropy of 1
relative to dVa. In particular, the random measure Sy converges in probability, as
N — o0, to the unique minimizer jig of Fg in (X)), i.e.,

Nli_r)noo Tng =8u, inP(P(X)) (2.5)
and the following convergence of the partition functions Z () holds:

1
Jim ——log Zw (B) = F(B). 2.6)
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We recall that the entropy Ent(1) of u relative to a given measure v is defined by
Ent(n) = / log =1
X vV

when p has a density with respect to v and otherwise Ent(u) := 00.” As for the
pluricomplex energy E(u) of a measure p on X, relative to a reference form wy, it
was first introduced in [17, Theorem 4.3]. From a thermodynamical point of view, the
functional Fg(u), introduced in [4, Theorem 4.3], can be viewed as the free energy.’
The pluricomplex E(u) may be defined as the greatest Isc extension to & (X) of the
functional E(u) on the space of volume forms p in &#(X) whose first variation is
given by

dE(11) = —py. 2.7)

where ¢, is a smooth solution to the complex Monge—Ampere equation (also known
as the Calabi—Yau equation):

%(w + %Béq)ﬂ)n =u, V= /Xa)”

This property determines the functional £ (i) up to an additive constant which is
fixed by imposing the normalization condition

E(@l/V) =0, (2.8)

in the case when the reference form wy is Kahler. Using the property (2.7), it is shown
in [9, Proposition 4.1] that the minimizer pg of Fg (i) is the normalized volume form
on X — A uniquely determined by the property that

ug = ePesavy,

where the function ¢g is the unique smooth bounded Kihler potential on X — A
solving the complex Monge—Ampere equation

1 i \n
_ _ — oBos 2
- (w + o aawﬁ) Posqv,. 2.9)

It follows that the corresponding Kéhler form

1 i - ng I .-
=0+ ——ddlog~L (=w+ —
wp = + ﬂznaa ongA( o+ 2n88<p/;)

2We are using the “mathematical” sign convention for the entropy, which renders Ent(j1)
non-negative when the reference measure v is a probability measure and thus Ent(u) coincides
with the Kullback—Leibler divergence in information theory.

3Strictly speaking, it is Fg/B which plays the role of free energy in thermodynamics.
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satisfies the twisted Kéhler—Einstein equation
Ricwg — [A] = —Bwg + (B + Dwo. (2.10)
on X, coinciding with the (log) Kéhler—Einstein equation (1.12) when 8 = —1.

Remark 2.2. Incidentall y, the functional
M( ) =F —1 ( + —i 35 )n
= r_ w ()

coincides with the Mabuchi functional for the log Fano variety (X, A), as explained
in [9, Section 5.3]. Moreover, the twisted Kéhler—Einstein equation (2.10) coincides
with the logarithmic version of Aubin’s continuity equation with “time-parameter”

t:=-—p.

The precise definition of an LDP, which goes back to Cramér and Varadhan [37],
is recalled in [9, Proposition 4.1]. For the purpose of the present paper, it will be
convenient to use the following equivalent (“‘dual”) characterization of the LDP in
the previous theorem: for any continuous function ®(u) on P (X):

N—o0

1 _ (N) _
lim ——1 NBE NOGBN) — inf (F ® 2.11
im ——log /X e e At (F () + @(w) (2.11)

(as follows from well-known general results of Varadhan and Bryc [37, Theorem
4.4.2)).

2.2.1. Outline of the proof. Before turning to the case when 8 < 0, we briefly recall
that a key ingredient in the proof of the previous theorem is the convergence

EM(xy,....,xy) = E(n), N — oo, (2.12)

which holds in the sense of Gamma-convergence (deduced from the convergence
and differentiability of weighted transfinite diameters in [15, Theorems A and B]).
Combining this convergence with some heuristics going back to Boltzmann suggests
that the contribution of the volume form dV®¥ in the Gibbs measure (2.2) should
give rise to the additional entropy term appearing in the rate functional:

(SN)*(e—ﬂNE(N)dV@)N) ~ e—NE(,u) (SN)*(dV®N) ~ e—N,BE(;,L)e—NEnt(M).
This is made rigorous in [7] using an effective submean property of the density of
M,E;N) on the N-fold symmetric product of X, viewed as a Riemannian orbifold (lever-

aging results in geometric analysis).
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2.3. Thecase 8 <0

In the case when 8 < 0, we may define the free energy functional Fg (i) by the same
expression as in formula (2.4), Fg = BE + Ent(u), when E, (1) < oo and otherwise
we set Fg(u) = oo. The definition is made so that we still have F, (i) € ] — 00, o0]
with F),(u) < oo iff both E(u) < oo and Ent(u) < oo.

In order to handle the large /N -limit in the case when 8 < 0, a variational approach
was introduced in [9, Section 7], which reduces the problem to establishing the fol-
lowing “upper bound hypothesis” for the mean energy:

limsup/ EM Y < E(Tp) ::/ E(u)Tp () (2.13)
N—oo JXN P(X)

for any large N-limit point I' of T'y g in X. This property is independent of the
choice of metric || - || on —(Kx + A). Moreover, the corresponding lower bound
always holds (as follows from the convergence (2.12)). The following theorem is an
extension of the results in [9, Section 7] to the case when A is non-trivial.

Theorem 2.3. Let (X, A) be a log Fano variety. Assume that (X, A) is uniformly
Gibbs stable. Then (X, A) admits a unique Kdihler—Einstein metric wxg. Moreover,
in the following list each statement implies the next one:

(1) the “upper bound hypothesis” (2.13) for the mean energy holds when f =—1;
(2) the convergence (2.6) for the partition functions holds when f = —1;

(3) the empirical measures §n of the canonical random point process on X con-
verge in law towards the normalized volume form dVkg of wkEg; i.e., the
convergence (2.5) holds when B = —1.

Furthermore,if the “upper bound hypothesis” (2.13) is replaced by the stronger hy-
pothesis that the convergence holds when E®) is replaced by E™N) 4+ ®(8y) for any
continuous functional ® on P (X) (and E is replaced by E + ®), then the LDP in
Theorem 2.1 holds for p = —1.

Proof. The proof in the general case is similar to the case when A is trivial. Indeed,
the assumption that (X, A) is uniformly Gibbs stable implies, by a simple modi-
fication of the proof of [48, Theorem 2.5] (concerning the case when A is trivial)
that §(X, A) > 1, which by [47] is equivalent to (X, A) being uniformly K-stable.
Hence, by the solution of the uniform version of the YTD conjecture for log Fano
varieties (X, A) with X non-singular in [18] (extended to general log Fano varieties
in [68,69]), it follows that (X, A) admits a unique Kihler-Einstein metric. Next, we
summarize the proof of the convergence in [9, Section 7]; all steps are essentially the
same in the case when A is non-trivial. Set

Fx(B) 1=~ Tos Zn (). F(B)i= _int Fy(u 2.14)
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and consider the mean free energy functional on P (X V) defined by
1
PxGun)i=B [ E®uy +  EntGu)
XN N

where Ent(u ) denotes the entropy of 11y relative to (d Va)®" . By Gibbs variational
principle (or Jensen’s inequality),

Fy(B)= inf  Fyg(un)= Fyg(ung). (2.15)
uUNEPXN)
Moreover,
F = inf Fg(T') = Fg(5,.), 2.16
(B) = inf  Fp() = Fp(Bu,) 2.16)

where Fg(I") denotes the following functional on & (£ (X)):
Fg(D) := / Fg(u)T
P(X)

and 4,4 is the unique minimizer of F(T") in P (& (X)) (using that F(u) is Isc, thanks
to the energy/entropy compactness theorem in [16] and hence F(I) is Isc and linear
on £ (P (X))). Now, as shown in the course of the proof of [8, Theorem 6.7] (and
refined in Step 1 in the proof of [9, Theorem 7.6]) for any B, the following inequality
holds:

limsup Fy(B) = F(B) 2.17)

N—o0

(as follows from combining Gibbs variational principle with the Gamma-convergence
(2.12) of E™) towards E (u)). Combining Gibbs variational principle (2.15) with the
variational principle (2.16) for F(8), this means that

lim su inf F N)) < inf F .
N—>oop(l/«N€e"P(XN) N,ﬂ(/’L )) €P(X) 'B(M)

Moreover, as shown in [9, Section 7], if the “upper bound hypothesis” on the mean
energy holds, then the corresponding lower bound also holds; i.e., the convergence
(2.6) of the partition functions holds:

Jim Fy(B) = F(B). (2.18)

Indeed, combining the “upper bound hypothesis” with the well-known sub-additivity
property of the mean entropy yields

Fﬁ (Fﬂ) < limianN,,g (/LN,ﬂ)
N—o0

for any limit point I'g of I'y g, in the case B = —1. Combined with the upper bound
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(2.17) and formula (2.16) for F(f), it then follows that I'g minimizes F_;(I") and
hence, by the uniqueness of minimizer, I' = §,,_,, as desired. All in all, this shows
that “(1)=(2)=-(3)” in the theorem.

Finally, to prove the LDP stated in the theorem, one just repeats the previous
argument with E®) replaced by E SI,N) :=EW £ ®(8y). Then Zy (B) gets replaced
with fX ve N E<(1>N)d V®N and hence the convergence (2.11) follows, as before, from
the implication (1)=>(2), now applied to E fI,N).

In fact, the implications in the previous theorem may ‘“almost” be reversed, by
exploiting that the mean N -particular energy at inverse temperature f is proportional
to the logarithmic derivative of Z x (8). More precisely, the following theorem holds,
where it is assumed, for technical reasons, that X is a Fano orbifold. n

Theorem 2.4. Let (X, A) be a Fano orbifold and assume that (X, A) is uniformly
Gibbs stable. Then there exists € > 0 such that Fg admits a unique minimizer [Lg for
any B € 1 — 1 — &,0[. Moreover, the following is equivalent:

(1) the “upper bound hypothesis” for the mean energy (2.13) holds for any B €

]—1—¢0[;
(2) the convergence (2.6) for the partition functions holds for any f € | — 1 —
&, 0[;

(3) the convergence (2.6) for the partition functions holds and the convergence
(2.5) of the laws of 8 holds forany B €] —1—¢,0|.

Furthermore, If (1), (2) or (3) holds, then

[ FOR = B e
Proof. First, assume that (X, A) is a log Fano variety. As explained in the proof of
the previous theorem, X admits a unique Kéhler—Einstein metric. Hence, it follows
from [34] (and [18]) that F_; () is coercive with respect to E; i.e., there exists € > 0
such that
F_1>¢FE — ]/8

on &#(X). Thus Fg is also coercive with respect to E for any B > —1 — . In par-
ticular, it follows from the energy-entropy compactness theorem in [16] that Fg
admits a minimizer. Moreover, as shown in [16], any minimizer has the property
that the corresponding function @g satisfies the complex Monge—Ampére equation
(2.9). Next assume that (X, A) is a Fano orbifold. Then, for 8 sufficiently close to
—1, the equation (2.9) has a unique solution. Indeed, since the K&hler—Einstein met-
ric is unique, the orbifold X admits no non-trivial orbifold holomorphic vector fields,
which, in turn, implies that the linearization of the equation (2.9) has a unique solu-
tion, defining a smooth function in the orbifold sense (see [36]). It then follows from
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a standard application of the implicit function theorem on orbifolds that the solution
¢ is uniquely determined for B sufficiently close to —1.

By the previous theorem (and its proof), it will be enough to show that (2)=(1).
Since, trivially, (2)=(3), we have that I'g = §,, 4 and hence it will be enough to show
the convergence in formula (2.19). To this end, first note that the functions Fy (8)
and F(B) (defined in formula (2.14)) are concave in 8, as follows readily from the
definitions. Moreover, F (8) and F(p) are differentiable on | — 1 — &, 0[ and

dFy(B) ), vy dF(B)
dp _/XNE A.B° dp

using that pg is the unique minimizer of Fjg. Hence, if the convergence in item (2) of
the theorem holds, then it follows from basic properties of concave functions that the

= E(up). (2.20)

derivative of Fy (f) converges towards the derivative of F(f) at 8 = —1 (see [19,
Lemma 3.1]). Applying formula (2.20) thus concludes the proof of the convergence
(2.19). ]

Remark 2.5. The reason that we have assumed that (X, A) is a Fano orbifold is that
the proof involves the implicit function theorem in Banach spaces and thus relies on
analytic properties of the linearized log Kidhler—Einstein equation. We will come back
to this point in Section 2.4.3.

2.4. The zero-free hypothesis

An alternative approach towards the case f < 0 was also introduced in [9, Section
7.1]. In a nutshell, it aims to “analytically continue” the convergence when 8 > 0 to
B < 0. Here we formulate the approach in terms of the following zero-free hypothesis
on the partition function Zy (8) (defined in formula (2.3)):

Zn(B) # 0onsome N -independent neighborhood 2 of | — 1,0l in C.  (2.21)

We also need to assume that Zy () is finite on a neighborhood of [—1,0] in R in
a quantitative manner depending on N. This is made precise in the following result,
which is a refinement of [9, Theorem 7.9]:

Theorem 2.6. Let (X, A) be a Fano orbifold. Assume that there exists € > 0 such
that

e ZnB) = CNforp=—(1+e),

e the zero-free hypothesis (2.21) holds.

Then (X, A) admits a Kdhler—Einstein metric wg g and 8 converges in law towards

the normalized volume form dVgg of wxg. More precisely, the convergence (2.5)
of laws holds and —% log Z n (B) converges towards F(f) in the C*°-topology on a
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neighborhood of | — 1, 0]. Moreover, if [—1,0] € 2, then the convergence holds on a
neighborhood of [—1, 0].

Proof. First, assume that (X, A) is a log Fano variety. Then the first point in the
theorem implies that F* admits a minimizer pg for any B € | — 1 — ¢, 0[. Indeed, by
the bound (2.17), F(B) is bounded from below for any § € | — 1 — ¢, 0]. Thus, for
any B €] —1—¢,0[, there exists § > 0 such that Fg > §E — §~', which implies
the existence of g (as recalled in the proof of Theorem 2.4). In particular, taking
B = —1 shows that X admits a unique Kihler-Einstein metric. Next, assume that
X is a Fano orbifold. Then the argument using the implicit function, employed in
the proof of Theorem 2.4, shows that after perhaps replacing ¢ with a small positive
number there exists a unique solution gg to the equation (2.9), in the orbifold sense.
In the case when X is a Fano manifold, it was shown in the proof of [9, Theorem 7.9]
that F(B) (= F(up)) defines a real-analytic function on | — (1 + €), ool. Since the
proof only employs the implicit function theorem, it applies more generally when
(X, A) is a Fano orbifold. Next, first consider the case when Z y (8) is zero-free on an
N -independent neighborhood 2 of [—1, 0] in C. By Theorem 2.3, it will be enough
to show that Zy (8)"/N — e~ F®) point-wise on | — (1 + ), ¢[. To this end, first
recall that, by Theorem 2.1, the convergence holds when g > 0. Next, by the zero-
free hypothesis, Zy (8)!/¥ extends from [—1,0] to a holomorphic function defined
on a neighborhood 2 of [—1, 0] in C. Moreover, by the first point,

|Zn (BN |<C onQ (2.22)

(using that |Zy(B)YN| < ZNRP)YN < Zn(—1 — )V/N | which is uniformly
bounded, by assumption). Hence, after perhaps passing to a subsequence, we may
assume that Zy; (B)'/Ni converges uniformly in the C *®°-topology on any compact
subset of € to a holomorphic function Z(8), which, in particular, defines a real-
analytic function on | — 1 — ¢, ¢[. But when 8 > 0, we have, as explained above, that
Z(B) = e~ F®) which extends to a real-analytic function on ] — 1 — &, [. By the iden-
tity principle for real-analytic functions, it thus follows that Zy; (B)VN; — e~ FB)
for any B in ]| — 1 — ¢, ¢[, in the C*°-topology. Since the limit is uniquely deter-
mined, it thus follows that the whole sequence Zy (8)/¥ converges towards e ~F(#®)
as desired.

Finally, consider the case when it is only assumed that €2 is a neighborhood of
] — 1,0] in C. By assumption, the sequence of functions

Fy(B) := —log (Zy (B)'/N)

is uniformly bounded on [—1 — ¢, €]. Since F () is concave in 8, it thus follows that
Fx (B) is uniformly Lipschitz continuous on [—1, 0]. Hence, by the Arzela—Ascoli
theorem, we may, after perhaps passing to a subsequence, assume that F (8) con-
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verges uniformly to continuous function Feo () on [—1,0]. By the previous argument,
Foo(B) = F(B) on] —1,0]. But since Fo, and F are both continuous on [—1, 0], it
follows that they also coincide at 8 = —1, as desired. |

Remark 2.7. In statistical mechanical terms, the C *°-convergence of N ~!log Z x (8)
amounts to the absence of phase transitions [75, Chapter 5]. It seems natural to expect
that the zero-free hypothesis (2.21) is satisfied as soon as X admits a Kéhler—Einstein
metric. Indeed, it can be viewed as a strengthening of the real-analyticity of free
energy F(f) in some neighborhood of ]0, 1] in C (discussed in the proof of the pre-
vious theorem). The zero-free hypothesis for general statistical mechanical partition
functions was introduced in the Lee—Yang theory of phase transitions (and has been
verified for some spin systems and lattice gases [67, 81]). More precisely, originally
Lee—Yang considered zeros in the complexified field parameter 4 called Lee—Yang
zeros, while zeros with respect to the complexified inverse temperature § are called
Fisher zeros [43]. The role of & in the present complex geometric setup is discussed
in Remark 3.4.

As discussed in [8, Section 6], the bound in first point in the previous theorem —
which is independent of the choice of metric || - || (up to changing the constant C) —
can be viewed as an analytic (stronger) version of uniform Gibbs stability (cf. [8,
Theorem 6.7]). As shown in [9, Lemma 7.1], the bound always holds for 8 sufficiently
close to 0. More precisely,

B > —lct(—Kx) = Zn(B) < C}’ (2.23)

for any N (= N), where Ict(L) denotes the global Ict of a line bundle L (whose
definition is recalled in the appendix). The proof exploits that lct(—Ky) coincides
with Tian’s analytically defined a-invariant o(— Ky ). Accordingly, under the weaker
hypothesis that Zy (8) is zero-free, for § in some e-neighborhood of | — lct(X), 0]
in C, the convergence statements in the theorem hold when 8 € | — Ict(X), 0].

Remark 2.8. If Ict(X) > 1, the first assumption in Theorem 2.6 is automatically sat-
isfied. Such Fano orbifolds are called exceptional (see [30], where two-dimensional
exceptional hypersurfaces in three-dimensional weighted projective space are classi-
fied). Exceptional Fano orbifolds appear naturally in the MMP as the base of excep-
tional isolated affine singularities [76].

2.4.1. The strong zero-free hypothesis. The zero-free hypothesis is independent of
the choice of basis in H°(X, —kKy). Indeed, under a change of basis, det S*) gets
multiplied by a non-zero scalar ¢ € C and hence Zy, (8) gets multiplied by chlk,
However, it should be stressed that the zero-free hypothesis depends, a priori, on the
choice of metric || - ||. For example, there are reasons to expect that it fails unless
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| - || has positive curvature. Accordingly, the zero-free hypothesis might be more
accessible for special/canonical choices of positively curved metrics, such as the
Kihler-FEinstein metric itself. This is illustrated by the following example, where
Z N, (B) can be explicitly computed:

Example 2.9. When X = P¢. we have that —Kx = O(n + 1) and hence the minimal
value for k is k = 1/(n + 1), which means that the minimal value for Ny is Ny =
n + 1. Taking || - || to be the Fubini—Study metric (which is Kihler—Einstein) the
following formula holds in the minimal case N = n + 1 (where ¢, is a computable
positive constant), proved in the appendix (see Proposition A.3):

[T T (B + 1)+ ))

Zn = Cn o
nip)=c (T(B(n + 1) +n + 1))

I'(a) :=/ t“e_’ﬂ (2.24)
0 t

where I"(a) denotes the classical I"-function, which defines a meromorphic function
on C whose poles are located at 0, —1,—2, . . . (as follows from the functional relation
I'(a + 1) =al(a)). Thus the first negative pole of Z y (8) comes from the first pole of
the factor corresponding to j = 1 in the nominator above, i.e., when 8 = —1(n + 1).
Moreover, since I'(a) is zero-free on all of C, Z () is zero-free in the maximal strip
{MNB > —1/(n + 1)} of holomorphicity (but the meromorphic continuation Zy ()
does have zeros in C, coming from the poles of the denominator).

In the light of this example, it is tempting to speculate that the following strong
zero-free hypothesis holds for Kdhler—Einstein metrics:

Z(B) #0, when NP > max { — lct(Dy), —1}.

In other words, this means that Zy(8) is zero-free in the maximal strip inside
{NpB > —1}, where it is holomorphic. To provide some further evidence for the strong
zero-free property, we note that if its holds, then the bound (2.23), combined with
the proof of Theorem 2.6, shows that, for any given ¢ > 0, the function F(8) on
] —lct(—Kx) + ¢, e[ C R, induced by the Kdhler—Einstein metric, is “strongly real-
analytic” in the following sense: F(f) extends to a bounded holomorphic function
on the infinity strip ] —lct(—Kx) + ¢, ¢[ + iR C C. This condition is much stronger
than ordinary real-analyticity (which only implies holomorphic extension to a finite
strip). But it does hold for the Kdhler—FEinstein metric. Indeed, in this case,

FB)=0, pel-100]

which trivially extends to a bounded holomorphic function on the infinity strip. To
prove the identity above, first observe that when wg = wgpg, the twisted Kihler—
Einstein equation (2.10) is solved by wg = wgg for any B (equivalently, in the case
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when wyg = wk g, we have o}/ V = d V(x a) and hence the complex Monge—Ampére
equation (2.9) is solved by ¢g = 0). But, as recalled above, for > —1, the equation
(2.9) admits a unique solution and hence

F(B) = Fg(dVgEg) =0

(using the vanishing (2.8) combined with the vanishing Ent(x) = 0 when u = d Vg
= dVp). In fact, this argument shows that F(8) = 0 on all of [—1, co[. Moreover, if
Aut(X)y is trivial, then there exists an ¢ > 0 such that F(8) =0onallof | — 1 — ¢, o0,
as follows from the argument using the implicit function theorem, employed in the
proof of Theorem 2.4. This argument suggests that when Aut(X )y is trivial, one can,
perhaps, expect the strong zero-free property to even hold in the larger region where
NP > max{—Ict(Dy), —1 — ¢} for some ¢ > 0.

Remark 2.10. Coming back to Example 2.9, it is natural to ask if there exists an
explicit formula for Z (8) when X = P¢. for general N, generalizing formula (2.24)
(or, more precisely, for any N of the form N = N ). However, as discussed in Remark
A.4, this problem appears to be open even when n = 1. But one interesting conse-
quence of formula (2.24) is that it reveals that in the case when X = Pf and N is
minimal,

let(Dy) = let(—Kx)

since Ict(—Kx) = 1/(n + 1). This shows that the estimate in formula (2.23) is sharp
(in the sense that there are cases where it fails for § < —Ict(—Kx)). The point of Con-
jecture 1.2, however, is that it only requires that Ict(Dy, ) > 1 when Ny is sufficiently
large. Similarly, in the case of P(:, where Aut(X)o # {I}, the corresponding conjec-
ture only requires that Ict(Dy, ) — 1, when Ny — oo (see [9, Conjecture 3.8]). For
example, when X = ]P’é, one has let(Dy) = (N — 1)/N (by Theorem 4.5) which
indeed tends to 1 as N — oo (and equals 1/2 when N = 2, which is the minimal
case).

2.4.2. Allowing singular metrics || - ||. Alternatively, when X is a Fano manifold,
one can take || - || to be the singular metric induced by the anti-canonical Q-divisor
A,, defined by the zero-locus of a holomorphic section of —m Ky, assuming that m >
0 and the zero-locus is non-singular (which ensures that the corresponding singular
volume form d V' has a density in Lf(’)c for some p > 1). In other words, the curvature
of || - | is given by the positive current [A,,] supported on A,,. Then Theorem 2.6
still applies. Indeed, in the proof one can apply the implicit function to the wedge-
Holder spaces appearing in [38, 55], which are independent of § (see, in particular,
[55, Corollary 3.5]). In this singular setup, the corresponding equations (2.10) become

Donaldson’s variant of Aubin’s continuity equations

Ricwg = twpg + (1 —1)[An], t =—B, (2.25)
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that were used in the proof of the YTD conjecture in [31-33], by deforming ¢ from an
initial small value, where there always exists a solution (by [4, Theorem 1.5])to ¢t =1,
assuming that X is K-stable. In other words, § is deformed down to —1. In the present
probabilistic approach, the (potential) advantage of employing the singular metric
on —Kx induced by the Q-divisor A,, is that the corresponding partition function
Z n(B) is encoded by purely algebraic data: the divisors Dy and A,, on X and X,
respectively. In this case, combining [4, Proposition 6.2] with [9, Lemma 7.1] gives

B > —min {let(—Kx). let(—Kx|a,,)} = ZNn(B) < C4'.

where —Kx|a,, denotes the restriction of —Kx to the support of A,,. More gener-
ally, it seems natural to expect that Theorem 2.6 holds for any log Fano variety (X, A)
(when || - || is either a smooth metric on Ky + A with positive curvature or the sin-
gular metric defined by any kit Q-divisor in —(Ky + A)). In the case when A + A,
defines a divisor whose components are non-singular and mutually non-intersecting,
the aforementioned results in [38,55] still apply.

2.4.3. Deforming the divisor A. Sometimes, it is advantageous to keep f = —1
and instead deform the divisor A as follows. Given a log Fano variety (X, A) and a
positive real number k such that —k(Kx + A) is a well-defined line bundle &£, i.e.,
defines an element in the integral lattice H?(X, Z) of H?(X,R), consider the affine
subspace 4 of RM+1 of all (w, s) which are “admissible” in the sense that

—(Kx + Aw)) = s, (2.26)

where A(w) denotes the divisor with the same M irreducible components as the given
divisor A and coefficients w € RM . In particular, (wo, k1) is “admissible”, where
wo € RM denotes the coefficients of the initial divisor A. If there exists (w1,s51) € A
such that Ky + A(wq) > 0 (and hence s; < 0), the conclusion of Theorem 2.6 still
applies if the corresponding partition function Z y, viewed as a meromorphic function
on CM+1 gqatisfies

e Zy < CY inaneighborhood in RM*1 of (wg, k1),

e Zn # 0in an N-independent neighborhood of the line-segment in CM+1 con-
necting (wo, k1) and (w1, 51).

More precisely, as discussed in the previous section, in order to apply the implicit
function theorem in Banach spaces, the appropriate linear PDE-theory needs to be
in place. For example, by [38, 55], this is the case when the components of A are
non-singular and mutually non-intersecting (results concerning the case when (X, A)
is log smooth are announced in [73]). The previous proof can then by applied to the
meromorphic function Zy (¢) on C defined by the partition functions associated to
the line-segment / € C™*! connecting the initial (wq, k~!) with (w1, s1) (where ¢
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denotes the complexification of the standard parametrization of 7). In this situation,
the estimate (2.22) still holds, i.e., |Zx (¢)'/¥| < C on some N -independent neigh-
borhood 2 of [0, 1] in C. Indeed, by assumption, the estimate holds with constant Cy
in a neighborhood of ¢t = 0 and, moreover, it trivially holds with a constant C; when
t is close to t = 1. Since log Zy (¢) is convex with respect to ¢ € [0, 1], one can thus
take C = max{Cy, C1}.

3. Intermezzo: A zero-free hypothesis for polarized manifolds (X, L)
and the Calabi-Yau equation

Before turning to the case of log Fano curves, we make a digression on general polar-
ized manifolds (X, L), i.e., a compact complex manifold X endowed with an ample
line bundle L. To a metric || - || on L and a volume form dV on X, we may attach
partition functions Zy (8), by replacing the log canonical line bundle —(Ky + A)
with L and d Va with dV in formula (2.3):

Zn(B) = /N | det S® |[28/k gy @N 3.1)
X

where k is a given positive integer and N denotes the dimension of H°(X,kL). This
is the general setup considered in [7], where the corresponding free energy functional
is of the form

Fg(p) = BE (i) + End(u).

where E(u) denotes the pluricomplex energy of i with respect to the normalized
curvature form w of the metric | - || on L and Ent(u) denotes the entropy of u relative
to d V. The minimizers pg of Fg(j) are of the form

pg = ePesav

for a smooth solution ¢g of the complex Monge—Ampere equation

. n
%(a) + ;—naé%) = ePosqy. (3.2)
Remark 3.1. In the case when 8 = k and X is a Riemann surface, the corresponding
partition function Zy () coincides with the L2-norm of the Laughlin wave function
for the (integer) Quantum Hall state on X, subject to the magnetic two-form ikw
[58]. Accordingly, as shown in [5], in this case (and for any dimension of X) the
corresponding large N -limit is described by the minimizers Fg(u)/pB, as B — oo,
i.e., of E(u). However, here we are concerned with the case when f is fixed, where
entropy enters the picture and dominates when f is close to 0.
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Consider, in this general setup, the following weak zero-free hypothesis:
Zn(B) # 0 on some N -independent neighborhood 2 of 0 in C. (3.3)

It implies a weaker form of the upper bound hypothesis (2.13) on the mean energy:

Theorem 3.2. Let (X, L) be a polarized manifold. Given a metric || - || on L and
a volume form dV on X, assume that the corresponding partition functions Z y (B)
satisfy the weak zero-free hypothesis above. Then —ﬁ log Z N (B) converges towards
F(B) in the C*°-topology on a neighborhood of 0 in R. In particular, the mean energy
of dVON converges towards the pluricomplex energy E(dV) of dV :

lim EMqveN — Edv),
N—oo JxyN | (3.4)
EM(xy,....xy) = N log (H detS(k)(xl, .. .,xN)Hz).
Proof. In general, given a metric | - || on L and a volume form d V' on X, there exists

& > 0 such that F(B) is real-analytic on | — ¢, g[. Indeed, this follows, as before, from
an application of the implicit function theorem at 8 = 0. Moreover, by the argument
discussed in connection to formula (2.23),

B> —lct(L) = Zn(B) < C}'. (3.5)

In particular, the estimate holds when § > —e for ¢ sufficiently small. The C*°-
convergence of —% log Zn (B) towards F(f) then follows exactly as in the proof
of Theorem 2.6. Finally, the convergence of the first derivatives at § = 0 yields the
convergence (3.4). ]

We next show that a variant of the weak zero-free hypothesis yields canonical
approximations ¢y of the solution of the Calabi-Yau equation, i.e., the equation
obtained by setting 8 = 0 in equation (3.2):

1 i =\
V(a)—i—gaa(p) —av (3.6)

for a smooth function ¢ on X. By Yau’s theorem [82], there exists a unique smooth
solution ¢ with vanishing average on (X, dV'). Given a volume form d V' with unit
total volume, the canonical approximation ¢ in question is defined by the integral
formula

1
on(x) = / X log (” detS(k)(x, X2, .ns xN)Hz) dVeN=1 _cp. (3.7
where ¢ is the constant ensuring that the average of ¢ on (X, d V') vanishes:

1
exi= [ proe(|dets O nax) [ aver.
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For a given smooth function u on X, denote by Z y (8, 1) the function on R? obtained
by replacing d V' in formula (3.1) with e"*d V-

Zn (B, h) = /N || det S |28/ % (hu gy )®N (3.8)
X

Theorem 3.3. Let (X, L) be a polarized manifold and || - || a metric on L. Given a
volume form dV on X with unit total volume, assume that

Zn (B, h) # 0 on some N -independent neighborhood  of (0,0) in C2,  (3.9)

for any smooth function u on X (where 2 depends on u). Then the functions ¢y,
defined by formula (3.7), converge in L' (X), as N — oo, to the unique smooth solu-
tion ¢ of the Calabi—Yau equation (3.6) satisfying fX edV =0.

Proof. First, observe that ¢y (x) is w-psh, since it is a superposition of the w-psh
functions log(|| det S® (x, x5, ..., xn)||?). Hence, by standard properties of w-psh
functions, the L!-convergence in question is equivalent to weak convergence. In other
words, it is equivalent to proving that for any given smooth function u € C°°(X)

lim /(pNudV:/(pdV.
N—o0

Moreover, since the integrals on both sides of the previous equality vanish for u = 1,
it is enough to prove the convergence for any u € C*°(X) satisfying [ udV = 0.
To this end, fix such a function u and consider the corresponding partition functions
Z N (B, h), defined by formula (3.8). A direct calculation reveals that

A B
/(pNu dVv = %ﬁN logZy(B,h), at(B,h)=(0,0). (3.10)

By assumption, there exists a neighborhood €2 of (0, 0) in C2, where log Zy (B, h) is
holomorphic. Moreover, by Theorem 3.2,

~NVlogZn (B, h) — F(B.h) := inf (ﬂE(u)—h/ udV+Ent(u))
€ X

i
P(X)

in the C°°-topology on €2, where Ent(u) denotes the entropy of u relative to d V.

loc
In particular, the convergence of the second derivatives at (0, 0) yields, by formula

(3.10),
d oF (B, h
JE%J‘/’N“"V - —@% at (B. ) = (0.0).

Since d 'V is the unique minimizer of Fg when 8 = 0,

oF (B, h)

= EWdVy), dVy:= dVeh”// dve.
ap b'¢
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The proof is thus concluded by invoking the property (2.7) of the functional £, which

gives
E(dVy)

- dav.
o ju=0 /X‘”“ .

In the particular case when X is a Calabi—Yau manifold — i.e., when some power
of Kx is trivial — we can apply the previous theorem to the canonical normalized
volume form dV on X,

dV = M’
fx(sm A Sp)t/m

where s, trivializes m Ky for some positive integer m. Then the corresponding con-
vergence implies that the positive (1, 1)-currents

i = 2 -
WN = ﬂf8810g(|det5(k)(-,x2,---’xN)} )dV@N !

converge weakly towards the unique Calabi—Yau metric wcy on X in c¢;(L), i.e.,
towards the unique Ricci flat Kéhler metric in ¢y (L). Note that, by the Poincaré—
Lelong formula, wy is the average over X V=1 of the currents of integration defined
by the zero-loci in X of the holomorphic sections det S (k)(-, X2, .., XN)-

Remark 3.4. It seems natural to expect that the zero-free hypothesis (3.9) is always
satisfied. Indeed, it can be viewed as a strengthening of the real-analyticity of the free
energy F(B, h) in some neighborhood of (0, 0) in C? (discussed in the proof of the
previous theorem). This expectation is in line with corresponding expectations in the
Lee—Yang theory of phase transitions [67,81], where the role of 8 and /8 is played
by the inverse temperature and the field strength, respectively (see the discussion in
the introduction of [64]).

When X is a compact complex curve, i.e., n = 1, the convergence in Theo-
rem 3.2 and Theorem 3.3 can, unconditionally, be deduced from the bosonization
formula for det S® (x1,...,xn) [1]. To the leading order, this formula expresses
| det S®) (x, x2,...,xn)| as a product of G(x;, xj), where G is Green’s function for
the Laplacian 199 (see Lemma 4.3 for the case when X = IP’((I:).

4. The case of log Fano curves

Let X be the complex projective line ]P’(é. Fix an R-divisor A on X, i.e.,

m
A=) piw
1=1
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for given points pp,..., pm on X and with real coefficients/weights w; and assume
that
w; < 1.

In contrast to Section 1.4, we thus allow w; to be negative. Assume that (X, A) is a
log Fano manifold, i.e., the anti-canonical line bundle of (X, A) is positive:

L:=—(Kx +A)>0.

Since X is a complex curve, the assumption that L is positive simply means that its
degree df, is positive:

dp=2- w; >0. (4.1)
Given a positive real number k& and assuming that k L defines a line bundle, i.e., kdf,

is an integer set,
Ny :=dim H°(X,kL).

To the log Fano curve (X, A) we attach (as in the beginning of Section 2) the follow-
ing symmetric probability measure on X "V :

1 -

Ny 2/k - -

pa = 5 —[aet Oz a0 Isal P ew),
k

which is well defined precisely when Zy, < oo. The following result implies Theo-
rem 1.5 (concerning the case when w; > 0):

Theorem 4.1. Let (X, A) be a log Fano curve. Then the following is equivalent:
e Zy, < oo fork sufficiently large;
o the following weight condition holds:

wi < Y w;, Vi (4.2)

i#]j
Moreover, if any of the conditions above hold, then the law of the empirical mea-
sure 8 on (X Nk, M(ANk )) satisfies an LDP with speed N and rate functional F_{ —
infp(x) F_1 (where F_y is the free energy functional on P (X) defined in Section 2.3,

which coincides with the Mabuchi functional for (X, A)).

Remark 4.2. In particular, if the weight condition above holds, then F_; is Isc on
P(X) (since, in general, any rate functional for an LDP is Isc) and thus admits a
minimizer. The existence of a minimizer was first shown in [79] using a different
variational argument. By the general results for log Fano varieties (X, A) in [16], any
minimizer satisfies the Kéhler—Einstein equation for (X, A). In general, a solution is
not uniquely determined (see [71, Remark 2]). However, when w; > 0, the uniqueness
in the case of the Riemann sphere was shown in [71] (see [16,31-33] for the general
higher dimensional log Fano case).
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To prove the previous theorem, we first recall some standard identifications (see
[11, Section 3.7]). Fixing a point pso, we identify X — {poo} with C. The point peo
induces a trivialization e, of the restriction of the hyperplane line bundle O (1) — IP’(I:
to C (vanishing at p) and thus the space H°(X, d©(1)) of all global holomorphic
sections of the dth tensor power of the hyperplane line bundle @ (1) — X may be
identified with the space of all polynomials in z of degree at most d. Moreover, the
anti-canonical line bundle —Ky of X may be identified with 20 (1) and s with a
(multivalued) holomorphic section of ) w; @ (1). In particular, we identify

m

kLek@@@:k@—E:m)%m

i=1

(recall that we are assuming that kdy, is an integer). Thus H%(X, kL) gets identi-
fied with the space of all polynomials in z of degree at most k(2 — Y/~ ; w;). This
identification reveals that

N =kdp + 1. (4.3)

Fix the standard basis of monomials 1,z,z2,...in H%(X,kL). Then the correspond-
ing section det .S &) over X Nk gets identified with the usual Vandermonde determinant
on CNk:
detS® o D(zy,...,zn,) = det (zl-j). 4.4)
i,J<Ng

Next, we identify X with the unit-sphere S? in R3, using the standard stereographic
projection, so that the fixed point p, € X corresponds to the “north-pole” (0,0, 1)
in S2:

(z—i—Z z—% —14|z|?
Z X =

. . , C—>R3.
1+m21+m21+up) -

Denote by d Vx the area form of the standard round metric on S? and by G the
following Isc function on X:

G(x,y) = —log|x =yl
expressed in terms of the Euclidean norm on R3.
Lemma 4.3. In terms of the standard identifications over C,
|det S®(zy, ..., ZN)|_2/k|SA|_2(Zl) e lsal T2 (zN)
1 1 1
(TTigj 2 =2 I)% NN

(where dy, is defined in formula (4.1)). As a consequence, on X = IP’(I: the probability
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measure /,LXV) may be expressed as

M(AN) _ Zie% Yiki<N G(xi’x-i)dV®N, dV = eZism wiG(x’pi)de. 4.5)
N

Proof. First, factorizing the Vandermonde determinant D(zy,...,zy,) on CN reveals
that D(zy,...,zn,) is the product of (z; — z;) over all i, j in {1, ..., N} such that
i < j.Hence,

DG zn)* = [ 1z — 2. (4.6)
i#j

Since Ny = kdr, + 1, we have that k = (N — 1)/d and hence the first formula of
the lemma follows. To prove the second one, first recall that in the general setting of

log Fano manifolds (X, A), the measure ;/,(AN) may be expressed as in formula (2.1).
In the present case, we take || - || to be the metric on L induced from the Fubini-Study

metric || - || Fs on @ (1) under the identification of L with dr O (1). Recall that
lecollfes = €775 grs(z) = log (1 + ).
Hence, formula (4.5) follows from the following two facts: first,
Iz = wils = |z —wPeT?rsEemtrs) 47

is proportional to the squared norm in R3 under stereographic projection and second,

ldzl|Fs = eS| Fs i= e72¢Fs

is proportional to the density of d Vx. These are well-known relations that can be
checked explicitly, but they also follow readily from their invariance under the isom-
etry group of S2. n

Next, we recall the following general LDP [10, Theorem 1.5], generalizing the
convergence in probability established in [27, 57] for the point-vortex model in a
planar compact domain. Given a symmetric function W on a compact metric space X,
a measure (o on X, and p € R, set

) [p] = _Z;[ ]e_p/{/ in FXj W(xhxj)/L?N
D

_p L Ly
XN

7

’

assuming that Z y[p] < oo.
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Theorem 4.4. Let X be a compact metric space, [Lo a measure on X, W a lower
semi-continuous symmetric measurable function on X2, and po a negative number
such that

sup/ e POV o (y) < o0 (4.8)
xeX JX

Then, for any p > pyg, the normalizing constant Z y[p] is finite and the law of the
empirical measure §n on (XN, W[ p)) satisfies an LDP with a rate functional

Fp— inf Fp, Fp(p) :=p/ Wi ® p+ Enty, (1)
P(X) XxX

Proof. 1t may be illuminating to reformulate the proof given in [10] in terms of the
conditional convergence result in Theorem 2.3. First, the finiteness of Zy[p] fol-
lows readily from the arithmetic-geometric means inequality, using the integrability
condition (4.8). A refinement of this argument also yields a priori estimates on each
j-point correlation measure on X/, building on [9, Section 3.2.4], showing that its
density is uniformly bounded in L? (,u? 7Y for any p > 1. Applying this estimate to
Jj =< 2 shows that the “upper bound hypothesis” (2.13) of the energy is satisfied. A
twist of this argument also yields the stronger form of the upper bound hypothesis
with respect to any given continuous function ®(u), as formulated in Theorem 2.3,
and thus also the LDP. ]

In the present case, we thus have

N -1
W(z,w) =—drlog|z—wl|, p= ﬁT

Moreover,
/ Wpeupn=Eu) +C (4.9)
X

for some constant C. Indeed, by a simple scaling argument, it is enough to consider
the case when dy, = 1. Then we can write W(x, y) = G(x, y)/2, where G(x,y) =
—log(]lz — w||?) has the property that —%85G(X, ) = 8x — wg, where wy is the
normalized curvature of the Fubini—Study metric. Hence, the first variation of the
functional p +— [, Wu ® p on P (X) coincides with the first variation of E(u)
(formula (2.7)), which proves formula (4.9).

4.1. Conclusion of the proof of Theorem 4.1

Set p = —t and observe that

/ e PWED) () = / o—(tdL10g |x=y |+ w; oglx=pi 1) 7,
X X
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For any given y € X, the function e ¢ g lx—y I” is locally integrable on X iff ¢ < 1.
Hence, the right-hand side above is integrable iff for any fixed index i

tdp /2 +w; <1, Vi.
But this condition holds for some ¢ > 1 iff
dp/2 +w; <1, Vi,

ie,iff 1 =) w;j/2 4+ w; < 1 forall i, that is, w; < Z‘#i w;, which is equivalent
to the weight condition (4.2). Hence, if the weight condition holds, then by Theorem
4.4, the desired LDP follows.

Next, assume that the weight condition is violated. Without loss of generality we
may assume that it is violated for the index i = 1, which equivalently means that

—dp +2(1—w;) = 0.

Set Bg := {||x — p1|| < R}. Since e~ "°2I*=¥l > R=1 on B, we have
[ a0 = RN [ ugn.
BY BY
R R
Using [, cge™ loglz2 g (r2) A dO = ——(R?)'™%, we thus get

/ Lo > fe—(w110g||x—Pl||2)dVX > C(RZ)(I—wl)
Br

for some constant independent of R. All in all, this means that

1/N
(/ N eW(x’Y’uo(y)) > CR™ 207w > cRO > € > 0.

By

But the right-hand side is independent of R. Hence, letting R — 0 shows that the
density ¢V *>») cannot be in L' (XN ;,L(;@N ), which means that Z y __; = 0o, as desired.

4.2. The case of a general divisor A

Now consider the case of general coefficients w; €] — 0o, 1[. By the previous theorem,
Zy,—1 diverges for large N, unless the weight condition (4.2) holds. But fixing any
continuous metric || - || on L, we can consider the corresponding probability measures

;L(AN;, defined by formula (2.2), which are well defined when — g is sufficiently small.

Theorem 4.5. Zy(B) < oo iff B > —ynN, where

N —1_1—max; w;

YN =
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Moreover, if Zn(B) < 0o, then the law of the random variable 8y on (XN, ,u(N))
satisfies an LDP with speed N and rate functional Fg —infpx) Fg.

Proof. First, consider the case when || - || is the metric || - || fs induced from the
Fubini—Study metric on @(1). Then we get, as above, that u( ) — = uMp] for p =
B N=1 Hence, by the argument in the beginning of the previous section, the integra-
b111ty threshold is given by

V-1 (o tdy )2+ wp < 1, Vi) = 2 W% Wi
= —1v, = sup{t : wj , Vi =2—
YN N YV P L i 2oy w;
and the LDP follows from the general LDP in Theorem 4.4. Finally, writing a general
continuous metric || - || as e */2|| - || s for a continuous function ¥ on X, we can

express //L(ﬂN) = uM[p], where o = e~ ®B+D%JV and again apply Theorem4.4. m

As recalled in Section 2.3, any minimizer wg of Fg satisfies the twisted Kéhler—
Einstein equation (2.10) with wg equal to the normalized curvature form of the metric
|| on L.

Remark 4.6. In the case when A is trivial (i.e., w; = 0), the formula for yx in the
previous theorem was shown in [46, Section 3], using a different algebro-geometric
argument.

4.3. The zero-free hypothesis in the case of three points and the complex
Selberg integral

We will next give an alternative proof of Theorem 4.1 in the case when m = 3 using
the approach in Section 2.4.3. To simplify the notation, we will drop the subscript k
in the notation Ny in formula (4.3). In other words, as our data we take a divisor A
on IP’& and an integer N which is strictly greater than one (k can then be recovered
from formula (4.3)). First, recall that, by Lemma 4.3, the normalizing constant Z y —
that we will write as Zy (A) to indicate the dependence on A — may be expressed by

dy,

ZN(A)=/ (1_[|Zz—21)m [ |Zi_Pj|_2wil_[%dZi/\dzi-
i

i#j i<N,j<m

Now specialize to m = 3. Then we may, after perhaps applying an automorphism of
IP’KI:, assume that the points pq, p,, and p3 are given by the points 0, 1, and co. Hence,

Zy(b) = / (TT1=—=! )_Nd‘ [Tl [Tz - I Ldzi ndz,

i#j
d =2—(wg + wy + wsy).
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This integral is known as the complex Selberg integral (when expressed in terms of
the parameters wg, wi, and d /(N — 1)). The original Selberg integral is the integral
obtained by replacing C" with [0, 1]V and generalizes Euler’s classical Beta-function
to N > 1 (see the survey [44]). Its complex version above seems to first have appeared
in the CFT, in the context of minimal CFTs, where it is known as one of the Dotsenko—
Fateev integrals [40] (an equivalent formula was also established in [2], expressed in
terms of the original Selberg integral). By [40, formula (B.9)], the integral Zx (A)
is explicitly given by the following remarkable formula involving the classical I'-
function:

ZN(A)zN!(ﬁ)NﬁZ _ (= 37%) o

ol + S5 (w2 + S xtg) (ws + 5555

(4.10)

Remark 4.7. The integral Zy (A) also appears in connection to the DOZZ formula
of Dorn—Otto and Zamolodchikov—Zamolodchikov for the 3-point structure constants
Cy (a1, a2, a3) in Liouville CFT, which has recently been given a rigorous proof in
[63] (see also the exposition in [80, Section 2.3]). A general formula for Selberg-type
integrals over a local field F of characteristic zero was recently established in [45]
(specializing to Selberg’s original integral when F' = R~ and its complex general-
ization when F = C).

We next observe that for any given ¢ € 10, 1[, Zx (A) is zero-free in the convex
tube domain  in C3 defined by

={w e C3: Rw; <1, Rw; + Rw, + Rwsz > 0}. (4.11)

Indeed, by formula (4.10),

PO+ 3) ) P (D Sak) D= = dty)
Z (A):N!nN(¢) 2N N1 ],
v 25 T

r(ci55) ) L r0T 458 T+ 44k

where the dots indicate similar factors obtained by replacing w; with w, and ws. It
is a classical fact that I"(x) is a meromorphic zero-free function of x € C with poles
at 0,—1,—2,... . Hence, the zeros of Zy (A) can only come from the poles of the
Gamma factors appearing in the denominators above First, consider the case when
d #0.Since N >2and 2 > Nd, the factor NG 2 e 1) has no poles in 2. Similarly,
since Nd > —1 the factor I'(1 4 £ % 1) has no poles and since hw; < 1, the factor
d

I'(w, + ) has no poles in  (using that, for w € R3, whend < 0, w; + 2 SN
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is minimal when j = N and N =2, i.e., the minimumis w; +d =2 — w; — wy > 0)
and likewise when w is replaced by w, and ws. Finally, when d = 0, we get

M)N

_ N
Zn(A) = Nln ( T (wy)

which is non-zero, since iw; > 0 (and thus the denominator above has no poles).

This argument also reveals that the “first” negative poles of Zy (A) appear when
1—x=0,forx =w+td/2 for w € {wp, w;, wy} and ¢t =i/(N — 1) fori =
1,...,N,i.e., when w + td/2 = 1. In particular, if w 4+ td /2 > 1 for the maximal
value of ¢, i.e., fort = N/(N — 1), then Zy (A) < oo. This is precisely the condition
for the finiteness of Zx (A) that came up in the beginning of Section 4.1 which is
equivalent to the weight condition (4.2) for w real. The explicit formula (4.10) for
Z N (A) then also gives

Zn(A) <N,

4.3.1. Proving Theorem 4.1 by deforming A in the case when m = 3. We finally
explain how to give an alternative proof of Theorem 4.1 in the case m = 3 using
the zero-free property and the bound on Zy (A) established in the previous section,
combined with the approach discussed in Section 2.4.3. In this case, the affine space
A of all “admissible” (s, w) is defined by the condition

e (£)

where, as before, d7, denotes the degree of the anti-canonical line bundle of the given
log Fano variety (whose weight vector is denoted by wq in Section 2.4.3). In par-
ticular, since we consider the case when m = 3, we get s < 0 by choosing a real
weight vector w; with components sufficiently close to 1 (which can be done as soon
as m > 2) and, in particular, w; €  (where 2 is the domain in formula (4.11)).
Since the components pq, ..., p, of A are, trivially, non-singular and mutually non-
intersecting, the implicit function theorem does apply. Hence, so does the approach
in Section 2.4.3.

S. Speculations on the strong zero-free hypothesis, L-functions, and
arithmetic geometry

In this last section, we discuss some intriguing relations between the strong zero-
free hypothesis for the partition functions Zy () on Fano manifolds introduced in
Section 2.4.1 and the zero-free property of the representation-theoretic (automorphic)
local zeta functions L,(s) appearing in the Langlands program [65]. Conjecturally,
the latter zeta functions are related to arithmetic/motivic L-functions [66].
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First, recall that given a reductive group G over a global field F together with
automorphic representations 7w and p of G and its Langlands dual, respectively, one
attaches a local L-function L,(s) to any place (prime) p of F. By definition, the
places p of F correspond to multiplicative (normalized) absolute value | - |, on F.
In the case when | - |, is non-Archimedean, the local L-function L,(s) is defined as
the inverse of a characteristic polynomial attached to the induced representation of G,
and thus L (s) is automatically zero-free. For Archimedean | - |,, the local L-function
L, (s) may be defined as an appropriate product of I'-functions and is thus also zero-
free; see [59, Section 4] for the case G = GL(N, C) and the relation to the local Lang-
lands correspondence. Conjecturally, any local automorphic L-function L,(s) is a
product of the standard L-functions corresponding to the case when G = GL(N, F),)
and p is the standard representation of GL(N, C) [65] (generalizing the local versions
of the classical Hecke L-functions, e.g. the Riemann zeta function when N = 1).

5.1. The “minimal” partition function on IP7, as a standard local L-function

In the standard case, it was shown in [51] (generalizing Tate’s thesis [78] to N > 1)
that L, (s) may — for any given admissible irreducible representation 7 — be realized
as a “zeta integral””:

Lo=[  [de@)]ue (5.1
GL(N,F)

for a distinguished measure p, on GL(F},, N), depending on 7, which is absolutely
continuous with respect to Haar measure. As a consequence, for such particular mea-
sures (p(g) the zeta integral above is zero-free (since L (s) is).

To see the relation to the partition functions Z x () for Fano manifolds, first note
that we may, in the zeta integral above, replace the group GL(F,, N) with the algebra
Mat(F,, N) of N x N matrices A with coefficients in F,, (since up puts no mass on
the complement of GL(F,,, N) in M(F,, N)). Then, after a suitable shift, s — s 4 A,
the measure j1, is of the form

Hp = fnPdA,

where d A is the additive Haar measure on Mat(F),, N ), the function f; is an appropri-
ate matrix element of 7, and @ is a suitable Schwartz—Bruhat function on Mat(F,, N).
In the “unramified case”, f; is the spherical function attached to 7 and @ is its own
Fourier transform [51, Proposition 6.12]. In case when p is non-Archimedean, this
means that ® is the characteristic function of M(O,, N), where O, denotes the ring
of integers of F},, while in the Archimedean case, ® is the Gaussian (see [54] for
the case F, = C). Now, when p is taken to be the standard (squared) Archimedean
absolute value on C(= Fj), with 7 the trivial representation, we get

ZNB) = ca(T(s +n+ 1) "L, (s), s =B +1), (5.2)
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where Z y (8) denotes the partition function for the standard Kihler—Einstein metric
on the Fano manifold P¢: with N the minimal one (i.e., N = n + 1) considered in
Example 2.9. Indeed, this follows directly from combining formula (5.1) (for f; = 1)
with formula (A.5) for Zy (8) in the appendix. Note that the first factor in the right-
hand side above is non-vanishing when %8 > —1 and thus the zero-free property
of Zx(B) in the strip B > —1 can be attributed to the zero-free property of the
corresponding local L-function L, (s).

5.2. Zeta integrals associated to Calabi—Yau subvarieties of Mat(Ny, C)

It would be interesting to compute Zy, (8) in more examples to check if it can be
expressed as products (and quotients) of I"-function and related to local Archimedean
L-functions as above. For example, if a reductive group G acts holomorphically on
X (e.g.if X is a flag variety), one might be able to exploit that the section det § %)
over X Vk is invariant under the diagonal action of G on X ¥, up to multiplication
by the determinant of the induced G-action on H%(X, —kKyx).

For a general Fano manifold X and Ny, it seems, however, unlikely that Zy, (8)
can be related to an automorphic local L-function. Anyhow, as next explained the
integral Z v, (B) can be expressed in terms of an integral over a Calabi—Yau subvariety
of Mat(Ny, C), which has some intriguing structural similarities with the zeta integral
for the standard L-function L,(s) in formula (5.1). We start by lifting the integral
Zn, (B) to an integral where the projective variety X is replaced by the affine variety
Y of dimension n + 1 obtained by blowing down of the zero-section in the total space
of the line bundle —k Ky — X. To this end, first note that the standard C*-action on
—kKx induces a C*-action on the affine variety Y with a unique fixed point yy, i.e.,
Y can be viewed as an affine cone over X:

X =~ (Yr — {yo})/C™.

On the affine variety Y%, there is a unique C*-equivariant holomorphic top form
(modulo a multiplicative constant). The Kdhler—Einstein metric wgxg on X corre-
sponds to a conical Calabi—Yau metric wcy on Yg, i.e., a Ricci-flat Kéhler metric
with a conical singularity at yo [49]. Denote by r the distance to the fixed point yg in
Y with respect to the Calabi—Yau metric wcy. We may then express

Zn, (B) = ca(T((n + DB + 1+ 1) Zy, (B).

Zn, (B) := fYNk | det Wk 128/k (=2 A () ®Nk |
k

where W) is the holomorphic function on Yka corresponding to the section det § %)
of —kKyn~, and ¢, is a (computable) positive constant ¢, . This is shown essentially
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as in the proof of Proposition A.3 in the appendix. Next, assume that k is sufficiently
large to ensure that —k Ky is very ample. Then one obtains a holomorphic (C*)"«-
equivariant embedding

YV = Mat(Ng, ©), (1, ywg) = (R Gn), . 8O (py)),

where W %) (y) denotes the Ny -tuple of holomorphic functions 1//1(k), e, 1//1(\;;) on Yy

corresponding to the fixed bases in H°(X, —kKy). In geometric terms, the embedding
above is just the embedding induced from the Kodaira embedding of X in the projec-
tivization of H°(X, —kKx)*. Denoting by ¥, the image of Yka in Mat(Ng, C), we
can thus express Z N, (B) as a matrix integral:

Zn (B) = / | det AP/ %e QA Q,
Y €eMat(Ng,C)

where now r denotes the distance to the origin in Mat(N, C) with respect to the
Calabi—Yau metric on the subvariety ¥, and 2 denotes the equivariant holomorphic
top form on ¥, (which can be viewed as a Poincaré-type residue of the standard
holomorphic top form on Mat(Ng, C) along ¥ ). This matrix integral is reminiscent
of the integral expression (5.1) for the local L-functions L, (s), if i, is taken to be
the measure on Mat(N, C) induced by pairing of Q@ A Q with the subvariety ¥y,
weighted by the Gaussian-type factor e™” 2 (and s := B/k). In view of this structural
similarity, it is tempting to speculate on a very strong zero-free hypothesis, saying
that, in general, the “lifted” partition function Z Ny (B) is zero-free on all of C, when
viewed as a meromorphic function.

Remark 5.1. The same considerations apply when X is a Fano orbifold if Ky is
replaced by the orbifold canonical line bundle (coinciding with — Ky + A as Q-line
bundle). Then the natural projection from Yz — {yo} to X is a submersion over the
complement of the branching divisor A and the orbifold Kihler—Einstein metric on
X corresponds to a bona fide Calabi—Yau metric on Yz — {yo} [49].

One further piece of evidence for the very strong form of the zero-free hypothesis
(complementing the “minimal” case on P appearing in Proposition A.3) is pro-
vided by the case when X = P! and k = 1, i.e., Ny = 3 (which is the case next
to minimal dimension, Ny = n + 1). Then identifying —Kx with 20 (1) and det S
with the Vandermonde determinant D® on C3 (as in Lemma 4.3) and using that
the Kéhler—Einstein metric is explicitly given by the Fubini—Study metric (formula
(4.7)), Zn, (B) may be expressed as

ZN"(ﬂ):/cs [T 1z -z ] (14 |z 2)"@+2),

i<j<3 i<j<3
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integrating with respect to Lebesgue measure. Applying the formula in [22, Theo-
rem 1] (to 0; = v; = B + 1), which originally appeared in the CFT, thus yields

Zn, (B) = 73 (TR +2) "TBR+2)T (B + 1)°. (5.3)

This means that the meromorphic function Z N, (B) is a product of four Gamma func-
tions and thus zero-free on all of C. The elegant proof in [22] leverages the diagonal
action of GL(Ny, C) on X V¢ alluded to above (following the corresponding real case
considered in [21] in the context of automorphic triple products).

The general case on X = P!, when N; > 3, appears to be open. However, a
similar formula does hold for any Ny when X is replaced by its real points, i.e., when
IS is replaced by P . Then the role of Z;, (B) is played by

ZuBrni= [ ldetsOPIEaven
L)V

28
=/( 1), [] 1z — 21T do®Ne, N =2k +1,
S k

i<j<Ng

where || - || denotes the Fubini—Study metric and d V' denotes the corresponding vol-
ume form on (]P’]é). In the second equality above, we have exploited that the integrand
is invariant under the diagonal action of SU(2) to replace the real points Py of P}
with the unit-circle S! in C C IP’(é. The latter integral over (S1)"* coincides with the
partition function for the 2D Coulomb gas confined to S! C C at inverse tempera-
ture 28 /(N — 1) (known as the circular ensemble). Applying [44, formula (1.12)]
(originally conjectured by Dyson and established by Gunson and Wilson) thus yields

—Nyg N
k
r(1 . Np =2k + 1.
) (+ﬁNk_1) k +

Zw (B = 0N T (14

e —
This formula reveals that the real analog Zy, (B)r of the partition function on IP’(lj
does satisfy the strong zero-free hypothesis. This real analog may, from the point of
view of localization, be obtained by replacing the squared absolute value | - |é corre-
sponding to the complex Archimedean place of the global field Q with the absolute
value | - |g corresponding to the real Archimedean place of Q. The extension to non-
Archimedean places is discussed in Section 5.4. But first we start by a brief detour on
arithmetic aspects of the partition function.

5.3. Invariants of arithmetical Fano varieties

Let X be an arithmetic variety of dimension n + 1 (i.e., a projective scheme flat
over Z, X — Spec Z) such that the corresponding n-dimensional complex variety
X (i.e., the complexification of the generic fiber Xg of X) is Fano. Assume that X
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is endowed with a relatively nef line bundle &£ such that the induced line bundle on
X equals —Ky. Then (X, £) induces a section det S*) of —kKyn, — XNk which
is uniquely determined up to multiplication by +1. Indeed, (X, £) induces a lattice
HO(X, kL) of integral sections in H°(X, —kKyx) and det S may be defined as in
formula (1.3) with respect to any basis in H°(X, k£) (any two such bases are related
by a matrix with integral coefficients, which thus has determinant equal to £1). As a
consequence, the corresponding partition function Zy, (8) only depends on (X, &)
and the choice of a metric || - || on —Kx (and is independent of the metric at § = —1).
In fact, the explicit expression for Zy, (8) appearing in Proposition A.3 — related
to a local L-function in formula (5.2) — was computed with respect to the standard
integral model (X, &) for (P", O(1)) (where H?(X, kL) is the lattice spanned by
the sections defined by multinomials). In the light of the speculations in the previous
section, this appears to fit well with the arithmetical side of the Langlands program.

In particular, taking B = —1 yields an invariant Z y, of (X, £) (which is finite iff
X is Gibbs stable at level k). The following conjecture relates the arithmetic invariants
Zp,. to the arithmetic intersection numbers introduced by Gillet—Soulé in the context
of Arakelov geometry (see the book [77]).

Conjecture 5.2. Let (X, L) be an arithmetic variety as above and assume that the
corresponding Fano manifold X admits a unique Kdhler—Einstein metric, whose vol-
ume form is denoted by d Vg g, normalized to have unit total volume. Then, as k — o0,
(";”1)! log Zn, converges towards the (n + 1)-fold arithmetic self-intersection num-

ber of the line bundle £, metrized by d Vi E.

In fact, using the arithmetic Hilbert—Samuel theorem in [83, Theorem 1.4] (gen-
eralizing the relative ample case in [50]), this conjecture is equivalent to the conver-
gence of the partition function appearing in Theorem 2.4, defined with respect to any
basis of H°%(X, kKx) which is orthonormal with respect to the Hermitian product
induced by a Kidhler metric on X. Thus, by Theorem 2.6, in order to establish the
conjecture it would, for example, be enough to show that the lifted partition function
Z N, (B) may be expressed as a product of O(Ny) shifted I'-functions all of whose
poles are located in the region where 8§ < —1 — ¢ for some ¢ > 0.

Remark 5.3. Other (polarized) arithmetic varieties on arithmetic varieties X, en-
dowed with a relatively ample line bundle &£, are introduced in [23, 84] (which are
finite precisely when (X, k£) is Chow stable) and related to constant scalar curvature
metrics in [74].

The analog of Conjecture 5.2 does hold when — Ky is replaced by Ky (assumed
ample) and log Z y, is replaced by the arithmetic invariant —log Z y, (as follows from
combining the convergence of Zy, (1) in Theorem 2.1 with the arithmetic Hilbert—
Samuel theorem).
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5.4. Extension to non-Archimedean places

In view of the connections to local L-functions, L, at the (complex) Archimedean
place p, exhibited in Section 5.1, one may wonder if the probabilistic setup can be
extended to non-Archimedean places p. The case of the trivial place is discussed in
(5.1), in connection to Gibbs stability. What follows are some speculations on the
case of non-trivial non-Archimedean places p, inspired by the adelic geometric setup
in [29], where geometric Igusa local zeta functions are studied (see Section A.2).

Let X be a non-singular variety defined over Q and first consider the case when
Kx(q) is ample. Given a non-trivial non-Archimedean place p (i.e., a prime number),
denote by X(Q,) the projective variety over the corresponding p-adic local field
Qp (the completion of Q with respect to | - |,), which comes with the structure of
a Qp-analytic manifold. By general principles, any continuous metric on Kx(q,)
induces a measure on X(Qp), which is absolutely continuous with respect to the
local Haar measures [29, Section 2.1]. In particular, a section s3 of kK X(Qp) induces
a measure on X(Q,), whose local density may be symbolically expressed as |s | ,1,/ k4
Hence, replacing the squared Archimedean absolute value appearing in formula (1.2)
with | - |, one arrives at a symmetric probability measure ,uE,N" ) on X (Qp)Nk. This
construction thus yields a canonical random point process on X(Q,). Accordingly,
it seems natural to ask if the convergence in Theorem 1.1 can be extended to this
non-Archimedean setup, if d Vg is replaced by an appropriate measure d Vg,
on X(Qp). In analogy with the Archimedean setup, the measure d Vx g, should be
characterized as the unique minimizer of a free-energy type functional F; on the
space of probability measure 1 on X(Q)) of the form

Fi(n) = E(u) + Ent(p), (5.4)

where Ent(u) denotes the entropy of the measure u relative to a fixed measure on
X(Qp), absolutely continuous with respect to the local Haar measure and E(u)
is a non-Archimedean analog of the energy discussed in Section 2.2. In particular,
dVkE,p is then absolutely continuous with respect to the local Haar measure.

Ideally, one might hope that the collection of metrics on —Kx(q,,) defined by
dVkE,p, as p ranges over all primes p, is induced by some model (X, £) for
(X, Kx(q)) over Z, away from primes p with bad reduction (cf. [29, Section 2.2.3]).
This would, loosely speaking, yield a probabilistic construction of a “canonical”
integral model attached to X(Q). This is in line with the analogy between the Kéhler—
Einstein condition of a metric on X(C) (i.e., at p = 00) and the minimality condition
of an integral model for X(Q) put forth in [72] and further studied in [74].

4One can also consider a field extension F, of Q,, and get a measure on the corresponding
analytic manifolds X(F}), as in [56], but here F,, = Qp, for simplicity.
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Remark 5.4. Embedding X(Qp) in its Berkovich analytification X;" and push-
ing forward a measure pu on X(Qp) to X", the functional on C O(x »") defined
as the Legendre—Fenchel transform of the functional £(u) in formula (5.4) should,
in analogy to the Archimedean setup [4, 17], be given by the primitive of the non-
Archimedean Monge—Ampere operator introduced in [28,62]. The primitive in ques-
tion is called the “energy functional” in [24]. In the case of a trivial non-Archimedean
absolute value, such an energy E(u) appears in [25, formula (6.1)] and plays an
important role in the non-Archimedean approach to K-stability.

Similar considerations apply in the Fano case. In particular, to a given metric on
—Kx(q,) one can associate a lifted partition function Z Ny.p(B). By general princi-
ples [29, Section 4.1], this defines a meromorphic function on C which in the light
of Section 5.1 plays the role of the local L-functions L, in the Langlands program.
More precisely, in order to render Z Ng,p(B) as canonical as possible, the metric on
—Kx(q,) should be taken to be defined by a “canonical” integral model (X, £) for
(X(Q),—K(q@)) and det § (&) should be defined with respect to any basis in H°(X, £)
(as in Section 5.3). Finally, one could then attempt to define a global L-type function
as a Euler product of Z Ny,p(B) over all p, generalizing the Riemann zeta function.

A. Log canonical thresholds and Archimedean zeta functions

In this appendix, we recall the basic notions of Ict’s, @-invariants, and their con-
nections to Archimedean zeta functions, which are as essentially well known. We
conclude with a proof of the formula appearing in Example 2.9.

A.1. Log canonical thresholds
Let X be a compact complex manifold.

A.1.1. The Ict of a divisor on X. By definition, an R-divisor D is a finite formal
sum of irreducible analytic subvarieties D; C X of complex codimension one:

m
D=ZC,‘D,', C,‘ER.

i=1

The log canonical threshold Icty (D) of an R-divisor D has various algebro-geometric
formulations (using discrepancies, valuations, multiplier ideal sheaves, etc.) [60], but
for the purposes of the present paper, it will be enough to recall its analytic definition
as an integrability threshold. First, consider the case when the coefficients D are
in Z 4. This equivalently means that there exists a holomorphic line bundle Lp — X
and a holomorphic section sp such that D is cut-out by sp, including multiplicities,
i.e., sp vanishes to order ¢; along the irreducible varieties D;. The Ict may then be
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defined as the following integrability index:

Icty (D) := sup {y :/ lspl =2 dV <oo}, (A.1)
y>0 X
in terms of any Hermitian metric | - || on L and volume form d V' on X . This definition

first extends to the case when ¢; € Z, if sp is viewed as a meromorphic section, so
that the negative coefficients correspond to the poles of sp, and then to ¢; € Q by
viewing sp as a multi-valued holomorphic section and noting that |s|| is still a well-
defined function on X (taking values in [0, co]). Finally, the definition extends, by
continuity, to any R-divisor D or, alternatively, by noting that the function |sp|| is
still well defined (and can be viewed as the norm on an R-line bundle, i.e., a formal
sum of the line bundles Lp,).

A.1.2. The Ict of a divisor on (X, A). More generally, if A is a given Q-divisor
of X, then the Ict of D relative to the log pair (X, A) [30] may be analytically defined
as
Ict(x,A)(D) := sup {y : / s 72 dVa < oo},
y>0 X
where d V) is a measure on X with singularities encoded by A, i.e., locally d VA may
be expressed as
dVa = |lsal"2dVx

for some bona fide volume form d Vx on X and metric | - | on the Q-line bundle
with multivalued holomorphic section sa corresponding to A. More generally, as in
the previous section, A may be taken to be an R-divisor on X.

A.1.3. Thelct of a line bundle L and the x-invariant. The log canonical threshold
Icty (L) of aline bundle L — X is now defined by

ety (L) := DulfL Icty (D),

where D ranges over the divisors attached to all the many-valued holomorphic section
s of L. By [35], this coincides with Tian’s a-invariant of L:

a(L) := sup {y : ac/ e7@%) gy < C V¢ € J€(L)}, (A.2)
y>0 X
where J¢(L) denotes the space of all metrics on L with positive curvature and ¢q
denotes a fixed smooth reference metric on L using additive notation for metrics so
that ¢ — ¢ defines a function on X. More generally, the log canonical threshold
Ictx,a)(L) of aline bundle L — X with respect to a log pair (X, A) [30] is defined
by
ICt(X’A) (L) = DlIlfL 1Ct(X,A) (D)
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This coincides with the ¢-invariant defined with respect to the log pair (X, A) obtained
by replacing d V' in formula (A.2) with d V(x ), as shown in the appendix of [4].

A.2. Archimedean zeta functions

Let 1o be a measure on C” with compact support and ¥ € L'(ug). Then we may
define the integrability threshold lct,,, () as in formula (A.1), by replacing log ||s||?
with ¥ and dV by po. The integral

28 = [ & po

defines a holomorphic function on the strip {1 > —lct,,(¥)} in C (using that, in
this strip, e#¥ € L'(110) and that the integrand is holomorphic in ). In the case when
¥ = log| f|? for f holomorphic, or more precisely,

Z(8) = [C RIGEYH (A3)

for a Schwartz function ®, the holomorphic function Z(8) on the strip {®p >
—let,,(¥)} extends to a meromorphic function in C, whose poles are located at
the negative real axes.

Remark A.1. This follows from classical results of Atiyah and Bernstein, extended
by Igusa to a more general setting of zeta function attached to polynomials defined
over local fields [53]. Briefly, meromorphic functions Z () of the form (A.3) can be
defined more generally by replacing C and its standard Archimedean absolute value
| - | with any local field F, endowed with an absolute value | - | . Such functions Z ()
are usually called Igusa local zeta function [53] and thus Z(8) in formula (A.3) is
called an Igusa Archimedean zeta function or simply an Archimedean zeta function
in the literature on algebraic and arithmetic geometry. In the case when f is a poly-
nomial with integer coefficients and F is the p-adic field, F' = Q,, the meromorphic
function Z () encodes the number of solutions of the equation f(x1,...,x,) =0,
modulo powers of p, when ® is taken as the characteristic function of the n-fold
product of the ring Z, of integers of Q,,

Similarly, given a holomorphic section s of a line bundle L — X over a compact
complex manifold, a metric || - || on L and a singular volume form d Vs associated to
a log pair (X, A)

Z(B) = /X 15128 dVix.a) (A4)

defines a holomorphic function in the strip {RB > —lctx,A)(D)} in C, where D
denotes the divisor cut out by the section s. More precisely, the function Z(8) extends
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to a meromorphic function on C, whose poles are located on the negative real axes
(using a partition of unity to reduce to the case of X = C"). The first negative pole is
precisely —Ict(x,a)(D).

Remark A.2. Functions of the form (A.4) have previously appeared in a general
adelic setup [29] (containing both the Archimedean and the p-adic setup), motivated
by number theory and arithmetic geometry on log Fano varieties.

In the present probabilistic setup on Fano manifolds, discussed in Section 2.4.1,
the manifold is of the form X Yk the section is the many-valued holomorphic section
(det STk of _K N« » and the measure is of the form d Vf N (and similarly in the
case of log Fano pairs). We conclude by proving the explicit formula for Z(f) stated
in Example 2.9.

Proposition A.3. In the setup of Example 2.9, the following formula holds:

[ DB+ 1)+ )
Cn 7
(C(Br+1) +n+1))

Z(B) =

In particular, the maximal holomorphicity strip of Z(B) is given by Q = {R(B) >
—1/(n 4+ 1)} € C and Z(B) is zero-free in Q2. More precisely, the zeros of Z(B) are
locatedat B = —1 + j/(n + 1), where j =0,1,2,....

Proof. In this “minimal” case, a basis 51, ..., Sy, in the complex vector space
H°(X,—kKx) = H°(P",0(1))

is obtained from the homogeneous coordinates Zy, ..., Z, on P”. Denote by Z :=
(Zy. ..., Zy) the corresponding vector in C"*!. We will represent an element in
(Z1,....Zy) € (C"*H)N with an (n + 1) x N-matrix, denoted by [Z]. Then the
corresponding Slater determinant det S®) may be identified with the homogeneous
polynomial det[Z] on C@+D? defined by the determinant of the matrix [Z]. Using
the SU(n 4 1)-symmetry of the Fubini—Study metric on @ (1) — P”, we may then
first lift the integral Z () on (P")"*! to the product of unit-spheres S in C**1:

Z(B) = cn [Smw | det[Z]|* do®N, 5:= p/k,

where do denotes the standard SU(n + 1)-invariant measure on S. Next, exploiting
that det[Z] is homogeneous of degree 1 in each column gives

f([j(n+1)2 | det[Z]|2se_‘Z|2 dx

(fooo(”z)se_rzﬂ(n—i-l)—l a"’)n—H '

/ |det[Z]{23 do®V =¢,
S+1)
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Hence, making the change of variables t = 2 in the denominator (and rewriting
P2t D=1 gy = p20+1 =24 (r2) /2) reveals that

Z(p) =c (A.5)

Jems2 |det[Z]|2S6’_|Z|2 da . dt
n m+D s F(a) = t“e T
(CGs+n+1) 0

Finally, the proof is concluded by invoking the following formula in [53, Theo-
rem 6.3.1]:

n+1
Z(s) := / | det[Z]|*e71 2P dA = ¢, [[rG+ ). (A.6)
cn+n2

Jj=1 ]

Remark A.4. The proof of formula (A.6) in [53] exploits that the polynomial f :=
det[Z] on C D has the property that

P [ =b(s)f* (A7)

with
n+1

b(s) = [T+ 1),
j=1

when P(z) = f(z). This leads to the functional relation b(s)Z(s) = Z(s + 1), that
can then be compared with the classical functional relation for I"(s) to deduce formula
(A.6). Recall that in general, given a polynomial f(z) on C™, the monic polynomial
b(s) on C with minimal degree for which there exists a polynomial P(z) satisfying
formula (A.7) is called the Bernstein—Sato polynomial attached to f [53]. In general,
it is very hard to compute b(s) explicitly (and thus to also find P(z)) but the present
case, f(z) = det[Z], fits into Sato’s theory of prehomogenuous vector spaces. This
is explained in [53]. Alternatively, formula (A.6) follows from the Iwasawa decom-
position of GL(N, C) (as in [54, Section 2]). It would be interesting to see if similar
considerations could be applied to X = P” when Ny is not assumed to be minimal,
i.e., when Ny > n 4 1. However, even the case when n = 1 appears to be open (apart
from the case when Ny = 3 appearing in formula (5.3), where a symmetry argument
can be exploited).
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Variational regularization in inverse problems and machine
learning

Martin Burger

Abstract. This paper discusses basic results and recent developments on variational regulariza-
tion methods, as developed for inverse problems. In a typical setup we review basic properties
needed to obtain a convergent regularization scheme and further discuss the derivation of quan-
titative estimates respectively the needed ingredients such as Bregman distances for convex
functionals.

In addition to the approach developed for inverse problems, we will also discuss variational
regularization in machine learning and work out some connections to the classical regular-
ization theory. In particular we will discuss a reinterpretation of machine learning problems
in the framework of regularization theory and a reinterpretation of variational methods for
inverse problems in the framework of risk minimization. Moreover, we establish some pre-
viously unknown connections between error estimates in Bregman distances and generalization
errors.

1. Introduction

Regularization methods are an approach of fundamental importance in the solution of
ill-posed problems. Their main paradigm is to approximate an ill-posed problem by a
parametrized family of well-posed problems, with appropriate convergence properties
as the regularization parameter and the so-called noise level tend to zero. The noise
level is a measure for the size of deterministic and stochastic errors in the data, which
are usually the main cause of concern due to the ill-posedness.

A detailed theory of regularization has been developed in the typical setting of
inverse problems, obviously with more precise results in the case of linear forward
models than for nonlinear ones (cf. [3, 20, 24, 54, 56] and references therein). Reg-
ularization is however not only relevant in inverse problems, similar methods are
now routinely used in machine learning, mainly from a practical point of view, with
theoretical results often hidden in the statistical theory of generalization (cf. e.g.
[27,33,40]). The role and objective of regularization is less clear and less developed
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in the machine learning domain. In this paper we will thus aim to give a unified
overview and present some links between the formulations and questions in inverse
problems and those in machine learning. We will concentrate on the prominent class
of variational regularization methods, which we interpret in a rather broad way.

2. Regularization theory

In order to present the basic ideas of regularization methods in a rather unified way
for inverse and machine learning problems, we will first adopt a high-level point of
view. Regularization theory is based on the following ingredients.

e An ideal problem respectively an ideal solution u*. We can assume that the ideal
problem is given by amap ® : Vp — U, where Vp is the space of ideal data and
U is the space of admissible solutions. The typical analysis is confined to Banach
or at least metric spaces.

e Aspace V D Vp of possible data and a measure of noise between the ideal data
v* = ®~1(u*) € Vp and noisy data v € V. In the case of an ill-posed problem, the
operator ® is not continuous when considered from (a subset of) V to U; it may
be continuous on bounded subsets of Vp however. The latter leads to the concept
of conditional stability (cf. [57,58]) and corresponding stability estimates.

e A family of continuous, possibly multivalued, maps &, : V — P(U), a € A,
such that for a sequence (v,) C 'V converging to v* € Vp, there exists a param-
eter sequence «, such that there is u, € @4, (v,) converging to u™* (in a suitable
metrizable topology, possibly weak or weak-star on bounded sets in the Banach
space case). Sometimes the notion of convergence is restricted to subsequences.

To make these notions more concise we will discuss them in the setting of inverse
problems as well as machine learning subsequently.

2.1. Inverse problems

In the typical case of inverse problems, there is first a (continuous) forward operator
F : U — 'V, which is typically not invertible and if it is on a subset of 'V, the inverse
is discontinuous. The set of ideal data is a subset of F(U), and there the multivalued
operator

®o:Vp — P(U), v F )

can be defined. In order to obtain a unique (generalized) inverse, a further selection
operator X : (U) — U is defined to obtain ® := X o Py. Let us mention that there
are standard examples of the selection operator such as the minimum norm solution,
but often this issue is treated in a hidden or unprecise way. We refer to [3] for a
detailed discussion of selection operators in inverse problems.
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The standard notion of noise is the perturbation of the data, i.e. v — v*, either as a
deterministic or a stochastic quantity. The norm of v — v™* in the Banach space V (or
the expectation of some power of the norm) serves as a definition of the noise level.

The solution of the inverse problem can then be cast as the solution of the ill-
posed operator equation

Fu)=v

or as the minimization of
D(u) = L(F(u),v), 2.1)

where L is some distance measure between the predicted data F(u) and the measured
data v. If statistical information about the noise is available or the forward model
contains other stochastic elements, L is typically a negative log-likelihood functional.

As mentioned above, regularization methods are families of multivalued operators
Dy 0 'V — P(U); in most cases the parameter domain # is a subset of the positive real
numbers. The well-posedness of &, is characterized by some set-valued continuity,
e.g. if u, — u, then ®4(u,) contains a convergent subsequence and each limit v of a
convergent subsequence satisfies v € @, (u). In most cases the regularization operator
satisfies a stronger stability estimate of the form

dy(ui,uz) < Cody(v1,v2) Yup € ®q(vy), uz € Py(v2), (2.2)

where dy and dy are appropriate distance measures (that may be degenerate in the
sense that dy (11, 1) can vanish also if u; # u»).
Regularization methods are constructed along several different paradigms.

e Data smoothing or mollifier methods, which are of the form &, = F oM,
where My : V—Vp is a family of mollifying (smoothing) operators into an
appropriate subspace of 'V on which there exists a continuous inverse of F. In
order to obtain suitable regularization methods, a quite detailed characterization
of the forward operator is needed in order to be sure to construct a mollification to
the right subspace. Consequently, such methods became popular for inverse prob-
lems with well-understood forward operators such as tomography (cf. [43,44]).

¢ Direct approximation of the operator F' by continuously invertible operators (cf.
[24,37,41,56] and references therein). The construction of approximations is usu-
ally done only in the case of linear forward operators based on modifying (small)
singular vectors or by approximating the normal equation, i.e. F*F. The latter
is however related to the minimization of the least-squares function || F(u) — v||?
and can thus be viewed as a variational method. Another approach modifying the
forward operator is discretization, the regularization parameter thus being related
to the discretization fineness.
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e Variational methods are based on a perturbation of the likelihood minimization,
with ®, mapping v to the set of minimizers of

Dqo(u) = L(F(u),v) + aJ(u)

for some regularization functional J that introduces the needed compactness
properties for the existence of minimizers and o € R4+ being the regularization
parameter (cf. [3,54]).

e Iterative regularization methods use a well-defined iteration method such as a
fixed-point iteration or some descent scheme for the likelihood minimization to
define an approximation of the inverse of F, with the iteration number o € N
being the regularization parameter (cf. [14,24,34,35,49]). Since the majority of
iterative methods, in particular in the nonlinear case, are iterative methods for
variational problems, there is an intimate connection to variational regularization
methods.

e Learned regularization methods are of increasing relevance recently (cf. [1,3] and
references therein), which are categorized into supervised and semi-supervised
approaches. The supervised approach tries to learn the regularization operator
®,, directly from a collection of pairs of training data (u;, v;), e.g. by approx-
imation with a deep neural network. Consistent data pairs are however difficult
to obtain in many inverse problems, in particular with realistic input data u; and
realistic noise in v;. The alternative semi-supervised approach mainly works on
suitable solutions u;, e.g. images for reconstruction tasks, and tries to learn a more
conventional regularization approach, e.g. the regularization functional J in vari-
ational regularization methods. With certain restrictions such as convex networks
those become accessible for theoretical arguments of regularization theory.

Besides providing a well-posed problem for fixed o, which often requires some
advanced analysis itself (e.g. existence of minimizers for variational problems), a
major goal of regularization theory is to study the convergence of regularized solu-
tions. While a qualitative convergence theory can be developed under generic condi-
tions, it is well known that a quantitative theory will rely on additional assumptions
on the ideal solution u™* due to the underlying ill-posedness. To understand the possi-
bility to derive such estimates and the used assumptions from a generic point of view,
let us consider a sequence of data v, — v* and a parameter choice oy, assuming
that o, is a nonnegative scalar sequence converging to zero (e.g. the regularization
parameters in a variational regularization method or o, = kin with k, the maximal
iteration number in an iterative regularization method). Now assume that the stabil-
ity estimate (2.2) holds and that u* satisfies a range condition for the regularization
operator (cf. [3]).
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Definition 2.1. An element u* € U is said to satisfy a range condition for the regu-
larization operator @ if for all « there exists v} such that u* € @, (v}).

Under a range condition we can write
* *
Up —u" € G, (vy) — Dy, (va,,)
and exploit the stability estimate (2.2) to obtain

du (™, uy) < Cq,dy (v} ,v*).

(077

Thus, if we can control the range condition in the sense that we can construct an
element vy out of v* such that the distance can be estimated, we directly obtain
an error estimate. This will be made more precise in the next section on variational
regularization methods.

2.2. Learning and risk minimization

In the typical case of machine learning problems (cf. [33,45]) we are given (randomly
sampled) input samples x; € X and output samples y; € ¥,i =1,..., N, and want to
infer a parametrized map fp : X — ¥ reasonably reproducing these training data and
generalizing further to other data of the same kind. These properties are frequently
obtained from risk minimization arguments. Given a loss £ measuring deviations in
the output space, the empirical risk is given by

~ 1 Y

RO) = 5 2 (foxi). i)

i=1

and approximate solutions are constructed as approximate minimizers of R, e.g. via
variational regularization methods minimizing

Dy(0) = R(0) + aJ(0)
or by iterative methods such as the gradient descent
9k+1 — Qk . rkk\/(ek)

or even more often by stochastic gradient descent, where the term implicit regulariza-
tion is common (cf. [48]).
Generalization is usually measured by the behavior on the population risk, i.e.

R(Q) = IE(x,y)~IF" (g(fG (x), y));
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in particular the generalization error defined by
G(6) = R(6) — R(®).

evaluated at a regularized solution. Note that the generalization error is actually a
random variable depending on the samples (x;, y; )IN= 1>
its distribution among the random sampling.

The ideal model could be defined in two ways, depending on what variable is
identified to be the relevant one. In any case the ideal solution is perceived as a min-
imizer of the population risk, however one could define u™* as the optimal parameter
value or the optimal function. Thus we are led to the following cases.

hence it is relevant to consider

(1)  The first case, corresponding to classical approaches in statistics such as
regression, is to define U as the set of possible parameters, genuinely a
finite-dimensional space (with few generalizations to infinite-dimensional
models recently, cf. [39,47]). Thus, the ideal solution is given by

0* ¢ in R(0).
arg min (6)

(i) The second case rather corresponds to the perspective of modern learning
theory; it extends the population risk to some function class ¥ and com-
putes for f € &

S(f) = Eqy~e (L(f(x),7)).

The ideal solution is given by
*e in S(f).
ST earg min )

Another obvious question in this case is how to define the ideal and perturbed
data. We follow a distributional viewpoint and define the ideal data v* as the data
distribution PP. Correspondingly, the perturbed data are given by the empirical distri-

bution
| N
PV = N Za(xidﬁ)’
i=1
where 6, denotes the concentrated measure at z. Thus, the noise level becomes a
distance between (probability) distributions, standard distances such as the total vari-
ation distance or Wasserstein metrics.
The regularization operator ®, maps from a space of probability distributions to
(a set of) regularized solutions. Take the variational regularization of minimizing D,
as an example. Then in case (i), P is given by

O, PV arg min Dq (),
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while in the second case (ii) we have

Dy PV > {fy |0 € argmeinDa(O)}.

We finally mention that these models can obviously be generalized, in particu-
lar to the case of further data errors in the samples (x;, y;). Then the samples can
be considered to be drawn from a distribution P’ and the effective error is not just
determined by sampling but also by the distance of P and P’.

Thus, we see that regularized learning problems can be reformulated in the lan-
guage of regularization theory for inverse problems (see also [12,53]). In turn we will
see that many inverse problems can be reformulated as risk minimization problems,
in particular if there is additional sampling of measurement points.

2.3. Risk minimization formulation of inverse problems

Many inverse problems are dealing with data being functions of a variable x, e.g.
in integral equations of the first kind or tomography, where x is a set of distances
and angles (cf. [46]). Denoting the unknown of the inverse problem by 8, we thus
obtain F(0) as a function of x and denote f(x;6) = F(0)(x). Moreover, standard
log-likelihood functionals in this setting are of the form

L(F(8),v) :/QK(F(G)(X),U(x))dx

for some function £. Thus, choosing & = £q8y(x), Where £ denotes the Lebesgue
measure on 2, we obtain

L(F(6).v) = E@y~p (L(FO) (). 7)) = Eqeyy~r (€(f(x:6).3))-

The ideal problem is thus the minimization of the loss for appropriate data v*.

In a practical setting we have a finite sampling of data with additional noise, which
we consider to be additive for simplicity in the following. This means the practical
data are a finite number N of samples y; = F(0)(x;) + n;, where n; are the noise
samples drawn from some distribution. The practical distribution of samples and data
is of the form

N
1
PV = N Y 8 ® 8F @) (xi) s
i=1
where the x; are drawn from a prior distribution (usually a deterministic one) and the

n; are drawn from the noise distribution.

Example 2.2. As a simple example consider the inversion of the Radon transform on
a domain  C R2. Then in the standard parametrization we can choose x € [0, 7) x
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[0, L] as the angle and distance to origin of the lines to be integrated on. Correspond-
ingly F(6)(x) is the line integral of the density function 8 on the line parametrized
by x. Now let x be drawn from the uniform distribution on [0, 77) x [0, L] and let each
n be drawn from a Gaussian distribution G, with zero mean and finite variance. Then
the population risk becomes

1 % 2
R(0) = in [o,n)x[o,L]/R|F(9)(X)_F(9 )(x)—n| dGy(n)dx

1

- 0)(x) — F(6%)(x)|* d 2dGy(n).
3 Jo oy [FO@ = FEIW[ dx /R n2 dGy(n)

Hence, after affine transform with terms independent of 6, the population risk equals
the squared L2-distance of the Radon transforms of § and §*, which is the usual data
discrepancy L. The empirical risk on the other hand is of the form

2

s

N
RO = 55 S |FO) - 3

i=1
which is the standard functional minimized in practice.

For a more general noise model one may construct the conditional distribution
for y based on using the appropriate push-forward of the noise distribution based on
applying the noise to F(6*)(x) and an appropriately chosen loss function. Moreover,
errors in the forward model could be included in the stochastic model, which will
imply that even in the ideal model the conditional distribution of y given x is not
concentrated.

3. Variational regularization

In the following we present some key steps in the analysis of iterative regulariza-
tion methods, for the sake of a simpler presentation restricting ourselves to a linear
forward model and a quadratic data fidelity in a Hilbert space, i.e.

Do) = %HFu —v||% + aJ (), (3.1

where J : U — R U {400} is assumed to be convex and proper. Moreover, we
assume V to be a Hilbert space and U a Banach space being the dual of some Banach
space W, with the additional property that the weak-star topology on U is metrizable
on bounded sets. The operator F : U — 'V is assumed to be bounded and the adjoint
of a bounded linear operator E : V — ‘W. With abuse of notation we shall write
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F* = E. Finally, we need some additional property of the regularization functional;
we assume that it is the convex conjugate of some other functional H : ' W — R, i.e.

J(u) = sup (u, w) — H(w).
wew
Let us mention that convex conjugates are weak-star lower semicontinuous, which is
obviously an important property of the functional and can be inferred by similar argu-
ments as the weak lower semicontinuity results in [23]. Finally, a coercivity property
is needed to apply weak-star compactness arguments (based on the Banach—Alaoglu
theorem); we assume that the sublevel sets

Mc={ueU|Ju)<C}

are bounded in U for C > 0. The final property we need is that J is bounded below;
we can assume directly that J is nonnegative.

There are various important examples in literature motivating the above model
and assumptions. A popular and reasonably easy to compute approach is classical
Tikhonov—Phillips regularization with U being a Hilbert space and

1
s = 3 lul”.

Possibly the most prominent example with a variety of applications is total variation
regularization (cf. [16,19]), i.e. U = BV(L2) and

J(u) = sup / uV-gdfq,
Q

geC ()9, llglloo=<1

where Q C R is the domain on which the function to be reconstructed is defined.
There are various variants of total variation, including higher order versions, which
received considerable attention. Another class of important regularization methods
are sparsity-enforcing priors (cf. [50]), in the simplest setup U = £! and

J) =" Juil.

An interesting case in deconvolution problems as well as mean-field approaches to
learning with neural networks is the continuum variant, the total variation norm of
Radon measures (cf. [7,22]). Here we have U = M(2) and

J(u) = sup /wdu.
weCp(R2) /2
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3.1. Basic properties of variational regularization methods

A key result, often found for special cases in literature (cf. e.g. [16, 55]), is the exis-
tence of a minimizer and some stability, which verifies the well-posedness of the
regularization operator @ (v) := arg min, Dy (u).

Theorem 3.1. Under the above assumptions on U, 'V, F, and J there exists a min-
imizer of Dy (1) for every v € 'V and every a > 0. Moreover, if o > 0, v, — v, and
Up € @y (vy), then there exists a weak-star convergent subsequence vy, and the limit
u of every weak-star convergent subsequence satisfies u € ®y(v).

In general, no uniqueness can be shown under the above conditions, which is any-
way not to be expected for the rather degenerate examples above. However, a weaker
type of uniqueness can be inferred from the convexity and optimality condition

F*(Fu—v)+ap =0, peadl(u),
where dJ (1) denotes the subdifferential
0J(u) = {w e U* | J(u) + (w1 —u) < J(@) Vi € U}.

From the assumptions on F we see that F'* effectively maps to the predual space ‘W,
thus the subgradients in the optimality condition effectively satisfy p € ‘W, which is
a weak regularity condition. A key concept needed in the following is the Bregman
distance or generalized Bregman distance (cf. [11,38]).

Definition 3.2. Let J : U — R U {+o0} be a convex proper functional and let
u,u € U with p € dJ(u). Then the (generalized) Bregman distance d ;’ (1, u) is
defined by

d¥@,u) = J@)— J(u)— (p.u —u).

If p € dJ (i), the symmetric Bregman distance d J’; P (i1, u) is defined by

PP (i, u) = (p — p.ii — u).

Now assume that there are two minimizers u; and u, of the variational regular-
ization problem, then the difference in optimality conditions yields

F*F(uy —uz) +a(p1—p2) =0
and from a duality product with u; — u, we infer

||F(u1 —u2)||2 +adP"P (uy,uz) = 0.
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Hence, by the nonnegativity of both terms we obtain uniqueness of the output value,
i.e., Fu; = Fu, as well as a vanishing symmetric Bregman distance between 1,
and u,.

Finally, we can turn our attention to convergence properties of the regularization
method. For this sake we use an exposition based on I'-convergence (cf. [6]).

Lemma 3.3. Let v, — v* = Fu™ in'V and o, — 0. Then the sequence of functionals
Dy, defined by

1
Dan(u) = EHFM - Un||2 + anJ(u)

I'-converges to

1
Do(u) = §||Fu —*|?
with respect to the weak-star topology in U.

This kind of convergence is not strong enough to infer convergence of minimizers,
in particular since there is no equicoercivity property. To achieve this, we need to
rescale the functional, i.e. use I'-convergence by development to the next order.
Lemma 3.4. Letv, — v* = Fu™inV and «,, — 0 such that

[vs —v*|?
On

Then the sequence of functionals E,, defined by

1
Eo, () = 5~ Fu — vall® 4+ J(u)
n
I-converges to
Jw) if Fu = v*,
Eo(u) = {
+o00 else,

with respect to the weak-star topology in U.

Let us mention that we obtain divergence, i.e. E,, converges to the functional
identically equal to +oo0, if the condition on the parameter choice is violated, i.e.
lim inf W > 0. Since E, > J and J is coercive, we immediately conclude the
equicoercivilty of the sequence E, .

Corollary 3.5. Let v, — v* = Fu* in'V and a, — 0 such that
k]2
o = v,

Qy
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Moreover, let u, be a sequence of minimizers of Dy, (or equivalently E,,, ), then there
exists a subsequence converging with respect to the weak-star topology in U and the

limit u™* of each weakly convergent subsequence is a minimizer of Eq. Moreover,
J(uy) — J(u™**).

Corollary 3.5 confirms that indeed the regularization operator defined by

®y(v) = argmin Dy, (1)
u

yields a convergent regularization. Let us mention some further direct consequences.

e If the J-minimizing solution is unique, i.e. ¥** is the unique minimizer of Ej,
then the whole sequence u, converges weakly-star to u™*. Moreover, if there is
p** € aJ(u) N W, then due to the convergence of J and the weak-star conver-
gence we conclude

d;’** (up,u™) — 0.

o Ifu* satisfies Fu™* = v*, butis not a J-minimizing solution (a minimizer of Ey),
it cannot be reconstructed by the regularization method, i.e. it is not the limit of
minimizers of the variational regularization for positive . This is related to the
question whether the regularization functional introduces the right type of prior
knowledge. If we are interested in reconstructing a solution like u* that is not
J-minimizing, then J is not a suitable choice.

e If J is the norm in U as in many frequent examples and U satisfies a Radon-
Riesz property, the previous result indeed implies a strong convergence of subse-
quences.

The above analysis was based on a deterministic approach, but in a similar way a
stochastic theory can be developed, e.g. for a sequence of random variables v, with
variance E(||v, — v*||?) converging to zero.

3.2. Quantitative estimates

As mentioned above, it is important to derive quantitative estimates between solutions
of the regularized problem and ideal solutions, which we present here based on using
range conditions as sketched above. In the following we denote by u, a regularized
solution, i.e. a minimizer of Dy. Due to convexity u, € ®4(v) is characterized as the
solution of the optimality condition

F*(Fug —v) +apy =0, py € 0J(ug).

Taking two such solutions one can establish a stability estimate for the Bregman dis-
tance (cf. [3]).
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Theorem 3.6. Let uy € @y (v) and tiy € Py (V). Then the estimate

1 ~ 2 PaP ~ 1 =12

E”Fuot — Fiig||” + O‘dja’ “(Ug, tg) < EHU — 1

holds, where py respectively py are the subgradients appearing in the optimality
condition for uy respectively ty.

Now we turn to the range condition, effectively reformulating a result from [15].

Lemma 3.7. An element u* € U with v* = Fu™* satisfies the range condition for the
variational regularization operator @ if and only if it satisfies the source condition

3z*eV:F*z* € aJ(u™).

The key part of the proof is the explicit construction vy = v* 4+ «z*, which allows
to obtain an estimate of the right-hand side in the error estimate, due to

o —vall < llv=v*[ + [[v* = vgll = v = o™ + 27
This leads to the error estimates as derived in [15].

Corollary 3.8. Let uy € ®,(v) and let v* = Fu®*, with u™ satisfying the source
condition p* = F*z* € 0J(u™). Then the estimate

1
S I1Ftta = Fu*? +ad 7 (ua.u®) < o = v*” + o7 |" .

In the error estimate we see again the condition on the choice of o needed for
the convergence of regularization methods. While the estimate on the output error
| Fug — Fu™|| is uniform in o; the effective estimate for the Bregman distance is of
the form

v — l)* 2
“ ” +a||z*||2,

4y (ug, u”) <
which is small again only if « and the quotient W are small.

One also observes a bias-variance decomposition inherent in the estimate, even
more clearly when we assume an underlying stochastic noise model, i.e., v is a ran-
dom variable. Without systematic errors in the measurements, we have E(v) = v*
and hence

E(d?*" (uq,u*)) <

E(|lv — v*|?
—(” o ) + ol 22

The measure on the left-hand side is the natural generalization of the mean-squared
error to the case of convex variational regularization, and the right-hand side is com-
posed of the data variance and the bias term ||z*||?, scaled by the regularization
parameter.
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Let us mention that the above estimates in Bregman distances lead to estimates in
norms if J satisfies strong convexity conditions (cf. [54]). In the case of not strictly
convex functionals, the Bregman distance can vanish even if uy # u™*, e.g. in total
variation regularization if they differ by a change of contrast u, = h(u) with a mono-
tone function /, but rather measures a deviation of the discontinuity sets (cf. [3, 16]).
In such cases the multivaluedness of the subdifferential can even be an advantage that
needs to be exploited, since we do not have just a single estimate, but actually an esti-
mate for each p* satisfying a source condition. Estimates for other quantities can then
be derived from the Bregman distance estimates by optimizing over the possible p*
and the associated source elements z* (respectively, their norm appearing in the error
estimates). An example are estimates for the total variation regularization for piece-
wise constant functions; it has been shown already in [15] how the total variation of
Uy away from the discontinuity set of u* can be estimated by choosing appropriate
subgradients.

Again the above type of conditions and estimates are the canonical ones, but can
be developed much farther (cf. e.g. [2, 25,26,28,30-32,51,52,57]). The first issue
is the question of having better estimates under stronger conditions, and a typical
example is an improved source condition p* = F*Fn* € aJ(u*) for some n* € U.
In this case the element n* can be used to construct an approximate solution u} =
u* — an™ instead of approximate data for a range condition. This was carried out in
[51] (see also [29]) to obtain the estimate

lv —v*||

df*(ua,u*)§d§’*(u*—an*,u*)+ S

The exact characterization of d 5’ i (u* — an*, u*) depends on the properties of the
functional and may be on u* itself. For J being Fréchet-differentiable with Lipschitz-
continuous (or Holder-continuous) derivative, it is always quadratic in «; hence the
estimate is of higher order in «. For the nonsmooth functionals like total variation
or the £!-norm the situation is different; at a first glance it cannot be expected that
d 5’ i (u* - an*,u*) is of higher order in &. However, in such situations we can even
have d¥ (u* — an*,u*) = 0 for o small, e.g. in £' regularization if the support of
n* is contained in the support of u*.

The opposite question of weaker estimates arises if u* does not satisfy the source
condition p* = F*z*. In this case approximate source conditions are used, which
measure the deviation from the source condition. A frequently used concept is the
so-called distance function

Dp(p™) =inf{|F*z = p*| |z € V. ||z]| < p}.

which is useful in particular under strong convexity assumptions and allows to build a
theory in a similar way by optimizing the value p that finally appears in the error esti-
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mate. For functionals not being strictly convex and in particular the one-homogeneous
cases like total variation, a reformulation in terms of a dual problem is more suitable
as seen in [13]. There the measure

) F*z — p* o
contp”) = inf v () S

was used to derive estimates. One observes some duality to the concept of distance
functions, noticing that for J being a norm in Banach space we just have

ean(p™) = ainf{|lz]| [z €V, |F*z — p*|« < v},

where ||-||« is the dual norm to J. It was also shown that approximate source condi-
tions are inherently related to the case of large noise, which is particularly relevant
for stochastic models like white noise having non-finite variance (cf. [5, 13,36]).

While the literature was focused on asymptotic results for a long time, the spe-
cific shape of solutions at a fixed positive & became a more attractive topic in the last
two decades. In order to understand this issue, a better understanding of the range
condition for the regularization method is needed, which means the source condi-
tion p* = F*z* in the case of variational regularization. Since F is modeled as a
smoothing operator in inverse problems, F'* is smoothing as well, which implies that
the source condition is an abstract smoothness condition. However, the smoothness
is rather indirect, since it concerns the subgradient p* and not directly u*. Various
results on the structure of minimizers, from sparsity properties for J = £! or its coun-
terpart in the space of measures to total variation and staircasing phenomena can be
found in literature (cf. [18, 19]).

Another issue that found strong recent interest is debiasing, since in the case of
large noise the bias caused by the regularization term (and the large value of « that
is needed to achieve stability) spoils the possible quality of regularized solutions.
The influence of bias can also be seen from the term depending on ||z*|| in the error
estimates, and in practice it is often observed that the reconstruction of the subgradient
is better than the one of the primal solution due to bias. First debiasing methods (also
called refitting) appeared in ¢! regularization, where in a first step the variational
regularization is used and in a second step a simple least-squares problem is used
on the support obtained from the first step, sometimes also with a sign constraint as
obtained from the subgradient in the first step (cf. [21, 42]). This approach can be
translated to a more general two-step approach for debiasing as worked out in [8],
which computes

Do (v) = argmin {d 7 (u,uy) | uq € DG (v)},

with ®Y being the regularization operator from the variational regularization method.
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Another approach effectively leading to debiasing, but also with other advan-
tages, are iterative regularization methods such as the Bregman iteration (cf. [49]). In
the case of a quadratic functional, it can be formulated as an augmented Lagrangian
method for computing the J-minimizing solution of Fu = v, i.e.

1
uk+1 e arg min §||Fu — K12 + ad(u).
u

VR = ok oy - kL

with v® = v. To have a suitable generalization also for other loss functionals this can
be reformulated as

1 k
u**1 € argmin Sl Fu = vl + ad? u,ub),
u

1
pk+1 — pk + —F*(U _ Fuk'H) e 8J(uk+1).
o

The regularization parameter in this case is not o, which is to be chosen rather larger
in order to achieve good results, but the number of iterations carried out. Due to the
variational structure in each iteration step, variational methods can be employed to
prove well-definedness of the regularization operator, convergence, and error esti-
mates. We refer to [3, 17,49] for a detailed discussion of such iterative approaches
and their analysis. Let us finally mention that in this respect there is another rela-
tion to machine learning, since Bregman iterations for £! regularizations have been
developed further recently for the training of sparse deep neural networks and their
architecture design (cf. [9, 10]).

4. Variational regularization and generalization

In this final part we discuss some possible relations between the setup in machine
learning and the above results on variational regularization theory. In particular we
highlight some connections between the typical error measures used in the two fields,
namely generalization errors on the one hand and Bregman distances on the other.

4.1. Error decomposition and generalization error

Let us return to the setup of machine learning with the minimization of the empirical
risk with a convex loss £, taking the viewpoint that the ideal solution is the function
f*. While we have seen that naturally Bregman distances are estimated in the theory
of variational regularization, the generalization error

G = E,y)~p(L(f(x:0).5)) —E(yy~pn (€(f(x:0).y))

is the commonly used quantity in machine learning.
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In order to understand the connections to Bregman distances, consider an ideal
solution f* € ¥ minimizing the population risk, i.e.

fre arg min Ex )~p ((f(x).y)) = arg min R (f).

Since the population risk is convex with respect to f, we conclude that 0 € OR*( ™),
which implies that

dpe(f(0), f7) = Egeyyr (E(£(x:60). 7)) = Eep~p (E(f 7 (2), ¥))-

The latter can be decomposed in a similar spirit to the error decomposition in [4]:

43+ (160). 1*) = Eqepyop (L0 5:0). ) — Equpypn (E(/:60).))
+ E(x,y)~]P’N (E(f(X; 9)’ y) - ((f*(x), Y))
+ Exyy~pn (E(f7(x), ¥)) = Egepy~p (E(f (), ¥))-

We see that the Bregman distance is decomposed into three parts: in addition to the
generalization error in the first line, we have an approximation error in the second
line (or rather a term that can be controlled with an approximation error in standard
spaces) and a sampling error in the last line. The approximation error can be esti-
mated beforehand or is often even negligible, since overparametrized models such as
deep neural networks can usually be trained to have E(, ) p~ (€(f(x;60),y)) =~ 0
and the second part is nonpositive. Moreover, the last term vanishes on expectation
over the sampling if P¥ is obtained from i.i.d. samples. Thus, in order to control the
expected Bregman distance, the most important term is indeed the expected general-
ization error.

4.2. Estimates with operator errors and generalization

Errors due to sampling are effectively related to operator errors in inverse problems,
which we see also from Example 2.2, where effectively the operator F is replaced
by an operator F being the concatenation of F with a random sampling operator.
Moreover, we assume again a source condition of the form p* = F*z* € 9J(u*).

The generalization error in this notation is given by (noticing that we might need
to use different norms for the two terms)

G) = | Fu—v|* = | Fu -]

Hence, let us start again with the optimality condition of a regularized solution

1 ~
Ug € argmin§||Fu — )12 + aJ(u),
u
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which is given by
F*(Fug — ) +apg =0, pa € 0J(ug).
Rewriting to
F*F(ug —u*) + a(pg — p*) = F*(Fug —v) — F*(Fuq — 9) — aF *z*,

we are in a position to derive the kind of estimate we are after. A duality product with
ug — u™ and several applications of Young’s inequality imply

1 *y || 2 o>P* * * .k ~ 1
TIFGe =) + adf? (ugu®) < @271 + [ Fu™ = 51 + 5Glua).

In the case of consistent data, such as obtained from sampling F, we further have
U = Fu™;i.e., we obtain in particular

* 1
d.;)a’p (Ug u™) < (x||Z*||2 + EG(ua)-

Thus, the error in the Bregman distance is controlled by the systematic error and the
generalization error.
4.3. Regularized risk minimization problems

The above arguments can be extended to convex risk minimization problems of the
form

Do (0) = Ex yy~pn (L(f(x:0).y) + aJ(0)).

For simplicity we assume that the model f is linear, i.e. f(x;0) = (F0)(x) with a
linear operator F mapping to an appropriate function space ¥, and £ is the squared
Euclidean norm. Consequently, we will consider F' as a bounded linear operator from
some parameter space ® to L%P(Q)m for some domain Q C R?. The ideal solution
0* is a minimizer of the population risk

2
R(0) = IE(x,y)~]P’(|| (FO)(x) — y|| ).
With this setup, the regularization operator is given by

@y (PY) = arg minE () py (%” (FO)(x) —y|* + aJ(e)). 4.1)

Moreover, the source condition becomes

p* = F*z* €3J(0*) withz* € L3(Q)™. 4.2)
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Similar to the reasoning in the previous section we can use the optimality condition
Eey~pn ((FO)(x) =y, FO')) = 4apy =0, py € 3J(6)

for all #’ € O to derive the following result.

Theorem 4.1. Let 6, € Oy (PN) be defined by (4.1) and let the source condition (4.2)
be satisfied. Then for appropriate py € 0J(uy) the estimate

1 *
ZE(x,y)~P(||(F9a)(x) — (F8%)(x) “2) + ad P (64, 0%)
1
< 360 + 27> + Eq e (| (FO)@) - y[7).

with the generalization error
1 2 1 2
G(0n) = E(x,y)~P (5 |(FOa)(x) — y| ) = E(x,y)~pn (5 |(FOa)(x) — y| )
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Some minimization problems for mean field models with
competing forces

Rupert L. Frank

Abstract. We review recent results on three families of minimization problems, defined on
subsets of nonnegative functions with fixed integral. The competition between attractive and
repulsive forces leads to transitions between parameter regimes, where minimizers exist and
where they do not. The problems considered are generalized liquid drop models, swarming
models, and generalized Keller—Segel models.

1. Introduction

In this survey we discuss three families of minimization problems. They are simple
mathematical toy models for physical or biological phenomena. While their origins
are rather different, they share some mathematical similarities and differences and we
think it is worthwhile to look at them side by side.

The common feature of all three problems is that they are of mean-field type. They
involve an “energy” functional that is defined on a subset of nonnegative functions
(“densities”) whose integral is fixed (“total mass”). They are, at least on a heuristic
level, derived from microscopic, many-body models. The densities in the mean-field
models describe the distribution of the microscopic particles in the limit of a large
number of particles, and similarly the energy functionals in our models are obtained
as macroscopic approximations to microscopic energy functionals.

Another common feature of the problems discussed here is that the energy func-
tionals have two contributions that compete with each other. There are attractive
forces that keep the particles together and try to concentrate them and there are repul-
sive forces that push them apart and try to spread them out. Typically, these forces act
on different length scales and one is of short range and the other one of long range
type. The existence of a minimizer can be understood as the forces being in a local
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92C17.

Keywords. Minimization problems, mean field models, liquid drop model, swarming,
Keller—Segel model.
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equilibrium, while the nonexistence typically means that one of the forces dominates
the other.

We are particularly interested in situations where, as a parameter of the problem
is varied continuously, there is either a transition between existence and nonexistence
of minimizers, or a sharp change in the properties of minimizers. A typical parameter
that is varied is the total mass, but in one of the models it is also a parameter describing
the shape of the forces acting between the particles.

The models. Let us be more specific about the three families of models that we will
consider. Throughout, N > 1 is the dimension of the underlying Euclidean space.

For the generalized liquid drop model, depending on a parameter A € (0, N), we
define, for any measurable set @ C RV,

1 dxdy
Q] = Persz+—// = (1.1)
A 2 QxQ |x_y|)L

Here Per 2 denotes the perimeter in the sense of De Giorgi; see, e.g., [45]. The corres-
ponding minimization problem is, for m € (0, 00),

ES(m) := inf {€5[Q] : @ € R measurable, || = m}. (1.2)
The original liquid drop model, suggested by Gamow [35] for the description of
atomic nuclei, corresponds to A = 1 in dimension N = 3.

For the flocking model, depending on parameters A € (0, N) and « € (0, 00), we
define, for any nonnegative, measurable function p on RN,

. 1
& Il = // =y = e drdy. (13
RN xRN

The corresponding minimization problem is, for m € (0, 00),
Ej o(m) = inf{gi Wl ipe L'®RY) 0<p =<1, / pdx = m} (1.4)
; , v

This model was suggested by Burchard, Choksi, and Topaloglu [7]. It is a simple
model to describe the flocking behavior in stable states of a large group of animals
such as fish or birds.

For the generalized Keller—Segel model, depending on parameters g € (0, 1) and
o € (0, 00), we define, for any nonnegative function p € L4(RY),

1
€ 0] := —/RN pldx + 3 //N POl =y p(y)dxdy. (1.5
RV xR

The corresponding minimization problem is

qufxs = inf{é’qgis[p] :0<pe Lq(]RN)7 /RN pdx = 1}, (1.6)
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Note that here, in contrast to the two previous problems, we fix the integral of p to
be one. The more general case, where it is fixed to be equal to m, can be reduced
to the present one by scaling. The generalized Keller—Segel model was introduced in
[8] and generalizes the standard Keller—Segel model, which corresponds (after some
rescaling) to the limit cases ¢ = 1 and @ = 0 in dimension N = 2.

Competing forces. Let us discuss in which sense in the above models two forces
compete with each other.

In the generalized liquid drop model, the perimeter term corresponds to an attrac-
tive short range force, whereas the double integral term corresponds to a repulsive
long range force. Note that by the isoperimetric inequality (see, e.g., [45])

inf { Per @ : @ C RY measurable, [Q] = m} = N%|SN_1|%m%

with equality if and only if €2 is a ball (up to sets of measure zero). On the other hand,
it is easy to see that

dxd
1nf{ // a y/l Q c RN measurable, |Q] = m} =0
QxQ |x_y|

and the infimum is not attained. A minimizing sequence is given, for instance, by
taking €2 as a union of a large number of small balls placed very far apart from each
other. Next, we note that, by scaling,

_ -1 dxd
Eild(m)zinf{mNNlPera)—f—mZNNA—// x—yk:wCRN meas., || 21}-
wxw X =V

Since (N — 1)/N < (2N — A)/N, the perimeter term is dominant for small m,
whereas the double integral is dominant for large m. We therefore expect existence
of minimizers for small m, whereas for large m we might have nonexistence of mini-
mizers.

In the flocking model, the o-term corresponds to an attractive force, while the
A-term corresponds to a repulsive force. Moreover, the «-term is relevant on large
distances and the A-term on short ones. By rearrangement inequalities and the bathtub
principle (see, e.g., [41, Theorems 1.14 and 3.7])

1
inf{—// ,o(x)|x—y|°‘p(y)dxdy:peLl(RN),Ofpfl,/ pdx:m}
2 RN xRN RN

is attained if and only if p is the characteristic function of a ball of volume m. More-
over, as a consequence of what we said in the generalized liquid drop model,

1nf{ // (x)p(y)dxdy:peLl(RN),05,051,/ ,odx=m}=0
RN RN

xRN |X _y|A
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and the infimum is not attained. Next, we note that, by scaling,

By =it [n 7L [ 200D 4y
R

2 JJgn gy |x =yt
ol
w2l /[ o) |x — (%o (y) dx dy
2 RN xRN
aeLl(RN),Ofafl,/ adx=1}.
RN

Since 2N — A)/N < (2N + «)/N, the a-term is dominant for large m and in this
regime we expect existence of minimizers and closeness to the characteristic function
of a ball. We also have

.1 _
E,fx,a(m) = msz{E [/ o(x)(|x =yl A x — y|¥)o(y)dxdy :
RN xRN

OELI(RN), 0<o<ml, /

odx = 1}.
RN

1

For small m, we expect that the constraint ¢ < m™" is irrelevant and that the mini-

mizer is m times the minimizer of the problem

1
inf{z //]RNXRN o(x)(]x — v+ |x — y|*)o(y)dxdy :

0§U€L1(RN), adle},
RN

provided that a minimizer for the latter problem exists and is bounded.

Finally, in the generalized Keller—Segel model, the L? term corresponds to a
repulsive short range force, whereas the double integral term corresponds to an attrac-
tive long range force. Note that

inf{—/ pqu:OfpeLq(RN),/ pdle}z—oo.
RN RN

A minimizing sequence is given, for instance, by a sequence that spreads out like
¢~No(x/€) with £ — oo. On the other hand,

1
inf{—// o(x) |x—y|°‘p(y)dxdy:0§p€Lq(RN),/ pdx = 1} =0
2 JJRN xRN RN

and the infimum is not attained. A minimizing sequence is given, for instance, by a
delta sequence £~V o (x /£) with £ — 0. Since, as we already mentioned, in this model
the dependence on the total mass is trivial, we are looking here for a transition in
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terms of the parameters ¢ and «. Intuitively, the repulsive force is stronger the smaller
q and the attractive force is stronger the larger «. The above examples suggest that
two mechanisms for the nonexistence of a minimizer are conceivable, namely both
spreading out and concentration of minimizing sequences.

Structure of the paper. In the following three sections we summarize what is known
about the three families of minimization problems. The presentation will be rather
compact and we refer to the original papers for the proofs. We do, however, empha-
size several open questions concerning each model. In a short appendix, we provide
details for a simple, unpublished result in the one-dimensional generalized liquid drop
model.

2. The generalized liquid drop model

In this section, we consider the energy functional (1.1) and the corresponding mini-
mization problem (1.2). We assume throughout that 0 < A < N.
Let us set, for fixed A and N,
( /N _ Per B; )N/(N—A—H)
My =
—(N—2 1 -
1 =2-(N-A)/N EffleBl |x — y|=*dx dy

| B1l,

where B; denotes the unit ball in R¥ . The number m, is the unique solution m > 0

of the equation
1/N 1/N
old m _ hpgld m
i [(W) Bl} =% {(zw) Bl]' .

Thus, the energy of a ball of mass m is equal to the energy of two balls, each of mass
m« /2, placed infinitely far apart. For m < m, one has < instead of = in (2.1) and for
m > m, one has >.

In the physics literature, it is typically taken for granted that in the special case
A =1 and N = 3, balls are minimizers for E ild(m) for m < my and there is no
minimizer for m > my. In the mathematics literature, this appears explicitly as a
conjecture in the work of Choksi and Peletier [12, 13].

One may wonder whether the analogous conjecture is valid in the general case
0 <A < N.Indimension N = 1, this is indeed the case, as can be verified by elemen-
tary computations; see Appendix A. It is shown in [37, 3] that for any N > 2 there is
a Ac > 0 such that for all 0 < A < A, the conjecture is true; see [46] for an explicit
lower bound on A, for N = 2. In the remaining cases, the validity or invalidity of the
conjecture is open.

Existence. As a first step towards this conjecture, before asking whether minimizers
for £ fld (m) are balls for all m < my, it is natural to ask whether minimizers exist for
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all m <m. This is indeed the case, as shown in [31]. Moreover, it is shown there as
well that if there are no minimizers for m > m , then balls are minimizers for m <m.

The proof of [31] proceeds by verifying that for any m < m, one has the strict
binding inequality

Efld(m) < Eild(m/) + Efld(m —m') forall0 <m' < m.

According to a compactness result in [26] this implies the existence of a minimizer
for Eild(m) form < my.

Uniqueness. We address the question of whether balls are minimizers. A convexity
argument due to Bonacini and Cristoferi [3, Theorem 2.10] shows that there is a
number m%!! € [0, 00) U {oo} (depending on A and N) such that for m < m%!! balls
are the unique minimizers of E fld(m), for m = m%! > 0 balls are minimizers of
Eild(m), and for m > m>! balls are not minimizers of E ild(m). (This part of [3]
does not use the assumption A < N — 1.)
An important result is that m>" > 0, that is, for small m > 0 balls are minimizers
for £ ild (m). In the full parameter regime, this result is due to [21], extending earlier
results in [37, 38,36, 3]. The proofs in these papers are based directly or indirectly on
the quantitative form of the isoperimetric inequality (see [33] and also [22, 15]) and
the regularity theory for quasiminimizers of the perimeter (see, e.g., [45, Part III]).
As far as we are aware, these proofs use compactness arguments and do not give a
numerical lower bound on m?!!.

On the other hand, one can show that m
not minimizers for E ild (m). Indeed, setting

N +1 Per B, )N/(N‘“”
(A(N _/\) %ffleBl |X _yl_/1 dXdy

one finds that for m < mS#

the ball is stable against small volume-preserving per-
turbations and for m > m$%® it is unstable. (Stability here means that the Hessian is
positive definite except for zero modes coming from translations. Instability means
that the Hessian is not positive semidefinite.) This computation goes back to Bohr
and Wheeler [2] for N = 3, A = 1 and can be found in the general case in [3,21].

Clearly, m'g.a" < m‘zf"‘b, so the former quantity is indeed finite.

ball

A < 00, that is, for large m > 0 balls are

stab .__
m. =

| B1],

Nonexistence. Let us discuss the nonexistence of minimizers for £ fld (m). For fixed
A and N we set

mn.e

o€ :=sup {m > 0 : there is a minimizer for Eild(m)}.

Then, if A <2 (and A < N, as always), one can show that m}* < oo, that is, there
is no minimizer for large m. This is due to [37,38,43,31]. It seems to be unknown
whether my® is finite or not for2 < A < N.



Some minimization problems 283

In [25], itis shown that for A = 1, N = 3, one has m}* < 8. This is to be compared
with m$% = 10 for these values of A and N . Thus there is a regime 8 < m < 10, where
balls are stable local minimizers, but not global minimizers. For comparison, for these
values of A and N one has m, = 5(2/3 —1)/(1 —272/3) ~ 3.512.

Problem 2.1. For N = 3 and A = 1, show that balls are minimizers for m < m, and
there are no minimizers for m > m.. In which parameter region of A’s and N’s is the
analogous conjecture valid?

The following two problems are special cases of the previous one.

Problem 2.2. Do there exist minimizers for £ ild(m) for arbitrarily large m in case
2<A<N?

ball

Problem 2.3. Find an explicit numerical lower bound on m

case N =3and A = 1.

, in particular, in the

We conclude this section by briefly mentioning two further, related models.

The first one concerns the liquid drop model in the presence of a neutralizing
background. This problem is motivated, for instance, by the physics of neutron stars
and there are interesting mathematical questions; see, e.g., [39]. For simplicity we
focus here on the case A = N — 2 in dimension N > 3, although there are similar
versions in dimensions N = 1,2 [29]. For a (large) parameter L > 0 one sets Ay, :=
(0, L)" and considers the minimization problem

1 — 1 _
Ep(p) = inf{PerQ + 1 /]A X ( Q(x)lx _’O)y(|NQ_(2y) p)

QCAL Q= pIALI}-

dx dy

(Sometimes, the kernel |x — y| = 2 is replaced by a constant multiple of the periodic

or Neumann Green’s function of the Laplacian and the perimeter is replaced by its
periodic version or a relative perimeter, but this does not qualitatively change the
results discussed below.)

A major open problem is to prove that (for N = 3, for simplicity) there are
0 < pe1 < pea < 1/2 such that the following holds approximately for minimizers for
Ep(p) for large L > 0 “in the bulk”: for 0 < p < p.1, minimizers are periodic with
respect to a three-dimensional lattice, for p.; < p < pc2, minimizers are periodic with
respect to a two-dimensional lattice, and for p.» < p < 1/2, minimizers are periodic
with respect to a one-dimensional lattice. For 1/2 < p < 1, the situation reverses,
with 1 — p replacing p. This would correspond to what is known as “nuclear pasta”
phases in astrophysics.
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A fundamental result by Alberti, Choksi, and Otto [1] gives precise bounds on
the energy distribution of minimizers that are indicative of the emergence of a regular
(e.g., periodic) structure. More precise results about the structure of minimizers are
restricted only to the dilute regime. The case p ~ L3 is treated in [12] (see also [16]
and references therein), the case p ~ L2 in [39], and the case p < 1 (independently
of L) in [20].

The second generalization of the generalized liquid drop model concerns the addi-
tion of an external potential V,

inf{é’fld[ﬁ] +/ Vdx : Q C RY measurable, |Q| = m}
Q

Lu and Otto [44] suggested this model with V(x) = —Z|x|™'in N =3, 1 =1 as
a toy problem for the ionization conjecture in Thomas—Fermi—Dirac—von Weizsicker
theory and proved that there is no minimizer for m > Z + C max{1, Z2/3}. Nonexis-
tence for m > Z + C max{1, Z'/3}, as well as the ionization conjecture in Thomas—
Fermi—Dirac—von Weizsicker theory were proved in [32]. For more on the ionization
conjecture, also for more complicated models, we refer to [47].

Finally, returning to the standard liquid drop model with A = 1 and N = 3, we
mention the open problem to make the global bifurcation picture of Bohr and Wheeler
[2] rigorous. For an initial local bifurcation result, see [23].

3. A simple model for flocking

In this section, we consider the energy functional (1.3) and the corresponding mini-
mization problem (1.4). We assume throughout that 0 < A < N and « > 0.

Itis easy to see that there is a minimizer of Ei’a (m) forany m > 0 [11]. We would
like to understand properties of minimizers and, in particular, qualitative changes in
these properties as m varies. For instance, one is interested in the existence of the
following three “phases” [27]. A first, “liquid” phase occurs when any minimizer
p for Ei (M) satisfies p < 1 almost everywhere. A second, “intermediate” phase
occurs when there is a minimizer p for Ei’a (m) such that {0 < p < 1} has positive
measure strictly less than m. A third, “solid” phase occurs when any minimizer p for
Ei’a (m) satisfies p = 1 almost everywhere.

Some initial results. The case N > 3,1 = N —2, and @ = 2 can be solved explicitly
[7] and one finds that there is an explicit my € (0, co) such that the unique (up to
translations) minimizer for Ei’ () is a multiple of the characteristic function of a
ball of measure my if m < mpy and the characteristic function of a ball of measure
m if m > mp . In particular, in this special case, the second, intermediary phase does
not occur.
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Inthecase2 <a <4 (andany N > 1 and 0 < A < N), one can show that for any
m > 0 minimizers of Ei,a (m) are unique up to translations [42] and, in particular,
radially symmetric. This relies on an interesting convexity argument. Moreover, the
case N = 3, A = 1, and o = 4 is explicitly solved in [42]. In particular, there are
critical constants 0 < m’ < m” < oo such that the system is in phase one for m < m’,
in phase two for m’ < m < m”, and in phase three for m > m".

Small m regime. In [27], it is shown that for N = 3 and A = 1 (and any « > 1) there
is an m, > 0, depending on «, such that for all m < m, any minimizer p of E {,a (m)
satisfies p < 1 almost everywhere. This result extends, with the same proof, to the
case A = N — 2 in arbitrary dimension N > 3.

The proof relies on the fact, due to [10], that for A = N — 2 minimizing measures
of the problem

1
Ej o ::inf{E// (|x—y|—* +|x = y|*) du(x)du(y) : p e P(RN)} (3.1)
RN xRN

are absolutely continuous with respect to Lebesgue measure with a bounded density.
Here P(RY) denotes the set of Borel probability measures on RY. More precisely,
one needs a bound on the density depending only on N and «.

There are also results in [10] concerning the problem £, , forO<N —2 <A <N
and certain assumptions on «. Using these results, one should be able to prove that for
certain N, A, «, there is an m/, > 0, depending on N, A, «, such that for all m < m/,
there are minimizers p of E,fx,a (m) satisfying p < 1.

Large m regime. Under the assumption A < N — 1, it is shown in [30] that there
is an m* < oo, depending on N, A, «, such that for m > m™* the only minimizers of
Ei ) are characteristic functions of balls. The assumption on A is optimal in the
sense that for N — 1 < A1 < N and any m > 0, balls are not even critical points for
the problem Ei o M).

The results in [30] improve earlier results in [7] for « = 2 and in [27] for A =
N — 2, obtained by different methods.

The technique used in [30] is that of symmetric decreasing rearrangement and,
more precisely, a quantitative version of the Riesz rearrangement inequality. This
quantitative version is due to M. Christ [14], with some minor extensions and a par-
tially alternate proof in [28]. As an aside, we mention that from the quantitative
Riesz rearrangement inequality one can derive quantitative rearrangement inequal-
ities for Riesz potentials. Those were proved, simultaneously and independently, in a
restricted range in [34]; see also [4,48,5].

Let us conclude this section by mentioning some open problems. Relatively little
seems to be known about minimizers of E/f1 (M) outside of the asymptotic regimes
m — 0 and m — oo.
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Problem 3.1. Study qualitative properties of minimizers of E/f\ o (M),

Concrete questions to be studied are, for instance, the following. Known examples
of minimizers are radially symmetric. Can symmetry breaking occur? For arguments
in favor of this, see [6]. Is the support of a minimizer convex? As m increases, do the
regions {p > 0} and {p = 1} increase (fixing the center of mass, for instance), where
p is a minimizer? Are minimizers concave or convex on their supports for ¢ < 2 and
a > 2, respectively?

In view of the above small m results, it would be interesting to better understand
the case 0 < A < N — 2. We consider the minimization problem (3.1) and wonder
whether the result from [10] extends to 0 < A < N — 2. An affirmative answer would
be related to the existence, for small m, of minimizers p for Ei,a (m) with p < 1
almost everywhere. Examples, however, suggest that the answer might be negative.

Problem 3.2. For 0 < A < N — 2, are minimizers u of E, , absolutely continuous
with respect to Lebesgue measure with a bounded density?

In view of the large m results for A < N — 1, it seems interesting to investigate
in more detail the case N — 1 < A < N. We expect that minimizers for large m have
values close to one in a large core region and then drop down to zero in a relatively
small region. It would be interesting to find the scaling behavior of these regions and,
if possible, the transition profile.

Problem 3.3. For N — 1 < A < N study the shape of minimizers of Ei o (m) for
large m.

The dynamical problem. The energy function 8;,01 considered on functions 0 <
p < 1 leads via a formal Wasserstein-2 gradient flow to an evolution equation called
the constrained aggregation equation; see [17, 18]. It would be interesting to under-
stand the long time behavior of solutions to this equation. In particular, for A < N — 1
and large m such that characteristic functions of balls are the only optimizers for
Ei’a (m), one might wonder whether the solution approaches the characteristic func-
tion of a ball for large times.

4. The generalized Keller—Segel model

In this section, we consider the energy functional (1.5) and the corresponding mini-
mization problem (1.6). We assume throughout that 0 < ¢ < 1 and & > 0. We sum-
marize the results from [8, 9].

The basic fact is that Efty = —oo for 0 < ¢ < N/(N + &) and ESy > —oo for
N/(N + a) < g < 1 [8, Proposition 20]. Thus, in the following discussion we will
always assume that g > N/(N + «).
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It is known and elementary that the case « = 2 (and any N/(N +2) < g < 1)
can be solved explicitly by expanding the square |x — y|? and setting the center of
mass to zero; see [8, Corollary 6 and Proposition 20]. We comment below on the case
o = 4, which can also be solved to some extent.

It is deeper that the case ¢ = 2N/(2N + «) can be solved explicitly as well. This
was observed by Dou and Zhu [19], who discovered a conformal symmetry in this
case, similarly as in Lieb’s work on the Hardy-Littlewood—Sobolev inequality [40].
The case ¢ = 2N/(2N + «) is also of some conceptual importance. If we reinstate
the mass in the variational problem (1.6) and define Ej; ng « (m) in the natural way, then

2N—QN+a)g
ESS3(m) = m™ N=a=Na EZS.
Thus, forqg =2N/(2N + «), E;gffxs (m) is independent of m. As we will see, there are
differences between the cases ¢ > 2N/(2N + «) and ¢ < 2N/(2N + ).

Existence in the superconformal case. Inthecase 2N/(2N + «) <q < 1, thereisa
minimizer for E§ « |8, Proposition 8], and any minimizer is radially symmetric with
respect to some point, nonincreasing with respect to the distance from this point and
positive almost everywhere [8, Lemma 9]. Symmetric decreasing rearrangment plays
an important role in the proof of existence and in the derivation of the properties of
minimizers.

Existence and nonexistence in the subconformal case. The case N/(N + «) <
q <2N/(2N + «) is less understood and there are some open questions about the
existence of minimizers. A brief summary of the results in this case is as follows.
Either there is a minimizer or there is no minimizer, but instead a generalized mini-
mizer. The latter consists of a symmetric nonincreasing function together with a Dirac
delta measure at the center of symmetry. Moreover, sufficient conditions for the exis-
tence of a “proper” minimizer were given in [8]. The fact that in some cases there
are no minimizers, but only generalized minimizers, was shown in [9]. The exis-
tence of a generalized minimizer can be understood as a partial mass concentration
phenomenon. We find the appearance of this phenomenon in such a model rather
surprising.

Let us be more specific. For N/(N + @) < g <2N/(2N + «), we consider the
relaxed functional, defined on pairs (p, M), where 0 < p € L4 (RN )and M > 0,

1
E1K [ M] = — / ot dx + 3 // ()% — y%p(y) dx dy
RN RN xRN

+M/ |x|%p(x) dx. 4.1)
RN
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The corresponding minimization problem is

EESS = 1nf{ Sl : 0 < p e LIRN), M>0/ pdx+M=1}. 4.2)
: N

Intuitively, the energy ngg [p, M] corresponds to the energy functional 8 o > evalu-
ated at p plus a Dirac delta measure of mass M at the origin. Making this intuition
rigorous, one finds that [8, equation (5)]

E rgKS E gKS

and that ES% has a minimizer if and only if E.%%> has a minimizer (p. M) with
M, = 0. Moreover, the same arguments as those applied for g > 2N/(2N + «) imply
that E;%§S has a minimizer [8, Proposition 10] and that for any minimizer (0«, M)
the function p, is radially symmetric with respect to some point, nonincreasing with
respect to the distance from this point and positive almost everywhere [8, Lemma 9].

In view of the above discussion, for N/(N + «) < g <2N/(2N + «), the prob-
lem of existence of minimizers for Eglfxs is equivalent to the existence of a minimizer
(px, M) for the problem E ga with M, = 0. In [8], we gave sufﬁ01ent conditions
for this. Namely, for N = 1,2, there is always a minimizer for E >. The same is true
for N >3anda <2N/(N —2).If N >3anda > 2N/(N — 2), thls is true provided
q > 1—2/N [8, Proposition 11].

In [9], the case & = 4 was analyzed and an example of a minimizer for E ng
with M, > 0 was given. More precisely, it was shown that, for N > 6, the problem
ErgK has a minimizer with My > 0if g < (N —2)(3N +4)/((N + 2)(3N)). More-
over this result is optimal, in the sense that, for N > 6 and ¢ > (N —2)(3N + 4)/
((N + 2)(3N)), as well as for N < 5, every minimizer of the problem ErgKS has
M, = 0. The proof is based on a semiexplicit solution.

The paper [9] contains also numerical experiments that are consistent with the
appearance of minimizers with M, > 0 for E;%fs. This concentration phenomenon
seems to be more pronounced for larger N, smaller ¢, and larger .

Problem 4.1. Prove the existence of a “large” region of parameters ¢, @ for which
Ejo rgKS has a minimizer (p«, M) with M, > 0.

Uniqueness. Uniqueness (up to translations) of minimizers, including minimizers of
the relaxed functional, is known in two regimes, namely for 2 < « < 4 and for o > 1
and g > 1 — 1/N [8, Theorem 27]. The first result follows by a small generalization
of a proof by Lopes [42], and the latter by the standard tool of displacement convexity
in optimal mass transport.
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The dynamical problem. The energy functional & gis or, more precisely, its rescaled
version

1 1
—— | pldx+ — // p(x)|x — y[*p(y) dx dy (4.3)
l—q Jrn 200 JJgN xRN

appears in connection with the aggregation-diffusion equations
dep=Ap? + V- (pV(W xp)), W(x)=a 'x|" (4.4)

Indeed, this time-dependent equation is the formal gradient flow with respect to the
Wasserstein-2 distance of the free energy functional (4.3). Minimizers or, more gen-
erally, critical points of the free energy functional, restricted to probability densities,
should play an important role for the long time behavior of solutions of (4.4). It seems
particularly interesting to investigate whether in the dynamical setting there is a con-

. .. e e gKS
centration effect similar to what we have seen for minimizing sequences for Eg o
. . e . . c e rgKS .
in case there is no minimizer, or equivalently there is a minimizer for E;,~ with
M, > 0.

Problem 4.2. Investigate the long time behavior of solutions of (4.4) in the case
where E:I‘%ES has a minimizer with M, > 0.

To conclude this section, we mention that while we have focused on the free
energy functional (4.3) in the case @ > 0 and 0 < g < 1, it has been studied for all
g > 0 and @ > —N. (Here we use the convention that «~!|x — y|* is understood
as In|x — y| for @ = 0 and (1 — ¢)~'p? is understood as —p In p for ¢ = 1.) The
nonexistence phenomenon via partial mass concentration that we discussed above,
however, appears at most in the region ¢ > 0 and 0 < ¢ < 1. The case @ > 0 and
q > 1 is treated in [8, Appendix B]. For N = 2, ¢ = 1, and o = 0 one obtains the
original Keller—Segel free energy functional.

A. The generalized liquid drop model in 1D

In this appendix, we consider the minimization problem E ild(m) in the generalized
liquid drop model for 0 < A < 1 in dimension N = 1. We will show that for m < m.,
single intervals are the unique (up to sets of measure zero) minimizers and for m > m.
there are no minimizers. The computations are elementary.

It is well known (see, e.g., [45, Proposition 12.13]) that any set in R of finite
measure and finite perimeter coincides, up to sets of measure zero, with a finite num-
ber of bounded intervals with disjoint closures. Moreover, the perimeter is twice the
number of intervals. Clearly, if there is more than one interval, these intervals want to
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be infinitely far apart. Therefore,

my /2 my/2 d d K
E&m) = 1nf{2K+— / / 4y .KGN,kazm}

my /2 J—my /2 |X—y|/l k=1

1
1nf{2K+mka *. K eN, ka—m}

k=1

1
éEN( tahe—n "

and there is a minimizer if and only if the infimum occurs at K = 1. Here we used

K K 2—A
Z mi—)» > K—l-{-k ( Z mk)

k=1 k=1

(with equality if and only if all my are equal). The infimum is attained at K = 1 if
andonly if 24+ (1 —A)"'Q2 =) "'m?* <2K + (1 — 1) ' - ) 1K1 HAp2—2
for all K > 2, which is the same as

K—1 1/(2—A)

(20 =0@-)\CP
“\T 1ot = M.
Here we used the fact that k¥ — (k — 1)/(1 — k~'*) is increasing on (1, o0). This
proves the claimed result.
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Laplacians on infinite graphs: Discrete vs. continuous
Aleksey Kostenko and Noema Nicolussi

Abstract. There are two main notions of a Laplacian operator associated with graphs: dis-
crete graph Laplacians and continuous Laplacians on metric graphs (widely known as quantum
graphs). Both objects have a venerable history as they are related to several diverse branches of
mathematics and mathematical physics. The existing literature usually treats these two Lapla-
cian operators separately. In this overview, we will focus on the relationship between them
(spectral and parabolic properties). Our main conceptual message is that these two settings
should be regarded as complementary (rather than opposite) and exactly their interplay leads to
important further insight on both sides.

1. Introduction

Laplacian operators on graphs have a long history and enjoy deep connections to
several branches of mathematics and mathematical physics. There are two differ-
ent notions of Laplacians appearing in this context: the key features of (continuous)
Laplacians on metric graphs, which are also known as quantum graphs, include their
use as simplified models of complicated quantum systems (see, e.g., [4, 19,21, 56])
and the appearance of metric graphs in tropical and algebraic geometry, where they
serve as non-Archimedean analogues of Riemann surfaces (see, e.g., [1, 17]). The
subject of discrete Laplacians on graphs is even wider, and a partial overview of the
immense literature can be found in [2,9, 10,43, 70].

The study of both types of graph Laplacians is heavily influenced by the corre-
sponding investigations in the manifold setting (e.g., spectral geometry of manifolds).
In fact, one can also put Laplacians on manifolds, metric graphs, and discrete graphs
under the overarching umbrella of Dirichlet forms, which provides the systematic
framework for studying heat and diffusion processes. From this perspective, metric
graph Laplacians have much in common with Laplacians on manifolds since both can
be treated in the framework of strongly local Dirichlet forms. Moreover, the notion of
an intrinsic metric, first mentioned by E. B. Davies and later emphasized by M. Biroli,
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U. Mosco, and K.-T. Sturm (see, e.g., [65]), allows to directly transfer many important
results from manifolds to the abstract setting of strongly local Dirichlet forms (and
hence metric graph Laplacians). In contrast to this, discrete graph Laplacians are dif-
ference operators and hence provide examples of nonlocal operators (e.g., no Leibniz
rule). In particular, difficulties in analyzing random walks on graphs often stem from
exactly this fact. On the other hand, this area has seen a tremendous progress in the
last decade. In our opinion, the successful introduction and systematic use of the
notion of intrinsic metrics on graphs played (and continues to play!) a major role in
this breakthrough (see the fresh monograph [43]).

Despite a vast interest in both types of graph Laplacians, the existing litera-
ture usually treats them separately. In the present overview, we mainly focus on the
relationship between them and survey connections on different levels (spectral and
parabolic properties). This leads to a systematic way of connecting the settings and
several applications. Our main conceptual message is that discrete and continuous
graph Laplacians should be regarded as complementary (rather than opposite) and
exactly their interplay leads to important further insight on both sides. This relation-
ship can also be formulated in the language of intrinsic metrics. Indeed, a large class
of intrinsic metrics on discrete graphs is obtained as restrictions to vertices of intrinsic
metrics on (weighted) metric graphs. In particular, from this perspective metric graphs
indeed serve as a bridge between graphs and manifolds, a heuristic principle which
is often mentioned in context with graph Laplacians. Let us also mention that the
stochastic side of these connections, namely the approach of using Brownian motion
on metric graphs to study random walks on discrete graphs, has been employed sev-
eral times in the literature [3,22,23,33,36,67] (see also references therein).

Most of the results presented here are carefully explained in the recent monograph
[49], which also contains many other results not mentioned in this text.

2. Preliminaries

2.1. Graphs

Let us recall basic notions (we mainly follow the terminology in [16]). Let §; =(V, &)
be an undirected graph; that is, 'V is a finite or countably infinite set of vertices and &
is a finite or countably infinite set of edges. Two vertices u, v € 'V are called neigh-
bors, and we shall write u ~ v if there is an edge e, , € & connecting u and v. For
every v € 'V, we define &, as the set of edges incident to v. We stress that we allow
multigraphs; that is, we allow multiple edges (two vertices can be joined by several
edges) and loops (edges from a vertex to itself). Graphs without loops and multiple
edges are called simple.
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Example 2.1 (Cayley graphs). Let G be a finitely generated group and let S be a
generating set of G. We shall always assume that

o S issymmetric, S = S™! and finite, #S < oo,
o the identity element of G does not belong to S (this excludes loops).

The Cayley graph §c = €(G, S) of G w.r.t. S is the simple graph whose vertex set
coincides with G and two vertices x, y € G are neighbors if and only if xy~! € §.

Sometimes it is convenient to assign an orientation on §;: to each edge e € &
one assigns the pair (e,, e;) of its initial e, and terminal e, vertices. We shall denote
the corresponding oriented graph by gd = (V, I ), where & denotes the set of ori-
ented edges. Notice that for an oriented loop we do distinguish between its initial and
terminal vertices. Next, for every vertex v € V, set

&f ={(ce)e€le,=v}. & ={(e.e)e€le.=v}. (1)
and let év be the disjoint union of outgoing &, and incoming &, edges,
€, :=6Fue; =EFU&;, &F :={(+.,e)|ecEf) (2.2)
The (combinatorial) degree of v € V is
deg(v) := #(év) = #(é,}L) + #(é;) =#(&,) +#le € & | eisaloop). (2.3)

Notice that if &, contains no loops, then deg(v) = #(&,). The graph g, is called
locally finite if deg(v) < oo forallv € V.

A sequence of (unoriented) edges P = (€yg,uys Coj,v0s -« » Cupy_y,v,)> Where
ey, v; 4, connects the vertices v; and v; 41, is called a path of (combinatorial) length
n € Zso U {oo}. Notice that for simple graphs each path $# can be identified with
its sequence of vertices P = (vg)i_,- A graph G, is called connected if for any two
vertices there is a path connecting them.

We shall always make the following assumptions on the geometry of §;.

Hypothesis 2.2. §; is connected and locally finite.

Remark. We assume connectivity for convenience reasons only (one can always
consider each connected component of a graph separately). However, the assump-
tion that a graph is locally finite is indeed important in our considerations.

2.2. Metric graphs

Assigning each edge e € & a finite length |e| € (0, 00), we can naturally associate
with (§4,]-|) = (V, &,]|-|) ametric space §. First, we identify each edge e € & with
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a copy of the interval I, = [0, |e|], which also assigns an orientation on & upon iden-
tification of e, and e, with the left, respectively, right endpoint of Z,. The topological
space ¢ is then obtained by “glueing together” the ends of edges corresponding to
the same vertex v (in the sense of a topological quotient; see, e.g., [6, Chap. 3.2.2]).
The topology on § is metrizable by the length metric po—the distance between two
points x, y € § is defined as the arc length of the “shortest path” connecting them
(such a path does not necessarily exist and one needs to take the infimum over all
paths connecting x and y).

A metric graph is a (locally compact) metric space § arising from the above
construction for some collection (§;,|-|) = (V, &, |- |). More specifically, § is then
called the metric realization of (§4, |- |), and a pair (§, | - |) whose metric realization
coincides with § is called a model of §. For a thorough discussion of metric graphs
as topological and metric spaces we refer to [31, Chap. I].

Remark. Let us stress that a metric graph § equipped with the length metric ¢
(or with any other path metric) is a length space (see [6, Chap. 2.1] for definitions
and further details). Notice also that complete, locally compact length spaces are
geodesic; that is, every two points can be connected by a shortest path.

Clearly, different models may give rise to the same metric graph. Moreover, any
metric graph has infinitely many models (e.g., they can be constructed by subdivid-
ing edges using vertices of degree two). A model (V, &, | - |) is called simple if the
corresponding graph (V, €) is simple. In particular, every metric graph has a sim-
ple model, and this indicates that restricting to simple graphs, that is, assuming in
addition to Hypothesis 2.2 that §; has no loops or multiple edges, would not be a
restriction at all when dealing with metric graphs.

Remark. In most parts of our paper, we will consider a metric graph together with
a fixed choice of its model. In this situation, we will usually be slightly imprecise
and do not distinguish between these two objects. In particular, we will denote both
objects by the same letter § and write § = (V,&,|-|) or g = (84, - |).

Remark (Metric graph as a 1d manifold with singularities). Sometimes it is useful
to consider metric graphs as 1d manifolds with singularities. Since every point x € §
has a neighborhood isomorphic to a star-shaped set

&(deg(x).ry) :={z = re?@ik/dee™) | p a0 1), k=1,.. deg(x)}cC, (24

one may introduce the set of tangential directions Ty (§) at x as the set of unit vec-
tors e27ik/dee®) "} — 1 ... deg(x). Then all vertices v € V with deg(v) > 3 are
considered as branching points/singularities and vertices v € V with deg(v) = 1 as
boundary points. Notice that for every vertex v € V the set of tangential directions
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T, (§) can be identified with év. If there are no loop edges at the vertex v € V, then
T, (9) is identified with &, in this way.

3. Graph Laplacians

When speaking about graph Laplacians, one often considers one of the operators in
the next two examples.

Example 3.1 (Combinatorial Laplacian). For a simple graph §; = (V, &) satisfying
Hypothesis 2.2, the so-called combinatorial Laplacian is defined on C('V) by
(Leoms /) ®) = Y f(0) = f()

u~v

= deg(v) f(v) = Y_ fw). ve. (3.1)

u~v

Here C('V) is the set of complex-valued functions on a countable set V. Notice that
the second summand on the RHS,

(AN = fw). vew.

is nothing but the operator generated by the adjacency matrix of §;, which explains
the name of L omp. The combinatorial Laplacian plays a crucial role in many areas
of mathematics, physics, and engineering. In particular, the relationship between the
spectral properties of L.omp and various graph parameters is one of the core topics
within the field of Spectral Graph Theory (see [9, 10] for further details).

Example 3.2 (Normalized Laplacian). Assuming again that §; = ('V, &) is a simple
graph satisfying Hypothesis 2.2, consider another operator defined on C(V) by

(Lo £)(0) = Goais D 10 = f )

1
=10 = gy 2= /@ (32)

u~v

for every v € V. The second summand on the RHS,
1
M) = —= ) fu), ve,
deg(v) MZ;)

is the so-called Markov (averaging) operator. Notice that due to our assumptions on
G4, M is a stochastic matrix known as the transition matrix for the simple random
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walk on the graph. The normalized Laplacian serves as the generator of the simple
random walk on g, (see, e.g., [2,70]).

Remark. If the underlying graph §; is regular (deg = c is constant on V; for in-
stance, Cayley graphs are regular), then L omp = € * Lyorm = ¢ - I — 4. However, in
general these two Laplacians may have very different properties. For instance, Lo
generates a bounded operator in £2(V;deg) and Lcomp gives rise to a bounded operator
in £2('V) only if §; has bounded geometry, i.e., deg is bounded on 'V (see (3.6)).

The above two examples can be put into a much more general framework.
Namely, let 'V be a countable set. A function m:V — (0, co) defines a measure of full
support on V in an obvious way. A pair (V, m) is called a discrete measure space.
The set of square summable (w.r.t. m) functions

EWim) = {1 € CON 1S By = X 10 m0) <

veV
has a natural Hilbert space structure.
Suppose that b: V x V — [0, 00) satisfies the following conditions:
(1)  symmetry: b(u,v) = b(v, u) for each pair (u,v) € VxV,
(ii)  vanishing diagonal: b(v,v) = Oforallv € V,
(iii) locally finite: #{u € V | b(u,v) # 0} < oo forallv € V'

(iv) connected: for any u, v € 'V there is a finite collection (vg);_, C 'V such
that v = vg, v = v, and b(vg—1,vg) > Oforall k € {1,...,n}.
Following [41,43], b is called a (weighted) graph over 'V or over (V,m) if in addition
ameasure m of full support on V is given (b is also called an edge weight). To simplify

notation, we shall denote a graph b over (V, m) by (V,m; b).

Remark. To any graph b over 'V, we can naturally associate a simple combinatorial
graph 9. Namely, the vertex set of G is V and its edge set &}, is defined by calling
two vertices u, v € 'V neighbors, u ~ v, exactly when b(u, v) > 0. Clearly, §, =
(V, &p) is an undirected graph in the sense of Section 2.1. Let us stress, however, that
the constructed graph Gy is always simple.

The (formal) Laplacian L = L, ;, associated to a graph b over ('V,m) is given by

(Lf)(v) = % S b, w)(f(0) — f(w), veV. (3:3)
ue’y

'In fact, using the form approach, one can considerably relax this condition by replacing it
with the local summability: )", c+, b(u,v) < oo forallu € V.
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It acts on functions f € C(V) and this naturally leads to the maximal Laplacian h in
£2('V; m) defined by

h=_L | dom(h), dom(h) ={f € >(Vim) | Lf € £*(V:m)}. (3.4)

This operator is closed; however, if 'V is infinite, it is not symmetric in general (cf. [41,
Thm. 6]). Taking into account that b is locally finite, it is clear that C.(V) C dom(h),
where C. (V) is the space of compactly supported functions in C (V) (w.r.t. the dis-
crete topology on V). Therefore, we can introduce the minimal Laplacian h® as the
closure in £2('V; m) of the pre-minimal Laplacian

W =L } dom(t), dom(h) = C,(V). 3.5)

Then b’ € h® € h and (h')* = (h®)* = h. If h® = h, then h is self-adjoint as an
operator in the Hilbert space £2('V;m) (and h' is called essentially self-adjoint). The
problem of self-adjointness is a classical topic, which is of central importance in
quantum mechanics (see, e.g., [58, Chap. VIIL.11]). We shall return to this issue in
Section 8.1. Let us now only mention that the self-adjointness takes place whenever
L = L,, 5 gives rise to a bounded operator on £>('V; m). It is rather well known (see,
e.g., [13, Lem. 1], [40, Thm. 11], and [66, Rem. 1]) that the Laplacian L = L, p is
bounded on £2('V; m) if and only if the weighted degree function Deg: 'V — [0, 0o)
given by

Deg:v — ﬁ;b(u,v) (3.6)

is bounded on V. In this case, h® = h and ||Deg||oo < il e2(v.m) < 2[Degl|oo-

Remark. For the combinatorial Laplacian Lompb, we have Deg,,.. (v) = deg(v) and
hence L.omb is bounded exactly when §; has bounded geometry. For the normalized
Laplacian Lo, Deg,om(v) < 1 forall v € V and hence || Lyorm|l < 2.

There is another way to associate a self-adjoint operator in £2('V;m) with the
Laplacian L. With each graph b one can associate the energy form q: C(V) — [0, 0]
defined by

s =wlf=5 X bww|/e) - fa) 6

u,vevV

Functions f € C('V) such that q[ f] < oo are called finite energy functions. Clearly,”
Cc(V) belongs to the set D(q) of finite energy functions and (hf, )20 = g[f]

2 Actually, it suffices to assume that b satisfies the local summability condition; see [41,43].
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forall f € C.(V). If b is a graph over ('V, m), introduce the graph norm
2. 2
112 2= aLF1+ 1 1 pam (3.8)

forall f € D(a) NL2(V;m) =: dom(q). Clearly, dom(q) is the maximal domain of
definition of the form q in the Hilbert space £2('V;m); let us denote this form by q » .
Restricting further to compactly supported functions and then taking the graph norm
closure, we get another form:

ap =0 | dom(gp). dom(ap) = Cc(V) .
It turns out that both qp and g are Dirichlet forms (for definitions see [26]) and qp
is a regular Dirichlet form. Moreover, the converse is also true: “every (irreducible)
regular Dirichlet form over (V,m) arises as the energy form q.p for some (connected)
graph b over ('V,m)” (this claim is wrong as stated; however, to make it correct one
needs to replace locally finite by the local summability condition on » and also to
allow killing terms; see [41, Thm. 7]).

Remark. The notion of irreducibility for Dirichlet forms on graphs is closely con-
nected with the notion of connectivity. Recall that a graph b is called connected if
the corresponding graph & is connected. Then the regular Dirichlet form g p is irre-
ducible exactly when the underlying graph b is connected (e.g., [43, Chap. 1.4]).

Now using the representation theorems for quadratic forms (see, e.g., [38]), one
can associate in £2('V; m) the self-adjoint operators hp and hy, the so-called Dirich-
let and Neumann Laplacians over ('V, m), with, respectively, qp and g . Usually, it
is a rather nontrivial task to provide an explicit description of the operators hp and,
especially, hy.* However, the following abstract description always holds:

hp =h | dom(hp), dom(hp) = dom(h) N dom(qp), (3.9

which also implies that hp is the Friedrichs extension of the adjoint h® = h* to h.

4. Laplacians on metric graphs

4.1. Function spaces on metric graphs

Let § be a metric graph with a fixed model (V, &, | - |). Let also u: & — (0, 00)
be a weight function assigning a positive weight p(e) to each edge e € &. We shall
assume that edge weights are orientation independent and we set u(€) = u(e) for all

3In fact, to decide whether hyy and hp coincide for given b and m, or equivalently that
GN = qp,is already a highly nontrivial problem. This property is related to the uniqueness of
a Markovian extension. For further details we refer to [43,46], [49, Chap. 7.2].



Laplacians on infinite graphs: Discrete vs. continuous 303

ée év, v € V. Notice that u can be identified with an edgewise constant function
on ¢ in an obvious way. Identifying every edge e € & with a copy of I, = [0, |e]],
we can introduce Lebesgue and Sobolev spaces on edges and also on §. First of all,
with the weight © we associate the measure y on § defined as the edgewise scaled
Lebesgue measure such that pu(dx) = p(e)dx, on every edge e € &. Thus we can
define the Hilbert space L?(§; i) of measurable functions f:§ — C which are
square integrable w.r.t. the measure p on §. Similarly, one defines the Banach spaces
LP(&; ) for p € [1,00]. In fact, if p € [1, 00), then

L2 = | = (et | fo € L7610, DAl <001

ecé

where

el g = [ o) @) = ) [ £l de.

If w(e) = 1, then we shall simply write L?(e). Next, the subspace of compactly
supported L? functions will be denoted by LZ (§; ). The space L (§; i) of locally
LP functions consists of all measurable functions f such that fg € LZ(&; 1) for all
g € C.(%). Notice that both L and LZ are independent of the weight /4.

For edgewise locally absolutely continuous functions on §, let us denote by V
the edgewise first derivative,

Vifr f. 4.1
Then for every edge e € &,
H'e)={f € AC(e) | Vf € L*(e)}, H?*(e)={f € H'(e)|Vf e H'(e))}

are the usual Sobolev spaces (upon the identification of e with I, = [0, |e|]), and
AC (e) is the space of absolutely continuous functions on e. Let us denote by

H! (6 \7V)and H2.(§ \ V) the spaces of measurable functions f on § such that
their edgewise restrictions belong to H !, respectively, H?; that is,

H G\ V) ={f € L}.(9) | fle € H(e) Ve € €}

for j € {1,2}. Clearly, for each f € H?2 (¢ \ V) the quantities

loc

fle)= lim f(r), fler)i= lim f(xe) (42)

and the normal derivatives

8f(el) = lim M’ 8f(et) ‘= lim f(xe) - f(er)

Xe—er X — ] Xe—er  |Xe — eq]

(4.3)
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are well defined for all e € &. We also need the notation

df (er).

geé;,
- (4.4)
df (er), €&

’

0z f(v) := {

for every v € V and € € év. In the case of a loopless graph, the above notation
simplifies since we can identify &, with &, forall v € V.

4.2. Kirchhoff Laplacians

Let & be a metric graph together with a fixed model (V,&,|-|) and u, v: & —
(0, 00) two edge weights on § (for this model). For every e € & consider the maximal
operator H max defined in L?(e; ) by

1 d (o) d
- —v(Xe)—,
p(xe) doxe “dux,

dom(Hemax) = {f € L?(e:p) | fivf' € AC(e). wef € L (e:p)}.  (4.6)

He,maxf = Teﬂ Te = 4.5)

Since p and v are constant on e, dom(H, max) coincides with the Sobolev space
H?(e). The maximal operator on § is then defined in L2(9; i) as

Hoox = €D He mas. (4.7)

ecé

Clearly, for each f € dom(H,.x) the quantities (4.2), (4.3), and hence (4.4) are well
defined for all e € &. Now, in order to reflect the underlying graph structure, we
impose at each vertex v € 'V the Kirchhoff boundary conditions

f is continuous at v,
> v@d:f(v) =0. (4-8)
éeé,

To motivate our definition, consider V as the differentiation operator on § acting
on functions which are edgewise locally absolutely continuous and also continuous
at the vertices. Notice that when considering V as an operator acting from L2(¢; )
to L2(€;v), its formal adjoint VT acting from L2(&;v) to L?(§; 1) acts edgewise as

Vi f —%(vf)’. (4.9)

Thus the weighted Laplacian A acting in L?(§; 1), written in the divergence form
A: f > —VT(V f), acts edgewise as the following divergence form Sturm—Liouville
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operator:
1
A f = —@f). (4.10)
m

The continuity assumption imposed on f results for A in a one-parameter family
of symmetric boundary conditions at the vertices (the so-called §-coupling). In the
present text, with the Laplacian A acting on § we shall always associate the Kirch-
hoff vertex conditions (4.8). In particular, imposing these boundary conditions on the
maximal domain yields the (maximal) Kirchhoff Laplacian:

H=—-A | dom(H),

] 4.11)
dom(H) = {f € dom(H,,.x) | f satisfies (4.8) on "V}.

4.3. Energy forms

Restricting further to compactly supported functions, we end up with the pre-minimal
operator

H = —-A }dom(H'), dom(H') = dom(H) N C.(§). 4.12)

Integrating by parts, one obtains for all f € dom(H’)
(H'f f2 = /g V()] *v(dx) = Q[f]. (4.13)

which implies that H' is a nonnegative symmetric operator in L2(§; ). We define
HC as the closure of H' in L2(§; u). It is standard to show that

(H)* = H. (4.14)

In particular, the equality H® = H holds if and only if H is self-adjoint (or, equiva-
lently, H’ is essentially self-adjoint).

With the form £ we associate two spaces: first, the Sobolev space H'!(9) =
H'(8; 1, v) is defined as the subspace of L?(&; i) consisting of continuous func-
tions, which are edgewise absolutely continuous and have finite energy [ f] < oo.
Equipping H ' (§) with the standard graph norm turns it into a Hilbert space. Also,
we define the space Hy (§) = H((9; 11, v) as the closure of compactly supported H !
functions,

HY = HY(§: . v) == HIG) o,

where H!(§) := H'(§) N C.(¥). Restricting Q to these spaces, we end up with
two closed forms in L2(¢; j1):

Qp=2 | Hy, Qny=9H. (4.15)
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According to the representation theorem, they give rise to two self-adjoint nonneg-
ative operators Hp and Hy in L2?(¢; u), the Dirichlet and Neumann Laplacians,
respectively. Notice also that Hp coincides with the Friedrichs extension of H':

dom(Hp) = dom(H) N Hy ().

Remark. Following the analogy with the Friedrichs extension, it might be tempting
to think that the domain of the Neumann Laplacian Hy is given by dom(H) N H!(9).
However, the operator defined on this domain has a different name—the Gaffney
Laplacian—and it is not symmetric in general. Moreover, this operator is not always
closed (see [48]).

5. Connections

One of the immediate ways to relate Laplacians on metric and discrete graphs is by
noticing a connection between their harmonic functions. Despite being elementary,
this observation lies at the core of many of our considerations and hence we briefly
sketch it here. Every harmonic function f* on a weighted metric graph (¢, i, v) (i.e.,
f satisfies A f = 0 and the Kirchhoff conditions (4.8)) must be edgewise affine. The
Kirchhoff conditions (4.8) imply that f is continuous and, moreover, satisfies

S 0@ = Y 2 - rw) =0

I = le]
eely eegy, ey

at each vertex v € V. This suggests to consider a discrete Laplacian (3.3) with edge
weights given by
Y iel, ece, ot UFV
b(u, v) — €&y ecly el ’ ’ (5.1)

, u=v.

Indeed, then for every A-harmonic function f on the weighted metric graph (¢, i, v),
its restriction to vertices f := f |y is an L-harmonic function; that is, Lf = 0. More-
over, the converse is also true. Phrased in a more formal way, the map

1y:C(§) — C(V)

fe fly,
when restricted further to the space of continuous, edgewise affine functions on §
becomes bijective and establishes a bijective correspondence between A-harmonic

and L-harmonic functions. This indicates a possible connection between the cor-
responding Laplacians on § and §; (this immediately connects, for instance, the

(5.2)
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corresponding Poisson and Martin boundaries). However, one also has to take into
account the measures u and m; that is, the vertex weight m should be chosen in a
way which connects the corresponding Hilbert spaces L2(§; 1) and £2('V; m). The
desired connection is given by the choice

m:v Z lelu(e), veV, (5.3)

ety

under the additional assumption that (&, w, v) has finite intrinsic size:

7€) = suple] | )
ecé V(e)

< 0. (5.4)

The quantity n(e) := |e|,/ “f((:)) is the intrinsic length of the edge e € & (see Sec-

tion 7.1 for further details).

Remark. In at least two special cases, the correspondence between the Kirchhoff
Laplacian for (¢, i, v) and the discrete Laplacian for the above weights b and m has
been known for a quite long time. First of all, in the case of so-called unweighted
equilateral metric graphs (i.e., u = v = 1 on § and |e| = 1 for all edges e), (3.3)
with the weights (5.1), (5.3) turns into the normalized Laplacian (3.2). Connections
between their spectral properties have been established in [53, 69] for finite metric
graphs and then extended in [5, 7, 18] to infinite metric graphs, and in fact one can
even prove some kind of local unitary equivalence [55]. Thus these results allow
to reduce the study of Laplacians on equilateral metric graphs to a widely studied
object—the normalized Laplacian Lo, the generator of the simple random walk
on g, (see [2,10,70]). The second well-studied case is a slight generalization of the
above setting: again, |e| = 1 for all edges e; however, & = v on § (these are named
cable systems in the work of Varopoulos [67]). The corresponding Laplacian L with
the coefficients (5.1), (5.3) is the generator of a discrete time random walk on §; with
the probability of jumping from v to u given by

pleu,)
ZwNU /’L (ev,w)
and 0 otherwise. There is a close connection between this random walk and the Brow-

nian motion on the cable system, and exactly this link has been exploited several times
in the literature (see [67] and some recent works [3,22,23]).

p(u,v) = when u ~ v,

If the underlying model of (&, u, v) has finite intrinsic size (5.4), it turns out that
the maximal Kirchhoff Laplacian H in L?(§; ) and h(§, 1, v), the corresponding
maximal Laplacian with the weights (5.1), (5.3), share many basic properties.
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Spectral properties.

e Self-adjoint uniqueness; see [20, Sec. 4] and [49, Chap. 3].

e Positive spectral gap; see [20, Sec. 4], [47], and [49, Chap. 3].

e Ultracontractivity estimates; see [20, Sec. 5.2], [49, Chap. 4.8], and [60].

Parabolic properties.

e Markovian uniqueness; see [49, Chap. 4.4].

e Recurrence/transience; see [31, Chap. 4] and [49, Chap. 4.5].

e Stochastic completeness; see [23,33,35,36], and [49, Chap. 4.6].

The above lists are by no means complete and we refer to the recent mono-
graph [49] for further details, results, and literature.

Remark. In fact, the idea to relate the properties of A and L by taking into account
the relationship between their kernels has its roots in the fundamental works of M. G.
Krein, M. 1. Vishik, and M. Sh. Birman in the 1950s. Indeed, it turns out that L serves
as a “boundary operator” for A and exactly this fact allows to connect basic spectral
properties of these two operators. However, in order to make all that precise one
needs to use the machinery of boundary triplets and corresponding Weyl functions,
a modern language of extension theory of symmetric operators in Hilbert spaces,
which can be seen as far-reaching development of the Birman—Krein—Vishik theory
(see [14,15,62]). First applications of this approach to finite and infinite metric graphs
can be traced back to the 2000s (see, e.g., [5,19,56]). One of its advantages is the fact
that the boundary triplets approach allows to treat metric graphs avoiding restrictive
assumptions on the edge lengths [20, 44].

6. Cable systems for graph Laplacians

The above considerations naturally lead to the following question: which graph
Laplacians may arise as “boundary operators” for a Kirchhoff Laplacian on a
weighted metric graph? Let us be more precise. Suppose a vertex set V is given.
Each graph Laplacian (3.3) is determined by the vertex weight m:V — (0, co) and
the edge weight function b: V x V — [0, oo) having the properties (i)—(iv) of Sec-
tion 3. With each such b we can associate a locally finite simple graph &, = ('V, &)
as described in Section 3.

Definition 6.1. A cable system for a graph b over ('V, m) is a model of a weighted
metric graph (g, i, v) having 'V as its vertex set and such that the functions defined
by (5.3) and (5.1) coincide with m and, respectively, b. If in addition the underlying
graph (V, &) of the model coincides with §, = (V, &), then the cable system is
called minimal.
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Thus the problem stated at the very beginning now can be formulated as follows:
Which locally finite graphs (V,m; b) have a (minimal) cable system? It turns out that
the existence of a minimal cable system is a nontrivial issue already in the case of a
path graph (see [49, Chap. 5.3]). Let us also present the following example.

Example 6.2 (Cable systems for Lcomp). Consider the combinatorial Laplacian Lcomp
on a simple, connected, locally finite graph §;, thatis, m =1 on V, b(u,v) = 1
exactly when u ~ v and u # v, and b(u, v) = O otherwise. It turns out that in this
case (V, m; b) admits a minimal cable system if and only if for each e € & there is a
disjoint cycle cover of €4 containing e in one of its cycles.*

However, we stress that a general cable system may have loops and multiple edges
and thus the simplicity assumption on the model of (&, u, v) (that is, the minimality
of a cable system for ('V, m; b)) might be too restrictive. Moreover, the underlying
combinatorial graph (V, &) of a cable system for b can always be obtained from the
simple graph §;, = (V, §p) by adding loops and multiple edges. The next result was
essentially proved in [23] (see also [49, Chap. 6.3]).

Theorem 6.3. Every locally finite graph (V, m; b) has a cable system.

After establishing existence of cable systems, the next natural question is their
uniqueness. In fact, every locally finite graph b over (V, m) has a large number of
cable systems. In particular, the construction in [23, p. 2107] is a special case of a
general construction using different metrizations of discrete graphs. These connec-
tions will be discussed in the next section.

7. Intrinsic metrics on graphs

7.1. Intrinsic metrics on metric graphs

We define the intrinsic metric ¢ of a weighted metric graph (¥, i, v) as the intrinsic
metric of its Dirichlet Laplacian Hp (in particular, note that Qp is a strongly local,
regular Dirichlet form). By [65, eq. (1.3)] (see also [24, Thm. 6.1]), 0jn 1S given by

Oine(X,y) = sup {f(x) = () | f € Dioc}. x.y €9,
where the function space f)loc is defined as

Dige = {f € H.(9) | v(x)|Vf(x)}2 < u(x) forae. x € }?}.

“https://mathoverflow.net/questions/59117/ (2011): Assigning positive edge weights to a
graph so that the weight incident to each vertex is 1.


https://mathoverflow.net/questions/59117/
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In fact, gin admits an explicit description: define the intrinsic weight

n= nu,v = \/g on g (71)

This weight gives rise to a new measure on § whose density w.r.t. the Lebesgue
measure is exactly n (we abuse the notation and denote with 1 both the edge weight
and the corresponding measure).

Recall that a path & in § is a continuous and piecewise injective map #:/ — §
defined on an interval / C R. If I = [a, b] is compact, we call & a path with starting
point x := & (a) and endpoint y := P (b), and its (intrinsic) length is defined as

| Py = ZL, n(dx), (7.2)
J

(@ :tj+1))

wherea =ty < --- < t, = b is any partition of I = [a, b] such that P is injective on
each interval (¢, 1) (clearly, ||, is well defined).

Lemma 7.1. The metric oy defined by

0q(x,y) :=inf|P|,, x,y€¥, (7.3)
P

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on (§, u,v) (w.rt. Qp); that is, Qiny = 0.

The proof is straightforward and can be found in, e.g., [31, Prop. 2.21] (see
also [45, Lem. 4.3]). Notice that in the case y = v, n coincides with the Lebesgue
measure and hence g, is nothing but the length metric g9 on § (see Section 2.2).

Remark. If a path &, consists of a single edge e € &, then

Pl =/en(dX) = |e] % ~ (@),

which connects giny = 05 on (§, u, v) with the intrinsic edge length (see (5.4)).

7.2. Intrinsic metrics on discrete graphs

The idea to use different metrics on graphs can be traced back at least to [12] and
versions of metrics adapted to weighted discrete graphs have appeared independently
in several works; see, e.g., [22,23,29,52]. In our exposition we follow [24,39].

For a connected graph b over (V, m), a symmetric function p: V x V — [0, 00)
such that p(u, v) >0 exactly when b(u, v) >0 is called a weight function for (V,m;b).



Laplacians on infinite graphs: Discrete vs. continuous 311

Every weight function p generates a path metric 0, on 'V w.r.t. b via

0p(u,v) = inf > (k1. vi). (74)
k

=(v0Q;...,Up ) U=00, V=0Up

Here the infimum is taken over all paths in b connecting u and v, that is, all sequences
P = (v, ..., vy,) such that vy = u, v, = v and b(vr_;, vg) > O for all k. Since we
assume b to be locally finite, o, (1, v) > 0 whenever u # v.

Example 7.2 (Combinatorial distance). Let p: 'V x V — {0, 1} be given by

)L bu,v) #0,
pae.v) = {o, b(u,v) = 0. (75

Then the corresponding metric g, is nothing but the combinatorial distance gcomb
(a.k.a. the word metric in the context of Cayley graphs) on a graph b over V.

Definition 7.3. A metric o on 'V is called intrinsic w.r.t. (V, m; b) if

b, v)o(, v)* < m(v) (7.6)
2

uey

holds for all v € V. Similarly, a weight function p: V x V — [0, 0co) is called an
intrinsic weight for (V,m; b) if

Z bu,v)p(u,v)> <m), vevV.

uey
If p is an intrinsic weight, then the path metric o, is called strongly intrinsic.

For any given locally finite graph (V, m; b) an intrinsic metric always exists (see
[34, Ex. 2.1], [39], and also [11]).

Remark. It is straightforward to check that the combinatorial distance @¢omp 1S not
intrinsic for the combinatorial Laplacian Loy (72 = 1 on 'V in this case). On the other
hand, g¢ompb 1S €quivalent to an intrinsic path metric if and only if deg is bounded on
V; that is, the corresponding graph has bounded geometry. If sup, deg(v) = oo, then
Lcomp is unbounded in £2('V), and it turned out that gcomp is Not a suitable metric on
V to study the properties of Loy (in particular, this has led to certain controversies
in the past; see [42,71]).

7.3. Connections between discrete and continuous

Consider a weighted metric graph (&, , v) and its intrinsic metric g,. With each
model of (§, i, v) we can associate the vertex set 'V together with the vertex weight
m:V — (0, 00) and the graph b: V x V — [0, 00); see (5.3), (5.1). The next result
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shows that the intrinsic metric o, of (§, 1, V) gives rise to a particular intrinsic metric
for (V,m; b).

Lemma 7.4 ([49]). Fix a model of (§, ., v) having finite intrinsic size and define the
metric 0y on'V as a restriction of o, onto V x'V,

oy(u,v) :=0y(u,v), (M,v) €V V. (7.7

Then ov is an intrinsic metric for (V,m;b). Moreover, (§,0y) is complete as a metric
space exactly when ('V, gv) is complete.

Let us mention that Lemma 7.4 also has an interpretation in terms of quasi-
isometries (see, e.g., [2, Def. 1.12] and [54, Sec. 1.3]).

Definition 7.5. A map ¢: X; — X, between metric spaces (X1, 01) and (X», 02) is
called a quasi-isometry if there are constants @, R > 0, and b > 0 such that

a '(o1(x.y) = b) < 02(¢(x). (1)) < alo1(x.y) +b). (7.8)

for all x, y € X, and, moreover,

U Br(¢(x);02) = Xa. (7.9)

xeXq
Here and below Br(x;0) = {y € X | o(x,y) < R} is aball in a metric space (X, 0).

It turns out that the map 1y defined in Section 5 is closely related with a quasi-
isometry between weighted graphs and metric graphs.

Lemma 7.6. Assume the conditions of Lemma 7.4. Then the map
p0:V—>8, o) =v (7.10)
defines a quasi-isometry between the metric spaces (§, 0y) and (V, ov).

Proof. The proof is a straightforward check of (7.8) and (7.9) for the map ¢ with
a=1,b=0,and R = n*(&) (notice that the finite intrinsic size (5.4) is necessary
for the net property (7.9) to hold). ]

Remark. The notion of quasi-isometries was introduced in the works of M. Gromov
and M. Kanai in the 1980s. It is well known in context with Riemannian manifolds
and (combinatorial) graphs that roughly isometric spaces share many important prop-
erties: e.g., geometric properties (such as volume growth and isoperimetric inequali-
ties), parabolicity/transience, Liouville-type theorems for harmonic functions of finite
energy, and many more. However, we stress that most of these connections also
require additional (rather restrictive) conditions on the local geometry of the spaces.
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Some of our conclusions are reminiscent of this notion, but in fact our results go
beyond this framework. For instance, the strong/weak Liouville property (i.e., all pos-
itive/bounded harmonic functions are constant) is not preserved under bi-Lipschitz
maps in general [51]. However, the equivalence holds true for our setting (see [49,
Lem. 6.46]). In addition, we stress that we do not require any additional local con-
ditions (e.g., bounded geometry). On the other hand, our results connect only two
particular roughly isometric spaces (&, 0,) and (V, o) and not the whole equiva-
lence class of roughly isometric weighted graphs or weighted metric graphs.

By Lemma 7.4, each cable system having finite intrinsic size” gives rise to an
intrinsic metric oy for (V,m; b) using a simple restriction to vertices. It is natural
to ask which intrinsic metrics on graphs can be obtained as restrictions of intrinsic
metrics on weighted metric graphs. Due to the lack of space we omit the description
of these results, which roughly speaking state that to construct an intrinsic metric on
a graph b over (V, m) is almost equivalent to constructing a cable system. Let us
state only one result here (see [49, Lem. 6.27 and Thm. 6.30]).

Theorem 7.7 ([49]). Let b be a locally finite, connected graph over (V,m) equipped
with a strongly intrinsic path metric o. Assume also that o has finite jump size,

s(o0) = sup {Q(u, v) |u,veV, b(u,v) > O} < 00.

Then there exists a weighted metric graph (§, |1, v) together with a model such that
(5.4) is satisfied, m and b have the form (5.3) and (5.1), respectively, and, moreover,
o coincides with the induced path metric 0y = 0y|vxv.

Remark. It is hard to overestimate the role of intrinsic metrics in the progress
achieved for weighted graph Laplacians during the last decade. Surprisingly, the
above-described procedure to construct an intrinsic metric for (V, m; b) in fact pro-
vides a way to obtain all finite jump size intrinsic path metrics on (V,m; b). Moreover,
upon normalization assumptions on cable systems (e.g., restricting to weighted met-
ric graphs with equal weights, i.e., & = v, and also assuming no multiple edges and
that all loops have the same length 1), the correspondence in Theorem 7.7 becomes
in a certain sense bijective (see [49, Thm. 6.34]).

Let us mention that some versions of this result have been used earlier in [23,33].

8. Applications

Our main goal in this final section is to demonstrate the established connections
between discrete graph Laplacians and metric graph Laplacians. We will describe

>Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size immediately extends to cable systems.
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some applications to the self-adjointness problem and to the problem of recurrence.
For further results as well as applications (Markovian uniqueness, spectral gap esti-
mates, stochastic completeness, etc.) we refer to [49, Chap. 7-8].

8.1. Self-adjointness

The first mathematical problem arising in any quantum mechanical model is self-
adjointness (see, e.g., [58, Chap. VIII.11]); that is, usually a formal symmetric expres-
sion for the Hamiltonian has some natural domain of definition in a given Hilbert
space (e.g., pre-minimally defined Laplacians) and then one has to verify that it gives
rise to an (essentially) self-adjoint operator. Otherwise,® there are infinitely many
self-adjoint extensions (or restrictions in the maximally defined case) and one has to
determine the right one which is the observable.

There are several ways to introduce the notion of self-adjointness. For the Kirch-
hoff Laplacian as well as for the graph Laplacian (take into account the locally finite
assumption), the self-adjointness means that the minimal Laplacian coincides with
the maximal Laplacian in the corresponding L? space. On the other hand, consider-
ing the associated Schrodinger or wave equation, the self-adjointness actually means
its L2—solvability (see, e.g., [63, Sec. 1.1]). Perhaps, the most convenient way for us
would be to define the self-adjointness via solutions to the Helmholtz equation

Au = Au, AeR. 8.1)

Since A is nonpositive, the maximally defined operator is self-adjoint if and only if for
some (and hence for all) A > 0 equation (8.1) admits a unique solution u € L2(§; ),
which is clearly identically zero in this case (see, e.g., [57, Thm. X.26]). Recalling
that, in the context of both manifolds and graphs, functions satisfying (8.1) are called
A-harmonic, the self-adjoint uniqueness can be seen as some kind of a Liouville-
type property of ¢, and this indicates its close connections with the geometry of the
underlying metric space. We begin with the following result, which is widely known
in the context of Riemannian manifolds.®

Theorem 8.1. Let (9, t, v) be a weighted metric graph and let o, be the corre-
sponding intrinsic metric. If (§, 0y) is complete as a metric space, then the Kirchhoff
Laplacian H is self-adjoint.

0f course, one needs to check whether the corresponding symmetric operator has equal
deficiency indices, which is always the case for Laplacians or, more generally, for symmetric
operators which are bounded from below or from above.

7Under the positivity of the spectral gap, one can in fact replace A > 0 by A = 0 and hence
in this case one is led to harmonic functions.

8M. P. Gaffney [27] noticed the importance of completeness of the manifold in question
and the essential self-adjointness in this case was established later [59] (see also [8, 64]).
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In the context of metric graphs, the above result seems to be a folklore; however,
it is not an easy task to find its proof in the literature. In fact, the above considerations
enable us to provide a rather short one.

Proof. Assume that H is not self-adjoint. Since the minimal Kirchhoff Laplacian
H® = H* is nonnegative, this means that ker(H + I) # {0}; that is, there is 0 #
f € dom(H) such that A f = f (see [57, Thm. X.26]). Moreover, we can choose
such an f real-valued and hence | | is subharmonic. Moreover, | f| € L2(§; )
since f € dom(H). On the other hand, if (¥, 0,) is complete as a metric space, then
applying Yau’s L?-Liouville theorem [65, Cor. 1(a)], we conclude that f = 0. This
contradiction completes the proof. |

Remark. A few remarks are in order.

(i)  Simple examples (e.g., § is a path graph) show that the completeness w.r.t.
0y 1s not necessary.

(i) By the Hopf-Rinow theorem (a metric graph § equipped with g, is a
length space), completeness of (§, 0;) is equivalent to bounded compact-
ness (compactness of distance balls), as well as to geodesic completeness.

As an immediate corollary of Theorem 8.1 and the above discussed connections,
we obtain a version of the Gaffney theorem for graph Laplacians.

Theorem 8.2 ([34]). Let b be a locally finite graph over (V,m) and let o be an
intrinsic metric which generates the discrete topology on V. If (V, 0) is complete as
a metric space, then h° is self-adjoint and h® = h.

Proof. Let us only sketch the proof (missing details can be found in [49, Chap. 7.1]).
By Theorem 7.7, there is a cable system for (V, m; b). Moreover, the correspond-
ing Kirchhoff Laplacian H is self-adjoint if and only if so is h (see [20, Sec. 4],
[49, Thm. 3.1 (1)]). Taking into account Lemma 7.4 and applying Theorem 8.1, we
complete the proof. ]

Remark. A few remarks are in order.
(i)  Theorem 8.2 was first established in [34, Thm. 2].

(i1)) Both Theorem 8.1 and Theorem 8.2 are not optimal. For instance, Theo-
rem 8.2 does not imply the self-adjointness of the combinatorial Laplacian
Lcomp, When it is unbounded (see [37], [41, Thm. 6]). However, Theo-
rems 8.1 and 8.2 enjoy a certain stability property under additive pertur-
bations, which preserve semiboundedness ([30, Thm. 2.16], [45]).

(iii) We refer for further results and details to [45], [49, Chap. 7.1], and [61].
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8.2. Recurrence and transience

Recurrence of a random walk/Brownian motion means that a particle returns to its ini-
tial position infinitely often (see, e.g., [26] for a formal definition). In fact, recurrence
appears (quite often under different names) in many different areas of mathematics
and mathematical physics and enjoys deep connections to various important problems
(e.g., the type problem for simply connected Riemann surfaces).

The famous theorem of G. Pélya states that the simple random walk on Z¢ is
recurrent if and only if either d = 1 or d = 2. Intuitively, one may explain recurrence
of a random walk/Brownian motion as insufficiency of volume in the state space
(volume of a ball of radius R in Z% or R? grows faster as R — oo for larger d). The
qualitative form of this heuristic statement in the manifold context has a venerable
history (we refer to the excellent exposition of A. Grigor’yan [28] for further details),
and in the case of complete Riemannian manifolds, it was proved in the 1980s inde-
pendently by L. Karp, N. Th. Varopoulos, and A. Grigor’yan (see [28, Thm. 7.3])

that
o rdr
_—_—nmm = m
vol (Br(x))

guarantees recurrence. Moreover, this condition is close to be necessary. This result
was extended to strongly local Dirichlet forms by K.-T. Sturm [65] and hence it also
holds in the setting of weighted metric graphs. Again, using the obtained connections
between metric graph and weighted graph Laplacians, we can proceed as in the pre-
vious subsection and establish the corresponding volume growth test for weighted
graph Laplacians, which was originally obtained by B. Hua and M. Keller [32]. Due
to the lack of space we only refer to [49, Chap. 7.4] for further details.

We would like to finish this article by reflecting on another interesting topic. Per-
haps, the most studied class of graphs are Cayley graphs of finitely generated groups
(Example 2.1). Random walks on groups is a classical and very rich subject (the liter-
ature is enormous and we only refer to the classic text [70]). Recall that a group G is
called recurrent if the simple random walk on its Cayley graph €(G, §) is recurrent
for some (and hence for all) S. The classification of recurrent groups was accom-
plished in the 1980s by proving the famous Kesten conjecture. It is a combination of
two seminal theorems—relationship between decay of return probabilities and growth
in groups established by N. Th. Varopoulos and the characterization of groups of
polynomial growth by M. Gromov (see, e.g., [68, Chap. VI.6], [70, Thm. 3.24]).

Theorem 8.3 (N. Th. Varopoulos). G is recurrent if and only if G contains a finite
index subgroup isomorphic either to 7, or to 7.

It turns out that the problem of recurrence on weighted metric graphs can be
reduced to the study of recurrence of random walks on groups (see [49, Thm. 7.49]).
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Let (9c, i, v) be a weighted metric graph where §¢ = €(G, S) is a Cayley graph of
a finitely generated group G. Also, let Hp be the corresponding Dirichlet Laplacian.
Define

Vl(e”"’l) ulves
by (u,v) = euvl " u,veG. (8.2)
! 0, u Ly ¢S,

Theorem 8.4. The heat semigroup ("D, ¢ is recurrent if and only if the discrete
time random walk on G with transition probabilities

by (u,v)

v s = P(X = X, = = =,
pv(u,v) (Xn+1 v | Xy =u) deS by, ug)

u,v € G, (8.3)

is recurrent.
Combining Theorem 8.4 with Theorem 8.3, we arrive at the following result.

Corollary 8.5. Assume the conditions of Theorem 8.4.

(i)  If G contains a finite index subgroup isomorphic either to 7. or to 7.> and
the edge weight v satisfies

sup —— < 00, (8.4)

then the heat semigroup (e 7"HD),_ ¢ is recurrent.

(i) IfGis transient (i.e., G does not contain a finite index subgroup isomorphic
either to Z or to Z? ) and the edge weight v satisfies

Y
inf —= > 0, (8.5)

then the heat semigroup (e ""MD),. is transient.

In fact, the above result has numerous consequences and actually can be im-
proved. Let us finish by its applications to ultracontractivity estimates. To simplify
the exposition we restrict now to unweighted metric graphs.

Theorem 8.6 ([20,49]). Assume the conditions of Theorem 8.4 and let also p=v = 1.
Suppose that G is not recurrent and the edge lengths satisfy

sup |e| < oo. (8.6)

ecé

Then (e~! HD)t>0 is ultracontractive and, moreover,
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(i) ifya(n) ~n" asn — oo with some N € Z>3, then’
le™ 2| Lo < Cnt ™2, 1> 0; (8.7)

(i) if G is not virtually nilpotent (i.e., y has superpolynomial growth'®), then
(8.7) holds true for all N > 2.

Remark. Notice that applying Theorems 1.2 and 1.3 of [50] to the Dirichlet Lapla-
cian Hp and then using Theorem 8.6, we arrive at the Cwikel-Lieb—Rozenblum
estimates for additive perturbations, that is, for Schrédinger operators —A + V(x).
It is also well known (see [25]) that ultracontractivity estimates and Sobolev-type
inequalities lead to Lieb-Thirring bounds (©, estimates on the negative spectra);
however, we are not going to pursue this goal here. For further details and historical
remarks we refer to [49, Chap. 8.2].
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Uniqueness results for solutions of continuous and discrete
PDE

Eugenia Malinnikova

Abstract. We give an overview of some recent results on unique continuation property “at
infinity” for solutions of elliptic and dispersive PDE and their discrete counterparts. The proofs
of most of the results are given in previous works written with coauthors.

1. Introduction

Let L be a differential operator. We say that L has the (weak) unique continuation
property if any solution u to the equation Lu = 0 in some domain €2 which vanishes
on an open subset of €2 equals zero on 2. For the case of a linear operator, we con-
clude that two solutions which coincide on an open subset should coincide on the
whole domain. The unique continuation property holds for the class of holomorphic
functions, this corresponds to the first-order differential operator 5, and, more inter-
estingly, for a large class of second-order elliptic operators. The operator L has the
strong unique continuation property if any solution u to the equation Lu = 0 in 2
that vanishes at some point x € €2 to an infinite order is identically zero in €2.

In this survey, we consider versions of the uniqueness property at infinity. Let
Lu = 0 on R?, assuming some decay or growth restriction condition for u, we want
to conclude that u is a trivial solution. The simplest example of such result is the
classical Liouville theorem for harmonic functions. If a harmonic function on R is
bounded, then it is constant. This theorem has a very short and elegant proof; see
[30]. It also has numerous generalizations, which include the analogous statement
for harmonic functions on Z4; see for example [21]. The first topic of this note is a
surprising improvement of the Liouville theorem for discrete harmonic functions on
7% obtained in [3]. We discuss some follow up questions and very deep related results
on Anderson localization for the Anderson—-Bernoulli model.

2020 Mathematics Subject Classification. Primary 35J10; Secondary 35B53, 39A12, 31C20.
Keywords. Unique continuation, Schrodinger equation, exponential decay.
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In the next part of the note, we consider the stationary Schrodinger operator with
a bounded potential, Lu = —Au + Vu. We suggest an elementary analysis of the
decay properties of solutions to the corresponding equation on the lattice 74 and then
describe a recent progress on the continuous question, known as the Landis conjec-
ture. The result is proved in [28] and answers the question on the plane; the problem
is open in higher dimensions.

Finally, we describe uniqueness results for the operator Lu = d,u+i(—A+V)u,
obtained by Luis Escauriaza, Carlos Kenig, Gustavo Ponce, and Luis Vega in a re-
markable series of articles [12—15], and discuss the semi-discrete operator, citing the
results of [1,16,17,22].

2. Uniqueness results for discrete harmonic functions

2.1. Harmonic functions on Z¢

For each point x = (x1,...,xg) € Z%, the 2d points y = (y1, ..., yq) such that
> |xj = yj| = 1 are called the neighbors of x; we write x ~ y. Let V' C Z4. We
define the interior of V as the set of all x € V such that all neighbors of x also lie
in V. Then a function / : V' — R is called harmonic in V if for any point x in the
interior we have |

h(x) = ﬁ;xh(y).

This definition easily extends to graphs with finite degrees of vertices. The sys-
tematic study of harmonic functions on Z¢ started about a century ago with the
classical works of Phillips and Wiener [31], and of Courant, Friedrichs, and Lewy,
[5]. It is interesting to note that the first classical articles on the discrete potential
theory already mentioned its connections to the probability and random walks. The
motivation for these works was the approximation of continuous harmonic functions
by discrete ones. One of the results, that can be obtained using such approximation, is
the solvability of the Dirichlet problem for bounded domains in R? with sufficiently
smooth boundary. One might argue that motivation now is reversed; we think that the
real world is discrete and study the discrete mathematical models in their own right.

2.2. Weak unique continuation

We start with some simple examples that show the absence of the weak unique con-
tinuation property for harmonic functions on Z¢.

Example 2.1. First we consider Z2. It is easy to see that if / is a harmonic function
on Z? and h(x) = 0 when x = (x;,0) and x = (x;,1) forall x; € Z, then h = 0
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on Z2. On the other hand, we construct a non-trivial harmonic function 4 on Z2 such
that 1(x) = 0 when x = (x, x2) with x; + x» < 0. We define h(x1, —x;) = (—1)*!
and notice then that one can choose freely the values (0, ) forn = 1,2, ... and all
other values of /& are then uniquely determined. We note also that this large region
of zeros enforces a rigid structure to the values of the harmonic function nearby. On
each next diagonal, the harmonic function s(x;,n — x1) = (—=1)*! p,,(x1), where p,
is a polynomial of degree n.

The situation is even more counter-intuitive in higher dimensions.

Example 2.2. We consider the function /¢ on Z? defined by

0, when x = (x1,x2), x1 + x2 # 0,
ho(x) =

(—=1)*t, when x = (x1,—x1).
Then we extend A to the function on Z3 = Z2 x Z as
H(x1,x2,x3) = c3ho(x1, x2),

where ¢ + ¢~! = 6. The resulting harmonic function H equals zero everywhere on
73 except for the hyperplane x; + x, = 0.

These examples demonstrate that some of our continuous intuition does not work
for discrete harmonic functions.

Nevertheless, there is a trace of the unique continuation property for discrete har-
monic functions on Z%. We denote by Qﬁiv the discrete cube [-N, N]¢ N Z<.

Lemma 2.3 ([20]). There exist C = C(d) >0,c =c(d) > 0,anda = a(d) € (0,1)
such that for any discrete harmonic function U on QfN the following inequality holds:

max |U| < C(max|U|"‘ max |U|'7% 4 e~V max|U|).
d d d d
2N oy Q4N Q4N

A similar result was also proven by Lippner and Mangoubi in [26] using a differ-
ent method. We remark that the error term e~ max 04, |U| cannot be omitted, as
Example 2.1 shows, and that the decay of this term as N grows to infinity is sharp. In
the continuous setting, the corresponding estimate (without the error term) is known
as the three-ball inequality; see for example [24]. This estimate serves as a quantita-
tive version of the weak unique continuation property.

The inequality of Lemma 2.3 was generalized in [3], where we showed that there

exist C, ¢, a as above such that

max|U|5C(max|U|°‘max|U|1_°‘+e_CNmax|U|) 2.1
d E Qd d

2N AN AN
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holds for any E C va with |E| > |va| /2. The proof is based on the fact that
discrete harmonic function is a restriction to the lattice of a real analytic function
with controlled speed of convergence. On the other hand, it is known that the three-
ball inequality and its generalizations concerning propagation of smallness from sets
of positive measure hold for a large class of elliptic equations with non-analytic
coefficients; see [27]. Recently, interesting three balls inequalities were obtained for
solutions of the discrete magnetic Schrodinger equation on the lattice using new dis-
crete Carleman estimates [19].

2.3. Discrete harmonic functions bounded on a large portion of Z¢

Let U be a discrete harmonic function on Z4, we say that it is bounded by one on a
p-portion of Z¢ if
[{x € 04 : |[UM)| < 1}] = pl0F]

for all N large enough. The inequality (2.1) shows that discrete harmonic functions
behave similar to continuous ones and we expect a discrete harmonic function which
is bounded on a large portion of Z¢ to grow fast at infinity. More precisely, the fol-
lowing result holds.

Theorem 2.4 ([3]). There exist ¢ = e(d) > 0 and b = b(d) > 0 such that for any
sufficiently large N and any discrete harmonic function U on Q‘ziN which satisfies
maxga |U| > 2 and

[{x € Ok : [UW)| = 1}| = (1 — )| Okl

for every K € [M,2N], where M < </N, we have

m3x|U| > bV,

N

Example 2.2 shows that for d > 3 there are discrete harmonic functions bounded
on (1 — &) portion of Z¢, which grow exponentially at infinity. We remark that the
continuous intuition would predict for very small ¢ even faster growth at infinity.

A new uniqueness result for harmonic functions on Z? found in [3] says that a
discrete harmonic function which vanishes on a (1 — &) portion of Z? for sufficiently
small ¢ is zero. The key observation, exploited in [3], is that near a tilted rectangle of
zeros, the restrictions of a discrete harmonic function to diagonals have polynomial
structure and thus either vanish or have a few zeros. This result follows from a more
general statement.

Theorem 2.5 ([3]). There exist g > 0 and a(e) > 0 such that if U is a discrete
harmonic function on Q% N N is sufficiently large, and U is bounded by one on
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(1 — ¢) portion of Q%N, & < &g, then

max |U| < 4@V
2

N

Moreover, a(e) — 0 as e — 0.

Theorems 2.4 and 2.5 imply that any discrete harmonic function that is bounded
on a (1 — ¢) portion of Z? with & small enough is constant.

Theorem 2.5 also implies that there exist constants a and € < 1 such that for any
discrete harmonic function on Q% N> Jor N large enough, we have

H|U|>e_“Nrgezlx|U|}ﬂQ§N‘ > eN2, 2.2)
N

It would be interesting to obtain sharp generalizations of this result to harmonic
functions on higher dimensional lattices. For example, a toy statement in Z3 is the
following:

Suppose that U is a discrete harmonic function on Q; N Such that
(U # 0] < N2,

where c is sufficiently small and N is sufficiently large. Then U = 0 on Q13V.

The interest in the uniqueness theorems for discrete harmonic functions and more
general solutions to the Schrodinger equation on lattices is partly due to its connec-
tions to the problem of the exponential decay of eigenfunctions of the Schrédinger
operator with a random Bernoulli potential, known as the Anderson localization. This
connection is discovered and exploited by Bourgain and Kenig in [2], where the con-
tinuous model is studied. Recently, Ding and Smart [10], combining the approach
developed in [2] with ideas introduced in [3], obtained new results on localization
near the edge for the Anderson—Bernoulli model on Z2. One of the tools developed in
[10] is a probabilistic version of (2.2) for solutions of the equation AU + VU = AU
with random Bernoulli potential V. It is worth mentioning, that in dimension three
the following deterministic statement holds (see [25]):

There exists constant p > 3/2 such that for each K > 0, there is C > 0, such
that if AU + VU =0on Q13V, N is large enough, and |V | < K, then

U] > e~ NU©)]}] = N2,

This result is due to Li and Zhang, who generalized the Anderson localization near
the edge of the spectrum to the Anderson-Bernoulli model on Z?3 [25].
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3. Landis conjecture on decay of solutions to Schrodinger equations

3.1. Decay at infinity

In this section, we consider bounded solutions to the stationary Schrodinger equation
with bounded potential, Au + Vu = 0, || < 1. Landis conjectured that a solution
to this equation cannot decay faster than exponential at infinity. An example of a
function that decays exponentially is u(x) = exp(—(1 4+ x2)1/2),

We assume that there is a bounded solution to the Schrodinger equation with
a bounded potential, and we are interested in the possible decay of the quantity
my(R) = sup| |- g [(x)|. A local version of the Landis conjecture, which appeared
in [2] in connection to the Anderson—-Bernoulli model, is about the possible decay of
the quantity (1, (R) = infjx|=g SUppg(y1) [U(x)|.

For solutions of the continuous Schrédinger equation, the Landis conjecture was
disproved by Meshkov, [29]. He gave an example of a complex valued function u(x)
which decays as C exp —c|x|*/? and satisfies the inequality |Au| < |u| everywhere.
The proof is based on a Carleman inequality. Bourgain and Kenig proved the follow-
ing local version of the estimate.

Theorem. Let AU + Vu = 0, let u(0) = 1, and let u and V be bounded on R4,
Then
Uu(R) > ¢ exp(—CR‘”3 log R).

The proof also exploits a Carleman-type inequality. The remaining question is
whether the original Landis conjecture holds for the class of real-valued potentials.
For this case one may consider only real-valued solutions. This question is open in
dimension d > 3.

3.2. Discrete equation

First, we consider the corresponding equation on the lattice 72, here there is no differ-
ence between the real-valued and complex-valued cases, to the best of my knowledge.
Suppose that AU + VU =0, U : 74 — R, V]| < Cp,and U # 0, where

AU(x) =) (U(y) — Ux)).

y~x
We also refer the reader to [1] for the discussion of this problem. Let

my(N) = sup |U(x)|.
x¢0%

We consider any x € Qflv 41\ jSv. Then there is one of its neighbors y such that
y € Q%H \ Q%H and all neighbors of y except x are not in vaﬂ. Then the
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equation AU(y) + V(y)U(y) = 0 can be written as

Ux)=Um+ Y (U)—-U@E)-V»)UQ).

Z~Y,ZFEX

This implies that my (N) < (24+! + 1 + Co)my (N + 1). Thus my (N) does not
decay faster than e CN as N — oo, where C = C(d, Cy).
On the other hand, simple example shows that

uu (N, k) = inf max ‘U(y)!
x€Q94\Q%,_, ly—xI<k

may be equal to zero for a non-trivial function U and bounded V'; see [1]. Let us
describe this example on Z2. We consider a function U which is zero on a tilted
square

szv = {x = (x1.x2) € Z? : |x1 + x2| < 2N, |x1 — x2| < 2N}

and takes non-zero values everywhere else. On the four diagonals x; &= x, = £2N,
we define U(x1, x2) = (—1)*1, so that the function is harmonic at each point of Q%,
Then the values are arbitrary such that, for any x ~ y, we have |U(x)|<(14+¢)|U(y)|.
Then we define V(x) = —(AU(x))/U(x) when x ¢ Q~12V We see that |V | < 8 + 4e.
The example shows that there is no local version of the Landis conjecture when the
potential is bounded but large enough. It would be interesting to obtain a local version
for the case of the small potential.

3.3. Landis conjecture for real-valued potentials on the plane

The question of the estimates for the m, (R) and pu, (R) for real-valued solutions of
the Schrédinger equations in R2 is considered in [7-9,23], where local estimates were
obtained under some assumptions on the potential. The decay estimate of the solution
for the case of a periodic (in all but one variables) potential in R? and R? is discussed
in[11].

The global and local versions of the result for solution of the Schrédinger equation
with general bounded potential on R? were recently obtained in [28]. It turns out that
the Landis conjecture holds for this case (up to a logarithmic factor). More precisely,
the following theorem holds.

Theorem 3.1 ([28]). Let u : R? — R be a C? function which satisfies |Au| < |ul.
Then
(i) if lu(x)| < exp(—=C|x|(log |x|)}/?) and C is large enough, then u = 0;
(ii)  ifinflxj=r SUpg, (x) [u(x)| < exp(—CR(log R)*/?), then u = 0.
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There are three main steps in the proof. First, one constructs a family of separated
D; disks of equal radii r such that dist(D;, {u = 0}) > 10r and each connected
component Q of {u # 0} \ |J; D; has the small first Laplace eigenvalue. Then,
constructing an auxiliary solution of the equation A f 4+ Vf = 0 in Q} with boundary
values f = 1 on dQ2g, one considers the ration v = u/f. This reduces the problem
to the following one:

Let v : R?\ U; Dj — R be a solution to the equation div(f2Vv) =0
and let v not change sign in each set 10D; \ Dj. Then if v decays as
exp(—C|x|(log |x|)"/?) with large C, then v = 0.

The second step uses quasiconformal mappings to replace the general elliptic equa-
tion in divergence form by the Laplace equation; the factor log |x|1/ 2 in the exponent
appears on this step. This step uses the specifics of dimension two. Finally, the above
statement is proved for harmonic functions defined on R2 \ | J D . The version of the
last step for harmonic functions in higher dimensions is also discussed in [28].

4. Uncertainty principle and uniqueness for Schrodinger evolutions

4.1. Hardy’s uncertainty principle

The Hardy uncertainty principle says thatif £ € L2(R), | f(x)| < Ce=9*F |7 (&) <
Ce %P and ab > 1/4,then f =0.Ifab = 1/4, then f(x) = ce= X Its dynam-
ical interpretation was found in [4, 12], where it is shown that the principle is equiva-
lent to the following statement.

Theorem. Let u(z, x) be a solution to the free Schrodinger equation
oiu =i Au(t, x).
Suppose that u € C1([0, T], W22(R%)) and
|u(0,x)| < Ce " and |u(T,x)| < Ce_ﬁlx‘z,

where a, B > 0. Then the following hold.
() IfaB > (16T*)7L, then u(t,x) = 0.
() Fof = (16T?)7L, thenu(t, x) = ce~@+i/GT)IxI,
A real-variable proof of this result is given by Cowling, Escauriaza, Kenig, Ponce,

and Vega in [6]. The last theorem was generalized to a large class of Schrodinger
evolutions of the form d,u = i (Au + Vu) in the series of articles [12—-14].
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4.2. Uniqueness results for discrete Schrodinger evolutions

Let A be again the discrete Laplacian on Z¢. We consider the equation
3, U(t.n) =i(Ay(t,n) + V(t.n)U(t,n)),

where V is a bounded potential. We are interested in uniqueness results which says
that if a solution to the discrete Schrodinger equation decays fast on Z¢ at two dis-
tinct times, then it is trivial. First, we consider the free evolution with V' = 0. In
dimension d = 1, there is a solution Uy (¢,n) = i "e~2* ], (1 — 2t), where J, is the
Bessel function. This solution has optimal decay at 1 = 0 and ¢ = 1. The role of the
Gaussian is now played by the Bessel function. We get the following result for the
free evolution:

Let U(t,n) be a solution to 0, U(t,n) =i AU(t,n) on [0, 1] X Z. Suppose that
C e \"
|U©O,n)| + |U(1.,n)| < —(—) , neZ\{0}.
VIn[\2In]
Then U(t,n) = Ci™"e=2" J,(1 — 2t).

This result was generalized to general bounded potentials in [22] (in dimension
d = 1) and [1] (in arbitrary dimension). The result is as follows.

Theorem 4.1. Let U(t,n) € C([0, 1] : £2(Z4)) be a solution to
0, U(t,n) = i(AU(t,n) + V(t,n)U(t,n)),
on [0,1] x Z4. Suppose that |V ||eo < 1. There exists constant y such that if
|U(0,n)| + |U(1,n)| < Cexp(—yln|logln]), neZ?\{0},
then U = 0.

This result is not precise; we expect the same decay bounds as for the case of the
free Schrodinger equation. One of the interesting applications of the uniqueness theo-
rem with general potential which may depend on time is to the nonlinear Schrodinger
equation. For this case, we have the same decay result as for the free equation. Let
U :[0,1] x Z — R be a solution to the equation

3:U =i(AU + c|UPU).

Suppose that

M
|U(0,n)|—|—|U(1,n)|§(ﬁ) . neZ\ o),
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where ¢ < e/2. Then U = 0. We refer the reader to a recent survey [18] for detailed
discussions of the uniqueness results for discrete and continuous Schrodinger evolu-
tions.
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Some recent developments on the geometry of random
spherical eigenfunctions

Domenico Marinucci

Abstract. A lot of efforts have been devoted in the last decade to the investigation of the
high-frequency behaviour of geometric functionals for the excursion sets of random spheri-
cal harmonics, i.e., Gaussian eigenfunctions for the spherical Laplacian Ag. In this survey, we
shall review some of these results, with particular reference to the asymptotic behaviour of vari-
ances, phase transitions in the nodal case (Berry’s cancellation phenomenon), the distribution
of the fluctuations around the expected values, and the asymptotic correlation among different
functionals. We shall also discuss some connections with the Gaussian kinematic formula, with
Wiener chaos expansions, and with recent developments in the derivation of quantitative central
limit theorems (the so-called Stein—Malliavin approach).

1. Introduction

Spherical eigenfunctions are defined as the solutions of the Helmholtz equation
Asafi+rfe =0, fi:S*—=>R, £=1.2,...,

where Ago is the spherical Laplacian and {—Ay = —£({ + 1)}¢=1»,... is the set of
its eigenvalues. A random structure can be constructed easily by assuming that the
eigenfunctions { f¢(-)} follow a Gaussian isotropic random process on S2. More pre-
cisely, for each x € S?, we take fe(x) to be a Gaussian random variable defined on a
suitable probability space {2, J, P}; without loss of generality, we assume { fy(-)} to
have mean zero, unit variance, and covariance function given by

E[ fe(x) fe(»)] = Pe({x. ). x.y €S>
1 4t
W!W(tz —1), tel-11],

where { P;(-)} denotes the family of Legendre polynomials: this is the only covariance

Py(t) =
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structure to ensure that the random eigenfunctions are isotropic, that is, invariant in
law with respect to the action of the group of rotations SO(3). Random spherical
eigenfunctions, also known as random spherical harmonics, arise in a huge number
of applications, especially in connection with mathematical physics: in particular,
their role in quantum chaos has drawn strong interest in the last two decades, starting
from the seminal papers [7, 8,43, 61]; also, they represent the Fourier components of
isotropic spherical random fields, whose analysis has an extremely important role in
cosmology (see, e.g., [35]). Of course, random spherical harmonics are just a spe-
cial case of a much richer literature on random eigenfunctions on general manifolds;
special interest has been drawn for instance by arithmetic random waves, i.e., ran-
dom eigenfunctions on the torus T 4 which were introduced in [52] and then studied,
among others, in [9, 10, 19,26,27,33,36,53, 54]; see also [17,55] and the references
therein. Although some of the results that we shall discuss have related counterparts
on the torus, on the higher-dimensional spheres, on more general compact manifolds,
and in the Euclidean case, we will stick mainly to S? for brevity and simplicity.

A lot of efforts have been spent in the last decade to characterize the geometry of
the excursion sets of random spherical harmonics, which are defined as

Au(f:S?) :={x €S?: fy(x) =u}, ueR. (1.1)

A classical tool for the investigation of these sets is given by the so-called Lipschitz—
Killing curvatures (or, equivalently, by Minkowski functionals; see [1]), which in
dimension 2 correspond to the Euler—Poincaré characteristic, (half of) the bound-
ary length and the excursion area. A general expression for their expected values
(covering much more general Gaussian fields than random eigenfunctions) is given
by the Gaussian kinematic formula (see [1,58]). Over the last decade, more refined
characterizations for random spherical harmonics have been obtained, including neat
analytic expressions (in the high-energy limit A, — co) for the fluctuations around
their expected values and the correlation among these different functionals; much of
the literature has been concerned with the nodal case, corresponding to u = 0, to
which we shall devote special attention. In this survey, we shall review some of these
results and present some open issues for future research.

2. The Gaussian kinematic formula for Lipschitz—Killing curvatures
on excursions sets
2.1. The Kac—Rice formula and the expectation metatheorem

The first modern attempt to investigate the geometry of random processes and fields
can probably be traced back to the groundbreaking work by Kac (1943) and Rice
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(1945) [25,49] on the zeroes of stochastic processes. Their pioneering argument can
be introduced as follows: let f(-,-) : 2 x R — R be a continuous stochastic process
satisfying regularity conditions; our aim is to derive the expected cardinality of its
zero set in some finite interval (say [0, T']), i.e., the mean of

No([0,T]) := Card {r € [0, T] : f(¢) = 0}.
Now assume that { £(-)} is C! with probability one, such that £(0), f(T) # 0 and
{t:f)=0, f'(1) =0} = 2;

then the following result (Kac’s counting lemma) can be established easily (see [3,
p. 69]):

T
No(0.7) = tim [ Seo(F@)l 7o) ar

where as usual 14 denotes the indicator function of the set A. With further efforts and
assuming that all exchanges of integrals and limits can be justified, one obtains also

T
E[No(0.T1)] = [0 E[|/(0)] | £1) = 0] pye (©) d. @.1)

where E[:|-] denotes as usual the conditional expected value and py(-) the marginal
density of f(-), which is assumed to exist and admit enough regularity conditions (in
the overwhelming majority of the literature and in this whole survey, f(-) will indeed
be assumed to be Gaussian); (2.1) is the simplest example of the Kac—Rice formula.

The basic idea behind the Kac—Rice approach has proved to be extremely fruitful,
leading to an enormous amount of applications and generalizations. In particular, in
the research monographs [1, 3], (slightly different) versions of a general expectation
metatheorem (in the terminology of [1]) are proved. More precisely, let us take M to
be a compact, d-dimensional oriented C! manifold with a C! Riemannian metric g.
Assume that f : M — R4 and h : M — R¥ are vector-valued random fields which
satisfy suitable regularity conditions (see [1,3] for more details and [56] for some very
recent developments). Let B C R¥ be a subset with boundary dimension smaller than
or equal to kK — 1; then define

Nu(f,h,M,B) ={t e M : f(t) =u, h(t) € B}, ueRY.

The following extension of the Kac—Rice formula holds.

Theorem 2.1 ([1,3]). It holds that

E[Nu(f.h. M. B)] = /ME[Idet{Vf(l)HHB(h(I)) | f(t) = u]pray(u)og (dr),
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where as before 1 g (-) denotes the indicator function, V f(-) the (covariant) gradient
of f(), and og(:) the volume form induced by the metric g.

Remark. By taking k = 1, f := Vh the gradient of & (and hence V f = V2 its
Hessian) and u = (0, ..., 0), Theorem 2.1 yields the expected number of critical
points with values in B for the scalar random field /. Simple modifications similarly
yield the expected values for maxima, minima, and saddle points.

The previous results have all been restricted to vector-valued random fields whose
image space has co-dimension zero. However, the results can be similarly generalized
to strictly positive co-dimensions. Indeed, under the same setting as before assume
instead that f : M — R4 is such that d’ < d; then VX is a d x d’ rectangular
matrix, and the following generalization of the expectation metatheorem holds (see

[1,3D.
Theorem 2.2 ([1,3]). It holds that
E[Hu(f.h. M, B)]
= [ Eldec{(v )" (Vr@))]

where Hy,(f, h, M, B) denotes the d — d' dimensional Hausdorff measure of the set
{teM: f(t) =uandh(t) € B}.

1/2

Ig(h) | f(1) = u]psay(u)og(dr),

Example 2.3. Let M = S? be the standard unit-dimensional sphere in R3, let f :
S? x © — R be a random field, and let

Len( f) := Ho(f.S?,0) = meas {t eS?: f(t) = O},

i.e., the length of the nodal lines of f(-). Then
E[Len(f)] = /SzEH det {(V L) (VF@O)}|'? | £() = 0] prry (0o (dr)
= /ng[HVf(f)H | £(t) = 0] proy(0)a (di),

where || - || denotes Euclidean norm and o (-) the standard Lebesgue measure on the
unit sphere. In particular, assuming that the law of f(-) is isotropic (that is, invariant
with respect to the action of the group of rotations SO(3)), we get

E[Len(f)] = 4z xE[[| VO] | f() = 0] pry (0).
2.2. Intrinsic volumes and Lipschitz—Killing curvatures

In the sequel, as mentioned earlier we will restrict our attention only to Gaussian pro-
cesses, which have driven the vast majority of research in this area. We need now to
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introduce the Gaussian kinematic formula (see [1, 58]); to this aim, let us first recall
the notion of Lipschitz—Killing curvatures. In the simplest setting of convex subsets
of the Euclidean space R4, Lipschitz—Killing curvatures (also known as intrinsic vol-
umes) can be defined implicitly by means of Steiner’s tube formula; to recall the latter,
for any convex d-dimensional set A C R? define the Tube of radius p around A as

Tube(A4, p) := {x eRY :d(x,A) < p}, d(x,A) = inf d(x,y),
yeA

where d (-, -) is the standard Euclidean distance. Then the following expansion holds:

d

jta{ Tube(4, p)} = Z wa—jp? I L;(A),
j=0

where £;(A) denotes the jth Lipschitz—Killing curvatures, uz(-) denotes the d-
dimensional Lebesgue measure, and

wj =

is the volume of the j-dimensional unit ball (wg = 1, w; =2, w2 = 7, w3 = %n).
Lipschitz—Killing curvatures can be shown to be additive and to scale with dimen-
sionality, in the sense that

L;(AA) = A £ (A) VA >0,
Lj(A1 U Az) = £ (A1) + £ (A2) — L (A1 N Az).

For j = d, it is immediately seen that &£;(A) is just the Hausdorff measure of A,
whereas for j = 0 we obtain £¢(A4) = ¢(A), the (integer-valued) Euler—Poincaré
characteristic of A. A more general definition of &£;(-) can be given for basic com-
plexes (i.e., disjoint union of complex sets), for which the following characterization
(due to Hadwiger, see [1]) holds:

Li(A) = 2d (d) /g P(ANgE,_;)u(dg), (2.2)

wd_ja)j Vi

where §; = R? x O(n) is the group of rigid motions, E;_ jisany d — j dimensional
affine subspace, and the volume form p(dg) is normalized so that

forall x e RY, A C R?, u{g:gx € Ay = #H(A),

where as before J# (-) denotes the Hausdorff measure. For instance, for 4 = S? it is
well known and easy to check that (2.2) gives

Lo(SH) =2, Li(S*) =0, £2(S?) =4z,
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which represent, respectively, the Euler—Poincaré characteristic, (half) the boundary
length, and the area of the 2-dimensional unit sphere.

2.3. The Gaussian kinematic formula

From now on, we shall restrict our attention to Gaussian processes f : M — R, which
we shall take to be zero-mean and isotropic, meaning as usual that E[ f(¢)] = 0 and
f(gt) 4 f(@) forallt € M Cc R and g € SO(d); more explicitly, the law of the
field f(-) will always be taken to be invariant to rotations. In order to present the
Gaussian kinematic formula, let us first introduce a Riemannian structure governed
by the covariance function of the field { f(-)}; more precisely, consider the metric
induced on the tangent plan 7; M by the following inner product [1, p. 305]:

¢/ (X:.Y):=E[X,f-Yif]. XY €T M.

This metric takes a particular simple form in case the field f(-) is isotropic; in these
circumstances, gf (-, -) is simply the standard Euclidean metric, rescaled by a factor
that corresponds to the square root of (minus) the derivative of the covariance density
at the origin.

Example 2.4. Consider the random spherical eigenfunction satisfying
Afe=—Xfe, fi:S*—=>R, £=0,1,2,...,

with

0+ 1)

E[fe()] =0, E[fe(x1) fe(x2)] = Pe({x1,x2)),  P{(1) = - >

Then the induced inner product is simply

L0+ 1
gl (x,y) = (T+)(X7Y>R3§

this change of metric can of course be realized by transforming S? into

Si/m = /Ag/2S2.

Let us now write cf]f (A) for the jth Lipschitz—Killing curvatures of the set A
under the metric induced by the zero-mean Gaussian field f; for instance, in the case
of spherical random eigenfunctions we get immediately

)
2l(s?) = xo(si/m) =2, 2f4s» =0 £I(s?) = 4n7‘5.
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For further notation, as in [1] we shall write

1 ;
pj(u) = WCXP(—uz/z)HJ‘—l(”) j=z1

2
pou) = 1 — du) = / o(t)dt.
1/2

where as usual ¢(¢) = (27)~ /2 exp(—12/2) denotes the standard Gaussian density
and we introduced the Hermite polynomials

2 dk 2
Hi(u) = (— 1)kexp(” )d e p(—”?), k=0,1,2,....ueR; (23)

for instance Ho(u) = 1, Hy(u) = u, Ho(u) = u?> —1,.... Finally, we shall introduce

the flag coefficients
d d wyq
= — k=0,1,...,d. 2.4
[k} (k) OkWd—k ’ -

We are now in the position to state the following.

Theorem 2.5 (Gaussian kinematic formula, [1, Theorem 13.4.1] and [58]). Under
regularity conditions, forall j = 0,1, ...,n one has that

—Jj
]E[:ﬁjf(Au(f; M))] Z [k + ]] pk(u)ikﬂ (M). 2.5)

Before we proceed with some examples, it is worth discussing formula (2.5). We
are evaluating the expected value of a complex geometric functional on a complicated
excursion set, in very general circumstances (under minimal regularity conditions on
the field and on the manifold on which it is defined). It is clear that the expected value
should depend on the manifold, on the threshold level, and on the field one considers,
and one may expect these three factors to be intertwined in a complicated manner.
On the contrary, formula (2.5) shows that their role is completely decoupled; more
precisely

 the threshold u enters the formula merely through the functions p; (1) which are
very simple and fully universal (i.e., they do not depend neither on the field nor
on the manifold);

e on the left-hand side Lipschitz—Killing curvatures appear, but they are computed
on the original manifold, not on the excursion sets, and they are therefore again
extremely simple to compute;
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e the role of the field f is confined to the new metric gf (-, -) that it induces and
under which the Lipschitz—Killing curvatures are computed on both sides; under
the (standard) assumption of isotropy, this implies only a rescaling of the manifold
by means of a factor depending only on the derivative of the covariance function
at the origin.

Example 2.6. Let us consider a zero-mean isotropic Gaussian field f defined on S¢
(the unit sphere in R4*1): its covariance function can be written as

o0

E[/() f(2)] = 3 22 CGyg (1. 3%2).

S
€0d+1

where 55411 = (d + 1)wg4 is the surface measure of s, Gy, (+) denotes the nor-
malized Gegenbauer polynomials of order ¢, whereas

2z+d—1(z+d—2) 2

ngq = 7 (1 NME , asl — oo,

is the dimension of the eigenspace corresponding to the {th eigenvalue Ay :=
£(£ + d — 1); here {Cy} is a sequence of non-negative weights which represent the so-
called angular power spectrum of the random field. The derivative of the covariance
function at the origin is

o0

=Y taly

d+1

Recall that the Lipschitz—Killing curvatures of the manifold S? := AS% are given by

£,;(As) =2 (‘f’) e

J /) Sd+1—j

for d — j even, and O otherwise, see [1, p. 179]. Then the Gaussian kinematic formula
reads

—J
E[‘f/f(Au(f;Sd) = Z (u)[ ]$k+j(ﬁgd)

&.?v'

- Z k(u)[ ]xk+,-(sd)u("+f’/2.

Example 2.7. As a special case of the previous example, assume that f = f; is
actually a unit variance random eigenfunction on S? corresponding to the eigenvalue
—£(l+1),£=0,1,2,....
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Then the Gaussian kinematic formula gives

E[£] (Au(f1:S%)] = E[Lo(Au(f; SZ))]

ags
=2{1 - o)} + —u¢( Y(4m) ——— ( + 1)
1a¢
E[£{* (4u(f6:87)] = p1 () m iZ(SZ){ ( ;1)}
so that 5 1/2
E[£1(44(fi:5%)] = ﬂexp(— %){—Z@; 1)} |
and finally

E[£2(Au(fe:SP)] = {1 — @(u)} £2(S?) = {1 — D(u) }47.

Example 2.8. In the special case of the nodal volume &£4_1(Ag (S%), fe¢) of random
eigenfunctions, i.e., half the Hausdorff measure of the zero-set of the eigenfunction,
the Gaussian kinematic formula gives

7 4 A d-1)/2 J
B[], (Au(f:5%)] = (7) B[ £4-1 (Au(fi:5)]
dj/2
L)

and £4(S?) = (d + 1)wg4 1, we have

= Pl(u)

n/ /2
r'(4$+1)

so that, recalling w; =

2 1/2
E[:ed_l(Au(ﬁ;Sd))]ziexp(—”—) dod o (Sd)()%)

2 2 Jwiwg—1 d

w2\ 7d/2 Ao 1/2
= exp ( — 7) y, (—) . (2.6)
r(g)\d

For u = 0 equation (2.6) was derived for instance in [6] (see [61]) and it is con-
sistent with a celebrated conjecture in [63], which states that for C*° manifolds the
nodal volume of any eigenfunction corresponding to the eigenvalue £ should belong
to the interval [c; VE,coE ] for some constants 0 < ¢; < ¢ < o0o. The conjecture
was settled for real analytic manifolds in [22]; for smooth manifolds the lower bound
was established much more recently; see [29—31] while the upper bound is addressed
in [32]. As a consequence of the results in the next two sections below in the case of
the sphere in a probabilistic sense, the upper and lower constants can be taken nearly
coincident, in the limit of diverging eigenvalues.
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3. Wiener chaos expansions, variances, and correlations

In view of the results detailed in Section 2, the question related to the expectation of
intrinsic volumes in the case of Gaussian fields can be considered completely settled.
The next step of interest is the computation of the corresponding variances, and the
asymptotic laws of fluctuations around the expected values, in the high-frequency
regime. The first rigorous results in this area can be traced back to a seminal paper
by Igor Wigman [61], where the variance of the nodal length (i.e., Len( f, S?) :=
2&1(Ao( f¢, S?))) for random spherical harmonics in dimension 2 is computed and
shown to be asymptotic to

log ¢
32
We shall start instead from the derivation of variances and central limit theorems for
Lipschitz—Killing curvatures of excursion sets at u # 0, although these results were
actually obtained more recently than (3.1).

Let us recall first the notion of Wiener chaos expansions. In the simplest setting,
consider Y = G(Z), i.e., the transform of a zero mean, unit variance Gaussian random
variable Z, such that E[G(Z)?] < oo; it is well known that the following expansion
holds, in the L2(Q) sense:

Var [ Len( f, S?)] = + Opsoo(1). (3.1

o0

Jqy(G
G(Z)=)_ qq(, 'y(2). (32)

q=0

where {H;(-)}4=0,1,2,... denotes the family of Hermite polynomials that we intro-
duced earlier in (2.3), and J,;(G) are projection coefficients given by J,(G) :=
E[G(Z)H4(Z)] (see, e.g., [24,46]). The summands in (3.2) are orthogonal, because
when evaluated on pairs of standard Gaussian variables Z;, Z,, Hermite polynomials
enjoy a very simple formula for the computation of covariances:

E[Hy, (Z1)Hyy(Z2)] = 8821 {E[Z1 Z2)} "' (3.3)

1

where 521]2 denotes the Kronecker delta. Equation (3.3) is just a special case of the cel-
ebrated diagram (or Wick’s) formula; see [46] for much more discussion and details.
We thus have immediately

_ q
Var{G(Z)} = Z o
q=0
More generally, let {Zy, ..., Z;, ...} be any array of independent standard Gaussian

variables, and consider elements of the form

Hy (Zy)---Hy,(Zp), q1+-+4qp =4q:
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the linear span (in the L2(2) sense) of these random variables is usually written as €y,
(denoted by the gth-order Wiener chaos; see again [46]) and we have the orthogonal

decomposition
o0
L*Q) =e,.
q=0

3.1. Wiener chaos expansions for random eigenfunctions

Let us now explain how these techniques can be pivotal for the investigation of fluc-
tuations of geometric functionals. We start from the simplest case, the excursion
volume/area for the 2-dimensional sphere, which we can write as

L2 i 5) = [Ty (fio0) d

I[u,00) (-) denoting the indicator function of the semi-interval [u, c0). It is not difficult
to show that

Jq (H[u,oo) (')) = ]E[]I[u,oo) (2)H, (Z)]
= [ B oz = 1w,
the last result following by integration by parts, under the convention that
(—DH 1)) :=1—D(u).

In view of (3.2), we thus have [40,41]

£2(Au(fi:S?)) = / Z( DY Hy 1 ()¢ () ———— (f‘( )
Z( D s (00,
where
iy = /S Ha(fu(w) dx
as a consequence, we have also
Var {£(Au(f:S?))} Z HZ  (w)¢>(u) Varhegh. (34

= ')2

The crucial observation to be drawn at this stage is that the variances of the com-
ponents {4} exhibit a form of phase transition with respect to their order g, in the
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high-frequency/high-energy limit £ — oco. In particular, a simple application of the
diagram formula (3.3), isotropy, and a change of variable yield

Varlheg) = [ B{H (i) Hy(fi3)} dx dy
= 8n2q! /ﬂ {Pg(cos 0)}q sin 0 do;
0

for instance, for ¢ = 2 we obtain exactly

g
Var{hg,,} = 2 x 8712/0 sz(cos 0)sinf db = 167‘[22£ T
Given two sequences of positive numbers a,, b,, we shall write a,, ~ b, when we
have that a,, /b, — ¢ as n — oo, ¢ > 0. By means of the so-called Hilb asymptotics
[57,61], it is possible to show that, as £ — oo [42],

! forg =2
1 tr
Var{hy.q} ~ 7% | Wl// dy ~ { £ 2logl forqg =4
{2 forg =3,5,....

Note that hg;; =0 forall £ =1,2,..., whereas the term for ¢ = 3 requires an ad-
hoc argument given in [34,40]. As a consequence, the dominant terms in the variance
expansion correspond to ¢ = 2 when H; (1) is non-zero, i.e., for u # 0; for u = 0 the
even-order chaoses vanish and all the remaining terms contribute by the same order
of magnitude with respect to £. In conclusion, we have that

L2 (Au(fe; Sz)) - E[cfz(Au(fe§ Sz))]
= %Hl w)p(u)her + Op(\/ log E/ﬁz), 3.5

and for u # 0
Var {£2(Au (f2:$%))} ~ {%H1 (u)qﬁ(u)}zVar{hg;z}, as £ — oo.
Because
hia = [ Af20) =1} dx = | fel o ~ Bl el )

equation (3.5) is basically stating that the fluctuations in the excursion area for u # 0
are dominated by the fluctuations in the random norm of the eigenfunctions.
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Interestingly, the same behaviour characterizes also the other Lipschitz—Killing
curvatures; for the boundary length we have the expansion

221 (44 559) = limy [ |9 o8 (fe) =) v

which holds both @ almost surely and in L?(Q2); here we write §.(-) = %I[(-). Simi-
larly for the Euler—Poincaré characteristic we have

Lo(Aufi5%) = lim [ det {7 fu(0)}3:(7 fo00) o) (o) .

Similar arguments can be developed, expanding the integrand function into poly-
nomials evaluated on the random vectors {V?2 f;(-), V f¢(+), fe(-)}; algebraic simplifi-
cations occur and the expansions read as follows.

Theorem 3.1. As { — oo, for j =0,1,2
£ (Au(fe. $) —E[Z; (Au(fi:S?))]

= _% [2 E j] up’z_j(u)()tg/z)(Z—j)/z /Sz H>(fe(x))dx + Rg;j.  (3.6)

where
E[R%,]] = 0(—)00(63_2]);

as a consequence, one has also the variance asymptotics

. 2
Var {£; (Au(fe:S?))} = %{ [2 : }up’z_ (A /2)(2‘”/2}

327'[2 2

—j—1
st FoeOTh. (3.7)

X

Some features of the previous result are worth discussing.

e The asymptotic behaviour of all the Lipschitz—Killing curvatures is proportional
to a sequence of scalar random variables {/¢.> }¢en. As a consequence, these geo-
metric functionals are fully correlated in the high-energy limit £ — co.

e For the same reasons, these functionals are also fully correlated, in the high-
energy limit, when evaluated across different levels u;, u,: for the boundary
length, this correlation phenomenon was first noted in [62].

e The leading terms all disappear in the “nodal” case u = 0, where the variances
are hence an order of magnitude smaller. This is an instance of the so-called
Berry cancellation phenomenon [61], to which we shall return in Section 4. We
noted before that the leading terms are proportional to the centred random norm;
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it is thus natural that these terms should disappear in the nodal case, which is
independent of scaling factors. Note that for j = 0 the cancellation of the leading
term occurs also at u = 1.

Remark. The proof of Theorem 3.1 was given in [11], in the case of the 2-dimen-
sional sphere S2. However, we conjecture the result to hold as stated for spherical
eigenfunctions in arbitrary dimension; see below for more details. Extensions have
also been given to cover for instance the 2-dimensional torus (see [14]), for which a
formula completely analogous to (3.1) holds.

Similar results can be shown to hold for other geometric functionals; let us con-
sider for instance critical values, defined by

Nu(fe:S?) =#{x € S*: V fy(x) = 0and fy(x) > u}.

The asymptotic variance of {N, ( f¢; Sz)}gzl,z,m was established in [15, 16], and in
particular we have

IE[Nu(fe;SZ)] = Aeg1(u),
_ ; R 2 _1),—t%/2
g1(u) = m/u (27" 4+ (7 = 1)e ) di
= u¢(u) +V2(1 = o(v2u)),

Var [Wa(:67)] = §A28300) Var { /S Ha(fu(x) dx} t 0tme(6)

2
PR S+ o),

where

o0
1
g2(u) =/ Fe—”z/z(z—&z —e (1 -4t + %) dt.
u T

Later in [12] it was shown that the critical values above the threshold level u satisfy
the asymptotic

M (f1:8?) —E[ M (fe:S7)]
= ) /S (/i) dx + oy (Var [N f:52)]),

As a consequence, one has also, for all u # 0, 1, the correlation result

Corr® {Mu (f55%), Z; (Au(fe: 7))}
_ Cov? {Mu(fi:8%). £ (Au(fe:S?))}
Var { Ny, (f2; S?)} Var {£; (Au(fe: S?))}

— 1, asf — oo;
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the value u = 1 has to be excluded only for j = 0. We also have that
Corr? {Mu, (o3 S?), N, (fe; SZ)} —1, asf — oo,

that is, asymptotically full correlation between the number of critical values above
any two non-zero thresholds v, u5.

As for the Lipschitz—Killing curvatures, a form of Berry’s cancellation occurs
at u = 0 and u — +o00; the total number of critical points has then a lower-order
variance (see [16]), as we shall discuss in Section 4.

3.2. Quantitative central limit theorems

The results reviewed in Section 3.1 can be considered as following from a reduction
principle (see [20]), where the limiting behaviour of {N, (f¢; S?), £;(Au(f2; S?))}
is dominated by a deterministic function of the threshold level u, times a sequence of
random variables {/;,,} which do not depend on u. To derive the asymptotic law of
these fluctuations, it is hence enough to investigate the convergence in distribution of
{he;2}, as £ — oo. In fact, it is possible to show a stronger result, namely a quantitative
central limit theorem; to this aim, let us recall that the Wasserstein distance between
two random variables X and Y is defined by

’

dw(X.Y):= sup |ER(X)—Eh(Y)
heLip(1)

where Lip(1) denotes the class of Lipschitz functions of constant 1; i.e., |h(x) —
h(y)| <|x — y|forall x,y € R. Dy (-,-) defines a metric on the space of probability
distributions (for more details and other examples of probability metrics; see [46,
Appendix C]). Taking Z ~ N(0, 1) to be a standard Gaussian random variable, a
quantitative central limit theorem is defined as a result of the form

X, —EX,
lim dW(u Z) =0

n—>00 v/ Var(Xp) ’

The field of quantitative central limit theorems has been very active in the last few
decades; more recently, a breakthrough has been provided by the discovery of the so-
called Stein—Malliavin approach by Nourdin, Peccati, and Nualart [45,46,48]. These
results entail that for sequences of random variables belonging to a Wiener chaos,
say €, a quantitative central limit theorem for the Wasserstein distance can be given
simply controlling the fourth-moment of X,,, as follows:

(xn—ﬂ«:xn z)< 242 | (Xn—EXn)“ _3 68
"\ Narx,) ")~ 3mg V/ Var(X,) ' '
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Similar results hold for other probability metrics, for instance the Kolmogorov and
total variation distances; see again [46].

Quantitative central limit theorems lend themselves to an immediate application
for the sequences {4} that we introduced above. It should be noted indeed that by
construction all these random variables belong to the gth-order Wiener chaos; it is
then possible to exploit (3.8) to obtain quantitative central limit theorems for these
polyspectra at arbitrary orders: their fourth moment can be computed by means of
the diagram formula. These results were first given in [40] and then refined in [37],
yielding the following.

Theorem 3.2. As £ — oo, one has

O(JLZ) forq =2,3,

hig — Elhig] )
dW<¥,Z —10(sY,) forg=4
/ ) ogl ’
Varlheo) OWU~Y*) forq=5.6,....

Now, we have just shown that for nonzero thresholds u # 0 the Lipschitz—Killing
curvatures and the critical values are indeed proportional to a term belonging to the
second-order chaos, plus a remainder that it is asymptotically negligible. The follow-
ing quantitative central limit theorem then follows immediately (see [11,40,50]).

Theorem 3.3. As £ — oo, foru # 0(j = 1,2) and foru # 0,1 (for j = 0) one has
that

p (:ﬁj(Au(fe;Sz))—E[:ﬁj(Au(fg;Sz))]
w

,z) = oW ?).
JVar (£ (4u(:5%)))

3.3. A higher-dimensional conjecture

The results we discussed so far have been limited to random-spherical harmonics
on the 2-dimensional sphere S2. Research in progress suggests however that further
generalizations should hold: to this aim, let us define the set of singular points P; :=
{ueR: up} (u) = 0} (for instance, Py = Py = {0}, P, ={0,1}, P3 ={0,++/3},...).
Let us now consider Gaussian random eigenfunctions on the higher-dimensional unit
sphere s4: e.g.,

Asd fo.a = —Aed feas Aea =L +d —1);
these eigenfunctions are normalized so that (see [37,51])
Elfeal =0. E[fZ)=1. E[fea®) fea()] = Grap((x.y)).

where as before Gy.4/2(-) is the standardized £th Gegenbauer polynomial of order %
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(normalized with Gg.4/,(1) = 1); it is convenient to recall that

Atzd
G,. 1) = —.
l,d/z( ) d
We recall also that the dimension of the corresponding eigenspaces is
204+d—-1(04+d—-2 2 d—1
’”;d_T( 01 )” @—nit - wtoe

By means of Parseval’s equality we have also as a consequence

252 2(d + 1)%w?
Var|:/ Hz(fg;d(x)) dxi| = %d = ( ) Cha
sd ng.d ng.d
(d + 1)2w§+1(d -1
~ gd—1

as { — oo.

We then propose the following.

Conjecture 3.4. As{ — oo, forallk =0,1,...,d one has that

Lic(Au(f1:89)) — E[£i(Au(f2:59))]
1147, Aea \ 40P
— 5[] s (P) [ A aten a

+ Op(,/gd—zkﬂ )
Remark. An immediate consequence of this conjecture would be

Li(Aulfe8D) “B[Le (/eSO __ heg
- p (D).

JVar [£(Au( fi:59)] JVar [he.q (2)]

g = [ Halfia0) d.

Remark. The remainder term in Conjecture 3.4 is expected to be O(+v/£4~2k), in the
L?(R2) sense.
Three further consequences of Conjecture 3.4 would be the following.

e (Variance asymptotics). As £ — oo, forall k = 0,1, ..., d and for non-singular
points u ¢ Pg_g, one has

Var { L1 (Au(f2:S9))}
CHIL@Pau?  dl ool (d + 128

Qrd) @0 (d —k)k! w20, 2ngq

+ O(Zd_2k+l).



D. Marinucci 354

o (Central limit theorem). As £ — oo, forallk =0, 1,...,d and for non-singular
points u ¢ Pj_j, one has

dw(i’ik(Au(fe;Sd)) — E[£k (4u(f1:89)] Z) =o(1)
\/Var [£x(Au(fe:S)]

where Z ~ N (0, 1).

o (Correlation asymptotics). As £ — oo, forall ki, k, = 0,1,...,d and all uq, u,
such that wyus Hg g, (u1)Hg—,(u2) # 0, one has

Jim Cor? (£, (Au(f:59). Liy (Au(f125D)) = 1.

The driving rationale behind these conjectures is the ansatz that the asymptotic
variance of the geometric functionals should be governed by fluctuations in the ran-
dom L?(S%) norm of the eigenfunctions, for non-singular points u ¢ P;. In this sense,
we believe the result has even greater applicability, for instance to cover combina-
tions of random eigenfunctions defined on more general submanifolds of R”, such as
Berry’s random waves or ‘“‘short windows” averages of isotropic random eigenfunc-
tions on general manifolds (see [7, 8, 18,21,47, 64]). These issues are the object of
currently ongoing research.

4. Nodal cases: Berry cancellation and the role of the fourth-order
chaos

Section 4 has discussed the behaviour of geometric functionals for non-zero threshold
levels u # 0; under isotropy, it has been shown that all these functionals are asymptot-
ically proportional, in the L?(2) sense, to a single random variable representing the
(centred) random L?(S?)-norm of the eigenfunction. This dominant term has been
shown to disappear in the nodal case u = 0 (and, more generally, for p/;_, (u)u =0,
i.e., for the singular points u € P;); the asymptotic behaviour must then be derived
by a different route in these circumstances.

As mentioned above, the first paper to investigate the variance of the nodal length
for random spherical harmonics was the seminal work by Igor Wigman [61], which
made rigorous an ansatz by Michael Berry in the physical literature [8]. In particular,
by using a higher-order version of the expectation metatheorem (see again [1,3]) the
following representation for the second moment of the nodal length can be given:

Bl{Len(fii )] = [ BIRT AT @} | e =0 fi) =0

X Pfet), fe(t2) (0, O)Gg (dtl)ag (dtz),
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where as before we write Len( f¢; S?) = 2£1(Ao( f¢; S?)) for the nodal length. The
integrand in the previous formula is denoted by the 2-point correlation function of the
nodal length and generalizes the Kac—Rice argument to second-order moments; anal-
ogous generalizations are possible for the other geometric functionals we considered
and for higher-order moments as well (see [1]). By means of a challenging and care-
ful expansion of this correlation function and a deep investigation of its behaviour for
{ — oo, Wigman was able to investigate the asymptotic for the variance of the nodal
length and to show that (3.1) holds.

A natural question which was investigated shortly after this seminal paper was
the possibility to derive the asymptotic variances of nodal statistics, and further char-
acterizations such as the law of the asymptotic fluctuations, in terms of the Wiener
chaos expansions that we discussed in Section 3. The first efforts were devoted to
the analysis of the “nodal area” £, (Ao ( f¢; S?)), for which it is easily shown that all
even-order terms vanish at u = 0; from (3.4) we are then left with (see [42])

Var {£2(40(f2;S%))} = i2 >
g=1

C2g+1 172 )
S HE0) +0(C),

where

T
eag1 = Jim 02 / P77 (cos 0) sin 0d0
e 0

oo 0 iNk+1 2k
= [T wpa. s = Y S S
0 k=0 '

The computation of the variance and the results in Theorem 3.2 lead easily also to
a central limit theorem, which was given first in [40] and then extended to higher
dimensions in [50].

Theorem 4.1 ([40]). As { — oo, one has
dw (iz(Aom; 5) — El£a(40(£1:57)] Z) =o().
\/Var {£2(A0(f2:S?))}

and hence

£2(A0(fe:S?)) —E[£2(A0(fe:S?))]
JVar {2 (Ao (f2:5%)}

The proof of the previous result is standard; in short, the idea is to write

—q N(0,1).

M (_1)2k+1
£2(A0(f1:S%) —E[L2(A0(fe:S%))] = Z msz(MW(u)hé;zkH + Ry,
k=1 )
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where the remainder term is such that, as M — oo,

00 (_1)2k+1
Ri= 3 Gy o 0p@heais = op(yVar {£2(40(:52)} ).

k=M+1

It is then enough to show that the central limit theorem holds for M (sufficiently large
but) finite; this can be achieved by an application of the multivariate fourth moment
theorem to the terms (/3. . .., hg.2p41) (see [46]). It should be noted that in the case
of the defect the limiting behaviour depends on the full sequence {h¢.2x+1}k=12,..;
this is due to the exact disappearance of the two natural candidates to be leading
terms, that is, {/g.;»} and {f.4}, both whose coefficients vanish for u = 0.

It is thus even more remarkable that for the nodal lines the situation simplifies
drastically to yield the following result.

Theorem 4.2 ([39]). As £ — oo, one has

1 2 1
Len(fi:§%) — E[ Len(f:8%)] = — %th;4+o,,(,/Var{he;4}), @.1)

and hence, in view of (3.2)
.Q2) _ .Q2
W(Len(fg,S ) —E[Len(f¢; S )]72) — o)),
\/Var {Len(f;:S?)}

The most notable aspect of Theorem 4.2 is that the limiting behaviour of nodal
lines is asymptotically fully correlated with the sequence of random variables {/4.4},
so that in principle it would be possible to “predict” nodal lengths by simply comput-
ing the integral of a fourth-order polynomial of the eigenfunctions over the sphere.

A natural question that arises is the structure of correlation among functionals
evaluated at different thresholds and those considered for the nodal case u = 0.
Focussing for instance on the boundary length, it is immediate to understand that
the latter, which is dominated by the second-order chaos term {/y.>} when u # 0,
must be independent from the nodal length, which is asymptotically proportional to
{hg.a}. A more refined analysis, however, should take into account the fluctuations of
the boundary length when the effects of the random norm || f¢||12(s2) is subtracted,
that is, dropping the second-order chaos term from the Wiener expansion. This cor-
responds to the evaluation of the so-called partial correlation coefficients Corr™, for
which it was shown in [38] that

Jim Corr™ (Len(f¢: S?), £1(Au(fe:S?)) = 1.

More explicitly, when compensating the effect of random norm fluctuations, the
boundary length at any threshold u# # 0 can be fully predicted on the basis of the
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£j(u1) &£jwz) Len(0) Len"(u) &L2(0) M, Nowo

Li(u1) 1 1 0 0 0 1 0
Lj(uz) 1 1 0 0 0 1 0
Len(0) 0 0 1 1 0 0 1
Len*(u) 0 0 1 1 0 0 1
£(0) 0 0 0 0 1 0 0
Ny 1 1 0 0 0 1 0
N_oo 0 0 1 1 0 0 1

Table 1. The limiting value of Corr? (,°),as £ — oc.

knowledge of the nodal length, up to a remainder term which is asymptotically neg-
ligible in the limit £ — oo. It is interesting to note that a similar phenomenon occurs
also for the total number of critical points, for which (building on earlier computations
in [16]) it was shown in [13] that

Ae
LQ2y .Q2 _ M 2 .
N_oo(f2:S?) E[N_oo(fg, S )] = 2332\/§7rh£;4 + 0p,(£7 log l);

as a consequence, the nodal length of random spherical harmonics and the number of
their critical points are perfectly correlated in the high-energy limit:

Zlim Corr? (Len(fg; S?), Neoo( f: Sz)) =1

Let us now denote by Len* (1) the boundary length at level u after the fluctuations
induced by the random norm have been subtracted (e.g., after removing its projection
on the second-order chaos); moreover, for brevity’s sake we write

Zj(Au(fe:S%) = L), j =012,
Nu(fe:$?) = Nu,  Len(fy:S?) = Len(0),
so that N_ is the total number of critical points and £, (0) is the excursion area for

u = 0. The correlation results that we discussed so far can be summarized in Table 1;
here, we denote by uy, u> # 0, 1 any two non-singular threshold values.

5. Eigenfunctions on different domains

For brevity and simplicity’s sake, this survey has focussed only on the behaviour of
random eigenfunctions on the sphere. Of course, as mentioned in Section 1, this is just
a special case of a much broader research area, including for instance eigenfunctions
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on R? and on the standard flat torus T¢ := R?/Z¢. We do not even attempt to do
justice to these developments, but it is important to mention some of them which are
particularly close to the results we discussed for S2.

5.1. Eigenfunctions on the torus: arithmetic random waves

Eigenfunctions on the torus were first introduced in [52] and have then been studied
by several other authors; see for instance [10,23,26,33,36,53,54] and the references
therein. In dimension 2 these eigenfunctions (arithmetic random waves) are defined
by the equations

ATzfn +Efn=0, E,=4mn, n= a? +b2,

for a, b € 7Z; the dimension of the nth eigenspace is N, := Card{a,b € Z :
a? + b? = n}, while the expected value of nodal lengths is [52]

VE,
242

A major breakthrough was then obtained with the derivation of the variance in [26].
In this paper, the authors introduce a probability measure on S! defined by

1
() = Y San(),

" ab:a2+b2=n

E[ Len(f: T?)] =

(a,p) (+) denoting the Dirac measure; its kth-order Fourier coefficients are defined by
Hn(k) := [s1 exp(ikO)nn(dB). In [26] it is then shown that the variance of nodal
lengths has a non-universal behaviour and is proportional to

L+ fin(4)* En

Var{Len(fn;Tz)} = =13 N2
n

E
ol =21, asn — ocos.t N, > oco.
N7

It was later shown in [36] that the behaviour of Len(T?, f,,) is dominated by its
fourth-order chaos component, similarly to what we observed above for random
spherical harmonics (the result on the torus was actually established earlier than the
corresponding case for the sphere). More precisely, we have that

Len(f,: T?) — E[ Len(fn: T?)]

= Z Proj [ Len( f,: T?)|2¢]

q=2

= Proj [ Len( fy: T2)|4] + op(\/Var{Len(fn; T?2)} )
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where Proj[-|¢] denotes projection on the gth-order chaos. On the contrary of what we
observed for the case of the sphere, here it is not possible to express the fourth-order
chaos as a polynomial functional of the random eigenfunctions { f } alone. Moreover,
the limiting distribution is non-Gaussian and non-universal; i.e., it depends on the
asymptotic behaviour of lim; o [in; (4) which varies along different subsequences
{n;}j=1,,.. (the attainable measures for the weak convergence of the sequences
{in; ()}nen have been investigated in [26,27]). Further results in this area include
[10,44] for arithmetic random waves in higher dimension and [28] for the excursion
area on subdomains of T2; as mentioned earlier, an extension of Theorem 3.1 to the
torus has been given in [14]. It should be noted that arithmetic random waves can be
viewed as an instance of random trigonometric polynomials, whose zeroes have been
studied, among others, in [2,4].

5.2. The Euclidean case: Berry’s random waves

Spherical harmonics on the sphere S? are known to exhibit a scaling limit; i.e., after
a change of coordinates they converge locally to a Gaussian random process on R?
which is isotropic, zero mean, and has covariance function

1)k 2k

_ 2 _y &
E[f(0)f0)] = Jo@xllx = yl). x.y € R, Jo(z) i= Z T
here Jo(-) corresponds to the standard Bessel functions, for which the following scal-
ing asymptotics hold:

Pg(cos %) oo Jo(W), ¥ ER.

The behaviour of nodal lines ££(f) = {x € R?: f(x) = 0, ||x|| < 27+E} can
then be studied in the asymptotic regime E — o0; this is indeed the physical set-
ting under which Berry first investigated cancellation phenomena in his pioneering
paper [8]. The topology of nodal sets for Berry’s random waves was studied in [17,
43, 55] and others. Concerning nodal lengths, a (quantitative) central limit theorem
was established in [47], where intersections of independent random waves were also
investigated; more recently, [60] proved a result analogous to Theorem 4.2, namely
that, as £ — oo,

Le(f)-E[Le(f)]

2_324_"’\/7/|XH<2MF (f) dx +op(Var{2p (1)), 6.1)

We expect that results analogous to (4.1) and (5.1) will hold for more general Rie-
mannian waves on 2-dimensional manifolds [64]; extensions to random waves in R3
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have been studied, among others, in [18], but in these higher-dimensional settings it is
no longer the case that nodal volumes are dominated by a single chaotic component.

5.3. Shrinking domains

As a final issue, we recall how some of the previous results can be extended to shrink-
ing subdomains of the torus and of the sphere. In this respect, a surprising result was
derived in [5] concerning the asymptotic behaviour of the nodal length on a suitably
shrinking subdomain B, C T?; indeed it was shown that, for density one subse-
quences in n,

lim Corr (Len(T?, f,),Len(T? N By, f,)) = 1,
n—>oo

entailing that the behaviour of the nodal length on the whole torus is fully determined
by its behaviour on any shrinking disk Bj, provided the radius of this disk is not
smaller than n~'/2%¢_ some ¢ > 0. Of course, the asymptotic variance and distribu-
tions of the nodal length in this shrinking domain are then immediately shown to be
the same as those for the full torus, up to a normalizing factor. Interestingly, the same
phenomenon does not occur on the sphere, where on the contrary it was shown in
[59] that
lim Corr (Len(Sz, f1),Len(S? N By, /) =0,

{—o00

so that the nodal length when evaluated on a shrinking subset By of the 2-dimensional
sphere is actually asymptotically independent from its global value; in the same paper,
it is indeed shown that (4.1) generalizes to

Len(S® N By, f;) — E[Len(S* N By, f7)]

1 21
=-3 \/gzhm(Be) +o0p (\/ Var {hg.4(Be)} ) (5.2)
hea(Bo = [ Ha(futo) d

from this characterization, a central limit theorem follows easily along the same lines
that we discussed in Section 4; see [59] for more details and discussion.
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Looking at Euler flows through a contact mirror: Universality
and undecidability

Robert Cardona, Eva Miranda, and Daniel Peralta-Salas

Abstract. The dynamics of an inviscid and incompressible fluid flow on a Riemannian man-
ifold is governed by the Euler equations. In recent papers by Cardona, Miranda, and Peralta-
Salas, several unknown facets of the Euler flows have been discovered, including universality
properties of the stationary solutions to the Euler equations. The study of these universality
features was suggested by Tao (2019) as a novel way to address the problem of global exis-
tence for Euler and Navier—Stokes. Universality of the Euler equations was proved by Cardona
et al. (2019) for stationary solutions using a contact mirror which reflects a Beltrami flow as a
Reeb vector field. This contact mirror permits the use of advanced geometric techniques in fluid
dynamics. On the other hand, motivated by Tao’s approach relating Turing machines to Navier—
Stokes equations, a Turing complete stationary Euler solution on a Riemannian 3-dimensional
sphere was constructed by Cardona et al. (2021). Since the Turing completeness of a vector
field can be characterized in terms of the halting problem, which is known to be undecidable
(as shown by Turing (1936)), a striking consequence of this fact is that a Turing complete Euler
flow exhibits undecidable particle paths (as shown by Cardona et al. (2021)). In this article, we
give a panoramic overview of this fascinating subject, and go one step further in investigating
the undecidability of different dynamical properties of Turing complete flows. In particular, we
show that variations of the work of Cardona et al. (2021) allow us to construct a stationary
Euler flow of Beltrami type (and, via the contact mirror, a Reeb vector field) for which it is
undecidable to determine whether its orbits through an explicit set of points are periodic.

1. Introduction

Back in 1936, Turing faced a fundamental question which had been driving the atten-
tion of many mathematicians since the 1920s: Is there an answer for the decision
problem for first-order logics? A decision problem can be posed as a yes/no ques-
tion depending on the input values. Decidability is the problem of the existence of
an effective method, a test or automatic procedure to know whether certain premises
entail certain conclusions. The halting problem is one of the first decision problems

2020 Mathematics Subject Classification. Primary 35Q31; Secondary 37J06, 03D78, 57R17.
Keywords. Euler equations, Reeb flows, Turing completeness, universality.
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which was proved to be undecidable. Indeed, Alan Turing [32] proved that a general
algorithm that solves the halting problem cannot exist (for all possible program-input
pairs). In doing so, he, fortuitously, invented the basic model of modern digital com-
puters, the so-called Turing machine.

The undecidability of the halting problem yields a cascade of related questions:
What kind of physics might be non-computational? (Penrose [21]) Is hydrodynam-
ics capable of performing computations? (Moore [19]). Given the Hamiltonian of a
quantum many-body system, does there exist an algorithm to check whether it has a
spectral gap? (this is known as the spectral gap problem, recently proved to be unde-
cidable [10]). And last but not least, can a mechanical system (including a fluid flow)
simulate a universal Turing machine? (Tao [27,28,30]).

Surprisingly, this last question is connected with the regularity of the Navier—
Stokes equations [26], one of the unsolved problems in Clay’s list of problems for
the Millennium. In [29], Tao speculated on a relation between a potential blow-up
of the Navier—Stokes equations, Turing completeness, and fluid computation. This
is part of a more general program he launched in [26,27,29] to address the global
existence problem for Euler and Navier—Stokes based on the concept of universality.
Inspired by this proposal, in [8] we showed that the stationary Euler equations exhibit
several universality features, in the sense that, any non-autonomous flow on a compact
manifold can be extended to a smooth stationary solution of the Euler equations on
a Riemannian manifold of possibly higher dimension. As a corollary, we established
the Turing completeness of the steady Euler flows on a 17-dimensional sphere [8]. It
is then natural to ask: Can this dimensional bound be improved?

We solved this problem affirmatively in [9] constructing stationary solutions of
the Euler equations on a Riemannian 3-dimensional sphere that can simulate any
Turing machine (i.e., they are Turing complete). In particular, these solutions exhibit
undecidable paths in the sense that there are constructible points for which it is
not possible to decide whether their associated trajectories will intersect a certain
(explicit) open set or not. The type of flows that we considered are Beltrami fields,
a particularly relevant class of stationary solutions. Our game plan combines the
computational power of symbolic dynamics with techniques from contact topology.
Contact topology enters into the scene because Beltrami fields correspond to Reeb
flows under a contact mirror unveiled by Sullivan, Etnyre, and Ghrist more than two
decades ago. The contact mirror thus reflects a problem in Fluid Dynamics as a prob-
lem in contact geometry and back.

The existence of Turing complete Euler flows gives rise to new questions concern-
ing undecidability of different dynamical properties. One of the potential problems
to consider is that of periodic orbits: ever, at least since the work of Poincaré [24],
periodic orbits are known to be one of the major tools to understand the dynamics
of Hamiltonian systems. Even though not every Hamiltonian system admits periodic
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orbits, the Weinstein conjecture asserts that under some topological (compact) and
geometrical (contact) conditions on the manifold, Reeb vector fields admit at least
one periodic orbit. The Weinstein conjecture is known to be true in dimension 3, so
using our contact mirror we can conclude that the Turing complete Reeb flow we
constructed in [9] has at least one periodic orbit (in fact, in our construction the Reeb
vector field coincides with a Hopf field in the complement of a certain solid torus, so
it has infinitely many periodic orbits). It is then natural to ask if for every point of the
sphere it is possible to decide whether its corresponding orbit will be closed or not.
We shall see in this article that such a decision problem has no answer. The undecid-
ability of other dynamical properties of Reeb flows will be also discussed. In view
of Godel’s incompleteness theorems, undecidability of such properties of dynamical
systems seems to be an unsurmountable obstacle no matter what systems of axioms
are considered.

Our goal in this article is to give an overview of this exciting area of research.
Let us summarize the contents of this work. Next, in this introduction, we present the
Euler equations and the Beltrami fields on Riemannian manifolds, in Section 1.1, and
the connection between contact geometry and hydrodynamics (in particular, between
Beltrami fields and Reeb flows), in Section 1.2. In Section 2, following [8], we
introduce the theory of Reeb embeddings and their flexibility (in the form of a new
h-principle), and apply it to prove several universality features of the stationary Euler
flows in high dimensions. The construction of a Turing complete Reeb field on a 3-
dimensional sphere [9] is presented in Section 3; as a novel feature, we show how
variations of this result allow us to prove the existence of Reeb fields exhibiting
different undecidable dynamical properties, including periodic orbits. Finally, in Sec-
tion 4 we recall the main theorem of [7] establishing the existence of Turing complete
time-dependent solutions to the Euler equations (on compact Riemannian manifolds
of very high dimension), and discuss the implications of our results regarding com-
putability with the Navier—Stokes equations.

1.1. The Euler equations on Riemannian manifolds

The Euler equations describe the dynamics of an incompressible fluid flow without
viscosity. Even if they are classically considered on R>, they can be formulated on
any n-dimensional Riemannian manifold (M, g), n > 2 (for an introduction to the
geometric aspects of hydrodynamics see [2,22]). The equations can be written as

2X +VxX =-Vp,
divX =0,

where p stands for the hydrodynamic pressure and X is the velocity field of the fluid
(a non-autonomous vector field on M). Here Vx X denotes the covariant derivative
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of X along X. A solution to the Euler equations is called stationary whenever X does
not depend on time, i.e., %X = 0, and it models a fluid flow in equilibrium.

This extension of the Euler equations to high dimensional manifolds turns out
to be very useful to show that the steady and time-dependent Euler flows exhibit
remarkable dynamical [8] (see also [28,30,31]), computational [7] or topological [5]
universality features. For non-specialists, we refer to [18] for an introduction to dif-
ferential geometry.

A short comprehensive dictionary.

e A volume-preserving (autonomous) vector field X on M is Eulerisable [23] if
there exists a Riemannian metric g on M compatible with the volume form, such
that X satisfies the stationary Euler equations on (M, g):

VxX =-Vp, divX =0 (1.1)

for some pressure function p.

e A divergence-free vector field X on an odd-dimensional manifold (M, g) of
dimension n = 2m + 1 is Beltrami if

curl X = fX,

for some factor f € C°°(M). The curl of X is defined as the unique vector field
Y = curl X that satisfies the equation

ypu = (dx"m, (1.2)

where p is the Riemannian volume form, the symbol b stands for the musical
isomorphism associated to the metric g, and ty u denotes the contraction of w
with Y. The classical Hopf fields on the round sphere S?”*! and the ABC flows
on the flat 3-torus T3 are examples of Beltrami fields.

1.2. Contact hydrodynamics

Let M?™%1 be an odd-dimensional manifold equipped with a hyperplane distribu-
tion £. Assume that there is a globally defined non-vanishing one-form a € Q1 (M)
with ker @ = £ and satisfying o A (da)™ > 0 everywhere; i.e., it defines a volume
form in M. Then we say that (M 2™+ &) is a (cooriented) contact manifold.

The one-form « is called a contact form. Of course, the contact structure £ does
not depend on a particular choice of the defining contact one-form «, any other one-
form & - o with & a positive function in M is a contact form defining & as well. The
contact condition o A (da)™ > 0 implies that do induces a fiber-wise symplectic
structure on the hyperplane distribution & (of even dimension 2m). The unique Reeb
vector field R associated to a given contact form ¢ is uniquely determined by the
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equations
tre =1, (gda = 0. (1.3)

These equations imply that the flow of R preserves the contact form, so, in particular,
it preserves o A do and hence R is a volume-preserving vector field. In contrast with
the hyperplane distribution, the Reeb field can display drastically different dynamics
depending on the particular choice of contact form.

We will now explain the connection between contact geometry and hydrodynam-
ics. In order to understand this remarkable correspondence, it is convenient to rewrite
the Euler equations in a dual language. Duality is given by contraction with the Rie-
mannian metric g. With the one-form « defined as o := X" and the Bernoulli function
asB:=p+ % g(X, X), the steady Euler equations can be equivalently formulated as

ixda = —dB,
dixpu =0,

where p is the Riemannian volume form.
Observe that the following hold.

e Theequationcurl X = fX, with f € C°(M), satisfied by a Beltrami vector field
on an odd-dimensional manifold, can be equivalently written as (da)™ = fix u.
This follows from equation (1.2), that determines the curl of X, and the fact that
a = X". Assume that X is rotational, i.e., f > 0, then if X does not vanish on
M we infer that

aAn(da)” = fanixu >0,

thus proving that o defines a contact structure on M .

e Obviously, X satisfies tx (da)™ = fixtx u = 0. Therefore, since « A (da)™ > 0,
it is easy to conclude that X € ker do, and hence it is a reparametrization of the
Reeb vector field R by the function «(X) = g(X, X). Indeed, the vector field

R = % satisfies equations (1.3).

These observations prove one of the implications of the following theorem, which
is due to Etnyre and Ghrist [12].

Theorem 1.1. Let M be a Riemannian odd-dimensional manifold. Any smooth, non-
singular rotational Beltrami field on M is a Reeb-like field for some contact form on
M. Conversely, given a contact form o on M with Reeb field X, any nonzero rescal-
ing of X is a smooth, nonsingular rotational Beltrami field for some Riemannian
metric on M.

Remark 1. The original proof by Etnyre and Ghrist is for three-dimensional mani-
folds. The fact that the correspondence holds on any odd-dimensional manifold was
detailed in [8]. See also [6] for an extension of this result to »-manifolds.
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2. Embedding dynamics into Reeb flows

In [8], we studied several universality features of the stationary Euler equations. In
view of the correspondence established in Theorem 1.1, we can reformulate the ques-
tion of embedding dynamics into steady Euler flows in terms of Reeb flows. Let us
fix a nonvanishing vector field X on a compact manifold N and some compact con-
tact manifold (M, &) of dimensions n < m, respectively. The question we answer in
this section is the following: Can we give sufficient conditions for the existence of
an embedding e : N <> M and a contact form o € Q!(M) defining £ such that the
Reeb field R satisfies exX = R|,(n)? In other words, can we find conditions which
ensure the existence of a Reeb field, whose contact form defines &, such that e(N) is
an invariant submanifold of R and where the Reeb field coincides with X ?

2.1. Flexibility of Reeb embeddings

We will address the question above using a classical framework for flexibility prob-
lems in contact geometry: the homotopy principle. The world of contact geometry
exhibits a lot of flexibility which reduces geometrical problems to their associated
purely homotopical algebraic problems. The pioneering work of Gromov [15] showed
that this approach is extremely fruitful for symplectic and contact geometrical prob-
lems. Some of Gromov’s results in contact geometry were generalized in [4] when
the ambient manifold is closed and the contact structure is “overtwisted”. We will not
introduce this notion here, the only thing that we need in our discussion is that being
“overtwisted” is a property that a given contact structure may satisfy.

A first observation concerning our motivating question of embedding dynamics
on Reeb fields is that the vector field X cannot be arbitrary.

Definition 2.1. A vector field X on N is geodesible if there is some metric for which
the orbits of X are geodesics.

When X is of unit length for such a metric, we say that X is geodesible of unit
length. From now on, by geodesible we mean geodesible of unit length. A character-
ization of geodesible vector fields was given by Gluck in terms of differential forms:
X is geodesible if and only if there is some one-form B such that 8(X) = 1 and
txdp = 0. In particular, if a Reeb vector field R defined by a form « on a contact
manifold M has some invariant submanifold N, then R restricted to N is geodesible.
Indeed, if X is the vector field R restricted on N and i : N < M is the inclusion of
N into M, then i *« satisfies

2.1
ixdi*a = 0. 1)

{i*a(X) =1,
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Note that i *« is not necessarily a contact form, so that X is not necessarily a Reeb
field (in general, it is not even volume-preserving). However, it is always geodesible
according to Gluck’s characterization.

Conversely, start with any geodesible (hence non-vanishing) vector field X on a
compact manifold N.

Definition 2.2. An embedding e : (N, X) — (M, &) is called a Reeb embedding
if there is a contact form « defining & such that the associated Reeb field satisfies
e*X = R|€(N)'

The main theorem in [8] gives sufficient conditions in terms of the codimension
of an arbitrary smooth embedding to be isotopic to a Reeb embedding.

Theorem 2.3 ([8]). Let e : (N, X) — (M, &) be a smooth embedding of N into a
contact manifold (M, §), where X is a geodesible vector field on N. Assume that
dim M > 3n + 2. Then e is isotopic to a C°-close Reeb embedding é : (N, X) <

(M. §).

Remark 2. If we impose the additional assumption that (M, £) is an overtwisted
contact manifold, then dim M > 3n is enough, although the Reeb embedding ¢ is
not necessarily C 0 close to e if dim M < 3n + 2. In [8], parametric versions of the
previous statement are also discussed.

Example 2.4. The existence of a Reeb embedding of any pair (N, X) into some
contact manifold is easy to establish, since there is a natural source of examples of
such embeddings. Denote by B the one-form such that 8(X) = 1 and 1xdf = 0.
Gluck’s characterization implies that there is a metric for which X is of unit-length
and its orbits are geodesics which satisfies g(X,-) = B. Recall that the cotangent
bundle T*N is equipped with the canonical Liouville one-form Agq € QI (T*N).
Such one-form is characterized by the property that, given any one-form y on N,
which can be understood as an embedding y : N — T*N, we have y = y*Ayq.
For a given metric one can define the unit tangent bundle ST N defined fiberwise by
ST,N ={X € T,N | gp(X., X) = 1}. A standard property (see e.g. [13, Section 1.5])
of Agq is that given the metric g on N, it restricts on ST*N (the unit cotangent
bundle) as a contact form A whose Reeb field is dual to the geodesic vector field on
STN. In particular, the section 8, seen as an embedding

B:N — ST*N,

satisfies f*A = B and actually the Reeb field R defined by A satisfies S+ X = R.
Thus, it is a Reeb-embedding according to Definition 2.2. This further motivates a
systematic examination of Reeb-embeddings from a contact topology point of view,
a study that leads to Theorem 2.3.
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Sketch of the proof of Theorem 2.3. The proof of Theorem 2.3 follows the usual pro-
cedure of A-principle type results. We first define a “formal” notion of Reeb embed-
ding, which satisfies a property that is purely homotopic in terms of its differential.
We then prove that, under certain conditions, any formal Reeb embedding is isotopic
to a genuine Reeb embedding (i.e., they satisfy the A-principle). To conclude, we
use obstruction theory to analyze the minimal codimension for which any smooth
embedding is a formal Reeb embedding satisfying the conditions for the s-principle
to apply. We will now sketch each of these steps of the proof, under the simplifying
assumption that M is overtwisted.

Step 1: Iso-Reeb embeddings and extension lemma. Let X be a geodesible vector
field on N, and denote by 8 a one-form such that S(X) = 1 and tydf = 0. We need
to fix such a choice of one-form, and let 1 := ker 8 be the hyperplane distribution
defined by the kernel of 8 (which in general will not be of contact type). Let (M, &)
be an overtwisted contact manifold with some defining contact form ¢, i.e., kera = £.

With a slight abuse of notation, given a monomorphism F : TN — TM we will
denote o o F for a(F(-)) and da o F for da(F(-), F(-)). This is also denoted by
F*o and F*da in the discussion of “generalized iso-contact immersions” in [11,
Section 16.2].

Definition 2.5. Anembedding f : (N, X,n =ker ) — (M, &) is an iso-Reeb embed-
ding if f*& =n.

The corresponding formal notion is the following definition.

Definition 2.6. An embedding f : (N, X, n) — (M, &) is a formal iso-Reeb embed-
ding if there exists a homotopy of monomorphisms

F,: TN - TM,

such that F; covers' f, Fo = df, hja o F; = B, and dB|, = hada o Fy|, for some
strictly positive functions /&; and /4, on N.

Any (genuine) iso-Reeb embedding is clearly a formal iso-Reeb embedding, with
F; constantly equal to df. Both conditions e o F; = B and df|, = hada o Fi|
have to be imposed, since F; does not commute with the exterior derivative in general
(when Fj is not holonomic). This formal notion of Reeb embedding is enough to
obtain the main theorem for an overtwisted target contact manifold. For the most
general case, an extra formal hypothesis needs to be imposed (confer [8]).

"We say that F; : TN — TM covers f : N — M if the map between bases induced by F;
is constantly equal to f.
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The following lemma by Inaba [16] (see also [8]) shows that the condition of
being an iso-Reeb embedding is enough to answer positively our question: we can
find a Reeb field in (M, £) extending the given geodesible vector field X .

Lemma 2.7. Let N be a submanifold of (M, &), and denote by i the inclusion map
of N into M. Let 1 be the restriction i *&. A nonvanishing vector field X on N can be
extended to a Reeb field on all M if and only if X is transverse to n and the flow of
X preserves 1.

The vector field X is transverse to 1 and preserves it if and only if there is a one-
form B such that 8(X) = 1, ixdB = 0, and ker 8 = 7. These are our hypotheses in
the case of an iso-Reeb embedding, hence by the previous lemma there is a contact
form whose Reeb field R satisfies fx X = R. Observe that an iso-Reeb embedding f
is, in particular, a Reeb embedding according to Definition 2.2, the only difference is
that in the definition of iso-Reeb embedding the one-form 8 making X geodesible is
fixed.

Step 2: An h-principle via isocontact embeddings. Our goal in this second step is
to prove that any formal iso-Reeb embedding e : (N, X, n) — (M, &) into an over-
twisted contact manifold is homotopic through formal iso-Reeb embeddings to a
genuine iso-Reeb embedding. This is tantamount to saying that iso-Reeb embeddings
satisfy an existence /i-principle. Other versions of the A-principle (parametric, rela-
tive to the domain, etc.) are discussed in [8]. Recall that « is a defining contact form
of £. The sketch of the argument is the following.

(1) The embedding e satisfies that de(n) C TM |x, but de(n) is not, in general,
contained in ker @ = £. We extend the homotopy F; and use it inversely to
deform £ via a homotopy of symplectic vector bundles (&;, ®;) (defined over
all M, but which is identically (£, do) outside a neighborhood U of e(N))
such that (§o, wo) = (£, da), (§1, wy) satisfies de(n) C & and w,|, = df
along N. The last condition is guaranteed, up to a conformal transformation,
by the formal iso-Reeb condition. The symplectic hyperplane bundle (1, w;)
will no longer be a contact structure in general.

(2) Using partitions of unity, the fact that w; is non-degenerate on £, and that
wi|y = dp, it is now possible to make another deformation. We extend the
homotopy (&;, wy) to t € [1,2] such that (&,, w,) is a contact structure in a
smaller neighborhood U’ of e(N) and still satisfies de(n) C &,. In particular,
we can achieve that w, = dy for some one-form y such that y satisfies e*y =
B (the form such that ker 8 = n and B(X) = 1). The pair (&2, w;) will not be
a contact structure globally, since this small neighborhood is a priori smaller
than the neighborhood U, where (§1, w;) was not anymore of contact type.
Hence in some parts U \ U’, &, is not of contact type.
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(3) We will now reduce to a formal isocontact embedding (confer [11, Section
12.3] for more details on such embeddings). We endow the neighborhood
U’ with the contact structure (£;, w;). We use the previous deformations
(&;,ws),t €0, 2] defined on U’ to endow the trivial embedding ¢ : U — M
(defined as a neighborhood extension of the embedding e¢) with a homo-
topy of monomorphisms G; : TU’ — TM such that Gy = dé, G satisfies
&, = Gy'(§), and the map induces a conformally symplectic map.

(4) The map ¢ is what is called a formal isocontact embedding of codimension 0
with open source manifold. The /-principle for such embeddings into over-
twisted targets applies [4, Corollary 1.4]. We obtain an embedding é : U’ —
M (isotopic to é through formal isocontact embeddings) such that dé satis-
fies de(&;) = & and the map induces a conformally symplectic map. Since
(&2, wy) restricted to N C U’ corresponds to (1, df), we deduce that &|y
satisfies (€|x)*& = n and hence is a genuine iso-Reeb embedding isotopic to
e =¢ln.

Step 3: Obstruction theory. The final step of the proof consists in showing that
for dim M > 3dim N, any smooth embedding e : N — (M, &) is a formal iso-Reeb
embedding for any choice of (X, 8), where X is a non-vanishing geodesible field and
B is a choice of one-form for which 8(X) = 1 and (xdf = 0. We will assume the
following lemma; confer [8] for the details.

Lemma 2.8. Lete : (N, X,n) — (M, &) be an embedding such that there is a homo-
topy of monomorphisms Fy : TN — TM covering e satisfying Fo = de and F1(1)
is an isotropic subbundle of €. Then e is a formal iso-Reeb embedding.

For 2m > dim N, standard obstruction theory shows that there is a family of
monomorphisms H, : TN — TM such that F;(X) h £, and furthermore F;(n) C .
The previous lemma shows that a sufficient condition for being a formal iso-Reeb
embedding is that F;(7n) can be homotoped into an isotropic subbundle of £. Recall
that n denotes the dimension of N, hence 7 has rank n — 1. The manifold M is of
dimension 2m + 1, hence £ is of rank 2m. Denote by Gr = Grass(n — 1, R?™) the
space of (n — 1)-subspaces of R™. Similarly, denote by Gr;; = Grass;;(n — 1, R?™)
the space of isotropic subspaces of dimension n — 1 in R?™ seen as C™. To find a path
between 1 and an isotropic subspace of £ over N, we need to find a global section of
the bundle E over N whose fiber is

P = Path (Grass(n — 1,R?™), Grassis(n — 1, Rzm)),

i.e., the space of paths between any (n — 1)-subspace and any isotropic (n — 1)-
subspace of R?™. On the other hand, we know that the homotopy groups of such
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a path space depend on the relative homotopy groups
7j(P) = 7j4+1(Grass(n — 1,R*™), Grass;s(n — 1, R*™)).

We now use that

SO(2m)
Gr = )
SO(n — 1) x SO (2m — (n — 1))
U(m)
Grjy =~

SO —1)xU(m—(n—1))

Combining the exact sequence for relative pairs, the exact sequence for quotients, and
using the stable range of the involved groups, we can show that

2m>3n—-1 = m;(P)=0 forallj <n-—1.

Hence, if dim M > 3dim N, we can find a global section along N. Using this sec-
tion and the previous family of monomorphisms, we find a family of isomorphisms
G; : TN — TM covering the smooth embedding e such that G;(7) is an isotropic
subbundle of £&. Applying Lemma 2.8, we conclude that e is a formal iso-Reeb embed-
ding.

Step 4: Conclusion. In Step 3, we showed that any smooth embedding is a formal
iso-Reeb embedding for any pair (N, X) embedded into a contact manifold (M, &)
such that dim M > 3 dim N. Note that smooth embeddings in this context always
exist by Whitney’s embedding theorem. Under the assumption that M is overtwisted,
we can apply the A-principle proved in Step 2 and deduce that there is an iso-Reeb
embedding e isotopic to e. Since an iso-Reeb embedding is, in particular, a Reeb
embedding, we can find some contact form « defining £ whose Reeb field R satisfies
€xX = R|zv). This concludes the proof of the theorem. [

The previous theorem “fixes” the target contact structure, which forces to take an
embedding that is isotopic to the original smooth embedding e : N — (M, &). If we
simply want to extend the vector field X to a Reeb vector field, without fixing the
ambient contact structure, then we can fix the embedding.

Corollary 2.9. Let X be a geodesible vector field on a compact manifold N. Let
e: N — (M, &) be a smooth embedding into a contact manifold with dim M >
3dim N + 2. Then there is a contact form o on M whose Reeb field R satisfies
exX = Rlqn). The contact form a defines a contact structure contactomorphic to .

Proof. 1t follows from Theorem 2.3 that there is a Reeb embedding e (with respect to
the contact structure §) isotopic to e. According to Definition 2.2, there is a contact
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one-form &’ defining £ such that the Reeb field R’ of o’ satisfies €x.X = R’|zv). Let
@ be an isotopy of M such that ¢ o & = e. Then a := (¢; !)*’ is a contact one-
form, defining a contact structure (¢7)«£&, whose Reeb field R = (¢1), R’ satisfies

exX = (p1)x 08X = (p1), R = R,

thus concluding the proof. |

2.2. Applications to universality

We are now ready to give some applications of Theorem 2.3. The following concept
is inspired by Tao’s definition of Euler-extendibility in [30] (albeit it is different in the
sense that it is adapted to the context of stationary solutions of the Euler equations).

Definition 2.10. A non-autonomous time-periodic vector field uq(-, ) on a compact
manifold N is Euler-extendible if there exists an embedding e : N x S! — S” for
some dimension n > dim N + 1 (that only depends on the dimension of N), and a
Eulerisable flow u on S”, such that e(N x S!) is an invariant submanifold of u and
ex(uo(:, 0) + 99) = ul,(yxsty, 0 € S!. If the non-autonomous field uq(-, ¢) is not
time-periodic, we say that it is Euler-extendible if there exists a proper embedding e :
N xR — R” for some dimension # > dim N + 1 (that only depends on the dimension
of N), and a Eulerisable flow 4 on R”, such that e(N x R) is an invariant submanifold
of u and e« (uo(-, 0) + dg) = ul.(vxr), 0 € R. If any non-autonomous dynamics
uo (-, t) is Euler-extendible, we say that the stationary Euler flows are universal.

Roughly speaking, the extendibility of a non-autonomous dynamics implies that,
in the appropriate local coordinates, 1, describes the “horizontal” behavior of the
integral curves of the extended vector field u. Observe that the original vector field
U is not assumed to be volume-preserving, although certainly u will be. We introduce
another definition for embeddability of discrete dynamics.

Definition 2.11. We say that an (orientation-preserving) diffeomorphism¢ : N — N
is Euler-embeddable if there exists a Eulerisable field ¥ on S” (for some n that only
depends on the dimension of N) with an invariant submanifold exhibiting a cross-
section diffeomorphic to N such that the first return map of u at this cross-section is
conjugate to ¢.

Two main corollaries of the previous construction can be expressed in terms of
these two definitions.

Corollary 2.12 ([8]). The stationary Euler flows are universal. Moreover, the dimen-
sion of the ambient manifold S"™ or R" is the smallest odd integer n € {3 dim N +35,
3dim N + 6}. In the time-periodic case, the extended field u is a steady Euler flow
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with a metric g = go + Sp, where gg is the canonical metric on S™ and 8p is sup-
ported in a ball that contains the invariant submanifold e(N x SU).

It is clear that the extension to a Euler flow u is not unique, since Theorem 2.3
shows that iso-Reeb embeddings exist in abundance. Corollary 2.9, via the correspon-
dence theorem (Theorem 1.1), illustrates the flexibility of steady Euler flows in the
sense that any fixed smooth embedding in high enough codimension can be realized
as an invariant submanifold (with arbitrary induced geodesible dynamics) of a steady
Euler flow. Our second corollary is expressed in terms of Definition 2.11.

Corollary 2.13 ([8]). Let N be a compact manifold and ¢ an orientation-preserving
diffeomorphism on N. Then ¢ is Euler-embeddable in S™, where n is the smallest odd
integern € {3dim N + 5,3dim N + 6}.

As in Corollary 2.12, the metric can also be assumed to be the canonical one
outside an embedding of the mapping torus of N by ¢. This is ensured by applying
Theorem 2.3 with a tight contact sphere as the target contact manifold. The dimen-
sional bounds can be slightly improved if we use an overtwisted contact sphere as
target manifold, as explained after the statement of Theorem 2.3. In the following
section, we shall introduce the concept of “Turing complete” flows, which are flows
that are universal in a computational sense. Using the fact that there are diffeomor-
phisms that simulate any Turing machine (see [27] for an example), and the fact that
our construction via an A-principle is constructible (i.e., algorithmic), we obtain as
a by-product that there is a Turing complete Euler flow on S'7. In the next section,
we will focus on this property and drastically improve the dimension of the ambient
manifold.

3. A Turing complete steady Euler flow on S3

In this section, we review the construction of a Turing complete stationary Euler flow
on a Riemannian three-sphere [9]. We end up by proving a new result (Corollary 3.7)
on the existence of Reeb flows (and their Beltrami counterparts) with orbits whose
periodicity is undecidable.

3.1. Turing machines and symbolic dynamics

A Turing machine is a mathematical model of a theoretical device manipulating a
set of symbols on a tape following some specific rules. It receives, as input data, a
sequence of symbols and, after a number of steps, it might return as output another
string of symbols. More concretely, a Turing machine is defined via the following
data:
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« afinite set Q of “states” including an initial state go and a halting state gpay;
e afinite set ¥ which is the “alphabet” with cardinality at least two;
e atransition functiond : Q x ¥ — Q0 x ¥ x {—1,0, 1}.

We will denote by ¢ € Q the current state, and by ¢ = (,)nez € T the current
tape of the machine at a given step of the algorithm of the Turing machine. This
gives a configuration (q, t) of the machine. In particular, the space of all possible
configurations of a Turing machine is given by # := Q x X%, The algorithm works
as follows, for a given input tape t € 2.

(1) Set the current state g as the initial state and the current tape ¢ as the input
tape.

(2) If the current state is gpay, then halt the algorithm and return ¢ as output.
Otherwise, compute 8(q, 1) = (¢'. ). €), withe € {—1,0, 1}.

(3) Replace g with ¢’ and ¢y with ¢, obtaining a modified tape
f=(-t_ ).

(4) Shift 7 by &, obtaining a new tape #’. The resulting configuration is (¢’, t').
Return to step (2).

Our convention is that ¢ = 1 (resp. ¢ = —1) corresponds to the left shift (resp. the
right shift). This algorithm (determined by the transition function §) induces a global
transition function in the space of configurations

A O\ Aqna) x % — P,

which sends a non-halting configuration in & to the configuration obtained after one
step of the algorithm.

Remark 3. Without loss of generality, one can assume that the configurations of the
machine are those pairs (¢,1) € Q x % for which only a finite number of sym-
bols in ¢ are different from O (also called the “blank™ symbol). We will not need this
simplifying assumption in this section, although it is certainly useful in other con-
structions [7].

The halting problem. In computability theory, the halting problem is the problem
of determining, from a description of an arbitrary computer program and an input,
whether the program will finish running (halting state), or continue to run forever.
Alan Turing proved in 1936 that a general algorithm to solve the halting problem for
all possible program-input pairs cannot exist. A key part of the proof is the formula-
tion of a mathematical definition of a computer and program, which is the previously
introduced notion of Turing machine; the halting problem is undecidable for Tur-
ing machines. The halting problem is historically important as it was one of the first
problems to be proved undecidable.
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Turing machines and universality. A Eulerisable field on a manifold M is Turing
complete if it can simulate any Turing machine. In fact, Turing machines can be
simulated by dynamical systems in a large sense (a vector field, a diffeomorphism, a
map, etc.). Following [27], we give a formal definition of such a “simulation”.

Definition 3.1. Let X be a vector field on a manifold M. We say it is Turing complete
if for any integer k > 0, given a Turing machine 7', an input tape ¢, and a finite string
(t*).....17) of symbols of the alphabet, there exist an explicitly constructible point
p € M and an open set U C M such that the trajectory of X through p intersects U
if and only if T halts with an output tape whose positions —k, . . ., k correspond to the
symbols ¢, , ..., #;. A completely analogous definition holds for diffeomorphisms
of M.

Remark 4. In the construction explained in this section, the point p depends on T,
the input, and the finite string, while the open set U is always the same. In other con-
structions of Turing complete flows [6, 8,27], the point p only depends on 7" and the
input, and the open set U depends on the finite string of the output. In particular, for
a fixed machine and input we construct a point p and we can “measure” a posteriori
what is the output of the machine up to some precision by looking which open sets
are intersected by the trajectory of the flow through p.

Remark 5. One might as well avoid fixing a finite string of the output (£*,,...,#;)
and just require that the machine halts if and only if the trajectory through p enters
certain open set. As detailed in [9, Lemma 5.5], the computational power is the same
with this simplification.

In 1991, Moore [19] introduced the notion of generalized shift to be able to simu-
late any Turing machine; a generalized shift is a map that acts on the space of infinite
sequences on a given finite alphabet.

Let A be an alphabet and S € A% an infinite sequence. A generalized shift ¢ :
AZ — AZ is specified by two maps F and G which depend on a finite number of
specified positions of the sequence in AZ. Denote by Dp = {i,...,i +r — 1} and
Dg ={J,...,j + 1 — 1} the sets of positions on which F and G depend, respectively.
These functions take a finite number of different values since they depend on a finite
number of positions. The function G modifies the sequence only at the positions
indicated by Dg:

G:A > A
(8= 8j41=1) B> (58741

Here s; - -+ ;41— are the symbols at the positions j, ..., j + [ — 1 of an infinite
sequence S € AZ.
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On the other hand, the function F assigns to the finite subsequence of consecutive
elements (s;, ..., S;+,—1) of the infinite sequence S € AZ an integer

F:A" - Z.

The generalized shift ¢ : AZ — AZ corresponding to F and G is defined as
follows:

e compute F(S) and G(S);

e modify S changing the positions in Dg by the function G(S), obtaining a new
sequence S’;

» shift S’ by F(S) positions. That is, we obtain a new sequence s, = for

alln € Z.

The sequence S” is then ¢ (S).

Given a Turing machine, there is a generalized shift ¢ conjugate to it. Conjugation
means that there is an injective map ¢ : £ — A% such that the global transition
function of the Turing machine is given by A = ¢ !¢ ¢. In fact, if the Turing machine
is reversible, it can be shown that the generalized shift is bijective.

/
Sn+F(S)

Key observation. Generalized shifts are conjugate to maps of the square Cantor set
C?:=C x C C I?, where C is the (standard) Cantor ternary set in the unit interval
I =1[0,1].

Point assignment. Take A = {0, 1} (this can be assumed without loss of generality).
Given s = (---5_1 - So51 - -+ ) € A%, we can associate to it an explicitly constructible
point in the square Cantor set. We just express the coordinates of the assigned point
in base 3: the coordinate y corresponds to the expansion (yg, 1, ...), where y; = 0
if s; =0 and y; = 2 if 5; = 1. Analogously, the coordinate x corresponds to the
expansion (X1, X3, ...) in base 3, where x; = 0ifs_; = 0and x; = 2ifs_; = 1.

Moore proved that any generalized shift is conjugate to the restriction on the
square Cantor set of a piecewise linear map defined on blocks of the Cantor set in /2.
This map consists of finitely many area-preserving linear components. If the gener-
alized shift is bijective, then the image blocks are pairwise disjoint. An example is
depicted in Figure 1. Each linear component is the composition of two linear maps:
a translation and a positive (or negative) power of the horseshoe map (or the Baker’s
map).

3.2. Area-preserving maps and Turing complete Reeb flows

In [19], Moore proved that any bijective generalized shift, understood as a map of the
square Cantor set onto itself, can be extended as a diffeomorphism of the disk isotopic
to the identity. The construction suggests that this can be done by further imposing
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A B C’ D’

AI

C D

Bl

Figure 1. Example of a map by blocks of the square Cantor set.

the condition that this diffeomorphism is area-preserving. In [9], we formalized this
proving that any bijective generalized shift can be extended to an area-preserving
diffeomorphism of the disk which is the identity near the boundary. The proof of this
result combines three ingredients: the aforementioned piecewise linear map defined
on Cantor blocks, an explicit geometric construction using the homotopy extension
property, and Moser’s path method to ensure that the diffeomorphism that we obtain
is area-preserving. The precise statement is the following:

Proposition 3.2. For each bijective generalized shift and its associated map of the
square Cantor set ¢, there exists an area-preserving diffeomorphism of the disk ¢ :
D — D which is the identity in a neighborhood of 0D and whose restriction to the
square Cantor set is conjugate to .

Now the idea to construct a Turing complete Reeb flow is to take a Turing
complete bijective generalized shift (which exists because there are universal Tur-
ing machines that are reversible as proved in the classical paper of Bennett [3]).
Proposition 3.2 hence implies the existence of a Turing complete area-preserving
diffeomorphism of the disk which is the identity on the boundary, as detailed in [9,
Theorem 5.2]. Using a suspension construction in contact geometry, we can then
show that any area-preserving diffeomorphism of the disk can be realized as the
first-return map on a cross-section of a Reeb flow on any contact three-manifold. In
particular, taking the aforementioned Turing complete diffeomorphism, we conclude
the existence of Turing complete Reeb flows. More precisely, the following theorem
holds.

Theorem 3.3. Let (M, €) be a contact 3-manifold and ¢ : D — D an area-preserving
diffeomorphism of the disk which is the identity (in a neighborhood of) the boundary.
Then there exists a defining contact form a whose associated Reeb vector field R
exhibits a Poincaré section with first return map conjugate to . In particular, there
exists a Reeb field R on (M, §) which is Turing complete (in the sense of Defini-
tion 3.1).
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Combining Proposition 3.2, Theorem 3.3, and the correspondence theorem (The-
orem 1.1) between Beltrami fields and Reeb flows, we obtain the desired result for
stationary Euler flows.

Corollary 3.4. There exists a Eulerisable field X on S® that is Turing complete. The
metric g that makes X a solution of the stationary Euler equations can be assumed
to be the round metric in the complement of an embedded solid torus.

The fact that the metric can be assumed to be the round one in the complement
of an embedded solid torus needs some explanation. When applying Theorem 3.3,
we take as ambient manifold the standard contact sphere (S3, £q). Then, the contact
form whose Reeb field realizes a given area-preserving diffeomorphism of the disk
as a Poincaré map can be chosen to coincide with the standard contact form g
outside a solid torus. To conclude, one can check that the metric associated to « via
Theorem 1.1 can be taken to be the round one whenever o coincides with ogyq.

Remark 6. The construction of a Turing complete Reeb flow in Theorem 3.3 is
obtained by choosing a particular reversible universal Turing machine and realiz-
ing its associated generalized shift as the first return map of the flow restricted to a
square Cantor set on a Poincaré section (see Proposition 3.2). Had we chosen another
reversible Turing machine (not necessarily universal), its dynamics would have been
induced in the square Cantor set via the first return map of a Reeb flow. We will use
this observation in Corollary 3.8.

3.3. Undecidable dynamical properties in Reeb dynamics

In this subsection, we prove some new corollaries that follow from our construction
in [9]. A straightforward implication of Theorem 3.3 is the existence of certain phe-
nomena of contact dynamics that are undecidable. Specifically, there is no algorithm
to assure that a Reeb trajectory will pass through a certain region of space in finite
time. The precise formulation of this result is the following:

Corollary 3.5. Let R be a Turing complete Reeb flow on (M, §). Then there exist an
explicitly constructible compact set of points K C M and an explicit open set U C M
such that it is an undecidable problem to determine if the (positive) integral curve of
R through a point in K will intersect the set U or not.

A variation of our construction also allows us to construct a Reeb field R for
which there exist explicit points on M such that the problem of determining if the
orbit of R through each of these points is closed is undecidable. The fact that gen-
eralized shifts have orbits whose periodicity is undecidable was proved by Moore in
[19, Theorems 9 and 10]. In the lemma below, we give a complete formalization of
an argument in [17, Theorem 8] that is similar to Moore’s approach. This allows us
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to ensure that both properties required to prove Corollary 3.5 are satisfied: bijectivity
of the associated generalized shift (i.e., reversibility of the Turing machine) and the
equivalence between the halting of an input and the periodicity of the associated point
in the disk.

Lemma 3.6. There exists a Turing machine T’ such that
(1) it is reversible;

(2) the image of the first component of the transition function § does not con-
tain qo;

(3) it satisfies the “restart” property: if T’ halts with input (qo,t), then it halts
with output (qpay, t);

(4) T’ is universal in the following sense: the halting of any Turing machine T
and input cg is equivalent to the halting of T' for some explicit input (which
depends on T and cy).

We are now ready to prove the undecidability of determining whether a trajectory
is periodic or not.

Corollary 3.7. Let (M, §) be a three-dimensional contact manifold. Then there is
a contact form « defining £& whose associated Reeb field R satisfies that there are
explicit points on M for which determining whether the orbit through one of those
points is periodic or not is an undecidable problem.

Proof. Let T = (Q, 4o, Gnar» =, 6) be a universal Turing machine as in Lemma 3.6.
We extend the transition function via §(gnay, t) = (qo, ¢, 0), and construct a general-
ized shift ¢ conjugate to T by a map ¢. Then given any input (qo, t), the orbit of ¢
through ¢(qo, t) is periodic if and only if 7" halts with input (qo, ).

The map ¢ is bijective (since T is reversible), and by Proposition 3.2 we can find
an area-preserving diffeomorphism of the disk ' : D — D (which is the identity in a
neighborhood of the boundary) whose restriction to the square Cantor set is conjugate
to ¢». Using Proposition 3.3, we construct a contact form « defining £ whose Reeb
flow has a cross-section with a first return map that is conjugate to F. It is then
obvious that the orbit of the Reeb flow through a point representing an input of the
Turing machine is periodic if and only if T halts with such an input. The result then
follows from the undecidability of the halting problem. |

Other special orbits can be constructed using the fact that the Turing machine is
universal. For example, it is possible to construct an explicit point p such that the orbit
of the Reeb flow through p is closed if and only if there is a counterexample to the
Riemann hypothesis (using a discrete equivalent formulation [27]), and similarly with
many other open problems in mathematics. This is achieved by constructing an initial
input associated to a Turing machine which halts upon finding a counterexample.
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Let us now give a proof of the auxiliary lemma (Lemma 3.6).

Proof of Lemma 3.6. As explained in [20, Section 6.1.2], we can find a reversible
universal Turing machine 7' = (Q, ¢o, gnat, 2, 6) which satisfies property (2): the
initial state cannot be reached from any other state. Let us construct a universal Turing
machine 7’ starting from 7', which satisfies (1), (2), and (3).
This Turing machine is of the form 77 = (Q’, go. ¢nai, 2. 8’). The space of states
Q' is given by
Q" = (Qo x {=1,+1}) U{qo, gna}

where Q¢ := O \ {go}. We basically take two copies of each state in Q except for gy,
and add qo, gnar. The sign in {—1, 41} denotes the “direction” of the computation,
a concept that will become clear in the construction. To simplify, for any state g €
0 \ {90, ¢ha}, we denote g+ =g x {+1} € Q" and g_ = g x {—1} € Q'. The halting
state of T’ is gnai, €ven if there are two additional states gpa; X {1} and gpa X {—1}
that we denote by q};:h and q, .,

For any input of T', given by (qo, t), we associate the input (go, ) of 7’. For any
pair of the form (g4, ) with g € Q \ {qo, gna}, we define the transition function of
T’ exactly as the transition function §. To formalize this, we introduce the notation
(q, fo, g) = 8(q,t9). Then

8§'(q+.10) 1= (G+.10.€).

This is always well defined since ¢ is never equal to g¢. Similarly, for the initial state
go we also use the notation (7, 7o, £) = 8(qo. o) and we define

8'(qo0.10) = (G+.10. ).

When the machine reaches the state q}j;h (which happens when T halts with that
input), we reverse the computation by defining

8 (gt 10) := (Gies 10, 0). (3.1)

The idea now is that instead of halting with the output of 7', we swapped to a
“reverse the computations” phase to undo the computations. For the states g, and
q— with ¢ € {qo, gnar}, we define T’ as the inverse Turing machine: a step of 7" for
a pair the form (g_, to) is given by T~!. See for instance [20, Section 5.1.4] for the
construction of the inverse machine 71, which is also reversible. Denote by § 1 the
transition function of 7~!; notice that 7! is not defined on the state go by property
(2). Then, for ¢ € O \ {qo. gnait}» if we set §71(q, t9) = (§. o, €), we define

§'(q—.t0) :== (G—.10.€) ifq # qo.
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If §71(q. t0) = (qo. fo. &), it means that we have returned to the input configuration
so we can define instead

8'(q—.10) = (gnai- 0. €). 3.2)
Similarly, for g, if ™! (ghait. 70) = (4. fo, €), we define

8/(qh_alt’ tO) = (‘7—7 f()’ ‘9) lfq # qo

and if § = ¢y, then
&' (Ghai- 0) = (gnans fo, &) (3.3)

Notice that the image state ¢ via § ~1 cannot be ¢nart because the transition function §
is not defined when ¢ = gpqy;.

The global transition function of 7’ on configurations with states ¢g, ¢+ coincides
with the global transition function of 7', where q;;h is identified with the halting
state of 7. Accordingly, it is injective there. Similarly, the global transition function
on configurations with states g_ and g, coincides with that of T—1, where Ghalt
is identified with the halting state of 7’ and g, is identified with the initial state
of T'. So it is also injective there. Each configuration with state q;;h is sent to the
same configuration with state g;_, in a trivial injective way. Summarizing, the global
transition function of T’ is injective everywhere so T is reversible

The machine T satisfies (2), since g cannot be reached from §, and in our con-
struction we attain gpy instead of go when §~! is applied according to equation (3.3).
The machine is universal since its halting is equivalent to the halting of 7'. Indeed,
observe that the states of the form g_ in 7’ can only be reached if T halted, and gp
can only be reached through negative states. This shows that if 7" does not halt with
input (qo, t), then T’ does not halt. On the other hand, if 7 halts, 7’ will eventu-
ally reach a negative state, reverse the computation, and reach gp,y. In fact, 7' halts
with input (go, t) if and only if 7’ halts with the same input. This shows that 7’ is
universal.

Property (3) is also satisfied by construction. Whenever T’ halts with input (go, ¢),
it will reach a q}:h, then g, and reverse the computation to halt with configuration

(qhalt ’ t ) . un

Remark 7. Since any Turing machine can be simulated by a reversible Turing ma-
chine that satisfies property (2) (see e.g. [20, Section 6.1.2]), the construction pre-
sented in the proof of Lemma 3.6 allows one to start from any reversible Turing
machine 7', obtaining a reversible Turing machine 7" which halts on the same inputs
than 7 and has the “restart” property. In particular, any undecidable property associ-
ated to the inputs of T that halt is inherited by the inputs of 7"”.

Finally, we can mention a corollary which serves as a sample of dynamical prop-
erties of Reeb flows which simulate Turing machines that can be easily shown to be
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undecidable. Such undecidable properties are inherent to Turing machines and their
associated generalized shifts [19, Theorem 10]. A key ingredient is Rice’s theorem in
computability theory, which in particular shows that non-trivial questions about the
set of inputs for which the Turing machine halts are undecidable [25]. For example,
Rice’s theorem shows that there is no algorithm that can decide, for any given Turing
machine, if there are at least k inputs that halt. From a logical point of view, this
implies that there is at least one Turing machine for which determining if there are at
least k inputs that halt is undecidable in the logical sense (i.e., the statement cannot
be proved or disproved).

The following result is then a straightforward consequence of the previous dis-
cussion, Remark 7, Remark 6, and the existence of reversible Turing machines for
which, respectively, determining if the set of inputs that halt has cardinality at least
k > 0, is dense (in the set of all inputs) or has certain measure in the set of all inputs
is undecidable in the logical sense.

Corollary 3.8. Let (M, &) be a three-dimensional contact manifold. Then there is a
contact form o defining & and an explicit set of points K C M for which the following
questions on the dynamics of R are undecidable (from the logical point of view, we
remark that o depends on each question):

o Are there at least k > 0 points in K whose orbit is periodic?
o Is the set of points in K whose orbit is periodic dense in K?

e For a given > 0, is the set of points in K whose orbit is periodic of measure
greater than |1 ?

In the previous corollary, the set K is simply the set of points associated to inputs
of the Turing machine in the square Cantor set of the disk-like Poincaré section of the
flow (these points lie on a finite union of blocks of the square Cantor set; see [9]).

Other dynamical properties of generalized shifts were proved to be undecidable
by Moore, and could probably be adapted to establish analogous undecidability state-
ments for Reeb flows. This includes convergence of orbits to a given point or the
computability of Lyapunov exponents on a given invariant set (the orbits through the
square Cantor set).

4. Time-dependent solutions of Euler and Navier—Stokes

In the previous sections, we have focused on stationary solutions to the Euler equa-
tions, first in high dimensions as a consequence of a new A-principle for Reeb embed-
dings, and then in dimension three using the power of symbolic dynamics. However,
recall that the original motivation in [28-30] was to find a Turing complete time-
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dependent solution. The time-dependent Euler equations on a Riemannian manifold
(M, g) define a dynamical system on the space of volume-preserving vector fields of
the ambient manifold X35 (M ). The following definition of Turing completeness is

adapted to this context by analogy with Definition 3.1.

Definition 4.1. Let (M, g) be a Riemannian manifold. The Euler equations on (M, g)
are Turing complete if the following property is satisfied. For any integer k > 0, given
a Turing machine 7', an input tape ¢, and a finite string (£*,, ..., ;) of symbols of
the alphabet, there exist an explicitly constructible vector field Xo € X7 (M) and a
constructible open set U C X7, (M) such that the solution to the Euler equations with
initial datum Xy is smooth for all time and intersects U if and only if 7" halts with an

output tape whose positions —k, ..., k correspond to the symbols £*, ..., 1.

In our recent article [7], we use a remarkable embedding theorem by Torres de
Lizaur [31] (building on a previous embedding theorem into time-dependent Euler
flows by Tao [28]) and the construction of Turing complete polynomial non-autono-
mous ODEs [14], to obtain Turing complete time-dependent solutions to the Euler
equations:

Theorem 4.2 ([7]). There exists a (constructible) compact Riemannian manifold
(M, g) such that the Euler equations on (M, g) are Turing complete. In particular,
the problem of determining whether a certain solution to the Euler equations with

initial datum X will reach a certain open set U C X5 (M) is undecidable.

This solves the question of the Turing universality of the time-dependent Euler
equations in high dimensions with general Riemannian metrics.

We finish this article presenting an application of Corollary 3.4 in the context of
the Navier—Stokes equations (following [8]). These equations describe the dynamics
of an incompressible fluid flow with viscosity. On a Riemannian 3-manifold (M, g),
they read as [1]

2X +VxX —vAX = -Vp,

divX =0, 4.1
X =0) = Xy,

where v > 0 is the viscosity. In what follows, the differential operators are computed
with respect to the metric g, and A stands for the Hodge Laplacian (whose action on
a vector field is defined as AX := (AX")%).

Let us analyze what happens with the solution X(¢#) when we take the Turing
complete vector field Xy constructed in Corollary 3.4 as initial condition (for the
Navier—Stokes equations with the metric g that makes X a stationary Euler flow).
Specifically, using that curlg (Xo) = X, the solution to equation (4.1) with initial
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datum X (r = 0) = M Xy, M > 0 areal constant, is easily seen to be

X(.1) = MXo()e™,

1 4.2)
p(.t) = co— 3 M?e " g(Xo. Xo).

for any constant cg. The integral curves (fluid particle paths) of the non-autonomous

field X solve the ODE
dx(t)

dt

Accordingly, reparametrizing the time as

= Me™" Xo(x(1)).

M
(t) = —(1 —e"),
v
we show that the solution x(¢) can be written in terms of the solution y(t) of the

ODE
dy(7)
dt

= Xo(y(1)),
as

x(t) = y(t(t)).

When ¢ — oo, the new reparametrized “time” 7 tends to %, and hence the integral
curve x(¢) of the solution to the Navier—Stokes equations travels the orbit of X just
for the time interval 7 € [0, %) In particular, the flow of the solution X only simulates
a finite number of steps of a given Turing machine, so we cannot deduce the Turing
completeness of the Navier—Stokes equations using the vector field M Xy as initial
condition. More number of steps of a Turing machine can be simulated if v — 0 (the
vanishing viscosity limit) or M — oo (the L? norm of the initial datum blows up). For
example, to obtain a universal Turing simulation we can take a family { My X¢}ren of
initial data for the Navier—Stokes equations, where My — oo is a sequence of positive
numbers. The energy (L2 norm) of this family is not uniformly bounded, so it remains
as a challenging open problem to know if there exists an initial datum of finite energy
that gives rise to a Turing complete solution of the Navier—Stokes equations.
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Lefschetz fibrations, open books, and symplectic fillings of
contact 3-manifolds

Burak Ozbagci

Abstract. Ever since Donaldson showed that every closed symplectic 4-manifold admits a
Lefschetz pencil and Giroux proved that every closed contact 3-manifold admits an adapted
open book decomposition, Lefschetz fibrations and open books have been used fruitfully to
obtain significant results about the topology of symplectic 4-manifolds and contact 3-manifolds.
In this expository article, we present the highlights of our contribution to the subject at hand
based on joint work with several coauthors during the past twenty years.

1. Introduction

At the turn of the century, two groundbreaking results have surfaced which had a
long-lasting impact on the study of global topology of symplectic 4-manifolds and
contact 3-manifolds. These results respectively are Donaldson’s existence theorem
[19] about Lefschetz pencils on closed symplectic 4-manifolds and Giroux’s corre-
spondence [30] between open books and contact structures on closed 3-manifolds.

In the first half of this short expository article, we briefly review the results of
Donaldson and Giroux. In the last half, we first present an analogous result on Stein
domains of complex dimension two, with an eye towards some applications to the
study of the topology of symplectic fillings of contact 3-manifolds. Then we demon-
strate how Lefschetz fibrations and open books interact with the classical theory of
complex surface singularities as well as trisections of arbitrary smooth 4-manifolds,
which were relatively recently discovered by Gay and Kirby [25].

2020 Mathematics Subject Classification. Primary 57K33; Secondary 57K43, 32Q28, 32525,
32530, 32555, 14DO0S5.

Keywords. Lefschetz fibration, open book decomposition, contact 3-manifold, symplectic
4-manifold, Stein surface, singularity link, trisection.
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2. Topological characterization of symplectic 4-manifolds

Suppose that X and ¥ are compact, oriented, and smooth manifolds of dimensions
four and two, respectively, possibly with nonempty boundaries.

Definition 2.1. A Lefschetz fibration m: X — X is a submersion except for finitely

many points {pi, ..., pr} in the interior of X, such that around each p; and 7 (p;),

there are orientation-preserving complex charts, on which 7 is of the form 7 (z1,22) =
2 2

zi + z3.

The topology of Lefschetz fibrations is well understood with multiple points of
view. We advise the reader to turn to the book [33] of Gompf and Stipsicz for an
excellent introduction to the subject.

Lefschetz critical points can be viewed as complex analogs of Morse critical
points, and they correspond to 2-handles. As a result, one obtains a handle decom-
position of the 4-manifold X. Since a Lefschetz fibration is locally trivial in the
complement of finitely many singular fibers, it can also be described combinatori-
ally by means of its monodromy. Locally, the fiber of the map (zq, z;) — zf + z%
above 0 # ¢ € C is smooth (topologically an annulus), while the fiber above the ori-
gin has a transverse double point (aka nodal singularity) and is obtained from the
nearby fibers by collapsing an embedded simple closed curve called the vanishing
cycle, as illustrated in Figure 1.

Let m: X — X be a Lefschetz fibration and let y be a loop in ¥ enclosing a
single critical value, whose critical fiber has a single node. Then = restricts to surface
fibration over y, whose monodromy (a diffeomorphism of the fiber) is given by the
right-handed Dehn twist about the vanishing cycle, as depicted in Figure 2.

For the purposes of this article, we assume that each singular fiber carries a unique
singularity and there are no homotopically trivial vanishing cycles. Moreover, we
restrict our attention to the following two cases.

First case, ¥ = S2, 0X = 0, and hence the fibers are closed surfaces. Suppose that
qg1.-...qx € D? C S? are the critical values of a genus g Lefschetz fibration 7: X —
S2. Let go € D? be a regular value and for each 1 <i <k, let y; C D? be a loop
based at g¢ enclosing a single critical value ¢; as shown in Figure 3. By the discussion
above, the monodromy of the fibration over each y; is a positive Dehn twist along the
corresponding vanishing cycle.

Since the fibration 7 is trivial over the complement S? \ D?, the product of pos-
itive Dehn twists along the vanishing cycles is isotopic to the identity. The upshot is
that a Lefschetz fibration 77: X — S? is characterized by a positive Dehn twist fac-
torization of the identity element in Map,, the mapping class group of an oriented
closed surface of genus g.
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singular fiber  regular fiber

> ¢ vanishing
cycle

Figure 2. The right-handed (positive) Dehn twist.

Figure 3. Loops in the base disk.
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singular fiber regular fiber

Figure 4. Fibers in a Lefschetz fibration.
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Figure 5. Blowing up the base-locus of a Lefschetz pencil.

Second case, & = D?, the fibers have nonempty boundary and hence X # @. In
this case, the global monodromy over the boundary of the base disk D? is a product
of positive Dehn twists in Map, , (the mapping class group of an oriented genus g
surface with r > 0 boundary components), with no other constraints (see Figure 4).
Moreover, 0X inherits a natural open book decomposition, which we will discuss in
details later in Section 3.

Definition 2.2. A Lefschetz pencil on a closed and oriented 4-manifold X is a map
w: X —{by,...,by} — S?, submersive except for a finite set {py, ..., px}, conform-
ing to local models

(1) (z1,22) = z1/z» near each b; and

(i) (z1,22) = z% + z3 near each p;.
By blowing up X at the base-locus {by, ..., b,}, we obtain a Lefschetz fibration
X #nCP? - §?

with n disjoint sections, which are the exceptional spheres in the blow-up, as illus-
trated in Figure 5.
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In the early twentieth century, Lefschetz showed that every algebraic surface (4-
manifold arising as the zero-locus of a collection of homogeneous polynomials in
CP™) admits “Lefschetz” pencils, which enabled him to study the topology of alge-
braic surfaces. This result was extended by Donaldson, to the case of the much larger
class of symplectic 4-manifolds (i.e., those admitting closed non-degenerate 2-forms).

Theorem 2.3 (Donaldson [19]). Any closed symplectic 4-manifold admits a Lefschetz
pencil.

For a sketch of the proof of Theorem 2.3 (other than Donaldson’s original papers
[18,19]), the interested reader may consult the lecture notes [6] of Auroux and Smith,
which is a wide-ranging survey, touching on the uses of Donaldon’s theory of Lef-
schetz pencils and their relatives in 4-dimensional topology and mirror symmetry.

Conversely, generalizing a similar result of Thurston [58] on surface bundles over
surfaces, Gompf [33] showed that if 7 : X — X is a Lefschetz fibration for which the
fiber represents a non-torsion homology class,' then X admits a symplectic structure
with symplectic fibers. As a corollary, he showed that any closed 4-manifold which
admits a Lefschetz pencil, is symplectic.

Combining the results of Donaldson and Gompf, we obtain a topological charac-
terization of symplectic 4-manifolds which has lead to a renewed interest in Lefschetz
pencils/fibrations and hundreds of papers have been devoted to the study of various
aspects and generalizations of Lefschetz fibrations, over the past twenty years. Here
is one of the earlier results.

Theorem 2.4 (Ozbagci and Stipsicz [47]). There are infinitely many pairwise non-
homeomorphic closed 4-manifolds, each of which admits a genus two Lefschetz fibra-

tion over S? but does not carry complex structure with either orientation.”

The examples in Theorem 2.4 are obtained by fiber sums of genus two Lefschetz

fibrations S2 x T2 # 4 CP? — §2 of Matsumoto [39], which also shows that fiber
sums of holomorphic Lefschetz fibrations are not necessarily holomorphic.

3. Topological characterization of contact 3-manifolds
Definition 3.1. An open book decomposition of a closed and oriented 3-manifold Y

is a pair (B, w) consisting of an oriented link B C Y, and a locally trivial fibration
7: Y — B — S such that B has a trivial tubular neighborhood B x D? in which 7 is

IThis hypothesis is automatically satisfied if the fiber genus is not equal to one.
2This result was independently observed by Ivan Smith.
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Figure 6. I am an open book! Figure 7. (2, 3)-torus knot (the trefoil).

given by the angular coordinate in the D2-factor (see Figure 6). Here B is called the
binding and the closure of each fiber of 7, which is a Seifert surface for B, is called

a page.

Example 3.2 (Milnor’s fibration). Consider the polynomial f: C? — C given by
f(z1,22) = zP + I, where p,q > 2 are relatively prime. Then B = f~1(0) N S3
is the (p, ¢)-torus knot in S whose complement fibers over S!:

— f(z1,22)
' ‘f(Zl,Zz)"

Hence (B, ) is an open book for S3 with connected binding. The torus knot for the
case p = 2 and g = 3 is depicted in Figure 7.

7: 83— B > S!

For any given open book, one can choose a vector field which is transverse to the
pages and meridional near the binding. Then the isotopy class of the first return map
on a fixed page is called the monodromy of the open book. The topology of an open
book is determined by the topology of its page and its monodromy.

Suppose that 7 : X — D? is a Lefschetz fibration such that the regular fiber F
has nonempty boundary dF. Then dX is the union of two pieces:

o the horizontal boundary, dF x D? (see Figure 8) and
o the vertical boundary, 7 ~1(dD?) (see Figure 9),

glued together along the tori F x dD2. It follows that dX inherits a natural open
book, whose page is the fiber F' and whose monodromy coincides with the mon-
odromy of the Lefschetz fibration 7 : X — D?2.

A differential 1-form o on a 3-manifold Y is called a contact form if a A da is
a volume form. A 2-dimensional distribution £ in T'Y is called a contact structure if
it can be given as the kernel of a contact form «. The pair (Y, ) is called a contact
3-manifold.
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Figure 8. The vertical boundary: 7! (3D?).  Figure 9. The horizontal boundary: 0F x D2.

There are no local invariants of contact structures by Darboux’s theorem, which
says that any point in a contact 3-manifold has a neighborhood isomorphic to a neigh-
borhood of the origin in the standard contact structure § = ker(dz + xdy) in R3,
which is depicted in Figure 10.

We advise the reader to turn to the book [28] of Geiges, for a thorough introduc-
tion to contact topology in general dimensions and to the book [49] of Stipsicz and
the author for a rapid course in dimension 3.

A classical theorem of Alexander [5] says that every closed oriented 3-manifold
admits an open book decomposition and Martinet [38] showed that every closed ori-
ented 3-manifold carries a contact structure. In 1975, Thurston and Winkelnkemper
[59] presented an alternate proof of Martinet’s theorem by constructing contact forms
on closed 3-manifolds using open books.

Definition 3.3. A contact structure & on a 3-manifold Y is said to be supported by
an open book (B, w) if £ can be given by a contact form « such that ¢(B) > 0 and
do > 0 on every page.

In view of Definition 3.3, the result of Thurston and Winkelnkemper can be
rephrased as follows: every open book on a closed oriented 3-manifold supports a
contact structure.

The converse (i.e., every contact structure on a closed oriented 3-manifold is sup-
ported by an open book) was proven by Giroux. In fact, he proved the following
theorem, which is known as Giroux’s correspondence.

Theorem 3.4 (Giroux [30]). On a closed oriented 3-manifold, there is a one-to-one
correspondence between the set of isotopy classes of contact structures and open
books up to positive stabilization.
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Figure 10. The standard contact structure § = ker(dz + xdy) in R3.

For a detailed sketch of the proof of Theorem 3.4, we refer to Etnyre’s lecture
notes [21].

4. Topological characterization of Stein domains of complex
dimension two

Definition 4.1. A Stein manifold is an affine complex manifold, i.e., a complex man-
ifold that admits a proper holomorphic embedding into some C¥ .

Suppose that ¢: X — R is a smooth function on a complex manifold (X, J).
Let g denote the 2-form —d(d¢ o J). Then the map ¢: X — R is called J-convex
(aka strictly plurisubharmonic) if wg(u, Ju) > 0 for all nonzero vectors u € TX. It
follows that wg is an exact symplectic form on X.
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Grauert’s characterization. A complex manifold (X, J) is Stein if and only if it
admits a proper J-convex function ¢: X — [0, 00).

We advise the reader to turn to the book [17] of Eliashberg and Cieliebak, for
a meticulous treatment of Stein (and Weinstein) manifolds. For the purposes of this
article, we now restrict our attention to Stein surfaces (of complex dimension two),
for which the reader may consult [32] for an elaborate discussion.

Suppose that (X, J) is a Stein surface. For any proper J-convex Morse function
¢: X — [0, 00), each regular level set Y of ¢ is a contact 3-manifold, where the
contact structure is given by the kernel of oy = —d¢ o J or, equivalently, by the
complex tangencies TY N JTY . For any regular value c of ¢, the sublevel set W =
¢~ 1([0, ¢]) is called a Stein domain. We also say that the compact 4-manifold (W, J)
is a Stein filling of its contact boundary (0W, ker o).

By the work of Eliashberg [20] and Gompf [32] a handle decomposition of a
Stein domain (W, J) is well understood: it consists of a 0-handle, some 1-handles,
and some 2-handles attached along Legendrian knots (those tangent to the contact
planes) with framing —1 relative to the contact planes.

The following theorem, whose proof is based on the handle decomposition above,
is somewhat analogous to Donaldson’s theorem on the existence of Lefschetz pencils
on closed symplectic manifolds.

Theorem 4.2 (Akbulut and Ozbagci [1] and Loi and Piergallini [36]). A Stein domain
admits an allowable® Lefschetz fibration over D? and, conversely, any allowable Lef-
schetz fibration over D? admits a Stein structure.

Moreover, by modifying the proof of Akbulut and the author, Plamenevskaya
[52] showed that the contact structure induced on the boundary of the Stein domain is
supported by the open book inherited by the Lefschetz fibration. As a result we have
the diagram

allowable
Stein domain ~-<——  Lefschetz fibration

contact structure =~ -«———»  open book

which gives a criterion for Stein fillability: a contact 3-manifold is Stein fillable if
and only if it admits a supporting open book whose monodromy can be factorized
into positive Dehn twists.*

3The vanishing cycles are homologically non-trivial.
4This was independently proved by Giroux.
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Definition 4.3. A compact symplectic 4-manifold (X, w) is a (strong) symplectic fill-
ing of a contact 3-manifold (Y, £) if 0X = Y (as oriented manifolds), w is exact near
the boundary, and its primitive o can be chosen so that ker(x|y) = &. A symplectic
filling is called minimal if it does not contain any symplectically embedded sphere of
self-intersection —1.

An active line of research in symplectic/contact topology is to classify all Stein
fillings or more generally all minimal symplectic fillings of a given contact 3-mani-
fold, up to diffeomorphism. It is clear by definition that every Stein filling is a minimal
symplectic filling. The converse, however, is not true as shown by Ghiggini [29],
using the celebrated Ozsvath—Szabd contact invariants [50].

The classification of Stein or more generally minimal symplectic fillings of a
given contact 3-manifold is difficult in general. Nevertheless, this problem has been
solved for many contact 3-manifolds, each of which has finitely many fillings. See
the author’s survey article [46] for the state of affairs until 2015.

The existence of a contact 3-manifold which admits infinitely many distinct Stein
fillings was discovered by Stipsicz and the author. Let Y denote the closed 3-mani-
fold, which is the total space of the open book whose page is a genus g surface with
connected boundary and whose monodromy is the square of the boundary Dehn twist.
Let &, denote the contact structure on Y, supported by this open book.

Theorem 4.4 (Ozbagci and Stipsicz [48]). For each odd integer g > 3, the contact
3-manifold (Y ., &) admits infinitely many pairwise non-homeomorphic Stein fillings.

Outline of proof. A positive word in Map,, for g > 3 (generalizing Matsumoto’s
genus two word [39]), was discovered independently by Cadavid [12] and Korkmaz
[34]. For g odd, the word is (cocicz - -+ cga®h?)? = 1, where, by an abuse of nota-
tion, each letter represents the right-handed Dehn twist along the curve decorated
with the same letter, depicted in Figure 11. For each odd integer g > 3, there is a
Lefschetz fibration over S2, which corresponds to the aforementioned word. First we
take (twisted) fiber sums of two copies of this Lefschetz fibration over S2 and then
remove a regular neighborhood of the union of a section and a regular fiber to get
Stein fillings of the common contact boundary. The Stein fillings are distinguished
by the torsion in their first homology groups, coming from the twistings in the fiber
sums.

Remark 4.5. For a fixed odd integer g > 3, all the Stein fillings mentioned in Theo-
rem 4.4 have the same Euler characteristic and the signature. In contrast, Baykur and
Van Horn-Morris [8] showed that there are vast families of contact 3-manifolds each
member of which admits infinitely many Stein fillings with arbitrarily large Euler
characteristics and arbitrarily small signatures.
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Figure 11. Curves on a genus g surface, for odd g.

5. Canonical contact structures on the links of isolated complex
surface singularities

A fruitful source of Stein fillable contact 3-manifolds is given by the links of isolated
complex surface singularities. Let (X, 0) C (C",0) be an isolated complex surface
singularity. Then for a sufficiently small sphere S EZN 1 C CN centered at the origin,
Y = X N S2¥~1is a closed, oriented, and smooth 3-dimensional manifold, which is
called the link of the singularity.

If J denotes the complex structure on X, then the plane field given by the com-
plex tangencies £ := TY N JTY is a contact structure on Y —called the canonical
(aka Milnor fillable) contact structure on the singularity link. The contact 3-manifold
(Y, &) is called the contact singularity link. Note that £ is determined uniquely, up to
isomorphism, by a theorem of Caubel, Némethi, and Popescu-Pampu [14].

We advise the reader to turn to the comprehensive lecture notes [54] of Popescu-
Pampu for an introduction to complex singularity theory and its relation to contact
topology.

The minimal resolution of an isolated complex surface singularity provides a
Stein filling of its contact singularity link (Y, &), by the work of Bogomolov and
de Oliveira [11]. Moreover, if the singularity is smoothable, the general fiber X of
a smoothing is called a Milnor fiber, which is a compact smooth 4-manifold such
that X = Y. Furthermore, X has a natural Stein structure so that it provides a Stein
(hence minimal symplectic) filling of (Y, §). Therefore, a natural question arises as
follows (see, for example, [41]): Does there exist a contact singularity link which
admits Stein (or minimal symplectic) fillings other than the Milnor fibers (and the
minimal resolution)?

The answer is negative for simple and simple elliptic singularities as shown by
Ohta and Ono [43-45]. The answer is negative for cyclic quotient singularities as
shown by the culmination of the work of several people: McDuff [40], Christophersen
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[16], Stevens [56], Lisca [35], and Némethi and Popescu-Pampu [42]. The answer is
negative for non-cyclic quotient singularities as well by the work of Stevens [57],
Bhupal and Ono [9], and H. Park, J. Park, Shin, and Urzda [51].

The first examples where the answer is affirmative were discovered by Akhmedov
and the author.

Theorem 5.1 (Akhmedov and Ozbagci [3]). There exists an infinite family of Seifert
fibered contact singularity links such that each member of this family admits infinitely
many exotic® Stein fillings. Moreover, none of these Stein fillings are homeomorphic
to Milnor fibers.

The exotic fillings mentioned in Theorem 5.1 are not simply connected. The first
examples of infinitely many exotic simply-connected Stein fillings were discovered
by Akhmedov, Etnyre, Mark, and Smith [2].

Moreover, Plamenevskaya and Starkston [53] recently showed that many rational
singularities admit simply-connected Stein fillings that are not diffeomorphic to any
Milnor fibers.

Theorem 5.2 (Akhmedov and Ozbagci [4]). For any finitely presented group G, there
exists a contact singularity link which admits infinitely many exotic Stein fillings such
that the fundamental group of each filling is G.

Some key ingredients in the proofs of Theorem 5.1 and Theorem 5.2 are Lut-
tinger surgery [37], symplectic sum [31], Fintushel-Stern knot surgery [24], and the
Seiberg—Witten invariants [61].

We now turn our attention to Lefschetz fibrations on minimal symplectic fillings
of lens spaces. Let £ denote the canonical contact structure on the lens space L(p, q),
which is the link of a cyclic quotient surface singularity. The minimal symplectic fill-
ings of (L(p, q), §) have been classified by Lisca [35], generalizing the classification
by McDuff [40] for (L(p, 1), §).

Theorem 5.3 (Bhupal and Ozbagci [10]). There is an algorithm to describe any min-
imal symplectic filling of (L(p, q), §) as an explicit genus-zero allowable Lefschetz
fibration over D?. Moreover, any minimal symplectic filling of (L(p,q),£) is obtained
by a sequence of rational blowdowns® starting from the minimal resolution of the cor-
responding cyclic quotient singularity.

Theorem 5.3 was recently extended to the case of non-cyclic quotient singularities
by H. Choi and J. Park [15].

SHomeomorphic but pairwise not diffeomorphic.
®Rational blow-down is a surgery operation discovered by Fintushel and Stern [23], where
a negative definite linear plumbing submanifold is replaced by a rational 4-ball.
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Remark 5.4. Since (L(p, q), §) is known to be planar [55], i.e., it admits a planar
open book that supports &, it also follows by a theorem of Wendl [60], that each
minimal symplectic filling of (L(p, q), &) is deformation equivalent to a genus-zero
allowable Lefschetz fibration over D2, although we have not relied on Wend!’s theo-
rem in our proof of Theorem 5.3.

6. Lefschetz fibrations and trisections

A handlebody is a compact manifold admitting a handle decomposition with a single
0-handle and some 1-handles. A trisection of a closed 4-manifold X is a decompo-
sition of X into three 4D-handlebodies, whose pairwise intersections are 3D-handle-
bodies and whose triple intersection is a closed embedded surface.

A trisection of a 4-manifold is analogous to a Heegaard splitting of a closed 3-
manifold, which is a decomposition into two 3D-handlebodies whose intersection is
an embedded surface. Moreover, trisections can be presented by trisection diagrams,
similar to the Heegaard diagrams. We refer to Gay’s lecture notes [27] for a gentle
introduction to trisections of 4-manifolds.

Theorem 6.1 (Gay and Kirby [25]). Every closed oriented 4-manifold admits a tri-
section.

Based on a splitting of an arbitrary closed 4-manifold into two achiral” Lefschetz
fibrations over D? due to Etnyre and Fuller [22] and a gluing technique for rela-
tive trisections for 4-manifolds with boundary, Castro and the author [13] obtained
an alternate proof of Theorem 6.1 using Lefschetz fibrations and contact geometry,
instead of Cerf theory as utilized by Gay and Kirby. The following result is an appli-
cation of this alternate proof.

Theorem 6.2 (Castro and Ozbagci [13]). Suppose that X is a closed, oriented 4-
manifold which admits a Lefschetz fibration over S? with a section of square —1.
Then, an explicit trisection of X can be described by a corresponding trisection dia-
gram, which is determined by the vanishing cycles of the Lefschetz fibration.

We would like to point out that Gay [26] also constructed a trisection of any 4-
manifold which admits a Lefschetz pencil, turning one type of decomposition into
another, but without describing an explicit trisection diagram.

Remark 6.3. Baykur and Saeki [7] obtained yet another proof of Theorem 6.1, set-
ting up a correspondence between broken Lefschetz fibrations and trisections, using

"Possibly including nodes with opposite orientation.
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Figure 12. A trisection diagram for the Horikawa surface H'(1).

a method which is very different from ours. They also proved a stronger version of
Theorem 6.2.

Example 6.4 ([13]). The Horikawa surface H'(1), a simply-connected complex sur-
face of general type, admits a genus two Lefschetz fibration over $? with a section of
square —1. The trisection diagram obtained by applying Theorem 6.2 is depicted in
Figure 12. Notice that H'(1) is an exotic copy of 5 CP? #29 CP2.
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Finite groups of birational transformations
Yuri Prokhorov

Abstract. We survey new results on finite groups of birational transformations of algebraic
varieties.

1. Introduction

We work over a field k of characteristic 0. Typically, unless otherwise mentioned,
we assume that k is algebraically closed. The Cremona group Cr, (k) of rank n is
the group of k-automorphisms of the field k(xy, ..., x,) of rational functions in n
independent variables. Equivalently, Cr, (k) can be viewed as the group of birational
transformations of the projective space P”. It is easy to show that for n = 1, the group
Cr, (k) consists of linear projective transformations:

Cri(k) = PGL, (k).

On the other hand, for n > 2, the group Cr;, (k) has an extremely complicated struc-
ture. In particular, it contains linear algebraic subgroups of arbitrary dimension and
has a lot of normal non-algebraic subgroups [18,24]. We refer to [3,22,23,38,48,95]
for surveys, historical résumés, and introductions to the subject.

Examples. (i) Any matrix A = |[la; ;|| € GL,(Z) defines an element ¢4 € Cr, (k)
via the following action on k(x1, ..., x,):

. ai az.i an.i
D T S P
Such Cremona transformations are called monomial. For n = 2 and A = —id, the

transformation ¢4 is known as the standard quadratic involution

(x1,x2) = (x7h .

2020 Mathematics Subject Classification. Primary 14E07; Secondary 14J50, 14J45, 14E30.
Keywords. Cremona group, birational transformation, Fano variety, minimal model program.


https://creativecommons.org/licenses/by/4.0/

Y. Prokhorov 414

(i1) Let S be an algebraic variety admitting a generically finite rational map

w8 -->Pprl
of degree 2. In an affine piece and suitable coordinates, S can be given by the equation
y2 = f(x1,...,Xs—1). One can associate with (S, 77) an involution 7 € Cr, (k) acting
onk(xy,...,xp—1,y) via
T (X1 Xne1, Y) B> (X1a e Xnmt, f(X1a e Xpmt) - y_l).

If n = 2 and S is a hyperelliptic curve, then t is known as the de Jonquiéres involu-
tion.

The study of the Cremona group has a very long history. Basically, it was started
in earlier works of A. Cayley and L. Cremona, and since then, this group has been
the object of many studies. In these notes, we concentrate on the following particular
problem.

Problem 1.1. Describe the structure of finite subgroups of Cry, (k).

Note, however, that the projective space is not an exceptional variety from the
algebro-geometric point of view. So one can ask a similar question replacing Cry, (k)
with the group of birational transformations Bir(X) of an arbitrary algebraic variety
X . Hence it is natural to pose the following problem.

Problem 1.2. Describe the structure of finite subgroups of Bir(X), where X is an
algebraic variety.

We deal with the most recent results related to these problems. Definitely, our
survey is not exhaustive.

2. Equivariant minimal model program

In this section, we collect basic facts on the so-called G-minimal model program
(abbreviated as G-MMP). This program is the main tool in the study of finite groups
of birational transformations. For a detailed exposition, we refer to [89].

Let G be a finite group. Following Yu. Manin [68], we say that an algebraic variety
X is a G-variety if it is equipped with a regular faithful action G ~ X, i.e., if there
exists an injective homomorphism « : G — Aut(X ). A morphism (resp. rational map)
f : X = Y of G-varieties is a G-morphism (resp. G-map) if there exists a group
automorphism ¢ : G — G such that, for any g € G,

foa(g) = B(e(g) o f.
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where @ : G — Aut(X) and 8 : G — Aut(Y) are the embeddings corresponding to
the actions G ~, X and G ~ Y, respectively.

For any G -variety X, the action G ~, X induces an embedding G — Autg (k(X))
to the automorphism group of the field of rational functions k(X). Conversely, given
any finitely generated extension K/k and any finite subgroup G C Autk (K), there
exists a G-variety X and an isomorphism k(X) >~k K inducing G C Autg (K). Thus,
we have the following fact.

Proposition 2.1. Let K/k be finitely generated field extension. Then there exists a
1-1 correspondence between finite subgroups G C Auty (K) considered modulo con-
jugacy and G-varieties X such that K(X) >~k K considered modulo G-birational
equivalence.

Recall that a variety X is said to be rational if it is birationally equivalent to the
projective space P” or, equivalently, if the field extension k(X )/k is purely transcen-
dental.

Corollary. There exists a 1-1 correspondence between finite subgroups G C Cry (k)
considered modulo conjugacy and rational G-varieties X such that k(X) ~k K con-
sidered modulo G-birational equivalence.

Next, due to the equivariant resolution theorem (see e.g. [1]), it is possible to
replace X with a smooth projective model.

Proposition 2.2 (see, e.g., [89, Lemma 14.1.1]). For any G-variety X, there exists a
smooth projective G-variety Y that is G-birationally equivalent to X.

Thus the above considerations allow us to reduce the problem of classification
of finite subgroups of Bir(X) to the study of subgroups in Aut(Y), where Y is a
smooth projective variety. The main difficulty arising here is that this G-variety Y is
not unique in its G-birational equivalence class. So, given G-birational equivalence
class of algebraic G-varieties, we need to choose some good representative in it. This
can be done by means of the G-MMP. The higher-dimensional MMP forces us to
consider varieties with certain very mild, so-called terminal singularities.

Definition. A normal variety X has terminal singularities if some multiple m Ky of
the canonical Weil divisor Kx is Cartier, and for any birational morphism f : Y — X,
one can write

mKy = f*mKx + ZaiEi’

where E; are all the exceptional divisors and a; > O for all i. The smallest positive m
such that m Ky is Cartier is called the Gorenstein index of X .
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Definition. A G-variety X has GQ-factorial singularities if a multiple of any G-
invariant Weil divisor on X is Cartier.

It is important to note that terminal singularities lie in codimension > 3. In par-
ticular, terminal surface singularities are smooth.

Example ([72,93]). Let the cyclic group g, act on A* diagonally via
(x1.%2,x3,X4) = (Cx1,0 ' X2, 0% 3., x4), (=0 =expyi/r), ged(a,r)=1.
Then for a polynomial f(u, v), the singularity of the quotient

{Xlxz + f(x3,x4) = 0}/”’r
at 0 is terminal whenever it is isolated.

The aim of the G-MMP is to replace a G-variety with another one, which is
“minimal” in some sense. As we mentioned above, running the G-MMP we have to
consider singular varieties, and the class of terminal G Q-factorial singularities is the
smallest class that is closed under the G-MMP.

Definition (For simplicity, we assume that k is uncountable). A variety X is uniruled
if for a general point x € X, there exists a rational curve C C X passing through x. A
variety X is rationally connected if two general points x;, x, € X can be connected
by a rational curve.

Note that a rationally connected surface is rational, and an uniruled surface is
birationally equivalent to C x P!, where C is a curve.

Definition. Let Y be a G-variety with only terminal GQ-factorial singularities and
let f : Y — Z be a G-equivariant morphism with connected fibers to a lower-dimen-
sional variety Z, where the action of G on Z is not necessarily faithful. Then f is
called G-Mori fiber space (abbreviated as G-Mfs) if the anti-canonical class —Ky is
f-ample and rk Pic(Y/Z)® = 1.1f Z is a point, then —Ky is ample, and Y is called
GQ-Fano variety. Two-dimensional G Q-Fano varieties are traditionally called G -del
Pezzo surfaces.

Definition. A G-variety Y is said to be a G-minimal model if it has only terminal
G Q-factorial singularities and the canonical class Ky is numerically effective (nef).

It is not difficult to show that the concepts of G-minimal model and G-Mori fiber
space are mutually exclusive. Moreover, if f : Y — Z is a G-Mfs, then its general
fiber is rationally connected; hence Y is uniruled. On the other hand, a G-minimal
model is never uniruled [70]. The following assertions are usually formulated for
varieties without group actions. The corresponding equivariant versions can be easily
deduced from non-equivariant ones (see [89]).
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Theorem 2.3 ([14]). Let X be an uniruled G-variety. Then there exists a birational
G-map X --> Y, where Y has a structure of G-Mfs [ 1Y — Z.

Conjecture 2.4. Let X be a non-uniruled G-variety. Then there exists a birational
G-map X --> Y, where Y is a G-minimal model.

The conjecture is known to be true in dimension < 4 (see [73,99]), as well as
in the case where Kx is big [14], and in some other cases. In arbitrary dimension, a
weaker notion of quasi-minimal models works quite satisfactory [82].

3. Cremona group of rank 2

The G-MMP for surfaces is much more simple than in higher dimensions. It was
developed in the works of Yu. Manin and V. Iskovskikh (see [68]). In the two-dimen-
sional case, the G-MMP works in the category of smooth G-surfaces, and all the
birational transformations are contractions of disjoint unions of (—1)-curves. For a
G-Mfs f : Y — Z, there are two possibilities:

(i) Zisapoint and then Y is a G-del Pezzo surface,

(ii)  Z is a curve, any fiber of f is a reduced plane conic and rk Pic(Y )¢ = 2.
In this case, f is called G-conic bundle.

Thus to study finite subgroups of Crz(k), one has to consider the above two classes
of G-Mfs’s in detail. The classification of del Pezzo surfaces is well known and very
short. Hence, to study the case (i) one has to list all finite subgroups G C Aut(Y) sat-
isfying the condition rk Pic(Y)® = 1. The full list was obtained by Dolgachev and
Iskovskikh [40]. In contrast, the class of conic bundles is huge and consists of an
infinite number of families. In this case, a reasonable approach is to find an algorithm
of enumerating conic bundles Y /Z together with subgroups G C Aut(Y/Z) satisfy-
ing rk Pic(Y )¢ = 2. This also was done by Dolgachev and Iskovskikh [40] (see also
[103]). However, even using this algorithm, it is very hard to get a complete list of
corresponding groups.

As an example, we present a well-known classical result on the classification of
subgroups of order 2 in Cr; (k). It was obtained by E. Bertini [12] in 1877; however,
his arguments were incomplete from a modern point of view. A new rigorous proof
was given by L. Bayle and A. Beauville [8].

Theorem 3.1. Let G = {1, 1} C Cra(k) be a subgroup of order 2. Then the embed-
ding G C Cry(k) is induced by one of the following actions on a rational surface X :
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T X and 1

1° Linear involution P2

29 delJonquieres involu- X = {y1y>, = p(x1,x2)} CP(1l,1,g+1,g+ 1)
tion of genus g > 1  p is a homogeneous form of degree 2g + 2,
7 is the deck involution of the projection

X —ZLL]P’(L Lg+1), (x1,x2, y1, y2) > (x1, X2, y1+2)
3¢9 Geiser involution X ={y? = p(x1,x2,x3)} CP(1,1,1,2),

p is a homogeneous form of degree 4,

7 is the deck involution of the projection

x ZL P11 = P2
4° Bertini involution X ={z% = p(x1.x2,y)} C P(1,1,2,3),

p is a quasihomogeneous form of degree 6,

7 is the deck involution of the projection

x 2L pa,1,2)

Here P(wy, ..., wy,) denotes the weighted projective space with corresponding
weights.

In the cases 17, 3%, and 4°, the variety X is a del Pezzo surface of degree 9, 2,
and 1, respectively. In the case 29, the projection X --> P(1,1) = P! becomes a
G -conic bundle after blowing up the indeterminacy points.

The G-MMP was successfully applied for the classification of various classes
of finite subgroups in Crz(k): groups of prime order [36], p-elementary groups [9],
abelian groups [15, 16], and finally, arbitrary groups [40]. Here is another example of
classification results.

Theorem 3.2 ([40]). Let G C Cry(C) be a finite simple group. Then G is isomorphic
to one of the following:

As, As, PSLy(F7),
where U, is the alternating group of degree n and PSL,,(Fy) is the projective special
linear group over the finite field F .

Moreover, if G % Us, then the embedding G C Cry (k) is induced by one of the
following actions on a del Pezzo surface X :

G |G| X
A 360 P2
PSL,(F7) 168 P2
PSL,(F;) 168 {02 =xxy + x3x3 + x3x13 CP(1,1,1,2)

A complete classification of embeddings 25 < Cr; (k) can be found in [31].
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4. Cremona group of rank 3

The MMP in dimension 3 is more complicated than the two-dimensional one, but still,
it is developed very well. In particular, terminal threefold singularities are classified
up to analytic equivalence [72,93]. The structure of all intermediate steps of the MMP
and Mfs’s is also studied relatively well (see [89] for a survey).

For a three-dimensional G-Mori fiber space f : Y — Z, there are three possibil-
ities:

(i)  Z is apoint, then Y is a (possibly singular) GQ-Fano threefold,

(i) Z isacurve, then f is called a GQ-del Pezzo fibration,

(ili) Z is a surface, then f is a GQ-conic bundle.

A GQ-conic bundle can be birationally transformed into a standard G-conic bundle,
i.e., GQ-conic bundle such that both X and Z are smooth [6]. For GQ-del Pezzo
fibrations, there are only some partial results of this type (see [35, 66]). Nevertheless,
the main difficulty in the application G-MMP to the classification of finite groups of
birational transformations is the lack of a complete classification of Fano threefolds
with terminal singularities. At the moment, only some very particular classes of GQ-
Fano threefolds are studied (see [4, 5, 52,79, 80, 88] and references therein). Some
roundabout methods work in the case of “large” in some sense (in particular, simple)
finite groups.

Theorem 4.1 ([78]). Let G C Cr3(C) be a finite simple subgroup. Then G is isomor-
phic to one of the following:

As, As, Ay, PSLr(F7), PSL>(Fg), PSp,(F3),

where PSp4(F3) is the projective symplectic group over Fs. All the possibilities occur.
This classification is a consequence of the following more general result.

Theorem 4.2 ([78]). Let Y be a rationally connected threefold and let G C Bir(Y)
be a finite simple group. If G is not embeddable to Cry(C), then Y is G-birationally
equivalent to one of the following G Q-Fano threefolds:

G X Rational?
19 A4 Xé = {0'1’7 = 03,7 = 03,7 = 0} C PS5 c P¢ no
20 9, P3 yes
3° PSp,(F3) P3 yes
4° PSp,(F3) Burkhardt quartic X = {016 =046 =0} CP*CP>  yes
5° PSL,(Fg) Special Fano threefold X, C P?® of genus 7 yes

6° PSLy(F11) Kleincubic X5 = {x1x2 + x,x3 +---x5x? =0} C P* no
7° PSLy(F11) Special Fano threefold X2, C P° of genus 8 no
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Here og4 ) = 04 x(X1,...,Xg) is the elementary symmetric polynomial of degree
d in k variables.

Below we outline the proof of Theorem 4.2.

Assume that G is not embeddable to Cry(k), i.e., it is not isomorphic to any
of the groups listed in Theorem 3.2. First, Proposition 2.2 allows us to assume that
the action of G is regularized on some smooth projective G-variety X. By running
the equivariant MMP, we may assume that X has a structure of a G-Mfs f : X — Z
(because X is rationally connected). Consider the case dim Z > 0. Since G is a simple
group, it must act faithfully on the base Z or on the general fiber F. Since the varieties
F and Z are rational, this means that G is contained in the plane Cremona group
Crz (k). The contradiction proves Theorem 4.2 in the case dim Z > 0.

Hence, we may further assume that Z is a point and X is a GQ-Fano threefold.
Consider the case where X is not Gorenstein, i.e., the canonical class Ky is not a
Cartier divisor. It turns out that this case does not occur. Let Py, ..., P, € X be all
non-Gorenstein points and let ry, ..., r, be the corresponding Gorenstein indices.
Arguments based on Bogomolov—Miyaoka inequality (see [55,57] and [89, §12])

show that 1
> (ri — —) < 24.
"

4

Hence, n < 15. Then using the classification of transitive actions of simple groups
[33] and analyzing the action of stabilizers of P;, one obtains the only possibility:

J nzll,GZPSLz(Fll),rl:---:rnzz.

This case is excluded by a more detailed geometric consideration (see [78, §6]).

Thus, we may assume that Ky is a Cartier divisor. In this case, according to [74],
the variety X has a smoothing, that is, there exists a one-parameter flat family X /5 >
o such that the special fiber X, is isomorphic to X, and a general geometric fiber X,
is a smooth Fano threefold. Hence some discrete invariants of X, such as the Picard
lattice Pic(X) and the anticanonical degree —K )3( are the same as for smooth Fano
threefolds, which are completely classified (see [52]). Recall that the Fano index ¢ (X)
of X is the maximal integer that divides the canonical class Kx in the lattice Pic(X)
[52]. By [80], we have rk Pic(X) < 4. Since Pic(X)® ~ Z and a simple group that
is not isomorphic to U5 cannot have a nontrivial integer representation of dimension
<4, we have tkPic(X) = 1. If 1 (X) > 4 (resp, t(X) = 3), then X is isomorphic to the
projective space P> (resp. a quadric in P#) [52]. Then from the classification of finite
subgroups in PSL4 (k) and PSLs(k), we get cases 2 and 3°. Three-dimensional Fano
varieties with ¢(X) =2 are called del Pezzo threefolds. G-Fano threefolds of this type
were studied in [79]. As a consequence of these results, we get the case of the group
G = PSL,(F;1) acting on the Klein cubic (case 6°).
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Finally, let Pic(X) = Z - Kx. Recall that in this case, the anticanonical degree is
written in the form —K;( =2g(X)—2, where g(X) € {2,3,...,10,12} [52]. For
g(X) < 5, the variety X has a natural embedding to a (weighted) projective space as
a complete intersection [52]. Using this and some facts from representation theory,
we obtain for the group G two cases, 1° and 4°. The case g(X) = 6 can be excluded
using [37, Corollary 3.11]. For g(X) > 7, the variety X must be smooth (see [78,
Lemma 5.17] and [88]). Further, using some facts about automorphisms of smooth
Fano threefolds [63], we obtain for the group G two possibilities, 5° and 7°. This
completes our sketch of the proof of Theorem 4.2. ]

A similar technique was applied to the study of finite p-subgroups and quasi-
simple subgroups in Cr3(k) (see [17,64,67,77,81,86]).

Note that Theorem 4.2 does not describe embeddings of groups Us, e, and
PSL,(F7) to the space Cremona group. It is obvious that such embeddings exist,
but their full classification should be significantly more difficult. There are only some
partial results in this direction (see e.g. [26-29, 62]).

5. Jordan property

The methods and results of [40] show that one cannot expect a reasonable classifi-
cation of all finite subgroups of Cremona groups of higher rank. Thus it is natural to
concentrate on the study of general properties of these subgroups. Recall the follow-
ing two famous results by C. Jordan and H. Minkowski.

Theorem 5.1 ([53]). There exists a function j(n) such that for any finite subgroup
G C GL,(C), there exists a normal abelian subgroup A C G of index at most j(n).

Theorem 5.2 ([69]). There exists a function b(n) such that for every finite subgroup
G C GL,(Q), one has |G| < b(n).

J.-P. Serre [94,96] asked if these properties hold for Cremona groups. Complete
answers to these questions were given in [82, 83] (see below). The following very
convenient definitions were suggested by V. L. Popov [75].

Definition. e A group I is Jordan if there exists a constant j(I") such that any finite
subgroup G C T has a normal abelian subgroup A of index [G : A] < j(T).

o A group I is bounded (or satisfy bfs property) if there exists a constant b(I") such
that for any finite subgroup G C T, one has |G| < b(T').

Rationally connected varieties

Theorem 5.3 ([13,83]). Let X be a rationally connected variety. Then Bir(X) is Jor-
dan. Moreover, Bir(X) is uniformly Jordan; that is, the constant j(Bir(X)) depends
only on dim(X).
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As a consequence, we obtain that the group Cr, (k) is Jordan.
Originally, Theorem 5.3 was proved modulo the so-called BAB conjecture (in a
weak form), which is now settled by C. Birkar:

Theorem 5.4 ([13]). Fix d > 0. The set of all Fano varieties X of dimension at
most d with at worst terminal singularities form a bounded family, i.e., they are
parameterized by a scheme of finite type.

It follows from Theorem 5.3 that there is a constant L = L(n) such that for any
rationally connected variety X of dimension n and for any prime p > L(n), every
finite p-subgroup of Bir(X) is abelian and generated by at most n elements (see
[83]). Recently this result was essentially improved by Jinsong Xu [104]; he showed
that L(n) = n + 1. The proof is based on a result by O. Haution [47]. Thus we have
the following theorem.

Theorem 5.5. Let X be a rationally connected variety of dimension n and let G C
Bir(X) be a finite p-subgroup. If p > n + 1, then G is abelian and is generated by
at most n elements.

The results of Theorems 5.3 and 5.5 were applied in the proof of Jordan property
of local fundamental groups of log terminal singularities [20,71].

Varieties over non-closed fields

Theorem 5.6 ([13,82]). Let X be a variety over a field k of characteristic 0, which
is finitely generated over Q. Then the group Bir(X) is bfs.

Similar to Theorem 5.3, the proof of this result is based on the BAB conjecture
(Theorem 5.4).

In the case X = P2, an explicit bound was obtained in [94] (see also [41]) in
terms of cyclotomic invariants of the field k. Theorem 5.6 can be reformulated in an
algebraic form, which gives the positive answer to a question of J.-P. Serre [96].

Theorem 5.6a. Let K be a finitely generated field over Q. Then the group Aut(K) is
bfs.

Jordan constants. Define the Jordan constant of a group I' as the number j(I') that
appears in the definition of Jordan property. The weak Jordan constant j(T') of T is
the minimal j such that for any finite subgroup G C I, there exists an abelian (not
necessarily normal) subgroup A C G such that [G : A] < j. Easy group-theoretic
arguments show that

iM) <j(T) <jM)>.
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The exact value of the Jordan constant is known only for the Cremona group of rank
two: j(Cra(k)) = 7200 (see [105]). On the other hand, weak Jordan constants are
easier to compute. It was proved in [84] that

j(Cry) =288, j(Crz) = 10368.

Moreover, the inequality j(Bir(X)) < 10368 holds for any rationally connected three-
fold X.

Jordan property of arbitrary varieties. It turns out that the group of birational
transformations of an algebraic variety is not always Jordan. The first example was
discovered by Yu. Zarhin.

Example ([106]). Let C be an elliptic curve and let X = C x P!, Then the group
Bir(X) is not Jordan.

On the other hand, the exceptions as above are very rare.

Theorem 5.7 (V. L. Popov [75]). Let X be an algebraic surface. The group Bir(X)
is not Jordan if and only if X is birationally equivalent to P' x C, where C is an
elliptic curve.

The proof of this theorem given in [75] essentially uses a result of I. Dolgacheyv,
which in turn is based on the classification of algebraic surfaces. Later, Theorem 5.7
was generalized to higher dimensions with classification independent proofs.

Theorem 5.8 ([82]). Let X be an algebraic variety. Then the following assertions
hold.

(1)  If X either is non-uniruled or has irregularity q(X) = 0, then Bir(X) is
Jordan.

(i) If X is non-uniruled and q(X) = 0, then Bir(X) is bfs.
Similar to Theorems 5.6 and 5.3, the proof of Theorem 5.8(i) is based on the

boundedness of terminal Fano varieties (Theorem 5.4).
In dimension three, there is the following much more precise result.

Theorem 5.9 ([85]). Let X be a three-dimensional algebraic variety. Then Bir(X) is
not Jordan if and only if either
(i) X is birationally equivalent to C x P2, where C is an elliptic curve, or
(i) X is birationally equivalent to S x P, where S is one of the following:

o asurface of Kodaira dimension x(S) = 1 such that the Jacobian fibra-
tion of the pluricanonical map ¢: S — B is locally trivial;

o S is either an abelian or bielliptic surface (and »(S) = 0).
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Below we explain the main idea of the proof of the necessity. So we assume that
Bir(X) is not Jordan. By Theorems 5.3 and 5.8, the variety X is uniruled, but it is not
rationally connected. Hence there exists a map X --»> Z with rationally connected
fibers (so-called maximal rationally connected fibration) such that Z is not uniruled
and dim(Z) = 1 or 2 (see [56]). We have a natural exact sequence

1 — Bir(X,) — Bir(X) — Bir(Z),

where X, is the generic scheme-theoretic fiber. Since X is rationally connected and
Z is not uniruled, the groups Bir(X;) and Bir(Z) must be Jordan. Then group-
theoretic arguments show that both groups Bir(X;) and Bir(Z) are not bfs (see,
e.g., [82, Lemma 2.8]). In the case where Z is a curve, this implies that Z is elliptic,
and applying the following fact with K = k(Z) and S := X,,, we obtain that X is
birationally equivalent to Z x P2,

Proposition 5.10 ([85]). Let K be a field containing all roots of 1 and let S be a
surface over K such that S is not K-rational, S is K-rational, and S(K) # @. Then
the group Bir(S) is bfs.

Note that the condition of the existence of a K-point on ' in the above statement
is important. The groups of (birational) automorphisms of geometrically rational sur-
faces without rational points were studied in the series of papers [100-102].

Now assume that Z is a surface. According to the main result of [7], the threefold
X is birationally equivalent to Z x P!. By Theorem 5.8 we have ¢(Z) > 0. Thus in
the case x(Z) = 0, the surface Z must be either abelian or bielliptic. Since the group
Bir(Z) is not finite in our case, Z cannot be a surface of general type. Consider the
case x(Z) = 1. Then the pluricanonical map ¢ : Z — B is a Bir(Z)-equivariant
elliptic fibration. Let

Jac(¢p): E - B

be the corresponding Jacobian fibration. The automorphism group Aut(Z,) of the
generic fiber Z, over B is embedded to Bir(Z) as a normal subgroup. Analyzing
singular fibers, one can conclude that Aut(Z,) is of finite index in Bir(Z). In turn,
Aut(Z,) has a subgroup Aut'(Z,) of index at most 6 isomorphic to the group of
k(B)-points of E;. Assume that the fibration Jac(¢) is not locally trivial. Then by
the functional version of Mordell-Weil theorem, known as Lang—Néron theorem (see,
e.g., [32]), the group of k(B)-points of E; is finitely generated, and in particular, the
torsion subgroup of the group of points of E, is finite. This implies that Aut'(Z,) is
finite. ]
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6. Invariants and rigidity

The most important part of the classification of finite subgroups in Bir(X) is to dis-
tinguish conjugacy classes.

Problem 6.1. Let G, G’ C Bir(X) be finite subgroups such that G ~ G’. How can
one conclude that G and G’ are not conjugate?

This is equivalent to the following.

Problem 6.1a. Let X and X’ be G-varieties. How can one conclude that X and X’
are not G-birational?

Below we describe a few approaches to solve the above problems. Note, however,
that there are no universal methods.

Fixed point locus. Let X be a smooth projective G-variety. By Fix(X, G), we denote
the set of G-fixed points. It is not difficult to show (see [87]) that Fix(X, G) has at
most one codimension one component that is not uniruled. Denote this component by
F™(X, G). This is a natural birational invariant in the category of smooth projective
G-varieties.

Proposition 6.2 ([87]). Let X and X' be smooth projective G -varieties. If X and X’
are G-birational, then F**(X, Go) and F™ (X', G¢) are birational for any subgroup
Gy CG.

If Gy C G is a normal subgroup, then the set F™ (X, Gy) (if it is not empty) has
a structure of (G/Gy)-variety. Clearly, the birational type of this (G/Gg)-variety is
also a birational invariant (cf. [16]).

Example. According to Theorem 3.1 for subgroups G C Cr; (k) of order 2, we have
one of the following possibilities:

Involution T € G F“(X, G)

1° Linear on P2 %]

29  de Jonquieres of genus ¢ > 1  Hyperelliptic curve of genus g
3%  Geiser Non-hyperelliptic curve of genus 3

4°  Bertini Special non-hyperelliptic curve of genus 4

Thus the curve F™ (X, G) distinguishes conjugacy classes in this case. The same
assertion is true for subgroups of prime order [36], but it fails in general [15].
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Cohomological invariants. It is not difficult to see that for a smooth projective G-
variety X, the cohomology group

H'(G, Pic(X))

is a G-birational invariant (see [19]). More generally, we say that G-varieties X and
X' are stably G-birationally equivalent if for some n and m the products X x P”
and X’ x P™ are G-birationally equivalent, where the action of G on P” and P™ is
supposed to be trivial. Then we have the following theorem.

Theorem 6.3 ([19]). Let X and X' be smooth projective G-varieties. If X and X'
are stably G-birationally equivalent, then

H'(G,Pic(X)) ~ H'(G, Pic(X")).

Surprisingly, in some cases, the invariant H (G, Pic(X)) can be computed in
terms of G-fixed locus.

Theorem 6.4 ([19]). Let G be a cyclic group of prime order p and let X be a smooth
projective rational G-surface. Assume that F* (X, G) is a curve of genus g. Then

H'(G,Pic(X)) ~ (Z/pZ)*®.

This theorem was slightly generalized with a more conceptual proof in [97]. An-
other cohomological invariant which is called Amitsur group was introduced in [17].

As a consequence of Theorem 6.4, one can see that involutions from different
families in Theorem 3.1 are not stably conjugate in Cr(k). Note, however, that
H'(G,Pic(X)) is a discrete invariant. For example, stable conjugacy of involutions
whose curves F™ (X, G) are non-isomorphic but have the same genus is not known.

A natural question that arises here is to find examples of subgroups in Cr (k)
that are stably conjugate but not conjugate. This question is similar to the birational
Zariski problem [11].

Example. Let G = ©3 x p,. There are two embeddings of this group into the Cre-
mona group Cr; (k) induced by the following actions:
(i) action on P? = {x; + x5 4+ x3 = 0} C P3 by permutation and reversing
signs;
(i)  action on the sextic del Pezzo surface {y1y,y3 = y1y5¥5} C Pl x P! x P!
by permutation and taking inverses.
It was shown in [65] that these two subgroups in Cr; (k) are stably conjugate; in fact,

they are conjugate in Cry4(k). On the other hand, they are not conjugate [51].

Here is another example of this kind, which was pointed out to us by Yuri
Tschinkel.
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Example ([92]). Let V and W be faithful linear representations of G with dim(}') =
dim(W) = n. Assume that the images of G in GL(V') and GL(W) do not contain non-
identity scalar matrices. Then by a variant of the no-name lemma [39], we have the
following G-birational equivalences of G-varieties:

P(V) x k"t! ~ VX W ~P(W) % k"t

where k1 is viewed as the trivial representation. Hence G-varieties V and W are
stably G-birationally equivalent. On the other hand, it may happen that they are not
G-birationally equivalent.

For example, Reichstein and Youssin [92] showed that the determinant of the
action in the tangent space at a fixed point of a finite abelian group, up to sign, is a
birational invariant of the action. This allowed them to produce nonbirational linear
actions, e.g., of groups p pn On P, with p > 5. Many new examples of nonbirational
linear actions were given in [60, Section 10-11]; these are based on new invariants
introduced in [61] (see also [46,59]). These invariants take into account more refined
information about the action on subvarieties with nontrivial abelian stabilizers.

A prime number p is said to be a torsion prime for the group Bir(X) if there is a
finite abelian p-subgroup G C Bir(X) not contained in any algebraic torus of Bir(X)
[76]. Note that if a group G is contained in an algebraic torus 7 C Bir(X), then for
any smooth projective birational model Y of X on which 7" acts biregularly, we have
H1(G,Pic(Y)) = 0. Then by Theorem 6.3, the inequality H'(G, Pic(Y)) # 0 for
a finite p-subgroup G C Aut(Y) implies that a prime number p is a torsion prime
for Bir(Y') and for Bir(Y x P") for any n. Using Theorem 6.4 and the classification
[36], one can immediately see that the set of all torsion primes for Cr; (k) is equal to
{2,3,5}, and the numbers 2, 3, and 5 are torsion primes for Cr, (k) for any n > 2. This
fact was proved in [76] by using another argument. In the case n > 3, the collection
of all torsion primes for Cr, (k) is unknown.

Maximal singularities method. The maximal singularities method is the most pow-
erful tool to study birational maps between Mfs’s. It goes back to the works of G. Fano
and even earlier works of other Italian geometers. However, the first application of
this technique with rigorous proofs appeared much later in the breakthrough paper of
Manin and Iskovskikh [49]. For an introduction to the “standard,” non-equivariant
maximal singularities method, we refer to the book [90]. Below we outline very
briefly an equivariant version of the method.

Definition ([40, Definition 7.10], [29, Definition 3.1.1]). A GQ-Fano variety X is
said to be G-birationally rigid if given birational G-map ® : X --> X* to the total
space of another G-Mfs X#/Z# there exists a birational G-selfmap ¥ : X --> X
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such that the composition ® o ¥ : X --> X*# is an isomorphism (in particular, Z*# is
a point; i.e., X* is also a GQ-Fano variety).

A GQ-Fano variety X is said to be G-birationally superrigid if any birational
G-map ® : X --> X* to the total space of another G-Mfs X#/Z# is an isomorphism.

The maximal singularities method allows to check G-birational (super)rigidity
using only internal geometry of the original variety, without considering all other
G-Mfs’s. We need the following technical definition which has become common
nowadays.

Definition. Let X be a normal variety, let M be a linear system of Weil divisors on
X without fixed components, and let A be a rational number. We say that the pair
(X, AM) is canonical if some multiple m(Kxy + AM) is Cartier, where M € M, and
for any birational morphism f : Y — X, one can write

m(Ky +2My) = f*m(Kx +AM) + Y a; E;,

where My is the birational transform of M, E; are prime exceptional divisors, and
a; > 0foralli.

In the surface case, the canonical property is very easy to check: a pair (X, AM)
is canonical if and only if
multp (M) < 1/A

for any point P € X.

Now, suppose that a GQ-Fano variety X is not G-birationally superrigid. Then
the Noether—Fano inequality [34, Theorem 4.2] implies the existence of a G-invariant
linear system M on X without fixed components such that the pair (X, AM) is not
canonical, where A € Q is taken so that Kx + AM is numerically trivial. Moreover,
any M as above defines a birational G-map X --> X* to the total space of a G-Mfs
X*#/Z*¥ To show the existence or non-existence of such M, one needs to analyze the
geometry of the variety X carefully.

Example. Let X be a del Pezzo surface of degree 1. Assume that X is a G-del
Pezzo with respect to some group G C Aut(X). This means that G acts on X so that
tk Pic(X)® = 1. For example, this holds for any subgroup G C Aut(X) containing
the Bertini involution. Let M be a G-invariant linear subsystem without fixed com-
ponents. Since Pic(X)¢ = Z - Kx, we have M C | — nKx| for some n > 0. Suppose
that the pair (X, %M) is not canonical. Then multp (M) > n. Since M has no fixed
components,
n* = (-nKyx)? = M?> > (multp (M))2 > n2.

The contradiction shows that X is G-birationally superrigid.



Finite groups of birational transformations 429

Similar arguments show that any G-del Pezzo surface X of degree < 3 is G-
birationally rigid. Moreover, it is G-birationally superrigid if and only if G has no
orbits of length < K)Z( — 2 on X. In particular, PSL;(F7)-del Pezzo surface from
Theorem 3.2 is G-birationally superrigid.

Example. All the GQ-Fano threefolds from Theorem 4.2 are G-birationally super-
rigid [17,28,30]. In particular, different embeddings of PSp,(F3) and PSL,(F;;) are
not conjugate in Cr3 (k).

There is another relevant and very important notion called G-solidity [25]. For
Fano varieties without group action, this notion has been introduced earlier by
Shokurov [98] (who called solid Fano varieties primitive) and by Ahmadinezhad and
Okada [2].

Definition ([25]). A G-Fano variety X is G-solid if X is not G-birational to a G-Mfs
with a positive dimensional base.

For example, a G-del Pezzo surface X of degree 4 is G-solid if and only if G has
no fixed points on X [40, §8].

A part of the maximal singularities method is the so-called Sarkisov program
[34,45]. It allows us to decompose any birational map between Mfs’s into a compo-
sition of elementary ones. Refer to [50] for an explicit description of this program in
dimension two and to [31] for examples and applications.

7. Application: Essential dimension

The notion of the essential dimension of a finite group G, denoted by ed(G), was
introduced by Buhler and Reichstein [21]. Informally, ed(G) is the minimal number
of algebraic parameters needed to describe a faithful representation. More precisely,
given a faithful linear representation V' of G viewed as a G-variety, the essential
dimension ed(G, V') is 